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Abstract

Ischemic stroke, caused by a blood clot blocking blood flow to the brain, is a leading cause
of death, responsible for approximately three million fatalities worldwide each year. Timely
intervention plays a key role in clinical outcomes, as the shorter the time between symptom
onset and treatment, the higher the chances of recovery and the lower the risk of long-term
disability or lasting effects.

The standard treatment is endovascular thrombectomy, a procedure in which a physician
manually steers a slender and flexible tool called a catheter from its proximal end, typically
inserted through the femoral artery, to navigate the vascular system and retrieve the blood
clot from the brain. This procedure is mechanically challenging, requiring a high level
of practitioner expertise. Difficulties arise both from the physical complexity of manually
steering the catheter through tortuous, narrow vessels and from the variability in vascular
anatomy between patients.

These challenges highlight the need for computational tools that can assist in training and
preoperative planning, with the goal of reducing both planning and intervention time. This
work aims to develop a robust and time-efficient numerical simulation of catheter navigation
that maintains good physical fidelity. Such a simulation could support physicians by enabling
them to determine in advance which vascular path to follow or which type of catheter to use.
The simulation models the catheter, the steering at its proximal end, the vascular geometry,
and the frictional contact between the catheter and the vessel walls.

To achieve a balance between physical fidelity and modeling complexity, the catheter is
modeled using the one-dimensional geometrically exact Cosserat rod, which is well suited to
capture the large deformations and rotations present in catheter navigation. Though well
suited for the task, simulating catheter behavior using this model presents several numerical
challenges. Solving the Cosserat rod equations in a robust and time-efficient way is nontrivial,
particularly when accounting for contact and friction. The shooting method, while commonly
used to solve Cosserat boundary value problems due to its high time efficiency, becomes
unstable and fails to converge for soft catheters and small time steps because of the singular
nature of the problem in the dynamic regime. Alternatively, the strain parameterization in
the Lagrangian framework is known for its robustness and its ability to significantly reduce
the number of degrees of freedom, but it can lead to stiff systems that require prohibitively
small time steps for integration.

This work addresses these challenges in two complementary ways. First, a dynamic
simulation based on an orthogonal collocation method with Chebyshev polynomials is
proposed. We demonstrate through numerical experiments that this approach robustly
addresses the inherent singularity in the boundary value problem of dynamic Cosserat rods.
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In particular, we show that in every difficult scenario where the shooting method fails,
increasing the polynomial degree beyond a certain threshold ensures convergence of the
collocation to a correct solution. This method is extended to include frictional contact and
tested for catheter navigation inside a model of a real patient’s carotid artery. While robust,
this approach remains computationally intensive.

To improve efficiency, a quasi-static assumption is introduced, justified by the spatial
confinement of the catheter within the vascular network. In this regime, a Lagrangian strain
parameterization is used. To address the stiffness of the underlying equations, we model the
blood vessel walls using implicit functions, which enable the use of implicit time integration.
Thanks to the smoothness of these implicit functions, the Jacobian matrix can be derived
analytically. This approach led to a 100x speed improvement over explicit integration and a
10x improvement over the collocation method.
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+)
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f+, f−, f̄ Their inertial frame counterpart 6 (Nm, N)
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σj Centre of the j-th blob 3 m
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µ Coulomb friction coefficient 1 −

k Total number of shape functions for the
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1 −

q Vector of generalized strain coordinates k 1

Φ Shape function matrix 6×k 1
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1The unit depends on the shape functions.
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Chapter 1

Introduction

1.1 Interventions for Ischemic Stroke

Ischemic stroke occurs when a blood vessel supplying the brain becomes blocked by a blood
clot, thereby restricting the delivery of oxygen and nutrients to the affected region (see
Fig. 1.1). Without fast treatment, this restriction can rapidly progress to irreversible
brain damage, potentially resulting in long-term disability or even death. Prompt medical
intervention is crucial, as treatments are most effective within the initial hours following
symptom onset. Globally, ischemic stroke is responsible for approximately 3 million deaths
annually, and the loss of around 63 million healthy life years due to disability [5].

Thrombolytic drugs, which dissolve clots to restore blood flow, are commonly used in
early treatment. However, when medication alone is insufficient, endovascular thrombectomy
provides a mechanical solution by physically removing the clot with a catheter. The catheter,
a long, flexible, and steerable tube, is designed to navigate complex and narrow blood vessels
while maintaining sufficient rigidity. Under real-time imaging, the practitioner manually
guides the catheter from its proximal entry point, usually in the femoral artery, through the
vascular network until its distal end reaches the clot. Once in place, devices such as stent
retrievers (see Fig. 1.2) or aspiration catheters are deployed to extract or fragment the clot,
restoring blood flow.

Catheter navigation in endovascular thrombectomy is mechanically difficult due to the
complex and variable nature of the vascular network (see Fig. 1.3). Blood vessels vary in size,
requiring the catheter to transition smoothly from large to smaller arteries without causing
damage. Additionally, anatomical variations, such as loops and sharp curves, introduce
further unpredictability. Because the catheter remains in contact with the vascular network,
rotational movements applied at the proximal end do not always translate accurately to the
distal tip. While real-time imaging provides guidance, interpreting it and translating it into
precise hand movements requires significant practitioner expertise.

To assist physicians in preoperative planning and training, this work aims to develop a
numerical simulation of catheter navigation tailored to neuroradiology procedures, including
endovascular thrombectomy. Among its potential applications, this simulation can assist
practitioners in selecting the appropriate catheter for a specific patient and in preplanning
the optimal vascular pathway to quickly reach the blood clot.
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Figure 1.1: Illustration comparing normal and blocked blood flow in a blood vessel [1].
The top part shows smooth and uninterrupted flow in a healthy vessel. The bottom part
shows how a blood clot (thrombus) can block the vessel, reducing the amount of blood that
reaches nearby tissues. This kind of blockage can damage surrounding tissue and often needs
to be treated quickly using procedures like endovascular thrombectomy.

The next section outlines the objectives of this research.

1.2 Simulation Objectives

Catheter navigation in neuroradiology procedures involves multiple physical phenomena. To
define achievable objectives within a three-year research timeframe, we make the following
assumptions for the simulation:

• Blood vessels are assumed to be fixed and rigid.

• External forces other than contact forces, such as those due to blood flow, are ignored.

• Intervention devices other that the catheter (e.g., blood clot aspiration or removal) are
not modeled.

Instead, this work objectives are the following:

• Proposing a numerical resolution of a catheter model, treating the catheter as a passive,
non-actuated, non-robotic structure.

• Accounting for both frictionless and frictional contact between blood vessel walls and
the catheter.

• Capturing the physician hand manipulations by modeling the rotation and displace-
ment of the catheter proximal end (or base).
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Figure 1.2: Stent retriever after successfully removing a blood clot [2]. The device is
designed to expand and catch the clot inside a blocked blood vessel. In this image, the
clot is still visible inside the metal mesh. This technique is commonly used in endovascular
thrombectomy to restore blood flow caused by a blocked artery.

The following section outlines the constraints that guide the development of these
objectives.

1.3 Simulation Constraints

Within this medical context, the simulation is expected to be predictive. Predictive
simulations can be defined as those that are accurate, real-time, and adapted to patient data
[6]. Accuracy in simulation is an umbrella term that encompasses multiple interconnected
aspects, including physical fidelity, numerical accuracy, and robustness. Physical fidelity
refers to how precisely the simulation predicts the behavior of catheters, both in free
movement and under constrained conditions, such as frictional contact with blood vessel
walls. Numerical accuracy refers to how well the numerical methods, such as reduction
and discretization techniques and time-stepping schemes, solve the underlying mechanical
equations of the catheter model. Robustness, in turn, evaluates how consistently the
simulation behaves when mechanical or numerical parameters are varied, ensuring that the
simulation remains reliable across a wide range of clinical situations. A real-time simulation
is one that generates results at a rate equal to or faster than the physical system it represents,
allowing for interactive use during clinical planning or training. Patient-adapted simulation
incorporates anatomical and physiological data specific to an individual, enabling the model
to reflect case-specific conditions and support personalized medical planning.

Following the above definition of predictiveness, the reasoning behind this work is as
follows. First, we treat the accuracy constraint as a hard requirement by selecting, from the
beginning, a mechanically correct catheter model capable of capturing physical fidelity in free
movement. Furthermore, we aim to develop numerical methods that ensure an acceptable
level of numerical accuracy and robustness. Next, we address the real-time constraint as a
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Figure 1.3: Visualization of the brain vascular network [3]. The dense and intricate vessel
pathways illustrate the anatomical complexity clinicians must navigate during endovascular
thrombectomy.

soft requirement by aiming for fast simulation performance. Finally, to fulfill the patient-
adapted simulation constraint, we aim to validate our methods using real patient anatomical
data.

The next section introduces the ANR project that framed the context of this research.

1.4 PreSPIN Project

The work presented in this dissertation is part of the ANR project PreSPIN (ANR-20-
CE45-0011), which focuses on developing a predictive planning pipeline for endovascular
treatment of ischemic strokes. The pipeline is built around three connected steps (see
Fig. 1.4). The first step involves generating accurate and patient-specific models of the
brain vascular network using three-dimensional magnetic resonance angiography [7, 8]. This
imaging technique uses magnetic fields and radio waves to visualize blood vessels without
needing contrast injection. The second step focuses on simulating the navigation of the
catheter through these vascular structures, which is the main subject of this dissertation.
The third step consists of running computational fluid dynamics simulations to predict how
blood will flow through the brain after blood clot removal. This includes simulating perfusion
magnetic resonance imaging, which shows how blood circulates through brain tissue. The
goal is to assess the success of revascularization, which refers to restoring blood flow to parts
of the brain that were previously deprived due to a clot or other blockage.

To achieve these goals, the project is structured into four work packages. Going further
into details, work package 1 addresses the challenge of generating precise vascular models
from noisy magnetic resonance angiography data, which often suffers from low signal quality
and patient-specific anatomical variability. Work package 2, developed in this dissertation,
creates efficient computational solutions for realistically simulating catheter navigation,
including interactions such as contact with vessel walls and friction. Work package 3
builds models to predict blood flow dynamics at multiple scales, from large arteries down to
capillary-level circulation, by simulating perfusion magnetic resonance imaging. This type of
magnetic resonance imaging assesses how well blood flows through tissues, providing insight
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Figure 1.4: Overview of the PreSPIN project pipeline. From the patient arrival to post-
operative imaging, PreSPIN focuses on the planning phase of ischemic stroke treatment
using patient-specific data. It includes vessel extraction from magnetic resonance images,
simulation of catheter navigation, and simulation of perfusion imaging.

into brain tissue health following stroke. Finally, work package 4 manages experimental
validation, ensuring the simulation clinical relevance, data quality, and reproducibility
through in vitro experiments and collaboration with clinicians.

PreSPIN integrates expertise from numerical simulation, medical imaging, and clinical
practice, aiming to improve the precision and reduce the duration of preoperative planning
to enhance patient outcomes in ischemic stroke interventions. This work is part of a joint
research effort between academic institutions and a clinical partner. It brings together several
research laboratories, including Inria Center at Université de Lorraine, CReSTIC and LMR
which are affiliated with Université de Reims Champagne-Ardenne, and CREATIS which is
affiliated with INSA Lyon, alongside the CHU Nancy.

1.5 Contributions

Having introduced the medical context, objectives, and constraints of this work, we now
present a high-level summary of our contributions. First, to meet the constraint of physical
fidelity, we review different catheter models in Chapter 2 and select the geometrically exact
Cosserat rod model which balances accuracy with modeling complexity. The contributions
in the following chapters can be summarized as follows.

In Chapter 3, we formulate the Cosserat rod model as a boundary value problem in
space and propose a collocation method to solve it. Since the boundary value problem
in the dynamic regime is known to be fundamentally singular when the catheter material
is soft or the time step is small, we demonstrate through simulations that our numerical
method overcomes this singularity when the number of basis functions exceeds a certain
value. This contribution addresses the predictiveness constraints related numerical accuracy
and robustness.

In Chapter 4, we extend this numerical technique with the ability to model proximal end
displacement and rotation of the catheter which mimic the physician hand manipulation.
We also incorporate contact and friction to simulate catheter navigation within tubular
surfaces resembling blood vessels. These surfaces are modeled using implicit functions, which
significantly accelerate contact detection and improve overall computational performance.
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The catheter navigation is tested on a carotid artery model extracted from real patient
data. This contribution addresses the predictiveness constraint related to patient-specific
adaptation.

In Chapter 5, we adopt a quasi-static regime instead of the dynamic one and explore
a Lagrangian reduction method to solve the catheter model efficiently. Since the resulting
equations are stiff, we employ implicit time integration methods and derive the Jacobian
matrix analytically. This analytical formulation is made possible by the differentiability of
the implicit surface model. This contribution addresses the predictiveness constraint related
to real-time computation.

This work has contributed to the following publications in international venues:

R. Jilani, P. -F. Villard and E. Kerrien, ”An Orthogonal Collocation Method for
Static and Dynamic Cosserat Rods,” 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Detroit, MI, USA, 2023, pp. 4328-4333, doi:
10.1109/IROS55552.2023.10341631.

R. Jilani, P. -F. Villard and E. Kerrien, ”Solving Dynamic Cosserat Rods with
Frictional Contact Using the Shooting Method and Implicit Surfaces,” 2024 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, United
Arab Emirates, 2024, pp. 10483-10488, doi: 10.1109/IROS58592.2024.10801774.

R. Jilani, P. -F. Villard and E. Kerrien, ”Angular Strain Parameterization for Solving
Static Cosserat Rods,” presented at the ICRA@40 Symposium, 40th Anniversary of the
IEEE International Conference on Robotics and Automation, Rotterdam, Netherlands,
Sep. 2024. [Online]. Available: https://inria.hal.science/hal-04774573/

R. Jilani, P. -F. Villard and E. Kerrien, ”Quasi-Static Cosserat Rods in Contact With
Implicit Surfaces,” in IEEE Robotics and Automation Letters, vol. 10, no. 7, pp. 6536-
6543, July 2025, doi: 10.1109/LRA.2025.3570131.

From top to bottom, the first publication corresponds to Chapter 3, the second to Chapter
4, and the fourth to Chapter 5. The work presented in this dissertation is a significantly
improved version of those papers, with details provided in the respective chapters. This
dissertation embraces an open-source approach. All published papers, except the first, are
accompanied by publicly available source code. Each contribution chapter is supported by
a corresponding open-source implementation, ensuring transparency, reproducibility, and
accessibility of the research.

Finally, the manuscript concludes in Chapter 6, where we summarize our findings and
discuss future perspectives.
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Chapter 2

State-of-the-Art Rod Modeling

This chapter has two main goals. The first goal is to review existing approaches for modeling
catheters and to select the most suitable one for our simulation objective and constraints.
Recall that the objective is to model catheter navigation inside blood vessels, with constraints
involving acceptable levels of accuracy and computational efficiency. The second goal is to
review state-of-the-art numerical methods for solving the selected catheter model, and to
detail their respective advantages and limitations. This will set the stage for a discussion at
the end of the chapter, aimed at providing a clearer understanding of our contributions.

The catheter is a slender object whose radius is much smaller than its length, and can
therefore be considered a rod. Similarly, blood vessels can be regarded as general tubular
(tube-like) surfaces. This terminology allows us to generalize the problem and treat catheter
navigation as the simulation of a rod that is displaced and rotated from its proximal end
while undergoing frictional contact inside tubular surfaces.

The structure of this chapter is as follows. We begin by reviewing existing rod models
in Section 2.1, which lays the groundwork for the discussion in Section 2.2 on the reasoning
behind choosing the Cosserat rod theory for catheter modeling. We then introduce the
notational conventions and the continuous Cosserat rod theory, in Sections 2.3 and 2.4,
respectively. The Cosserat rod model is formulated using a state-of-the-art Lie group
formulation, enabling a unified treatment of translational and rotational components, and
thus simplifying the governing equations. This theoretical foundation supports both the
following chapters and Section 2.5, where we review state-of-the-art numerical methods for
solving the Cosserat rod model. Finally, in Section 2.6, we conclude with a discussion that
offers deeper insight into our contributions.

2.1 Rod Modeling

Rod modeling is of interest to many research communities. Indeed, rods represent various
real-world objects. To name a few, they represent catheters for the medical community
[9, 10, 11], hair for the computer graphics community [12, 13, 14], underwater cables in
marine engineering [15, 16, 17], and soft and continuum robots for robotics [18, 19, 20].
This dissertation is inspired by advances in the latter community, as our objectives, fast
and accurate resolution of rod models, closely align with theirs. In the following, we review
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existing rod models, and afterward we choose the most suitable one for our simulation
objectives.

2.1.1 Three-Dimensional Continuum Mechanics Model

The most comprehensive approach to modeling the deformation of rods is through three-
dimensional continuum mechanics [21, 22, 23]. In this framework, the rod is modeled as a
solid volume composed of an infinite number of infinitesimally small elements. Each of these
elements carries physical quantities such as mass, stress, and strain, which vary continuously
throughout the rod. This includes variations within the cross-section, which is free to deform.
The motion of the rod is described by a displacement field, which gives the change in position
of each material point relative to its reference configuration. The deformation gradient,
derived from the spatial variation of displacement, provides a measure of local stretching
and shearing, and leads to strain expressions that remain valid even for large deformations.

Internal forces are derived from the stress field, which is determined by a constitutive law
relating local strain to local stress. This law is often nonlinear, particularly when modeling
large deformations or materials with complex behavior [24, 25]. For linearly elastic materials,
this law is defined by a fourth-order elasticity tensor that describes how stiff the material is
in response to deformation in different directions. The field of internal stresses contributes to
the global equilibrium of the rod, which is described by the conservation of linear momentum.
It states that the mass times acceleration at any point must equal the sum of all forces acting
on it, including internal forces caused by stress gradients and external forces applied from
outside the rod.

To solve the equations governing this system, the rod is typically discretized using
the finite element method [21, 26, 27]. This involves subdividing the continuous volume
into a mesh of small, finite elements like tetrahedra or hexahedra. To approximate the
displacement field, values are assigned to discrete points (nodes), and shape functions
are used to interpolate displacements within each element. The governing equations are
reformulated in their weak form by multiplying them with shape functions and integrating
over the domain. These integrals are then evaluated element-wise across the mesh and
grouped into a global system of algebraic equations for numerical solution.

This modeling technique is versatile and accurate, capable of capturing all deformation
modes. It does not require any simplification with respect to the rod geometry, such as
assuming a uniform cross-section. Boundary conditions can be applied at any part of the
rod, and the model remains valid even under complex loading or contact conditions. However,
the discretized system can involve a large number of degrees of freedom, especially when high
accuracy or fine spatial resolution is required. Solving the resulting equations requires high
computational cost and memory, making this method more suitable for offline analysis than
real-time simulations [28, 29].

2.1.2 One-Dimensional Continuum Mechanics Models

One-dimensional rod models approximate slender structures, such as catheters, as curves in
space rather than full three-dimensional volumes. Physical quantities like stress, strain, and
velocity are defined along this curve, reducing computational complexity while capturing
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deformations such as extension, shear, bending, and torsion. Both geometrically exact and
non-geometrically exact formulations adopt this one-dimensional representation, differing in
how they handle geometric nonlinearities.

Non-Geometrically Exact Models

Non-geometrically exact rod models, such as classical rod theories, provide a simplified linear
approximation suitable for slender structures under small deformations and rotations [30, 31].
Building on the one-dimensional framework introduced above, these models linearize both
the kinematic relations and the equilibrium equations, leading to efficient formulations.

In the classical Euler-Bernoulli model, it is assumed that cross-sections remain perpendic-
ular to the rod axis during bending [32]. This model accounts for bending but neglects shear
deformation and, in some simplified forms, also ignores extension and torsion. To describe
the dynamics, the balance of forces leads to a fourth-order partial differential equation for
the position, which in many scenarios can be solved analytically.

The Timoshenko model improves upon this by relaxing the assumption on cross-section
orientation. Cross-sections are allowed to rotate independently from the centerline tangent,
enabling the model to capture shear deformation in addition to bending [33]. The governing
equations form a coupled system of second-order partial differential equations for the cross-
section position and orientation. These equations remain linear under small deformation
and rotation assumptions and can be solved either analytically or using standard numerical
methods depending on the boundary conditions.

While the reduced complexity of linear rod models offers computational advantages, their
assumptions make them unsuitable for scenarios involving large deformations or rotations,
like in catheter navigation.

Geometrically Exact Models

Geometrically exact rod models extend the one-dimensional rod representation to cases
involving large deformations and rotations by preserving full geometric nonlinearity [34].
These models do not linearize the kinematics or equilibrium relations, making them suitable
for a broader range of applications.

The Cosserat rod theory is a geometrically exact model, where each point along the rod
centerline is associated with a moving orthonormal frame representing the orientation of the
cross-section. The cross-section is assumed to be infinitesimal and rigid. The configuration of
the rod is described by both the position and orientation of these cross-sections. Deformation
is captured by how these frames evolve in space, with both translational (extension and shear)
and rotational (bending and torsion) components represented. A common simplification
is the Kirchhoff assumption, which states that cross-sections remain perpendicular to the
centerline tangent. This eliminates shear deformation while still allowing to capture large
bending and torsion. The kinematics are derived from the differential geometry of framed
curves [35], and the governing equations are derived from the balance of linear and angular
momentum [36] or variational principles [37].
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Figure 2.1: Pseudo-rigid body model consisting of rigid links connected by revolute joints,
providing a piecewise-rigid approximation of a deformable structure.

Although the Cosserat rod model involves increased modeling complexity compared to
linear rod models, it remains geometrically exact while being more computationally efficient
than fully three-dimensional formulation [38].

2.1.3 Constant Curvature Model

Among simplified rod models, the constant curvature model is a popular choice due to its
efficiency. It represents the rod as a sequence of segments, each shaped as a circular arc with
constant curvature [39, 40]. This approach reduces model complexity by focusing only on
bending and is particularly effective when the rod exhibits arc-like configurations.

Each segment is defined by parameters such as arc length, curvature, and in some cases,
torsional twist. The pose of the rod tip can be computed by sequentially applying the rigid
transformations associated with each segment, starting from the base. In many scenarios,
especially when bending is constrained to one plane, the position and orientation of each arc
can be obtained analytically using closed-form expressions based on trigonometric functions
[41, 42].

When dynamics are involved, the time evolution of the arc parameters is often governed
by Lagrangian mechanics, where they represent the generalized coordinates [43]. The kinetic
and potential energies of the rod are expressed as functions of these parameters and their
time derivatives. The resulting equations of motion are obtained by applying energy balance
principles to derive second-order differential equations. These describe how the parameters
change in response to imposed boundary conditions.

The constant curvature model is commonly used in robotics, as the actuation mechanisms
inherently impose curvature constraints [44]. Furthermore, its simplicity makes it suitable for
real-time simulations [45]. However, the model assumptions limit its range of applicability.
It cannot easily take into account varying curvature, shear deformations, or external
interactions such as contact and friction. Torsion is typically modeled in an ad hoc way,
which can result in a lack of physical consistency [46]. Therefore, while constant curvature
models are computationally efficient, they are best suited for applications where the rod
naturally adopts configurations close to circular arcs.
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Figure 2.2: Discrete mass-spring-damper representation of a rod. The rod is modeled as a
series of point masses mi connected by springs with stiffness ki and dampers with damping
coefficient ci, capturing its elastic and dissipative properties.

2.1.4 Pseudo-Rigid Body Model

In the pseudo-rigid body model, the rod is represented as a series of rigid links connected
by rotational joints [47, 48]. This is visually illustrated in Fig. 2.1. Each link is a rigid
body, and the deformation is captured by the rotation angles at the joints, which quantify
the change in orientation between adjacent segments. These joints are typically modeled as
torsional springs, with resistance to bending proportional to the angular displacement from
their rest angles.

The system dynamics follow classical Newton-Euler rigid body mechanics. Each link
experiences both translational motion of its center of mass and rotational motion around its
own axis. Deformation is captured through relative joint rotations and system dynamics is
determined by solving the force and moment balances across all links and joints.

A key advantage of the pseudo-rigid body model is that it builds directly on classical
rigid-body mechanics, allowing the use of standard tools for dynamics and collision modeling.
However, achieving accurate results often requires a large number of links, especially when the
rod undergoes complex deformations. Furthermore, identifying the appropriate parameters
for joint stiffness and damping is not straightforward and may require optimization
techniques, as no direct mapping to the rod material properties exists [49, 50].

2.1.5 Mass-Spring Model

The mass-spring model offers a minimalistic approach to simulating rods by discretizing them
into a chain of point masses connected by linear springs and, optionally, damping elements
[51, 52, 53]. A visual representation of the model is shown in Fig. 2.2. Each mass represents
a discrete point along the rod. The springs simulate elastic behavior by resisting changes
in the distances between these points. Damping elements are introduced to model energy
dissipation due to internal friction or contact.

The dynamics of the system are governed by Newton’s laws of motion. For each mass, the
net force is computed based on spring elongation or compression and relative velocities for
damping. These internal forces, combined with external ones, determine the accelerations
that are integrated over time to update the motion. Explicit integration schemes such as
Euler or Runge-Kutta methods are commonly used to simulate the system evolution.
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Figure 2.3: Fully connected feedforward neural network. This figure is provided to support
readers unfamiliar with neural networks and illustrates the standard structure and notation
of a multilayer perceptron. The input vector x = (x1, x2)

T is propagated through a sequence
of hidden layers, where each layer computes h(l) = σ(W (l)h(l−1)+b(l)). The network produces
the final output ŷ = ϕ(W (L)h(L−1) + b(L)). Here, h(l) is the output of layer l, W (l) and b(l)

are the corresponding weights and biases, σ is the hidden-layer activation function, ϕ is the
output activation function, and L is the index of the output layer.

The mass-spring model is easy to implement and flexible in adapting to various geometries
[54]. However, accurately capturing rod deformations requires a high number of discrete
points, which increases the computational cost. Furthermore, it suffers from the same issue
as the pseudo-rigid body model, where tuning the spring and damper parameters to match
the rod material properties is not straightforward.

2.1.6 Data-Driven Models

Data-driven models represent a fundamentally different approach for simulating rods.
Instead of relying on mechanical principles, these models learn to predict rod behavior
from observed data [55, 56]. The most common framework are neural networks, which
can be trained to map rod configurations to corresponding forces or future states [57]. This
mapping is inferred from datasets generated through experiments or simulations.

A typical neural network consists of multiple layers, each applying a nonlinear transfor-
mation to its input (see Fig. 2.3). Given an initial configuration, such as node positions or
strain values, the network outputs an estimated physical quantity of interest. The accuracy
of the prediction depends on the quality and diversity of the training data, as well as the
model architecture and training process.

Once trained, data-driven models can offer very fast predictions, making them attractive
for real-time simulation [58]. However, building an accurate and comprehensive training
dataset is challenging, especially for cases involving complex behaviors such as contact or
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friction. Additionally, neural networks often fail to generalize to unseen scenarios. Their
outputs may not respect physical laws such as conservation of momentum or energy, which
has inspired recent work to add loss functions that enforce such constraints [59].

2.2 Selection of a Rod Model for Catheters

In our selection process, we first exclude the constant curvature model and data-driven
approaches. The constant curvature model is limited by its assumption of uniform curvature,
which prevents it from capturing large variations in bending and torsion observed in catheter
navigation, while data-driven methods depend on extensive training data and may not
generalize reliably across all scenarios. Next, the pseudo-rigid body and mass-spring models
are also excluded because their reliance on parameter tuning makes it difficult to directly
map these parameters to the catheter material properties, particularly under complex contact
conditions. This leaves a choice between three-dimensional and one-dimensional continuum
mechanics. Although the three-dimensional approach offers better accuracy and generality,
its high computational cost makes it unsuitable for efficient simulation. Within one-
dimensional formulations, classical linear models such as the Euler-Bernoulli or Timoshenko
theories cannot adequately capture the large rotations and deformations observed in catheter
navigation. In contrast, the geometrically exact Cosserat rod model maintains fully nonlinear
governing equations and, compared to three-dimensional formulations, offers a balanced
trade-off between accuracy and computational efficiency for a slender structure, making it
the optimal choice for modeling catheters.

