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Abstract

The analysis of sequential data, or time series, is key in numerous field of applications, e.g., engineering,
sociology, medicine or econometrics. Often, linear models are not sufficient to account for the complex
nature of data. This has created a need for interpretable and nonlinear methods for time series analysis.
In this thesis, we analyze multidimensional time series through the lens of their integrals of various
moment orders, constituting their signatures, a novel method for time series analysis. Under mild
conditions, signatures characterize time series uniquely, up to time reparametrization and translation,
into a set of features. Due to their ability to encode nonlinear dependencies in data, signature features
have improve the current state-of-the-art in a broad range of Machine Learning applications, such as
distribution regression, anomaly/novelty detection, human action recognition.

Signature features lie in a nonlinear space, making their manipulation challenging from a practical
perspective. First, we introduce a method to average signature features which takes into account
the geometry of the space, through a finite iterative algorithm. In addition, we present a strategy to
effectively reduce the dimension of signature features by adapting the Principal Component Analysis
(PCA). Our approaches rely on the algebraic manipulation of signatures and local approximations. We
show that this dimension reduction method allows for stability of performances while using much fewer
signature features. Then, we demonstrate how signatures can be highly effective as a multiscale tool
for anomaly detection, with competitive runtimes. Finally, in the last chapter, we deal with clustering
of time series under perturbations and introduce similarity measures in the space of signatures that we
couple with usual distance-based clustering methods.

Keywords: Time series, Iterated Integrals Signatures, Learning on manifolds, Unsupervised learning.

Reésumeée

L'analyse de données séquentielles, ou séries temporelles, est essentielle dans de nombreux domaines
d’application, tels que l'ingénierie, la sociologie, la santé ou 1’économétrie. Souvent, les modéles
linéaires ne suffisent pas a rendre compte de la nature complexe des données. Cela a créé un besoin de
méthodes interprétables et non linéaires pour 1’analyse des séries temporelles. Dans cette thése, nous
analysons les séries temporelles multidimensionnelles sous I'angle de leurs intégrales de différents or-
dres de moments, constituant leurs signatures, une nouvelle méthode d’analyse des séries temporelles.
Sous des hypothéses non contraignantes, les signatures caractérisent les séries temporelles de maniére
unique, a reparamétrisation temporelle et translation prés, en un ensemble de caractéristiques. En
raison de leur capacité a encoder des dépendances non linéaires dans les données, les signatures ont
dépassé les performances des meilleures méthodes sur un large éventail d’applications d’apprentissage
automatique, telles que la régression de lois de probabilités, la détection d’anomalies, la reconnaissance
d’actions humaines.

Les signatures sont des points sur un espace non linéaire, ce qui rend leur manipulation difficile
d’un point de vue pratique. Tout d’abord, nous introduisons une méthode de calcul de moyennes de
signatures qui tient compte de la géométrie de 1'espace, par le biais d"un algorithme itératif fini. En
outre, nous présentons une stratégie permettant de réduire efficacement la dimension des signatures en
adaptant I’Analyse en Composantes Principales (ACP). Nos approches reposent sur la manipulation al-
gébrique des signatures ainsi que sur des approximations locales. Nous montrons que cette méthode de
réduction de dimension permet de stabiliser les performances tout en utilisant beaucoup moins de car-
actéristiques de signature. Ensuite, nous démontrons comment les signatures peuvent étre trés efficaces
en tant qu’outil multi-échelle pour la détection d’anomalies, avec des temps d’exécution compétitifs.
Enfin, dans le dernier chapitre, nous traitons du partitionnement de séries temporelles soumises a des
perturbations et nous introduisons des mesures de similarités dans I'espace des signatures que nous
combinons aux méthodes classiques de partitionnement.

Mots clés : Séries temporelles, Signatures, Apprentissage sur variétés, Apprentissage non supervisé.
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Résumé détaillé en francais

Dans de nombreuses applications et des contextes variés, des données sont observées
au cours du temps (Figure 1). Ces données se présentent sous la forme d’une série
temporelle, contenant des observations échantillonnées a des instants successifs.
Plusieurs quantités (par exemple, a la fois une pression et une température) peuvent
étre mesurées simultanément, ce qui produit des séries temporelles multivariées.
Récemment, le terme plus général de « flux de données » a été proposé, car les données
peuvent se présenter sous diverses formes : a valeur dans R, comme un relevé de
pression ; a valeurs discretes, comme le nombre d’occurrences d'un événement ;
ou encore textuel, comme des rapports d’examens médicaux. Ces données peuvent
étre imparfaites, car elles peuvent étre échantillonnées de maniére irréguliére. Par
exemple, les examens médicaux d’un patient sont généralement effectués apres le
déclenchement d’un événement, tel que des effets secondaires. Les données peuvent
également comporter des valeurs manquantes, qui peuvent survenir a la suite d"une
défaillance d'un capteur, ou étre censurées, par exemple lorsqu'un patient d'une
étude clinique déménage a 1’étranger.

140 1

120 4

100 A

80 A

Airbus stock value (EUR)

60 -

2019 2020 2021 2022 2023 2024
Year

Ficure 1: Un exemple de série temporelle, 'évolution de la valeur de
I'action de l'entreprise Airbus sur les cinq dernieres années.

L'analyse de ces flux de données est devenue essentielle dans divers domaines tels
que l'ingénierie, la sociologie, la médecine et I'économétrie. Plusieurs taches peu-
vent se présenter, notamment la prévision, la modélisation, la détection d’anomalies,
le partitionnement, la classification et I'inférence causale. Pour traiter ces taches, la
boite a outils actuelle contient un large éventail de méthodes, telles que 1’analyse
de l'autocorrélation, les modeles de régression des valeurs du temps présent par
rapport aux valeurs a des temps passés (famille des modeles autorégressifs : ARMA,
ARIMA, etc.), les fonctions qui extraient les composantes en fréquence (transfor-
mée de Fourier), les composantes en temps—fréquence (transformée en ondelettes),
et les méthodes de décomposition, avec notamment la décomposition Saisonnalité—
Tendance par LOESS, la décomposition en modes empiriques, et 1’analyse spectrale
singuliere. Les architectures d’apprentissage profond telles que les réseaux neu-
ronaux récurrents font également partie de la boite a outils. Nous pourrions égale-
ment distinguer les stratégies linéaires des stratégies non linéaires, les méthodes
univariées des méthodes multivariées. Une introduction aux méthodes classiques
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d’analyse de séries temporelles est fournie dans [BD16], et le cas multidimensionnel
est présenté dans [L1it05].

Lobjectif de cette these est d’étudier la nouvelle méthode des signatures pour
I'analyse des séries temporelles. D’une maniére générale, les signatures peuvent
étre considérées comme des caractéristiques non linéaires décrivant une trajectoire
continue en fournissant des caractéristiques invariantes a la translation et au rééchan-
tillonnage. Souvent, le taux d’échantillonnage auquel le flux est enregistré n’est pas
utile. Par exemple, pour la reconnaissance de 1’écriture manuscrite, la vitesse a
laquelle un caractere est écrit n’est pas essentielle. De méme, la position du flux peut
ne pas étre importante (mais la rotation peut 1’étre, par exemple pour distinguer un
«6»d'un « 9 »). La signature conserve 1'information essentielle, a savoir I'ordre dans
lequel les événements ont eu lieu et oublie la paramétrisation dans le temps.

La signature est apparue pour la premiére fois dans [Che57] et constitue 1'un des
outils centraux de la théorie des trajectoires rugueuses [Ly098]. Récemment, de nom-
breux travaux ont suggéré de l'utiliser pour des taches d’apprentissage automatique
[CK16]. Plus de détails sont donnés dans la suite et dans un apergu récent [LM24].
Voir également la thése récente [Fer21].

L'intérét particulier de cette thése, par rapport a d’autres travaux sur le sujet, est
que nous exploitons la structure géométrique différentielle et la structure de groupe
de Lie de I'espace des signatures, pour des taches d’apprentissage automatique.
De maniere générale, notre travail est ancré dans le domaine de l’apprentissage
automatique (analyse des séries temporelles) et implique des éléments de géométrie
différentielle, d’algebre et d’analyse tensorielle.

Dans la suite, nous décrivons briévement la transformation de la signature et
donnons un apercu des contributions.

Définition en termes simples. La méthode de la signature peut étre considérée
comme une version temporelle de la méthode des moments pour les variables aléa-
toires. En substance, la signature est une fonction S qui prend en entrée une série
temporelle multivariée X (t) = (X'(t), ..., X“(t)) et produit une collection de tenseurs
S(X) = {S(0)(X), S(1)(X), . .. }, comme en Figure 2, qui codent les dépendances d'ordre
élevé entre les composantes X i pouri=1,...,d.

‘S] 1 1‘51 2 1‘51,3,1

|S] 1,1(81,2,1(81,3,1
3,1
s1 $1,1 | S1,2 | S1,3 $1,1,1/81,2,1/81,3,1
3,1
3,1
) $2,1 | 822 | $2,3 $2,1,1/82,2,1/82,3,1
3,1
1 S3 $3,1 | 832 | S3,3 $3,1,1/83,2,1/83,3,1
(a) S)(X) (8) S1)(X) (©) S2)(X) (D) S(3)(X)

Ficure 2: La signature S(X) est une collection de tenseurs de tailles
croissantes ; la signature de niveau L est un tenseur a L directions de

,,,,,

X de dimension d = 3.

.....

Une interprétation des tenseurs de signature S(;)(X) peut étre donnée pour les
premiers niveaux. Par exemple, S1)(X) (niveau L = 1) est le changement global
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X(T) — X(0). Une combinaison linéaire des coefficients du tenseur S;)(X) (niveau
L = 2) donne l’aire comprise entre la courbe et sa corde, comme le montre la Figure 3.
Elle est également liée a la corrélation croisée [DR19]. En effet, si nous supposons
que X(0) = 0, alors

[S)(X)12 = [S@)(X)]21 = Corr(X?, X'); — Corr(X!, X?); 1)

ot Corr(x, y); := Ztho x(t +1)y(t) est la corrélation croisée a 1-décalage, pour toute
série temporelle x, y de longueur T. Il convient de noter que I'interprétation des sig-
natures de niveau supérieur (niveaux L > 3) est moins évidente. Une interprétation
en termes de géométrie sous-Riemannienne peut étre trouvée dans [LCLO7, p. 38].

x )

X (@)

FiGure 3: Interprétation géométrique de la signature de niveau L = 2.
La combinaison linéaire indiquée donne l'aire en bleu.

Une définition formelle de la signature sera donnée dans le Chapitre 2 ainsi que
les principales propriétés. Un défi majeur réside dans le fait que les signatures
appartiennent a une variété différentielle (en d’autres termes, un espace qui peut
étre localement bien approximé par un espace Euclidien) qui peut étre équipé d’'une
structure de groupe ; cette structure est appelée un groupe de Lie. Par conséquent,
la manipulation des signatures nécessite 1'utilisation d’outils de géométrie différen-
tielle, notamment pour adapter des méthodes initialement concues pour les espaces
Euclidiens. Il est intéressant de noter que dans cet espace, les opérations de groupe
peuvent étre liées a des opérations sur les séries temporelles, comme nous le verrons
dans le Chapitre 2. En outre, cet espace posséde un logarithme défini partout, le
logarithme étant une fonction qui permet de naviguer entre I'espace des signatures
et ’espace tangent. Pour avoir une vue d’ensemble de la théorie des signatures, nous
nous référons a [CK16], [LCL07, Chapitre 2] et [FV10, Chapitre 7]. Pour plus de
détails sur le cadre algébrique, voir [Reu93].

En raison de leur capacité a coder les dépendances non linéaires dans les séries
temporelles multivariées, les caractéristiques de signature ont été utilisées avec suc-
ces pour aborder de nombreuses taches d’apprentissage automatique au cours de la
derniere décennie, par exemple, la classification [Mor+20; PA+18; GLM19; Mor+21],
la détection d’anomalies [Arr+24; Sha+20], la prédiction [PA+18], la régression de
lois de probabilités [Lem+21], la reconnaissance de mouvements et de formes [LZ]17;
Yan+22; Gral3] (ce dernier est le vainqueur du défi ICDAR 2013 sur la reconnais-
sance des caracteres chinois en ligne). Pour une étude exhaustive de la méthode de
signature pour I’analyse des séries temporelles, nous nous référons a [LM24].

Dans la suite de ce résumé, nous introduisons briévement les contributions prin-
cipales présentées dans cette these.
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Moyennes de signatures (Chapitre 3). Il est essentiel de pouvoir calculer la moyenne
de données, c’est-a-dire de voir les choses a une échelle plus grossiere, et ce pour
de multiples raisons. Tout d’abord, le calcul de la moyenne résume ou simplifie
I'information contenue dans un ensemble de points en une seule valeur. Cette valeur
fournit une description pertinente des données avec un résumé global et, si nous
cherchons a regrouper des points proches les uns des autres, les moyennes locales
peuvent étre utilisées pour classer les données (ce qui est I'idée centrale des straté-
gies d’apprentissage automatique telles que les K-moyennes). En d’autres termes,
nous pouvons mettre en évidence des relations entre des ensembles de données en
comparant les moyennes. En outre, il est possible d’obtenir des informations sur le
temps, car les moyennes peuvent étre calculées sur des périodes fixes et comparées
(par exemple, en calculant une valeur moyenne pour chaque mois). Cette méthode
peut étre utilisée pour diverses taches telles que le suivi de 1’évolution de tendances,
la détection des cycles, la surveillance (par exemple, le controle qualité pour procédés
de fabrication), les prévisions et la réduction du bruit.

Dans le Chapitre 3, nous considérons la tache consistant a calculer la moyenne
d’un ensemble de N points x1, ..., xy situés dans 'espace des signatures G. Comme
nous le verrons plus en détails dans le Chapitre 2, 'espace des signatures est une
variété différentielle. Sur un tel espace courbe, le calcul de la statistique la plus
simple, la moyenne, peut demander plus de travail que sur un espace Euclidien. En
effet, la définition du barycentre pour un espace euclidien ¥ = & >N xi ne peut pas
étre utilisée sur une variété, car dans de nombreux cas X peut ne pas appartenir a la
variété. Prenons par exemple deux points du cercle unitaire: x; = (1,0) etx = (0, 1).
Le barycentre Euclidien des deux points ¥ = (1/2,1/2) n’appartient pas au cercle.

Une généralisation du barycentre Euclidien aux variétés est la moyenne de Fréchet
: soit (M, d) un espace métrique. Etant donné un ensemble de pointsxq,...,xny € M,
la moyenne de Fréchet est le point u € M tel que

N
u=argmin > d*(u, x;). )
peM o

Cette définition peut étre utilisée pour les groupes de Lie. De plus, si d(., .) est une
métrique Riemannienne bi-invariante, alors u est stable par les opérations de groupe
: multiplication a gauche et a droite, inversion. Par exemple, la stabilité pour la
multiplication a droite signifie que uy est la moyenne de Fréchet de {x;y}i=1,. n.
Cependant, si d(., .) n’est pas bi-invariant, la stabilité de y n’est pas assurée. Pour de
tels cas, les auteurs de [PL20] ont défini une notion de barycentre sur les groupes de
Lie appelée moyenne de groupe, définie comme suit : pour un ensemble de N points
X1, - .., XN, la moyenne de groupe u est la solution de 1’équation suivante :

N

1 -

N o8 x) =0, ©
i=1

c’est-a-dire que les vecteurs v; dans I’espace tangent a 1'identité T; G ont une moyenne
nulle, o1 v; := log(y_lxi), comme le montre la Figure 4. Il convient de noter que la
moyenne de groupe peut ne pas exister dans le cas ot le logarithme n’est pas défini
partout.

Dans le Chapitre 3, les principales contributions sont :

e Dans la Section 3.3, nous prouvons 1’existence et I'unicité de la moyenne de
groupe pour les signatures.
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Ficure 4: La moyenne de groupe y sur un groupe de Lie G est telle

que la somme des v; vaut zéro, avec v; := log(y;) = log(y‘lx,-) vecteurs

de I'espace tangent T; G. Les lignes en pointillés sont les géodésiques
sur G qui partent de l'origine avec vélocité v;.

e Dans la Section 3.4, nous fournissons un algorithme en temps fini pour calculer
exactement le barycentre d"un ensemble fini de signatures et une implémenta-
tion en Python, qui repose essentiellement sur les propriétés algébriques de la
signature.

Réduction de dimension de signatures (Chapitre 4). Etant donné une série tem-
porelle a d dimensions X = (x1,...,X%), sa signature jusqu’au niveau L, S(<y)(X),

L
. . -1 .
a une dimension de d(g_l ), comme nous le verrons dans le Chapitre 2. En d’autres

termes, le nombre de caractéristiques de la signature croit de maniere exponentielle
en fonction du niveau de troncature L. D’un point de vue numérique, 1'utilisation
d’un tel nombre de caractéristiques peut entrainer des ralentissements de calculs,
en particulier si d est grand et s’il n’existe pas de méthodes efficaces pour effectuer
la tiche en aval, par exemple du partitionnement. Notre objectif est de développer
une méthode de réduction de dimension fidéle pour les signatures. Pour ce faire,
nous généraliserons la célebre Analyse en Composantes Principales (ACP), présentée
ci-dessous, a I'espace des signatures.

Etant donné des échantillons xi,...,xy dans R?, 'ACP fournit une suite de
meilleures approximations linéaires des données, pour tous les rangs K < d. Déno-
tons y; := x; — u les points apres recentrage, ou u est la moyenne Euclidienne de
I’ensemble x1, ..., xN. Nous calculons une suite de vecteurs v1, ..., vk en résolvant
successivement, pour toutk =1,...,K,

N

Uk = argmin llyi = o (yo)lI? )
loll=1 =1
vlvy,...,U0k=1

oll T, est la projection orthogonale sur vect(v). Les (vx)r sont appelés directions
principales. Nous pouvons compresser les données en fixant K < d et en les projetant
sur vect(vy, ..., vk). Le probléme de minimisation (4) peut étre résolu a l'aide de la
décomposition en valeurs singulieres.

Il existe de nombreuses généralisations de I’ACP a des ensembles de formes. Nous
nous concentrons sur 'approche de ’Analyse en Géodésiques Principales (AGP)
[FLJO3], qui est formulée comme suit. Soit x1,...,xn des points sur une variété M
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avec une moyenne de groupe y. UAGP minimise

N

argmin " d(yo(t), x¥) (5)
veTy (M),tkeR 121

ol ), est la géodésique qui part de p.

Cependant, il n’est pas simple d’utiliser cette définition de I’AGP pour les signa-
tures. La raison principale est I'absence d"une méthode canonique pour définir une
métrique Riemannienne (bi-invariante).

Dans le Chapitre 4, nous proposons les solutions suivantes :

e Nous proposons une nouvelle version de I’AGP qui utilise un type spécial de
divergence adapté a I’espace des signatures.

e Nous présentons deux algorithmes : un qui approxime sur 'espace tangent et
un qui résout le probléme d’optimisation sur la variété, ainsi que des implé-
mentations en Python.

e Nous appliquons les deux méthodes de réduction de dimension pour des
taches classiques sur des données synthétiques et réelles et montrons que les
performances restent élevées apres réduction de dimension.

Détection d’anomalies avec signatures multi-échelles (Chapitre 5). En détection
d’anomalies (DA) pour séries temporelles, l'objectif est de détecter un X; dans un
ensemble de séries temporelles X, . .., Xy qui se comporte anormalement, c’est-a-dire
qui prend des valeurs différentes du reste des données. Par exemple, dans le contexte
de la surveillance maritime, il existe des voies principales de navigation et un bateau
empruntant une trajectoire différente pourrait étre considéré comme une anomalie.

Dans ce contexte de DA pour les séries temporelles multivariées, nous montrons
qu’'une analyse multi-échelle utilisant les signatures permet d’obtenir des résultats
compétitifs. Outre 'amélioration des performances de détection, nous mettons en
évidence l'efficacité numérique de ’analyse multi-échelle basée sur la signature. En
particulier, nous évitons I’énorme charge de calcul qui apparaitrait avec d’autres
mesures de similarité. La méthode de signature multi-échelle peut étre 100 fois plus
rapide que le Dynamic Time Warping (DTW) a échelle unique. Cela est dti a la com-
binaison des propriétés de 'espace des signature avec l'utilisation d’interpolations
linéaires sur les séries temporelles. En effet, comme indiqué plus loin dans la Sec-
tion 2.3.4, la signature d’une trajectoire sur un segment entier est généralement
calculée en combinant les signatures de sous-segments plus petits. Le stockage de
ces sous-signatures et leur utilisation pour la DA ont le méme cofit de calcul que
l"utilisation de la signature de toute la série temporelle. Ainsi, dans la segmentation
dyadique présentée dans la Figure 5, nous stockerions la signature de chaque sous-
segment (qui sont de longueurs 2, 4 et 8). Notre méthode de DA avec la signature
repose sur ce résultat, qui nous permet d’augmenter la performance de détection
des signatures grace a I'opération multi-échelle, tout en conservant de faibles temps
de calcul. Notre méthode est comparée a des stratégies classiques telles que le Local
Outlier Factor (LOF) avec des mesures de similarité Euclidienne / DTW.

Partitionnement avec la signature (Chapitre 6). Lobjectif du partitionnement de
séries temporelles est de détecter des groupes de trajectoires similaires sans disposer
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Ficure 5: Segmentation dyadique d’une série temporelle de longueur
8.

d’informations préalables sur les données (apprentissage non supervisé). Cela nous
permet de détecter des structures sous-jacentes cachées dans les données. Prenons
I'exemple de 1’évolution du prix des matieres premieres (pétrole, blé, sable, etc.).
Une analyse de partitionnement pourrait permettre de détecter des relations entre
deux matieres premieres, ce qui fournirait des informations précieuses, par exemple,
pour la gestion de la chaine d’approvisionnement ou pour les fournisseurs d’énergie
cherchant a anticiper la demande.

Dans ce travail, nous montrons comment les signatures peuvent étre utilisées
pour regrouper des séries temporelles. Tout d’abord, nous étudions les mesures de
similarité qui peuvent étre utilisées dans ce contexte et nous introduisons plusieurs
mesures de similarité qui sont invariantes par rapport a des transformations basiques
des données. Nous comparons ces mesures de similarité aux distances usuelles sur
les séries temporelles : Euclidienne, DTW, corrélation. Des jeux de données réelles
de formes diverses sont analysés, par exemple, période temporelle d’observation
courte/longue, petit/grand nombre de dimensions.

Ensuite, nous montrons comment la notion de barycentre des signatures (Cha-
pitre 3) peut étre utilisée pour étendre les méthodes d’apprentissage automatique.
Par exemple, la méthode de partitionnement des K-moyennes peut étre utilisée avec
les signatures, en utilisant la notion de moyenne de groupe.

Nous introduisons des perturbations dans les données (vacillement, bruitage)
et comparons le comportement des similarités sur les signatures par rapport aux
similarités usuelles. Les signatures fournissent des performances fluctuantes tout en
ayant des temps d’exécution tres compétitifs, en particulier pour les séries temporelles
observées sur de longues périodes.






Chapter 1

General introduction

1.1 Time series analysis

In many applications and contexts, data is observed over time (Figure 1.1). Such data
come in a form of a time series, containing observations sampled at successive time
instants. Several quantities (e.g., pressure and temperature) can be measured at the
same time, leading to multivariate time series. Recently, the more general term “data
stream” was proposed, as data can take many forms: real-valued, such as a pressure;
discrete, such as the number of occurrences of an event; textual, including medical
records. This data can be imperfect, as it may be sampled irregularly. For instance,
medical examinations of a patient are usually conducted after the triggering of an
event, such as side effects. Data can also include missing values, which might occur
following a sensor failure, or be censored, such as when a patient in a panel moves
abroad.

140 A

120 A

100 A

80 4

Airbus stock value (EUR)

60

2019 2020 2021 2022 2023 2024
Year

Ficure 1.1: An example of time series, the evolution of the stock value
of company Airbus over the last five years.

The analysis of such data streams has become key in diverse fields such as engi-
neering, sociology, medicine, and econometrics. Several tasks may arise, including
forecasting, modeling, anomaly detection, clustering, classification and causal infer-
ence. To address those tasks, the current toolbox includes a wide range of methods,
such as autocorrelation analysis, regression models of present values against past
values (with the autoregressive family of models—ARMA, ARIMA, etc.), mappings
that extract frequency components (Fourier transform), time-frequency components
(wavelet transform), and decomposition methods, including Seasonal-Trend De-
composition using LOESS, Empirical Mode Decomposition, and Singular Spectrum
Analysis. Deep Learning architectures such as Recurrent Neural Networks are also
part of the toolkit. Alternatively, we could distinguish linear from nonlinear strate-
gies, univariate from multivariate methods. An introduction to classical time series
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analysis methods is provided in [BD16], and the multidimensional case is presented
in [Liit05].

The objective of the thesis is to study the novel method of signatures for time series
analysis. Broadly speaking, signatures can be seen as nonlinear features describing a
continuous trajectory by providing features invariant to translation and resampling.
Often, the sampling rate at which the stream is recorded is not useful. For instance,
for handwriting recognition the speed at which a character is written is not essential.
Similarly, the position of the stream might not be important (but the rotation might,
e.g., to discriminate a “6” from a “9”). The signature keeps the key information,
which is the order in which events took place and forget the parametrization in time.

Signatures originated in [Che57] and is one of the central tool in the theory of
rough paths [Lyo98]. Recently, numerous works have suggested to use it for machine
learning tasks [CK16]. See more details in the next subsection, and in a recent
overview [LM24]. See also the recent thesis [Fer21].

The particular focus of this thesis, compared to other works on the topic, is that
we exploit the differential geometric and Lie group structure of the signature space,
for machine learning tasks. Overall, our work is anchored in the field of machine
learning (time series analysis) and involves elements of differential geometry, algebra,
and tensor analysis.

In the next subsection, we briefly describe the signature transform, and give an
overview of contributions.

1.2 Definition in plain words

The signature method can be understood as a time series version of the method of
moments for random variables. Loosely speaking, the signature is a mapping S
that takes as input a multivariate time series X(t) = (X(t),..., X%(t)) and outputs
a collection of tensors S(X) = {S()(X), S(1)(X), ...}, as in Figure 1.2, which encode
high order dependencies between the components X*,i =1,...,d.

‘S] ,1,1‘51 2 1‘51,3,1

|S] 1,1/81.2,1181,3,1
,3,1
S1 S1,1 | 81,2 | S1,3 $1,1,1/51,2,1/81,3,1
,3,1
3,1
S2 $2,1 | S2,2 | S2,3 $2,1,1/52,2,1/582,3,1
,3,1
1 S3 S3,1 | 83,2 | 83,3 $3,1,1/83,2,1/83,3,1
(a) S(0)(X) (8) S(1)(X) (0) S(2)(X) (D) S(3)(X)

Figure 1.2: The signature S(X) is a collection of tensors of increasing
sizes—the signature at level L is an L-ways tensor of dimension d.

.....
,,,,,

An interpretation of signature tensors S;)(X) can be given for the first levels. For
instance, S(1)(X) (level L = 1) is the global change X(T) — X(0). A linear combination
of the coefficients of tensor S(;)(X) (level L = 2) gives the enclosed area between the
curve and its chord, as shown in Figure 1.3. It is also related to the cross-correlation
[DR19]. Indeed, if we assume that X(0) = 0, then

[S2)(X)]12 — [S@)(X)]2,1 = Corr(X?, X'); — Corr(X', X?), (1.1)
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where Corr(x, y); = ZtT:() x(t + 1)y(t) is the lag-one cross correlation for any time
series x, y of length T. Note that the interpretation of higher level signatures (lev-
els L > 3) is less straightforward. An interpretation in terms of sub-Riemannian
geometry can be found in [LCL07, p. 38].

x ()

3(Si; = Sj.4)

X (@)

Ficure 1.3: Geometrical interpretation of the signature at level L = 2.
The linear combination gives the signed blue shaded area.

