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Introduction (en frangais)

1 Motivation

1.1 L’informatique quantique

A Déchelle atomique et subatomique, la matiére et la lumiére se comportent de maniére trés
inattendue. Par exemple, au début du 20e siécle, les physiciens ont observé qu’ils pouvaient
créer des systémes de particules dont I’état ne pouvait pas étre décrit simplement en décrivant
I’état de chaque particule séparément. En outre, il semble qu’aucune description d’un état ne
permette de prédire tous les résultats de ses mesures, car la mesure d’une propriété physique (par
exemple, le spin d’un électron dans une direction donnée) peut affecter le résultat de la mesure
d’une autre propriété (par exemple, le spin d’un autre électron, dans une autre direction, & une
vitesse supérieure a celle de la lumiére) [GS22].

Le phénoméne selon lequel un état quantique ne peut étre décrit par des descriptions séparées
de ses sous-parties est appelé intrication quantique, et le fait que les systémes ne peuvent étre
définis par un état unique pour toutes les mesures possibles est un produit de la superposition
quantique.

Le calcul quantique est le domaine qui vise & exploiter les caractéristiques uniques de la
mécanique quantique, telles que l'intrication et la superposition, afin d’obtenir un avantage
computationnel par rapport au calcul classique. Deux exemples notables sont 'algorithme de
Shor [Sho94|, qui permet une accélération exponentielle dans le probléme de factorisation, et
l'algorithme de Grover [Gro96], qui permet une accélération quadratique dans le probléme de
recherche non structurée. Il convient de noter que I'accélération apportée par l'algorithme de
Shor n’est que relative par rapport au meilleur algorithme classique (c’est-a-dire non quantique)
actuellement connu, car, a 'heure ol nous écrivons ces lignes, il n’existe aucun résultat de sépa-
ration entre les programmes quantiques efficaces et leurs équivalents classiques.

Une autre application notable de l'informatique quantique est la simulation des systémes
quantiques eux-mémes |Fey82], avec des applications en sciences des matériaux et en chimie
[DBK*22].

Le concept d’avantage informatique quantique désigne le nombre inférieur de ressources néces-
saires pour résoudre un probléme ou calculer une fonction avec un ordinateur quantique par
rapport & un ordinateur classique. Pour tenir compte de la quantité de ressources utilisées dans
un calcul, il faut envisager différents modéles de calcul.

1.2 Modéles de calcul quantique

Les modéles de calcul quantique abondent - pour n’en citer que quelques-uns : circuits quan-
tiques [Ya093], machines de Turing quantiques [BV97|, ordinateurs quantiques topologiques
[FKLWO03], calcul quantique optique linéaire [KMN'07], calcul quantique basé sur la mesure



Introduction (en frangais)

[BBD*09], et calcul quantique adiabatique [AL18].

Dans le cadre de ce travail, nous nous concentrerons sur deux modéles, & savoir les machines
de Turing quantiques et les circuits quantiques. Une discussion de ces modéles est également utile
pour illustrer comment les modéles de bas niveau sont limités dans leurs outils de raisonnement
sur I'informatique de maniére plus générale.

Une machine de Turing quantique peut étre définie en considérant les superpositions quan-
tiques des machines de Turing classiques (TM). Un exemple simple de machine de Turing clas-
sique consiste en un ruban de longueur infinie divisée en cellules, avec une téte de lecture mobile
qui lit ses symboles, et un état interne de la machine. En fonction du symbole lu par la téte de
lecture et de I’état interne actuel, la machine réécrit le symbole sur la cellule, fait évoluer son
état et déplace éventuellement la téte de lecture vers la gauche ou vers la droite. Par exemple,
un état possible d’'une machine de Turing peut étre représenté comme suit :

[-[1]1]ofo1]--]

La fonction de transition de la machine est son ensemble de régles qui déterminent les mou-
vements de la téte de lecture, les réécritures de cellules et les changements d’état interne.

Une configuration de machine de Turing quantique (QTM, quantum Turing machine) est
donnée par une superposition de configurations de machines de Turing, chacune évoluant simul-
tanément selon la fonction de transition de la machine. Par exemple, une configuration d’une
QTM possible peut étre une combinaison linéaire de deux configurations de machines de Turing
classiques :
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Comme les QTM, les circuits quantiques peuvent étre considérés comme une extension de
leurs homologues classiques, & savoir les circuits booléens. Dans les circuits quantiques, les portes
sont décrites par des opérateurs unitaires qui font évoluer I'état quantique des fils d’entrée. Les
circuits se lisent généralement de gauche a droite et sont beaucoup plus faciles & interpréter que
la définition d’une QTM, ce qui est 'une des raisons pour lesquelles ils sont devenus le modéle
de bas niveau par défaut de l'informatique quantique. Voici un exemple de circuit quantique.
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Les circuits constituent un modéle de calcul non uniforme, ce qui les distingue des QTM :
alors qu’une machine de Turing posséde une description unique qui fonctionne pour toute entrée
initiale inscrite sur son ruban, un circuit a une taille d’entrée fixe. Dans le contexte des fonctions
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dont la taille d’entrée varie, il faut définir une famille de circuits, de telle sorte qu’a chaque taille
d’entrée corresponde un circuit qui calcule la fonction.

Les propriétés de ces modéles de bas niveau — 'impénétrabilité de la fonction de transition
d’une QTM et la non-uniformité des circuits quantiques — contrarient les outils de raisonnement
de haut niveau du programmeur quantique, & savoir les abstractions telles que les boucles, les
types de données, les procédures récursives ou le flux de controle [Sel04]. C’est pourquoi il est
nécessaire de disposer de langages de programmation quantique de haut niveau qui permettent
au programmeur quantique d’écrire des programmes et de les analyser.

1.3 Langages de programmation quantique

Le programmeur quantique dispose aujourd’hui d’un large choix de langages de programmation
aux propriétés variées |[BBGV20, Dev24, GLR"13, JATK"24, SBZ"24, WS14|. Ces langages
abordent des difficultés propres a I'informatique quantique, telles que les exigences de non-clonage
et de non-effacement des données quantiques, qui sont des propriétés des systémes physiques qui
finiront par mettre en ceuvre ces programmes.

Lorsque nous écrivons des programmes quantiques, nous souhaitons garantir leur réalisabilité
physique. Un programme quantique est réalisable physiquement s’il peut étre exécuté dans un
modéle de calcul quantique. Par exemple, les transformations de qubits doivent correspondre & la
description d’un opérateur unitaire pour étre physiquement réalisables, ce qui empéche le clonage
des variables de qubits, ou bien leur effacement. Cela implique un contréle plus minutieux de la
mémoire quantique, car il ne peut y avoir de duplication implicite des variables quantiques dans
les instructions du programme.

Le développement d’un langage permettant de raisonner sur la réalisabilité physique des
programmes est le premier objectif de cette thése.

Objectif (i). Développer un langage de programmation quantique de haut niveau
permettant de raisonner sur la réalisabilité physique de ses programmes, et assurer
une mise en ceuvre correcte dans un modéle de bas niveau, tel qu'une QTM ou une
famille de circuits quantiques.

En outre, et c’est tout aussi important, nous souhaitons garantir la faisabilité des pro-
grammes, c’est-a-dire le fait qu’ils puissent étre mis en ceuvre dans des modéles de bas niveau
qui utilisent une quantité raisonnable de ressources et qui n’évoluent pas trop rapidement en
fonction de la taille des données d’entrée. Naturellement, cela nécessitera que le langage soit
restreint afin de garantir que les programmes terminent et qu’ils le fassent avec des limites de
ressources raisonnables.

Pour s’assurer que le langage restreint n’est pas trivial, nous veillerons également & ce que les
restrictions ne soient pas trop fortes, ce qui signifie que ’ensemble des programmes qui satisfont
aux restrictions sont capables d’exprimer n’importe quel programme efficace. Ceci constitue notre
deuxiéme objectif.

Objectif (ii). Fournir des restrictions qui rendent le langage de programmation
cohérent et complet pour les programmes quantiques efficaces.

Pour comprendre non seulement comment on peut formellement analyser 1'utilisation des
ressources d’un modéle de calcul, mais aussi comment on peut démontrer qu’un langage de pro-
grammation est cohérent et complet pour les programmes efficaces, nous nous tournons main-
tenant vers la théorie de la complexité informatique.
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1.4 Complexité informatique

La quantité de ressources nécessaires pour effectuer un calcul, c’est-a-dire sa complexité, est
généralement définie conformément & un modéle choisi. Les mesures de complexité peuvent
généralement étre séparées entre 'utilisation du temps et de ’espace, ol la complexité temporelle
consiste en la quantité d’étapes nécessaires pour effectuer un calcul, et la complexité spatiale est
la quantité de mémoire requise.

La complexité temporelle d’'une QTM correspond au nombre de fois ol la fonction de tran-
sition est appliquée. Sa complexité spatiale est définie par le nombre de cellules du ruban infini
qui sont effectivement utilisées (c’est-a-dire qui sont visitées par la téte de lecture). Dans les
deux cas, on considére 'utilisation maximale des ressources sur toutes les branches du calcul.

Dans le cas des circuits quantiques, les ressources sont données par la taille et la profondeur
du circuit. Sa taille est simplement le nombre total de portes, et sa profondeur est donnée par
le nombre d’étapes nécessaires pour appliquer toutes les portes du circuit, étant donné que les
portes peuvent étre appliquées en paralléle lorsqu’elles agissent sur des ensembles de fils disjoints.

Apreés avoir examiné la facon dont I'utilisation des ressources est définie dans les modéles
de QTM et de circuits quantiques, nous examinons maintenant les effets de la limitation de la
quantité de ressources que les modéles peuvent utiliser pour résoudre un probléme donné.

Dans le cas des programmes efficaces ou faisables, ’approche standard consiste & limiter
la complexité temporelle de la machine de maniére polynomiale. Dans le cas quantique, cela
correspond & la classe FBQP, qui est définie comme ’ensemble des fonctions qui peuvent étre
approximées par une QTM dont le temps d’exécution est borné de fagon polynomiale sur la
taille de l'entrée [BV97]. On peut également imposer une restriction encore plus forte de temps
polylogarithmique, et obtenir la classe FBQPOLYLOG |[Yam?22|.

Récemment, il y a eu des caractérisations de ces classes (ou de leur équivalent pour les prob-
lémes de décision) qui n’utilisent pas de modéle de machine sous-jacent [DMZ10, Yam20, Yam?22].
C’est le domaine de la complexité computationnelle implicite, qui traite de 'analyse des classes
de complexité non pas du point de vue d’un modéle de machine avec des ressources limitées, mais
plutot en plagant des restrictions sur la construction de programmes [DL12]. L’objectif (ii) peut
alors étre satisfait en montrant que nos langages restreints sont des caractérisations implicites
de FBQP et FBQPOLYLOG.

Ces caractérisations sont non seulement intéressantes d’un point de vue théorique, mais elles
peuvent également fournir des outils utiles pour l'analyse des programmes. Cependant, dans
la mesure ou les restrictions placées sur les caractérisations sont trop fortes ou généralement
peu pratiques, elles réduisent I'expressivité du langage et deviennent moins intéressantes pour le
programmeur moyen. C’est la raison pour laquelle nous énoncons également 1’objectif suivant.

Objectif (iii). S’assurer que le langage est capable d’exprimer facilement des pro-
grammes quantiques efficaces standard.

Parmi les exemples de programmes standard figurent la transformée de Fourier quantique
(utilisée comme sous-programme de Ialgorithme de Shor [Sho94]), les algorithmes de recherche
binaire quantique [YC22|, et d’autres applications telles que les fonctions arithmétiques quan-
tiques [Dra00, RPGELT7].

Bien qu’il soit important que le langage soit expressif, sa faisabilité devrait également impli-
quer qu’il puisse étre compilé efficacement dans des circuits quantiques afin d’étre mis en ceuvre
dans de véritables ordinateurs quantiques. Il a été démontré que la classe de fonctions FBQP peut
étre définie de maniére équivalente comme ’ensemble des fonctions qui peuvent étre approximées
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par des familles uniformes de circuits dont les tailles sont bornées par un polynéme en la taille
de lentrée [Yao93|.

Une famille de circuits signifie que nous considérons un circuit par taille d’entrée, et unifor-
mité est une condition sur la fagon dont les circuits peuvent étre construits [Ruz81]. Il s’agit de
tenir compte du fait que des problémes trés complexes (et méme intractables) peuvent étre réso-
lus par de trés petits circuits, et une condition est donc imposée pour que ces circuits ne soient
pas trop complexes & trouver, ce qui signifie qu’ils peuvent étre obtenus en un temps polynomial.

Les langages qui sont cohérents pour le temps polynoémial quantique ou le temps polylog
peuvent également garantir l’existence d’une famille uniforme de circuits efficaces qui mettent en
ceuvre leurs programmes. Cependant, il n’est pas clair comment on peut obtenir de tels circuits
directement & partir du langage. Ceci motive notre quatriéme objectif.

Objectif (iv). Garantir la faisabilité des programmes via une stratégie de compila-
tion directe et efficace des programmes en familles uniformes de circuits quantiques.

La difficulté de fournir une telle stratégie de compilation peut étre révélée par le probléme
du contréle quantique qui est utilisé dans certains langages et caractérisations implicites, car il
résulte généralement en un écart entre ’analyse de complexité de haut niveau d’'un programme
et la complexité de son circuit.

L’exemple le plus général de controle quantique est 'instruction de commutation quantique,
de la forme

qcase q,...,q; of {i > S;}

ou, selon l'état i des qubits qy,...,qx (c’est-a-dire, 2F états possibles), 'instruction S; est exé-
cutée. Cette instruction ne mesure aucun des qubits, mais exécute les instructions respectives
en superposition.

Contrairement au cas du if classique, toutes les instructions S; doivent étre compilées afin
d’effectuer cette transformation, et les stratégies de compilation actuelles aboutissent a des cir-
cuits dont la complexité correspond a la somme des complexités de chaque S; et non au max-
imum [LSO1, STY*23, ZLY22|. C’est pourquoi l'utilisation récursive du cas du commutateur
quantique peut conduire & une explosion exponentielle de la complexité du circuit en fonction
de la maniére dont le programmeur structure le code, un probléme qui a été nommé branch
sequentialization (séquentialisation des branches) dans la littérature [YC22].

Non seulement nous aimerions éviter I’explosion exponentielle qui peut résulter de 1’utilisation
de la déclaration qcase, mais nous aimerions également ne pas altérer la complexité du pro-
gramme du point de vue du programmeur. En d’autres termes, la stratégie de compilation doit
garantir que la complexité de la mise en ceuvre de qcase est le maximum entre les branches et
non la somme.

Objectif (v). Fournir une stratégie de compilation ou la complexité du circuit
correspond a la complexité de la sémantique du programme.

Enfin, nous aimerions mettre en ceuvre tous les objectifs susmentionnés dans un compilateur
réel, et nous arrivons ainsi & notre objectif final.

Objectif (vi). Créer un compilateur qui met en ceuvre les objectifs de cette thése.
Nous décrivons maintenant nos contributions & ces objectifs.
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2 Contributions
Cette thése contient les contributions suivantes.

e Nous présentons FOQ, un langage de programmation quantique de premier ordre avec des
conditionnelles classiques, des branchements quantiques et des appels de procédure. Nous
montrons que les programmes FOQ qui terminent peuvent étre simulés par des machines
de Turing quantiques. Ceci vise I'objectif (i).

e Nous introduisons deux restrictions sur les programmes FOQ, 'une de bonne fondation,
qui assure la terminaison, 'autre de largeur bornée, qui empéche la duplication récursive
des appels de procédure. Ces deux restrictions définissent le fragment PFOQ, dont nous
démontrons qu’il caractérise implicitement FBQP. Nous montrons que PFOQ satisfait cer-
taines propriétés souhaitables : I'inverse d’un programme peut étre obtenu statiquement,
I'inverse constitue également un programme PFOQ, et des programmes PFOQ plus grands
peuvent étre construits & partir de programmes plus petits de maniére intuitive. Ceci résout
partiellement 'objectif (ii).

e Nous introduisons une restriction supplémentaire, & savoir une restriction qui impose une
réduction exponentielle de la quantité de qubits disponibles, en définissant des programmes
recursivement-halving, et nous obtenons le fragment LFOQ. Nous montrons que LFOQ est
cohérent et complet pour le temps polylogarithmique quantique, et qu’il caractérise im-
plicitement la classe FBQPOLYLOG, et nous montrons également qu’il satisfait a la cloture
sur l'inverse et a la facilité de construction de programmes plus grands. Ceci compléte
notre traitement de 'objectif (ii).

e Nous fournissons des exemples pertinents de programmes PFOQ et LFOQ, qui témoignent de
I’expressivité de ces fragments. Par exemple, nous montrons des programmes PFOQ pour la
transformée de Fourier quantique et son inverse, 'addition et la multiplication quantiques,
la détection de langages réguliers, et le calcul du poids de Hamming. Dans le cas de LFOQ,
nous donnons des programmes pour la recherche binaire et le comptage trié. Cela répond
a notre objectif (iii).

e Nous montrons que les programmes PFOQ peuvent étre systématiquement compilés en
familles de circuits de taille polynomiale, en développant une nouvelle technique de com-
pilation appelée ancrage et fusion, ol les appels de procédures orthogonales sont simplifiés
pour réduire la complexité asymptotique de la compilation ; un résultat similaire est obtenu
pour LFOQ, ot les circuits obtenus ont une profondeur polylogarithmique. Ce travail vise
Pobjectif (iv).

e Nous présentons une technique de compilation pour un fragment de PFOQ, noté PFOQ"N'" et
qui est encore complet pour le temps polyndémial quantique, avec laquelle la complexité du
branchement quantique est le maximum des complexités des branches et non leur somme,
comme dans les techniques existantes de compilation. Ceci achéve notre objectif (v).

e Nous fournissons une implémentation des algorithmes décrits dans cette thése sous la forme
d’un compilateur vers Qiskit. Cette implémentation est écrite en Python et nous permet
de vérifier empiriquement les résultats de cette thése. Ceci remplit 'objectif (vi).



3 Plan de thése

La thése est organisée de la maniére suivante. La partie I introduit les préliminaires nécessaires
au travail présenté dans les parties suivantes de la thése.

e Le Chapitre 1 présente les postulats de la mécanique quantique, ainsi que la notation et
certaines notions de base nécessaires pour raisonner sur l'informatique quantique.

e Le Chapitre 2 examine trois modéles différents de calcul quantique : les machines de Turing
quantiques (y compris 'accés aléatoire quantique), les circuits quantiques et les langages
de programmation quantiques. Nous abordons leurs différences et leur utilité relative.

e Le Chapitre 3 décrit certaines des classes de complexité qui peuvent étre définies a 'aide
des trois modéles ; plus particuliérement, les définitions de FBQP et FBQPOLYLOG sont
données.

La Partie II présente deux nouvelles caractérisations implicites des classes de complexité
quantique en tant que restrictions différentes appliquées au méme langage de programmation.

e Le Chapitre 4 présente un langage de programmation quantique de premier ordre (FOQ),
composé d’opérations unitaires, de séquences, de conditionnelles classiques et quantiques,
et d’appels de procédures. Nous définissons la syntaxe et la sémantique de FOQ, et don-
nons quelques exemples de programmes FOQ simulant ’additionneur quantique ripple-carry
(QRCA), 'algorithme de recherche quantique de Grover, ainsi que la transformée de Fourier
quantique (QFT) et son inverse.

e Le Chapitre 5 présente un fragment de FOQ caractérisant le temps polynomial quantique.
Ce fragment, noté PFOQ (Polytime FOQ), est défini a I'aide de deux restrictions syntax-
iquement vérifiables, I'une qui impose la réduction du nombre de qubits accessibles pour
chaque appel récursif (la condition well-foundedness) et une restriction qui limite le nombre
d’appels récursifs effectués en séquence (la condition bounded width). L’exhaustivité de la
caractérisation est donnée par une simulation d’une algébre de fonctions caractérisant FBQP
et sa solidité est démontrée par la construction d’une simulation QTM polytemporelle de
n’importe quel programme PFOQ. Nous démontrons ’expressivité du fragment en mon-
trant que le QRCA et la QFT, qui sont des programmes polytemporels, sont capturés par
le fragment.

e Le Chapitre 6 considére un sous-ensemble plus restrictif de programmes FOQ — ceux qui
s’exécutent en temps polylogarithmique. Ce fragment, noté LFOQ, est obtenu a partir de
FOQ en combinant la condition de bien-fondé avec une restriction imposant que le nombre
de qubits accessibles est halved pour chaque appel récursif. Nous donnons comme exemples
un programme de recherche binaire et un programme de comptage du nombre d’instances
d’une entrée dans une liste triée. La solidité et la complétude de la caractérisation sont
obtenues par des simulations (et l'utilisation) de machines de Turing quantiques & accés
aléatoire fonctionnant en temps polylogarithmique.

La Partie III traite de la connexion de ces fragments avec le modéle du circuit quantique.
Nous remarquons que le raisonnement basé sur le modéle QTM qui nous a permis de conclure &
la complexité des programmes n’est pas directement applicable au modéle de circuit, en raison de
I'utilisation de I'instruction qcase. Lorsque des instructions de contréle quantique sont utilisées
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de maniére récursive, cela peut conduire & une augmentation exponentielle de la complexité du
circuit lors de 'utilisation de techniques de compilation simples.

e Dans le Chapitre 7, nous présentons une stratégie de compilation, compile, utilisant une

technique appelée ancrage et fusion qui simplifie les appels de procédure récursifs effec-
tués sur des branches qcase orthogonales. Nous montrons que, pour tous les programmes
PFOQ, cette stratégie de compilation est efficace et aboutit & des familles de circuits dont la
taille croit de fagcon polynomiale avec le nombre de qubits d’entrée, évitant ainsi I’explosion
exponentielle d’autres stratégies de compilation. Nous obtenons un résultat similaire pour
les programmes LFOQ, ol la profondeur des circuits obtenus est limitée de maniére poly-
logarithmique.

Le Chapitre 8 se concentre sur I’amélioration de 'algorithme compile du Chapitre 7, en
étendant la technique d’ancrage et de fusion aux procédures de différents niveaux récur-
sifs, nous montrons que ce nouvel algorithme de compilation, dénommé compilet, peut
fournir une accélération polynomiale arbitrairement grande par rapport & compile. Nous
identifions également un fragment de programmes PFOQ, noté PFOQN'™, oul 'ancrage et
la fusion peuvent étre effectués en temps constant, et nous montrons que ce fragment est
également cohérent et complet pour le temps polynomial quantique. Nous montrons que
PFOQ"™" est le premier langage de programmation pour lequel il existe une stratégie de
compilation, & savoir optimize™, ou la complexité du circuit de 'instruction qcase est le
maximum des complexités des branches.

Le Chapitre 9 présente une implémentation des idées de la Partie III sous la forme d’un
compilateur Python vers Qiskit [JATK"24]. Un certain nombre d’exemples sont testés avec
le compilateur, et certaines des résultats de la thése sont ainsi vérifiées empiriquement.
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Introduction

1 Motivation

1.1 Quantum computing

At the atomic and subatomic scales, matter and light behave in very counterintuitive ways. For
example, during the beginning of the 20th century, physicists observed that they could craft
systems of particules where the state of the entire system could not be described by simply
describing the state of each particle separately. Furthermore, it seemed that no description of
a state could help predict all its measurement outcomes, as performing a measurement of one
physical property (for instance, the spin of one electron in a given direction) could affect the
outcome of measuring another property (for instance, the spin of another electron, in another
direction, faster than the speed of light) [GS22.

The phenomenon where a quantum state cannot be described via separate descriptions of
its subparts is called quantum entanglement, and the fact that systems cannot be defined by a
single state for all possible measurements is a product of quantum superposition.

Quantum computing is the field that aims at leveraging the unique characteristics of quantum
mechanics, such as entanglement and superposition, in order to obtain a computational advantage
over classical computation. Two notable examples are Shor’s algorithm [Sho94|, which provides
an exponential speedup in the problem of factoring, and Grover’s algorithm |Gro96|, allowing for
a quadratic speedup in the problem of unstructured search. One should note that the speedup
given by Shor’s algorithm is only relative to the best currently known classical (i.e. non-quantum)
algorithm as, at the time of writing, there is no separation result between quantum efficient
programs and their classical counterparts.

Another application of quantum computing of note is the simulation of quantum systems
themselves [Fey82|, with applications in material sciences and chemistry [DBK"22].

The concept of quantum computational advantage denotes the lower number of resources
necessary to solve a problem or compute a function with a quantum computer as opposed to a
classical one. In order to account for the number of resources used in a computation, one must
consider different models of computation.

1.2 Models of quantum computation

Models of quantum computation abound — to name a few: quantum circuits [Yao93|, quantum
Turing machines [BV97], topological quantum computers [FKLWO03], linear optical quantum com-
puting [KMN*07]|, measurement-based quantum computing [BBD*09], and adiabatic quantum
computing [AL18].

For the purposes of this work, we will be focusing on two models, namely quantum Turing
machines and quantum circuits. A discussion of these models is also useful to illustrate how low-
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level approaches to quantum computing are limited in their tools for reasoning about computation
more generally.

A quantum Turing machine can be defined by considering quantum superpositions of classical
Turing machines (TMs). A simple example of a classical TM is an infinitely-long tape divided
into cells, with a moving tape head that reads its symbols, and an inner machine state. According
to the symbol read by the tape head and the current inner state, the machine rewrites the symbol
on the cell, evolves its state, and potentially moves its tape head left or right. For instance, a
possible state of a Turing machine can be represented as:

- [1[x]o]of1]--]

The machine’s transition function is its set of rules that determine the tape head movements,
cell rewrites, and inner state changes.

A quantum Turing machine (QTM) configuration is given by a superposition of Turing ma-
chine configurations, each evolving simultaneously according the the machine’s transition func-
tion. For instance, a possible QTM configuration can be a linear combination of two classical
Turing machine configurations:

a1 +

EIRBOOnE EENOOROE

Unlike QTMs, quantum circuits are not defined as superpositions of classical circuits (i.e.
Boolean circuits), but rather as circuits consisting of quantum gates. These gates correspond to
unitary operators that evolve the quantum state of the input wires. Circuits are usually read
from left to right, and they are considerably easier to interpret, compared to a QTM’s transition
function, which is one of the reasons why they have become the default low-level model in
quantum computing. An example of a quantum circuit is the following:

— [, 1

— Ry(m) —b—{1T}—= \

Circuits are a non-uniform model of computation, which further distinguishes them from
QTMs: whereas a Turing machine has a single description that works for any initial input
written on its tape, a circuit has a fixed input size. In the context of functions with varying
input size, one must define a family of circuits, such that each input size has a corresponding
circuit that computes the function.

The properties of these low-level models — the inscrutability of a QTM’s transition function,
and the non-uniformity of quantum circuits — do not encourage the high-level reasoning tools of
the quantum programmer, namely abstractions such as loops, data types, recursive procedures,
or control flow [Sel04]. For this reason, there is a need for high-level quantum programming
languages that allow for the quantum programmer write programs and to reason about them.
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1.3 Quantum programming languages

The quantum programmer has at their disposal a large choice of programming languages with
a variety of properties [BBGV20, Dev24, GLR*13, JATK*24, SBZ*24, WS14|. These languages
tackle difficulties that are unique to quantum computing, such as the no-cloning and no-erasure
requirements of quantum data, which are properties of the physical systems that will eventually
implement these programs.

When writing quantum programs, we are interested in guaranteeing their physical realizabil-
ity. A quantum program is physically realizable if it can be performed in a quantum computa-
tional model. For instance, qubit transformations must fit the description of a unitary operator
in order for them to be physically realizable, which prevents cloning of qubit variables, or even
their erasure. This entails a more careful control of quantum memory, as there can be no implicit
duplication of quantum variables in the instructions of the program.

Developing a language that allows for reasoning about physical realizability of programs is
the first objective of this thesis.

Objective (i). Develop a high-level quantum programming language allowing for
reasoning about the physical realizability of its programs, and ensure correct imple-
mentation in a low-level model, such as a QTM or a family of quantum circuits.

Furthermore, and equally important, we will be interested in ensuring the feasibility of pro-
grams, that is to say, the fact that they can be implemented into low-level models which make
use of a reasonable amount of resources, that does not scale too rapidly with the size of the
input. Naturally, this will require that the language be restricted so as to ensure that programs
terminate and that they do so with reasonable resource bounds.

To ensure that the restricted language is not trivial, we will also be concerned with ensuring
that the restrictions are not too strong, meaning that the set of programs that satisfy the
restrictions are capable of expressing any efficient program. This constitutes our second objective.

Objective (ii). Provide restrictions that make the programming language sound
and complete for efficient quantum programs.

To understand not only how one can formally analyze the resource usage of a computational
model, but also how a programming language can be shown to be sound and complete for efficient
programs, we now turn to the theory of computational complexity.

1.4 Computational complexity

The amount of resources necessary to perform a computation, that is to say, its complezity,
is generally defined in accordance with a chosen model. Complexity measures can usually be
separated between use of time and space, where time complexity consists in the amount of steps
necessary to perform a computation, and space complexity is the required amount of memory.

A QTM’s time complexity corresponds to how many times the transition function is applied.
Its space complexity is defined by the number of cells in the infinite tape are actually used
(meaning that they are visited by the tape head). In both these cases, one considers the mazimum
use of resources over all branches of computation.

In the case of quantum circuits, the resources are given by the size and depth of the circuit.
Its size is simply the total number of gates, and its depth is given by the number of steps required
to apply all the gates in the circuit, given that gates can be applied in parallel when they act on
disjoint sets of wires.
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Having considered how resource usage is defined in the QTM and quantum circuit models, we
now consider the effects of bounding the amount of resources that the models can use in solving
a given problem.

In the case of efficient or feasible programs, the standard approach is to bound the time
complexity of the machine polynomially. In the quantum case, this corresponds to the class
FBQP, which is defined as the set of functions that can be approximated by a QTM whose
runtime is bounded polynomially on the size of the input [BV97]|. One can also place an even
stronger restriction of polylogarithmic time, and obtain the class FBQPOLYLOG [Yam22|.

More recently, there have been characterizations of these classes (or their decision-problem
equivalent) that do not make use of an underlying machine model [DMZ10, Yam20, Yam22]. This
is the field of implicit computational complexity, which deals with the analysis of complexity
classes not from the point-of-view of a machine model with bounded resources but rather by
the placing of restrictions on the construction of programs [DL12]. Objective (ii) can then be
satisfied by showing that our restricted languages are implicit characterizations of FBQP and
FBQPOLYLOG.

These characterizations are not only interesting from a theoretical perspective, but also have
the potential to provide useful tools for program analysis. However, insofar as the restrictions
placed on the characterizations are too strong or generally impractical, they reduce the expres-
sivity of the language and become less interesting to the typical programmer. For that reason,
we also state the following objective.