Before detailing the state-of-the-art numerical methods of Cosserat rods in Section 2.5,
we first introduce our notational conventions and describe in details the Cosserat model in
the following two sections.

2.3 Notational Conventions

Most of the notational conventions and variable names follow those of Boyer et al. [60]
and Tummers et al. [37]. For any vector x ∈ Rn, we denote its components by x =
(x1, x2, . . . , xn)

T , where •T denotes the transpose. We use the special orthogonal group
SO(3) and the special Euclidean group SE(3) to describe rotations and rigid-body motions,
along with their respective Lie algebras so(3) and se(3). The special orthogonal group

SO(3) := {R ∈ R3×3 | RTR = I3, det(R) = 1},

consists of all 3× 3 rotation matrices. Its associated Lie algebra

so(3) := {A ∈ R3×3 | AT = −A},

contains all skew-symmetric 3× 3 matrices, which correspond to infinitesimal rotations.
To represent rigid body motions that include both rotation and translation, we use the
special Euclidean group
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SE(3) :=

{(
R r

01×3 1

) ∣∣∣∣ R ∈ SO(3), r ∈ R3

}
.

This group consists of homogeneous transformation matrices where R ∈ SO(3) defines
the rotational part and r ∈ R3 represents the translation. The corresponding Lie algebra

se(3) :=

{(
A v

01×3 0

) ∣∣∣∣ A ∈ so(3), v ∈ R3

}
,

describes infinitesimal rigid body motions, with A governing angular velocity and v
representing translational velocity.

For a six-dimensional vector u = (ωT , vT )T = (ω1, ω2, ω3, v1, v2, v3)
T ∈ R6, the hat

operator •̂ and its inverse •∨ are defined by

û =

(
ω̂ v

01×3 0

)
, û∨ = u, where ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , ω̂∨ = ω.

Here, û ∈ se(3) and ŵ ∈ so(3). The operators •̂ and •∨ are context-dependent and can
refer to different mappings depending on the input. Specifically, •̂ may denote a map from
R3 to so(3) or from R6 to se(3), while •∨ can denote the inverse mappings from so(3) to R3

or from se(3) to R6. For a homogeneous transformation g ∈ SE(3)

g =

(
R r

01×3 1

)
,

the adjoint representation Adg : SE(3) → R6×6 is expressed as:

Adg =

(
R 03×3

r̂R R

)
.

The adjoint representation is used to transform any twist u ∈ R6 from one frame to
another. The associated adjoint map ad : R6 → R6×6 is given by

adu =

(
ω̂ 03×3

v̂ ω̂

)
.

Furthermore, we use the vec operator, which transforms a matrix into a column vector by
stacking its columns sequentially. Throughout this dissertation, we refer to the fixed spatial
frame as the inertial frame and the body-attached material frame as the mobile frame. The
terms proximal end and base are used interchangeably to refer to the end of the catheter or
rod manipulated by the physician, while distal end and tip refer to its free end.

Now that we have introduced the necessary notational conventions, we proceed to describe
the Cosserat rod model in the next section.
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inertial frame

g(X)

X = 0

X = l

Figure 2.4: A Cosserat rod defined over the arc length domain X ∈ [0, l]. The centerline of
the rod is depicted by the dashed black curve. At each point X, the configuration is given
by a rigid body transformation g(X) ∈ SE(3), encoding both the position of the centerline
and the orientation of the cross-section.

2.4 Cosserat Rod Model

A Cosserat rod can be considered a continuous framed curve, i.e., each point on the curve is
associated with a frame. The origin of each frame is located at the center of the cross-section,
and its orientation aligns with that of the cross-section (Fig. 2.4). The first orientation vector
is perpendicular to the plane of the cross-section, while the other two vectors lie within it.
The rod is parameterized by the arc length X ∈ [0, l], where l is the rod length in the
reference configuration. Hence, the rod configuration space can be expressed as:

C = {g : X ∈ [0, l] → g(X) ∈ SE(3)}, (2.1)

with g being the cross-section homogeneous transformation or pose:

g =

(
R r

01×3 1

)
.

The position is denoted as r ∈ R3, and the orientation is represented by a rotation
matrix R ∈ SO(3). Hence, the position and the orientation are unrestricted, giving the rod
six degrees of freedom at every point. This leads to six possible deformations: bending in
two directions, torsion, shear in two directions, and extension. By comparison, inextensible
Kirchhoff rods experience only bending and torsion deformations. Figure 2.5 presents a
three-dimensional visualization of Cosserat deformation modes. Furthermore, because the
rod is reduced to its centerline, the cross-section is assumed to remain rigid and cannot
deform. Consequently, the accuracy of predictions made by Cosserat rod theory improves
as the object becomes more slender.

Using g and its space and time derivatives, the following twists are obtained:
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(a) (b)

(c) (d)

Figure 2.5: Visualization of Cosserat rod deformation modes: (a) extension, (b) bending,
(c) shear, and (d) torsion.

ξ = (g−1g′)∨, η = (g−1ġ)∨, (2.2)

with •′ = ∂•
∂X

, •̇ = ∂•
∂t
, and t denotes time. ξ = (KT ,ΓT )T is the space-rate twist, where K

is the angular space-rate, and Γ is the linear space-rate. η = (ΩT , V T )T is the time equivalent
of ξ, it represents the velocity twist, where Ω is the angular velocity, and V is the linear
velocity. Rearranging the twists (2.2) provide the standard form of Cosserat kinematics:

g′ = gξ̂, (2.3)

ġ = gη̂. (2.4)

By abuse of terminology, ξ is sometimes referred to as the strain (as in [61]), however the
strain, denoted ϵ, is the difference between ξ and its value at the reference configuration:

ϵ = ξ − ξo, (2.5)

with ξo = (g−1
o g′o)

∨ = (KT
o ,Γ

T
o )

T is the reference configuration equivalent of ξ. For
instance, if the rod is straight along the x-axis in its reference configuration, then ξo =
(0, 0, 0, 1, 0, 0)T . Assuming small strains, this work models catheter behavior as linear elastic,
as they operate within the elastic range of their material. This assumption is widely used in
continuum robotics [61, 37], and in some cases applied in soft robotics as well, even though
such robots are often considered hyperelastic [62]. Therefore, the constitutive law is given
by:

Λ = Hϵ = H(ξ − ξo), (2.6)
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where Λ = (CT , NT )T is the stress wrench. It contains C, the internal moment, and
N , the internal force. H = diag(GIx, EIy, EIz, EA,GA,GA) is the Hookean matrix, where
G is the shear modulus, E is Young’s modulus, A is the cross-sectional area, and Ix, Iy,
and Iz are the second moments of inertia for torsion and bending about the y- and z-axes,
respectively. It is worth noting that H can depend on the arc length, for instance, to account
for changes in cross-section diameter. The constitutive law (2.6) can be extended to include
damping, such as Kelvin-Voigt type viscous damping [63, 61, 64], or robotic actuation [37].
The Kelvin-Voigt damping model introduces a linear viscous contribution to the constitutive
law. Given a damping matrix D ∈ R6×6, the stress Λ is expressed as:

Λ = H(ξ − ξo) +Dξ̇ (2.7)

The dynamic balance equation can be derived from Newton-Euler equations [34] or
Hamilton principle [65]:

Mη̇ − adTηMη = Λ′ − adTξ Λ + F̄ , (2.8)

where η̇ = (Ω̇T , V̇ T )T is the acceleration twist, composed of the angular acceleration Ω̇
and the linear acceleration V̇ . Furthermore, the external distributed wrench F̄ = (C̄T , N̄T )T

is composed of external distributed moment C̄ and force N̄ . The inertia matrix is given
by M = diag(ρIx, ρIy, ρIz, ρA, ρA, ρA), with ρ being the rod density. Similar to H, M can
be arc length dependent. Finally, the static balance equation can be obtained by simply
removing the inertial effects from the dynamic balance equation:

Λ′ − adTξ Λ + F̄ = 0. (2.9)

It is useful, in the next section, to observe that time and space differentiations commute,
because t and X are independent:

(g′)· = (ġ)′. (2.10)

From this equality the evolution of velocity over arc length can be obtained [66]:

η′ = −adξη + ξ̇. (2.11)

Differentiating (2.11) with respect to time allows to obtain the evolution of acceleration
over arc length:

η̇′ = −adξη̇ − adξ̇η + ξ̈. (2.12)

To summarize, we have presented the key components of the Cosserat model, including
its assumptions, kinematics, strain, stress, and balance equations. This foundation allows us
to present the state-of-the-art resolution of this model, which will be provided in the next
section.
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Figure 2.6: Lang et al. [4] introduced a rod material discretization in which positions r are
defined atm nodes, whereas quaternionsQ are defined at segment midpoints. The kinematics
(2.3) are discrete, and the angular (K) and linear (Γ) rates of change are computed using
finite differences with r(Xi) and Q(Xi+1/2).

2.5 State-of-the-Art Methods for Solving Cosserat Rods

Since the Cosserat rod model attracts interest from various research communities, numerous
numerical methods have been proposed, each with its own characteristics. In the following,
we propose a classification of these methods into three categories: finite differences, boundary
value problem approaches, and reduction-based methods. We describe a few representative
works for each.

2.5.1 Finite Differences

Here, we describe how the Cosserat model can be solved using finite differences. This
approach was employed in the discrete elastic rod model, originally proposed by Bergou
et al. [67] in the computer graphics community. It later gained interest in the soft robotics
community [62, 68]. For instance, Gazzola et al. [62] showed that this approach can
accurately solve certain simulations in real-time. To illustrate this method, we take a
representative example proposed by Lang et al. [4]. In their work, the rod configuration is
discretized into segments a priori. Fig. 2.6 shows their staggered grid discretization. Let us
denote the arc length of the nodes as Xi, the arc length of the segment centers as Xi+1/2, and
define Q as the quaternion representation of the rotation matrix R. The authors formulated
an explicit system of ordinary differential equations governing the time evolution of r(Xi)
and Q(Xi+1/2) in the form ż = f(z, t), where z =

(
r(Xi), Q(Xi+1/2), ṙ(Xi), Q̇(Xi+1/2)

)
.

This formulation is derived by rotating the balance equation (2.8) to the inertial frame and
then isolating the accelerations. The spatial twist ξ is computed from r and Q using finite
differences, the stress Λ is then obtained from ξ by inverting the constitutive law (2.6), and
finally, Λ′ is also computed via finite differences.

In [69, 62, 70] the discrete elastic rod model is combined with the penalty contact method
to resolve collisions. In the penalty method, the contact response is determined by the
interpenetration distance between the colliding objects: the greater the distance, the stronger
the response. Tschisgale et al. [71] used the numerical method of Lang et al. [4] to model
submerged canopies in rivers subjected to contact. Inspired by impulse-based contact models
[72, 73, 74] that assume infinitesimal collision time, the contact response is computed as
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Figure 2.7: Cubic B-spline basis functions defined over the interval [−1, 1]. The
basis has degree 3 and consists of 7 functions, defined over the open knot vector
{−1,−1,−1,−1,−0.5, 0, 0.5, 1, 1, 1, 1}. Each curve Bi(x) represents a basis function
associated with one control point. The functions are C2-continuous at interior knots.

collision impulses (with units of mass times velocity), derived from the desired change in
relative normal velocity after contact. Contact detection is performed for each discrete rod
element and involves searching for the nearest contact point or surface; the resulting contact
response is then distributed to the node accelerations.

Another representative work in the category of finite differences is that of Renda et al.
[75], where they constructed an explicit system of ordinary differential equations in the form
ż = f(z, z′, t) with z = (g, ξ, η):ġξ̇

η̇

 =

 gη̂
η′ + adξη

M−1
(
adTηMη + Λ′ − adTξ Λ + F̄

)
 (2.13)

From top to bottom, the first line represents the kinematics (2.4), the second line is
a rearrangement of (2.11), and the third line is derived from the Newton-Euler balance
equations (2.8). Here, Λ is computed from ξ using the constitutive law (2.6), while η′ and
Λ′ are computed using finite differences.

The advantages of the finite difference approaches are that the evaluation of one
simulation step is fast and the computation time scales linearly with the number of rod
discrete elements, which enables to run certain simulations in real-time. However, the use
of finite differences may lead to numerical instabilities if the time step ∆t or the spatial
resolution are not carefully selected. Indeed, converging to accurate solutions requires
reducing the discrete element size ∆X, but this imposes a smaller time step for stability,
which increases the overall computation time. Going further into details, Gazolla et al. [62]
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F̄g0
η0
η̇0

F+

Figure 2.8: The figure depicts the clamped-free (Dirichlet-Neumann) boundary conditions
of a Cosserat rod subjected to distributed loads F̄ and a concentrated wrench at the tip
(F+). At the proximal end X = 0, the known quantities are the pose g0, as well as the
velocity η0 and acceleration η̇0; at the distal end X = l, the stress Λ(l) = F+ is known.

observed a relation of the form ∆t = χ∆X with χ ∼ 10−2s/m, while the approach of Renda
et al. [75] follows the Courant-Friedrichs-Lewy condition, ∆t ≤ 1√

E/ρ
∆X.

To avoid using finite differences, Weeger et al. [64] represented r, Q, ṙ, and Q̇ as
non-uniform rational B-splines (NURBS) and formulated an explicit system of ordinary
differential equations in the form ż = f(z, t) where z contains the control points of
the discretized components. Fig. 2.7 shows the B-spline basis underlying the NURBS
representation. This approach allows for the computation of all necessary spatial derivatives
analytically using the chosen basis functions instead of finite differences approximation.
Furthermore, contacts were taken into account using the penalty method. Although this
approach does not rely on finite differences, it is included in this subsection because it
closely aligns with the methods previously discussed.

In this category, the differential equations may become stiff in certain scenarios, for
instance, when the Young’s modulus is large or the rods are very thin, requiring small time
steps to ensure convergence [62].

2.5.2 Boundary Value Problem

In this approach, the Cosserat rod model is formulated as a boundary value problem in the
spatial domain and then solved iteratively using either the shooting method or collocation
methods. Figure 2.8 shows a rod with clamped-free boundary conditions, where one end is
fixed in position and orientation, and the other end is free to move. Figure 2.9 illustrates a
rod with free-free boundary conditions, where both ends are unconstrained. To elaborate,
we first present the boundary value problems in both static and dynamic modes. For the
static case, the form simply consists in combining the kinematics (2.3) and the static balance
equation (2.9)
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F̄

F−

F+

Figure 2.9: The figure depicts the free-free (Neumann-Neumann) boundary conditions of
a Cosserat rod subjected to distributed loads F̄ and two concentrated wrenches at the base
(F−) and the tip (F+). The stress is specified at both ends: at the proximal end X = 0, the
stress is prescribed as Λ(0) = −F−; at the distal end X = l, the stress is given by Λ(l) = F+.

(
g′

Λ′

)
=

(
gξ̂

adTξ Λ− F̄

)
, (2.14)

with clamped-free boundary conditions

g(0) = 14×4, Λ(l) = F+, (2.15)

to formulate the boundary value problem. Here, F+ = (CT
+, N

T
+)

T is the external
concentrated tip wrench, C+ is the tip moment, and N+ is the tip force. Free-free boundary
value problem for the static mode is not defined for self-evident reasons. The boundary value
problem for the dynamic mode is not as straightforward to formulate as it is for the static
case. Indeed, combining the kinematics (2.3) and the dynamic balance equation (2.8)(

g′

Λ′

)
=

(
gξ̂

Mη̇ − adTηMη + adTξ Λ− F̄

)
, (2.16)

with clamped-free boundary conditions

g(0) = 14×4, η(0) = 06×1, η̇(0) = 06×1, Λ(l) = F+,

or free-free boundary conditions

Λ(0) = −F−, Λ(l) = F+,

with F− being the rod proximal end equivalent of F+, results in an unsolvable boundary
value problem. Indeed, this form has no means to compute the accelerations η̇, and the
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Figure 2.10: Solution to a clamped-free boundary value problem obtained using the
shooting method. The distal boundary condition for the internal moment is set to C(l) =
C(1) = 0. The shooting method computes the proximal value of the internal moment C(0)
that, after arc length integration, satisfies the boundary condition. The solution C(0) = 31
is found after four iterations: C(0) = {50, 16.5, 36.9, 31}.

velocities η. To address this, these equations are supplemented with additional equations
that describe the evolution of η̇ and η over arc length. Combining all the components (2.16)
(2.11) (2.12) 

g′

η′

η̇′

Λ′

 =


gξ̂

−adξη + ξ̇

−adξη̇ − adξ̇η + ξ̈

Mη̇ − adTηMη + adTξ Λ− F̄

 , (2.17)

with clamped-free boundary conditions

g(0) = 14×4, η(0) = 06×1, η̇(0) = 06×1, Λ(l) = F+, (2.18)

or free-free boundary conditions

Λ(0) = −F−, Λ(l) = F+, (2.19)

provides the complete form of boundary value problem in the dynamic mode [66].

Shooting Method

These boundary value problems can be solved using the shooting method. This approach
iteratively computes the unknown initial condition that, after arc length integration, satisfies
the distal boundary condition. Fig. 2.10 visualizes an example of the shooting method used
to compute the unknown internal moments at the rod proximal end. To illustrate this method
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further, we show how clamped-free boundary value problems can be solved. For instance,
by selecting the stress Λ(0) as the unknown initial condition, as in [66], the residual vector
R : R6 → R6 is:

R(Λ(0)) = Λ(l)− F+

= Λ(0) +

∫ l

0

Λ′dX − F+

(2.20)

Applied to static case (2.9) this residual becomes:

R(Λ(0)) = Λ(0) +

∫ l

0

adTξ Λ− F̄ dX − F+ (2.21)

Here, ξ is computed from Λ by inverting the constitutive law (2.6). Wiese et al. [76] used
the shooting method in the static mode to model concentric tube robots in contact with
simple geometrical shapes using the penalty method.

For the dynamic mode (2.8) the residual becomes:

R(Λ(0)) = Λ(0) +

∫ l

0

Mη̇ − adTηMη + adTξ Λ− F̄ dX − F+ (2.22)

Here, η and η̇ are computed by integrating (2.11) and (2.12). However, ξ̇ and ξ̈ in these
equations remain unknown. This arises because the boundary value problem originates from
a singular optimal control problem [66]. To regularize it, implicit time integration is used,
allowing ξ̇ and ξ̈ to be computed using known values from the current and previous time
steps [66].

The shooting method is computationally efficient, as its Jacobian matrix ∂R
∂Λ(0)

is typically

small, with a size of 6×6 when Λ(0) is the only unknown, making it well-suited for computing
certain simulations in real-time [61]. Additionally, it maintains accuracy, as the configuration
space is not reduced but only discretized for numerical integration. However, the shooting
method is known to be unstable for Cosserat rod dynamics. Initially, this instability was
attributed to machine precision (floating-point) issues [77], but recent work by Boyer et al.
[66] revealed that it comes from the fundamentally singular nature of the optimal control
problem underlying the dynamic boundary value problem. Regularizing the problem using
implicit time integration imposes restrictions on the time step and rod material properties.
Specifically, the singularity reappears when soft rods or small time steps are used, preventing
the shooting method from converging.

Collocation Method

Other solutions for solving static boundary value problems have been proposed. Orekhov
et al. [78] used an orthogonal collocation method, while Weeger et al. [79] proposed an
isogeometric collocation method. The collocation method approximates the solution using
a finite set of basis functions, with the goal of determining their unknown parameters, such
as coefficients or control points. This is achieved by solving a system of algebraic equations
that ensures the derivative computed from the basis functions closely matches the derivative
given by the differential equations at selected collocation points. Additionally, the system
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Figure 2.11: First five Chebyshev polynomials of the first kind Tm(x) for degreem = 0 to 4,
plotted over the interval [−1, 1]. These polynomials are orthogonal with respect to the weight

function w(x) = (1− x2)−1/2, meaning they satisfy the relation
∫ 1

−1
Tm(x)Tn(x)w(x) dx = 0

for m ̸= n. Each polynomial Tm(x) has m distinct zeros in (−1, 1), given by ci = cos
(
2i−1
2m

π
)

for i = 1, . . . ,m.

enforces boundary conditions by minimizing the difference between the computed solution
at boundary points and the imposed conditions. Let us denote the collocation points as
ci. Using the Kirchhoff assumption (zero shear and extension), Orekhov et al. [78] solved
the static case by setting {ξ(ci)} as the unknowns, representing ξ with three Chebyshev
polynomials. Fig. 2.11 plots Chebyshev polynomials up to degree four.

The residual system takes the following form, with boundary condition enforcement
omitted for simplicity:

R({ξ(ci)}) = ξ̃′ − (H−1Λ + ξo)
′

= ξ̃′ −H−1Λ′

= ξ̃′ −H−1(adTξ Λ− F̄ )

(2.23)

Here, Λ′ is obtained with the balance equation (2.9), Λ is computed from the constitutive
law (2.6), and ξ̃′ is the counterpart of ξ′ calculated using the Chebyshev differentiation
matrix [80]. In their work, they demonstrated that using the Magnus expansion for arc
length integration of the kinematics (2.3) allows the collocation method to be competitive
with the shooting method in terms of computational efficiency. Furthermore, the Magnus
expansion ensures that the pose g(X) remains in SE(3) during arc length integration.
This property is not guaranteed when using standard numerical schemes such as the
explicit Euler method, where the rotation part R(X) may drift from SO(3). The Magnus
expansion is an approximation and requires careful parameter selection to ensure convergence
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Figure 2.12: First five Legendre polynomials Pn(x) for degree n = 0 to 4, plotted over
the interval [−1, 1]. These polynomials are orthogonal with respect to the weight function

w(x) = 1, meaning they satisfy
∫ 1

−1
Pm(x)Pn(x) dx = 0 for m ̸= n. Each polynomial Pn(x)

has n distinct zeros in (−1, 1).

[78]. Alternative approaches to address SO(3) drift include the use of quaternions, as
demonstrated in [81].

In the work of Weeger et al. [79], the position r and quaternion Q are represented
using NURBS, with their collocation values as the unknowns. The residual system takes
the following form, with boundary condition and unit quaternion enforcements omitted for
simplicity:

R({r(ci), Q(ci)}) = Λ̃′ − Λ′

= Λ̃′ − adTξ Λ + F̄
(2.24)

Here, Λ is computed from ξ using the constitutive law (2.6), while ξ and Λ̃′ are derived
from r and Q using NURBS differentiation. In [82], their work was extended to take rod to
rod contact into account with the penalty method.

Compared to the shooting method, one drawback of collocation methods is that their
Jacobian matrices are usually larger, as they depend on the number of basis functions,
leading to greater computation time. To the best of our knowledge, no collocation method
has been proposed for solving the boundary value problem of Cosserat rods in the dynamic
regime.

2.5.3 Reduction-Based Methods

Reduction-based methods, which often use the Lagrangian formulation, can be categorized
by their type of interpolation (nodal or modal) and the type of generalized coordinates
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(absolute or relative) [38]. Nodal interpolation refers to interpolating node values, while
modal interpolation represents the chosen field as a combination of global basis functions
distributed along the rod arc length. Absolute coordinates are defined with respect to the
inertial frame, while relative coordinates are defined with respect to the mobile frame.

Simo [83] was the first to propose a finite element method solution for Cosserat rods,
referring to it as the geometrically exact finite element method (GE-FEM). This method is
nodal and absolute, where the generalized coordinates are g and ġ. It is widely considered
one of the most powerful approaches for solving Cosserat rods. However, its robustness and
accuracy have shown limitations [60], which inspired the development of (nodal) relative
GE-FEM, such as those proposed by [84, 85, 86], where the generalized coordinates are
the strains. For instance, [86] proposed a piecewise linear interpolation of the strain field.
Their work was extended in [87] to take collisions into account. To obtain accurate contact
response, they solved the nonlinear complementary problem of contacts [88]:

0 ≤ ϕn ⊥ Fn ≥ 0 (2.25)

This equation represents a unilateral constraint, where ϕn denotes the normal gap
between the contacting objects and Fn the corresponding normal contact force. The
condition ⊥ implies that either the gap is strictly positive and the contact force vanishes, or
the contact force is active and the gap is zero, but never both simultaneously. This guarantees
a physically correct contact behavior. The unilateral constraint (2.25) is reformulated as a
nonlinear equation, allowing it to be treated as an equality constraint and solved iteratively
using root-finding techniques.

Boyer et al. [60] showed that modal relative reduction allows matching the accuracy of
GE-FEM with fewer degrees of freedom. They used strain reduction of the form:

ϵ = Φ(X)q (2.26)

where q represents the generalized coordinates, and Φ is a matrix of shape functions.
Specifically, Legendre polynomials were used, and Fig. 2.12 displays them up to degree 4.
By isolating the acceleration in the Lagrangian balance equation, they derived a minimal set
of explicit ordinary differential equations governing the time evolution of q. The Lagrangian
dynamic balance equation is expressed as:

Mϵ(q)q̈ +Qv(q, q̇) +Qc(q) +Dϵq̇ +Kϵq = 0 (2.27)

Here,Mϵ(q) is the generalized inertia matrix, Qv(q, q̇) represents the generalized velocity-
dependent forces, and Qc(q) accounts for generalized external forces that depend on the
configuration. The matrices Dϵ and Kϵ represent the generalized damping and generalized
restoring forces, respectively. The matrices of the Lagrangian model can be computed either
using the Newton-Euler algorithm [60, 37] or the geometric Jacobian matrix, which maps
variations of q to variations of g [89, 90]. The Newton-Euler algorithm involves two passes
of arc length integration:

• A forward pass (from X = 0 to X = l) to compute g, η, and η̇ using (2.3) (2.11) (2.12)
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• A backward pass (from X = l to X = 0) to compute Λ with (2.8), which is then
projected onto the shape functions to obtain the generalized forces.

The matrices in (2.27) are computed by supplying various values of q, q̇, and q̈ to the
algorithm. Alternatively, the geometric Jacobian approach computes the system matrices
by projecting the kinematics (2.3) and the continuous balance equation (2.8) onto the strain
coordinate space. In contrast to the algorithm above, this approach involves only forward
integrations. It was efficiently implemented by Mathew et al. [89] and demonstrated the
capability to perform certain dynamic simulations in real time. Furthermore, a special case
of the relative modal approach is the piecewise constant strain formulation, as proposed by
Renda et al. [91].

Although this approach allows to achieve good accuracy with few degrees of freedom, the
underlying equations may become stiff, necessitating small time steps, which can degrade
overall computation time.

2.6 Discussion and Conclusion

Earlier in this chapter, we reviewed different rod modeling approaches and identified the
Cosserat rod theory as the most appropriate for catheters. We then provided an overview
of state-of-the-art numerical methods for solving this model. All approaches presented
preserve the geometric exactness of Cosserat rods and are therefore accurate, although some
can achieve the same level of accuracy with fewer degrees of freedom. Furthermore, all
have demonstrated the ability to perform real-time simulations: Gazzola et al. [62] for
discrete elastic rods, Till et al. [61] for boundary value problems solved using the shooting
method, and Mathew et al. [89] for the modal strain reduction approach. However, each
approach comes with its own drawbacks. The discrete elastic rod model uses finite difference
approximations, which can lead to instabilities; the shooting method has been shown to
be unstable for dynamic simulations; and the Lagrangian model equations can become
stiff, degrading computation time. Consequently, the current state-of-the-art solutions for
Cosserat rods do not allow achieving accurate, fast, and robust simulations of complex
catheter navigation.

The reasoning behind the contributions of this dissertation is as follows. We adopt a
progressive modeling approach, starting with minimal assumptions and gradually increasing
them to improve computation time. We begin by considering inertial effects and therefore
employ the dynamic formulation to model catheter navigation. Subsequently, we neglect
inertial effects and explore the use of the static formulation. From the perspective of contact
modeling, this dissertation adopts the penalty method, in line with many of the previously
cited works. This choice was motivated by its simplicity of integration, allowing the research
effort to focus primarily on advancing numerical methods rather than introducing new
contact modeling approaches.

