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Résumé

Les problèmes d’agencement surviennent dans de nombreux contextes en ingénieurie et en infor-
matique. Typiquement, la résolution d’un problème d’agencement consiste en l’organisation spatiale
et l’interconnexion d’un ensemble d’éléments dans un espace. Cet espace et ces interconnexions
peuvent être de complexité très variable. Un ensemble de contraintes et d’objectifs complémentent
la description du problème, tels que minimiser la longueur ou la surface des interconnexions, ou
fixer la position de certains éléments. La planification des étages en architecture, de niveaux de jeux
vidéo, l’agencement d’installations industrielles ou de circuits électroniques, sont tous des exemples
de problèmes d’agencement.

Les contraintes topologiques jouent un rôle important dans l’agencement. La topologie considère
des objets définis par les voisinages de leurs éléments, sans s’attarder sur leur géométrie spécifique.
Par exemple, un graphe est une entité topologique, constituée uniquement des liens entre ses nœuds.
Au contraire, dessiner un graphe est une opération géométrique, puisqu’elle demande de spécifier la
position des nœuds.

Cette thèse se focalise sur la résolution de deux problèmes d’agencement spécifiques liés à la
fabrication et la conception computationnelles sujets à des contraintes topologiques. Plus particuliè-
rement, il s’agit de la génération d’agencements de circuits électroniques et la génération de supports
pour l’impression 3D.

La première contribution est un système pour la conception d’écrans surfaciques constitués de
DEL RVB à travers l’utilisation de circuits imprimés pliables. Nous plions les circuits imprimés
traditionnels en utilisant des motifs de découpe localisés, créant ainsi des ‘charnières’ dans la plaque.
Le système prend en entrée un maillage basse-résolution et produit des plans pouvant être envoyés à
des services en ligne de fabrication de circuits. Suite à la fabrication, l’écran est assemblé en pliant
le circuit sur une impression 3D du maillage d’origine. Les écrans fabriqués peuvent être contrôlés
à travers une interface similaire à des shaders pour créer des effets lumineux impressionnants. Le
problème global est découpé en sous-problèmes locaux grâce à la topologie chaînée du circuit, les
plans finaux étant obtenus en ‘recousant’ les solutions aux sous-problèmes. Au lieu de suivre la
méthode traditionelle d’agencement électronique (concevoir le schéma électrique, placer et connecter
les composants) ; nous décidons du nombre de composants, leur placement et leur routage séparément
pour chaque triangle au moment-même de la génération.

La deuxième contribution est un algorithme procédural pour la génération de supports pour
l’impression 3D sous forme d’échafaudages. Ces supports s’impriment de manière fiable et sont
stables [DHL14]. L’algorithme précédent ne considère pas les intersections entre les supports et
l’objet imprimé, laissant des marques indésirables sur la surface de l’objet. De plus, la complexité de
l’algorithme dépend du nombre de points à porter. Nous proposons un nouvel algorithme inspiré
du Model Synthesis (MS) [Mer09]. Il évite implicitement les intersections et sa complexité est
indépendante du nombre de points à porter. Les supports sont représentés indirectement à travers
un ensemble d’étiquettes, chacune représentant une partie de la structure (par exemple une partie
de pilier, de pont, ou une jonction) ; et un ensemble de contraintes d’adjacence déterminant quelles
combinaisons d’étiquettes sont possibles dans toutes les directions. Les supports sont générés de haut
en bas en attribuant de façon répétée une étiquette à un voxel, puis en propageant les contraintes
afin d’éliminer les étiquettes rendues impossibles. Cet algorithme, les contraintes d’adjacences et les
heuristiques utilisées sont conçues ensemble pour générer des supports sans essai-erreur ou retours
arrière, typiques du MS et autres méthodes similaires.
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Abstract

Layout problems appear in many areas of engineering and computer science. Typically, a layout
problem requires to spatially arrange and interconnect a number of geometric elements in a domain.
The elements can have a fixed or variable size, as well as an arbitrary shape. The domain may be a
volume, a planar region or a surface. It may be fixed or allowed to reshape. The interconnections
may be simple paths, shared contact regions, or both. A set of constraints and objectives complement
the problem definition, such as minimizing interconnection length, fixed positions for some elements,
and many others. Layout problems are ubiquitous: floorplanning in architectural design, video game
level design, industrial facility layout planning, electronics physical layout design, and so on.

Topological constraints often arise in layout problems. Topology considers objects as defined
by their elements’ neighborhoods, without consideration for their specific geometry of placement.
For example, a graph is a purely topological structure, consisting only of the relationships between
its nodes. On the other hand, a graph drawing needs to specify the position of its nodes, i.e. the
geometry of the graph.

This thesis focuses on tackling two specific layout problems subject to topological constraints
arising in computational design and fabrication. These are electronic circuit physical layout generation
and 3D printing support generation.

The first contribution is an entire system for the design of freeform RGB LED displays through
bendable circuit boards. Typical rigid PCBs are made to bend by strategically using kerfing, i.e.
cutting patterns into the board to create ‘hinges’ where it needs to fold. The system takes a low-poly
mesh as an input and outputs fabrication-ready blueprints, that can be sent to any online PCB
manufacturer. After fabrication, the display is obtained by folding the circuit over the 3D printed
mesh. The LEDs are commonly found on commercially available LED strips and are easy to control.
Thus, the display can be used through a programmable interface to generate impressive lighting
effects in real time. The global layout problem is decomposed into local per-triangle sub-problems
by exploiting the chain topology of the electronic circuit, the final layout being obtained by stitching
the local solutions. Instead of traditionally following the physical design pipeline, i.e. schematics
design, component placement and routing; we decide the number of components, their placement
and their routing per-triangle on the fly.

The second contribution is a procedural algorithm for generating bridges-and-pillars supports for
3D printing. These supports have been shown to print reliably and in a stable manner in [DHL14].
Unfortunately, the previous algorithm struggles to generate supports that do not intersect the
object, leaving visible scars on its surface after support removal. Additionally, its complexity
scales with the number of points to support. We propose an algorithm based on Model Synthesis
(MS) [Mer09] to generate these supports, with an implicit knowledge of object avoidance and a
complexity independent of the number of points to support. Our algorithm works on a voxelized
representation of the object. The supports are encoded in the algorithm with a set of labels, each
representing a part of the structure (e.g. a pillar block, a bridge block, a pillar-bridge junction);
and a set of adjacency constraints defining all possible label combinations in every direction. The
supports for an object are generated top to bottom by repeatedly assigning labels to voxels and
propagating constraints to remove inconsistent labels in the domain. The algorithm, adjacency
constraints and heuristics are co-designed to avoid the need for trial-and-error or backtracking,
typical of MS and similar approaches.
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1.1 Context

This thesis takes place at the intersection of multiple domains, each with rich
histories and diverse applications. This section aims to quickly present them
and their objectives.

1.1.1 Computational design

The ever-increasing availability of and reliance on computers in the past decades
has led to major changes in the design process and methodologies. Computers
can help automate traditional design approaches, making them more time-
and resource-efficient. Due to their computational power, they can also make
these approaches scale to much larger instances that would have been incon-
ceivable without computers, or would have taken considerable effort to carry
out. Producing tools to help these established design methods is the goal of
Computer-Aided Design (CAD).

The integration of computational tools in traditional design frameworks has
also led to another, deeper paradigm shift: the lean towards computational
thinking and the advent of Computational Design (CD) [dBoi22]. CD consists
in a reevaluation of traditional approaches in a computation-based, algorithmic
framework, defining new methods and representations for modeling and design.
While originating in their presence, this type of thinking is independent from
computers themselves and is related to computer (or rather computing) science
instead. In architecture, this shift is reflected for example in the transition
from traditional to Generative Design (GD). Computational techniques allow
the design of not a single shape through a rigid representation, but of whole
families of shapes through more flexible representations. Among others, these
can be parametric, where a host of values with semantic meaning can be easily
modified to alter the design; or fully generative, where the final design is the
result of a more general algorithmic or optimization-based process.

(a) Aerial view. (b) Inside view.

Figure 1.1: International Terminal at Waterloo designed by Grimshaw Architects, completed
in 1993. Photographs by Jo Reid and John Peck, obtained from the project’s website. The
international terminal is the long structure on the left of the aerial view.

A real-life example of this parametric design in architecture is the Interna-
tional Terminal at Waterloo [GJ12], shown in Figure 1.1. This terminal was an
extension of the original station. The project was subject to especially tight

https://grimshaw.global/projects/rail-and-mass-transit/international-terminal-waterloo/
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constraints, “limited by the electrical network on one side and the roads on
the other, in a winding area that narrows toward the interior” ([GJ12]). The
resulting design consists of a modular truss structure, varying in width from 50
meters at the entrance to 35 at the end. The shape was defined parametrically,
easily allowing to fit a given width profile along its length. By cleverly defining
the structure through a parametric and modular lens, the final building was
tailor-made to fit the given constraints easier than a fully explicit approach
would have allowed.

1.1.2 Computational fabrication

Many techniques previously reserved to industrial settings are becoming avail-
able to the general public. Two examples we target in this thesis are Additive
Manufacturing (AM) and Printed Circuit Board (PCB) design. Established
fabrication technologies such as AM or electronics prototyping have recently
become accessible to everyone due to the appearance of capable and affordable
3D printers or online PCB fabrication services. These processes being widely
accessible contrasts with the complexity of the processes themselves, transform-
ing 3D models into physical objects for the former, and electronic schematics
into functioning circuits for the latter. Indeed, making use of a specific fab-
rication technology for the first time often demands extensive knowledge of
the fabrication process, significantly raising the barrier of entry, especially for
newcomers.

The increasing accessibility of fabrication technologies, carried by the devel-
opment of more affordable tools and more approachable software has enabled
the development of hobbyist and maker groups. These gather online and around
community-operated spaces offering access to computers, workshop tools and
knowledgeable people willing to share their expertise. In turn, these commu-
nities contribute to making technologies ever more accessible, and help more
people explore their potential and focus on their creative aspects. This shift has
also had an impact on education, with proposals and studies on the integration
of the "maker mindset" into classrooms and education curricula [Sta13; KNG15],
with a special focus on how to make these spaces open and welcoming to every-
one, independently of their gender, ethnicity or socioeconomic status [Mar15;
TBS18].

This increasing interest in fabrication technologies and quick prototyping
has been accompanied by significant advances from computer graphics and
computational fabrication research in fabrication-aware design [BFR17].

An example of an actor leveraging these advances in fabrication technologies
and computational tools is the generative design studio Nervous system [RL],
founded in 2007 by Jessica Rosenkrantz and Jesse Louis-Rosenberg. Their
work mixes generative design and computational fabrication to create intricate
products and works of art. In their own words, “ instead of designing a specific
form, [they] craft a system whose result is a myriad of distinct creations” ([RL]).
Figure 1.2 showcases two designs resulting from two of their projects, Kinematics
Dress and Floraform. The dress is composed of 2279 unique triangular panels
connected through 3316 hinges, all fabricated as a single folded piece requiring no
assembly. The chandelier was generated using two of their generative algorithms,
mimicking the biomechanics of growing leaves and flowers.
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(a) Kinematics Dress 1, 2014. (b) Floraform chandelier, 2017.

Figure 1.2: Photographs from the Kinematics Dress and the Floraform projects from Nervous
system. Images obtained from the project’s respective websites (Floraform and Kinematics Dress).
Photograph of the dress by Steve Marsel Studio.

1.1.3 Layout problems in design

Many algorithmic problems arising in Computational Fabrication (CF) take the
form of a layout problem. In the context of this thesis, a layout problem refers to
a collection of three elements: a space, a set of objects and a set of constraints.
Solving the problem means generating a valid layout, i.e. arranging the objects
into the space while satisfying the constraints, often while optimizing additional
objectives.

These problems appear in many different shapes and forms, at many scales
and in different fields. For example, constructing building floor plans is an
architectural layout problem [WMR22], where inner walls and doors are placed
in the floor to create rooms that should all be accessible from the main door.
A particularly high-stakes example is facility layout planning [PMD21], where
elements of a production system are properly arranged within the facility space
to optimize layout area, construction cost, or transport time among other
criteria. These are of course, simplified representations of the real-life problems,
where many more constraints and objectives have to be taken into account in
order to design practical spaces; but it shows that many commonplace problems
can be modeled as layout problems.

Another variant is game level layout generation, a subset of Procedural Con-
tent Generation (PCG), often used nowadays in roguelikes such as Spelunky [Yu16].
These techniques are used to provide complex environments for the player to
evolve in with minimal designer intervention, such as providing a connectivity
graph between the levels and a set of possible room shapes [Ma+14]. While the
stakes are lower, it is difficult to find the balance between automatic generation
and authored content. Leaning too much towards the former makes content feel
unoriginal and repetitive, while leaning towards the latter requires significant
amounts of work [Gam16].

In particular, layout problems also arise in the field of CF. For example,
physical design of PCB in electronics can be modeled as a layout problem.
Components and conductive traces have to be placed on the physical area of

https://n-e-r-v-o-u-s.com/projects/albums/floraform-chandelier/
https://n-e-r-v-o-u-s.com/projects/sets/kinematics-dress/
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the board such that components are connected as specified in the schematic.
Additional contraints come from the PCB fabrication process and from physical
phenomena. For example, the spacing between traces should be over a threshold
specified by the manufacturer to allow for tolerance during the copper etching
process, or evenly distributing heat-generating components to preventing them
from failing due to high temperatures.

1.2 Contributions

This thesis tackles two specific layout problems in CF: the embedding of
electronic circuits onto a 3D shape, and the generation of support structures
for AM. Albeit in different application fields, we employ a similar point of
view to tackle these challenges. In both cases, we develop techniques exploiting
topological constraints and information to simplify the solution space and the
optimization process.

1.2.1 3D LED-based displays via foldable circuit boards

Usually, simple electronic circuits are built on top of rigid PCB, consisting of a
sandwich of conductive and non-conductive layers. Components can be soldered
onto these boards, and connections between these components are etched into
the conductive layers [LS20]. This approach allows packing components very
densely, making electronic circuits space-efficient. Additionally, affordable online
PCB manufacturing services such as PCBWay, JLCPCB or Eurocircuits among
others allow everybody to design their own custom circuits, order them and
receive them fully assembled a few weeks later. Circuit design is also more
accessible than ever thanks to powerful Electronic Design Automation (EDA)
software suites such as the open-source suite KiCad [CK92], or Autodesk’s
Eagle [Cad88], recently integrated into Fusion 360.

Instead, in freeform electronics (see Figure 1.3), typical substrates are
replaced by assemblies or skeletons of conductive wires and rods for aesthetic
purposes. This makes it possible to create sculptures with a desired shape
serving a specific purpose, separating form from function. Nevertheless, it comes
at the expense of being harder to fabricate and often less functional. Inspired
from the freedom of freeform electronics, we design foldable rigid PCB that
have a much lower barrier of entry due to the availability of the technology.
Flexible PCB exist and are used in particular for board interconnects in tight
spaces, but are significantly more expensive [Wan+20; All23], have tighter
design constraints and are harder to fabricate.

We insert kerfing patterns into our PCB, which are normally used for bending
wood. These are patterns cut into the material that allow it to deform or bend
in the desired way in specific regions. These allow us to take an input shape
represented as a polygon mesh, unfold it along its edges, lay out an electronic
circuit in that space and finally fabricate it. This PCB can then be bent into
the original input shape. We chose to work with an LED chain circuit, using
widely available addressable Red-Green-Blue (RGB) LED. This process results
in a low-resolution freeform RGB display, that can be controlled to produce
interesting lighting effects.

An LED chain is a simple electronic circuit: each LED is connected to the
previous and next ones in the chain, and every one of them are connected to
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(a) Freeform Light-Emitting Diode (LED) sphere by
Jiří Praus from Instructables.

(b) Freeform square LED matrix by Mohit
Bhoite from his personal website.

(c) Closeup of The Clock by Gislain Benoit from his personal website.

Figure 1.3: Examples of freeform electronics by different makers.

power and ground. The chain starts and ends at a connector. Only the nature
of the circuit, an LED loop, is specified. We do not know in advance how many
LED will contain the circuit, or which LED will be adjacent in the chain.

1.2.2 Procedural generation of 3D printing supports

AM technologies have become available to the larger public in the last decades.
The ease of use of consumer-grade printers, the emergence of online 3D printing
services, and the many ready-to-print models available online either for free or

https://jiripraus.cz/
https://www.instructables.com/Christmas-LED-Sphere/
https://www.bhoite.com/
http://techno-logic-art.com/clock.htm
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for a small fee have made it easy for anyone to 3D print objects. Many printing
methods fabricate objects by depositing material slice by slice, constructing the
object bottom-to-top. Due to this, unsupported features and steep overhangs
cannot be printed without additional structures supporting them.

The importance of supports in 3D printing cannot be understated [JXS18].
While they enable the fabrication of complex geometries, they require manual
effort to be removed and they result in wasted material that takes up printing
time. Also, after removal they can tarnish the final appearance of the print by
leaving scars at the contact point between the supports and the object. Thus,
finding good types of support structures and optimizing them to work well
with the target fabrication technologies is a key part of additive manufacturing
research.

Our algorithm procedurally generates a scaffolding structure consisting
of bridges and pillars supporting chosen points on the object. The class of
generated structures are defined only locally: any small region of any output
structure looks like a member of a pre-designed set of shapes. While this defines
the overall nature of the resulting structures, these still have to satisfy functional
requirements such as supporting the input points or connecting to the printing
bed.

1.3 Positioning

Although dissimilar at first glance, these two problems can be viewed
through the same lens.

In both cases, we first frame the issue as a layout problem, which we then
solve by constructing solutions defined locally, using properties derived from
these definitions to design targeted synthesis algorithms. The local definitions
of our solutions take the form of topological constraints specifying how the
objects of our layout problem can be assembled together. From there, our
methods generate layouts from the solutions, i.e. geometric embeddings that
can be fabricated. However, the exact final geometry, its size and structure, is
only implicitly derived from the topological constraints.

Circuit layout generation is clearly a layout problem, with electronic com-
ponents having to be placed within the circuit board while taking electrical
interconnects into account. We consider solutions in the shape of a loop. Locally,
LEDs are chained, each having an LED before and after. Specific information
such as how many LEDs the circuit has, how they are connected, and the exact
physical layout are generated by our algorithm. Framing support generation
for 3D printing as a layout problem requires some additional work. We work by
tiling 3D space with a set of building blocks that define the support structure.
These blocks come with additional information specifying how they can be
locally assembled. All of this defines a space of possible support structures,
among which we synthesize a solution. These approaches are loosely represented
in Figure 1.4.

The goal of this thesis is to provide a useful resource for solving layout
problems arising in the context of fabrication-oriented design, by putting the
focus on local topological constraints and how they can be used to simplify
these problems.
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(a) Circuit layout generation.

(b) Support generation for 3D printing.

Figure 1.4: Schematic representation of the approach used to tackle the problems in this thesis.

1.4 Publications

This PhD work has resulted in the following publications:

• Marco Freire et al. “Procedural Bridges-and-Pillars Support Generation”.
In: Eurographics 2022 - 43rd annual conference of the european association
for computer graphics (Apr. 2022), 4 pages. doi: 10.2312/EGS.20221025;

• Marco Freire et al. “PCBend: Light up Your 3D Shapes with Foldable
Circuit Boards”. In: ACM Transactions on Graphics 42.4 (Aug. 2023),
pp. 1–16. issn: 0730-0301, 1557-7368. doi: 10.1145/3592411.

The work on the procedural generation of supports for 3D printing was
carried out during the first year of my PhD through the multiple COVID-19
lockdowns. It was a joint work with Samuel Hornus, Salim Perchy and
my advisor Sylvain Lefebvre, with a lot of technical assistance from Pierre-
Alexandre Hugron and Pierre Bedell. This approach was implemented in a
beta version of the MFX research team’s slicer IceSL [INR13].

The work on LED-based 3D displays is the result of a two-year-long col-
laboration between Camille Schreck, Pierre-Alexandre Hugron, my advisor
Sylvain Lefebvre and myself, with Manas Bhargava as a joint first author and
his advisor Bernd Bickel from the Institute of Science and Technology Austria.
While most of the work was done jointly, it is natural in long projects involving
multiple people that different people focus on different aspects according to their
expertise and affinities. In particular, Manas played a significant role on mesh
unfolding, bending experiments and LED placement, while I specifically focused

https://doi.org/10.2312/EGS.20221025
https://doi.org/10.1145/3592411


1.4. Publications 9

on hinge design, LED routing and layout generation. The code and data re-
sulting from this work are available at https://github.com/mfremer/pcbend.
The submission video for the article showcases many lighting effects and is
available at https://youtu.be/g8UX-KifGmM. The submission data is avail-
able at https://mybox.inria.fr/d/cabc196c89704ec090e6/, it contains the
SVG files and Gerber files used to fabricate all of the objects showcased in the
corresponding chapter.

Manas and I gave a presentation on the article at the SIGGRAPH 2023
conference in Los Angeles, California. We also presented our fabricated objects
at the Bring Your Bunny (or something) fabrication meet-up there. This was a
great opportunity to showcase the objects themselves and the lighting effects to
the computational fabrication and computer graphics communities, enjoy the
objects brought by everybody and exchange about our respective works.

This project has also been mentioned in other media: an article on Inria’s
website (english, french), a mention in an article (in french) by L’Usine Nouvelle
(weekly French business magazine), and an article in La Semaine (weekly
regional French journal).

https://github.com/mfremer/pcbend
https://youtu.be/g8UX-KifGmM
https://mybox.inria.fr/d/cabc196c89704ec090e6/
https://www.inria.fr/en/pcbend-flexible-printed-circuits-3d-printing
https://www.inria.fr/fr/pcbend-circuits-imprimes-pliables-impression-3d
https://www.usinenouvelle.com/article/deux-bras-robotises-agissant-de-concert-grace-a-l-ia-et-4-autres-avancees-scientifiques.N2167612
https://www.lasemaine.fr/sponsorise-pcbend-des-circuits-imprimes-pliables-pour-creer-de-nouveaux-objets/
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Figure 2.1: Illustration of an abstract layout problem

This chapter first introduces the general concept of layout problem considered
in this thesis. Later, layout problems are considered in the context of electronics
design automation and procedural design, the two main fields relevant to the
contributions of this work. Electronics design automation is explored through
a historical lens, highlighting the importance of computer automation and
design standardization in the development of the field, two key elements in
the resolution of layout problems in general. Procedural design is presented
through a classification of different approaches and how they handle structured
output, given that valid layouts are rarely arbitrary.

2.1 Abstract layout

This section clarifies the concept of layout problem used in this thesis. First,
I use packing problems as an intuitive example to introduce geometric layout
problems, and then graph drawing to illustrate layout problems with topologi-
cal constraints. Packing problems and graph drawing are two representative
examples of layout problems, often unburdened from constraints coming from
industrial or engineering applications.

2.1.1 General concept

In this thesis, we define an abstract layout problem as consisting of three essential
elements (see Figure 2.1):

• a space;
• a set of objects;
• a set of constraints.

The solution to this type of problem is a physical arrangement of the objects
in the space satisfying the hard constraints and optimizing the soft constraints,
i.e. objectives. Confusingly, the solution to a layout problem is also often called
a layout. I use the term valid layout to refer to a layout instance that solves
the problem.

The specific space, objects and constraints depend on the specific context
of the layout problem, which can arise in a variety of different situations.
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Spaces often are a bounded subregion of a 2D or 3D space, but can be more
complicated than that. For example in electronics, for multi-layer circuit
routing, copper traces can lie in any conductive layer of the circuits and can
travel to other layers through conductive holes between them. Objects are
usually straightforward to identify given the context. Finally, constraints come
in many flavors. Hard constraints determine what type of layout instances are
valid or not, i.e. acceptable as a solution in the context of the application. Soft
contraints or objectives help specify what valid layouts are preferable to others.

A lot of situations can be interpreted as layout problems, so there is no
canonical way to tackle them. Most layout problems except the simplest ones
are often NP-hard, requiring heuristic or optimization-based approaches to solve
them.

2.1.2 Packing problems

Packing problems serve as a great introduction to layout problems. In my
opinion, they are the simplest to describe, as many people deal with them in
their day-to-day life.

In packing problems, a set of shapes have to be put into a container without
overlaps. Different methods and properties have been established depending on
the type of shapes involved. Packing is often characterized by constraints on
the space (2D, 3D, bounded, unbounded) or the considered shapes (rectangular,
circular, irregular). Tessellations or tilings are packings that cover the space
without gaps. [TOG17] provides an overview of packing and tilings from
a discrete mathematics point of view. [WHS07] establishes a typology of
cutting and packing problems, separating them into basic types according to
criteria such as the optimization goal and the properties of the shapes and the
container. Many of these problems are NP-hard, among those are the Knapsack
problem [Pis05], or the bin packing problem [GJ79].

Packing problems are not only purely theoretical despite the simplicity of
their description. For example, they find applications in computer graphics.
[Lév+02] contributes a packing algorithm to merge irregularly-shaped parame-
terized charts into a single texture atlas. Packing algorithms are also heavily
used in industrial fabrication applications. [RL22] provides a look at packing
and cutting problems in an industrial context, from the modeling of the problem,
different approaches to solve them, to specific application cases.

