UNIVERSITE | BIBLIOTHEQUES
DE LORRAINE | UNIVERSITAIRES

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis a disposition de Il'ensemble de la
communauté universitaire élargie.

Il est soumis a la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
I'utilisation de ce document.

D'autre part, toute contrefacon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact bibliothéque : ddoc-theses-contact@univ-lorraine.fr
(Cette adresse ne permet pas de contacter les auteurs)

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4

Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

UNIVERSITE
DE LORRAINE Ecole doctorale IAEM Lorraine

Reinforcement Learning for Controlling
Cable Driven Parallel Robots

THESE

présentée et soutenue publiquement le 13 Décembre 2024

pour 'obtention du

Doctorat de I’Université de Lorraine

(mention automatique, traitement du signal et des images, génie informatique)

par

Abir Bouaouda

Composition du jury

Président : Jacques Gangloff Professeur des universités, Université de Strasbourg
Rapporteur : Abdel-Illah Mouaddib Professeur des universités, Université de Caen Normandie

Ezaminateurs : Ouiddad Labbani-Igbida Professeur des universités, Université de Limoges

Lagtitia Matignon Maitresse de conférences, Université Claude Bernard Lyon 1

Francois Charpillet Directeur de recherche, Inria Nancy

Rémi Pannequin Ingénieur de recherche, CRAN, Université de Lorraine
Encadrants : Mohamed Boutayeb Professeur des universités, Université de Lorraine

Dominique Martinez Directeur de recherche, CNRS, Aix-Marseille Université

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503
Centre de Recherche en Automatique de Nancy — UMR 7039

Mis en page avec la classe thesul.

Acknowledgment

Throughout my thesis, I have learned that the journey is more important than the destination.
This lesson came to me twice: first, when I realized that in reinforcement learning, the environ-
ment plays a more crucial role than the reward function, and second, when I understood that the
journey of the thesis is more important than the thesis itself. The joy of completing this journey,
along with the knowledge and growth I’ve gained, wouldn’t have been possible without someone
who choses you for this mission, someone who motivates you to keep going, someone who believes
in you, someone from who to learn, someone who helps you sharpen your theoretical approach,
someone who helps you to develop your practical skills, someone who helps you to overcome the
obstacles and someone to help you see the light at the end of the tunnel. I am honored to have a
whole team of these someones to thank for their support and guidance throughout this journey. I
would like to express my deepest gratitude to my official supervisors: Prof. Mohamed Boutayeb
and Dr Dominique Martinez, for their guidance, support, and encouragement throughout my
thesis. I would also like to thank Dr Frangois Charpillet and Dr Rémi Pannequin for their in-
formal yet equally important support. I am grateful for the opportunity to work with such a
talented and dedicated team.

I would like to express my sincere gratitude to the members of the jury for their time, effort, and
valuable feedback.

I am grateful to Loria/Inria and CRAN for providing the support and resources that made my
research possible. I would like to thank also the LARSEN team for their support and for pro-
viding me with the necessary tools and resources to complete my research.

Finally, I am deeply grateful to my family and friends who always been there for me and sup-
ported me throughout this journey. I would like to thank especially my parents for preparing
me for this journey, for their sacrifices and for always prioritizing my education.

ii

Contents

iii

Abstract vii
Résumé viii
List of Figures 1
Introduction
I Cable driven parallel robots| oL 5
2 Context and motivationl 6
13 Contributionl e 7
Chapter 1
Deep reinforcement learning: From concepts to algorithms
[LI TIntroductionl. 10
1.2 Reinforcement learning|. o oo 10
[1.2.1 Markov decision processes| 11
[L.2.2 Value function and policy (the discrete case):| 12
[1.2.3 Bellman equation and temporal difference learningf 13
[L.3 Deep reinforcement learning (continuous case): 15
[1.3.1 Function approximation and neural networks 15
[.3.2 Neural networks architectures 15
1.3.3 Gradient based optimization|. 16
[1.3.4 Back-propagation|. o 16
1.4 Algorithms and architectures for continuous state and action space: DDPG, PPO, |
L SAT - oo 17
[1.4.1 General concepts| 17
[L42 Actor criticmethods 18
[L.4.3 Deep deterministic policy gradient (DDPG)| 18
[L.4.4 Proximal Policy Optimization (PPO)[. 20

Contents

[1.4.5 Soft Actor Critic (SAC)| 22

[1.5 Application of reinforcement learning in robotics| 24

[1.6 Reinforcement learning based-control ot cable-driven parallel robots|. 26

(L7 Conclusion|. e 28
Chapter 2

Cable-Driven Parallel Robots: Modeling and Simulation

iv

2.1 Introduction|. 30
[2.2 Configuration| 30
2.3 Geometric model and inverse kinematics oL 31
[2.4 Forward kinematics and position estimation|o L. 34
2.5 PlD-based controllo 35
2.6 Dynamic modeling| 35
[2.6.1 Dynamic equations of transitional CDPRs| 37
[2.6.2 Motor dynamic model| oo 37
263 Cablesmodell 39
[2.7 Simulation with Matlab/Simulink{ 39
[2.7.1 Simulation 1: Simplified modello 00000 39
[dynamic model of the cables|. 40
273 Results: validation of the modelin simulation with real dafal 41
2.8 Conclusionl. 43
Chapter 3
A deep reinforcement learning approach for the control of cable-driven parallel |
robots
3.1 Introduction|. 46
[3.2 Training environment, state and action space| 46

[3.3 Desired trajectory generation: the case ot trajectory tracking in bounded workspace| 47

3.4 Current constraintsl 50
[3.4.1 Current control loop| 50
.42 Current boundsl oo 50

[3.5 Reward design| 51
[3.5.1 Reward-engineering|. L 51

[3.6 Hyperparameters| 52

[3.7 Environment and reward setup| Lo Lo 53
[3.7.1 Validation trajectory during the training process| 54

3.8 Agents Configuration | 55

[3.8.1 Deep Deterministic Policy Gradient (DDPG)| 55

[3.8.2 Proximal Policy Optimization (PPO)[. 55

[3.8.3 Soft Actor-Critic (SAC)[.o 58

3.9 Conclusionl. 60
Chapter 4

Training process and experimental results

4.1 Introductionl. 62
4.2 Training Process and Hyperparameters tuning|. 62
4.2.1 Deep Deterministic Policy Gradient (DDPG)| 62
[4.2.2 Proximal Policy Optimization (PPO)[. 63
[4.2.3 Soft Actor-Critic (SAC)| 64
4.2.4 Rewards analysis|o 64
4.3 Comparison between RL agents: Learning rate range and convergence time analysis| 65
4.3.1 Learning rate range| 65
4.3.2 Convergence time analysis| 66
4.4 Performance evaluation and comparison between RL agents| 67
4.4.1 Testing trajectories| 67
4.4.2 Policies used for the evaluationl 69
443 PFvaluation methodlo 69
4.4.4 Tracking performance on simulation: Tracking error and current optimization| 69
4.4.5 Summary of theresults| 70
4.4.6 'Tracking performance on real robot|. 00000 72

4.4.7 Optimal policy improvement tor the DDPG agent and comparison with

| the PID-based controllerl 72

4.4.8 Comparison between best RL agent and PID-based controller on real robot| 74

M5 Conclusionl. e 76
Chapter 5

Toward n-Cable Driven Parallel Robots: A Generalized Approach

b1 Introduction|. 80
[5.2 Conventional reinforcement learning controller{. 80
5.3 Actuator level policies: Multi agent reinforcement learning controller| 81
b.4 Proof of concept| 82
0.0 Reward functionl Lo 84
B6_Resulld.o o 85

Contents

[>.6.1 wvalidation trajectories 85
[5.6.2 'Traditional reinforcement learning controller{. 85
[>.6.3 Multi agent reinforcement learning controller on the same configuration as |
| tralning] 85
[5.6.4 Multi agent reinforcement learning controller on the difirent configuration |
| than trainingl 89
b7 Conclusion|. 91
Conclusion and Perspectives
(1 Conclusionl. e 93
[2 Major Contributions| L 93
(3 Perspectives| 94
Résumé étendul
Bibliography 101

vi

Abstract

In this thesis, the use of reinforcement learning for controlling cable-driven parallel robots has
been investigated. This class of robots is known for its complex dynamics and the nonlinearity
of the system, which offers an interesting environment for the implementation of reinforcement
learning algorithms. These algorithms require a lot of data to learn the optimal policy, which is
not always possible in real-world applications. To overcome this issue, we propose a sim-to-real
approach. First, the Newton-Euler equation of the robot is used to derive its dynamic model, and
by setting the parameters to the real values of the robot, we validated the model by comparing
the simulation results with the real data. To ensure a high precision of the simulation data and
a reduced execution time, it was implemented using Matlab/Simulink and then converted to
C++ library for easier integration with the gym environment in python. Additionally, in order
to learn the optimal policy using reinforcement learning, the objective of the controller should
be specified. As most of the use cases of cable-driven parallel robots could be summarized as
a trajectory tracking problem, a reward function that align with this objective is designed and
a process for target trajectories generation was developed. In addition to that, a limitation
on the action space was introduced to ensure the cable tension is within the limits during the
training process. These key components along with the most known reinforcement learning
algorithms for continuous space: DDPG, PPO, and SAC make a full-fledged training platform
for the generation of reinforcement learning-based controllers for cable-driven parallel robots. A
comparison between the three algorithms during the training process and the performance of
the trained controllers was conducted. A side-by-side evaluation of the reinforcement learning
controller with a PID-based controller developed for insect tracking purposes was also performed
and many aspects were compared such as the tracking error, the energy consumption, and the
robustness of the controller. One of the main challenges of this work is the transition to different
configurations of the robot, as the trained policy was developed for a specific configuration, a
new training process is required for each different configuration. To overcome this issue, a new
method to learn an actuator-level policy has been developed and comparative analysis with the
conventional policy has been hold. Finally, the trained controller was tested on the robot to
ensure the transferability of the policy from the simulation to the real world.

Keywords: Cable-driven parallel robot, Reinforcement learning, Deep learning, Trajectory
tracking, Dynamic model, Sim-to-real RL.

Résumé

Dans cette thése, I'apprentissage par renforcement appliqué au controle des robots paralléles &
cables a été étudié. Cette catégorie de robots se distingue par sa dynamique complexe et la
non-linéarité de son systéme, offrant ainsi un cadre idéal pour 'implémentation d’algorithmes
d’apprentissage par renforcement. Toutefois, ces algorithmes nécessitent de vastes quantités
de données pour apprendre la politique optimale, ce qui n’est pas toujours réalisable dans des
scénarios réels. Pour contourner cette limitation, nous avons proposé une approche sim-to-real.
Tout d’abord, I’équation de Newton-Euler a été utilisée pour modéliser la dynamique du robot, et
en fixant les parameétres aux valeurs réelles, le modéle a été validé en comparant les résultats de la
simulation avec les données expérimentales. Afin d’assurer une grande précision des simulations
tout en réduisant les temps de calcul, le modéle a été implémenté sous Matlab/Simulink, puis
converti en bibliothéque C++ pour une intégration plus fluide avec I’environnement gym en python.
Par ailleurs, pour déterminer la politique optimale via I’apprentissage par renforcement, I’objectif
du controleur doit étre défini. Etant donné que la majorité des applications des robots paralléles &
cébles se rapportent au suivi de trajectoires, une fonction de récompense alignée sur cet objectif
a été congue, accompagnée d’un processus de génération de trajectoires cibles. De plus, une
limitation de I'espace d’action a été introduite afin de garantir que la tension des cables reste
dans les limites acceptables durant I'apprentissage. Ces éléments clés, associés aux algorithmes
d’apprentissage par renforcement les plus répandus pour les espaces continus — DDPG, PPO et
SAC — forment une plateforme compléte dédiée a la génération de contréleurs pour les robots
paralléles & cables. Une comparaison approfondie entre ces trois algorithmes a été réalisée, tant
durant 'apprentissage que lors de I'évaluation des performances des controleurs entrainés. En
paralléle, une comparaison a été effectuée entre le controleur d’apprentissage par renforcement
et un contréleur PID développé pour le suivi des insectes, en prenant en compte divers critéres
tels que lerreur de suivi, la consommation d’énergie et la robustesse du systéme. Un des défis
majeurs de cette étude concerne la transition vers différentes configurations du robot, car la
politique apprise est spécifique & une configuration donnée, nécessitant un nouveau processus
d’apprentissage pour chaque configuration différente. Pour pallier cette difficulté, une nouvelle
méthode d’apprentissage d’'une politique au niveau des actionneurs a été développée et comparée
4 la méthode conventionnelle. Enfin, le contréleur entrainé a été testé sur le robot afin de valider
la transférabilité de la politique de la simulation au monde réel.

Mots-clés: Robot paralléle a cables, Apprentissage par renforcement, Apprentissage profond,
Suivi de trajectoire, Modéle dynamique, sim-to-real RL.

List of Figures

CDPR with n actuators, the end effector is the mobile platform, it is connected

to the base by n cables, each cable 1s actuated by a winch motor.|

[2

Lab-on-cables setup. (A) Photo of the cable robot (6 m by 4 m by 3 m) and (B)

schematic view of the setup. (C) Photo of the flying frame (30 cm by 30 cm by 30

cm). The flying frame supports the lab equipment, i.e., an infra-red source and

a pair of calibrated cameras (Pixy cam 1 and 2), for online insect location. The

flying tframe moves automatically to keep the insect within the detection range ot

the cameras. (D) Robot control as deviated pursuit. Robot and insect locations

are X and X7 , respectively. The insect speed is denoted Xr. The tracking speed

V is the sum of a pure pursuit term pointing along the line of sight (LOS) toward

the target current location and a corrective term, taking into account the direction

of motion of the target. This is like anticipating where the target will be to point

ahead of the target and cover less distance. [I]]

M1

Interaction between the agent and the environment in reinforcement learning]

pI

Configuration 1: CDPR with 8 cables where every cable i1s attached to the end

eftector directly without crossing|

P2

Configuration 2: CDPR with 8 cables where the cables are crossed

P23

Comparison of the stiffness of the CDPR in configuration 1 and configuration 2.

K, 1s the rotational stifiness, K; is the translational stifiness|.

pA

Configuration 3: CDRP with 12 cables : each pair of the cables on top have the

same length, so 1t forms a parallelogram with the side of the end eftector, this

25

Two-DOFs point-mass CDPR with four cables, [x 1s the length of the cable k, Ay

is the position of the motor k, p is the position of the end effector.|

PG

Geometry of the lab-on-cables. The vertices of the end effector are at the points

B;,1=1... 8. The origin of the fixed and mobile frame of reference is O and O,

respectively. The dashed lines represent the cables changing the pose of the Hlying

frame (end effector) via motorized winches. The i-th cable connects the points A;

corresponding to the position of the pulley at the entrance of the i-th winch to

the distal anchor pomnt B5;.|.

34

List of Figures

R.7

The PID-based control scheme of the robot consists of four steps: (i) estimation

of the robot pose by using forward kinematics, (ii) computation of the tracking

speed to minimize the tracking error, (iii) transformation into a winding speed

vector by using the Jacobian and inverse kinematics, and (iv) conversion to motor

command with constraints on the cable tensions. The vectors I,, = (I1m, - -, Ism),

I, = (Limy - - - 5 l8m), Um = (U1, - - - , Vg) are measurements of the motor currents,

of the winding /unwinding speeds, and of the cable lengths, respectively [1]]

2.8

oimulation 1: Simplified model, the cable tensions are directly linked to the motor

currents by a constant « , the mput is the desired speed ot the motors U and the

output is the position of the end eftector X and the cable lengths {|

2.9

simulation 2: Simulation with the mechanical model of the motor and the dynamic

model of the cables, the cable tensions are calculated using the equation ([2.18)),

the mnput is the desired speed of the motors U and the output is the position of

the end effector X and the cable lengths {|

B.10

Comparison between the real and simulated end effector trajectories using the

same IPUbS. oL

pII

Correlation between the cable tension and the motor electrical current. Experi-

B

Example ot a generated trajectory for training, the trajectory does not reach the

workspace limits as the speed 1s inverted when 1t reaches virtual limits.|.

49

B2

Distribution of the generated target poses over 500 episodes with 1000 steps each.

There is a high density of points both at the center and the edges. This is because

the position is reset to the center at the start of each episode when the last episode

ends at the workspace limits, and the end eftector’s speed is inverted upon reaching

the workspace limits at the end of an episode.f

49

B3

Distribution of the generated target speeds over 500 episodes with 1000 steps

each. The speed follows a gaussian form, with a peak at the zero speed because

the acceleration 1s generated using a random gaussian distribution. The speed

limits are more visited than the other states, as every point in the trajectory

exceeding the speed limit will be set to this limit.|.

50

B4

DDPG agent architecture, the agent interact with the environment by sending the

action a; and receiving the tuple (s;, a;, 5, s;+1), this tuple is stored in the replay

bufter, then at each gradient step, the agent samples a batch from the replay bufter

and updates the actor and the critic networks.|. o000 L.

56

B5

SAC agent architecture, the agent interact with the environment by sending the

action a; and receiving the tuple (s;, a;, 5, si+1), this tuple is stored in the replay

buffer, then at each gradient step, the agent samples a batch from the replay buffer

and updates the actor and the critic networks.|.o L.

99

A1

'The average cumulative reward ot the agent in function of the learning rate for

the three algorithms: DDPG, PPO, and SAC, the learning rate is presented in

logarithmic scale. An average reward around -600 1s considered to be good per-

formancel e

I2

The average cumulative reward of the agent in function of the number of episodes

for the three algorithms: DDPG, PPO, and SACJ|

A3

The three trajectories used tor the evaluation of the agent: Trajectory 1: sinu-

soidal trajectory with varying period, Trajectory 2: insect trajectory, Trajectory

3: sinusoidal trajectory with varying speed and acceleration.|

68

TR}

osimulation results: Comparison of the tracking error and current of the agent

on validation trajectories for the three algorithms: DDPG, PPO, and SAC. The

DDPG, SAC, and PPO are the agents learned using a4 = 0.5 for the current

limits respect part of the reward function, and the DDPGI, SACI are the agents

learned without using this part ot the reward function.|

71

4.5

Experimental results: Comparison ot tracking error and current for the agent on

testing trajectories for DDPG, PPO, and SAC.|

73

4.6

Experimental results: Comparison of tracking error and current between the

DDPG agent and PID controller on three trajectories, including robustness to

mass Change.| e e e e e e e e e e e e

a7

Experimental results: the x and the z components of the pose of the end-eftector

and the tracking error of the agent on the trajectory 1 when the x component of

the target pose is perturbed by a noise tor the DDPG agent only as the PID-based

controller failed to pass thistest.| 0 0.,

BT

Interaction between the agent and the reinforcement learning environment, the

agent takes the tuple (s;,a;,r;,8;+1) as input and outputs the action a; to be

applied to the motors.|

B2

Interaction between the agent and the environment for the multi agent rein-

forcement learning, at each step i, the agent interacts with the environment n

times, one for each actuator, from each interaction the agent collects the tuple

(s, ag R SZ Jrl), and output the action ag to be applied to the motor j., the agent

learns one policy that maps the state of an actuator to the torques to be applied

to the motord

5.3

simulation results: Comparison of the tracking error and current of the agent for

8 cables configuration on trajectory 1 for the three algorithms: DDPG, PPO, and

SAC. The DDPG, SAC, and PPO are the agents learned using oy = 0.5 for the

current limits respect part of the reward tunction.|.

B4

Experimental results: Comparison of the tracking error and current of the agent

for 4 cables configuration on trajectory 1 for the algorithms: DDPG and SAC

using reward 1 and reward 2.]o

[5.5

Experimental results: Comparison of the tracking error and current of the agent

for the multi agent policy vs the conventional single agent policy ns the PID

controller on the testing trajectories|

5.6

Experimental results: Comparison of the tracking error and current of the agent

for the multi agent policy vs the conventional single agent policy ns the PID

controller on the testing trajectories]

List of Figures

Introduction

1 Cable driven parallel robots

Cable-driven parallel robots (CDPRs) are a class of parallel robots that use cables instead of
rigid links to transmit forces and motion [1} This special structure offers many advantages over
other types of parallel robots, such as large and flexible workspace, the ability to handle heavy
payloads, the reduced maintenance cost as cables are inexpensive to produce and easy to replace
compared to rigid links, and the ability to adapt to different environments and tasks. All these
strengths make CDPRs the optimal choice to handle many tasks where traditional robots are
not suitable, such as the Skycam robot [2] used in sports events or the STRING-MAN used for
gait rehabilitation [3]. However, most of the applications are limited to the prototype stage, and
the industrial applications are still rare. This is mainly due to the complexity of the control and
the modeling of CDPRs. The cables are flexible and have a nonlinear behavior, which makes the
control task more challenging. Also the safety of the system is a critical issue, as the cables can
break and cause serious accidents, especially when moving at high speeds. This makes CDPRs
limited to human-free environments, which is a significant drawback for many applications.
Many researchers have worked on the modeling and control of CDPRs, and many control

Winch 1

Winch i

v End effector
(the moving platform)

Winch n

Figure 1: CDPR with n actuators, the end effector is the mobile platform, it is connected to the
base by n cables, each cable is actuated by a winch motor.

aspects specific to CDPRs have been addressed, such as the tension distribution in the cables,
the workspace analysis, the trajectory planning, and the safety issues [4] [5, [6], [7]. However, the

S

Introduction

use of reinforcement learning (RL) in the control of CDPRs is still limited. The main reason is
that RL requires a large amount of data to learn the optimal policy, the training process is time-
consuming and computationally expensive, and the traditional control methods are still more
efficient in many cases. However, RL has shown great potential in many applications, especially
when the objective is to learn a complex task that is difficult to model analytically while an
associated reward function can be defined. In the next section, the project Lab-On-cables that
revealed the need for further investigation of the use of RL in the control of CDPRs is presented.

2 Context and motivation

Figure 2: Lab-on-cables setup. (A) Photo of the cable robot (6 m by 4 m by 3 m) and (B)
schematic view of the setup. (C) Photo of the flying frame (30 cm by 30 c¢cm by 30 c¢m). The
flying frame supports the lab equipment, i.e., an infra-red source and a pair of calibrated cameras
(Pixy cam 1 and 2), for online insect location. The flying frame moves automatically to keep the
insect within the detection range of the cameras. (D) Robot control as deviated pursuit. Robot
and insect locations are X and Xy , respectively. The insect speed is denoted X7. The tracking
speed V is the sum of a pure pursuit term pointing along the line of sight (LOS) toward the
target current location and a corrective term, taking into account the direction of motion of the
target. This is like anticipating where the target will be to point ahead of the target and cover
less distance. [I]

In the Lab-on-Cables (LoC) project, the cable driven parallel robot is used to track a free
flying insect using the cameras mounted on a cubic end effector 2] Such application could not
be achieved using any other type of robot because of the high speed and acceleration required to
track the insect, the large workspace that must be covered by the robot to have similar aspect
to the natural environment of the insect, and the noiseless movement of the robot that do not

6

3. Contribution

scare the insect. The latter is tracked using 3D depth-sensing camera that compute its position
in the moving frame, then a control algorithm is used to move the robot to keep the insect in the
center of the end effector. It is based on a PID controller with geometric model of the robot to
compute the desired speed of the end effector combined with QP optimization solver to adjust
the tension in the cables. The main objective of the project is to capture the movement of the
insect using high speed cameras to study its behavior. The sequence of images collected during
this experiment is basically 4 seconds video recorded in slow motion mode, so losing the insect
for some milliseconds from the view of the camera could lead to a loss of important information.
This is why a control algorithm that can handle high speed trajectories more efficiently and may
predict the movement of the insect is needed. This is where the use of reinforcement learning
(RL) comes into play. This discipline has shown great potential in the last years enabling robot
to learn directly from visual data and to perform complex tasks that are difficult to model
analytically [8]. The use of RL in the control of CDPRs is still limited, and the few works that
have been done are mainly focused on the low speed trajectories or pick and place tasks. The
main objective of this thesis is to investigate RL for the control of CDPRs, and more specifically
in the tracking of high speed trajectories, this will be done using the cable driven parallel robot
in the Lab-On cables project 2] In the next section, the contribution of this thesis is presented.

3 Contribution

The first chapter of this thesis is dedicated to introducing the fundamentals of reinforcement
learning, deep learning, and their intersection in deep reinforcement learning(DRL). The most
prominent DRL algorithms used for continuous control tasks are presented, some of the most
successful applications of DRL in robotics are discussed and, at the end of the chapter, the state
of the art of the use of RL in the control of CDPRs is presented.

In chapter two attention is directed toward the development of the simulation environment
that will be used to train the RL agent. Basic concepts of CDPRs like the configuration, the
workspace, the forward and inverse kinematics and the Jacobian matrix are presented, before
moving to the modeling of the cables and the end effector. Finally a simulation of this model
is developed using Matlab/Simulink from which C++ library is generated to be used in gym
environment for training the RL agent.

Chapter three is centered around the development of the RL framework for the control of CDPRs.
The objective of the controller is defined, the reward function is designed, and the process
for generating the target trajectories is developed. At the end, the entire training algorithms
including the RL agents: DDPG, PPO, and SAC are presented.

In chapter four, the tuning of the hyperparameters of the RL agents is discussed. The reward
function is analyzed, and the results of the training process are presented. The trained policies
are then transferred to the real robot and tested. The results are analyzed, and the performance
of the trained policies is compared with the PID controller.

In chapter five, the generalization of the trained policy to different configurations of the robot is
addressed. As the trained policy is developed for a specific configuration, a new training process
is required for each different configuration. To overcome this issue, a new method to learn an
actuator level policy has been developed and comparative analysis with the conventional policy
has been hold using the results on the real robot.

Finally, the last chapter is dedicated to the conclusion and the perspectives of this work. The
main results of this thesis are summarized, the limitations of the work are discussed, and the
perspectives for future work are presented.