Orekhov et al. [78] showed that solving static boundary value problems using the
collocation method can be competitive with the shooting method in terms of computation
time. To our knowledge, no one has solved the dynamic boundary value problem using
a collocation method. Given that the boundary value problem in the dynamic regime is
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fundamentally singular, a question arises as to whether such an approach can be robust. We
propose a solution to the dynamic boundary value problem using an orthogonal collocation
method and show through simulations that it solves the singularity problem (Chapter 3).
Then, in Chapter 4, we incorporate contact modeling and apply the proposed method to
simulate catheter navigation. Although realistic results were obtained, we concluded that
the proposed collocation method, in its current form, is not suitable for fast simulation.
To improve computational efficiency, in Chapter 5, we make a quasi-static assumption and
employ the modal strain reduction of [66]. Since the problem is stiff, we use implicit functions
to model the contact surfaces, which, due to their smoothness, facilitates the use of implicit
methods that mitigate stiffness.
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Chapter 3

Addressing the Singularity in the
Dynamic Cosserat Rods Boundary
Value Problem

Solving the dynamic Cosserat boundary value problem has proven to be numerically
challenging. Indeed, recent work of Boyer et al. [66] showed that the boundary value
problem in the dynamic mode originates from a fundamentally singular optimal control
problem. To regularize it, implicit time integration is used. However, they showed that this
regularization fails when the chosen time step is too low or the rod material is too soft. Going
further into details, they showed that there exists a critical time step value ∆tc below which
the singularity reappears and the chosen numerical solver fails to converge. They suggested
that ∆tc follows the following law:

∆tc ∝ χl2
√
ρA

EI
(3.1)

Recall that l denotes the rod length, ρ the density, A the cross section area, E Young’s
modulus, and I the second moment of inertia. Here, χ is a dimensionless prefactor that
depends on imposed forces and motion, machine accuracy and the numerical solver. In
particular, the value of χ increases as the imposed forces and motion become more significant,
thereby requiring a larger critical time step ∆tc. In their numerical results, they found
0.5ms ≲ ∆tc ≲ 3ms, depending on the simuation scenario. Their numerical results were
obtained by using only the shooting method as numerical solver. Indeed, this method has
become a standard in the field, as it is fast and easy to implement [61, 37].

On the other hand, simulating catheter navigation presents several challenges. The
catheter experiences significant forces and moments at its proximal end, undergoes frictional
contact along its length, and can be highly flexible. Moreover, the numerical method should
be able to account for sufficiently small time steps to ensure accurate results. Consequently,
these objectives are not aligned with what can be achieved using state-of-the-art solutions
for the Cosserat rod boundary value problem.
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Contributions

For a given simulation scenario, the only variable that can affect the critical time step
below which the singularity reappears is χ. From the work of Boyer et al. [66], we know
that χ depends on imposed forces and motion, machine accuracy, and the numerical solver.
Consequently, for a given simulation scenario, one can only decrease the critical time step
by either using a more stable numerical solver or increasing machine accuracy. In this work,
we explore the first option.

To the best of our knowledge, the dynamic boundary value problem has never been solved
using a collocation method. In [92], we numerically showed that, compared to the shooting
method, an orthogonal collocation method is more likely to converge when the initial guess
is far from the solution. Although the proposed method showed improved stability, it did
not address the singularity issue. In this chapter, we further improve the method initially
proposed in [92] with the objective of numerically addressing the singularity problem.

We propose a solution for the dynamic boundary value problem based on an orthogonal
collocation method. The static mode will also be addressed as a subproblem. Here, we focus
solely on solving the clamped-free problem, in which the rod is clamped at one end and free
at the other. The free-free problem, where the rod is free at both ends, is better suited for
simulating catheter navigation, will be addressed with frictional contact in the next chapter.
The main contributions are summarized as follows:

• Proposing an orthogonal collocation method for solving dynamic Cosserat rods and
providing its Jacobian matrix analytically (Sections 3.3 and 3.4).

• Demonstrating the capability of the proposed method to solve the singularity problem
using multiple nonlinear benchmarks from the literature and comparing it to the
shooting method and the Lagrangian model (Section 3.5).

• Making the implementation open source at gitlab.inria.fr/rjilani/ch3.

This chapter is structured as follows. Section 3.1 introduces the time discretization
approach, following Boyer et al. [66]. Section 3.2 describes the orthogonal polynomial
interpolation used for the collocation method, as detailed in [80]. Section 3.3 proposes a
configuration space reduction. Section 3.4 presents a collocation method for solving the
clamped-free boundary value problem and provides its Jacobian matrix analytically. Section
3.5 presents our numerical experiments, followed by concluding remarks in Section 3.6.

3.1 Time Discretization

The clamped-free boundary value problem (2.17), (2.18), at its original form is unsolvable
because the acceleration and velocity of the space-rate twist ξ̈ and ξ̇ are unknown. Indeed,
this boundary value problem originates from a singular optimal control problem [66]. To
regularize it, an implicit time integration is applied to ξ̈ and ξ̇, allowing them to be computed
using ξ and known values from prior time steps.

Let j and j+1 represent two consecutive time steps, and suppose we want to move from
step j to step j + 1, meaning that all variables at step j are known. As in Boyer et al. [66],
the Newmark scheme is used:
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(a) Chebyshev polynomials of degree up to
4.

(b) Chebyshev roots with respect to polyno-
mial degree.

Figure 3.1: Chebyshev basis and their roots for multiple polynomial degrees.

ξj+1 = a ξ̈j+1 + fj, ξ̇j+1 = b ξ̈j+1 + hj. (3.2)

The space-rate twist ξj+1 will be computed using a collocation method in Section 3.4. In
the Newmark scheme, the coefficients a and b as well as the auxiliary variables fj and hj are
defined by:

a = β∆t2, b = γ∆t

fj = ξj +∆tξ̇j +∆t2(
1

2
− β)ξ̈j

hj = ξ̇j +∆t(1− γ)ξ̈j

(3.3)

where ∆t is the time step, and β and γ are two parameters that can be adjusted to control
damping. To achieve no damping, the parameters are set to (β, γ) =

(
1
4
, 1
2

)
, throughout this

dissertation. Furthermore, other approaches could also be used for implicit integration, such
as the backward differentiation formula [61].

Now that the boundary value problem is regularized, we can introduce the collocation
method to solve it. However, before doing so, the next section presents essential polynomial
interpolation.

3.2 Chebyshev Interpolation

A continuous function can be approximated using a polynomial of degree m−1 that matches
the function values atm distinct points. By increasing the degree, the polynomial approaches
the true function. A fast yet accurate way to construct this polynomial is to express it as a
weighted sum of orthogonal basis functions, which allows computing its coefficients in closed
form. Inspired by the work of Orekhov et al. [78] on static Cosserat rods, our work uses
Chebyshev polynomials. Indeed, the Chebyshev basis is well conditioned, which ensures
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numerical stability for methods like collocation [80]. This section briefly presents Chebyshev
interpolation, for more details, we refer the reader to [80].

The Chebyshev polynomials of the first kind of degree m, Tm : [−1, 1] → [−1, 1], can be
computed using trigonometric functions as follows:

Tm(x) = cos(m arccos(x)). (3.4)

Or, more efficiently, using the following recurrence relation:

T0(x) = 1,

T1(x) = x,

Tm(x) = 2xTm−1(x)− Tm−2(x), m ≥ 2.

(3.5)

Fig. 3.1a plots the Chebyshev polynomials up to degree 4. A continuous function f̃ :
[−1, 1] → [−1, 1] can be approximated using a weighted sum of Chebyshev polynomials up
to degree m− 1 as follows:

f̃(x) ≃ 1

2
e0T0(x) +

m−1∑
j=1

ejTj(x), (3.6)

where {ej} are the modal coefficients. They are computed efficiently using the discrete
Chebyshev transform:

ej =
2

m

m∑
i=1

f̃(τ ∗i )Tj(τ
∗
i ), (3.7)

where {τ ∗i } are the interpolation nodes. The discrete Chebyshev transform requires {τ ∗i }
to be the roots of the Chebyshev polynomial Tm. The Chebyshev polynomial of degree m
has m roots, computed as follows

τ ∗m+1−i = cos

((
i− 1

2

)
π

m

)
, i = 1, . . . ,m. (3.8)

By increasing m, the points τ ∗1 and τ ∗m approach the boundaries of the interval [−1, 1] but
never reach them exactly. Furthermore, the roots {τ ∗i } are not uniformly spaced. Fig. 3.1b
plots these roots for polynomial degrees up to 50. Apart from being essential for the discrete
Chebyshev transform, the use of {τ ∗i } as interpolation nodes reduces the Runge phenomenon.
For instance, this phenomenon occurs when oscillations appear near the boundaries due to
equally spaced interpolation nodes. Moreover, the derivatives of f̃ at τ ∗i can be approximated
efficiently using a linear combination of these values:

df̃(τ∗1 )
dx

df̃(τ∗2 )
dx
...

df̃(τ∗m)
dx

 ≃ D∗T
m


f̃(τ ∗1 )

f̃(τ ∗2 )
...

f̃(τ ∗m)

 (3.9)
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Here, D∗
m ∈ Rm×m is the Chebyshev differentiation matrix. This matrix is constant, its

elements at row i and column j are computed using first and second derivatives of Chebyshev
polynomials:

D∗
m(i, j) =


1
2

Tm,2(τ∗i )
Tm,1(τ∗i )

if i = j,

1
τ∗j −τ∗i

Tm,1(τ∗j )
Tm,1(τ∗i )

if i ̸= j.
(3.10)

The derivatives Tm,1 = dTm
dx

and Tm,2 = d2Tm
dx2

are computed in closed form and can be
found in [80].

Now that we have established the theoretical foundation for Chebyshev polynomial
interpolation, we have all the necessary components to introduce the configuration space
reduction used for the collocation method.

3.3 Configuration Space Reduction

Notice that if the stress Λ(X) is known, one can integrate the kinematics (2.3) (g′ = gξ̂)
using the initial condition g(0) = 14×4, with ξ computed from Λ by inverting the constitutive
law

ξ = H−1Λ + ξo (3.11)

to obtain the cross-section poses g(X). Therefore, (g(0),Λ) completely define the rod
configuration. Consequently, The configuration space can be expressed as

C = SE(3)× {Λ : X ∈ [0, l] → Λ(X) ∈ R6}. (3.12)

We propose to approximate the six functions of Λ using Chebyshev polynomials as
explained in the last section. Polynomials up to a degree m − 1 are used, with exactly
m interpolation nodes. Furthermore, the Chebyshev polynomials must be shifted from
their original domain [−1, 1] to the arc length domain [0, l]. To simplify notations and
avoid extrapolation, the Chebyshev polynomials are shifted using the linear transformation
ς : [0, l] → [τ ∗1 , τ

∗
m]. Consequently, the first and last interpolation nodes in the arc length

domain correspond to the base and tip of the rod, respectively. In other words, the domain
of definition of Chebyshev polynomials, [−1, 1], is mapped through ς−1 to an extended arc
length domain [x̃, ỹ], with x̃ < 0 < l < ỹ, where only the portion [0, l] is actually used.
Notice that x̃ and ỹ depend on the chosen polynomial degree.

Let τi = ς−1(τ ∗i ), i = 1, . . . ,m, be the interpolation nodes in the arc length domain, where
τ1 = 0 and τm = l. The weighted sums (3.6) and (3.7) can be expressed in a matrix form,
taking into account the mapping of Chebyshev polynomials domain and the interpolation of
the six stress functions:

33



Λ(X) ≃ 2

m
(Λ(τ1),Λ(τ2), ...,Λ(τm))


T0(τ

∗
1 ), T1(τ

∗
1 ), ..., Tm−1(τ

∗
1 )

T0(τ
∗
2 ), T1(τ

∗
2 ), ..., Tm−1(τ

∗
2 )

...
T0(τ

∗
m), T1(τ

∗
m), ..., Tm−1(τ

∗
m)




1
2
T0(ς(X))
T1(ς(X))

...
Tm−1(ς(X))

 (3.13)

Let Λm ∈ R6×m be the stress at the interpolation nodes

Λm = (Λ(τ1),Λ(τ2), ...,Λ(τm)) (3.14)

and the vector Φ(X) ∈ Rm be

Φ(X) =
2

m


T0(τ

∗
1 ), T1(τ

∗
1 ), ..., Tm−1(τ

∗
1 )

T0(τ
∗
2 ), T1(τ

∗
2 ), ..., Tm−1(τ

∗
2 )

...
T0(τ

∗
m), T1(τ

∗
m), ..., Tm−1(τ

∗
m)




1
2
T0(ς(X))
T1(ς(X))

...
Tm−1(ς(X))

 (3.15)

then (3.13) becomes:

Λ(X) ≃ ΛmΦ(X) (3.16)

Consequently, g(X) can be obtained with (g(0),Λm) and therefore the configuration space
is reduced to

C = SE(3)× R6×m. (3.17)

Finally, the approximation of Λ arc length derivative at interpolation nodes {τi} using
Chebyshev polynomials is expressed as:

Λ′
m ≃ ΛmDm (3.18)

Here, Dm ∈ Rm×m is the Chebyshev differentiation matrix mapped to arc length domain

Dm(i, j) =

{
1
2

Tm,2(τ∗i )
Tm,1(τ∗i )

if i = j,

1
τj−τi

Tm,1(τ∗j )
Tm,1(τ∗i )

if i ̸= j.
(3.19)

In the next section, the configuration space reduction presented here is used to solve the
boundary value problem with a collocation method.

3.4 Collocation Method

In this section, we propose to solve the clamped-free boundary value problem (2.17) (2.18)
using a collocation method. The differential equation we want to solve is the continuous
balance equation (2.8), the explicitly enforced boundary condition is Λ(l) = F+, the
basis functions are the Chebyshev polynomials, and the collocation points are the shifted
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Chebyshev roots {τi} (interpolation nodes). Finally, the unknown parameters are the
collocation values Λm.

3.4.1 System of Nonlinear Algebraic Equations

We formulate a system of nonlinear algebraic equations, Rc : R6×m → Rm×6, which allows
us to solve for the unknown collocation values Λm:

Rc(Λm) =


Λ′(τ1)
Λ′(τ2)

...
Λ′(τm−1)
Λ(τm)

−


Λ̃′(τ1)

Λ̃′(τ2)
...

Λ̃′(τm−1)
F+



=


Mη̇ − adTηMη + adTξ Λ− F̄

∣∣
X=τ1

Mη̇ − adTηMη + adTξ Λ− F̄
∣∣
X=τ2

...
Mη̇ − adTηMη + adTξ Λ− F̄

∣∣
X=τm−1

Λ(τm)

−


Λ̃′(τ1)

Λ̃′(τ2)
...

Λ̃′(τm−1)
F+



(3.20)

Here, Λ̃′(τi) is the counterpart of Λ′(τi), computed using the Chebyshev differentiation
matrix (3.18), ξ(τi) is computed by inverting the constitutive law (3.11), η(τi) and η̇(τi)
are computed by integrating their differential equations (2.17), where ξ̇(X) and ξ̈(X) are
computed using implicit integration (3.2). If F̄ (τi) or F+ are originally expressed in the
inertial frame, then g(τi) is required to rotate them to the mobile frame. We compute g(τi)
by integrating its differential equation (2.17). While integrating g′, η′, and η̇′, values of Λ at
points other than the collocation points τi are required. They are calculated by Chebyshev
interpolation (3.16). In the static case, the same method is used to solve the boundary
value problem (2.14), (2.15), but without computing the velocities and accelerations η and
η̇. Finally, the steps for assembling the residual vector are detailed in Algorithm 1.

The system (3.20) is solved for Λm by using either least square minimization or root
finding techniques. This iterative computation requires an initial guess of Λm. In statics,
the initial guess is set to zero for the first loading step and the solution from the previous
step for subsequent ones. In dynamics, it starts with the static solution (with which the
simulation begins) for the first time step and uses the previous time step solution for the
rest.

3.4.2 Jacobian Matrix

The iterative computation of Λm requires the Jacobian Jc = ∂vec(Rc)
∂vec(Λm)

, where the operator

vec transforms a matrix into a column vector. We denote the differentiation •† = ∂•
∂Λk(τi)

,

where k ∈ {1, 2, ..., 6} represents the six components of Λ, i.e., (Λ1,Λ2,Λ3,Λ4,Λ5,Λ6)
T . In

the following, we will derive all necessary components of R†
c that permits to construct the

Jacobian Jc column by column.
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Algorithm 1 Residual Vector Computation

Knowns: {Λ(τ1),Λ(τ2), . . . ,Λ(τm)}, Dm, H, M, ξo, F̄ , F+, hj, fj, a, b
1: Define Λm = (Λ(τ1),Λ(τ2), ...,Λ(τm)) (3.14)
2: Compute ξ(X) using ξ = H−1Λ + ξo (2.6), where Λ(X) = ΛmΦ(X) (3.16)

3: Compute g(X) by integrating g′ = gξ̂ (2.3) with g(0) = 14×4

4: Compute η(X) by integrating η′ = −adξη + ξ̇ (2.11) with η(0) = 06×1, using ξ̇ = ξ̇j+1 =
b ξ̈j+1 + hj (3.2)

5: Compute η̇(X) by integrating η̇′ = −adξη̇ − adξ̇η + ξ̈ (2.12) with η̇(0) = 06×1, using

ξ̈ = ξ̈j+1 =
1
a
(ξj+1 − fj) (3.2)

6: Compute {Λ′(τk)}, k = 1 . . .m− 1, using Mη̇ − adTηMη + adTξ Λ− F̄
∣∣
X=τk

(2.8)

7: Compute {Λ̃′(τk)}, k = 1 . . .m− 1, using ΛmDm (3.18)

8: Return
(
(Λ′(τ1)− Λ̃′(τ1))

T , . . . , (Λ′(τm−1)− Λ̃′(τm−1))
T , (Λ(τm)− F+)

T
)T

(3.20)

R†
c(Λm) =


Λ′†(τ1)
Λ′†(τ2)

...
Λ′†(τm−1)
Λ†(τm)

−


Λ̃′†(τ1)

Λ̃′†(τ2)
...

Λ̃′†(τm−1)
F †+



=


Mη̇† − adT

η†Mη − adTηMη† + adT
ξ†Λ + adTξ Λ

† − F̄ †
∣∣
X=τ1

Mη̇† − adT
η†Mη − adTηMη† + adT

ξ†Λ + adTξ Λ
† − F̄ †

∣∣
X=τ2

...
Mη̇† − adT

η†Mη − adTηMη† + adT
ξ†Λ + adTξ Λ

† − F̄ †
∣∣
X=τm−1

Λ†(τm)

−


Λ̃′†(τ1)

Λ̃′†(τ2)
...

Λ̃′†(τm−1)
F †+


(3.21)

To compute R†
c, observe first that Λ(τi) has no influence on the arc length X.

Consequently, differentiation commute, i.e., (•′)† = (•†)′. This property applies to g:

(g′)† = (g†)′. (3.22)

Let us define the twist φ = (g−1g†)∨. For instance, it is a counterpart to η = (g−1ġ)∨,
obtained by replacing ġ with g†. Then similar to obtaining (2.11) from (2.10), we can derive
from (3.22) the following differential equation:

φ′ = −adξφ+ ξ†, (3.23)

where differentiation of (3.11) yields

ξ†(X) = H−1Λ†(X), (3.24)

and the derivative of (3.16) is
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Λ†(X) = Λ†
mΦ(X), (3.25)

where Λ†
m is obtained from:

∂Λ(τi)

∂Λk(τj)
=

{
06×1 if τi ̸= τj

δk if τi = τj
, j = 1, 2, . . . ,m. (3.26)

Here, δk is a vector with all entries equal to 0 except for the k-th one. g† = (R†, r†) is
required if F+ or F̄ (τi) are computed from their inertial frame counterpart f+ = (cT+, n

T
+)

T ,
and f̄(τi) = (c̄(τi)

T , n̄(τi)
T )T :

F+ =

(
R(l)T 0
0 R(l)T

)
f+, F̄ (τi) =

(
R(τi)

T 0
0 R(τi)

T

)
f̄(τi) (3.27)

because their differentiation yields:

F †
+ =

(
R†(l)T 0

0 R†(l)T

)
f+, F̄ †(τi) =

(
R†(τi)

T 0
0 R†(τi)

T

)
f̄(τi). (3.28)

We assume that the imposed wrenches f+ and f̄ are constant within each time step, and
thus independent of the stress field and of Λm. g

†(X) is obtained with g† = gφ̂, where φ is
computed by integrating (3.23) using the initial condition φ(0) = 06×1. Now we shall compute
η†(τi) and η̇

†(τi). Recall that differentiation commute (•′)† = (•†)′, then differentiating their
arc length differential equations (2.17) with respect to Λk(τi) yields:

(η†)′ = −adξ†η − adξη
† + ξ̇†

(η̇†)′ = −adξ† η̇ − adξη̇
† − adξ̇†η − adξ̇η

† + ξ̈†
(3.29)

and differentiating (3.2) gives:

ξ̈† =
1

a
ξ†, ξ̇† = bξ̈†. (3.30)

As a result, η† and η̇† can be computed at any X by arc length integration with the
initial conditions η†(0) = 06×1 and η̇†(0) = 06×1. Finally, Λ̃

′†(τi) are nothing but Λ̃′†
m, which

in turn is computed by differentiating (3.18):

Λ̃′†
m = Λ†

mDm (3.31)

The Jacobian matrix for the static mode is obtained similarly, but without considering
the computation of η, η̇, η†, and η̇†.

Now that the collocation method has been completely described, in the next section, we
compare it to two state-of-the-art methods across multiple numerical benchmarks.
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(a) The rod position for different tip
moments.

(b) Evolution of the tip position over tip
moment.

Figure 3.2: A straight rod is bent by applying a tip moment until it forms a circle.

3.5 Numerical Applications

In this section, we assess the proposed method on classical static and dynamic nonlin-
ear benchmarks and compare it against an analytical solution, and the well-validated
shooting method [66] and Lagrangian model [60]. As the implementations of these
methods were not available, we implemented them as detailed in [66, 60]. For repro-
ducibility, both implementations were made open-source on gitlab.inria.fr/rjilani/ch3 and
gitlab.inria.fr/rjilani/lagrangian model. All implemented methods (including ours) were
coded in Python. We used SciPy’s Runge-Kutta 4(5) for arc length integration. For least
square minimization of the residuals, we used SciPy’s hybr function, which implements a
modified version of the hybrid Powell method. Although the Levenberg-Marquardt algorithm
is the preferred choice in soft and continuum robotics, our experiments suggest that the
hybrid method offers the same convergence guarantees while being faster. Numerical
integrations and the root-finding technique were performed with SciPy’s built-in default
tolerances. The simulations were performed on a computer equipped with an Intel Xeon W
2245 CPU running at 3.90 GHz.

3.5.1 Statics

Circular Bending using Tip Moment

The aim of the first test was to assess the proposed method against an analytical solution.
We reproduced the test conducted in [60, 93, 94, 95]: a straight rod is bent using a tip
moment until it forms a circle (Fig. 3.2a). The rod has a length of l = 1 m, a circular
cross-section with a radius of Rb = 0.01 m, and a Young’s modulus of E = 108 Pa. The tip
moment c2+ is incrementally increased from 0 to 5 Nm. Recall that for a vector x ∈ Rn, we
denote its components by x = (x1, x2, . . . , xn)

T . We used polynomial degree m = 1 because
the solution (stress) is linear in this scenario. The results were obtained with 100 loading
steps. Fig. 3.2b shows the evolution of the tip position with respect to c+. As expected, the
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(a) Rod position at the last loading step. (b) Tip position over loading steps.

Figure 3.3: A straight rod is deformed into a helix by imposing tip force and moment.

results from the collocation method agree well with the analytical solution. Following [60],
we computed the position error as follows:

er1 = max
(X,t)∈[0,l]×[0,T ]

100

l
|rcm − ranalytical| (X, t) (3.32)

where rcm and ranalytical are is the rod position of the collocation method and the analytical
solution, respectively. In the static mode, t represents a fictitious time corresponding to
loading steps, while T denotes the total duration. Dividing by l is valid because the rod
experiences deformations on the order of its length. We obtained an error er1 = 0.0539%.
Finally, the total execution time was 2.91 seconds, giving an average of 0.0291 seconds per
loading step.

Helical Bending using Tip Force and Moment

Arc length integration of rotation matrices using the kinematics (2.3) does not guarantee
that they remain within the SO(3) group. The aim of this test was to verify that this drift
is avoided. We reproduced the test conducted in [84, 95, 96, 97, 98, 99]: a straight rod is
deformed into a helix by imposing a tip force and moment (Fig. 3.3a). The rod length is
l = 10 m, and the stiffness matrix is H = diag(102, 102, 102, 104, 104, 104). Furthermore, tip
force n2+ and moment c2+ are incrementally and simultaneously increased from 0 to 50 N
and from 0 to 200π Nm, respectively. We used polynomial degree m = 10 and 300 loading
steps. Fig. 3.3b shows the tip position over the loading steps. The results were compared
to our implementation of the shooting method of Boyer et al. [66], as well as the shooting
method of Surmont and Coache [95], which uses the modified Rodrigues parameters to
represent cross-section orientations. Indeed, in [95], it was shown that this parameterization
effectively prevents SO(3) drift. The results of the collocation method is in good agreement
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Polynomial degree m er2 (%) Avg. time (s) Total time (min)
10 0.116 0.163 0.817
20 0.0920 0.677 3.38
30 0.0261 1.42 7.12
40 0.0116 3.18 15.9
50 0.0116 8.78 43.9

Table 3.1: Position error, total execution time, and average execution time per loading
step for the collocation method, as a function of the polynomial degree m. For comparison,
the shooting method required 0.598 minutes in total, with an average of 0.119 seconds per
loading step.

with the shooting methods. This is due to the high-order integration scheme used (Runge-
Kutta 4(5)), which limits the drift from SO(3) even in complex configurations. In contrast,
standard Euler integration is insufficient to ensure convergence.

Furthermore, we increased the polynomial degreem from 10 to 50 to observe the evolution
of the position error between the proposed method and the shooting method of [66]. The
error was computed as follows:

er2 = max
(X,t)∈[0,l]×[0,T ]

100

l
|rcm − rsm| (X, t) (3.33)

where rsm is the rod position of the shooting method. Table 3.1 reports er2 with respect
to polynomial degree m. We note that the error remains low (er2 ≤ 0.116%) and stabilizes
for m ≥ 40. Moreover, the shooting method total execution time was 0.598 minutes, with
an average of 0.119 seconds per loading step. Table 3.1 presents the total and average per
loading step computational times of the collocation method for different polynomial degrees.
The shooting method is faster than the collocation method because its Jacobian matrix has
smaller dimensions (6×6) compared to that of the collocation method (6m×6m). However,
for a polynomial degree of m = 10, the collocation method yields a sufficiently low error,
and its computational time is comparable to that of the shooting method.

Bending using a Follower Tip Force

The aim of this test was to assess the proposed method under a follower tip force, i.e., a force
expressed in the mobile frame (Fig. 3.4a). We reproduced the test conducted in [60, 93, 94].
The rod has a length of l = 100 m, a circular cross-section with a radius of Rb = 0.57 m,
and a Young’s modulus of E = 4.015× 108 Pa. The follower tip force N2+ is incrementally
increased from 0 to 130 kN. We used 100 loading steps with polynomial degree m ranging
from 10 to 80. Fig. 3.4b shows the tip position as a function of the tip force for the collocation
method with polynomial degree m = 30, and the shooting method. The results are in good
agreement. The shooting method took 8.95 seconds, with an average of 0.0895 seconds per
loading step. The collocation method took 6.85 seconds, with an average of 0.0685 seconds
per loading step. The collocation method is faster in this scenario because no integration
is required to solve the boundary value problem as the tip force (N2+) is expressed in the
mobile frame.
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(a) The rod position for different tip forces. (b) Evolution of the tip position over tip
force.

Figure 3.4: Rod bending with a follower tip force.

Polynomial degree m er2 (%) Avg. time (s) Total time (s)
10 19.2 0.0388 3.88
20 0.578 0.0491 4.91
30 0.0682 0.0685 6.85
40 0.0672 0.0892 8.92
50 0.0672 0.114 11.4
60 0.0672 0.148 14.8
70 0.0672 0.203 20.3
80 0.0672 0.329 32.9

Table 3.2: Position error, total execution time, and average execution time per loading
step for the collocation method, as a function of the polynomial degree m. For comparison,
the shooting method required 8.95 seconds in total, with an average of 0.0895 seconds per
loading step.

