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Abstract

Speech is a dynamic and non-stationary process that requires the interaction of several vocal

tract articulators. The context in which a phoneme is articulated strongly influences its produc-

tion, a phenomenon known as coarticulation. Articulatory speech synthesis and its counterpart,

acoustic-to-articulatory inversion, hold many potential applications, such as L2 learning and

speech therapy design. Moreover, these models are helpful for speech synthesis and automatic

speech recognition since they create a link to the speech production process.

Modeling speech articulations presents challenges such as coarticulation, non-uniqueness,

and speaker normalization. Historically, the research focused on geometrical, mathematical,

and statistical models to describe speech dynamics. Nevertheless, developing such models faces

the difficulty of obtaining relevant articulatory data from actual speakers. Since the vocal tract

is not observable from the outside, various invasive and non-invasive methods have been used

to collect these data, including flesh point tracking and medical imaging. The first attempts

to extract articulatory data used X-rays, but it was abandoned due to exposure to ionizing

radiation. Then, electromagnetic articulography rapidly grew in popularity due to the high

sampling rate and the low cost compared to the alternatives. More recently, real-time magnetic

resonance imaging (RT-MRI) has been the preferred acquisition method due to the visibility of

the vocal tract from the glottis to the lips.

This thesis explores the synthesis of speech articulation movements corresponding to a se-

quence of phonemes. The primary objective is to design a model that predicts the temporal

evolution of the vocal tract shape for each phoneme in the input sequence. Nevertheless, de-

veloping a realistic temporal model of the vocal tract is challenging. We split the problem into

three contributions.

The first is obtaining the vocal tract profile from the RT-MRI films by developing a robust

method for segmenting vocal tract articulations. The second contribution is to build an articula-

tory model that predicts the vocal tract shape for any phonetic input in French. The challenges

are learning coarticulation and enforcing the places of articulation and articulatory movements

that lead to the expected acoustics. The third contribution is the evaluation of the predicted

shapes. We propose to quantify phonetic information with the aid of phoneme recognition. We

measure the phonetic information retained by the mid-sagittal contours and that reproduced

by the vocal tract shape synthesizer using the phoneme error rate and the recognizer’s internal

representations.

This thesis points to significant directions in speech articulation synthesis. We observe that

model-free synthesis, without an articulatory model, leads to the best and most natural results.



Nevertheless, using an intermediate articulatory model permits the introduction of relevant

phonetic knowledge into the model. Finally, we open a new direction to evaluate articulatory

models through their phonetic representations.



Résumé

La parole est un processus dynamique et non stationnaire qui nécessite l’interaction de plusieurs

articulateurs du conduit vocal. Le contexte dans lequel est articulé un phonème influence très

fortement sa production, ce phénomène est connu sous le nom de coarticulation. La synthèse

articulatoire de la parole et son homologue, l’inversion acoustique-articulatoire, ont de nom-

breuses applications potentielles, telles que l’apprentissage des langues étrangères et la concep-

tion d’approches de remédiation de la production de la parole. De plus, ces modèles sont utiles

pour la recherche en synthèse et en reconnaissance automatique de la parole parce qu’ils font le

lien avec le processus de production de la parole.

La modélisation des articulations de la parole présente des défis tels que la coarticulation,

la non-unicité, et la normalisation du locuteur. Historiquement la recherche s’est concentrée

sur les modèles géométriques, mathématiques et statistiques pour décrire la dynamique de la

parole. Néanmoins, le développement de tels modèles est confronté à la difficulté d’obtenir

des données articulatoires pertinentes auprès de locuteurs réels. Le conduit vocal n’étant pas

observable de l’extérieur, diverses méthodes invasives et non invasives ont été utilisées pour

collecter ces données, notamment le suivi de capteurs collés sur les articulateurs et l’imagerie

médicale. Les premières techniques d’extraction de données articulatoires ont utilisé des rayons

X, mais cette technique a été abandonnée en raison de l’exposition aux rayonnements ionisants.

Ensuite, l’articulographie électromagnétique a rapidement gagné en popularité en raison de

sa fréquence d’échantillonnage élevée et de son faible coût par rapport aux autres techniques.

Plus récemment, l’imagerie par résonance magnétique en temps réel (RT-MRI) est devenue la

méthode d’acquisition privilégiée en raison de la visibilité de tout le conduit vocal depuis la

glotte jusqu’aux lèvres.

Cette thèse explore la synthèse des mouvements articulatoires de la parole correspondant

à une séquence de phonèmes. L’objectif principal est de concevoir un modèle qui prédit

l’évolution temporelle de la forme du conduit vocal pour chaque phonème de la séquence

d’entrée. Néanmoins, le développement d’un modèle temporel réaliste du conduit vocal est

un défi. Nous avons décomposé le problème en trois contributions.

La première consiste à obtenir le profil du conduit vocal à partir des films d’IRM temps réel

en développant une méthode robuste de segmentation des articulations du conduit. La deuxième

contribution consiste à construire un modèle articulatoire qui prédit la forme du conduit vo-

cal pour toute entrée phonétique en français. Les défis sont d’apprendre la coarticulation et

d’imposer les lieux d’articulation et les mouvements articulatoires qui conduisent à l’acoustique

attendue. La troisième contribution est l’évaluation des formes prédites par le modèle. Nous



proposons de quantifier l’information phonétique à l’aide de la reconnaissance automatique de

phonèmes. Nous mesurons l’information phonétique capturée par les contours médiosagittaux

et celle reproduite par le synthétiseur de la forme du conduit vocal en utilisant le taux d’erreur

phonétique et les représentations internes du reconnaisseur.

Cette thèse ouvre des pistes importantes pour la synthèse articulatoire de la parole. Nous

avons observé que la synthèse model-free, c’est-à-dire sans modèle articulatoire, conduit aux

meilleurs résultats et aux plus naturels. Néanmoins, l’utilisation d’un modèle articulatoire

intermédiaire permet d’introduire des connaissances phonétiques pertinentes dans le modèle.

Enfin, ce travail ouvre une nouvelle piste de recherche pour évaluer les modèles articulatoires à

travers leur représentation phonétique.
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B.2 Échantillons d’IRM de trois sujet superposés aux contours prédits et de vérité
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Chapter 1

Introduction

Words are, in my not so humble opinion,

our most inexhaustible source of magic,

capable of both influencing injury, and

remediating it.

Albus Dumbledore

J. K. Rowling

1 Overview

The ability to express meaningful sounds and modulate our voices is essential for human com-

munication. The development of an unprecedented form of communication was fundamental in

the evolution of the homo sapiens and its success in conquering its environments against other

human and non-human species. Yuval Noah Harari, in his best-selling book “Sapiens: A Brief

History of the Humankind” [1], explains how the Cognitive Revolution brought to humans the

ability to cooperate in large groups through a complex language. The many attributes of the

new language gave the homo sapiens a large competitive advantage. It enabled detailed expla-

nations of complex events that occurred in distant times, a necessary ability for survival, and

permitted humans to negotiate with its counterparts, essential in politics and general business.

But most importantly, Harari argues that the main contribution of the Cognitive Revolution

was the ability to think and discuss about the unreal and to create the myths that bounds

today’s society. All of these factors were only possible with the development of language, but

most specifically, spoken language.

The contributions of speech in the evolution of the homo sapiens are paramount. Language

skills are mostly learned rather than innate. From infancy, newborns rapidly discover how

to use their premature voice to express their needs. Babies cry when they are hungry or in
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/a/ /e/ /i/ /o/ /u/

Figure 1.1: Kratzenstein tubes for the five vowels.

pain. With age, humans obtain a greater control of their vocal tract apparatus, being more

capable to convert thoughts into spoken language. Karthikeyan et al. [2] quantified the impact

of articulatory fluency on socialization, suggesting that men that articulate phonemes more

distinctly are seen as more attractive by women for long-term relationships and are perceived

by other men as having higher prestige. It is not a surprise then that the dynamics of speech

production have long fascinated scientists.

One of the earliest pioneers in this field was Christian Gottlieb Kratzenstein. In 1779,

Kratzenstein made the first attempts at what we now call speech synthesis. At that time, the

physical mechanisms of sound waves propagation were well understood, but the details of how

speech arises from the air flow in the vocal folds and vocal tract were still a mystery. Leaonard

Euler suggested that a musical instrument capable of reproducing the five vowels /a, e, i, o, u/

would be possible, and the Academia of Saint Petersburg offered a prize for the first person to

achieve this.

Kratzenstein, who was already investigating the topic, won the prize with his design of a set

of organs that correspond to the vocal tract resonating cavities for the five vowels (Figure 1.1).

When excited by a free reed, these organs could reproduce their respective sounds. His work,

titled “Tentamen resolvendi problema”, was published in 1781 [3]. Unfortunately, the original

tubes were damaged and later lost, but there have been attempts to reconstruct them from

historical notes [4].

At the same time, Wolfgang von Kempelen achieved great fame with one of his inventions.

Kempelen’s speaking machine was a complex device that consisted of a number of interconnected

tubes, chambers, and valves. When air is blown into the machine, it would cause propagation

of sound waves inside the tubes. The shapes of the tubes and chambers could be adjusted to

different vowels and consonants.

Kempelen’s machine was a sensation when it was first unveiled in 1791 and detailed in his

book “Mechanismus der menschlichen Sprache” (The Mechanisms of Human Speech). It was
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(a) Original Kempelen’s speaking machine. (b) Replica constructed by the Deutsches
Museum.

Figure 1.2: Kempelen’s speaking machine. Images reproduced from Google Arts & Culture [5].

exhibited all over Europe, and people were amazed by its ability to produce human speech.

However, the machine was difficult to operate, and it could only produce a limited range of

sounds. Despite its drawbacks, Kempelen’s machine was a significant advance in the devel-

opment of speech synthesis technology and it inspired other inventors to develop their own

machines. Figure 1.2 shows the original design proposed by Von Kempelen and a replica con-

structed by the Deutsches Museum.

Kratzenstein’s and Kempelen’s works were a significant advance in the understanding of

speech production. Their research continues to be of interest to scientists and engineers to-

day, and it provides valuable insights into the mechanisms of human communication. Professor

Kratzenstein and Von Kempelen would be amazed by the advances in speech synthesis technol-

ogy since their time. Their early attempts at speech synthesis were crude by today’s standards,

but they laid the foundation for the development of more sophisticated methods.

The first computational attempts to synthesize human speech were based on the mechanics

of wave propagation in the vocal tract. This is because speech is produced by the air flow

from the lungs that excites the vocal folds when they are sufficiently adducted and with the

appropriate tension, originating the sound’s fundamental frequency (f0). Filtering from the

vocal tract cavities creates the formant frequencies. By understanding how these sound waves

are produced, it is possible to recreate them artificially.

By the late 1990s to the early 2000s, speech synthesis was still a very rudimentary field.

On the one hand, the most accepted approach in industry was concatenative speech synthesis

due to the simplicity and reasonable quality [6]. On the other hand, the scientific community

was more engaged into articulatory speech synthesis due to the flexibility and the possibility to

understand in deep the mechanisms of speech production [7].

With time, the literature moved towards direct approaches to speech synthesis, which would
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Figure 1.3: The Speech Chain. Originally from Denes and Pinson [10]. Reproduced from
Narayanan [11].

not require expensive modeling to generate speech samples. In the first decade of 2000s, Hid-

den Markov Models [8] started raising attention by providing a statistical view of the speech

production process. However, the second decade of 2000s was marked by an enormous growth

of deep learning after a long time of disinterest by the scientific community, a period known

as the AI winter. Deep neural networks would later dominate the complex data processing

research. After that, most of the traditional methods to signal processing started to drop in

popularity, and the speech synthesis research concentrated in the use of deep neural networks,

which nowadays produce the most realistic speech samples in the literature [9].

Still, articulatory speech synthesis holds its space in research as it has many applications

in speech production. In fact, for many voice applications, the physical dynamics of the sound

wave propagation in the human vocal tract is irrelevant. However, for understanding how these

processes happen from the theoretical point of view, speech therapy research, and language

education, these ideas are fundamental. The questions related to these matters are among the

main objectives of this thesis.

2 Motivation

Speech communication is usually taken for granted in our daily lives. When speaking, we are

unaware of its complexity as it happens automatically. The time difference between thinking and
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speaking is a fraction of a second. However, the entire speech chain is elaborated (Figure 1.3).

Speaking requires orchestrating different mental, physiological, physical, and social processes.

The information is encoded at multiple levels as it progresses from neural-cognitive information

in the speaker’s brain to sound waves and then back to electrical signals in the listener’s brain.

Socio-behavioral aspects, such as tone, intent, emotions, demographic traits, and social state,

also profoundly influence how others perceive the messages.

More than exploring speech acoustics, multimodal methods permit understanding the struc-

ture and function of the vocal tract instrument. Articulatory data enables the comprehension of

how the vocal tract transforms the signal encoded by our brain into sounds propagating through

the air. In this regard, acquiring and processing articulatory data becomes a central point in

speech research. Several techniques permit observing speech production, such as ultrasound for

profiling the tongue, electromagnetic articulography for flesh points tracking, electropalatogra-

phy for tongue-palatal interaction, and X-ray and RT-MRI for complete vocal tract observation.

Articulatory data are essential for detailing the vocal tract morphology and studying and

modeling speech communication and their applications extend to many domains, such as health-

care. Hagedorn et al. [12] characterized vocal tract articulations in apraxic speech. Apraxia

affects the appropriate selection and temporal coordination of vocal tract gestures; however,

these actions may not impact auditory perception. Then, using articulatory features obtained

with RT-MRI facilitates the diagnosis. Moreover, Hagedorn et al. [13, 14] studied vocal tract

shaping and compensatory strategies in glossectomy patients – when the tongue is partially

removed due to cancer. The follow-up research includes using articulatory data to enhance and

accelerate therapy.

Furthermore, articulatory speech research extensively impacts conventional speech research

(based only on the acoustic signal). Li et al. [15] improved speaker verification systems by

including articulatory information (from articulatory inversion) to the acoustic features. Srini-

vasan et al. [16] explores the robustness of automatic speech recognition systems for neutral

and whispered speech and shows that articulatory information is helpful in both scenarios.

These works show how various areas benefit from the characterization and synthesis of vocal

tract shape during speech production, and advances to articulatory models have the potential

to benefit society in multiple fields.

3 Thesis Objectives

Given the historical footprints and the motivations for our research, this thesis aims to explore

and develop deep learning models for articulatory synthesis of speech. More specifically, our
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contributions target three main topics: articulatory data processing, articulatory modeling, and

model evaluation.

Articulatory Data Processing

Articulatory data acquisition and processing are essential to machine learning. Our primary

data source is real-time magnetic resonance imaging (RT-MRI), which is challenging since the

images alone are insufficient for speech articulation synthesis. Our first challenge was processing

these images to obtain the vocal tract articulators’ contours for the entire acquisition. The

literature provides multiple approaches to the problem; however, we identified prohibitive gaps

for advancing our work such as the difficulty in accessing research data, lack of a gold standard

for data annotation, and unavailability of source code. Thus, our first research objective is the

design of a reliable system for segmenting vocal tract articulators in RT-MRI.

Articulatory Modeling

The central thesis goal is the synthesis of vocal tract shape conditioned on the sequence of

phonemes to be articulated. The system design is challenging due to the complex dynamics

of the human vocal tract, the large variability in speech articulations, and the physical and

acoustical constraints that should be considered.

Model Evaluation

Model evaluation is crucial for any machine learning task. It is necessary to measure the proper

dimensions of the problem and evaluating the wrong metric will lead to a waste of resources

and problematic models. Also it is important to have the right incentive structures. Machine

learning models will fit whatever objective we design, and deep neural networks will search

for the “easiest” path towards the minimum. The wrong learning objective will lead to many

consequences that we cannot anticipate.

Our work conditions the models in a phonetic sequence; hence, it is natural to expected the

model to retain the most phonetic information from the data. Hence, the last thesis objective

is quantifying the phonetic information retained by the articulatory features and reproduced by

the vocal tract shape synthesizer.
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5 How to read this text

The first three chapters review the state of the art. Chapter 2 discusses the functions of the

vocal tract articulators considered in this work, the available data acquisition modalities, their

respective advantages and disadvantages, and the public articulatory speech datasets available

in the literature. Chapter 3 presents the deep learning methods required to comprehend the

thesis, covering general-purpose approaches, image processing, and sequence learning methods.

Chapter 4 introduces articulatory synthesis of speech and its variations. We describe its theo-

retical background and the recent advances using machine learning.

The following two chapters cover the main contributions of the thesis. Chapter 5 presents

our approach to tracking the vocal tract articulators during speech from RT-MRI. We explore

the usage of a deep convolutional neural network designed for image segmentation to recognize

the edges of each articulator under study, then we employ rule-based algorithms to post-process

the network’s outputs and obtain the precise geometry of the vocal tract.

Chapter 6 presents our approach to modeling speech articulations. We present the two

approaches that were developed; the first directly maps the phonetic inputs to the vocal tract

shape without the aid of an articulatory model (model-free synthesis), and the second learns

a similar mapping but mediated by an autoencoder-based articulatory model. We show that

the autoencoder-based model can incorporate constraints on target achievement for consonantal

place of articulation.

Moreover, Chapter 6 discusses our model evaluation approach based on phoneme recognition.

We train a phoneme recognizer with acoustic and articulatory features to contrast the phonetic

information retained by the mid-sagittal contours extracted from the RT-MRI and that recreated

by our vocal tract shape synthesizers.

Chapter 7 concludes this thesis by summarizing our main contributions and presenting the

directions for future research.



Chapter 2

Articulatory System and Data

Acquisition

The human voice is the most beautiful

instrument of all, but it is the most

difficult to play.

Richard Strauss

1 Overview

The vocal tract is similar to a wind instrument in that both produce sound by vibrating the air

inside a resonator. In a wind instrument, the air is excited by a reed or the musician’s lips. The

air column length and the resonator’s shape determine the instrument’s resonance frequencies;

therefore, by lengthening or shortening the tube and adding or removing resonating cavities,

the musician can play different notes. When pressurized air enters the resonator, it travels at

sound speed and is reflected by the instrument’s walls. The reflections continue until it forms

a standing wave inside the chamber.

A classic illustrative example is the pipe organ (Figure 2.1a). The organ is a wind instrument

that produces sound by driving pressurized air through its organ pipes, illustrated in Figure 2.1b.

The tubes are tuned to produce different notes, and there are two main types of pipes: flue and

reed.

On the one hand, the pitch in flue pipes is controlled by its length and whether the column

is open at the end. For an open pipe, the wavelength of the resonating sound is four times

the tube’s length. Closed pipes produce a sound with a wavelength of twice the tube’s length.

Hence, a closed tube will resonate at twice the frequency of an open pipe with equal length. On
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(a) Organ at the Saint Germain l’Auxerrois
Church, Paris. Reproduced from Wikipedia
Commons [24]

(b) Drawings of different types of organ pipes.
Reproduced from Stone [25]

Figure 2.1: Organ pipes.

the other hand, on reed pipes, the reed’s length determines the sound’s pitch. In some cases,

the reed’s length is adjustable, allowing fine-tuning of the instrument.

The human vocal tract also has a source of pressure (the lungs), a reed (the vocal folds), a

resonator (the vocal tract itself), and a radiator (the mouth), and voice production follows a

similar physical process of pipe organs. However, the human vocal tract is more versatile than

a wind instrument in that the shape of the resonator can be actively controlled by the speaker,

allowing for more complex variations of sounds that compose human language [26].

The air pressure coming from the lungs towards the vocal tract vibrates the vocal folds

at a fundamental frequency determined by their length and tension. The vocal tract shape,

determined by many articulators such as the jaw, tongue, and lips, changes over time to create

different resonance frequencies. These resonance frequencies, along with the fundamental fre-

quency, determine the voice’s pitch, timbre, and loudness. Constrictions between articulators

generate plosives and fricative noise, and the nasal cavity, controlled by the velum, adds an

extra resonating cavity to give nasality to some phonemes. Then, the mouth radiates the wave

sounds into the environment [27].

This Chapter overviews the vocal tract structure from a functional point of view. We

briefly describe its anatomy and the structures concerned with this thesis; however, we are not

exhaustive and do not intend to discuss biological aspects in detail. Next, we discuss data

collection methods for articulatory research. We overview flesh point methods and medical
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Figure 2.2: The anatomy of the vocal tract and pharynx. Reproduced fromWikipedia Commons
[28]

.

imaging approaches, discussing their pros and cons to justify our choice of data modality.

Finally, we present the most popular articulatory datasets in the literature, which are relevant

and comparable to our research.

2 Vocal Tract Articulations

Figure 2.2 illustrates the vocal tract and pharynx anatomy. Voice production starts as a coor-

dinated action among the diaphragm, abdominal and chest muscles, and rib cage, driving the

air from the lungs through the trachea toward the larynx. The larynx is composed of the vocal

folds and the muscles and cartilages supporting them. The vocal folds extend from the thyroid

cartilage, in the front of the larynx, to the arytenoid cartilage, in the back, which controls the

glottis opening and closing. Above the glottis, the epiglottis, a sizeable cartilage connected to

the tongue root and the thyroid cartilage, acts like a valve that closes during swallowing to

prevent anything from air from entering the lungs, directing food and liquids to the esophagus.

The abduction of the arytenoid cartilage adducts the vocal folds, closing the glottis. The

increased pressure of the incoming air opens it, and the air flow vibrates the vocal folds, mod-

ulating the sound waves that propagate in the vocal tract. The manipulation of the larynx

generates a source sound with a fundamental frequency (f0), often referred to as pitch – the

perceptive counterpart of f0. The pitch can be controlled by altering the tension and the length

of the vocal folds. The subglottal pressure controls the voice amplitude (or volume) – higher

pressure produces stronger sounds.
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The sound waves propagate through the vocal tract, limited in the back by the pharynx, a

portion of tissue that forms the throat. The pharynx extends from the arytenoid cartilage to

the nasal cavity. It has minimal movements, essentially vertical displacements, in coordination

with the laringeal articulators. The velum controls the airflow through the nasal cavities. The

velum is located at the extremity of the soft palate, a soft tissue in the upper back of the mouth

cavity connected posteriorly to the hard palate.

When the soft palate contracts, the velum closes the nasopharyngeal port, restricting the

sound wave propagation to the oral cavity. During the articulation of nasal phonemes, e.g., /m,

n, ã, õ, Ẽ, œ̃/, the soft palate relaxes, adding an extra resonator to the vocal tract, causing

the nasality. Initially, velum lowering was regarded as an independent phonological unit. In

contrast, velum raising was seen as a consequence of vocal tract movements during the utterance

of oral phonemes. Nevertheless, Blaylock et al. [29] contrasted the velum movements during

nasal and oral sounds, showing that temporal coordination of the velum raising during oral

stops resembles that of velum lowering during nasal phonemes, suggesting that velum control

occurs in either lowering and raising.

The frontal region of the vocal tract is delimited by the hard palate, to which the upper

teeth are connected, and the tongue, which moves in coordination with the mandible. The

mandible is the largest and strongest bone in the human facial skeleton and the only movable

one (discounting the ossicles in the middle ear). It is a primary speech articulator and is

connected to the skull by temporomandibular joints, capable of open, protrusion, and lateral

movements. Jaw opening, together with tongue movements, performs most of the reshaping of

the vocal tract, leading to most of the phonetic contrasts.

The tongue is the largest speech articulator and the one with the most degrees of freedom,

ultimately crucial for speech production. The constriction between the tongue dorsum and the

hard palate defines palatal consonants, while the constriction between the tongue tip and the

alveolar region (back of the upper incisor) defines dental phonemes. Finally, the upper and

lower lips define the end of the vocal tract; from there, the energy radiates to the environment.

The lips are also responsible for articulating labial consonants.

Figure 2.3 depicts the resonator cavities and the equivalent vocal tract shapes for the vowels

/i, a, u/. The coordination of the different articulators modulates speech, changing the funda-

mental and the formant frequencies and adding nasality to voice. Since multiple strategies can

have similar effects on speech, one or more articulators can act to compensate for the absence of

movement in another. For example, the jaw strength reduces with aging [30]; thus the tongue

compensates for the weaker jaw [31].
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(a) Resonator for /i/ (b) Vocal tract shape for /i/ (c) Static MRI for /i/

(d) Resonator for /a/ (e) Vocal tract shape for /a/ (f) Static MRI for /a/

(g) Resonator for /u/ (h) Vocal tract shape for /u/ (i) Static MRI for /u/

Figure 2.3: Schematic representation of the resonating cavities in the left, respective vocal tract
shapes in the center, and start MRI of a real speaker for the vowels /i, a, u/. Diagrams inspired
by Boë et al. [32]. Static MRI from Douros et al. [33].
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This Section briefly described the vocal tract articulators and their roles in speech produc-

tion. In summary, the articulators that we are mainly concerned about are:

• Upper and lower lips: define the radiator;

• Upper and lower incisors: delimit the hard palate and the mandible positions;

• Tongue: largest vocal tract articulator;

• Soft palate: controls the nasal cavity;

• Pharynx: delimits the throat;

• Vocal folds: defines the source position for voiced phonemes;

• Arytenoid cartilage, epiglottis, and thyroid cartilage: delimit the larynx and sup-

port the vocal folds.

For a complete anatomical description of the vocal tract, including a comprehensive under-

standing of the head and neck anatomy, we refer the reader to Hiatt [34].

3 Data Collection Modalities for Articulatory Synthesis

Studying the speech production mechanisms and quantifying articulatory movements require

invasive or non-invasive techniques due to most of vocal tract dynamics being not visible from

the exterior. The challenges come to finding an approach that allows the collection of large

datasets with many hours of speech without altering the articulations, degrading the acoustic

signal or harming the subjects’ health. An ideal data collection method for articulatory synthesis

of speech should have the following characteristics:

• Coverage: It should cover the complete vocal tract extension from the glottis to the lips;

• Time resolution: It should have a sufficient time resolution for capturing the vocal tract

dynamics, including fast constrictions between articulators;

• Harmless: It should not present harm or health hazards to the subjects;

• Naturalness: It should not perturb the speech, allowing the natural articulation of the

phonemes;

• Non-degradation: It should not degrade the acoustic or articulatory signals collected;

• Portability: It should be portable to work outside the laboratory.
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(a) Frame extracted from
Brock and Tassi [36]

(b) Frame extracted from
Brock and Tassi [37]

(c) Frame extracted from Brock
and Tassi [38]

Figure 2.4: Samples extracted from X-ray videos from the DOCVACIM corpus [39].

The existing approaches in the literature range from flesh point tracking to medical imaging.

Their application depends on the research field and which articulators are covered. Medical

imaging is usually preferred in contexts that require a complete vocal tract visualization, while

for silent speech interfaces [35], for example, characteristics such as portability might be more

relevant.

3.1 X-Ray Cineradiography

X-ray technology was the most relevant articulatory speech data source since it started being

used in the 1920s – see Moll [40] for an early research review. X-ray penetrates the body tissues

forming an image in different shades of grey. The tonality is given by the level of radiation

absorbed by each tissue. Bones, formed by calcium, absorb the most radiation; therefore, they

appear in white in the image, while soft tissues absorb less and appear in grey. Air does not

absorb radiation, showing in black.

The drawback of X-ray for speech production studies is related to the low contrast between

speech organs, formed mainly by soft tissues, e.g., the tongue and the velum, and to the occlusion

of some articulators, as observed in Figure 2.4. X-ray projects the complete vocal tract into a

2D plane, and rigid bodies, such as the jaw, teeth, and dental fillings, might occlude parts of

the tongue. Nevertheless, X-rays were abandoned in the 1990s due to the ionizing radiation,

which is harmful to the subject, even if the current technology results in much lower levels of

absorbed radiation. Before that, large quantities of X-ray films were collected from the 1950s

to the 1980s.

Alternatively, X-ray microbeam reduces the exposure to radiation by emitting very narrow

and localized X-ray beams to track the movements of tiny pellets attached to specific points in

the vocal tract [41]. The exposed area is reduced to around 1 cm2 per frame, up to 100 frames

per second, limiting the radiation absorption. Additionally, the data processing is simplified,

even though the complete vocal tract shape is not available, and it requires reconstruction
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through interpolation.

3.2 Ultrasonography

Medical ultrasound, or ultrasonography, is a non-invasive medical imaging technique that uses

sound waves above the human hearing spectrum (20 to 20 000 Hz). Ultrasonography for clinical

usage typically ranges from 2 MHz to 12 MHz [42] – higher frequencies are possible but with a

limited ultrasonic penetration depth [43]. The ultrasonography transducer contains piezoelec-

trical crystals that rapidly vibrate when excited by an electric current. These vibrations emit

a sound pulse into the subject’s body, which echoes in the human tissues and returns to the

probe with tissue-specific reflection properties. When the reflected signals return to the probe,

they are reabsorbed by the crystals, emitting electric current, which is used to reconstruct the

image [44].

Among many other medical applications, this modality has been used to study tongue

gestures [45, 46, 47]. The data is collected by positioning the transducer below the patient’s

jaw and recording the tongue articulation. For the method’s efficiency, the probe’s positioning

is crucial. For this, two methods exist: immobile and mobile transducers [48]. When the

transducer is immobile, its position is fixed relative to the head. The measured movement is

the combined displacement of the tongue with the jaw; therefore, the jaw position has to be

captured independently and subtracted from the ultrasound measurement.

Nevertheless, the tongue and the jaw are not uniformly coupled along their extension. The

angular jaw movement affects the tongue front more than the back; thus, the measurement

correction will inevitably be inaccurate. The alternative uses a movable probe that moves with

the mandible, and the tongue measurements are relative to the jaw instead of the skull [48].

Ultrasound is advantageous for speech research by registering videos up to 100 Hz, being

portable, cheap, and safe. It has been used in speech production studies focused on two-

dimensional cross-sectional tongue movements [49, 50, 51] and have several applications for the

development of silent speech interfaces [52, 53] However, ultrasonography is restricted to the

tongue, missing influential articulations such as the lips, velum, and laringeal articulators, which

limits its usage in many areas of articulatory speech research.

3.3 Electromagnetic Articulography

Electromagnetic articulography (EMA) is one of the most extensively used technologies to

quantify speech articulatory movements. EMA uses three transmitter magnetic coils to induce

a magnetic field around the subject’s head and measure the position of a few sensors attached to



41

specific vocal tract locations. The magnetic field induces a small current in these sensors; since

the induced current is inversely proportional to the cube of the sensor’s distance to the magnetic

coils, the spatial positions of the sensors can be precisely determined. MIT system articulog-

raphy [54], Movetrack system [55], and Aurora system by Northern Digital (NDI) [56] were

the first commercial articulographs. Nowadays, Carstens Medizinelektronik GmbH1, Bovenden,

Germany, is the principal manufacturer of these devices.

Even though the equipment is expensive, the operational cost of EMA is lower than some

medical imaging approaches, enabling the acquisition of large multi-speaker datasets. The

high spatial precision (0.3 mm for Carstens AG501) and temporal resolution of EMA (200

Hz for Carstens AG500 and 1250 Hz for Carstens AG501), together with the possibility of

measuring multiple articulators simultaneously explain its success in speech research. However,

it is necessary to point out a few disadvantages. The positioning of the sensors is limited to

a few articulators in the oral cavity, excluding pharynx and laringeal articulators, and it is

difficult to repeat the same sensor positioning in every acquisition. As Figure 2.5a illustrates, a

usual acquisition considers the tongue, lips, mandible, and velum, the latter causing discomfort

during the procedure.

In addition, even if Dromey et al. [57] indicates that speakers adapt in around ten minutes,

EMA causes some level of speech impairment due to the wiring coming out of the speaker’s

mouth, as seen in Figure 2.5b. Moreover, the sensors cannot be too close to each other without

interference – Carstens AG5002 user manual specifies a minimal distance between sensors of 8

mm – limiting the tracking of the entire tongue profile, which is possible with medical imaging.

Concerning safety, EMA is generally a harmless technology and is considered non-invasive.

However, some contraindications require attention, as described in the Carstens AG500 user

manual. It is not recommended to experiment with test subjects wearing medical appliances

such as pacemakers [59] and cochlear implants [60]. Moreover, EMA is not recommended

for patients with electromagnetic hypersensitivity, claustrophobia, and immunocompromised

patients due to the risk of infection. For a more comprehensive review of EMA practices and

procedures, we refer the reader to Rebernik et al. [58].

3.4 Real-Time Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique that captures

detailed images of body structures using a large magnet and radio waves. Unlike X-ray, the

1Carstens Medizinelektronik GmbH: https://www.articulograph.de/
2Carstens AG500 User Manual: http://www.ag500.de/manual/ag500/AG500_manual.pdf

https://www.articulograph.de/
http://www.ag500.de/manual/ag500/AG500_manual.pdf
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(a) Typical EMA sensors positioning. (b) Speaker in the EMA machine.

