
AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact bibliothèque : ddoc-theses-contact@univ-lorraine.fr
(Cette adresse ne permet pas de contacter les auteurs)

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

École doctorale IAEM Lorraine

Map Quality Criteria for Autonomous

Exploration in Natural Environment

THÈSE

présentée et soutenue publiquement le 8 Décembre 2023

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention automatique, traitement du signal et des images, génie informatique)

par

Stéphanie Aravecchia

Composition du jury

Présidente : Ouiddad Labbani-Igbida

Rapporteurs : Ouiddad Labbani-Igbida

Bruno Vallet

Examinateur : Roland Lenain

Directeur de thèse : Cédric Pradalier

Co-directrice de thèse : Marianne Clausel

Laboratoire IRL 2958 GeorgiaTech - CNRS

International Research Laboratory
Georgia Tech • CNRS IRL 2958

Abstract

Autonomous exploration of an unknown environment consists in answering the question,
"where to go next?" Beginning in a completely unknown place, the robot selects its next desti-
nations and navigates towards them, simultaneously discovering its surroundings. This thesis
centers on a specific environment type: natural environments like parks or forests. In such
environments, what approach should we adopt if our objective is for the robot to conduct
its exploration mission with the fundamental goal of creating a map from its observations?
Our research main focus lies in establishing a link between the exploration strategy and the
resultant map quality. The central challenge stems from the fact that in an unknown environ-
ment, by definition, the map’s quality cannot be known throughout the exploration task. If a
reference map already exists, the task no longer qualifies as an exploration mission.

The major contribution of this thesis lies in associating the map quality with the robot’s
trajectory in the environment. We establish that locally, the map quality is intricately tied to
the robot’s viewpoint observations. We introduce a set of viewpoint statistics, each operat-
ing as an individual indicator of map quality, which we eventually combine into a predictor.
When an area of the map is observed from closer, or from more diverse viewpoints, its qual-
ity is enhanced. Ultimately, we integrate this insight into an exploration policy, where the
information gain is formulated based on viewpoint statistics. We demonstrate that such an
exploration policy indeed produces a better map than traditional baselines.

The second significant contribution of this thesis centers on assessing the map quality it-
self. Obtaining a meaningful, measure across diverse environments, proved to be a nontrivial
task. To address this, we develop a methodology to locally compare the map built from the
robot’s observations with a reference map. We measure the local map quality with multiple
metrics to identify the most robust one.

In addition to the above, this thesis includes the development of an experimental frame-
work, designed for our task. Building upon this, we evaluate our methods both in simulations
and real-world experiments.

Keywords: mobile robotics, 3d-mapping, 3d-lidar, next-best-view, active sensing, explora-
tion

i

Résumé

Explorer de manière autonome un environnement inconnu consiste à répondre à la ques-
tion "où aller ensuite ?". Partant d’un endroit totalement inconnu, le robot sélectionne ses
prochaines destinations et navigue vers elles, découvrant ce-faisant son environnement. Cette
thèse se concentre sur un type d’environnement spécifique : les environnements naturels tels
que les parcs ou les forêts.

Dans ce type d’environnements, quelle approche devrions-nous adopter si la mission
d’exploration du robot a pour objectif principal la création d’une carte, à partir de ses observa-
tions ? Notre recherche s’intéresse à l’établissement d’un lien entre la stratégie d’exploration
et la qualité de la carte résultante. La principale difficulté est que, dans un environnement in-
connu, par définition, la qualité de la carte ne peut pas être connue pendant mission d’explora-
tion. Si une carte de référence existe déjà, la tâche ne peut plus être qualifiée d’exploration.

La principale contribution de ce travail réside dans la démonstration de l’existence d’une
relation entre la qualité de la carte et la trajectoire du robot dans l’environnement. Nous
établissons que, localement, la qualité de la carte est étroitement liée aux points de vue
des observations du robot. Nous introduisons un ensemble de statistiques de points de vue
d’observation, chacune fonctionnant comme un indicateur individuel de la qualité de la carte,
que nous combinons finalement en un prédicteur. Une zone de la carte observée de plus
près, ou à partir de points de vue plus diversifiés, voit sa qualité améliorée. Finalement, nous
intégrons cette connaissance dans une politique d’exploration, où le gain d’information est
formulé en fonction des statistiques sur les points de vue d’observation. Nous démontrons
qu’une telle politique d’exploration produit effectivement une meilleure carte que celles is-
sues de méthodes traditionnelles.

La deuxième contribution significative de cette thèse est relative à l’évaluation de la qual-
ité de la carte elle-même. Obtenir une mesure de qualité significative à travers des environ-
nements divers s’est avéré être une tâche non triviale. Pour y remédier, nous développons
une méthodologie pour comparer localement la carte construite à partir des observations du
robot avec une carte de référence. Nous mesurons la qualité locale de la carte avec plusieurs
métriques pour identifier la plus robuste.

Pour obtenir ces résultats, cette thèse comprend le développement d’un cadre expérimen-
tal, conçu pour notre tâche. Sur cette base, nous évaluons nos méthodes à la fois en simulation
et lors d’expériences réelles.

Mots-clés: robotique mobile, cartographie 3D, laser 3D, vue suivante optimale, perception
active, exploration.

ii

Motivation

Explorer un environnement avec un robot implique de partir d’un état initial où les environs
du robot sont totalement inconnus. À mesure que le robot interagit avec l’environnement, il
construit progressivement une représentation de ses alentours. Bien que cela puisse sembler
simple, plusieurs concepts essentiels doivent être définis.

Tout d’abord, qu’est-ce qui constitue une représentation pertinente des environs du robot ?
Est-elle conçue pour que le robot interagisse directement, ou est-elle destinée à être analysée
par un opérateur humain ? Répondre à cette question est fondamentalement une question de
choix de conception. Il n’y a pas de représentation cartographique universellement meilleure,
ce choix dépend des exigences spécifiques.

Deuxièmement, dans un scénario où pratiquement tout autour du robot est inconnu, com-
ment doit-il décider où aller ensuite pour recueillir des informations ? Doit-il se déplacer
continuellement, traitant les informations au fur et à mesure de leur arrivée ? Alternative-
ment, doit-il sélectionner des objectifs spécifiques puis traiter les informations en naviguant
vers eux ? Cette décision, appelée politique d’exploration, est un autre choix de conception
clé.

Dans ce travail, nous abordons ces deux questions dans un contexte unifié. Nous consid-
érons le robot comme un robot terrestre, un véhicule terrestre sans pilote (UGV), et l’environ-
nement inconnu qu’il explore est un environnement naturel, tel qu’un parc ou une forêt,
comme illustré par la Figure 1.1. Notre représentation cartographique choisie est une figure
familière dans le domaine de la robotique : la grille 3D, discrétisant l’ensemble du volume en
voxels. Tout au long de notre travail, nous entreprenons diverses tâches et développements,
tous dans le but global de permettre une politique d’exploration qui maximise la qualité de la
carte pendant le processus d’exploration.

Ce résumé vise à présenter les divers défis inhérents à cet objectif, qui, à leur tour, mo-
tivent la recherche menée dans cette thèse.

Qualité de la carte

Le premier défi réside dans l’évaluation de la qualité de la carte 3D dans des environnements
naturels. Généralement, l’évaluation de la qualité de la carte vise à fournir une métrique
unique qui reflète la qualité globale de la carte. Cependant, dans le contexte d’un robot car-
tographiant de manière autonome un environnement naturel à des fins d’inspection ou de
surveillance, il devient intéressant d’obtenir une mesure localisée de la qualité de la carte. En
effet, la qualité de la carte peut ne pas être nécessairement homogène dans un environnement
potentiellement étendu.

iii

Cette recherche se concentre spécifiquement sur ce scénario, où les observations du Lidar
3D du robot construisent la carte. Dans ce cas, la représentation cartographique prédomi-
nante est la grille 3D, où chaque voxel encode de l’information. Traditionnellement, cette
grille 3D encode la probabilité d’occupation pour chaque voxel. Cependant, dans ce scénario
courant, les mesures conventionnelles de qualité de la carte, à savoir la couverture de surface
et la précision de la reconstruction, peuvent ne pas toujours avoir un sens significatif, surtout
lorsqu’il s’agit d’environnements naturels qui sont non seulement clairsemés, mais aussi non
structurés. Nous le démontrerons dans cette thèse, en mettant l’accent sur le cas spécifique
de la cartographie d’un environnement clairsemé et non structuré, tel qu’un environnement
naturel, en simulation et avec une expérience dans le monde réel.

Dans le cas d’environnements “non structurés”, des défis distincts se posent par rapport
à ceux rencontrés lors de la cartographie d’environnements “structurés”. La littérature se
concentre souvent sur la cartographie 3D dans des environnements structurés tels que les
zones urbaines. Cependant, en ce qui concerne le travail dans des environnements naturels,
la différenciation entre structuré et non structuré, dense et clairsemé, devient plus marquée en
raison des défis uniques impliqués. La carte 3D dans un environnement naturel est à la fois
non structurée et clairsemée. Elle se compose principalement d’espace vide, avec seulement
quelques points où le Lidar 3D touche réellement un objet, compliqué davantage par le niveau
de bruit accru inhérent aux environnements naturels. De plus, la localisation du robot dans la
carte est également une source d’erreurs, car la carte 3D est une accumulation probabiliste de
tous les nuages de points transformés dans le repère dérivé de la localisation. Cette recherche
n’évalue pas directement divers algorithmes de cartographie appliqués aux environnements
naturels. Au lieu de cela, son accent réside dans la résolution des défis liés à l’évaluation de
la qualité des cartes 3D dans de tels environnements. Dans ce travail, nous proposons une
méthodologie pour évaluer la qualité de la carte au niveau local. Ensuite, nous évaluons et
comparons plusieurs métriques, et proposons de sélectionner une métrique particulière pour
sa robustesse dans ce type d’environnement.

Établir un à priori sur la qualité de la carte pour guider l’exploration

Le deuxième défi est plus directement lié au processus d’exploration. L’objectif principal de
l’exploration autonome est de répondre à la question “où aller ensuite ?” Lorsqu’un robot
explore un espace inconnu, le volume complet est inconnu au début de l’exploration. À
mesure que le robot se déplace dans l’espace, il recueille des informations et met à jour une
carte.

En robotique, l’exploration autonome consiste à trouver la zone la plus intéressante à vis-
iter, déterminant essentiellement une destination cible. Lorsque l’objectif de l’exploration

iv

est de construire une carte précise, une question centrale se pose : “dans les régions ex-
plorées, quelle est la qualité actuelle de la carte ?” De plus, lorsqu’on travaille dans des
environnements naturels, les données de référence sont souvent indisponibles. Cela soulève
une deuxième question : “comment pouvons-nous dériver une politique d’exploration pour
améliorer la qualité de la carte sans accéder à une carte de référence ?”

Une solution pour aborder simultanément ces deux questions est de prédire la qualité
de la carte au niveau local à partir des observations du robot. À partir de cette prédiction,
nous pouvons dériver une politique d’exploration. C’est le défi que nous avons l’intention de
relever dans cette thèse.

Pour relever ce défi, notre travail propose plusieurs statistiques sur les points de vue des
observations, efficaces en termes de temps de calcul, qui offrent des informations sur la qualité
de la carte au niveau local. Ces statistiques mettent en évidence les zones qui méritent d’être
revisitées et comment le faire. Dans le même temps, elles aident à identifier les zones qui
n’améliorent pas significativement la qualité de la carte, permettant de les écarter. Notre tra-
vail démontre statistiquement que ces statistiques sur points de vue d’observation présument
de la qualité locale de la carte.

De plus, nous intégrons ces statistiques sur les points de vue d’observation dans une poli-
tique d’exploration. Une politique d’exploration est un équilibre entre un coût, généralement
le coût pour atteindre un objectif, et un gain attendu, qui représente la connaissance atten-
due que le robot acquerra en atteignant l’objectif. Le meilleur objectif selon la politique est
le prochain meilleur point de vue (Next-Best-View). Dans ce travail, nous incorporons ces
statistiques dans la sélection du prochain meilleur point de vue. Ce faisant, nous démon-
trons que lorsque la politique d’exploration formule son gain d’information en fonction des
statistiques sur les points de vue d’observation, la qualité globale de la carte s’améliore.

Plan de la thèse

Chapitre 2 introduit la théorie de fond nécessaire à la compréhension de la recherche présen-
tée dans cette thèse. Il commence par donner un aperçu des robots mobiles, présentant leurs
capteurs et les défis liés à la localisation. Le chapitre introduit ensuite la cartographie, mettant
en évidence les défis inhérents à la tâche, en particulier dans des environnements naturels à
la fois clairsemés et non structurés. Il présente également diverses représentations de cartes
utilisées en robotique. Enfin, ce chapitre introduit des concepts essentiels liés à l’exploration
autonome, commençant par la navigation autonome et se terminant par l’exploration elle-
même, y compris le concept de Next-Best-View.

Chapitre 3 pose les bases pour le reste de notre recherche. Lorsque nous avons com-

v

mencé le travail, nous avons rapidement réalisé l’importance d’une approche locale, tant
dans la stratégie d’exploration que dans l’évaluation de la qualité. Pour ce faire, nous di-
visons l’environnement en de plus petites régions cuboïdes, chacune contenant des infor-
mations locales clés. Cette approche localisée forme la base de notre méthodologie. Dans
ce chapitre, nous détaillons comment nous extrayons des régions cuboïdes intersectantes de
l’environnement réel ou simulé et des interactions du robot avec celui-ci. De plus, nous in-
troduisons dans ce chapitre notre cadre expérimental, avec à la fois des simulations et des
expériences dans le monde réel.

Chapitre 4 vise à relever le défi de l’évaluation de la qualité de la carte 3D dans les en-
vironnements naturels. Les mesures traditionnelles de qualité de la carte peuvent ne pas être
adaptées en raison des caractéristiques spécifiques de ces environnements, telles que le fait
qu’ils soient clairsemés et leur absence de structure. Nous évaluons six métriques, conven-
tionnelles et moins conventionnelles, et évaluons leur efficacité dans la mesure de la qualité
de la carte. Non seulement nous les évaluons empiriquement en utilisant des régions cuboïdes
extraites de cartes de référence et reconstruites, mais nous les évaluons également avec une
méthodologie spécifique, impliquant une dégradation itérative de la carte de référence.

Chapitre 5 introduit une approche novatrice pour estimer a priori la qualité de la carte à
l’aide de statistiques sur les points de vue d’observation, c’est-à-dire dérivées des données du
robot. Cette estimation est réalisée localement sur des régions cuboïdes. Quatre statistiques
sont introduites : le nombre d’observations, la distance minimale des observations, le nombre
de secteurs angulaires couverts par une observation et la variance sphérique des observations.
Nous démontrons statistiquement que ces statistiques sont des indicateurs de la qualité locale
de la carte. Enfin, nous entrainons un modèle pour prédire la qualité de reconstruction du
cuboïde basée sur ces statistiques, et nous analysons leur importance individuelle. Ce travail
jette les bases des stratégies d’exploration, discutées dans le chapitre 6.

Chapitre 6 s’appuie sur les bases établies dans les chapitres précédents pour améliorer la
qualité de la carte lors de l’exploration dans des environnements naturels. Nous intégrons les
statistiques sur les points de vue d’observation introduites dans le chapitre 5 dans le proces-
sus de sélection du Next-Best-View. Ces politiques d’exploration conduisent à une amélio-
ration de la qualité de la carte pendant le processus d’exploration, en particulier dans le type
d’environnement considéré dans cette thèse.

vi

Acknowledgments

Avant toute chose, je remercie Nicolas, pour m’avoir soutenue il y a quelques années quand
j’ai dit que je voulais quitter mon ancien travail (bien payé) pour aller faire de la robotique (...).
Ensuite, pour m’avoir encore soutenue quand j’ai dit que la recherche en robotique, c’était
vraiment ce qui me plaisait, mais que bon, pour faire de l’enseignment et de la recherche, ben
il fallait un doctorat... Et une thèse, c’est encore trois ans, pas toujours facile (oui, surtout la
fin, desolée). Ensuite, je remercie mes enfants. Il n’y a rien de mieux pour relativiser dans la
vie que de passer du temps avec ses enfants. Je les remercie pour avoir supporté leur maman
pas très très disponible ces derniers temps.

Now, I will switch to English to firstly thank Cédric. Firstly, for giving me the chance
to discover robotics and hiring me when I didn’t know much, yet still trusting me because
I proved I could learn. Then, for showing me how exciting robotics research is, as well as
teaching robotics to students. And finally, for giving me the opportunity to pursue this PhD
and for funding me, which is not a little thing considering how poorly funded research can be.
Then, I would like to thank Marianne, for providing a different perspective on my research. I
would not have bet when I started that I would actually enjoy statistics.

Next, I would like to thank all the colleagues who inspired me to pursue a PhD. Assia, for
encouraging me and showing me what perseverance means. Antoine, also for encouraging
me and for showing how fun field robots are (and, of course, how stubborn).

Lastly, I would like to thank all the people from the lab for the fruitful discussions, and for
contributing to the great atmosphere: Pete, Luis, Salim, Othmane, Laura and everyone else.

vii

Pour Arsène, Juliette, Nicolas.

viii

Contents

Chapter 1 Introduction 1
1.1 Motivation . 2
1.2 Outline . 4
1.3 Contributions . 6

Chapter 2 Principles 8
2.1 Mobile Robots . 9

2.1.1 Perception . 10
2.1.2 Localization . 13

2.2 Mapping . 16
2.2.1 Fundamentals of mapping . 16
2.2.2 Sparse and Unstructured Environments 20
2.2.3 Map Representations . 24

2.3 Autonomous Exploration . 26
2.3.1 Autonomous Navigation . 26
2.3.2 Exploration . 27
2.3.3 Next Best View . 29

Chapter 3 Framework: local maps and experiments 30
3.1 Mapping . 31

3.1.1 Map building . 31
3.1.2 Local Maps - cuboid regions . 33

3.2 Experimental Framework . 35
3.2.1 Simulation Framework . 35
3.2.2 Real World Experimental Framework 40
3.2.3 Summary of the experiments . 41

3.3 Summary . 42

ix

Chapter 4 Measuring Map Quality 43
4.1 Related Work . 45

4.1.1 3D reconstruction metrics . 45
4.1.2 Comparing probabilities . 46

4.2 Method . 47
4.2.1 Comparison metrics . 47
4.2.2 Evaluation Methodology . 52

4.3 Experiments and Results . 54
4.3.1 Experiments . 54
4.3.2 Results . 54
4.3.3 Theoretical Metrics Comparison 55
4.3.4 Metrics Comparison on experimental reconstructions 60
4.3.5 Qualitative comparaison . 64

4.4 Summary . 66

Chapter 5 Linking Map Quality and View-Point Statistics 69
5.1 Related Work . 70

5.1.1 Factors impacting the map quality 70
5.1.2 Hypothesis Testing . 72
5.1.3 Random Forest Regressor . 73
5.1.4 Importance Measure . 74

5.2 Method . 74
5.2.1 Statistics from the observation viewpoints 75
5.2.2 Validation of the indicators with statistical tests 76
5.2.3 Coefficient of Determination and Feature Importance 77

5.3 Experiments and Results . 78
5.3.1 Showcasing the angular sectors and the spherical variance 78
5.3.2 Apparent correlation between map quality and viewpoint statistics . 79
5.3.3 Validation with hypothesis testing 81
5.3.4 Learning to predict map quality from viewpoint statistics 83

5.4 Summary . 87

Chapter 6 Autonomous exploration with View-Point Statistics based policy 90
6.1 Related Work . 91

6.1.1 Exploration Policies . 91

x

6.1.2 Next-Best-View Policies . 92
6.1.3 Policies . 93

6.2 Method . 94
6.2.1 Costmap and Candidate NBV . 95
6.2.2 Expected Information Gain . 95
6.2.3 NBV selection policy . 96
6.2.4 Evaluation Methodology . 96

6.3 Experiments and Results . 97
6.3.1 Experiments . 97
6.3.2 Results . 98

6.4 Preliminary Study on Reinforcement Learning 100
6.4.1 Related Work . 100
6.4.2 Preliminary work . 101
6.4.3 Methodology Concept . 102
6.4.4 Experimental plan project . 104

6.5 Summary . 105

Chapter 7 Conclusion 106
7.1 Summary . 107

7.1.1 Local Approach and Map Quality 107
7.1.2 Linking Map Quality to Viewpoint Statistics and Integrating them

into Next- Best-View . 109
7.2 Future Work . 110

Appendix A Theoretical Metrics Comparison 112

Glossary 115

List of Figures 117

Bibliography 123

xi

1

Introduction

1

1.1. Motivation

1.1 Motivation

Exploring an environment with a robot involves starting from an initial state where the sur-
roundings of the robot are entirely unknown. As the robot interacts with the environment, it
gradually builds a representation of its surroundings. While this may seem straightforward,
several essential concepts need to be defined.

Firstly, what constitutes a relevant representation of the robot’s surroundings? Is it de-
signed for the robot to interact with directly, or is it intended for analysis by a human operator?
Answering this question is fundamentally a matter of design choice. There is no universally
"best" map representation; it depends on specific requirements.

Secondly, in a scenario where virtually everything around the robot is unknown, how
should it decide where to go next to gather information? Should it move continuously, pro-
cessing information as it arrives? Alternatively, should it select specific goals and then pro-
cess information as it navigates toward them? This decision, known as the exploration policy,
is another key design choice.

In this work, we address both of these questions within a unified context. We consider
the robot to be a ground robot, an Unmanned Ground Vehicle (UGV), and the unknown
environment it explores is a natural environment, such as a park or a forest, as illustrated
with Figure 1.1. Our chosen map representation is a familiar one in robotics: the 3D-grid,
discretizing the entire volume into voxels. In the course of our work, we undertake various
tasks and developments, all with the overarching aim of enabling an exploration policy that
maximizes map quality during the exploration process. This section intends to introduce the
various challenges inherent to this objective, which, in turn, motivate the research conducted
in this thesis.

Figure 1.1: The Husky Robot with its sensor suite and the type of environment we consider.

2

1.1. Motivation

Map quality

The first challenge lies in evaluating the 3D-map quality in natural environments. Typically,
map quality evaluation aims to provide a single metric that reflects the overall map quality.
Nonetheless, in the context of a robot autonomously mapping a natural environment for in-
spection or monitoring purposes, it becomes interesting to obtain a localized measure of map
quality. Indeed, the map quality may not necessarily be homogeneous throughout a possibly
large-scale environment.