Furthermore, we computed the position error er2 between the collocation and shooting
methods with (3.33). Table 3.2 presents er2 and execution time for different polynomial
degrees. We observe that the error remains relatively low starting fromm = 20 and stabilizes
for m ≥ 30. Moreover, as m increases, the growth in execution time is slower compared to
the previous numerical application, as no arc length integration is performed here.

Inspired by [60], to evaluate the convergence of the Chebyshev approximation, we define
an error metric eΛ(m,m + 10) that compares the stress fields obtained with polynomial
degrees spaced by 10. This error measures the squared difference between solutions computed
with degrees m and m+10, integrated along the rod and averaged over all loading steps. It
is defined as:
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Error ↓ \ Component → K3 Γ1 Γ2

eΛ(10, 20) 2.39× 1012 7.73× 109 5.53× 109

eΛ(20, 30) 5.06× 108 1.36× 106 2.33× 106

eΛ(30, 40) 14400 39.3 75.3
eΛ(40, 50) 0.327 0.001 0.00189
eΛ(50, 60) 5.10× 10−6 1.67× 10−8 2.96× 10−8

eΛ(60, 70) 3.96× 10−9 3.66× 10−13 2.06× 10−11

eΛ(70, 80) 2.09× 10−9 1.86× 10−13 1.08× 10−11

Table 3.3: Error eΛ(m,m + 10) between Chebyshev approximations of the stress field
computed using polynomial degrees m and m + 10, over 100 loading steps. The error is
averaged over time steps and integrated along the rod length. Values are reported for three
representative stress components (K3, Γ1, and Γ2) in a two-dimensional setting. The results
show a rapid decay of the error, confirming the convergence of the collocation method, with
negligible improvement beyond m = 60.

eΛ(m,m+ 10) =
1

nsteps

nsteps∑
1

∫ l

0

(
Λ

(m)
j (X, t)− Λ

(m+10)
j (X, t)

)2
dX, t ∈ [0, T ] (3.34)

Here, nsteps = 100 is the total number of loading steps, Λj is the j-th component of the
stress Λ, and Λ(m) indicates that the stress is computed using a polynomial degree m. Table
3.3 presents eΛ for polynomial degrees ranging from 10 to 80. Only three stress components
(K3, Γ1, and Γ2) are shown, as this is a two-dimensional experiment. The error decreases as
m increases, and convergence is achieved for m ≥ 60.

3.5.2 Dynamics

In this subsection, we use the Lagrangian model to compare with the collocation method,
as comparison with the shooting method may not be feasible. Each time the Lagrangian
model was used, it was parameterized to maximize accuracy. Specifically, for all numerical
applications, we employed 8 shape function modes to capture the required deformations.
Furthermore, we will report the maximum allowed arc length integration step for the
Runge-Kutta 4(5) method, denoted as maxdX . Indeed, the Runge-Kutta 4(5) may employ
excessively large integration steps, which can delay the convergence of the numerical
methods.

Cantilever Beam

The aim of this test was to compare the proposed method with the shooting method and the
Lagrangian model. We begin with a scenario involving a stiff rod and small deformations. We
reproduced the test conducted in [100, 101, 102]. The rod is initially straight at t = 0, then,
for t > 0, a constant tip force n3+ = −10N is applied for 0.5 seconds. The rod has a length
of l = 1 m, a square cross-section with side Sb = 0.01 m, a Young’s modulus of E = 210×109
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(a) (b)

Figure 3.5: A tip force is applied to a straight rod for 0.5 seconds. The figures show tip
position over time using ∆t = 0.002 s. The collocation and shooting methods are in good
agreement. However, due to the large time step, noticeable differences are observed when
both methods are compared to the Lagrangian model.

Pa, a density of ρ = 7800 kg/m3, and a Poisson’s ratio of ν = 0.2. First, we chose a time
step ∆t = 0.002 s, along with a polynomial degree m = 30 and maximum allowed arc length
integration step maxdX = l

30
m. Fig. 3.5 shows the tip position over time. The results

show good agreement between the shooting and collocation methods. However, compared
to the Lagrangian model, noticeable differences are observed. To investigate the cause of
these differences, we decreased the time step to ∆t = 0.0005 s. The shooting method failed
to converge, even after reducing maxdX and trying a different root-finding solver, suggesting
that its critical time step is in the range 0.5ms ≲ ∆tc < 2ms. The collocation method
initially failed as well but successfully converged when we increased the polynomial degree
m to 70 and set maxdX = l

m
m.

Fig. 3.6 shows the tip position over time. The Lagrangian and collocation methods
are in good agreement. This test successfully confirmed that the difference was indeed
caused by the large time step initially used. For the first test (∆t = 0.002 ms), the shooting
method took 187 seconds, with an average of 0.749 seconds per time step, and the collocation
method took 319 seconds, with an average of 1.27 seconds per time step. For the second test
(∆t = 0.0005 ms), the collocation method took 4.42 hours to complete, with an average of
15.9 seconds per time step. The increase in average time is due to the increase in polynomial
degree from m = 30 to m = 70, which in turn increases the Jacobian size and consequently
the number of integrations. In contrast, the simulation with the Lagrangian model took 1.91
hours. This discrepancy in computation time is primarily explained by the fact that the
Lagrangian model requires fewer shape function modes (here, 8) and thus fewer degrees of
freedom to achieve good accuracy.
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(a) (b)

Figure 3.6: A tip force is applied to a straight rod for 0.5 seconds. The figures show tip
position over time using ∆t = 0.0005 s.

Hypothesis

The last numerical application unveiled a new hypothesis suggesting that increasing the
polynomial degree m reduces the critical time step of the collocation method. To explore

this further, recall that the critical time step is governed by the following law ∆tc ∝ χl2
√

ρA
EI

[66]. The hypothesis suggests that increasing the polynomial degree m decreases χ, enabling
the use of smaller time steps. This hypothesis will be tested in the following two numerical

applications by increasing l2
√

ρA
EI

, reducing ∆t, and verifying that there exists a value of

m beyond which the proposed method converges. To account for different rod materials,
the next two numerical applications use varying mechanical parameters. This may seem

inconsistent when comparing results, however, the value of l2
√

ρA
EI

provides an objective

measure of simulation difficulty. In the last numerical application, we had: l2
√

ρA
EI

= 0.0667 s.

Rod Bent and Released

Compared to the first test, this numerical application involves a softer rod and a greater
magnitude of deformation. Inspired by [66], a straight vertical rod is initially bent towards
the left with a tip force of n3+ = −5N and then released for 0.3 seconds (Fig. 3.7a). The rod
has a length of l = 0.4m, a square cross-section with a side length of Sb = 0.002m, a Young’s
modulus of E = 207× 108 Pa, a Poisson’s ratio of ν = 0.2, and a density of ρ = 8000 kg/m3.

This results in l2
√

ρA
EI

= 0.172 s, representing an increase of more than two times compared

to the previous numerical application. To match the accuracy of the Lagrangian model,
we set ∆t = 2.5 × 10−4 s. The shooting method failed to converge, whereas the collocation
method required a minimum of m = 100 and maxdX = l

m
m for successful convergence.
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(a) Rod position every 0.015 seconds. Cyan
and purple lines show tip evolution over time,
for the first half, and second half of the
simulation, respectively.

(b) Tip position over time.

Figure 3.7: A straight rod is initially bent with a tip force and is then released for 0.3
seconds.

Fig. 3.7a displays the rod position every 0.015 seconds, and Fig. 3.7b shows the tip
position over time. We observe good agreement between the collocation and Lagrangian
methods. We computed the position error as:

er3 = max
(X,t)∈[0,l]×[0,T ]

100

l
|rcm − rLagrangian| (X, t) (3.35)

Here, rLagrangian is the rod position of the Lagrangian model. We obtained er3 = 0.857%.
Thus, our hypothesis is successfully verified for the second time. The simulation took 22
minutes to complete with the Lagrangian model, and 3.96 hours with an average of 11.9
seconds per time step for the collocation method.

Rubber Rod Released in Gravity

The objective was to test our method on a rod made of a very soft material in a scenario with
non-negligible shear deformations. Inspired by the swinging pendulum test [4, 64, 101], a
clamped rubber rod is released under gravity for 0.85 seconds (Fig. 3.8). The rod has a length
of l = 0.3m, a square cross-section with a side length of Sb = 0.005m, a Young’s modulus of
E = 5×106 Pa, a Poisson’s ratio of ν = 0.5, and a density of ρ = 1100 kg/m3. This results in

l2
√

ρA
EI

= 0.924 s, representing an increase of more than five times compared to the previous

numerical application. As before, we chose ∆t = 2.5 × 10−4 s to match the accuracy of the
Lagrangian model. The shooting method failed to converge, while the collocation method
required approximately m = 200 for successful convergence, with maxdX = l

m
m.

Fig. 3.9 shows the tip position over time, and Fig. 3.8 shows the rod position every 0.025
seconds. The collocation and Lagrangian methods are in good agreement. Furthermore, we
obtained an error er3 = 0.574%. Thus, our proposed hypothesis is verified for the third time.
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(a) Rod position every 0.025 seconds for the
first half of the simulation.

(b) Rod position every 0.025 seconds for the
second half of the simulation.

Figure 3.8: A rubber rod is released in gravity for 0.85 seconds.

Figure 3.9: A rubber rod is released in gravity for 0.85 seconds. The figure shows tip
position over time.

The simulation took 5.1 hours to complete with the Lagrangian model, and 14.7 hours with
an average of 15.6 seconds per time step for the collocation method.

3.6 Conclusion

It is well known that solving the dynamic boundary value problem of the Cosserat rod
model is numerically challenging. In particular, using small time steps was infeasible. This
phenomenon was initially attributed to machine accuracy issues [61]. However, recent work
[66] established a connection between optimal control theory and the dynamic Cosserat
model, and showed that the optimal control problem underlying the dynamic boundary value
problem of Cosserat rods is inherently singular. To regularize it, implicit time integration
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must be used. However, the singularity manifests again when the rod is soft or when the
time step falls below a critical value.

The objective of this chapter was to address the singularity problem. As most results
reporting singularity came from the shooting method [61, 66], we proposed an orthogonal
collocation method based on Chebyshev polynomials. A basis known to be well-conditioned
[80]. The collocation solves for the strong form of the dynamic balance equation by
computing the stress. Moreover, we provided its Jacobian matrix analytically.

We tested the proposed method in six nonlinear static and dynamic applications from
the literature. In the static mode, when compared to an analytical solution, we obtained a
position error of 0.05%. When compared to the shooting method, we obtained a position
error below 0.5%. Furthermore, computation times between the shooting and collocation
methods were comparable, with the collocation method being faster when the test required
solving the problem only in the mobile frame, as it could avoid arc length integration. In
the dynamic mode, the initial goal was to explore whether the collocation method could
surpass what could be achieved using the shooting method. In tests where the rod was rigid,
experienced small deformations, and had a large time step, both the shooting and collocation
methods converged without much difficulty, and the results were in good agreement. As
expected, however, when the rod was soft, experienced large deformations, and a low time
step was used, the shooting method did not converge. Indeed, small changes in its initial
condition at the proximal end resulted in large errors at the distal end, making its Jacobian
matrix ill-conditioned. On the other hand, the collocation method also did not converge
when a low polynomial degree was used. Then, we discovered that when the polynomial
degree was increased above a certain value, the proposed method always converged. To
validate the results, we compared them against the Lagrangian model and obtained good
agreement for all three dynamic tests, and a position error lower than 0.9%. This discovery
would not have been possible without the provided Jacobian matrix. It allowed arc length
integral computations to be grouped within a single function, improving time efficiency and
enabling the use of high-degree polynomials (up to 200) with an execution time of 15 seconds
per time step. Furthermore, the experiments showed that the Lagrangian model achieves
good accuracy while being faster than the proposed method, as it requires fewer degrees of
freedom.

We conclude that the proposed method successfully addressed the singularity in the
boundary value problem of the dynamic Cosserat rod model. Consequently, the boundary
value problem solving could be applied to a broader range of applications, including soft
and medical robotics. On the other hand, our original goal was to develop a numerically
accurate, robust, and fast solution for Cosserat rods. While we achieved good numerical
accuracy and robustness, speed remains a challenge, and like many existing methods the
proposed one, in its current state, is not suitable for fast (complex) simulations.

Future work includes addressing the question of why increasing the polynomial degree
transforms the ill-conditioned problem into a well-conditioned one. Furthermore, although
computing the Jacobian matrix has improved time efficiency, it still accounts for two-thirds
of the total computation time. More than 90% of the Jacobian computation time is spent on
arc length integration. Indeed, for a polynomial degreem−1, there arem×3×6 independent
integrations of φ′, (η†)′, and (η̇†)′, which could benefit from CPU or GPU parallelization.
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The study reported in this chapter did not take contact into account. In the next chapter,
we will use the proposed method to solve the dynamics of Cosserat rods undergoing frictional
contact, with the goal of advancing towards a simulation tailored for catheter navigation.
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Chapter 4

Dynamic Cosserat Rods in Contact
with Implicit Surfaces

In the last chapter, we proposed a collocation method for solving the clamped-free boundary
value problem of dynamic Cosserat rods. We also demonstrated through numerical
experiments that the proposed method effectively addresses the singularity issue. As a
result of this improved stability, it can now be applied to challenging simulations. In this
chapter, we use it to simulate dynamic Cosserat rods undergoing frictional contact with
tubular surfaces, aiming to develop a method specifically tailored for the simulation of
catheter navigation. In [103], we proposed a solution using the shooting method, where the
singularity problem was overcome with damping. In this chapter, the proposed collocation
method eliminates the need for damping.

Contributions

In catheter navigation, medical tools are manually manipulated by the practitioner at their
proximal end through displacement and rotation. Consequently, the clamped-free boundary
value problem, which models (partially) fixed rods, is not directly suitable for our application.
Therefore, we first extend the collocation method proposed in the previous chapter to solve
free-free boundary value problems, where the rod is free at both ends, and forces and moments
applied at the proximal end can mimic the displacement and rotation of the medical tool
performed by the practitioner. Moreover, incorporating contact forces into the Cosserat rod
boundary value problem is not straightforward. This complexity arises because external
forces are included in the boundary value problem as distributed forces, whereas penalty
contact forces are concentrated (line) forces. For instance, Wiese et al. [76] did not address
this issue when solving the static boundary value problem for Cosserat rods in contact. In
this work, we propose an approach to effectively convert between these two types of forces.
Furthermore, a key challenge is how to represent the tubular surfaces that model human
vasculature. Indeed, the choice of representation affects contact detection, which is known
to be computationally expensive. To address this, we model our contact surfaces using
implicit functions, which enable efficient evaluations.

Our contributions can be summarized as follows:

49



• Developing a collocation method that solves the dynamic free-free boundary value
problem for Cosserat rods, providing its Jacobian matrix and validating it against an
analytical solution.

• Modeling contact surfaces using implicit functions, making contact detection execution
time negligible.

• Testing our method in a real catheter navigation setup that includes a model of a
carotid artery and actual catheter material properties.

• Proposing a method tailored for the simulation of catheter navigation in the dynamic
regime.

• Making the implementation open-source at gitlab.inria.fr/rjilani/ch4.

This chapter is organized as follows. Section 4.1 describes the time discretization as
formulated in [66]. Section 4.2 extends the collocation method to free-free boundary value
problems. Section 4.3 details the implicit surface modeling process. Section 4.4 discusses
contact handling, including detection and response. Sections 4.5 and 4.6 describe the
inclusion of contact forces in the boundary value problem. Section 4.7 presents three
numerical applications. Finally, Section 4.8 provides the concluding remarks.

4.1 Time Discretization

In this section, we describe the time discretization required to solve the free-free boundary
value problem (2.17), (2.19). We adopt the discretization approach introduced by Boyer et
al. [66] and used for solving Cosserat rods boundary value problems via the shooting method.
First, the time discretization of space-rate twists time derivatives ξ̇ and ξ̈, originally described
for clamped-free problems and presented in Section 3.1, also applies here. Therefore, we omit
their derivation in this section and refer to (3.2) and (3.3). Furthermore, in the free-free case,
additional unknowns arise, requiring specific treatment through time discretization. Indeed,
the free-free boundary value problem (2.17), (2.19) is underdetermined, as it provides only
2× 6 boundary conditions, namely the stresses Λ(0) = −F− and Λ(l) = F+ (2.19), to solve
4×6 differential equations of the cross-section pose g′, velocity η′, acceleration η̇′, and stress
Λ′ (2.17). In particular, the initial conditions g(0), η(0), and η̇(0), which are necessary for
integrating g′, η′, and η̇′, are unknown. The goal of this section is to compute these initial
conditions using time discretization. Before proceeding, we first define some variables to
facilitate the use of g(0), η(0), and η̇(0).

g0 = (R0, r0) = (R(0), r(0)) = g(0)

η0 = (ΩT
0 , V

T
0 )T = (Ω(0)T , V (0)T )T = η(0)

η̇0 = (Ω̇T
0 , V̇

T
0 )T = (Ω̇(0)T , V̇ (0)T )T = η̇(0)

(4.1)

Since linear velocity V0 and linear acceleration V̇0 can be expressed in terms of components
in the inertial frame, consequently, η0 and η̇0 can be written as:

η0 =

(
Ω0

V0

)
=

(
Ω0

RT
0 ṙ0

)
(4.2)
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η̇0 =

(
Ω̇0

V̇0

)
=

(
Ω̇0

RT
0 r̈0 + (RT

0 ṙ0)× Ω0

)
(4.3)

The inertial frame linear velocity ṙ0 and linear acceleration r̈0 required to compute V0 and
V̇0, can be obtained from the position r0 via implicit integration. This process is analogous
to computing ξ̇ and ξ̈ from ξ (as described in Section 3.1). Let j and j + 1 represent two
consecutive time steps, and suppose we want to move from step j to step j + 1, meaning
that all variables at step j are known. Given r0,j+1, the time derivatives ṙ0,j+1 and r̈0,j+1 can
be determined using an implicit integration:

r0,j+1 = a r̈0,j+1 + pj, ṙ0,j+1 = b r̈0,j+1 + vj (4.4)

Here, pj and vj include known variables at step j computed using the Newmark scheme
and correspond to fj and hj in (3.3), respectively, with ξ replaced by r. Recall that the
coefficients a and b depend on the time step ∆t and are also computed using (3.3). Next,
the rotation matrix R0 required for V0 and V̇0 is obtained from a rotation vector Θ0 ∈ R3 as
follows:

R0,j+1 = R0,j exp(Θ̂0,j+1) (4.5)

where exp denotes the exponential map of SO(3). Consequently, at time step j + 1, g0
is given by:

g0,j+1 =

(
R0,j+1 r0,j+1

01×3 1

)
=

(
R0,j exp(Θ̂0,j+1) r0,j+1

01×3 1

)
(4.6)

Similarly to ṙ0 and r̈0, the angular velocity Ω0 and acceleration Ω̇0, required to calculate
η0 and η̇0, are computed from Θ0 using implicit time integration:

Θ0,j+1 = a Ω̇0,j+1 + kj, Ω0,j+1 = b Ω̇0,j+1 + lj (4.7)

where kj and lj include known variable at step j and are computed using the SO(3)
extension of the Newmark scheme:

kj = ∆tΩ0,j +∆t2
(
1

2
− β

)
Ω̇0,j

lj = Ω0,j +∆t(1− γ)Ω̇0,j

(4.8)

β and γ are set to 1
4
and 1

2
, respectively, to avoid damping (Section 3.1).

In this section, we derived the computation of g0, η0, and η̇0, enabling the integration
of their respective differential equations. However, their calculation depends on Θ0 and r0,
which remain unknown. In the next section, we will compute these values using a collocation
method.
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4.2 Collocation Method

In the last chapter, we proposed a collocation method to solve the clamped-free boundary
value problem (2.17) (2.18). In this section we extend this method for free-free boundary
value problems (2.17) (2.19) which are tailored for catheter navigation. Firstly, the same
configuration space reduction detailed in Section 3.3 is used. Secondly, the collocation
method presented in Section 3.4 remains largely similar in the free-free problem, with minor
differences detailed in this section. As seen in the last section, the underdetermination of
the free-free boundary value problem is addressed by computing g0, η0, and η̇0 with implicit
time discretization that uses the rotation vector Θ0 and the position r0. As a result, new
unknowns arise which are Θ0 and r0. However, in the free-free problem, one of the unknowns
from the clamped-free problem, Λ(τ1), either becomes directly known or can be computed
from Θ0 and r0. Recall that τ1 = 0 corresponds to the collocation point at the proximal end.
Specifically, the proximal boundary condition Λ(0) = −F− allows us to determine Λ(τ1) as
Λ(τ1) = Λ(0). Consequently, if F− is initially expressed in the mobile frame, then:

Λ(τ1) = −F− (4.9)

Otherwise, if F− is originally expressed in the inertial frame with f−, then:

Λ(τ1) = −
(
RT

0 0
0 RT

0

)
f− (4.10)

where g0 = (R0, r0) is computed from Θ0 and r0 (4.6). Let us define

ν0 = (ΘT
0 , r

T
0 )

T (4.11)

In Section (3.4), the clamped-free problem was solved by calculating Λ(X) through
interative computation of stress collocation values Λm (3.14). Similarly, the objective of
this section is to solve the free-free problem by computing Λ(X). The difference here is that
the unknowns are no longer Λm but rather ν0 and Λ(τj) with j = {2 . . .m}, where m is the
total number of collocation points. Let us define a matrix that contains all unknowns as:

Σ = (ν0,Λ(τ2),Λ(τ3), . . . ,Λ(τm)) (4.12)

One can compute Σ ∈ R6×m iteratively using the system of nonlinear algebraic equations
of the collocation method Rc (3.20) with its input changed from Λm to Σ. Now, one needs

to compute the Jacobian matrix of the free-free problem, defined as Jf =
∂vec(Rc)
∂vec(Σ)

, where the
vec operator transform a matrix into a column vector by orderning its columns sequentially.
Since the only difference between Λm and Σ is the replacement of Λ(τ1) by ν0, then Jf
and the Jacobian matrix of clamped-free problem Jc differ only in their first six columns.
To compute these columns, let •‡ = ∂•

∂ν0,k
, with k being the index of the components of

ν0 = (ν0,1, ν0,2, ν0,3, ν0,4, ν0,5, ν0,6)
T . By substituting the differentiation with respect to Λk(τi)

(•†) with •‡, the equations presented in Section 3.4 for calculating R†
c also apply to R‡

c, with
two exceptions. The first, is the calculation of Λ‡(τi). If F− is directly expressed in the
mobile frame then
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Λ‡(τi) = 06×1, i ∈ {1, 2, . . . ,m} (4.13)

Otherwise, if F− is expressed from its inertial frame counterpart f−, then

Λ(τ1)
‡ = −

(
R

‡T
0 0

0 R
‡T
0

)
f− (4.14)

and

Λ(τi)
‡ = 06×1, i ∈ {2, 3, . . . ,m} (4.15)

We assume that the imposed tip wrenches f− and F− are constant within each time step,
and thus independent of ν0. We define the twist κ = (g−1g‡)∨, which is the counterpart of
φ = (g−1g†)∨, obtained by replacing g† with g‡. R‡

0 is computed from g‡0 = (R‡
0, r

‡
0), where

g‡0 = g0κ̂(0). Similarly to (3.23), using the identity (g′)‡ = (g‡)′, we obtain the differential
equation of κ with respect to arc length:

κ′ = −adξκ + ξ‡ (4.16)

The initial conditions κ(0), η‡0, and η̇
‡
0 needed for integrating κ′, (η‡)′, and (η̇‡)′ (4.16)

(3.29) are computed using the k-th column of P , ∂η0
∂ν0

, and ∂η̇0
∂ν0

, respectively, as given by [66]:

P =

(
T (Θ0) 03×3

03×3 RT
0

)
(4.17)

∂η0
∂ν0

=

(
b
a
13×3 03×3

V̂0T (Θ0)
b
a
RT

0

)
(4.18)

∂η̇0
∂ν0

=

(
1
a
13×3 03×3

((V̇0 + Ω0 × V0)
∧ − Ω̂0V̂0)T (Θ0) +

b
a
V̂0 ( 1

a
13×3 − b

a
Ω̂0)R

T
0

)
(4.19)

Here, T (Θ) is the derivative of the exponential map of SO(3).
Now, all the necessary components for solving free-free problems are in place. In the

following sections, we will see how the tubular surfaces are modeled, how contact is handled
and incorporate it into the Cosserat rod boundary value problem.

4.3 Implicit Surface Modeling

The objective of this section is to present a method for surface modeling that enables fast
yet accurate contact detection. Contact detection involves determining, for a given point
in space, whether it is inside or outside the surface, computing its normal direction and its
signed distance with respect to the nearest point on the surface. Contact detection is known
to be computationally expensive in physics based simulations.

It was showed in Kerrien et al. [104] that a blood vessel surface can be accurately
represented using implicit functions constructed from a point-set skeleton. Inspired by their
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work, we propose using implicit functions to model our surfaces. The implicit function should
satisfy several constraints:

• To have different signs for points inside and outside the surface.

• To be continuous to prevent abrupt changes in distance calculation.

• To be differentiable to allow for normal direction calculation anywhere in space.

• To be computationally efficient to evaluate.

These constraints can be met using the blobby model [104, 105, 106], which represents
the surface as the zero-level set of a function ζ : R3 → R, defined as a weighted sum of radial
scalar fields centered at specific points σj ∈ R3. These points correspond to a point set
representing the desired surface, for example, they may form the point-set skeleton. Hence,
ζ is expressed as:

ζ(r) = S −
mb∑
j=1

αjΨ
∗(ϑj d̃(r, σj)) (4.20)

where mb is the number of points, and S is the iso-surface threshold. The function
d̃ : R3×R3 → R defines the distance between r and a skeleton point σj, thereby shaping the
scalar field. The function Ψ∗ is a radial profile that must decay rapidly and monotonically
to zero as d̃ increases. This ensures locality: distant points σj have minimal influence on one
another. Additionally, αj and ϑj serve as scaling parameters. Furthermore, ζ is negative
when r is inside the surface and positive when it is outside. Following [104], we define d̃ as
the Euclidean distance. Consequently, a single scalar field represents an implicit sphere, or
”blob”. Hence, ζ becomes:

ζ(r) = S −
mb∑
j=1

αjΨ
∗
(
|r − σj|
ϱj

)
(4.21)

where ϑ = 1/ϱ, with ϱ representing the width of the blob, related to its radius. We use
the Cauchy profile:

Ψ∗(x) =
1(

x2

5
+ 1
)2 (4.22)

Normalized such that d2Ψ∗(1)
dx2

= 0. Notice that Ψ∗(0) = 1, and limx→∞Ψ∗(x) = 0 which
ensures locality (see Fig. 4.1). Differentiating ζ with respect to r yields

∇ζ(r) = −
mb∑
j=1

αj
ϱj
ψ∗
(
|r − σj|
ϱj

)
r − σj
|r − σj|

(4.23)

with

ψ∗(x) =
dΨ∗(x)

dx
= − 100x

(x2 + 5)3
(4.24)
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Figure 4.1: Left: the Cauchy profile and its derivative. Right: weighted Cauchy profile

ϱΨ
(
x
ϱ

)
shown with three different widths ϱ.

The current formulation of ∇ζ introduces a singularity when r = σj. To circumvent this,
one can square Ψ∗ input, introducing Ψ(x2) = Ψ∗(x):

ζ(r) = S −
mb∑
j=1

αjΨ

(
|r − σj|2

ϱ2j

)
(4.25)

Denoting ψ = dΨ
dx
, this revised formulation results in

∇ζ(r) = −2

mb∑
j=1

αj
ϱ2j
ψ

(
|r − σj|2

ϱ2j

)
(r − σj) (4.26)

which effectively eliminates the singularity and improves computational efficiency by
avoiding square root calculations. Furthermore, the radial profile Ψ∗ is adjusted to take into
account the squaring of its input

Ψ(x) =
1(

x
5
+ 1
)2 (4.27)

Consequently, its derivative becomes

ψ(x) = − 50

(x+ 5)3
. (4.28)

As in [104], we define α = ϱ so that ζ(r) better relates to the distance from the
surface. Additionally, this parameterization avoids redundancy, improving the convergence
of optimization techniques used for surface modeling [107]. The final version of ζ and its
gradient ∇ζ are expressed as follows

ζ(r) = S −
mb∑
j=1

ϱjΨ

(
|r − σj|2

ϱ2j

)
(4.29)
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Figure 4.2: Left: visualization of a surface (black) defined by the iso-level ζ = 0, generated
from two blobs centered at σ1 = (0, 0, 0)T and σ2 = (0, 5.5, 0)T , with respective radii ϱ1 = 1
and ϱ2 = 0.7, and using a threshold S = 0.08. The field normals w are shown at discretized
locations. Right: 3D view of the scalar field ζ(r), with a planar cross-section at z = 0
visualized in false colors. The field is normalized, with red indicating the most negative
values. The surface (in grey) again corresponds to the iso-level ζ = 0, enclosing the region
influenced by the two blobs.