A formal definition of the signature will be given in Chapter 2 along with the
main properties. A primary challenge lies in the fact that signatures belong to a
differential manifold (in other words, a space that can be locally well approximated
by a Euclidean space) which can be equipped with a group structure—this structure is
called a Lie group. Therefore, manipulating signatures requires the use of differential
geometry tools, especially for adapting methods initially designed for Euclidean
spaces. Interestingly, in this space group operations can be related to operations
on time series as we will see in Chapter 2. In addition, it has a globally defined
logarithm, which is a function that allows to map elements of the signature space to
elements of its tangent space. To have a comprehensive overview of the signature
theory, we refer to [CK16], [LCL07, Chapter 2] and [FV10, Chapter 7]. For details
regarding the algebraic setting, see [Reu93].

Due to their ability to encode non linear dependencies in multivariate time series,
signature features have been successfully used to address numerous Machine Learn-
ing tasks in the last decade, e.g., classification [Mor+20; PA+18; GLM19; Mor+21],
anomaly /novelty detection [Arr+24; Sha+20], forecasting [PA+18], distribution re-
gression [Lem+21], motion and pattern recognition [LZ]17; Yan+22; Gral3] (the latter
is the winner of ICDAR 2013 challenge on online Chinese character recognition). For
an exhaustive survey on the signature method for time series analysis, we refer to
[LM24].

In the next subsection, we introduce briefly the main results that we will present
in the following chapters. In particular, we outline our contributions and the corre-
sponding publications are given in Section 1.3.5.

1.3 Contributions

1.3.1 Averaging signatures (Chapter 3)

To be able to average data, that is, to view things on a coarser scale, is crucial
for multiple reasons. First, averaging summarizes or simplifying the information
contained in a set of points into a single value. This value provides an insightful
description of data with a global summary and, if we are looking to group points
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that are close to each other, local averages can be used to classify the data (which is
the core idea of machine learning strategies such as K-means). That is, we can unveil
relationships between datasets by comparing averages. Additionally, insights over
time can be obtained as averages can be computed over fixed periods and compared
(e.g., calculating an average value for each month). This can be used for various
tasks such as tracking the evolution of global trends, detecting cycles, monitoring
(e.g., quality control in manufacturing), forecasting, and noise reduction.

In Chapter 3, consider the task of averaging a set of N pointsxi, ..., xy lying in the
signature space G. As we will see in more details in Chapter 2, the space of signatures
is a manifold. On such curved space, the computation of the simplest statistics, the
mean, can require more work than it does on a Euclidean space. Indeed, the definition
of barycenter for Euclidean space ¥ = ~ Zfil x; cannot be used for manifolds, since
in many cases X might not belong to the manifold. Take for instance two points on
the unit circle: x; = (1,0) and x2 = (0, 1). The Euclidean barycenter of the two points
¥ =(1/2,1/2) does not belong to the circle.

A generalization of the Euclidean barycenter to manifolds is the Fréchet mean:
let (M, d) be a metric space. Given a set of points x1,...,xy € M, the Fréchet mean
is the point u € M such that

N
u = arg minz d*(u, x;). (1.2)
peM =g

This definition can be used for Lie groups. Also, if d(.,.) is a bi-invariant Rie-
mannian metric, then y is stable by group operations: left and right multiplication,
inversion. For instance, stability for the right multiplication means that uy is the
Fréchet mean of {x;y}i=1,. n. However, if d(.,.) is not bi-invariant, the stability of
p is not ensured. For such cases, the authors of [PL20] have defined a notion of
barycenter on Lie groups called the group mean, defined as follows: for a finite set
of N points xq, ..., Xy, the group mean p is the solution of the following equation:

N
1
N Zl log(y_lxi) =0, (1.3)

that is, vectors v; in the tangent space at the identity T3G have mean zero, where
v; := log(u~!x;), as shown in Figure 1.4. Note that the group mean may not exist in
the case when the logarithm is not defined globally.

Ficure 1.4: The group mean p on a Lie group G is such that the sum

of the v; is zero where we have denoted v; := log(y;) = log(y‘lxi)

vectors in the tangent space T; G. Dotted lines are the geodesics on the
Lie group G starting from the origin with initial velocity v;.
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In Chapter 3, the main contributions are:

e In Section 3.3, we prove the existence and uniqueness of the group mean for
signature features.

e In Section 3.4, we provide a finite time algorithm to exactly compute the
barycenter of a finite set of signatures and an implementation in Python, which
essentially relies on algebraic properties of the signature.

1.3.2 Dimension reduction of signatures (Chapter 4)

Given a d-dimensional time series X = (X1,..., X%, its signature up to level L,

{S0)(X),...,S1)(X)}, has a dimension of d(Z:D, as it will be shown in Chapter 2.

In other words, the number of signature features grows exponentially in the level
of truncation L. Numerically, using such a number of features can result in slow
computations, especially if d is large and if there are no efficient methods to perform
the downstream task, e.g., clustering. Our goal is to develop a faithful dimension re-
duction method for signatures. For this, we will generalize the well-known Principal
Component Analysis (PCA), presented below, to the space of signatures.

Given samples x1, ..., xy in R?, PCA provides a sequence of best linear approx-
imations to the data, for all ranks K < d. Denote as y; := x; — u the centered data
points, where p is the Euclidean mean of the set x1, ..., xny. We compute a sequence
of vectors vy, ..., vk successively by solving, forallk =1,...,K,

N

vp = argmin ) |lyi — (y)|1? (1.4)
loll=1 %=1
vluo,..., Vk—-1

where 7, is the orthogonal projection onto span(v). The (vi)x are called Princi-
pal Directions. We can compress the data by setting K < d and projecting it on
span(vy, ..., vk). The minimization problem (1.4) can be solved using the singular
value decomposition.

Many generalizations of PCA to manifolds exist. We focus on the Principal
Geodesic Analysis (PGA) [FL]03] approach, which is typically formulated as follows.
Let x1,...,xn be points on a manifold M with group mean u. Then, the PGA
minimizes

N
arg min Z d(yo(tk), xx) (1.5)
veT,(M),teR 27
where Y, is a geodesic starting at p1.

However, is not straightforward to use this definition of PGA for the signatures.
The main reason is the absence of a canonical way to define a (bi-invariant) Rieman-
nian metric.

In Chapter 4, we propose the following solutions:

e We propose anew version of PGA that uses a special type of divergence adapted
to the signature space.

e We present two algorithms: one that approximate on the tangent space and
one that solve the optimization problem on the manifold, along with imple-
mentations in Python.
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e We apply both dimension reduction methods for classical tasks on both syn-
thetic and real-life data and show that performances are still high while keeping
much less features.

1.3.3 Anomaly detection with multiscale signatures (Chapter 5)

In Anomaly Detection (AD) for time series, the goal is to detect a X; in a dataset of
time series X, ..., Xy that behaves abnormally, i.e., takes values different from the
rest of the data. For instance, in the context of maritime surveillance, there exists
major routes of navigation and a boat using a different trajectory could be considered
as an anomaly.

In this context of AD for multivariate time series, we show that a multiscale anal-
ysis using signature features leads to state-of-the-art results. In addition to improved
detection results, we put in evidence the numerical effectiveness of the multiscale
signature based analysis. Notably, we avoid huge computational burden, that would
appear with other similarity measures. The signature multiscale method can be 100
times faster than single-scale Dynamic Time Warping (DTW). This comes from the
combination of group properties with linear interpolations of time series. Indeed, as
shown later on in Section 2.3 .4, the signature of a whole segment is usually computed
by combining signatures of smaller sub-segments. Storing those sub-signatures and
using them for the AD has the same computational cost as using only the signature
of the whole time series. That is, in the dyadic segmentation presented in Figure 1.5
(coined as hierarchical dyadic windowing in Section 2.3.2), we would store the signa-
ture of every sub-segment (which are of lengths 2, 4 and 8). Our method for AD with
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Ficure 1.5: Dyadic segmentation of a time series of length 8.

the signature relies on this result, which allows us to increase the detection perfor-
mance of the signature features thanks to the multiscaling operation, while keeping
low computational overheads. Our method is compared to standard strategies such
as Local Outlier Factor (LOF) with Euclidean / DTW similarity measures.

1.3.4 Clustering with signatures (Chapter 6)

The goal of time series clustering is to detect groups (clusters) of trajectories without
having any prior information on the data (unsupervised learning). This allows us
to detect hidden underlying structures in the data. As an example, consider the
evolution of prices of raw materials (oil, wheat, sand, etc.). A clustering analysis
could detect relationships between two materials, providing valuable insights to,
e.g., supply chain management or energy providers looking to forecast the demand.

In this work, we show how signatures can be used for clustering time series.
First, we investigate similarity measures that can be used in this context, and in-
troduce several similarity measures that are invariant to basic transformations of
data. We benchmark those similarity measures against standard distances on time
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series: euclidean, DTW, correlation. Real datasets of various shapes are analyzed,
e.g., short/long period of recording, small/large number of dimensions.

Second, we show how the notion of barycenter of signatures (Chapter 3) can be
used to extend ML methods. For instance, the k-means clustering method can be
used with signatures, using the notion of group mean.

We introduce perturbations in the data (jittering, noising) and compare the be-
havior of similarities on signature features compared to the standard similarities.
Signature features provide fluctuating performances while having very competitive
computational runtimes, especially for time series recorded over long periods of
time.

1.3.5 Publications

Part of the material presented in this thesis has been reviewed. References corre-
sponding to each chapter are given in the following list.

e Chapters 1 and 2 contain introductory material for the thesis.

e Chapter 3 has been accepted for publication in SIAM Journal on Applied Algebra
and Geometry. Also, early work has been accepted for publication in ESAIM:
Proceedings and Surveys.

— M. Clausel, J. Diehl, R. Mignot, L. Schmitz, N. Sugiura and K. Usevich.
"The barycenter in free nilpotent Lie groups and its application to iterated-
integrals signatures" In: SIAM Journal on Applied Algebra and Geometry.
2024. To appear. https://arxiv.org/abs/2305.18996.

— J. Cugliari, E. Devijver, A. Meynaoui and R. Mignot. "Some recent devel-
opments on functional data analysis". In: ESAIM: Proceedings and Surveys,
EDP Sciences. 2024. To appear.

e Chapter 4 is in the process of submission.

- R. Mignot, K. Usevich, M. Clausel and N. Sugiura. "Principal Geodesic
Analysis for time series encoded with signature features". 2024. https:
//hal.science/hal-04392568.

e Chapter 5 has been accepted for publication:

- R.Mignot, V.Mangé, K. Usevich, M. Clausel, ].-Y. Tourneret and F. Vincent.
"Anomaly Detection Using Multiscale Signatures". In: Proceedings of the
32nd European Signal Processing Conference (EUSIPCO). Lyon, France. 2024.
To appear.

e Chapter 6 is unsubmitted /ongoing work.
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Chapter 2

The signature method in Machine
Learning

This thesis is anchored in the domain of time series analysis, where the goal is to
provide insights on dynamic data sampled at discrete times. We focus on a particular
method called the signature, which encodes dependencies among the components
of multivariate time series.

This chapter is divided into two parts. First, we define the signature, a mapping
of continuous functions, and explain its fundamental properties. In the second part,
we move away from the continuous case and address the signature of time series
(i.e., discretely sampled data), which will be the main focus of this thesis.

Before diving into the theory of signatures, we establish some notations that will
be used throughout the thesis.

2.1 Notations

Throughout the thesis, we use the following notations.

- R — tensors of size d X - - - X d with values in R.
———

k times

- Bold symbols, e.g., u — Tensors (elements of R) or elements of the tensor
algebra (see Definition 2.10).

- ® — Outer product between tensors, that is, given u € Ri*™*IN and v €
R/ XM w:= u ® v is the element of RV XINXJ1XX]m gych that

Wit oo iN et = Rt e, in Vit jm - (2.1)

We denoteasuf :=u®...®u.
~——— —
k times

- e, —mode-n product between a tensor and a matrix, that is, given u € RI**"*In
and M € R/*¥In u e, A is the element of RV Xln-1XIjxIns1xXIN gy ch that

In
(wey Ay jinsroin = Z Uiiy. iy Aji, - (2.2)

in=1

- u(;) — mode-n matricization of tensor u.

- © —Hadamard product
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||.||F — Frobenius norm on tensors, that is, let u € RI*In,

L b In

lalle = > D> D2, (2.3)

i1=li=1 iy=1

- ||.l[tv — Total variation norm, see Definition 2.1.

- x — Concatenation of functions, defined as: Z : [0, T] — R4t > (X * Y)(t) is
the continuous trajectory such that

Z(t) = X(t), 0<t<u 04
YW+ X@) - Y(w), u<t<T' (2.4)

In other words, we translate Y so that it starts at the end point of X.
- G<1 — Space of signatures.
- g<1 — Lie algebra associated to the Lie group G<.
- [.,.] — Lie bracket, as defined in Equation (2.26).
Definition 2.1 (Total variation norm). The total variation norm ||.|tv of a function

X :[0,T] - R%is

1 X]ITv := sup § 1X(t:) = X(ti)ll (2.5)
P LEP
i#0

where the supremum runs over sets P = {0 = to < t; < --- < t, = T} partitions of [0, T].

Functions of finite total variation are also referred to as functions of bounded variation or
functions of finite 1-variation.

2.2 The signature transform

2.21 Definition and examples

We now formally define the signature transform. Throughout Section 2.2, we will
consider the signature of continuous functions and their main properties. Then, we
will introduce the signature of time series in Section 2.3. All integrals are defined in
the Riemann sense.

Definition 2.2. Let X be a continuous function of finite total variation X : [0,T] — RY,
with T a positive real value. The signature of level L € N of X, denoted as S(r)(X), is a tensor
defined as

S(L)(X) = / . / X(f1) ®...8 X(tL)dt1 Loodtp (2.6)
0<ty <<t <T

where ® is the vector outer product (see Notation (2.1)) and X(t) := %X(t). For clarity
purposes, the bounds [0, T] of the integrals are not denoted on the left hand side. Implicitly,
it will always be the definition set of input X. We call signature of X, denoted as S(X), the
infinite collection of signatures at all levels:

S(X) = {1, S1)(X), S)(X), ... }. 2.7)
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where 1 is a convention. In the literature, the level L is also referred to as the order or the
depth of the signature.

Note that S(;)(X) is a tensor of size d’, see Figure 1.2. Indeed, denote the compo-
nents of X as X = (X1, ..., X%), then coordinate (iy, ..., ir) of tensor S)(X) is

.....

[SwX)], ., = // X (ty). .. X" (tp)dty ... dtr (2.8)

0<t1<-+<t <T

forany 1 <iq,...,ip <d.
Now, we show in the following Examples 2.3 and 2.4 how to compute the signature
of affine mappings and mappings with values in R (i.e., one-dimensional).

Example 2.3. Let the multivariate mapping X : [0,T] — Rt — (X(t),..., X%(t)) be
an affine trajectory X(t) = at +b. Equation (2.6) gives

----- !

L . .
[S(L)(X)]i] i = % H(Xik(T) — X*(0)) = %TL (2.9)
T k=1

forall1 < iy, ..., i < d. In tensor notation: S)(X) = %(X(T) — X(0))®L,

This last example is especially interesting from a computational perspective.
Indeed, we will show in Section 2.3.4 how Equation (2.9) appears in the numerical
calculation of signatures.

Example 2.4. Given a continuous mapping of finite total variation X : [0,T] — R such
that X(0) = 0, we have S(1)(X) = X(T) and

T t
So)(X) = /O /O X(u)duX(t)dt
T
= / X(t)X(t)dt
0
1
=§(X(T))®2

where we recall that (X (T))®? is the tensor notation (squared with respect to the outer product,
see Notation (2.1)). By induction, for any level L € N, we have

T .
S)(X) 2=/0 S(r-1)(Xpo,,) X (t)dt
T
_ /0 —(le)!(X(t))L—l;'((t)dt

1
= ﬁ(X(T))®L.

Therefore, the signature of a mapping with values in R simply gives the successive powers of
its global change.

2.2.2 Main properties

We now present the main properties of the signature function of a continuous func-
tion of finite total variation X : [0, T] — R?. Throughout Section 2.2.2, proofs are
either postponed to the Appendix or provided as references for increased readability.
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We start this section with a crucial result in the signature theory, since it demon-
strates that the signature is invariant to a reparametrization of time. In other words,
signature features are not sensitive to the speed at which sequential data is read.

Proposition 2.5. Let X : [0,T] — R? be a continuous function of finite total variation.
Given a non decreasing continuous surjection ¢ on [0, T], denote as X :[0,T] » R%t
X(¢p(t)). Then

S(X) = S(X). (2.10)

This is illustrated in Figure 2.1.

Ficure 2.1: Illustration of Proposition 2.5. In blue, a two dimensional
function X and in orange, a reparametrization X = X o ¢.

In fact, the signature characterizes trajectories of finite total variation up to a
certain class of equivalence. To be more precise, we need the following definition of
tree-like functions [HL10, Definition 1.3].

Definition 2.6 (Tree-like). A continuous function of finite total variation X : [0, T] — R4
is said to be tree-like if there exists a continuous function h : [0,T] — [0, co) such that
h(0) = h(T) = 0 and such that

IX(t) = X ()]l < h(s) + h(6) =2 inf h(u). (2.11)

If h is of finite total variation, we say that X is a Lipschitz tree-like function.

The above formal definition is required to deal with finite variation functions.
However, we can think of tree-likeness, geometrically speaking, as two trajectories
are tree-like equivalent if they are equal modulo backtracking pieces. This is illus-
trated in Figure 2.2. In fact, tree-like equivalence includes translation and time
reparametrization in addition to backtracking.

(I (M

FiGUre 2.2: The trajectory on the left X x Z x Z~! x Y is tree-like equiva-
lent to the trajectory on the right X x Y ( is defined in Notation (2.4)).

The class of equivalence characterized by the signature mapping is given in the
following result.

Proposition 2.7. Let X,Y : [0, T] — R be two functions of finite total variation. Then,
S(X)=S(Y) & XY isa Lipschitz tree-like function (2.12)

where Y (t) = Y(T —t) for all t € [0, T] and where % is the concatenation operation (see
Notation (2.4)).
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Proof. See [HL10, Corollary 1.5]. m|
A more practical version of Proposition 2.7 is given in the following result.

Corollary 2.8. Let X : [0, T] — R¥ be a continuous function of finite total variation with
at least one monotonous component. Then S(X) uniquely characterizes X up to translations.

Note that the monotonicity can be ensured by adding a dummy component
by considering the augmented function X(t) := (X(t),t). To sum up, signatures
are invariant to the starting position of the function, its time parametrization and
backtracking parts.

Another attractive feature of the signature transform is the following. Observe
from Definition 2.2 that the dimension of the signature at any level L does not
depend on the time horizon T, but only on the dimension d of the input trajectory:
the signature up to order L has size

@ -1)
>d == (2.13)

That is, the signature transform compresses heavily signals recorded on long dura-
tions (T large).

We conclude this section with a proposition that illustrates the universality of
the signature transform, i.e., its capacity to approximate linearly a broad range of
functions. A lot of practical work related to signature features rely on this property.

Proposition 2.9. Let D be a compact set of trajectories X : [0,1] — R4, such that || X ||tv <
coand X(0) = 0. Denote X = (X(t),t)" the time augmented trajectory of X. Let f : D — R
be a continuous function. Then, for any ¢ > 0, it exists L € N and p € T(R?) such that for
all X € D,

I£(X) = (B, SK))ll < ¢ (2.14)

with (., .) the Euclidean inner product.

Proof. See [LLN16, Theorem 3.1]. O
Now, in order to manipulate signatures algebraically, we need to introduce no-

tions related to the space of signatures.

2.2.3 Algebraic structure and topology of the signature space

In this section, we give the main tools which will allows us to handle data points in
the space of signature features. The first notion that we introduce is the larger space
in which the signature space is embedded, called the tensor algebra.

Definition 2.10. The tensor algebra of vector space R?, truncated at level L € N, is
T R) =RoR‘@R9R) D RQR @R)@---d(R'®---®RY)  (2.15)
|
L times

and elements of T<; (R?) are denoted a = (ay, . . ., ar). T<r(R%) is endowed with the following
operations : leta = (ap,...,ar), b = (bo,...,br) be two elements ofTsL(Rd) and A € R,

a+b=(ag+bp,a;+by,...,aL +by) (2.16)
Aa = (Aag, Aay, ..., Aap) (2.17)
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K
ab =:c=(cg,c1,...,cr) with cg := Z ar ®bg_g, forallK=0,...,L (2.18)
k=0

and with neutral element, with respect to ®,

1:= (1, Oga, Opigrd, - - -, Opdg..grd) (2.19)
and inverse with respect to ®
L

ali= Z(—l)k(a —1). (2.20)

k=0

For a visual representation of T L(R%), see Figure 1.2.

Proposition 2.11. T<;(R%) endowed with above operations is a (non-commutative associa-
tive) algebra.

We have the following result that links the inverse operation with an operation
on trajectories.

Proposition 2.12. Let X : [0, T] — R be a continuous function of finite total variation.
Denote X~ the the trajectory run backwards, i.e., X~ (t) := X(T —t), forall t € [0,T]. Then

S(X7) = (X)) (2.21)
with inverse operation given in (2.20).
Proof. See [LCLO7, Proposition 2.14]. m]

In the following, the space of signatures truncated at level L € N will be denoted
as

G = {SsL(X) with X : [0, T] — R¥ continuous and || X||tv < oo} . (2.22)

In the literature, G<; is known as the nilpotent free Lie group of step L over R?. This
space is a closed Lie subgroup.

Proposition 2.13. (G<1,®) is a Lie group which means that G<y, is a smooth manifold
with a smooth group structure, that is mappings G X G — G, (g, h) — gh (we omit the ®
notation) and G — G, g +— g~ ! are smooth. Moreover, it is embedded into the tensor algebra

G<r C T<r(RY). (2.23)
Proof. See [LCLO07, Proposition 2.25]. O

We now give a few results regarding the geometry of the signature space. Note
that a few elements and references on differential geometry are given in Appendix C.
In particular, those elements will be used in Chapter 4.

Denote as T1(G<r) the tangent space at the identity of G<r. Note that this tangent
space can be identified with the associated Lie algebra of G<r, usually denoted as
g<r. The group exponential exp : T1(G<1) — G<r is

Lk
exp(v) = Z % (2.24)
k=0
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The group logarithm log : G<; — T1(G<p) is defined everywhere on G<; and it

verifies
L _ )k+l

log(g) = Z

k=

1)k. (2.25)

Those two important mappings, exp and log, allows us to go from the signature
space to its tangent space at identity and vice-versa. Note that the tangent space at the
identity of a Lie group is a specific space, called its Lie algebra. The Lie algebra plays
a crucial role in understanding the structure and properties of the corresponding
Lie group. Elements of the Lie algebra of signatures are called logsignatures, see
Section 2.2.4 below.

The following results asserts that G<r, is globally diffeomorphic to its Lie algebra
via the exponential mapping.

Proposition 2.14. The exponential map of G<r, is a global diffeomorphism.
Proof. See [LCLO7, Lemma 2.24]. O

As an associative algebra, T(R?) has a Lie bracket, defined as follows:
[a,b] = ab — ba. (2.26)

The Lie bracket reflects the non-commutative structure and appears in the following
classical result, the Baker-Campbell-Hausdorff (BCH) theorem, which gives an ex-
plicit formula for the product of two exponentials of elements of the Lie algebra of
signatures. Note that the theorem is valid in the Lie algebra of any Lie group.

Theorem 2.15 (BCH formula). Let u, v € g be two elements of the Lie algebra of signatures.
We have
ete¥ =e" (2.27)

where

1
wW=V+ / H(e'adwe2dv)y it (2.28)
0

with ady defined as ady(z) = [u, z] and
1
He = Y 1y 229
k=0
forallz € g.
Proof. See [FV10, Theorem 7.24]. O

The first terms of the BCH formula are the following:
lo (e“e")—u+v+1[u v]+l[u [u v]]—l[v [u,v]] + (2.30)
g - 2 7 12 7 7 12 7 7 . o .

Remark 2.16. For elements u, v in the Lie algebra of truncated signatures g<r, the BCH
formula expand into a finite number of terms. This is useful to obtain explicit formulas and
finite iterative algorithms, as it will be done in Chapters 3 and 4.

Now, we introduce a proposition that characterizes elements of the signature
space inside the ambient tensor algebra. For this, we need the notion of shuffle
product.
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Definition 2.17 (Shuffle product). A permutation o of (1, ..., N +M)is called a (N, M)-
shuffleif o7 '(1) < --- <o ' (N)and 6"} (N +1) < --- < a"}(N + M).

Let I = (i1,...,in) and ] = (j1,...,jm) be two sets of integers such that 1 <
it,...,in <dand 1 < ji,...,j;m < d. We call shuffle product of I and ], denoted as
Iy,

ITwj:= {(ko(l), oo ko(nm)) such that o € (N,M)—shuﬁle)} , (2.31)

with (k1,...,kn, kn+1, -+ -, knem) = (i1/-~~/iN/j1/---,jM)-
That is, I LU | is the set of all words formed by the shuffling of words I and | without

changing the order of letters. Or using a game analogy: we perform the riffle shuffle of two
decks of cards.

The notion of shuffle product is best understood through an example. Using a
card game analogy, the shuffle product is the set of all possible riffle shuffles of two
decks of cards. Also, see the following example.

Example 2.18. Let d =3 and let I = (3,1) and | = (2) be two set of indices. Then,
rwj=1{G12),(3,21),(23,1)}. (2.32)

This shuffle notion allows us to introduce the following result, which characterizes
elements of the signature space inside the ambient tensor algebra.

Proposition 2.19. An element a € T<(RY) is an element of G<y. if and only if we have, for
any set of indices I and ],

ajay = Z ag. (2.33)

Kelw]

Proof. See [LG20, Theorem 33]. O

Another central aspect of signatures is given in the following proposition. It
shows that the product of two signatures S(X) and S(Y) is related to the concatenation
of the underlying trajectories X and Y. One crucial use of Proposition 2.20 is to
compute the signature of discrete functions, as it will be shown in Section 2.3.4.

Proposition 2.20 (Chen identity). Let X : [0,u] — R¥ and Y : [u, T] — R be two
continuous functions with finite total variation. We have

S(X % Y) = S(X)S(Y) (2.34)

where  is the concatenation operation (see Notation (2.4)). Equation (2.34) is known as
Chen identity and is illustrated in Figure 2.3.

Proof. See [LCLO7, Theorem 2.9]. |

s ) =80 )sC )

Ficure 2.3: Illustration of Equation (2.34) with a one dimensional
trajectory. X is represented by the blue curve and Y by the orange
curve.

In the following, we introduce the usual metrics on the tensor algebra T(V)
and on the space of signatures G<;. On T(V), we can naturally extend classical
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inner products. For instance, we have the standard Frobenius inner product on V®F

defined as, for any ay, by € V& (using notation Ve* .=V ®...® V),
————
k times

@k, b —ZZ Z adis,in [0 ]ir i (2.35)

11 1 12 1 lk
Then, an inner product on T (V) is defined as, for any a,b € T(V),
(,b)p = > (ax, br)g - (2.36)
k>0
The standard metric on G« is the Carnot-Carathéodory norm which we define now.

Definition 2.21. Given ¢ € G<r, the Carnot-Carathéodory norm is

lgllce = inf {length(X) : X continuous, | X|ltv < 0 and S<1(X)=g}.  (2.37)

where length(X) := fOTldX |

An important result associated to the Carnot-Carathéodory norm is given in the
following result.

Theorem 2.22. Let ¢ € G<i. The Carnot-Carathéodory norm is finite and attained, that
is, it exists a continuous X* with finite total variation such that ||g||cc = length(X") and
S<1(X") = g. Moreover, X" can be chosen to be Lipschitz continuous and of constant speed
1 X*(0)] = [X*(0)].

Proof. See [FV10, Theorem 7.32]. |

In practice, this norm is difficult to compute and we rely on other metrics, such
as the Euclidean norm or homogeneous norms. As it will be shown in Chapter 6,
learning performances with signature features depend heavily on the choice of the
norm.

Now we introduce results related to the continuity of the signature mapping.

Proposition 2.23 (Continuity). For all L > 1, the following signature mapping
X - S<r(X) € T<r(RY) (2.38)
is continuous, where X : [0, T] — R% is of finite total variation.