Objective (iii). Ensure that the language is capable of easily expressing standard
efficient quantum programs.

Examples of standard programs include the quantum Fourier transform (used as a subroutine
of Shor’s algorithm [Sho94]), quantum binary search algorithms [YC22], and other applications
such as quantum arithmetic functions [Dra00, RPGE17].

While it is important that the language be expressive, its feasibility should also entail that
it can be efficiently compiled into quantum circuits so it can be implemented in real quantum
computers. The class of functions FBQP has been shown to be equivalently defined as the set
of functions that can be approximated by uniform families of circuits whose sizes are bounded
polynomially on the input size [Yao93].

A family of circuits means that we consider one circuit per input size, and uniformity is
a condition on how the circuits may be built [Ruz81]. This is to deal with the fact that very
complex (and even intractable) problems can be solved by very small circuits, and so a condition
is imposed that these circuits must not be too complex to find, meaning that they can be obtained
in polynomial time.

Languages that are sound for quantum polytime or polylogtime can also guarantee the exis-
tence of uniform family of efficient circuits that implement their programs. However, it is not
clear how one can obtain such cirucits directly from the language. This motivates our fourth
objective.

Objective (iv). Guarantee feasibility of programs via a direct and efficient compi-
lation strategy from programs into uniform families of quantum circuits.

The difficuly of providing such a compilation strategy can be found in the problem of quantum
control which is used in certain languages and implicit characterizations, as it usually results in

a gap between the high-level complezity analysis of a program and its circuit complexity.
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The most general example of quantum control is the quantum switch statement, of the form
qcase q,...,q; of {i > S;}

where, according to the state i of qubits qi,...,qx (i.e., 2F possible states) the statement S; is
executed. This instruction does not measure any of the qubits, but rather performs the respective
statements in superposition.

Unlike the case of the classical if, all statements S; must be compiled in order to perform
this transformation, and current compilation strategies result in circuits whose complexity scales
as the sum of the complexities of each S; and not the maximum [LS01, STY 23, ZLY22|. For
this reason, the recursive use of the quantum switch case can lead to an exponential blow-up in
circuit complexity depending on how the programmer structures the code, a problem which has
been coined as branch sequentialization in the literature [YC22].

Not only would we like to avoid the exponential blow-up that can occur from the use of the
qcase statement, but we would also like to not alter the complexity of the program from the
point-of-view of the programmer. Put differently, the compilation strategy should ensure that
the complexity of implementing the qcase is the maximum between branches instead of the sum.

Objective (v). Provide a compilation strategy where the circuit complexity matches
the complexity of the program’s semantics.

Finally, we would like to implement all the aforementioned goals in an actual compiler, and
so we arrive at our final objective.

Objective (vi). Create a compiler that implements the goals of this thesis.

We now describe our contributions towards these objectives.

2 Contributions

This thesis contains the following contributions.

e We present FOQ, a first-order quantum programming language with classical conditionals,
quantum branching, and procedure calls. We show that terminating FOQ programs can be
simulated by quantum Turing machines. This targets objective (i).

e We introduce two restrictions on FOQ programs, one for well-foundedness, that ensures
termination, and one for bounded width, that prevents recursive duplication of procedure
calls. These two restrictions define the fragment PFOQ, which we demonstrate implicitly
characterizes FBQP. We show that PFOQ satisfies certain desirable properties: a program’s
inverse can be statically obtained, the inverse also constitutes a PFOQ program, and larger
PFOQ programs can be constructed from smaller ones in intuitive ways. This partially
solves objective (ii).

e We introduce a further restriction, namely one that enforces an exponential reduction in
the amount of available qubits, defining recursively-halving programs, and obtain the LFOQ
fragment. We show that LFOQ is sound and complete for quantum polylogarithmic time,
and that it implicitly characterizes the class FBQPOLYLOG, and we also show that it satisfies
closure over the inverse and ease of construction of larger programs. This completes our
treatment of objective (ii).
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We provide relevant examples of PFOQ and LFOQ programs, that testify to the expressivity
of these fragments. For instance, we show PFOQ programs for the quantum Fourier trans-
form and its inverse, quantum addition and multiplication, detection of regular languages,
and Hamming weight checking. For the case of LFOQ, we give programs for binary search
and sorted counting. This targets our objective (iii).

We show that PFOQ programs can be systematically compiled into families of circuits of
polynomial size, by developing a new compilation technique denoted anchoring and merg-
ing, where orthogonal procedure calls are simplified to reduce the asymptotic complexity
of the compilation; a similar result is obtained for LFOQ, where the obtained circuits have
polylogarithmic depth. This work targets objective (iv).

We present a compilation technique and a fragment of PFOQ, denoted PFOQ™'", that is
still complete for quantum polynomial time, where the complexity of quantum branching is
the maximum of the branches, instead of their sum, as in existing compilation techniques.
This completes our objective (v).

We provide a code implementation of the algorithms described in this thesis in a compiler
into Qiskit, written in Python, which allows for empirically verifying the results of this
work. This targets objective (vi).

3 Thesis plan

The thesis is organized in the following way. Part I introduces the necessary preliminaries for
the work presented in the subsequent parts of the thesis.

e Chapter 1 introduces the postulates of quantum mechanics, as well as the notation and

some basic notions required to reason about quantum computation.

e Chapter 2 discusses three different models of quantum computation: quantum Turing

machines (including quantum random access), quantum circuits and quantum programming
languages. We address their differences and relative usefulness.

e Chapter 3 describes some of the complexity classes that can be defined using the three

models; more notably, definitions of FBQP and FBQPOLYLOG are given.

Part II presents two new implicit characterizations of quantum complexity classes as different

restrictions applied to the same programming language.

XX

e Chapter 4 introduces a First-Order Quantum (FOQ) programming language, consisting of

unitary operations, sequences, classical and quantum conditionals, and procedures calls.
We define FOQ’s syntax and semantics, and give some examples of FOQ programs imple-
menting the quantum ripple-carry adder (QRCA), Grover’s quantum search algorithm, as
well as the quantum Fourier transform (QFT) and its inverse.

Chapter 5 presents a fragment of FOQ characterizing quantum polynomial time. This frag-
ment, denoted PFOQ (Polytime FOQ), is defined using two restrictions, one that enforces the
reduction on the number of accessible qubits for every recursive call (the well-foundedness
condition) and a restriction on the number of recursive calls performed in sequence (the
bounded width condition). The completeness of the characterization is given by a simulation



of a function algebra characterizing FBQP and its soundness is shown via a construction of a
polytime-bounded QTM simulation of any PFOQ program. We demonstrate the fragment’s
expressivity by showing that the QRCA and the QFT, which are polytime programs, are
captured by the fragment.

e Chapter 6 considers a more restrictive subset of FOQ programs — those that run in poly-
logarithmic time. This fragment, denoted LFOQ, is obtained from FOQ by combining the
well-foundedness condition with a restriction imposing that the number of accessible qubits
is halved for every recursive call. We provide as examples a program for binary search and
a program for counting the number of instances of an entry in a sorted list. The sound-
ness and completeness of the characterization are obtained by simulations of (and using)
quantum random-access Turing machines running in polylogarithmic time.

Part III addresses the connection of these fragments with the quantum circuit model of
computation. We notice that the reasoning based on the QTM model that allowed us to infer
conclusions about the complexity of the programs is not directly applicable to the circuit model,
due to the use of the qcase statement. When quantum control statements are used recursively,
this may lead to an exponential blow-up in circuit complexity when using straightforward com-
pilation techniques.

e In Chapter 7, we introduce a compilation strategy, compile, using a technique called
anchoring and merging that simplifies recursive procedure calls performed on orthogonal
gcase branches. We show that, for all PFOQ programs, this compilation strategy is efficient
and results in circuit families with size growing polynomially in the number of input qubits,
thereby avoiding the exponential blow-up of other compilation strategies. We obtain a
similar result for LFOQ programs, where the depth of the obtained circuits is bounded
polylogarithmically.

e Chapter 8 focuses on improving the compile algorithm of Chapter 7, by extending the
anchoring-and-merging technique to procedures of different recursive level, we show that
this new compilation algorithm, denoted compile™, can provide an arbitrarily-large poly-
nomial speedup over compile. We also identify a fragment of PFOQ programs, denoted
PFOQ"™", where anchoring and merging can be performed in constant time, and show
that this fragment is also sound and complete for quantum polytime. We show that
PFOQ"™" is the first programming language for which there is a compilation strategy,
namely optimize*, where the circuit complexity of the qcase statement is the mazimum
of the complexities of the branches.

e Chapter 9 presents an implementation of the ideas of Part III in the form of a Python
compiler into Qiskit. A number of examples are tested with the compiler, and some of the
results in the thesis are empirically verified.

4 Publications

Some of the work presented in this thesis, up to some slight modifications and improvements,
has been published, appearing in the following articles:

[HPS23] Emmanuel Hainry, Romain Péchoux, and Mario Silva. A programming language char-
acterizing quantum polynomial time. In Orna Kupferman and Pawel Sobocinski, edi-
tors, Foundations of Software Science and Computation Structures, pages 156-175, Cham,
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2023. Springer Nature Switzerland. doi:10.1007/978-3-031-30829-1_8. Corresponds to
Chapters 4, 5 and 7.

[HPS25] Emmanuel Hainry, Romain Péchoux, and Mario Silva. Branch sequentialization in
quantum polytime. In Maribel Fernédndez, editor, Formal Structures for Computation
and Deduction, pages 22:1-22:22, Dagstuhl, Germany, 2025. Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik. doi:10.4230/LIPIcs.FSCD.2025.22. Corresponds to Chapter 8.

[FHPS25] Florent Ferrari, Emmanuel Hainry, Romain Péchoux, and Méario Silva. Quantum pro-
gramming in polylogarithmic time. In Pawel Gawrychowski, Filip Mazowiecki, and
Michat Skrzypczak, editors, Mathematical Foundations of Computer Science, pages 47:1 —
47:17, Dagstuhl, Germany, 2025. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
doi:10.4230/LIPIcs.MFCS.2025.47. Corresponds to Chapters 6 and 7.

During the course of the PhD, I was also involved in the following work, which falls outside
of the scope of this thesis:

[SEMZC23] Mario Silva, Ricardo Faleiro, Paulo Mateus, and Emmanuel Zambrini Cruzeiro. A coherence-
witnessing game and applications to semi-device-independent quantum key dis-
tribution. Quantum, 7:1090, August 2023. doi:10.22331/q-2023-08-22-1090.
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Quantum Mechanics

Computers are ways of instantiating abstract objects and their relationships in physical objects and
their motion.

— David Deutsch

In this chapter, we introduce the basic concepts used for describing quantum systems. We
start by discussion standard notions and definitions required to clearly define quantum mechanics,
and then move on to detailing its postulates.

1.1 Notation and Basic Properties

1.1.1 Quantum states

In classical (digital) computation, the smallest unit of information is a bit, typically represented
as a binary value 0 or 1, or as boolean value true or false. In quantum computation, the most
basic unit of information is a qubit (i.e. a quantum bit), which is described as a superposition
(that is to say, a linear combination) of classical states 0 and 1.

To give a precise definition, let |0) and [1) (ket zero, ket one) denote the two possible states
of a classical bit. A qubit state 1)) (pronounced ket psi) is defined as a linear combination

a-[0)+ (1),

with «, 8 € C being complex numbers, typically called probability amplitudes. The state can be
denoted in vector form as

0

ol
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A qubit can then be seen as an element in the vector space C**!, which we will write as C? for

13
13

0)

simplicity.
This description of a quantum state is given to us by the first postulate of quantum mechanics.

Postulate 1. The state of an isolated physical system at a fixed time is defined by
a state vector 1) belonging to a Hilbert space H called the state space. The system

is completely described by its state vector, which is a unit vector in the state space.

3



Chapter 1. Quantum Mechanics

This postulate states that a system’s entire description is given by [¢). Of note, is the fact that
this a fundamentally different perspective from that of probabilistic classical systems. In those
systems, the observer may not have access to enough information to know the system’s state,
but the system must necessarily be in one of the states. Postulate 1 states that the superposition
is the complete description of the state, which is a remarkably different description.

The postulate makes a reference to the Hilbert space in which the qubit is defined, which
consists of the space C? with a metric induced by an inner product, which we will define once
we introduce unitary operators.

Systems comprising multiple qubits are obtained via the tensor product, defined over matrices
A and B as follows:

all B - A1n B
A®B= : : ,  where A= ((lij)lsiSm,lsjsn-
ami B - amn B

The use of the tensor product in defining larger states is described by the second postulate.

Postulate 2. The state space of a composite physical system is the tensor product
of the state spaces of the component physical systems. Moreover, if we have systems
numbered 1 through n, and system number i is prepared in the state [¢;), then the
joint state of the total system is |11)® [p2)® ... ® [¢y,).

The tensor product satisfies the properties of associativity and bilinearity:
(A B)®(C=A® (B (),
(M)®B=A® (A\B)=XA®B),

meaning that we may write A- A ® B ® C' without ambiguity.

As an example, consider two qubit states |1)) and |¢), occupying systems 1 and 2 respectively,
and defined, for «, 8,v,6 € C, as

)1 = a-]0)1 + B [1); and
|g)2 =7 -[0)2+0-[1)o.
Then, the description of the global state of both systems is given by
[ ®[p)e=av |01 ®[0)2+ad- |01 ®[1)s+ By [1)1®|0)2+ 56 [1)1 ®[1)2,

where, in column vector notation, we write:

1 0 0 0

0 1 0 0
|0)1 ®|0)2 = 0)1 ® 1)z = [1h ®|0)2 = and [1);®]1)2 =

0 0 1 0

0 12 0 12 0 12 1 12

For simplicity, one can also define:
00)12 2 [0)1 ®[0)2, [01)122[0)1 ® [1)2, [10)12=[1)1 @[0)2, [11)12 2 [1)1 ®[1).

When the different systems are clear from context, we drop the subscript notation. For instance,
given a binary word x = x;...x, € {0,1}", we can define the state

z)2|21)® - ® |z, ) e C
with length defined as ¢(|z)) £ n.
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1.1.2 Unitary operators

In order to perform computation using quantum systems, we need not only to be able to represent
information in terms of quantum systems, but also evolve these systems over time. In quantum
mechanics, a system’s description is given by a wunitary operator, which consists of a morm-
preserving transformation, frequently represented by matrix multiplication.

Given matrices A € C™* B ¢ CF™, let AB € C™™ denote their matrix multiplication.
Postulate 3 describes a quantum state’s evolution over time.

Postulate 3. The evolution of a closed quantum system is described by a unitary
transformation U(t1,2) : R? - H — H, such that [1(t))= U(t,t0) [1'(t0)).

This would be the most general description of the evolution of a quantum state. For the
purposes of this work, it will suffice to consider only discrete transformations given by a fixed
set of possible operators. One example of such an operator is the Hadamard, defined as

1 1 1 « 1 o+
Hz2 —. € C¥?2, such that H =—. g )
V2 \1 -1 B V2 \a-p
Once we give a precise definition of norm, we will see that these operators are norm-preserving.
This also requires that they are dimenston-preserving, meaning that they have the same amount
of lines and columns. Furthermore, since we will only be considering states comprised of qubits

(defined by a basis of dimension 2), a quantum state of length n will be described by a vector in
C?" and a unitary operator acting on states of this length will be defined by a matrix in C2"*2".

13

The set of classical states of length n is defined as {|z): z € {0,1}"}. This set will constitute
an orthonormal basis for quantum states of dimension 2". First, we define an inner product
(-]-) for any two states |¢), [¢)) e C*", given in general by a complex number, and satisfying the
following properties:

o (Blv) = (¥|o)", (Skew symmetry)
o (Yl) e Ry (=0 if and only if 1) = 0), (Positive semidefiniteness)
o (Pl(a-[h1)+ B |12)) = (Plac- 41 + B -aba) = - (P1) + B+ (lefa), (Linearity in the ket)

where (a+bi)* =a-bi, for a, b€ R, is the complex conjugate.
This inner product can be defined in the matrix notation by using the notion of a conjugate
transpose -1, which consists of transposing a matrix and conjugating its entries:

T *
*
ail v Qln aj; v an,
At = 2
* *
Gml  * Gmn aj, v aqn

The inner product of [)= - [0)+ - |1)and |p)=~-|0)+ - |1)is then defined as

(V]o) =

f1oy= (o B )7 | =arv+5%0
) 16)= (o 6)(5) v+ 89,
with the case for larger dimensions being defined as:

(V1 ® P2 | P1 ® P2) = (11]¢1) - (12|@2) .
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It can be checked that this definition of the inner product satisfies all the desired properties
described above. The conjugate transpose transforms a ket into a bra:

of =(1 0), l=pf=(0 1),

which can also be seen as functions in C2 - C which, for an input state |¢/), give the probability
amplitude in the corresponding state:

if [p)=a-|0)+p-[1), then (0]¢)=a, and (1fy)=p.

The norm of a state is then given by the square root of its inner product:

[0 = V(W) = Vara+ %8 =/|al? + |82,

which, from the fact that the inner product is positive semidefinite, is well defined. We are now
able to define the Hilbert space of dimension 2", denoted Han, as the space spanned by the basis
{lz) : x € {0,1}"} and including the inner product. We define the Hilbert space of arbitrary
dimension as the union H £ Upey Hon.

a

a

(0

A unitary transformation, as described by Postulate 3, is defined such that it preserves
the norm of the state. This means that, given an initial state |¢), the state obtained via a
transformation U, must satisfy:

[T} = VAU DU ) = V@UTUR) = V(wlp) = [[9)].

Given that this property must be satisfied over all possible states [¢)), unitary operators can be
defined as being those that satisfy

vtu=vut=1

where 1 is the identity matrix of appropriate dimension.
An example of a unitary operator is the Hadamard gate defined earlier. In this case, this
gate is its own inverse, i.e. H ' = H' = H. Another example is the CNOT gate, defined as

1000
0100 et

CNOT: [ - o o [=100X00]+ [01K01] + [10K11] + [11)10] € €,
0010

which inverses the state of the second qubit whenever the first qubit is in state |1).

If the unitary is only applied on a subpart of the quantum state, this can be represented
by a larger operator derived from tensoring the gate with the identity operator of dimension k,
written 1. Given an operator U € C2" a size n, and an index 1 <4 < n, the operator

1 @U@ Lyyjpyy € CF

applies the unitary U on the qubits of index [i,...,i+k—1].
A Hilbert space may also be infinite dimensional, as in the case of quantum Turing machine
configurations (Section 2.1), where the machine tape is infinite.

Postulate 3 described the evolution of closed quantum systems. To extract information from
a quantum system, however, one needs to perform a measurement on the system, which will be

described by a new postulate.
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1.1. Notation and Basic Properties

1.1.3 Measurement
A system’s evolution stops being reversible when it is affected upon by an outside system. This

is described as a measurement, and its behavior is given by the fourth and last postulate.

Postulate 4.  Quantum measurements are described by a collection {M,,} of
measurement operators. These are operators acting on the state space of the system
being measured. The index m refers to the measurement outcomes that may occur
in the experiment. If the state of the quantum system is |¢)) immediately before the
measurement then the probability that result m occurs is given by

Prob(m) = (4| M), My, [1), with > M} M, = 1.

The system’s state immediately after the measurement outcome m is given by

Mn )
(0] My, My, |)

Postulate 4 describes a more general scenario than the one we will consider in this thesis, as
we will only be interested by measurements in the computational basis, which is the the basis
consisting of the classical states of the system. Other measurement basis are given by linear
combinations of computational basis vectors.

For instance, if the states {|0),[1)} form a basis of the Hilbert space of states of a given
system, then the states |+)= I(J);\/ﬁll) and |-)= IO);2|1)
basis {|+),|-)} will give outcome |+)or |-) with uniform probability. If the measurement result is
|+) then that is its new state, and the previous superposition is no longer accessible.

The choice of unit norm for quantum states (which is preserved by unitary evolution) ensures

that the sum of the probabilities for all measurement outcomes sums to one:

also form a basis. Measuring state |0) in the

Y- Prob(m) = 3 (| My, My [0) = (4] 3 M, M) = [[)]? = 1.

We will also consider partial projections given by a bra whose length is smaller than the
projected state. For y € {0,1}* and |¢)) e Han such that n > k, we define

(o) = (Y@ Lngp) )= 3 (z) - |oper . 20).
ze{0,1}":

For instance, consider the 3-qubit state [¢) = —= - (|001)+ [101)+[110)). Then, projecting on the
first qubit, we obtain

Sl

1

1
ﬁ'|01), and (1jp) = —=- (|o1)+ [10)).

(Oly) = 7

A quantum state cannot be directly accessed, meaning that, given a state |¢p) = a|0)+ (|1),
there is no way to directly ascertain the probability amplitudes o and 5. In order to obtain
information from a quantum system, one must perform a measurement, as described by Postulate
4.
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A measurement can be seen as a projection onto a certain basis. We will only consider pro-
jections onto the classical basis as described above, but this is not required in general. Measuring
|¢) in the classical basis results in outcomes

0, with probability |(0[) |* = |af?,
1, with probability | (1) |* = |8

Having obtained outcome 4, the system will now be in state |i). We will also be interested in
the outcome of measuring a state only partially, for instance, by observing its first few qubits.
For instance, given the state 1) we gave in the example of partial projections, we have that the
probability of observing different values for the first qubit are given by

Lol |l 1 a5l S
Prob(0) = = == Prob(1) = = =2
b =S T 1 Ty Db =T 3 ;

This will prove useful when we consider the outcome of a computation as being given by only a
subpart of its outcome. Generally, a quantum computation can be interspersed with partial or
total measurements. The deferred measurement principle claims that these measurements can
always be moved to the end without changing the computation [NC10], and so we can consider
only unitary transformations with measurements performed at the end without loss of generality.

1.1.4 Entanglement

When considering multi-qubit states, Postulate 2 describes a state comprising all qubits that is
created from the tensor product. This is the case because the states of these systems are known,
or at least guaranteed to be independent from on another.

In general, states of multiple qubits do not admit descriptions where each qubit is described
separately, and therefore the state cannot be written as a tensor product of single-qubit states.
We call such a state entangled, and when the qubit states can be separated and the state can be
written as a tensor product we call it separable.

Basis states are clearly separable, and a standard example of an entangled state is the Bell

state:
B (@l 5 (2-10)+ a0,

for any values «, 3, v, 0 € C. Entangled states are not only a staple of quantum protocols such
as quantum key distribution [BB14], but they are also essential in the advantage of quantum
algorithms [Vid03].

1.1.5 Infinite-dimensional Hilbert spaces

So far, we have worked with the definition of a Hilbert space for a finite dimension, in this
case the space spanned by a fixed number of qubits. This definition suffices for computational
models of finite dimension such as quantum circuits (defined for a fixed number of qubits), but
in the case of quantum Turing machines (Section 2.1), the state of the machine is described by
a countably infinite basis consisting of all classical Turing machine states.

In this case, we build an orthonormal basis consisting of all Turing machine configurations
7, such that the basis state |y) has norm 1, and given two different configurations |y)and |y'), we
have that (y|]y') = 0. To distinguish this Hilbert space from H defined from finite sets of qubits,
we denote it by S, following the notation of [BV97].

8



1.1. Notation and Basic Properties

The definition of a unitary operator U in the infinite basis scenario is no longer given by a
(finite) matrix, but rather via transition amplitudes (v;|U}7y;). We can define the adjoint UT of
U as the operator satisfying

(vl U 1) = (| U b,

and the unitarity condition UT U =1 can be verified for all basis states .

For more background on quantum computation, we direct the reader to [NC10].
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Models of Quantum Computation

Computers are ways of instantiating abstract objects and their relationships in physical objects and
their motion.

— David Deutsch

Having described the basics of quantum mechanics, we were already able to notice very
interesting and unintuitive behaviour, such as entanglement and superpositions. We now turn
to describing models of computation based on the laws of quantum mechanics, which will be of
use to us in the following chapters.

We start by defining the quantum Turing machine model, which defines the class FBQP of
functions that can be efficiently approximated by quantum computers. In this chapter, we discuss
the subtle differences between quantum Turing machines and deterministic Turing machines, and
in Chapter 5 we give an implicit characterization of FBQP.

We also introduce quantum random-access Turing machines which allow for instant access to
any cell of the input tape according to an address written on an index tape. This model, described
in [YC22, Yam20], allows for avoiding the linear cost incurred by moving the tape head to any
designated position, and is at the basis of the definition of FBQPOLYLOG, the polylogarithmic-
time version of FBQP, of which we give an implicit characterization in Chapter 6. This model
differs from that of the QRAM machine of [Kni96, WY23], which consists of a classical machine
controlling operations (i.e. unitaries, measurements) on a quantum memory, and is more akin to
the qRAM model of [GLMO08, YC22, JR23|, where data (quantum or classical) is accessed using
memory addresses that can themselves be quantum.

The quantum circuit model is also introduced. This model is of interest not only because
it is the most widely-used model for reasoning about quantum computation, but also because
it is the closest, among the standard models we consider, to a physical quantum computer
implementation. In Part III we focus on strategies that translate programs into quantum circuits
of appropriate size and depth for the respective complexity class.

2.1 Quantum Turing Machines

The quantum Turing machine model (QTM) was first introduced by David Deutsch [Deu85| as
the quantum version of Turing’s computational model [Tur37]|, the Turing machine (TM), which
serves as a cornerstone for reasoning about what can be calculated, as well as the relative difficulty
of certain types of calculations. Naturally, as the field of quantum computation emerged, different
proposals of QTMs were offered. Currently, the standard definition of QTM is the one given
in [BV97], which is the following.

11
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Definition 2.1 ([BVI7]). A k-tape QTM, with k > 1, is defined by a triplet (X,Q,0) where
e Y is a finite alphabet including a blank symbol #,
e () is a finite set of states with an initial state s and a final state st # g,

e § is the quantum transition function in Q x ¥ — CQXEkx{L’N’R}k; {L,N, R} being the set
of possible movements of a head on a tape.

Each tape of the QTM is two-way infinite and contains cells indexed by 7Z.

The starting position of the tape heads is the start cell, the cell indexed by 0. A configuration
v of a k-tape QTM is a tuple (s,w,m), where s is a state in @, w is a k-tuple of words in X%,
and 7 is a k-tuple of indexes (head positions) in Z.

An initial (final) configuration n; (resp. ~fin) is a configuration of the shape (sg,w,0)
(resp. (s7,w,0)). We use v(w) to denote a configuration v where the word w is written on the
input/output tape.

Following [BV97], we write S to represent the Hilbert space with orthonormal basis given
by the infinite set of possible configurations of a TM. A QTM M defines a unitary operator
Uy : S —» S, that outputs a superposition of configurations Y ; a|v;) (also called a surface
configuration) obtained by applying a single-step transition of M to a configuration |y) (i.e.,
Unmly)= ¥ ailvi). Let U}, for t > 1, be the t-steps transition obtained from Uy as follows:

Uty 2Uy  and ULt 2 Uy o UL,

Given a quantum state [¢)) = ¥, e(0,1}» Qw|w) and a configuration v, let y(|¢))) € S be the
quantum configuration defined by v(|¢)) = Xeqo,13n Cwly(w)).
A quantum function f:H — H is computed by the QTM M in time ¢ if for any |¢))e H,

Ut (it (19) = vin (F(9))-

Given T': N - N and a quantum function f, we say that the QTM M computes f in time T if
for inputs of length n, M computes f in time T'(n).

In [BV97], the authors specify that any description of a quantum Turing machine will have
to provide a satisfying answer to the following points in which this model necessarily differs from
its classical counterpart:

e Analog transitions. As in probabilistic TMs, the computational power of QTMs will depend
on the set of allowed transition amplitudes. This requirement must be balanced with the
universality of quantum computation.

e Superposed termination. A machine occupying a superposition of its configurations may be
partly in a final state (i.e. in a superpositon where some configurations are in a final state
and others are not). Our criteria for termination should address this possibility.

o Reversibility and unitarity. A QTM’s transition function must be described by a unitary
(and, in particular, reversible) transformation.

We will discuss each of these points separately.

12
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Figure 2.1: Constructive and destructive interference in a QTM computation.

2.1.1 Analog transitions

It has been shown that the choice of amplitudes of a quantum Turing machine makes a difference
in its computational power, although not in any practical sense. For instance, a first point to
make is that it does not change a QTM’s expressivity whether its transition amplitudes are real
or complex [BV97].

Definition 2.2. Let QP(K) denote the set of functions f : H — H such that there exists a
polytime-bounded QTM with transition amplitudes in K that computes f.

Definition 2.3. Given two sets of amplitudes K, K', we write QP(K) € QP(K") if for any e >0
and f € Qp(K"), there exists a g € QP(K) such that, for any [)e C2", ||f(|) - g(|)|| <e. We
write QP(K) ~ QP(K") if QP(K) c QP(K") and QP(K') c QP(K).

Example 2.4 ([BV93, Lemma 3]). QP(C) ~ QP(R).

Adleman et al. showed that QP(C) contains undecidable sets [ADH97, Theorem 5.1|, so it
seems that the set of all complex numbers is too powerful to be able to define quantum polynomial
time. Furthermore, in order to discuss universality, we require that the set of possible QTMs be
countable, so that they may possibly be given as input to a universal QTM, which is not the
case if the set of possible amplitudes is all the complex (or real) numbers. Therefore, Bernstein
and Vazirani defined a class of polytime bounded QTMs where the transition amplitude is either
-1, 1 or a rotation using the angle 2w > 72, 272" which we will denote in an ad-hoc notation as
QP(BV).

13
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Bernstein and Vazirani showed that any angle could be efficiently approximated with only
a polynomial number of instances of this single rotation [BV93, Lemma 6|, and so this model
faithfully approximates the initial set of uncountable QTMs. They then put forth the following
definition of a class of classical functions that can be approximated with bounded-error proba-
bility by polytime QTMs, denoted FBQP.

Definition 2.5. Given a set of functions F, let F. 2 be the set of classical functions f:{0,1}* —
-3
{0,1}* for which there exists a g in F such that |[{g(x)|f(x))||* > 2/3.

Definition 2.6 ([BV93]). FBQP = QP(BV)

2.
>Z
-3

A natural question is then, how does this model compare to other models of countable QTMs?
If we restrict C to the set C of complex numbers whose real and imaginary parts can be computed
to within 27" accuracy in time polynomial in n, Adleman et al. showed the following result, where
Q denotes the set of rational numbers.

Lemma 2.7 (|[ADH97, Theorem 3.1]). QP(C) ~ qP(Q) ~ qp({0, :t%, :I:%, £1}) ~qQrP(BV).