Packing problems are the embodiment of geometric layout problems. Con-
straints are purely geometrical, there is no notion of adjacency between different
objects, or connectivity. Adding this type of concerns leads to layout problems
such as graph drawing.

Additionally, tiling problems made news in late 2022 due to the discovery of
the hat tile by David Smith, a hobbyist mathematician. This shape produces
a tiling of the plane with no arbitrarily large periodic parts, i.e. it is an
aperiodic monotile. This discovery and later the article [Smi+23b] proving this
property solved the longstanding einstein problem. The resulting tiling uses
both the hat and its reflection. The spectre family of shapes, derived from the
hat [Smi+23a] was discovered a few months later. These shapes tile the plane
without mirrored versions of itself, making it a chiral aperiodic monotile. Both
tilings are illustrated in Figure 2.2. Tilings are explored in detail in [GS87;
Fat21].
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(a) Hat tiling. (b) Spectre tiling.

Figure 2.2: Illustrations of tilings made with the hat and spectre tiles respectively. Images by D.
Smith, J. S. Myers, C. Kaplan and C. Goodman-Strauss, licensed under CC BY 4.0 Deed.

2.1.3 Graph drawing

Graph drawing problems introduces the idea of adjacency between objects
by adding edges between some of them, adding a topological component to
the layout problem. [Tam13] provides a comprehensive overview of graph
drawing and visualization. Graph drawing encompasses a large class of problems.
Most relevant to layout are planarity testing, crossing minimization and graph
embeddings, which I will be going over in this section.

(a) K5 (b) K3,3

Figure 2.3: Illustration of K5 and K3,3, the forbidden minors characterizing graph planarity.

Planarity testing and embedding studies the properties of planar graphs.
Planar graphs are graphs that can be drawn in the plane without crossings:
distinct edges can only intersect at common endpoints. While easy to define
informally, proper reasoning about planarity requires topological tools to state
a rigorous definition of a graph drawing. Wagner [Wag37] provided in 1937 a
simple characterization of planar graphs based on minors. A minor is obtained
from the original graph by vertex or edge deletion, or edge contraction. Wagner’s
characterization is the following: a graph is planar if and only if its minors include
neither K5 or K3,3 (see Figure 2.3). The first linear algorithm for planarity was
provided fifty-one years later in 1974 by Hopcroft and Tarjan [HT74]. These
results are fundamental to layout problems with topological constraints: they
state that some graphs fundamentally cannot be embedded without crossings
in the plane, meaning that some layout problems are unsolvable as is.

Among other topics, topological graph theory [MT01; Whi01] extends the
study of graph embeddings to topological spaces more complex than the plane

https://cs.uwaterloo.ca/~csk/hat/
https://cs.uwaterloo.ca/~csk/spectre/
https://creativecommons.org/licenses/by/4.0/
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such as general two-dimensional surfaces (topological 2-manifolds). They define
multiple topological parameters for graphs: the crossing number, the thickness
or the genus among others. The crossing number counts the minimum number
of edge intersections among all drawings of the graph in the plane, measuring
how far the graph is from being planar. The thickness is the minimum number
of planar subgraphs whose union is the original graph. These two numbers
are particularly relevant for electronic circuit layout. Using the classification
theorem [DH07; Bra21] for compact connected orientable surfaces stating that
any such surface is homeomorphic to a sphere with g ≥ 0 handles, g being the
genus of the surface. The orientable surface of genus 0 and 1 are the sphere
and the torus respectively, and the surface of genus g is "a torus with g holes".
Planar graphs are exactly those that can be embedded on the sphere (the genus
0 surface). A key result in topological graph theory is that any finite graph can
be embedded without crossings into a surface with a large enough genus. The
minimum genus of this surface is the genus of the graph.

It has been proven that computing the crossing number [GJ83], the thick-
ness [Man83] and the genus [Tho89] of a graph is NP-hard. Not only that, but
even adding one edge to planar graphs makes computing the crossing number
NP-hard [CM12]! However, given a surface, there is a linear time algorithm
to compute an embedding of a graph, or if none exist exhibit an obstructing
minor [Moh99; KMR08].

Wagner’s theorem mentioned above is a weaker version of a much stronger
result, the Robertson-Seymour theorem, proved in the twentieth paper [RS04]
of a series of twenty-three [RS09], constituting the Graph Minors project. This
theorem states that every minor-closed family of (finite) graphs admits a
forbidden minor characterization. In other words, given a family of graphs
defined by a property that is preserved by taking a minor of the graph, there
exists a finite set of forbidden minors such that, if a graph has any of them as a
minor, then it cannot have the property. In particular, for any fixed surface,
graphs embeddable in it can be defined by a family of forbidden minors. This
does not provide a computable approach for graph embeddings, as for surfaces
as simple as the torus, the forbidden minors set is not known and might be
impractically large.

Additionally, mathematicians have studied since the 1960s thick embed-
dings [Bar93] of graphs into three-(and higher [GG12]) dimensional Euclidean
space. This type of embeddings considers the thickness of the geometric re-
alization of the graph, i.e. nodes are spheres and edges connecting them are
cylinders, both with a non-zero radius. Some graphs can be packed more tightly
than others in the same volume depending on properties such as their maximal
degree. This approach has found applications in graph drawing, in particular an
algorithm for 3D orthogonal graph drawings [ESW96]. Considering the physical
dimensions of objects is an essential part of solving layout problems.

More complex relationships between objects can be represented with hyper-
graphs, as hyperedges can connect any number of nodes. A common approach to
deal with them consists in transforming the hypergraph into a regular graph by
replacing hyperedges with a hypervertex, connected to all vertices incident to the
hyperedge by a star or a tree. These transformations are particularly common
in (hyper)graphs representing electronic circuits. Indeed, hypergraph parti-
tioning and clustering have been studied at length [PM07], and are commonly
used to break down the complexity of problems arising in Very Large Scale
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Integration (VLSI) layout [Kah+11]. Also, Chimani and Gutwenger [CG07]
introduce the hypergraph crossing number problem, based on the minor cross-
ing number [BFM06] which is itself a minor-monotone generalization of the
traditional crossing number defined for graphs. They provide an algorithm for
edge insertion in hypergraphs while minimizing the minor crossing number,
relevant for electronic circuits. Hypergraphs have been traditionally less studied
due to their permissive structure, making it harder to establish properties and
design algorithms around it. Keep in mind that many graph problems are
already computationally hard, and this gets even worse for hypergraphs. In
the last few years, they have garnered the interest of the machine learning
community, as they expand from graph learning [Ham20; Wu+22] to hypergraph
learning [Gao+21].

Summary

Topological constraints add a significant amount of complexity to layout prob-
lems. Whereas in packing problems, the main goal is often to minimize cost by
maximizing packing density, here we have hard connectivity constraints that can
prevent valid layout from even existing. On the other hand, these constraints
highly restrict the space of valid layouts, making some search strategies relying
on the restricted structure of the solutions possible. The following sections
in this chapter explore how layout problems arise in the fields of Electronic
Design Automation (EDA) and Generative Design (GD), which are central to
the contributions of this thesis.

2.2 Layout and electronic design automation

In this section, I go over the history of modern electronic circuits from the
1950s whose rapid development prompted the birth of EDA tools and research,
in which layout problems are central. This history is mainly told here from an
American point-of-view. The development of electronics in other parts of the
world is a deeply interesting topic, please refer to other resources for a more
global and complete history.

2.2.1 A short history of microelectronics

To understand the role of EDA in the modern electronics industry, one first has
to understand the evolution of the latter during the twentieth century. This
evolution was mainly enabled by the switch from vacuum tubes to transistors,
and from discrete electronics with point-to-point connections to printed circuits
and integrated circuits. These technological breakthroughs made electronics
easy and cheap to mass-produce, and allowed a level of circuit complexity
never seen before. This radical change required research and investment in
computer-assisted design of electronics, leading to the rise of EDA and the
creation of software tools now commonplace both at the industrial and amateur
level.
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(a) First prototype Fleming valves (1904).

(b) First prototype Audion tube (1906).

Figure 2.4: Early versions of vacuum tubes. Images from Wikimedia Commons (a), (b), licensed
under CC0.

2.2.1.1 Smaller and smaller: the transistor and miniaturization

The early-twentieth century equivalent of transistors is the vacuum tube, more
specifically the thermionic triode [Gua12; DM22]. The vacuum tube diode
(Fleming valve) was invented by Fleming in 1904, and later the triode (Audion
tube) in 1906 by de Forest. The triode was the first device able to amplify
a signal, and became widely used in communications. These tubes consist of
a hot filament (cathode) that emit electrons towards a metallic plate (anode)
by thermionic emission, all in glass-encased vacuum. This basic design is a
diode containing only two electrodes. Current only flows in one direction since
electrons cannot be emitted from the anode. These are shown in Figure 2.4.
Triodes, tetrodes and so on can be created by inserting additional electrodes
(grids) between the cathode and anode. By applying a voltage to the grids, it
is possible to control the magnitude of the current between the cathode and
the anode. A triode with a single grid can then act either as an amplifier or a
switch, the latter being the main building block of digital electronics. Vacuum
tubes were fragile, energy-hungry and bulky, prompting a search for better

https://commons.wikimedia.org/wiki/File:Fleming_valves.jpg
https://commons.wikimedia.org/wiki/File:First_internal_grid_Audion_tube.jpg
https://creativecommons.org/public-domain/cc0/
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alternatives.

Figure 2.5: Bardeen and Brattain’s first
point-contact transistor (1947). Image
from the Computer History Museum’s web-
site, Copyright Alcatel-Lucent USA Inc.

Figure 2.6: Fairchild’s FI100 MOS transistor (1964).
Image from the Computer History Museum’s website.
Copyright Fairchild Camera and Instrument Corpora-
tion.

This search culminated in the demonstration of the bipolar transistor in 1947
by Bardeen and Brattain in its point-contact variant (see Figure 2.5), and later
in 1948 by Shockley in its junction variant. These used germanium initially, the
switch to silicon came later in the 1950s. They obtained the 1956 Nobel prize
in physics “for their researches on semiconductors and their discovery of their
transistor effect” ([Nob24]), providing a solid-state alternative to vacuum tubes.
The germanium bipolar junction transistor was also independently invented
by German physicists Herbert Mataré and Heinrich Welker in 1948 in Paris,
dubbed the transistron [Com24a; Dor04]. Finally, the modern transistor or
Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) was invented by
Atalla and Kahng in 1959, based in the concept of FET proposed by Lilienfeld
in 1925 [Lil30]. Apart from being significantly more reliable than vacuum tubes,
these transistors can be fabricated cheaper at a much smaller scale and support
higher frequencies. This enables more complex circuits to be built thanks in
part to their simple structure (see Figure 2.6). It is interesting to note that early
semiconductor and computing research was largely funded by US government
contracts and the Department of Defense [Com+99], the proportion tapering
down during the late 1960s.

2.2.1.2 Larger and larger: printed and integrated circuits

Eleven years after the demonstration of the first working (bipolar) transistor
in 1947 at Bell Labs by Bardeen, Brattain and Shockley; the vice-president
of electronic technology at Bell Labs wrote an article on the impact of the
development of transistors in electronic design. In a now famous quote he states:

For some time now, [...] electronic man has known how in princi-
ple to extend his visual, tactile and mental abilities to the digital

https://www.computerhistory.org/revolution/digital-logic/12/273/1355
https://www.computerhistory.org/revolution/digital-logic/12/273/1355
https://www.computerhistory.org/revolution/artifact/279/1450
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transmission and processing of all kinds of information. However,
all these functions suffer from what has been called ‘the tyranny of
numbers’. Such systems, because of their complex digital nature,
require hundreds, thousands, and sometimes tens of thousands of
electron devices. ([MP58])

In context, this refers to the difficulty of designing electronic systems with
vacuum tubes and the ensuing reliability issues and serves as an introduction of
the transistor as a partial solution to this problem. This observation about the
complexity of electronic systems remains relevant today and designing tools to
handle this complexity is the main motivation behind the development of EDA.
This complexity calls for miniaturization, as Feynman remarks: “I do know
that computing machines are very large; they fill rooms [...] the possibilities of
computers are very interesting — if they could be made to be more complicated
by several orders of magnitude.” ([Fey60])

Figure 2.7: Radio with the first Printed
Circuit Board (PCB) by Paul Eisler
(1942). Image from the Science & So-
ciety Picture Library website. Copyright
Science Museum / Science & Society Pic-
ture Library.

The transition from discrete components
with point-to-point connections to PCB and
Integrated Circuit (IC) is essential for mod-
ern electronics. Printed circuits were mainly
developed by Paul Eisler, an Austrian engi-
neer who emigrated to Britain in 1936 after
the rise to power of Austrofascism. Other
attempts to create printed circuits were car-
ried out before [Har03], but did not become
widespread. Eisler recounts in his autobiog-
raphy [EW89], how he combined his engi-
neering experience with the knowledge on
printing technology he acquired working as
a technical editor in the press to come up
with the (literally) printed circuit concept.
He recognized the need in the telecommuni-
cations industry for an easier and cheaper
method for building circuits, and his aim
became “to produce a circuit board onto
which strips of metal could be adhered using
a printing process”. The first demonstration
of this concept was a fully-working radio he
built in 1936, relying on a handmade cir-
cuit board. He presented this prototype to
british company Plessey’s director in charge
of radio production, who rejected his invention. As Eisler himself says in his
autobiography:

The reason given for refusal was unexpected [...]. It was pointed
out to me that the work which my invention would help replace was
carried out by girls and ’girls are cheaper and more flexible’.

In the following years, he continued thinking about how to automate the
fabrication process and how to frame his invention within the war effort for
the emerging World War II, to which most economic resources were dedicated
at the time. During these years, he developed the foil technique in which

https://www.scienceandsociety.co.uk/results.asp?image=10439335&itemw=4&itemf=0001&itemstep=1&itemx=1
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insulator plates clad with a conductive foil have the circuit pattern printed
on with resistant inks and the rest of the foil is chemically etched, leaving
behind only the desired pattern. In 1942, he demonstrated this new technique
for the first time (see Figure 2.7), garnering little interest at first. These
demonstrations gained him new contacts, and he ended up reaching engineers
and military personnel, employees from electronic firms and ministries related
to war production. Once again, nobody saw use for printed circuits in military
equipment or anywhere else. However, American military also attended these
demonstrations, and later made use of printed circuits in proximity fuses for
war applications. According to a 1947 circular [BC47] from the United States’
National Bureau of Standards, printed circuit mass-production started in 1945.
Nowadays, printed circuit boards are ubiquitous and used for many different
applications.

Figure 2.8: Kilby’s original hybrid IC, with flying wire connections (1958). Image from the
Computer History Museum’s website. Copyright Texas Instruments Inc.

The second critical innovation is the development of the IC, attributed
in [HC21] to the military’s increasing need for electronics miniaturization in
arms development. This invention has been attributed to multiple people:
to Jack Kilby for the first hybrid IC (i.e. separate integrated components
connected with flying wires) in 1958 (see Figure 2.8), to Robert Noyce for the
first monolithic IC (i.e. fully integrated) in 1959 (see Figure 2.9). Later [Loj06]
among others highlighted the essential contributions of people such as Jean
Hoerni and Kurt Lehovec. Legal battles over patents on the IC technologies
ensued during the sixties. Integration in electronics means that all components
and interconnects are embedded or integrated into a common substrate, most
often silicon. Compared to printed circuit boards, integrated circuits have three
main advantages: size, cost and performance. Integrated transistors can be
fabricated much smaller than discrete transistors: the typical dimensions of a
surface-mounted small-outline transistor (SOT23) are 2.9×1.3×1 mm [NXP17],

https://www.computerhistory.org/revolution/digital-logic/12/276/1413
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Figure 2.9: Figures from Noyce’s patent [Noy61] illustrating a monolithic IC (1959).

while the dimensions of current-day integrated transistors are measured in tens
of nanometers [MS22]. They also support higher frequencies and require less
power to operate.

In 1965, Moore made the observation (later dubbed Moore’s law) that
the level of integrated chip complexity that can be manufactured for minimal
cost doubled every year [Moo65], an observation that he readjusted in 1975
to a doubling every two years. As Moore himself remarked, “it has become a
self-fulfilling prophecy”, as the industry adopted it as a growth target. Hutche-
son [Dan05] provides a more detailed historical and economic perspective on
Moore’s law. Additionally, Dennard scaling [Den+74] states that the power per
mm2 of MOSFET transistors stays constant as their size gets smaller. Com-
bined with Moore’s law, this provided a scaling law for performance per joule,
doubling approximately every year and a half. This type of progress through
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Figure 2.10: Rubylith operators (1970 ca.) from the Computer History Museum website. Copyright
Intel Corporation.

miniaturization is specific to microelectronics, where making systems smaller
makes them simultaneously faster, cheaper, more economical and surprisingly,
also more reliable [LS20]. Indeed, at larger scales of integration, fewer discrete
components are required to assemble a circuit, thus reducing the number of
possible points of failure. Moore’s law starts showing signs of slowing [HP19]
in the 2000s due to industry nearing scales where fundamental limits of the
transistor fabrication process arise. Dennard scaling does around 2007 due to
unforeseen power dissipation at the nanometric scale leading to thermal prob-
lems [Boh07]. This required the industry to change their design methodology to
keep improving Power-Performance-Area-Cost (PPAC) metrics. The intricate
layout of integrated circuits makes their design a huge challenge, requiring
a high level of expertise as well as dedicated EDA tools. The next section
summarizes the history of EDA.

2.2.2 A short history of circuit design

This section summarizes the history of EDA and in particular how chip planning
and physical design for digital circuits evolved along with it starting in the
1950s. It is important to note that much effort in the field was directed to
the development of tools for circuit specification, synthesis, simulation and
verification, which I will be mostly overlooking in this section. For a more
transversal view of the evolution of the field up to 1988, please refer to [Com88]’s
preface.

Already before the invention of the integrated circuit (see Section 2.2.1.2),
IBM engineers and designers realize that “In the design and development
of today’s complex computers, the ratio of routine and repetitive work to
creative engineering is getting larger and larger” ([KCG58]). This is the design

https://www.computerhistory.org/revolution/digital-logic/12/287/1614
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counterpart to the tyranny of numbers observation made at the same time.
For this reason, they used early computers to assist with the repetitive parts
of electronics design, with a system they dubbed the “Design Mechanization
System”. In this system, creative tasks such as engineering and logic design were
done manually, whereas mechanical tasks such as record keeping, logic checking,
wiring planning and documentation printing were done with a computer. This
was partly enabled [KCG58; Boy04] by the use of their Standard Modular
System in the 1950s, progressively switching to the more advanced Solid Logic
Technology (SLT) at the end of the 1960s. Their computers consisted of arrays of
standardized card-mounted electronic components, connected by wire wrapping
in a backplane. The switch to the denser SLT modules was done because
monolithic integrated circuit technology was deemed not mature enough at the
time for production.

When integrated circuits started gaining traction during the 1960s, coordi-
nated efforts in design automation started to emerge, gathering experts across
industry, engineering and research. The main venue for design automation
research starting in 1964 was the ACM/IEEE Design Automation Conference,
where many groundbreaking works were published during this era. For place-
ment and routing, such works include continuous planar routing [Hig69], channel
routing for printed circuit boards [HS71] and standard cell designs [KSP73],
force-directed placement [Qui75] or arbitrarily-shaped blocks placement [Pv79].
Full design IC systems started appearing, such as the workstation-based LTX
system [PDS76] for LSI layout outputting mask geometry using circuit compo-
nent and connectivity descriptions as input. Another design technique developed
during this time is symbolic layout with compaction [GN76; CKS77; Dun80].
Instead of directly dealing with mask layout, i.e. the intricate geometric data
used to fabricate photomasks, they create an abstract or symbolic representa-
tion, where groups of primitives are represented each with a different symbol.
The layout is then drafted in a coarser grid, where the main information is
adjacency and connectivity between symbols, making it essentially a topological
representation. Symbolic translation then instantiates the geometric primitives,
and compaction packs them as tightly as possible to create an area-efficient
layout. Procedural circuit design started with the first silicon compiler [Joh79],
where circuits were assembled from flexible blocks represented by programs,
instead of the fixed cells from standard libraries. The invention of optimization
by simulated annealing [KGV83] led to great success in different aspects of
circuit layout. [San03] considers this time as the foundational period for EDA,
where the bases were laid for the fruitful development of this field.

Still, it is important to remember that chip layouts at the time (1970s)
were mostly hand-drawn. Faggin explains the process at the time in his ac-
count [Fag09] of the development of the first microprocessor (the Intel 4004
released in 1971) as its lead designer. Layouts were manually drafted at a large
scale on graph paper, and then photographically reduced to fabricate masks
for manufacturing (see Figure 2.10). The exponential growth in complexity
of IC rendered this manual approach prohibitively inefficient. As Lienig et
al. remark, this “implies that the human designers of electronic systems need
to improve their productivity at the same exponential rate” ([LB17]). Jansen
recalls that this “first generation of EDA did not contain a tool for automation
of an implementation step” ([Jan03]).

Different design styles emerged during this period [New82; Ein85; NS87],
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some more amenable than others to automation. These can be categorized into
full custom and semi-custom, which includes standard cell [Com24b], macro
cell [Tok+88], and gate array designs [Com24b]. These styles have different
design and fabrication costs, different degrees of design reuse, result in more or
less efficient layouts, and need different production volumes to be economically
viable. Full custom design is the least constrained, blocks can be placed
anywhere and routed in any fashion. This allows full control over the final
layout, making high-performance, high-efficiency designs possible at a great cost.
Constrained design styles such as standard cell or gate array require significantly
less design effort and are easier to create automated tools for. In standard cell
design, the basic building blocks are small cells consisting of a few transistors
implementing simple functions (such as logic gates or flip-flops). Cells have all
the same height, are placed in rows, and mostly connected together using the
space between the rows (channels). Gate array designs have basic logic elements
arranged in a fixed regular grid, and different interconnect patterns can generate
different circuits. Field-Programmable Gate Array (FPGA) are a special case
of gate array, where both the basic logic elements and the interconnects are
field-programmable instead of mask-programmable, i.e. the circuit can be
reconfigured after fabrication. Finally, macro cell designs consist of multiple
interconnected large functional blocks, typically used for components for which
other approaches are inefficient (such as standard cell for memory circuits).
The advantages and disadvantages of each style are detailed further in [LS20].
Standard cells are found in technology libraries distributed by the foundry,
i.e. the semiconductor fabrication plant. Macro cell libraries are marketed by
semiconductor intellectual property vendors, so called because they are traded
as rights to use and copy the design.

The switch to fully computer-generated layouts was partly due to the
VLSI revolution at the end of the 1970s, mainly carried by Lynn Conway and
Carver Mead (who gave Moore’s law its name). As Conway recalls in [Con12],
the crucial contribution was the invention of scalable design rules. Before
then, integrated circuit design mostly relied on arcane design rules set by the
different fabricators, leading to long turnaround times and requiring designers
to familiarize themselves with new rulesets every few years due to process
progress and technique changes. Additionally, the design’s surface area was
mostly covered with connections instead of transistors, minimizing the benefits
of miniaturization. Conway designed a set of rules based on a minimum feature
length λ dependent on the process resolution, and every design rule was defined
as a multiple of λ. Thus, different manufacturing technologies could be targeted
by changing a single parameter. Instead of targeting heavy layout compaction for
each fabrication technique with custom-tailored design rules, she thought that
designing a simpler, unified set of rules would help new and veteran designers to
speed up and make creating layouts easier. The responsibility of performance
improvements were left to Moore’s law and Dennard scaling. This ushered the
VLSI revolution, culminating in the exposition of this new methodology in the
first accessible VLSI design textbook [MC80]. These efforts were a collaboration
between Xerox Palo Alto Research Center and Caltech, which lead to the creation
of the Defense Advanced Research Projects Agency (DARPA)-funded VLSI
project starting in 1978 [Com+99]. Her career in computer architecture started
at IBM in the 60s, from which she was fired due to her gender transition, causing
her to restart her professional career from scratch. This prevented her from
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getting credit for dynamic instruction scheduling, the basis behind superscalar
processors which she developed during that time, until the early 2000s. This
revolution resulted in a great simplification of the development of EDA tools,
which was previously nearly impossible due to the rapid change of design rulesets
and their complexity. In particular, this made checking for geometric design
rule violations straightforward. This created a clear separation between chip
design and fabrication, which were previously indissociable, also enabling design
reuse. Finally, the Metal Oxide Semiconductor Implementation Service (MOSIS)
created in 1981 was a result of this revolution. This system enabled american
students enrolled in VLSI design courses to produce actual chips based on
their assignments. They pioneered the modern fabless/foundry model, where
chip designers send their designs to exterior semiconductor foundries which are
separate business entities. This made fabrication services more accessible to
academia, pushing research forward.

The appearance of different design styles and of standardized design rules
are a reflection of the higher levels of abstraction required to design chips of
increasing complexity [San03]. Through the 1960s and early 1970s, it was
still possible and common to design chips at the transistor level. In the
1980s, circuits were designed around logic gates, and with the emergence of
Hardware Description Languages later in the decade, at the Register Transfer
Level (RTL). RTL modeling describes circuits as a flow of and operations on
data between registers. Simpler design rules at higher degrees of abstraction
meant easier design methodologies and shorter design times, at the cost of
much more wasted space in chips [CKS77]. Layout efficiency being a crucial
element of PPAC scaling, this targeted research efforts towards developing more
efficient EDA tools for physical design, able to handle less constrained design
styles. These movements and changes in design styles in the industry have
been interpreted [Eur09] through Makimoto’s wave model [Mak13]. This model
breaks down innovation into an initial stage and a series of alternating waves.
The initial stage consists of a disruptive phase, where the previous technology
becomes obsolete, and an exponential growth phase. Then, the innovation
process settles into alternating standardization and customization trends.

