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Chapter 1Introdution1 Coneptual knowledge disovery in databasesWe are living in a world of data. Huge volumes of data �web douments, user information�are available without any intended usage. Large volumes of biologial data are now available�genome, transriptome, proteome, et.� from whih biologial knowledge is expeted to bedisovered. Storing ommerial data is also ommon pratie for �rms �user preferenes, visitedwebpages history, bought produts history, et.�. In this three (non exhaustive) ases, datahide several useful information that an make life of users easier, genes responsible of a diseasedisovered, or promising sale setors of a �rm highlighted. However, these useful information aregenerally buried in the very large amount of data. Aordingly, a hallenging question arose inthe 90's: �Can we make (very large) data speak?�.Knowledge disovery in databases (KDD) is the proess of �nding non-trivial, potentiallyusefull, signi�ant and reusable information in data [44, 43℄. Starting from rough data, it onsistsin three major steps: (i) rough data are prepared, (ii) data are mined and (iii) extrated unitsare interpreted and may be �nally onsidered as derived knowledge. The objetive of this proessmay be unlear, inexat, or not known a priori. KDD is aordingly an iterative and interativeproess: to ensure usefulness and auray of the results both domain experts and tehnialexperts are generally needed to guide the KDD proess.More preisely, the KDD proess an be divided in �ve steps [43, 44, 40℄.Seletion. The data needed for the data-mining proess may be obtained from many di�erentand heterogeneous data soures. A �rst step onsists in olleting the data from variousdatabases, �les, non eletroni soures (interviews, books, experts,et.)Preproessing. The seleted data may su�er from errors and missing values. Some data valuesmay ontradit eah other sine possibly oming from di�erent soures of data. Errors anbe orreted, while missing values an be predited (often with data-mining tools).Transformation. Some data-mining algorithms operate on ertain types of data only. Aord-ingly, data should be sometimes transformed, e.g. from quantitative to qualitative data.Data redution is a kind of transformation that redues the number of data values beingonsidered, sometimes simply for making the omputation with a data-mining algorithmpossible.Data-mining. Data-mining is the use of algorithms to extrat the information and patterns(regularities, lasses, et.) derived by the KDD proess. Atually, data-mining onsists in1



2 Chapter 1. Introdutionpattern disovery or deriving/designing a model from the data.Interpretation. Information units and/or models disovered with data-mining need to be val-idated by a domain expert. The way they are presented to the expert is very important.Visualization tools and graphial user interfaes (GUI) are onsidered at this step.The KDD proess may be also understood as a proess turning data to information and thento knowledge, onsidering the following interpretations [113, 129, 93℄:Data. Data are the uninterpreted signals that reah our senses every minutes. A red, a green,or yellow light at an intersetion is an example. Computers are full of data: signals onsist-ing of strings, numbers, haraters, and other symbols that are blindly and mehaniallyhandled in large quantities.Information. Information is data equipped with meaning. For a ar driver, a red tra� light isnot just a signal of some oloured objet, rather, it is interpreted as an indiation to stop.Knowledge. Knowledge is the whole body of data and information that people bring to bear topratial use in ation1, in order to arry out tasks and reate new information. Knowledgeadds two distint aspets: �rst, a sense of purpose, sine knowledge is the �intelletualmahinery� used to ahieve a goal; seond, a generative apability, beause one of themajor funtions of knowledge is to produe new information.Finally, knowledge units should be represented in an adequate representation formalism [24℄and may be integrated in ontologies to be re-used for solving problems in appliation domainssuh as agronomy, biology, medeine, hemistry, et. KDD methods and priniples are widelyonsidered in the literature [40, 44, 43, 89℄.Conepts are neessary for expressing human knowledge, hene the KDD proess should ben-e�t from a omprehensive formalization of onepts [129℄. Formal Conept Analysis (FCA) [47℄o�ers suh formalization of onepts by mathematizing onepts that are understood as unitsof thought onstituted by their extent (the instanes of the onept) and intent (their ommondesription). To mathematially de�ne onepts, FCA starts with a binary relation, alled for-mal ontext, between some (formal) objets and (formal) attributes. Conepts are aordinglyde�ned as pairs onstituted of an extent (a set of objets) and an intent (a set of attributes sharedby these objets). Conepts form a mathematial struture alled onept lattie that expressesa generalization/speialization relation of onepts. The onept lattie is a support for so alledoneptual knowledge disovery in databases, but revealed itself to be helpful for appliations ininformation and knowledge proessing inluding visualization, data analysis (mining) and knowl-edge management. FCA emerged in the 1980's [128℄ from attempts to restruture lattie theoryin order to promote better ommuniation between lattie theorists and potential users of lattietheory and is now a �eld of applied mathematis on its own. We now make preise the notionsof formal ontext, formal onept, and onept lattie.Formal ontext and formal onepts. In FCA, data are represented by a formal ontext
(G,M, I) where G denotes a set of objets, M a set of attributes, and I ⊆ G × M abinary relation between G and M . The statement (g,m) ∈ I is interpreted as �the objet
g has attribute m�. A onept is a pair (A,B) omposed of a set of objets A and a setof attributes B suh that objets in A have all the attributes from B, and vie-versa. In
(A,B), the set A is alled the extent and the set B the intent of the onept (A,B).1The term ationability is also used.



2. Gene expression data analysis 3Conept lattie. One all onepts are extrated, they are ordered by inlusion of their extent:a onept is greater than another if it ontains more objets in its extent (dually lessattributes in its intent). With respet to this partial order, the set of all formal oneptsforms a omplete lattie alled the onept lattie of the formal ontext (G,M, I). Theonept lattie provides an interesting lassi�ation of objets in a domain. It entailsboth notions of maximality and generalization/speialization: a onept orresponds toa maximal set of objets (extent) sharing a ommon maximal set of attributes (intent) ;the generalization/speialization is given by the partial ordering of onepts. Furthermore,impliations between attributes an be read from the onept lattie.FCA basially applies to formal ontexts, i.e. binary data. The main topi of this thesisonerns the analysis of numerial data with Formal Conept Analysis. Gene expression data isa kind of numerial data that brought a lot of interest in the last deade. We now introdue theproblem of gene expression data analysis and show that FCA is a natural way to oniliate itsobjetives.2 Gene expression data analysisBiologists at the UMR IAM (INRA) study interations between fungi and trees. They publishedthe omplete genome sequene of the fungus Laaria biolor [83℄. This fungus lives in symbiosiswith many trees of boreal and temperate forests. The fungus forms a mixed organ on treeroots and is able to exhange nutrients with its host in a spei� symbioti struture alledetomyorrhiza, ontributing to a better tree growth and enhaning forest produtivity, seeFigure 1. On the other hand, the plant repays its symbioti partner by providing arbohydrates,allowing the fungus to omplete its biologial yle by produing fruit-bodies (e.g. mushrooms).It is thus of major interest to understand how the symbiosis performs at the ellular level. Thegenome sequene of Laaria biolor ontains more than 20,000 genes [83℄. The study of theirexpression, or they behaviour, in various biologial situations helps to understand their roles andfuntions in the biology of the fungus.
Figure 1: An example of etomyorrhiza in nature (Credits: INRA).2.1 Gene expression dataGene expression is the mehanism that produes a protein from a gene in two steps. Firstlytransription builds a opy of a gene alled mRNA whih is then translated into a protein. Thismehanism di�ers in di�erent biologial situations: for eah gene the onentration of mRNAand proteins depends on the urrent ell, time, et. and re�ets the behaviour of the gene.Indeed, biologial proesses of a living ell are based on hemial reations and interationsbetween proteins and mRNA. Thus, it is important to measure and analyse mRNA and proteinonentration to understand biologial proesses ativated in a ell.



4 Chapter 1. IntrodutionUsing miroarray biotehnology, the onentration of mRNA is measured into a numerialvalue alled gene expression value, whih haraterizes the behaviour of a gene in a partiularell. Miroarrays an monitor simultaneously the expression of a large number of genes, possiblythe omplete oding spae of a genome. When several miroarrays are onsidered, the expressionvalue of a gene is measured in multiple situations or environments, e.g. di�erent ells, time points,ells responding to partiular environmental stresses, et. This haraterizes the behaviour ofthe gene w.r.t. all these situations and is represented by a vetor of expression values alled agene expression pro�le.A gene expression data (GED) is generally desribed as a gene × situation table with rowsorresponding to genes and olumns orresponding to situations, see e.g. Table 1. A table entry isalled an expression value. A row in the table denotes an expression pro�le assoiated to a gene(GEP). We onsider the NimbleGen Systems Oligonuleotide Arrays tehnology2: expressionvalues range from 0 (not expressed) to 65535 (highly expressed).Gene Id a b cGene 1 11050 11950 1503Gene 2 13025 14100 1708Gene 3 6257 5057 6500Gene 4 5392 6020 7300Gene 5 13070 12021 15548Table 1: A gene expression dataset.2.2 Mining gene expression dataThanks to powerful and salable biotehnolgies, a major problem in biology is to derive knowledgefrom very large gene expression data. A �rst step is to extrat groups of o-expressed genes,i.e. groups of similar gene expression pro�les. Indeed, o-expressed genes may interat togetherwithin the same biologial proess [117℄. Gene expression data analysis involves all the steps ofknowledge disovery in databases. First some genes/situations may be seleted for a given study.Seond numerial data may be binarized in order to apply data-mining algorithms whose inputare binary tables. Finally, extrated patterns with data-mining algorithms must be interpretedand validated (generally after in vitro biologial experiments).A ruial step is data-mining sine expression patterns have to onsider several properties aslisted hereafter.
• The data-mining algorithm should depend as little as possible on prior knowledge.
• GED are obtained from omplex proedures involving biologial experiments, image aqui-sition and proessing, et. Aordingly, GED ontain a huge amount of noise.
• A gene may partiipate to di�erent biologial proesses simultaneously: groups of genesshould overlap. In other words, a gene may belong to several groups.
• Biologists are interested in groups of o-expressed genes, but also in the relationshipsbetween these groups.2Details on this biotehnology an be found at http://www.nimblegen.om/.



2. Gene expression data analysis 5Numerous data-mining methods have been designed sine the end of 90's allowing the dis-overy and desription of biologial proesses in living ells [55, 81, 117℄. Data-mining methodsextrating groups of o-expressed genes an be divided into three ategories:Clustering. A �rst data-mining family of methods applied to gene expression data is lustering.Clustering aims at grouping gene expression pro�les (GEP) into a disjoint set of lasses,alled lusters, so that GEP within a lass have high similarity, while GEP in separatelasses are more dissimilar. Aordingly, lustering allows to group genes into lusterswith respet to some similarity riteria between their expression pro�le. The similarity isde�ned aording to an adequate distane, following given harateristis [55℄. The mostapplied lustering methods in biologial works are K-means method [48℄ and hierarhiallustering [41℄. However, lusters are global patterns sine similarity between GEP isomputed w.r.t. all situations simultaneously (possibly weighted). Then, lustering mayfail to detet biologial proesses ativated in some situations only [81℄.Bilustering. In many appliations, and espeially in gene expression data analysis, loal pat-terns are preferred [81, 18℄ and onsist in pairs (A,B) where A is a subset of objets (heregenes) related to a subset of attributes B (here biologial situations). Indeed, it is knownthat a set of genes is ativated (e.g. translated into proteins for enabling a biologial pro-ess) under some onditions only, i.e. only for some attributes. Moreover, most of thegenes are involved in several proesses [117℄, i.e. bilusters should overlap.The type of the relation between the subset of objets A and the subset of attributes Ban vary, leading to the de�nition of several types of bilusters. For example, every valuetaken by attributes in B for objets in A should be idential, leading to the de�nition ofbilusters of onstant values. Another possibility is to onsider that those values shouldbe similar w.r.t. a given similarity relation between them, leading to bilusters of similarvalues. Many other types of biluters exist, e.g. bilusters of oherent evolution of values,et. as fully desribed in [81℄.The omplexity of the problem of mining bilusters is known to be at least NP-omplete [81℄.Aordingly, almost all bilustering algorithms use heuristi approahes to identify bilus-ters. Some algorithms avoid heuristis but exhibit an exponential worst ase runtime.Then, it beomes di�ult to extrat homogeneous bilusters based for example on subta-bles of a GED and respeting given onstraints as their number grows exponentially. Ifonstraints are more �heuristi-like�, then interesting patterns may be missed [18℄. Thisis also one of the reasons why only a few bilustering algorithms allow overlapping ofbilusters.Bilustering binary GED. Gene expression data an be binarized into binary tables, seee.g. Table 2, allowing to lower omputational di�ulties when mining bilusters. In this ta-ble, a ross orresponds to gene over expression, i.e. above a spei�ed threshold. It followsthat a biluster an be viewed a set of objets having the same, or almost the same, set ofattributes. In [104℄, authors proposed the Bi-Max bi-lustering algorithm, whih extratsinlusion-maximal bilusters, and showed how it outperforms other bilustering algorithms.Suh patterns are desribed as maximal subtables of �1� values, modulo line and olumnspermutations. Although the authors do not mention it, the de�nition of inlusion-maximalbilusters exatly orrespond to the de�nition of a formal onept in FCA.



6 Chapter 1. IntrodutionGene Id a b cGene 1 × ×Gene 2 × ×Gene 3Gene 4Gene 5 × × ×Table 2: An example binary GED enoding over-expression.2.3 Towards numerial data mining with formal onept analysisThe history on gene expression data-mining started with lustering. Bilustering was introduedfor taking into aount the fat that genes are ativated in some situations only not neessarily all.Due to problem omplexity, many researhers have envisaged to onsider binary gene expressiondata, naturally leading to formal onept extration. Indeed, FCA an be viewed as a kind ofbinary bilustering method. It provides means for extrating patterns from a binary relation,namely formal onepts. In appliation to GED analysis, onept extents are maximal setsof genes related to a ommon maximal set of situations (not neessarily all). The ordering ofonepts among a omplete lattie makes overlapping of onepts natural. Then a ompleteenumeration of patterns respeting some families of onstraints is natural.However, binarizing numerial data omes with loss of information that should be measuredand minimized. When information loss is avoided, this may ome with very large data whosemining is even worst problem. In this thesis, we investigate how to mine numerial data suh asGED with FCA, while avoiding disretization (alled saling in FCA terms). Indeed, researhersin FCA have onsidered the problem of building onept latties diretly from omplex data:Instead of saling, one may work diretly with initial data, i.e. omplex objet desriptions,de�ning so-alled similarity operators whih indue a semi-lattie on data desriptions. Severalattempts were made for de�ning suh semi-latties on sets of graphs [46, 69, 70, 79℄ and logialformulas [31, 45℄. Indeed, if one is able to order objet desriptions in omplex data, e.g. withgraph morphism when objets are desribed by labelled graphs, one may attempt to diretlybuild a onept lattie from suh data. In [46℄, a general approah alled pattern strutures wasproposed, whih allows one to apply standard FCA to any partially ordered data desriptions.Pattern strutures will be our main tool for onsidering numerial data from an FCA point ofview.3 Contributions and struture of the thesisIn this setion, we introdue our main ontributions and how they are strutured in the presentdoument. The work is divided in several hapters whose ordering follows our researh study intime. This makes the reading easier sine eah hapter follows ideas of the preeding one, tryingto answer its questions or extending the ability of the method that it presents. In this way, somede�nitions and notions are realled from a hapter to another, to make the reading easier.Our main ontribution onerns the mining of numerial data with Formal Conept Analysis.Chapter 2 aordingly introdues FCA. After realling elementary notions from order theory,the framework is detailed in lassial settings, i.e. onsidering a binary relation between a set ofobjets and a set of attributes. Then, we introdue pattern strutures that will be our main toolin Chapters 4 to 8 to onsider numerial data.



3. Contributions and struture of the thesis 7In Chapter 3 we present a naive FCA-based approah for mining gene expression data. Aninterval based disretization transforms the data into binary on whih FCA an be applied.Conepts orresponds to groups of genes (extent) having expression values lying in a same intervalfor some biologial situations (intent). Whereas the originality of suh approah is to easily reduethe set of onepts to those highlighting strong expression variations (interesting for biologists),intervals for disretization remain to be hosen a priori, a hard task espeially in unsupervisedsettings. This work has appeared in [60, 62, 61℄.In Chapter 4 we propose to avoid to hoosing those intervals a priori, but rather to onsiderevery possible intervals of values. This leads to the de�nition of a new type of numerial patternalled interval patterns. Intuitively, eah objet of a numerial dataset is a vetor of numbers,where eah dimension orresponds to an attribute. Aordingly, an interval pattern is a vetorof intervals, where eah dimension desribes the range of possible values for a given numerialattributes assoiated with some objets. An interval pattern an represented by a hyperretanglein Eulidean spae, whose sides are parallel to the oordinate axes. To e�iently mine thesepatterns, we adapt the framework of pattern strutures for numerial data, with so alled intervalpattern strutures. Aordingly, we explore the ability of FCA to deal diretly with numerialdata. We experiment this method with gene expression data. This work has appeared in [59, 66℄.In Chapter 5 we introdue a similarity relation between numerial values in interval patternstrutures. Indeed, the major drawbak of interval pattern strutures is the very large amountof onepts �the prize to pay when avoiding loss of information linked to saling�. We show howpattern strutures an be modi�ed to lead to onepts de�ned as maximal sets of objets havingsimilar values for a maximal set of attributes by formalizing similarity as a tolerane relation.We experiment this adaptation of interval pattern strutures to information fusion problems inagronomy. This work has appeared in [56, 57, 58℄.In Chapter 6 we argue that formal onept analysis an enhane a deision problem whenfaing information fusion problems, following ideas introdued in Chapter 5. Information fusiononsists of merging, or exploiting onjointly, several soures of information for answering ques-tions of interest and make proper deisions. A fusion operator is an operation summarizing allinformation given by soures into an interpretable information. It happens that the fusion ofinformation of all soures is not exploitable for making a deision. We show that several infor-mation fusion operators an be diretly embedded in pattern strutures. Consequently, insteadof providing a unique fusion result whih an be problemati, resulting pattern onept lattieyields a strutured view of partial results labelled by subsets of soures. These partial resultsare better andidates for deision making. An experiment on agronomi data is arried out andreally justi�es this work. This ontribution has appeared in [5, 7℄ and extended in [6℄.In Chapter 7 we are interested in de�ning ondensed representations of interval patterns.Indeed, the number of possible interval patterns is generally is too large for enabling their in-terpretation. A deeply investigated solution in the �eld of itemset-mining involves ondensedrepresentations of patterns. A ondensed representation aims at removing all redundant infor-mation in the pattern olletion. Generally, this new representation is muh smaller than theoriginal one. For that matter, we adapt the notions of losed itemsets and generators fromitemset-mining to interval patterns with the following semantis: a losed interval pattern isthe smallest hyper-retangle ontaining a given set of objets while generators are the largesthyper-retangles ontaining the same set of objets. We show that losed patterns and gener-ators are very ompat representations of interval patterns. This preliminary work takes rootin pattern-mining. We provide several algorithms for mining those kinds of patterns and showtheir usefulness in data-mining. This work was detailed in [63, 65℄.In Chapter 8 we show how FCA with either partiular dizretization or pattern strutures an



8 Chapter 1. Introdutionhandle the problem of bilustering numerial data. Atually, FCA provides many interesting toolsfor data-mining: a notion of maximality within onepts, a notion of generalization/speializationof onepts, but also tools for onsidering noise inherent in real-life datasets. How these tools anbe shifted to onsider the problem of numerial bilustering is an interesting question. We answerthis question by showing how two kinds of bilusters (namely bilusters of onstant values andbilusters of similar value) an be extrated with FCA-based methods without using heuristiand reasonable pratial omplexity. This preliminary work an be also found in [64℄ and isplanned to be extended to other types of bilusters.In Chapter 9 we present a summary of our work and result. We �nish with future diretionsof researh and extensions of our work.



Chapter 2Formal Conept AnalysisThis hapter introdues the framework of Formal Conept Analysis (FCA). Firstly, Setion 2.1introdues basi notions from order theory. Then Setion 2.2 presents the important notions offormal ontexts, formal onepts and onept latties, along with mathematial de�nitions andalgorithmi issues. How to handle numerial data with many-valued ontexts and oneptualsaling (disretization) is addressed in Setion 2.3. Setion 2.4 introdues a framework alledpattern strutures, an extension of FCA to omplex data avoiding saling, that we will use inmany of our ontributions in the following hapters. Finally, Setion 2.5 establishes links betweenFCA and itemset-mining. These links will be useful for algorithm design and omparison in thenext hapters as well.1 Preliminaries on order theoryIn the rest of the dissertation, the following order-theori notions will be used, and are de�nedfollowing the �rst hapter of the seminal book on FCA [47℄.De�nition 2.1 (Binary relation) A binary relation R between two arbitrary sets M and N isde�ned on the Cartesian produt M × N and onsists of pairs (m,n) with m ∈ M and n ∈ N .When (m,n) ∈ R, we usually write mRn. If M = N , R is a a binary relation on the set M (ordually on the set N).De�nition 2.2 (Order relation) A binary relation R on a set M is alled an order relation(or shortly order) if it satis�es the following onditions for all elements x, y, z ∈M :1. (re�exivity) xRx2. (antisymmetry) xRy and x 6= y ⇒ not yRx3. (transitivity) xRy and yRz ⇒ xRzFor an order relation on a set M , we often use the symbol ≤ and write x < y when x ≤ yand x 6= y. x ≤ y is read as usual : �x is less or equal to y�. A trivial example of ordered set isthe set of real numbers R with usual relation ≤ on numbers. Taking a subset of real numbers
{1, 6.4, 2, 3.4} one has 1 ≤ 2 ≤ 3.4 ≤ 6.4. In this example, ≤ is a total order, meaning that anytwo elements an be ompared. In many ases, all elements are not omparable, and we have apartial order. 9



10 Chapter 2. Formal Conept AnalysisDe�nition 2.3 (Ordered set) Given an order relation ≤ on a set M , an ordered set is a pair
(M,≤). When ≤ is a partial order, (M,≤) is alled partially ordered set, or poset for short.De�nition 2.4 (In�mum, supremum) Let (M,≤) be an ordered set and A a subset of M . Alower bound of A is an element s of M with s ≤ a for all a ∈ A. An upper bound of A is de�neddually. If it exists a largest element in the set of all lower bounds of A, it is alled the in�mum of
A and is denoted by �inf A� or ∧A; dually, a least upper bound is alled supremum and denotedby �sup A� or ∨A. In�mum and supremum are frequently alled respetively meet and join, alsodenoted respetively by the symbols ⊓ and ⊔.De�nition 2.5 (Lattie, omplete lattie) A poset V = (V,≤) is a lattie, if for any twoelements x, y ∈ V the supremum x∨ y and the in�mum x∧ y always exist. V is alled a ompletelattie if for any subset X ⊆ V , the supremum ∨

X and the in�mum ∧

X exist. Every ompletelattie V has a largest element ∨ alled the unit element denoted by 1V . Dually, the smallestelement 0V is alled the zero element. We will rather use the symbol bottom ⊥ for 0V and top ⊤for the unit element in the following.The de�nition of a omplete lattie presupposes that both supremum and in�mum exist forevery subset X. In partiular, for X = ∅, we have ∧ ∅ = 1V , and ∨ ∅ = 0V . It follows that
V 6= ∅ for every omplete lattie. Every non-empty �nite lattie is a omplete lattie.We an reonstrut the order relation from the lattie operations in�mum and supremum by

x ≤ y ⇐⇒ x = x ∧ y ⇐⇒ x ∨ y = yDe�nition 2.6 (Join-semi-lattie and meet-semi-lattie) A poset V = (V,≤) is a join-semi-lattie if for any two elements x, y ∈ V the supremum x ∨ y always exists. Dually, it is ameet-semi-lattie if the in�mum x∧ y always exists. A lattie is a poset that is both a meet- andjoin-semil-attie with respet to the same partial order.Finally, one more important notion on whih FCA is based onerns losure operators.De�nition 2.7 (Closure operator) Let S be a set and ψ a mapping from the power set3 of Sinto the power set of S, i.e. ψ : P(S) −→ P(S). ψ is alled a losure operator on S if, for any
A,B ⊆ S, it is:1. extensive: A ⊆ ψ(A),2. monotone: A ⊆ B implies that ψ(A) ⊆ ψ(B), and3. idempotent: ψ(ψ(A)) = ψ(A).A subset A ⊆ S is ψ-losed if A = ψ(A). The set of all ψ-losed {A ⊆ S | A = ψ(A)} isalled a losure system.3The power set of any set S, written P(S), or 2S , is the set of all subsets of S, inluding the empty set and Sitself, hene omposed of 2|M| elements.
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m1 m2 m3 m4 m5 m6

g1 × × ×
g2 × × × ×
g3 × × × × ×

g4 × × ×
g5 × ×
g6 × × ×
g7 × × × ×Table 1: An example of formal ontext K = (G,M, I)2 Formal onept analysisFormal Conept Analysis emerged in the 1980's from attempts to restruture lattie theory inorder to promote better ommuniation between lattie theorists and potential users of lattietheory [128℄. It rapidly growths into a researh �eld leading to a seminal book [47℄ and FCAdediated onferenes suh as the international onferenes on onept latties (ICFCA), ononept latties and its appliations (CLA) and in some extent the international onferene ononeptual strutures (ICCS). Aordingly, FCA revealed itself to be a simple and well formalizedframework useful for several appliations in information and knowledge proessing inludingvisualization, data analysis (mining) and knowledge management [129, 125, 100℄. A websitedediated to FCA is maintenend by Uta Priss4.2.1 From a formal ontext to a onept lattieIn FCA, data are represented by a formal ontext from whih formal onepts are haraterizedand ordered in a lattie struture.De�nition 2.8 (Formal ontext) A formal ontext K = (G,M, I) onsists of two sets G and

M and a binary relation I between G and M . Elements of G are alled objets5 while elementsof M are alled attributes6 of the ontext. The fat (g,m) ∈ I is interpreted as �the objet g hasattribute m�.A formal ontext is usually represented by a ross table, or binary table. Eah line orrespondsto an objet, while eah olumn to an attribute. A ross in row g and olumn m means thatthe objet g has the attribute m. A empty table entry means that objet in line has not theattribute in olumn.Example. Consider the set of objets G = {g1, ..., g7} where eah letter denotes an animal,respetively, �ostrih�, �anary�, �duk�, �shark�, �salmon�, �frog�, and �roodile�. Consider theset of attributes M = {m1, ..,m6} that are properties that animals may have or not, i.e. �bornedfrom an egg�, �has feather�, �has tooth�, ��y�, �swim�, �lives in air� . Table 1 gives an example offormal ontext (G,M, I) where I is de�ned by observing the given animals.De�nition 2.9 (Derivation operators) For a set of objets A ⊆ G we de�ne the set of at-tributes that all objets in A have in ommon as follows:
A′ = {m ∈M | gIm ∀g ∈ A}4http://www.upriss.org.uk/fa/fa.html5Gegenstande in German.6Merkmal in German.

http://www.upriss.org.uk/fca/fca.html


12 Chapter 2. Formal Conept AnalysisDually, for a set of attributes B ⊆ M , we de�ne the set of objets that have all attributesfrom B as follows:
B′ = {g ∈ G | gIm ∀m ∈ B}Example. Consider the formal ontext in Table 1. We have {g1, g2}′ = {m1,m2,m6} and

{m1,m2,m6}
′ = {g1, g2, g3}De�nition 2.10 (Formal onept) A formal onept of a ontext (G,M, I) is a pair (A,B)with A ⊆ G, B ⊆ M , A′ = B and B′ = A. A is alled the extent of the onept (A,B) while Bis alled its intent. The set of all formal onepts of a ontext (G,M, I) is written B(G,M, I).Conepts are partially ordered by (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1). The former isalled sub-onept of the latter, dually the latter is a super-onept of the former.Example. From previous example, it diretly follows that the pair ({g1, g2, g3}, {m1,m2,m6})is a formal onept. Intuitively, a onept orresponds to a maximal retangle of rosses in itsorresponding tabular representation with possible row and olumn permutations. An exampleof ≤-relation between two onepts is given by:

({g1, g2, g3}, {m1,m2,m6}) ≤ ({g1, g2, g3, g6, g7}, {m1,m6})It an be shown that operator (.)′′, applied either to a set of objets or a set of attributes,is a losure operator. Hene we have two losure systems on G and on M . It follows that thepair {(.)′, (.)′} is a Galois onnetion7 between the power set of objets and the power set ofattributes. These mappings put in 1-1-orrespondene losed sets of objets and losed sets ofattributes, i.e. onept extents and onept intents. In our example, {g1, g2} is not a losed setof objets, sine {g1, g2}′′ ={g1, g2, g3}. Aordingly, {g1, g2, g3} is a losed set of objets henea onept extent.The set of all formal onepts from a ontext K = (G,M, I) ordered with the relation ≤ forma omplete lattie alled onept lattie of (G,M, I) and denoted by B(G,M, I). The BasiTheorem on Conept Latties shows that a onept lattie is omplete and de�nes its in�mumand supremum.Theorem 2.1 (The Basi Theorem on Conept Latties) The onept lattie B(G,M, I)is a omplete lattie in whih in�mum and supremum are given by:
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)Figure 1 shows the onept lattie assoiated with Table 1. On this line diagram, eah nodedenotes a onept while a line denotes an order relation between two onepts. Due to reduedlabeling, the extent of a onept has to be onsidered as omposed of all objets lying in theextents of its sub-onepts. Dually, the intent of a onept is omposed of all attributes in theintents of its super-onepts. The top (resp. bottom) onept is the highest (resp. lowest) w.r.t.
≤. Along this manusript, several onept lattie line diagrams will be given. Most of time, weuse the software ConExp8 to draw them.7The de�nition of Galois onnetion is not ruial for the understanding of this dissertation. A de�nition liesin [47℄, pages 11 and 19.8http://onexp.soureforge.net/

http://conexp.sourceforge.net/
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Figure 1: Conept lattie raised from Table 12.2 AlgorithmsThe main algorithmi issue in FCA lies in building onept latties, or simply the onept set,from formal ontext that may be very large in real world appliations. We �rst give here a naïvealgorithm, before detailing the algorithm CloseByOne that will use and adapt in the followinghapters.A naïve algorithm. Consider �rst the following proposition [47℄.Proposition 2.1 Eah onept of a formal ontext (G,M, I) has the form (A′′, A′) for somesubset A ⊆ G and the form (B′, B′′) for some subset B ⊆M .It follows that the set of all formal onepts an be obtained in a naïve way by applyingthe losure operator (.)′′ on all possible subsets of G (dually all subsets of M), and removing allredundant onepts. However, this basi algorithm turns to be very ine�ient. Several algorithmshave been proposed to extrat the set of all formal onepts, possibly with their overing relation(atually the onept lattie itself, i.e. onepts ordered with ≤). For a detailed analysis andomparison of these algorithms, we refer to [74℄. However, the fat that formal onepts an beobtained by �losing� some subsets of objets is interesting and is the basis of several algorithms,e.g. Ganter's algorithm known also as NextClosure but also CloseByOne. In the following, wedetail CloseByOne, sine we will use it and adapt it later in this manusript.The algorithm CloseByOne. This algorithm generates all onepts in a bottom-up way(from minimal to maximal extents). It onsiders objets one by one starting from the minimalone w.r.t. a linear order < on G, e.g. a lexial order on objet labels. Given a generated onept
(A,B) at a urrent step, the algorithm adds the next objet g w.r.t < in A suh as g 6∈ A. Thenit applies the losure operator (·)′′ for generating the next onept (C,D): intent B is interseted



14 Chapter 2. Formal Conept Analysiswith the desription of g, i.e. D = B ∩ g′, and C = D′. Reursiveness of the algorithm induesa tree struture on the set of all onepts, alled CbO-tree. To avoid generating several timessame onepts, one may use an auxiliary data-struture storing already extrated onepts. Toavoid these memory look-ups, the algorithm uses a anoniity test. Consider a onept (C,D)obtained from a onept (A,B) by adding objet g in A and applying losure. C is said to beanonially generated i� {h|h ∈ C\A and h < g} = ∅, i.e. no objet before g has been addedin A to obtain C. Moreover, if the anoniity test fails for a given onept, the onept is notstored and the algorithm baktraks. The original pseudo-ode for proessing a formal ontextis given in Algorithms 1 and 2. The time omplexity of CloseByOne is O(|G|2|M ||L|). Moredetails on this algorithm an be found in [74, 68℄. Figure 2 gives an example of formal ontextand the resulting CbO-tree storing extrated formal onepts. In this �gure, eah node denotes aonept, and gives suessive (A∪g)′ on the �rst line and (A∪g)′′ on the seond line, making eah
((A∪ g)′′, (A∪ g))′ a formal onept. When rossed-o�, the onept is not generated anonially.Alg. 1 Close By One.1: L = ∅2: for eah g ∈ G3: proess({g}, g, (g′′ , g′))4: L is the onept set.Alg. 2 proess(A, g, (C,D)) with C = A′′ and D = A′ and < the lexial order on objet names.if {h|h ∈ C\A and h < g} = ∅ then2: L = L ∪ {(C,D)}for eah f ∈ {h|h ∈ G\C and g < h}4: Z = C ∪ {f}

Y = D ∩ {f ′}6: X = Y ′proess(Z, f, (X,Y ))8: end if3 Coneptual salingBasi formal ontexts only onsider objets and the attributes they have or not. Suh one-valuedattributes (or simply binary attributes) ontrast with many-valued attributes: an animal anbe desribed also with quantitative attributes suh as weight, age, et. To handle suh data inFCA, many-valued ontexts are introdued.De�nition 2.11 (Many-valued ontext) A many-valued ontext (G,M,W, I) onsits of sets
G, M and W and a ternary relation I between those three sets, i.e. I ⊆ G×M ×W , for whihit holds that

(g,m,w) ∈ I and (g,m, v) ∈ I always imply w = vElements of G are still alled objets. Elements of M are alled (many-valued) attributes. Ele-ments of W are alled attribute values. Aordingly, the fat (g,m,w) ∈ I means �the attribute
m takes value w for objet g�, simply written as m(g) = w.
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Figure 2: A formal ontext with resulting CbO-tree and onept lattie.



