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Résumé

Ces dernières années ont été marquées par un regain d’intérêt pour le potentiel de l’inférence
analogique et de la détection des analogies, avec des applications fructueuses dans l’apprentissage
automatique pour la découverte et la génération d’images, de textes et de données structurées telles
que les graphes de connaissances, ou encore la détection des relations entre et au sein d’images,
de textes, ou de données structurées. Si certains de ces travaux reposent sur une compréhension
intuitive de l’analogie, des efforts considérables ont été déployés depuis l’Antiquité pour définir les
analogies de la manière la plus précise possible. Les analogies sont un élément clé de la cognition
humaine et peuvent être considérées comme un mécanisme d’abstraction qui identifie les simili-
tudes et les différences entre différentes situations, et comme un outil de raisonnement permettant
d’adapter des solutions connues à de nouvelles situations. Lorsque l’on raisonne par analogie,
l’objectif est d’adapter la solution d’un problème connu ou source, qui est suffisamment similaire
au problème réel ou cible. Ce processus implique un transfert entre le contexte du problème source
(le problème et sa solution) et le contexte du problème cible. Au cours des 50 dernières années,
différents aspects de la notion de proportions analogiques (PAs) ont été explorés. Une PA est
généralement composée de quatre éléments, écrits A : B :: C : D lorsque le rapport entre A et
B est conforme à celui entre C et D. Cet outil formel a été décliné pour couvrir de nombreuses
interprétations différentes de ce qu’une analogie peut être, avec n’importe quel nombre d’éléments.
Dans notre travail, nous explorons différentes méthodes pour aborder la détection des PAs et la
résolution d’équations analogiques dans différents domaines, en utilisant l’apprentissage profond.
En particulier, nous étudions la morphologie des mots et la désambiguïsation du sens cible pour les
mots en contexte, deux domaines pour lesquels notre modèle est plus performant que l’état de l’art,
ainsi que la sémantique des cadres, pour laquelle nous obtenons des résultats encourageants. Nous
étudions également CoAT, un système de raisonnement à partir de cas (CBR) basé sur le transfert
analogique. Avec CoAT, nous obtenons des succès significatifs dans la mesure de la compétence
des cas et dans la tâche de compression de la base de cas.
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Abstract

Recent years have seen a renewed interest in the potential of analogy detection and analogical
inference, with successful applications in Machine Learning (ML) to the retrieval and generation of
images, of text, and structured data such as knowledge graphs, but also the detection of relations
between and within images, texts, and structured data. While some of those works are based on
an intuitive understanding of analogy, significant effort has been made since the antiquity to define
analogies as accurately as possible. Analogies are a key component of human cognition, and can
be viewed as an abstraction mechanism that identifies similarities and differences between different
situations, and as a reasoning tool to adapt known solutions to new situation. When reasoning by
analogy, the goal is to adapt the solution of a known or source problem, which is sufficiently similar
to the actual or target problem. This process involves a transfer between the context of the source
problem (the problem and its solution) and the context of the target problem. In the past 50
years, different aspects of the notion of Analogical Proportions (APs) have been explored. An AP
is typically composed of four elements, written A : B :: C : D when the ratio between A and B is
conform with the one between C and D, and this formal tool has been declined to cover numerous
different interpretations of what an analogy can be, with any number of elements. In our work,
we explore different methods to tackle the detection of APs and solving of analogical equations
on different domains, using Deep Learning (DL). In particular, we study word morphology and
Target Sense Disambiguation for words in context, two domains for which our model outperform
the State of the Art (SotA), as well as in frame semantics, where we obtain encouraging results.
We also study CoAT, a Case-Based Reasoning (CBR) system based on analogical transfer. With
CoAT, we encounter significant success in the measure of case competence and in the task of case
base compression.
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Chapter 1

Introduction

Analogies are a key component of human cognition, and can be viewed as an abstraction mechanism
that identifies similarities and differences between different situations, and as a reasoning tool to
adapt known solutions to new situations. When reasoning by analogy, the goal is to adapt the
solution of a known or source problem, which is sufficiently similar to the actual or target problem.
This process involves a transfer between the context of the source problem (the problem and its
solution) and the context of the target problem. Recent years have seen a renewed interest in the
potential of analogy detection and analogical inference, with successful applications in Machine
Learning (ML) to the detection of relations, the retrieval and generation of images, of text, and
of formal knowledge units such as knowledge graphs. While some of those works are based on an
intuitive understanding of analogy, significant effort has been made since the antiquity to define
analogies as accurately as possible. In particular, a notion that garnered a lot of interest in the
past 50 years is the one of Analogical Proportion (AP). An AP is typically composed of four
elements A,B,C,D, and signifies that the relation from A to B is analogous to the one between
C and D, written A : B :: C : D. This formal tool has been declined to cover numerous different
interpretations of what an analogy can be, with any number of elements.

The interest of morphology as a benchmark to study APs. Applying analogical reasoning
is not as easy as it seems. Word morphology is a very interesting benchmark for the study of
APs, as it is a form character string analogy, and can usually be generalized to analogy between
strings of symbols. Morphological data is accessible for many languages at the era of internet,
and the transformations that can happen by the mechanisms of morphological inflexion have been
extensively studied from a linguistic point of view. Additionally, while morphological inflexion is
very regular for the most part (consider the AP “dog” : “dogs” :: “cat” : “cats” adding the suffix
−s to cat and dog), small variations and irregularities are present that can be hard to predict
without linguistic knowledge (consider the AP “dog” : “dogs” :: “bus” : “buses” where the suffix −s
becomes −es with bus). In such a setting, analogical reasoning can be used to leverage examples
of morphological transformations and perform explainable predictions with minimal effort. For
instance, in the 1980s a tool named Copycat [HM95] was proposed to solve APs between strings of
characters, allowing, for instance, to find the solution x = “pqs” to the AP equation “abc” : “abd ” ::
“pqr ” : x, or x = “cats” for the equation “dog” : “dogs” :: “cat” : x. Other symbolic approaches have
since been developed to tackle APs in the domain of morphology, and while their performance gets
closer to human behavior, the irregular aspect of word morphology is a common limitation.

The ANN framework to tackle morphological APs using Deep Learning (DL). In
that context, we adapt and extend upon a recent DL approach based on APs [LPR19] that outper-
form more rigid formulations on the domain of word semantics. We propose the Analogy Neural
Network framework (ANN framework), which includes the Analogy Neural Network for classifica-
tion (ANNc) and the Analogy Neural Network for retrieval/generation (ANNr), two lightweight
DL models to tackle analogy detection and solving, as well as a data augmentation process. The
framework is formally grounded in the works on APs, and benefits from the flexibility of DL models
to deal with irregularities in the data. To explore the performance of our approach, we developed
the Siganalogies dataset covering more than 80 languages. Our approach outperforms symbolic
approaches by a significant margin on analogy detection, analogy solving by retrieval, and analogy
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solving by generation, in some cases by more than 75% of accuracy. We perform extensive abla-
tion experiments which allow us to refine the ANN framework. Having large amounts of data in
many languages allows us to explore morphological APs across languages, which reveals interesting
similarities between our model and the diachronic relatedness of languages1.

Extending the success of the ANN framework to semantics and Pretrained Language
Model (PLM). Motivated by the successes of the ANN framework on morphological APs, we
adapt the framework to application domains beyond word morphology. For instance, we develop
a model based on Bidirectional Encoder Representations from Transformer (BERT) and the ANN
framework to solve Target Sense Verification (TSV), and outperform the State of the Art (SotA) on
the Words-in-Context-TSV (WiC-TSV) benchmark. We also propose a system leveraging semantic
APs based on frame semantics to tackle Frame Semantic Role Labeling (FSRL), on the FrameNet-
1.7 (FN1.7) dataset. This new method appears flexible and while some challenges remain in the
selection of the source for the analogical transfer of semantic role labels, it has the potential to
outperform SotA methods.

Analogical Proportions beyond the ANN framework. Finally, we explore the potential
of a dataset Complexity Measure for Analogical Transfer (CoAT) for several aspects of case base
maintenance, an important problem in the domain of Case-Based Reasoning (CBR). CBR ap-
proaches consider a set of cases, that describe situations and their outcomes, or problems and
their solutions, and rely on this case base to solve new problems or predict the outcome of new
situations. In that context, we were able to define a measure of the competence, or usefulness, of
cases in the case base, which allowed us to improve the quality of case bases to solve synthetic and
real-wold classification tasks.

Structure of the document. This thesis is separated in 3 parts. First, Part I contains intro-
ductions to the key notions and approaches mentioned in this thesis, namely analogy, DL, and
morphology. Then, Part II describes our contributions on the ANN framework in morphology,
while Part III regroups our contributions to TSV, frame semantics, and CBR.

Main contributions. Our contributions to the literature discussed in this thesis are as follows:

• [Als+21a]: a first conference article published on the ANNc and CNN-based word embed-
ding (CNN-emb) models for analogy detection, mainly mentioned in Chapters 6 and 8 and
Section 7.3;

• [Als+21b]: a workshop article in which we describe experiments on training ANNc with
multilingual data and transferring monolingual ANNc to other languages, as described in
Section 8.1;

• [Als+21c]: an unpublished document listing some of our preliminary experiments on ANNc
(see Subsections 6.3.3 and 7.3.3) and on analogy solving with ANNr (see Subsections 6.4.2,
6.4.3, 7.4.2 and 7.4.4), as well as some ablation studies on the two models (see Section 7.5);

• [Mar+22a]: a second conference article, in which we describe a more elaborate retrieval
approach using ANNr for analogy solving, reported in Subsection 6.4.2 and Section 7.4;

• [Cha+22]: a workshop article in which we present an alternative to the CNN-emb model,
namely the AE-based word embedding (AE-emb) model, to solve some of its limitations for
analogy solving, mentioned in Subsections 6.1.2 and 7.4.3;

• [MMC22]: a workshop article in which we perform several experiments using transfer learning
without adaptation, allowing us to study the impact of the postulates of AP (see Section 7.6),
to explore the limits of the generalization of ANNc, and to extend the cross-lingual transfer
experiments from [Als+21b] (see Section 8.2);

• [MC24]: a special issue article that summarizes our main contributions with the ANN frame-
work and is indirectly referenced all over Part II, it also extends our analogy solving results,
by combining the AE-emb and ANNr, as well as with other complementary experiments;

1The diachronic relatedness of languages compares their evolution through history.
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Ch. 1. Introduction

• [Mar+22b]: the Siganalogies dataset we developed for all our experiments on APs in mor-
phology, built upon Sigmorphon 2016 Task 1 (Sig16), Sigmorphon 2019 Task 1 (Sig19), and
Japanese Bigger Analogy Test Set (JBATS), and detailed in Chapter 5;

• [Als+22a]: a workshop article in which ANNc is applied on medical records, a collaboration
that is mentioned in Chapter 9 and extended by [Als+22b];

• [Zer+22]: a third conference article, which describes how we use ANNc for TSV in WiC-TSV,
reported as the Chapter 10;

• [Mar+23]: a workshop article that presents our approach to case and case base competence
based on CoAT, containing a number of experiments on synthetic data, detailed and com-
pleted in Chapter 12;

• [Bad+23]: a workshop article proposing perspectives on the use of CoAT in the CBR domain,
presenting several directions of work and mentioned in Chapter 12.

Another article describing the contributions to FSRL in FN1.7 (see Chapter 11) is under review
at the time of writing.

Other related scientific activities. In addition to these publications, and within the frame
of this thesis, I co-organized the Analogies: from Theory to Applications (ATA) workshop in the
International Conference on Case-Based Reasoning (ICCBR) in 2022 and 2023, and am a co-editor
of the Springer Special Issue Annals of Mathematics and Artificial Intelligence: Mathematical
Foundations of Analogical Reasoning and Applications.

In parallel to other reviewing activities [Ara+21, among others], I am a member of the program
committee of the workshop on Interactions between Analogical Reasoning and Machine Learning
(IARML) from 2022 to 2024 (at the time of writing), that was hosted at the International Joint
Conference on Artificial Intelligence and European Conference on Artificial Intelligence (IJCAI-
ECAI) in 2022, and at the International Joint Conference on Artificial Intelligence (IJCAI) in
2023 and 2024.

I also supervised Master students and interns, with noteworthy collaborations [Als+21a; Als+21b;
Als+21c; Cha+22; Mar+22a].

The work reported in this thesis lies within the scope of the Inria Project Lab Hybrid Ap-
proaches for Interpretable Artificial Intelligence (HyAIAI) and Analogies: From Theory to Tools
and Applications (ANR project AT2TA, grant ANR-22-CE23-0023) projects. In particular, I had
the opportunity to actively participate in the AT2TA project, that strongly aligns with my thesis
topic.
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Part I
Preliminaries and state of the art

In this first part, we introduce the key concepts used in this thesis. Firstly, in Chapter 2 we
introduce the subtleties of the notion of analogy and describe the more precise notion of APs.
We describe several approaches to formalize the properties of APs. Secondly, the basic concepts
related to DL, that are necessary to understand this thesis, are introduced in Chapter 3. Finally,
the domain of application for the approaches and experiments we present in Part II is morphology.
We explain in Chapter 4 what morphology is, including a description of some key approaches.
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Chapter 2

Analogy and analogical proportions

Chapter contents

2.1 The vast notion of analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Analogical Proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Relational proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Simile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Metaphors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Continuous proportions and discontinuous proportions . . . . . . . . . . . . 9

2.2 Applications of Analogical Proportions . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Analogy detection, analogy solving, and analogical inference . . . . . . . . . 9
2.2.2 Approaches using Analogical Proportions . . . . . . . . . . . . . . . . . . . 11

2.3 Axiomatic Analogical Proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 The postulates of Analogical Proportions . . . . . . . . . . . . . . . . . . . 13
2.3.2 Discussions and limitations of the axiomatic setting . . . . . . . . . . . . . 14
2.3.3 Proposed categorization of the postulates . . . . . . . . . . . . . . . . . . . 15

2.4 Other formalizations of Analogical Proportions . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Propositional logic and Boolean Analogical Proportions . . . . . . . . . . . 16
2.4.2 Kolmogorov complexity approach . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Structure Mapping Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.4 Case-Based Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Analogy can describe distinct but related notions depending on the context. We attempt to
give an overview of these notions and how they are related in Section 2.1. Among these notions,
we focus in particular on the one of Analogical Proportion (AP). As defined in Subsection 2.1.1, an
AP is a quaternary relation between elements usually of the same nature, written A : B :: C : D
and read “A is to B as C is to D”. To illustrate the versatility of APs, we list some interesting
applications in Section 2.2.

In Section 2.3 we introduce the formal framework we use for our approaches, which follows
the seminal work of Lepage and Ando [LA96] by exploiting the postulates of APs. We introduce
some limitations of the formal framework in Subsection 2.3.2, which will be further discussed later
in Subsection 6.3.2, Section 7.6, and Appendix D. To give the reader an overview of possible
formulations of the problem of analogy, we also provide a brief introduction to other key formal
frameworks in Section 2.4.

2.1 The vast notion of analogy

Analogy has been used in a variety of settings and refers to similar but distinct notions. For
instance, it may refer to the figure of speech related with metaphor, to analogies between four
elements (that we will describe as APs, see also Subsection 2.1.1), or as the Cambridge dictionary
defines, to “a comparison between things that have similar features, often used to help explain a
principle or idea”.

While there is not general consensus on the different notions of analogies, it is generally accepted
that they can be reformulated as APs. For instance, Barbot, Miclet, and Prade [BMP19, Section
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2.1] separate analogies into four notions and provide a categorization of analogies in language, that
we summarize hereafter. Among them, relational proportions (Subsection 2.1.2) follow the same
writing as APs (Subsection 2.1.1), while simile (Subsection 2.1.3) and metaphor (Subsection 2.1.4)
can be seen as APs where some elements are not explicitly expressed.

For a more historical analysis of the notion of analogy, we recommend the first chapter of [Lep03,
in French]. Among the notions accounted for in the aforementioned chapter, the distinction between
continuous (analogical) proportions and discontinuous (analogical) proportions, made by Aristotle,
is described in Subsection 2.1.5.

2.1.1 Analogical Proportions
Barbot, Miclet, and Prade [BMP19] define APs as relations between four elements of the same
nature. They follow formulations like “A is to B as C is to D”, usually formalized as A : B :: C : D,
as in Example 2.1.

The relational view of APs is commonly used, and states that R(A,B) = R(C,D), with the
relations R(A,B) and R(C,D) corresponding to the ratios A : B and C : D, while the equality
corresponds to the conformity of ratios usually noted ::. Another commonly used view of APs is
the functional view, that is based on a function (or transformation) f and reformulates APs as A :
f(A) :: C : f(C). This can be seen as a special case of relational AP, when we consider the relation
between an object A and its image f(A). APs express both similarities and dissimilarities [PR14],
and follow strong properties that we detail in Section 2.3.

Let us consider the AP:

“a cat is to a kitten as a dog is to a puppy”
“cat” : “kitten” :: “dog” : “puppy” .

Multiple similarities and differences are expressed in this example:

• a cat and a kitten differ in the same way as a dog and a puppy, as a cat is the adult
form of a kitten, and a dog is the adult form of a puppy;

• a cat and a dog are similar on the same aspects as a kitten and a puppy are, as a cat
and a dog are adults while a kitten and a puppy are juveniles;

• a cat and a kitten are similar on features on which a dog and a puppy are similar, as a
cat and a kitten are cats, while dog and puppy are different ways to designate dogs;

• on the same features, a cat and a dog differ in the same way as a kitten and a puppy.

Example 2.1: A first AP

2.1.2 Relational proportions
In the classification of Barbot, Miclet, and Prade [BMP19], relational proportions are very close to
APs, with patterns of the form “A is to a as C si to c” or “A is the C of a”, e.g., “the eyes are the
windows of the soul” or “the eyes are to the soul as windows are to a house”. The main differences
between APs and relational proportions are that the elements are not of the same nature anymore
(a, c are of one kind while A,C are of an other) and c is usually obvious enough from the context
of C to be omitted, resulting in the formulation “A is the C of a”.

However, as done in the work of Barbot, Miclet, and Prade [BMP19], APs in language can be
converted to relational proportions, and conversely.

2.1.3 Simile
Simile are figures of speech that transfer a property expected for an object to another object, written
for instance “A is as a as C”. An example of simile from Barbot, Miclet, and Prade [BMP19] is “I
am as hungry as a wolf”, in which the hunger that is expected from a wolf is transferred to “I”.

Simile can be reformulated into forms similar to APs, for instance “A is as a as C” would
become “a is to A as a is to C”, Barbot, Miclet, and Prade considers them as special cases of
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relational proportions. However, the fact that A and C are different but the same element is used
to compare to both of them may cause issues with some properties detailed in Section 2.3. To be
more precise, the Exchange of the Means postulate states that from “A is to B as C is to D” we
also have “A is to C as B is to D”. With “a is to A as a is to C” however, we would have that “a
is to a as A is to C”, which implies that A and C equal, as a and a are. We discuss this issue in
more detail in Subsection 2.3.2.

2.1.4 Metaphors

Metaphors describe an object using a different object, with formulations such as “A is like C”, e.g.,
“My teacher is a dragon”. Compared to, for instance, relational proportions, metaphors do not
express either a nor c, and are “more allusive than simile” [BMP19]. Indeed, it is significantly harder
to determine with regards to what “my teacher is a dragon” without any point of reference, than
if we formulate it as the simile “my teacher is like a dragon: frightening when angry”. Metaphors,
given enough information, can be reformulated as simile and therefore as APs, with the same
constraints as simile.

2.1.5 Continuous proportions and discontinuous proportions

A specific case of AP is when B and C the same object: “A is to B as B is to D”. This distinction
was already made by Aristotle according to [Lep03, page 41], and does not cause the same kind of
issues as simile with regards to the postulates of APs (see Subsection 2.1.3). Continuous APs were
for instance used by Reed, Zhang, et al. [Ree+15] to produce sequences of images for animations,
by answering the question “what is to the current image as the previous image was to the current
one (that is, the next frame in the animation)”, leveraging a model designed for discontinuous
APs. The relation between continuous proportions and Boolean models of analogies is extensively
discussed by Leemhuis and Özçep [LÖ23].

2.2 Applications of Analogical Proportions

APs can be used to formalize different types of tasks, in particular, analogy detection and analogy
solving, that can take several variants including the analogical inference principle. We detail these
tasks in Subsection 2.2.1.

While it is not possible to completely survey existing approaches using APs, we provide a
first overview in Subsection 2.2.2. In later chapters, we detail approaches using APs with DL
(Section 3.4) and applications to word morphology (Subsection 4.3.2).

2.2.1 Analogy detection, analogy solving, and analogical inference

Two main tasks are associated with APs: analogy detection and analogy solving. The analogical
inference principle was used for instance in [BL22; Bay+07; Cou+17a; Hug+19; MBD08], and
combines analogy detection and analogy solving. All three tasks are discussed in this subsection.

Analogy detection. Analogy detection consists in identifying whether a quadruple A,B,C,D
forms a valid AP A : B :: C : D or not. This task is of prime importance, as analogy detection
relates to the ability to properly define what an AP is, however in some situations the boundary
between valid and invalid AP is not clearly defined.

In cases like the arithmetic and geometric proportions (see Equations (2.3) and (2.4)), the
notion underlying AP is well defined, and analogy detection is a simple process.

However, if we consider morphological APs, that deal with the structure of words as we will
define in Chapter 4, we can have cases such as:

“cat” : “cats” :: “dog” : “dogs”
“cat” : “cats” :: “bus” : “buses”

“cat” : “cats” :: “child ” : “children”
“cat” : “cats” :: “sheep” : “sheep”.
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While it is easy to agree that the first AP is valid in terms of morphology (we add “-s” on both
sides), it can be argued that the further down we go the less acceptable the AP is, as more and more
non-basic morphological information is needed: for the second AP we need to adapt the suffix “-s”
into “-es” based on morphological rules, for the third one we need to change the suffix completely,
and for the last one we need to know that “sheep” is invariant. Determining where to draw the
line is therefore one of the main challenges of analogy detection. In ML terms, analogy detection
is usually seen as a binary classification task, where a model has to label a given quadruple as a
valid or an invalid AP.

Considering that in some case analogies have infinitely many solutions [HM95], instead of
a strict valid/invalid decision some approaches determine the “degree of analogicality” [LG14;
MBD08; MYZ13; Mur22; Mur+20] of the quadruple. It is then possible to position the quadruple
on the valid to invalid AP spectrum, or, using a more cognitive view of APs [BMP19; Mit21], on
the spectrum of very relevant to less relevant analogies.

To summarize, analogy detection involves the ability to determine how to compare the objects,
i.e., which common aspects are used for the analogical relation. For instance, for arithmetic
proportions (Example 2.2 and Equation (2.4)) we can compare the arithmetic mean of the means
and the extremes, and for our work on morphological APs (see Chapter 4 and Part II) we compare
the morphological features of words. Analogy detection also requires the ability to determine how
“analogical” a quadruple is, either in a binary manner or in a continuous manner.

An arithmetic proportion is a type of AP A : B :: C : D between numbers, where the ratio (:)
is the difference (−), and the conformity of ratios (::) is the equality (=). As can be seen in
the example:

8 : 2 :: 12 : 6,

8− 2 = 12− 6 = 6,

an arithmetic proportion compares difference between the first (8) and the second (2) elements
with the difference between the third (12) and fourth (6) elements. It is also possible to
compare the arithmetic mean of the means, i.e., the second (2) and third (12) elements, with
the extremes, i.e., the first (8) and fourth (6) elements:

8 + 6

2
=

2 + 12

2
= 7.

Example 2.2: Example of arithmetic proportion

Analogy solving. Analogy solving is the process of completing an incomplete AP, in particular
an analogical equation in which one of the elements is unknown, that we write A : B :: C : x where
x is unknown.

Analogy solving raises two important questions, that we formulate as Solvability and Uniqueness
in Table 2.1, with examples in Example 2.3:

• is it always possible to solve an analogical equation (Solvability)? If not, how do we determine
if a triplet A,B,C forms a solvable analogical equation A : B :: C : x [Mur22]?

• if an AP is solvable, is there only one solution (Uniqueness) [DL23]?

Let us consider APs between strings of symbols, where the allowed transformation include
insertion and deletion of symbols, and ε represents an empty string.

If we take the following analogical equation:

ε : “a” :: “bb” : x,

it can reasonably accept the following solutions: x = “abb”, x = “bab”, x = “bba”.

Example 2.3: Analogical equations with more or less than one solution
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If we take the analogical equation:

“a” : ε :: “bb” : x,

with the ratio “a” : ε corresponding to removing an a from the left element, it is reasonable
to consider that there is no solution, as there is no a to remove in bb.

To our knowledge, most of the effort on modelling APs focuses on analogy solving [LG14;
MBD08; Mur22; Mur+20; Ree+15; SZF15, among many other]. In ML terms, analogy solving is
usually seen as a retrieval [LG14; LPR21; MBD08; SZF15] or generation task [LYZ09; Mur+20;
Ree+15].

The basic formulation A : B :: C : x (x unknown) of analogy solving can be generalized to
finding all missing information from some A,B,C,D such that A : B :: C : D holds [BL22].
When only D has missing information, this generalization corresponds to the analogical inference
principle described hereafter.

Analogical inference and analogy preservation. A specific case of analogy solving lever-
ages the analogical inference principle, attributed to Pirrelli and Yvon [PY99] by Prade and
Richard [PR21], that is defined as follows, for elements of the same nature with features X parti-
tioned in two subsets X1, X2:

∀i ∈ X1, Ai : Bi :: Ci : Di holds
∀j ∈ X2, Aj : Bj :: Cj : Dj holds

, (2.1)

in other words, if for some of their features (the ones in X1), A,B,C,D form an AP, then it is also
the case for the remaining features (X2).

This principle has been used for instance by Couceiro, Hug, et al. [Cou+17a], Badra and
Lesot [BL22], Lieber, Nauer, and Prade [LNP21], Lepage and Denoual [LD05], and Couceiro
and Lehtonen [CL24]. It combines analogy detection with analogy solving to find the missing
features F ′ of an element D for which we know features X1. To do so, we first find three elements
A,B,C for which ∀i ∈ X1, Ai : Bi :: Ci : Di holds with an analogy detection method, and for
which we know the values for features X2. Then we apply an analogy solving technique to solve
∀j ∈ X2, Aj : Bj :: Cj : x, and use the solutions to complete D.

In the work of Couceiro, Hug, et al. [Cou+17a], functions that maintain this principle are
called analogy preserving functions. Formally, a function f : X1 7→ X2 is analogy preserving if the
following holds for all A,B,C,D ∈ X1:

A : B :: C : D holds
f(A) : f(B) :: f(C) : f(D) holds

. (2.2)

Relation identification. One specific task related to analogy detection and analogy solving
is the identification of the relation (or the function f in the functional reading) underlying an
AP [GDM16; Pey+19]. This process can be used to explain a relation between two elements, but
also to solve an AP by first identifying the relation between the first two elements then apply it on
the third one to find the fourth missing element. This is for instance applied in [MDC17; Mur+20,
see Subsection 2.4.2].

2.2.2 Approaches using Analogical Proportions

The principles of analogy detection, analogy solving, and analogical inference have been used in a
wide variety of settings, that are identifiable by the nature of the manipulated data, the nature of
the underlying relations, and the end goal.

There have been approaches that manipulate, among other data types:

• images, whether on the situation depicted [Bay+07; Bit+23; LTC17; Ree+15; SZF15] or the
pixel themselves [Lep14];

• knowledge graph entities [JCM23];

• undirected graphs [Ant23] and trees [Bod09; ZFL22];
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• Boolean data [BMD07; Cou+17a; Cou+18];

• tabular data [proposal by MC22];

• strings of symbols [HM95; MDC17];

• text, at different levels of granularity: strings of characters [DL23; FL18; MC24; MYZ13;
Mur+20], words [DGM16; GDM16; LPR21; Mik+13], sentences [Afa+21; Afa+22; LD05;
ML23; TWL20; WL20; ZM20], or entire documents [Als+22a; Als+22b];

• feature vectors in vector spaces [DZF19; DGM16; LG14; LPR21; MBD08; Mik+13; RA73;
ZM20], including embedding spaces (see Section 3.3) and binary or nominal features.

Focusing on approches on textual data, analogy has been used for a wide variety of purposes:

• providing cognitively sound models of analogy, for instance [HM95; MDC17], and to the best
of our knowledge, most of the literature on AP;

• evaluating the quality of the representation for embedding spaces [DGM16; Dum+88; GDM16;
Mik+13];

• improving the quality of the representation for embedding spaces [DZF19; Kar+18];

• performing machine translation [LD05; TWL20]

• completing missing information [MC22], for instance for medical records [Als+22a; Als+22b];

• making parallels between scientific domains [SS22];

• transferring annotations (as we do in Chapter 11);

• performing or analyzing morphological inflexion [DL23; FL18; MC24; Mur+20, see also
Subsection 4.2.1];

• exploring the limits of the reasoning of large language models reasoning [Ush+21; Yas+24;
Zer+22].

As one can see, there is a wide variety of applications and approaches, even though we limit
our selection to works where the use of APs is easily identifiable. For instance, other interesting
references can be found in [PR21]. For this reason, we will detail only some approaches that are
directly relevant to the work presented in this thesis. In particular, after presenting fundamental
notions of DL in Chapter 3, we will describe various applications of analogies in DL and in particular
in vector spaces in Section 3.4. Then, after presenting word morphology in Chapter 4, we will
discuss applications of APs to word morphology in Subsection 4.3.2.

2.3 Axiomatic Analogical Proportions

In most of our work, we follow the setting defined by Lepage [Lep01; Lep03], which follows the
seminal work of Lepage and Ando [LA96]. This axiomatic setting defines a set of postulates for
analogical quadruples, and defines the notion of AP from these postulates. We detail these pos-
tulates in Subsection 2.3.1, and summarize them in Table 2.1, based on a categorization proposed
in Subsection 2.3.3. Some of the postulates introduced are not suitable to some application con-
texts [Als+22a; Ant22], as discussed in Subsection 2.3.2. Further postulates are mentioned in
Appendix D, but do not correspond the usual setting of APs.

We try to match the terminology from Lepage [Lep01] whenever possible for the postulates
names, and mention other common terminologies that we are aware of [Afa+22; Ant22; LPR21;
PR21].
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2.3.1 The postulates of Analogical Proportions
The axiomatic setting from [LA96] is related to the common view of APs as geometric (Equa-
tion (2.3)) or arithmetic proportions (Equation (2.4)) or, in geometric terms, as parallelograms in
a vector space (or parallelogram rule, Equation (2.5)):

A

B
=

C

D
, (2.3)

A−B = C −D, (2.4)

A⃗− B⃗ = C⃗ − D⃗. (2.5)

The various postulates proposed by Lepage were built, among other inspirations, on these pro-
portions. In particular, the postulates described below correspond to properties verified by the
geometric and arithmetic proportions and the parallelogram rule.

The setting defined in [Lep01] consists in two postulates:

• Symmetry of Conformity: if A : B :: C : D, then C : D :: A : B;

• Exchange of the Means: if A : B :: C : D, then A : C :: B : D.

In the work of Prade and Richard [PR21], Afantenos, Lim, et al. [Afa+22], Antić [Ant22], and
Lim, Prade, and Richard [LPR21], Exchange of the Means is also called central permutation, while
Symmetry of Conformity is called symmetry.

These two properties can be combined to obtain a total of 8 permutations of the AP A : B ::
C : D that also hold true:

• A : B :: C : D, the base form;

• A : C :: B : D, Exchange of the Means;

• B : A :: D : C, Inversion of Ratio, inside pair reversing [Als+21a], or internal reversal ;

• B : D :: A : C, obtainable by Exchange of the Means followed by Symmetry of Conformity;

• C : A :: B : D, obtainable by Symmetry of Conformity followed by Exchange of the Means;

• C : D :: A : B, Symmetry of Conformity;

• D : B :: C : A, Exchange of the Extremes, or extreme permutation;

• D : C :: B : A, Symmetry of Reading, or complete reversal.

As stated by Lepage [Lep03, Section 4.1.2], Symmetry of Conformity can be replaced by Inversion
of Ratio, and Exchange of the Means by Exchange of the Extremes, for the same 8 equivalent
forms.

Additionally, Lepage [Lep03] proposed three other postulates:

• Reflexivity of Conformity: A : B :: A : B is always true;

• Identity: A : A :: B : B is always true;

• Strong Identity, or strong inner reflexivity : if A : A :: B : C, then C = B;

• Strong Reflexivity of Conformity, or strong reflexivity : if A : B :: A : C, then C = B.

Uniqueness is a more general form of Strong Identity and Strong Reflexivity of Conformity,
and states that A : B :: C : D ∧ A : B :: C : D′ =⇒ D′ = D. In other words, a given triplet of
elements A,B,C correspond to at most one forth element D. Uniqueness makes sense, for instance,
for arithmetic and geometric proportions, where the solution of d = c+ a− b is unique, and there
is at most one solution for d = c× a

b (see Equations (2.3) and (2.4)). Strong Identity and Strong
Reflexivity of Conformity can be seen as applications of Uniqueness to Identity and Reflexivity of
Conformity, respectively.

There is a postulate introduced by Lepage [Lep03, page 122] that we do not use in our work,
namely, the Distribution postulate. It states that if we have an AP A : B :: C : D, and we are
able to distinguish the features of the elements, then any feature of A can be found in B or C,
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and the same is true for D in place of A. If we write X the set of features and X(A) the features
expressed in A, Distribution can be expressed as A : B :: C : D =⇒ X(A) ⊆ X(B) ∪ X(C).
The assumption that we are able to distinguish the features of the elements might appear trivial,
in particular for symbolic approaches, but is unsuitable for continuous domain APs or APs where
the features are not explicitly expressed.

2.3.2 Discussions and limitations of the axiomatic setting
While the postulates of APs seem reasonable when manipulating words, which is what they
were designed for in the work of Lepage [Lep03], they can be criticized in other application do-
mains [Als+22a; Ant22].

The limitations of Exchange of the Means. Let us consider the simile A : B :: A : C, with
A,B,C distinct objects. By Exchange of the Means this simile would produce A : A :: B : C.
The latter is counter intuitive, as we already discuss in Subsection 2.1.3: humans tend to prefer
the simplest solutions [CV03], and considering that R(A,A) is the equality, however B ̸= C which
is not conform with A = A. This consideration led us, in Section 7.6 [see also MMC22], to
explore some limitations of the axiomatic setting for training models of morphological APs, and
in particular how accepting or refusing Exchange of the Means impacts the performance of our
analogy detection models.

Other recent works reach similar conclusions, for example, Antić [Ant22, proof of Theorem 28]
demonstrates that the formalisation of APs he proposes does not satisfy Exchange of the Means
in general. The approach from Murena, Al-Ghossein, et al. [Mur+20] does not fit Exchange of
the Means either. As described in Subsection 2.4.2, the approach of Murena, Al-Ghossein, et al.
considers the complexity of the ratio A : B in an AP A : B :: C : D, which may differ from the
complexity of the ratio A : C in the AP A : C :: B : D after Exchange of the Means. This allows
their approach to handle certain forms of simile, while still refusing A : A :: B : C with A,B,C
distinct objects.

Another situation in which Exchange of the Means is not suitable is when elements are spread
in different domains. For instance, in the work of Sultan and Shahaf [SS22], A : B is a ratio in one
conceptual domain while C : D belong to another one, as in “Earth is to the Moon as a nucleus
is to an electron”, and it might not be possible or convenient to define a ratio between domains.
APs that include elements of different nature may exhibit the same kind of issue, for instance with
animals and their class: “mammal is to dog as reptile is to crocodile” causes no issue, while when
considering Exchange of the Means, “mammal is to dog as mammal is to cat” will create a similar
issue as what we had with simile.

The interest of a Symmetry of Ratio postulate. In our work on medical records [Als+22a]
for instance, symmetric relations, including the equality of elements, are considered among the
underlying relations of the APs. As such, A = B :: C = D =⇒ B = A :: C = D, as equality
is symmetric. To account for these situations, we consider the Symmetry of Ratio postulate, that
states that if A : B :: C : D holds, then B : A :: C : D holds and A : B :: D : C holds. In most
cases application, Symmetry of Ratio does not hold. However, if it holds together with Symmetry
of Conformity and Exchange of the Means (or any set of postulates resulting in the 8 equivalent
forms), a direct consequence is that all 24 possible permutations of 4 elements are equivalent [Lep03,
Theorem 2 page 119]. We discuss and detail different combinations of postulates, as well as their
correspondence with models similar to the one of APs, in Appendix D.

Some challenges with Transitivity. In the work of Antić [Ant22], additional postulates are
used, including multiple notions of Transitivity that expand upon the postulate that A : B ::
C : D ∧ C : D :: E : F =⇒ A : B :: E : F . Taking an example from Lim, Prade, and
Richard [LPR21], while

“nurse” : “patient” :: “mother ” : “baby” (2.6)
“mother ” : “baby” :: “frog” : “tadpole” (2.7)

are two semantically acceptable APs, the result of Transitivity is harder to accept:

“nurse” : “patient” :: “frog” : “tadpole”.
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This difficulty is due to the coexistence of multiple distinct underlying relations used in the first
two APs: the relation underlying the ratio X : Y would be “X takes care of Y ” in Equation (2.6),
while in Equation (2.7) the underlying relation is closer to “X gives birth to Y ”.

2.3.3 Proposed categorization of the postulates

We propose to group the postulates into 3 categories, based on the type of property they represent:

• permutation postulates: postulates that state that if an AP A : B :: C : D exists, then
another AP exists, obtainable by permuting A,B,C,D;

• existence postulates: postulates that state that a particular AP always exists;

• constraint postulates: postulates that constrains the possible values of in an AP.

The postulates are summarized and separated in their respective groups in Table 2.1. We also
include two postulates to completely cover the 8 equivalent forms of AP defined by Lepage [Lep01;
Lep03], named respectively extra postulate 1 and extra postulate 2. Beyond making more explicit
the kind of contraints enforced by each postulate, this categorization of postulate is helpful for the
proposal we make in Appendix D to generalize the data augmentation process from Section 6.3.

Symmetry of Ratio is the only permutation postulate producing two distinct permutations: it
states that it is possible to flip the ratio (:) on the left or on the right of the conformity of ratios
(::). To be consistant with the other permutation postulates, we split it into Symmetry of Left
Ratio and Symmetry of Right Ratio.

Note that in this categorization, we do not include Transitivity in any of its existing variants,
among other reasons because it is not a widely accepted postulate.

Postulate Symbol Description

Permutation postulates group
Symmetry of Conformity SymC A : B :: C : D =⇒ C : D :: A : B
Exchange of the Means EM A : B :: C : D =⇒ A : C :: B : D
Inversion of Ratio IR A : B :: C : D =⇒ B : A :: D : C
Exchange of the Extremes EE A : B :: C : D =⇒ D : B :: C : A
Symmetry of Reading Rev A : B :: C : D =⇒ D : C :: B : A

Extra postulate 1 Ex1 A : B :: C : D =⇒ C : A :: D : B
Extra postulate 2 Ex2 A : B :: C : D =⇒ B : D :: A : C

*Symmetry of Ratio Sym :: Sym
*Symmetry of Left Ratio Sym :: A : B :: C : D =⇒ B : A :: C : D
*Symmetry of Right Ratio :: Sym A : B :: C : D =⇒ A : B :: D : C

Existence postulates group
Reflexivity of Conformity Ref A : B :: A : B
Identity Id A : A :: B : B
Solvability Solv ∀A,B,C ∃D such that A : B :: C : D holds

Constraint postulates group
Uniqueness Uniq A : B :: C : D ∧A : B :: C : D′ =⇒ D = D′

Strong Reflexivity of Conformity UniqRef A : B :: A : D =⇒ B = D, can be seen as
Uniqueness restricted to Reflexivity of Con-
formity

Strong Identity UniqId A : A :: C : D =⇒ C = D, can be seen as
Uniqueness restricted to Identity

Distribution Dist A : B :: C : D =⇒ X (A) ⊆ X (B) ∪
X (C), with X (A),X (B),X (C) the features
of A,B,C

Table 2.1: Known postulates used in axiomatic analogies, excluding transitivity. Asterisks indicate
permutation postulates that are not accepted for APs.
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2.4 Other formalizations of Analogical Proportions

As mentioned in Subsection 2.1.1, two specific readings coexist with the general reading of AP,
namely the relational and the functional reading. The notion of AP is related to many other for-
malisms, and different readings gave birth to different formalizations, some of which are described
below. We describe the Boolean, Kolmogorov complexity, Structure Mapping Theory (SMT), and
CBR formalisms in Subsections 2.4.1 to 2.4.4, respectively. Other formalisms have been proposed,
including a Galois theory [CL24] and several algebraic approaches [Lep03; SY04; SY07, among
others]. Additional explanations on some of the formalisms presented in this section are available
in the review by Prade and Richard [PR21].

Among others approaches, Prade and Richard [PR21] relate the DL formalism of Lim, Prade,
and Richard [LPR21], which served as the basis for the approach presented in Chapter 6, with
the relational view of APs. In our understanding of the approach, there is indeed an intermediate
step between the input and the output of the model: for analogy detection (see Subsections 2.2.1
and 6.2.2), between the quadruple A,B,C,D and the conclusion on whether the AP A : B :: C : D
holds or not, the ANNc model considers R(A,B) and R′(C,D), and then checks wether the two
relations are conform with each other (R(A,B) :: R′(C,D)) which can be seen as checking to which
extent R ≈ R′.

2.4.1 Propositional logic and Boolean Analogical Proportions

Several propositions have been made to express APs using logical formalisms. For instance, some
APs have been expressed within the frame of propositional logic [MP09a]. The different propo-
sitions result in different models (in the logical meaning) of APs [CL24], some of which are not
considered as APs in the axiomatic sense in the categorization by Prade and Richard [PR18]. In
Appendix D, we explore the link between the postulates of APs from Table 2.1 and these Boolean
models of analogy [BMD07; Cou+17a; Cou+18; CL24; PR18]. Let us consider two examples of
APs that are considered differently depending on the model, using 1 for true and 0 for false:

0 : 1 :: 1 : 0, and conversely 1 : 0 :: 0 : 1.

Some of the Boolean models accept the two APs, and consider the negation (¬, defined as 0 ≡
¬1, 1 ≡ ¬0) as an acceptable underlying transformation for APs, while other Boolean models do
not.

2.4.2 Kolmogorov complexity approach

The simplicity principle in cognitive sciences [CV03] states that simpler explanations tend to be
preferred over more complex ones. Following this principle, the functional reading of AP has been
tackled by Cornuéjols [Cor96], Murena, Dessalles, and Cornuéjols [MDC17], Murena, Al-Ghossein,
et al. [Mur+20], and Murena [Mur22], using the idea that the simplest transformation f will be
considered for the AP A : f(A) :: C : f(C). To compare transformations, the notion of Kolmogorov
complexity is used, and the complexity of f is measured as the length of the minimal program that
produces f(A) from A. To estimate the Kolmogorov complexity, a set of basic instructions are
defined by Murena, Dessalles, and Cornuéjols, and Murena, Al-Ghossein, et al. [MDC17; Mur+20]
for APs between character strings, including insertion, deletion, and copy of some characters from
A. The shortest sequence of instructions that is able to obtain f(A) from A and f(C) from C is
the least complex. In the case of analogy solving (see Subsection 2.2.1), f(C) is unknown so the
previous constraint is relaxed: different sequences of instructions are explored to find the shortest
program that is able to obtain f(A) from A and is applicable on C, and from the resulting f it is
possible to get f(C).

2.4.3 Structure Mapping Theory

SMT [Gen83; GHK01; JSS23; SS22] is an other interesting formalism of AP, in which parallels are
made between two conceptual domains. Each domain is described by related concepts, usually in
the form of a conceptual graph. For instance, the astronomical domain contains the concepts of the
Earth, the Moon, and the gravitational force that makes the Moon orbit around the Earth. The
domain of atomic physics may contain the concepts of nucleus, electron, and the electromagnetic
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force that makes the electron orbit around the nucleus (in Bohr’s model). The principle of SMT
is to map the two conceptual structures to one another, and doing so creates APs. Our reading
of SMT is the relational reading of APs, as a parallel is made between the relation in one domain
and in another domain: in the AP “the Earth is to the Moon as a nucleus is to an electron”, the
orbital relation between the Earth and the Moon, caused by the gravitational force, is compared
with the one between a nucleus and an electron, caused by the electromagnetic force.

2.4.4 Case-Based Reasoning
CBR methods are defined in a very general manner in the work of Badra and Lesot [BL23] as
methods to “predict the outcome that makes analogical transfer most likely to succeed when the
new case is compared to the retrieved cases.” Let us dissect this definition. First, a case is a
situation (or problem) associated with an outcome (or result or solution). In CBR, a set of cases,
called a case base, is used to predict the outcomes for new situations. The case base contains cases
for which the situation is associated with the right outcome. From there, the analogical transfer
principle in CBR states that similar situations will have similar outcomes. This can be seen as
solving a multi-domain AP, as we show in Example 2.4. Alternatively, we can use the analogical
inference principle (Equation (2.1)) as was done by Badra and Lesot [BL22; BL23], as we show in
Example 2.5. A more detailed introduction to CBR is given in Section 12.1.

Let us take the setting where situations are animals and outcomes are their classes, knowing
that an elephant is a mammal, a whale is a mammal, and a desert turtle is a reptile (the case
base). We can find the most similar animal in our case base (the turtle) and, by analogy,
consider that the sea snake is a reptile. This corresponds to an AP “reptile is to desert turtle
as reptile is to sea snake”.

Example 2.4: Link between multi-domain APs and CBR

Let us take once again the setting where situations are animals and outcomes are their classes,
knowing that an elephant is a mammal, a whale is a mammal, and a desert turtle is a reptile
(the case base).

One can argue that “an elephant is to a whale as a desert turtle is to a sea snake” holds:
elephants and whales are large vertebrates that do not lay eggs, while turtles and snakes are
small vertebrates that lay eggs; additionally, elephants and desert turtles live on the ground in
arid climates, while whales and sea snakes live in water. By the analogical inference principle,
“mammal is to mammal as reptile is to the class of sea snakes”, and we can conclude that sea
snakes are reptiles.

Example 2.5: Link between the analogical inference principle and CBR
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Chapter 3

Machine learning, deep learning and
vectorial representations
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Deep Learning (DL) is a branch of Machine Learning (ML), where the goal is to define and
optimize a parametric model for a specific task. These notions are explained in Section 3.1. Usually,
the most fitting parameters are the ones resulting in the highest model performance, but other
concerns are taken into account, such as the ability to generalize to unseen data, and several notions
of fairness and explainability.

In DL, a model follows a structure called the model architecture, which is usually composed
of pre-existing building blocks. The building blocks mentioned in this thesis are described in
Section 3.2. An important part of tackling tasks using DL is to find the best representation of
the manipulated object by the model. In Section 3.3, we describe key methods to obtain this
representation, called an embedding.

Once all these fundamentals are explained, we discuss in Section 3.4 some applications of APs
(see Chapter 2) in the domain of DL, and in particular APs manipulating embeddings.

For further background, see for instance [24] for ML concepts and [Sar21] for an extensive
introduction to DL.

3.1 Terminological distinctions

DL is the field of study of models called artificial Neural Networks (NNs). However, the notion
of model is used in many domains with no consensus on the meaning of model and neighboring
notions. For instance, as DL is a branch of ML many concepts and methods of the former are the
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same as the latter. However, a specific terminology and methodology is followed in DL that differs
in some points from traditional ML.

To avoid confusion, this section is dedicated to defining the key ML and DL notions that we
use in this thesis. This section has no normative value, but reflects the use we make of the terms of
the field, hence the lack of specific references. Each key notion will be defined and illustrated with
two examples developed throughout this section, which is split in two: Subsection 3.1.1 defines
what a parametric model is and Subsection 3.1.2 explains the notions linked to training, i.e., how
a model is manipulated in ML and DL.

More technical details are available in Subsection 3.1.2 and Section 3.2.

3.1.1 From the task to the parametric model

Below are defined the notions of model (Definition 3.1) and the particular case of parametric
model (Definition 3.2), that is the core of ML. To the best of our knowledge, the majority of ML
approaches consists in choosing or defining a parametric model, then training the model on data
to solve a given task. As the majority of our work focusses on ML approaches, when we do not
explicitly specify that a model is non-parametric, by “model” we mean “parametric model”.

A model is a mathematical object computing an output from an input. A model can be
partially characterized by its input and output.

The output is also called the prediction of the model, as a model is typically used to
predict. If we simplify, a model is a function that predicts.

Definition 3.1: Model

A parametric model is a model where the computation depends on a finite set of values
that can be modified, called parameters. In ML, most models are parametric models, and the
parameters are learned from data during a process called training.

When necessary to specify the parameters of a model, we will write them as θ in index of
the model.

Definition 3.2: Parametric model

A task is a problem to solve. It is usually defined by the input and the expected output of
the model.

Definition 3.3: Task

Defining the task to solve is a very important part of the DL methodology. It is what will
determine the input and output of the model, and in turn will define what kind of parametric
model can be used to solve the task and what is considered good performance. The definition of
the task also impacts what kind of data is used (real numbers, integers, words?). It guides the
choice of the model, and tasks are often given names in the literature: to cite only a few, there
are classification tasks, regression tasks (Example 3.1), and language modeling tasks like the one
in Example 3.2 below. In this thesis we will consider the analogy detection and analogy solving
tasks (see Chapter 2).

To be more specific, a possible recipe for tackling a problem with ML is:

1. identify the problem to solve;

2. formulate the problem as a task to tackle;

3. prepare data for the task ;

4. train and evaluate a parametric model using the data.
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Hyperparameters. In DL, model parameters are distinguished from hyperparameters, in that
hyperparameters are not learned, and they tend to be used to define how the training (see Sub-
section 3.1.2) will be done or to define the structure and general behavior of the model.

Let us take the task of predicting the average temperature of the next day, given the average
temperature of the past 3 days. The input is 3 real-valued numbers (average temperature of
the past 3 days) and the output is another real-valued number (temperature of the next day).

Tasks such as this, where a continuous value is predicted, are usually called regression
tasks.

A meteorologic model is a mathematical object which, given meteorologic information,
predicts the weather.

A very simple parametric model we can use to predict temperatures is the weighted sum
of three numbers x1, x2, x3: sumθ(x1, x2, x3) = θ1x1 + θ2x2 + θ3x3, where x1, x2, x3 are the
input of the model and the weights θ = {θ1, θ2, θ3} are its parameters.

For simplicity, let us order x1, x2, x3 such that x3 corresponds to the day before the day
to predict.

To summarize:

• task: regression

– input: 3 temperatures

– output: temperature of the next day

• model:

– input: three real-valued numbers

– output: a single real-valued number

Example 3.1: Meteorologic model

Let us take the task of predicting the next word in a sentence, given the past two words. The
input is two words (categorical data) and the output is another word (categorical data).

Tasks such as this, where one or multiple categorical values (labels, classes, elements
from a finite set, etc.) are predicted, are usually called classification tasks. Such tasks are
usually modeled in DL using likelihoods, i.e., probabilities over the possible output values.
Then, either the most likely output is chosen, or a sampling process is applied to obtain
non-deterministic behavior.

A language model in its simplest form is a mathematical object which, given words previ-
ously appearing in a text, predicts the most likely newt words.

A well-known model used for language modelling is the n-gram model. The simplest version
of this probabilistic model predicts the conditional probability p(w|w1, . . . , wn) of each w ∈ V
appearing as the next word of the sequence w1, . . . , wn, based on the conditional probabilities
obtained from the training data. As a parametric model, the conditional probabilities for all
the words in V for all the possible n-gram (V n) are the parameters of the model. The previous
words w1, . . . , wn are the input, and the probabilities for each candidate word in V are the
output of the model.

To summarize:

• task: language modeling

– input: two words

– output: next word

• model:

– input: two words

Example 3.2: Bigram language model
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– output: probabilities over possible words to be the next word

3.1.2 Training a model
Training, loss, and loss function. To obtain the best possible performance of our model, we
need to determine if the model is good or bad at doing the task, with a performance indicator, and
change the parameters to obtain better performance. The indicator that we optimize is called the
predictive loss as, traditionally, it is a measure of the error made by the model between the value
it predicts ŷ and the expected value y. The loss function is denoted with Lloss function name, and
the loss for a prediction ŷ and an expected value y is written Lloss function name(ŷ, y). The purpose
of training a model fθ on a dataset D is to solve the optimization problem:

argmin
θ

∑
(x,y)∈D

Lloss function name(fθ(x), y), (3.1)

in other words, to find the set of parameters that minimizes the loss on the dataset.

In DL the loss is by default minimized. To maximize a performance indicator, the inverse of
this indicator is used as the loss. As an example, we use this principle in Subsection 12.3.1 to
maximize the competence.

Remark 3.1

In DL, the optimization is usually done in three steps, repeated until some stopping criterion
is fulfilled:

1. the loss ℓ = Lloss function name(fθ(x), y) is computed for a set of examples (x, y) ∈ D;

2. backpropagation of the loss is used to find the gradient (or partial derivative) for each pa-
rameter with regards to the loss function, which informs us on which direction to adjust the
parameters θ of the model to optimize ℓ;

3. the last step is the update step, where a gradient-based optimization algorithm such as
Stochastic Gradient Decent (SGD) or Adam [KB15] is applied to iteratively adjust the pa-
rameters based on the value of the gradient.

To compute the gradient of the parameters, the loss function must be differentiable. To the best of
our knowledge, DL frameworks (such as PyTorch) use automatic differentiation to perform back-
propagation by using the chain rule for derivation. This property of derivatives allows to combine
derivatives of elementary operations and functions, which are provided by the DL framework, to
obtain the derivative of a bigger function. An overview of modern optimization techniques based
on (stochastic) gradient decent is available in [Rud16], and we provide simple examples of the
optimization process in Examples 3.3 and 3.4.

Dataset. In ML and DL a task is associated with data, from which we build a set of examples,
i.e., a set of inputs associated with the expected output of the model. This data is used to train
the model and evaluate its performance.

In DL, datasets are split into three non-overlapping sets of examples:

• the training set contains examples used to train the model;

• the development set contains examples used to make decisions about the model but not
directly used to train the model;

• the test set contains examples used to evaluate the performance of the model on unseen data.

We provide example datasets in Examples 3.3 and 3.4.
The non-overlap constraint for the test set allows to observe the performance of the model

on data that was not used during training, among other reasons, to confirm that the model will
properly generalize to unseen data. For instance, some models become very good at predicting the
outcome for the data seen in training, but when confronted with new data they perform perform
poorly, like a person learning a lesson by heart without understanding the content.
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For the development set, the reasoning is similar. This set can be used, for instance, to decide
which variant of the model generalizes best during training, to continue training this variant.
Alternatively, by detecting the moment when the performance on the development set starts to
drop, it is possible to detect when further training will harm the generalization ability of the model,
and therefore prevent overfitting (explained at the end of this subsection). This technique is called
early stopping. The development set is also used to compute performance metrics that would be
too costly to compute on each example of the training set. As the development set and test set do
not overlap, making decisions for the model on the development set does not bias the performance
evaluated on the test set.

Data. Let us take the following synthetic table of temperatures covering one week.
Day M. Tu. W. Th. F. Sa. Su.

t 7.5 4.6 4.2 11.9 13.4 10.8 8.8
From this data, we build the following sets of examples, excluding the development set as

we will not need it:

• training set: {((7.5, 4.6, 4.2), 11.9), ((4.6, 4.2, 11.9), 13.4)};

• test set: {((4.2, 11.9, 13.4), 10.8), (11.9, 13.4, 10.8), 8.8)};

using the {(inputi, outputi), (inputj , outputj), . . . } format associating inputs with their ex-
pected outputs.

Model training. As the weighted sum (sumθ) we use for our model is differentiable, we
can use gradient-based optimization.

For regression tasks such as our temperature prediction, the Mean Squared Error (MSE)
loss between the predicted value ŷ and the expected value y is frequently used:

LMSE(ŷ, y) = (ŷ − y)2 (3.2)

When considering multiple examples, the MSE is averaged over all the instances.
Let us observe the value of LMSE on the test set for two arbitrary parameter configurations

of sumθ:

• using θ = {1/3, 1/3, 1/3} (average of the last 3 temperatures), we have:
sumθ(4.2, 11.9, 13.4) ≈ 9.83 and sumθ(11.9, 13.4, 10.8) ≈ 12.03, for a total
LMSE((9.83, 12.03), (10.8, 8.8)) ≈ 5.69.

• using θ′ = {0.2, 0.3, 0.5} (more recent temperature has more weight), we have:
sumθ′(4.2, 11.9, 13.4) = 11.11 and sumθ′(11.9, 13.4, 10.8) = 11.8, for a total
LMSE((11.11, 11.8), (10.8, 8.8)) ≈ 4.55.

Example 3.3: Data and training for the meteorologic model

Data. Let us take the following tongue twister as our data: “Can you can a can as a canner
can can a can?”

Let us first discard case and punctuation, to obtain the following set of possible words,
called the vocabulary : V = {a, as, can, canner, you}.

From this data, we build the following sets of examples, excluding the development set as
we will not need it. We use the {(inputi, outputi), (inputj , outputj), . . . } format associating
inputs with their expected outputs:

• training set: {((can, you), can), ((you, can), a), ((can, a), can), ((a, can), as), ((can, as), a),
((as, a), canner), ((a, canner), can), ((canner, can), can)};

Example 3.4: Data and training for the bigram language model
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• test set: {((can, can), a), ((can, a), can)};

Model training. As we directly use the parameters of the model as output, our 2-gram
model is differentiable.

For classification tasks such as our language modelling, the Cross Entropy loss (or negative
log likelihood) between the predicted probabilities p̂ and the expected probabilities p for each
possible class is frequently used:

LCE(p̂, p) = −
∑
w∈V

p(w) log p̂(w) (3.3)

where p(w) = 1 if w is the expected value and p(w) = 0 otherwise. In our case for the expected
output w, we can simplify LCE(p̂(w)) = − log p̂(w). When considering multiple examples, the
Cross Entropy is averaged over all the instances.

Let us observe the value of LCE on the test set for two parameter configurations of
pθ(wi|wi−2, wi−1).

• Using the raw probabilities of appearance of a word as the expected output in the training
set as the model parameters (0-gram model), we have θ = {p̂(can) = 4/8, p̂(a) =
2/8, p̂(as) = 1/8, p̂(canner) = 1/8}.
This results in the following loss values: LCE(p̂(a)) = − log p̂(a) = − log 1/4 ≈ 0.602
and LCE(p̂(can)) = − log p̂(can) = − log 1/2 ≈ 0.301 for a total of about 0.452.

• Let us now consider the actual 2-gram model. Notice that as (can, can) does not appear
in the training set, the conditional probability p̂(a|can, can) cannot be estimated. Actual
n-gram models usually fallback on the (n − 1)-gram probability, then to the (n − 2)-
gram, etc. Therefore, we use the 1-gram to approximate p̂(a|can, can) ≈ p̂(a|can) = 1/3.
Considering only values that will appear in the test set, we have θ = {p̂(can|can, a) =
2/2, p̂(a|can, can) = 1/3, . . . }.
This results in the following loss values: LCE(p̂(a|can, can)) = − log p̂(a|can, can) =
− log 2/2 ≈ 0 and LCE(p̂(can|can, a)) = − log p̂(can|can, a) = − log 1/3 ≈ 0.477, for a
total of about 0.239.

Batch training. A full iteration of a training algorithm over all the examples in the training set
is called an epoch. As mentioned above, in the training algorithms of DL, the loss is computed
for a group of examples before updating the parameters of the model. The group of examples is
called a mini-batch.

The two extremes of batch training are (i) using batches of one example and (ii) using a
single batch containing all the data of the training set. It has been shown [Ben12; Dek+12;
Li+14, among others] that settings closer to (i) converge faster but tends to get stuck in local
minima, while settings close to (ii) guaranty proper convergence in many cases but are slower to
converge. Using mini-batches of tens or hundreds of examples results in better convergence speed
than accumulating the loss over a full epoch, achieves better generalization, and gets stuck less
often in local minima than accumulating the loss for the full training set [WM03, Table 2].

Learning rate. The optimization algorithms used in DL repeatedly update the parameters of
the model in the direction opposite to the gradient (as the gradient indicated the direction that
increases the parameters). How far the parameters are moved in this direction depends on a
training hyperparameter called the learning rate.

To explain the impact of learning rate on the optimization process, the landscape defined by
the loss function in the parameter space is often compared with an actual landscape [WM03]. In
this analogy, the learning rate is the size of the steps a giant would make, always walking in the
direction of the downwards slope (the gradient decent). The learning rate impacts the speed of the
convergence: smaller learning rates means moving slower towards the optimum, or walking slower
in the analogy. It also determines the behavior of the optimization algorithm when there are local
minima or narrow valleys. For instance, a small learning rate may result in the parameters getting
stuck in a valley of the parameter landscape, where the landscape goes up in all directions despite it
not being the lowest point. Conversely, a large learning rate may help the optimization algorithm

24



Ch. 3. Machine learning, deep learning and . . .

skip over such valleys, but if the global optimum is located in one such valley it may never be
reached.

In practice, due to the large number of parameters, there is almost never an actual valley in
the parameter landscape and it is rare that the model gets stuck in a local minimum, even with a
small learning rate [Ben12]. Additionally, modern gradient decent methods implement a number
of optimizations that solve or at least mitigate issues caused by the learning rate [KB15; Rud16].

Overfitting, underfitting, and Vapnik-Chervonenkis dimension (VC dimension). As
mentioned before, some models learn the training set by heart without properly generalizing to
unseen data. This is called overfitting, and is a common problem in ML, and is related with the
ability of a ML to fit complex data. In technical terms, this “learning capacity” can be characterized
by the VC dimension [WS22] of the problems it can handle. Overfitting is usually observed when a
parametric model has more parameters than necessary to learn to perform the task it is trained for.
Taking the example of a classifier, because the model can fit more complex decision boundaries, it
will be able to fit even the finer nuances in the training set, in particular the noise, as illustrated
in next paragraph. Conversely, underfitting is observed when the model is not complex enough
and is unable to learn the decision boundary. Overfitting and underfitting can also be caused by
insufficient or poorly distributed data, or by a too long or too short training of the model.

For instance, consider a polynomial that we use to learn a curve in a two-dimension space. If
the polynomial as a degree of 1, only lines (fθ(x) = ax+ b for θ = {a, b} ∈ R2) can be learned, and
the model will not be able to learn anything of the form y = x2, i.e., we will observe underfitting
(see Figure 3.1b). The higher the degree of the polynomial, the more complex a curve can be
learned, but if there is even a bit of noise in the data, the model might diverge from the ideal
solution by overfitting the data (see Figure 3.1a).

(a) Credits: Ghiles, CC BY-SA 4.0, via Wiki-
media Commons

(b) Credits: MohammadMehdiZare, CC BY-SA
4.0, via Wikimedia Commons

Figure 3.1: Examples of overfitting (Figure 3.1a) and underfitting (Figure 3.1b) from Wikimedia.

3.2 Building blocks of Deep Learning models and common
models

A NN is a parametric model that is usually composed of multiple interconnected layers. The way
these layers are organized and connected is called the architecture of the NN model.

To be more precise, the layers can be seen as the atomic building blocks of complex NN
architectures. In this section, we describe several architectures that are used in the approaches
described in this thesis. Specific NN architectures can be used as layers for larger NNs, and the
name of the architecture is then used as the name of the layer. The architectures we describe in
this section are:

• the artificial neuron (or perceptron) and the Multi-Layer Perceptron (MLP) in Subsec-
tion 3.2.1;
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• the Convolutional Neural Network (CNN) in Subsection 3.2.2;

• the major sequence models, namely: the Recurrent Neural Network (RNN), Long- and Short-
Term Memory neural network (LSTM), the mechanism of attention, and the transformer
model in Subsection 3.2.3.

3.2.1 The artificial neuron and the Multi-Layer Perceptron
The notions presented in this subsection introduced in by McCulloch and Pitts [MP43]. A more
detailed explanation of the principles presented here can be found in Chapter 4 of the open access
book written by Nielsen [Nie15].

The basic building block of a NN, and what gave the “neural” in its name, is the artificial
neuron. Introduced by McCulloch and Pitts [MP43] as the perceptron, it is a weighted and biased
sum of real-valued inputs, passed through an activation function act:

fθ(x0, . . . , xn) = act(b+

n∑
i=0

xiwi),

for some inputs x0, . . . , xn, weights w0, . . . , wn and a bias b, with the parameters θ = {b, w0, . . . , wn}.
Some frequently used activation functions are the Rectified Linear Unit (ReLU), the sigmoid (σ),
and the hyperbolic tangent (tanh) [GBB11]:

ReLU(x) = max(x, 0), (3.4)

σ(x) =
1

1 + e−x
, (3.5)

tanh(x) =
ex + e−x

ex − e−x
. (3.6)

(3.7)

If multiple perceptrons are put together, taking the same inputs, they form a layer of neurons
called a fully-connected layer (or perceptron layer). This is usually represented using matrices, for
n input values and m neurons in the layer:

f ′
θ={W,B}(X) = act(WX +B)

with X the vector of size n, W the weight matrix of size m × n, B the bias vector of size m,
and applying the activation function act component wise. The output of f ′

θ is a vector of size m
containing the output of each neuron.

Stacking multiple such layers creates a Multi-Layer Perceptron (MLP), with the outputs of
each layer serving as input for the next layer.

The activation function introduces a non-linearity, which is the source of the expressive power
of a NN. A specific activation function is usually chosen based on design needs. For instance,
applying the sigmoid function on the output is common to perform binary classification as the
output is a strictly increasing function of the input, and the image is between 0 and 1 which can
serve as the labels of each of the two classes.

The hyperparameters of a fully-connected layer are the number of inputs n, the size of the layer
m, and the activation function act.

3.2.2 The Convolutional Neural Network layer
The Convolutional Neural Network (CNN) architecture was developed to manipulate images [Den+88;
LeC+89], inspired by the neurologic structure of the eye. The workings of the CNN is detailed and
illustrated in the work of Dumoulin and Visin [DV16] and animated in the associated repository1.

As illustrated in Figure 3.2, contrarily to a fully-connected layer where each neuron is connected
to all the inputs, in a CNN layer a neuron is only connected to a region of the input, called its
perceptive field. The neuron, which is structured as a perceptron with all the values in its perceptive
field as input, is called a CNN filter (or kernel), and its size corresponds to the size of the perceptive
field.

1https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
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Figure 3.2: Neurons of a CNN layer (blue), connected to their receptive field (red). Credits:
Aphex34, CC BY-SA 4.0, via Wikimedia Commons

Among other interesting properties, by applying the same filter (or neurons with the same
weights) on different regions of the input, a CNN is able to perform the same processing in all
areas of the inputs. It is also able to process inputs of arbitrary size (at least the size of the
perceptive field) by applying the filter as many times as necessary, and the size of the output will
depend on the size of the input. A pertinent analogy is often made between a magnifier that moves
around a picture and CNN filter. How the filter moves across the input is determined by the stride,
which is the number of values (or pixels) it moves by in each dimension. For instance, a 2 × 2
filter with a (1, 1) stride will move by one value each time, and the preceptive field of the filter will
overlap with 4 other perceptive fields, one at each corner (except at the border of the input).

A CNN layer may be composed of multiple independent filters, for instance the 5 filters in
Figure 3.2. Additionally, using the example of the RGB encoding of the pixels in an image, the
input of a filter can be spread across multiple channels. When there are multiple channels in
the input, by default each filter uses all the channels as input. For instance, a 2 × 2 filter on a
RGB image wil have a total of 3 (for the channels)× 2× 2 = 12 input values. This mechanism is
particularly useful to chain CNN layers, as the different filters of one layer wil serve as different
channels of the next layer.