Proof. This comes from the fact that the signature mapping is the solution of a
differential equation [LCL0O7, Lemma 2.10]. m|

The following result shows that if two paths are close in the total variation norm,
then their signature at level L are close in the Frobenius norm.

Proposition 2.24. Let X : [0, T] — RY be a continuous function of finite total variation.
Then forall L > 1,

ISw)(XllF < ﬁ (X lrv)" (2.39)

that is
ISX)IF < exp (IX]ITv) - (2.40)



26 Chapter 2. The signature method in Machine Learning

Proof. See [LCL07, Proposition 2.2]. m]

Proposition 2.25 below demonstrates how Carnot-Carathéodory norm on signa-
tures is related to the total variation norm on trajectories. For algorithmic consider-
ations, Proposition 2.24 might be favored as it relies on the Frobenius norm which is
more practical than the Carnot-Carathéodory norm.

Proposition 2.25 (Modulus of continuity). Let X, Y : [0,T] — R¥ be two continuous
functions of finite total variation. Then, for all L > 1, it exists Cp s.t. forall0 <s <t <T,

||S(L)(X|[s,t]) - S(L)(Y|[s,t])”CC < CLOCL_1|| X|[s,t] - Y|[s,t] ||TV (241)

where a > max{|| X|s ylltv, | Yl slltv}. In particular, for s = 0,t =T and if || X||rv and
|||y are less or equal to one, then

IS0y (X) = Sty Ml < Col|X = Y|y (242)

Proof. See [FV10, Proposition 7.63] which rely mainly on Equation (2.39). O

2.24 Logsignature transform

We conclude Section 2.2 with some remarks regarding the log operation in the
signature space.

The logarithm of a signature, or logsignature, stores the same information which
is contained in the signature, but with less features. However, it does not verify the
nonlinearity approximation result (Proposition 2.9). Formally, the dimension of the
logsignature truncated at level L is

ZL: % Z u(@)d!l (2.43)

(=1 alt

where 1 denotes the Mobius function. In Table 2.1, we present the dimension of
both the signature and the logsignature for various truncation level L and trajectory
dimension d. For instance, for d = 3 and L = 5, the signature S<;(X) of a d-
dimensional time series X has 364 coefficients when log S<;(X) is composed of only
80 coefficients.

d=2 d=3 d=4 d=5 d=6 d=7
21 73 13;6 21,10 31,15 43;21 57,28

31 155 40;14 85;30 156;55 259;91 400; 140
4| 31;8 121;32  341;90 781,205  1555;406 2801;728
51 63,14 364,80 1365;294 3906;829 9331;1960 19608;4088

NNl

TasLE 2.1: Dimension of (signature ; logsignature) for various dimen-
sion d and truncation level L.

However, it has been shown that in practice signature features perform better
than logsignatures [Mor+21], at the cost of a higher storage complexity.
Now, we move from continuous to discrete representations, i.e., time series.
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2.3 Time series analysis with signature features

In this section, we present the sighature mapping from a machine learning perspec-
tive, emphasizing the computational aspects.

2.3.1 From continuous mappings to time series

Now that we have presented the signature of continuous functions, we introduce the
signature of time series. Time series are functions X(t) € R? with t taking values in
a finite set {1, ..., tr}. In other words, a time series is an ordered set of points of a
space V, with t; usually being time indices. In the following, we will only consider
YV =RY, although we could also consider more general structures, such as matrices
YV = R™™ or tensors V = RIi**In as]ong as we have an ordering on the considered
set.

To define the signature of a time series S(X), we switch from a discrete rep-
resentation of the time series to a continuous one, as the signature mapping S is
defined for continuous functions. For this, we augment X by computing the linear
interpolation between each pair of successive observations (X(t;), X(t;+1)). Then, by
combining the signature of a linear function, see Equation (2.9) and the Chen identity,
see Equation (2.34), we can obtain a closed form expression of the (piecewise linear)
interpolated time series. Thereafter, if X is a time series, S(X) denotes the signature
of the linearly interpolated X.

2.3.2 Preprocessing and augmentations

The signature as a feature in Machine Learning tasks has shown to perform better
when input time series are preprocessed in specific ways. We now detail preprocess-
ing strategies which, in our experience, lead to better performances and also which
are often used in the literature. A benchmark study of preprocessing strategies for the
signature method and their impact on performances for a downstream classification
task was established in [Mor+21].

The main preprocessing strategies are the following.
Time augmentation. We consider X(t) = (X(t), t) instead of X. Note that this is a
way to remove the signature invariance to time reparametrization, see Proposition 2.5,
which might be necessary for specific real life applications where the speed of time
series gives crucial insights on the data.
Lead-lag augmentation. We consider the following transformation

3 = (X(to) X(t) X(t) X(t2) X(2) ... X(tr) X(tr) (2.44)

X(to) X(to) X(t1) X(t1) X(t2) ... X(tr-) X(tr))’ '
thatis, if X(t) € R? then X(t) € R%. The ideais that, since S(X) encodes dependencies
between components, S(X) encodes dependencies between a component and the
lagged values of another component, which may be valuable in a further analysis of
the signature coefficients.

Note that the transformation in Equation (2.44) is the first order lead-lag augmen-
tation and we can construct in the same way the k-th order lead-lag transformation
of X.

Sliding windows. This consists in sliding a fixed width window over the time series
as shown in Figure 2.4. This window is used for moving averages or Convolutional
Neural Networks.
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X(to) | X(t1) | X(t2) | X(t3) | X(ta) | X(ts) | X(te) | X(t7)

X(to) | X(t1) | X(t2) | X(t3) | X(ta) | X(ts) | X(t) | X(t7)

—_—

Ficure 2.4: Sliding window.

Expanding windows. This consists in keeping the left bound of the window fixed
and the right bound increases, as shown in Figure 2.5.

X(to) | X(t1) [ X(f2) | X(t3) [ X(ta) | X(t5) [ X(t6) | X(t7)

X(to) | X(t1) [ X(t2) | X(t3) [ X(ta) | X(t5) [ X(t6) | X(t7)

—_—

Ficure 2.5: Expanding window.

Hierarchical dyadic windows. This consists in dividing the time series in two halves.
Then dividing the first half and the second half each in two halves, etc., as shown in
Figure 2.6.

X(to) | X(t1) | X(f2) | X(t3) | X(ta) | X(t5) | X(t6) | X(t7)

X(to) | X(t1) | X(t2) | X(t3) | X(ta) | X(t5) | X(t6) | X(t7)

Ficure 2.6: Hierarchical dyadic window.

Normalizations. Time series or signature features can be scaled in order to improve
learning performances. Time series can be scaled in the following way: for each X
in the dataset, we apply

X

I1Xlrv
In addition, signature coefficients can also be scaled: let a = (a1, ..., ar) be a signa-
ture, then we can apply a; < (ai)l/i or a; «— %ai foralli =1,...,L. Normalization
of signature coefficients is discussed in further details in Chapter 6.

X

(2.45)

2.3.3 Application of the signature method for time series analysis

We now detail examples in the literature of applications where the signature has
achieved state-of-the-art performances. For a more exhaustive overview of applica-
tions of the signature methods in Machine Learning, we refer to [LM24].

Linear regression of signature features. The signature has been used in regression
models in several articles. In [Fer22], the author applies a linear regression directly
on signature features to forecast the next value of a time series. This work relies on
the following identity from Proposition 2.9,

1FCX) = (B, SCO)I < & (2.46)

where we approximate any transformation f of time series X with a linear combina-
tion of signature coefficients.
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In [Lem+21], the authors introduce the Signature of Expected Signatures (SES)
features for distribution regression. This time, instead of using Proposition 2.9 to
approximate functions of time series, they use a result, see [Lem+21, Theorem 3.2],
which shows that SES features approximate functions of distributions of time series.
We use a method derived from this one is used in Chapter 4.

Signature and Kernel methods. For an introduction to kernel methods in Machine
Learning, we refer to [HSS08] and [HTF09, Sections 5.8 and 12.3]. The signature
kernel is introduced in [KO19], which we give the definition now. Denote as Py
the space of mappings (paths) of the form X : [0,1] — X = R? and consider the
kernel kx : Px — Py defined as kx = (k(X(t), .))o<t<1 where H is the corresponding
Reproducing Kernel Hilbert Space (RKHS). For any h € Py, we have S(h) € H’ :=
(H®0 x H® x H®2 x ...). The signature kernel is the mapping k® : Px X Px — R
defined as

k®(X,Y) = (S(kx), S(ky)) g - (247)

The main result of [KO19] is that there is a closed formula for k® and thus we do not
compute S(kx) nor (., .)4, (coined as kernel trick in the literature on kernel methods).
An especially interesting outcome is that it allows us to extend algorithms for
static data that rely on a kernel method to algorithms for time series by using the
signature kernel. For instance, in [CO22], the authors develop a Mean Maximum
Discrepancy (MMD) test, which is a standard kernel based statistical test to determine
whether two given samples are issued from the same distribution, i.e., Hy : L(X) =
L(Y). In [TO20], the authors use gaussian processes with a signature kernel as
covariance to perform learning on time series with Bayesian tools.
Signature and deep learning. In [Bon+19], the authors develop a neural network
architecture that contains a signature layer, that is a layer that takes as input time
series and outputs signatures. They show that their model performs better than
classical deep architectures (Recurrent Neural Networks, Gated Recurrent Units,
Long Short-Term Memory) for the estimation of the Hurst parameter of fractional
Brownian motions, which are important mappings, for instance in financial model-
ing. Note that backpropagation for signatures is implemented in Python packages
iisignature (CPU oriented) and Signatory (GPU oriented), both mentioned later
on in Section 2.3.6.
Anomaly detection. There are several works involving the signature to detect ab-
normal time series in a dataset. For instance, in [Sha+20], the authors develop a
semi-supervised learning method called SigMahaKNN that computes anomaly scores
using a generalized Mahalanobis distance on signature features. Novelty detection,
i.e., given a non polluted dataset detect whether a new instance is an outlier, is tack-
led in [Arr+24]. In Chapter 5, we introduce a signature method that rely on the
dyadic windowing of time series. Other works are presented in the survey [LM?24,
Section 14].

2.3.4 Time and storage complexities

From Example 2.3, we have that for any affine function X : [0, t] — R4, that is X is
of the form X (t) = at + b forall t € [0, 1] and fixed a, b € R?,

S(X) = exp (X(t1) - X(0)) (2.48)

where X(t1) — X(0) is to be seen as an element of T(R): (1,X(t;) — X(0),0,0,...).
By combining Equation (2.48) with Chen identity (Proposition 2.20), we have that
for any piecewise affine function X : [0, T] — R, that is X is affine on each segment
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[ti, tiy1 ] where 0=ty <ty <---<t, =T,

S(X) = e X(01)=X(0) , X(t2)=X(t1)  HX(T)=X(tr-1)_ (2.49)

From this last equation, we see that the computation of the signature of a time series
is a succession of (T — 1) outer products. On the truncated tensor algebra T<; (R9),
the product operation ae? is O(dl). Thus, the time complexity of the signature
computation is O(TdL). As pointed out in Equation (2.13), the storage complexity of
the signature is O(d") and does not depend on T.

2.3.5 Reconstruction of a time series given its signature

The task of reconstructing a time series X given its signature S<; (X), up to translation
and time parametrization, is challenging and has been tackled in several studies.

One method, coined as the insertion algorithm [CL19; Fer+23], computes itera-
tively the slopes of each affine piece of the time series. This method has a serious
limitation, as it requires the signature up to level L + 1 in order to reconstruct a
time series of length L. A Python implementation of this reconstruction method is
available in package Signatory [KL21].

Another approach has been developed in [LX18], but it requires even more sig-
nature levels (~ 2dL3 log L) to reconstruct a time series of length L.

2.3.6 Existing softwares

To handle signatures, we need an efficient implementation of the operations of the
tensor algebra T(R?), such as the product ®, on which rely the calculation of both
the exponential, see Equation (2.24), and the signature, see Equation (2.49). Several
softwares (C++ wrapped in Python) exist to compute the signature transform of a
time series and handle such tensor operations. For the experiments of this thesis,
we use iisignature [RG20]. Practical users might also be interested in RoughPy
(the most active library in 2024), Signatory [KL21] (GPU compatible) and signax
(JAX compatible), all available on the official Python Package Index (PyPI) repository.
Also, note that the signature, as well as some preprocessing operations such as those
presented in Section 2.3.2, have recently been incorporated into the wider project
sktime [Lon+19], a scikit-learn compatible interface for Machine Learning with time
series.

2.3.7 Connection with Rough paths theory

We extend the notion of total variation with the notion of p-variation.

Definition 2.26. Let p > 1 be a real value. The p-variation norm ||.||p—var of a function
X :[0,T] - R%is
p
X lpvar 1= [sup > X () = X(tia)I” (2.50)

P tieP, i#0

where the supremum runs over sets P = {0 = to < t; < --- < t, = T} partitions of [0, T].
Note that for p = 1, we get the total variation norm (Definition 2.1).
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Given a continuous function X : [0, T] — R, the signature is the solution of the
following differential equation:

dS[QIt](X) = S[Q,t](X) ® dXt ’ S[O,O](X) =1. (251)

In order to give meaning to integrals of the form

t
/ Y,dX, (2.52)
0

for X : [0, T] — R? continuous of finite p-variation, Y : [0, T] — R? continuous of
finite g-variation and % + % > 1, we can use the notion of Young integral [You36],
which is a continuous generalization of the Riemann-Stieltjes integral. However, for
p = q = 2 (e.g., X a Brownian motion), Young integrals can’t be used and another
framework is needed to define Equation (2.52). That is the purpose of the rough
paths theory, a subfield of stochastic calculus initiated by Terry Lyons in the 1990s
[Lyo98], which provides a framework to rigorously study the integration of functions
with respect to rough functions (p > 2) and in a way, extend the classical integration
theory. It is a natural extension of integrals against a-Holder continuous functions

with @ € (1,1], in the same way Young integrals is the natural notion of integral

against a-Holder continuous functions with a € (%, 1]. For further details, a recent
introduction to rough paths theory can be found in [FH20].

In our work, we do not consider rough functions as we solely focus on the
study of multivariate time series. Those time series are linearly interpolated and
thus the input of the signature transform will always be a continuous piecewise
linear function. Thus, in our work, the signature is defined with Riemann-Stieltjes

integrals.
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Chapter 3

Barycenter of signatures

In this chapter, we establish the well-definedness of the barycenter (in the sense of
Buser and Karcher) for every integrable measure on the space of signatures (formally,
the free nilpotent Lie group of step L over R?). We provide two algorithms for com-
puting it, using methods from Lie theory (namely, the Baker-Campbell-Hausdorff
formula introduced in Section 2.2.3).

3.1 Introduction

In this chapter, we want to view things on a coarser scale by averaging, that is by
summarizing or simplifying the information contained in a set of points into a single
value. As mentioned in Section 1.3, this value provides an insightful description that
can be used in local strategies (e.g., K-means), or for unveiling relationships between
datasets, tracking the evolution of global trends, detecting cycles, monitoring (e.g.,
quality control in manufacturing), forecasting, and noise reduction.

Consider the task of averaging a set of N points x1, ..., xy lying on the signature
space G. The space of signaturesis amanifold. Onsuch curved space, the computation
of the simplest statistics, the mean, can require more work than it does on a Euclidean
space. Indeed, the definition of barycenter for Euclidean space ¥ = >N x; cannot
be used for manifolds, since in many cases X might not belong to the manifold. Take
for instance two points on the unit circle: x; = (1,0) and x; = (0, 1). The Euclidean
barycenter of the two points X = (1/2,1/2) does not belong to the unit circle.

Lie group barycenters. A generalization of the Euclidean barycenter to manifolds is
the Fréchet mean: let (M, d) be a metric space. Given a set of points x1,...,xy € M,
the Fréchet mean is the point u € M such that

N
p=argmin » d*(u,x;). (3.1)
ueM ;

This definition can be used for Lie groups. Also, if d(.,.) is a bi-invariant Rie-
mannian metric, then p is stable by group operations: left and right multiplication,
inversion. For instance, stability for the right multiplication means that uy is the
Fréchet mean of {x;y};=1,.n. However, if d(.,.) is not bi-invariant, the stability of
u is not ensured. For such cases, the authors of [PL20] have defined a notion of
barycenter on Lie groups called the group mean. Historically, the concept of a Lie
group barycenter goes back to [BK81]. The group mean is put in context with other
concepts of geometric means in [PL20] and barycenters in the group of rotations are
treated in [Moa02].
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Averaging signatures. In this chapter, we are interested in computing the group
mean of signatures data. Note that the task of averaging signatures has been previ-
ously tackled with the concept of expected signature for stochastic processes [Faw(02;
Nil2] which has proven to be useful. For example, it often characterizes the law
of the stochastic process [CL16; Boe+21], a fact that has been successfully applied
in data science [SO21; CO22; Sug?1]. Maybe surprisingly, the expected signature
of several classes of stochastic processes is available either in closed form or can be
computed by solving a fixed-point equation [LN15; FHT22]. However, the signature
of a continuous mapping or of a time series takes value in a nonlinear space (the Lie
group G) as we have seen in Chapter 2. Averaging in the aforementioned works is
taken in the tensor algebra T< L(Rd), i.e., the linear ambient space and the obtained
expected signature is not an element of the group of signatures anymore (except for
a Dirac measure) while the group mean is.

Contributions. Our contributions are as follows:

e We establish unique existence of the barycenter for arbitrary integrable mea-
sures on grouplike elements, Theorem 3.9. Previous results needed the as-
sumption of compact support, which is not necessary in the “free” case.

e We show that, for discrete measures (e.g., a collection of grouplike “samples”),
there is a finite-time algorithm to compute the barycenter (unlike existing ap-
proaches relying on iterative methods, such as fixed-point iteration [PA12]).
For this, compare Corollary 3.16 and Proposition 3.29, together with imple-
mentations in SageMath and python.!

Notation
We use the following variable names throughout:

e d — dimension of multivariate time series;
e N — number of time series we want to compute the mean of;
e 7 — (maximal) length of time series;

e [ — truncation level (of the free Lie algebra or the tensor algebra).

3.2 Background

The following definitions and results can be found, for example, in [FV10, Chapter
7]. A recent exposition, with a notation similar to the one used here, can be found in
[Die+22, Section 2].

3.2.1 Free Lie algebras and iterated-integral signatures

For a fixed dimension d, we consider the alphabet A := {1,...,d}. A word w on
A is a (possibly infinite) ordered set of letters (elements of A), e.g., w = 31 is a two
letters word on A, distinct from the word @ = 13. Denote as A* the set of words on A
(including the empty word 1). The length of a word w is denoted by |w|. The tensor
algebra over R? can be realized as the R-vector space over A%,

[o¢]

T(R?) := @(Rd)@’k = spang (A®).
k=0

1Source codeisavailableathttps://github.com/diehlj/free-nilpotent-1lie-group-barycenter.
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Elements of it are finite, formal sums of words

Z Cow W, (3.2)

weA*

where the coefficients ¢y, € R are zero, for all but finitely many words w. Such sums
are also called (noncommutative) polynomials. It becomes an R-algebra when taking
the concatenation product of words (and extending it linearly). We shall also use the
space of formal tensor series, T((R%)), which contains all formal sums of words of
form (3.2) with possibly infinite number of non-zero coefficients c,, € R. Define the
two-sided ideal

Tor(RY) := {( Z Co W

weA*

eT(Rd)|VweA*:|w|sL:cw:o}.

The truncated tensor algebra T<|, (R%) defined in Section 2.2.3 can equivalently be defined
as the quotient algebra

=TV )

It can be realized as the space of formal sums (3.2) satisfying ¢, = 0 for |w| > L. The
product on it is the concatenation product, where the product of two words w, v with
|w| + |v| > L is set to zero. We will use this identification from now on. Like every
associative algebra, the tensor algebra, as well as its truncation, is endowed with a
Lie bracket given by the commutator [v, w] = vw — wo.

The free Lie algebra (over RY) , g(R%), can be realized as the smallest Lie subalgebra
of T(RY) containing the letters A.

The free, step-L nilpotent Lie algebra (over R?), g<;(R%), can be realized as the
smallest Lie subalgebra of T« L(RY) containing the letters A.

The free, step-L nilpotent Lie group (over R?), G<; (R?), can be realized as the image
of g<1(R%) under the exponential map (defined in Section 2.2.3). Its product is given
by the restriction of concatenation. As the name suggests, G<1(R?) is a Lie group.
Moreover, its Lie algebra is realized by g<.(R%) and the map exp realizes the Lie
group exponential. Moreover exp : g<.(R?) — G<L(R) is a global diffeomorphism,
with inverse given by the logarithm mapping (see Section 2.2.3).

3.2.2 Baker—-Campbell-Hausdorff (BCH) formula

We will use the following classical result (see [FV10, Theorem 7.24] for a proof in a
notation close to ours).

Theorem 3.1 (Baker—-Campbell-Hausdorff (BCH) formula). Let X, Y be non-commuting
dummy variables (i.e., we work in the free Lie algebra over two letters X,Y). Then

1
log(exp(X)exp(Y)) = Y + /0 © (exp(t adx) exp(ady)) Xdt.

Here, ady is the linear map, adx(Z) = [X, Z], and
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Spelling out the first few terms of the resulting Lie series:

log(exp(X)exp(Y)) =X +Y + %[X, Y]+ %[X, [X,Y]] - 11—2[Y, [X, Y]]
1

- ﬂ[yl [X, [X/ Y]]]

1
~ mog (LUXC YL YL YL YT+ Y, X1, X1, X1, X1)

+ = ([l[X, Y], Y] Y], X]+ [IY, X1, X1, X1, Y])
+ —([[[[Y, X]r Y]/ X], Y] + [[[[X, Y]/ X]/ Y]/ X]) +--

The BCH formula for permuted arguments is simply

BCH(Y, X):=log(exp(Y) exp(X)) = —log((exp(Y) exp(X))_l) = —BCH(-X, -Y).
(3.3)
For multiple arguments, a BCH formula can be obtained by composition, which is
associative via

BCH(X, BCH(Y, 2)) = log(exp(X) exp(Y) exp(Z)) = log(exp(BCH(X, Y)) exp(Z)).
(3.4)
In the following subsection, we recall the Lyndon basis and its dual, as they are
useful to compute BCH(X, Y).

3.2.3 Basis of the truncated Lie algebra and its dual

A word w over d symbols {1, ...,d} is a Lyndon word if and only if it is nonempty
and lexicographically strictly smaller than any of its proper suffixes, thatis w < v for
all nonempty words v such that w = uv and u is nonempty. For all Lyndon words of
length at least 2 (i.e., non-letter Lyndon words), there is a unique choice of u and v,
called the standard factorization of w, in which v is as long as possible and both 1 and
v are Lyndon words. For every Lyndon word w we obtain a polynomial 8, € T(R%)
via the recursive definition

[B.,8,], if w has standard factorization w = uv.

The Lyndon words, sorted? by length first and then lexicographically within each
length class, form an infinite sequence (w;);en. For convenience we set B; := By,
for every i € N. Let g = g(1,...,d) = g(RY) be the free Lie algebra over R which is
generated by {1, ..., d}. Then (8;);en forms an R-basis for g ([Gar90, Section 3, 4]).

For the entire section, we fix a truncation level L. The L-truncated Lie algebra
g<;. with nested Lie brackets bounded by depth L is an R-vector space ([Gar90,
Proposition 3.1]) with

Bi=BLg o= dimaoar) = 3 7> pla)dt, @5)

1<¢<L  alt

2This order is also known as the shortlex order.
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where u denotes the Mobius function. The expression (3.5) is known as the necklace
polynomial. An R-basis is given by the L-truncated ordered Lyndon basis Bi<y<p
recalled above.

Example 3.2. For L = 3 and d = 2 we obtain B = 5 and
Biap= (1 2 [1,2] [1[1,2]] [[1,2],2]) € 2,
On the corresponding B-dimensional dual space
hom(a<r, R) = {f : g« — R | f R-linear}

we use the dual basis B; <b<

g satistying forall b, j < B,

1, ifj=b,

(3.6)
0, elsewhere.

Bi(By) = {

3.24 BCH in the truncated Lie algebra

With some abuse of notation, we define for X, Y € g<; the L-truncated Lie series
BCH(X, Y) := log(exp(X) exp(Y)) € g<r.

derived from the BCH formula (Theorem 3.1).

Definition 3.3. We define a binary operation x : RE x RB — R of coefficient vectors via

(u *v); := B c BCH u;8;,

]

v; B,

B
j=1

B
=1
for every i < Band u,v € RE.
Example 3.4. For L = d =2 we have B = By, = 3 and

[n wz uz| %1 w2 v3] =[ur+01 wa+vr uz+vs+ 302 — uxor)]
according to Definition 3.3.
Lemma 3.5. (R?, ,0p) is a group.

Proof. It is easy to see that 05 € R® is the neutral element with respect to * thanks to
the property
BCH(X,0) = X = BCH(0, X).

Next, for every u € RE, its inverse with respect to x is nothing but —u thanks to
BCH(X, —X) = 0 = BCH(-X, X).
Finally, associativity with respect to x follows from (3.4). m|

This operation x is precisely the multiplication in the free Lie group G< L(RY),
which can be identified with R? via a chosen basis.



38 Chapter 3. Barycenter of signatures

Example 3.6. In the setting of Example 3.4, that is L = d = 2 and B = 3, the group
(R3, %, 03) according to Lemma 3.5 is isomorphic to the Heisenberg group

1 a1 as
H = 0 1 an EGLg(R)lal,QQ,ﬂgeR
0 0 1

with its multiplication inherited from GL3(R).

Proof. Define @ : R® — H via

1 u; us+ %uwz
() ([u1 Uun u3]) =10 1 Un
0 0 1

for every uy, up, uz € R. It is bijective, and it respects the group law with

1 wi+v1 us+vs+uvy+ %(uﬂ/lz + 0102)
(D( [u1 Uup u3])CI)( [01 02 03]) = (0 1 Uy + 02
0 1

0
:@([ul U ug]*[vl (%) 03])

for all v1,v2, v3 € R. Therefore, @ is an isomorphism of groups. O

3.3 The barycenter in the nilpotent Lie group

3.3.1 Definition and properties

Definition 3.7 ([BK81, Definition 8.1.4],[PL20, Definition 11]). Let H be a Lie group
with globally defined logarithm? and v a probability measure on it. We say that m,, € H is a
barycenter or group mean of v if

_ -1
0= /Glog(mv x) v(dx). (3.7)

The notion of barycenter was introduced in [PL20] using the Cartan-Schouten
connection. Informally speaking, the barycenter looks for a point m, so that the
logarithm*

log,, x=m, log(m;lx)

with respect to m, has expectation 0. This notion is different from the so-called naive
mean, which simply averages the logarithms of the points at the identity, namely

mlae = exp ( / log(x)v(dx)) .
H

Note that, in general, mrv1alive # m, and m{}ai"e does not possess invariance properties.

Remark 3.8.

3In the case that we are interested in, this condition is satisfied, and we can thus omit the usual
assumption that v is supported in a neighborhood of the identity, where the logarithm is well-defined.

4The left-hand side is the abstract logarithm at a basepoint in a Lie group; the right-hand side is its
concrete realization inside the tensor algebra.
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i. For compact Lie groups, the notion of barycenter corresponds to the Riemannian center
of mass for the corresponding bi-invariant Riemannian metric. However, in our case,
it is impossible to define the bi-invariant Riemannian metric [PL20].

ii. The barycenter of Definition 3.7 formally fits into the framework of proper scoring rules
and Bayes acts [Goo52; BG20; BO21]. In that setting, a Bayes act is defined as

ay = argminEx., [L(a, X)],
a

for some loss function L. If H is a Riemannian manifold, if the Riemannian logarithm
coincides with the Lie group logarithm, and if we set

L(a, X) = | log,(SC))II?,
then the condition for the minimum is
0 = Ex-u[dall log, (S(X)II*] = ~2Bx-~,[log,(S(X))],

which, modulo the irrelevant prefactor, is exactly condition (3.7).

Now, as just mentioned, our H of interest is not Riemannian (it can only be endowed
with a compatible sub-Riemannian geometry) and therefore this formal argument does
not apply. It would be nonetheless interesting to explore what ideas, in particular the
concept of “elicitation”, from that literature can be applied in our setting.