Corollary 2.8. QP(@)Z% =QP(Q),: = QP({O,i%,i%,ﬂ:l})Zg =QP(BV),:.

win
win

Equivalency between these different sets of amplitudes indicates that the definition of quan-
tum polynomial-time QTMs is quite robust. We denote this class of functions merely as QP in
the remaining of the thesis, a notation which can be though of as a shorthand for Qr(C).

2.1.2 Superposed termination

Let a final configuration of a QTM be a configuration in state s;. Since a QTM’s control flow
is generally quantum, it is possible that it may reach a superposition that is only partially in a
final configuration, i.e. where the probability that it is observed in state s is strictly between
0 and 1. Should this QTM state count as terminating? Notice that, in this case, we cannot
inspect the machine’s state without collapsing it and changing its flow of computation |[Mye97],
as typically the information of whether or not a machine is in state st is entangled with the rest
of the machine’s configuration.

In principle, one could circumvent this problem by classically simulating the QTM, therefore
being able to identify whether it has “fully terminated” or not without affecting the computation,
although this simulation might take exponential time. This, as argued in [LP98], centers the
objective not as an attempt to track a QTM’s termination but rather to determine “whether the
computer allows useful interference”. An added difficulty is the fact that interference in QTMs
is sensitive not only to the machine’s configuration but also in regards to its time step, and
given the requirement of unitarity, a QTM’s branch cannot simply wait until another branch
terminates to perform interference.

The convention of [BV97], which we will use in this work, is to define the termination of a
QTM as arriving at a superposition of only final configurations, and where no final configuration
was present in the QTM state up to that moment. Put differently, a QTM terminates if and when
all of its branches reach a final configuration for the first time, in precisely the same time-step.

Definition 2.9 (Definition 3.11, [BV97]). If, when QTM M is run with input x, at time T € N
the superposition contains only final configurations, and at any time less than T the superposition
contains no final configuration, then M halts with running time T on input x. The superposition
of M at time T 1s called the final superposition of M run on input x.

14



2.1. Quantum Turing Machines

Since QTM interference occurs when two branches reach the same configuration in the same
time step (see example in Figure 2.1), it is useful in quantum branching to reason specifically
about QTMs whose running time only depends on the input size. Such a machine is called
well-behaved. Furthermore, if the machine terminates with all of its tape heads back on the start
cells, it is called stationary.

This fact is important when considering branching QTMs, since the interference of the two
paths of computation is sensitive to the moment of termination of each machine. Indeed, it
is possible to construct a QTM that is well-behaved and stationary that performs the desired
branching.

Lemma 2.10 (Branching lemma, [BV97|, restated). If My and My are well-behaved QTMs with
the same alphabet, then there is a well-behaved QTM M such that if the second track is empty,
M runs My on its first track and leaves its second track empty, and if the second track has a 1
in the start cell (and all other cells blank), M runs My on its first track and leaves the 1 where
its tape head ends up. In either case, M takes four more time steps than the appropriate M;.

An important ingredient in quantum branching machines is the possibility of ensuring that all
branches are synchronized, to allow for interference. To guarantee this, the transition function
is defined such that the running time of the machine only depends on the input’s size. This
property can be stated as in the following theorem from [BV97].

Lemma 2.11 (Synchronization theorem, |[BV97|, restated). If f is a function from strings to
strings such that both f and f=' can be computed in deterministic polynomial time and such that
the length of f(x) depends only on the length of x, then there is a polynomial time, stationary,
normal form reversible TM which given input x, produces output f(z), and whose running time
depends only on the length of x.

Since a QTMs computation can be seen as various paths of classical computation performed
in superposition, Lemma 2.11 can be used to ensure that the lengths of these computations only
depend on the initial input size and therefore terminate simultaneously.

Finally, we consider the fact that the unitary evolution of a QTM must necessarily be re-
versible, which implies that not all TM transitions are QTM transitions.

2.1.3 Reversibility and unitarity

A QTM is said to be well-formed if the transition function § preserves the norm of the superpo-
sition (or, equivalently, if the time evolution of the machine is unitary). A unitary evolution is
necessarily reversible, and since deterministic Turing machines can perform irreversible compu-
tations, they do not form a subset of all well-formed quantum Turing machines.

While this implies that not all possible transitions are admissable for a QTM, it is always
possible to rewrite the transitions so that they are done reversibly.

Theorem 2.12 (|[Ben73|, restated). For every standard one-tape Turing machine, there exists a
three-tape reversible, deterministic Turing machine that simulates it.

Reversibility with one-tape machines is also possible, with the eventual drawback of maintain-
ing separate regions of the tape and incurring a quadratic slowdown in the computation [Ben73|.

Importantly, reversibility in a deterministic Turing machine is sufficient condition for its
validity as a quantum Turing machine.
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Lemma 2.13 (|[BV97, Theorem 4.2], restated). Any reversible Turing machine is also a (valid)
quantum Turing machine.

Therefore, calculations that are performed in a reversible way can be included in a QTM’s
definition while maintaining its validity.

We will now consider QTMs which have access to an index tape allowing for instantaneous
access to a cell in the input tape.

2.2 Quantum Random-Access Turing Machines

In Chapter 3 we will consider a complexity class obtained from restricting a QTM’s runtime
polylogarithmically. Such machines cannot read the entirety of the input, and in order for them
to access any input cell requires that they can access the input tape in a different way. For that
reason, we introduce here the model of the quantum random-access Turing machine (QRATM).

A QRATM has a random-access input tape, an index tape, and ¢ work tapes and is then
defined as a triplet (Q,%,d), where @ is a finite set of states containing an initial state sp and
two (disjoint) subsets Qacc and Qrj for accepting and rejecting states, ¥ = {0,1,#} is the tape
alphabet, and the transition function § is such that

5:Q x nl+e CQx21+CX{L,R,N}1+C.

This transition maps the state and read symbols on the index tape and work tapes to a function
mapping each state, each written symbol, and each head move to an amplitude. Note that the
input tape does not have a tape head, hence is not taken into account in this transition function.

To get access to any character of the input, a special transition of the machine is defined:
when the machine is in a special state squery, the cell of the input tape indexed by the value
written on the index tape is swapped with the cell under the work tape head, and the machine
transitions to a state Saccept- Note that, in contrast with [Yam22|, the input tape is not read-
only as we consider a class of functions rather than decision problems, hence having the modified
input be part of the output is necessary.

A pure configuration of a QRATM is a tuple

*2+cC 1+c
(8, W, W0, W1, ..y Wey 20y Z15---52¢) € QXN x 7

where s is a state, w the word written on the input tape, assumed to begin in cell 0, wg is the
word on the index tape, w1, ..., w. the words written on the work tapes, zg is the position of the
index tape head, z1, ..., z. the tape head positions for the work tapes, all positions are relative to
the first character of the word. The initial configuration for input z is v(z) = (sp,z,€,...,0,...).

We call a superposition of pure configurations a surface configuration. Surface configurations
can be written as Y, a,|r), with r ranging over pure configurations, «, € C is the amplitude
associated with configuration r. QRATMs are also required to satisfy reversibility and well-
formedness condition: a configuration may have only one predecessor, and the transition function
must preserve the norm of configurations, that means that for all reachable surface configurations,
Zr |a7"|2 =1

A QRATM halts in time ¢ on input z if, starting from the initial configuration v(x), after ¢
steps, its surface configuration is a superposition of pure configurations in accepting states. If
for all input z, a QRATM M halts on input z in time T'(|z|), we say that M halts in time T'. If
a QRATM halts, its output is defined as the linear combination of the words on the input tape
and work tapes, using the previous notations, it corresponds to Y., a|w”, wg, wi, ..., wl).
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2.8. Quantum Circuits

Definition 2.14. Given a function f:{0,1}* - {0,1}*, we say that a QRATM M approzimates
[ with probability p if for any input x € {0,1}*, starting from the initial configuration v(x), M
halts with an output ¥, cr|w”, wg, wy, ..., we) such that ¥rco,..x{ f(z))xz2+e o |? > p.

We now turn to the circuit model of computation, which differs in many ways from the
quantum Turing machine model.

2.3 Quantum Circuits

By the mid- to late-1990s, quantum circuits effectively supplanted quantum Turing machines as the
computational model of choice in the study of quantum algorithms and complexity theory — a shift
made possible by Yao’s proof that the models are equivalent.

— Molina and Watrous [MW19]

Quantum circuits [Deu89, Yao93| are the ubiquitous model for describing quantum compu-
tation, and in many ways are considered to be the current standard approach to reasoning about
quantum programs. A quantum circuit is defined by an acyclic array of quantum gates, applied
on wires which represent individual qubits.

Each gate is defined by a unitary operator, as it describes the evolution of a qubit state. As
a consequence, a gate’s number of input qubits is the same as its number of output qubits. A
circuit’s semantics is given by the composition of the semantics of each gate.

Given two circuits Cp, Cs, we denote by C; = Cy the equivalence between the semantics of
two circuits. For instance, we have that

derived from the fact that

1oV Uel)=UeV=(Ua1)(1aV).

This means that gates can be generally “dragged” through wires without changing the circuit’s
semantics, and that operations can be applied concurrently. This is important in the distinction
between a gate’s size (number of gates) and depth (the number of time steps required to execute
all the gates).

2.3.1 Quantum gates

We now consider a few simple gates. An example of a classical gate which is also described by a
unitary operator is the NOT gate:

NOT = (? ;) or —@H—

A standard example of a quantum gate is the Hadamard gate, defined in Section 1.1.2, which
creates a balanced superposition from a classical state:

1 {1 1 , RN GO
H E(l _1), w1thH|a)—\/§ 10) v 1)

13
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Chapter 2. Models of Quantum Computation

So far we have only considered single-qubit gates. In order to generate interaction between
qubits, we will need to consider multi-qubit gates. Given a gate described by a unitary U, one
may define a controlled-U gate, where U is applied if and only if a control qubit is in state [1).
For instance, a controlled-NOT gate is described as

1000
1 a—e—a
CNOT = X 00
000 1 b—b—aob
0010

If a gate is only applied if the control qubit is in state |0), this is called a negative control and
the result gate is said to be anticontrolled.

We can compose gates to create larger circuits. For example, a Hadamard and CNOT gate
can create an entangled pair of qubits:

0 {'—

S

|00)+]11)

V2

The swapping of qubit addresses can be performed with 3 controlled-NOT gates:

FanY
a—x—1b y NV
or
b a \ N yan)
A\ A\

The inverse of unitary gates coincides with the conjugate transpose. So far, all gates we have
considered are their own inverse, i.e. we have that NOTT = NOT and H' = H. Examples of
gates that are not their own inverse are rotations and phase-shifts. For example,

. [cos(8/2) -sin(6/2) (1 0
1y (0) = (sin(9/2) cos(0/2)) and Ph(6) = (O e’e)

satisfy R, (0)' = R,(~0) and Ph(0)" = Ph(-0).

2.3.2 A universal set

Many more gates can be defined. However, it is an interesting question to know if at this
point we have enough gates to be able to describe any unitary. This is the issue of gate uni-
versality [BBC95, BMP*99|. Different sets of gates have been shown to be (approximately or
exactly) universal for quantum computing. In classical computing, a universal gate is the 2-bit
NAND gate, which returns 0 if both input bits are in state 1, and returns 1 otherwise. Its
reversible equivalent is the 3-qubit Toffoli, which we can implement using gates we have defined
so far:

a—e—a [Th——

7]
L]

|
!

D
Ay

Tt

fan
A

c—®—ce(d) HHlS 1T T
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2.8. Quantum Circuits

where T'= Ph(7) is the so-called T" gate, corresponding to a phase shift of /4.
Using the Toffoli gate, we are able to define a controlled-swap, also called a Fredkin gate:

D
N\

D D
N A\

To build the Toffoli gate, we used the set of gates {CNOT, H, T} (note that T = T7), which
has been shown to be approximately universal for quantum computation [BMP99|. This set is
also minimal in the sense that removing any gate makes the set no longer universal. This can
be seen as each subset falls short of describing general unitaries:

e Removing CNOT: The set {H,T} consists only of single-qubit gates, and therefore is not
capable of producing entangled states.

e Removing H: The set {CNOT,T} cannot create superposed states, as a basis state input
results in a basis state output (up to a global phase) for both gates.

o Removing T: Gates {CNOT, H} only contain real entries and so cannot be combined to
describe a unitary with complex values.

Among these basic gates, the T gate is considered to be the hardest one to implement,
depending on hardware, as the CNOT and Hadamard gates belong to the Clifford group, and
circuits containing only these gates can be efficiently simulated by a classical computer |[Got98,
AGO4].

In this work, we will consider as basic gates the set B £ {CNOT, R,(0), Ph(0)}, where R,(6)
and Ph(f) can take any value 6 € R. Given a circuit C' described with gates in B, we denote by
#C its number of gates.

2.3.3 Ancilla qubits

A very standard tool of reversible and, in particular, quantum computation is the use of extra
bits of information which allow for performing logical operations without erasing information.
These ancillary bits, also simply called ancillas, add to the circuit’s total complexity in the total
number of bits (or qubits).

In most applications in quantum computing, and for all intents and purposes in this work,
these extra qubits are not part of the output of the computation and should be set back to
their initial state once the computation is over (this is called uncomputation). This treatment
of ancillary qubits corresponds to what are called clean ancillas, which differentiates them from
dirty ancillas or conditionally clean ancillas recently defined in [KG25].

In this work, we will only be handling clean ancillas. An easy example of ancilla use is given
below in the construction of a multi-controlled U gate, using 4 ancillas in state |0) which are then
reset to that state by the end of the circuit.

2.3.4 (Multi-)controlled gates

We have considered a set of basic gates B which is universal for quantum computing. We now
consider how we can describe arbitrarily-controlled versions of these gates by using the original
set B.
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Chapter 2. Models of Quantum Computation

We start by considering gates with a single control qubit. The controlled y-rotation gate can
be written with CNOT's and single-qubit rotations:

e
RO~ roplo{rnc o
A similar construction can also be done for the phase-shift gate:
- v —1{ Ph(6/2)
S U Ph(6/2) —b—] Ph(-6/2) &

Given an arbitrary gate U with n > 1 control qubits, we are able to implement the multi-
controlled U using an instance of U controlled on a single qubit, as well as n — 1 ancillary qubits
and (2n - 2) Toffoli gates [NC10]. For example, for n = 5:

a1
q2
A —— 0)1 % D
@t w—{x] X}
a3 |0)2 D &b
d4 o = 4 @ @
a5 0)3 b &
de a5
7 10)4 O—1—
d6
qar i

Where an empty circle o indicates a negative control, meaning that the gate is applied when the
control qubit is in state |0).

2.3.5 Circuit depth

As we claimed at the start of Section 2.3, gates can “move around” in wires without changing the
circuit semantics. In practice, this means that, in many cases, gates can be applied concurrently,
and their respective qubits are active for a shorter amount of time.

The fidelity of a qubit measures how close a given qubit state is to the target state, i.e.
the intended output state, given its initial condition and the gates that were applied [HYC*19].
Current qubit implementations have much lower fidelities than classical bits, and for this reason
the depth of a circuit is an important measure of its complexity, as it gives a metric for the
maximum number of operations performed on any given qubit in the circuit.

Circuit depth is an important notion even in complexity theory, as a circuit’s asymptotic
size may be very different from its asymptotic depth. As an example, consider an arbitrary
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2.4. Quantum Programming Languages

permutation of qubit positions. In the worst case (where all addresses must be changed) this
requires at least a linear number of swap gates, but these gates can be chosen and arranged such
that the circuit has depth 2 [MNO1]. For example, consider the permutation:

i
K

where the swap gates left and right of the dashed line all refer to disjoint pairs of qubits, and
therefore the circuit depth is 2.

The final computational model we consider are quantum programming languages.

2.4 Quantum Programming Languages

While quantum circuits have become the standard for reasoning about quantum algorithms and
their complexity, any given algorithm will not correspond to a particular circuit, but rather to
a family of circuits, typically parametrized by the input size of the problem. In fact, solving a
problem is usually done by reasoning about its structure, using scalable tools such as loops, re-
cursion, and other types of control flow. For these reasons, programming languages are incredibly
useful tools, even when one wishes to reason about problems at the circuit level [Sel04].

2.4.1 A focus on quantum circuit description

The design of many programming languages is directly inspired by the ubiquitousness of quan-
tum circuits as a paradigm for quantum computation. This is the case of circuit description
languages, such as Quipper [GLR"13], LIQUi|) [WS14|, QWIRE [PRZ17|, Qiskit [JATK"24],
and Cirq |Dev24]. These languages allow for scaling up quantum circuits by combining them in
safe ways, all the while making use of classical control flow. Since quantum circuits are classi-
cal data, they lend themselves to all the typical operations of classical computation, including
duplication (cloning) and deletion. This allows the quantum programmer to build large circuits
without having to consider the low-level details of the implementation.

Another approach is to create programs by direct use of qubit variables, this is the case, for
instance, in quantum lambda-calculi [AG05, SV06, DCM22|, and the languages Silq [BBGV20)]
and Qunity [VLRH23|. These examples vary in the way that they define basic quantum opera-
tions, but ensuring that qubit transformations are valid (for instance, that no-cloning is enforced)
is generally more complicated than in circuit description languages.

2.4.2 Unitarity and reversibility

Ensuring that a program describes a unitary (and therefore reversible) transformation necessarily
requires that it satisfies the no-cloning theorem. For instance, a function encoding a CNOT
that takes in qubit variables x and ¥ is only valid if x and y reference different qubits. More
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Chapter 2. Models of Quantum Computation

intricate examples exist, as in QML [AGO05]| or Lambda-S; [DCM22]|, where a term encoding an
if statement
if  then s else ¢

is well-typed for a qubit variable x only if s and ¢ are orthogonal (in cases where s and ¢ are open
terms, this means that they are orthogonal for any term substitution where they have adequate
types). The definition of orthogonality then depends on the type of the term, and different
criteria for orthogonality can be proposed. Ensuring that s and t are orthogonal guarantees that
the reduced term - s+ (-t satisfies unitarity when |a|? + |3]? = 1.

2.4.3 Classical versus quantum control

While quantum programming languages strive to be hardware-independent in that they can be
translated into different architectures without further intervention from the programmer [BCS03],
they usually differ on their emphasis of different aspects of quantum computation, one example
being that of control flow.

Quantum mechanics allows for two possible interactions with qubits — unitary evolution of
their state, or measurement. As a result, there are two approaches to handling control flow in
quantum programs:

e Quantum control flow: the superposed state of a qubit determines which instruction is
applied, resulting in potentially very large unitary transformations;

e Classical control flow: the program (possibly) executes different instructions according to
the measurement result of a qubit; this makes the program probabilistic.

This distinction is not absolute and should be seen more as a matter of degree. All languages
will have some sort of classical control flow, even if they do not allow for measurements, since
they may contain for or while loops, or even perform recursion over classical parameters such
as integers or the size of a qubit list.

Likewise, most languages allow for a measure of quantum control, for instance, in the form of
adding control qubits to a unitary gate. The quintessential example of quantum control is given
by the existence of a quantum if statement which, for unitaries Uy, U; defined in the program,
performs the transformation

|0> control ® |¢> target + |1> control ® |¢) target

|

’0> control ® UO ‘¢> target + ’1> control ® Ul |¢> target

The interesting case occurs when Uy and Up are not basic gates, but rather unitary transfor-
mations defined by substatements of the program, possibly making further use of classical and
quantum control flows. This instruction is not directly available in Qiskit, but is implemented
in Quipper, Silq and Qrisp [SBZ*24].

The use of quantum control is not strictly necessary for a language to express all quantum
algorithms [DMZ10]. However, it allows for the quantum programmer to make “full use” of quan-
tum superposition by being able to reason about differents sets of instructions being performed
according to the superposed state of a qubit. This approach is closer to the quantum Turing
machine model, where all properties of the machine (tape symbols, head position, state) exist in
superposition and the entire control flow is quantum.
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2.4. Quantum Programming Languages

2.4.4 Resource estimation and optimization

Given the fragility of quantum computers, many programming languages include tools for re-
source estimation and optimization. For instance, Quantinuum’s TKET language [SDC*20] offers
translation of circuits into diagrams that can be rewritten to obtain simpler, equivalent circuits.

Some circuit description languages allow for typing rules that estimate the complexity of
obtained circuits [CDL24, CDL25]. Another example can be found in Quipper, which allows
for the reuse of ancillary qubits in a circuit by allowing for declarations of ancilla creation and
deallocation |GLR"13].

In this thesis, we address the problem of optimizing quantum circuits in a way that differs
significantly from the approach in typical programming languages. In Part III we study how
to improve the asymptotic complexity of the quantum circuits by exploiting the structure of the
program. This contrasts with the approach of taking an already-compiled circuit and reducing
its size or depth via local simplifications.
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3

Quantum Complexity Classes

By any objective standard, the theory of computational complexity ranks as one of the greatest
intellectual achievements of humankind — along with fire, the wheel, and computability theory.

— Scott Aaronson, Quantum Computing Since Democritus

Having gone over the structure and requirements of different models of quantum computation,
in this chapter we will focus in how these models are used to define quantum complexity classes,
namely the classes FBQP and FBQPOLYLOG of functions that can be approximated in quantum
polynomial and poly-logarithmic time, respectively.

The computational complexity of a given model is defined by its access to resources, usually
in time or in space. A quantum Turing machine’s space complexity corresponds to the number
of tape cells necessary to perform all branches of its computation. The time complezity of the
QTM is the number of steps required for the machine to reach a final configuration.

Given a set of basic gates, a quantum circuit’s size-complexity is defined as its total number
of gates', whereas its depth-complexity is the number of time-steps required to execute all the
gates in the circuit. Circuit space-complexity can be defined as its number of wires (including
ancillas), but this notion is included, in the asymptotic case, in the definition of circuit size, as
wires without gates are irrelevant to the computation.

The quantum Turing machine model was first introduced by Deutsch [Deu85| and later stud-
ied by Bernstein and Vazirani [BV93, BV97], who defined the class FBQP by only considering
QTMs that terminate in polynomial time (Definition 2.6). As we saw in Chapter 2, ensuring the
robustness of the FBQP definition, as well as guaranteeing that QTMs were well-defined, required
grappling with different obstacles, namely: restricting the set of transition amplitudes, ensuring
that all branches of computation terminate simultaneously, and generally making sure that the
transition function is at all times unitary (and, therefore, reversible).

The quantum circuit model is comparatively much simpler, as it lends itself more easily to
classical intuitions. While there are important differences between quantum and classical circuits
— quantum wires exist in superposition, and gates are described by unitary matrices — they can
be handled in similar ways.

In 1993, Yao showed that ¢ steps of a quantum Turing machine on input n where ¢ > n can
be simulated by a quantum circuit of size quadratic in ¢ [Ya093]. The equivalence between these
two models led to quantum circuits becoming the standard approach to describing quantum

LA case can be made that the number of wires should also be included in the definition of circuit size. However,
only considering the number of gates allows us to describe the cases where not all qubits are affected, for instance
in constant-time operations.
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Chapter 3. Quantum Complexity Classes

algorithms. The ideas of the proof will also be useful for proving that a programming language
can simulate a polytime quantum Turing machine.

We start by introducing the big-O notation which we will use throughout the thesis. Let
f, 9 : N > N be two functions. Then, we write:

f(n) =0(g(n)) if there exist M,ng € N such that f(n) < M g(n), Vn >nyg,

f(n) =Q(g(n)) if there exist M > 0,ng € N such that f(n) > M g(n), Yn > no.

The following notation is used when the two conditions hold:

f(n) =6(g(n)) if f(n) = O(g(n)) and f(n) = Q(g(n)).

We now discuss the class FBQP and its definition using quantum circuits.

3.1 Quantum Polynomial Time (FBQP)

We can complement the definition of FBQP given in Chapter 2 by considering its equivalent
definition via uniform quantum circuit families.

3.1.1 Equivalence between QTMs and quantum circuits

In this section we go into the details of Yao’s result, and some of its ideas. We start by introducing
a standard notion in circuit complexity, that of uniform families of circuits.

Circuits are defined for a fixed input size — typically its number of (non-ancillary) wires.
Therefore, we consider families of circuits, defined as a sequence of circuits {C), }nen where C),
takes in an input of size n. Furthermore, we will be interested in families of circuits for which
there is a single, efficient classical algorithm that, from the input size n, is able to compute a
description of the circuit C,,.

Definition 3.1. A family of circuits (Cp)nen is said to be uniform if there exists a polynomial-
time Turing machine that takes n as input and outputs a representation of Cy, for all n e N.

Definition 3.2. A family of circuits (Cp)nen is said to be polynomially-sized with « € N - N
ancilla qubits if there exists a polynomial P € N[ X ] such that, for each n € N, #C,, < P(n) and
the number of ancilla qubits in Cy, is exactly a(n).

Yao’s equivalence result can then be stated as follows.

Theorem 3.3 (Theorem 2, [Ya093|, restated). Given a quantum Turing machine M, there exists
a uniform family of quantum circuits of size O(t?) that simulates t steps of M.

Corollary 3.4. Polytime-bounded QTMs and uniformly generated quantum circuits have equiv-
alent computational power, up to a polynomial overhead.

This equivalence suggests an alternative definition of FBQP to the one given in Definition 2.6
which made use of quantum Turing machines. To give such a definition, we start by bringing the
two models closer, by adapting circuits with a fixed input size to the infinite-tape of a QTM.

We define a padding function for the input given to a quantum circuit. This is done in
order to simulate a QTM’s unbounded writing space. An important detail in this simulation is
that, for a given input, a time-bounded QTM only accesses a finite number of cells in its tape.
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Furthermore, if the QTM is polytime-bounded, the maximum number of cells accessed for any
input of size n is bounded by a polynomial P(n).

Furthermore, as is customary, we assume that the size of our target function f is known and
that it only depends on the input size. Then, a circuit computes f(x) if the first | f(z)| qubits
are in state f(x) with probability at least %

Theorem 3.5 (Adapted from [Yao93| and [NC10]). A function f:{0,1}* - {0,1}"* is in FBQP
iff there exists a uniform polynomially-sized family of circuits (Cp)neny with o ancilla qubits s.t.

Vae{0,1}%, )
H(f(fﬁ) | [Cl(] (Ix)® |Oa(|’”‘)))H >

We will now look at the more interesting aspects of Yao’s proof, in particular those which
will be relevant for our purposes later on in this work.

Overview of the proof of Theorem 3.3 The entire argument for the simulation scheme is
beyond the scope of this work, and so we will focus on its aspects that will be more useful to us
in the next chapters. We discuss the main ideas of Yao’s proof, with some comparisons to more
recent work that improves the asymptotic depth of the simulation [MW19].

Given a single-tape quantum Turing machine M, we let @ = {1,...,m} be its set of states,
and ¥ = {0,1,#} its alphabet. In Section 2.1, we described a QTM’s transition as the action of
an infinite-dimensional unitary acting on its configuration, described by a transition function

6 . Q x E — CQXEX{LJV,R}

which evolves the inner machine state, the tape head position, and the state of its infinite tape
in a unitary fashion. In order to describe this unitary as the action of a quantum circuit, one
must describe the QTM’s transition as finite and local, so that it may be described by a finite
quantum circuit described by the number of constant-size gate operations.

Finiteness is given by the fact that we only wish to simulate a fixed number ¢ of transition
steps. Starting from the cell with index 0, in ¢ steps the machine M can only reach the cells with
index in {-t,...,t}. Locality comes from the fact that, while M’s unitary evolution is defined
over the entire tape, its description is focused in the tape space surrounding the tape head. Put
differently, while the machine has an infinite tape to work with, each step only concerns three
tape cells at a time: the cell with the tape head, and the cells adjacent to it, left and right.

We can start by considering the simulation of a single step of M. We rewrite M’s tape
description such that all the relevant information is available locally. For every cell, we wish to
have the following information:

e what symbol is written on the cell;
e whether or not the machine head is reading the cell, and
e if so, what is the internal state of the machine.

For this purpose, we denote M’s configuration by 2t+ 1 pairs 7; = (k;, 0;) where o; is the tape

symbol written in cell i € {-¢,...,t}, and k; € {-m,...,m} is defined, for s € Q, as
s, if the machine is in state s with the tape head active on cell i,
ki = {-s, if the machine is in state s with the tape head inactive on cell 7,

0, if the machine head is not in cell 3.
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Figure 3.1: Scheme for simulation of a QTM using a quantum circuit.

The distinction between an active and inactive tape head in the simulation is an essential
idea in the proof, as it ensures that a precise number of steps are applied. Let T be the Hilbert
space of pairs (o, k). The initial state of M on input zg,...,z,-1 is defined in the Hilbert space
T2*1 and is encoded as

(®16-01) e (e s (@ (101 ) & (DI, 01)

i=—t

The first gate is G : 72 — T3, defined over the Hilbert space of three pairs, which evolves the
state such that it simulates a step of the QTM if the head is active on cell ¢ and then deactivates
the tape head. For instance, G acts trivially on a state of the form

|(a1,b1)) @ [(az,0)) @ |(as,b3))

as the head is not in found in the middle register pair. If it is, G performs the transition:

|(a1,0))@ |(az,p2)) ®|(as,0))

— >, d(p2,a2)[az, b2, L] -[(a1,-2))® (b2, 0)) ® |(as3,0))

c2€Q), baeXs
+ QZb 25(p2,a2)[q2,b2,N]-I(a1,0)>®I(bz,—qz))®|(a3,0)>
+ ), 0(p2.a2)[az, b2, R](a1,0))®|(b2,0)) ® (a3, ~q2))

CQEQ, szZ

The deactivation of the tape head by G ensures that precisely one step is applied, as once
the first G acts non-trivially the remaining will no longer change the state. Simulating one step
of M consists then of applying G to every triple 7;_1 7; 41, for i € {-t,...,t}.
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There remains, however, the problem that the unitariry of M’s transition may not be con-
served when we restrict the tape to the cells of index —¢ through ¢. For instance, even the trivial
machine that only moves the tape head right is not reversible when we consider its restriction to
a finite amount of tape. To handle this restriction, we consider a looped tape, where

Tee2 =Te—1 and  Ty_9 = Ty,

Yao proved the correctness of this construction for a cascading application of gate G from left
to right [Yao93|. By slightly modifying G, it is possible to arrange gate applications such that
the depth of one step is constant [MW19], as in Figure 3.1.

After a round of G gates is applied, a gate P resets the tape head in each cell back to active:

k),

and a full step of M is simulated. In order to simulate t steps of M, one simply composes this
circuit ¢ times.

P:T-T, Plk)=

We now consider a class that is more restrictive than FBQP, the class of quantum polylogarithmic-
time functions.

3.2 Quantum Polylogarithmic Time (FBQPOLYLOG)

Polylog-time problems occur in particular circumstances, usually when the input is particularly
structured. An example of such a problem is binary search on a sorted list.