When a filter is applied at the border of an input, it is possible to apply the filter only within
the boundary of the input. It is also possible to have the filter partially outside the boundaries, by
using padding which consists in expanding the input beyond its size. Using the analogy of images,
this corresponds to adding black pixels around the original input such that we can fit the filter.
The value used in the padding area is usually a constant such as 0, but other approaches have
been proposed. For example, a 3 × 3 filter applied without padding on a 5 × 7 image will result
in a 3× 5 output (with a (1, 1) stride). As can be seen, the size of the output is smaller than the
size of the image, and the values at the very border of the image will not appear in the center of
the filter. However, if we pad the input by extending it by one component in all dimensions, with
the same filter, stride and input we would obtain a 5× 7 output, and all the pixels appear as the
center of the perceptive field.

To summarize, the hyperparameters of a CNN layer are, for each dimension (by default 2
dimensions):

• the size of the perceptive field, or filter size along the dimension;

• the stride along the dimension;

• the amount of padding along the dimension.

Other major hyperparameters are the value(s) for padding, the number of input channels and the
number of filters, i.e., the number of output channels.

3.2.3 Long- and Short-Term Memory neural network and transformer
models

In Natural Language Processing (NLP), the most frequent format of data is the sequence. For
instance, a word is a sequence of characters, a sentence or a document are sequences of words,
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Figure 3.3: Representation of a RNN. Credits: fdeloche, CC BY-SA 4.0, via Wikimedia Commons

speech is a sequence of sound, etc..
In recent years, significant advances have been made in dealing with this kind of data, with

the impressive successes of Pretrained Language Models (PLMs) [Ake+19; Dev+19; Wan+20a;
Zer+22; ZM20, among many others]. However, the processing of sequences is not a new problem,
and a class of models called the Recurrent Neural Networks (RNNs) has been proposed to tackle
this kind of input.

The principle of RNN. A sequence of related inputs x1, . . . , xn and the corresponding outputs
o1, . . . , on can be separated in what are called timesteps (in reference to time series), where all the
elements are vectors. The principle behind a RNN is that the output yt at a timestep t depends
not only on input xt but also on all preceding inputs x1, . . . , xt−1. To model this, the RNN is
defined recurrently as follows:

ht = f(xt, ht−1),

ot = g(ht),

where ht is called the hidden state, with a recurrent unit f and an output function g. For instance,
the Elman RNN [Elm90] is defined as follows, for parameters θ = {Wx,Wh, B}:

ht = tanh(Wxxt +Whht−1 +B),

ot = ht.

This is illustrated in Figure 3.3. To be able to work, a RNN requires an initial hidden state, that
can be provided, but is usually initialized to a vector of zeros.

The hidden state ht contains accumulated information from x1, . . . , xt, and works as a unit
of memory. However, only so much information can be stored in a real-valued vector of finite
dimension, and the capacity of the memory is limited. As a consequence, one of the challenges
that have been tackled in the evolution of RNNs is how far back does the RNN “remember”, and
how to better handle this memory.

The Long- and Short-Term Memory neural network (LSTM). Different functions f, g
have been proposed using the principle of RNN. The most frequently used model is the LSTM [HS96],
that adresses the limitation of how long information is stored in memory using a long term mem-
ory and a short term memory, inspired by human cognition. The short term memory is called the
hidden state ht, and is also used as the model output. The long term memory is called the cell
state ct.

To achieve the long- and short-term memory, three mechanisms are implemented, illustrated in
Figure 3.4. They use a combination of sigmoid (to obtain values between 0 and 1) and a component-
wise multiplication to create a “gate” that selects if the information will be used (sigmoid closer to
1) or removed from the vector (sigmoid closer to 0), for each component of the multiplied vector.
The three mechanisms are:

• a forget gate Ft, to select which part of the previous cell state ct−1 is kept in memory;

• an input gate It, to select which information from the input and short-term memory will be
stored in memory;
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Figure 3.4: Representation of an LSTM. Credits: fdeloche, CC BY-SA 4.0, via Wikimedia Com-
mons

• an output gate Ot, to select which information from the long- and short-term memory will
be used for the next hidden state.

The detailed workings of the LSTM are illustrated in Figure 3.4. Formally, using ×,+ for the
component-wise product and addition, the diagram corresponds to the following formulas:

Ft(xt, ht−1) = σ(WxFxt +WhFht−1 +BF ),

It(xt, ht−1) = σ(WxIxt +WhIht−1 +BI),

Ot(xt, ht−1) = σ(WxOxt +WhOht−1 +BO),

h′
t = tanh(Wxh′xt +Whh′ht−1 +Bh′),

ct = (Ft(xt, ht−1)× ct−1) + (It(xt, ht−1)× h′
t),

ht = Ot(xt, ht−1)× tanh(ct)

with the model parameters θ = {WxF ,WxI ,WxO,WhF ,WhI ,WhO, BF , BI , BO,Wxh′ ,Whh′ , Bh′}.

The Bidirectionnal LSTM (BiLSTM). The BiLSTM [GS05] is a variant of the LSTM that
reads the elements of the input sequence in the forward and backward order simultaneously. This
is achieved by using two independent LSTM layers, one taking the input sequence in the forward
direction (x1, . . . , xn) and the other one in the backward direction (xn, . . . , x1).

The Attention mechanism. For an extensive overview of attention, we recommend the blog
post from Weng [Wen18].

The mechanism of attention was introduced to address the limitation of memory in automatic
translation with RNN [BCB15]. The principle of attention is based on a weight at called an
attention score, computed for each element xt in a sequence (or any set of inputs). This weight
is high for elements that are useful for the task at hand, and low otherwise. Then, the attention
score at is applied to select information from the sequence, usually by computing a sum weighted
by the attention score, using a similar mechanism as the gates in LSTM:

s =

n∑
t=1

αtxt

αt = softmax(a1, . . . , an)t =
eat∑n

t′=1 e
at′

.

The softmax applied on a set of input produces for each input an output between 0 and 1, the sum
of all outputs being 1.

There exist many different kinds of attention [Wen18], for instance:

• position-based attention [LPM15], where the attention weight depends only on the position
t of the element in the sequence;
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Figure 3.5: Structure of the transformer architecture [Wen18, Figure 17]

• dot product attention [LPM15], that compares xt with a query q by computing the dot
product xt · q;

• scaled dot product attention [Vas+17], which normalizes the dot product attention normal-
ized by

√
n for a sequence x1, . . . , xn to reduce some issues with backpropagation.

When used in RNNs as in [BCB15], attention is used at each timestep to complement information
in the output ht with the summary s of all the inputs, and the query q is the output ht of the
RNNs.

The transformer architecture. Introduced in the work of Vaswani, Shazeer, et al. [Vas+17],
the transformer is a sequence model that uses the attention mechanism. It solves the inherent
limitations of RNN with regard to the length of the sequence that can be effectively stored in
memory, as the model has direct access to all the elements in the input sequence. The structure of
the transformer is quite complex, as can be seen in Figure 3.5, so we will not go into the details here
and refer to [Vas+17; Wen18] instead. To summarize the architecture, the transformer is composed
of two interconnected stacks of attention layers and MLP: an encoder stack, and a decoder stack.
The model uses two types of multi-head attention, where the attention is applied multiple times
with variants of the input obtained by two layer MLP. The two types of multi-head attention are
self-attention, used within each stack between MLPs, and encoder-decoder attention, that connects
each layer of the decoder with the corresponding layer in the encoder.

3.3 Embedding models

NNs manipulate real-valued vectors and matrices. A key aspect in DL is to represent the objects
manipulated by the NN using such vectors and matrices, called embeddings. The performance of
DL approaches depends on the quality of the embeddings used, which corresponds to the amount
and nature of the information they contain as well as the properties of the vector space in which
they are defined (called embedding space). In other words, if the information needed to fulfill a task
is easy to access in the embeddings, it is simpler to obtain good performance. This is illustrated
in Example 3.5.

To obtain high quality embeddings, it is common to train a NN model that transforms basic
representations such as one-hot vectors (see Subsection 3.3.1) into more refined embeddings. This
kind of model is called an embedding model. It is possible to train an embedding model together
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with the model that will use the embeddings on a target task, but it is also possible to pre-train
the embedding model on a different task, following a pre-training and fine-tuning workflow (see
Subsection 3.3.2). A popular pre-training task is the reconstruction task, that we describe in
Subsection 3.3.3, as it does not require labeled data to pre-train the embeddings.

Learning an embedding model of higher quality often requires higher amounts of data (therefore
significant training time) and larger VC dimension (therefore larger or more complex embedding
models). This can be challenging, as for many applications where the data is very complex but
relatively sparse. To circumvent this limitation, large-scale pre-trained embedding models are used.
For instance, in NLP, BERT [Dev+19, detained in Subsection 3.3.5] has publicly available model
checkpoints2, that are fine-tuned in a variety of applications. Other popular pre-trained word
embedding models are presented in Subsection 3.3.4. The main difference between BERT and the
approaches presented in Subsection 3.3.4 is that the latter produces the same embedding for a
given word not matter the context the word appears in, while the former produces embeddings
that depends on context of use of the word.

Consider the analogical equation:

“dog” : “puppy” :: “cat” : x that accepts the solution x = “kitten”.

If we are not aware that a “puppy” is a young “dog” and similarly for “kitten” and “cat”, we
will not be able to give the expected solution to the analogical equation.

If we train embeddings e suitable for the task, they should contain information such as
being a cat or being a dog, and being an adult or a juvenile. Below are manually crafted
embeddings that contain this information and are suitable to solve the analogical equation,
with the first component indicating 1 for canine and 0 otherwise, and the second component
indicating −1 for young and 1 for adult:

e(“dog”) = [1, 1] e(“puppy”) = [1,−1],
e(“cat”) = [0, 1] e(“kitten”) = [0,−1].

Example 3.5: Importance of the information in embeddings

3.3.1 One-hot vectors
A one-hot vector encoding of an element xi in a set {x1, . . . , xn} is a vector of size n containing 0
for all components except component i which is 1. An example is given in Example 3.6.

While one-hot vectors are simple to put in place and unambiguously describe each element in
the set, they require as many dimensions as elements in the set which can become an issue when
many elements are present (for instance, the many words in a language). One-hot vectors also lose
any relatedness between the elements, for instance in Example 3.6, there is no information linking
“dog” to “puppy”, contrary to the handcrafted embeddings in Example 3.5.

Despite these limitations, one-hot vectors are often used as a first representation as input to an
embedding model, that will learn to integrate the necessary relatedness information.

Consider the analogical equation from Example 3.5:

“dog” : “puppy” :: “cat” : x that accepts the solution x = “kitten”.

With regard to the set {“dog”, “puppy”, “cat”, “kitten”, “cow ”, “calf ”, “bull ”}, the one-hot vec-

Example 3.6: One-hot vector encoding

2A model checkpoint is a configuration of the parameters of a model obtained as the result of training.
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tors of the words appearing in the analogical equation are:

e(“dog”) = [1, 0, 0, 0, 0, 0, 0],

e(“puppy”) = [0, 1, 0, 0, 0, 0, 0],

e(“cat”) = [0, 0, 1, 0, 0, 0, 0],

e(“kitten”) = [0, 0, 0, 1, 0, 0, 0].

3.3.2 The pre-training and fine-tuning workflow
Compared to training an embedding model from scratch on a target task, the pre-training and
fine-tuning workflow consists in:

1. pre-training: train a model on one or more tasks that cover the information required to
solve in the target task;

2. fine-tuning: use the pre-trained model as part of another model for the target task, and
use task-specific data to train the task-specific model together with the pre-trained model.

The pre-training is often done on tasks where data is more easily available than for the target
task. For instance, BERT is trained on a variety of general domain NLP tasks, and doing so, the
model learns to encode general purpose information in the embeddings. There exist variants of
this workflow, for instance few-shot learning [Wan+20b] where the fine-tuning step is reduced to
a minimum or even removed in zero-shot applications [Yas+24].

The pre-training and fine-tuning workflow has many advantages. First and foremost, the pre-
training process brings the embeddings closer to an optimal configuration as they already contains
some, if not all, the information necessary to solve the target task. As the embeddings is closer
to an optimal state, less training data (and training time) is necessary compared to training from
scratch, to obtain equivalent performance on the target task. Second, for large and popular models
such as BERT, the result of pre-training is usually made available publicly. As many people reuse
the pre-trained embedding models and perform only the fine-tuning, there is a factorisation of the
pre-training costs. From there, it becomes reasonable to have larger scale embedding models and
pre-training, resulting in higher quality embeddings and more performant downstream system.

3.3.3 The Auto-Encoder
The Auto-Encoder (AE) architecture was introduced by Kramer [Kra91] and can be seen as a lossy
compression algorithm, composed of an encoder and a decoder. The encoder compresses the objet
to represent o into an embedding e(o) = z, usually with a small dimension compared to the objet
encoding. Then, the decoder decompresses the embedding back into an object d(z) = ô. If we were
to train an AE to represent the words in Example 3.6, the encoder compresses the information of
a word into the embedding and the decoder decompresses the embedding back into a word.

In the reconstruction task, the AE encodes and decodes the objects to represent and is trained
to minimize the difference between the original object o and the reconstructed object d(e(o)). In
our compression algorithm analogy, this corresponds to minimizing the compression loss. Because
the decoder is able to recreate the original object from the embedding, the latter contains the key
information to represent the former. In more details, the decoder will learn to reproduce systematic
or redundant parts of the training data without relying on the embedding, while key information
to differentiate the training examples are encoded in the embedding by the encoder.

Note that the transformer architecture introduced in Subsection 3.2.3 is an AE.
One major advantage of the reconstruction task is that is does not require any labeled data, as

the input is also the target output. A variant of the reconstruction task is the denoising task, where
a noisy version of the object is used as input and the AE must reconstruct the original version of
the data. Similarly, the masking task hides parts of the object instead of adding noise [Bae+22;
Dev+19]. This helps the AE learn to rely on the non-noisy (or non-hidden) parts of the input to
predict the noisy (or hidden) parts.

3.3.4 Distributional semantics and word embedding models
Representing word semantics is of key interest to perform many NLP tasks, from understanding to
generating text. Many approaches have been developed to produce embedding spaces to represent
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word semantics. In this subsection, we give a brief overview of four major approaches to represent
individual words, or as we will explain in next paragraph, individual tokens. In Subsection 3.3.5,
we present another embedding approach called BERT that accounts for surrounding tokens when
computing the embedding. These approaches encode what is called the distributional semantics of
the word, as they used based on the assumption that words with similar meanings will appear in
similar contexts. This is called the distributional hypothesis.

Tokenization. The first thing when processing a sentence or a document, is that from the
perspective of an algorithm, textual data is represented as a string of characters. The question
of how to cut the string into meaningful units, such as words or punctuation, is answered by the
tokenization process, that cuts the text into tokens. Similarly to a morpheme that is a minimal sub-
word with an associated meaning, a token is a string of characters that is considered meaningful.

Tokenization can go from a simple split around punctuation and spaces to more refined processes
that cut larger words, such as “tokenization”, into the more frequently seen substrings “token” and
“-ization”.

Latent Semantic Analysis (LSA). LSA [Dum+88] is an early word embedding technique,
based on the term-document occurrence matrix, that counts the number of occurrences of each
words from a vocabulary in a corpus of documents. Words with similar meanings should appear
in similar documents, following the distributional hypothesis, and have similar rows in the matrix.

By applying a matrix factorization method, the term-document matrix is compressed along
the dimension corresponding to the documents, by collapsing similar documents into more general
concepts. The resulting vectors represent the distributional semantics of each word, and similar
vectors correspond to words with similar distributions.

Global Vectors (GloVe). GloVe [PSM14] is a method that uses a word-word co-occurrence
matrix instead of the term-document matrix of LSA. To obtain the matrix, a context window is
used to identify the words that appear in the direct vicinity of other words. The GloVe embeddings
are trained using a regression approach to obtain a factorisation of the word-word co-occurrence
matrix.

Word2Vec. The Word2Vec model was proposed by Mikolov, Kai, et al. [Mik+13] as two variants
of the same intuition: the Skip Gram and Continuous Bag of Words (cbow). Let us consider a
word wi in a context window wi−2, wi−1, wi, wi+1, wi+2 of size 5. The cbow method trains an
embedding model e to estimate the conditional probability p(wi|wi−2, wi−1, wi+1, wi+2) with a
function f defined in [Mik+13] taking as input the embeddings of wi−2, wi−1, wi, wi+1, wi+2. The
name cbow comes from the fact that the bag containing the words occurring in the vicinity of wi

is used to predict the embedding of wi. The Skip Gram method takes the opposite approach, and
learns to predict the conditional probabilities p(wi−2|wi), p(wi−1|wi), p(wi+1|wi), p(wi+2|wi) from
the embedding of wi and the embedding of the word to predict.

FastText. The FastText model proposed in [Boj+17] uses the same Skip Gram and cbow to
train embeddings. The main difference is that instead of taking whole words as tokens as done
in Word2Vec, FastText uses the embeddings for the n-grams composing a word to obtain the
embedding of the word. Taking an example from [Boj+17], for 3-grams, “where” is decomposed
in “<wh”, “whe”, “her”, “ere”, “re>”, and the full word “<where>”, with <,> special characters
marking the start and end of the word respectively. These special characters allow to identify
n-grams which appear at the boundaries of word.

3.3.5 Bidirectional Encoder Representations from Transformer

Bidirectional Encoder Representations from Transformer (BERT), introduced by Devlin, Chang,
et al. [Dev+19], is a transformer model where only the encoder stack is used, therefore only self-
attention is applied. As BERT accounts for the surrounding context when embedding each token,
it is called a contextualized embedding model.
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Model input. The input of BERT is text, typically a pair of sentences (or spans of text) or
a single sentence (or span of text). For exemple, such pairs of sentences can be a question and
a paragraph in which to find the answer (Extractive Question Answering (Ex-QA) task), or two
sentences that we want to know if the former implies the latter on a semantic level (textual
entailment task).

This text is split into tokens represented using the WordPiece technique [Wu+16], that consists
in identifying frequent sub-words in a manner similar to identifying morphemes. The sub-words
are obtained by iteratively finding sub-words that frequently appear together (above a certain
frequency threshold), merging them, and adding them to the vocabulary of known sub-words.
In the case of BERT, a vocabulary of 30 000 WordPiece tokens are used. Among these tokens,
ponctuation is also included.

Additionally, the input of BERT contains special tokens:

• [CLS]: a special token at the beginning of any input sequence, called the classification token,
the embedding of which is used as input for classification tasks in the pre-training of the
model;

• [SEP]: it defines the boundary of a particular segment of the model, for instance, the context
and question in Ex-QA;

• [MASK]: used in the masked language modelling task described further below.

To handle textual information, it is very important to be aware of the order of the words as
can be seen in Example 3.7. The transformer layers are based on the attention mechanism, that is
applied identically on all tokens in the sequence, therefore no positional information is modeled by
the attention itself. To tackle this issue, BERT (and other transformer models) uses a mechanism
called positional encoding, which encodes both the relative and absolute position of each input
token. BERT also uses segment encoding, which is a special embedding added to every token
embedding when two sentences are input, with a different segment embedding for the first and
second sequence.

The sentences “the cat hunts the mouse” and “the mouse hunts the cat” describe opposite
situations. If we discard word order, they are both equivalent to “cat hunts mouse the the”
and the differences in meaning between the two sentences disappear.

Example 3.7: Importance of order information in textual data

Pre-training tasks. Two pre-training tasks are used for BERT, that can be seen as reconstruc-
tion tasks.

One of them is a masked token prediction task called masked language modelling, where some
tokens of the input are hidden or replaced by random tokens, and the embeddings of the masked
tokens are used to train a classifier to predict the original tokens. The classifier is a single fully-
connected layer with as many outputs as tokens in the vocabulary, combined with a softmax to
obtain a probability distribution over all tokens.

The other task is next sentence prediction, where two sentences from the dataset are used as
input, and a binary classifier predicts whether the sentences are consecutive or not. The classi-
fier is a single perceptron with sigmoid activation, that predicts 0 for not-consecutive and 1 for
consecutive.

The first task allows to train the embeddings to contain distributional information, as the
model learns which tokens are likely to appear in place of the masked token in the context of
the input text. The second task guides BERT to encode relational information between the two
input sentences, useful as a starting point for the Ex-QA or textual entailment tasks, among
other. Both pre-training tasks are applied simultaneously, meaning that a pair of sentences with
masked/replaced tokens is used as input, and the token prediction and next sentence prediction
model are used respectively on the embeddings of the masked words and of [CLS].
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3.4 Approaches to APs in DL

3.4.1 Methods to manipulate APs in embedding spaces
In Chapter 2, we introduced the notion of AP, where the features of objects are compared to check
if we have a relation of the form “A is to B as C id to D”. As mentioned in Subsection 3.3.4,
embeddings can be seen as vectors where each component represents a feature, such as a semantic
feature in the case of semantic embeddings. As such, embeddings have been widely used in analogy
detection and analogy solving.

Analogy preservation and embedding models. Manipulating APs in embedding spaces is
based on a rarely expressed postulate, mentioned for instance by Hwang, Grauman, and Sha [HGS13]:
that the APs on the object manipulated are reflected in the embedding space. This corresponds to
the analogical inference principle introduced in Subsection 2.2.1, and can be rewritten as inference
rules:

A : B :: C : D holds
e(A) : e(B) :: e(C) : e(D) holds

and
e(A) : e(B) :: e(C) : e(D) holds

A : B :: C : D holds
, (3.8)

for e(A), e(B), e(C), e(D) the embeddings of A,B,C,D.
In other words, we assume the implication:

A : B :: C : D holds ⇐⇒ e(A) : e(B) :: e(C) : e(D) holds. (3.9)

For analogy solving in embedding spaces, the process can be split into three steps: project the
analogical equation in the embedding space (3.10), solve the analogical equation in the embedding
space (3.11), and project the solution back in the object space (3.12). In Equations (3.10) to (3.12),
we represent the three steps by putting on left the object space and on the right the embedding
space:

A : B :: C : x holds =⇒ e(A) : e(B) :: e(C) : y holds (3.10)
y = e(D) (3.11)

A : B :: C : D holds ⇐= e(A) : e(B) :: e(C) : e(D) holds. (3.12)

An important challenge for analogy solving is therefore to find an analogy preserving embedding
model, ideally for which we know the inverse to compute D = e−1(y).

The parallelogram rule. In Subsection 2.3.1 Equation (2.5), we mentioned the parallelogram
rule, which is a generalization of the arithmetic proportion (Equation (2.4)) to multi-dimensional
data. It can be expressed with different formulas, for instance:

A⃗− B⃗ = C⃗ − D⃗

A⃗+ D⃗ = B⃗ + C⃗

D⃗ = C⃗ − (A⃗− B⃗)

D⃗ = C⃗ + B⃗ − A⃗.

The parallelogram rule can be applied on embeddings, as can be seen in Example 3.8.

Taking the manually crafted embeddings from Example 3.5, with the first component indi-
cating 1 for canine and 0 otherwise, and the second component indicating −1 for young and
1 for adult:

e(“dog”) = [1, 1] e(“puppy”) = [1,−1]
e(“cat”) = [0, 1] e(“kitten”) = [0,−1].

We are able to check that the following AP holds:

“dog” : “puppy” :: “cat” : x, x = “kitten”
e(“dog”)− e(“puppy”) = [0, 2] = e(“cat”)− e(“kitten”).

Example 3.8: Example of the parallelogram rule
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We are also able to solve the analogical equation:

“dog” : “puppy” :: “cat” : x

e(x) = e(“cat”)− (e(“dog”)− e(“puppy”))
= [0, 1]− ([1, 1]− [1,−1])
= [0,−1] = e(“kitten”).

This parallelogram rule has been used since the first works on AP [RA73], and it is a key element
in the methodology employed by semantic embedding approaches [DGM16; Dum+88; Mik+13].
Indeed, being able to use a simple formula like the parallelogram rule to compare and transfer
semantic relations in the embedding space, is an indication that the semantic relations in question
are encoded in the embedding space.

3CosAdd and 3CosMul. To solve analogical equations in modern embedding models such
as Word2Vec, GloVe, or FastText (see Subsection 3.3.4), two of the most used methods are
3CosAdd [Mik+13] and 3CosMul [LG14]:

3CosAddD = argmax
D̂

cos(e(D̂), e(B)− e(A) + e(C)) (3.13)

3CosMulD = argmax
D̂

cos(e(D̂), e(B)) cos(e(D̂), e(C))

cos(e(D̂), e(A)) + ε
. (3.14)

These two approaches implicitly generate a solution y and approximate e−1(y) by retrieving the
closest candidate D̂ from the vocabulary, based on the value of its embedding e(D̂). 3CosAdd
can be seen as the parallelogram rule to generate y followed by cosine similarity to recover the
closest existing solution e(D̂). On an intuitive level, 3CosMul is similar to 3CosAdd, except using
a geometric proportion (A

B = C
D ) on the angles of A,B,C with regards to D̂. To avoid a 0

denominator if D̂, A are aligned with regards to the origin, an ε (small) is added in (3.14). As
3CosMul is harder than 3CosAdd to fully grasp intuitively, we refer the reader to [LG14, page 175]
for a detailed description.

Limitations of fixed formulas. Chen, Peterson, and Griffiths [CPG17] and Rogers, Drozd,
and Li [RDL17] argue that 3CosAdd and 3CosMul significantly differ from human performance,
and even more so for the parallelogram rule. To solve this limitation, several approaches have
proposed to leverage examples of APs to train models or embeddings. For instance, Lim, Prade,
and Richard [LPR19] proposed to learn two layer NNs for analogy detection and analogy solving
on pre-trained embeddings, detailed in Section 6.2. Other approaches propose to learn embeddings
that perform well in terms of AP [DZF19; GDM16; Kar+18], or learn linear transformations of
the embedding space while relaxing the formulation of the parallelogram rule [BJS18].

3.4.2 Applications of APs in embedding spaces

The above-mentioned methods to manipulate APs have been applied in different domains.

Applications to word semantics. Word semantics is one of the best known application of APs
on embedding spaces. To the best of our knowledge, first applications date from the LSA [Dum+88]
and vector decomposition methods, the precursors of modern word embeddings. For instance, APs
have been used by Mikolov, Kai, et al. [Mik+13] to show the interest of Word2Vec, one of the earliest
trained word embedding model, and revealed that a model trained for distributional semantics
encoded semantic regularities that can be found by the parallelogram rule [MYZ13]. Word2Vec,
GloVe, and vector decomposition methods were compared in the work of Drozd, Gladkova, and
Matsuoka [DGM16], using several variants of the retrieval method 3CosAdd.

Several authors, including Chen, Peterson, and Griffiths [CPG17] and Rogers, Drozd, and
Li [RDL17], have identified limitations in the performance of traditional distributional semantic
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word embedding models, but also of the datasets used to evaluate the analogy solving perfor-
mance of the models. The latter limitations led to the production of several datasets, for in-
stance the Bigger Analogy Test Set (BATS) [GDM16] and the Japanese Bigger Analogy Test Set
(JBATS) [Kar+18].

As mentioned at the end of previous subsection, Lim, Prade, and Richard [LPR19; LPR21]
proposed an approach to perform analogy detection and analogy solving on word embeddings
obtained with GloVe. One particularly interesting aspect of this work is that a data augmentation
process based on the postulates of APs was used to make the model conform with the postulates,
and to generate non-APs for analogy detection. We describe this data augmentation process in
Section 6.3.

Applications to images. While the idea of learning models on pre-trained word embedding
for APs was implemented by Lim, Prade, and Richard [LPR19], similar ideas have been imple-
mented for instance for image retrieval [SZF15] and image generation [Ree+15]. In that line of
work, a dataset [Bit+23] was recently proposed for analogy solving by retrieval, offering analogical
equations between images including carefully selected distractors (images in the set of retrieval
candidates but different from the expected candidate). In the same article, Bitton, Yosef, et al.
propose several baselines, including the parallelogram rule applied on the embedding space, and
the parallelogram rule applied on situation prediction features extracted with a pre-trained model.

Applications to sentences. In the work of Taillandier, Wang, and Lepage [TWL20], APs are
used to express semantic relations between sentences. The authors use the analogical inference
principle (see Subsection 2.2.1) to translate the fourth element D of an AP A : B :: C : D
in another language, leveraging the analogical equation f(A) : f(B) :: f(C) : x formed by the
translations of the other three elements A,B,C. The model they train performs alignments between
sentences, in a process reminiscent of attention mechanisms, and the alignment is used to generate
the translation f(D). Other approaches have been developed to solve analogical equations directly
between sentences using sequence models (see Subsection 3.2.3) and the principle illustrated in
Equations (3.10) to (3.12) [ML23; WL20].

In the work of Yasunaga, Chen, et al. [Yas+24], analogical prompting was used to guide PLMs
in answering questions properly, by asking the PLM to provide examples of the question. This
kind of process is particularly interesting, as it operationalizes analogy solving. First, the model
is asked to find a source ratio Qs : As suitable for the task at hand, and then it performs analogy
solving to produce the answer At to a target question Qt:

Qs : As :: Qt : x solved by x = At.

Other approaches have been developed to explore the analogy detection and analogy solving ca-
pacity of PLMs [SS22; Ush+21].

Wang and Lepage [WL20] proposed a generation framework to solve the semantic and structural
APs between on phrases proposed in [Lep19]. They use an AE sequence model based on RNN (see
Subsection 3.2.3) trained to reconstruct sentences, and perform simple arithmetic operations on the
embedding space to solve analogical equations, including the parallelogram rule. Once the analogy
between embeddings is solved, the decoder is used to generate the solution from the predicted
embedding, and fulfill the purpose of the inverse embedding e−1 mentioned in the beginning of
Subsection 3.4.1. The use of a generative model achieves significantly better results than using a
basic retrieval model, namely a k-Nearest Neighbors (k-NN) model applied on the same embedding
space.

Applications to word morphology. In the work of Mikolov, Yih, and Zweig [MYZ13], the
authors identified that some grammatical regularities are captured in the representations obtained
with Word2Vec, and can be identified using the parallelogram rule. These grammatical regularities
imply morphological regularities. In particular, Cotterell, Schütze, and Eisner [CSE16] were able
to use a Gaussian graphical model to model morpho-grammatical changes in the embedding space
of Word2Vec. To the best of our knowledge, beyond the work of Mikolov, Yih, and Zweig, no
DL approach has been proposed to tackle APs specifically in word morphology. To fill this gap,
we propose the ANN framework in Part II using a similar approaches to the ones in the works of
Lim, Prade, and Richard and Wang and Lepage [LPR19; LPR21; WL20] for word and sentences
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semantics. More details on non-DL approches to APs morphology are presented in Subsection 4.3.2,
and DL approches to morphology outside of analogical considerations in Subsection 4.3.1.

Applications to structured and semi-structured data. Structured and semi-structured
data, such as knowledge graphs (structured) or a combination of text and tabular data (semi-
structured), have also seen applications of AP through DL.

For instance, Jarnac, Couceiro, and Monnin [JCM23] proposed an analogy detection approach
in knowledge graphs, using the same ANNc model used in our work [Als+21a, see also Subsec-
tion 6.2.2] and in the work of Lim, Prade, and Richard [LPR19; LPR21]. The approach was
applied for knowledge graph pruning, a subtask of automatic knowledge graph construction where
the entities (nodes of the graph) in the neighborhood of a seed entity es are filtered based on
how relevant they are for a target application. The approach of Jarnac, Couceiro, and Monnin
predicts if a node er of the knowledge graph should be pruned with regards to es using an AP
es : er :: e′s : e

′
r where the decision to prune e′r when e′s is the seed is known from manual pruning

performed by experts. If the decision represented by the ratios es : er and e′s : e′r are the same,
then the AP is classified as valid.

The works of Alsaidi, Couceiro, et al. [Als+22a; Als+22b] use the ANNc model and analogical
data augmentation of the ANN framework (see Section 6.3) to check if two patient stay records
p1, p2 belong to the same patient, and infer which of the two corresponds to an earlier stay than
the other. To do so, the analogy detection model was trained using APs involving the pair p1 : p2
and a pair where the relation is known. Zervakis, Vincent, et al. [Zer+22, see also Chapter 10] also
use ANNc and analogical data augmentation (see Section 6.3) to preform TSV (see Section 10.1),
a task involving several types of textual data.

APs and Siamese architectures in NNs. In DL, a Siamese architecture is an architecture
that contains a model f ′ that is reproduced twice (or more) in a larger architecture f , and the
output of f ′ is joined to compute the final output of f . For instance, if it is possible to represent
the architecture of a model with two inputs, written fθ(x, y), can be formulated as fθ(x, y) =
gθ3(f ′

θ1(x), f ′
θ2(y)), then f may be called a Siamese architecture.

This kind of architecture is particularly appropriate to manipulate APs, as it aligns well with the
relational reading R(A,B) :: R(C,D). This idea has been implemented by sharing the parameters
θ1, θ2 of the Siamese part [SZF15] or not [LPR19; LPR21].
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In this chapter, we give a brief introduction on morphology and morphological transformations
in Section 4.1. We then give some first examples of APs in morphology, and highlight two important
links between analogy and morphology in Section 4.2. Finally, in Section 4.3, we present a variety
of computational approaches to morphology and APs on morphological relations.

4.1 Brief introduction to word morphology

Different levels of study of words in linguistics. In the field of linguistics, language is
studied at different interdependent levels. If we focus on words, one can study for instance: the
meaning of words (semantics), the organization of words in sentences (syntax), the pronunciation
of words (phonology and phonetics), or the structure of words (morphology), on which we focus in
Part II and in this chapter.

Morpheme, root, and lemma. The basic unit of morphology is called a morpheme. It is
usually defined as the smallest meaningful unit of meaning a word can be cut into. For instance,
“unlearned” can be cut into “un-”, “learn”, and “-ed”. The respective meanings are “not”, “learn”,
and “past participle”. Morphemes are categorized depending on if they can be used alone (free
morphemes) or if can only be used as a part of a word (bound morphemes). In the previous
example, “learn” is free while “un-” and “-ed” are bound.

Morphemes that carry the core of the meaning of a word (usually free morphemes) are called
the root or stem of the word: “linguist” can be split into the root “lingu-” and the suffix “-ist”.
Notice that a root might correspond to an existing word (“learn”) or not (“lingu-”).

A similar notion is that of lemma, which is the canonical form of a word. In some cases, the
lemma and root are identical: “linguists” can be split into the root “linguist” and the suffix “-s”,
with the lemma “linguist”. In other cases, they may differ: “linguist” can be split into the root
“lingu-” the suffixes “-ist”, while the lemma is “linguist”.

Inflectional morphology and derivational morphology. Morphology is usually separated
into inflectional morphology and derivational morphology. On the one hand, derivational morphol-
ogy refers to morphological transformations that allow to create new words in a systematic manner,
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for instance in English the prefix “un-” allows to create “unaware” from “aware” in the same man-
ner as “untold” from “told”. On the other hand, inflectional morphology describes morphological
transformations that express a change in the grammatical nature of a word without altering the
core meaning of the word. For example, “looked” is the result of a change of tense in the English
verb “(to) look” by adding the suffix “-ed”. Generally, derivational morphology produces distinct
lemmas, while inflectional morphology does not.

Some morphological transformations. There exist a wide variety of morphological transfor-
mations, among others:

• the most well known for English speakers are prefixation and affixation in which a morpheme
is attached at the beginning or the end of the word, respectively; for instance, “un-” is a prefix
while “-ed” is a suffix;

• with infixation, a morpheme is added inside a word, for instance in French, “boiter” (meaning
“to limp”) supports the infix “⟨-ill-⟩”, to become “boitiller” (meaning “to limp a little”);

• the principle of reduplication is to repeat a word or part of it, potentially with a small change,
for instance in Japanese, “hito” (meaning “a person”) becomes “hitohito” (meaning “people”);

• in simulfixation, one or more parts of a word is replaced, for instance, “mouse” becomes
“mice”.

Some morphological transformations are dependent on the rest of the word, such as the suffix
“-s” for plural in English that behaves differently in “cat” (“cats”) and in “bus” (“buses”). Some
morphological transformations such as reduplication are typically context dependant, while some
other become context dependent due to language-specific phenomena. For instance, in Finnish,
there is a mechanism of vowel harmony [RH99], where the vowels are divided into neutral (i and e),
and two group of harmonic vowels: front (y, ö, ä) and back vowels (u, o, a). Front and back vowels
do not appear together in native Finnish non-compound words, therefore a morpheme might have
to be adapted to fit this vowel harmony. Taking an example from [RH99], the essive case suffix
“-na/-nä” agrees with the vowels in the root: “pouta” (“dry weather”) becomes “pouta-na” while
“pöytä” (“table”) becomes “pöytänä”.

In addition to these, some words evolve with usage, giving birth to exceptional morphological
transformations. For example, euphony is, in very simple terms, a change of sound to make a word
easier to pronounce, such as “far ” that becomes “further ” when adding the suffix “-ther ”.

4.2 Morphological analogy, paradigm tables and morpholog-
ical innovation

In this section, we first give practical examples of what morphological APs are, in Subsection 4.2.1.
Then, we explain the notions of analogical grids and analogical innovation in word formation,
respectively in Subsections 4.2.2 and 4.2.3. The link between analogical grids, analogical innovation,
and the formalism of APs is discussed in Subsection 4.2.4.

4.2.1 Morphological APs
A morphological AP, is, quite straightforwardly, an AP where the underlying relationships are of
morphological nature.

While they are not strictly identical, morphological APs correspond in a lot of cases to gram-
matical APs or to semantic APs, as can be seen in Example 4.1. This can be the case for inflectional
morphology and derivational morphology alike, even if inflectional morphology will be more varied
in terms of grammar, and derivational morphology in terms of semantics.

If we consider the AP:

“undercooked ” : “cooked ” :: “undertrained ” : “trained ”

Example 4.1: Morphological, grammatical, and semantic AP
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under the lens of morphology, we can get:

“under-cook-ed ” : “cook-ed ” :: “under-train-ed ” : “train-ed ”

with the morphological transformation modeled by “under-cook-ed ” : “cook-ed ” being: remov-
ing the prefix “under-”. Now, through the lens of semantics, we get:

“X has been cooked, but not enough” : “X has been cooked”
:: “X has been trained, but not enough” : “X has been trained”

with the transformation being: going from “X has been Y, but not enough” to “X has been
Y”.

Let us consider another AP:

“cook ” : “cooked ” :: “train” : “trained ”

under the lens of morphology, we can get:

“cook ” : “cook-ed ” :: “train” : “train-ed ”

with the morphological transformation modeled by “cook ” : “cook-ed ” being: adding the suffix
“-ed”. Now, through the lens of conjugation, we get:

lemma of “(to) cook” : preterit of “(to) cook” :: lemma of “(to) train” : preterit of “(to) train”

with the transformation being: going from the lemma to the preterit.

To manipulate morphological APs, it is only necessary to know of the morphology of the
language, even if the semantics of specific words are unknown, as can be seen in Example 4.2. As
such, morphological APs are fundamentally close to APs between strings of symbols, as detailed
in Subsection 4.3.2.

Take the noun “Balrog”, that is exclusive to the universe of The Lord of the Rings (to the
best of our knowledge). Anyone who does not have knowledge of the universe of The Lord
of the Rings will not know what “Balrog” means, but will still be able to solve the following
analogical equation at the morphological level:

“cat” : “cats” :: “Balrog” : x, x = “Balrogs”.

Example 4.2: Morphological AP without knowledge of semantics

4.2.2 Paradigm tables and analogical grids

A paradigm table (or inflectional paradigm) is a table that lists all inflected forms for some lemma,
as described in Sig161. An example taken from [FL18] is given in Table 4.1.

Paradigm tables are strongly linked with morphological APs. In [FL16; FL18], they are put in
parallel with analogical grids, the latter being “a [(not necessarily dense)] matrix of words, where
four words from two rows and two columns form an AP” [FL18]. An example is given in Table 4.2.
More formally, if we write Gc

r the component at row r and column c of the grid, then we have
Gc

r : Gc′

r :: Gc
r′ : G

c′

r′ for any two rows r, r′ and any two columns c, c′ in the grid. According to the
authors, the main difference between the two is that paradigm tables are the result of linguistic
study, while analogical grids are produced from data.

The notion of analogical grid is dependent on the idea that Transitivity holds. Otherwise,
Gc

r : Gc′

r :: Gc
r′ : Gc′

r′ and Gc′

r : Gc′′

r :: Gc′

r′ : Gc′′

r′ could hold without Gc
r : Gc′′

r :: Gc
r′ : Gc′′

r′

holding in the same grid, which goes against the very definition of an analogical grid.

Remark 4.1

1https://sigmorphon.github.io/sharedtasks/2016/
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Infinitive Preterit Past participle Present participle

Regular walk walked walked walking
verb smoke smoked smoked smoking

Irregular write wrote written writing
verb think thought thought thinking

Table 4.1: Paradigm table example for english verbs. [FL18, Figure 2]

walk : walks : walking : walked
show : shows : showing : showed
open : opens : opening :
study : : studying :
play : : playing : played

Table 4.2: Analogical grid example for english verbs. Missing values correspond to words not
present in the dataset. [FL18, Figure 2]

4.2.3 Analogical innovation
As illustrated in Example 4.3, analogy is a powerful tool to generate new but understandable
words, using known words as a reference.

Let us consider the following analogical equation:

“small ” : “smallest” :: “best” : x, x = “*bestest”.

The solution to this analogical equation is agrammatical (by convention in linguistics, marked
with an asterisk), but is easy to understand from a morphological point of view. The semantic
associated to the suffix “-est” in “small-est” can then be transferred to “best-est”.

Example 4.3: Analogical innovation

The book by Mattiello [Mat17] gives an extensive overview of the mechanisms of analogy in
word formation, and gives a more precise description of analogical word creation in their Section
1.3:

“a new word is coined that is either based on a precise actual model word, or obtained
after a set of concrete prototype words which share the same formation (i.e. series) or
some of their [roots] (i.e. word family).” [Mat17]

4.2.4 Analogical innovation and analogical grids
The two notions of analogical innovation and analogical grids are tightly linked. Indeed, analogical
grids will typically group together words produced through analogical innovation from the same
series or word family. Conversely, let us assume we have a non-dense analogical grid, as in Table 4.2,
and that the missing parts are caused by words that do not exist in the language (contrary to
Table 4.2). In that case, it is possible to fill the gaps in the grid by analogical innovation as we did
for “Balrog” in Example 4.2.

These two notions are strongly related with the AP formalism, as analogy detection is necessary
to build analogical grids, and word creation through analogical innovation is a particular application
of analogy solving, with the solution not yet existing in the lexicon.

4.3 Approaches to automatic morphology and morphological
analogy

The following two subsections describe approaches to automatically perform morphological trans-
formations (Subsection 4.3.1) and to automatically detect APs or solve analogical equations (Sub-
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section 4.3.2).
We distinguish the approaches based on how they were initially formulated. Nevertheless, under

the right circumstances, approaches to automatic morphological analogy can be used for inflectional
morphology, and conversely. For instance, an analogy solving approach can be used to perform
inflectional morphology if given examples of the desired morphological transformation. Once the
underlying morphological features in the first ratio of a morphological AP have been identified, an
automatic inflectional morphology approach can be used to solve an analogical equation.

4.3.1 Approaches to automatic morphology

Automatic inflectional morphology. Significant efforts have been made in recent years to
perform inflectional morphology and derivational morphology automatically. A major player in
this field has been the ACL Special Interest Group on Computational Morphology and Phonology
(SIGMORPHON) community, which has hosted a number of workshops2 since 2008 and shared
tasks3 since 2016.

In the most recent shared task in inflectional morphology at the time of writing, namely Sig-
morphon 2023 Task 0 (Sig23) [Gol+23], approaches are split into DL approaches and non-DL
approaches. DL approaches [CH23; Gir23] use sequence models such as LSTM and transformer
to learn how transform a given lemma into a specified inflected form, by taking the lemma and
a set of morphological feature as input and generating the inflected form corresponding to the
features. Non-DL approaches [Cot+17; KHW23] include methods that estimate prefixation and
suffixation rules from candidate prefixes and suffixes obtained by aligning words at the character
level. The rules can be obtained with simple comparisons of the differences in the beginning and
end of words [Cot+17] or using non-DL ML techniques such as finite state transducers [KHW23]
to model more complex transformations.

Similar approaches can be found in previous inflectional morphology SIGMORPHON shared
tasks, such as the ones of 2016 [Cot+16] and 2019 [McC+19] among others, but also for other
morphology tasks such as morpheme segmentation [Bat+22].

Representing morphology in deep learning To complement research on semantic word em-
bedding techniques, morphological information has been widely considered. First, accounting for
characters is useful to be able to handle unseen words, that may come from not being represented
in the data, or from being neologisms. Second, morphemes carry meaning (it is even how they
are defined, see Section 4.1), and being aware of the morphological structure of a word can help
efficiently representing its meaning.

The Ph.D. thesis of Vania [Van20] is a recent and detailed overview on the topic. Among well
known embedding approaches, FastText [Boj+17] uses all sequences of adjacent characters of length
n, i.e., character n-grams. The more recent BERT [Dev+19] considers WordPiece tokenization,
which focusses on frequently observed n-grams, with lengths that might vary. Other models use
more elaborate processes to better incorporate morphological processes [AAB20; CR16; LSM13;
NR22], sometimes to study morphology itself [Chu+19].

4.3.2 Approaches to automatic morphological analogy

Approaches to algorithmically process morphological analogies have been focused on the formal
characterization of APs (see Chapter 2), and we present such approaches in this subsection.

Hofstadter’s micro-world. To study the properties of APs on character strings, Hofstadter and
Mitchell introduced in [HM95] an experimental setting that is usually called Hofstadter’s micro-
world. This setting contains analogical equations where the elements are strings of letters, and
the transformations use relations between the position of letters in the character string (first, last,
etc.), and relations based on alphabetic ordering (alphabetic successor, alphabetic predecessor).
Other relations include the copy of groups of characters, as described in [MDC17], and closely
relate to reduplication (see Section 4.1).

2https://sigmorphon.github.io/workshops/
3https://sigmorphon.github.io/sharedtasks/
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A well known example of Hofstadter’s micro-world, taken directly from [HM95], is the follow-
ing:

“abc” : “abd ” :: “ijk ” : x.

Possible solutions include:

• x = “ijl ”, by considering that “the rightmost letter was replaced by its alphabetic suc-
cessor” [HM95];

• x = “ijk ”, by considering that “c” is replaced by “d ” (and we have no “c” in “ijk ”);

• x = “ijd ”, by considering that the last letter is replaced by “d ”;

• x = “abd ”, by considering that the whole sequence is replaced by “abd ”.

Example 4.4: Simple example of Hofstadter’s micro-world

Symbolic and data-driven learning approaches. Hofstadter’s micro-world has been exten-
sively studied to develop approches to APs on strings of symbols in general, as the key requirements
are informations on the position, and several relations between symbols defined by experts.

In fact, to the best of our knowledge, all approaches to morphological APs, excluding the one
developed in Part II, follow a similar setting, with a set of expert designed operations [LYZ09;
Mur+20], relations between characters [HM95], or morphological features [FL18].

In contrast, many of the recent approaches in Subsection 4.3.1 are data-driven models, that
rely on data and not experts to learn the operations, relations between (groups of) characters, and
features necessary to apply morphological transformations. Our approach, the ANN framework
detailed in Part II, is a data-driven approach to morphological APs.

Symbolic approaches to APs. Fam and Lepage [FL18] gather algorithms from their previous
work [FL16; Lep98; Lep14], based on postulates proposed by Lepage and Ando [LA96]. Their
approach detects and solves morphological APs based on distances between words, using manually
designed features such as their length or the occurrence of letters and of specific patterns. In
the work of Fam and Lepage [FL16; FL18], the approach was used to generate analogical grids
(see Subsection 4.2.2). This approach, that we call Lepage’s Nlg toolkit (Nlg) in reference to
the name of the Python library made available by Fam and Lepage [FL18], is further detailed in
Subsection 7.2.1.

The Alea approach by Langlais, Yvon, and Zweigenbaum [LYZ09] is based on a reformulation
from Stroppa and Yvon [SY04; Yvo03] of the edit distance algorithm introduced by Lepage [Lep98].
In practice, this reformulation uses random slicing and merging of the character strings A, B and
C to obtain potential solutions to A : B :: C : x, and ranks the solutions based on their likelihood
of appearance by repeatedly applying the random generation process in a Monte Carlo setting.
Additional details on the method are given in Subsection 7.2.2. Good results can be obtained with
1000 repetitions [LYZ09].

A more empirical approach, that we coin Kolmo, was proposed by Murena, Al-Ghossein, et
al. [Mur+20]. Following preliminary evidences that humans may follow a simplicity principle
when solving analogies [CV03; CA98; MDC17], the authors propose to solve analogical equations
A : B :: C : x by finding the x that minimizes the total description length (or Kolmogorov
complexity) of A : B :: C : x. The total description length is evaluated using a simple description
language for character strings and an associated binary code. More recently, an extension of
the Kolmo approach was proposed by Murena [Mur22] to measure how transferable the ratio
A : B is to a new element C, tackling the problem of the existence of a solution for an analogical
equation A : B :: C : x. The description language and the optimization problem are detailed in
Subsection 7.2.3.

Both Alea and Nlg were shown in the experiments of Murena, Al-Ghossein, et al. [Mur+20] to
be outperformed by Kolmo on Kakenhi 15K00317 word analogies from Sigmorphon 2016 Task 1
(Kakenhi-Sig16) [Lep17].

Other approaches have been proposed in the literature, for instance the ones of Neuvel and
Fulop [NF02] and Hathout [Hat08] that aligns the occurrences of characters in pairs or quadruples
of words, with some similarities with the method of [FL18; Lep98]. Neuvel and Fulop and Hathout
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have used their respective approaches to extract morphemes and other morphological information
from data.

Data-driven learning approach. As mentioned before, to the best of our knowledge and at the
time of writing, the approach we propose and develop in our work [Als+21a; Als+21b; Als+21c;
Cha+22; Mar+22a; MC24; Mar+22b] that we present in Part II is the only DL approach designed
to tackle morphological APs. Note however that this is not the only data-driven learning approach
to APs in general, with for instance the approaches we describe in Section 3.4.
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Part II
Morphological analogical proportions

This part describes the main work done on the Analogy Neural Network framework (ANN frame-
work). To do so, Chapter 5 introduces the Siganalogies dataset used throughout this part, as well
as some running examples taken from Siganalogies. The ANN framework itself is described in
Chapter 6, and extensive experimental results are presented in Chapters 7 and 8. Finally, in Chap-
ter 9, we summarize the contributions presented in this part and explain how the ANN framework
and Siganalogies are made available following the principles of open science, including interac-
tive demos available to the general public. This part covers contributions published in [Als+21a;
Als+21b; Als+21c; Cha+22; Mar+22a; MC24; Mar+22b].
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Chapter 5

The Siganalogies dataset of
morphological analogies
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To develop and evaluate the performance of the ANN framework on morphological APs,
we designed the Siganalogies dataset [Mar+22b]. This dataset contains morphological APs in
more than 80 distinct languages and is built upon three datasets: Sigmorphon 2016 Task 1
(Sig16) [Cot+16], Sigmorphon 2019 Task 1 (Sig19) [McC+19], and the Japanese Bigger Anal-
ogy Test Set (JBATS) [Kar+18]. The dataset is called Siganalogies: analogies is self explanatory,
and Sig comes from the SIGMORPHON shared tasks Sig16 and Sig19 from which all but one
language (Japanese) were extracted.

Each dataset contains words linked by morphological transformations, that we use to create
APs as explained in Section 5.1. We survey Sig16, Sig19, and JBATS in Section 5.2, and provide
detailed statistics on Siganalogies in Section 5.3. We summarize the tools and features provided
with Siganalogies in Section 5.4. A description of the dataset with extensive statistics is also
available on the GitHub page of the dataset1. We conclude this chapter with a discussion on
the limitation of the Siganalogies dataset in Subsection 5.5.3, followed by some perspectives for
improvements of the dataset.

5.1 Building APs from morphological transformations

Sig16, Sig19, and JBATS contain triplets ⟨A,B, f⟩ with A,B a pair of words related by a morpho-
logical transformation f . We write f = {feature1 = value1, feature2 = value2, . . . } the transfor-
mation f described by a set of grammatical features feature1, feature2, that respectively become
value1, value2. In the triplet ⟨A,B, f⟩, B is the word obtained after applying the morphological
transformation f on A. Examples 5.1 and 5.2 are two examples of triplets:

1https://github.com/EMarquer/siganalogies/blob/main/siganalogies_description.pdf
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Taking the example from the authors of the Sig16 shared task, going from “run” to “running”
corresponds to a transformation from the lemma to the present participle of “(to) run”. The
corresponding triplet would be:

⟨A = “ran”, B = “running”, f = {tense = present participle}⟩.

Example 5.1: Triplet in English

In the Finnish data from Sig16, we have the triple:

⟨A = “ lenkkitossut”, B = “ lenkkitossuilla”, f = {pos = N, case = ON+ESS, num = PL}⟩.

The morphological transformation here is quite specific: the transformation corresponds to the
nominative to essive cases (case = ON+ESS) of a noun (pos = N) for the plural (num = PL).
The encoding of morphological features used here is UniMorph, which is used in Sig16 (see
Section 5.2) and uses grammatical information to encode the features.

Example 5.2: Actual triplet from the Finnish data from Sig16

A morphological AP is a quadruple A : B :: C : D where the morphological transformation
from A to B is the same as the one from C to D (see Section 4.2): “A is to B as C is to D in terms
of morphological transformation”. As the morphological transformation is made explicit in the
data, we can use two triplets ⟨A,B, f⟩, ⟨C,D, f⟩ sharing the same morphological transformation to
create the morphological AP A : B :: C : D, or A : f(A) :: C : f(C) in terms of the functional view
of analogy. As f is not explicit in A : B :: C : D, we say it is the underlying transformation of the
AP A : B :: C : D. The main difference between Sig16, Sig19, and JBATS is the way the triplets
⟨A,B, f⟩ are stored (see Section 5.2), which means we can use the above-mentioned process for all
datasets. For instance, we can take Example 5.2 and another triplet from the data to create the
AP in Example 5.3.

In the Finnish data from Sig16, we have another triple:

⟨C = “alko” , D = “alkoilla”, f = {pos = N, case = ON+ESS,num = PL}⟩.

From this triplet and the one of Example 5.2, we create the AP:

“ lenkkitossut” : “ lenkkitossuilla” :: “alko” : “alkoilla”.

Example 5.3: AP from the Finnish data from Sig16

Siganalogies is meant to be used with the data augmentation process described in Section 6.3.
For each two pairs, we only generate one AP, i.e., if we generate A : B :: A′ : B′ we do not
generate A′ : B′ :: A : B as it will be generated by the data augmentation process.

Remark 5.1

APs of the form A : B :: A : B are not automatically produced by the data augmentation
process (see Section 6.3), but are generated by our AP building process, as the set of features
is the same (f = f). We find important to integrate such examples as they are related to the
Reflexivity of Conformity postulate, and to Identity, by Exchange of the Means.

Remark 5.2

5.2 Source datasets

As mentioned at the beginning of this chapter, Siganalogies is built upon Sig16, Sig19, and JBATS,
each containing triplets ⟨A,B, f⟩ that we use to create our APs.

The Sigmorphon shared tasks2 are a series of shared tasks focusing on tackling morphology-
2https://sigmorphon.github.io/sharedtasks/
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related tasks on multiple languages, organized by the ACL Special Interest Group on Computa-
tional Morphology and Phonology (SIGMORPHON). For Siganalogies, we consider only the first
edition of the shared task (Sig16) and the forth edition (Sig19).

Our main reason for using Sig16 is comparability: it is the dataset used to extract the APs
in [Lep17; Mur+20]. To this dataset we first added JBATS to explore Japanese and its very
different take on morphology compared to European languages, then we added Sig19 for the large
amount of multilingual data it offers.

5.2.1 Sigmorphon 2016

The Sigmorphon 2016 Task 1 (Sig16) [Cot+16] shared task, subtitled “Morphological Reinflection”,
was organized from 1st December, 2015 to 28th April, 2016. As the name indicates, the focus is on
morphological reinflection, which consists in applying an inflectional morphological transformation
on a word that may already be the result of such a transformation (hence re inflection). Taking
Example 5.1 from the authors of Sig16, going from “ran” to “running” corresponds to a transfor-
mation to the present participle applied on “ran”, which is already an inflected form of “(to) run”
to some person of the past.

Sig16 proposes the 3 tasks below, in which a word and a set of target features are provided,
and the inflected form of the word corresponding to the features must be found.

1. Task 1 focuses on inflection: a lemma is provided, and the task is to transform this lemma
following morphological features. In terms of triplets from Section 5.1, we have:

⟨A = “run”, B = “running”, f = {tense = present participle}⟩.

2. In task 2, the first version of the reinflection task, two words are provided, both inflected
forms of the same lemma. For both words, the corresponding morphological features are
provided: instead of triplets, we have quadruplets:

⟨A = “ran”, fA = {tense = past}, B = “running”, fB = {tense = present participle}⟩.

3. Task 3 is the “unlabled” version of the reinflection task, which is the same as task 2 but
without information about A, i.e., without fA. In other words, we obtain triplets like

⟨A = “ran”, B = “running”, f = {tense = present participle}⟩.

The main difference between tasks 1 and 3 is that A is a lemma in task 1 and an inflected
form in task 3.

For the Siganalogies dataset, we consider only data from Task 1, as was done in [Lep17] and
later in [Mur+20].

It is possible to apply the same process we apply on task 1 to tasks 2 and 3 to obtain more
varied morphological APs.

Remark 5.3

Most of the data of Sig16 is extracted from the English edition of Wikitionary3, with the excep-
tion of Maltese data which came from the Ġabra open lexicon [Cam13]. The procedure described
in [Kir+16] was used for the extraction and the verification of the data, and the morphological
features are encoded using the UniMorph Schema [Syl+15]. As mentioned in [Cot+16], the words
are written using the corresponding native script, except for Arabic for which the romanized4 forms
available in Wikitionary are used. Wikitionary is crowd-sourced and may contain errors (many of
which have probably been corrected since the creation of Sig16), and these errors may exist in the
data as no manual checking was done.

3https://en.wiktionary.org
4Romanization is the process of writing using the roman alphabet words of a language that does not use the

roman alphabet.
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5.2.2 Kakenhi 15K00317 word analogies from Sigmorphon 2016 Task 1
Sig16 is used by Lepage [Lep17] and later by Murena, Al-Ghossein, et al. [Mur+20] as a source for
morphological APs, using the same processed we use for Siganalogies but with a slightly different
data augmentation process: Lepage only considers APs obtained from Symmetry of Conformity
and Inversion of Ratio. The data extracted by Lepage is available online, as the Kakenhi-Sig16
dataset5. When comparing the APs from Kakenhi-Sig16 with the ones we extracted directly from
Sig16, we noticed some differences reported in [Als+21a]. In particular, accounting for the different
data augmentation processes, neither ours nor Lepage’s set of APs completely contains the other.
The full extent of the difference is reported in Table 5.1, by specifying the coverage rate of one set
by the other: for instance, an AP A : B :: C : D from [Lep17] is covered by our version of Sig16 if
A : B :: C : D or any of its 8 permutations (see Section 2.3) is present in our dataset.

Coverage by Lepage’s Coverage by our
Language version of ours version of Lepage’s

Arabic 26.73 60.26
Finnish 21.51 92.30
Georgian 68.22 78.51
German 68.07 92.38
Hungarian 33.14 37.39
Maltese 16.70 61.82
Navajo 7.09 10.18
Russian 25.81 91.81
Spanish 54.23 91.44
Turkish 29.12 71.80

Table 5.1: Table 3 from [Als+21a]. Original caption: “Coverage (in %) between Lepage’s version
of Sigmorphon2016 and the training set of our version. The coverage of the test set is 0% in both
directions for all languages and was not included.”

5.2.3 Sigmorphon 2019
The Sigmorphon 2019 Task 1 (Sig19) [McC+19] shared task, subtitled “Crosslinguality and Context
in Morphology”, was organized from 21st December, 2018 to 30th April, 2019. It focusses on the idea
of universal morphological inflection, and features “nearly 100 distinct languages”6. This dataset is
of particular interest for us due to it richness in terms of represented languages: the more languages
we can experiment on, the more general our analysis of the ANN framework can be.

Similarly to Sig16, Sig19 proposes 3 tasks: a cross-lingual transfer task (task 1), a task to
leverage context in the inflexion process (task 2), and an open challenge for submissions using the
data of the shared task (task 3).

From Sig19, we used the data from task 1 to build Siganalogies. This task consists in transferring
the inflection mechanisms from a high-resource language (i.e., a language for which data is readily
available, such as French, English, etc.) to a low-resource language (i.e., a language for which
data is hard to come by, for instance, languages with few speakers, local dialects, or non-written
languages). 100 language pairs covering 79 unique languages are proposed for this task, with
pairs of very related languages (e.g., German and older dialects of German) and distantly related
or unrelated pairs (e.g., Greek and Bengali). The distinction between high- and low-resource
languages comes only from the amount of data proposed by the dataset, with languages usually
considered as high-ressource appearing as low resource in Sig19, for instance, Greek, Russian and
Portuguese. For each language, Sig19 contains pairs of words and the corresponding morphological
features. In practice, a lemma from the low-resource language and a set of target features are
provided, and the corresponding inflected form must be found. To tackle the task, systems are
expected to leverage the larger amount of data from the high-resource language.

As in Sig16, the data is from the English Wikitionary, using the updated procedure associated
with UniMorph 2.0 [Kir+18], with the exception of four langages:

5http://lepage-lab.ips.waseda.ac.jp/en/projects/kakenhi-15k00317/, “Experimental data” tab, section
“Words: SIGMORPHON data set”.

6https://sigmorphon.github.io/sharedtasks/2019/
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“ The Basque language data was extracted from a manually designed finite-state mor-
phological analyzer [Ale+09]. Murrinhpatha data was donated by John Mansfield; it
is discussed in [Man19]. Data for Kurmanji Kurdish and Sorani Kurdish were created
as part of the Alexina project [WS10; WSF10]. ” [McC+19]

Unlike in Sig16, the Arabic data in Sig19 always uses the original writing system. Additionally,
some minor fixes on the extracted data are made by the organizers of the Sig19 shared task.

In addition to the large amount of data and vast language coverage, we chose the task 1 from
Sig19 to explore if the ANN framework could tackle this cross-lingual transfer task. Indeed, we
could use APs A : B :: C : D where A,B come from the high-resource language and C,D from
the low-resource language, with A,B selected to match the features specified in the task. Then,
the value of D could be found by analogy solving. While this task is not tackled in this thesis, the
results described in Chapter 8 are encouraging for further work in the direction of cross-lingual
APs.

5.2.4 Japanese Bigger Analogy Test Set

The Japanese Bigger Analogy Test Set (JBATS) [Kar+18] contains analogies in Japanese and was
designed based on the Bigger Analogy Test Set (BATS), a dataset of analogies in English designed
to be more extensive and balanced than its predecessors. The two datasets contain 4 categories
of linguistic relations: derivational morphology, inflectional morphology, lexicographic semantics,
and encyclopedic semantics.

Japanese Bigger Analogy Test Set (JBATS) was initially designed to evaluate the performance
of the sub-character and character level embedding models in Japanese, and allows for multiple
possible writings when necessary. For instance, for the second word (B) of each triplet ⟨A,B, f⟩
in the morphological data, a kanji (ideogram-based writing) form and an hiragana/katakana form
(syllable-based alphabet writing) are provided to cover possible alternate writings.

As we work on morphological APs, we consider only the derivational and inflectional morphol-
ogy data, with the subcategories detailed in Table 5.5 and Section 5.3.

5.3 Quantitative information and practical details

This section details the languages available in Siganalogies. We also provide some distributional
statistics on morphological features and on the amount of APs that can be extracted for each
language.

In total, 82 distinct languages are covered by Siganalogies, counting the 10 languages from
Sig16, the 44 high-resource and 44 low-resource languages from Sig19 and the Japanese from
JBATS. For the full list of languages covered by Sig16 see Tables 5.2 to 5.4, for high-resource
languages from Sig19 see Table 5.6. From Sig19 task 1 we use only the high-resource languages in
our experiments, so only the corresponding statistics are provided here. For low-resource languages,
refer to the description available on the GitHub page of the dataset7.

Among the languages of Sig16, 7 are available as high-resource languages of Sig19 (Arabic,
Finnish, German, Hungarian, Russian, Spanish, and Turkish) and 2 as low-resource languages
of Sig19 (Maltese and Russian). Note that Russian appears as both a high- and a low-resource
language in Sig19. In fact, the following languages are available as both high- and low-resource
languages in Sig19: Bengali, Czech, Greek, Irish, Latin, Portuguese, Russian, Sorani, and Swahili.

All low-resource languages of Sig19 have less than 25000 APs in each set, with less than 900
APs in the training set. Except Basque and Uzbek, which have 43754 and 7312 APs respectively,
all high-resource languages have at least 133000 APs. The set 42 languages (high resource except
Basque and Uzbek) will be the one considered for our experiments.

In Tables 5.2 to 5.4 and 5.6, we report three statistics:

• # APs is the number of distinct APs we obtain from the procedure described in Section 5.1,
which is then multiplied during data augmentation (see Section 6.3).

• # Features with APs is the number of distinct features in the dataset that are involved in at
least one AP. This value is an indicator of how rich the APs are in terms of morphological

7https://github.com/EMarquer/siganalogies/blob/main/siganalogies_description.pdf
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# Analogies # Features with analogies # Words with analogies
Language (% of all features) (% of vocabulary)

Arabic 373240 220 (98.65%) 13773 (99.97%)
Finnish 1342639 94 (98.95%) 22057 (99.99%)
Georgian 3553763 90 (100.00%) 14587 (100.00%)
German 994740 97 (98.98%) 17307 (99.99%)
Hungarian 3280891 85 (98.84%) 17279 (99.99%)
Maltese 104883 2419 (75.97%) 19338 (95.38%)
Navajo 502637 42 (77.78%) 4502 (99.80%)
Russian 1965533 80 (96.39%) 18793 (99.97%)
Spanish 1425838 83 (98.81%) 17145 (99.99%)
Turkish 606873 179 (95.72%) 14223 (99.94%)

Japanese 26410 20 (100.00%) 1573 (100.00%)

Table 5.2: Statistics of languages from Sig16, for the training data. Languages in bold are also
present in Sig19.

features. For this measure, we count each distinct value of each feature separately, as for
num and its values PL and SG in Example 5.4 below.

Let us consider the morphological transformations:

f1 = {pos = N, case = ON+ESS, num = PL}
f2 = {pos = N, num = SG}
f3 = {pos = V}

If f1, f2 correspond to triplets used to create APs (i.e., f1, f2 appear in at least 2
distinct triplets) while f3 does not, we have 4 features with APs (|{pos = N, case =
ON+ESS, num = PL, num = SG}|) which corresponds to 80% of all features.

Example 5.4

This value is an indicator of how rich the APs are, in terms of morphological features.

For each language, we also specify the coverage by APs of the features appearing for the
language (% of all features).

• # Words with APs is the number of distinct words in the dataset that are involved in at
least one AP.