Figure 2.5: In (a), the red dots represent the EMA sensors, while the green dots represent
reference sensors. The image (a) was inspired by Rebernik et al. [58]. The image (b) was
reproduced with authorization from the multimodal platform of the Multispeech team at Loria
within the Creativ’Lab.

MRI does not use ionizing radiation and is generally safe for the subject, allowing acquisition

sessions of longer than one hour.

The MRI system comprises a primary magnet, responsible for generating an intense and sta-

ble magnetic field, and three smaller and weaker gradient magnets to create a variable magnetic

field, enabling the scanning of different body parts. In addition, it contains a hydrogen-specific

radio frequency (RF) coil. When the patient enters the machine, the primary magnet induces

a magnetic field that interacts with the hydrogen atoms in the body, aligning their spins in a

particular direction. Next, an RF pulse in a tissue-specific frequency, known as Larmor fre-

quency, is directed toward the region of interest. The protons absorb this energy and spin in

a different direction. Then, the gradient magnets are turned on and off to alter the magnetic

field at a local level. This method enables the collection of image slices in any direction without

requiring the subject to change their position – a great advantage to other image modalities,

usually restricted to a single plane. Most often, the acquisitions are made in the transverse

(axial), coronal (frontal), and sagittal planes (Figure 2.6). The system fills the Fourier space

that is then sampled to reconstruct the image [61].

The machine produces a characteristic noise due to the opposite direction between the

main magnetic field and the electric current going through the gradient magnets’ wires, which

is problematic for acquiring speech databases. Two optical microphones are necessary for the

recording; one is positioned close to the subject’s mouth, while the second is placed farther away

to record the environmental noise. Then, a denoising algorithm filters out the MRI noise, with
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Figure 2.6: Anatomical planes for medical imaging. Reproduced from Wikipedia Commons [62].

the disadvantage of attenuating frequencies in the signal, distorting the speech, and harming

the final analysis.

Since the first applications to vocal tract measurement [63, 64], the interest in these ap-

proaches has grown. It is now the dominating technique in the field. However, the high acqui-

sition time poses challenges to studying speech production. In the initial studies [64], MRI was

used to collect vocal tract images for sustained vowels, with an overall acquisition time of 45

seconds, later decreasing to around five seconds with lower image quality.

Over the years, the acquisition time has been reduced, allowing the collection of dynamic

processes in the human body such as heartbeat [65] and speech [66]. Real-time MRI (RT-MRI)

has been increasingly used in vocal production research since it allows a one-plane visualization

of the vocal tract from the glottis to the lips with a sampling rate of 50 fps. However, it still

presents a few drawbacks. First, it is substantially more expensive than the other techniques.

Second, MRI technology is only sensitive to structures containing water; thus, bones, with short

T2*, are indistinguishable from air in the images. Third, the MRI machine is claustrophobic,

being prohibitive for some subjects. Fourth, the subjects cannot have any ferromagnetic ma-

terial in their bodies, including prostheses, dental braces, and pacemakers. Fifth, the supine

position and the prolonged sustenation cause hyperarticulation, distortion in the tongue move-

ment and lack of velum control [67].

Additionally, some characteristics of static MRI must be abandoned to achieve a high tem-

poral resolution. Static MRI provides a high-resolution 3D image, but the high acquisition

time limits the use of 3D real-time recording, even though attempts can be found in the lit-

erature [68, 69]. Thus, for RT-MRI, the acquisition is limited to one plane – typically the
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(a) (b) (c)

Figure 2.7: Difficult cases of RT-MRI acquisition, challenging the image processing.

mid-sagittal – and a smaller image resolution – typically 136 × 136 pixels. Still, RT-MRI is

state-of-the-art for vocal tract observation and has been widely used for the study of speech,

singing [70], blowing wind instruments [71], and human beatboxing [72, 73]. Lingala et al. [74]

presents guidelines, technical considerations, and recommendations for RT-MRI for studying

speech.

Even though RT-MRI was a significant step forward for speech research, processing and

analyzing those images are challenging tasks. The sampling frequency is typically too low for the

articulators’ velocity during the natural speech, usually causing blurred images (Figure 2.7a).

Also, when two articulators are in contact, it might be hard to differentiate between them

(Figure 2.7b). Moreover, the pixel spacing and the slice thickness are relatively large, around

1.5 to 2 mm for the first and around 8 mm for the latter. The slice thickness causes a problem

known as partial volume effect [75], when the entire slice volume is projected into the same

plane, producing an uncertainty relative to the actual articulator position in the mid-sagittal

plane. Finally, the laringeal articulators are hard to analyze due to the narrow area and their

fast movements (Figure 2.7c).

3.5 Summary

Table 2.1 consolidates the characteristics of each data acquisition modality presented in this

Section. As it was exposed, none of the available modalities checks all the desired boxes.

Medical imaging provides the most comprehensive approaches; however, drawbacks must be

considered in developing speech corpora. Due to ionizing radiation, X-ray is not used anymore.

Ultrasound has limitations regarding the field of view, and RT-MRI is the most expensive and

least portable method. Nevertheless, the presented benchmark helps guide the choice of data

modality for research.
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Table 2.1: Description of the characteristics present for each data modality. 1 The supine
position cause a few articulatory distortion, harming the naturalness. 2 The positioning of the
ultrasonic probe reduces the jaw opening.

X-ray Cineradiography Ultrasound EMA RT-MRI

Coverage Complete Limited Limited Complete
Time resolution 50 Hz 100 Hz 1250 Hz 50 Hz
Harmless No Yes Yes Yes
Naturalness Yes Yes No Yes 1

Non-degradation Yes Yes 2 No No
Portability No Yes No No

4 Articulatory Speech Datasets

X-ray was one of the earliest articulatory data collection modalities, with large quantities of

films being collected between the 1950s and 1980s. Nevertheless, these films deteriorate with

time and need proper storage conditions. To preserve these data, Munhall et al. [76] compiled

a dataset of X-ray films for speech research containing 55 minutes of speech from 14 subjects

(seven males and seven females) in Canadian English and French. A few years later, Westbury

et al. [77] released the University of Winsconsin X-ray Microbeam Database (XRMB) with the

speech of 47 speakers in American English, with about 20 minutes of recordings per speaker.

Even after decades of publication, the XRMB database is still extensively used [78, 79] due

to the large speaker variability. Data availability is often insufficient, requiring software and

standardized procedures to process it. In this regard, Sock et al. [80] released the DOCVACIM

X-ray database and the tools and procedures to exploit it for studying speech production.

After the abandonment of X-rays, EMA rapidly grew in popularity. The MOCHA-TIMIT

articulatory database [81] was one of the earliest releases, containing 460 utterances in British

English for two speakers – one male and one female. Additionally to the EMA data, the corpus

includes frontal videos of the mouth region. Later, the mngu0 database [82] introduced a more

extended set of EMA recordings, providing 1 354 utterances in British English for a single-

speaker, totaling 67 minutes of speech recorded at 200 Hz. The availability of these sets was an

essential step towards a better understanding of speech production.

The growing popularity of real-time MRI encouraged the release of the MRI subset of the

mngu0 database [83] containing volumetric MRI of sustained phonemes and RT-MRI movies

with repetitions of consonant-vowel (CV) syllables. Later, Narayanan et al. [84] published the

USC-TIMIT, an extensive RT-MRI database with ten speakers in American English, which was

later extended to the USC-EMO-MRI, an RT-MRI database of emotional speech.

The USC-EMO-MRI database contains midsagittal films of ten speakers and emotional
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labels that include neutral, anger, happiness, and sadness. The speakers were asked to immerse

themselves in one of the target emotions and read the “Grandfather” passage plus seven shorter

sentences in English. The emotion quality of the speech was evaluated by ten actors and

actresses that, after listening to the passage, provided their opinion regarding which emotion

best represents the passage, their confidence in that opinion, and an emotional strength level to

the passage. Emotional speech is a growing research topic and the release of USC-EMO-MRI

permits it to be studied in the articulatory level, being an important advancement in the field.

Later, Sorensen et al. [85] released a database containing the speech of 17 speakers in Amer-

ican English. The dataset includes the RT-MRI movies with the recorded denoised audio

plus volumetric MRI of sustained phonemes. The available utterances includes repetitions of

consonant-vowel-consonant (CVC) and vowel-consonant-vowel (VCV) utterances, read passages

and spontaneous speech.

Most of the available data in speech sciences are in English – usually American English,

which limits the speech research in other languages. In this regard, Teixeira et al. [86] released

an RT-MRI dataset for European Portuguese with one female native speaker. The dataset

was mainly designed to characterize nasal vowels in a wide range of phonetic contexts. Douros

et al. [33] released a database in French containing the data of two native French speakers. The

database contains static MRI of sustained phonemes as well as RT-MRI of complete sentences

plus VCV repetitions. Later, Isaieva et al. [87] published a larger set containing the data of

ten native French speakers, including read sentences and VCV repetitions. The methods from

Douros et al. [33] and Isaieva et al. [87] are particularly relevant for this thesis since they were

largely explored in its related publications.

Most recently, Lim et al. [88] released the most extensive dataset so far, containing 75

American English speakers, with an average of 17 minutes of speech per subject. Such large

dataset corresponds to a significant advancement in articulatory speech research due to the

possibility of studying inter-speaker variability in a much wider range. Table 2.2 summarizes

the characteristics of the most popular articulatory speech datasets in the literature.

5 Conclusion

This Chapter briefly covered the anatomy of the vocal tract, presenting the main articulators

that concern our work and discussing their functions in speech production. Moreover, we re-

viewed the most relevant data collection modalities to study vocal tract dynamics. We discussed

their advantages concerning a list of characteristics desired in an ideal system. The literature

review shows that despite no method so far concentrating all of them, the RT-MRI is the pre-
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Table 2.2: Summary of most popular articulatory speech databases.

Dataset Modality Language
Number of
Speakers

XRMB Westbury et al. [77]
X-ray
Microbeam

English (US) 47

DOCVACIM Sock et al. [39] X-ray French
MOCHA-TIMIT Wrench [81] EMA English (UK) 2
mgnu0-EMA Richmond et al. [82] EMA English (UK) 1
mgnu0-MRI Steiner et al. [83] RT-MRI English (UK) 1

Teixeira et al. [86] RT-MRI Portuguese (Europe) 1
USC-TIMIT Narayanan et al. [84] RT-MRI English (US) 10
USC-EMO-MRI Kim et al. [89] RT-MRI English (US) 10

Sorensen et al. [85] RT-MRI English (US) 17
Douros et al. [33] RT-MRI French 2
Isaieva et al. [87] RT-MRI French 10
Lim et al. [88] RT-MRI English (US) 75

ferred choice in research due to the complete coverage of the vocal tract, the satisfactory time

resolution, and being harmless to the subject. The challenges presented by the choice of RT-

MRI were detailed, with illustrative examples. Finally, we presented a review of the available

datasets in the literature. We discussed the characteristics of each corpus regarding modality,

language, and number of speakers. We have also briefly detailed their contributions to articu-

latory speech research.





Chapter 3

Deep Learning

All models are wrong, but some are

useful.

George Box

1 Overview

Deep learning is the epicenter of the current computer science and artificial intelligence (AI)

research. Large Language Models (LLMs) such as BERT [90], GPT-3 [91], and LLaMA [92],

which are capable of reproducing language at a human level, are causing extensive discussions in

the academy and industry around the capacities of AI. Generative visual models such as DALL-

E 2 [93] shocked the community by generating photorealistic images from human prompts.

While taking giant steps forwards, the advancement of deep learning research raises debates

around ethics, fairness, AI’s ecological footprint, human rights, intellectual property, and others.

Even though the rise in attention towards these models is recent, neural networks have existed

for many years.

In the beginning, the brain’s functioning inspired the development of neural networks. Its

primary structures were first thought of in 1943 by McCulloch and Pitts [94], which were try-

ing to copy the behavior of the human neuron. Later developments led to the creation of the

perceptron [95], whose limitations meant a first drawback in the history of artificial neural net-

works. The simple structure of the perceptron seemed insufficient to model elementary boolean

operations. Nevertheless, it would later show its usefulness by combining other perceptrons in

layers to build more extensive networks, giving birth to the multilayer perceptron.

The field solidified by developing a robust learning method known as backpropagation algo-

rithm [96]. The gradient of the prediction error w.r.t. the network’s weights is calculated using
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the chain rule and used as an update rule. Nevertheless, further challenges were still appearing.

The problem of vanishing gradients, when the gradients become smaller at every layer that the

weights stop changing, or change very slowly, was prohibitive for deeper networks with more

than a few hidden layers. In addition, deep neural networks were regarded as exceedingly data-

consuming and computationally inefficient. These difficulties seemed insurmountable, which

caused neural network research to cool down for decades.

After a long time of disinterest by the scientific community, the AI winter, in 1998, Yann

LeCun proposed the LeNet [97], one of the earliest convolutional neural network architectures

for solving the handwritten digit recognition task, on the MNIST dataset [98]. However, many

scientists still left deep neural networks aside due to the number of resources required for train-

ing. It was only by 2012 when the AlexNet [99], proposed by Alex Krizhevsky, Ilya Sutskever,

and Geoffrey Hinton, conquered the ImageNet Large Scale Visual Recognition Challenge [100]

by a 10.8% margin compared to the second place, that the community’s eyes turned directly to

deep learning. With larger datasets and recent advances in graphical processing units (GPU),

which performs matrix operations more efficiently than traditional CPUs, the ingredients for a

deep learning revolution were available.

This chapter will review the leading deep learning methods and architectures. The review

focuses on the methods concerning this thesis’s scope. Nevertheless, we may extend the dis-

cussion to a few topics that were not employed in our experiments for completeness. For a

more comprehensive understanding of traditional deep learning methods, we refer the reader

to Goodfellow et al. [101].

2 General Purpose Deep Learning Methods

2.1 The Perceptron

The artificial neural networks that are common nowadays began as simple computational models

of the brain, with two models of cognition: associationism – the idea that mental processes

operate by association between one mental process to its successor – and connectionism – the

idea that neurons connect to other neurons and the connection strength changes according to

past experiences; the second being a more successful cognition model.

In human biology, the neuron is an electrically excitable cell that transmits electric signals

across a network through a process called synapse. In a simplified form, the neuron comprises

the dendrites, the soma, and the axon. When the axon terminals of a source neuron connect to

the dendrites of a target neuron, an electric pulse flows through the target neuron, propagating
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Figure 3.1: Perceptron model proposed by Rosenblatt [95]. In the model, σ represents a thresh-
olding function. Reproduced from Raj [103].

the signal along the chain. The biological neuron inspired its first computational neuronal

model, created by McCulloch and Pitts [94]. Although innovative, the idea lacked a learning

mechanism essential to these algorithms. The connectionist model of cognition inspired Hebb

[102] to develop the first learning algorithm that follows the premise that “neurons that fire

together wire together”, formally described by [103]

wij = wij + ηxiyj

where wij is the weight of the i
th input (xi) to the jth output (yj). In simplified terms, whenever

xi and yj have a non-zero value simultaneously, their connection gets updated by a factor of η.

In 1958, Rosenblatt [95] proposed a more advanced model, the perceptron, visually repre-

sented by Figure 3.1. The perceptron is a neural model that fires if the combined inputs exceed

a threshold, whose mathematical model is given by [103]

y(x) =


1, if

∑n
i=1wixi + b ≥ T

0, otherwise

where T is the threshold value and b is the bias. A keystone for the success of Rosenblatt [95]

was the proposal of a convergent learning mechanism that updates the weights whenever the

output is wrong. The learning algorithm is given by [103]

w = w + η(d(x)− y(x))x

where d(x) is the target output and y(x) is the perceptron’s response to the input x. Unlike the

Hebbian approach, this mechanism is based on prediction errors instead of the co-occurrence of

neuronal triggers.
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Figure 3.2: Linear separability of basic boolean operations.

Table 3.1: Truth tables for AND, OR, and XOR operations.

X Y X × Y ((AND)) X + Y (OR) X
⊕

Y (XOR)

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

The perceptron was a revolutionary model, capable of replicating boolean operations such as

AND and OR (Table 3.1). However, Minsky and Papert [104] demonstrated that the perceptron

fails to mimic the XOR operation, configuring a critical setback for the idea. As Figure 3.2a and

Figure 3.2b show, the AND and OR operations are linearly separable operations; hence they can

be computed by the perceptron. However, as shown by Figure 3.2c, separating the XOR by a

line is impossible, meaning that a single neuron is insufficient. Non-linear operations require

networked elements, giving birth to the multilayer perceptron.

The multilayer perceptron (MLP) was an evolution of the single perceptron system, con-

sisting of chaining together multiple perceptrons in different layers to form a network. The

perceptrons are organized in layers, each containing several of these units. The outputs of the

preceding layers are the inputs to the following ones, allowing the computation of arbitrarily

complex boolean functions, being provably a universal boolean approximator, i.e., any truth

table can be expressed in the form of a one-hidden-layer MLP [103]. Figure 3.3 illustrates the

MLP architecture proposed by Minsky and Papert [104], which can reproduce the XOR truth

table (Table 3.1) with the appropriate set of weights. However, the number of neurons of an

XOR network with N input variables will require 2N−1 + 1 perceptrons, growing exponentially

with input size. The solution comes in the former of deeper networks. By reorganizing the per-

ceptrons in multiple hidden layers, the number of perceptrons is reduced to 3(N − 1) arranged

in 2 log2(N) layers, growing linearly with the input size [103].

The universal boolean approximator characteristic allows using the MLP as a classifier net-
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Figure 3.5: MLP architecture for a triangular decision boundary. Inspired by Raj [103].
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work, composing arbitrarily complex decision boundaries with arbitrary precision, limited only

by the number of perceptrons used to represent the classifying function. A simple exercise to

understand it is in the triangular decision boundary from Figure 3.4a. Although the shaded

area is not linearly separable, it can be decomposed into three linear decision boundaries (Fig-

ure 3.4b, Figure 3.4c, Figure 3.4d), each of them can be approximated by a single perceptron.

As seen in Figure 3.5, a succeeding neuron performs the AND operation on the outputs of the in-

dividual preceding neurons, firing when y ≥ 3 (for three linear frontiers) and approximating the

triangular region. This exercise can be extrapolated for any geometry with additional neurons

in the hidden layer or extra hidden layers, making the MLP a universal classifier [103]. Likewise

the boolean case, deeper MLPs require fewer neurons than a single-layer network. However, the

power of the MLP goes far beyond modeling boolean functions and decision boundaries.

Adding continuous activation functions allows mapping the MLP output to interpretable real

values. Common activations are the sigmoid, hyperbolic tangent, and the rectified linear unit

(ReLU). Including activation functions in the models produces a graded neuron output instead

of a discrete result. These graded outputs permit information propagation in the network

in the form of gradients. The activation functions qualify the MLP as a universal function

approximator provided that it has sufficient capacity [103], i.e., an MLP is incapable of modeling

a function that has more convex regions than the capacity of the network, meaning that any

try will result in an approximation with non-zero error. The capacity of a neural network is

typically measured in terms of its Vapnik-Chervonenkis dimension (VC-dimension) [105].

2.2 Backpropagation

A major advancement in developing artificial neural networks was the backpropagation algo-

rithm – a learning procedure that repeatedly adjusts the weights between the network’s con-

nections to minimize a pre-defined error metric between the network’s outputs and the desired

targets [96]. Backpropagation uses the chain rule to compute the effect of varying the network’s

weights in the prediction error.

Consider a neural network with L layers that takes an input vector x ∈ RMin and outputs

a prediction ŷ ∈ RMout . Let z(l) be the output of layer l and a(l) the output of the activation

function of layer l. W (l) ∈ RMl×Ml−1 and b(l) ∈ RMl represents the weights matrix and the

bias vector at layer l, respectively, and Ml is the number of neurons at layer l. Then, the

backpropagation can be computed with the following steps:
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1. Propagate the training input through the network to get the predicted output.

a(1) = x

z(l) = W (l−1)a(l−1) + b(l−1)

a(l) = σ(z(l))

ŷ = W (L)a(L) + b(L)

where σ represents a non-linearity [106].

2. Compute the prediction error between the expected output y and prediction ŷ.

E = L(y, ŷ)

where L is a pre-defined loss (or cost) function.

3. Compute the derivatives of the error w.r.t. the network’s weights, which describes how a

change in the weights will affect the prediction error.

For a single weight, the derivative is [106]
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Likewise, for a single bias, the derivative is [106]
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4. Update the weight in the opposite direction of the gradients.

∆w
(l)
jk = −ϵ ∂E

∂w
(l)
jk

∆b
(l)
j = −ϵ ∂E

∂b
(l)
j

where ϵ is the learning rate.

The procedure is repeated until convergence. The drawback of the backpropagation algo-

rithm is the case when the loss function is not convex. Then, gradient descent is not guaranteed

to find the global minimum. Various methods focus on avoiding local minima in neural net-

works, including optimization strategies such as stochastic gradient descent [107] and learning

rate scheduling policies [108].

Current deep learning frameworks do not require the explicit computation of the gradients

anymore. Instead, only the network’s forward pass and the loss function are explicitly defined;

the backward pass is computed using automatic differentiation [109]. Automatic differentiation

is a great advancement for the practice of deep learning, enabling complex network architectures

and loss functions without requiring defining their derivatives.

2.3 Autoencoder

Learning a compact and meaningful manifold from multi-dimensional data is paramount in

machine learning research. However, the training of such models is complex due to the difficulty

in finding a task that produces general features and the scarcity of labeled data. Initially,

these representations were learned using benchmark datasets, usually designed for classification

tasks. However, this approach only fits well in some cases. Most often, a large enough dataset

will not exist, or the pre-built representations will not fit properly the target application, and

fine-tuning will be required. The alternative becomes learning unsupervised or self-supervised

representations, which do not require an annotated dataset. Since collecting data is usually

much easier than gathering the corresponding labels, it is the preferred approach for most

applications.

The autoencoder [110, 111, 112] is a neural network that attempts to copy its inputs to

its output [101]. Since the target of the autoencoder is the input data itself, it learns to

find a representation that retains most of the data variance in an unsupervised manner. A

general autoencoder structure contains an encoding network (genc), an information bottleneck

(the latent space), and a decoder network (gdec) (Figure 3.6). The learning objective of the
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Figure 3.6: General architecture for an autoencoder. The orange nodes represent the input
(left) and output (right) layers, the cyan nodes represent to the hidden layers, the pink nodes
represent the latent space.

autoencoder becomes

x̂ = gdec(genc(x))

argmingenc,gdecE[L(x, x̂)]

where E is the expected value and L is a reconstruction error function, usually designed as the

L2-norm [113]. Since the latent space has a much more limited dimensionality than the inputs,

the bottleneck encodes only the essential information for the reconstruction performed by the

decoder. Therefore, the autoencoder is often seen as a non-linear dimensionality reduction

algorithm.

If genc and gdec are only composed of linear layers, it will result in a linear autoencoder [114],

and by removing the non-linear activations, it should learn a similar representation as the one

provided by principal components analysis (PCA) [115]. However, unlike PCA, the autoencoder

lacks essential characteristics such as orthogonality and statistical independence between the

components. Additionally, the autoencoder latent space is not ranked, meaning the variance

is distributed among its components in no particular order. Since it does not have the same

guarantees as PCA, the autoencoder will use its representational power to encode all data

variability simultaneously.

A PCA-like autoencoder was proposed by Ladjal et al. [116] using a specific algorithm for

training. The proposed algorithm trains each component individually and freezes the already-

trained weights while fitting the following ones. Since the network can only learn one component

at a time, it must encode the largest source of variability that has yet to be learned, achieving

ranked and independent components.
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Autoencoders have many applications in machine learning such as denoising [117, 118],

classification [119, 120], clustering [121, 122], and anomaly detection [123].

2.4 Variational Autoencoder

The traditional autoencoder is a deterministic machine, meaning that it does not model the

probability distribution of the data; thus, it does not serve as a generative procedure. The latent

space will encode the data variability to be easily reconstructed. However, it can only interpolate

among the samples in training set. Kingma and Welling [124] significantly improved the model’s

representation capacity by creating a version based on the variational Bayes inference named

variational autoencoder (VAE). The variational autoencoder is a generative model that attempts

to learn the probability distribution that governs the data generative process.

Let X = {xi}Ni=1 be a set of independent and identically distributed observations in the data

space. The VAE assumes a generative process given by a set of parameters θ for x conditioned

on the latent space z – pθ(x | z) – referred to as the likelihood. The latent vector z is drawn

from a prior distribution pθ(z), and its true posterior distribution is denoted as pθ(z | x).

Nevertheless, typically the marginal likelihood pθ(x) =
∫
pθ(z)pθ(x | z) and the true posterior

distribution pθ(z | x) = pθ(x|z)pθ(z)
pθ(x)

are intractable. In these cases, the intractability prohibits

the usage of expectation maximization or variational Bayes algorithms. Moreover, when large

datasets are available, it is costly to compute the parameters θ.

The VAE proposed by Kingma and Welling [124] presents an efficient algorithm. It proposes

a recognition model qϕ(z | x) that approximates the intractable true posterior pθ(z | x). The

parameters θ and ϕ are unknown and are learned together in a joint procedure. In the deep

learning literature, the recognition model (qϕ(z | x)) is frequently referred to as the encoder and

the likelihood (pθ(x | z)) is referred to as the decoder.

The marginal log-likelihood of the data pθ(x) becomes

log pθ(x) = DKL(qϕ(z | x)∥pθ(x | z)) + L(θ, ϕ;x)

where the first term refers to the Kullback-Leibler (KL) divergence between the approximate

and the true posterior distributions. Since the KL divergence is non-negative, the second term

is the lower-bound for the marginal probability w.r.t. θ and ϕ; therefore, it is referred to as the



59

variational lower-bound. L(θ, ϕ;x) can be re-written as

log pθ(x) ≥ L(θ, ϕ;x) = Eqϕ(z|x)[− log qϕ(z | x) + log pθ(x, z)]

L(θ, ϕ;x) = DKL(qϕ(z | x)∥pθ(x | z)) + Eqϕ(z|x)[log pθ(x | z)]

Optimizing L(θ, ϕ;x) w.r.t. θ and ϕ is necessary, but the gradients w.r.t. ϕ can be very

unstable and the optimization becomes impractical. To solve this problem, Kingma and Welling

[124] introduced the reparameterization trick.

The reparameterization trick is an alternative method for sampling from qϕ(z | x). Let

z ∼ qϕ(z | x) be a continuous random variable. We can express z as a deterministic random

variable z = gϕ(ϵ, x) where ϵ ∼ p(ϵ) is an independent auxiliary variable and gϕ is a function

parameterized by ϕ. The method is appropriate since we can re-write the expectation of qϕ(z | x)

such that the Monte Carlo estimation is differentiable w.r.t. ϕ. For the univariate Gaussian

case, z is given by z ∼ p(z | x) = N (µ, σ2), and the reparameterization of z becomes z = µ+σϵ,

where ϵ ∼ N (0, 1) [124].

In practice, the true posterior distribution pθ(z | x) can be approximated by qϕ(z | x) =

N (hµ(x), hσ(x)), where hµ(x) and hσ(x) are the mean and the covariance of the distribution

estimated by the encoder network. The sampling from the approximate posterior will be z =

hµ(x) + hσ(x)ϵ, with ϵ ∼ N (0, 1) [113]. If we denote the decoder function as gdec, the loss

function becomes

L(x, z) = Lrec(x, gdec(z)) +DKL(N (hµ(x), hσ(x)),N (0, 1))

where Lrec is a reconstruction loss designed as the L2-norm, and gdec, hµ, and hσ are optimized

using backpropagation [113].

Applications of variational autoencoders are vast, including classification tasks [125, 126]

and audio source separation [127], but are especially useful for generative tasks due to the fast

and tractable sampling and the easy access to the encoding network [128].

2.5 Knowledge Transfer in Deep Neural Networks

Data availability is a determinant factor in deep learning. Nevertheless, in the real world,

well-annotated and curated datasets are usually unavailable, especially domain-specific data.

Thus, techniques to deal with the lack of specialized datasets have proliferated in the literature,

and many have become standard practices in deep learning. Among these methods, knowledge

transfer is one of the most popular.



60

Knowledge transfer is based on the intuitive idea that different tasks might require similar

abilities. Humans experience it all the time. When learning to ride a motorcycle, we will reuse

the balancing skills from when we first learned how to ride a bicycle. When learning a second

language, we will invariably make associations with our mother tongue; the more languages we

learn, the easier it is to learn the successive ones since we have a broader linguistic skill set. The

initial approaches to knowledge transfer were based on the intuition that the earliest features

learned by the neural network might be helpful to an entire family of tasks regardless of the

final objective. Hence, it would be possible to reuse the initial layers pre-trained with a large

general-purpose dataset on training a specialized task without enough available data.

A classic example of knowledge transfer comes from computer vision. Suppose we are chal-

lenged to classify a set of animal pictures into three categories: felines, canines, and birds.

Among the features that might be useful for the task are the number of legs, presence of wings,

presence of a beak, facial shape, and ears shape. These features are particular for the animals

that we are considering. They probably would not be present if we transfer knowledge from

a dataset such as the Cityscapes [129], which focuses on understanding urban street scenes.

Nevertheless, these high-level and task-specific features can be decomposed into mid-level fea-

tures such as circles, triangles, and rectangles, which in turn can be further decomposed into an

even lower level, such as corners, horizontal borders, vertical borders, diagonals, and curvatures.

That is precisely how a deep neural network will learn to recognize patterns in the data; it starts

from elementary structures, learned by the initial layers, then the further layers compose these

basic patterns into more complex ones up to the point that the final layers have learned how to

recognize high-level features.

Initial knowledge transfer approaches exploited the idea of re-utilizing the knowledge from

a source task in a different but related task by copying the weights learned with the first task

to the network of the second; then the training for the second task continues as usual; a process

usually referred to as pre-training with fine-tuning approach [130]. Even though there are still

a substantial amount of specialized weights to fit, the pre-initialized network massively reduces

the number of parameters, improving performance and generalization.

The obvious question is which layers to copy, i.e., up to which point in the source network the

pre-trained weights are helpful. To address this question, Jang et al. [131] proposed a mechanism

based on meta-learning to learn exactly what to transfer to where, even if the source and the

target networks have different architectures. It learns meta-networks that select source-target

layer pairs to transfer jointly with the training of the target network. Even if this approach

benefits the model performance, the common practice usually follows the simpler pre-training
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with fine-tuning.

Transfer learning can be done on all sorts of tasks provided that a source task exists. Mene-

gola et al. [132] investigated the influence of transfer learning for melanoma screening, analyzing

the usage of consecutive transfer schemes, the influence of task similarity in the results, and the

benefits of transfer learning for low-resources tasks. The results confirmed a few expectations,

such as performance improvement with transfer learning. However, it presented a few sur-

prises, such as less related tasks (ImageNet to melanoma) leading to better results than related

tasks (retina to melanoma) and simple transfer yielding better results than transfer pipelines.

In speech processing, transfer learning is used for automatic speech recognition to adapt the

acoustic model from a high-resource language to a second language, reducing the demand for

data and computational resources [133]. Wang and Zheng [134] surveys other transfer learning

approaches for speech and language processing.

A popular alternative to transfer learning is known as knowledge distillation, initiated with

Buciluǎ et al. [135] and formalized by Hinton et al. [136]. When this approach was first in-

troduced, the traditional method for achieving better performance on classification tasks was

making an ensemble of classifiers trained with different data or different architectures and then

averaging their performances. This approach works well in the laboratory environment. How-

ever, it can bring sub-optimal performance in production due to latency requirements, the large

size of the networks, and the heavy memory consumption. The solution in restricted production

settings is to work with a smaller model, which would often lead to lower performance. Instead

of training a small model with the traditional approach, Buciluǎ et al. [135] demonstrated how

to transfer the knowledge of an ensemble of large models, often referred to as the teacher model,

to a single small model, often referred to as the student model, improving the generalization

capability. The most straightforward approach to such a problem is to train a small model to

mimic the behavior of the large one using the large model’s class probabilities as “soft targets”.