This research specifically focuses on this scenario, where the robot’s 3D-lidar observa-
tions construct the map. In this case, the prevailing map representation is the 3D grid, where
each voxel encodes information. Traditionally, this 3D grid encodes the occupancy likeli-
hood for each voxel. However, in this common scenario, the conventional measures of map
quality, namely surface coverage and reconstruction accuracy, may not always hold signif-
icant meaning, especially when dealing with natural environments that are not only sparse
but also unstructured. We will demonstrate it in this thesis, by emphasizing the specific case
of mapping a sparse, unstructured environment, such as a natural environment, in simulation
and with a real world experiment.

In the case of “unstructured" environments, distinct challenges arise compared to those
encountered when mapping “structured" environments. The literature often focuses on 3D-
mapping in “structured" environments like urban areas. However, when it comes to work
in natural environments, the differentiation between structured and unstructured, dense and
sparse environments becomes more prominent due to the unique challenges involved. The
3D-map in a natural environment is both unstructured and sparse. It consists predominantly
of empty space, with only a few points where the 3D-lidar actually hits an object, further
complicated by the increased noise level inherent to natural environments. Additionally, the
localization of the robot in the map is also a source of errors because the 3D-map is a prob-
abilistic accumulation of all the point-clouds transformed in the localization frame. This
research does not directly evaluate various mapping algorithms applied to natural environ-
ments. Instead, its emphasis lies in addressing the challenges associated with assessing the
quality of 3D maps in such environments. In this work, we propose a methodology to evaluate
the map quality at a local level. Then, we evaluate and compare several metrics, and propose
to select one particular metric for its robustness in that type of environment.

Building a prior on map quality to guide the exploration

The second challenge is more directly linked to the exploration process. The primary objec-
tive of autonomous exploration is to answer the question "where to go next?" When a robot

3

1.2. Outline

explores an unknown space, the complete volume is unknown at the beginning of the explo-
ration. As the robot moves through the space, it gathers information and updates a map.

In robotics, autonomous exploration involves finding the next most interesting area to
visit, essentially determining a goal destination. When the goal of exploration is to construct
an accurate map, a central question arises: "in regions that have been explored, what is the
current map quality?" Moreover, when working in natural environments, ground-truth data is
often unavailable. This raises a second question: "how can we derive an exploration policy
to improve the map quality without access to any reference map?"

One solution to address both questions simultaneously is to predict the map quality at a
local level from the robot’s observations. From this prediction, we can derive an exploration
policy. This is the challenge we intend to address in this thesis.

To tackle this challenge, our work proposes several computationally efficient viewpoint
statistics that offer insights into local map quality. These statistics highlight which areas are
worth revisiting and how to do so. Conversely, they help identify areas that do not significantly
improve map quality, allowing to discard them. Our work demonstrates statistically that these
viewpoint statistics are presumptive of local map quality.

Furthermore, we integrate these viewpoint statistics into an exploration policy. An explo-
ration policy is a balance between a cost, generally the cost of reaching a goal, and an expected
gain, which represents the expected knowledge the robot will acquire upon reaching the goal.
The best goal according to the policy is the Next-Best-View. In this work, we incorporate
these statistics into the selection of the Next-Best-View. By doing so, we demonstrate that
when the exploration policy formulates its information gain based on the viewpoint statistics,
the overall map quality improves.

1.2 Outline

This section summarizes the thesis, whereas Figure 1.2 shows the interaction between the
chapters.

Chapter 2 introduces the background theory required to understand the research pre-
sented in this thesis. It begins with an overview of mobile robots, introducing their sensors
and the challenges related to localization. The chapter then introduces mapping, highlighting
the challenges inherent to the task, particularly in natural environments that are both sparse
and unstructured. It also presents various map representations used in robotics. Finally, the
chapter introduces essential concepts related to autonomous exploration, beginning with au-
tonomous navigation and ending with exploration itself, including the concept of Next-Best-
View.

4

1.2. Outline

Figure 1.2: System diagram showing the interaction between the different chapters of this
thesis.

Chapter 3 lays the groundwork for the rest of our research. When we started the work, we
quickly realized the importance of a local approach, both in exploration strategy and quality
assessment. To achieve this, we divide the environment into smaller cuboid regions, each
containing key local information. This localized approach forms the basis of our methodol-
ogy. In this chapter, we detail how we extract intersecting cuboid regions from the real or
simulated environment and the robot’s interactions with it. Moreover, we introduce in this
chapter our experimental framework, with both simulations and real-world experiments.

Chapter 4 aims to tackle the challenge of evaluating 3D-map quality in natural environ-
ments. Traditional map quality metrics may not be suitable due to the specific characteristics
of such environments, like sparsity and lack of structure. We evaluate six metrics, conven-
tional and less conventional, and assess their effectiveness in measuring map quality. Not
only we evaluate them empirically using cuboid regions extracted from reference and recon-
structed maps, but we also evaluate them with a specific methodology, involving iterative
degradation of the reference map.

Chapter 5 introduces an innovative approach to estimate map quality a priori using view-
point statistics derived from the robot’s data. This estimation is made locally on cuboid re-
gions. Four viewpoint statistics are introduced: number of observation, minimum range,
number of angular sectors, and spherical variance. We demonstrate statistically that these

5

1.3. Contributions

statistics are indicators of local map quality. Finally, we train a model to predict cuboid qual-
ity based on these statistics, and we analyze their individual importance. This work lays the
foundation for the exploration strategies, discussed in Chapter 6.

Chapter 6 builds on the foundation established in the previous chapters to enhance map
quality during exploration in natural environments. We integrate the viewpoint statistics in-
troduced in Chapter 5 into the Next-Best-View selection process. These exploration policies
result in improved map quality during the exploration process, particularly in the type of
environment considered in this thesis.

1.3 Contributions

List of publications

This thesis builds on the following articles:

[4] Aravecchia Stéphanie, Richard Antoine, Clausel Marianne, Pradalier Cédric. “Next-
Best-View selection with view-points statistics on the observations”. IEEE Interna-
tional Conference on Intelligent Robots and Systems (IROS), Detroit, 2023.

[5] Aravecchia Stéphanie, Richard Antoine, Clausel Marianne, Pradalier Cédric. “Mea-
suring 3D-reconstruction quality in probabilistic volumetric maps with the Wasserstein
Distance”. 56th International Symposium on Robotics (ISR Europe), Stuttgart, 2023.

[3] Aravecchia Stéphanie, Clausel Marianne, Pradalier Cédric. “Comparing Metrics for
Evaluating 3D Map Quality in Natural Environment”. Under-review, 2023.

The following articles are the results of collaborations. Although not directly related to
this thesis, they helped me build an understanding of robotics, particularly field robotics, and
machine learning challenges.

[60] Richard Antoine, Aravecchia Stéphanie, Geist Mathieu, Pradalier Cédric. “Learning
behaviors through physics-driven latent imagination”. Conference on Robot Learning
(CORL), London, 2021.

[61] Richard Antoine, Aravecchia Stéphanie, Schillaci Thomas, Geist Mathieu, Pradalier
Cédric. “How to train your heron”. IEEE Robotics and Automation Letters, 2021.

[55] Oliveira, Cláudia, Stéphanie Aravecchia, Cédric Pradalier, Vincent Robin, and Simon
Devin "The use of remote sensing tools for accurate charcoal kilns’ inventory and dis-
tribution analysis: Comparative assessment and prospective". International Journal of
Applied Earth Observation and Geoinformation, 2021.

6

1.3. Contributions

[49] Mahé Antoine, Richard Antoine, Aravecchia Stéphanie, Geist Mathieu, Pradalier Cé-
dric. “Evaluation of prioritized deep system identification on a path following task”,
Journal of Intelligent & Robotic Systems, 2021

List of open-source repositories

• https://github.com/stephanie-aravecchia/3d-reconstruction-metrics.git (chapter 4)

• https://github.com/stephanie-aravecchia/obs-stats-NBV.git (chapters 5 and 6)

• https://github.com/stephanie-aravecchia/octomap_mapping.git (chapter 3)

• https://github.com/stephanie-aravecchia/unstructured-env-simulator.git (chapter 3)

• https://github.com/stephanie-aravecchia/husky-custom.git (chapter 3)

7

https://github.com/stephanie-aravecchia/3d-reconstruction-metrics.git
https://github.com/stephanie-aravecchia/obs-stats-NBV.git
https://github.com/stephanie-aravecchia/octomap_mapping.git
https://github.com/stephanie-aravecchia/unstructured-env-simulator.git
https://github.com/stephanie-aravecchia/husky-custom.git

2

Principles

8

2.1. Mobile Robots

2.1 Mobile Robots

Figure 2.1: Key concepts of mobile robots (adapted from [67]). The concepts used in this
work are highlighted in bold in the diagram.

This section is designed to provide an overview of fundamental concepts in mobile robo-
tics that are essential for comprehending the content of this manuscript. The reader familiar
with mobile robotics may skip this section.

Typically, in the domain of mobile robots, we categorize their abilities into low-level and
high-level functions. This distinction is shown in Figure 2.1, adapted from [67]. This figure
illustrates the core concepts of mobile robots. Read from bottom to top, the diagram outlines
low-level to high-level abilities.

The lower-level abilities are perception and motion control. They capture the essence of
the robot’s interaction with the real world. On the perception side, the robot acquires infor-
mation from its surroundings, whereas on the control side, the robot actions translate into
real-world consequences. For instance, by rotating its wheels, the robot moves within its en-
vironment. Advancing up the hierarchy in the diagram, we encounter higher-level abilities,
such as localization, map building and path planning. Localization, directly linked to per-
ception, represents the robot’s ability to determine its own position. Directly connected to
perception and localization is map building, a key feature of this work that we will explore
in detail later. Similarly, path planning is a high level ability, typically associated to motion
control in the context of mobile robots. It represents the robot’s ability to navigate robustly

9

2.1. Mobile Robots

through its surroundings. Reaching the pinnacle of the diagram, cognition tasks come into
play. These tasks involve more abstract functions, such as exploration, a core concept of this
work we will delve into later. All these concepts find comprehensive explanation in [67].

This work specifically addresses the concepts highlighted in bold within the diagram.
These concepts are applied to a wheeled robot, yet the outcomes drawn from our research
remain independent of this particular design choice. It is important to note that the field of
mobile robots is vast, encompassing various types such as aerial robots, underwater robots,
and more. Focusing on ground robots, specifically Unmanned Ground Vehicles (UGVs),
there still exists a wide spectrum of locomotion mechanisms, ranging from legged robots
to tracked robots, including wheeled robots. The choice of locomotion impacts the right
side of the diagram in Figure 2.1. Motion control depends directly on the robot locomotion.
Indeed, control laws, commands send to the robot’s actuators, heavily depend on the robot
locomotion. Even tasks at a higher level, such as path planning, rely on this specific design
aspect. For instance, planning a path involving stairs may be achievable for a legged robot,
but unrealistic for a one with wheels. This research focuses on the left side of the diagram
and on the cognition task on the top. Consequently, while this work is centered on wheeled
robots, the conclusions we draw do not solely depend on this specific robot locomotion.

In what follows, we will outline the fundamental concepts introduced here.

2.1.1 Perception

As introduced before, robot perception is a core concept in mobile robots. Every mobile robot
is equipped with sensors, and robot sensing is the essence of robot-environment interaction.
By taking measurements using various sensors, the robot acquires knowledge about its envi-
ronment. Often, the sensors are classified between proprioceptive and exteroceptive sensors.
While proprioceptive sensors measure values internally to the robot, exteroceptive sensors
measure information from the robot’s environment. A thorough review of robot sensors is
provided in [67]. In what follows, we simply present the common sensors for UGVs, and
specifically highlight those necessary to understand this research.

Proprioceptive sensors

Wheeled robots are generally equipped with at least two proprioceptive sensors: one or more
wheel encoders and one Inertial Measurement Unit (IMU). A wheel encoder measures the
position or the speed of the wheel. In robotics, it is often an optical incremental encoder. It
is a device that contains a mechanical light chopper that produces a certain number of pulses
for each shaft revolution. By counting the number of pulses, and integrating it in time, the

10

2.1. Mobile Robots

sensor provides an estimate of the position of the robot. An IMU is a device that contains
different sensors: a gyroscope, an accelerometer, and often a magnetometer. They provide a
measure of the robot’s orientation and inclination. While the measurements are integrated in
time, the sensor provides an estimate of the robot position and orientation.

Exteroceptive sensors

Figure 2.2: Top-left: external view of the scene. Top-right: image from the camera. Bottom:
point-cloud from the Lidar. Top-right and bottom correspond to what the robot "sees". The
dashed trapezoid provides an idea of the correspondence between camera and point-cloud.
The color in the point-cloud simply encodes the height, for visualization purpose.

Exteroceptive sensors are generally split in two categories: passive and active sensors.
While passive sensors measure energy coming from the environment, active sensors emit
their own energy and measure the response.

11

2.1. Mobile Robots

In the outdoor application we consider in this work, a common passive exteroceptive
sensor used for localization is a GPS (Global Positioning System). The GPS is a constellation
of satellites that continuously transmit their location around Earth, in a synchronized way. The
GPS receiver reads the transmission from all the visible satellites, and computes its distance to
each satellite through the arrival time difference in the signals. By combining information on
distance and location of several satellites, it can infer its own position, commonly within a few
meters accuracy. To improve the accuracy of the system, the GPS can be improved to RTK-
GPS (RTK, Real Time Kinematics). An RTK-GPS system is composed of two receivers: a
fixed one, and a mobile one. While the fixed receiver does not move, it computes corrections
on the signals it receives from the satellites’ constellation. It then sends these corrections
to the mobile receiver, that integrates them when inferring its own position. Such a system
typically reaches a centimeter accuracy.

Apart from GPS, mobile robots are typically equipped with other exteroceptive sensors
directly linked to their task. The most common ones are likely cameras and Lidars. Although
common, these two sensors are fundamentally distinct. Firstly, cameras are passive sensors,
while Lidars are active sensors. Additionally, their data outputs diverge significantly.

Traditional cameras are sensors that record the light that is reflected on their environment
and output an image. This image is a 2D-projection of the environment: a grid of pixels. In
traditional cameras, each pixel corresponds to an individual photodetector, that measures the
reflected light. This measure is then encoded into a color model, typically RGB (Red Green
Blue). A displayed image is the addition of the light beams of those three fundamental colors.
Most computer vision applications use RGB images, and RGB cameras are very common
sensors in robotics application. One of their main drawback is that they do not provide any
information on the distance to the object. All the robot’s surroundings are simply projected
on a plane. The functioning of camera sensors and their output is thoroughly detailed in [24].

Lidars, for LIght Detection And Ranging, are drastically different. Firstly, as they are
active sensors, Lidars generate energy, in this case light, to get a measurement. A Lidar is
actually a system emitting light from a rapidly firing rotating laser. This light travels, and
eventually hits an object. The reflected light energy then returns to the sensor where it is
measured. The sensor measures two quantities. The first is the time it takes for the emitted
light to come back: the time of flight. This time is used to calculate the distance, or range. The
second is the waveform of the pulse of light that is returned to the sensor. From this waveform,
the sensor calculates the intensity of the returned energy. Secondly, the output of a Lidar is
fundamentally different from the output of a camera. A 3D-Lidar emits laser rays in known
directions. From the direction and the range, the sensor calculates the XYZ coordinates of
the returned point expressed in the center of the Lidar frame, along with an intensity value.

12

2.1. Mobile Robots

From the returned points, the Lidar outputs a point-cloud: an unordered collection of points.
Each point in the point-cloud contains XYZ coordinates and the intensity value. Figure 2.3
provides an example, illustrating that only returned points are added to the point-cloud. A
description of the technology and its associated challenges can be found in [18], whereas a
thoroughly detailed study of Lidars and point-clouds is provided by [76]. This research deals
with mapping with a 3D-Lidar.

α0

α1

α2
α3

α4

x

y

lidar

P0 = (x0, y0, z0, i0)

P1 = (x1, y1, z1, i1)

P2 = (x2, y2, z2, i2)

P3 = (x3, y3, z3, i3)

r0

r1

r2

r3

Figure 2.3: This figure illustrates 3D-Lidar. The light rays are emitted from the Lidar, in
known directions (angles α). When the ray hits an obstacle, the distance of the returned
point is computed (distances r), along with the intensity of the signal i. A point P (x, y, z, i)
is added to the point-cloud. Rays that does not return are not in the point-cloud. In this
example, although five rays are emitted, the point-cloud contains only four points.

Finally, we would like to emphasize how the data from a camera and a Lidar are different.
We do so in Figure 2.2. It shows an external view of the scene, showing the Husky and its
sensors, along with the image from the camera, and the point-cloud from the Lidar. The
image and the point-cloud are what the robot "sees" with these sensors.

2.1.2 Localization

Another core ability of mobile robots, as introduced earlier, lies in localization. Any image or
point-cloud described previously becomes useless if the observation cannot be linked with its
position in the environment. While we previously explained that certain sensors provide es-
timations of position and/or orientation, solving localization is a standalone research subject.
In the upcoming content, the term “pose" simply means position and orientation.

Commonly, the localization is the problem of estimating the robot’s pose in an external
reference frame, from sensor data, using a map of the environment [29]. Alternatively, the
problem can be reformulated to estimate at the same time the robot’s pose and the map,

13

2.1. Mobile Robots

making it a SLAM problem (Simultaneous Localization and Mapping). In this section, we
briefly introduce the challenges linked with localization, and its problem formulation.

It is important to note that this research does not contribute to the field of localization.
However, understanding the associated challenges is essential for comprehending the content
of this manuscript. For readers interested in an in-depth study of localization, [29] would be
the authoritative reference book.

Frames

x

y

map

base_link θR

x’

y’ x”
y”

lidar
X ′

L

P

Y ′′
P

X ′′
P

XR

YR

map

base_link

lidar

Tmap
base_link(XR, YR, θR)

T base_link
lidar (X ′

L, 0, 0)

Figure 2.4: Illustration of the concept of frames in a 2D-example. On the left: different
coordinate systems, or frames. The external reference frame is called map, the robot frame is
called base_link, and the Lidar frame is called lidar. On the right, the tree structure storing
the transformations between frames.

When considering localization, the primary concept to grasp is linked to frames. In a
robotic system, several frames exist, each defining a different coordinate system. Solving the
localization consists in estimating the robot pose, in a reference frame, from observations that
may be in different frames. When the problem is formulated in 3D, the pose corresponds to
the six degrees of freedom of the system: its 3D Cartesian coordinates, and its three elemental
rotations, in the reference frame.

We illustrate this concept in Figure 2.4, with a 2D example. This figure shows different
coordinate systems. First, on the bottom left, the map frame represents the global coordinate
system. Second, the base_link frame corresponds to the current robot pose. In the map frame,
this pose is the vector (XR, YR, θR). To this vector corresponds the transformation between
base_link and map. Next, the lidar frame corresponds to the coordinate system in which the
point-cloud from the Lidar is expressed. In the base_link frame, the lidar pose is the vector
(X ′

L, Y
′
L, θ

′
L). In this particular case, Y ′

L = 0 and θ′L = 0. To this vector corresponds the
transformation between lidar and base_link. Finally, the coordinates of the point P1 in the

14

2.1. Mobile Robots

point-cloud are (X ′′
P , Y

′′
P) in the lidar frame.

In robotics applications, it is convenient to keep track of the relative position of a frame
with respect to another one in a tree structure. Indeed, it is likely that lidar remains fixed
with respect to base_link, and that base_link will move with respect to map. By chaining the
transformations between frames, we can, for instance, easily recover the position of the point
P in the map frame.

Problem formulation

If a sensor could offer a highly accurate estimation of the robot pose, localization would not be
such a challenging task. However, even if such a perfect sensor were to exist, a new challenge
would emerge: how could we then be certain of the robot’s position with respect to its en-
vironment with absolute certainty ? Moreover, what if we introduced another complication,
like the presence of humans moving in the robot’s surroundings ?

In mobile robotics applications, the fundamental reality is that nothing is known with
absolute precision. Every measurement, from any sensor, carries some noise. Additionally,
every action the robot takes introduces its own noise. When a command is transmitted to
the robot’s actuators, the actual movement of the robot always slightly deviates from the
anticipated trajectory. This can be attributed to sensor noise, such as in the wheel encoders,
but more broadly, it comes from the challenge of precisely modeling interactions with the
environment. This, once again, contributes to the noise inherent in the robotics system.

For these reasons, probabilistic algorithms are the fundamental algorithms in mobile ro-
botics, as expansively detailed in [29]. The key idea of such algorithms is to represent infor-
mation by probability distributions over a whole space of possible hypothesis. In the case of
localization, the initial belief (the initial robot’s pose estimate) is represented by a probability
density function over the space of all locations. Every new sensor measurement (observa-
tion) and every new movement of the robot (action) update the previous belief. Generally,
with enough actions and observations, the probability mass is moved to a single location, and
the robot’s localization is known with a good confidence.

This problem formulation is a state estimation, and this description depicts a Bayes Fil-
ter. The two more widely used localization algorithms in mobile robotics derive from this
algorithm: the Kalman filter and the particle filter, which we simply mention here. Once
more, our focus here is on introducing the localization challenges, and we encourage readers
to consult [29] for comprehensive explanations.

15

2.2. Mapping

2.2 Mapping

2.2.1 Fundamentals of mapping

A map is a representation of the environment. The selection of a specific map representation
depends on various factors. First and foremost, if the map is intended for robot navigation,
it must be computed online on the robot, which introduces a significant computational com-
plexity limitation. Conversely, if the map is computed offline, this limitation is no longer a
concern. Secondly, the map’s intended purpose and the type of information it needs to store
are essential considerations. Lastly, does the map exclusively stores static objects? Different
map representations are available based on these considerations. We will now describe a few
examples, focusing solely on static maps.

Firstly, a continuous map is an exact decomposition of the environment. It compiles a
list of all objects along with their location. Typically, to manage computational costs, the
objects are selected and abstracted. For instance, line segments are extracted from sensor
data, and their coordinates are stored, as presented by [31]. These types of maps are com-
monly employed in indoors applications. Secondly, a discrete map is a discretization of the
environment. These maps typically assume that geometry is the most salient feature of the
environment. Such maps are prevalent in various mobile robotics applications. We employ
them in this research, and we will delve into their details in the following section. Thirdly,
topological maps are graphs that define nodes and the connectivity between nodes. GPS nav-
igation relies on this map type, where a node signifies an intersection, and the connections
between nodes represent feasible trajectories. These maps also find widespread application
in robotics, due to their capacity to enable fast search algorithms within them. More recently,
research explored semantic information incorporation into the map representations. For in-
stance, in a topological map, each node is assigned a semantic label like "grass" or "asphalt",
as shown in [42].

In the upcoming paragraphs, we will elaborate on a specific type of discrete map known
as the occupancy grid. We will then showcase different challenges related to mapping, which
are essential for a thorough understanding of this manuscript.