16 Chapter 2. Formal Conept AnalysisExample. Table 2 gives an example of many-valued ontext (G,M,W, I) withG = {g1, ..., g5},
M = {m1,m2,m3} and W = {4, 5, 7, 8, 9}. Eah table entry gives m(g) for attribute m in ol-umn and objet g in line, e.g. m1(g1) = 5. This example will support many of our ontributionsin the next hapters, hene W is here a set of numerial values.

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5Table 2: A many-valued ontext (G,M,W, I) also alled numerial dataset when W ⊂ R.For applying the FCA mahinery, a many-valued ontext needs to be transformed into aformal ontext with so-alled oneptual saling. Conepts of the resulting onept lattie areinterpreted as onepts of the initial many-valued ontext. Aordingly, the hoie of a saleshould be wisely done w.r.t. data and goals sine a�eting the size, the interpretation, and theomputation of the resulting onept lattie.De�nition 2.12 A (oneptual) sale for the attribute m of a many-valued ontext is a (one-valued) ontext Sm = (Gm,Mm, Im) with m(G) = {m(g),∀g ∈ G} ⊆ Gm. The objets of a saleare alled sale values, the attributes are alled sale attributes.Starting from a many-valued ontext (G,M,W, I) and the sale ontext Sm for all attribute

m ∈ M , the derived one-valued ontext is obtained as follows. The set of objets remainsthe same. Every many-valued attributes m is replaed by the sale attributes of the sale Sm.Intuitively, eah one-valued attribute denotes a �rule� or �onstraint� the attribute value of agiven objet should respet.We give here three sales taken from [47℄, page 42. Consider the many-valued ontext
(G,M,W, I) from Table 2. We introdue Wm ⊆ W as the range of eah attribute m ∈ M ,i.e. Wm = {w ∈W | m(g) = w,∀g ∈ G}.
• Nominal sale is de�ned by the ontext (Wm,Wm,=). We obtain the following sales,respetively for attribute m1, m2 and m3:= 4 5 64 ×5 ×6 ×

= 7 8 97 ×8 ×9 ×

= 4 5 6 84 ×5 ×6 ×8 ×

• Ordinal sale is given by the ontext (Wm,Wm,≤) where ≤ denotes lassial real numberorder. We obtain for eah attribute the following sales:
≤ 4 5 64 × × ×5 × ×6 ×

≤ 7 8 97 × × ×8 × ×9 ×

≤ 4 5 6 84 × × × ×5 × × ×6 × ×8 ×
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• Interordinal sale is given by (Wm,Wm ≤) | (Wm,Wm ≥) where | denotes the appositionof two ontexts9. We obtain for attribute m1 the following sale10:

≤ 4 ≤ 5 ≤ 6 ≥ 4 ≥ 5 ≥ 64 × × × ×5 × × × ×6 × × × ×Now we apply nominal sale to Table 2 to derive the formal ontext from whih a oneptlattie representing in some extent the original many-valued ontext. First, the sale is applied toeah attribute separately, then apposition of resulting ontexts is operated. One-valued attributesare renamed to be interpretable, e.g. for nominal saling we have �m1 = 4� as a derived one-valued attribute. Table 3 gives the derived ontext, while Figure 3 gives its onept lattierepresentation.
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g1 × × ×
g2 × × ×
g3 × × ×
g4 × × ×
g5 × × ×Table 3: Derived ontext from Table 2 with respet to nominal saling

Figure 3: Conept lattie raised from Table 3We an interpret formal onepts of the obtained onept lattie. Take for example onept
({g3, g4}, {m1 = 4}): m1 is the only attribute taking the same value for both objets g3 and g4,namely the value 4. Aordinly, eah onept denotes a maximal set of objets taking the samevalues for a maximal set of attributes. Choosing either ordinal sale or interordinal sale, wewould have a di�erent interpretation. It follows the important hoie of the sale, depending onthe onept lattie usage. Interordinal saling will be widely investigated in Chapters 4 and 7.9The apposition of two ontexts with idential sets of objets, denoted by |, returns the ontext with the sameset of objets and the set of attributes being the disjoint union of attribute sets of the original ontexts.10The double-line olumn separator intuitively orresponds to ontext apposition.



18 Chapter 2. Formal Conept AnalysisFinally, saling numerial data is losely related to disretization methods transforming quan-titative data into binary data. Suh methods an also be used to obtain a formal ontext from amany-valued ontext when W is a set of real numbers. Many methods are presented in [130℄ butalways involve a loss information that should be measured and minimized. Most of the methodsare de�ned in supervised settings: we known a lass membership of the objets, and eah attributerangeWm ⊆W is split into several intervals maximizing some interest funtions [42, 116, 97, 130℄.The main ore of our work is to investigate possibilities to build onept latties from numerialdata without disretization in unsupervised settings using so alled pattern strutures that weintrodue now.4 Pattern struturesInstead of saling, one may work diretly with initial data, i.e. omplex objet desriptions,de�ning so-alled similarity operators whih indue a semi-lattie on data desriptions. Severalattempts were made for de�ning suh semi-latties on sets of graphs [46, 69, 70, 79℄ and logialformulas [31, 45℄ (see also [49, 126℄ for FCA extensions and [25, 101, 26, 103℄ for onept lattiesin symboli data analysis). Indeed, if one is able to order objet desriptions in omplex data,e.g. with graph morphism when objets are desribed by labelled graphs, one may attempt todiretly build a onept lattie from suh data.In [46℄, a general approah alled pattern strutures was proposed, whih allows one to applystandard FCA to any partially ordered data desriptions from whih a onept lattie an be builtwithout a priori saling. In FCA, the operators of the Galois onnetion put in orrespondeneelements of the latties (2G,⊆) of objets and (2M ,⊆) of attributes and vie-versa. Theselatties are partially ordered sets. This means that if one needs to build onept latties whereobjets are not desribed by binary attributes but by omplex desriptions (graphs, intervals,...), one has to de�ne a partial ordering of objet desriptions, see an illustration in Figure 4taken from [79℄. This is the main idea of pattern strutures formalizing objets from G and theirdesriptions alled patterns from a set D where patterns are ordered in a meet-semi-lattie (D,⊓)[46℄. Indeed in lassial FCA, if we onsider the lattie of attributes (2M ,⊆), it is straightforwardthat ∀N,O ⊆ M , then N ⊆ O ⇔ N ∩ O = N , e.g. with M = {a, b, c}, {a, b} ⊆ {a, b, c} ⇔
{a, b} ∩ {a, b, c} = {a, b}. The set-intersetion operator ∩ has the properties of a meet operatorin a semi-lattie, i.e. ommutative, idempotent and assoiative. This is the underlying idea forordering patterns with a subsumption relation ⊑: given two patterns c, d ∈ D, c ⊑ d⇔ c⊓d = c.Then, how to build the onept lattie is in full ompliane with FCA theory.Formally, let G be a set (interpreted as a set of objets), let (D,⊓) be a meet-semilattie (ofpotential objet desriptions) and let δ : G −→ D be a mapping. Then (G,D, δ) with D = (D,⊓)is alled a pattern struture. Elements of D are alled patterns and are ordered by subsumptionrelation ⊑: given c, d ∈ D one has c ⊑ d⇐⇒ c ⊓ d = c. ⊓ is alled a similarity operation, sine,given two desriptions, it gives a desription representing their similarity. This is natural withset intersetion, e.g. {a, b} ∩ {b, c} = {b}.A pattern struture (G,D, δ) gives rise to the following derivation operators (·)�:

A� =
l

g∈A

δ(g) for A ⊆ G,

d� = {g ∈ G|d ∈ δ(g)} for d ⊆ D.These operators form a Galois onnetion between the powerset of G and (D,⊑). Patternonepts of (G,D, δ) are pairs of the form (A, d), A ⊆ G, d ∈ D, suh that A� = d and A = d�.
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Figure 4: Illustration of the Galois onnetionFor a pattern onept (A, d) the omponent d is alled a pattern intent and is a desription of allobjets in A, alled pattern extent. Intuitively, (A, d) is a pattern onept if adding any elementto A hanges d through (·)� operator and equivalently taking e ⊃ d hanges A. Like in ase offormal ontexts, for a pattern struture (G,D, δ) a pattern d ∈ D is alled losed if d�� = d anda set of objets A ⊆ G is alled losed if A�� = A. Obviously, pattern extents and intents arelosed.5 Links with itemset miningThe problem of frequent itemset mining was introdued in [2℄. It takes roots in the appliationof market basket analysis. Firstly, onsider a set of ustomers, and a set of produts alled items.Eah ustomer has bought some produts. Then, it is interesting to searh for sets of items, oritemsets, that frequently o-ours together for di�erent ustomers. For example, it may happensthat both produts �ereals� and �milk� are often simultaneously bought by ustomers. We saythat the set {milk, cereals} is a frequent itemset.One frequent itemsets are found, it allows to generate assoiation rules among the itemsets.Suh rules denotes dependenies between itemsets. For example, a rule ould be �Customers thatsimultaneously bought milk and ereals also tend to buy jam�. From this rule, a groery storewith deent praties will ensure to o-loate those three items in the same plae. A dishonestpratie, more ommon in supermarkets, would onsist at loating the jam in a di�erent plae,foring the ustomer to walk, and potentially buy other produts on his way. It seems indeed tobe a fat that �the more time one spend in a supermarket, the more produts one will buy�.Leaving aside those ethial onsiderations, we now formally de�ne frequent itemsets usingnotations of FCA. Indeed, the basi data in itemset mining is a formal ontext, i.e. in ourexample (G,M, I) where G is a set of ustomers, M a set of produts, and (g,m) ∈ I means



20 Chapter 2. Formal Conept Analysisthat ustomer g bought produt m.De�nition 2.13 (Itemset, support and frequent itemset) Given a formal ontext (G,M, I),an itemset B ⊆M is a subset of attributes or items. The ardinality of B is also alled its length.The image of an itemset onsists in the the of objets owning simultaneously all elements in B,i.e. the set B′, while its support is the number of these objets, i.e. |B′|. Given a so alledminimal support σs ∈ [1, |G|], an itemset B is said to be frequent if |B′| ≥ σs.Given a set M of items, there is 2|M | possible itemsets, whih are learly not analysable.Mining frequent itemsets allows to redue this number. However, this is not su�ient enoughwith low minimal supports. A deeply investigated solution involves ondensed representations ofitemsets. A ondensed representation aims to remove all redundant information in the frequentitemsets and the representation may be muh smaller than the original frequent itemsets. Twowell known ondensed representations are the set of losed itemsets, and the set of generators,also alled key-itemsets. Those patterns are de�ned upon equivalene lasses of itemsets [96, 11,94, 95℄.De�nition 2.14 (Equivalene lass) Two itemsets B1 and B2 are said equivalent i� they havethe same image: B′
1 = B′

2, and we write B1
∼= B2. The set of itemsets that are equivalent to anitemset B1 is denoted by [B1] = {B2|B1

∼= B2} and is alled the equivalene lass of B1.De�nition 2.15 (Closed itemset) An itemset B1 is losed if there does not exist any pattern
B2 suh as B1 ⊆ B2 with B1

∼= B2.De�nition 2.16 ((Itemset) generator) An itemset B2 is a generator if there does not exista pattern B1 suh as B1 ⊆ B2 with B1
∼= B2.Aordingly, an equivalene lass is a set of itemsets with same image and same losure inFCA terms. In an equivalene lass, there is one unique losed itemset with maximal length, andone or several generators with minimal length. We say that both olletions of frequent loseditemsets and generators are ondensed representations sine eah one forms a ompat and losslessrepresentation of frequent itemsets, from whih any frequent itemset an be retrieved.An intense e�ort has lead to several algorithms for mining frequent losed itemsets and/orgenerators, the later being used for generating assoiation rules. Among many others, we shouldite here Charm [132℄ and LCMv2 [124℄ for losed itemset mining, Gr-Growth [80℄ for itemsetgenerator mining and Zart for mining both pattern types simultaneously [122℄.Conerning our work in the next hapters, the most important fat we will use is the following.Closed itemsets exatly orresponds to onept intents from the same formal ontext. This meansthat if one need to ompute formal onepts from a formal ontext (without their overingrelation), one may use either FCA algorithms (e.g. CloseByOne), or losed itemset-miningalgorithms, whose e�ieny depends on the input data size and distribution.



Chapter 3Extrating gene expression patternswith signi�ant variationsIn this hapter, we present a �rst and simple KDD approah for mining gene expression patternsin gene expression data. This method involves all the steps of a KDD proess. First, dataare prepared and transformed into binary data, allowing to apply FCA. Then, onept intentsare �ltered with syntati onstraints to retain those highlighting strong variations of expression.Finally, with real world data, the expert interprets some of the extrated patterns, and establishesbiologial hypothesis to be validated experimentally. Most importantly, this hapter sets the basisof our main motivation in the next hapters, i.e. building onept latties from numerial datawithout binarization.1 IntrodutionA miroarray experiment onsiders a large number of genes, eventually the omplete oding spaeof a genome in multiple situations. These situations an be a time-series during a partiularbiologial proess (e.g. ell yle), a olletion of di�erent tissues (e.g. normal and aneroustissues) or both, sometimes responding to partiular environmental stresses.By measuring the expression value of a gene in m situations, a gene expression pro�le anbe written as a m-dimensional numerial vetor e = (e1, ..., em) where ej is the expression valueof the gene in the jth situation (j ∈ [1,m]). A gene expression dataset (GED) is formalizedby a matrix E = (eij)1≤i≤n,1≤j≤m is a olletion of n pro�les: it is omposed of n lines whihorrespond to genes andm olumns whih orresponds to situations. eij is the expression value ofthe ith gene in the jth situation. For example, in Table 1, (11050, 11950, 1503) is the expressionpro�le for the Gene 1. e11 = 11050 is the expression value of the Gene 1 in the situation a.Clustering methods groups similar pro�les together into a luster, leading, when interpreted bya domain expert, to the understanding of biologial proesses and of funtion of genes [76, 118℄.The goal here is to extrat groups of genes having similar expression values for some, maybeall, biologial situations. Moreover, we wish that expression values between two situations high-light a signi�ant hange. Indeed, these hanges may haraterize partiular biologial proesses.For example, onsider the family of genes involved in the growth of the fruit-body of a mushroom.It is supposed that those genes have signi�ant rise of expression between early stage and laterstage of the fungus development. 21



22 Chapter 3. Extrating gene expression patterns with signi�ant variationsGene Id a b cGene 1 11050 11950 1503Gene 2 13025 14100 1708Gene 3 6257 5057 6500Gene 4 5392 6020 7300Gene 5 13070 12021 15548Table 1: An example of GED omposed of 5 genes in lines and 3 situations in olumns.2 An FCA-based approahThis setion proposes to use FCA to extrat from a GED groups of o-expressed genes representedby onepts. Firstly, a GED is mathematially de�ned as a many-valued ontext, then turnedinto a formal ontext using a partiular oneptual saling. The onepts of the formal ontextare searhed for and strutured into a onept lattie. Finally, onepts are �ltered using apartiular representation of onept intents to retain from the large olletion of onepts onlythose with most signi�ant variations of expression.2.1 A GED as a many-valued ontextA GED is onsidered as a many valued ontext K1 = (G,S,W, I1) where G is a set of genes,
S a set of situations, and g(s) = w means that the expression value of gene g is w in situation
s. In the example used in this setion (Table 1), G = {g1, g2, g3, g4, g5}, S = {a, b, c}, and I1is illustrated, for example, by g1(a) = 11050, i.e. (g1, a, 11050) ∈ I1. The objetives are to useFCA to extrat onepts (A,B), where A ⊆ G is a subset of genes that shares similar values of
W in the situations of B ⊆ S. As onept lattie onstrution needs a formal ontext, K1 is nowsaled.2.2 Coneptual salingGiven an attribute value spae of the form [0, u], the sale is given by a set of intervals T =
{[0, u1], ]u1, u2], ..., ]up−1, up]}. p is the number of intervals of T and up = 65535 for the Nim-bleGen System. In the present appliation, the interval bounds ui (i ∈ [1, p]) are dependent onexpert knowledge. The saling proedure onsists in replaing eah many-valued attribute of
K1 = (G,S,W, I1) with p one-valued attributes to reate the formal ontext K2 = (G,S×T, I2).
S × T is then a set of pairs: the �rst value is a situation while the seond represents an interval.
(g, (s, t)) ∈ I2 means that the gene g has an expression value in the interval t in the situation s.This proedure is illustrated in the Table 3 with T = {[0, 5000[, [5000, 10000[, [10000, 65535]}.The many-valued attribute a is replaed by the three one-valued attributes (a, t1), (a, t2) and
(a, t3), i.e (a, [0, 5000[), (a, [5000, 10000[) and (a, [10000, 65535]). Then (g1, (a, t3)) ∈ I2 meansthat gene g1 has an expression value in t3, i.e. in [10000, 65535], for the situation a and repre-sented as the �rst ross in Table 3.Classial disretization problems appear with oneptual saling: introdution of biases, lossof information and may strongly in�uene the size of the resulting lattie. Moreover, a majorhallenge in miroarray data analysis is to e�etively dissoiate atual gene expression valuesfrom experimental noise. To limit biases of saling involving values lose to interval bounds, andto partially manage miroarray noise, we follow the idea given in [34, 91℄: a threshold l ∈ [0, 1]



2. An FCA-based approah 23is used to de�ne the sale T as follows: T = {[0, u1 + u1× l], . . . , [up−1 − up−1× l, up]}, meaningthat intervals of T an overlap.
(a, t1) (a, t2) (a, t3) (b, t1) (b, t2) (b, t3) (c, t1) (c, t2) (c, t3)

g1 × × ×
g2 × × ×
g3 × × ×
g4 × × ×
g5 × × ×Table 2: A formal ontext derived from the many-valued ontext of Table 1.2.3 Lattie onstrution and interpretationIn our settings, a onept (A,B) represents a subset of genes A that share similar expressionvalues in the situations de�ned by the elements of B. The intent B is the ommon gene expressiondesription of the genes in the extent A.For example Table 3 ontains four onepts (A,B):

• C1 = ({g3, g4}, {(a, t2), (b, t2), (c, t2)}) : it means that the genes g3 and g4 are o-expressed,by sharing expression values in the same interval t2 in situations a, b and c.
• C2 = ({g5}, {(a, t3), (b, t3), (c, t1)})

• C3 = ({g1, g2}, {(a, t3), (b, t3), (c, t3)})

• C4 = ({g1, g2, g5}, {(a, t3), (b, t3)})Figure 1 represents the onept lattie of ontext given in Table 3. It provides interestinginsights of relation between genes for the biologists and thus may lead to knowledge disovery.First to onsider a single onept is intersting beause it represents a group of genes having similarquantitative expression values, and thus that may belong to a same biologial proess or sharea lose funtion. Another approah may onsist to onsider several onepts at the same time.For example, biologists may look at several linked onepts. If we onsider onepts C2, C3, C4,we note that C4 is a super onept of C2 and C3. Genes of these two lasts onepts sharethus a ommon desription that is the intent of C4. Intents of C3 and C2 di�er in situation conly. Biologists know that the expression of a gene is ontrolled by moleules alled transriptionfators. They may infer for example that g5 expression is ontrolled by another transriptionfator whih is over-expressed in the situation c. Another advantage of the onept orderingrelation is to take natively noise into aount. On the same example, if the numerial valuederived into (c, t3) is an error, then grouping g1, g2 and g5 is possible.2.4 Conept �lteringA GED an ontain thousands of genes and dozens of situations. For these reasons, the resultinglattie may ontain a large number of onepts (up to a million). The biologist fouses onsmall and homogeneous gene groups presenting the most important variations simultaneously.Interpretation of variations leads after experimental validations to the disovery of gene funtionsand biologial proesses. Large variations are important to disriminate genes responsible of apartiular ellular proess [76℄. Conepts are groups of genes o-expressed in a ertain number



24 Chapter 3. Extrating gene expression patterns with signi�ant variations

Figure 1: The onept lattie raised from Table 3.of situations and a gene (or a situation) may belong to multiple onepts. To fous on patternswith most signi�ant variations of expression, we introdue the following �lterings.Filter to ontrol both intent and extent sizes. A onept is relevant if the extent is notomposed of �too many� genes, and if the intent ontains a least �a few� situations [81℄. A �rst�ltering step keeps only onepts (A,B), with |A| ≤ a and |B| ≥ b. a and b are hosen by thebiologist and materialize the modalities �too many� and �a few�.Filter to retain onepts showing variations of expression. A onept desribes a groupof o-expressed genes, i.e. having expression values in the same interval in eah the situations.However biologial knowledge implies that these expression values may often be similar betweenthe situations, i.e. presenting no high variation of expression. The key idea is the following:the onept (A,B) = ({g3, g4}, {(a, t2), (b, t2), (c, t2)}) presents no high variation of expressionbeause eah t ∈ T suh as (s, t) ∈ B is the same (in this ase, t = t2), i.e. the expression valuesare always in the same interval. To identify and remove suh type of onepts, we introdue thefollowing formalism.We onsider an index set K on T and replae in an intent all elements of T by orre-sponding element of K (indexes begin at position 1). Previous onept example intent beomes
{(a, 2), (b, 2), (c, 2)}). Now, for eah onept, the intent B is a set of pairs (s, k) where k ∈ Kis an integer valuation providing a ontrol on expression values: B = {(a1, k1), . . . , (ap, kp)}. Inthe urrent and next paragraphs, we onsider (ai, ki) and (aj , kj) as two distint elements of
B (i 6= j). A variation is de�ned as a non null di�erene between ki and kj . This de�nitionnaturaly relies on the number of intervals of the saling and their size. Then retaining variantonepts, i.e. having variations, onsists to keep those having intents B respeting the prediate(1), i.e. hasV ariation(B) = true. Others, alled onstant onepts, are removed.

hasV ariation(B) = ∃(ai, ki) ∈ B and ∃(aj, kj) ∈ B such as ki 6= kj (1)



3. Experiments 25Filter to ontrol gene expression variation amplitude. One may notie that
{(a, 15), (b, 2), (c, 2)} has unformally higher variations than {(a, 3), (b, 2), (c, 2)}, beause 15−2 >
3−2. Thus to have more ontrol on variations, we de�ne the α-variation as a di�erene between
ki and kj of at least α, i.e. |ki − kj | ≥ α. Then a onept is α-variant if its intent B respets(1), i.e. hasV ariation(B,α) = true, with α ≥ 0.

hasV ariation(B,α) = ∃(ai, ki) ∈ B and ∃(aj , kj) ∈ B such as |ki − kj | ≥ α (2)Filter to ontrol ourrenes of an α-variation. Finally, yet another may notie that
{(a, 15), (b, 2), (c, 12)} has more variations than {(a, 15), (b, 2), (c, 2)}. Then a onept is (α, β)−
variant if its intent B respets (1), i.e. hasV ariation(B,α, β) = true, with α ≥ 0 and β ≥ 1.Intuitivly an (α, β) − variant onept presents in B at least a number β of α-variations.

hasV ariation(B,α, β) = (|{((ai, ki), (aj , kj)) with |ki − kj| ≥ α}| ≥ β) (3)Examples:
• the onept (A,B) = (A, {(a, 6), (b, 6), (c, 6)}) is onstant,
• the onept (A,B) = (A, {(a, 2), (b, 6), (c, 6)}) is variant,
• the onept (A,B) = (A, {(a, 2), (b, 6), (c, 6)}) is α-variant with α ≤ 4,
• the onept (A,B) = (A, {(a, 2), (b, 4), (c, 4)}) is α-variant with α ≤ 2,
• the onept (A,B) = (A, {(a, 2), (b, 6), (c, 11)}) is (4, 3)-variant.
• the onept (A,B) = (A, {(a, 2), (b, 6), (c, 8)}) is not (4, 3)-variant.
α and β are two parameters allowing the biologist to fous on the most important variations.The hoie of these parameters strongly depends on the hoie T3 ExperimentsIn this setion, we apply our methodology on a real dataset implying a fungus speies Laariabiolor for its symbiosis apaity with trees. We show that our methodology is able to extratgroups of o-expressed genes in some or all situations. As the genome of Laaria biolor has beenreently published [84℄, it is hard for now to hek the hypothesis we formulate in the following(a few knowledge on spei� proesses of the symbiosis is available), experimental validation bybiologist is required. Indeed, it is the �rst genome of a fungus with this lifestyle (symbiosis) thathas been sequened. However, we show that the parameters α and β are meaningful to reduethe number of onepts, and that this disrimination allows a number of hypothesis.3.1 Data and materialBiologists at the UMR IAM (INRA) study interations between fungi and trees. They reentlypublished the omplete sequening of the genome of the fungus Laaria biolor [84℄. This funguslive in symbiosis with many trees of the temperate forest: the fungus grabs mineral nutrientsin surrounding soil, improves the nutrition of the tree by alloating a part of its nutrients, andreeives arbon in return through assoiation to the root tissue. This fungus has a bene�ial



26 Chapter 3. Extrating gene expression patterns with signi�ant variationsimpat on tree growth and positively in�uenes forest produtivity. It is thus a major interestto understand how the symbiosis performs at the ellular level.The sequening of Laaria biolor genome has allowed the predition of more than 20,000genes [84℄. It remains now to study expression of those genes to understand their funtions inthe fungal lifestyle. Miroarray measurements in several situations is a ritial solution. Forexample, it enables to ompare the expression values of genes between di�erent situations likefree-living ells of the fungus (i.e. myelium), ells engaged in the symbioti assoiation (i.e.etomyorrhiza), and ells of speialized fruiting-body strutures (i.e. mushroom).A GED is available at the Gene Expression Omnibus at National Center for BiotehnologyInformation (NCBI)11. It is omposed of 22,294 genes in lines and 7 various biologial situationsin olumns, i.e. free-living ells (M81306 and MS238), young (FBe) and mature (FBl) fruitingbody ells and fungal ells in assoiation with roots of di�erent trees (Poplar, MPgh, Mpiv,Douglas Fir, MD).We mainly use the Coron System [121℄ omposed of several modules orresponding to thedi�erent steps of the methodology. First the module Transformer has been added to sale thedata. Then losed itemsets have been extrated with the Charm algorithm [33℄. Indeed, theintension of a onept is a losed itemset.3.2 Method and resultsApplying the methodology onsists in seleting genes G and situations S to study, to sale theresulting many-valued ontext K1 = (G,S,W, I1) into the formal ontext K2 = (G,M, I2) andto extrat and �lter onepts from K2.For �rst experiment, we work with the whole set of genes (i.e. |G| = 22, 294) and a subsetof the situations S = {MP,MD,Fbe, FBI,Myc} suh as MP represents in-symbiosis ells(the mean of the olumns MPgh and Mpiv), and Myc represents myelium ells (mean of
M81306 and MS238). The expert biologist hoose a simple sale T whose interval borders are
u1 = 20000 and u2 = 40000 (3 intervals) and an overlapping threshold of 0.05. Extrationreturns 893 onepts. We apply �lters: a onepts (A,B) of this set is retained if |A| ≤ 50,
|B| ≥ 4 and if it is (2, 3) − variant. We �nally obtain 35 onepts that are analysable by theexpert. Two of these onepts are presented in Figure 2 (a) et (b). In these line-plots, Y-axisontains situations y suh as (y, t) ∈ B. X-axis is the expression value axis. A point (x, y) isthe expression value y of a gene in the situation x. All expression values of one single geneare linked by a line. Thus, eah line represents the expression pro�le of a gene like in Table 1.The intent of the onept (a) is B = {(MD, t1), (FBe, t3), (FBi, t3), (Myc, t1)} while the intentof (b) is B = {(MP, t3), (MD, t3), (FBe, t3), (FBi, t3), (Myc, t1)}. By observing the graphialrepresentation, we are able to say that these onepts represents groups of genes sharing thesame behavior. Most of the genes of 35 onepts remains today of unknow funtion. However,some hypothesis an be made. Genes of group (a) may be involved proesses of the fruit bodystruture. Indeed their expression values are high only in Fbe and FBi. Genes of group (b) mayplay a major role in the symbiosis: their expression is high in in-symbiosis and fruit ells andlow in free-living myelium ells. Biologists know that symbiosis is favoured when the fruit iswell established.One may notie the apaity of the method to take partially noise into aount. Conept (a)= (A,B) is suh that B = {(MD, t1), (FBe, t3), (FBi, t3), (Myc, t1)}. It desribes no onditionon the interval for the situation MP , but the behaviour of the genes remains oherent, exept11http://www.nbi.nlm.nih.gov/geo/ as series GSE9784

http://www.ncbi.nlm.nih.gov/geo/


3. Experiments 27

Figure 2: Graphial representation of gene expression onepts.
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Figure 3: Number of onepts w.r.t. di�erent sales.for one gene: the inoherent value is indiated by a irle. Despite of this artifat the groupingis possible.Seond experiment starts with S omposed of every situation of the dataset exept M81306for its bad quality (a priori knowledge) and all the genes. The sale is omposed of 15 intervalsand l = 0.05. We extrat 71, 391 onepts and retain those respeting the following properties:
|A| ≤ 50, |B| ≥ 4 and the onept is (4, 2) − variant. 9, 324 remains and are not analysable.However, we remark that many onepts ontain only a few genes (due to the high ardinalityof T ). We also add the following onstraint, onepts must verify: |A| ≥ 10. Now, 54 oneptsremains. Two of these onepts are presented in 2 () and (d). Genes of onept () are stronglyo-expressed but their funtion is here again unknown. However, they have been identi�ed aspotential proteins of the same type in the yeast speies Candida albians by omparing DNAsequenes. Genes of group (d) may be involved in growth of myelium (highly expressed in
MS238 only).3.3 Variation onstraint evaluationWe have shown two experiments, the �rst with a low |T | (i.e. a few intervals) and the seondwith a high |T | (i.e. several intervals). The hoie of the number of intervals and their size isdi�ult and diretly in�uene the quality (not studied here) and the ardinality of the result asshown in Figure 3. This �gure gives the number of onepts w.r.t. a sale of a |T | intervals,obtained by the quantile disretization method of data of the seond experiment. If |T | is low,the number of onepts and their quality is generally low w.r.t. a higher |T |. If |T | is high, thenumber of onepts explodes, but the quality is better, and the �lters allows to redue it (seeFigure 4). Conepts of 2 () and (d) would have not been found with |T | = 3. The right salefor a given data and a given goal is done via iterative appliation of the method, in interationwith the experts (both omputer sientists and biologists) like most of methods of KDD.
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Figure 4: Number of onepts w.r.t. parameters α and β .4 Towards interval patternsIn this hapter, we have shown an example of how formal onept analysis an be used to minegene expression data. A simple and fully ustomizable oneptual saling allows the expert touse knowledge to �lter the resulting formal onepts. However, from a qualitative point of view,there is no universal saling. The impat of a saling on the quality of the extrated formalonepts must be studied in eah di�erent ase [107℄. One may use our methodology for anynumerial data (sometimes a normalization proedure is required) of whom one wants to extratsets of objets sharing a similar behaviour and presenting important variations, where minimalfrequeny is not su�ient to extrat relevant patterns (e.g. �nanial or demographi analysis).As stated earlier, the major drawbak of our approah is the hoie of the thresholds re-quired to sale the numerial dataset. Whereas a lot of e�ort has been done in this area, seee.g. [130℄, an appropriate disretization splits attribute ranges into intervals maximizing someinterest funtions, e.g. support, on�dene. In a lot of ases, this requires to know the lass ofeah objet (i.e. supervised settings, see e.g. [42℄).From a knowledge disovery point of view, one should not hoose those thresholds to de�nethe intervals, but rather onsider all possible intervals and then onsider the best patterns w.r.t.some interest funtions, onstraints, ondensed representations of patterns et. In this way, a soalled interval pattern an be written as a vetor 〈[ai, bi]〉 where eah i orrespond to a uniqueattribute of the dataset. For making the searhspae of suh interval patterns �nite and thusexplorable, ai and bi should belong to the attribute range of the ith attribute. However, this willlead to a huge amount of interval patterns. The questions that arise are the following: Can wedesign e�ient algorithms to extrat suh patterns? Can we redue the set of patterns to onlythose of interest w.r.t. a partiular need? Is it possible to de�ne ondensed representations ofsuh patterns? The next hapter brings �rst answer elements to these questions by introduinginterval pattern strutures, from whih a onept lattie an be raised e�iently without saling.The rest of the thesis will fous on those strutures by extending their apaity espeially in
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Chapter 4Mining interval patterns with FCAThis hapter addresses the important problem of e�iently mining numerial data with formalonept analysis (FCA). Classially, the only way to apply FCA is to binarize the data, thanksto a so-alled saling proedure. This may either involve loss of information, or produe largeand dense binary data known as hard to proess. In the ontext of gene expression data analysis,we propose and ompare two FCA-based methods for mining numerial data and we show thatthey are equivalent. The �rst one relies on a partiular saling, enoding all possible intervals ofattribute values, and uses standard FCA tehniques. The seond one relies on pattern strutureswithout a priori transformation, and is shown to be more omputationally e�ient and to providemore readable results. Experiments with real-world gene expression data are disussed and givea pratial basis for the omparison and evaluation of the methods.1 IntrodutionIn real-world appliations, e.g. in biology or hemistry, one rarely obtains binary data diretly,omplex and heterogeneous data involving numbers, graphs, intervals, et., are more typial. Toapply FCA-based methods to suh data, the latter have to be binarized, i.e. saled. Many typesof saling are known in FCA literature [47℄. Although saling allows one to apply FCA tools, itfaes a trade-o�. On one hand, it an ome with loss of information (e.g. utting attribute valuedomains into several ranges in previous hapter). On the other hand, in the ase of omplexdata suh as graph data, they do not always suggest the most e�ient implementation rightaway, and there are situations where one would hoose original data representation rather thansaled data [46℄. It may aordingly dramatially inrease the omplexity of omputation andrepresentation, and make worse the visualization of results.Instead of saling, one may work diretly with initial data, i.e. omplex objet desriptions,de�ning so-alled similarity operators whih indue a semi-lattie on data desriptions. Severalattempts were made for de�ning suh semi-latties on sets of graphs [46, 69, 70, 79℄ and logialformulas [31, 45℄ (see also [49, 126℄ for FCA extensions). Indeed, if one is able to order objetdesriptions in omplex data, e.g. with graph morphism when objets are desribed by labelledgraphs, one may attempt to diretly build a onept lattie from suh data. In [46℄, a generalapproah alled pattern strutures was proposed, whih allows one to apply standard FCA toany partially ordered data desriptions.This hapter addresses the problem of FCA-based lassi�ation of numerial data, whereobjet desriptions are vetors of numbers, with pattern strutures and a partiular similarityoperator. We fous on gene expression data (GED), where gene expression pro�les represent the31