Nevertheless, large classification models produce very discriminative probabilities, with high

confidence for their final prediction. Then, an informative statistic becomes the probability ratio

between the remaining (non-predicted) classes. An illustrative example provided by Hinton

et al. [136] is the case of MNIST digits classification. When a model predicts a “2” with 0.99

probability, it might give a probability of 10−3 to the class “3” and a probability of 10−7 to the

class “7” (or the other way around). These small probabilities give an understanding regarding

if that data point corresponds to a “2” that looks like a “3” or that looks like a “7”. The solution

given by Buciluǎ et al. [135] is to minimize the error in the logits level (before the softmax)

instead of the class probabilities. The solution from Hinton et al. [136] is a generalization of
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Figure 3.7: Effect of different temperatures in the softmax function.

this approach that uses high temperatures on the softmax to have smoother probabilities. The

softmax function transforms logits zi into a probability qi as

qi =
exp( ziT )∑N
i=1 exp(

zi
T )

where N is the number of classes and T is the temperature – T = 1 is the regular softmax.

A higher temperature will produce a smoother probability distribution, as seen in Figure 3.7.

Hinton et al. [136] demonstrated that comparing logits is equivalent to distillation with a high

temperature. In addition to the high-temperature-based training, Hinton et al. [136] includes

the traditional cross-entropy loss using the true targets and predicted probabilities, showing

that the mixture of the two losses improves the final performance.

The teacher-student model proposed by Hinton et al. [136] is known as response-based

knowledge transfer since it tries to make the student model mimic the output probability dis-

tribution from the teacher model. Due to its simplicity, response-based knowledge transfer has

been widely adopted in research. Wang et al. [137] followed a similar approach to perform

semi-supervised learning with pseudo-labels for image segmentation. The intuition used in this

work was that even though the model might be uncertain about the actual class of a given pixel

in the image, it might be very confident regarding what is not the class, i.e., the network might

be uncertain if the object in a picture is a dog or a cat, but it is confident that it is not a truck.

Therefore, the method uses the teacher’s probabilities of negative classes as pseudo-labels for a

student model.

Shahrebabaki et al. [138] uses a response-based teacher-student model to perform articula-

tory information transfer and improve the phoneme recognition on the TIMIT dataset. Artic-

ulatory information provides essential information regarding speech; however, it is not usually

available and requires specialized machinery to collect. To address the problem, Shahrebabaki
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et al. [138] trains a teacher articulatory model with the “Haskins Production Rate Comparison”

(HPRC) using phonemic features, which is then used to provide the articulatory features of the

TIMIT data. The student model performs articulatory inversion, using the articulations from

the teacher model as targets. Including the articulatory features learned by the student model

serves as additional information for the phoneme recognition task and improved the perfor-

mance by 6.7% on the TIMIT test set.

The disadvantage of response-based is that it is limited to supervised learning and does not

permit intermediate-level feature learning. The alternative to overcome this problem is known

as feature-based knowledge transfer. Deep neural networks are over-parameterized models,

meaning that an infinite number of solutions fit the data, and the intermediate-level repre-

sentations are redundant. Feature-based knowledge transfer was first introduced by Romero

et al. [139], and it takes advantage of this idea to reduce the size of the fitting function. The

teacher’s activations in the intermediate layers are used in the supervised training of the student

model in an attempt to learn similar representations with fewer parameters. A third method,

relation-based knowledge transfer, explores relationships between different layers or data sam-

ples. These methods vary considerably, exploring multiple possible relationships. Yim et al.

[140] uses inner products between features from different layers. Lee et al. [141] uses singular

value decomposition to extract relations in the feature maps. Zhang and Peng [142] explains a

multi-teacher approach for video classification.

Transfer learning and knowledge distillation are vast research fields, with several techniques

and applications in most machine learning domains. For an extended guide on transfer learning,

we refer the reader to Zhuang et al. [143]. For an extended guide on knowledge distillation

algorithms and teacher-student architectures, we refer the reader to Gou et al. [144].

3 Deep Learning Methods for Image Processing

The multilayer perceptron was initially applied to a large set of problems, computer vision

included. Consider the handwritten recognition problem, which consists of recognizing the ten

digits from the MNIST dataset [98]. The images from MNIST are 28×28 pixels wide. Building an

MLP for handwritten-digits recognition is as simple as flattening the image into a vector of 784

features. Then this tensor is the input of an arbitrarily large MLP that outputs the softmax

probabilities over ten classes.

Since the MNIST dataset is standardized, this approach might achieve very reasonable per-

formance even in the test set. However, simple data augmentation during the test will expose

the MLP’s flaws in computer vision problems. Consider the case of Figure 3.8a and Figure 3.8b,
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(a) Sample of digit “5”
from MNIST

(b) Translated sample of
digit “5” from MNIST

(c) Flat features from the original digit “5”

(d) Flat features from the translated digit “5”

Figure 3.8: (a) Original MNIST sample, (b) MNIST sample after translation, (c) original MNIST
feature vector, (d) MNIST feature vector after translation.

which contains the same MNIST digit, but with a tiny translation in the pixels. It is evident to

any reasonable observer that the class is not changed; both images present the digit 5. Nev-

ertheless, even though the images are semantically identical, the feature vector of the original

input (Figure 3.8c) is entirely different from those of the new image (Figure 3.8d). The feature

vector used to encode the input data does not account for the spatial relationships and the

correlations between the pixels. Data augmentation during the training phase would partially

address the problem. However, it would be impractical in the majority of applications.

Therefore, when we have a spatial relationship between the raw features, we need a feature

extractor invariant to deformations such as translation, rotation, and others. Understanding

these flaws, in 1998, Yann LeCun proposed LeNet [97], an architecture for solving the handwrit-

ten digit recognition task from the family of convolutional neural networks that we will discuss

next.

3.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a family of neural networks usually applied to treat

data where the spatial positioning is relevant, thus being especially interesting for image pro-

cessing. The goal of CNNs is to build a feature extractor that is robust to translation, i.e., the

image features are invariant to their location in the image. Robustness to other transformations,

such as rotation and deformation, are desired but are not intrinsic to this family. Usually, these

cases are handled by data augmentation.
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Figure 3.9: LeNet architecture for handwritten digit recognition. Reproduced from LeCun et al.
[97].

The elementary operation of the CNN is convolution. Instead of performing a linear com-

bination of the pixels, the layer weights are convoluted with the image, extracting first-order

features, e.g., edges, lines, and curves. The following layers do the same but combine the first-

order features building more complex ones, e.g., corners and circles. The process repeats in a

way that the deeper network layers have higher-level image features, e.g., ears, eyes, wheels,

and legs, composing a meaningful image representation that is used in all kinds of tasks, such

as classification, segmentation, object detection, and others.

Figure 3.9 illustrates the architecture of LeNet [97], used for handwritten digit recognition.

Differently from the MLP, the network takes positioning and the surrouding pixels into account.

At each layer, the image resolution is reduced through an operation called pooling and the depth

(number of channels) is increased, generating a feature space that contains finer representations.

The last layer (classifier layer) is a convolutional layer in the original version. In recent archi-

tectures, the classifier is implemented as a fully-connected layer.

Even if the convolutional networks were promising, it was only by 2012 that they grew

in popularity, when the AlexNet [99] conquered the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [100] by a 10.8% margin compared to the second place. AlexNet was a

breakthrough when it was released. Composed of five convolutional layers and three linear lay-

ers to output probabilities for the 1 000 classes in the ImageNet dataset, it implemented many

approaches that are considered standard nowadays such as non-saturating non-linearities, e.g.,

ReLU, in lieu of saturating non-linearities (tanh), training on multiple GPUs, data augmenta-

tion, dropout, and others.

The following year was marked by the development of newer and more accurate models,

largely encouraged by the ILSVRC, the most relevant benchmarking so far. Many approaches

have been explored to improve networks’ performance, such as increasing the network’s receptive

field by increasing the convolutional stride. However, one of the most fruitful was increasing the
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depth of the networks. Simonyan and Zisserman [145] proposed the family of networks known

as VGG and investigated the impact of increasing the number of convolutional layers while

keeping a small kernel size (3× 3). The intuition was that even though a smaller convolutional

filter would have a small receptive field, by stacking more layers, the effective receptive field

would be substantially increased, with the advantage of the increased number of non-linearities

and the reduced number of parameters concerning larger convolutional filters. Concurrently,

Szegedy et al. [146] proposed the family of Inception networks, with its most prominent instance

named GoogLeNet, referencing the LeNet architecture discussed before. The basic ideas of

the Inception architecture are finding out how an optimal local sparse structure in a CNN

can be approximated and covered by dense components and applying projections to reduce

the dimensionality wherever the computational requirements increase substantially [146]. The

VGG and the GoogLeNet achieved leading performances in the ILSVRC 2014, consolidating

the literature for deeper architectures.

Szegedy et al. [147] proposed a few design principles for neural networks to improve perfor-

mance, which are (1) avoiding information bottlenecks, especially in the early network layers,

(2) preference for higher dimensional representations, which are easier to process by the net-

work, (3) spatial aggregation in lower dimensional embeddings, and (4) balancing the network’s

width and depth. These design principles refer mainly to the Inception architecture, but they

apply to most neural network families. Szegedy et al. [147] also proposes label smoothing as

a regularization approach and the Inception V3, an evolution of the Inception network using

convolution factorization. The final architecture is more efficient than GoogLeNet and VGG

while being 42 layers deep.

In contrast, deeper architectures are more challenging to train than shallow ones. As net-

works become deeper, vanishing/exploding gradients arise. The problem has been addressed by

different levels of normalization [148, 149, 150], enabling efficient backpropagation. However,

with the increased depth, the accuracy saturates and starts degrading [151], a problem due to

optimization issues rather than overfitting. To facilitate the optimization of training deeper

networks, He et al. [151] proposed the ResNet, which uses a framework known as residual learn-

ing. ResNet is based on shortcut connections that skip one or more layers, bypassing the signal

for these layers and allowing architectures eight times deeper than VGG. Formally, a neural

network block learns a mapping H(x), where x is the network’s input. The residual network

would learn the mapping F(x) := H(x) − x. Then, the original mapping is obtained using

F(x) + x. The residual learning framework achieved state-of-the-art results in image classifica-

tion in the ILSVRC 2015. It demonstrated generalization ability on detection and localization
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in the ILSVRC 2015 and on detection and segmentation in the COCO 2015 competition [152].

Depth substantially impacts the accuracy of deep learning models, while ResNet has shown

that shortcut connections between layers improve training efficiency, allowing more layers and

yielding better performance. In this direction, Huang et al. [153] proposed DenseNet, which

introduces the densely connected convolutional blocks. The basic idea of the dense block is that

the lth layer receives the feature maps of all preceding layers as input.

x(l) = H(l)([x(0), x(1), ..., x(l−1)])

where x(l) is the output of layer lth, H(l) is a function composed by Batch Normalization [149],

ReLU activation and a 3 × 3 convolution, and [x(0), x(1), ..., x(l−1)] refers to the concatenation

of the feature-maps produced by layers 0, 1, ..., l − 1 [153]. Stacking dense blocks with pooling

operations in between allows scaling deep neural networks to hundreds of layers and achieving

state-of-the-art results in most image recognition benchmarks.

The presented architectures set the bases of deep learning for computer vision, bringing

significant advances in various industries and particularly impacting medical image analysis [154,

155]. The state of the art set by ResNet and DenseNet was a turning point for deep learning since

the challenge shifted from achieving better results in benchmark datasets to producing more

efficient models, improving generalization, and requiring less annotated data during training.

In this sense, Howard et al. [156] explored Neural Architecture Search (NAS) [157] in the

construction of a network named MobileNetV3 that fits mobile phone CPUs. Tan and Le [158]

also used NAS to design a new neural network family named EfficientNets, which are smaller

and faster than traditional approaches.

The Transformer architecture [159] (which will be discussed in Section 4) was a revolution in

natural language processing (NLP). However, the application of attention mechanisms to com-

puter vision was restricted to using it in conjunction with the convolutional layers [160, 161]

or replacing entire convolutional blocks [162]. Following the success of Transformers in NLP,

Dosovitskiy et al. [163] proposed the Visual Transformers using an utterly different approach

from the traditional CNNs. Visual Transformers divides the image into small patches (16× 16

pixels), which are treated equivalently to tokens in NLP, and sequentially feed its embeddings

into the Transformer. The supervised training of Visual Transformers shows that the approach

performs worse when trained with mid-size datasets than the ResNet with similar size. In this

configuration, the model lacks essential characteristics guaranteed by CNNs, such as locality and

invariance to translation. However, when trained with much larger datasets, the visual trans-

formers learn these inductive biases, achieving excellent results in classification benchmarks.
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The models presented here were initially designed for image classification. However, they

have been frequently used for many other tasks as feature extractors over the years. The basic

structure of the CNNs retrieves information from the input data effectively, and the internal

representation is helpful in different ways. Therefore, these architectures are the backbone for

many other image-related networks, as we will see next with image segmentation.

3.2 Image Segmentation

Image recognition represented the main task in computer vision for many years. The develop-

ment of deep convolutional networks drove the field to the frontier of human-level performance.

The natural path would be the proposal of finer-level tasks. Object detection proposes finding

the smallest envelope containing an object in the image and its label. Then, image segmentation

proposes to yield a prediction for every pixel in the image, i.e., each pixel is assigned to the

label of its enclosing object.

Long et al. [164] extended the success of classification networks to segmentation by rein-

terpreting them as fully-convolutional networks (FCNs). By combining deep, coarse, semantic,

and shallow features, the FCNs resolve the dilemma between semantic and location information.

While global information will encode what is in the image, the local information will resolve

where it is. To convert the dense predictions into a probability map at the pixel level, the

FCNs discard the linear classifiers that follow the feature extraction layers and replace them

with convolutions that will restore the original image size giving a probability for each pixel.

The proposal achieved leading results in the PASCAL VOC [165] 2011-2012 benchmark, which

includes 20 object classes.

So far, large annotated datasets have been a strict requirement in deep image processing.

Deep neural networks have millions of parameters to be adjusted, and insufficient data will

inevitably incur overfitting, even with regularization, data augmentation, and dropout. Nev-

ertheless, data availability is a limitation for many fields, including biomedical imaging, which

significantly benefits from automatic image processing. In this regard, Ronneberger et al. [166]

proposed the U-Net, one of the most impactful methods for biomedical image segmentation.

The U-Net is an encoder-decoder architecture inspired by the FCNs literature. The network is

composed of a contracting path that extracts the image features and a symmetric expanding

path that reconstructs the input resolution. The features from the contracting layers are con-

catenated to those from their respective expanding layers as shortcut connections to improve the

localization, forming a U-shaped architecture. This approach requires much fewer data points
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for the training and won the ISBI cell tracking challenge 2015 1 by a large margin. The U-Net

architecture and its variants were very successful in biomedical imaging, basing much research

in the future, even years after its release [167].

Chen et al. [168] introduced the DeepLab family of neural networks by combining fully

connected Conditional Random Fields (CRF) [169] to the output of DCNNs, improving the

overall localization of the objects and producing sharper segmentation results. The system

evolved to DeepLab V2 by incorporating novel techniques: atrous convolutions and atrous

spatial pyramid pooling (ASPP). Atrous convolutions use dilated convolutional kernels, allowing

the control of the resolution at which features are extracted, increasing the network’s receptive

field without increasing computational complexity. Conversely, ASPP permits computing the

convolutions in different resolutions, extracting very localized features and the overall image

context. DeepLab V3 [170] further improved the system by rethinking atrous convolutions at

multiple rates and batch normalization layers that proved essential for the training. In its

last version, DeepLab V3+ [171] extends DeepLab V3 by adding a decoder module to refine

the segmentation at the objects’ boundaries. The DeepLab V3+ model was very successful in

many contexts, achieving the highest performance on PASCAL VOC 2012 and Cityscapes [129]

datasets, as well as proving itself useful for medical image segmentation [172].

He et al. [173] moved further by combining object detection and instance segmentation into

a single network. The Mask R-CNN extends the Faster R-CNN framework [174], designed for

object detection, by outputting a binary segmentation mask together with the existing object

label and bounding box. The idea derives from the multi-task learning framework [175], where

the same backbone is trained to perform multiple related tasks simultaneously. The joint tasks

are expected to produce more general representations that would not be possible within the

single-task environment. The proposed Mask R-CNN is a flexible framework that is easy to

extend and adapt to different tasks, being successfully tested for human pose estimation, and

showed top results in all tracks of the COCO challenges [152], instance segmentation included.

More recently, Kirillov et al. [176] introduced the Segment Anything Model (SAM), following

the trend of foundation models [177] that is revolutionizing AI with zero-shot and few-shot

generalization [91]. SAM implements prompt engineering to generalize to different contexts

and data distributions. The model comprises an image encoder, a prompt encoder, and a

mask decoder. The prompt is a set of keypoints, a bounding box, or a selection mask. A few

experiments with free-text prompts, common in foundation models, were also included. SAM

was released with the SA-1B dataset, containing 11M images and 1B segmentation masks,

1https://biomedicalimaging.org/2015/program/isbi-challenges/

https://biomedicalimaging.org/2015/program/isbi-challenges/


70

configuring the most extensive image segmentation dataset to date.

Kirillov et al. [176] establishes a novel task for image segmentation called the Segment

Anything (SA) task. The SA task takes inspiration from NLP to develop a prompt task for image

segmentation. Given an image and a prompt, the model has to output a valid segmentation

mask, even if the prompt is ambiguous. A valid segmentation mask means a mask corresponding

to at least one object that the prompt could reference, e.g., a t-shirt or the person wearing it.

The SA task substantially differs from the traditional segmentation schemes, which specialize

in a set of predefined classes that can be segmented. The advantage is the simplicity of transfer

to downstream segmentation tasks.

The challenges that concern image segmentation are beyond neural network architecture

design. This branch of the literature is close to saturation since the performance in the most

relevant benchmarks has already surpassed the human level. Still, there are obstacles to over-

come. Image segmentation suffers from substantial inter-annotator disagreement, meaning that

when different annotators are asked to demarcate an object in the same image, their opinions

about which pixels belong to the object might diverge considerably. Ribeiro et al. [178] esti-

mated the Cohen’s Kappa score [179] for three relevant skin lesion segmentation datasets and

found a median value between 0.71 and 0.75. Fortunately, Ribeiro et al. [172] showed how

simple image processing approaches can minimize their impact in training deep learning models

and even improve the segmentation performance concerning the ground truth annotations.

For a further review of the image segmentation state of the art, including architectures,

relevant datasets, and domain adaptation, between other topics, we refer the reader to Mo

et al. [180].

4 Deep Learning Methods for Sequence Learning

Sequence learning refers to techniques designed to deal with length-varying sequential data in

which each sample is correlated with its neighbors. Therefore the outcome for time step t is

conditioned on its context, given by the preceding (t− 1, t− 2, ...) and, possibly, the succeeding

(t+1, t+2, ...) time steps, meaning that the task of a sequence model can be defined by learning

the distribution

P(xt+1 | xt, xt−1, ..., x0)
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in the case where the system is conditioned only on preceding time steps, or

P(xt+1 | xT , ..., xt+3, xt+2, xt, xt−1, xt−2, ..., x0)

in the case where the system is conditioned on preceding and succeeding time steps, where T is

the sequence length.

Sequential data are often modeled as a stochastic process. A stochastic process is a collection

of random variables X = {Xt; t ∈ {1, 2, ..., T}} defined on a probability space taking values in

the state space S.

Markov processes and Markov chains are classes of stochastic processes that satisfy the

limited horizon assumption, i.e., the probability distribution of the next state depends only

in the current state. In general, a kth-order Markov process is a stochastic process in which

the probability distribution of the next state depends on the preceding k states. A stochastic

process is a Markov process if it has the following properties:

1. The number of possible states is finite;

2. It is stationary, meaning that the states change over time but the probabilities governing

the process remains the same;

3. The probability distribution of the following state depends only on the current state, i.e.,

P(Xt+1 = st+1 | Xt = st, Xt−1 = st−1, ..., X0 = s0) = P(Xt+1 = st+1 | Xt = st)

for any t ∈ {1, 2, ..., T} and s ∈ S.

Considering the set of N states S = {s1, s2, ..., SN}, a Markov chain is a process that starts

in a given state si and moves to a given state sj with a transition probability pij [181]. Then,

the transition matrix P ∈ RS×S is defined such that

pi,j = P(Xt+1 = sj | Xt = si)

for all i ∈ S and j ∈ S [182].

The definition of Markov process permits defining the Hidden Markov Models (HMMs).

The HMM is a class of generative probabilistic models that comprises two distinct stochastic

processes: one defines the transitions between the states in the state space and the other defines

the emission of symbols from a vocabulary V which depend only on the current state. The first

is a traditional Markov chain. Therefore, the transition probabilities follow the Markovian
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Figure 3.10: Markov chain with four states.

properties defined before. However, the states are not observable, hence, hidden. Only the

sequences generated by the governing Markov process are visible. The transition and emission

probabilities can be inferred from the sequences [181].

Rabiner and Juang [183] defines the HMM as a quintuple (S,V, π, A,B), where

• S = {s1, s2, ..., sN} is the state space with N states;

• V = {v1, v2, ..., vM} if the vocabulary with M symbols;

• π = {π1, π2, ..., πN} is the initial probability distribution on the states, i.e., πi is the

probability of the system starting at state i;

• A = (aij)i∈S,j∈S is the probability of transitioning from state i to state j;

• B = (bij)i∈V,j∈S is the probability of emitting the symbol j in the state i.

This model is particularly useful when there is no information regarding the states of the

process and only the output sequences are available. Finally, the HMM can be used to gen-

erate a sequence of observations O = {o1, o2, ..., oT } with ot ∈ V using Algorithm 1. HMMs

have applications in several fields such as economics [184], signal processing [185, 186], speech

recognition [187], and speech synthesis [188].

4.1 Recurrent Neural Networks

Unlike feed-forward networks (MLP) and CNNs, recurrent neural networks (RNNs) take variable-

length inputs, meaning that they consider the present data point and its neighbors. It keeps

an internal state that retains contextual information in encoding incoming information. The
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Algorithm 1 Algorithm to generate a sequence of observations with a Hidden Markov Model.
Reproduced from Franzese and Iuliano [181].

1: t← 1
2: Sample π to obtain the initial state S(t = 1) = si
3: while t ≤ T do
4: Sample bik in state S(t) = si to obtain ot = Vk

5: if t ≤ T then
6: Sample aij for the state S(t) = si to obtain the next state S(t+ 1) = sj
7: end if
8: t← t+ 1
9: end while

hidden state can store much information about the past efficiently. It can be computed in com-

plex ways due to the non-linearities in the network design, increasing the representative power

of these models.

The simplest RNN design, named vanilla RNN, uses the input at the current time step xt

and the hidden state in the previous step ht−1 in the computation of the hidden state at the

current step ht. For an input sequence x = (x1, x2, ..., xT ), the RNN updates will be [189]

ht = σh(Whxt + Uhht−1 + bh)

yt = σy(Wyxt + Uyht)

where yt is the output sequence y = (y1, y2, ..., yT ). W , U , and b are the weight matrices and

bias vectors, which are learnable parameters. Alternatively, Jordan [190] proposed an update

rule for the hidden state that is given by

ht = σh(Whxt + Uhyt−1 + bh)

The update rule for the output sequence remains the same as for Elman [189].

In some cases, the future elements of a finite-length sequence are immediately available, and

it might be useful to use this information in the sequence processing. Then, the sequence is

computed in the forward and backward passes. The hidden state in a bidirectional RNN is the

concatenation of the hidden states in the both passes, i.e.,

ht = [hforward t, hbackward t]

The recurrent neural networks are trained with a gradient-based algorithm known as back-

propagation through time (BPTT) [191, 192]. In BPTT, each time step is treated as a new

layer given the previous step’s hidden state, and the gradients are accumulated in the sequence
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computation. The method can be inefficient, with each weight update being computationally

expensive. In this regard, Sutskever [193] proposed a variant of the algorithm named truncated

backpropagation through time (TBPTT).

TBPTT limits the dependency horizon to calculate the weights’ updates. The algorithm

has two hyperparameters: k1 and k2. k1 refers to the number of forward passes before each

weight update, and k2 refers to the number of backward time steps to apply TBPTT. Classical

BPTT is a particular case of TBPTT where k1 and k2 are set to the sequence length.

The crucial issue with vanilla RNNs is learning the long-term relationships due to vanishing

and exploding gradients. The vanishing gradient occurs when the influence of each input step

decay over time, causing the gradients to become very small and destabilizing the weights

update. In contrast, the exploding gradients occur when the influence of each input step grows

exponentially over time, leading to a prohibitive amount of time to learn long-term dependencies,

or it simply does not work. Alternative learning algorithms were proposed to address the

issue [194, 195, 196], but with little success. The most successful alternatives were the design

of gated architectures.

Long Short-Term Memory

Hochreiter and Schmidhuber [197] introduced the Long Short-Term Memory (LSTM) network,

and a few modifications were proposed by other researchers [198, 199]. The LSTM overcomes

vanishing gradients with two main approaches: enforcing constant error flow through the inter-

nal states of the recurrent units and clipping gradients in specific network points that do not

affect long-term learning.

Enforcing constant error flow through the recurrent network has two main issues. The first

case is referred to as input weight conflict. When a recurrent cell j receives an incoming signal

that is controlled by the weight wij , the same weight is responsible for storing specific inputs

and ignoring others, meaning that the same parameter updates the current information and

protects it from irrelevant information in the incoming message, causing a conflicting signal to

wij . Similarly, the second case is referred to output weight conflict. When a recurrent cell j

emits an outgoing signal that is controlled by the weight wjk, the same weight retrieves contents

from the cell j and prevents it from disturbing the upcoming cells, causing a conflicting signal

to wjk.

LSTM addresses the conflicting update signals by adding an input gate and an output gate

that control the information flow within the cell. An additional forget gate controls the infor-

mation retained by the cell. The forward pass of the LSTM cell is defined by the following
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equations [197, 200]

ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh(ct)

where σ is the sigmoid function and ⊙ is element-wise multiplication. W , U , and b are the

weight matrices and bias vectors, which are learnable parameters.

The LSTM unit keeps a memory (ct) at each time step. The output gate (ot) controls the

amount of memory information that is exposed by the unit in the hidden state (ht). The memory

cell is updated considering the cell state in the previous time step (ct−1) and the incoming signal

(c̃t). The forget gate (ft) modulates the amount of past information kept in the memory cell.

In contrast, the input gate (it) controls the amount of new information stored in the cell.

Gated Recurrent Unit

Cho et al. [201] introduced the gated recurrent unit (GRU) – a recurrent neural network with

a similar mechanism to that of the LSTM but with only two gates, not including an engine

to control the memory exposure in the hidden state, i.e., without the output gate. The GRU

forward pass is given by [202]

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1) + bh)

ht = (1− zt)ht−1 + zt ⊙ h̃t

where σ is the sigmoid function and ⊙ is element-wise multiplication. W , U , and b are the

weight matrices and bias vectors, which are learnable parameters.

Unlike the LSTM, the GRU does not keep an explicit memory cell. The hidden state (ht)

will be updated by interpolating the information stored in the previous time step (ht−1) and

the new incoming signal (h̃t) through the update gate (zt). In turn, the reset gate (rt) controls

the information stored from the hidden state in the previous states, allowing it to forget past
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information completely. Due to having only two gates, the GRU has fewer learnable parameters,

making it faster to train and requiring less data.

The vanilla RNNs always update their hidden states by combining the current input and the

hidden state in previous time steps. Contrarily, gated recurrent networks (LSTM and GRU)

add new content to the existing value. This additive mechanism guarantees that the features

are not overwritten, facilitating the information retrieval on distant time steps. Also, it creates

shortcut paths that bypass multiple time steps, allowing a more efficient gradient flow [202].

4.2 Attention Mechanisms

A particular case of sequence models is sequence-to-sequence, which maps an input sequence

x = (x1, x2, ..., xTx) to an output sequence y = (y1, y2, ..., yTy) and the length of the input

Tx may differ from the length of the output Ty, which is the most common case, e.g., neural

machine translation, optical character recognition, speech recognition, acoustic-to-articulatory

inversion.

When the input sequence has the same length as the output sequence, the problem is

simplified due to the exact alignment between the input and the output. The prediction of the

sequence y = (y1, y2, ..., yT ) given the sequence x = (x1, x2, ..., xT ) becomes [203]

ht = f(xt, ht−1)

yt = g(ht)

where f is a recurrent encoder network, e.g., LSTM, GRU, and g is a function usually designed

as a neural network.

When the sequence lengths differ, the alignment issue needs to be considered. The traditional

approach is building an encoder-decoder architecture in which both the encoder and decoder

are RNNs. The encoder’s job will be to project the input sequence into a context vector

that contains the entire sequence context. The decoder’s job will be to construct the output

sequence from this latent representation. The prediction of the sequence y = (y1, y2, ..., yT )
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given the sequence x = (x1, x2, ..., xT ) becomes

henc 0 = 0

henc t = fenc(xt, henc t−1)

c = henc Tx

hdec 0 = c

y0 = VSTART

hdec t = fdec(yt−1, hdec t−1)

yt = g(hdec t)

where fenc and fdec are the recurrent encoder and decoder networks, respectively, c is the

context vector, VSTART is known as start token in the vocabulary V = {v0, v1, ..., vN}, and g is

a decoding function usually designed as a neural network. The decoding network will run an

iterative process until it reaches a token representing the end of the sequence (VEND).

In this design, the recurrent encoder network projects the entire input into a single context

vector, creating an information bottleneck. Even if LSTMs and GRUs substantially advanced

the modeling of long-term dependencies, they still struggle to learn very long sequences. More-

over, this design predicts the time steps sequentially; thus, as soon as the prediction for one

step is wrong, the error is propagated up to the end of the inference procedure.

These drawbacks motivated the development of attention mechanisms. Attention is a natural

concept for humans. When reading a text or listening to a song, we notice different parts of

the sequence at a time. Likewise, when describing a scene, we will give different weights to

each part of the scene for each part of the output description. Attention was first introduced

in machine learning by Bahdanau et al. [204] to solve the issues related to long-term sequence

learning. In attention mechanisms, instead of using only the hidden state at the end of the

sequence, the context vector at each time step is a linear combination of the hidden states of all

time steps in the input sequence. The coefficients of the linear combination are learned along

the optimization process. Then, the context vector at time step t becomes [203]

eij = a(hdec i−1, henc j)

aij =
exp eij∑Tx

k=1 exp(eik)

ct =

Tx∑
j=1

aijhenc j
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where aij is the attention coefficient between the time step i in the input sequence to the time

step j in the output sequence, eij represents the alignment score between the input token xi and

the output token yj , and a is a scoring function. Initially, this scoring function was designed

as the scalar product between the encoder and the decoder’s hidden states. More recently, it is

designed as an MLP.

Attention mechanisms have an utmost importance in sequence learning, impacting several

machine learning tasks [205, 206, 159].

4.3 Self-Attention

The models described so far processes one time step at a time due to the reliance on the

hidden state in previous time steps. This behavior limits the computational efficiency due to

the impossibility of parallelizing the calculations. The alternative was introduced by Vaswani

et al. [159], with an approach that relies only upon self-attention layers without any recurrent

operation.

Contrary to the traditional attention mechanism presented before, which computes an align-

ment score between each step in the input to each step in the output sequence, self-attention

computes alignment scores between different positions i and j in the same sequence. If on the

one hand, the traditional attention mechanism computes the alignment as [203]

eij = a(hdec i, henc j)

where henc and hdec are the encoder and decoder hidden states, respectively, on the other hand,

self-attention computes the alignment as [203]

eij = a(hi, hj)

where h is an input sequence embedding.

Each input step xi might be represented in query, key, or value in self-attention. The

query representation serves the computation of the attention score in all time steps. The key

representation is used to compute the attention score at the current time step. The value

representation goes into the weighted sum that will give the origin to the output. The three are
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Figure 3.11: Computation of the output sequence y from the input sequence x with self-
attention. Reproduced from Maucher [203].

calculated as [203]

qi = Wqxi

ki = Wkxi

vi = Wvxi

where Wq, Wk, and Wv are learnable parameters. Then, the attention scores and the output

sequence are computed as [203]

a′ij =
q⊺i kj√

d

aij =
exp(a′ij)∑T
k=1 exp(a

′
ik)

yi =
∑
j

aijvj

Figure 3.11 illustrates the computation of the output sequence y given the input sequence

x using self-attention. This design has two problems:

1. The query and the key for an input pair (xi, xj) will always be the same, but their

correlation might vary in different sequences;

2. The order in the input sequence is not considered. Therefore, the output embedding will

be the same regardless of the sequence order.
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Vaswani et al. [159] solves the first problem using a mechanism called Multi-Head Attention,

which introduces multiple (Q,K, V ) triplets to learn different possible alignments and correla-

tions between the input tokens. Each self-attention head has its own W r
q , W

r
k , W

r
v matrices

and produces its output sequence yr. The final output sequence will be a combination of each

head’s output.