Introduction

Chapter 1

Deep reinforcement learning: From
concepts to algorithms

Contents
[I.1 Introductionl i e, 10
|1.2 Reinforcement learning|0 00000 10
[1.2.1 Markov decision processes| L L Lo 11
|1.2.2 Value function and policy (the discrete case)| 12
I1.2.3 Bellman equation and temporal difference learning| 13
[1.3 Deep reinforcement learning (continuous case): 15
|11.3.1 Function approximation and neural networks| 15
3.2 Neural networks architecturesl 15
I1.3.3 Gradient based optimization| 0L, 16
I1.3.4 Back-propagation|. Lo 16

1.4 Algorithms and architectures for continuous state and action space: |

I1.4.1 General concepts| 17
[L42 Actor criticmethodd 18
[1.4.3 Deep deterministic policy gradient (DDPG)[. 18
|1.4.4 Proximal Policy Optimization (PPO)|. 20
[1.4.5 Soft Actor Critic (SAC)| 22
1.5 Application of reinforcement learning in robotics| 24

|L1.6 Reinforcement learning based-control of cable-driven parallel robots| 26

Chapter 1. Deep reinforcement learning: From concepts to algorithms

1.1 Introduction

In recent years, there has been an increasing interest in the use of artificial intelligence (AI)
in robotics. Al, defined by John McCarthy, one of the founders of the discipline of artificial
intelligence, as "the science and engineering of making intelligent machines, especially intelligent
computer programs." [9], encompasses a wide range of techniques, the most revolutionary one
on robotics is machine learning. The latter may be divided into three main categories: super-
vised learning, unsupervised learning, and reinforcement learning. While supervised learning
techniques are based on the use of labeled data, unsupervised learning does not require labeled
data. Which make some people think that all techniques could be classified under one of these
two categories. However, reinforcement learning is a different paradigm. Rather than using
collected data, it is based on the interaction between an agent and an environment. The agent
learns by trial and error, and his goal is to maximize a reward signal. The idea of maximizing
a reward function, which is equivalent to minimizing a cost function, is also the main goal of
optimal control field of control theory. This is why reinforcement learning is the most suitable
field of machine learning for control problems. While supervised and unsupervised learning are
used in wide range of applications in robotics, like computer vision, natural language processing
(NLP), voice recognition, etc., reinforcement learning presents a great potential in the field of
robot control. Especially with the recent advances in deep learning, the combination of deep
learning and reinforcement learning has led to the development of deep reinforcement learning
(DRL). This field was notably advanced by the work of DeepMind which developed the deep Q
network (DQN) algorithm that was able to achieve human-level performance in playing Atari
games [10]. The purpose of this chapter is to present the concepts for reinforcement learning and
how it could be used in the control of cable-driven parallel robots.

1.2 Reinforcement learning

The modern field of reinforcement learning (RL) as presented by Richard S. Sutton and Andrew
G. Barto in their book "Reinforcement Learning: An Introduction" is the result of the conver-
gence of several fields of research in 1980s [I1]. The main idea of RL is learning from experience
to achieve a defined objective. It is the same way humans (and animals) learn: it is almost
impossible to teach a child how to succeed a new skill without letting him fail several times:
the child learns from his mistakes and tries to avoid them in the future. To exploit this idea, a
RL framework is defined, its main components are: the agent, the environment, the state, the
action, the reward, and the policy: figure

T Agent)

state reward action
S, I, a,

| T .
) (Env1ronmenb~7
I Sp

Figure 1.1: Interaction between the agent and the environment in reinforcement learning

10

1.2. Reinforcement learning

The environment: it represents the set of rules according to which our problem is defined.
It is the world in which the state evolves and changes. For example in the case of games like
chess, the environment is the chessboard and the rules that define the possible moves and their
outcome. In the case of a robot, the environment is the physical world in which the robot evolves.
It is the physical laws that govern the robot’s dynamics.

The agent: It is the component responsible for deciding which action to send to the envi-
ronment, taking into account its state and the rewards that it receive from it. It is the decision
maker, the algorithm that will make us achieve our goal. The agent could try many strategies
that aren’t optimal, but it will learn from its mistakes and try to avoid them in the future.

State: It is the information about the environment estimated by the the agent through it
sensors at a given time. It is the representation of the environment that change over time
and according to the agent’s actions. For example, in the case of a robot, it is basically the
measurements collected using sensors from the real world.

Action: It is the decision made by the agent at a given state. It is the way the agent act on
the environment. For example, in the case of a robot, it is the control signals sent to the motors.

Policy: The agent acts according to certain rules and logic, this is what we call the policy.
It is the strategy that the agent uses to select the action at a given state. It is the function that
maps the state to the action.

Reward: It is considered as part of the environment even if it is something we can change
according to our problem and our objective. It is a function that maps each state-action pair to
a real number. It is the feedback that the agent receives from the environment to evaluate its
actions. While it is up to the designer to define the reward function, it is not always easy how
to do it, especially in the case of multi-objective problems. The reward function is an important
part of the RL problem. It is what the agent tries to maximize. The reward will be designed
using the variable Ry, which is the reward received at time step t.

Return: The agent objective is to maximize the reward received during the whole episode.
In most cases, the instant reward is not enough to evaluate the action, as this action could lead
to a better reward in the future compared to another action which gives a better instant reward.
For example, in chess, playing the move that seems to maximize the instant reward (taking the
opponent piece’s) without consideration for the consequence of this move is obviously a very bad
strategy.This is why we use the concept of return. The return is the weighted sum of the rewards
received during the whole episode. In the case of an infinite episode, this sum could be infinite,
so the discount factor v is set between 0 and 1 to make the return finite and at the same time
to give more importance to the instant reward compared to the future reward. The return is
defined as:

o
Gt = Rir1 + 7Ry + ... = Z’yth+k+1 (1.1)
k=0

Now, that we defined the main components of RL, we can introduce the concept of Markov
decision processes (MDP) that is a formal framework where the properties of RL can be further
analyzed.

1.2.1 Markov decision processes

MDP is defined by the tuple (S, A, P, R) [11] where:
e S is the set of states which could be finite or infinite

e A is the set of actions which could be finite or infinite

11

Chapter 1. Deep reinforcement learning: From concepts to algorithms

e P is the transition probability function P: S x A x S — [0, 1]
e R is the reward function R: § x A - R

The MDP respects the Markov property which means that the future state depends only on
the current state and the current action, so all the information needed to make a decision is
contained in the current state. This property could be written using mathematical notation as:

P[st+1|st,at] = P[SH_l‘Sl, vy Sty A1y onny at} (12)

By looking at this property, we could make the difference between the observation which is
the information given by the environment and the state which is normally chosen by the designer
to respect the Markov property. For example if we need both the information gathered at the
current time step and the last time step to make decision, the designer could make a state that
contains both last observations.

1.2.2 Value function and policy (the discrete case):

As we defined previously, the policy is a function that maps the state to the action [II]. The
policy could be either deterministic or stochastic. In the case of deterministic policy, the action is
chosen according to the state, while in the case of stochastic policy, the action is chosen according
to the state and a probability distribution. The policy is denoted by 7, and it is defined as:

m(als) = Pla; = a|s; = s] (1.3)

Pla; = a|s; = s] is the probability of taking the action a at the state s. To evaluate the quality
of being in a given state when following a certain policy, we use the concept of value function.
The state value function is defined as the expected return when starting from a given state s
and following a certain policy w. The state value function is defined as:

vr(s) = Ex[Ge|sy = 5] (1.4)

G} is the return at time step t There is also the action value function which is the expected
return when starting from a given state s and taking a certain action a and following a certain
policy w. The action value function ("Q function") is defined as:

gr(s,a) = Ex[G¢lst = s,a; = a (1.5)

The value function is the most important concept in RL. It is the function that the agent tries
to maximize. The solution of the RL problem is to find the optimal policy 7* that maximizes
the value function. This policy is defined as:

7" (s) = arg max vr(8) (1.6)

And the corresponding value function is denoted by v*(s), and it is defined as:
v*(s) = va=(s) (1.7)

12

1.2. Reinforcement learning

1.2.3 Bellman equation and temporal difference learning

The most important property of the value function is recursive property. This property is the
result of recursive property of the return. The return is defined as the sum of the rewards received
during the whole episode. This sum could be written as:

Gt = Rt+1 + ’)/RH_Q + .= Rt+1 + ’}/Gt+1 (18)

By using this property, we could write the value function as [11]:

ve(8) = Zﬂ(a|5)Zp(s',r|s,a)[r+'yvﬂ(8')] (1.9)

a s'r

Where 7(als) is the policy that maps the state s to the action a, p(s’,7|s,a) is the transition
probability function, it is the probability of going to the state s’ and receiving the reward r when
taking the action a at the state s. This equation is called the Bellman equation. It is the most
important equation in RL. It determines the value of a state based on the received reward and
the value of the subsequent state. The Bellman optimality equation is the same equation but
with the optimal policy. It is defined as:

v*(s) = mngp(s’, rls,a)[r +yv*(s)] (1.10)

s'r

Using the Q function, we could write the Bellman optimality equation as:

¢"(s,a) = Y p(s',7]s, a)[r + ymaxg*(s',a)] (1.11)

s'r

By solving the Bellman optimality equation, we could find the optimal policy and the optimal
value function. The problem is that solving this equation for large problems is not always
possible. It requires a lot of computation. This is why instead of finding the value function, we
try to approximate it. So we use the Bellman equation as an update rule:

veri(s) = Y m(als) Y p(s',rls,a)fr +yoi(s')] (1.12)

a s',r

Let us assume that we have a policy 7, and the model of the environment is known. Starting
from a random value function, we could use the Bellman equation to update the value function,
and the sequence v will converge to the value function of the policy w. This is the idea of
dynamic programming, and this algorithm is called policy evaluation. Now, suppose that we
have found the value function of the policy w, we could use it to improve this policy. At the
state s, instead of using the policy m, we could use the action that maximizes the action value
function ¢, (s, a) using the equation:

7'(s) = arg max ¢, (s, a) (1.13)

And for computing the action value function of the new policy in this specific state, we could
use the equation:

QTr’(37a) = Zp(s',r|s,a)[r—|—'yv7r(s')] (1'14)

s'r
So the new policy which is nothing else than the old policy in the other states and the new policy
in the specific state is better than the old policy. The extension of this idea to the whole state

13

Chapter 1. Deep reinforcement learning: From concepts to algorithms

space is called policy improvement. And it has been shown that [II] the new greedy policy is
better than the old one. After improving the policy, we could use the policy evaluation again
to find the value function of the new policy, and then we could use the policy improvement
again to find a better policy. This process is called generalized policy iteration (GPI). In all the
previous algorithms, we assumed that the distribution model of the environment, the transition
probability function P, is known, but in most of the cases, we only have the sample model of
the environment. So the agent has to do the update using only the information that he gets
from interacting with the environment at each time step. Assume that the agent visited the
state s many times, and each time we computed the return G; which is an estimation of the
value function of the policy 7 and, we associate with each return a weight W;, we could use the
weighted average of these returns as the estimation of the value function of the policy w. This
could be written as:

v, — > WiG;

> Wi

W; is defined based on the importance of the sampled return G; in the estimation of the value
function v,. At the next time step, this could be written as:

(1.15)

Yo i WiGi + Wip1Grga

Uptl = 1.16
n+ Yo Wi+ Wi (1.16)
And if we set Cp 41 = Cp, + W1 and Cp = 0 we could write the previous equation as:
Wit
%H:%+C“(@H—%) (1.17)
n+1
and by setting oy, 11 = ‘g:rll we could write the previous equation as:
Un+1 = Un + an+1(Gn+1 - Un) (118)

By using this equation we could update the value function at each time step using only G, 11 and
the previous value function. This is what we call Monte Carlo learning. The equations above
are suitable for any kind of target of the value function. By target we mean the desirable value
of the value function. We could write the equation in more generalized form as[11]:

NewEstimate = OldEstimate + a(Target — OldEstimate) (1.19)

In the case of one step temporal difference learning, we want only to use the reward received at
the next time step to find the new target. This is why we use the equation:

vt1(8) = ve(s) + a[Rig1 + yve(seq1) — vi(s)] (1.20)

By using it combined with the generalized policy iteration algorithm we could find the optimal
policy and the optimal value function. So in the case of finite state and action space, the value
function could be stored in a table, and the optimal policy could be found by using the action
that maximizes the action value function. This is not the case of continuous state and action
space. This is why we need to use methods of function approximations like neural networks to
approximate the value function. In the next section, we will present the concept of deep learning
and how it could be used in RL.

14

1.3. Deep reinforcement learning (continuous case):

Hidden Layers

Figure 1.2: Neural network architecture

1.3 Deep reinforcement learning (continuous case):

1.3.1 Function approximation and neural networks

Deep neural networks are a powerful tool for function approximation. Also called deep feed-
forward networks, artificial neural networks (ANN) or multilayer perceptrons (MLPs), they can
approximate any continuous function, as stated by the universal approximation theorem [12].
The universal approximation theorem states that a feedforward network with at least one hid-
den layer and with any activation function can approximate any Borel-measurable function from
one finite-dimensional space to another with any desired accuracy, given enough neurons in the
hidden layer. Practically speaking, the use of deep neural networks with multiple hidden layers
allows better approximation of complex functions. Moreover, the ANN could learn to approxi-
mate a given function where data is collected in online manner and the function is changing over
time. This is why ANN is the most used function approximation method in recent years, and
when we talk about deep reinforcement learning we talk about using ANN to approximate the
value function or the policy.

1.3.2 Neural networks architectures

The neural network is composed of layers, each layer is composed of neurons. The input layer
is the first layer, and the output layer is the last layer. The layers between the input and the
output layers are called hidden layers[I.2] The number of hidden layers is called the depth of the
network. The number of neurons in the hidden layers is called the width of the network. The
output of the neuron is computed by the activation function. The most used activation functions
are the sigmoid function, the hyperbolic tangent function, and the rectified linear unit (ReLU)

15

Chapter 1. Deep reinforcement learning: From concepts to algorithms

function [13].

Neural network is mapping a value from the input space x to the output space y, this mapping
is done by a set of parameters theta called weights f(z;6) = y. In function approximation, the
objective is to change the set of parameters 6 in such way that the output of the network is close
to the target. This closeness to the target is measured by a loss function, that needs therefore to
be minimized. In RL, ANN could learn the value function by minimizing the temporal difference
(TD) error and the policy by maximizing the return [I1].

1.3.3 Gradient based optimization

Minimizing the loss function also called the objective function requires the implementation of an
optimization algorithm. For function f(x) with one variable, the derivative of the function at
the point z is the slope of the tangent line to the curve at this point. It shows how changing the
input will affect the output.

flx+e) = f(z) +ef'(2) (1.21)

f'(x) is the derivative of the function at the point z and € is a small number. By changing the
input in the opposite direction of the derivative, we could minimize the function. This is how
gradient descent works. The gradient is the generalization of the derivative to the case of function
with multiple variables. It is the vector of the partial derivatives of the function. In machine
learning (ML), computing the gradient using large datasets is computationally expensive. Since
the gradient is an expectation over the data, one might use a subset of the data to estimate its
value. This is the idea of stochastic gradient descent (SGD). The SGD update is done by using
the equation:

0t+1 == 9t - QVQJ(Q) (122)

Where « is the learning rate, J(6) is the loss function that we want to minimize, and Vy.J(0) is
the gradient of the loss function with respect to the parameters of the network 6. The learning
rate is a hyperparameter that controls the step size of the update. Keeping this parameter
constant is not always a good idea. This is why there are many optimization algorithms that
adapt the learning rate during the learning process. The most used optimization algorithms are
the Adam, RMSprop, and Adagrad [13].

1.3.4 Back-propagation

Computing the gradient of a function using the analytic expression can be very difficult. This
is why the back-propagation algorithm was introduced. The back-propagation algorithm is a
method for computing the gradient of the loss function with respect to the weights of the network.
It is based on the chain rule of calculus and computational Graphs. The idea is to compute the
gradient of the loss function with respect to the output of the network, and then to compute the
gradient of the output with respect to the input of the activation function, and so on until we
reach the input of the network. The back-propagation algorithm is the most used algorithm in
deep learning. It is the algorithm that allows the training of deep neural networks. By using
the back-propagation with the gradient-based optimization algorithm, we could train the neural
network to approximate the value function or the policy. In the next section, we will present
some of the most used algorithms for continuous state and action space.

16

1.4. Algorithms and architectures for continuous state and action space: DDPG, PPO, SAC

1.4 Algorithms and architectures for continuous state and action
space: DDPG, PPO, SAC

Deep reinforcement learning could be used to solve problems where the state space and the action
space are continuous. There is a wide range of algorithms that could be used to solve this kind
of problems. The Deep Q Network (DQN) algorithm was the first algorithm that was able to
solve problems with continuous state space [14] [I0]. In this section, we will define some notions
that are used in these algorithms, and we will present some of the most used algorithms in this
field.

1.4.1 General concepts
Replay Buffer

The concept of replay buffer was used for the first time in the Deep @ Network (DQN) algorithm
[14]. The idea is to store the experiences (s, at, 7, S¢4+1) in a memory buffer, then randomly
sample from this buffer during the learning to train the agent. This technique helps in breaking
the correlation between the samples. It also allows the agent to learn from the same experience
multiple times increasing the data efficiency.

On-policy vs off-policy

In general, the learning by reinforcement is done online while interacting with the environment.
The agent uses the data collected during the interaction to update its policy. If the data used to
update the policy is the same data collected using this policy we call this on-policy learning. If
the data used to update the policy is collected using another policy, the behavior policy, we call
this off-policy learning [11, Chapter 5|. The idea of using replay buffer in the learning process
allows the agent to use the data collected using the old policy to update the new policy. This is
why the algorithms that use replay buffers are off-policy algorithms.

Deterministic vs stochastic policy

In the learning process, the agent could learn a deterministic policy or a stochastic policy. In the
case of deterministic policy, the action is the output of the actor neural network. Whereas for
the stochastic policy, the action is sampled from a probability distribution. Usually, we use the
Gaussian distribution to sample the action. The mean of the distribution is the output of the
actor neural network, and the standard deviation could be a learnable parameter or an output of
the actor neural network. Practically, the deterministic version of the stochastic policy is used
in the deployment phase, as it is more stable [15].

Target networks

The concept of target networks was also introduced in the Deep @) Network (DQN) algorithm
[14]. In the learning process of the value function in algorithms like DQN, the updates to the
value function are chasing a constantly moving target. This could lead to divergence. To solve
this problem, the idea of target networks was introduced. A target network is a copy of the
original network that is updated slowly. The parameters of the target network are updated
according to the equation:

0 70 +(1—71)0 (1.23)

17

Chapter 1. Deep reinforcement learning: From concepts to algorithms

6" is the parameters of the target network, 6 is the parameters of the original network, and 7 is
a small number. The target network is used to compute the target value in the learning process.
This is why the target network is also called the target value network.

1.4.2 Actor critic methods

In reinforcement learning we could distinguish between two main classes of methods: value-based
methods and policy-based methods. In value-based methods, the agent tries to learn the value
function and then derive the policy from the value function. While in policy-based methods, the
agent tries to learn the policy directly. The actor-critic methods are a combination of these two
methods. We have two neural networks: an actor network responsible for learning the policy
and a critic network responsible for learning the value function. To update the critic network we
use the temporal difference learning, and to update the actor network we use the policy gradient
theorem with the critic network as a baseline. The actor-critic methods are more stable than the
value-based methods and more sample efficient than the policy-based methods [11, Chapter 13].

1.4.3 Deep deterministic policy gradient (DDPG)

The Deep Deterministic Policy Gradient is a deterministic, off-policy reinforcement learning
technique that uses a replay buffer for sample efficiency. It is an adaptation of the Deep @
Network (DQN) technique which is based on two Actor/ Critic models. [16] For stability reasons,
each of the two models are associated with another neural network called: Target actor network
and Target critic network.

To understand the DDPG algorithm, we will start with the DQN which makes it possible
to solve problems with a continuous state space before moving on to the DDPG which is an
extension of the DQN to problems with continuous action space. In DQN, the @ function is
approximated by a neural network, and the optimal action at state s u(s) is chosen by selecting
the action that maximizes the Q function:

w(s) = argmax Q(s,a) (1.24)

Thus, it is just the Q network which is represented by a neural network in DQN. For the DDPG
since it is designed for problems where the action space is also continuous, the policy is also
represented by a neural network, Actor network. As we’ve seen in the previous section, most
of the reinforcement learning algorithms are based on the concept of GPI (Generalized Policy
Iteration), so we alternate between policy evaluation and policy improvement. In the case of
DDPG, the policy improvement is done by using the policy gradient theorem to find the optimal
policy according to the current @ function. Policy evaluation is done by using the temporal
difference learning to update the Q function according to the data collected by the new policy.
So let’s start with the Q function learning.

Action-value function(Q function) learning

The Q function at the state s and the action a is denoted by Q(s,alf®), it is the expected
return when starting from the state s and taking the action a and following the policy 3. It is
approximated by a neural network whose parameters are #9, and updated by minimizing the
loss function:

L(GQ) = Estwpﬂ,atw,ﬁ,rtNE[(Q(stv ath) - yt)2] (125)

18

1.4. Algorithms and architectures for continuous state and action space: DDPG, PPO, SAC

B: "behavior policy" the policy we use for data collection. p? Distribution of visited states
following the 8 policy. E: Environment, and the notation s; ~ p” means that the state s; is
sampled from the distribution p®.

With:

ye = (s, a1) + Q5041 p(5:41)[0%) (1.26)

y¢ is called the target, it is the new estimate of Q(s¢, a;) using the reward just obtained at time
t and the old estimate Q (s, at)

Optimal policy learning

The current policy is approximated with a neural network whose parameters are 6*. To find the
optimal policy, we need to maximize the expected return. The expected return is defined as:

S (o) = Eswpnlr(s, po(s))] (1.27)

with 6 = 0" Using the Deep policy gradient (DPG) theorem we get:

VouT = By s [VaQ(5. al09) sy mpon) Vor (1) s = s (1.28)

So by using the policy gradient theorem, we could update the policy’s weights.

Exploration noise

The policy learned by the actor network is deterministic, so to explore the action space, we add
to the output of the actor network an exploration noise. In the original paper [16], the noise
used is based on the "Ornstein- Uhlenbeck process" which is a stochastic process that generates
temporally correlated noise. But during the experiments, it was found that the "Ornstein-
Uhlenbeck process" does not really have great advantage over the Gaussian noise, which is already
mentioned in other works [I7,,18]. So the Gaussian noise is used for this purpose. Thus the action
applied by the agent is:

a = p(sil6)) + N; (1.29)

with A; the Gaussian noise. The standard deviation of the Gaussian noise is an hyperparameter
to be tuned.

19

Chapter 1. Deep reinforcement learning: From concepts to algorithms

Algorithm 1: DDPG algorithm [16]
Randomly initialize critic network Q(s,a|0%) and actor u(s|0*) with weights 6% and 6#;
Initialize target network Q' and p/ with weights 09" < 09, 04 «+ o~
Initialize replay buffer R;
for episode =1, M do
Initialize a random process N for action exploration;
Receive initial observation state si;
for t =1,T do
Select action a; = u(s¢|6*) + N; according to the current policy and exploration
noise;
Execute action a; and observe reward r; and observe new state s;y1;
Store transition (s, at, r, S¢+1) iIn R;
Sample a random minibatch of N transitions (s;, a;, 74, $;4+1) from R;
Set y; = 15 + Q' (si1, 1 (si41/0")[09);
Update critic by minimizing the loss: L = & >, (y; — Q(s:, a;]69))%;
Update the actor policy using the sampled policy gradient:
Voud =~ % Zz VQQ(S, an)|s:si,a:u(si)v0“M(3’0u)’si;
Update the target networks:
09" 709 + (1 — 7)Y,
OH' — TOH + (1-— 7')9“/;
end

end

1.4.4 Proximal Policy Optimization (PPO)

The Prozimal Policy Optimization algorithm is a policy gradient method. It is an on-policy
algorithm that could be used to solve problems with discrete or continuous action space. It was
first introduced by John Schulman et al., in 2017 [19]. The main idea of PPO is to ensure that the
new policy is not changing too much from the old policy. While it benefits from the advantages
of the Trust Region Policy Optimization (TRPO) algorithm [20], it is more sample efficient and
easier to implement. The PPO algorithm uses the advantage function to estimate the quality of
the action instead of the @ function. So let’s define what is the advantage function.

The advantage function

The advantage function is defined as the difference between the () value of the action at the state
s and the value function of the state s. It is defined as:

A(s,a) = Q(s,a) =V (s) (1.30)

Using the advantage function instead of the @ function has many advantages. The first one is
the variance reduction, as the advantage function measures the relative quality of the action at
the state s compared to the average value of all possible actions in state s which is the value
function. The second advantage is that the advantage function is more stable to policy changes
compared to the Q function [2I]. This is why the advantage function is used in many policy
gradient methods.

20

1.4. Algorithms and architectures for continuous state and action space: DDPG, PPO, SAC

Policy update

When using the advantage function as the target for the policy update, the most commonly used
loss function is:

LPC(0) = Ey[log mg(ay|si) Ay (1.31)
By differentiating this loss function, we find the gradient estimator:

VoLPC(0) = Ey[Vglogme(as:) A (1.32)

In the PPO and TRPO algorithms, instead of using the objective function as it is defined, we
use a surrogate objective function that is easier to optimize. The surrogate objective function is a
type of function used to approximate or replace the true objective function during optimization,
and it is easier to optimize. The surrogate objective function used in the PPO algorithm is

defined as:

LCPL(9) = B, [m,@t] (1.33)

To prevent large policy updates, which could lead to unstable learning, PPO-clip version uses
a modified version of the surrogate objective function. The modified version is defined as:

LM (g) = F, [min (rt(ﬁ)At, clip(re(6),1 — e,1 + e)At)} (1.34)

Where () = _molaclse) and e is a hyperparameter that controls the size of the policy update.