32 Chapter 4. Mining interval patterns with FCA�behaviour� of genes in biologial situations, and a situation orresponds to tissues at di�erenttime points or ellular loi (di�erent organs, healthy or anerous tissues, et.). The exampleof gene expression data we onsider in this hapter is given in Table 1. Let us reall that geneswith similar expression pro�les are said to be o-expressed. It is now widely aepted that o-expressed genes interat together within the same biologial proess [117℄. GED analysis is animportant task and an ative area of researh involving mainly data-mining methods: lustering[55℄, bilustering [81, 104℄. FCA-based methods have been reently designed and applied in thisdomain [18, 60, 92℄.
s1 s2 s3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5Table 1: Gene expression dataFor analysing GEDs by means of FCA, one needs to build a formal ontext from a GED,attribute values have to be disretized and intervals of entry values have to be onsidered asbinary attributes, implying possible loss of atual data values [60℄. In [47℄, interordinal saling isde�ned and allows one to build a formal ontext that enodes all possible intervals of attributesvalues, without loss of information. However this saling produes large and dense binary data,whih are hard to proess with existing FCA algorithms [74℄. This is probably one of the reasonswhy this saling has never been used for GED analysis. By ontrast, the formalism of patternstrutures, de�ned in full ompliane with the FCA framework in [46℄, allows one to build aonept lattie without a priori saling proedure. Aordingly, in this hapter, we introdue aninterval onvexi�ation as a similarity operator for ordering intervals within a semi-lattie, i.e. bytaking the onvex hull of any arbitrary set of intervals. However, this operation between omplexdesriptions of objets may be harder to proess than lassial set intersetion and inlusion testafter a saling. Then, a hallenging question arises for numerial data like GEDs: should onesale numerial attributes?To disuss this question, we have experimented with both approahes, omparing their om-putational e�ieny, the respetive results and their representations. We show that both methodshave equivalent outputs, but the method based on pattern strutures is more omputationallye�ient than that based on interordinal saling, and provides better readable and interpretableresults. Finally, a real world experiment with gene expression data shows data-mining ability ofpattern strutures for numerial data.2 Interval patterns in saled formal ontextsThis setion starts with the de�nition of a partiular saling for representing value intervalsfrom numerial datasets alled interordinal saling. The onept lattie is aordingly built fromresulting formal ontext. Eah onept represents a set of objets assoiated to interval of valuesthey take for the di�erent attributes.
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s1 ≤ 4 s1 ≤ 5 s1 ≤ 6 s1 ≥ 4 s1 ≥ 5 s1 ≥ 64 × × × ×5 × × × ×6 × × × ×Table 2: The interordinal sale (Ws1 ,Ws1 ,≤)|(Ws1 ,Ws1 ,≥).2.1 Interordinal salingInterordinal saling de�ned in [47℄ an help desribing all value intervals without loss of infor-mation. Let G be a set of genes, S a set of situations, W ⊂ R a set of expression values and

I1 a ternary relation de�ned on the Cartesian produt G × S ×W . The fat (g, s, w) ∈ I1 orsimply g(s) = w means that gene g has expression value w for situation s (see for example Table1). K1 = (G,S,W, I1) is alled a many-valued ontext representing a GED. The objetive isto extrat formal onepts (A,B) from K1, where A ⊆ G is a subset of genes sharing �similarvalues� of W , i.e. lying in a same interval. An appropriate binarization (saling) tehnique isused to build a formal ontext K2 = (G,S2, I2) alled derived ontext of K1.A sale is a formal ontext (ross-table), objets being the attributes of K1 and attributesbeing the derived ones of K2. As attributes do not take neessarily the same values, eah ofthem is saled separately. Let Ws ⊆W be the set of all values of the attribute s. The followinginterordinal sale (see pp. 42 in [47℄) an be used to represent all possible intervals of attributevalues:
IWs = (Ws,Ws,≤)|(Ws,Ws,≥).The operation of apposition of two ontexts with idential sets of objets, denoted by |, returnsthe ontext with the same set of objets Ws and the set of attributes being the disjoint unionof attribute sets of the original ontexts. In our ase, this operation is applied to two ontexts

(Ws,Ws,≤) and (Ws,Ws,≥). As Ws is omposed of real numbers, the relations ≤ and ≥ arenatural. Table 2 gives an example forWs1 = {4, 5, 6}. The intents given by the interordinal saleare all possible value intervals.One a sale is hosen, oneptual saling replaes eah many-valued attribute of K1 with aset of binary attributes, resulting in the ontext K2. With interordinal saling, eah many-valuedattribute s is replaed by 2 · |Ws| binary attributes with names �s ≤ w� and �s ≥ w�, for all
w ∈ Ws. For example, s1 is replaed by {s1 ≤ 4, s1 ≤ 5, s1 ≤ 6, s1 ≥ 4, s1 ≥ 5, s1 ≥ 6}. Derivedontext K2 = (G,S2, I2) is given in Table 3 for the attribute s1 only. This transformation isapplied without loss of information: the many-valued ontext an easily be reonstruted fromthe formal ontext. For example, derived attributes for (g1, s1, 5) are s1 ≤ 5, s1 ≤ 6, s1 ≥ 4,
s1 ≥ 5. The unique value in Ws1 respeting these prediates is 5 whih is the original value.2.2 Conept lattie onstrutionThe hoie of an algorithm to build the onept lattie depends on the size and density of theformal ontext to proess. Density of a formal ontext (G,M, I) is de�ned as the proportion ofelements of I w.r.t. the size of the Cartesian produt G×M , i.e. density d = |I|/(|G|.|M |). Inthe ase of interordinal saling, density of derived ontext K2 is

∑i≤p
i=1(|Wi|+ 1)

2 ·
∑i≤p

i=1 |Wi|
,



34 Chapter 4. Mining interval patterns with FCAwhere p is the number of attributes in K1. When |W | grows, d tends towards 50%. Moreover,the number of derived attributes is 2 ·∑i≤p
i=1 |Wi| and |g′| = |W | + 1 for all g ∈ G. This makesthe derived ontexts dense, large and di�ult to proess. For omparison, density of binary datain [104℄ does not exeed 6% and the number of derived attributes remains the same after saling.2.3 Interpretation and limitsConsider a onept of the lattie given in Figure 3, e.g.

({g1, g3, g4, g5}, {s1 ≤ 5, s1 ≤ 6, s1 ≥ 4, s2 ≤ 9, s2 ≥ 7, s3 ≥ 4, s3 ≥ 5, s3 ≤ 8})The intent of this onept an be interpreted as a so-alled interval pattern: it is omposed ononstraints on a set of values. This means that objets in the extent all have their values forattribute s1 in the interval [4, 5], for attribute m2 in interval [7, 9] and for attribute m3 in interval
[5, 8].A �rst drawbak of interordinal saling is the form of suh intents. One an notie thatmany onstraints are redundant, e.g. the attribute s1 ≤ 6 is redundant w.r.t attribute s1 ≤ 5.Therefore, the intent should have the following form:

{s1 ≤ 5, s1 ≥ 4, s2 ≤ 9, s2 ≥ 7, s3 ≥ 5, s3 ≤ 8}It an also simply be represented by a vetor of intervals where dimension i orresponds toattribute si:
〈[4, 5], [7, 9], [5, 8]〉whih is more omprehensive.But beyond hard interpretation, the form of suh objet desription is suh that the miningof the ontext is hard. Indeed, one needs a huge number of binary attributes to desribed allpossible intervals for eah attribute. We show in the next setion how to extrat mathematiallyequivalent onept without saling with e�ient algorithms.Let us now onsider the whole onept lattie of K2 given in Figure 312. Conept extentsnear the Bottom onept ontain a few genes, sine the orresponding intents are related to thesmallest intervals. The extent of the Top onept ontains all genes and its intent orrespondsto intervals of maximal size. The higher a onept lies in the diagram, the larger is the intervalorresponding to its intent. Conepts near the Top are not interesting: they allow almost allpossible values of attributes. The problem of seleting the best onepts in GED analysis isaddressed latter in biologial experiments.3 Interval patterns in pattern strutures3.1 IntuitionsIn this setion, we present an alternative to saling when a ontext inludes many-valued at-tributes. This alternative is based on the idea of pattern strutures [46℄ whih was motivated byresearh on learning with labelled graphs and other omplex desriptions [69, 70℄.Intuitively, the similarity of two sets of labelled graphs X and Y , denoted by X ⊓Y , is givenby the maximal ommon subgraphs of graphs from X and Y . Then a graph pattern may bede�ned as a set of graphs X suh that X ⊓ X = X, i.e. X is �maximal� w.r.t. the similarity12Drawn with the Conept Explorer software (http://onexp.soureforge.net/)

http://conexp.sourceforge.net/
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s1 ≤ 4

s1 ≤ 5

s1 ≤ 6

s1 ≥ 4

s1 ≥ 5

s1 ≥ 6

s2 ≤ 7

s2 ≤ 8

s2 ≤ 9

s2 ≥ 7

s2 ≥ 8

s2 ≥ 9

s3 ≤ 4

s3 ≤ 5

s3 ≤ 6

s3 ≤ 8

s3 ≥ 4

s3 ≥ 5

s3 ≥ 6

s3 ≥ 8

g1

×
×
×
×

×
×
×
×

×
×
×
×
×

g2

×
×
×
×

×
×
×
×

×
×
×
×
×

g3

×
×
×
×

×
×
×
×

×
×
×
×
×

g4

×
×
×
×

×
×
×
×

×
×
×
×
×

g5

×
×
×
×

×
×
×
×

×
×
×
×
×

Table 3: Interordinally saled ontext K2 = (G,S, I2).
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Figure 1: Conept lattie of formal ontext K2 = (G,S, I2).operation. It is easily seen that the operation ⊓ is idempotent, assoiative and ommutative.The similarity operation ⊓ on sets of graphs is a sort of �attribute sharing�, as in the binary ase,where objets in extent share the maximal set of attributes in the orresponding intent. Denoteby D the set of all graph patterns, then (D,⊓) is a semi-lattie with in�mum (meet) operator
⊓. A natural subsumption order on graph patterns is given by X ⊑ Y ⇔ X ⊓ Y = X.More generally, a pattern struture is a triple (G, (D,⊓), δ) where G is a set of objets, (D,⊓)is a meet-semi-lattie of objet desriptions or patterns, and δ : G −→ D is a mapping providingany objet g ∈ G with a desription d ∈ (D,⊓). As (D,⊓) or equivalently (D,⊑) are semi-latties, the following Galois onnetion, denoted by {(.)�, (.)�}, between (2G,⊆) and (D,⊑)gives rise to a omplete lattie alled the pattern onept lattie of (G, (D,⊓), δ) [46℄.

A� =
l

g∈A

δ(g) for A ⊆ G,

d� = {g ∈ G|d ⊑ δ(g)} for d ∈ (D,⊓).The �rst derivation operator takes a set of objets and returns a maximal desription (pattern)shared by all objets. The seond derivation operator takes a desription and returns the maximalset of objets sharing this desription.Pattern onepts of (G, (D,⊓), δ) are pairs of the form (A, d), A ⊆ G, d ∈ (D,⊓), suh that
A� = d and A = d�. For a pattern onept (A, d) the omponent d is alled a pattern intent andis a desription of all objets in A, alled pattern extent. For a pattern struture (G, (D,⊓), δ), apattern d ∈ (D,⊓) is losed if d�� = d. A set of objets A ⊆ G is losed if A�� = A. Obviously,pattern extents and intents are losed. When partially ordered by (A1, d1) ≤ (A2, d2)⇔ A1 ⊆ A2

(⇔ d2 ⊑ d1), the set of all pattern onepts forms a omplete lattie alled a pattern oneptlattie.



3. Interval patterns in pattern strutures 373.2 Similarity between intervalsTo de�ne a semi-lattie operation ⊓ for intervals that would be analogous to the set-theoretiintersetion or meet operator on sets of graphs, one should realize that �similarity� between tworeal numbers (between two intervals) may be expressed in the fat that they lie within some(larger) interval, this interval being the smallest interval ontaining both two.Then, we hoose to de�ne the meet of two intervals [a1, b1] and [a2, b2], with a1, b1, a2, b2 ∈ R,as follows:
[a1, b1] ⊓ [a2, b2] = [min(a1, a2),max(b1, b2)].This operation an be viewed as a onvexi�ation of its arguments, as it returns the onvex hullof two intervals. The hoie of this operator seems natural to have a more general desriptionwhen onsidering more objets, whih would not be the ase if onsidering a lassial intervalintersetion as attribute values are numbers. The ⊓ operator is idempotent, ommutative, andassoiative. This means that the meet of several intervals is the smallest interval ontaining allintervals. Then, interval subsumption and interval inlusion are related as follows:

[a1, b1] ⊑ [a2, b2]

⇔ [a1, b1] ⊓ [a2, b2] = [a1, b1]

⇔ [min(a1, a2),max(b1, b2)] = [a1, b1]

⇔ a1 ≤ a2 and b1 ≥ b2

⇔ [a1, b1] ⊇ [a2, b2].The de�nition of ⊓ implies that smaller intervals subsume larger intervals that ontain them.For example, with D = {[4, 4], [5, 5], [6, 6], [4, 5], [5, 6], [4, 6]}, the meet-semi-lattie (D,⊓) is givenin Figure 2. The interval labeling a node is the meet of all intervals labeling its asending nodes,e.g. [4, 5] = [4, 4] ⊓ [5, 5], and is also subsumed by these intervals, e.g. [4, 5] ⊑ [5, 5] and
[4, 5] ⊑ [4, 4].

[4,4℄ [5,5℄ [6,6℄[4,5℄ [5,6℄[4,6℄
Figure 2: Diagram of (Dm1

,⊓) or equivalently(Dm1
,⊑).We have shown how intervals an be seen as patterns. Now we an de�ne a pattern struturewhere eah objet is desribed by an interval. We show in the following how to generalize theproess when onsidering vetors of intervals. Furthermore, this is exatly what we need foranalysing GED where gene expression pro�les are vetors of numbers (and [a, a] is an intervalfor any a ∈ R).3.3 Similarity between interval vetorsWe all an interval vetor a p-dimensional vetor of intervals. When e and f are vetors of pintervals, we write e = 〈[ai, bi]〉i∈[1,p] and f = 〈[ci, di]〉i∈[1,p]. The similarity operation ⊓ is de�ned



38 Chapter 4. Mining interval patterns with FCAby the meet of orresponding omponents for vetor of the same size (knowing that the order ofthe omponents is anonial):
e ⊓ f = 〈[ai, bi]〉i∈[1,p] ⊓ 〈[ci, di]〉i∈[1,p]
⇔ e ⊓ f = 〈[ai, bi] ⊓ [ci, di]〉i∈[1,p].Therefore, interval vetors are partially ordered by:
e ⊑ f
⇔ 〈[ai, bi]〉i∈[1,p] ⊑ 〈[ci, di]〉i∈[1,p]
⇔ [ai, bi] ⊑ [ci, di], ∀i ∈ [1, p].i ∈ [1, p],meaning that eah interval [ai, bi] of e is subsumed by the orresponding interval [ci, di] of f . Forexample, 〈[2, 4], [2, 6]〉 ⊑ 〈[4, 4], [3, 4]〉 as [2, 4] ⊑ [4, 4] and [2, 6] ⊑ [3, 4].3.4 Conept lattie onstrutionGED in Table 1 an be formalized as a pattern struture (G, (D,⊓), δ) where G = {g1, . . . , g5}and D is a set of interval vetors or 3-dimensional vetors, where eah omponent orrespondsto an attribute of the table. For example, δ(g1) = 〈[5, 5], [7, 7], [6, 6]〉, where [a, a] stands for any

a ∈ R. When A ⊆ G is a set of objets and d ∈ (D,⊓) is an interval vetor, A� returns aninterval vetor omposed, for eah dimension, of the smallest interval ontaining all intervals inthe desription of eah objet in A, i.e. their onvex hull. On the other hand, d� returns theset of objets being desribed for eah dimension by an interval inluded in the orrespondinginterval of d.For example, with data of Table 1, we have:
{g1, g2}

� =
l

g∈{g1,g2}

δ(g)

= δ(g1) ⊓ δ(g2)

= 〈[5, 5], [7, 7], [6, 6]〉 ⊓ 〈[6, 6], [8, 8], [4, 4]〉

= 〈[5, 5] ⊓ [6, 6], [7, 7] ⊓ [8, 8], [6, 6] ⊓ [4, 4]〉

= 〈[5, 6], [7, 8], [4, 6]〉

〈[5, 6], [7, 8], [4, 6]〉� = {g ∈ G|〈[5, 6], [7, 8], [4, 6]〉 ⊑ δ(g)}

= {g1, g2, g5}Obviously, g1 and g2 belong to 〈[5, 6], [7, 8], [4, 6]〉� . g5 also belongs to this set beause
〈[5, 6], [7, 8], [4, 6]〉 ⊑ δ(g5).Then, the pair (A, d) = ({g1, g2, g5}, 〈[5, 6], [7, 8], [4, 6]〉) is a pattern onept meaning that
A� = d and A = d�. The set of all pattern onepts gives rise to a pattern onept lattie (seeFigure 3).3.5 Algorithms for omputing interval patternsMany algorithms for generating formal onepts from a formal ontext are ompared in [74℄.Experimental results highlight Norris, CloseByOne and NextClosure algorithms as the best al-gorithms when the ontext is dense and large, whih is the ase of interordinally derived formal
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Figure 3: Pattern onept lattie of pattern struture from Table 1.ontexts. Worst-ase upper bound time omplexity of the three algorithms for omputing a setof formal onepts from a formal ontext (G,M, I) is O(|G|2 ·|M |·|L|) with G the set of genes,Mthe set of attributes (here the set of attributes of the saled ontext), and L the set of generatedonepts.To ompute interval pattern onepts, the seleted FCA algorithms Norris, CloseByOne, andNextClosure, need only slight modi�ations. The worst-ase time omplexity of omputing theset of interval patterns is O(|G|2 ·p · |L|), where p is the number of omponents in interval vetors,i.e. the number of numerial attributes in the original numerial data.In both ases, the sets G and L are the same, thus relative e�ieny of proessing both datarepresentations depends on the number of di�erent attribute values in the original many-valuednumerial ontext.We now propose an adaptation of the CloseByOne algorithm for proessing pattern struturessuh as vetors of intervals. This algorithm detailed in Chapter 2 is the most e�ient in our ase(see Subsetion 4.4.2). To adapt this algorithm for pattern strutures, one has to replae eahall to a (.)′ operator by a all to the orresponding (.)� operator. Then, omputing A� for aset A ⊆ G is realized by taking min (respetively max) of all left (respetively right) limits ofthe intervals of eah objet desription. For a pattern d ∈ (D,⊓), d� is omputed by testing foreah objet g ∈ G if eah interval of its desription is inluded in the orresponding interval of d.4 Comparing both approahes4.1 Theoretial omparisonThe following proposition establishes an isomorphism between the onept lattie of KI with therelation IWs = (Ws,Ws,≤)|(Ws,Ws,≥), resulting from the interordinal saling, and the patternonept lattie of (G, (D,⊓), δ).Proposition 1. Let A ⊆ G, then statements 1 and 2 are equivalent:1. A is an extent of the pattern struture (G, (D,⊓), δ) and A� = 〈[mi,mi]〉i∈[1,p], where miand mi respetively denote the minimum and maximum of values of the objets in A for the ithattribute.



40 Chapter 4. Mining interval patterns with FCA2. A is a onept extent of the ontext KI so that for all i ∈ [1, p] mi is the largest number nsuh that the attribute si ≥ n is in A′ and mi is the smallest number n suh that the attribute
si ≤ n is in A′.Proof. 1 → 2 Let A ⊆ G be a pattern extent. Given δi(g) the mapping that returns the
ith interval of the vetor desribing objet g. Sine A� = 〈[mi,mi]〉i∈[1,p], for every objet g ∈ Aone has mi ≤ δi(g) ≤ mi and there are objets g1, g2 ∈ A suh that δi(g1) = mi, δi(g1) = mi.Hene, in ontext KI one has

A′ = ∪i∈[1,p]{si ≥ nmin, . . . , si ≥ n1, si ≤ n2, . . . , si ≤ nmax}where
nmin ≺ . . . ≺ n1 ≤ n2 ≺ . . . ≺ nmaxand n1 = mi, n2 = mi. Hene, mi is the largest number n suh that the attribute si ≥ n is in

A′ and mi is the smallest number n suh that the attribute si ≤ n is in A′. Suppose that A isnot an extent of KI . Hene, A ⊂ A′′ and there is g ∈ A′′ \ A and g′ ⊇ A′. This means that forall i mi ≤ δi(g) ≤ mi. Therefore, g ∈ A�� and A 6= A��, a ontradition. The proof 2 → 1 issimilar.Consider an example of pattern onept: ({g1, g2, g5}, 〈[5, 6], [7, 8], [4, 6]〉), the equivalent on-ept of the interordinally saled ontext is ({g1, g2, g5}, {s1 ≤ 6, s1 ≥ 4, s1 ≥ 5, s2 ≥ 7, s2 ≤
8, s2 ≤ 9, s3 ≤ 6, s3 ≤ 8, s3 ≥ 4}). Pattern intents are onise representations of onept intents.Therefore, onept intents are long desriptions, whih an be turned to pattern intents by asimple syntati post-proessing.4.2 Pratial omparisonHere we ompare time performane of three algorithms for mining pattern strutures of intervalvetors and equivalent interordinally saled ontexts. We have implemented the Norris, NextClo-sure, and CloseByOne algorithms, for both proessing formal ontexts and pattern strutures.We have added the Charm algorithm [53℄ that extrats losed itemsets, i.e. onept intents in aformal ontext. FCA algorithms have been implemented in original versions as desribed in [74℄.These algorithms are run within the Coron System [120℄.13 All implementations are in Java:sets of objets and binary attributes are desribed with the BitSet lass and interval desriptionswith standard double arrays. The experiments were arried out on an Intel Core2 Quad CPU2.40 Ghz mahine with 4 GB RAM running under Ubuntu 8.10.We began to ompare algorithms on the data presented in biologial experiments, i.e. froma many-valued ontext (G,S,W, I1) where |G| = 10, 225 and |S| = 5 (see next Setion for morebiologial details). Even by reduing the number of attribute values, omputation is infeasible.Indeed we do not onsider here onstraints like the maximal interval size. Then we randomlyseleted samples of the data, by inreasing the number of objets. As attribute values are realnumbers with about �ve digits after the omma, the size of W is large. In the worst ase,
|W | = |G| × |S|, i.e. eah attribute value is di�erent in the dataset. This implies very largeformal ontexts to proess and a large number of onepts. The exeution times for this aseare shown in Table 4. The Norris algorithm shows the best results in formal ontexts, meetingonlusions of [74℄ for large and dense ontexts. However, CloseByOne performs better forpattern strutures, and most importantly is the only one able to ompute a very large olletionof onepts.13The Coron System is freely available at http://oron.loria.fr and also integrates a tool for applying interordinalsaling to numerial data.

http://coron.loria.fr


5. Biologial experiments 41Datasets
|G| 10 20 30 40 50 75 100
|W | 50 100 150 199 249 374 252density 51.00% 50.50% 50.33% 50.25% 50.20% 50.13% 50.20%Generation time in formal ontexts (in milliseonds)Charm 60 916 16,469 N/A N/A N/A N/ANext Closure 5 145 1,299 12,569 68,969 N/A N/ANorris 2 90 609 5,180 28,831 N/A N/AClose By One 3 106 906 7944 41,238 N/A N/AGeneration time in pattern strutures (in milliseonds)Next Closure 6 100 763 5,821 35,197 N/A N/ANorris 6 172 1982 15,522 83,837 N/A N/AClose By One 2 85 585 3,094 18,320 1,004,073 2,288,200Conept set L
|L| 280 9,587 78,173 455,008 1,857,725 40,325,176 64,571,385Table 4: Generation time in both data representations (no projetion).When strongly reduing the size ofW by rounding attribute values to the integer, i.e. |W | ≪

|G| × |S|, the Charm algorithm outperforms the others. The Norris algorithm is still the bestFCA-algorithm in formal ontexts and CloseByOne is the best in pattern strutures (see Table5). To sum up, we an say the following: When the number of di�erent attribute values w.r.t.
|G|× |S| is low, omputing onepts from formal ontexts is the most e�ient solution. For largedatasets with many di�erent attribute values, it is muh more e�ient to ompute with intervalpattern strutures. One explanation is that for formal onepts the onept intent representationis a bit string whose length inreases with the growth of |W |. Objet desriptions in patternstruture are arrays of onstant size w.r.t. |W |.5 Biologial experimentsThis setion shows how pattern strutures are used for extrating biologial information from areal-world GED and how they outperform interordinally saled ontexts in terms of proessingtime.5.1 DataBiologists at the UMR IAM (INRA) study interations between fungi and trees. They publishedthe omplete genome sequene of the fungus Laaria biolor [83℄. This fungus lives in symbiosiswith many trees of boreal and temperate forests. The fungus forms a mixed organ on treeroots and is able to exhange nutrients with its host in a spei� symbioti struture alledetomyorrhiza, ontributing to a better tree growth and enhaning forest produtivity. Onthe other hand, the plant repays its symbioti partner by providing arbohydrates, allowingthe fungus to omplete its biologial yle by produing fruit-bodies (e.g. mushrooms). It isthus of major interest to understand how the symbiosis performs at the ellular level. Thegenome sequene of Laaria biolor ontains more than 20,000 genes [83℄. The study of theirexpression in various biologial situations helps to understand their roles and funtions in the



42 Chapter 4. Mining interval patterns with FCADatasets
|G| 25 50 75 100 125 150 200
|W | 34 37 44 53 58 62 66Generation time for formal ontexts (in milliseonds)density 51.47% 51.35% 51.14% 50.94% 50.86% 50.81% 50.76%Charm 55 154 184 243 394 936 1856Next Closure 100 933 3,333 22,973 30,854 78,790 593,416Norris 38 320 861 2,697 5,954 15,359 46,719Close By One 84 483 2,424 8,452 22,173 59,070 227,432Generation time for pattern strutures (in milliseonds)Next Closure 59 372 1,924 6,215 15,417 42,209 143,501Norris 44 479 2,602 7,243 16,257 40,991 109,814Close By One 40 220 1,084 3,832 9,289 23,989 89,804Conept set L
|L| 1,165 5,928 23,962 48,176 73,463 163,316 252,515Table 5: Generation time in both data representations. Attribute values are rounded.biology of the fungus. Miroarray tehniques enable to ompare expression values of all thegenes between ontrasted situations like free-living ells of the fungus (i.e. myelium), ellsengaged in the symbioti assoiation (i.e. etomyorrhiza), and speialized ells forming thefruit-body struture (i.e. mushroom). Laaria biolor gene expression data is available at theGene Expression Omnibus of the National Center for Biotehnology Information (NCBI)14. Itis omposed of 22,294 genes in lines and 5 various biologial situations in olumns, re�etingells of the organism in various stages of its biologial yle, i.e. free living myelium (situationFLM), symbioti tissues (situations MP and MD) or fruiting bodies (situations FBe and FBl).5.2 PreproessingFirst, a seletion from the 22,294 genes is proessed. Indeed, a gene that shows similar expressionvalues in all situations presents less interest to the biologist than a gene with high di�erenes ofexpression. One gene with a onstant expression does not indiate a partiular ontribution toa ellular proess (although its expression per se an be su�ient to partiipate to the proess).Besides, signi�ant hanges in gene expression may re�et a role in a biologial proess and suhgenes help the biologist to draw hypotheses.Filtering the genes onsists in removing genes having no signi�ant di�erene of expressionaross all situations. For eah ouple of situation, a t-test is performed and a p-value is attributed.If the p-value > 0.05 (ut-o� lassially applied in biology) for all ouples of situations then theurrent gene is removed from the dataset. The CyberT tool15 was used to �lter the dataset andobtain 11, 930 genes. Another lassial pre-proessing in GED analysis is to transform expressionvalues using log2. Indeed, it allows the apture of small expression values into intervals thatshould be larger for high expression values. Finally, for making omputation possible, a lastpre-proessing onsists in rounding log2 expression values to one digit after the omma, reallingthat the more there are di�erent attribute values, the more they are onepts.14http://www.nbi.nlm.nih.gov/geo/ as series GSE978415Available at http://ybert.miroarray.is.ui.edu/.



5. Biologial experiments 435.3 MethodBefore extrating onepts from the GED de�ned above, we should remark that, given thede�nition of ⊓ as a onvexi�ation of intervals, the following property of an (interval vetor)pattern onept lattie is obvious. The lowest onepts w.r.t. ≤ are generally omposed ofpattern extents with few objets and �preise� desriptions, i.e. whose pattern intent is omposedof �small� intervals. Then, the higher a onept is, the more elements there are in its extent, andthe more intervals of its intent are large. For example, the Top onept, i.e. the highest oneptw.r.t. ≤, has an extent ontaining all objets, and an intent omposed of the largest intervalssubsumed by all respetive intervals of the data. In the example, Top = (G, 〈[4, 6], [7, 9], [4, 8]〉).However, the main goal of GED analysis is extrating homogeneous groups of genes, i.e. groupsof genes having similar expression values. Therefore, desriptions of homogeneous groups shouldbe omposed of intervals with �small� sizes where size([a, b]) = b− a.Consider a parameter maxsize that spei�es the maximal admissible size of any intervalomposing an interval vetor. Then pattern onepts of interest have pattern intents d =
〈[ai, bi]〉i∈[1,p] ∈ (D,⊓) satisfying the onstraint: ∃i ∈ [1, p] (bi − ai) ≤ maxsize, for any a, b ∈ R.A stronger onstraint would be ∀i ∈ [1, p] (bi − ai) ≤ maxsize, meaning that only oneptsrepresenting genes with �similar� expression values in at least one or all biologial situations areretained. Therefore, two values are said to be similar if their di�erene does not exeed maxsize.Sine both onstraints are monotone (if an intent does not satisfy it, then a subsumed intent doesnot satisfy it either), the subsets of patterns satisfying any of these onstraints are order ideals(w.r.t. subsumption on intervals ⊑) of the lattie of pattern intents. In terms of omputation,this means that only some lower part of the pattern lattie is omputed, with patterns satisfyingthe onstraints. CloseByOne an easily onsider these onstraints as it generates onepts fromminimal to maximal extents.The CloseByOne algorithm was run on the resulting pattern struture with maxsize = 0.35.A onept is retained if it desribes at least 7 o-expressed genes in at least 5 situations, i.e. theintent has at least 5 intervals whose size do not exeed the maxsize parameter. Indeed, let usreall that onepts near the Bottom, i.e. in the lowest levels of the onept lattie, are omposedof a few genes desribed by small intervals. Proessing time was about 2 minutes and returns
2, 120 onepts (hardware details are given in next setion).