Our main results show that for the free Lie groups, the barycenter exists and is
unique under standard conditions.

Theorem 3.9. Let H = G<1(RY) be the free, step-L nilpotent Lie group (over R%). Let v be a
probability measure on H such that this measure is integrable when considered as a measure
on the ambient linear space T<; (R?). Then the group mean m,, of v exists and is unique.

We state some corollaries of Theorem 3.9 before providing its proof of in Sec-
tion 3.3.3.

Remark 3.10. For compactly supported measures, the uniqueness of the barycenter follows
from [BK81, Example 8.1.8] (see also [PL20, Theorem 5.16]). For this, note that the free
nilpotent Lie group of dimension d of step L is simply connected since it is diffeomorphic to
the free Lie algebra of dimension d of step L [FV10].

Theorem 3.9 is stronger in the sense that it also covers measures that are not compactly
supported, and moreover our proof will provide a constructive way to compute the barycenter
in a recursive fashion.

Remark 3.11. If y is a measure on G(R?) (with all moments well-defined), such that the
pushforward p<p under the projection onto levels < L has the appropriate integrability

conditions for all L, then the proof shows that level n of the barycenter is independent of L for
L > n. We thus get, projectively, a well-defined barycenter for all of u.

Theorem 3.12 (Bi-invariance of the barycenter). Under assumptions of Theorem 3.9, for
g € H denote by (Lg).v the push-forward under left multiplication, i.e., for any bounded
function f,

[ 50y = [ rigoviax.
H H
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Fiure 3.1: On the left the mean of the signatures S(X*)) of three paths
is assumed to be given by the signature S(M) of some path M. If we
attach to all paths XV a new path segment Y, since the mean is right
invariant, this corresponds to attaching that path segment to M. On
the right, we see the analogous visualization for left invariance. Due
to Chen identity, attaching path corresponds to the group product.

Let (Rg).v be the push-forward under right multiplication. Then (Lg).v, (Rg).v are also
integrable in the required sense and

m,),y = gy, mR,).y = My§g.

That is, the barycenter is bi-invariant with respect to left and right multiplication, illustrated
by Figure 3.1.

The proof of Theorem 3.12 mainly follows from [PL20, Theorem 5.13], but we
provide it below for completeness.

Proof of Theorem 3.12. First,

/ log((gm,) ') (Lg).v(dx) = / log((gm,)"gx) v(dx) = / log(my %) v(dx) = 0.

Hence m,), = gm,. Further

/ log((m,g)™"x) (Rg).v(dx) = / log((m, )" xg) v(dx) = / log(g™'m; 'xg) v(dx)
=g ( / log(m;'x) v(dx)) g=0.
Here we used
log(g™'xg) = g ' log(0)g,

which can, for example, be verified by expanding the power series for log. ]

Finally, we show that in the special case of a “centered” probability measure, the
barycenter coincides with the naive mean.

Lemma 3.13. In the setting of Theorem 3.9 we have
3aive =1.

m,=1 & m

Proof. Assume m}¥¢ = 1. Then

0=log(1) = log(mﬂai"e) = /H log(x) v(dx) = '/H log(l'lx) v(dx).
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Hence, by uniqueness of m,, m, = 1.
Assume m, = 1. Then

0= / log(x) v(dx),
H
and hence m?3V¢ = exp(0) = 1. O

3.3.2 Keylemma

The key idea in the proof of theorem 3.9 is that the BCH formula implies the following
polynomial relations on the coefficients.
Let x, y € g<1(R¥) be as follows,

B
X = ZM]‘B]', y= ZU]'B]'/

j=1 j=1

[so]

where the order of the chosen basis B of g<;(R?) respects the length. Then, by
plugging x, y as X, Y in the BCH formula, we get

B
exp(x) exp(y) = exp Z (uj+vj+pju, ..., uj—1,01,...,0i-1)) Bj |,
j=1
where p; are some polynomials that are globally defined for fixed L, d, and the basis

Formally, let
R := R[Ml,...,MB,C],. ..,CB]

be the polynomial algebra over 2B symbols and g&™ := g»¥™(1, ..., d) := g(R%) be the
free Lie algebra with coefficients taken from R. Its truncation gsSyLm ® is a B-dimensional
free R-module with L-truncated Lyndon basis 8. On the corresponding dual space

hom(s¥™, R) = {f: ¢¥™ SR | f R-linear}

<L’ <L
we use the dual basis 8" as in (3.6). We now apply the BCH formula as in the group

symb

law of Definition 3.3, but for elements from g <L

symb

Lemma 3.14. Consider the following elements of g,

X := ZB: M8y, Y := ZB: CpBy.
b=1 b=1

Then, for every j < B, there exist (uniquely determined) p; € R[My, ..., M;-1,Cy,...,Cj-1]
such that

B; o BCH(X, Y) = Mj + C]' tp;. (3.8)

Proof. The Lyndon words are sorted by length, and each Lie bracket strictly increases
the depth of nested Lie brackets. Therefore, together with Theorem 3.1, we have

.8; o BCH(X, Y) = M] + C] + B; (BCH(X<]‘, Y<]') - (M] + C])B]) (39)
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for all j < B, where

j-1 j-1
X<j= Y MyBy, Yeji= ) CyBy.
b=1 b=1
The claim follows with p; := B; (BCH(X<j, Y<j) — (M + C))B;). |

Example 3.15. In the setting of Example 3.2 with L =3 and d = 2,

p1 0

p2 0

p3| = 1CoMy — 1C1M, e R°.
pa —%C1C2M1 + 11—2C2M% + %C%Mz - 11—2C1M1M2 + %C3M1 - %C1M3

ps 5 C2My — £5C1CoM; — 15CoMiM, + 35CiM3 — 3C3Ms + 3Co M

3.3.3 Proof of the main theorem

Proof of Theorem 3.9. Let B denote the L-truncated Lyndon basis. Assume there is a

group element
B
m = exp Z m;B;
j=1
which satisfies

O=/log(m_1x)v(dx)

B
/ log| exp Z m;B; | exp Z c;x)Bj v(dx)
j=1 =1
with suitable coefficients c}x) forx € Gand 1 < j < B. Then via Theorem 3.1,

B
O:/logoexp Z(pj(—ml,... —m;j-1, ¢ gx), ..,C (x)) m]+c(x)) i | v(dx)
H -
j=1

B
=Z(/H (p]-(—ml,... —m;j_ 1,c§ ) (X)) m]+c ) v(dx))
=1

with polynomials p; according to Lemma 3.14. Since 8 is an R-basis, we obtain

mj:/pj(—ml,... —m;j_ 1,c§x),... (X))+c(x)v(dx) (3.10)
H

and thus iteratively the components of m.> Hence, m is unique.
It is immediate to see that defining m via (3.10) also yields existence. m]

SThis integral is well-defined, by the integrability assumption.
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A very common case is when the measure v is discrete, i.e., it is supported on N
points with weights w'?, where

N
V({X(l)}) =w®, ... V({X(N)}) =W, Z w® =1. (3.11)

In this case, the following corollary provides an algorithm for iterative computation.

Corollary 3.16. For the discrete measure (3.11), where the points have expansions

B
x(i) =exp Z CEOB]' , C(i) € RB, 1<i< N,
j=1

the coefficient vector m of the mean according to Definition 3.7 can be computed recursively
using the closed formula

N
mj = Z w(i) (C;l) + pj(—ml, cee, M, C(()l), . (l) )) (312)
i=1

for every j < B, see Algorithm 1.

Proof. Due to Lemma 3.5,

0= Z w® log(m1x") = Z w? Z ((=m) C(l))]

B N
Z Z w(l) ( m] + C'l) + pj(_mll _m] 1, Cgl)/ e (Z) ))

j=1 i=1

with polynomials p; € R[Mj, ..., M;-1,Cy,...,Cj-1] according to Lemma 3.14, and
wherepy1 =---=p; =0
O

Algorithm 1: GROUP MEAN

Input: A set of N coefficient vectors x'¥) € RP for group elements (xV); ;.
Output: The coefficients m € R? for the group mean m
1 Precompute polynomials (p;
2 forj=1,...,Bdo
L Compute m; using Equation (3.12)

)131‘53

4 return m = [m1 mB]

Example 3.17. Continuing Example 3.15, and assuming w® = & for simplicity,

1< i) 1< (i) 1 @) (i) (i)
= Zc, m2=NZC2, ms = NZ—cm+ =€ My + Cy
i=1

i=1

N
1 Z (i) (i) 1 o o> 1 @0 1 ) 1 @ 1 @) (i)
= c1 Cy My + ¢, my = 12C1 cq My — 1201 mimy — 2c3 my + ch mz+c, |,

i=
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N
. Lo, Lom, 1. Lo o 1o L 0
ms = N ; —12c2 c, ' my €y €y my — 12(:2 mimy 12c1 my 2c3 my — 2C2 ms+cg |,

which gives all the steps of Algorithm 1.

Given a truncation level L and the dimension d of the inputs, we obtain B = By 4
according to Equation (3.5). Then the computational complexity of Algorithm 1 is
given by the following lemma.

Lemma 3.18. There isa Qy such that forall d and x1), ..., xN) € G (R?) we can compute
the empirical group mean according to Definition 3.7 in less than

NBr 4 (1+LQ1)

basic operations. The storage complexity is trivial, i.e., we only have to store the Br 4
coefficients m; during runtime.

Proof. Forevery 1 < j < B = B 4let QL 4,; denote the number of terms in p; and set

2L+ 4 T
) (3.13)

Q1 := max QL,i,j < dimR(R[Xl, ce ,szL+1]degSL) = ( o[ L+1

1<j<B
1<i<L

where the inequality holds with deg(p;) < L and By ; < L**!. Now assume d > L.
Every Lyndon word w = vy...vy, withv; € {1,...,d} and ¢ < L, can be written as
@(v1)...p(v)withe(vy) € {1,...,L}, and where ¢ isan homomorphism of monoids
which preserves the order of letters. Clearly w and ¢(w) lead to polynomials with
the same number of summands, bounded by Q;. Hence, we can evaluate (3.12) in

N Z 1+ deg(p;)QLa,; < NB(1+LQL)

1<j<B
basic operations due to (3.13). |

Remark 3.19. The family of polynomials (p; based on Corollary 3.16 can be precom-

)1< i
<j<B
puted symbolically, e.g., with SageMath using sage.algebras.lie_algebras.bch that

allows a polynomial base ring through the class
sage.algebras.lie_algebras.lie_algebra.LieAlgebra

and thus a remarkably light-weighted implementation of Equation (3.8). With the procedure
monomial_coefficient applied on our truncated Lie series, we can apply the dual basis to
obtain p; for every 1 < j < B.

Remark 3.20. In Proposition 3.31 (Section 3.4) we provide a complexity analysis for an
alternative algorithm. Clearly Bp 4 € O(dY) with (3.5). In the limit the computational
complexity of Lemma 3.18 is thus not better than in Proposition 3.31.

In the following subsection we use an antisymmetrized BCH formula to improve
the rough bound (3.13) of Q. for the practically relevant cases L = 2,3,4,5 by 0, 3,
9 and 43, respectively. In such cases, the number of required operations given by
Lemma 3.18 becomes comparable with the cost of computing the naive mean in RBt.4.
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3.3.4 Reducing the number of terms with an antisymmetrized BCH for-
mula

In this section, we delve into the cancelations that emerge from the BCH formula
and terms linear in C;. These explicit cancelations result in polynomials with a
comparable number of terms as in the previous section.

For this, we use the BCH formula with graded components

log(exp(X) exp(Y)) = BCH(X, Y) = Z BCH(X,Y) (3.14)
k=1

expanded in the Lyndon basis ([CM09, Table 2, page 12] or [CM]) of the free Lie
algebra over the two-letter alphabet {X,Y}. The first 6 components BCHy(X,Y) are
given by:
BCH1(X,Y)=X+Y, BCHy(X,Y) = %[X,Y],
1 1 1
BCH3(X/ Y) = E[[X/ Y]r Y] + ﬁ[X/ [X/ Y]]/ BCH4(X/ Y) = ﬂ[xl [[X/ Y]I Y]]/

BOHS(X, Y) = —oo[111X, Y1, Y1, Y1, Y]+ 51X, X, YL X, Y1)

720
1 1

+ @[[X/ Y]/ [[X/ Y]/ Y]] + m[xl [[[X/ Y]/ Y]/Y]]
1 1

+ @[X/ [X/ [[X/ Y]r Y]]] - ﬁO[X’ [X/ [X, [X, Y]]]]r

BCHé(X/ Y) = _@[X' [[[[X/ Y]/ Y], Y]/Y]] + %O[X’ [[X/ [Xr Y]]/ [X, Y]]]

1 1

+ m[X/ [[X/ Y]r [[Xr Y], Y]]] + %[X/ [X/ [[[Xr Y], Y]/Y]]]
1

- %[Xr [Xr [X/ [[X/ Y], Y]]]]

Remark 3.21 ([CMO09, Section IV.C]). For even k, all the terms in BCHy(X,Y) have
necessarily the form [X,Z], where Z goes over all Lyndon basis elements of degree k — 1,
except for the element [X, [X, ..., [X, Y]]] which does not appear.

For such Lyndon words as in Remark 3.21, we define a map
Dx([X, Z]) == Z.
This helps us to introduce an asymmetrized BCH formula aBCH(X, Y) as follows.
Lemma 3.22. The Lie series
aBCH(X,Y) := Z aBCH(X,Y) := Dx(BCH(X, Y) — BCH(Y, X)) (3.15)
k=1
is well-defined and has graded components

0, if k is even,

3.16
2Dx(BCHea(X,Y)), ifkis odd; (3.16)

aBCH((X,Y) = {



46 Chapter 3. Barycenter of signatures

for example, the first 3 nonzero graded components are given by

1

aBCH(X,Y) =Y, aBCH3(X,Y)) = E[[X'Y]'Y]'
ABOHs (X, Y) = S [[[1X, Y1, Y1, Y1 Y] + = (X, [X, YILIX, Y]
1 1 1
+ m[[xr Y]/ [[X/ Y]/ Y]] + @[X/ [[[X/ Y]/ Y]/ Y]] - %[X/ [X/ [[X/ Y]/ Y]]]

Proof of Lemma 3.22. From (3.3), we get that
BCH(X,Y) — BCH(Y, X) = BCH(X, Y) + BCH(-X, -Y).
Splitting the equation by degrees and using the fact that
BCHy41(=X, =Y) = (=1)"'BCH1 (X, Y),

we get
0, k is even,

BCHy.1(X, Y) — BCHys1 (Y, X) =
e (X, Y) k¥, X) {ZBCHk+1(X,Y), k is odd.

Finally, by Remark 3.21 the operator Dx can be applied to non-zero terms, which
proves Equation (3.16). m]

As we will show next, the asymmetrized version of the BCH formula can be used
in Lemma 3.14.

Theorem 3.23. i. For the discrete measure supported on = {1,...,N} (as in
Corollary 3.16), let C%) = log(xV). Then the logarithm of the barycenter M = log(m)
satisfies

N
M = Z wDaBCH(-M, C). (3.17)

i=1

ii. Let m; and c;.i), j€{1,..., B} be the coordinates of m and x) in the basis B. Then
m; can be computed recursively:

N
_ i) (), =~ (@) (1)
mj = El w® (c]. +ri(my, ..., mj—1, ¢y, /i ) . (3.18)
i=

where the polynomial 7; is defined for X and Y, expanded as in Lemma 3.14, as follows
7= 8 Z aBCHi(-X,Y) | € R.

Remark 3.24. In Section 3.4.4, we show that the numbers of terms Qr 1, (0, 3, 9 and 43)
for L =2,3,4 and 5, respectively, coincide with the number of terms given by an alternative
calculation in the ambient space that uses the antisymmetrized BCH. This implies an upper
bound for the number of terms in one of the polynomials r; and we conjecture that this bound
is valid for other polynomials as well.
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The proof of Theorem 3.23 relies on some useful facts from [Reu93] which we
recall below. We denote adx(Z) := [X, Z] and the “power” of adx

k times
—— N ——

add (V) = [X,[X,...,[X,Y]...]].
The following lemma is key for this subsection.

Lemma 3.25 ([Reu93, page 80]). We expand the BCH formula as follows:

BCH(X,Y) =X+ Hy x(Y)+ (order >2termsinY ). (3.19)
[
linearin’Y

Then the linear term can be expressed as

B 1 S b o
Hix(Y) =Y +3[X, Y]+ ; o ad?!(Y),

where by, are Bernoulli numbers. Alternatively, we can write

Hyx(Y) = g(adx)(Y), for g(t)= %

p—
where g(ady) means substitution of t* with adl}‘( in the power series expansion
gt) =1+ g1t + got? +---.
Remark 3.26. i. With adx(X) =0, Hy,x leaves X invariant, i.e., H; x(X) = X.
ii. Hy x is invertible, and its inverse is Hl‘ &(Z) = f(adx)(Z), where

1 1-et

()=~ =
AT t

Proof of Theorem 3.23. Part 2 follows directly from part 1, therefore we are going to

prove part 1. First, we show that

aBCH(X,Y) = H;&((BCH(X, Y) - X) (3.20)
Indeed, by Remark 3.26, we have

1 — e~ adx
W(log(exey) -X)

- Dy (1og(eXeY) — X — e~ %X (log(eXeY) - X))
= Dx (log(eXe) — X — (log(e”e*) — X)) = Dx(BCH(X,Y) — BCH(Y, X)),

H{ Y ((BCH(X,Y) - X) =

where for the last but one equality we use the well-known property
e?d4(7) = eAZe™4,
to get

e‘adX(log(exeY) ~ X) = e Xlog(eXe¥)eX — e X XeX = log(e¥eX) - X. (3.21)
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Recall that M is the logarithm of the barycenter if and only if

N
Z wDBCH(-M, C) = 0. (3.22)
i=1

Thus, using that 3%, w() = 1, we can add M on both sides of the equation:

N
M= (BCH(—M, iy + M) (3.23)
i=1

and using that Hy —y is linear and Hy —p(M) = M, this gives
N o 3
M= wiH, (BCH(—M, cy 4 M) . (3.24)
i=1

Now, by injecting Equation (3.20), we obtain Equation (3.17) and this concludes the
proof. m]

3.3.5 Recursive updates of group means

The following formula allows an update of a computed mean if a new data point is
inserted. Use Taylor expansion and obtain the following online update formula.

Lemma 3.27. Let m’ be the group mean of N — 1 points (xX"))1<;<n-1 and m be the group
mean of those same N — 1 points plus an additional incoming point xX™). The computation
of m can be derived from the value of m’ via

. N N, N-1
N-1 az (! ’ @) @
+l Z (Am)“8 p](ml,...,mj_pcl""’cf) (3.25)
N a! (9m)* S
i=1 1<lal<j-1

where p; := p; + C; with p; due to Lemma 3.14 and Am := m —m’. Equation (3.25) requires

to compute at most (/ _1+],‘ielg(p f)) =(/ _;gff()p / )) partial derivatives.
]

Proof. Using Equation (3.12) and denoting ; := p; + C;, we have

N
1 . . ,
mj = Zp]-(ml, . ,m]-_l,cgz), . ,c;Z))
i=1

N-1
L (N) YN T (i) 0)
:ij(ml,...,m]-_l,cl e )+N2pj(m1,...,mj_1,cl,...,c]. ).
i=

Now apply Taylor expansion to the term inside the sum. We have

piimy + (Amy, ... imp_y + (Am)ja, . 0;1)) = pi(ms, ... m;_y, ., c;l))
Z (Am)® %pj(my, ..., m;_l, Cgl), ., c}l))
+

al (dm)~

1<la|<j-1
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Inject that back into m; to obtain Equation (3.25). m|

Remark 3.28. The usefulness of the recursive update is mostly theoretical since that with
Lemma 3.27 we would still need to perform at least N — 1 polynomial evaluations.

Note that Lemma 3.27 can also be applied to Equation (3.12). As an example, for L = 4
and d = 2, we have Byp = 8 and Qao = 3. That is, we would have Z?:l (j_;+3) = 330
partial derivatives to compute to update m’ to m.

3.4 Algorithm using updates in the ambient space

In this section, we leverage the embedding of the space of signatures in the trun-
cated tensor algebra T<; (R?). We develop an iterative procedure for obtaining the
successive levels of the group mean in terms of lower levels, that is mg € (R?)®K
as a mapping of (my, ..., mg_1) and the data. This mapping involves two polyno-
mial maps px and qk that are obtained from the truncated version of the logarithm
mapping in T<r (RY).

Notably, this approach is applicable to any dimension d. It also does not need
to precompute the maps px and qx (unlike in the algorithms in Section 3.3), at
the expense of dealing with higher-dimensional tensor spaces. The corresponding
algorithm essentially relies on the computation of tensor products and we provide a
Python implementation.

First, we present the result and the corresponding algorithm. Then, examples
illustrate the proof. Finally, we look at time and memory complexities.

Notation. Throughout this section, lower indices of elements of tensor algebra
T<r(RY) denote levels: g = (go,---,8L) 8k € (R%)®K, Note that go = 1 for all
g€ G L(RY). Finally, in this notation, the identity elementis1 = (1,0,...,0).

3.4.1 Main result

We have a truncated version (by nilpotency) of the inverse and of the logarithm
mapping presented in Section 2.2.3. For any (1+ g) € G< L(RY),

L L (—1)k+1
1+g)!:= Z(—nk K, log(1+g):= Z - gk, (3.26)
k=1

k=0

Recall that the group operation in tensor algebra for
a=(ag,ai,...,a1), x=(xo,X1,...,XL)

is given by
L

(ax);, = Z as ® X_g. (3.27)

=0

With this notation, we can prove the following result.

Proposition 3.29. Let {XW,..., XN} be a batch of N d-variate time series and x\V) :=
S<r(XD). Let {w,...,w™N)} be a set of real values such that Z?Ll w® = 1. Denote m
the group mean of the dataset with weights w'" and a := m~1. Then we have that

N
a; = — Z w® (D), (3.28)
i=1
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and forany K =2,...,L,

N
aK = — Z w(i) (qK (ao, «e./AK-1, (X(i))l, ceey (X(i))K)
i=1

+Ppx (ao, cager, (X, (x(i))K—l) ) (3.29)

where px and qg are (noncommutative) polynomial maps, whose definitions are given in the
proof (see Equations (3.33) and (3.35)).

Note that the computation on the right-hand side solely relies on the values
of ag, ..., ag-1 and the input data {x(l), o xWN )}. In other words, Proposition 3.29
enables an iterative approach for calculating the successive values of ax for increasing
values of K.

Before proving Proposition 3.29, we begin with a preliminary consideration.

Lemma 3.30. Forany0 < K < jand 1 <i < N, denote v\ := ax') = 1 and v\""/) := (v())/
be the j-th group power of v\). Then,

(vi)g = 0. (3.30)

Proof. By induction on j. We have (v\)g = (ax{!))g — 1 = 0. Now, suppose that for a
fixed j we have (v D)y = ... = (v{l/7D),, = 0.
If K < j -1 then, from Equation (3.27)

K
(v = (Vv ) = ) (v @ (v =0
k=0

using the induction hypothesis.
If K=j—1then

K
(v = Z(V(i))K—k ® (v ) = (v @ (v 7)1 =0
k=0
using the induction hypothesis and that (v{!)y = 0. m]

Proof of Proposition 3.29. By Definition 3.7, the group mean m with weights w'? veri-
fies

S N e (=1
0= Z w log(m_lx(l)) = Z (w(’)v(l) +w® Z Tv(l'])) (3.31)
i=1 i=1 j=2

where the last equality is obtained from Equation (3.26) (definition of the logarithm)
and the fact that m~!'x() = ax) = 1+ v(). Denote z the last right-hand side of
Equation (3.31). Using Lemma 3.30, when z is evaluated at level 1, we have

N

N
z1= ) wv) = ) 0@ +x")n) =0,
i=1

i=1
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therefore a; = — YN, wWx(. Using Lemma 3.30, for any K = 2,...,L, when z is
evaluated at level K, the sum stops at K:

N K ;
2= [0+ wd Y D™ i =0 (3.32)
K - K ~ . K . .
i= j=

Now remark that Zfiz %(VW ))k depends only on (v?)q, ..., (v)x_1. Therefore,
we can denote

. ‘ LSV
pic (a0, a6 ) = == e (333)
j=2

From definition of v{Y) and from (3.27)

vk = (axV)x = ax + qk (ao, cager, (X)L (X(i))K), (3.34)
where
K-1
qx (ao, coagr, (X, (X(l))K) = Z ar ® (X)) _x. (3.35)
k=0
Injecting Equations (3.33)—(3.34) into Equation (3.32) gives (3.29). m|

3.4.2 Algorithm

Let ar := dim T<r (RY) = ZZ'L:o d!, for any integer L > 1. For convenience, the group
elements of G<1(R?) ¢ T<r(RY) are implemented as a long array of size a;. The proce-
dureis detailed in Algorithm 2 with corresponding nomenclature shown in Table 3.1.
Then, we derive the corresponding time and space complexities in Proposition 3.31.

Symbol Meaning Tensor order Size
x(@ Signatures of input time series X ) 2 Nay
m Group mean 1 ar
a Group inverse of m 1 ar,
p® Evaluation of Equation (3.33) for x¥ 2 Nap
q? Evaluation of Equation (3.35) for x” 2 Nay
v ax) —e 2 Nay
vi)) | Group powers (v)) forj=2,...,L 3 N(L-1)ag
w® Weights of the group mean 1 N

TasLe 3.1: Nomenclature for tensors in Algorithm 2. Index i varies
between 1 and N.

Proposition 3.31. Time complexity of Algorithm 2 is O(Nd L) and storage complexity is
O(NdLL).

Proof. For any K = 2,...,L, computation of qx in Equation (3.29) is O((K — 1)dX),
given Equation (3.35). Computation of px in Equation (3.29) is O(d'~!L) for a fixed
i, since computation of (v(i%)); is O(d'"'L). Indeed, letus fix 1 < k < € < L (k > ¢
is covered in Lemma 3.30). The computation of (v("¥)), requires (¢ — k + 1)d‘~*+1
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Algorithm 2: GROUP MEAN USING UPDATES IN AMBIENT SPACE

Input: A batch of N signatures x') := S.; (X)) and N weights w®.
Output: An array m with the values of the group mean.

1 Initialize ag < 1, a; « - YN, w?(x); and q(li) — (xD),.
2 forK=2,...,Ldo

3 fori=1,...,Ndo

4 V)1 e ak +q4

5 q\) < qx(ao, ..., ak-1, X, ..., (xD)k)

6 forj=2,...,Kdo

7 | vk = S (V) @ (v
: _1\j+1 . .

o | L P« 2 S

9 ag «— — Zﬁl w; (qg) + pg))

10 m «—GroupInv(a) // Computed by implementing Equation (3.26)
11 return m

operations using that

0—(k=1)

(V) = WOV = B (w0 @ (D)
j=1

since v("*~1 has k — 1 leading zeros. Now, the computation for any 1 < k < ¢ < L is
O(d'~'L). To obtain the time complexity of Algorithm 2, we have to take into account

the batch size N and we obtain O(NdL~1L).
Regarding space complexity, we have to store in memory v{X) for all observation
indices 1 < i < N and powers 1 < K < L. Thus, the storage complexity is O(NdL).
o

Remark 3.32. In practical applications such as the analysis of a set of time series, the
computation of the signature must be taken into account, especially when benchmarking
against other methods. Let X : [a,b] — R? be a linear process, observe that

S<1(X) = exp (X(b) — X(a)). (3.36)

Now consider X : [0, 7] :— R to be a piecewise linear process where each piece is defined on
intervals [t,t + 1] with t integer. Using Equation (3.36) and Chen’s identity, the signature
can be computed iteratively:

S<1(X) = exp(X(2) — X(1)) exp(X(3) — X(2)) ... exp(X(7) — X(T - 1)). (3.37)

The product operation Ae? is O(d"). Thus, the time complexity of the signature computation
is O(td"). Combining this with the complexity of Algorithm 2, the overall complexity of the
approach is O(Nd"(t + L)).

3.4.3 Examples

To have a better grasp of the idea behind the algorithm, we show here the compu-
tations for the first two levels L = 1,2. As stated before, the computation stands for
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any dimension d.