Reviewing the tightly coupled history of microelectronics developments and
IC development shows interesting patterns. In particular, much progress has
been driven by the realization that the enormous task of VLSI design requires
automation, and slowed by the apparent difficulty of the problem. In the
next section, I break down the physical layout design process and highlight its
difficulty.

2.2.3 Physical layout design

Physical design is one of the steps in electronic systems design [LS20]. Electron-
ics system design starts with a specification, where the functions, requirements
and interactions of the system are established. This leads to circuit design,
where a structural description is build based on the specification. This struc-
tural description consists of a schematic diagram or a netlist specifying what
electrical units compose the design and how they are interconnected. This
description is often hierarchical, breaking the design into modules at different
levels of abstraction. Next is physical design, where the structural description
is transformed into a fabrication specification (or layout). This specification



2.2. Layout and electronic design automation 25

is finally used to manufacture the final circuit. Of course, circuit and physical
design are heavily informed by fabrication process-specific knowledge. Physical
layout thus takes a shapeless description of a circuit and turns it into a concrete
realization, while taking into account a set of optimization goals and constraints.
This realization contains the placement of the components, conductive traces,
the shape and dimensions of the board or circuit, and all information necessary
for the fabrication process. To ensure that it functions properly and that it is
manufacturable, the layout has to satisfy electrical and design rules respectively.

Physical design has a significant impact in the PPAC metrics of the final
circuit. For example, in a layout where components are farther from each
other than they need be, wires will be longer than necessary, inducing signal
delays that limit the clock frequency at which the circuit can operate. If
the components are not tightly packed, the final design will take more space,
and fewer circuits will be able to be fabricated per silicon wafer, making the
fabrication cost higher. While this process is different for (digital) IC and PCB
due to the different fabrication processes and possibilities of the medium, the
main concepts, problems and techniques remain similar, so I will not make a
distinction between them in this section. Additionally, this section will not go
in-depth into the algorithmic aspects of these steps, as many references already
cover this topic [SY01; She04; Kah+11]

The starting point of physical design is the netlist. It stores the connectivity
of the electronic circuit by listing the nets in the circuit, i.e. the sets of
interconnected components. In other words, the netlist represents the topology of
the circuit. Physical design can be broken down into smaller steps: partitioning,
floorplanning, placement and routing. Partitioning and floorplanning help
separate the layout problem into smaller tractable instances. Partitioning
takes the initial circuit and splits it into modules while minimizing inter-
module connections. Floorplanning gives a shape and a location to every
module, determining their arrangement in the final layout and their external
connections. Due to them being particularly constrained, floorplanning also
takes into consideration power and ground structures as well as clock planning.
These two steps determine the external characteristics of the modules. Next,
placement and routing are used to determine the internal module characteristics.

Placement determines the location and orientation of all basic units within
the bounds of a module so that they do not overlap. Routing creates conductive
traces between all of these units according to the connectivity information
provided in the netlist. Both steps are limited by constraints and guided by
optimization goals. Placement is tricky for a particular reason: a successful
placement is (among other criteria) one that can be routed, but the only way
to guarantee routability is to route the design. Unfortunately, this is way too
expensive of an approach for most circuits. Indeed, in Chapter 3 we circumvent
this problem by placing and routing small sections of the overall circuit instead
of all at once. In the general case, placement optimization goals are designed to
make it so good placement scores make it likely that the design will be routable.
For example, placement often tries to minimize the estimated total length of
connections between units, and to avoid routing congestions (i.e. areas where
many interconnects might need to be routed). In good placements, tightly
interconnected blocks will be close to each other: it is easy to imagine how
convoluted the routing might be if these blocks were placed at opposite ends
of the design. Similarly, by avoiding routing congestion, algorithms encourage
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designs where routing is distributed all over, meaning that no gap will be too
narrow for the number of connections having to go through.

(a) Global routing: the general routes inter-
connects follow are decided.

(b) Detailed routing: the exact position of
every interconnect is computed.

Figure 2.11: Illustration of global and detailed routing in a schematic example.

Routing starts with a placement, and consists in realizing the interconnects
specified in the netlist, usually with an upper bound on the number of available
routing layers. The main problem with this step is that for a given placement,
routing might be either impossible or too complex to route in a reasonable
time. Power, ground and the clock nets are often routed first since they are
particularly constrained. Deciding the order in which connections are routed is
important to create a good layout. Often, connections that have already been
routed have to be ripped up to allow other connections to be routed. Due to the
size of the instances, for IC placement and routing are often split into a global
and detailed phase. Global placement globally places the units without taking
into account their shape and size with some overlaps allowed, then detailed
placement and legalization aligns the units to a grid and resolves overlaps by
performing local modifications of the global placement. Global routing starts
with a subdivision of the circuit into coarse cells (channels or switchboxes), and
computes an overall routing topology in these cells, i.e. computes the general
trajectory of connections around the components. Thus, each net is assigned to
a series of cells (within the limit of their capacity), and detailed routing precisely
routes the trajectory of the connections within these cells (see Figure 2.11). It is
interesting to note that placement and routing are closely related to hypergraph
embeddings and topological parameters (such as the crossing number or the
thickness) introduced in Section 2.1.

Unsurprisingly, all of these constrained optimization problems arising in
physical design are NP-hard, even in simplified forms [SB80; SY01]. Additionally,
their solution space often scales as an exponential or factorial function of the
size of the input. For this reason, solving them most often requires heuristic
approaches, where the optimization process is guided to avoid uninteresting
regions of the search space and instead towards types of layouts that might solve
the problem reasonably well. This means in particular that solutions obtained
with heuristic methods are rarely globally optimal, but in exchange algorithms
terminate in a reasonable time. This makes it hard to evaluate the quality of
a solution, since there is no optimal solution to compare it against. Instead,
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Figure 2.12: NEVER trust the autorouter t-shirt design. Created by and copyrighted to Chris
Gammell, cropped from his 2014 twitter post.

quality assessment requires metrics that are often used as optimization goals
during the process. This also explains the historical fact that no be-all end-all,
canonical solution has been found to layout design, requiring instead constant
algorithmic innovation to tackle harder and harder problems. Following this
realization, Chapter 3 focuses on a specific class of circuit that can be broken
down into smaller instances instead of trying to find valid layouts for general
circuits. This allows us to consistently obtain good results in highly constrained
spaces that would be otherwise impossible with general methods.

If all that were not enough, physical layout design methods do not operate
in a geometric vacuum. The final results have to be fabricable, and function
according to the specification. This gets harder as circuits get smaller and
need to meet harsher performance standards. Reliability, thermal management
and cooling, electromagnetic compatibility and recycling have to be taken into
account when designing an electronic system. These concerns have an impact
on every step of physical design, and add additional goals and constraints
to the optimization process, making it harder to automate. [LB17] provides
an overview of these concerns in general electronic system design, and [LS20]
explains how to mitigate these negative effects through physical design choices.

2.2.4 The struggles of electronic design automation

Given the complicated history of microelectronics, the breadth of design styles
and the industry paradigm changes, it is to be expected that EDA users express
unsatisfaction towards EDA tools, which cannot catch up with their needs fast
enough. Indeed, many professional and amateur electronics designers prefer
to have manual control over the physical design process. In particular, PCB
autorouters face harsh criticism, as exemplified by the phrase never trust the

http:/t.co/8aFrB7Z3Zn
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autorouter that made it onto a t-shirt (see Figure 2.12). It is common to find
people criticizing these tools in online spaces, and well-established companies
developing EDA tools for PCB design such as Altium, Cadence or Autodesk are
aware of this. Altium refers to the development of autorouters as a “history of
failed design automation” ([Mar17]), Cadence [Cad22] calls for a change in the
typical design workflow to take advantage of the capabilities of their autorouter,
and Autodesk discourages users from “forming an unhealthy dependency on
your autorouter” ([Sat17]). The bad reputation of autorouters is a testament to
the complexity of the physical design process, in particular the placement and
routing steps.

Figure 2.13: Evolution of transistor count (logarithmic scale) and design cost (linear scale) of IC
over time, from [And18].

EDA tools for IC are not exempt from problems either. Already in 1997 the
(United States’) National Technology Roadmap for Semiconductors [Sem97]
warned that the number of transistors on a chip was increasing at a much faster
pace than the designer productivity improved, thus requiring growing numbers
of designers on each project. The 2001 Technology Roadmap for Semiconductors
reports that chip “devote thousands of engineer-years (and a design team of
hundreds) to a single design” ([All+02]). This phenomenon is called the design
productivity gap (see Figure 2.13) and actors in this sector have tried over the
past decades to mitigate it. The roadmap also states that “many advanced
companies believe that the EDA industry continues to fall further behind in
understanding the nature of current design problems”.

According to [LS20], many steps of the physical design process are still
carried out by hand today. In particular, most analog circuits are designed
manually due to the larger number of constraints in analog design compared to
digital circuit design. Full-custom designs, high-density PCB are designed with
tools assisting the manual design process. Critical elements of the layout also
need to be carefully carried out by hand, such as floorplanning which handles
a wide range of objects and constraints, or clock networks routing on whose
quality the performance of a design heavily depends.
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Summary

The discovery of the transistor and integration during the mid-twentieth century
mark the beginning of modern electronics. Moore’s law and Dennard scaling have
guided technological developments until the late-2000s, effectively signifying that
better performance could be achieved at a constant power per area exclusively
through miniaturization. To cope with the increasing levels of circuit complexity
resulting from these fabrication advances, computer assistance and automation
soon became necessary starting in the 70s, giving rise to the field of EDA.
EDA aims to provide tools to automate the circuit design process, in particular
physical or layout design which consists in generating a geometric layout of
a circuit from a topological description. Layout design encompasses many
computationally hard problems such as placement and routing, which are great
examples of concrete layout problems with real-world goals and constraints.

2.3 Layout and procedural design

This section provides a short overview of procedural or generative techniques in
computer graphics, and how they relate to layout problems. Generative or pro-
cedural design is defined as “a design approach that uses algorithms to generate
designs” ([CSL20]). This is an intentionally very broad description, coming from
the term’s use in computational design for architecture. It encompasses a wide
range of approaches, mainly categorized into procedural noise, exemplar-based
and tile-based. These have applications in many different areas such as shape
modeling, texture synthesis, procedural content generation for video games or
generative art.

Historically, procedural techniques have served as a way to generate visu-
ally complex content while circumventing memory limitations. For example,
Braben and Bell’s 1984 space game Elite had 32 KiB to work with on the
BBC Micro computer, and only around 22 KiB after taking into account screen
graphics [Bra11]. Due to this, they represented the 8 galaxies, each containing
256 planets, procedurally. All of the information constituting the universe was
extracted from a set of three 16-bit seeds [Mox]. Similarly, Toy, Wichman
and Arnold’s 1980 dungeoncrawler Rogue provided an endlessly replayable
experience through procedurally generated levels, items and monsters [Cra21].
The demoscene [Tas04; Mol12] is also a great example of procedural techniques
used to overcome technological limitations. Demos started as introductions to
cracked video games distributed through snail mail in the 1980s, contempora-
neous with the introduction of the home computer. They evolved to be more
and more complex as a proof of the crackers’ skills, and later fully detached
from video games. Demos became standalone programs around which a whole
subculture was created, especially in northern and western Europe. They show-
cased advanced real-time graphics animations and effects set to music, to create
a production that looked impossible for the hardware they were executed on.
The two main challenges are the real-time constraint and hardware memory
limitations. This means that demos have to run at thirty to sixty frames per
second, all within a tight memory budget. Some categories even enforce a
maximum executable size, typically 64 KiB or 4 Kib. This lead demosceners to
heavily use procedural techniques to generate visual effects and geometry, since
barely any data can be stored explicitly in memory.
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As [Sme+14] states, the two main advantages of procedural techniques are
data amplification and data compression. This means that procedural modeling
can be used to represent large amounts of model from a single compact system
with few rules, and conversely that complex geometries and signals can be
encoded with relatively low amounts of data. These advantages are still relevant
today, since the demand for increasingly complex content for computer graphics
applications is steadily rising, and tessellation, geometry and mesh shaders
allow for on-the-fly geometry creation on the Graphics Processing Unit (GPU).

2.3.1 Classification of procedural techniques

Procedural techniques come in a variety of flavors, each with their own advan-
tages and disadvantages. They are often separated in three main categories:
procedural noise, example-based synthesis and tile-based synthesis. I will partic-
ularly focus on tile-based approaches since they are more directly related to
layout problems.

2.3.1.1 Procedural noise functions

Noise can be informally defined as a random unstructured pattern characterized
by its frequency contents. Procedural noise functions are described by program
code instead of being represented by data. This usually provides a memory
efficient, multi-resolution method that allows efficiently adding visual detail
to images, either through textures or geometry. [Lag+10] provides a formal
definition and a classification of procedural noise functions. There are two main
approaches to compute procedural noise functions. Lattice noises consist of
random values and possibly gradients over a discrete lattice that are interpolated
to obtain a continuous noise, e.g. Perlin noise [Per85]. The other approach is
sparse convolution noise, which consist of a sum of randomly positioned and
weighted kernels, e.g. Gabor noise [Lag+09]. [Ebe03] provides an in-depth
exploration of procedural texturing and modeling, complemented with design
methods specific to these techniques. Due to the stochastic nature of procedural
noise functions, this approach struggles to generate highly structured data.

2.3.1.2 Example-based synthesis

Example-based synthesis [Wei+09; Lef14] aims to create arbitrarily large
amounts of content that replicate the characteristic features of a set of provided
exemplars. This allows to replicate data such as textures that are hard or expen-
sive to obtain, such as extending a small texture obtained from a photograph.
The main idea is to create an output that locally looks the same as the input.
For textures, this means recreating pixel neighborhoods in the output based
on those in the input. If the input is local and stationary, i.e. every pixel is
characterized by its neighborhood and the characterization is consistent over all
the input, the synthesis preserves perceptual quality. For example, [MWT11;
TWZ22] generate a structured output consisting of different objects with spatial
distributions similar to those in provided exemplars. In some sense, they use a
small solution to an object packing problem to generate a packing in a larger
space. Breaking any of the two aforementioned hypotheses requires additional
work to produce good results. For example, non-stationary (or spatially varying)
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texture synthesis requires control maps identifying similar regions of the input
to produce coherent results. Again, this leads to issues when handling highly
structured data.

2.3.1.3 Tile-based synthesis

(a) Minimal set of eleven four-coloured Wang
tiles described in [JR21].

(b) Penrose’s kite and dart tiles. Vertex colors
have must match to assemble multiple tiles.

Figure 2.14: Two types of aperiodic tile sets.

Tile-based synthesis [Lag07] encodes complex signals by generating them
over a small set of tiles that aperiodically tessellate the space. A tiling is
periodic if there exists a translation that preserves it, or aperiodic if none exist.
A tile set is aperiodic if it cannot produce a periodic tiling. Aperiodicity is a
desired property for content generation, since it avoids visual artifacts due to
structured repetition. Additionally, this requires the tile contents to seamlessly
match across tile boundaries. The classic examples of aperiodic tile sets in
computer graphics are Wang tiles and corner tiles. Wang tiles were proposed in
1961 [Wan61] and popularized in 1965 [Wan65] by Hao Wang. They are sets of
square tiles where each edge has a specific color. Two tiles can be adjacent to
each other in a specific direction only if their corresponding edge colors match.
The smallest set of aperiodic Wang tiles consists of eleven tiles with four edge
colors, initially found in 2015 [JR21] (see Figure 2.14a). Also, they proved that
this set is minimal, in the sense that any set with fewer than eleven tiles of four
colors cannot be aperiodic.

Regular Wang tiles do not constrain their neighbors diagonally, in particular
any two tiles can be placed diagonally from each other by carefully choosing
the two remaining tiles that complete the square. This problem was first
identified in [Coh+03] and can possibly lead to visual artifacts. Corner tiles,
with colors on the corners instead of the edges, were introduced [LD06] to solve
this problem. Wang tiles were introduced to computer graphics in [Sta97] for
texture synthesis, and have been used for many applications since, such as
surface modeling, non-photorealistic rendering or landscape modeling [Lag+08].
Another type of aperiodic tiling are Penrose tilings, discovered in 1974 [Pen79].
The most famous one consists of a kite and a dart, shown in Figure 2.14b. These
have to be assembled in a specific way to form aperiodic tilings, represented
by patterns over the tiles in the Figure. Maybe the newly discovered hat
and spectre tiles (see Section 2.1.2) will also be used for computer graphics
applications in the future.
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Tile-based methods encode a topological information through edge, corner
colors, or adjacency patterns. In computer graphics, these topological constraints
are rarely exploited, since the most relevant property is aperiodicity, which
prevents visual artifacts from appearing. [ZJL14] and [BWL18] present tile-
based methods for (respectively) 1D and 2D pattern generation with topology
control. This allows generating patterns with a specified number of connected
components or holes by tracking this information with topology descriptors
over tiles. These contain identifiers over the cell boundaries that correspond
to connected components within the tiles, and can be combined when multiple
tiles are assembled to obtain a global description of the synthesised result.

2.3.2 Structure-aware design

Most of the procedural techniques described previously have at best a tenuous
grasp on the structure of the generated content. This is not particularly
surprising, as the notion of structure makes sense intuitively to a person but
is particularly challenging to formalize. Indeed, structure is a key part of the
design of synthetic objects, in the sense that their form and shape is informed
by their purpose, be it aesthetic or functional. In their presentation of structure-
aware shape processing, [Mit+14] states that “shape structure is about the
arrangement and relations between shape parts”, parts being entities having
semantic significance influencing their geometry. Relations can be of different
natures, including pairwise geometric constraints (e.g. parallelism, coplanarity),
higher-order relations such as symmetry, or functional relations (e.g. what
properties of an arrangement of parts makes it function as a chair).

In the rest of this section I consider rewriting systems and model synthesis
as examples of structure-aware design. Rewriting systems in particular provide
an illustration of the synthesis process in structure-aware shape processing,
while model synthesis uses adjacency constraints and neighborhood information
to generate outputs with local structures originating from an example. Finally,
I end the section with a short consideration of inverse procedural modeling
techniques that try to provide solutions to the challenge of creating procedural
systems that generate the desired type of output. Of course, this is not an
exhaustive inventory of techniques in structure-aware design, but rather an
introduction to how the notion of structure can be captured through clever
models and algorithms.

2.3.2.1 Rewriting systems

While tile-based approaches and some others presented previously are local in
nature and have a topological component to them, rewriting systems fully take
advantage of locality. Rewriting systems in their most general form consist
of objects and rules specifying how they transform. For an in-depth formal
approach to rewriting systems, please refer to [Ter03]. Two quintessential
examples of rewriting systems are phrase structure grammars and L-systems.
Phrase structure grammars were introduced by Chomsky in 1956 [Cho56] as
a model for the description of language. It consists of an alphabet of symbols
and a set of production rules each transforming an input string of symbols
into an output string. The rules can be applied sequentially to an initial
symbol, and all words obtained in this manner constitutes the language of the
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(0) Axiom: F-G-G (1) F-G+F+G-F-GG-GG (2) F-G+F+G-F-GG+F-G+F+G-
F+GG-F-G+F+G-F-GGGG-GGGG

Figure 2.15: First three rewriting steps of an L-system generating the Sierpiński triangle. At every
step, F is replaced with F-G+F+G-F and G with GG. The drawing is generated with Turtle graphics,
interpreting F/G as moving forward, -/+ as turning by ∓120◦ clockwise.

grammar. L-systems were introduced by Lindenmayer in 1968 [Lin68a; Lin68b]
to model the growth of filamentous organisms containing linear and branching
structures. They were subsequently developed in the following decades by
Prusinkiewicz [PL90] and others as a tool for the computational modeling of
plant structure and growth. The main differentce between L-systems and phrase
structure grammars is the fact that the former is a parallel rewriting system, i.e.
all rules that can be applied at a time are applied simultaneously. Strings of
symbols obtained with an L-system can be interpreted graphically to generate
space-filling curves or plant models (see Figure 2.15). The simplest L-systems are
deterministic and context-free (D0L-systems), i.e. production rules transform a
single symbol into a string of symbols, independently of the surroundings of the
input symbol. Many other variants exists, such as context-sensitive (rules look
at the surroundings of the input string), stochastic (multiple applicable rules
are chosen according to a probability) or parametric (values are attached to the
symbols). L-systems and their variants have been used in computer graphics for
fractal generation [Pru86], space-filling curves [PLF90] or smooth subdivision
curves [Pru+03] and surfaces [SPS04; KMB06]. Prusinkiewicz attributes the
success of L-systems for plant modeling and subdivision algorithms to “the
ease of expressing geometric algorithms that operate locally on structures
with a varying number of components. This ease is achieved through index-
free notation that emphasizes the topological relations between components”
([PSS10]). There are also rewriting systems operating over more complicated
objects. These include arrays [Kir64; Dac70; Ros87], graphs [Ros72; Pfa72],
general 2D shapes via shape grammars [SG71; Sti75] or 2D and 3D shapes via
split grammars [Won+03]. They are usually described as picture languages in
the 2D case, and are used for pattern recognition, image processing, or artistic
and design purposes. L-systems, graph, shape and split grammars have also
found applications in building, facade and floorplan modeling [Sme+14], and
even robot design optimization [Zha+20].

2.3.2.2 Model synthesis

This section focuses on Model Synthesis (MS) [Mer07] and WFC [Gum16],
two similar example-based procedural synthesis algorithms. These garnered
attention through their use in the video games Bad North, published in 2018 by
Plausible Concept and later Townscaper, published in 2021 by Oskar Stålberg,
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(a) Island example from Bad North.

(b) City example from Townscaper.

Figure 2.16: Examples of models generated with Wave Function Collapse (WFC) illustrated in
promotional images, respectively from the Bad North website, Copyright 2018 Plausible Concept;
and the Townscaper Steam page, Copyright 2020 Oskar Stålberg.

a member of Plausible Concept. The use of WFC is well-documented by Oskar
Stålberg online, through conferences, technical posts and interviews [AI 22]. In
Bad North, the islands on which the main gameplay happens are generated
procedurally on a 3D square grid, with different features such as beaches, hills,
cliffs, houses and trees.

MS focuses on 3D model generation, while WFC focuses on 2D texture
synthesis, but both rely on constraint satisfaction and are closely related. This
approach is the basis for the procedural support generation for 3D printing
detailed in Chapter 4. The main idea behind MS and WFC is to consider a
discrete 2D or 3D space consisting of cells and a set of labels. These labels can

https://www.badnorth.com/
https://store.steampowered.com/app/1291340/Townscaper/
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be assembled according to a set of adjacency rules, determining which labels
can be adjacent to others in a specific direction. At any point of the algorithm,
each cell contains a list of possible labels it can be assigned. At every iteration,
a cell is selected and a label is assigned to it. Then a constraint propagation
step removes labels rendered impossible in other cells due to the adjacency rules.
The algorithm continues until every cell has been assigned a label. Adjacency
rules are typically extracted from a segmented exemplar, where every possible
combination of adjacent segments is added to the list of allowed adjacencies.
These algorithms fail if at any point some cell has no allowed labels. In that
case, the full process can be restarted from scratch, a region of the output
can be regenerated, or backtracking can be used to undo previous choices of
labels. If the algorithm succeeds, visually interesting results can be obtained by
associating colors or geometry to the labels.

These algorithms combine tile-based and example-based approaches, and
incorporate topological information through adjacency constraints. They can
be customized in a number of ways. First, different types of information can be
extracted from the exemplar. MS only extracts adjacency information along the
main axes of the grid, while WFC extracts all possible N ×N neighborhoods
and their number of occurrences. Next, different heuristics can be used to choose
the next cell to assign a label to. MS proceeds in a scanline order, while WFC
chooses the cell that accepts the fewer number of possible labels. Additionally,
once a cell is selected, the label can be chosen in a number of ways. Finally,
MS starts from a trivial solution and works by blocks: once a block is chosen,
block cells are set to an undetermined state and new content is synthesized
within. In contrast WFC operates on the whole grid from the start. The specific
differences between MS and WFC are summarized in [Mer21]. Merrell later
extended MS to work on shapes not defined on a grid [MM08] and to be able to
specify simple constraints on the output [MM09]. Recently, [Mer23] provided
a method to generate polygonal shapes by generating a graph grammar (i.e.
rewriting systems on graphs) from an example.

Designing an exemplar that when given to WFC produces an output with
the desired visual, geometric, structural or topological properties is a significant
challenge. It often heavily relies on trial and error, and predicting the effect on
the output of a modification of the input is particularly difficult.