In Table 5.6, some languages have under 100% # Features with APs. This is due to some
features (e.g., 25.67% of features for Asturian) that appear in only one pair of words, and therefore
cannot appear in an AP as we need at least two pairs of words with the same features to create APs.
This effect could be mitigated by using a more relaxed expression of morphological transformations,
as discussed in Subsection 5.5.3.
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# Analogies # Features with analogies # Words with analogies
Language (% of all features) (% of vocabulary)

Arabic 7671 218 (99.09%) 2638 (99.89%)
Finnish 22837 73 (84.88%) 3070 (99.16%)
Georgian 67457 48 (70.59%) 2716 (99.27%)
German 17222 97 (98.98%) 2888 (99.93%)
Hungarian 70565 76 (92.68%) 3517 (99.80%)
Maltese 3775 585 (39.24%) 2288 (67.20%)
Navajo 33976 42 (91.30%) 1578 (99.81%)
Russian 32214 77 (100.00%) 2898 (100.00%)
Spanish 25590 83 (100.00%) 2836 (100.00%)
Turkish 11518 160 (95.81%) 2691 (99.56%)

Table 5.3: Statistics of languages from Sig16, for the development data. Languages in bold are
also present in Sig19.

# Analogies # Features with analogies # Words with analogies
Language (% of all features) (% of vocabulary)

Arabic 555312 220 (97.35%) 15996 (99.96%)
Finnish 4691453 95 (100.00%) 37857 (100.00%)
Georgian 8368323 90 (100.00%) 19722 (100.00%)
German 1480256 98 (98.99%) 19954 (99.99%)
Hungarian 66195 78 (95.12%) 3448 (99.88%)
Maltese 3707 597 (39.62%) 2315 (67.53%)
Navajo 4843 35 (83.33%) 618 (99.36%)
Russian 6421514 80 (96.39%) 29868 (99.99%)
Spanish 4794504 83 (100.00%) 28230 (100.00%)
Turkish 11360 161 (96.41%) 2675 (99.59%)

Table 5.4: Statistics of languages from Sig16, for the test data. Languages in bold are also present
in Sig19.
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Morphological transformation Example Pairs

In
fle

ct
io

na
lm

or
ph

ol
og

y verb_dict - mizenkei01 会う → 会わ/あわ 50
verb_dict - mizenkei02 出る → 出よ/でよ 51
verb_dict - kateikei 会う → 会え/あえ 57
verb_dict - teta 会う → 会っ/あっ 50
verb_mizenkei01 - mizenkei02 会わ → 会お/あお 50
verb_mizenkei02 - kateikei 会お → 会え/あえ 57
verb_kateikei - teta 会え → 会っ/あっ 50
adj_dict - renyokei 良い → 良く/よく 50
adj_dict - teta 良い → 良かっ/よかっ 50
adj_renyokei - teta 良く → 良かっ/よかっ 50

D
er

iv
at

io
na

lm
or

ph
ol

og
y noun_na_adj + ka 強 → 強化/きょうか 50

adj + sa 良い → 良さ/よさ 50
noun + sha 筆 → 筆者/ひっしゃ 50
noun + kai 茶 → 茶会/ちゃかい 50
noun_na_adj + kan 同 → 同感/どうかん 50
noun_na_adj + sei 毒 → 毒性/どくせい 52
noun_na_adj + ryoku 馬 → 馬力/ばりき 50
fu + noun_reg 利 → 不利/ふり 50
dai + noun_na_adj 事 → 大事/だいじ 50
jidoshi - tadoshi 出る → 出す/だす 50

Total 1017

Table 5.5: Table 2 from [Als+21a]. Original caption: “List of relations between the words of the
Japanese dataset and corresponding number of unique analogies before data augmentation.” For
details on the meaning of the morphological transformations, see [Kar+18].
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# Analogies # Features with analogies # Words with analogies
Language (% of all features) (% of vocabulary)

Adyghe 3666973 24 (100.00%) 11155 (100.00%)
Albanian 378591 140 (100.00%) 9666 (100.00%)
Arabic 456689 196 (100.00%) 12942 (100.00%)
Armenian 391054 220 (100.00%) 14415 (100.00%)
Asturian 608932 139 (74.33%) 9122 (99.61%)
Bashkir 3912246 24 (100.00%) 9231 (100.00%)
Basque 43754 1584 (95.77%) 8918 (99.34%)
Belarusian 1025983 56 (100.00%) 8769 (100.00%)
Bengali 163424 58 (100.00%) 3759 (100.00%)
Bulgarian 593920 95 (100.00%) 11290 (100.00%)
Czech 598680 180 (94.24%) 12056 (99.90%)
Danish 7274570 14 (100.00%) 11205 (100.00%)
Dutch 2031211 25 (100.00%) 11181 (100.00%)
English 10006487 5 (100.00%) 16245 (100.00%)
Estonian 641478 108 (100.00%) 10262 (100.00%)
Finnish 508684 197 (100.00%) 18231 (100.00%)
French 1029926 49 (100.00%) 15220 (100.00%)
German 2108502 37 (100.00%) 13174 (100.00%)
Greek 811576 177 (100.00%) 13668 (100.00%)
Hebrew 1095028 54 (100.00%) 8957 (100.00%)
Hindi 246605 211 (100.00%) 8916 (100.00%)
Hungarian 1062552 93 (100.00%) 16747 (100.00%)
Irish 2248336 89 (100.00%) 13169 (100.00%)
Italian 990860 51 (100.00%) 16016 (100.00%)
Kannada 133094 95 (100.00%) 3049 (100.00%)
Kurmanji 2836118 104 (98.11%) 16209 (99.99%)
Latin 447718 151 (100.00%) 16141 (100.00%)
Latvian 984308 80 (100.00%) 14127 (100.00%)
Persian 375639 136 (100.00%) 9323 (100.00%)
Polish 1023982 111 (100.00%) 14779 (100.00%)
Portuguese 668308 76 (100.00%) 12921 (100.00%)
Romanian 945689 59 (100.00%) 12380 (100.00%)
Russian 978081 89 (91.75%) 17227 (99.94%)
Sanskrit 822359 120 (100.00%) 8473 (100.00%)
Slovak 2026778 39 (100.00%) 7442 (100.00%)
Slovene 900301 99 (100.00%) 10189 (100.00%)
Sorani 246077 244 (97.99%) 10158 (99.95%)
Spanish 725601 70 (100.00%) 14445 (100.00%)
Swahili 207967 207 (100.00%) 6419 (100.00%)
Turkish 304609 288 (96.00%) 12650 (99.91%)
Urdu 245343 217 (100.00%) 5192 (100.00%)
Uzbek 7312 84 (100.00%) 936 (100.00%)
Welsh 799086 63 (100.00%) 8820 (100.00%)
Zulu 348500 228 (98.70%) 9613 (99.97%)

Table 5.6: Statistics of high resource languages from Sig19. Languages in bold are also present
in Sig16. Note that only a training set is available for high resource languages. Languages in red
have less than 50000 analogies.
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5.4 Associated code, tools, and dissemination

The Siganalogies dataset is made available publicly via the Dorel platform, and publicized via the
recherche.data.gouv.fr website8 and the website of the AT2TA (ANR-22-CE23-0023)9.

In particular, the Dorel repository contains a backup of the original data from Sig16, Sig19,
and JBATS, pre-computed APs in most of the dataset languages, as well as a snapshot of the
Python code to extract the APs from the source datasets and manipulate them, described in next
paragraph.

The Siganalogies code repository on GitHub10 contains the latest version of the code to produce
and manipulate Siganalogies, in particular:

• the necessary code to encode and decode the words of each language at the character level,
for use with, for instance, PyTorch;

• the tools to automatically download of pre-computed preprocessed datasets from Dorel;

• the tools to concatenate the datasets of different languages, which were used for the experi-
ments in Chapter 7;

• some utility functions related to the use of APs, for instance, the data augmentation process
(see Section 6.3);

• the data preprocessing code for Siganalogies, which is deterministic: assuming no major
change in Python is made, 2 different environments (computer, operating system, etc.) will
result in the same preprocessed data: same character encoding module, same APs extracted,
same vocabulary, etc..

The code repository is meant to used as a sub-repository, and offers a simple, one-function
interface for most use-cases. By default, pre-computed preprocessed datasets are fetched from Dorel
and save them locally, and if it is not possible, the dataset is automatically built and preprocessed
from the source data (Sig16, Sig19, JBATS).

5.4.1 Structure of the data in the source datasets

In practice, Sig16 task 1 data contains four files for each language, as in Example 5.5 Triplets are
organized in the Af B order.

With the example of German, we have:

• german-task-1-train.txt containing the training data;

• german-task-1-dev.txt containing the development data;

• german-task-1-test.txt containing the test data;

• german-task-1-test-covered.txt containing the subset of the test data with only mor-
phological transformation seen in training, but in our experiments we do not consider
this file.

In german-task-1-train.txt, the first three triplets are declensions of the verb “aalen”:

aalen pos=V,mood=IND,tense=PRS,per=1,num=PL aalen
aalen pos=V,mood=IND,tense=PRS,per=3,num=PL aalen
aalen pos=V,mood=IND,tense=PST,aspect=PFV,per=2,num=SG aaltest

Example 5.5: Example data from German of Sig16

8https://recherche.data.gouv.fr/en/dataset/siganalogies-millions-of-morphological-analogies-in-
more-than-80-languages

9https://at2ta.loria.fr/software/
10https://github.com/EMarquer/siganalogies
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Sig19 task 1 is organized as folders, one for each pair of high-/low-resource language. Each
folder contains four files, corresponding to a training set for the high-resource language, and a
training, development, and test sets for the low-resource language. Triplets are organized in the
AB f order, unlike in Sig16.

German appears as a high-resource language in three language pairs: German/Middle-High
German (german--middle-high-german folder), German/Middle-Low German (german--middle
-low-german folder), and German/Yiddish (german--yiddish folder). All three folders contain
the german-train-high file, with the following first triplets:

Doppeldecker Doppeldecker N;DAT;SG
fassen fassten V;IND;PST;1;PL
vergiften vergifteten V;IND;PST;3;PL

If we take, for instance, the German/Middle-High German pair, it contains three files in
addition to german-train-high:

• middle-high-german-train containing the training data of Middle-High German;

• middle-high-german-dev containing the development data of Middle-High German;

• middle-high-german-test containing the test data of Middle-High German.

Example 5.6: Example data from German of Sig19

JBATS is organized slightly differently from Sig16 and Sig19: it contains separate files for each
relations, grouped in folders corresponding to the four major categories of the dataset, i.e., one file
per morphological transformation for the derivational and inflectional morphology categories (see
Table 5.5). For each triplet ⟨A,B, f⟩, f is found from the file in which the pair A,B is found. For
practical reasons, we transformed this format to follow the Af B format of Sig16, and gathered
the triplets of all relations from the derivational and inflectional morphology categories of JBATS
into a single file called japanese-task-1-train.txt. See Table 5.7 for examples of the the data in
the original file D01 [noun\_na\_adj + ka].txt and how it is transformed to fit the Sig16 format.

Original data Data after transformation
Ex. D01 [noun_na_adj + ka].txt japanese-task-1-train.txt

1 活性 活性化/かっせいか 活性 [noun_na_adj + ka] 活性化/かっせいか
2 強 強化/きょうか 強 [noun_na_adj + ka] 強化/きょうか
3 高齢 高齢化/こうれいか 高齢 [noun_na_adj + ka] 高齢化/こうれいか

Table 5.7: First three examples in japanese-task-1-train.txt. All three come from the original
JBATS file D01 [noun_na_adj + ka].txt in folder 2_derivational_morphology.

5.5 Discussion and perspectives

Along our experiments on Siganalogies, we identified several limitations of the data. Firstly,
there are character encoding differences between Sig16 and Sig19, explained in Subsection 5.5.2.
Secondly, we found representativeness issues due to an uneven and limited distribution of Part Of
Speech (POS) tags and obsolete words, presented in Subsection 5.5.1.

The Siganalogies dataset we developed and refined along our experiments, and many perspec-
tives remain for improvement and further experiments. We elaborate on these in Subsection 5.5.3.

5.5.1 Writing systems and alphabet gap
The way words are written has significant impacts on some properties of the data. For instance,
it can change the difficulty of the analogy detection and analogy solving tasks, or reduce the
transferability of models from one language to another (see Chapter 8). The data for Arabic is a
typical example of how character representation can be challenging.
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Figure 5.1: Distribution of POS tags among the available APs. “Nouns” and “Adjectives” are
cleanly indicated in the features, while “Verbs” regroups multiple verbal forms, including converbs
and participles. “Other” contains any POS tag that does not correspond directly to the the other
categories, due to feature tags specific to the language.

A first important point is that most languages in Siganalogies do not use the same set of
characters. This difference in characters used results in an alphabet gap between some languages,
limiting the possibility of transferring morphology, as we show in Subsection 8.1.1 and Section 8.2.
As a result, we observe distinct cluster of languages within the high ressource languages of Sig19
in Section 8.2 and Figure 8.7. As can be seen from our experiments in Subsection 8.1.1, this
alphabet gap also matters for languages that are present in both Sig16 and Sig19. Notably, a
different philosophy is used to represent characters in the two iterations of SIGMORPHON: Sig16
uses romanized writing (see Footnote 4 page 51) for languages such as Arabic, and Sig19 uses
the original characters of the language coupled with the Unicode Transformation Format – 8-bit
(UTF8) character encoding. This serves as both a limitation and an additional challenge offered
by the dataset, that we used to explore some properties of the ANN framework as described in
Chapter 8.

Furthermore, the UTF8 character encoding for some languages is a hidden source of additional
complexity when using the data. Qualitative analysis of the Arabic data reveals that the UTF8
encoding decomposes each Arabic character into multiple encoded characters, resulting in longer
and more complex sequences of characters than expected.

Finally, the data extracted from JBATS contains multiple writings for some words, some using
hiragana and katakana, other using kanji. In our experiments, this difference has not been lever-
aged, however the current implementation of Siganalogies allows for a choice between the two type
of forms.

5.5.2 Distribution of Part Of Speech tags and morphological features

For most languages in the Siganalogies dataset, the AP are skewed towards specific POS (or
grammatical categories), as can bee seen in Figure 5.1. Additionally, the number of different
morphological transformations varies widely from one language to another, as can be seen in
Figure 5.2. This can negatively impact the generalization ability of models trained on Siganalogies,
for instance for the AE-emb model described in Subsection 7.4.3, as the models only see a subset
of the POS of the language.

Additionally, the APs we produce rely on inflectional morphology, as we use data from the task 1
of both Sig16 and Sig19. In this data, each pair of word contain the lemma of the word as well as an
inflected form of this lemma. As a consequence, the APs in Siganalogies always contain two lemmas
and two inflected forms, e.g., “(to) run” : “running” :: “(to) drive” : “driving”. This excludes the
notion of re-inflexion, where an inflected form is used as the origin of the morphological transfor-
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Figure 5.2: Distribution of distinct morphological features per POS tags. “Nouns” and “Adjec-
tives” are cleanly indicated in the features, while “Verbs” regroups multiple verbal forms, including
converbs and participles. “Other” contains any POS tag that does not correspond directly to the
the other categories, due to feature tags specific to the language.

mation to another inflected form of the same lemma, e.g., “runs” : “running” :: “drives” : “driving”.
In preliminary experiments, we confirmed the possibility of obtaining re-inflexion transformation
by matching lemmas between pairs of words, and create corresponding APs. For instance the
ratios “(to) run” : “running” and “(to) run” : “runs” can be matched to obtain “runs” : “running”.
Using re-inflexion data from SIGMORPHON is a reasonable alternative, but the amount of APs
that can be obtained must be investigated first.

Anomalous and outdated words. The data in Sig16 and Sig19 contains a number of words
that can be considered outdated at best. For instance, the French words in Example 5.7 are rarely
used, come from regional dialects, or are outdated according to Wikitionary.

Below are some words extracted from the French data of Sig19. These words are rarely used,
come from regional dialects, or are outdated according to Wikitionary.

• aoûter : “to ripen or harden in the August heat”, technical, or “to change, regarding
weather typical of August” outdated in everyday language;

• empéguer : “to glue”, Occitan word (regional dialect);

• estraire: “to extract”, Old French;

• foler : “to behave like a crazy person”, Old French;

• numbrer : “to number, to count”, Old French.

Example 5.7: Outdated and regional words from the French data of Sig19

The Centre National de Resources Textuelles et Lexicales (CNTRL) offers access to a number
of digital and digitalized dictionaries for the French language, covering from Middle French (Dic-
tionnaire du Moyen Français11) to modern French (9th edition of the Dictionnaire de l’Académie
française12). Among these ressources, empéguer and estraire do not appear, foler and numbrer
only appear in the Dictionnaire du Moyen Français.

11http://zeus.atilf.fr/dmf/
12https://www.academie-francaise.fr/le-dictionnaire/la-9e-edition
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5.5. Discussion and perspectives

Such outdated words appear in APs built from Sig16 and Sig19, even if they only represent a
small part of the dataset. They can be seen as out-of-distribution for the morphology of modern
languages, like modern French for our previous examples. Recent versions of the data produced
within the SIGMORPHON shared tasks might not share this issue, and could be suitable to
complement Siganalogies without having to manually check for out-of-distribution word pairs.

5.5.3 Perspectives for improving Siganalogies
Among other possibilities, it would be of interest to use pairs of inflected forms of the words,
instead of pairs of a lemma and an inflected form of this lemma, as mentioned in Section 5.5.

Additionally, thanks to having the full description of morphological features, it would be possible
to define more relaxed morphological transformation, such as building APs from pairs with features
“Verb;Present;3rd person” and “Verb;Present;1st person” because they share the “Verb;Present”
part. Such data would provide intermediate steps in the spectrum between valid and invalid AP,
which can help in determining the extent of the dependence of the model on the analogical setting,
as we do in Chapter 11 for frame semantics. Other works have considered different granularity
of analogy [Ant22; BMP19] and different levels “analogical validity” and their links with human
analogical reasoning behavior [MDC17; Mur+20].

Finally, as discussed in Section 8.3, Sig19 offers pairs of more or less related languages that can
be used to define cross-lingual APs, and the results on the shared task are available in [McC+19]
for comparison with the performance of the analogical approach.
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Chapter 6

The ANN framework
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In this chapter, we describe the Analogy Neural Network framework (ANN framework), illus-
trated in Figure 6.1. The framework can be split into three key elements, namely the embedding
model(s), the analogy models, and the data augmentation.

The ANN framework was initially introduced by Lim, Prade, and Richard [LPR21], and was
designed for use with pre-trained embeddings to solve semantic analogical equations. In particular,
a first rather naive approach to data augmentation for analogical training as well as two NN models
to tackle analogy detection and analogy solving were proposed in [LPR21]. These two models, that
we call the ANNc and the ANNr, were refined along our experiments. We also integrated several
non-parametric approaches into the ANN framework, such as the parallelogram rule [Mik+13] and
3CosMul [LG14] (both defined in Subsection 3.4.1). All these analogy manipulation models on
embedding spaces are described in Section 6.2.

The ANN framework is grounded in the axiomatic view of analogy: the architecture of ANNc
and ANNr is based on intuitions driven by the postulates described in Section 2.3, and with the
data augmentation described in Section 6.4, we train models to fit a given set of postulates by
becoming invariant to corresponding permutations. We briefly discuss the components of the
ANN framework in Section 6.5.

There are several major differences between the current version of the ANN framework and the
version by Lim, Prade, and Richard:

• to obtain suitable representations of words for morphological APs, we use custom morphology
oriented embedding models (see Section 6.1) instead of a pre-trained semantics oriented
embedding model as done in [LPR21];
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Figure 6.1: Figure 1 from [MC24]. Original caption: “Morphological embedding models, data aug-
mentation, analogy classification (Analogy Neural Network for classification (ANNc)) and analogy
retrieval (Analogy Neural Network for retrieval/generation (ANNr)) models.”
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• as the embedding model is not pre-trained and was designed to have a small number of
parameters, we allow fine-tuning the embedding model during the training of the analogy
model (see Section 6.4);

• to reach good performance with non-pre-trained embedding models on analogy solving with
ANNr, we use ANNc and analogy detection as a pre-training task (see Subsection 6.4.2);

• because we allow fine-tuning the embedding model during training with ANNr, we need to
use more refined training objectives than MSE (see Subsection 6.4.2);

• we improve the data augmentation process by balancing valid and invalid APs, and experi-
ment with different axiomatic settings (see Section 6.3).

As the ANN framework went through multiple iterations along our experiments, we try to
clearly specify which experiment uses which version of each component of our approach, both in
this chapter and in Chapters 7 and 8.

6.1 Embedding models for morphology

As mentioned in Section 3.3, an important part of DL systems is to design embeddings suitable for
the task to accomplish, meaning the embeddings must contain the information necessary to tackle
the task.

In our early experiments using pre-trained semantic word embeddings, reproduced in Subsec-
tion 7.3.2, we obtained relatively poor performance, which led us to use two different kinds of
embedding models. The first one, the CNN-based word embedding (CNN-emb), is inspired from
the CNN [LeC+89, see also Subsection 3.2.2] proposed by Vania [Van20]. It is designed specif-
ically for applications on word morphology, and detailed in Subsection 6.1.1. The second, the
AE-based word embedding (AE-emb), uses the AE technique [Kra91, see also Subsection 3.3.3]
and LSTM [HS96, see also Subsection 3.2.3] as described in Subsection 6.1.2.

Contrary to CNN-emb, this second model is able to generate a word from any embedding. It
is inspired by the sequence generation approach by Wang and Lepage [WL20] for analogy solving
with English sentences, and by the character level AE from Chollet [Cho17]. In other words, for the
AE-emb we have direct access to (an estimate of) the inverse embedding function e−1 mentioned
in Subsection 3.4.1.

6.1.1 The CNN-based word embedding
The CNN-based word embedding (CNN-emb) is inspired from the work of Vania [Van20]. The
embedding models using CNN presented in [Van20, Subsection 2.3.2] are designed for language
modelling (see Example 3.2), i.e., to predict the next word in a text. The model combines a CNN
and an LSTM: the CNN encodes morphological features from salient sub-words, and the LSTM
uses these features to predict the next words. In our work, we use only the CNN part, that we call
CNN-emb and describe in this subsection.

Computing the embedding corresponding to a given word. CNN-emb learns to detect
key morphological patterns from the characters forming a word. To do so, the input of the model
are the characters of a word. First, the characters are embedded into vectors of size m learned
together with the rest of the word embedding model. As schematized in Figure 6.2, multiple
CNN filters are used, and each filter goes over the character embeddings by spanning over the full
embeddings of 2 to 6 characters, resulting in filter sizes between 2 by m and 6 by m. For each
filter, the model computes the maximum output to serve as a component of the word embedding.
This last operation keeps only salient patterns detected by each of the filters, and forces each
CNN filter to specialize in identifying a specific pattern of characters. We use 16 filters of each
size between 2 to 6, resulting in embeddings of 80 components. By using character embeddings
to encode character features, the model is able to capture patterns of characters, such as “-ing”,
but also patterns based on features of characters, like “vowel-vowel-consonant”. This flexibility is
useful to deal with phenomena like euphony detailed in Section 4.1 (e.g., “far ” becomes “further ”
when adding the suffix “-ther ”). These character patterns correspond to morphemes, the minimal
units of morphology (see Section 4.1). As the main components of this embedding model are CNN
filters, we coin it the CNN-based model.
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Figure 6.2: CNN-based word embedding (zoom on Figure 6.1)

To describe CNN-emb, we use the following hyperparameters:

• m: the size of the character embeddings;

• 2, 6: the smallest and largest filter size used;

• 16: the number of CNN filters of each filter size.

The values of 2, 6 and 16 are used to compute the size of the word embedding (the hyperpa-
rameter n) as n = (6− 2)× 16 = 80.

Hyperparameters 6.1

Finding the word corresponding to an embedding. When used for analogy solving, the
CNN-emb model is unable to produce the word corresponding to an arbitrary embedding. Instead,
we need to compute the embeddings of each word in a list of candidates and select the most relevant
word according to some similarity measure, e.g., cosine similarity. In experiments from [Als+21c],
reported in Subsection 7.4.2, we observed that cosine similarity slightly outperforms Euclidean
distance. The performance difference is not significant overall, and we use cosine similarity in our
later experiments.

With this method, the space of solution for analogy solving is closed as the candidates form a
finite set. This property is not an issue when working with the Closed World Assumption (CWA)
(i.e., we know all the solution candidates, and no solution outside of these is accepted), but with
the Open World Assumption (OWA), we would theoretically have to compute the embeddings of
all possible character strings, which is not feasible.

6.1.2 The AE-based word embedding

Our AE-based word embedding (AE-emb) stems from the above-mentioned limitation of CNN-emb
for analogy solving. To tackle this issue, we use an AE model that computes the embedding of a
word from its characters and learns to generate words from embeddings.

As mentioned in Subsection 3.3.3, an AE is composed of an encoder e and a decoder e−1. In our
setting, the encoder encodes a word w into an embedding e(w), and the decoder the decodes e(w)
back into the word e−1(e(w))ŵ. To minimize information loss and properly decode the embedding,
the model is trained using an reconstruction task: it encodes words and then decode the resulting
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Figure 6.3: AE-based word embedding (zoom on Figure 6.1)

embeddings back into the original words, and the AE is trained to minimize the difference between
the original and the decoded words.

The architecture for the model is a character-level sequence-to-sequence AE model, based on
the model described in the work of Chollet [Cho17]. Our AE-emb is a character-level model, like
the CNN-emb, meaning that we see a word as a sequence of characters. We use BiLSTM [HS96] for
the encoder and LSTM [GS05] for the decoder of our AE. These two NNs are designed to handle
sequences and store information in a fixed-size memory (see Subsection 3.2.3), which allows us to
have embeddings of a constant size no matter the length of the word.

To describe AE-emb, we use the following hyperparameters:

• m: the size of the character one-hot vector, i.e., the number of character recognized by
the model;

• |e(w)|: the size of the word embedding (must be a multiple of 4).

The value of |e(w)| is used to compute other hyperparameters:

• |e(w)|/4: the size of the hidden state of the encoder, with |e(w)|/4 = |hf | = |hb| =
|cf | = |cb|;

• |e(w)|/2: the size of the hidden state of the decoder, with |e(w)|/2 = |h| = |c|.

Hyperparameters 6.2

Computing the embedding corresponding to a given word. Let us now detail, step by
step, the process of encoding a word w, which corresponds to the blue part in Figure 6.3.

1. Each character of w is encoded into a one-hot vector (see Subsection 3.3.1).

2. The one-hot encoded characters form are fed into the encoder, which is a BiLSTM. This layer
outputs four vectors: the last hidden state hf and cell state cf in the forward direction, and
similarly hb and cb for the backward direction.
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3. The concatenation e(w) = concat(hf , hb, cf , cb) of these vectors is the embedding of the word.

Finding the word corresponding to an embedding. Decoding a word w is a process similar
to encoding it, albeit inverted, and corresponds to the green part in Figure 6.3. We use an LSTM
followed by a fully-connected layer with softmax activation function for the decoder. Notice that
there are two variants of the decoding process. Usually, generating a sequence with an LSTM
is done by a step by step process where each character of the output is predicted one after the
other, with the previous character used as input to predict the next one. The first character is
primed with beginning of word (BOW) character that marks the start of the word, and prediction
is stopped when we encounter an end of word (EOW) character.

This iterative generation process is the main reason we use a LSTM and not a BiLSTM for
the decoder, as the former is easier to use for iterative generation.

Remark 6.1

During training, we accelerate training by using teacher forcing, a variant of the decoding process
described above where the characters of the word to predict are used in place of the predicted
characters as input for the next steps, as illustrated in Figure 6.3. In that process, we know
beforehand how many characters to generate. The iterative generation process corresponds to the
second and teacher forcing to the first green block in Figure 6.3.

Below, the decoding steps are detailed.

1. The input of the first step of the decoder is the above-mentioned embedding, split into two
states h = concat(hf , hb) and c = concat(cf , cb) which initialize the memory of the LSTM.

2. For each character, the previous character encoded as a one-hot vector is fed to the LSTM,
which outputs a vector.

3. The output of the LSTM is then transformed into a probability distribution over all the
characters available in the dataset. To do so, we use the fully-connected layer mentioned
above, such that we have one value for each possible character. Then, the softmax activation
function transforms the value

4. We repeat steps 2 and 3 for the other characters in the word, following either the iterative
generation process or teacher forcing.

Multiple strategies can be adopted to select the each character in the decoded word, as the
model outputs a probability distribution over all possible characters. We can either take the
most probable character for each position (max ), which will result in a deterministic process, or
sample characters following the probability distribution (sample). The second option is particularly
meaningful for the iterative generation process, as the chosen character will impact the next ones,
similarly to a butterfly effect. Each generation using sample may result in a different generated
word. If not specified otherwise, in our experiments we use max for generation using AE-emb, to
have a deterministic process.

If we repeat the iterative generation multiple time using sample, words that are frequently
generated are very likely to correspond to the embedding. This corresponds to a Monte Carlo
estimation of the plausible generation results for a given embedding. This process has been
implemented in Analogy Neural Network web application (ANNa), as described in Chapter 9.

Remark 6.2

It is possible to use AE-emb in a retrieval setting by not using the decoder.

Remark 6.3

6.2 Analogy detection and solving models on embeddings

To manipulate APs, we consider multiple NN models, building upon the embedding models. Here
we describe the structure and inner workings of these models, as well as how to use them for
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analogy detection and analogy solving. We also describe three approaches that do not rely on NNs
to solve analogical equations, namely, 3CosAdd [Mik+13], 3CosMul [LG14], and the parallelogram
rule.

In this section, we assume that one of the above-mentioned embedding models produced the
embeddings e(A), e(B), e(C) of words A,B,C (and e(D) for word D for analogy detection). For
analogy solving, it is also necessary to find the word ŵ corresponding to the embedding ê(w).
This can be done by retrieval (see Subsection 6.1.1) or generation (see Subsection 6.1.2). Note
that 3CosAdd and 3CosMul are retrieval methods designed around analogy, and are not suited
for generation. The approaches mentioned here can be applied to any embedding model, if the
embeddings are always of the same, fixed, size.

6.2.1 Analogy solving with the parallelogram rule, 3CosAdd or 3CosMul
As mentioned in Subsection 2.3.1, the parallelogram rule is one of the interpretations of the ax-
iomatic view of analogy, and has been used for analogy solving since early works on word embed-
dings [MYZ13; Mik+13], as explained in Subsection 3.4.1.

Two common (equivalent) ways to write the parallelogram rule are:

A : B :: C : D ⇐⇒ e(A)− e(B) = e(C)− e(D), (6.1)
A : B :: C : D ⇐⇒ e(D) = e(C) + e(B)− e(A). (6.2)

To compute the solution of an analogical equation A : B :: C : w, the embeddings e(A), e(B), e(C)

are computed by the embedding model and Equation (6.2) is used to compute ê(w) = e(B)−e(A)+
e(C).

Then, ê(w) is used to find the word ŵ solution to the analogical equation. With the AE-emb
model, ŵ is obtained using the decoder and with the CNN-emb, retrieval is used instead, following
Subsections 6.1.1 and 6.1.2.

Equations (6.1) and (6.2) can both be used for analogy detection, by checking if we have equal-
ity. When using embeddings, a more flexible approach by checking how far we are from equality
is more suitable. To do so, we can apply a relative (i.e., dependant on e(A), e(B), e(C), e(D))
or absolute (i.e., constant) threshold to make the decision, for instance, we could compute
|(e(A)− e(B))− (e(C)− e(D))| and draw a conclusion with some threshold t:

|(e(A)− e(B))− (e(C)− e(D))| ≤ t =⇒ A : B :: C : D.

Remark 6.4

3CosAdd [Mik+13] and 3CosMul [LG14] are retrieval approaches to solve analogical equations
within an embedding space and are often used even if they have known limitations (see the last
paragraph of Subsection 3.3.4). For instance, as retrieval approaches, both methods rely on the
embeddings of candidate solutions to solve the equation, and are thus limited by the set of candi-
dates.

In Section 7.4, we report results from [Mar+22a; MC24] on the performance 3CosAdd and
3CosMul applied on the embeddings pre-trained with ANNc to measure the improvement brought
by ANNr.

6.2.2 ANNc for analogy detection
The Analogy Neural Network for classification (ANNc) follows the idea that a quadruple A,B,C,D
constitutes a valid AP A : B :: C : D if A and B differ in the same way as C and D. If this is true
for all the features of A,B,C,D, i.e., for all dimensions of the embeddings e(A), e(B), e(C), e(D),
then the AP holds true.

The ANNc model is based two CNN layers, respectively corresponding to the ratio (:) and
conformity of ratios (::). Each CNN layer is composed of multiple filters (Subsection 3.2.2). The
computation of ANNc is described, step by step, below, and illustrated in Figure 6.4 with annota-
tions below for each step of the process. For all CNN filters, the activation function is the ReLU
(see Subsection 3.2.1 Equation (3.4)).

1. The input of the model is e(A), e(B), e(C), e(D), each of size n, stacked into a n× 4 matrix.
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Figure 6.4: Analogy Neural Network for classification (zoom on Figure 6.1)

2. Then, a first set f1 of CNN filters of size 1 × 2 is applied on the embeddings, such that
for each component ·i of the embedding vector, each filter spans across e(A)i and e(B)i
simultaneously, and across e(C)i and e(D)i simultaneously, with no overlap. Intuitively, this
first set of CNN filters extracts the ratios A : B and C : D.

3. A second set f2 of CNN filters of 2× 2 is applied on the resulting |f1| × n× 2 tensor. Each
filter in f2 moves along the embedding dimension one component at a time, as illustrated in
Figure 6.4, resulting in a |f2| × (n− 1)× 1 tensor. This second set of CNN filters compares
A : B and C : D, which can be seen as the conformity of ratios.

4. Finally, the output of f2 is flattened and fed to a fully-connected layer f3 with a single output
(i.e., a perceptron) and sigmoid (see Subsection 3.2.1 Equation (3.5)) as the activation. The
sigmoid is defined on R 7→ (0, 1), and ensures the output of the fully-connected layer can be
interpreted as a classification result: 0 for non-APs, 1 for APs.

While it is possible to assume that embedding components are independent from each other, it
is rarely the case in practice. To handle dependent components, filters in f2 have a size of 2 which
results in overlaps between adjacent embedding components, and the fully connected layer mixes
the results of all filters from f2 over all dimensions.

The output x of ANNc is the result of a sigmoid and can never take exactly 0 nor 1. To obtain
a proper AP/non-AP classification, we use a threshold t ∈ [0, 1]: x < t for non-APs, x ≥ t
for APs. In our setting, a midpoint threshold t = 0.5 gives good results, but a more careful
choice could be performed to maximize the performance of the model.

Remark 6.5

The distance between the model output x and the threshold t, i.e., how close x is to either
0 or 1, can be interpreted as the confidence of the model in its prediction. With t = 0.5, for
the confidence we use |x − 0.5| ∗ 2 which gives us a percentage. If we have close to 0% of
confidence, the model output is close to 0.5, i.e., the model is not sure in which class to put
the quadruple. Conversely, we have close to 100% of confidence if the model output is close
to 0 or 1.

Remark 6.6

It is also possible to use ANNc to solve analogical equations, by maximizing the output of the
model over possible solutions. We applied this approach in Subsection 7.4.1. This method

Remark 6.7
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is most adapted to a retrieval approach, but it is possible to envision generating candidate
solutions (for instance, as was done in Alea) or even to maximize the classification score in a
machine learning generation algorithm (for example, using a genetic algorithm).

To describe ANNc, we use the following hyperparameters:

• n: the size of the embeddings e(A), e(B), e(C), e(D);

• |f1|: the number of CNN filters in f1;

• |f2|: the number of CNN filters in f2.

Hyperparameters 6.3

6.2.3 ANNr for analogy solving

Figure 6.5: Analogy Neural Network for retrieval/generation (zoom on Figure 6.1)

Solving the analogical equation A : B :: C : w can be tackled by finding how e(B) differs from
e(A) and generating an e(w) that differs from e(C) in the same way. Exchange of the Means (see
Section 2.3) allows us to obtain A : C :: B : w, so we can apply the same operation as before, to
obtain e(w) from e(B) using the difference between e(A) and e(C). The Analogy Neural Network
for retrieval/generation (ANNr) follows this intuition by using a two step process illustrated in
Figure 6.5.

Another intuitive explanation is based in the idea of the parallelogram: given a parallelogram
ABCw where point w is missing, it is possible to find the location of w by applying the vector

−−→
AB

on C or
−→
AC on B.

More specifically, ANNr uses three fully-connected layers in a process described below. Fig-
ure 6.5 contains annotations for each step of the process.

1. The input of the model is e(A), e(B), e(C), each of size n.

2. Two separate fully-connected layers f1, f2 with ReLU activation are applied respectively on
the concatenation of A and B and the concatenation of A and C. Intuitively, f1 determines
the relation between e(A) and e(B) on the one side while keeping the key content of e(B),
and similarly for f2 on e(A), e(C).

3. The outputs of f1 and f2 are concatenated and fed into a last fully connected layer f3, without
activation function, which generates ê(w) the embedding of the predicted ŵ.

The last step is to obtain ŵ from ê(w), by using either retrieval (see Subsection 6.1.1) or
generation (see Subsection 6.1.2).
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The intuitions given above rely on Exchange of the Means (implicitly for the parallelogram).
However, in some cases Exchange of the Means might be undesirable, as discussed in Subsec-
tion 2.3.2. In these settings, the intuition of the model changes slightly: f1 only determine
the relation between e(A) and e(B), and f2 only extracts the key content from e(C) using
e(A) as a form of context.

Remark 6.8

In preliminary experiments, we observed that using different weights for f1, f2 achieved better
performance than sharing the weights (which would result in a Siamese architecture). This
indicates a need for asymmetry between the relations between A and B on one side, and
between A and C on the other side. The different weights for f1, f2 are also necessary for the
intuition described in Remark 6.8.

Remark 6.9

To describe ANNr, we use the following hyperparameters:

• n: the size of the embeddings e(A), e(B), e(C), e(D);

• whether f1, f2 share their parameters or not (see Remark 6.9). By default, parameters
of f1, f2 are not shared.

Hyperparameters 6.4

6.3 Data augmentation

The postulates of APs described in Section 2.3 and recalled below can be used to generate multiple
valid APs (positive examples) and invalid APs (negative examples) from each AP in our dataset.
This process is a data augmentation process that extends the amount of data available for training,
and is necessary to obtain the negative examples required for training the classifier. Finally, it
allows the models to learn how to fit the axiomatic view of analogy by becoming invariant to them.

We consider 2 main ways to obtain positive examples using the postulates of APs:

1. so called trivial APs can be obtained using Reflexivity of Conformity and Identity, as any
value for the elements involved in the AP would result in a valid AP;

2. if examples of valid APs are available, it is possible to extend them using the equivalences
defined by the postulates of APs.

As for negative examples, we identify 3 systematic ways using the postulates of APs:

3. it is possible to generate invalid APs by breaching constraint postulates; this can be done by
altering examples of valid APs as done in the work of Lim, Prade, and Richard [LPR21], but
random data could also be used;

4. if examples of valid APs are available and a certain assumption is made as in [LPR21] (we
detail the assumption in Appendix C.3.2 Definition 3.2), it is possible to produce negative
examples using the permutations that are not equivalent to a valid AP;

5. if examples of invalid APs are available, it is possible to extend them using the equivalences
defined by the postulates of APs, in the same way as 2. for positive examples.

The data augmentation process used in the ANN framework went through several iterations
as we addressed limitations and experimented with additional features. In most of our work, we
follow the approach of Lim, Prade, and Richard [LPR21] and use only 2. for positive and 3. and 4.
for negative examples, as described in Subsection 6.3.1 below. In [MMC22], we extend the process
as described in Subsection 6.3.2 to account for variants of APs where Exchange of the Means is not
accepted, following the reasons discussed in Subsection 2.3.2. A more comprehensive generalization
of the data augmentation process is proposed in Appendix C.3, in which more control is offered on
the postulates and on the assumptions made on the data. However, this last generalization is not
yet supported by experiments and was pushed to the appendices for readability.
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6.3.1 Initial version of the data augmentation process

The data augmentation defined in [LPR19; LPR21] relies on the definition of APs as quadru-
ples fulfilling Symmetry of Conformity, Exchange of the Means, Reflexivity of Conformity, and
Uniqueness.

Valid APs. By using Symmetry of Conformity and Exchange of the Means, and given a valid
AP A : B :: C : D, we generate 7 additional APs. For each of the 8 equivalent permutations, we
list below one of the possible ways to obtain it:

• A : B :: C : D, the base form;

• A : C :: B : D by Exchange of the Means on the base form:
A : B :: C : D → A : C :: B : D;

• B : D :: A : C by Symmetry of Conformity on the preceding form:
A : B :: C : D → A : C :: B : D → B : D :: A : C;

• B : A :: D : C by Exchange of the Means on the preceding form:
A : B :: C : D → A : C :: B : D → B : D :: A : C → B : A :: D : C;

• D : C :: B : A by Symmetry of Conformity on the preceding form:
A : B :: C : D → A : C :: B : D → B : D :: A : C → B : A :: D : C → D : C :: B : A;

• C : D :: A : B by Symmetry of Conformity on the base form:
A : B :: C : D → C : D :: A : B;

• C : A :: D : B by Exchange of the Means on the preceding form:
A : B :: C : D → C : D :: A : B → C : A :: D : B;

• D : B :: C : A by Symmetry of Conformity on the preceding form:
A : B :: C : D → C : D :: A : B → C : A :: D : B → D : B :: C : A;

Applying Symmetry of Conformity or Exchange of the Means any number of times on any of this
set of 8 forms will produce a form already in the set: we say the set is stable by application of
the postulates. As all APs in the set are equivalent, the set can be called an equivalence class. In
Example 6.1 below, we list the 8 forms for an example.

“dog”:“dogs”::“cat”:“cats” is a valid AP in morphology. Using Symmetry of Conformity and
Exchange of the Means, we obtain a total of 8 valid APs:

• “dog”:“dogs”::“cat”:“cats”;

• “cat”:“cats”::“dog”:“dogs”;

• “dog”:“cat”::“dogs”:“cats”;

• “cat”:“dog”::“cats”:“dogs”;

• “dogs”:“cats”::“dog”:“cat”;

• “cats”:“dogs”::“cat”:“dog”;

• “dogs”:“dog”::“cats”:“cat”;

• “cats”:“cat”::“dogs”:“dog”.

All of the 8 forms above are valid APs in morphology, even if they appear to focus on different
morphological transformations.

Example 6.1: Permutations of a valid AP
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Invalid APs. From each of the 8 valid APs, we generate invalid APs following [LPR19; LPR21].
Given a valid AP A : B :: C : D, we generate the following invalid APs: B : A :: C : D,
C : B :: A : D, and A : A :: C : D, for a total of 24 invalid APs. An example of this process for a
morphological AP if detailed in Example 6.2 below.

To justify the generation of invalid APs, consider that a typical non-trivial AP A : B :: C : D
is such that C ̸= D. In such a situation, writing A : A :: C : D contradicts Reflexivity of
Conformity, Exchange of the Means, and Uniqueness: Reflexivity of Conformity which states that
if A : B :: A : B, and by Exchange of the Means A : A :: B : B are valid APs for all A,B. Then
by Uniqueness, as A : A :: B : B, A : A :: B : C =⇒ C = B. The latter statement is also known
as Strong Identity, i.e., Uniqueness applied on Identity.

As for B : A :: C : D and C : B :: A : D, we have to look at all possible permutations of
⟨A,B,C,D⟩ for the explanation. As stated in [LPR21], the 4! = 24 permutations of ⟨A,B,C,D⟩
can be partitioned in 3 non-overlapping subsets, and each one is a class of equivalence by appli-
cation of Symmetry of Conformity and Exchange of the Means. The 3 permutations ⟨A,B,C,D⟩,
⟨B,A,C,D⟩, and ⟨C,B,A,D⟩ are taken from each of the 3 equivalence classes, B : A :: C : D and
C : B :: A : D allow to reach the classes of equivalence in which A : B :: C : D is not present.
Considering that B : A :: C : D and C : B :: A : D are invalid APs if A : B :: C : D is a valid APs
does not follow from the postulates and is a strong assumption. Nonetheless, when considering
practical examples such as Example 6.2 below, the assumption appears sensible for a rather strict
view of APs.

“dog”:“dogs”::“cat”:“cats” is a valid AP in morphology. Using the permutations B : A :: C : D,
C : B :: A : D, and A : A :: C : D, we obtain the following.

• “dogs”:“dog”::“cat”:“cats” corresponds to B : A :: C : D. For “dogs”:“dog” we remove the
suffix “-s”, while for “cat”:“cats” the suffix is added, so the AP is considered invalid.

• “cat”:“dogs”::“dog”:“cats” corresponds to C : B :: A : D. The morphological transforma-
tion underlying “cat”:“dogs”, which can be interpreted as “replacing “cat” by “dogs” ”, is
not the same as in “dog”:“cats”, and the AP is considered invalid.

• Finally, “dog”:“dog”::“cat”:“cats” corresponds to A : A :: C : D, and goes against Strong
Identity: “dog” is “dog”, but “cat” is different from “cats”.

Example 6.2: Invalid permutations of a valid AP

Data augmentation after applying the embedding model. In our setting, the embedding
of a word will be the same no matter its position in the AP. Therefore, from our first work using
the data augmentation [Als+21a] on morphological APs, we apply data augmentation after the
embedding model. That way, an embedding computed once is reused for multiple permutations,
instead of re-computing it for each permutation of the same elements. Note that in Chapter 11, a
similar data augmentation process is used, but as the BERT embeddings we use differs for different
permutations of the elements, data augmentation is performed before computing the embedding.

6.3.2 Variants of the data augmentation process when Exchange of the
Means is not accepted

In [MMC22], and as reported in Section 7.6, we experiment with Exchange of the Means among
the most discussed postulate [Ant22, see also Subsection 2.3.2]. We consider three settings, de-
scribed below, that correspond to accepting (EM), explicitly rejecting (EM), and not taking into
account (¬EM) the Exchange of the Means. As a basis, we consider the full set of postulates
accepted in [LPR21], which includes: Symmetry of Conformity, Inversion of Ratio, Exchange of
the Means, Identity, Reflexivity of Conformity, as well as Uniqueness and its implications of Strong
Identity and Strong Reflexivity of Conformity. When removing the Exchange of the Means, some
permutations derived from it in Subsection 6.3.1 can instead be found with the Inversion of Ratio.

Setting EM corresponds to the standard setting where Exchange of the Means is accepted. To
differentiate with the other two settings, we call P+

EM the set of valid and P−
EM the set of invalid
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APs in that setting, defined in Subsection 6.3.1 and in Equations (6.3) and (6.4):

P+
EM = {⟨A,B,C,D⟩, ⟨C,D,A,B⟩, ⟨B,A,D,C⟩, ⟨D,C,B,A⟩,

⟨A,C,B,D⟩, ⟨C,A,D,B⟩, ⟨B,D,A,C⟩, ⟨D,B,C,A⟩}, (6.3)

P−
EM =

⋃
⟨A′,B′,C′,D′⟩∈P+

EM
{⟨A′, A′, C ′, D′⟩, ⟨B′, A′, C ′, D′⟩, ⟨C ′, B′, A′, D′⟩}. (6.4)

In setting ¬EM , Exchange of the Means is discarded while maintaining Inversion of Ratio,
which is the simplest way to refute the Exchange of the Means postulate. In practice, we simply
remove permutations that require Exchange of the Means (or Exchange of the Extremes) to be
obtained from ⟨A,B,C,D⟩. We also remove ⟨C ′, B′, A′, D′⟩ from P−

EM to obtain P−
¬EM , as its form

is related to Exchange of the Means. It results in the following sets of permutations:

P+
¬EM ={⟨A,B,C,D⟩, ⟨C,D,A,B⟩, ⟨B,A,D,C⟩, ⟨D,C,B,A⟩}, (6.5)

P−
¬EM =

⋃
⟨A′,B′,C′,D′⟩∈P+

¬EM
{⟨A′, A′, C ′, D′⟩, ⟨B′, A′, C ′, D′⟩}. (6.6)

For EM we go one step further in rejecting the Exchange of the Means by considering permu-
tations obtained through Exchange of the Means invalid APs. We add ⟨A′, C ′, B′, D′⟩ to P−

EM to
obtain P−

EM
, as this quadruple permutation is the result of Exchange of the Means. For the valid

APs, we use the same permutations as for ¬EM :

P+

EM
= P+

¬EM (6.7)

P−
EM

=
⋃

⟨A′,B′,C′,D′⟩∈P+

EM

{⟨A′, A′, C ′, D′⟩, ⟨B′, A′, C ′, D′⟩, ⟨C ′, B′, D′, A′⟩, ⟨A′, C ′, B′, D′⟩}
(6.8)

As discussed in Appendix D, after we designed the experiments from [MMC22], we identified
more relevant ways to generate the invalid permutations to use.

6.3.3 Balancing valid and invalid Analogical Proportions
The initial imbalanced valid and invalid APs. Initially, as described in [Als+21a; Als+21b],
we used the full set of valid APs and the invalid APs obtained from the base for training the ANNc
models, and the full set of 24 invalid APs was only used during testing. This resulted in 8 valid
for 3 invalid APs during training. In the experiments in Subsection 7.3.3, originally reported
in [Als+21c, Appendix B], we identified that an imbalance between the number of valid and the
invalid APs during training resulted in a corresponding imbalance in the performance on the two
classes of APs.

Sampling and up-sampling APs. Accordingly, in [MC24; MMC22], we added sampling to
ensure the same amount of valid and invalid training APs. In most experiments, we use the
standard setting (see Subsection 6.3.1, also EM in Subsection 6.3.2) with 8 valid APs, and sample
a subset of 8 permutations among valid APs. When using the EM and ¬EM (described in
Subsection 6.3.2) the number of valid and invalid APs differs, and sampling and up-sampling are
performed to obtain 8 valid and 8 invalid APs:

• if n = 8 permutations are available, all are used;

• if n > 8 permutations are available, 8 distinct permutations are randomly selected;

• if n < 8 permutations are available, 8− n randomly selected permutations are added, which
ensures that each permutation appears at least once. This last case is a form of up-sampling.

Filtering out invalid APs with the form of valid ones. Additionally, in [MC24], filtering is
added to ensure that the negative APs generated are not in the class of equivalence of the original
AP. Let us consider the AP

(“build ”, past tense) : (“build ”, past participle) :: (“go”, past tense) : (“go”, past participle),

indicating the lemma and the corresponding inflexion. The corresponding words are

“built” : “built” :: “went” : “gone”,

75



6.4. Training the models

which appears to breach Strong Identity (and after applying Symmetry of Conformity breaches
Strong Reflexivity of Conformity). Without filtering, this valid AP would also appear as an invalid
AP, which may cause issues, and such cases were reported in [Als+21c].

To summarize, for every AP in the dataset:

1. we compute the full set of valid (P+) and invalid (P−) APs;

2. we remove from P− permutations that have the same form as any of the valid APs:
P−′

= P− \ P+;

3. we up-sample or sample from P−′
, P+ to obtain 8 permutations from each.

6.4 Training the models

In this section, we detail the technical aspects of training ANNc and ANNr in Subsections 6.4.1
and 6.4.2, as well as the pre-training required for suitable performance of CNN-emb and AE-emb
in Subsections 6.4.3 and 6.4.4. For the most part, this section follows [MC24].

The experiments from [Mar+22a] (reported in Subsection 7.4.4) showed that pre-training the
embedding model helps the performance of ANNr. Using pre-training and fine-tuning (see Subsec-
tion 3.3.2) allows to first bring the embedding model to a globally viable state before specializing it
on the task, in our case analogy solving with ANNr. The pre-training process when using CNN-emb
is detailed in Subsection 6.4.3, and in Subsection 6.4.4 for AE-emb.

6.4.1 Training ANNc for analogy detection

Positive and negative examples. As its name indicates and as explained in Subsection 6.2.2,
ANNc was designed as a binary classifier. To properly train a binary classifier for analogy detection,
we need not only APs but also quadruples of elements that do not form an analogy, so-called
invalid APs. In terms of binary classification, valid APs are positive examples, while invalid
APs are negative examples. To obtain them, we use the data augmentation process described in
Section 6.3. As we progressed in our experiments and addressed limitations, the training process of
ANNc evolved with regards to data augmentation and class sampling, as described in Section 6.3.

Training criterion. To train ANNc we use the Binary Cross-Entropy loss, which is a standard
for binary classification. Using the class labels 1 for valid and 0 for invalid APs, the Binary
Cross-Entropy is written as follows:

LANNc(y, ypred) = −y log(ypred)− (1− y) log(1− ypred)

=

{
− log(ypred) if y = 1,

− log(1− ypred) otherwise,
(6.9)

where y is the true class and ypred is the classifier prediction. In such a setting, the classifier outputs
a probability ypred to be in class 1, i.e., the probability that the AP is valid. The probability that
the AP is invalid, i.e., in class 0, is 1− ypred.

6.4.2 Training ANNr for analogy solving

In this subsection, we summarize the training procedure for ANNr. After our initial experiments
in [Als+21c], several variants of the training procedure were tested in [Mar+22a]. These variants
differ mainly in terms of pre-training of the embedding model and in the criterion used for training
ANNr. All the variants are detailed in the paragraph corresponding to the training criterion.

Examples of analogical equations. To train ANNr, we use analogical equations of the form
A : B :: C : x, x = D. To maximize the number of training examples and improve the ade-
quation between the ANNr and the postulates, we perform data augmentation as described in
Subsection 6.3.1. We generate 8 analogical equations from each AP A : B :: C : D in the data:
A : B :: C : x, x = D, A : C :: B : x, x = D, D : B :: C : x, x = A, C : A :: D : x, x = B,
C : D :: A : x, x = B, B : A :: D : x, x = C, D : C :: B : x, x = A, B : D :: A : x, x = C.
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We perform no experiment with the data augmentation variants mentioned in Subsection 6.3.2,
so whenever data augmentation is mentioned for ANNr, we refer to the 8 analogical equations
mentioned above.

Remark 6.10

Training criterion. A standard way to train a regression model in ML is to minimize a distance
between the predicted and expected points (respectively ê(D) and e(D) in our setting), for instance
using the L2 distance or MSE:

MSE
(
e(D), ê(D)

)
=

1

n

∑
i∈[1,n]

(
e(D)i − ê(D)i

)2

, (6.10)

where e(D)i is the i-th component of e(D) and n is the number of dimensions of the embedding
e(D). However, when we trained ANNr together with CNN-emb using MSE in our preliminary
experiments, we observed a collapse of the embedding space, defined as “the [embedding model]
produce[ing] constant or non-informative vectors” in [BPL22]. For instance, all the embeddings
may be moved in a smaller area of the embedding space by multiplying them by 10−5, which
minimizes the MSE properly, however the actual performance of the model stays the same as the
relative distance between embeddings does not change.

In [Mar+22a], we experimented with several training criteria to mitigate this issue, namely
Lnorm. other, Lnorm. random, LCEL, and Lall, defined hereafter. In the experiments from [Als+21c;
Mar+22a] reported in Subsection 7.4.4, we compare the performance obtained with each of these
criteria.

A straightforward way to mitigate the embedding space collapse is to normalize Equation (6.10),
the distance between the actual and the predicted embeddings, using the other embeddings in
the dataset. Normalizing using the full distribution of distances between embeddings would be
very accurate, but computing embeddings on the full dataset for each training step would be
computationally heavy.

Instead, in [Als+21c] we introduced Lnorm. other, which uses only e(A), e(B), e(C), e(D) the
embeddings of A,B,C,D, as they have already been computed before data augmentation. It
corresponds to MSE(e(D), ê(D)) normalized by the average of the pairwise distances between
e(A), e(B), e(C), e(D):

Lnorm. other =
1 + 6×MSE

(
e(D), ê(D)

)
1 +

∑
a,b∈{(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)} MSE(e(a), e(b))

, (6.11)

with the 1 in the denominator as a safeguard against divisions by 0. This criterion ensures that
the distance between e(D) and ê(D) is minimized relatively to the distance between the other
elements, and relies on the embeddings of A,B,C,D that have already been computed in our
training procedure for normalization.

An alternative introduced in [Mar+22a] is to normalize with regards to some random embedding
e(z) taken from the dataset:

Lnorm. random =
1 +MSE

(
e(D), ê(D)

)
1 +MSE

(
e(z), ê(D)

) (6.12)

As the model is trained with batches of randomly selected samples, an e(z) unrelated to e(D)
can be obtained by permuting e(D) along the batch dimension. This is cheaper to perform than
Lnorm. other.

We also included in the study [Mar+22a] the Cosine Embedding Loss (CEL), a criterion widely
used to minimize distances between embeddings when the angle between the embeddings is more
relevant than the euclidean distance:

CEL
(
e(D), ê(D), y

)
=

1− cos
(
e(D), ê(D)

)
, if y = 1

max(0, cos
(
e(D), ê(D)

)
), if y = 0

, (6.13)
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with y = 1 if e(D) and ê(D) should be close and y = 0 otherwise. For similar reasons as
for Lnorm. other, given an analogy A : B :: C : D we want ê(D) to be closer to e(D) than to
e(A), e(B), e(C). When expressed by the CEL, the previous statement becomes:

LCEL = CEL
(
e(A), ê(D), 0

)
+ CEL

(
e(B), ê(D), 0

)
+ CEL

(
e(C), ê(D), 0

)
+ CEL

(
e(D), ê(D), 1

)
.

(6.14)

We also considered the sum of all the above loss terms to determine whether their combination
overcomes the limitations of each:

Lall = LCEL + Lnorm. other + Lnorm. random (6.15)

Note that in our implementation, the gradient of the loss is propagated to all the involved
embeddings, for instance, e(A), e(B), e(C), e(D), ê(D) for LCEL and Lnorn. other. This allows
to adapt e(A), e(B), e(C) to ensure they contain the necessary information for analogy solving,
but is also the source of the embedding space collapse.

Remark 6.11

6.4.3 Pre-training CNN-emb for ANNr

In [Als+21c; MMC22], we confirmed the benefits of pre-training CNN-emb before analogy solving
with ANNr. The corresponding experiments are reported in Subsection 7.4.4.

Contrary to AE-emb which can be pre-trained as described in Subsection 6.4.4, CNN-emb is
not designed to be trained without a task. We leverage the analogical data, which is already needed
to train ANNr, to pre-train CNN-emb using ANNc on the analogy detection task. To do so, we
follow the standard ANNc training (Subsection 6.4.1), during which the weights of the CNN-emb
model are updated starting from a random initialization.

Fine-tuning CNN-emb when training ANNr. When training ANNr combined with CNN-
emb (CNN+ANNr), the parameters of the CNN-emb are frozen (i.e., not updated) at the start of
training. This allows ANNr to first learn to use the existing embedding space before fine-tuning
the latter for analogy solving, and in preliminary experiments, this provided significantly better
results than fine-tuning CNN-emb from the start.

Initially, in [Als+21c] CNN-emb was frozen for 10 epochs. Among the results reported in
Chapter 7, only Section 7.5 is in this setting. In our other experiments CNN-emb is frozen until
ANNr converges, i.e., until there is no improvement in the loss on the development set. This last
setting was found to give better results in [Mar+22a].

6.4.4 Pre-training AE-emb for ANNr

This subsection summarizes the task and criterion for pre-training AE-emb, following [Cha+22].

Reconstruction task. AEs are designed to be trained on an reconstruction task: in our setting,
a training dataset containing words is presented to the AE-embs which is trained to encode-decode
each word and minimize the error between the predicted word and the original one, as mentioned in
Subsection 3.3.3. Reconstruction tasks are interesting because they allow to pre-train embedding
models without needing labeled data.

Training criterion. We use the Cross Entropy loss to train the AE-emb, as it is the common
way to train a model where each output is one among a set of classes: in our case, each output is
one among a set of characters. In the following formula, we write LAE the loss used for AE-emb,
which is exactly the Cross Entropy but re-written and simplified for our setting:

LAE(w, decoder(ê(w))) = −
1

|w|

|w|∑
i=1

∑
c∈V

wc,i log (decoder(e(w))c,i), (6.16)
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where w is the word to encode-decode, |w| is the number of characters to predict including the
EOW character, V is the character vocabulary (including the EOW character), wc,i is 1 if the i-th
character of w is c and 0 otherwise, decoder(ê(w)) is the output of the decoder and decoder(ê(w))c,i
is the predicted probability that the i-th character is c.

Fine-tuning AE-emb when training ANNr. When training ANNr combined with AE-emb
(AE+ANNr), we leverage the differences between the expected words and the prediction of the
decoder by adding the reconstruction loss term LAE of the AE-emb to the Lnorm. random of ANNr.
This results in a convex combination of Lnorm. random and LAE:

LAE + ANNr(e(D), ê(D)) = (1− λ)Lnorm. random(e(D), ê(D)) + λLAE(D,decoder(ê(D))). (6.17)

The parameter λ = min (max (epoch/5, 0.01), 0.99) evolves during training, such that at the begin-
ning of the training λ = 0.99 and ANNr is training almost alone without altering the performance
of the AE-emb. After 5 epochs, λ = 0.01 and LAE is used almost alone, and the AE-emb is fine-
tuned for analogy solving while training ANNr. This process is inspired by results from [Mar+22a]
detailed in Subsection 6.4.3, where delaying the fine-tuning of CNN-emb when training ANNr re-
sulted in better performance than fine-tuning CNN-emb from the start. Additionally, in preliminary
experiments, using only LAE(D,decoder(ê(D))) to train AE+ANNr achieved poor performance,
which motivated the use of the combined loss.

6.5 Discussion and perspectives

Performance of the ANN framework and design choices. The ANN framework we de-
fined in this chapter offers multiple ways to tackle analogy detection and analogy solving. We
detail in next chapter experiments that demonstrate the performance of the ANN framework on
analogy detection and analogy solving, and we discuss the main pros and cons of each method in
Subsection 7.7.4. In Chapter 7, we also present results from preliminary experiments that guided
the design decisions mentioned in the present chapter. These experiments are discussed in more
detail in Subsection 7.7.2.

Alternatives to the current models. The ANN framework we study offers multiple ways to
tackle analogy detection and analogy solving, and we discuss the main pros and cons of each method
in Subsection 7.7.4. Despite the alternatives we propose, it can be argued that the architecture of
ANNc and ANNr are not the most fitting for the manipulation of APs, yet they are relatively easy
to grasp intuitively and achieve good performance.

An alternative to ANNr was proposed by Mao and Lepage [ML23] for analogy solving between
sentences, with different intuitions with regards to the properties of APs. It would be interesting
to extend our results to this new architecture.

For AE+ANNr and parallelogram rule combined with AE-emb (AE+par.), it is possible to
estimate the likelihood of multiple solutions instead of considering only the most likely characters
for each position. To do so, we can use a similar approach as Alea and perform a Monte Carlo
estimate of the likely answers. We implemented this system in the ANNa platform (see Chapter 9),
which allows to measure the confidence of the model in specific solutions. On some manually
crafted examples, the confidence in the invalid answer was low and the expected output had a close
confidence, a behavior similar to what we observed in the top 10 candidates with CNN+ANNr.

One limitation of the ANNc and ANNr combination is that multiple models are required to
cover analogy detection and analogy solving. We attempted to circumvent this limitation by using
ANNc combined with CNN-emb (CNN+ANNc) as a retrieval model, with encouraging results.
However, it would be useful to have an approach that is, by design, able to handle both aspects of
analogical reasoning. We performed preliminary experiments involving backpropagation through
CNN+ANNc to alter specific dimension of the input embeddings. This kind of approach would
allow to generate both solutions, by maximizing the classification score of CNN+ANNc, and coun-
terfactual examples (i.e., plausible counterexamples that are close to the decision border [KS20;
Kus+17]), by minimizing the classification score. Our preliminary experiments yielded promising
results on some artificial data distributions, but many limitations remain to be addressed.
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This chapter details our experiments with the ANN framework (see Chapter 6) on the Siganalo-
gies dataset (see Chapter 5). For each experiment, we interpret the results and conclude in the
corresponding section or subsection. We also conclude this chapter with a discussion of our con-
tributions and results presented throughout Sections 7.3 to 7.5, in Section 7.7.

Before describing our experiments, we give some general information on our experimental setup
in Section 7.1, and we summarize technical aspects of the symbolic baselines in ??. We then detail
several experiments on models trained on each language for analogy detection in Section 7.3,
and analogy solving in Section 7.4. In Section 7.5, we perform an ablation study on both the
analogy detection and analogy solving tasks to determine their tolerance w.r.t. perturbations
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in the embedding space. Experiments with models transferred between languages or trained on
multiple languages are described in Chapter 8.

We also study how the analogical data augmentation impacts the behavior of the model for
analogy detection when Exchange of the Means is considered differently, following discussions on
how to handle postulates of APs that are not suitable for some application settings [Als+22b;
Ant22, see also Subsection 2.3.2]. These experiments are described in Section 7.6, and refer to
variants of the data augmentation process defined in Subsection 6.3.2.

7.1 General information on the experiments of this chapter

In this section, we explain and define elements of the experimental setup that are common to all
our experiments. In Subsection 7.1.1, we define the measures we use to evaluate the performance
of our models on different tasks, and list the models themselves and their hyperparameters in
Subsection 7.1.2. The manner in which data is split into the training set, development set, and
test set is explained in Subsection 7.1.3.

7.1.1 Performance measurement
This subsection contains the definitions of all the measures we use to compare models in our
experiments.

Performance on the analogy detection task. To measure the analogy solving performance
of a model we use the accuracy. We separate the accuracy for each class, namely, valid or invalid
APs. In some cases we also consider the “base” form of the AP, which is the permutation present
in the data. In general, classification accuracy is defined as:

Accuracy for a given class is the rate of examples (in our case, APs) on a dataset for which
the expected class is given (in our case, either valid or invalid):

acc. on valid APs =
# correctly predicted valid APs

# valid APs
,

acc. on invalid APs =
# correctly predicted invalid APs

# invalid APs
.

Definition 7.1: Accuracy for a class in the analogy detection task

When differentiating between the performance on valid and invalid permutations is unnecessary,
we aggregate them using the balanced accuracy:

We call balanced accuracy in the context of the analogy detection task, the arithmetic mean
of the accuracy on valid and on invalid APs, without considering the number of examples in
each class:

bal. acc. =
acc. on valid APs + acc. on invalid APs

2
.

Definition 7.2: Balanced accuracy for the analogy detection task

Performance on the analogy solving task. To measure the analogy solving performance of
a model we use either the retrieval accuracy for retrieval models or the generation accuracy for the
generation models:

Accuracy for analogy solving is the rate of queries (in our case, analogical equations) on a

Definition 7.3: Accuracy for the analogy solving task
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dataset for which the expected solution is given:

acc. =
# correctly predicted solutions

# analogical equations
.

For retrieval models that provide a ranking of possible solutions, this measure can be extended to
consider the top k retrieved candidates:

For hit rate at k (written hit@k), a query (in our case an analogical equation) is considered
a success if the expected solution is within the top k retrieved solutions. Hit rate at k for a
retrieval model is the rate of such successes on a dataset:

hit@k =
# times the expected solution is in the top k retrieval results

# analogical equations
.

Definition 7.4: Hit rate at k for the analogy solving task

By definition, for a given model and dataset, if k < k′ then the hit rate at k is lower or equal to
the hit rate at k′. Note that hit rate at 1 is exactly the retrieval accuracy.

Performance on the reconstruction task. For the reconstruction task (see Subsections 3.3.3
and 6.4.4), we measure the performance of the AE-emb using word-level accuracy:

The word-level accuracy for the word reconstruction task is the rate of words where all the
characters are correctly predicted, at the expected position:

acc. =
# fully correct predicted solutions

# analogical equations
.

Definition 7.5: Word-level accuracy for the reconstruction task

The name of word-level accuracy is by opposition with character-level accuracy, which is
defined as either: (i) the rate of characters correctly predicted over the whole set of predictions,
or (ii) the average over all predictions of the rate of correctly predicted characters. The
first variant gives the same weight to all characters not matter the word, while the second
one considers characters in a short word comparatively more important than characters in a
longer word. The second variant normalizes the character accuracy by the length of the word
containing the character.