A standard quantum Turing machine running in polylog-time would not be able to access the
entirety of its input tape by moving the tape head. In order for the machine to have access to
any part of the input, the class FBQPOLYLOG makes use of the quantum random-access Turing
machine model described in Section 2.2.

Definition 3.6. The class FBQPOLYLOG is defined as the set of functions f:{0,1}* - {0,1}*
such that there exists a QRATM running in polylogarithmic time that approzimates f with prob-
ability at least %

We will now relate this class to the quantum circuit model via the theory of quantum query

complexity.

3.2.1 Quantum query complexity

The query model of quantum computation is the scenario in which one wishes to compute a
function by making use of black boxes which are accessed via queries [Ambl18]. A black box
performs a unitary transformation on the quantum state according to some classical function
f:{0,1}* - {0,1}. There are generally two types of oracles considered, phase oracles and
boolean oracles. A phase oracle Py performs the phase-shift operation

o) =77 (1)),
whereas a boolean oracle Oy is defined, for z € {0,1}* and be {0,1}, as
@)@ )= |z)® b & f(2)).
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Chapter 3. Quantum Complexity Classes

In both cases, the oracle is defined as being executed in a single step, and are used as a tool for
reasoning about the complexity of algorithms. The two oracles are equivalent, and a choice can
be made according to which one better suits a specific algorithm. For instance, a phase-shift
oracle can be simulated by a boolean oracle perform the query on a |-) state:

) = Pr = (-1)/@) - Jx)

= Of
=) —————— 1) —

Likewise, a boolean oracle can be simulated by a controlled phase-shift oracle:

)= =) Py
Oy = = Py

) —__— e @)

where a controlled phase-shift oracle for f is recast as a phase-shift oracle for a function g defined,
forn>1, as

g(xla"wahy) éy'f(xla"'awn)-

Given a target function F, we denote by Q(F) the function that takes as input n € N and
gives the least number of queries necessary for a quantum algorithm to approximate F with
bounded-error probability on input size n. The function Q(F) gives a lower bound on the time
complexity of F. For instance, for the OR, AND, and PARITY functions defined as

OR(z) = max z;, AND(x) = Anllin x, and PARITY (z) = @ s,
=1...n =1...n i=1

we have that, while Grover’s algorithm [Gro96] allows for a quadratic speedup in the query
complexity of AND and OR, no such speedup exists for PARITY.

Lemma 3.7 ([Zal99]). For F € {AND,OR}, we have that Q(F) = O(y/n).

Lemma 3.8 ([FGGS98, BBC*01]). Q(PARITY) = ©(n).

3.2.2 The limits of quantum polylogarithmic time

A link between the quantum query model and quantum random-access Turing machines can be
made by viewing the read-input transition as an oracle query [Yam22].

Lemma 3.9. Let F € FBQPOLYLOG. There exists k € N such that Q(F) = O(log* n).

Proof. Let F be a function approximated with bounded-error probability by a QRATM M
bounded in polylogtime. Let M’ denote the machine described by M where the squery state acts
trivially on the tape, meaning that it only changes into state s,y without moving the tape heads
or changing any symbols. We have that M’ is a valid quantum Turing machine, and therefore
we may build a unitary Uy from basic gates that simulates a step of M’ in an encoding of the
tape as in Yao’s proof.
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3.8. Implicit Characterizations

The execution of the QRAM step is then defined using a gate Q, which performs the trans-
formation:

lih= B=lih

=

E./
|
1

= |$1 e i1 Y1 T+ ---)in

w = = lriveys - )w

The gate Q can then be described as an oracle operation. Given the relation between SW AP
and CNOT gates, we consider the following two boolean oracles:

i) = = |i); i) = = |i)
|l'>m = Of = |:L‘>m |:L‘>in = Og = |:L‘1 e i (iL‘z (&) yl) Titl - -)in
) = = (Y1 ® ) Y293 Jw lyhw = = |y)w

and obtain Q@ = Oy O, O;. Therefore, one application of G corresponds to a constant number of
oracle queries. A single step of M is given by Ujpss Q and since machine M runs in polylogarithmic
time, the entire simulation can be done with a polylog number of gates, including oracle queries.

O

We may therefore conclude that AND, OR, and PARITY cannot be computed in quantum
polylogarithmic time, even with bounded error.

Lemma 3.10. AND, OR, PARITY ¢ FBQPOLYLOG.

Proof. By Lemmas 3.7, 3.8 and 3.9. O

So far, we have considered the quantum Turing machine and quantum circuit models of
computation, as well as the complexity classes FBQP and FBQPOLYLOG. We gave equivalent
definitions of FBQP, using polytime-bounded QTMs and uniform families of poly-sized quantum
circuits. We now consider two existing model-free (or implicit) characterizations of quantum
polynomial time.

3.3 Implicit Characterizations

Quantum polynomial time has been characterized with a lambda calculus [DMZ10] and a function
algebra [Yam20]. While these works differ on the precise class being characterized, they share
a general structure. First, one considers a system that is able to simulate a polytime quantum
Turing machine, and then one imposes the bounded-error condition on the result.

We describe in some detail the characterization of FBQP given in [Yam20] as it provides a
point of comparison to the equivalent characterization given in Chapter 5, and because it will
be of use in the completeness proof of Theorem 5.24. We start by giving the definition of the
function algebra given in [Yam20], which we denote by %.
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Chapter 3. Quantum Complexity Classes

Definition 3.11 ([Yam20]). Let % be the smallest class of functions including the following
basic functions, with 6 € [0,27) N C,

I(jy) = [¥), Phy([)) = 10X0[%) +€“[1X1]0),

NOT(|y)) =

OX1ly) + [1X0[%) , Roty([4)) = cos Olp)+ sin O(|1XO0[) - [0X1]))

) if 0(Jy)) <1,

SWAP(|¢y)) = {Za,be{O,l} lba)Xably))  otherwise,

that is closed under schemes Comp, Branch, and kQRecy, for k,t € N, defined as

Comp[F,G](|¢)) = F(G([$)),

[¥) if e(j)) <1,

Branch[F,G](|y)) = {|O)® F{0]y)) +|1)® G((1|y)))  otherwise,

. JE(v) if 0(j0)) < t,
kQRec,[F,G, H](|¢)) = { G( Sueionys [0)® Fu (wlH(0)))  ofheruise,

where each Fy, € {kQRec;[F,G,H],I}.

The functions in % are defined using partial projection on qubit states, as defined in Sec-
tion 1.1.3. This means that functions are well defined for input states of any dimension, with the
transformation being performed on the first qubits of the state. For instance, the NOT function
inverts the value of the first input qubit, as shown in the following example.

Example 3.12. Let [¢)= —=(|00)+[11)), then

NOT(j¢)) = !

0X1[3) + [1X0l) = —=([0X1]00) + [0X1[11) +[1)0J00) + [1)0[11) )

2

~

1

=—(0+01)+[10)+0) = 7

7 (J01)+110)).

The iterative power of % is expressed in the multi-qubit recursion scheme kQ Rec;. This
scheme takes in a function F' for the base case, where the input length is smaller than some
constant ¢, and two other functions G and H were H is first applied to the input state, followed
by a quantum case statement controlled on the first £ qubits, and finally concluded with an
application of G to the final state.

We can describe this construction in circuit-like notation as follows, where we write the gate
F; to represent F,, where i is the integer encoded by the binary word w.
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3.8. Implicit Characterizations

if £(yh)) < 1,

—0
. —0
—e

= kQRec; = = first : : :
k qubits H | 1 G otherwise.

%_FTO_‘E'}&—'E e For

Each function F; can either be the identity function or a recursive call to kQ Rec;, which is
performed on a smaller input (in this case, with k fewer input qubits).

Functions in %¢ are not allowed to increase or pad the input, meaning that the input and

output sizes are the same. In order to simulate a QTM with an infinite tape, a polynomial-time
padding function is included in the simulation.

Definition 3.13 (Polytime padding function). A polytime padding function is any polytime
function ¢ : {0,1}* - {0,1}* such that for any |x)e {0,1}", we have that ¢(|z)) = |z)® |w(n)),
where |w)e {0,1}*.

Padding therefore consists of adding some amount of writing space which only depends on
the size of the input. The final class of functions is then defined by composing the functions in
%, with polynomial padding,.

Definition 3.14. Let % denote the following set of functions
&y = {f o ¢ such that f € %y and ¢ is a polytime padding function.}

The padding allows for simulating the space in the QTM that starts out blank but is nev-
ertheless used during its computation. The fact that a polynomial padding suffices for is given
by the argument that a QTM running in P(n) time can only reach 2P(n) + 1 cells, as in Yao’s
equivalency proof described in Section 3.1.1.

The set of functions ¢ can simulate any QTM running in polynomial time, and adding an
approximation condition gives us a schematic definition of FBQP.

Theorem 3.15 ([Yam20]). % = Qp.

Corollary 3.16. @Z% = FBQP.

The entire argument for the proof of Theorem 3.15 is outside the scope of this thesis, but
its structure is of interest as background on implicit characterizations of quantum complexity
classes. These kinds of proofs are based on the characterization of quantum Turing machines via
quantum circuits, described in Section 3.1.1.

Essentially, one builds a function in the algebra (or a small program, in the case of a program-
ming language) that is capable of executing one local step of the quantum Turing machine: take
three adjacent cells, and simulate the transition function. This smaller function is then iterated
over the entire tape (using the construction rules in the algebra) so that the step of simulation
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Chapter 3. Quantum Complexity Classes

is executed in the whole tape (or set of tapes) in such a way that precisely a single step of the
machine is executed. Given that the machine is (polynomially) time-bounded, we only need to
simulate a finite (polynomial) number of cells. This single-step function is then iterated so as to
simulate the full execution of the QTM, which will terminate in a polynomial number of steps.
The interest in this result, which partly represents the motivation of this thesis, is in being able
to describe quantum polytime without an explicit bound on the number of resources used. The
class % has the advantages of possessing an intuitive definition: it contains a few basic functions,
and then it is simply extended with composition, quantum branching and bounded recursion.
Furthermore, there are no explicit resource bounds, nor did we have to handle the restrictions of
well-formedness as appeared in the QTM model or uniformity in the case of quantum circuits.

This section concludes the introductory part of the thesis and provides a good opportunity
for motivating our work before we begin Part II which will contain our new results.

Our intent in providing a programming language characterization of FBQP and FBQPOLYLOG
is to bring the tools of implicit complexity closer to the quantum programmer. While the implicit
characterizations of [DMZ10, Yam20, Yam22| provide a model-free description of quantum poly-
and polylogarithmic-time, they are not of much help to quantum programming, as their restricted
expressivity makes it harder to write even relatively simple programs.

Our focus will be not only in showing that our implicit characterizations are sound and
complete for the targeted complexity classes, but also that they are able to express typical cases
of quantum polytime or polylogtime algorithms. For this reason, we have peppered each section
with at least a few examples of relevant programs in order to demonstrate our results and to
convince the reader of the expressivity of the language.

Finally, it is relatively standard to use a high-level model such as the quantum Turing machine
in order to prove both the soundness and completeness of an implicit characterization. However,
in quantum programming one is usually interested in the quantum circuit description of a pro-
gram, and standard implicit characterizations do not typically provide compilation algorithms,
making them less practical for the quantum programmer.

Given the equivalency between quantum circuits and QTMs (Theorem 3.3), the soundness of a
characterization also means the existence of a uniform family of quantum circuits that implements
each program, and an implicit characterization should provide a compilation algorithm for its
programs into circuits of the desired complexity (according to the complexity class). We start
Part III by showing that defining such a compilation strategy is a non-trivial problem, and then
we provide an algorithm that gives a circuit description of any program in our characterizations
of FBQP and FBQPOLYLOG, respecting adequate complexity bounds.
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4

A First-Order Quantum Programming
Language (FOQ)

The limits of my language mean the limits of my world.

— Ludwig Wittgenstein, Tractatus Logico-Philosophicus

In this chapter, we introduce FOQ, a First-Order Quantum programming language, which
will lay the foundations for Chapters 5 and 6, where we will introduce its fragments PFOQ and
LFOQ, respectively characterizing quantum polynomial and polylogarithmic time.

We discuss here FOQ’s syntax and semantics, as well as the notions of well-foundedness and
reversibility of a program, and introduce some syntactic sugar to be used in the remaining of
this thesis. We exemplify FOQ with two well-known examples of quantum programs, namely the
quantum Fourier transform (Figure 4.6) and Grover’s search algorithm (Figure 4.7), requiring a
polynomial and exponential number of operations, respectively.

4.1 Syntax

The syntax of FOQ, given in Figure 4.1, includes basic data types such as Integers, Booleans,
Qubits and Operators. A FOQ program has the ability to call first-order (recursive) procedures
taking lists of qubits as input parameters.

Let x denote an integer variable and q denote a qubit list. The size of the list g will be
denoted by |g|. We can refer to the i-th qubit in @ as q[i], with 1 <7 <|q|. The empty list, of size
0, will be denoted by nil and q © [i] will denote the list obtained by removing the qubit of index
¢ in q. If no such index exists, then q© [i] corresponds to the empty list. This definition of qubit
removal ensures that © strictly reduces the size of any non-empty qubit list.

For convenience, we also extend this notation in straightforward ways. Let ni,...,ng € N be
a sequence of integers. Then, we denote by s © [n1,...,ni] the list obtained from s by removing
the qubits of indexes ny,...,n;. We also allow for the use of negative integers, such as s[-1], by
defining s[-i] = s]|s| - i + 1], for any 1 <.

The language also includes some constructs U/ to represent (unary) unitary operators, for
some total function f € Z — [0, 27) NR required to be polynomial-time approximable [KF82] (see
discussion of this restriction in Section 2.1).

A FOQ program P consists of a sequence of procedure declarations D followed by a program
statement S, with e denoting the empty sequence. Let var(S) be the set of variables appearing
in the statement S. Let [P| be the size of program P, that is, the total number of symbols in P.
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NOT | RL.(i) | Ph/(i), with feZ - [0,27)nR
skip; | q »= U/(i); | S S | if b then {S} else {S}

| gcase q of {0 - S,1 — S} | call procli|(s1,...,sk);
e | decl proc[x|(qu,...,qx){S}, D

D:S

11>

Statements) S

11>

(Proc. declar.) D
(Programs) p

11>

Figure 4.1: Syntax of FOQ programs.

A procedure declaration decl proc[x|(qy,...,qk){S} takes as input the qubit lists qy, ...,k
and an (optional) integer parameter x. S is called the procedure statement, proc is the procedure
name and belongs to a countable set Procedures. We will write SP*°¢ to refer to S and proc € P
holds if proc is declared in D.

Besides the no-op instruction skip;, the most basic statement is the operation of an (unary)
operator on a qubit (q *= U/(i);). The considered operators are NOT, Ré(i), and Ph/ (i), which
will correspond to the NOT, rotation and phase-shift gates introduced in Section 2.3.1.

Statements also include sequences, (classical) conditionals, quantum cases, and procedure calls
which take an integer input i and a qubit list s (call proc[i](s);). A quantum case qcase q of {0 —
So,1 — S1} provides a quantum control feature that will execute statements Sp and Sy in superpo-
sition according to the state of . A quick and easy example of the use of the gqcase is in simulating
the CNOT gate, both with positive and negative controls, as defined in Figure 4.2. We further
elaborate on the use of the qcase in the remaining examples of the same figure, namely in the
simulation of the SWAP and Toffoli gates. For ease of notation, the standard CNOT and Toffoli
gates are denoted by CNOT(q1,q2) 2 CNOT;(q1,q2) and TOF(q1,q92,q3) £ TOF11(q1,q2,q3)-

Furthemore, we may extend the use of the quantum control case in order to handle multiple
control qubits in a straightforward way. For instance,

gcase sfij,is] of { 00 > Spp, = (qcase sii] of { 0 — gcase sliz] of {0 — Spo, 1 = So1},
01 - So1, 1 > qcase s[io] of {0 —> S19, 1 —>S11} }
10 = Sy,
11> 511 }

We will restrict our study to well-formed programs, where procedure names declared in D
are pairwise distinct and, for each procedure call, the procedure name is declared in D.

It is often desirable to build large programs from smaller ones, and to be able to reason
about their properties. To that end, we introduce the following rules that allow for combining
FOQ programs using the syntax for statements.

Definition 4.1 (Syntactic sugar for programs). For i # j, let D; and D; denote procedure
declarations with no collisions in procedure names. Then, for P; = D; == S;, we define the following
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4.2. Semantics

13

Controlled-NOT CNOTy(q1,492) gcase q; of {0 — q2 »= NOT;,1 — skip; }
CNOT1(a1,q2) = qecase qi of {0 — skip;,1 > qz »= NOT;}

CNOT1(q1,q92) CNOT(q2,91) CNOT1(q1,q2)

13

Swap SWAP(q1,q2)

13

Toffoli TOFoy(q1,492,93)
TOF1y(a1,492,93) = qcase q; of {0 — skip;,1 - CNOT,(q2,q3)}

qcase q; of {0 - CNOTy(qz,q3),1 — skip; }

Figure 4.2: FOQ syntactic sugar.

rules for program creation, where

P1 P22 D1, D251 5o,
if b then Py else Py 2 D¢, Dy 2 if b then S; else So,
gcase q of {0 - P, 1> Py} =Dy, Dy qcase q of {0~ S;, 1 - Ss}.

Furthermore, let proc be a procedure with body SP*°¢, such that Py, ..., P € SP*°°. Then
Dy, decl proc[x]{S**°“} = S £ Dy, Dy,..., Dy, decl proc[x]{S*°°[S;/P;]} == S,
where in SPT°°[S;/P;] we replace each instance of P; with S;, fori=1,... k.

In the following chapters, we will see that these construction rules naturally preserve certain
program properties. For instance, they will allow for us to quickly conclude that combining
polytime programs in safe ways results in a larger polytime program.

4.2 Semantics

We now define the semantics of FOQ programs, starting with the most basic statement: the
unitary operation.

Each operator U of a unitary application q #= U7/ (i); comes with a function [U] assigning
a unitary matrix [U](f)(n) € C**? to each integer n and polytime-approximable total function
f €Z — C (sometimes also written g when this is clear from context). We restrict ourselves to
three kinds of gates: the phase gate Ph, rotation gate Ry and NOT gate NOT, with semantics
defined as follows:

L1 0 . cos(f(n)) -sin(f(n)) NN e 01
[[Ph]](f)(n)—(o eig(n)) [[Ry]](f)(n)—(sm(g(n)) Cos(f(n))) [[NOT]]()()—(l 0)

This choice of gates is inspired by the implicit characterization of [Yam20| and justified by
the fact that and Ph' (i) as basic operators is justified by the fact that, for the constant and
polynomial-time approximable function g(z) = w/4 € Z — [0,27) N R, these operators simulate
the following set of one-qubit unitary gates

1 (1 -1 gL 10
[[R%]](n)=ﬁ(1 1), [[Ph]](n)—(o e,.m),
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Chapter 4. A First-Order Quantum Programming Language (FOQ)

which, combined with a construction for controlled gates, is universal for quantum comput-
ing [BMP*99|, as discussed in Section 2.3.2. For instance, the Hadamard gate can be derived
as

s 1 1 1 — () x
H=$(1 _1)—[[NOT]]()() [Ry](9)(0).

Given the usefulness of the Hadamard, we will make use of the following shorthand notation:
q*=H; = (q*=R7(0); q »=NOT;).

Let B be the set of Boolean values b € {false, true}. For a given set X, let £(X) be the set
of lists of elements in X. Let [ = [x1,..., %], with 21, ..., 2., € X, denote a list of m elements in
L(X) and [ ] be the empty list (when m = 0). Lists of integers will be used to represent pointers
to qubits in a global memory.

We interpret each basic data type 7 as follows:

[Integers] = Z, [Booleans] = B, [Qubit Lists] = £(N), [Qubits] = N.
Each basic operation op € {+,—,/2,>,>,= A, Vv, =} of arity n, with 1 <n < 2, has a type signature
OP:TI X ...XTp > T
fixed by the program syntax and computes a fixed total function
lop] € [m1] x ... x [m] = [7].
For example,

+ : Integers x Integers — Integers [+] £ (n,m) » n+m,
/2 : Integers — Integers [/2] £ n~ [n/2].

Constants are treated as particular operators of arity 0. For each basic type 7, the reduction
[y is @ map

Vg 7 x (Var(P) - L(N)) - [].
Intuitively, it maps an expression of type 7 and a context function f to the value of the expression
in [7]. These reductions are defined in Figure 4.3, where e and d denote either an integer
expression i or a boolean expression b. For instance,

(al2l,q~[1,4,5]) In the second qubit of the list has global index 4
(@aeBl,a~[1,4,5]) UL(N) [1,4] the third qubit has been removed
(@efl,a~[1,4,5]) Yz [ [] is used for errors on type £(N)

(a4, g~ [1,4,5]) In O index 0 is used for error on type N

Note that, in rule (Rmy), if we try to delete an undefined index then we return the empty
list, and, in rule (Qug), if we try to access an undefined qubit index then we return the value 0
(defined indexes will always be positive).

Given a program P with input qubit list lengths n;, let the length of P be a function mapping
each qubit variable q; € Var(P) to an integer len(q;) = n;. We write lenp as a shorthand for
Ygevar(p) 1en(q) and define

leng e > len(q).
g'eVar(P), q'<q
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Vi<n, (ei’f) U[[ﬂ]] L (Sa f) UE(N) [1"13 s 7$n]
(op(e1s---5en), f) Yjop(r,..om) [Pl (71, - - s 20) (Isl, f) bz n
(_]EVGT(P) (Svf) UL(N) [1’1,...,£Em] (laf) Uzk’G{l,...,m}
(@ f) UE(N) f(@) (selil f) UL(N) [Z1, .o Thm1, Thos1 - -+, T

(Saf)UL',(N) [3:17'” xm] (1 f)UZk¢{177m} (Svf)UE(N) [xlw--axm] m>1
(s, f) leavy [] (%, 0) ey [215 - 2pmpe ]

(S7f)U£(N) [xlw":xm] m>1 (Saf)UE(N) |:5Cla"'7xm] (iaf)uzk¢{17"'am}
(%, 1) beavy [2pmplets - - Tm] (shil, f) In 0

N leaenyt <1 1) beayy [215-- s zm] () bz ke{l,...,m}
% ) Ueawy [ (shil, f) U zx

Figure 4.3: Semantics of expressions.

A configuration c of program P over lenp qubits is of the shape
(S, 1), A, f) € (Statements U {T, L}) x Hotenp x (Var(P) - P(N)) x (Var(P) - L(N)),

where T and 1 are two special symbols denoting termination and error, respectively, where
|1)) € Horenp is a quantum state, and where, for each qubit list g € Var(P), A(qQ) is the set of
qubit pointers accessible from q and f(q) is the list of qubit pointers assigned to q.

Given a qubit q such that Var(q) = {q}, we write A(q) as a shorthand for A(q) and we
write Ag\ny for the function A" € Var(P) — P(N) defined by A'(q") = A(q'), ¥q' # q, and
Al(q) = A(q)\{n}

Given a program P £ D : S, with n = lenp, let Conf, be the set of configurations over n
qubits. The initial configuration in Conf,, on input state [¢))€ Han is given by

cinit(J0) 2 (S,|¥),a~{1,...,1len(q)},q ~ [1,...,1len(q)]).

4.2.1 Operational semantics

The program big-step semantics —, described in Figure 4.4, is defined as a relation in U,y Conf,, x
Conf,. A program is said to be error-free if there is no initial configuration ¢;,;;(|1)) such that

cinit([9) — (L, [¢), A, 1).

We write [P](|1)) = |¢'), whenever ¢inie([10)) — (T,|¢'), A,1) holds for some m. (T,|¢'), A, 1)
is called a terminal configuration. Let H = U,, Hon, a program terminates if [P] is a total function
inH-H.

We now give a brief intuition on the rules of Figure 4.4.
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(Skip) (a,f) Inn ¢ Alq) (Asg,)

(skips, [0 A, f) — (T, [0}, A, f) (q %= U9(3);, [0}, A, f) — (L, [) A, )

(q,f)UNN€A(q) (lvf)UNm j:len;q+n

(q #= U9(0);, [0} A, f) — (T, Tys1 ® [U](9) () ® Lysenp—s ) A, f)

(Asgr)

(807 W))aA,f) g (T7 |’¢J’>,A,f) (Sla w}’)?A?l) E (0’ W)”)v Avf) o€ {T7 J-}

mi1+mo

(SO Sla |¢)7A7f) - (Oa |w")a Aaf)

(SGQO)

(So, W) A, £) = (L, 1) A, f)

—~ (Seqy)
(So S1,[¥) A, f) — (L 1¥) A, f)

(b, f)Ueb  (Sp ) A ) =5 (o, ')A f)  oe{T L}

— (If)
(if b then {S;} else {So}, W) A, f) — (o,[¢'), A, f)

(q7 f) UN ne A(q) Vk e B, (Sk’ |¢>7 Aq\{n}7 f) o (T7 |wk>7 Aq\{n}7 f) J= 1en1<3q +n

-~ — (Caser)
(qcase q of {0 So, 1= Si},[U)A, f) =5 (T, Zretony k) (kl;lvn) A, f)
(0. ) bune Al 3 eB, (810 Aqon /) 2 (L1 Aqn )
e ——— (Case,)
(qease q of {0 So,1>S1},[¥hA,f) ' (Lw)A,f)
(0, f) Inn ¢ A(a) - (Casey)
(OICase q of {O - Sp,1 - Sl}’ |¢)7Avf) - (Lv |¢>»A,f)
Vi<n, (s ) bean by #[] (S {sj/ahl0h A f) = (o, [W) A ) o e{T, 1} (Call,)

m+1

(call proc(sy,...,sn);, [0) A, f) — (o, '), A, f)

3j<n, (55, ) beay [

m+1

(call proc(sy,...,sn);, ) A, f) — (T, 1), A, f)

(Call,)

Figure 4.4: Semantics of statements.
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e Rules (Asg,) and (Asgr) evaluate the application of a unitary operator, corresponding to
U/(j), to a qubit s[i]. For that purpose, they evaluate the index n of s[i] in the global
memory. Rule (Asg,) deals with the error case, where the corresponding qubit is not
allowed to be accessed. Rule (Asgr) deals with the success case: the new quantum state is
obtained by applying the result of tensoring the evaluation of uf (j) to the right index.

e Rules (Seq,) and (Seq,) evaluate the sequence of statements, depending on whether an
€ITor OCCurs or not.

e The (If) rule deals with classical conditionals in a standard way.

e The three rules (Caser), (Case,), and (Case¢) evaluate the qubit index n of the control
qubit s[i]. They then check whether this index belongs to the set of accessible qubits (is n
in A?). If so, intuitively, the two statements Sy and S; are evaluated in superposition, on
the projected state (0|,|) and (1|,|1), respectively. During these evaluations, the index n
cannot be accessed anymore.

e The rule (Call[]) treats the base case of a procedure call when the qubit list parameter is
empty. In the non-empty case, rule (Call,) evaluates the qubit list parameter s to I’ and
the integer parameter x to n. It returns the result of evaluating the procedure statement
SPro¢{n/x}, where n has been substituted to x, with regards to the updated qubit pointer
list 7',

Note that if a program terminates then it is obviously error-free but the converse property
does not hold. Every program P can be efficiently transformed into an error-free program P_
such that V|¢), if [P](|e)) is defined then [P](|¢)) = [P-.](|®)). For example, an assignment

sli] »= Uf (j); can be transformed into the conditional statement
if ((0<i)A(i<ls|)) then s[i] x= U/(j); else skip;

For this reason, we will only consider error-free programs in the rest of this work. Furthermore,
to ensure that there is no cloning of qubit variables, we enforce that in each procedure call
call proc[x|(s1,...,s);, that Vi # j, Var(s;) # Var(s;).

4.2.2 Derivation Tree and Runtime of a Program

Given a configuration ¢ with regards to a fixed program P, mp & ¢ denotes the derivation tree of
P, the tree of root ¢ whose children are obtained by applying the rules of Figures 4.3 and 4.4 on
configuration ¢ with respect to P. We write m instead of mp & ¢ when P and ¢ are clear from the
context. Note that a derivation tree 7 can be infinite in the particular case of a non-terminating
computation. We will write m 4 7’ to denote that 7 is a subtree of 7’.

In the case of a terminating computation 7 & ¢, there exists a terminal configuration ¢’ and
a level m € N such that ¢ —> ¢’ holds. In this case, the level of 7 is defined as lv; £ m. Given a
FOQ program P(qy,...,qx) that terminates, Timep is a total function in N¥ - N defined as

11>

Timep([n1,...,nk]) max  WVrpee,,, ()

[PYH yng+otny,

Intuitively, Timep([n1,...,nk]) corresponds to the maximal number of non-superposed pro-
cedure calls in any program execution where the input qubit list corresponding to each variable
q; has size n;.

43
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Example 4.2. For all n € N, Timeger([n]) = w +| 5]+ 1. Indeed, on a qubit list of size
n, procedure rec is called recursively n+1 times and makes n+1 calls to procedure rot on qubit
lists of sizem, n—1, ..., and 1. On qubit lists of size n, rot performs n recursive calls. Hence,
the total number of calls to rot is equal to Y.;- i. Finally, on a qubit list of size n, procedure inv
does | 5| + 1 recursive calls.

We now show that a FOQ program, if it terminates and therefore has a well-defined semantics
for every input, admits a QTM that simulates it, whose time-complexity is related to the Timep
function. For simplicity, we consider programs with only one qubit list variable.

Lemma 4.3. For any terminating FOQ program P, there exists a stationary QTM M that com-
putes [P] in time O(n +n x Timep(n)).

Proof. Consider a terminating FOQ program P =D :: S. We build a 4-tape QTM M computing
[P] inductively on the statement S. Fix ¥ = {0,1,#, ||, &}, where # is the blank symbol and
where | and & are special separation symbols for encoding stacks. The input tape t;, of M
contains a word in {0,1,#}™ encoding the quantum state. The 3 working tapes are t.qy, t;, and
tg for storing the integer values of a procedure call, the list of qubit pointers, and intermediate
classical computations, respectively, as words in ¥*. The configurations of M will be in ) x
(2*)* x Z*, for some finite set of states Q. In particular, the initial configuration is

(S(],’UJ,E,E,€,0,0,0,0),

with w € {0,1}" encoding a quantum state of length n € N; the tapes t.qy, t;, and tx are initially
empty (). The tape heads all start on the first cells indexed by 0. For m € Z, let ¢(m) denote
the symbol at position m on tape t. Given a word w € ¥* and a tape t, tw denotes that the
content of ¢ ends with the word w.