2.3.2.3 Designing procedural models

Procedural modeling essentially requires to construct an abstract set of rules
that, when interpreted suitably, generates the desired content. One of the
main issues with this approach is the lack of controllability during this process,
and the difficulty of expressing intent [Sme+14]. Indeed, it is very hard to
predict what effect a change in the rules or the parameter values will have on
the final result. Inverse Procedural Modeling (IPM) tries to accomplish the
opposite, i.e. create a procedural model that can reproduce the provided input
data [Ali+16]. This can be done at different levels. For example it is possible to
try to reproduce the data with a fixed model, finding the best set of parameters
to match the output of the model to the input data. Some approaches try
to fully construct a procedural model instead of just finding parameters for a
preexisting one. By starting with traditionally created content that expresses
the artists’ or designers’ intent and using IPM to generate a procedural model
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to produce similar outputs, it is possible to circumvent the design problem of
procedural models. At that point all virtues of procedural modeling can be
exploited, creating a range of data replicating the initial input by changing
parameters or production rules.

[BWS10; Bok+12; Kal+12] define and use notions of similarity between
shapes and symmetry under transformations within a shape. Two regions
from two different shapes are similar if they are geometrically matched and
locally topologically equivalent. Two regions within a shape are symmetric
under a transformation if the transformation maps the first onto the second
while preserving the local topology. The first notion allows to formalize the
notion of the output of a procedural method locally resembling the example
used to generate it. Indeed, requiring that every neighborhood of the output
is present in the output, as is done in WFC and [Mer23], is encoded by this
notion of similarity. Symmetry helps define regions that can support similar
shape operations that modify the geometry within, which is closely related to
rewriting systems.

Still IPM presents a significant challenge today. In particular, it is hard to
apply procedural methods to design for computational fabrication, since control
and low-overhead is essential for these applications, even though the field might
benefit from it in the future [BFR17].

Summary

Generative systems, in particular tile-based approaches, rewriting systems,
and model synthesis are closely related to layout problems with topological
constraints. In one way or another, a space is filled with tiles, labels or
symbols determined by topological constraints or rewriting rules. These encode
information about the structure of all possible generated results. In any case,
layouts generated according to these rules or constraints are guaranteed to be
valid by construction. Thus there is no need for a verification step, which is
often hard to do as exemplified in Section 2.2. The hard part remains the design
of the generative system itself, since predicting changes in the result based on
changes on the system is far from trivial.
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Figure 3.1: Starting from a 3D mesh our method automatically generates design files to produce
an on-surface display composed of individually addressable Red-Green-Blue (RGB) Light-Emitting
Diodes (LEDs). The circuit board is manufactured through standard Printed Circuit Board (PCB)
production services, including component soldering. The user then folds the fabricated board back
onto a 3D printed support. The final model becomes a curved display, onto which intricate light
patterns can be programmed in a shader-like manner.

This chapter proposes a computational design approach for covering a
surface with individually addressable RGB LED, effectively forming a low-
resolution surface screen. To achieve a low-cost and scalable approach, we
propose creating designs from flat PCB panels bent in-place along the surface
of a 3D printed core. Working with standard rigid PCBs enables the use of
established PCB manufacturing services, allowing the fabrication of designs
with several hundred LEDs. Our approach optimizes the PCB geometry for
folding, and then jointly optimizes the LED packing, circuit and routing, solving
a challenging layout problem under strict manufacturing requirements. Unlike
paper, PCBs cannot bend beyond a certain point without breaking. Therefore,
we introduce parametric cut patterns acting as hinges, designed to allow bending
while remaining compact. To tackle the joint optimization of placement, circuit
and routing, we propose a specialized algorithm that splits the global problem
into one subproblem per triangle, which is then individually solved. Our
technique generates PCB blueprints in a completely automated way. After
being fabricated by a PCB manufacturing service, the boards are bent and
glued by the user onto the 3D printed support. We demonstrate our technique
on a range of physical models and virtual examples, creating intricate surface
light patterns from hundreds of LEDs.

This work is the result of a two-year-long collaboration between Camille
Schreck, Pierre-Alexandre Hugron, my advisor Sylvain Lefebvre and myself,
with Manas Bhargava and his advisor Bernd Bickel from the Institute
of Science and Technology Austria. It resulted in a publication [Fre+23]
in ACM Transactions of Graphics with Manas and I as joint first authors.
As stated in Section 1.4, Manas played a significant role on mesh unfolding,
bending experiments and LED placement, while I specifically focused on hinge
design, LED routing and layout generation. The code and data resulting
from this work are available at https://github.com/mfremer/pcbend. The
submission video showcasing multiple lighting effects is available at https:
//youtu.be/g8UX-KifGmM. These effects are impossible to display in a static
format, and even the video does not fully do them justice. I would highly
encourage the reader to watch it if possible, and this chapter will make reference
to it multiple times. Finally, the submission data is available at https://mybox.
inria.fr/d/cabc196c89704ec090e6/, it contains the SVG files and Gerber
files used to fabricate all of the objects showcased in this chapter.

https://github.com/mfremer/pcbend
https://youtu.be/g8UX-KifGmM
https://youtu.be/g8UX-KifGmM
https://mybox.inria.fr/d/cabc196c89704ec090e6/
https://mybox.inria.fr/d/cabc196c89704ec090e6/
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Manas and I gave a presentation on the article at the SIGGRAPH 2023
conference in Los Angeles, California. We also presented our fabricated objects
at the Bring Your Bunny (or something) fabrication meet-up there. This was a
great opportunity to showcase the objects themselves and the lighting effects to
the computational fabrication and computer graphics communities, enjoy the
objects brought by everybody and exchange about our respective works.

This project has also been mentioned in other media: an article on Inria’s
website (english, french), a mention in an article (in french) by L’Usine Nouvelle
(weekly French business magazine), and an article in La Semaine (weekly
regional French journal).

In total, we fabricated the following objects with two different types of LED
a smaller 1.5× 1.5 mm2 one (1515) and a larger 5.0× 5.0 mm2 one (5050). The
objects were fabricated in two batches, the first at a lower density with an older
version of our system, and the second one at the maximum density currently
possible with our system (see Figure 3.23 for a comparison).

• two icosa (86 and 201 1515 LEDs);
• three cat (979 and 1881 1515 LEDs, 460 5050 LEDs);
• two full sqtorus (4× 678 and 4× 2011 1515 LEDs);
• two star (166 and 447 1515 LEDs);
• one batman (289 5050 LEDs);
• one dome (458 5050 LEDs).

3.1 Introduction

Light installations are ubiquitous in modern homes and cities. They decorate
rooms, streets, shops and hotels, and can be art pieces by themselves. We use
light everyday and everywhere not only as a commodity, but also to impact
mood and productivity, and to highlight a space, an art piece, or even entire
buildings. In this work we explore how to design objects covered with hundreds
of individually addressable lighting elements. The obtained luminaires can
combine shape and colored light in novel and intricate manners, producing
on-surface animated light patterns, effectively acting as free-form displays.
We rely on bright and colorful addressable RGB LEDs such as the Adafruit
NeoPixels (WS2812B). We refer to these as LED pixels. While LED pixels
are very popular amongst hobbyists and designers, their use on free-form
layouts has been limited: circuit design within complex geometric outlines and
manual soldering quickly becomes impractical with hundreds of components (see
Figure 1.3). While promising methods are being explored to prototype circuits
along curved surfaces (see Section 3.2) they suffer from similar scalability issues.

To match our vision of creating on-surface displays with hundreds of LEDs,
we set out the following requirements for our system:

• Simplicity of use and design automation: The only required user
input has to be the target surface mesh. Our approach should then
automatically generate a fabrication-ready design, in a reasonable amount
of time, without requiring any modelling assistance.

• LED coverage: We want the LEDs to cover the surface as densely as
possible, with the option for the user to reduce the coverage density if so
desired.

https://www.inria.fr/en/pcbend-flexible-printed-circuits-3d-printing
https://www.inria.fr/fr/pcbend-circuits-imprimes-pliables-impression-3d
https://www.usinenouvelle.com/article/deux-bras-robotises-agissant-de-concert-grace-a-l-ia-et-4-autres-avancees-scientifiques.N2167612
https://www.lasemaine.fr/sponsorise-pcbend-des-circuits-imprimes-pliables-pour-creer-de-nouveaux-objets/
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• Fabrication scalability: Since LED pixels come in packages as small as
1.5 by 1.5 mm, we are considering the production of objects supporting
several hundreds of them. The fabrication process has to be reliable and
automated, avoiding the long and tedious task of hand soldering and
tracking potential issues across hundreds of components.

• Availability and cost: Fabrication methods for the results should be
readily available to users, requiring no specialized tooling or equipment
on their part, with designs fabricable at a reasonable cost.

• Lighting effect design: It should be easy to program and experiment
with lighting effects onto the target surfaces.

With the above requirements, our system aims to enable the design of large
on-surface displays that can be easily manufactured and controlled.

Limitation. Our system expects the input mesh to be a surface with appro-
priately scaled triangles of reasonable quality and size.

3.1.1 Design principles

Our set of requirements led us to the following choices in the design of our
system, which is illustrated in Figure 3.2.

Fabrication. To ensure fabrication scalability and availability, we target
traditional (non-flexible) PCB. Such PCBs can be fabricated at a relatively
low cost from several online services – e.g. PCBWay, JLCPCB, Beta Layout,
Eurocircuits – with components automatically soldered by a pick-and-place
machine. We thus inherit the reliability, moderate cost and automation of
well-established manufacturing processes.

PCBs along surfaces. Instead of producing many flat PCBs and connecting
them all — a prohibitively tedious task —, or using rigid-flex/flex PCBs —
more expensive and harder to design — to wrap around a surface, we propose
to bend a rigid PCB into shape along the target surface. This effectively forms
a "skin" atop a 3D printed support as shown in Figures 3.1 and 3.2. To this end,
we design specialized kerfing patterns [Kal20; Lee+18] that we call hinges. This
captures the idea that the deformation is concentrated on these areas, while
the rest of the PCB remains rigid. These allow the PCB to bend along specific
cut patterns, while enabling required electric signals to go through. We seek to
use small hinges to leave as much space as possible for LEDs. We thus study
different hinge geometries and their admissible folding angles given their design
parameters. This setup naturally leads to an unfolding problem: the input
mesh surface is cut and flattened into the plane to obtain the board geometry.
However, an important difference when compared to unfolding for paper or
cardboard is that the PCB hinges bend with a limited radius of curvature. This
requires trimming and offsetting the triangles to make space for hinges in the
unfolding.

Circuit design. Our unfolder generates the PCB geometry from a 3D mesh.
Next, we densely cover the board with LEDs connected by a valid circuit
satisfying all manufacturing constraints. We rely on RGB LEDs that can be
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Figure 3.3: Schematics of a chain of LED pixels, Each LED is connected to gnd and vcc, with a
decoupling capacitor next to it. LEDs are chained through their data-in, data-out pins, passing
information along the chain. The connector DOUT pin on the left can be used to connect multiple
chains together.

chained in a sequence while being individually addressable, connecting each
data-out pin of a previous LED to the data-in pin of the next, see Figure 3.3.
The chain topology of the circuit and the PCB geometry introduce a strong
interdependence between circuit placement and routing.

Indeed, considering the data pins only, forming a non-intersecting chain
through the many LEDs and hinges amounts to computing a Hamiltonian path
over the entire design. This path is not abstract: it has to go around components
and has to satisfy geometric constraints from PCB manufacturing (e.g. minimal
width of 0.2 mm, minimal clearance of 0.2 to 0.25 mm). This makes optimizing
for routing globally intractable, with the likelihood of failure rapidly increasing
with the number of placed LEDs. In fact, there is no guarantee a valid routing is
even possible given a specific placement, as stated in Section 2.2.3. To tackle this
challenge we propose a specialized placer and router that exploits the structure
of the circuit as well as the structure of the unfolded PCB. Our algorithm splits
the global place-and-route problem into local per-triangle problems that can
be efficiently solved, in particular exploiting the freedom of ordering the LEDs
along the chain.

Interactivity. We facilitate the exploration of interesting light patterns by
proposing a shader-like programming interface. It allows to quickly implement
different patterns and visualize them interactively on the 3D-display, through a
live-coding interface.

3.1.2 Using our system

The user starts designing a display from only a target surface mesh, the type of
LED to use and (optionally) a desired spacing between the LEDs which controls
the packing density. From the user’s perspective the modeling process is entirely
automated. Our approach optimizes the PCB geometry, LED placement, circuit
schematics, layout, and routing automatically. A set of fabrication-ready PCB
blueprints and a bill of materials (component listing) is output, as well as an
object to be 3D printed. The PCB is sent for fabrication to an online service,
while the 3D object is either printed through an online service or in-house.
Once folded and glued onto the surface, the PCB provides a dense coverage
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of individually addressable LED pixels. The LEDs are then driven from an
external microcontroller connected to the PCB. To demonstrate the feasibility
of our approach, we fabricate several designs and demonstrate the variety of
lighting effects that can be produced through a shadertoy-inspired live coding
interface.

3.1.3 Outline

This chapter is structured as follows. First, Section 3.2 introduces related work
in the fields of 3D electronics, surface unfolding and shape packing. Next,
Section 3.3 deals with the general problem of modeling the flat shape of the
PCB, including unfolding the initial shape, hinge design and hinge insertion.
With the PCB shape computed, Section 3.4 explains the principles behind
our automatic circuit layout generator, producing a functioning circuit within
the shape by splitting the global problem into per-triangle local ones. Then,
Section 3.5 showcases our results, from fabricated objects to virtual examples,
all illustrating a variety of lighting effects. Finally, Section 3.6 concludes the
chapter with a discussion on our approach. Appendix 3.A provides a few more
virtual examples with the maximal density possible with our system.

3.2 Related work

This section follows the introduction to layout problems in electronics design
automation from Section 2.2. It quickly summarizes the main points relevant
to PCB design and then dives into different approaches to 3D circuitry, namely
direct on-surface circuit fabrication and circuit deformation from planar to 3D.
The section concludes with some useful background on surface unfolding and
shape packing, relevant to the understanding of our approach.

Electronics design typically starts from a circuit schematic after which a
PCB is modeled. Adequate components are chosen and soldered onto the
board to realize the circuit. Typical PCBs are copper-clad glass-reinforced
epoxy laminates. Electrical interconnects are etched into their surface to create
conductive traces and attachment pads for soldering [LS20]. Vias are inserted
to connect traces across layers. PCB manufacturing is a mature technology,
ubiquitously used across many industries. Components range from millimetric
Surface-Mount Devices (SMDs) to larger components with pins extending out
to facilitate manual soldering and prototyping. Today, online services allow
anyone to manufacture industrial-grade multi-layer PCBs with pre-soldered
SMDs. However, the difficulty is shifted to the PCB modeling process, as
shown in Section 2.2.4. This is a task under strict geometric and electrical
requirements, and professional tools [CK92; Cad88; Alt05] require training
and expertise. Therefore, efforts are devoted to exploring simpler prototyping
and modeling tools, often in conjunction with novel design capabilities. In
particular, researchers explore ways to move beyond the planar nature of PCBs
and design curved circuits. We discuss the approaches most related to our work
next. For an exhaustive overview of this topic we refer the readers to recent
surveys, e.g.[Wu+20; Ric+21].
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3.2.1 3D and on-surface circuit fabrication

Direct 3D fabrication of circuits is an overarching goal of modern electronics de-
sign. The technologies being developed are focused around on-surface deposition
of conductive materials [MID92; US17; Tor+13] and additive manufacturing
techniques [Swa+19; Flo+17; He+21; Zhu+20a]. A variety of materials are
used such as carbon, graphene or copper enriched filaments [Flo+17] and
silicon [Zhu+20a]. These techniques present several challenges for our pur-
pose. Depositing along existing surfaces is limited to specific shapes due to
reachability constraints, in particular in concave regions. When layered the
deposited conductive traces present a sharp increase in resistance across layer
interfaces [HMB21], limiting usability to low-current and sensor applications.
Finally, many of these conductive materials cannot be soldered onto. Thus
only through-hole or large SMD components can be glued, unless chemical
post-processes are applied such as copper-plating [Ang+18; Kim+19].

3.2.2 Deforming circuitry: planar to 3D

A different direction of research aims to fabricate the circuits in a planar
fashion and deform them into free-form shapes. Our work belongs to this
category. The deformation can be created in different ways, e.g. thermoform-
ing [Plo+17; HMB21], self-morphing under heat [Wan+20], wearable textile
substrates [Par+21] or manual folding [Olb+15]. Other techniques produce pla-
nar transfer stamps [Hod+14; GS18; Zhu+20b] to help a user place conductive
traces on a target surface. Rigid-flexible PCBs can also be used to produce
curved designs [Alt14]. For instance, Muscolo et al. [MMC19] connect ten trian-
gular circuit elements through flexible areas to produce a curved sensor. Such
PCBs are however significantly more expensive than regular PCBs [Wan+20;
All23] and impose stricter manufacturing constraints. The extreme flexibility
would make assembly very difficult too when working with large designs. Note
that while the initial configuration is planar, the final circuit topology can be
more complex as several sheets can be glued together [Yam+19] with traces
connected across [Olb+15]. Circuits may contain several conductive layers
with connections across isolating layers [HMB21; Yan+22]. The planar-to-3D
line of research is especially active regarding the interactive design of objects
augmented with electronics. Most 2D fabrication techniques are accessible
to individual users, for instance, drawing or inkjet printing with conductive
inks [Rus+11; Kaw+13; JSC15; Wan+18] or laser cutting of specially prepared
laminated copper–kapton sheets [Yan+22]. This led to the development of
interactive tools assisting users in creating foldable designs with sensors, ac-
tuators and display elements [QB10; Olb+15; Oh+18; Par+21]. Curvature
can also be facilitated by introducing spatially varying kerfing patterns [GS19].
Kerfing is traditionally used in woodworking to attain a wide range of shapes
through different cut patterns [Rod+24; SK24]. Interactive techniques are
designed with the user in the loop, exploring means of fabrication allowing
quick iterations of do-it-yourself (DIY) prototypes. Therefore the tools do not
need to be fully automated when it comes to placement and routing, and the
employed techniques require manual intervention. In particular, DIY materials
such as paper or 3D printed filaments do not allow soldering, making attaching
components a delicate manual process. Overall these techniques do not scale
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easily to circuits with hundreds of components in terms of manual labor.

Curved displays. Among the aforementioned approaches, a number of tech-
niques prototype displays as applications. The approach of Torres et al. [Tor+17]
assists users in optimizing luminaires producing specific light diffusion patterns.
The luminaires contain in the order of ten RGB LEDs. Placement and rout-
ing is performed by the user with assistance from the system to trace routes.
Olberding et al. [OWS14], Lee et al. [Lee+20] and Hanton et al. [Han+20]
fabricate display surfaces using thin-film electroluminescence. These techniques
produce impressive segmented displays, with large and homogeneously lit sur-
faces. They however do not provide the flexibility in colors and brightness that
RGB pixels are capable of. Prior works demonstrate LED arrays going from
tens of pixels [OWS14; Plo+16; Plo+17] to a grid of 25× 16 standard LEDs
manually glued on paper [Rus+11]. Such array arrangements however require
a dense routing pattern that would be extremely challenging along arbitrary
surfaces and layouts, both geometrically and for fabrication. In conclusion, none
of the aforementioned techniques can address the generation and fabrication of
dense LED pixel arrangements along surfaces at the scales we envision. While
designing PCBs can be intimidating, our approach fully automates the process.

3.2.3 Background on surface unfolding

As our method relies on unfolding we provide some background in this section.
Edge-unfolding or simply unfolding is a process of cutting a 3D model represented
as a polyhedral surface along its edges and flatten the surface onto the plane
without introducing any distortion or overlaps between faces [Kon03]. Origami
and kirigami, traditional Japanese art forms of folding and cutting paper,
have been extensively studied [CZ18] and are strongly related to unfolding.
Obtaining a non-overlapping unfolding might require cutting the surface into
multiple disconnected patches. Finding an unfolding with a minimal number
of disconnected patches is computationally hard [She75; DO07]. Not only
that, there exist ununfoldable non-convex polyhedra and it is an open problem
whether every convex polyhedron can be unfolded into a single non-ovelapping
patch [DO07]. Thus, algorithms typically rely on heuristics. Straub and
Prautzsch [SP11] use a minimum perimeter heuristic [Sch97]. This results in
the unfolding which has the minimum perimeter but does not guarantee that
there are no intersections. This is resolved in a post-process, introducing further
cut edges by solving a minimum-set cover problem (Section 2.2 in [SP11]).
This approach is however known to still create several patches on complex
cases. Several improvements have been explored, using for instance genetic
algorithms [Tak+11] or simulated annealing [Kor+20]. Most prior works focus
on folding paper and cardboard along crease lines. This does not directly apply
to our case due to the bending limitations of the PCB but provides a strong
foundation on which our algorithm is based.

3.2.4 Background on shape packing

Distributing components on the surface is an instance of shape packing inside a
bounded domain, with additional strict constraints: non-overlapping compo-
nents and circuit routability. For more context on packing problems, please
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refer to Section 2.1.2. A general approach of tiling shapes in a bounded 2D
domain is a hard problem [FPT81; El-+09] leading most algorithms to resort to
heuristics. A typical approach is to use a Centroidal Voronoi Tessellation (CVT)
to distribute points and spawn tiles of various shapes in a bounded domain, as
in for instance [Hau01; SLK05; Dal+06]. These works however do not guarantee
a non-overlapping result. Others explore the layout of tiles directly on a surface,
for filigrees [Che+16], mosaics [Hu+16], volumetric elements [Fan+22] and
fabricable tilings [Che+17]. However, tiles are deformed to ensure that they
fit compactly, which cannot be done with components. Xu et al. [Xu+20] use
a self-supervised network to solve a tiling task. They optimize for maximal
coverage, resulting in stacked layouts of tiles. This however does not allow for
uniform distributions. To achieve a dense packing in our context we propose a
specialized packer that runs in an optimization loop alongside the circuit router.

3.3 Modeling the PCB geometry

Our method proceeds in two main steps: PCB geometry modeling and circuit
synthesis (Figure 3.2). In this section we detail the first part of the process. In
Section 3.3.1 we describe our hinges : parameterized kerfing patterns that make
the PCB foldable, while allowing electrical signals to be routed through. We use
different hinges depending on the dihedral angle between connected triangles.
We determine their admissible bending angles in Section 3.3.2. Thanks to the
hinges, we can tackle the problem as an unfolding task: we seek to produce a flat
PCB layout, with hinges in between rigid pieces (triangles) that can be folded
onto a 3D printed support. We describe our specialized unfolder computing
the PCB outline in Section 3.3.3 and the modeling of the support structure in
Section 3.3.5.

3.3.1 Hinge designs

Figure 3.4: Hinge designs and parameters. Left: full hinge, right: half hinge. Track width (wt) is
1.7 mm, inner diameter (di) and outer diameter (do) are 1.0 mm each. The rigid width is wF

r =
4.4 mm for full hinges and wH

r = 1.7 mm for half hinges. The total hinge width is wF
h = 6.4 mm

for full hinges and wH
h = 3.7 mm for half hinges. The curved sections are circular arcs.

We consider two types of hinges, shown in Figure 3.4. We refer to them as full
hinges (Figure 3.4, left) and half hinges (Figure 3.4, right). Mechanically, both
consist of one or two long torsion elements connected by shorter rigid sections
(wF

r for full hinges and wH
r for half hinges). Torsion is applied by the sections

connecting the triangles and the hinge, acting as levers. As the hinges take up
space in the final design and reduce the area available for LEDs, all parameters
but the hinge lengths hl are set as small as possible under the manufacturing
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constraints defined by the PCB fabrication service (see Figure 3.13). Thus,
both our hinge designs are parameterized by just their hinge lengths hl.

We considered other hinge designs, such as a single repeating zigzag pattern
going from one triangle to the other, but ended up settling on this specific one.
The key advantages of this design are the limited footprint, easily fit between
two triangles without much effort, and the two channels through the hinge.
Having two channels allows us to have the chain go forwards and backwards
through each hinge, making it easy to embed a loop in the circuit board and
consider each triangle independently. Other hinge designs offered too much
flexibility in exchange for larger footprints, but most of the time the extra
flexibility was not needed, thus leading to wasted space. Even the full hinge
design sometimes offers too much flexibility, which lead to the design of the
half hinge. Choosing a hinge design is an exercise in compromise. We want
hinges to be as flexible as possible to reach the desired bending angles while
remaining as small as possible and having two separate ways through the hinge.
Our chosen designs satisfy these requirements, but others, maybe even better,
might exist. If additional requirements need to be met, the designs must then
be adapted.

3.3.2 Hinge bending

We use 0.6 mm thick PCB with FR4 substrate for fabrication. The hinges are
fabricated flat on the PCB and are bent during manual assembly. It is therefore
important to determine how much a hinge can bend without damage.

To calculate the maximum bending angles, we conducted an experiment
where we progressibely bend hinges of different lengths. We observe that during
progressive bending a visible yellowing gradually appears on the PCB material
before breakage (see Figure 3.5). This yellowing effect serves as an indication of
stress accumulation. We observed that damage to traces on hinges only occurs
after yellowing.

(a) Full hinge completely bent on itself. (b) Unbent hinge exhibiting yellowing signs.

Figure 3.5: Illustrations of hinge bending.

We define the maximum allowed bending angle θ based on the first occurrence
of yellowing while bending the hinges. We experimentally determined the value
of θ for varying hinge lengths for both hinge types in the following way. We
fabricated both full and half hinges of varying lengths using 0.6 mm thick FR4
with two copper layers. They were slowly bent by hand on a circular dial on
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Figure 3.6: Illustration of the bending angle experimental setup.