Vaswani et al. [159] also suggests a solution for the positioning problem, known as positional

encoding. Positional encoding injects information into the input embedding about each step

location in the sequence. The trivial solution would be to use the respective indices; however,

the indices can grow fast in magnitude in long sequences. Normalizing the indices by the

sequence length creates a new problem of sequences being normalized differently.

The original authors designed a clever approach by creating a positional encoding function

that takes as input a sequence x ∈ RT×d where T is the sequence length and d is the embedding

size and produces a vector with same dimensions as the input such that

PE(t, 2i) = sin(
t

10 000
2i
d

)

PE(t, 2i+ 1) = cos(
t

10 000
2i
d

)

where t is the token position in the input, and i is the embedding dimension.

4.4 Transformer

After obtaining the background in attention mechanisms, multi-head attention, and positional

encoding, we can build the Transformer from Vaswani et al. [159]. The Transformer is an

encoder-decoder architecture based solely on attention mechanisms, making it more paralleliz-

able and faster to train, achieving superior quality in sequence learning tasks. Figure 3.12

presents the general architecture of a Transformer.

The encoder takes in the source sequence with positional encoding and comprises a stack

of identical blocks. Each block has a multi-head attention layer followed by a fully-connected

feed-forward network. It also includes residual connections around the two followed by layer

normalization [207]. The decoder takes in the target sequence with positional encoding. The

target is masked so the Transformer can only access the past at each time step. The decoder

is also composed of a stack of identical blocks. Each block has a multi-head attention layer

that learns the target sequence context. Next, a second multi-head attention layer learns the

alignment between the input and the output by using the encoder’s output as the key and value

and the previous layer’s output as the query. All layers include residual connections and are
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Figure 3.12: Transformer architecture. Reproduced from Vaswani et al. [159].

followed by layer normalization.

The Transformer architecture was a paradigm shift between recurrent models to attention-

based architectures. Multi-head attention is used across various research fields, being the base

of the most relevant language models to date, such as BERT [90] and GPT-3 [91]. We refer the

reader to Phuong and Hutter [208] for a formal view of the main algorithms for Transformers.

5 Conclusion

This Chapter overviews deep learning methods that significantly impacted and continue to

drive attention in general machine learning problems, computer vision, and sequence learning.

Furthermore, we discussed a few relevant concepts for any deep learning problem, such as the

backpropagation algorithm and knowledge transfer. Deep learning is a vast research area. We

focused on the most relevant methods to this thesis; therefore, many essential aspects were left

apart. Nevertheless, we took the time to go beyond the scope of the thesis when it was necessary

for completeness. We referred the reader to more extensive texts for further understanding

whenever possible.

Deep learning has achieved state-of-the-art results in various signal processing tasks, sur-

passing human-level in many of them. Nevertheless, many challenges need to be addressed.
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Large models are data-consuming and computationally expensive, contributing to a significant

ecological footprint [209]. Moreover, the predictions of deep neural networks are hard to inter-

pret, raising ethical concerns and questioning if conversational AI systems are reproducing and

reinforcing societal biases [210].

Despite these challenges, deep learning is a rapidly growing field revolutionizing many areas.

In the following Chapters, we will explore the impact of machine learning in articulatory models

of speech and show our contributions to the field.



Chapter 4

Articulatory Synthesis of Speech

What I cannot create, I do not

understand.

Richard Feynman

1 Overview

As illustrated by Figure 4.1, articulatory synthesis is a field that has two primary research lines.

The direct problem, known as articulatory speech synthesis, refers to synthesizing speech sounds

from vocal tract articulations for a sequence of phonemes. Conversely, the inverse problem,

known as acoustic-to-articulatory inversion, refers to estimating vocal tract articulations from

speech acoustics. Articulatory speech synthesis is a challenging task, but it can potentially create

more natural and expressive speech, substantially benefiting speech synthesis and conversational

AI by copying the mechanisms of human speech production. An essential step for articulatory

speech synthesis is the generation of realistic vocal tract articulations, a problem that we refer

to as speech articulations synthesis.

Before deep learning, articulatory speech synthesis was regarded as the most promising

approach to speech synthesis due to the ability to model extraordinary speakers, change the

speaker type, alter the speech quality, and the availability of control parameters to adjust the

speech and understand pronunciation mistakes [7]. The alternative so far was concatenative

speech synthesis, which, even though it did not fulfill all of the desired characteristics of the

epoch, was preferred by the industry due to its simplicity and reasonable quality. Articulatory

speech synthesis is a complex task that requires the integration of elaborate models of the vocal

tract and vocal folds, aero-acoustic simulations, and articulatory control [211], all of which

should work cohesively. The level of realism of each model has a substantial impact on speech
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Figure 4.1: Articulatory speech synthesis and articulatory inversion illustrated.

quality and it was clear that articulatory speech synthesis was the way to achieve the desired

performance. However, the growth of deep learning caused most of the traditional methods

to signal processing to drop in popularity. Speech synthesis research focused on deep neural

networks, which nowadays produce the most realistic speech samples in the literature [9, 212].

End-to-end speech synthesizers do not provide any information regarding the process of

speech production. In this regard, articulatory models still hold many applications related to

speech production. The capacity to understand and recreate articulatory movements from both

the phonetic sequence and the acoustic signal is impactful in the study of speech, with broad

applications to second language (L2) learning and speech therapy.

Describing the vocal tract movements and places of articulation is complex. Even though

speaking is voluntary, it occurs automatically; usually, people are not aware of their articulations

during speech. In this context, Shuster et al. [213] suggests that visual feedback is efficient

to describe articulation details, especially for children. Gibbon and Wood [214] explains the

usage of electropalatography (EPG) to provide feedback on tongue movements. EPG is an

instrumental technique to measure tongue-palatal contact using an artificial palate containing

electrodes activated by touch, providing clinically relevant information such as the place of

articulation, the timing of tongue movements, and coarticulation. The paper presents the case of

a nine-year-old child with abnormal speech who underwent five years of speech therapy without

perceptual improvements. However, after seven once-weekly sessions with visual feedback, the

subject could produce regular EPG patterns. Bacsfalvi and Bernhardt [215] shows the long-
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target utterance. The phoneme-to-articulation system provides the ground truth articulation,
while the acoustic-to-articulation system estimates the speakers articulations.

term outcomes of speech therapy using visual feedback. The work studies the follow-up of

seven adolescents and young adults with hearing impairment after two to four years of speech

therapy with ultrasound and EPG. Seven listening experts judged that five out of seven speakers

maintained or continued to improve their performance post-treatment.

L2 learning can also benefit from articulatory feedback. Suemitsu et al. [216] describes

an EMA-based feedback system to facilitate L2 pronunciation learning. The developed system

presents real-time articulatory positions and their estimated articulatory targets. Speakers were

exposed to feedback, including visual cues, acoustic cues, and visual plus acoustic cues. The

results showed short-term learning effects when the visual cues were included, even without the

acoustic cues. Interestingly, the acoustic cues alone did not positively affect learning.

Similarly to this study, Levitt and Katz [217] used EMA-based visual feedback on the

training of eight American English speakers divided into control and treatment groups to learn

a non-native consonant: Japanese post-alveolar flap. The results suggest that the speakers

produced more extended flaps before the training than native speakers. However, with practice,

the flap duration converged to that of Japanese speakers. Moreover, the EMA feedback benefited

the learning and maintaining the novel articulation.

So far, on the one hand, the visual feedback methods used in speech therapy and L2 learning

focus on the articulations performed by the speaker. However, as explained before, describing
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the target movements is difficult. In this context, the direct phoneme-to-articulation model

illustrates the expected vocal tract shape and the visual cues to articulate each phoneme cor-

rectly. On the other hand, together with the speaker’s natural gestures, phoneme-to-articulation

forms a closed feedback loop (Figure 4.2) that serves as auxiliary practice for L2 students and

speech-impaired patients when they are out of the classroom or physiotherapist’s office, thus

impacting the learning or recovering time. In this sense, Engwall [218] proposed an articulatory

tutor as a computer interface that displays the expected and the user’s realizations of a set

of training sounds in Swedish. The results using ultrasound data show that the virtual tutor

improved the speakers’ pronunciation in short-term experiments.

Nevertheless, medical equipment such as EPG and ultrasound are expensive and uncomfort-

able to wear. From this perspective, the acoustic-to-articulatory inversion model could more

affordably replace these devices by recreating the speaker’s articulatory movements from the

acoustic signal, provided that it has sufficient realism.

2 Literature Review

2.1 Speech Articulation Synthesis

Speech is a dynamic and non-stationary process that requires the interaction of several articu-

lators. It needs the rapid evolution of vocal tract configurations according to the sequence of

phonemes to be articulated [219], and the phoneme articulations are very context-dependent, a

phenomenon known as coarticulation [220]. Coarticulation refers to the influence of neighboring

segments in articulating a given phoneme, making speech more robust to noise due to redun-

dancy since the phonetic information is spread throughout time [221]. Coarticulation exists in

two forms: backward, due to inertia, and forward, due to anticipation [222]. In this context, ar-

ticulatory control models are those that estimate a sequence of control parameters to modulate

the articulatory movements for a phonetic target, typically a series of time-labeled phonemes,

which might include other markers such as prosody, emotional state, and phrasing [221]. Devel-

oping such control models faces many challenges, including the above-mentioned coarticulation

effect, ensuring temporal consistency, and reaching places of articulation.

Several strategies exist to model the vocal tract dynamics during speech. Öhman [220] pre-

sented one of the first, which consists of superimposing the effect of fast constriction consonant

gestures on a sequence of continuous vocalic gestures. A weight describing the degree of re-

sistance of a consonant enables reaching the place and degree of articulation. The numerical

model proposed by Öhman [223] describes the vocal tract shape s(x, t) taking coarticulation
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into account as

s(x, t) = v(x, t) + k(t)(c(x)− v(x, t))wc(x)

where x is the distance from the glottis, and t is the time. v(x, t) is the vowel component, c(x)

is the consonant component, k(t) is a time-varying factor for the excursion of the consonant

gesture, and wc(x) is the coarticulation function. This first model produced vocal tract shapes

consistent with vocal tract measurements on X-ray images of Swedish vowel-consonant-vowel

(VCV) utterances.

Alternatively to Öhman’s model, Cohen and Massaro [222] interpreted coarticulation from

the perspective of phonetic dominance. The authors implemented the Löfqvist’s gestural pro-

duction model [224] using facial articulations for visual speech synthesis with a talking head.

The model considers each articulator’s dominance in realizing specific phonemes and uses the

negative exponential dominance function D = exp(−θτ c). The dominance falls according to the

time distance τ from the center of the speech segment to the power of c; θ acting as a weight.

The algorithm yields the control parameter functions for a phonetic input.

Coker [225] introduced an articulatory model that includes a physical model of the vocal

structure with its spatial constraints, a representation of motion that produces intermediate

shapes during state transitions, an excitation system, including subglottal pressure, vocal fold

angle, and tension, and a controller that emits articulatory commands from a phonetic sequence.

This articulatory model successfully described spatial and temporal characteristics of human

articulation from a phonetic input reasonably matching human movements and generating in-

telligible speech spectrograms from simple inputs in English.

Then, Maeda [226] proposed a linear component articulatory model of the tongue and then

studied the tongue’s compensatory effects [31]. The temporal variations of vocal tract profiles

extracted from cineradiography and labiofilm data were analyzed using factor analysis. It ob-

tained a small set of parameters for each articulator, and the results show that these parameters

can vary significantly for the vowels depending on the phonetic contexts in which they occur.

Moreover, acoustic calculations show that some pairs of articulators can compensate for each

other, producing similar F1-F2 patterns. These compensatory effects are most prominent for

the jaw and dorsal tongue positions on unrounded vowels and jaw and lip aperture on rounded

vowels. The compensatory effects of the jaw are significant since jaw opening strength consid-

erably decreases with aging [30].

Later, Beskow [221] explored Öhman’s and Cohen-Massaro’s approaches for parameterizing

a talking head based on phonetic input. Four models were trained to reproduce the articulatory
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patterns of an actual speaker. Two are Öhman’s look-ahead model and Cohen-Massaro’s time-

locked model, and the remaining two are based on recurrent time-delayed neural networks

trained specifically for real-time applications: a symmetrical neural network and a low-latency

neural network. The objective evaluation, performed over 87 test set utterances, showed that

Cohen-Massaro’s model yields the best matches with the ground truth regarding RMSE and

correlation coefficients.

Furthermore, the symmetrical neural network demonstrated a better correlation than Öhman’s

model and the low-latency neural network. On a perceptual basis, 25 Swedish-speaking evalu-

ators assessed the intelligibility. Together with the four models, the evaluation also included a

rule-based approach and the audio-alone condition. The results show that although all models

improved the intelligibility scores compared to the audio-alone setting, the rule-based procedure

led to the highest intelligibility scores.

The difficulty for articulatory synthesis, both in the direct and inverse path, is the infinity of

vocal tract shapes that can lead to the same acoustics, often referred to as the non-uniqueness

problem [227]. The issue is especially relevant for neural networks since training often leads to

an average solution to minimize a pre-defined cost function, missing relevant extreme positions.

The answer usually requires imposing restrictions, as done by Sorokin et al. [228], which defines

seven kinds of external and internal constraints; the external constraints are related to acoustics

and language, and the internal are related to the vocal tract anatomy. The constraints are 1)

the contractive forces of the muscles, 2) the value range for articulatory parameters, 3) mutual

dependence between articulatory parameters, 4) functional dependency of the vocal tract area

function on the articulatory parameters, 5) vocal tract shape, 6) acoustical deviation between

recorded and synthesized speech, and 7) the complexity of planning and programming motor

commands.

Some of them are unfeasible or too complex to be explored, such as the contractive forces

of the muscles or the value range of articulatory parameters due to the unavailability of data

that might require specialized machinery to collect, e.g., electromyography (EMG). For this

reason, Potard et al. [229] took a different path, incorporating phonetic constraints derived

from the knowledge of phonetics and inversion to Maeda’s articulatory model [226], extensively

exploring its acoustical properties. More elaborated 3D geometric articulatory models were

developed [230] and then adjusted to a given speaker by exploiting a set of 3D static MRI in

parallel with models derived from images.

Altogether, these models allowed a crucial scientific breakthrough in understanding compen-

sation phenomena and its use for articulatory synthesis. However, exploiting these models faces
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a significant difficulty: controlling vocal tract parameters over time. Whether a geometrical or

a statistical model, the vocal tract shape is defined by a vector of parameters, which requires

interpolation over time to obtain its profile at each time step. Additionally, other inputs are

required for the proper synthesis of speech, such as vocal fold vibration – Elie and Laprie [231]

used an improved version of the two-mass model of Ishizaka and Flanagan [232] – and tempo-

ral coordination regarding glottal opening, which plays an essential role for the production of

fricatives [233] and stops. The latter requires excellent coordination between the closure at the

supralaryngeal place of articulation and the glottis opening during the closure, as well as the

rapid opening, which gives rise to the burst.

Articulatory phonology [234] provides a theoretical framework for representing speech us-

ing constricting events (speech gestures), which target sets of articulators, e.g., coordinative

structures. The activation of these articulators corresponds to gestural scores, and their de-

termination is the keystone of implementing task dynamics within articulatory phonology. In

this regard, Nam et al. [235] exploited the XRMB database; however, the limited size explains

why only the gestures’ timing was obtained by warping their onset and offset to minimize the

acoustic distance between natural and synthetic speech. However, adjustments to several other

parameters would have been necessary. Birkholz et al. [236] proposed tenth-order linear systems

to model the dynamics of articulators from a sequence of discrete consonant and vowel targets,

with the expected advantage of better-fitting bell-shaped velocity profiles observed in natural

movements. The parameters were optimized with an EMA database collected for a corpus of

CVCVCVCV occurrences. Despite the excellent fitting of CV sequences, this work raised the

issue of choosing appropriate degrees of freedom and approximating more complex phonetic

contexts.

Elie et al. [237] recently presented preliminary results of an alternative to articulatory

phonology proposed in Turk and Shattuck-Hufnagel [238] with a model that assumes that

context-dependent targets are always reached using principles of optimal control theory (OCT).

The authors define a cost function that takes intelligibility and effort into account and takes

the form

C(θ) = αEE(θ) + αI(1− I(θ))

where θ are learnable parameters, E is a function of effort and I is a function of intelligibility,

αE and αI are hyperparameters. Effort is measured as a function of the mass and velocity of

each articulator. Intelligibility is measured as a function of the recognition probability of the

phoneme and the duration of articulatory trajectories associated with the phoneme. The OCT-
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based model permits balancing the priority between hyper-articulation (high intelligibility) and

hypo-articulation (low effort).

The development of sizeable EMA databases [82] enabled the exploration of phoneme-to-

articulation and articulation-to-acoustics relationships using deep learning, in direct and inverse

paths, inversion being most often the focus. Richmond [239] offered the first results in the field

by using a Mixture Density Network (MDN) [240], which allows estimating the probability

density of the articulatory positions conditioned on acoustic features. Later, Biasutto-Lervat

and Ouni [241] explored EMA to perform phoneme-to-articulatory mapping with a recurrent

neural network, and Biasutto et al. [242] modeled labial coarticulation from the data collected

using 44 sensors attached to an actress’s face.

Csapó [243] explored RT-MRI for acoustic-to-articulatory inversion. Mid-sagittal RT-MRI

images of the vocal tract were estimated using MGC-LSP spectral features as input. They

showed that the LSTMs are the most suitable for the task among the evaluated models: a Fully

Connected DNN (FC-DNN), a CNN, and an LSTM. Even though it is an excellent concept, the

generated images contain several artifacts, and the produced shapes are not sufficiently realistic.

We hypothesize that the model misused the representative capacity to learn features unrelated

to speech production by targeting the complete MRI frame. Since a great portion of the image

is filled with speech-invariant structures, e.g., the patient skull, and only the small region of

the vocal tract correlates with the phonetic input, the model can obtain a tiny reconstruction

error without producing a relevant vocal tract shape. A more efficient approach would require

the model to focus only on the vocal tract, as we did in [18, 20]. In these works, the phoneme-

to-articulatory mapping was done at the articulator contour level, completely ignoring any

speech-invariant region of the image.

Alternatively, instead of explicitly extracting contours from the images, Gosztolya et al.

[244] trained a deep autoencoder network to map articulatory features from tongue ultrasound

images to acoustic spectral features. The autoencoder absorbs only the most essential image

features that directly map to the targets, ignoring speech invariant features and retaining a

compact set of speech parameters. The method produced relevant output, considered natural

to native speakers in a listening test.

Furthermore, Attia and Espy-Wilson [245] developed a masked autoencoder approach based

on bidirectional GRUs to learn articulatory patterns in the XRMB dataset, showing the capacity

of these networks to reconstruct missing data up to three articulators at a time. Reconstruction

of missing data is a typical self-supervision approach that permits learning the correlation of

the input data, thus yielding better coarticulation models.



91

2.2 Articulatory Speech Synthesis

A significant challenge in articulatory research is the simulation of articulatory movements

to synthesize natural and intelligible speech accounting for coarticulation. Synthesizing the

acoustic signal needs solving simplified aero-acoustic equations in the synthetic vocal tract [246],

which require estimating the vocal tract area function A(x, t) at each time step, as done by

Laprie et al. [247].

Laprie et al. [247] explored articulatory copy synthesis with X-ray data. Articulatory copy

synthesis is a branch of articulatory speech synthesis that uses a natural utterance as a reference

and varies the vocal tract control parameters until the resulting speech signal matches the

expected one. The paper performed aerodynamic simulations with the model from Maeda [248]

using target area functions, F0, and transition patterns from one vocal tract area profile to the

next as input data.

The area function describes the vocal tract cross-sectional area at each point along its

extension. It can be estimated using the αβ-model [249]

A(x, t) = αd(x)β

where x is the distance from the glottis, t is the time step, and d is the width of the vocal tract

in the mid-sagittal plane. α and β are adjustable hyperparameters. In turn, the knowledge of

the vocal tract center line is essential to correctly estimate the vocal tract width at the point x.

Many approaches have been offered in this regard [250, 251], most being highly time-consuming.

More recently, Karpinski et al. [23] proposed a neural network-based approach to accelerate this

process, resulting in a solution approximately 20 times faster than the traditional approaches

on average.

Alternatively, Birkholz [211] designed the articulatory speech synthesizer VocalTractLab, an

interactive software to demonstrate the mechanisms of speech production (Figure 4.3). Birkholz

[211] used the tool to synthesize CV syllables with the consonants /b, d, g, l, r, m, n/ together

with eight German vowels producing isolated syllables that 50 German listeners could easily

recognize in a perception test. The VocalTractLab synthesizer was later used by several other

studies related to articulatory speech synthesis [252, 253, 254].

Using this software, Gao et al. [255] explored articulatory copy synthesis using a two-phased

algorithm. The first phase uses a rule-based procedure to create an initial vocal tract position.

Then, in the second phase, a genetic algorithm and a deep neural network optimize the artic-

1https://www.vocaltractlab.de

https://www.vocaltractlab.de
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(a) (b)

Figure 4.3: VocalTractLab interface obtained from the official web page 1.

ulatory parameters to minimize the cosine similarity between the synthetic and the reference

utterances.

A challenge that concerns most articulatory research is the considerable variation between

speakers at the anatomical level, which usually limits approaches to a single speaker. The

speaker-dependent framework has the drawback of lower data availability and the need to adapt

the system for each user. In this regard, Cao et al. [256] explored speaker adaptation on the

articulatory and acoustic levels to perform articulatory-to-speech synthesis using a publicly

available EMA dataset [257]. The basic system design consists of an LSTM that takes as input

the articulatory movements and outputs acoustic features in the form of Mel-spectrograms.

Next, the Waveglow vocoder [258] converts these features into a speech waveform. Acoustic

feature adaptation is performed using voice conversion [259], and articulation adaptation is

done using Procrustes matching [260].

So far, articulatory research has taken mainly three directions: 1) speech articulatory syn-

thesis, 2) articulatory-to-acoustics direct and inverse mapping, and 3) speech motor control. In

contrast, self-supervision has been extensively used in speech research using large datasets to

generate spoken language; however, it lacks clues regarding the speech production process. In

this regard, Georges et al. [261] presents a research line in the intersection between the two,

leveraging self-supervision for acoustic-to-articulatory mapping by vocal imitation. The pro-

posed system is based on three modules: an inverse model (g), that maps acoustic features

(s) to articulatory parameters (a) – at = g(st); a forward model (f), that estimates acous-

tic features (ŝ) from the articulatory parameters – ŝt = f(at); and a pre-trained articulatory

synthesizer (ϕ) that reproduces the acoustic features (s̃) from the articulatory parameters –

s̃t = ϕ(at). The models learn the forward and the inverse articulatory-to-acoustic mapping
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jointly by minimizing the discrepancy between the estimated signal (ŝ) and the input signal

(s) together with the disparity between the estimated signal (ŝ) and the reproduced signal (s̃)

using the accommodation algorithm proposed by Laurent et al. [262]. The results show exciting

directions in using self-supervision for articulatory models, allowing the adaptation of sensory-

motor architectures to actual speech.

3 Evaluation of Articulation Synthesis

The evaluation of vocal tract shape models is mainly challenging due to the nonexistence of

a proper target. Even if articulatory data is available, it is impossible to say that it is the

ground truth. That is because the term ground truth in machine learning usually refers to an

absolute truth – a single target to pursue. Due to the non-uniqueness of speech articulations

and the difficulty to define a ground truth in many medical tasks, it is only possible to say

that the speech instance in hand is one of the possible solutions. The variability in the speech

articulations of a single speaker uttering the same phoneme is called intra-speaker variability.

A second challenge for evaluating articulatory models are the anatomical differences in the

vocal tract and the various speaking strategies between multiple speakers, called inter-speaker

variability. Serrurier et al. [263] characterized speaker-independent articulatory strategies and

inter-speaker variability for eleven French speakers uttering 62 vowels and consonants. The

model was capable of explaining 66% to 69% of the variance. However, the research suggests

that most of the variability is due to anatomical differences instead of speaking strategies.

This problem usually limits the usage of multi-speaker datasets in articulatory synthesis and

articulatory-to-acoustic inversion models, requiring speaker normalization [264, 265].

The typical evaluation strategies are based on point-wise error metrics and correlation co-

efficients. These methods usually fit EMA data well due to the small number of key points

involved. The distance between the target curve u ∈ RN×2 and the predicted curve v ∈ RN×2

is visually represented by Figure 4.4a and is given by

Euclid(u, v) =
1

N

N∑
i=1

d(ui, vi) (3.1)

where d(ui, vj) is the Euclidean distance between points ui and vj .

The disadvantage of this metric is that it requires perfect alignment between the target and

the predictions, which is the case for EMA since the number and the anatomical location of

the sensors is fixed, but does not suit geometrical curves well. Therefore, an alternative is the
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Figure 4.4: Representation of the euclidean and orthogonal distances between curves u and v.

orthogonal distance, which is visually represented by Figure 4.4b and given by

Orthogonal(u, v) =
1

2N

N∑
i=1

(d(ui, v) + d(vi, u)) (3.2)

where d(ui, v) is the orthogonal distance between the point ui and the curve v; likewise, d(vi, u)

is the orthogonal distance between the point vi and the curve u. The difficulty is related to the

extreme points, where the orthogonal projection is undefined. In practice, the closest point is

considered, which is the case of v0 in Figure 4.4b.

Labrunie et al. [266] proposed to use the point-to-closest-point distance (P2CP), visually

represented by Figure 4.5, which is less conservative than the Euclidean distance, to evaluate the

tracking of vocal tract articulators in MRI. The mean point-to-closest-point distance (P2CPmean)

between the target (u ∈ RN×2) and the predicted (v ∈ RN×2) curves is given by

P2CP(i, u, v) =
1

2
( min
j∈{1,2,...,N}

d(vi, uj) + min
j∈{1,2,...,N}

d(ui, vj))

P2CPmean(u, v) =
1

N

N∑
i=1

(P2CP(i, u, v))

where d(ui, vj) is the Euclidean distance between points ui and vj . Alternatively, the root mean

square (RMS) is more sensitive to outliers. In contrast, the mean value is more popular in the

literature [266]. The P2CPRMS is given by

P2CPRMS(u, v) =

√√√√ 1

N

N∑
i=1

(P2CP(i, u, v))2
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(b) Curve v relative to curve u

Figure 4.5: Representation of the P2CP distance between curves u and v.

Point-wise error metrics provides a reasonable measure of the deviations between two curves,

being easy to interpret and compute. They are the gold standard for tasks with a clear objective,

such as articulatory tracking in medical images, which is the case of Labrunie et al. [266] and the

experiments described in Chapter 5. However, they are not optimal for articulatory synthesis

tasks due to the non-uniqueness problem, and it gives equal weight to all the points regardless of

constrictions, which is unrealistic since constricted regions have a decisive impact on acoustics.

In this sense, other metrics should be taken into account. It is essential to evaluate if the

predictions follow a similar dynamic to the targets. These dynamics are usually computed as

correlation coefficients in the x- and y-axis. The difficulty in analyzing correlation coefficients is

understanding when they are relevant, e.g., the pharynx’s x-axis correlations are mostly useless

since they have mainly vertical movements. For this reason, correlation coefficients are most

commonly used with EMA data due to the correspondence of sensors and anatomical points

and their known expected dynamics.

The presented metrics focus on individualized articulators. Nevertheless, it is rather the

interactions between articulators other than their positions alone that allow speech production.

Therefore, an alternative for studying vocal tract dynamics during speech is through their

associated tract variables. Tract variables (TVs) are measurements made at specific points of

the vocal tract, representing the constriction between articulators. Figure 4.6 presents a visual

representation of the TVs, and Table 4.1 presents their names and the associated constrictors.

Speech gestures are intended to reach articulatory goals and are defined in terms of TVs [234].

The TV trajectories must reflect critical articulators. Critical articulators are those whose

positions are imposed to achieve the target place of articulation. They resist context and have

coarticulatory effects on neighboring phones [268]. For example, complete contact between the
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Figure 4.6: Visual representation of the tract variables. Reproduced from Saltzman and Munhall
[267].

Table 4.1: Tract variables and their associated constrictors. Source: Reproduced from Browman
and Goldstein [234]

Tract Variable Constrictors

LP Lip protusion Upper & lower lips, jaw
LA Lip aperture Upper & lower lips, jaw
TTCL Tongue tip constrict location Tongue tip, tongue body, jaw
TTCD Tongue tip constrict degree Tongue tip, tongue body, jaw
TBCL Tongue body constrict location Tongue body, jaw
TBCD Tongue body constrict degree Tongue body, jaw
VEL Velum aperture Velum
GLO Glottal aperture Glottis
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lips is mandatory for labial phonemes, minimizing LA. Similarly, the tongue tip must touch

the alveolar region to produce dental phonemes, minimizing TTCD. For palatals, the tongue

dorsum must approach the palate, minimizing TBCD. For nasal phonemes, the velum lowers

to enable airflow through the nasal cavity, increasing VEL. As an example, Kim et al. [269]

studied the critical and non-critical articulations in emotional speech production, detailing the

effect of emotion in speech articulations on consonant-vowel-consonant utterances.

Directly measuring the TVs is an efficient method to evaluate if the articulatory synthesizer

reaches its articulatory targets. Nevertheless, it can be tricky since separating the cases where

that TV is relevant is necessary. Moreover, there are cases where a constriction without contact

is required. It is the case of fricatives, e.g., the lips for /f/ and the tongue and alveolar region

for /s/, when a small channel without a complete closure is necessary to produce the fricative

noise. The same occurs for some vowels, e.g., /i, y/, which requires a small channel in the front

of the oral cavity. An alternative approach is measuring the correlation coefficients between the

target and the predicted TV trajectories. By doing so, we can directly quantify if the models

produce similar dynamics as those of the target shapes.

Tract variable evaluation suits consonants well. However, it does not fit most vowels, char-

acterized by the resonator’s shape and not by constrictions. A more suited metric for vowels

would be measuring formant frequencies [270] by solving simplified aero-acoustic equations in

the synthetic vocal tract [271], which is computationally expensive. Alternatively, speech syn-

thesis metrics could be used, such as the mean opinion score [272]; however, we incur the same

computational cost of measuring formants. The best synthesizer would be the one that outputs

the most intelligible speech. External evaluators could grade the synthetic vocal tract shapes

and measure the realization of the relevant articulatory features, requiring highly specialized

evaluators familiar with the acoustics and dynamics of the vocal tract. However, these metrics

are very subjective.

Recent research, however, has put significant attention into articulatory feature classification

and its use in understanding the relationship between articulations and acoustics and how neu-

ral networks map the two. Elie et al. [237] used phoneme recognition probability as a measure

of intelligibility in their cost function. Saha et al. [219] trained a Long-term Recurrent Convolu-

tional Network to classify 51 VCV contexts from RT-MRI films from 17 speakers, obtaining an

accuracy of 42%. Van Leeuwen et al. [273] trained a CNN to classify sustained phonemes (vow-

els and fricatives) from static mid-sagittal MRI and obtained an accuracy of 57%. Curiously,

the model learned representations compatible with the vowel chart, showing that although the

accuracy is limited, the model is consistent with the phonetics literature. On the problem of
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evaluating synthesized vocal tract shapes, Engwall [274] used an articulatory classifier as an

evaluation metric for acoustics-to-articulatory inversion of VCV words in Swedish sentences us-

ing linear estimation and neural networks. This last work shows that the articulatory classifier

provides a more intelligible metric than RMS error and correlation coefficients. In Section 5

from Chapter 6, we took a similar direction by using phoneme recognition as a measure of

phonetic information in the mid-sagittal contours.

4 Conclusion

This Chapter contextualized articulatory synthesis of speech, a multi-faced research field. We

defined articulatory speech synthesis as synthesizing speech sounds from vocal tract articula-

tors and its counterpart, acoustic-to-articulatory inversion, as the task of estimating the speech

articulations from an acoustic signal. We also defined our main research topic, speech articu-

lation synthesis from a phonetic sequence (phoneme-to-articulation), as the task of estimating

the vocal tract articulations for each phoneme to be articulated. In this context, phoneme-to-

articulation is a crucial step for articulatory speech synthesis since it maps the input phonetic

sequence to its respective articulations, which can later be used to synthesize speech.

Even though end-to-end models dominate the current speech synthesis research, these ap-

proaches need more links to speech production theory, being insufficient for fields that require a

precise understanding of vocal acoustics and the bio-mechanical processes. We reviewed areas

in which the articulatory speech process can tremendously impact, such as L2 learning and

speech therapy. Then, we discussed many traditional and recent articulatory models with a di-

rect impact in understanding coarticulation, compensatory mechanisms, speech strategies, and

others. Beyond the importance of these models in speech production theory, recent research has

shown how articulatory models can improve speech synthesis and automatic speech recognition,

a potential asset for many industry applications.