∇ζ(r) = −
mb∑
j=1

2ψ

(
|r − σj|2

ϱ2j

)
r − σj
ϱj

(4.30)

Fig. 4.1 shows the Cauchy profile with its derivative. Fig. 4.2 shows a surface created
using two blobs centered at σ1 = (0, 0, 0)T and σ2 = (0, 5.5, 0)T , with radii ϱ1 = 1 and
ϱ2 = 0.7, respectively, and a threshold S = 0.08.

We have presented the implicit modeling approach used to represent our tubular surfaces.
This theoretical foundation enables its application to contact handling, which will be
discussed in the next section.

4.4 Contact Handling

In this section, we describe contact handling in its continuous form, which includes both
contact detection and contact response. Contact response refers to the computation of
contact forces necessary to reduce interpenetration. In this work, we make the following
assumptions. First, contact handling is performed between the surface and the cross-
sectional centerline of the rod, r. This assumption is valid for slender micro-tools used
in neuroradiology procedures due to their small radii. Furthermore, the surface is considered
rigid and fixed. Finally, we do not account for the effects of blood flow.

4.4.1 Contact Detection

Using the implicit function ζ (4.29), one can compute the normal direction w(r) ∈ R3 at any
point r ∈ R3 using the gradient.
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w(r) = − ∇ζ(r)
|∇ζ(r)|

(4.31)

The negative sign makes the normal points toward to surface when r is outside of it (see
Fig. 4.2). To estimate the signed distance from a point r to the surface ζ = 0, we proceed as
follows: starting from the point r, we move along the direction of the surface normal until we
reach a location where the implicit function evaluates to zero. Although the exact normal
direction may change along this path, we approximate it by keeping the initial normal w(r)
fixed. The goal is to find how far we must move along this direction for the function value to
vanish. The length of that step gives an estimate of the distance to the surface. This leads
to the following expression for the signed distance:

ϕ(r) = sign(ζ) |r + ow − r| = sign(ζ)|o| = o (4.32)

Here, o ∈ R, and the function sign(ζ) returns 1 if ζ is positive and -1 if it is negative. In
this work, we suppose that r is in contact if it is outside the surface (ζ > 0). To compute the
offset o, we define a residual function Rϕ : R → R that evaluates the field at the displaced
point. The objective is to find the value of o such that this residual becomes zero, meaning
that the displaced point lies exactly on the surface.

Rϕ(o) = ζ(r + ow) (4.33)

Since w is treated as constant during this process, the result is an approximation that
remains valid when r is sufficiently close to the surface. Finally, the derivative

dRϕ

do
needed

for the iterative computation of o is calculated in closed form as follows:

dRϕ

do
=
dζ(r + ow)

do
= −

mb∑
j=1

2

ϱj
ψ

(
|r + ow − σj|2

ϱ2j

)
[(r + ow − σj) · w] (4.34)

Now that the essential elements of contact detection have been discussed, the next
subsection will focus on their application in computing the contact force response.

4.4.2 Contact Response

We compute the normal contact force n⊥(X) ∈ R3 using a penalty method as follows

n⊥ = λmax(0, ϕ)w (4.35)

where λ ∈ R is a chosen penalty stiffness. No moment is created from n⊥ since the
contact force is applied to the centerline r. Furthermore, we adopt the Coulomb friction
model, where the tangential frictional force n∥(X) ∈ R3 is proportional to the normal force

|n∥| ≤ µ |n⊥| (4.36)

with µ ∈ R being the friction coefficient. The direction and magnitude of the friction
force depend on whether the friction is sliding or sticking, based on the relative tangential
velocity ṙ∥. For sliding friction, the force magnitude reaches its maximum (|n∥| = µ |n⊥|) and
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opposes ṙ∥. In the case of sticking friction, the force can take any value within the friction
cone (4.36) [108]. For simplicity, in this work, we ignore the sticking mode and only account
for the sliding one.

n∥ =

{
−µ |n⊥|

ṙ∥
|ṙ∥|

if |ṙ∥| ̸= 0,

03×1 otherwise.
(4.37)

Here, ṙ∥ is simply computed as

ṙ∥ = ṙ − (ṙ · w)w (4.38)

Summing the normal and tangential contact forces yields the total contact force, nc:

nc = n⊥ + n∥ (4.39)

Finally, expressing the contact response as a wrench in the inertial frame with no moment

fc =

(
03×1

nc

)
(4.40)

With a slight abuse of terminology, we will refer to fc as the contact force rather than the
contact wrench, since the contact moment is zero. In this section, we presented a contact
handling approach that enables the computation of the frictional contact force fc. In the next
section, we detail how fc can be incorporated into the boundary value problem of Cosserat
rods.

4.5 Including Contact Forces into the Boundary Value

Problem

The objective here is to incorporate the contact force fc(X) into the free-free boundary
value problem (2.17) and (2.19). First, note that the contact force fc is a concentrated force
(measured in Newtons) acting at a specific point on the rod. Consequently, if it acts on
the rod proximal (X = 0) or distal (X = l) ends, it is directly assigned to the boundary
conditions (2.19) after a frame transformation.

Λ(0) = −F− = −
(
R(0)T 0

0 R(0)T

)
f− = −

(
R(0)T 0

0 R(0)T

)
(fc(0) + fe(0))

Λ(l) = F+ =

(
R(l)T 0
0 R(l)T

)
f+ =

(
R(l)T 0
0 R(l)T

)
(fc(l) + fe(l))

(4.41)

Here, fe ∈ R6 represents other external concentrated wrenches. In the context of
simulating catheter navigation, fe(0) = (ce(0)

T , ne(0)
T )T or its mobile frame counterpart

Fe(0) = (Ce(0)
T , Ne(0)

T )T is used to displace and rotate the rod proximal end, mimicking
practitioner hand manipulation. Furthermore, if the contact force fc acts at points other than
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the boundaries, it is incorporated into the continuous balance equation (2.8) as a distributed
contact force f̄c (measured in Newtons per meter) after a frame transformation.

F̄ =

(
RT 0
0 RT

)
f̄ =

(
RT 0
0 RT

)
(f̄c + f̄e) (4.42)

Here, f̄e represents other distributed wrenches, such as the drag induced by blood flow
along the catheter surface and the effect of gravity acting on the device.

Having established how contact forces are incorporated into the boundary value problem,
the next section focuses on providing a time and space discretization of such contacts, along
with an approach for computing f̄c.

4.6 Discretization of Contact Forces

4.6.1 Concentrated to Distributed Force Conversion

Now, we consider the computation of the distributed contact force f̄c from the concentrated
contact force fc. According to Antman [34], distributed forces are defined as forces per unit
reference (unstressed) length. Now, let us consider a finite segment of the rod, [s0, s1] ⊂ (0, l).
If the distributed contact force along this segment, f̄c : [s0, s1] → R6, is assumed to be
constant, then it can be computed by averaging the concentrated contact forces fc acting on
the segment over its reference length:

f̄c(s) =
1

s1 − s0

ms∑
j=1

fc(sj) (4.43)

where fc(sj), {sj} ⊂ [s0, s1] represent ms concentrated contact forces acting on the rod
segment [s0, s1].

4.6.2 Space Discretization

In this work we discretize the rod into equidistant segments and assume that each segment
has a single concentrated force applied at its center. Additionally, both the base and the
tip of the rod experience one concentrated force each. Translating this into equations, we
discretize the rod into mc−1 equidistant segments using mc nodes, denoted as Xj, as follows:

Xj =
j − 1

mc − 1
l, j = {1, . . . ,mc} (4.44)

Here, X1 = τ1 = 0 and Xmc = τm = l. First, the contact forces at the first and last
nodes, fc(X1) and fc(Xmc), are used to compute the boundary conditions in (4.41). Second,
f̄c is computed from fc as follows:
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f̄c(X) =


0, X = 0 or X = l,

1
∆X

fc
(
Xj +

∆X
2

)
,

X ∈ (Xj, Xj+1), if j = 1,

X ∈ [Xj, Xj+1), if j = 2, . . . ,mc − 1.

(4.45)

where ∆X is the reference length of the segments. Furthermore, f̄c(X1) and f̄c(Xmc)
are set to zero, as the concentrated forces take over at the boundaries. Finally, to solve the
boundary value problem using the collocation method with the system (3.20), one needs the
concentrated forces at the collocation points, f̄c(τi). These values are directly retrieved from
(4.45).

With the spatial discretization of contact forces defined, the next subsection addresses
their time discretization.

4.6.3 Time Discretization

Recall that time discretization is necessary to solve the boundary value problem (Section
3.1), consequently, continuous-time contact handling cannot be performed. Furthermore, to
accurately handle contact in the context of a penalty method, the rod constrained dynamics
are computed in two stages. The constrained state refers to the condition where the rod is
in collision with the surface and subjected to contact forces, while the unconstrained state
is when no contact forces are applied, even if the rod is in collision with the surface.

Consider two consecutive time steps, t and t+ dt, and suppose that the constrained rod
dynamics for step t have already been computed, and we now proceed to step t+ dt. First,
the boundary value problem is solved at t + dt as if no contact forces were present, i.e.,
f̄c(X) = 0, fc(0) = 0, and fc(l) = 0 (unconstrained state). Then, the contact forces are
computed based on this state. Finally, the boundary value problem is re-solved for step
t + dt, incorporating the computed contact forces (constrained state). Reflecting on this
approach, the unconstrained solution allows us to obtain the rod position r after one time
step, considering only the restoring, inertial, and external forces acting on it. This then
permits the computation of the correct signed distance ϕ and normal direction w needed
to reduce potential interpenetration with the surface. Furthermore, at each time step, the
initial guesses for both the constrained and unconstrained boundary value problems are set
to the solutions from the previous step for their respective problems. At first, this may seem
counterintuitive, as one might think that the unconstrained solution at time t would provide
a better initial guess for the constrained one at t. However, empirically, we found that this is
not the case and that the proposed approach yields better initial guesses, thereby reducing
the number of system evaluations (3.20), which in turn decreases computation time. Finally,
the simulation loop of the proposed method is summarized in Algorithm 2.
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Algorithm 2 High-Level Simulation Loop

1: Initialize to a static solution
2: Initialize proximal boundary condition
3: for each simulation step do
4: Time integrate the time derivatives of the space-rate twists ξ̇ and ξ̈ (3.2)
5: Set contact force fc = 0
6: Solve the unconstrained boundary value problem (Section 4.2)
7: Compute contact force fc (4.40)
8: Update boundary conditions (4.41)
9: Update distributed forces (4.42)
10: Solve the constrained boundary value problem (Section 4.2)
11: end for

4.7 Numerical Applications

The objectives of the numerical tests are as follows. First, to verify the accuracy of free-
free boundary value problem solving with respect to an analytical solution. Second, to
evaluate frictional contact using a synthetic surface created with a blobby model. Lastly,
to test our method in a real-world setup, including a model of a carotid artery and actual
catheter material properties. The implementation was coded in Python. We used SciPy’s
Runge-Kutta 4(5) for arc length integration. For least square minimization of the nonlinear
algebraic system of collocation Rc (3.20), we used SciPy’s hybr function. The Levenberg-
Marquardt algorithm from Scipy is used for the iterative distance computation (4.33).
Numerical integrations and root-finding techniques were performed with SciPy’s built-in
default tolerances. Execution times are reported, with the time for solving the boundary
value problem including both unconstrained and constrained solutions. Contact detection
times are provided, but not those for contact response, as the latter is negligible due to its
closed form expression. The simulations were performed on a computer equipped with an
Intel Xeon W 2245 CPU running at 3.90 GHz.

4.7.1 Elastic Longitudinal Contact

The objective of this test is to verify the proposed method in a free-free boundary value
problem against an analytical solution. Replicating [71], a soft rod moving at initial velocity
V0 comes into elastic longitudinal contact with a plane, with its tip initiating the collision
(Fig. 4.3a). Upon impact, the rod compresses along its length, storing its kinetic energy as
elastic energy. It then regains its original shape and rebounds, moving away at a velocity
of −V0. The rod length is l = 1m, Young’s modulus E = 4 × 105 Pa, cross-sectional area
A = 0.1m2, and density ρ = 1000 kg/m3. The initial velocity is V0 = 5 m/s. The plane is
positioned 1 m away from the tip of the rod. From the initial velocity, we determine that
the first contact occurs at t = 0.2 s. According to the analytical solution [109], the total
duration of contact is 0.1 s, with the first half corresponding to compression and the second
half to decompression. Additionally, the maximum compression reaches l

4
. The magnitude

of the tip force is [71]:
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(a) Scenario configuration. (b) Tip position over time.

Figure 4.3: A soft rod moving at initial velocity V0 comes into elastic longitudinal contact
with a plane.

|f+| =
EAV0√
E/ρ

= 10000N (4.46)

We used Chebyshev polynomial degreem = 300, maximum allowed arc length integration
step max∆X = l

2m
m, and tried three time steps ∆t = {0.0025, 0.002, 0.001} s to verify

convergence. Fig. 4.3b shows the evolution of the tip position over time. It is in good
agreement with the theoretical solution, and the difference reduces as the time step decreases.
Fig. 4.4 shows the evolution of tip velocity over tip position. As in [71], a wave with a small
amplitude appears after the rod rebounds from the plane. We observe that its frequency
increases and its amplitude decreases as the time step decreases, which implies a numerical
effect caused by time integration. The simulations took 5.76 hours, 7.25 hours and 13.4
hours for ∆t = {0.0025, 0.002, 0.001} s scenarios, respectively. Consequently, the average per
time step is 1.69 minutes.

4.7.2 Frictional Contact with a Helical Tube

This test aims to evaluate the proposed method in a frictional contact scenario using a
synthetic surface created with a blobby model. Inspired by [87], a rubber rod is inserted into
a helical tube using a constant follower force (i.e., expressed in the mobile frame) applied
at the proximal end (Fig. 4.5). The surface is modeled with a blobby model consisting of
mb = 45 blobs, with width ϱi = 2 × 10−3, threshold S = 2 × 10−5, and blob centers σi
representing the discrete centerline of the helical tube. The tube radius is 0.016 m, and the
helix radius is 0.03 m. The rod has a length of l = 0.35 m, a circular cross-section with
a radius of Rb = 5 × 10−3 m, a Young’s modulus of E = 5 × 106 Pa, a shear modulus
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Figure 4.4: A soft rod moving at an initial velocity of 5m· s−1 comes into elastic longitudinal
contact with a plane and rebounds with a velocity of −5m· s−1. The figure plots tip velocity
over tip position.

of G = E
2(1+ν)

Pa, a Poisson’s ratio of ν = 0.5, and a density of ρ = 1100 kg/m3. The

rod is pushed using a constant follower force of Ne(0) = (1, 0, 0)T N. The contact handling
parameters were as follows: penalty stiffness λ = 6000N/m and number of contact nodes
mc = 100. Three coefficients of friction were tested: µ = {0, 0.1, 0.2}. The numerical
parameters were: Chebyshev polynomial degree m = 500 for µ = 0 test, and m = 400 for
µ = {0.1, 0.2} tests, maximum allowed arc length integration step max∆X = l

2m
m, time step

∆t = 0.0005 s, and a total simulated time of 0.2125 seconds. The total time is chosen based
on the time required for µ = 0 rod tip to reach the end of the tube. For the µ = 0 test,
the polynomial degree m was increased by 100 compared to the µ = {0.1, 0.2} tests. This is
because the µ = 0 case involves faster dynamics, therefore, a larger m is needed to stabilize
the collocation method, as explained in the previous chapter.

Fig. 4.6 shows snapshots of the simulation at different times and varying friction
coefficients. The rod is correctly confined within the surface. Furthermore, by increasing
the coefficient of friction the rod sliding motion is significantly reduced, and by the end of
the simulation, only the rod with friction coefficient µ = 0 managed to reach the end of
the tube, while the other two remained inside the helix. This is also illustrated in Fig. 4.7,
which shows the tip x-axis position over time, corresponding to the longitudinal axis of the
helical tube. As a result, we can conclude that the contact and friction effects are effectively
included in our method.

The µ = 0 scenario took 43.7 hours to complete, with an average of 6.16 minutes per
time step. In contrast, the µ = {0.1, 0.2} scenarios took 29.8 hours, with an average of 4.2
minutes per time step. This difference is explained by the fact that the µ = 0 case uses a
polynomial degree 100 higher than the µ = {0.1, 0.2} cases. Furthermore, all scenarios spent
a total of 37.4 seconds on contact detection.
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(a) x and y viewpoints.

(b) x and z viewpoints.

Figure 4.5: A rubber rod is inserted into a helical tube. Initial configuration at t = 0.

µ = 0 µ = 0.1 µ = 0.2

t = 0.05 s

t = 0.1 s

t = 0.15 s

t = 0.2125 s

Figure 4.6: Snapshots at different times and varying friction coefficients show a rubber rod
inserted into a helical tube.

4.7.3 Catheter Insertion into a Carotid Artery

The aim of this test is to evaluate our method using a real catheter navigation setup, which
includes actual catheter material properties and frictional contact with a carotid artery model
(Fig. 4.8). The carotid artery model is created from 3D rotational angiography data of a real
patient [104]. This test is challenging because the catheter is relatively rigid, and the surface
is narrow with a sharp turn, requiring considerable force to maneuver the catheter through.
Hence, the catheter is inserted into the surface with constant follower force at its base of
Ne(0) = (0.01, 0, 0)T N. The surface is created with a blobby model containing mb = 2573
blobs. Specifically, the function ζ was constructed from a point-set skeleton representing
the surface of the carotid artery model, with the blob parameters iteratively computed to
minimize the distance between its zero level set and the input points. The catheter material
properties are: the length l = 0.065m, cross-section radius Rb = 0.00028 m, Young’s modulus
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Figure 4.7: A rubber rod is inserted into a helical tube. Tip position over time for various
coefficients of friction µ.

E = 300 × 106 Pa, Poisson’s ratio ν = 0.49, shear modulus G = E
2(1+ν)

Pa, and density

ρ = 1998 kg/m3. Mechanical characterization was conducted to determine the catheter
material properties, as this information is often not provided by the manufacturer. Contact
handling parameters were: penalty stiffness λ = 300N/m, friction coefficient µ = 0.05, and
number of contact nodes mc = 100. Numerical parameters were: Chebyshev polynomial
degree m = 300, maximum allowed arc length integration step max∆X = l

m
m, and time step

∆t = 5 × 10−5 s. For the catheter to reach the end of the surface, the total simulated time
is set to 0.025 s. It is relatively low because the pushing force magnitude is large (0.01N).

Fig. 4.8 shows six snapshots of the simulation, and Fig. 4.9 plots the tip position over
time. We observe that the rod is successfully inserted and properly contained within the
surface. The simulation required 12.4 hours to solve the boundary value problem, with an
average of 1.49 minutes per time step. Additionally, contact detection took a total of 24.6
minutes, averaging 2.95 seconds per time step, which is relatively fast for such a complex
surface.

Qualitative Comparison with the Shooting Method

Our work in [103] tested a similar simulation scenario using the shooting method. However,
to address the singularity issue (described in detail in Chapter 3), damping was introduced
in the constitutive equation:

Λ = H(ξ − ξo) +Dξ̇ (4.47)

Recall that H is the stiffness matrix and ξ−ξo represents the strain. Furthermore, D is a
chosen damping matrix. This damping follows the Kelvin-Voigt viscous damping model [63].
Additionally, the catheter was softened by decreasing Young’s modulus to E = 5.5× 105 Pa,
allowing the rod to pass more easily through the carotid turn. This may seem arbitrary, as
the singularity is more likely to occur when the rod is soft. However, the used time step was
large (∆t = 0.005 s), and fast dynamics due to catheter stiffness and large contact forces also
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Figure 4.8: Catheter is inserted into a carotid artery model. From left to right and top to
bottom, the figure shows five snapshots taken every 0.005 seconds.

destabilize the shooting method. Fig. 4.10 shows four snapshots of the simulation, where
the damping effect can be observed: the catheter inaccurately retains its curvature after
the turn. Moreover, the clamped-free boundary value problem was used, and the insertion
was performed by displacing the fixed proximal end pose through changing of the boundary
condition (2.18). Additionally, the proximal velocity and acceleration were set to zero. It is
as if the catheter was fixed at one end while the surface moved toward it. Consequently, using
the clamped-free problem does not produce the same catheter deformation as the free-free
problem. Finally, this simulation, using the shooting method, took 38.6 seconds to complete.

4.8 Conclusion

The objective of this chapter was to propose a method tailored for simulating catheter
navigation procedures. The tubular contact surfaces (such as blood vessels) were modeled as
zero-level sets of implicit functions. The catheter was modeled as a Cosserat rod by solving
the free-free boundary value problem in dynamic mode, with its Jacobian matrix provided
analytically. The concentrated contact forces were computed using the penalty method,
and we proposed an approach to incorporate them into the continuous balance equation by
converting them into distributed forces. The method was first compared to an analytical
solution to assess its accuracy and showed good agreement. Second, the frictional contact
was verified against synthetic surfaces. Third, we tested our method in a realistic catheter
navigation setup, which included a model of a carotid artery as well as actual catheter
material properties. Furthermore, the method was qualitatively compared to the shooting
method.

The method was successfully tested in challenging contact scenarios involving complex
surface geometry and fast dynamics. This further confirms that the singularity problem
explained in the previous chapter was indeed effectively addressed. Additionally, the
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Figure 4.9: Catheter is inserted into a carotid artery model. The figure shows tip position
over time.

Chebyshev polynomial degree was increased to m = 500 (300 more than numerical tests
from Chapter 3), and the time step was set to a record low of 5 × 10−5 s (compared to
∆t = 2.5 × 10−4 s in Chapter 3). Modeling the surface using implicit functions proved
to be a good choice, as contact detection time was negligible compared to Cosserat rod
dynamics solving. Moreover, implicit modeling is memory-efficient: the complex carotid
geometry was represented using 2573 blobs, each expressed with only four floating-point
values. Furthermore, compared to our solution proposed in [103] using the shooting method,
the work of this chapter uses actual catheter material properties and eliminates the need for
damping.

However, this work lacks validation against real data. Before proceeding with such
validation, the penalty method for contact response should be replaced with a more accurate
approach. Indeed, the penalty method transforms the hard constraints of contact into
soft constraints by allowing small interpenetrations that generate restoring forces. In this
approach, sliding friction is straightforward to include by applying a force opposite to the
tangential velocity, with a magnitude proportional to the normal force. In contrast, modeling
the sticking mode requires handling cases where the tangential velocity is zero and the friction
force can take any value within the friction cone. This introduces an inequality condition
that is not easily handled by the penalty approach and would require a complementarity-
based model for accurate solution. Furthermore, the high polynomial degree was primarily
used to avoid singularity issues rather than to improve accuracy. This means that reducing
the degree leads to method instability, as explained in the previous chapter. Increasing the
polynomial degree expands the dimensions of the Jacobian matrix, which in turn increases
the number of arc length integrations. As a result, without parallelization and significant
hardware improvements, using this method for fast simulations is not feasible. In the next
chapter, we will explore whether ignoring inertia effects with a quasi-static mode could
provide a faster alternative.
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Figure 4.10: A catheter is inserted into a carotid artery model. From left to right and top
to bottom, snapshots are shown at 0.25, 0.5, 0.75, and 1 s. The simulation is solved using
the shooting method with damping and modified catheter material properties. The damping
effect can be observed at t = 0.5 s, as the catheter inaccurately retains its curvature after
the turn.
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Chapter 5

Quasi-Static Cosserat Rods in
Contact with Implicit Surfaces

In the last chapter, we used a collocation method to solve the dynamic boundary value
problem of Cosserat rods undergoing contact. Although the results were accurate and
realistic, the computation time was high and not suitable for fast simulations. The objective
of this chapter is to explore ways to improve execution time.

Firstly, in simulations of catheter navigation, the rod is confined within narrow tubular
surfaces, where its insertion velocity is relatively low and deformation is primarily induced
by contact. Therefore, we can assume that inertial effects are negligible and use the static
model. The evolution of the rod configuration can be considered as a sequence of static
equilibria, which we refer to here as the quasi-static mode.

Secondly, as we saw in Chapter 3, the Lagrangian model combined with the strain
parameterization proposed by Boyer et al. [60] achieved a similar level of accuracy to
our proposed collocation method, while requiring fewer degrees of freedom and being
computationally faster. Therefore, we propose to base our quasi-static approach on the
Lagrangian model. The static mode can be computed either by solving for the unknown
generalized coordinates in the balance equation using root-finding techniques, as proposed
in [37], or by introducing artificial damping into the system as in [60]. The latter approach
yields an explicit first-order differential equations in terms of coordinate velocities, which
can be integrated over time to directly obtain the solution, thus removing the need for initial
guesses near the convergence point compared to the root-finding approach. In [60], these
equations were integrated using explicit solvers.

Contributions

In this chapter, we base our approach on that of Boyer et al. [60] to solve the quasi-
static mode of Cosserat rods. Their ordinary differential equation governing the quasi-static
evolution may become stiff in complex contact scenarios, requiring explicit solvers to take
excessively small time steps, which degrades time efficiency. In contrast to methods based
on root-finding, an implicit solver tailored for stiff equations can be used here. Thus, we use
implicit solvers and provide the problem Jacobian analytically. The analytical derivation of
the Jacobian is made possible thanks to the use of implicit functions that model our contact
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surfaces. To the best of our knowledge, we are the first to introduce contact handling in
quasi-static Lagrangian model.

Our contributions can be summarized as follows:

• Proposing a method for quasi-static solving of Cosserat rods in contact.

• Using an implicit method and providing its Jacobian matrix analytically.

• Improving computation time by up to two orders of magnitude compared to the use
explicit solvers.

• Testing our method in a real catheter navigation setup that includes a model of a
carotid artery and actual catheter material properties.

• Making the implementation open-source at gitlab.inria.fr/rjilani/RAL2024.

This chapter is structured as follows. Section 5.1 provides a brief overview of the
Lagrangian model, including strain reduction and balance equations, as presented in [60, 37].
Section 5.2 introduces the continuous contact handling approach, while Section 5.3 details
the integration of contact forces into the Lagrangian model. Section 5.4 derives the Jacobian
matrix analytically for implicit solvers. Section 5.5 presents our approach for modeling
catheter insertion and rotation. Finally, Section 5.6 tests the proposed method through
three numerical applications, followed by concluding remarks in Section 5.7.

5.1 Lagrangian Model

In this section, we provide a brief overview of the Lagrangian model of static Cosserat rods
that uses strain reduction. First, we introduce the reduction of Cosserat configuration space.
Next, we present the Lagrangian balance equation and describe how the involved matrices
are computed in their continuous form. Finally, we explain how this balance equation is
solved. For more details, we refer the reader to [60, 37].

5.1.1 Configuration Space Reduction

Here, we describe the strain parameterization reduction. First, let us recall the Cosserat
kinematics:

g′ = gξ̂. (recall 2.3)

g is the cross-section pose, ξ is the space-rate twist, and •′ denotes differentiation with
respect to the arc length X. Notice that if ξ(X) is known, one can integrate the kinematics
(2.3) with the initial condition g(0) = 14×4 to obtain the rod configuration. As a result,
(g(0), ξ) completely defines the rod configuration. Therefore, one can define the Cosserat
configuration space as

C = SE(3)× {ξ : X ∈ [0, l] → ξ(X) ∈ R6}. (5.1)

Next, recall that the strain is given by ϵ:
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ϵ = ξ − ξo. (recall 2.5)

Here, ξo denotes the reference configuration of ξ. Let q ∈ Rk represent the generalized
strain coordinates. The parameter k is given by k =

∑6
j=1 kj, where kj denotes the number

of shape functions for the six possible deformations of Cosserat rods: two bending modes,
torsion, two shear modes, and extension. Therefore, the strain can be reduced to

ϵ = Φ(X)q, (5.2)

where Φ ∈ R6×k is the matrix of the chosen shape functions. Consequently, the space-rate
twist ξ becomes

ξ = Φ(X)q + ξo. (5.3)

As a result, (g(0), q) completely defines the configuration of the rod. The configuration
space of Cosserat rods is reduced to

C = SE(3)× Rk. (5.4)

Finally, this strain reduction can be used to describe the Lagrangian balance equation,
which will be presented in the next subsection.