Figure 3.7: Safe bending angle for varying hinge length for both full hinges and half hinges. In
green, we see the safety conversion threshold below which we safely replace a full hinge with a
half hinge.

which the bending angle was read. We recorded the angle of the first naked-eye
visible yellowing for each hinge. A conservative safe bending angle is derived
from this value to avoid any yellowing of the hinges. This safe bending angle is
further tested by performing a series of fatigue tests. The setup is shown in
Figure 3.6. Figure 3.7 shows the resulting maximum angle plot. We observed in
the experimental data that the first yellowing angle θ could be simply modeled
by an affine function. Additionally this data allowed us to define a conversion
threshold allowing us to decide if, given a desired bending angle, a half hinge
is enough or a full hinge is needed. Given this experimental data for both full
and half hinges, we can consider how to obtain the overall PCB layout.
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3.3.3 Unfolding the mesh, folding the PCB

We obtain the PCB geometry by unfolding the input mesh onto the plane. Our
unfolder is inspired by the work of Takahashi et al. [Tak+11] which targets paper
models. The output of the unfolder is a set of non-intersecting flat patches made
of connected triangles. The patches can be folded back onto the initial surface
by folding along the edges between the connected triangles. However, unlike
paper which bends sharply along a crease line, our hinges curve progressively as
the torsion elements twist. As we discuss next, this bending requires redefining
the geometry of the triangles in the unfolding as well as modifying the geometry
of the support to ensure that the PCB will fold properly in place. We model the
bent shape of a hinge as three articulated sections: a middle section of length
w

F |H
r connected to two sections of length do for full hinges and of lengths do

and di for half hinges, see Figure 3.4. In practice, the middle section bends
slightly but we found this to be negligible.

δ

δ

Figure 3.8: Consequences of ignoring the hinge curvature as seen from the side on convex and
concave edges. The assumed folding behavior (crease line) is shown in blue, the actual one in
red, with the triangles attached to the hinge in green. This moves the triangles away from the
opposite edge by an offset δ, introducing a global discrepancy.

Length discrepancies. A standard unfolding provides no space to insert
hinges in between triangles. However, as hinges bend they take on a curved
shape that has to be considered. Otherwise folding the result back onto the
surface will be impossible as illustrated in Figure 3.8. On convex edges the hinge
cannot perfectly wrap around the support, pulling the triangles towards the
edge. On concave edges, the hinge cannot be flush with the support, pushing
the triangles away from the edge. These effects accumulate with every edge as
the design is folded, making it impossible to match the support. Note that the
mismatch depends only on the dihedral angle between the adjacent triangles
when considering a single edge.

Trimming. This problem was already observed in [An+18] in the case of self-
folding 3D printed geometries, also bending along hinges with a non-negligible
footprint. In their case, bending is due to the release when heating the object
of residual stress accumulated during printing. We adopt a similar solution to
theirs for hinge insertion. We overcome this problem by trimming the triangles
neighboring an edge by an amount that depends on the edge dihedral angle θ
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Figure 3.9: Illustration for the dihedral offset computation for both hinges. d∗ = do for full hinges,
d∗ = di for half hinges.

and the hinge parameters. We compute a dihedral offset δθ for each edge that
corresponds to the amount to remove from the triangles on each side of the
edge. It is computed as follows (see Figure 3.9):

δ∗θ = d∗ + dθ = d∗ +
wr

2 sin(θ/2)
, ∗ ∈ {i, o} (3.1)

The total amount trimmed from the triangles in the unfolding is 2 · δoθ for a
full hinge and δiθ + δoθ . This leaves a gap that is always larger or equal to the
hinge width. Since di = do for our hinges, dihedral offsets are thus symmetric
for both full and half hinges. We then insert the full hinge in the gap and
snap the triangles back on each side. During hinge insertion the algorithm
verifies whether new overlaps are created between triangles. If this occurs, the
overlapping triangles are shrunk automatically by a small amount to just avoid
the overlap. This happens rarely in practice: on our results only the sqtorus
model requires a small shrinkage of 0.3 mm on two triangles. Trimming and
hinge insertion are shown in Figure 3.10. These are performed between each
connected triangle in the unfolding. We refer to the triangle after trimming and
hinge insertion operation as the trimmed triangle in the rest of the chapter.

Checking hinge suitability. After inserting the hinges in our unfolded
mesh, we verify that they can suitably bend by the required angle using our
experimental data (see Section 3.3.2). We compute the length for each hinge
and use the affine models to check if it can bend within the safety margins to
the necessary bending angle. If a hinge is not suitable we report the mesh as
incompatible and suggest that the mesh be upscaled by a certain amount.

Adding half hinges. We also use the experimental data to select the hinge
type. We favor half hinges as they require less PCB area and trimming than
full hinges. We choose half hinges whenever the required bending angle is below
the safe threshold angle for a half hinge (see Figure 3.7). Table 3.2 reports the
use of half hinges and full hinges on our test models. Naturally, a smoother
model with smaller dihedral angles has fewer full hinges, whereas models with
sharp angles have to use full hinges more often.
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Choice of unfolder heuristic. Unfolding a mesh with minimal patch count
is computationally hard, as seen in Section 3.2.3. Thus, algorithms rely on
various heuristics depending on their application. In this work, we rely on the
minimum dihedral angle and minimum perimeter heuristics. The minimum
dihedral angle heuristic penalizes edges that have high dihedral (i.e. sharp)
angles and introduces cuts along such edges. The resulting unfolding contains
only hinge edges that have comparatively small dihedral angles, making it easier
to fold. Small dihedral angles also ensure that we can use half hinges more
often, leaving more space for LEDs. The minimum perimeter heuristic instead
minimizes the overall perimeter of the unfolding, tending to cut shorter edges
where hinges would bend less and empirically results in fewer patches. These
two heuristics illustrate a compromise between obtaining a better unfolding
with fewer patches, and obtaining an unfolding better suited to our approach,
where sharp edges are preferably cut and long edges preferably preserved. The
minimal dihedral angle heuristic results in a single patch unfolding for most of
our examples (see Section 3.5.5). We expose the choice of heuristic as a design
parameter, so the user can choose the one that gives the best result for each
model.

3.3.4 Compatible input mesh

One key limitation of our approach are the constraints on the input mesh for it
to be compatible with our system. The input mesh is incompatible if any of
the hinges is too short for the required bending angle. In that case, the mesh is
rejected and will need to be upscaled before using it as an input to the pipeline.
A compatible mesh has all edges above the angle-dependent constraint on hinge
length, and triangles able to fit at least a module. These requirements are not
too constraining: our system works on models with irregular triangles such as
sqtorus and star (see Figures 3.26, 3.28 and the corresponding SVGs in the
submission data).

3.3.5 Chamfered support structure

Figure 3.11: Effect of hinge insertion after trimming and chamfering, side view of convex and
concave edges. After folding the hinge is now flush with the support. Triangles are no longer
displaced from their intended position.

The unfolded mesh needs to be folded back onto the support structure. To
facilitate this operation we need to chamfer our support structure. The edges
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Figure 3.12: Impact of chamfering on hinges. Left: No chamfering. Right: With chamfering.
Although chamfering is barely noticeable on the mesh, it greatly reduces hinge deformation.

of the support structure are chamfered such that the hinges can rest of them
properly, see Figure 3.11. The convex edges of the support structures are offset
by h = dθ cos(θ/2). Figure 3.12 shows the impact of the chamfer on the state
of the hinges after assembly.

3.4 Automatic circuit layout

(a) Top layer. (b) Bottom layer. (c) Both superimposed.

Figure 3.13: Top and bottom view of the PCB blueprint for a triangle. The vcc plane is on the
top layer, while the gnd plane is on the bottom. Space for the components is carved out from the
vcc plane. Data traces are carved out from the gnd plane and are 0.2 mm wide. vcc and gnd are
respectively 1.2 mm and 0.8 mm wide through the hinges.

Section 3.3 explains how to fully determine the PCB outline. We now detail
in this section how to place the LEDs and generate a circuit layout within the
board. The circuit has to form a sequential chain connecting each data-out
pin of a previous LED to the data-in pin of the next, as shown in Figure 3.3.
Note that each LED is paired with a 100nF decoupling capacitor connected to
ground (gnd) and power (vcc). We use both layers of the PCB: the top layer
carries vcc and the surface mounted components (LEDs, capacitors, connector),
the bottom layer carries gnd and the data traces. The components connect to
the bottom layer through vias: copper plated holes connecting traces across
the PCB layers.

A main observation underlying our approach is that we have full free-
dom in choosing the order of the LEDs along the sequence, and hence which
data-in/data-out pairs have to be connected by traces. This ordering is a
key degree of freedom in making the place-and-route problem tractable. Note
that this degree of freedom is normally not considered in PCB design [LS20],
as one rarely has the opportunity to reorder components in a circuit schematic.
In particular, auto-routers in PCB design software can help with tracing routes
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— more generally nets — but typically do not perform placement and do not
optimize the schematics.

We propose a specialized placer and router that exploits the structure of
the circuit as well as the structure of the unfolded PCB. Our algorithm splits
the global place-and-route problem into local per-triangle problems that can
be efficiently solved, in particular exploiting the freedom of ordering the LEDs
along the chain. It is described in Section 3.4. Each disconnected patch of the
unfolding becomes a single PCB, each having its own connector with vcc, gnd,
data-in and data-out pins. The data pins are respectively connected to the
data-in pin of the first and data-out pin of the last LED in the sequence. In
a design with multiple patches, each patch is processed independently.

gnd and vcc planes. Our circuit design uses a vcc plane on the top layer,
and a gnd plane on the bottom layer: initially the layers are fully covered by
a conductive copper plane connected to vcc/gnd, and the other elements (i.e.
component and via footprints, data traces) are carved out from these planes.
This is illustrated in Figure 3.13. This approach allows us to mainly focus
on the geometry of the data traces. In addition, using vcc and gnd planes
instead of traces minimizes their resistance. This is important on large designs
where narrow copper traces can be multiple-meter long, enough to have a
non-negligible resistance.

(a) 5050: 10.2× 6.0 mm2. (b) 1515: 5.11× 3.46 mm2.

(c) Connector: 11.2× 3.6 mm2.

Figure 3.14: Connector and modules containing an LED and a capacitor, shown at the same scale.
Data traces enter a module through the DIN via and exit it through the DOUT via. Modules are
connected to vcc through the LED vcc pad, and to gnd through the gnd via. The larger module
(5050) contains a 5.0× 5.0 mm2 WS2812B LED and the smaller module (1515) a 1.5× 1.5 mm2

SK6805-EC15 LED.
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Modules We group an LED and its accompanying decoupling capacitor into
a module: a fixed circuit with a rectangular outline, having predefined solder
pads and internal traces, as well as specified points where external traces should
connect. Figure 3.14 shows LED modules for different LED sizes as well as the
connector. Our algorithm does not manipulate the individual components, but
modules as a whole, positioning and connecting them. Each module is replaced
by its corresponding blueprint when producing fabrication files. This allows us
to abstract the exact layout of the components away during the layout phase,
and only consider the rectangular geometry of the module.

3.4.1 Overall strategy

G2L L2G

Router

remove LED
after N tries

success

success
Placer Verifierfailure

failure

Local

Figure 3.15: PCB blueprint generation pipeline. G2L and L2G are short for global-to-local and
local-to-global respectively. Everything in the dashed box is done locally per-triangle.

Generating the circuit requires solving for both the placement of the modules,
their order along the chain and the routing of the signals between them.
These problems — placement, ordering and routing — are interdependent. In
particular, some combinations of module placement and order may make routing
impossible due to spacing constraints. This is a likely occurrence under our
objectives: we target a dense packing of modules chained together by data
traces, starting from and coming back to the connector, going through all hinges
and every single module. Our overall strategy is summarized in Figure 3.15.
We first divide the global problem into a set of small, independent, per-triangle
problems. To deal with the interdependence of placement, ordering and routing
we iterate between a placer step followed by an ordering-routing step. For clarity
we next refer to the latter step simply as routing. We quickly loop between
placement and routing, generating a new, different placement whenever routing
fails. If no solution is found after a fixed number of iterations, the number
of modules is reduced. Thus, the placer samples the space of possible layouts
for the modules until routing succeeds. Once a valid placement and routing is
found, the verifier checks if the resulting local layout satisfies additional design
and electrical constraints. If not, the triangle goes back to the placement and
routing loop. Finally, when all triangles have a valid layout, they are stitched
into a global PCB blueprint ready for fabrication.
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Figure 3.16: Each unfolded patch is traversed in depth-first order starting at the connector (left),
traversing hinges right-side first. This counter-clockwise order defines a cycle on the unfolding
and fixes the inputs and outputs of each triangle (right).

3.4.2 Global to local

We split the place-order-route problem into per-triangle, independent subprob-
lems. Following a global routing strategy allows us to determine the inputs
and outputs to every triangle, and how the data chain flows through the hinges
globally. Once this is decided, we can compute a local layout for every triangle
independently. Our global routing strategy is illustrated in Figure 3.16. It
relies on the fact that unfolded patches have an underlying tree structure. A
depth-first traversal on the tree starting at the connector defines a cycle over the
unfolding. The cycle goes twice through every hinge in opposite directions, once
per side of the hinge. During the traversal each hinge is visited first through its
right side. This process defines the inputs and outputs of every triangle, and
how they connect to each other within the triangle. We define a sub-chain to
be a (possibly empty) sequence of modules connected to an input and output to
the triangle. Each module that is later placed within a triangle will belong to
one of these sub-chains. A triangle has between one and three incident hinges,
and the same number of sub-chains. We also use this depth-first traversal to
orient half hinges, which are asymmetrical. They are oriented such that their
wide sides always point to the children triangles as defined by the traversal
order. This facilitates routing as explained in Section 3.4.3.2.

3.4.3 Per-triangle circuit layout

Each triangle is processed independently, making parallel computations possible.
Within each triangle we first place modules (Section 3.4.3.1) and then route the
signals (Section 3.4.3.2). The resulting routing is then verified to ensure that
additional design and electrical constraints are satisfied. (Section 3.4.3.3). This
method generates a new placements and routing until a valid layout is found,
potentially reducing the number of modules during the process. (Section 3.4.3.4).

3.4.3.1 Module placement

The objective of the placer is to pack as many rectangular modules as possible
in the triangle, distributing them as uniformly as possible if there is sufficient
space. The placer works on the trimmed triangle from the unfolding. This
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resembles packing problems in the literature [Xu+20], with strict boundary and
overlap constraints as well as a uniform distribution requirement. We propose
a custom placer combining a classical CVT with a rigid body collision solver
(Box2D [Cat24]).

For now let us assume a desired number of modules M is given. We first
evenly distribute M points with a CVT (Step 1). These initial points represent
the center of the modules to be placed. A rigid body rectangle is then positioned
centered on each point, with a random rotation (Step 2). Next, the rigid body
solver resolves all collisions, including those with the triangle outline (Step 3).
We run it for 50 iterations (experimentally determined) and verify whether a
collision-free solution is obtained. If not, the process restarts — for the sake of
clarity we postpone this discussion for a few paragraphs. If the test succeeds,
the modules are in a non-overlapping configuration. We next refine the solution
to obtain an even distribution (Step 4). We run the rigid body simulation once
more, now applying redistribution forces. These forces attract each module
towards the center of its Voronoi cell, computed from the module centers every
iteration. During this step, the Voronoi diagram is computed on the entire
triangle before trimming, allowing modules to reach and align with the trimmed
triangle boundary. This allows for a better distribution over the final object,
where it helps hide gaps between hinges. We use 800 iterations (experimentally
determined).

a) step 1 b) step 2

c) step 3 d) step 4

Figure 3.17: Placement algorithm. Step 1: Placing points. Red points specify the Voronoi cell
centers and green points specify the center point of modules. Step 2: Spawning rigid bodies. Step
3: Collision resolution. Step 4: Even distribution with untrimmed boundaries.

The entire placement process is illustrated in Figure 3.17. Simulation
parameters were adjusted manually as a time-quality trade-off.

Placement loop. The first time the placer runs on a triangle it attempts
to place as many modules as possible. The initial value for the target number
M is the triangle area divided by the module area, times a factor of 0.55
(experimentally determined), rounded down. If a valid placement for M modules
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is found in less than 4 (experimentally determined) tries of step 3 (collision
resolution) M is incremented by one. If all tries fail M is decremented by one.
This process stops once we find a valid placement for M and fail to pack M + 1
modules. Later on the placer might be called again for the same triangle in cases
where routing or verification fails (Section 3.4.3.4). The number of modules to
place is then given to the placer.

(a) Iteration no. 0 (b) Iteration no. 400 (c) Iteration no. 800 (d) Iteration no. 1200

Figure 3.18: Impact of the number of iterations spent on step 4 of the placer.

Placement quality and timing. Timings are given in Table 3.2 for different
models. Step 4 of the placement algorithm dominates the timing. Based on the
desired placements quality, the user may choose to end this step earlier thereby
reducing the placement time. We show the effect of the number of iterations in
step 4 on the result in Figure 3.18. We always use 800 iterations in our results,
which gives a good compromise between execution time and placement quality.

Note that the choice of the placement parameters (0.55 packing density, 4
attempts per module number) have a significant impact on the performance
of the placement step. Indeed, if the initial guess is poor, we might need to
increment or decrement the number of modules many times. Since each failed
attempt requires multiple tentative placements, this can quickly snowball. More
sophisticated approaches could be devised by experimentally studying packing
density as a function of the triangle size and shape. Then the number of modules
could be modified by a variable step depending on the current packing density
and the empirically derived one.

User-defined LED density. Optionally, the user can specify a target average
distance between the modules within a triangle, thereby controlling the LED
density and hence the overall appearance of the model. High LED densities
produce gaps in the final distribution corresponding to the hinges, while cut
edges in the unfolding meet seamlessly. This results in noticeable hinge gaps
(see Figure 3.19, left). With a proper choice of target spacing, the user can
control the density so that the gaps are no longer noticeable (see Figure 3.19,
right).

3.4.3.2 Circuit routing

The router operates on a trimmed triangle with modules positioned by the placer
and the sub-chain inputs and outputs determined during the global-to-local
step. It outputs a set of data traces implementing the desired connectivity.
The router does not need to consider collisions between traces and modules,
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Figure 3.19: The user controls the density of LEDs on the result by specifying a target spacing:
(left) 5.0 mm (middle) 7.5 mm (right) 10 mm. The results show the renderings of cat model
with different LED densities.

since these lie on different layers of the PCB (bottom and top respectively, see
Figure 3.13). Vias are later placed to connect the module pins to the data
traces.

(a) Module cycle. (b) Hinge cuts.

Figure 3.20: Overview of the ordering and routing within a triangle. Left: Module cycle, dotted
lines where traces are cut. Right: Hinge cuts connect the cycle to the hinges to obtain the desired
global topology, labels with the same letter are ends of the same sub-chain, arrows show their
direction.

Our router functions in roughly two steps, illustrated in Figure 3.20:

1. Connect all modules to form a cycle, adding non-overlapping data segments
between their data-in/data-out pins.

2. Choose where to cut the cycle to connect the modules to the sub-chain
inputs and outputs, resulting in the expected circuit topology.

We keep the router fast and simple by performing only intersection and
spacing checks between traces, ignoring vias and possible disconnects of the
gnd plane. Therefore, the verification step that follows (Section 3.4.3.3) may
detect issues and re-run the process with a different choice of parameters
(Section 3.4.3.4). We now describe each step in more details.
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Connecting modules. We form a cycle passing through every module with-
out self-intersections, adding segments between each successive data-out/
data-in pair. At first sight, obtaining such a cycle seems to amount to finding
a shortest Hamiltonian cycle in the complete graph with the modules as nodes.
However, the problem is made more difficult by the fact that the distance
between any two modules depends on their specific orientation. Since the
data-out/data-in pins can be anywhere in a module (depending on the foot-
print), flipping a module can have a large impact in the quality of the solution.
The original design of the 5050 module footprint was symmetrical to avoid this
issue, but was significantly larger.

We propose a dedicated approach based on a divide-and-conquer strategy.
We note that for small instances of the problem (e.g. less than 8 modules), a
brute-force exploration of all module orders and orientations is possible since
intersection checking is very fast. We exploit this property as follows. For larger
instances of the problem we start by computing a Hamiltonian cycle through
the module centers using a Traveling Salesman Problem (TSP) solver [App+01].
Recall that a shortest Hamiltonian cycle under Euclidean distance cannot
contain intersections. From this cycle, we decide the orientation of each module.
The orientation of a module is binary: it is either flipped or not. This is due to
the rotation of the module being fixed during the placement step.

Figure 3.21: Both orientations of mc for given orientations of ml and mr. A bad orientation
leads to an intersection (left) while a good orientation produces no intersection (right).

The problem has a specific structure we can exploit: the best possible
orientation of some modules can be easily determined. Consider three modules
ml, mc, mr consecutive in the cycle. Given a choice of orientations for ml

and mr, we can compute which orientation for mc avoids intersections between
traces connecting the modules and minimizes their length. This can be seen in
Figure 3.21. If mc has the same best orientation for all possible orientations of
ml and mr, then we say it is a stable module. The orientation of stable modules
is independent from the orientation of the other modules and can be fixed from
the start.

Interestingly, in our placement results, stable modules tend to be spread
out along the TSP sequence, with only short unstable sequences in-between.
Longest unstable subsequences rarely contain more than 8 modules on average,
even in triangles with tens of modules. We therefore split the cycle into these
unstable subsequences of unknown orientation, and run a brute-force search
for each one. The length of the longest unstable module sequence in a triangle
reaches a maximum of 18 value in our examples. This happens for the model
sqtorus with 1515 modules in a triangle with 64 total modules. All other
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examples have lengths of at most 14. Note that the brute-force search can
stop as soon as a valid solution for the sequence is found, without exploring all
possibilities.

Hinge cuts. Now that we have a cycle defined by the order and the orientation
of the modules, we need to split it into module sub-chains connected to the
inputs and outputs of the triangle, as shown in Figure 3.20. The cycle needs
to be cut in a number of places equal to the number of hinges incident to the
triangle. We name hinge cuts the places where the cycle is split and connected
to the hinges. Sub-chains are connected to inputs and outputs as to preserve
the desired global circuit topology (Section 3.4.2). A hinge cut replaces a trace
between two modules with a set of traces, connecting the output of the module
before the cut to a triangle output, and the input of the module after the
cut to a triangle input. A hinge cut is valid if the newly added traces do not
intersect any existing traces, and have enough space between them to avoid
disconnecting the gnd plane. We find a valid set of hinge cuts by enumerating all
possibilities without intersections, choosing the set maximizing spacing between
traces. This is the main performance bottleneck of the routing step as the
number of modules goes above 50 in a triangle with 3 hinges. This only happens
in our sqtorus model with 1515 LEDs, which contains relatively large triangles.
This problem could easily be addressed by replacing the exhaustive search with
a incremental search starting with traces closest to the hinges. If no solution
without intersections is found, routing fails and a new placement is generated.
Note that a resulting sub-chain can contain zero modules, in which case the
added traces go around the edge of the triangle (see sub-chain B in Figure 3.20).
If a valid set of hinge cuts is found, we proceed to the layout phase that performs
additional verifications.

(a) Direct connection. (b) Narrowing connection.

Figure 3.22: Different types of connection between a module and a half hinge (wide part). Only
the left connection is shown here for simplicity, but both connections can also happen for the right
connection.

Half hinge parametric connections. Contrary to full hinges, the wide part
of a half hinge makes the connection points for data traces be very far apart
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from one another (see Figure 3.4). This makes it more likely that direct traces
from a module to this type of connection point will cause intersections with
other traces. To circumvent this, we introduce a narrowing connection that
goes first to the center of the hinge and then to the corresponding connection
point, see Figure 3.22. These take more space along the border of the triangle
but are less likely to cause intersections. Both direct and narrowing connections
are tested when solving for valid hinge cuts and the best one is kept. We also
limit difficult cases by orienting half hinges such that at most one wide side
points towards any triangle. This is done during the global-to-local phase as
described in Section 3.4.2.

3.4.3.3 Local layout and circuit verification

This step takes the module placement and routing information and generates
the corresponding geometric layout for the triangle. The vcc plane is created
on the top layer, modules are carved out, and the corresponding footprints
are inserted. The gnd plane is created on the bottom layer, traces and vias
are added and carved out from it. Traces that intersect vias are modified to
avoid them. These steps are performed as boolean operations on the polygons
forming the traces and gnd/vcc planes. Routing does not consider these final
steps. For this reason, the generated layouts can sometimes be invalid. We thus
have to run additional verifications on the generated geometry.

Verifications are done on the bottom layer to ensure that the gnd plane
contains all gnd vias in the triangle and is properly connected to the hinges.
In practice, this means checking that there are no total disconnects of the
plane, or narrowings below a specified length threshold. This is done with a
morphological opening of the gnd plane, using the minimal trace width (0.2
mm) as the opening diameter. We also check that the modifications to the
data traces do not create intersecting geometries. No verifications need to be
done on the top layer since the module footprints contain an empty border that
guarantees that they cannot fully disconnect the vcc plane. If any of these tests
fails, the layout is discarded and the triangle is sent back to the placer.