Occupancy grids

As previously mentioned, achieving optimal navigation planning stands as one of the most
prevalent objectives for building a map. In other words, the intention behind the map is to
plan the robot trajectory, from its current position, to a goal. In such a case, the map is di-
rectly linked to how the trajectory will be planned. The most prevalent map in this case is the

16

2.2. Mapping

Figure 2.5: Example of a 2D occupancy grid map, mapping the same place depicted in Fig-
ure 2.2. Black: pixel corresponding to occupied space, light-grey: free space, dark-grey:
unknown space.

occupancy grid, a discrete map. The occupancy grid is a 2D-map, an image, representing the
plane the robot will evolve in. Every cell in this map, each pixel in the image, encodes the nec-
essary information to compute a safe navigation plan. The simplest form of occupancy grid
contains ternary information: each pixel is either free, occupied or unknown. A slightly more
advanced form of occupancy grid encodes the occupancy likelihood of each pixel. When the
robot is equipped with a Lidar, every point-cloud provides information. Basically, we know
that every return point corresponds to occupied space, and the ray between the robot and the
return point corresponds to free space. Behind the return point, we do not have any infor-
mation. Building the occupancy grid consists in accumulating the robot’s observations in
time.

Figure 2.5 provides an example of an occupancy grid map. This figure showcases some
mapping features described previously. Firstly, this map is an image, projected on a plane.
The dark-grey areas on the top corners are outside the map. Secondly, the figure shows the
current projection of the 3D-Lidar on a horizontal plane (red dots). Thirdly, on the map,
we can see the occupied space where those points are projected on the ground (black), the
unknown space behind (middle-grey), and the free space between the robot and the points
(light-grey). Secondly, this figure shows the results of the ray casting operation. Some previ-
ous returned Lidar points have marked the space empty only between the return point and the
robot, leaving unknown space around the rays (middle-right of the figure). Finally, although
this is not obvious in the figure, it also displays the different frames involved in the mapping.

17

2.2. Mapping

The map is built in the frame represented by the thick axes. The small axes in the figure are
the lidar frame and the base_link frame (the current robot pose in the map).

Challenges with mapping

The core of the mapping challenge comes from the fact that the robot is moving. The robot’s
observations are always in the sensor frame. The very frame attached to the sensor. As shown
in Section 2.1.2, that frame is easily transformed into the robot frame, because the pose of
the sensor with respect to the robot is known, even though some uncertainty remains. The
challenge comes from transforming the robot’s frame into the map frame, the only fixed frame
in time. This challenge is the localization introduced previously. Every robot’s observation, in
the robot’s frame, updates the map. Every error in the estimate of the robot’s pose in the map
leads to errors in the map’s updates. The uncertainty in the robot pose produces uncertainty
in the map, as shown in [20].

An additional issue is linked to the sensor itself. A Lidar is not exempt from measure-
ment noise. Furthermore, the noise level tends to increase in natural environments, due to
several factors. For instance, from a laser’s perspective, trees can behave as semi-transparent
structures, thereby inducing errors in the measurements. The reason is that when laser-rays,
light cones in practice, reach a small object, like a branch, often only a portion of the energy
is reflected. This causes multiple echoes, which are a common source of inaccurate distance
readings. For instance, when measuring distance to a small branch, depending on the amount
of vegetation, the intensity of each echo may vary. The distance reading, associated to the
highest intensity echo, may be the small branch, another branch behind, or some larger struc-
ture behind the tree, for example. A comprehensive analysis of this phenomenon is provided
by [76]. Two other causes of errors in laser measurements, that are particularly abundant in
natural environments, are linked to the distance to the objects and the incidence angle: the
error increases with each of them [46].

Figure 2.6 illustrates the effect of noise on the map. Rows A and B show the effect of
noise only in the localization. Row C depicts the effect of noise on the Lidar only on the
map. Finally, row D exemplifies the effect of a combination of noise of the lidar and noise
on the localization. Looking at column (0), where the localization is perfect, we can see that
the addition of noise in the sensor blurs the cross extruded shape, but much less than the
addition of noise in the localization (column (2)). The examples in Figure 2.6 are not maps,
but simply accumulations of point-clouds in time. Regarding maps, especially occupancy
grids, it is worth noting that every point-cloud contributes to the map. Indeed, every return
point in the point-cloud, with its noise, is transformed into the map frame, with the noise in
the transformation, and used to update the map. In that case, the occupancy likelihood of

18

2.2. Mapping

A

B

C

D
(0) (1) (2)

Figure 2.6: Illustration of the effect of noise on the map, on a toy-case. The noise is applied
either on the localization, on the sensor, or on both. Top: the simulation: a husky-robot facing
a cross-extruded shape. All the other figures display the point-clouds accumulated for five
seconds in a given map frame. The frame is either the perfect localization from the simulation
(0), or a noisy localization, where we apply a Gaussian noise to (0). We display two level of
noise: (1) and (2). Rows A, B: the Lidar sensor is perfect. Rows C, D: the Lidar sensor is
noisy. Rows A, C: the robot is not moving. Rows B, D: the robot is moving. If we focus on
the cross-extruded shape, we can see that the higher the noise in the localization and / or on
the sensor, the blurrier the shape.

19

2.2. Mapping

the pixel containing the returned point is increased, the occupancy likelihood of the pixels
traversed by the laser ray are decreased.

Purpose of mapping

Often, robot mapping is intrinsically linked to the autonomous navigation of the robot. Plan-
ning a trajectory within an occupancy grid consists in computing a trajectory from the robot’s
current pose to the goal, while ensuring it stays in free space and maintains a safe distance
from obstacles. This computation relies on the values associated with the pixels of the oc-
cupancy grid, that is, the occupancy likelihoods. Optimal planning in a 2D-plane may be
considered a solved research problem, and several algorithms exist to compute optimal plans.
It is worth noting that we are specifically discussing here global planning, which involves
going from point A to point B. The distance from A to B can be large, and in addition to
the global plan, the robot actually needs to follow what is called a local plan, reactive for
example to moving obstacles, and to be controlled on this local plan. Planning will be briefly
presented later in this manuscript.

However, there are cases where the purpose of the map is not the planning. For instance,
it may be the need to build a representation of a scene enabling its monitoring, such as in
[19]. This is the scenario we consider in this research, as we will see in Section 2.2.3.

2.2.2 Sparse and Unstructured Environments

In this research, we consider a particular type of environment: natural environments. In
addition to be potentially large, they combine two challenges: they are both unstructured and
sparse.

Unstructured Environments

Let us begin with the lack of structure. In the literature ([57], [1], [20] or [7]) it is customary
to distinguish between structured and unstructured environments. Generally, we consider the
environment structured if its underlying structure can be approximated by basic geometri-
cal shapes such as rectangular cuboids, cylinders, etc..., unstructured otherwise. Following
this, natural environments are considered unstructured, whereas urban areas are more struc-
tured. Research often focus on “structured" environments like urban areas, as demonstrated
by extensive research conducted on the Kitti Dataset [30].

In unstructured environments, the difficulty comes from the sampling of the surface. The
sampling of the surface is the points in the point-cloud that correspond to the object. In a
structured environment, the sampling of a surface does not need a high density to recover the

20

2.2. Mapping

underlying structure. On the contrary, this is not true in an unstructured environment. We
illustrate this statement with Figure 2.7. It displays some structured elements: on the left
side, a building and in the foreground, on the right side, a lamp and a bench. It also displays
unstructured elements: two trees on the right in the background. When looking at the point-
cloud of the same scene in the bottom, it seems easy to recover the underlying structure of
the building, the bench, or the lamp. We refer here to the ability to perform the task for a
human observer, regardless of the feasibility of the task by any automatic method. On the
contrary, when looking at the point-cloud of the trees, this is quite different. We can recover
the underlying structure of the trunk and the large branches, but nothing in the canopy. The
two pictures in the bottom zoom into the two red rectangles: on the trunk, and on the canopy.
The zoom level is the same on both pictures. Looking closely at these pictures does not help
in the canopy. Some points may correspond to small branches, some other to leaves, we can
only guess. The reason lies in the sampling of the surface. If the sampling of the canopy had
been higher, we could have been able to recover the structure, but that seems not achievable
in a real world setup.

It should be worth noting that the sampling is also directly linked to the density in the
output of the 3D-Lidar sensor mentioned earlier. In this example, the point cloud comes
from the scanning of the area with a Leica Total Station. A robotic Total Station is a device
composed of a highly accurate laser, controlled in angular position with a high accuracy.
It allows performing 3D-scans of areas, with a precision and a density much higher than
achievable with any embedded sensor.

Sparse Environments

Then, let us continue with the sparsity. The sparsity comes from two sources.
Firstly, it comes from the environment itself. Natural environments tend to be sparse.

They contain mostly empty space, where no Lidar returns, ground, and some objects, such
as trees, bushes, rocks etc... The objects themselves are also sparse. Except for tree trunks,
vegetation is generally sparse. It contains mostly empty space, with small branches, leaves,
etc...

Secondly, the sparsity comes from the sensing modality. A 3D-Lidar outputs a sparse
point-cloud. For example, the Ouster OS1-16, used in some experiments in this work, outputs
82× 103 points per seconds in its cylindrical field of view. Another sensor used in this work,
the Robosense BPearl outputs 576×103 points per seconds in its hemispherical field of view.
As a comparison, the depth output of an Intel RealSense D415 can reach 83× 106 points per
seconds, in its rectangular field of view. An Intel RealSense is an RGB-D camera, a camera
providing at the same time the RGB image, and the depth of each pixel (the distance to the

21

2.2. Mapping

Figure 2.7: Illustration of the structured or unstructured nature of the environment on the
sampling of the surface. The middle picture is the point-cloud of the place shown in the top
picture, acquired with the Leica Total Station. The bottom pictures highlight the rectangle
areas above by zooming in.

22

2.2. Mapping

sensor). Such sensors are not suited for outdoor applications, mostly because the accuracy
of the depth output decreases rapidly with the range, and because they are not robust to other
typical outdoor problems, such as sunglare.

As a consequence, the point-cloud representing a natural environment is sparse. That is
true even if we do not yet consider the map, but only the accumulation of the robot’s point-
clouds in the map frame. This resulting point-cloud consists predominantly of empty space,
with only points where the 3D-lidar actually hits an object, further complicated by the noise
level, in the point-cloud, and in the localization. Figure 2.8 illustrates this difficulty. This fig-
ure shows that the point-cloud from the 3D-Lidar is sparse, and it also highlights the difficulty
introduced by an error in the localization. It is particularly visible on salient objects, such as
the pole in the left. The points from the Lidar does not appear superposed on the point-cloud
from the Total Station. This error comes from the localization.

Figure 2.8: Illustration of the sparsity of the data output of the 3D-Lidar. The white dots
corresponds to the point-cloud acquired by the Total Station. The colored points corresponds
to a single point-cloud from the robot’s Ouster-16. The spheres are debugging tools, used to
display residual errors in the localization.

23

2.2. Mapping

2.2.3 Map Representations

In the scenario we consider in this thesis, the purpose of mapping is to build a geometric
representation of a scene. As such, the most common maps are volumetric maps, or 3D-
grids, and meshes, or 3D-surface maps. We explain both here.

Meshes

Figure 2.9: Challenges with meshing: (a) the real tree, (b) the point-cloud from the Total
Station (c) an example of mesh failing to describe the actual surface of the fine elements of
the tree.

A mesh is the description of a surface by connected triangles. Research is prolific on
meshing single objects, but much less on meshing large scale environments. Generally, the
mesh is build from a point-cloud. We apply an optimization algorithm, and find the con-
nected triangles that best describe the surface. Among the most widely used techniques, we
can cite Ball-Pivoting Algorithm [12], Poisson Surface Reconstruction [40] or Delaunay tri-
angulations [21], mainly applied to mesh a single object. Other methods tackle large-scale
meshing, such as [10] who includes texture in the mesh to improve its visual aspect, or [19]
who build a semantic mesh representation of a large-scale environment with the Las Vegas
Reconstruction Toolkit [79]. Recently, other methods have been presented to build meshes
with deep learning techniques, such as Voxel2Mesh [78]. In the large scale, sparse, unstruc-
tured environments we consider in this thesis, the mesh is unlikely to represent the surface.
The reason lies in the sampling problem we highlighted before. In some applications, whereas
the mesh may appear visually nice due to its texture, in reality, the geometry does not describe
accurately the surface. We illustrate that with an example Fig. 2.9, where the mesh is derived
from what could be considered a dense point-cloud, the point-cloud obtained from a Leica To-
tal Station. We see in the middle figure the sampling problem we mention. The trunk is quite
clear, but the branches much less. Knowing it is a tree, our mind is capable of interpreting
that the points spread on the right are likely small branches, but from a computer perspective,
there is little chance that any optimization converges on a mesh that actually describes the
surface.

24

2.2. Mapping

3D-grids

A 3D-grid is a generalization in 3D of the 2D-grid we introduced earlier. Such a map is
the discretization of the space into voxels, each voxel containing some information. That
information can be:

1. an occupancy map, where the voxels have 3 states: free, occupied or unknown;

2. a probability map where each cell contains its probability of occupancy;

3. or something different, where the voxels contain data such as semantic information.

Figure 2.10: Example of a 3D-grid map, mapping the same place depicted in 2.2. Each cube
is a 5cm side voxel, representing only the occupied space. The color encodes only the height,
to help the visualization.

In this work, we focus on the prevailing map representation for outdoor robotics: proba-
bilistic 3D-grids. The appearance of this map is directly derived from the resolution, that is,
the size of an edge of a voxel. Ideally, the lower the resolution, the more detailed the map.
Figure 2.10 provides an example of a 3d-grid map. This map is a representation of the lab
shown in Figure 2.2. Due to the small vertical field of view of the Ouster-16 3D-Lidar, only
a slice of the lab is actually mapped. Also, because of occlusions, the back side of the other
robot (top right corner) is not observed, and therefore, not mapped. In this example, the res-
olution is set to 5cm-side voxels. The resolution should be chosen carefully to be consistent
at the same time with the type of objects we want to map in, and the level of noise when
building the map, particularly in the robot localization. As an example, if the position of the

25

2.3. Autonomous Exploration

robot is known with an 0.2m2 uncertainty, building a 3D-grid with a 0.05m resolution is not
suited and will lead to a highly noisy map.

2.3 Autonomous Exploration

2.3.1 Autonomous Navigation

Before looking into autonomous exploration, a prerequisite is to understand what is autono-
mous navigation. Autonomous navigation is a high-level task in mobile robotics. It consists
of enabling for the robot to move autonomously and robustly in its environment. Autonomous
navigation is divided in three components: global planning, local planning and control. Ex-
ploration is a higher level task that consists in choosing the next goal. Often, global planning
is part of the exploration task, as we will see right after.

First, we focus on the three navigation tasks.

Global Planning

Global planning consists in planning a safe trajectory from the current position of the robot,
A, to its target position, B. Planning such a trajectory requires several components. First, we
need to define where the robot can or cannot go in the map. If we take the example of a 2D-
occupancy grid map, we can assume the robot can navigate safely in free space. Two questions
would be: can it navigate safely close to obstacles ? Can it navigate safely in unknown space ?
Answering those questions require the computation of an intermediary component called the
cost-map. This cost-map is a 2D-grid where each cell is associated to a cost. Planning from
A to B would then consist in finding the lower cost trajectory in the set of feasible ones from
A to B. A typical cost-map consists in simply expending the obstacles in the occupancy grid
with a Gaussian Kernel. Cells close to obstacles would then have a higher cost than those far
from obstacles.

More advanced cost-maps would take other factors than simply the distance to obstacles.
For example, the cost of a cell may be linked to the slope of the terrain it is associated to.
Similarly, each cell could be assigned a traversability score depending on the very nature of
the terrain. For instance, asphalt is easily traversable, whereas rocks are not traversable. In
the middle, short grass could be traversable, although less easily than asphalt, and tall grass
may be traversable, but with some risk, and the cost should reflect the level of risk of planning
through each cell. Global planning is finally an optimization to seek for the cheaper trajectory
from A to B. Several algorithms allow to compute this best trajectory, among which the more

26

2.3. Autonomous Exploration

broadly used are Djikstra, A*, or RRT*. We recommend the interested reader to look for [67]
that provide a comprehensive description of the main planning algorithms.

Local planning and control

Although local plan and control are out of the scope of this work, we provide to the reader
high-level information about what they are in the context of mobile robots, and again invite
the reader to look for [67], a reference book in mobile robots.

Local planning enables the local adaptation of the robot to the global plan. The more
obvious reason is moving obstacle avoidance. By definition, it is not possible to plan a path
from A to B avoiding moving obstacles. This reactive behavior is what local planning deals
with. Local planning is reactive planning to keep executing the general trajectory from A to
B, while taking into account local changes.

Control is the final step in autonomous navigation. It consists in computing and applying
the commands that will drive the robot to follow the local plan.

2.3.2 Exploration

As introduced before, in an exploration problem, we consider a volume unknown at the begin-
ning. The robot moves into this volume, and at the same time gathers information and reduces
the unknown. Crafting an exploration policy consists in defining the rule to choose where the
robot should go next. That policy is directly linked to the reason why the robot has to explore
the environment. Generally, whether it be only for its navigation, or for other purposes, the
map is directly linked to the exploration. Let us assume the map is a 2d-occupancy-grid map
introduced before. This map encodes the occupancy likelihood of each pixel, and therefore
contains information about occupied space, empty space, and unknown space. Occupied and
empty space together are the known volume, the remaining is the unknown volume. From
this frontier between the known and unknown volume [81] introduced the concept of frontier
points. A frontier point is a point, within the known volume, with at least an unknown neigh-
bor. From this concept derives the first autonomous exploration policy, also called closest
frontier exploration. In closest frontier exploration, the next goal is always the closest from
the current robot position in the set of reachable frontier points. This decision-making pro-
cess, that drives the choice of the next goal to visit, is called the exploration policy. The
primary objective of a closest-frontier exploration policy is to rapidly reduce the unknown
in the map. Another traditional exploration policy, derived from frontier points, consists in
randomly sampling the goal among the frontier points rather than choosing the closest. This
policy is commonly referred to as random frontier exploration.

27

2.3. Autonomous Exploration

In a typical exploration mission, the sequence of actions involves: setting the goal, moving
to the goal, updating the map, setting a new goal, and repeating this cycle. However, this
behavior is not necessarily linear. For instance, the map can be updated while the robot
moves. Similarly, the next goal is often regularly sampled, without waiting for the robot to
reach the current goal. This approach is used because, due to map updates while the robot is
moving, a goal that is a few seconds old may no longer be the optimal choice. In traditional
policies, the cycle is over when the exploration is considered complete. This determination
is often based on specific criteria, such as mission time, or achieving a minimal percentage
of the volume being known.

Figure 2.11: Illustration of the concept of frontier points in an occupancy grid. The current
position of the robot is the green square. A, B and C are the main clusters of frontier points

Figure 2.11 provides an illustration of the concept of frontier points. The current position
of the robot is the green square. A, B and C are the main clusters of frontier points (some
frontier points are not in A, B or C). Depending on the exploration policy, the robot may pick
a goal in A (closest), in B (highest density of unknown points for instance), or either in C
(random for instance).

Whereas out of the scope of this work, it should be mentioned that the concept of frontier
point exploration is often extended to multi-agents. Indeed, when the objective is to discover
the volume as quickly as possible, having robots cooperate to build a common map is an
appealing solution, as proposed initially by [17].

28

2.3. Autonomous Exploration

2.3.3 Next Best View

As mentioned earlier, the choice of the next goal depends not only on the target destination,
but also on the path the robot will take. During the execution of the path, observations con-
tinuously update the map. Because of this continuous update, a new goal is typically chosen
during the execution of the path. In this context, the robot’s actuation is driven by the objec-
tive of maximizing perception efficiency, a strategy commonly referred to as Next-Best-View
(NBV) or active sensing

NBV is an active research topic in various contexts. For instance, [8] selects NBVs based
on their "perceptual informativeness" to minimize localization error. The underlying idea
is that when the primary sensor is a camera, avoiding featureless areas increases the perfor-
mance of visual inertial odometry algorithms.

When NBV and exploration are linked, the exploration policy is the function defining
a balance between the need to maximize the efficiency of the perception (the information
gain), and some cost (for example, the distance to the candidate), to select the best goal for
the exploration task. Often, exploration policies are linked to simultaneous localization and
mapping (SLAM). SLAM, introduced earlier in this chapter (Section 2.1.2), is an optimiza-
tion that seeks at the same time to find the map, and the poses, or history of poses, of the
robot. When exploration and SLAM are linked, the gain is often formulated to reduce both
map and localization uncertainty, as in [70]. Beyond SLAM, the objective of the NBV selec-
tion, within the context of exploration, often revolves around finding the path that maximizes
space discovery, as shown in [13] for instance.

In contrast, in this work, we not only seek to reduce the unknown in the map, but we also
consider localization as an input to the mapping problem. In our research, map quality is a
key feature of the overall objective. The central question we address in this thesis is: "how
can we select the Next-Best-View to enhance map quality in a natural environment ?" While
some methods focus on structured environments (discussed in Chapter 6), our novelty lies in
developing a method effective both in structured and unstructured environments.

29

3

Framework: local maps and experiments

30

3.1. Mapping

The initial phase of this work involves setting up a framework that lays the foundation
for our primary goal: creating an exploration strategy for possibly large-scale natural envi-
ronments to enhance map quality. As we delved into the problem, we quickly realized that a
localized approach was essential. This applies not only to the exploration strategy, but also
to how we assess quality. To address this, we decided to divide the environment into smaller
cuboid regions, each containing key local information like map quality and viewpoint statis-
tics. This localized perspective makes the data we consider more relevant and meaningful.

The main contribution presented in this chapter is our methodology for this localized
approach. We explain how we extract intersecting cuboid regions from both the real (or
simulated) environment and the robot’s interactions with it. These cuboids form the basis for
the work discussed in the upcoming chapters.

Additionally, we introduce our experimental framework, which includes simulations and
real-world experiments. Following the conventions in robotics, we use ROS 1 (Robot Oper-
ating System) as our middleware. We prioritize the use of standard ROS packages in com-
ponents we do not developed ourselves. Furthermore, we open-source all the ROS packages
developed as part of this work.

3.1 Mapping

3.1.1 Map building

As introduced in the previous chapter, the map representation used throughout this work is the
probabilistic 3D-grid. A 3D-grid is a discretization of the volume into voxels. In probabilistic
3D-grids, each voxel encodes the occupancy likelihood of the volume it corresponds to. In
this work, we do not develop any new map building framework. Instead, we use a common
3D-mapping framework in robotics: Octomap.