By abuse of notation, let [e] denote the result of evaluating the expression e with respect to
the machine current configuration. Also, we will assume that deterministic computations, such
as taking tape t||[i] and appending f([i]), for any function f, are done by a reversible Turing
machine [Ben73|, as reversible TMs are well-formed QTMs [BV97, Theorem 4.2].

We now describe a QTM M simulating P inductively on the statement S.

e The skip; statement is trivial.

o If S=q *=U9(j);, M appends [q] to tx. As the program terminates, ¢;,([q]) # # and the
transition function is set to:

Vae{0,1}, 0(ss, tin([al)s sneat(s), @ N) = (tin ([aDI[UI(9) ([ID]a)

where sg is the state before executing the assignment when the head of the input tape has
been moved to position [q], and Snext(s) 15 the state just after executing the assignment.
Finally, the machine erases |[q] at the end of tk, leaves its head in the last non-blank cell
of tg, and moves the head in t;, back to the initial cell. Program P has Timep(n) =0 and
the simulating machine runs in time O(n).

For the remaining statements, assume by induction hypothesis the existence of two stationary
QTMs M; and My that compute functions [P;] and [Ps], respectively, with Py = D = S; and
P2 2D :: So. By induction hypothesis M; and M run in time O(n + n x Timep,(n)). States of
M will be denoted by s, for i € {1,2}. We assume without loss of generality that machines M;
are synchronized (by Lemma 2.11) and therefore that they halt in exactly the same time for any
quantum input of equal length.
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e Consider the case S = S; Sy. Machine M is defined as in [BV97, Dovetailing Lemma]|, with
the initial state sg = sé, its final state st = s%, and the two machines are composed by
setting sl = s%. The machine M is stationary, well-formed and it is well-behaved since the
running time of My only depends on n and the output of M; contains a superposition of

equally sized quantum states. M computes [P] in time

O(n+nx Timep,(n))) + O(n +n x Timep,(n)) = O(n +n x Timep(n)).

e For the conditional S = if b then S; else Sy, we build a machine M that concatenates
|[b] on the working tape tx and runs M; or My depending on the value of [b], using the
[BV97, Branching Lemmal. Then we erase [b] from the end of tape tx. M computes [P]
in time

miax(O(n +n x Timep,(n))) = O(n +n x Timep(n)).

e For the quantum case S = qcase q of {0 - S;,1 — Sy}, the machine appends ||[q] on
tape tx. It reads t;n([q]), sets it to #, and if it reads O runs My, if it reads 1, runs M.
Finally, from state s!, it writes 0 in ;,([q]), moves the head to index 0, and transitions to
st; similarly, from state s2, the machines writes 1 in ¢;,([q]) before moving the head and
transitioning to st. We have that M computes [P] in time

mlax(O(n +n x Timep,(n))) = O(n +n x Timep(n)).

We now consider the case of a (possibly recursive) procedure call. For the procedure call
S = call proc[i](s), we start by creating a state s,.oc. If proc is a constant-time procedure (that
is to say, it does not contain any procedure calls), we can simply inductively define a machine
M, .. that executes the procedure and replace s,... with this machine.

If the procedure body of proc contains other procedure calls, then we proceed as follows: we
inductively create a machine that executes the procedure body where every procedure call to
procedure proc’ is defined as a transition into state s,..... If proc > proc’, then the machine
will not reenter state s,... and we can build it separately. Otherwise, if the procedure call is
recursive (for a simple case, consider proc’ = proc), it is replaced with a transition back into the
state Sproc-

When entering or leaving machines simulating procedure calls, we update t.4; by appending
[i], and update t; by adding the qubit pointer indices excluded in [s], separating them us-
ing the symbol &. The machine M., then computes the function [Pp.oc], for Pyooc 2 D =
serec{ il /x,s/q}, in time O(m + m x Timep_ (m)), with m 2 [|s|] < n, afterwards erasing
[i] and the new indices of t;,. As Timep,  (n) = O(Timep(n)) and the complexity of M is
O(n +n x Timep(n)). This concludes the proof. O

We now show some examples of FOQ programs. Quantum arithmetic is one of the most
fundamental building blocks of quantum computing, and one of its simplest examples is the
Quantum Ripple-Carry Adder (QRCA) [VBE96, CDKMO04, TKO05].

Example 4.4 (Quantum Ripple-Carry Adder). To define a QRCA in FOQ, we can start by
defining a procedure add which performs the addition of two qubit inputs, while taking in a carry-
i and outputting a carry-out.

The addition is performed reversibly using Controlled-NOTs and Toffoli gates, with which
procedure add computes Cour = (a-b) @ (cin- (a® b)) and s=a b @ cyy,.
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1 decl add(q,p,T) {

q-1  a a
2 TOF(Q[*I],f)[*l],f[*Q]) _
3 CNOT(q[-1],pl-11) PE b % ©— b
4 TOF(pl-1], T[-1], T[-2]) 10) —D——& Cout
s CNOT(p[-1,T[-1)) -2,-1]
s CONOT(ql-1,pl) } Cin O

To perform addition over two input strings of size n > 1, we can iterate add over the strings
where each iteration takes as carry-in the corresponding carry-out of the previous iteration. To
do so, we define a program containing a procedure fullAdder, as defined in program QRCA in
Figure 4.5, that calls itself recursively while discarding the qubits which it no longer needs for the
addition.

QRCA
1.. decl add(q,p,T) {...} -
7 decl fullAdder(q,p,T) { 4
8 if |r| > 1 then b b
9 call add(q, p,T); P & &
10 call fullAdder(ge [-1], va Vo
poI[-1], S—D
ro[-1)); S—D 2
1 else skip; } — &
12 :: &b
13 call fullAdder(q,p,T);}

Figure 4.5: Program QRCA for quantum addition.

The quantum Fourier transform (QFT), used as a subroutine in Shor’s algorithm [Sho94],
can also be simulated in FOQ.

Example 4.5 (Quantum Fourier Transform). We describe the following notation for the controlled-
phase gate:

CPHASE(q1, g2, 1) = qcase q; of {0 — skip;,1 - qg *= PR/ (i - 1);}

and define the program QFT as gwen in Figure 4.6. Note that Ax.w[2% is a total function in
Z — [0,2m) nR that is polynomial-time approzimable.

Let f:{0,1}"™ - {0,1} be a black-box function such that, for precisely one input z € {0,1}",
we have that f(z) = 1. The problem of finding the value of x (with bounded probability) requires
©(2") queries to f in the classical case (i.e. there is no better strategy than simply testing all
possible inputs until finding x).

Grover’s algorithm for quantum search allows for a quadratic speedup [Gro96], where the
number of queries to an oracle for f is given by 0(2%). Grover’s algorithm is asymptotically
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QFT

1 decl rec(q){ 5 decl rot|x](q){ 10 decl inv(q){

2 q[1] == H; 6 if |g| > 1 then 11 if |g| > 1 then

3 call rot[2|(q); 7 CPHASE(q[2], q[1], x) 12 SWAP(q[1],ql-1])

4 call rec(gqe[l]);}, = call rotx+1](qe[2]); 13 call inv(ge|t,-1]);
9 else skip; }, 14 else skip; }

15

call rec(q); call inv(g);

-
o

TR

HF—{Ra [ Rs
[17]
4]

where the gate is defined as Ph(r/2i71)

Figure 4.6: Program QFT for the quantum Fourier transform.

optimal [BBBV97| for unstructured search, and provides a quadratic speedup over classical
methods for a variety of problems.

Example 4.6 (Grover’s algorithm). The program GROVER given in Figure 4.7 implements the
quantum search algorithm. Given an input of n qubits in state |0...0), the algorithm starts by
creating a uniform superposition of states, followed by the application of 0(2%) Grover iterations,
containing a call to an oracle for f that performs the transformation |z) v~ (1)@ |z). The
Grover iteration also includes a diffusion operator defined by 1 —2/0...0%0...0]|.

As a consequence of FOQ programs defining unitary transformations, they are necessarily
reversible. We now show that FOQ programs can be statically inverted.

4.2.3 Reversibility

We start by defining the following transformation over programs.

Definition 4.7 (Inverse transformation). Let -~! : Programs — Programs denote the transforma-
tion that inverts a FOQ program. We define it inductively as follows. By abuse of notation, given
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GROVER
1 decl h(q){ 12 decl grover[x|(q){
2 q[1] »= H; 13 if x>0 then
3 call h(ge1]);}, 14 call grover[x-1](q);
15 call grover[x-1](q);
4 decl diffusion(q){ 16 else
5 if |q| > 1 then 17 call oracle(q);
6 gcase q[1] of { 18 call h(q);
7 0 — call diffusion(ge[1]); 19 call diffusion(q);
8 1 - skip; } 20 call n(q); }
9 else
10 ql1] *= NOT; q[1] #= PRA7™(1); 21 call h(q); call grover||q/2](q);
11 q[1] »= NOT; }
i Tt
q _ oracle diffusion _ ] grover B
X S
N 4k
grover

Figure 4.7: Program GROVER for quantum search.

proc € Procedures, we denote by proc ' the name of the inverse procedure relative to proc.

(D= S)_1 & pl.gd
(decl proc[x](a,...,ax){S}, D)™" = decl proc '[x](q,...,a@){S™'}, D!
el 2 ¢
skip;™! = skip;
(q*=U(i);)™" = q==(U/(Q))T;

(Sl 82)71 = 871 871

2 91
if b then S¢rue €lse Sgase)”t = if b then St
true

(qcase q of {0 —Sp,1 >S;})™" = qcase q of {0—S;',1—S7!}
(call procli](si,...,s,);) " 2 call proc '[i|(s1,...,56);,

else S;lse

with
NOTT=NOT, RLG)T=RI/(G), and  PWI(i)T2Ph® /().

We show that the inverse transformation is sound and that it does not change the complexity
of the program.
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QFT"!
1 decl rec ' (g){ s decl rot 'x)(q){ 10 decl inv 1(g){
2 call rec '(qe1]); s if |g| > 1 then 11 if |g| > 1 then
3 call rot '[2](q); 7 call rot 'x+1)(qe2]); 12 call inv '(qe(1,-1]);
4 gy +=H;}, 8 CPHASE™'(q2], a1}, x) 13 SWAP(q[1],ql-1])
9 else skip; }, 14 else skip; }

16 call inv '(q); call rec '(q);

r H R

I_R; Ry H .

-

Figure 4.8: Program QFT! for the inverse quantum Fourier transform.

Theorem 4.8. Let P be a terminating FOQ program, then
[P~']o[P]=1 and  Timep(n) = Timep-1(n).

As an example, let us consider the inverse of the QFT, which is used in phase estimation and
arithmetic.

Example 4.9 (Inverse Quantum Fourier Transform). First, we notice that the inverse operation
does not change the semantics of some commands, which allows for some simplifications. For
istance, since the Hadamard gate and the swap operation are their own inverse, we may use the
following rules:

13

(q #=H;)™?
(SWAP(q1,q2,1)) "

q *=H;
SWAP(qh q2, 1)

13

Likewise, we define a shorthand notation for the inverse of the controlled-phase gate:

(i-1);}

2171

(CPHASE(q1,q2,1)) ™ = qcase q; of {0 — skip;,1 - qg #= phie-2m-m/
CPHASEil(qu q2, 1)

1>

The inverse QFT program, QFT™, is given in Figure 4.8.

In this chapter, we introduced the syntax and semantics of the FOQ programming language.
We showed that FOQ admits a QTM simulation with only a polynomial slowdown compared to
the time complexity of the program, as measured by the maximum number of procedure calls
performed in depth (Lemma 4.3). We gave two examples of FOQ programs, one in exponential
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time on the input size (Grover’s search algorithm, Figure 4.7) and one in polynomial time (quan-
tum Fourier transform, Figure 4.6). Finally, we showed that the inverse of a FOQ program is

another FOQ program which can be statically obtained.
We will now turn to identifying fragments of FOQ, obtained via syntactical restrictions, that

capture quantum complexity classes.
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5

A Characterization of Quantum
Polynomial Time

The class of functions, [FBQP| (functions computable with bounded error, given quantum resources,
in polynomial time), has been defined in three distinct but equivalent ways: via quantum Turing
machines, quantum circuits, and modular functors. [...]| We may now propose a “thesis” in the spirit
of Alonzo Church: All ‘reasonable’ computational models which add the resources of quantum me-
chanics (or quantum field theory) to classical computation yield (efficiently) inter-simulable classes:
there is one quantum theory of computation.

— Topological Quantum Computing [FKLWO03]
In this chapter, we restrict the set of FOQ programs to a strict subset, named PFOQ, that
is sound and complete for the quantum complexity class FBQP. To achieve this, we define two

criteria: one ensuring that a program terminates and another preventing a terminating program
from having an exponential runtime.

5.1 Well-foundedness

The first criterion we will consider is one which ensures program termination, by requiring that
recursive procedure calls strictly reduce the number of qubits that may be accessed.

Given two statements S and S’, we write S € S’ to mean that S is a substatement of S” and, for
a procedure proc, we have that proc € S holds if there are i and s such that call procli](s); € S.
Given a program P = D == S, we define the relation >pc ProceduresxProcedures by proc; >p procs
if procy € SP*°°! for any two procedures proci, proco € S. Let the partial order >p be the
transitive and reflexive closure of >p and define the equivalence relation ~p by

procy ~p procy if (procy >p procy Aprocy >p procy).
Define also the strict order >p as
proc| >p procs if (proc; >p procy Aproc; ¢p proc,).
Definition 5.1. Let WF be the set of FOQ programs P that satisfy the following condition

Vproc € P, Vcall proc’[i|(sy,...,s;);€ ST,
proc ~p proc’ = there ewists s; such that V¥ f: Var(P) - L(N), (Isil, f) dzavy n <[f(@)],

meaning that, for at least one argument, the number of accessible qubits is strictly reduced. If
P e wr we say that P is well-founded.
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The well-foundedness condition can be checked relatively easily in a FOQ program as the so[i],
s¥ and s constructs strictly reduce the number of qubits in s, and no qubits can be added. We
check this condition for the example programs given in the previous chapter, in Examples 5.3, 5.4
and 5.5.

We start by showing that this condition is enough to ensure the termination of a FOQ program.
Lemma 5.2 (Termination). If P € WF, then P terminates.

Proof. Without loss of generality, we consider that all procedures have the same inputs, given in
the same order. This is because an input given to a procedure only gives it access to said input,
and so a procedure can have access to inputs it does not use. For a given program P, we define
a partial order >p between configurations whose statements are procedure calls, as

(call proc[i](s1,...,sk);,[¥), A4, f) >p (call proc’[i'](s],...,s.);, W), A, f)

if

k k
(proc >p proc’) v (proc ~p proc’ A Z;nj > Z:ln;), for (Is;], f) Uz nj and (Is5], £) Uz 7).
J= J=

Given a program P and we(call proc[i](s);,|¥) 4,1) and 7' (call proc’[i"](s");, [¢'), A', f),
we show that, if 7’ 97, then it holds that

(call proc[i](s1,...,8k);, [¥), A, f) »p (call proc’[i'](s],...,s,);, [W'), A", f1).

Assume that 7’ < 7, then it holds that proc >p proc’. Hence, either proc >p proc’ or proc ~p
proc’. In this latter case, by transitivity of ~p, there exists an index j such that S;- =8;©
[i1,-.,ix], for some k > 0. It implies that the evaluation of [s}| is strictly smaller than the
evaluation of |s;|, by transitivity. Given that the input cannot be increased, the sum of the input
sizes is strictly smaller. We conclude by observing that >p is a well-founded order. O

Programs QRCA (Figure 4.5) and QFT (Figure 4.6) introduced in Chapter 4 are well-founded.
Program GROVER (Figure 4.7), introduced in the same chapter, is not well-founded, even though
it always terminates.

Example 5.3. Consider the program QRCA of Figure 4.5. The recursivity relations between the
procedure in the program are fullAdder ~gpep fullAdder and fullAdder >qpep add, therefore
mutually recursive calls are only present in the procedure statement of fullAdder, and since the
inputs of the procedure call are q© [-1], p © [-1], and T & [-1], we have that QRCA € WF and we
conclude by Lemma 5.2 that it terminates.

Example 5.4. Consider the program QFT of Figure 4.6. The statements of the procedure decla-
rations define the following relation: rec >qpr rec, rec >qpr rot, rot >gpr rot, and inv >ger inv.
Consequently, rec ~gpr rec, rot ~gpy rot, inv ~gpr inv, and rec >grr rot hold. For each call to
an equivalent procedure, we check that the argument decreases: q©[1] in rec, GO [2] in rot, and
q o [L,q]] in inv. Consequently, QFT € WF, and by Lemma 5.2, we have that QFT terminates.

Example 5.5. In the program GROVER defined in Figure 4.7, we have that grover ~gpoyer grover
and that the corresponding mutually recursive procedure call does not reduce the input size. There-
fore, GROVER ¢ WF, even if one can check that the program always terminates.
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5.2 Bounded width

We now add a further restriction on mutually-recursive procedure calls for guaranteeing poly-
nomial time using a notion of width. This restriction will ensure that, for a given program, no
procedure in the program can perform duplication, which prevents the program from executing
an exponential number of operations.

Definition 5.6. Given a program P and a procedure proc € P, the width of proc in P, noted
widthp(proc), is defined as widthp(proc) £ wh " (SP7°°), where wp °°(S) is the width of the
procedure proc in P relative to statement S, defined inductively as:

wly* (skip:) 2 0,
wh " (q =T/ (i);) 20,
prOC(Sl Sg) wprOC(S )+ wprOC(SQ)
w{foc(lf b then S¢rue €lse Sgaise) £ max(wp ~ (Strue), Wp  (Stalse))
““(qcase q of {0— Sp,1—S1}) £ max(wp ~ (So), wp ~ (S1)),

W (call proci(5):) {1 if proc ~p proc’,
0 otherwise.
Consider the width of procedures in the example programs of Chapter 4.
Example 5.7. widthggea(add) = 0, and widthggea(fullAdder) = 1.
Example 5.8. widthger(rec) = widthger(rot) = widthger(inv) = 1, since rec >qpr rot holds.
Example 5.9. widthgroyer(grover) = 2.

We define a restriction on FOQ programs according the maximum width of a procedure that
appears in the program.

Definition 5.10. We denote by WIDTH<; the set of FOQ programs P that satisfy

max_width(proc) < 1.

proceP

Given the previous examples, we have that QRCA, QFT € WIDTH<; and GROVER ¢ WIDTH<;. We
now turn to showing that by combining the WF and WIDTH<; conditions, we obtain a fragment
of FOQ programs that characterizes quantum polynomial time functions.

5.3 A Polynomial First-Order Quantum Language (PFOQ)

We define the polynomial fragment of FOQ, consisting of well-founded programs that also have
bounded width.

Definition 5.11 (PFOQ). PFOQ is the set of programs defined as:

a

PFOQ = WF N WIDTH.

If P € PFOQ, then we call P a PFOQ program.

Example 5.12. The program QFT defined in Figure 4.6 is well-founded (Example 5.4) and has
width 1 (Example 5.8). Therefore, QFT € PFOQ.
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PFOQ inclusion can be determined efficiently on the size of the program.
Theorem 5.13. For each FOQ program P, it can be decided in time O(|P|?) whether P € PFOQ.

Proof. The relations ~p, >p, and >p can be computed in time O(|P|?). After this computation,
determining whether P € Wr and computing the width of each procedure can be done in time
O(IPJ). m

Another useful property is that the inverse of a PFOQ program, obtained via the construction
in Definition 4.7, is also a PFOQ program.

Lemma 5.14. Let P € PFOQ. Then P~! € PFOQ, where -~! is the inverse transformation given
in Definition 4.7.

Proof. P! can be shown to be in PFOQ since it preserves the relation >, that is, proc, ' >p-1proc,’
if and only if proc;>pprocs. Furthermore, the width of each procedure is preserved, therefore
P! ¢ wipTH.;. P! is also well-founded since the input qubit list of each procedure call is
preserved when generating the inverse program. O

A relevant example is the inverse QFT, given in Figure 4.8.
Example 5.15. QFT~! € PFOQ.

We now show that one can easily combine PFOQ programs while being able to maintain the
syntactical restrictions of WF and WIDTH..

Lemma 5.16. Let Py,...,P, be PFOQ programs appearing in program P according to the syn-
tactic sugar of Definition 4.1, and let Peyip denote P with all instances of P; replaced by the skip
statement. If Pgyip, P1,..., P € PFOQ, then P € PFOQ.

Proof. In the case of the first three rules, it is easy to check that the disjoint union of procedure
declarations is enough to preserve the > relation and width of each procedure, and therefore the
conclusion follows. For the case of the procedure declaration, the disjoint union ensures that
proc does not appear on any program P;, and therefore statements in SP*°¢ will not change the
width of proc and the entire program is in PFOQ as long as proc has width at most one from
recursive calls to itself and to the procedures in D. O

The quantum Fourier transform can be used to perform algebraic operations, such as addi-
tion and multiplication [Dra00, RPGE17]. We define PFOQ programs for these operations by
combining smaller programs, including the QFT and its inverse.

Example 5.17 (QFT Addition). Let QFTAdA be the program defined in Figure 5.1. Given that
QFT, QFT !¢ PFOQ, by Lemma 5.106, since ADD € PFOQ, we have that QFTAdd € PFOQ.

Example 5.18 (QFT Multiplication). Consider the program QFTMult defined in Figure 5.2.
When we replace ADD(P,T) in S 7E-1°P with the no-op statement, we have that

WidthQFTMult(Sadding_loop[Skip; /ADD]) =1
and this new procedure respects the WF restriction. Since ADD, QFT and QFT™! are all PFOQ

programs, we conclude that QFTMult € PFOQ.
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Let ADD denote the following program

1 decl inner_loop[x|(q,T){ 2 decl outer_loop(q,t){
2 CPHASE(T[1],q[1], %) 5 call inner_loop[1](q,T);
call outer_loop(qe[1,Te[1]);}

(o)}

3 call inner_loopx+1](q,T e [1]); },
s call outer_loop(q,T);

Then QFTAdA(q,T) = QFT(q) ADD(q,T) QFT 1(q)

T HEE R !

4 R Hr, HR. 1 L
q QFT | 1H 2|_| 5| QFT—I

_ |R1 Rzl
[w. 1] L
R |

ADD

Figure 5.1: PFOQ program QFTAdd for addition using the QFT and its inverse.

5.3.1 Soundness

We now show that the time complexity of a PFOQ program is bounded by a polynomial in the
length of its input. We start by defining the notion of rank of a procedure and rank of a program.

Intuitively, the rank of a procedure is its level of recursion in a given program: a non-recursive
procedure has rank 0, a procedure that only calls itself will has rank 1, a recursive procedure
that calls another procedure of rank 1 will have rank 2, and so on. The rank of a program is
then the maximum rank among all of its procedures.

Definition 5.19 (Rank of a procedure). Given a FOQ program P, the rank of a procedure in P
1s defined as:

rk(proc) =0 if P proc’, proc >p proc’,

rk(proc) = max{rk(proc’)+1 | proc >p proc’} otherwise.
Definition 5.20 (Rank of a program). The rank of program P is defined by

rk(P) = max rk(proc).

proceP

As was shown in Lemma 4.3, any terminating FOQ program can be simulated by a QTM.
The time complexity of this simulation depends on the length of the input quantum state and
on the runtime of the program.
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QFTMult
1 decl adding_loop(q,p,T){
2 gcase q[-1] of { q
3 0 — skip;, *
4 1 — ADD(p,T) } U
s call adding loop(qe|-1,p,re]-1]);} S0 D I 1 I
6 = — 1 H 0
. ) T 0 Dellel™] T
s call adding_loop(q,p,T); - || ADD | | i i | L
L el 00 [ Herf

Figure 5.2: PFOQ program QFTMult for multiplication using the QFT and its inverse.

Lemma 5.21. For any PFOQ program P, we have that Timep(n) = O(n™*P)+1),

Proof. Consider a PFOQ program P = D :: S. We show the result by induction on the rank of
procedure calls in S. Take call proc[i](s); € S. If rk(proc) = 0 and the procedure is not recursive
then there is only 1 call to a procedure. If the procedure is recursive, it can be called at most once
in each branch of a quantum case statement. Hence there can be at most n + 1 such calls in the
full quantum case branch of the derivation tree and it holds that Timep.cay procfij(s);(n) = O(n).
Induction hypothesis: assume that any procedure proc’ such that rk(proc’) < k satisfies

TiIneD::call proc’[i](s);(n) = O(nk+1)'

Consider a procedure proc such that rk(proc) = k+ 1. If the procedure is not recursive then it
can call a constant number (bounded by the size of the program) of procedures of strictly smaller
rank. By induction hypothesis,

TiIneD::call proc[i](s);(n) = Z O(nrk(proc’)+1) = O(nrk(proc))'
proc’<pproc

If the procedure is recursive, it can be called at most once in each branch of a quantum
case statement. Hence there can be at most n + 1 such calls in the full quantum case branch
of the derivation tree. Moreover, each of these calls can perform a constant number of calls to
procedures of strictly smaller rank (since each procedure statement contains a finite number of
procedure calls that does not depend on the input size). Consequently,

TiIneDzzcall proc[i](s);(n) = O(n) + Z Z O(n"'k(proc7)+1) _ O(nrk(pIOC)+1)‘
=0 proc’<pproc
We observe that for a program P=D::S; ... S,,, for a constant m € N, it holds that
Timep(n) = O(Y Timep.s, (n)) = O(n"™*®)*1),
i=1

This concludes the proof. O
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Since the time complexity of a PFOQ program is always polynomial, we conclude that any
PFOQ program can be simulated by a polynomial-time QTM.

Definition 5.22. Let
[PFOQ]POY = {[[P]] o ¢ such that P € PFOQ and ¢ is a polytime padding function,}

where a polytime padding function follows Definition 3.13.
Theorem 5.23. [PFOQ]P°Y c qp.

Proof. This is a direct consequence of Lemmas 4.3 and 5.21. O

5.3.2 Completeness

In this section, we show that PFOQ is expressive enough to encode any quantum polytime func-
tion. Toward this end, we demonstrate that PFOQ is expressive enough to simulate a function
algebra that is sound and complete for quantum polynomial time, introduced in [Yam20| and
described in Section 3.3.

Theorem 5.24. QP ¢ [PFOQ].

Proof. By Theorem 3.15 we have that Qp = %. It suffices to show that, for any function in %,
there exists a PFOQ program that simulates it.

We prove this result by structural induction on a function on the function algebra. The basic
function I can be simulated by P(q) £ ¢ :: skip;. F' € { Phy, ROTyp, NOT'} can be simulated using
an assignment. In these cases P(q) = ¢ = q[1] *= U/(0); with f such that [U/](0) = F. The basic
initial function SWAP can be simulated by the program P(q) = ¢ : SWAP(q[1],q[2]), with the
SWAP statement as defined in Figure 4.2.

We now simulate the Comp, Branch and k@ Rec; schemes. For that purpose, assume the
existence of PFOQ programs F, G and H simulating the ¢ functions F', GG, and H, respectively.
We will construct new programs using these initial ones by applying the rules in Definition 4.1.
By Lemma 5.16 we have that our obtained programs are also in PFOQ.

The composition of functions, Comp[F,G], is simulated by composition in the program
algebra, given by F(q)G(q). Quantum branching, given by the function Branch[F,G], can be
simulated by qcase q[1] of {0 >F(gqe|1]); 1 - G(qe])}.

The multi-qubit quantum recursion function, kQRec;[F, G, H], is simulated in PFOQ by

decl kQRec,(q){
if |q| > ¢ then
call H(q);
qcase q[1...k] of {w — Sy}
call G(q);
else

call F(q); }
= call kQRec(q);

13

where S,,

call kQRec/(qo[1,...,k]); if Fy = kQRecy,
skip; if Fy, =1.
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By induction hypothesis, F, G, H € PFOQ. The only procedure that is not derived from these
programs is kQRec;, and its recursive calls are of the shape call kORec,(qo[1,...,k]);, and there
is only one call per branch of a qcase. Therefore, the program is in PFOQ. O

By Theorems 5.23 and 5.24, we conclude that [PFOQ] = QP. Therefore, the set of functions in
FBQP (Definition 2.6) can be characterized as the set of classical functions that are approximated
by PFOQ programs with bounded probability.

Theorem 5.25. [[PFOQ]]E‘;Y = FBQP.
=3

Proof. From Theorems 5.23 and 5.24, we have that [PFOQ]P°Y = QP, and by the definition of
FBQP (Definition 2.6) we obtain the result. O

In this chapter, we defined two fragments of the FOQ language introduced in Chapter 4,
namely the subset of programs that strictly reduce their qubit access, denoted WF for well-
founded programs, and the subset WIDTH<; of programs that avoid recursive duplication. The
intersection of these two fragments, denoted PFOQ, was shown to be sound and complete for
the set of functions that can be computed by quantum Turing machines running in polynomial
time. This, in turn, was used to provide the first characterization of the class FBQP using a
programming language.

As a tool for reasoning about quantum programs, we showed that PFOQ is expressive enough
to contain standard examples of programs such as the quantum Fourier transform, as well as
circuits for algebraic operations, and that large programs can be constructed from smaller ones
in ways that preserve PFOQ properties.
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6

A Characterization of Quantum
Polylogarithmic Time

In this chapter, we turn our attention to a more restrictive class of quantum programs: those
that can be executed in polylogarithmic time. In order to do so, we introduce a new syntactic
restriction for FOQ programs which ensures that recursive procedure calls reduce at least one
input qubit list by half.

6.1 Halving

Consider the following subset of FOQ programs.

Definition 6.1. A FOQ program P is said to be recursively-halving if

Vproc e P, Vcall proc’[i|(sy,...,s;);€ ST,

|f((_17;)|.

proc ~p proc’ = there exists s; such that ¥V f:Var(P) — L(N), (|si], f) Yzan n < 5

We denote the set of recursively-halving programs as HALF.

This restriction ensures that in every recursive procedure call at least one of the input qubit
lists is cut in half. This ensures a polylogarithmic depth of recursive calls.

We now present two examples of recursively-halving programs, one which performs a binary
search, and another which computes the last index in which a certain entry occurs. Both of these
examples take in sorted strings so that the problems can be solved in logarithmic time.

Example 6.2 (Binary search). Let x € 0*1*2* be a sorted string and & denote the encoding of x
as a binary string given by 0200, 1201, and 2 = 10. Program SEARCH in Figure 6.1 computes
the function

[SEARCH] (|2)q ® |0)¢) = [)q ® [b)r,

where b € {0,1} indicates whether x contains a 1 or not. Since every recursive procedure in
SEARCH takes as input either q¥ or q°, we conclude that SEARCH € HALF.