Example 3.33. At level 1, starting from the value of ay = — Y.\, w®(x"); computed in the
proof above and since for any g € G<(R?), (log g)1 = g1 and Equation (3.26), we obtain

N
(logm); = > w(logx"). (3.38)

i=1

Example 3.34. At level 2, we have,

a2

_ i w® (q2 (ao, a1, (x), (X(i))2) +p2 (30' ai, (x(i))l))

i=1
N

Z w!) ((X(Z))z +a1 @ (x); - _(V(Z))l ® (V(Z))1)

1

w(xV); — a1 ® ay + = Z w(a; + (x)1) ® (ag + (x)1)
i=1

Z w? ( (x); ® (x); - (x¢ ))2) Sa®ay,

’MZ

I
—_

1

where the last equality follows from (3.28). Using the fact that for any g € G<(RY),
(logg) =g — %gl ® g1 and Equation (3.26), we get that

N

(logm), = Z w(i)(log x(i))z. (3.39)
i=1

Remark 3.35. As we have seen using the BCH formula in Example 3.17, the first two levels
of log m correspond to the Euclidean mean of {logx"};21 . n.

3.4.4 Expressions in the ambient space using the asymmetrized BCH for-
mula

We conclude this section by noting that we can also find the explicit expressions in
the ambient space using the symmetrized BCH formula developed in Section 3.3.4.
With some abuse of notation, we denote by b = log(m™!) and ¢\”) = log(x")), and we
view them as elements of tensor algebra, split them by orders:

b=(0,by,by,...,br,...) € T(RY),

D=0,c",d,..., (” .)€ T((RY)).

(3.40)

Next, we recall that Lie brackets for x; € (R%)F and yi € (R?)! can be computed as
[Xk,Yt'] =X QY — Y ®Xg € (Rd)®(k+e)'

If x, y € T((RY)), then the L-th level of the Lie bracket is expressed as

- -1
(Ix, yDL = Z[Xe,yL—e] = Z(Xe ® Y-t — XLt ®Y¢), (3.41)
f:l €=1
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analogously to (3.27). Then we have the following corollary of Theorem 3.23.

Corollary 3.36. The elements by, € (R?)®L of the tensor series of b = log(m™") (see (3.40))
can be computed as

N
br=- ) wilc]’ + Ru(b,c)),
i=1
where Ry, is a tensor product analogue of the polynomial defined in Equation (3.18), i.e.,

RL(b, C) = RL(b1, Ce ,bL_1,C1, Ce ,CL_1) = ( Z aBCHk(b, C))L. (3.42)
k=3,...,.L

Example 3.37. For L < 2, we have Ry, = 0 in (3.42), which agrees with Equations (3.38)
to (3.39). For L = 3, we can apply (3.41) to ([[b, c], c])3 to get

1 1
Rg(b,C) = E[[b1,C1],C1] = E(q ®c1®b1+b1®c1 ®¢c1 —2¢1 @by ®C1).

For order 4, similarly, we get

R(b,0) = (g5llb,cl,cl), = 5(llbs, er],er] +[[br, 2], 1] + [[br, i o)) (343)

I 11

1

= 15 (@1cib2 + bacicr — 2e1bacy) 0))
1

+ E(C1C2b1 + bicica + cac1by + bicoc; —2 b — 2 C1b1C2). (H)

where in (I) and (II) we omitted the tensor products for short.

Note that Rz and R4 have 3 and 9 terms (“monomials”) respectively, and Rs
(provided in Supplementary Materials) has 43 terms. A general bound on the number
of terms is given in the following lemma.

Proposition 3.38. The number of terms in Ry, defined as (3.42) is bounded by

é ~ 0, L <3,
L= 301 4 (-DF1—(L+5)23+1, L>3.

Proof. We start by counting the number of terms that can appear in (aBCH(b, c))L

given 3 < k < L. From (3.41), the only terms which can appear are of the form
a5y,i Q- ® asy iy s

where 6; € {0,1} such that2 < 61 +--- + 6 < L —1 and i; are positive integers that
satisfy
i1+ +ip = L.

and the vectors a;, ;; are given by
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L |3 4 5 6 7 8 9 10
Q|3 9 43 155 539 1771 5667 17763

TasLE 3.2: Values of Q1 depending on L.

The condition on 0y are implied by the fact that the terms should contain at least two
c( vectors and at least one b, vector.

We can count the number of tuples (i1, .. ., ix) by the number of compositions of
L, which is given by (;77). Thus the total number of terms in Ry, is bounded by

> @-k-2 ((7]) =an

3<k<L v

kodd #o0f(61,..,00)
#of(i1,...,ix)
which follows from straightforward computations. a

The values of @L for the first several orders of L are given in Table 3.2. This
suggests that for low values of L the expansions of R;, can be precomputed and used
for computations. We also note that QL provides a bound for the number of terms
in Equation (3.18).

Remark 3.39. Note that, by [Reu93, Theorem 5.3], for any a;. € (R)L, which is also in the
a expanded in the Lyndon basis. This implies that Qr is an upper bound for the number of
terms of the corresponding polynomial 7; in (3.18).

3.5 Open questions / Outlook

e Timeseries datais usually discrete-in-time, and the recently introduced iterated-
sums signature (or discrete signature) provides a natural way to deal with such
data, without the need to interpolate [DEFT20]. For an appropriately truncated
version, one is again in the setting of a free nilpotent group. What is different
in that setting is that not all group elements can be realized as the signature of
a time series [DEFT20, p. 279]. Can all barycenters be realized, though?

e Are there other ways to define a bi-invariant group mean in the signature
space? The essential property for bi-invariance was conjugation-equivariance
of the logarithm,

log(g~'xg) = g™ log(x)g.

Is this the only such map from grouplike elements to the Lie algebra, that is
invertible?
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Chapter 4

Principal Geodesic Analysis for
signatures

We analyze multidimensional time series through the lens of their integrals of various
moment orders, constituting their signature. The contribution of this chapter is to
adapt the Principal Geodesic Analysis (PGA), the counterpart for manifolds of the
Principal Component Analysis (PCA), to signature features which form a Lie group,
by setting an appropriate connection structure. We show that, on both simulations
and real data, our dimension reduction approach allows us to keep state-of-the-art
performances with much less number of features.

4.1 Introduction

In many scenarios, data is naturally recovered in the form of time series, that is the
observation of a (possibly multidimensional) process at different times. The analysis
of such stream of data has become key in various fields, e.g., engineering, sociol-
ogy and economics. Multiple tasks arise such as time series decomposition (trend,
seasonality), modeling, forecasting, anomaly detection, correlation/auto-correlation
analysis and causal inference to cite a few. For an exhaustive approach to time series
analysis, we refer to [BD16] and to [Liit05] for the multivariate case.

In this chapter, we analyze multivariate time series through their signatures. A

characteristic of the signature is that the number of signature features grows ex-
ponentially with respect to the order. To deal with this, we provide a dimension
reduction method for signature features, that is analogous to the Principal Compo-
nent Analysis (PCA) for vector valued data.
Principal Component Analysis. Given samples x1, ..., xy in R?, PCA is a method
for dimension reduction that provides a sequence of best linear approximations to
the data, for all ranks K < d. Denote as y; := x; — u the centered data points, where
u is the Euclidean mean of the set x1,...,xy. We compute a sequence of vectors
v1,...,0k successively by solving, forallk =1,...,K,

N
o = argmin ) [ly; = (o) (1)

loll=1 =1

where 7, is the orthogonal projection onto span(v) and where v; does not have
an orthogonality requirement. The (vy)x are called Principal Directions. We can
compress the data by setting K < d and projecting it on span(vy, ..., vk). To solve
Equation (4.1), we inject the explicit expression of the orthogonal projection 7 and
the closed form solution is given using the singular value decomposition of x =
(x1,...,xn), see [HTF09, Section 14.5].
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PCA for time series and manifolds. Consider N time series x1(f), ..., xn(t) evolving
in R? and sampled at discrete times t = t1, ..., tr. Thatis, each x; is a matrix of size
T x d. A straightforward extension of PCA to time series is the following: first
flatten each matrix into vectors of size Td and then inject those vectors into the usual
PCA [Rao58] [Tuc58]. Comprehensive details regarding this approach can be found
in [RS05, Chapter 8]. A drawback of this approach is that we loose the multivariate
structure inherent to the data.

Another strategy is to consider meaningful representations of time series instead
of the raw data and then perform a PCA on those representations. Two examples of
representations are signatures, used in the following, and power spectral densities.
Power spectral densities of time series are considered in [CRT21], but only with
stationary time series. Here with the signature we will not have such restriction.
Note that representations of time series might provide features lying on a manifold.
Thus, the usual PCA cannot be applied as it is.

An extension of the PCA for data lying on a manifold, called Principal Geodesic
Analysis (PGA) have been developed in [FL]03]. The problem is defined similarly as
in Equation (4.1), but 7, is now the projection on a geodesic (starting from the origin
with initial velocity v). Contrary to the Euclidean case, the resulting optimization
problem does not have a closed form solution, if no further information on the
manifold is given. For instance, the projection 1, might require to be approximated.
Because of this, most of the work involving numerical calculation of the PGA relies
on an approximation of it: the tangent PGA, also introduced in [FLJ03]. It consists
in projecting the data onto the tangent space at the origin and performing a classical
PCA. Also, note that the PCA is applied on centered data, thus a notion of barycenter
must be defined and computed beforehand. In the end, PGA provides another way
to extend the PCA to time series.

Contributions. Our contributions are as follows:

e We define an extension of the PCA for the signature space, Proposition 4.9.
Our approach relies on the unique properties inherent to this space.

e We present two algorithms: one that approximate and one that exactly solve
the resulting optimization problem, Algorithms 3 and 4, along with implemen-
tations in Python.

e We use both our dimension reductions methods for classical tasks on both
synthetic and real-life data and show that performances are still high while
keeping much less features than without dimension reduction, Section 4.5.2.

Notations. Throughout the chapter, we use the following notations:

e N — Number of multivariate time series.

e d — Number of components (features/channels) of each multivariate time
series.

e T — Length of time series (number of timestamps).

e [ — Truncation level of the signature feature.

Structure of the chapter. First, in Section 4.2, we present some properties of the
signature mapping. Then, in Section 4.3, we introduce a similarity measure for
signatures (a divergence) and the usual method to extend the PCA into a PGA for
data in a Lie group. In Section 4.4, we adapt this extension to the specific case of
signatures. Finally, in Section 4.5, we perform experiments with simulated and real
data. Conclusion and perspectives are given in Section 4.6.
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4.2 The signature space and its Lie group structure: connec-
tion and Riemannian metric

Properties of the signature mapping and the algebraic structure of the signature
space G<| were presented in Sections 2.2.2 and 2.2.3, where we have globally defined
the exponential and logarithm mappings. Now, we discuss the choice of a connection
on G<r. Note that elements of differential geometry are given in Appendix C.

For the signature space, there is no bi-invariant Riemannian metric available
[PL20, Theorem 5.12, Proposition 3], as it only exists for Lie groups that are a direct
product of compact and abelian groups. This fact makes it difficult to define a
distance in a canonical way. However, we can measure distances using the notions
of connection and parallel transport, briefly described below.

The affine connection is a tool to connect tangent spaces of the manifold and for
instance translate a vector v defined on the tangent space at the identity T1(G<1) to
another tangent space Ty(G<p ). This is called parallel transport (see Appendix C). In
addition, setting up the following specific connection gives us closed form expres-
sion of the geodesics, which are generalization of straight lines on manifolds (see
Appendix C). Thus, setting up a connection is crucial.

Among the natural family of bi-invariant connections suggested in [Car26], we
choose the canonical Cartan Schouten (CCS) connection. The CCS connection is the
most natural one because when there exists a bi-invariant metric on the Lie group,
the canonical Cartan Schouten (CCS) connection is the Levi-Civita connection of that
metric and when there is not, the CCS connection still exists. The CCS connection is
the connection such that geodesics are one parameter subgroups of the form

vgv(t) := gexp(tv) (4.2)

for any g € G and v € Tg(G). For the CCS connection the parallel transport is linked
in a canonical way to left and right translations.

Definition 4.1. For any g € G, we define the left translation Lg : G — G,h — gh and
right translation Rg : G — G,h - hg.

Remark 4.2. For any h € G, the differential

dLg : Ta(G) — Tgn(G)
u = (dLg)n(u)

gives a natural identification of tangent spaces, where we have denoted as Ty(G) the tangent
space at point h.

We have the following result from [PL20, Section 5.3.3].

Proposition 4.3. Let G<| be the signature space equipped with the CCS connection. The
derived geodesics going through the identity with initial velocity v are of the form exp(tv)
and the parallel transport along exp(tv) is, for any v, w € g<1,

l—Il—>exp(v)‘N = (dLexp(v/Z))exp(v/Z)(dRexp(v/Z))lw- (43)
The group exponential at g € G is, for any v € Tg(G<L),

expg(v) i= gexp((dLg-1)gv) (4.4)
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and the group logarithm at g € G is, for any h € G,
logg(h) = (dLg)1 log(g™'h). (4.5)

For further details on connections, see Appendix C.

4.3 Mean and PGA in Lie groups

The first step of the PCA consists in centering the data (retracting the mean). Thus,
for the PGA we will use the definition for the mean introduced in Chapter 3. Then,
we present the PGA for Lie groups and how we can adapt it to the signature space.

4.3.1 Divergence on the signature space

In order to generalize Equation (4.1) to the space of signatures, we need to have a
notion of distance. In this chapter, we start with an inner product defined on the
tangent space at identity T1(G<r), and extend it to any tangent space Tg(G<L) using
the notion of connection and parallel transport as stated in the following.

Remark 4.4. From any given inner product (., .); defined on T1(G), we can define an inner
product (., .)g on Tg(G) for any g € G using the parallel transport I1of the chosen connection:

(u, V>g = <Hg_>1u, I_Ig_>1v>1 , (4.6)
for any u, v € Ty(G). The norm associated to ., .)g is denoted ||.||g.

In the following, we will typically set (.,.); as (.,.)r from Equation 2.36, the
inherited norm of the ambient space. Note that the value of (., .)r depends on the
choice of the basis on T;(G), here set to a basis of the ambient space—the tensor
algebra T(RY).

The inner product allows us to define a divergence, introduced below, to measure
distances between points on the space of signatures.

Definition 4.5 (Divergence [AC10]). Let M be a manifold. A function D(x : y) is called
a divergence if, for all x, y € M, the following two conditions holds.

i. D(x :y) > 0with equality if and only if x = y.
ii. D(x :y) is differentiable and the Hessian with respect to y at y = x is positive definite.

Note that a divergence is not a distance metric as it is not necessary symmetric
and it might not satisfy the triangle inequality.

Proposition 4.6. The function D : G X G — R defined as, for any g,h € G,
D(g : h) = [logg hil3 = g1 log, hif @)

where log, is defined in Proposition 4.3, is a divergence. In particular, the associated
Riemannian metric coincides with -, -)g up to a global constant.

Proof. See Appendix A.2. |

An explicit expression for D(g : h) in terms of group operations is given in
Section 4.4.2.
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4.3.2 Barycenter and relation to divergence

In this subsection, we highlight the relation of the signature barycenter (Chapter 3)
to the introduced notion of divergence. We first recall the case of Euclidean space
and bi-invariant Riemannian metric.

The usual definition of mean in Euclidean space ¥ = & Zf\il x; cannot be used for
manifolds, since in many cases X might not belong to the manifold. A generalization
of the Euclidean barycenter to manifolds is the Fréchet mean: let (M, d) be a metric
space. Given a set of points x1,...,xn € M, the Fréchet mean is the point u € M
such that

N
p = argmin Z dz(y, Xi). (4.8)
# i=1

This definition is frequently used for Lie groups. If M is a Lie group that admits a
a bi-invariant Riemannian metric, then y, defined with respect to the corresponding
distance d(., .), is invariant by group operations (left and right multiplication) and is
compatible with inversion. For instance, invariance with respect to right multiplica-
tion means that uy is the Fréchet mean of {x;y}i=1,. n. However, non-compact Lie
groups do not admit a bi-invariant Riemannian metric, that is why we have intro-
duced the concept of group mean in Chapter 3. For a finite set of points, the group
mean is

N
0= Z log(p™'x;). 4.9)
i=1

In other words, for a set of N points x1, ..., Xy, we look for u such that vectors v; in
the tangent space at the identity T;(G) have mean zero, where v; := log(u~'x;), see
Figure 4.1.

Ficure 4.1: The group mean p on a Lie group G is such that the sum

of the v; is zero where we have denoted v; := log(y;) = log(y'x;)

vectors in the tangent space T3(G). Dotted lines are the geodesics on
the Lie group G starting from the origin with initial velocity v;.

This notion of barycenter is bi-invariant (with respect to left and right multipli-
cation). For compact Lie groups, the barycenter coincides with the Fréchet mean.
For the group of signatures G<;, (which is non-compact), it was shown in [Cla+24]
that the barycenter is globally defined and is unique. Moreover, there is an explicit
method to compute the group mean of a finite set of signatures. The bi-invariance
of the barycenter, in the case of the signature space, is related to the concatenation of
trajectories since we have Proposition 2.20. This is illustrated in Figure 4.2.

We conclude this section with establishing the link between the barycenter and
the notion of divergence. We first introduce the operation of dilation of a signature
a=(ap,ay,...,ar) as follows:

5,(a) = (ap, Aag, A%y, ..., Alay).
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Ficure 4.2: On the left, the mean of the signatures S(X;) of three

trajectories is assumed to be given by the signature S(M) of some

trajectory M. If we attach to all trajectories X; a new trajectory segment

Y, since the mean is right invariant, this corresponds to attaching

that trajectory segment to M. On the right, we see the analogous
visualization for left invariance.

The dilation corresponds to the signature of the path rescaled by A, that is S(AX) =
01(S(X)). Then the following proposition holds true.

Proposition 4.7. There exists Ay such that for all 0 < A < Ao, the optimization problem

N
min f(m), ~ where f(m) = ; D(5(m) : 51(x;)) (4.10)

has a unique solution m(A), which converges to the group mean (m(A) — p)as A — 0.
Proof. See Appendix A.2. m]

Proposition 4.7, in fact, means that we can obtain the barycenter by jointly rescal-
ing the input paths and minimizing the sum of divergences.

4.3.3 PGA in Lie groups

Principal Geodesic Analysis has first been introduced in [FL]03]. The computation
of the PGA components involve an optimization problem, shown below, that is dealt
with using a linear approximation (tangent PGA). Here, the idea is to go beyond
this linearization, which might lead to a too crude approximation of the geometry
of the considered manifold, by solving the optimization problem with an exact
computation.

Now, we introduce the Principal Geodesic Analysis in the specific context of
Lie groups, as presented in [Sai+07]. The goal is to generalize the PCA, that is the
optimization problem in Equation (4.1) defined on Euclidean spaces, to Lie groups
(i.e., manifolds with a group structure). Let xq,...,xny € G<r be N signatures with
group mean . Denotey = {y1,...,yn} wherey; := y‘lxi is the centered data. PGA
is the following optimization problem:

arg min Fy(v) (4.11)
veTy(G<r)
livi=1

where Fy : Ti(G<1) — Ris defined as

N
Fy(v):= ) min D(y(b) : yi) (4.12)
i=1

with yy the geodesic starting from identity element 1 with velocity v.
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Ficure 4.3: Illustration of Equation (4.12). To find the first principal
direction, we search for an initial velocity v that minimizes the sum
of the lengths of the dashed lines (distance to geodesic).

In other words, in Equation (4.11), we want to minimize the distance between the
data points y; and their projections onto the geodesic yy or equivalently, we want
to maximize the variance of data points projected onto a geodesic, see Figure 4.3.
In particular, if we replace G<; with R, for some d, in the optimization problem
defined in Equation (4.11), we obtain the PCA, as defined in Equation (4.1).

Similarly to the the PCA, the PGA successively finds principal directions vy, v, . . ..
In the case of the PCA, we add the constraint for direction v, to be orthogonal to the
first direction v1. In the case of Lie groups, we do not use an orthogonality condition
but instead we use the group structure in the following way:

i. The first step of PGA is to solve Equation (4.11) for data points gf.l) =Y.

ii. Second step consists in finding a second principal geodesic by solving Equa-
tion (4.11) for

(2) (pzl)) 1 (1) (413)

where pf.l) is the projection of g ; ) on the geodesic )y, .

iii. The k-th step consists in finding the k-th geodesic. To this end, we solve
Equation (4.11) for

k (k— k-
() (p1 1)) 1 ( 1) , (414)

(k=1)

&1 is the projection of g,

where p;

; on geodesic vy, ;.

Note that we have the following reconstruction of the data points, for any integer k,

1)_(2 k) _(k
i=pp P8 (4.15)

Related work. In [SLN14], the authors perform the PGA (without any linearization)
on Lie groups that are also differentiable manifolds, in all generality, considering as
distance in Equation (4.12) the Riemannian distance. Therefore, they have to use the
geodesics written with implicit equations (with Christoffel symbols) to perform their
calculations. In our case, we shall provide an explicit formula taking benefit only of
the Lie group structure of the signature space which gives us an explicit closed form
of the geodesic.

It has already be done in the work on Lie groups mentioned above [Sai+07]. In this
case the Lie group distance involved in Equation (4.12) is a bi-invariant Riemannian
metric allowing to simplify the expression of Equation (4.12). Unfortunately, in our
setting, we do not have a bi-invariant Riemmanian metric on the signature space,
hence the use of the CCS connection as mentioned above.
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4.4 Extension of PCA for signature

4.41 Approximation in the tangent space

As pointed out in Section 4.1, PGA can be approximated easily with the tangent PGA
(tPGA) method. The tPGA procedure performs the following three steps: center the
data, project it into the tangent space at the identity and then apply the PCA. This
procedure is valid on any manifold. To apply the tPGA to data on G<; the signature
space, we simply adapt the first and second steps: data is centered using the group
mean, see Definition 3.7, and the projection on the tangent space is performed using
log mapping, see Equation (2.25). The tangent PGA method for signatures (SIG-
tPGA) is presented in Algorithm 3. Although tPGA is a rough approximation of
PGA, it has the benefit of having much shorter computation runtimes.

Algorithm 3: TANGENT PGA FOR SIGNATURES (SIG-tPGA)
Input: x;, ..., xy set of N signatures

1 p < Group mean of {xq,...,xn} // Using [Cla+24, Algorithm 3]
fori=1,...,Ndo

2 L yi < y‘lxi

3 u; < logy;

4 Apply PCA to u := {uy, ..., un} (diagonalization of the covariance matrix of
u)
Output: Principal directions vy, ..., vk

4.4.2 Estimation of Principal Geodesics in the signature space

In view of Section 4.3.3, we see that the core of the PGA algorithm is solving the
optimization problem defined in Equation (4.11). To solve Problem (4.11), we need
to calculate the gradient of the objective function Fy. Denote as Py y(t) the following

Pyy(t) :=D(e" :y) = lllog,w 2. (4.16)

and : X
a(v,t,y) :=log (e_ftvye_it") . 4.17)

Lemma 4.8. Let the signature space G<1, be equipped with the CCS connection. Then, we
have for any v € T1(G<p) and t € R,

Pyy(t) = lla(v,t, Yy (4.18)
where ||u||% := (u, u)q is an inner product on T;(G<r).
Now, we introduce the main proposition.

Proposition 4.9. Let L be a positive integer (truncation level) andyy, ..., yn be N elements
in G<p, where G<r, is equipped with the CCS connection and Ty(G<1) is equipped with an
inner product (., .),. We have, for any v € T;(G<r),

N

VEy(W) = 3 (a(v, by, 90, Voa(v, £y, y0)) (4.19)
i=1
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where a(v, t,y) is given in Equation (4.17) and

t

* .
v)yi *

= argmin Py y,(t) (4.20)
teR

with Pyy,, given in Equation (4.16), is a polynomial function which expression can be
computed explicitly.

Before proving this proposition, we show how it is useful for our purpose. In
order to solve Equation (4.11), we proceed as following. Initialize vg)) such that
||v§(0) | =1, then find t ,; := argmin, PV;O)’yi(t) foralli=1,...,N. Now, repeat the

following two steps until convergence:

i. Find k-th Principal Direction step. Denote Ti; := {tx;1,...,tk N} and
Fr, (v) := Zﬁl d(yv(teri), y,-)2 for any integers k, I. Perform one step of Gradi-
ent Descent (or of any gradient based optimization method):

1 I
V;{ +1) — VE{) - a(VFTk)VEJ)

(1+1)
(I+1) Vi
k 1
IV

where index | denotes gradient descent steps.
ii. Projection step. For a fixed vg) and foralli=1,...,N, find

tkp,i = argminP o  (f) (4.21)
teR ki

where the polynomial coefficients can be explicitly computed. This step is
most efficiently performed using a numerical root finder for polynomials on
%Pv(’) y‘(t), as described later on in Section 4.4.4.

k7 1

To sum up, we fix a direction v € T3(G<r), project the data on the geodesic with
velocity v, then fix a new direction, project again, etc. The PGA algorithm for
signatures (SIG-PGA) is detailed in Algorithm 4.

4.4.3 Proofs

The following two subsections contain the proof of Lemma 4.8 and Proposition 4.9
respectively.

Proof of Lemma 4.8

To prove Lemma 4.8, we use the properties of left/right translation and the adjoint
representation from Appendix A.1.

Proof of Lemma 4.8. Step 1: use parallel transport to give a meaning to inner prod-
uct. On G<; equipped with the CCS connection, we have used that log,..(y) =
(dL,wv)1log(e™"Vy), see Proposition 4.3. Thus,

D(e" : y) := [log,w ylI% (4.22)
= ||(dL¢w)1 log(e y)I? (4.23)

etv
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Algorithm 4: PrincipaL GEODESIC ANALYSIS OF SIGNATURES (SIG-PGA)

Input: {x; := S<;(X;),i =1,...,N}: abatch of N signatures up to level L.
K': integer, the number of Principal Geodesics to keep
1 p < Group mean of {xq,..., XN} // Using [Cla+24, Algorithm 3]
fori=1,...,Ndo
t g(p) — ux; the centered data

1

3 fork=1,...,Kdo

N

4 | Initialize v (e.g., vk < log(ggk_l)) for a randomly chosen index 7)
5 Repeat the following two steps until convergence:
6 1. V;{Hl) — One step of Gradient Descent for F, , at vg)

7 | 2 pgk) « Projection of ggk_l)

(I+1)
k

O Y b+ the geodesic starting from identity

with initial velocity v
k k-1 (k-1
s | g — ") g "

Output: vy, ..., vk the first K geodesic directions

Using the expression of the parallel transport of the CCS connection, see Proposi-
tion 4.3, we have for any g € G<, [1g»1 : Tg(G<r) — T1(G<r) with

g1 = (dLg—1/2)g1/z(ng—1/z)g (4.24)
where we have denoted g := exp(a log g) for any real value a. Thus, we have

D(e" : y) = [T (dLow )1 log(e ™) (4.25)
= ld(L 3 )d(R y,,)logle™y)I2 (4.26)

where we have used the commutativity of dL and dR (Lemma A.1) in the last equation
and that dLg o dLy = dLgn (Lemma A.2). In other words, from the definition of Ad
(Definition A.3),

D(e™ :y) = [|Ad(e2") log (e Vy)| 2 (4.27)

Step 2: simplify the formula using the fact we have explicit expressions in the case
of the signature. Using Lemma A .4 and that glog(h)g™! = log(ghg™'), we have

Ad(e2™) log(eVy) = 2!V log(e Vy)e 2™ (4.28)

= log(e2™Ve Vye2tY) (4.29)

= log(e 2'Vye™1'Y), (4.30)

which completes the proof. m]

Proof of Proposition 4.9

To prove Proposition 4.9, we need the two following results. The first one gives the
formula of the product of two exponentials in the particular case of signatures and
the second one asserts the existence of a global minimum of polynomial Py y defined
before.
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Lemma 4.10. Let u,v € Ty(G<y). Then,

L
log (e“/Ze"e“/z) =: BCHsym(u,v) = Z z;E; (4.31)
i=1

where z; € Q for all i > 1 and (E;);»1 are of the form Ey = w, E; = vand forall i > 3,
E; = [Ey, Ei»] for values i’,i” < i. Denote |i| the homogeneous degree: |1| = |2| = 1 and
|i| = [i’'| + [i”| for i > 3. Then, for terms of even degree |i|, we have z; = 0.