3.4.3.4 Placement-routing loop

The routing process may fail either during routing itself (Section 3.4.3.2) or
verification (Section 3.4.3.3). Both cases send the triangle back to the placer,
starting the loop again. It can be challenging to find a layout for very dense
packings of modules. Because of this, after a number of failed attempts for a
given number of modules, we decrease the number of placed modules by one,
until a valid layout is found. This number is a parameter given to the pipeline.
We found that a single try is enough to obtain good results.

3.4.4 Fabrication-ready schematics

Once a valid local layout is computed for each triangle, we stitch them back
together to obtain the global PCB blueprints. Our software outputs a set of
SVG files representing the PCB outline, layers, traces and components which
we load into KiCAD 6 using the import from SVG feature. From KiCAD 6 we
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generate the Gerber fabrication files and upload them to the PCB fabrication
service together with the bill of materials (list of components).

3.5 Results

We demonstrate our approach on physical models and virtual examples. We first
discuss the fabrication and assembly process (Section 3.5.1), then explain how
we design the lighting effects along the surfaces (Section 3.5.2) and showcase
our results on physical models (Section 3.5.3). We use our pipeline to produce
additional virtual examples (Section 3.5.4). We conclude by analyzing the
performance of the pipeline on our results (Section 3.5.5). The dimensions of
all models are listed in Table 3.1. We provide in the submission data linked
in the introduction the circuit blueprints for all results (SVG files and Gerber
fabrication files). The submission video showcases the physical and virtual
results with animated light patterns.

Fabricated results showcased in the figures do not use the maximal density
allowed by the system unless specified otherwise. The fabrication of the results
was done in two batches each with a different version of the placer, due to
time constraints for publication. The first batch was sent for fabrication with a
purely CVT-based placer, whereas the second one used the placing algorithm
described in Section 3.4.3.1. A comparison of the two batches for cat can be
seen in Figure 3.23. Additionally, Figures 3.24 and 3.25 show the max-density
star and icosa PCBs. SVGs illustrating the maximal density can also be found
in the submission data.

Figure 3.23: Side-by-side comparison of the two fabricated cat models with 1515 LEDs. Left:
low-density batch with 979 LEDs. Right: max-density batch with 1881 LEDs.

https://youtu.be/g8UX-KifGmM


3.5. Results 64

Figure 3.24: Max-density star PCB laying flat. The extra material on the outside is attached
to the PCB by narrow, holed connections. This material is kept to stabilize the PCB during
fabrication and shipping.

(a) Flat icosa. (b) Assembled icosa.

Figure 3.25: Showcase of the max-density icosa PCB (images at a different scale).

3.5.1 Fabrication and assembly

We fabricated four models: icosa, star , sqtorus and cat . For PCB manufacturing
and component soldering we used PCBway, a popular online service. The
unfolding contour is eroded everywhere by 0.5 mm (1.0 mm for icosa) due to
fabrication tolerances. PCBs are manufactured in double-layer 0.6 mm thick
FR4 material. All LEDs and capacitors come already soldered, with only the
through-hole connector remaining for us to add. We 3D printed the support
meshes in-house, using PLA filament on a Creality CR-10S Pro V2 FDM printer.
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Table 3.1: Dimensions of axis-aligned bounding boxes of the models and their unfoldings. Models
measured as featured in the figures, unfoldings measured from fabrication files. The unfolding of
archi has two patches, hence the two bounding boxes.

Name 3D model (mm3) Unfolding (mm2)
icosa 64× 64× 53 172× 150
star 118× 103× 84 187× 257

sqtorus 195× 195× 130 292× 505
archi 200× 224× 55 154× 202 + 291× 234
dome 255× 255× 93 388× 407

batman 187× 229× 120 396× 346
cat 144× 138× 240 548× 466

Folding the PCB onto the support is done by bending and gluing. The process
typically starts by identifying a first triangle between the PCB and the surface,
and then progressively folding the board around the shape. This is easily
achieved by one person on small results (icosa, star), but requires a second
person for larger models (cat , sqtorus). The whole process took from 15 minutes
(icosa, star) to 70 minutes (cat), please refer to the accompanying video for
assembly sequences. The main difficulty is holding the folded board in place
while the glue settles, but that is otherwise a simple process. Several options
could be considered to avoid the glue, such as 3D printed snap-fit mechanisms
or the use of thread forming screws for plastic.

3.5.1.1 Optional light diffuser

Figure 3.26: 3D printed light diffuser for the star model (left). Light effects on the design:
inside-out pulse (middle) and per triangle colors (right).

LEDs appear as bright point light sources. For some lighting applications,
it is desirable to use an optional light diffuser. We produce diffusers as a 3D
printed foldable part reproducing the PCB outline, with individual rectangular
housings for the LEDs. It easily folds onto the PCB with the LED housings
snapping in place onto the soldered components. A diffuser is shown before and
after assembly in Figure 3.26, and can also be seen in Figure 3.27.

https://youtu.be/g8UX-KifGmM
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3.5.2 Lighting up the shape

The ability to display colors at many locations along the surface raises the
interesting question of how to create lighting effects on our fabricated object.
We implemented a small shader-like program, assigning an RGB color to each
LED over time. A function is called on each LED, taking as input the current
frame time and the LED identifier for which to compute the color. It returns
the color as a 24-bit RGB triple directly sent to the LED. The shader has access
to the entire mesh information (vertices, normals, topology). This enables
on-surface effects such as a geodesic propagation, moving and winding lights.
The LEDs are very bright, and therefore the light effects cover a high dynamic
brightness range. This is best seen in our accompanying video. We implement
the shader as a script in the Lua language, dynamically reloaded upon save
with immediate effect on the surface. A simple shader is shown in Listing 3.1.
The data is streamed through UART (1 MBd) to an external LED controller
implemented on an FPGA (Lattice ECP5). The controller runs at 100 MHz
and can drive several boards in parallel with up to 2048 LEDs per board in its
current implementation.

3.5.3 Fabricated and lit results

We fabricated four designs, two small ones (icosa, star) and three larger ones
(cat , sqtorus, batman). The price of a single PCB (without components and
assembly) ranges from USD$10 per unit (icosa) to USD$63 per unit (cat). On
all models, the cost of the PCB is actually less than 20% of the total, the rest of
the price being the cost of components (LEDs and capacitors) and the assembly
service.

Figure 3.27: icosa model with its diffuser (left), lit by a sparkling effect (right).

icosa is a small sphere-like shape shown in Figure 3.27. It only requires half
hinges and is quick and simple to assemble, while already enabling complex
directional light effects. Our fabricated version features 86 LEDs.

star is a challenging model in terms of angles as it features six spikes with
sharp angles between some of its 24 faces. It is shown in Figures 3.2 and 3.26.
Our unfolder produces a single patch with mostly full hinges, featuring 166

https://youtu.be/g8UX-KifGmM
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Listing 3.1: Example shader computing a diffuse reflection with a varying light direction. The
shader supports basic mathematical functions and basic vector operations.

function d i f f u s e ( id , pos , normal )
−− Compute time e l ap sed s ince the s t a r t
t = ( time − start_time ) ∗ 0 .01 ;

−− Define darke s t and l i g h t e s t c o l o r s
dark = Vec3 (0 .002 , 0 .002 , 0 .001 ) ;
l i g h t = Vec3 (0 .5 , 0 .5 , 1 . 0 ) ;
c o l o r = dark ;

−− Define i n i t i a l l i g h t d i r e c t i o n
−− and time−vary ing ang le
ld = Vec3 (1 , −1, 2 ) ; ld : normal ize ( ) ;
a = 0 .04 ∗ pi ∗ t ;

−− Rotate the l i g h t d i r e c t i o n
ld = Vec3 ( cos ( a ) ∗ l d . x + s i n ( a ) ∗ l d .y ,

−s i n ( a ) ∗ l d . x + cos ( a ) ∗ l d .y ,
l d . z )

k = max( normal : dot ( ld ) , 0 . 0 ) ;

−− Return a co l o r based on the dot product between
−− the l i g h t d i r e c t i o n and the LED normal v e c t o r
c o l o r = dark : mult(1−k ) : add ( l i g h t : mult ( k ) ) ;
return Vec3 (0 , 0 , 0) + co l o r ∗ 32 . 0

end

function main ( id , pos , normal , t r i , mapi )
return d i f f u s e ( id , pos , normal ) ;

end

LEDs. The star model is a good example of how using a diffuser allows the
faces to become fully lit. Once animated, the shape produces intricate effects
between occlusions, moving light patterns and reflections around.

cat is the model featured in Figure 3.1. It has 102 faces supporting 979
LEDs. The unfolder produces a single patch using only half hinges. This is
the model most delicate to fold due to its more complex shape. The final
result is a sculpture that can emit light in all directions, and self-illuminate.
Effects exploiting surface properties are particularly noteworthy on this model,
producing an uncanny effect as the surface becomes alive. We also fabricated it
with maximal density and 460 5050 LEDs, as shown in Figure 3.31 (right).

sqtorus is a model of a quarter of a torus. It has 192 faces and features 678
LEDs. We fabricate a full torus using four assembled pieces to obtain a torus
screen with 2712 LEDs in total, see Figure 3.28. For fast refresh the four boards
are driven in parallel by the controller, but for convenience it appears as a
single sequence of 2712 LEDs to the shader interface. The torus enables strong
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Figure 3.28: A torus assembled from four sqtorus tiles. Note that different assemblies from sqtorus
tiles are possible. See Appendix 3.A for another virtual configuration.

Figure 3.29: Left: virtual preview at maximal density. Right: physical model at a lower density.

directional effects and is sufficiently powerful to light a space, drawing upwards
of 3 A on full power. Lighting effects are shown in Figure 3.30. The tileable
pieces can be arranged in different and possibly larger shapes, an example
appears in the accompanying video and Appendix 3.A. Figure 3.29 shows a
preview of the final result for torus alongside the physical model. Note that the
LED density of the virtual example is higher than the real one, matching the
second batch of fabricated objects.

batman is a model of a face mask, with 92 faces featuring 289 5050 LEDs.
It mixes full and half hinges (3 and 88 respectively), and is an open mesh. The
fabricated object can be seen in Figure 3.31 (left).

3.5.4 Virtual examples

We run our pipeline on additional models illustrated in Figure 3.32, for which
statistics are given in Table 3.2. batman is a mask covered with LEDs. In this
case the input mesh is an open surface, which is supported by our pipeline
without any modification. dome is another open surface, showcasing a potential
light dome built from our system. Both of these models unfold as a single
patch. archi is a surface inspired by architectural results resulting in two
patches. Our method allows to choose between different LED modules and to
preview the expected outlook after fabrication. Figure 3.33 shows the use of
our pipeline on 5050 and 1515 LED modules. The user can also test different
LED patterns on the simulated results to get a design better catering to their
choice. The LED density can also be adjusted, see Figure 3.19. The preview
of the final appearance is faster than running the whole pipeline to generate

https://youtu.be/g8UX-KifGmM


3.5. Results 70

Figure 3.30: The torus produces directional light patterns that strongly reflect on its surroundings.
These effects are best visualized in the accompanying video.

Figure 3.31: batman and cat model fabricated with big LEDs using the maximal density of our
placement algorithm.

the real blueprints, since we can skip the routing and verification steps. More
virtual results with maximal LED density are shown in Appendix 3.A.

3.5.5 Statistics on different models

Key statistics regarding the performance of our pipeline are given in Table 3.2
for all test models and two different sizes of LED. When discussing performance
we report timings for a single thread. However, placement and routing are
performed per-triangle and could be trivially run on different cores or machines.
In CPU time the full process takes from 9 minutes for icosa to 81 minutes for

https://youtu.be/g8UX-KifGmM
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(a) batman.

(b) dome.

(c) archi .

Figure 3.32: Showcase of different virtual results. Pictured from left to right are the original mesh,
the unfolded mesh, and the folded PCB. The topmost example additionally features simulated
lighting effects.
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Figure 3.33: batman model covered with with 5050 LED modules (left) and 1515 LED modules
(right).

cat . In all models but sqtorus the time is dominated by placement. For sqtorus
routing represents 25% of the total runtime. This is due to the larger number
of LEDs per triangle in the model, 42 on average. Routing may fail for a given
triangle. Table 3.2 compares the maximum number of LED modules placed
at any time – including failed attempts – against the final number of LEDs in
the blueprint. In all cases less than 2.5% of the modules are lost, except on
icosa (5050 LED) which is at 4.5%. The unfolder runs in a few seconds for all
models, producing single-patch unfoldings for all models except archi . We use
the minimum perimeter heuristic to obtain fewer patches on star and archi .

3.6 Discussion and conclusion

Starting from just a 3D model of a surface, our approach enables the creation
of curved displays composed of individually addressable RGB pixels, covering
the entire object. By relying on standard PCBs we make fabrication scalable,
reliable and cost-efficient. This allows us to experiment with a wide array
of lighting effects using a shader-like language. As we show with the torus
example, tileable designs can be created to produce larger shapes and enable
reuse through reconfiguration.

Currently, our method does not support incompatible meshes as discussed in
Section 3.3.4. On incompatible meshes, a standard CVT remesher will greatly
improve the triangle quality and make it suitable for our technique. In general,
a specialized mesher that converts a highly-detailed 3D models into lower-
resolution approximations adapted to our pipeline is an interesting direction
for future work. This would require exploring tradeoffs between triangle sizes
and dihedral angles.

As the number of LEDs per-triangle increases the cost of the enumeration-
based ordering and routing becomes problematic. This, of course, could be
attacked by subdividing a triangle into a divide and conquer approach, another
possibility being to resort on stochastic exploration. Additionally, every part of
our pipeline conceptually generalizes to meshes with convex polygons as faces.
Supporting polygonal meshes would improve results such as the torus, where
hinges between coplanar triangles are not necessary. Finally, even higher LED
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densities can be reached by reducing the number of decoupling capacitors in
the circuit (currently one per LED).

Beyond lighting effects, we believe our work could inspire general extensions
of standard electronic manufacturing workflows with computational tools al-
lowing to transform flat designs to 3D surfaces, thereby enabling a plethora of
exciting new applications. In particular, we believe that this approach could
also be extended to more complex electronic circuits, integrating other types of
components such as accelerometers or touch sensors, that would enable interac-
tive experiences. This system is straightforward to generalize to more complex
chained units that fit into the triangles. Placement and routing within a triangle
can be handled in a similar manner or with an out-of-the-box placer and router.
Global routing can be carried out in the same way as for LEDs. If the units are
not connected in a chain, this requires more consideration. Indeed, the kinds of
information that can be transmitted between units is directly limited by the
track width in the hinge design (wt in Figure 3.4), which is likely to impact
the bending capability of the hinge. Further bending experiments should be
carried out to evaluate the impact on the bending angle of track width and
other parameters such as PCB thickness. By enlarging the track width on paths
with heavily interconnected units, it would be possible to embed more complex
circuits onto the foldable PCBs.
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3.A Additional virtual examples

Figure 3.34: Virtual results of our cat model.

Figure 3.35: Virtual results of our icosa model.
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Figure 3.36: Virtual results of our star model.

Figure 3.37: Virtual results of our sqtorus model.

Figure 3.38: Virtual results of a squiggly model composed of 6 sqtorus parts.
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Figure 3.39: Futuristic example: person standing under a dome.
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(a) Support generation for the Bunny peel model.

(b) Printed Bunny peel before and after support removal.

Figure 4.1: Our algorithm generates bridges-and-pillars supports in a voxel grid surrounding an
object, with complexity independent from the number of points to support. The support graph is
converted into geometry, sliced and 3D printed. Our supports carefully avoid the part, leaving no
unnecessary scars (model from [SU14]). Thin white threads are due to optimizing away retraction
moves, but none touch the part.

This chapter tackles the problem of support generation for 3D printing from
an original point of view. Additive manufacturing requires support structures to
fabricate parts with overhangs. Here, we revisit a known support structure based
on bridges-and-pillars [DHL14] (see Figure 4.1). These support structures are
made of vertical pillars supporting horizontal bridges. Their scaffolding structure
makes them stable and reliable to print. However, the original algorithm’s
heuristic search does not scale well and is prone to produce contacts with the
parts, leaving scars after removal.

Our guiding principle is to cast the problem as a constrained layout problem.
From this point of view, the problem is amenable to techniques such as Model
Synthesis (MS) and Wave Function Collapse (WFC). Originally, these tech-
niques are popular for procedural content generation, where they are useful to
synthesize 2D textures or 3D models replicating neighborhoods from a provided
example. To this end, they operate in a grid where cells are assigned a label
representing some kind of structure. These labels are related to each other
through adjacency or neighborhood constraints, i.e. rules stating what label
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can be adjacent to or near each other. These are the essential elements of a
layout problem as defined in Chapter 2, i.e. a space, objects and a set of con-
straints. Unfortunately, MS and WFC often run into inconsistencies, requiring
the algorithm to backtrack or restart from scratch. By carefully co-designing
a set of constraints and specializing the method for support generation, we
manage to always generate a support structure without trial and error. We also
particularly focus on avoiding unnecessary contacts with the part as much as
possible, to avoid damage to the part during support removal.

This work was carried out during the first year of my PhD through the
multiple COVID-19 lockdowns. It was a joint work with Samuel Hornus,
Salim Perchy and my advisor Sylvain Lefebvre, with a lot of technical
assistance from Pierre-Alexandre Hugron and Pierre Bedell. It resulted
in a publication [Fre+22] in the short paper track of the Eurographics 2022
conference. This approach is also implemented in a beta version of the MFX
research team’s slicer IceSL [INR13].

4.1 Introduction

3D printing allows the creation of tangible objects from a 3D model, depositing
material layer after layer to form a physical counterpart of the digital model.
Several printing technologies, in particular Fused Deposition Modeling (FDM),
can only stack a new layer on top of an already fabricated surface. Printing
overhanging features thus requires disposable support structures, cleaned after
fabrication. They must be easy to remove and most importantly, touch the
object only where strictly necessary to avoid scarring. There is a vast body of
work in the support structure literature with techniques attempting to strike
a delicate balance between reducing support material usage, printing reliably,
and minimally impacting part quality.

In this work we revisit the generation algorithm of the bridges-and-pillars
support structures of [DHL14], which is available in the IceSL [INR13] slicing
software. This technique relies on the bridging capability of FDM printers
to produce a scaffolding geometry that is stable and prints reliably. While
effective, the ‘next bridge’ heuristic search proposed in [DHL14] suffers two
main drawbacks. First, in cramped geometries the algorithm struggles to detect
collision-free bridges. Most notably, it cannot detect narrow passages to go
through. Besides, collision checking is expensive and not implemented in the
publicly available version in the IceSL [INR13] software. Second, it scales with
the fourth power of the number of points to support, making it impractical
for large models. We propose a novel algorithm addressing the aforementioned
drawbacks. We build upon the example-based model synthesis technique [Mer07;
Gum16] that generates geometry from a given example. Model synthesis draws
inspiration from general constraint satisfaction problems [KS17] algorithms such
as AC3 [Rus+22].

4.2 Related work

Support structures are necessary with most additive manufacturing technologies,
typically to support regions in overhang with respect to the build direction.
The supports we consider here were designed for filament extrusion. As we
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specifically focus on the approach of [DHL14], we only provide a brief overview of
the field for context. We compare our results to the original in Section 4.9. For
more in-depth reviews on support techniques please refer to [Liv+17; Liu+18;
JXS18].

Support generation starts with choosing the orientation in which the object
will be printed. Choosing a proper orientation can significantly reduce the
amount of supports needed. Designers often choose a specific orientation for
aesthetic or structural purposes, e.g. avoiding support removal scars on specific
regions of the object or ensuring that the print is stable throughout printing.
These considerations are highly important, but orthogonal to the problem at
hand. Given an object under a specific orientation, a first problem in conceiving
a support technique is to identify which points should be supported. This can
be done from the triangle mesh [AAD98], with boolean differences between
subsequent slices [All+88; CJR95; Hua+09a], or by considering the deposition
trajectories directly [DHL14]. This step outputs a set of surfaces or points to be
supported, and is also orthogonal to the problem of support generation. Here
we start from a list of points to be supported, and make no assumption on how
it was obtained.

After the points to support are determined a support structure is generated.
Early approaches extrude a large volume beneath the overhanghing surfaces.
This is then printed with a weak infill pattern or soluble materials. While this
prints very reliably, the volume can be quite large leading to an increased print
time, an increased material usage and a difficult cleanup. As a consequence
several works investigate how to limit material usage, typically reducing the
support’s geometric complexity far away from the object [Hei11; Hua+09b].
A key development in recent support technologies are the optimization of
branching tree structures [SU14; VGB14] which were pioneered in the MeshMixer
software [Sch13]. This inspired subsequent research, including the technique we
are focusing on.

4.3 Model synthesis

(a) Side view of a support, red squares represent
different labels.

(b) Side view, possible adjacent labels of a bridge
element label.

Figure 4.2: Label geometries and adjacency constraints.
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This section continues the preliminary introduction to the basic MS algo-
rithm given in Section 2.3.2.2. This allows to pinpoint the specific aspects of
the algorithm that we modify for support generation. MS works in a discrete
3D voxel grid, where each voxel contains a set of possible labels. Labels give
geometric meaning to the voxel they are attached to, and serve to represent
different parts of the bridges-and-pillars support structure. For example, some
labels represent parts of pillar (vertical) elements of the structure, while others
represent parts of bridges (horizontal). The possible set of output support
structures is encoded by adjacency constraints (see Figure 4.2) specifying what
labels can be adjacent to each other in a given direction, e.g. pillar labels can
be adjacent vertically, but not horizontally, and conversely for bridges.

Input : obj: object to print and points needing support
L, AC: set of labels, adjacency constraints

Data: M(v) ∈ L: label at voxel v; if unassigned, M(v) = ⊥
A(v) ⊆ L: labels allowed for voxel v

Function synthesize(obj)
initModel(obj, M)
U ← set of unassigned voxels in M
while U is not empty do

choose v ∈ U , choose l ∈ A(v)
M(v)← l
// update allowed labels
propagateConstraints(A, v, AC)

end
Algorithm 1: Model synthesis algorithm

The algorithm itself consists of a few steps outlined in Algorithm 1, the
most essential being constraint propagation. Constraint propagation is based
on the concept of arc consistency [Rus+22; Lec09], borrowed from Constraint
Satisfaction Problem (CSP). In the CSP framework, voxels are variables taking
values in a domain, here the set of labels. Constraints restrict the allowable
combinations of values assigned to related variables. These correspond to our
adjacency constraints, specifying what combinations of labels are allowed in
adjacent voxels. A variable is arc-consistent with respect to another if for every
possible value of the former, some value for the latter satisfies the constraints.
The problem is arc-consistent if all variables are arc-consistent with respect
to all other variables. This can be used to prune the possible values for a
variable. Indeed, arc-consistency is a necessary condition for a solvable CSP.
By removing labels that prevent the model from being arc-consistent, no useful
information is lost, helping make progress in the algorithm.

Note that arc-consistency is not sufficient for solvability, unfortunate label
assignments can lead to an inconsistent state further down the line, where
no label is longer possible for some voxels. More details on this are given
in Paul Merrell’s thesis [Mer09], specifically Theorem 3.3.2 and Section 3.3.4.
Stronger notions of consistency such as k-consistency need to be considered to
deterministically obtain a solution to a general CSP, but require exponential
time and space to be computed [Rus+22]. In our method, constraint propagation
uses the AC-3 algorithm [Mac77], with a worst-case complexity of O(nk3), n
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being the total number of voxels and k the total number of labels. The worst-
case complexity is rarely attained after initialization since the updates to the
model become significantly more localized.

With constraint propagation explained, the rest of the base algorithm is rel-
atively straightforward. However, an important part of our work is determining
the set of rules. We are not creating a generic solver, but instead co-designing
a solver and the static set of rules it operates within.

We use model to represent the working state of the algorithm. First, the
model is initialized based on the object to print, represented by the initModel
function. This initialization assigns the object label to all voxels within the
object and the anchor label to the voxels that need to be supported for printing.
The rest of voxels are unassigned, i.e. all possible labels are allowed. Then
a constraint propagation step is done to ensure arc-consistency. The main
loop of the algorithm boils down to choosing an unassigned voxel, giving it a
label among its possibles, and propagating the constraints to obtain an arc-
consistent model once again. This stops once all voxels are assigned or an
inconsistent state is reached, i.e. there is a voxel for which all labels violate
some constraint. Inconsistencies are typically handled in WFC restarting from
scratch or backtracking, and in MS by starting with a simple initial solution
and regenerating the final structure in smaller blocks. The algorithm has an
overall worst-case complexity of O(n2k3), with the notation defined above.

Our main contribution is the design of a specially crafted set of constraints
and a custom next voxel and label selection, that together synthesize an initial
structure minimizing contact with the part without trial-and-error. This is in
stark contrast to MS and WFC which often encounter inconsistencies where no
label is allowed for a voxel, and either backtrack or have to restart. The set of
constraints is encoded as a voxel-based template. The main elements from MS
we modify are highlighted in blue in Algorithm 1. These are the constraints,
which unassigned voxel is processed next, and how its label is chosen based on
adjacency constraints.