Example 6.3 (Counting). Let z € 0*1* be a sorted binary string. Program COUNT defined in
Figure 6.1 performs the transformation

[COUNT] (| )q ® [07°50=DT)e) = ) ® [K)s,
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Chapter 6. A Characterization of Quantum Polylogarithmic Time

SEARCH COUNT
1 decl search(q,T){ 1 decl count(q,T){
2 if |q| > 1 then 2 if |q| > 1 then
3 qcase q[lal/2,al/2 +1] of 3 qcase qlql/2] of
4 00 — call search(q®,t); 4 0 — call count(q®,te(1]);
5 01 - 1[1] »= NOT; 5 1 - 1[1] *= NOT;
6 10 — call search(q®,T); 6 call count(g®,To1]);
7 11 — skip; 7 else skip; }
8 else skip; } 8 “
9 : 9 call count(q,T);
10 call search(q,T);

Figure 6.1: Programs SEARCH and COUNT for binary search and counting sorted elements.

where k is a binary word encoding the number of instances of zero in the word (equivalently,
smallest index with a 1). As in the previous example, it is easy to check that COUNT € HALF.

Recursively-halving programs are well-founded (Definition 5.1), as HALF ¢ WF. Therefore, by
Lemma 5.2, they terminate.

Example 6.4 (Parity). The program PARITY in Figure 6.2 computes the function
[PARITY](|z)q @ |y)e) =[2)q @y @ 1 @ @ 2 )

forx=x1...2, €{0,1}". We have that PARITY € HALF, as both its recursive procedure calls take
as input q® or q°, and therefore PARITY terminates.

We now consider how the HALF restrictions can ensure the polylogarithmic-time termination
of programs, when combined with the WIDTH<; condition.
6.2 A (Poly-)Logarithmic First-Order Quantum Language (LFOQ)

In order to restrict FOQ to a subset of programs that terminate in polylogarithmic time, we
introduce the following fragment.

Definition 6.5. We define the polylogarithmic-time fragment of FOQ as
LFOQ £ HALF N WIDTH,
where WIDTH<1 s the width restriction given in Definition 5.10.

As we will see shortly (Theorem 6.9), the restriction to LFOQ programs ensures that they can
be simulated by quantum random-access Turing machines running in polylogarithmic time. For
example, programs SEARCH and COUNT introduced in the previous section are LFOQ programs.
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PARITY

1 decl parity(q,7){

2 if |q| > 1 then

3 call parity(g®,1); q

4 call parity(g®,1);

5 else
N AN N AN
L A\ A\ % A\

6 CNOT(q[1],T[1]) } 1] —4

8 call parity(q,T);

Figure 6.2: Program PARITY € HALF for computing the parity of an input string.

Example 6.6. Both programs SEARCH and COUNT of Figure 6.1 can be shown to be in LFOQ.
We consider only the case of COUNT. This program only contains one procedure count, that is a
recursive procedure. We verify that COUNT € WIDTH<1 by computing widthegyyr(count):

“ddthcmmT(Count) =...

= max(wggyyr(qcase ...),0)

count

= max(wggyyr (call count(q®,T e [1]);), wegyyr (call count(q®,ro1]);))
=max(1,1)=1.

A similar analysis can be performed to determine that SEARCH € LFOQ.

While LFOQ is a subset of PFOQ, none of the PFOQ programs of Chapter 5 were in LFOQ,
as none followed the HALF restriction. While important, the HALF condition by itself does not
ensure polylogarithmic-time termination, as the doubling of procedure calls can lead to, for
instance, linear-time iteration.

Example 6.7. PARITY ¢ LFOQ, as it does not satisfy the WIDTH<1 condition:

WIDTHpprrTy(parity) = max(wgzélig(call parity...),0)

= Wpprrry (call parity(a®,);) + wpyrrry (call parity(a®,1);) = 2.
Furthermore, Timepprrry([n1,12]) =n1 + 1, for ng > 0, therefore it is not a polylogtime program.

It is not surprising that PARITY ¢ LFOQ, as the problem of determining the parity of a string
cannot be solved (even approximatively) in quantum polylogarithmic time, as was shown in
Lemma 3.10.

Another property of LFOQ is that we can also use the syntactic sugar given in Defini-
tion 4.1 to create larger LFOQ programs, similarly to the construction of larger PFOQ programs
(Lemma 5.16).

Lemma 6.8. LFOQ is closed for the program construction rules in Definition 4.1 whenever the
procedure calls already satisfy the HALF and WIDTH<; conditions whenever the subprograms are
replaced with skip.

We now consider the relation between FBQPOLYLOG and LFOQ. We start by showing that
any LFOQ program can be simulated by a QRATM running in polylogarithmic time.
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6.2.1 Soundness

First, we consider the fact that the largest possible number of procedure calls that can be
performed in LFOQ programs is bounded polylogarithmically.

Theorem 6.9 (Polylogarithmic time). Let P € LFOQ. Then, there exists a k € N such that, for
alln e N, Timep(n) = O(log®(n)).

Proof. Let P =D = S and let call proc(s);e S. If no such procedure exists the program can be
shown to run in constant time.

We now consider the set of (mutually) recursive procedure calls originating from proc. From
the WIDTH<; and HALF conditions, there are only O(logn) such procedure calls and therefore
at most O(logn) calls to procedures of strictly smaller rank. The level is then bounded by
O(logk n) where k is the largest rank of a procedure in P. O

We now show that any LFOQ program admits a QRATM that simulates it. One question that
we do not address in this thesis is what is an appropriate restriction of amplitude transitions
in the polylogarithmic case. This question was discussed in Chapter 2 in the case of polytime
QTMs, but no such result exists for the polylogarithmic time classes. For our purposes, we will
only ensure that, for some set of amplitudes K, an LFOQ program with unitaries in K2*? can be
simulated by a QRATM with transition amplitudes in K, and vice-versa.

For this reason, we may denote by LFOQg the set of LFOQ programs with amplitudes in K,
but we mostly leave this notation implicit.

Lemma 6.10. For all P € LFOQy, there exist T : N - N and a QRATM M with amplitudes in
K that computes [P] in time T with T'(n) = O(log(n) +log(n) x Timep(n)).

Proof. This can be shown with an argument along the lines of the proof of Lemma 4.3. To handle
the fact that the machine must be able to run in sublinear time, the following changes can be
made:

e Qubit addresses: instead of updating the list of qubits entering each procedure call,
we can equivalently consider that the information about the list is kept in the form of
its transformations, namely a sequence of qubit removals such as first half (q%), second
half (), or removal of specific indices (G o [i]) such that this information can be kept in a
polylogarithmic length string. Qubit addresses are then obtained by computing the specific
address from this string, which can be done in logarithmic time.

e Qubit state evolution To apply a unitary evolution to a qubit, the QRAM uses the
query state to access the qubit address. The machine enters the query state and swaps the
last bit of tqram with tin([q]), transitioning to state saccept. Then, the machine performs
a transition according to the unitary operator. For entry state s and exit state s’, we have

Vae{0,1}, (s tin([al), 5", a) = (tin([aDITUT(9) ([Dla)

Afterwards, the machine reenters the query state and swaps the (modified) last symbol of
tqram with the current value of ¢([q). Finally, the machine erases ||[q] at the end of tx
and leaves its head in the last non-blank cell of tk.

e Size of qubit lists: the size of a list of qubits can also be computed in time linear on the
length of the list, either by reducing the value by one or dividing by two, according to the
list description.
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e Set of amplitudes: as in the proof of Lemma 4.3, if the amplitudes in the program are
in K, so are the amplitudes of the simulating QRATM.

The remaining details of the proof follow the ones of Lemma 4.3 for normal quantum Turing
machines. O

Having shown that LFOQ programs are sound for FBQPOLYLOG, we now prove that the
language is complete for this class.

6.2.2 Completeness

In order to show that LFOQ programs are complete for quantum polylogarithmic time, we demon-
strate how any QRATM running in polylogtime can be simulated by an LFOQ program.

This proof is more involved than the one for the completeness of PFOQ in the polynomial-time
case (Theorem 5.24), as we attempt to simulate a QRATM directly with an LFOQ program, as
opposed to proving completeness with regards to an already-existing implicit characterization.

An added difficulty also comes from simulating the query state of a QRATM, where the

machine can access any cell on the input tape in a single transition, according to the address
written on the index tape. To simulate this step, we perform a binary search of the input cell by
following each symbol in the index tape.
Theorem 6.11 (Completeness). FBQPOLYLOG C [[LFOQ]]Z% .
Proof. We define an LFOQ program simulating M. Without loss of generality we consider a
single-tape QRATM. Let 6 : Q@ x {0,1,#)}2 - K@{OL#{LRY? ho the transition function of M.
We obtain a program simulating M by simulating the iteration of § a polylogarithmic number of
times. To that end, we will define two procedures: access_input and iterate. These procedures
will make use of the following qubit lists and variables: the qubit lists qxk, Gin, Gout €encode an
index tape, input and output tapes, respectively. The main procedures will work as follows:

e local_step: simulates a constant-time transition of M locally on three adjacent cells of
the index tape and the work tape.

e access_input: allows for QRAM-like access to the input tape by performing quantum
branching on each cell of the index tape. The correct cell on the input tape to be read is
determined by “splitting” in half the set of possible input tape addresses according to the
value of each index tape cell. This procedure is used in local_step.

e full_step: performs local_step iteratively to simulate a transition of M over the entirety
of the index and work tapes.

e iterate: executes full_step a polylogarithmic number of times, simulating the entire run
of M.

We now define all of these procedures and show how they can be combined to obtain an
LFOQ program simulating M. To do so, we encode M’s tapes in a way that allows for the
transition function § to be applied locally [Yam22|, as in the simulation of QTMs via quantum
circuits [Ya093, MW19|.
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Encoding a QTM’s state and tapes into qubit lists. In order to simulate M using an
LFOQ program, for a natural number n € N, we define as 77 the encoding of n into its bitstring.

We encode the internal configurations of M as follows. Let qg,din,Gw be qubit lists for
encoding the index, input and work tapes, respectively. The state of gk and Gy also encode the
head positions and current state of the machine. If the QTM is in state s with its head in the
ig-the cell on the index tape, and in the jy-th cell on the work tape, then the states of qg and
Jw are encoded as

)y 2

(%3, 00 )ie1...|tg )
and

o5y

with z; £ £s if 7 = ig and z; =2 0 otherwise, and likewise, y; £ 1 if ¢ = ig and x; £ 0 otherwise. The
sign of +s serves to indicate whether the single-step transition has already been performed.

(Yi> Ti)iel.. |t )

Possible types of local tape transformations. The machine transition can then be sepa-
rated into two cases. If it is not in the query state, then it performs a unitary evolution of its state,
index and work tapes, and moves its tape heads to an adjacent cell. Without loss of generality,
we can consider only the following types of transitions [BV97, BBC95]. Let s # Squery, s’ € @,
and ok, 0k, Ow, 0y, € {0,1}. Then, the transition function is defined by one of two possibilities.

° |S,O’K,O'W>—>6 619|s',0ﬁ<,0"ﬂ,dK,dW), and

d I / : "mo_moo g ’
cosO|s', oy, 0%, dg, dy)+sinb|s" oy, o, di, d,),

L4 |S7O-K7 O-VV>_> W

for 6 € [0,2m). We extend § to handle squery with the rule |squery, ok, ow) -9 |p, oK, 0w, 0,0),
where p is a designated state which, to ensure unitarity, can only be accessed via squery-

Given our encoding of M’s index and work tapes, this can be done by taking each triple
of cells in tx and t and checking for the head positions, where, for instance, in the case of a
phase-shift, if dx =1, then

10,505 0))(0,02:1)) ~ €10, 310, o)) (=5, 7i51)),

and, in the case of a rotation, if dg =1 and dj = -1,

|@m4mammmmm»4ﬂwwaWfM@deRwH»
+sinf-|(=s",0i-1))[(0,07)) (0, 0411)):

These transitions correspond to phase-shifts and rotations, respectively, which for a specific
machine M can be encoded by a composition of statements without any procedure call. Let
unitary_step(qg, out) be the constant-time procedure that executes U?. We use this procedure
to define a larger one, local_step(qQx, Gin, Qw) Which applies the unitary transformation or the
input access in case M is in the query state.

1 decl local_step(qx, Gin, dw){

2 qcase Qywll..[log(|Q])]+1] of {

3 Squery — call access_input(qg, Gin, Gw © [1, ..., [log(|Q)] + 1]);
4 - skip; }

5 call unitary_step(qdg,qQw);
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We now describe how we may simulate the access to the input state using LFOQ recursion.
Using each subsequent value in the index tape, we search either on the left or on the right of the
input tape, until we find the correct cell and perform a swap operation with the correct work
cell. This is described in the procedure access_input(qg, Gin, Gw; )-

1 decl access_input(qk, Gin, Gw){

N

if |gg| =1 then qcase qk[1] of { //base case: QRAM access

3 0 - SWAP(qwl[1], Gin[0])

4 1 -~ SWAP(qw (1], Gin[1]) }

5 else qcase qg[1] of{ //recursive case: binary search according to index bit
6 0 — call access_input(qg © [1],(15'1,(1w)§

7 0 — call access_input(qg © [1],q5, Aw); |

This procedure performs two recursive calls on different branches, and on each of them it
halves one of the input qubit lists (in this case, Gin, i.e. the one representing the input tape).

Iterating over the tapes. To obtain a single transition of M, it now suffices to iterate
local_step over the entirety of the work and index tapes. Let n be the size of the input, and
k = [logn]. We may consider the index as having size k and the work tape as having size O(k?),
for some constant d € N. Then, we can iterate simultaneously over the two tapes by composing
local_step a O(k™"') number of times. This can be done by using a nested recursion in LFOQ
of depth d + 1. Since d is a constant, we can define functions iterateq,..., iterate,,, in the
following way for i =1,...,d,

1 decl iterate;(+,q1,---,qq){
2 call iteratei('a(_:ﬂ:"'aqa"'aC_1d);
3 call iterate[j+1(',(_11,'-- 7qd)7}

These procedures are congruent with LFOQ’s restrictions, as the procedures satisfy iterate; >
iterate;,; and therefore width(iterate;) =1, for each ¢. Then, if the qubit lists q,...,qg all
have size n, the result of a call to iterate; (-, qi,...,qq) is precisely log?* ! n calls to iterate,, .

The full simulation. To finalize the simulation of M, we simply put together the procedures
we have so far created. Let d € N be such that M on an input of size n runs for log?n steps.
We define iterate as a procedure that composes full_step a number log?n times, using the
technique shown above, by defining

iterate = iterate; and full_step = iteratey.

Similarly, the procedure body of full_step will be defined with nested iteration performing the
log?*! n composition of local_step.

To perform the full simulation, for an input of size n, if k = [logn], we make use of qubit lists
GK, Gin, Gw Of size k, n, and k%, as well as 2d — 1 qubit lists of size n used to control the iteration
of full_step and iterate.

This concludes the proof. O
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In this chapter, we defined a fragment of FOQ, namely LFOQ, that is sound and complete for
quantum polylogarithmic time. This provides an implicit characterization of the class FBQPOLY-
LOG, whose definition is based on a polylogtime-bounded quantum random-access Turing ma-
chine. The decision-problem equivalent class BQPOLYLOG was implicitly defined via a function
algebra in [Yam?22|, and we claim that our language is simpler and more expressive.

LFOQ was also shown to satisfy certain desirable properties. For instance, like PFOQ, LFOQ
is closed for the inverse transformation given in Definition 4.7 (the argument is not repeated as
the proof is similar to the one of Lemma 5.14 for PFOQ programs). As claimed in Lemma 6.8,
we also saw that larger LFOQ programs can be built from smaller ones using standard syntax,
which is also a testament to the robustness of the chosen syntactical restrictions.

We were also able to bound the power of LFOQ by separating quantum polynomial and
polylogarithmic-time, using the quantum query complexity bound of Lemma 3.10. For this
reason, we can conclude that no LFOQ program is capable of approximating the AND, OR and
PARITY. Conversely, it is not difficult to define PFOQ programs for these functions.

In Part III, we will tackle the problem of compiling LFOQ programs into quantum circuits of
appropriate complexity. In the case of polylogarithmic time, it is not expected that corresponding
circuits are of polylogarithmic size, but rather of polylogarithmic depth. This is because a poly-
logtime program can still refer to all the qubits in the input over all its branches of computation.
This is evident in the example programs SEARCH and COUNT in Figure 6.1.
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7

A Resource-Preserving and Tractable
Compilation Algorithm

So far, we have concerned ourselves only with connecting FOQ and its fragments, PFOQ and
LFOQ, with the QTM model of quantum computation. This model, while intricate in its details,
is useful for reasoning about programs and their complexity. This is due to the fact that the
QTM model lends itself quite well to reasoning over programming primitives. For instance, the
composition of two QTMs can be defined with a bigger QTM, whose time complexity is the sum
of the time complexities of the two, smaller QTMs [BV97, Dovetailing Lemma).

Likewise, one can reason about a machine that, depending on the state of the symbol it reads,
branches in a superposition of simulating one machine or another on the remaining tape. The
running time of such a machine is the maximum running time of the two smaller QTMs [BV97,
Branching Lemmal.

We will see that this reasoning cannot be directly imported into quantum programs and their
circuits, namely when it comes to quantum branching. Quantum branching is generally defined as
the use of a quantum state as the guard of the control flow of a program. For instance, consider
the FOQ statement

qcase of ¢ then {0 — Sp,1 > S;}.

This statement indicates that, depending on the quantum state of the qubit address correspond-
ing to q, we execute statments So and S; in superposition. Since we cannot observe the qubit’s
state mid-computation, a circuit implementation will require that we include the circuits of both
statements. Therefore, the circuit complexity in this case is not the maximum circuit size be-
tween Sy and Sq, but instead their sum. This is the case whenever we have no information about
the structure of Sy and Sp, and no simplification is apparent.

We now motivate this problem with a specific example of a program that performs recursive
quantum branching.

7.1 The problem of exponential blow-up

This mismatch between our intuitive reasoning about the qcase statement and its naive cir-
cuit implementation poses a serious problem for the quantum programmer, as in many cases a
program’s circuit complexity can be exponentially larger than the expected one, derived from a
straightforward reasoning about its primitives.

Given the importance of preserving the time complexity of a program in its circuit implemen-
tation, there is an interest in discovering general techniques that avoid the problem of branch
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1 decl pairs(q){
2 if |g| > 2 then

3 gcase {|1,2] of {

4 00 — call pairs(qe|1,2]);
5 01 — skip;

6 10 — skip;

7 11 > call pairs(ge|1,2]);

8 }
9 else q[1] »= NOT; }
10 = call pairs(q);

Figure 7.1: Program PAIRS.

sequentialization. We will show that this can be done partly for PFOQ programs, and optimally
for a fragment of PFOQ that is complete for QP.

7.1.1 Motivating example

To demonstrate how the problem of recursive branching can incur an exponential blow-up, we
consider the simple example of the PFOQ program PAIRS defined in Figure 7.1.

With Z € {0,1}* and y € {0,1}, given the input state |Zy), pairs will apply a NOT gate to
y if and only if T is a string consisting only of sequences of 00 and 11. Put another way, pairs
encodes the unitary transformation that inverts the state of the last qubit of an input when z
belongs to the regular language defined by (00| 11)*.

From the point-of-view of the programmer, pairs is a procedure with linear complexity since
it performs at most one recursive call per branch, and consumes 2 qubits from its input while
doing so, and therefore its runtime is bounded linearly. This complexity analysis is equivalent to
estimating the program’s Time function (see Section 4.2): given that a procedure may only exe-
cute a constant number of instructions (excluding its procedure calls) the asymptotic complexity
of the program is bounded by the mazimum number of procedure calls performed in depth. For
instance, it is easy to see that Timepyrrs(n) = [%J +1.

However, when finding an approach to compiling PAIRS, different strategies, while semanti-
cally equivalent, can produce circuits that differ in asymptotic complexity. Consider, for instance,
the compilation strategies given in Figure 7.2 for the recursive case of pairs, i.e. where the input
size is larger than 2.

Strategy (a), which we will call the “in-depth” approach, consists of compiling the circuits
for the two recursive calls to pairs in sequence, controlled on the first two qubits according to
the corresponding branches. Each instance of pairs then produces two more, in sequence, with
an input containing 2 fewer qubits, and results in a circuit of size ©(n2").

Strategy (b), which we call the “in-width” approach, applies QRAM techniques to parallelize
the two calls to pairs, by making use of two registers ro9 and 711, to perform each branch in
parallel and then recombine the results in the same register. In this case, the final circuit is
linear in depth but requires an exponential number of gates and ancillas to be generated.
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Both strategies (a) and (b) ignore the structure of the branches of the gcase statement,
namely the fact that the two statements are identical and therefore encode the same unitary
transformation. These represent automatic strategies for compiling a quantum control statement.

One relatively simple idea for making use of the symmetry between the two branches is to
merge them into a single procedure call to pairs, by using an ancilla that controls the procedure
call and whose state depends on the two relevant branches. This approach corresponds to strategy
(c) and results in a final circuit of size O(n).

While strategies (a), (b) and (c) produce equivalent circuits, on an input of size n, strategy
(a) results in a circuit with an exponential number of gates, and strategy (b) results in a circuit
with an exponential number of gates and ancillas, while strategy (c) results in a circuit of size
©(n), making use of ©(n) ancillas. Therefore, while straightforward approaches to compilation
may result in an exponential blow-up of circuit complexity, the structure of the program can
sometimes be used to find a compilation strategy that preserves the program’s complexity.

The exponential blow-up present in strategies (a) and (b) is given by the fact the the two
compilation strategies did not make use of the structure of the two branches, and in both cases
the circuit size of the qcase statement is given by the maximum of each branch, whereas in
strategy (c) it is given asymptotically by the maximum.

The term branch sequentialization is coined in [Y(C22] in the context of compiling a quantum
program for finding an element in a sorted binary tree. The authors notice that the program
written in the most straightforward way results in a circuit of linear complexity, instead of the
(expected) logarithmic complexity, due to the fact that the procedure is recursive and calls itself
on different quantum branches.

In order to obtain the correct complexity, the authors rewrite the program so that it creates
an ancilla that is set to the superposition according to the subtree the program should recursively
search. This removes the procedure call from inside the qcase and avoids the exponential blow-up
in the circuit compilation.

Informally, branch sequentialization occurs whenever a compilation strategy applied on a
quantum control case, results in a circuit where the size of the circuit scales as the sum of the
complexities of each branch, rather than the maximum. A compilation strategy for a given lan-
guage can be said to avoid branch sequentialization in general if it avoids branch sequentialization
on every program.

In both PAIRS and the binary tree traversal program in [Y (22|, branch sequentialization
is not too dificult to avoid by rewriting the program. However, there are currently no general
techniques ensuring no exponential blow-up from the use of qcase statements. In this chapter we
will show how an exponential blow-up can be avoided for all PFOQ programs, and in Chapter 8
we introduce a fragment of PFOQ, denoted PFOQ"™", that is computationally equivalent to PFOQ
but where the asymptotic complexity of a qcase statement is given by the maximum of each
branch, as in the QTM model. Therefore, there is a strategy that avoids branch sequentialization
on a language that is complete for quantum polynomial time.

7.1.2 The limits of quantum demultiplexing

The problem of avoiding the sequentialization of operations in a quantum case —i.e. a qcase-like
statement — has been widely studied using models of quantum random-access memory (QRAM).
The problem is usually stated in the following way. Given n control qubits and k target qubits,
with N £ 2™ possible control qubit states, what is the complexity of performing the unitary

N-1
> liXile Ui
i0
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7.1. The problem of exponential blow-up

where each U; € Hor X Hor has time-complexity 7;. One straightforward approach is implementing
each controlled-Uj; in sequence, as in strategy (a) in Figure 7.2, with time complexity O(}7i; T;).
For instance, given n = 2, this corresponds to the circuit

q[1] ? 0 *
q[2] % %
qe|(1,2] H Uoo H Uo1 H Uio H Un }—

Another approach is to parallelize the instances of U;, via a generalization of the QRAM
protocol. An example of such a construction is the following circuit, where r;; for 7,7 € {0,1}
indicate registers of size & where the respective U;; is applied, and rg and r; are intermediate
registers used in the routing procedure [LS01, STY 23, ZLY22].

The routing is structured like a binary tree. In this case, the most significant bit, given by
q[1], is used to send the target qubits either into register rg or r1, depending on its value. This
is done with two controlled swaps. Then, depending on the state j € {0,1} of the next most
significant bit, q[2], the register 7; is swapped with register r;;. This is done with 4 Fredkin gates
which can be parallelized into two time-steps. For controls of arbitary size, each level of the
binary tree can be performed in constant time, by employing an exponential number of ancillas.
In Figure 7.2, the quantum demultiplexer would roughly correspond to strategy (b).
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In some scenarios, such a construction can be shown to be optimal [ZLY22]. The exponential
space needed for the circuit is unavoidable, given that we have no information on the structure
of each Uj;.

Both in-depth and in-width strategies result in circuits of exponential size in the case of a
simple program such as PAIRS. The merging technique results in a circuit of linear size as it
allows the compiler to factor out repeated procedure calls. Our objective in this last part of the
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thesis will be to exploit the structure of PFOQ and LFOQ programs in order to obtain circuits of
adequate asymptotic size.

We will show that PFOQ programs allow for such techniques and, after formalizing the notion
of branch sequentialization introduced in [YC22], we show that we can restrict PFOQ without
reducing its expressivity and obtain a fragment where branch sequentialization is avoided alto-
gether for polynomial-time programs.

7.2 Anchoring and merging

In this section, we discuss how we can extend the idea for the merging compilation strategy
for PAIRS (Figure 7.1) to arbitrary programs in PFOQ. In compiling a procedure call to pairs,
we made use of the fact that the two branches in the qcase statement were identical, in that
they contained two calls to pairs on precisely the same input. We can consider more general
scenarios: different inputs, different procedure calls, procedures making use of classical inputs,
and the general structure of the qcase substatements being more complex than a procedure call.

Our strategy for compilation, introduced in the next section, can be described as anchoring
and merging. It consists of performing the following two types of operations while compiling the
program:

e anchoring: in the case of a new procedure call, an ancilla is created that contains its
quantum control information, and is used to control the procedure statement;

e merging: if a repeated procedure call occurs, instead of being compiled, the information of
its quantum control is sent to the compatible ancilla created from anchoring.

The notion of new or repeated procedure calls is defined by compatibility. Two procedure
calls call procli|(si,...,st); and call proc’[i'|(s,...,s;); in contexts f and f’ respectively are
said to be compatible if they correspond to the same procedure, have the same classical input
and the quantum inputs have the same size:

proc=proc’ A (L,f),({f) Inn A (sil, £), (sil, f) Uy ma.

What interests us is that compatible procedure calls represent the same unitary transforma-
tion, up to a permutation of input qubits. In the case of pairs, the permutation was trivial, as
the input qubits were the same in both procedure calls appearing in the different branches of the
qcase. In general, all qubit addresses may have to be changed.

Multiple compatible procedure calls occurring in separate qcase branches can be simplified
into a single instance, by performing a controlled permutation over the inputs.

Lemma 7.1. Any controlled permutation of n qubits can be performed with a quantum circuit

of size O(n) and depth O(logn).

Proof. Any permutation can be written as the composition of two sets of disjoint transpositions,
and therefore any permutation can be performed in constant time, using two time steps [MNO1].
To perform a controlled permutation, it suffices to create O(n) ancillas with the correct control,
which can be done in O(logn) depth with O(n) gates. O

As an example, consider the controlled permutation given in Figure 7.3, where the vertical
dashed lines separate time slices containing gates which can be implemented concurrently.
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Figure 7.3: Implementation of a controlled permutation in logarithmic depth.
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Figure 7.4: Merging orthogonally-controlled statements.

The merging of two compatible procedure calls can then be seen as the merging of unitaries
with orthogonal controls. An example is given in Figure 7.4.

Anchoring and merging allows for the compilation procedure to compile only the unique
procedure calls (those that are not compatible as defined above). While a PFOQ program can
result in an exponential number of procedure calls over different branches, only a polynomial
number of such calls are unique.

Lemma 7.2. Let wp & (call proc[i](s1,...,sk);,|¥) A, f) where P € PFOQ and £(|¢)) = n. The
number of subtrees ™' <7 with unique procedure calls ©' & (call proc’[i'](s,...,sp);, [v), A", f')
where proc ~p proc’ is bounded by O(nF*1).

Proof. Non-compatible procedure calls can only differ in procedure name, classical input, and
input sizes. There is only a fixed number of procedure names in a given program. The classical
input value can only be increased by depth of recursion, which by the WF condition can only be
linear. Given that there are O(nk) possible input values, we obtain our upper bound. O

Having motivated the problem and some of the techniques that will be used, we are now
ready to present our first compilation algorithm.
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7.3 Compilation algorithm

In this section, we introduce a compilation algorithm that ensures polynomial bounds for PFOQ
programs, therefore avoiding the exponential blow-up from branch sequentialization.

The compilation algorithm compile (Algorithm 1) is described by the rewrite rules of Fig-
ure 7.5. The input of compile is a triple

(P, f,cs) € Programs x (Var — L(N)) x (N - {0,1})

where P is a program, f € Var - L(N) is a function that maps qubit list variables to their
espective addresses, and cs is a control structure.

A control structure cs is a partial map from N — {0,1} that maps wire numbers to values
coding negative or positive control. The empty control structure is denoted by {}, more generally,
we will often use a set extension to exhibit the mapping of a control structure. Given a control
structure cs, we write cs[n := b] to represent the new control structure csu{n ~ b}.

Let a controlled statement be a pair of the shape (cs,S), for some control structure cs and
some statement S. In the compilation process, controlled statements (cs,S) are used to represent
a statement S that remains to be compiled into a quantum circuit C' together with a control
structure cs, representing the qubits controlling the circuit C.

M (cs,n) denotes the circuit that has a single controlled gate M acting on wire n, controlled
under c¢s. For example, NOT({1 » 1,2 ~ 1},3) denotes a CCNOT with positive control on
wires 1 and 2 and acting on wire 3.

Given two lists of qubit pointers (integers) having the same length, we define

SWAP([z1, .., 2], [2], - 2%])

as the permutation gate that maps each z; to zf. For simplicity, we extend this notation to lists
of lists of qubit pointers. For [,1" € L(X), [@QI" denotes the concatenation of [ and I’. Then:

SWAP([s1,--,8n], [81, - 5,]) = SWAP(s;@---@s,,, 8] @---Qs])).

As for unary gates, the controlled version is defined by passing a control structure as first argu-
ment: CSWP(cs, [s1,...],[s],...]). Note that by Lemma 7.1, such a control swap gate can be
performed by a circuit of linear size and logarithmic depth.

In addition to control structures, the algorithm also manipulates lists (denoted with square
brackets) and dictionaries. Functions hd and tl give access to the head and the tail of the list,
respectively. Given a dictionary d, we can test if it has a given key k with k € d. Then we can
assign or access the values with the syntax d[k].