For instance, for L = 3 or L = 4, Equation (4.31) is

BCHgym(w,v) =u+v - i[u, [u,v]] - %[v, [u, v]]. (4.32)

Proof. See for instance [CM09, Section 4.1] for a proof of the BCH;,;, formula in the
general case, which gives a series instead of a sum on the RHS of Equation (4.31).
Here, we only have L terms on the RHS thanks to the nilpotency of T3(G<y), that is,
if u € Ty(G<) then u* = 0 for any k > L. Thus, if u, v € Ty(G<L), then all Lie brackets
with more than L terms vanish. |

Lemma 4.11. Let the truncation order L € N be fixed. For any v € T1(G<r) andy € G<r.
Then, the polynomial t +— Py y(t) defined in Equation (4.16) has a global minimum that we
denote t3, .

Proof of Lemma 4.11. Denote as py,y the polynomial such that, for any t € R,

Pusl) = TPy (h). @.33)

We have
d d
(v, t,y)lx =2 <a(v,t,y>, Sa(v, t,y)>1 (434)

by definition of the derivative, continuity of the inner product and continuity of
t — a(v,t,y). Now, using Lemma 4.10, we have

ay,ty = log (e_%t"ye_%t") (4.35)
1
= BCHsym (—Etv, log y) . (4.36)
Using the linearity in t of the Lie brackets in the BCH formula, we obtain that

t — a(v,t,y) is a polynomial function, that we denote ZIk(:O art, where degree K
depends on L, because of Lemma 4.10. Injecting this into p gives

K K
pvy(t) =2 <Z ait!, ja]-tf‘1> (4.37)
i=0 j=1 1
K K
=2 D j{ai,ap) 1 (4.38)
i=0 j=1

That s, p is a polynomial which highest degree term is 2K||ax[|2t>~1. Thus, Py y has
highest degree term ||ak||2t2X. Py y is a polynomial with even degree and positive
highest degree term ||011<||% > 0. That is lim; 4o Pyy(t) = +00. For any real value
M > 0, it exists R > 0 such that Py y(t) > M for all [t| > M. That is min;cg Py y(t) =
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min_g<;<g Py,y(t). Since Py y is continuous on the closed and bounded set [-R, R],
using the extreme value theorem we have that Py y attains its minimum. m]

We now have all the tools to prove the main result.

Proof of Proposition 4.9. Using Lemmas 4.8 and 4.11, Equation (4.11) becomes

N
Fyw) = > lla(v, £y, v} (439)
i=1

where the value of t; , can be calculated explicitly using a numerical root finder for
polynomials, applied to pyy(t). Then, we differentiate this equation with respect to
v and obtain the expression of VyFy as shown in Equation (4.19). O

4.4.4 Algorithmic details

In Proposition 4.9, the obtained expression of VFy depends on N implicitly defined
values f; o . In this section, we show how to derive closed form expressions for f; ..
for specific values of the truncation level L. Ultimately, it leads to greatly diminished
computation times of SIG-PGA (Algorithm 4).

To this end, note that t‘*,,y[ is the arg min of polynomial function Pyy., ie, t;,y,- isa
root of py y(t) the derivative of Py y,. We have shown in Equation (4.37) that py y(t) is
a polynomial with degree K depending on L. Setting L to specific values allows us to
derive the expressions of py y(t) and then to compute its roots explicitly. This allows
us to avoid using a generic root finder. In this section, we detail two specific cases to
illustrate this: L =2 and L € {3, 4}.

In the following two examples, we denote as u := logy.

Example 4.12. If truncation level L = 2,

a(v,t,y) = BCHsym (—%tv, u) =—tv+u (4.40)
that is,
pvy(t) =2(-tv+u,-v), (4.41)
=2(v,v);t —2(logy,v), . (4.42)
Then, solving py,y(t*) = 0 gives
logy,v
o m' (4.43)
<V/ V>1

Example 4.13. If truncation level L = 3 or L = 4 (this is the same formula as terms of odd
degrees vanish in BCHsy),

1 1 1
a(v,t,y) = BCHsym (—Etv, u) =—tv+u-— ﬂtz[v, [v,u]] - Et[[v, ul,u] (4.44)

that is,

Pyy(t) = 2< —tv+u-— itz[v, [v,u]] - %t[[v, ul,u],
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1 1
—[[v,u], —t[v,[v, 445
v+ 12[[v ul,u] + B [v,[v u]]>1 (4.45)
=2(u+ At +Bt*,C + Dt), (4.46)
=2(B,D); 1> +2((B,C)y + (A, D)) t* + 2({A,C)1 + (u, D)) t +2(u,C),
(4.47)
where A == —-v — %[[v,u],u], B = —21—4[V, [v,u]], C = v+ f—z[[v,u],u] and D =

&[v, [v, u]]. The real root t* of p can be found using Cardano’s formula, which is a classical
method to find roots of polynomials of degree 3.

4.5 Experiments

4.5.1 Implementation details

Python implementations of SIG-tPGA and SIG-PGA (Algorithms 3 and 4) along with
a notebook containing the following experiments to be reproduced are available
online at https://github.com/Raph-AI/pga-signature. The computation of the
signature is done with library iisignature [RG20]. To center the data on the sig-
nature space, we use the algorithm for computing the group mean (Definition 3.7)
introduced in our previous work [Cla+24]. To compute VFy as shown in Proposi-
tion 4.9, we need the differential of VyPy y(t), which is obtained through automatic
differentiation, with library jax [Bra+18]. Then the update step is performed using
the Adam optimization strategy [KB17]. The projection step is done through exact
computations if L € {1,2, 3,4} (see Section 4.4.4) and otherwise if L > 5, we use root
finder for polynomials numpy.roots.

4.5.2 Numerical results

In this section, we show how SIG-tPGA and SIG-PGA (Algorithms 3 and 4) solve
various time series related tasks with performances close to the full signature (SIG)
while using a much lower number of features. First, we solve a parameter estimation
task for simulated fractional Ornstein—Uhlenbeck processes. Then, we forecast real
data with a dataset of air quality measurements.

Simulated data

Parameter estimation in a pricing model.

The following method and example are adapted from [Lem+21]. We model a
volatility process as o(t) := exp(X(t)) where X is a fractional Ornstein-Uhlenbeck
(fOU) process:

dX(t) = —a(X(t) — wydt + vdWH(t) (4.48)

with real values a, v, u > 0 and WH(t) a fractional Brownian Motion of Hurst expo-
nent H € (0, 1). In the following experiment, we simulate M datasets each composed
of N time series {6"/(t)}1<j<ny drawn from exp(fOU(«;)) for i = 1,..., M with a;
drawn from Unif(0, 1] and discrete time sampling f = 1,...,T. The goalis to estimate
a; from the observation of the N times series {6i'f(t)}1sjsN, foreachi =1,..., M.
In the experiment we set M = 50, N = 20, T = 200. Also, we set u = 0.5, v = 0.3
and H = 0.2. Trajectories are time augmented, that is we consider the two dimen-
sional time series (0(t),t). We show examples of simulated volatility time series in
Figure 4.4.
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Ficure 4.4: Simulated data from the pricing model. Left: a = 0.02.
Right: a = 0.98.
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Ficure 4.5: Results for the pricing model dataset. DR-GA, KES:
adapted from [Lem+21].

To solve this parameter estimation task, we use the SES method (Signature of
Expected Signature) introduced in [Lem+21]. The SES method proceeds as follows.
Fix1 < i < M. We compute the signhature on expanding windows applied to process
6uI(t), for j = 1,...,N. This gives N X (T — 1) signatures. Then, we average those
signatures and obtain S(t), a process composed of T — 1 mean signatures:

N
Fo 8(0) = 55 D SceWp (™) (4.49)
=1

where W is a windowing operation such that Wy ;j(x) := xl[l,t] and the average of
the signature is computed element-wise. Finally, we compute the signature of S up
to level 2, i.e., S<2(S). In order to obtain a, we fit a linear regression model on S<»(5),
with penalization (LASSO/Ridge).

To analyze the usefulness of the PGA, we add a dimension reduction step to the
SES method: before fitting the linear model, we perform a PGA on ng(g ), for various
number of components, and compare the results of the downstream estimation task
to the results obtained without PGA. Further details on the SES method are presented
in Appendix A.3.

Results for the pricing model dataset are shown in Figure 4.5. We can see that the
MSE of SES and of PGA with 3 components are close. That is in comparison to DR-GA
which is, among methods not using signature features, the one with the lowest MSE,
and thus the only one displayed. In other words, signature features can be projected
in a subspace of dimension 3 and be almost as insightful than 241 dimensions! for
this estimation task. tPGA seems to yield similar results than PGA, even slightly
improving when the number of components increases. Note that tPGA is faster to

1SES method best MSE was obtained with { = 3. We have B3> = 15 and By 15 = 241 where By 4 is
the dimension of the signature up to level L of a d-dimensional time series.
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FiGure 4.6: Air Quality data. Each color represents the same week of
recording (168 hours).

compute than PGA and does not have convergence issues since tPGA relies on SVD
whereas PGA relies on an optimization method on the tangent space T3(G<r). Note
that tPGA MSE after the vertical black line do not improve: that is because when
we perform a tPGA, we project the data onto the tangent space and then perform a
dimension reduction. Here, the tangent space is of dimension dim(g<>).

Real data

Air quality forecasting.

The following example is adapted from [Fer22]. The Air Quality dataset [De
+08] contains recordings of a sensor set in a polluted area in an Italian city. Data
was recorded from March 2004 to February 2005 and is hourly averaged. Each time
series have three components: nitrogen dioxide (NO») concentration, temperature
and relative humidity. In Figure 4.6, we show three weeks of recordings.

The task is to predict the next value of NO, concentration, using the data from
the previous week. To this end, we use the forecasting method introduced in [Fer22].
It consists in computing the signature of the data and then fit a linear regression
model, with penalization (either LASSO or Ridge). This method can be seen as a
simplification of the SES method presented in Section 4.5.2. The difference is that
here we do not apply expanding windows and thus we do not average signatures. In
our setting, we adapt this method by applying a PGA before performing the linear
regression. Trajectories are time augmented, that is we consider the 4-dimensional
time series (X(t),t) where X is the air quality data, which has shown to perform
better. The maximum number of Principal Components is min{N, By 4}, where By 4
is the dimension of the signature up to level L of a d-dimensional time series. Since
N = 9189 and we compute the signature up to order L = 5, the maximum number of
Principal Components is Bs 4 = 1365.

Forecasting results are shown in Figures 4.7 and 4.8. Along with the MSE of
signature methods, we show the MSE of three other functional linear methods, as
computed in [Fer22], each relying on the decomposition of the time series in one of
the following basis: Fourier, B-Spline and fPCA (functional Principal Component
Analysis). The number of basis elements is chosen, through cross-validation, be-
tween 1 and 13 for Fourier and B-Spline, and between 1 and 5 for fPCA. The {PCA is
applied after a 7 B-Spline decomposition of the signals. In both figures, the vertical
line is the number of features of the logsignature. That is, the lowest possible MSE
of SIG(-PGA is obtained at #PCs = dim(g</) and that is why the blue line stops at 10
(Figure 4.7) and 294 (Figure 4.8).

In Figure 4.7, SIG2 method uses 21 features. We show SIG2-PGA only up to
11 PCs because the optimization was not stable after with that many data points
(N X B4 = 9189 x 21 that is 10° points).
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FiGure 4.7: Results on the Air Quality dataset. Signature truncated at
order 2.
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FiGure 4.8: Results on the Air Quality dataset. Signature truncated at
order 5.

In Figure 4.8, observe that with only 200 PCs, SIG5-tPGA gives performances
as good as the best non signature method, B-Spline. While SIG5 method gives
better performances, it uses 7 times more features (1365 features). Notice the gap in
MSE between SIG5 and the best SIG5-tPGA result. This is because the logsignature
sometimes gives poorer results compared to the signature and SIG5-tPGA MSE is
bounded below by logsignature MSE, which is the point at the intersection of SIG5-
tPGA and dim(g<5). We do not show results for SIG5-PGA because with N X Bs 4 =
9189 x 1365 ~ 107 data points, the method was too slow to compute.

Note that SIG-PGA methods perform better than fPCA, which is also a dimension
reduction method for time series (with number of components tuned between 1 and
5 to obtain the best MSE). Thus, the SIG-PGA methods gives a better prediction,

Dimensions of the signature space G<;, and of its tangent space g<; for various
truncation levels L are shown in Appendix A.3.

4.6 Conclusion and perspectives

We have proposed an extension of the PCA for signature features of time series by
means of an adaptation of the PGA. We have provided theoretical tools along with a
numerical implementation to apply this new method. Also, we have shown through
experiments, both on simulated and real data, that our approaches of dimension
reduction are effective in that it keeps state-of-the-art performances while requiring
less features.

Further work could be made on the dimension reduction problem for signatures,
and especially the PGA. It would be interesting to have a computer algebra program
that calculates the projection of a point on the geodesic with velocity v for any



4.6. Conclusion and perspectives 73

truncation level L € N, that is, computes the real root of polynomial py + as we have
done by hand in Section 4.4.4 for 1 < L < 4. It would allow for fast computations
even for L > 5. Moreover, it would be interesting to implement a more efficient
optimization method on T1(G<1 ), which is the main bottleneck of our implementation
of Algorithm 4.
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Chapter 5

Anomaly detection using
multiscale signatures

This chapter analyzes multidimensional time series through the lens of their integrals
of various moment orders, constituting their signatures, a novel tool for detecting
anomalies in time series. The proposed anomaly detection (AD) method is com-
pared using classical distance-based methods such as Local Outlier Factor (LOF) and
One-Class Support Vector Machine (OCSVM). These methods are investigated us-
ing different similarity measures: distance on signature features, Euclidean distance
and Dynamic Time Warping (DTW). The combination of signature features with a
specific segmentation of time series leads to a multiscale analysis tool that is competi-
tive with respect to the state-of-the-art results, while maintaining low computational
costs thanks to a property of the signature features.

5.1 Introduction

Context. Anomaly detection (AD) is a critical field of research with various applica-
tions in different fields (medical, telemetry, etc.) [Les+21; Pil+20]. In certain fields,
the data to be analyzed is a set of time series. Along with the typical challenges of
AD, anomalies in time series can appear in multiple forms such as global anomalies
or contextual anomalies [Pil+20]. This raises the need for algorithms that can operate
at multiple scales in order to identify the nature of anomalies and determine their
exact location with a reasonable time complexity. Furthermore, specific challenges
are related to the analysis of time series (irregularly sampled data, missing measure-
ments, different recording lengths, etc.). These issues make the problem of AD in
time series an active research field.

State-of-the-art. Several AD algorithms exist in the state-of-the-art [CBK09], such
as Isolation Forest [LTZ12], Local Outlier Factor (LOF) [Bre+00] and One-Class SVM
(OCSVM) [Sch+01]. These algorithms are well suited for comparing vectors in a
space of fixed dimension. To compare time series with different lengths, similarity
measures such as the Dynamic Time Warping (DTW) have been proposed in the lit-
erature [Men+19]. These techniques have already been incorporated in the standard
AD algorithms for time series [Man+23]. However, they need to compute all the
pairwise similarities, which is time consuming. This chapter proposes to analyze
time series through the lens of their signature features.

Objectives, contributions and organization. An original approach for AD in time
series is introduced in this chapter using standard AD algorithms and multiscale
signatures features. The approach is compared to multiple state-of-the-art algorithms
in terms of detection performance and time complexity. The contributions of this
work are summarized below:
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e We show that a multiscale analysis using signature features leads to state-of-
the-art results for AD in multivariate time series.

e In addition to excellent detection results, we put in evidence the incredible
numerical effectiveness of the multiscale signature based analysis. Notably,
we avoid huge computational burden, that would appear with other similarity
measures. The signature multiscale method can be 100 times faster than single-
scale DTW.

Section 5.2 recalls the principles of LOF and OCSVM methods that are used in
this chapter. Section 5.3 provides details on DTW and signature methods. Section 5.4
compares the proposed methods with state-of-the-art approaches on both synthetic
and real datasets. Conclusions are reported in Section 5.5.

5.2 Anomaly Detection

The objective of ADis to detect abnormal behavior, i.e., data that deviates significantly
from what is observed in the majority of cases. Abnormalities can represent different
phenomena depending on the data that is analyzed. In general, abnormal data is
scarce and cannot be used to describe all possible anomalies [CBK09]. Therefore,
a model must be trained in an unsupervised way while considering an imbalance
between the normal and abnormal classes. State-of-the-art AD algorithms include
LOF and OCSVM that are considered in this chapter (other algorithms such as
Isolation Forest and Density Based Spatial Clustering of Applications with Noise
(DBSCAN) could be considered similarly).

5.2.1 Local Outlier Factor (LOF)

LOF [Bre+00] is an AD algorithm based on the density of the training data for
classification. The more abnormal a data vector is, the larger its distance to its
neighbors. Consider N > 1 vectors X = {xq,...,xny} with x,, € RP,n=1,...,N,D
being the dimension of the vectors x, and k a strictly positive integer. The distance
between x,, and its k-th nearest neighbor is referred to as k-distance of x,, and denoted
as kd(x,,). The reachability distance between x; and x,, is

rdi (X, X)) = max{kd(xy), |[xn = Xu ||} - (5.1)

Therefore, all the points in the neighborhood of x,, have the same reachability but
points that are further away will have a higher reachability. The local reachability
density of x;, is the inverse of the average of all reachability distances of the k-nearest
neighbors of x,:
N -1
Irdk(x,) = k (Z rde(x, xn)) (5.2)

xeV,

with V;, the subset containing all k-nearest neighbors of x,. The LOF score of x,, is
the mean ratio of the local reachability densities of x,, with its k-nearest neighbors:

1 Irdy(x)
LOFi(x:) = 7 XGZV: TR (5.3)

Inliers have a LOF score close to 1 whereas outliers have a much higher LOF score.
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5.2.2 One-Class SVM
Method

One-Class SVM is an AD algorithm, which learns a separating hyperplane close
to the normal data in a certain sense. In its basic form, the data must be linearly
separable in their vector space of the data. Consider a training set X = {xq,...,xn}
withN > landVi € {1,...,N},x; € RP with D the number of data features. Finding
a hyperplane separating the data can be expressed as

(5.4)

N
minimize 1||cu||2— + LZE
(U/prgi 2 p VN i=1 l

with <w/xi>2p_‘gi/Vi€{1/---1N}

where (w, x;) = wTx; and v is the maximum proportion of abnormal data in X.

Kernel trick

When the data is not linearly separable, a reproducing kernel x can be used. This
kernel is associated with a scalar product in a higher dimensional space such that

k(x,y) = (®(x), D(y)) (5.5)

and Vi € {1,...,N},®(x;) € Rf with F > D. The kernel function should be chosen
in a way that the normal data is linearly separable from anomalies in the new space.
The constraints in (5.4) are now applied to the transformed vectors:

(@, ®(x)) = p—&,Vie{l,...,N} (5.6)
with the new decision function

f(x) = sgn({w, P(x)) - p) (5.7)

where sgn denotes the “sign" function. The solution of (5.4) with the constraints
(5.6) is known to be w = Zﬁl a;D(x;),0 < a; < ﬁ s.t. Zfil a; = 1 and the decision
function is

N
f(x) =sgn (Z a;k(x;, x) — p) . (5.8)
i=1

A common choice is the Gaussian kernel (or radial basis function) defined by x(x, y) =

o2
exp (— ”XZO%H ) where 0 is a hyper-parameter to be estimated. It can be shown that the

corresponding function ® projects the data into a space of infinite dimension.

5.2.3 Performance evaluation

Appropriate metrics must be defined to evaluate the performances of AD accurately.
The measures of precision, recall and a combination of the two, the F; score, are
usually considered for AD [SR15]. These measures are defined as:

TP TP

w __1r 59
i el =N (59)

Precision =
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where TP, TN, FP and FN are the numbers of true positives, true negatives, false
positives and false negatives. The F; score is the harmonic mean of precision and
recall. Precision-Recall curves are often preferred to ROC curves for AD [SR15].

5.3 Comparing trajectories

5.3.1 Feature engineering: Signatures

Signatures can be useful for AD for at least two reasons:

e S(X) uniquely determines X up to translation and time reparametrization, ex-
cept for pathological cases [HL10]. The invariance regarding time parametriza-
tion is in the following sense: given a non decreasing continuous surjection ¢
on [0, T], denote as X : [0,T] — R% t — X(¢(t)). Then, $(X) = S(X). Thus
the signature function S can be seen as a non linear filter, providing features
invariant to translation and resampling.

e The dimension of S<;(X) does not depend on the length T. Thus the signatures
of two signals of different lengths T; and T, can be easily compared. Indeed, if
one vectorizes the signatures at different levels, the associated signature vector,

L_
denoted as vec(S< (X)), is of dimension Zi:l dk = %.

Note that any non linear function of a multivariate time series can be arbitrarily well

approximated by a linear function of its signature.

A similarity measure dsig is defined by computing the Euclidean distance between

two vectorized signatures, i.e.,

dsig(X,Y) = [[vec(S<1(X)) — vec(S<c(Y))ll2, (5.10)

for two trajectories X and Y. Note that in some cases, normalizing the coefficients of
the signature can improve AD performances. This normalization can be performed,
e.g., by replacing S)(X) with (S(k)(X))l/ k where the exponent is applied element-
wise, forany k =1,...,L.

Note that from a computational point of view, the computation of the signature
is very simple thanks to Chen identity (Proposition 2.20). Indeed, one can compute
the signature of a time series combining a piecewise linear approximation and Chen
identity. More precisely, in order to handle time series (discrete set of points) a linear
interpolation can be performed before calculating the signature. Because (2.34)
depends on the concatenation operation, it is affected by the interpolation method
and the linear interpolation leads to efficient numerical computations. Thereafter,
for any time series X, S(X) denotes the signature of the linearly interpolated time
series. Note that the signature has been used for AD in a semi-supervised context in
[Sha+20] where an AD algorithm called SigMahaKNN (SMK) was based on anomaly
scores using a generalized Mahalanobis distance on the signature features. This
chapter proposes to detect anomalies in trajectories using signature features with a
different and unsupervised approach, as explained below.

5.3.2 Multiscale signature feature

A powerful tool which allows for multiscale analysis is the hierarchical dyadic win-
dowing operation defined in what follows. This operation is interesting in the case
of signature features for two reasons: it has shown to improve classification results
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[Mor+21] and it does not add computational overheads as explained below. Let
{X(ti)}i=1,..,» be a multivariate time series. Denote { € N the hierarchical depth. For
simplicity, assume that 2/~ divides n. Denote as W(X) the time series obtained after
segmentation with a sliding window of length equal to ﬁ, fori=1,...,¢,asshown
in Figure 5.1, which was presented in Section 2.3.2. Denote as MSIG(L) = S<;, oW the

1121345678

112 314 516 718

Ficure 5.1: Dyadic windowing operation on a time series of length
n = 8. We obtain the three rows by applying successively W!, W2 and
W3to X.

signature computed on the segmented time series. The multiscale signature method
for AD is defined by:
AD o MSIG(L). (5.11)

The windowing operation W in MSIG does not add computational overheads since
operations S<1(X) and (S<; o W)(X) have the same complexity. Indeed, the com-
putation of the signature of X is done in two steps: 1) apply (2.9) on the 1/2 pairs
of the form {X(t2k), X(t2k+1)}, 2) perform ¢ successive iterations where signatures
are combined using (2.34). These two steps are illustrated in Figure 5.1 read from
bottom to top: in the first iteration, pairs are combined by computing the product
of the signatures of {X(t1), X(t2)} and {X(t3), X(t4)} using (2.34), which gives the
signature of the time series {X(t1), X(t2), X(#3), X(t4)}. At the end of this process,
the signature of the whole time series {X(t;)}=1,...» is obtained. Therefore, to obtain
(S o W)(X), it suffices to store all the signatures of sub time series calculated during
the computation process of S(X).

Note that each time we go deeper in the dyadic segmentation, the more of the
resampling invariance is lost.

5.3.3 Trajectory alignment : Dynamic Time Warping

Another way to compare two trajectories directly is to find which points of one
trajectory best match the points of the other trajectory. This technique referred to
as trajectory alignment requires to find associations or removes points from the two
trajectories. A common tool used for trajectory alignment is DTW [KR05]. Consider
X =(X(1),...,X(n))and Y = (Y(1),...,Y(m)) two d-dimensional time series, i.e.,
X(i) € RY and Y(j) € R?. The DTW cumulated similarity score between the first i
columns of X and the first j columns of Y, denoted as cs(i, j), is defined as

cs(i, j) = min{es(i — 1,7 —1),¢cs(i,j—1),cs(i =1, )} + || X(7) — Y(])H2 (5.12)
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5.4 Experiments

The proposed AD methods are based on computing signatures and applying the
LOF or One-Class SVM methods with the distance dSig. Two kinds of signatures are
considered yielding the algorithms SIG4 (using S<r.(X) with L = 4) and MSIG4 (using
(S<r o W)(X) with L = 4). These methods are compared to DTW combined with LOF
and DTW with One-Class SVM (OCSVM) to show the interest of using signatures,
and to another AD algorithm SigMahaKNN (SMK). The number of neighbors in LOF
was set to 9. Experiments can be reproduced using the notebook athttps://github.
com/Raph-AI/anomaly-detection.

5.4.1 Synthetic data

The first set of experiments consists in analyzing synthetic data representing tra-
jectories in the context of abnormal ship behavior [PMF08]. The dataset contains
Nt = 1000 sets of trajectories, each with 260 time series, 10 of them being abnormal
according to the generated ground truth. The remaining 250 trajectories are divided
into 5 groups (or railways) of 50 trajectories. The trajectories are each composed of
16 positions in a 2D space. Examples of trajectories are displayed in Figure 5.2. The
method will not be compared to deep learning as there is too little data in this dataset
for this method.
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Ficure 5.2: Examples of synthetic trajectories after prediction using
LOF with SIG4 (2 FPs and 2 ENs).

Figure 5.3 shows the detection results using precision-recall curves for the differ-
ent methods. The best detection results are obtained with LOF-DTW, LOF-MSIG4
and SMK4. However, MSIG4 is 10 times faster than DTW (see Section 5.4.3) and com-
pletely unsupervised whereas SMK4 is semi-supervised. Note that MSIG4 provides
better results than SIG4, indicating that the windowing operation is indeed useful
for AD. Results obtained with OCSVM from [Man+23] using DTW and SIG4 are also
displayed showing a reduced detection performance.

5.4.2 Real data

This section analyzes data recovered from the unsupervised AD benchmark of the
Harvard dataverse repository!. Dataset sizes and contamination rates are reported in

1Available at https://doi.org/10.7910/DVN/OPQMVF.
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Ficure 5.3: Precision-recall curves using LOF and OCSVM with vari-
ous similarity measures.

Table 5.1. This dataset has been used in previous AD papers such as [Les+21] where
a OCSVM with DTW baseline is provided. Table 5.2 shows the detection results of
LOF using various similarity measures: Euclidean distance and DTW as baseline,
and MSIG4. Overall, the MSIG provides promising AD results when compared to the
baseline. Indeed, F; scores are larger for three datasets out of five, and comparable
to the best score on the remaining two. Thus, MSIG seems to be consistently efficient
for detecting anomalies in these datasets. Note that contamination rates have to be
taken into account, as for instance, there are only ten outliers to detect in the Breast
Cancer dataset. Thus the recall score can only take ten different values, leading to
large discrepancies in the computed F; scores. The OCSVM method was also tested
using the same similarity measures. Conclusions were similar to the ones obtained
with LOF, but all detection scores were strictly inferior, similarly to the results of
5.4.1. An important aspect of the MSIG method is its low computational complexity,
which is evaluated in what follows.