0y (at]st)”

There is also another version of the PPO algorithm called PPO-Penalty. In this version,
the penalty is added to the loss function to prevent the policy from changing too much. In the
application chapter of this thesis, we will be only using the PPO-clip version as it has better
performance compared to the other version.

Value function learning

In PPO algorithm the critic network represents the value function which is nothing else than
an estimation of the expected return R; when starting from the state s and following the policy
7. At the end of each episode, the return is computed as the discounted cumulative sum of the
rewards received during the episode. Then, the value function is updated by minimizing the loss
function:

LY (¢) = E[(Vi(s1) — Ry)?] (1.35)

The value function update and the policy update are done in an alternating way, but they are
done at the end of each episode unlike the DDPG algorithm where the policy update is done at
each time step. The PPO learns a stochastic policy, so the action is sampled from a probability
distribution. The most commonly used distribution is the Gaussian distribution. The mean of
the distribution is the output of the actor neural network, and we decided to use the standard
deviation as learnable parameter.

21

Chapter 1. Deep reinforcement learning: From concepts to algorithms

Algorithm 2: PPO-Clip Algorithm [22]
Input: Initial policy parameters 6g, initial value function parameters ¢q
for k=0,1,2,...do
Collect set of trajectories Dy, = {7;} by running policy 7 = 7(6) in the environment;

Compute rewards-to-go Ry;

Compute advantage estimates, At, (using any method of advantage estimation) based
on the current value function Vj, ;
Update the policy by maximizing the PPO-Clip objective:

o at|5t) T T >
0 ar max E E min AT (s8¢, at), gle, A™% (8¢, a
k+1 = arg |Dk\T < (st;at), 9((s¢,a1))

r€Dy t=0 oy (at]st)

typically via stochastic gradient ascent with Adam;
Fit value function by regression on mean-squared error:

|Dk|T 2 Z <V¢ (s¢)) ’

T€Dy, t=0

P41 = arg mlﬂ

typically via some gradient descent algorithm;
end

1.4.5 Soft Actor Critic (SAC)

The soft actor critic algorithm is an off-policy actor-critic algorithm that could be used to solve
problems with continuous state and action space. It was first introduced by Haarnoja et al., in
2018 [23]. It optimizes a stochastic policy while using some tricks already used in the DDPG
algorithm like the target networks and the replay buffer. The main idea of the SAC algorithm
is the entropy regularization. The entropy is a measure of the randomness of the policy. The
entropy regularization is used to encourage the policy to explore the action space. The entropy
is defined as:

H(7m) = Egnpr[—log(als)] (1.36)

Maximum entropy reinforcement learning

In the maximum entropy reinforcement learning, the agent tries to maximize the expected return
while maximizing the entropy of the policy. The objective function is defined as:

J(7) = Eaprannd_ V' (r(se,a0) + aH(m(als1)))] (1.37)
t=0

« is a hyperparameter that controls the importance of the entropy in the objective function. It
is called the temperature parameter.

Value function

The SAC algorithm uses two value functions: the state value function V and the Q function.
While the Q function is used in the policy update, the state value function is used in the Q

22

1.4. Algorithms and architectures for continuous state and action space: DDPG, PPO, SAC

function update. The value function is updated by minimizing the loss function:

LY () = Egupr[(Vyp(5) = Eann[Q(s,a) — alog w(als)])?] (1.38)

The Q function is updated by applying the modified Bellman equation:

LQ(¢) = ESNp“7a~7r[(Q(Sa alg) —r(s,a) — YEs, 1mpm [V¢(3t+1)])] (1.39)

Policy update

The policy is updated by maximizing the expected return while maximizing the entropy of the
policy. The objective function is defined as:

(1) = Bar[Q (5, 0) — alog my(als)] (1.40)

Action bounds

In the SAC algorithm, the action is computed by sampling from a Gaussian distribution. Its
mean is an output of the actor neural network, and its standard deviation is also an output of
the actor neural network. So the standard deviation is a complex function that depends on the
state. In most cases, the actions are bounded. To enforce the action bounds on the output of
the actor neural network, they apply tanh to the sample from the Gaussian distribution. The
tanh function is used to map the output of the actor neural network to the interval [—1, 1]. The
action is then scaled to the desired interval. This bound enforcement change the probability
distribution of the action. To compute the new probability of the sampled action, they employ
the change of variable formula. Let’s denote the action sampled from the Gaussian distribution
as u, the action after applying the tanh function as a, and the probability density function of
the Gaussian distribution as p and the probability density function of the action as . The log
probability of the action is defined as:

log 7(a) = log p(u) — 2 log(1 — a?) (1.41)

Where d is the dimension of the action space.

23

Chapter 1. Deep reinforcement learning: From concepts to algorithms

Algorithm 3: Soft Actor-Critic [23]
Input: 61,65, ¢
Output: 01,65, ¢

Initialize parameters 601, 02, ¢ > Initial parameters
01 < 01,02 < 0 > Initialize target network weights
D+ 0 > Initialize an empty replay pool

for each iteration do

for each environment step do
ag ~ my(agsy) > Sample action from the policy
St41 ~ P(Se41]8¢t, ar) > Sample transition from the environment
D <« DU {(s¢,at,7(St,at), Se41)} > Store the transition in the replay

pool

end

for each gradient step do
0; < 0; — A\qVo,Jo(0;) fori € {1,2} > Update the Q-function parameters
b P—)\Tr@qﬁe],r(qzﬁ) > Update policy weights
o a—AVaJ(a) > Adjust temperature
0; < 70; + (1 — 7)0;; > Update target network weights

end

end

1.5 Application of reinforcement learning in robotics

Most of the robotics problems could be formulated as a Markov Decision Process (MDP). The
state is the configuration of the robot, the action is the control input, and the reward is the
cost function. The goal is to find the optimal policy that minimizes the cost function. This cost
function could be the distance between the end effector and the target, the energy consumption,
or any other cost function that represents the task to be solved.

While robotics present good candidate for the application of reinforcement learning, most
reinforcement learning algorithms,the field has historically focused on games, such as board
games and video games, as ideal testing grounds for RL algorithms [I0, 24]. This is because
applying reinforcement learning in video games is much easier than in robotics: the environment
is simulated, we have direct and noise-free access to the state, the agent can interact with the
environment indefinitely, and the resulting policy is applied in the same controlled environment.
Which is not the case in robotics as the environment is the real world, the state is noisy, the agent
could not interact with the environment as much as it wants, and the resulted policy will be used
in different environment than the one used during the learning process. Those challenges make
the application of reinforcement learning in robotics more difficult. But the recent advances in
deep reinforcement learning have made it possible to solve complex robotics problems, which was
not possible before [8, 25], 26].

One of the main challenges in applying reinforcement learning in robotics is the sample
efficiency: the amount of data needed to learn the optimal policy. The agent has to interact
with the environment to learn the optimal policy. This could be very expensive in terms of
time and money. To overcome this challenge, we could use a simulation instead of the real
robot to train the agent. While this could be a good solution, having a simulation that is
close to the real environment is not always possible. Sometimes we could try to learn the

24

1.5. Application of reinforcement learning in robotics

model of the environment during the learning process, but this could be also very expensive in
terms of computation. This approach is called model-based reinforcement learning. Unlike the
model-free reinforcement learning, the model-based reinforcement learning uses the model of the
environment to plan the actions instead of learning the policy directly [27]. This approach is
more sample efficient than the model-free reinforcement learning, but it requires the model of
the environment to be accurate. Another solution to the sample efficiency problem is to use the
off-policy algorithms. The off-policy algorithms use the data collected by the previous policy to
update the new one. This could be done by using the replay buffer. Then the data stored in the
replay buffer could be used many times to update the policy. This approach proved to be several
times more sample-efficient than the on-policy algorithms. When data collection is done outside
the learning process by the old policy, we call this approach offline reinforcement learning. The
problem with offline reinforcement learning is that the data collected by the previous policy could
be not representative of the new policy. This could lead to divergence of the learning process.
That is why the offline reinforcement learning algorithms are suffering from instability [28].

Although the use of simulations presents a good solution to this problem, there is always a
gap between the simulation and the real environment, especially in the case of vision tasks. Many
solutions have been proposed to overcome this challenge: domain randomization [29], domain
adaptation [30], and transfer learning [31], but none of them could solve the problem completely
and learning on the real environment would always stay the objective of the reinforcement learn-
ing community.

A second challenge in applying reinforcement learning is the safety in the real environment.
To learn the optimal policy directly in real environment, the agent has to explore the environment.
This could lead to catastrophic failures and hardware damage. To overcome this challenge, many
safe reinforcement learning algorithms have been developed. The main idea of these algorithms
is to learn the optimal policy while ensuring that the agent will not take actions that could lead
to catastrophic failures [32]. Whereas these algorithms could solve the safety problem, they are
less sample efficient than the other algorithms, and the training process could take more time.

Further, a third significant challenge is the need for a human intervention during the learning
process in real environment. Even when using the safe reinforcement learning algorithms, the
agent could take actions that lead to a state where it could not recover. In this case, the human
intervention is needed to bring the agent back to a safe state. Sometimes the long learning
process could lead to hardware damage, and the human intervention is needed for maintenance
purposes.

All those challenges make the application of reinforcement learning in robotics an interesting
and challenging field of research. In [33], Ibarz et al. present a survey of the application of
reinforcement learning in robotics, the challenges, and the solutions proposed to overcome those
challenges. Before moving to the application of reinforcement learning in the control of cable-
driven parallel robots, we will present some compelling applications of reinforcement learning in
robotics.

One of the most interesting application of reinforcement learning in robotics is the control of
legged locomotion. In [25] Lee et al. introduce a highly effective control strategy that leverages
proprioceptive feedback and sophisticated learning algorithms to enable autonomous navigation
over complex terrains. The training was done only in simulation and the learned policy was
transferred to the real robot. The results show that the learned policy retains its robustness in
situations never seen during training. Robotic manipulation is also an intriguing use case for
reinforcement learning. In [8] Levine et al. develop a method that learns a policy that maps
raw image pixels to torques at the robot’s joints. The policy is trained using a combination of
trajectory-centric reinforcement learning algorithm and supervised learning. The results show

25

Chapter 1. Deep reinforcement learning: From concepts to algorithms

that the learned policy could perform complex manipulation tasks using only raw image pixels as
input. Reinforcement learning has also been used in the control of aerial vehicles. In [26], Sadeghi
et al. focus on using simulation environments to train deep reinforcement learning models that
can then be applied to real-world autonomous drone flight. The training employs a Monte Carlo
policy evaluation method within a highly randomized simulation environment to enhance the
model’s generalizability to real-world conditions. The experimental results demonstrate that
the model, trained only on synthetic data, can effectively navigate real indoor environments,
handling varied lighting conditions and obstacle configurations.

1.6 Reinforcement learning based-control of cable-driven parallel
robots

Because of their great flexibility, large payload, and high precision, cable-driven parallel robots
offer a promising platform for the application of reinforcement learning (RL). These robots might
be employed in numerous scenarios where RL could be used in the control algorithm to deal with
the high nonlinearity and the uncertainties of the system or to adapt the control strategy to a
specific task. A large and growing body of literature has looked at those applications. These
studies can be grouped into three main categories: those where RL is applied to a specific task
within a particular application, those that combine RL with other control strategies to address
trajectory tracking, and those that use end-to-end RL (i.e. where the agent learns to control
actuators directly from raw sensor data, without intermediate processing or representations) for
trajectory tracking.

For the first category, in [34] where the authors present a Q) learning based method to identify
the manipulators’ geometry for calibration purposes, to our knowledge this is the first study to
investigate the use of RL in cable driven parallel robot. Alex Grimshaw and John Oyekan focus
on enhancing the robot’s control using DRL to maintain the balance of unstable loads in [35].
A cable driven parallel robot has been utilized in [36] for rehabilitation, where RL is employed
to find the optimal admittance to adapt to human voluntary force. In [37], the cable driven
parallel robot is used in different way, the length of the cables is fixed while the actuators are on
mobile bases, so instead of moving the end effector by winching the cables, the end effector is
moved by moving the bases. As this configuration is more useful for manipulation tasks where
the environment is cluttered, an obstacle avoidance algorithm based on SAC was used to enable
real-time trajectory adjustment. Although all those studies provide innovative uses of cable-
driven parallel robots, and some of them were enhanced with test on a real robot, they all lack
the generalization of the approach to other problems. As the main goal of controlling CDPR
is moving the end effector to a desired position, we will be more interested in the trajectory
tracking problem. In the following, we will present some works that solve the trajectory tracking
problem using hybrid control strategies before moving to the end-to-end RL.

The task of controlling cable driven parallel robot is a complex task that could be divided into
many subtasks. One of the most challenging subtasks is the tension distribution for redundant
cable driven parallel robot. As there is many possible ways to distribute the tension in the
cables to achieve the same end effector position, the problem is considered to be an optimization
problem under constraint. In [38], the authors propose a deep Q-network (DQN) approach to
manage the tension of four cables that control the robot’s end effector, enabling it to follow
a 3D trajectory derived from human motion: the robot is specifically designed for upper-limb
rehabilitation. Another interesting use of RL alongside basic controller is presented in [39],
where it is used to enhance the performance of cable-driven parallel robots under the presence

26

1.6. Reinforcement learning based-control of cable-driven parallel robots

of parameter uncertainties, the control performance was verified on real 3-DOF CDPR with
three cables. A comparison between the performance of hybrid RL control strategies and end-
to-end RL is presented in [40]. The authors use the DDPG algorithm to calculate the target
wrench then calculate the optimal tension distribution using the inverse dynamics equation of
the robot. They compare the performance of this approach named hybrid DDPG with the end-
to-end DDPG, where the target cable tensions is directly calculated by the actor network. They
apply the two approaches on a CDPR for ankle rehabilitation where only rotational motion is
allowed. Although the end-to-end DDPG approach shows similar performance to the hybrid
DDPG during normal tests, the hybrid DDPG outperforms the end-to-end DDPG when the
model is subject to uncertainties, and it takes less training time. Even though this study provides
a good comparison between the two approaches, the end-to-end DDPG approach was not trained
to handle uncertainties, moreover the testing was basically done on a simulation environment,
and the trajectory test tracking was done using a simple sinusoidal trajectory with a period of
more than 100 seconds.

Even if hybrid methods could help to reduce the training time drastically, they are not always
the best choice, especially when there is possibility to learn on the real system. Even when it
is not the case, end-to-end RL would still be considered as the best choice to reveal the full
potential of the RL and to discover strategies that are not apparent through traditional control
approaches. In the control of CDPR using end-to-end RL, rather than the work cited above, to
date and to our knowledge there are three other studies that investigated this aspect.

The first one was conducted by Dinh-Son Vu and Ahmad Alsmadi in 2020 [4I]: the robot is
2 DOF underacted CDPR, they use SAC algorithm, and they propose three different reward
functions to train the robot for a pick and place task, so trajectories are basically point to point
trajectories.

In contrast, the second study, carried out by Sancak et al. in 2021 [42], focuses more on the
trajectory tracking problem. They use the DDPG algorithm to learn the optimal policy and
they propose two different approaches, one where the training algorithm learn from point to
point reference trajectories ("point-to-point agent") and the other where the reference training
trajectories were sinusoidal references ("dynamic agent"). Both agents were tested on both
trajectories and the results show that each agent outperforms the other on his corresponding
task. A comparison between the two approaches and PID controller was also presented, showing
that the PID results are slightly better than the dynamic agent for sinusoidal trajectories, but the
point-to-point agent outperforms the PID controller for point-to-point trajectories. The period
of the sinusoidal trajectory used for test is about 10 seconds, but still the maximum speed was
not really so high as it was less than 0.2 m/s in the x axis and even less in the y-axis.
Concluding our review, the final study by Raman et al. in 2023 [43], use the TD3 algorithm
on reconfigurable CDPR (rCDPR) where the anchor points of the cables could slide along the
side of the rectangular base. First, they apply the TD3 algorithm on a CDPR where the anchor
points are fixed, then they apply the algorithm on the rCDPR, so the policy outputs alongside
the cable tension the new position of the anchor points that maximize the wrench quality and the
manipulability of the robot. Additionally, to those two agent they propose a decoupled training
approach where they use two different agents one to learn the cable tension and one for the anchor
points position. First they train the pose quality agent to learn the anchor points position by
incorporating an aspect of imitation learning in the reward function, then they train the tension
agent to learn the cable tension in two different ways, one where the anchor points are delivered
by the learned policy, and the other where the anchor points are calculated from optimization.
The results show that the decoupled training approach outperforms the other two approaches:
the error RMSE was significantly reduced, and the manipulability was increased. The training

27

Chapter 1. Deep reinforcement learning: From concepts to algorithms

and the testing trajectories are structured as Bezier curves through a set of random points
selected at the start of every episode during training, the maximum speed was not presented in
the paper, but we could conclude from the figures that the speed is really low as the robot takes
about 200 seconds to accomplish a trajectory of less than 1 meter.

The main limitation of the studies presented above is the low speed of the robot, indeed,
the maximum speed of all those studies is less than 0.2 m/s and the reference trajectories are
mostly the same one used in the training. Moreover, for the four end-to-end RL studies, the
training and the testing were done only on a simulation environment, and the results were not
tested on a real robot, which questions the generalization of the results to more sophisticated
unknown trajectories with high speed and acceleration and the ability of the learned policy to
be transferred to the real robot.

1.7 Conclusion

In this chapter, we introduced the main concepts of reinforcement learning, before presenting the
main algorithms used in RL in the case of continuous state and action space. This introduction
to RL shows the difficulty of implementing RL and how the most simple algorithm involve a lot
of mathematical concepts to implement, numerous hyperparameters to tune and many design
choices to make [44]. After that, we presented the main challenges of applying RL in robotics,
and we discussed the solutions proposed to overcome those challenges. Finally, we presented the
state of the art of the application of RL in the control of cable-driven parallel robots with focus
on the end-to-end RL for trajectory tracking. The presented studies are limited by the low speed
of the robot, the lack of generalization of the results to more sophisticated unknown trajectories
with high speed and acceleration, and the lack of testing on a real robot. In the next chapter,
we will develop a reinforcement learning (RL) environment modeled for the cable-driven parallel
robot (CDPR) we have in the lab. That will serve as a test bench for the control of CDPR before
we move on to the methodology used to address the trajectory tracking problem using RL.

28

Chapter 2

Cable-Driven Parallel Robots:
Modeling and Simulation

Contents
2.1 Introductionl e e 30
2.2 Configuration|. o v i i e e e e e e e e e e e 30
................ 31
2.4 Forward kinematics and position estimation| 34
2.5 PlD-based controll 0 0 oo oo oo oo 35
2.6 Dynamic modeling|. o 0o o oo oo oo 35
2.6.1 Dynamic equations of transitional CDPRs|. 37
12.6.2 Motor dynamic modello oo 37
2.6.3 Cablesmodell 39
[2.7 Simulation with Matlab/Simulink| 39
2.7.1 Simulation 1: Simplified model| 0. 39
P72 Sl 9 STl L]] RESE] |
| the dynamic model of the cables| 40
2.3 Results: validation of the model in simulation with real datal 41
2.8 Conclusionl e e e e e 43

29

Chapter 2. Cable-Driven Parallel Robots: Modeling and Simulation

2.1 Introduction

Cable-driven parallel robots are a type of parallel robots (CDPRs) that use cables to transmit
forces and torques to the end effector. They are used in various applications such as rehabilitation
[3], manufacturing industry [45], construction [46] and logistics [47]. In the context of the project
Lab on Cable [1], we are using a cable-driven parallel robot to track flying insects. The end
effector is a cubic structure equipped with cameras (or other instruments) and a light source
to capture images of the insect and a depth sensing camera to estimate the position of the
insect. So basically we have a small lab moved by cables following the insect flying freely in the
room. The cable-driven parallel robot used in this project could reach a speed of 3.6 m/s and an
acceleration of 17 m/s?. Although CDPRs offer high speed and acceleration, they are complex
to control and model due to the non-linearity of the way actions on the cables are transferred
to end effector movement. A control algorithm based on PID controller requires the integration
of a position estimator as the position of the end effector is computed from the lengths of the
cables and there is no analytical solution in the case of rotational CDPRs(i.e. robot which end
effector has rotational degrees of freedom). Moreover, in the case of redundant/over-actuated
CDPRs(i.e. which have more cables than the degrees of freedom of the end effector), the control
algorithm should take into account the energy consumption to chose the optimal control strategy.
It requires an optimization, and (under some assumptions) it has been shown to be a quadratic
problem. The complexity of CDPRs and the wide range of applications make them an interesting
candidate for artificial intelligence-based control. In this chapter, the existing CDPR used in
the Lab-on-Cables project will first be presented, along with its original control (PID-based),
algorithms, and various blocks. Then, a dynamic modeling of the CDPR, will be proposed, and
a simulation tool developed using Matlab/Simulink will be presented and validated using real
data. This simulation is the basis of the environment used for the development of the artificial
intelligence-based control algorithm in the next chapters.

2.2 Configuration

One of the main advantages of CDPRs is the possibility to reconfigure the robot. As the configu-
ration of the CDPR is defined by the number of cables, the position of the motors and the shape
of the end effector, replacing the end effector, using less or more cables, changing the position
of the motors or the attachment points of the cables can change the configuration of the CDPR.
Although the choice of the configuration depends basically on the application and the workspace,
there are some tools to help the designer to choose the optimal one. One of the most used aspects
to study CDPRs configuration is the wrench-feasible workspace: it is the set of positions in the
workspace where the robot can apply a desired wrench [48, Chapter 5|]. Another important aspect
is the singularity analysis: it is the study of the singularities in the workspace such as the robot
loosing one or more degrees of freedom [48, Chapter 4]. A further significant aspect to consider
is the collision between the cables, the end effector and the structure. In the case of the CDPRs
subject to collision constraints, one could use collision detection algorithm like the one presented
in [49]. Finally, it is worth highlighting the aspect of stiffness "characterized by the infinitesi-
mal displacements dy of the mobile platform that are generated by infinitesimal wrenches dwp
applied to it" [48, Chapter 3|. The stiffness of the CDPR is an important aspect to consider, in
order to reduce the impact of perturbations on the precision of the end effector positioning. For
example in the case of the CDPR used in the project Lab-on-Cable, the configuration used is the
one with 8 cables offering 6 degrees of freedom. Because this CDPR is only used for translational

30

2.83. Geometric model and inverse kinematics

motion, we are more interested in the translational stiffness than the rotational one. Changing
the attachment points of the cables have a direct impact on the stiffness of the CDPR hence the
robustness to disturbance and the tracking accuracy. Passing from configuration 1 (figure to
configuration 2 (figure has decreased the rotational stiffness of the CDPR drastically, while
the mean of translational stiffness only change slightly with more uniform distribution over the

workspace (figure .

200 300 400
* Label

500 0
0 200 300 400 0 100

X Label

Figure 2.1: Configuration 1: CDPR with 8 Figure 2.2: Configuration 2: CDPR
cables where every cable is attached to the with 8 cables where the cables are
end effector directly without crossing crossed

To eliminate the rotation of the end effector, a new configuration with 12 cables is proposed
in [46] as shown in figure This configuration is the most suitable one for the insect tracking
application since it allows the end effector to move in the 3D space without any rotation. Each
pair of cables on top have the same tension and the same length, so it forms a parallelogram with
the side of the end effector, this ensures that the end effector does not rotate. As it has been
decided to adopt this new configuration in the project Lab on Cable, we will be only interested
in the transitional configurations. From the CDPR that already exists in the lab we will build
two purely translational CDPRs with 4 and 8 cables, one where we consider the end effector as
a point mass moving in 2D space actuated by 4 cables figure and the other where the end
effector is still a point mass but moving in 3D space and actuated by 8 cables.

2.3 Geometric model and inverse kinematics

The geometric model defines the relationship between the position of the end effector and the
lengths of the cables.

On the one hand, the end effector’s movement is described by the user in the fixed base frame
using the vector:

X =[z,y,2,a,8,7]

where x, y, and z represent the position of the end effector, and «, 5, and v are the rotation
angles around the x, y, and z axes, respectively.

31

Chapter 2. Cable-Driven Parallel Robots: Modeling and Simulation

Rotational stiffness Translational stifness

T o T
2| 18 1

configuration 1 configuration 2 caon figuration 1 configuration 2
Rotational stiffness Translational stif ness
o [configuration 1 [configuration 1
anr [configuration 2 30 [configuration 2
E20f
107
oL

10 15 20 25 30
Kor

Figure 2.3: Comparison of the stiffness of the CDPR in configuration 1 and configuration 2. K,
is the rotational stiffness, K; is the translational stiffness

Figure 2.4: Configuration 3: CDRP with 12 cables : each pair of the cables on top have the
same length, so it forms a parallelogram with the side of the end effector, this ensures that the
end effector do not rotate.

32

2.3. Geometric model and inverse kinematics

Figure 2.5: Two-DOFs point-mass CDPR with four cables, [; is the length of the cable k, Ay is
the position of the motor k, p is the position of the end effector.

On the other hand, from the system’s perspective, the movement is characterized by the
lengths of the cables, as only these lengths are measurable, and the position of the end effector
is not directly observable. Determining the cable lengths based on the end effector’s position
is known as the inverse kinematics problem. For cable-driven parallel robots, this is a straight-
forward process, as the cable lengths are calculated using the norm of the vector between the
attachment point and the winch position.