Figure 4: Graphial visualisation of two extrated onepts.5.4 First resultsHere we present two extrated patterns seleted as grouping genes with high expression levelsin the fruit-bodies situations, whereas their expression remains similar between the myelium



44 Chapter 4. Mining interval patterns with FCAand symbiosis situations. In Figure 4, X-axis is omposed of situations, Y-axis is the expressionvalues axis. Eah line denotes the expression pro�le of a gene in the onept extent. Valuesare taken before the logarithmi transformation. These patterns have been extrated from thewhole list of 2, 120 patterns for the following harateristi: in both ases, the expression levelsmeasured are about two times higher in the fruit-body ompared to the other situations. Itindiates that these genes orrespond to biologial funtions of importane at this stage. Theexpression measured in the myelium and symbiosis situations tends to indiate that these genesare also involved in general ellular proesses as they are already expressed in all situations.The pattern in Figure 4 (left) ontains 7 genes, of whih only 3 possess a putative ellularfuntion assignment based on similarity in international gene databases at NCBI. Interestingly,these genes all enode enzymes involved in distint metaboli pathways. A gene enodes a1-pyrroline-5-arboxylate dehydrogenase whih is involved in amino-aid metabolism, anotherorresponds to an ayl-oA dehydrogenase, involved in fatty aid metabolism and a last geneenodes a transketolase, an enzyme involved in the pentose phosphate pathway of arbohydratemetabolism. All these metaboli funtions are essential for the fungus and re�et that thefruit-body is a highly ative tissue. The fruit-body is a spei� fungal organ that di�erentiatein order to produe spores and that further ensure spore dispersal in nature [108℄. Previousgene expression analyses of the fruit-body development onduted in the etomyorrhizal fungusTuber borhii also reported the strong indution of several genes involved in arbon and nitrogenmetabolisms [54℄ as well as in lipid metabolism [110℄. The present results are onsistent with theseobservations and supports an important mobilization of nutrient soures from the myelium tothe fruit-body. It seems obvious that the primary metabolism requires to be adapted to use thesesoures in order to properly build spores and provide spore-forming ells with nutrients [108℄.The pattern on Figure 4 (right) also ontains 7 genes, of whih only 3 possess a putativebiologial funtion. Interestingly, one of these genes enodes one pseudouridylate synthase, anenzyme involved in nuleotide metabolism that might also be involved in remobilization of fungalomponents from the myelium to spore-forming ells and spores. The 2 other genes enode aytoskeleton protein (atin) and a protein related to autophagy (autophagy-related 10 protein),a proess that an ontribute to the reyling of ellular material in developing tissues. Bothfuntions partiipate in re-onstrutive ellular proesses [108℄, whih is onsistent with theinvolvement of metaboli enzymes in remobilization of fungal resoures towards the new organin development.Analysis of these two patterns that present a high expression level in the fruit-body situationis highly informative, on�rms existing knowledge in the �eld and highlights the importaneof remobilization in the developing organ. These o-expressed genes share related roles in apartiular proess. This ould indiate that they are under the ontrol of ommon regulatorsof gene expression. Interestingly, these patterns also ontained a total of 8 genes of unknownfuntions, i.e. for whih no funtional assignment was possible in international gene databases.There were 4 genes enoding hypothetial proteins with a homology in databases but no detailedfuntion and 4 genes not previously desribed in fungi or other organism and whih are onsideredspei� to Laaria biolor. There are about 30% of suh genes spei� to this fungus and thesemay play spei� roles in the biology of this soil fungus [83℄. All these genes show onsistentpro�les with those enoding metaboli funtions. Thus, these genes are interesting investigationleads as they may ontain new enzymes not previously desribed of the pathways or eventualregulator of the ellular proess. Altogether, these results ontribute to a better understanding ofthe moleular proesses underlying the fruit-body development. As stated earlier, the expressionof these genes was not spei� to this biologial situation. Their expression levels was alreadyhigh in the myelium and the symbioti tissue indiating that these proesses are essential not



6. Disussion 45only to the fruit-body development but also to general ellular proesses as previously desribedin expression studies of the tree-fungus symbiosis development [109℄.6 DisussionIn this hapter, we addressed the problem of e�iently mining numerial data with tehniquesbased on Formal Conept Analysis (FCA). The standard way of dealing with numerial data inFCA is based on saling. However, the data may be saled in a lot of di�erent ways leadingto di�erent results and interpretations. Most importantly, this usually leads either to loss ofinformation and preision, or to huge and dense binary datasets di�ult to proess.In the ontext of gene expression data analysis, we have ompared two mathematially equiv-alent methods for proessing numerial data. The �rst one uses interordinal saling and lassialFCA algorithms. It enodes all possible intervals of attribute values in a formal ontext thatis proessed with lassial FCA algorithms. The seond method relies on pattern strutures: itbuilds a onept lattie diretly from the original data. We proved that both resulting oneptlatties are isomorphi. Most importantly, pattern strutures o�er more onise representations,better salability, and better readability of the (pattern) onept lattie. Thus, we gave elementsfor answering the hallenging question, should one sale numerial attributes? We also showedsubstantial results for GED analysis, highlighting the important potential of pattern struturesas a bi-lustering tehnique. It remains now to ompare this method with other gene expressiondata mining tehniques aross a systemati omparative study.Indeed, our FCA based approah an be viewed as a bilustering method. It provides meansfor extrating patterns from numerial data, namely formal onepts. In appliation to GEDanalysis, onept extents are maximal sets of genes related to a ommon maximal set of situations(not neessarily all, due to our onstraints on maximal interval size). The ordering of oneptsamong a omplete lattie makes overlapping of onepts natural. Then a omplete enumerationof patterns respeting some onstraints like maximal interval size is possible. Indeed, the subsetsof patterns satisfying these onstraints is an order ideal of the lattie of patterns. Atually, inthis hapter, we pay partiular attention to saling problems, suh as boundary problems, andwe proposed monotone onstraints to retain best onepts for a GED analysis.A similar work to build onept latties from numerial data was proposed in [102℄ in theframework of Symboli Data Analysis (SDA) [17℄, however no links with interordinal saling ande�ieny omparison was proposed.Among other diretions of further researh, one may involve domain knowledge. The semi-lattie of desriptions (D,⊓) may be viewed as a hierarhy, where domain knowledge may beenoded, e.g. in some dimensions of a pattern vetor. Domain knowledge an be given by textannotations on genes, e.g. [90℄, for whih a similarity operation ⊓ an be de�ned. Moreover,eah dimension of the vetor may orrespond to a partiular data-type for whih a similarityoperation ⊓ is de�ned. For example, some dimension may orresponds to numerial attributes,an other to graph-valued attributes, or lassial sets, et.In this hapter, we do not have onsidered fuzzy settings. Although FCA has already beenextended in [12℄ where an objet is assoiated to an attribute with a truth degree, it an beinteresting to study how fuzzy settings an be onsidered within pattern strutures. A �rststudy we addressed an be found in [6℄ and is not detailed here.Most importantly, onsidering the similarity operation ⊓ as interval onvexi�ation generatestoo many patterns: some patterns and their sub-patterns w.r.t. ⊑ may desribe almost the sameset of genes, i.e. a few genes di�ers in their extents. Conept stability was introdued in [72℄



46 Chapter 4. Mining interval patterns with FCAfor measuring this phenomena. In this hapter, we solved the problem of un-interesting patternsthanks to a monotone onstraint. In the next hapter, we extend this proposition and show howto embed a tolerane relation in an interval pattern struture to produe only onepts withsimilar objets, w.r.t. a distane on their values.



Chapter 5Introduing a similarity relationbetween numerial values1 IntrodutionIn the framework of formal onept analysis, a onept lattie is derived from a formal ontext.Thanks to a Galois onnetion, a onept represents a maximal set of objets assoiated withtheir ommon attributes: the intent of a onept represents the set of attributes the objets inthe extent have in ommon. This statement an be expressed as follows: the intent representsthe attributes for whih the objets in the extent are similar.When faing numerial data, valued either with number or intervals, the latter have to besaled to be in adequate form. However, it follows from previous statement that lassifyingobjets having similar attribute values within same onepts may be thought as a more naturalway. In that sense, authors of [86, 87, 88℄ de�ned FCA guided by Similarity denoted by FCASin this hapter. They propose to onsider a similarity relation between �numerial� objets todiretly build the onept lattie, i.e. without saling. Intuitively, two objets are similar ifthe di�erene of their value (either a number or an interval of number) does not exeed a givenparameter for eah attribute, e.g. [2, 4] ≃θ [4, 8] means that both values are similar with aparameter θ = 6. This leads to the original notion of attribute sharing: two objets share theattributes for whih the values they take are similar. Quite naturally, this similarity relation isnot transitive and raises a problem for ordering onepts. The authors propose to onsider apairwise similarity of objets instead, and give appliations to biologial resoure retrieval on theweb. However, the assoiated theory provides no e�ient algorithm at present.On another hand, in the previous hapter, pattern strutures have been used to build aonept lattie diretly from numerial data, also avoiding saling. So-alled interval patternstrutures (IPS) relies on a theory in full ompliane with FCA and thus bene�ts of its �tool-box� inluding e�ient algorithms. However, the notion of similarity of objets is omplex anddi�erent from the intuitive one used in FCAS: it relies on a similarity operator ⊓ and assoiatedsubsumption relation ⊑ between objet desriptions, e.g. [2, 8] ⊑ [4, 8]. The so-alled similarityoperator ⊓ gives the desription representing the similarity of some objet desription.Whereas those two methods (FCAS and IPS) use di�erent notion of similarity, this hapterholds on a study of the relations between them, extending the lassi�ation ability of FCA fordealing with objets with many-valued attributes in an original way. Atually, the parallel studyof FCAS and IPS helps to understand how these two methods are interrelated and how they anbe applied to omplex data for building onept latties. IPS uses a framework in full ompliane47



48 Chapter 5. Introduing a similarity relation between numerial valueswith FCA with e�ient and salable algorithms. In turn, FCAS brings an intuitive notion ofsimilarity and helps understanding the resulting onept latties.After showing that FCAS an be expressed in terms of pattern strutures, a natural questionarises. Can we design a saling proedure leading to a ontext whose onept lattie is isomorphito the pattern onept lattie? In others words, an we de�ne a saling proedure leading to aformal ontext whose onepts are maximal sets of pairwise similar objets? We answered thisquestion in the previous hapter showing that IPS outperforms lassial FCA on interordinalsaled ontexts. However, the notion of similarity relation on numerial values was not takeninto aount. Aordingly, we show how to de�ned this saling. This saling relies on theformalization of similarity by a tolerane relation, providing onepts with an adequate semanti,namely tolerane lasses.Finally, an experiment with real-world agronomi data supports the notions disussed in thishapter and addresses the problem of deision helping in agriultural praties.2 FCAS: FCA guided by similarityFCAS is an FCA based method allowing to build a onept lattie from omplex data withoutsaling and onsidering similarity between objets from a many-valued ontext [86, 87℄. Table 1shows the kind of ontexts we are interested in: ontexts (G,M,W, I) suh as attribute values in
W are intervals of numbers or simply numbers. Firstly we reall an intuitive similarity betweenintervals and the problem it sets. Then, pairwise similarity is shown to be a interesting solutionand is used to de�ne the Galois onnetion to build a onept lattie.

m1 m2 m3

g1 [2, 4] [25, 29] 0.3
g2 [4, 8] 19 0.1
g3 [10, 15] 29 0.5
g4 [9, 13] 17 0.5
g5 [8, 13] [17, 19] 0.3
g6 [9, 15] [14, 19] [0.5, 0.7]Table 1: Interval data2.1 Similarity between intervalsIn FCA, a set of objets A possesses an attribute m i� any single objet of A possesses m. Whenobjets are desribed by numbers or intervals, the sharing is not straightforward and requiressaling proedure to obtain a formal ontext. By ontrast, usual intuition alls for a lassialsimilarity between numbers or intervals: a set of objets possesses an attribute i� all their valuesare similar for this attribute. In other words, two values are similar if their di�erene is notsigni�ant. Formally, given [αi, βi] and [αj , βj ] two intervals of real numbers, and θ a similaritythreshold, the two intervals are said to be similar i�:

[αi, βi] ≃θ [αj , βj ]⇔ max(βi, βj)−min(αi, αj) ≤ θThe similarity threshold θ expresses the maximal variation allowed between two similar in-tervals and re�ets the preision requirements to be onsidered during the analysis of data. Forexample, with θ = 6, [2, 4] ≃θ [4, 8] but [2, 4] 6≃θ [9, 13] whereas for θ = 11 the three intervals are



2. FCAS: FCA guided by similarity 49similar. It is important to notie that the similarity operator ≃θ is not transitive: with θ = 9,
[2, 4] ≃θ [4, 8], [4, 8] ≃θ [9, 13] but [2, 4] 6≃θ [9, 13].2.2 Similarity between objetsFCAS introdues the notion of objet similarity as follows.� Two objets g1 and g2 share an attribute m i� m(g1) ≃θ m(g2). θ may be di�erent for eahattribute, as attributes may have a di�erent domain of values.� A set of objets A ⊆ G shares an attribute m whenever any pair of objets in A shares m.This is why it is alled a pairwise similarity of objets.� A set of objets A ⊆ G shares a set B ⊆ M of attributes whenever any pair of objets in Ashares all attributes in B. Then A is said to be valid w.r.t. B.When a set of objets shares a set of attributes, objets are pairwise similar w.r.t. this set ofattributes. For example, if we onsider θ = 6 for attributem1, θ = 4 for attributem2, and θ = 0.2for attribute m3, then objets in {g3, g4, g6} are pairwise similar w.r.t. m1 and m3: they sharethe attributes m1 and m3. This means that eah pair of objets has similar values for attributes
m1 and m3. For the attribute m1 this means that m1(g) ≃θ m1(h) for any g, h ∈ {g3, g4, g6},e.g. m1(g3) ≃θ m1(g6).From these statements, a Galois onnetion an be de�ned. A �rst operator assoiates toa set of objets the set of attributes they share and for eah of these attributes, the interval ofvalues ontaining all of them (this is required to order attributes). As a result, this operator givesa set of pairs (attribute,interval). Dually, the seond operator assoiates to a set of pairs, themaximal set of objets that share attributes from pairs in this set. These operators are detailedlater.2.3 Maximal sets of pairwise similar objetsIn spirit of FCA, it is important to determine maximal sets of pairwise similar objets. Thisorresponds to the notion of losed sets (on whih relies the de�nition of a onept). As in lassialFCA, one has to haraterize maximal sets of objets sharing maximal sets of attributes. Forexample, {g3, g6} is valid, as well as {g3, g4, g6} for the same attributes m1 and m3. This verylast set only will determine a formal onept, as being a maximal set of objets similar for both
m1 and m3.Starting from a set of objets, the idea to obtain its maximal set of pairwise similar objetsis the following. Given a set of objets A, one should (i) searh for all objets similar with allobjets in A, (ii) remove all pairs of objets that are not pairwise similar, and �nally (iii) buildthe desription of remaining objets, i.e. an interval needed for the Galois onnetion. (i) and(ii) an be seen as a losure in mathematial morphology, onsisting in (i) a dilatation and (ii)an erosion by a struturing element haraterizing θ [114℄.(i) Set of reahable objets. Given an interval ontext (G,M,W, I), gi ∈ G reahes gj ∈ Gw.r.t. m ∈ M whenever m(gi) ≃θ m(gj). The set of all reahable objets from a valid set ofobjets A ⊆ G w.r.t. m is de�ned as follows:

R(A,m) = {gi ∈ G | m(gi) ≃θ m(g), ∀g ∈ A}The set of reahable objets from A w.r.t. B ⊆ M is: R(A,B) =
⋂

m∈B R(A,m). Consideringthe interval ontext in Table 1 and a threshold θ = 0.2 for attribute m3, then R({g1},m3) =
{g1, g2, g3, g4, g5}. This set of objets is not valid with respet to m3 beause m(g2) 6≃θ m(g3)



50 Chapter 5. Introduing a similarity relation between numerial valuesand m(g2) 6≃θ m(g4). Atually, this is due to the fat that in the general ase, the set of objets
R(A,m) may not be valid w.r.t. m beause of the non transitivity of ≃θ.(ii) Maximal valid set of reahable objets. The maximal valid set of objets ontaining Ais the subset of R(A,m) obtained by removing from R(A,m) all pairs of objets whih do notshare m (i.e. gi, gj suh that m(gi) 6≃θ m(gj)). Formally this set is de�ned as follows:

Rv(A,m) = R(A,m) \ {gi, gj | m(gi) 6≃θ m(gj)}.The maximal valid set ontaining A w.r.t. B ⊆ M is: Rv(A,B) =
⋂

m∈B Rv(A,m). In theexample, Rv({g1},m3) = {g1, g5} (i.e. obtained from R({g1},m3) by removing g2, g3, and g4).(iii) Desription of a maximal valid set of objets. When A ⊆ G shares an attribute
m ∈M (R(A,m) 6= ∅) then A ⊆ Rv(A,m) and Rv(A,m) shares m. The interval desribing theset Rv(A,m) is given by:

γ(A,m) = [min(αi),max(βi)] for [αi, βi] = m(gi), gi ∈ Rv(A,m)When a set of objets A shares an attribute m for a threshold θ, then we say that A shares
(m,γ(A,m)). For example, {g1, g2} shares (m1, [2, 8]) for a threshold θ = 6. When A is not validw.r.t. m then γ(A,m) = ∅. Indeed, onsider θ = 6 and the attribute m1. The objets g1 and
g2 share m1. The objets g3 and g4 share m1. However g1, g2, g3, and g4 do not share m1. Thismeans that an objet desription, has to be omposed of pairs: the �rst value gives an attributename while the seond provides with its value.2.4 Building the onept lattieIn [86℄, it is shown that the two following operators form a Galois onnetion between 2G andthe partially ordered set (M × IΘ,⊑). IΘ is the set of all intervals possibly returned by thefuntion γ. ⊑ orders pairs (attribute,interval) by inlusion of intervals of same attributes. With
A ⊆ G and B ⊆M × IΘ:

A↑ = {(m,γ(A,m)) ∈M × IΘ | γ(A,m) 6= ∅}
B↓ = Rv({g ∈ G | ∀(m, [α, β]) ∈ B, m(g) ≃θ [α, β]}, B)

A↑ is the set of attributes shared by all the objets in A and B↓ is the set of objets sharingall attributes in B. We illustrate these operators on our example, with resp. θ = 6, θ = 4 and
θ = 0.2 for resp. attributes m1, m2 and m3:

{g3, g6}
↑ = {(m1, [9, 15]), (m3 , [0.5, 0.7])}

{(m1, [9, 15]), (m3 , [0.5, 0.7])}
↓ = {g3, g4, g6}.The pair (A,B) = ({g3, g4, g6}, {(m1, [9, 15]), (m3 , [0.5, 0.7])}) is a onept as A↑ = B and

A = B↓. The set of all onepts lassially ordered by (A1, B1) ≤ (A2, B2)⇔ A1 ⊆ A2(⇔ B2 ⊑
B1) generates a omplete lattie, e.g. in Figure 1. Reading the extent of a onept remains asstated earlier with redued labeling. This is not the ase for intents, as an attribute an take onseveral values: eah onept intent is given separately.3 IPS: Interval pattern struturesThis setion realls the interval pattern struture approah presented in Chapter 4. Only themost important fats are realled here for making the omparison with FCAS easier. Firstly,we reall how the similarity operator ⊓ is de�ned for numerial data, and then how the Galoisonnetion of pattern struture is illustrated.
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Figure 1: Interval onept lattie raised from Table 1 with FCAS3.1 Similarity between intervalsIntervals are patterns: they may be ordered within a meet-semi-lattie making them potentialobjet desriptions. The meet ⊓ of two intervals [a1, b1] and [a2, b2], with a1, b1, a2, b2 ∈ R is:
[a1, b1] ⊓ [a2, b2] = [min(a1, a2),max(b1, b2)], i.e. the largest interval ontaining them. Indeed,when c and d are intervals, c ⊑ d⇔ c ⊓ d = c holds:

[a1, b1] ⊑ [a2, b2] ⇔ [a1, b1] ⊓ [a2, b2] = [a1, b1]
⇔ [min(a1, a2),max(b1, b2)] = [a1, b1]
⇔ a1 ≤ a2 and b1 ≥ b2
⇔ [a1, b1] ⊇ [a2, b2].This de�nition means that, ontrarily to intuition, smaller intervals subsume larger intervalsontaining them, and that the meet of n intervals is the smallest interval ontaining all of them.Figure 2 gives an example of meet-semi-lattie of intervals. The interval labelling a node is themeet of all intervals labelling its asending nodes, e.g. [0.1, 0.5] = [0.1, 0.3] ⊓ [0.3, 0.5], and isalso subsumed by these intervals, e.g. [0.1, 0.5] ⊑ [0.3, 0.5]. In other words, if [a2, b2] ⊆ [a1, b1]then [a1, b1] ⊑ [a2, b2] ; but if [a2, b2] 6⊆ [a1, b1] then [a1, b1] ⊓ [a2, b2] returns the largest intervalontaining both [a1, b1] and [a2, b2].

Figure 2: A meet-semi-lattie of intervals.



52 Chapter 5. Introduing a similarity relation between numerial values3.2 Similarity between objetsAs objets are generally desribed by several intervals, eah one standing for a given attribute,interval vetors have been introdued as p-dimensional vetor of intervals. When e and f areinterval vetors, we write e = 〈[ai, bi]〉i∈[1,p] and f = 〈[ci, di]〉i∈[1,p]. Interval vetors are patterns:they may be partially ordered within a meet-semi-lattie. Indeed, the similarity operation ⊓ andonsequently subsomption relation ⊑ are given by:
e ⊓ f = 〈[ai, bi]〉i∈[1,p] ⊓ 〈[ci, di]〉i∈[1,p] e ⊑ f ⇔ 〈[ai, bi]〉i∈[1,p] ⊑ 〈[ci, di]〉i∈[1,p]

= 〈[ai, bi] ⊓ [ci, di]〉i∈[1,p] ⇔ [ai, bi] ⊑ [ci, di], ∀i ∈ [1, p]These de�nitions state that omputing ⊓ (resp. testing ⊑) for interval vetors results in omput-ing ⊓ (resp. testing⊑) between intervals of eah dimension, e.g. 〈[9, 15], [14, 29]〉 ⊑ 〈[10, 15], [29, 29]〉as [9, 15] ⊑ [10, 15] and [14, 29] ⊑ [29, 29]. Then, eah dimension of a vetor orresponds to oneand only one attribute or olumn of a dataset and requires a anonial order of vetor dimensions.3.3 Building the onept lattieAs interval vetors are patterns, Table 1 shows a pattern struture (G, (D,⊓), δ) where G =
{g1, . . . , g6}, D is a set of interval vetors or 3-dimensional vetors, where eah omponentorresponds to an attribute or a olumn of the table. (D,⊓) is omposed of �ve interval vetors,i.e. a desription for eah objet, plus all possible meets: by de�nition, any pair of elements (d, e)of a meet-semi-lattie admits a meet d⊓e. Desription of g3 is δ(g3) = 〈[10, 15], [29, 29], [0.5, 0.5]〉.Operators of the general Galois onnetion given in [46℄ are applied.

{g3, g6}
� =

d
g∈{g3,g6}

δ(g)

= δ(g3) ⊓ δ(g6)
= 〈[10, 15], [29, 29], [0.5, 0.5]〉 ⊓ 〈[9, 15], [14, 19], [0.5, 0.7]〉
= 〈[10, 15] ⊓ [9, 15], [29, 29] ⊓ [14, 19], [0.5, 0.5] ⊓ [0.5, 0.7]〉
= 〈[9, 15], [14, 29], [0.5, 0.7]〉

〈[9, 15], [14, 29], [0.5, 0.7]〉� = {g ∈ G | 〈[9, 15], [14, 29], [0.5, 0.7]〉 ⊑ δ(g)}
= {g3, g4, g6}Obviously, g3 and g6 belongs to 〈[9, 15], [14, 29], [0.5, 0.7]〉� . g4 also belongs to this set as itsdesription is omposed, for eah dimension, of an interval that is inluded in the orrespondinginterval in 〈[9, 15], [14, 29], [0.5, 0.7]〉, i.e. 〈[9, 15], [14, 29], [0.5, 0.7]〉 ⊑ δ(g4). Deriving the set

{g3, g6} with both Galois onnetion operators forming a losure operator makes the pair (A, d) =
({g3, g4, g6}, 〈[9, 15], [14, 29], [0.5, 0.7]〉) a pattern onept, i.e. A� = d and A = d�. Partialordering of all onepts is in full ompliane with FCA and gives rise to a onept lattie.4 FCAS formalized by means of pattern struturesPreviously, we have detailed two methods for building a onept lattie from interval data. Thissetion highlights the links existing between both methods and shows how the general formalismof pattern strutures obtains same results as FCAS on interval data. In other words, we showhow to handle with patterns strutures a similarity and a pairwise similarity like in FCAS, takingadvantage of e�ient algorithms. Another ontribution, useful for real-world experiments, showshow handling missing values with patterns strutures. Consequently, this setion also shows howboth methods bene�t from eah other.



4. FCAS formalized by means of pattern strutures 534.1 First statementsBoth methods rely on a Galois onnetion between two partially ordered sets, i.e. (2G,⊆) andan ordered set of desriptions. For FCAS, desriptions are pairs omposed of an attribute nameand an interval. For IPS, desriptions are interval vetors with �xed size. In both ase, intervalsare ordered with inlusion.The �rst operator of the Galois onnetion of FCAS assoiates to any set of objets the setof attributes they share. Firstly, pairwise similar objets are searhed for, then γ returns themaximal shared interval. With IPS, the similarity operator ⊓ aomplishes the same task as itreturns a desription representing the similarity between its arguments: ⊓ is a kernel operator[46, 105℄. Thus, this operator may handle other kind of similarities.The seond operator of the Galois onnetion in FCAS returns for a given desription, i.e.set of pairs (m, [a, b]) with m ∈ M et a, b ∈ R, the maximal set of all objets that sharethese attributes. IPS performs a similar operation. However, IPS does not onsider a pairwisesimilarity involving θ. In the following, we show how it an be ahieved in full ompliane withthe existing framework of FCA.4.2 Similarity between patternsBasially, pattern strutures onsider the meet operator ⊓ as a similarity operator [46℄. Intu-itively, given two objets g and h, and their respetive desriptions d = δ(g) and e = δ(h) froma meet-semi-lattie, d ⊓ e gives a desription representing similarity between g and h. As ameet-semi-lattie is de�ned on the existene of a meet for any pair of elements, it follows thatany two objets are similar and that their �level� of similarity depends on the level of their meetin the semi-lattie. Then, how to state that two objets are similar or not in sense of FCASan be ahieved as follows. Given c, d ∈ D two patterns, then c and d are said to be similar i�
c⊓d 6= ∗ where ∗ materializes the pattern that is subsumed by any other pattern. This pattern isadded in D and an be interpreted as the pattern denoting �no subsumption� or �non similarity�between two patterns.When onsidering patterns of type interval and remembering that any interval subsumeslargest intervals ontaining it, the element ∗ an be introdued in assoiation with a parameter
θ as follows. Given a,b,c,d ∈ R and a parameter θ ∈ R,

[a, b] ⊓θ [c, d] =

{

[min(a, c),max(b, d)] if max(b, d) −min(a, c) ≤ θ

∗ otherwise,and
∗ ⊓θ [a, b] = ∗ ⇔ ∗ ⊑θ [a, b].Then, the meet-semi-lattie of intervals given in Figure 2 beomes the one given in Figure 3 when

θ = 0.2. In this way, we have de�ned a meet operator in a semi-lattie, suh as the followinglinks with FCAS hold:
[a, b] ⊓θ [c, d] 6= ∗ ⇔ [a, b] ≃θ [c, d] and [a, b] ⊓θ [c, d] = ∗ ⇔ [a, b] 6≃θ [c, d].Operators ⊓ and ⊑ for interval vetors use the ⊓θ for �onstrained� intervals instead of ⊓ forintervals, and formulas still hold. An example of onept is ({g3, g4, g6}, 〈[9, 15], ∗, [0.5, 0.7]〉):objets in the extent are similar for the �rst and third attributes. In FCAS, equivalent on-ept is ({g3, g4, g6}, {(m1, [9, 15]), (m3 , [0.5, 0.7])}): only shared intervals are represented, whereattribute labels are inserted.



54 Chapter 5. Introduing a similarity relation between numerial values4.3 Pairwise similarity by means of projetionsThe use of ⊓θ does not allow the onstrution of intervals whose length exeeds θ like in FCAS.However, we annot be sure these intervals desribe maximal valid sets of objets in FCAS:de�nition of Rv starts with a set of objets A and returns the maximal valid set of objets: thisset ontains A plus all objets similar with objets in A and pairwise similar. Then γ returnsthe interval shared by the resulting set of objets for a given attribute. This means that thoughintervals from a semi-lattie (D,⊓θ) all desribe valid set of objets, some of them may not be�maximal�. Below, we show how to replae any interval by its �maximal� interval thanks to aso-alled projetion in a meet-semi-lattie.�Ball of patterns�. Firstly, onsider the meet-semi-lattie (D,⊓θ) of interval values for a givenattribute. Then, for any interval d ∈ D, we de�ne the ball B(d, θ) as the set of intervals in Dsimilar to d as follows.
B(d, θ) = {e ∈ D | e ≃θ d} with e ≃θ d ⇐⇒ e ⊓θ d 6= ∗This ball of enter d and diameter θ ontains all intervals e whose meet with d is di�erent of *,meaning that d and e are similar : B([0.1, 0.1], 0.2) = {[0.1, 0.1], [0.3, 0.3]}. This set is linked with

R in FCAS, for a given attribute: B(d, θ) is the set of intervals shared by objets in R(A,m)when A = g and m(g) = d.Intervals representing maximal pairwise similar sets of objets. Now, among this set ofintervals, we should remove any pair of intervals that are not pairwise similar, i.e. omputing Rv,and build an interval with left border (resp. right border) as the minimum (resp. maximum)of all intervals, i.e. omputing γ. In terms of IPS it an be done by replaing any d of themeet-semi-lattie of intervals by the meet of all intervals e from the ball B(d, θ) that are notdissimilar with another element e′ of this ball, i.e. e ⊓θ e′ 6= ∗:
ψ(d) =

d
θ e∈B(d,θ) e ⊓θ d

such as ∄e′ ∈ B(d, θ) with e ⊓θ e
′ = ∗In our example, ψ([0.1, 0.1]) = [0.1, 0.1]⊓[0.3, 0.3] = [0.1, 0.3], for the third attribute and θ = 0.2.In FCAS, the set returned by Rv is omposed of objets whose attribute values respet theondition ∄e′ ∈ B(d, θ) with e ⊓ e′ = ∗, i.e. objets are pairwise similar. Then d

θ returns themeet of all remaining intervals. With FCAS, we have γ(g2,m3) = [0.1, 0.3] as well. In ase of Ais not valid w.r.t. m, remembering that any interval whose size exeeds θ is replaed by *, themapping ψ returns * and γ in FCAS returns ∅.
ψ is a mapping that assoiates to any d ∈ D an element ψ(d) ∈ (D,⊓θ) suh that ψ(d) ⊑ d,as ψ(d) is the meet of d and all intervals similar to d and pairwise similar. The fat ψ(d) ⊑ dmeans that ψ is ontrative. In sense of [46℄, ψ is a projetion in the semi-lattie (D,⊓θ) asalso monotone and idempotent. Moreover, any projetion of a omplete semi-lattie (D,⊓) is

⊓-preserving, i.e. for any d, e ∈ V , ψ(d ⊓ e) = ψ(d) ⊓ ψ(e) [46℄.Thereby, the projetion may be omputed in advane, replaing eah pattern by a �weaker�or �more general� pattern without loss of information. It also naturally implies better om-putational properties as the number of elements in the semi-lattie is redued. Indeed, in theprevious hapter, we have shown that this parameter mostly in�uenes omplexity of adaptedFCA algorithms for proessing interval pattern strutures. However, FCAS does not suggest eas-ily suh a preproessing, and γ needs to be proessed eah time operators of Galois onnetionare alulated.
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Figure 3: A meet-semi-lattie of intervals withadditional element * Figure 4: A lattie of intervals with additionalelements * and ?4.4 Handling missing values with pattern struturesConsidering missing values requires to order them within a meet-semi-lattie of patterns or moregenerally within a lattie of patterns. Two possibilities are straightforward: a missing value (i)subsumes or (ii) is subsumed by any other element. In terms of FCAS, this means that themissing value (i) is similar or (ii) dissimilar with any other.A missing value as the join of all elements. This is the most intuitive approah. As wedo not know the atual value of a missing value, denoted by �?�, it an be any other value: ithas to subsume any element. Then we should not restrit D to a meet-semi-lattie (D,⊓), butallow a lattie (D,⊓,⊔) of patterns, suh as ? ∈ D. This requires some de�nitions: the meet ⊓ isalready de�ned exept for �?�, and the join ⊔ has to be de�ned for any pair of elements. In fat,this is rather easy as we just add one element subsuming all the others in a meet-semi-lattie.Most importantly, for d ∈ D, we have: d ⊓? = d⇔ d ⊑?.An example of a lattie of patterns (D,⊓,⊔) is given in Figure 4: atually it results fromadding �?� in the meet-semi-lattie given by Figure 3. In ase of intervals, the join operator isgiven by
[a, b] ⊔ [c, d] =

{

[max(a, c),min(b, d)] iff min(b, d) ≤ max(a, c)

? otherwiseA missing value as the meet of all elements. The fat that a missing value is dissimilarwith any other (exept itself) is also interesting (see the appliation with real-world data at theend of this hapter). This underlines the fat that if the value is not given then it should notbe onsidered as unknown: there is simply no information. This kind of missing value an byrepresented by the element ∗ introdued earlier. Indeed, * represents the dissimilarity betweenobjet desriptions and ∗ is subsumed by any other value.Computation. In the previous hapter we have shown how slight modi�ations of well-knownFCA algorithms enable omputation of interval pattern strutures. Interval vetors suggestedto be implemented as arrays or vetors of intervals. With this implementation, and due toanonial order of vetor dimensions, a missing value has to be materialized by * eah time itis neessary, e.g. 〈[15, 18], ∗〉 where * is a missing value. Some data ontain numerous attributesand are very sparse. Then the representation by vetors is not adequate as it leads to patternintents ontaining a major proportion of * values. By ontrast, FCAS suggest to IPS to onsiderpairs omposed of an attribute name and a value, better for sparse data as representing onlynon-missing values.