TaBLE 5.1: Real datasets sizes and contamination rates.

| Dataset name | Nb time series | Nb points | Nb of anomalies |

ANN Thyroid | 6916 21 250 (0.04%)
Breast Cancer | 367 30 10 (2.72%)
Letter 1600 32 100 (6.25%)
Pen Global 809 16 90 (11.12%)
Satellite 5100 36 75 (1.47%)

TasLE 5.2: Fj-scores using Local Outlier Factor (LOF) with 3 similarity
measures and true contamination rates. Best in bold.

] H EUC \ DITW \ MSIG4 \

ANN Thyroid || 0.09 | 0.22 0.17
Breast Cancer || 0.60 | 0.60 0.70
Letter 0.55 | 0.44 0.52
Pen Global 0.58 | 0.43 0.59
Satellite 0.57 | 0.55 0.57
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5.4.3 Computation time and memory space

Given a d-dimensional time series (X(t))¢=1,.,7 and a signature level L € N, the
runtime complexity of the signature up to level L (i.e., of S<(X)) is O(Td") which
has to be compared with the quadratic in length O(T?d) runtime complexity of
DTW. The space complexity of the signature is O(d%), which does not depend on T.
Therefore, for large values of T, the signature can be viewed as a compression tool.
Figure 5.4a displays runtimes for the computation of the pairwise similarity matrix.
Note that the values shown for SIG/MSIG are the runtimes for the computation of
the signature and the similarity matrix. The Euclidean distance (EUC) and SIG2 have
complexities of the same order of magnitude. This is because the overhead of the
computation of the signature is balanced with the Euclidean distance computation
of a smaller number of signature coefficients. However, signature and multiscale
signature methods are at least one order of magnitude faster than DTW.

Figure 5.4b compares runtimes on 10 randomly generated time series of dimen-
sion 2 for varying lengths T € {10, 100, 1000}. As T increases, the overhead created by
the multi-scaling vanishes explaining why SIG4 and MSIG4 have the same complex-
ity. This figure also shows that the proposed AD approach based on the multiscale
signature is numerically efficient, even for large datasets.
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(a) Runtimes of pairwise distance matrix computa- (8) Runtimes of pairwise distance matrix computa-
tions (synthetic data, 260 trajectories of size 2x16). tion on randomly generated data. Each point: av-
SIG2 is the signature up to level 2. Log scale. erage runtime over 1000 iterations. Log-log scale.

FiGure 5.4: Runtimes of the AD methods.

5.5 Conclusions and perspectives

This chapter studied a new anomaly detection (AD) method for time series based
on their multiscale embedding in the space of signature features. A comparison
between the proposed signature-based AD method and DTW on both simulated and
real datasets showed similar detection performances. However, signature features
can be computed multiple orders of magnitude faster than DTW, which is impor-
tant for practical applications. The studied datasets had outliers that were globally
abnormal. In the future, the proposed method should be applied to trajectories
that contain collective anomalies (small abnormal segments), contextual anomalies
or point anomalies [Pil+20]. A feature importance analysis could be used to detect
which segmentation is most valuable to improve performances.
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Chapter 6

Clustering multivariate time series
with the signature

Clustering time series, i.e., detecting structures and patterns in temporal data is chal-
lenging for multiple reasons. For instance, methods have to take into account the
temporal dynamic of the data, the possible high dimensionality and also artifacts
such as variable lengths, noise, outliers. Several techniques have been developed to
address these challenges, often categorized as raw-data-based, feature-based (e.g.,
wavelet transform, spectrum, signatures) and model-based (i.e., time series are as-
sumed to be generated from an unknown underlying probability density function
that we try to approximate). For each technique, the choice of the clustering algo-
rithm (e.g., K-means, agglomerative hierarchical) and of the distance measure (e.g.,
Euclidean, correlation, DTW) is crucial. Surveys on time series clustering can be
found in [Lia05; ASW15].

Following the recommended methodology on evaluation method for clustering
algorithms [KKO03], we compare signature-based clustering to raw-data-based and
spectrum-based clustering methods, as those last two strategies when coupled with
simple distance measures (Euclidean, correlation, DTW) often achieve state-of-the-art
results and are favored for their interpretability, simplicity and stability. We discuss
strategies to measure the similarity between two signatures and analyze their scaling
or orthogonal transformation invariances. Also, we show through experiments how
similarity measures on signatures perform compare to usual similarities on time
series. In order to prevent implementation and data bias [KK03], we use a wide
range of datasets, simulated and real, in which we artificially add perturbations
(noise, jittering, warping) which are standard for learning tasks [IU21].

6.1 Similarity measures for signature features

In addition to the previous remarks made in Section 2.2, we would like to point
out some other aspects of the signature that renders it especially suited for learning
tasks. First, the signature transform is inherently suited for multidimensional time
series, whereas a lot of time series analysis methods focus on the one-dimensional
case and lacks of a generalization to higher dimensions. Here, we will only deal
with multivariate time series. Moreover, the signature is well suited to several
usual transformations, as shown in Table 6.1, such as the invariance to translation
or the invariance to time reparametrizations, which are often needed as undesired
translations (e.g., not well calibrated sensor) and time shifts (e.g., short sensor failure,
censored data) can easily occur in real data. Note that time series of various lengths can
be compared (e.g., sensor with various frequency of recording). In addition, we can
set norms on signatures that are invariant to dilations or rotations, see Section 6.1.2.
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Finally, if needed input time series can be preprocessed in order to avoid specific
invariances. For instance, to loose the trarlslation invariance, a time series X =
(X(t1),...,X(t7)) can be transformed into X = (0, X(f1),..., X(t7)). To loose the
invariance to time reparametrization, it suffices to artificially add a new dimension
to X which consists of X9+ = (t1,...,tr). This makes the signature a versatile tool
for time series clustering

Transformation | Signature after transformation
X(t) = X(t) +a S(X) = S(X)
X(t) := X(t) + a(t) No reduced form
}?(t) =X(f)oal(t) No reduced form
X(t) := X(t) % a(t) S(X) = S(X)S(a)
X(t) := aX(t) _ See section 6.1.2
{((t) = AX(t) Sk (X) =S (X)e1 Aey---0p A
X(t):=QX(t) See section 6.1.2
X(t:) = X(t7-9) 5(X) = 57(X)
X(t) == X(p(1)) S(X) = 8(X)

TaBLE 6.1: Usual transformations of time series and the corresponding

signature, where X is a d-dimensional time series, a € RY, a(t) € RY,

a € R, A matrix of size d X d, Q orthogonal matrix of size d X d, ¢
warping.

6.1.1 Definitions

We now introduce two measures of similarity for signature features, denoted as
dsig-a and dsig.s. We define dsig-a, for any d-dimensional time series X and Y, and
for any signature level L € N, as

L
dsica(X,Y) = D 1Su(X) = S M)l (6.1)
k=1

and we define dgig.g as

dsicB(X, Y) = [lhsc(S(X)) = sc(S(Y)) I (62)
L

= | DI (XK = (S (X)) /¥|I2 (63)
k=1

where the last equality follows from the definition of the norm on the tensor algebra
T(R?) (Equation (2.36)) and where Qs - T(R?) — T(R?) is such that for any a =
(a1, a,...) € T(RY),

psc(a) = (a1, ()2, @)"*,...) (6.4)

with (ay)!/¥ the element-wise scalar power.

In both definitions of dsig.a and dsig-s, we do not rely on group operations
because the computational cost would be too heavy. Indeed, using for instance
d(X,Y) = |[(S(X))"'S(Y)||, as suggested in [FV10, Proposition 7.36], rely on the
group product (Equation (2.18)) and the group inverse (Equation (2.20)). Those two
group operations are multiple orders of magnitude slower than the subtraction in
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the tensor algebra S(X) — S(Y) (Equation (2.16)) that we use here, i.e., would not be
competitive.

Instead, we rely on the usual generalization of the Frobenius inner product to the
tensor algebra (see Equation (2.36)). For signature tensors, this generalization needs
to be adapted since for any continuous X of finite variation, we have for any k € N,

(Cx)*
k7

IS (X)llE < (6.5)
with Cx a constant depending on X, see [Bon+19, Proposition A.5]. The scaling
ay < klay can be applied (see [Mor+21, Section 3.4.]) but we have found that the
a; « (ar)/¥ scaling leads to better results, especially when we only use the first levels
of the signature, L < 10. In addition, it is the simplest way to obtain a similarity
measure homogeneous to dilation [FV10, Example 7.37], see Section 6.1.2 below.
Then, we can choose to apply the scaling before or after the computation of the
norm. In Equation (6.1), the scaling is applied after (dsic-a) and in Equation (6.2), the
scaling is applied before dsic-p.

6.1.2 Properties

The next proposition below analyzes the behavior of dsig.a regarding dilations and
rotations. Geometrically speaking, it is natural to require that our similarity measure
stays constant as two elements are rotated together. For instance, the distance between
two time series of handwritten digits should stay the same if the digits are all rotated.

Proposition 6.1. For any positive scalar a and two time series X, Y, we have

dsic-a(aX, aY) = adsica(X,Y), (6.6)
and for any Q orthogonal matrix of size d X d,

dsic-a(QX, QY) = dsic-a(X, Y). (6.7)
Proof. See Section 6.1.3. ]

As with dsig-a, we also have the R-linearity for dsig-p, see Proposition 6.2, but we
loose the invariance to orthogonal transformations.

Proposition 6.2. dsig-g is homogeneous with respect to positive scalars, that is, for any
positive scalar o and two time series X, Y, we have

dsic-p(aX, aY) = adsig-p(X, Y). (6.8)
Proof. See Section 6.1.3. ]

Remark 6.3. In other words, in Equation (6.2), we scale the signature coefficients and then
compute the norm whereas in Equation (6.1) the two operations are performed in the reverse
order. One advantage of dsic-p compared to dsic-a is its numerical efficiency, because we do
not need to loop over the signature levels k = 1,...,L and apply a scaling. dgsig.g only rely
on Euclidean distance implementations, which are very efficient (e.g., pdist () function of
python library scipy).

The two similarities dsig-a and dsic-g are compared to the usual similarities (Eu-
clidean, correlation, DTW) in clustering experiments in the following section.
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6.1.3 Proofs

In order to prove Proposition 6.1, we need the following result.

Lemma 6.4. Let u € RI"XIN be g tensor and Q be a d x d orthogonal matrix. For any n,

lue, QliF = [[ullr. (6.9)

Proof. Denote v =ue, Q. We have v(,) = Qu,), see [KB09, page 461]. Thus,

V117 = [lvenll7 (6.10)
= [|Qu 17 (6.11)

= (Qu(y) Qu(y) (6.12)

= u(Tn)QTQu(n) (6.13)

= u(,) U (6.14)

= ||ull2. (6.15)

O

Now, we can prove Proposition 6.1 and also Proposition 6.2.

Proof of Proposition 6.1. Using the linearity of the signature transform, we have

L
dsica(aX, aY) = " [ISu(@X) = Spy(aY) " (6.16)
k=1
L
k
= > [la*(S(X) = SNl (617)
k=1
= adsig-a(X,Y) (6.18)

which gives Equation (6.6). Moreover, we have for any integer k,

IS (QX) = Sy (QV)IF = I(Sx)(X) = Sy (Y)) @1 Q 2 Q - ¢ Q||F (6.19)
= [|S)(X) = Sy |IF (6.20)

where we have used in the last equality that for any tensor u and orthogonal matrix
Q, |lue, Q||r = [|u||r for any integer n (see Lemma 6.4). Thus,

L L
D I18w(QX) = Sw(@IIF* = > 11846 (X) = SuMII". (621)
k=1 k=1

O

Proof of Proposition 6.2. Denote the coordinates of S(X) as S(X) = (x1,x2,...). We
have

Qbsc(s(aX)) = ¢SC((ax1/ CYZXZI o) (6.22)
= (ax1, a()?, ... a(x)VE, .. ) (6.23)
= agsc(S(X)). (6.24)

O
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6.2 Experiments

Before presenting the methodology and experiments, we introduce some operations
that will be used to artificially add noise to the data.

6.2.1 Perturbation of the data

In this section, we present the transformations crop, noise and warp that will be
used in the experiments to assess the robustness of the signature method. Those
will be compared to results on the raw time series. Those transformations of the
raw data are natural as they often occur in real life. For instance, a sensor can stop
recording for a few seconds and thus produce missing values, or the starting time of
recording can vary between sensors. Note that those transformations of time series
are standard as an augmentation tool to improve learning performances of neural
networks [IU21].

e crop: given a time series X = {X(1), ..., X(T)}, we have
crop(X) ={X(1+k),..., X(T-K+k)} (6.25)

where K is a fixed integer (the cropping size, e.g. K := [T/10]) and k is a
random integer drawn uniformly between 0 and K — 1. For each time series
of the dataset, we draw a different k. This procedure has the effect to produce
time shifts and thus remove time synchronization of each curve with respect
to the others. The crop operation is illustrated in Figure 6.1.

e noise, : to each data point X(t) € R? we apply
noisey(X(t)) = X(t) + &(t) (6.26)
where ¢(t) ~ N(0, oly).

e warp, : we generate a random continuous bijection ¢, : [0,1] — [0, 1] where o
is an amplitude parameter and to X we apply

warp(X(t)) = X(ps(t)) . (6.27)

This produce a time dilation (or shrinkage), and as with operation crop, it
can remove synchronizations between time series of the dataset. It can also
imitate the presence of missing values in the data (when no imputation has
been performed). Note that a random warping can change the convexity of the
input trajectory X, as shown in Figure 6.2.

x o [f2fsl4]sfe]7]s

crop()  [3]4]5]6]7]
crop() |23 ]4]5]6]

Ficure 6.1: Operation crop performed two times on a time series
composed of eight observations.

We now present our methodology and experiments.
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1004 =

50+

warping

0 100
time 0 5 10 15

time

F1GURe 6.2: Left: a warping function ¢. Right: Two functions X, Y and
their corresponding warping trajectory f — X(@(t)) and t — Y(¢(t)).

6.2.2 Clustering methodology

First, we clusterize data simulated from a vector autoregressive (VAR) model, then
several real datasets. The clustering procedure goes as follows. Let Xj,..., Xy be
N time series such that X;(tx) € R?, foralli =1,...,Nand forallk =1,...,T. To
each time series X; corresponds a label y; € N. The goal is to retrieve the true groups
with an unsupervised method. We proceed as follows. We perform either a spectral
clustering or a K-means clustering procedure coupled with the following similarities:
correlation, Euclidean distance, Dynamic Time Warping (DTW), dsic-s and dsic-a.
The first three similarities are computed directly on the time series whereas dsig-s
and dsic.a are computed on signatures computed up to level L € N, L being a
hyperparameter to learn. Details on spectral clustering and K-means are given in
Appendix B. Note that the K-means procedure, when performed in the signature
space, is adapted in order to use the signature averaging method introduced in
Chapter 3. For each dataset, we clusterize the raw data (i.e., without any tinkering)
and perturbed data, that is where we have used operations crop, noise and warp
introduced in the previous section. The Adjusted Rand Index (ARI) is used as the
main metric here, which is a classical time series clustering evaluation measure
[ASW15, Section 6].

We use the following python libraries: DTW is computed using fastdtw, signa-
tures are computed with iisignature [RG20], K-means is computed using sklearn
[Ped+11] and tslearn [Tav+20]. We use our own implementations for spectral clus-
tering and K-means with signatures.

6.2.3 Simulated data

We use the following vector autoregressive model of lag 1, i.e., VAR(1) model:
X(t+1)=AXt)+U(t+1) (6.28)

where A, the transition matrix, is of size d X d and U(t) are iid Gaussian white noise
vectors with covariance matrix ¢ such that diagonal coefficients ¢;; = 1 and non
diagonal coefficients ¢;; = p € (0,1), i # j. The VAR model is useful to describe
empirical data from various fields, e.g., sociology, economics, physics and clustering
VAR data (as well as related models, e.g., VARMA, VARIMA) has proven to be
challenging [KGPO1].

In order to generate K distinct groups of time series using Model (6.28), we first
construct K matrices A1, ..., AK)_ This is done by randomly drawing coefficients

of AK): Agkj) ~ N(0,1), forany 1 < i,j < d. Then, for cluster k, we generate N time

series using Model (6.28) with transition matrix A%).



6.2. Experiments 89

We use the following parameters : K = 3 clusters, N = 10 time series per cluster,
d = 2 dimensions, T = 20 time points, signature level L = 4. To illustrate our model,
we show in Figure 6.3 one instance of each cluster. We also cluster the differentiated
time series AX(t;) = X(t;y1) — X(¢;) foralli=1,...,T.

—o— Cluster1 ~ —%— Cluster2  —#— Cluster 3

7.51
101
5.0 1
2.51
0.0 -

-2.51

Dimension 1
Dimension 2
o

-5.01

754 -10 1

Time

Ficure 6.3: Bidimensional time series simulated using Model (6.28).
Only one instance of each cluster is shown.

Clustering results are shown in Table 6.2 and in Table 6.3 for the differentiated
data, with medians ARI (over 200 simulated sets).

We can see that the best results are achieved by spectral clustering with dsig-g.
Interestingly, there is a large gap of performances between dsig.a and dsig-g, which
indicates that the choice of the similarity measure between signatures is crucial. The
choice of the clustering method that we perform in the signature space is also crucial
since performances with signature K-means are largely inferior.

Regarding the perturbed data, all the methods seem to be similarly impacted by
operations crop, noise and warp. This indicates that the signature seems to be as
robust as the standard methods on this type of data. Note that DTW is the only
method that achieve better results on the differentiated data AX compared to results
obtained on X.

Overall, the signature seems to be especially suited for VAR data compared with
usual similarity measures for time series.

raw crop noisez noiseyy Wwarpggs Warpgs
Correlation | 52 45 42 19 42 9
s £ | Eucidean | 15 14 14 8 16 15
g 3 DTW 29 25 25 11 23 17
& E SIG-B 90 81 51 17 55 13
“ SIG-A 47 40 28 4 25 8
o Euclidean 12 10 13 8 9 5
S DTW 25 25 23 11 17 12
= SIG-B 13 13 14 13 14 13
M SIG-A 8 8 8 9 8 9

TaBLE 6.2: ARI (%) after clustering the VAR(1) data.

raw Ccrop nhoisez noisejy warpggs Warpgs
o0 Correlation | 42 44 42 18 42 8
& Euclidean 25 13 14 8 16 15
B 3 DTW 45 25 25 13 26 17
& E SIG-B 90 86 49 19 52 15
e SIG-A 42 42 29 6 24 8
@ Euclidean 12 10 11 9 9 6
g DTW 27 23 24 11 16 10
= SIG-B 14 14 14 14 14 14
M SIG-A 9 9 8 9 9 9

TasLE 6.3: ARI (%) after clustering the differentiated VAR(1) data.
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6.2.4 Real data

We use multivariate time series from the UEA repository [Bag+18]'. As shown in
Table 6.4, the datasets that we have selected for this analysis have various lengths
(between 51 and 1197) and various number of dimensions (between 2 and 24).

Number of Number of

Dataset N | Length T dimensions d clusters K
ArticularyWordRecognition | 575 144 9 25
Cricket 180 1197 6 12
ERing 300 65 4 6
Libras 360 45 2 15
NATOPS 350 51 24 6

TaBLE 6.4: Datasets used for clustering.

In the following list, we give further information regarding the data. More
exhaustive details can be found in [Bag+18].

e ArticularyWordRecognition: Electromagnetic Articulogram, or in other words,
measurement of the movement of the tongue and lips during speech. Each
class corresponds to the pronunciation of a different word. Out of the 12
tridimensional sensors, only 9 dimensions are kept.

o Cricket: recordings from tridimensional accelerometers placed on each wrist
of cricket referees (i.e., 6 dimensions). Each of the 12 classes corresponds to a
specific movement of the hands (signaling a foul, a request for video replay,
etc.).

e ERing: finger ring with electric field sensing. Each class corresponds to a
different posture of the hand.

e Libras: point mapping on a video recording. Each class corresponds to a
specific hand movement.

e NATOPS: tridimensional recordings of sensors places on each hands, elbows,
wrists and thumbs of an aircraft ground operator, i.e., 8 X 3 = 24 dimensions.
Each class corresponds to a gesture command (spread wings, fold wings, etc.).

We use the following hyperparameters: signature level L = 4, lead-lag order 3
and time augmentation (see Section 2.3.2 for the definition of those parameters).

Results are shown in Tables 6.5 to 6.9. Note that for each method, two ARI values
are given: each one corresponds to a different parameter K (number of clusters). In
light of the results, several remarks are in order. First, for most raw data clustering
results, DTW-based methods obtained the best ARI, but the signature (especially,
spectral clustering with SIG-B) come in as a close second. In the case of Libras data,
signature is first.

Signature-based methods are more robust to crop (i.e., jittering) than the corre-
lation or the euclidean distance. Note that this is also the case of DTW, as expected
since it was originally designed to handle desynchronization. Moreover, signature-
based method are robust to noise only with the K-means procedure and not with the
spectral clustering. In the case of the Libras data, the signature is the most robust

1Available at https://timeseriesclassification.com/.
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method, especially to noise. Regarding the warp transformation, it seems to affect
less signature-based methods than the other methods, even though the data have
been time augmented (i.e., we have lost the signature reparametrization invariance).
Note that results on the signature without time augmentation were largely inferior
and thus not shown here.

If we compare signature-based methods, it seems that spectral clustering lead to
the best results compared to K-means. However, as mentioned above, K-means is
more robust in the presence of noise. Thus, a denoising procedure should be applied
when using the former methods. Moreover, if we compare normalization procedures
SIG-B and SIG-A, the former has the best ARI for AWR and Cricket data, and the
latter has the best ARI for the ERing, Libras data. Thus, this indicates that the choice
of normalization of signature features is important and depends on the data.

Regarding the normalization procedure of signature features, note that other
methods were tried such as Z;€:1||(S(k)(X) - S(k)(Y))l/kH% and Zi:l wi||S(X) —
S(k)(Y)H% with wy =

presented here.

A few remarks regarding computation times can be made in light of the runtimes
shown in Figure 6.4. We can see that clustering methods that rely on the DTW
similarity measure are slow when the length T of time series is large (datasets Artic-
ularyWordRecognition and Cricket) which is expected since the DTW algorithm has
a quadratic complexity in the length O(T?d). Signature-based methods have large
runtimes when the number of dimensions d is high (NATOPS). This is due to the
number of features that grows exponentially in the number of dimension: as stated
earlier, the signature has complexity O(Td") in the dimension, with L the signature
level, here fixed to L = 4.

m. Those normalization lead to poorer results than those
F

102 4 Dataset
| AWR
1 EE3 Cricket
: I ERing
I Libras
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Computation time (min)

100
1 TN 0T 0T
scorr seuc sdtw ssig-A  ssig-B kmeuc kmdtw kmsig-B kmsig-A
Clustering method

Ficure 6.4: Computation times of clustering methods on real datasets.
Spectral clustering is denoted with an ’s” in the method name and
K-means clustering with ‘km’.

6.3 Conclusion

In this chapter, we have compared clustering procedure in time series space with
clustering in the signature space. We have seen that for the standard VAR(1) model,
learning in the signature space leads to better results. In the case of the real datasets,
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TaBLE 6.5: ARI (%) after clustering ArticularyWordRecognition data.

raw cropigy, nhoise; noisesz; warpggs Wwarpgs
o0 Correlation | 80;76 70; 67 78;75 69; 61 77,72 10;9
TS é Euclidean | 83; 85 77,78 82; 82 65; 38 83; 81 10; 10
“g 2 DTW 96; 85 85; 85 93; 83 61;49 92; 84 10; 14
&5 SIG-B 88;78 84;79 25;29 0;0 82,77 20; 19
© SIG-A 76,73 77:79  36;18 2;1 77:73  43;39
@ Euclidean | 82;79 74;75 77,77 14; 15 85; 80 13; 10
5 DTW 91; 88 94; 84 85;79 29; 28 92; 86 9;11
= SIG-B 37,69 67; 62 55,27 37; 69 48; 65 68; 68
M SIG-A 51; 63 64; 65 57; 45 51; 63 57; 68 58; 63
TasLE 6.6: ARI (%) after clustering Cricket data.
raw cropigy, ~ hoise; noisez; warpgps Warpgs
o0 Correlation | 58;61 41; 40 45; 59 35; 30 54; 59 3,2
E‘ k= Euclidean 62; 58 49; 48 62; 56 54; 51 66; 58 4;6
‘8 3 DTW 100;90  100; 87 98; 91 45; 43 98; 88 10; 12
& ;ﬁ SIG-B 95; 82 95; 87 18; 21 0;1 28;27 6;8
“ SIG-A 73,71 72,74 15; 14 0;0 32;39 11; 11
@ Euclidean 62; 67 55; 49 59; 62 28; 36 62; 69 4:4
S DTW 100,92  100; 93 87,92 69; 81 98; 88 10;9
= SIG-B 17,19 10; 12 15; 17 17,13 17,19 24;15
M SIG-A 13; 18 17; 20 18; 20 19; 20 13; 18 15; 16
TaBLE 6.7: ARI (%) after clustering ERing data.
raw cropigy, hoise; noisez; warpggs Warpgs
o0 Correlation | 70; 58 53; 45 66; 57 26;22 66; 47 11,9
= & Euclidean | 89;71 78; 63 85; 68 49; 35 81; 66 15; 19
*qu‘) 3 DTW 86; 69 85; 66 85; 70 59; 39 85; 74 14; 32
& E SIG-B 39; 54 40; 52 26; 22 11 34; 45 24;21
“ SIG-A 57,47 51; 47 21;17 2;3 59; 44 50; 36
@ Euclidean | 90;70 77; 64 87; 65 44; 32 77, 66 21;17
s DTW 91; 69 88; 66 76; 63 28;18 87,74 30; 22
= SIG-B 21;34 21;34 23; 26 17;30 19; 29 19; 28
M SIG-A 46; 40 46; 40 45; 46 50; 48 48; 46 45; 36
TaBLE 6.8: ARI (%) after clustering Libras data.
raw cropigy, hoise; noisez; warpggs Warpgs
o0 Correlation | 34; 32 28; 31 24;23 2;2 31; 31 13; 11
T;S k= Euclidean | 34; 32 32;33 31;24 4:3 35; 31 15; 14
“g 3 DTW 38; 35 38; 35 31;27 4;4 39;37 14; 11
& ;5 SIG-B 46; 47 47,48 9;10 2;1 45; 46 24; 25
“ SIG-A 54; 55 49; 53 10; 8 11 50; 53 33;33
@ Euclidean | 32;32 29; 31 30; 26 5,5 31;31 11,11
5 DTW 33;37 32;35 30; 25 4;3 35; 36 14; 16
= SIG-B 33;34 33; 34 30; 28 32;33 33;30 31;34
M SIG-A 29; 31 29; 31 23; 25 25; 26 26; 28 27;25
TasLE 6.9: ARI (%) after clustering NATOPS data.
raw cropigy, hoise; noisez; warpgps Warpgs
- Correlation | 32;33 30; 35 27,30 28; 25 32,37 7,8
é § Euclidean | 45;45 40; 46 35; 44 34;27 46; 46 22;17
! DTW 69; 56 64; 57 56; 48 33;37 68; 58 22;17
@ Euclidean | 36;37 37,42 38; 35 30; 21 42; 35 21;16
s DTW 53; 56 53; 56 71;55 40; 32 54; 56 17,13
= SIG-B 14; 15 14; 15 16; 21 19; 17 17,22 13;16
M SIG-A 24; 30 24; 30 25;28 27,29 20; 30 29; 28
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DTW provide the best results followed closely by signature-based methods results.
But for the warp transformation, the less affected methods are signatures.

In addition, we have seen that the choice of the norm in the signature space can
modify drastically the performances and that neither dsig.p nor dsig.a works better
for all datasets. Also, the clustering procedure impacts largely the results with the
spectral clustering giving the best results, except in the case of the noise perturbation.
Regarding computation times, we have seen that our non optimal signature-based
algorithms are up to two orders of magnitude faster than DTW.
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Conclusion of the thesis

Summary. In this thesis, we designed a methodology to compute the barycenter
of a set of signatures (Chapter 3), leveraging algebraic properties and tools from
differential geometry. Using this averaging methodology, we introduced a dimension
reduction procedure for signatures by adapting previous work on Lie groups to the
space of signatures (Chapter 4). We demonstrated that this method allows us to
use significantly fewer features than the full signature while maintaining almost the
same performance. We then focused on two major tasks in time series analysis:
anomaly detection (Chapter 5) and clustering (Chapter 6). For anomaly detection,
we employed a multiscale approach that integrates efficiently with the signature
computation procedure. For clustering, we introduced multiple similarity measures
designed with computational efficiency in mind and benchmarked them against
classical clustering algorithms.