In contrast, the forward kinematics problem, where the end effector’s position is determined
from the cable lengths, only has a numerical solution. The forward kinematics problem will be
discussed in the next section. To solve the inverse kinematics problem, we need to compute the
lengths of the cables based on the position of the end effector. Thus a function IK(X) = L
is defined, where L is the vector of the lengths of the cables. The Jacobian matrix associated
with this function at position X is a n x 6 matrix, where n is the number of cables. It is used
by definition to compute the variation of the lengths of the cables based on the variation of the
position of the end effector L = J(X)X. The Jacobian matrix is defined by:

oh o o oh 9Ly 9h
Or oy 0z da ap oy
JX)=] : : : : : : (2.1)
Olp Oln Oln Ol Oy Oln
ox oy 0z OJa op o~y
To compute the lengths of the cables, the geometric model of the CDPR could be used directly
(equation: . This model describes the configuration of the system, including the positions
of the motors, the attachment points of the cables, and the shape of the end effector. The
geometric model for the CDPR used in the Lab-on-Cable project is illustrated in figure [2.6] The
cable lengths are computed using the following equation:

[; = 070y, + OB, — O/ A; (2.2)

= o
l;|| is the length of the cable i, O;O,, is the position of the mobile platform in the
— —
fixed base, O B; = R(X)OmBires is computed using the rotation matrix R(X) and the position
3
of the attachment point of the cable ¢ in the mobile platform denoted by B;..r, and Oy A; is the

where [; =

33

Chapter 2. Cable-Driven Parallel Robots: Modeling and Simulation

Az

As oAy

Figure 2.6: Geometry of the lab-on-cables. The vertices of the end effector are at the points B;,
i=1.. 8 The origin of the fixed and mobile frame of reference is Oy and O,,, respectively.
The dashed lines represent the cables changing the pose of the flying frame (end effector) via
motorized winches. The i-th cable connects the points A; corresponding to the position of the
pulley at the entrance of the i-th winch to the distal anchor point B;.

position of the winch in the fixed base.
OmOy is given by the translational components of the pose (z,y,2), R is given by the Euler
angles («, 3,7), and the Bj..y and A; are fixed and correspond to the geometry of the robot.

l_; = (.’L’, Y, Z) + R(aa B, 7) ’ OmBiref + OmA; (23)

From this equation, we can compute the Jacobian matrix by differentiating the lengths of
the cables with respect to the position of the end effector.

In the case of the CDPR with 4 cables (figure , where the end effector is supposed to be
a point mass moving in 2D space, the equation becomes:

li=+/(x—a)?+ (y — b;)? (2.4)

x and y are the position of the end effector in the fixed base, a; and b; a are the coordinates of
the attachment point A; and B; of the cable 7 in the fixed base.

2.4 Forward kinematics and position estimation

The forward kinematics problem is the computation of the position of the end effector from the
lengths of the cables. In general, the forward kinematics problem is not directly solvable for
CDPRs, so the use of numerical methods is required. In [I], they use a simple optimization
technique (gradient descent) to minimize the error between the lengths of the cables computed
from the estimated position of the end effector and the measured lengths of the cables. Other
position estimation approaches for CDPRs are presented in [48, Chapter 4]|. In the case for
redundant translational CDPRs, the forward kinematics problem is directly solvable, as the

34

2.5. PID-based control

position of the end effector is computed by the intersection of the spheres of the attachment
points of the cables.

In the case of the 2D CDPR with 4 cables, the position of the end effector is computed by the
intersection of the circles of the attachment points of the cables. The intersection of two circles
of two successive cables is always two points, one in the workspace and the other one outside the
workspace, so by using each pair of successive cables, we have 4 intersection points. Ideally, all
circles (or spheres in the 3D case) should be concurrent (i.e. intersect all at the same point). Due
to modelling and measurements inaccuracies, they do not and we need a way to approximate the
intersection point. By computing the median of these points, we have the position of the end
effector while avoiding the outliers. In the case of 3D CDPRs: 8 or 12 cables, the position of
the end effector is computed by the intersection of three spheres of the attachment points of the
cables. When the end effector is not a point mass but a rigid body, the center of the spheres is
the translational displacement of the attachment points of the cables by the vector B;O,,, this
translational displacement is applied to the cable vector [; so that all the points B; are displaced
to O, and the intersection of the spheres gives the position of the end effector.

2.5 PID-based control

This section describes the controller that was developed before the beginning of this thesis’
project. This control scheme, that we name "PID" (after the way the end effector motion is
computed with respect to the location of the target), represent an useful reference point, that
we will use as a performance landmark to evaluate RL-based control.

This approach represents a classical control method that does rely only on the inverse kinemat-
ics model of the robot and the Jacobian matrix without the use of the dynamic model. It utilizes
a PID controller to calculate the tracking speed based on the error between the robot’s current
position and the desired position (PID controller block). The tracking speed is then transformed
into winding speed using the robot’s Jacobian matrix (Inverse Kinematics block). Subsequently,
a quadratic optimization problem is solved to determine a correction term to be added to the
winding speed in order to make sure they respects limits on cable tensions estimated through
the motors currents (Tension Control block). Finally, the winch speeds are converted into motor
commands (Winches I/O block) [I]. The control scheme is illustrated in figure

2.6 Dynamic modeling

The dynamic model of the robot aims to represent the "operating system" of the robot, i.e.
the way the robot reacts to the inputs (motor commands) and the external forces (gravity,
friction, etc.). It refers to the system to be controlled and the way it evolves over time. It can
be considered as digital twin of the robot, as it allows to simulate the robot’s behavior in a
virtual environment, allowing to experiment different control strategies quickly and safely. It is
an essential tool for training reinforcement learning controller. It is important to emphasize that
this model does not include the control algorithm itself, rather, it include all elements in the
system from actuators to sensors, and the way they interact with each other.

While certain components, such as sensors and the communication network are assumed to be
perfect, others like the internal proportional control loop of the winch are modeled in detail.
The system consists of an end effector connected to the structure by cables, which are driven by
DC motors. The dynamic model of the robot involves deriving the equations that govern the

35

Chapter 2. Cable-Driven Parallel Robots: Modeling and Simulation

X target

X (robot pose

2. PID Controller }‘
V (tracking speed)

Y

3. Inverse _ J(Jacobian) 1.Forward Kinematics
Kinematics
¢

Y

4. Tension Control ﬁ:

U (winch command

Um Im em

Winches 1/O (asynchronous)

Figure 2.7: The PID-based control scheme of the robot consists of four steps: (i) estimation of
the robot pose by using forward kinematics, (ii) computation of the tracking speed to minimize
the tracking error, (iii) transformation into a winding speed vector by using the Jacobian and
inverse kinematics, and (iv) conversion to motor command with constraints on the cable tensions.
The vectors Iy, = (Iim, -+ Lsm), b = (limy - -+ 5 l8m)s Um = (Vim, - - - , Usm) are measurements of
the motor currents, of the winding/unwinding speeds, and of the cable lengths, respectively [1]

36

2.6. Dynamic modeling

relations between the inputs of the system (the set speeds of the motors) and the outputs of the
system (the lengths of the cables).
2.6.1 Dynamic equations of transitional CDPRs

In this section, we will be interested only in the translational CDPRs, where the end effector
is moving in the 3D space. The dynamic model of the robot is derived from the Newton-Euler
formalism. For more details about the dynamic modeling of CDPRs, the reader can refer to [50].

M(X)X =WT +w, (2.5)

with:
M(X) = melgxs, wp = wyg + we (2.6)

o X = [m, 1, Z]T pose of the end effector in the fixed base

X velocity vector of the end effector in the fixed base

X acceleration vector of the end effector in the fixed base

M (X) is the inertia matrix of the effector

me the mass of the end effector

wp, the vector representing the external forces and torques applied to the end effector

wy the vector representing gravity itemw, the vector representing other internal forces than
gravity

o T = [Tl,TQ, T3, ...,Tn]T cable tensions

e n number of cables

W = —JT the vector describing the direction of the forces applied by the cables, it is the
transpose of the Jacobian matrix

e J the Jacobian is defined by I=JX
e [cable lengths

To simplify our model, we will consider that the forces applied on the end effector are the forces
applied by the cables and the gravity force.
Thus our simplified model is:

meTssX = —JT(X)T + (0,0, —meg] " (2.7)
2.6.2 Motor dynamic model
Electrical Equation
The electrical equation of the motor is written as

U:E-l—Ri—f—L% avec E = K.Q (2.8)

It is the application of Kirchhoff’s Law-mesh method in the electric circuit

37

Chapter 2. Cable-Driven Parallel Robots: Modeling and Simulation

Mechanical Equation

Using the Fundamental Equation of Dynamics for rotating systems :

1Y)
Jmoteur% = Cm - Cf - Cfs - Cr (29)
with
Cm = Kt (2.10)
and
Cr=fQ (2.11)
with:

K.: Torque constant

o Jootor: inertia of the motor

Q: angular speed in rad/s of the motor

Cin: motor torque

e (y: viscous friction torque

Cys: dry friction torque
e (,: resistive torque

for our system we have
C,=rT (2.12)

e 7: pulley radius
e T cable tension

To build our model we will use the mechanical equation and we will neglect the friction torques
so the mechanical equation of the motor n becomes:

ds}

Jmoteurditn - Kcln - TTn (213)
In the case of n motors we have :
TmoteurQ = Kei — r.T (2.14)

with) = [Ql,QQ,Qg, ...,Qn]T, 1= [il,’ig,ig, ...,in]T et T = [Tl,TQ,Tg, ...,Tn}T

Speed control loop

For speed control, an internal proportional loop embedded in the motor is used. The motor
speed is controlled by the motor current, which is proportional to the difference between the set
speed and the measured speed. The equation of the motor speed control loop is given by:

i = kmoteur (U — v) (2.15)

e i: the motor current

38

2.7. Simulation with Matlab/Simulink

® kiotor: Speed loop proportional constant
e u: the set speed in rpm

e v: the measured speed in rpm

In the case of n motors we note : i = [il,ig,ig,...,in]T, U = [ul,uz,u;z,,...,un]T et V =
T
[’Ul,vg,vg, ...,Un]
so the equation (2.15) for n motors is :
i = kmoteur (U — V) (2.16)
With N
V=" 2.17
5 (2.17)

2.6.3 Cables model

For cables model we used the model in [51] with some simplifications. Thus, the relation between
the cable tension and the motor speed is :

T; = cref Al + dpep Al (2.18)

with '
Al; = J(X)dotX — rQ (2.19)

2.7 Simulation with Matlab/Simulink

To simulate the CDPR system, the model is implemented in Matlab/Simulink. Two simulations
are performed: the first one with a simplified model where the cable tensions are directly linked
to the motor currents by a constant «, and the second one with a more complex model where
the mechanical model of the motor and dynamic model of the cables are integrated.

2.7.1 Simulation 1: Simplified model

The scheme of the simulation is shown in figure 2.8] The input is the desired speed of the
motors U and the output is the position of the end effector X and the cable lengths [. The
current ¢ is calculated using the equation . Assuming that the motor speed is constant, the
equation can be simplified to T' = z' and using the dynamic equation of the robot

we can calculate the position of the end effector using the resulting acceleration and the initial
conditions. In the case of 4 cables CDPR, the equation (2.7)) becomes:

ma = T1.711 + To.709 + T3.703 + Ty.714 + 15 (2.20)
a represents the acceleration vector of the end effector, 7; represents the unit vector of the

cable i, T; represents the tension of the cable i and P represents the Earth’s gravitational force
applied to the end effector. This equation can be rewritten as:

mz =T1.n15 + To.ney + T3.13; + Th.nyy (2.21)
mzZ =T1.n1, + T1r.n9, + T3.n3, + Ty.ng, — Mg (2.22)

39

Chapter 2. Cable-Driven Parallel Robots: Modeling and Simulation

nge and ng, are the components of the unit vector 7i; in the z and z axis, respectively. The
Jacobian matrix of the robot is given by [48]:

j’: |:n1a: N2z N3z n4:c:| (223)
Niz N2z N3z N4z
The dynamic model of the robot can be rewritten as:
2z = 0
mX = J(X).T + [] (2.24)
—myg
Ty
where X = {x] and T = =
z T3
Ty

i
kmateur }—»

U{Omega ——»|
consigne) +

Cm "y X
Kc]—»’ alpha]ﬂ.l }—.Dsg::’::gze dd /d \nlr‘qr'ul')l'\
J(X
dX/dt

v
1/(2pi)
l—,l Omega mesuré

Figure 2.8: Simulation 1: Simplified model, the cable tensions are directly linked to the motor
currents by a constant « , the input is the desired speed of the motors U and the output is the
position of the end effector X and the cable lengths [

2.7.2 Simulation 2: Simulation with the mechanical model of the motor and
the dynamic model of the cables

The scheme of the simulation is shown in figure Same as simulation 1, the input is the
desired speed of the motors U and the output is the position of the end effector X and the cable
lengths . The difference is that the tension of the cables is calculated using the equation .
This requires the calculation of the Al; using the Jacobian matrix, the speed of the end effector
and the motor speed . The motor speed is calculated using the mechanical model of the
motor and the acceleration of the end effector is calculated using the dynamic equation of
the robot (2.7)).

40

2.7. Simulation with Matlab/Simulink

m(ru ation

oteur*domegaldt
T ddX/dy
U(Omega —m| Hmofpur 1 Umoeteurfw| intégr: :mcn Modele du Equation intégration X
consigne) cable Dynamique N

—)
dx/dt

Omega
dl

\
11(2pi)
L

Figure 2.9: Simulation 2: Simulation with the mechanical model of the motor and the dynamic
model of the cables, the cable tensions are calculated using the equation ([2.18]), the input is the
desired speed of the motors U and the output is the position of the end effector X and the cable
lengths [

2.7.3 Results: validation of the model in simulation with real data

The parameters of the CDPR are shown in Table[2.1] we compared both versions of the simulation
using the real data. The second simulation requires identification of the parameters of the
cable model ¢,.y and d,.f, while for the first simulation, we have access to the value of all
the parameters. The results of both simulations were so close that we decided to use only the
first simulation for the rest of the work as the second simulation is more complex and requires
parameters identification.

We simulated the developed model in figure 2.8 of the robot using Simulink. To validate
the model, we used real data that we collected during a trajectory tracking using PID-based
controller with the real CDPR.

We used the same motors speed generated during the real trajectory tracking experiment to
compare the real and simulated end effector position for the same inputs. The results are shown
in figure The simulation and the real data are very close. The maximum error is 0.04 m in
both x and z axis. We also measured the cable tensions experimentally using Phidget 22 force
sensors during trajectory tracking and found that the current is proportional to the cable tension
(Pearson correlation R? = 0.98, figure . Thus, the measured motor currents ¢; can be used
as estimators of the cable tensions.

Table 2.1: CDPRs parameters

Parameter Value
Nominal current Lnom 6.8 A
Nominal speed Viom 3420 rpm
Nominal torque Trom 0.8 Nm
Control signal frequency fe 100 Hz
Motor torque constant K. 0.123 Nm/A
Motor Current proportional gain Kot 1 A/rps
Drum radius r 0.0178 m
End effector mass m 1 kg

41

Chapter 2. Cable-Driven Parallel Robots: Modeling and Simulation

- 4 . -~ . . :
E \ \ Real
PN
,{35,,;,?-"\\ \ | /]
E \ ! f / \7_//"«

0 5 10 15 20 25 30

— Time (s)

%0,04 ~

8 00af / \ [\ / \ 1

£ / \ \ | \ / \

goozr / \ I AN AN \ / \ 1
5 / | | '\I \ ".‘ \\ /

2001 VN ;’ YRy \ \ \ \ /\ | E

3 VY 'f Uy \/ Vo

2 % 5 10 15 20 25 30

Time (s)

- 2 : : : : .
E

£ NN N
% 45l] [/ J
715 7_,/ \\ / v / \ e
L ERAVAVRVA |
€,

0 5 10 15 20 25 30

z Time (s)

E0,04 f,.\ fl \

o03r J/ \ f\ [\ []
£o0.02 \ f \ / \ \ [N]

s /\\-\\ | I‘\ [\ / " / e
=i / [

R Y R VAR O

2 0 5 10 15 20 25 30

Time (s)

Figure 2.10: Comparison between the real
and simulated end effector trajectories us-

ing the same inputs.

42

Tension (N)

90

30

90

8O

01

60

50

40 T

aor

20

Figure 2.11:
ble tension and the motor electrical current.
Experimental data recorded for one motor.

Current{A)*13
Tension{N)

5 10 15 20 25 30

Linear: y = 14.97*x - 8.869
RZ=0984

\
25 3 35 4 4.5 5 55 6 6.5
Current (A)

Correlation between the ca-

2.8. Conclusion

2.8 Conclusion

In this chapter, the Cable-Driven Parallel Robot (CDPR) used in the project Lab on Cable have
been thoroughly presented. Key aspects, including both the forward and inverse kinematics
of CDPRs, have been discussed in detail, providing a solid theoretical foundation. Addition-
ally, the dynamic model of the robot has been developed and subsequently simulated using
Matlab/Simulink, ensuring a comprehensive computational framework for future control appli-
cations. The accuracy of the simulation results has been rigorously validated by comparing them
with real-world data collected during a trajectory tracking experiment using the PID-based con-
troller, demonstrating the robustness and reliability of the model.

These foundational elements, including the kinematic analysis, dynamic modeling, and sim-
ulation, will serve as the basis for the development of a reinforcement learning (RL) algorithm
for the control of CDPRs in the upcoming chapters. The scalability of the developed simulation
is a key feature, as it can be adapted to various CDPR configurations, regardless of the number
of cables or their arrangement. This flexibility is critical for extending the RL algorithm’s appli-
cation across different CDPR setups, enabling experimentation and performance evaluation on
configurations that differ from the current setup in the lab. Specifically, it will allow us to test
and refine the RL algorithm for a 12-cable CDPR configuration, which remains a future goal due
to the unavailability of the physical system in the lab at this time.

43

Chapter 2. Cable-Driven Parallel Robots: Modeling and Simulation

44

Chapter 3

A deep reinforcement learning
approach for the control of cable-driven
parallel robots

Contents

8.1 Introduction| e e 46
3.2 Training environment, state and action space| 46
13.3 Desired trajectory generation: the case of trajectory tracking in |

| bounded workspace|0 e e e e e e e e e e e e e e 47
B.4 Current constraintsl 0 oo, 50
3.4.1 Current control loop| L oo 50

B.42 Currentboundsl. o 50

3.5 Reward design| v i i i i i e e e e e e e e e e e e e e e e 51
3.5.1 Reward-engineering] 51

3.6 Hyperparameters| 52
3.7 Environment and reward setup| 000000 53
[3.7.1 Validation trajectory during the training process| 54

3.8 Agents Configuration [. 0000 e e 55
[3.8.1 Deep Deterministic Policy Gradient (DDPG)| 55

[3.8.2 Proximal Policy Optimization (PPO)|. 55

[3.8.3 Soft Actor-Critic (SAC)| 58

3.9 Conclusionlt e e e e 60

45

Chapter 8. A deep reinforcement learning approach for the control of cable-driven parallel robots

3.1 Introduction

The use of deep reinforcement learning (DRL) in control has been the subject of several studies
in recent years, as presented in chapter 1. Some of these studies have focused on the use of RL
side by side with traditional control techniques. This approaches are called Hybrid control, while
others approaches that use RL as the only control technique are called End-to-End reinforcement
learning.

In this work we rather focus on the second option, as it is the most suitable for highlighting
the potential of DRL in control [8, [16]. The main advantage of this approach is the ability to
learn the control policy from scratch, without the need for a priori knowledge of the system to
be controlled. Moreover, it treats the complex systems as whole, without the need to decompose
them into sub-systems, which helps to overcome the limitations of traditional control techniques,
such as taking into account the non-linearity of the system, the presence of disturbances, and
the uncertainties in the model. This chapter first establishes the environment where the control
problem is defined, then it presents some of the challenges that we faced in the training process
and how we solved them, and finally, it presents the results of the training process and the
comparison between different RL agents and a PID-based control.

3.2 Training environment, state and action space

One of the advantage of using DRL in the control of complex systems is the ability to treat the
system as a black box where we ignore the internal dynamics of the system. So instead of trying
to solve each sub-problem separately as in the traditional control, the policy is learned directly
from the interaction with the environment to achieve the desired objective. This is done by
defining the system as an environment, and the control policy as an agent that interacts with the
environment. This interaction is done through the exchange of the action a; and the observation
s¢ at each time step t. For CDPRs, the action a; is the control signal that we send to the motors,
it could be the torques, the currents, or the desired speed of the motors as in our case [I]. The
observation s; is the state of the system at time ¢, it is a vector chosen according to the objective
of the control, and the measurements available. In our case we defined the state space by:

s = (X, Xy—1,er,e0-1, 1It) (3.1)

where X; is the position of the end effector at time ¢, e; is the error between the current position
and the target position at time ¢, and I; is the current of the motors at time ¢.

The state space is the set of all possible states that the system can take, sometimes it is
different from the space defined by the state variables, because it is not always possible to reach
all the states of the state variables. For example, in the case of CDPRs, if we decided to use the
cables length instead of the position of the end effector as state variables, we will have a state
space that is not continuous, because not all the combinations of cable lengths are possible.

The action space is the set of all possible actions that the agent can take, for CDPRs the
dimension of the action space is equal to the number of motors, and the action space is continuous,
but have a limited range of values that the motors can take. We will see later, each action depends
on the other actions and the state of the system, so some combination of actions are not safe for
the system.

The environment is the system that we want to control, it depends on the dynamics of the
system, the objective of the control, the measurements available, and the control signal. Since we
have no control over those parameters. This results in many challenges that we need to overcome

46

3.8. Desired trajectory generation: the case of trajectory tracking in bounded workspace

to succeed in the training process.

The first challenge is the desired trajectory generation. We are solving a tracking problem. The
desired trajectory is part of the state, it is something that we generate, which is good thing as
we could use it to explore the state space. However, the desired trajectory affects significantly
the training process as the agent needs to learn to control the robot in all the states of the
environment, so we need to generate trajectories that are coherent with the dynamic limits of
the robot, and that visit all the states of the environment.

The second challenge is in the action space exploration. For our system the control signal is
the desired speed of the motors, and the current of the motors is proportional to the difference
between the desired speed and the measured speed of the motors. That results in a negative
desired current when the desired speed is less than the measured speed, which is not possible,
but our agent ignore that and will choose this action, thus the tension of the cable will be zero,
which is not safe for the system. To solve this problem, we propose to use a saturation function
to limit the action space, so the agent will not choose actions that are not safe for the system.
The last challenge is the reward function. It is used to guide the agent to learn the best policy
for a given task to achieve, designing a good reward function is not an easy task, in the reward
engineering section we will introduce the reward function that we used in our training process.

3.3 Desired trajectory generation: the case of trajectory tracking
in bounded workspace

Visiting all the states of the environment is extremely important for the training process, as the
agent needs to learn the best action for each state. In the case of trajectory tracking, the desired
trajectory is part of the state, and as it is something that we generate, we have control over it.
But we still need to generate trajectories that are coherent with the dynamic limits of the robot,
and that visit all the states of the environment. To solve this problem we decided to generate
random trajectories with random speed and acceleration. The trajectories are generated using
the following procedure: First, we set the maximum acceleration a4, and the maximum speed
Umaz- Then, we establish a random initial position X at the start of each episode and reset the
speed and acceleration to 0. Next, at each time step ¢, we generate a random acceleration ay
using a gaussian distribution such that —a;e. < a¢ < amae, and by integrating the acceleration,
we generate the speed v using the following equation:

Vy = V1 + ap x dt (3.2)

We check that the speed is between the limits. If not we set it to the limit. Finally, we generate
a trajectory using the following equation:

Xt = Xt—l + Vg % dt (33)

This approach works very well for low speed or unbounded workspace, but for high speed, we
often reach the workspace limits before the end of the episode. To overcome this problem we
tried to reduce the episode length, but it leads to instability as the samples of rewards used to
estimate the average return is reduced. So instead of reducing the episode length, we decided to
change the desired speed v; to random speed in the other direction when the end effector reaches
the workspace limits, so that the end effector stay in the workspace. This approach works well
for high speed even if it is not the best solution, as the desired speed is not coherent with the
dynamic limits of the robot and the generated trajectories are not smooth. But it is acceptable

47

Chapter 8. A deep reinforcement learning approach for the control of cable-driven parallel robots

in the training phase as the robot will visit all the states of the environment and the agent will
learn to control the robot in all the states.

We use the parameters shown in table to generate the trajectories for our CDPRs. The
velocity limits are chosen to match the velocity limits of the robot. The nominal speed of the
motors is 3000 rpm which is equivalent to 4 m/s for the cables. The acceleration limits are
chosen higher than the maximum acceleration of the robot to reach maximum speed during the
limited episode length and also because the acceleration is generated using a random gaussian
distribution, so the robot will not reach the maximum acceleration in all the states of the envi-
ronment. In figure we show an example of the variation of the end effector’s position over

Table 3.1: Target generation parameters

Parameter Value
Maximum acceleration in x-axis 35 m/s?
Maximum acceleration in z-axis 35 m/s?

Maximum velocity in x-axis 4 m/s
Maximum velocity in z axis 4 m/s

time for a generated trajectory using the above procedure. When the target pose reaches the
workspace limits, the speed is inverted to keep the target position of the end effector in the
workspace.

In figure [3.2] we show the distribution of the generated target poses in 2D workspace over 500
episodes with 1000 steps each. The density of points is uniform at the most parts of the
workspace, which is good as the agent will learn to control the robot in all the states of the
environment. There is a high density of points at the center and the edges of the workspace
that we could not avoid basically for two reasons: For the real robot resetting the position to
a random one at the start of each episode will require a controller to bring the robot to the
desired position which contradict the objective of the training, the development of a controller
from scratch without the use of a priori knowledge of the system. Even with some basic position
control based only on the cable lengths, the robot will take a lot of time to reach the desired
position which will add more time to the training process. So we decided to rely on the random
last position of the robot at the end of the episode when it is possible, otherwise we reset the
position to the center of the workspace. The second one is that the workspace is bounded, so to
visits all the states of the environment while having smooth target trajectories that are coherent
with the dynamic limits of the robot, the workspace limits will be visited more than the other
states.

In figure [3:3] we show the distribution of the generated target speeds over 500 episodes with 1000
steps each. The episode always start with zero speed to have coherent objective trajectories for
the robot to follow, this influences the distribution of the speed to be more concentrated around
the zero speed. Because the acceleration is generated using a random gaussian distribution, the
probability of having a high speed is low. The speed limits are more visited than the other states,
as every point in the trajectory exceeding the speed limit will be set to this limit.