Lastly, we discussed the evaluation of speech articulatory models. These models are hard

to measure and compare due to the large inter- and intra-speaker variability, speaker nor-

malization, non-uniqueness, and other challenges. We presented traditional point-wise metrics

helpful for vocal tract segmentation and EMA, tract variables correlation coefficients, which are

useful for evaluating the dynamics and interactions between the articulators. More recently,

articulatory feature classification has concentrated significant attention by enabling a mapping

between articulations and acoustics. The advantage of articulatory feature recognition is the

possibility of assessing speech intelligibility in a fast and computationally cheap manner. Fur-

thermore, with the availability of multi-speaker articulatory data, the classifier can learn a
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speaker-independent recognition function, which is a more efficient metric than RMS error and

correlation coefficients.





Chapter 5

Automatic Segmentation of Vocal

Tract Articulators in RT-MRI

What we observe as material bodies and

forces are nothing but shapes and

variations in the structure of space.

Erwin Schrodinger

1 Overview

As discussed in Chapter 2, the characterization of the complete vocal tract geometry is essential

for many aspects of speech research and RT-MRI is the preferred data modality in the current

literature. Still, the images alone are insufficient for many applications. The reason is that the

exact geometry of the vocal tract air column, determined by contours of the articulators from

the glottis to the lips, is often needed, which is the case of this thesis.

Articulatory synthesis of speech requires characterizing the vocal tract geometry in the level

of speech articulators to study their individual contributions to speech. The segmentation of

vocal tract articulators serves as a pre-processing step on the articulation synthesis pipeline to

obtain the training data for neural networks. In this Chapter, we describe our proposal for

the problem. Our method consists of two parts. The first is the segmentation of individual

articulator borders using a convolutional neural network. The second uses specific rule-based

algorithms to post-process the segmentation masks (network’s outputs) to define the contours

of the articulators.
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2 Literature Review

Raeesy et al. [275] proposed a method of automatic landmark tagging in which a recursive

boundary subdivision algorithm [276] extracts a set of landmarks corresponding to the vocal

tract contours. Then, the oriented active shape model [277] recognizes and delineates the vocal

tract shapes. However, the small dataset (25 images from five speakers) limits the significance

of this work. Alternatively, Silva and Teixeira [278] proposed an unsupervised method for

articulator segmentation based on a modified version of the active appearance model [279].

The technique takes advantage of the low inter-frame differences and is based on 26 vocal

tract landmarks manually marked per frame in a training database of 51 images. Moving

towards machine learning algorithms, Labrunie et al. [266] explored a large RT-MRI corpus in

French for training three supervised segmentation methods: Multiple Linear Regression (using

pixel intensities), a modified version of the Active Shape Model (mASM), and Shape Particle

Filtering (using more elaborate image features). In a leave-one-out cross-validation scheme, the

three methods were compared on several articulators using the point-to-closest-point distance

(P2CP). The results showed that the mASM outperforms the other two for all articulators.

Meanwhile, deep neural networks have become the standard for computer vision and medical

image processing [280]. CA et al. [281] segmented air-tissue boundaries (ATBs) using a Fully

Convolutional Network (FCN) [164] followed by a canny edge detection algorithm to output

smooth and realistic ATBs. Following a strategy similar to Fasel and Berry [282], Jaumard-

Hakoun et al. [283] trained a deep neural network based on the stacking of Restricted Boltzmann

Machines [284] with the contours extracted by an automatic algorithm that uses block-matching

to enforce the frame-to-frame similarity. Eslami et al. [285] explored the segmentation of the

jaw, given by the lower incisor profile, tongue, and vocal tract air cavity on static mid-sagittal

MRI for ten subjects sustaining 62 articulations. The method uses a modified version of the

pix2pix algorithm [286], taking advantage of the conditional generative adversarial networks.

While most of the approaches presented so far focus on a single-frame segmentation, Asa-

diabadi and Erzin [287] proposed a sequence-to-sequence Deep Temporal Regression Network

to estimate the coordinates of the vocal tract curve and the points separating the articulators,

providing individualized contours for each articulator, which is essential to study their con-

tributions during speech. As Hebbar et al. [288] show, using temporal information instead of

making single-frame predictions improves the segmentation when the articulators are in con-

tact. Finally, Isaieva et al. [289] offered an alternative in which only the pixels in the tongue’s

edges are segmented. The method uses a U-Net [166] for image segmentation, followed by a

graph-based algorithm (discussed later in the Chapter) to convert the soft probabilities in the
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network’s output into the tongue contour.

Our state of the art review revealed several gaps in the literature. Few papers provide

individual contours of all non-rigid articulators. Additionally, only some studies demonstrate

generalization across multiple speakers. Finally, none provide an open repository for public

usage and evaluation of the proposed methods. Our work aims to fill these gaps by presenting

a robust speaker-independent approach to segment the vocal tract articulator contours in RT-

MRI movies. We also investigate a speaker adaptation approach to enhance the performance

of a target subject. This work proposes a single deep convolutional neural network (DCNN)

that can automatically trace the boundaries of nine vocal tract articulators in RT-MRI frames.

The DCNN takes RT-MRI frames as input and outputs a probability map over the pixels

belonging to the articulator’s boundaries. Additional post-processing is then used to obtain a

curve giving the exact shape of each articulator. This work is intended for articulatory speech

research, including but not limited to articulation and articulatory speech synthesis. The main

contributions of this work are:

• The coverage of the main non-rigid articulators necessary for speech production;

• The assessment of inter-speaker generalization through leave-one-out cross-validation (LOOCV)

protocol;

• The processing of vast RT-MRI corpora with a low error in comparison to human anno-

tations;

• The public availability of the segmentation system1, allowing it to be tested and audited

by the scientific community.

It is important to highlight that a substantial part of this Chapter is contained in Ribeiro

et al. [19]. We refer the reader to the original work for additional information and supplementary

material.

3 Materials

3.1 Datasets

The corpus for this research comprises two real-time MRI datasets of French speakers, ArtSpeech

Database 1 (ASD1) and ArtSpeech Database 2 (ASD2). The ASD1 is a part of the database

described in Isaieva et al. [87]. While the published database contains ten subjects, only seven

1https://gitlab.inria.fr/multispeech/vt/vt_tracker

https://gitlab.inria.fr/multispeech/vt/vt_tracker
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Table 5.1: Parameters of the MRI acquisition.

Parameter Value

TR 2.22 ms
TE 1.47 ms
FOV 22.0 cm× 22.0 cm
Pixel Spacing 1.62 mm/pixel
Flip Angle 5 degrees
Slice Thickness 8 mm
Num. of Radial Encoding Lines per Frame 9
Pixel Bandwidth 1 670 Hz/pixel
Image Resolution 136× 136 pixels

(denoted in this text as S1-S7) were used in this study because the larynx was not visible in the

images of the other three. The ASD1 contains a total of 365 400 frames. The same protocol was

used to acquire a larger speech corpus with 320 000 frames from a single subject, forming a new

dataset denoted as ASD2. The subject participating in ASD2 acquisition was the last subject S7

from the dataset ASD1. To distinguish these two sets, the data of S7 from ASD1 is denoted as

S7.1, and its data from ASD2 is marked as S7.2.

Both datasets were collected using state-of-the-art protocols and recommendations in the

laboratory IADI at the Centre Hospitalier Régional Universitaire de Nancy, France. All par-

ticipants provided written informed consent, and the data were recorded under the approved

ethical protocol “METHODO” (ClinicalTrials.gov Identifier: NCT02887053). The study was

approved by the institutional ethics review board (CPP EST-III, 08.10.01).

The images were acquired with a Siemens Prisma 3T scanner (Siemens, Erlangen, Germany).

The radial RF-spoiled FLASH sequence [65] was used, with the parameters listed in Table 5.1.

The films were recorded at a frame rate of 50 fps and reconstructed with the algorithm presented

in Uecker et al. [65]. During the acquisitions, the speakers were asked to read out loud sentences

that were presented to them. Each acquisition took about one and a half minutes.

Due to the difficulty of annotating all of the images in the datasets, samples with a good

representation of variability were selected. Initially, this selection was conducted independently

for datasets ASD1 and ASD2, by different annotators, using slightly different methodologies.

Later the collected and annotated data were merged to increase the database. In Isaieva et al.

[289], it was shown that several hundreds of hand-annotated images were sufficient for a good

tongue segmentation. Therefore, sample sizes of both datasets was selected to be of this order.

To ensure the best variability coverage, the images for manual annotation were selected with

the k-means algorithm. For ASD1 a k = 100 was selected. The k-means algorithms was applied

independently for each subject, and only the closest to the cluster centers images were kept,
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Table 5.2: Number of annotated samples per subject per dataset split.

Dataset Subject ID
ID on

Isaieva et al. [87]
Gender Train Images Validation Images Test Images

ASD1

S1 P1 Male 71 9 20
S2 P3 Male 71 9 20
S3 P5 Male 71 9 20
S4 P6 Male 71 9 20
S5 P7 Female 71 9 20
S6 P9 Female 71 9 20
S7.1 P10 Female 50 0 50

ASD2 S7.2 Female 310 54 63

resulting in 700 images in total. For ASD2 the algorithm was applied with k = 10. The clusters

were evenly sampled, resulting in 427 images.

The two datasets were split into train, validation, and test as described in Table 5.2. The

data was divided at the complete sequences level, so all samples from the same acquisition were

placed at the same split. The reason is that adjacent images are very similar, and putting them

in separate sets would introduce bias into the train-test scheme. The validation set for S7.1 is

empty because it is the same subject as S7.2, which already has a sizeable validation set.

3.2 Annotation Procedure

We performed semi-automatic annotations of the articulator boundaries. Our previous seg-

mentation system [20] was used to track the upper vocal tract cavity, including the two lips,

tongue, soft palate, and pharynx. For the laringeal articulators, which were not included in the

previous study, we trained a Mask R-CNN network with the 427 samples from ASD2 described

in Table 5.2 to produce a first guess of the contours for each articulator. The models were then

used to automatically annotate the unlabeled images in the dataset. The automatic annotations

were then carefully reviewed and manually corrected. This semi-automatic procedure allowed

us to complete the annotation protocol with limited resources. The image annotations were

made as follows:

• Arytenoid Cartilage: Through their vocal process, these cartilages are the siege of

the vocal cord attachment to the posterior part of the larynx (represented by the cricoid

cartilage). The complete extension of the arytenoid cartilages were annotated, covering a

vertical range of about two vertebrae (at the level of the 5th/6th cervical vertebrae). The

annotation started at point A in Figure 5.1a and continued to point B, passing through

point C.
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• Epiglottis: The epiglottis is a thin and elongated cartilaginous structure describing the

upper-anterior part of the larynx. Given the reduced thickness of this cartilage, we chose

to annotate the epiglottis center line, starting from the anterior part of the larynx to the

epiglottis posterior extremity. Laprie et al. [290] provided an algorithm for reconstructing

the epiglottis from the center line. The annotation started at point D in Figure 5.1a and

continued to point E.

• Lower Lip: This part begins from the anterior part of the mandible (at the lower bot-

tom of the gingiva vestibule) to the external lip hem. The contour of the lower lip was

annotated from point F to point G in Figure 5.1a.

• Posterior limit of the pharynx: This area was annotated from the posterior part of

the nasal cavity to the cricoid cartilage (behind the arytenoid cartilage). The annotation

started at point H in Figure 5.1a and continued to point A.

• Soft Palate: The soft palate appears as an elongated structure in the mid-sagittal plane,

similar to the epiglottis. For the same reason, we only annotated the center line of this

area, from the posterior limit of the hard palate (motionless) to the posterior extremity of

the moving part. Like the epiglottis, the algorithm from Laprie et al. [290] can reconstruct

the soft palate from the center line. The annotation started at point I in Figure 5.1a and

continued to point J.

• Tongue: The complete extension of the tongue (apex, dorsal part, and root) was an-

notated, starting at the frenulum on the mouth floor and ending the tongue at the root

below the hyoid bone. The annotation started at point K in Figure 5.1a and continued

to point L. The sublingual cavity was marked when visible. Since the MRI is 8 mm thick

and the frame rate is low compared to the speed of tongue movements, the uncertainty

related to the partial volume effect [75] and blurring is specially marked in the tongue tip

and dorsum. In both cases, we decided to annotate the most visible contour.

• Thyroid Cartilage: This part was annotated as a closed contour, starting at the anterior

limit of the epiglottis (at the level of the 3rd/4th cervical vertebrae) and ending below the

vocal folds (approximately at the level of the 7th cervical vertebrae). This annotation is

drawn as the oval shape passing through points M, D, and N in Figure 5.1a. The position of

the thyroid cartilage is more important than its precise shape for confirming the position

of the glottis.

• Upper Lip: This upper part was drawn from the anterior nasal spine (at the upper
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bottom of the gingiva vestibule) to the external upper lip hem (“cupid’s bow”). The

complete contour of the upper lip was annotated from point O to point P in Figure 5.1a.

• Vocal Folds: The vocal folds are not entirely visible in the MRI frame. Only the negative

of the glottis is observable between the thyroid cartilage and the arytenoid cartilage. The

vocal folds are marked as an oval shape passing through D and C in Figure 5.1a.

Figure 5.1 shows an MRI frame with the landmarks used to reproduce the annotation

procedure and three MRI samples with superimposed annotations for each articulator. A dental

surgeon with seven years of experience validated the annotation procedure.

4 Methods

The strategy used to track the shapes of the articulators is similar to that used by Isaieva et al.

[289] for the tongue. It comprises two phases:

1. A deep convolutional neural network (DCNN) is trained to estimate the probability that

a pixel belongs to the articulator’s contour;

2. A post-processing algorithm is applied to the network’s outputs (segmentation mask) to

construct the curve describing the articulator’s shape. The nature of the algorithm and

its hyperparameters depend on the articulator.

Section 4.1 describes the learning strategy used in the first phase, while Section 4.2 describes

the algorithms applied to each articulator. The final contours are regularized using b-splines to

smooth the output and match the target and prediction lengths2.

4.1 Articulator Boundary Segmentation

Unlike Isaieva et al. [289], who used the U-Net [166], we chose to work with the Mask R-

CNN [173]. Mask R-CNN is a simple and flexible framework for object instance segmentation.

It is lightweight, easy to train, and can be applied to different tasks. These characteristics, as

well as the availability of a pre-trained implementation3 on standard deep learning libraries,

make Mask R-CNN one of the preferred methods for medical image segmentation.

The Mask R-CNN architecture is advantageous for our problem because it performs three

tasks simultaneously: object detection, classification, and segmentation. This approach allows

2The b-spline regularization function can be found at https://gitlab.inria.fr/multispeech/vt/vt_tools/
-/blob/main/vt_tools/bs_regularization.py

3https://pytorch.org/vision/main/models/generated/torchvision.models.detection.maskrcnn_

resnet50_fpn.html

https://gitlab.inria.fr/multispeech/vt/vt_tools/-/blob/main/vt_tools/bs_regularization.py
https://gitlab.inria.fr/multispeech/vt/vt_tools/-/blob/main/vt_tools/bs_regularization.py
https://pytorch.org/vision/main/models/generated/torchvision.models.detection.maskrcnn_resnet50_fpn.html
https://pytorch.org/vision/main/models/generated/torchvision.models.detection.maskrcnn_resnet50_fpn.html
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Figure 5.1: Landmarks in a mid-sagittal MRI sample and annotation samples exemplifying the
procedure. (a) The mid-sagittal MRI sample shows the landmarks that were used to guide the
annotation procedure described in Section 3.2. (b-d) The annotation samples show how the
articulators were annotated in the MRI sample.
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localizing the region of interest before segmenting it, which avoids spurious predictions in image

regions that do not correspond to the articulator.

The models were pre-trained on the COCO train2017 dataset [152], which contains RGB

images of common objects. However, the MRI frames are grayscale. Therefore, we used the

temporal dimension to build a more contextualized input. The network’s inputs were formed

by putting frames t− 1, t, and t+ 1 in the first (R), second (G), and third (B) input channels,

respectively.

4.2 Post-processing Algorithms

The post-processing of the network’s outputs depends on the articulator. For each articulator,

a specific algorithm is chosen, including additional sub-steps and adjustments of several hyper-

parameters. This section explains the two approaches developed according to the articulator

contour’s closed or open nature.

For articulators that were annotated as closed contours, we utilize the largest contiguous

ISO-valued contour (Section 4.2). For open contours, we utilize a graph-based algorithm (Sec-

tion 4.2). Figure 5.2 presents one segmentation mask sample for each articulator, illustrating

the inputs of the post-processing algorithms.

Largest Contiguous ISO-valued Contour

For articulators annotated as closed contours, the contour can be found by calculating the

largest contiguous ISO-valued contour in the probability map. We used the find contours

function4 from scikit-image [291], which uses the marching squares method to compute the

ISO-valued contours of the input 2D array for a particular level value. In our case, the level

value is 1, obtained after thresholding the probability map. Figure 5.3 presents each step of the

algorithm on a custom synthetic image.

We use this method for the thyroid cartilage and vocal folds, with thresholds of 0.7 and

0.8 for the pixel probability, respectively. In rare cases, the network may output two separate

blobs for one articulator, producing two non-contiguous contours. In these cases, we choose to

keep the largest area as the true contour.

4https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html

https://scikit-image.org/docs/0.8.0/api/skimage.measure.find_contours.html
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(a) Arytenoid Cartilage (b) Epiglottis (c) Lower Lip

(d) Pharynx (e) Soft Palate Center Line (f) Thyroid Cartilage

(g) Tongue (h) Upper Lip (i) Vocal Folds

Figure 5.2: Illustration of the segmentation mask for each articulator in one MRI sample. The
segmentation masks are superimposed on the MRI sample with very low transparency to help
the reader localize the articulator in the MRI. These segmentation masks are the inputs of the
post-processing algorithms.
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(a) Probability map
input with multiple
blobs

(b) Probability map af-
ter thresholding

(c) ISO-valued con-
tours for both blobs

(d) Contour with the
largest area

Figure 5.3: Steps of the largest contiguous ISO-valued contour algorithm for an illustrative
artificial input.

Graph-based Algorithm

The open contours can be found by expressing the non-zero pixels in the segmentation mask as

graph nodes and connecting the extremities using Dijkstra’s shortest path algorithm [292]. We

use this algorithm for the arytenoid cartilage, epiglottis center line, lower and upper

lips, pharynx, soft palate center line, and tongue. The method requires a particular set

of steps to be performed, which depends on the articulator.

The first step is thresholding to limit the number of nodes in the graph, which is done in

two ways. In the first, the pixel value is given by

pnew =


0, if porig ≤ T

1, otherwise

In the second, the pixel value is given by

pnew =


0, if porig ≤ T

porig, otherwise

where porig is the original pixel value, pnew is the updated pixel value, and T is the threshold

value.

The second step is skeletonization performed using the scikit-image’s skeletonize func-

tion5. Then, the centers of the non-zero pixels in the image are converted to the nodes of a

graph, and the edges between the nodes are created based on the Euclidean distance between

5https://scikit-image.org/docs/stable/api/skimage.morphology.html#skimage.morphology.

skeletonize

https://scikit-image.org/docs/stable/api/skimage.morphology.html#skimage.morphology.skeletonize
https://scikit-image.org/docs/stable/api/skimage.morphology.html#skimage.morphology.skeletonize
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Table 5.3: Steps and parameters of the graph-based algorithm for all articulators.

Articulator
Threshold Value

(Type)
Skeletonize

Extremities
Choice

Ang. Distance
Reference

α β

Arytenoid
Cartilage

0.2
(0/1)

Yes
Angular
distance

CM’s
y-coordinate

+
Right-most
x-coordinate

1 10

Epiglottis
0.3
(0/1)

Yes
Vertical

extremities
– 1 10

Lower Lip
0.4
(0/1)

Yes
Angular
distance

CM 1 10

Pharynx
0.3
(0/1)

Yes
Vertical

extremities
– 1 10

Soft Palate
Center Line

0.1
(0/1)

Yes
Horizontal
extremities

– 1 10

Tongue
0.2

(0/porig)
No

Angular
distance

CM 10−7 1

Upper Lip
0.4
(0/1)

Yes
Angular
distance

CM 1 10

them and the probability of each node. The edge weight is given by

wij = α · d(i, j) + β · (1− pj)

where d(i, j) is the Euclidean distance between node i and node j and pj is the probability of

node j. An edge is set between two nodes if the infinity norm between them is lower than two

pixels.

The next step is determining the contour extremities using one of three methods: the greatest

angular distance, vertical, or horizontal extremities. The graph’s center of mass (CM) is used

as the reference for the greatest angular distance in all cases except for the arytenoid cartilage.

For the arytenoid cartilage, only the CM’s y-coordinate is used, and the x-coordinate is set to

the right-most edge of the image. The two points with the greatest angular distance from the

reference are selected as the extremities.

For the vertical extremities, the top-most and the bottom-most nodes in the graph are used,

while for the horizontal extremities, the left-most and the right-most nodes in the graph are

used. Finally, Diijkstra’s algorithm is used to connect the two extremities, and the final contour

is output. Table 5.3 summarizes the specific steps and parameters of the graph-based algorithm

for each articulator. Figure 5.4 illustrates the algorithm’s main steps for the tongue.
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(a) Tongue’s probability map
after thresholding

(b) Graph nodes and contour’s
extremities given by the maxi-
mum angular distance

(c) Dijkstra’s shortest path

Figure 5.4: Steps of the graph-based algorithm for an illustrative artificial input.

Summary

In summary, the main aspects of the proposed method are:

• Inputs: The input is the concatenation of MRI frames t−1, t, and t+1 forming an RGB

input image;

• Mask R-CNN: The segmentation network used in the first phase. The network outputs

a bounding box, a segmentation mask and a class probability for each articulator;

• Post-processing: The post-processing converts the segmentation masks produced by the

Mask R-CNN into a curve describing the articulators’ geometry. The largest ISO-valued

contour was used for articulators with closed contours and the graph-based approach was

used for the others.

• Outputs: The output of the system is the geometry of each articulator given by a vector

yi ∈ RNsamples×2,∀i ∈ {1, ..., Nart}, where Nsamples is the number of samples in the curve

and Nart is the number of articulators. In our case, Nsamples = 50 and Nart = 9.

4.3 Experimental Design

We aimed to develop a speaker-independent method to accurately and individually track non-

rigid vocal tract articulators in RT-MRI movies. We also wanted to investigate how speaker

adaptation could improve the method’s performance for a new subject.

We carried out two experiments. The first was a LOOCV protocol. We removed subject

S7.1/S7.2 from the test phase in the LOOCV pipeline because they account for the most images

in the database, but still kept it for training. Leaving S7.1 and S7.2 out would have resulted
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Table 5.4: Hyperparameters of the articulator segmentation model. This table summarizes the
hyperparameters used to train and evaluate the segmentation network. The second part of the
table refers to the speaker adaptation experiments.

Hyperparameter Value

Batch size 8
Early-Stopping Patience 20
Weight Decay 10−3

Sched. Max. Learning Rate 10−4

Sched. Base Learning Rate 2× 10−6

Total Number of Network Parameters 44 401 393

Adapt. Num. Epochs. 20
Adapt. Learning Rate. 10−5

Adapt. Sched. Red. Factor 10
Adapt. Sched. Patience 10

in a significant reduction in the training set, making it difficult to determine the cause of the

performance improvement. From the remaining six subjects, we isolated one at a time and

trained a model with the remaining subjects. We then tested the model on the test set of the

left-out subjects. We also tested all of the LOOCV models on S7.1 and S7.2 test sets.

In the second experiment, we fine-tuned each initially trained model with its respective left-

out subject. We did this using 10, 40, and all the training samples. We then evaluated the

improvement in performance on the test sets of the left-out subject and the test sets of subjects

S7.1 and S7.2. Ideally, the adapted model would improve its performance for the target subject

while keeping the performance of the previously seen subjects constant.

The models were trained using the Adam optimizer [293] with the cyclic learning rate

scheduling policy [108]. The training continued for the speaker adaptation experiments us-

ing the reduce learning rate on plateau scheduling policy. The hyperparameters of the training

are given in Table 5.4. The machine learning code was developed using PyTorch [294]. The

complete code for reproducing our results and using our software is available in our public

repositories67.

4.4 Evaluation

The performance of our models was evaluated using two main metrics: the root mean square

(RMS) value of the point-to-closest-point distance (P2CP) described in Chapter 4 and the Jac-

card index. The P2CP is unsuitable for closed curves, so the Jaccard index was also used. The

6https://github.com/vribeiro1/vocal-tract-seg
7https://gitlab.inria.fr/multispeech/vt/vt_tracker

https://github.com/vribeiro1/vocal-tract-seg
https://gitlab.inria.fr/multispeech/vt/vt_tracker
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Jaccard index, also known as Intersection-over-Union (IoU), is calculated by finding the inter-

section and union of the areas delimited by the target and the predicted contours. The Jaccard

index ranges from 0 to 1, with 1 indicating a perfect match.

The inter-subject reproducibility of the results was assessed with the one-way ANOVA test

for subjects S1-S6 and the unpaired t-test for subjects S7.1 and S7.2. p < 0.05 was considered

significant.

5 Results

Generally, the proposed method demonstrated a good segmentation quality. Typical examples

of the predicted and ground truth contours are shown in Figure 5.5 and Figure 5.6. They are

representative of the overall method’s performance, showing that it is adequate for different

speakers and vocal tract positions. Figure 5.6 shows cases of swallowing (non-speech), which

led to the worst results. It should be noted that we excluded swallowing images from the test

set, and these cases are only discussed for completeness. Table 5.5 shows the P2CPRMS values for

each of illustrative case in millimeters.

Table 5.6 and Table 5.7 show the results in the LOOCV. Figure 5.7 and Figure 5.9a present

the results in the form of boxplots to facilitate results visualization and comparison. The

statistical test (one-way ANOVA) shows that the results were significantly different for all

articulators except the soft palate center line. However, a visual analysis of Figure 5.7 and

Figure 5.9a demonstrates that the low p-values are usually explained by a single outlier.

Table 5.8, Figure 5.8, and Figure 5.9b show the results when the models are evaluated on

the S7.1 and S7.2 test sets. The statistical test demonstrates a significant difference between

the two sets for all articulators except the lower lip and the soft palate center line. However,

the differences between the mean P2CPRMS distances tend to remain less than 0.5 mm for most

articulators. The articulators that do not satisfy this condition are epiglottis, thyroid cartilage,

and vocal folds.

The LOOCV results show that the overall performance has an error of less than 2.2 mm,

slightly above one pixel (1.36 pixel). The segmentation of articulators annotated as closed

contours (thyroid cartilage and vocal folds) provide a Jaccard index of about 60% in both cases.

As pointed out, the tables and figures do not include swallowing cases.

Figure 5.10 and Figure 5.11 show the impact of speaker adaptation on model performance,

and the x-axis represents the size of the adaptation training set; the y-axis represents the

P2CPRMS/Jaccard index value on the test set. The colored lines represent the results for each

test subject, the pink (and blue) solid lines represent the mean metric, and the shaded regions
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Model Prediction Ground Truth

Arytenoid Cartilage Epiglottis Lower Lip Pharynx Soft Palate

Tongue Thyroid Cartilage Upper Lip Vocal Folds

Target subject: S1
Left-out subject: S1

(a)

Target subject: S2
Left-out subject: S2

(b)

Target subject: S3
Left-out subject: S3

(c)

Target subject: S4
Left-out subject: S4

(d)

Target subject: S5
Left-out subject: S5

(e)

Target subject: S6
Left-out subject: S6

(f)

Target subject: S7.1
Left-out subject: S4

(g)

Target subject: S7.2
Left-out subject: S2

(h)

Figure 5.5: MRI samples of each subject superimposed with the predicted and ground truth
contours after b-spline regularization. The text in the images indicates the ID of the subject in
the image (target subject) and the ID of the left-out subject during the training of the model
that produced that output. This figure shows how the predicted contours compare to the ground
truth contours for each subject. The left-out subject is the subject that was not used to train
the model.
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Model Prediction Ground Truth

Arytenoid Cartilage Epiglottis Lower Lip Pharynx Soft Palate

Tongue Thyroid Cartilage Upper Lip Vocal Folds

Target subject: S4
Left-out subject: S4

(a)

Target subject: S5
Left-out subject: S5

(b)

Target subject: S5
Left-out subject: S5

(c)

Figure 5.6: MRI samples of swallowing superimposed with the predicted and ground truth
contours after b-spline regularization. The text in the images indicates the ID of the subject in
the image (target subject) and the ID of the left-out subject during the training of the model
that produced that output. The figure shows how the predicted contours compare to the ground
truth contours for each subject. The left-out subject is the subject that was not used to train
the model. Note that for (c), the model completely missed the tongue.

represent one standard deviation. It can be seen that in case of initially poor inter-subject

prediction, the P2CPRMS curve rapidly decreases after retraining with a small amount of additional

images (usually ten).
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Table 5.8: The mean ± standard deviation of the P2CPRMS and Jaccard index (for closed contours
only) when the models were tested with S7.1 and S7.2. The symbol † indicates cases in which
the model missed that articulator in one or more images. The p-values were calculated using
the unpaired t-test using the test subjects as the treatment variable.

P2CPRMS (mm) Jaccard index

Articulator S7.1 S7.2 p-value S7.1 S7.2 p-value

Arytenoid
Cartilage

1.09± 0.03 1.20± 0.06 1.3× 10−4

Epiglottis 1.53± 0.08 0.93± 0.08 10−64

Lower Lip 0.80± 0.03 0.79± 0.03 † 0.35
Pharynx 0.84± 0.03 0.78± 0.02 10−3

Soft Palate
Center line

0.94± 0.02 0.96± 0.05 0.59

Thyroid
Cartilage

2.09± 0.05 1.03± 0.03 10−158 0.53± 0.01 0.69± 0.01 10−74

Tongue 1.86± 0.06 1.39± 0.12 10−51

Upper Lip 0.86± 0.04 0.94± 0.02 1.8× 10−3

Vocal Folds 1.64± 0.05 0.99± 0.03 10−65 0.58± 0.01 0.74± 0.01 10−59

mean± std 1.29± 0.49 1.00± 0.19 0.1161

6 Discussion

Our models can segment non-rigid vocal tract articulators with low error and outstanding

generalization across subjects, as demonstrated by the LOOCV protocol. Although formal

statistical analysis shows significant inter-subject variations of the mean annotation error, these

differences are much less than the pixel size.

The model generally performs poorly for the sublingual cavity, as observed in Figure B.2a

and Figure 5.5e. It happens because the shortest path algorithm can sometimes miss accentu-

ated curvatures. Nevertheless, the acoustic relevance of the sublingual cavity is minor compared

to the tongue tip and tongue dorsum.

Another notable case is Figure 5.5e, where the tongue deviation is close to 3 mm. In

this case, the divergence is due to a possible inconsistency in the annotation decision. The

annotator selected a more internal part of the tongue body, while the model delineated a more

external contour. These discrepancies are usual in machine learning. The performance metrics

are calculated in reference to a human annotator. However, even if different specialists provide

their annotations for the same images, the annotations are likely to differ. This effect is known as

inter-annotator agreement, a common phenomenon in image segmentation tasks [178]. A slight

deviation from the ground truth is acceptable, but the hypothetical inter-annotator agreement

should constrain it. Otherwise, the model would copy a specific specialist instead of learning the
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Figure 5.7: Distribution of the P2CPRMS error (in millimeters) for each articulator for each left-
out subject in the LOOCV setting. Similar information is also shown in Table 5.6. Note the
different y-scales when comparing the plots.



122

S7.1 S7.2

arytenoid cartila
ge

epiglottis
lower lip

pharynx

soft palate midline

thyroid cartila
ge

tongue
upper lip

vocal folds

1

2

3

4

5

p2
cp

 rm
s (

m
m

)

Figure 5.8: Distribution of the P2CPRMS error (in millimeters) for each articulator for S7.1 and
S7.2. Similar information is also shown in Table 5.8. Note the y-scales when comparing with
Figure 5.7.
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(b) S7.1 & S7.2

Figure 5.9: Distribution of the Jaccard index for the articulators with closed contours (a) for
each left-out subject and (b) for S7.1 and S7.2. Similar information is also shown in Table 5.8.
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(i) Vocal Folds

Figure 5.10: P2CPRMS and Jaccard index (only for closed contours) calculated on the test sets of
the left-out subjects for each articulator when the models were adapted with varying numbers
of training samples of the left-out subject.
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Figure 5.11: P2CPRMS and Jaccard index (only for closed contours) calculated on the test sets
of S7.1 and S7.2 for each articulator when the models were adapted with a varying number of
training samples of the left-out subject.
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task. However, an extended analysis of the vocal tract segmentation inter-annotator agreement

is beyond the scope of this research.