Remark 7.1

Characters shared between two languages. In some of our experiments (see Subsection 7.3.4
and Chapter 8), as we use character-level embedding models, we are interested in comparing the
sets of characters present in different settings. The settings can represent the same language (as in
Subsection 7.3.4) or different languages (as in Chapter 8). We use the coverage of characters from
one set by the characters of another set to compare the sets of characters of the settings:

Given two sets of characters C1, C2, the coverage of C2 by C1 is:

char. coverage =
|C2 ∩ C1|
|C2|

.

Definition 7.6: Character coverage

Character coverage is not symmetric, so when we need a symmetric measure of the amount
of character shared by two sets of characters, we use the Jaccard index of character sets instead:
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Given two non-empty sets of characters C1, C2, the Jaccard index is defined as:

char. Jaccard =
|C1 ∩ C2|
|C1 ∪ C2|

.

Definition 7.7: Character Jaccard index

7.1.2 Model variants, hyperparameters and training duration
In our experiments we consider three models using the CNN-emb: ANNc combined with CNN-
emb (CNN+ANNc), ANNr combined with CNN-emb (CNN+ANNr), and 3CosMul combined with
CNN-emb (CNN+3CosMul). We do not present 3CosAdd, as it tends to have lower performance
according to [LG14]. We also consider AE-emb as an AE model for the reconstruction task, as
well as an embedding model for ANNr combined with AE-emb (AE+ANNr) and parallelogram
rule combined with AE-emb (AE+par.). Additionally, we consider models that do not use any
embedding model, described in Section 7.2, namely Lepage’s Nlg toolkit (Nlg), Alea, and Kolmo.

CNN+ANNc is our main analogy detection model, together with the baselines Nlg, Alea@1,
Alea@10, Kolmo@1, and Kolmo@10, described in ??.

For analogy solving we use CNN+ANNr, CNN+3CosMul, AE+ANNr, and AE+par., as well as
baselines Alea and Kolmo. We also use CNN+ANNc as a makeshift retrieval model, as mentioned
in Remark 6.7 (Subsection 6.1.1). To do so, given an analogical equation A : B :: C : x we use the
same list of words used as candidates for retrieval models, and we solve the retrieval formula:

ANNc retrieval(A,B,C, candidates) = argmax
D∈candidates

ANNc(e(A), e(B), e(C), e(D)) (7.1)

where ANNc(e(A), e(B), e(C), e(D)) ∈ (0, 1) is the score given by CNN+ANNc to the AP A : B ::
C : D. In other words, we find the candidates that makes the analogical equation as “analogical”
as possible according to CNN+ANNc.

Hyperparameter values. For CNN-emb, the only hyperparameter not fixed in Hyperparameter
box 6.1 is the character embedding size m that we set to 64. Some of our early experiments, reported
in Subsections 8.1.1 and 8.1.2 used m = 512 for Japanese, due to the larger number of characters.
However, this exception was dropped as it did not have enough empirical grounding in terms of
performance.

For AE-emb, we use one-hot vectors instead of character embeddings, so m is the number of
characters of the training language (using the notation from Hyperparameter box 6.2). The target
word embedding size is |e(w)| = 256.

For ANNc, the expected word embedding size is n = 80 in all our experiments due to the
structure of CNN-emb. The first CNN layer uses |f1| = 128 filters and the second |f2| = 64 filters
(using the notation from Hyperparameter box 6.2).

The expected word embedding size for ANNr is n = 80 when working with CNN-emb, and
n = 256 when working with AE-emb. The parameters of layers f1 and f2 are not shared, as
mentioned in Remark 6.9.

Training duration and optimization algorithm. For all models except AE-emb, we use
Adam [KB15] for optimization with a learning rate of 10−3, except when fine-tuning CNN-emb
with CNN+ANNr, in which case a learning rate of 10−5 for CNN-emb gave better results.

To pre-train AE-emb, NAdam [Doz16] was used with a learning rate of 10−2 as it gave
marginally better results than Adam. This pre-training for AE-emb lasts for 100 epochs or until
the AE-emb LAE on the development set stops improving.

We use a maximal training time of 20 epochs for CNN+ANNc, as it gave sufficiently good results
without over-fitting. In addition to the pre-training of either CNN-emb or AE-emb, CNN+ANNr
and AE+ANNr are trained for 50 additional epochs. For CNN+ANNr, unless specified otherwise,
CNN-emb is frozen until Lnorm.random stops improving, then unfrozen for the remaining epochs.
A similar mechanism is integrated in LAE+ANNr.

7.1.3 Data in the training, development, and test sets
For our experiments using Siganalogies, we use the three sets of examples used in traditional DL(as
explained in Subsection 3.1.2):
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• the training set contains the examples used to train the model, i.e., the training examples;

• the development set contains examples not seen during training and used to make decisions
regarding model training: for instance, to identify overfitting and to interrupt the training
when the performance stops increasing (the so called early stopping);

• the test set to measure the final performance, with examples that appear in neither the
training set or development set.

Dataset split for analogy detection and analogy solving. For APs, we follow the training
and test split from Sig16, Sig19, and JBATS when possible. The training set is split into training
and development analogies. We exclude duplicates of the form A : B :: C : D ↔ C : D :: A : B,
ad they will be generated by data augmentation, but we keep analogies of the form A : B :: A : B.
Unless specified otherwise, we randomly sample 500 development and 5000 test APs, and at most
50000 training APs (before augmentation). Given a language from either Sig16, Sig19, or JBATS,
the split between training, development, and test APs is the same across all experiments. However,
the APs sampled within these sets may differ.

For some languages, such as Japanese, the number of APs is insufficient to sample 50000 train-
ing, 500 development, and 5000 test APs. In that case, we reduce the number of training examples.
For comparability, we keep the number of training steps nsteps = nepochs×ntraining examples constant
across all languages. As such, reducing the number of training examples will increase the number
of epochs, resulting in a comparable training duration for all languages.

Languages with small test sets. Maltese, Navajo, and Turkish from Sig16 were tested on only
3707, 4843, and 11360 APs (before augmentation) respectively, due to the smaller size of the test
dataset.

Dataset split for reconstruction task. For the pre-training of the AE-emb, we use words
instead of APs. We consider all the words appearing in the original data from Sig16, Sig19 and
JBATS as a dataset of words for the language, without distinction between the training set,
development set, and test set. As such, this data includes words that do not appear in any of
the APs selected for the training set, development set, or test set. We randomly sample 500
development and 500 test examples, and at most 40000 training examples (before augmentation),
with no overlaps between the sets. If too few words are available, we use the procedure described
at the end of the previous paragraph and reduce the training set.

7.2 Additional details for the symbolic baselines

We differentiate our three symbolic baselines Alea [LYZ09], Nlg [FL18], and Kolmo [Mur+20] from
the vector-based baselines parallelogram rule, 3CosAdd, 3CosMul, as the latter use our embed-
ding models. The symbolic baselines are introduced in Subsection 4.3.2, while the vector-based
approaches are presented in Subsections 3.4.1 and 6.2.1.

In this section, we provide technical details on the symbolic baselines we use in this chapter. The
Alea and Kolmo models are not designed for analogy detection, so we perform several adaptations
described in Subsections 7.2.2 and 7.2.3 to use them for analogy detection.

Finally, in Subsection 7.2.4, we describe an issue we encountered regarding the time required
to apply Alea and Kolmo on Siganalogies.

7.2.1 Analogy detection with Lepage’s Nlg toolkit

We use the analogy classifier (is_analogy in nlg/Analogy/tests/nlg_benchmark.py) from Fam
and Lepage’s toolkit [FL18] to classify analogies in the same manner as with our DL model.
The approach uses the algorithm defined in [Lep98], that we refer to as as Nlg. It is based
on two processes described below. For further implementation details, refer to verifnlg() in
nlg/Analogy/C/nlg.c.
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Edit distance and longest common subsequence. To do analogy detection, Nlg first pro-
duces alignment matrices between two words w1, w2. The alignment matrix itself is not used
for analogy detection, however the matrices are used to compute the edit distance pdist be-
tween w1, w2, using insertion (cost 0), replacement (cost 1), and deletion (cost 1). As insertion
and deletion do not share the same cost, pdist(w1, w2) may differ from pdist(w1, w2). For in-
stance, pdist(“unlike”, “ like”) = 2 (2 deletions) while pdist(“ like”, “unlike”) = 0 (2 insertions).
The similitude is the length of their longest common subsequence, obtained with sim(w1, w2) =
|w1| − pdist(w1, w2).

Constraint to fulfill to have a valid AP. To identify valid APs process is a constraint on the
presence of characters, following the Distribution postulate (see Subsection 2.3.1) and formulated
as |A| ≥ pdist(A,B) + pdist(A,C). If |A| > pdist(A,B) + pdist(A,C), then some subsequences
of A appear in both B and C, and therefore appear also in D by Exchange of the Extremes and
Distribution. These subsequences are noted common(A,B,C,D), and checking whether A : B ::
C : D holds is assimilated to checking if |A| = pdist(A,B) + pdist(A,C) + common(A,B,C,D).

The approach in [FL18; Lep98] also defines an analogy solving algorithm, however we do not
use it in our analogy solving experiments as it is outperformed by Kolmo in most cases, as
shown by Murena, Al-Ghossein, et al. [Mur+20].

Remark 7.2

7.2.2 Analogy solving and analogy detection with Alea

As described in Subsection 4.3.2, Alea [LYZ09] uses random slicing and merging of the character
strings A, B and C to obtain potential solutions to A : B :: C : x.

Principle of the approach. Two operations are used: a complement operation w1 \ w2 and
a shuffle operation w1 ◦ w2. Considering w1, w2 as sequences of symbols, w1 ◦ w2 is defined by
Langlais, Yvon, and Zweigenbaum as “the strings obtained by selecting (without replacement)
alternatively in w1 and w2”, while keeping the relative order of the characters from w1 and from
w2. For instance, “DOG” ◦ “cat” contains “DOGcat”, “catDOG”, “cDatOG”, “DcOaGt”, etc. For
w1 \w2, the characters from w2 are removed from w1, in a left to right manner, and w1 \w2 is the
set of all possible results. For instance, “cactus” \ “cat” = {“cus”}.

Estimation of the likelihood of a solution. The Alea approach performs a Monte Carlo
estimation of the most likely elements in (B ◦C)\A, which are considered the most likely solutions
to A : B :: C : x. The Monte Carlo estimation is performed by randomly sampling x′ from
B ◦ C, then randomly sampling x from x′ \ A. The random process is repeated s times, in our
case s = 1000 following [LYZ09]. How frequently a particular word appears in the sample is an
estimates of the likelihood in (B ◦ C) \A.

Variants of the model. For analogy solving, we use the most likely element obtained from the
Monte Carlo estimation as the solution to the analogical equation. For analogy detection, we use
two different variants to classify A : B :: C : D:

• Alea@1: if D the most likely solution to A : B :: C : x, the AP is classified valid, and invalid
otherwise;

• Alea@10: if D appear in the 10 most likely solutions to A : B :: C : x, the AP is classified
valid, and invalid otherwise.

Note that Alea@1 is biased in favor of invalid and Alea@10 in favor of valid APs, as if D is among
the solutions in rank 2 to 10 the AP will be classified invalid with Alea@1 and valid with Alea@10.

7.2.3 Analogy solving and analogy detection with Kolmo

As mentioned in Subsection 4.3.2, Kolmo [Mur+20] estimates the least complex transformation f
that is applicable on C and such that B = f(A) to obtain potential solutions to A : B :: C : x.
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Principle of the approach. The approach considers transformations f that are defined on
subsets of all possible strings writable with an alphabet. If f is defined for A,C, then A : f(A) ::
C : f(C) is considered valid.

To estimate the Kolmogorov complexity of A : f(A), a procedure producing both A and f(A)
is described by a sequence of instructions associated with a cost. The sum of all costs of these
instructions is the estimated complexity. The set of instructions is defined as Σ = A ∪ N ∪
{gr, let,mem, ?} ∪ {:, ::}, with A the alphabet of symbols manipulated by the language. Using
this language, a procedure is constructed as a sequence of elements from Σ, written separated by
commas. The instructions in the language can interact with a memory, structured as a heap.

The instruction let delimits a memory storage, which can contain variables noted with the
instruction ?i for i ∈ N, where i is the index of the variable. This memory storage is added to the
memory heap, and can be accessed using the instruction mem, j for j ∈ N, with j the depth of the
instruction to retrieve in the heap. Right after the call to mem, j, the content of the variables is
specified. For instance: let, ?0, ?0, let defines a duplication operation, and calling mem, 0, ‘a′ will
specify the variable ?0 = ‘a′ ∈ A, resulting in aa. As many values are expected after mem, j as the
number of variables in the instruction, if any. The instruction gr delimits a group of letters from
A, that is used as a single variable value for mem, j. For instance, after defining the duplication
operation above, mem, 0, gr, ‘a′, ‘b′, gr will result in abab, as gr, ‘a′, ‘b′, gr corresponds to ab.

Finally, the operations are compounded to produce the form of A : B :: C : D, using
the template let, . . . , :, . . . , let to define the input and result of transformation f , followed by
mem, 0, . . . , ::,mem, 0, . . . , to define the input for let, . . . , :, . . . , let that will produce A : f(A) on
one side, and C : f(C) on the other. See examples of such series of instructions in [Mur+20, Figure
1]. To evaluate the complexity of f , the following costs are used: gr costs 2, any character from
A ∪ {let, :, ::} costs 3, mem, i and ?i both cost i+ 4.

The approach was shown to outperform Alea and the analogy solving approach from [FL18;
Lep98] (as mentioned in Remark 7.2) on the dataset Kakenhi-Sig16 [Lep17], see [Mur+20, Table
2].

Variants of the model. For analogy solving, we use the solution produced by the least complex
transformation as the solution to an analogical equation. For analogy detection, we use two different
variants to classify A : B :: C : D, following what we use for Alea:

• Kolmo@1: if D the solution to A : B :: C : x produced by the least complex transformation,
the AP is classified valid, and invalid otherwise;

• Kolmo@10: if D appears in the 10 most likely solutions to A : B :: C : x, the AP is classified
valid, and invalid otherwise.

To obtain the 10 most likely solutions to A : B :: C : x, the likelihood of a solution w is estimated
as l(w) =

∑
f∈Fw

2|f |, for Fw the set of transformations that produce w as a potential solution to
A : B :: C : x, and |f | the total cost of the instructions in f . Similarly to Alea@1 and Alea@10,
Kolmo@1 is biased in favor of invalid and Kolmo@10 in favor of valid APs.

7.2.4 Run time issues on Alea and Kolmo

On some examples from Siganalogies, Alea and Kolmo require a significantly longer time compute
the solution to the analogical equation, with most examples requiring less than a second to be
solved while a few others require significantly more than 10 seconds.

In particular, for Sig16, we identified that the length of words (in particular, Finnish and Ger-
man) and the number of repeated adjacent letters (in particular, Finnish and Navajo) correlate with
this slowdown. As both characteristics are particularly present in Finnish, this language presented
the most significant slowdown of Alea and Kolmo, and in particular Alea@10 and Kolmo@10, that
require a larger amounts of estimates to obtain the 10 most likely words.

To circumvent this issue, in our first experiments [Als+21a; Als+21c; MMC22], for the most
problematic language of Sig16 (Finnish), we reduced the number of examples used for the evalu-
ation of Alea and Kolmo and excluded Alea@10 and Kolmo@10. In later experiments, to avoid
stalling the obtention of results, we interrupt the analogy solving and analogy detection processes
that take longer than 10 seconds and consider that the baseline failed to solve the analogical equa-
tion. In terms of analogy detection, this corresponds to an invalid AP. The timeout, introduced
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in [Mar+22a], allows to compare more fairly Alea and Kolmo with the other approaches, as we use
the same test examples.

Details of the portion of examples resulting in timeout observed on the test data are reported
in Subsection 7.2.4. From the low timeout rate, it can be seen that the timeout process minimally
impacts the measured performance.

Alea Kolmo

Arabic – 0.039%
Finnish 0.040% 3.802%
Georgian – 0.026%
German 0.023% 1.998%
Hungarian 0.002% 0.102%
Maltese – 0.330%
Navajo – 0.018%
Russian – 0.334%
Spanish – 0.188%
Turkish 0.028% 0.496%

Japanese – –

Table 7.1: Extract from Table 2 from [Mar+22a]. Timeout rate of Alea and Kolmo on the test
sets of Sig16 and JBATS. When nothing is specified (“–”), the timote rate is 0.

7.3 Analogy detection performance

This section details our experiments on analogy detection. The performance of the models using
the most up to date training procedure and of the baselines mentioned in Section 7.2 is detailed
in Subsection 7.3.1, while the experiments that led to this training procedure are reported in
Subsections 7.3.2 and 7.3.3. We also explore the performance of the CNN+ANNc model when
transferred to different data from the same language in Subsection 7.3.4, leveraging redundant
languages between Sig16 and Sig19.

7.3.1 General observations

In [Als+21a; Als+21b], we performed experiments with the data augmentation process with 8
valid and 3 invalid permutations for each training example, as described in Subsection 6.3.1. We
later reproduced these experiments with using the sampling described in Subsection 6.3.3 to obtain
better overall performance. The results are reported in Table 7.2. Only the results for 8 valid and
8 invalid permutations are presented in this subsection, see Subsection 7.3.3 for the results with
the 8 valid and respectively 3 and 24 invalid permutations.

Results and discussion for CNN+ANNc. In the results presented in Table 7.2, the CNN+ANNc
model significantly outperforms the best baselines for valid analogies (paired Student t-test p ≈
0.00027) and there is no significant difference for invalid analogies (paired Student t-test p ≈ 0.869).
For each language, we observe very significant differences between CNN+ANNc and the baseline
a p-value p < 10−10 for the 1-sampled t-test.

Using CNN-emb, ANNc manages to capture the features of morphological APs necessary for
analogy detection. Results on transferability experiments Section 7.6 and Chapter 8 also indicate
that the processing of AP itself is correctly embedded in the classifier part, while the morphological
information dependant on the language appears to be mostly encoded in the embedding model.

Baseline performance. In Table 7.2, the reported results are taken from [Als+21a]. As men-
tioned in Subsection 7.2.4, the experiments in [Als+21a] were performed without timeout. Instead,
for Finnish, Alea@1 and Kolmo@1 were run on 8% of the data (4000 instead of 50000 base APs),
while Alea@10 and Kolmo@10 where not applied (see Subsection 7.2.4 for a discussion). We noticed
in [Als+21a] that between the 5 baselines (Nlg, Alea@1, Alea@10, Kolmo@1, and Kolmo@10), the
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ANNc (ours) Best Baseline
Valid APs Invalid APs Valid APs Invalid APs

Arabic 99.39 97.40 34.21 (Alea@10) 97.79 (Kolmo@1)
Finnish 99.58 97.98 25.60 (Nlg) 98.78 (Alea@1)
Georgian 99.87 92.06 93.20 (Kolmo@10) 95.21 (Alea@1)
German 99.42 95.24 86.90 (Alea@10) 97.19 (Alea@1)
Hungarian 99.84 98.71 36.80 (Kolmo@10) 98.40 (Kolmo@1)
Maltese 99.88 77.79 78.05 (Alea@10) 69.29 (Kolmo@1)
Navajo 99.00 93.50 21.45 (Kolmo@10) 94.93 (Kolmo@1)
Russian 96.89 89.96 42.37 (Alea@10) 93.88 (Nlg)
Spanish 99.69 82.03 85.90 (Alea@10) 86.62 (Nlg)
Turkish 99.70 91.93 44.76 (Alea@10) 91.40 (Kolmo@1)

Japanese 100.00 98.61 19.20 (Kolmo@10) 98.13 (Nlg)

Table 7.2: Table 2 from [Als+21c]. Classification accuracy (in %) on the test sets of Sig16 and
JBATS, against the best performing baseline. For Finnish, Alea@1 and Kolmo@1 were run on
8% of the data (4000 instead of 50000 base APs, result indicated in italics), while Alea@10 and
Kolmo@10 where not applied.

classifier Nlg is the best in only 4 of 22 cases1. This result was not expected, since the method has
been developed for analogy detection, while Alea and Kolmo are analogy solving approaches that
we adapted in a potentially faulty manner to analogy detection.

For all baselines, we notice a striking imbalance of performance between valid and invalid
APs, with higher performance on negative permutations. This indicates a tendency of the models
to be biased against valid APs, and is consistent with how Alea and Kolmo are designed, and
how we adapted them for analogy detection. If the fourth element of an AP is not sufficiently
straightforward, if the AP appears to breach the postulates of APs, or if the transformation involved
is not regular enough, the symbolic baselines will consider it invalid. One such AP in English
would be (“build ”, past tense):(“build ”, past participle)::(“go”, past tense):(“go”, past participle).
The corresponding words are “built”:“built”::“went”:“gone”, which appears to breach Strong Identity
and involves the irregular verb “go”.

Analysis of where each model fails lead us to testing the baselines on the APs before applying
the augmentation process. For Kolmo, the results were significantly different (Student t-test p-
value < 0.05) before and after data augmentation, but not for Alea and Nlg. That Kolmo performs
better on base forms hints that this approach is not resilient to the permutations performed when
augmenting data. In particular, it tends to fail when Exchange of the Means is involved. This is
not unexpected, as Kolmo is not designed from the postulate of APs.

7.3.2 Preliminary experiments on the emb model

Our first experiments using the ANN framework followed closely [LPR21], using pre-trained word
embeddings models for analogy detection on Siganalogies. In particular, we used GloVe [PSM14],
Word2Vec [Mik+13], and FastText [Boj+17] at the time (see Subsection 3.3.4 for a description of
the three approaches).

We recently reproduced these experiments on the English data of Sig19, with the current, more
robust version of ANNc. For the pre-trained semantic embeddings, we used GloVe6B2 and FastTex-
tWiki3. For GloVe6B, we use the models with embeddings of 50, 100, 200, and 300 dimensions, and
the FastTextWiki embeddings have 300 dimensions. We did not include Word2Vec for two main
reasons: its performance is comparable to the one of FastText and GloVe, for instance [DWW22];
like GloVe, Word2Vec is purely a distributional word embedding that does not encode sub-word
information. As opposed to GloVe and Word2Vec, FastText contains information about sub-words,
i.e., strings of characters frequently appearing in words, which is remotely similar to the notion of
morpheme. We did not consider more recent large scale models, such as BERT [Dev+19], as they

11 of 11 cases on valid APs and 3 of 11 cases on invalid APs.
2GloVe trained on a Wikipedia dump, see https://nlp.stanford.edu/projects/glove/
3https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.en.vec
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compute the embedding of words in their context while Siganalogies contains words out of context.
The results are reported in Tables 7.3 and 7.4.

A first limitation we encountered is that the pre-trained word embedding models are not able
to handle the full extent of the Siganalogies dataset. The words they can handle are limited by the
words seen during training, even if the sub-word information in FastText brings more flexibility:
37.69% of the vocabulary of words in the English data is covered by GloVe6B against 53.35% for
FastTextWiki. Taking only the words covered by both models reduces the vocabulary to 37.15%
of its original size, and analogies containing only covered words represent 10.33% of the original
data.

There is also a second, more fundamental limitation with semantic word embeddings. Assuming
they only encode semantic information, semantic word embeddings do not contain the information
necessary to tackle morphological tasks. For instance, they cannot differentiate the morphology
of synonyms, for which the semantic information is the same but not the word forms (and thus
the morphemes). However, in English (as in many languages) some semantic features translate
directly to morphemes, for instance, the plural which corresponds to the morpheme “-s”. As such,
we can still expect some amount of success from GloVe6B and FastTextWiki, that we observe in
Tables 7.3 and 7.4.

For a given task, embedding models in which the information to solve the task is easier to
access will result in higher performance, in particular when a simple model like ANNc is used.
Semantic word embedding models are geared towards semantics, so it would not be surprising
that the morphological information they contain is not directly accessible. To handle this third
limitation, we add a fully-connected layer after the pre-trained embedding model, meant to handle
fine-tuning for the embedding model, and set its output dimension to 80. In that manner, we
also obtain results that are more comparable to the CNN+ANNc model (see Subsection 7.1.2):
the embeddings are of the same dimension, and both model can fine-tune the embedding for the
analogy detection task. In Tables 7.3 and 7.4 the models with a “+” sign are equipped with a
fully-connected layer.

As one could expect, models using pre-trained embeddings and trained and tested on non-
covered analogies have a significantly lower performance than CNN+ANNc, as shown in Table 7.3,
for the most part due to unrecognized words during training and testing. In this setting, there
is no significant difference between the models, with improvements of 2% to 4% on the F1 when
learning a fully-connected layer after the embedding. If we consider only covered APs for training
and testing the model, the F1 for GloVe6B jumps to 94% to 99% for models with the fully-
connected layer and to 81% to 84% for models without. The corresponding results are reported
in Table 7.4. Surprisingly, FastTextWiki, which is based on embeddings of sub-words (which are
similar to morphemes), achieves a lower F1 of 52% without and 56% with the fully-connected layer.

In addition to the advantages of character-based embeddings (avoiding unknown words) and to
the performance gap we can see in Tables 7.3 and 7.4, the morphological embedding approaches
described in Section 6.1 result in more lightweight embedding models, since it is not necessary to
store an embedding for each word (or each sub-word for FastText). For instance, our CNN-emb
model for English weights less than 100 Kilobyte (KB), while GloVe6B weights 171 Megabyte
(MB), 347 MB, 693 MB and 1 Gigabyte (GB) for 50, 100, 200, and 300 dimensions, respectively,
and FastTextWiki weights 6.6 GB.

7.3.3 Balancing the data for analogy detection, with CNN+ANNc

Early analogy detection experiments in [Als+21a] identified an imbalance in performance between
valid and invalid permutations after data augmentation. To address this phenomenon, we ex-
perimented with data augmentation for analogy detection in [Als+21c]. The experiments were
performed on the 10 languages from Sig16 as well as Japanese from JBATS using CNN+ANNc,
with its default hyperparameters as stated in Subsection 7.1.2. Three training settings were con-
sidered to cover both over- and under-representation of valid against invalid permutations, as well
as a more balanced setting:

• in setting 8/3 we use all 8 valid permutations, but only the 3 invalid permutations computed
from the base AP;

• in setting 8/24 we use all 8 valid permutations and all 24 corresponding invalid permutations,
including those computed from the valid permutations of the base AP;
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Balanced Accuracy on
Model F1 accuracy Valid APs Invalid APs

FastTextWiki 52.21 ± 0.34 66.99 ± 0.28 59.69 ± 1.34 74.30 ± 1.44
GloVe6B 50 52.61 ± 0.21 67.30 ± 0.19 60.43 ± 2.33 74.17 ± 2.55
GloVe6B 100 52.82 ± 0.21 67.48 ± 0.18 60.05 ± 1.66 74.90 ± 1.78
GloVe6B 200 52.88 ± 0.33 67.52 ± 0.25 60.57 ± 1.96 74.47 ± 1.92
GloVe6B 300 52.70 ± 0.24 67.38 ± 0.21 60.07 ± 1.57 74.68 ± 1.86

FastTextWiki+ 56.22 ± 0.35 70.08 ± 0.26 61.58 ± 1.75 78.58 ± 1.70
GloVe6B 50+ 54.38 ± 0.34 68.70 ± 0.26 59.82 ± 1.37 77.57 ± 1.47
GloVe6B 100+ 55.20 ± 0.25 69.31 ± 0.19 60.89 ± 1.10 77.74 ± 0.89
GloVe6B 200+ 55.54 ± 0.34 69.59 ± 0.24 62.46 ± 1.53 76.72 ± 1.78
GloVe6B 300+ 55.96 ± 0.24 69.92 ± 0.18 63.03 ± 1.71 76.81 ± 1.66

CNN+ANNc 99.39 ± 0.04 99.70 ± 0.05 99.76 ± 0.12 99.64 ± 0.03

Table 7.3: Appendix Table A1 from [MC24]. Original caption: “Performance of the ANNc model
on analogy detection (in %, mean ± std.) on English (Sig19), for all analogies. We consider several
pre-trained embedding variants, for 5 random initialization of the model. Models with a “+” sign
have a fully-connected layer after the embedding and before ANNc. [. . .]”

Balanced Accuracy on
Model F1 accuracy Valid APs Invalid APs

FastTextWiki 52.14 ± 0.19 66.93 ± 0.11 60.06 ± 2.14 73.79 ± 2.03
GloVe6B 50 81.70 ± 1.43 89.81 ± 0.80 95.30 ± 0.90 84.32 ± 1.88
GloVe6B 100 84.56 ± 1.27 91.26 ± 0.69 94.51 ± 0.55 88.02 ± 1.42
GloVe6B 200 84.03 ± 0.46 90.95 ± 0.28 94.36 ± 0.55 87.54 ± 0.62
GloVe6B 300 82.50 ± 0.42 90.09 ± 0.47 94.35 ± 2.52 85.83 ± 1.73

FastTextWiki+ 56.24 ± 0.30 70.08 ± 0.24 61.08 ± 1.62 79.09 ± 1.44
GloVe6B 50+ 94.83 ± 0.86 97.15 ± 0.47 97.77 ± 0.52 96.52 ± 0.68
GloVe6B 100+ 98.37 ± 0.17 99.06 ± 0.11 99.11 ± 0.30 99.01 ± 0.19
GloVe6B 200+ 98.76 ± 0.15 99.34 ± 0.10 99.51 ± 0.18 99.17 ± 0.12
GloVe6B 300+ 98.83 ± 0.15 99.36 ± 0.09 99.47 ± 0.19 99.25 ± 0.14

Table 7.4: Appendix Table A2 from [MC24]. Original caption: “Performance of the ANNc model on
APs detection (in %, mean ± std.) on English (Sig19), for covered APs only. We consider various
variants of pre-trained embeddings, for 5 random initialization of the model, with all models
trained and tested with covered APs only. Models with a “+” sign have a fully-connected
layer after the embedding and before ANNc. [. . .] ”
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• in setting 8/8: we use the sampling described in Subsection 6.3.3 to obtain 8 valid permuta-
tions and 8 randomly sampled invalid permutations.

For testing, we use the default setting described in Subsection 7.1.2, which corrsponds to setting
8/24. We also distinguish the performance on valid (+) and invalid (−) APs. In [LPR19; LPR21],
the 8/24 was used. For training, we used the 8/24 setting in [Als+21a; Als+21b; Als+21c] and
the 8/8 setting in [MC24; MMC22]. For testing, the 8/24 setting was used in all of our work.

8/3 8/24 8/8
Language + − + − + −
Arabic 99.89 97.52 95.66 99.39 99.39 97.40
Finnish 99.44 82.62 83.46 96.94 99.58 97.98
Georgian 99.83 91.71 88.89 99.53 99.87 92.06
German 99.48 89.01 67.20 87.26 99.42 95.24
Hungarian 99.99 98.81 98.40 99.25 99.84 98.71
Maltese 99.53 90.82 89.29 97.40 99.88 77.79
Navajo 97.95 79.85 46.33 97.40 99.00 93.50
Russian 99.94 78.33 72.66 99.80 96.89 89.96
Spanish 99.48 92.63 82.95 99.35 99.69 82.03
Turkish 99.99 98.65 100.00 98.64 99.70 91.93

Japanese 99.96 77.83 37.91 98.85 100.00 98.61

Table 7.5: Accuracy results (in %) for the classification task for valid (+) and invalid (−) APs,
with 3 distinct training settings (8/3, 8/24, 8/8). Bold values are the best performance on valid
(+) and invalid (−) APs respectively.

8/8 8/24

+
8/3 p = 1.05× 10−1 (t = 1.78) p = 6.40× 10−3 (t = 3.43)
8/8 — p = 7.11× 10−3 (t = 3.37)

− 8/3 p = 5.93× 10−13 (t = −45.80) p = 8.29× 10−10 (t = −22.04)
8/8 — p = 5.72× 10−2 (t = −2.15)

Table 7.6: Paired Student t-test on the evaluation for valid (+) and invalid (−) APs, with 3 distinct
training settings (8/3, 8/24, 8/8). t is the test variable.

From settings 8/3 and 8/24, where invalid APs are respectively under- and overrepresented
during training, we observe that overrepresented leads to a drop in the performance of the opposing
class. In particular, an imbalance in favor of valid APs leads to very good results on valid APs
and poorer results on invalid APs, and conversely, an imbalance in favor of invalid APs leads to
very good results on invalid APs and poorer results on valid APs.

To maximize performance on both valid and invalid APs, we decided to balance the amount
of training data for both classes. Random sampling of 8 invalid APs from the 24 available allows
balancing while keeping a comparable representation of invalid permutations, As mentioned in
Subsection 6.3.3, 8 invalid APs are sampled from the 24 available. On average on the whole
training set, this process maintains a similar representation of each of the 24 invalid permutations.
The results of this balanced setting 8/8 correspond to what was expected, as CNN+ANNc obtains
results comparable with the best of settings 8/3 and 8/24 for valid and invalid APs respectively.
The p-values mentioned hereafter come from paired Student t-tests, reported in Table 7.6. On valid
APs, setting 8/8 produced significantly better results than setting 8/24 (p < 0.01) where valid APs
are underrepresented, with no significant difference with setting 8/3 (p > 0.1). On invalid APs,
setting 8/8 was significantly better than setting 8/3 (p ≪ 0.01). There is a weakly significant
performance difference between settings 8/8 and 8/24 (0.05 < p < 0.1), with 8/24 performing
slightly better overall except on Finnish and German.
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Figure 7.1: Figure 2 from [MMC22]. Accuracy of the transferred model compared to the model
trained on the target setting.

7.3.4 Ablation study on the transfer performance between Sig16 and
Sig19

In Siganalogies, 7 languages appear in both Sig16 and the high-ressource languages of Sig19,
namely: Arabic, Finnish, German, Hungarian, Russian, Spanish, and Turkish. As Sig16 and
Sig19 do not contain the same data, this configuration allowed us to confirm the extent of the
generalization ability of CNN+ANNc in [MMC22]. In particular, we confirmed that in most
cases, the model successfully transfers between closely related domains with a slightly different
distribution of morphological transformation.

Experimental setting. We report in Figure 7.1 the balanced accuracy (bal. acc.) in 4 settings.
On the one hand, settings 16 and 19 correspond to models trained and tested on the same dataset,
respectively on the data from Sig16 and Sig19. This is the best performance available as the model
was trained on the same distribution as the test set, and forms out topline. On the other hand,
16→ 19 and 19→ 16 correspond to models trained and tested on the different datasets, using
the “training setting → test setting” notation. For 16→ 19 the models are trained on Sig16 and
tested on Sig19, and the opposite for 19→ 16.

We report the performance of a random baseline, that would randomly answer valid or invalid
AP with equal chances. As we use balanced accuracy, this is equivalent to a majority baseline
answering valid for all inputs, or invalid for all inputs. When performing transfer, we transfer
both the CNN-emb and ANNc without fine-tuning. For each setting, 10 random initializations are
trained in the default setting for CNN+ANNc described in Subsection 7.1.2.

Results and discussion. The performance for the transferred model is comparable to or slightly
lower than the performance obtained by the topline, for both transfer directions. The only excep-
tion is Arabic, where the performance drops to that of the random baseline after transfer.

In Subsection 5.5.1, we mentioned the limitation of character representation which is inconsis-
tent between Sig16 and Sig19. As we transfer both the CNN-emb and ANNc without fine-tuning,
we do not adapt the character embeddings in CNN-emb and any unknown character is represented
with a character embedding full of 0s (the same value is used when padding). As one could expect,
this negatively impacts the performance of the model.

To be more accurate, a significant correlation can be noticed between the performance of the
transferred model and the character coverage of the target domains by the source domains, i.e.,
the number of characters present in both domains divided by the number of characters present in
the target domain, reported in Figure 7.2. In particular, for the raw accuracy of the transferred
model, we observe a Pearson correlation coefficient with coverage of r = 0.9639 for 19 → 16 and
r = 0.7595 for 16 → 19. When normalizing the transfer performance by the performance trained
on the target domain, the correlation goes up to r = 0.9739 for 19→16

16 and r = 0.8639 for 16→19
19 . A

critical case of this correlation can be seen for Arabic, which is romanized in Sig16 but uses UTF8
Arabic characters in Sig19, leading to a coverage close to 0%. These results identify the embedding
model as the main factor limiting in the transfer performance in this experiment.
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Figure 7.2: Figure 2 from [MMC22]. Coverage of the target language characters by the source
language characters.

7.4 Analogy solving performance

This section details our experiments on analogy solving. The performance of the models using
the most up to date training procedure and of the baselines mentioned in Section 7.2 is detailed
in Subsection 7.4.1, while the experiments that led to this training procedure are reported in
Subsections 7.4.2 and 7.4.4. The results discussed in this section are, for the most part, on a
subset of 16 languages: 3 from Sig16 and 13 from Sig19. These languages were chosen based on
the performance of the AE-emb model, described in Subsection 7.4.3. We conclude the section
with a case study of the analogy solving results on Navajo and Georgian from Sig16, reported in
Subsection 7.4.5.

7.4.1 General observations

To evaluate the performance of all analogy solving models, we use the accuracy (see Subsec-
tion 7.1.1). For retrieval models, this corresponds to retrieval hit rate at 1, and hit rate at k for
k ∈ {1, 3, 5, 10} are detailed in Tables A.1 and A.2 of Appendix B. For generative models, we
use word accuracy by taking only the most likely prediction for each character. The retrieval and
generative models performance are reported in Table 7.7.

General comments. The embedding based approaches outperform the symbolic baselines in
all settings using ANNr and in most settings with CNN+3CosMul, CNN+ANNc, and AE+par..
This result is not surprising, as there is a well known trade-off between the performance of deep
learning and the explainability of symbolic approaches. It also matches what was obtained for
analogy detection (see Subsection 7.3.1).

Comparison with the symbolic baselines. The baseline generation models, Alea and Kolmo,
have very low performance on Arabic while this is not the case for DL models. As mentioned in
Subsection 5.5.1, in Sig19 the UTF8 character encoding for Arabic results in longer and more
complex sequences of characters than one could expect when reading the text. For Slovene, Alea
and Kolmo have similarly very low performance, but the low performance cannot be attributed to
character encoding. Indeed, characters used in Slovene are more or less the same as for Portuguese
and English, two languages where Alea and Kolmo performed much better. Therefore, it is more
likely that the inflectional morphological transformations in Sig19 for those languages are harder to
handle for Alea and Kolmo than for DL models, as the latter can learn to adapt to the morphological
quirks of each language.

Interestingly, English and Portuguese, where AE+par. performs the worst, are also the lan-
guages of Sig19 where the symbolic baselines Alea and Kolmo perform the best. Portuguese has
a very regular inflectional morphology [Bra81], and the design of Alea and Kolmo allows them
to handle morphological transformations which are frequent in those two languages, in particular
affixation [Bra81; LYZ09; Mur+20]. Given that the performance of AE+ANNr and of models
using the CNN-emb embedding does not show the same tendency as AE+par., we hypothesize
that the AE-emb together with the reconstruction task for pre-training has trouble handling those
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transformations. Nevertheless, due to the high variance in the performance it is hard to draw
definite conclusions.

Note that there is a significant difference in the performance of AE+par. depending on the
permutation of the base AP. In particular, the performance of AE+par. is higher when the solution
to the analogical equation is the same one of the other three elements, namely, analogical equations
based on Identity (A : A :: B : x, x = B) or Reflexivity of Conformity (A : B :: A : x, x = B). This
is due to the nature of the parallelogram rule, for which we always have x = e(B) as the solution to
e(A) : e(A) :: e(B) : x and e(A) : e(B) :: e(A) : x, i.e., Identity and Reflexivity of Conformity hold
by definition. As no error can appear in the analogy solving part, the performance of AE+par.
depends exclusively on the performance of the AE-emb for this kind of examples.

ANNr improves analogy solving performance. The CNN+3CosMul, CNN+ANNc, and
AE+par. models have significantly lower performance on analogy solving than CNN+ANNr and
AE+ANNr. While it is possible that this performance gap is caused by the fine-tuning on analogy
solving present when ANNr is used but not the other models, we argue that this is not the main
factor. Indeed, CNN+ANNc and CNN+3CosMul use an embedding model trained with analogy
while AE+par. does not, yet the latter outperforms the former. From this observation, ANNr
and the corresponding training procedure are likely to perform better on analogy solving than the
other approaches we consider.

Analogical training reduces sensitivity to random initialization. We observe in Ta-
ble 7.7 the using ANNr reduces the standard deviation on performance, in particular compared
to AE+par.. Namely, the AE-emb has a large standard deviation on the reconstruction task (see
Subsection 7.4.4), emphasized by the 50 initialization used to compute performance. A similar
observation can be made for CNN+3CosMul, CNN+ANNc, and AE+par., while CNN+ANNr
and AE+ANNr have a significantly lower standard deviation. What separates the two groups of
models is the use of ANNr and the fine-tuning of the embedding models using analogical data
augmentation.

AE+ANNr outperforms CNN+ANNr despite the Open World Assumption. As can
be seen in Table 7.7, we obtain equivalent or better performance with AE+ANNr than we obtain
with CNN+ANNr, even though the latter benefits from an embedding model designed specifically
for morphology and from a closed set of possible solutions to retrieve from.

AE+ANNr differs from CNN+ANNr mostly in that AE+ANNr uses of the decoder output
to compute the loss. Having direct access to the characters of the generated solution makes it
likely that AE+ANNr learns to avoid small differences in the word form. Conversely, due to the
barrier of the retrieval process, those small differences are not directly accessible with the CNN-emb
embedding model.

Using ANNc for analogy solving. ANNc is designed for analogy detection and has a ten-
dency to distinguish poorly between comparatively meaningful solutions to the analogical equation.
This can be confirmed by extending the results to the top 10 highest classification scores, which
significantly increases the accuracy, as discussed in a later paragraph.

Despite this limitation, CNN+ANNc outperforms CNN+ANNr on Bashkir, and CNN+3CosMul
on 7 languages (Adyghe, Arabic, Bashkir, Hebrew, Portugese, Sanskrit, and Welsh). As mentioned
before, the results become even more interesting when we look at the performance within the top
3, 5, and 10 retrieved words, for which CNN+ANNc outperforms CNN+3CosMul respectively on
8, 11, and 12 languages out of 16. This is in line with the properties of ANNc and 3CosMul, as the
latter is a fixed formula while the former is trained together with its embedding model. Not only
ANNc is more flexible as it is learned while 3CosMul is a fixed formula, CNN+ANNc has a better
adequation between the embedding space and the analogy model as they are trained together.

Nevertheless, ANNc is significantly slower than the other retrieval approaches. For instance,
for Turkish from Sig16, CNN+ANNc took more than 20 minutes to retrieve the solutions of the
augmented test set against 46 seconds for CNN+3CosMul and 40 seconds for CNN+ANNr. Fur-
thermore, on a computer equipped with an Nvidia RTX A5000 Mobile used at close to 100% of its
processing capabilities, training took 2.5 minutes for CNN+ANNc, for CNN+3CosMul we reuse
the CNN-emb from CNN+ANNc so the training time is the same, and we need an additional 2
minutes to train CNN+ANNr. From this example, the time required to retrieve the solution with
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Language Cosine similarity Euclidean distance

Arabic 51.41 51.53
Finnish 72.84 72.23
Georgian 93.37 93.44
German 87.55 87.78
Hungarian 68.31 68.13
Maltese 75.68 76.94
Navajo 45.81 47.41
Russian 69.57 69.05
Spanish 87.86 87.53
Turkish 70.10 67.77

Japanese 19.76 17.50

Table 7.8: Accuracy results (in %) for preliminary experiments on analogy solving with
CNN+ANNr with Euclidean and cosine distance for retrieval. From the internship report of Safa
Alsaidi, Amandine Decker, and Puthineath Lay.

CNN+ANNc is close to 10 times longer than the time to train a CNN+ANNr model from the
CNN+ANNc model and then apply it. Using CNN+3CosMul is even faster as it is not necessary
to train a new model, reaching a 30 times speedup. The slowness is caused by having to repeat
the computation of the analogy detection score for all the words of the vocabulary, and that for
each analogy to solve. Careful engineering might reduce the impact on run time. For example,
selecting a subset of candidates using CNN+3CosMul before retrieving the most suitable on with
CNN+ANNc could allow for a significant speedup.

Looking a bit further from the “best” answer In Tables A.1 and A.2 of Appendix B,
we extend the retrieval further than the closest solution (i.e., the accuracy or hit rate at 1) to
the hit rate at k for k ∈ {1, 3, 5, 10}, for CNN+ANNr, CNN+3CosMul, and CNN+ANNc. This
experiments were initialy published in [MC24].

For all languages, increasing the retrieval threshold k increases the performance of all retrieval
models. CNN+ANNr rapidely reaches above 99% hit rate in languages from Sig16. This corre-
sponds to an improvement of 3% for Georgian, 10% for Hungarian, and 15% for Turkish. Similar
improvements can be observed in languages from Sig19, with the minimum hit rate at k = 10
around 95%, in Swahili. For languages in Sig16, the increase in performance brings CNN+ANNc
closer to the performance of CNN+3CosMul, and for languages from Sig19, CNN+ANNc system-
atically outperforms CNN+3CosMul at k = 10. For the only language in which CNN+ANNr did
not get the best results, namely Bashkir, increasing k to 10 allows CNN+ANNr to outperform
CNN+ANNc, while CNN+3CosMul remains the least performant approach.

7.4.2 Choice of the retrieval metric for retrieval for ANNr

CNN+ANNr is an analogy solving model that requires a retrieval step, where a predicted embed-
ding ê(D) is compared with the embeddings of all the candidate words in the vocabulary. The word
with the closest embedding is then chosen as a solution, as is done in many other embedding based
retrieval approaches. To determine this closest embedding, we minimize a distance or maximize a
similarity. The main candidates were Euclidean distance and cosine similarity, and their retrieval
performance in preliminary experiments is reported in Table 7.8. Cosine similarity outperforms
Euclidean distance in 7 of the 11 languages from Sig16 and JBATS, however the difference is not
significant enough to favor either measure.

To summarize, while we use cosine similarity for retrieval with CNN+ANNr, this choice is for
the most part arbitrary.

7.4.3 Reconstruction task performance

Siganalogies covers more than 80 languages, of which we exclude low resource languages from
Sig19 as well as Basque and Uzbeck, as they contain less than 50000 APs in the training set. What
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remains is 10 languages from Sig16 and 42 from Sig19, with 6 languages (Arabic, Finnish, German,
Russian, Spanish, and Turkish) appearing in both datasets. A language present in both Sig16 and
Sig19 is counted as two distinct languages. The AE-emb is trained on these 52 languages, with
5 different random data splits to obtain the training development and test sets, and 10 random
initializations per model, for a total of 2600 models (5×10×52). In this subsection and in Table 7.9
we detail the accuracy of the models at word level, i.e., if even a single character is mispredicted,
the prediction is counted as a failure. For predictions, we use the most likely character at each
successive generation step.

The large standard deviation in many languages indicates that, while for some models perfor-
mance is high, using only the reconstruction task with the words from the data of each language is
insufficient to obtain stable performance. This issue transfers to the analogy solving downstream
task if no fine-tuning is done, as can be seen in the performance of AE+par. in Table 7.7. It is
likely that using a larger lexicon of words will improve the stability and versatility of the AE-emb.
This extension was not explored as AE+ANNr results in significantly smaller fluctuations in per-
formance, and designing the best possible embedding model for morphology was not a focus of our
work.

For the experiments in Subsections 7.4.1 and 7.4.4, we consider only languages where the AE-
emb achieve above 80% reconstruction task accuracy on the first data split. These languages are
indicated in bold in Table 7.9. For AE+ANNr and AE+par., only the 10 AE-emb trained on the
first data split are used.

Language Accuracy (%) Language Accuracy (%)

Sigmorphon 2016 Sigmorphon 2019
Arabic 75.72±13.98 French 76.04±10.20
Finnish 73.30± 9.96 German 64.98±16.12
Georgian 87.06± 6.28 Greek 39.44±21.68
German 69.50±15.03 Hebrew 91.16± 7.29
Hungarian 83.57± 6.63 Hindi 58.08±32.85
Maltese 77.07±25.07 Hungarian 61.51±13.81
Navajo 38.36±21.41 Irish 10.39±12.59
Russian 84.70± 6.63 Italian 70.92±13.52
Spanish 78.36±15.85 Kannada 0.05± 0.16
Turkish 83.03±14.07 Kurmanji 76.52± 8.50

Sigmorphon 2019 Latin 69.90±13.80
Adyghe 81.90± 7.35 Latvian 78.29± 5.53
Albanian 51.07±13.56 Persian 59.14±23.10
Arabic 78.40±12.37 Polish 67.36±18.58
Armenian 77.94± 4.87 Portuguese 62.88±24.26
Asturian 73.71±26.71 Romanian 62.76±22.14
Bashkir 80.38±18.55 Russian 67.76±11.51
Belarusian 61.15±15.30 Sanskrit 83.83± 5.37
Bengali 47.78±25.46 Slovak 82.62± 6.66
Bulgarian 76.07± 7.18 Slovene 80.95± 8.19
Czech 61.08±19.61 Sorani 77.43±11.88
Danish 73.88±11.70 Spanish 67.86±21.80
Dutch 63.90±19.41 Swahili 81.94±21.80
English 65.61±19.96 Turkish 68.03±12.29
Estonian 66.78± 9.02 Urdu 52.02±28.24
Finnish 34.68±22.89 Welsh 87.62±12.69

Zulu 81.96±15.81

Table 7.9: Appendix Table A3 from [MC24]. Accuracy (in %, mean ± std.) at the word level,
of the AE pre-trained for at most 100 epochs on 40,000 random words, for 5 different training /
test splits and 10 random initialization of the model in each case. Languages in bold are the ones
selected for further experiments.

98



Ch. 7. Quantitative and qualitative analyses . . .

LCEL Lnorm. other Lnorm. random Lall

Arabic (from scratch) 8.53± 0.89 16.01± 4.20 27.90± 4.66 16.45± 4.35
Arabic (transfer) 6.86± 1.08 68.84± 5.54 73.08± 4.19 68.59± 3.17

Finnish (from scratch) 21.31± 2.31 64.14± 7.07 47.25± 9.82 57.35± 5.46
Finnish (transfer) 6.23± 1.27 87.37± 2.11 90.15± 1.42 89.90± 1.61

Georgian (from scratch) 34.14± 3.44 76.33± 7.92 68.56± 9.85 77.66± 5.42
Georgian (transfer) 16.82± 3.33 95.64± 1.12 97.12± 0.26 95.09± 0.65

German (from scratch) 29.31± 3.42 64.05± 11.12 51.95± 11.21 54.91± 8.81
German (transfer) 14.17± 2.02 90.66± 0.66 91.47± 0.55 91.52± 0.62

Hungarian (from scratch) 24.35± 1.64 50.11± 4.72 41.25± 9.39 55.54± 4.46
Hungarian (transfer) 11.61± 1.93 89.85± 1.52 89.42± 1.43 88.79± 1.78

Maltese (from scratch) 5.70± 0.88 48.21± 9.24 72.74± 3.52 51.82± 10.22
Maltese (transfer) 5.63± 0.84 95.94± 0.73 97.16± 0.30 91.69± 1.55

Navajo (from scratch) 6.81± 0.69 19.36± 3.07 23.66± 2.99 24.69± 2.49
Navajo (transfer) 6.34± 0.64 53.73± 1.58 52.22± 1.18 52.45± 1.97

Russian (from scratch) 12.21± 1.72 38.46± 4.77 36.80± 3.84 41.04± 4.00
Russian (transfer) 4.47± 0.68 74.08± 1.24 71.66± 0.76 76.12± 1.11

Spanish (from scratch) 26.76± 1.70 84.26± 2.93 78.31± 5.91 81.76± 4.19
Spanish (transfer) 20.67± 4.32 91.03± 1.63 92.63± 1.25 91.12± 1.65

Turkish (from scratch) 13.30± 1.07 31.71± 4.40 42.82± 5.49 39.16± 6.82
Turkish (transfer) 7.41± 1.63 86.17± 1.66 88.36± 1.17 88.45± 1.12

Japanese (from scratch) 23.33± 2.71 9.76± 2.52 34.00± 8.54 11.46± 3.54
Japanese (transfer) 26.89± 1.66 83.10± 0.92 86.12± 0.76 74.14± 1.09

Table 7.10: Table 1 from [Mar+22a]. Top-1 accuracy (i.e., precision, in %) of ANNr when training
for 50 epochs with the embedding from ANNc and from scratch. We report mean ± std. over 10
random seeds. Boldface results are the best for each language.

7.4.4 Training procedure for ANNr

In [Mar+22a], we compared LCEL, Lnorm. other, Lnorm. random, and their combination Lall, to de-
termine which criterion was more suitable for CNN+ANNr. We also confirmed that fine-tuning the
CNN-emb trained with ANNc improved analogy solving performance by a wide margin, compared
to training CNN-emb with ANNr from scratch. The experiments were done on Sig16 and JBATS,
and each model is trained for 10 random initializations. The results are reported in Table 7.10.

Pre-training the embedding for ANNr. Reusing the embedding model trained with ANNc
reduces the convergence time, which is expected when performing transfer learning between closely
related tasks. What is more interesting is that fine-tuning a pre-trained CNN-emb significantly
improves the final performance. In contrast, when training CNN-emb from scratch, we observe
much lower performance with all criteria. Removing the limit of 50 training epochs in further
experiments did not significantly improve those results. This indicates that ANNr is not enough to
learn CNN-emb from a random initialization, while ANNc seems suitable to pre-train CNN-emb
on analogy detection.

Training losses for ANNr. A first observation is that LCEL is, by a significant margin, the worst
performing criterion in all settings. With further experiments, we confirmed poor performance with
both Euclidean distance and cosine similarity to retrieve the solution to the analogical equation.
This can appear surprising, as the CEL optimizes the cosine similarity, and the latter should be
particularly compatible with a model trained using the former.

In most cases when using the pre-trained CNN-emb, using Lnorm. random performs better than
or comparably to Lnorm. other and Lall. Lall only performs better than the other criteria on Russian.
Based on these observations, we decided to use Lnorm. random in our later experiments, as it is the
one that requires the least computations and training is slightly faster.
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7.4.5 Case study on Navajo and Georgian
To get further insight on the behavior of CNN+ANNr, we performed a more detailed analysis
of where the model makes mistakes for two languages: Navajo and Georgian [Mar+22a]. These
experiments were performed before we started using Sig19, and used data from Sig16 and JBATS.
Out of these languages, CNN+ANNr performed the best on Georgian (accuracy of 97.12 ± 0.26)
and the worst on Navajo (52.22± 1.18). For each language, we consider only one of the 10 random
initialization. The results reported in Table 7.7 are from experiments recomputed at a later time,
which explains why we do not have exactly the same performance for Georgian.

Figure 7.3: Rate of appearance of each permutation of the base APs in the errors made by
CNN+ANNr. The sum of percentages in each pie chart actually makes 100%, inconsistencies
are caused by rounding.

Permutations involved in errors. For both languages, we analyse how frequently each of the 8
equivalent forms cause a mistake. The rate of appearance of each permutation among all mistakes
is presented in Figure 7.3.

There is no significant predominance of a particular permutation in the mistakes on either
Navajo or Georgian. This shows that ANNr is, to some extent, invariant to the permutation
postulates used in the data augmentation process.

For easier comparison, permutations with similar appearance rate were put in front of one
another. Notice that en each case, pairs of permutations that have the same fourth element also
have the same appearance rate among errors. This hints that for CNN+ANNr, Exchange of the
Means does not change the difficulty of an analogical equation, which is consistent with the intuition
of the architecture of ANNr.

Errors when stronger versions of Identity or Reflexivity of Conformity are not re-
spected by the data. Less than 0.3% of mistakes on Navajo involve expected cases of Identity
or Reflexivity of Conformity, i.e., forms like A : B :: A : x, x = B or A : A :: B : x, x = B,
and no such case was observed for Georgian. This indicates that Reflexivity of Conformity is well
handled by CNN+ANNr, in particular since Reflexivity of Conformity is not true by definition for
CNN+ANNr, contrary to, for instance, the parallelogram rule.

By contrast, we notice that 47.49% of all mistakes in Georgian are cases where either of the
following happens in terms of word forms.

1. A = B but C ̸= D and the model predicts D̂ = C or, similarly by Exchange of the Means,
A = C but B ̸= D and the model predicts D̂ = B (41.06% of all mistakes). In English, a
similar situation would be “sing” : “sing” :: “am” : x, in which expecting x = “are” is counter-
intuitive if the underlying transformation from the first to the secend “sing” (“pos=V, per=1,
num=SG” to “pos=V, per=1, num=PL”) is not provided.

2. A ̸= B but C = D and the model predicts D̂ ̸= C, or A ̸= C but B = D and the model
predicts D̂ ̸= B (6.42% of all mistakes). Using the same example as before, if not enough is
known of the language, “am” : “are” :: “sing” : x, x = “sing” can also appear a bit counter
intuitive.
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It is interesting to note that the model makes more mistakes when presented with an apparent
instance of Identity (“sing” : “sing” :: “am” : x) than when the expected answer is the same as
one of the elements (“am” : “are” :: “sing” : x). To the best of our knowledge, this corresponds to
the behavior of humans, who are able to transfer from a complex case to a simpler one, but would
prefer a simpler relation over a complex one [Mur+20]: identity is simpler that any morphological
transformation. This also matches the data augmentation process, where A : A :: B : C is invalid
while A : B :: C : C is not generated, at least if we exclude cases such as “sing” : “sing” from the
previous examples.

The permutations described in case 1 above correspond to violations of stronger versions of
Reflexivity of Conformity, introduced in [Lep03] as Strong Identity (A : A :: B : x =⇒ x = B)
and Strong Reflexivity of Conformity (A : B :: A : x =⇒ x = B). ANNr appears to implicitly
learn these two properties, that are not enforced by the data augmentation. Besides, we can see in
Tables A.1 and A.2 (Appendix B) that the expected answer is usually very close to the predicted
ê(D). This includes cases where the data does not respect Strong Identity or Strong Reflexivity of
Conformity.

Complex morphology of Navajo verbs. Verbs correspond to 73.79% of all mistakes in Navajo,
or 75.35% if we exclude cases described in the previous paragraph. As Eddington and Lachler state:

“Verb stem inflectional patterns in Navajo are arguably one of the most intractable
problems in modern Athabaskan linguist studies.” [EL10]

They also refer to the work of Leer which states that this complexity can be attributed to “analogical
innovation, which is thus quite difficult to analyze synchronically” [Lee79]. This could explain why
all approaches, including the symbolic baselines, have a low performance on Navajo. Despite that,
CNN+ANNr reaches above 92% of hit rate at 10.

7.5 Sensitivity of the model to input perturbations

Epistemic uncertainty [Gal16], also called model uncertainty, refers to uncertainty in model parame-
ters and structure. For instance, “a large number of possible models might be able to explain a given
dataset, in which case we might be uncertain which model parameters to choose to predict with.”
In [Als+21c], we performed experiments to evaluate the epistemic uncertainty of CNN+ANNc and
CNN+ANNr, and determine if structural changes might benefit performance. We tested their
sensibility to perturbations of the input by applying random dropout on the embeddings during
evaluation.

Input perturbation using dropout In DL, applying a random dropout with a probability
pdropout on a set of values (for instance, a vector) means that each value (each component of the
vector) has a probability pd to be replaced by, for instance, 0. We introduce such a dropout on
the embedding produced by CNN-emb. Therefore, some meaningful information contained in the
embedding is radomly lost, which perturbates the input of CNN+ANNc and CNN+ANNr.

We evaluate the performance of the models with several dropout probabilities: 0.01, 0.05, 0.1,
0.3 for analogy detection, and for analogy solving 0.005 and 0.5 are also considered. For each
language, a single model initialization for CNN+ANNc and 3 initialization for CNN+ANNr were
considered. For each dropout value and each model initialization, the experiment is repeated 10
times to account for the stochastic nature of dropout.

Results and discussion. The results are summarized in Figures 7.4 and 7.5, with the error bars
representing the standard deviation. Note that the stochastic aspect of dropout does not bring
much variance in the results on CNN+ANNc, as the significant number of test examples absorbs
the randomness of dropout. We still observe a notable variance for CNN+ANNr, but it is almost
exclusively inter-model variance between the 3 models trained. For each model, the results with
each dropout probability is significantly different (Student t-test p < 0.01, details in Table 7.11)
from adjacent probabilities.

For both the regression and classification models, we observe that the more perturbed the input
is, the lower the performance. As our models use the information in the embeddings, this behavior
is expected. What is more interesting is that there is a large drop in performance past a certain
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Figure 7.4: Figure 2 from [Als+21c]. Classification accuracy (in %) for each language with input
perturbation using various dropout probabilities. Error bars correspond to standard deviation.

Figure 7.5: Figure 3 from [Als+21c]. Regression accuracy (in %) for each language with input
perturbation using various dropout thresholds. For each of the 3 models of each language, the
results with each dropout probability is significantly different from the other probabilities (Student
t-test p < 0.01). Error bars correspond to standard deviation.

threshold, in particular for CNN+ANNc on invalid APs. For example, for Arabic and Hungarian
the threshold is between pd = 0.05 and pd = 0.1, while for Maltese and German it is between
pd = 0.01 and pd = 0.05. This effect is also present for analogy detection on valid APs and on
analogy solving, even if more subtle. Note that the threshold differs between languages, between
analogy detection and analogy solving, and for each language between valid and invalid APs.

Taking analogy detection on invalid APs in Arabic as an example, this drop in performance
can be interpreted as the model managing to perform well even when 1% of the embedding is
missing. In other words, those 1% are likely to contain redundant or unnecessary information, as
dropping them has little impact. However, once we remove 5%, the model performance crashes, so
these 5% likely contain necessary information. In practical terms, we could most likely reduce the
embedding size by 1% for Arabic without affecting the classification performance much, considering
the negligible drop in performance for valid AP at 1% dropout.

For analogy solving, some languages do not show the plateau preceding this characteristic drop
in performance, in particular Japanese. By extrapolation, we could expect the performance to
increase for those languages with larger embedding models.

0.05 0.1 0.3

+
0.01 0.00045 5.00110× 10−6 6.44357× 10−15

0.05 / 0.00765 1.56664× 10−11

0.1 / / 1.74502× 10−7

−
0.01 0.00701 0.00653 0.00512
0.05 / 0.83337 0.28144
0.1 / / 0.38175

Table 7.11: Appendix Tables 8 and 9 from [Als+21c]. Independent t-test p-value on the evaluation
of valid (+) and invalid (−) APs with different dropout settings, for CNN+ANNc.
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7.6 Postulates for CNN+ANNc: case of Exchange of the
Means

We describe in this section experiments from [MMC22], in which model transfer is used to confirm
that changing the postulates used in the data augmentation process results in a sigificantly different
model matching the changed axiomatic settings. The experiments focus on Exchange of the Means,
that is not suitable for some application settings [Als+22b; Ant22], as discussed in Subsection 2.3.2.

Experimental setting. In this experiment we consider the three settings EM , ¬EM , and EM
defined in Subsection 6.3.2. We use them as training settings and test settings for all 9 possible
combinations, represented using the “training setting→ test setting” notation. The three settings
correspond to the default axiomatic setting of APs (EM) as well as two variants based on how
Exchange of the Means is considered:

• EM (using P+
EM and P−

EM ), where Exchange of the Means is accepted;

• ¬EM (using P+
¬EM and P−

¬EM ), where Exchange of the Means is not considered;

• EM (using P+

EM
and P−

EM
), where Exchange of the Means is specifically invalid.

Experiments were done with CNN+ANNc, as it uses invalid permutations for training and testing.
For training, we use the (up-)sampling described in Subsection 7.3.3 to obtain 8 valid and 8 invalid
permutations, and consider 10 random initializations. The experiment is repeated on 11 languages
of Sig16 and JBATS. All other hyperparameters follow the default values from Subsection 7.1.2.

Expected performance. Intuitively, the expected behavior is the following, also represented in
the top left corner of Figure 7.6 and forming a charracteristic Z shape:

• each model is expected to perform best on when the training setting is the same as the test
setting (EM → EM , ¬EM → ¬EM , and EM → EM);

• both EM → EM and EM → EM are expected to perform poorly, as the source and target
settings are incompatible with regards to Exchange of the Means;

• both EM and EM are expected to perform well on ¬EM , as the permutations in ¬EM are
common to both EM and EM ;

• the performance for ¬EM → EM and ¬EM → EM are hard to predict, as ¬EM is a subset
of both EM and EM .

Results and Discussion In Figure 7.6 we report the balanced accuracy. For all languages we
observe the expected results with minor variations:

• first, on the test setting ¬EM , all the models perform equally, instead of ¬EM → ¬EM
performing slightly better;

• second, the performance of EM → EM and EM → EM are not as low as expected, with
the peculiarity that EM → EM always outperforms EM → EM by roughly 10%.

These results confirm that the training procedure does have an impact on which permutations
will be considered valid or invalid by the model. Furthermore, the observed results match the
expected Z shape for all languages, which supports the intuitions used to construct the expected
results. As these intuitions rely on the differences between the axiomatic settings, this experiment
confirms that using specific postulates to train a model results in models with properties fitting
the corresponding axiomatic setting. Additionally, the model is trained on data and is able to
handle postulates that are not explicit in the data augmentation process, like the Strong Identity
and Strong Reflexivity of Conformity mentioned in Subsection 7.4.5.
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Figure 7.6: Figure 1 from [MMC22].Balanced accuracy of CNN+ANNc, 10 per training setting.
In the top left corner, a representation of the expected results. Source setting corresponds to the
training setting, and target setting corresponds to the testing setting.

7.7 Discussion and perspectives

The ANN framework we propose for analogy detection and analogy solving uses ANNc and ANNr,
two DL models inspired from the properties of APs. The ANN framework outperforms non-
parametric approaches and symbolic baselines on morphology, and outperforms other approaches
approaches on semantics, as discussed in Subsection 7.7.1. A significant part of the performance
of the approach comes from the analogical data augmentation and some aspects of the training
process, which are discussed in Subsection 7.7.2. Some results when using dropout on the word em-
beddings indicate that performance could be improved by refining the structural hyperparameters,
as discussed in Subsection 7.7.3.

The ANN framework we study offers multiple ways to tackle analogy detection and analogy
solving, and we discuss the main pros and cons of each method in Subsection 7.7.4. Despite the
alternatives we propose, it can be argued that the architecture of ANNc and ANNr are not the most
fitting for the manipulation of APs, yet they are relatively easy to grasp intuitively and achieve
good performance. Perspectives to integrate other models to the ANN framework are discussed in
Section 6.5.

In our experiments, we put to light some known and less known limitations of the symbolic
approaches we use as baseline. These limitations are discussed in Subsection 7.7.5.
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7.7.1 ANNc and ANNr outperform symbolic, non-parametric, and other
parametric approaches.

Non-prametric models of APs. As shown in [MC24] and in the experiments of this Chapter 7,
the performance achieved by the ANN framework is higher than the one of non-parametric models
such as 3CosMul or the parallelogram rule on analogy solving.

Symbolic approaches to morphological APs. Our framework also outperforms symbolic
approaches to morphological APs. In all our works, we compare ourselves with Alea [LYZ09] on
Kolmo [Mur+20] on analogy detection and analogy solving, as well as with Nlg [FL18] in most
cases on analogy detection.

In Section 7.3, we compare CNN+ANNc with Nlg, as well as adaptations of Alea and Kolmo
to analogy detection. It can be argued that comparing generative approaches to analogy solving
(Alea and Kolmo) with analogy detection approaches is unfair, and this was taken into account
before drawing conclusions. Additionally, up to 10 generated solutions were considered for valid
and invalid APs, which results in higher accuracy, in particular for valid APs. In this setting, we
showed that ANNc still outperforms the baselines on valid APs with no significant difference on
invalid APs.