The rest of the chapter is structured as follows. First, Section 4.4 gives
an overall perspective of the algorithm by explaining in detail the role of the
two phases of the algorithm. Then, Section 4.5 goes in-depth into the voxel
choice and label assignment heuristics crucial to inconsistency avoidance. Next,
once an overall view of the algorithm has been established, Section 4.6 enters
into the technical details of our template design, revealing how it was built in
practice, and what the design challenges are. Following in that vein, Section 4.7
lists the label priority rules and the rationale behind them. Section 4.8 exposes
the limitations of the example-based approach to adjacency constraint design,
specifically when it comes to allowing or disallowing structure contiguity. Finally,
the chapter concludes with a gallery of results in Section 4.9 and a critical
discussion of the approach.

4.4 Two-phase algorithm

This section introduces the two-phase structure of the algorithm, explaining the
role of each phase and the differences between the two from a general point of
view. The technical details are explained later in Section 4.6, where I explain
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how the specific goals of each phase are achieved in practice through template
design and custom label choice rules.

(a) Voxelized object. (b) Phase one. (c) Phase two.

Figure 4.3: Illustration of our two-phase approach. Pillars in blue, tables in green, bridges in red,
object in gray, anchors in white. The bottom object works as an obstacle for the supports to
avoid.

Our algorithm operates in two phases, illustrated in Figure 4.3 on a toy
example. Both phases follow the synthesis process outlined in Algorithm 1,
with different sets of labels and adjacency constraints. The first one builds
tables, i.e. bridges resting atop two pillars at its ends, and isolated pillars, i.e.
pillars going straight from an anchor to the ground. Its goal is to generate the
simplest type of structure to support every anchor while minimizing the number
of pillars standing on the object. The second phase uses the result of the first
phase as a starting point and optimizes the generated structure by building
bridges between isolated pillars, thus reducing its overall length. The type of
structures generated by the algorithm is described by two templates, one for
each phase. These models define the adjacency constraints: if two labels are not
adjacent in the example, they cannot be adjacent in the output. Both templates
are designed in such a way to allow bridge-and-pillar support structures to be
generated. The two phases use different — albeit strongly related — templates.

4.4.1 First phase: object avoidance

Anchors (i.e. points needing support) with an unobstructed vertical line of sight
to the ground can be easily supported with a single vertical pillar. Of course
many anchors are not visible in this way, since the object itself can obstruct
the line of sight. Our template leads to the synthesis of different structures
avoiding the object, illustrated in Figure 4.4 for simple scenes.

These are, by decreasing priority:
(a) an isolated pillar standing on ground;
(b) a single table;
(c) a double table;
(d) an isolated pillar standing on the object.

The template for the first phase is shown in Figure 4.5. Different colors
correspond to different labels and different pieces of the support geometry (see
also Figure 4.2). There are in fact more labels than there are visible colors due
to the limited palette. The principles behind the design of this template are
explored further in Section 4.6.2. The hierarchical nature of the structures, as
well as the use of different labels at each of their levels causes many labels to
be removed during each constraint propagation step. Due to the design of the
template, the initial constraint propagation step after the object and anchors
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(a) Pillar–ground. (b) Single table.

(c) Double table. (d) Pillar–object.

Figure 4.4: Structures (color) generated by the first phase from an anchor (white) around the
object (black). In each case, the object is artificially constructed to force the algorithm to generate
the showcased structure.

Figure 4.5: First phase template. Different voxel colors represent different labels, but a single
color may represent multiple labels.

are loaded (initModel in Algorithm 1) is actually sufficient to determine how
to support each anchor. Indeed, after propagation, the allowed labels below
an anchor already indicate the simplest structures that can support it. This
property is specific to this template.

This is mainly a consequence of using different sets of labels for the four first
phase structures in the template. Constraint propagation then essentially checks
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the feasibility of all four types independently but simultaneously. Reusing the
same labels for all structures would make the adjacency constraints much more
permissive, losing the desired property. Thus, choosing a label below an anchor
fully determines the structure supporting it, the rest of it having been already
determined by constraint propagation.

4.4.2 Second phase: support optimization

The first phase is designed to generate an initial structure avoiding contact with
the object, and does not attempt to reduce the support size. In particular, it al-
ways generates isolated pillars under unobstructed anchors. Phase two improves
the structure by connecting multiple aligned pillars with bridges. These always
support at least one pillar, making them more efficient than isolated pillars in
most cases. However, if the bridge is longer than its height multiplied by the
number of supported pillars, this is results in a larger support than the isolated
pillars. We do not explicitly check for performance considerations. Addition-
ally, bridges make supports more stable by connecting previously disconnected
sections of the structure. This is done by removing all isolated pillars from the
result, and then regenerating the structure with the synthesis algorithm, using
bridges wherever possible. The constraint propagation step after isolated pillar
removal immediately regenerates some removed pillars: those that cannot be
connected with bridges. No new first phase structures are generated by the
second phase: the relevant labels are disallowed during synthesis. Compared
to the first phase, the template includes additional structures to make these
improvements possible (see Section 4.6.3).

4.5 Choice and assignment heuristics

Figure 4.6: Schematic 2D illustration of random
voxel choice heuristic. Multiple constraint prop-
agation fronts in blue meet along the dotted
red lines and are likely to create inconsistencies.

Figure 4.7: Support propagation heuristic. Al-
ready generated support in black, current layer
being generated in blue, set of current layer
seeds in red. The current layer is generated
starting from the seeds and propagating out-
ward. Once generated, the layer immediately
below is next.

The order in which unassigned voxels are chosen is crucial to ensure that
the algorithm avoids inconsistencies. In an incomplete model, let us choose a
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voxel far from the already assigned voxels. That voxel would spawn a second
structure in that region of the model. If done multiple times, we create many
local structures that will all have to meet at some point — and are very likely
to disagree. This is illustrated schematically in Figure 4.6.

To solve this, we use a context-dependent order. The algorithm operates
slice by slice, from top to bottom (see Figure 4.7). Within a slice (in blue),
voxels whose ‘upstairs neighbors’ are part of the support structure are tagged
as seeds (in red). Voxels in the current slice are selected by increasing distance
to the set of seeds. Once all voxels in a slice have been assigned, the algorithm
goes to the next one until the bottom of the model is reached. By doing this,
we always select unassigned voxels that are adjacent to already assigned voxels.
This drastically decreases the probability of making a choice that will lead to
an inconsistency further down the line.

Label choice for an unassigned voxel is done according to a set of priority rules.
The possible labels can be ordered in order of decreasing priority, and a random
label among the highest priority ones is chosen. Understanding the priority
rules and their effect requires a more in-depth explanation of the construction
of the templates and the adjacency rules. The controlled randomness of label
choice allows the generation of similar but slightly different supports, some
more material-efficient than others. By running multiple synthesis processes in
parallel, we can choose any of the resulting structures depending on user-defined
criteria.

4.6 Template design

With the principle behind the method explained, it is now easier to understand
the process and rationale behind the design of the template models and priority
rules. The equivalent to our templates in Merrell’s thesis [Mer09] were originally
named exemplars, since they served as a model for the desired output of the
method. I decided to rename them here to better convey the fact that ours
are fixed, and serve to encode the specific structure of our supports. For
both phases, the templates consist of a two identical sets of two-dimensional
structures, one along the x axis and the other along the y axis. Labels that
are part of a horizontal bar have an x and y variant, while labels that are
part of pillars have a single variant. All illustrations in this section will be in
two dimensions. Recall that the adjacency constraints are extracted simply by
allowing any combination of labels occurring in a given direction if it occurs in
the template. Specific limitations of the approach of using a template to define
the set of adjacency constraints are exposed later in Section 4.8.

4.6.1 Building blocks

In this section we explain how the pillars and the bars used in our supports are
built in the template. All of the structures are shown in Figure 4.8.

Special labels. In our template we use a set of special labels that have
a particular meaning. From left to right and bottom to top, they are the
ground label, the object label, the anchor label and the foot label. The ground
label represents the printing bed, the object label is assigned during model
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(a) Special labels (ground, object, anchor, foot). (b) Pillars (vertical).

(c) Bars (horizontal). (d) Offsets.

Figure 4.8: Main building blocks constituting the supports.

initialization (initModel in Algorithm 1) to voxels within the object, the anchor
label represent object points needing support, and the foot label represents a
point of contact between the object and a pillar standing on the object. Object,
ground and anchor labels cannot be assigned during synthesis, instead they are
assigned at initialization based on the input model. Foot labels are generated
during the first phase exclusively. Not pictured here is the empty label, which
is also generated by the algorithm to denote the absence of supports in a voxel.

Pillars. Vertical pillars of arbitrary height between the ground and an anchor
can be defined very concisely. By vertically stacking two voxels with the same
label, we allow the label to be adjacent to itself in the upwards and downwards
direction. This authorizes vertical pillars of any height in the output. By
starting and ending the pillar with the labels for ground and anchor respectively,
we force pillars in the output to only happen between those labels. Since there
are multiple labels that can start or end a pillar, we denote them by an ellipsis
here. These are also allowed to start with a foot label which is allowed to make
contact with the object. This possibility is only allowed to avoid inconsistencies
in the case that the support structure cannot totally avoid the object, but these
types of contact are actively discouraged and rare (see Section 4.9).

Bars. The horizontal bars in our model are slightly more complicated than
pillars. They are of arbitrary length, but they also need to be able to support
an arbitrary number of pillars. Bars consist of three sections: a beginning, a
repeating middle section and an end. Pillars attach to the bar atop junction
labels separating the different sections of the bar. The middle section can be
repeated any number of times, since a junction label can have a beginning, end
or middle section label at both of its sides. Each section is of arbitrary length
for the same reason pillars are. The horizontal ellipsis here denote labels that
can start or end a bar, and the vertical one represents the rest of the vertical
pillar.

Offsets. Anchors cannot be supported by the same structure if they are not
aligned in either the x or y direction. To give the algorithm additional freedom,
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we allow these offset junctions between anchors and pillars in the output. Also,
a given anchor might be possible to support by a simpler structure if it is
offset. These are not discussed further in the rest of the chapter, as they do not
fundamentally change the principle of the algorithm.

4.6.2 First phase: tables

The goal of the first phase is to find the simplest possible structure to support
all anchors. Ideally, isolated pillars suffice, but complex geometries require
supports that can avoid the object. To this end, we use table structures that
can support the anchors while avoiding the object. These are different from
bridges in that they rest atop two pillars instead of being subtended between
them.

Figure 4.9: First phase template (simplified)

In order of priority, the structures allowed in this pass are straight pillars
standing on the ground, single tables, double tables, and straight pillars standing
on the object. These structures are represented from left to right in Figure 4.9.
Labels that only differ in their fill color have the same function but are distinct.
Pillars standing on ground and pillars standing on the object are straightforward.
The model contains two different types of tables, one for the first level of table
and one for the second level. A first level table stands on the ground and can
either support a second level table or connect to an anchor on top. A second
level table always stands on a first level table and connects to an anchor on
top. Using distinct labels for each level is necessary to determine the simplest
support structure for an anchor from constraint propagation as explained in
Section 4.4.1.

Higher stacks of tables could be defined by creating new labels, but we
observed that three levels or more were rarely needed to support any anchor.
Additionally, the complexity of the algorithm depends on the number of labels,
thus making it more expensive to allow more stacks. Tables could also be
defined with a single type of label, instead of using distinct labels for each level.
This would make it so they could stack on top of each other an arbitrary number
of times, but would make constraint propagation significantly less effective, and
would hugely expand the solution space.

Not pictured in this figure are hybrid structures that allow to horizontally
connect a table to existing pillars instead of spawning new ones to support it.
This simple addition to the allowed structures requires careful consideration
and the addition of a priority rule to ensure that synthesis avois inconsistencies.
This is discussed further in Section 4.7.
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Figure 4.10: Second phase template (simplified), first phase structures not shown.

4.6.3 Second phase: bridges

The second phase regenerates the isolated pillars created in the first phase while
allowing bridges to be built between them. This is done by simply extending
the first phase template with the structures in Figure 4.10. Note that, contrary
to tables, bridges can stack indefinitely instead of being limited to two levels.
This is due to the same pillar labels being used both below and above the bridge
in the template.

4.7 Priority rules

Previous methods choose labels either randomly or according to a probability
distribution so that the distribution of labels in the output model matches the
one in the template. Instead, we observe that the criteria used to assign labels
to unassigned voxels can be adapted to our problem to minimize the failure rate,
while giving us control on the properties of the final structure. This section
explains the priority list system used in the algorithm.

We choose labels according to a priority list, i.e. a list of disjoint priority
rules each defined by a set of labels. For an unassigned voxel, if no rule contains
any possible label for that voxel, then the label is chosen randomly among the
possible ones for the voxel. Otherwise, the first such rule is taken and the label
is chosen randomly among the priority rule labels that are possible for the voxel.

The rules for the first phase are the following:
(1) empty label ∅

(2) if below anchor, pillar on ground

(3) if below anchor, single table

(4) if below anchor, double table

(5) if below anchor, pillar on object

(6) end of table

(7) bar junction
Rules (2) through (5) are only used on unassigned voxels right below anchors.

They ensure that the simplest structure is chosen to support these anchors.
Rule (6) ends tables as soon as possible to avoid having unnecessarily long
tables, making them just long enough to avoid the object instead. Rule (7)
starts horizontal bars to support a pillar wherever possible. This favors bars
supporting multiple pillars and ensures that thye are as high up as possible.
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The second phase only uses rules (1) and (7) (only for bridge junctions), since
the structures involved in the other rules have already been generated.

The first rule requires more attention to properly understand. It essentially
states that if the current voxel can be empty, then it is made empty. This rule
closely works with our assignment heuristic (see Section 4.5) to make it so labels
locally decide the directions the structure will grow in. When an unassigned
voxel is chosen, it is adjacent to at least one already assigned voxel due to our
assignment order. If the voxel we chose is along the direction in which the
structure needs to grow, then the empty label will not be possible for that voxel.
If not, then the voxel it is not part of the structure so it can be empty. This also
explains why hybrid structures will not appear except where strictly needed, i.e.
they are always generated from a pillar-bridge junction and not from pillars. In
particular, a case made impossible by the combination of assignment heuristic
and rule (1) is a structure ‘spawning’ others parallel to it. This would create
additional constraint propagation fronts, leading to possible inconsistencies (see
Figure 4.6) Here, all structures must originate from an anchor, thus avoiding
inconsistencies.

It is important to note that priority rules are applied only during synthesis,
and do not play any role in constraint propagation whatsoever. Excessively
permissive adjacency constraints cannot be patched a posteriori with priority
rules.

4.8 Structure contiguity

Using a template to define the adjacency constraints has some limitations. The
empty label has a special role when constructing a template in a voxel editor,
since it is the default value for a voxel. The only way to forbid an empty label
beside another label is to fill that side with a non-empty voxel for every single
instance of that label in the template. For this reason, templates work well
to define labels that can be adjacent to a small number of other labels. If we
want a label to be adjacent to a large number of labels, we need to build every
possible combination of labels by hand in the template.

(a) Forbidding contiguity. (b) Allowing contiguity. (c) Even-odd setup.

Figure 4.11: Comparison of different contiguity setups in a highly constained model. Left: The
algorithm fails to generate a structure, no labels are possible at the crossed-out voxel. Middle: The
algorithm generates two tables with one bar on top of another. Right: The algorithm generates a
single table and a pillar on the object, since bars can only exist at an even z coordinate.

In particular, this difficulty arises when considering the contiguity of different
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Table 4.1: Performance for various models, 0.5mm voxels. Computed on an AMD Ryzen 5600X
with 16GB of DDR4 RAM. The last column (#feet) refers to the number of newly created contact
points between the support structure and the object.

Models Grid size #voxels Time (s) #anchors #feet

Gymnast 81× 28× 99 224 532 1 37 2
Hilbert cube 70× 70× 65 318 500 2 347 0
Knot 96× 101× 72 698 112 4 199 33
Bunny peel 119× 92× 104 1 138 592 9 235 1
Minotaur 126× 94× 203 2 404 332 19 392 16
Enterprise 318× 149× 72 3 411 504 28 1475 0
Fox 137× 166× 218 4 957 756 34 73 0
Thigh left 138× 390× 167 9 987 940 78 3498 43
Cellular 294× 286× 248 20 852 832 185 2369 33

parts of the structure, i.e. unrelated parts of the support being adjacent with
each other. We will use contiguity to describe this situation to avoid confusion
with adjacency constraints. Parts of the support should be able to be contiguous
to other parts of itself so they do not hinder each other’s growth in cramped
spaces. Without contiguity, some of these cases can lead to inconsistencies,
which we want to avoid as much as possible. Indeed, without it we no longer have
enough information to determine the simplest structure that can support an
anchor just by looking at the possible labels below the anchor (see Figure 4.11a).
Allowing contiguity to the template would require adding an enormous number
of label pairs to it. We found two alternative approaches to this problem.

First, contiguity can be added programmatically to the set of constraints.
Given any two non-empty labels that can each be adjacent to the empty label
in opposite directions (up-down, left-right, front-back), we simply add the label
pair to the allowed combinations in that direction. This provides the most
freedom in the output (see Figure 4.11b), the downside being that our set of
constraints becomes significantly less restrictive, in that most labels can now
be adjacent to many labels that were not possible before. The algorithm still
works but struggles in finding efficient solutions.

Our second approach is to only construct supports in voxels with even
coordinates, enforcing an empty voxel interspace between any two components
of the structure. Pillars can only be built in voxels with even x and y coordinates,
and bars can only be built in voxels with an even z coordinate (see Figure 4.11c).
This effectively halves the resolution for the support structure, thus reducing
computation time while keeping the same adjacency constraints. As a downside,
some anchors may only able to be supported by pillars standing on the object
due to the reduced support resolution. This can be mitigated by increasing the
overall voxel resolution to better capture the free space around the object.

We use the second approach in our implementation, since we found that the
increase in the number of pillars standing on the object was not substantial,
but the gain in computation time and structure efficiency were. Figure 4.11
shows a comparison of the different contiguity setups.
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4.9 Results

Unless otherwise specified we use a voxel size of 0.5 mm. We printed these
models using PLA filament on low-cost Ender3 and CR10 filament printers.

4.9.1 Implementation

Our algorithm takes a voxel grid as an input and returns a list of segments. The
voxels represent the object and the points needing support are explicitly labeled
as anchors. The resulting list of segments describes the computed support
structure. Our processing pipeline is given a 3D model and outputs GCode for
a physical print. It consists of the following steps:

(1) a voxelizer and support point detector;
(2) a support structure generator (our method);
(3) a support geometry creator;
(4) slicing, trajectories and GCode output.

The final step is using a standard slicer, while the other steps are tailored
to our method. (1), (3) and (4) are independent from our method and could be
done by other means.

4.9.2 Comparison with the original algorithm

We propose a different algorithm to generate structures similar to [DHL14].
Figure 4.12 compares both methods on the Hilbert cube, Enterprise and Sergeant
model. Note how the supports of the original algorithm intersect the object in
many places on the Hilbert cube and Sergeant , while ours avoid the object. The
support size, measured using the total filament length for fabrication, is similar
for Hilbert cube, but is typically larger for our method as seen for the other
two models. For a similar number of anchors the execution time of our method
is faster both for the Hilbert cube and the Enterprise. The complexity of our
approach is independent from the number of anchors. Instead, it increases
proportionally to the square of the number of voxels giving it an advantage
on larger, more complex models. However, the original can be faster on small
models with few anchors, as showcased by the Sergeant model. Note that
for this model, our algorithm generates ‘precarious’ supports for the sword,
consisting of very tall tables with extremely long bars. These isolated structures
tend to happen when anchors are sparse, preventing support structures from
connecting to others, thus becoming less stable. This issue is discussed further
at the end of the chapter (see Section 4.10).Collision avoidance in [DHL14] is
expensive, as each candidate bridge has to be explicitly checked against the
model, and the algorithm still often fails to find collision-free solutions. Due
to this, collision avoidance is not even implemented in the publicly available
version of [DHL14].

4.9.3 Result gallery

Table 4.1 lists execution times for models with varying voxel grid sizes. Also
shown is the number of anchors and how many contact points are created
by the algorithm failing to avoid the object. For all models but Knot , the
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(a) 333 anchors, 12 s, ∼2800 mm of supports. (b) 347 anchors, 2 s, ∼2800 mm of supports.

(c) 742 anchors, 97 s, 4268 mm of supports. (d) 741 anchors, 32 s, 12843 mm of supports.

(e) 234 anchors, 8 s, 2139 mm of supports. (f) 239 anchors, 30 s, 8359 mm of supports.

Figure 4.12: Visual comparison of [DHL14] (left column) to our method (right column) on the
Hilbert cube model (top row), the Enterprise model (middle row) and the Sergeant model (bottom
row).
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(a) Knot. (b) Hilbert cube.

(c) Servo support. (d) Gymnast.

Figure 4.13: Models printed with our technique.

number of created contact points is below 6% of the total number. Knot has a
cramped geometry and the three-fold rotational symmetry makes it difficult
to generate axis-aligned supports that avoid the object. In Figure 4.13, note
how the supports avoid touching the part. For instance, despite the intricate
shape of the Hilbert cube (yellow), no pillars are contacting downwards with the
print. The same is true of the Servo support (gray), where multiple horizontal
bridges can be seen going through the lateral hole. This avoidance comes
at no extra cost, contrary to the previous algorithm. In all these results a
significant amount of stringing can be seen. This is due to the way our slicer
optimizes away filament retraction between support pillars. However, none of
these thin plastic threads actually connect to the part, making cleaning very
easy. Figure 4.1 shows the Bunny peel model after support removal, where two
different materials were used for the part and the supports. Note how despite
using very contrasted white and blue filaments, there are no significant white
smears on the object surface outside of the downwards support anchors.
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4.9.4 Robustness

4.9.4.1 In the wild

We processed a batch of 900 models extracted from the Thingi10K [ZJ16]
database with voxel size 0.5mm. The algorithm successfully generated a support
structure for every model in the dataset.

4.9.4.2 Azimuth angle

A downside of using a voxel-based method is that our supports can only go in
the x and y directions. Diagonal horizontal bars cannot be easily encoded in
our template. For this reason, the orientation of the part with respect to the
z axis has an impact on the total length of the supports and the number of
pillars standing on the object. We measured the impact of the orientation by
generating supports for the same part at rotation angles around z between 0
and 90 degrees with a step of 5 degrees.

We see in the resulting plots shown in Figure 4.14 that on some objects
such as Servo support , orientation has a dramatic impact on the length of the
support and the number of pillars standing on the object. The best and worst
cases for this specific model are shown in Figure 4.15. Also, there is often a
specific angle that minimizes both of these quantities. The algorithm finds
efficient solutions when the gaps in the object are aligned with the x or y axes,
and struggles for other orientations, since it cannot create bars through these
gaps.

4.10 Discussion and conclusion

This section discusses the limitations, specificities of our approach, explores
future work and concludes the chapter with a summary of the contribution.

Infallibility. An important future work is to prove theoretically that our ap-
proach cannot encouter inconsistencies. Our empirical observation on hundreds
of models gives us confidence in that claim, but cannot replace a rigorous proof.
A challenging aspect of this proof is considering all possible labels combinations
in every direction. Despite the restrictiveness of our set of constraints, this
still makes for many possible combinations due to the sheer number of total
labels (∼40 for the simplest possible version of the constraints). Additionally,
the global effects of constraint propagation are hard to reason about. A proof
assistant would probably be a good option for the derivation of this proof.

Original model synthesis. In his thesis [Mer09] on MS, Merrell realizes that
larger models tend to run into inconsistencies more often. He proposes starting
with a trivial solution, and regenerating it in smaller chunks in a scanline
manner, thus reducing the likelyhood of any chunk being inconsistent. When
generating a chunk, only the voxels within are modified, and have to satisfy the
constraints on its border. The drawback of this approach is that structures with
features larger than the dimensions of the block in multiple directions cannot
be generated. This effectively removes potentially desirable outputs from the
attainable results space. Our choice and assignment heuristics and our set of
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(a) Bunny peel.

(b) Knot.

(c) Servo support.

Figure 4.14: Support length (mm) and percentage of anchors supported by a pillar standing on
the object (feet%) as a function of the angle of rotation of the part around the z axis in degrees.

priority rules also limits the space of outputs that can be generated by the
algorithm. A core difference between these approaches is that these elements
were specifically crafted to exclude undesirable results that are often inconsistent.
Additionally, we manage to avoid inconsistencies altogether, whereas block-
based synthesis simply reduces their likelihood. The main reason explaining our
results is that we target very specific types of structures, bridges-and-pillars
supports. This allows us to design a coherent system, where every element
works together. Originally, MS targets arbitrary sets of adjacency constraints,
meaning that such a degree of customization is impossible.
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(a) Azimuth: 0 degrees. (b) Azimuth: 30 degrees.

Figure 4.15: Best and worst orientations for Servo support.