The predictions for the laringeal articulators (arytenoid cartilage, epiglottis, thyroid carti-

lage, and vocal folds) are adequate, which is encouraging since this is a challenging region for

human annotators. The most significant errors for the epiglottis occur at its extremities, as

seen in Figure 5.5f. The prediction is correctly located for the thyroid cartilage and the vocal

folds, and the errors are related to the size of the articulator; the algorithm usually yields a

larger area. However, for articulatory speech research, the correct location of vocal folds is

much more important than the precise contour since it is the source of the voice and directly

impacts synthesis and control models.

For S5, the head is slightly rotated, as the subject seems to be leaning upwards, contrary

to the others leaning forward. This case differs from a simple image rotation, which data

augmentation could easily handle. The head rotation produces a slight deformation in the

larynx, which is more pronounced in the thyroid cartilage and vocal folds region. For this

reason, the model struggles to accurately predict their shapes when subject S5 is left out of the

training set (Table 5.7). On the other hand, when the model is adapted to it, the performance

improvement is very noticeable.

The case when the contour’s extremities accounts for the largest errors also affects other ar-

ticulators such as the tongue, pharynx, and soft palate. The contour’s extremities also accounts

for the largest errors for other articulators such as the tongue, pharynx, and soft palate. A few

cases for the tongue are visible in Figure B.2c and Figure 5.5e. Nevertheless, the difference is

less acoustically relevant for most of these articulators since they occur in a region that does

not alter the final vocal tract air column.

Figure 5.6 shows a few cases of swallowing, which led to the worst results. Swallowing is

an essential human process but is also one of the most difficult to annotate and predict. It is

because the epiglottis lies over the arytenoid cartilage during swallowing, covering the glottis

and preventing anything but air from entering the lungs. It creates constrictions between the

articulators and the bolus, removing air-tissue boundaries. As a result, the articulators are

almost indistinguishable, making the annotation difficult even for specialists.

Not surprisingly, the model provides the most unreliable results for swallowing cases. The

tongue and the epiglottis errors are around 3 mm, and the Jaccard index for the vocal folds

and thyroid cartilage is low. In some cases, the model even misses some articulators completely.

It would have been possible to obtain better results for swallowing by significantly increasing

the number of swallowing examples in the training set. However, this is not the focus of our
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work, which is concerned with articulatory speech research. We leave improving the results for

swallowing for future work.

We compared our work to that of Labrunie et al. [266] due to the similarities we found

between them. Labrunie et al. [266] used RT-MRI data and considered most of the articulators

as we did, except for the thyroid cartilage and vocal folds. However, the two studies had

substantial differences in the annotation decisions. Labrunie et al. [266] did not include the

sublingual cavity, starting the tongue annotation from the tip, and they chose to annotate the

contour of the epiglottis and soft palate, not only the center lines. Most importantly, the two

studies used different test sets. Despite these differences, the similarities between the two studies

allow for some level of comparison. For a fair benchmark, it is desirable to have access to the

same images and a standardized annotation procedure.

On average, our results are close to the Multiple Linear Regression (MLR) while under per-

forming compared to the best approach – the mASM. However, our method has the advantage

of being speaker-independent by design, while the method proposed by Labrunie et al. [266] is

subject-specific, limiting the impact on the community.

The second experiment evaluated the adaptation to an unseen speaker. The results from

Figure 5.10 suggest that there is a significant improvement in the results with only ten additional

training images when the model initially performed poorly, such as the vocal folds and thyroid

cartilage for S5 and the pharynx for S6, even though on average the gain, if any, is minimal. The

result indicates that adaptation is beneficial when the target subject has a more pronounced

anatomical or postural differences from the training subjects. The adaptation gain is lower for

cases where the target subject is standardized, such as the same head position.

During the speaker adaptation procedure, the model could specialize in the new subject and

“forget” the previous ones. This phenomenon is known in the machine learning literature as

catastrophic forgetting. It could be avoided using elastic weight consolidation [295]. However,

the results of the second experiment shown in Figure 5.11 suggest that the model does not forget

the previous subjects. It is likely because the speaker adaptation procedure was conservative,

using a lower learning rate for a few epochs, preventing the model from diverging but also

limiting the improvement.

It is essential to note that our method has limitations. The main one is not including

rigid articulators, such as the jaw, upper incisor, and hard palate. These articulators are

indispensable for speech production but are challenging to segment in MRI because bones are

indistinguishable from the air in the image, so we can only observe the teeth root trace, which

contains a small amount of water. Since these articulators are rigid, the problem is restricted
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(a) (b) (c)

Figure 5.12: MRI samples that illustrate cases where the model failed to predict the contact
between articulators. The images include the original MRI sample, the predicted segmentation
mask, and the contour without b-split regularization.

to finding their location in the image. Therefore, an alternative for tracking these articulators

would be sliding a pre-computed mask in the image and retrieving the image region with the

highest correlation with the mask. However, it can be laborious because of the requirement for

manual adjustments in the tracking.

Furthermore, it is difficult to track contacts between articulators, especially for the tongue

tip, as evidenced by the samples in Figure 5.12, which shows MRI samples with a segmentation

mask overlay and the shortest path contour without b-split regularization. Although the most

extreme point in the tongue tip might have a higher probability of belonging to the contour, it

corresponds to a much longer path, which the shortest path algorithm rejects; thus, the contact

between the tongue tip and the alveolar region is missed.

Finally, another limitation concerns the RT-MRI frame rate. Our method was trained with

a frame rate of 50 frames per second, meaning that each frame corresponds to 20 milliseconds

of speech. However, the constriction interval associated with some phonemes, such as /l/, have

a shorter duration than the MRI frame, which means the image will be blurred, and the true

articulator position will be uncertain. In these cases, the performance of the model may be

lower.

7 Conclusions

In this study, we proposed and assessed a method for segmenting the vocal tract shape in

real-time MRI using a deep learning approach. We also proposed a transfer learning method

operating with a small dataset (in comparison to other deep learning applications). The method

accurately estimated the shapes of nine non-rigid articulators that delimit the vocal tract and

are essential for articulatory speech synthesis. We also showed that the model can generalize
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to new subjects. If the position of a new subject significantly differs from the previous set, the

model may need to be adapted to the target subject. Nevertheless, we showed that only a small

amount of data (about ten images) is required for a good adaptation.

Our recent research in articulatory synthesis of speech has shown that the method is helpful

for this task [18, 20, 17]. We have developed a Python package that makes exploring RT-MRI

data to investigate speech production easy. Finally, ASD1 images are already available [87]. We

plan to publicly release the ASD2 dataset together with the manual and automatic annotations

for both datasets.

We hope this work will be helpful for other researchers interested in investigating speech

production using RT-MRI data.



Chapter 6

Automatic Synthesis of the Vocal

Tract Shape

Machines take me by surprise with great

frequency.

Alan Turing

1 Overview

Many challenges surround articulatory synthesis, particularly the non-uniqueness problem,

speaker normalization, and critical articulation. Non-uniqueness means many different vocal

tract configurations may result in the same spectral characteristics. Speaker normalization is

related to the anatomical differences between speakers, which require the normalization of the

vocal tract to generate relevant shapes for any speaker. The difficulty is to separate the variabil-

ity related to speech strategy vs. vocal tract anatomy. Articulatory phonology [234] defines the

speaker’s gestures and gesture scores to produce each phoneme. In this context, an articulator

is critical for a particular phoneme if a specific place of articulation is required for its utterance.

If an articulator is not critical, it is said to be free for that phoneme.

The importance of these issues is that they pose fundamental challenges to synthesizing a

phonetically relevant vocal tract shape. For example, suppose the synthesized shape for /p/

lacks lip closure; in this case, the phonetic relevance is lost even if many other metrics are

within the expected boundaries. Conversely, when comparing two different speakers, point-wise

measurements are likely to fail even if the correct places of articulation are satisfied.

This Chapter describes our approach to speech articulation synthesis and evaluation. Since

all experiments are based on the same dataset, with the same training, validation, and test
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splits, we dedicate Section 2 to describe the data and the splitting strategy.

Section 3 and Section 4 describe our approach to vocal tract shape synthesis from the

sequence of phonemes to be articulated. The first proposes a recurrent neural network (RNN)

that directly predicts each vocal tract articulator individually from the sequence of phonemes to

be articulated, and the second proposes a method that uses an autoencoder-based articulatory

model as an auxiliary articulatory model to the main phoneme-to-articulation RNN. Section 5

focuses on the problem of evaluating synthetic vocal tract shapes. We propose a phoneme

recognition task to measure the phonetic information retained by the mid-sagittal contours and

reconstructed by the synthesizers presented in Section 3 and Section 4. Section 6 gives our final

remarks in the Chapter.

A substantial part of this work was presented in Ribeiro et al. [18], Ribeiro et al. [20], and

Ribeiro and Laprie [17], but using different datasets in most of them. The code to reproduce

our experiments is available at our repository1.

2 Dataset

2.1 Data Description

We used the dataset referred to as ArtSpeech Database 2 (ASD2) in Chapter 5. Section 3.1

from Chapter 5 details the acquisition protocol, parameters, and recording conditions. In this

Chapter, we use the entire dataset available at the time of writing. It contains the data of one

female native French speaker articulating 1 629 utterances in French. The dataset accounts for 2

hours and 27 minutes of speech, with 439 018 MRI frames after excluding non-speech intervals.

The MRI and audio recordings were collected in the laboratory IADI at the Centre Hospitalier

Régional Universitaire de Nancy, France, and the participant provided written informed consent.

The exact time intervals between phones and speech gestures is critical for our work; thus,

alignment errors substantially impact the results. Therefore, the phonetic alignment was ob-

tained using forced alignment and then manually corrected by an expert in phonetics (the

thesis supervisor). The phonetic vocabulary comprises 50 tokens, from which 42 are phonetic

and eight are non-phonetic, representing unknown, blank, silence tokens, and noises after /i,

e, u, y, ø/at the end of the sentence. Plosives are characterized by two phases: a closure and

a burst. Therefore, the phonemes /p, b, t, k/ 2 are represented by one token for each phase.

Table 6.1 details the vocabulary.

1https://github.com/vribeiro1/artspeech
2/b/ was split into closure and burst for completeness since the separation is less relevant for this phoneme.

https://github.com/vribeiro1/artspeech
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Table 6.1: Description of the vocabulary used in the articulation synthesis experiments. Tokens
are sorted by their order of appearance in the vocabulary.

Token IPA Symbol Meaning

BLANK Blank token
UNK Unknown token
# Silence
2 ø ø
2h Noise after ø
9 œ œ
@ @ @
E E E

E/ E/e
Intermediate sound
between E and e

H 4 4
J ñ ñ
N N N
O O O

O/ o/O
Intermediate sound
between o and O

R r r
S S S

U~/ Ẽ/œ̃
Intermediate sound
between Ẽ and œ̃

Z Z Z
a a a
a~ ã ã
b b Burst of b
b cl b Closure of b
d d Burst of d
d cl d Closure of d

Token IPA Symbol Meaning

e e e
eh Noise after e
f f f
g g g
i i i
ih Noise after i
j j j
k k Burst of k
k cl k Closure of k
l l l
m m m
n n n
o o o
o~ õ õ
p p Burst of p
p cl p Closure of p
s s s
t t Burst of t
t cl t Closure of t
u i u
uh Noise after u
v v v
w w w
y y y
yh Noise after y
z z z

The model from Chapter 5 was used to track the articulators’ contours for all images in

the database. We manually corrected the few cases where the model missed some articulators.

Data cleaning and correction are laborious, requiring many hours of validation and manual

annotation. Therefore, we restricted the efforts to the cases that concern our research. Since

non-speech articulations (silence and swallowing) are out of the scope of this thesis, we did not

correct any of these cases.

2.2 Upper and Lower Incisors

In Chapter 2, we discussed the challenges of using MRI data. One of the most significant

problems is the difficulty of tracking rigid structures, such as bones, due to the low T2*. Never-

theless, the hard palate line, the upper incisor, and the mandible are of utmost importance for

the completeness of the vocal tract modeling for a few reasons. First, model training requires a
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coordinate system with a fixed reference. The reference should be located at a rigid structure

in the patient’s head to correct for head movement and be equally sensitive to translations as

the rest of the vocal tract. The upper incisor matches these constraints, being a good reference.

Second, constrictions between the tongue tip and the alveolar region are crucial for artic-

ulating labio-dental phonemes. Likewise, constrictions between the tongue dorsum and the

mouth ceiling are necessary for articulating palatal phonemes. Third, the jaw is the primary

articulation since it corresponds to the mouth opening. In addition, the relationship between

mouth opening and tongue elevation is relevant for studying compensatory aspects of speech.

Nevertheless, the mandible is not fully visible in the mid-sagittal plane, and the lower incisor’s

root is the single visible part. Due to its oval appearance in the MRI films, the exact jaw posi-

tion is uncertain since this articulator is capable of angular, lateral, and protrusive movements.

The tracking system presented in Chapter 5 does not include the upper and lower incisors,

the mandible, and the hard palate line. Since these articulators are rigid, we can assume a

fixed shape, limiting the task of locating them in the MRI. The upper incisor and the hard

palate, referred to simply as the upper incisor, were merged. Likewise, the lower incisor and

the jawline, referred to simply as the lower incisor, were combined. Figure 6.1b illustrates the

case for one MRI frame.

A region of interest (RoI) is annotated for a single frame (Figure 6.1a) per subject to localize

these structures. Then, the RoI is slid through the target image for the subsequent frames,

and the structural similarity index is computed [296]; the position with maximal similarity

is selected, and the rigid body is drawn on that location. A search window in the image is

predefined to reduce the space for locating each RoI. During data acquisition, the subject’s head

was fixed; therefore, we assume that any rotation in the upper part of the skull is negligible.

However, the same is not valid for the mandible. To account for the jaw angular displacement,

we generate rotated versions of the lower incisor’s RoI and compute the similarity metric with

these augmented masks. We select the position and angle pair that maximizes the similarity.

For each frame, we allow a maximum variation of 2◦ in the angle from the previous frame.

With this method, we finalize the tracking of the complete vocal tract shape, from the glottis

to the lips, for use in the articulatory synthesis of speech. The advantage of this procedure is

that it does not demand training and requires a single weak annotation per speaker. Since the

upper incisor procedure depends only on the current frame, it is very efficient and amenable to

parallel processing of different frames. However, it this is not true for the lower incisor. Since

we restrict the angular variation between subsequent frames, we must process the films in order.
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(a) (b)

Figure 6.1: (a) RoIs for each rigid articulator and (b) lower incisor representing the jaw line
and upper incisor representing the alveolar region plus the hard palate line.

Arytenoid Cartilage Epiglottis Lower Incisor Lower Lip

Pharynx Soft Palate Center Line Thyroid Cartilage Tongue

Upper Incisor Upper Lip Vocal Folds

(a) (b) (c)

Figure 6.2: MRI samples with superposed articulators.

2.3 Further Considerations

Figure 6.2 presents three dataset samples illustrating all articulators. Due to the impossibility

of double-checking and correcting all of the automatic annotations present in the final dataset,

it is important to stress that the data might contain annotation errors, which should be in the

order of magnitude presented in the results section of Chapter 5. These errors occur mainly

when two articulators are in contact and can compromise the quality of the vocal tract synthesis.

The data were randomly split into train, validation, and test sets. Table 6.2 presents the

overall statistics for each split. As in Chapter 5, the splits were done at the level of acquisitions

(80 seconds per acquisition) since they might contain repetitions of the same utterance with

similar articulatory manners.
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Table 6.2: Summary of the train, validation and test splits for articulatory synthesis.

Number of Utterances Number of MRI frames Duration (minutes)

Train 1 399 372 004 125.1
Validation 116 33 615 11.3
Test 114 33 399 11.2

Total 1 629 439 018 147.6

3 Model-Free Vocal Tract Shape Synthesis from the Sequence

of Phonemes to be Articulated

Synthesizing the vocal tract shape during speech requires modeling the interaction of several

articulators while accounting for the context surrounding each phoneme production. Typically,

coarticulation takes two forms: backward, due to inertia, and forward, due to anticipation.

Nevertheless, as described by the Cohen and Massaro [222], the coarticulatory dominance of

a phoneme exponentially decays with time. Therefore, the short-term dependencies in the

phonetic sequence are expected to be much more relevant than long-term ones.

From the neural network designs assessed in Chapter 3, recurrent architectures are the most

appropriate to model the problem due to their simplicity and lower data needs. Therefore, in

this Section, we designed a speech articulation synthesizer for a single speaker based on an RNN

capable of estimating the vocal tract shape for a sequence of phonemes to be articulated. We

reference this method as model-free, meaning that it does not rely on an articulatory model of the

vocal tract in opposition to our next approach. We compare our results with a simple baseline

based on the average vocal tract shape per phoneme, which processes phonemes independently

from the context.

The designed approach produces realistic articulations, outperforming the baseline in all

considered metrics.

3.1 Methods

Phoneme-Wise Mean Contour

It is not easy to find a baseline to compare our work with because few studies have used the

same data and protocols as we have. Most research uses EMA data [241]. Csapó [243] used

MRI but targeted the entire frame instead of individualized contours. Therefore, we proposed

a simple method called phoneme-wise mean contour as a baseline inspired by concatenative

speech synthesis.

The phoneme-wise mean contour works in two phases. In the first phase, it constructs a
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Figure 6.3: Model-Free Phoneme-to-Articulation network.

lookup table that maps each occurrence of a phoneme to its respective contour. The second

phase takes an input sequence and searches the lookup table for each phoneme. The average

shape for each articulator is then computed. It is essential to notice that this method does not

involve learning or optimizing weights, as the lookup table only contains pre-computed data.

Even though it is straightforward, this method does not consider the surrounding phonemes, so

it does not account for coarticulation.

Model-Free Phoneme-to-Articulation

The proposed method is based on the architecture presented in Figure 6.3. The input of the

network is the sequence of phonemes to be articulated with the phone interval duration provided

by forced alignment encoded as token repetitions such that each token in the input sequence

has the exact duration of its corresponding frame in the MRI sequence, i.e., with a 50 fps, each

MRI frame corresponds to 20 ms of speech; hence, a phoneme with t ms is repeated t
20 times

in the input sequence.

The encoder network contains two layers of bidirectional GRU (BiGRU). The hidden state

at each time step inputs a linear layer with ReLU activation, forming the network’s latent space.

The decoder network is referred to as the Articulator Predictor Block. It contains one block per

articulator, which only shares the latent space, i.e., the Articulator Predictor blocks do not share

weights. The Articulator Predictors are composed of a sequence of layer normalization [207]
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Table 6.3: Hyperparameters of the model-free phoneme-to-articulation training. The second
part of table refers to the neural network hyperparameters.

Hyperparameter Value

Nart 10
Nsamples 50
Batch size 12
Early-Stopping Patience 30
Weight Decay 10−5

Learning Rate (LR) 10−4

LR Sched. Patience 10
Sched. Reduction Factor 10

Embedding Dim. 64
RNN Hidden Size 128
RNN Dropout 0.1
Predictor Hidden size 256
Total Number of Network Parameters 1 739 496

and linear layers with ReLU activation and output the x- and y-coordinates for each sample in

the articulator curve at each time step.

The models were trained to minimize the Euclidean distance between the predicted and the

target curves. Even though each Articulator Predictor block makes predictions independently,

they are trained jointly. The loss function is given by

L(p, p̂) = 1

T ×Nart ×Nsamples

T∑
t=1

Nart∑
i=1

Nsamples∑
j=1

d(pt,i,j , p̂t,i,j)

where T is the sequence length obtained after encoding the phoneme duration, p and p̂ are

the ground truth and the predicted curves, respectively, Nart is the number of articulators,

Nsamples is the number of samples in each curve, and d is the Euclidean distance. The models

were trained with the Adam optimizer [293] with the reduce learning rate on plateau scheduling

policy 3. Our hyperparameters choices are detailed in Table 6.3.

In summary, the main aspects of the proposed method are:

• Inputs: The input to the network is a sequence of phonemes represented by its index in

a vocabulary (x ∈ RT ). The phoneme duration is encoded by repeating the token in the

input sequence to match the number of MRI frames corresponding to that phoneme.

• Bidirectional GRU: As explained in Chapter 3, a bidirectional GRU is a recurrent

neural network that processes information in both directions. It allows the model to learn

3https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
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contextual dependencies in the input sequence.

• Latent space: The latent space is a high-dimensional representation of the input se-

quence. This representation is internally shared between all Articulator Predictor blocks.

• Articulator Predictor Block: The architecture detailed in Figure 6.3 is used to gen-

erate the articulator curves. The blocks only share the input latent space.

• Outputs: The network outputs are the contours of each articulator at each time step.

The final output is y ∈ RT×Nart×2×Nsamples .

Evaluation Strategy

The evaluation uses two main metrics: the reconstruction error measured in terms of the

P2CPmean and the correlation coefficients between four tract variable trajectories – both metrics

were detailed in Chapter 4. We are most concerned with the TVs LA, TTCD, TBCD, and VEL

(see Table 4.1). The measurements were done in millimeters to facilitate result interpretation.

3.2 Results

Table 6.4 and Figure 6.4 present the P2CPmean for each articulator. The first presents the mean

and standard deviations, while the latter presents the distributions as box plots to facilitate

comparison. The same presentation is done for Pearson’s correlation for the four TVs, depicted

in Table 6.5 and Figure 6.5.

To permit better comprehension of the results, Figure 6.6 and Figure 6.7 present the TV

trajectories and the corresponding tokens for two utterances in the test set. The tokens can be

mapped to the phonemes using Table 6.1. Figure 6.6 presents each TV’s trajectories produced by

the model-free phoneme-to-articulation and ground truth TV trajectories. Additional samples

are available in Section 1 of Appendix A. Furthermore, Figure 6.7 presents the ground truth,

the baseline, and the trajectories of the proposed method for another utterance in the test set.

The green arrows in Figure 6.6 indicate cases in which an articulatory target was reached, and

the red arrows indicate the opposite.

3.3 Discussion

The two evaluation strategies (individual contours and TVs) show that the proposed model

outperforms the baseline by a large margin for all articulators and all tract variables. The base-

line system is a simplistic method that only considers the average articulation of each phoneme,

missing vital information regarding coarticulation. For that reason, we observe monotonous TV
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Table 6.4: Reconstruction error (P2CPmean) for the phoneme-wise mean contour and the model-
free phoneme-to-articulation. The best results are marked in bold.

Articulator Method P2CPmean

Arytenoid Cartilage
Phon.-Wise Mean Contour 2.20± 1.00
Model-Free Phon.-to-Art. 1.77± 0.86

Epiglottis Center Line
Phon.-Wise Mean Contour 2.12± 1.39
Model-Free Phon.-to-Art. 1.55± 1.10

Lower Incisor
Phon.-Wise Mean Contour 1.81± 1.02
Model-Free Phon.-to-Art. 1.46± 0.78

Lower Lip
Phon.-Wise Mean Contour 1.82± 0.85
Model-Free Phon.-to-Art. 1.39± 0.67

Pharynx
Phon.-Wise Mean Contour 1.14± 0.50
Model-Free Phon.-to-Art. 1.07± 0.46

Soft Palate Center Line
Phon.-Wise Mean Contour 1.76± 1.00
Model-Free Phon.-to-Art. 1.48± 0.84

Thyroid Cartilage
Phon.-Wise Mean Contour 1.74± 0.91
Model-Free Phon.-to-Art. 1.53± 0.87

Tongue
Phon.-Wise Mean Contour 3.32± 1.37
Model-Free Phon.-to-Art. 2.19± 0.88

Upper Lip
Phon.-Wise Mean Contour 1.03± 0.39
Model-Free Phon.-to-Art. 0.90± 0.34

Vocal Folds
Phon.-Wise Mean Contour 2.45± 1.02
Model-Free Phon.-to-Art. 1.88± 1.02
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Figure 6.4: Box plots of the reconstruction error for the phoneme-wise mean contour and model-
free phoneme-to-articulation for each articulator.
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Table 6.5: Correlations between the target and predicted tract variables trajectories. The best
results are marked in bold.

Tract Valiable Method Correlation Min Correlation Max correlation

LA
Phon.-Wise Mean Contour 0.46± 0.16 −0.40 0.73
Model-Free Phon.-to-Art. 0.80± 0.16 −0.41 0.95

TTCD
Phon.-Wise Mean Contour 0.54± 0.13 0.01 0.80
Model-Free Phon.-to-Art. 0.86± 0.07 0.66 0.97

TBCD
Phon.-Wise Mean Contour 0.51± 0.15 −0.17 0.74
Model-Free Phon.-to-Art. 0.82± 0.08 0.44 0.94

VEL
Phon.-Wise Mean Contour 0.53± 0.12 0.18 0.78
Model-Free Phon.-to-Art. 0.74± 0.18 −1.00 0.90

Phoneme-Wise Mean Contour

Model-Free Phoneme-to-Articulation
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Figure 6.5: Box plots of the TVs correlations for the phoneme-wise mean contour and model-
free phoneme-to-articulation.
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Predicted

Target

(a) LA

(b) TTCD

(c) TBCD

(d) VEL

Figure 6.6: Model-free phoneme-to-articulation and ground truth TV trajectories for the ut-
terance “J’avais un espoir qui était en même temps une crainte, il me semblait impossible que
le terrible abordage du radeau n’eût pas anéanti.” Each image displays one tract variable. The
corresponding phonemes are displayed in the top of the image. Green and red arrows indicate
whether the model reaches an articulatory target or not, respectively. The alternating colors
mark the onset and offset of each phoneme.
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(a) Ground Truth
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(b) Phoneme-Wise Mean Contour
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(c) Model-Free Phoneme-to-Articulation

Figure 6.7: Ground truth, phoneme-wise mean contour prediction, and model-free phoneme-to-
articulation prediction for the utterance “Vous serez seul, sous l’ouaill d’un Dieu qui lit au plus
profond des cours, mais vous ne serez ni perdu, ni ignoré comme le fut le capitaine Grant.” The
corresponding phonemes are displayed in the top of the image. The alternating colors mark the
onset and offset of each phoneme.
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trajectories, with significant steps between phonemes, looking unrealistic regarding the target

curve. Better results would be expected by considering n-grams instead of single tokens in the

computation of the average contour.

Conversely, the model-free phoneme-to-articulation can produce realistic vocal tract shapes

that follow the expected trajectories correctly. From Table 6.5, we can observe that even in the

worst executions of TTCD and TBCD, the model performs considerably well, with a reasonable

correlation between the target and the predicted trajectories. The worst executions of LA and

VEL are not good. However, it is essential to highlight that negative correlations occur only for

one utterance for LA and one for VEL. The second worst execution of LA has a correlation of

0.03. Nevertheless, Figure 6.5 shows that these are outliers; when they are discarded, the worst

execution of LA has a correlation of 0.51, and the worst execution of VEL has a correlation of

0.52. Both are at the same level as the other two TVs.

These results align with those from Ribeiro et al. [20], which showed that these negative

correlations typically occur when the vocal tract variable is free in the execution of the entire

phonetic sequence. Likewise, the current model presents more minor errors for the individual

contours and higher correlations for the TV trajectories than the ones given in Ribeiro et al.

[20]. The difference is probably linked to the datasets. The current dataset is more extensive

than that of Ribeiro et al. [20], which has only 38 minutes of speech. Moreover, the present

corpus has a broader phonetic context and longer utterances, contributing to phonetically rich

synthesis.

Figure 6.6 and Figure 6.7 shows that for many cases where a TV is critical for a phoneme,

the model-free phoneme-to-articulation yields vocal tract shapes with the expected dynamics,

i.e., we observe the speech gestures such as lip closure (LA) for labials, tongue-dental closure

(TTCD) for dentals, tongue-palatal closure (TBCD) for palatals, and velum opening (VEL) for

nasals. However, the model tends to under-articulate, meaning it is rare to observe the critical

places of articulation being fully reached. The arrows in Figure 6.6 and Figure 6.7 illustrate

some of these cases. Interestingly, in many cases, the speaker also under-articulates, which is

indicated by the dashed line. Thus, even though the model does not reach some articulatory

targets, it copies the speaker’s movements.

The problem of missing articulatory targets has two sources. The first is related to tracking

errors that are especially prominent during contact. Tracking errors have a minimal impact

when they occur in a region of a large cross-sectional area; however, they heavily affect the

acoustics when they happen at a constricted point. Figure 6.7a shows that the data collected

from the MRI, used as ground truth, lacks full constrictions for TTCD and TBCD, delivering
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better performance only for LA. Tracking errors will invariably affect the system’s performance

when they occur often and systematically.

The second is related to the model design. The network is constructed to output at each

time step t one curve ŷt,i ∈ R2×50 for each articulator i, and the learning objective is simply a

reconstruction error concerning the true curve yt,i, obtained from the tracking algorithm. The

model will try to copy the ground truth, but some images will miss the contact as discussed in

Chapter 5. The resulting model will output an average shape that finds a compromise between

cases with and without the contact. Nothing in the learning objective enforces that the places

of articulation are reached; we assume they will be learned from the data. However, given the

network design, it is hard to introduce a minimization of the tract variables since the model

can easily find a shortcut in the cost function by dedicating a few points in the prediction to

satisfy that condition and use the remaining to minimize the reconstruction error, producing

an unrealistic vocal tract shape.

4 Autoencoder-Based Vocal Tract Shape Synthesis from the

Sequence of Phonemes to be Articulated

Section 3 discussed the challenges of modelling the vocal tract shape and how it impacts reaching

some articulatory targets during speech. Estimating all of the points in the articulators’ curves

gives too much freedom to the model. The samples are highly correlated, and the model

does not provide phonetically relevant parameters to control the vocal tract shape, making it

impractical to analyze the impact that changes in the vocal tract have in the synthesized speech.

Most importantly, enforcing critical articulator constraints is difficult. For instance, imposing

contact between the tongue and the palate leads to artificial and inconsistent shapes. The

model can easily find shortcuts to optimize the cost function without meaningfully improving

the model.

In this Section, we divided the problem into two parts. Initially, an autoencoder was trained

to learn a lower-dimensional latent representation of each vocal tract articulator. An ideal

representation should be compact and composed of a few independent parameters meaningfully

controlling the shapes of the articulators. This autoencoder can be interpreted as an articulatory

model whose latent space represents a set of articulatory control parameters.

Then, a recurrent neural network was trained to estimate these lower dimensional articula-

tory parameters for each phoneme in the input sequence. The pre-trained autoencoder serves

as an auxiliary network to train the phoneme-to-articulation model. In this phase, the autoen-
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coder’s weights were frozen and not updated; hence, the autoencoder does not learn.

Let x ∈ RT be the input phonetic sequence and y ∈ RT×Nart×2×Nsamples be the associated vocal

tract shapes, where T is the temporal dimension, Nart is the number of considered articulators,

and Nsamples is the number of samples in the articulators curve. On the one hand, our previous

approach was searching for the function f such that

ŷ = f(x)

which minimizes d(y, ŷ), where d is the point-wise Euclidean distance. On the other hand, the

proposed approach searches for the functions genc, gdec and h such that

z = genc(y)

ẑ = h(x)

ŷ = gdec(ẑ)

and d1(z, ẑ) and d2(y, ŷ) are minimal, where d1 is the L2 norm in the latent space and d2 is the

point-wise Euclidean distance in the output space. Here, genc and gdec are the autoencoder’s en-

coder and decoder networks, respectively, and h is a recurrent encoder-decoder network similar

to the one from Section 3. Since the recurrent encoder-decoder network is limited to exploring

the autoencoder’s latent space, it cannot use shortcuts that spuriously minimize the loss func-

tion. Thus, we can impose constraints to the reconstructed shapes that enforce a phonetically

relevant synthesis.

4.1 Methods

Autoencoder

Chapter 3 defined the autoencoder as a non-linear method for efficiently learning how to encode

information. Compared to the PCA, the autoencoder has a higher representational power due

to the non-linearities between its layers; nevertheless, it lacks essential characteristics such as

orthogonality, statistical independence, and ranked components. Training a PCA-like autoen-

coder requires the minimization of the covariance in the latent space and a specific algorithm

to rank the components by explained variance [116].

Our autoencoder mimics a few of these ideas while keeping the non-linear structure. Still,

we cover only a few of these requirements. The encoder and the decoder presented in Figure 6.8

are formed by a sequence of linear layers with ReLU activation followed by an output linear
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Figure 6.8: Autoencoder architecture.

layer. The hyperbolic tangent activation between the encoder and the decoder guarantees that

the components are in the interval [−1, 1], restricting the search space and improving model

stability. We have one autoencoder model for each articulator, which does not share weights.