Octomap [35] is a method to build and store an octree instead of a 3D-grid, saving memory
and computation. An octree is a tree data-structure, where each element, a node or a leaf,
has at most eight children. That data-structure is highly efficient to partition 3D-space by
recursively subdividing it into octants, as illustrated in Figure 3.1. The higher the depth in
the octree, the smaller the resolution of the leaf. An interesting feature in that data-structure is
that it allows "pruning", that means removing all the children of a leaf to reduce the resolution
when high resolution is not necessary. The open-source ROS Octomap library 2 implements
the complete probabilistic map building process. Except for the fact that the map is an octree,

1https://www.ros.org/
2http://wiki.ros.org/Octomap

31

https://www.ros.org/
http://wiki.ros.org/Octomap

3.1. Mapping

the map building is similar to what is presented in Chapter 2. The map is constructed in a given
map frame, and every point-cloud in the Lidar frame updates the map. For each point in the
point-cloud, a ray-casting operation is performed. Between the robot and the returned point,
the probability of occupancy of the leaves in the octree is decreased. The returned points are
updated as occupied, their probability of occupancy is increased. A thorough update process
has been implemented to be robust to noise in the Lidar’s point-cloud. Moreover, the leaves in
the octree encode the likelihood of occupancy, or emptiness, only if a point has been observed.
Therefore, the octree encodes the unknown volume, i.e. the volume represented by absent
leaves, a feature that can be useful in different robotics applications, such as exploration.

Figure 3.1: From [35]. Example of an octree storing free (shaded white) and occupied (black)
cells. The volumetric model is shown on the left, and the corresponding tree representation
on the right.

Several methods provide means to build 3D-grids from 3D-Lidar point-clouds. For in-
stance, Voxblox [54] builds 3D grids where the truncated signed distance field (TSDF) is
stored for each voxel. Although that method is developed to produce high quality maps, it
tends to struggle when the environment size increases. Other methods have been proven effi-
cient to build large 3D-grids, such as Octomap. Even though Octomap might not be the most
efficient, as shown in [41], it is still one of the most widely used methods.

Figure 2.10 in Chapter 2 provides an illustration of a 3D-grid build with Octomap. Since it
is not possible to illustrate a 3D-grid containing probabilities, it simply displays a thresholded
3D-grid map. Only the voxels whose occupancy likelihood is above 0.8 are displayed.

In this work, we add two features to the Octomap software. The first one is the ability to
save the map directly inside Octomap. The original behavior sends the map through the ROS
network to a saver. The maps we build in this work are generally large, and this behavior
tends to fail. The second one is the ability to work directly on the recordings (called bags in
ROS). In the original behavior, every time a new point cloud is received by Octomap, it is
added to the octree. This addition may take some time, and the point clouds received during

32

3.1. Mapping

the operation are lost. In our work, we want a map that reflects the robot’s observations,
regardless of the computation power of the machine building the map. Our modification
ensures that all point-clouds from the bags are processed. This modified version of Octomap
is available on github 3.

3.1.2 Local Maps - cuboid regions

In our research, a common approach in different methods we propose consists in considering
local regions of the map. Given our 3D-grid representation, we choose to define these areas
as cuboid sections of the map. This section explains how we extract these cuboid regions, and
this process serves two main purposes. Firstly, it allows us to assess map quality locally, as
will be discussed in Chapter 4. Secondly, it helps us calculate statistics from the observation
viewpoints for these cuboid regions, as will be detailed in Chapter 5.

To proceed, we define a common framework, consisting of the two fundamental elements:

• the reference frame of the experiment: Rf ,

• the size of the cuboid: the resolution RES.

With these parameters defined, we discretize any given volume into a 3D-grid, of resolu-
tion RES and within the reference frame Rf . Within this 3D grid, we refer to a specific local
region as a cuboid, designated by the notation C.

Ground-truth and reconstructed 3D-grids

When evaluating the quality of the map, we face two main challenges. The first one lies in
the transformation of different map representation into comparable ones. The second lies in
the precise alignment of the comparable map representations.

Let us begin with the map representations.

Reconstruction As explained before, the map we build from the robot’s observations is
in reality stored as an octree. The transformation of this octree into a probabilistic 3D-grid
requires some processing. Firstly, we create the octree, a full probability map with Octomap
in the reference frameRf , and with a given resolution res. From this octree, and its bounding-
box in Rf , we initialize a 3D matrix as unknown space, i.e. values of 0.5, corresponding to
the equal probability of the voxel to be occupied or empty. We then iterate on all the leaves
in the octree. For each leaf, we set the probability of its associated voxels in the 3D matrix to

3https://github.com/stephanie-aravecchia/octomap_mapping.git

33

https://github.com/stephanie-aravecchia/octomap_mapping.git

3.1. Mapping

the probability of the leaf (the unknown space is implicitly described in Octomap with absent
leaves). We finally obtain the probabilistic 3D-grid we call “reconstruction" in this work.
This reconstruction dataset, Drec, is a 3D matrix of size (h2,w2,n2), with a voxel resolution
res. Its associated volume in space is the bounding-box Bbox2 , in the reference frame Rf . It
should be noted that we refer to different resolutions in this section. res is the resolution of
Octomap and of the reconstruction 3D-grid. RES is the resolution of the cuboid. This method
assumes res < RES.

Ground-Truth To later measure the map quality, we need a reference map. This refer-
ence map is called “ground-truth" in this work. Here, we need to distinguish simulation and
real world experiments. In simulation, the “ground-truth" is a mesh. Indeed, when running
the experiment in simulation, the simulated point-cloud corresponds to the computation of
rays between the center of the simulated Lidar, and a collision surface. In our experimental
framework, this collision surface is the mesh of the simulated world. The transformation of
the mesh into a 3D-grid is done as follows. We first slice the mesh with horizontal planes,
with a vertical space of res, our 3D-grid spatial resolution. In each plane, we then calculate
the intersection of the mesh and the plane, and we store it in a 3D matrix of voxel size res.
Each voxel on the intersection is occupied and has a value of 1.0, all the remaining voxels are
empty with a value of 0.0.

In real world experiments, it is not possible to acquire the ground-truth. Nonetheless, we
can approximate it by scanning it with a Leica Total Station, as we will detail later. This
scanning provides a high-resolution point-cloud. To transform this point-cloud into a 3D-
grid, we first construct a 3D matrix of voxel size res containing zeros. We then iterate on the
point-cloud, and for each point, we set the value of the corresponding voxel to 1.0.

Whether it be from simulation or real world, we now have the ground-truth 3D-grid. This
ground-truth dataset, Dgt, is a 3D matrix of size (h1,w1,n1). Its associated volume in space,
in the reference frame Rf , is the bounding-box Bbox1 .

Intersecting cuboids

To later enable the comparison of the local reconstruction and the ground-truth, we need
to extract intersecting cuboids from both datasets. To do so, we load the intersection of both
datasets, Bbox1∩Bbox2 , in two 3D matrices, Mgt and Mrec. A voxel vijkgt from Mgt corresponds
to the same volume in Rf than vijkrec from Mrec.

A cuboid region is a group of n × n × n voxels in each 3D matrix, and is noted Cgt or
Crec. Those cuboid regions are in fact large voxels of size RES = n × res, in the 3D-grid

34

3.2. Experimental Framework

Figure 3.2: Visualization of a cuboid (10x10x10 voxels). On the left part of the figure, each
row of images correspond to a single cuboid, each column in the row to a slice of the cuboid.
The color encodes the occupancy likelihood, from free space in black, to occupied space in
white, as shown in the colorbar. The grey corresponds to the unknown. The first row is the
ground-truth cuboid, Cgt. The second row is the reconstruction cuboid, Crec, encoding the
occupancy likelihood. The last row is the binary version of Crec: Ĉrec, where the voxels
whose occupancy likelihood is above 0.8 are set to occupied, the others to empty. The right
part of the figure displays in green Cgt, in blue the thresholded Ĉrec.

Bbox1 ∩ Bbox2 , in Rf . Each element in Crec and Cgt stores the occupancy likelihood of its
corresponding voxel of size res in Rf . Fig. 3.2 shows an example of a cuboid where n = 10.

3.2 Experimental Framework

3.2.1 Simulation Framework

This section explains how we generate the simulated worlds we use in simulation. The simu-
lations are run within the ROS framework with Gazebo and a Clearpath Husky robot equipped
with a 3D Lidar Ouster OS1-16 (16 planes of 512 points). The simulation framework, includ-
ing the code to generate our environments, is available on github 4.

World Generation

We generate randomly several environments. Each environment is a plane of dimension
60m × 60m on which we place assets with a Poisson Cluster Point Process, to reproduce
the natural spatial distribution of trees.

To populate the simulated worlds, we chose four types of assets, each type of asset pre-
senting a distinct level of complexity in terms of reconstruction. We began with a simple
structured shape: a rectangular cuboid. Next, we created a cross-extruded shape, designed to
emphasize occlusions in the xy plane. Following that, we introduced a helicoidal cone, ca-
pable of producing occlusions in both the xy plane and the z dimension. Lastly, we opted for

4https://github.com/stephanie-aravecchia/unstructured-env-simulator.git

35

https://github.com/stephanie-aravecchia/unstructured-env-simulator.git

3.2. Experimental Framework

Figure 3.3: Illustration of the different assets used in simulation: rectangular cuboid, cross-
extruded shape, helicoidal cone, simulated tree.

simulated trees, representing the most unstructured assets, with occlusions occurring in all
directions. Our library includes 15 different tree models, generated using a space coloniza-
tion algorithm 5, mimicking winter bare trees. Due to computational constraints in Gazebo,
these trees are generated without leaves. Finally, when populating the simulated worlds, we
apply random factors on the assets’ dimensions and orientation. The four types of assets are
illustrated in Fig. 3.3.

With the same point process generation, we create four different synthetic environments,
one with each type of assets. With the open-source Blender software 6, we create a single
shapefile (.stl) for each environment. This ensures that the mesh we slice to obtain the 3D-
grid ground-truth is the same used in Gazebo to infer the collisions of the Lidar, hence to
construct the map.

We generate 24 environments (3 different spatial distributions with 4 different types of
asset, and 2 level of sparsity in the assets). Figure 3.4 shows an example of a same spatial
distribution with four different assets, in a sparse environment. As we can see in this figure,
the simulated world is enclosed by vertical planes. This arrangement is due to the simulation
itself, where there is typically nothing outside the defined world. As a result, many Lidar
points do not encounter any obstacles beyond the defined boundaries. Because of the spar-
sity in the provided example, many Lidar points do not encounter any obstacles inside the
boundaries either. A Lidar ray that does not return does not update the map. Consequently,
the map remains largely unknown rather than being updated as empty space. In a real-world

5https://github.com/dsforza96/tree-gen
6https://www.blender.org/

36

https://github.com/dsforza96/tree-gen
https://www.blender.org/

3.2. Experimental Framework

scenario, this behavior is unlikely. To address this discrepancy, we introduce vertical planes
to the simulation environment. This adjustment ensures that when the Lidar observes empty
space, it is correctly updated as such, aligning the simulation with real-world behavior.

Figure 3.4: Illustration of four simulated words where the four types of assets share the same
spatial distribution. In this example, the number of assets is set to create a sparse environment.

Simulated Noise

To make our simulation closer to the real world, we add noise both on the Lidar and on the
robot localization.

Lidar Noise

The default noise on the Lidars in Gazebo is a Gaussian noise with a constant standard devi-
ation applied to the range measurements. While this might be adequate for some research, in
this research, it is crucial for this work that the simulated Lidar closely mimics the behavior
of a real Lidar in outdoor natural environments. To achieve this, we apply a mixture of noise
models to the ideal Lidar from Gazebo. Empirically, we found the mixture of noise models
shown in Table 3.1, applied on each point-cloud, produced an output visually similar to the
real point-clouds, with the same Lidar, in natural environments. For each point in the point-
cloud, we compute the noisy range r as indicated in Table 3.1, with r0 the perfect sensor
reading from Gazebo, and rmin the minimum range of the sensor.

37

3.2. Experimental Framework

Ratio of points Noise formula
96% r = r0 +N , with N ∼ N (0, 0.0082)
3.9% r = r0 − ||N ||, with N ∼ N (0, (0.01× r0)

2||
0.1% r ∼ U(rmin, r0 + 0.03)

Table 3.1: Noise mixture applied to the Lidar range

Localization Noise

Since the quality of the reconstruction is directly linked to the localization of the robot, we
incrementally add noise in this localization. For each noise level, we build a different proba-
bilistic map with Octomap. To obtain the different noise levels, we use the perfect localization
from Gazebo on which we apply a Gaussian noise on the position and on the orientation. The
noise levels considered in this study are presented in Table 3.2.

standard deviation
Noise level on position (meters) on orientation (radians)

0 0.000 0.000
1 0.005 0.005
2 0.050 0.010

Table 3.2: Noise levels in simulation

Errors in the orientation estimation lead to large errors in the position of far away points
(i.e a 0.01 radian error in the orientation leads to a 0.20m error in the position of a 20m
distant point in the Lidar point-cloud). We consider these three noise levels are representative
of various precision levels achievable in real-world applications. It is worth noting that in
real-world scenarios, the Gaussian assumption regarding localization may not always hold
true. Factors like drift or the non-Gaussian noise often associated with GPS can introduce
complexities. However, we state that these considerations do not invalidate the findings of
our work, given that we also evaluate it through real-world experiments.

Experimental Simulation

A simulated experiment, illustrated in Fig.3.5, consists in loading one of the environments
described previously in Gazebo, and have the robot interact with this environment.

In this thesis, we consider different sets of experiments, as follows. In all the experiments,
we generally build the reconstruction with a sensor range is set to 20m, the map resolution
to res = 0.1m, and the cuboid resolution to RES = 1m. When the robot navigates towards a
goal, the planning and control is done with a classic ROS package for navigation: move_base.

38

3.2. Experimental Framework

Figure 3.5: Illustration of an experiment, with the Husky robot at the center in an environment
containing only trees.

We design various sets of experiments to highlight different challenges related to either
mapping or exploration. When focusing solely on mapping challenges, we aim to illustrate
how the type of world can make mapping related tasks difficult, as discussed in Chapter 4.
Conversely, when examining the relationship between map quality and viewpoint statistics,
we want to avoid introducing biases in the viewpoints, as discussed in Chapter 5.

To begin, we categorize our experiments into two main sets:

• Teleportation Experiments In these experiments, we teleport the robot into the en-
vironment, accumulate point-cloud data in Octomap, and then teleport it again. This
process is repeated for 100 iterations.

• Navigation Experiments Here, the robot autonomously moves toward a goal, using
move_base, and all the observations made during the execution of the path update the
map in Octomap.

Next, we design different types of experiments based on what we aim to evaluate:

• Waypoints Experiments To eliminate potential bias from different trajectories that
could affect map quality, we conduct waypoints experiments. The robot follows a pre-
defined list of waypoints, ensuring a consistent trajectory for all experiments. This
approach is a specific navigation experiment, where each waypoint serves as a new
navigation goal.

39

3.2. Experimental Framework

• Straight Lines Experiments These experiments aim to highlight the impact of view-
point diversity on map quality with a visual example, from two different robot behav-
iors: FRONT and LAT. The robot either drive directly toward an object (FRONT) or
alongside the object (LAT). To ensure straight-line trajectories, we controlled the robot
directly, bypassing move_base for these specific experiments.

• Random Experiments When evaluating how viewpoint statistics influence map qual-
ity, we try to avoid trajectory-related biases, where one trajectory might result in more
diverse viewpoints than another. For this purpose, we run teleportation experiments,
where the goal is randomly chosen.

• NBV Experiments Finally, to assess different policies, we conduct teleportation ex-
periments. The goals are selected based on the evaluated policy. Our approach, as
explained in Chapter 6, involves evaluating our policies by selecting the Next-Best-
View one step ahead, rather than for the entire trajectory to the goal. This aligns better
with the teleportation experiments than with the navigation experiments. Additionally,
using teleportation experiments speeds up simulations and consequently facilitates data
collection, a necessary step in model training.

3.2.2 Real World Experimental Framework

The experimental site is located outside a campus and encompasses a car park area of approx-
imately 5400m2, surrounded by a park with trees and bushes, some of which are also situated
within the parking lot. Fig. 3.6 illustrates this experiment. Although it is not possible to ac-
quire the ground-truth of such an environment, we consider that the 3D point-cloud obtained
from its scan with a Total Station Leica TS60 is precise and dense enough to be considered
as ground truth. The horizontal and vertical angular resolution of the scanning is set to 0.05
degrees. To scan the area, the Total Station is placed on three different locations, to have
different viewpoints on the trees. Each scan takes 40 to 60 minutes. At the end, we obtain
a single consistent point-cloud from the area, containing 5.5 × 106 points. The localization
of the robot is provided by an RTK-GPS fused with an IMU in an Extended Kalman Filter.
The position of the robot is measured in 6 different locations with the Total Station. These
points are used to estimate the transformation of the RTK-GPS based frame to the Total Sta-
tion frame. Because the estimate of this transform is not perfect, the error in the localization
of the robot is not homogeneous. It is better in some areas of the map than in some others.
We do not correct this error in this work, and use that instead to show results with different
level of precision in the localization. For this experiment, the map is build with Octomap

40

3.2. Experimental Framework

Figure 3.6: Illustration of a real world experiment. Top: right: the Leica Total Station, left:
the Husky. Bottom: the point-cloud from the Leica

(max-range 10m), with res = 0.1m, that we compare to the ground-truth, with a cuboid res-
olution of RES = 1m. Because of the small vertical field of view of the Lidar, the height of
the Octomap is constrained to 6m. Also, to avoid large errors due to large uncertainty in the
orientation, we filter out the Lidar scans associated to turning motions of the robot when we
build the map with Octomap.

3.2.3 Summary of the experiments

Type of worlds

• RECT: Experiment in a world with rectangular cuboids

• CROSS: Experiment in a world with cross extruded shapes

• HELICOID: Experiment in a world with helicoidal shapes

41

3.3. Summary

• TREES: Experiment in a world with simulated trees

• REAL: Real world experiment

Robot behaviors

• NAVIGATION: Experiments where the robot navigates autonomously towards a goal

• TELEPORT: Experiments where the robot is teleported on a goal

• FRONT: Experiment where the robot drives toward the object

• LAT: Experiment where the robot drives with the object on the side

• WAYPOINTS: Experiments where the robot follows autonomously a list of waypoints

• RANDOM: Experiments where the robot is teleported on a goal that is randomly sam-
pled

• NBV-XP: Experiments where the robot is teleported on a goal selected by the policy

3.3 Summary

In this chapter, we presented firstly the method used for mapping and secondly our exper-
imental framework. Regarding mapping, we presented our method for building a 3D-grid
map from the robot’s 3D-Lidar observations. This involved using Octomap and transforming
it into a 3D-grid of occupancy likelihoods, along with converting ground-truth data into a
3D-grid. Additionally, we detailed our process for extracting intersecting cuboids from both
the robot’s map and reference map 3D-grids.

In the context of the experimental framework, we described our methodology for generat-
ing simulated environments, featuring different assets with varying complexities with respect
to reconstruction. We also outlined various experiments that involved distinct robot behav-
iors, each designed to highlight specific aspects. Furthermore, we presented a real-world
experiment in which ground-truth data is collected using a total station, ensuring consistency
with our approach in simulation.

42

4

Measuring Map Quality

43

When the objective of an exploration policy is to enhance the map quality, such as in
this work, evaluating the said policy requires first assessing the map quality. The motivation
for the work detailed in this chapter arises from the challenges associated with evaluating
3D-map quality in natural environments. Typically, map quality evaluation aims to provide a
single metric that reflects the overall map quality. Nonetheless, in the context we consider, it
becomes interesting to obtain a localized measure of map quality. The map quality may not
necessarily be homogeneous throughout a possibly large-scale environment. This is why we
introduced the methodology presented in the previous chapter.

In the scenario considered here, a robot’s 3D-lidar observations construct a 3D-grid map
encoding the occupancy likelihood for each voxel. In this context, conventional map quality
measures, like surface coverage and reconstruction accuracy, may not always hold significant
meaning. This is specially true when dealing with natural environments that present specific
challenges. As introduced in Chapter 2, the 3D-map in a natural environment is both un-
structured and sparse, and the mapping is further complicated by the difficulties linked to the
robot’s localization within the map. We will demonstrate the limit of conventional metrics in
this chapter, first in simulation, and then with a real world experiment. Nonetheless, it should
be noted that this work does not directly evaluate various mapping algorithms applied to nat-
ural environments. Instead, our main emphasis lies in addressing the challenges associated
with assessing the quality of 3D maps in such environments.

In a possibly large-scale environment, which could also be both sparse and unstructured,
we try to answer the following questions: How can we evaluate the local map quality? Are
the conventional metrics capable of delivering meaningful measurements? This study specif-
ically centers around evaluating various 3D-reconstruction metrics, including both conven-
tional and less conventional ones, with a specific focus on assessing their effectiveness in ac-
curately measuring the map quality. First, we begin by selecting six relevant metrics: surface
coverage, reconstruction accuracy, Average Hausdorff Distance, Cohen’s Kappa coefficient,
Kullback-Leibler Divergence, and Wasserstein Distance. Then, building upon the methodol-
ogy presented in Chapter 3, we extract cuboid regions from both the reference map, called
ground-truth, and the reconstructed map, called reconstruction, and by assessing the map
quality with the previously mentioned metrics. Later on, we propose an additional method-
ology to evaluate the capability of the selected metrics in measuring various degradation
models, when the reconstructed map is iteratively degraded from the reference map. Finally,
we empirically compare the metrics in situations where the 3D map is built from point clouds
obtained from the robot’s observations, both in simulation and in a real world experiment. Ul-
timately, we present a comparison of the selected metrics, highlighting their properties, along
with guidelines towards the choice of the metric depending on the application.

44

4.1. Related Work

4.1 Related Work

4.1.1 3D reconstruction metrics

Classic 3D reconstruction metrics in robotics

In the context of 3D-map quality assessment, whether for robotics applications or not, the
task typically consists in measuring the quality of the 3D reconstruction, often by comparing
two surfaces. Commonly, those are the mesh generated from the 3D-point cloud, and the
ground-truth mesh. Traditional metrics in that case are based on surface distance errors.
They consist in calculating, for all surface points of one surface, the distance to the closest on
the other surface, and then extract some statistics. Common surface distance errors are the
Hausdorff Distance, that we will detail later, the Root Mean Square Error (RMSE) or the
Mean Average Error (MAE) (used respectively in [6], [83], [84] for instance).