5.1.2 Balance Equation

By applying the principle of virtual work, one can derive the Lagrangian balance equation
of forces:

Qr +Qe = 0 (5.5)

where Qr ∈ Rk is the vector of generalized restoring forces, and Qe ∈ Rk is the vector of
generalized external forces. Assuming linear elasticity, the generalized restoring forces are
expressed as:

Qr = Kϵq (5.6)

where Kϵ ∈ Rk×k is the generalized stiffness matrix, given by:

Kϵ =

∫ l

0

ΦTHΦdX. (5.7)

Here, l represents the unstressed length of the rod, and H is the Hookean matrix.
Furthermore, there are two ways to compute the generalized external forces. The first
approach involves projecting the stress Λ onto the shape functions:

Qe = −
∫ l

0

ΦTΛ dX. (5.8)
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Here, Λ is computed as follows. First, forward integrate (from X = 0 to X = l) the

kinematics (2.3) g′ = gξ̂ with the initial condition g(0) = 14×4, where ξ computed from q
using strain reduction (5.3). This allows to compute the tip wrench F+ from its inertial

frame counterpart f+ using transformation by

(
RT 0
0 RT

)
. Second, use the initial condition

Λ(l) = F+ to backward integrate (from X = l to X = 0) the continuous balance equation:

Λ′ = adTξ Λ− F̄ . (recall 2.9)

Here, F̄ represents the distributed wrench.
Alternatively, to compute Qe, one can use the Jacobian matrix J , which maps any

variation of q to a corresponding variation of g. For instance, ġ = gη̂ = g(̂Jq̇), with •̇ = ∂•
∂t
,

where in the quasi-static case, t denotes the fictitious time and η represents the velocity.
Consequently, the generalized external forces are given by:

Qe = −
∫ l

0

JT F̄ dX − J(l)TF+. (5.9)

Using the identity adξ = Ad−1
g Ad′g, along with the arc length differential equation of η

η′ = −adξη + ξ̇ (recall 2.11)

one can show that J is given by:

J(X) = Ad−1
g

∫ X

0

AdgΦdY. (5.10)

where Adg being the adjoint map:

Adg =

(
R 03×3

r̂R R

)
(5.11)

Here, r denotes the centerline position, and R denotes the cross-section rotation matrix. g
is computed by arc length integration of the kinematics (2.3) g′ = gξ̂ with the initial condition
g(0) = 14×4, where ξ is calculated from q using strain reduction (5.3). The selection between
(5.8) and (5.9) for computing the generalized external forces Qe will be discussed in Section
5.3. In the next subsection, we will see how to solve the balance equation by computing the
unknown generalized coordinates q.

5.1.3 Quasi-static Solving

The balance equation can be solved by constructing a residual vector with q as input, as
shown in [37]. In this work, we avoid root-finding techniques to eliminate the need for initial
guesses close to the solution for convergence. Boyer et al. [60] demonstrated that introducing
artificial damping allows the balance equation (5.5) to be reformulated as an explicit first-
order ordinary differential equation governing the quasi-static evolution of the generalized
coordinates q:
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q̇ = −D−1
ϵ (Qe +Qr). (5.12)

Here, q̇ represents the partial derivative of q with respect to the fictitious time t, which
corresponds to the quasi-static evolution. Moreover, Dϵ ∈ Rk×k is the matrix of generalized
damping, which can be computed from the stiffness matrix Kϵ as:

Dϵ = µ̃Kϵ, (5.13)

where µ̃ ∈ R is a damping coefficient.
In this section, we have presented the theoretical foundation of the Lagrangian model.

In the next section, we will describe how contact handling is performed.

5.2 Contact Handling

Similar to the previous chapter, we use the implicit function ζ to model our contact surfaces
(4.29). We also make the same assumptions as in the previous chapter: contact handling is
performed between the surface and the cross-sectional centerline of the rod, r. Furthermore,
the surface is considered rigid and fixed. Finally, the effects of blood flow are not taken into
account.

5.2.1 Contact Detection

Similar to the previous chapter, the vector w(r) ∈ R3 used to project a point onto the
surface, with the penalty method, is computed via the gradient of the implicit function ζ:

w(r) = − ∇ζ(r)
|∇ζ(r)|

(recall 4.31)

By a slight abuse of terminology, w is referred to as the normal vector. Recall that ζ(r)
is negative when r is inside the surface and positive when it is outside of it. The minus sign
in the equation above makes the normal to point inside the surface when the position r is
outside. Furthermore, the signed distance between r and the surface is no longer computed
iteratively as done Chapter 4. Here, a faster approach is required because time is not priorly
discretized, leading to more evaluations of the distance function. Hence, we propose to use
Taubin’s approximation of the signed distance function [110]:

ϕ(r) =
ζ(r)

|∇ζ(r)|
(5.14)

In contrast to the iterative distance computation described in the previous chapter
(4.32) (4.33), this approximation is less accurate. Indeed, its error increases rapidly when
moving away from the surface, potentially introducing additional stiffness into the equations.
Nevertheless, this stiffness is addressed through the use of implicit solvers.

We now have the essential components needed to compute the contact response, which
will be described in the next subsection.
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Figure 5.1: The activation function of contact forces. Collisions happen when the contact
distance ϕ > 0.

5.2.2 Contact Response

We use a penalty method to compute the contact force acting on a specific arc length point,
nc(X) ∈ R3:

nc = λã(ϕ)w (5.15)

where λ ∈ R is the stiffness parameter, and ã is the activation function of contact. The
role of ã is to apply contact forces only when a collision is present (ϕ > 0). In the previous
chapter, the activation function was defined as the ReLU function max(ϕ, 0). However, in
this work, a differentiable function is required to compute the Jacobian matrix. Therefore,
we propose to use the SiLU function, which is a differentiable approximation of the ReLU
function:

ã =
ϕ

(1 + e−zϕ)
,

∂ã

∂ϕ
=

1

1 + e−zϕ
+

zϕe−zϕ

(1 + e−zϕ)2
(5.16)

where z is a parameter that controls the smoothness of the transition between negative
and positive values of ã (see Fig. 5.1). In other words, increasing z makes ã converge to the
standard activation function of the penalty method, max(0, ϕ). When ϕ is negative and close
to zero, ã(ϕ) becomes negative, causing the rod to be attracted to the surface which is an
undesirable effect. However, when z is sufficiently large, this attraction becomes negligible.
Furthermore, the friction forces are not considered here and are left for future work. Indeed,
incorporating a differentiable friction model is not straightforward, as discontinuities may
arise between slip and stick friction. Finally, the contact force nc does not produce a moment,
as it acts on the centerline of the rod. As a result, the contact wrench (in the inertial frame)
is expressed as:

fc =

(
03×1

nc

)
(5.17)
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Having described how continuous contact handling is performed, the next section presents
its integration into the balance equation.

5.3 Including Contacts Forces into the Balance Equa-

tion

In this section, we describe how contact wrenches fc are incorporated into the balance
equation (5.5). With a slight abuse of terminology, we will refer to fc as the contact force
rather than the contact wrench, since the contact moment is zero. First, the contact forces
are included in the vector of generalized external forces Qe. In Section 5.1, we presented two
approaches for computing Qe.

The first approach involves projecting the stress Λ onto the shape functions (5.8). Here,
Λ is computed through two passes of integration: a forward pass for the kinematics and a
backward pass for the continuous balance equation. The initial condition for the backward
integration is obtained from the output of the forward integration, meaning they cannot be
performed simultaneously. Furthermore, since integration of the continuous balance equation
(2.9) is performed, the concentrated contact force fc (in Newtons) is added to the distributed
force F̄ (in Newtons per meter), requiring a conversion as described in Chapter 4.

The second approach involves computing Qe using the Jacobian J (5.9) (5.10). At first,

this approach may seem inefficient since the integral for Qe (
∫ l
0
JT F̄ dX) requires J(X),

which itself contains an integral (
∫ X
0
AdgΦdY ). However, because integration is a cumulative

operation, computing J(l) once is sufficient to retrieve any J(X), with X known beforehand.

Furthermore, the integrals of Qe (
∫ l
0
JT F̄ dX) and J (

∫ l
0
AdgΦdY ) are forward integrations

that can be performed simultaneously with the integration of the kinematics (g′ = gξ̂) used to
compute g(X). Additionally, this approach eliminates the need to convert the concentrated
contact force fc into a distributed force. To explain further, let

Fc =

(
RT 0
0 RT

)
fc (5.18)

be the counterpart of fc in the mobile frame. Assuming that Fc act on mc equidistant
points along the rod, denoted as Xj:

Xj =
j − 1

mc − 1
l, j = {1, . . . ,mc}. (5.19)

Here, X1 = 0 and Xmc = l correspond to the rod proximal and distal ends, respectively.
Then, the generalized external forces (5.9) become:

Qe = −
mc∑
j=1

J(Xj)
TFc(Xj). (5.20)

Consequently, we adopt the Jacobian-based approach. Putting all the pieces together,
the explicit ordinary differential equation of q is expressed as:
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Algorithm 3 Computation of q̇ from q

Knowns: q, Kϵ, ξo, µ̃, mb, S, {σi}, {ϱi}, mc, λ, {Xj}
1: Compute g by integrating the kinematics g′ = g ̂(Φq + ξo) (2.3) (5.3)
2: (r(Xj), R(Xj)) = g(Xj)

3: ζ(r(Xj)) = S −
∑mb

i=1 ϱiΨ
(

|r(Xj)−σi|2
ϱ2i

)
(4.29)

4: ∇ζ(r(Xj)) = −
∑mb

i=1
2
ϱi
ψ
(

|r(Xj)−σi|2
ϱ2i

)
(r(Xj)− σi) (4.30)

5: ϕ(r(Xj)) =
ζ(r(Xj))

|∇ζ(r(Xj))| (5.14)

6: w(r(Xj)) = − ∇ζ(r(Xj))

|∇ζ(r(Xj))| (4.31)

7: nc(Xj) = λã(ϕ(r(Xj)))w(r(Xj)) (5.15)
8: Fc(Xj) = (01×3, (R(Xj)

Tnc(Xj))
T )T (5.18) (5.17)

9: Compute
∫ l
0
Adg(Y )Φ(Y ) dY and store intermediate values G(Xj) =

∫ Xj

0
Adg(Y )Φ(Y ) dY

10: J(Xj) = Ad−1
g(Xj)

G(Xj) (5.10)

11: q̇ = − (µ̃Kϵ)
−1
(
−
∑mc

j=1 J(Xj)
TFc(Xj) +Kϵq

)
(5.21)

q̇ = − (µ̃Kϵ)
−1

(
−

mc∑
j=1

J(Xj)
TFc(Xj) +Kϵq

)
(5.21)

Finally, Algorithm 3 retraces in details how q̇ is computed from q. Furthermore, (5.21)
may become stiff in complex contact scenarios, causing explicit solvers to require excessively
small time steps. To address this issue, we use implicit solvers. In the next section, we
analytically derive the required Jacobian matrix ∂q̇

∂q
.

5.4 Jacobian Matrix

We use the notation •♯ = ∂•
∂qj

to represent the partial derivative with respect to the j-th

generalized strain coordinates. Differentiating q̇ (5.12) with respect to qj yields:

q̇♯ = −D−1
ϵ (Q♯

e +Kϵj) (5.22)

with Kϵj being the j-th column of Kϵ. Taking the derivative of Qe (5.20) gives

Q♯
e = −

mc∑
j=1

JT♯(Xj)Fc(Xj)− JT (Xj)F
♯
c (Xj) (5.23)

Applying differentiation to J (5.10) via the product rule and Leibniz integral rule yields:

J ♯(X) = Ad−1♯
g

∫ X

0

AdgΦdY + Ad−1
g

∫ X

0

Ad♯gΦdY (5.24)

where the derivative of the adjoint map (5.11) is
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Ad♯g =

(
R♯ 03×3

r̂♯R + r̂R♯ R♯

)
. (5.25)

Computing the derivative of Fc (5.18) results in

F ♯
c =

(
03×1

RT♯nc +RTn♯c

)
(5.26)

with differentiation of nc (5.15) yields

n♯c = λ(ã♯w + ãw♯). (5.27)

Using the chain rule, we obtain

ã♯ =
∂ã

∂ϕ

∂ϕ

∂r
r♯ (5.28)

w♯ =
∂w

∂r
r♯ (5.29)

The last two equations show that the distance and normal functions should be
differentiable in 3D space. Therefore, explicit surfaces such as triangle meshes are less
suitable for implicitly solving q̇ (5.21). Using the quotient rule and simplifying, we obtain

∂ϕ

∂r
=

(
ϕ
∇2ζ

|∇ζ|
− I

)
w (5.30)

∂w

∂r
=
(
wwT − I

) ∇2ζ

|∇ζ|
(5.31)

where I ∈ R3×3 is the identity matrix, and ∇2ζ is the Hessian of ζ computed in closed
form by differentiating (4.29) with respect to r twice:

∇2ζ(r) = −
mb∑
j=1

[
4
ϱ3j

dψ

dx

(
|r−σj |2
ϱ2j

) (
r − σj

)(
r − σj

)T
+ 2

ϱj
ψ
(

|r−σj |2
ϱ2j

)]
. (5.32)

where ψ (4.28) and dψ
dx

are the first and second derivatives of the Cauchy profile Ψ (4.27),
respectively.

dψ(x)

dx
=

150

(x+ 5)4
(5.33)

Finally, r♯ and R♯ are computed using g♯. Since qj does not dependX, their differentiation
commutes.

(g′)♯ = (g♯)′ (5.34)
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Let the twist ϖ = (g−1g♯)∨. Using (5.34), one can obtain the derivative of ϖ with respect
to X:

ϖ′ = −adξϖ + ξ♯ = −adξϖ + Φj. (5.35)

Here, Φj denotes the j-th column of Φ. The computation of ϖ by integrating (5.35) using
the initial condition ϖ(0) = 06×1 allows to calculate g♯.

Finally, the described derivation is used to construct each j-th column of the Jacobian
matrix that allows for implicit time integration.

5.5 Insertion and Removal Approach

Up to this point, we have described how to obtain the quasi-static evolution of a clamped-free
Cosserat rod undergoing contact. However, in catheter navigation procedures, the catheter
is rotated and displaced at the proximal end. We propose modeling this by modifying the
initial conditions of the previously described initial value problems. We introduce a time-
dependent variable s(t) ∈ [0, l]. The arc length interval of the inserted portion becomes [s, l],
while the portion in [0, s) is visually hidden and excluded from contact handling. The initial
condition of the kinematics (2.3) becomes g(s) instead of g(0), where r(s) = 03×1 is fixed
and R(s) can vary to allow rotation. Additionally, the initial condition of ϖ (5.35) becomes
ϖ(s) = 06×1 instead of ϖ(0) = 06×1. At each time step t, if s(t + ∆t) < s(t), insertion is
performed; conversely, if s(t+∆t) > s(t), removal is performed. The integrals of (5.10) and
(5.24) now start from s instead of 0, and Xj consists of mc equidistant arc length points in
[s, l]:

Xj = s+
j − 1

mc − 1
(l − s), j ∈ {1, . . . ,mc}. (5.36)

Note that our continuous approach to contact handling enables the modification of
contact discretization nodes Xj at each time step.

5.6 Numerical Applications

We tested our method through three numerical applications, each with increasing surface
complexity. The objectives were as follows: to understand the effects of damping and total
simulation time, to assess the insertion/removal approach, to evaluate the method using real
patient geometry, and to test it across different rod material (steel, rubber, and catheter).
Following [60, 37], we used Legendre polynomials for the shape functions Φ, with the number
of shape functions set to kj = 8. The parameter z of the SiLU activation function ã (5.16)
was chosen empirically to prevent attraction to the surface. The code was implemented
in Python, using the SciPy library for numerical integrations. For arc length integration,
the Runge-Kutta 4(5) method was used. For time integration, the backward differentiation
formula was used in the first two numerical applications, while the implicit Runge-Kutta
method of order 5 (Radau) was employed in the last application due to its more complex
contact scenario. The numerical integrations were performed with SciPy’s built-in default
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Figure 5.2: The rod base is pushed then pulled in a sphere (black line). This figure displays
the rod initial configuration.

tolerances. We compared the execution time of time integration using an implicit solver
versus an explicit solver, the latter employing the Runge-Kutta 4(5) method. The simulations
were performed on a computer equipped with an Intel Xeon W-2245 CPU running at 3.90
GHz. Finally, the implementation is made open-source on gitlab.inria.fr/rjilani/RAL2024.

5.6.1 Rod Push-Pull in a Sphere

This numerical application aims to understand the effects of the damping coefficient µ̃ and
the total time T on the simulations. A straight steel rod is placed inside a sphere; its base is
pushed along the x-axis toward the sphere interior surface and then pulled back to its original
location. Fig. 5.2 shows the initial configuration of this scenario. The mechanical parameters
of the rod are: the length l = 0.5 m, the cross-section radius Rb = 0.001 m, Young’s modulus
E = 200 × 109 Pa, and the shear modulus G = 80 × 109 Pa. Contact handling parameters
are: the number of contact nodes mc = 100, the penalty stiffness λ = 104 N/m, and the
activation function parameter z = 0.5 × 106. The sphere is centered at (0, 0, 0)T, and its
radius Rs = 1.5 l. The sphere was created with a blobby model containing mb = 1 blob, with
center σ = (0, 0, 0)T , width ϱ = Rs, and threshold S = Rs

( 1
5
+1)

2 . The pushing phase occurs

during the first half of the simulation, while the pulling phase occurs during the second half.
The path of the rod base is r(0) = (x(t), 0, Rs

2
)T with:

x(t) =

{
2.5l t

T
t
T
≤ 0.5

2.5l (1− t
T
) t

T
> 0.5.

(5.37)

Multiple simulations were conducted. In the first part, we held T = 1 s constant while
varying µ̃ = {1, 0.1, 0.01, 0.001}. Fig. 5.3 displays the evolution over time of the rod tip along
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Figure 5.3: The rod base is pushed then pulled in a sphere. This figure displays the rod
tip position along the z-axis with respect to time for different damping coefficients µ̃.

the z-axis for different damping coefficients. The first point of contact is near t = 0.1 s. All
simulations show nearly identical results until differences start to appear around t = 0.45 s.
Since a quasi-static mode is used, and the contact scenario is simple, the results of pushing
and pulling phases should be symmetrical (on both sides of t = 0.5 s). As expected, by
decreasing µ̃, the simulations converge to an accurate (symmetrical) solution. Fig. 5.4 shows
different snapshots of the simulation with varying damping coefficients µ̃ = {1, 0.1, 0.01}.
Note that the results for µ̃ = 0.001 are not shown, as they are visually similar to those
for µ̃ = 0.01. We observe that µ̃ = 0.01 produces a realistic interaction with the sphere
(particularly at t

T
= 0.5), and by the end of the simulation, the rod correctly returns to

its initial configuration. In contrast, µ̃ = 1 does not return to the initial configuration,
and its high damping induces an unrealistic collision at t

T
= 0.5. Table 5.1 presents the

computation time, the number of evaluations of q̇ (5.21) (nfev), and the number of evaluations
of the Jacobian ∂q̇

∂q
for different values of µ̃, performed using implicit integration with both

analytical and numerical (finite difference) Jacobians, as well as explicit integration. The
results show that our proposed analytical formulation is the most efficient across all metrics.
Furthermore, as the damping decreases, the proposed method shows a slower rate of increase
in computation time, nfev, and njev compared to the explicit and numerically implicit
integration methods.

In the second part of our test, we fixed µ̃ = 1 and changed T = {1, 10, 100, 1000} s.
By comparing the results to those obtained when T was constant and µ̃ varied, we noticed
that the simulations with the same ratio T

µ̃
produced the same results (apart from negligible

differences caused by numerical errors). Furthermore, different choices of T or µ̃ affect the
numerical conditioning. In the following, they were chosen empirically to ensure convergence.
We can conclude that larger damping causes strains induced by contact to persist longer.
In contrast, reducing the damping allows the rod to return to its initial configuration more
quickly. To summarize, although damping is inherently artificial, when it is sufficiently low
or the total time is sufficiently long, our method yields accurate quasi-static solutions with
contact.
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Figure 5.4: Snapshots at different times and varying damping coefficients µ̃ show a rod
pushed into the surface of a sphere.

5.6.2 Rod Insertion and Removal in a Helical Tube

The aim of this numerical application is to assess the correctness of the proposed insertion
and removal approach. A straight rubber rod is inserted into a tube containing a helix
and is then removed (Fig. 5.5). The surface is the same as the one used in the previous
chapter (Fig. 4.5). It was modeled using a blobby model containing mb = 45 blobs, with
width ϱi = 2 × 10−3, threshold S = 2 × 10−5, and blob centers σi representing the discrete
centerline of the helical tube. The tube radius is 0.016 m and the helix radius is 0.03 m.
The mechanical parameters of the rod are: the length l = 0.7 m, the cross-section radius
Rb = 5× 10−3 m, Young’s modulus E = 5× 106 Pa, Poisson’s ratio ν = 0.5, and the shear
modulus G = E

2(1+ν)
. The numerical parameters are: the total time T = 3000 s and the

damping µ̃ = 3, leading to T
µ̃

= 1000. Contact handling parameters are: the number of

contact nodes mc = 100, the stiffness λ = 1000 N/m, the activation function parameter
z = 0.7× 107. The insertion and removal parameter s(t) evolves as follows:
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µ̃ Method Time nfev njev

1
implicit analytical 7 s 510 26
implicit numerical 14 s 480 26

explicit 37 s 6.3×103 -

0.1
implicit analytical 13 s 700 53
implicit numerical 40 s 680 54

explicit 2 min 2.0×104 -

0.01
implicit analytical 25 s 1.1×103 100
implicit numerical 2 min 1.7×103 160

explicit 26 min 2.5×105 -

0.001
implicit analytical 1 min 4.5×103 380
implicit numerical 13 min 1.4×104 1.3×103

explicit 4 h 2.6×106 -

Table 5.1: Performance comparison of implicit analytical, implicit numerical, and explicit
integration methods for various damping coefficients µ̃. Time (in seconds, minutes, or
hours), nfev (number of function evaluations), and njev (number of Jacobian evaluations)
are reported. Explicit methods do not compute Jacobians, hence njev is omitted. Best
performances (lowest time, nfev, or njev) are highlighted in bold.

s(t) =

{
2l(0.5− t

T
) t

T
≤ 0.5

2l( t
T
− 0.5) t

T
> 0.5.

(5.38)

This corresponds to complete insertion during the first half of the simulation and complete
removal during the second half. Fig. 5.5 shows four snapshots of the first half of the
simulation (the insertion phase). The removal phase is not shown in the snapshots because
it is visually similar to the insertion phase. The insertion and removal are performed correctly
and the rod is properly contained within the surface. Fig. 5.6 (left) shows the evolution of
the rod tip over time. The first contact occurs around t = 750 s, and the last one around
t = 2250 s. The results of the insertion and removal phases are nearly symmetrical. Fig.
5.7 shows the norm of the contact force at the rod tip. As expected, the contact forces
during the insertion and removal phases are also nearly symmetrical. This simulation took
8 minutes to complete, with nfev = 16, 405 and njev = 1, 728, which is relatively fast for
such a contact scenario. The explicit solver required prohibitively large computation time
when using a ratio of T

µ̃
= 1000. Thus, we reduced the total simulation time to T = 300 and

set µ̃ = 3 to increase damping, resulting in a ratio of T
µ̃
= 100. Fig. 5.6 (right) shows the

evolution of the rod tip position over time, comparing the explicit and implicit solvers. We
conclude that the results obtained with both solvers are in good agreement. Furthermore,
when comparing Fig. 5.6 left (T

µ̃
= 1000) and right (T

µ̃
= 100), we observe, as expected, that

the increased damping results in a smoother solution. This effect is particularly noticeable
at t = 225 s, corresponding to the final contact between the surface and the rod tip. The
explicit solver required 9 hours to complete, with nfev = 4, 738, 478, whereas the implicit
solver finished in 169 seconds, with nfev = 6, 998 and njev = 777.

82



Figure 5.5: A rubber rod insertion in a helical tube. From left to right, and top to bottom,
four snapshots taken at t = T

8
, T
4
, 3T

8
, and T

2
, corresponding to t = 375, 725, 1125, and 1500

s, respectively.

Figure 5.6: A rubber rod is inserted into, then removed from, a helical tube. This figures
display the evolution of the rod tip position over time. Left: T

µ̃
= 1000, and right: T

µ̃
= 100.

In summary, this numerical application shows the computational speed of the proposed
method, while verifying the correctness of our insertion and removal approach.

5.6.3 Catheter Insertion into a Carotid Artery

This numerical application tests our method in a simulation involving complex, noisy
real patient geometry. A straight catheter was inserted into a model of a carotid artery
constructed from a patient 3D rotational angiography data [104]. The surface is the same
as the one used in the previous chapter. It was modeled using a blobby model containing
M = 2573 blobs. The catheter mechanical parameters are: the length l = 0.065 m, the
cross-section radius Rb = 2.8× 10−4 m, Young’s modulus E = 300× 106 Pa, Poisson’s ratio
ν = 0.49, and the shear modulus G = E

2(1+ν)
Pa. Contact handling parameters are: the

number of contact nodes mc = 50, the activation function parameter z = 0.065 × 107, and
the stiffness λ = 1000 N/m. The insertion is performed linearly using s(t) = l

(
1− t

T

)
. The

numerical parameters are: the total time T = 0.1 s and the damping µ̃ = 0.001. Here,
T
µ̃
= 100, which is smaller than in the previous numerical example, as greater damping was

required for stability due to the increased difficulty of the simulation.
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Figure 5.7: A rubber rod is inserted into, then removed from, a helical tube. This figure
shows the evolution of the contact force norm at the rod tip over time.

Fig. 5.8 shows four snapshots of the simulation. The catheter is successfully inserted
and properly contained within the surface. The catheter experiences two blockages, which
occur due to small bumps on the surface, causing an effect similar to stick-slip friction.
Fig. 5.9 shows the position of the catheter tip over time, highlighting the stick-slip effect.
This simulation took 44 minutes to complete, with nfev = 33, 433 and njev = 1, 536. The
computation time of the explicit solver is not available, as the simulation exceeded a practical
time limit (i.e., several days) without completing. To summarize, this numerical application
highlights the applicability of the proposed method to complex contact scenarios.

5.7 Conclusion

The objective of this chapter was to propose a faster alternative for the dynamic Cosserat rod
model. To achieve this, we introduced a quasi-static assumption and adopted the damped
Lagrangian model, which allows the quasi-static evolution of the rod to be obtained by
integrating a minimal set of first-order explicit ordinary differential equations. However,
these equations can become stiff in complex contact scenarios, forcing explicit solvers to
take excessively small steps. To address this issue, we proposed an implicit method and
derived its Jacobian matrix analytically. This analytical derivation was made possible by
using implicit functions to model the contact surfaces. Additionally, contact handling was
discretized in arc length while remaining continuous in time.

In the numerical tests, we first verified that when damping is sufficiently low or the total
simulation time is long enough, the solutions converged accurately with negligible damping
effects. Secondly, we showed that implicit solvers reduced computation time by up to two
orders of magnitude compared to explicit solvers. Finally, we assessed the applicability of
the proposed method in a challenging contact scenario involving real patient geometry and
actual catheter materials.