In Subsection 7.4.1, CNN+ANNr and AE+ANNr outperform the symbolic baselines on analogy
solving by a very significant margin in all cases. Furthermore, by considering up to 10 retrieval
results for CNN+ANNr (see Appendix Tables A.1 and A.2), the accuracy improves above 99% for
all but 6 languages which reach above 95%. This result is significant, as 10 candidates is a small
fraction of the candidate words: it ranges from less than 0.16% of all candidates (6419) for Swahili
to less than 0.04% for Georgian (32233 candidates).

Parametric models. For semantic APs between words, Lim, Prade, and Richard [LPR21]
showed the benefit of the ANNc and ANNr models over MLP (see Subsection 3.2.1) up to 5
layers, random forest [Ho95] and support vector machine [CV95]. The performance improvement
is especially striking for ANNr, while for ANNc the benefits are seen mostly on the SAT-based
task which is considered a harder semantic analogy task [LPR21].

7.7.2 Discussion on the training process and analogical data augmenta-
tion

To achieve the best possible performance, we experimented with many different parameters of
the training procedure to reach the current state of the framework. In particular, we refined
the analogical data augmentation process to eliminate class imbalance when training ANNc and
embedding collapse when training ANNr, and explore different axiomatic settings for analogies. It
would be beneficial to further refine our training process as well as the training parameters and
hyperparameters, but we leave those considerations for further work due to time limitations.

In the results on morphology and in applications of the analogical data augmentation process
to different domains [Als+22b; Zer+22, see also Chapter 10], we observe that analogical data
augmentation reduces the dependence of the model on its initialization and on minor variations in
model input, as discussed in the last paragraph of this subsection.

Evolution of the data augmentation process for ANNc. Regarding ANNc, in [Als+21a]
we identified an imbalance in the analogy detection performance due to the data augmentation
process, as we later confirmed in [Als+21c]. Using the 8 equivalent forms of a valid AP together
with the 24 corresponding invalid forms skewed the data in favor of invalid analogies, while using
only the 3 invalid forms from the base AP skewed the data in the other direction, resulting in
a matching imbalance in the performance over the two classes for CNN+ANNc. A compromise
was found by sampling 8 out of the 24 invalid forms, presented in Subsection 6.3.3 and demon-
strated in Subsection 7.3.3. Based on detailed analyses of results of some languages, in particular
from [Mar+22a; MMC22], we further refined the data augmentation to exclude invalid forms that
also appear in the valid forms.

Evolution of the training process for ANNr. The current training procedure of ANNr is
the result of multiple observations along our experiments reported in Subsections 7.4.2 and 7.4.4.
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Indeed, pre-training the embedding is necessary to achieve good performance on analogy solving
with CNN+ANNr, and this can be achieved with relative ease by using CNN+ANNc, with a 10%
to 40% improvement reported in [Mar+22a, see also Table 7.10], or using an reconstruction task
as we identified in Subsection 7.4.1. In preliminary experiments, we also observed that training
only the ANNr part of the model resulted in poor performance, and training CNN+ANNr with
a naive MSE resulted in a collapse of the embedding space. After experimenting with various
training criterion based on these results, we achieved the best results with Lnorm.random. While
Lnorm.random is an easy to implement way to mitigate embedding space collapse, in many settings
it achieves comparable performance to the other training criterion we considered, so we encourage
future users of ANN framework to also consider the other training criterion.

Behavior of the models with regards to the axiomatic setting. In [MMC22, see also Sec-
tion 7.6], multiple variants of the axiomatic setting of APs are considered for transfer experiments.
These variants cover different ways to consider the postulate of Exchange of the Means: the way
it is considered with APs (i.e., as an accepted postulate), a variant where it is not an accepted
postulate, and a last variant where it is actively considered as a property quadruples should not
have. The transfer experiments between the three settings confirmed that changing the postulates
used to define the data augmentation process result in significantly different models, corresponding
to the changed axiomatic settings.

These results highlight the importance of the choice of an axiomatic setting fitting the use case
when using analogical data augmentation, in particular since some postulates are discussed for
some application settings (see Subsection 2.3.2). Some guidelines and considerations are discussed
in Appendix D, in which we explore different combinations of postulates and the resulting data
augmentation processes. However, experiments with the various subsets of postulates are required
to confirm the proposed generalized data augmentation procedure.

If enough analogical data is available, we hypothesize that it is possible to determine the
most fitting set of postulates by finding the axiomatic setting with the closest performance to
the non-augmented analogical data, but experiments on a wider range of application domains
would be required to confirm this hypothesis. When analyzing the results of Navajo and Georgian
in [Mar+22a, see also Subsection 7.4.5], we identified several interesting behaviors of CNN+ANNr:
(i) there is no significant performance difference based on permutation, which indicates that the
model is invariant to the postulates of APs used in training, (ii) Reflexivity of Conformity and
Identity (A : B :: A : B and A : A :: B : B respectively) are well handled, (iii) when an example
appears to violate Strong Reflexivity of Conformity or Strong Identity (e.g., “ran” : “ran” :: “was” :
x, x = “were”) the CNN+ANNr model frequently gives an answer different from what is expected.
Te given answer corresponds to a proper application of the violated postulate.

Reduced dependence on initialization and minor variations in model input. The results
in [MC24, see also Section 7.4] indicate that data augmentation reduces the sensitivity to the
initial setting of the model, with significantly smaller standard deviation after fine-tuning using
ANNr. Additionally, in [Zer+22, see also Chapter 10], we applied the data augmentation process
and ANNc to TSV, and observed that using ANNc together with our data augmentation during
training reduces the sensitivity of the model to some variations in the input encoding. Overall,
it appears that models trained with the analogical data augmentation are less sensitive to slight
changes in their input, as they are made invariant to changes in the input due to the postulates of
APs.

7.7.3 Perturbation of model inputs and embedding dimension

We explored in Section 7.5 [Als+21c] the sensitivity of CNN+ANNc and CNN+ANNr to pertur-
bations in their input, by applying dropout on the word embeddings. By randomly replacing some
embedding components by 0 with a given probability, we found that beyond a certain dropout
probability the performance of CNN+ANNc dropped drasticaly for invalid APs, and observed a
similar but less striking phenomenon for CNN+ANNc on valid APs and for CNN+ANNr. The
probability threshold depends on the language we consider, and we observe a plateau of high per-
formance before the threshold. This allowed us to identify languages for which the embedding
appears to contain redundant information (hence there is little effect of removing a few) or con-
versely languages that might benefit from an increase in embedding size (where the plateau of high
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performance does not appear, and that are more sensitive to dropout). In the latter category we
find Japanese, which is in line with the larger set of possible characters.

7.7.4 Diversity in tackling APs and application to other domains
Our framework proposes multiple technical solutions, in particular for analogy solving, each with
their own benefits. For instance, while CNN+ANNr outperforms CNN+3CosMul, the latter does
not require training an additional model. Also, while using CNN+ANNc for retrieval outperforms
CNN+3CosMul without requiring additional training either, we do not recommend using the former
due to two key limitations: (i) the execution time for retrieval is greater than the time needed to an
CNN+ANNr model or to use traditional cosine-based retrieval, and (ii) CNN+ANNc tends to give
similarly high scores to multiple solutions, which entails the expected solution appearing further
in the ranking. However, (ii) can be a desired property of the model, and (i) can be mitigated by
engineering the prediction process, for instance by preprocessing the candidates more effectively.

Additionally, while we use cosine similarity for retrieval with CNN+ANNr based on preliminary
experiments, the difference between cosine similarity and Euclidean distance as shown in Table 7.8
was not necessary significant, so it can be relevant to test both approaches for other applications.

Beyond the choice of the model, using ANN framework requires to formulate the problem to
tackle as APs or analogical equations. This step can be challenging, as can be seen in Chapter 11,
or in [Als+22b] or Chapter 10 where multiple formulations are explored. Nevertheless, the effort is
usually rewarded by good performance and the integration of analogical knowledge in the model.

7.7.5 Some limitations of symbolic approaches
Along our experiments, and in particular in [Mar+22a], we identified several limitations of the Alea
and Kolmo symbolic approaches that we use as baselines in most of our experiments. For instance,
longer words and words with many repeated adjacent letters significantly reduce the speed of the
two approaches, with this phenomenon particularly striking for Kolmo, as was already identified
by the authors of [Mur+20]. We solved this issue by introducing a timeout for Alea and Kolmo as
described in Subsection 7.2.4, as it appears that for most languages less than 0.5% of the analogical
equations took longer than 10 seconds to solve.

Additionally, in [Als+21a] we found that Kolmo struggled with APs obtained in the data
augmentation by using Exchange of the Means. It is interesting that this approach, based on
empirical observations of human behavior in analogy solving, does not follow all the postulates of
APs. This highlights the need for flexibility with regards to the setting of APs. This flexibility
can be provided by the ANNc and ANNr models, and is one of the main advantages of the ANN
framework over symbolic and non-parametric approaches.
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In this chapter, we present experiments on modeling multiple languages at once and transfer-
ring models between languages with CNN+ANNc [Als+21a; Als+21b; MMC22]. We discuss the
findings from our experiments on cross-lingual transfer and multilingual models, in Section 8.3.

In [Als+21b], we experimented with different forms of transfer from a source language to a
target language without fine-tuning, with languages from Sig16 and JBATS. We also experimented
with different approaches to model multiple languages at one with a single CNN+ANNc. These
experiments are reported in Section 8.1.

As reported in Section 8.2, we performed further transfer experiments in [MMC22], by trans-
ferring CNN+ANNc between languages from Sig19, which covers a wider range of languages.

8.1 Multilingual experiments on Sig16 and JBATS

We performed in [Als+21b] two sets of multilingual experiments, reported in this section. A first
group of experiments was performed to determine how models trained on one language perform
on other languages, reported in Subsection 8.1.1. The second group of experiments, described in
Subsection 8.1.2, explored the potential of training on data from multiple languages to obtain a
model of morphological APs that generalizes better to the morphology of multiple languages.

Following this idea, we trained several CNN+ANNc models and evaluated how they perform
across the 11 languages of Sig16 and JBATS. At the time of the experiment, we already identi-
fied that the class imbalance in the 8/24 setting with 8 valid and 24 invalid permutation, used
in [LPR21], causes imbalance in performance, and that the 8/3 setting performs slightly better
(see Subsection 7.3.3 for the definition of the imbalance settings). We also did not yet implement
the balanced 8/8 setting with sampling (see Subsection 7.3.3) which would have probably given
better results. Thus, training was done in the 8/3 setting with 8 valid and 3 invalid samples. This
limitation is addressed in Section 8.2, where the 8/8 setting is used for training.
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8.1.1 Transfer performance in Sig16 and JBATS

As mentioned above, our first experiments focussed on transferring models from one language to
the another language. In practice, this corresponds to training CNN+ANNc on one language and
testing it on another language.

Two variants of the transfer metodology. Accounting for the gaps in the morphology of
different languages, we devised two variants of the transfer methodology from a language Ltraining
to a Ltest language:

• in full transfer, both the CNN-emb and ANNc models trained on Ltraining are applied on
Ltest;

• in partial transfer, only the ANNc part of CNN+ANNc trained on Ltraining is applied on
Ltest, however we use the CNN-emb trained on Ltest.

The two approaches have different weaknesses as we do not fine-tune the models after transfer. In
full transfer CNN-emb has not seen the characters used in Ltest, and is not trained to handle the
morphology of Ltest. Partial transfer was used to handle this issue, as the CNN-emb is trained on
Ltest, however the embedding spaces of CNN-emb and ANNc might not have the same arrangement.

Results using full transfer. The results for full transfer are reported as heatmaps in Figure 8.1.
The results for valid permutations are above 90% except when transferring to Arabic and Navajo,
in particular from Finnish, Hungarian, and Spanish.

The results on invalid permutations were more heterogeneous. We observe three languages
where performance is poor when transferring from or to them: Georgian, Japanese, and Russian.
This is likely due to the different writing systems used by these three languages (compared to
the other languages in the dataset), as mentioned in Subsection 5.5.1, and a large portion of the
characters are not recognized by the CNN-emb during testing.

Surprisingly, transferring to Japanese does not systematically result in a performance close to
0% on invalid APs. None of the Japanese characters are present in the data of other languages in
Sig16, and every word should appear as the empty word ε, causing even invalid APs to look like
ε : ε :: ε : ε and be classified as valid. Following the results from [Lep17], the length of a word
can be used to detect some invalid APs, and it is likely that CNN-emb encodes this information
for some languages. Indeed, CNN-emb is aware of the distance between the beginning and end of
the word, marked respectively by BOW and EOW, within the limit of 6 characters, the largest
window size used in CNN-emb.

Other languages have an accuracy between 50% to 80%. Interestingly, models trained on Turk-
ish and Hungarian perform slightly better when compared to those trained on other languages.
These results have been used for bilingual models in subsequent experiments reported in Subsec-
tion 8.1.2.

Results using partial transfer. As we saw above, not being able to handle the characters used
in a language is a huge limitation for the transfer of CNN+ANNc, and partial transfer appears to
overcome this limitation from the results reported in Figure 8.2.

The partial transfer performance is high for valid permutations, and lower for invalid permu-
tations, similarly to full transfer. However, we do not observe the distinct lines of close to 0%
performance anymore, except for the Georgian to Japanese and Spanish to Japanese transfers.
The Spanish to Arabic transfer is at a low 8% and Spanish to Finnish at 16%. Excluding those
four cases, performance is above 25% on invalid APs which is a clear improvement from full trans-
fer. However, excluding Georgian, Japanese, and Russian, performance on invalid APs was overall
higher in full transfer.

Similarly to full transfer, Hungarian and Turkish are the best performing training languages.
While there is no language that appear incompatible with other in partial transfer, we notice that
Arabic, Georgian, Japanese, and Spanish have relatively poor performance as training languages.
For partial transfer, the alphabet gap is no longer an issue which results in a significant improvement
in the overall performance. Nevertheless, since the CNN-emb is not trained together with the
ANNc, a mismatch in the representation is likely to appear. Our hypothesis is that this mismatch
is part of the cause of the lower performance for Arabic, Georgian, Japanese, and Spanish.
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General observations. We distinguish results on valid and invalid permutations of the APs.
Results on the base permutations have also been computed. However, as they follow the same
trends as valid permutations, the corresponding results have been omitted.

Overall, models perform well when they are applied on the language they were trained on.
Performance is high on valid APs including the base forms, but lower on invalid permutations.
This bias is consistent with the training 8/3 setting which is imbalanced in favor of the valid
APs. Moreover, performance is heterogeneous on valid permutations while there are significant
differences based on the training and test language on invalid permutations.

Another interesting observation is that there is no symmetry in the heatmaps, which indicates
that the ease of transfer from and to a language are not equivalent.

The high performance of Hungarian as a training language in all settings could be explained
by its “particularly rich morphology” [Kie10] using inflection, derivation, and compounding.

8.1.2 Training CNN+ANNc models on multiple languages
Following our first experiments on transferring models between languages in [Als+21b], reported
in Subsection 8.1.1, we experimented with multilingual models. The initial intuition was that a
model trained on multiple languages would generalize better to new languages, like someone used
to learning foreign languages would have an easier time when faced with a new language. Following
this idea, we trained several CNN+ANNc models and evaluated how they perform across the 11
languages of Sig16 and JBATS. We explored two different settings regarding the languages we
used: in the bilingual setting, we trained models with a subset of two languages as training data
and in the omnilingual setting, we trained models with all languages.

For comparable results with ANNc trained on a single language, the amount of training data
per language is reduced in proportion with the number of languages used, such that the total
remains at 50000 base APs: 25000 APs per language for the bilingual models, and 5000 APs per
language for the omnilingual models, except when Japanese is included in which case it is around
4545 APs per language.

As mentioned in Subsection 7.1.2, we use a character embedding size m = 64 for the CNN-emb,
except for Japanese, where m = 512 is used due to a larger amount of distinct characters.

Variants of bilingual models. For our bilingual models, we worked with two pairs of languages:

• Hungarian-Finnish: these two languages are close in terms of “language families” from
Wikipedia (see Figure 8.11);

• Hungarian-Turkish: the two languages that produced the best results in terms of transfer-
ability in Subsection 8.1.1.

These two bilingual models offer opposite configurations: Hungarian-Turkish maximizes the trans-
ferability of the model, while Hungarian-Finnish considers closely related languages which might
negatively impact transferability.

For both models, we consider the partial and full transfer settings defined in Subsection 8.1.1.

Variants of omnilingual models. We consider two sets of training languages for omnilingual
models: one with and one without Japanese in the training data, due to how different Japanese is
from the languages in Sig16. In particular, as languages in Sig16 are all romanized and Japanese
uses the original characters, the characters used show no overlap which is a potential source of
issues for the CNN-emb.

We consider two omnilingual CNN-emb variants with regards to the embedding model, as
follows.

• We can use a single embedding model for all the languages. In that setting, the training set
contains data from all training languages shuffled together, so that the model is not trained
on only one language, then the second one, etc.. This measure is meant to avoid having the
CNN-emb “forget” the morphology of the first languages seen, by the end of training.

• In the multi-embedding model setting, we train one embedding model per language but a
single ANNc. Therefore, we use as many CNN-emb as languages in the training data. For
this model, the training sets of data are concatenated one after another after being shuffled,
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Figure 8.1: Appendix Figure 4(b) and 4(c) from [Als+21b]. Accuracy (in %) of fully transferred
models, on Sig16 and JBATS. The results are split in valid (top) and invalid (bottom) permutations,
respectively on the top and bottom respectively. The source language Ltraining is the vertical axis,
and the target of the transfer Ltest is the horizontal axis.
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Figure 8.2: Appendix Figure 5(b) and 5(c) from [Als+21b]. Accuracy (in %) of partially transferred
models, on Sig16 and JBATS. The results are split in valid (top) and invalid (bottom) permutations,
respectively on the top and bottom respectively. The source language Ltraining is the vertical axis,
and the target of the transfer Ltest is the horizontal axis.
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as the above precaution seems unnecessary. A special value is used during training to identify
the language of the analogy.

When a single CNN-emb is used for all languages, we use m = 512 if Japanese is included and
m = 64 otherwise.

In hindsight, we would recommend for the multi-embedding model setting to also use shuffling
of the dataset across languages. Indeed, the CNN-emb models can not “forget” the morphology
of the first languages seen anymore as they are not updated when processing data from
other languages. By contrast, the problem transfers to ANNc, which will likely “forget” the
configuration of the embedding space learned for the first languages seen, by the end of
training.

Remark 8.1

Result for the bilingual models. The performance of the bilingual models is reported in
Figures 8.3 and 8.4. Overall, performance is very high on valid APs (including the base forms)
but lower on invalid permutations, with the recurring exception of Japanese, Navajo, and Arabic.
This bias is similar to the one observed when performing transfer (see Subsection 8.1.1) and is
consistent with the imbalance in favor of the valid APs of the 8/3 setting used for training.

For full transfer, performance is high when the bilingual model is transferred to one of the
languages used to train the model. We also observe lower performance for invalid permutations
in Russian and Georgian, but also for Japanese in particular with the Hungarian-Finnish model.
To be more specific, the two bilingual CNN+ANNc models almost systematically classify the APs
as valid, which results in 100% accuracy for the base and valid permutations and 0% to 2% for
invalid permutations. German, Maltese and Spanish display the same kind of behavior, although
to a smaller degree. Navajo and Arabic have an overall poorer full transfer performance than other
languages, but show less imbalance between valid and invalid APs.

For partial transfer, performance when the bilingual model is transferred to one of the languages
used to train the model is slightly lower than for full transfer. The Hungarian-Finnish model
performs overall better than the Hungarian-Turkish model. In comparison, the latter had less
consistent behavior in partial transfer, with in general noticeably lower performance for the base
forms than the other valid permutations, in particular for Japanese.

Result for the omnilingual models. The accuracy results for the omnilingual models are
reported in Figure 8.5 for the settings with a shared embedding model for all languages, and in
Figure 8.6 for the model with separate embedding models. The performance of the four models
is comparable across all setting and all languages, with two exceptions. First, for Maltese the
performance is lower than those of other languages. Second, when Japanese is used, it appears
to have higher overall performance than other languages. Other than this higher performance on
Japanese, including or excluding the latter appears to have no effect on the performance of the
model.
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Figure 8.3: Appendix Figure 3(a) from [Als+21b]. Accuracy (in %) of full and partial transfer for
the Hungarian-Finnish bilingual model, on Sig16 and JBATS.

Figure 8.4: Appendix Figure 3(b) from [Als+21b]. Accuracy (in %) of full and partial transfer for
the Hungarian-Turkish bilingual model, on Sig16 and JBATS.
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Figure 8.5: Appendix Figure 4(a) from [Als+21b]. Accuracy (in %) of full transfer for the omnilin-
gual models with a single embedding model for all languages, on Sig16 and JBATS.

Figure 8.6: Appendix Figure 4(b) from [Als+21b]. Accuracy (in %) of full transfer for the om-
nilingual models with one embedding model per language, on Sig16 and JBATS.
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8.2 Transfer performance and language families in Sig19

To go beyond the limitations of character coverage, in [MMC22] we leveraged the variety of lan-
guages available in Sig19 to reiterate the cross-lingual transfer experiments from [Als+21b, see
also Subsection 8.1.1] at a larger scale. We were able to perform transfer between languages with
similar alphabets which significantly reduced the impact of the alphabet gap.

Selection of the languages. For the experiment we only considered the high resource languages
of Sig19, excluding Basque and Uzbek as they have less than the 50 000 base APs we use to train
CNN+ANNc.

At the time of the experiment, we already identified the issue of the alphabet gap for cross-
lingual transfer from previous cross-lingual transfer experiments (detailed in Subsection 8.1.1) and
the transfer between Sig16 and Sig19 (see Subsection 7.3.4). In particular, we identified in the latter
the correlation between the character coverage and the transfer performance. To limit the impact
of the alphabet gap in this experiment, we extracted clusters of languages sharing a significant
part of their alphabets, and transfer only within each cluster.

In Figure 8.7 we report for all 42 languages the character coverage of the test (target) language
by the training (source) language. To perform hierarchical clustering, we use the character Jaccard
(see Subsection 7.1.1) instead of coverage, as a symmetric distance matrix is required. We use
the nearest point algorithm (or “single linkage”) to get the clusters, and provide the associated
dendrogram in Figure 8.8. Using a threshold of 0.4 on the Jaccard index of characters, we extract
four clusters of at least two elements, colored in the dendrogram. With further analysis of the
languages in each cluster, we named the clusters after the dominant alphabetic setting of the
languages it contains. Based on what we observe in Figure 8.7 we found relevant to include
Romanian in both the Roman and Cyrilic clusters, and obtain the following clusters:

1. Roman cluster: Albanian, Asturian, Czech, Danish, Dutch, English, Estonian, Finnish,
French, German, Hungarian, Irish, Italian, Kurmanji, Latin, Latvian, Polish, Portuguese,
Romanian, Slovak, Slovene, Sorani, Spanish, Swahili, Turkish, Welsh, and Zulu;

2. Cyrillic cluster: Adyghe, Bashkir, Belarusian, Bulgarian, Romanian, and Russian;

3. Arabic cluster: Arabic, Persian, and Urdu;

4. Devanagari cluster: Hindi and Sanskrit.

Limiting the experiments to transfers within clusters allows us to omit transfers likely to perform
poorly due to the alphabet gap. It also reduces the number of transfers to attempt from 42× 41 =
1722 to 740 transfers, excluding cases where the training and testing language is the same.

Training and test settings. Training is done in the balanced 8/8 setting (see Subsection 6.3.3),
and balanced accuracy is used to measure performance. Due to the large number of experiments
to perform, a single random seed is used for each model, by contrast with our experiments in
Chapter 7. We also reduce the number of base APs used for testing from 50 000 to 5 000, and use
the default 8/24 setting for the data augmentation of the test set.

Transfer performance beyond the alphabet gap. Once the languages with an overlap lower
than 40% are eliminated, the Pearson correlation coefficient r between the performance and the
character coverage drops compared to what was observed in Subsection 7.3.4. For the interpretation
of the Pearson correlation coefficient we use the notions from [Ako18, Table 1]. As a reminder,
we reported r = 0.9639 and r = 0.7595 for the transfer performance between the Sig16 and Sig19
versions of the same languages. We reported r = 0.9739 and r = 0.8639 when normalizing the
transfer performance by the performance of the model trained on the test language. These are are
strong to very strong correlations.

Due to their small size relative to cluster 1, we group clusters 2, 3, and 4 when computing
correlations. For clusters 2, 3, and 4, we observe r = 0.6565, which can be seen as a moderate
correlation. For cluster 1, the largest cluster, coverage and performance appear uncorrelated with
r = 0.0380. Similar values are observed when normalizing the transfer performance of the model by
the performance trained on the test language: r = 0.6199 for clusters 2, 3, and 4, and r = −0.0579
for cluster 1.
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Figure 8.7: Appendix Figure 1 from [MMC22]. Coverage by the source language character vocab-
ulary of the target language character vocabulary.

Figure 8.8: Appendix Figure 2 from [MMC22]. Dendrogram of the high resource languages in
Sigmorphon2019 (except Basque and Uzbek), based on the Jaccard index between each pair of
languages. With a threshold of 40% on the Jaccard and excluding singletons, four clusters (colored
here) are found.
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Figure 8.9: Figure 3 from [MMC22]. Transfer accuracy within cluster 1.

Figure 8.10: Figure 4 from [MMC22]. Dendrogram of the target languages, based on the transfer
accuracy from all source languages as features for the target languages.
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While these correlations might be influenced by the smaller amount of data used (only one seed,
fewer testing analogies than usual), it is unlikely that such a bias is the cause of such a significant
drop in correlation.

Deeper analysis of transfer performance in cluster 1. We report transfer performance for
cluster 1 in Figure 8.9. The tendencies we observe in the transfer performance for cluster 1 in
Figure 8.9 indicate that the performance is linked to the language being used as a source language
or as a target. For instance, we observe a distinct horizontal bar for English and vertical bars for
Asturian and German.

This behavior is likely due to either (i) the quality of the learned CNN+ANNc (how well it
performs in general) or (ii) to the morphological similarities of some languages within Sig19. The
former hypothesis is less likely, as only tendencies in the behavior as a training language (i.e.,
horizontal bars) would be observed, while we mostly observe tendencies in the behavior as a test
language (i.e., vertical bars).

To confirm the influence of language similarities on performance, we explore hierarchical clus-
tering within cluster 1 to study which key groups appear. When considering the behavior of the
language as a test language, i.e., using performance from different training languages as a features
for the clustering, the clusters are more distinct than if we consider the performance as a training
language. Therefore, we focus on clusters extracted from the former, which can be seen in the
dendrogram in Figure 8.10.

We find that the small clusters, which are the most easily distinguishable by the clustering
algorithm, correspond to closely related groups of languages. To identify relatedness of languages,
we use the notion of language families, extracted from the “Language family” field of the infobox
in the Wikipedia page of each language. To make the parallel more striking, we represent in
Figure 8.11 the tree containing the language families of the languages in cluster 1. In this tree, we
use the same color for the languages as the color, in Figure 8.10, of the cluster they belong to.

More precisely, we observe that the orange cluster contains Western Romance languages (As-
turian, Portuguese, Spanish, and French), the purple cluster contains all the Bantu languages
(Zulu and Swahili), and the green cluster contains Slavic languages: West Slavic languages (Slo-
vak, Polish, and Czech) and slightly further the South Slavic language (Slovene). Irish is isolated.
Finally, the red cluster contains all the remaining languages, even if distinct sub-clusters can be
found in Figure 8.8: the Finnish and Estonian sub-cluster corresponds to Finnic languages and
the Romanian and Italian sub-cluster contains the non-Western Romance languages. Other sub-
clusters of the red cluster do not correspond to specific language families, like the Kurmanji and
Dutch and the Welsh and Dutch sub-clusters.
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Figure 8.11: Appendix Figure 3 from [MMC22]. Trees of how the languages in cluster 1 relate
based on their “Language family” according to Wikipedia. The Wikipedia page of each language
contains an infobox (the area containing key information about the topic of the page), from which
we extracted the “Language family” field. Languages are highlighted to match the clusters in the
dendrogram of cluster 1.
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8.3 Discussion and perspectives

We performed several experiments on using CNN+ANNc to model multiple languages at once
(see Subsection 8.1.2) and to transfer CNN+ANNc between languages without fine-tuning (see
Subsection 8.1.1 and Section 8.2), leveraging the multilingual nature of Siganalogies.

We made a first attempt to study how transfer performance relates to family in [Als+21b].
However, the first experiments on Sig16 and JBATS did not allow us to draw general conclusions
beyond confirming the limitations caused by the alphabet gap. We also observed that the imbalance
caused by the data augmentation without sampling is revealed through transfer to other languages,
even when performance on the training language appears satisfactory.

8.3.1 Multilingual models

As with models trained on a single language, we found that the imbalance caused by the 8/3 data
augmentation setting transfers to other languages when using multilingual models. The multi-
lingual models we considered in Subsection 8.1.2 offer more stable performance across languages
compared to models trained on a single language, with comparable amounts of training data.
While the omnilingual models offer more stable performance than bilingual models, the bilingual
models perform much better as long as we exclude two problematic languages from Sig16 as well
as JBATS.

8.3.2 Cross-lingual transfer

Transferring the whole CNN+ANNc resulted in reasonable performance (often above 50% accu-
racy) on Sig16, however the transfer failed on some languages (see Subsection 8.1.1). Indeed, those
languages used a different set of characters than the rest of languages, resulting in a significant
amount of unrecognized characters and causing an alphabet gap (that we also describe in Subsec-
tion 5.5.1). We performed further transfer experiments on Sig19 (see Section 8.2), in which we
were able to circumvent the alphabet gap issue and achieved higher success.

To be more specific, with the cross-lingual transfer experiments performed on Sig19, we con-
firmed that under the right circumstances, i.e., when alphabet gap is not limiting anymore, the
morphological similarities between languages are reflected in the behavior of CNN+ANNc during
transfer. By extension, the morphological transformations modeled by CNN+ANNc through APs
appear transferrable across languages.

Nevertheless, the transfer performance is most likely influenced by the extent of the morphology
of a language present in the data, as Sig19 does not represent the full morphology of each language.
This might explain why transfer in some clusters of languages does not perform as well as in the
largest cluster we studied.

The experiments on Sig19 revealed an interesting correlation between the transfer performance
and the proximity of the source languages in the Wikipedia language families. In particular, we
found that in many cases, it is possible to use the proximity in the Wikipedia language families to
predict the performance of transferred models, as models trained on closely related languages will
perform similarly when transferred.

8.3.3 Future work

The results we obtain on Sig19 offer new perspectives for the development of multi-lingual models,
for instance by training separate models for each cluster of languages we identified in Sig19 based on
the usage of similar alphabets. We think that using only a subset of relevant languages for training
could improve results and offer a global morphological analogy model for a relatively cheap cost in
terms of data. Extensions to cross-lingual APs would be an interesting application of our results,
as this would open the use of ANN framework to languages with few written ressources available.

In our experiments, we considered only APs with all the elements from the same language.
There exist a type of cross-lingual analogy we did not explore, where two of the elements come
from one language and the other two from another language. It would be interesting to use the
low ressource languages from Sig19 as an experimental setting for such analogies, as we could
attempt to use high ressource languages as a base for the analogical transfer of morphological
transformations.
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Finally, our multilingual experiments were performed using only CNN+ANNc. A natural di-
rection for future work is to explore the performance of ANNr in a similar multilingual setting.
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Chapter 9

Conclusion of Part II and
dissemination of the ANN framework

We conclude this Part II by summarizing our contributions, and explain the various means put in
place to disseminate our work to the general public and the scientific community.

Our Siganalogies dataset is discussed in more details in Section 5.5. The ANN framework we
propose for analogy detection and analogy solving uses ANNc and ANNr, two DL models inspired
from the properties of APs. These models are discussed in more details Sections 6.5, 7.7 and 8.3.

Contributions. The ANN framework achieves very high analogy detection and analogy solv-
ing performance, in a variety of settings. Both the CNN+ANNc for analogy detection and the
AE+ANNr for analogy solving achieve consistent SotA performance on all the languages used in
our experiments, and outperform the symbolic baselines Alea [LYZ09] and Kolmo [Mur+20] by as
much as 80% of accuracy in some cases. This performance is, to some extent, transferable between
languages.

The higher performance results from, among other things, (i) a representation of words learned
from the data for the purpose of analogy manipulation, (ii) the ability of the model to integrate the
dependencies between the embedding dimensions, and (iii) the flexibility to go beyond arbitrary
arithmetic formulas of APs such as 3CosAdd, 3CosMul, or parallelogram rule. However, there is a
known trade-off between the performance of DL models and their interpretability. In particular, it
is usually difficult to understand why a NN obtains a particular output. This also applies to our
framework, but further work might provide theoretical guaranties or empirical methods to tackle
this limitation.

The framework leverages the properties and intuitions of APs in the design of the models, but
also to augment data in a way that benefits model performance and sensitivity to initial conditions.
The model also learns to be invariant with regards to permutations following the axioms of APs.
In settings where APs appear ill suited due to some of the postulates, the data augmentation can
be adapted, as we show in Section 7.6 for Exchange of the Means. We propose a generalization of
this process in Appendix D, which will be supported by experiments in further work.

Overall, our framework shows that it is possible to obtain high performance when manipulating
APs beyond arithmetic models on embeddings or manually-designed approaches. The approach
can be applied to other types of data following our guidelines, as can be seen in [Als+22b; JCM23;
LPR19; LPR21; Zer+22] and Chapters 10 and 11.

Dissemination. To make our work on the ANN framework for morphology available in the
literature, we published in several international workshops [Als+21b; Cha+22; MMC22] and con-
ferences [Als+21a; Mar+22a], and in a journal [MC24]. We also made a significant effort to make
the research reproductible.

First, as mentioned in Section 5.4, all the data we use is made available on Dorel1 and the
code to produce and manipulate it on GitHub2. The dataset was the subject of a notice3 in the

1https://dorel.univ-lorraine.fr/dataset.xhtml?persistentId=doi:10.12763/MLCFIE
2https://github.com/EMarquer/siganalogies
3https://recherche.data.gouv.fr/en/dataset/siganalogies-millions-of-morphological-analogies-in-

more-than-80-languages
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recherche.data.gouv.fr website, to increase its visibility.
Several GitHub repositories have been put in place along our experiments, the latest being the

one for reproducing [MC24]. All the models trained for [MC24] are made available in Dorel4.
Finally, the models from [MC24] are publicly made available for execution for the general public

through the ANNa endpoint5 hosted at Loria, that I initially developed as a proof of concept and
was made fully operational through the combined efforts of several collaborators at Loria6. The
website contains an online demo of the models, where it is possible to play around with APs
and analogical equations in the languages mentioned in [MC24], and try out the prediction of
CNN+ANNc for classification, CNN+ANNr for retrieval, and AE+ANNr for generation. This
endpoint is bound to be integrated in the AT2TA online platform, in the frame of the ANR project
“Analogies: from Theory to Tools and Applications” (AT2TA, grant number ANR-22-CE23-0023)7.
The platform will integrate other tools and ressources for analogical reasoning developed within
the AT2TA project.

4https://dorel.univ-lorraine.fr/dataset.xhtml?persistentId=doi:10.12763/I5ED78
5https://anna.loria.fr/morpho
6Many thanks to Miguel Couceiro, Christophe Cerisara, and Nousradine Cherif Hassan for their help and main-

tenance on the ANNa website, see https://anna.loria.fr/about.
7https://at2ta.loria.fr/software/
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Part III
Beyond morphological analogies

This part describes our work done on some adaptations of the ANN framework presented in Part II
to other domains. It also cover an application of APs to CBR. Our publications covered in this
section are [Mar+23; Zer+22].
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Chapter 10

Extension of the ANN framework to
Target Sense Verification

Chapter contents
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10.3.1 Impact of the input encoding and analogical formulation . . . . . . . . . . . 133
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This chapter summarizes the contributions made in [Zer+22], and follows the same content.
Further experiments and extended descriptions are available in the Ph.D. thesis of Zervakis [Zer23].

The Target Sense Verification (TSV) task is a type of Word Sense Desambiguation (WSD), that
consists in determining whether the sense of word in a given context (intended sense) matches one
of the possible sense of the word (target sense). Three elements are provided for the task: on the
one hand, the word in its context; and on the other hand there is a definition and hypernyms (i.e.,
words with a more general meaning than the target word, but covering the sense of the latter) for
one possible sense of the word. In [Zer+22], we tackle TSV by combining BERT and ANNc and
reformulating TSV as a analogy detection task.

Our experiments demonstrate the significant impact on the final performance of the position
of the definition and hypernyms in the input of BERT, as well as how emphasis is made on
the hypernyms. Moreover, we achieve competitive results on the Words-in-Context-TSV (WiC-
TSV) evaluation benchmark [Bre+21]. Finally, we experiment with and without analogical data
augmentation from Section 6.3, and observe that analogical data augmentation yields comparable
performance and alleviates the dependence on the input encoding of BERT.

10.1 The task of Target Sense Verification

TSV data in WiC-TSV. For the TSV task we use the WiC-TSV dataset [Bre+21]. It contains
pairs of two senses SI , ST , respectively the intended and target senses, with a label stating whether
SI matches ST , the two senses correspond respectively to the target word in its context for SI ,
and the definitions and hypernyms for ST . Examples of such data are reported in Table 10.1.

The TSV task is divided into three sub-problems, depending on what is used to represent sense
ST :

• only the definition (sub-task 1);

• only the hypernyms (sub-task 2);

• both (sub-task 3).

129



10.1. The task of Target Sense Verification

Intended sense Target sense
Context Definition Hypernyms Label

A [marriage]
target

of ideas. A close and intimate union. union,
unification

True

A [fight]
target

broke out at the hockey

game.

The act of fighting; any contest
or struggle.

conflict,
struggle,
battle

True

My neighbor was the lead [role]
target

in

last year’s village play.

The actions and activities as-
signed to or required or expected
of a person or group.

duty False

They went bankrupt during the
economic [crisis]

target
.

A crucial stage or turning point
in the course of something.

juncture,
occasion

False

Table 10.1: Examples taken from the development set of WiC-TSV.

Instances Total Positive example rate

Train WNT/WKT 2137 0.56

Dev WNT/WKT 389 0.51

Test

WNT/WKT 717 0.54
MSH 205 0.52
CTL 216 0.43
CPS 168 0.46

Table 10.2: Statistics of the WiC-TSV dataset.

In our experiments, we only consider sub-task 3.
WiC-TSV contains general-domain instances, extracted from WordNet (WNT) and Wikitionary

(WKT). It also contains domain-specific instances:

• general-domain instances, extracted from WordNet (WNT/WKT);

• domain-specific instances:

– Cocktails (CLT), extracted from the “All about cock-tails”1 thesaurus;

– Medical Subjects (MSH), extracted from the MeSH2 thesaurus;

– Computer Science (CPS), manually constructed from Wikipedia definitions and a con-
sensus of 2 experts.

The training set and development set contain only general-domain sentences, while the test set
contains sentences from all 3 sources, with the exact amounts reported in Table 10.2.

Baseline approaches to TSV. The authors of the WiC-TSV dataset proposed, in [Bre+21],
a model based on BERT to solve the task. For sub-task 3, the concatenation of the context,
definition, and hypernym is fed to BERT. Then, a binary classification layer (i.e., a perceptron
with a single output and sigmoid activation) is used to predict whether the senses match or not.
The input to this classifier is the concatenation of:

• the [CLS] token embedding;

• the average of the embeddings corresponding to the target word;

• the average of the embeddings of the definition.

1http://vocabulary.semantic-web.at/cocktails
2https://www.nlm.nih.gov/mesh/meshhome.html
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Breit, Revenko, et al. tested both the base and large versions of BERT, referred to as BERT-B
and BERT-L, respectively. They also propose a FastText baseline using the concatenation of the
average of the embeddings of the context, and the average of the embeddings of the definition. They
also include unsupervised baselines based on BERT and DistilBERT [San+19], labeled U-BERT
and U-dBERT respectively.

A similar approach to BERT-B and BERT-L was proposed by Moreno, Pontes, and Dias [MPD21],
where two distinct BERT models are fine-tuned respectively on the hypernyms and the definition.
In each case, the representation of the target sense is concatenated to the context, and the embed-
ding of the [CLS] token is used for classification. At inference time, the output of both models are
aggregated. In their experiments, the authors place special tokens $ around the target word in the
context, and separate the hypernyms with such characters too.

An extensive study of BERT for TSV is presented in [VSD21], including data augmentation,
freezing the model parameters during fine-tuning, applying different pooling strategies to obtain
the classifier input, and masking the target word in the context.

A more generic approach called MIRROWIC was proposed by Liu, Liu, et al. [Liu+21]. It
was tested on multiple tasks including TSV. Their method uses contrastive learning to bring the
representation of words in similar contexts closer and words in dissimilar context further apart. To
evaluate their pre-trained model on TSV, they constructed manual templates involving the target
word, the definition and/or the hypernyms (depending on the sub-task). Then the authors classify
each instance based on the cosine similarity of the embedding of the target word in its original
context and in the template.

10.2 Analogy detection for TSV

Analogy detection can be used to check that the sense SI of the target word matches the target
sense ST of the definition and hypernyms.

For instance, it is possible to check that the relation R(target word, hypernyms) is equivalent
to the relation R′(definition, hypernyms), in other words checking that the AP

target word : hypernyms :: definition : hypernyms

holds. Indeed, as the definition and the hypernyms always correspond to the same sense ST , if
R,R′ are equivalent, then the sense SI of the target word would also be the same as ST . We
provide an example of this formulation in Example 10.1.

Using the first instance in Table 10.1 as an example we have:

• context = “A [marriage]
target

of ideas.”;

• target word = “marriage”;

• definition = “A close and intimate union.”;

• hypernyms = {“union”, “unification”}.

The question of whether “target word ” : “hypernyms” :: “definition” : “hypernyms” holds
can then be reformulated as:

“Is the relation from “marriage” (in the sentence “A marriage of ideas.”) to “union”
and “unification”, the same as the relation from “A close and intimate union.” to
“union” and “unification”?”

The answer to that would be yes, as “a close and intimate union” is a specific kind of “union”
or “unification”, and the same can be said for “marriage” in the sentence “A marriage of ideas.”

Let us now we consider the definition and hypernyms:

• definition = “The act of marrying; the nuptial ceremony.”;

Example 10.1: Translating TSV into analogy detection
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• hypernyms = {“ritual”, “rite”}.

In that case, the AP does not hold anymore, as “The act of marrying; the nuptial ceremony.”
is a special kind of “ritual” or “rite”, but “marriage” in the sentence “A marriage of ideas.” is
not.

Potential analogical formulations of TSV. The above AP for TSV is not the only possible
formulation. Tackling TSV based on analogical reasoning requires us to select the appropriate
A,B,C,D ∈ A such that the analogy detection task on APs A : B :: C : D yields good classification
performance. In particular, for our experiments we consider A = {cls, tgt, ctx, def, hyps, descr} as
possible elements of the analogy:

• cls: the embedding of the [CLS] token;

• tgt: the embedding of the target word;

• ctx: the average of the embeddings of all words in the context;

• def : the average of the embeddings of all words in the definition;

• hyps: the average of the embeddings of all hypernyms;

• descr: the average of the embeddings of all words in the definition and all hypernyms.

The selection of tgt, ctx, def, hyps are the elements provided for the TSV task, and carry the senses
to compare. Additionally, cls the embedding of [CLS] can generally be seen as a representation
of the whole input, and is often used for classification tasks on the whole input of BERT [Bre+21;
Dev+19; MPD21; VSD21]. Therefore, cls may capture key information both from context, and
definition/hypernyms. Finally, inspired by [Bre+21], we also test for descr, which essentially
treats definition and hypernyms as a whole rather than separate units. Note that the choice
and arrangement of these candidates in the analogical formulation is independent from the input
formatting described in a later paragraph.

The amount of APs A : B :: C : D with A,B,C,D ∈ A is |S|4 = 1, 296. However, not all APs
in this set are of interest to is, for instance hyps : hyps :: hyps : hyps is unhelpful for the TSV. To
ensure the APs are meaningful for TSV, we distinguish two subset ofA: A1 = {cls, tgt, ctx} contain
information coming from the context, whileA2 = {cls, def, hyps, descr} involves embeddings which
reflect the information found in the definition and hypernyms. Note that since it represent the
whole instance, cls belongs to both subsets. We use A1,A2 to define a set of rules to filter
interesting analogical formulations, reducing them to 768:

• (A ̸= B) ∧ (C ̸= D) excludes APs where embeddings on either side are identical;

• ¬
[[
(A,B,C,D ∈ A1) ∧ (A ̸= cls)

]
∨
[
(A,B,C,D ∈ A2) ∧ (A ̸= cls)

]]
excludes APs instan-

tiated exclusively from A1 or A2, with the exception of cls that covers the whole input, and
therefore ensures that information from both the context/target and the definition/hyper-
nyms is present.

Analogical data augmentation. In our experiments we train models with and without the
analogical data augmentation from Section 6.3. We indicate models with analogical data augmen-
tation during training with a subscript pi standing for permutation invariance training.

Contrary to what is described in Section 6.3, both valid and invalid examples are already
available for the analogy detection task. Therefore, we apply the 8 equivalent permutations on the
valid and invalid examples separately, and we do not use the invalid permutations mentioned in
Section 6.3. Equivalent permutations are included in the same training minibatch.

BERT input format and hypernym marking. In all our experiments, the target word is
surrounded by focus characters in the context, following [MPD21]. The order and format in which
the context, definition, and hypernyms are fed into BERT has a direct impact on the embeddings
produced. For instance, in preliminary experiments using the [CLS] context [SEP] definition
; hypernym, hypernym, ... [SEP] input encoding format, analogical formulations including
hyps performed particularly poorly. This issue is likely due to the fact that BERT is pre-trained on
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sentences and a list of hypernyms is not a sentence. To mitigate this issue, we format the hypernyms
using special tokens, and include their embeddings in the computation of hyps. Indeed, such special
tokens are often used in the input of BERT to help models identify and store information about
special segments of the input [MPD21]. We consider two types of special tokens to help BERT
identify hypernyms as non-sentence inputs, both used with success in the literature [MPD21;
Zha+19]: a focus character (fc) $ or opening and closing entity markers (em) [H] and [/H]. Given
the sensitivity of BERT to the order of elements in the input, we consider a variant (swap) of the
input format exchanging the position of the definition and the hypernyms.

We end up with six variants of the input formatting, with examples given in Example 10.2:

• default: [CLS] context [SEP] definition ; hypernyms [SEP];

• default+fc: [CLS] context [SEP] definition ; $ hypernyms $ [SEP];

• default+em: [CLS] context [SEP] definition ; [H] hypernyms [/H] [SEP];

• swap: [CLS] context [SEP] hypernyms ; definition [SEP];

• swap+fc: [CLS] context [SEP] $ hypernyms $ ; definition [SEP];

• swap+em: [CLS] context [SEP] [H] hypernyms [/H] ; definition [SEP].

Using the first instance in Table 10.1 as an example we have:

• default: [CLS] A $ marriage $ of ideas.
[SEP] a close and intimate union ; union, unification [SEP];

• default+fc: [CLS] A $ marriage $ of ideas.
[SEP] a close and intimate union ; $ union, unification $ [SEP];

• default+em: [CLS] A $ marriage $ of ideas.
[SEP] a close and intimate union ; [H] union, unification [/H] [SEP];

• swap: [CLS] A $ marriage $ of ideas.
[SEP] union, unification ; a close and intimate union [SEP];

• swap+fc: [CLS] A $ marriage $ of ideas.
[SEP] $ union, unification $ ; a close and intimate union [SEP];

• swap+em: [CLS] A $ marriage $ of ideas.
[SEP] [H] union, unification [/H] ; a close and intimate union [SEP].

Example 10.2: Input formatting variants.

10.3 Experiments

10.3.1 Impact of the input encoding and analogical formulation
For each choice of input encoding and relation, we train our system 4 times using different random
seeds, without analogical data augmentation, resulting in 6 × 768 × 4 = 18, 432 runs. Each run
takes approximately 35 minutes on a Nvidia GTX 1080 Ti 11GB. Figure 10.1 shows the mean
accuracy achieved across all 4 runs, for each input formats, and for each combination of elements
for the analogical formulation sorted in ascending order of performance.

Overall, for all input formats there exist some A,B,C,D combinations that result in good
performances. Using entity markers outperforms using focus characters on the development set,
as can be seen in Figure 10.1. This might be due to using the same focus characters for the target
word and for the hypernyms, which is less expressive than when using dedicated entity markers.

However, some formats appear more sensitive than others to the selection of the elements in
the AP. In particular, not using focus characters (fc) or entity markers (em) significantly lowers
performance, with the 400 worst formulations performing particularly poorly. These formulations
contain hyps for at least one element, and removing them brings the distribution of results much
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Figure 10.1: Mean accuracy achieved on the development set. Each curve represents a distinct
input format, and the horizontal axis represents the 768 possible analogical formulations, sorted
in order of increasing accuracy.

closer to the other two settings, which is consistent with our preliminary experiments. We also
observed in additional experiments that if focus characters or entity markers are added in the
formatting of hypernyms, but without including the embedding of said tokens in hyps, the perfor-
mance is close to not using the focus characters or entity markers. This indicates that important
information for TSV is stored in the embeddings of the special tokens.

By contrast, swapping or not the position of the definition and the hypernyms in the input
does not have as much of an impact on performance.

For each input format, the best performing analogical formulation contains cls, which suggest
that the [CLS] token is particularly important for the performance on TSV.

10.3.2 Comparison with other approaches to TSV

Based on the results of the previous experiment, we train AB4TSV models with and without ana-
logical data augmentation, for 10 random initializations. We report the results on the development
set in Table 10.3. We also reproduce the HyperBertCLS and HyperBert3 baselines from [Bre+21],
using the 6 input formats we introduce. On the development set, AB4TSV outperforms all the
other models. AB4TSVpi performs worse than AB4TSV within a margin of 1%, for both accuracy
and F1 score. In terms of accuracy, putting the hypernyms before the definition (swap) and using
focus characters or entity markers (fc/em) maximizes performance. In terms of F1 however, the
best performing setting for AB4TSV and AB4TSVpi (default+em) puts the definition before the
hypernyms. As observed in Subsection 10.3.1, using the entity markers tends to outperform not
using special tokens or using focus characters.

In Table 10.4, we report the results on the test set of our two best performing AB4TSV, namely
the swap+em and swap+fc, as well as the best AB4TSVpi model, default+em. AB4TSV and
AB4TSVpi both outperform the previously reported approaches on the WiC-TSV benchmark. The
swap+em input format for AB4TSV achieves significantly lower performance than its counter-
parts on both domain-specific and general instances, and does not generalize well on the test set.
Interestingly, on test set and by contrast with the development set AB4TSV and AB4TSVpi achieve
similar performance. As the input formatting and analogical formulations are chosen on the devel-
opment set, the AB4TSV model selected for the benchmark might be over-fitting the development
set, while AB4TSVpi generalizes well despite slightly lower performance on the development set.

10.3.3 Performance with regards to analogical data augmentation

We investigate the behavior of AB4TSV with regards to permutations of the AP using the best
performing formulation for AB4TSV in terms of accuracy.
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Model Format Dev Acc Dev F1 AP formulation

AB4TSV

default 74.5 ± 0.015 77.0 ± 0.016 cls : descr :: cls : ctx
default+fc 74.9 ± 0.010 77.3 ± 0.006 cls : def :: ctx : cls
default+em 75.4 ± 0.027 77.8 ± 0.023 tgt : descr :: cls : def
swap 75.4 ± 0.016 77.7 ± 0.016 def : cls :: cls : ctx
swap+fc 75.8 ± 0.013 77.7 ± 0.013 def : ctx :: cls : hyps
swap+em 75.8 ± 0.017 77.7 ± 0.012 hyps : def :: cls : ctx

AB4TSVpi

default 74.3 ± 0.016 76.1 ± 0.014 cls : descr :: cls : ctx
default+fc 74.6 ± 0.008 76.6 ± 0.008 cls : def :: ctx : cls
default+em 75.1 ± 0.014 77.3 ± 0.013 tgt : descr :: cls : def
swap 74.2 ± 0.010 76.1 ± 0.011 def : cls :: cls : ctx
swap+fc 74.8 ± 0.012 75.9 ± 0.024 def : ctx :: cls : hyps
swap+em 75.0 ± 0.009 76.4 ± 0.011 hyps : def :: cls : ctx

Baselines

HyperBertCLS

default 74.4 ± 0.014 77.2 ± 0.009
default+fc 73.5 ± 0.027 75.2 ± 0.035
default+em 74.0 ± 0.022 76.1 ± 0.019
swap 72.6 ± 0.028 74.4 ± 0.031
swap+fc 73.1 ± 0.028 75.2 ± 0.031
swap+em 74.6 ± 0.024 76.6 ± 0.022

HyperBert3

default 74.0 ± 0.014 76.9 ± 0.007
default+fc 73.9 ± 0.018 76.3 ± 0.018
default+em 73.1 ± 0.031 75.2 ± 0.032
swap 73.8 ± 0.015 76.3 ± 0.015
swap+fc 73.5 ± 0.011 75.6 ± 0.013
swap+em 74.4 ± 0.011 75.7 ± 0.024

Table 10.3: Accuracy and F1-score achieved on the development set by the proposed method and
the two baselines. For our model, we report for each input format only the results for the best
performing AP formulation.

In Table 10.5, we report the performance of AB4TSV and AB4TSVpi on specific permutations
of the input formulation, each model trained for 4 random initializations. As expected, the per-
formance of AB4TSVpi is stable accros permutations when analogical data augmentation is used
during training. Conversely, the performance of AB4TSV, which is trained only on the base form
of the AP, degrades on the other permutations, in particular for Symmetry of Conformity.

10.4 Conclusion, discussions and perspectives

In conclusion, we successfully reformulated TSV as an analogy detection task, and outperformed
competitors on the WiC-TSV benchmark by adapting some elements of the ANN framework,
namely ANNc and the analogical data augmentation.

Using analogical data augmentation during training resulted in a model with a more consistent
performance across permutations of APs, that generalizes well with comparable performance to a
model trained without analogical data augmentation.

Our experiments highlighted the importance of the formatting used as input for BERT, as well
as the importance of a suitable analogical formulation to achieve high performance, in particular
when not using analogical data augmentation. It would be interesting to confirm whether, when
using analogical data augmentation, we observe a similar distribution of the performance across
the analogical formulations. However, we leave reproducing the experiment from Subsection 10.3.1
with AB4TSVpi to later work.

The current formulation of AB4TSV is heavily dependent on the formatting of the input, in-
cluding the order of the elements of the AP used for analogy detection. In Part II, the embeddings
manipulated were computed independently from one another. A similar approach might be ben-
eficial for TSV, for example, by splitting the context, definition and hypernyms separately into

135



10.4. Conclusion, discussions and perspectives

Approach Accuracy F1

Supervised
CTLR [MPD21] 78.3 78.5
[VSD21] 71.9 76.2
BERT-B [Bre+21] 76.6 78.2
BERT-L [Bre+21] 76.3 77.8
FastText [Bre+21] 53.4 63.4
AB4TSV+swap+em 75.7 77.5
AB4TSV+swap+fc 78.6 79.8
AB4TSVpi+default+em 78.6 79.4

Unsupervised

U-dBERT [Bre+21] 61.2 51.3
U-BERT [Bre+21] 60.5 51.9
MIRRORWIC [Liu+21] 73.7 –

Table 10.4: Test set performance of the best performing AB4TSV and AB4TSVpi compared to
previously reported results. All results are calculated by the authors of the WiC-TSV benchmark.

Permutation Model Accuracy F1

Base form AB4TSV 76.2± 1.927 78.0± 1.932
AB4TSVpi 75.1± 1.611 76.8± 1.891

Symmetry of Conformity AB4TSV 53.2± 17.10 61.4± 18.53
AB4TSVpi 74.5± 1.949 76.4± 2.210

Exchange of the Means AB4TSV 72.9± 3.596 73.4± 5.760
AB4TSVpi 74.7± 2.104 76.5± 2.315

Table 10.5: Performance on specific permutations of the AB4TSV and AB4TSVpi, on the devel-
opment set, for the swap+fc input format and the AP def : ctx :: cls : hyps.

BERT.
One important difficulty we encountered was the choice and arrangement of the elements to

include in the AP for analogy detection. In Part II, and later in Chapter 11, the elements manipu-
lated were of the same nature and semantic level, while for TSV we considered sentences, words in
contexts, and lists of hypernyms. Different formulations of TSV in terms of analogies are possible,
but we expect to have similar issues as we had, and potentially larger inputs if we compare mul-
tiple TSV instances in the AP, as we did in Chapter 11. Additionally, it would be interesting to
extend the work from analogy detection to analogy solving, though an analogy solving formulation
appears more suiatble for WSD than for TSV.
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In this chapter, we adapt the ANN framework developed in Part II in the context of frame
semantics, focusing on the problem of Frame Semantic Role Labeling (FSRL) on FrameNet-1.7
(FN1.7) (the latest version of FrameNet (FN) at the time of writing). We reformulate FSRL
as an analogy solving problem in Section 11.2. Our experiments reported in Section 11.4 show
that, under certain conditions, using analogy solving we can obtain results that outperform the
SotA approaches on FSRL, without using sophisticated and computationally expensive encoding
or decoding mechanisms.

The content of this chapter has not been published at the time of writing.

11.1 FrameNet and frame semantics

We use FN1.7 [Bak17] as our testbed, which essentially provides a lexicon of semantic frames as
well as a set of sentences annotated with semantic frames information from this resource.
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A semantic frame is a schematic representation of an event or state, which is triggered in the
sentence by a specific word or expression called the predicate. Each semantic frame contains a
set of Frame Elements (FEs), which can core Frame Elements (core FEs) or peripheral/extra-
thematic Frame Elements (non-core FEs), that correspond to “various participants, props and
other conceptual roles.1” We say that a FE is instantiated in a sentence by a group of words if the
group of words carries the meaning of the FE. In this chapter, we use the notion of Semantic Role
(SR) to designate both the FEs and the predicate.

The distinction between core FEs and non-core FEs corresponds to whether they are manda-
tory to express the meaning of the semantic frame or not: a core FEs must be expressed
for the semantic frame to be understood while non-core FEs are not necessary. Following
Example 11.1 below, the “disembarking” frame can not be understood without knowing the
“traveler” and the “vehicle”, which are the core FEs of “disembarking”. However, it is not
necessary to know the “manner” in which one disembarks (fast, slowly, carefully, etc.) to
understand what is described.

Nevertheless, as explained in [Rup+16, Subsection 3.2.3], in practice some core FEs are
not expressed in the annotation as they are implied by the context. Therefore, it is safer to
consider that any FE of a semantic frame might be omitted.

Remark 11.1

Frame semantic parsing is the task of obtaining frame semantics annotations from a sentence.
It is usually divided in 3 sequential tasks:

1. predicate identification: identify all predicates, i.e., words or expressions that trigger a
semantic frame;

2. frame identification: identify the semantic frames that are triggered by the predicates;

3. FSRL: for each semantic frame f and set FEf of all possible FEs (or arguments) defined in
f , associate a text span of the sentence with each FE, if such an association exists; FSRL is
also known as argument identification and classification, as it sometimes separated into:

(a) argument identification: identifying spans of text that are suitable to be associated with
an FE;

(b) argument classification: identifying the FEs corresponding to each span identified in
the previous step.

It is important to know that a single sentence may trigger a one or more semantic frames, as
in the example Example 11.1.

The following sentence was taken from the FSRL test data of FN1.7. It triggers two semantic
frames: “posture” annotated in (11.1) below, and “disembarking” annotated in (11.2).

[Steve]
agent

, [who]
agent

was [sitting]
predicate

[next to John]
location

, got down in Rome . (11.1)

[Steve , who was sitting next to John ,]
traveller

[got]
predicate

[down]
vehicle

[in Rome]
place

. (11.2)

As we can see, it is possible to have a group of words involved in multiple annotations, for
different semantic frames.

Example 11.1: Annotation of a sentence with frame semantics

Relations between semantic frames. In the FN ontology, semantic frames are related to each
other. These relations are directed, from a super-frame, which is more abstract or less dependent,
to a sub-frame, which is more specific or more dependant [Rup+16]. These relations allow to link
some SRs of the two semantic frames. For instance, a semantic frame can inherit from another

1https://framenet.icsi.berkeley.edu/glossary
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semantic frame, which means that it is a more specific version of the semantic frame. As such,
the SRs of the super-frame are inherited, and sometimes more accurately specified, by the sub-
frame. Following the example from Example 11.1, the “posture” semantic frame, defined by “an
Agent supports their body in a particular Location”, inherits from the “state” frame, defined by
“an Entity persists in a stable situation called a State.” In this inheritance, the “agent” is a specific
kind of sentient “entity”, while the “location” defines a part of the “state”.

Other inter-semantic frame relations exist in the FN ontology than inheritance. Using examples
from the Natural Language Toolkit (NLTK) library’s description of FN2, some important ones are:

• inheritance relations (that we already described);

• usage relations: the sub-frame frame presupposes the super-frame as background, e.g.,
“speed” uses “motion”;

• sub-frame relations: the sub-frame is a sub-event represented by the super-frame, e.g., “crim-
inal_process” has “arrest” and “trial” among its sub-frames.

In our experiments, we distinguish leaf semantic frames in the inheritance hierarchy, i.e., se-
mantic frames not having any semantic frame inheriting from them in the FN1.7 ontology.

SotA approaches to Frame semantic parsing. In order to perform full frame semantic
parsing, current SotA approaches use sophisticated encodings, such as graph neural representa-
tions [LSZ21], or decoding mechanisms, such as semi-Markov Conditional Random Fields (CRFs) [Swa+17].

To the best of our knowledge analogies have not been used in the context of FSRL. Swayamdipta,
Thomson, et al. [Swa+17] presented a softmax-margin semi-Markov model. The authors use a bidi-
rectional RNN with a semi-Markov CRF without initially using any syntactic features, and then
employ multi-task learning and syntactic scaffolding to obtain SotA results at the time of publica-
tion. More recently, Lin, Sun, and Zhang [LSZ21] used Graph Neural Networks (GNNs) based on
BERT embeddings and Bidirectionnal Hierarchical Long- and Short-Term Memory neural networks
(BiHLSTMs) [SGS15] for the full frame semantic parsing task, also obtain SotA results.

11.2 Analogical transfer for FSRL

In this section, we reformulate the FSRL task as an analogy solving task, and describe the model
we used to tackle it.

11.2.1 mBert contextual word embeddings
Contextual information is necessary to understand the SR of a group of words, as it is defined in
relation to a semantic frame within a sentence. For instance, in Example 11.1, knowing whether
“John” or “Steve” is the agent of semantic frame “posture” depends on the sentence considered.
Using “John, who was sitting next to Steve.” instead of the sentence of Example 11.1 would result
in “John” being the agent instead of “Steve”.

Accordingly, we decided to focus on contextualized word embedding models. We decided to use
a model of the BERT family [Dev+19, see also Subsection 3.3.5] for three main reasons:

• they offer the Extractive Question Answering (Ex-QA) formulation, with ready to use im-
plementations in major frameworks and well-known performance, that we use as a basis for
formatting our analogical equations as “analogical questions”;

• BERT models are widely used which allows better comparability with other approaches, for
instance Lin, Sun, and Zhang [LSZ21] who also use a BERT model;

• compared to some recent models with more parameters such as GPT43 (1.76 trillion param-
eters) or Mixtral4 (45 billion parameters), BERT models (108 million parameters) have a
lower fine-tuning cost, however this limitation can be mitigated by using model instances of
a smaller size but weaker performance.

2https://www.nltk.org/howto/framenet.html
3https://platform.openai.com/docs/models
4https://mistral.ai/fr/news/mixtral-of-experts/
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Among the existing variants of BERT, we use mBert [Dev+19] as we intend to expand our
application to other languages in future work, as discussed in Subsection 11.5.4. The mBert
architecture considers tokens which are different from words in the linguistic meaning, as for
instance a word may be split in multiple tokens and tokens can be punctuation marks, as explained
in Subsection 3.3.4.

11.2.2 Reformulation of FSRL as analogy solving
As mentioned at the start of this chapter, we focus on predicting SRs through analogy solving.
To achieve this, our formulation considers two sentences s, t, and we perform what can be called
analogical transfer: by analogy solving, we transfer the knowledge we have in the source sentence s,
in our case the SR annotations of some frame f , to the target sentence t. The analogical equation
A : B :: C : x, x = D is such that A,B are SRs of f in s, and C,D SRs of f in t. Furthermore,
A,C are instances of the same SR r, and B,D instances of the same SR r′ (potentially different
from r). This analogical equation can be read as “Which group of words in t has the same role
w.r.t. C, as the role B has w.r.t. A in s?”5 In Example 11.2, we present some examples of such
analogical equation and how we can read them.

Taking the example of the semantic frame “activity start”a for f , we have the following SRs:
the predicate p, as well as the core FEs “agent” and “activity”. For the example, we do not
consider non-core FEs.

Let us now consider the following annotated sentences:

• s =“Most PAT dogs are mature when [they]
agent

[commence]
predicate

[work]
activity

.”

• t =“[The Labour Party]
agent

did not [enter]
predicate

[into negotiations]
activity

.”

From these sentences we can create the following analogical equation A : B :: C : x, x = D,
among the 6 permutations of 2 out of the 3 SRs:

• if r = predicate and r′ = “agent”, then we have:

[commence]
predicate

: [they]
agent

:: [enter]
predicate

: x, x = [The Labour Party]
agent

which can be read as “What is in t the group of words which has the same role w.r.t.
C = “enter”, as the role B = “they” has w.r.t. A = “commence” in s, i.e., the “agent” in
the semantic frame where A,C are predicates?”

• if r = “agent” and r′ = “activity”, then we have:

[they]
agent

: [work]
activity

:: [The Labour Party]
agent

: x, x = [into negotiations]
activity

which can be read as “What is in t the group of words which has the same role w.r.t.
C = “The Labour Party”, as the role B = “work” has w.r.t. A = “they” in s, i.e., the
“activity” in the semantic frame where A,C are “agents”?”

ahttps://framenet2.icsi.berkeley.edu/fnReports/data/frame/Activity_start.xml

Example 11.2: Examples of analogical equations between SRs in FN

We split the analogical transfer formulation in two distinct settings:

• the FSRL setting where A,C are the predicates and B,D are FEs;

• a generalization where A,B,C,D are SRs

The FSRL setting is a particular case of the general analogical transfer setting, as predicates and
FEs are gathered under the notion of SRs.

5This reading can be interpreted in a similar manner as what is done in Question-Answer Driven Semantic Role
Labeling (QA-SRL) [HLZ15], where questions are used to find each FE, e.g., “who started something?” to obtain
the “agent” of “activity start”. In our case, the SR is described using A,B,C.
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General formulation. Given a source sentence s = {ws
1, . . . , w

s
n} and a distinct target sentence

t = {wt
1, . . . , w

t
m} represented by their sequence of tokens, we will consider three substrings of

consecutive tokens in s and t, respectively:

A = {ws
iA , . . . , w

s
iA+|A|−1} in s,

B = {ws
iB , . . . , w

s
iB+|B|−1} in s,

C = {wt
iC , . . . , w

t
iC+|C|−1} in t,

with iA, iB , iC representing the indices of the starting token position for A,B,C respectively. With
Rf the SRs of a semantic frame f , A and C instantiate the same SR r ∈ Rf , respectively in s
and t. We seek to identify D = {wt

iD
, . . . , wt

jD
} with iD, jD ∈ [1,m] and iD ≤ jD such that B,D

instantiate the same SR r′ ∈ Rf . In other words, we seek D that solves the analogical equation
A : B :: C : x.