48

3.8. Desired trajectory generation: the case of trajectory tracking in bounded workspace

% (

2.0 A

1.5 4

z(m)

1.0 4

0.5 A

time (s)

Figure 3.1: Example of a generated trajectory for training, the trajectory does not reach the
workspace limits as the speed is inverted when it reaches virtual limits.

2D Histogram of X vs Z

r -1
2.25 4

2.00

1800

1600

1754
1400

1.50

. 1200
1.251

r 1000

Z(m)
Counts

1.00
r 800
0.75 A

r 600

0.50 4

n l,_J [+
0.25 T T T T T —

Figure 3.2: Distribution of the generated target poses over 500 episodes with 1000 steps each.
There is a high density of points both at the center and the edges. This is because the position
is reset to the center at the start of each episode when the last episode ends at the workspace
limits, and the end effector’s speed is inverted upon reaching the workspace limits at the end of
an episode.

49

Chapter 3. A deep reinforcement learning approach for the control of cable-driven parallel robots

2D Histogram of Vx vs Vz

4
1000
2
800
1
0
r 600
-1
-2 - 400
1
-4

w

Vz (m/s)
Counts

r 200

T T T T T T T
=3 -2 -1 0 1 2 3 4
VX (mys)

Figure 3.3: Distribution of the generated target speeds over 500 episodes with 1000 steps each.
The speed follows a gaussian form, with a peak at the zero speed because the acceleration is
generated using a random gaussian distribution. The speed limits are more visited than the
other states, as every point in the trajectory exceeding the speed limit will be set to this limit.

3.4 Current constraints

3.4.1 Current control loop

Cable driven parallel robots are robots that use cables to transmit forces from the motors to
the end effector, so the control signal is normally the tension of the cables, but as the tension
is not directly measurable, the current of the motors is used instead. The CDPR that we have
in the lab uses a proportional control loop where the current of the motors is proportional to
the difference between the desired speed and the measured speed of the motors. The current is
computed using the following equation:

i = Kmotor(u — vp) (3.4)

where i is the current of the motors, K ,otor 1S the motor constant, u is the desired speed of the
motors, and vy, is the measured speed of the motors. From this control loop we could deduce that
any desired speed that is less than the measured speed will lead to a negative desired current,
which is simply the motor rotating in the other direction, and the tension of the cable will be
zero which is not safe for the system. Normally we have only control over the desired speed of
the motors, but as we have access to the measured speed of the motors, we could act on the
current of the motors to respect the current limits by modifying the desired speed of the motors.

3.4.2 Current bounds

The cables in the CDPR should always be in tension, because when winching slack cables, there
is a high risk that they get entangled around the drum, and the robot will lose its ability to

50

3.5. Reward design

move. In this situation we should stop the robot and fix the cables to bring the system to its
safety state. To avoid this, we set a minimum current limit 4,,;,. On the other hand, the current
should not exceed a maximum limit ¢,,,,, as there is a risk of damaging the motors, the cables,
or the end effector. So we set a maximum current limit 4,,... As we use the desired speed of the
motors as the control signal, the current limits are translated to speed limits at each time step
using the following equation:

maz 1 7> Tmas
Z.sa,t =41 if imin <1< Z'max (35)
Tin 1 7 < imin

And based on the current control loop the action of the agent is deduced using this function:

isat
= 3.6
Usat Kmotor + Um ()

By computing the action of the agent using this function, we ensure that the current of the
motors is between the limits, and the cables are always in tension. Moreover, as we map each
unsafe action to the nearest safe action, we ensure that the agent will not choose actions that are
not safe for the system and will learn to control the robot in all the states of the environment.

3.5 Reward design

3.5.1 Reward-engineering

The reward function is an important part of the reinforcement learning algorithm, it is used to
guide the agent to learn the best policy for a given task to achieve. In the case of redundant cable
driven parallel robots, there are many solutions to reach the same target position, so a reward
function that only takes into account the position error is not enough to achieve a good policy,
because the policy oscillates between different solutions, leading to noisy control. Furthermore,
Our control signal is the speed of the motors, as there is a proportional control loop of the current
of the motors, so the reward function need also to take into account the control signal to visit
only the states that are significant for the control.

Error based reward

The first part of the reward function is the position error and the derivative of the position error:

rie = — (o [led| + aa(lled] — [les—1l))) (3.7)

where e; is the position error at time ¢, oy and as are constants that determine the importance
of the position error and the derivative of the position error in the reward function.

Energy optimization reward

The second part of the reward function penalizes the energy consumed by the motors. In this
reward function, we follow the classical approach of energy optimization: the energy consumed
by the motors is penalized, and as the energy is related to the current, the current of the motors
is penalized as well:

rap = o [|i] (3.8)

where 4; is the current of the motors at time ¢, ag is a constant that determine the importance
of the current in the reward function.

51

Chapter 8. A deep reinforcement learning approach for the control of cable-driven parallel robots

Current limits reward

The third part of the reward function focuses on the current limits, as we limit the current using
a saturation function after getting the action from the agent, we want to encourage the agent
to choose actions that keep the current between the limits as other actions will be saturated, so
there is no point in choosing them. To do so we use the following reward function:

(3.9)

13+ = —auy ||a; — Usati

a; is the action of the agent, wusq ; is the action after applying the saturation function, oy is a
constant that determine the importance of this part in the reward function. If the action of the
agent is not modified by the saturation (i.e. a; = usq,;) this function is null.

So our final reward function is:

T =T T2 T3 (3.10)
re = — an [leg|| — aa(lles]| = lles—1l]) — s [li]]

Where a1, as, as, ay are the coefficients of the reward function. By tuning these coefficients
we change the importance of each part of the reward function until we get the best performance.

(3.11)

— 0y Haz — Usat,i

3.6 Hyperparameters

In the training process, many parameters need to be tuned to get the best performance. Those
parameters could be classified into two categories: the parameters of the environment and the
parameters of the training algorithm.

In the first class, are the coefficients of the reward function, the parameters of the target trajec-
tories, the current limits and the speed limits of the motors. Most of these parameters are fixed
after the characteristics of the robot and the objective of the training process. For example if
the tracking of trajectories is done at low speed, the speed limits of the motors are set to low
values, and target trajectories with low speed and acceleration are used for training.

In the second class, are the parameters of the training algorithm, called hyperparameters. The
reason why they are called like that is to make the difference between them and the parameters
of the network that are learned during the training process. The hyperparameters operate at
at an upper level than the networks parameters so they are fixed before the training process.
Some hyperparameters are best understood as fixed values like: the learning rate, the batch size,
the number of training iterations, the number of episodes, the discount factor, the replay buffer,
the number of hidden layers, the number of neurons in each layer, etc. Others involve strategic
choices, like: the activation function, the optimizer, the exploration noise process, the structure
of the networks, the use of batch normalization, the initialization of the last layer of the actor
network and many others.

The choice of the hyperparameters is crucial for the training process, as they can affect signifi-
cantly the performance of the agent [52]. However, tuning all these hyperparameters is not an
easy task. First, the independence of the hyperparameters is not always verified, for example the
learning rate and the batch size are correlated. Second, the effect of each hyperparameter on the
training process is not always clear and could be affected by the choice of the seed of the random
generator. Third, the training process is time-consuming, so it is not possible to test all the
possible combinations of hyperparameters. Moreover, the algorithm implementation could have
some bugs that affect the training process, so it is not always clear if the bad performance of the

52

3.7. Environment and reward setup

agent is due to the choice of the hyperparameters or to the implementation of the algorithm.
Many hyperparameter optimization techniques have been proposed to find the best one for the
training process: the grid search where we test all the possible combinations of hyperparameters,
the random search [53] where we test randomly some combinations of hyperparameters, and more
advanced techniques like the Population-Based Training (PBT) [54] where the hyperparameters
are adjusted during the training process. However, in this work, we rely on manual tuning for
deeper understanding of how each hyperparameter affects the model behavior, to have more
flexibility and adaptability to the specificities of the problem, and to avoid the complexity of the
optimization process.

3.7 Environment and reward setup

During the training process, the agent interacts with the environment by sending the action a;
and receiving the tuple (s;,ai,r;, si+1). All those variables take their values in very different
ranges, requiring normalization (i.e. a data-conditioning function that maps the whole variable
range to the interval [-1, 1]) for homogeneity. Normalization of the state and action is proved
to be crucial element for good performance of the agent [55]. For position X; = (z¢, 2¢), the
normalization is done using the following equation:

— Tt ~ Tmin —0.5] x 2 (3.12)
max(xmax — Tmins “max — Zmin)
2= % — Zmin —0.5] x2 (3.13)

max(xmam — Tmins Amax — Zmzn)

Same for Xyqpget+ and the error e; = (Xyarget,t — X¢)/2. For the current Iy, the normalization is
done using the following equation:

[t - Imzn

Imaz - Imm

L= —0.5] x 2 (3.14)

The action is normalized using the following equation:

a; = [9min_ (5] % 2 (3.15)
Gmaz — Amin

A truncated gaussian noise is added to the all the normalized states of the environment to
encourage the exploration of the state space and the robustness of the agent, then clipping is
applied to the states to keep them between -1 and 1.
In the reward function, we use the normalized terms of the state and the action, and each term
of the reward function is normalized to be between -1 and 0. The final reward is the sum of
the normalized terms of the reward function divided by the sum of the coefficients of the reward
function. This normalization is done to ensure that the reward is between -1 and 0. A reward
scale is used as hyperparameter during training to scale the reward to the desired range, as the
reward is used to estimate the average return, and the scale of the reward could affect the training
process. During the training process, we test the agent on the validation trajectory (no learning
is done during the validation phase), this is done with a validation frequency hyperparameter,
to avoid testing the agent at each episode, as it takes time. When the cumulative reward
of the episode is greater than the threshold, the actor network is saved, and the threshold is
increased. This is done to avoid overfitting (i.e. the agent learns to control the robot only for
the training trajectories, capturing noise or irrelevant details, which leads to poor generalization

93

Chapter 8. A deep reinforcement learning approach for the control of cable-driven parallel robots

Table 3.2: Environment parameters

Parameter Value
Position limits in x-axis [0,6.8289] m
Position limits in z-axis [0,2.623] m

Current limits [0.3,6] A
Speed limits [-50,50] rps
Reward scale 20
Noise standard deviation 0.00005
Noise truncation 0.0005
Time step 0.01 s
Episode length 1000
Validation frequency 50

on new trajectories) and to have the best policy for the task to achieve. The parameters of the
environment are shown in table

To find the best hyperparameters for the training process, we started by testing the hyper-
parameters used for the pendulum environment in the OpenAl gym, as the pendulum problem
is the closest to our problem, with an adjustment on some hyperparameters to match the char-
acteristics of our environment. The episode length is set to 1000 steps which is the equivalent
of 10s the same as the pendulum environment. The learning rate is set lower than the one used
for the pendulum environment as the CDPR environment is more complex and the action/state
space is larger. More details about the hyperparameters used in the training process will be
presented in the next chapter.

3.7.1 Validation trajectory during the training process

During the training process, we need to periodically test the agent, and save the best-performing
network configuration. Indeed, during the learning, performance drop could be observed, due to
noise or overfitting.

Validating the performance of the agent is a challenging task as the performance of the agent
could be different from one trajectory to another. For instance, on a specific trajectory that
happen to be slow, an agent that is good for low speed will perform better (but might be unable
to manage high speeds). So to select the actor network that could operate with equal effectiveness
on all the speed, a sinusoidal trajectory characterized by varying speed and acceleration, was
employed. The generation of the trajectory is done using the following equations:

. . t
Ttarget,t = Ttarget,0 T 0.5 x (j/24) X SlIl(QTF X T) (316)

. t
Ztargett = Ztarget,0 + 0.5 X (j/24) x cos(2m x T) (3.17)
with j varying from 1 to 24, T' = 0.8s the period of the trajectory, and Tiqrget,0 and 2target,0 are

the initial position of the trajectory (the center of the workspace). The trajectory is generated
for 24 periods with 80 steps per period.

54

3.8. Agents Configuration

3.8 Agents Configuration

Reproducing the results of reinforcement learning approach could be a challenging task. Even
with the same environment and the same hyperparameters, the results could be different from
one run to another. This is due to the randomness of the training process, the environment
dynamics and the wide range of implementation of the algorithms [44]. The code is implemented
using the Keras library, and the training process is done using Grid5000 servers. The training
process is done using the following agents:

3.8.1 Deep Deterministic Policy Gradient (DDPG)

In section we introduced the DDPG algorithm as presented in the original paper [16].
Whereas the fundamentals of the algorithm remain the same, there are many variant implemen-
tations of the algorithm. In this work, we use the implementation presented in [56], where the
actor and critic networks are implemented using the Keras library. We adapt this implementa-
tion to our environment, the interaction between the different parts of the environment and the
agent is shown in figure The algorithm is presented in algorithm [4

Algorithm 4: Implementation of the DDPG algorithm for CDPR control.

Initialize the critic network @Q(s, a) parameters, and replicate them onto the critic target
network Q’(s, a);

Initialize the parameters of the actor network p(s) and replicate them to the actor target
network p/(s) ;

for episode <— 1 to Mazimum number of episodes do

Set initial state s ;

Create a random trajectory;

for step < 1 to Maximum number of steps do

Add a random noise N; to pu(s;) for exploration, us = p(s:) + Nt ;

Calculate ug,; based on the equations to avoid current saturation;

Apply the saturation function to us to get usqs(t);

Implement wugq () on the robot and get the next state s;+1 = (X¢41, X¢, €141) and the reward
Tt 3

Save the transition (s¢, as, ¢, S¢+1) in the replay buffer;

Randomly select a minibatch of transitions (s;, a;,7;, $;41) from the replay buffer. ;

Perform updates on the @ network to reduce training loss;

Perform updates the p network policy using the sampled policy gradient ;

Gradually adjust the target networks’ parameters with an update rate 7;

if the next position is out of the workspace limits then
| End the current episode;
end

end
end

3.8.2 Proximal Policy Optimization (PPO)

The PPO algorithm is presented in section we use the implementation presented in [57]
with an adaptation for continuous action space, as the original implementation is for discrete
action space. The algorithm is presented in algorithm

55

Chapter 8. A deep reinforcement learning approach for the control of cable-driven parallel robots

Batch

Gé’kuakurkusklﬂ)l | (Skm—1,@km—1,

) ks,)|]

£l : [Sk1, Sk2, -v) Skom) [Sk141,8k2415 oy Skm41)

Update target
Actor weights

Traget Actor

O’ 1O+ (1-1)0’

[k(sk141), 11(Sk241), oy 1(SEm 1))

Update target
Critid weights

Critic

Update
tor weights

[Q (sh11> 1(sk141))s -+ @ (Skomg 10 1CSkma)] [TRL, Th2s + + +y Them]

a;i ‘(*"I"“’L([Q(SklaH(Skl)) ----- Q(Skmvﬂ(skm,))]))

Actor loss Yk =Tk + Q' (sk141)

v

[(sk1, k1), - s (Skms Gkm)

aedom sampling

(Sz;.x 3 Ai—N;Ti—N, Si 17.\")

($i-1,Qi-1,Ti-1,8

< (83,3, 74, Siy1)

“(si]ai,ri, si41)

Update |,
Critic weights

(Si,ai;'riy Sz+1>

CZ([Yk1, Yk2s -+ Ykm] — [Q(sk1, ak1)s Q(sk2, ak2)s s Q(Skm > akm)])D

Critic loss

anironment)

a;

trajectories generation

Training target
(Xinits Xtarg.i) — Xtarg,iy Xtarg,i+1)— sip1 = (Xit1, Xi, €it1, €, Lif

CDPR Model

Current (Xit1, Xi, Ligr)

limitation

(siyai,Ti, Sit1)

(51, Ti, 5i+1)

Figure 3.4: DDPG agent architecture, the agent interact with the environment by sending the
agtion a; and receiving the tuple (s;, a;, i, Si+1), this tuple is stored in the replay buffer, then at

each gradient step, the agent samples a batch from the replay buffer and
the critic networks.

updates the actor and

3.8. Agents Configuration

Algorithm 5: Implementation of the PPO algorithm for CDPR control.

Initialize the critic network v(s) parameters and the parameters of the actor network u(s) and
the standard deviation o;

for episode < 1 to Mazimum number of episodes do

Set initial state s ;

Create a random trajectory;

for step <+ 1 to Maximum number of steps do

Sample an action a; from a gaussian distribution with the mean u(s;) and the standard
deviation o;

Calculate ug,; based on the equations to avoid current saturation;

Apply the saturation function to us to get ugq:(t);

Implement usq¢(t) on the robot and get the next state s;11 = (X¢41, Xt, er41) and the reward
Tt 3

Save the transition (s, at, ¢, S¢4+1) in a buffer;

if the next position is out of the workspace limits then

| End the current episode;

end

if the buffer is full then

Compute the advantage estimates A, using the Generalized Advantage Estimation (GAE) ;

Compute the returns R; using the dicounted cumuliative sums of the rewards;

for iteration < 1 to Number of training iterations do
Split the buffer into minibatches and shuffle them;

for each minibatch do
Perform updates on the pu network policy by maximizing the PPO objective ;

Perform updates the v network by minimizing the mean squared error between the
predicted returns and the computed returns ;
end
end
Clear the buffer;
end

end
end

o7

Chapter 8. A deep reinforcement learning approach for the control of cable-driven parallel robots

3.8.3 Soft Actor-Critic (SAC)

The SAC algorithm was elaborated in section [1.4.5] as we didn’t find an implementation of the
SAC algorithm in the Keras library, we decided to implement it from scratch. The algorithm
is presented in algorithm [6] and the interaction between the different parts of the environment
and the agent is shown in figure [3.5] The version of the SAC algorithm used excludes the dual
Q-network, utilizes a target value network, and employs a fixed temperature coefficient.

o8

3.8. Agents Configuration

Batch

[tsklaaklarkl¢5kl+l)l |(5km—1,ak~m—17~->| (Skm, Qkms -i-) | j

v

[skly cee 73km]

Ran;i v sampling

[@k1s - - s Qhn] (-s;ﬂ\",ahx- Tio N, S1-N)

(81, ak1), s (Shm, @)
[5k1+1~, ces Skm+1]

Q network

v

#(si); o (s:)

[1(551); -

s I"(Skm)]¢

[U(-.Sm)wn‘f(skm)]

Gaussian process

. Stere
Traget Value © (sifai, i, sig1)
network .

Update target
Critic weights

. [a’/;clr--'xa;cm] ,
[16g (a1, sk1), ... Jog m(akm Srm)]

i Y1 = Q(sr1) — alogm(aky, sp

v
[0 (8k141)5 -+ 5 V' (Skmt1)] [PR1, Th2s - - o Thih]

E(Wirse - Yim]) j

Actor loss U,? =1+ (sk141)

(siy@iyTi, Sig1)

Cmean« (ks 9] =[50, - 0(sm)])? D (mem (32, — [Qskt, 311), - QUskms k)]))

Value network loss Q@ network loss

a;
(siy @i, i, Sig1)

environment

(Su Tz751+1)

Training target

trajectories generation (Xtarg,is Xearg,i+1)— sit1 = (Xit1, Xi, €it1, €, Li

(Xinit, Xtarg,i) —

Reward

CDPR Model

Current (Xig1, Xi, Iigr)

limitation

Figure 3.5: SAC agent architecture, the agent interact with the environment by sending the
action a; and receiving the tuple (s;, a;, 74, si+1), this tuple is stored in the replay buffer, then at
each gradient step, the agent samples a batch from the replay buffer and updates the actor and
the critic networks.

99

Chapter 8. A deep reinforcement learning approach for the control of cable-driven parallel robots

Algorithm 6: Implementation of the SAC algorithm for CDPR control.

Initialize the Value network v(s) parameters, and replicate them onto the critic target network
v'(s);

Initialize the Q network Q(s,a) parameters;

Initialize the parameters of the actor network pu(s) ;

for episode < 1 to Mazximum number of episodes do
Set initial state s ;

Create a random trajectory;

for step < 1 to Maximum number of steps do

Sample an action a; from a gaussian distribution with the mean p(s;) and the standard
deviation o(s;);

Calculate ug,; based on the equations to avoid current saturation;

Apply the saturation function to u; to get usqs(t);

Implement wusq(t) on the robot and get the next state s;4+1 = (X¢41, X¢, €141) and the reward
Tt 5

Save the transition (s¢, as, ¢, S¢+1) in the replay buffer;

Randomly select a minibatch of transitions (s;, a;,7;, $;41) from the replay buffer. ;

Perform updates on the value network to reduce the value loss;

Perform updates on the Q network to reduce the Q loss;

Gradually adjust the target Q network’s parameters with an update rate 7;

Perform updates the p network policy by maximizing the entropy-regularized expected
return ;

if the next position is out of the workspace limits then
| End the current episode;

end

end
end

3.9 Conclusion

In this chapter, a reinforcement learning framework for the control of cable-driven parallel robots
has been developed. It is comprehensive reinforcement learning environnement for solving the
trajectory tracking problem of CDPRs. The most crucial parts of this framework are the trajec-
tory generation, the current constraints and the reward function. They are designed to ensure
that the agent will learn to control the robot in all the states of the environment while avoiding
actions that are not safe for the system. This is so important to ensure the transfer of the learned
policy to the real robot. Along with the environment, the agents used in the training process
are also elaborated in this chapter and their interaction with the environment is detailed in the
algorithms. In the next chapter, this framework will be used to learn the optimal policy for the
trajectory tracking problem of CDPRs. The training process will be explained in detail, and the
experimental results on the real robot will be presented and discussed.

60

Chapter 4

Training process and experimental

results

Contents

4.1 Introduction| ¢ i i i e e e e e e e e e 62
4.2 Training Process and Hyperparameters tuning|. 62
[4.2.1 Deep Deterministic Policy Gradient (DDPG)| 62

[4.2.2 Proximal Policy Optimization (PPO)|. 63

[4.2.3 Soft Actor-Critic (SAC)| 64

4.2.4 Rewards analysis|o 64

4.3 Comparison between RL agents: Learning rate range and conver- |

| gence time analysis| 0 0oL eh e e s 65
4.3.1 Learning rate range| 65

4.3.2 Convergence time analysis|. oL 66

4.4 Performance evaluation and comparison between RL agents| 67
4.4.1 Testing trajectories|.o 67

[4.4.2 Policies used for the evaluation 69

443 Fvaluation method|o oo 69

4.4.4 " Tracking performance on simulation: Tracking error and current opti- |

[mizatlonl e e 69
4.4.5 Summary of theresults| o 0oL 70

4.4.6 Tracking performance on real robot| 72

4.4.7 Optimal policy improvement for the DDPG agent and comparison with |

[the PID-based controller| 72
4.4.8 Comparison between best RL agent and PID-based controller on real |

[robot] 74
4.5 Conclusionl ¢ i i i i i i i i e e e e e e e e e e e 76

61

Chapter 4. Training process and experimental results

4.1 Introduction

The hyperparameters tuning is a time consuming process, as the training process could take
hours or even days. To prevent the excessive use of the training resources, we started the tuning
process by testing the hyperparameters used for the pendulum environment in the OpenAl gym,
and we adjusted each hyperparameter to get the best performance and the best convergence
speed. After getting the best optimal policy for each agent using the best hyperparameters,
a validation process was conducted to evaluate the performance of the agent on some selected
trajectories.

One of the main challenge of the reinforcement learning (RL) in robotics is the gap between the
simulation and the real world. The optimal policy learned in the simulation does not always work
in the real world, and the performance of the agent could be reduced significantly. To ensure
the transferability of the agent from the simulation to the real robot, experiments on the real
robot are conducted and a comparison between the performance of the reinforcement learning
agent and the performance of the PID-based controller has been hold on many aspects like the
tracking performance, the current limits respect, and the robustness to disturbances.

4.2 Training Process and Hyperparameters tuning

The training process is done using the reinforcement learning framework and the algorithms
presented in the previous chapter. For each agent, a tuning process of the hyperparameters was
conducted to get the best average return and the best convergence speed. The training process
is done using Grid5000 servers [58] so the training time depends on the available resources and
the nature of the experiment. For example, during the tuning of the hyperparameters, the ex-
periment is ended when the average return of the agent is stable, while for the final training
process, the experiment runs for a fixed number of episodes allowing the agent to learn the best
policy for the task to achieve. In table the training time per episode and per experiment are
presented for each agent.

In this section the tuning process of each agent is presented concisely and the final hyperparame-
ters used for the training process are shown. The tuning process of the hyperparameters is done
manually to study the effect of each hyperparameter.

Table 4.1: Training Time

Agent Training time Number Training time
gen per episode (seconds) of episodes per experiment (hours)
DDPG /SAC 6-10 10000-30000 16-85
PPO 4.5-8 40000-80000 50-100

4.2.1 Deep Deterministic Policy Gradient (DDPG)

The final hyperparameters used in the training process are shown in table As has been
mentioned previously, the tuning process started by testing the hyperparameters used for the
pendulum environment in the OpenAl gym and an adjustment of each hyperparameter was
performed to get the best performance and convergence speed. The learning rate and the target
update were reduced as our problem is more complex than the pendulum problem until the best

62

4.2. Training Process and Hyperparameters tuning

performance is achieved. The exploration noise deviation was also set to a low value 0.033 as
the action space is large, this standard deviation associated with an interval of [—1, 1] due to the
normalization of the action space. The maximum desired speed of the motor is 50 rps, this is
equivalent of 0.033 x 50 = 1.65 rps standard deviation for the desired speed of the motor which
is acceptable to ensure a good tradeoff between exploration and exploitation. For the neural
network architecture, two hidden layers were used as in the original paper. For the number of
neurons in each layer, many values were tested, and the smallest size with the best performance
has been selected. The batch size used is the largest value allowing the training process to be
the fastest. For the buffer size and the discount factor, the same values used for the pendulum
problem are kept. Finally the number of episodes is set between 10000 and 30000, as at this
point the average return of the agent is stable and the agent has learned the best policy for the
task to achieve.