The autoencoder is trained using a loss function given by

z = tanh(genc(x))

x̂ = gdec(z)

Lrec(x, x̂) = L2(x, x̂)

Lcov(z) = cov(z)2 − diag(cov(z)2)

L(y, ŷ, z) = β1Lrec(y, ŷ) + β2Lcov(z)

where x and x̂ represent the original and the reconstructed inputs, respectively, and z represents

the autoencoder’s latent space after the tanh, which we often refer to as articulatory parameters

or autoencoder’s components in this text. The autoencoder’s latent space is represented by Z,

the ith component is denoted by zi and dim Z denotes the dimensionality of Z.

The primary metric for the autoencoder training is the reconstruction error, measured by

the point-to-closest-point distance (P2CPmean), presented in Chapter 4. A secondary evaluation

method analyzes the impact of each component in the reconstructions. We vary each component

from −1 to 1 while keeping all remaining components at value zero. Although this evaluation is

subjective, it helps to determine whether the latent space meaningfully controls the vocal tract

shape and can be used as an articulatory model.

The autoencoder was trained with the Adam optimizer [293] with the reduce learning rate

on plateau scheduling policy. Even though we have one autoencoder for each articulator, and

these networks do not share weights, they are trained jointly. Our hyperparameters choices are
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Table 6.6: Hyperparameters of the autoencoder model training.

Hyperparameter Value

Nart 10
Nsamples 50
Batch size 12
Early-Stopping Patience 30
Weight Decay 10−5

Learning Rate (LR) 10−4

LR Sched. Patience 10
Sched. Reduction Factor 10
β1 1.0
β2 0.1
Total Number of Network Parameters 129 285

detailed in Table 6.6. In addition, we fit a PCA model from the scikit-learn library4 to the

same data and with the same number of components per articulator as our model as a baseline.

Autoencoder-Based Phoneme-to-Articulation

Figure 6.9 presents the architecture for the autoencoder-based phoneme-to-articulation network.

Using the autoencoder as an intermediate articulatory model does not significantly change the

architecture of the phoneme-to-articulation model from Section 3. The BiGRU model is still

used, and the Articulatory Parameters Predictor is similar to the Articulator Predictor, except

for the output layer. The main modification is that the phoneme-to-articulation model from

Section 3 had one Articulator Predictor block per articulator, while the current model has only

one Articulatory Parameters Predictor block that outputs the entire autoencoder’s latent space.

The input to the network is the phonetic sequence with phoneme duration encoded as rep-

etitions. The network outputs the vocal tract parameters for each time step. The predicted

vocal tract shape is obtained by passing the predicted parameters to the decoder. The objec-

tive function is the most significant change compared to the model-free approach. The trivial

objective function is the articulatory parameter prediction error, which we refer to as latent loss

(Llatent). Then, we can impose a cost on the vocal tract reconstruction error. We refer to this

cost function as reconstruction loss (Lrec).

However, the novelty is using the tract variables and phoneme-wise places of articulation

to encourage the model to produce phonetically relevant vocal tract shapes. This cost is built

by computing the minimal distance between articulator pairs for each time step. However, not

all pairs are pertinent for all time steps. A binary mask is necessary to determine when each

4https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html
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articulator pair is relevant for executing the phoneme in that time step. We refer to this loss

function as critical loss (Lcritical).

The complete loss function for training the autoencoder-based phoneme-to-articulation is

given by

z = tanh(genc(y))

ẑ = tanh(h(x))

ŷ = gdec(z)

Llatent(z, ẑ) = L2(z, ẑ)

Lrec(y, ŷ) = L2(y, ŷ)

mindist(u, v) = min
i∈{1,2,...,N}
j∈{1,2,...,N}

d(ui, vj)

Lcritical(ŷ) = M

mindist t ∈ {1,2,...,T}
i ∈ {1,2,...,Nart}
j ∈ {1,2,...,Nart}

(ŷt,i, ŷt,j)


L(y, ŷ, z, ẑ) = β1Llatent(z, ẑ) + β2Lrec(y, ŷ) + β3Lcritical(ŷ)

where y and ŷ represent the target and the reconstructed vocal tract shapes, respectively, and

z and ẑ are the target and predicted articulatory parameters. M is a binary mask specifying

which articulator pairs are critical for the execution of the phoneme xt.

The autoencoder-based phoneme-to-articulation network was evaluated on the same basis as

the model from Section 3 for a fair comparison, i.e., measuring the reconstruction error and tract

variables. The models were trained with the Adam optimizer [293] with the reduce learning

rate on plateau scheduling policy. Our hyperparameter choices are detailed in Table 6.7.

In summary, the main aspects of the proposed method are:

• Inputs: The input to the network is the same as in Section 3. A sequence of phonemes is

represented by its index in a vocabulary, and the phoneme duration is encoded as token

repetitions (x ∈ RT ).

• Autoencoder: The autoencoder works as an articulatory model that learns articulatory

parameters to reconstruct and control the vocal tract shape. Its architecture is detailed

in Figure 6.8.

• Articulatory Parameters: It corresponds to the autoencoder’s latent space, also re-



149

Table 6.7: Hyperparameters of the autoencoder-based phoneme-to-articulation training. The
second part of table refers to the neural network hyperparameters.

Hyperparameter Value

Nart 10
Nsamples 50
Batch size 8
Early-Stopping Patience 30
Weight Decay 10−5

Learning Rate (LR) 10−4

LR Sched. Patience 10
Sched. Reduction Factor 10
β1 0.5
β2 3.0
β3 1.0

Embedding Dim. 64
RNN Hidden Size 128
RNN Dropout 0.1
Predictor Hidden size 256
Total Number of Network Parameters 552 995

ferred to in this text as autoencoder’s components. These parameters are equivalent to

the PCA model’s components.

• Bidirectional GRU: Similar to Section 3, the BiGRU allows the network to learn con-

textual dependencies in the input sequence.

• Articulatory Parameters Predictor Block: The architecture detailed in Figure 6.9

is used to predict the articulatory parameters from the latent space (ẑ ∈ RT×dimZ).

• Outputs: The output of the complete system is the same as in Section 3. It is a sequence

of articulator contours in the form ŷ ∈ RT×Nart×2×Nsamples after the reconstruction by the

decoder network.

4.2 Results

Autoencoder

The number of articulatory parameters and the reconstruction errors are presented in Table 6.8.

The box plots from Figure 6.10 help to visualize, analyze, and compare these results more

meaningfully. The PCA model achieved a reconstruction error below 1 mm for all articulators

except the tongue. Conversely, the autoencoder obtained reconstruction errors below the PCA

model for all articulators except the lower incisor and the soft palate. However, the differences

were negligible in both cases.
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Table 6.8: Number of components and reconstruction errors (P2CPmean) for each articulator for
the PCA and autoencoder. The best results are in bold.

PCA Autoencoder

Articulator Number of Components P2CPmean (mm) P2CPmean (mm)

Arytenoid Cartilage 4 0.88± 0.52 0.50± 0.19
Epiglottis Center Line 3 0.38± 0.18 0.35± 0.18
Lower Incisor 3 0.01± 0.00 0.02± 0.05
Lower Lip 4 0.49± 0.20 0.46± 0.20
Pharynx 2 0.62± 0.17 0.56± 0.17
Soft Palate Center Line 3 0.40± 0.14 0.43± 0.19
Thyroid Cartilage 2 0.51± 0.19 0.45± 0.19
Tongue 8 1.01± 0.22 0.85± 0.17
Upper Lip 4 0.48± 0.19 0.38± 0.14
Vocal Folds 2 0.83± 0.43 0.54± 0.25
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Figure 6.10: PCA and autoencoder reconstruction errors for each articulator in terms of the
mean point-to-closest-point-error. The y-axis was clipped at 3 mm.
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The nomograms presented in Figure 6.11 and Figure 6.12 show the effect of varying each

autoencoder component individually in the [−1, 1] interval. The gray lines correspond to artic-

ulators that are not affected by the component being analyzed.

Autoencoder-Based Phoneme-to-Articulation

The results presented here follow the same structure as those from Section 3. The main difference

is that the model-free phoneme-to-articulation is the baseline for the current experiments.

Table 6.9 and Figure 6.13 presents the P2CPmean statistics for the model-free baseline and

the autoencoder-based system for each articulator. The table presents the data in tabular form,

while the figure shows a box plot to facilitate results visualization and comparison. Table 6.10

and Figure 6.14 presents Pearson’s correlation statistics for each TV for the two approaches.

Figure 6.15 presents each TV’s trajectories and corresponding tokens for one utterance in

the test set using the autoencoder-based method. Additional samples are available in Section 2

of Appendix A. Figure 6.16 shows the ground truth, model-free prediction, and autoencoder-

based prediction for the same utterance in the test set. As in the previous Section, the green

arrows in Figure 6.6 indicate cases in which an articulatory target was reached, and the red

arrows indicate the opposite.

4.3 Discussion

Autoencoder

Choosing the appropriate number of components to decompose each articulator is not trivial,

and it gets progressively more complicated with the increased number of articulators and degrees

of freedom of each articulator. Selecting a number that captures most of the variability without

retaining spurious variance is necessary. In addition, the autoencoder’s reconstruction error in

Table 6.8 is directly related to the number of components, meaning that more components lead

to a lower reconstruction error in the training set, and represents a performance lower bound

for the vocal tract synthesis, i.e., even if the model makes perfect estimations of these control

parameters, we shall still observe those reconstruction errors.

The errors from Table 6.8 show that the designed autoencoder presents outstanding recon-

struction errors, lower than 1 mm on average for all articulators. The results are encouraging

when compared to the baseline. The PCA is a robust and stable method for dimensional-

ity reduction, providing a statistically independent parameter set that concentrates the most

variability in the data. It is commonly used in articulatory speech research as an articulatory

model. Even though the proposed autoencoder does not guarantee statistically independent
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zi ≤ 0

zi > 0

(a) 1st component (b) 2nd component (c) 3rd component (d) 4th component

(e) 5th component (f) 6th component (g) 7th component (h) 8th component

(i) 9th component (j) 10th component (k) 11th component (l) 12th component

(m) 13th component (n) 14th component (o) 15th component (p) 16th component

Figure 6.11: Nomogram displaying the effect of each component in the tongue, lower and upper
lips’s reconstruction.
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zi ≤ 0

zi > 0

(a) 17th component (b) 18th component (c) 19th component (d) 20th component

(e) 21st component (f) 22nd component (g) 23rd component (h) 24th component

(i) 25th component (j) 26th component (k) 27th component (l) 28th component

(m) 29th component (n) 30th component (o) 31st component (p) 32nd component

(q) 33rd component (r) 34th component (s) 35th component

Your name

Figure 6.12: Nomogram displaying the effect of each component in the reconstruction of the
soft palate, thyroid cartilage, arytenoid cartilage, epiglottis, lower incisor, pharynx, and vocal
folds.
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Table 6.9: Reconstruction error (P2CPmean) for the model-free and the autoencoder-based ap-
proaches. The best results are in bold.

Articulator Method P2CPmean

Arytenoid Cartilage
Model-Free Phon.-to-Art. 1.77± 0.86
Autoencoder-Based Phon.-to-Art. 1.74± 0.84

Epiglottis Center Line
Model-Free Phon.-to-Art. 1.55± 1.10
Autoencoder-Based Phon.-to-Art. 1.52± 1.05

Lower Incisor
Model-Free Phon.-to-Art. 1.46± 0.78
Autoencoder-Based Phon.-to-Art. 1.45± 0.78

Lower Lip
Model-Free Phon.-to-Art. 1.39± 0.67
Autoencoder-Based Phon.-to-Art. 1.37± 0.67

Pharynx
Model-Free Phon.-to-Art. 1.07± 0.46
Autoencoder-Based Phon.-to-Art. 1.11± 0.45

Soft Palate Center Line
Model-Free Phon.-to-Art. 1.48± 0.84
Autoencoder-Based Phon.-to-Art. 1.62± 0.86

Thyroid Cartilage
Model-Free Phon.-to-Art. 1.53± 0.87
Autoencoder-Based Phon.-to-Art. 1.54± 0.83

Tongue
Model-Free Phon.-to-Art. 2.19± 0.88
Autoencoder-Based Phon.-to-Art. 2.34± 0.88

Upper Lip
Model-Free Phon.-to-Art. 0.90± 0.34
Autoencoder-Based Phon.-to-Art. 0.94± 0.33

Vocal Folds
Model-Free Phon.-to-Art. 1.88± 1.02
Autoencoder-Based Phon.-to-Art. 1.71± 1.98

Model-Free Phoneme-to-Articulation

Autoencoder-Based Phoneme-to-Articulation
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Figure 6.13: Box plots of the reconstruction error for the model-free and autoencoder-based
approaches for each articulator.
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Table 6.10: Correlations between the target and predicted tract variables trajectories.

Tract Valiable Method Correlation Min Correlation Max correlation

LA
Model-Free Phon.-to-Art. 0.80± 0.16 −0.41 0.95
Autoencoder-Based Phon.-to-Art. 0.80± 0.14 −0.29 0.95

TTCD
Model-Free Phon.-to-Art. 0.86± 0.07 0.66 0.97
Autoencoder-Based Phon.-to-Art. 0.79± 0.19 −1.00 0.95

TBCD
Model-Free Phon.-to-Art. 0.82± 0.08 0.44 0.94
Autoencoder-Based Phon.-to-Art. 0.80± 0.08 0.44 0.96

VEL
Model-Free Phon.-to-Art. 0.74± 0.18 −1.00 0.90
Autoencoder-Based Phon.-to-Art. 0.74± 0.08 0.43 0.91

Model-Free Phoneme-to-Articulation

Autoencoder-Based Phoneme-to-Articulation.
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Figure 6.14: Box plots of the TVs correlations for the model-free and autoencoder-based ap-
proaches.
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Predicted

Target

(a) LA

(b) TTCD

(c) TBCD

(d) VEL

Figure 6.15: Autoencoder-based network and ground truth TV trajectories for the utterance
“J’avais un espoir qui était en même temps une crainte, il me semblait impossible que le terrible
abordage du radeau n’eût pas anéanti.” Each image displays one tract variable. The correspond-
ing phonemes are displayed in the top of the image. Green and red arrows indicate whether
the model reaches an articulatory target or not, respectively. The alternating colors mark the
onset and offset of each phoneme.
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(a) Ground Truth
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(b) Model-Free Phoneme-to-Articulation
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(c) Autoencoder-Based Phoneme-to-Articulation

Figure 6.16: Ground truth, model-free prediction, and autoencoder-based prediction for the
utterance “C’était aussi de ce côté qu’au temps des éruptions, les épanchements s’étaient frayés
un passage, et une large chaussée de laves se prolongeait jusqu’à cette étroite mâchoire qui
formait golfe au nord-est.” The corresponding phonemes are displayed in the top of the image.
The alternating colors mark the onset and offset of each phoneme.
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and ranked components, it proved to be more valuable than the PCA as an articulatory model

for the phoneme-to-articulation phase due to being bounded by the tahn function. A few ex-

periments with a PCA-based phoneme-to-articulation system did not converge, primarily due

to the unbounded PCA components.

In Ribeiro and Laprie [17], dim Z was chosen by testing different values and balancing

the reconstruction capacity and the additional complexity. In that work, we used eight com-

ponents for the tongue, which was kept in this work. However, we did not follow the same

systematic approach for the remaining articulators due to the increased number of experiments

that would be necessary without an equivalent benefit in the performances. We made a few

explorations regarding the number of components and other hyperparameters but were lim-

ited to understanding the degrees of freedom of each articulator. Our experimentation showed

that including extra components produced lower reconstruction errors at the expense of adding

undesired artifacts to the nomograms from Figure 6.11 and Figure 6.12, which show how the

compact set of articulatory parameters can meaningfully control the vocal tract shape, being

a proper articulatory model for our purposes. With more parameters, the autoencoder fits

spurious noise that does not contribute to our objectives.

Autoencoder-Based Phoneme-to-Articulation

The results for the autoencoder-based phoneme-to-articulation model are competitive when

compared to the model-free approach from Section 3, especially considering that the autoencoder-

based system contains a theoretical performance lower bound linked to the autoencoder’s re-

construction error, which is not the case of our first method. However, we need to make a few

considerations regarding the procedures.

The two systems presented very close results concerning the P2CPmean distances, differing on

average in less than 0.5 mm for all articulators. Regarding TV trajectory correlations, both

systems have very similar performance, with the autoencoder-based system outperforming the

baseline for TTCD and TBCD. Then, evaluating which model is the best for the quantitative

metrics is complicated.

The result is encouraging because it shows that a compact set of control parameters can

still achieve valuable results. Additionally, since the indirect method is restricted to exploring

the autoencoder’s latent space, injecting critical articulator constraints into the reconstructed

curves as loss functions is feasible. The most significant improvement is directly related to

this characteristic. When comparing the same utterances for both models in Figure 6.6 and

Figure 6.15, it is noticeable that the autoencoder-based approach yields more extreme TV values
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for the associated phonemes, especially for TTCD.

Cases of under-articulation still occur, as shown by the red arrows. However, particularly

for TTCD, the model tends to reach the articulatory target even when the information is not

in the ground truth, as shown by the green arrows. When the ground truth misses a contact

between two articulators, the autoencoder-based model deviates from the target trajectory to

produce a more relevant vocal tract shape. In this sense, the critical loss injects prior knowledge

from phonetics and linguistics into the model, helping to solve annotation errors or non-reached

targets due to under-articulation.

The analysis of individual speech utterances synthesized by the models shows that they

produce realistic vocal tract shapes concerning an external observer, with the model-free system

resulting in more stable and temporally consistent utterances, as observed in the videos in the

supplementary material. However, we did not propose a protocol to measure the mean opinion

score because it requires independent evaluators familiar with the acoustics of the vocal tract.

The struggle to rank the models raises concerns regarding the suggested evaluation metrics,

questioning whether these metrics capture all the dimensions we want to measure in speech

articulation synthesis.

Furthermore, it is essential to point out a few extra limitations of the autoencoder-based

method:

1. The critical loss encourages correct places of articulation, but it does not guarantee them.

There will be cases where the model fails to produce the necessary constrictions for proper

acoustics.

2. The handcrafted critical loss function is complex to implement and use. Also, it only fits

consonants since vocal tract closures do not characterize vowels. It would be preferred to

have a method to learn the phonetic features implicitly from the data.

3. The autoencoder-based approach indirectly learns the vocal tract shape synthesis; hence,

it is necessary to train an articulatory model (the autoencoder) first and then use it as

the auxiliary network.

5 Evaluating Speech Articulation Synthesis Through Phoneme

Recognition

In Section 3 and Section 4, we described how to synthesize the vocal tract shape conditioned in

the sequence of phonemes to be articulated. However, assessing the quality of the synthesized
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features remains a challenge. As discussed in Chapter 4, existing approaches include measur-

ing the point-wise error between the predictions and the ground truth or the tract variables

associated with each target phoneme. The first is easy to interpret, but the usage is limited

due to inter- and intra-speaker variability. In contrast, the second fits the case of consonants

well but does not suit vowels. Nevertheless, the two metrics were inconclusive regarding the

proposed methods. The synthesized utterances from Section 3 seem more stable and consistent

than those from Section 4, but the traditional metrics do not reflect this perception.

Inspired by recent works that perform phoneme recognition on MR images [219, 273] and

EMA [274], we analyze speech articulations generated by a vocal tract shape synthesizer by

their phonetic representations. We first train a phoneme recognizer on the acoustic signal as

a baseline. Then, we train the recognizer on the real articulators’ contours (true articulatory

features). Since the mid-sagittal MRI does not include vocal fold excitation, we add a categorical

encoding representing voicing information.

We quantify the information retained by the vocal tract contours by comparing the recogni-

tion error with the acoustic signal and the true articulatory features with and without voicing

encoding. Next, the vocal tract shapes of the utterances in the test set were synthesized using

the models from Section 3 and Section 4. These synthetic features with voicing encoding are

input into the phoneme recognizer trained with the true articulations. The recognition error of

this test exhibits how much phonetic information the synthesizer can reproduce.

If the true contours carry enough information, the representations learned from the acoustic

and the articulatory data should be similar. The synthetic articulations should also exhibit a

recognition performance comparable to the true articulatory features.

5.1 Methods

The acoustic features were obtained by computing the 80 log-Mel spectral features. The contours

of the arytenoid cartilage, epiglottis center line, lower incisor, lower lip, pharynx, soft palate

center line, thyroid cartilage, tongue, upper lip, and vocal folds presented in Figure 6.17 were

concatenated to compose the articulatory features. The x- and y-coordinates form a 2-channel,

500-dimensional feature vector (10 articulators × 50 samples per curve). The synthetic artic-

ulatory features are obtained by inputting the test utterances into the synthesizers presented

in Section 3 and Section 4, which return the synthetic articulatory features. The phonemes

were grouped by their places of articulation for the evaluation, and the classes are described on

Table 6.11.

The Deep Speech 2 [297] architecture inspires the phoneme recognizer. The network com-
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Arytenoid Cart.

Epiglottis

Lower Incisor

Lower Lip

Pharynx

Soft Palate

Thyroid Cart.

Tongue

Upper Incisor

Upper Lip

Vocal Folds

Figure 6.17: Articulatory features used for phoneme recognition plus the upper incisor, which
is the reference for the coordinate system.

Table 6.11: Phonemes considered under each phonetic class. Phonemes with similar places of
articulation are put grouped together.

Phonetic Classes Phonemes

Dental t, d, n, l, z, s

Labial p, b, m, f, v

Palatal k, g, Z, S,

Front Vowels i, e, E, Ẽ/œ̃, j

Back Vowels u, o, O, õ, w

Open Vowels a, ã

Front Rounded Vowels y, ø, œ, 4
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Table 6.12: Hyperparameters of the phoneme recognition model training.

Hyperparameter Value

Nart 10
Nsamples 50
Batch size 12
Early-Stopping Patience 30
Weight Decay 10−5

Learning Rate (LR) 10−4

LR Sched. Patience 10
Sched. Reduction Factor 10
Gaussian Noise Std 10−4

Total Number of Network Parameters (Acoustic Features) 297 362
Total Number of Network Parameters (Articulatory Features) 345 082

prises convolutional blocks with a residual additive connection between the inputs and the

outputs, followed by recurrent blocks. Finally, a block of linear layers composes the classifier.

To fit the articulatory features into the model, we prepend to the initial convolutional layer

an adapter block formed by linear layers that convert the 500-dimensional tensor into an 80-

dimensional feature vector. When voicing encoding was used, it was added to the outputs of

the first convolutional layer. Figure 6.18 presents a schematic of the network architecture. Our

implementation uses five residual convolutional blocks and three recurrent blocks.

The connectionist temporal classification (CTC) loss [298] was used as the learning objec-

tive, and the phoneme error rate (PER), measured in terms of the Levenshtein distance [299], is

the evaluation metric. Furthermore, we computed the t-Distributed Stochastic Neighbor Em-

bedding (t-SNE) [300] representations of the models’ features calculated immediately before the

classifier layer. The network was trained using the Adam optimizer [293] and the cyclic learning

rate scheduler policy [108]. Additionally, we apply a slight Gaussian noise to the logits (model’s

outputs before the softmax) as a regularization strategy together with L2 regularization. Our

hyperparameter choices are detailed in Table 6.12.

In summary, the main aspects of the proposed method are:

• Acoustic Features: 80 log-Mel spectral features extracted directly from the audio

recordings, forming a Tacous × 2 × 80 dimensional feature vector, where Tacous is the

length of the acoustic sequence. Ideally, these features would fully contain the phonetic

information and be a recognition baseline.

• True Articulatory Features: Concatenation of ten vocal tract articulator contours

directly extracted from the MRI films forming a Tart×2×500 dimensional feature vector,

where Tart is the length of the articulatory sequence. These features measure the amount
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(b) Phoneme recognizer architecture with one residual CNN
block and one recurrent block

Figure 6.18: Phoneme recognition network architecture. Activation and Dropout layers are
omitted.

of phonetic information retained by the mid-sagittal contours.

• Synthetic Articulatory Features: Concatenation of the ten vocal tract articulators

contours synthesized by the methods described in Section 3 and Section 4 forming a feature

vector with the exact dimensions as the true articulatory features. These features measure

the amount of phonetic information reproduced by the synthesizers.

• Voicing Encoding: Binary embedding informing if the target phoneme in time step t

is voiced or unvoiced forming a Tart dimensional feature vector. Since the mid-sagittal

contours do not carry information regarding vocal fold vibration, the voicing encoding

should help discriminate voiced and unvoiced phonemes.

• Adapter Block: A fully connected neural network that reduces the articulatory features

dimensionality from 500 to 80 to fit the articulatory feature sets into the recognizer.

• Phoneme Recognizer: Neural network based on the Deep Speech 2 [297] architecture

that transcribes the input features into the phonemes in the vocabulary. The model was

trained using the CTC loss function [298].

• Outputs: The phonetic transcription predicted by the model.
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Table 6.13: PER for the acoustic and articulatory features, with and without voicing encoding.

Feature Set Voicing Encoding PER

Acoustic Features – 23.30

True Art. Features No 23.65
Phon.-Wise Mean-Contour Art. Features No 47.22
Model-Free Art. Features No 24.34
Autoencoder-Based Art. Features No 38.85

True Art. Features Yes 21.66
Phon.-Wise Mean-Contour Art. Features Yes 43.18
Model-Free Art. Features Yes 20.59
Autoencoder-Based Art. Features Yes 31.69

5.2 Results

Table 6.13 presents the PER for each feature set. Figure 6.19 shows the t-SNE plots of the

phoneme representations learned by each model. The phonemes were grouped into their respec-

tive phonetic classes in Figure 6.19 to facilitate reading and visualization, and it includes only

the phonemes listed in Table 6.11.

Figure 6.20 displays the ASR confusion matrix of the phoneme recognition, with phonemes

grouped into their phonetic classes. Similarly to the confusion matrix used for traditional clas-

sification tasks, the rows represent the actual classes, and the columns represent the predicted

classes. Each cell cij indicates the class i being substituted by class j; hence the main diagonal

represents correct matches. The last column represents the deletions of each class, while the

last row represents the insertions of each class. It is important to highlight that since the matrix

is normalized by the true labels, the deletions column displays different information than the

insertions row. While the element ci in the deletions column shows the percentage of deleted

tokens of class i, the element cj in the insertions row presents the percentage of insertions cor-

responding to class j.

5.3 Discussion

The comparison between our models and the state of the art requires attention. The main

benchmark for the task is the TIMIT dataset [301], and state-of-the-art models report a PER

of 14.7 (wav2vec [302]) and 8.3 (wav2vec 2.0 [303]) on it. However, these models are much larger

than ours and trained with massive data. Additionally, our recorded audio contains an intense

MRI noise and is damaged by the denoising algorithm, contrarily to TIMIT, which has clean

speech. Nevertheless, most importantly, outperforming these models is not our goal. Instead,

we aim at quantifying the phonetic information retained by the articulatory features and the
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(a) Acoustic signal (b) True articulatory features

(c) True articulatory features + voicing (d) Model-free articulatory features +
voicing

(e) Autoencoder-based articulatory fea-
tures + voicing

Dental

Labial

Palatal

Front Vowels

Back Vowels

Open Vowels

Front Rounded Vowels

Figure 6.19: T-SNE plot of the phoneme representations for each feature set.
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(b) True articulatory features + voicing
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(c) Model-free articulatory features + voicing
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(d) Autoencoder-based articulatory features +
voicing

Figure 6.20: Phoneme recognition confusion matrix normalized by the true labels. The true
classes are shown in the rows while the predicted classes are displayed in the columns. The
last column represents the deletions and the last row represents the insertions for each phonetic
class.
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one reproduced by the vocal tract synthesizer.

Moreover, we expect to use phoneme recognition as an evaluation metric for vocal tract

synthesis. Still, the state-of-the-art models are a reference for judging if the recognizer’s predic-

tions are good enough to be used as a metric. That said, the models trained with the acoustic

features and the articulatory features with voicing encoding resulted in a proper recognition

compared to wav2vec but are still far from the results of wav2vec 2.0. Nevertheless, the results

are satisfactory for our objective.

Table 6.13 shows that the recognition performance using the true articulatory features alone

is indistinguishable from that of the acoustic features, which is a very satisfactory result since we

expected that without the source information, the recognition would be much worse. Although

surprising, the results are understandable. On the one hand, the articulators’ contours extracted

with the tracking method described in Chapter 5 are of high quality, showing outstanding

performance in a multi-speaker setting. Despite the higher error in contact regions, the overall

quality compensates for the errors. On the other hand, the substantial MRI noise in the

acoustic features and the deterioration due to denoising contribute to a lower performance with

the acoustic features.

Even if the articulatory features alone present performance very close to the acoustic signal,

it is hard to believe that it retains the complete phonetic information. The vocal tract shapes

lack source information, meaning unvoiced phonemes are indistinguishable from their voiced

counterparts. After adding the voicing encoding to the feature set, the performance improved

by 1.99 points. The comparison between Figure 6.19b and Figure 6.19c corroborates this idea

since the groups formed by the articulatory features with voicing encoding are more evident

than those without the source information.

Unsurprisingly, the phoneme-wise mean contour presents inferior recognition performance,

which is expected due to the model’s simplicity, which does not account for contextual infor-

mation. The PER using the synthetic vocal tract shapes from the model-free approach with

source information is outstanding. The recognition performance has a lower PER than all other

feature sets, including the true articulatory features with voicing encoding, even if the latter

is the same features used during training. Even if the model-free articulatory features are of

high quality and the vocal tract shapes are realistic, the result is surprising. The reason might

be that the articulatory synthesizer filters out noise in the true features, generating cleaner

speech articulations. Conversely, the recognition performance using the autoencoder-based ar-

ticulatory features is lower, only beating the mean-contour features. Even if the model-free and

autoencoder-based systems presented very competitive results so far, we see that the PER can
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discriminate the two models more meaningfully. The phoneme recognition captures the initial

impression that the model-free system yields more consistent speech articulations.

Figure 6.19 shows that, with the addition of voicing encoding, the articulatory features form

apparent groups in the embedding space that are not seen even with the acoustic features even

if the recognition is not included in the synthesizers’ optimization procedure. The PER and the

feature embeddings corroborate the quality of the synthesized vocal tract shapes.

We need to address the issue of reaching the correct places of articulation. Section 3 dis-

cussed the difficulty of achieving proper dental, palatal, and labial constrictions. It should not

be a surprise that the model has an exceptionally high deletion rate for labials and palatals

(Figure 6.20c), which is not observed with the true articulatory features (Figure 6.20b) and the

acoustic features (Figure 6.20a). In addition, we observe a high deletion rate for front rounded

vowels, which is understandable since the mid-sagittal vocal tract shapes lack lip rounding.

The confusion matrix for the autoencoder-based system (Figure 6.20d) retains high deletion

rates for the dental, labial, and palatal phonemes even though we observed an improvement in

these places of articulation. Since the deletion rates with the autoencoder-based articulatory

features are higher for all phonetic classes, it is unclear whether the high deletion rates for

these specific classes are due to poor recognition performance or lack of proper articulatory

constrictions.

6 Conclusion

This Chapter explored speech articulation synthesis conditioned on a phonetic sequence in

French. We proposed three methods. The first is a straightforward baseline system to permit

an initial comparison. Then, we proposed a model that directly maps the phonemes to the

articulations without any intermediate articulatory model. This method resulted in outstanding

vocal tract shapes, with a PER lower than the articulatory features extracted directly from the

MRI, showing that it is the one that reproduces the most phonetic information.

However, direct mapping prohibits injecting prior phonetic knowledge into the model through

its loss function. Additionally, the absence of an explicit articulatory model can be prohibitive

for many research areas, such as speech motor control. Thus, we proposed a novel approach

that trains the phoneme-to-articulation with the intermediation of an articulatory model.

First, we designed PCA-based and autoencoder-based articulatory models to encode vocal

tract shapes extracted from the RT-MRI films into meaningful articulatory parameters. The

autoencoder presented a superior reconstruction capacity than the PCA. Then, we trained

phoneme-to-articulation mapping to predict the articulatory parameters. The final articulator
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contours are obtained by inputting the predicted parameters into the articulatory model’s de-

coding path. This approach shows the capacity to produce shapes with low errors. However, the

synthesized utterances were less stable and temporally consistent than the model-free system

(see supplementary videos), reducing the phoneme recognition performance.

Along with our research, we found evaluating and comparing our models difficult. The

metrics available so far were objective but only captured some of the dimensions we desired.