56 Chapter 5. Introduing a similarity relation between numerial values5 A saling approah based on tolerane relationsIn this setion, we de�ne a saling handling the relation ≃θ. This allows to obtain a formalontext on whih lassial FCA an be applied. The onepts are, like in FCAS, omposed ofmaximal sets of objets pairwise similar for a maximal set of attributes and their respetive rangeof values.For that matter, the mathematial formalization of similarity relies on a tolerane relationwhih is re�exive and symmetri. A tolerane relation an be used for building a ontext in whihonepts represents tolerane lasses of similar objets for a given attributes. All tolerane lassesare then reused to properly de�ne a saling for initial numerial data allowing FCA to be applied.The running example we onsider in this setion is given by Table 2.
m1 m2 m3

g1 6 0 [1, 2]
g2 8 4 [2, 5]
g3 11 8 [4, 5]
g4 16 8 [6, 9]
g5 17 12 [7, 10]Table 2: Another interval dataset5.1 Tolerane relation and lassesSimilarity has been studied from many points of view in arti�ial intelligene and pattern reog-nition [123, 78℄. For example, onsidering douments being desribed by their attributes, e.g.keywords, similarity of douments x and y an be de�ned by non-emptiness of the set of theirommon attributes, x′ ∩ y′ 6= ∅. The similarity is re�exive and symmetri, but not neessarilytransitive. Following this idea, a tolerane relation aptures the harateristis of a similarity [71℄.De�nition 5.5.1 For a set G, a binary relation T ⊆ G×G is alled tolerane if:(i) ∀x ∈ G xTx (re�exivity)(ii) ∀x, y ∈ G xTy → yTx (symmetry)Let us onsider now a set of objets G, a tolerane relation T , and a formal ontext (G,G, T ).First, some objets, say g1 and g2, are observed to be pairwise similar, i.e. g1Tg2. Then pairs ofthe tolerane relation lead to a lass of similar objets or �lass of similarity�. Moreover, amongthe lasses of similarity, some lasses are maximal meaning that the lass is not inluded in anylarger lass.De�nition 5.5.2 Given a set G, a subset K ⊆ G, and a tolerane relation T on G, K is a lassof tolerane if:(i) ∀x, y ∈ K xTy (pairwise similarity)(ii) ∀z 6∈ K,∃u ∈ K ¬(zTu) (maximality)An arbitrary subset of a lass of tolerane is a prelass.Now, let us onsider the lasses of tolerane assoiated with the formal ontext (G,G, T ).The lass of tolerane of an objet g has to be onsidered along two dimensions: (i) the lass isde�ned as the set of all objets whih are tolerant with g, (ii) the lass is maximal in the sense



5. A saling approah based on tolerane relations 57that objets in the lass are pairwise similar, and adding any other objet in the lass resultsin some pairs of non tolerant objets. A lass of tolerane may be given a name whih an befurther used as an �attribute name� that desribes the objet. The result is a formal ontext
(G,M, I) where I assoiates any objet in G with its lasses of tolerane m ∈M .Based on this observation, we show below how to use tolerane relations for designing salesfor omplex attributes and for building formal onepts whose extent are made of pairwise similarobjets. Indeed, the similarity relation ≃θ de�ned in FCAS is symmetri and re�exive but notneessarily transitive, i.e. ≃θ is a tolerane relation. For example, with θ = 2, a = 1, b = 3 and
c = 5, a ≃θ b and b ≃θ c but a 6≃θ c (1 6≃θ 5), realling that a = [a, a] for any a ∈ R.5.2 Tolerane lasses in numerial dataLet us onsider a numerial many-valued ontext (G,M,W, I) where the rangeWm of an attribute
m is suh that Wm ⊆ W ⊂ R. Given an attribute m ∈ M , let us onsider the formal ontext
(Wm,Wm,≃θ). Related objets in Wm are related are similar w.r.t. ≃θ. For example, given
θ = 5 and m1 in Table 2, the formal ontext (Wm1

,Wm1
,≃5) an be read in Figure 5 (left).As ≃5 is symmetri and re�exive, so is (Wm1

,Wm1
,≃5) and it ontains a diagonal of rosses.Furthermore, the assoiated onept lattie (see Figure 5 (right)) is also symmetri.Proposition 5.5.1 Given a ontext (Wm,Wm,≃θ) and the assoiated lattie, any onept (A,B)is suh that either A ⊂ B, B ⊂ A, or A = B. Then, for eah onept (A,B), there exists aunique onept (B,A).Proof. In the ontext (Wm,Wm,≃θ), the set of objets is the same as the set of attributes.Then, for a onept (A,B), either A ⊂ B, B ⊂ A, or A = B. Sine both A,B ∈Wm and for anyformal onept (A,B), A′ = B and B′ = A. (B,A) is also a formal onept, as verifying B′ = Aand A′ = B.For example, the upper right onept on Figure 5 (right) an be read as ({8, 6, 11, 16}, {11})and has a orresponding onept ({11}, {8, 6, 11, 16}) lower still on the right. One onsequeneof the above proposition is that the onept lattie an be separated in two parts w.r.t. themapping (A,B) 7→ (B,A). In [47℄, suh a mapping is alled a polarity, i.e. an order-reversingbijetion inverse of itself, and the resulting onept lattie is a polarity lattie. Then, we havethe notion of axis of polarity:De�nition 5.5.3 (Axis of polarity) In a polarity lattie, the set of all onepts (A,B) suhthat A = B forms an axis of polarity of the onept lattie.For example, the set of onepts {({16, 17}, {16, 17}), ({11, 16}, {11, 16}),

({6, 8, 11}, {6, 8, 11})} is the axis of polarity of the onept lattie on Figure 5 (right).The set of all onepts (C,D) suh that (A,B) ≤ (C,D), denoted by U , forms the upper partof the onept lattie. Dually, the set of all onepts (E,F ) suh that (E,F ) ≤ (A,B), denotedby L, forms the lower part of the onept lattie. If (A,B) ∈ U then (B,A) ∈ L and B ⊂ A.Dually, if (A,B) ∈ L then (B,A) ∈ U and A ⊂ B.Let us now onsider the onept ({16, 17}, {16, 17}) of the axis of polarity in the lattie onFigure 5 (right). The values in {16, 17} are all similar w.r.t. ≃5 and {16, 17} annot be extendedwith any other value without violating the internal similarity, i.e. there does not exist anyelement that does not belongs to {16, 17} and that is similar with all elements in {16, 17}. Thisis true for all onepts in the axis of polarity.
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m1 6 8 11 16 17

6 × × ×
8 × × ×
11 × × × ×
16 × × ×
17 × ×Figure 5: A tolerane relation and its assoiated onept lattieThis means that the extent or intents of the onepts in the axis of polarity are toleranelasses. Let us now onsider the upper left onept ({11, 16, 17}, {16}) in the lattie on Fig-ure 5 (right). This onept is in U and the values in the extent {11, 16, 17} are similar to 16.Moreover, the intent {16} is ontained in the larger intent {16, 17} meaning that {16} deter-mines a prelass of tolerane. Dually, we have the same interpretation for the symmetri onept

({16}, {11, 16, 17}) ∈ L.Proposition 5.5.2 Let (A,B) be a onept of the axis of polarity, i.e. A = B. Then, A (or B)is a set of maximal pairwise similar values, i.e. A determines a lass of tolerane. Let (C,D) aonept in U but not in the axis of polarity, i.e. D ⊂ C. D is a prelass of tolerane and C isthe set of all values similar to values in D.Proof. Both derivation operators (·)′ have same domain and range Wm, and (·)′ assoiates witha subset A of values in Wm the maximal subset of similar values in Wm, i.e. related through ≃θ.Then, for a onept (A,B) where A = B and A′ = B or A = B′, then A = A′ or B = B′ aremaximal and de�ne a same tolerane lass. Moreover, the set of all extents A or all intents Bfrom onepts of the axis of polarity overs the set Wm. For a onept (C,D) with D ⊂ C, sine
C ′ = D, all values in C are similar to values in D. Now, relying on the preeding proposition, asthe onept (C,D) does not verify C = D but instead D ⊂ C, it exists a lass of tolerane say
F suh as D ⊂ F ⊂ C and thus D is a prelass of tolerane.The intents of the onepts in the upper part of the lattie �or dually the extents in the lowerpart� are partially ordered and determine sets of similar values. Among these intents, the intentsin the axis of polarity are maximal and are lasses of tolerane, and the other intents are onlyprelasses of tolerane. For example, taking θ = 5 and m1 in Table 1, there are 5 intents, namely
{16}, {11}, {16, 17}, {11, 16}, and {6, 8, 11}, where the three last intents are tolerane lasses.When there is no ambiguity, we use the term of �lass of similarity� for a lass or a prelass oftolerane.These lasses of similarity are used to de�ne a sale allowing the appliation of FCA algo-rithms to a numerial many-valued ontext. Classial FCA algorithms an be used to omputelasses of similarity and require slight modi�ations for generating the upper (dually lower) partof the onept lattie only (disussed later).5.3 Saling and onept lattie onstrutionAt present, we have made preise how a partially ordered set of lasses of similarity an be builtfrom attributes valued by numbers or intervals of numbers in a many-valued ontext. Now,
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g1 × × ×
g2 × × × × ×
g3 × × × × × × × × ×
g4 × × × × × × × × ×
g5 × × ×Table 3: A formal ontext obtained handling lasses of tolerane.

Figure 6: Conept lattie raised from Table 3.lasses of similarity have to be named before being used as attribute names for saling theoriginal many-valued ontext and derive a saled binary ontext from whih the �nal oneptlattie is built. Atually, the name of the elements of the sale an be related to the ontent ofthe orresponding lass of similarity and to the name of the original attribute that is saled. Inthe present ase, an element of the sale is named by a pair assoiating the name of the originalattribute and either the ontent of the lass of similarity, e.g. {16, 17} for m1, or the onvex hull,e.g. [16, 17].Let us onsider the numerial many-valued ontext (G,W,M, I) in Table 1. Three sets oflasses of similarity, one for eah attribute m1, m2, and m3, are omputed thanks to threetolerane relations relying on three di�erent similarities ≃θ, and extrated from the symmetrionept latties assoiated with eah tolerane relation. The transformation of the original
(G,W,M, I) ontext into the derived (G,N, J) reads as follows:
• G is the set of original objets,
• N =

⋃

m∈M ({m} × Cm) with Cm is the set of all lasses of similarity of attribute m,
• (g, (m,Cm)) ∈ J means that the value of objet g in the many valued ontext, i.e. m(g),belongs to lass Cm,For example, the derived binary ontext assoiated with Table 1 is given in Table 3 where thethresholds are θ = 5 for m1 and θ = 4 for m2 and θ = 5 for m3. Figure 6 shows the resultingonept lattie.



60 Chapter 5. Introduing a similarity relation between numerial values6 An information fusion problem in agronomyThe problem of information fusion is enountered in various �elds of appliation, e.g sensorfusion, merging multiple soures, et. Information fusion onsists of merging several soures ofinformation for answering questions of interest and make proper deisions [39℄. Aordingly,a fusion operator is an operation summarizing information given by soures into a onsensualand representative information. In this setion, we introdue a real-world information fusionproblem in agronomy, onerning pestiide appliation to �elds. Then, we show how this fusioninformation problem an be solved with a onept lattie involving a tolerane relation. Theoutput is an analysis and an evaluation of agriultural praties w.r.t. pestiide appliation andsubsequent eologial problems.6.1 Problem settingsAgronomists ompute indiators for evaluating the impat of agriultural praties on the envi-ronment. Questions suh as the following are of importane: what are the onsequenes of theappliation of a pestiide given the harateristi of this pestiide, the period of appliation, andthe harateristis of the �eld? The risk level for a pestiide to reah groundwater is omputedby the indiator Igro in [21℄. Based on the value of Igro, agronomists try to make a diagno-sis of agronomi know-how w.r.t. the use of pestiides. Pestiide harateristis depend on thehemial harateristis of the produt while pestiide period appliation and �eld harateristisdepend on domain knowledge. This knowledge lies in information soures among whih books,databases, and expert knowledge in agronomy. Moreover, values for some harateristis mayvary w.r.t. information soures.Here, we are interested in the analysis of praties through the use of glyphosate in di�erentountries w.r.t. farmers habits. Glyphosate is a widespread produt used by farmers in temperateareas, atually one of the mostly used herbiide in USA16. In 2006, IFEN, for Frenh Institute forthe Environment, observed that glyphosate is the most enountered substane in Frenh waters,possibly leading to long-term adverse e�ets in the aquati environment17.Below, three harateristis of glyphosate, namely DT50, koc, and ADI, are given in Table 4(simpli�ed data), aording to 12 di�erent information soures.
• DT50 represents �half-life� of the pestiide, i.e. time required for the pestiide onentrationto derease of 50% under some onditions. Pestiides with DT50 value lower than 100 daysan be onsidered as having a weak impat on groundwater quality in general temperateonditions.
• koc harateristi represents the mobility of the pestiide and depends on pestiide prop-erties and type of soil. Pestiides with high koc values typially stay in upper level of soiland do not reah groundwater. By ontrast, pestiides with koc value less than 2200 havegood hanes to ontaminate groundwater.
• ADI (for �Aeptable daily intake�) represents toxiity for humans. Glyphosate is onsid-ered as having a low toxiity, i.e. no toxi e�ets were observed for doses of 400 mg/kg/dayaording to speialized studies. However, the values 0.3 and 0.05 are separated for expertreasons.16http://www.epa.gov/17http://www.ifen.fr/

http://www.epa.gov/
http://www.ifen.fr/


6. An information fusion problem in agronomy 61Table 4: Charateristis of pestiide glyphosate.
DT50 koc ADIday L/kg g/kg/dayBUS 47 24000 0.3PM10 [3,60℄ [25,68000℄ 0.3INRA [38,60℄ 167 0.05Dabene [38,60℄ 167 0.05ARSf [2,174℄ [500,2640℄ [0.05,0.3℄ARSl [2,174℄ [500,2640℄ [0.05,0.3℄Com96 [2,174℄ [25,68000℄ 0.3Com98 [38,60℄ [500,2640℄ 0.3RIVM [18,66℄ [3566,40420℄ [0.05,0.3℄BUK [3,60℄ [25,68000℄ 0.3AGXf [8,30℄ [301,59000℄ 0.3AGXl [14,111℄ [301,59000℄ 0.3In Table 4, information soures are not always in agreement. Then, it an be interesting forexperts in agronomy to analyse suh a table from the point of view of information fusion: whihare the soures being in agreement and at whih level are they in agreement? This is done usinga onept lattie involving a tolerane relation as explained below.6.2 Method and �rst resultsNow, we apply one of the three methods presented in this hapter, i.e. FCAS, IPS or toleranebase saling, to build a onept lattie from Table 4. Three thresholds are de�ned aording tothe above observations: θ = 100 for DT50, θ = 2200 for koc, and θ = 0 for ADI. Then, for eahattribute, lasses of similarity and the sale for eah attribute are omputed and an be read onthe lattie in Figure 7.The lattie shows an interesting lassi�ation of information soures w.r.t. information fusion.Eah onept in the lattie is omposed of an extent with a maximal set of soures in agreementw.r.t. the interval of values in the intent.The operator used for managing information fusion is onvex hull, ontrolled by a similarityparameter θ, i.e. for two similar intervals the lower bound is the minimum of the two lowerbounds and the upper bound is the maximum of the two upper bounds. Let us examine thelattie in detail. The highest onept in the lattie, ⊤, has the intent with the larger intervals(sine ∗ is subsumed by any other interval): [2, 174] for DT50, [25, 68000] for koc, and [0.05, 0.3]for ADI. The higher a onept is in the lattie, the more information soures in the extent agreeon the values to be veri�ed by the attributes. This ould be onsidered as the maximal agreementof all soures but this does not provide any preise information (indeed, the alulation of Igro,whih annot be detailed here, does not allow any reommendation). Moreover, the onepts inthe lower levels of the lattie have more restrited intervals. Going further, we an observe thatthere are four desendants of ⊤ that determine four main parts of the lattie. On the left, thereare mainly Frenh and UK information soures, namely AGXf, AGXl, PM10 (Frenh), and BUKand BUS (UK), with om96 denoting an expert ommittee. In the middle of the lattie, there aremainly Frenh soures, namely RIVM, Dabene, and INRA. Finally, on the right, there are US



62 Chapter 5. Introduing a similarity relation between numerial valuesinformation soures, namely ARSl, ARSf, and the ommittee Com98. Interestingly, there is anagreement between European soures as English or Frenh soures share some upper level valuessuh as [3, 66] for DT50 or 0.3 for ADI. By ontrast, there is no agreement between Europeanand US soures exept for the expert ommittee om98. This shows that praties are atuallydi�erent and allowed values for pestiide harateristis are not the same w.r.t. the ountry.Among the possible explanations, it remains very di�ult to harvest agronomi data (in ostand time) in every ountry. For example, the irumstanes in whih these data are olleted arevery di�erent w.r.t. limate, soil type, measure devies, et. In this sense, aording to expertsin agronomy, the lattie on Figure 7 is a good witness (on�rmation) of this diversity of pratiesand of the agreement degree between soures as given by the lower level onepts.

Figure 7: Conept lattie raised from Table 47 DisussionWe have presented three di�erent approahes for building a onept lattie from numerial datainvolving a similarity relation between numerial attribute values. The �rst one (FCAS) de�nesa Galois onnetion for that matter. The seond one (IPS) uses an existing framework (andGalois onnetion) and shows that onsidering a similarity relation onsists in projeting theobjet desription spae. Finally, a tolerane based saling allows lassial FCA to be applied.These three methods are oneptually equivalent [58℄. However, they all bring interesting luesor elements on the problem of designing onept latties from numerial data. FCAS bringsintuitions to onsider similarity and pairwise similarity of objets by means of attribute sharing.IPS allows to onsider this similarity within an existing framework provided with e�ient algo-rithms. Finally, the third approah establishes links between projetion of partially ordered setsand saling. Most importantly, it provides a semanti to onepts: objets in the extents sharethe same lasses of tolerane desribed in the intent. As in the previous hapter, the most e�-ient methods between IPS and saling depends on the data distribution, suh as the number ofdi�erent values and their sparsity. Eah attribute has a di�erent range and di�erent similarities



7. Disussion 63and thresholds θ have to be de�ned. However, data an be normalized (e.g. by subtrating themean, followed by dividing the standard deviation) and use a single threshold an be used for agiven ontext. The hoie of θ and a study of its variation e�et an be found in [86℄.The disussion is now divided into several parts, eah one with a partiular topi.Conept latties and similarity. Tolerane relations in onnetion with FCA were studiedin several papers [47, 12, 71℄. In [71℄, tolerane relations are introdued from an historialperspetive and their role in the formalization of similarity of douments is detailed. In thebasi referene [47℄, it is shown that starting from any omplete lattie and a tolerane relationbetween its elements (from any arbitrary set), there exists a formal ontext enoding tolerane(pre-)lasses. In this work, the statement is used in the opposite way: starting from an arbitrarynumerial ontext, a tolerane relation formalizes the similarity between numerial values and theresulting lasses of similarity are then reused for de�ning sales and a onept lattie enodingthe initial numerial ontext. Other important related work an be found in [12℄, where fuzzyformal onept analysis introdued. A fuzzy ontext ontains truth values and both attributeand objet sets are onsidered as fuzzy sets. Then a fuzzy onept lattie an be built in the sameway as this is done here by grouping pairwise similar objets or attributes with a tolerane-likerelation. However, the researh work in [12℄ is muh more oriented on the study of mathematialproperties of similarity within a onept lattie, ontrasting our work on the embedding ofonstrained tolerane relations in FCA for lassifying objets with omplex numerial attributes.Disretization approahes. The saling proedure proposed in this hapter transforms quan-titative data into qualitative data. Following [130℄, this method is: unsupervised sine lassmembership of objets is unknown ; parametri sine a similarity parameter θ has to be givenand relies on domain knowledge ; univariate as proessing eah attribute separately ; ordinalsine taking advantage of the impliit ordering information in quantitative attributes ; and �-nally and most importantly, hierarhial as it builds a partially ordered set (poset) of similaritylasses. This poset is atually given by a onept lattie from a formal ontext enoding a tol-erane relation and by a projeted meet-semi-lattie of objet desriptions. This poset is �nallyused to raise a onept lattie giving a oneptual lassi�ation of objets of a domain. Thereby,it an be applied to any kind of strutured data for whih a similarity an be de�ned (sequenes,graphs, et.). Cluster-based disretization methods are lose to our saling (see [130℄). First,some lusters are searhed for, then their intents are used to de�ne intervals for the disretiza-tion proess. In this hapter, we foused on showing how disretization an be automated andontrolled (with tolerane relation), with di�erent approahes, while resulting onept lattieskeep the same interpretation.Proessing symmetri ontexts. There are many e�ient algorithms for generating a oneptlattie from a binary ontext [74℄. The e�ieny of these algorithms mainly depends on thedensity of the formal ontext (G,M, I), i.e. |I|/|G ×M |. In the ase of ontext materializing atolerane relation, omputational omplexity is related to the similarity and the range of eahattribute. These algorithms may also be used to obtain the partially ordered set of lasses ofsimilarity. We propose here two optimizations of FCA algorithms to proess symmetri ontexts.Reall that omputing lasses of similarity for a given attribute an be done either with theupper part or the lower part of the orresponding lattie. Then, a onept is not generatedif its dual onept has already been generated. Bottom-up (dually top-down) algorithms arewell adapted for this task: onepts (A,B) are generated from bottom to top until the oneptveri�es A = B, i.e. (A,B) belongs to the axis of polarity. Then, interesting onepts areomputed by standard FCA algorithms with a modi�ed baktraking ondition. This task an



64 Chapter 5. Introduing a similarity relation between numerial valuesbe also ahieved using well-known and e�ient losed itemset mining algorithms [131, 122℄. Aseond optimization relies on the fat that the setWm ⊂ R is totally ordered. For intervals, given
a, b, c, d ∈ R, we have [a, b] ≤ [c, d] when a ≤ c, and if a = b when b ≤ d. Then, similarity hasa monotony property: given v1 < v2 < v3, when v1 6≃θ v2 then v1 6≃θ v3. Intuitively, monotonymeans that the orresponding binary table ontains lines and olumns of onseutive rosses, e.g.Figure 5 (left). Then, the san of a ontext by an FCA algorithm an be redued aordingly.For example, Figure 8 shows how the performanes of the bottom-up algorithm CloseByOne [74℄are modi�ed in this ase (random data with θ = 20 are used here, but other θ give same result).Projeting and proessing a pattern struture. Proessing interval pattern strutures withadaptation of lassial algorithms of FCA [74℄ has been detailed in the previous hapter. Weshowed the salability of onept lattie design from large data, e.g. with thousands objets anddozens attributes. The projetion omputation is related to the maximal lique problem in graphtheory, known to be a hard problem. However, sine we are dealing with numerial data, andthat attribute values an be totally ordered (see above), the projetion algorithm is simple: itonsists in, for eah data value, (i) looking for similar elements from a totally ordered set and (ii)testing eah pair of the resulting set to keep the maximal set of pairwise similar values. Finally,pattern strutures are easier to proess when projeted, as shown in [46℄ for graph patterns,while preserving subsumption relations.Conept latties and information fusion. Several fusion operators were proposed for om-bining unertain information [35, 39℄. Generally, the fusion operator is applied on all informationsoures, i.e. onsidering all soures simultaneously, and for one partiular variable or attributeat a time, see e.g. [35℄. However, this leads to some problems, sine when soures are on�iting,the fusion result if generally not useful. Consider now the onvexi�ation ontrolled by θ as afusion operator, i.e. the operator ⊓θ. Our method aordingly onsiders maximal subsets ofsoures with their fusion results and organizes them in a onept lattie. The onept lattieallows to identify whih maximal subsets of objets support the most similar results. This opensfurther researh for the use of onept latties in information fusion. Atually, the next hapterproposes a deeper investigation.

Figure 8: Runtime of modi�ed CloseByOne for omputing symmetri ontexts



Chapter 6Enhaning information fusion withonept lattiesThe main problem addressed in this hapter is the merging of numerial information providedby several soures (databases, experts...). Merging piees of information into an interpretableand useful format is a triky task even when an information fusion method is hosen. Fusionresults may not be in suitable form for being used in deision analysis. This is generally dueto the fat that information soures are heterogeneous and provide inonsistent information,whih may lead to impreise results. We propose the use of Formal Conept Analysis and morespei�ally pattern strutures for organizing the results of fusion methods. This allows us toassoiate any subset of soures with its information fusion result. Then one a fusion operatoris hosen, a onept lattie is built. With examples throughout this hapter, we show thatonept latties give an interesting lassi�ation of fusion results. When the fusion global resultis too impreise, the method enables the users to identify what maximal subset of soures wouldsupport a more preise and useful result. Instead of providing a unique fusion result, the methodyields a strutured view of partial results labelled by subsets of soures. Finally, an experimenton a real-world appliation has been arried out for deision aid in agriultural praties.1 IntrodutionThe problem of information fusion is enountered in various �elds of appliation, e.g sensor fusion,multiple soure interrogation systems. Information fusion onsists of merging, or exploitingonjointly, several soures of information for answering questions of interest and make properdeisions [19℄. A fusion operator is an operation summarizing all information given by souresinto an interpretable information, for example the interval intersetion for numerial information.The Table 1 gives an example of information given by soures: eah objet, or soure, in linegives a value for an attribute or variable in olumn. This value intuitively represents the pointof view of the soure on the quanti�ation of a phenomena, or observation.Several fusion operators have been proposed for ombining unertain information [38, 37,39, 14, 31, 99℄ and no universal method is available [38℄. Dubois and Prade [38℄ overviewedhow fuzzy set theory an address the information fusion problem and proposed several fusionoperators for numerial information. More reently, a fusion operator based on the notion ofMaximal Consistent Subset (MCS) has been proposed for �nding a global point of view when nometa-knowledge is available about soures (reliability, on�it) [36, 35℄. These works apply thefusion operator on the set of all soures and provide the resulting information. Other approahes65



66 Chapter 6. Enhaning information fusion with onept latties
m1 m2

g1 [1, 5] [1, 9]
g2 [2, 3] [1, 3]
g3 [4, 7] [6, 7]
g4 [6, 10] [8, 9]Table 1: Information dataset given by souresde�ne their proper fusion operator in a lattie struture to ombine symboli information [31, 99℄.In this work, we use FCA to study all subsets of soures and their information fusion results.The main ability of FCA is to produe formal onepts orresponding to maximal sets of souresassoiated with a same fused information. Therefore, one has not to study the 2n possible subsetsof soures, but only the losed sets of soures that are onept extents. The onepts are orderedand form a struture alled onept lattie. We show that this lattie ontains the informationfusion result onsidering all soures proposed by [38, 36, 35℄. Moreover, the lattie is meaningfulfor organizing information fusion results of di�erent subsets of soures and allows more �exibilityfor the user. Moreover, the lattie keeps a trak of the origin of the information suh as presentedin [37℄ for the fusion of symboli information.This work an be used in many appliations where it is neessary to �nd a suitable value sum-marizing several values oming from multiple soures. Here, we use an experiment in agronomyfor deision helping in agriultural praties.2 Fusion operatorsAording to previous works, there are three kinds of behaviours for the fusion operators: on-juntive, disjuntive and trade-o� operators [19, 38, 39℄.Before introduing these operators, we introdue the following notations: n is the numberof soures. Im is the set of all values given for the variable m. fm denotes a fusion operatorreturning the fusion result for variable m.2.1 Basi operatorsThe onjuntive operator is the ounterpart to a set intersetion. The impreision and theunertainty in the information assoiated with the result of a onjuntion is less than theimpreision or the unertainty of eah soure alone. A onjuntive operator makes the as-sumption that all the soures are reliable, and usually results in a preise information. Ifthere is some on�it in the information (i.e. at least one soure is wrong), then the resultof the onjuntion an be empty. The onjuntive operator for a variable m is de�ned by

fm(Im) =
⋂

i=1,...,n Ii, e.g., in Table 1, fm1
(I1, . . . , I4) = ∅ represents the intersetion of intervalsof m1 with I1 = [1, 5], I2 = [2, 3], I3 = [4, 7] and I4 = [6, 10].The disjuntive operator is the ounterpart to a set union. The unertainty (or the imprei-sion) resulting from a disjuntion is higher than the unertainty (or the impreision) of all sourestogether. A disjuntive operator makes the assumption that at least one soure is reliable. Theresult of a disjuntive operator an be onsidered as reliable, but is also often (too) weakly in-formative. The disjuntive operator for the variable m, is de�ned by fm(Im) =

⋃

i=1,...,n Ii, e.g., fm1
(I1, . . . , I4) = [1, 10] that represents the union of the intervals of m1.The trade-o� operators lie between onjuntive and disjuntive behaviors, and are typially
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Figure 1: MCS omputed from Table 1 for the variable m1.used when soures are partly on�iting. They try to ahieve a good balane between informa-tiveness and reliability [38℄. The fusion based on MCS is an example of trade-o� operators.2.2 Maximal onsistent subset fusion methodWhen no information is available about soures, like on�it between soures, or reliability ofsoures, a reasonable fusion method should take into aount the information provided by allsoures. At the same time, it should try to keep a maximum of informativeness. The notion ofMCS is a natural way to ahieve these two goals.The idea of MCS goes bak to Resher and Manor [106℄. This notion is urrently used inthe fusion of logial formulas [14℄ but also of numerial data [36, 35℄. Given a set of n intervals

I = {I1, I2, . . . , In}, a subset K ⊆ I is onsistent if ⋂|K|
i=1 Ki 6= ∅ with Ki ∈ K and maximal if itdoes not exist a proper super-set K′ ⊇ K that is also onsistent. In Table 1, the set K1 = {I1, I2}is a MCS of the set Im1

, sine I1 ∩ I2 6= ∅ and is maximal w.r.t. intersetion property.The fusion operator of n soures based on MCS onsists in applying a disjuntive operatoron their MCS. Nevertheless, there exists ases where �nding MCS is easy, espeially when setsare intervals in R. Ii = [ai, bi], (i = 1, . . . , n). The algorithm is based on an inreasing sorting ofthe lower and upper bounds of intervals into a sequene (cj)j=1,...,2n. Eah time, an element cjof type b (i.e. an upper bound of an interval in Ii) and an element cj+1 of type a (i.e. a lowerbound of an interval in Ii) meet, then a maximal onsistent subset is obtained. For example, inTable 1, the MCS for the variable m1 of the set {I1, I2, I3, I4} are I1 ∩ I2 = [2, 3], I1 ∩ I3 = [4, 5]and I3 ∩ I4 = [6, 7] when I1 = [1, 5], I2 = [2, 3], I3 = [4, 7] and I4 = [6, 7] (see Figure 1).For example, the MCS fusion result for m1 in Table 1 is fm1
(I1, . . . , I4) = [2, 3]∪ [4, 5]∪ [6, 7],as illustrated in Figure 1. The MCS notion appears as a natural way to oniliate the twoobjetives of gaining information and of remaining in agreement with all soures in informationfusion problem. Generally, �nding MCS is a problem having exponential omplexity [82℄. Duboiset al. [36℄ introdue a linear algorithm to ompute the MCS of n intervals.2.3 Properties of fusion operatorsGenerally, all fusion operators are ommutative and idempotent. The onjuntive and disjuntiveoperators are assoiative but not the trade-o� fusion operators (more details in [35℄). If the �nalresult of the fusion is not onvex, it is always possible to take its onvex hull (loosing someinformation in the proess but gaining omputational tratability). Conjuntive fusion result isonvex but this is not the ase for the others operators in general.



68 Chapter 6. Enhaning information fusion with onept latties3 Organization fusion results within a onept lattieFor merging numerial information, a ommon fusion operator has to be used. This is speiallyimportant in ase of heterogeneous soures. Fusion operators are often based on assumptions oron meta-knowledge available about the soures (reliability, on�it) and the domain. Sometimes,it happens that the fusion result is not diretly useful for deision. For example, in [4℄ the fusedinformation must be onvex for being used in a further deision proess, and the onvexi�ationof MCS leads to an impreise result. Here, we propose to identify and haraterize interestingsubsets of soures, providing more useful fused information. Aordingly, we show how a fusionoperator an be embedded in the framework of Formal Conept Analysis (FCA) to build aonept lattie yielding a strutured view of partial results labelled by subsets of soures, insteadof providing a unique fusion result. As faing here omplex data (preisely numerial data),we use the formalism of pattern strutures. It requires to de�ne a meet operator on objetdesriptions, induing their partial order. We disuss how a fusion operator an be seen as ameet operator. First, we de�ne the notion of information fusion spae.De�nition 6.3.1 (Information fusion spae) An information fusion spae Dm is omposedof the information available for a variable m and all their possible fusion results, w.r.t a fusionoperator fm.For example, with the variable m1 in Table 1 and fm as the interval intersetion, Dm =
{[1, 5], [4, 7], [6, 10], [2, 3], [4, 5], [6, 7], ∅}.3.1 A fusion operator in a pattern strutureLet us onsider a single variable m ∈ M , its fusion spae Dm orresponding to a hosen fusionoperator fm. When fm is idempotent, ommutative and assoiative, (Dm, fm) is a meet-semi-lattie, sine fm behaves as a meet operator. This is the ase for any onjuntive or disjuntivefusion operator, and we have c⊓d = fm(c, d),∀c, d ∈ Dm, meaning that the meet of two elementsof Dm orresponds to their fusion.

Figure 2: A meet-semi-lattie of intervalsFor example, let us onsider the numerial variable m1 in Table 1, and the onjuntivefusion operator fm1
that orresponds to the interval intersetion ∩. Figure 2 shows the meet-semi-lattie (Dm1

, fm1
). The interval labelling a node is the meet of all intervals labelling itsasending nodes, i.e. the resulting information fusion w.r.t fm1

of the soures given the intervalslabelling its asending nodes. In the example, fm1
([4, 7], [6, 10]) = [6, 7] is the fusion of objets

g3 and g4 for the variable m1, and fm1
([2, 3], [1, 5]) = [2, 3] for objets g1 and g2. Therefore, wehave partially ordered the fusion spae Dm1

with c ∩ d = c ⇔ c ⊆ d,∀c, d ∈ Dm1
. This order



3. Organization fusion results within a onept lattie 69is a partiular instane of the pattern subsumption relation de�ned in pattern strutures. Itmeans, in this example, that an interval is subsumed by any larger one, e.g. [2, 3] ⊑ [1, 5] sine
[2, 3] ⊆ [1, 5]. For example, we have [2, 3] ⊓ [1, 5] = [2, 3]⇔ [2, 3] ⊑ [1, 5] in terms of semi-lattie,orresponding to [2, 3] ∩ [1, 5] = [2, 3] ⇔ [2, 3] ⊆ [1, 5] in interval inlusion terms. Note that adisjuntive fusion operator is handled similarly.3.2 Building and interpreting the onept lattieGiven G a set of soures, m ∈ M a single variable, (Dm, fm) the meet-semi-lattie of fusionresults, and δ a mapping that gives to any objet its information for the variable m, then
(G, (Dm, fm), δ) is a pattern struture. On the example, we have (G, (Dm1

, fm1
), δ). (Dm1

, fm1
)is desribed in the previous subsetion. Desriptions of soures g1 and g2 are respetively δ(g1) =

[1, 5] and δ(g2) = [2, 3]. Then, the general Galois onnetion an be used to ompute and orderonepts:
{g1, g2}

� = [1, 5] ⊓ [2, 3] [2, 3]� = {g ∈ G | [2, 3] ⊑ δ(g)}
= fm1

([1, 5], [2, 3]) = {g ∈ G | [2, 3] ⊆ δ(g)}
= [2, 3] = {g1, g2}.Sine {g1, g2} = [2, 3] and [2, 3]� = {g1, g2}, the pair ({g1, g2}, [2, 3]) is a onept. E�ient FCAalgorithms an extrat the set of all formal onepts and order them within a onept lattie [74℄.They an be easily adapted to ompute in pattern strutures [46, 59℄. The lattie of our exampleis given in Figure 3.A onept (A, d) of (G, (Dm1

, fm1
), δ), is interesting from many points of view, as illustratedwith the onept ({g1, g2}, [2, 3]).