Table 4.2: Hyperparameters

Hyperparameter DDPG
Number of episodes 10000-30000
Critic learning rate 4e=5
Actor learning rate 2e5

Update rate for target networks 5.1074
Discount factor for future rewards 0.99
Buffer size 50000
Batch size 128
Exploration noise deviation 0.033
Neural network hidden layers 2
Neural network hidden units 128

4.2.2 Proximal Policy Optimization (PPO)

The final hyperparameters used for the PPO algorithm are shown in table The same ap-
proach of starting from hyperparameters used for the pendulum problem was conducted, and
the neural network architecture was similar to DDPG for comparison purposes. After getting
the best average return, the ultimate objective was to get the best convergence speed. The PPO
policy is on-policy, so it suffers from sample inefficiency. Without an optimization of the hyper-
parameters, the training process could take 100 times more than off-policy algorithms like DDPG
and SAC, which makes even more crucial the tuning process of the hyperparameters affecting
the convergence speed.

The learning rate, the batch size, the number of training iterations and the number of episodes
in an epoch are all hyperparameters that affect the convergence speed of the agent. Moreover,
the correlation between them is not always clear. To find the best combination of these hyper-
parameters, many values based on the ones used for the pendulum problem were tested, and the
best combination that ensures the best convergence speed while keeping good performance was
selected. The initial standard deviation of the action plays an important role in the exploration
of the action space. After trying many values the best value that ensures a good trade-off be-
tween exploration and exploitation was selected. The Generalized Advantage Estimation (GAE)
and the discount factor were kept the same as the on used in the original paper.

63

Chapter 4. Training process and experimental results

Table 4.3: Hyperparameters

Hyperparameter PPO
Number of episodes 40000-80000

Critic learning rate le™®

Actor learning rate 2e7

Discount factor for future rewards 0.99

Generalized advantage estimation 0.95
Batch size 50

Initial log standard deviation -1.3
Neural network hidden layers 2
Number of episodes in an epoch 10
Neural network hidden units 128
Number of training iterations 4

4.2.3 Soft Actor-Critic (SAC)

For the SAC algorithm, the final hyperparameters are shown in table [£.4, The learning rate
used in the original paper was kept. For the other hyperparameters common with the DDPG
algorithm like the buffer size, the batch size, the update rate for the target networks, the discount
factor, the number of hidden layers, and the number of neurons in each layer, the number of
episodes in the training process, the same values used for the DDPG algorithm were kept. Many
values were tested for the alpha entropy coefficient, and the best value that ensures the best
performance was selected.

Table 4.4: Hyperparameters

Hyperparameter SAC
Number of episodes 10000-30000
Q learning rate 3.107%
State value learning rate 3.10~4
Actor learning rate 3.107%
Update rate for target networks 5.107*
Discount factor for future rewards 0.99
Buffer size 50000
Batch size 128
Neural network hidden layers 2
Neural network hidden units 128
Alpha entropy coefficient 0.01

4.2.4 Rewards analysis

The objective of this section is to evaluate the influence of each part of the reward function
on the training process. The reward function is a linear combination of four basic functions:
the position error, the derivative of the position error, the energy optimization, and the current
limits respect part. To evaluate the influence of each part of the reward function on the training
process, we trained the agent with different combinations of the reward function parts.

The derivative of the position error proved to have a bad influence on the training process, as
the performance of the agent was worse than without using this part, so it would not be used

64

4.8. Comparison between RL agents: Learning rate range and convergence time analysis

in the final reward function. The energy optimization also affect the performance of the agent
when it exceeds a certain value, so it should be used with caution. After testing many values, the
best performance was achieved when the energy optimization part was used with a coefficient
of a3 = 0.001 while a; = 1. The current limits part proved to be the most challenging part of
the reward function, as this part help the agent to have more smooth control but it negatively
affects the performance of the agent on the tracking error level. Two options were decided to be
used, one where this part of the reward was not used at all so the associated coefficient was set
to zero, and one where the coefficient of this part of the reward was increased until the control
signal was smooth. The value of the coefficient that ensures this behavior was ay = 0.5.

4.3 Comparison between RL agents: Learning rate range and
convergence time analysis

In this section, two aspects of the training process are compared. The first one concerns the
tuning of the hyperparameters. As the learning rate is the common hyperparameter between
the three algorithms, it could be considered as an indicator to compare the sensibility of the
algorithms to the hyperparameters. Nevertheless, no general conclusion could be drawn from
this comparison as the learning rate is not the only hyperparameter that affects the training
process. The second aspect concerns the sample efficiency of the algorithms, as the DDPG and
the SAC algorithms are off-policy algorithms, they are expected to be more sample efficient
than the PPO algorithm. However, the objective is to develop certain idea about the difference
in the convergence time between the three algorithms. Also the final average return of the
agent is compared to evaluate the performance of the agent. The comparison is done using the
hyperparameters presented in the previous section with the coefficient of the reward function set
toa; =1, ap =0, ag = 0.001, ag = 0.5.

4.3.1 Learning rate range

To compare the sensibility of the algorithms to the learning rate, a training process was con-
ducted for each algorithm with different values of the learning rate. The learning rate was varied
by multiplying and dividing the initial learning rate by [2, 5, 10, 100]. The main reason why
choosing these values instead of fixed values for all the agents is that during the tuning, one would
multiply the learning rate by a fixed value to find the optimal one rather than adding a fixed
value to it. The average final return in function of the learning rate is shown in figure The
learning rate is presented in logarithmic scale to have a better visualization of the results. Only
the actor learning rate is presented as the critic learning rate is the same for the SAC algorithm,
and is twice as high for the DDPG and the PPO algorithms. When the average return converges
to a favorable value before diverging to an unfavorable one, the average return is considered to
be the mean of the favorable and the unfavorable values. All the trainings are done using the
same seed, and only one experiment per learning rate is conducted to avoid the excessive use
of the training resources. So comparing the agents using the maximum average return is not
relevant, as the average return could be different from one run to another could vary to 30% of
the maximum average return.

In figure the DDPG algorithm is the less sensitive to the learning rate, as the average
return is more than —1000 for a wide range of learning rates, followed by the PPO algorithm,

65

Chapter 4. Training process and experimental results

Average Reward vs Learning Rate for RL Agents

— opPG

— PPO

-1000

-1500

Average Reward

~2000

~2500

Actor learning Rate

Figure 4.1: The average cumulative reward of the agent in function of the learning rate for the
three algorithms: DDPG, PPO, and SAC, the learning rate is presented in logarithmic scale. An
average reward around -600 is considered to be good performance.

and the SAC algorithm is the most sensitive to the learning rate. However the best performance
by the SAC algorithm is achieved with a learning rate of 3.107%, the same value used in the
original paper.

4.3.2 Convergence time analysis

To analyze the convergence time and the maximum average return of the agents, a training
process using the hyperparameters presented in the previous section was conducted 5 times with
different random seeds: [11936, 26994, 68248, 82364, 25982| for each agent. In figure the
average cumulative reward of the agent over the 5 experiments in function of the number of
episodes is presented. The DDPG and the SAC algorithms have a similar convergence speed,
they reach the best performance after 6000 episodes while the PPO algorithm takes more 40000
episodes to stabilize over the maximum average return. The variation of the average reward
between the different experiments is more apparent for the SAC and DDPG algorithm than for
the PPO algorithm. This could be explained by the fact that the PPO algorithm is an on-policy
algorithm, so the training process is more stable than the off-policy algorithms. The maximum
average return of the PPO algorithm is the highest among the three algorithms, followed by the
DDPG algorithm, and the SAC algorithm has the lowest maximum average return. While the
maximum average return could be a good indicator to compare the performance of the agents,
the performance of the agent on the validation trajectory is more important as it is the final
objective of the training process. It was noticed that that the best performing network on the
validation trajectory is saved during the early episodes of the training. In the next section, the
tracking performance of the agent on the validation trajectory is evaluated using the best saved
actor network during the 5 experiments for each agent.

66

4.4. Performance evaluation and comparison between RL agents

Reward Convergence with Max-Min Range and Last Avg Line

—500 +

—1000 4

—1500 4

—2000 4

—— DDPG - Average
=== DDPG Last Avg
SAC - Average
SAC Last Avg
—— PPO - Average
=== PPO Last Avg

Average of last 1000 episode Reward

—2500 4

—3000 +

T T T T T
0 10000 20000 30000 40000
Episode

Figure 4.2: The average cumulative reward of the agent in function of the number of episodes

for the three algorithms: DDPG, PPO, and SAC.

4.4 Performance evaluation and comparison between RL agents

4.4.1 Testing trajectories

To evaluate the performance of the RL agents and to compare it with the PID-based controller,
three different trajectories are used:

e Trajectory 1: a cardioid trajectory with varying period, it is trajectory used on the real
robot many times, so the safety is not compromised.

e Trajectory 2: an insect trajectory saved during a tracking experiment using the PID-based
controller, it is characterized by stationary periods and an unpredictable change of speed
and acceleration. As the trajectory is in 3D, and the robot can only move in 2D using the
actual configuration, the trajectory is projected on the x-z plane.

e Trajectory 3: a sinusoidal trajectory with varying speed and acceleration, the same as the
one used during the training process for validation, the only difference is that during tests
on real robot we use jna: = 14 because the robot can not keep the cables taught at high
speed and the maintenance of the cables is required in this case. The main advantage of
this trajectory is that it allows evaluating the robot on many speeds and accelerations, and
to test the limits of the control policies.

Only three trajectories are used to reduce the experimental time, and to simplify the comparison

between the agents. In figure the three trajectories in the x-z plane are presented, and also
the variation of the pose in the x and z axis in function of the time is shown.

67

Chapter 4. Training process and experimental results

Trajectory 1: 2D Trajectory (X vs Z)

Trajectory 1: X and Z variation over time

1.8 4.0 R -
= "‘ 1“1 r”l I\
1.6 1 351 =7 7 l; IV v f \L--
L A A Y vy
$ 3.0 NN
1.4 E
2 S 25+ ~m—X
< N — Z
N 1.2 2 2.0
[1+]
=
1.0 1.5 4
1.0
0.8
T T T T T T T T T T T
3.0 3.2 3.4 3.6 3.8 0 5 10 15 20 25
X Axis Time (s)
Trajectory 2: 2D Trajectory (X vs Z) Trajectory 2: X and Z variation over time
1.6 T S
3.0 - X 4
— z g====
5++H——+——FLAF A | = I S |
9 2.5
1.4 3
1] 1]
2 ©
< 1.3+ N 2.0
N N2o
=
1.2 N
1.5
1.1
1.0 1.0 1
2.7 2.8 2.9 3.0 31 0 2 4 6 8 10
X Axis Time (s)
Trajectory 3: 2D Trajectory (X vs Z) Trajectory 3: X and Z variation over time
1.8 A] YRR
4 h ‘ h iy I n
| ahan AR AN AN
3.5 - Emsemm T R e
1.6 - ”"""‘*"“‘t'l:l\flfll.:'-.tinl;ll“:u",l'lnll
w30 SR A AR
=
g 147 = 2.5 ==X
< N — Z
N 1.2 'E 2.0
[1+]
E
104 1.5
1.0
0.8
T T T T T T T T T T
3.0 3.2 3.4 3.6 3.8 0 5 10 15 20
X Axis Time (s)

Figure 4.3: The three trajectories used for the evaluation of the agent: Trajectory 1: sinusoidal
trajectory with varying period, Trajectory 2: insect trajectory, Trajectory 3: sinusoidal trajectory
with varying speed and acceleration.

68

4.4. Performance evaluation and comparison between RL agents

4.4.2 Policies used for the evaluation

Using the best hyperparameters for each agent, 5 experiments with diffrent seeds: [11936, 26994,
68248, 82364, 25982| were conducted (the same experiments used for convergence analysis).
Also another 5 experiments were conducted for each agent using the same hyperparameters but
without using the current limits respect part of the reward function ay = 0. The PPO does
not converge without using this part of the reward function, so no policy is used for this case in
the evaluation phase. The best performing network on the validation trajectory is saved during
the early episodes of the training process, and it is used in the next sections to evaluate the
performance of the agent on the testing trajectories. The DDPG, SAC, and PPO agents learned
using aq = 0.5 for the current limits respect part of the reward function, and the DDPG1, SAC1
are the agents learned without using this part of the reward function.

4.4.3 FEvaluation method

To evaluate the tracking performance of the agents, the tracking error is computed using the
euclidean distance between the target pose and the actual pose of the robot. It is calculated for
each step of the trajectory, and its violin plot representation is used to compare the performance
of the agents.

To ensure the significance of this comparison we compute the p-value of the Mann Withney U test
[59, [60], where the null hypothesis is rejected if the p-value is less than 0.05 which is equivalent
of accepting the alternative hypothesis that the distribution underlying x is stochastically less
than the distribution underlying y, i.e. F(u) > G(u) for all u. F and G are the cumulative
distribution functions of the two samples x and y. In this study, each sample is the tracking
error of each controller on the testing trajectory, so we evaluate the comparison of each pair of
controllers using this test. The "less" and the "greater" refer to the direction of the inequality
in the alternative hypothesis. They are complementary to each other, so if the p-value is greater
than 0.95 the null hypothesis could be accepted. Which is equivalent of the x is stochastically
greater than the distribution underlying y, i.e. F(u) < G(u) for all u. The results of the test
are presented in the violin plot representation of the tracking error of the agents on the testing
trajectories. -*** means that the p-value is less than 0.001, so the PID controller is stochastically
less than the RL agent, while +*** means that the p-value for the greater test is less than 0.001,
so the RL agent is stochastically less than the PID controller. ** means that the p-value is less
than 0.01, and * means that the p-value is less than 0.05.

4.4.4 Tracking performance on simulation: Tracking error and current opti-
mization

In figure the tracking errors and the currents of the 5 RL policies along with the PID-based
controller on validation trajectories are presented. The the SAC1 has the best performance over
all validation trajectories, while the PPO shows the worst performance. The DDPG1 and the
SAC1 have a good performance on the tracking error level, but in the current plot, we can see
that their current values vary between the current limits because the current limits respect part
of the reward function is not used during the training process. Applying such policy on the real
robot could lead to noisy and unexpected behavior.

The DDPG and the SAC policies that have smooth signal outperform the PID controller on
trajectory 3, while the PID controller has the best performance on trajectory 1 and 2. This is
due to the speed of the target trajectories and the acceleration, the PID controller has a better
performance on the trajectories with low speed and acceleration, while it is the opposite for the

69

Chapter 4. Training process and experimental results

RL policies.

For the current optimization part, it is hard to evaluate the performance of the agents, specially
that it is not relevant to the real robot results as the current depends on the initial conditions of
the robot, and the model of the robot is not perfect. The only conclusion that could be drawn
from this plot is that the RL agents with smooth current have a better performance on the
current optimization than the PID controller most of the time, so the current optimization part
of the reward function has a positive effect on the current optimization.

4.4.5 Summary of the results

To summarize, the PPO agent suffers from a high tracking error on the testing trajectories, while
the DDPG1 and the SAC1 have a good performance on most of the trajectories comparable to
the PID-based controller. The only problem with those agents is the smoothness of the control
signal, which could affect the performance of the agent on the real robot The DDPG and the SAC
have a good performance on trajectory 3 but their performance is compromised on low speed
trajectories. To improve the performance of those agents, more tuning of the hyperparameters
and the variables of the training will be performed and due to the high computational cost of the
training process, the additional tuning will be done only for The DDPG agent as it has a good
performance, a good convergence speed, and more stable results than the SAC implementation
used in this study. But before that, the performance of the agents on the real robot will be
evaluated to ensure the transferability of all the agents from the simulation to the real world.

70

kK

Rz

ko

71

4.4. Performance evaluation and comparison between RL agents

i
Rk

Rk

FRE

RRE

KKK
RRE

R

R

Rk
1

““**““‘%““‘1

100 -

801

o o
© <

201
0

w> ul Jou3

Agents

(a) Tracking error comparison

ok

_RkK

L RKk

koK

SRRk
ok

*.

Rk

0

Agents

(b) Current comparison

Figure 4.4: Simulation results: Comparison of the tracking error and current of the agent on
validation trajectories for the three algorithms: DDPG, PPO, and SAC. The DDPG, SAC, and

0.5 for the current limits respect part of the reward

function, and the DDPG1, SAC1 are the agents learned without using this part of the reward

function.

PPO are the agents learned using ay

Chapter 4. Training process and experimental results

4.4.6 Tracking performance on real robot

During the real robot experiments, the policies DDPG1 and SAC1 could not be used on the real
robot, the control signal is so noisy that the robot could not start at all even with a filter. So
the least mean current of the control signal is a crucial aspect to ensure the transferability of
the agent from the simulation to the real world. The three other policies and the PID-based
controller were tested on the real robot using the same trajectories used for the simulation except
for the third trajectory where the speed and the acceleration were reduced to ensure the safety
of the robot.

For trajectory 3, the main objective of testing it is to evaluate the performance of the agent
on high speeds and accelerations. When applying this trajectory on the real robot, the cables
become slack and the controller could not keep the cables taught. This requires immediate stop
of the robot otherwise the cables become entangled and the maintenance of the cables is required.
So we only tested the validation trajectory for jmq: = 12 to ensure the safety of the robot.

In figure we can see that the all the controllers have a tracking error close to the simulation
over all trajectories. This could be explained by the fact that the simulation is closer to the real
robot, the PID still outperforms all the RL controllers on the first and second trajectory which
align with the simulation results. For the third trajectory, the RL controllers: DDPG and SAC
have smaller error compared to the PID controller while the comparison is not significant for the
PPO. The current of the PID-based controller is the highest in all the trajectories with mean
value of 1.5 A while the RL controllers have a similar low mean of the current 1 A.

Summary of the results

In this section we tested the transferability of the RL policies from the simulation to the real
robot, the results are promising as the RL controllers have a similar performance on the real
robot compared to the simulation. However, their performance is still lower than the PID-based
controller for trajectory 2: the insect trajectory. The main reason for this is the static error that
the DDPG and the SAC suffer from. The current of the PID-based controller is the highest in
all the trajectories, while the RL controllers have a similar mean of the current. To conduct a
more detailed comparison between the RL controllers and the PID-based controller, we decided
to improve the performance of the DDPG agent by tuning the hyperparameters and the variables
of the training process. Then, we will compare the performance of the best RL agent with the
PID-based controller on the real robot using the same trajectories used in this section, on many
other aspects.

4.4.7 Optimal policy improvement for the DDPG agent and comparison with
the PID-based controller

The DDPG agent performance has been compromised by the static error and low performance
on low speed trajectories compared to high speed one. To improve the performance of the agent,
a tuning of the hyperparameters and the variables of the training process has been conducted:
after using more neurons in the hidden layers (512 instead of 128), the best performance was
achieved. Although the results were not consistent between the different runs (different seeds)
using the same hyperparameters, this could be explained by the fact that the DDPG algorithm is
an off-policy algorithm, so the training process is unstable. The best performing network on the
validation trajectory was saved during the early episodes of the training, and the performance of
the agent on the testing trajectories is evaluated using this network. In simulation, the DDPG
agent have closer performance compared to the PID-based controller on the testing trajectories,

72

4.4. Performance evaluation and comparison between RL agents

o _
d
% |°¢
%
%
o
X
%
* _ _
*
*
]
% @
%
%
o
X
%
3 $
* _
*
*_
*
%
%
3 mWn\ w
«
%
*_ —‘
o (=3 o o o o
o © ©o < o~
2
wo uf 403

Agents

(a) Tracking error comparison

kKK

KRR

o Rokok
KKK
KKK
KKK

KoKk

kKK
kK
_kokok
koK

_kkk

,$$!.¢$¢$$$¢i$“ll

100 4

80 A

wid ul JoJi3g

20 A

0 -

Agents

(b) Current comparison

Comparison of tracking error and current for the agent on

testing trajectories for DDPG, PPO, and SAC.

Figure 4.5: Experimental results:

73

Chapter 4. Training process and experimental results

but we will only focus on the results on the real robot. The comparison between the best DDPG
agent and the PID-based controller on the testing trajectories will be conducted on many aspects:
the tracking performance, the current optimization and the robustness to disturbances.

4.4.8 Comparison between best RL agent and PID-based controller on real
robot

Tracking performance and current optimization

After improving the performance of the DDPG agent, the DDPG policy is compared with the
PID-based controller on the real robot using the same testing trajectories used in the previous
section. The results are presented in figure the PID still outperforms the DDPG agent on
the first and second trajectory, while the DDPG agent has a better performance on the third
trajectory. But we can see a good improvement of the DDPG agent compared to the previous
results. The difference between the mean of errors is reduced to only 1.5 cm for the first trajec-
tory and similar as the PID for the second trajectory while on third trajectory the difference is
still significant. The current of the PID-based controller is still the highest in all the trajectories
with mean value of 1.5 A while the DDPG agent has a similar low mean of the current 1 A.
While the mann whitney U test still shows that the PID controller is stochastically less than
the DDPG agent on the first and second trajectory, the difference in the tracking error mean
is not significant. So the RL agent performance could be considered as close to the PID-based
controller if not better after rigorous tuning of the hyperparameters and the variables of the
training process.

Robustness to mass change

The robustness to mass change is evaluated by changing the mass of the end-effector of the robot,
the mass is increased by 45%, 1 kg to 1.45 kg. The results are presented in figure both the
DDPG agent and the PID-based controller keep a good performance on trajectory 1 with the
mass change, even the error is reduced after mass change, this could be explained by the fact
that the mass adds more tension on the cables which help the agent keep lower tracking error.

Robustness to noisy target pose

The target trajectory is a fixed pose in the x-z plane perturbed by adding some noise. This noise
is applied exclusively to the x-component of the position vector, while the y and z components
remain constant. It is introduced using a random variable, where each value is generated using a
uniform distribution within the range [-0.1, 0.1]. the value of this noise is updated each 10 time
steps. The value of the target x-coordinate fluctuates around a base value of 3.4, with slight
deviations introduced by the noise, resulting in a range of values between [3.3, 3.5|. Furthermore,
the noise is held constant over intervals of 10 time steps. The PID controller failed to pass this
test. As the disturbance is added to the desired position, the PID controller tries to compensate
it by increasing the current which lead to current saturation and cables breakage. In Fig we
can see that the Al based control method is robust to this kind of disturbance.

74

4Kk

4 kokk

4 kKK

o
Y
~
g
&
N
(C)
§
Q
R

T T
o
o
g
N
>
§ <
g s
< S
9 S
2
N
N
<
FHHK

4.4. Performance evaluation and comparison between RL agents
Xk

id
§
&
&
Agents
(a) Tracking error comparison
i***

ok

T
N N
S ISy
g g
& ¢
> o
N IN
)
[y
Q
Q
R

et dbP ot
THTOTATTHE

80

T T
o o
© <

wd uy Jou3 vl

20
0-
3.5
0
2.5
0

5
1.09
0.5 A
0.0

75

Agents

(b) Current comparison
Figure 4.6: Experimental results: Comparison of tracking error and current between the DDPG

agent and PID controller on three trajectories, including robustness to mass change.

Chapter 4. Training process and experimental results

[
err_x_DDPG_fixed random
350 A ol 2
1 L0 | | W £
£ , \ | r’g, c 15+
c 340 lt i l‘ |
= ’ I | l £ 10 1
4 (V)
3301 —— xdes X 54
x_DDPG_fixed_random 0
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
. . .
—— zdes ¢ err_z DDPG_fixed_random
130 - z_DDPG_fixed_random £ 6
€ 6
5 =
c 125 H e mmsme— = - fmrrm ——— S 4 -
N s
N 2 -
120 -
T T T T 1 O L T T T T 1
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
Time in sec Time in sec

Figure 4.7: Experimental results: the x and the z components of the pose of the end-effector and
the tracking error of the agent on the trajectory 1 when the x component of the target pose is
perturbed by a noise for the DDPG agent only as the PID-based controller failed to pass this
test.

4.5 Conclusion

In this study, the performance of the RL agents after successful training on the simulation
environment was evaluated on the real robot. The transferability of the policies learned using
the three agents: DDPG, PPO, and SAC is validated, the only condition for this transferability
is the smoothness of the control signal. While the results of the RL agents were promising, they
suffered from a static error that compromised their performance on the real robot on stationary
periods. To overcome this problem, the DDPG agent was improved by more tuning of the
hyperparameters. The results of the improved DDPG agent are close to the PID-based controller
on simulation and on the real robot. Moreover the static error is reduced to only 2c¢m in the
improved version of DDPG compared to 5¢m in the previous version. The DDPG agent has a
better performance than the PID-based controller on the third trajectory, and the current of the
DDPG agent is lower than the PID-based controller in all the trajectories. The DDPG agent is
also robust to the mass change and the noisy target pose, while the PID-based controller failed
to pass the noisy target pose test. The ultimate objective of this study is to develop a control

76

4.5. Conclusion

policy that could be used for insect tracking, and the results of the DDPG agent are promising.
The insect trajectory projected on the x-z plane was validated successfully on the real robot.
The next step is to study the generalization of the proposed reinforcement learning approach for
diffrent configurations of the robot.