In the context of robotics, the prevailing metrics of reconstruction quality are the surface
coverage and the reconstruction accuracy. Both are derived from those surface distance
errors, and applied either on the meshes or on the 3D-grids. In the latter case, two sets of
points are compared. Provided we want to compute the surface coverage, we are interested
on the proportion of the set of points from the ground-truth accurately reconstructed. To do
so, if the distance between a ground-truth point and its closest reconstructed point is less
than a registration distance, the ground-truth point is considered as reconstructed (i.e valid).
The metric is the proportion of such points ([36, 68]). Similarly, the reconstruction accuracy
corresponds to the proportion of accurately reconstructed points in the set of points from
the reconstruction, that is, points whose distance to the closest ground-truth point is below a
registration distance.

Other reconstruction metrics

Some metrics have been proved efficient when it comes to evaluate the quality of the semantic
segmentation predicted by deep-learning models, although most of them have been used out-
side the field of computer vision for decades. The idea with those metrics is to evaluate at the
same time the classification accuracy and the correctness of the localization. Among them,
we can cite the accuracy, the precision, the recall, or even the Intersection Over Union
(IoU, Jaccard Index), or the F1 score. [72] provides a thorough review and comparison of
the existing segmentation metrics for 3D-medical image segmentation tasks. Building upon
[72], [53] compares some of those metrics depending on the size of the regions of interest to
segment. As [72], building on the fact that we are working on 3D-grids, we can consider our
problem a 3D-segmentation problem. We can then consider each voxel is assigned the class

45

4.1. Related Work

"empty" or "occupied" based on its occupancy likelihood. In natural environments, the vol-
ume is mostly empty space, with sparse objects whose contours represent the occupied space.
[53] shows that two metrics are particularly sensitive when it comes to measuring segmen-
tation quality of small objects in an image: the Average Hausdorff Distance and Cohen’s
Kappa coefficient.

The Hausdorff Distance (HD) is, as the other metrics seen before, a spatial distance metric,
widely used to evaluate 3D-reconstruction [6, 16]. HD is a common measure of distance
between two point sets, but it is sensitive to outliers. [72] proposes to use instead the Average
Hausdorff Distance (AHD), introduced in [63]. The AHD averages the HD over all the points,
becoming more stable and less sensitive to outliers than HD.

The other interesting metric pointed out by [53], is the Cohen’s Kappa coefficient (KAP).
Unlike the metrics seen previously, KAP is not a spatial distance metric but a probabilistic
metric. It was first proposed in [23]: it provides a score measuring the agreement between
two samples. As an advantage over other measures, KAP takes into account the agreement
caused by chance, which makes it more robust. That is, KAP is in [-1,1], where 1 corresponds
to complete agreement, -1 to complete opposition, and 0 to random.

4.1.2 Comparing probabilities

Since we are building a probabilistic volumetric map with Octomap, we could take advantage
of that framework to measure the quality of the map. Each voxel in the probabilistic map has
a probability of occupancy between 0%, the absolute certainty that the voxel is empty, and
100%, the absolute certainty that the voxel is occupied. Leveraging the probabilities inside
a 3D-grid is not a novelty, and has been explored in [36]. However, they do not propose a
mean to compare the reconstructed volume to a reference one. They calculate the entropy of
the voxels, which represents their distance to the unknown, thereby indicating the quantity of
observation for each voxel, but not a measure of the reconstruction quality.

In this paper, we propose a methodology to compare two volumetric maps with probabilis-
tic values. Different methods allow comparing probabilities. The most common is probably
the Kullback-Leibler Divergence (DKL). The DKL [45] is a measure of how different a
probability distribution is from another probability distribution. With the DKL, we can mea-
sure how the probability distribution of the reconstruction is different from the probability
distribution of the ground-truth.

Nonetheless, since we are considering a grid of probabilistic voxels, we have access to
another information: the Euclidean distance between voxels. As an example, if a point is
erroneously reconstructed 5 cm away from an actual object, the reconstruction is better than

46

4.2. Method

if the erroneous point is 50 cm away. The DKL is not sensitive to this difference.
An alternative solution is then to find the Optimal Transport plan, linking one probability

distribution to another one, with a cost function depending on the geometry [74]. From this
Optimal Transport plan, we can calculate a distance, the Wasserstein Distance (WD) which
is a generalization of the concept of Earth Mover’s Distance (EMD). Computing the Opti-
mal Transport Plan may be cumbersome, because it is an optimization problem that is not
necessarily convex. To bypass computational issues, [26] regularizes the optimal transport
problem by adding an entropic term, and solves it using a Sinkhorn’s fixed point iteration. [28]
provides an open source Python library implementing several solvers for Optimal Transport
problems, including [26]’s algorithm. With this regularized Wasserstein Distance, we can
measure the quality of the 3D-reconstruction, comparing not only the ground-truth and re-
constructed values of probabilistic maps but also taking into account the Euclidean distances
in the errors.

4.2 Method

4.2.1 Comparison metrics

This section explains how, for each cuboid region, we compute different metrics to indicate the
local map quality. Here, we call for convenience reconstruction the reconstructed 3D-map,
and ground-truth the reference map. The cuboid extraction of reconstruction and ground-
truth is described in Section 3.1.2. A cuboid from the reconstruction is denoted Crec, and its
corresponding cuboid from the ground-truth Cgt. All the code is available open-source7.

Before proceeding, since this method is developed with the objective to work also in
natural environments with sparse objects, the reconstructed volume may contain more empty
space than actual objects to reconstruct. A measure that would give information on occupied
space only may not be representative of the complete volume. For this reason, we found it
interesting to measure not only how well objects have been reconstructed, but also how well
the empty space has been reconstructed. To do so, we first define two sets: Uocc , the set of the
cuboids regions containing at least one occupied voxel in Cgt and Uempty , its complement.
Then, we measure the reconstruction quality of the cuboids with a different metric in each
set: one of the considered reconstruction metrics for the cuboids in Uocc , the L1 norm for the
cuboids in Uempty . This study focuses on the evaluation of metrics in Uocc.

Furthermore, because measuring reconstruction quality of unknown space is pointless,
we consider a threshold before calculating our metrics. If all the probabilities in Crec are

7https://github.com/stephanie-aravecchia/3d-reconstruction-metrics

47

https://github.com/stephanie-aravecchia/3d-reconstruction-metrics

4.2. Method

close to the unknown (0.5 ± 0.1), we do not calculate the metrics, but set them to default
values. Algorithm 1 summarizes this section.

Algorithm 1 Reconstruction and ground-truth comparison
// Dgt and Drec are the datasets
Dgt(Bbox1 , (h1, w1, n1), Rf), Drec(Bbox2 , (h2, w2, n2), Rf)
Bbox ← Bbox1 ∩Bbox2
Mgt ← Dgt(Bbox),Mrec ← Drec(Bbox)
for all cuboid ∈ Bbox do:

Cgt ←Mgt(cuboid), Crec ←Mrec(cuboid)
if isObserved(Crec) then:

if cuboid ∈ Uocc then:
cuboid.metrics← computeMetrics(Crec, Cgt)

else:
cuboid.metrics← computeL1(Crec)

end if
else:

cuboid.metrics← maxMetrics
end if

end for

Choice of Metrics

As discussed in Section 4.1, several metrics are available to measure map quality, whereas
they are 3D-reconstruction metrics, or measure of distance between probabilities. We select
six of them for evaluation, based on the criteria listed in Table 4.1.

Acronym Complete Name Properties
COV Surface Coverage Surface distance-based score, widely used in robotics
ACC Reconstruction Accuracy Surface distance-based score, widely used in robotics
AHD Average Hausdorff Distance Surface distance, robust to small objects
KAP Cohen’s Kappa coefficient Score, robust to small objects
DKL Kullback-Leibler Divergence Widely used for distance between probabilities
WD Wasserstein Distance Distance between probabilities (Euclidean distance

with the cost matrix)

Table 4.1: Criteria for evaluated metric selection

Surface Distance Metrics

The three surface distance metrics we consider here (surface coverage, reconstruction accu-
racy and Average Hausdorff Distance) are based on spatial distances between sets of points.
To compute them, we define the following constants:

48

4.2. Method

• p̂ is an occupancy likelihood threshold,

• dr is a registration distance.

We also define the following variables:

• Urec is the set of points P from Crec whose occupancy likelihood is above p̂,

• Ugt is the set of occupied points from Cgt,

• nrec is the number of points in Urec,

• ngt is the number of points in Ugt,

• ∥PS∥ is the Euclidean Distance between a point P from Urec to the closest S in Ugt,

• ∥SP∥ is the Euclidean Distance between a point S from Ugt to the closest P in Urec.

As an example, in Fig. 3.2, the points from Ugt and Urec correspond respectively to the white
voxels in Cgt and Ĉrec.

Surface Coverage

To compute COV, we apply the classical methodology in a 3D-grid, as [36], to our cuboids.
We first compute the number of reconstructed points, krec, that is, points in Ugt we consider
correctly reconstructed, and then we compute the surface coverage, COV, the proportion of
correctly reconstructed points.

krec =
∑︂
S∈Ugt

1B(∥SP∥ ≤ dr) (4.1)

where 1B(b) = 1 if b, 0 otherwise.

COV = krec/ngt (4.2)

Reconstruction Accuracy

To compute ACC, we proceed similarly: we first compute the number of accurate points, kacc,
that is, points in Urec we considered valid, and then we compute the reconstruction accuracy,
ACC, the proportion of valid points.

kacc =
∑︂

P∈Urec

1B(∥PS∥ ≤ dr) (4.3)

ACC = kacc/nrec (4.4)

49

4.2. Method

Average Hausdorff Distance

To compute AHD, we follow [72]. The Hausdorff Distance measures the distance between
two sets of points. We compute two Hausdorff Distances: the distance from reconstruction
to ground-truth dPS , and the distance from ground-truth to reconstruction dSP :

dPS =
1

np

∑︂
P∈Urec

∥PS∥ (4.5)

dSP =
1

ns

∑︂
S∈Urec

∥SP∥ (4.6)

Then, we compute the Average Hausdorff Distance, which consists in the maximum between
the two distances:

AHD = max(dPS, dSP) (4.7)

Cohen’s Kappa

The metric Cohen’s Kappa, KAP, provides a score in [-1, 1] ([worst, best]). This score pro-
vides a measure of agreement between two sets of classification. Unlike surface distance
metrics seen before, we compare here directly the elements of Crec and Cgt. In the cuboids,
we consider our problem as a binary classification problem: each voxel is assigned either the
class occupied or empty. In Cgt, each voxel already has a value 0 (class empty) or 1 (class
occupied). In Crec, we consider a voxel occupied if its occupancy likelihood p > p̂, else, we
consider it empty and call the resulting binary cuboid Ĉrec. Fig. 3.2 provides an example. We
iterate on all the voxels or of Ĉrec, compare them to their corresponding voxel in Cgt, and we
count FP (occurrence of false positive), FN (false negative), TP (true positive), TN (true
negative).

Then, to compute KAP, we follow [72]. Let N be the number of voxels in a cuboid:

fc =
(TN + FN)(TN + FP) + (FP + TP)(FN + TP)

N
(4.8)

KAP =
(TP + TN)− fc

N − fc
(4.9)

Kullback-Leibler Divergence

The DKL provides a measure of how a probability distribution is different from a reference
probability distribution. The DKL metric we use in this work is the sum of the DKL between

50

4.2. Method

the probability distributions derived from the elements of the cuboids. Let p0 be the occu-
pancy likelihood of a voxel in Crec, g0 the occupancy likelihood of the same voxel in Cgt.
For numerical reasons, we saturate p0 and g0 in [m, 1-m], where m is a small number. The
saturated values are p and g. Then, we iterate on the N = n×n×n elements of the cuboids,
and we compute the DKL metric as follows:

DKL =
k=N∑︂
k=1

[︃
(1− pk) · log

(1− pk)

(1− gk)
+ pk · log

pk
gk

]︃
(4.10)

Wasserstein Distance

The Wasserstein Distance is derived from the optimal transport plan to “move” the mass
distribution from a query vector to match the mass distribution of a reference vector. The
cost of moving the mass being a function of the Euclidean distance it has to be moved by.
Here, we calculate the Wasserstein Distance between two cuboid regions.

As this Wasserstein Distance is defined on histograms, that is, vectors that sum to 1, we
first need to remap all the elements of Cgt and Crec into two vectors of doubles, Vgt and Vrec,
such that:

∀(i, j, k) ∈ [0, n], V∗(i · n2 + j · n+ k) = C∗(i, j, k)

Second, we derive from each vector, two different vectors. From Vgt, we derive V occ
gt and

V free
gt :

V occ
gt = max (2Vgt − 1, 0)

V free
gt = max (1− 2Vgt, 0)

They contain respectively the probability of an element to correspond to an occupied
voxel, and the probability of an element to correspond to an empty voxel. We then normalize
each vector by their sum and obtain two histograms P occ

gt and P free
gt . Similarly, from Vrec,

we obtain P occ
rec and P free

rec . We do this partition between occupancy and emptiness because
we observed that the Wasserstein Distance between P occ

rec and P occ
gt , which embeds in each

element the distance from its probability of occupancy to the unknown, contains more signal.
Moreover, this corresponds better to what we intend to measure with this metric, that is how
well the occupied space has been reconstructed. Using the same mapping between voxels and
elements of the vector, we set the cost matrix M to contain the squared Euclidean distance
between the voxels associated to the elements of the vector.

Finally, we calculate WDocc the regularized Wasserstein Distance between P occ
rec and P occ

gt ,
computed using the Sinkhorn algorithm described in [26], following the implementation of
[28]. This algorithm is an optimization that seeks an optimal coupling which minimizes the

51

4.2. Method

displacement cost of a discrete measure, P occ
rec in our case, to a discrete measure, P occ

gt , with
respect to a cost, a transport matrix, M , under an entropic constraint. The optimal value of the
optimal transport problem is the Wasserstein Distance, defined as follows, with γ1 = P occ

rec ,
γT1 = P occ

gt and γ ≥ 0:

WDocc = min
γ

(⟨γ,M⟩+ α · Ω(γ)) (4.11)

Where M is the previously defined cost matrix, Ω is the entropic regularization term:
Ω(γ) =

∑︁
i,j γi,jlog(γi,j), α is an entropic regularization factor and ⟨., .⟩ is the Frobenius

dot-product.
In this study, we set the regularization factor α = 1.0. They show in [26] that the smaller

the value of α, the better the precision of the algorithm, but also the slower the convergence.
The value of 1 appears to be a good tradeoff, and produced satisfying results in our tests.

L1 norm

In a cuboid region of the ground-truth inUempty, all the voxels have a probability of occupancy
of 0. Therefore, when comparing the reconstruction to the ground-truth, we are comparing a
vector containing some probabilities of occupancy Vrec to a vector of the same size containing
only zeros (absolute certainty of emptiness). Such a measure is given by the L1 norm of Vrec:
the distance between Vrec and the vector of zeros that represent the empty space. We do not
evaluate L1 in this study, but simply provide it to the reader, because we found it convenient
in other works:

L1 =

(i,j,k)=(n,n,n)∑︂
(i,j,k)=(0,0,0)

Creci,j,k (4.12)

4.2.2 Evaluation Methodology

Controlled 3D-reconstruction

This section describes the evaluation of the metrics, with a specific focus on examining their
behavior in the context of decreasing reconstruction quality. We present the methodology
using a single ground-truth cuboid. The key approach involves initially measuring the re-
construction quality when it is perfect, indicated by Crec = Cgt. Then, we introduce various
degradation models that are iteratively applied to the reconstructed cuboid, progressively
degrading the quality of the reconstruction. This methodology is inspired from biological
approaches, like [11], where the evolutionary distance between a pair of gene sequences is
usually measured by the number of edit operation (substitutions, insertions and deletions)

52

4.2. Method

needed to transform one into the other. This distance is called the Levenshtein distance, or
edit distance. Although this is not applicable here, our methodology is inspired from this
concept: we apply a sequence of basic "edit" operations to increase the distance between re-
construction and ground-truth. Let us assume v is a voxel randomly sampled in the cuboid
Crec, p(v) the occupancy likelihood of v, and v′ a direct neighbor of v. The degradation
models considered in this study are:

1. random occupied voxel Nocc p(v) = 1

2. random free voxel Nfree p(v) = 0

3. random unknown voxel Nunknown p(v) = 0.5

4. random random voxel Nrandom p(v) ∼ U(0, 1)

5. random shifted voxels Nshift p(v′) = p(v), p(v) = p(v′)

6. random flipped voxel Nflip p(v) = 1− p(v)

Metric Evaluation and Comparison

We evaluate the different metrics with a consistent perspective, focusing on their ability to
discriminate reliably "good" from "less good" reconstructions. Before going further, it is
important to note that some metrics are distance metrics (the lower, the better): DKL, AHD,
WDocc, whereas the others are score metrics (the higher, the better): COV, ACC, KAP. First,
following our inspiration of distances between sequences introduced before, we define the
threshold n̂ that divides the population of Crec in two, the "good" ones, and the "less good"
ones: n̂ is simply a fixed level of degradation of the cuboid (i.e 20%). Second, we define
the threshold θ̂ that divides the population of Crec in two: the cuboids measured as "good"
and those "less good". In the case of distance metrics, a measure θ smaller than θ̂ indicates
a "good" measured reconstruction (conversely for score metrics). Finally, we consider our
problem as a classification problem, and we populate a confusion matrix by evaluating all the
cuboids, at all the iterations as explained in Tab.4.2. It should be noted that the definition of
true / false positive / negative described here are different from the quantities used to compute
Cohen’s Kappa, where the classification was made on the voxels.

score metric distance metric
true positive (n ≤ n̂) & (θ > θ̂) (n ≤ n̂) & (θ ≤ θ̂)

true negative (n > n̂) & (θ ≤ θ̂) (n > n̂) & (θ > θ̂)

false positive (n > n̂) & (θ > θ̂) (n > n̂) & (θ ≤ θ̂)

false negative (n ≤ n̂) & (θ ≤ θ̂) (n ≤ n̂) & (θ > θ̂)

Table 4.2: Condition tested on a cuboid to populate the Confusion Matrix

From the confusion matrix, where we count the occurrence of true positive TP, true neg-

53

4.3. Experiments and Results

ative TN, false positive FP, and false negative FN, we compute the precision and recall of the
metric:

precision = TP/(TP + FP) (4.13)

recall = TP/(TP + FN) (4.14)

We repeat the process for different thresholds θ̂ for each metric. From this data, we are
able to compare the precision recall curves for the different metrics.

4.3 Experiments and Results

4.3.1 Experiments

The experiments are based on the framework described in Section 3.2.1. Firstly, we sam-
ple randomly 1500 cuboids from 12 simulated worlds containing rectangular cuboids, cross
extruded shapes, helicoidal cones or simulated trees. We apply the controlled degradation
described in Section 4.2.2 to these cuboids.

Secondly, we build 3D-reconstructions from the robot’s observations in the same environ-
ments from the RANDOM experiments, where the robot is teleported randomly 100 times.
For each of the 12 environments, for each of the 3 noise levels, we run 28 simulations, for a
total of 1008 experiments in simulation.

Finally, in worlds containing only a single asset of each type, we run the two straight lines
experiments: FRONT and LAT.

4.3.2 Results

In this section, we assess the metrics considered in this study for their capacity to offer a
meaningful quality measure. We present a selection of real-world experiment cuboids, illus-
trating the challenge of assigning a quality score to maps, even for human observers. Thus,
these examples offer insights into metric behavior, but rigorous statistical validation requires
controlled maps to compare to reference maps. Consequently, the evaluation is run in simu-
lation, where the reconstruction comes from an iterative degradation of the ground-truth, and
the real-world experiments validate the evaluation.

Before delving into details, we would like to offer some preliminary information to help
the understanding of this section. Firstly, Table 4.3 provides the acronyms used to refer to the
simulated environments and the degradation models.

Secondly, Table 4.4 summarizes the classification of the metrics: for score metrics, higher
is better, whereas for distance metrics, lower is better.

54

4.3. Experiments and Results

Acronym Type of asset in the world
RECT Rectangular cuboids
CROSS Cross extruded shape
HELICOID Helicoidal cone
TREE Simulated tree

Type of experiment
RANDOM The robot is teleported 100 times randomly
FRONT The robot drives toward the object
LAT The robot drives with the object on the side

Degradation model
Nocc a random voxel is set to occupied
Nfree a random voxel is set to free
Nunknown a random voxel is set to unknown
Nrandom a random voxel is set to random
Nshift the occupancy likelihoods of two random neighbor voxels are shifted
Nflip the occupancy likelihood of a random voxel is set to its emptiness

likelihood

Table 4.3: Summary of the acronyms used in the Results section

Score Metrics Distance Metrics
Surface Coverage COV Average Hausdorff Distance AHD
Reconstruction Accuracy ACC Kullback-Leibler Divergence DKL
Cohen’s Kappa KAP Wasserstein Distance WDocc

Table 4.4: Classification of the metrics

Finally, as detailed in Sec. 4.2.1, surface distance metrics rely on constants, namely occu-
pancy likelihood threshold and registration distance. For our experiments, we used common
values in robotics applications (similar to [36, 68]):

• p̂: 0.7, 0.8 (COV, ACC, KAP, AHD),

• dr: 0.05, 0.1, 0.15 meters (COV, ACC).

For the sake of brevity, we present results only for the values in bold. Even though the metric
value is slightly affected by the constants, the overall behavior remains consistent.

4.3.3 Theoretical Metrics Comparison

We compare the metrics when the reconstruction moves further from the ground-truth, fol-
lowing the methodology in Sec. 4.2.2, and we distinguish the experiments by type of world.

Figure 4.1 provides a visualization of the degradation models we are considering. The
figure displays a single slice of a cuboid, from the ground-truth, and from the differently

55

4.3. Experiments and Results

Figure 4.1: Visualization of the degradation models. Left-most is one slice of ground-truth
cuboid. Others: degraded cuboids, after 200 iterations, with the different degradation models.

degraded cuboids, after 200 iterations.

Metrics behavior when Crec moves further from Cgt

We now evaluate the metrics on the 1500 sampled cuboids detailed in Sec. 3.2.2, with the six
different degradation models. A "good" metric is expected to: be sensitive to all the types of
transformations, vary monotonically when the reconstruction moves further from the ground-
truth, be independent of the type of world, and give measurements in a range that does not
depend too drastically on the transformations. Under this assumption, we plot for each metric,
for each type of degradation, and for each type of world, how the metric behaves when the
reconstruction moves further from the ground-truth. Fig. 4.2 shows the results in the CROSS
worlds, and the complete graph is provided in Appendix A. The conclusion from these graphs
is that no metric satisfies all those conditions.

From each individual graph in Fig. 4.2 corresponding to a couple (metric, type of degra-
dation), we can distinguish three trends, depending on how the metric vary when the recon-
struction moves further from the ground-truth (n increases).

• no variation, the curve is flat: the metric is not sensitive to the type of degradation;

• a small variation (gentle slope): the metric seems slightly sensitive to the type of degra-
dation, but we cannot conclude;

• a huge variation: the metric is sensitive to the type of degradation.