Implications of the research. The averaging and dimension reduction method-
ologies introduced in Chapters 3 and 4 pave the way for generalizing strategies
originally designed for static data to dynamic data (time series). An example of
this is the K-means procedure discussed in Chapter 6. Another straightforward ap-
plication could be extending Random Forest classification to the signature space.
This can be achieved by using decision boundaries P := {x | d(x, u1) < d(x, u2)}
and P> := {x | d(x, u1) > d(x, u2)}, where u; and p are centroids obtained from
a 2-means clustering procedure in the signature space, utilizing the signature aver-
aging method (Chapter 3) and an appropriately chosen distance metric d (see the
discussion in Chapter 6). This extension is inspired by [Cap+24], where Random
Forest is applied to data in general metric spaces. Furthermore, dimension reduc-
tion can facilitate the use of signature-based learning with larger signature levels on
higher-dimensional time series (longer and with more components).

Limitations. The methodologies developed in this thesis come with certain limita-
tions. The algorithm for computing the mean is not particularly fast and does not
characterize the measure as the expected signature. Similarly, Principal Geodesic
Analysis is slow due to the gradient optimization process. Additionally, both the
mean and the principal geodesics are defined in the signature space, which is quite
abstract and may be challenging to interpret. Another limitation is in anomaly de-
tection: in industrial applications, precise localization of anomalies is often crucial.
However, our method detects anomalies at a global level and does not provide precise
localization.

Future research directions. We have established a definition for the average, but
exploring the concepts of median (quantiles) and covariance in this context could be
highly beneficial. A research direction that would be valuable to the signature theory
is the generalization of learning strategies initially designed for linear spaces to Lie
groups (or manifolds), exploiting the manifold and group structures as done with the
PGA. Note that a lot of work in this direction has already been done, in particular by
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developers of softwares ManOpt [Bou+14] and geomstats [Mio+20]. Regarding Chap-
ters 5 and 6, further investigation into the multiscale signature anomaly detection
method is necessary, particularly to address local anomalies (collective, contextual,
point) and to use feature importance. For clustering with the signature, it would be
interesting to employ more advanced methods such as agglomerative hierarchical
clustering and neural networks. Additionally, designing efficient numerical methods
for optimization within the Lie group of signatures would be very useful. Further-
more, as discussed in Section 2.3.5, trajectory reconstruction from a signature is
challenging, and current algorithms require a large number of signature features.
Advancing this area, which is in relation to optimization on Lie groups, could be
very beneficial. An intriguing outcome would be to interpolate between two time
series, as it is done in [CRT21, Section 4] with a Wasserstein-Fourier distance, using
a reconstruction of the signature barycenter or to reconstruct principal geodesics
obtained from the PGA. Finally, another interesting line of research is to obtain limit
theorems of k — Sjg x)(X) for stationary time series under dependence conditions,
as explored in [Kif24].
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Appendix A

Supplementary material of
Chapter 4

A1 Background on Lie groups

In this section, we group some useful facts on Lie groups.

Lemma A.1. Forany g, h € G and v € T1(G), we have
(dLg)h o (dRh)l = (dRh)g o (dLg)l- (Al)

Proof of Lemma A.1. Let g,h,p € G. Using the associativity rule of the group, we
have

(Lg o Rp)(p) = g(ph) = (gp)h = (Ry o Lg)(p) (A2)

thus Lg and Ry, commute for any g, h. Differentiating Equation (A.2), with p = 1and
v € T1(G), we have

((dLg)n © (dRn)1)(v) = ((dRn)g © (dLg)1)(v) (A.3)

thus dLg and dRp commute for any g, h. Note that this stays true foranyp € G. O

Lemma A.2. Forany g, h € G, we have
(dLgn)1 = (dLg)n © (dLn)1. (A4)
Proof. This identity comes from the differentiation of Lgp, = Lg 0 L. ]

Definition A.3. We call adjoint representation of G the function Ad : G — Aut(g), g —
Adg where

Ady : Ti(G) — Ty(G) (A.5)
Vi (dLg)g1 0 (dRg1 1i(V) (A.6)

The derivative of Ad is called the adjoint representation of g, ad : ¢ — End(g), v — ady :=
d(Ad)1(v). One can show that for any v,w € g, we have ady(w) = [v, W] := vw — wv,
where [.,.] is called the Lie bracket.

Lemma A.4. Let g = e" be an element of the signature space G<r and v an element of the
signature Lie algebra g<r. Then

Ad(g)(v) = gvg™! = ey, (A.7)

Proof. See [Reu93, Theorem 3.2]. O
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A.2 Proofs

Proof of Proposition 4.6. The first condition of Definition 4.5 is satisfied since h +
log, h is locally a bijection from G to T(G) and the norm is nonnegative.

To verify the second condition, we consider the point g = e" and the mapping
f: Ti(G) = G;v > e%2e¥e"?, which satisfies f(0) = g. Moreover, by group and
logarithm properties, we have v = log(e /2 f(v)e"*/2). Thus f(v) is one-to-one, and
can be taken as a chart of the manifold in a neighborhood of g. Finally, following the
same steps as in the proof of Lemma 4.8,

D(e" : e"2eve"/?) = ||v||2.

That proves, that in local coordinates given by the exponential map, the Hessian
of the divergence with respect to the second variable is exactly the quadratic form

associated with (-, -)%, and thus is positive definite. O

Proof of Proposition 4.7. We split the proof in several steps. First, we show how to
rephrase Equation (4.9). For this, let v = log(u), we can see that we can apply

Ad(e %") operator to (4.9) and show that p is a barycenter if and only if

N
D Fav) =0,
i=1

where
1 1
Fy(v) = log (e_ﬁ"xl-e_i") .

Now let us rewrite the first-order conditions for the cost function in Equation (4.10).
First, we look how the scaling affects the cost function. Denote v = log(u). Since
the group operation, logarithm, and inverses commute with dilation, we have that,
using Lemma 4.8, the divergence between dilated vectors becomes

D(6,(m) : 6,(x)) = [[log(e 215, (x)e™ 22 V)|2 = [[5, (F())II2,
Next, we split the vector inside the norm of the divergence by the orders:
Fx(v) = (0, Fx1(v), ..., Fx L(v)),

and let us write the gradient of the divergence between scaled parts VyD(6)(m) :
oa(x)) =

A2 Fy
(Vo Fa )T (Vo Fea®)T o (T Fae)T| [V S
2 (vszx,l(V))T (szFx,Z(V))T T (VV2FX,L(V))T X . A
: : : 2L | E )
(Vo Pt ()T (Va Faa@)T -+ (Vo Fn(v)T xL(V)
Note that, from the symmetric BCH formula,
1
Fx,]'(V) = —EV]' + cee p

depending on v, ...,vj-1
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hence the Jacobian (VyFx)" is upper triangular with scaled identity on the diagonal.
By applying an inverse scaling, we have that (for example, by [BU21, Lemma 4.7])

Fya(v) = 6,2(VyD(8(m) : 51(x))) = —(1+ O(A?))Fx(v).

Therefore, the rescaled necessary condition 6,-2Vy f(e") = 0 for the local minimum
in (4.9) can be written as

N S~
Z Fx;,a(v) = 0.
i=1
_ N _
Finally, denote by F(A,v) = }, Fx, 1. Note that we have the following:
i=1
e F(A,v)is polynomial bothin A and v ;
_ — _ N
e F(A,v) = F(0,v) + O(A?), in particular F(0,v) = Y, Fy,(v);
i=1

e The equation F (0, v) = 0 has unique solution (which is a barycenter).

e The Jacobian VF| (0,v) is a triangular matrix with the constant value on the
diagonal (—N/2), and thus is nonsingular.

By the implicit function theorem, for small A, F(A,v)=0hasa unique solution v(A)
in some neighborhood of the barycenter y, and v(A) is a continuous function of A.
We are left to prove that for sufficiently small fixed A, this solution is unique globally
(for v € T1(G)).

For this we note the following.

e First, since det(VE(0,v)) = const, for all v € Ty(G) and F(A,v) is polynomial,
then there exist Ay such that for all 0 < A < Ag we have det(VF(A, v)) > Cy > 0.
This guarantees that the Jacobian is globally nonsingular for small A.

e Second, we note that for any fixed vo € T;(G), the function IE(A, vot) ||% — oo as
t — oo, due to the fact that it is a squared norm of some polynomial map, which
is not constant in ¢ (similarly to the argument in the proof of Lemma 4.11).

This implies by [Pal59, Corollary 4.3], that each F (A,v)), for A < Ap is a global

homeomorphism, thus the solution to F (A,v) = 0 is unique for 0 < A < Ap (and
coincides with v(A) given by the implicit function theorem). m]

A.3 Supplementary material of Section 4.5

We give details on the SES method [Lem+21] coupled with the PGA /tPGA in Fig-
ure A.1 and more thoroughly in Algorithm 5.

Also, we present the dimension of the Lie group G<; and the corresponding Lie
algebra g<r, for a fixed dimension d = 4 in Table A.1.
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Apply (T - 1) Compute N X (T - 1) Average signatures
expanding windows signatures (denoted S)
Y
Fit linear Dimension reduction Compute _
regression E with tPGA/PGA - signature S<,(S)

Ficure A.1: SES method [Lem+21] with tPGA /PGA (SES-tPGA and
SES-PGA).

Algorithm 5: SES metHOD [LEM+21] withH PGA (SES-PGA)

Input: 0 = [ai'f[t]]l-,]- a set of M N time series, with time indicest =1,...,T

a=[al,...,aM]aset of M real values to predict

1 Initialize an array SES of size (M X By ) where d’ := By 4
2 fori=1,...,Mdo

3 Initialize an array S of size (T —1,d’)

4 fork=1,...,T—1do

5 t Sk, ] — & 2Ly S<e (0"[1: k +1])

6 SES[i,:] « S<»(5)

X — PGA(SES[l], o SES[M])

N

Split features X and target a into train and test sets

@

9 B* « LinearRegression(train, Xtrain)

o

10 Qtest < ﬁ*Xtest
11 return Qiest, Vtest

Truncation level L ‘ 2 3 4 5
dim(G< L(R4)) 21 85 341 1365
dim(g<z (R*)) 10 30 90 294

TasLE A.1: Dimensions of the signature space G<;(R*) and its tangent
space a<r(R*) for various truncation levels L and fixed dimension
d=4.
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Supplementary material of
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B.1 Dynamic Time Warping for measuring similarities in
time series

Dynamic Time Warping (DTW) [BC94] is a similarity measure between time series
introduced to deal with asynchronicity. Consider X = (X(1),...,X(n)), n > 1 and
Y =(Y(1),...,Y(m)), m > 1, two d-dimensional time series, respectively of lengths
n and m. Thus, X (i) and Y(j) are both vectors of dimension d. The DTW cumulated
similarity score between the first i columns of X and the first j columns of Y, denoted
as cs(i, j), is defined as

es(i, j) = min{es(i — 1,7 —1),es(i, j — 1), cs(i — 1, )} + | X (@) = Y(7)II>. (B.1)

Computing this similarity score gives us a trajectory alinement between X and Y.
Note that several variants of DTW exists. For instance, the Sakoe-Chiba band allows
for a faster computation of the cs matrix.

B.2 K-means clustering method

The K-means method is a relatively simple strategy used to discriminate observations
into K clusters. The method is the following. Let x1,...,xx5 be N observations in
R?. First, initialize K values y(l), o, yg in R?, called centroids. Then, the K-means
method is the iteration of the following two steps, until convergence: at iteration k,
do

i. Assignment step: assign each observation x; to the cluster with the nearest
mean y;.‘.

ii. Update step: y;.‘” is the average of observations in cluster j.

The convergence condition can be a fixed number of iterations (e.g. 100 iterations), or
stop when clusters do not change anymore between two iterations. Note that there
have new versions of this algorithm, e.g., the k-means++ method or the X-means.
Here, we only deal with the vanilla method as it is still widely used [ASW15, Table 4].

B.3 Spectral clustering method

Given data, we compute a similarity matrix S, where S; ; is the similarity between x;
and x;. The spectral clustering method consists in the computation of the eigenvectors
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of the normalized graph Laplacian associated to the similarity matrix. We present
the spectral clustering strategy in Algorithm 6.

Algorithm 6: SPECTRAL CLUSTERING

Input: S the N X N similarity matrix; K number of clusters
1 D « the diagonal matrix such that D; ; := Zﬁ\il Sij -
2 L«—D-S5
3 L« D Y2LD71/2
4

U « the N x K matrix such that its k-th column is the k-th eigenvector of L.
U,‘/]‘
;1

5 U « the matrix such that fli,j =

Vi — i—throwoff[, i=1,...,N.

Apply the K-means algorithm to data {y1, ..., yn} and obtain K clusters
Cy,...,Ck.

Output: Clusters Cy, ..., Cxk

NS

This algorithm can be efficiently implemented using standard linear algebra li-
braries, such as BLAS. Note that many variants exists, for instance, instead of using
the complete matrix S in the algorithm, we can construct a sparse version of S where
for each point x;, only the similarity values of the n nearest neighbors are kept and
the other values are set to zero. For further details on spectral clustering, its tuning
strategy, interpretation with graph theory and variants, see [Lux07].
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Differentiable geometry toolbox

The goal of this section is to present a few elements of differential geometry. In
particular, those notions are used in Chapters 3 and 4.

Differentiable geometry is the study of smooth manifolds, see Appendix C.2 be-
low. An extensively studied example are Riemannian manifolds, which are smooth
manifolds with a notion of length, presented in Appendix C.3. A link with the
signature space is made in Appendix C.4. To dive deeper into the theory of differ-
entiable geometry and Riemannian manifolds, we refer to the following introducing
textbooks: [Leel8], [Car92] and [Tul7]. An introduction to Lie groups can be found
in [Hal03].

C.1 Standard notations

There are a lot of abuse of notation in differential geometry. To be consistent with
textbooks, we will use the following notations. Let M be a manifold, p € M,
f : YU — R" a smooth (C*) mapping, with U open subset of M, and X a smooth

(C*) vector field on U. Denote as a'(p) the coordinates of X, in basis (%, ey %)
of T, M.

e X, —Mapping from C*(U,R") to R such that X, = X(p) := X1_; a’(p) %Lﬂ
e X f — Differential of f in the direction of X,
n 8f
Xfi=) a'—= C1
f= 2 5 (€1

and for any p € M, we denote the differential of f in the direction of X at point
p as

(XA)p) :— a'(p) —' (C2)

e fX — Pointwise product of f and X, (f X)(p) := f(p)X(p) .

A particularly confusing notation is the Einstein convention: if anindex appears twice
in a formula, then there is implicitly a sum over it, e.g., YZ*E, denotes Dk YZYE,
(where we intentionally don’t give meaning to Y, Z and E here). We will not use this
convention but note that it is standard in textbooks.
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C.2 Manifolds, tangent space and connections

First, we introduce the notion of topological manifold, with the following two defi-
nitions.

Definition C.1 (Locally Euclidean space). A topological set M is locally Euclidean of di-
mension n if for all p € M, there exists a neighborhood U such that there is a homeomorphism
¢ defined from U to R".

Definition C.2 (Topological manifold). A topological set M is a topological manifold of
dimension n if it is a Hausdorff, second countable, locally Euclidean space of dimension n.

Loosely speaking, a manifold is a space such that for each point there exists a
bijection between a neighborhood of this point and R" for some integer 7.

Definition C.3 (Chart). Let M beaset. Let p : U c M — R? be a bijection. (U, o) is
called a d-dimensional chart of M.

Definition C.4 (Atlas). Let (U, ¢o) be a collection of d-dimensional charts of M such
that:

L4 Ua Uy =M
e For any pair a,  such that U, N Ug # @, both sets ¢ o(Ux N Up) and g(Us N Up)
are open sets in RY and mapping PpoPpylisC™.
(Uy, Pr) is called a smooth (or C*) atlas of M into R4,

The second condition is to ensure that the charts overlap smoothly. Then, we
define the notion of maximal smooth atlas as follows.

Definition C.5 (Maximal atlas). Given a smooth atlas on a topological space, a chart is
said to be smoothly compatible with the atlas if the inclusion of the chart into the collection of
charts of the atlas results in a smooth atlas.

A smooth atlas determines a maximal smooth atlas, consisting of all charts which are
smoothly compatible with the given atlas.

Definition C.6 (Smooth manifold). A smooth manifold is a Hausdorff and second countable
topological space M, together with a maximal differentiable atlas on M.

Remark C.7. There are specific well-studied manifolds, that we will define in the following.
e Manifolds defined by the choice of the atlas, e.g., Riemannian manifolds.

e Manifolds equipped with an additional structure, e.g., smooth manifolds or Lie groups
(which are smooth manifolds with a group structure).

From now on, we only consider smooth manifolds.

A crucial point in differential geometry is that tangent spaces are linear maps,
that we define now. For further details on differentiation on manifolds (and thus
tangent spaces), the approach made in [Tul1, Section 8] is helpful.

Definition C.8 (Tangent space). Let M be a smooth manifold and p € M. A tangent
vector at p is a linear map v : C*°(M) — R such that for all f, g smooth (C™) mappings on
M, it satisfies the product (or Leibniz) rule

o(fg) = f(p)og +g(p)of . (C.3)

The set of all tangent vectors at p is called the tangent space at p, denoted as T, M.
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We can now define set of tangent vectors.

Definition C.9 (Vector field). Let M be a smooth manifold. We call vector field any
mapping

X M—->TM
P Xp
where we have denoted as T M the following disjoint union:

TM = |_| M. (C.4)
peM

In the following, we denote as X(M) the set of all the vector fields defined on M.

The following definition is central in differential geometry. It allows us to compare
tangent vectors in different tangent spaces, which is not straightforward in manifolds
as in linear spaces. From this notion, called connection, we can define derivatives on
manifolds.

Definition C.10 (Connection). Let X(M) be the set of vector fields on M. An affine (or
linear) connection is any map

V:X¥M) X XM) - X(M)
(X,Y)— V(X,Y) = VxY

such that the three following properties are verified:
e Linearity over C®(M) with respect to X: for any f € C*(M),

VixY = fVxY . (C.5)

o R-linearity with respect to Y : for any real a, b,

Vx(tZY + bZ) =aVxY +bVxZ . (C6)

e Product (or Leibniz) rule: for any f € C*(M),

Vx(fY) = (X)Y + fVxY . (C7)

VxY is called the covariant derivative of Y in the direction of X and V is called connection
or covariant derivative.

Remark C.11. Note that in Definition C.10, we have introduced the notion of affine connec-
tion and not the general notion of connection, for clarity purposes. The difference between
the definition of connection and affine connection is the set to which the Y belongs and also
the output space of V. Denote 1t : E — M a vector bundle over M (not defined) and denote
E(M) the set of smooth sections of E (not defined). A connection (not necessarily affine) is a
function

V:iXM)xEM) = EM) . (C.8)

Now, in order to introduce an important theorem and the notion of parallel vector,
which allows us to translate vectors from one tangent space to another, we need the
following definition of vector field along a curve.
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Definition C.12 (Vector field along a curve). Let c : [a,b] — M. We call vector field
along curve ¢ any mapping

V:la,b] = |_| T.yM . (C.9)

a<t<b

Theorem C.13 (Covariant derivative along a curve). Let M be a smooth manifold and
V a connection in T M. For each smooth (C*°) mapping c : [a,b] — M, V gives a unique

mapping
D
7 i T(TM)) = T(TMqy), (C.10)

where we denote as T'(T M| )) the space of vector fields along c, such that for any vector field
V along curve ¢ we have the following:

o R-linearity: for any A € R,

D(AV) DV
T A T (C.11)
e Product (or Leibniz) rule:
D(fV) Df DV
o Compatibility with V:
DV ~
W(t) = ch(t)V (Clg)
where V is the vector field such that V (t) = V(c(t)).
The mapping B is called the covariant derivative of V along c.
Proof. See [Leel8, Theorem 4.24]. |

Definition C.14 (Parallel vector field). Let M be a smooth manifold and V connection in
T M. A vector field V along a curve c is said to be parallel along c with respect to V if

DV
= =0. (C.14)

This is illustrated in Figure C.1.

Ficure C.1: A parallel vector field along a curve.

Definition C.15 (Parallel transport). Let y : I C R — M beasmooth mapping, to € I, and
v € Ty 1) M. We call parallel transport of v along y the unique parallel vector field V along
y such that V(tg) = v, which existence and uniqueness is proved in [Leel8, Theorem 4.32].
We call parallel transport the mapping
), TygM — TyupM (C.15)

to—t
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s;tch that Hg;—m (v) = V(t1) for each v € T, )M, where V is the parallel transport of v
along y.

The notions of parallel transport and connection are closely related. The following
proposition shows that the parallel transport determines the connection.

Proposition C.16. Let M be a manifold, V a connection on T M. Let X, Y be smooth vector
fields on M. Then, for any p € M,

d

Y=,

th—wyy(t) (C.16)

wherey : I C R — M is any smooth mapping such that y(0) = p and y(0) = X,,.
Proof. See [Leel8, Corollary 4.35]. m|
Now, we want to generalize the notion of straight line to curved spaces.

Definition C.17 (Geodesic). Let M be a manifold equipped with an affine connection V.
A smooth mapping y : 1 C R — M is called a geodesic if for all t € I,

V)',(t)]'/(t) =0. (C17)

In other words, a geodesic is a curve which covariant derivative of its acceleration
y is null. It is a generalization of straight lines to curved spaces.

C.3 Riemannian manifolds

We introduce the following definition of Riemannian metric, which is an intrinsic
way of measuring lengths on a manifold. A Riemannian metric is an inner product
on tangent space, whereas a metric is an abstract notion of distance. Note, that any
Riemannian metric induces a metric, called the Riemannian distance.

Definition C.18 (Riemannian metric). Lef ({., .)pe m) be a collection of inner products
(i.e., symmetric, bilinear and positive definite mappings) that varies smoothly in p, i.e., for
any pair of smooth vector fields X,Y around p,

p (X, Y,) (C.18)
is a smooth mapping. We call Riemannian metric the mapping p v g, with
gy i IMXT,M—R
(u,0) = (u,v),
where we denote as T, M the tangent space at p of M.
Theorem C.19. Let M be a smooth manifold. Then M admits a Riemannian metric.
Proof. See [Car92, Proposition 2.10]. ]

Definition C.20 (Riemannian manifold). Let M be a smooth manifold equipped with a
Riemannian metric §. (M, g) is called a Riemannian manifold.

In order to introduce the fundamental theorem of Riemannian geometry, we need
the following two definitions.
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Definition C.21 (Symmetric connection). A connection V is said to be symmetric if for
all vector fields X,Y € X(M), we have

VxY - VyX = [X, Y] (C.19)
where [X,Y] is the smooth vector field such that [X,Y](f) = X(Y(f)) — Y(X(f)) for all
feC*M).

Definition C.22 (Connection compatible with the Riemannian metric). Let (M, (., .))
be a Riemannian manifold. A connection is said to be compatible with the Riemannian metric
if for all vector fields X,Y,Z € X(M), we have

Z(X,Y) = (VzX,Y) +(X,V;Y) . (C.20)

In other words, the angle between two vectors is constant when parallel transport
is applied to the two vectors.

Theorem C.23 (Fundamental theorem of Riemannian geometry). Let (M, g) be a
Riemannian manifold. Then, there exists a unique symmetric connection V on T M that is
compatible with the metric g. It is called the Levi-Civita connection.

Proof. See [Leel8, Theorem 5.10]. |

C.4 Signature space

The signature space (see Section 2.2.3) is a Lie group and also a sub-Riemannian
manifold.

Definition C.24 (Lie group). A Lie group is a smooth manifold equipped with a group
structure such that the group operations of multiplication and inversion are smooth (C*)

mappings.

Example C.25. Examples of Lie groups are:
o GL(n) the space of n X n real matrices with non zero determinant.
e O(n) = {A € GL(n) s.t. ATA = I} the orthogonal group.

Remark C.26. Note that the space of signatures, denoted as G<, in Section 2.2.3, is a
sub-Riemannian manifold (see [ABB19, Definition 3.2]), which is a more general structure
than Riemannian manifolds and which requires more background, such as the notions of fiber,
horizontal and bracket-generating vector field. For details on sub-Riemannian geometry,
see [ABB19].
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Abstract

The analysis of sequential data, or time series, is key in numerous field of applications, e.g., engineering,
sociology, medicine or econometrics. Often, linear models are not sufficient to account for the complex
nature of data. This has created a need for interpretable and nonlinear methods for time series analysis.
In this thesis, we analyze multidimensional time series through the lens of their integrals of various
moment orders, constituting their signatures, a novel method for time series analysis. Under mild
conditions, signatures characterize time series uniquely, up to time reparametrization and translation,
into a set of features. Due to their ability to encode nonlinear dependencies in data, signature features
have improve the current state-of-the-art in a broad range of Machine Learning applications, such as
distribution regression, anomaly/novelty detection, human action recognition.

Signature features lie in a nonlinear space, making their manipulation challenging from a practical
perspective. First, we introduce a method to average signature features which takes into account
the geometry of the space, through a finite iterative algorithm. In addition, we present a strategy to
effectively reduce the dimension of signature features by adapting the Principal Component Analysis
(PCA). Our approaches rely on the algebraic manipulation of signatures and local approximations. We
show that this dimension reduction method allows for stability of performances while using much fewer
signature features. Then, we demonstrate how signatures can be highly effective as a multiscale tool
for anomaly detection, with competitive runtimes. Finally, in the last chapter, we deal with clustering
of time series under perturbations and introduce similarity measures in the space of signatures that we
couple with usual distance-based clustering methods.

Keywords: Time series, Iterated Integrals Signatures, Learning on manifolds, Unsupervised learning.

Reésumeée

L'analyse de données séquentielles, ou séries temporelles, est essentielle dans de nombreux domaines
d’application, tels que l'ingénierie, la sociologie, la santé ou 1’économétrie. Souvent, les modéles
linéaires ne suffisent pas a rendre compte de la nature complexe des données. Cela a créé un besoin de
méthodes interprétables et non linéaires pour 1’analyse des séries temporelles. Dans cette thése, nous
analysons les séries temporelles multidimensionnelles sous I'angle de leurs intégrales de différents or-
dres de moments, constituant leurs signatures, une nouvelle méthode d’analyse des séries temporelles.
Sous des hypothéses non contraignantes, les signatures caractérisent les séries temporelles de maniére
unique, a reparamétrisation temporelle et translation prés, en un ensemble de caractéristiques. En
raison de leur capacité a encoder des dépendances non linéaires dans les données, les signatures ont
dépassé les performances des meilleures méthodes sur un large éventail d’applications d’apprentissage
automatique, telles que la régression de lois de probabilités, la détection d’anomalies, la reconnaissance
d’actions humaines.

Les signatures sont des points sur un espace non linéaire, ce qui rend leur manipulation difficile
d’un point de vue pratique. Tout d’abord, nous introduisons une méthode de calcul de moyennes de
signatures qui tient compte de la géométrie de 1'espace, par le biais d"un algorithme itératif fini. En
outre, nous présentons une stratégie permettant de réduire efficacement la dimension des signatures en
adaptant I’Analyse en Composantes Principales (ACP). Nos approches reposent sur la manipulation al-
gébrique des signatures ainsi que sur des approximations locales. Nous montrons que cette méthode de
réduction de dimension permet de stabiliser les performances tout en utilisant beaucoup moins de car-
actéristiques de signature. Ensuite, nous démontrons comment les signatures peuvent étre trés efficaces
en tant qu’outil multi-échelle pour la détection d’anomalies, avec des temps d’exécution compétitifs.
Enfin, dans le dernier chapitre, nous traitons du partitionnement de séries temporelles soumises a des
perturbations et nous introduisons des mesures de similarités dans I'espace des signatures que nous
combinons aux méthodes classiques de partitionnement.

Mots clés : Séries temporelles, Signatures, Apprentissage sur variétés, Apprentissage non supervisé.
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