FSRL formulation. In the FSRL task, given a target sentence t, a predicate pt of t triggering
a semantic frame f , we seek to identify all spans of text in the sentence that are associated with
a FE r ∈ Rf . To do so, we select a source sentence s that triggers the same frame f and that has
been annotated with all its SRs, and reformulate FSRL into multiple analogical equations.

In practice, we assume that a SotA semantic frame and predicate annotation method has been
applied on the target sentence t we want to annotate, providing us with the semantic frame f
and the predicate pt. Relying on these first annotations, we create analogical equations to predict
each of the FEs. In each analogical equation, we set r = predicate, and create a variant of the
analogical equation for each FE r′ instantiated in s. The annotation for each FE in t is the solution
to the corresponding equation, found by analogy solving. An example of this process is given in
Example 11.3.

Let us take once again the sentence t:

t = “The Labour Party did not [enter]
predicate

into negotiations.”

for which we know the predicate pt = “enter” and the semantic frame f = “activity start”,
using a SotA semantic frame and predicate annotation tool.

We use the source sentence:

s = “Most PAT dogs are mature when [they]
agent

[commence]
predicate

[work]
activity

.”

in which we have the FEs “agent” and “activity” annotated. Therefore, we can create the two
following analogical equations:

• s, t, [commence]
predicate

: [they]
agent

:: [enter]
predicate

: x, which once solved gives us the annotation

x = [The Labour Party]
agent

;

• s, t, [commence]
predicate

: [work]
activity

:: [enter]
predicate

: x, which once solved gives us the annotation

x = [into negotiations]
activity

.

Example 11.3: Examples of analogical equations for FSRL

Our approach could be extended by using the prediction of each SR to improve and cross-
check the predictions on the other SRs, in a similar form as the last analogical equation of
Example 11.2.

More precisely, once we have solved the analogical equations where A,C are fixed as
predicates, we could create new analogical equations where A,C would be FEs using the
previous results to specify C. Doing so, if we manage to reproduce the annotations using

Remark 11.2
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different FEs for A,C this would increase the confidence in the predictions, while obtaining
different annotations for an FE would indicate that further verifications are necessary.

11.2.3 Analogical Model Formalization

We define two probability distributions pb,pe over the tokens of t, respectively the likelihood
of a token being the first token of the answer (the beginning) and the last token of the answer
(the end). The two probability distributions are conditioned by s, t as well as by the analogical
equation A : B :: C : x to solve. Hence, the analogy solving problem can be formulated as follows:
for iD ≤ jD,

iD = argmax
i∈[0,m]

pb(w
t
i |s, t, A,B,C),

jD = argmax
j∈[0,m]

pe(w
t
j |s, t, A,B,C). (11.3)

For each token, the conditional probabilities pb,pe of being the start or end of fourth element of
an analogy, given the two sentences and the first three elements of the analogy, are obtained using
mBert.

Ex-QA formulation. To obtain these probabilities, we use the Ex-QA6 model for mBert, pro-
posed for solving the Stanford Question Answering Dataset (SQuAD) [Raj+16]. For each token
wi ∈ t, we obtain contextual embeddings wi = mBert(wi|s, t, A,B,C) which we then feed to two
perceptrons that learn whether a token constitutes the beginning or end of the solution to the
analogical equation. More precisely, we estimate

zb(i) = WT
b wi + bb,

ze(i) = WT
e wi + be,

where Wb,We are learned weights and bb,be learned biasses of the perceptrons. Conditional
probabilities are obtained for each token given the context using a softmax function:

pb(w
t
i |s, t, A,B,C) =

ezb(i)∑
j∈t e

zb(j)
,

pe(w
t
i |s, t, A,B,C) =

eze(i)∑
j∈t e

ze(j)
.

Notice that in Equation (11.3) it is possible to have i, j = 0. Inspired by [Dev+19], we consider
a special token wt

0 that helps us handle instances in which no solution exists. This is the case when
the optimal solution for Equation (11.3) yields i = j = 0, denoting a negative instance (as detailed
in Subsection 11.3.1). Otherwise, we consider only 0 < i ≤ j during decoding.

11.2.4 Non-analogical transfer model

We define an additional model, used in the ablation study in Subsection 11.3.3 to confirm the benefit
on the performance of the analogical formulation including A,C. It is in all points identical to the
one defined in Subsection 11.2.3, except that A,C do not appear in the input. The optimization
problem becomes:

iD = argmax
i∈[0,m]

p′
b(w

t
i |s, t, B),

jD = argmax
j∈[0,m]

p′
e(w

t
j |s, t, B), (11.4)

where iD ≤ jD, and p′
b,p

′
e correspond to pb,pe without A,C. This can be seen as a simple transfer

of r′ from s to t, instead of the analogical transfer we perform with the main model.

6https://huggingface.co/docs/transformers/main/en/model_doc/bert#transformers.
BertForQuestionAnswering
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Context Question
Model s A : B :: C : x or B t

Analogical [CLS] [s] ws
1 . . . ws

n [A] A [B] B [C] C [SEP] [t] wt
1 . . . wt

m [SEP]
Non-analogical [CLS] [s] ws

1 . . . ws
n [B] B [SEP] [t] wt

1 . . . wt
m [SEP]

Table 11.1: Input format of the mBert Ex-QA model for the analogical (described in Subsec-
tion 11.2.3) and non-analogical (described in Subsection 11.2.4).

11.2.5 Input format for mBert.

For the analogical and the non-analogical models, our approach extends on the Ex-QA input format
implemented in the HuggingFace library: “[CLS] question [SEP] context [SEP]”, where [CLS]
and [SEP] are special tokens defined by mBert. The context, which specifies where the answer
should be found, corresponds to t in our task. The question conditions the (semantic) content of
the answer, and corresponds to s, t, A : B :: C : x in our case. However, it is not necessary to
provide t in both the context and the question, so we limit the question to s,A : B :: C : x. To
indicate the boundaries of each element of our formulation to the transformer model, we add our
own special tokens: [s], [t], [A], [B], and [C]. This results in sequences following the pattern in
Subsection 11.2.5. Reusing the example from Example 11.2, we obtain the inputs in Example 11.4.

Let us consider the following sentences and analogical equation:

s = Most PAT dogs are mature when [they]
agent

[commence]
predicate

[work]
activity

.

t = [The Labour Party]
agent

did not [enter]
predicate

[into negotiations]
activity

.

[they]
agent

: [work]
activity

:: [The Labour Party]
agent

: x, x = [into negotiations]
activity

The input for the analogical model (see Subsection 11.2.3) will be:

[CLS] [s] Most PAT dogs are mature when they commence work . [A] they
[B] work [C] The Labour Party [SEP] [t] The Labour Party did not enter into
negotiations . [SEP]

The input for the non-analogical model (see Subsection 11.2.3) will be:

[CLS] [s] Most PAT dogs are mature when they commence work . [B] work
[SEP] [t] The Labour Party did not enter into negotiations . [SEP]

Finally, the expected output would be:

Token position 0 1 2 3 4 5 6 7 8 9
Token ∅ The Labour Party did not enter into negotiations .

Expected pb 0 0 0 0 0 0 0 1 0 0
Expected pe 0 0 0 0 0 0 0 0 1 0

Example 11.4: Example analogical and non-analogical inputs for mBert

11.3 Analogy solving performance

Following the formulation introduced in Section 11.2, we train an analogy solving model on the
training data described in Subsection 11.3.1. We determine the limitations of our model with
regards to the analogical setting, and the conclusions drawn here can be transferred to the FSRL
setting. Namely, our FSRL formulation is a special case of the general analogical formulation where
A,C are limited to predicates.
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Instances
Task Data subset Positive Negative

Analogical transfer

Training set 2.751± 0.645 2.623± 0.655
Development set 2.972± 0.695 2.488± 0.594
Test set 2.737± 0.634 2.428± 0.576

rA ̸= rC 3.179± 0.393
Frame mismatch 2.947± 0.688

FSRL Training set 1.822± 0.793
Test set 1.816± 0.750

Table 11.2: FEs per semantic frame and per sentence (excluding the predicate), for all the experi-
ments.

11.3.1 Experimental setup

To train our model and explore its analogy solving performance, we extract sentence examples
from the FN1.7 ontology to build APs A : B :: C : D, where A,B,C,D are either instances of core
FEs or the predicate. For each frame, we gather up to 1000 sentences with the annotation status
of either “FN1_Sent”, “Finished_Initial”, or “Finished_Checked”, the 3 annotation status of the
highest quality according to the documentation of FN1.7.

As mentioned in Subsection 11.2.3, it is possible that some SRs of a given frame are not
instantiated in a given sentence, in particular for non-core FE which are optional to the meaning of
the semantic frame. To account for this, we consider positive instances of the analogical equation
that can be solved because r′ is instantiated in t as D, and negative instances where r′ is not
instantiated in t and the analogical equation cannot be solved.

Data augmentation. To integrate analogical knowledge in our model, we use a data augmen-
tation process based on Symmetry of Conformity and Exchange of the Means, similar to what was
done in Part II (see Subsection 6.3.1). For each pair of SRs r, r′ of a semantic frame and each pair
of sentences s, t instanciating the frame, we generate the 8 equivalent APs: A : B :: C : x, x = D,
A : C :: B : x, x = D, D : B :: C : x, x = A, C : A :: D : x, x = B, C : D :: A : x, x = B,
B : A :: D : x, x = C, D : C :: B : x, x = A, B : D :: A : x, x = C. We exchange s with t
as needed when we perform these permutations, such that the solution to the equation appears in
the context of the Ex-QA formulation. We exclude from our study APs where A = B and C = D.
Indeed, the corresponding analogical equations would become A : A :: C : x and the solution
x = C can be found without needing to explore the semantic relations between the elements of the
analogical equation, by Identity. Such trivial examples could degrade the quality of the training
of the model.

Dataset size. To maintain a good balance in the SRs presented, we sample APs such that we
have the same amount from all possible pairs of SRs of each pair of sentences.

To make our training set and development set, we select randomly 250 semantic frames from
the leaf semantic frames (see Section 11.1). Similarly, we select another 100 leaf semantic frames
used for both the analogical test set and the rA ̸= rC set used in Subsection 11.3.3.

For our training set, we take up to 1000 positive and 1000 negative instances per semantic frame.
From them, we take out 1000 positive and 1000 negative instances to make the development set,
without considering which frame instances are from. In total, the training set contains 249000
positive and 199816 negative instances, and the development set contains 1000 positive and 1000
negative instances. For the test set, we take 100 instances of each class for each semantic frame,
for a total of 10000 positive and 8030 negative instances.

The distribution of FEs per semantic frame and per sentence is summarized in Table 11.2.

Training hyperparameters. The model (including mBert) is trained for at most 1 epoch.
Batch size is automatically found by the HuggingFace library to maximize Graphics Processing
Unit (GPU) usage. Early stopping is decided on the development set, using an approximation of
the Word Error Rate (WER) that uses the tokens’ positions instead of words. We approximate the
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Model Instances Accuracy Wrong SR Not an SR SR not found

Analogical model
(using A,B,C)

Positive 72.31% 0.28% 11.24% 16.17%
Negative 72.09% 0.52% 27.38% —
All 72.21% 0.39% 18.43% 8.97%

rA ̸= rC 70.75% 0.31% 11.59% 17.36%

Non-analogical model
(using only B)

Positive 53.46% 0.10% 16.59% 29.85%
Negative 75.32% 0.39% 24.30% —
All 63.19% 0.23% 20.02% 16.56%

Table 11.3: Analogy solving results (in % of all instances) for the analogical and non-analogical
models. The boldface numbers correspond to best performance (i.e., the highest for accuracy and
the lowest for the various types of errors) between the two models. Instances where rA ̸= rC are
not counted in the overall performance (All), nor in the boldface numbers.

number of editions of the WER with the number of positions which are not shared by the prediction
and the expected output. It is noted |{i⋆D, . . . , j⋆D}∆{iD, . . . , jD}| with ∆ the symmetric difference,
iD, jD the predicted and i⋆D, j⋆D the expected beginning and end positions for D. This result in the
following formula:

PosWER(iD, jD, i⋆D, j⋆D) =
|{i⋆D, . . . , j⋆D}∆{iD, . . . , jD}|

j⋆D − i⋆D + 1
.

Evaluation method. For all instance classes, we report the accuracy of the model, which is the
percentage of instances where the model returns the expected output: the gold SR for positive
instances, and the wt

0 token for negative instances.
If the model does not return the expected output, we speak of model failure and consider 3

possibilities:

• “wrong SR” if the model returns a instance of an SR that is different from the gold SR;

• “SR not found ” if the model outputs wt
0 even if the analogy could be solved (i.e., positive

instances);

• any other case corresponds to outputs that do not exactly match an SR nor the wt
0 span,

that we call “not an SR”.

Note that the above three situations cover all the possible cases of model failure, so accuracy
+ wrong SR + SR not found + not an SR = 100%.

11.3.2 Results

We report in Table 11.3 the performance of our model on positive instances (solvable analogical
equations) and negative instances (unsolvable analogical equations due to missing SR instance), as
well as the average performance over those two classes of instances. SR not found is not given for
negative instances, as it is the expected output.

We also report in the same table the results for several ablation experiments reported in Sub-
section 11.3.3.

Overall performance. There is no significant difference between the accuracy on positive and
negative instances, with a high level of performance (above 72% accuracy) in both cases. Overall,
our model has a high accuracy, despite the punitive way we determine failures: in the case of
multi-token words, the model fails if a token part of a word is omitted while the other tokens of
the word are correctly predicted and, conversely, for tokens that are wrongly predicted.

Analysis of error rates. With positive instances, the model wrongly determines that the SR r′

is not instantiated in only about 16% of cases. However, for negative instances, the model errors
are almost exclusively not an SR.
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As missing annotations and annotations errors are present in the part of FN1.7 we use, it is
likely that some of our instances are solvable but the instance for r′ is not labeled, so the instances
are counted as negative ones. Although we did not find the exact inter-annotator agreement for
FN1.7, for a similar frame semantics annotation task in French, Djemaa, Candito, et al. [Dje+16]
report 77% inter-annotator agreement for SRs of matching semantic frames.

11.3.3 Ablation study on the impact of A,C

We study the sensitivity of the model to several perturbations regarding the SRs A,C for two
purposes: we measure the impact of A,C on the performance of the model from the analogical
point of view, and, by extension, the impact of errors in identifying the predicate on the FSRL
performance.

To do so, in a first experiment we generate analogies such that A,C instantiate different roles
rA ̸= rC ∈ Rf but B,D instantiate the same role r′. While the analogy is erroneous from the point
of view of APs, it is possible to solve it by transferring r′ from s to t. In a second experiment, in
a setting in all other aspects equivalent to the analogy solving model we propose, we remove A,C,
resulting in the model defined in Subsection 11.2.4. Once again, this setting is a transfer of r′ from
s to t, however this time the model cannot rely on A,C to identify the relevant semantic frame.

Introducing a mismatch between the SRs instantiated by A and C. We take 100 positive
and 100 negative instances of the for each frame, for a total of 7760 instances with rA ̸= rC . These
instances are generated by taking, for each pair of sentences of a frame, triplets of distinct SRs
rA, rC , r

′ such that r′ is instantiated in both sentences, rA is instantiated at least in the first
sentence, and rC is instantiated at least in the second sentence. Therefore, it is possible, but not
mandatory, that rC is not instantiated in s or rA not instantiated in t. We test the model trained
in Section 11.3 on this new data, and results are shown in the rA ̸= rC row of Table 11.3.

While there is a drop in accuracy in this setting, the performance remains very high, with only
a 2% decrease. Additionally, it is interesting to see that the new errors mostly belong to the SR
not found category. While the difference might not be significant enough to draw conclusions, we
propose the following hypothesis: by introducing a mismatch rA ̸= rC in the starting point of the
relation, the model determines that there is no instance that would fit closely enough the erroneous
relation rA to r′ when starting from C. Despite this potential negative effect, using A,C likely
help the model better identify the meaning of the frame in t.

The rA ̸= rC setting is a form of analogy, although weaker than the standard setting (with
rA = rC) as instead of having the AP:

“r in s” : “r′ in s” :: “r in t” : “r′ in t”,

we have:
“some SR of f in s” : “r′ in s” :: “some SR of f in t” : “r′ in t”.

Following the distinction from Barbot, Miclet, and Prade [BMP19, see also Section 2.1], the
standard setting is an AP, while rA ̸= rC is a relational proportion, a different form of analogy
where some permutations are less relevant.

Remark 11.3

Removing A,C from the input. To confirm the benefit of A,C on the performance, we use
the model defined in Subsection 11.2.4, which can be seen as a simple transfer of r′ from s to t
instead of the analogical transfer we perform with the main model. We train this model on the
same data as before, however we discard any information on A and C. The performance of this
new model on the test data used for the analogical models is reported in the first three rows of
Table 11.3.

We observe a significant drop in performance close to 19% for positive instances, with most
of this gap transferred to SR not found. Following the more frequent SR not found answers,
the accuracy on negative instances improves, but only by 3%, resulting in a 9% drop in overall
performance when we do not use analogical transfer.
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Figure 11.1: SPL against analogical model accuracy for Inheritance relations. Error bars are the
95% confidence interval.

11.3.4 Ablation study on the relatedness of semantic frames used for s
and t.

In our problem formulation, we state that s, t activate the same semantic frame. In this subsection,
we report ablation experiments we performed when the previous condition is not respected and s, t
trigger different semantic frames. Our starting intuition is that, as our model relies on semantic
relations, if the semantic frames of s, t are different but semantically related, we should maintain
high analogy solving performance. More specifically, the semantically closer the semantic frames
are, the higher the performance we should obtain, because semantically close semantic frames have
similar SR structure. For instance, the semantic frames “Process_end”7 and “Process_stop”8 are
semantically very close, and both have the “Process” core FE, as well as the exact same non-core
FEs even if their meaning differ slightly.

Experimental setup. The relations between semantic frames indicated in the ontology of FN1.7
do not cover many semantic frames, with a relation density9 of the order of magnitude of 10−5 for all
relations, except for Inheritance relations (called Inherits from and Is Inherited by in FN1.7 [Bak17;
BFL98]) which is closer to 10−4.

To compute how related two semantic frames are, we compute the smallest number of steps
to reach one from the other following the relation. This corresponds to the node distance in the
undirected graph of each relation, i.e., the Shortest Path Length (SPL).

We considered 100 randomly selected pairs of semantic frames, and for each of them we consid-
ered core FEs that are labeled the same in the two semantic frames as semantically close enough
to create an analogical equation. For each semantic frame pair, we generate up to 100 (positive)
instances. In particular, for Inheritance, we obtained a total of 3528 instances with SPL ranging
from 2 to 12, as well as 4506 instances involving unrelated frame pairs, for a total of 9834 instances.

Results. We were able to identify a tendency matching our intuition for Inheritance relations,
as we observe a correlation between model performance and relatedness in terms of SPL, with
a very significant Spearman correlation p-value = 5.18e − 68 (Spearman correlation coefficient
ρ = −0.1744). This is further supported by the clear trend of the performance we observe in
Figure 11.1, where we report the performance for each SPL value. For frames that are closely
related, the performance is almost the same as when the sentences trigger the same frame (71.22%

7https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Process_end.xml
8https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Process_stop.xml
9The density of a relation between semantic frames is number of pairs of semantic frames that are related divided

by the total number of frame pairs.
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for a SPL of 2 against 72.21% when the frame is the same, and 49.49% for unrelated frames).
These results indicate a certain tolerance of our approach with regards to the frame instantiated
in the source sentence, which can help mitigate the scarcity of labelled data for some frames.

11.4 FSRL performance

At the end of Subsection 11.2.2, we introduced a procedure to annotate each FE of unseen sentences
using analogical transfer.

In this section, we perform several experiments and discuss the limitations of the approach
described above. To demonstrate the feasibility of this approach, we apply our method on FN1.7.
In particular, under ideal conditions, we are able to compete with the ideal performance of the
model with the SotA in the same setting. We also discuss some challenges of the selection of the
source sentence s, the main limiting factor of our approach.

11.4.1 Experimental setup

In this experiment, we use the analogical model trained in Section 11.3.

Labelling multiple FEs using the same source. When implementing the approach, a key
concern is the selection of the source sentence. We use two sentence selection settings:

1. we use potentially different sources for each FE;

2. we use the same source sentence for all the FEs of the frame.

An FE of the test set is not covered if none of the sentences in the training set activate the
corresponding semantic frame or if the SR is never instantiated for this frame in the training
sentences. For instance, a source s could instantiate a non-core FE r′ but not instantiate another
non-core FE r′′, while conversely a source s′ would instantiate r′′ but not r′. Overall, setting 1.
allows to predict all the FEs but requires suitable retrieval of a source for each of them, while
setting 2. minimizes the retrieval effort at the cost of uncovered FEs.

Source sentence selection. In our experiments, we perform analogical transfer for all possi-
ble sources, and perform source selection a posteriori, for approximately a million of analogical
equations.

To determine the upper limit of the performance of the model, we select the best possible source
in each setting. In setting 1., we take for each frame element any sentence that allows a successful
prediction, while in setting 2. we take the sentence with the highest accuracy on the current frame.
A similar process is used to select the worst and obtain the lower limit of the performance of our
model. To obtain a first estimate of the performance of the model in a realistic setting, we average
the accuracy over all possible sources for each FE. This simulates a random selection algorithm,
i.e., a naive approach that assumes we have no criterion on how to select an appropriate source
other than the semantic frame it activates. More involved source selection processes are explored
in Subsection 11.4.3.

Dataset. To fit the FSRL task used in the literature, we apply our method on the test set of
FN1.7. For the source sentences, we use the corresponding training set. In this experiment, we
consider not only core FEs but also non-core FEs, contrary to the general analogical setting in
Section 11.3. For some semantic frames in the test set, some FEs do not appear in the training
set. In particular, with setting 1., 95.25% of all FEs are covered, and 93.13% of semantic frames
have all their FEs covered. With setting 2., at best 88.24% of all FEs and 91.27% of semantic
frames are fully covered. The distribution of FEs per semantic frame and per sentence for FSRL
is summarized in Table 11.2.

Performance. To measure the performance of our model in a manner comparable with the SotA
approaches, we use the F1. As mentioned above, settings 1. and 2. do not cover all the FEs in the
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Setting 1. Setting 2.
Source for the FEs Different Same

Worst source 9.59% 14.91%
Random source 47.99% 42.57%

Best source 76.08% 73.40%

Best from [LSZ21] 72.22%

Table 11.4: FSRL F1 given the gold semantic frame and predicate, on the FN1.7 test set.

Frame seen in model training?
No Yes

Non-core FE 65.71% (1630) 66.47% (170)
Core FE 80.22% (6890) 81.12% (2076)

Table 11.5: FSRL accuracy on covered FEs, given the gold semantic frame and predicate. Only
setting 1. using the best source is reported. The number of FEs in each category is reported in
parenthesis.

test set. This is taken into account in the way we compute precision and recall for F1:

precision =
#successfully predicted SRs

#covered SRs
,

recall =
#successfully predicted SRs

#covered SRs +#not covered SRs
,

F1 =
2

precision−1 + recall−1
.

11.4.2 Performance
In Table 11.4, we compare the performance of our approach with the FSRL results in [LSZ21],
which contains the SotA on FN1.7 to the best of our knowledge. We limit ourselves to the FSRL
setting where the gold semantic frame and predicate is given.

Performance under the best conditions. As mentioned above, the basic use case for our
approach is to label FEs one by one and independently. Setting 1. corresponds to this approach,
where we are able to use the most fitting source for each FE. In this case, our model outperforms
the best model from [LSZ21] by a little under 4% under the best conditions.

Setting 2. explores what happens when only one sentence is presented to the system, and all
the available FEs are transferred using our analogical model. This restriction has the advantage of
reducing the number of sources to retrieve from the base of sources. Interestingly, under the best
conditions performance drops by less than 3% compared to setting 1. despite the uncovered FEs,
and setting 2. outperforms the SotA model from [LSZ21] by around 1%.

Performance beyond the best conditions. Using random source selection, the model perfor-
mance drops under 50% in both settings, and below 15% for the worst source. The performance
gap between the best, random, and worst source highlights the importance of a sound source se-
lection process. We performed preliminary experiments with sentence embedding models to get
further insight on those results, reported in Subsection 11.4.3.

Performance for core and non-core FEs. Our analogical training set was directly built from
the FN1.7 ontology, without accounting for the training set / test set split used in FSRL. Our
training set covers only core FEs of a subset of all semantic frames, corresponding to 22.38% of the
semantic frames of the FSRL test set. In Table 11.5, we report the performance and the number
of FEs depending on whether the corresponding semantic frame is in the analogical training data
and whether it is a core FE.

We notice a significant drop in performance between core FEs and non-core FEs of around 15%,
which is expected as only core FEs were seen in training. The semantic link between non-core FEs
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and the predicate is more subtle than between core FEs and the predicate, which could explain such
a significant drop in performance. We also notice that performance does not differ significantly
between semantic frames seen during training and those unseen, highlighting the ability of our
approach to generalize to unseen semantic frames.

11.4.3 Preliminary experiments on source sentence selection
It appears clear that, in order to achieve the full potential of analogical transfer, we need to further
investigate the source sentence selection mechanism.

Source selection with sentence embedding similarity. In this direction, we performed pre-
liminary experiments using out-of-the-box sentence similarity approaches on sentence embeddings.
The models we used include MiniLM [Wan+20a] and two variants of MPNet [Son+20]10, as well as
the mBert model we fine-tuned for analogy solving. We did not fine-tune the sentence embedding
models for finding the most suited sources, which would likely significantly improve performance.

To find the source, for all models we compared the embedding of the target sentence with the
potential sources using the dot product, cosine similarity, as well as Euclidean and Manahalobis
distances, inspired by Wijesiriwardene, Wickramarachchi, et al. [Wij+23].

Performance. Overall, the performance does not differ significantly between the sentence em-
bedding models we tested, with an F1 ranging from 44% to 47% in setting 2. While the results
obtained are only slightly higher than random selection, using sentence embeddings to retrieve the
most appropriate sources appears promising. Indeed, considering MiniLM and the dot product
score, only a small portion of target sentences have a very similar source available (1.34% of FEs
above 0.7). Taking only these highly similar sources we reach 70.45% of F1, only 2% under the best
model from [LSZ21]. We also found a significant correlation between the sentence similarity and
the FSRL performance when considering slices of 0.1 on the similarity, with a Pearson correlation
p-value = 6.73e−5 and a correlation coefficient of ρ = 0.8997.

11.5 Conclusion, discussions and perspectives

We adapted analogical transfer for FSRL and showed its potential to outperform SotA results,
using a simple model based on Ex-QA. When compared to a model that does not rely on analog-
ical transfer, such as the non-analogical transfer model of our experiments, analogical transfer is
capable of dramatically increasing results on identifying SRs without compromising performance
when the SR is absent from the target sentence. We go further on those aspects and possible im-
provements in Subsection 11.5.1. Nevertheless, as discussed in Subsection 11.5.2, the mechanism
of source sentence selection was identified in our experiments as being of key interest to achieve
good analogical transfer performance. Therefore, in future work we plan to focus on the problem of
sentence selection, exploring more sophisticated models to better leverage the semantic embedding
space.

Our research also resulted in an analogical dataset that complements traditional datasets of
analogies between words on factual and lexical semantics [DGM16], discussed in Subsection 11.5.3.
We envision extensions to other languages, as discussed in Subsection 11.5.4, with the eventual
development of a tool for exemplar-based annotation suggestion. Our analogical transfer approach
has several explainability benefits for such a tool, as discussed in Subsection 11.5.5.

11.5.1 Applying the methodology from the ANN framework for analogy
solving within and between sentences

Building upon our dataset of semantic APs, and using a very simple methodology, we propose
an analogy solving approach that achieves high performance and is able to identify many unsolv-
able analogical equation, i.e., when the SR is not present in the target sentence. Our approach
generalizes well to unseen semantic frames and non-core FEs, as can be seen in Table 11.5.

10The model checkpoints we use, multi-qa-mpnet-base-dot-v1, all-mpnet-base-v2 and all-MiniLM-L6-v2
are provided in the Sentence Transformers library (https://www.sbert.net/docs/pretrained_models.html).
all-MiniLM-L6-v2 is recommended for its execution speed, while multi-qa-mpnet-base-dot-v1 and
all-mpnet-base-v2 both exhibit high performance for semantic retrieval tasks.
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The analogical transfer model displays what can be seen as a tolerance with regards to mistakes
in the analogical equation. Firstly, while ideally the source and target sentences activate the same
semantic frame, the model maintains high performance for related but distinct semantic frames.
Secondly, the formulation of our model requires the first and the third element to instantiate the
same SR of the semantic frame, but we show close performance when this rule is not respected.

In future work, we will explore how this tolerance improves performance with regards to mis-
takes in semantic frame and predicate identification, by actually applying SotA annotation tools
to obtain the end-to-end frame semantic parsing pipeline. In such a setting, it wil become possible
to identify the impact of mistakes in early steps of the annotation process on the final annotation.

In Subsection 11.3.3, we performed several experiments to determine how the performance
is affected by the absence of the A,C elements of the analogical equation A : B :: C : x or the
mismatch of the SR they instantiate. Further experiments could be performed to measure to which
extent the performance comes from the exact analogical formulation or from the conditioning of
the output by adding some A,C related to the semantic frame. For instance, we could experiment
with a model trained with A,B,C randomly permuted, or a model with only C as input.

In Subsection 11.3.3, we also experiment with sentences that do not trigger the same semantic
frame, and found a correlation between the performance and the SPL of the Inheritance relation.
For relations other than Inheritance, the data generated for this experiment was not well-distributed
enough to draw definitive conclusions on the correlation between performance and relatedness.
From the nature of frame semantics, our hypothesis is that Subframe relations (Subframe of and
Has Subframe(s)) will show similar behavior. An improvement of the process used to generate
our data would be to manually align SRs between related semantic frames, instead of considering
exclusively the ones with the same label.

11.5.2 Applications to FSRL and the challenge of sentence selection

As can be glimpsed from our experiments, the analogical transfer methodology can outperform
current SotA approaches. It is particularly interesting that our method uses an out-of-the-box Ex-
QA model, as well as limited amounts of training data. Other SotA approaches, such as the one of
Lin, Sun, and Zhang [LSZ21], use span representation to obtain groups of words as candidates for
the various FEs, yet our model does not. This is the most likely cause for the a significant amount
of not an SR mistakes where the predicted boundaries do not correspond to a meaningful FE. In
the future, we will update our model in order to better take into the span semantics.

Despite the very encouraging results of our approach under the best conditions, our experiments
indicate that the source sentence selection process is an important factor to outperform SotA in
practice. As far as FSRL is concerned, our experiments indicate that enforcing a single source
sentence for all the FEs of a semantic frame may not be the optimal strategy, in terms of coverage
and performance. Instead, a different source sentence may be more appropriate for each FE.
Our source selection experiments show that the performance of random selection is far from SotA
performance, which is expected. Using high sentence similarity is promising for source selection,
however but the number of targets that have similar sources is much too low to achieve the upper
bound of the performance we can obtain. Accordingly, in future experiments we will explore
additional source selection approaches, for instance by fine-tuning a model specifically for this
task.

It would be interesting to explore various approaches including a compromise between the
retrieval of a single representative sentence and the use of many sources to maximize coverage.
What we envision is the selection of few prototypical and carefully annotated source sentences for
each semantic frame, chosen to cover as many FEs as possible and to maximize analogical transfer
performance. This idea is similar to the one of prototypes in CBR [Per19]. Additionally, it is
likely that using an ensemble of sources for each prediction would improve our model performance.
However, this involves significant exploration on the selection of sources and the aggregation of the
predictions, and remains a topic of ongoing work.

11.5.3 Dataset of semantic analogical equation within and between sen-
tences

The dataset we built for analogy solving on FN1.7 complements the traditional datasets of seman-
tics analogies between words, that focus on factual and lexical semantics. Indeed, contextual infor-
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mation is usually not considered for APs between words in factual and lexical semantic datasets.
Examples of such datasets are the Google dataset [Mik+13], BATS [GDM16], JBATS [Kar+18],
some of which are combined in the recent ANALOGICAL [Wij+23] dataset.

In contrast to these datasets, the one we propose can be leveraged for studying analogical
transfer for FSRL, exploiting the context in which each SR is situated, i.e., the rest of the phrase.
By providing a clear definition of the underlying relation manipulated in the APs, we also provide
new insights on the study of semantic APs between and within sentences.

11.5.4 Generalizing the approach to other languages and datasets
As mentioned in Subsection 11.2.1, we used mBert to be able to extend our approach to other
languages. Indeed, in the past decade there has been a focus on providing labeled frame semantics
resources for languages beyond English with, among other, FrameNet data in French [Dje+16]
and Swedish [DBF21]. However, this effort is for the most part limited to languages with many
speakers, and frame annotation remains difficult and costly. To tackle this issue, further work will
be done to offer a tool for frame semantic parsing leveraging analogical transfer and the multilingual
embedding model mBert for languages for which few or no labeled data is available.

Also, in our experiments, we use exclusively FN1.7, but we plan to extend the approach to
similar datasets, such as PropBank [Pra+22].

11.5.5 Towards explainable FSRL
Our analogical formulation of FSRL, one could argue, falls into the paradigm of exemplar-based
processes. This means it leverages an exemplar, in our case the source sentence and its annotation,
to solve the task on the target sentence. Among others, Yasunaga, Chen, et al. [Yas+24] proposed
to improve the expandability of modern PLMs by providing to the user the exemplars used for
analogical reasoning, in a Chain-of-Thought scenario where steps of reasoning are made explicit. A
similar approach could improve the expandability of the results and explainability of FSRL tools,
which we will explore in future work.
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Complexity Measure for Analogical
Transfer and case (base) competence
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This chapter summarizes the contributions in [Mar+23] and includes further experiments that
have not been published at the time of writing.

The Complexity Measure for Analogical Transfer (CoAT) method, introduced by Badra [Bad20],
is a Case-Based Reasoning (CBR) method base on the notion of analogical transfer. The method
is based on Γ, an indicator of the complexity of a dataset from the point of view of analogical
transfer, and allows to answer questions such as: “Is a given similarity measure more suitable than
some other (for a task)?” or “How compatible is a solution with a problem, given a case base and
similarity measures?”

What we propose in [Mar+23], based on the CoAT indicator Γ, differ from previous work on
case base maintenance in three main ways:

1. instead of a focus on local relationships as is frequently done in CBR, Γ is an indicator that
considers the entirety of the case base;

2. to determine the usefulness of a case for maintenance purposes, instead of approximating
future problems from the case base, we use a set of unseen problems as a reference;

3. the results we obtain question the common assumption that case deletion will result in a loss
of performance, and illustrate that compression may actually enhance performance.
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12.1 Notions of CBR

This section presents the notations used in this chapter, the key principles of CBR systems, as
well as the k-Nearest Neighbors (k-NN) algorithm which is representative of the intuition behind
CBR. In the last Subsection 12.1.3, we introduce the notion of case base maintenance, the core
topic of [Mar+23] reported in this chapter.

12.1.1 Basic notions and notations

Let S denote an input space, and R an output space. An element of S is called a situation
(or problem), and an element of R is called an outcome (or result or solution). A set CB =
{(s1, r1), . . . , (sn, rn)} of elements in S × R is called a case base. An element c = (s, r) ∈ CB is
called a source case. In addition, the spaces S and R are respectively equipped with the similarity
measures σS and σR, that denote a similarity measure on situations and on outcomes.

Let T ⊂ S × R be a set of cases called a reference set, and ct = (st, rt) ∈ T be a reference
case. We will write (st, r

⋆) to denote the prediction for the case. The workings of CBR systems is
usually decomposed in three sequential tasks [BL23; Gus+08]:

• firstly, the retrieval step, where source cases c = (s, r) ∈ CB are retrieved from the case base;

• secondly, the mapping step, where for each situation the similarity σS(s, st) is computed;

• finally, the transfer step, where the similarities σR(r, r⋆) are estimated from the results of
the mapping step and the principle of analogical transfer, i.e., that similar situations will
have similar outcomes.

After transfer, a plausible outcome is found in order to match the estimated σR(r, r⋆). To illustrate,
we provide an example of a regression task in Example 12.1.

Let us consider the following example, taken from [Bad20, Table 1]. We want to estimate the
rent of appartements based on their number of rooms and the area of the city they are located
in. In particular, we want to predict the outcome for an appartement in the downtown, with
2 rooms.

We know the rent of the following apartments, which form our case base:

• c1 = (s1, r1), with s1 = (1,midtown) and r1 = 440;

• c2 = (s2, r2), with s2 = (2,midtown) and r2 = 600;

• c3 = (s3, r3), with s3 = (1, downtown) and r3 = 700;

• c4 = (s4, r4), with s4 = (3, downtown) and r4 = 900.

Our target case is then ct = ((2, downtown), rt) for which we want to find rt.
In this setting, the situation space is S = N × {midtown, downtown}, and our outcome

space is R = R+.

Example 12.1: Example of a case base and a target problem

12.1.2 Common methods to CBR

k-Nearest Neighbors (k-NN). The k-NN algorithm is often used in a classification setting.
As described for instance in [Aha92], the algorithm retrieves the k cases with the situations most
similar to the target situation, as the name indicates. Then it predicts the outcome that has the
most support among the retrieved cases, by majority voting. Many variants of k-NN have been
proposed, including the one used in [KAÜ19], and a more common veriant weighting the vote by
the value σS(s, st), as indicated in [BL23]. For regression problems for instance, the Scikit-Learn
implementation offers the option to use a weighted average of the outcomes, the weights being the
similarities σS(s, st). The same process was used in Example 12.2.
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Approach Compatibility knowledge Prediction strategy

Evidence support A joint similarity measure, that
measures how compatible σR is
with σS for a given pair of cases.

Find the case that is most com-
patible with the retrieved cases.

Continuity constraints A set of continuity constraints,
i.e., rules that state that σR
should be compatible with σS on
each pair of cases.

Exclude the outcomes that are
not similar enough to the out-
comes of the retrieved cases.

Approximate reasoning A set of rules of the form (σS =
α)→ (σR = β).

Make a majority vote on the out-
comes derived from the rules.

Global optimization A global function, that measures
how compatible σR is with σS on
the whole case base.

Optimize the global compatibility
measure on the augmented case
base.

Table 12.1: Table 1 from [BL23]. Proposed typology of case-based prediction theories.

To compare the cases in Example 12.1, we need to define multiple similarity measures. The
σS defined in the experiments of [Bad20] is the average of two similarities:

σS((nb_roomsi, areai), (nb_roomsj , areaj)) =
1

2
(σ

nb_rooms
S (nb_roomsi, nb_roomsj).

+ σarea
S (areai, areaj))

σ
nb_rooms
S (nb_roomsi, nb_roomsj) =

(6− |nb_roomsi − nb_roomsj |)2

62
,

σarea
S (areai, areaj) = 1 if areai = areaj else 0.

Let us now consider the similarity between each case in the case base and ct = ((2, downtown), rt):

• for c1, we have σS(st, (1,midtown)) ≈ 0.347 and r1 = 440;

• for c2, we have σS(st, (2,midtown)) = 0.5 and r2 = 600;

• for c3, we have σS(st, (1, downtown)) ≈ 0.847 and r3 = 700;

• for c4, we have σS(st, (3, downtown)) ≈ 0.847 and r4 = 900.

With a 1-NN we would retrieve either c3 or c4, and predict respectively r⋆ = 700 or
r⋆ = 900. With a 2-NN we would retrieve c3 and c4, and as σS(st, s3) = σS(st, s4), we would
predict r⋆ = 800. Going further, with a 3-NN we would retrieve c2, c3, c4 for a prediction:

r⋆ =
600× 0.5 + 700× 0.847 + 900× 0.847

0.5 + 0.847 + 0.847
≈ 754.

Example 12.2: Example of k-NN on the setting of Example 12.1

Typology of CBR methods. Badra and Lesot [BL23] propose a typology of existing CBR
methods based on five criteria, resulting in four families of approaches, summarized in Table 12.1.
We do not explore this typology here, but the interested reader can read further in the sur-
vey [BL23]. Nevertheless, k-NN is a typical evidence support approach, as a case is considered
plausible if there exists a similar case in the case base. The CoAT approach, that we define in
Section 12.2, is based on a compatibility indicator Γ optimized over the whole case base, and as
such is one of the few global optimization approaches according to [BL23].

12.1.3 Case base maintenance
The principle behind case base maintenance is to revise or organize the content of a case base to
improve performance, and has been a longstanding and recurrent area of research in CBR [WL01].
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Figure 12.1: Figure 1 from [Bad20]. Inversion of similarity for s0: si is more similar to s0 than sj
in terms of Euclidean distance, but ri (red square class) is less similar to r0 than rj (both in the
blue circle class).

Much of this work has studied case base compression by case deletion [SK95]. This research area
is mainly motivated by concerns over the computational cost of retrieval in the case base but also
over the maintenance cost of the case base for knowledge engineers. However, blindly deleting
cases to reduce the size of a case base may remove knowledge necessary to solve specific situations,
resulting in a focus on the notion of competence. To be more precise, for deletion-based strategies,
the goal is to identify cases whose removal will harm the competence of a case base the least.

The contribution of a case to competence is commonly estimated within a case base, relying on
the assumption that the case base is representative of the distribution of future problems [SM01].
Given the predominance of local strategies in CBR, such as k-NN, the case competence is commonly
based on the relationships between cases and their nearest neighbors in the case base. In practice,
cases that have high coverage of other cases and that are recoverable from fewer cases, i.e., harder
to reconstruct if removed, tend to be kept in the case base [SM01].

12.2 CoAT

In this section, we give the definition of the CoAT method [Bad20; BL22; Bad+22]. CoAT is
built around a global indicator Γ that measures the ordinal compatibility between two similarity
measures σS , σR. By minimizing Γ, it is possible to determine the most suitable parameters for
similarity measures σS , σR, but also to find the most suitable outcome rt ∈ R for a new situation
st ∈ S, as described in Subsection 12.2.2. As identified in [Mar+23], it is possible to interpret
CoAT in the framework of energy based methods, as described in Subsection 12.2.3.

12.2.1 CoAT indicator Γ

The indicator Γ measures the compatibility of two similarity measures σR, σS in a given setting.
The compatibility is expressed following an ordinal understanding of the basic analogical principle,
according to which similar situations will have similar outcomes, and conversely dissimilar outcomes
are associated with dissimilar situations. In practice, Γ quantifies how frequently the orders induced
by σR and σS agree.

More formally, we consider the following continuity contraint, with three cases c0 = (s0, r0),
ci = (si, ri), and cj = (sj , rj):

σS(s0, si) ≥ σS(s0, sj) =⇒ σR(r0, ri) ≥ σR(r0, rj). (C)

This constraint expresses that whenever a situation s0 is more similar to situation si than to
situation sj , then its label r0 must be more similar to ri than to rj . Constraint (C) is not satisfied
by a triple (c0, ci, cj) if we have an inversion of the consequent:

σS(s0, si) ≥ σS(s0, sj) ∧ σR(r0, ri) < σR(r0, rj), (¬C)
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in other words, we have an inversion of similarity on the triple (c0, ci, cj). An inversion is illustrated
in Figure 12.1.

The incompatibility between σR and σS for a given case base CB is measured globally as the
number of such inversions on the case base CB, by the global indicator denoted Γ(σS , σR, CB):

Γ(σS , σR, CB) = |{((s0, r0), (si, ri), (sj , rj)) ∈ CB3 such that
σS(s0, si) ≥ σS(s0, sj) ∧ σR(r0, ri) < σR(r0, rj)}|. (12.1)

Note that the formulation of Γ can handle tasks beyond classification. For instance, it can
handle regression tasks if σR is a similarity defined on R2, such as cosine similarity.

Upper bound for the value of Γ. In [Bad+22, Theorem 1], a tight upper bound Γmax for Γ
is given, the demonstration given hereafter.

The value of Γmax is derived from the observation that, if we have an inversion for a triple
(c0, ci, cj), we will not have an inversion for a triple (c0, cj , ci). Additionally, we never have an
inversion for a triple (c0, ci, ci), as in that case σS(s0, si) = σS(s0, si)∧σR(r0, ri) = σR(r0, ri). The
number of inversions for a given c0 is therefore at most the number of pairs {ci, cj} ∈ CB2, ci ̸= cj
in the dataset, therefore |CB|(|CB|−1)

2 . As Γ is the sum of such inversions for all possible c0 ∈ CB,
we have:

Γ ≤ Γmax =
|CB|2(|CB| − 1)

2
.

It was also shown by Badra, Lesot, et al. [Bad+22] that Γmax is a tight upper bound, as it is
reached in some cases.

12.2.2 Applications of CoAT

Γ as a measure of dataset complexity. Dataset complexity measures were introduced as
a measure of the difficulty of a classification problem [HB00]. As described in [HB00], Γ was
introduced as a measure of how suitable two similarity measures σS , σR are to perform prediction
on a case base CB. In [Bad+22], it was shown that the difficulty of a binary classification task,
expressed as the overlap between two classes in synthetic datasets, correlates with the value Γ.

Γ to optimize the configurations of similarity measures. Given that Γ measures the
complexity of a prediction task using σS , σR, CB, if σS , σR, CB has a lower complexity than
σ′
S , σR, CB, then σS is more suitable for the task than σ′

S . In other words, σS agrees with σR on
CB more than σ′

S does.
Using this principle, Γ was used in [Bad20] to compare different configurations of a weighted

sum of per-feature similarities. The authors managed to select weights close to the optimum among
randomly generated sets of candidate weights for the similarity, by minimizing the value of Γ. A
significant correlation was observed between the performance of the k-NN algorithm using a given
configuration of the similarity, and the value of Γ for that similarity.

In [Bad+23], we proposed to learn dissimilarities using Γ as an optimization criterion for opti-
mization algorithms.

CoAT for prediction. The principle of CoAT is to use the Γ indicator to predict the outcome
rt of a new situation st. The most plausible outcome rt for a new situation st according to a case
base CB and some way to compare cases, is the outcome that, when associated with st, is the
most consistent with CB. Γ indicates the number of inconsistencies between the orders induced
by σR and σS on a case base CB, therefore, the outcome that minimizes Γ is seen as the most
suitable:

rt = argmin
r∈R

Γ(σS , σR, CB ∪ {(st, r)}). (12.2)

In [Bad+22], it was shown the predictive performance of CoAT is correlated with complexity of
the dataset measured by Γ. The difficulty of a task, expressed as the overlap between two classes
in synthetic datasets, also correlates with both Γ and the accuracy of CoAT.
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12.2.3 CoAT as an energy-based model

Energy-based models. Energy-based models are a family of ML models inspired from statistical
physics. They are based on the idea that, as stated in a blog post by Huembeli, Arrazola, et al.:

“An energy-based model is a probabilistic model governed by an energy function that
describes the probability of a certain state. [. . .] The Boltzmann distribution1 estab-
lishes a concrete relationship between energy and probability: low-energy states are the
most likely to be observed.” [Hue+21]

The article [LeC+06] is as good introduction to the principles described here.
In energy-based models, a parametrized function Eθ(x), called an energy function, is used to

obtain the energy of a given data point x. The conditional version Eθ : X × Y 7→ R of the energy
function affects an energy value Eθ(x, y) to pairs (x, y) ∈ X × Y, that associate an input x with
an output y. In view of this, Eθ(x, y) takes low values if the output y is likely to be observed for
x, and higher values if x, y are less likely to be observed together.

Energy-based inference. To perform a prediction for a given input x with an energy-based
model associated with the energy function Eθ, we want to find the outcome y⋆ ∈ Y that is the
most likely to be observed for x. This correspond to the following optimization problem:

y⋆ = argmin
y∈Y

Eθ(x, y). (12.3)

Learning energy-based models. Learning an energy-based model associated with an energy
function Eθ corresponds to finding the most suitable set of parameters θ from a dataset D ⊂ X×Y.
To find such parameters, we want to minimize the energy values associated with the points around
the training samples, that corresponds to likely outcomes, and maximize the energy of all other
points.

The principle above is the one of contrastive divergence [Hin+06], that consists in optimizing a
contrastive loss, such as the Minimum Classification Error loss (MCE) or the hinge loss [LeC+06].
For these two losses, we consider a training sample (xt, yt) ∈ D and the most offensive incorrect
answer (xt, y) [LeC+06, Equations (8) and (9)], defined as:

y = argmin
y∈Y, y ̸=yt

Eθ(xt, y). (12.4)

In other words, y is the outcome different from yt that has the smallest energy when associated
with xt. If the outcome space Y is continuous, ∥y − yt∥2 > ϵ is used instead of y ̸= yt, for some
threshold ϵ.

The MCE is then defined as:

ℓMCE(θ, xt, yt, y) = Eθ(xt, yt)− Eθ(xt, y). (12.5)

This loss associates a positive loss value to a training sample (xt, yt) whenever its energy is higher
than the energy of the incorrect sample (xt, y), which is larger the larger the difference in energies
is. Conversely, if the energy of the training sample (xt, yt) is lower than that of (xt, y), the model
is rewarded in proportion of the difference in energies. The magnitude of ℓMCE can be interpreted
as the prediction confidence of the model.

The hinge loss works similarly, but only associates a loss value to (xt, yt) when its energy is not
lower by at least a margin λ than the energy of the incorrect (xt, y):

ℓhinge(θ, xt, yt, y) = max(0, λ+ Eθ(xt, yt)− Eθ(xt, y))

= max(0, λ+ ℓMCE(θ, xt, yt, y)). (12.6)

To some extent, this can be seen as discarding the “reward” part of ℓMCE.

1The Boltzmann distribution is a probability distribution used to describe the state of a system depending on
its energy, in thermodynamics.
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The Γ indicator as an energy function. The CoAT method and Γ share a number of similar-
ities with energy-based models. For instance, energy functions and Γ both consider a macroscopic
view of the data to offer a measure of how likely an observation is. In fact, the CoAT method can
be interpreted in the energy-based model framework as proposed in [Bad+23; Mar+23], with the
energy Eθ(st, r) of any new case as the complexity of the case base CB when adding the new case:

Eθ(st, r) = Γ(σS , σR, CB ∪ {(st, r)}). (12.7)

In this formulation, the parameters of the energy function are θ = (σS , σR, CB), the set X of
inputs is the set S of situations, and the set Y of outputs is the set R of outcomes.

The CoAT prediction method also corresponds to the prediction process of energy-based models
with this formulation:

rt = argmin
r∈R

Γ(σS , σR, CB ∪ {(st, r)})

= argmin
r∈R

Eθ(st, r).

12.3 CoAT and case (base) competence

Case bases are, together with similarity knowledge, adaptation knowledge, and domain knowledge,
one of the main container of knowledge used in CBR [Ric03]. The selection and acquisition of the
cases to include in the case base for a task has significant repercussions on the CBR process, in
terms of cost but also performance. The question of the selection of cases relevant for the case base
can be reformulated as “which cases are the most competent for the task at hand?” The definition
of the competence notion can be seen as the formalization of this issue.

In the Γ energy-based model, the energy function Eθ(st, r) is used to compute a (scalar) energy
value for each potential outcome r of the new case ct. The difference between the energy of the
predicted outcome and the lowest energy of all other outcomes can be interpreted as a measure of
prediction confidence. Our goal is to capture the idea that the competence of a case base should be
related to its ability to maximize the prediction confidence. Therefore, a more competent case base
should decrease the energy of the correct outcome of a new case and increase the energy of incorrect
outcomes. This matches the principle used to learn energy-based models (see Subsection 12.2.3).

In practice, we leverage loss functions of energy-based models for our definition of case base
competence, namely MCE and hinge loss. Our measures of competence are defined with regards
to a set of reference cases T distinct from the case base, that allow us to estimate the competence
of the model on unseen data instances.

12.3.1 Competence leveraging energy-based models
MCE competence. The first definition of competence we propose, denoted CMCE , relies on
the notion of MCE. More precisely, CMCE is the average value of ℓMCE across the reference set
T . As stated in Equations (12.4) and (12.5), ℓMCE is defined as the difference between (i) the
energy of the correct outcome and (ii) the minimum energy of a reference case if it were assigned
a different outcome:

ℓMCE(θ, ct) = Eθ(st, rt)− min
r∈R, r ̸=rt

Eθ(st, r) (12.8)

CMCE(θ, T ) = −
1

|T |
∑
ct∈T

ℓMCE(θ, ct)

= − 1

|T |
∑
ct∈T

(Eθ(st, rt)− min
r∈R, r ̸=rt

Eθ(st, r)). (12.9)

For a correctly predicted instance, ℓMCE(θ, ct) is negative. In that case, the magnitude of
ℓMCE(θ, ct) can be interpreted as the prediction confidence of Γ, as mentioned previously. For an
incorrectly predicted instance, ℓMCE(θ, ct) is a positive value that corresponds to the extent of the
error, i.e., how much the true class is missed.

Overall, lower values of ℓMCE(θ, ct) are better, and correspond to higher values of CMCE(θ, T ).
In other words, the greater CMCE(θ, T ), the more competent the case base is with regards to the
reference set T .
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Hinge loss competence. As mentioned in Subsection 12.2.3, the hinge loss modifies the MCE
by integrating an additional parameter λ that corresponds to a margin. Similarly, we propose the
hinge loss competence Chinge using ℓhinge(θ, ct) (see Equation (12.6)) instead of ℓMCE(θ, ct):

ℓhinge(θ, ct) = max(0, λ+ ℓMCE(θ, ct)) (12.10)

Chinge(θ, T ) = −
1

|T |
∑
ct∈T

ℓhinge(θ, ct)

= − 1

|T |
∑
ct∈T

max(0, λ+ Eθ(st, rt)− min
r∈R, r ̸=rt

Eθ(st, r)). (12.11)

With Chinge, values of ℓMCE(θ, ct) lower than −λ are not taken into account. Such values
correspond to correctly predicted instances (negative ℓMCE value) with a high prediction confidence
(magnitude of ℓMCE larger than λ). Excluding these values avoids having a few confidently well
predicted instances compensate for mispredicted ones, and thus avoids a scaling issue between
negative and positive contributions to CMCE as only the negative contributions (to a margin) are
accounted for.

Bounds for CMCE and Chinge. Using the tight upper bound Γmax found in [Bad+22] for the
value of Γ, we can determine bounds for the values of ℓMCE and ℓhinge, which can be transferred
to CMCE and Chinge.

First, as in ℓMCE , ℓhinge we deal with Eθ and not Γ, we need to account for the fact that
Eθ(st, r) = Γ(σS , σR, CB ∪ {(st, r)}), and therefore the upper bound Eθmax for Eθ is the value of
Γmax for a case base of size |CB|+ 1.

For θ = (σS , σR, CB), the upper bound Eθmax of Eθ is as follows:

Eθmax =
(|CB|+ 1)2|CB|

2
.

As the value of Γ is the cardinality of a set, it is a positive integer and so is Eθ, therefore
Eθ ∈ [0, Eθmax].

Theorem 12.1: Bounds of the energy function Eθ

We can now determine the upper and lower bounds for ℓMCE and ℓhinge.

For θ = (σS , σR, CB), ℓMCE ∈ [−Eθmax, Eθmax].

Proof By definition:

ℓMCE(θ, ct) = Eθ(st, rt)− min
r∈R, r ̸=rt

Eθ(st, r)

Therefore, if we consider the extreme case where Eθ(st, rt) is maximal and
minr∈R, r ̸=rt Eθ(st, r) is minimal, we obtain the upper bound:

ℓMCE(θ, ct) ≤ Eθ(st, rt)

≤ Eθmax as Eθ ∈ [0, Eθmax].

Similarly, when Eθ(st, rt) is minimal and minr∈R, r ̸=rt Eθ(st, r) is maximal, we obtain the
lower bound:

ℓMCE(θ, ct) ≥ − min
r∈R, r ̸=rt

Eθ(st, r)

≥ −Eθmax as Eθ ∈ [0, Eθmax].

Theorem 12.2: Bounds for ℓMCE
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For θ = (σS , σR, CB), ℓhinge ∈ [0, Eθmax + λ] for λ ≥ −Eθmax, and ℓhinge = 0 for λ <
−Eθmax.

Proof By definition, ℓhinge(θ, ct) = max(0, λ+ ℓMCE).
Therefore, the minimum for ℓhinge is the maximum between 0 and the minimum for λ +

ℓMCE , which is bounded by 0: for λ ≤ Eθmax as ℓMCE ∈ [−Eθmax, Eθmax]; for λ > Eθmax,
the maximum between 0 and the minimum for λ+ℓMCE , is λ−Eθmax > 0 as ℓMCE ≥ −Eθmax,
and 0 is still a lower bound.

Similarly, the maximum for ℓhinge is the maximum between 0 and the maximum for λ +
ℓMCE , that is λ+Eθmax for any λ ≥ −Eθmax as ℓMCE ∈ [−Eθmax, Eθmax]. For λ < −Eθmax,
the upper bound becomes 0 as λ+ ℓMCE < 0.

Theorem 12.3: Bounds for ℓhinge

CMCE(θ, T ) and Chinge(θ, T ) are the inverse of the mean of ℓMCE(θ, ct) and ℓhinge(θ, ct) re-
spectively. The mean over a set is bounded in the same way as the values of the set, and as
we consider the inverse we need to inverse the bounds of ℓMCE and ℓhinge. Therefore we have
CMCE ∈ [−Eθmax, Eθmax], as well as Chinge ∈ [−λ − Eθmax, 0] for λ ≥ −Eθmax and Chinge = 0
otherwise.

12.3.2 Fine-grained notions of competence
We break down the case base competence at the level of the individual cases in the case base and
the reference set.

Case competence. The competence of a source case c = (s, r) ∈ CB can be seen as the
contribution of the case to the overall competence of the case base. More explicitly, adding a
competent case to the case base would increase the competence of the case base more than adding a
less competent case, and conversely, removing a competent case or replacing it with a less competent
one would reduce the competence of the case base. Therefore, we propose the competence of a
source case c with regards to a reference set T and parameters θ = (σS , σR, CB) as:

C(c, θ, T ) = C(θ, T )− C((σS , σR, CB \ {c}), T ). (12.12)

Once again, the larger the value C(c, θ, T ), the more competent the case is.

Case influence and expertise areas. We can further break down the notion of competence
by considering the competence with regards to a specific reference case ct ∈ T , that we call the
influence of the case c with regards to ct:

influenceθ(c, ct) = ℓ(θ, ct)− ℓ((σS , σR, CB \ {c}), ct). (12.13)

Interestingly, the competence of a case c ∈ CB can then be rewritten as:

C(c, θ, T ) = 1

|T |
∑
ct∈T

influenceθ(c, ct). (12.14)

This notion of case influence entails the idea of locality: all source cases contribute to the compe-
tence of the case base, but each source case may contribute differently on different regions of input
space, represented by different instances of the reference set. Case influence can thus be used to
identify regions where a source case can improve the performance from those where performance
is degraded, that we call the regions of expertise of the source case. Examples of such regions are
visualized in Example 12.3.

Let us consider a binary classification setting using the Half Moon distribution, which is used
to produce synthetic examples to test ML algorithms. The principles behind this distribution
are further detailed in Subsection 12.4.1.

We visualize a case base as circles and the reference sets as pale triangles in Figure 12.2.

Example 12.3: Areas of expertize of two extreme cases
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The least and most competent cases are circled the figure, with respectively C(c, θ, T ) =
−4.680 and C(c, θ, T ) = 4.020. Interestingly, the least competent case is nested at the core
of its class, where other cases can take over if the case is removed. Conversely, the most
competent case is the tip of the moon of its class in the case base.

In addition to their position, the areas of expertise (or influence maps) of the two cases are
materialized in the background color of Figure 12.2. Negative influence (in red) corresponds
to areas where the case harms the performance, while positive influence (in green) corresponds
to areas where the case improves the competence. We can see that the least competent case
degrades the performance on many reference cases without improving performance on any
other case. This least competent case appears harmful to the case base, and is a target for
removal as we will see in Subsection 12.3.3. The best performing case is particularly helpful
for the competence in the tip of the moon where it is located, which makes sense as the
case is close to a key area of the decision boundary. Interestingly, this case also harms the
performance for some references of the opposing class.

Figure 12.2: Influence map of 2 source cases c1 and c2 (circled in red) of the Half Moon dataset
(CB=colored disks, T =pale colored triangles): the background color shows, at each position x, y,
the value of influenceθ(c1, (x, y)), estimated using the reference cases. Green corresponds to a
positive value of the influence and red to a negative one.

12.3.3 Case base maintenance and case deletion procedure

The competence of a case in the case base can be applied to case base maintenance, either to add
new useful cases to the case base or to remove less useful ones, for instance the worst performing
case in Example 12.3.

In our work, we focus on case deletion and propose the step by step process illustrated by
Algorithm 1. At each iteration, the source case cworse that contributes least to the competence
of the case base CB, with regards to the reference set T , is deleted from the case base. In our
experiments, we observe the effects of successive deletions, therefore Algorithm 1 is exhaustive. In
practice, deletion would repeat only until a stopping criterion is reached, for instance, a desired
compression.

Our algorithm is based on the idea that, by fixing σS and σR in the parameters θ = (σS , σR, CB)
of CoAT, optimizing Eθ using corresponding loss functions should allow us to learn the right case
base CB for the task, i.e., address the case base maintenance issue.

Algorithm 1: Case deletion procedure
Input: An initial case base CB and a reference set T
while |CB| > 0 do

cworse = argminc∈CB C(c, CB, T );
CB = CB \ {cworse};

end
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12.4 Experiments on synthetic data

In this section, we report the experiments from [Mar+23] on synthetic data. In those experiments,
we explore several data distributions and investigate the properties of the case deletion procedure
proposed in Subsection 12.3.3. In particular, we compare the two definitions of competence and ex-
amine their correlation with the classification performance of CoAT. We perform an analysis of the
robustness of the method when placed in different starting configurations of the data distribution.
The section is concluded by a qualitative analysis of the results of the experiments.

12.4.1 Experimental setup

Synthetic datasets. We experiment in the binary classification setting, and consider three
synthetic two-dimensional datasets. The synthetic datasets are generated from three datasets,
namely the Line, Ring, and Half Moon distributions, illustrated in Figures 12.3a, 12.4a and 12.5a
and defined as follows.

• The Line data are drawn from a uniform distribution defined on [0, 2] × [0, 3]. They are
labeled according to the arbitrary line f(x) = −x + 2.5. Noise is then added by randomly
switching the label, with a probability of 20%, for cases within a 0.3 distance to the decision
boundary.

• The Ring data is made up of two concentric rings of points, each corresponding to one of the
classes of the dataset. In our case, the rings have radii 25 and 50. For each class, points are
randomly sampled using polar coordinates, drawing the angle from a uniform distribution
on [0, 2π] and radius from a normal distribution N (µ = rc, σ = 10), where rc ∈ {25, 50} is
the radius of the class. The theoretical decision boundary for the Ring data is the circle of
radius 32.5.

• The Half Moon dataset is generated with the “make_moons” function from the Scikit-Learn
library2, with a noise of 0.2 and a scale of 100. In practice, the distribution is composed of
two halves of a circle of radius r = 100, one of which is shifted laterally by the radius. Each
half-circle corresponds to a class. Once the points are generated, a two-dimensional Gaussian
noise with a scale of N (σ = 20) is added to each data point.

These distribution are among the most frequently used to compare binary classifiers3, as they
cover a range of different decision boundaries.

The Ring data we produce is slightly different from the data produced by the “make_rings”
function of Scikit-Learn, as the latter generates a ring and then apply two-dimensional Gaus-
sian noise on the resulting points. In our generation process, we apply the noise on the radius
when generating the points, and thus maintain the uniform distribution of angular positions
of the points in each class.

Remark 12.1

Similarity measures. The similarities we use are the same for all three synthetic datasets. The
source space is S = R2, and we use a similarity that is a decreasing function of the Euclidean
distance: σS(sx, sy) = exp(−∥sx − sy∥2). As we consider binary classification, the outcome space
is R = {0, 1}, for which we use the class identity similarity: σR(rx, ry) = 1 if rx = ry and 0,
otherwise.

Due to their geometry, the three data distributions are more or less compatible with σS . Clever
selection of a σS dedicated to each situation would increase performance, but maintaining varied
levels of compatibility helps us understand the limitation of CoAT in settings where the similarity
is not as good as it could be.

2https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
3An example of such comparison can be found in the Scikit-Learn library: https://scikit-learn.org/stable/

auto_examples/classification/plot_classifier_comparison.html
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Protocol. For each of the three data distributions considered, we generate 1000 samples that we
split into 20 non-overlapping subsets of 50 cases, balanced in terms of classes. In other words, each
subset contains 25 instances of each class, evenly sampled in the distribution. We separate the 20
subsets in 2 groups: 10 serve as initial case bases CB1, . . . , CB10 and the others as reference sets
T1, . . . , T10. The distribution of 1000 samples is shown in Figures 12.3a, 12.4a and 12.5a for the
Line, Ring, and Half Moon datasets respectively. The reference cases are shown in a lighter color
than the cases from the case bases.

For each dataset, we apply the case deletion procedure (Algorithm 1) on all possible combi-
nations (CBi, Tj) of a case base and a reference set, therefore we have 100 runs for each data
distribution. We repeat the process using the two proposed definitions of competence, CMCE and
Chinge, as the criterion to determine the least competent case for case deletion. After each removal
step, we compute for the updated case base the classification performance of CoAT, the CMCE ,
and the Chinge on all reference cases

⋃
k=1..10 Tk. For classification performance, we use using

macro F1, i.e., the average of the F1 of each class.
Figures 12.3b, 12.4b and 12.5b compare the evolution of the macro F1 during case deletion

using the two proposed competence measures CMCE(c, θ, T ) and Chinge(c, θ, T ). Similarly, in
Figures 12.3c, 12.3d, 12.4c, 12.4d, 12.5c and 12.5d we report the evolution of the competence. The
shade corresponds to the 95% confidence interval over the 100 combinations of initial case base
and references. In Figures 12.3e, 12.4e and 12.5e, each line shows the results for one of the 10 case
bases and the shades show the 95% confidence interval over the 10 reference sets. Reciprocally, in
Figures 12.3f, 12.4f and 12.5f, each line corresponds to a reference set and the shades correspond
to the 95% confidence interval over the 10 initial case bases. The vertical axis for Figures 12.3b,
12.3e, 12.3f, 12.4b, 12.4e, 12.4f, 12.5b, 12.5e and 12.5f is set to the [50%, 100%] range of macro F1.

12.4.2 Results

Correlation between the proposed competence notions and the performance of CoAT.
In Figures 12.3b, 12.4b and 12.5b, we compare the evolution of the macro F1 when using either
CMCE or Chinge as a criterion to determine the least competent case for case deletion. We observe
very distinct tendencies when using CMCE rather than Chinge as the compression criterion.

With CMCE , F1 remains at its maximum slightly longer, so a few more cases can be removed.
However, with CMCE , F1 remains at its initial value throughout the process and does not reach
as high as with Chinge, with even some loss of performance at the beginning of the compression.
For instance, on Ring, F1 reaches a value close to 60% for CMCE and 85% for Chinge.

In complementary experiments, we examine the evolution of the case base competence during
the deletion process. The evolution of the competence measured by Chinge appears more correlated
with the F1 than the value of CMCE . For instance, for the CMCE deletion criterion, in Figure 12.4d
we can easily identify the drop in performance that also appears in the first 15 steps in Figure 12.4b,
while in Figure 12.4d the value of CMCE is strictly increasing. As mentioned in Subsection 12.3.1,
prediction successes and failures are considered at the same time in CMCE , but higher CMCE

could be an expression of higher confidence in already well predicted cases, of fewer errors, or
of less confident errors. In that regard, Chinge is more suitable as a competence measure: it
measures how confident the model is in its errors, and thus higher Chinge corresponds to fewer or
less confident errors, which directly translates to higher performance.