Table 4.5 summarizes the results of all these graphs and displays the sensitivities of the
metrics to the different type of degradation.

Another interesting conclusion from our evaluation is that the metrics are generally de-
pendent on the type of world. We illustrate that statement with the two graphs in the bottom
part of Figure 4.2. It shows the influence of the type of world for two metrics, ACC and AHD,
under Nocc degradation model.The areas corresponding to 80% of the measures in TREES
environments (red) are larger and the medians are different from the areas corresponding to

56

4.3. Experiments and Results

Figure 4.2: Top: illustration of the different metrics behavior when the reconstruction moves
further from the ground-truth. One line per metric, one column per type of degradation
applied to the gt. For each sub-figure, the x-axis is the number of iteration n, the y-axis the
value of the metric θ. The results are displayed only for the CROSS worlds. In each sub-
figure, the line corresponds to the median value from all cuboids and the filled area shows
the spread of 80% of the population. Down: Same information, displayed in all the type of
worlds for AHD and ACC with a Noccdegradation model.

57

4.3. Experiments and Results

N
oc

c

N
fre

e

N
un

kn
ow

n

N
ra

nd
om

N
sh

ift

N
fli

p

DKL X ? X X ? X
WDocc X - - X - X
COV - X X X X X
ACC X - - X X X
AHD X ? ? X ? X
KAP X ? ? X ? X

Table 4.5: Metrics apparent sensitivity to the degradation types. -: not sensitive, x: sensitive,
?: unconclusive.

80% of RECT environments for instance (blue). That tends to indicate that not only the mea-
sure provided by the metrics are noisier in challenging environments, but also the very value
supposedly dependent only on the reconstruction quality also depends highly on the type of
environment. Again, the complete results are shown in Appendix A.

In real world applications, the noise model is probably a combination of all the degrada-
tion models considered here, and a central question is: is there a threshold to discriminate
reliably “good" and “less good" reconstructions for the chosen metric ?

Precision-Recall of the metrics

Fig. 4.3 shows the very challenge of setting thresholds to discriminate “good" and “less good"
reconstructions, with precision-recall curves. Precision-recall curves show the tradeoff be-
tween precision and recall for different thresholds. The better the classifier, the closer the
precision to 1 for all values of recall. This figure shows the precision-recall curves obtained
as detailed in Sec. 4.2.2, where the threshold θ̂ for each metric varies in a specific range. This
range matches the min and max values of the y-axis of Fig.4.2 for the respective metric.

For each metric, the curves are drawn with 10 values of θ̂, and we highlight three particular
values with the circle, diamond and star markers. Fig. 4.3 displays only results in the CROSS
words. The complete graph is provided in Appendix A. Fig. 4.3 shows that, with a specific
threshold (one of the markers), a metric can perform well for certain degradation models
while performing poorly for others. Finally, the two plots in the right part of the figure show
that the metrics’ performance depends on the type of world: their lower performance is in the
TREES worlds. Complementary to the questions marks in Table 4.5, these graphs suggest
that AHD might be sensitive toNfree Nunknown andNshift, as might KAP in a slighter way. On
the contrary, DKL might not be sensitive to Nfree and Nshift.

58

4.3. Experiments and Results

Figure 4.3: Left: Precision-Recall curves when we vary the value of the threshold θ̂ for each
metric. One line per metric, one column per type of degradation. The results are shown only
for CROSS worlds. The three markers display precision-recall points for three values of θ̂ for
each metric. The results are displayed for a level of degradation of the cuboid of 20%. The
points in (0,0) corresponds to points where it is not possible to compute precision and recall
(division by 0 in Eq. 4.13 and 4.14) Right: Same information, displayed in all the type of
worlds for AHD and ACC with a Nocc degradation model.

59

4.3. Experiments and Results

4.3.4 Metrics Comparison on experimental reconstructions

In this section, the comparison no longer focuses on the metrics’ behaviors with controlled
reconstructions, but is instead directed towards their performance when the map is built from
the robot’s observations.

Figure 4.4: Distribution of the values of the metrics among the cuboids from Uocc in the
experiments. The blue corresponds to the values of the cuboids where nrec = 0. The orange
to the other cuboids. The values are computed only for “observed" cuboids (at least one voxel
in Crec has p < 0.4 or p > 0.6, explained in Sec. 4.2.2). The figure display one line per type
of world and one column per metric, with two extra-columns showing nrec and ngt.

Comparison of the metrics distributions

Fig. 4.4 shows the distribution of the different metrics per type of world. We consider only
the cuboids in Uocc, and we display also the distribution of ngt and nrec, the occurrence of
occupied voxels in the ground-truth and reconstruction cuboids Cgt and Crec (Sec. 4.2).

The graphs in Fig. 4.4 are arranged from top to down in increasing level of difficulty in
the reconstruction, from RECT (basic geometrical shape), to TREES (unstructured objects).
This figure shows that determining a meaningful threshold above or below which the recon-
struction can be considered good is not straightforward. This is highlighted particularly with
the blue color in the histograms, corresponding to cuboids where nrec = 0 (denoted C0

rec).
These cuboids, where not a single point have been reconstructed, are likely "bad" cuboids.

Fig. 4.4 shows two trends:

60

4.3. Experiments and Results

• The metric is likely to provide a noisy measurement: the cuboids of C0
rec are spread on

all the range of values.

• The range of the values the metric provides shrinks when the complexity of the world
increases.

From those two trends, we can hypothesize that DKL and WDocc are likely to be noisy. We
can also hypothesize that AHD is the most capable of providing measures when the difficulty
in the world increases: the proportion of cuboids where the value is not in the first bar is
the largest. Additionally, AHD provides measures only when there is at least a reconstructed
point, making it easier to identify C0

rec cuboids.
Table 4.6 summarizes the apparent advantages of the metrics. We hypothesize a metric

may have this potential property if it does not follow the corresponding trends described
above. Table 4.6, Table 4.5 and Figure 4.3 all indicate that one metric seems more potent in

Potential feature D
KL

W
D

o
cc

CO
V

AC
C

AH
D

KA
P

Limited noise in measurement - - x x x x
Robust to world complexity x x - - x -

Table 4.6: Apparent advantages of the different metrics

challenging environments: AHD.

Insight on potential metrics combinations

Complementary to Table 4.5 on controlled reconstructions, Figure 4.5 shows the correlation
matrix of the different metrics computed on the cuboids containing at least one reconstructed
point, in all the experiments. We computed this same correlation matrix by type of world,
and by noise level in the localization, and although the level of correlation may change, the
trend remains the same.

From that matrix, we can see that DKL is the metric the least correlated with the others.
Our hypothesis is that DKL is sensitive to different information (we believe in the level of
unknown in the cuboid) and may be combined with other metrics for a more reliable estimate
of the reconstruction quality. Such combination is not straightforward. It would require nor-
malizing the combined metrics in a range in which they all are meaningful, and add weighting
factors. We leave that to future work.

Lastly, Table 4.7 presents the computation time associated with each metric. It is impor-
tant to highlight that no specific optimization effort were applied to any of the implementa-
tions. Moreover, the computation of WDocc could greatly benefit from running on GPU. Such

61

4.3. Experiments and Results

Figure 4.5: Correlation Matrix of the metrics. The correlation can be positive or negative
depending on the type of metric (score or distance).

an implementation is provided by python-optimal-transport 8. While not employed in this
work due to its current C++ implementation and the absence of real-time inference require-
ments, this option holds potential. An interesting observation from this table is the efficiency
of DKL computation, suggesting that combining it with another metric would demand a rel-
atively small computational effort. Additionally, it’s worth mentioning that ACC is faster to
compute than COV because there are generally fewer points in the reconstruction than in the
ground-truth. Finally, for those interested in the computation time, KAP stands as promising
option.

time (µ s) ± std (µ s)
DKL 12 ± 1
WDocc 137× 103 ± 63× 103

COV 230 ± 53
ACC 11 ± 17
AHD 241 ± 57
KAP 5 ± 1

Table 4.7: Comparison of the computation time

8https://pythonot.github.io/index.html

62

https://pythonot.github.io/index.html

4.3. Experiments and Results

Figure 4.6: Example of a cuboid in a RECT environment. In the left, the first group of
rows corresponds to the cuboids reconstructed with the FRONT driving behavior. GT is the
ground-truth cuboid, F0, F1, F2 correspond to the reconstructions obtained with three noise
level in the robot localization. The second group of rows corresponds to the LAT driving
behavior. L0, L1, L2 to the reconstructions with the three noise levels. Two slices of the
cuboids (3 and 8) remain mostly unknown: the Lidar used in this study is a 16-plane Lidar, and
those slices remain situated between two of those planes during the experiments. The right
part of the figure displays the values of the metrics, with the two different driving behaviors.
Distance and score metrics are displayed with different colors to facilitate the interpretation
(distance: lower is better, score: higher is better). The errorbars display the variation between
the min and the max of each metric, for each driving behavior, when the reconstruction is built
with the three noise levels in the robot localization.

63

4.3. Experiments and Results

4.3.5 Qualitative comparaison

Comparing reconstructions of the same cuboid

In this section, we intend to compare qualitatively the metrics on different reconstructions
of the same ground-truth cuboid. To enable this comparison, we refer specifically to two
sets of experiments in simulation, introduced in Section 3.2.1, the FRONT and LAT experi-
ments. These experiments are designed to create two reconstructions that can be objectively
ranked in terms of quality. We have deliberately selected our assets to emphasize the effects
of occlusion. When we approach the object from the front (FRONT), a larger part of the
object remains hidden compared to when we approach it from the side (LAT). As a result,
the difference in reconstruction quality should be noticeable.

We then build the reconstructions from the robot’s observations, with different noise level
in the localization (as detailed in Sec.3.2.1).

Fig. 4.6 and Fig. 4.7 shows the results for the same cuboid, in the RECT and TREES
environments, and the three reconstructions built from the two respective driving behaviors.
We focus first on Fig. 4.6. In the context of an autonomous robot building a map, based on our
expectations, we can presume that the maps from LAT are better than the maps from FRONT.
Indeed, the group of reconstructions at the bottom of the figure appear "better" than the group
at the top. We then expect the metrics to measure better reconstructions in LAT compared to
FRONT. Nonetheless, the metrics yield divergent results when assessing the reconstruction
quality, as they are not equally sensitive to all types of errors. For instance, COV measures a
better reconstruction in LAT compared to FRONT, as a larger portion of the object has been
reconstructed. Conversely, ACC measures a better map in FRONT compared to LAT, as the
few points in FRONT are reconstructed more accurately. KAP is highly sensitive to noise
in the localization: it penalizes erroneous points, regardless of the Euclidean error distance.
Due to errors in the localization, discretization errors, or aliasing, an offset of one voxel, or
pixel, is very likely, and a metric that penalizes such errors is very strict. We can see such
errors in Fig.4.6. As a consequence, the variation of KAP’s measures in LAT includes the
range of values of those in FRONT. In other words, with KAP, one LAT reconstruction is
measured as better than the all FRONT reconstructions, whereas another one is measured as
worse. On the contrary, AHD and WDocc are robust to that type of errors, as they are to noise
in the localization. They provide a measure that is consistent with what one would expect
in the context of autonomous robot mapping, that is, LAT are better than FRONT. DKL is
dominated by the unknown volume of the map. It does not appear useful in this example, but it
might provide information complementary to the other metrics, for instance in an exploration
task, where reducing the unknown is a central feature.

64

4.3. Experiments and Results

Fig. 4.7 shows the results in the most challenging simulated environment: TREES. First,
when we analyze this figure, we cannot reach an obvious conclusion, as with the previous
example. Visually, the reconstructions from LAT experiments do not appear significantly
better compared to FRONT experiments. However, this trend is still what is indicated by all
the metrics but WDocc. This illustrates our claim that measuring 3D-reconstruction quality in
such an environment is a challenging task in itself.

Also, we can point out that the metrics are generally sensitive to the density of points,
either in the ground-truth or in the reconstruction. When one or both is really low, we reach
the limit of all those metrics.

Comparing real-world cuboids

In this section, we focus on comparing the metrics when measuring quality of real-world
cuboids. We select 8 cuboids, displayed in Figure 4.8. Cuboids A, B and C are correctly
reconstructed. The reconstruction is noisy, but we can overall recover the underlying shape of
the ground-truth, in the correct location. Cuboids D, E, F, G and H are poorly reconstructed.
D, E, F are reconstructed with an error in the localization: the z error (represented by the offset
in the sliced images) is visible. Apart from that, we can mostly recover the underlying shape
of the ground-truth in the reconstruction. G and H are also reconstructed with a z error, but
are overall difficult to "grade", because of the unstructured nature of the objects they contain
(namely, branches). For a human observer, apart from assigning a better grade on cuboids A,
B and C, grading all the poor reconstructions is a subjective task. The figures in the bottom
of Figure 4.8 show how all the metrics measure these reconstructions quality. Firstly, most
metrics (apart from DKL) generally agree that A, B, C (the first group of three symbols) are
ranked in the best reconstructions. Secondly, two interesting observations emerge from the
other cuboids. The first observation is that some metrics rank some poor cuboids as good as
the good ones (F, G for WDocc, E for COV, G, H for ACC). The second observation is that some
metrics do not provide any information at all on those reconstructions (D, F for COV, ACC
and KAP). The fact that the underlying structure of the ground-truth is present, even though
with an error in the localization, is completely lost in the measure. From these figures, it
seems the most robust metric is AHD, comforting the observations from simulation. Finally,
those figures also show that combining metrics, for example AHD and DKL, would likely
result in a more robust metric. For instance, by doing so, the unknown remaining volume in
G or E would penalize their measured distance, something AHD alone cannot measure.

65

4.4. Summary

4.4 Summary

D
KL

W
D

o
c
c

CO
V

AC
C

AH
D

KA
P

Sensitive to additional points 2 2 0 2 2 2
Sensitive to missing points 1 0 2 0 1 2
Informative wrt unknown volume 2 0 0 0 0 0
Fast to compute 2 0 1 2 1 2
Proportional to Euclidean distance error 0 2 2 2 2 0
Robust to noise 1 2 1 1 2 0
Robust to point density 0 0 0 0 1 0
Already normalized 0 0 1 1 0 1

Table 4.8: Summary of the metric properties. 0: the metric does not have this property, 1: it
has it, but it is not a significant feature, 2: the property is significant

This chapter presented our methodology to assess map quality at a local level. Consider-
ing the cuboids regions introduced in Chapter 3, we computed six distinct metrics, namely,
surface coverage (COV), reconstruction accuracy (ACC), Average Hausdorff Distance (AHD),
Cohen’s Kappa coefficient (KAP), Kullback-Leibler Divergence (DKL), and Wasserstein Dis-
tance (DKL), to assess locally the map quality. We developed a dedicated methodology to
evaluate these metrics. We performed controlled 3D reconstructions by iteratively degrad-
ing ground truth cuboids using six different degradation models. Additionally, we proposed
a methodology to assess the metrics’ performance as two-class classifiers, where each class
corresponds to a level of quality of the cuboids.

To summarize our results, we have seen that no metric is able to provide a meaningful
measure in all the situations. Mainly, it depends on the intent of the quality measurement.
Table 4.8 shows a summary of the metrics properties. In the context of autonomous robot
mapping in natural environment, we believe a key feature is noise-robustness. When the en-
vironment is unstructured, AHD is probably a good choice of metric. AHD may be combined
to DKL in the context of autonomous exploration, where it would also be interesting to have
information on the remaining unknown volume. When the environment is structured, ACC
or COV might still be good choices too, if the intent of the measure is to assess either the
proportion of the ground-truth points reconstructed (COV), or the proportion of accurately
reconstructed points (ACC), but not both at the same time. In a structured environment,
their lack of robustness to point-density is counterbalanced with the underlying density of
the ground-truth. Nonetheless, if the aim of the metric is to provide a robust measure of the
reconstruction quality, then AHD remains a good choice, both in structured and unstructured
environments.

66

4.4. Summary

Figure 4.7: Example of a cuboid in a TREE environment. The figure display the same infor-
mation as Fig. 4.6.

67

4.4. Summary

Figure 4.8: Example of a cuboid in a real environment. 8 cuboids are displayed (A to H).
Each time, top row: Cgt, bottom row: Crec. The last row shows the metrics corresponding
to the 8 cuboids, one plot per metric. Distance metrics are blue circles, score metrics orange
triangles.

68

5

Linking Map Quality and View-Point
Statistics

69

5.1. Related Work

When the primary goal of the exploration is to construct an accurate map, two central
questions emerge. The first one is “how accurate is the map currently, in each section that
is currently mapped?". However, in exploration missions, ground-truth data is typically un-
available. This leads to the second question: “how can we derive an exploration policy to
enhance map quality, without access to a reference to compare the map against?".

This chapter presents a key contribution of this work, trying to answer these questions.
Given the practical challenges of directly measuring map quality during exploration, we pro-
pose an alternative approach. We suggest instead estimating map quality a priori, relying on
viewpoint statistics inferred directly from the robot’s data. This estimation is performed at a
local level, on the cuboids regions depicted in Chapter 3. By doing so, we can identify areas
that are worth re-observing and how to re-observe them. Conversely, this approach allows
us discarding areas that do not significantly enhance map quality. These two features are
essential to build an effective exploration policy, as we will show in Chapter 6.

In this chapter, we first introduce the four computationally light viewpoint statistics that we
study. The first two are conventional: the number of times a cuboid region is observed and the
minimum range of the observations. The other two statistics are more original and stem from
the particular characteristics of environments we consider, which are sparse and unstructured.
These statistics are selected for their ability to express the diversity of the viewpoints: the
number of angular sectors from which a cuboid is observed and the spherical variance of
the viewpoints. Then, we provide a methodology to prove statistically that these viewpoint
statistics are indicators of local map quality. Later on, we train a Random Forest Regressor to
predict cuboid quality from viewpoint statistics. Finally, we measure the importance of each
of these statistics on this prediction, using the permutation importance of each input feature.

5.1 Related Work

5.1.1 Factors impacting the map quality

Probabilistic Update

In 3D-grids, as in all probabilistic maps, the current map is actually a state. This state can-
not be known with absolute certainty, but is instead estimated, introducing some level of
uncertainty. The current map is a state estimation, derived from the history of the robot’s ob-
servations. As introduced in Chapter 2, the robot’s pose, the map, are beliefs. Their current
state is an estimation build from a history of previous measurements and actions. Such re-
cursive state estimation is generally based upon Bayes filters, as extensively detailed in [29].
We introduced occupancy grid maps in Chapter 2, and we are now providing more details,

70

5.1. Related Work

following [29].
Occupancy grid maps address the problem of generating consistent maps from noisy and

uncertain measurement data, from a known robot pose. The 2D occupancy grid was first
introduced by [52]. The basic idea is to represent each cell of the map with a binary random
variable, that corresponds to the occupancy of the location it covers. Each cell encodes its
probability of being occupied, and its probability of being free. In occupancy grids, the state
is considered static. Moreover, it is not estimated over the entire map, but the static state of
each cell is estimated independently. The idea is that different measurements implying that a
cell may be occupied should reinforce each other, while measurements that the cell is empty
should weaken the certainty of it being occupied, and vice versa. As such, the more a cell
in the map is observed, the lower its uncertainty. Although initially developed by [52] for
sonars, which are particularly noisy sensors, this probabilistic update is the basis of several
probabilistic mapping algorithm using Lidars. Among them, we can mention the widely used
gmapping algorithm [32], or Octomap [35], the mapping framework used in this work.

From this update, it is evident that the uncertainty in a cell is directly linked to the number
of times it is observed. From this, we can hypothesize that the quality of an area of the map
is linked to the number of times it is observed. We will demonstrate this in this chapter.

Observational factors

Other observational factors may impact the map quality. Firstly, in unstructured environ-
ments, occlusions are frequent, due to a tree in front of another tree, a branch partially hiding
a tree behind, and so on. One solution to circumvent occlusions is to observe from different
viewpoints. Secondly, the map quality is directly linked to the sensor modality. In [69], they
show that the quality of a point-cloud from a Lidar depends on the distance and the orien-
tation of the scanned surface. The noise in the measurement increases with both of them.
Furthermore, [46] shows that these errors do not follow a zero-mean Gaussian distribution,
but are biased. This bias increases with the range and the incidence angle. Building upon
those findings, we can posit that observing from different viewpoints, and observing from a
closer range may improve the map quality, as varying the viewpoints also varies the incidence
angles from which a surface is observed.

For these reasons, we can hypothesize that the quality of an area of the map is linked to the
diversity of the viewpoints and the distance from which it is observed. We will demonstrate
this also in this chapter.

71

5.1. Related Work

5.1.2 Hypothesis Testing

Hypothesis testing is a statistical method aimed at either accepting or rejecting a hypothesis
made about the distribution of a population, or at comparing two populations. Often, when
examining data, one can formulate a hypothesis based on that data. When comparing two
populations, we can use hypothesis testing to determine whether the observed difference be-
tween the two populations is statistically significant or merely the result of chance. In this
context, the process of conducting a statistical test involves selecting a random sample from
each of the two populations we want to compare and then performing measurements and
analysis on these two samples. These tests are typically based on what is known as the null
hypothesis, denoted as H0. The null hypothesis posits that there is no relationship between
the two sets of sampled data, and any observed difference is purely due to chance. In addi-
tion to the null hypothesis, an alternative hypothesis, denoted as H1, is often defined. The
alternative hypothesis suggests that a relationship does exist between the two sets.

To conduct a statistical test, we assess whether the null hypothesis can be accepted or
rejected in favor of the alternative hypothesis using a random sample of the dataset. A statis-
tical test involves the calculation of two key quantities: the test statistic, which summarizes the
characteristics of each sample, and the p-value, which represents a probability. The p-value
quantifies the statistical significance of the result, with lower p-values indicating stronger
evidence against the null hypothesis in favor of the alternative.

When the objective is to compare the distributions of two populations, the most commonly
used statistical test is the Student’s t-test. However, this test assumes that the two populations
follows a normal distribution. In our work, such an assumption cannot be made. Therefore,
following the approach of [27], we utilize Mann-Whitney U tests [50]. This test is non-
parametric, meaning it makes no assumptions about the distribution of the two populations.
An implementation of this test is available in the Python library scipy-stats [75].

The Mann-Whitney U test compares the cumulative distribution functions (CDF) of the
distribution behind the two populations. Let F (u) and G(u) represent the CDFs of popula-
tions x and y, respectively. In this test, the null hypothesis (H0) is simply that the underlying
distribution behind the two populations are equal. The alternative hypothesis (H1) is selected
as either "less" or "greater", depending on the specific hypothesis being tested, as we will
show in Section 5.2.2. A small p-value from this test implies that H0 is rejected in favor of
H1, with a significant result. In other words, it means that the hypothesis that the distribu-
tions are equal is rejected in favor of the hypothesis that the underlying distribution behind
one population is either less or greater than the other.