Bridge length. One particularity of the supports generated by this algorithm
is that horizontal bridges can be arbitrarily long (see Enterprise in Figure 4.12).
Indeed, the construction of bars in the templates have no ‘knowledge’ of their
own length (see Section 4.6.1). In practice, this did not pose a problem
when printing our results, as filament printers can robustly print unsupported
horizontal bridges between two points [DHL14], and sagging does not pose a
significant problem since supports are later removed. Nevertheless, this could
pose problems for larger objects or more precarious bars such as the ones in
Sergeant from Figure 4.12. Two possible solutions come to mind. Firstly, a
maximum bar length L can be encoded in the template at the cost of having L
distinct bar labels instead of a constant number independently of the length.
This is better done programatically than in a voxel editor, since it would require
adding many possible label combinations to the constraints. Additionally,
execution times would increase even for small maximal lengths, since complexity
is cubic in the numbrer of labels in the worst case. A second approach would
be to generate the support structure by xy-blocks spanning the whole height
of the model, similarly to Merrell’s block-based synthesis. This would prevent
bridges from spanning multiple blocks without changes to the templates, and
would make execution faster, since the blocks could be generated separately and
complexity scales with the squared number of voxels in the region. Of course,
one should be careful to ensure that inconsistencies are still prevented with this
approach.

Voxel grid and diagonal features. Our algorithm works in a 3D voxel grid,
but MS and WFC work in any general graph, as they are solvers for CSP with
binary constraints. One limitation of working on a 3D orthogonal grid is the
difficulty of defining diagonal features, which requires staircase patterns in the
templates, requiring many labels and taking up valuable space in the voxel grid.
An alternative approach would be to consider diagonal neighbors, allowing to
define diagonal features in a straightforward manner. This makes the underlying
graph heavily connected, which makes crafting the adjacency constraints harder,
since more directions have to be accounted for when constructing the template.
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Also, the approach could be recast in a hierarchical and or distorted grid,
preoptimized to better capture the model’s features.

Post-optimization. Our method outputs a list of vertical and horizontal
segments abstractly representing the support structure. These are later trans-
formed into geometric primitives that are then sliced and printed. Before this
step, this list of segments could be optimized through linear programming
to minimize support length, raise and merge bridges, and many more. By
continuously optimizing the positions of segment endpoints, we could ‘liberate’
them from the voxel grid, thus enabling diagonal bridges and pillars and other
types of features that the synthesis algorithm cannot generate.

Conclusion. Our technique generates simple and reliable support structures
inspired from [DHL14] that avoid touching the part when possible in a reasonable
time. The cost is independent of the object complexity and instead only scales
with voxel grid size. In practice a solution is always found if it exists.

Beyond the current results, our approach shows that example-based model
synthesis is a viable option for structure synthesis seen as a layout problem, if
correctly specialized. Defining a structure based on local properties and syn-
thesizing it while targeting specific global properties is an interesting challenge.
We believe that there are other contexts in shape synthesis where this approach
is applicable, and hope to see future work inspired by our technique.



Chapter 5

Conclusion

END OF LINE.

MASTER CONTROL PROGRAM

This thesis started with a very broad object of study: layout problems
for generative design and shape modeling. The underlying goal was to take
inspiration from standard techniques in computer graphics and apply them
to layout problems linked to computational fabrication. During the span of
this thesis, we slowly evolved towards using local descriptions and topological
considerations to simplify the layout problems, which eventually became the
main focus of this work. Computational fabrication is an inherently multi-
disciplinary field. As stated early in the introduction, designing algorithms
and systems for fabrication requires knowledge of the underlying techniques
and mechanisms. Of course this is common to all forms of abstraction, but
is particularly important when building a very high-level interface. This is
necessary here to make these technologies as accessible as possible to as many
people as possible. This thesis has allowed me to spend time understanding
these fields, and contribute to the effort towards making these technologies
more accessible, versatile and expressive.

In Chapter 3, we used Printed Circuit Board (PCB) kerfing to design an
end-to-end system for designing 3D Light-Emitting Diode (LED)-based foldable
displays, that we nicknamed PCBend. The system takes a suitable input mesh,
unfolds it, embeds a fully functioning LED chain within it, and finally outputs
fabricable blueprints, ready to be sent to a PCB manufacturing service. After
assembly, these displays can be used to create beautiful lighting effects. The
LED we use are often used in commercial LED strips or amateur projects,
and can be controlled easily. The key elements of this work are the following.
First, we follow an atypical approach to circuit design, i.e. not starting from
traditional schematics but instead using a local description of the circuit. This
in some sense provides a much more flexible representation of the circuit, which
can be much more easily adapted to a constrained space, such as our ‘hinged’
PCB. The level of granularity allowed by our circuits being LED chains is
unmatched, but will be coarser for more complex circuits, which will present
new challenges that will need addressing. Second is the general idea of PCB
kerfing for low-cost flexible electronics. This approach has been occasionally
explored by hobbyists [cy319], but does not seem to be particularly widespread.

99
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Traditional flexible or rigid-flex electronics are significantly more expensive
and harder to design than regular PCB. We show that PCB kerfing can be
successfully used to bend thin complex PCB without damage to the board.
While this type of PCB might not be suited for incredibly tight spaces such as
the inside of a smartphone, or might not tolerate repeated bending, I believe
that it can be particularly fruitful for prototyping and enable many creative
applications (see the accompanying video). I personally hope that we will see
more people considering this option in the future.

In Chapter 4, we introduce a procedural approach to 3D printing support
generation (ProcSupGen), inspired from Model Synthesis (MS) and Wave
Function Collapse (WFC), two example-based procedural synthesis techniques.
We customized these algorithms to generate the bridges-and-pillars supports
used in [DHL14], with a complexity independent on the number of points to
support, and while avoiding the object as much as possible. For this, we first
crafted a custom set of exemplars defining the structures that can be generated.
We also developed voxel and label choice heuristics guaranteeing that synthesis
succeeds without trial-and-error, which is atypical for MS. This method was
integrated into the IceSL [INR13] slicer developed by the MFX research team I
worked in during this thesis. Most future work on this technique was already
outlined in the conclusion of the corresponding chapter. The main takeaway is
the flexibility of this type of procedural algorithm, which can be adapted to
generate an endless variety of structures. Despite the structure descriptions
being local, one can manage to guarantee or optimize global properties of the
synthesized output. There is still potential in computer graphics and shape
synthesis interpretations of Constraint Satisfaction Problem (CSP) resolution
algorithms. Embedding abstract objects into different kinds of geometric space
tends to produce interesting results.

In my opinion, the main contribution of this thesis is showing that the
layout point of view can help breaking down problems and solve them efficiently.
Analyzing structures and deriving local properties are great initiatives when
confronted to challenging situations. Additionally, due to the ubiquity of layout
problems across many different domains, as showcased in Chapters 1 and 2, a
huge variety of methods have already been successfully implemented for solving
them. Drawing on this existing state of the art is useful when tackling new
problems. The main remaining challenge is that there is currently little crossover
between different fields dealing with layout problems: industrial facility layouts,
architectural floorplans, electronic circuit layouts. . . The similarities tend to stop
at the basic algorithmic level, each work quickly diverging into the specificities
of their domain, instead of building taller abstractions (of which I am also
guilty). I feel that there is unexploited potential that could be tapped into by
drawing bridges between these different fields.

I want to end this conclusion with a few personal thoughts, which can be
skipped without harm to the scientific contribution of this document. Research
is a very human activity, influenced by our moods, thoughts and emotions.
I hope that this shines some light on the day-to-day reality of working on a
research project, and maybe help some stray PhD student stumbling upon this
thesis. I chose to present our work on foldable circuit boards for 3D LED-based
screens before our work on supports for 3D printing, despite them happening
in the opposite order chronologically. PCBend presented a more traditional
flavor of computational fabrication, and is a better introduction to the work

https://youtu.be/g8UX-KifGmM
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presented here and the richness of the related research fields. This project had
a significantly wider scope than ProcSupGen, and it went through uncountable
iterations before reaching its current status. It was both incredibly fulfilling and
terribly frustrating. Computational fabrication consists in part of handling a
relentless series of unforeseen problems, due to the seemingly infinite complexity
of the task at hand. Design flaws, fabrication delays, components vanishing in
magic smoke, malfunctioning prototypes. . . , everything can go wrong and will
go wrong as soon as you turn your back for a few seconds. But then at some
point, either by sheer luck or hard work (depending on your mood), everything
decides to work together. These moments of satisfaction are unmatched, and
make you temporarily forget all of the hardships. Instead, I like to think of
ProcSupGen as a more atypical and whimsical project. We tried to apply an
existing technique that we found interesting to a seemingly unrelated real-life
problem. This type of approach sometimes ends in failure, which can be hard
to deal given the expectations on PhD students, but always results in learning
interesting things that can be later reused. This project happened during the
multiple COVID lockdowns at the beginning of my thesis, and most of the time
was spent perplexedly looking at brightly colored voxels on a screen. Taming
model synthesis and developing an intuition for a seemingly chaotic system
has been one of my favorite moments of this thesis. Revisiting all of this to
expose the fine details of our techniques has made me realize my own evolution
throughout these years, and has been extremely gratifying.
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Résumé long

Cette thèse traite sur des problèmes d’agencement à l’intersec-
tion de plusieurs domaines, chacun ayant une histoire riche et des
applications diverses. En particulier, ces domaines sont la conception
et la fabrication computationnelles et l’informatique graphique.

La démocratisation des techniques de fabrication auparavant ex-
clusivement industrielles telles que l’impression 3D ou la fabrication
de circuits électroniques ont rapproché ces procédés d’un public
dépourvu d’une expertise spécialisée. Cette démocratisation résulte
en partie de l’accessibilité des outils de fabrication, à travers par
exemple l’apparition d’imprimantes 3D abordables, et de services
en ligne de fabrication de circuits électroniques. Ce nouvel accès
passe aussi par le développement d’outils numériques pour faciliter
les tâches de conception et modélisation et ainsi baisser significati-
vement la barrière d’entrée. Cet accès, porté par le développement
d’outils abordables et de logiciels faciles d’utilisation, ont permis
l’apparition et la croissance de communautés de passionnés et de ma-
kers (ou faiseurs). Celles-ci s’organisent en ligne et autour d’espaces
communautaires proposant un accès à des ordinateurs, des outils
d’atelier et des personnes compétentes en leur utilisation voulant
partager leurs connaissances. Ces communautés contribuent aussi à
rendre ces technologies toujours plus accessibles, et permettent à
encore plus de personnes d’explorer leurs possibilités créatives. Cet
intérêt croissant en ces technologies et la possibilité de construire des
prototyes rapidement ont été accompagnées par des avancées impor-
tantes en informatique graphique et en fabrication computationnelle
dans le domaine de la Conception pour la Fabrication [BFR17]. L’ac-
cessibilité nouvelle à ces technologies contraste cependant avec la
complexité des processus eux-mêmes, qui doit être prise en compte
par les chercheurs et développeurs des nouvelles méthodes dans ce
domaine. Un élément clé du développement de ces outils est l’essor
et la présence croissante des ordinateurs dans les dernières décen-
nies. En effet, l’omniprésence de l’ordinateur et la digitalisation de
tâches traditionellement analogiques ont provoqué des changements
radicaux dans les méthodologies de conception. L’outil informatique
permet l’automatisation de ces processus, les rendant plus efficientes
en temps et en ressources. Grâce à leur puissance de calcul, il rend
possible le traitement d’instances beaucoup plus grandes, qu’il aurait
été inconcevable de traiter sans, ou qui auraient requis une quan-
tité de main-d’œvre et d’effort disproportionnée. Le développement
d’outils pour assister ces tâches est le but de la Conception Assistée
par Ordinateur.

L’outil informatique permet aussi le développement de repré-
sentations spécifiques au milieu numérique. Par exemple, le para-
digme de la Conception Générative ou Paramétrique [dBoi22] est
irréalisable en absence d’ordinateurs. Cette approche consiste en la
définition simultanée de familles entières de formes, définies à travers
une représentation procédurale ou programmatique, où des formes
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particulières peuvent être sélectionnées en donnant des valeurs par-
ticulières à des paramètres sémantiques. En d’autres mots, la forme
est définie non pas directement en spécifiant sa géométrie exacte,
mais à travers un assemblage de formes simples (ou primitives)
définies par du code, prenant leur forme exacte à travers de para-
mètres. Ces paramètres définissent la forme exacte des primitives
et comment elles s’assemblent, par exemple contrôlant la longueur
d’un élément, ou le placement relatif de différents composants de la
forme définie. Cette approche trouve des applications notamment
en architecture [CSL20], où ces représentations flexibles permettent
d’adapter des plans à des environnements complexes, ou bien de
trouver des formes précises répondant au cahier de charges. Ce type
de représentation a été utilisé par exemple dans la conception du
Terminal International de Waterloo à Londres [GJ12], ou bien par le
studio Nervous System [RL] pour générer une infinité de formes dif-
férentes à partir d’un seul concept artistique. Une partie essentielle
de ce changement de méthodologie passe par le développement de
nouvelles représentations de données et de techniques d’optimisation,
capables de traiter de grandes quantités d’informations efficacement.
L’Informatique Graphique est une branche de l’informatique qui,
parmi d’autres, étudie le traitement, la simulation et la génération de
données géométriques, physiques et visuelles telles que des maillages
ou des textures pour la génération d’images de synthèse. Les données
utilisées peuvent être gigantesques, de l’ordre de millions de triangles
pour des maillages et des millions de pixels pour des images, deman-
dant ainsi un travail poussé sur la représentation et le traitement
efficaces de ces données. Il semble donc logique de réinvestir des
algorithmes issus de l’informatique graphique pour la conception et
la fabrication computationnelles.

Les problèmes d’agencement surviennent dans de nombreux
contextes en ingénieurie et en informatique. Typiquement, la résolu-
tion d’un problème d’agencement consiste en l’organisation spatiale
et l’interconnexion d’un ensemble d’éléments ou objets dans un
espace. Cet espace et ces interconnexions peuvent être de complexité
très variable, allant d’un simple rectangle où des objets sont reliés
par des segments de droite à des emboîtements tridimensionnels
d’objets de formes complexe. Un ensemble de contraintes et d’ob-
jectifs complémentent souvent la description du problème, tels que
minimiser la longueur ou la surface des interconnexions ou fixer
la position de certains éléments. Ces objectifs et contraintes sont
souvent spécifiques à chacun des problèmes en question et sont haute-
ment influencés par le domaine dans lequel le problème s’inscrit. De
même, les enjeux sont très différents en fonction de l’application. La
planification des étages en architecture, l’agencement d’installations
industrielles, de circuits électroniques, ou la création de niveaux de
jeux vidéo, sont tous des exemples de problèmes d’agencement. La
planification d’étages en architecture [WMR22] regroupe la déci-
sion des éléments intérieurs d’un bâtiment étant donnée la forme
extérieure de celui-ci. Ceci regroupe par exemple le placement de
murs intérieurs et de portes afin de créer des pièces distinctes ou
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l’attribution de rôles spécifiques à certaines pièces (pour une mai-
son : cuisine, chambre, salle de bains, salon. . .), certaines devant
être obligatoirement séparées ou connectées. Dans la planification
de bâtiments publics, il peut y avoir en même temps des contraintes
structurelles, desquelles dépend la stabilité du bâtiment et la sécurité
des usagers ; et des objectifs visant à rendre facilement accessibles les
zones hautement transitées. Un exemple à enjeux plus élevés est la
planification des installations industrielles, où les différents éléments
d’un système de production doivent être correctement placés dans
l’installation afin d’optimiser l’utilisation de l’espace, le coût de
construction ou bien le temps de transport entre éléments entre
autres. De la solution obtenue dépend le bon fonctionnement du
système, la méthode suivie peut donc faire la différence entre une
installation industrielle productive et rentable et une installation
inefficace. Un domaine d’application diamétralement opposé est la
génération de niveaux de jeux vidéo, elle-même un sous-domaine de
la Génération Procédurale de Contenu, souvent utilisée dans des jeux
rogue-like tels que Spelunky [Yu16]. Ces techniques sont utilisés pour
synthétiser des environnements complexes dans lesquels le joueur
peut évoluer en facilitant la tâche du designer, requérant par exemple
uniquement un graphe de connectivité et un ensemble possible de
salles [Ma+14]. Les enjeux sont moins élevés, mais il est quand
même difficile de trouver le bon équilibre entre la génération auto-
matique et le contenu original créé par un designer. Trop de contenu
synthétisé rend les niveaux répétitifs et peu originaux, mais trop
de contenu original demande énormément de travail [Gam16]. Les
contraintes et objectifs peuvent aussi être complexes. Par exemple,
il est important d’éviter des sections totalement inaccessibles au
joueur, ou d’assurer que la fin du niveau est accessible depuis sont
début. Un designer peut vouloir établir des prérequis pour accéder
à certaines parties du monde, pour par exemple forcer le joueur à
visiter les niveaux dans un certain ordre.

Les contraintes topologiques jouent un rôle important dans l’agen-
cement. La topologie considère des objets définis par les voisinages de
leurs éléments, sans s’attarder sur leur géométrie spécifique. Comme
raconte la blague : “un topologiste est une personne qui ne sait pas
faire la différence entre une tasse et un donut”. Par exemple, un
graphe est une entité topologique, constituée uniquement des liens
entre ses nœuds. Au contraire, dessiner un graphe est une opération
géométrique, puisqu’elle demande de spécifier la position des nœuds.
Dans le contexte des problèmes d’agencement, les contraintes to-
pologiques portent sur les relations entre les objets. Par exemple,
dans l’agencement de circuits électroniques, c’est-à-dire le placement
et le routage (interconnexion) des composants électroniques dans
le circuit imprimé ou intégré, l’information topologique est fournie
par le schéma électrique. Dans l’agencement d’un appartement, une
contrainte topologique pourrait porter sur l’adjacence de certaines
pièces : la cuisine et la salle à manger, une salle de bains et une
chambre. Souvent il est intéressant de considérer des contraintes to-
pologiques locales, indiquant à quoi ressemble notre agencement ‘de
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près’, et d’essayer de générer un agencement global les satisfaisant.
Cette thèse se focalise sur la résolution de deux problèmes d’agen-

cement spécifiques liés à la fabrication et la conception computation-
nelles sujets à des contraintes topologiques. Plus particulièrement,
il s’agit de la génération d’agencements de circuits électroniques et
la génération de supports pour l’impression 3D.

La première contribution est un système pour la conception
d’écrans surfaciques constitués de DEL RVB à travers l’utilisation
de circuits imprimés pliables. Normalement les circuits électroniques
sont intégrés sur des cartes de circuit imprimé, essentiellement consti-
tuant un sandwich de couches conductrices et isolantes. Des compo-
sants peuvent ensuite être soudés sur ces cartes, et les connexions
entre ces composants sont gravées dans les couches conductrices.
Cette approche permet de maximiser la densité des composants
sur la carte. De plus, il existe des services de fabrication de cir-
cuits électroniques en ligne abordables, permettant d’envoyer des
plans de fabrication et de recevoir les circuits fabriqués avec tous
les composants soudés quelques semaines plus tard. Il n’a jamais
été aussi facile de concevoir des circuits électroniques en partant de
zéro, grâce à des outlis de conception assistée par ordinateur pour
l’électronique tels que KiCad [CK92], et aux services de fabrication
mentionnés ci-dessus. Il existe aussi des cartes de circuits imprimés
flexibles, souvent utilisées dans des appareils restrictifs en termes
d’espace, tels que des ordinateurs ou téléphones portables. Ce type
de carte est significativement plus chère que les cartes rigides, et
sont plus difficiles à concevoir et fabriquer. Afin d’obtenir des cartes
imprimées flexibles, nous suivons une approche différente. Nous
plions les circuits imprimés traditionnels en utilisant des motifs
de découpe localisés, créant ainsi des ‘charnières’ dans la plaque.
Cette technique est inspirée de la découpe du bois (wood kerfing en
anglais), permettant de créer en retirant de la matière des surfaces
et formes courbes autrement difficiles à réaliser. Le système prend
en entrée un maillage basse-résolution et produit des plans pouvant
être envoyés à des services en ligne de fabrication de circuits. Suite
à la fabrication, l’écran est assemblé en pliant le circuit sur une
impression 3D du maillage d’origine. Les écrans fabriqués peuvent
être contrôlés à travers une interface programmatique pour créer
des effets lumineux impressionnants en temps réel. Le problème
global est découpé en sous-problèmes locaux grâce à la topologie
chaînée du circuit, les plans finaux étant obtenus en ‘recousant’ les
solutions aux sous-problèmes. Au lieu de suivre la méthode tradi-
tionelle d’agencement électronique (concevoir le schéma électrique,
placer et connecter les composants) ; nous décidons du nombre de
composants, leur placement et leur routage séparément pour chaque
triangle au moment-même de la génération.

La deuxième contribution est un algorithme procédural pour
la génération de supports pour l’impression 3D sous forme d’écha-
faudage. Les technologies de fabrication additive et impression 3D
sont devenues très accessibles au grand public dans les dernières
décennies. La facilité d’utilisation d’imprimantes grand public, l’ap-
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parition de services en ligne d’impression 3D, et la grande diversité
de modèles 3D disponibles sur des plateformes de partage rendent
plus facile que jamais de rentrer dans cet espace. Une majorité de
méthodes de fabrication additive produisent les objets couche par
couche, de bas en haut. Ceci rend souvent nécessaire l’utilisation
de structures de support pour l’impression de zones surplombantes.
L’importance des supports pour l’impression 3D ne doit pas être
sous-estimée. Ils permettent la fabrication d’objets ayant des géomé-
tries particulièrement complexes, mais doivent ensuite être enlevés
à la main. De plus, ils augmentent la quantité de matière utilisée
et donc le temps d’impression. Ils laissent aussi des traces visibles
sur la surface des objets fabriqués une fois enlevés. Concevoir des
structures de support adaptées et les optimiser est donc un élément
clé de la recherche en fabrication additive. Les supports générés par
notre méthode s’impriment de manière fiable et sont stables [DHL14].
L’algorithme précédent ne considère pas les intersections entre les
supports et l’objet imprimé, laissant des marques indésirables sur la
surface de l’objet. De plus, la complexité de l’algorithme dépend du
nombre de points à porter. Nous proposons un nouvel algorithme
inspiré du Model Synthesis (MS) [Mer09]. Il évite implicitement les
intersections et sa complexité est indépendante du nombre de points
à porter. Les supports sont représentés indirectement à travers un
ensemble d’étiquettes, chacune représentant une partie de la struc-
ture (par exemple une partie de pilier, de pont, ou une jonction) ;
et un ensemble de contraintes d’adjacence déterminant quelles com-
binaisons d’étiquettes sont possibles dans toutes les directions. Les
supports sont générés de haut en bas en attribuant de façon répétée
une étiquette à un voxel, puis en propageant les contraintes afin
d’éliminer les étiquettes rendues impossibles. Cet algorithme, les
contraintes d’adjacences et les heuristiques utilisées sont conçues
ensemble pour générer des supports sans essai-erreur ou retours
arrière, typiques du MS et autres méthodes similaires.

Ces problèmes semblent au premier abord très différents, mais
peuvent en fait être vus à travers le même prisme. Dans les deux cas
nous traitons des problèmes d’agencement soumis à des contraintes
topologiques définissant les types de solution admissible. Dans le
premier cas il s’agit de circuits constitués de boucles de DEL, et dans
le deuxième cas il s’agit de structures en échafaudage, constituées
de barres horizontales et verticales interconnectées. Ces contraintes
peuvent être exploitées d’un point de vue algorithmique et com-
putationnel : pour limiter l’espace de recherche de solutions, ou
bien pour extraire des propriétés des agencements valables, entre
autres. Nos méthodes peuvent ensuite générer des plans de fabrica-
tion, c’est-à-dire des réalisations géométriques prenant en compte les
technologies de fabrication visées, à partir des solutions obtenues.

Le but de cette thèse est de fournir une ressource utile pour la
résolution de problèmes d’agencement pour la fabrication compu-
tationnelle, en mettant l’accent sur les contraintes topologiques et
comment elles peuvent être exploitées pour simplifier ces problèmes.
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Lay summary

Layout problems arise in many engineering and computing do-
mains. They consist of a set of objects, a space and a set of
constraints and objectives. Finding a valid layout means placing
the objects within the space while satisfying the constraints and
optimizing the objectives. Electronics physical layout design and
floorplanning are examples of layout problems. Often these include
topological constraints, i.e. constraints relating to relationships
between the objects, such as components being connected in elec-
tronic circuits or two rooms being non-adjacent in a floorplan. This
thesis considers layout problems with topological constraints in
computational fabrication, more specifically in the context of elec-
tronic circuit layout and support structures for 3D printing. These
technologies being more accessible than ever thanks to affordable
3D printers and online electronic prototyping services means that
developing techniques for them is more important than ever.

Résumé vulgarisé

Les problèmes d’agencement surviennent dans de nombreux do-
maines en ingénieurie et en informatique. Ils sont constitués d’objets,
d’un espace, de contraintes et d’objectifs. Un agencement valide est
un placement des objets dans l’espace respectant les contraintes et
optimisant les objectifs. La conception de circuits électroniques et la
planification architecturale sont des exemples de problèmes d’agen-
cement. Ceux-ci impliquent souvent des contraintes topologiques
portant sur les relations entre les objets, comme des composants
électroniques étant connectés ou des salles n’étant pas contigües sur
un plan. Cette thèse s’intéresse aux problèmes d’agencement avec
des contraintes topologiques dans la fabrication computationnelle,
plus précisément pour l’agencement de circuits électroniques et la
génération de supports pour l’impression 3D. Ces technologies sont
plus accessibles que jamais grâce à l’existence d’imprimantes 3D
abordables et de services en ligne de fabrication de circuits.
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