In (c) and (d) from Figures 12.3 to 12.5, the value of Chinge spikes up to 0 and the performance
drops to 0. This behavior appears only after the last step of deletion, when only one case remains.
Indeed, in this specific configuration of the model, it becomes impossible to generate similarity
inversions between only two cases, namely, the only case in the case base and the reference.

The experiments described hereafter consider only Chinge as the competence measure and as
the deletion criterion, as it achieves higher performance, its behavior is more consistent across the
data distributions, and is a better fit for the notion of competence.

Case competence and impact on performance. When we consider the evolution of the
F1 with the Chinge criterion (see (b), (e), and (f) from Figures 12.3 to 12.5), the same trend
of performance can be observed across all initial case bases and the reference sets, for all data
distributions. This trend can be separated in three phase:

1. a raise;
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(a) Line distribution (b) F1 evolution during deletion

(c) CMCE evolution during deletion (d) Chinge evolution during deletion

(e) F1 evolution with Chinge for each case base (f) F1 evolution with Chinge for each reference set

Figure 12.3: Case deletion experiment results for the Line data. The distribution of the 1000 cases
used is displayed in (a). In (b), (c), and (d), the performance and competence when using CMCE

or Chinge as a criterion are compared. The performance with Chinge is also detailed when grouping
by case base initialization (c) and reference set (d). The three plots (b), (e), and (f) display the
evolution of the macro F1 (measured on all 500 reference cases) during the case deletion procedure,
which consists in 49 steps.
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(a) Ring distribution (b) F1 evolution during deletion

(c) CMCE evolution during deletion (d) Chinge evolution during deletion

(e) F1 evolution with Chinge for each case base (f) F1 evolution with Chinge for each reference set

Figure 12.4: Case deletion experiment results for the Ring data. The distribution of the 1000 cases
used is displayed in (a). In (b), (c), and (d), the performance and competence when using CMCE

or Chinge as a criterion are compared. The performance with Chinge is also detailed when grouping
by case base initialization (c) and reference set (d). The three plots (b), (e), and (f) display the
evolution of the macro F1 (measured on all 500 reference cases) during the case deletion procedure,
which consists in 49 steps.
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(a) Half Moon distribution (b) F1 evolution during deletion

(c) CMCE evolution during deletion (d) Chinge evolution during deletion

(e) F1 evolution with Chinge for each case base (f) F1 evolution with Chinge for each reference set

Figure 12.5: Case deletion experiment results for the Half Moon data. The distribution of the
1000 cases used is displayed in (a). In (b), (c), and (d), the performance and competence when
using CMCE or Chinge as a criterion are compared. The performance with Chinge is also detailed
when grouping by case base initialization (c) and reference set (d). The three plots (b), (e), and
(f) display the evolution of the macro F1 (measured on all 500 reference cases) during the case
deletion procedure, which consists in 49 steps.
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2. a plateau;

3. a faster and faster decrease.

What differs between the different datasets and starting configurations is the amplitude and dura-
tion of each step, and in extreme cases one of the first two phases can disappear. For instance, in
the Line distribution the increase is small (≤ 3%) and of a short duration (10 steps), while in Half
Moon the increase is more significant (≥ 10%) and spans most of the process (around 35 steps in
most cases), which results in the disappearance of the plateau.

This trend can be put in parallel with the evolution of the competence, as during phase 1 remov-
ing cases improves the performance and Chinge competence (see Figures 12.3d, 12.4d and 12.5d),
meaning that the removed cases had a negative contribution to the competence and were “pol-
luting” the case base. In phase 2, the cases removed do not particularly harm nor benefit the
performance nor competence of the case base, as such they can be considered redundant with the
other cases of the case base. The cases that remain after phase 2 are the most competent and
useful ones, and in phase 3 they are removed by order of increasing competence, leading to sharper
and sharper drops in performance.

Furthermore, the general trend provides empirical guarantees that the maximum performance
is reached just before the first significant decrease in performance, meaning we can stop the process
as soon as we detect such a decrease.

This behavior is similar to the footprint deletion procedure from Smyth and Keane [SK95]: what
corresponds to the auxiliary, spanning, and support cases are removed in phase 2, and pivotal cases
are removed in phase 3 of our deletion procedure. Auxiliary and spanning cases are cases that are
not affecting competence, as other cases can fulfill their role. The main difference between the two
is that auxiliary cases are located in areas of the space for which the case base already contain other
cases while spanning are located in “holes” in the distribution of the case base. Support cases are
a special type of spanning cases. Finally, pivotal cases are cases that are necessary to solve specific
problems. The case deletion procedure from [SK95] can bee seen as less powerful and flexible than
the one we propose, as the latter can handle cases harmful for the case bases by removing them
in priority during phase 1. As a result, our approach is free from the assumption that the initial
case base is a good fit for the distribution of the data, which is a frequent assumption in case base
maintenance [SK95].

Robustness of the approach. Figures 12.3e, 12.4e and 12.5e show that the initial cases in
the case base impact the initial performance and time needed to converge to the general trend of
performance. In extreme cases of poor initial performance, the convergence might be delayed until
after performance starts to decrease. This can be seen in Figure 12.5e for the lower of the two
groups of case bases that appear after step 20, as the lower group does not converge fast enough
to reach the maximal performance of the other group of case bases.

By analyzing the distribution of each set of initial cases we observe that the case base has
difficulties to reach the best performance when not enough cases are present in a particular area
of the data distribution, i.e., when there are “holes” in the case base in important areas of the
situation space. We were able to confirm this effect by manually removing cases in parts of the
distribution. Conversely, if we manually make one class over-represented, the performance is not
damaged as much, as the cases in the over-represented class are redundant and are removed in the
plateau 2.

From these results, an uneven distribution of the cases in the case base at the start of the
deletion process harm the best performance only when the initial performance is too poor, leading
to converging too slowly to reach the best performance, or when there are no cases in an important
area of the boundary.

The reference cases, used to measure the competence, also have a significant impact on the
best performance reached. Even if there is no major gap between the distribution of references
and the true distribution of the data, the maximal performance reached can differ significantly
depending in the distribution of the reference set as can be observed with the cyan reference set
in Figure 12.4e for the Ring data. In comparison, for the Line and Half Moon distributions, in
Figures 12.3e and 12.4e, the differences between the reference sets is less contrasted. However,
the effect of the references becomes striking when we manually create holes in the distribution of
references. In that setting, the case base becomes biased towards the incorrect distribution of the
references, in particular if the distribution of the case base is uneven.
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(a) Initial case base (Line).
Chinge = −54.8616,
macro F1 = 84.0%.

(b) After 10 deletions (Line).
Chinge = −9.5806,
macro F1 = 94.0%.

(c) After 30 deletions (Line).
Chinge = −0.0202,
macro F1 = 98.0%.

(d) Initial case base (Ring).
Chinge = −105.2632,
macro F1 = 65.3%.

(e) After 10 deletions (Ring).
Chinge = −12.4024,
macro F1 = 75.8%.

(f) After 30 deletions (Ring).
Chinge = −0.8610,
macro F1 = 89.9%.

(g) Initial case base (Half
Moon). Chinge = −60.8212,
macro F1 = 88.0%.

(h) After 10 deletions (Half
Moon). Chinge = −21.5812,
macro F1 = 88.0%.

(i) After 30 deletions (Half
Moon). Chinge = −0.1804,
macro F1 = 96.0%.

Figure 12.6: Three steps of the case deletion procedure, for the Line, Ring, and Half Moon data.
The background color corresponds to the decision of the model in each area of the situation space,
and reference cases are represented as either triangles if they are correctly predicted, or crosses if
they are wrongly predicted by CoAT. The case circled in red is the one that will be removed from
the case base during the following deletion step.

Qualitative analysis. Figure 12.6 displays 3 steps of the case deletion procedure (initial step,
and after 10 and 30 deletions) for one combination of a case base and a reference set, for each of
the three data distribution. In each figure, the red and blue dots represent the remaining source
cases, and the crosses and the triangles represent the references (triangles and crosses respectively
correspond to correct and incorrect predictions by CoAT). The least competent source case cworse

that will be deleted is circled in red. The colored map in the figure represents the predictions of
CoAT for new cases across the situation space, with the color matching the predicted class and
the saturation corresponding to the confidence, i.e., the energy difference between the two classes.
In that manner, it is possible to identify the decision boundary of the compressed case base.

At the end of the compression process, the decision frontier for CoAT meets the theoretical
classification boundary of the distribution, even for Half Moon which has a relatively complex
boundary, and for Ring which as a relatively poor initial performance. The decision frontier
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induced by the compressed case base is thereby able to closely approximate the ideal classification
boundary.

12.5 Conclusion, discussion, and perspectives

In [Mar+23], we introduced an energy-based formulation for CoAT and ways to measure the
competence of a case base for ML tasks, such as case prediction and classification. This competence
approach differs from prior approaches proposed in the literature as it relies on the optimization
of a global compatibility indicator between two similarity measures, one on the situation space
and the other on the outcome space. In addition to the results presented in [Mar+23], we provide
bounds for the value of the energy function and the competence measures, although these bounds
might not be tight.

In Appendix B.1, we present preliminary experiments on real-world datasets, including hetero-
geneous situation spaces containing both numerical and categorical features. In those experiments,
we observe that the performance of CoAT follows the same three phases as on synthetic datasets.

Fast competence computations using Measure of the complexity of a dataset for Ana-
logical Transfer using slices of Boolean Cubes (MeATCube). We detail in Appendix B.2
the MeATCube implementation, that speeds ups computations by several orders of magnitude,
significantly improving our ability to experiment with CoAT. Indeed, without optimization, com-
puting a prediction with CoAT has a time complexity in O(|CB|3|R|), and computing competence
is of the order of O(|CB|4|T ||R|). This computational cost can be prohibitive, in particular if any
of CB, T ,R is large. In MeATCube, we combine the optimization proposed by Badra, Lesot, et
al. [Bad+22], that divides the time complexity by |CB|, with a reformulation of CoAT using high
dimensional tensors in PyTorch. By leveraging several optimizations and the parallelization capa-
bilities of PyTorch, we obtain a speedup of two orders of magnitudes compared to the optimized
implementation from [Bad+22].

A close relation between competence and the performance of CoAT. We show em-
pirically that this notion of competence is tightly related to performance for a case-based binary
classification task, in the sense that the competence of a source case is positively correlated to its
ability to reduce the energy of correct outcomes and to increase the energy of incorrect outcomes.
We analyze both quantitatively and qualitatively the behavior of a compression algorithm based on
the proposed competence measures, on different datasets with substantially different distributions
and taking into account different classification frontiers and compression criteria. Moreover, we
analyze the robustness of the approach with respect to different reference and initial cases.

A very encouraging observation from the experiments in Subsection 12.4.2 is that, when con-
sidering Chinge as the competence measure and criterion, the competence starts decreasing at a
similar time as the performance, although it might be difficult to identify due to the scale of the
plots. Further experiments and theoretical guaranties would help in devising a stopping criterion
for the case base compression algorithm based on this observation.

Comparison with other CBR approaches. These results suggest the strong potential of this
energy-based framework for guiding case base maintenance, providing an alternative to existing
methods. One of the main differences is that it employs a global approach by considering the
competence of a case base as a whole, rather than a local approach as it is often the case in the
literature (where only nearest neighbors are considered). The empirical and thorough comparison
between the former and the latter will constitute one of the topics to be investigated in a future
contribution.

From our preliminary experiments on real-world datasets, presented in Appendix B.1, it appears
that the performance of other CBR approaches, such as k-NN, do not follow the performance of
CoAT during the case deletion process. However, due to some limitations in our experimental
setting, these observations need confirmation.

Extension to multi-class classification and regression. The compression process using
Chinge is able to reduce the number of cases in the case base to 40% (Ring) or even 20% (Line
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and Half Moon) of its initial size, while strictly improving performance. While our current exper-
iments only cover binary classification, our approach is designed to handle any kind of nominal
data in the outcome space. We perform preliminary experiments on multi-class classification and
real-world data, but further work is still required in that direction. Additionally, the formulation
of the competence we use is based on the notions from energy-based models, which are also defined
for continuous output spaces. An interesting, although potentially challenging extension of our
work would be to adapt the approach for regression tasks.

Selection of the initial case base and reference set. The robustness experiments show that
the initial case base is not a major factor in the peak performance, as long as there are enough
cases in the important regions of the situation space. However, it is important to have a proper
set of reference cases, as the distribution of the references is closely matched by the compressed
case base. If the reference cases are not representative of the true distribution of the data, then
the compressed case base is not guaranteed to match the true distribution. To summarize, it is
useful to focus on the quality of the reference (i.e., how representative of the actual distribution
they are) and on having sufficient initial cases for the case base, even if their quality is rather poor,
as long as they cover enough of the distribution for the intended purpose of the model.

Proposed competence and CBR methods beyond CoAT. We obtain empirical evidence
of the benefits of Chinge over CMCE , and the performance of the case base measured by Chinge

correlates to CoAT’s prediction performance. The question of whether this measure of competence
is compatible with other CBR processes than CoAT remains open, in particular since CoAT and our
competence measure are based on the same energy function. We perform preliminary experiments
comparing different prediction algorithms through the compression with Chinge as a criterion,
but the results are not extensive enough to draw definitive conclusions, in particular since our
implementation of approaches beyond CoAT is lacking. Additionally, our competence might be
based on the same energy function as CoAT, but we could try to define energy functions suitable
for different CBR algorithms and see if the results of energy-based competence generalize.

Theoretical guarantees for CoAT. As a parametrized prediction algorithm, CoAT can be
used to optimize similarity measure [Bad20] and the case base, for instance through compression.
However, many of the properties of CoAT have not been explored, and we might be able to offer
guarantees on the optimization of the parameters θ based on Eθ.

For instance, the ordering of cases based on their competence may change after a case is
removed, as the competence measured for every other case before deletion involves the deleted
case. This might have an effect on the compression process, but our energy-based approach to
competence may offer theoretical guaranties or bounds on those changes. If the competence of a
case remains stable when removing another case, we can speed up convergence by removing cases
by batches.
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Chapter 13

Conclusion on the work presented in
this document

In this thesis, we presented our contributions on the ANN framework in morphology [Als+21a;
Als+21b; Als+21c; Cha+22; Mar+22a; MC24; Mar+22b] in Part II, while Part III regroups our
contributions to TSV [Zer+22], frame semantics, and CBR [Bad+23; Mar+23]. This chapter
briefly summarizes these contributions.

The ANN framework on word morphology. In Part II, we proposed the ANN framework
to tackle analogy detection and analogy solving on APs where the elements are words and the
underlying relations are of a morphological nature.

The analogy manipulation models, called ANNc for analogy detection and ANNr for analogy
solving, outperform the symbolic baselines (Nlg, Alea, and Kolmo) and the vector-based approaches
(parallelogram rule, 3CosMul) in general. In particular, ANNc and ANNr are able to handle
quadruples that do not exactly fit the postulates of APs, and the two embedding models we
propose (CNN-emb and AE-emb) are able to deal with morphological features that are context-
dependent. This allows our models to tackle APs and morphological transformations that were
hard to handle for the symbolic baselines.

We developed Siganalogies as a dataset of morphological AP on more than 80 languages, which
enabled interesting comparative studies and extensive testing of the ANN framework. We used
a data augmentation that translates the postulates of APs to train DL models using data from
the Siganalogies dataset. As such, it can be said that the notion of AP modeled by the models is
the intersection of the morphological relations present in the data and the postulates of APs. In
particular, we were able to show that altering the data augmentation to account for different sets
of postulates resulted in models reflecting the new sets of postulates. In particular, we were able
to obtain models corresponding to different sets of postulates by adapting the data augmentation.
This led us to ponder on possible combinations of postulates to adapt to different use cases, detailed
in Appendix D.

The Siganalogies dataset and its many languages allowed us to explore how the CNN+ANNc
model transfer between different data domains (languages) that share latent mechanisms (morpho-
logical transformations and the postulates of APs). Among other results, by training on multiple
languages at once, we were able to improve the stability and transferability between languages of
the model, without increasing the number of training examples. We also correlated the performance
of CNN+ANNc with the hierarchy obtained from languages families.

To complement our work, we performed several ablation studies and other experiments to
improve the data augmentation and training procedure of our models.

The ANN framework on sentences and semantics. Following the success of the approach
on morphology, we applied the data augmentation procedure and ANNc on embeddings produced
by PLMs, to tackle to two applications on semantics involving sentences.

Firstly, in Chapter 10, ANNc was able to obtain SotA in TSV. This work allowed us to tackle
several challenges related to reformulating a classification task (TSV in this case) as an analogy de-
tection problem, and to the manipulation of heterogeneous APs where the elements are of different
nature.
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Secondly, in Chapter 11, we used a light-weight model (a pair of perceptrons on top of mBert
embeddings) to transfer FE labels from one sentence to another using analogy solving, in the
context of frame semantics. Once again, we had to reformulate the problem we tackled, namely,
the FSRL task, as analogical equation. Our simple model was able to outperform the SotA, that
uses a much more complex model, without having any explicit knowledge of the manipulated labels.
However, this was only possible under a the condition that the most suitable source sentence was
used for the analogical transfer, a challenge that remains open in our work.

Analogical tranfser applied to CBR. Finally, as described in Chapter 12, we extended the
CoAT approach to case (base) competence and case base compression. More specifically, we defined
measures of the competence (which can be seen as the relevance or helpfulness to the task) with
different levels of granularity (competence of a case base, of a case, and contribution of a case to
a specific reference case).

Using these measures of competence, we defined a simple case base compression procedure, that
iteratively removes the least competent case of a case base, with regards to some reference cases.
By removing cases that have a negative impact on the overall competence of the model according
to the measures we defined, we achieved a combination of a reduction of the size of the case base
with impressive improvements in performance for CoAT.

We also performed ablation studies on synthetic data, that allowed us to demonstrate the
versatility of the approach (in particular its ability to handle complex decision boundaries) and
determine the specificities of the system’s behavior on edge cases.
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Appendix A

Appendix to Part II

Language k CNN+ANNr CNN+3CosMul CNN+ANNc

Sig16

1 97.60 ± 0.23 ** 85.58 ± 7.37 * 76.77 ± 9.57
Georgian 3 99.54 ± 0.23 ** 93.34 ± 3.82 * 92.07 ± 4.92
32233 words 5 99.73 ± 0.14 ** 94.92 ± 2.63 95.14 ± 3.16 *

10 99.84 ± 0.07 ** 96.19 ± 1.55 97.31 ± 1.68 *

1 89.06 ± 1.71 ** 74.89 ± 5.27 * 72.95 ± 8.02
Hungarian 3 97.49 ± 0.42 ** 89.04 ± 3.87 * 87.96 ± 5.84
21071 words 5 98.62 ± 0.29 ** 92.40 ± 3.29 * 91.75 ± 4.70

10 99.21 ± 0.16 ** 94.97 ± 2.49 95.01 ± 3.36 *

1 84.75 ± 2.04 ** 52.42 ± 4.33 * 44.43 ± 13.95
Turkish 3 98.20 ± 0.48 ** 68.29 ± 4.04 * 63.64 ± 12.89
17225 words 5 99.28 ± 0.20 ** 73.95 ± 3.43 * 70.90 ± 11.30

10 99.67 ± 0.09 ** 79.96 ± 2.71 * 79.22 ± 8.81

Sig19

1 93.37 ± 0.97 ** 58.01 ± 8.66 80.11 ± 5.10 *
Adyghe 3 99.63 ± 0.13 ** 74.78 ± 7.80 95.93 ± 1.84 *
11155 words 5 99.85 ± 0.07 ** 79.44 ± 7.22 98.08 ± 0.97 *

10 99.95 ± 0.03 ** 84.02 ± 6.46 99.30 ± 0.41 *

1 72.08 ± 3.49 ** 21.67 ± 5.44 40.73 ± 9.93 *
Arabic 3 91.33 ± 1.94 ** 38.61 ± 7.44 65.41 ± 11.60 *
12942 words 5 95.19 ± 1.14 ** 47.04 ± 8.23 74.75 ± 11.07 *

10 97.82 ± 0.53 ** 58.14 ± 8.82 84.30 ± 9.44 *

1 57.63 ± 5.48 * 37.76 ± 11.12 65.38 ± 6.01 **
Bashkir 3 78.50 ± 3.00 * 55.72 ± 12.65 83.85 ± 3.96 **
9231 words 5 87.12 ± 2.04 * 64.30 ± 11.48 89.61 ± 2.40 **

10 98.50 ± 0.50 ** 74.58 ± 8.39 94.27 ± 0.86 *

Table A.1: Appendix Tables A6 to A9 from [MC24]. Hit rate at k (in %, mean ± std.) at the word
level and number of candidate words for the retrieval models. **: highest average performance; *:
second highest average performance.
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Language k CNN+ANNr CNN+3CosMul CNN+ANNc

Sig19

1 92.29 ± 0.91 ** 66.83 ± 15.67 * 65.51 ± 6.25
English 3 98.66 ± 0.29 ** 76.34 ± 14.94 80.50 ± 4.66 *
16245 words 5 99.01 ± 0.22 ** 79.63 ± 14.15 85.14 ± 3.89 *

10 99.31 ± 0.16 ** 83.26 ± 13.18 89.99 ± 2.95 *

1 93.15 ± 0.96 ** 80.37 ± 7.97 * 62.87 ± 17.65
French 3 98.33 ± 0.30 ** 91.60 ± 4.64 * 82.94 ± 13.10
15220 words 5 98.86 ± 0.18 ** 93.91 ± 3.57 * 88.61 ± 9.81

10 99.25 ± 0.13 ** 95.94 ± 2.50 * 93.62 ± 6.07

1 66.52 ± 2.59 ** 15.47 ± 10.12 36.10 ± 4.28 *
Hebrew 3 88.06 ± 2.09 ** 30.20 ± 15.80 59.69 ± 4.93 *
8957 words 5 93.13 ± 1.43 ** 40.07 ± 17.04 69.63 ± 4.61 *

10 96.96 ± 0.78 ** 54.58 ± 15.98 80.83 ± 3.77 *

1 93.12 ± 1.10 ** 58.52 ± 18.48 70.53 ± 9.88 *
Portuguese 3 99.06 ± 0.21 ** 79.18 ± 17.98 91.58 ± 6.02 *
12921 words 5 99.50 ± 0.17 ** 85.79 ± 15.20 96.26 ± 3.61 *

10 99.74 ± 0.10 ** 91.98 ± 10.44 98.55 ± 1.50 *

1 64.18 ± 2.62 ** 33.20 ± 9.34 42.59 ± 4.88 *
Sanskrit 3 89.95 ± 1.26 ** 53.90 ± 8.92 66.03 ± 4.88 *
8473 words 5 95.90 ± 0.48 ** 63.92 ± 7.26 76.12 ± 4.11 *

10 98.78 ± 0.24 ** 75.24 ± 4.99 86.48 ± 3.03 *

1 56.23 ± 4.57 ** 49.43 ± 3.13 * 39.58 ± 3.37
Slovak 3 87.86 ± 1.56 ** 67.81 ± 4.08 * 64.46 ± 4.00
7442 words 5 96.50 ± 0.46 ** 74.26 ± 4.15 74.42 ± 3.83 *

10 98.77 ± 0.31 ** 80.71 ± 3.73 84.65 ± 3.10 *

1 71.99 ± 2.24 ** 57.79 ± 8.59 * 51.88 ± 6.69
Slovene 3 92.28 ± 0.72 ** 78.08 ± 8.26 * 75.92 ± 6.94
10189 words 5 97.48 ± 0.28 ** 84.38 ± 7.26 84.41 ± 5.89 *

10 99.16 ± 0.19 ** 89.77 ± 5.58 91.35 ± 4.13 *

1 68.56 ± 6.09 ** 44.84 ± 7.77 * 44.46 ± 3.85
Swahili 3 84.72 ± 4.70 ** 60.57 ± 7.08 * 57.34 ± 5.10
6419 words 5 90.08 ± 3.70 ** 66.97 ± 7.03 * 63.30 ± 5.61

10 95.42 ± 2.17 ** 75.30 ± 6.64 * 71.77 ± 5.76

1 63.80 ± 3.13 ** 47.30 ± 4.67 47.58 ± 5.72 *
Welsh 3 88.29 ± 1.92 ** 71.66 ± 5.04 76.67 ± 6.09 *
8820 words 5 93.88 ± 1.64 ** 79.10 ± 4.40 85.76 ± 4.72 *

10 97.56 ± 0.84 ** 85.97 ± 3.66 93.26 ± 2.71 *

1 76.59 ± 2.65 ** 58.53 ± 4.42 * 42.56 ± 6.55
Zulu 3 89.66 ± 1.66 ** 77.92 ± 4.10 * 64.51 ± 7.17
9616 words 5 92.83 ± 1.21 ** 84.28 ± 3.62 * 73.67 ± 6.59

10 95.96 ± 0.64 ** 90.70 ± 2.80 * 84.30 ± 5.04

Table A.2: Appendix Tables A6 to A9 from [MC24], second part of Table A.1. Hit rate at k (in
%, mean ± std.) at the word level for the retrieval models. **: highest average performance; *:
second highest average performance.
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B.1 Preliminary experiments on the performance of CoAT
on real-world data

In Section 12.4, we present extensive experiments on the behavior of CoAT and the case deletion
procedure on synthetic binary classification data in R2. However, our approach is designed to
handle any kind of nominal data in the outcome space, and any kind of data in the situation space,
as long as a similarity measure is defined on each of these spaces. To confirm whether we observe
the same tendencies on nominal and heterogenous data with a less artificial distribution, we apply
the case deletion procedure based on Chinge on well studied real-world datasets.

Note however that these experiments are preliminary, and while they provide useful indications
on the performance of CoAT and the case deletion procedure, they are not enough to draw definitive
conclusions. We discuss in more details the main limitations in Appendix B.1.3, and additional
extensions are mentioned in Section 12.5.

B.1.1 Experimental setup

Datasets. We consider a total of 17 dataset in our preliminary experiments, detailed in Table B.1.
These datasets cover binary classification, but also classification with up to 7 classes. The number
of instances ranges from 24 to 768, and the nature of the data is varied, with datasets containing
only nominal features, only numeric data, or an heterogenous mix of the two. The number of
features is also varied, with 3 to 56 features, and datasets with many and few features present for
both numeric and nominal data.

We randomly split the data into 60% for the training set, 20% for the development set, and
20% for the test set.

Similarity measures. For the outcome space, we use the class equality similarity we used in
Section 12.4 on our synthetic datasets.

For the situation space, we use an aggregation of different similarities for each feature. For
symbolic features, we use the class equality similarity, and for numeric features, we use a function
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Num. of features Num. of
Dataset Source Instances Nominal Numeric output classes

Balance UCI 625 0 4 3
Breast Cancer Diagnostic UCI 569 0 30 2
Breast Cancer Pronostic UCI 194 0 33 2
Credit Approval UCI 653 9 6 2
Dermatology UCI 358 33 1 6
Glass Identification UCI 214 0 9 6
Haberman’s Survival UCI 306 0 3 2
Heart Disease Cleveland UCI 297 6 7 5
Hepatitis UCI 80 13 6 2
Ionosphere UCI 351 0 34 2
Iris UCI 150 0 4 3
Lenses UCI 24 4 0 3
Liver Disorders UCI 345 0 6 2
Lung Cancer UCI 27 56 0 3
Pima Indians Diabetes Kaggle 768 0 8 2
Post-Operative Patient UCI 87 7 1 4
Teaching Assistant Evaluation Kaggle 151 4 1 3
Wine UCI 178 1 12 3
Zoo UCI 101 16 0 7

Table B.1: Datasets considered for our real-world experiments. We indicate whether the data
can be found in the UCI machine learning repository (UCI), or in the Kaggle repository. We also
indicate the number of instance after removing instances with missing values, as well as the number
of features

of the normalized absolute distance as follows, with X ⋆ the observed values for the attribute:

σ(x, y) = 1− |x− y|
max(X ⋆)−min(X ⋆)

. (B.1)

To aggregate the similarities for each features, we use a weighted similarity, as done usually for
CBR [Bad20; KAÜ19]. The weights were computed on the whole dataset, using the method from
Karabulut, Arslan, and Ünver [KAÜ19], without distinguishing between the training, development
and test sets. The algorithm to compute the weights is as follows:

• the set Ci(a) of values for attribute a belonging to class i is computed using:

Ci(a) = {X[k][a] : X[k] ∈ X and y[k] = i};

• the set Ai(a) of cases with attribute a within values of class i is computed using:

Ai(a) = {X[k] ∈ X : min(Ci(a)) ≤ X[k][a] ≤ max(Ci(a))} for numeric attributes,
Ai(a) = {X[k] ∈ X : X[k][a] ∈ Ci(a)} for nominal attributes,

with the definition of Ai(a) for nominal attributes adapted by us from the intuition of the
definition for numeric attributes;

• the set Bi(a) of cases with attribute a within values of class i but not any other class is
computed using:

Bi(a) = Ai(a)− ∪i̸=j,j∈classesAj(a);

• the weight wa for attribute a corresponds to its average “ability to discriminate”, and is
computing using:

wa = | ∪i∈classes Bi(a)|/n, n : len(X),

and normalized as:
w∗

a = wa/(
∑
a′

wa′).
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Other approaches. We compare CoAT with multiple variants of k-NN using the same similarity
measures as CoAT. The variants we consider are k-NN using a weighted voting strategy for the
outcome, where each retrieved case (sj , rj) carries a weight in favor rj inversely proportional with
its similarity with the target situation: wj = 1/σS(sj , st). In other words, similar cases will be
more important than less similar cases when deciding the outcome of a case. We perform the
prediction considering the k ∈ {1, 5, 10} most similar cases, as well as considering all the cases in
the case base.

B.1.2 Results
In Figure B.1, we report the preliminary results for 4 of the datasets chosen for their representa-
tiveness in terms of features and amount of samples. These datasets are Iris (moderate amount
of samples, few numerical features), Ionosphere (numerous samples and numerical features), Lung
Cancer (few samples, numerous nominal features), and Hepatitis (moderate amount of samples,
heterogeneous features).

While the trajectory of the performance of CoAT is significantly more noisy than in our ex-
periments with synthetic data, we observe that on all datasets, CoAT follows the same tendency
of a curve split in three phases. It appears that only the difficulty of the task impact the shape
of the performance. For instance, we observe an absence of performance increase (phase 1) and a
long plateau (phase 2) on Iris, which is known to be relatively easy for CBR system to model. In
comparison, Lung Cancer is relatively hard to model due to the many features and small amount
of instances, and while the initial performance of CoAT is relatively low, the compression

From these preliminary experiments, it appears that k-NN does not follow the same tendency
as CoAT, when performing compression with Chinge. However, the evolution of the performance
of k-NN is chaotic at best when considering all the datasets. Additionally, results from [Bad20]
indicated a significant correlation between the performance of k-NN and the value of the Γ indicator.

B.1.3 Limitations
In these preliminary experiments, we used only a single split for each dataset so the observed
performance might not be representative, in particular for some datasets with few instances such
as Lung Cancer. Using proper k-fold validation would produce more representative and less noisy
results.

Additionally, the procedure reproduced from [KAÜ19] to determine the weights of the weighted
similarity in the situation space does not appear to produce the expected performance for k-NN.
This is likely a problem of either our implementation of the procedure or our choice of similarities
for each features.
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(a) Accuracy for the Iris dataset

(b) Accuracy for the Ionosphere dataset

(c) Accuracy for the Lung Cancer dataset

(d) Accuracy for the Hepatitis dataset

Figure B.1: Evolution of the accuracy during the case deletion procedure during our preliminary
experiments. Smoothing has been applied to the curves to allow better reading of tendencies.
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B.2 MeATCube implementation

The order of magnitude of computing a prediction with CoAT, without optimization, is of the
order of magnitude of |CB|3|R| and computing competence is of the order of |CB|4|T ||R|, as-
suming similarities have already been computed between all cases. This computational cost of the
operations can be prohibitive, in particular if any of CB, T ,R is large.

To be able to run our experiments where we repeat a number of computations of case (base)
competence and case influence, we implemented a reformulation of CoAT using high dimensional
tensors in PyTorch. This allowed us to combine the optimization principle from [Bad+22], which al-
ready allowed for an optimization of the speed of CoAT by an order of magnitude, with the efficiency
of matrix representation of Numpy and the parallelization capabilities the operations implemented
in PyTorch. The resulting implementation, named MeATCube, offered a speedup of multiple
orders of magnitude compared to both the naive and the optimized formulations from [Bad+22].

This appendix describes the intuition behind the implementation of MeATCube, which is avail-
able on GitHub1. The choice of the name MeATCube, beyond the meaning of the words we
used, comes in part from MeAT, an alternative name proposed for the Γ indicator. From there,
MeATCube was the solution to the analogical equation “ball ” : “meat ball ” :: “cube” : x, based on
the boolean cubes used to compute Γ in MeATCube.

B.2.1 Optimization principles
Previous optimizations. Several optimizations were proposed by Badra, Lesot, et al. [Bad+22]
for CoAT, with regards to the number of operations to perform to compute the contribution of
a case to Γ. These optimizations bring the time complexity of CoAT from O(|CB|3|R|) down
to O(|CB|2|R|). While we do not use the same demonstration, the results of the demonstration
in [Bad+22] and the one down below are equivalent.

Rewriting Γ with regards to a given case. We can decompose Γ(σS , σR, CB ∪ {c}) into all
possible configurations with regards to c ̸∈ CB, with inv(σS , σR, ca, cb, cc) the inversion condition
for cases ca, cb, cc:

inv(σS , σR, (s0, r0), (si, ri), (sj , rj)) = (σS(s0, si) ≥ σS(s0, sj)) ∧ (σR(r0, ri) < σR(r0, rj))

Γ(σS , σR, CB ∪ {c}) =
∑

ca,cb,cc∈CB

(1 if inv(σS , σR, ca, cb, cc) else 0) (B.2)

+
∑

ca,cb∈CB

(1 if inv(σS , σR, ca, cb, c) else 0) (B.3)

+
∑

ca,cc∈CB

(1 if inv(σS , σR, ca, c, cc) else 0) (B.4)

+
∑

cb,cc∈CB

(1 if inv(σS , σR, c, cb, cc) else 0) (B.5)

+
∑

ca∈CB

(1 if inv(σS , σR, ca, c, c) else 0) (B.6)

+
∑

cb∈CB

(1 if inv(σS , σR, c, cb, c) else 0) (B.7)

+
∑

cc∈CB

(1 if inv(σS , σR, c, c, cc) else 0) (B.8)

+ (1 if inv(σS , σR, c, c, c) else 0). (B.9)

A number of these terms can be simplified (we use the logical notations ⊤ for true and ⊥ for
false):

• line (B.2) is another formulation of Γ(σS , σR, CB);

• line (B.9) is always 0: for any case c = (s, r), we have that σR(r, r) < σR(r, r) = ⊥, therefore
inv(σS , σR, c, c, c) = ⊥;

1https://github.com/EMarquer/MeATCube
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• line (B.6) is always 0: for any two cases c = (s, r), ca = (sa, ra), we have that σR(ra, r) <
σR(ra, r) = ⊥, therefore inv(σS , σR, ca, c, c) = ⊥;

• line (B.8) is always 0: for any two cases c = (s, r), cc = (sc, rc), we have that σR(r, r) <
σR(r, rc) = ⊥ as by definition σR(r, r) ≥ σR(r, rc), therefore inv(σS , σR, c, c, cc) = ⊥.

We can now rewrite Γ(σS , σR, CB ∪ {c}) using Γc(σS , σR, CB ∪ {c}), the latter being the
inversions involving c, which can also be simplified:

Γ(σS , σR, CB ∪ {c}) = Γ(σS , σR, CB) + Γc(σS , σR, CB ∪ {c}) (B.10)

Γc(σS , σR, CB ∪ {c}) = |{(c0, ci, cj) ∈ CB3 such that c ∈ {c0, ci, cj} ∧ inv(σS , σR, c0, ci, cj)}|

=
∑

ca,cb∈CB

(1 if inv(σS , σR, ca, cb, c) else 0)

+
∑

ca,cc∈CB

(1 if inv(σS , σR, ca, c, cc) else 0)

+
∑

cb,cc∈CB

(1 if inv(σS , σR, c, cb, cc) else 0)

+
∑

cb∈CB

(1 if inv(σS , σR, c, cb, c) else 0). (B.11)

Note that in [Bad+22, Algorithm 4], line (B.7) is also considered null, most likely due to the
assumption that a given source s is associated with a single outcome r. Line (B.7) can be split in
two cases:

• σS(s, sb) = σS(s, s), and by the above assumption, r = ri which results in σR(r, rb) = σR(r, r)
and in turn inv(σS , σR, c, cb, c) = ⊥;

• σS(s, sb) < σS(s, s) and inv(σS , σR, c, cb, c) = ⊥.

Rewriting the optimization problem. When performing predictions with CoAT, we need to
solve Equation (12.2), which can be rewritten using Equation (B.10):

rt = argmin
r∈R

Γ(σS , σR, CB ∪ {(st, r)})

= argmin
r∈R

Γ(σS , σR, CB) + Γ(st,r)(σS , σR, CB ∪ {(st, r)}).

All triples ((s0, r0), (si, ri), (sj , rj)) ∈ (CB ∪ {(st, r)})3 that do not involve the new situation are
common to all candidates (st, r), r ∈ R, and their value will not impact the optimization problem.
In other words, Γ(σS , σR, CB) will be the same for all r ∈ R and we can rewrite the optimization
problem as:

rt = argmin
r∈R

Γ(st,r)(σS , σR, CB ∪ {(st, r)}).

Contrary to Γ(σS , σR, CB ∪ c) for which the number of computations of inv is |CB ∪ c|3, for
Γc(σS , σR, CB ∪ c) it is down to 3|CB|2 + |CB|: the non-zero lines (B.3), (B.4), and (B.5) are all
sums over |CB|2 terms, and (B.7) is a sum over |CB| terms. As a conclusion, we indeed reduce
the time complexity for the prediction with CoAT from O(|CB|3|R|) to O(|CB|2|R|).

Rewriting the competence. In a similar way as the optimization problem above, we can
rewrite the difference in energies ℓMCE (see Equation (12.8)) as:

ℓMCE(θ, ct) = Eθ(st, rt)− min
r∈R, r ̸=rt

Eθ(st, r)

= Γ(σS , σR, CB ∪ {(st, rt)})− min
r∈R, r ̸=rt

Γ(σS , σR, CB ∪ {(st, r)})

= Γ(σS , σR, CB) + Γ(st,rt)(σS , σR, CB ∪ {(st, rt)})
− min

r∈R, r ̸=rt
(Γ(σS , σR, CB) + Γ(st,r)(σS , σR, CB ∪ {(st, r)}))

= Γ(st,rt)(σS , σR, CB ∪ {(st, rt)})− min
r∈R, r ̸=rt

Γ(st,r)(σS , σR, CB ∪ {(st, r)}),

which depends only on Γc and benefits from a time complexity in O(|CB|2|R|) instead of O(|CB|3|R|).
This new definition impacts ℓhinge, but also every case (base) competence and case influence notion
we defined before: O(ℓhinge) = O(|CB|2|R|), and O(CMCE) = O(Chinge) = O(|CB|2|R| |T |).
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B.2.2 Boolean cube reformulation of CoAT: MeATCube

The representation of matrices in PyTorch offers many optimizations in terms of space and time
complexity. The MeATCube implementation we design is entirely written in PyTorch, so it can
be used to perform most of the computations on GPU. As such, it is possible to benefit from
the parallelization capabilities the operations implemented in PyTorch, and achieve significant
speedups.

Basic operations and broadcast mechanism. In all the definition below we use the usual
indexing in PyTorch that start at 0.

We consider a similarity matrix such that coordinates match that way: σ[i, j] = σ(i, j). Fol-
lowing PyTorch notation, the slice σ[i, :] of σ is the vector where coordinate j′ corresponds σ(i, j′).
Similarly, σ[:, j] is the vector containing σ(i′, j)∀i′.

We use the component-wise operators: &,≥, < for the component-wise ∧,≥, <. We also use∑
(A) as the sum of all the values in A, and

∑
i,...(A) as the sum of all the values in A along

coordinates i, . . .. For instance, for matrix A in Example 2.1,
∑

(A) =
∑

0,1(A) = 21,
∑

0(A) =
[1+3+5, 2+4+6] = [9, 12], and

∑
1(A) = [3, 7, 11]. We define maxi,...(A),mini,...(A),

∏
i,...(A) in

the same manner. We also define argmaxi(A) as the index that maximizes A along the coordinate
i, all other dimensions preserved, for instance argmax0(A) = [2, 2] and argmax1(A) = [1, 1, 1].

We use the automatic broadcasting of PyTorch in our writing. It works as follows: for matrices
A,B,C of size M × N , 1 × N , and M × 1 respectively, if we apply a component-wise operator
between any two of them, broadcasting will make them have the same size M ×N by copying the
values along the coordinate of size 1. For instance, for A ∧ B, B will be replaced by B′ of size
M ×N obtained by copying B along the second coordinate N times. For B < C, both B and C
are broadcast.

To enable broadcasting, we use the unsqueeze operator unsqueze(A, k) to add a coordinate
of size 1 to a matrix or vector A as the k-th coordinate. For instance, if A is a vector of size
M ×N , unsqueze(A, 0) will be of size 1×M ×N , unsqueze(A, 1) will be of size M × 1×N , and
unsqueze(A, 2) will be of size M ×N × 1.

The important advantage of broadcasting over an explicit copy of the values is that the values
are not actually copied when broadcasting, which saves significant computation time and memory:
we do not need to store the copied values in memory, which also saves us the time required to
reserve memory space and affect the values. Using slices in PyTorch follows similar principles, with
the original data not copied until explicitly required by the user. As an example, defining a slice
A′ = A[:, 1] of a matrix A is not more than defining a set of coordinates to mask A when reading
A′. In this example, we take all the values along the first coordinate, and we take the second value
along the second coordinate (i = 1, starting from i = 0).

The broadcasting and unsqueezing mechanisms can be combined to perform the equivalent of
parallel computations.

Let us take the following A,B:

A =

1 2
3 4
5 6

 , B =
[
3 3.5 4

]
.

Let us assume we want to check that every component in the first row of A is strictly
inferior to the first component of B, every component in the second row of A to the second
component of B, and so on. To do so, we can not compute the component-wise A < B, as A,B
do not have the same size (respectively 3× 2 and 3). Using broadcasting and unsqueezing, we
can nevertheless compute A < unsqueze(B, 1), by first adding a phantom coordinate to B,
with unsqueze(B, 1) of size 3 × 1, then broadcasting the result to the size of A (⊤: true, ⊥:
false):

A < unsqueze(B, 1) =

1 2
3 4
5 6

 <

 3 3
3.5 3.5
4 4

 =

⊤ ⊤
⊤ ⊥
⊥ ⊥

 .

Example 2.1: Broadcasting and unsqueezing
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Cube of inversions and indicator Γ. The inversions required for Γ correspond to all inversion
considering triplets of elements in CB3, that we can represent by a cube containing boolean values.
We will explain step by step this process.

Let us consider the similarity matrices σS and σR such that σS [a, b] is the similarity σS(sa, sb)
and σR[a, b] is the similarity σR(ra, rb) for two cases ca, cb indexed by a, b ∈ [0, |CB| − 1]. We
can represent every comparisons σS(sa, sb) ≥ σS(sa, sc) using the cube σS≥ = unsqueeze(σS , 2) ≥
unsqueeze(σS , 1) which is such that σS≥[a, b, c] = σS(sa, sb) ≥ σS(sa, sc). We explain in more
detail, for a, b, c ∈ [0, |CB| − 1]:

• unsqueeze(σS , 2) is of size |CB|×|CB|×1, and will be copied along the new third coordinate;
as such, unsqueeze(σS , 2)[a, b, c] = σS(sa, sb);

• unsqueeze(σS , 1) is of size |CB| × 1 × |CB|, and will be copied along the new second coor-
dinate; as such, unsqueeze(σS , 1)[a, b, c] = σS(sa, sc);

• from this, unsqueeze(σS , 2) ≥ unsqueeze(σS , 1) broadcasts to the same size |CB| × |CB| ×
|CB| and we have:

σS≥[a, b, c] = (unsqueeze(σS , 2) ≥ unsqueeze(σS , 1))[a, b, c]

= unsqueeze(σS , 2)[a, b, c] ≥ unsqueeze(σS , 1)[a, b, c]

= σS(sa, sb) ≥ σS(sa, sc).

In the same way, we can define σR< = unsqueeze(σR, 2) < unsqueeze(σR, 1) which is such that
σR<[a, b, c] = σR(sa, sb) < σR(sa, sc).

From these two boolean cubes of size |CB|3, we can compute a final boolean cube inv =
σS≥ & σR<, which is such that inv[a, b, c] = inv(σS , σR, ca, cb, cc). As PyTorch uses the standard
encoding of boolean as bits, we have ⊤ = 1,⊥ = 0, and the value of Γ is the sum of all values in
the inversion cube inv, i.e., Γ =

∑
inv.

Contribution of a case to the inversion cube. Using the principle in Appendix B.2.1, we do
not need to compute the whole cube in most cases. To compute the contribution of a new case ci
to the value of CoAT, we need to compute only a subset of values according to Equation (B.11):

Γci(σS , σR, CB ∪ {ci}) =
∑

a,b∈[0,|CB|−1]

inv[a, b, i]

+
∑

a,c∈[0,|CB|−1]

inv[a, i, c]

+
∑

b,c∈[0,|CB|−1]

inv[i, b, c]

+
∑

b∈[0,|CB|−1]

inv[i, b, i]

These values correspond to slices of the cube, where the value of one (for inv[a, b, i], inv[a, i, c], inv[i, b, c])
or two coordinates (for inv[i, b, i]) are fixed. The values in those slices can be obtained without
computing the full inversion cube if we have σS , σR the pairwise similarity matrices within CB (of
size |CB|2), as well as σS i, σRi (of size |CB|) the similarity vectors between ci and every case in
CB. The formulas are as follow, using constant values σS ii, σRii for the similarity between a case
and itself:

• to obtain the values corresponding to inv[a, b, i] for a, b ∈ [0, |CB| − 1]:
invabi =

∑
0,1((σS ≥ unsqueeze(σS i, 1))&(σR < unsqueeze(σRi, 1))), which results in a

|CB| × |CB| matrix for which we take the sum;

• to obtain the values corresponding to inv[a, i, c] for a, c ∈ [0, |CB| − 1]:
invaic =

∑
0,1((unsqueeze(σS i, 1) ≥ σS)&(unsqueeze(σRi, 1) < σR)), which results in a

|CB| × |CB| matrix for which we take the sum;

• to obtain the values corresponding to inv[i, b, c] for b, c ∈ [0, |CB| − 1]:
invibc =

∑
0,1((unsqueeze(σS i, 2) ≥ unsqueeze(σS i, 1))&(unsqueeze(σRi, 2) < unsqueeze(σRi, 1))),

which results in a |CB| × |CB| matrix for which we take the sum;
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• to obtain the values corresponding to inv[i, b, i] for b ∈ [0, |CB| − 1]:
invibi =

∑
0((σS i ≥ unsqueeze(σS ii, 0))&(σRi < unsqueeze(σRii, 0))), which results in a

vector of size |CB| for which we take the sum, with unsqueeze(x, 0) the transformation of
the value x into the vector [x].

We can then sum everything to obtain the formulation of MeATCube:

MeATCube(σS , σR, σS i, σRi, σS ii, σRii) = invabi + invaic + invibc + invibi (B.12)
= Γci(σS , σR, CB ∪ {ci}). (B.13)

Note that in the actual implementation of MeATCube, the coordinates for the unsqueeze oper-
ations are automatically adapted to fit any number of extra dimensions. The matrices are defined
as:

• σS [. . . , a, b] = σS(a, b)∀a, b ∈ CB, of size |CB| × |CB| for the last two dimensions;

• σR[. . . , a, b] = σR(a, b)∀a, b ∈ CB, of size |CB| × |CB| for the last two dimensions;

• σS i[. . . , a] = σS(a, i)∀a ∈ CB, of size |CB| for the last dimension;

• σRi[. . . , a] = σR(a, i)∀a ∈ CB, of size |CB| for the last dimension;

• σS ii[. . . ] = σS(i, i);

• σRii[. . . ] = σR(i, i).

Advanced operations The contribution of a new case c to the value of Γ if it was added to
the case base can be generalized. The principle of this generalization is based on the broadcast
mechanism.

For instance, suppose we want to perform a prediction. We need to find the outcome rt that
minimizes the value of Γci(σS , σR, CB ∪ {ci}). With MeATCube, this can be done naively by re-
peating MeATCube(σS , σR, σS i, σRi, σS ii, σRii) for all possible rt ∈ R. However, σS , σR, σS i, σS ii,
and most likely σRii will not change for different values of rj ∈ R, so it would be a waste to re-
compute the terms that do not depend on σRi each time. This can be done with σRRi, a new
matrix for which σRRi[j] = σRi for rj ∈ R. We can then compute the index t of the best outcome
in rt ∈ R:

t = argminMeATCube(unsqueeze(σS , 0), unsqueeze(σR, 0), unsqueeze(σS i, 0), σRRi,

unsqueeze(σS ii, 0), unsqueeze(σRii, 0)).

In general, each time we want to repeat a computation of MeATCube for different variants of a
value α ∈ A, we add a new coordinate, which will be a phantom coordinate of size 1 for matrices
that do not change for different α. For matrices that depend on α, the coordinate will have a size
of |A| and contain the different variants of the matrix, as we did for σRi by producing σRiR.

B.2.3 Observed speed on real-world datasets.
In Figure B.2, we report the time required to perform a single deletion step in our experi-
ments from Appendix B.1. As a reminder, the time complexity of MeATCube for competence
is O(|CB|2|R| |T |). In our experiments the reference set is proportional to the initial size of the
case base, and the set of possible outcomes does not change through executions. As such, |R| and
|T | can be seen as constants depending on the dataset during the experiment. We observe that
the time complexity is proportional to |CB|2, which is consistent with the above, while differences
in slopes between the datasets can be attributed to |R| and |T |.

We did not have an implementation of the naive implementation nor the optimization from
Badra, Lesot, et al. [Bad+22] available, however we can compare the orders of magnitudes with
estimates. In [Bad+22], a formula of the run time is available for the computation of CoAT,
which is equivalent to the computation of ℓMCE in our implementation, as the energy (i.e., Γ) is
computed once per possible outcome. As can be read in Equations (12.12) and (12.13), in each
compression step we compute ℓMCE twice to obtain the influence, that we then average over T . In
our experiments we used a reference of a size |T | = |CB|/3, so we need to multiply the value of the
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Figure B.2: Runtime observe (in seconds) for each step of the compression process, on an Intel Xeon
W-11955M CPU@2.60GHz. Each compression step corresponds to computing the competence
Chinge(c, θ, T ) of all cases c for all the references in T , averaging over the references, finding the
case with the least case competence nad removing it.

estimate by 2|CB|/3. For |CB| = 300 we estimate a time of 138 seconds for the optimized version,
and 1002 seconds for the non-optimized version. According to Figure B.2, we need around 2 seconds
with MeATCube on the Balance Scale dataset used in [Bad+22]. The values for the naive and
optimized CoAT are estimates based on results obtained with unknown hardware, so they should
not be taken at face value. However, they allow us to confirm that we are two orders of magnitude
faster than the optimized implementation from [Bad+22], and three orders of magnitude faster
than the naive implementation, with in addition a cubic growth for the naive implementation and
a quadratic one for the optimized CoAT and MeATCube.
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C.1 Introduction

APs are a specific form of analogy that follows formal rules. One way to define APs is, as was done
in [CL24; Lep01; LA96; PR18, for instance], by using postulates to form an axiomatic system. From
the axiomatic system of APs, it is possible to perform data augmentation to train machine learning
models on analogical data (see Section 6.3). However, some approaches, for instance [Als+22b;
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Ant22; CL24, see also Subsection 2.3.2], discuss the relevance of specific postulates and consider
models that do not fit all the postulates of APs.

This document proposes to extend and generalize the data augmentation procedure used in Sec-
tion 6.3 and Chapters 10 and 11 on APs, motivated by the success of [MMC22, reported in Sec-
tion 7.6]. The generalized procedure is theoretically grounded in the postulates of APs, is modular
and actionable. Indeed, the building blocks are straightforward generalizations of the postulates of
APs, that can be combined to fit various models related to analogy. The impact of the postulates,
of the assumptions on the data, and of the heuristics used is made clear in Appendix C.3. In
this mindset, the current proposal describes links with the properties of the relations underlying
the analogy in Appendix C.4, as a first guideline for implementing the proposed analogical data
augmentation framework to real use cases.

Before describing the generalized data augmentation process, we discuss the links between
different subsets of postulates and with existing (Boolean) models of analogies between quadruples
in Appendix C.2.

In order to avoid confusions as much as possible, in this section we use different terms:

• we call APs the quadruples following the 8 forms of Lepage;

• we call quadruples or permutations the ones that do not necessarily following the 8 forms;

• in general, an analogical or non-analogical quadruple from a dataset is called an exemplar.

C.2 Hierarchy of models of analogy underlying subsets of
postulates

C.2.1 Reminder on the categories of postulates
As mentioned in Appendix C.1, APs can be defined using postulates in an axiomatic setting, that
we separate into 3 categories described in Subsection 2.3.3 and recalled bellow:

• permutation postulates: postulates that state that if an AP A : B :: C : D exists, then
another AP exists, obtainable by permuting A,B,C,D;

• existence postulates: postulates that state that a particular analogical form exists;

• constraint postulates: postulates that constrain the possible values of an analogical form.

The advantages of this distinction come to light when we consider data augmentation, in which
permutation postulates play a central role. The permutation postulates and their associated cate-
gory are detailed in Table 2.1, that we recall in Table C.1. Some of the permutation postulates can
be obtained by combining other permutation postulates and are usually not considered on their
own. To the best of our knowledge, these permutation postulates do not have frequently used
names, so in Table C.1 we propose the placeholder names of extra postulate 1 and extra postulate
2. As mentioned in Subsection 2.3.2, in certain setting it makes sense to consider a Symmetry of
Ratio postulate.

Additional permutation postulates. While we limit ourselves to a subset of permutation pos-
tulates that, in our opinion, can be explained intuitively, our framework can in theory accommodate
any of the 241 permutations of A,B,C,D as permutation postulate.

Additional existence postulates and constraint postulates. Recently, a discussion on the
Boolean models of AP was proposed by Leemhuis and Özçep [LÖ23]. In their work, they proposed
several existence postulates, defined for all A,B,C,D and some fixed k2:

A : B :: B : A (ratio symmetry)
A : A :: B : C (universal neutrality)
k : k :: A : B (k-neutrality)
A : B :: C : D, (universality)

1Excluding A : B :: C : D =⇒ A : B :: C : D that is always true and might cause infinite loops depending on
the implementation of our approach.

2We propose to generalize the definitions from [LÖ23] by using k instead of specific Boolean values 0 and 1.
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Postulate Symbol Description

Permutation postulates group
Symmetry of Conformity SymC A : B :: C : D =⇒ C : D :: A : B
Exchange of the Means EM A : B :: C : D =⇒ A : C :: B : D
Inversion of Ratio IR A : B :: C : D =⇒ B : A :: D : C
Exchange of the Extremes EE A : B :: C : D =⇒ D : B :: C : A
Symmetry of Reading Rev A : B :: C : D =⇒ D : C :: B : A

Extra postulate 1 Ex1 A : B :: C : D =⇒ C : A :: D : B
Extra postulate 2 Ex2 A : B :: C : D =⇒ B : D :: A : C

*Symmetry of Ratio Sym :: Sym
*Symmetry of Left Ratio Sym :: A : B :: C : D =⇒ B : A :: C : D
*Symmetry of Right Ratio :: Sym A : B :: C : D =⇒ A : B :: D : C

Existence postulates group
Reflexivity of Conformity Ref A : B :: A : B
Identity Id A : A :: B : B
Solvability Solv ∀A,B,C ∃D such that A : B :: C : D holds

Constraint postulates group
Uniqueness Uniq A : B :: C : D ∧A : B :: C : D′ =⇒ D = D′

Strong Reflexivity of Conformity UniqRef A : B :: A : D =⇒ B = D, can be seen as
Uniqueness restricted to Reflexivity of Con-
formity

Strong Identity UniqId A : A :: C : D =⇒ C = D, can be seen as
Uniqueness restricted to Identity

Distribution Dist A : B :: C : D =⇒ X (A) ⊆ X (B) ∪
X (C), with X (A),X (B),X (C) the features
of A,B,C

Table C.1: Known postulates used in axiomatic analogies, excluding transitivity. Asterisks indicate
permutation postulates that are not accepted for APs.

as well as corresponding constraint postulates:

A : B :: B : A =⇒ A = B (ratio anti-symmetry)
A : A :: B : C =⇒ B = C (universal anti-neutrality)
k : k :: A : B =⇒ A = B. (k-anti-neutrality)

Note that universal anti-neutrality is an other name for Strong Identity. We find these postulates
particularly interesting as they complement the Symmetry of Ratio postulate we propose from a
different axis. For instance, the ratio symmetry proposed by Leemhuis and Özçep can be seen
as Symmetry of Ratio applied to the Reflexivity of Conformity. What is interesting is that ratio
symmetry of Leemhuis and Özçep generates less new quadruples than our Symmetry of Ratio,
which could be useful in some use cases.

Additional categories. Other categories could be defined, for instance containing the Transi-
tivity permutation postulate and its variants. Below we list the forms that are mentioned. In
parenthesis, we provide a compressed form with a slight abuse of notation, as we chain the ratio
(:) and the conformity of ratios (::):

A : B :: C : D ∧ C : D :: E : F =⇒ A : B :: E : F (A : B :: C : D :: E : F ), (C.1)
A : B :: C : D ∧ B : E :: D : F =⇒ A : E :: C : F (A : B : E :: C : D : F ), (C.2)
A : B :: B : C ∧ B : C :: C : D =⇒ A : B :: C : D (A : B :: B : C :: C : D). (C.3)

Antić [Ant22] labels (C.1) as transitivity and (C.2) as inner transitivity. To stay consistent with
the notation from Lepage, we label (C.1) as Transitivity of Conformity and (C.2) as Transitivity
of Ratio. Note that the basic form of Transitivity is the one of Transitivity of Conformity, while
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Transitivity of Ratio is an application of Transitivity between applications of Exchange of the
Means. Antić also consider (C.3) that he calls central transitivity. In our reading, the latter is an
application of the Transitivity of Conformity to A : B :: B : C and B : C :: C : D.

Notice that the Transitivity postulate and its variants behave like existence postulates, as they
state that a given quadruple is analogical. The main difference between the current existence
postulates and the Transitivity postulates is that the latter is conditioned by the presence of two
other quadruples as analogical exemplars. For instance, the first form of Transitivity states that
A : B :: E : F holds if A : B :: C : D and C : D :: E : F holds. However, A : B :: E : F can hold
without A : B :: C : D and C : D :: E : F holding for some C,D, therefore Transitivity is not a
constraint postulate. Therefore, if we were to integrate the Transitivity postulate and its variants
in our data augmentation process, they would be used in the same way as the existence postulates.

C.2.2 Equivalence classes of permutations induced by postulates.

When using permutation postulates, given an analogy A : B :: C : D it is possible to generate a set
of analogies obtained by permuting the elements of A : B :: C : D. We call that the permutations
induced by the postulates. Using different sets of permutation postulates may result in different
induced permutations. However, certain postulates can be deducted from other postulates, and
adding them will not change the induced permutations.

Equivalence classes and cover. By repeatedly applying the postulates p ∈ P of a set P of
permutation postulates on the base form A : B :: C : D, we obtain a set of permutations that
is stable by application of the permutation postulates. In other words, once we obtain the stable
set, applying the permutation postulates p ∈ P on any of the permutations in the set will result
in a permutation already in the stable set. We call this set the equivalence class induced by the
permutation postulates, written CP . This set is minimal: as we start from only one form, all the
other forms must be reachable by a series of application of the permutation postulates P . Removing
one form from the equivalence class means that at least one of the permutation postulates does
not hold, and the resulting set is not stable anymore by application of all the selected permutation
postulates.

It can be shown that the equivalence class CP produces a cover, as was proven by Lepage [Lep03]
for C{SymC,EM}, the set of 8 permutations we use in Part II and Chapter 2. The proof from Lepage
can be generalized to any subset of permutation postulates, and the number of instances of the
equivalence class that are necessary to produce the cover is 24/|CP |.

Proof The proof can be obtained by reasoning by the absurd. Consider two distinct but overlap-
ping instances of a equivalence class CP . As they overlap, they share an element, and all elements
in the set are reachable by application of the permutation postulates P on any of the other ele-
ments. Therefore, all the elements of the first instance are reachable from the second instance, and
conversely. In other words, the two instances must be equal, and we reach a contradiction.

Lattice of the equivalence classes. From all the permutation postulate in Table C.1, we gen-
erate all possible combinations, from ∅ to {SymC,EM, IR,EE,Rev,Ex1, Ex2, Sym ::, :: Sym}.
When Sym :: and :: Sym appear simultaneously in the labelling, we write Sym :: Sym instead.
Groups of postulates with the same induced permutations form an equivalence class.

The resulting equivalence classes are displayed in Figure C.1. In the diagram, each node
corresponds to an equivalence class, which may correspond to several sets of postulates. The
minimal sets of postulates to obtain a given class are called its minimal generators. In the diagram,
we indicate in orange the number of classes needed to cover the set of all possible permutations
of A,B,C,D. This number can be derived from the size of the equivalence class and the formula
24/|CP | introduced in a previous paragraph. Every green colored postulate indicates the smallest
equivalence class in which the postulate first appears.

Details on the equivalence classes. With P the set of all the permutation postulates men-
tioned in Table C.1, we call CP equivalence class corresponding to a set of postulates P ∈ P. We
obtain the following equivalence classes, for which we list the minimal generators:

• the class with no postulate: C∅
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SymC::SymSym::EMIREERev
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Figure C.1: Lattice containing equivalence classes induced by each group of postulates. Black is
maximal set of postulates. Green is reduced class labels, that is, the equivalence class in which
each postulate appears first, starting from ⊥. Orange is number of equivalence classes to cover all
permutations, that is 24/|CP |.

• the classes with a single postulate: C{SymC}, C{::Sym}, C{Sym::}, C{EM}, C{IR}, C{EE}, and
C{Rev}

• some classes with two postulates (excluding C{Rev,Sym::Sym} as Sym :: Sym is counted as
two postulates): C{::Sym,EM}, C{::Sym,EE}, C{EM,Sym::}, C{EE,Sym::}; it is interesting that we
can obtain equivalence classes from these postulates, even if the corresponding permutations
go against most intuitions about analogy;

• C{Rev,Ex1,Ex2}, that can be fully generated by Ex1 and by Ex2;

• some classes with three postulates, that can be generated by any combination of 2 of their
postulates: C{Rev,IR,SymC}, C{IR,Sym::Sym}, and C{EM,EE,Rev};

• C{IR,Rev,SymC,Sym::Sym}, that can be generated by any two APs p1, p2:

(p1, p2) ∈ {Sym ::, :: Sym} × {SymC,Rev}

• CP\{Sym::Sym}, that is to say the 8 permutations usually accepted for APs, and can be
generated by any of the subsets (p1, p2) in

(p1, p2) ∈ (GEx ×GSymC) ∪ (GSymC ×GEM ) ∪ (GEx ×GEM )

with GEx = {Ex1, Ex2}, GSymC = {IR, SymC}, GEM = {EM,EE};

• finally, CP is maximally equivalent to the set of all postulates, and can be generated using
either:

– 2 postulates (p1, p2) ∈ {Sym ::, :: Sym} × {Ex1, Ex2};
– 3 distinct postulates p1 ̸= p2 ̸= p3 ̸= p1 with p1, p2, p3 ∈ {EM,EE, Sym ::, :: Sym};
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– any 3 postulates p1, p2, p3:

(p1, p2, p3) ∈ GSym::Sym ×GEM ×GRev

with GSym::Sym = {Sym ::, :: Sym}, GEM = {EM,EE}, GRev = {Rev, IR, SymC} =
{Rev} ∪GSymC .

Extra postulate 1 and extra postulate 2. Interestingly, removing Ex1, Ex2 from the consid-
ered postulates only removes equivalence classes 8. Excluding CP\{Sym::Sym} and CP}, that loose
some generators, no other equivalence class is significantly impacted. We find interesting to be able
to define the 8 equivalent permutations of APs (CP\{Sym::Sym}) using one of Ex1, Ex2 instead of
any of the other two postulates usually used to generate CP\{Sym::Sym}.

C.2.3 Usual boolean models of analogy and the corresponding equiva-
lence classes

In the work of Couceiro and Lehtonen [CL24], Prade and Richard [PR18], and Leemhuis and
Özçep [LÖ23], among other, Boolean models of analogy are studied as a simplification of analogies
on feature spaces. The idea is to focus on a particular feature, and represent the absence (0) or
presence (1) of the feature in each of A,B,C,D. For instance, the R1 model (called Ω0 in the work
of Prade and Richard) is the smallest model that implements the usual postulates of APs. It is
defined as:

A
B
C
D

∈


0 1 1 0 0 1
0 1 0 1 0 1
0 0 1 0 1 1
0 0 0 1 1 1

 , (C.4)

with each column representing a possible combination of values for A : B :: C : D to hold. The
model can then be generalized for any number of features, by checking if one of the columns (not
necessarily the same) holds for each feature.

We consider models R1 to R8 mentioned by Couceiro and Lehtonen [CL24]. We also consider
models Ω0,Ω, and M3 to M7 mentioned in by Prade and Richard [PR18]. Two models appear in
the work of Prade and Richard and of Couceiro and Lehtonen under different names: R1 and R2
are called Ω0 and Kl by Prade and Richard.

We find the maximal equivalence class under which each model is closed. In other words, we
find the largest set of postulates that are satisfied by the model. The results are as follows:

• in CP\{Sym::Sym} we find R1/Ω0 (originally defined by Miclet and Prade [MP09b]), M3, M4,
and M7, which are defined as:

R1 = Ω0 =


0 1 1 0 0 1
0 1 0 1 0 1
0 0 1 0 1 1
0 0 0 1 1 1



M3 =


0 1 1 1 0 1 0 1 0 1
0 1 0 1 1 1 0 0 1 1
0 0 1 1 0 0 1 1 1 1
0 0 0 0 1 1 1 1 1 1



M4 =


0 1 0 1 0 1 0 0 0 1
0 0 1 1 0 0 0 1 0 1
0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 1 1 1 1



M7 =


0 1 0 1 0 1 1 0 0 1 0 1 0 1
0 0 1 1 0 0 1 0 1 1 0 0 1 1
0 0 0 0 1 1 1 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1
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• in CP we find R2/Kl (Klein’s model), R5 (inverse paralogy [PR18]), M5, M6, and Ω, which
are defined as:

R2 = Kl =


0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1



R5 =


1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1



M5 =


0 1 1 0 1 1 0 1 0 1 0 1
0 1 0 1 1 0 1 1 0 0 1 1
0 0 1 1 1 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1



M6 =


0 1 0 1 0 1 0 0 1 0 0 1
0 0 1 1 0 0 1 0 0 1 0 1
0 0 0 0 1 1 1 0 0 0 1 1
0 0 0 0 0 0 0 1 1 1 1 1



Ω =


0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1


• in C{Rev,IR,SymC} we find R3 (reverse analogy [PR18]), which is defined as:

R3 =


0 1 0 1 0 1
0 1 1 0 0 1
0 0 1 0 1 1
0 0 0 1 1 1


• in C{IR,Rev,SymC,Sym::Sym} we find R4 (paralogy [PR18]), which is defined as:

R4 =


0 1 0 1 0 1
0 0 1 0 1 1
0 1 1 0 0 1
0 0 0 1 1 1


• in C{IR,Sym::Sym} we find R6, which is defined as:

R6 =


0 1 0 1 1 0 1 0 0 1 0 1
0 0 1 1 0 1 0 1 0 0 1 1
0 0 0 0 1 1 0 0 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1


• in C{IR} we find R7 and R8, which are defined as:

R7 =


0 1 0 1 1 0 0 1
0 0 1 1 0 1 0 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1



R8 =


0 1 1 0 0 1 0 1
0 1 0 1 0 0 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1
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Models in CP\{Sym::Sym} and CP}. Figure C.2 illustrates how the Boolean models considered
in [PR18] are separated in two groups, one with supersets of Kl = Ω0∪S2 (with S2 = {0110, 1001},
notation from [PR18]) and the other with the other supersets of Ω0. These two groups differ
mainly by whether S2 is accepted or not. Furthermore, S2 appears in all Ω,Kl,M5,M6, all
models satisfying Symmetry of Ratio postulate (corresponding to CP). Conversely, S2 does not
appear in Ω0,M3,M4,M7, all models that do not satisfy Symmetry of Ratio (corresponding to
CP\{Sym::Sym}).