Compared to the dynamic solution using the collocation method presented in Chapter 4,
the proposed method successfully reduced computation time from 44 hours to 8 minutes
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Figure 5.8: A catheter is inserted in a carotid artery model of a patient. From left to
right, four snapshots taken approximately at t = 0.025, 0.064, 0.074, and 0.1 s. In the second
snapshot, the catheter is blocked by a small bump on the surface.

for the helical tube scenario (Section 4.7.2), and from 12 hours to 44 minutes for the
carotid artery scenario (Section 4.7.3). Although the time gain is substantial, achieving
accurate real-time simulation of catheter navigation procedures remains out of reach. To
further improve computation time, future work may include arc length integration using the
Magnus expansion and a collocation method, along with GPU or CPU parallelization of the
Jacobian matrix (∂q̇

∂q
) columns computation. Computation time might also benefit from the

application of the Kirchhoff assumptions, which simplify the problem to bending and torsion
only, effectively removing the stiff degrees of freedom associated with shear and extension.
In this work, friction was neglected. Indeed, incorporating a differentiable friction model
required for the implicit method is non-trivial, as discontinuities may arise between sticking
and slipping behavior. This limitation will be addressed in future work. Moreover, adopting
the static model necessitates the use of clamped-free boundary conditions. In contrast, the
free-free boundary conditions used in Chapter 4 lead to different rod deformation results.
Future work will involve comparing the clamped-free and free-free approaches and validating
them against experimental data.

85



Figure 5.9: A catheter is inserted in a carotid artery model of a patient. The figure shows
the catheter tip evolution over time and highlights the stick-slip effect.
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Chapter 6

Conclusion and Perspectives

6.1 Summary of Contributions

The primary objective of this dissertation has been to develop robust, computationally
efficient, and physically accurate numerical simulations for catheter navigation, specifically
addressing clinical challenges associated with endovascular procedures such as thrombectomy
for ischemic stroke treatment. The complexity and precision required for manually steering
flexible catheters through tortuous and varied patient-specific vascular anatomies highlight
the necessity for sophisticated computational tools. Central to this research is the one-
dimensional geometrically exact Cosserat rod model, chosen for its ability to accurately
capture large deformations, rotations, and intricate interactions encountered during catheter
navigation. However, the numerical resolution of this model has been constrained by
significant numerical instabilities, computational inefficiencies, and the intricate modeling
required for contact and frictional interactions.

To address these challenges, this dissertation contributes to both theoretical frameworks
and computational methodologies across multiple interconnected stages. Initially, the
development of a novel dynamic numerical method using orthogonal collocation with
Chebyshev polynomials was introduced to robustly overcome singularities intrinsic to
boundary value problems of dynamic Cosserat rods. This numerical method, accompanied
by an analytical derivation of the Jacobian matrix, significantly improved the robustness,
particularly compared to traditional approaches like the shooting method. Numerical
validations demonstrated the superiority of the approach, particularly in challenging
scenarios involving soft rod materials, large deformations, and very small time steps.
Through comprehensive testing across multiple nonlinear static and dynamic benchmark
cases from the literature, positional errors were less than 0.05% deviation from analytical
solutions in static tests and below 0.9% when compared to established dynamic methods.

Further analysis into the computational aspects of the orthogonal collocation method
revealed important insights. By increasing polynomial degrees, ill-conditioned numerical
problems transitioned to well-conditioned ones, improving solver convergence and stability.
It was also highlighted that higher polynomial degrees, although improving robustness,
increased computational times considerably, caused by the increase of Jacobian dimensions.
Detailed profiling indicated that approximately two-thirds of the computational time was

87



dedicated to Jacobian matrix computations, predominantly in arc length integrations. These
findings identified clear opportunities for significant computational acceleration through
parallelization.

Expanding upon the orthogonal collocation framework, this dissertation made additional
advancements by developing a new formulation to address free-free boundary conditions,
beyond the initially investigated clamped-free boundary condition scenarios, which represents
an important extension for catheter steering. A method for integrating concentrated penalty-
based contact forces as distributed loads within the continuous Cosserat rod equations
was proposed, addressing critical gaps in prior literature. Furthermore, implicit surface
modeling was employed to improve computational efficiency in collision detection processes,
significantly reducing computational time and memory usage. Numerical validations
employing realistic catheter navigation scenarios, including patient carotid artery geometries
and realistic catheter material properties, demonstrated not only the practical applicability of
the proposed method but also its computational robustness at significantly high polynomial
degrees (up to 500), allowing accurate simulations even under very small time steps without
the previously required artificial numerical damping.

Despite these improvements, the computational time associated with dynamic simulations
still posed practical constraints. Recognizing the limitations inherent to such scenarios,
especially in clinical environments requiring fast simulations, this research introduced a quasi-
static approach justified by the minimal inertial effects observed during typical slow catheter
insertion procedures. This quasi-static formulation leveraged a damped Lagrangian strain
parameterization framework, significantly reducing degrees of freedom. Although efficient
in terms of degrees of freedom, the resulting equations were stiff, necessitating prohibitively
small time steps for the time integration of generalized coordinates. To address this issue,
we employed implicit time integration. This solution was enabled by the smoothness of
implicit surface modeling, which also facilitated the analytical derivation of the Jacobian
matrix. Performance comparisons demonstrated significant computational improvement,
with reductions in computation time of up to two orders of magnitude compared to explicit
solvers, and one order of magnitude faster than the collocation method in dynamic regimes.

A fundamental principle guiding this research has been transparency and reproducibility.
Therefore, all implementations developed throughout this dissertation have been made
publicly accessible via an open-source repository.

The contributions made in this dissertation advance the state-of-the-art in the dynamic
and quasi-static simulation of Cosserat rods, specifically tailored to catheter navigation.
However, several limitations remain that define the scope and clinical relevance of this work.
Despite these efficiency gains, the simulations do not yet achieve real-time performance,
which limits their immediate applicability in clinical procedures. Additionally, the
simulations focus solely on catheter behavior, excluding other essential devices such as stent
retrievers, guidewires, and introducers. This narrows the ability to fully represent actual
endovascular interventions. While the methods were tested numerically using patient-specific
vascular geometries, the results have not been directly confirmed through experimental
or clinical studies, leaving the predictive accuracy under real-world conditions uncertain.
The model also omits the deformable response of blood vessels to catheter interactions and
changes in internal pressure, potentially missing critical biomechanical feedback mechanisms
present in practice. Furthermore, the effects of blood flow on catheter navigation and
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frictional behavior are entirely neglected, simplifying the model but overlooking important
fluid-structure interactions that could influence catheter dynamics.

Another simplification concerns the initial geometry of the catheter, which is modeled
as straight, whereas real catheters are stored in a coiled configuration that can lead to
residual plastic deformations, which may persist when the catheter is deployed. Finally, the
penalty-based method used to simulate frictional contact, though computationally efficient,
may inadequately capture the complex, nonlinear interactions occurring during real catheter-
vessel contacts.

These limitations offer insights that help define the boundaries of this research and guide
the future directions explored in the following perspectives section.

6.2 Perspectives

A key limitation of this work lies in computational efficiency, primarily due to the
intensive evaluation of the numerical integrations required for each column of the Jacobian
matrix during orthogonal collocation. Several strategies could help address this challenge.
Parallelization techniques applied to the computation of the Jacobian columns, including the
use of multicore processors or GPU acceleration, offer promising avenues to reduce simulation
runtimes. Another important direction involves gaining a deeper understanding of how
increasing the polynomial degree in the collocation method transforms an ill-conditioned
dynamic boundary value problem into a well-conditioned one. Such insights could guide the
development of approaches that employ lower polynomial degrees to reduce the Jacobian
matrix’s dimension, thereby improving computational efficiency. Additionally, simplifying
the modeling assumptions without compromising accuracy can further reduce computational
demands. For example, adopting Kirchhoff’s assumption, which neglects the stiff degrees of
freedom associated with shear deformation and extensibility, provides a means to reduce
complexity while preserving essential physical fidelity.

Beyond computational considerations, refining the frictional contact model remains
an important objective. This study employed a penalty-based method for its simplicity.
However, this approach does not fully capture the complex nonlinear interactions between
catheters and vascular walls. Future research should explore complementarity-based
formulations, such as nonlinear complementarity problems, to achieve a more accurate
representation of contact mechanics, though these methods may substantially increase
computation time. Another promising area is the development of inverse problem
formulations that enable physicians to define objectives at the distal end, such as target
positions or orientations, and compute the required proximal displacements and rotations to
achieve these outcomes.

Among these various perspectives, the two subsequent subsections focus respectively on
the estimation of the reference curvature for the catheter and on the application of machine
learning methods to solve the Cosserat rod model. We have carried out preliminary studies
of both topics, but they still require more in-depth analysis. For instance, physics-informed
neural networks (PINNs) have recently emerged as an alternative for solving physical models
[59], but to the best of our knowledge, no effective PINN-based formulation has yet been
developed for Cosserat rods. The preliminary work presented here aims to identify the key
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scientific challenges that need to be addressed to enable the successful application of this
approach.

6.2.1 Estimating the Reference Curvature

Throughout this dissertation, the catheter’s reference configuration has been assumed to
be perfectly straight. In practice, however, catheters are often packaged in a coiled
configuration to accommodate their considerable lengths. In addition, many catheters
are intentionally pre-curved at the distal end to facilitate passage through vascular
bifurcations. As a result of material plasticity and design features, the actual reference
configuration deviates substantially from a straight shape. This initial curvature influences
the catheter’s mechanical behavior, particularly its deformation and interactions with vessel
walls during navigation within the vascular network. Accurately accounting for this reference
configuration is therefore essential to ensure the physical fidelity of numerical simulations.

The influence of the reference configuration is explicitly accounted for in the strain
definition:

ϵ = ξ − ξo (recall 2.5)

Here, ξ = (KT ,ΓT )T denotes the space-rate twist, where K represents the angular
component and Γ the linear component, while ξo = (KT

o ,Γ
T
o )

T corresponds to its reference
configuration counterpart. Throughout this work, we simplified the study by assuming
a straight reference configuration, yielding ξo = (0, 0, 0, 1, 0, 0)T . An essential direction for
future research involves developing methods to accurately compute the actual reference twist
ξo.

To address this, we propose an initial method for estimating the intrinsic curvature
Ko. This formulation assumes a planar reference configuration and applies Kirchhoff’s
assumption, which simplifies the model by neglecting shear and extensional effects through
the condition Γ = Γo = (1, 0, 0)T . The first step of the envisioned method consists of an
experimental pipeline designed to reconstruct the catheter’s configuration under gravitational
loading. A segment of the catheter intended for numerical simulation is physically clamped,
and its centerline r is reconstructed using multi-view stereo vision techniques [111]. The
second step of this procedure is to determine the intrinsic curvature Ko using the centerline
r. Starting from the linear elastic constitutive relation that links the internal moment c
(expressed in the inertial frame) to the curvature, we have:

c = RHa(K −Ko), (6.1)

where R is the rotation matrix representing the cross-sectional orientation, and Ha is the
bending and torsional stiffness matrix. Rearranging this expression allows us to isolate Ko:

Ko = K −H−1
a RT c. (6.2)

DeterminingKo thus requires the curvatureK, the internal moment c, and the orientation
R. Given the reconstructed centerline r, the orientation R can be computed using the
method of parallel transport. This method generates an orthonormal frame along the curve

90



by smoothly propagating an initial orientation in a way that minimizes rotation around
the tangent direction [35]. The curvature K can subsequently be derived from R by
approximating its spatial derivative through finite differences:

K = (RTR′)∨, (6.3)

To compute the internal moment c, we consider the static equilibrium of the catheter
under gravity, described by the following differential equations:

n′ = −ρAG,
c′ = −r′ × n = −(RΓ)× n = −d1 × n,

(6.4)

where n is the internal force, ρ the material density, A the cross-sectional area, G the
gravitational acceleration vector, and d1 the first column of the rotation matrix R, which
corresponds to r′ under Kirchhoff’s assumption Γ = (1, 0, 0)T . These equations are integrated
backward from the free end (X = l), with boundary conditions n(l) = 0 and c(l) = 0, to
obtain c(X).

Tested on synthetic data, this approach provided a good approximation of Ko. However,
a critical extension of this work is to relax the current simplifying assumptions, enabling the
computation ofKo corresponding to arbitrary three-dimensional reference configurations and
validating the method against experimental data. The main challenge lies in the limitations
of the parallel transport technique: while it provides a unique and consistent orientation
along curves in two dimensions, in three dimensions it may yield frames that do not capture
the true rotational field of the catheter’s cross sections. Addressing this limitation will be a
key focus of future work.

6.2.2 Physics-Informed Neural Networks

This subsection focuses on applying PINNs framework to the static mode of Cosserat rods,
which serves as a preliminary step toward the goal of extending the approach to dynamic
scenarios. In the following, we briefly introduce the formulation of the static Cosserat rod
boundary value problem in the inertial frame (in contrast to the mobile frame formulation
presented in (2.14) (2.15)). We then propose a solution based on PINNs and demonstrate
its applicability through a numerical example. The subsection concludes with a discussion
on the advantages, limitations, and future research directions of this approach.

Boundary Value Problem

We consider the static clamped-free boundary value problem of a Cosserat rod formulated
in the inertial frame, as described in [61]. The governing equations describe the evolution
of the rod’s position r, orientation R (as a rotation matrix), internal force n, and internal
moment c along the arc length X ∈ [0, l], where l is the length of the rod:
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
r′

R′

n′

c′

 =


RΓ

RK̂
−n̄

−r′ × n− c̄

 (6.5)

The rod is subjected to distributed force n̄ and distributed moment c̄. These equations
are complemented by the following boundary conditions, representing a clamped base at
X = 0 and a free end at X = l:

r(0) = 03×1, R(0) = 13×3, n(l) = n+, c(l) = c+ (6.6)

The strain measures of the rod are given by the deviations Γ − Γ0 and K − K0,
corresponding to the linear and angular space rates relative to their reference configurations.
These strains are related to the internal force n and internal moment c through linear elastic
constitutive laws:

Γ = Γo +H−1
l RTn

K = Ko +H−1
a RT c

(6.7)

In these relations, Hl and Ha are the shear-extension and bending-torsion stiffness
matrices, respectively.

Solution via Physics-Informed Neural Networks

To solve the boundary value problem (6.5) (6.6) using PINNs, we define the neural network
Nθ, parameterized by weights and biases θ, which maps the rod’s arc length X ∈ [0, l] to the
corresponding internal moment cθ(X):

Nθ : X 7→ cθ(X). (6.8)

Similar to collocation methods, PINNs provide a continuous functional approximation
and enforce the equilibrium equations and boundary conditions at a finite set of collocation
points {si}mi=1 distributed along the rod’s arc length. We assume that the first collocation
point s1 coincides with the clamped endX = 0, and the last collocation point sm with the free
end X = l. In contrast to collocation methods, which directly compute unknown quantities
at collocation points, the PINN approach optimizes the network parameters θ through a
physics-informed loss function. The total loss function L(θ) guiding the optimization is
constructed as a weighted combination of boundary condition enforcement and equilibrium
equation residuals:

L(θ) = αLBC(θ) + βLODE(θ), (6.9)

with α and β serving as scalar factors to adjust the contribution of each component. The
boundary loss term LBC(θ) ensures compliance with the prescribed boundary condition for
the internal moment at the rod’s free end X = l (6.6). Specifically, the predicted moment
cθ(l) is constrained to match the given boundary moment c+:
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Figure 6.1: Comparison of the position components x, y, and z along the arc length between
the shooting method (reference solution) and the PINN approximation. The PINN closely
reproduces the rod configuration, showing good agreement with the reference solution across
all position components.

LBC(θ) = |cθ(l)− c+|2 . (6.10)

The physics-informed term LODE(θ) enforces the equilibrium equations at each collocation
point si, excluding the boundary point at the free end. At these points, the spatial derivative
c′θ(si), computed through automatic differentiation, is compared against the derivative
prescribed by the rod’s moment equilibrium equation. The automatic differentiation is
enabled by the network using the arc length X as its input. The resulting discrepancy
constitutes the residual of the ordinary differential equation, contributing to the loss function:

LODE(θ) =
1

m− 1

m−1∑
i=1

|c′θ(si)− c′(si)|2 , (6.11)

where the analytical derivative c′(si) comes from the moment equilibrium (6.5):

c′ = −r′ × n− c̄.

To evaluate this equilibrium derivative, the internal force n and rotation matrix R must
be computed. The internal force n is determined through backward integration from the
boundary condition at the rod’s free end X = l, namely n(l) = n+. The rotation matrix R
is obtained by forward integration starting from the clamped base X = 0 with R(0) = 13×3.
The angular space rate K required for this integration is reconstructed from the constitutive
relation (6.7), using the neural network’s prediction cθ.

The optimal network parameters θ⋆ are found by minimizing the total loss function using
gradient-based optimization:

θ⋆ = argmin
θ

L(θ), (6.12)

with gradients ∇θL(θ) computed via automatic differentiation techniques.
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Figure 6.2: Comparison of the internal moment components x, y, and z along the arc
length between the shooting method (reference solution) and the PINN approximation. For
the y and z components, the PINN captures the overall moment with good accuracy. In
the x-component, the larger relative discrepancies observed are due to the much smaller
magnitude of the moment x compared to y and z, making the error appear more significant.

Numerical Application

This numerical example considers large displacements and coupled deformations, represent-
ing a benchmark problem extensively investigated in the literature [93, 79, 95]. The setup
involves a curved beam, shaped as one-eighth of a circle with a radius of 100 m, lying in the
xz-plane. An out-of-plane tip force of magnitude |n+| = 1550 N is applied at the beam’s
free end along the y-axis. The beam features a square cross-section with sides of unit length
(1 m). Material properties are defined by a Young’s modulus of E = 1 × 107 Pa, a shear
modulus of G = E/2, and a cross-sectional area of A = 1 m2.

The neural network employed consists of a single hidden layer containing 200,000 neurons,
using the hyperbolic tangent activation function. The network is implemented in PyTorch

and trained using the Adam optimizer with an initial learning rate of 0.01, decayed
progressively by an exponential learning rate scheduler with a decay factor γ = 0.999.
Training is performed over 3000 epochs using full-batch gradient descent, with all 20
collocation points uniformly distributed along the rod’s arc length. The total loss function
balances the contributions from the boundary condition and the equilibrium equation with
weighting factors of α = 1 and β = 100, respectively.

To evaluate the performance of the proposed PINN method, its predictions are compared
against the shooting method, which is considered here as the reference solution. The
shooting method solves the boundary value problem in 0.251 seconds, whereas training the
PINN requires approximately 220 seconds. Fig. 6.1 and Fig. 6.2 present the comparison
of the position and moment components, respectively, along the rod’s arc length. As
shown in Fig. 6.1, the PINN reproduces the configuration of the rod with reasonable
agreement across all position components, with minor discrepancies observed. In contrast,
the moment components (Fig. 6.2) exhibit more noticeable differences. While the PINN
captures the general trends for the y and z components of the internal moment, larger
relative discrepancies are observed in the x-component. This behavior is attributed to the
much smaller magnitude of the moment x compared to y and z, which amplifies the relative
error despite small absolute differences. The convergence behavior of the PINN during
training is illustrated in Fig. 6.3, where the total loss function decreases over 3000 epochs,
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Figure 6.3: Evolution of the total loss function during PINN training over 3000 epochs,
shown on a logarithmic scale. The steady decrease confirms convergence, with the observed
oscillations resulting from the learning rate schedule and optimizer behavior.

with oscillations resulting from the learning rate decay and optimizer updates. These results
indicate that the PINN can approximate the solution of the Cosserat rod boundary value
problem with a good level of accuracy, though at a higher computational cost relative to the
shooting method.

Discussion

The application of PINNs to the static boundary value problem of Cosserat rods demon-
strates that this approach can approximate rod configurations with an acceptable level of
accuracy when compared to established numerical methods, such as the shooting method.
The continuous, mesh-free representation of the solution, combined with the inherent
parallelism of neural networks, provides a flexible framework capable of approximating
the rod behavior. Once trained, the network offers fast inference times, which could be
advantageous in scenarios where repeated evaluations of a learned solution are required.

However, several limitations were identified in this implementation. The training
phase, in particular, remains computationally expensive relative to classical solvers. For
the benchmark problem considered, the PINN required approximately three minutes of
training time, considerably longer than the shooting method’s execution. Furthermore,
the convergence of the PINN solution is sensitive to various hyperparameters, including
the learning rate schedule, loss term weights, and the distribution of collocation points.
Adjusting these parameters remains a largely empirical process, and achieving consistent
convergence across different problem settings is not guaranteed. Additionally, the trained
network is specific to a single scenario and changes in boundary conditions or distributed
forces necessitate retraining.
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The current formulation also requires numerical integration of the rotational kinematics to
evaluate residuals in the loss function. This integration reflects the flexibility of the approach,
allowing neural networks to be combined with classical numerical methods to ensure that
physical constraints are properly enforced. However, this reliance also partially offsets the
mesh-free nature of the PINN. Additionally, the need for numerical integration contributes
to the overall computational cost, significantly increasing the training time. Furthermore, in
this study, a wide but shallow network provided better performance than deeper alternatives.
The underlying reasons for this behavior are not yet fully understood, indicating the need
for further investigation into the relationship between network depth and convergence.

These observations suggest several directions for future research. Reducing or removing
the reliance on numerical integration, potentially by directly predicting orientations while
ensuring consistency with the SO(3) group, could simplify the framework and improve
training efficiency. Exploring systematic strategies for hyperparameter selection, including
adaptive loss weighting and automated tuning methods, may improve the robustness and
generality of the approach. Finally, extending the framework to dynamic problems will
further assess the applicability of PINNs to more complex physical systems.
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patient data. Theses, Université des Sciences et Technologie de Lille - Lille I, May 2014.
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A Résumé étendu en français

A.1 Introduction

L’accident vasculaire cérébral (AVC) ischémique, est l’une des principales causes de décès et
d’invalidité à long terme dans le monde [5]. Il résulte de l’occlusion d’un vaisseau sanguin
cérébral par un thrombus, ou caillot sanguin, qui restreint de manière critique l’apport
d’oxygène et nutriments aux tissus cérébraux. Bien que les médicaments thrombolytiques
constituent une première ligne de défense, leur efficacité est limitée, ce qui nécessite une
approche interventionnelle dans de nombreux cas. La thrombectomie endovasculaire s’est
imposée comme une procédure recommandée où un cathéter, un tube long, fin et flexible,
est navigué à travers le système vasculaire du patient, généralement depuis l’artère fémorale,
jusqu’au site du caillot. Une fois sur place, le thrombus peut être extrait, soit par aspiration,
soit grâce à des dispositifs médicaux tels qu’un ”stent retriever”, rétablissant ainsi le flux
sanguin.

Le principal défi de cette procédure réside dans la complexité de la navigation du
cathéter. Le praticien doit guider le cathéter à travers un réseau de vaisseaux sanguins
complexe et tortueux, dont l’anatomie varie selon les patients. Le geste est donc effectué
sous le rétro-contrôle visuel d’images d’angiographie, révélant le réseau vasculaire, et
d’images fluoroscopiques permettant de suivre en temps réel le cathéter et autres dispositifs
thérapeutiques. Ces images reposent cependant sur les rayons X, ce qui limite le temps
de traitement (rayonnement cumulé) et rend parfois difficile leur interprétation (images en
projection). Ainsi, une navigation de cathéter efficace repose sur l’expérience du praticien et
sur son interprétation en temps réel de l’imagerie médicale. Pour relever ce défi, cette thèse
vise à développer une simulation numérique de la navigation de cathéter pour la planification
préopératoire et la formation. Un tel outil pourrait aider à sélectionner les cathéters les plus
adaptés à la tortuosité du trajet et à planifier les trajectoires les plus sûres et les plus efficaces
pour atteindre l’occlusion.

Les objectifs principaux sont de : (1) développer une résolution numérique robuste pour
un modèle cathéter passif et non actionné ; (2) prendre en compte les interactions de contact
avec et sans frottement entre le cathéter et les parois des vaisseaux ; et (3) modéliser les
actions du médecin en simulant le déplacement et la rotation de l’extrémité proximale du
cathéter. Nous supposons que les vaisseaux sanguins sont rigides et fixes, et nous négligeons
les forces hydrodynamiques du flux sanguin, en nous concentrant exclusivement sur la
mécanique du cathéter.

Ces objectifs sont poursuivis sous le principe directeur de la création d’une simulation
prédictive, définie par trois piliers : la précision, la performance en temps réel et la spécificité
au patient [6]. La précision, traitée dans cette thèse comme une contrainte forte, englobe la
fidélité physique dans la modélisation du comportement du cathéter, la précision numérique
dans la résolution des équations directrices et la robustesse. La performance en temps réel,
considérée comme une contrainte souple, correspond à des vitesses de calcul permettant à
la simulation de s’exécuter au moins aussi vite que le système physique qu’elle modélise.
L’adaptation au patient, traitée également comme une contrainte souple, nécessite que la
simulation puisse être configurée avec les données anatomiques individuelles.
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Ce travail s’inscrit dans le cadre du projet ANR PreSPIN (ANR-20-CE45-0011), un effort
collaboratif visant à construire une châıne de traitement prédictive pour la planification
des interventions pour l’AVC ischémique. Cette châıne intègre trois étapes principales
: premièrement, la génération de modèles vasculaires spécifiques au patient à partir de
l’angiographie par résonance magnétique [7, 8] ; deuxièmement, la simulation de la navigation
du cathéter, qui est le sujet central de cette thèse ; et troisièmement, des simulations de
dynamique des fluides computationnelle pour prédire l’hémodynamique post-intervention.
Le projet implique un consortium multidisciplinaire de laboratoires de recherche et de
partenaires cliniques, garantissant que les outils développés soient à la fois innovants et
cliniquement pertinents.

Dans le chapitre 2, pour garantir la fidélité physique, nous adoptons le modèle
géométriquement exact de poutre de Cosserat pour modéliser le cathéter, car il offre un
bon équilibre entre précision et complexité de modélisation. Les trois chapitres suivants
exposent les contributions principales de cette thèse.

Premièrement, dans le chapitre 3, nous abordons les objectifs de précision numérique
et de robustesse. Nous formulons le modèle de poutre de Cosserat dynamique comme un
problème aux limites (PAL) spatial et introduisons une méthode de collocation orthogonale
pour sa résolution. Une découverte clé est que cette approche numérique surmonte avec
succès la singularité fondamentale qui apparâıt dans les simulations dynamiques de poutres
souples, en particulier avec de petits pas de temps, assurant ainsi une solution robuste. Une
partie de ce travail a été publiée à IEEE IROS 2023 [92].

Deuxièmement, dans le chapitre 4, nous nous concentrons sur l’adaptation spécifique
au patient et le réalisme clinique. La méthode de collocation est étendue pour inclure
les manipulations de l’extrémité proximale qui reproduisent les gestes du médecin, ainsi
que le contact avec frottement avec l’environnement. Pour modéliser efficacement la
géométrie complexe des vaisseaux sanguins, nous les représentons par des surfaces implicites,
une technique qui accélère considérablement la détection de contact. L’applicabilité à la
navigation de cathéter est démontrée en utilisant un modèle d’artère carotide extrait de
données réelles de patient. Cette contribution a été publiée à IEEE IROS 2024 [103].

Troisièmement, dans le chapitre 5, nous nous attaquons à l’objectif de performance en
temps réel. Nous passons d’un régime dynamique à un régime quasi-statique et employons
une méthode de réduction lagrangienne. Pour résoudre les équations raides qui en résultent,
nous utilisons des schémas d’intégration temporelle implicites. L’une des contributions
est la dérivation analytique de la matrice jacobienne du système, rendue possible par la
différentiabilité du modèle de surface implicite des parois vasculaires, ce qui conduit à des
gains de performance significatifs. Cette contribution a été publiée dans la revue IEEE RA-L
[112].

La thèse se termine par le chapitre 6, qui résume nos résultats et discute des perspectives
futures. Cette recherche s’engage en faveur de la science ouverte ; toutes les contributions clés
sont accompagnées d’un code source accessible au public pour promouvoir la transparence
et la reproductibilité.
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A.2 État de l’art de la modélisation des poutres

Ce chapitre propose une revue des techniques de modélisation des poutres afin d’identifier
le cadre le plus approprié pour la simulation de la navigation de cathéter, puis examine
les méthodes numériques de l’état de l’art pour la résolution du modèle choisi. L’objectif
est aussi d’établir un fondement théorique qui justifie les contributions présentées dans les
chapitres suivants de cette thèse. Dans un premier temps, le problème de la navigation de
cathéter dans les vaisseaux sanguins est généralisé à la simulation d’une poutre élancée
manipulée à son extrémité proximale tout en subissant un contact avec frottement à
l’intérieur de surfaces tubulaires. Dans ce cadre, la poutre représente le cathéter, tandis
que les surfaces tubulaires modélisent les parois des vaisseaux sanguins.