• Its intent d provides the fusion resulting from objets in A, e.g. [2, 3] is the onjuntivefusion fm1
of the information from soures g1 and g2.

• No other objet an be added to A without hanging d, e.g. {g1, g2} is the maximal set ofsoures whose onjuntive information fusion is [2, 3].
• The extent A keeps the trak of the origin of the information, e.g. it is known that thenew information [2, 3] omes from the information of g1 and g2.

Figure 3: A onept lattie raised from Table 1 for the variable m1.



70 Chapter 6. Enhaning information fusion with onept lattiesThe resulting onept lattie provides a suitable lassi�ation of information soures andtheir information fusion results. In Figure 3, a onept extent is read with redued labelling.However, for sake of readability, intents are given for eah onept (not redued). For example,the node labelled with [6, 7] represents the onept ({g3, g4}, [6, 7]). Due to onept ordering,a onept provides the fusion result of a subset of the extent of its super-onepts (generaliza-tion/speialization). Then, the navigation in the lattie gives interesting insights into the fusionresults. This allows more �exibility for deision making. For example, in related works, only thefusion of information of all objets is onsidered whih orresponds to the most general onept(⊤) in the lattie. This result does not always allow to make a deision, e.g. an empty interse-tion in our example. Then it is interesting to observe subsets of objets, by navigating in thelattie.3.3 A partiular ase with a non assoiative fusion operatorThe fusion operator fm based on the notion of MCS is idempotent and ommutative, but notassoiative. For example in Table 1,
fm1

(fm1
([1, 5], [2, 3]), [4, 7]) = [2, 3] ∪ [4, 7]and

fm1
(fm1

([1, 5], [4, 7]), [2, 3]) = [2, 3] ∪ [4, 5].Then, the fusion operator annot be diretly used as a meet operator to build a onept lattie.However, sine this operator returns the union of all MCS, we an �rstly ompute all MCSfor a given variable, denoted by the set K and then use the disjuntive operator on the MCS asa meet operator to de�ne a meet-semi-lattie (K,∪). Formally, we onsider (O, (K,∪), δ) as apattern struture where O is a multi-set of soures, eah element is set of soures of one MCS
K ∈ K, i.e. δ(o) ∈ K,∀o ∈ O. For example, the MCS of intervals for m1 are [2, 3], [4, 5] and [6, 7]given respetively by {g1, g2}, {g1, g3} and {g3, g4}. Then, O represents the multi-set {{g1, g2},
{g1, g3}, {g3, g4}} with δ({g1, g2}) = [2, 3] (meaning that the interval of values [2, 3] is relatedto the soures g1 and g2), δ({g1, g3}) = [4, 5] and δ({g3, g4}) = [6, 7]. Then, we use an intervalunion as a meet operator. The resulting onept lattie is given in Figure 4.

Figure 4: Conept lattie with MCS



3. Organization fusion results within a onept lattie 71A onept extent is read with redued labelling. A onept intent is given here for eah on-ept. For example, in Figure 4, the right onept in the seond line is ({{g1, g2}, {g1, g3}}, [2, 3]∪
[4, 5]) giving the values of m1 w.r.t. the soures {g1, g2} and {g1, g3}. Moreover, these valuesrepresent the MCS fusion result of the subset {g1, g2, g3}. The onept ⊤ orresponds to theunion of all MCS that is the MCS fusion result of all soures.The method used here to obtain the lattie based on MCS does not onsider all subsets ofobjets with their MCS fusion results. This is due to the non-assoiativity of the MCS fusionoperator. Thus, the onept lattie does not ontain all subsets of G with their MCS fusionresults sine the interval union is used on the MCS of data and not diretly on the data givenby soures. Nevertheless, the onept lattie helps us to keep the origin of the information andgives more �exibility for the users in the hoie of a maximal onsistent subset of soures in manyappliation �elds.3.4 Handling several variables simultaneouslySoures an provide values for di�erent variables. For example, Table 1 involves objets desribedby vetors of intervals, where eah dimension, i.e. olumn, orresponds to a unique variable, e.g.the desription of the objet g1 is denoted by δ(g1) = 〈[1, 5], [1, 9]〉. It an be interesting toompute the fusion information for all variables simultaneously.To formalize a pattern struture in this ase, one de�nes a meet operator, i.e. fusion operatorin our settings, for eah dimension, or variable. Assuming that there is a anonial order on vetordimensions, the meet of two vetors is de�ned as the meet on eah dimension. This indues apartial order of objet desriptions [59℄. Thus, we onsider the pattern struture (G, (D,⊓), δ),where G is a set of soures, (D,⊓) is a meet-semi-lattie of vetors, and eah vetor dimensionis provided with the fusion operator fm orresponding to the variable m.Going bak to Table 1, desriptions of objets g1 and g2 are respetively the vetors 〈[1, 5], [1, 9]〉and 〈[2, 3], [1, 3]〉. When the fusion operator for both dimension is the interval intersetion, themeet of these two vetors is 〈[1, 5], [1, 9]〉⊓〈[2, 3], [1, 3]〉 = 〈[2, 3], [1, 3]〉. The subsumption relationfor vetors is de�ned similarly: 〈[2, 3], [1, 3]〉 ⊑ 〈[1, 5], [1, 9]〉 as [2, 3] ⊆ [1, 5] and [1, 3] ⊆ [1, 9].Then, the general Galois onnetion an be used to ompute and order onepts:
{g1, g2}

� = 〈[1, 5], [1, 9]〉 ⊓ 〈[2, 3], [1, 3]〉 〈[2, 3], [1, 3]〉� = {g|〈[2, 3], [1, 3]〉 ⊑ δ(g)}
= 〈[2, 3], [1, 3]〉 = {g1, g2}In this way, a onept represents a set of soures and their fusion w.r.t. all variables, suh as noother soure an be added without hanging the fusion result for any variable. The variables anbe either symboli or numerial sine a fusion operator is hosen for eah variable.When the fusion operator is based on MCS, we follow the pre-proessing introdued abovefor eah variable (see Setion 6.3.3). Then, we onsider the set of all MCS for all variables.Thus, we onsider the pattern struture (O, (K,⊓), δ), where O is the set of subsets of souresproviding the MCS for all variables, (K,⊓) is a meet-semi-lattie of vetors. Eah subset in Ois desribed for eah dimension by a maximal interval of values if the subset represents a MCSfor the orresponding dimension, otherwise the dimension desription is empty. In the example,realling that an objet denotes a set of soures giving a MCS, the desription of the objet

{g1, g2} is δ({g1, g2}) = 〈[2, 3], [1, 3]〉 where [2, 3] and [1, 3] are respetively a MCS for m1 and
m2. By ontrast, the desription of the objet {g3, g4} is δ({g3, g4}) = 〈[6, 7], ∅〉 sine the subset
{g3, g4} does not represent a MCS for the variable m2.



72 Chapter 6. Enhaning information fusion with onept latties4 AppliationIn this setion, we show the usefulness of our framework on fusion operators on real-world data.We �rst reall the problem of indiator omputation presented in the last hapter.4.1 Data and problem settingsAgronomists ompute indiators for evaluating the impat of agriultural praties on the envi-ronment. Questions suh as the following are of importane: what are the onsequenes of theappliation of a pestiide given its harateristi, the period of appliation, and the harateris-tis of the �eld? The risk level for a pestiide to reah groundwater is omputed by the indiator
Igro in [127℄. Agronomists try to make a diagnosis w.r.t. the value of Igro. A value below 7indiates that the farmer has to hange its praties (pestiide, soil, date, et.). By ontrast, avalue above 7 indiates that the praties of the farmer are environmental friendly [21℄. Pesti-ide harateristis depend on the hemial harateristis of the produt while pestiide periodappliation and �eld harateristis depend on domain knowledge [21℄. This knowledge lies ininformation soures among whih books, databases, and expert knowledge in agronomy. Thenvalues for some harateristis vary w.r.t. soures.DT50 koday L/kgBUS [2,74℄ ?PM11 [15,72℄ ?PM12 ? [44,940℄PM13 ? [44,940℄INRA ? [1.08,8.98℄Com98 [2,6℄ [17,160℄AGXf [2,6℄ [1.08,160℄AGXl [15,74℄ [1.08,160℄Table 2: Charateristis of SulotrioneHere, we are interested in the use of pestiide sulotrione and its in�uene on the groundwater.Sulotrione is a herbiide marketed sine 1993. It is used to ontrol a wide range of grasses weedsin maize rops. Sulotrione is generally weakly absorbed by soils [9℄. Three harateristis ofSulotrione are needed to ompute the indiator Igro, namely DT50, koc, and ADI (more detailson these harateristis an be found in [127℄, and are not ruial for the understanding of thishapter). Table 2 (simpli�ed data) gives the values of the harateristis DT50 and koc aordingto 9 di�erent information soures. The symbol �?� represents the ase when the informationsoure does not give data for the harateristi. The value of ADI for the sulotrione is 0.00005.Agronomists look to �nd a suitable value for eah harateristi to be onsidered for omputingthe Igro indiator, hene faing an information fusion problem.4.2 MethodTo ombine the di�erent piees of information, a ommon fusion operator has to be de�ned. Inthis appliation, (1) the soures are heterogeneous (2) no a priori knowledge about soures andharateristis is available. Therefore, an appropriate fusion operator is the MCS fusion operator.The MCS for the variable DT50 are K1 and K2, resp. K3 and K4 for koc (see Table 3). Table 4



4. Appliation 73
K1 {BUS,Com98, AGXf}
K2 {BUS,PM11, AGXl}
K3 {INRA,Com98, AGXf,AGXl}
K4 {PM12, PM13, Com98, AGXf,AGXl}Table 3: Label of all MCSDT50 (days) ko (L/kg)

K1 [2,6℄ ∅
K2 [15,72℄ ∅
K3 ∅ [1.08,8.98℄
K4 ∅ [44,160℄Table 4: Table 2 pre-proessedresults from the pre-proessing of Table 2, detailed in Setion 6.3.3. The resulting onept lattieis given in Figure 5 with 16 onepts. A onept extent is read with redued labelling. A oneptintent is not given in vetorial form for sake of readability: it is read from the intents of sub-onepts, for example, the intent of the onept C1 is {(DT50, [15, 72]), (koc, [44, 160])}. But, iftwo sub-onepts intents give di�erent values for a same attribute, then the union of values isonsidered. For example, the intent of the onept C2 is {(DT50, [2, 6]∪ [15, 72]), (koc, [44, 160])}and its sub-onepts intents are {(DT50, [2, 6])}, {(DT50, [15, 72])} and {(koc, [44, 160])}. More-over, eah onept intent in the lattie represents the MCS fusion result of the subset of soures inthe extent. The highest onept in the lattie orresponds to the MCS fusion result of all souresfor all harateristis. For example, the �most right-down� onept is ({K1}, {(DT50, [2, 6])})where [2, 6] is the MCS fusion result of the subset K1 = {BUS,Com98, AGXf} and its �mostright� super-onept is ({K1,K2}, {(DT50, [2, 6] ∪ [15, 72])} where [2, 6] ∪ [15, 72] is the fusionresult of the set K1 ∪K2 = {BUS,PM11, AGXl,Com98, AGXf}.4.3 Results and disussionThe omputing of a lower and higher bound for the indiator and the onsequenes of the resultson agronomi praties and pollution are detailed and disussed in [4℄, but will not be detailedhere as this is not neessary. It is required to onsider the onvex hull of the fusion result foromputing the indiator. The onept lattie allows the users of Igro and experts to give severaldiagnosis for the farmer. For example, let us onsider the onept ⊤ that represents the fusion

Figure 5: Conept lattie built from Table 4



74 Chapter 6. Enhaning information fusion with onept lattiesresult of all soures for all harateristis. Then, DT50 and koc lie respetively in [2, 72] and
[1.08, 160]. With these values, the omputed value for Igro is [4, 10]. This interval is not usefulsine all values in [4, 10] are neither smaller than 7 nor greater than 7 and the expert annotmake a deision on the praties of the farmer.Now the indiator Igro an be also omputed hoosing either intervals of values in higher orlower level onepts. For instane, if we onsider the values of DT50 in [2, 6], koc in [44, 160]then we obtain the interval [9.97, 10] for Igro and the praties of the farmer are environmentalfriendly sine the Igro value is greater than 7 (see the green onept on Figure 5). However, if
DT50 = [15, 72] and koc = [1.08, 8.98], the resulting interval for Igro is [4.32, 4.32] indiatingthat the farmer must hange its praties sine values of Igro are smaller than 7 (see the redonept in Figure 5). All other onepts either do not allow indiator omputation (sine havingonly one variable in their intent) or do not allow a deision, i.e. the indiator returns a valueneither greater or smaller than 7.Therefore, the two onepts (green and red) give preise results of Igro, whih its not the aseof the Top onept, as usually used in the literature [4℄. The onept lattie allows to identifywhat maximal subsets of soures support the most interesting results. It allows to haraterizethe �ommunity of soures� in the dataset that are in agreement w.r.t. a ommon deision. The�nal deision stating that the agriultural pratie is risky or not for the environment remains tothe expert in agronomy. His hoie is made easier, sine he an study only the two ommunities(from the green and red onept extents) and use his own knowledge for the �nal deision.5 ConlusionThis hapters laimed that Formal Conept Analysis has the apability of supporting a dei-sion making proess in the presene of information fusion problems, even when information areomplex, e.g. patterns of numbers, thanks to the formalism of pattern strutures. A real-worldexperiment in agronomy shows that when a fusion result does not allow to make a deision,the onept lattie helps the expert by onsidering an ordered hierarhy of onepts, given thefusion from di�erent maximal sets of soures. Some fusion operators an diretly be used tobuild a onept lattie, e.g. onjuntive and disjuntive operators. To deal with the operatorbased on maximal oherent subsets (MCS), we proposed to transform the data sine MCS is notan assoiative operator, and the resulting onept lattie entails fusion results of interest. Weargue that the onept lattie enhanes the expert deision sine he annot (i) either onsider allsoures simultaneously, (i) or hoosing a partiular soure for eah variable, or (iii) study all the
2n subsets of soures. Moreover, the whole proess is automati, i.e. it does not require humaninteration before �nal deision.We have onsidered the ase when information are represented by fuzzy intervals and pos-sibility distributions in [6℄, but do not detail this work in the present thesis (details an alsobe found in [3℄). As a perspetive, it is interesting to study how other fusion operators an beembedded in a onept lattie, as well as meta-information on soures (when available).This work should be extended with Relational Conept Analysis (RCA) [51℄. This extensionof FCA to relational binary data allows to onsider binary relations between soures for thelattie onstrution, e.g. the relation �works with� when soures are domain experts. This leadsto the perspetive of adapting RCA for pattern strutures.Another perspetive an be expressed as follows. The onept lattie helps to selet maximalsubsets of soures that agree on a deision. Then, one these subsets are found, the expert has tohoose whih ommunity he trusts to make his �nal deision. Now onsider that statement in an



5. Conlusion 75opposite way: the expert wants to take a partiular deision and needs other soures to supporthim. The lattie helps him to the �nd the appropriate ommunity, for eah di�erent variable.This is relevant in di�erent domains, suh as politi, eonomis or even soial networks. Indeed,the ommunity is not de�ned on the properties or attributes values the members share, but ona resulting indiator omputed from these properties or values.
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Chapter 7A study on losed interval patterns andtheir generatorsThis hapter is a deeper investigation of Chapter 4. The aim is to properly de�ne, harater-ize and extrat with e�ient algorithms frequent losed interval patterns and their generators.Indeed, pattern strutures an be e�iently used to haraterize and extrat those patterns.We design and experiment two original and e�ient algorithms for extrating frequent losedpatterns and their generators in numerial data. We onlude showing the usefulness of suhpatterns, e.g. in lassi�ation problems and privay preserving data-mining.1 MotivationsIn Chapter 4, we showed, in the ontext of gene expression data mining, how to introduepattern strutures for numerial data, and how to extrat losed interval patterns. Intuitively,an interval pattern is a vetor of intervals, eah dimension orresponding to a range of values ofa given attribute. An interval pattern d is losed if no interval pattern e exists with same image(d� = e�) and smaller intervals (d ⊑ e). Sine (.)�� is a losure operator, it should exist soalled lasses of equivalene of interval patterns (with same image), eah lass having a maximalelement (losed) and one or more minimal elements (generators), w.r.t. a subsumption relation
⊑ de�ned on patterns.Aordingly, we propose in this hapter to de�ne, haraterize and extrat with e�ientalgorithms frequent losed interval patterns and their generators. After formalizing the problemfrom an itemset-mining point of view, we provide a semanti to interval patterns in the Eulideanspae. This will help to properly de�ne the notion of losed patterns and their generators. After,we argue that extrating generators from interordinal saled ontexts is still possible, but as forlosed patterns, it is not e�ient at all. Therefore, we introdue and experiment two algorithmsfor extrating these patterns diretly from numerial data and show their e�ieny. Finally, adisussion ends the hapter and highlights several perspetives and usages of suh patterns.Stated in this way, the problem of itemset-like pattern patterns in numerial data is usu-ally referred as quantitative itemset/assoiation rule mining [116℄. Generally, an appropriatedisretization splits attribute ranges into intervals maximizing some interest funtions, e.g. sup-port, on�dene. However, none of these works disusses the notion of equivalene lasses, losedpatterns, and generators, and this is one of the originality of this work.77



78 Chapter 7. A study on losed interval patterns and their generators2 Problem de�nitionWe propose a de�nition of interval patterns for numerial data following ideas of Chapter 4.Intuitively, eah objet of a numerial dataset is a vetor of numbers, where eah dimensionorresponds to an attribute. Aordingly, an interval pattern is a vetor of intervals, where eahdimension desribes the range of possible values for a given numerial attributes assoiated withsome objets. We only onsider �nite intervals.De�nition 7.2.1 (Numerial dataset) A numerial dataset is given by a set of objets G, aset of numerial attributes M , eah attribute m ∈M having for range a set of real numbers Wm.We denote by m(g) = w the fat that w is the value of attribute m for objet g.
m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5Table 1: A numerial dataset.De�nition 7.2.2 (Interval pattern and support) In a numerial dataset, an interval pat-tern is a vetor of intervals d = 〈[ai, bi]〉i∈{1,...,|M |} where ai, bi ∈ Wmi

, and eah omponentorresponds to an attribute following a anonial order on vetor dimensions, and |M | denotesthe number of attributes. An objet g is in the image of an interval pattern 〈[ai, bi]〉i∈{1,...,|M |}when mi(g) ∈ [ai, bi], ∀i ∈ {1, ..., |M |}. The support sup(d) of d is the ardinality of the imageof d.Running example. Table 1 is a numerial dataset with objets in G = {g1, ..., g5}, attributes in
M = {m1,m2,m3}. The range of m1 is Wm1

= {4, 5, 6}, and we have m1(g1) = 5. Here, wedo not onsider either missing values or multiple values for an attribute. 〈[5, 6], [7, 8], [4, 6]〉 isan interval pattern in Table 1, where a vetor dimension i orresponds to an attribute mi. Itsimage is {g1, g2, g5} and its support is 3.De�nition 7.2.3 (Interval pattern searh spae) Given a set of attributesM = {mi}i∈{1,|M |},the searh spae of interval patterns is the set D of all interval vetors 〈[ai, bi]〉i∈{1,...,|M |}, with
ai, bi ∈Wmi

and ai ≤ bi. The size of the searh spae is given by
|D| =

∏

i∈{1,...,|M |}

|Wmi
| × (|Wmi

|+ 1)

2where |Wmi
|×(|Wmi

|+1)

2 is the number of possible intervals for the attribute mi.For example, all possible intervals for m1 are in {[4, 4], [5, 5], [6, 6], [4, 5], [5, 6], [4, 6]}. Consid-ering also attributes m2 and m3, the interval pattern searh spae is naturally larger, omposedof 6× 6× 10 = 360 interval patterns in our example. Among well-known solutions to deal with�pattern �ooding� in data-mining, one is to e�iently mine frequent patterns, i.e. patterns hav-ing support greater than a given threshold, while a seond is to de�ne ondensed representations



3. Interval patterns: semantis and de�nitions 79of patterns [115℄, e.g. losed patterns, (minimal) generators (also alled key-sets, free-sets), et.While generators an be preferable to losed patterns following the minimum desriptions lengthpriniple [77℄, losed patterns and their generators are known to be ruial for extrating validand interesting assoiation rules [10℄. Therefore, we disuss and solve the following problems.Problem 1: Mining frequent losed interval patterns. Whereas an algorithm was proposed formining losed interval patterns in Chapter 4, it addressed the dual problem of un-frequentinterval patterns mining, i.e. with support smaller than given threshold. We proposethe algorithm MinIntChange for e�iently mining frequent losed interval patterns. Mostimportantly, this algorithm is useful for onsidering the two next problems.Problem 2: Mining interval pattern generators. Closed patterns determine equivalene lasses.One should expet that these lasses have minimal elements w.r.t. a subsumption relationon patterns, alled interval pattern generators. We propose to haraterize these notionsand to design an algorithm to e�iently mine frequent generators, alled MinIntChangeG.Problem 3: Assoiating generators to their losure. MinIntChangeG an provide eah generatorwith its losure, allowing to produe valid and on�dent assoiation rules.Problem 4: Mining equivalent binary data. In Chapter 4, we showed that numerial data anbe turned into binary with a so-alled interordinal saling, and that resulting binary data(i) an be mined with existing itemset mining algorithms, and (ii) there is a one-to-oneorrespondene between losed interval patterns and losed itemsets. However, we showedthat losed interval patterns have better representation, avoid a loal redundany, and aremuh more e�ient to mine diretly in numerial data. Therefore, we should ensure thatthe same holds for generators, and than our algorithms are more e�ient that lassialalgorithms in these partiular binary data.Before solving these problems, we properly de�ne (frequent)(losed) interval patterns (and gen-erators) and their semantis in R|M|.3 Interval patterns: semantis and de�nitionsConsider a numerial dataset with objets in G and numerial attributes in M . An intervalpattern d is a |M |-dimensional vetor of intervals, and an represented by a hyperretangle(or retangle for short) in Eulidean spae R|M |, whose sides are parallel to the oordinateaxes. This geometrial representation will be onsidered as the semantis of interval patterns.Formally, an interpretation is given by I = (R|M |, (.)I) with R|M | the interpretation domain, and
(.)I : D → R|M | the interpretation funtion.Example. When illustrating patterns in R|M|, we onsider the numerial dataset of Table 1 withattributes m1 and m3 only (it is more onvenient here to work on two dimensions). The Figure 1(left) gives four interval patterns d1, d2, d3, d4 and their representation in R2. In two dimensions,a pattern with two intervals with same left and right borders is a point, while a pattern havingonly one interval with same borders is a segment, e.g. d3 and d4. Otherwise, a pattern isrepresented by a retangle, e.g. d1 and d2.A basi idea in pattern mining is to de�ne an intersetion on patterns allowing to build moregeneral patterns, i.e. shared by more objets. As stated in [46℄, the set-theori intersetionhas the properties of an in�mum ⊓ in a semi-lattie (D,⊓), i.e. idempotent, ommutative, andassoiative. Aordingly, we introdued an in�mum operation on interval patterns [66℄:
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d1 = 〈[4, 5], [5, 8]〉
d�1 = {g1, g3, g4, g5}
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d3 = 〈[5, 6], [4, 4]〉
d�3 = {g2}
d4 = 〈[6, 6], [4, 8]〉
d�4 = {g2}

Figure 1: Interval patterns in the Eulidean spae.De�nition 7.3.1 (In�mum of Interval patterns) The in�mum of two interval patterns c =
〈[ai, bi]〉i∈{1,...,|M |} and d = 〈[ei, fi]〉i∈{1,...,|M |}is given by

c ⊓ d = 〈[min(ai, ei),max(bi, fi)]〉i∈{1,...,|M |}The in�mum of several patterns is interpreted as the onvex hull of their hyperretangles in R|M|,e.g. d1 ⊓ d2 = 〈[4, 5], [4, 8]〉 in Figure 1. This de�nition indues partial order, or subsomptionrelation ⊑ on interval patterns, knowing that c ⊓ d = c⇔ c ⊑ d.De�nition 7.3.2 (Subsumption relation) Given two interval patterns c and d, c ⊑ d holdsif dI ⊆ cI .This means that two interval patterns c and d are omparable whenever cI ⊆ dI or dI ⊆ cIand that patterns with �larger� intervals are subsumed by patterns with �smaller� intervals. Forexample, 〈[4, 5], [4, 8]〉 ⊑ 〈[4, 5], [4, 5]〉 but 〈[4, 5], [4, 5]〉 and 〈[4, 5], [5, 8]〉 are not omparable.Example. We onsider in this example one-dimensional interval patterns. Choosing attribute m1from Table 1, the set of all possible interval patterns isDm1
= {[4, 4], [5, 5], [6, 6], [4, 5], [5, 6], [4, 6]}.The semi-lattie (D,⊓), or equivalently (D,⊑) is given in Figure 2. The interval labelling a nodeis the in�mum of all intervals labelling its desending nodes, e.g. [4, 5] = [4, 4]⊓ [5, 5], and is alsosubsumed by these intervals, e.g. [4, 5] ⊑ [5, 5] and [4, 5] ⊑ [4, 4].

[4,4℄ [5,5℄ [6,6℄[4,5℄ [5,6℄[4,6℄
Figure 2: Diagram of (Dm1

,⊓) or equivalently(Dm1
,⊑).



3. Interval patterns: semantis and de�nitions 81Finally, the support of an interval pattern d is interpreted as the the number of objetsdesribed by a retangle inluded in dI , e.g. support of d1 is four in Figure 1, with δ(g) representsthe retangle desribing objet g ∈ G.The following de�nitions formally de�ne pattern strutures, involving a losure operator onpatterns, based on a Galois onnetion. Pattern struture is an extension of well-know formalontexts (binary tables) to omplex data in FCA [47, 46℄.De�nition 7.3.3 (Pattern struture) Let G be a set of objets, let (D,⊓) be a meet-semi-lattie of objet desriptions, alled patterns, and let δ : G −→ D be a mapping: (G, (D,⊓), δ) isalled a pattern struture.De�nition 7.3.4 Let the two following operators (.)� de�ned as follows.
A� =

l

g∈A

δ(g), for A ⊆ G

d� = {g ∈ G|d ⊑ δ(g)}, for d ∈ (D,⊓).These operators form a Galois onnetion between (P(G),⊆) and (D,⊑). The operator (.)�� isa losure operator.Example. Considering the example of Table 1. (D,⊑) is the �nite ordered set of all intervalpatterns. δ(g) ∈ D is the pattern assoiated to an objet g ∈ G. Then:
〈[5, 6], [7, 8], [4, 8]〉� = {g ∈ G|〈[5, 6], [7, 8], [4, 8]〉 ⊑ δ(g)}

= {g1, g2, g5}
{g1, g2, g5}

� = δ(g1) ⊓ δ(g2) ⊓ δ(g3)
= 〈[5, 6], [7, 8], [4, 6]〉This means that 〈[5, 6], [7, 8], [4, 8]〉 is not a losed interval pattern, its losure being 〈[5, 6], [7, 8], [4, 6]〉.The �rst operator applies to an arbitrary desription d ∈ (D,⊓) and returns the set of objetsdesribed by retangles inluded in dI . Dually, the seond operator applies to a of objets A ⊆ Gand returns the onvex hull of their interpretation, i.e. a retangle.Based on these de�nitions, we now de�ne the notions of (frequent) losed interval pattern((F)CIP), equivalene lasses of patterns and (frequent) interval patterns generators ((F)IPG),adapted from the lassial binary ase [96℄. We illustrate these de�nitions with two dimensionalinterval patterns, and their representation in Figure 1, i.e. onsidering attributes m1 and m3only.De�nition 7.3.5 (Equivalene lass) Let image(d) be the funtion that assigns to eah in-terval pattern the set of objets supporting d, i.e. image(d) = d�. Two interval patterns c and dare said equivalent i� they have the same image and we write c ∼= d. The set of patterns that areequivalent to a pattern d is denoted by [d] = {c|c ∼= d} and is alled the equivalene lass of d.Example. 〈[4, 5], [6, 8]〉 ∼= 〈[4, 6], [6, 8]〉 as they have the same image {g1, g4}.De�nition 7.3.6 (Closed interval pattern) A pattern d is losed if there does not exist anypattern e suh as d ⊑ e with d ∼= e.Example. 〈[4, 6], [6, 8]〉 is not losed as 〈[4, 6], [6, 8]〉 ⊑ 〈[4, 5], [6, 8]〉, these two patterns havingsame image, i.e. {g1, g3, g4, g5}. 〈[4, 6], [6, 8]〉 is losed.



82 Chapter 7. A study on losed interval patterns and their generatorsDe�nition 7.3.7 (Interval pattern generator) A pattern d is a generator if there does notexist a pattern e suh as e ⊑ d with d ∼= e.Example. 〈[4, 6], [5, 8]〉 and 〈[4, 5], [4, 8]〉 are the generators of the losed interval pattern d1 =
〈[4, 5], [5, 8]〉 with image {g1, g3, g4, g5}.De�nition 7.3.8 (Frequent Interval pattern) A pattern d is frequent if its image has ahigher ardinality than a given minimal support threshold minSup, i.e |d�| ≥ minSup. Oth-erwise, d is not frequent.Example. Among the four patterns in Figure 1, d1 is the only frequent interval pattern with
minSup = 3.An equivalene lass is a set of interval patterns having the same image. Aording to thede�ned losure operator, eah lass is provided with a unique CIP. The interpretation of thislosed pattern is the retangle with smallest area, while generators are retangles with largestarea.We dediate a partiular attention to interval patterns with null support. In Figure 1, suhpatterns orrespond to retangles, segments or points ontaining no objet desription from thedataset, e.g. c1 = 〈[6, 6], [5, 8]〉, c2 = 〈[5, 6], [6, 8]〉, c3 = 〈[4, 4], [4, 4]〉. Suh patterns wouldnot exist if eah point in the retangle 〈[4, 6], [4, 8]〉 were overed by some objet of the dataset(sine the searh spae is �nite). If interval patterns with null support exist, their equivalenelass should have a losed element with one or more generators. However, the losed patternof null support does not exist, sine it should subsume any losed pattern of support 1. AnyCIP with support 1 is de�ned by g� for some g ∈ G. Sine dealing with numerial attributeswith domains values in R, intervals of g� are degenerate (same left and right borders), e.g.
δ(g1) = 〈[5, 5], [7, 7], [6, 6]〉. Therefore, we annot �nd a subsumer of this pattern: it is notde�ned (any degenerate interval has no subintervals). When existing, the generators of nullsupport provide a meaningful information: it haraterizes the largest subspaes of the dataovered by no objets.4 Interval patterns in binary dataIn this setion, we reall how numerial data an be turned into binary with a so-alled interor-dinal saling. This data transformation is de�ned in the framework of formal onept analysis(FCA) [47℄, and allows to produe binary data from whih interval patterns an be extrated(see Chapter 4). Most importantly, we show that, in these partiular binary data, olletionsof losed itemsets and generators highlight two forms of redundany, leading to design e�ientalgorithms working diretly on numerial data in the next setion.4.1 Interordinal SalingConeptual saling is often used for disretizing numerial data and obtaining a (binary) formalontext [47℄. Given a numerial attribute, the searh spae of interval patterns an be expressedin terms of binary attributes, or items, thanks to interordinal saling. We reall here a baside�nition while more details lie in [47, 66, 73℄.In FCA, a numerial dataset is desribed by a many-valued ontext (G,M,W, J) where Gis a set of objets, M a set of numerial attributes, W a set of real numbers, and J a ternary
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m1 ≤ 4
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Table 2: Interordinally saled ontext enoding the dataset from Table 1.



84 Chapter 7. A study on losed interval patterns and their generatorsrelation de�ned on the Cartesian produt G×M ×W . (g,m,w) ∈ J or simply m(g) = w meansthat the objet g takes the value w for the attribute m.De�nition 7.4.1 (Interordinal saling) Given a numerial attribute m with value domainthe set Wm of real numbers, interordinal saling builds 2 × |Wm| binary attributes, denoted by�m ≤ w� and �m ≥ w�, ∀w ∈Wm, alled �interordinal sale attributes� or IS-items for short.De�nition 7.4.2 (Interordinal saled ontext) A formal ontext (G,N, I) is an interordi-nal saled ontext when it results from the appliation of interordinal saling to numerial ontext
(G,M,W, J). N is the set of all IS-items of the form �m ≤ w� or �m ≥ w� for eah numerialattribute m ∈ M and value w ∈ Wm. An objet g has an IS-item �m ≤ w� (resp. �m ≥ w�) i�
m(g) ≤ w (resp. m(g) ≥ w).Example. Table 2 gives the tabular representation of the interordinally saled formal ontextbuilt from Table 1. Objet g1 owns the IS-item m1 ≤ 5 (denoted by a ross ×) but not m1 ≤ 4sine m1(g1) = 5.4.2 Interval Patterns and IS-ItemsetsIt is possible to apply lassial mining algorithms to proess the binary table for extratingitemsets omposed of IS-items. These itemsets are alled IS-itemsets in the following, and arelinked with interval patterns as follows [66℄.An IS-itemset as an interval pattern. An IS-itemset P is omposed of IS-items ofthe forms mi ≤ w and mi ≥ w for some w ∈ Wmi

. It is represented by the interval pattern
d = 〈[ai, bi]〉i∈{1,...,|M |}, where
• ai is the maximum of the values w in IS-items mi ≥ w, and min(Wmi

) if mi ≥ w 6∈ P .
• bi is the minimum of the values w in IS-items mi ≤ w, and max(Wmi

) if mi ≤ w 6∈ P .For example, {m1 ≤ 5,m1 ≤ 6,m1 ≥ 4,m2 ≤ 9,m2 ≥ 7} orresponds to 〈[4, 5], [7, 9], [4, 8]〉,i.e. the smallest interval pattern w.r.t. ⊑ with same image.An interval pattern as an IS-itemset. Let d = 〈[ai, bi]〉i∈{1,...,|M |} be an interval pattern.An IS-itemset representing d is a set of IS-attributes, ∀i ∈ [1, |M |].
• mi ≤ bi if ai = min(Wmi

)

• mi ≥ ai if bi = max(Wmi
)

• mi ≥ ai and mi ≤ bi otherwise.For example, the IS-itemset orresponding to 〈[4, 5][7, 9][4, 8]〉 is {m1 ≤ 5}, i.e. the smallest setof IS-items with same image.We detail in the following some problem when mining IS-itemsets. First, we show that losedIS-itemsets involve a loal redundany making them hard to mine. Seondly, we show that IS-itemsets generators do not behave in the same way, but involve another kind of redundany thatalter their mining.