To reformulate, {0101, 1010} is present in all Boolean models mentioned by Prade and Richard,
and it generates S2 = {0110, 1001} by application of the Symmetry of Ratio postulate (Sym :: Sym).
Having {0101, 1010} without S2, as is the case with Ω0,M3,M4,M7, results in the model not being
stable by application of Sym :: Sym, and thus it does not belong to ⊤.

Figure C.2: Lattice of Boolean models of analogy according to Prade and Richard [PR18, Figure
1]. We highlight models that fit all the postulates, i.e., CP (purple) and models that fit only in
CP\{Sym::Sym} (green), i.e., CP without Symmetry of Ratio.

Differentiating models of the same equivalance class using seeds. As we can see from
the above case, and as was extensively studied by Prade and Richard [PR18], different Boolean
models can follow the same postulates of analogy (the ones of APs in [PR18]) but remain dis-
tinct, as correspond to different visions of analogy in the Boolean space. However, as illustrated
in Figure C.2, the permutations postulates are not sufficient to distinguish all the models on
{0, 1}. The existence postulates in Table C.1 fill part of this gap: by applying Identity to {0, 1},
we directly obtain {0000, 1111, 0011, 1100}, and by applying Reflexivity of Conformity we obtain
{0000, 1111, 0101, 1010}. Applying all the postulates of CP\{Sym::Sym} on either of the above re-
sults in Ω0, and applying Symmetry of Ratio results in Kl. However, the other models are not
generated with this process: 0111 and its permutations by CP\{Sym::Sym}, but are necessary to
obtain M3, and, if CP is used instead of CP\{Sym::Sym}, to obtain M5. Similarly, 0001 and its
permutations by CP\{Sym::Sym} are necessary to obtain M4, and M6 by CP . If both 0111, 0001 are
used in CP\{Sym::Sym}, M7 is obtained, and Ω is obtained from 0111, 0001 and CP .

There exist multiple justifications for these seeds, depending on which postulate are considered.
While the postulates in Table C.1 are not enough to describe all the models, other postulates
have been proposed by Leemhuis and Özçep [LÖ23], in particular the existence postulates ratio
symmetry, universal neutrality, k-neutrality, and universality.
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C.3 Postulates and data augmentation for ML

The data augmentation procedure proposed by Lim, Prade, and Richard [LPR19; LPR21] was used
to train DL models in [LPR19; LPR21] and subsequent work, including ours [Als+21a; Als+21c;
Mar+22a; MC24]. It can be separated into two parts: the augmentation of the number of valid
APs, and the generation of invalid APs. This process is discussed in Appendix C.3.1.

In our work [MMC22], other equivalence classes are explored beyond the usual postulates of
analogical proportions, that correspond to not accepting Exchange of the Means or considering it an
undesirable property for quadruples. In particular, we use C{Rev,IR,SymC} with use different ways
to obtain non-analogies. In the same line of thought, we propose to extend the data augmentation
procedure for valid and invalid APs to any subset of postulates, based on the categories mentioned
at the beginning of Appendix C.2.1.

We saw in Appendix C.2.2 that any given set of postulates results in an equivalence class of
permutation, and the data augmentation for valid APs can easily be generalized to any set of
analogical quadruples using this notion. For APs, for each valid AP A : B :: C : D in the dataset,
we apply all the permutations of the equivalence CP\{Sym::Sym} on A : B :: C : D to obtain the
8 equivalent forms. Replacing CP\{Sym::Sym} by any equivalence class induced by some postulates
generalizes the procedure to any set of postulates.

However, more consideration must be given to the generalization of the generation of invalid
APs. In Appendix C.3.2, we propose and discuss multiple methods to obtain and increase the
amount of non-analogical quadruples.

Finally, we propose our generalized analogical data augmentation procedure in Appendix C.3.3.

C.3.1 Reminder of the principles underlying the data augmentation pro-
cess

In the work of Lim, Prade, and Richard [LPR19; LPR21] and subsequent work, including ours [Als+21a;
Als+21c; Mar+22a; MC24], data augmentation was used to train ML models (DL models, to be
specific) for analogy detection.

To achieve this, two sets of training examples are required: examples of analogies, and examples
of non-analogies. To obtain these, Lim, Prade, and Richard [LPR19; LPR21] proposed to use the
permutations from what we identify as CP\{Sym::Sym} to augment analogical exemplars with the 8
equivalent forms from Lepage [Lep01], and use the following generation rules to generate exemplars
out of the CP\{Sym::Sym}:

A : B :: C : D =⇒ B : A ̸ :: C : D, (NA1)
A : B :: C : D =⇒ C : B ̸ :: A : D, (NA2)
A : B :: C : D =⇒ A : A ̸ :: C : D. (NA3)

More specifically, applying (NA1), (NA2) on all of CP\{Sym::Sym} generates all permutations of
4 distinct elements out of CP\{Sym::Sym} generated from A : B :: C : D. Additionally, the role of
(NA3) relates to Strong Identity and by extension Strong Reflexivity of Conformity, that become
invalid after applying (NA3) on all of non-analogies.

C.3.2 Non-analogies from postulates
In reference to the work Lim, Prade, and Richard [LPR19; LPR21], we separate non-analogies
generated from a base of analogical exemplars in 5 groups:

1. permutations (without repetitions) of 4 elements in the equivalence class of a non-analogical
exemplar;

2. permutations (without repetitions) of 4 elements falling out of the equivalence class;

3. permutations (with repetitions) of 4 elements conflicting with a constraint postulate;

4. permutations (with repetitions) of 4 elements conflicting with an existence postulate;

5. random combinations of elements from multiple exemplars, which assume that analogies are
a minority in the data domain, thus random quadruples are likely to be non-analogical.
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Case 1: permutations without repetitions of non-analogies. The principle used for ana-
logical quadruples can be applied to non-analogical quadruple. Indeed, if at least one quadruple
is analogical in the class, by equivalence all the others are valid. Conversely, if one quadruple is
non-analogical then no other quadruple in the class is analogical. If we consider the law of ex-
cluded middle3 for analogical quadruples, defined in Definition 3.1, then the equivalence class of a
non-analogical quadruple contains only non-analogical quadruples.

A quadruple is either analogical or non-analogical.

Definition 3.1: Postulate A1: law of excluded middle on analogical statements.

This principle can be applied on non-analogical data present in the dataset, or on non-analogical
data generated from analogical data using the principles listed below.

Case 2: permutations without repetitions, out of the equivalence class. The permu-
tation postulates state that given an analogical quadruples, other quadruples are analogical, but
they do not state that any other permutation is non-analogical. Therefore, to use exemplars from
Item 2 as non-analogies, as done with (NA1), (NA2), it is necessary to assume that permutations
not explicitly analogical are non-analogical, which is an expression of the CWA4 on the equivalence
classes.

Any quadruple that is a permutation of an analogical exemplar but not in the equivalence
class of any analogical exemplar is non-analogical.

Definition 3.2: Postulate A2: CWA on equivalence classes.

Let us use an example with equivalence CP\{Sym::Sym}: we are able to partition the set of
all 24 permutations of 4 elements A,B,C,D in three equivalence classes following CP\{Sym::Sym},
respectively containing A : B :: C : D, B : A :: C : D, and C : B :: A : D [Lep03, Lemma 2 page
119]. From there, stating that one of the 3 equivalence classes is made of analogical exemplars does
not inform us about the analogical nature of quadruples in the other 2 classes. However, by stating
the CWA on the equivalence classes, having only members of the class of A : B :: C : D as analogical
exemplar allows us to determine B : A :: C : D, C : B :: A : D, and their equivalence classes as non-
analogical. This principle was used in (NA1), (NA2) to generate non-analogies [Als+21c; LPR19;
LPR21; Mar+22a; MC24, and related articles].

The above reasoning can be extended to all equivalence classes from Appendix C.2.2, but we
distinguish two variants:

• the greedy variant: given an analogical exemplar A : B :: C : D, all quadruples in
the other equivalence classes are seen as non-analogical (version used by Lim, Prade, and
Richard [LPR19; LPR21]):

• the tolerant variant: same as the above, but allows for multiple related analogical equivalence
classes if at least one permutation from each of them is an analogical exemplar (version used
by us in our experiments from Section 7.6 [Mar+22a]).

Case 3: conflicts with a constraint postulate. This kind of non-analogical quadruple is
pretty self explanatory, for some accepted constraint postulate: if a quadruple conflicts with the
constraint postulate, it cannot be analogical, otherwise the constraint postulate would not hold.
If, similarly to case 1, we assume the law of excluded middle (see Definition 3.1), then quadruple
conflicts with the constraint postulate are non-analogical.

For instance, for any three elements A,B,B′, B ̸= B′, the quadruple ⟨A,B,A,B′⟩ is in direct
conflict with the Strong Reflexivity of Conformity postulate and ⟨A,B,A,B′⟩ is in conflict with
the Strong Identity postulate. Taking A,B from an analogical exemplar and B′ from another

3The law of excluded middle, in logic, states that a statement is either true or false, with no other possible value.
Therefore, if a statement is not true, it must be false, and conversely.

4The CWA, as aptly defined in Wikipedia, is “the presumption that a statement that is true is also known to be
true. Therefore, conversely, what is not currently known to be true, is false. [. . .] The opposite of the closed-world
assumption is the OWA, stating that lack of knowledge does not imply falsity.”
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exemplar can ensure that A,B,B′ are sound data point. The same principle can be applied to any
other constraint postulate.

Another example of case 3 is the one of the Uniqueness postulate. Given the analogy A : B ::
C : D, the quadruple ⟨A,B,C,D′⟩, D′ ̸= D is in direct conflict with the Uniqueness postulate.
Thus, if we assume Uniqueness, generating a quadruple ⟨A,B,C,D′⟩ for any D′ ̸= D will result
in a non-analogy. Taking A,B,C from an analogical exemplar and D′ from another exemplar can
ensure that A,B,C,D′ are sound data points.

Case 4: conflicts with existence postulate. In some cases and depending on the formulation,
it may be possible to generate triples conflicting with existence postulate, for instance Solvability.
It appears harder to create conflicts with other existence postulate. However, the generation
process is domain dependent, and will probably need to rely on heuristics.

One such example is what we propose in Chapter 11, that relies on a form of CWA on anno-
tations: if a SR label A is present in two sentences s, t, and a label B is present in sentence s but
not in t, from the CWA on annotations no label B can be found in t and thus As : Bs :: At : x is
non-analogical. We assume the CWA on annotations as the data is human annotated, and some
labels may be forgotten. The use of the local context, here the sentences s, t and their annotations,
may serve as an inspiration for heuristics in other domains.

Note that another assumption needs to be made to truly consider As : Bs :: At : x as non-
analogical, namely, that the absence of label is not a valid element (otherwise the solution would
be x = ∅). We did not make in Chapter 11, and we considered that properly identifying the lack
of elements to label was a success in terms of analogy solving. Based on these experiments, we
consider that these unsolvable analogical equations constitute a class of exemplar distinct from
analogical and non-analogical exemplars. It is however possible to leverage them by using any
arbitrary element in place of the solution; the resulting quadruple will always be non-analogical,
as the original triplet is unsolvable.

Case 5: random quadruples. The Item 5 group can be seen as closely related to the CWA: a
plausible reformulation of the CWA would be that any quadruple that is not an analogical exemplar
and cannot be obtained from chosen permutation or existence postulates is non-analogical, as
stated in Definition 3.3. Therefore, any random quadruple of 4 distinct elements can be seen as
non-analogical in the CWA. Note that Definition 3.3 is a stronger assumption than Definition 3.2.

Any quadruple that is not in the equivalence class of any analogical exemplar is non-analogical.

Definition 3.3: Postulate A3: CWA on analogical exemplars.

A relaxation of this principle is to consider the CWA only for elements involved in or non-
analogical exemplars, i.e., a local version of the CWA.

C.3.3 Generalized data augmentation algorithm
In this subsection we propose a set of algorithms and show how to combine them to apply data
augmentation based on axiomatic setting. The proposed formulation of the algorithms is intended
to make obvious the assumptions made at each step of the process, and to be flexible and control-
lable. Indeed, we can adapt the process by deciding which postulates, assumptions on the data,
and heuristics for non-solvable analogical equations we use.

As a reminder, we mainly consider assumptions A1
5, A2

6, and A3
7.

Summarized generalized data augmentation procedure. The procedure can be summa-
rized as follows:

1. augment analogical exemplars:

• with the equivalence class of the chosen permutation postulates;
5CWA on the equivalence classes: any non-explicitly analogical equivalence class is non-analogical.
6Law of excluded middle on analogical statements: any quadruple is either non-analogical or analogical.
7CWA on analogical statements: Any quadruple that is not in any equivalence class of an analogical exemplar is

non-analogical.
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Algorithm 2: Applying a permutation or a permutation postulate.
Permutations postulates are expressed using the initial position of each element in the
quadruple (starting from 0), reordered following the postulate. For instance, (1, 0, 3, 2)
corresponds to A : B :: C : D =⇒ B : A :: D : C.

Input: A permutation postulate a ∈ [0, 3]4, a quadruple p = (A,B,C,D) to permute
Output: p′, the result of applying a on p.
With ai the i-th element of a. With pi the i-th element of p.
We reorder p following a:
p′ ← (pa0 , pa1 , pa2pa3)

• with the existence postulates, if needed;

2. generate non-analogical exemplars using either:

• permutations of analogical exemplars out of the equivalence class, under A1;

• quadruples conflicting with a constraint postulate, under A2;

• quadruples conflicting with an existence postulate, using task dependant heuristics;

• random combinations of elements from multiple exemplars, under A3;

3. augment non-analogical exemplars with the equivalence class of the chosen permutation pos-
tulates, under A2.

The order of the steps is designed to minimize necessary computations and ensures that all possible
non-analogical exemplars are generated.

Balancing generalized data augmentation procedure. For training, we recommend to ap-
ply a sampling algorithm to balance analogical and non-analogical exemplars. Ideally, balancing
should also be performed between sources of non-analogical exemplars, to maximize diversity. This
can be done by limiting the number of quadruples generated at each step above, by applying the
steps above on the original data until a certain amount of each type of non-analogical exemplar is
obtained. It is also possible to do the selection a posteriori.

Compared to this macro scale balancing, it is also possible to apply limits at the micro scale
and ensure each analogical exemplar is represented equally. For instance, inSubsections 6.3.3
and 7.3.3 [Mar+22a], we sample 8 out of the 24 available non-analogical quadruples generated
from each analogical exemplar of the original data, to match the 8 analogical quadruples generated
from the equivalence class.

Merging steps and representig permutations. To simplify manipulation, we express the
permutations using only the initial position of each element in the quadruple. For instance, for a
base quadruple A,B,C,D, (0, 1, 2, 3) corresponds to A,B,C,D itself, and (1, 0, 3, 2) to B,A,D,C.
We use a similar principle to represent the permutation postulates: (1, 0, 3, 2) corresponds to
A : B :: C : D =⇒ B : A :: D : C, as by applying the postulate we reorder the original quadruple
following (1, 0, 3, 2). Following this representation, Algorithm 2 is an example of how to apply
some permutation postulates on a quadruple, and we use Algorithm 3 to generate the equivalence
classes. One advantage of this encoding is that many of the steps above can be computed on the
permutations directly, as a way to compute permutations beforehand and avoid the potentially
costly direct manipulation of the elements in the quadruples. Once the permutation classes have
been computed, they can be directly applied to the manipulated object.

In particular, some of the possibilities in step 2. as well as step 3. of the procedure can be
merged with step 1. in the implementation. In particular if the set of postulates is not going to
change through the process, many of the values can be pre-computed. The data augmentation used
by Lim, Prade, and Richard and in our work [LPR19; LPR21; Mar+22a; MMC22] are examples
of that.
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Algorithm 3: Equivalence class generation.
Permutations are expressed using the initial position of each element in the quadruple. For
instance, for a base quadruple A : B :: C : D, (0, 1, 2, 3) corresponds to A : B :: C : D
itself, and (1, 0, 3, 2) to B : A :: D : C.

Input: A set of permutation postulates A
Output: The equivalence class of permutations P , expressed using the initial position of

each element in the quadruple.
/* We initialize the equivalence class of permutations with the initial

position of each element. */
P ← {(0, 1, 2, 3)};

/* We repeatedly apply all the permutation postulates untill the
equivalence class is stable by application of said postulates. */

stable← False;
while i < 44 and ¬stable do

stable← True;
i← i+ 1;
foreach a ∈ A do

P ′ ← {∀p ∈ P, apply a on p};

/* If, using any of the postulates, we generate a permutation not
already contained in P, the equivalence class is not stable yet.
*/

if |P ′ \ P | > 0 then stable← False;

P ← P ∪ P ′;
end

end

C.4 Some recommendation and guidelines to adapt the frame-
work of axiomatic analogy to specific use-cases

In this appendix, we discuss the impact of some aspects of a task tackled by analogy detection
or analogy solving on the generalized data augmentation procedure and the formulation of the
problem. This section has no normative purposes, and simply reflects our experience and thought
on applying analogical reasoning on a variety of settings, and in particular with axiomatic APs.

From our experiments in Chapters 10 and 11, we found the analogical formulation of a task, com-
bined with a suitable analogical model, bring several benefits. For instance, using exemplar-based
processes, the models can achieve high performance with simpler structures and fewer parameters,
as the similar problems (for instance, labelling the SRs for different semantic frames) use the same
model parameters and formulation. In Chapters 10 and 11 and Section 7.5, the models that were
also tolerant to variations and perturbation in the input, and more stable across random initial-
ization of the parameters than comparable non-analogical models. This last observation might be
caused by the variety of training examples obtained using analogical data augmentation.

The input and expected output of a task can significantly impact how the task is formulated.
Below we list some major types of applications and how we would proceed to model them.

Note that analogy detection, analogy solving, and analogical inference are all meaningful to
learn representations, or to learn relations. Additionally, we only describe tasks for which ve have
some kind of experience, and the guidelines below should be extended in the future to cover as
many types of ML tasks as possible.

Prediction tasks using analogy solving. Many regression and classification tasks can be seen
as datum prediction tasks: given an input X, we want to predict a label or output Y = f(X). We
separate these tasks into datum prediction and datum completion. We call datum prediction tasks
any task where there is a need to predict an unknown datum D, possibly under some constraints.
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We call datum completion tasks a subset of datum prediction tasks, where part of the datum X
are known, written Xk, and we want to predict the unknown parts Xuk.

The two tasks can be formulated as analogy solving, but such a formulation requires a reference
datum C and a reference ratio A : B, that we want to report on C to obtain X. The resulting
analogical equation is A : B :: C : x, solved by x = X For datum completion, as we already
know Xk, the search space can be restricted to values x which have Xk in their value (xk =
Xk). A literal interpretations of analogy solving for regression tasks can be found in most of
the approaches we identified as using analogy solving on APs, for instance for image retrieval or
generation [Bay+07; Bit+23; LTC17; Lep14; Ree+15; SZF15] given three reference images A,B,C.
In these applications, the task is directly formulated as analogy solving.

What is more interesting, in our opinion, is that any prediction task can be reformulated as
analogy solving. Given an input X, to predict a label or output Y = f(X), we can find reference
pairs (X ′, Y ′) in the training set that are such that Y ′ = f(X ′), and solve the analogical equation
X ′ : Y ′ :: X : x. This is what we did in Chapter 11 to predict the group of words that have a given
SR label for the FSRL task. One advantage of this formulation is that the same model can be
used for multiple similar prediction tasks without changing the formulation, and using the same
model, which benefits from the transfer of knowledge between tasks. In such a setting, it might be
interesting to not consider Inversion of Ratio if f is not invertible

Prediction tasks using analogical inference. Another formulation of datum prediction tasks
is through analogical inference: if the function f is analogy preserving [Cou+17b], then it is possible
to use the analogical inference principle discussed in Subsection 2.2.1. This is the underlying
principle behind prediction using CoAT [Bad20].

In the case of datum completion, assuming the link between Xk and Xuk is analogy preserving,
analogical inference can also be used. In such a setting, choosing the postulates such that the cor-
responding model of analogy is preserved could allow to apply the inference principle on functions
that are not strictly analogy preserving in the terms of Couceiro, Hug, et al. [Cou+17b].

Prediction tasks using analogy detection. Analogy detection is particularly suited to rela-
tion checking tasks where we want to know if two elements C,D share the same relation as a pair
A,B. This principle was used in the work of Jarnac, Couceiro, and Monnin [JCM23] to determine
if a knowledge graph node n2 in the graph generated from a node n1 should be pruned or not,
based on past decision represented by pairs (n′

1, n
′
2). From there, if n′

1 : n′
2 :: n1 : n2 holds, then

the same decision holds for n′
2. Another example is the work of Alsaidi, Couceiro, et al. [Als+22b]

where ordinal relations are considered, in particular the precedence of a medical record over another
medical record.

This principle can be extended for any classification task based on some contextual informa-
tion, by considering analogies where ctx1 : obj1 :: ctx2 : obj2 holds if the class label of obj1 in
context ctx1 is the same as the one of obj2 in context ctx2. In the work of Jarnac, Couceiro, and
Monnin, the context was specified by the seed nodes n1, n

′
1 used to generate the graphs of n2, n

′
2

respectively. Using this process for contextualized classification implies that Uniqueness does not
hold, as multiple objects can have the same class label in the same context. As an example, for
the node pruning task in Jarnac, Couceiro, and Monnin, multiple nodes from the same graph will
have the “has to be pruned” label, and multiple will have the “has to be kept” label.

There is another way to express classification tasks as analogy detection tasks, including clas-
sification tasks where the class is not explicitly available. For instance, it is possible to determine
if C and D have the same class using a reference pair (A,B) that we know have the same class, by
checking if A : B :: C : D holds, as was done for instance in some of the experiments on medical
records by Alsaidi, Couceiro, et al. [Als+22a]. In that case, Symmetry of Ratio is implied, as the
ratio is an equivalence of labels.
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Appendix D

Résumé étendu

D.1 Introduction

Les analogies sont un élément clé de la cognition humaine et peuvent être considérées comme
un mécanisme d’abstraction qui identifie les similarités et différences entre différentes situations,
et comme un outil de raisonnement permettant d’adapter des solutions connues à de nouvelles
situations. Lorsque l’on raisonne par analogie, l’objectif est d’adapter la solution d’un problème
connu ou source, qui est suffisamment similaire au problème réel ou cible. Ce processus implique
un transfert entre le contexte du problème source (le problème et sa solution) et le contexte du
problème cible. Ces dernières années ont été marquées par un regain d’intérêt pour le potentiel
de la détection des analogies et de l’inférence analogique, avec des applications fructueuses dans
le domaine de l’apprentissage automatique pour la détection des relations, la récupération et la
génération d’images, de textes et d’unités de connaissances formelles telles que les graphes de
connaissances. Si certains de ces travaux reposent sur une compréhension intuitive de l’analogie,
des efforts considérables ont été déployés depuis l’Antiquité pour définir les analogies de la manière
la plus précise possible. En particulier, une notion qui a suscité beaucoup d’intérêt au cours des 50
dernières années est celle de Proportion Analogique (PA). Une PA est typiquement composée de
quatre éléments A,B,C,D, et signifie que la relation entre A et B est analogue à celle entre C et
D, notée A : B :: C : D. Cet outil formel a été décliné pour couvrir de nombreuses interprétations
différentes de ce que peut être une analogie, avec n’importe quel nombre d’éléments.

L’intérêt de la morphologie pour l’étude des PA. L’application du raisonnement analogique
n’est pas aussi simple qu’il n’y paraît. La morphologie des mots est un point de référence très in-
téressant pour l’étude des PA, car il s’agit d’une forme d’analogie entre chaînes de caractères, qui
peut généralement être généralisée à l’analogie entre chaînes de symboles. Applying analogical rea-
soning is not as easy as it seems. Des données morphologiques sont accessibles pour de nombreuses
langues à l’ère de l’internet, et les transformations qui peuvent se produire par les mécanismes
de l’inflexion morphologique ont été largement étudiées d’un point de vue linguistique. De plus,
alors que l’inflexion morphologique est très régulière pour la plupart des cas (considérez la PA
dog : dogs :: cat : cats ajoutant le suffixe −s à cat et dog), de petites variations et irrégularités
sont présentes qui peuvent être difficiles à prédire sans connaissances linguistiques (considérez la
PA dog : dogs :: bus : buses où le suffixe −s devient −es avec bus). Dans un tel contexte, le raison-
nement analogique peut être utilisé pour exploiter des exemples de transformations morphologiques
et réaliser des prédictions explicables avec un minimum d’effort.

Par exemple, dans les années 1980, un outil nommé Copycat [HM95] a été proposé pour résoudre
les PAs entre les chaînes de caractères, permettant, par exemple, de trouver la solution x = “pqs”
à l’équation analogique “abc” : “abd ” :: “pqr ” : x, ou x = “cats” pour l’équation “dog” : “dogs” ::
“cat” : x. D’autres approches symboliques ont depuis été développées pour traiter les PAs dans
le domaine de la morphologie, et bien que leurs performances se rapprochent du comportement
humain, l’aspect irrégulier de la morphologie des mots est une limitation commune.

Le framework ANN pour manipuler les PAs morphologiques en utilisant le DL. Dans
ce contexte, nous adaptons et développons une approche récente d’apprentissage profond (deep
learning, DL) basée sur les PAs [LPR19] dont la performance surpasse celle de formulations plus
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rigides dans le domaine de la sémantique des mots. Nous proposons le framework ANN, qui
comprend le réseau neuronal d’analogie pour la classification (Analogy Neural Network for clas-
sification, ANNc) et le réseau neuronal d’analogie pour la récupération/génération de solution
(Analogy Neural Network for retrieval/generation, ANNr), deux modèles légers de DL pour abor-
der la détection et la résolution d’analogies, ainsi qu’un processus d’augmentation des données. Le
framework est formellement ancré dans les travaux sur les PAs, et bénéficie de la flexibilité des
modèles de DL pour traiter les irrégularités dans les données. Pour explorer les performances de
notre approche, nous avons développé le jeu de données Siganalogies couvrant plus de 80 langues.
Notre approche surpasse les approches symboliques par une marge significative sur la détection
d’analogie, la résolution d’analogie par récupération, et la résolution d’analogie par génération,
dans certains cas par plus de 75% d’exactitude. Nous réalisons des expériences d’ablation appro-
fondies qui nous permettent d’affiner le framework ANN. Le fait de disposer de grandes quantités
de données dans de nombreuses langues nous permet d’explorer les PAs morphologiques entre les
langues, ce qui révèle des similitudes intéressantes entre notre modèle et la parenté diachronique
des langues1.

Extension du succès de le framework ANN à la sémantique et aux LLMs. Motivés
par les succès de notre framework ANN sur les PAs morphologiques, nous adaptons le cadre aux
domaines d’application au-delà de la morphologie des mots. Par exemple, nous développons un
modèle basé sur BERT et le framework ANN pour résoudre TSV, et surpasser l’état de l’art sur le
benchmark WiC-TSV. Nous proposons également un système tirant parti de PAs sémantiques basé
sur la sémantique des cadres (Frame Semantics) pour s’attaquer à l’annotation de rôle sémantique
(Frame Semantic Role Labeling, FSRL), sur le jeu de données FN1.7. Cette nouvelle méthode se
révèle flexible et, bien que certains défis subsistent dans la sélection de la source pour le transfert
analogique des annotations de rôle sémantique, elle a le potentiel de surpasser les méthodes état
de l’art.

Proportions analogiques au delà de le framework ANN. Enfin, nous explorons le poten-
tiel d’une mesure de complexité pour le transfer analogique (Complexity Measure for Analogical
Transfer, CoAT) pour plusieurs aspects de la maintenance de base de cas (, case base), un problème
important dans le domaine du raisonnement à partir de cas (Case-Based Reasoning, CBR). Les
approches de CBR considèrent un ensemble de cas, qui décrivent des situations et leurs issues, ou
des problèmes et leurs solutions, et s’appuient sur cette case base pour résoudre de nouveaux prob-
lèmes ou prédire l’issue de nouvelles situations. Dans ce contexte, nous avons pu définir une mesure
de la compétence, ou de l’utilité, des cas dans une case base, ce qui nous a permis d’améliorer la
qualité de case bases pour résoudre des tâches de classification sur des données synthétiques et
réelles.

Structure du document et de ce résumé. Cette thèse est séparée en trois parties. Tout
d’abord, la Partie I contient les chapitres introductoires aux notions et approches clés mentionnées
dans cette thèse, à savoir l’analogie (Chapitre 2), DL (Chapitre 3), et la morphologie (Chapitre 4).
Ensuite, la Partie II décrit nos contributions sur le framework ANN dans le cadre morphologique,
tandis que la Partie III regroupe nos contributions à TSV, FSRL, et au CBR. Les trois parties
sont précédée par un chapitre introductoire, le Chapitre 1, repris dans la présente section.

Dans ce résumé étendu, nous détaillons les principales contributions et conclusions des Parties II
et III : le framework ANN est détaillé en Appendix D.3, accompagné de nos conclusions sur les
données morphologiques ; les applications à TSV et FSRL sont résumées dans la Appendix D.4 ;
enfin, les contributions à l’approche CoAT sont expliquées dans la Appendix D.4.3. Nous détaillons
aussi les points principaux abordés dans la Partie I.

D.2 Partie I : préliminaires et état de l’art

La première partie de ce manuscrit est consacrée à l’ensemble des notions nécessaires pour com-
prendre les contributions présentées.

1La parenté diachronique des langues compare leur évolution au cours de l’histoire.
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Postulat Symbole Description

Groupe des postulats de permutation
Symétrie de la Conformité SymC A : B :: C : D =⇒ C : D :: A : B
Échange des Moyens EM A : B :: C : D =⇒ A : C :: B : D
Inversion des Rapports IR A : B :: C : D =⇒ B : A :: D : C
Échange des Extrêmes EE A : B :: C : D =⇒ D : B :: C : A
Symétrie de lecture Rev A : B :: C : D =⇒ D : C :: B : A

Postulat supplémentaire 1 Ex1 A : B :: C : D =⇒ C : A :: D : B
Postulat supplémentaire 2 Ex2 A : B :: C : D =⇒ B : D :: A : C

*Symétries des Rapports Sym :: Sym
*Symétrie du Rapport gauche Sym :: A : B :: C : D =⇒ B : A :: C : D
*Symétrie du Rapport droit :: Sym A : B :: C : D =⇒ A : B :: D : C

Groupe des postulats d’existance
Réflexivité de la Conformité Ref A : B :: A : B
Identité Id A : A :: B : B
Solvabilité Solv ∀A,B,C ∃D tel que A : B :: C :

D soit une PA

Groupe des postulat de contrainte
Unicité Uniq A : B :: C : D ∧ A : B :: C : D′ =⇒ D =

D′

Réflexivité Forte de la Conformité UniqRef A : B :: A : D =⇒ B = D, peut être vue
comme l’Unicité restreinte à la Réflexivité
de la Conformité

Identité Forte UniqId A : A :: C : D =⇒ C = D, peut être vue
comme l’Unicité restreinte à l’Identité

Distribution Dist A : B :: C : D =⇒ X (A) ⊆ X (B) ∪ X (C),
avec X (A),X (B),X (C) les propriétés de
A,B,C

Table D.1: Postulats connus utilisés pour les analogies axiomatiques, excluant la transitivité. Les
astérisques indiquent les postulats de permutation qui ne sont pas acceptés pour les proportions
analogiques.

D.2.1 Chapitre 2 : analogie et proportions analogiques

Dans le Chapitre 2 nous introduisons les subtilités de la notion d’analogie et décrivons la notion
plus précise de proportion analogique (PA) et d’équation analogique.

En particulier, en fonction du contexte, l’analogie peut décrire des notions distinctes mais
apparentées. Nous tentons de donner un aperçu de ces notions et de la manière dont elles sont
liées dans la Section 2.1, en nous appuyant sur une catégorisation de l’analogie dans la langue
naturelle proposées par Barbot, Miclet, and Prade [BMP19, Section 2.1]. Dans nos travaux, nous
nous concentrons sur la notion de PA. Telle que définie dans la Subsection 2.1.1, une PA est une
relation quaternaire entre des éléments généralement de même nature, écrite A : B :: C : D et
se lisant “A est à B comme C est à D”. Une PA où un des élément est une inconue x, noté
A : B :: C : x, est appelé une équation analogique. Pour illustrer la polyvalence de APs, nous
énumérons quelques applications intéressantes dans la Section 2.2.

Dans la Section 2.3, nous présentons le cadre formel que nous utilisons pour les approches
développées dans cette thèse. Ce cadre formel suit les travaux fondateurs de Lepage and Ando [LA96]
en exploitant les postulats des PAs, résumés dans la Table D.1.

Nous introduisons certaines limitations du cadre formel dans la Subsection 2.3.2, qui sont
examinées plus en détail dans la Subsection 6.3.2, la Section 7.6, et l’Appendix D. Pour donner au
lecteur une vue d’ensemble des formulations possibles du problème de l’analogie, nous présentons
également une brève introduction à d’autres cadres formels clés dans la Section 2.4.
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D.2.2 Chapitre 3 : apprentissage automatique, apprentissage profond,
et représentations vectorielles

Le Chapitre 3 est consacré aux concepts de base liés à l’apprentissage profond (DL), qui sont
nécessaires à la compréhension de cette thèse.

Le DL est une branche de l’apprentissage automatique (ML), dont l’objectif est de définir
et d’optimiser un modèle paramétrique pour une tâche spécifique. Ces notions sont expliquées
dans la Section 3.1. Habituellement, les paramètres les plus appropriés sont ceux qui permettent
d’obtenir les performances les plus élevées pour un modèle donné, mais d’autres aspects sont pris
en compte, tels que la capacité de généralisation à des données inédites et plusieurs notions d’équité
et d’explicabilité.

En DL, un modèle suit une structure appelée l’architecture du modèle, qui est généralement
composée de blocs de construction préexistants. Les blocs de construction mentionnés dans cette
thèse sont décrits dans la Section 3.2 : le neurone artificiel, le Perceptron et Perceptron Multi-
Couche, le réseau de neurone convolutif (Convolutional Neural Network, CNN), ansi que les modèles
usuels pour traiter des entrées séquentielles comme le texte (LSTM et transformer). Une partie
importante de l’exécution des tâches à l’aide de DL consiste à trouver la meilleure représentation
des objets manipulés par le modèle. Dans Section 3.3, nous décrivons les principales méthodes
permettant d’obtenir un tel vecteur de représentation, appelée embedding, y compris les notions
d’auto-encodeur (AE), de pre-entrainement, les architectures Word2Vec, GloVe et FastText util-
isées dans la Partie II et l’architecture BERT utilisées dans les Chapitres 10 et 11.

Une fois ces architectures et principes fondamentaux expliqués, nous examinons dans Section 3.4
certaines applications des PAs dans le domaine du DL, et en particulier les PAs qui manipulent
les embeddings. Dans cette section, nous introduisons la règle du parallélogramme pour quatre
embeddings A⃗, B⃗, C⃗, D⃗, qui peut s’écrire par exemple :

A⃗− B⃗ = C⃗ − D⃗

A⃗+ D⃗ = B⃗ + C⃗

D⃗ = C⃗ − (A⃗− B⃗)

D⃗ = C⃗ + B⃗ − A⃗.

Nous décrivons également deux méthodes, 3CosAdd [Mik+13] et 3CosMul [LG14], utilisées pour
résoudre des équations analogiques pour des modèles d’embedding modernes tels que Word2Vec,
GloVe et FastText. Ces approches sont limitées par le manque de flexibilité inherent à des for-
mules définies, ce qui résulte en des performances significativement différentes de celles d’un hu-
main [CPG17; RDL17]. Pour remédier à cette limitation, plusieurs approches ont été proposées
pour tirer parti d’exemples de PA pour entraîner des modèles ou des embeddings adaptés à la
manipulation d’analogies. En particulier, dans nos travaux nous nous basons sur l’approche de
Lim, Prade, and Richard [LPR19], qui à proposé d’apprendre un réseau neuronal à deux couches
pour la détéction et la résolution d’analogie sur des embeddings. Les modèles en questions sont
décrits dans la Section 6.2 et ci dessous.

D.2.3 Chapitre 4 : la morphologie des mots

Le domaine d’application des approches et des expériences que nous présentons dans Part II est
la morphologie. Nous expliquons dans le Chapitre 4 ce qu’est la morphologie, y compris une
description de certaines approches clés.

Premièrement, nous présentons brièvement la morphologie et les transformations morphologiques
dans Section 4.1. Nous donnons ensuite quelques exemples d’AP en morphologie et mettons en
évidence deux liens importants entre l’analogie et la morphologie dans Section 4.2. Enfin, dans Sec-
tion 4.3, nous présentons une variété d’approches informatiques de la morphologie et des PAs sur
les relations morphologiques. A notre connaissance, à l’exception de l’approche que nous proposons
dans la Partie II sur la base des travaux de Lim, Prade, and Richard [LPR19], toutes les approches
des PAs morphologiques se concentrent sur la caractérisation formelle des PAs, avec un ensemble
d’opérations conçues par des experts [LYZ09; Mur+20], des relations entre les caractères [HM95],
ou des caractéristiques morphologiques [FL18].

Parmi les approches mentionnées dans ce Chapitre 4, nous comparons le framework ANN avec
Alea [LYZ09], Kolmo [Mur+20], ainsi qu’un des outils proposés par Fam and Lepage [FL18] que
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nous appelons Nlg. Ces trois approches sont détaillées plus en profondeur dans le Chapitre 7 sur
notre protocole experimental, plus spécifiquement dans la Section 7.2.

D.3 Partie II : ANN framework et analogies morphologiques

La Partie II décrit les principaux travaux réalisés sur le framework ANN. Pour ce faire, le Chapitre 5
présente le jeu de données Siganalogies utilisé tout au long de cette partie, ainsi que quelques
exemples tirés de Siganalogies. Le framework même est décrit dans le Chapitre 6, et des résultats
expérimentaux détaillés sont présentés dans les Chapitres 7 et 8. Enfin, dans le Chapitre 9,
nous résumons les contributions présentées dans la Partie II et expliquons comment le framework
ANN et Siganalogies sont mis à disposition selon les principes de la science ouverte, y compris les
démonstrations interactives disponibles pour le grand public. Cette partie couvre les contributions
publiées dans [Als+21a; Als+21b; Als+21c; Cha+22; Mar+22a; MC24; Mar+22b].

D.3.1 Chapitre 5 : jeu de données d’analogies morphologiques Siganalo-
gies

Pour développer et évaluer les performances de le framework ANN sur les PAs morphologiques,
nous avons conçu le jeu de données Siganalogies [Mar+22b]. Ce jeu de données contient des PAs
morphologiques dans plus de 80 langues distinctes et est construit à partir de trois jeux de données :
Sig16 [Cot+16], Sig19 [McC+19], et le JBATS [Kar+18]. Chaque jeu de données contient des mots
liés par des transformations morphologiques, que nous utilisons pour créer APs comme expliqué
dans Section 5.1. Nous présentons Sig16, Sig19 et JBATS dans la Section 5.2, et fournissons des
statistiques détaillées sur Siganalogies dans la Section 5.3. Une description du jeu de données avec
des statistiques détaillées est également disponible sur la page GitHub du jeu de données2.

Nous concluons ce Chapitre par une discussion sur les limites de Siganalogies dans Subsec-
tion 5.5.3. Tout d’abord, il existe des différences de codage des caractères entre Sig16 et Sig19,
expliquées dans Subsection 5.5.2. De plus, nous avons constaté des problèmes de représentativité
dus à une distribution inégale et limitée des marqueurs de discours (Part Of Speech tags, POS)
et des mots obsolètes, présentés dans Subsection 5.5.1. Le jeu de données Siganalogies a été
développé et affiné tout au long de nos expériences, et de nombreuses perspectives d’amélioration
et d’expériences supplémentaires subsistent. Nous les détaillons dans Subsection 5.5.3.

D.3.2 Chapitre 6 : le framework ANN

Dans ce chapitre, nous décrivons le framework ANN, illustré par Figure D.1. Le framework peut
être divisé en trois éléments clés, à savoir le(s) modèle(s) d’embedding, les modèles d’analogie et
l’augmentation des données.

Le framework ANN a été initialement proposé par Lim, Prade, and Richard [LPR21] pour
résoudre des équations analogiques sémantiques, et a été conçu pour être utilisé avec des modèles
d’embedding pré-entraînés. En particulier, une première approche plutôt naïve de l’augmentation
des données pour l’entraînement analogique ainsi que deux modèles d’apprentissage profond ont été
proposés dans [LPR21] pour s’attaquer à la détection des analogies et à la résolution des analogies.

Ces deux modèles, que nous appelons ANNc et ANNr, ont été affinés au fil de nos expériences.
Nous avons également intégré plusieurs approches non paramétriques dans le framework ANN,
telles que la règle du parallélogramme [Mik+13] et 3CosMul [LG14] (tous deux définis dans la
Subsection 3.4.1). Tous ces modèles de manipulation d’analogie sur les espaces d’embedding sont
décrits dans Section 6.2.

Le framework ANN est fondé sur l’analogie axiomatique : les architectures ANNc et ANNr
sont basées sur des intuitions guidées par les postulats décrits de l’analogie axiomatique, et avec
l’augmentation des données décrite dans Section 6.4, nous entraînons des modèles pour s’adapter
à un ensemble donné de postulats en devenant invariants aux permutations correspondantes.

Il existe plusieurs différences majeures entre la version actuelle du framework ANN et la version
de Lim, Prade, and Richard :

2https://github.com/EMarquer/siganalogies/blob/main/siganalogies_description.pdf
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Figure D.1: Figure 1 de [MC24]. Légende d’origine: “Morphological embedding models, data
augmentation, analogy classification (ANNc) and analogy retrieval (ANNr) models.”

• pour obtenir des représentations appropriées des mots pour les PAs morphologiques, nous
utilisons des modèles d’embedding sur mesure spécialisés pour la morphologie (voir Sec-
tion 6.1) au lieu d’un modèle d’embedding pré-entraîné spécialisé pour la sémantique comme
Lim, Prade, and Richard ;

• comme le modèle d’embedding n’est pas pré-entraîné et a été conçu pour avoir un petit
nombre de paramètres, nous permettons un re-entraînement du modèle d’embedding pendant
l’entraînement du modèle d’analogie (voir Section 6.4) ;

• pour atteindre de bonnes performances sur la résolution d’analogie avec ANNr lorsque des des
modèles d’embedding non pré-entraînés sont employés, nous utilisons ANNc et la détection
d’analogie comme tâche de pré-entraînement (voir Subsection 6.4.2) ;

• parce que nous permettons un re-entraînement du modèle d’embedding pendant l’entraînement
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avec ANNr, nous devons utiliser des objectifs d’entraînement plus raffinés que l’erreur quadra-
tique moyenne (Mean Squared Error, MSE) (voir Subsection 6.4.2) ;

• nous améliorons le processus d’augmentation des données en équilibrant les PAs valides et
invalides, et nous expérimentons avec des variations du cadre axiomatiques (voir Section 6.3).

Le framework ANN offre de multiples façons d’aborder la détection d’analogies et la résolu-
tion d’analogies. Malgré les alternatives que nous proposons, il est possible de considérer que
l’architecture de ANNc et de ANNr n’est pas la plus adaptée à la manipulation de APs, bien
qu’elle soit relativement facile à appréhender intuitivement et qu’elle permette d’obtenir de bonnes
performances.

Nous détaillons dans le Chapitre 7 les expériences qui démontrent les performances du frame-
work ANN sur la détection et la résolution d’équations analogique, et nous discutons des principaux
avantages et inconvénients de chaque méthode dans les Sections 7.7.4 et 6.5. Dans le Chapitre 7,
nous présentons également les résultats des expériences préliminaires qui ont guidé les décisions de
conception mentionnées dans le Chapitre 6. Des discussions supplémentaires sur ces experiences
sont présentes dans la Subsection 7.7.2.

D.3.3 Chapitre 7 : analyses quantitatives et qualitatives du framework
ANN

Le Chapitre 7 détaille nos expériences avec le framework ANN sur le jeu de données Siganalogies.
Dans la Section 7.7, nous concluons le chapitre par une discussion de nos contributions et des
résultats présentés dans les Sections 7.3, 7.4, et 7.5.

Avant de décrire nos expériences, nous donnons quelques informations générales sur notre
dispositif expérimental dans la Section 7.1, et nous résumons les aspects techniques modèles
de référence dans la Section 7.2. Nous détaillons ensuite plusieurs expériences sur des modèles
entraînés dans chaque langue pour la détection d’analogies dans Section 7.3, et la résolution
d’analogies dans Section 7.4. Dans Section 7.5, nous réalisons une étude d’ablation sur les tâches de
détection et de résolution d’analogies afin de déterminer leur tolérance au regard de perturbations
de l’espace d’embedding.

Nous étudions également l’impact de l’augmentation des données analogique sur le comporte-
ment du modèle de détection des analogies lorsque la Permutation des Moyens est considérée dif-
féremment, suivant les discussions sur la manière de traiter les postulats des PAs qui ne conviennent
pas à certains contextes d’application [Als+22b; Ant22, voir aussi Subsection 2.3.2]. Ces expéri-
ences sont décrites dans la Section 7.6, et se réfèrent à des variantes du processus d’augmentation
des données défini dans Subsection 6.3.2.

D.3.4 Chapitre 8 : analyses quantitatives et qualitatives du framework
ANN

Nous avons réalisé plusieurs expériences sur l’utilisation de notre modèle de détection d’analogie
pour modéliser plusieurs langues à la fois (voir Subsection 8.1.2) et pour transférer le modèle entre
les langues sans re-entraînement (voir Subsection 8.1.1 and Section 8.2), en tirant parti de la nature
multilingue de Siganalogies.

Notre première tentative pour étudier le lien entre les performances de transfert et la famille
a été réalisée dans [transfert:2021:alsaidi]. Cependant, les premières expériences sur Sig16 et
JBATS ne nous ont pas permis de tirer des conclusions générales au-delà de la confirmation des
limitations causées par les différences d’alphabets entre les langues. Nous avons également observé
que le déséquilibre causé par l’augmentation des données sans échantillonnage se révèle lors du
transfert vers d’autres langues, même lorsque les performances dans la langue d’apprentissage
semblent satisfaisantes.

Among other results, with the cross-lingual transfer experiments performed on Sig19, we con-
firmed that under the right circumstances, i.e., when the alphabet gap is not limiting anymore,
the morphological similarities between languages are reflected in the behavior of CNN+ANNc dur-
ing transfer. By extension, the morphological transformations modeled by the analogy detection
model through APs appear transferrable across languages. Nevertheless, the transfer performance
is most likely influenced by the extent of the morphology of a language present in the data, as
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Sig19 does not represent the full morphology of each language. This might explain why transfer
in some clusters of languages does not perform as well as in the largest cluster we studied.

Entre autres résultats, les expériences de transfert interlinguistique réalisées sur Sig19 ont con-
firmé que dans les bonnes circonstances, c’est-à-dire lorsque les différences d’alphabet ne sont plus
limitantes, les similitudes morphologiques entre les langues se reflètent dans le comportement de
du modèle de détection d’analogie au cours du transfert. Par extension, les transformations mor-
phologiques modélisées par le modèle de détection des analogies par le biais des PAs semblent
transférables d’une langue à l’autre. Néanmoins, les performances de transfert sont très probable-
ment influencées par l’étendue de la morphologie d’une langue présente dans les données, car Sig19
ne représente pas la morphologie complète de chaque langue. Cela pourrait expliquer pourquoi
le transfert dans certains groupes de langues n’est pas aussi performant que dans le plus grand
groupe que nous avons étudié.

D.3.5 Chapitre 9 : conclusion de la Partie II et dissemination du frame-
work ANN

Le Chapitre 9 résume nos contributions de la Partie II. Dans ce chapitre, nous détaillons aussi les
moyens en place pour disséminer les outils et ressources développés au long de nos travaux.

Le framework ANN atteint des performances très élevées en matière de détection et de réso-
lution d’analogies, dans une variété de contextes. ANNc pour la détection d’analogies et ANNr
pour la résolution d’analogies atteignent des performances état de l’art cohérentes sur toutes les
langues utilisées dans nos expériences, et surpassent les modèles de références Alea [LYZ09] et
Kolmo [Mur+20] d’une précision allant jusqu’à 80% dans certains cas. Ces performances sont,
dans une certaine mesure, transférables d’une langue à l’autre.

Les performances supérieures résultent, entre autres, de (i) une représentation des mots apprise
à partir des données en vue de la manipulation des analogies, (ii) la capacité du modèle à inté-
grer les dépendances entre les dimensions des embeddings, et (iii) la flexibilité d’aller au-delà des
formules arithmétiques arbitraires des PAs telles que 3CosAdd, 3CosMul, ou la règle du parallélo-
gramme. Cependant, il existe un compromis connu entre la performance des modèles de DL et leur
interprétabilité. En particulier, il est généralement difficile de comprendre pourquoi un tel modèle
obtient un résultat particulier. Cela s’applique également à notre framework, mais des travaux
ultérieurs pourraient fournir des garanties théoriques ou des méthodes empiriques pour remédier
à cette limitation.

Le framework ANN exploite les propriétés et les intuitions des PAs dans la conception des
modèles, mais aussi pour augmenter les données de manière à améliorer la performance du modèle
et réfuire la sensibilité aux conditions initiales. Le modèle apprend également à être invariant
en ce qui concerne les permutations, conformément aux axiomes des PAs. Dans les contextes où
les PAs semblent inadaptées en raison de certains des postulats, l’augmentation des données peut
être adaptée, comme nous le montrons dans la Section 7.6 pour la Permutation des Moyens. Nous
proposons une généralisation de ce processus dans Appendix D, qui sera étayée par des expériences
dans des travaux ultérieurs.

Dans l’ensemble, notre framework montre qu’il est possible d’obtenir des performances élevées
lors de la manipulation des PAs au-delà des modèles arithmétiques sur les embeddings ou des
approches conçues manuellement. L’approche peut être appliquée à d’autres types de données en
suivant nos directives, comme on peut le voir dans [Als+22b; JCM23; LPR19; LPR21; Zer+22] et
Chapters 10 and 11.

D.4 Partie III : au delà des analogies morphologiques

D.4.1 Chapitre 10 : application du framework ANN au TSV

Le Chapitre 10 résume les contributions faites dans [Zer+22], et suit le même contenu. Des
expériences complémentaires et des descriptions détaillées sont disponibles dans la thèse de doctorat
de Zervakis [Zer23].

La tâche de vérification du sens d’un mot (Target Sense Verification, TSV) est un type de tâche
de désambiguïsation du sens des mots qui consiste à déterminer si le sens d’un mot dans un contexte
donné (sens voulu) correspond à l’un des sens possibles du mot (sens cible). Trois éléments sont
fournis pour cette tâche : d’une part, le mot dans son contexte ; d’autre part, une définition et des
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hypernymes (c.a.d, mots ayant un sens plus général que le mot cible, mais couvrant le sens de ce
dernier) pour un sens possible du mot.

Dans [Zer+22], nous abordons TSV en combinant BERT et ANNc et en reformulant TSV
comme une tâche de détection d’analogie. Nos expériences démontrent l’impact significatif sur
la performance finale de la position de la définition et des hypernymes dans l’entrée de BERT,
ainsi que la façon dont l’accent est mis sur les hypernymes. En outre, nous obtenons des résultats
compétitifs sur le benchmark d’évaluation WiC-TSV [Bre+21]. Enfin, nous expérimentons avec et
sans l’augmentation analogique des données de Section 6.3, et nous observons que l’augmentation
analogique des données donne des performances comparables et atténue la dépendance de BERT
à l’égard de l’encodage des entrées.

D.4.2 Chapitre 11 : application du framework ANN à FrameNet

Dans le Chapitre 11, nous adaptons le framework ANN développée dans la Partie II dans le
contexte de la sémantique des cadres, en nous concentrant sur le problème d’annotation des roles
sémantiques (Frame Semantic Role Labeling, FSRL) sur FN1.7 (la dernière version de FN au
moment de la rédaction de cet article). Nous reformulons FSRL comme un problème de résolution
d’analogies dans Section 11.2. Nos expériences, présentées dans Section 11.4, montrent que, sous
certaines conditions, l’utilisation de la résolution d’analogie permet d’obtenir des résultats plus
performants que les approches état de l’art sur FSRL, sans utiliser de mécanismes de codage ou
de décodage sophistiqués et coûteux en termes de calcul (contrairement aux précédents états de
l’art).

D.4.3 Chapitre 12 : CoAT et compétence d’un cas/d’une base de cas

Le Chapitre 12 résume les contributions dans [Mar+23] et inclut d’autres expériences qui n’ont
pas été publiées au moment de la rédaction.

La méthode CoAT, introduite par Badra [Bad20], est une méthode de raisonnement à partir de
cas (CBR) basée sur la notion de transfert analogique. La méthode est basée sur Γ, un indicateur de
la complexité d’un jeu de données du point de vue du transfert analogique, et permet de répondre
à des questions telles que : “Une mesure de similarité donnée est-elle plus appropriée qu’une autre
(pour une tâche) ?” ou “Dans quelle mesure une solution est-elle compatible avec un problème,
compte tenu d’un case base et de mesures de similarité ?”

Ce que nous proposons dans [Mar+23], basé sur l’indicateur CoAT (Γ), diffère des travaux
précédents sur la maintenance de base de cas sur trois principaux aspects :

1. au lieu de se concentrer sur les relations locales, comme c’est souvent le cas en CBR, Γ est
un indicateur qui prend en compte l’ensemble de la la base de cas ;

2. pour déterminer l’utilité d’un cas à des fins de maintenance, au lieu d’estimer les problèmes
futurs uniquement à partir de la base da cas, nous utilisons un ensemble de cas distincts de
la base de cas comme référence ;

3. les résultats que nous obtenons remettent en question l’hypothèse courante selon laquelle la
suppression de cas entraînera une perte de performance, et illustrent le fait que la compression
peut en fait améliorer les performances.

De plus, dans [Mar+23], nous avons présenté une formulation à base d’énergie pour CoAT et des
moyens de mesurer la compétence d’une base de cas pour des tâches d’apprentissage automatique,
telles que la prédiction et la classification de cas. Cette approche de la compétence diffère des
approches antérieures proposées dans la littérature car elle repose sur l’optimisation d’un indicateur
de compatibilité globale entre deux mesures de similarité, l’une sur l’espace des situations et l’autre
sur l’espace des issues. En plus des résultats présentés dans [Mar+23], nous fournissons des bornes
pour la valeur de la fonction d’énergie et les mesures de compétence, bien que ces bornes puissent
ne pas être strictes.

Nous montrons empiriquement, dans la Section 12.4, que notre notion de compétence est étroite-
ment liée à la performance pour une tâche de classification binaire à partir de cas, dans le sens où
la compétence d’un cas source est positivement corrélée à sa capacité à réduire l’énergie de l’issue
correcte et à augmenter l’énergie de l’issue incorrecte. Nous analysons quantitativement et quali-
tativement le comportement d’un algorithme de compression basé sur les mesures de compétence
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proposées, sur différents ensembles de données avec des distributions substantiellement différentes
et en prenant en compte différentes frontières de classification et critères de compression. En outre,
nous analysons la robustesse de l’approche par rapport à différents ensembles de références et de
cas initiaux. Une observation très encourageante des expériences dans Subsection 12.4.2 est que,
lorsque l’on considère Chinge comme la mesure de compétence et le critère de compression, la com-
pétence commence à diminuer au même moment que la performance. Basé sur ces résultats, des
expériences additionnelles et des garanties théoriques permettraient de concevoir un critère d’arrêt
pour l’algorithme de compression de base de cas.

D.5 Conclusion

Dans cette thèse, nous présentons nos contributions sur le framework ANN sur la morpholo-
gie [Als+21a; Als+21b; Als+21c; Cha+22; Mar+22a; MC24; Mar+22b] dans la Partie II, tandis
que la Partie III regroupe nos contributions pour la tâche de TSV [Zer+22], la sémantique des
cadres, et pour le raisonnement à partir de cas [Bad+23; Mar+23]. Le Chapitre 13 résume ces
contributions.

Le framework ANN sur la morphologie des mots. Dans la Partie II, nous avons proposé le
framework ANN pour traiter la détection et la résolution d’analogies sur des PAs dont les éléments
sont des mots et les relations sous-jacentes sont de nature morphologique.

Les modèles de manipulation d’analogie, appelés ANNc pour la détection d’analogie et ANNr
pour la résolution d’équations analogiques, dépassent la performance des approches symboliques
état de l’art (Nlg, Alea et Kolmo) et celle des approches de manipulation de vecteurs d’embedding
(règle du parallélogramme, 3CosMul) dans la majorité des cas. En particulier, ANNc et ANNr
sont en mesure de traiter des quadruplets qui ne correspondent pas exactement aux postulats des
PAs, et les deux modèles d’embedding que nous proposons (basés respectivement sur l’architecture
CNN et sur le principe d’auto-encodeur) sont à même de traiter les propriétés morphologiques
dépendantes du contexte. Cela permet à nos modèles de traiter des PAs et des transformations
morphologiques que les approches symboliques ont du mal à traiter.

Nous avons proposé Siganalogies comme jeu de données de PAs morphologiques dans plus de
80 langues, ce qui nous a permis d’effectuer des études comparatives intéressantes et de tester
extensivement le framework ANN. Nous avons utilisé un protocole d’augmentation de données
qui traduit les postulats des PAs afin d’entraîner des modèles d’apprentissage profond en utilisant
des données du jeu de données Siganalogies. En conséquence, il est possible d’affirmer que la
notion de PA modélisée par nos modèles est l’intersection des relations morphologiques présentes
dans les données et des postulats des PAs. En particulier, nous avons été en mesure de montrer
qu’altérer l’augmentation de données pour considérer différents ensembles de postulats résulte en
des modèles correspondant à ces nouveaux ensembles de postulats. Cela nous a mené à étudier
les combinaisons possibles de postulats pour pouvoir adapter le framework ANN à différents cas
d’utilisation, détaillés dans le Chapitre d’Appendice D.

Le jeu de données Siganalogies et ses nombreuses langues nous ont permis d’explorer la façon
dont ANNc couplé au modèle d’embedding utilisant un CNN (CNN+ANNc) se transfère entre
différents domaines de données (c.a.d, différentes langues) qui partagent des mécanismes sous-
jacents (c.a.d, les mécanismes des transformations morphologiques et les postulats des PAs).
Parmi d’autres résultats, en entraînant sur plusieurs langues à la fois, nous avons pu augmenter
la stabilité et la transférabilité du modèle entre les langues, sans augmenter le nombre d’exemples
d’entraînement. Nous avons aussi corrélé la performance de CNN+ANNc avec la hiérarchie obtenue
à partir des familles de langues.

En complément de ces travaux, nous avons effectué plusieurs études d’ablation et d’autres
expériences pour améliorer le processus d’augmentation de données et la procédure d’entraînement
de nos modèles.

Le framework ANN sur des phrases et de la sémantique. Suivant le succès de notre
approche sur la morphologie, nous avons appliqué le processus d’augmentation de données et ANNc
sur des embeddings produit par des gros modèles de langue (Large Language Models, PLMs), pour
traiter deux applications sémantiques impliquant des phrases.
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Premièrement, comme décrit dans le Chapitre 10, ANNc à été en mesure d’obtenir une perfor-
mance état de l’art sur la tâche de TSV. Ces travaux nous ont permis de nous attaquer à plusieurs
défis liés à la reformulation d’une tâche de classification (la tâche de TSV) sous forme d’une tâche
de détection d’analogie, et liés à la manipulations de PAs hétérogènes où les éléments sont de
nature différente.

Deuxièmement, dans le Chapitre 11, nous avons utilisé un modèle léger (une paire de Percep-
trons manipulant des embeddings produits par mBert) pour transférer des annotations de séman-
tique des cadres d’une phrase à une autre en utilisant la résolution d’équation analogiques. De
nouveau, nous avons dû reformuler le problème à traiter (la tâche de FSRL) sous forme d’équations
analogiques. Notre modèle simple à été en mesure de dépasser la performance de l’état de l’art,
un approche qui utilise un modèle significativement plus complexe, sans connaissance explicite des
annotations manipulées. Cependant, cela n’a été possible qu’à condition d’utiliser la phrase source
la plus adaptée pour le transfert analogique, un défi qui reste ouvert dans nos travaux.

Transfert analogique appliqué au raisonnement à partir de cas. Enfin, comme décrit
dans le Chapitre 12, nous avons étendu l’approche CoAT à la compétence de (base de) cas, et à la
compression de base de cas. Plus spécifiquement, nous avons défini des mesures de la compétence
(qui peut être vue comme la pertinence ou le bénéfice pour une tâche donnée) à différent niveaux
de granularité (compétence d’un cas, d’une base de cas, contribution d’un cas à la prédiction d’n
cas de référence donné).

En utilisant ces mesures de compétence, nous avons défini un protocole simple pour la compres-
sion de base de cas, qui enlève itérativement le cas le moins compétent d’une base de cas, au regard
d’un ensemble de cas de référence. En ôtant les cas qui ont un impact négatif sur la compétence
globale d’une base de cas à partir des mesures que nous avons définies, nous avons obtenu une
combinaison de la réduction de la taille de la base de cas avec une impressionnante amélioration
de la performance prédictive de CoAT.

Nous avons aussi effectué des études d’ablation sur des données synthétiques, qui nous ont
permis de démontrer la versatilité de l’approche (en particulier sa capacité à gérer des frontières
de decision complexes) et de déterminer les spécificités du comportement du système dans des cas
limites (par exemple, un déséquilibre dans la répartition des données).
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and Short-Term Memory neural net-
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SGD Stochastic Gradient Decent.
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CNTRL Centre National de Resources
Textuelles et Lexicales.

NLP Natural Language Processing.
Nlg Lepage’s Nlg toolkit.

cbow Continuous Bag of Words.

GloVe Global Vectors.

LSA Latent Semantic Analysis.

SIGMORPHON ACL Special Interest Group
on Computational Morphology and
Phonology.

Sig16 Sigmorphon 2016 Task 1.
Sig19 Sigmorphon 2019 Task 1.
Sig23 Sigmorphon 2023 Task 0.

JBATS Japanese Bigger Analogy Test Set.

BATS Bigger Analogy Test Set.

Kakenhi-Sig16 Kakenhi 15K00317 word analo-
gies from Sigmorphon 2016 Task 1.

ANN framework Analogy Neural Network
framework.

ANNc Analogy Neural Network for classifica-
tion.

ANNr Analogy Neural Network for retrieval/-
generation.

ANNa Analogy Neural Network web applica-
tion.

CNN-emb CNN-based word embedding.

AE-emb AE-based word embedding.

CNN+3CosAdd 3CosAdd combined with
CNN-emb.

CNN+3CosMul 3CosMul combined with
CNN-emb.

CNN+ANNc ANNc combined with CNN-
emb.

CNN+ANNr ANNr combined with CNN-
emb.

AE+ANNr ANNr combined with AE-emb.
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Acronyms

AE+par. parallelogram rule combined with
AE-emb.

CWA Closed World Assumption.

OWA Open World Assumption.

POS Part Of Speech.

SMT Structure Mapping Theory.

BOW beginning of word.

EOW end of word.

VC dimension Vapnik-Chervonenkis dimen-
sion.

FE Frame Element.

core FE core Frame Element.

non-core FE peripheral/extra-thematic Frame
Element.

SR Semantic Role.

FSRL Frame Semantic Role Labeling.
FN FrameNet.
FN1.7 FrameNet-1.7.
FN1.5 FrameNet-1.5.

SotA State of the Art.

Ex-QA Extractive Question Answering.

QA-SRL Question-Answer Driven Semantic
Role Labeling.

SQuAD Stanford Question Answering Dataset.

WER Word Error Rate.

SPL Shortest Path Length.

PLM Pretrained Language Model.

WSD Word Sense Desambiguation.

TSV Target Sense Verification.

WiC-TSV Words-in-Context-TSV.

CBR Case-Based Reasoning.
CoAT Complexity Measure for Analogical

Transfer.
CoAT-APC Complexity Measure for Ana-

logical Transfer-Analogical Proportion
based Classification.

MeATCube Measure of the complexity of a
dataset for Analogical Transfer using
slices of Boolean Cubes.

k-NN k-Nearest Neighbors.

MCE Minimum Classification Error loss.
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Abbreviations

w.r.t. Abbreviation of the English “with regards to”.

i.e. Abbreviation of the Latin id est meaning “that is”. From https://en.wiktionary.org/
wiki/i.e..

e.g. Abbreviation of the Latin exempl̄ıgrātiā meaning “for the sake of an example”. From https:
//en.wiktionary.org/wiki/e.g..

etc. Abbreviation of the Latin et cetera meaning “and the rest [of the things]; and the other
things”. From https://en.wiktionary.org/wiki/etc..

et al. Abbreviation of the Latin et alīı meaning “and others”. From https://en.wiktionary.
org/wiki/et_al..
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147, 148, 150, 151, 174, 183, 202

analogy detection 1, 2, 9–11, 14, 16, 35–38, 42,
59, 63, 69, 76, 78, 79, 81, 82, 84–90,
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122, 125, 127, 135, 137, 173
ANNa 68, 79
ANNc 1–3, 16, 38, 63–65, 69–71, 75, 76, 78, 79,

84, 88–91, 93, 96, 99, 104–107, 110,
111, 114, 125, 129, 135, 173, 207–213

ANNr 1, 2, 63–65, 69, 71, 72, 76–79, 84, 94, 96,
99–101, 104–107, 123, 125, 173,
207–210, 212

AP 1–3, 5, 7–17, 19, 35–45, 49–54, 58, 60–63,
65, 68–70, 72–76, 79, 82, 84–93, 96,
97, 102–107, 109–111, 114, 117, 122,
125–127, 131–136, 144, 146, 150, 152,
173, 189–191, 193, 194, 196, 197, 201,
202, 205, 207, 209

architecture see layer
attention 26, 29, 30, 33, 34, 37
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157
criterion 22, 76–78, 99, 106, 148, 157
Cross Entropy 24, 78
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D

decoder 32, 37, 66–69, 79
deep learning Acronym: DL
derivational morphological transformation see

derivational morphology
derivational morphology 39, 40, 43
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DistilBERT 131
Distribution 13–15, 86, 191, 205
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Exchange of the Extremes 13, 15, 75, 86,
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200

extra postulate 1 15, 190–194, 205
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F
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fine-tune 110
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FN 137–140, 211
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frame identification 138
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173, 174
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