L’examen des modèles de poutres couvre un éventail d’approches, chacune présentant
des compromis distincts entre précision et coût de calcul. D’un côté, la mécanique des
milieux continus tridimensionnelle offre la plus grande fidélité en modélisant la poutre comme
un volume solide, capable de capturer tous les modes de déformation sans simplification
géométrique. Cependant, sa discrétisation par la méthode des éléments finis aboutit à
un système dont la résolution exige des calculs intensifs, le rendant inadapté pour les
performances en temps réel requises dans les contextes de simulation clinique [28]. De l’autre
côté, des modèles simplifiés tels que le modèle à courbure constante [39], le modèle de corps
pseudo-rigide, et le modèle masse-ressort offrent une efficacité de calcul au détriment de la
précision physique. Ces modèles font soit des hypothèses géométriques restrictives, comme
une courbure constante par morceaux, soit reposent sur des paramètres discrétisés difficiles
à relier directement aux propriétés matérielles d’un cathéter réel [49]. Les méthodes basées
sur les données, souvent fondées sur des réseaux de neurones, proposent une alternative en
apprenant le comportement de la poutre à partir de données, mais leur pouvoir prédictif est
limité par la portée des données d’entrâınement et elles peuvent échouer à généraliser ou à
respecter les lois de conservation physiques [59].

Entre ces extrêmes se trouvent les modèles de la mécanique des milieux continus
unidimensionnels, qui représentent la poutre comme une courbe dans l’espace. Bien que les
théories linéaires classiques comme celles d’Euler-Bernoulli et de Timoshenko soient efficaces
en calcul, leur applicabilité est limitée aux petites déformations et rotations, une condition
non satisfaite lors de la navigation de cathéter. Par conséquent, la théorie des poutres de
Cosserat est identifiée comme le choix le plus approprié. Elle conduit à des modèles qui
offrent un compromis équilibré, capturant de grandes déformations non linéaires, y compris
l’extension, le cisaillement, la flexion et la torsion, tout en étant plus efficaces en calcul que
les modèles tridimensionnels complets. Le modèle de Cosserat représente la poutre comme
une courbe continue munie d’un repère mobile, paramétrée par l’abscisse curviligne X, où
la configuration en chaque point est décrite par une pose g(X) ∈ SE(3), qui encode à la fois
la position et l’orientation de la section transversale.

La cinématique de la poutre de Cosserat est décrite à l’aide d’une formulation sur les
groupes de Lie, où le taux de variation spatial et la vitesse sont capturés respectivement
par les torseurs de déformation ξ = (g−1g′)∨ et de vitesse η = (g−1ġ)∨, où g′ et ġ sont
respectivement les dérivées spatiale et temporelle. En supposant une élasticité linéaire, la loi
de comportement relie le torseur des contraintes Λ à la déformation ϵ = ξ− ξo via la matrice
de raideur de Hooke H, de sorte que Λ = Hϵ. L’indice •o désigne une valeur au repos. Le
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comportement du système est régi par des équations d’équilibre dérivées des principes de
Newton-Euler. L’équilibre statique est décrit par l’équation différentielle :

Λ′ − adTξ Λ + F̄ = 0

où Λ′ est la dérivée spatiale du torseur des contraintes Λ, adTξ est l’opérateur co-adjoint
associé au torseur des déformations ξ, et F̄ est le torseur des forces externes distribuées. Le
cas dynamique étend ceci en incorporant les termes inertiels :

Mη̇ − adTηMη = Λ′ − adTξ Λ + F̄

où M est la matrice d’inertie et η̇ est le torseur des accélérations.
Le modèle de Cosserat étant sélectionné, le chapitre procède à l’examen de ses

méthodes de résolution numérique de l’état de l’art, les classant en trois grandes familles.
Premièrement, les méthodes des différences finies, telles que le modèle de poutre élastique
discrète [67, 62], discrétisent la poutre et approximent les dérivées spatiales de manière
algébrique. Bien que rapides en calcul par pas de temps, ces méthodes peuvent souffrir
d’instabilités numériques, nécessitant de petits pas de temps couplés à la taille de la
discrétisation spatiale, ce qui peut nuire aux performances globales.

Deuxièmement, les approches par PAL formulent les équations de la poutre dans le
domaine spatial, en considérant des conditions aux limites telles qu’encastré-libre ou libre-
libre. La méthode de tir résout ce problème en calculant itérativement les conditions initiales
pour satisfaire les contraintes terminales. Bien qu’efficace dans certains cas statiques [61],
son application au problème dynamique est fondamentalement instable pour les matériaux
souples ou les petits pas de temps en raison d’une singularité sous-jacente dans la formulation
de la commande optimale [66]. Alternativement, les méthodes de collocation approximent la
solution à l’aide de fonctions de base (par exemple, les polynômes de Tchebychev [78] ou les
B-splines [79]) et se sont révélées prometteuses pour les problèmes statiques [78], mais leur
application au PAL dynamique singulier reste une question de recherche ouverte.

Troisièmement, un dernier groupe de méthodes, en particulier celles employant une
formulation lagrangienne, réduit le modèle de Cosserat continu à un ensemble fini d’équations
différentielles ordinaires. Des approches comme la méthode des éléments finis géométriquement
exacte ou les techniques de réduction modale utilisant des fonctions de base comme les
polynômes de Legendre se sont avérées précises et efficaces [60, 89]. Cependant, les équations
résultantes sont parfois raides numériquement, en particulier pour les matériaux à fort
module de Young, nécessitant de petits pas de temps qui peuvent compromettre la capacité
à réaliser les calculs temps réel.

En conclusion, cette revue révèle qu’aucune méthode existante pour résoudre les poutres
de Cosserat n’atteint la combinaison souhaitée de précision, de robustesse et de vitesse temps
réel nécessaire à la simulation prédictive de cathéter.
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A.3 Résolution de la singularité dans le problème aux limites des
poutres de Cosserat dynamiques

Ce chapitre aborde un défi fondamental dans la simulation des poutres de Cosserat
dynamiques : la singularité inhérente du PAL qui les régit. Comme établi par Boyer et
al. [66], bien que l’intégration temporelle implicite puisse régulariser ce PAL, la singularité
réapparâıt lors de la simulation de poutres souples ou lors de l’utilisation de pas de temps
inférieurs à une valeur critique, ∆tc. Cette limitation restreint l’applicabilité des solveurs de
PAL standards, tels que la méthode de tir, en particulier dans le contexte de la navigation
de cathéter, qui implique des instruments flexibles et nécessite de petits pas de temps
pour atteindre un niveau acceptable de précision. L’objectif principal de ce chapitre est
de développer et de valider une méthode numérique capable de surmonter cette singularité,
permettant ainsi des simulations dynamiques robustes et précises sur un ensemble plus large
de propriétés matérielles et de résolutions temporelles.

À cette fin, nous proposons une approche basée sur une méthode de collocation
orthogonale, en substitut à la méthode de tir, couramment utilisée mais instable. L’étape
initiale et centrale de notre méthode est une réduction de l’espace de configuration où
le champ de contraintes internes de la poutre, Λ(X), est approximé à l’aide d’une base
de polynômes de Tchebychev, connus pour leurs propriétés de stabilité numérique [80].
Le champ de contraintes continu est ainsi représenté par un ensemble fini de paramètres
inconnus, spécifiquement les valeurs de contrainte Λm ∈ R6×m à m nœuds de collocation
discrets, qui correspondent aux racines des polynômes de Tchebychev. La contrainte en tout
point le long de la poutre est alors interpolée par Λ(X) ≃ ΛmΦ(X), où Φ(X) est un vecteur
des fonctions de base.

Le problème est formulé comme un système d’équations algébriques non linéaires,
Rc(Λm) = 0, à résoudre pour les valeurs de contrainte inconnues Λm. Le résidu, Rc, est
construit en imposant l’équation d’équilibre dynamique à chacun des m− 1 premiers points
de collocation, garantissant que la dérivée spatiale de la contrainte calculée à partir de la
dynamique de la poutre corresponde à la dérivée obtenue par l’approximation de Tchebychev.
La condition aux limites distale, Λ(l) = F+, est imposée au dernier point de collocation.
Un élément essentiel de ce travail est la dérivation analytique de la matrice jacobienne
complète du système résiduel. Cette jacobienne analytique est cruciale pour l’efficacité et la
convergence du solveur itératif de recherche de racines, en particulier lorsque des polynômes
de haut degré sont nécessaires. La procédure globale de calcul du résidu est détaillée dans
l’Algorithme 1 (page 36).

La méthode de collocation proposée a été validée par une série de bancs d’essai numériques
statiques et dynamiques. En régime statique, la méthode a démontré une bonne précision,
avec des erreurs de position inférieures à 0.1% par rapport à une solution analytique pour
la flexion circulaire et inférieures à 0.5% par rapport à la méthode de tir dans des scénarios
plus complexes de flexion hélicöıdale et de force suiveuse. Ces tests ont également établi
que le temps de calcul est comparable à celui de la méthode de tir pour des faibles degrés
polynomiaux.

La contribution principale est démontrée en régime dynamique, où la méthode a été testée
sur des scénarios de plus en plus difficiles conçus pour déclencher la singularité. Dans une
simulation d’une poutre en porte-à-faux rigide, la méthode de tir n’a pas réussi à converger
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lorsque le pas de temps a été réduit à ∆t = 0.5 ms. La méthode de collocation a également
échoué initialement, mais a convergé avec succès après avoir augmenté le degré polynomial
à m = 70, produisant des résultats en accord avec un modèle lagrangien de référence. Cela
a conduit à l’hypothèse centrale du chapitre : l’augmentation du degré polynomial m de la
méthode de collocation abaisse le pas de temps critique ∆tc, surmontant ainsi la singularité
numérique.

Cette hypothèse a été testée et confirmée sur des bancs d’essai plus exigeants, y compris
le relâchement d’une poutre souple et courbée et un pendule en caoutchouc sous l’effet de
la gravité. La méthode de tir a échoué dans tous ces scénarios. En revanche, la méthode
de collocation a atteint la convergence de manière constante, à condition d’utiliser un degré
polynomial suffisamment élevé (m = 100 et m = 200, respectivement), et a produit des
résultats qui correspondaient étroitement au modèle lagrangien, avec des erreurs de position
inférieures à 0.9%.

En conclusion, ce chapitre présente et valide avec succès une méthode de collocation
orthogonale qui résout le problème de singularité dans le PAL dynamique des poutres de
Cosserat. La découverte clé est que le problème, bien que mal conditionné pour les solveurs
standards, peut être rendu bien conditionné en augmentant le nombre de fonctions de base
dans le schéma de collocation. Cette contribution élargit le domaine d’applicabilité du PAL
en robotique souple et continue. Cependant, cette robustesse a un coût de calcul ; les hauts
degrés polynomiaux requis pour les problèmes difficiles entrâınent des temps de simulation
plus longs par rapport à des formulations alternatives comme le modèle lagrangien. Le
chapitre suivant s’appuiera sur cette base robuste en y intégrant le contact avec frottement
pour créer un cadre de simulation complet pour la navigation de cathéter.

A.4 Poutres de Cosserat dynamiques en contact avec des surfaces
implicites

S’appuyant sur le solveur dynamique développé au chapitre précédent, ce chapitre aborde
l’objectif principal de la simulation de la navigation de cathéter. La méthode de collocation
est maintenant étendue pour incorporer la physique essentielle de l’interaction outil-tissu.
Cela implique trois améliorations : premièrement, l’adaptation de la formulation du PAL
pour modéliser des conditions aux limites libre-libre, nécessaires pour simuler la manipulation
de l’extrémité proximale du cathéter par le praticien ; deuxièmement, la mise en œuvre
d’une méthode efficace pour la gestion du contact avec frottement ; et troisièmement, la
représentation de géométries vasculaires complexes permettant des calculs géométriques
rapides, à très faible impact sur le temps de résolution.

La première contribution est l’extension de la méthode de collocation orthogonale pour
résoudre le PAL libre-libre, ce qui est essentiel pour simuler la manipulation du cathéter
par le praticien. Cela représente un défi, car le PAL libre-libre est sous-déterminé : il
manque de conditions aux limites suffisantes pour résoudre l’état de la poutre, laissant la
pose initiale g(0), la vitesse η(0) et l’accélération η̇(0) inconnues. Pour résoudre ce problème,
nous adoptons la stratégie de discrétisation temporelle proposée par Boyer et al. [66].
Cette approche utilise un schéma d’intégration temporelle implicite, basé sur la méthode
de Newmark, pour exprimer les conditions initiales inconnues en termes d’un ensemble plus
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restreint de paramètres : un vecteur de position proximale r0 et un vecteur de rotation Θ0.
Ces paramètres sont ensuite intégrés dans le cadre de la collocation en tant qu’inconnues. Par
conséquent, l’ensemble des variables résolues par la méthode itérative devient ces paramètres
de pose proximale ainsi que les valeurs de contrainte aux nœuds de collocation intérieurs. La
contrainte au premier nœud, Λ(0), n’est plus une inconnue à résoudre, mais est prescrite par
le torseur des forces externes proximales F−. Pour maintenir l’efficacité du solveur itératif
sous cette nouvelle formulation, une nouvelle dérivation de la matrice jacobienne est proposée
en tenant compte du nouvel ensemble d’inconnues.

La deuxième contribution réside dans la représentation des surfaces de contact et la
gestion des interactions. Pour permettre une détection de contact rapide au sein de
géométries complexes comme les vaisseaux sanguins, nous modélisons les surfaces à l’aide de
fonctions implicites basées sur le modèle de ”blobs” [105, 104]. La surface est définie comme
l’ensemble de niveau zéro d’un champ scalaire ζ(r), construit comme une somme de profils
de Cauchy Ψ pondérés centrés sur un squelette de points. La forme finale est donnée par :

ζ(r) = S −
mb∑
j=1

ϱjΨ

(
|r − σj|2

ϱ2j

)
où r est une position, S est un seuil, et pour chacun des mb points du squelette σj, ϱj est un
paramètre d’échelle lié au rayon local. Cette représentation est continûment différentiable,
permettant le calcul efficace de la distance signée ϕ(r) et de la normale à la surface w(r) en
tout point. Les forces de contact sont calculées à l’aide d’une méthode de pénalisation, où la
force normale est proportionnelle à la profondeur de pénétration, et un modèle de Coulomb
est utilisé pour le frottement tangentiel.

Un défi central abordé est l’intégration de ces forces de contact concentrées dans le cadre
du PAL, qui nécessite des forces distribuées. Nous proposons une méthode où la poutre est
discrétisée en segments, et la force de contact concentrée calculée au centre de chaque segment
est moyennée sur la longueur du segment pour produire une force distribuée constante par
morceaux, f̄c. La boucle de simulation globale, détaillée dans l’Algorithme 2 (page 61),
emploie un processus en deux étapes à chaque pas de temps : d’abord, le PAL est résolu
dans un état non contraint pour prédire le mouvement de la poutre, ensuite les forces de
contact sont calculées sur la base de cette prédiction, et enfin, le PAL est résolu à nouveau
dans un état contraint intégrant ces forces.

La méthode été validée par trois applications numériques. Premièrement, un scénario de
contact longitudinal élastique a été utilisé pour vérifier la précision du solveur de PAL libre-
libre par rapport à une solution analytique, démontrant une conservation correcte de l’énergie
lors de l’impact et du rebond. Deuxièmement, un test impliquant l’insertion d’une poutre
dans un tube hélicöıdal a validé avec succès le modèle de contact avec frottement, montrant
que l’augmentation du coefficient de frottement entravait correctement le mouvement de la
poutre.

Le test final a consisté à simuler une insertion de cathéter dans un modèle d’artère
carotide, extrait de données d’imagerie clinique. Cette application a servi de démonstration
et intègre tous les composants développés : le solveur dynamique libre-libre, la géométrie
de surface implicite complexe et le modèle de contact avec frottement. La simulation a
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reproduit la navigation du cathéter, en utilisant ses propriétés matérielles réelles, à travers
le chemin vasculaire tortueux sans nécessiter l’amortissement artificiel ou l’assouplissement
du matériau qui étaient nécessaires dans les travaux précédents utilisant la méthode de tir,
moins stable [103].

En conclusion, ce chapitre présente une méthode robuste pour simuler la navigation
dynamique de cathéter. La combinaison du solveur de collocation avec la modélisation
de surface implicite et un schéma d’intégration des forces de contact permet la simulation
de scénarios réalistes. Cependant, le coût de calcul élevé de la méthode, dû aux très hauts
degrés polynomiaux (m jusqu’à 500) nécessaires pour assurer la stabilité dans des scénarios de
contact complexes, exclut son utilisation dans des applications temps réel. Cette limitation
motive l’étude du chapitre suivant, qui explore une formulation quasi-statique comme une
voie potentielle pour atteindre les performances de calcul requises.

A.5 Poutres de Cosserat quasi-statiques en contact avec des
surfaces implicites

Ce chapitre explore une approche quasi-statique visant à améliorer les performances de calcul
sans sacrifier le comportement physique essentiel. L’hypothèse sous-jacente est que pour de
nombreuses procédures de navigation de cathéter, où les vitesses d’insertion sont faibles et les
déformations principalement dictées par le contact, les effets d’inertie peuvent être négligés.

Pour ce faire, nous passons de la formulation en PAL à un modèle lagrangien basé
sur l’approche de paramétrisation en déformation de Boyer et al. [60]. Dans ce cadre,
la configuration de la poutre est décrite par un ensemble de coordonnées de déformation
généralisées q, où la déformation est donnée par ϵ = Φ(X)q. L’évolution quasi-statique de la
poutre est modélisée en introduisant un amortissement artificiel, qui transforme l’équation
d’équilibre statique en une équation différentielle ordinaire (EDO) du premier ordre régissant
l’évolution des coordonnées généralisées sur un temps fictif t :

q̇ = −D−1
ϵ (Qe +Qr)

Ici, Dϵ est une matrice d’amortissement généralisée, Qr = Kϵq est le vecteur des forces
de rappel généralisées, et Qe représente les forces externes généralisées, qui incluent les
forces provenant du contact. Bien que cette EDO puisse être résolue avec des intégrateurs
explicites, nous avons identifié que les scénarios de contact complexes introduisent une
raideur significative dans le système, forçant les méthodes explicites à prendre des pas de
temps excessivement petits et annulant ainsi les avantages de performance de l’hypothèse
quasi-statique.

La contribution centrale de ce chapitre est une méthode pour surmonter cette raideur.
Nous proposons de résoudre l’EDO directrice à l’aide d’un schéma d’intégration temporelle
implicite, qui est bien adapté aux problèmes raides. La viabilité de cette approche repose
sur le calcul efficace de la matrice jacobienne du système, ∂q̇

∂q
. Notre contribution clé est la

dérivation analytique de cette jacobienne. Cela a été rendu possible en tirant parti de la
nature différentiable des surfaces implicites utilisées pour modéliser la géométrie de contact,
une méthodologie établie au chapitre précédent. Pour faciliter cette dérivation analytique,
le modèle de contact a été affiné : la distance signée est calculée à l’aide de l’approximation
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non itérative de Taubin [110], et la fonction d’activation non différentiable ReLU pour la
force de pénalisation est remplacée par une approximation lisse et différentiable (la fonction
SiLU).

La méthode proposée a été testée sur une série d’applications numériques conçues
pour évaluer ses performances et son réalisme physique. Les premiers tests, tels qu’une
poutre interagissant avec une sphère, ont été utilisés pour étudier l’effet du coefficient
d’amortissement artificiel µ̃. Ceux-ci ont confirmé que pour un rapport suffisamment faible
entre l’amortissement et le temps total de simulation, la méthode produit des solutions quasi-
statiques précises. La validation principale des performances a démontré que le solveur
implicite avec la jacobienne analytique est plus efficace qu’un solveur explicite et qu’un
solveur implicite avec une jacobienne numérique, réduisant le temps de calcul jusqu’à deux
ordres de grandeur pour les problèmes raides numériquement.

La capacité de l’approche a été démontrée plus en détail dans des scénarios plus
complexes. Une simulation d’insertion et de retrait d’une poutre dans un tube hélicöıdal
a validé l’approche pour la gestion des conditions aux limites variables dans le temps et a
de nouveau mis en évidence l’accélération de la méthode implicite par rapport à la méthode
explicite (par exemple, 169 secondes contre 9 heures pour un test comparable). L’expérience
principale a consisté à simuler une insertion de cathéter dans le même modèle d’artère
carotide du chapitre 4. Ce test a confirmé l’applicabilité de la méthode à des problèmes
cliniquement pertinents, capturant avec succès des comportements complexes comme un
effet d’adhérence-glissement causé par de petites aspérités sur la surface du vaisseau. Plus
important encore, cette approche quasi-statique a considérablement réduit le temps de calcul
pour la simulation de l’artère carotide, passant de plus de 12 heures avec le modèle dynamique
à 44 minutes.

En conclusion, ce chapitre présente une approche de simulation quasi-statique efficace
en calcul pour la navigation de cathéter. En combinant un modèle lagrangien à réduction
de déformation avec un solveur implicite et une jacobienne dérivée analytiquement grâce à
des surfaces implicites différentiables, nous atténuons efficacement le problème de raideur
numérique qui affecte les simulations de contact quasi-statiques. Bien que la méthode
néglige le frottement et n’ait pas encore atteint des performances en temps réel, la réduction
significative du temps de calcul, de plusieurs heures à quelques minutes, représente une
étape essentielle vers le développement d’outils de planification prédictifs et interactifs pour
les procédures endovasculaires.

A.6 Conclusion et perspectives

Cette thèse a abordé le développement de simulations numériques pour la navigation de
cathéter, motivée par le besoin d’outils prédictifs dans les procédures cliniques telles que
la thrombectomie endovasculaire. La recherche s’est concentrée sur le modèle de poutre
de Cosserat géométriquement exact, qui capture avec précision les grandes déformations
inhérentes aux instruments médicaux flexibles. Les contributions principales de ce travail
résident dans la résolution des défis numériques importants associés à la résolution de ce
modèle, notamment en ce qui concerne la stabilité, l’efficacité de calcul et la modélisation
des interactions de contact complexes.
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La première contribution majeure a été le développement d’un cadre de simulation
dynamique nouveau et robuste. En employant une méthode de collocation orthogonale
avec des polynômes de Tchebychev, nous avons résolu la singularité fondamentale qui affecte
le PAL dynamique des poutres de Cosserat, une limitation qui avait auparavant entravé
l’utilisation de solveurs standards comme la méthode de tir dans des scénarios impliquant
des matériaux souples ou de petits pas de temps. La dérivation analytique de la matrice
jacobienne du résidu a été déterminante pour atteindre cette stabilité. Au titre de la
deuxième contribution, ce cadre a ensuite été étendu pour gérer les conditions aux limites
libre-libre afin de simuler la manipulation par le praticien et a intégré des modèles de
surface implicite pour une détection de contact efficace au sein de géométries vasculaires.
Bien que cette approche dynamique ait démontré une bonne robustesse sans nécessiter
d’amortissement numérique artificiel, son coût de calcul important l’a rendue inadaptée
pour les applications où le temps est critique.

Pour relever le défi de la vitesse de calcul, la troisième contribution majeure a été le
développement d’un cadre de simulation quasi-statique efficace en calcul. Cette approche,
justifiée par la faible vitesse d’insertion du cathéter, s’appuie sur un modèle lagrangien amorti
avec une paramétrisation en déformation pour réduire les degrés de liberté du système.
La contribution essentielle a été de s’attaquer au problème de la raideur des équations,
qui survient dans des scénarios de contact complexes, en utilisant un intégrateur temporel
implicite. La faisabilité de cette méthode implicite a été rendue possible par la dérivation
analytique de sa matrice jacobienne, une tâche facilitée par la différentiabilité des fonctions
implicites utilisées pour modéliser les surfaces de contact. Cette méthode quasi-statique a
permis une amélioration considérable des performances, réduisant les temps de calcul pour
des simulations complexes de plusieurs heures à quelques minutes, et représentant une étape
importante vers l’applicabilité clinique. Tout au long de ce travail, un engagement envers
la science ouverte a été maintenu, toutes les implémentations étant rendues publiques pour
assurer la reproductibilité.

Malgré ces avancées, ce travail présente plusieurs limitations qui définissent sa portée
actuelle. Les simulations, bien que beaucoup plus rapides, n’atteignent pas encore les
performances en temps réel nécessaires à une utilisation clinique interactive. Les modèles
se concentrent exclusivement sur le cathéter, omettant d’autres composants essentiels d’une
procédure endovasculaire comme les guides ou les stents retrievers. De plus, les simulations
n’ont pas été validées par des données expérimentales ou cliniques, et elles font des hypothèses
simplificatrices en traitant les vaisseaux sanguins comme rigides et en ignorant l’influence du
flux sanguin, qui pourrait affecter la dynamique du cathéter par des interactions fluide-
structure. Enfin, la mécanique du contact a été modélisée à l’aide d’une méthode de
pénalisation qui, bien que pratique en calcul, est une simplification des interactions complexes
et non linéaires à l’interface cathéter-vaisseau.

Ces limitations ouvrent plusieurs pistes de recherche prometteuses. Sur le plan
calculatoire, les performances pourraient être améliorées par la parallélisation (par ex.
accélération GPU) des calculs intensifs de la jacobienne. Sur le plan théorique, une
investigation plus approfondie des raisons pour lesquelles l’augmentation du degré polynomial
stabilise la méthode de collocation dynamique pourrait conduire à des solveurs plus efficaces.
Deux directions futures ont été explorées dans des études préliminaires.
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Une direction de travail future est d’améliorer la fidélité physique en estimant la
véritable configuration de référence non rectiligne du cathéter, caractérisée par le torseur
de déformation de référence ξo. Cette thèse ayant supposé une référence rectiligne, la
modélisation précise de la courbure intrinsèque est une étape critique suivante. Une méthode
hybride proposée aborde ce problème en capturant d’abord expérimentalement la ligne
centrale 3D, r(X), d’un cathéter suspendu sous l’effet de la gravité à l’aide de la stéréovision
[111]. Cette forme reconstruite est ensuite utilisée pour résoudre numériquement la courbure
de référence, Ko, en inversant la loi de comportement :

Ko = K −H−1
a RT c

où la courbure actuelle K, l’orientation R, le moment interne c et la raideur Ha sont
déterminés à partir de la ligne centrale reconstruite r. Le processus implique l’utilisation de
la méthode du transport parallèle [35] pour trouver le repère d’orientation R, à partir duquel
la courbure actuelle K est dérivée. Le champ de moment interne c est obtenu en intégrant
les équations d’équilibre statique en partant de l’extrémité libre du cathéter.

Bien que cette approche, qui suppose actuellement une référence plane et le modèle
de Kirchhoff, soit prometteuse sur des données synthétiques, son principal défi reste la
limitation de la technique du transport parallèle pour déterminer avec précision la véritable
orientation matérielle 3D. Les travaux futurs devront donc s’attaquer à cette limitation et
lever les hypothèses simplificatrices initiales pour créer une méthode plus générale et validée
expérimentalement.

Une seconde perspective explore l’utilisation des réseaux de neurones informés par la
physique (PINNs) comme alternative pour résoudre le modèle de poutre de Cosserat [59].
Nous avons présenté une formulation PINN préliminaire pour résoudre le PAL statique, où
un réseau de neurones apprend à prédire le champ de moment interne cθ(X). Le réseau
est entrâıné en minimisant une fonction de perte qui pénalise les écarts par rapport aux
conditions aux limites et aux équations différentielles sous-jacentes de l’équilibre statique, les
dérivées étant calculées par différentiation automatique. Nos premiers résultats indiquent que
le PINN peut approximer la solution avec une précision raisonnable. Cependant, le processus
d’entrâınement est actuellement de plusieurs ordres de grandeur plus lent que les solveurs
classiques et est sensible au réglage des hyperparamètres. Ces défis suggèrent que, bien que
les PINN offrent une approche nouvelle et sans maillage, des recherches importantes sont
nécessaires pour en faire un outil compétitif et fiable pour résoudre les équations complexes
régissant la robotique continue.
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