7

Chapter 4. Training process and experimental results

78

Chapter 5

Toward n-Cable Driven Parallel

Robots: A Generalized Approach

Contents
B Tntroductionl . . - &« ¢ v v v v e e e e e e e e e e e e e e e e e e 80
[6.27 Conventional reinforcement learning controller] 80

[5.3 Actuator level policies: Multi agent reinforcement learning controller] 81

[6.4 Proofofconcept] o v i i i i i e e e e e e e e e e 82
G5 Reward funclion] - . « « « ¢ v v v v vt e it e e 84
B6 Resultsl. - - o v v vt ot e et e e e e e e e e 85
.6.1 wvalidation trajectories| 85

p.6.2 Traditional reinforcement learning controller|f 85

p.6.3 Multi agent reinforcement learning controller on the same configuration |

| as tralning] e e 85
9.6.4 Multi agent reinforcement learning controller on the diffrent configura- |

| tion than trainingl o 89
B7 _Conclusionl . .« v v v v vt i e e e e e e e e e e 91
I Conclusionl ittt 93

12 Major Contributions| 00000 93

13 Perspectives|. L e e e e e e e e e 94

79

Chapter 5. Toward n-Cable Driven Parallel Robots: A Generalized Approach

5.1 Introduction

In the last section, we have shown that the reinforcement learning controller can be used to control
a CDPR, the learned policy have similar performance compared to the PID-based controller and
can be used to control the robot in a real environment. The main drawback of this approach is
that the learned policy is specific to the robot. While it proved to be robust to small changes
in the robot parameters, it can’t be used to control a different configuration of the robot. As
it has been presented in the state of the art of controlling CDPRs, all the proposed end-to-end
reinforcement learning approaches [41, 42} [43] suffer from the same issue, they learn a policy that
outputs a vector of torques to be applied to the motors, so the number of elements in the output
vector should be equal to the number of actuators on the robot. Changing the configuration
of the robot will require retraining the controller from scratch. This could be described as
a lack of generalization of the learned policy. Many approaches have been proposed in the
literature to address the latter issue, such as domain randomization [29] and transfer learning
[61], however these approaches are not effective when the input space is changing. Another
innovative approach,"Gato", to address the generalization issue has been proposed by [62], "The
same network with the same weights can play Atari, caption images, chat, stack blocks with
a real robot arm and much more, deciding based on its context whether to output text, joint
torques, button presses, or other tokens." While the Gato agent is a promising approach to
address the generalization issue, the large size of the neural network required to implement the
agent and the necessity of fine-tuning the agent for some tasks make it impractical for many
applications. Also Gato only reaches expert level on 180 simulated control tasks out of 604.
Addressing the generalization issue on large scale control tasks as the one presented by Gato
could be the ultimate goal for the robotics community, however, in the meantime, we could
focus on developing more efficient and practical approaches to address the generalization issue
on some robotics classes, such as Cable driven Parallel Robots (CDPRs). In this chapter a new
reinforcement learning approach to control the robot will be proposed, it will allow the learned
policy to generalize to environments with different number of actuators without any retraining,
this will be compared to the one presented in the last section, and the results will be presented.

5.2 Conventional reinforcement learning controller

In the last chapter, the algorithms: DDPG [16], PPO [19], and SAC [23], have been used to learn
a policy that maps the state of the robot to the torques to be applied to the motors. To control
CDPRs with different number of actuators, a retraining from scratch is required, as the number
of elements in the output vector should be equal to the number of actuators on the robot. This
is not the case for classical control methods such as the PID-based controller presented in [,
normally the passage from one configuration to an other require only a change in the jacobian
matrix, and maybe a change in the PID gains, but no need to design the control law from scratch.
In the next section, a new approach to control CDPRs with different number of actuators will be
presented, it will allow the learned policy to generalize to environments with different number of
actuators without any retraining, but first we will underline the interaction between the agent
and the environment in the conventional reinforcement learning so that we can compare it with
the new approach.

In conventional reinforcement learning, the state is describing the whole robot (figure . We
defined it as follows:

s;i = (Xi, Xi—1, €, €i-1, ;) (5.1)

80

5.8. Actuator level policies: Multi agent reinforcement learning controller

where X is the position of the end effector at step i, e; is the error between the current position
and the target position at step ¢, and I; is the current of the motors at step 1.

The observations and the actions are normalized to be in the range [—1,1]. The agent takes
the tuple (s, a;, 74, 8i+1) as input and outputs the action a; to be applied to the motors where
a; = (u1,ug, ..., uy) is the vector of torques to be applied to the motors. To compare our new

4)

Environment

~—

»@DPR Model J- (st T
i+1 — (XZ+17X7,767,+1767,7[7,+
—> €it+1

Xtar
get,i+1
(Su Tiy Sit1)

\ [Reward function]_,n/ /

a; (8is7i,8i41)

Figure 5.1: Interaction between the agent and the reinforcement learning environment, the agent
takes the tuple (s;,a;, 7, Si+1) as input and outputs the action a; to be applied to the motors.

approach with the conventional reinforcement learning, we will retrain the controller using the
same environment and the same hyperparameters, the only difference is that the configuration
of the robot will be changed, and we will compare the performance of the two controllers on the
new configuration.

5.3 Actuator level policies: Multi agent reinforcement learning
controller

The main idea of the actuator level policy method is to learn a policy that maps the state of each
actuator to the torque to be applied to the motor, instead of learning a policy that maps the
state of the robot to the torques to be applied to the motors. Since each actuator is individually
controlled by a single agent, we refer to this approach as multi-agent reinforcement learning.
However, it is important to note that the agent learns a single policy, which is then applied
uniformly across all actuators The main advantage of this approach is that the learned policy
can generalize to environments with different number of actuators, as the policy is learned to
control the actuator and not the robot. The agent-environment interaction for the multi agent

81

Chapter 5. Toward n-Cable Driven Parallel Robots: A Generalized Approach

reinforcement learning is shown in figure [5.2] The state of the actuator is defined as follows:

s; = (Lj_3, Li_y, Li_y, L}, L Iy (5:2)

i,target’ ~1

where Lg is the length of the cable j at step 1, Lg,ta’/‘get is the target length of the cable j at

step ¢, and Iij is the current of the motor j at step <. We include the length of the cable at
step ¢ — 3 in the state to give the agent more information about the dynamics of the cable, the
tension applied in the other end of the cable, and the speed of the cable. We believe that this
information is important for the agent to learn a good policy. The observations and the actions
are normalized to be in the range [—1,1]. As we have n actuators on the robot, at each step i,
the agent will do n different interactions with the environment, but learn only one policy, so we
only have one neural network that maps the state of the actuator to the torque to be applied to
the motor and one agent that learns this policy from the different samples collected from the n
actuators.

5.4 Proof of concept

To demonstrate the feasibility of our approach, we will use the dynamic model of one cable.

Assumptions

The following assumptions are made in deriving the dynamic model:
e The cable is inextensible.
e The cable is wound around the winch without slipping.
e There is no dry friction or viscous friction acting on the system

e The winch apply a torque 7(t) which is converted to a tension 7'(t) applied to one end of
the cable which is proportional to the current I(¢) flowing through the motor.

e To the other end of the cable, the mobile platform apply a force Fex(t).
e The length of the cable between the winch and the end effector is denoted as L(t).

e The mass of the cable between the winch and the end effector is denoted as m(t).

Dynamic model of the cable

Applying Newton’s second law to the cable, we have:
m(t)L(t) = Fuxs(t) = T(1) (5-3)

Fext(t) and m(t) estimation

The cable is supposed to be inextensible and uniform in mass, so an estimation of m(t) could
be computed using the length of the cable and the mass per unit length of the cable . We can
estimate Fexi(t) based on the equation using the estimated value of m(t) and the measured
value of T'(t) as it is proportional to the current I(t) flowing through the motor and the measured
values of L(t) during the last time steps.

82

5.4. Proof of concept

-

Environment

a2)

CDPR Model

'

Xtarget,i+1

\

I[lnyerse kinemati(zg

'

& &'

Ltarget,i+1

— (ll
- Marget,i+10

RL Agent

A AT i .
z+1’ z+1 H—l’ H—l Z+1’ H— target,i+1> """ target,erl)
\ @Qeward functio@
1 Jj J J 73 J J (] J n
Sit1r o Si41 = (lz 25 i1, lz7lz+17ltarget,i+17li+1)7 -~~73?+1) Ti = (T s Ty ooy T
1 ,.1
(Sz ’ Tz ’ Sz+1)
J o.J
(81) Tz) Serl)
(S’I’L ,r.TL S’I’L)
10740 2141
1 .1
ail (8 L Sz+1)
; J
af (81’r1’87,+1)
n
CL? (Sz T z+1)

Figure 5.2: Interaction between the agent and the environment for the multi agent reinforcement
learning, at each step 7, the agent interacts with the environment n times, one for each actuator,

from each interaction the agent collects the tuple (s al,rl s

200 T D1

), and output the action a! to

be applied to the motor j., the agent learns one policy that maps the state of an actuator to the

torques to be applied to the motor.

83

Chapter 5. Toward n-Cable Driven Parallel Robots: A Generalized Approach

Existence of a control law

We know an estimate of F.y denoted by ext and of m denoted by m, with:

Fext(t) = Foxt(t) — €oxt(t) bounded by a small term (5.4)
m(t) = m(t) — en(t) bounded by a small term '

The objective is to perform trajectory tracking with L4(t) as the desired length, i.e., how to
choose T'(t) to ensure:

[1La(t) = L#)|| = lle(®)]] < €q
(small or zero when €qy(t) and €, are zero)

(5.5)

L(t) is assumed to be bounded (as well as its derivatives), which is verified for the cable
robot.
If we choose T'(t) as follows:

T(t) = Fox — 10 (Ld(t) NOR k:pe(t)> (5.6)
Equation [5.3] becomes:

Fot—Foxt + M (Ld() + Ekpé(t) + kpe(t)) L(t) (5.7)
pe(t)) =

S0: €exe(t) + 11 (E(t) + kué(t) + kpe(t)) = enL(t) (5.8)
And: E(t) + kyé(t) + kpe(t) e(t) 5.9
With: e(t) = Lt)m Cext(t) (5.10)

We thus obtain a second-order equation with an arbitrary choice of k£, > 0 and k, > 0 to
ensure condition [B.5

The choice of k, > 0 and k, > 0 can also be formulated as a convex problem solvable by
numerical techniques.

So this control law could be learned by a neural network using the reinforcement learning
agent, the only condition is that the state of the actuator should contain the length of the cable
at the previous time steps to estimate the speed of the cable and the tension applied in the other
end of the cable, and the current of the motor to estimate the force applied to the cable.

5.5 Reward function

There is two possibilities to design the reward function for the multi agent reinforcement learning,
the first one is to design a reward function that is based on the error in the position of the end
effector, in this case the reward function will be similar to the one presented in the chapter [3.5.1]
The only difference is that the same error is given to the n actuators at each step ¢. In this case
it has a collaborative aspect as all the actuators gets the same reward, so an interesting error
between the actual cable length and the target cable length on one actuator will be penalized
by all the actuators as the reward is based on the position error. We will refer to this reward
function in the results part as the reward 1 "r1". we can also use a reward function that is based
on the error of the actuator only, in this case the reward function will be:

(le

i j j iy
Ty = a6 i €¢—1‘) as

. . (5.11)
g - uzsat,i

— Oy |Q

84

5.6. Results

where e{ is the error between the current length of the cable j and the target length of the
cable j at step ¢, If is the current of the motor j at step i, ag is the action of the agent j at step

i, u’,, ; is the action after applying the saturation function to the action of the agent j at step
i. In the training phase, we kept the same values for the coefficients a1, as, as, ay. We will refer

to this reward function in the results part as the reward 2 "ry".

5.6 Results

5.6.1 validation trajectories

To validate the actuator level policy, we used the similar trajectories as the one used in the last
chapter, the difference is that the trajectories are now used in 3D space. So, the insect trajectory
is not projected on the plane. And the third trajectory, the sinusoidal one, the Y coordinates for
the target position is generated using sinusoidal function with low frequency, so the robot will
have to move in 3D space to track the target position.

5.6.2 Traditional reinforcement learning controller

To train the controller using the conventional reinforcement learning, we used the same environ-
ment and the same hyperparameters as the one used in the last chapter, the only difference is
that the configuration of the robot has changed, so as the state space and the action space of
the agent. We trained for 5 experiments for each configuration and we used the same reward
function with the same coefficients. The results are presented in figure the three agents
converge and succeed to achieve working policy, however the current is so noisy, so the policies
could not be used on the real robot, the tracking error is also higher than the one obtained in
the last chapter, this could be explained by the fact that the state of the robot is different, so the
tuning of the hyperparameters and reward function coefficients should be done again to achieve
the same performance as the one obtained in the last chapter.

5.6.3 Multi agent reinforcement learning controller on the same configuration
as training

Comparision between RL agents

For the training, we used the hyperparameters as in the last chapter we only increased the buffer
size by 4 times as at each step we get 4 samples instead of one. Two versions of the reward
functions mentioned in the last section were used. The PPO failed to find an optimal policy,
so only results for SAC and DDPG are represented. In figure we can see that the error
tracking using the reward 2: the non-collaborative reward is higher than the one obtained using
the reward 1: the collaborative reward, also we noticed that the agent suffer from oscillatory
behavior using the reward 2, this could be explained by the fact that the reward 2 structure is
diffrent than the reward one structure used in the last chapter so maybe a new adaptation of the
reward coefficients is required, for the sake of simplicity and the clarity of the results, in next
section we will use the reward 1 with the DDPG policy found using the optimal hyperparameters
used in the last chapter.

85

Chapter 5. Toward n-Cable Driven Parallel Robots: A Generalized Approach

25

T 1
20

9 o
& &

Error in cm

«)

o

Oopg

Agents

(a) Tracking error comparison

e o '
e]
1
9] o
P &

Agents

Pip
0ppg

(b) Current comparison

Figure 5.3: Simulation results: Comparison of the tracking error and current of the agent for
8 cables configuration on trajectory 1 for the three algorithms: DDPG, PPO, and SAC. The
DDPG, SAC, and PPO are the agents learned using a4 = 0.5 for the current limits respect part
of the reward function.

Comparision between single DDPG, multi DDPG and PID controllers

In figure[5.5] we can see that the new actuator level policy keep similar performance as the policy
learned using the conventional reinforcement learning, the error on the first and third trajectory
is less than the one obtained using the PID controller, and the error on the second trajectory
is close to the PID, there is difference of 2¢m basically due to the static error that could be
improved by hyperparameters tuning like it was mentioned in the last chapter, the variation in
the current is less than the one obtained using the conventional reinforcement learning, this could
be explained by the fact that the agent is learning to control the actuator and not the robot, so
the agent is more focused on the actuator dynamics and the force applied to the cable.

We also conducted the robustness test used in the last chapter, the actuator level policy kept
the same performance as the one obtained using the conventional reinforcement learning, It was
robust to mass change and noise.

In the next section, the transferability of the actuator level policy is tested on the real robot,
and only comparison between the actuator level policy and the PID controller is presented as
conventional reinforcement learning can not be used directly for different configuration of the
robot.

86

5.6. Results

_kkok
T —XXFK 1
T —FXX 1
i T —FF¥¥ 1
15.0 ; .
12.5
10.0
£
o
£
[i
5 75
w
5.0
2.5 1
0.0 1
® < 1 < ¥
L7 S 7 7
& & 2 %
Agents
(a) Tracking error comparison
kKK
r FFFF 1
r +*** 1
3.0 4 r +*** 1
T 1
2.5 A
2.0 A
<
£
T 154
1.01
0.5 A
0.0 A
Q b y Vv
B QOy Qoﬁ/ é}/ ‘?05’
S S 2 R
Agents

(b) Current comparison

Figure 5.4: Experimental results: Comparison of the tracking error and current of the agent for
4 cables configuration on trajectory 1 for the algorithms: DDPG and SAC using reward 1 and
reward 2.

87

Chapter 5. Toward n-Cable Driven Parallel Robots: A Generalized Approach

100 1 _kkok _kk Rk
r FFFX 1 r = e 1 r FFFX 1
| —— |
80
60
£
9]
£
2 40
w
20
~ ~ ~ [\ 2 [\ d i i
N K N N K N N K N
& § g $ & §
< o < o <% o
§ Q S Q § Q
S Q § Q S Q
Q Q Q Q Q Q
Agents

(a) Tracking error comparison

4.0 _okok rokok oK
r +*** 1 T +*** 1 T +*** 1
3.5
3.0
2.5
<
£ 209
1.5
1.04
0.5
0.0
S $ $ S $ $ S $ $
N g IN N K IN N K N
¢ § § R § § R § £
o ¥ o ¥ o ¥
© © ©
§ < § < § <
$ S $ S $ $
Q Q
Agents

(b) Current comparison

Figure 5.5: Experimental results: Comparison of the tracking error and current of the agent for
the multi agent policy vs the conventional single agent policy ns the PID controller on the testing
trajectories

88

5.6. Results

5.6.4 Multi agent reinforcement learning controller on the diffrent configu-
ration than training

In this section, we will test the transferability of the actuator level policy from 4 cables configura-
tion to 8 cables configuration, the policy is the same one learned using the 4 cables configuration.
In figure we can see that the actuator level policy kept the same performance as the one
obtained using the 4 cables configuration. The tracking error on the second trajectory is still
close to the PID, the performance on this trajectory is compromised only by the static error.
And the DDPG still outperforms the PID on the first and third trajectories. The current mean
is higher than the one obtained using the 4 cables configuration, contrary to the PID that kept
the same current mean, however the current mean in still lower than the one obtained using the
PID controller.

In table we summarize the performance of the different controllers. The actuator level policy
outperforms the PID controller. While it keeps the benefits of the conventional reinforcement
learning: robustness to noise on fixed position target, it could also be used to control the robot
with different number of actuators without any retraining like the PID controller and other clas-
sical control methods. Moreover, the actuator level policy is more robust to the error in the
position estimation, as the agent control the cable length directly, so the position estimation is
not used during the control process.

Table 5.1: A comparison of the performance of the different controllers

Configuration \ Controller designed for 4 cables configuration PID RL multiRL
4 cables v v v
Different mass than training v v v
(m = 0.5, ..., 2kg)

Fixed target position with uniform noise X v v
Configuration with different number of cables v X v
Error in position estimation X X v

89

Chapter 5. Toward n-Cable Driven Parallel Robots: A Generalized Approach

kokok kkk keksk
r 1 | —— | r —

40

301
€
o
<
=

2 20
w

10 1

0 -

Agents
(a) Tracking error comparison
HEE HHK ¥HK

3.5

3.0

2.5
<

£ 207

151

1.0

0.5

0.0

& &
< §
§

Agents
(b) Current comparison

Figure 5.6: Experimental results: Comparison of the tracking error and current of the agent for
the multi agent policy vs the conventional single agent policy ns the PID controller on the testing
trajectories

90

5.7. Conclusion

5.7 Conclusion

In this chapter, a new reinforcement learning approach to control CDPRs with different number
of actuators has been proposed, the main idea of the multi agent reinforcement learning is to learn
a policy that maps the state of each actuator to the torque to be applied to the motor, instead
of learning a policy that maps the state of the robot to the torques to be applied to the motors.
The main advantage of this approach is that the learned policy can generalize to environments
with different number of actuators, as the policy is learned to control the actuator and not the
robot. The results showed that the actuator level policy learned using 4 cables configuration
outperforms the PID controller on the 8 cables configuration and kept the same performance as
the one obtained using the 4 cables configuration. Moreover, the absence of position estimation
in the actuator state enhances the agent’s robustness to errors in inverse kinematics, making this
approach a promising candidate for the development of fault-tolerant controllers for CDPRs, a
concept that has yet to be fully explored.

91

Chapter 5. Toward n-Cable Driven Parallel Robots: A Generalized Approach

92

Conclusion and Perspectives

1 Conclusion

In this thesis, a sim-to-real approach for the control of CDPRs using reinforcement learning was
proposed. The main objective was to improve the tracking performance of the robot at high speed
and high acceleration, so that the tracking error is minimized during the insect tracking task on
the Lab-On-cables project. Each stage, from simulation to transferability and generalization, has
been detailed comprehensively. First, the simulation of the robot at the laboratory is developed
using Matlab Simulink, then it was used as the basis of the reinforcement learning environment.
Other parts like the target trajectory generation or the current limitation were added to have
comprehensive RL framework for the tracking task. This framework is then used with the most
known RL algorithms for continuous space to learn the optimal policy. The hyperparameters
tuning with the reward design are also discussed. The learned policy was then transferred to
the real robot and tested. The results showed that the learned policy is able to track the target
trajectory at high speed and high acceleration. The actuator level approach was then proposed to
solve the generalization problem of the learned policy across different robot configurations. The
results showed that the learned policy is able to track the target trajectory with same performance
on different configurations without any further training or tuning of the hyperparameters.

2 Major Contributions

The main contributions of this thesis on the use of reinforcement learning (RL) for controlling
Cable-Driven Parallel Robots (CDPRs) are as follows:

e Development of a detailed RL framework for the tracking control at high speed and high
acceleration of CDPRs. All the other works that have been done using RL for CDPRs have
focused on the static control of the robot of the control at low speed. This work is the first
to establish a framework for the task of tracking at high speed. Policies learned using this
framework have shown to be robust and efficient in tracking tasks. It also outperforms the
PID controller designed specifically for this task at high speed.

e Validation of the transferability of the learned policies from simulation to real-world for
CDPRs. This is a crucial step in the development of RL-based controllers for real-world
applications. The policies learned in simulation were successfully transferred to the real
robot keeping the same performance, the only condition is the smoothness of the motor
commands. This is the first study to validate the sim-to-real transfer of end-to-end RL
policies for CDPRs, which is a significant step towards the use of RL for the control of
CDPR, as learning in the real world is practically impossible.

93

Conclusion and Perspectives

e Proposal of a novel approach for learning at the actuator level. This approach solves the

main drawback of RL-based controllers which is the lack of generalization across different
robot configurations. As the time of writing this thesis, this is the first study to propose
such an approach for CDPRs. The traditional RL approach is time consuming and requires
retraining from scratch and retuning of the hyperparameters for each new configuration.
This is big limitation for the use of RL as it could take months (launching many experiments
of training and testing) to have a controller for a new configuration. Using the actuator-level
approach, the learned policy can be used directly on any configuration without any further
training or tuning of the hyperparameters. This is a major breakthrough in the field of
CDPRs control as the policy (the neural network) is now associated with the motor, so once
an individual user determines the most effective policy, they are able to share it directly
with other users, supporting collective access to improved control policies for CDPRs.

3 Perspectives

The work presented in this thesis opens up several perspectives for future research. The use
auto RL to learn the optimal hyperparameters for the training of the neural network and inverse
reinforcement learning to learn the reward function could be investigated. This could help finding
better performing policies and reduce the static tracking error encountered in the current work.
Another perspective is to use the actuator level policy to control the robot to replicate the
human movements like in the field of rehabilitation for example as the position of the cable is
directly controlled in such applications. Finally the use of the actuator level policy could be also
investigated for other types of robots like serial robots as the idea is not limited to CDPRs.

94

Résumé étendu

Introduction

Dans le cadre du projet Lab-on-Cables (LoC), le robot paralléle a cables est utilisé pour suivre
un insecte en vol libre & l'aide des caméras montées sur un effecteur cubique. Une telle appli-
cation serait impossible avec un autre type de robot en raison des exigences élevées en termes
de vitesse et d’accélération pour le suivi d’insecte, de 'ampleur de I'espace de travail nécessaire
pour recréer un environnement naturel, et du déplacement silencieux du robot, évitant d’effrayer
Iinsecte.

Ce dernier est suivi a l'aide d’une caméra de détection de profondeur 3D qui calcule sa position
dans le repére mobile, puis un algorithme de controle est utilisé pour déplacer le robot afin de
maintenir 'insecte au centre de 'effecteur. Il est basé sur un contréleur PID associé au mod-
éle géométrique du robot pour calculer la vitesse souhaitée de I'effecteur, combiné & un solveur
d’optimisation QP pour ajuster la tension dans les cébles.

L’objectif principal du projet est de capturer le mouvement de I'insecte a ’aide de caméras haute
vitesse afin d’étudier son comportement. La séquence d’images collectées lors de cette expérience
correspond essentiellement & une vidéo de 4 secondes enregistrée en mode ralenti. Ainsi, perdre
I'insecte pendant quelques millisecondes hors du champ de la caméra pourrait entrainer une perte
d’informations importantes. C’est pourquoi il est essentiel de disposer d’un algorithme de con-
trole capable de gérer efficacement des trajectoires rapides tout en anticipant les déplacements
de l'insecte.

C’est ici que 'utilisation de l'apprentissage par renforcement (RL) entre en jeu. Cette disci-
pline a montré un grand potentiel ces derniéres années en permettant aux robots d’apprendre
directement & partir de données visuelles et d’exécuter des taches complexes difficiles & modéliser
analytiquement. L’utilisation de lapprentissage par renforcement (RL) dans le controle des
robots paralléles & cables reste encore peu développée. Les rares études menées jusqu’a présent
se concentrent principalement sur des trajectoires & basse vitesse ou sur des taches de prise et
de déplacement. Cette thése a pour principal objectif d’explorer ’application du RL au controle
des robots paralléles a cables, en particulier pour le suivi de trajectoires & grande vitesse. Cette
recherche s’inscrit dans le cadre du projet Lab-On-Cables.

Apprentissage profond par renforcement : Des concepts aux algo-
rithmes

Ces derniéres années, l'intelligence artificielle (IA) a pris une place essentielle en robotique.
Définie par John McCarthy comme « la science et l'ingénierie de la fabrication de machines

intelligentes », elle regroupe de nombreuses techniques, dont I'apprentissage automatique, qui
révolutionne le domaine. Parmi ses approches, I’apprentissage par renforcement se distingue par

95

Résume étendu

son fonctionnement basé sur l'interaction entre un agent et son environnement. Contrairement
aux méthodes supervisées et non supervisées, il ne repose pas sur des données préexistantes, mais
sur un processus d’essai-erreur visant 4 maximiser une fonction de récompense, ce qui en fait
une solution privilégiée pour le controle des robots.

Avec les avancées récentes en apprentissage profond, I'apprentissage par renforcement profond
(DRL) s’est imposé comme une solution prometteuse, notamment grace aux travaux de Deep-
Mind et a l’élaboration de l'algorithme Deep Q-Network (DQN). Ces progrés ont ouvert de
nouvelles perspectives pour le controle des robots paralléles & cables, offrant une approche plus
flexible et adaptative du suivi de trajectoire. Toutefois, son implémentation demeure un défi
en raison de la complexité des algorithmes, du réglage des hyperparamétres et des nombreuses
décisions de conception qu’elle implique.