72

5.1. Related Work

5.1.3 Random Forest Regressor

In recent decades, learning from data have seen significant development. Available methods
span from the traditional linear regression to more recent techniques like neural networks
or random forests. In machine learning terms, the task of learning from data to predict an
output based on a set of inputs is referred to as supervised learning. Given a set of input
variables X and a set of output variables Y , the objective of supervised learning models is to
discover the function ϕ : X → Y , that produces the best predictions, denoted as Ŷ = ϕ(X).
When Y consists of categorical values, the learning task is a classification problem, whereas
when Y consists of numerical values, it is a regression problem. The process of learning the
model is called "training" whereas the application of the model to make predictions is called
"inference".

In this study, our focus is on Random Forests. Random Forests, introduced by [14], are
known for their ability to work well with relatively small training datasets, ease of training,
and robustness in handling outliers or noisy variables [48]. In essence, a tree is a data struc-
ture that organizes data into leaves or nodes. Splitting data from node t consists in dividing
the space into subspaces, each corresponding to a child node of t. In a regression tree, the
data is split based on thresholds values of input variables. In the specific case of a binary tree,
data greater than the threshold is assigned to the right branch, whereas data smaller than the
threshold is assigned to the left branch. When the termination criterion is met, the data is no
longer split, and the node stores the average output value of the data points it corresponds to.
A Random Forest Regressor is an ensemble of regression trees, with each tree incorporating
a randomization factor. During training, each tree is constructed with solely a random subset
of the dataset, referred to as the bootstrapped dataset. Additionally, each tree does not neces-
sarily consider all the variables, but only a subset of them. These two sources of randomness
lead to a diversity of trees in the forest. During inference, predictions are averaged across all
the trees.

A fundamental aspect of these trees is how data is split. The decision to split the data
is made with the goal of achieving more homogeneous and less variable subsets, a measure
commonly referred to as impurity. For regression trees, the most common impurity measure
is the Mean Square Error (MSE). The best split is the one that minimizes the impurity.

One noteworthy feature of Random Forests is their ability to assess the importance of
input variables, as demonstrated in [48]. In our work, we are interested not only in making
accurate predictions, but also in identifying which input variables are the more important in
making these predictions.

73

5.2. Method

5.1.4 Importance Measure

The work by [48] presents a comprehensive study of importance measures with Random
Forests. Several versions of importance measures have been introduced in the literature and
are implemented in the Python Scikit-learn library [56]. In what follows, we provide details
about the classical ones, based on impurity measure and permutation importance.

A first approach to define the importance of an input variable is to assess its ability to
reduce impurity. The importance of a variable is then the Mean Decrease Impurity (MDI)
([14, 15]). Despite its appealing simplicity, this measure has several drawbacks. Notably,
it can inflate the importance of numerical features. In addition, this classical importance
measure is computed from statistics derived from the training dataset. It implies that the im-
portances can be high even for features that are not predictive of the target variable, as long
as the model has the capacity to use them to overfit. An alternative approach to measure
feature importance introduced in [14, 15] is the permutation importance. This consists in
measuring the Mean Decrease Accuracy of the forest when the values of a variable are ran-
domly permuted on data not used for training. As demonstrated by [48], the main limitation
of estimating feature importance with MDI is that this depends on the training data only, and
may be biased if the model is overfitting. Consequently, they recommend permutation impor-
tance on a test set. This approach provides an estimate of the importance of input variables
at generalization.

5.2 Method

Before going further, it is important to keep in mind that the idea behind what is presented
here, is to find a way to predict the map quality, at a local level, directly from the robot’s
data, without access to any ground-truth. To do so, we have presented in Chapter 3 our
framework where we discretize the space into cuboid regions, in order to measure their quality
(Chapter 4). In this section, we first present our methodology to compute statistics from the
observation viewpoints. Next we propose a methodology to validate that they are predictors
of the map quality, on the same cuboid regions. Finally, we show how we evaluate a learned
predictor, and how we measure the importance of each variable towards the prediction.

The ROS package computing the viewpoint statistics is available on github 9.
9https://github.com/stephanie-aravecchia/obs-stats-NBV.git

74

https://github.com/stephanie-aravecchia/obs-stats-NBV.git

5.2. Method

5.2.1 Statistics from the observation viewpoints

Following our hypothesis expressed in 5.1.1 on factors impacting map quality, we consider
four observation viewpoint statistics. For each cuboid region, with every new observation,
the viewpoint statistics we consider are:

• nobs, the number of observations;

• rmin, the minimum distance of the observations;

• nΩ, the number of angular sectors covered by the viewpoints;

• σθ, the spherical variance of the viewpoints.

The two latter intend to express the diversity of the viewpoints. This section explains how
these statistics are computed.

Viewpoint statistics update

To begin with, we describe how the statistics are stored and updated. We first construct and
initialize G, a 3D-grid containing observation viewpoint statistics. G is in the same reference
frame Rf than the reconstructed map and the ground-truth, and each element Cs in this grid
spatially corresponds to a cuboid region described previously (same resolution RES, same
position in Rf). Cs stores the viewpoint statistics of its corresponding cuboid region. Each
time we receive a new point-cloud from the Lidar, we update at most once Cs, the elements
of G, to keep track of the viewpoint statistics. We know that each point P of the point cloud
is observed from the center of the Lidar, O. The laser ray is [PO]. We also know that each
element along [PO] has been observed from the same point O. We calculate the intersection
of the segment [PO] and the grid G. For each element in this intersection, we update the
statistics from the observations, considering the center C = (xc, yc, zc) of Cs is observed
from O. We perform the ray-casting operation to compute the viewpoint statistics, regardless
that the cuboid region contains an object or empty space. The update of G is fast to compute
and easily runs in real-time.

In what follows, we consider we are performing the kth update of Cs.

Number of observation nobs and minimum range rmin

The objective of both statistics is to store really simple data. Every time a cuboid Cs is updated,
we statistics values as follows:

nobs = 1 + nk−1
obs (5.1)

75

5.2. Method

rmin =

⎧⎨⎩||CO||, if ||CO|| < rk−1
min

rk−1
min, otherwise

(5.2)

Angular Sectors nΩ

The objective here is to count the number of angular sectors each cuboid region has been
observed from. To do so, we divide the horizontal plane (x, y) going through the center of
the considered cuboid region C = (xc, yc, zc) into n angular sectors, represented with Ω, a
boolean vector of size m. For each observation from a point O = (xo, yo, zo), we compute
the azimuthal angle in the (x, y) plane: θ = atan2(yo − yc, xo − xc). From θ, we compute
the angular sector index i in Ω: i = θ ×m/2π, and set Ωi to 1. The statistic we propose is
simply what follows, with ∨ the Boolean OR operator:

nΩ =
i=m−1∑︂
i=0

Ωk
i ∨ Ωk−1

i (5.3)

Spherical Variance σθ

Calculating the spherical variance, defined in [73], consists in encoding each viewpoint through
its spherical angle with the coordinate axes, U = [Ux, Uy, Uz] normalized to a unit vector.
Assume now that we are given n observation viewpoints U(1), · · · ,U(n). The spherical
variance is defined as follows :

σθ = 1−R/k with R =
√︁

X2
sum + Y 2

sum + Z2
sum (5.4)

where we denote

Xsum, Ysum, Zsum =

j=k∑︂
j=0

Ux(j),

j=k∑︂
j=0

Uy(j),

j=k∑︂
j=0

Uz(j) (5.5)

We compute this spherical variance for each update, where we derive U from [CO], and
then calculate the resultant length R from the history of U(k), from observation 0 to the
current one k, in the considered cuboid region CS .

5.2.2 Validation of the indicators with statistical tests

The objective of this section is to prove that the observation viewpoint statistics we consider
are closely related to the map quality, and to validate that they are indeed relevant indicators

76

5.2. Method

of this map quality. As shown in Chapter 4, we measure the map quality of each cuboid with
one of the following metrics. If the cuboid is in occupied space, Uocc, we measure the map
quality with the Average Hausdorff Distance AHD. If the cuboid is in empty space, Uempty,
the measure is done with the L1 norm. Since the grids of cuboids are aligned in space,
each cuboid region yields a measure of the map quality (AHD or L1), and statistics from its
observation viewpoints (nobs, rmin, nΩ, σθ). Let M be the value of its measured quality and
s the value of the statistic. We split the population of cuboids regions in two populations,
using a threshold for the considered indicator, and we perform a statistical test to prove that
the map quality M of the population of cuboids for which the indicator s is above (or below)
the threshold is significatively better than the other population.

metrics M indicator s threshold s∗ alternative hypothesis H1

AHD orL1 nobs, nΩ, σθ nobs*, nΩ*, σθ* M [s ≥ s∗] < M [s < s∗]
AHD or L1 rmin rmin* M [s < s∗] < M [s ≥ s∗]

Table 5.1: Details of the Mann-Whitney U tests populations and hypothesis

To perform the tests, we set the threshold s∗ to the median of s. Then, following Sec-
tion 5.1.2, we compare the two populations with the one-sided non-parametric Mann-Whitney
U tests indicated in Table 5.1. We use the scipy-stats library [75]. If the p-value is small, then
we reject the null hypothesisH0, that the two populations of cuboids are equally well mapped,
in favor of the alternativeH1, corresponding to a significant better map quality when the value
of the indicator of interest is above s∗ (or below, for rmin). In other words, a small p-value
proves the considered viewpoint statistic is undeniably an indicator of the map quality.

5.2.3 Coefficient of Determination and Feature Importance

The second method to validate that the viewpoint statistics are indicators of the map qual-
ity is through the learning of a regression model and the computation of the coefficient of
determination and the permutation feature importance. To do so, we learn a model of the
regression M = f(s) with a random forest regressor [14]. We use the Python Scikit-learn
library [56], providing numerous tools to analyze the models. We learn a different model for
each set (Uocc, Uempty). We evaluate the models with the R2 coefficient. R2 represents the
percentage of variance of the output variable explained by the model. The best possible score
is R2 = 1. If the model always predicts the mean, R2 = 0. R2 follows Equation 5.6.

R2 = 1− SSres

SStot

(5.6)

77

5.3. Experiments and Results

Where SSres is the residual sum of squares and SStot is the total sum of squares. They are
computed as follows, with y the observed data, ŷ the predicted value, and ȳ the mean of the
observed data:

SSres =
∑︂
i

(yi − yî)
2 (5.7)

SStot =
∑︂
i

(yi − ȳ)2 (5.8)

Following [48], as in Section 5.1.4, we perform a permutation importance on the test set
to compute an estimate of the importance of the input variable. We simply use the implemen-
tation permutation_importance provided by the Python Scikit-learn library.

5.3 Experiments and Results

As explained in Chapter 4, we measure the map quality with two distinct metrics: AHD for
cuboids region in occupied space (Uocc), L1 for cuboids region in empty space (Uempty). Both
of these metrics are distances: the lower the value, the better the quality. The experimen-
tal data yielding these results are derived from the WAYPOINTS experiments described in
Chapter 3. In these experiments, the robot is driven manually through the same list of way-
points, in RECT and TREES environments. It is worth noting that the only paragraph in this
section that does not involve the use of WAYPOINTS is the following one.

5.3.1 Showcasing the angular sectors and the spherical variance

Before going further, we would like to provide a concrete illustration of the connection be-
tween viewpoint statistics and map quality. To achieve this, we use a particular set of exper-
iments, where the world contains a single object. In this case, the object is a cross extruded
shape. During the experiment, we drive the robot with two distinct driving behaviors, as
introduced in Chapter 3:

• FRONT: the robot drives in a straight line towards the object,

• LAT: the robot drives in a straight line with the object on its side.

These driving behaviors are designed to enhance the effect of the diversity of the view-
points only on the map. To do so, the duration of the experiment is the same (so is the number
of observations), and the minimum range is similar. The results are shown in Figure 5.1. On
the top, the figure displays the cuboids: the ground-truth cuboid and the two reconstructed
cuboids from those two driving behaviors. We can see that the reconstruction from LAT is

78

5.3. Experiments and Results

better than FRONT. Due to the occlusion, in FRONT half of the shape is hidden from the
robot. On the bottom, the figure displays the value of the viewpoints statistics and the mea-
sure of the quality of the cuboids LAT and FRONT. We can see that, as expected, nobs and
rmin do not vary significantly. As expected also, we see that nΩ and σθ vary significantly,
as does the measure of the quality AHD. These two statistics are able to gather information
invisible to nobs or rmin.

Figure 5.1: Illustration of the impact of the viewpoints on the quality of a cuboid, and on the
value of the viewpoint statistics. Top: the cuboids. The first line is the ground-truth, on the
second and third lines, the cuboids obtained from two different driving motions (FRONT and
LAT). Bottom: the statistics (blue) and quality measure (orange) corresponding to the two
cuboids.

5.3.2 Apparent correlation between map quality and viewpoint statis-
tics

In this section, we want to highlight the apparent correlation between the map quality and
the viewpoint statistics. To begin with, we simply show the distribution of the data when the
quality measure is plotted against a single viewpoint statistic. If the map quality is correlated
to the value of the statistic, we should see a trend in the distribution of the data. This is what
we see, as shown in Figure 5.2. This figure displays two pieces of information about the data
distribution. It displays the median and the Inter Quartile Range (IQR), when the map quality,

79

5.3. Experiments and Results

Figure 5.2: Distribution of the map quality against the viewpoint statistics. The first row
corresponds to cuboids in Uocc, the second row to cuboids in Uempty. Each column correspond
to a different viewpoint statistic: σθ, nobs, nΩ, rmin. The line corresponds to the median value
of the metric against the viewpoint statistic, the filled area corresponds to the IQR of the value
against the viewpoint statistic.

80

5.3. Experiments and Results

measured with AHD, is plotted against the different viewpoint statistics.
Following what could seem intuitive, we see that the map quality increases when nobs, nΩ

or σθ increase (the viewpoints are more numerous / more diverse). Conversely, it increases
when rmin decreases (seen from closer). This remains true both in occupied and empty space.
What is also interesting, particularly in occupied space, is that the spread of the values, shown
by the IQR, shrinks when nobs, nΩ or σθ increase and when rmin decreases.

Those curves suggest that the map quality may be correlated with the viewpoint statistics.
In other words, the viewpoint statistics we consider may be predictors, or at least indicators,
of the map quality, and they become better predictors when their value is large (or small,
for rmin). For completeness, it should be mentioned that the results we display here corre-
sponds to the experiments with a perfect localization. The trend remains the same when the
localization is noisy.

5.3.3 Validation with hypothesis testing

To prove that the trend we see is statistically significant, and not simply due to chance, we
perform the statistical tests described in 5.1.2, for each viewpoint statistic individually.

Those tests are conducted on the cuboids generated from 18 experiments. Specifically,
we utilize the WAYPOINTS experiments. In three of them, the world is TREES, in three
others, the world is RECT, and finally, the maps are built in all those experiments using three
distinct level of noise in the localization. Ultimately, for each experiment, we perform the 8
statistical tests detailed in Table 5.1. These tests can be summarized as follows:

• if nobs, nΩ or σθ (individually) are higher than their respective medians, the quality is
better (AHD smaller in Uocc, L1 smaller in Uempty) compared to when they are not;

• if rmin is less than its median, the quality is better (AHD smaller in Uocc, L1 smaller in
Uempty) compared to when it is not.

Before presenting the results of the statistical tests, we provide details on the size of the
cuboid populations on which the tests are conducted. As explained in Chapter 4, we mea-
sure map quality only for cuboids that are observed sufficiently. Specifically, we require that
at least one voxel within the cuboid has an occupancy likelihood that is different from the
unknown by at least 0.1. Consequently, the number of cuboids in occupied or empty space
varies across experiments. These variations are influenced by factors such as the trajectory,
the type of world, and to a lesser extent, the noise in localization.

Table 5.2 provides the population sizes used in the tests, with a mean size of 6 420 cuboids.

81

5.3. Experiments and Results

TREES RECT ALL
C ∈ Uocc 1492 ± 347 705 ± 132 1099 ± 479
C ∈ Uempty 6008 ± 1069 4364 ± 801 5321 ± 1157
Number of C 7500 ± 1401 5339 ± 921 6420 ± 1600

Table 5.2: Summary of the size of the cuboid populations used in the statistical tests: mean
and standard deviation of the occurrence of cuboids in Uocc or Uempty for the TREES or RECT
experiments.

Finally, we present the results of the statistical tests, in Table 5.3, using a common thresh-
old for the p-value: 0.05. In this table, each cell provides the ratio of the statistical tests with a
p-value smaller than 0.05, across the 18 experiments. A test with p < 0.05 rejects H0 in favor
of H1 with a strong confidence. In other words, a test with p < 0.05 statistically validates
our hypothesis, that the viewpoint statistic considered in the test is an indicator of the map
quality.

Uocc Uempty

nobs 0.83 1.0
rmin 0.62 1.0
nΩ 0.67 1.0
σθ 0.81 1.0

Table 5.3: Ratio of the experiments for which the p-value of the test is smaller than 0.05

In this table, we can observe that all the tests unanimously agree for the cuboids in Uempty:
each viewpoint statistic individually is an indicator of the map quality in empty space. Fo-
cusing on Uocc, we can see that over 81% of the tests confirm that nobs and σθ individually
are indicators of the map quality. The results are slightly lower for rmin and nΩ, but still in
more than 62% of the tests, our hypothesis is validated. That holds true, even in challenging
environments and with noise in the localization.

It is important to note that there does not appear to be any trend in the tests where p > 0.05,
they are distributed across the two types of assets and the different noise levels.

In these results, the threshold s∗ is independently computed for each experiment as the
median of the viewpoint statistic. The fact that some tests fail to validate our hypothesis
does not necessarily imply that the viewpoint statistic is incapable of indicating map quality,
but rather that it may not do so effectively with the currently considered threshold. We firmly
believe that combining these viewpoint statistics can lead to actual predictions of map quality,
and we will explore this further in the following sections.

82

5.3. Experiments and Results

5.3.4 Learning to predict map quality from viewpoint statistics

This section serves two objectives. The first one is to evaluate the predictive capability of
combined viewpoint statistics, while the second is to measure the importance of individual
statistics in this prediction. We proceed following the approach detailed in Section 5.2.3.

Dataset

In this evaluation, we focus on a specific subset of cuboids in the map: the cuboids that are
at the same height as the robot’s Lidar. Since the experiment was conducted with an Ouster-
16 Lidar, only the cuboids at the robot’s height, and seen from a close enough range, are
traversed by several Lidar planes. This is because the Ouster-16 has a vertical field of view
of 45 degrees (-22.5, +22.5), covered by only 16 planes. This introduces a bias in the data,
which we want to exclude from our evaluation. We illustrate the impact of the cuboid’s height
in the map, denoted as z, on the distributions of the data (the cuboid’s quality) in Figure 5.3.
It is evident in this figure that the distributions are notably different for the three "slices" in
Uocc (blue) and Uempty (orange). In future work, it would be straightforward to include this
z parameter for predicting map quality when working with a ground-robot. By design, this
parameter is known for each cuboid.

From now on, we exclusively consider the cuboids where z = 0. As a result, we now have
two datasets: Docc in Uocc with 6 819 examples and Dempty in Uempty with 39 620 examples.
We split each dataset into training and test sets. Specifically, we randomly allocate 90% of
each dataset into training sets, while the remaining 10% of each dataset constitute the test sets.
We normalize both the input and output of the training set using min-max normalization, and
we apply the same normalization parameters to the test set. It is important to note that we do
not employ any data augmentation technique at this stage.

Training

Following this, we train a Random Forest Regressor on the training set. To optimize the
model performance, we perform a grid search on the parameters to find the set of parameters
producing the models that generalizes best. From this grid search, the hyperparameters are:

• max_depth = None,

• n_estimators = 200,

• max_features = 3,

• min_samples_leaf = 1,

• min_samples_split = 2.

83

5.3. Experiments and Results

Figure 5.3: Distribution of the map quality depending on the height z of the cuboid in the
map. Top: cuboids in Uocc. Bottom: cuboids in Uempty. One column per value of z.

84

5.3. Experiments and Results

Model evaluation

Following Section 5.2.3, we evaluate the models with the R2 coefficients. In the Uocc dataset,
the model achieves a score of 0.92 on the training set and 0.42 on the test set. This demon-
strates the feasibility of learning to predict quality from viewpoint statistics.

With this experiment, we aim to address two key questions:

• does the type of world affect the learning process?

• is the importance of input variables influenced by the type of world?

To address these questions, we proceed by splitting each dataset into two subsets based on
the type of world: RECT and TREES. We maintain the same hyperparameters to ensure
consistency in our analysis.

Figure 5.4 shows that the type of worlds indeed affects the learning. This figure displays
the R2 scores of models on the divided datasets. While the model performs well on training
data in both environments, it generalizes better in RECT environments compared to TREES
environments. This trend is evident in both Uocc (in blue) and, somewhat surprisingly, in
Uempty (in orange).

Figure 5.4: Models evaluation with R2 coefficient on the training and test sets, when learning
to predict quality from viewpoint statistics. Blue: in Uocc, orange: in Uempty. In each graph,
each bar corresponds to a different type of environment (RECT or TREES).

Feature importance

Then, to answer the second question, we perform a permutation importance analysis on the
trained models, evaluating them on the test sets, as explained in Section 5.2.3. The results,
presented in Figure 5.5, clearly reveal a difference in the importance of the statistics between
the types of environment, particularly in Uocc (blue). In Uocc, nobs is by far the most important
feature in RECT environments, whereas in TREES environments, all viewpoint statistics are

85

5.3. Experiments and Results

Figure 5.5: Importance of the input variables to the generalization of the model. Blue: inUocc,
orange: in Uempty. In each graph, each bar corresponds to a different input (the viewpoint
statistics).

important. In Uempty (orange), rmin remains the most important variable in both environ-
ments. This may be attributed to the Lidar used in this experiment, as only cuboids within
close range are traversed by multiple planes. The quality of an empty cuboid is directly linked
to the rays that have traversed it, the more the rays, the better the quality.

Finally, it is worth noticing that some features are likely to be correlated. As the robot
moves in its environment around objects, it is reasonable to anticipate a correlation between
nΩ and σθ with nobs. Cuboids observed from multiple viewpoints are likely to be seen fre-
quently. Likewise, we can expect that a cuboid is more likely to be observed from a closer
distance (smaller rmin) when it has been seen more frequently. We calculate the Spearman’s
correlation coefficient on the viewpoint statistics from the dataset. We show the resulting cor-
relation matrix in Figure 5.6. This confirms that nΩ and σθ are indeed positively correlated
with nobs, whereas rmin is negatively correlated with the other features.