4. Interval patterns in binary data 854.3 Loal redundany problemExtrating all IS-itemsets in our example returns 31, 487 IS-itemsets. This is surprising sinethere are only 360 possible interval patterns. In fat, a lot of IS-itemsets are loally redun-dant. For example, {m1 ≤ 5} and {m1 ≤ 5,m1 ≤ 6} both orrespond to the interval pattern
〈[4, 5], [7, 9], [4, 8]〉. Indeed, the onstraint m1 ≤ 6 is weaker than m1 ≤ 5 on the set of values
Wm1

.De�nition 7.4.3 Given two IS-items n1, n2 ∈ N , with same sign ≤ or ≥ and numerial at-tribute, n1 haraterizes a weaker onstraint than n2 if n′2 ⊆ n′1. n1 is a redundant onditionwith respet to n2.Proposition 7.4.1 An arbitrary IS-itemset N1 ⊆ N is loally redundant i� it ontains twoIS-items suh as one is a redundant ondition with respet to the other one.Example. {m1 ≤ 5,m1 ≤ 6} and {m1 ≤ 4,m1 ≤ 5,m1 ≤ 6} are both loally redundant while
{m1 ≤ 5} and {m1 ≤ 5,m3 ≥ 5} are not. Intuitively, in {m1 ≤ 5,m1 ≤ 6} the item m1 ≤ 6brings no new information on the desription of the itemset image.Proposition 7.4.2 Exept G′, any losed IS-itemset P ⊆ N is loally redundant and |P | >
2|M |.Proof. By de�nition of interordinal saling, we have G′ = {mi ≤ max(Wmi

),mi ≥ min(Wmi
)}∀mi∈M ,hene |G′| = 2|M |. Any other losed itemset P is suh that G′ ⊂ P : it is loally redundant.Proposition 7.4.3 If P ⊆ N is an IS-itemset generator, then |P | ≤ 2|M |, and P is not loallyredundant.Proof. Suppose that P is a generator with |P | > 2|M |. Sine IS-items are of the form, either�m ≤ w� or �m ≥ w� for m ∈ M and w ∈ Wm, P ontains at least two itemsets of one ofthese form. Therefore, one haraterizes a redundant ondition and removing it from P does nothange its image, leading to a ontradition. Moreover, if P1 is redundant, P1 ⊂ P2 implies that

P2 is also redundant.4.4 Global redundany of generatorsDue to loal redundany, we showed in Chapter 4 that losed IS-itemsets are hard to mine withlassial losed itemset mining algorithms. It seems that IS-itemset generators have a goodproperty to be mined, sine not a�eted by loal redundany. But we remark here another kindof redundany, alled global redundany: it happens that two di�erent and inomparable IS-itemsets generators orrespond to two di�erent interval pattern generators, but one subsumingthe other, i.e. one is not an interval pattern generator aording to the semanti in R. Forexample, taking the binary table 2, both IS-itemsets N1 = {m1 ≤ 4,m3 ≤ 5} and N2 =
{m1 ≤ 4,m3 ≤ 6}, with same image {g3} are generators, i.e. there does not exist a subset ofthese itemsets with same image. However, their orresponding interval pattern are respetively
c = 〈[4, 4], [7, 9], [4, 5]〉 and d = 〈[4, 4], [7, 9], [4, 6]〉 and we have d ⊑ c, while c� = d�, hene c isnot an interval pattern generator. This is due to the fat m3 ≤ 6 is a redundant ondition withrespet to m3 ≤ 5, the only IS-items that di�er from N2 to N1.Due to this redundany problem, it should be not only more e�ient to diretly explore thesearh-spae of interval patterns but also provide orretness. This is the aim of the next setion.



86 Chapter 7. A study on losed interval patterns and their generators5 AlgorithmsIn this setion, we �rst detail a depth-�rst enumeration of interval patterns, starting with themost frequent one. Based on this enumeration, we design the algorithm MinIntChange forextrating frequent losed interval patterns (FCIP). This algorithm needs slight modi�ations toompute frequent interval pattern generators (FIPG), giving the algorithm MinIntChangeG.5.1 Greedy enumerationConsider �rstly one numerial attribute of the example, say m1. Its semi-lattie of intervals
(Dm1

,⊓) is omposed of all possible intervals with borders in Wm1
and is ordered by the sub-sumption relation given in Setion 7.3. The unique smallest element w.r.t. ⊑ is the interval withmaximal size, i.e. [4, 6] = [min(Wm1

),max(Wm1
)] and maximal frequeny (here 5). The basiidea of pattern generation lies in minimal hanges for generating the diret subsumers of a givenpattern. For example, two minimal hanges an be applied to [4, 6]. The �rst onsists in repla-ing the right border with the value of Wm1

immediately lower that 6, i.e. 5, for generating theinterval [4, 5]. The seond onsists in repeating the same operation for the left border, generatingthe interval [5, 6]. Repeating these two operations allows to enumerate all elements of (Dm1
,⊓).A right minimal hange is de�ned formally as, given a, b, v ∈Wm, a 6= b,

minChangeR([a, b]) = [a, v] | v < b, ∄w ∈Wm s.t. v < w < bwhile a left minimal hange minChangeL([a, b]) is formally de�ned similarly. Minimal hangesgive diret next subsumers and implies a monotoniity property of frequeny, i.e. support of
[a, v] is less or equal than support of [a, b].The generalization to several attributes is straightforward: for eah pattern there are 2.|M |minimal hanges for modifying the left and the right border for eah attribute.5.2 Lexiographial enumerationThe greedy enumeration is based on minimal hanges but does not prevent redundany sine apattern an be generated several times. For example, onsidering the attribute m1, interval [5, 5]is generated two times: from [4, 6] applying a right then a left minimal hange, or applying a leftthen a right minimal hange (indeed, we an see in Figure 2 that [5, 5] subsumes two di�erentpatterns having a ommon subsumee [4, 6]).To avoid redundany, a leti order on hanges, or equivalently on patterns, is de�ned: aftera right hange, one an apply either a right or left hange; after a left hange one an applyonly a left hange. Figure 3 shows the depth-�rst traversal (numbered arrows) of diagram of
(Dm1

,⊓). Baktraks our when an interval of the form [w,w] is reahed (w ∈ Wm1
), or nomore hange an be applied. Therefore, generated elements form a tree traversed depth �rst.This pattern generation an be seen as a lassial enumeration used by depth-�rst algorithmsin data-mining. Indeed, eah minimal hange is the interpretation of an IS-item. Reall that IS-items are of the form �m ≤ w� or �m ≥ w�. Applying a hange minChangeR([a, b]) = [a, v] to ainterval pattern is equivalent to add the IS-item �m ≤ v� in a orresponding IS-itemset. Dually,

minChangeL([a, b]) = [v, b] onsists in the IS-item �m ≥ v�. These IS-items haraterizingminimal hanges are drawn on Figure 3. This �gure aordingly represents a pre�x-tree, fatoringout the e�ort to proess ommon pre�xes or minimal hanges.Therefore, the leti order an be also expressed in terms of IS-items. Any IS-item ontainingthe symbol ≤ preedes any IS-item ontaining ≥. Seondly, if both IS-items ontains ≤, the



5. Algorithms 87one with the largest value w preedes the other one. Dually, if both IS-items ontains ≥, theone with the smallest value w preedes the other one. Notie that IS-items having the form�m ≤ max(Wm)� or �m1 ≥ min(Wm)� are not onsidered sine they do not haraterize minimalhanges.
[4,4℄ [5,5℄ [6,6℄[4,5℄ [5,6℄[4,6℄

m1 ≤ 4 3 2 5 4 m1 ≥ 5 9 8 m1 ≥ 6

1m1 ≤ 5 6 10 7 m1 ≥ 5

Figure 3: Depth-�rst traversal of (Dm1
,⊓).The generalization to several attribute is again straightforward. A leti order is lassiallyde�ned on numerial attributes as a lexiographi order, e.g. m1 < m2 < m3. Then hanges areapplied as explained above for all attributes respeting this order. For example, after applyinga hange to attribute m2, one annot apply a hange to attribute m1 sine m1 < m2. On theexample of Table 1, onsidering that 〈[4, 5], [8, 9], [5, 8]〉 was previously generated from a leftminimal hange of a pattern for attribute m2, only three patterns an be generated in the nextstep, namely, 〈[4, 5], [9, 9], [5, 8]〉 (hange on m2 left), 〈[4, 5], [8, 9], [5, 6]〉 (hange on m3 right) and

〈[4, 5], [8, 9], [6, 8]〉 (hange on m3 left).5.3 Extrating losed interval patternsThe pattern enumeration starts with the minimal pattern w.r.t ⊑ and generates its diret sub-sumers with lower or equal support. The next problem now is that minimal hanges do notneessarily generate patterns with stritly smaller support. Therefore, we should apply hangesuntil a pattern with di�erent support is generated to identify a losed interval pattern (FCIP)but this would not be e�ient.However, applying a minimal hange does not mandatory implies that resulting pattern hasstritly smaller support. Therefore, we should apply hanges until the support hanges to �aga FCIP. This would be not e�ient as it required to generate the whole set of frequent intervalpatterns. We adopt the idea of the algorithm CloseByOne [74℄: before applying a minimalhange, the losure operator (.)�� is applied to the urrent pattern, allowing to skip all equivalentpatterns. Indeed, the minimal pattern d w.r.t. ⊑ is losed as it is given by d = G�. Applyinga minimal hange returns a pattern c with stritly smaller support, sine d ⊑ c and d is losed.If c is frequent, we an ontinue, apply the losure operator and next hanges in leti order,allowing to ompletely enumerate all FCIP.Example. We start from the minimal pattern c = 〈[4, 6], [7, 9], [4, 8]〉. The �rst minimal hangein leti order is a right hange on attribute m1. We obtain pattern d = 〈[4, 5], [7, 9], [4, 8]〉, andobviously c ⊑ d. However, d�� = 〈[4, 5], [7, 9], [5, 8]〉, hene d is not losed. Next hange will beapplied to d��.Sine a FCIP may have several di�erent assoiated generators, it an be generated severaltimes. Still following the idea of CloseByOne, a anoniity test an be de�ned aording to letiorder minimal hanges: if a pattern d has been generated by a hange at attribute mj ∈ M , it



88 Chapter 7. A study on losed interval patterns and their generatorsis anonially generated i� d and d�� do not di�er for any attribute mh ∈M suh as mh < mj .This test avoids lookup in memory (e.g. using an hashtable of FCIP).Example. Given the minimal pattern 〈[4, 6], [7, 9], [4, 8]〉 and the pattern obtained by mini-mal hange on left border for attribute m3, i.e. d = 〈[4, 6], [7, 9], [5, 8]〉. We have d�� =
〈[4, 5], [7, 9], [5, 8]〉. We observe that d and d�� present a di�erene for attribute m1, but dhas been generated from a hange on m3. Sine m1 < m3, d�� is not anonial and has alreadybeen generated (see previous example): it is no more neessary to apply minimal hanges to d��.Sine this FCIP has already been generated, the algorithm baktraks, indiated by d�� <D din the algorithm given below.MinIntChange. The algorithm is initialized as follow. G is the set of objets. G� isthe most frequent pattern and minimal w.r.t ⊑. Two integers are used to indiate the urrentminimal hange (attribute and border). A minimal frequeny minsupp is also given.Alg. 3 MinIntChange()1: FCIP = ∅; // the FCIP set2: proess(G�,0,0,G,G�);Given a generated losed pattern d, the main proedure �rstly heks whether d is frequentand tests anoniity. If one of these test fails, the algorithm baktraks. Otherwise the urrentpattern d is stored as being a FCIP not previously generated. Then, the algorithm appliesminimal hanges to d following the leti order (from attribute n and border p), omputes losureand the proedure is alled again. The proedure baktraks when no more minimal hanges tourrent FCIP an be applied. The notation δn,l(d) returns the left border of the interval desribingattribute n in d while δn,r(d) returns its right border. The peusdo ode of the proedures
minChangeRight(d, n) and minChangeLeft(d, n) is not given for sake of simpliity. It onsistsin applying the minimal hange as previously de�ned (see minChangeR([a,b℄)) but for a givenattribute, namely n. Aordingly, 18 FCIP are extrated from Table 1 with minsupp = 1. Notethat the CIP of null support annot be extrated if the user spei�esminsupp = 0. The algorithmAlg. 4 proess(, m, p, A, d), c was generated at previous step with a minimal hange onattribute m and border p (p=0 means right, p=1 means left), A = c� and d = c��if (|A| ≤ minsup or d <D c) then2: return;end if4: FCIP ← FCIP ∪ dfor i = m to |M | step 1 do6: if (δi,l(d) = δi,r(d)) thenontinue;8: end ifif (i = m and p = 1) = false then10: patR← minChangeRight(d, i)proess(patR, i, 0, patR�, patR��);12: end if

patL← minChangeLeft(d, i);14: proess(patL, i, 1, patL�, patL��);end for



5. Algorithms 89operates a bounded number of 2|M | × |FCIP | minimal hanges. Complexity of minimal hangeproedure is log(Wm), i.e. getting the next value in a previously sorted set. For eah hange,losure is omputed. First operator (.)� returns the image of d and requires to san objets in
G and test if their desription subsumes d. Atually, it its not needed to san the whole setof objets, but only those in the image of the previously generated losed pattern. The seondoperator (.)� applies to a set of objets, and returns the onvex hull of their desription in R|M |,requiring only omputations of minima and maxima on eah dimension separately.5.4 Extrating interval pattern generatorsWe now adapt MinIntChange to extrat FIPG. Indeed, applying the losure operator to a gen-erated pattern is still important: for any FCIP d, a minimal hange implies that the support ofthe resulting pattern c is stritly smaller than the support of d. Therefore, c is a good generatorandidate of the next FCIP. However, when applying the losure to this andidate, �equivalenthanges an be added� and are not neessary to store for the next generator. This is made learerwith an example.Example. Consider the pattern 〈[4, 5], [7, 9], [4, 8]〉 obtained with a right minimal hange on thesmallest pattern w.r.t ⊑, and haraterized by the IS-items �m1 ≤ 5�. Now onsider its losure,i.e. 〈[4, 5], [7, 9], [4, 8]〉�� = 〈[4, 5], [7, 9], [5, 8]〉. The losure adds one hange, namely �m3 ≥ 5�.Atually, it an be shown that the hanges �m1 ≤ 5� and �m3 ≥ 5� are equivalent as theyharaterizing the same image.Sine a generator is haraterized by a smallest set of minimal hanges as possible (havinglargest intervals in its equivalene lass), we should not onsider the hanges �added� by thelosure. This an also be understood with Propositions 7.4.2 and 7.4.3.At eah step of the depth-�rst enumeration is generated a FGIP andidate. We know thatit has no subsumers in its branh with same support. However, it ould exist a branh withanother FGIP with same image and resulting from less hanges. Regarding to the leti orderon minimal hanges, and already suggested in the binary ase in [27℄, we should use a reversetraversal of the tree, see Figure 4. Therefore, if suh pattern exists, i.e. the urrent andidateis not a generator, it has already been generated with few minimal hanges. In this ase, thealgorithm baktraks: these two patterns have the same losure, hene the same minimal hangewill be used to build next andidate.

[4,4℄ [5,5℄ [6,6℄[4,5℄ [5,6℄[4,6℄
m1 ≤ 4 9 8 7 6 m1 ≥ 5 3 2 m1 ≥ 6

5m1 ≤ 5 10 4 1 m1 ≥ 5

Figure 4: Reverse pre-order traversal of (Dm1
,⊓).MinIntChangeG. At the initialization step, we start from the minimal pattern d. Thispattern d is both losed and generator, i.e. d = G� while any hange would also hange itssupport. d is stored as FCIP and FGIP. At a given step, if the generator andidate is atually a



90 Chapter 7. A study on losed interval patterns and their generatorsgenerator (see details after) and is frequent, the FCIP is used to haraterize the next hange.This hange is applied to the FGIP to obtain the new andidate, the losure operator is appliedto obtain its losure. Next step is alled with resulting FCIP and the new FGIP. This meansthat a FGIP is haraterized by a minimal set of hanges (branhes in the tree), while theFCIP is haraterized by the maximal set of hanges (branhes plus hanges added by suessivelosures). Notie that the anoniity test annot be used anymore, sine a FCIP may have severalgenerators, haraterized by di�erent minimal sets of hanges.Alg. 5 MinIntChangeG
FIPG = ∅;proessGen(0,0,G,G�,G�);Alg. 6 proessGen(m, p, A, d, and): cand is the urrent andidate, cand� = A, A� = dif |A| ≤ minsup or addCandidate(and) = false then2: return;end if4: FIPG = FIPG ∪ cand;for i=|M | to m step - 1 do6: if δi,l(d) = δi,r(d) thenontinue;8: end if
clone← cand10: δi,l(clone)← δi,l(minChangeLeft(d, i));proess(i, 1, clone�, clone��,clone);12: if (i = m and p = 1) = false then
clone← cand14: δi,r(clone)← δi,r(minChangeRight(d, i));proess(i, 0, clone�, clone��,clone);16: end ifend forFast subsumption heking with hastable. To test whether a andidate is a generator,we use the same tehnique as in the algorithm Charm [132℄. MinIntChange hashes the FIPGupon their image. In the testing of a andidate d, the entire list orresponding to its hash value

h(d) is retrieved. If there is a FGIP c in the list with same support and suh that c ⊑ d, d isdisarded, otherwise d is delared a FIPG and hashed.Fast subsumption heking with a trie. A seond possibility uses the trie struture (seee.g. [22℄ for more details). Eah word of the trie is the image of a FCIP, and a list of its generatorsits attahed. When testing whether a andidate is a generator or not, we look in the trie for itsorresponding image (word) and only test the generators assoiated to this word. If one of themis subsumed by the andidate, the andidate is disarded, otherwise added to the list. Whereasthis solution may be more e�ient, it requires more storage spae. Most importantly, it allowsto assoiate any FIPG to its losure, answering to the problem 3.



6. Computer experiments 916 Computer experimentsWe evaluate the performanes of the algorithms designed in Java, namelyMinIntChange,MinIntChangeG-h with auxiliary hashtable and MinIntChangeG-t with auxiliary trie. Realling that losed IS-itemsets and CIP are in 1-1-orrespondene, we ompare the performane for mining interordinalsaled data with the losed-itemset-mining algorithm LCMv2 18. For studying the global redun-dany e�et of IS-itemset generators, we use the generator-mining-algorithm GrGrowth19. Bothimplementations in C++ are available from the authors. All experiments are onduted on a2.50Ghz mahine with 16GB RAM running under Linux 2.6.18-92.e15. We hoose dataset fromthe Bilkent repository20, namely Bolts (BL), Basketball (BK) and Airport (AP), AP being worstase where eah attribute value is di�erent.First experiments ompare MinIntChange for extrating FCIP and LCMv2 for extratingequivalent frequent losed IS-itemsets in Table 3. Seond experiments onsist in extratingfrequent interval pattern generators (FIPG) with MinIntChange-h and MinIntChange-t . Wealso extrat frequent itemset generators (FISG) in orresponding binary data after interordinalsaling with GrGrowth for studying the global redundany e�et in Table 4.Dataset minSupp MinIntChange LCMv2 |FCIP |BL 80% < 50 < 50 1,13050% 252 100 32,10725% 1,215 1,060 171,19210% 1,821 1,950 2689751 1,905 2,090 272,223AP 80% 4,595 1,470 346,74150% 143,939 149,580 16,214,34525% 413,805 899,180 58,373,63110% 506,985 6,810,125 80,504,5661 517,548 6,813,591 82,467,124Table 3: Exeution time for extrating FCIP (in ms).In both ases, using binary data is better when the minimal support is high (e.g. 90%). Forlow supports, a ritial issue, our algorithms deliver better exeution times. Most importantly,the global redundany e�et disards the use of binary data, e.g. only 1.6% of all FISG are atu-ally FIPG in dataset BL. Finally, the algorithmMinIntChangeG-t outperformsMinInthangeG-h.MinIntChangeG-t however needs more memory sine storing eah losed set of objets as a wordin the trie, and to eah word the list of assoiated FIPG.It is very interesting to analyse the ompression ability of losed interval patterns and gener-ators. For that, we ompare in eah dataset the number of those patterns w.r.t. to all possibleinterval patterns. It gives the ratio of losed (generators) in the whole searh spae. In bothases, ratio varies between 10−7 and 10−9. This means that the volume of useful interval pat-terns, either losed or generators, is very low w.r.t. the set of all possible interval patterns. Thus,this demonstrates that our interest in equivalene lasses for interval patterns is really justi�ed.7 DisussionWe presented a study on the haraterization and the extration of frequent losed intervalpatterns and their assoiated generators from numerial data. For this task, we designed the18Winner of the FIMI'04 � http://�mi.ua.a.be/sr/19http://www.omp.nus.edu.sg/ wongls/projets/pattern-spaes/20http://funapp.s.bilkent.edu.tr/
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Dataset minSupp GrGrowth MinIntChangeG-h MinIntChangeG-t |FIPG| |FISG|
|FIPG|
|FISG|

|FCIP |
|FIPG|
|FCIP |BL 90% < 50 < 50 < 50 176 194 90% 112 1.5780% < 50 < 50 < 50 1,952 2,823 69% 1,130 1.7350% 150 1,212 529 66,350 222,088 29% 32,107 225% 3,432 27,988 3,893 411,442 3,559,419 11% 171,192 2.41 123,564 438,214 24,141 1,165,824 69,646,301 1.6% 272,223 4.3BK 90% < 50 1,268 1,207 67,737 75,058 84% 48,847 1.385% 4,565 26,154 12,139 554,956 799,574 69% 403,562 1.3780% ? 512,126 107,700 2,730,812 NA NA 1,938,984 1.40

(?)meansmorethan20xexeutiontimeofMinIntChangeG-t.
Table4:ExeutiontimeforextratingFIPGandglobalredundanyevaluation.



7. Disussion 93algorithms MinIntChange and MinIntChangeG, our main ontribution. These algorithms arereusable for other kind of data, for whih a losure operator is de�ned (e.g. graphs in patternstruture [46℄) and a minimal hange operation is de�ned (e.g. adding an edge to a graphpattern). The main drawbak of the algorithms lies in their poor salability when the numberof di�erent attribute values is large ompared to the number of objets. However, as statedin Chapter 4 for unfrequent losed interval pattern extration, one an easily embed monotoneonstraints on the lattie struture of these patterns (e.g. minimal/maximal size of one or severalintervals). Indeed, intervals with too large size tend to be frequent but not interesting, whereassmall intervals may have too small support [116℄. We dediated this problem in Chapter 5, inthe �eld of information fusion, by introduing a similarity relation between interval patterns. Aseond solution explored in Chapter 4 with e�etive results in gene expression data analysis, isto redue the number of di�erent attribute values before the mining task, e.g. rounding values.For example, the last attribute of the basket ball dataset (BK) desribes the points per minutesof a player: a double value with four digits after the omma, e.g. 0.5885. One an round thisvalue to two digits after the oma onsidering that this loss of information is not signi�ant,making the mining possible with large datasets.We also showed that mining equivalent binary data (enoding all possible intervals) is note�ient sine these data su�ers of redundany. Indeed, lassial itemset mining algorithmsgenerally do not onsider a semanti assoiated to binary attribute labels. That was also aontribution to show that pattern strutures and assoiated losure operator provide a simpleand elegant framework to onsider numerial data. The semantis assoiated to interval patternsmay extend their use to other domains.Taking into aount missing values is a perspetive of researh, while fault-tolerant intervalpatterns should be studied, possibly strongly reduing their number (see e.g. [15℄ for the binaryase). This hapter ends with potential use of interval pattern generators and perspetives ofresearh.Generators are preferable to losed patterns. Aording to the version of minimum de-sription length priniple (MDL) of [50℄, the best hypothesis to explain a dataset is the oneminimizing the sum of (i) the length in bit of the desription of the hypothesis, and (ii) thelength of the data desription when enoded with the help of the hypothesis. The authors of [77℄realled how the MDL priniple favors generators. Consider an equivalene lass of itemset inbinary data. The maximal element, i.e. losed itemset, has higher ardinality, while generatorshave smallest ardinality. Therefore, the generators with minimal ardinality are best hypothesisto desribe the same set of objets. The same holds for interval patterns, modulo the notion ofminimality: best patterns are those minimal w.r.t. the subsumption relation on patterns, i.e.patterns with largest interval desribing a same set of objets. Aording to [77℄, interval patterngenerators provide better hypothesis, and seem useful for numerial lassi�ation problems, i.e.explaining the resulting luster desription, sine usually, the bounding box of objet desriptions(a losed interval pattern), is onsidered.Interval patterns for k-anonymity. To preserve privay in a dataset, objet identi�ers anbe removed, e.g. names. However, some ombinations of attributes suh as birth date and ZIPode possibly allow to identify a unique individual. An important method for de-identi�ationis the method of k-anonymity [1℄. A basi idea is to redue the granularity of data desriptionsin suh a way that a unique individual annot be distinguished among at least (k − 1) indi-viduals. For numerial attributes, a solution is to �generalize� the attribute values to a range,reduing the granularity, e.g. replaing the age 23 by an interval [21, 24], see e.g. [112℄. Nowonsider an individual g ∈ G in a numerial dataset as desribed in this hapter. The desrip-



94 Chapter 7. A study on losed interval patterns and their generatorstion δ(g) ∈ (D,⊑) is omposed of degenerate intervals (i.e. same left and right borders), andis losed. The information brought by one of its generators (with larger intervals) is as follows:this generalization is not su�ient enough to not uniquely identify the individual. One shouldtherefore onsider a smaller generator w.r.t. ⊑ depending on the ardinality of its image, and anreplae the individual desription this generator. This operation is a projetion of the patternsearhspae.Generating assoiation rules. It is known that assoiation rules involving losed itemsetsand generators are of high interest in data-mining [10℄. Indeed, the on�dene of suh rulesis of 100% and the whole olletion of suh rules is ompat. It is therefore an interestingperspetive of researh to mine exat and partial assoiation rules within the framework of patternstrutures, and to ompare with other assoiation rule mining methods from the literature, seee.g. [116, 111, 8℄.Generators for information fusion. In the previous hapter we presented how pattern stru-tures an enhane information fusion, by proposing a syntheti view of partial fusion results. Weshowed how a fusion operator an be embedded in a pattern struture to rise a onept lattie.Eah partial fusion result an be interpreted as a losed pattern. Therefore, the question thatautomatially omes after this hapter is the following. Given partial fusion result, that is alosed pattern, what information an brought its generator(s) and how is it useful for informa-tion fusion tasks? Indeed, if the fused interval is onsidered for deision purposes, its generatorsmay give a useful information, i.e. the largest intervals for whih a same set of soures are inagreement. This interpretation relies on the hoie of the fusion operator (here onvexi�ation),and is di�erent with other operators. Eah ase should be studied.



Chapter 8Towards bilustering numerial datawith formal onept analysisThis last ontribution hapter introdues our main perspetive of researh. We relate herea preliminary work on how FCA an help the problem of bilustering. Indeed, reall that abiluster is informally de�ned as a subretangle of a numerial table heking a given onstraint.In many ases, best retangles are the largest ones that hek this onstraint [81℄. The parallelwith FCA is natural sine formal onepts are subretangles of �1� values in a binary tables suhthat no super retangle of �1� values exists. Aordingly, in many ases, a biluster de�nitioninvolves impliitly a losure operator. This is the goal of this hapter to give a preliminaryoutlook on how FCA an help existing bilustering tehniques, by onsidering two partiularases of bilusters. Moreover, this hapter gives answer to questions raised in [16℄.1 IntrodutionWe onsider the problem of bilustering numerial data [52, 32, 81℄ using tehniques of FormalConept Analysis (FCA) [47, 46℄. A numerial dataset is given by sets of objets, attributes,and attribute values for objets (many-valued ontexts in terms of FCA). The desription of anobjet is a tuple of values, eah omponent orresponding to an attribute value. An example ofnumerial dataset is given in Table 1 where lines denote objets, while olumns denote attributes.To analyze suh a dataset, a major data-mining task is lustering, a data analysis tehniqueused in several domains, e.g. gene expression data analysis. It allows one to group objets intolusters aording to some similarity riteria between their desription, the similarity being de-�ned aording to an adequate distane, following given harateristis [55℄. However, lustersare global patterns sine similarity between objets is omputed w.r.t. all attributes simultane-ously (possibly weighted). In many appliations, and espeially in gene expression data analysis,loal patterns are preferred [23, 81℄ and onsist in pairs (A,B) where A is a subset of objetsrelated to a subset of attributes B. Indeed, it is known that a set of genes is ativated (e.g.translated into proteins for enabling a biologial proess) under some onditions only, i.e. onlyfor some attributes. Aordingly, a biluster is generally represented by a retangle of values in anumerial data table, see e.g. a biluster in Table 2. In Table 1, one an see that both bilusters
({g1, g2}, {m1,m2,m3,m4}) and ({g1, g2}, {m5}) give more meaningful information than luster
{g1, g2} being desribed by all attributes, sine the values taken by objets in A for attributesin B are more similar.There are many de�nitions of a biluster, depending on the relation between subsets of95



96 Chapter 8. Towards bilustering numerial data with formal onept analysisTable 1: A numerial dataset
m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

Table 2: ({g2, g3, g4}, {m3,m4})
m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7objets and subsets of attributes, as disussed in [81℄. In this hapter, we onsider two types ofbilusters: �rstly, onstant bilusters that an be represented as retangle of equal values (seeTable 3), and seondly, bilusters of similar values, that an be represented by retangle of similarvalues (see Table 4). In general ase, extrating all bilusters is an intratable problem [81℄, so inpratie heuristis are used. Obviously, even best heuristis may result in the loss of �interesting�bilusters.The purpose of this hapter is to show that an approah based on Formal Conept Analysis(FCA [47℄) an be used for bilustering numerial data, leading to a omplete, orret and non-redundant enumeration of all maximal bilusters (either of onstant or similar values). Suhnon-heuristi based enumeration has not been deeply onsidered in the literature due to thevery important number of possible bilusters. Whereas a �rst study is given in [16℄, we proposehere two equivalent FCA-based methods, whose underlying losure operator enables a naturalenumeration of maximal bilusters. The �rst one relies on oneptual saling (disretization)of numerial data giving rise to several binary tables from whih bilusters an be extratedas formal onepts. A seond method avoids a priori saling and is based on interval patternstrutures.2 Problem settingHere a numerial dataset is realized by a many-valued ontext (G,M,W, I) where W is a setof values that objets g ∈ G an take for attributes m ∈ M . Suh many-valued ontexts areusually represented by a numerial table where a table-entry gives the value m(g) ∈W , i.e. thevalue taken by attribute m in olumn for objet g in line. The Table 1 gives an example (takenfrom [16℄) that we onsider throughout this hapter, with objets G = {g1, ..., g4}, attributes

M = {m1, ...,m5}, and e.g. m2(g4) = 9.A biluster is given by a pair (A,B) with A ⊆ G and B ⊆ M . Intuitively, a biluster isrepresented by a retangle of values, or sub-table (modulo line and olumn permutations), seee.g. the biluster ({g2, g3, g4}, {m3,m4}) highlighted grey in Table 2.De�nition 8.1 (Biluster) Given a numerial dataset (G,M,W, I), a biluster is a pair (A,B)with A ⊆ G and B ⊆M .In [81℄, several types of bilusters are introdued. The type of a biluster (A,B) dependson the relation between the values taken by attributes in B for objets in A. In this hapter,we onsider onstant bilusters (equality relation) and bilusters of similar values (similarityrelation) as de�ned in the next paragraphs.A onstant biluster an be interpreted as a retangle of idential values, and is de�ned asfollows.De�nition 8.2 (Constant biluster) Given a numerial dataset (G,M,W, I), a onstant bi-luster is a biluster (A,B) suh that mi(gj) = mk(gl),∀gj , gl ∈ A,∀mi,mk ∈ B.