Generating the circuit corresponding to the program P = D :: S will consist in running
compile on the controlled statement ({ },S), with a function f: Var(P) - L(N) corresponding
to the map of qubit pointers lists used in the semantics. Given a program P with variables
Var(P) ={qi,...,qr}, we use the following shorthand notation

13

compile(P, [nq,...,n%])
k-1 k

compile(P,{G: [1,...,m], G2 [na + 1, com o], @ [+ L, D om ] {))
i=1 i=1

for the circuit obtained for program P on input sizes |qi| = nq,...,|qx| = nk.
The algorithm generates the quantum circuit corresponding to a PFOQ program inductively
on the statement S. Given the rules of Figure 7.5 when compile is called on a given controlled
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Figure 7.5: Rewrite rules of compile.

statement (cs,S), an inductive call to compile is performed on controlled statements whose
statements are sub-statements of S. The two base cases are the rules for the skip statement and
the unitary application. In these cases, the compilation just outputs the identity circuit and a
controlled gate computing the unitary, respectively.

The rules for sequence and quantum case perform two inductive calls to compile on each
branch of the statement. The rule for quantum case is the only rule that directly performs
changes on the control structure. In the particular case of a call to a recursive procedure,
i.e., when widthp(proc) > 0, compile calls the optimize subroutine (Algorithm 2) to perform
anchoring and merging. This call to optimize is highlighted in Figure 7.5 through the use of
a shaded square [], which takes the procedure name proc as superscript. We call this process
the optimization of procedure proc.

The recursive call case in Figure 7.5 also includes a striped rectangle. For the purposes of
describing compile and optimize, this rectangle can be ignored, as it will only be of use in an
improved version of the algorithm, compile* and optimize®, both described in Section 8.3.

The rewrite rules for the subroutine optimize on procedure proc are described in Figure 7.6.
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Figure 7.6: Rewrite rules of optimize.

The algorithm optimize evolves a list [ of controlled statements, based on the WIDTH<; condition.
In Figure 7.6, the rules are applied by considering the first controlled statement in the list {. We
just specify the most interesting cases below:

e for a controlled statement (cs,S; S2), two distinct rules can be applied. In the first scenario,
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where w} °°(S1) = 1, we have that S; contains a recursive procedure call and Sy does not

(this is a consequence of the WIDTH<; condition in PFOQ), or the converse. Depending
on this, the rule selects on which control statement (cs,S1) or (es,S2) to perform the
optimization and, appends the compiled circuit of the other controlled statement to the
left or to the right.

e for an if statement, we precompute the boolean value b (the value is computable as it only
depends on classical data), and according to whether the corresponding branch contains a
recursive call or not, we either add it to [ or compile it separately.

e for a qcase statement, one or two of the branches are added to the list [ depending on
whether they are both recursive or not.

e for a controlled statement with a procedure call call proc’(s); we perform either anchoring

or merging depending on whether the ancilla a‘pSTOC, exists or not. We denote by @ or

a completely fresh ancilla created in state |0).

e when the list of control statement is empty (i.e., [ = []), the algorithm terminates. The
controlled gate encodes the swapping of qubit positions, for instance using the con-

struction given in Lemma 7.1.

One simple but important detail of the compilation is that the statements in [ must be handled
by non-increasing order of number of accessible qubits, to ensure that merging of procedures is
semantically valid. This can be seen by the fact that the validity of the merging step, in the
proof of Lemma 7.4, assumes that at the moment of merging an instance of a procedure proc
on input size n, that the corresponding procedure statement SP*°¢ is present in [, which is only
true in general if the statement has not yet been treated in optimize. This can be ensured by
keeping a partial order of accessible qubits over the elements in .

7.3.1 Correctness of the algorithm

In this section, we discuss the validity of the compilation algorithm. One first observation should
be that, given a a program, the compilation necessarily terminates. For instance, in compile
(Figure 7.5), all rules besides the procedure call rewrite the controlled statement into either a
circuit or into instances of compile of smaller statements. In the case of a procedure call, the
rewriting of the procedure body produces a finite number of calls to procedures of lower recursive
level.

In optimize, a recursive procedure will result in a finite number of calls to mutually-recursive
procedures — this is ensured by the well-foundedness condition WF, that requires that recursive
procedure calls reduce the size of the input, therefore procedure calls either reduce the level of
recursion or the number of available qubits.

The soundness of the compilation algorithm is given by an orthogonality invariant in opti-
mize. Let cs, cs’ be two control structures. We say that cs and cs” are orthogonal if there exists
i € dom(cs) ndom(es’) such that cs(i) =1 - ¢s’(i). Two controlled statements are orthogonal if
their control structures are orthogonal.

Lemma 7.3. During the compilation of a PFOQ program P, for each optimization of a (recursive)
procedure proc, all controlled statements | are pairwise orthogonal.
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Proof. This invariant can be easily inspected from the rewrite rules in Figure 7.6. For instance,
in the case of a sequence of instructions or a classical if statement, the control structure cs is
either kept in the list as it was before, or removed. In any of these two cases, the invariant is
maintained.

The only rule where the number of instances of cs increases is the one for the qcase state-
ment. In this case, control statements cs[n := 0] and cs[n := 1] can still appear in the list of
orthogonally-controlled statements. Since, by induction, (cs,S) was orthogonal to all other con-
trolled statements, we can conclude that the same is true for cs[n := 0] and cs[n := 1] separately,
and clearly these two control structures are mutually orthogonal. O

The orthogonality invariant ensures the validity of optimize, and the soundness of the
compilation algorithm. It is also a consequence of the WIDTH«; restriction in PFOQ"™™, as by the
definition of width, at most one recursive call may appear per branch of a recursive procedure.
This ensures that two recursive calls on a given procedure always occur in orthogonal branches
and can be simply combined in the same ancilla. Given a circuit C, we define its semantics [C]
naturally as the composition of the semantics of each gate.

Theorem 7.4 (Correctness of compilation). Given a PFOQ program P and a quantum state
|t)) € Han we have that [compile(P, n)](|v)) = [P](|v)).

Proof. By induction on the structure of the program P =D :: S. One can check by inspection of
each case that the compile rules for non-recursive statements corresponds to the straightforward
circuit semantics of quantum programs.
Likewise, the rewriting rules of optimize, given in Figure 7.6, can be easily checked using the
orthogonality invariant of Lemma 7.3. For instance, consider the case of the sequential statement
proc

S =S1 Sz. In the case where wp " (S1) = 1, we can derive the rule for the statement with the
following steps:

where (a) corresponds to the definition of the sequential statement, and in (b) we make use of the
fact that (cs,S2) is orthogonal to all controlled statements in | and therefore can be commuted
in the circuit.

Other cases can be inspected to follow a short sequence of steps, such as described for the se-
quential statement. For instance, in the case of anchoring, we consider the following composition
of rules

proc

H call proc’(s); B

where, likewise, (a) corresponds to the typical circuit semantics of a procedure call (with an
added anchoring ancilla), and (b) makes use of the orthogonality of ¢s with the other controlled
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statements in [. The validity of merging and also be checked:

proc

= SPrec {5/} IEI sPec {s/q} IE

(e ——-e —

Step (a) can be seen as the definition of the procedure call. Since we are in the merging sce-
nario, a similar procedure call has already been performed and is anchored to its corresponding
ancilla. Without loss of generality (since all controlled statements in [ are orthogonal and there-
fore commute) we assume that this call appears at the end of I. Rule (b) simply indicates that
since cs is orthogonal to other control structures in [, we may move the controlled statements so
that they are adjacent, and where we apply step (¢) to perform merging. Since c¢s is orthogonal
to -[aﬁoc’ = 1] the control is added to the ancilla as expected. Finally, orthogonality of ¢s with
other control structures means that we may move the two controlled-INOT's to the edges of the
circuit.

All other cases can be similarly checked to be valid O

Example 7.5. compile(QFT,[4]) outputs the circuit provided in Figure /.6 corresponding to the
PFOQ program QFT. Notice that there are no extra ancillas as no procedure call appears in the
branch of a quantum case.

We now turn to showing that the compilation strategy ensures a polynomial bound on the
size of the obtained circuits.

7.3.2 Size Bounds

A bound on the size of the circuits obtained from compile can be obtained by reasoning about
the number of different procedure calls performed (meaning that they cannot be merged) during
the course of the compilation.
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Algorithm 1 (compile)
Input: (P, f,cs) € Programs x (Var - L(N)) x (N - {0,1})
Let D:S=P in

if S = skip; then
C<1 > Identity circuit

else if S =q »=U“(j); and (q, f) In n and (U4(j), f) lc2x2 M then
C <~ M(cs,n) > Controlled gate

else if S=S53S; then
C < compile(D :: Sy, f, cs) o compile(D :: Sy, f, cs) > Composition

else if S=if b then {S¢rue} else {Stase} and (b, f) |p b then
C < compile(D :: Sy, f,cs) > Conditional

else if S=qcase q of {0 - Sp,1—S;} and (q, f) |y n then
C < compile(D :: Sy, f,cs[n :=0]) o compile(D = Sy, f, cs[n :=1]) > Quantum case

else if S = call proc(si,...,s,); and 3i such that (s;, f) 2y [] then
C+1 > Nil call

else if S = call proc(sy,...,s,); and Vi, (s;, f) lzmy l; # [] then
if widthp(proc) =0 then
C < compile(D = S7*°“{s;/q;}, f, cs) > Non-recursive call

else if widthp(proc) =1 then
C < optimize(D, [(es, SP**“{s;/q;})], proc, f) > Recursive call
end if

end if
return C
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Algorithm 2 (optimize) Build circuit for recursive procedure proc
Inputs: (D, Lcgt, proc, f) € Decl x £(Cst) x Procedures x (Var(P) - L(N))

CL <« 1; Cr < 1; P« D:=skip; Anc < {}
while Lcog # [ ] do
(¢s,S) < hd(Lcst); Lost < t(Leost)
if S= Sl 82 then
if w; °°(S1) =1 then Loy <« Lost@[(cs,51)]; Cr < compile(D == Sy, f,¢s) o Cr
else Log < Lost@[(cs,S2)]; Cr < Cr, o compile(D :: Sy, f, ¢s)
end if

else if S=if b then {S¢rue} else {Sgase} and (b, f) |p b then
if w2 °°(Sy) = 1 then Loy < Lo @[(cs,Sy)]
else C « Cp, o compile(D = Sy, f, ¢s)
end if

else if S=qcase q of {0 > Sp,1—S;} and (q, f) |y n then
if wp °°(Sp) =1 and wp °°(S1) =1 then
Lost (_ECst@[(cs[n = ] SO) (cs[n = 1]781)]
else if wy "°(S1) =0 then
Logst < ECst@[(CS[n = 0]7 SO)];
Cg < compile(D :: Sy, f,cs[n:=1]) o Cr
else if w} °°(Sp) = 0 then
Lest < Lost@[(es[n=1],51)];
CRr < compile(D :: Sy, f,cs[n:=0]) o Cr
end if

else if S = call proc’[j|(s1,...,s,) with (j, f) Ixm and Vi, (s;, f) Uz I # [ ] then
if (proc’,m,[|l}],...,|l,,]]) € Anc then
Let (a,[l{,...,l']) = Anc[proc’,m,[|l}],...,]I,]|]] in
e < new ancilla();
CL < CLoNOT(cs,e) o NOT({e ~ 1},a) o CSWP({e — 1}, [11, ... 1,1, [11, ., 17 ]);
Cr < CSWP({e~ 1}, 11, ., 111, 1Y, ., 1']) oNOT({e = 1},a) o NOT(cs, e) o Cr
else
a < new ancilla();
Anclproc,m, [y, Wl1] < (@ [, 13]):
Cp, < CLoNOT(es,a); Cr < NOT(cs,a) o Cg;
Lese < Los@[({a = 1}, 8777 {m/x,5:/d:})]
end if

end if
end while
return Cp o Cg
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Theorem 7.6. For any P in LFOQ where Var(P) ={qu,...,qr}, we have that,
#compile(P, [nq,...,n]) =0 (n(k+1)-7'k(P)+1) ’

where n =nq +---+ny.

Proof. We first show that an execution of the optimize subroutine performs O(n**!) calls to
compile. We use a simple counting argument. The dictionary Anc ensures that ancillas related
to the same (proc,i, [ji,...,jx]) € Procedures x Z x {1,...,n}* will only be created once.

The classical parameter can either be updated to a new constant or by adding (or subtracting)
a constant and this can be done O(n) times as procedure calls also remove at least an element
from the qubit list parameter. So the range of values for i is O(n), and there are O(n*) possible
combinations of input sizes. Therefore, the space of possible values has size O(n**1). This is
essentially the statement of Lemma 7.2. Therefore, at most O(n**1) ancillas can be created,
which also bounds the number of calls to compile.

Second, consider an execution of compile. Subroutine compile calls itself directly only
outside of recursive procedure calls, meaning that these cases consist of constant time circuit
constructions. On the case of a call to a recursive procedure, it does a single call to optimize
which creates O(n**1) calls back to compile.

Each of these instances of compile either does a non-recursive circuit construction of constant
size, or does a call to optimize for a procedure of strictly lower rank, as defined in the proof of
Lemma 5.21. Since there are O(n’”l) such calls, the maximum total number of procedure calls
is O(n(F*D7RP)) “where rk(P) is the rank of P (Definition 5.20).

Each of these recursive procedure calls can have a constant number of merge constructions
with linear complexity, therefore the total number of gates is O(n(F+1rk(P)+1y O]

While Theorem 7.6 gives an upper bound on circuit complexity, it is not tight. This can be
seen for the example of program PAIRS defined in Figure 7.1.

Example 7.7. The program PAIRS in Figure 7.1 has a single qubit variable, and rk(PAIRS) =1,
therefore Theorem 7.6 gives a quadratic bound on the circuit obtained from compile. However,
we have that #compile(PAIRS, [n]) = O(n), with the circuit given in Figure 7.7, where ancilla
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Figure 7.7: Circuit for program PAIRS on odd input size n.
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Note that, since Timep(n) 2 [ 5| + 1 this is the correct asymptotic bound for the circuit.

We now make an argument for the size and depth of circuits resulting from LFOQ programs.
Many of the arguments are similar to the PFOQ case, and so we only highlight the small differ-
ences.

Theorem 7.8. For any P in PFOQ where Var(P) = {qu,...,qx} such that n = Ygeyqr(p)ldl, the
quantum circuit produced by compile is of size O(n polylog(n)) and depth O(polylog(n)).

Proof. Similar to the proof of Theorem 7.6, but in the case of LFOQ the possible number of
different procedures is bounded polylogarithmically, therefore only a number O(polylog(n)) of
procedure calls are performed. This can be seen by the fact that in each recursive procedure call
at least one of the input sizes must decrease by half. Therefore, there is only a poylogarithmic
number of possible integer inputs, as well as a polylogarithmic number of input sizes.

Therefore optimize makes at most a polylogarithmic number of calls to compile, i.e., to
procedures of lower rank.

Since merging can be done in logarithmic depth, the polylogarithmic bound remains true for
the entire circuit depth. Since merging requires a linear number of ancillas and gates, a linear
factor is added to the circuit size. O

We have described the compile and optimize algorithms both as programs (Algorithms 1
and 2) and with rewrite systems (Figures 7.5 and 7.6). We saw that by exploiting the orthogo-
nality between different branches of a qcase statement, we were able to construct circuits whose
size depends on the number of unique procedure calls created, rather than their total number.

We now consider two examples of the compilation algorithm, one with a linear-time program
and another with a logarithmic-time program.

7.4 Two compilation examples

We will exemplify the compilation procedure with programs REC of Figure 7.8 and SEARCH of
Figure 6.1. The first example will allow us to follow the application of anchoring and merging
when the input sizes do not match immediately (as was the case for PAIRS), while the second
one will demonstrate the use of the logarithmic-depth swapping of qubit addresses.

7.4.1 A linear-time example

Consider the PFOQ program REC defined in Figure 7.8. Given that rec is a recursive procedure,
its compilation is performed within optimize. We will perform compilation steps using the
rewrite rules of Figure 7.6.

We denote by the empty box [] the procedure statement S*°¢ and by the dotted box the
statement call rec(s);. Applying rewrite rules to the statement of rec we obtain the transitions:

gcase q[1] of {

q 0-call..., 1 qcase q[2] of {
; 0 — skip;
1—call...}
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N

10

11

decl rec(g){

if |g| > 2 then
gcase q[1] of {

0 — call rec(gqe[1]);

1 > qcase q[2] of{
0 — skip;
1 - call rec(ge|i,2]);
}

¥

else q[1] »=TU; }

= call rec(q);

Figure 7.8: Program REC.

The first step is obtained by applying the rule of if statements, where we assume that |q| > 2.
Afterwards, we apply twice the rule for the qcase statement, adding the two qubits q[1] and
q[2] to the control structure. Finally, the compilation of the skip statement corresponds to the

empty circuit. We denote by =% the application of this sequence of rewrite rules.
The compilation can then be defined by the use of three different steps, two related to
anchoring and merging, and a third one implementing the rec procedure statement:
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The merging step does not require controlled-swaps since, given the structure of rec, when
two procedure calls have the same input size, they refer to precisely the same qubits. More
precisely, all instances of procedure rec on input size n will always apply to the last n qubits.

We show the first few compilations steps for rec on Figure 7.9, where we assume that the
input size |q| is large enough that we always find ourselves in the recursive case.
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Figure 7.9: Example of anchoring and merging for the program REC in Figure 7.8.

One important thing to notice in Figure 7.9 is that the compilation strategy does not avoid
branch sequentialization locally but rather asymptotically in the construction of the circuit. In
other words, the qcase statement in rule rec does generate two instances of S*°¢ in the circuit
in sequence, one for each branch. However, the merging of calls to rec on inputs of the same size
ensures that only one instance per input size needs to be compiled, and therefore this strategy
achieves linear complexity in the number of gates.

We now consider the case of a compiling an LFOQ program.
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(a) in-depth q
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Figure 7.10: Compilation strategies for search defined in Figure 6.1.

7.4.2 A polylogarithmic-time example

We revisit the program SEARCH in Figure 6.1, now with the objective of obtaining a logarithmic-
depth circuit. We can again consider multiple strategies, and notice that the in-depth strategy
generates a duplication of instances of search, which is represented in Figure 7.10 by two con-
nected white and gray gates. Such a strategy results in a circuit of linear size and depth.

The merging strategy of optimize requires that we swap the addresses of the qubits between
the first and second halves of the set q. This requires changing the addresses of @7_2 qubits and
therefore using a linear number of gates. According to Lemma 7.1, this can be performed in
linear size and log depth, and so the merging strategy outputs a circuit of polylogarithmic depth
(in this case, O(log? n) size).

In Figure 7.11 we show the circuit obtained for an input of size |q| = 14 and [f| = 1. For this
input size, two ancillas are created for controlling the procedure call to search, namely on inputs
size |q| = 6 and |g| = 2 (the size of T is unchanged during the procedure calls).

With these two examples, we demonstrate the use of the compilation strategy introduced in
this section, as it allows to obtain circuits that satisfy the complexity bounds of the respective
classes: polynomial size of circuits in the case of PFOQ, and circuits of polylogarithmic depth in
the case of LFOQ. This contrasts with the approaches of naive compilation (i.e., in-depth) and
the QRAM approach described by the in-width strategy (Figure 7.2).

In the next chapter, we present a modification of the compilation strategy that strictly
improves the asymptotic bounds. We start by noticing that, by focusing on recursive calls, the
strategy of compile performs less merging of procedures than what is possible, and that this
can lead to a polynomial slowdown in the circuit complexity.
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8

An Asymptotically-Optimal
Compilation Strategy

In the previous chapter, we showed that PFOQ restrictions allow us to compile polynomial-time
programs without incurring the exponential blow-up from branch sequentialization. However,the
application of anchoring and merging, as used in optimize, can result in a circuit whose asymp-
totic size differs from the program’s time complexity by a polynomial factor.

In this section, we identify the source of the polynomial slowdown, and propose a refinement
of optimize. Furthermore, we identify a fragment of PFOQ programs, denoted PFOQ"™", that
is sound and complete for quantum polynomial time and for which branch sequentialization can
be avoided altogether. Therefore, PFOQ"™ constitutes the first programming language that is
complete for quantum polynomial time and for which there exists a compilation strategy such
that the complexity of the qcase statement is the maximum of the branches, and not the sum.

8.1 Motivation: a polynomial slowdown

To exemplify how optimize can incur a polynomial slowdown due to branch sequentialization,
we consider the example for identifying a substring on a given input.

Example 8.1 (Detecting substring). Consider a program for detecting a substring 001 occurring
in an input. We define a program with procedures a, b, ¢ and ®, with the graph:

ofoloto

The two outgoing edges of a node indicate the two branches of a qcase statement in the cor-
responding procedure, controlled on the first input qubit. Procedures consist only of a qcase
statement, for the exception of ®:

D = decl a(q){ qcase q[1] of {0 — call b(ge[1]);, 1 »>call a(qe[1]); } },
decl b(q){ gcase q[1] of {0 — call c(qe|1]);, 1 —call b(@e[1]); } },
decl c(q){ gcase q[1] of {0 — call c(qe|1]);, 1 —call ®(qe[1]); }},
decl @(q){ql-1] »= NOT; }
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The program then defined as SubS_001(q) = D :: call a(q); and performs the transformation, for
xe{0,1}*, ye{0,1}:
[Subs_oo1](|z)®[y)) = |z)® |y & b)

where b is 1 if the string 001 appears in x and 0 otherwise.

Analysing program SubS_001, we check that it is in PFOQ and that it satisfies the relations
a~b>c>®d.

Furthermore, we have that Timegys 001(n) = n + 1, but if we compile the program using the
strategy described in Chapter 7, we obtain a circuit that grows as the square of its input size.

Example 8.2. #compile(SubS_001,[n]) = O(n?).

How can we explain this difference in complexity? The reason is that, for instance, in the
first call to optimize in the context of procedure a, since a and b are mutually recursive, we
encounter the procedure statement of b:

gcase s[1] of {0 — call c(se]1]);, 1 - call b(se[1]);}

as one of the controlled statements in the list. Since a ~ b and a > ¢, the rule for the qcase states
the following transformation:

_______________

s[1] H — s[1]

ik ,
: [ :
so 1] E% call b(se[1]); A_L% call c(so[1]); %

qcase s1] of {
0 - call c(so1]);,
soilH 1—call b(se1]);}

which means that each instance of procedure c derived from b is compiled separately. As a
consequence, the complexity of the qcase statement is the sum of the branches whenever they
contain calls to procedure at a lower level of recursion. This is because the information about
the orthogonality between the call to ¢ and the call to b is lost when the rule is applied.

To stress this point, consider a modified program where we add a call to a that never occurs
in procedures ¢ and d:

decl c’(q){if 0=1 then call a(g); else S},
decl d’(q){if 0=1 then call a(q); else S}

where S¢ and S are the original procedure statements of procedures ¢ and d respectively. In
this new, functionally equivalent program, we have that

a~b~c’ >®

and procedure calls from b to ¢’ no longer ignore the orthogonality between the branches of the
qcase, since they are both kept in the optimize list:

s(1] 1

qcase s[1] of {
0—call c’(so1]);,
sofllH 1—-callb(sel]);} B

sO|1]

%call c’(se)); H call b(se[1]);
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and the circuit we obtained is of linear complexity, coinciding with Timegyps_oo1(n)-

While this transformation gives us a clue as to how to improve on the algorithm given in
Chapter 7, it does not work for all the cases that interest us as a PFOQ program may no longer
be in PFOQ after the transformation, in the case where two calls to procedures of lower rank are
performed in sequence.

In this chapter, we will not only look to improve the optimize algorithm given in Chapter 7,
but we will also identify a fragment of PFOQ where the new compilation strategy that completely
avoids branch sequentialization.

8.2 A uniformity condition (UNIF)

We introduce a set of syntactical restrictions which ensure that the size of the circuit is bounded
by the semantical complexity of the program, that is, by its function Timep(n).

Definition 8.3. Let UNIF denote the set of FOQ programs P with Var(P) ={q} satisfying the
conditions:

i) procedures do not make use of classical inputs,

i) there is a qubit list sy such that, for any procedure call proc(s); occurring in P,

either s=sy or s=q.

Definition 8.4. PFOQ"NF £ UNIF N PFOQ.

It trivially holds that PFOQ"™" ¢ PFOQ ¢ FOQ. We will show that PFOQ"™'F is extensionally
equivalent to PFOQ, i.e. that [PFOQ"™"] = [PFOQ]. As an example, we show how to rewrite the
QFT program with the UNIF restrictions.

Example 8.5 (QFT ¢ PFOQ"™"). The QFT program defined in Figure 4.6 is not in PFOQN'" since,
for instance, it makes use of integer inputs.

We define a new program QFTu € PFOQ"™" (Figure 8.1) such that [QFT] = [QFTu]. We make
use of the fact that we can reorder the controlled rotation gates without changing their effect,
and perform the qubit swapping by performing a linear number of shift operations.

We can check that QFTu requires asymptotically the same number of procedure calls in depth
as QFT, i.e. this transformation has not altered the asymptotic complexity of the program.

Lemma 8.6. Timeger,(n) = ©(n?).
The uniform fragment of PFOQ is also sound and complete for quantum polynomial time.

Theorem 8.7. [PFOQ"™F] = qpP.

Proof. Soundness is trivial since PFOQ™'F is contained in PFOQ. Completeness can be seen by

the fact that the PFOQ programs created in the proof of Theorem 5.24 can be easily adapted to
fit UNIF restrictions. In this case, since the first qubits are always the ones that are removed in
recursive calls, one can define a pattern of qubit removal always using the input g e [1]. O

We now introduce a new compilation strategy that improves the complexity bounds for PFOQ
programs and, in particular, results in an optimal bound for the PFOQ"™" fragment.
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QFTu
1 decl rec(g){ 6 decl rot(q){ 11 decl shift(q){
2 q[1] *=H; 7 if |g| > 1 then 12 if |g| > 1 then
3 call rot(q); 8 CPHASE(q[-1], q[1], [a]) 12 SWAP(q[1], q[-1])
4 call shift(q); 9 call rot(ge|-1]); 14 call shift(ge|[-1]);
5 call rec(qo|-1]);}, 10 else skip; }, 15 else skip; }
16
17 call rec(q);
shift
- R IR AHIHEHS -
“— . \ \ N\
{ AN
-
Each shift gate consists of a linear number of SW AP operations:
shift
T )
P g
LA _

Figure 8.1: PFOQ"™F program QFTu for the quantum Fourier transform.

8.3 An improved compilation algorithm

We modify the optimize algorithm (Algorithm 2) to obtain optimize®, defined as Algorithm 3,
and with rewrite rules given in Figure 8.2. We define compile* to be the same as compile but
with optimize® replacing optimize.

In order to make use of the orthogonality information for procedure calls between procedures
of different rank (i.e. when proc > proc’), optimize™ manages a contextual list Iy; of controlled
statements that are orthogonal to those in [ but that do not contain recursive procedure calls. In
the rewriting rules of Figure 8.2, the contextual list [y is denoted by a striped box . A gate
is placed inside the dashed box to indicate that a controlled statement was added to the list Iy;.

At the end of optimize*, we rearrange the contextual list in the following way. Let Iy =
[(cs1,51),...,(csk,Sk)] be the state of the contextual list at the end of optimize*. We may
rewrite each controlled statement as a list of its atomic elements. This transformation, denoted
seq, can be described inductively, as follows:

seq(cs, skip;, f) = [],
seq(cs,q *=U(j);, f) = [(es,a »=U%(j);, )],
seq(cs,Sl S27f) 2 Seq(CS,Sl, f)@seq(cs, Sla f)a

94



8.8.  An improved compilation algorithm

For the case of the classical if statement, when (b, f) | b, we have,
seq(cs,if b then S¢rye €lse Stase, f) = seq(cs, Sy, f)
The gcase statement is treated as follows. When (q, f) |n n,
seq(cs,qcase q of {0 > Sy, 1 - S1}, f) = seq(es[n:=0],So, f)@seq(cs[n:=1],S1, f)
Finally, in the case of the procedure call, we have
seq(cs, call proc(s);, f) = [(es,call proc(s);, f)].

This separation of statements allows for a partitioning according to the type of proce-
dure call appearing in the statement. Given a list of controlled statements £, we denote by
procedure split(£) the list [Lg, L1, ..., Ly ] where, for procy, ..., proc,, are procedures that
are not mutually recursive.

Lo ={(cs,S, f) e L:Pproc such that wy °“(S7°°) =1 and wp "°(S) = 1}.
LprOC, é{(C<‘)‘,S7f)E,Ciwlp)rocy(S):1}, i=1,...7m.
Given our choice of procedures and the controled statements obtained from seq, this partition

is well-defined. Performing these two partitions (first in terms of sequential order of statements,
and then according to procedure calls), we are able to rewrite the list ly; in the following way:

The different instances of optimize* contain calls to procedures that are mutually recursive,
which will allow for further anchoring and merging.

The soundness of optimize® is based on an extension of the orthogonality invariant of
Lemma 7.3. The validity of the circuit construction is based on the fact that controlled statements
in [ Ul are pairwise orthogonal.

Lemma 8.8 (Orthogonality invariant of optimize®*). During the compilation of a PFOQ"™™

program P, for each optimization of a (recursive) procedure proc, all controlled statements in the
union of list | and the contextual list ly; are pairwise orthogonal.