Afin d’implementer efficacement le DRL dans le contréle des CDPRs, un cadre de travail complet
doit étre établi, incluant la modélisation du robot, la simulation de I’environnement, le choix de
I’algorithme d’apprentissage et la définition de la fonction de récompense. Ce processus, bien
que fastidieux, est essentiel pour garantir la réussite de I’apprentissage et la transférabilité de la
politique apprise vers un robot réel.

Robots Paralléles & Cables : Modélisation et Simulation

Les robots paralléles a cables (CDPRs) sont une catégorie de robots paralléles ou la transmis-
sion des forces et des couples s’effectue via des cibles. Leur rapidité et leur forte capacité
d’accélération leur permettent d’étre utilisés dans des domaines variés tels que la rééducation,
I'industrie, la construction et la logistique. Cependant, leur controle et leur modélisation restent
particuliérement complexes en raison des non-linéarités.

Dans le cadre du projet Lab-on-Cables (LoC), un CDPR est utilisé pour suivre des insectes
volants. L’effecteur, une structure cubique équipée de caméras et d’une source lumineuse, cap-
ture des images de l'insecte, tandis qu’une caméra de profondeur estime sa position. Ce petit
laboratoire mobile, suspendu par des cables, suit ainsi I'insecte en temps réel dans son environ-
nement. Capable d’atteindre une vitesse de 3,6 m/s et une accélération de 17 m/s?, ce CDPR
met en lumiére les défis de commande spécifiques a ce type de robot.

Face a ces défis, l'intelligence artificielle représente une alternative prometteuse pour la com-
mande des CDPRs. Une premiére étape essentielle consiste en la modélisation dynamique du
robot et le développement d’un outil de simulation sous Matlab/Simulink. Ce modeéle dynamique,
validé & ’aide de données réelles issues d’expériences de suivi de trajectoire sous commande PID,
offre une base fiable pour I’exploration de nouvelles stratégies de commande.

Les éléments fondamentaux établis, incluant I’analyse cinématique, la modélisation dynamique
et la simulation, ouvrent la voie & I'intégration d’un algorithme d’apprentissage par renforcement
pour la commande des CDPRs. La flexibilité de cette simulation est un atout majeur, permettant
d’adapter le modéle a différentes configurations de CDPRs, indépendamment du nombre et de
la disposition des cables. Cette approche facilitera notamment le développement et 1’évaluation
d’un algorithme de commande pour une configuration & 12 cables, une perspective envisagée en
I’absence du systéme physique correspondant dans le laboratoire & ce jour.

96

Une approche d’apprentissage par renforcement profond pour le
controle des robots paralléles & cables

Dans ce travail, on s’intéresse a l'apprentissage par renforcement de bout en bout, qui met
pleinement en valeur le potentiel du DRL en contréle. Son principal avantage réside dans sa ca-
pacité a apprendre une politique de commande & partir de zéro, sans nécessiter de connaissances
préalables sur le systéme a contréler. En traitant le systéme dans sa globalité plutot qu’en sous-
systémes, elle permet de surmonter certaines limites des techniques de commande classiques,
notamment la gestion des non-linéarités, la prise en compte des perturbations et 'incertitude du
modéle.

L’élaboration d’un cadre de travail adapté est une étape essentielle. Celui-ci définit ’environnement
ou s’inscrit le probléme de controle, les contraintes & respecter, ainsi que la fonction de récom-
pense, qui guide 'apprentissage de l'agent tout en garantissant la sécurité du systéme. Ces
éléments sont cruciaux pour assurer le transfert efficace de la politique apprise vers un robot
réel.

La premiére étape pour définir I’environnement consiste & déterminer 1’état de 'agent, qui doit
inclure toutes les informations essentielles & la prise de décision. Dans notre cas, cet état est
défini par la position et la vitesse de 'effecteur, la position de I'insecte ainsi que les courants des
moteurs. L’action de ’agent correspond & la commande en vitesse envoyée aux moteurs.

La génération de trajectoires cibles joue un roéle fondamental dans ’apprentissage, car elle per-
met d’explorer différentes configurations afin d’optimiser la politique. Ce processus est congu de
maniére & produire des positions aléatoires tout en restant dans ’espace de travail et en garan-
tissant la continuité des trajectoires.

Le robot est controlé en vitesse. De plus, une fonction de limitation du courant a été intégrée
avant I’envoi des commandes afin d’éviter tout dépassement indésirable et d’assurer que les cables
restent toujours en tension.

La fonction de récompense, élément clé de 'apprentissage par renforcement, guide I'agent dans
I'optimisation de sa politique en évaluant la pertinence de ses actions. Dans notre cas, elle est
définie en fonction de la distance entre la position de I'insecte et celle de 'effecteur. Une pénalisa-
tion est également appliquée pour limiter les courants moteurs excessifs ainsi que les commandes
susceptibles de générer des courants hors des limites autorisées.

L’interaction entre I’environnement et les agents d’apprentissage est explorée a travers différents
algorithmes. Une fois 'environnement établi, il sert de base & I'apprentissage d’une politique
optimale pour le suivi de trajectoire des CDPRs.

Processus d’entrainement et résultats expérimentaux

Le réglage des hyperparamétres est une étape essentielle mais chronophage, car le processus
d’entrainement peut s’étendre sur plusieurs heures, voire plusieurs jours. Afin d’optimiser les
ressources de calcul, I'ajustement des hyperparamétres a débuté en utilisant ceux du modéle de
pendule de 'environnement OpenAl Gym, avant d’étre progressivement affinés pour améliorer
les performances et accélérer la convergence. Une fois la meilleure politique apprise pour chaque
agent, une phase de validation a été menée pour évaluer leur efficacité sur différentes trajectoires
sélectionnées. L’un des défis majeurs de 'apprentissage par renforcement en robotique réside
dans ’écart entre la simulation et le monde réel. Une politique optimale en simulation ne garan-
tit pas nécessairement les mémes performances sur un robot physique, ou divers facteurs peuvent
altérer son efficacité. Pour assurer la transférabilité des agents RL, des expérimentations sur un

97

Résume étendu

robot réel ont été réalisées, comparant les performances des agents d’apprentissage par renforce-
ment et du contréleur PID en termes de précision de suivi, de respect des limites de courant et
de robustesse face aux perturbations.

Les tests ont confirmé la transférabilité des politiques apprises par les agents DDPG, PPO et
SAC, a condition que le signal de commande reste suffisamment lisse. Bien que prometteurs,
les agents RL ont initialement souffert d’une erreur statique impactant leur précision en phase
stationnaire. Une optimisation supplémentaire du DDPG a permis de réduire cette erreur a
2 cm, contre 5 cm auparavant, et d’atteindre des performances similaires, voire supérieures, a
celles du contréleur PID. Notamment, sur certaines trajectoires, I'agent DDPG s’est révélé plus
performant que le PID tout en consommant moins de courant. Il a également démontré une
meilleure robustesse face aux variations de masse et aux perturbations du signal cible, 1a ou le
PID a échoué.

L’objectif final étant d’élaborer une politique de controle adaptée au suivi d’insectes en vol, les
résultats obtenus avec I'agent DDPG sont encourageants. La trajectoire de I'insecte projetée sur
le plan x-z a pu étre validée avec succes sur le robot réel. Les prochaines étapes consisteront a
étudier la généralisation de cette approche d’apprentissage par renforcement a différentes config-
urations du robot.

Vers les robots paralléles & n cables : une approche généralisée

Pour répondre au probléme de généralisation des politiques apprises sur différentes configurations
de robots paralléles & cables, une nouvelle approche d’apprentissage par renforcement (RL) est
proposée. Cette méthode permet a la politique apprise de s’adapter & des environnements avec
un nombre variable d’actionneurs, sans nécessiter de réentrainement. Elle vise ainsi & surmonter
I'une des principales limitations des approches de RL de bout en bout : le manque de générali-
sation, qui rend souvent les politiques spécifiques & une seule configuration du robot.
Contrairement aux méthodes classiques qui associent ’état global du robot aux couples appliqués
aux moteurs, 'approche proposée repose sur un apprentissage par renforcement multi-agent.
L’idée principale est d’apprendre une politique qui relie ’état de chaque actionneur au couple
moteur & appliquer, plutét que de chercher directement & controler ’ensemble du robot. Cette
approche présente un avantage clé : en se concentrant sur les actionneurs individuels, elle per-
met d’adapter la politique apprise a des robots ayant un nombre d’actionneurs différent, sans
modification majeure.

Les résultats expérimentaux ont démontré la robustesse de cette méthode. Une politique apprise
sur une configuration & 4 cébles a surpassé un controleur PID sur une configuration a 8 cébles,
tout en maintenant des performances équivalentes a celles obtenues avec 4 cables. Cette flexi-
bilité illustre la capacité de la politique a s’adapter & diverses configurations sans nécessiter un
nouvel entrainement & chaque changement.

En outre, cette approche renforce la robustesse du systéme en éliminant le besoin d’estimer la
position dans I’état de 'actionneur. Cela améliore la fiabilité de I'agent face aux erreurs de calcul
de la cinématique inverse, un probléme fréquent dans les CDPRs aux configurations complexes.
Cette caractéristique ouvre la voie au développement de controleurs tolérants aux pannes, un
domaine encore peu exploré pour ce type de robots.

En conclusion, cette approche d’apprentissage par renforcement multi-agent, qui apprend & con-
troler chaque actionneur indépendamment, constitue une solution efficace et robuste pour le
controle des CDPRs dans des configurations variées. Elle représente une avancée significative
vers des controleurs autonomes et adaptatifs pour les robots complexes.

98

Conclusion

Dans cette thése, une approche sim-to-real a été proposée pour le controle des robots paral-
leles & cables (CDPRs) a l'aide de l'apprentissage par renforcement. L’objectif principal était
d’améliorer la performance du suivi du robot & grande vitesse et forte accélération, afin de min-
imiser 'erreur lors de la tiche de suivi d’insectes dans le cadre du projet Lab-On-Cables.
Chaque étape, de la simulation & la généralisation en passant par le transfert, a été explorée
en détail. Tout d’abord, une simulation du robot en laboratoire a été développée sous Matlab
Simulink et utilisée comme base pour I'environnement d’apprentissage par renforcement. Des
éléments clés, tels que la génération de trajectoires cibles et la limitation du courant, ont été
intégrés afin de créer un cadre complet pour la tache de suivi. Ce cadre a ensuite été exploité
avec les algorithmes de renforcement les plus adaptés aux espaces continus afin d’apprendre une
politique optimale. Le réglage des hyperparameétres ainsi que la conception de la fonction de
récompense ont également été étudiés. Une fois la politique apprise, elle a été transférée sur
le robot réel et testée. Les résultats ont démontré sa capacité a suivre la trajectoire cible avec
précision, méme & grande vitesse et forte accélération.

Afin d’améliorer la généralisation de la politique apprise sur différentes configurations de robots,
une approche centrée sur les actionneurs a été développée. Les expérimentations ont montré
que cette politique pouvait étre appliquée a diverses configurations sans nécessiter un nouvel
apprentissage ni un ajustement des hyperparamétres, garantissant ainsi une robustesse accrue.
Le travail réalisé ouvre plusieurs perspectives pour les recherches futures. L’intégration de
I’auto-RL pour 'optimisation automatique des hyperparamétres du réseau neuronal, ainsi que
I’apprentissage par renforcement inverse pour la définition de la fonction de récompense, pour-
raient étre explorés afin d’améliorer encore la performance et de réduire erreur statique de
suivi. Une autre piste prometteuse serait 'utilisation de la politique au niveau des actionneurs
pour controler le robot dans le but de reproduire des mouvements humains, notamment dans
le domaine de la rééducation, ol la position du céble serait directement controlée. Enfin, cette
approche pourrait également étre étendue & d’autres types de robots, tels que les robots séries,
démontrant ainsi que son application ne se limite pas aux CDPRs.

99

Résume étendu

100

1]

2]
3]

[4]

[5]

(6]

7]

8]

9]
[10]

[11]

[12]

Bibliography

Rémi Pannequin, Mélanie Jouaiti, Mohamed Boutayeb, Philippe Lucas, and Dominique
Martinez. Automatic tracking of free-flying insects using a cable-driven robot. Science
Robotics, 5(43):eabb2890, June 2020.

Lawrence L. Cone. Skycam-an aerial robotic camera system. Byte, 10(10):122, 1985.

D. Surdilovic and R. Bernhardt. STRING-MAN: a new wire robot for gait rehabilitation.
In IEEFE International Conference on Robotics and Automation, 2004. Proceedings. ICRA
04. 2004, pages 2031-2036 Vol.2, New Orleans, LA, USA, 2004. IEEE.

Xinyu Geng, Meng Li, Yufei Liu, Yuanyuan Li, Wei Zheng, and Zhibin Li. Analytical
tension-distribution computation for cable-driven parallel robots using hypersphere mapping
algorithm. Mechanism and Machine Theory, 145:103692, March 2020.

Tuong Phuoc Tho and Nguyen Truong Thinh. An Overview of Cable-Driven Parallel Robots:
Workspace, Tension Distribution, and Cable Sagging. Mathematical Problems in Engineer-
ing, 2022:1-15, July 2022.

L. Barbazza, F. Oscari, S. Minto, and G. Rosati. Trajectory planning of a suspended cable
driven parallel robot with reconfigurable end effector. Robotics and Computer-Integrated
Manufacturing, 48:1-11, December 2017.

Thomas Rousseau, Christine Chevallereau, and Stéphane Caro. Human-cable collision de-
tection with a cable-driven parallel robot. Mechatronics, 86:102850, October 2022.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-End Training of
Deep Visuomotor Policies. 2016.

John McCarthy et al. What is artificial intelligence?, 2024. Accessed: October 10, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359-366, 1989.

101

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]
23]

[24]

[25]

[26]

[27]

102

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. 2013.

Alessandro Montenegro, Marco Mussi, Alberto Maria Metelli, and Matteo Papini. Learn-
ing optimal deterministic policies with stochastic policy gradients. arXw preprint
arXiv:2405.02235, 2024. Accepted at ICML 2024.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-
val Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning, July 2019. arXiv:1509.02971 [cs, stat].

Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan,
Dhruva TB, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed Distribu-
tional Deterministic Policy Gradients, April 2018. arXiv:1804.08617 [cs, stat].

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation
Error in Actor-Critic Methods, October 2018. arXiv:1802.09477 [cs, stat].

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms, August 2017. arXiv:1707.06347 [cs|.

John Schulman, Sergey Levine, Philipp Moritz, Michael I Jordan, and Pieter Abbeel. Trust
region policy optimization. In Proceedings of the 32nd International Conference on Machine
Learning (ICML), pages 1889-1897. PMLR, 2015.

Hsiao-Ru Pan, Nico Giirtler, Alexander Neitz, and Bernhard Scholkopf. Direct advantage
estimation. 2022.

Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-
Critic Algorithms and Applications, January 2019. arXiv:1812.05905 |cs, stat|.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587):484-489,
2016.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hut-
ter. Learning quadrupedal locomotion over challenging terrain. Science Robotics,
5(47):eabc5986, October 2020.

Fereshteh Sadeghi and Sergey Levine. CAD2RL: Real Single-Image Flight without a Single
Real Image, June 2017. arXiv:1611.04201 |[cs|.

Athanasios S. Polydoros and Lazaros Nalpantidis. Survey of model-based reinforcement
learning: Applications on robotics. Journal of Intelligent & Robotic Systems, 86(2):153—
173, 2017.

http://www.deeplearningbook.org

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643,
2020.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real
World, March 2017. arXiv:1703.06907 |cs].

Shikun Liu, Edward Johns, and Andrew J Davison. Domain adaptation in reinforcement
learning via latent unified state representation. In Proceedings of the AAAI Conference on
Artificial Intelligence. AAAT Press, 2021. Accepted at AAAT 2021.

Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep reinforcement
learning: A survey. CoRR, abs/2009.07888, 2020.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong
Yang, and Alois Knoll. A review of safe reinforcement learning: Methods, theory and
applications. 05 2022.

Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine.
How to Train Your Robot with Deep Reinforcement Learning; Lessons We’ve Learned. The
International Journal of Robotics Research, 40(4-5):698-721, April 2021. arXiv:2102.02915

[cs].

Mohammad M. Aref and Jouni Mattila. Automated Calibration of Planar Cable-Driven
Parallel Manipulators by Reinforcement Learning in Joint-Space. In 2018 6th RSI Inter-

national Conference on Robotics and Mechatronics (IcRoM), pages 172-177, Tehran, Iran,
October 2018. IEEE.

Alex Grimshaw and John Oyekan. Applying Deep Reinforcement Learning to Cable Driven
Parallel Robots for Balancing Unstable Loads: A Ball Case Study. Frontiers in Robotics
and Al, 7:611203, February 2021.

Renyu Yang, Jianlin Zheng, and Rong Song. Continuous mode adaptation for cable-driven
rehabilitation robot using reinforcement learning. Frontiers in Neurorobotics, 16:1068706,
December 2022.

Yuming Liu, Zhihao Cao, Hao Xiong, Junfeng Du, Huanhui Cao, and Lin Zhang. Dynamic
Obstacle Avoidance for Cable-Driven Parallel Robots With Mobile Bases via Sim-to-Real
Reinforcement Learning. IEEE Robotics and Automation Letters, 8(3):1683-1690, March
2023.

Chenglin Xie, Jie Zhou, Rong Song, and Ting Xu. Deep Reinforcement Learning Based
Cable Tension Distribution Optimization for Cable-driven Rehabilitation Robot. In 2021 6th
IEEFE International Conference on Advanced Robotics and Mechatronics (ICARM), pages
318-322, Chongging, China, July 2021. IEEE.

Yanqgi Lu, Chengwei Wu, Weiran Yao, Guanghui Sun, Jianxing Liu, and Ligang Wu. Deep

Reinforcement Learning Control of Fully-Constrained Cable-Driven Parallel Robots. IEFEE
Transactions on Industrial Electronics, 70(7):7194-7204, July 2023.

103

Bibliography

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

104

Hao Xiong, Tianqgi Ma, Lin Zhang, and Xiumin Diao. Comparison of end-to-end and hybrid
deep reinforcement learning strategies for controlling cable-driven parallel robots. Neuro-
computing, 377:73-84, February 2020.

Dinh-Son Vu and Ahmad Alsmadi. Trajectory Planning of a CableBased Parallel Robot
using Reinforcement Learning and Soft Actor-Critic. WSEAS TRANSACTIONS ON AP-
PLIED AND THEORETICAL MECHANICS, 15:165-172, December 2020.

Caner Sancak, Fatma Yamac, and Mehmet Itik. Position control of a planar cable-driven
parallel robot using reinforcement learning. Robotica, pages 1-18, March 2022. Publisher:
Cambridge University Press.

Adhiti Raman, Ameya Salvi, Matthias Schmid, and Venkat Krovi. Reinforcement Learn-
ing Control of a Reconfigurable Planar Cable Driven Parallel Manipulator. In 2023 IFEFE
International Conference on Robotics and Automation (ICRA), pages 9644-9650, London,
United Kingdom, May 2023. IEEE.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep Reinforcement Learning That Matters. Proceedings of the AAAI Conference
on Artificial Intelligence, 32(1), April 2018.

Andreas Pott, Christian Meyer, and Alexander Verl. Large-Scale Assembly of Solar Power
Plants with Parallel Cable Robots.

Robert L. Williams, Ming Xin, and Paul Bosscher. Contour-Crafting-Cartesian-Cable
Robot System: Dynamics and Controller Design. In Volume 2: 32nd Mechanisms and
Robotics Conference, Parts A and B, pages 39-45, Brooklyn, New York, USA, January
2008. ASMEDC.

Johann Lamaury and Marc Gouttefarde. Control of a large redundantly actuated cable-
suspended parallel robot. In 2018 IEEE International Conference on Robotics and Automa-
tion, pages 4659-4664, Karlsruhe, Germany, May 2013. IEEE.

Andreas Pott. Cable-Driven Parallel Robots: Theory and Application. Springer Tracts
in Advanced Robotics. Springer International Publishing, Cham, 2018. ISSN: 1610-7438,
1610-742X.

M.M. Aref and H.D. Taghirad. Geometrical workspace analysis of a cable-driven redundant
parallel manipulator: KNTU CDRPM. In 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Nice, September 2008. IEEE.

Sana Baklouti. Vibration Analysis and Reduction of Cable-Driven Parallel Robots. PhD
thesis, Mechanical engineering |physics.class-ph|. INSA de Rennes, 2018. English. NNT :
2018ISAR0034. tel-02163227.

Andreas Pott. Cable-driven parllel robots theory and application. In Springer Tracts in
Advanced Robotics. Springer, 2018.

Theresa Eimer, Marius Lindauer, and Roberta Raileanu. Hyperparameters in Reinforcement
Learning and How To Tune Them, June 2023. arXiv:2306.01324 [cs].

James Bergstra and Yoshua Bengio. Random Search for Hyper-Parameter Optimization.
2012.

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

[62]

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue,
Ali Razavi, Oriol Vinyals, Tim Green, lain Dunning, Karen Simonyan, Chrisantha Fernando,
and Koray Kavukcuoglu. Population Based Training of Neural Networks, November 2017.
arXiv:1711.09846 |cs|.

Marcin Andrychowicz, Anton Raichuk, Piotr Stariczyk, Manu Orsini, Sertan Girgin, Raphael
Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain
Gelly, and Olivier Bachem. What Matters In On-Policy Reinforcement Learning? A Large-
Scale Empirical Study, June 2020. arXiv:2006.05990 [cs, stat].

Hemant Singh. Implementing ddpg algorithm on the inverted pendulum problem. https:
//keras.io/examples/rl/ddpg_pendulum/.

Ilias Chrysovergis. Implementation of a proximal policy optimization agent for the cartpole-
vl environment. https://keras.io/examples/rl/ppo_cartpole/.

Grid’5000 Team. Getting Started with Grid’5000, 2024. Accessed: 2024-10-29.

Ariel Hart. Mann-whitney test is not just a test of medians: differences in spread can be
important. BMJ, 323(7309):391-393, Aug 18 2001.

SciPy Developers. scipy.stats.mannwhitneyu — SciPy v1.10.0 Manual, 2023. Accessed:
2024-10-27.

Andrei A. Rusu, Mel Vecerik, Thomas Rothérl, Nicolas Heess, Razvan Pascanu, and
Raia Hadsell. Sim-to-Real Robot Learning from Pixels with Progressive Nets, May 2018.
arXiv:1610.04286 |[cs].

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander
Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Sprin-
genberg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen,
Raia Hadsell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A Generalist Agent,
November 2022. arXiv:2205.06175 [cs].

105

https://keras.io/examples/rl/ddpg_pendulum/
https://keras.io/examples/rl/ddpg_pendulum/
https://keras.io/examples/rl/ppo_cartpole/

	Couverture
	Acknowledgment
	Contents
	Abstract
	Abstract
	Résumé
	Résumé
	List of Figures
	Introduction
	Cable driven parallel robots
	Context and motivation
	Contribution

	Deep reinforcement learning: From concepts to algorithms
	Introduction
	Reinforcement learning
	Markov decision processes
	Value function and policy (the discrete case):
	Bellman equation and temporal difference learning

	Deep reinforcement learning (continuous case):
	Function approximation and neural networks
	Neural networks architectures
	Gradient based optimization
	Back-propagation

	Algorithms and architectures for continuous state and action space: DDPG, PPO, SAC
	General concepts
	Actor critic methods
	Deep deterministic policy gradient (DDPG)
	Proximal Policy Optimization (PPO)
	Soft Actor Critic (SAC)

	Application of reinforcement learning in robotics
	Reinforcement learning based-control of cable-driven parallel robots
	Conclusion

	Cable-Driven Parallel Robots: Modeling and Simulation
	Introduction
	Configuration
	Geometric model and inverse kinematics
	Forward kinematics and position estimation
	PID-based control
	Dynamic modeling
	Dynamic equations of transitional CDPRs
	Motor dynamic model
	Cables model

	Simulation with Matlab/Simulink
	Simulation 1: Simplified model
	Simulation 2: Simulation with the mechanical model of the motor and the dynamic model of the cables
	Results: validation of the model in simulation with real data

	Conclusion

	A deep reinforcement learning approach for the control of cable-driven parallel robots
	Introduction
	Training environment, state and action space
	Desired trajectory generation: the case of trajectory tracking in bounded workspace
	Current constraints
	Current control loop
	Current bounds

	Reward design
	Reward-engineering

	Hyperparameters
	Environment and reward setup
	Validation trajectory during the training process

	Agents Configuration
	Deep Deterministic Policy Gradient (DDPG)
	Proximal Policy Optimization (PPO)
	Soft Actor-Critic (SAC)

	Conclusion

	Training process and experimental results
	Introduction
	Training Process and Hyperparameters tuning
	Deep Deterministic Policy Gradient (DDPG)
	Proximal Policy Optimization (PPO)
	Soft Actor-Critic (SAC)
	Rewards analysis

	Comparison between RL agents: Learning rate range and convergence time analysis
	Learning rate range
	Convergence time analysis

	Performance evaluation and comparison between RL agents
	Testing trajectories
	Policies used for the evaluation
	Evaluation method
	Tracking performance on simulation: Tracking error and current optimization
	Summary of the results
	Tracking performance on real robot
	Optimal policy improvement for the DDPG agent and comparison with the PID-based controller
	Comparison between best RL agent and PID-based controller on real robot

	Conclusion

	Toward n-Cable Driven Parallel Robots: A Generalized Approach
	Introduction
	Conventional reinforcement learning controller
	Actuator level policies: Multi agent reinforcement learning controller
	Proof of concept
	Reward function
	Results
	validation trajectories
	Traditional reinforcement learning controller
	Multi agent reinforcement learning controller on the same configuration as training
	Multi agent reinforcement learning controller on the diffrent configuration than training

	Conclusion

	Conclusion and Perspectives
	Conclusion
	Major Contributions
	Perspectives

	Résumé étendu
	Bibliography