Point-wise metrics penalize models that learn various possible articulations and do not fit intra-

speaker variability and, consequently, the multi-speaker cases. The tract variables alternatively

measure the dynamics of speech and the interaction between articulators but might not fit

vowels well. Thus, we dedicated the last part of the work to developing an evaluation system

that would encourage the model to synthesize an intelligible articulatory set regardless of the

speaker and that can fit a more sizeable phonetic context.

We trained a phoneme recognizer to transcribe articulatory features into phonemes. Our

experiments showed that the true articulatory features extracted from the RT-MRI are pho-

netically rich and carry even more information than the acoustic baseline. This observation

is compatible with our laboratory experience. The recorded audios are deficient due to the

enormous MRI noise and the denoising algorithm. For instance, the vocal tract contours were

more recognizable than some audio fragments for a trained phonetics and vocal tract acoustics

professional.

Nevertheless, it is unknown to us which features the phoneme recognizer learns. In the

future, it is desirable to perform further exploration of the recognizer. Explainability is a

research topic that has concentrated much attention in recent years, and it would be interesting

to use these frameworks to understand if the essential features for the recognition align with

the phonetics literature.

Furthermore, we have focused our research on a single speaker. Extending it to the multi-

speaker setting is desired. Since phoneme recognition is a speaker-independent function by

design, a fruitful research line is to investigate how it could be introduced in the training

pipeline to perform implicit speaker normalization.





Chapter 7

Conclusion

I did it for me.

Walter White

Vince Gilligan

1 Summary

Articulatory synthesis of speech is a multifaced problem. The literature typically covers the

direct problem, articulatory speech synthesis, or its inverse form, acoustic-to-articulatory inver-

sion. In the first case, articulatory data is the input to reconstruct the speech signal. Alterna-

tively, articulatory copy synthesis tries to optimize control parameters such that the synthesized

signal mimics the reference. In the second case, the acoustic signal is the input to recover speech

articulations.

In this thesis, we proposed a third facet of articulatory synthesis. Our task, phoneme-to-

articulation, uses the phonetic sequence to predict the vocal tract shape. This mapping has

many applications in speech production, such as speech therapy and L2 learning. In addition,

the capacity to recreate speech articulations taking coarticulation into account can potentially

improve speech synthesis by creating a link with the speech production process, allowing a more

natural signal.

The challenges surrounding phoneme-to-articulation include the difficulty of collecting and

processing relevant data, which requires fine annotations both at the articulatory and phonetic

levels, guaranteeing the physical realism of the generated vocal tract shapes, injecting relevant

phonetic information into the model, and dealing with multiple sources of variance in speech.

We designed innovative solutions to handle these problems and opened many fruitful directions

for future work, which will be discussed next.
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2 Main Contributions

Chapter 5 presented our approach to the design of a reliable and robust system to segment and

track vocal tract articulators in real-time MRI. Nevertheless, medical imaging is challenging,

particularly (RT-)MRI. Low spatial resolution means that even a single pixel error can be

significant, and the low frame rate compared to speech rate introduces uncertainty about the

actual position of fast-moving articulators. Additionally, different artifacts may be present in

the MRI depending on the method used to sample the Fourier space, which can reduce the

generalization capacity of the system.

The most significant obstacle in our research was obtaining accurate image annotations.

It is difficult to estimate how many human hours were spent annotating and correcting semi-

automatic annotations for training the system. Data annotation significantly impacts the per-

formance of machine learning systems. Our results achieved the expected quality only because

we dedicated sufficient effort to this step. We hope that releasing these annotations and the

MRI movies will benefit other research teams in developing even more robust systems.

Despite these challenges, we successfully designed a method to extract vocal tract articulator

contours in RT-MRI. Our system achieved outstanding performance, being stable, fast to train,

and with a reasonable inference time, which allowed us to process a dataset of 548 000 images

with minimal human interaction. Part of the dataset (ASD1) is already available, while we expect

to release the other part (ASD2) soon. Furthermore, we have made the code for reproducing

our experiments publicly available and distributed the system as an installable Python package.

Our objective is to make it a publicly-available tool to boost the research in articulatory models,

enabling the processing of large MRI datasets. Hopefully, this software will continue to evolve,

with the perfection of the current features and the development of new ones.

Section 3 and Section 4 from Chapter 4 detailed our approaches to the main goal of the

thesis. The first step was to develop a baseline system to compare our work. The literature in

this area is broad, but it is rare to find approaches that follow our established protocols regarding

data sources, annotations, and phonetic alignment. Compared to many other machine learning

tasks, there are few vocal tract shape synthesis benchmarks, and well-annotated and curated

datasets are scarce. A straightforward way to achieve a proper baseline was to use the average

contour per phone interval.

Then, two methods were proposed. The first method directly predicts the vocal tract con-

tours conditioned by the input phonetic sequence. This approach was the most successful in

our final evaluation, generating the most realistic shapes. However, it also had some drawbacks.

The predicted vocal tract shapes often miss important articulatory cues such as lip closure and
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contact between the tongue and the alveolar region or the hard palate. Additionally, the sys-

tem is difficult to control due to the absence of meaningful control parameters, which limits its

impact in some research areas.

The second method models phoneme-to-articulation mapping with an articulatory model.

The autoencoder showed an improved reconstruction capacity compared to the PCA bench-

mark. However, most importantly, it showed an improved power to control the vocal tract

shape with a very compact set of articulatory parameters. The autoencoder-based phoneme-

to-articulation mapping achieved comparable performance to the model-free approach in the

traditional metrics. It also showed a better fit to critical articulation constraints. However, we

observed that the synthesized shapes are less stable and temporally consistent, which may be

the reason for the higher PER in the following experiments.

Finally, Section 5 from Chapter 4 detailed our approach to developing a metric for evaluating

synthesized speech articulations. We were concerned that the traditional metrics, such as the

point-to-closest point distance and correlation, were insufficient to evaluate our models.

We focused on using phoneme recognition to learn a function to measure synthetic shapes to

address these challenges. Our experiments showed that the articulatory features extracted from

RT-MRI carry enough phonetic information, showing a PER lower than the acoustic features.

This result aligns with our understanding that the speech recordings are noisy. Moreover,

our experiments showed that the phoneme recognizer has a lower error rate when testing the

synthesized features then with the articulatory features extracted from the MRI, even if it was

trained with the true articulatory features. This result was surprising but understandable, as

the synthesized articulations are stable, filtering out noise from the automatic annotations.

By the end of this thesis, we are confident that we successfully achieved our three primary

objectives. We have made significant contributions to the field of speech articulation research.

We expect that the proposed methods will allow researchers to study the dynamics of the vocal

tract in finer detail, which may lead to a better understanding of speech production. We are

excited to see how other researchers will use our work in the future.

3 Directions for Future Work

Segmentation of Vocal Tract Articulations

The articulatory tracking system must include the upper and lower incisors to complete the

vocal tract shape. Currently, we use image correlation to annotate this region, but this method

requires human interaction and the adjustment of several hyperparameters. It would be desir-
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able to include these rigid articulators in the pipeline to enhance the impact of our articulatory

tracking system.

Furthermore, it is necessary to improve the management of contact regions. We have ex-

perimented with many unsuccessful approaches. One promising strategy is to give a higher

weight to pixels close to the alveolar area. The challenge is to distinguish between cases where

the contact happened (/t, d, n, l/) and those where there is a constriction without a contact

(/i, y/). However, this would require processing the upper incisor before the tongue, reducing

the parallelization of tasks and the system’s efficiency. Another promising direction would be

to train a neural network-based post-processing function that takes as input the segmentation

mask and outputs the articulator contour. Other applications have used a similar approach,

such as computing the vocal tract center line [23].

Speech Articulation Synthesis

The developed system for speech articulation synthesis does not have physical constraints,

such as preventing articulators from overlapping in space. We expected these constraints to

be learned directly from the data, which is partially true. The occurrence of overlaps in the

synthetic utterances is negligible and does not significantly disturb the final vocal tract air

column. However, introducing these constraints into the model would significantly increase its

reliability.

Another area of future research is improving the synthesized articulations’ physical realism.

The autoencoder model used in this study encourages constrictions at appropriate places of

articulation but does not guarantee them. Therefore, introducing these guarantees in the system

would be a fruitful research topic.

Even though the autoencoder-based phoneme-to-articulation underperformed compared to

the model-free method, it provides advantages that make it the preferred method for the con-

tinuation of this research. Compared to the previous methods, the access to articulatory control

parameters and possibility to control the reconstructed curve without incurring unnatural shapes

are relevant advantages. Therefore, it would be interesting to investigate how to improve this

model, producing more stable and natural articulations.

Along with this thesis, we focused on recurrent neural networks. A few experiments were

executed with the LSTM and the GRU, and we decided to use the latter in the final models.

Recurrent networks fit our problem well because they are easy to train and require less data.

Coarticulation modeling does not require learning long-term dependencies beyond the capacity

of RNNs. A phoneme has an articulatory impact on its neighbors, but not in phonemes distant
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in the sequence. Nevertheless, it would be interesting to explore transformer-based models on

coarticulation modeling.

Observing how the transformer model aligns the input phonetic sequence with the target

articulations and investigating the attention map at the attention head level could be fruitful.

Typically, each attention head receives a fraction of the input sequence. This design is advan-

tageous because it is possible to investigate how each region of the articulator aligns with each

phoneme. For instance, the tongue tip is expected to have a higher attention weight with dental

phonemes, and the tongue dorsum has a more substantial alignment with palatal phonemes.

Phoneme Recognition for Speech Articulation Synthesis

There are many exciting possibilities in phoneme recognition research with articulatory features.

One of the most relevant possibilities is to understand the predictions made by the phoneme

recognizer. The phonetics and linguistics literature define the articulatory targets for the ut-

terance of each phoneme. Therefore, it would be essential to understand and ensure that the

phoneme recognizer uses these features in the emission of each phoneme, allowing the use of the

phoneme recognizer to evaluate if the synthesizer can reproduce these articulatory targets.

Another possibility is to use phoneme recognition in the training feedback loop of phoneme-

to-articulation. The phoneme recognizer is a speaker-independent function by design; thus,

data availability is the only obstacle to the multi-speaker setting. Using phoneme recognition

in the training feedback loop could build a speaker-independent cost function that performs

implicit speaker normalization, enabling the training of phoneme-to-articulation models on a

larger dataset of speakers, which would improve the generalization performance of the models.

The question is whether phoneme recognition is enough to train phoneme-to-articulation

mapping or if point-wise metrics are still required. Nevertheless, even if the traditional loss

functions are still necessary, a recognition loss may still be helpful by injecting relevant phonetic

information into the model without needing handcrafted loss functions, helping to synthesize

more realistic vocal tract shapes.
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Jackson. Electromagnetic midsagittal articulometer systems for transducing speech articulatory move-

ments. The Journal of the Acoustical Society of America, 92(6):3078–3096, 1992.

[55] P. Branderud. Movetrack – a movement tracking system. In Proceedings of the French-Swedish Symposium

on Speech, Grenoble, France, 1982.
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[220] Sven EG Öhman. Coarticulation in vcv utterances: Spectrographic measurements. The Journal of the

Acoustical Society of America, 39(1):151–168, 1966.

[221] Jonas Beskow. Trainable articulatory control models for visual speech synthesis. International Journal of

Speech Technology, 7(4):335–349, 2004.

[222] Michael M Cohen and Dominic W Massaro. Modeling coarticulation in synthetic visual speech. In Models

and techniques in computer animation, pages 139–156. Springer, 1993.



192
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Appendices



Appendix A

Additional Samples for Synthesized

Vocal Tract Shapes

1 Model-Free Phoneme-to-Articulation

Figure A.1, Figure A.2, Figure A.3 presents the tract variables of the model-free phoneme-to-articulation predic-

tions for three additional samples.

2 Autoencoder-Based Phoneme-to-Articulation

Figure A.4, Figure A.5, Figure A.6 presents the tract variables of the autoencoder-based network predictions for

three additional samples in the test set.
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Figure A.1: Model-free phoneme-to-articulation network and ground truth TV trajectories for
the utterance “Nos chercheurs doivent pouvoir coopérer avec nos partenaires sur des bases
claires.” Each image displays one tract variable. The corresponding phonemes are displayed in
the top of the image. The alternating colors mark the onset and offset of each phoneme.
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Figure A.2: Model-free phoneme-to-articulation and ground truth TV trajectories for the ut-
terance “Impalas, springbooks et zèbres approchent, craintives, du point d’eau.” Each image
displays one tract variable. The corresponding phonemes are displayed in the top of the image.
The alternating colors mark the onset and offset of each phoneme.
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Figure A.3: Model-free phoneme-to-articulation and ground truth TV trajectories for the ut-
terance “C’est pourquoi il est essentiel de prolonger ce dispositif pour les prochaines années.”
Each image displays one tract variable. The corresponding phonemes are displayed in the top
of the image. The alternating colors mark the onset and offset of each phoneme.
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Figure A.4: Autoencoder-based phoneme-to-articulation and ground truth TV trajectories for
the utterance “Nos chercheurs doivent pouvoir coopérer avec nos partenaires sur des bases
claires.” Each image displays one tract variable. The corresponding phonemes are displayed in
the top of the image. The alternating colors mark the onset and offset of each phoneme.
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Figure A.5: Autoencoder-based phoneme-to-articulation and ground truth TV trajectories for
the utterance “Impalas, springbooks et zèbres approchent, craintives, du point d’eau.” Each
image displays one tract variable. The corresponding phonemes are displayed in the top of the
image. The alternating colors mark the onset and offset of each phoneme.
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Figure A.6: Autoencoder-based phoneme-to-articulation and ground truth TV trajectories for
the utterance “C’est pourquoi il est essentiel de prolonger ce dispositif pour les prochaines
années.” Each image displays one tract variable. The corresponding phonemes are displayed
in the top of the image. The alternating colors mark the onset and offset of each phoneme.
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Appendix B

Résumé étendu

1 Introduction

La synthèse articulatoire a deux champs de recherche principaux, illustrés par la Figure B.1. Le problème direct,

connu sous le nom de synthèse articulatoire de la parole, fait référence aux techniques utilisées pour synthétiser

la parole à partir de formes articulatoires, et le problème inverse, connu sous le nom de l’inversion acoustique-

articulatoire, qui fait référence à la reconstruction de la forme du conduit vocal à partir du signal acoustique.

La synthèse articulatoire est une tâche complexe, mais elle permettra de produire un discours plus naturel et

expressif, et peut bénéficier des systèmes de conversation à partir de la copie des mécanismes de production

de la parole humaine en utilisant des techniques d’IA. Une étape importante de la synthèse articulatoire est la

génération de formes réalistes du conduit vocal, un problème que nous dénommons “synthèse de l’articulation de

la parole”.

La description des mouvements du conduit vocal et des lieux d’articulation n’est pas une tâche simple. Même

si la parole est un processus volontaire, elle se produit automatiquement. Typiquement, nous ne sommes pas

conscients de notre articulation quand nous parlons. La synthèse des articulations apparâıt donc comme une

alternative efficace pour illustrer les articulations du conduit vocal pour les enfants, les patients recevant une aide

d’orthophonie et les apprenants d’une deuxième langue.

La tâche présente nombre de difficultés. La production de chaque phonème dépend fortement du contexte,

c’est-à-dire la coarticulation. La coarticulation fait référence à l’influence des phonèmes précédents (par inertie)

et suivants (par anticipation) sur l’articulation d’un phonème central. En plus, l’articulation de chaque phonèmes

doit respecter un ensemble de conditions physiques et acoustiques afin de produire le son correcte. L’articulation

est aussi impactées par les phénomènes de compensation, quand le mouvement d’un articulateur compense la

perte de mouvement d’un autre, e.g., comme c’est le cas de la langue et la mandibule affectées par le vieillissement.

Dans le contexte de l’apprentissage automatique, un grand défi qui affecte beaucoup la synthèse articulatoire

est l’obtention d’une base de données fiable et suffisamment grande. La collecte de données articulatoires utilise

typiquement l’imagerie médicale ce qui pose un certain nombre de difficultés. Les techniques d’imagerie médicale

coûtent cher en comparaison avec l’acquisition des signaux de parole traditionnelle et posent plusieurs questions

d’éthique afin de garantir la sécurité du sujet. En plus, il est nécessaire de traiter des images pour obtenir la

géométrie correcte du conduit vocal.

La recherche articulatoire présente une grande opportunité pour améliorer la synthèse de la parole, faire
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Figure B.1: Illustration de la synthèse articulatoire de la parole et de l’inversion acoustique-
articulatoire.

progresser les systèmes de feedback visuel pour l’orthophonie et l’apprentissage des langues, et mieux comprendre

la production de la parole. Cependant, elle pose aussi de grands défis que nous avons abordés pendant le

développement de ce travail de thèse.

1.1 Motivation

Typiquement, la parole est un sujet auquel nous ne faisons pas attention. Quand nous parlons, nous ne sommes

pas au courant de sa complexité. La différence temporelle entre le l’idée du message et la production de parole

est une fraction de seconde. Cependant, la châıne de la parole est élaborée. Parler nécessite l’orchestration

des différents processus mentaux, psychologiques, physiques et sociaux. L’ information est codée à de multiples

niveaux quand elle passe d’informations neurocognitives dans le cerveau du locuteur à les ondes sonores et de

nouveaux aux signaux électriques dans le cerveau de l’auditeur. Les aspects socio-comportementales, comme

le ton, l’intention, les émotions, les caractéristiques démographique et l’état social, influencent profondément la

perception des messages.

Mieux que la seule exploration acoustique de la parole, les méthodes multimodales permettent la compréhension

de la structure et la fonction de l’appareil vocal. Les données articulatoires permettent de comprendre com-

ment le conduit vocal transforme les signaux cérébraux en les ondes propagées dans l’air. Dans ce contexte,

l’acquisition et le traitement de données articulatoires est un point essentiel pour les recherches sur la parole.

De multiples techniques permettent d’observer la production de la parole, comme l’échographie pour le contour

de la langue, l’articulographie électromagnétique (EMA) pour l’acquisition de la position de quelques capteurs,

l’électropalatographie pour l’interaction entre la langue et le palais, et la cinéradiographie et l’IRM temps réel

pour l’observation complète du conduit vocal.

Les données articulatoires sont essentielles pour déterminer la morphologie du conduit vocal et pour étudier

et modéliser la communication orale afin de développer des applications dans de nombreux domaines. Hagedorn
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et al. [12] a caractérisé les articulations du conduit vocal pour de la parole apraxique. L’apraxie affecte la bonne

sélection et coordination temporelle des gestes vocaux; cependant, ces actions n’impactent pas la perception

auditive. L’utilisation des articulations obtenues avec l’IRM temps réel facilite donc le diagnostic. En plus,

Hagedorn et al. [13, 14] ont étudié la forme du conduit vocal et les stratégies compensatoires pour des patients

ayant subi une glossectomie. La poursuite de ces recherches inclut l’utilisation de l’information articulatoire pour

mettre en place la rééducation de la parole.

Par ailleurs, la recherche en articulatoire a un impact fort sur les recherches traditionnelles en traitement

de la parole qui utilisent seulement le signal acoustique. Li et al. [15] a par exemple amélioré les systèmes de

vérification du locuteur en ajoutant une information articulatoire (obtenue par inversion articulatoire) au signal

acoustique. Srinivasan et al. [16] a exploré la robustesse des systèmes de reconnaissance automatique de la parole

pour la parole normale et murmurée et il montré que l’information articulatoire est bénéfique dans les deux

scénarios.

Ces travaux montrent que plusieurs de domaines tirent un avantage de la caractérisation ou de la synthèse

de la forme du conduit vocal pendant la production de la parole. Les avancées concernant modèles articulatoires

ont donc le potentiel de bénéficier à notre société à travers plusieurs champs de recherche.

1.2 Contributions Principales

À partir des considération générales sur la synthèse articulatoire et des motivations de cette recherche, cette

thèse explore et développe les modèles d’apprentissage profond pour la synthèse articulatoire de la parole.

Spécifiquement, notre contribution se focalise sur trois sujets principaux: le traitement des données articula-

toires, la modélisation articulatoire et l’évaluation des modèles.

Traitement des Données Articulatoires

L’acquisition et le traitement des données articulatoires sont essentiels pour l’apprentissage automatique. Notre

première source de données est l’imagerie par résonance magnétique (IRM) temps réel et il faut souligner que les

images seules sont insuffisantes pour réaliser la synthèse articulatoire de la parole. Notre premier défi était de

traiter cette images pour obtenir les contours de chaque articulateur du conduit vocal pour toutes les images de

notre base de données. La littérature fournit plusieurs approches pour ce problème mais elles présentent souvent

des faiblesses pour notre travail. Notre premier objectif de recherche a donc été la conception d’un système fiable

pour le suivi des articulateurs du conduit vocal dans des images IRM temps-réel.

Modélisation Articulatoire

L’objectif central de cette thèse est la synthèse de la forme du conduit pour une séquence de phonèmes à articuler.

La conception du système est difficile à cause de la dynamique complexe du conduit vocal humain, la grande

variabilité des articulateurs, et les contraintes physiques et acoustiques à considérer.

Évaluation des Modèles

L’évaluation des modèles est cruciale pour l’apprentissage automatique. Il est important de mesurer les dimensions

appropriées du problème et l’utilisation de mauvaises mesures conduirait à des modèles biaisés ou de mauvaise

qualité. Les modèles d’apprentissage automatique optimisent l’ objectif qu’on leur donne, et les réseaux de
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neurones profonds cherchent donc le meilleur chemin pour optimiser leur objectif. La mauvaise définition de

l’objectif d’apprentissage conduit à des conséquences souvent difficiles à anticiper et résoudre.

Comme notre recherche vise à prédire la forme du conduit vocal pour une séquence de phonèmes donnée, il

est naturel de s’attendre que les modèles capturent le maximum d’information phonétique contenu dans la base

de données. Finalement, le dernier objectif de recherche est de quantifier l’information phonétique retenue par

les contours des articulateurs et celle reproduite par le synthétiseur de la forme du conduit vocal.

2 Segmentation des Articulateurs du Conduit Vocal dans l’IRM

temps Réel

La caractérisation de la forme du conduit vocal est essentielle pour plusieurs domaines de la recherche de la

parole et l’IRM temps réel est la modalité de donnée préférée pour de nombreux chercheurs. Cependant, pour la

synthèse articulatoire, la géométrie exacte de la colonne d’air déterminée par les contours des articulateurs de la

glotte aux lèvres est typiquement nécessaire.

La difficulté que nous avons rencontrée dans la littérature est que peu d’articles fournissent les contours de

tous les articulateurs non-rigides et les articles montrent pas comment aborder la généralisation d’un système à

plusieurs locuteurs. En plus, aucun article ne fournit une base de code publique pour l’utilisation et validation

des ses méthodes. Cette thèse propose la segmentation des contours des articulateurs en utilisant un réseau de

neurones profond suivi par des algorithmes de post-traitement afin d’obtenir une courbe qui décrit la géométrie

de chaque articulateur individuellement.

Les contributions principales de cette travail sont:

• La prise en compte des articulateurs non-rigides impliqués dans la production de la parole;

• L’évaluation de la généralisation à plusieurs locuteurs en utilisant un protocole de validation croisée “leave-

one-out” (LOOCV);

• Le traitement d’une grande base de données d’IRM temps réel avec une erreur petite par comparaison

avec un annotateur humain;

• La mise à disposition publique du système de segmentation qui permet l’utilisation et la validation de

notre travail par la communauté scientifique.

Au final, nous avons proposé et évalué une méthode de suivi des articulateurs du conduit vocal à partir

d’IRM temps réel (Figure B.2). Le système en deux étapes que nous avons proposé est capable de segmenter les

contours des articulateurs non rigides avec une erreur maximale de 2.2 mm dans le protocole de validation croisée

leave-one-out, qui teste la généralisation à de nouveaux locuteurs. Par ailleurs, pour le locuteur qui présente

une différence anatomique importante et/ou une position de la tête éloignée des positions des autres sujets pour

l’acquisition IRM, le modèle a pu être adapté avec seulement 10 images étiquetées.

3 Synthèse de l’évolution temporelle de la forme du Conduit

Vocal

La synthèse articulatoire de la parole donne lieu à de nombreux défis, particulièrement le problème de la non-

unicité, la normalisation de locuteur et la position des articulations critiques. La non-unicité signifie que plusieurs
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Figure B.2: Échantillons d’IRM de trois sujet superposés aux contours prédits et de vérité terrain
après régularisation b-spline. Le texte dans les images indique l’ID du sujet dans l’image (sujet
cible) et l’ID du sujet laissé de côté lors de la formation du modèle qui a produit cette sortie.
Cette figure montre comment les contours prédits se comparent aux contours de la vérité terrain
pour chaque sujet.

configurations du conduit vocal produisent les mêmes caractéristiques spectrales. La normalisation du locuteur

concerne les différences anatomiques qui nécessitent donc une normalisation afin de générer les formes pertinentes

pour n’importe quel locuteur. Le défi est de séparer la variabilité liée aux stratégies de production de la parole

et de celle liée à l’anatomie du conduit vocal. Les articulations critiques que nous avons utilisées viennent de la

phonologie articulatoire, qui définit les gestes du locuteur et les scores de gestes pour articuler chaque phonème.

Un articulateur est critique pour un phonème si le lieux d’articulation est nécessaire pour obtenir les bons traits

phonétiques. Si un articulateur n’est pas critique, il est libre pour ce phonème. L’importance des ces défis est

qu’ils conditionnent la synthèse des formes du conduit vocal pertinentes phonétiquement.

Cette thèse décrit notre approche pour la synthèse articulatoire de la parole à partir d’une séquence de

phonèmes à articuler. Nous proposons deux modèles: uns approche “model-free”, qui ne dépend pas d’un modèle

articulatoire explicite pour la synthèse, et une approche basée sur un autoencodeur (“autoencoder-based”), qui

utilise un autoencodeur comme modèle articulatoire du conduit vocal. Nous avons proposé comme système de

base pour nos évaluation, un système qui utilise la position moyenne des articulateurs pour chaque phonème,

sans prendre en compte les sons voisins.

Les contributions principales de cette travail sont:

• Le développement d’un modèle de réseau de neurones profond pour la synthèse articulatoire de la parole

que ne dépend pas d’un modèle articulatoire du conduit vocal;

• Le développement d’un modèle articulatoire du conduit vocal basé sur un autoencodeur et l’utilisation de

cet autoencodeur pour la prédiction de la forme du conduit vocal par un réseau de neurones;

• La comparaison des systèmes de synthèse articulatoire et la définition d’un nouvel état d’art pour la

synthèse articulatoire.

Au final, nous avons présenté un système de génération de la forme du conduit vocal pendant la production

de la parole. Les résultats mesurés à l’aide de la distance P2CP et par les variables du conduit vocal indiquent que
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le système model-free et l’autoencodeur produisent des dynamiques similaires. Nous avons observé que le modèle

autoencodeur est plus cohérent avec la notion d’articulation critique, une fois que la fonction de perte que nous

avons créée permet l’introduction des informations numériques permettant d’évaluer des articulateurs critiques.

Cependant, nous avons vu que le système model-free est plus facile à entrâıner, et produit une dynamique plus

stable temporellement – comme cela peut être observée dans les vidéos fournies comme matériel supplémentaire.

4 Évaluation des Modèles de Synthèse Articulatoire

L’évaluation des modèles de synthèse articulatoire est un défi à cause de la variabilité anatomique interlocuteur

et de la variabilité des stratégies articulatoires. Deux métriques principales existent dans la littérature : les

métriques qui utilisent la distance géométrique entre courbes et les métriques basées sur les variables du conduit

vocal. La distance entre des courbes géométriques est facile à implémenter et interpréter, cependant elle devient

difficile à utiliser pour plusieurs locuteurs sans effectuer avant la normalisation anatomique du locuteur. Les

métriques qui utilisent les variables issues de la phonologie articulatoire du conduit vocal fonctionnent bien pour

les consonnes, mais elles ne sont pas adaptées pour les voyelles.

Nous nous sommes inspirés de la littérature qui utilise la reconnaissance phonétique à partir des IRM et de

données d’EMA pour évaluer la synthèse des formes articulatoires du conduit vocal à partir de représentations

phonétiques. Nous avons donc entrâıné et testé un reconnaisseur de phonèmes avec le signal acoustique de

la parole afin d’obtenir un résultat de base pour la reconnaissance, qui mesure donc l’information phonétique

totale contenu dans le signal. Par ailleurs, nous avons entrâıné et testé le reconnaisseur de phonèmes avec

les informations articulatoires obtenues à partir de l’IRM, qui mesure l’information phonétique donnée par les

contours des articulateurs dans le plan médio-sagittal. Finalement, nous avons testé le reconnaisseur entrâıné

avec les articulations d’IRM sur les formes articulations produites par les modèles de synthèse que nous avons

développés. La dernière expérience mesure l’information phonétique capturée et reproduite par notre synthétiseur

de la forme temporelle du conduit vocal.

Les contributions principales de ce travail sont:

• La proposition d’une méthode simple et efficace pour évaluer les modèles de synthèse articulatoire;

• L’estimation de l’information phonétique contenue dans les données articulatoires obtenues à partir d’IRM

temps réel et celle synthétisée par nos modèles articulatoires.

Au final, nous avons testé cette stratégie et observé que le signal articulatoire obtenu à partir des IRM donne

des erreurs de reconnaissance de phonèmes (PER) comparables à celles obtenues à partir du signal acoustique

et que la prise en compte de l’information de voisement améliore le taux de reconnaisance à partir des données

IRM (à un niveau un eu plus bas que l’acoustique). Nous avons par ailleurs observé que la synthèse articulatoire

”model-free” produit des articulations qui donnent un PER plus bas, donc meilleur, que le signal articulatoire

original. Le résultat est surprenant, mais nous avons conclu que le modèle de synthèse articulatoire filtre le bruit

et l’erreur de suivi qui existe dans le signal d’IRM, résultant ce qui conduit à des formes articulatoires temporelles

plus faciles à reconnâıtre.

Finalement, la comparaison entre le système model-free et le système autoencodeur a montré qu’il existe une

grosse différence entre les deux modèles. Comme nous l’avons noté, le système model-free produit des articulations

plus stables temporellement, et cet effet est observé dans le PER de chaque système. Cette différence a montré

que la reconnaissance des phonèmes est une méthode efficace pour mieux comprendre la synthèse des articulations

et que cela permet d’évaluer les dimensions qui échappent aux métriques traditionnelles.
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5 Conclusion

La synthèse de l’évolution temporelle de la forme articulatoire du conduit vocal est un problème complexe qui

correspond à plusieurs défis, parmi lesquels les difficultés d’acquisition des données articulatoire, la modélisation

du conduit vocal respectant la physique de production de la parole et les connaissances phonétiques, et enfin

l’évaluation des modèles construits. La littérature couvre typiquement le problème direct, c’est-à-dire la synthèse

articulatoire de la parole, ou le problème inverse appelé inversion acoustique-articulatoire.

Cette thèse a proposé une approche visant à générer les formes du conduit vocal pour une suite de phonèmes à

articuler. Cette transformation a beaucoup d’applications pour la production de la parole, comme l’ orthophonie

et l’apprentissage d’une langue étrangère. En plus, la capacité de recréer les articulations de la parole qui prend

en compte la coarticulation améliore le lien entre la synthèse de la parole et les processus acoustiques, conduisant

ainsi à un discours plus naturel.

Les contributions de cette thèse concernent le traitement des données articulatoires, la synthèse de la forme

du conduit vocal et l’évaluation des modèles de synthèse. Pour le travail futur, nous souhaitons améliorer le suivi

des articulateurs dans les images IRM, en particulier pour les régions de contact entre articulateurs mobiles et

fixes comme les incisives supérieures.

Concernant la synthèse d’articulations, nous souhaitons ajouter des contraintes physiques dans les modèles

afin de garantir les lieux d’articulation réalistes pour chacun des articulateurs. En plus, un champ de recherche

fructueux concernera sans doute l’exploration des “transformeurs” pour la synthèse des articulations afin de

comprendre le lien et les influences entre les phonèmes et chaque partie du conduit vocal.

Finalement, les métriques d’évaluation reposant sur la reconnaissance automatique des phonèmes ouvre des

nouvelles opportunités pour l’entrâınement des modèles d’apprentissage profond de la synthèse articulatoire. Un

fois que le reconnaisseur est entrâıné pour plusieurs de locuteurs, il deviendra possible de créer une fonction de

perte qui réalise implicitement la normalisation du locuteur, en rendant donc possible un apprentissage multi-

locuteur. Cependant, il reste important de bien comprendre quelles sont les caractéristiques que le réseau de neu-

rones utilise pour la reconnaissance de phonèmes et si ces caractéristiques reflète nos connaissances phonétiques.
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