Theorem 8.9 (Soundness of compile®). Given a PFOQ"™™ program P and a quantum state
[t)) € Hon we have that [compile™ (P, n)](|v)) = [P](|v)).
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Algorithm 3 (optimize®) Build circuit for recursive procedure proc
Inputs: (D, Lcgt, proc, f) € Decl x £(Cst) x Procedures x (Var(P) - L(N))

CL<1;Cy«1;Cr<1; 1y« []; Anc < {}; P < D = skip;
while Loy # [ ] do
(CS)S) <~ hd(*CCst); Lest < tl(LCst)

if S = Sl SQ then
if wp °°(S1) =1 then Log < Lest@[(cs,51)]; Cr < compile®(D :: S, f,¢s) o Cr
else Loy < Lost@[(es,S2)]; CL < CL o compile® (D == Sy, f,cs)
end if

else if S=if b then {Strue} else {Stase} and (b, f) |p b then
if wl "°(Sp) =1 then Log < Lo @[(cs,Sp)]
else lM <~ ZM@[(CS, Sb)]
end if

else if S=qcase q of {0~ Sp,1—S1} and (q, f) Inn then

if w "°(So) =1 and w}, *°(S1) =1 then

Lcst < Lost@[(es[n :=0],Sp), (es[n:=1],51)]
else if w, °"(S1) =0 then

Lost < Lost@[(es[n:=0],50)]; Im < lm@[(es[n:=1,81)]
else if w, °"(Sp) = 0 then

Lost < Lost@[(es[n:=1],51)]; Im < Im@[(es[n :=0,S0)]
end if

else if S = call proc’[jJ(s1,...,s,); wWith (j, f) Inm and Vi, (s;, f) Uz I; # [] then
if (proc’,m,[|l}],...,|l,,]]) € Anc then
Let (a,[l{,...,1']) = Anc[proc’,m,[|l{],...,|l,]]] in
CL, < CL, o NOT(cs,a)
Cr < NOT(es,a) o Cr
else
a < new ancilla();
Anclproc’ym, (1), 1] < @, [1- ., 1))
CL < CLoNOT(cs,a); Cr < NOT(cs,a) o Cg;
Lesy < Lest@[({a = 11,877 {m/x,51/i})]
end if

end if
end while
T= MaxX(cs,S)ely (|sec(cs, S)|)
for 1<t<T do
L« U(cs,S,l)elM sec(cs, S, l) [t]
Lo, ... Ly =procedure _split(L)/* m = number of recursive procedure families *
Cy < Cyro ( O (cs,8,1)eL, compile™ (D = 8,1, cs)) o ( o, optimize® (D, Ei,proc,-))
end for
return Cf, o Cyio Cgr
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8.8.  An improved compilation algorithm

Proof. The sole difference of the algorithm is in the case of optimize®*. The validity of the rules
in this case is done by the inspection of the rewrite rules given in Figure 8.2 with the use of the
invariant of Lemma 8.8. This is similar to the reasoning presented in the proof of Theorem 7.4.

Finally, we consider the validity of the rule for the contextual circuit. Consider a list of
mutually-orthogonal controlled statements, where the sequential form of (¢s;,S;) is given by the

lists of controlled statements lgi), . ,l;i), then we have that:

CS1 CS[ = - = CS9 CSk

_ lp) lil)

. e e

1 t
The final step comes from the fact that all [ (1)
cs1. Using the sequential form of (es2,S2), we perform the following transitions:

Sk

are orthogonal to csg, ..., csi since they include

where we make use of the orthogonality between lj(.l) and l](.?). Performing the same transitions
for (¢s3,S3), ..., (¢sk,Sk), we obtain the following arrangement:

time 1 time 2 time ¢

1 k 1 k 1 k
v RN 1$P i 1)

Given a certain 1 < j < t, we have that all controlled statements in Ulel](.l) (that is, all controlled
statements occurring in time j) are pairwise orthogonal. Therefore, we may rearrange their
order according to their recursivity, and in doing so we may consider each time separately. For
instance, in time 1, let £ = ulelgz), and let procy, proco,...proc,, denote procedures belonging
to different recursion families. Then, we perform the following partition:

Lo = {(cs,S) € L:A proc such that w;roc(Sproc) =1 and w%rOC(S) =1}.
£ié{(cs,8)GE:wEroc/(S):l}, z':l,...,m.

By the definition of the sequential form of each controlled statement, we note that the partition
is well-defined (e.g. there are no statements containing calls to more than one procedure).
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Therefore, we are able to rearrange £ and perform calls to optimize* in the following way:

proc

Ly

Performing this operation on each time block and composing the circuits we obtain the rule for
procedure split. This concludes the proof. O

We now show that the compilation strategy optimize* applied to PFOQ"™F programs ensures

that the circuit complexity of a program is given by its Time function. That is to say, the
complexity of the qcase is given by the maximum complexity of the branches.

Theorem 8.10 (No branch sequentialization). For all P € PFOQ"™"™, we have that
#compile” (P,n) = O(Timep(n)).

Proof. The theorem can be shown by structural induction on the program body. All cases are

straightforward except the one of the quantum control case. We make use of the following two

facts regarding PFOQ"™'" programs:

(a) The size of the circuit is directly proportional to its total number of unique procedure calls
(in the sense required for merging), and

(b) a recursive procedure call results in O(n) unique calls to procedures of the same rank. This
is because unique calls may only differ on procedure name (of which there is a constant
amount) or input size (for which there is a linear number of possibilites).

Consider a quantum control statement S = qcase q of {0 - Sp, 1 - S;} appearing in op-
timize in the context of a recursive procedure proc. By (a), the circuit size for Sg and S; are
proportional to the (total) number of procedure calls in each statement, separately. We check
that the number of ancillas created for S is bounded by the maximum number of ancillas between
So and S;.

We proceed by induction on the rank r of the procedure. The base case of r =1 is given by
(b), and so we may consider r > 1. For the inductive case, we consider two scenarios:

o wh _ (Sy) = wgroc(Sl) = 1. In this case, both Sp and S; are of rank r, and all their recursive

proc

procedure calls may be merged. Therefore, the asymptotic number of such calls is bounded
between the maximum between Sy and S; (consider that, if there is no overlap between the
ancillas needed, their number is still bounded linearly). Applying the IH on the procedures

of rank » — 1 we obtain the desired result.

e w’ _ (So)=0and w’  (S;)=1. In this case, Sy contains calls to procedures of rank ' < r

roc roc
Wlflereas St containspcalls to procedures of rank r. According to optimize, statement Sy
is kept in the contextual circuit until no more statements are recursive relative to proc.
The statements of rank r’ which are present in Sy are then merged with the equivalent
procedures that were derived from S; and also added to ly;. The number of procedures of
rank 7’ is bounded asymptotically by the maximum between those in Sy and Sy, therefore

we obtain our result. O
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8.8.  An improved compilation algorithm

PFOQ"™", then, represents the first programming language sound and complete for quantum
polynomial time, for which branch sequentialization can be avoided. To show the impact of
the improved algorithm, we use the example of program SubS_001 to create programs with an
arbitrarily large polynomial slowdown.

Theorem 8.11. For any k € N, there exists a program Pj € PFOQ"™' such that
#compile(Py, [1n]) = Q(n" - Timep, (n)).

Proof. We revisit the SubS_001 program of Example 8.1. We add a subscript to each procedure
name, and denote the following set of nodes and edges by F;:

1 0

e OO
1
We define program P, by chaining r instances of JF; as follows:

1 1 1 1
Fi — Fy —> >}}—>

where an arrow from F; to F;;1 indicates an arrow from d; to a;,;. The final program then
consists of a call to procedure a; on input . It is easy to check that P, € PFOQ"N'", and that
Timep, (n) = n, for any r. Program P, performs the transformation

[Pr](z)® ly) = |z)® |y @ b)

for z € {0,1}* and y,b € {0,1} where b is 1 if and only if x contains at least r instances of 001
as a substring. We have that #compile(P,.,[n]) = ©(n?"), therefore we may choose r > % to
obtain our desired result. O

Another example, which could also have been used to show a polynomial slowdown between
compile and compile®, is the problem of computing the Hamming weight of an input binary
string.

Example 8.12. Consider the decision problem of checking if an input bitstring x € {0,1}"
satisfies Y-y x; = . For instance, if r = 3, we may define a PFOQ"™" program SUM_3 as:

1 decl zero(g){ qcase q[1] of {0 — call zero(ge]|i]);, 1 — call one(gqe[1]); } },
> decl one(q){ qcase q[1] of {0 — call one(qe|1]);, 1 - call two(qe1]); } },

3 decl two(q){ gcase q[1] of {0 — call two(qe[1]);, 1 - call three(qe[1]); } },
2 decl three(g){

5 if |q| =1 then

6 call @(q);

7 else

8 qcase q[1] of {0 — call three(qe|1]);, 1 —» skip; } },
9 decl @(q){q[-1] »=NOT; }

10 = call zero(q);

We have that Timegyy_s(n) = n.
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In this chapter, we introduced PFOQ"™" as a fragment of PFOQ that is still sound and complete
for quantum polynomial time (Theorem 8.7). This fragment imposes a further restriction on
procedures calls and the use of integer inputs that was not satisfied by programs such as QFT,
but we were able to describe a semantically equivalent program QFTu that did satisfy the UNIF
restrictions, and whose asymptotic time complexity was the same as for QFT (Lemma 8.6).

We demonstrated in Theorem 8.10 that circuits corresponding to PFOQ"™T programs and
obtained via the optimize* have a size complexity that scales asymptotically with the time
complexity of the program. That is to say, the complexity of compiling the qcase statement is
the maximum of the circuits corresponding to each branch, instead of the sum, as is the case for
existing compilation strategies.

In the next chapter, we provide a Python implementation of compile and compile® that
compiles PFOQ and LFOQ programs into Qiskit circuits. This allows us to empirically verify some
results of the thesis.
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if wp °°(S1)

if wh N (S,) = 1

n

if wp °°(S1) =0 if wp ”°(Sp) =0 otherwise.

anchoring: - ﬁil=
l
; 157 (st KR
proc
proc PO )
Is|
merging: —
proc
— ==

—
[ —

Figure 8.2: Rewrite rules of optimize*.
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9
Compiling FOQ Programs Into Qiskit

We introduce a compiler for FOQ programs that implements the compilation strategies of Chap-
ters 7 and 8. The compiler generates Qiskit [JATK" 24| circuits encoding FOQ programs and its
code implementation is available at https://gitlab.inria.fr/mmachado/pfoq-compiler. It
was developed in a collaboration with Alexandre Guernut, and comprises around 1350 lines of
code in total.

The compiler is written in python 3.10, and uses the following additional packages:

e typing_extensions 4.13.1: allows for the use of type hints in the program;

e lark 1.2.2: performs the parsing of the FOQ program, resulting in an abstract syntax tree
that is used to compile the circuit;

e networkx 3.4.2: used for generating the call-graph of the program, allowing to check if a
program is in WIDTH.;; this package also helps supplement the abstract syntax tree with
'width’ information that guides the compilation algorithm;

e giskit 2.0.0: provides the interface with the Qiskit language;
e matplotlib 3.10.1: used for drawing the compiled circuit.

The structure of the compiler is roughly the following:

gqiskit
P € WIDTH<, cooTTTTTTTTTT Qiskit circuit
LS
FOQ program P, abstract ’—,> compile™
|
input size n >y;ntax '
ree .
a 4> : matplOtllb
E f\f i .
! naive
P ¢ wipTi<, ! compilation
1

_______________

The syntax is similar to that of FOQ programs (Figure 4.1). Given a list of procedure
declarations D and a program statement S, the program is written as

D::V:: S,

where V defines the quantum list variables in the program, which works to simplify the parsing.
The size of each input qubit list is given to the compiler as argument to the option -i, and
the file to be compiled is passed to the option -f. Given k variables, the circuit for program
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example.pfoq can be obtained from the command
python compiler.py -f example.pfoq -injnp ... ng,
where each ny,...,n; is a natural number denoting the size of the register corresponding to each
variable declared in V.
9.1 Illustrating the use of the compiler via examples

We provide a number of examples that help illustrate the different properties of the FOQ compiler,
starting with the application of basic quantum gates, as well as the syntax for some larger, but
particularly useful gates. We also consider example with recursion and multiple inputs, and in
particular the case of PFOQ, LFOQ and UNIF programs.

9.1.1 Gate application and quantum control

Consider the following example program, that, given an input list of qubits q, applies a Hadamard
gate to the first qubit and a CNOT gate to the first two qubits.

define q;

python compiler.py -f Bell_qcase.pfoq -i 2
ql[0] *= H; Go
qcase (q[0]) of { q +
1
0 -> skip;,

1 -> q[1] *= NOT; }

We should highlight two aspects: the indexing of the compiler is 0-based, as opposed to the
FOQ syntax which was 1-based. This allows for better interfacing with Qiskit, which is 0-based.

Another detail is that the CNOT is written using a qcase statement. Since this is a very
standard statement, we include it as a basic instruction in the syntax. Therefore, the following
program results in precisely the same circuit.

define q;
M python compile.py -f Bell _CNOT.pfoq -i 2
ql0] *= H;

CNOT(q[0],q[1]1);

Other standard instructions include the SWAP and TOF which correspond to the SWAP and
Toffoli gates. Unitary gates also include the Rot and Ph, which encode the rotation and phase-
shift gates, respectively. In the case where there is a syntax error in the file, lark will raise an
exception and point to the place in the file where the parsing failed.

9.1.2 Iteration

In order to be able to iterate over an input qubit list, we can define recursive functions as is
allowed in FOQ, as demonstrated in the following example.
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decl cnots(q){ python compiler.py -f cat_state.pfoq -i 6
if (lql>1) then {

CNOT(q[0],q[11); % ] ;

call cnots(qg-[01); } 0 *
else { skip; } } L
g2 \ 4
define q; g3
o Qa
ql0] *= H;

call cnots(q); gs

By default, the compiler places invisible barriers between gates that preserve the ordering
defined by the cSompiler, and stops Qiskit from changing the gate order according to paral-
lelization or commutativity relations between gates. This ensures that the circuit visualization
correctly depicts the circuit as described by compile™.

However, to verify our claims about the depth of circuits, specifically in the case of LFOQ
programs, we allow the circuit representation to depict this. To allow Qiskit to parallelize gates,
one may use the --no-barriers flag at the moment of compilation.

python compiler.py -f cat_state_parallel.pfoq -i 8 --no-barriers
decl cnots_par(q){

if (lql>1) then { qO_E .
CNOT(q[01,q[Clql)/21); o L,
call cnots_par((q)~-);

call cnots_par((q)~+); } %

else { skip; } } 9

H Q4—————€’——*
define q; g

s —I
qlo] *= H; qﬁﬂ
call cnots_par(q); a7

For the previous program, the compiler prints out the message “Procedure cnots_par has
width 2. Turning off optimization.” indicating that the program does not satisfy the
WIDTH<; condition. For such programs, the optimization subroutine is not well-defined and so
is not called. The program is then compiled using only the rules of compile (Figure 7.5), where
we always consider the first case for procedure calls. Compilation without optimization is also
accessible via the --no-optimize option given to the compiler.

The number of arguments given should correspond to the number of variables defined in
the program. For example, in the QRCA program of Figure 4.5, the program takes in 3 different
inputs.
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decl add(q,p,r){
TOF(q[-11,p[-11,r[-2]1);

python compiler.py -f QRCA.pfoq -i 4 4 5
CNOT(q[-11,p[-11);

TOF (p[-11,r[-11,r[-2]); o
CNOT(p[-11,r[-11); 9
CNOT(q[-11,p[-11); } 92
gs3
decl full_adder(q,p,r){ Po © ©
P1 © ©
if (lr|>1) then {
P2 © L
call add(q,p,r);
p3 —4—O ©
call full_adder(q-[-11,

ro <
p-[-1], N o—9 @
r-[-11); }} r £ N
rs —"—‘,—i‘,

define q p r; ra

call full_adder(q,p,r);

9.1.3 Anchoring and merging

In the case where a procedure is recursive and satisfies the WIDTH<; condition, the compilation is
performed with the optimize* routine (Algorithm 3). This generally requires the use of ancilla
qubits, as in the following example of program PAIRS (Figure 7.1).

decl pairs(q){

if (|q|>1) then { python compiler.py -f pairs.pfoq -i 11
qcase(q[0]) of { aoj I:
0 -> gcase (q[1]) of { “
0 -> call pairs(q-[0,11);, : | |
1 -> Skip; }, q
1 -> gcase(q[1]) of { o I I
0 -> skip;, “ I I
a
1 -> call pairs(q-[0,11); } @
, " I 1
} else { q[0] *= NOT; } Po ¢
} 100 - @—& 0O
10) OO O
012 ©—© o
define qQ; 1003 OO 00O
10)a 00 —+0©

call pairs(q);

The compiler automatically determines a sufficient amount of ancillas for the compilation,
which depends on the program and the input size. We can compare the circuit for PAIRS obtained
without optimization (the result of the “in-depth” strategy of Figure 7.2). In this case, the circuit

corresponds to 2" Toffoli gates, each with n — 1 control-qubits.
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python compiler.py -f pairs.pfoq -i 11 --no-optimize

We now consider programs where merging requires the use of controlled-swaps. Since PAIRS ¢
PrOQ"™" all merged procedures have the same input qubits and the merging complexity is O(1).
Generally, merging procedure calls involves the rearrangement of qubit addresses. In this case,
the compiler performs the controlled-swapping technique described in Lemma 7.1 which adds to
the circuit a controlled permutation done in logarithmic depth.

An example of such a program with procedure calls in different registers is the binary search
algorithm SEARCH defined in Figure 6.1. The program makes use of two qubit list variables, q
and r. The first half of list q is given by (q) “- and the second half as (q) "+, corresponding to
the FOQ syntax of @° and q®.

decl search(q,r){
if (lql>1) then {
qcase (qllql/2-1]1) of {
0 -> qcase(qllql/2]) of { 0 -> call search((q)”"+ -[0],r);,
1 -> r[0] *= NOT; },
1 -> qcase(qllql/2]) of { 0 -> call search((q)"- -[-1]1,1);,
1 -> skip; } }
} else { skip; } }

define q r;

call search(q,r);

For input size |ql of 14, the first merging occurs between the call to search on the first and
second halves of q which, after having removed the middle qubits. The compiler then prepares a
controlled permutation between these two qubit indices by setting 6 ancillas into the appropriate
control state, which can be done in parallel with 4 time-steps, and then the two sets of disjoint
transpositions are executed in two time-steps. This occurs again when the two instances of
search on inputs q[12,13] and q[9,8] are merged.

This circuit can be compared with the one given in Figure 7.11 where the controlled-swapping
of qubit addresses was left implicit.
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python compiler.py -f search.pfoq -i 14 1

°
v
o
o

We now verify the properties of the compilation procedure given in the previous chapters.

9.2 Properties of the compilation algorithm

We start by considering the asymptotic size and depth of circuits. All values correspond to a
compilation using compile®, unless stated otherwise.

9.2.1 Size and depth bounds

We can empirically test the circuit bounds given in Chapters 7 and 8 by checking the asymptotic
sizes of the obtained circuits. For instance, for the SEARCH program of Figure 6.1 the circuit size
grows in O(nlogn) but the depth grows as O(log®n).

search.pfoq

104 Circuit size Circuit depth
12 [ T T T T T .‘— 260 [ [ - . T - 1]
Hl .o awf T Ty
L . % i | SRy § S, B
0.9 SRS 3(2)8 g PR TR AN
081 cele e | 180) T e ]
0.7 TR 1 160) SR TR .
0.4} N 1 100] ' |
0.3 - 1 s .
0.2 ) 60 | & ]
0 | | | ! | ! | 20 L | | | ! | ! 17
0 300 600 900 1,200 1,500 0 300 600 900 1,200 1,500
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We can verify a similar property for the COUNT program, also defined in Figure 6.1.

count.pfoq
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9.2.2 Polynomial slowdown

In Theorem 8.11 we give a separation between the circuit complexity obtained from compile

and compile™ when considering PFOQ

UNIF

programs. We can show this separation empirically

by considering the programs for the chained substring problem (proof of Theorem 8.11) and
detecting if the weight of an input strings is a given value (Example 8.12).

We represent the circuit sizes obtained from compile and compile® in a log-log plot, which
allows not only for determining that the sizes increase polynomially, but we are also able to
estimate its degree via linear regression.

Circuit size (linear plot
10 ( plot)
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sum_three.pfoq

Circuit size (linear plot)

Circuit size (log-log plot)
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In a log-log plot, a polynomial function with leading coefficient an® will be represented by a
graph that asymptotically approaches the line y = klog(n) + log(a). Therefore, we are able to
estimate the leading power for the circuit sizes obtained for the programs by analysing the slope
of the line in the log-log plot.

Another interesting comparison is that of QFT and QFTu. We notice that, while the asymptotic

circuit complexity is the same, the circuit depth is worse for QFTu.

T T 11 T T T T T . ] T T 17 T T T T ]
||+ QFT.pfoq R ||+ QFT.pfoq <

104 L x QFT—unif pqu XXX ...o | 104 | « QFT—'llIlif pqu XXX |
z I e
i x o * 2 i I x )

. ~MNn
103 8 X E 103 8 X E
102 1102 L en
L1 Lo L1 I
10 102 10t 10

Circuit size

Circuit depth

This difference in depth complexity highlights an important aspect of our work and the
balance of the PFOQ, LFOQ and UNIF restrictions. The fact that QFTu € PFOQ"N'™ allows us to
conclude that (a) it is a polytime program and (b) it may be compiled into a family of circuits
with size that scales linearly with the time complexity of the program. Analysing the call graph
of the program, we can further conclude that the time complexity is quadratic.
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However, there exists an equivalent program, QFT, that does not satisfy the UNIF condition
and which results in circuits with better asymptotic depth. This illustrates the fact that, while
program restrictions may enable us to prove strong results about program complexity, they may
exclude approaches that result in better results for specific cases. Therefore, it is important
to strike a balance between the strength of our results and the expressivity of the restricted
fragments.

This chapter presented a Python compiler of FOQ programs that allowed us to verify some
of the claims of the thesis, such as the size and depth bounds of the circuits obtained from the
compile and compile® strategies. This prototype constitutes a proof-of-concept for allowing
implicit characterizations of quantum complexity classes to inform compilation techniques.
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Conclusion

The purpose of this PhD thesis was to study the resource use of quantum programs from the
point of view of their structure, and to provide new implicit characterizations of efficient quantum
complexity classes that could be of use to the quantum programmer. With this objective, we
introduced a first-order quantum programming language FOQ (Chapter 4) for which we defined
fragments characterizing quantum polynomial and polylogarithmic time.

The fragments were defined via syntactical restrictions, more precisely a limit on the depth of
recursion using a reduction of available qubits (well-foundedness, Definition 5.1), and a bound on
the number of recursive calls that can be performed in sequence (bounded width, Definition 5.10).

In the case of polynomial time, the fragment PFOQ imposes a linear reduction on available
qubits, with at least one qubit being removed per recursive call, whereas in the case of polylog-
arithmic time, LFOQ programs ensure that the reduction is exponential, with at least half the
accessible qubits being removed in each recursive call (recursively-halving, Definition 6.1). We
show that the syntactic restrictions satisfy desirable properties, such as being preserved when
the programs are inverted, and allowing for the simple combination of programs while ensuring
the restrictions.

We demonstrated the expressivity of the PFOQ and LFOQ fragments via a number of examples.
In the case of PFOQ, we gave programs for addition and multiplication (Examples 4.4, 5.17 and
5.18), and the quantum Fourier transform and its inverse (Examples 4.5 and 4.9), among others.
For the case of the LFOQ fragment, we showed that we can write programs performing quantum
binary search (Example 6.2) and counting of elements on sorted lists (Example 6.3). The main
examples of programs are depicted in Figure 1.

The proofs of soundness and completeness used two types of techniques, namely the simula-
tion of quantum Turing machines (both in the standard QTM model and in the random-access
model), and the technique of simulating another implicit characterization.

We also considered the problem of ensuring an efficient translation from PFOQ and LFOQ
programs into quantum circuits of appropriate size and depth. From a theoretical point of
view, this can be seen as an alternative proof of soundness, but it also allows for the practical
use of the fragments. This is a property which was not present in previously-existing implicit
characterizations of quantum complexity classes.

The objective of providing a direct compilation technique that was resource-preserving proved
to be non-trivial, in particular due to fact that FOQ includes quantum control statements. Exist-
ing approaches to compiling these qcase statements treat the complexity of the qcase statement
as the sum of its branches instead of the maximum, by compiling all branches separately, either
in depth or in width. As we saw in Section 7.1, this can lead to an exponential blow-up in circuit
complexity, even for very simple programs.

In Chapter 7, we solved this problem by introducing a compilation technique called anchoring
and merging which simplifies recursive calls performed in different branches of a qcase statement,
and we show that this technique ensures correct resource bounds for PFOQ programs (polynomial
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size) and also for LFOQ programs (polylogarithmic depth).

Finally, we show in Chapter 8 that, while the compilation technique of Chapter 7 ensures
asymptotic bounds within that respect the complexity class of the program, it imposes a polyno-
mial slowdown due to the use of the qcase statement. We introduce a stricter fragment of PFOQ
that satisfies a uniformity condition on the removal of qubits in procedure calls (Definition 8.3).
We unconditionally improve the compilation technique of Chapter 7 and prove that, for programs
in the uniform PFOQ fragment, the circuit complexity of the qcase statement is given by the
maximum of each branch.

We conclude the thesis by presenting a Python implementation of a compiler prototype that
implements the compilation strategies of Chapters 7 and 8 and allows for the empirical verification
of various claims made in this work about these fragments.

Future work

Compilation strategies. The problem of compiling the qcase statement has been gaining
attention recently, particularly in the context of problems involving quantum control [YC22].
Regarding the compilation technique of Chapter 8, one interesting research direction is relatively
apparent, namely the relaxation of the UNIF restrictions (Definition 8.3), so that the class becomes
more expressive.

As the definition stands, the composition of two UNIF programs (in the sense of Definition 4.1)
is not itself a UNIF program. This is obviously a desirable property, and can be satisfied, for
instance, by extending the UNIF definition such that input qubit list restriction is not unique
over the program but may differ for procedures that are in different connected components of
the call graph. More extensions can be described that would include programs such as the QFT,
as described in Figure 4.6, which, as we saw in Chapter 9, has a better asymptotic depth.

Higher-order implicit characterizations. As the name suggests, FOQ is a first-order lan-
guage, meaning that its procedures only take as input first-order values, such as qubit lists
or integers (and not, for instance, other procedures). An interesting research direction is the
extension of our work to the case of higher-order computation.

This work is already under way [DCHPS24]|, with a collaboration with Alejandro Diaz-Caro,
based on an extension of the Lambda-S; typing system [DCM22] with polymorphic types from
Dual Light Affine Logic [BT04], resulting in a system where unitarity of qubit transformations
is ensured, and all terms reduce to a normal form in a polynomial number of steps.

Circuit parallelization. The class QNC is the quantum equivalent of NC, and corresponds to
the set of functions computed by uniform families of quantum circuits with polynomial size and
polylogarithmic depth [MNO1, Coo023|. To our knowledge, no implicit characterization of QNC
exists, and it would be interesting to investigate if extensions of the FOQ language could provide
such a characterization.

One possible strategy, to enable reasoning about the parallelization of circuits is, for instance,
introducing a statement allowing for recursive calls to be performed on disjoint sets of qubits.
The LFOQ language also constitutes a good starting point for a characterization of QNC, since
LFOQ programs always correspond to polylogarithmic-depth circuits.
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Résumé

L’informatique quantique est un paradigme émergent de calcul, dans lequel des phénoménes
physiques quantiques tels que lintrication et la superposition sont exploités pour obtenir un
avantage sur le calcul classique. Bien que le programmeur quantique dispose d’un large choix de
langages de programmation, aucun ne permet de garantir la faisabilité de ses programmes. A
cette fin, nous introduisons un langage de programmation quantique du premier ordre (FOQ) qui
permet de raisonner sur la réalisabilité physique et la complexité des programmes quantiques.

Nous introduisons des restrictions, vérifiables statiquement, sur les programmes FOQ qui nous
permettent d’identifier des fragments cohérents et complets pour le temps polynomial quantique
(PFOQ) et le temps polylogarithmique (LFOQ). Nous fournissons plusieurs exemples de pro-
grammes en temps polynomial et polylogarithmique capturés par ces fragments, représentant des
fonctions quantiques pertinentes, telles que la transformée de Fourier quantique, I’'arithmétique
quantique, ainsi que des exemples comme la recherche dichotomique.

Nous introduisons également de nouvelles techniques de compilation permettant de traduire
des programmes PFOQ et LFOQ en circuits de complexité raisonnable, évitant ’explosion ex-
ponentielle pouvant résulter de l'utilisation récursive d’une instruction de contrdle quantique.
Nous améliorons encore cette technique de compilation et définissons un fragment de FOQ qui
est cohérent et complet pour le temps polynomial quantique, ol la complexité en circuit de
I'instruction conditionnelle quantique correspond au maximum des branches, et non leur somme.
Nous développons un compilateur prototype implémentant ces idées pour PFOQ et LFOQ.

Mots-clés: informatique quantique, complexité implicite, temps polynomial, temps polyloga-
rithmique, techniques de compilation

Abstract

Quantum computing is a paradigm of computation where quantum physical phenomena such
as entanglement and superposition are used to obtain an advantage over classical computation.
While the quantum programmer has a large choice of programming language at their disposal,
none allow for ensuring the feasibility of their programs. To this end, we introduce a first-order
quantum programming language (FOQ) that allows for reasoning about the physical realizability
and complexity of its programs.

We introduce statically-checked restrictions over FOQ program that allow us to identify frag-
ments that are sound and complete for quantum polynomial (PFOQ) and polylogarithmic time
(LFOQ). We provide a number of examples of polynomial and polylogarithmic time programs
that are captured by the fragments, and constitute relevant quantum functions, such as the
quantum Fourier transform, quantum arithmetic, and examples like binary search.

We also introduce new compilation techniques that allow for translating PFOQ and LFOQ
programs into circuits of adequate complexity, avoiding the exponential blow-up that can occur
from the recursive use of a quantum control statement. We further improve this compilation
technique and are able to define a FOQ fragment that is sound and complete for quantum poly-
nomial time where the circuit complexity of the quantum case statement is the maximum of the
branches, instead of their sum. We develop a prototype compiler that implementing these ideas
over PFOQ and LFOQ programs.

Keywords: quantum computing, implicit complexity, polynomial time, polylogarithmic time,
compilation techniques






	Couverture
	Acknowledgments
	Dédicace
	Introduction (en français)
	Introduction

	Contents
	Part I Preliminaries
	Quantum Mechanics
	Notation and Basic Properties

	Models of Quantum Computation
	Quantum Turing Machines
	Quantum Random-Access Turing Machines
	Quantum Circuits
	Quantum Programming Languages

	Quantum Complexity Classes
	Quantum Polynomial Time (fbqp)
	Quantum Polylogarithmic Time (fbqpolylog)
	Implicit Characterizations


	Part II Quantum Implicit Computational Complexity
	A First-Order Quantum Programming Language (foq)
	Syntax
	Semantics

	A Characterization of Quantum Polynomial Time
	Well-foundedness
	Bounded width
	A Polynomial First-Order Quantum Language (pfoq)

	A Characterization of Quantum Polylogarithmic Time
	Halving
	A (Poly-)Logarithmic First-Order Quantum Language (lfoq)


	Part III Quantum circuit compilation
	A Resource-Preserving and Tractable Compilation Algorithm
	The problem of exponential blow-up
	Anchoring and merging
	Compilation algorithm
	Two compilation examples

	An Asymptotically-Optimal Compilation Strategy
	Motivation: a polynomial slowdown
	A uniformity condition (unif)
	An improved compilation algorithm

	Compiling foq Programs Into Qiskit
	Illustrating the use of the compiler via examples
	Properties of the compilation algorithm


	Conclusion
	Bibliography
	Résumé
	Abstract