2. Problem setting 97Table 3: A onstant biluster
m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

Table 4: A biluster of similar values
m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7Sine the number of possible bilusters in a numerial dataset an be very large, the notion ofmaximality gives naturally rise to maximal onstant bilusters, i.e. �largest retangles of identialvalues�.De�nition 8.3 (Maximal onstant bilusters) Given a numerial dataset (G,M,W, I), aonstant biluster (A,B) is maximal if In other terms, (A,B) is a maximal onstant biluster i�

• (A ∪ {g}, B) is not a onstant biluster ∀g ∈ G\A
• (A,B ∪ {m}) is not a onstant biluster ∀m ∈M\BTable 3 shows an example of maximal onstant biluster ({g1, g2, g3}, {m5}). One shouldremark that ({g1, g2}, {m5}) is onstant but not maximal. Note that maximal onstant bilusterstaking values 1 in a 1/0 table are formal onepts.The fat that onstant bilusters orrespond to sets of objets taking equal values for sameattributes is a too strong ondition in real-world data. This may lead to the well-known problemof pattern overwhelming. Instead of onsidering equality, one may relax this ondition andonsider a similarity relation between values. This idea was introdued in [16℄ for handling noisein a numerial dataset. Two values w1, w2 ∈ W are said to be similar if their di�erene doesnot exeed a user-de�ned parameter θ. A similarity relation denoted by ≃θ is formally de�nedby: w1 ≃θ w2 ⇐⇒ |w1 − w2| ≤ θ. Aording to this formalization of similarity, a biluster ofsimilar values an be de�ned as a �generalization� of onstant bilusters.De�nition 8.4 (Biluster of similar values) A biluster (A,B) is a biluster of similar val-ues if mi(gj) ≃θ mk(gl),∀gj , gl ∈ A,∀mi,mk ∈ B.How to de�ne a maximal biluster of similar values is similar with maximal bilusters of equalvalues.Table 4 shows an example of maximal biluster of similar values ({g1, g2, g3}, {m1,m2,m3})with θ = 1. Note that biluster ({g1, g2}, {m1,m2}) ful�ls the onditions of similarity but is notmaximal. Obviously, onstant bilusters are bilusters of similar values when θ = 0.In this hapter we onsider the problem of mining all maximal (i) onstant bilusters and (ii)bilusters of similar values from a numerial dataset. The novelty here lies in the use of FormalConept Analysis for a orret, omplete and non-redundant enumeration (without heuristis).Indeed, we show in the following setions how to de�ne a saling to build formal ontexts whoseonepts exatly orrespond to the two types of bilusters. However, this leads to the de�nitionof several ontexts whose preparation and mining may be ine�ient. Then, based on so-alledinterval pattern strutures, we show how binarization an be avoided, whih results in reduingpratial omputational omplexity.



98 Chapter 8. Towards bilustering numerial data with formal onept analysis3 Mining bilusters by means of oneptual salingIn this setion, we present two saling proedures allowing to build formal ontexts from whih(i) onstant bilusters and (ii) bilusters of similar values, an be extrated within the existingFCA framework. Intuitively, saling allows to express biluster searhspae under the form ofbinary tables, while the Galois onnetion allows to extrat maximal bilusters represented asonepts.3.1 Constant bilustersAmaximal onstant biluster an be interpreted as a maximal retangle of idential values. Reallthat formal onepts orrespond to maximal retangles of 1 values in binary tables. Aordingly,a maximal onstant biluster ontaining values w ∈ W from a numerial dataset (G,M,W, I)orresponds to a onept in a ontext Kw = (G,M, Iw) where (g,m) ∈ Iw ⇐⇒ m(g) = w. Oneshould naturally onsider one formal ontext for eah value w ∈ W , whih results in a ontextfamily KW de�ned as follows:
KW = {Kw = (G,M, Iw) | w ∈W (m, g) ∈ Iw ⇐⇒ m(g) = w}The proedure building the family KW from (G,M,W, I) involves one oneptual saling for eah

w ∈W (atually nominal salings related to eah value w [47℄). Figure 1 gives Kw = (G,M, Iw)for w = 1 and w = 6. The olletion of onepts of eah ontext Kw = (G,M, Iw) is denoted by
B(G,M, Iw), or simply Bw. Examples are given in Figure 1.

w ∈W Kw Bw Biluster orresponding to�rst onept on left list... ... ... ...
1

m
1

m
2

m
3

m
4

m
5

g1 × ×
g2 × ×
g3 ×
g4

({g2, g3}, {m3})
({g2}, {m2,m3})
({g1}, {m1,m4})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7... ... ... ...

6

m
1

m
2

m
3

m
4

m
5

g1 ×
g2 ×
g3 ×
g4 ×

({g1, g2, g3}, {m5})
({g4}, {m4})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7... ... ... ...Figure 1: Extrating onstant bilusters from the dataset of Table 1The two obvious propositions hold.



3. Mining bilusters by means of oneptual saling 99Proposition 8.1 Given a set of objets A ⊆ G and a set of attributes B ⊆M , a onept (A,B)of Kw orresponds to a maximal onstant biluster (A,B) of values w from numerial dataset
(G,M,W, I).Proposition 8.2 There is a one-to-one orrespondene between the set of onepts ⋃w∈W Bwand the set of all maximal bilusters.Hene, an algorithm that onstruts the set of onepts ⋃w∈W Bw gives a orret, ompleteand non redundant enumeration of all maximal onstant bilusters.Figure 1 gives two examples of onepts and their orresponding biluster representation inthe original numerial table.3.2 Bilusters of similar valuesThe number of onstant bilusters an be very large in real-world data, where numerial attributedomains ontain many di�erent values. Moreover, it leads to a huge number of artifats, e.g.the maximal onstant biluster (A,B) = ({g4}, {m4}) is a retangle of area 1, i.e. the produt
|A|×|B|. One should therefore relax the equality onstraint on numerial values when performingsaling with similarity relation ≃θ de�ned in the introdution. Intuitively, with θ = 1, theprevious example is not maximal anymore, whereas ({g3, g4}, {m4,m5}) is maximal with areaequal to 4. For that matter, one should extrat retangles with pairwise similar values w.r.t ≃θ.However, this relation is re�exive and symmetri but not transitive, hene a tolerane relation.As related in [71℄, a tolerane relation T over an arbitrary set G, i.e. T ⊆ G × G, an berepresented by a formal ontext (G,G, T ). A formal onept of (G,G, T ) where intent is equalto extent orresponds to a lass of tolerane, i.e., a maximal subset of G suh that all pairs ofits elements are in relation T .Going bak to the tolerane relation ≃θ on a set of values W , tolerane lasses are maximalsets of pairwise similar values, orresponding to onepts (A,B) of (W,W,≃θ) suh that A = B.This is exatly what we need to haraterize maximal bilusters of similar values. More detailson this proess were given in Chapter 5, while we show below initial ontext (W,W,≃θ) andorresponding lasses of tolerane from the numerial dataset of Table 1.
≃1 0 1 2 6 7 8 90 × ×1 × × ×2 × ×6 × ×7 × × ×8 × × ×9 × ×

Classes of tolerane
{0, 1}
{1, 2}
{6, 7}
{7, 8}
{8, 9}

Renamed lasses
[0, 1]
[1, 2]
[6, 7]
[7, 8]
[8, 9]Now that lasses of tolerane, or maximal sets of pairwise similar values, are haraterizedand omputed, we an rename them for sake of readability and use them for saling the initialdataset from whih maximal bilusters of similar values an be extrated.We hoose to rename a lass K ⊆ W as the onvex hull of its elements, i.e. the interval

[ki, kj ] s.t. ki and kj are respetively smallest and largest values of K w.r.t. natural order ≤on numbers. Indeed, when |K| beomes large for ertain data, this new name is more onise.Moreover, any k ∈ [ki, kj ] respets k ≃θ ki ≃θ kj .



100 Chapter 8. Towards bilustering numerial data with formal onept analysisBilusters of similar values are a generalization of onstant ones, i.e. with all values inludedin interval [ki, kj ] for a given lass of tolerane. We should now also onsider one formal ontextfor eah lass of tolerane, hene a family of ontexts. Consider a numerial dataset (G,M,W, I),and a lass of tolerane from W whih orresponds to the interval [ki, kj ]. The assoiated formalontext is given by:
(G,M, I[ki,kj]) s.t. (g,m) ∈ I ⇔ m(g) ∈ [ki, kj ] and all values n(h) from

{h ∈ G|h(m) ≃θ m(g)} and{n ∈M |n(g) ≃θ m(g)} are similar.First ondition m(g) ∈ [ki, kj ] means that m(g) should be similar with all elements of theurrent lass of tolerane. The seond ondition ome from the fat that lasses of tolerane areomputed from the set W : sine a biluster is represented by a retangle in the numerial table,we should onsider only similar values in olumn and lines to test whether a value belongs to alass of tolerane.Consider the formal ontext K[ki,kj ] whih orresponds to the lass of tolerane [ki, kj ] and aonept (A,B) from this ontext. The following propositions hold.Proposition 8.3 (A,B) is a maximal biluster of similar values.Proposition 8.4 There is a one-to-one orrespondene between the set of onepts from allformal ontexts K[ki,kj] and the set of all maximal bilusters of similar values.Thus, an algorithm omputing the set of onepts from all formal ontexts K[ki,kj ] gives a orret,omplete and non redundant enumeration of maximal bilusters of similar values.Figure 2 gives the formal ontext K[ki,kj ] for eah lass of tolerane [ki, kj ], their respetiveonepts and biluster representation in the initial numerial Table 1.4 Mining bilusters from pattern onept lattieUntil now, we presented how (onstant) bilusters (of similar) values an be extrated usingstandard FCA tools suh as saling and onept extration algorithms. Sine resulting binarytables may be numerous and large (i.e. one for eah lass of tolerane), we present in this setionan approah based on interval pattern strutures, introdued in Chapter 4 that we �rstly brie�yreall with our urrent example. We onsider in this setion only bilusters of similar values,sine being more general than onstant ones and more useful for real-world appliations.4.1 Interval pattern struturesIn Chapter 4, a numerial dataset (G,M,W, I) is represented by a so-alled interval patternstruture (G, (D,⊓), δ) where D is a set of interval vetors, the ith dimension giving an intervalof values from W for attribute mi ∈M . We denote suh vetors as interval patterns. In Table 1,the desription of objet g1 is the interval pattern δ(g1) = 〈[1, 1], [2, 2], [2, 2], [1, 1], [6, 6]〉. Intervalpatterns an be represented as |M |-hyperretangles in Eulidean spae R|M |, whose sides areparallel to the oordinate axes.Now we reall how interval patterns are ordered. Consider �rstly a single attribute m ∈ M ,with value domain Wm ⊆ W . Elements of Wm an be ordered within a meet-semi-lattiemaking them potential objet desriptions. Realling that any w ∈ Wm an be written asinterval [w,w], the in�mum ⊓ of two intervals [a1, b1] and [a2, b2], with a1, b1, a2, b2 ∈ R is:
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Class of Formal ontexta Conepts Biluster orresponding totolerane �rst onept on left list
[0, 1]

m2 m3 m4

g1 ×
g2 × × ×

({g1, g2}, {m4})
({g2}, {m2,m3,m4})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

[1, 2]

m1 m2 m3 m4

g1 × × × ×
g2 × × ×
g3 × × ×
g4 ×

({g1, g2, g3}, {m1,m2,m3})
({g1}, {m1,m2,m3,m4})
({g1, g2, g3, g4}, {m3})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

[6, 7]

m4 m5

g1 ×
g2 ×
g3 × ×
g4 × ×

({g3, g4}, {m4,m5})
({g1, g2, g3, g4}, {m5})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

[7, 8]
m1 m5

g4 × ×
({g4}, {m1,m5})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

[8, 9]
m1 m2

g4 × ×
({g4}, {m1,m2})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7aEmpty lines and olumns are omitted.Figure 2: Extrating all maximal bilusters of similar values from Table 1
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Figure 3: Pattern onept lattie of pattern struture from Table 1.
[a1, b1] ⊓ [a2, b2] = [min(a1, a2),max(b1, b2)], i.e. the largest interval ontaining them. Indeed,when c and d are intervals, c ⊑ d⇔ c ⊓ d = c holds:

[a1, b1] ⊑ [a2, b2] ⇔ [a1, b1] ⊓ [a2, b2] = [a1, b1]
⇔ [min(a1, a2),max(b1, b2)] = [a1, b1]
⇔ a1 ≤ a2 and b1 ≥ b2
⇔ [a1, b1] ⊇ [a2, b2].As objets are desribed by several intervals, eah one standing for a given attribute, intervalpatterns have been introdued as p-dimensional vetor of intervals, with p = |M |. Given twointerval patterns e = 〈[ai, bi]〉i∈[1,p] and f = 〈[ci, di]〉i∈[1,p] their in�mum ⊓ and indued orderingrelation ⊑ are given by:

e ⊓ f = 〈[ai, bi]〉i∈[1,p] ⊓ 〈[ci, di]〉i∈[1,p] e ⊑ f ⇔ 〈[ai, bi]〉i∈[1,p] ⊑ 〈[ci, di]〉i∈[1,p]
= 〈[ai, bi] ⊓ [ci, di]〉i∈[1,p] ⇔ [ai, bi] ⊑ [ci, di], ∀i ∈ [1, p]This means that patterns with larger intervals are subsumed by patterns with smaller ones.Hene, one an de�ne a pattern struture (G, (D,⊓), δ) from a numerial dataset (G,M,W, I),where (D,⊓) is a meet-semi-lattie of interval patterns. This is deeply detailed in Chapter 4.We illustrate here the Galois onnetion.

{g2, g3}
� = δ(g2) ⊓ δ(g3)

= 〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉

〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉� = {g ∈ G|〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉 ⊑ δ(g)}
= {g2, g3}Hene ({g2, g3}, 〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉) is a pattern onept. The set of all pattern on-epts gives rise to a pattern onept lattie, see Figure 3 for our example. In this �gure, three on-epts are fully desribed with respetive pattern extent and intent. Intuitively, (A1, d1) ≤ (A2, d2)means that orresponding hyperretangle of (A1, d1) is inluded in orresponding hyperretangleof (A2, d2).



4. Mining bilusters from pattern onept lattie 103Table 5: Interval pattern as biluster
m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

Table 6: Introduing θ = 1
m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 74.2 Bilusters of similar values in pattern oneptsA pattern onept (A, d) of a numerial dataset (G,W,M, I) an be seen as a biluster (A,M)sine it gives a range of value for eah attribute m ∈M . Biluster representation of ({g2, g3},

〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉) is given in Table 5.However, a pattern onept (A, d) is not neessarily a biluster of similar values, for threereasons. First, d may ontain intervals larger than θ, i.e. all values in olumns are not neessarilysimilar. Seondly, d may ontain di�erent intervals whose values are not similar, i.e. all values inlines may not be similar. Finally, if those onditions are respeted, it is not sure that maximalityof bilusters holds. We show how to ontrol these statements to extrat maximal bilusters ofsimilar values from the pattern onept lattie.First statement. Avoiding intervals of size larger than θ in a pattern intent d means thata pattern onept will orrespond to a retangle for whih eah olumn has similar values. Forthat matter, onsider a modi�ation (G, (D∗,⊓), δ) of the interval pattern struture de�ned inthe previous subsetion: the set D∗ onsists of tuples, whose omponents are either intervals orthe null element ∗. For two intervals [a1, b1] and [a2, b2], with a1, b1, a2, b2 ∈ R their in�mum ⊓ isde�ned as follows: [a1, b1]⊓ [a2, b2] = [min(a1, a2),max(b1, b2)] if |max(b1, b2)−min(a1, a2)| ≤ θand ∗ otherwise. Moreover, ∗ ⊓ [a, b] = ∗ for any a, b ∈ R. Consider that for d ∈ D, dmdenotes the interval given for attribute m ∈ M . Now, given two interval vetors c = 〈ci〉 and
d = 〈di〉 their in�mum is omputed omponentwise: c ⊓ d = 〈ci ⊓ di〉. Applying operatorsof the Galois onnetion on set {g2, g3} derives the onept ({g2, g3}, 〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉),while starting with set {g1, g4} allows to derive onept ({g1, g2, g3, g4}, 〈∗, ∗, [1, 2], ∗, [6, 6]〉). Theresulting pattern onept lattie is given in Figure 4 and ontains only 11 onepts ompared to
16 when the operation ⊓ is not onstrained with θ. Table 6 shows the biluster representation of
({g2, g3}, 〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉), i.e. a retangle for whih values in eah olumn are similarw.r.t. θ = 1. Note that one should ignore attributes that take the value ∗ in pattern intent.Seond statement. From a pattern struture (G, (D∗,⊓), δ), we are able to build a pat-tern onept lattie whose onepts orresponds to retangles having similar values in olumns.We should therefore also onsider similar values in lines. Going bak to onept ({g2, g3},
〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉), we remark that ({g2, g3}, {m1,m2,m3}) and ({g2, g3}, {m5}) arebilusters of similar values that an be built from the initial pattern onept. Indeed, the in-tervals desribing attributes m1, m2, and m3 and pairwise similar ([2, 2] ≃θ [1, 2] ≃θ [2, 2] with
θ = 1), while interval desribing attribute m5 is similar with no others. We should aord-ingly onsider lasses of tolerane between attribute desriptions to extrat bilusters of similarvalues. The similarity relation ≃θ is adapted for intervals as follows: [a1, b1] ≃θ [a2, b2] ⇐⇒
max(b1, b2)−min(a1, a2) ≤ θ.Proposition 8.5 Given a pattern onept (A, d), any pair (A,B) with B ⊆M is a biluster ofsimilar values i� {dm}∀m∈B is a lass of tolerane w.r.t. relation ≃θ over the set {dm}∀m∈M .



104 Chapter 8. Towards bilustering numerial data with formal onept analysisProof 8.1 Consider that (A,B) is not a biluster of similar values: ∃g1, g2 ∈ A, and ∃m1,m2 ∈
B suh that m1(g1) 6≃θ m2(g2), a ontradition.Third statement. By ontrolling the two �rst statements, we are able to extrat bilustersof similar values from the pattern onept lattie of (G, (D∗,⊓), δ). By the properties of lassesof tolerane making a lass a maximal set of similar values, we know that bilusters are maximalin olums, i.e. no olumns an be added without violating the similarity relation. However, weare not sure that bilusters are maximal in lines. Going bak to previous example, i.e. ({g2, g3},
〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉), the extrated bilusters ({g2, g3}, {m1,m2,m3}) and ({g2, g3}, {m5})are not maximal. Indeed, we have ({g1, g2, g3}, {m1,m2,m3}) and ({g1, g2, g3}, {m5}) thatare also bilusters of similar values. If suh bilusters are not maximal, this means that ob-jets an be added in the extent A while B remains the same set. Due to the generaliza-tion/speialization property of onept latties, suh larger biluster an be found in the di-ret upper neighbours of onept ({g2, g3}, 〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉), i.e. onept ({g1, g2, g3},
〈[1, 2], [1, 2], [1, 2], ∗, [6, 6]〉)Example. The Figure 4 gives the pattern onept lattie of (G, (D∗,⊓), δ) with θ = 121.For eah pattern intent, elements of eah lass of tolerane are either underlined, rossed-o�,or in bold. For a pattern onept (A, d), when a lass is underlined, or in bold, it meansthat (A,B), B being the set of attribute orresponding to this lass, is a maximal biluster ofsimilar values. If element of the lass are rossed-o�, this means that (A,B) is not maximal,i.e (C,B) with A ⊂ C an be haraterized also in a diret upper onept. For example,take onept ({g1, g2}, 〈[1, 2], [1, 2], [1, 2], [0, 1], [6, 6]〉). From this onept, aording to lasses oftolerane, one an haraterize the following bilusters of similar values ({g1, g2}, {m1,m2,m3}),
({g1, g2}, {m4}) and ({g1, g2}, {m5}). However, ({g1, g2}, {m4}) is the one only that is maximal,i.e. that annot be haraterized from upper pattern onepts with larger extents.Hene, all bilusters of similar values an be omputed from pattern onepts by standardalgorithms. These onsiderations lead to two dual ways of onstruting maximal bilusters ofsimilar values as pattern onepts: bottom-up and top-down.5 Disussion and onlusionThis hapter foused on the problem of bilustering numerial data with formal onept analysis.The goal was not to propose a new kind of biluster, but rather to argue that two existing typesof bilusters an be extrated using FCA tehniques. For that matter, we proposed two methodsproduing equivalent results. The �rst is based on oneptual saling, while the seond on intervalpattern strutures. It is now expeted to experiment these approahes, ompare them with otherbilustering algorithms (e.g. from [16℄) and investigate how to handle other types of bilustersde�ned in [81℄. We should also study the impat of the variation of θ on the onept lattiegranularity, or dually on the number of formal ontexts/onepts. Finally, we should examinehow formal onept analysis in fuzzy seetings an ontribute to bilustering problems. Indeed,similarity and tolerane relations are widely studied in suh settings [13℄.We disuss now our both methods.Consider the method based on saling. The strength of suh approah is to produe binarytables. Any FCA algorithm (disussed and ompared in [74℄), or losed itemset algorithm (e.g.21When an interval from a pattern intent has same left and right borders, a value is given instead for sake ofreadability
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⊥

({g1}, 〈1, 2, 2, 1,6〉) ({g2}, 〈2,1,1, 0,6〉) ({g3}, 〈 2,2,1,7,6〉) ({g4}, 〈8, 9,2,6,7 〉)
({g1, g2},

〈[1,2℄,[1,2℄,[1,2℄, [0, 1],6〉) ({g1, g3},

〈[1,2℄,2,[1,2℄, ∗,6〉) ({g2, g3},

〈 2,[1,2℄,1, ∗,6 〉 ({g3, g4},

〈∗, ∗, [1,2℄, [6, 7], [6, 7]〉)
({g1, g2, g3},

〈[1, 2], [1, 2], [1, 2], ∗,6 〉)
({g1, g2, g3, g4},

〈∗, ∗, [1, 2], ∗, [6, 7]〉)

Figure 4: Pattern onept lattie of pattern struture from Table 1 with θ = 1.Charm [53℄) an be used for extrating bilusters. Moreover, sine eah ontext of the produedfamily is independent from the others, a distributed omputation is naturally possible: one orean be assigned for eah formal ontext. It also allows to mine other kinds of binary patterns. Forexample, one an mine fault-tolerant patterns that would orrespond to quasi bilusters of similarvalues, i.e. aepting some exeptions, see e.g. [98℄. Meanwhile, searhing for frequent bilusters(i.e. involving a number of objets higher than a user-de�ned threshold [119℄) is straightforward.It rises also interesting questions: what is the meaning of an assoiation rule? of a minimalgenerator?The seond method proposes to extrat bilusters from a onept lattie, providing an in-teresting ordered hierarhy of bilusters. Computing the pattern onept lattie by adaptingstandard FCA algorithms suh as CloseByOne is e�ient as experimented in Chapter 4, whilethis algorithm an be parallelized [67℄. In Chapter 7, CloseByOne was adapted to mine frequentlosed interval patterns and their minimal generators. How this algorithm an be adapted formining frequent bilusters is an interesting perspetive of researh. The fat that bilusters anbe extrated from an ordered hierarhy of onepts make the pattern onept lattie a goodstruture for user queries. For example, a biologist may be interested in a partiular set of genesfor a given study. Aordingly, navigating in the onept lattie helps him disovering the dif-ferent bilusters in whih those genes ours with other good andidates. We an desribe suhquery as extensional sine it starts by given a set of objets. On another hand, the approahbased on saling is more useful for so alled intentional queries: the biologist is interested in allbilusters with values in a given interval (or lass of tolerane) and aordingly only selets theformal ontext assoiated to this lass.
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Chapter 9Conlusion and perspetives1 SummaryStarting from large volumes of data, knowledge disovery in databases (KDD) onsists in derivingknowledge units that an be further used for solving real-world problems. A major step of thisproess is data-mining and aims at automatially extrating patterns from a large searh-spaewhile the step of knowledge derivation is failitated when formalizing knowledge as onepts.Indeed, knowledge units represented in an adequate representation formalism and may be inte-grated in ontologies to be re-used for solving problems in appliation domains.Formal onept analysis is a mathematial framework that both allows a omprehensive for-malization of onepts and provides patterns of hoie, namely formal onepts, that are natural(bi)lusters of the input data. The set of ordered onepts form a onept lattie that expressesa generalization/speialization relation of onepts. The onept lattie supports many appli-ations in information and knowledge proessing inluding visualization, data analysis (mining)and knowledge management.However, FCA applies to binary relations in standard settings. In real-world appliations,e.g. in biology or hemistry, one rarely obtains binary data diretly, omplex and heterogeneousdata involving numbers, graphs, intervals, et., are more typial. Before applying FCA onomplex data, a transformation named oneptual saling has to be ahieved, e.g. disretizationof numerial values. Although this transformation allows FCA to be applied, it omes eitherwith loss of information (e.g. numerial data), or hard omputational properties (e.g. graphdata). In best ases, a KDD proess should always onsider the same representation formalismof data and patterns.For that matter, we proposed a new approah based on FCA to onsider numerial data byadapting pattern strutures to numerial data. This approah does not involve disretization,and is de�ned as a natural extension of FCA. The data are represented by interval patternstrutures from whih so alled interval patterns an be extrated. An interval pattern is avetor of intervals, eah dimension orresponding to a range of values some objets an take for agiven attribute. An interval pattern an be represented in Eulidean spae as a hyper-retangleproviding a semanti of formal de�nitions and models.A major problem with real-world data is pattern overwhelming : the size of the result (i.e.the number of extrated onepts) is exponentially larger than the input (i.e. the number ofobjets, or dually attributes). Sine pattern overwhelming is even worst in numerial data, weproposed several algorithms to extrat losed patterns (and their generators). We also designedonstraints that should be respeted by extrated patterns and studied how a similarity relation107



108 Chapter 9. Conlusion and perspetivesbetween numerial values an be embedded in interval pattern strutures. These methods weresuessfully applied to both biologial and agronomi appliations, suh as gene expression dataanalysis, and deision helping for rop sanity.2 PerspetivesInterval pattern strutures establish the basis of a new point of view for mining numerial datafrom whih many perspetives arise. In the following, we divide them into several setions.Firstly, the approah an be used for the extration of bi-lusters, widely used for appliationsin biology and reommender systems, with e�ient algorithms and adequate semantis lakingin the literature. Seondly, thanks to a losure operator de�ned on numerial patterns, thede�nition of losed patterns and generators provides an interesting starting point for generatingassoiation rules, the latter being used for supervised lassi�ation tasks. Thirdly, we believethat losed patterns and their generators an be used for the k-anonymization of datasets forpreserving privay, a ritial issue with the intensive publiation of datasets on the web. Finally,we disuss omputational issues and extension of our work on information fusion with patternstrutures.2.1 Bilustering of numerial dataWhereas the basi form of an interval pattern is very general, we remarked that it an beadapted to many types of bilusters. Firstly, we gave in Chapter 5 means to extrat maximalsets of objets having similar values for eah attribute from a maximal set of attributes. In thelast hapter, we presented how to extrat maximal retangles of similar values. Other bi-lustertypes an be handled similarly, e.g. the so-alled δ-valid k-s bilusters [28℄.Aordingly, a natural plan of researh aims at surveying the di�erent types of bilustersand their respetive methods of extration. This implies the design of e�ient and salablealgorithms, and their omparison with state-of-the-art algorithms. Indeed, as related in [16℄�very few researhers have investigated the non heuristi, say omplete, searh of well-spei�edloal patterns from numerial data�.Our investigation is motivated from two points of view. Firstly de�ning appropriate salingseems possible for several ases, and omes with very e�ient algorithms from losed itemsetmining ommunity, and tools for handling noise [98℄. Seondly, pattern strutures allow a diretand ordered enumeration of bilusters sine being probably the most general patterns in numerialdata (this explains their huge number that we initially redued thanks to tolerane relations).Embedding onstraints upon pattern order ould also be helpful for reduing the set of patterns tothose of interest. Naturally, the notion of interestingness of bilusters has also to be investigated,a lot of e�ort has been done in this area [81℄.Furthermore, we remark that the method designed for extrating maximal retangles ofsimilar values an be easily extended to multi-dimensional dataset. Consider a gene expressiondataset genes× situations× timestamps. In these settings, a pattern orresponds to a maximalube of similar values interpreted as a maximal set of genes having similar expression values inertain biologial situations for given times. Interval pattern strutures an be easily adapted,saling as well. Furthemore, saling would lead to n-ary relations, whose mining has been reentlyonsidered from an algorithmi point of view with the e�ient algorithm data-peeler [30℄, andfrom a noise tolerane point of view [29℄.



2. Perspetives 1092.2 Numerial pattern-based lassi�erThis perspetive deals with supervised lassi�ation. Given a set of objets, their desription andtheir target lass, the aim is to build a model able to disover the target lass of a new individual.A new trend of researh relies on so alled �pattern based lassi�ers�. Given the group of objetswith same target lass, the goal is to disover the best patterns that haraterize the lass, and usethem for the lassi�ation of a new individual. Aording to the version of minimum desriptionlength priniple (MDL) of [50℄, the best hypothesis to explain a dataset is the one minimizingthe sum of (i) the length in bits of the desription of the hypothesis, and (ii) the length of thedata desription when enoded with the help of the hypothesis. The authors of [77℄ realled howthe MDL priniple favors itemset generators as follows. Consider an equivalene lass of itemsetsin binary data, i.e. set of itemsets with same image, being shared by the same set of objets.The maximal element, i.e. losed itemset, has higher ardinality, while generators have smallestardinality. Therefore, the generators with minimal ardinality are best hypothesis to desribethe same set of objets. The same holds for interval patterns, modulo the notion of minimality:best patterns are those minimal w.r.t. a subsumption relation on patterns, i.e. patterns withlargest intervals desribing a same set of objets. Aording to [77℄, interval pattern generatorsprovide better hypothesis, and seem useful for numerial lassi�ation problems, i.e. explainingthe resulting luster desriptions, sine usually, the bounding boxes of objet desriptions areonsidered (orresponding to losed interval patterns).2.3 k-anonymity by means of projetionsMost of the datasets are published on the Web, but they an ontain private information aboutindividuals. To preserve privay in a dataset, objet identi�ers an be removed, e.g. individualnames. However, some ombinations of attributes suh as birth date and ZIP ode possibly allowto identify a unique individual. An important method for de-identi�ation is the method of k-anonymity [1℄. A basi idea is to redue the granularity of data desriptions in suh a way thata unique individual annot be distinguished among at least (k − 1) individuals. For numerialattributes, a solution is to �generalize� the attribute values to a range, reduing the granularity,e.g. replaing the age 53 by an interval [50, 60], see e.g. [112℄.In interval pattern struture settings, the desription of an individual is a losed pattern. Theinformation brought by one of its generators (with larger intervals) is as follows: this generaliza-tion is not su�ient enough to not uniquely identify the individual. One should therefore onsidera smaller generator w.r.t. a subsumption relation on patterns, depending on the ardinality ofits image, and an replae the individual desription by this generator, i.e. operate a projetion.We plan to investigate suh projetion, and to not restrit only to numerial attributes.2.4 Computational issuesAnother ruial point for interval pattern strutures onerns algorithmi issues. We showed thatinterval pattern strutures an be redued to formal ontexts in many di�erent ways dependingon the exat formulation of output patterns. It follows that e�ient algorithms of losed-itemsetalgorithms an be used, FCA algorithms as well. However, it happens that the resulting binarytable is ompletely ine�ient to proess, espeially with interordinal saling. The seond way onproessing pattern strutures is to adapt FCA algorithms. For example we pay a lot of attentionin adapting the algorithm Close By One for mining interval patterns. A drawbak of severalFCA algorithms is that they rely on losure omputations that involve an important number ofdatabase san. Closed itemset mining algorithms generally san the database only one time. How



110 Chapter 9. Conlusion and perspetivesthese algorithms an be shifted to onsider numerial data diretly is a important perspetiveof researh, oming with the design of adapted data strutures for storing interval patterns andomputing/estimating their frequeny e�iently.2.5 Information fusionIn Chapter 6 we argued that Formal Conept Analysis has the apaity of supporting a deisionmaking proess in the presene of information fusion problems, even when information are om-plex, e.g. patterns of numbers, thanks to the formalism of pattern strutures. We showed how a(pattern) onept lattie enhanes the expert deision: instead of providing a unique fusion resultwhih an be problemati (usually the ase in the literature), resulting pattern onept lattieyields a strutured view of partial results labelled by subsets of soures. This work lies in ba-si information fusion settings: no knowledge on soures (reliability, preferene order, et.) wereavailable and we onsidered basi fusion operators (union, intersetion, onvexi�ation ontrolledby a similarity relation, and the method based on maximal oherent subsets). As a perspetive,it is interesting to study how other fusion operators an be embedded in a onept lattie, as wellas meta-information on soures (when available). This is losely related lattie-based argumentstrutures and possibility theory [75℄.
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RésuméLe sujet prinipal de ette thèse porte sur la fouille de données numériques et plus parti-ulièrement de données d'expression de gènes. Ces données aratérisent le omportement degènes dans diverses situations biologiques (temps, ellule, et.). Un problème important on-siste à établir des groupes de gènes partageant un même omportement biologique. Cela permetd'identi�er les gènes atifs lors d'un proessus biologique, omme par exemple les gènes atifs lorsde la défense d'un organisme fae à une attaque. Le adre de la thèse s'insrit don dans eluide l'extration de onnaissanes à partir de données biologiques. Nous nous proposons d'étudieromment la méthode de lassi�ation oneptuelle qu'est l'analyse formelle de onepts (AFC)peut répondre au problème d'extration de familles de gènes. Pour ela, nous avons développéet expérimenté diverses méthodes originales en nous appuyant sur une extension peu exploréede l'AFC : les strutures de patrons. Plus préisément, nous montrons omment onstruire untreillis de onepts synthétisant des familles de gènes à omportement similaire. L'originalité dee travail est (i) de onstruire un treillis de onepts sans disrétisation préalable des données demanière e�ae, (ii) d'introduire une relation de similarité entres les gènes et (iii) de proposerdes ensembles minimaux de onditions néessaires et su�santes expliquant les regroupementsformés. Les résultats de es travaux nous amènent également à montrer omment les struturesde patrons peuvent améliorer la prise de d éision quant à la dangerosité de pratiques agriolesdans le vaste domaine de la fusion d'information.Mots-lés : Déouverte de onnaissanes, analyse formelle de onepts, extration de motifsnumériques, bi-lustering, fusion d'informationAbstratThe main topi of this thesis addresses the important problem of mining numerial data,and espeially gene expression data. These data haraterize the behaviour of thousand ofgenes in various biologial situations (time, ell, et.). A di�ult task onsists in lusteringgenes to obtain lasses of genes with similar behaviour, supposed to be involved together withina biologial proess. Aordingly, we are interested in designing and omparing methods inthe �eld of knowledge disovery from biologial data. We propose to study how the oneptuallassi�ation method alled Formal Conept Analysis (FCA) an handle the problem of extratinginteresting lasses of genes. For this purpose, we have designed and experimented several originalmethods based on an extension of FCA alled pattern strutures. Furthermore, we show thatthese methods an enhane deision making in agronomy and rop sanity in the vast formaldomain of information fusion.Keywords: Knowledge disovery in databases, formal onept analysis, numerial patternmining, bilustering, information fusion
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