86

5.4. Summary

Figure 5.6: Correlation Matrix of the viewpoint statistics in the dataset

Confusion Matrix

Finally, to provide a different perspective in the model evaluation, we compute the confusion
matrix on its predictions. To achieve this, we treat our problem as a classification task, dis-
cretizing both the true and predicted values into 10 distinct classes. Each class represents a
specific range of values, with the same ranges used for both the truth and predicted values.

This confusion matrix displays the occurrence of positive values, whether true or pre-
dicted, within the class corresponding to the selected range. Rows correspond to the true
class, while columns correspond to the predicted class. Figure. 5.7 displays the confusion
matrix computed on the test set for both RECT and TREES environments.

This matrix allows insights into the model prediction’s errors. One notable observation is
that the majority of data points are concentrated in the top-left corner, which aligns with the
data distribution shown in Figure 5.3. Additionally, what is particularly noteworthy, is that
the positive values tend to cluster near the diagonal. The closer a point is to the diagonal, the
smaller the prediction error. This suggests that while the model may not reliably predict the
exact quality value of the map from the statistics, it does provide a reliable indication of the
map’s quality, both in RECT and TREES environments.

5.4 Summary

In this chapter, we firstly introduced four observation viewpoint statistics, specifically, the
number of observations (nobs), the minimum range (rmin), the number of angular sectors (nΩ),

87

5.4. Summary

Figure 5.7: Confusion Matrix that display the occurrence of true and predicted values on the
test set. Right: in Uocc, left: in Uempty. The color scale is normalized for each matrix, from
purple 0, to yellow max.

and the spherical variance (σθ). We explained how to compute and continuously update them
in a 3D grid, allowing us to select cuboids, as discussed in Chapter 3, to measure their quality,
as in Chapter 4, and to search for a link between quality and statistics.

Secondly, we presented a methodology to validate the viewpoint statistics as indicators of
local map quality through rigorous statistical tests. This validation process was intended to
confirm that an observed trend was not mere chance but consistent and meaningful reflection
of the data.

Thirdly, we proposed a methodology for evaluating the relative importance of each statis-
tic in predicting local map quality. It consisted in training a Random Forest Regressor to learn
the relationship between quality and statistics, and in performing a permutation importance

88

5.4. Summary

on the input variables, namely, the viewpoint statistics.
Regarding our findings, we showcased the correlation between map quality and viewpoint

statistics through quality vs. statistics plots. These plots visually represented the relationship
between these variables. Furthermore, we validated the statistical significance of the observed
correlations using hypothesis testing.

Additionally, our experiments revealed that learning in structured environments is com-
paratively less challenging than in unstructured ones. Notably, in unstructured environments,
a combination of statistics, including nobs, rmin, and a statistic reflecting viewpoint diversity
(e.g., nΩ or σθ), is essential for accurate prediction, whereas nobs only may be sufficient in
structured environments.

89

6

Autonomous exploration with View-Point
Statistics based policy

90

6.1. Related Work

The work presented in the previous chapters aimed to lay the groundwork for the research
presented here. Our objective is to tackle an exploration task in natural environments, with
the objective to enhance map quality. In this chapter, we integrate the view-point statistics
introduced in Chapter 5 in the selection of the Next-Best-View. While this chapter outlines
the final objective of this work, and provides initial insights to solve the task, it serves a
foundational step for future research.

Unlike studies focusing on large environments with significant, relatively few prominent
features, such as plants for instance, the work presented here is centered on large, sparse
environments characterized by numerous small objects scattered throughout. In these envi-
ronments, the areas of interest are both widespread throughout the environment and compara-
tively few in number. In Chapter 5, we demonstrated the four viewpoint statistics we consider
(number of observations, minimum range, number of angular sectors, spherical variance)
were indicators of map quality in such environments.

In this work, we construct exploration policies based on these viewpoint statistics individ-
ually. Specifically, we calculate the information gain of candidate NBVs using these statistics.
Our results show that these policies outperform baselines in improving map quality during
the exploration process, with more pronounced differences in the type of environment we
consider.

6.1 Related Work

6.1.1 Exploration Policies

In Chapter 2, we presented the concept of exploration. Exploration policy is essentially the
decision-making process that guides a robot in selecting its next destination in an unknown
environment. Within this chapter, we also introduced the notion of frontier points: points
within the known volume with at least an unknown neighbor. From this foundational concept,
two traditional exploration policies are derived: the closest-frontier policy, where the robot’s
goal is the nearest reachable frontier point, and the random-frontier policy, where the robot
selects is goal randomly amongst the reachable frontier points.

Expanding on the idea of frontier points, numerous research papers have explored strate-
gies to rapidly cover the volume of the environment. The primary aim in such approaches is
to reduce the unknown areas on the map swiftly, without necessarily considering the confi-
dence level in the newly discovered regions. For instance, in [9] they propose setting goals
by filtering and clustering frontier points at different levels in Octomap’s octree.

Often, when it comes to cover rapidly the volume, research focuses on solving the ex-

91

6.1. Related Work

ploration task with a team of robots. While the field has evolved, [37] offers a comprehen-
sive review of the challenges associated with exploration, whether conducted with or without
robot collaboration. Recently, in [82], they propose to solve quickly the exploration with a
homogeneous team of robots. They use a fleet of UAVs to perform a rapid exploration task
in a decentralized way. Conversely, multi-robot heterogeneous exploration strategies have
emerged, as proposed to solve the DARPA Subterranean (SubT) Challenge 10. To solve the
challenge, [44] explores with a team of legged robots and UAVs, whereas [80] explores with
a team of tracked robots and UAVs.

6.1.2 Next-Best-View Policies

As also introduced in Chapter 2, Next-Best-View (NBV) is an active research topic. NBV,
or active sensing, consists in moving the robots in order to maximize the efficiency of the
perception.

NBV is not exclusively linked to exploration. In many cases in the literature, NBV is
associated with improving the accuracy of reconstruction, often without considering explo-
ration. For example, in [51] and in [43], NBV selection aims to create high quality surfaces
for single small-scale objects. However, these methods involve computationally expensive
calculations, such as estimating real-time surfaces and their normals, preventing them from
scaling to large environments. The scaling is tackled by [2] who chooses NBV to enhance
3D-reconstruction quality of large and complex structures. This is done after an initial scan
is performed to obtain a rough model of the structure to be reconstructed.

In the context of exploration, NBV can also serve the purpose of rapidly covering the
volume. For instance, in [64], NBV selection is based on the potential volume that can be
discovered from the candidate viewpoints, calculated using ray-casting operations. Further-
more, NBV selection is often associated with inspection tasks. For instance, it can aim to
maximize information gathering on a surface manifold, as demonstrated by [58] on a 2D-
plane, or [84] on a 3D-surface. In both cases, they consider uneven distribution of informa-
tion, and the goal is to maximize information gathering using Gaussian Processes to encode
spatial correlations.

Differently, [36] focuses on exploring a scene containing an object of interest while im-
proving reconstruction quality. They use a visual odometry algorithm to create the 3D-point
cloud, and their various NBV selection aim to choose the most informative view to the re-
construction. To make this selection, they use the volumetric information of the voxels. It
consists in encoding the level of information of each voxel through the distance between its

10https://www.darpa.mil/program/darpa-subterranean-challenge

92

https://www.darpa.mil/program/darpa-subterranean-challenge

6.1. Related Work

probability measure and the probability measure corresponding to the unknown (i.e. its en-
tropy).

Closer to our work, [68] proposes to select the NBV to improve the quality of the recon-
structed surface. Their approach takes into account both the volumetric map and the quality
of the reconstructed surfaces, using TSDFs (Truncated Signed Distance Fields). TSDFs en-
ables real-time estimation of a surface point cloud. By averaging weights from neighbor
points, they estimate a confidence level associated with each point. Building upon [68], [34]
extends the methodology for a fleet of UAVs. However, these methods are primarily designed
for structured environments with a single dominant feature to map, such as a plant, as eval-
uated in their studies. In unstructured environments with sparse Lidar data and localization
noise, estimating surfaces using TSDFs may not yield satisfactory results.

One significant limitation of these methods is that they assume that the object of interest is
relatively large compared to the scale of the scene. This assumption is the main drawback, as
it makes these methods less suitable for large-scale, sparse, and unstructured environments,
each of which poses unique challenges. In such environments, not only are there few ob-
jects to reconstruct in vast scenes, but there is also considerable Lidar noise, the environment
can behave semi-transparently, the object sampling in the 3D grid is non-uniform, and un-
predictable occlusions are frequent. In contrast, our method operates without imposing such
restrictive assumptions. Our NBV policies rely solely on observation viewpoint statistics,
eliminating the need for assumptions about the scene or object to be reconstructed.

Lastly, it is worth noting a common drawback of NBV: the selection of the best goal often
involves computationally expensive processes. NBV selection frequently requires intensive
computations, such as ray-casting along the path to the goal for numerous potential goals and
multiple path computations to those goals. Many papers have aimed to find efficient algo-
rithms to address this challenge, including approaches based on Rapidly-Exploring Random
Trees (RRT [47]) or their variant RRT* [39], like [13] or learned methods using Convolu-
tional Neural Networks (CNN), like [77]. Among the latest, [62] introduces a novel approach
based on deep reinforcement learning. In this study, we set aside this computational chal-
lenge, leaving that to later work, as we will discuss in more detail in Section 6.4.

6.1.3 Policies

In the preceding sections, we referred to policies without explanations. This paragraph is
dedicated to providing the necessary context. A policy corresponds to a strategy, to the robot
behavior. It outlines what the robot should do, in a given state, specifying the next action or
sequence of actions it should take. In an exploration context, this concept is introduced by

93

6.2. Method

[70]. They propose a method for computing the information gain associated with an action,
which guides the robot from its current location to a goal location. In this case, the expected
information gain represents the expected change of entropy in the map when executing that
specific action. Then, the choice of the action is based on the calculation of its expected
utility. The expected utility of an action is a balance between the expected information gain
and the cost of that action. Our methodology builds upon this method.

What is worth noting is that this approach is very similar to a Partially Observable Markov
Decision Process [38], also known as POMDP, with a one step look-ahead only. A Markov
Decision Process [59] (MDP) models an agent interacting with a world in a synchronous
manner. An MDP is a mathematical framework defined by its components: (S,A, P,R, γ).
Where S is the set of states, A the set of actions, T the transition function T (s′|s, a), R the
reward function R(s, a), and γ the discount factor. In that context, a policy π is a function
that maps from states to actions. The objective of an MDP is to find the optimal policy π∗,
that will maximize a quantity called the utility U . Uπ(s) corresponds to the current reward
and all the expected rewards in the future if we choose the policy π. When there is uncertainty
in the state, that is, we do not have access to the true state, but only a belief of the state using
observations, it becomes a POMDP. MDP and POMDP are the core of several Reinforcement
Learning algorithms, such as MuZero [66] or Dreamer [33].

6.2 Method

This paragraph presents our method where the NBV selection is based on viewpoint statis-
tics. This approach builds on the work described in Chapter 5, where we construct a grid of
viewpoint statistics denoted as G.

As discussed in the previous section, the policy determines the strategy for selecting the
NBV. In this study, we specifically focus on identifying the next best action rather than best
sequence of actions. In this context, the terms "best policy" and "best next action" are in-
terchangeable, representing a balance between the expected information gain and the cost
associated with the next action.

In this section, we first explain what constitutes an action, and how the action’s cost is
calculated. Following that, we detail the computation of the expected information gain, which
relies on a single statistic: either nobs, rmin, nΩ or σθ. Next, we explain the policy itself. And
finally, we detail our evaluation methodology, in which we compare our four policies with
traditional approaches to assess their effectiveness in improving map quality.

The ROS packages to compute the costmap and our policies are available on github 11.
11https://github.com/stephanie-aravecchia/obs-stats-NBV.git

94

https://github.com/stephanie-aravecchia/obs-stats-NBV.git

6.2. Method

6.2.1 Costmap and Candidate NBV

We start by aligning our problem with the 3D-grid of viewpoint statistics G. Since our robot
operates on the ground, we focus solely on candidates in the ground plane. Consequently,
the 2D-grid of candidates is the ground projection of G. To refine our selection, we define
the candidate NBVs, or targets, T . These targets encompass all the reachable candidates,
within the known free space, and are restricted to a specified range around the robot’s current
position, R.

For each target candidate T , let us consider aT the action of moving the robot from R

to T . The cost cost(aT) is a function of the distance the robot has to travel from R to T ,
while avoiding obstacles. We calculate these costs with a Breadth-first search algorithm, and
store them into a costmap. We consider the cost of moving to a direct neighbor constant, and
denote it c. Starting from the cell that corresponds to the robot’s current position (the root
node), we propagate the displacement cost c to its neighboring free cells. There are at most
eight neighbors (the children nodes). In the costmap, cells corresponding to obstacles are
marked with the maximum cost value, while a distinct value marks unknown space.

6.2.2 Expected Information Gain

Then, for each candidate NBV, T , we calculate the expected information gain E[I(aT)]. As
a reminder from Chapter 5, G is the 3D-grid containing observation viewpoint statistics. The
elements of G are denoted Cs and store the viewpoint statistics of their corresponding cuboid
region.

Firstly, we consider the current state, G0, and the predicted state Ĝ. We compute Ĝ by
updating every visible cuboid Cs of G0 with a new expected observation after simulating
taking aT (i.e. a new observation from T). For nΩ, we update all the angular sectors in Ωi

covered by the displacement of the robot from R to T . For the three other statistics, we simply
consider the new observation from T .

Secondly, given the two states G0 and Ĝ, E[I(aT)] is the accumulation of the considered
statistic’s gains over all visible cuboids. Given a cuboid Cs, let us consider two quantities si0
and ŝi, to obtain a third one gi:

• si0 corresponds to an indicator in [nobs, rmin, nΩ, σθ] in state G0,

• ŝi corresponds to the updated indicator in state Ĝ,

• gi is the indicator gain.

We set the indicator gain gi as the surprisal. The surprisal for discrete-time systems is
defined in [65] as the logarithmic deviation from the current state. Following that, we compute

95

6.2. Method

gi as follows:

gi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log(ŝi)− log(si0), if ŝi > si0 and if s ∈ [nobs, nΩ, σθ]

||log(ŝi)− log(si0)||, if ŝi < si0 and if s ∈ [rmin]

0, otherwise

(6.1)

Finally, for one statistic, the expected information gain is computed as follows, where gi

depends on the considered statistic, and n is the number of visible cuboids from T :

E[I(aT)] =
1

n

i=n∑︂
i=1

gi (6.2)

6.2.3 NBV selection policy

Following [70] presented in Section 6.1.2, we select the NBV based on two quantities: E[I(aT)],
the expected information gain of taking aT , and its associated cost cost(aT).

We strictly apply their method. To begin with, we calculateE[U(aT)], the expected utility
of aT , with α a weighting factor:

E[U(aT)] = E[I(aT)]− α× cost(aT) (6.3)

Finally, we select the NBV, which is the candidate T , for which aT∗ is the action with the
highest expected utility:

aT∗ = argmax(E[U(aT)]) (6.4)

6.2.4 Evaluation Methodology

The underlying idea here is to evaluate how the NBV policy influences map quality. We
expect that our policies would lead to better maps compared to baseline policies.

Map quality

To enable this comparison, we firstly need to evaluate the map quality globally. To achieve
this, for each experimental exploration, we consider Q, which represents the map quality of
the complete volume. Q is the weighted mean of the normalized metrics calculated on the
cuboids regions of Uocc and Uempty.

96

6.3. Experiments and Results

If Uocc and Uempty contain respectively n and m elements, Q is calculated as follows:

Q =
1

n+m

(︄
k=n∑︂
k=0

covk −min(cov)

max(cov)−min(cov)
+

k=m∑︂
k=0

(︃
1− L1k −min(L1)

max(L1)−min(L1)

)︃)︄
(6.5)

It should be noted that in this particular study, we measure the map quality in Uocc with
the surface coverage COV. In future work, we will measure this with AHD, following our
conclusions from Chapter 4.

Finally, considering the context of exploration, our aim is to compare the various policies
based on how map quality evolves throughout the exploration process. Specifically, we are
interested in how Q changes as the amount of unknown space in the map decreases. To
perform this comparison, we will create plots that showcaseQ against the ratio of discovered
space.

Baselines

We compare our four NBV selection policies, where the information gain is based on nobs,
rmin, nΩ or σθ (6.2), with three other goal selections:

• random-frontier: next goal is randomly sampled on reachable frontier point,

• closest-frontier: next goal is nearest reachable frontier point,

• random-free: next goal is randomly sampled in free space.

While the first two baselines, random-frontier and closest-frontier, are traditional policies
that were presented in 6.1.2, random-free is specifically designed for this evaluation. Our
policies may sample goals in the known space, and it may not be fair to solely compare them
against frontier algorithms that exclusively sample goals in the frontier area adjacent to the
unknown space. Introducing a policy that randomly samples goals inside the known space
helps remove this potential bias, in our opinion.

6.3 Experiments and Results

6.3.1 Experiments

The experiments are the TELEPORT experiments described in Chapter 3.
We use 12 simulated environments (3 different spatial distributions, with 4 different as-

sets). The spatial distributions are sparse. For each environment, for each of the 3 noise
levels, we run 3 simulations with each policy:

97

6.3. Experiments and Results

• random-frontier,

• closest-frontier,

• random-free,

• ours[nobs],

• ours[rmin],

• ours[nΩ],

• ours[σθ].

Each experiment consists in teleporting the robot to the goal, accumulating the point-
cloud, and teleporting it to the next goal. We repeat until the ratio of discovered space in the
ground-plane reaches 70% or after 100 teleportations, whichever comes first.

In total, we run 756 experiments in simulation.

6.3.2 Results

Illustration of the components

We would like to begin by presenting an illustration of an experiment in Figure 6.1. In this
figure, there are two notable features: the costmap and the candidates.

The costmap, covering the complete figure, encodes various types of information. The
grey color represents the unknown space, while other colors represent different costs. Pink
corresponds to areas that are lethal for the robot (obstacles), and the other cells range from
blue (indicating lower cost) to red (indicating higher cost). We see in this figure that the
cost increases when the cell is farther away from the robot, marked by the red square, while
avoiding pink cells.

The candidates are represented by the green squares, which are spread within a certain
range from the robot’s position. The information gain associated with each candidate is en-
coded through the alpha channel of the green squares, with more transparency indicating
lower information gain and less transparency indicating higher information gain.

Finally, the best candidate, determined by the policy, is marked as the yellow sphere.

Policy evaluation

Fig. 6.2 displays how the map quality, denoted as Q, evolves throughout the exploration phase
as more space is discovered. These results are presented for experiments conducted in four
different simulated environments, where the spatial distribution of assets is consistent, but
the specific assets vary. These results only include experiments with perfect localization (84

98

6.3. Experiments and Results

Figure 6.1: Visualization of an experiment, showing the costmap (the grey, pink, red and
blue image), the candidates (the green squares), their information gain (the transparency of
the green squares), and the best candidate (the yellow sphere).

experiments). Notably, the trends observed in the curves remain consistent regardless of
localization noise or asset distribution.

In general, our methods consistently exhibit higher curves compared to the others. This
difference becomes more pronounced as the difficulty in the assets increase. These curves
demonstrate that developing NBV policies based on viewpoint statistics significantly en-
hances map quality during the exploration process. This improvement is especially notable
in more challenging environments.

However, we believe this enhancement could be further emphasized by formulating the
information gain using all four statistics rather than just one. This approach presents certain
challenges, particularly in terms of normalization and weighting of the different statistics. To
address this, one potential solution would be to formulate the information gain in relation to
map quality. Indeed, we introduced in Chapter 5 that map quality can be predicted directly
from the statistics.

Additionally, it is worth noting that in these experiments, the robot is teleported. While
this solution may find applications, such as selecting NBV to scan an area with a total station,

99

6.4. Preliminary Study on Reinforcement Learning

Figure 6.2: Quality of reconstruction expressed as a function of the proportion of discovered
space in the ground plane. The plots are arranged with an increasing difficulty in the scene. In
each figure, the line is the mean of the experiments, the area is between the min and the max.
Our proposed methods (nobs, rmin, nΩ, σθ) are compared to the baselines (random-frontier,
closest-frontier, random-free).

it does not fully address the problem we aim to solve. In real exploration scenarios, the robot
observes during the execution of the path. In this case, computing the expected information
gain for all candidates, considering viewpoints during the (potential) path to the candidates,
is not feasible in terms of computation time. Therefore, we plan to explore solving the task
with Reinforcement Learning, as we introduce in the next section.

6.4 Preliminary Study on Reinforcement Learning

In this section, we present the work we have started to improve the exploration policy with
Reinforcement Learning, and particularly using MuZero [66]. In this section, we first intro-
duce quickly reinforcement learning, we then discuss the preliminary work that has already
been conducted, and we finally outline our methodology concept and our experimental plan.

6.4.1 Related Work

To begin with, we provide a brief overview of reinforcement learning, related to our work.

100

6.4. Preliminary Study on Reinforcement Learning

Our ultimate goal is to develop a policy that maximizes information gain not just after
executing a single action (akin to teleporting the robot from point A to point B), but rather
after executing a sequence of actions. Each action in this sequence represents a discrete
movement along the entire path from A to B.

That is a typical Reinforcement Learning problem: an agent interacts with its environment
and learns from a feedback signal. At each time step t, the agent executes an action At,
receives observation Ot, receives reward Rt. The environment receives the action At, emits
observation Ot+1, emits reward Rt+1, increments t. The goal is to select actions to maximize
total future reward. The prediction of the future rewards is called the value function, and
is noted Vt. The interested reader can find a comprehensive introduction to Reinforcement
Learning in [71].

MuZero [66] is a really efficient Reinforcement Learning method designed to play games
without knowing the rules, but learning them from the interactions. The novelty in MuZero
lies in the introduction of a hidden state, denoted S. Instead of solely interacting with the
environment, the model transforms the observations into a hidden state. This hidden state is
then updated iteratively by a recurrent process that receives the previous hidden state and a
hypothetical next action. In the MDP described above, this hidden state is used as the state.
This hidden state allows the agent to represent the state in the way that is the most relevant to
the task. Building upon this, the search is done over hypothetical future trajectories, through
a Monte Carlo Tree Search (MCTS) [25], that outputs a recommended policy πt and value
Vt. The next action, At+1, is selected applying πt. The environment receives At+1, generates
a new observation Ot+1 and a new reward, Rt+1. The agent / environment interaction consti-
tutes an episode, which is stored in a replay buffer. The model is then trained on trajectories
sampled from the replay buffer to jointly learn three functions:

• prediction: f : St → πt, Vt,
• dynamics: g : St, At → Rt+1, St+1,
• representation: h : Ot → St.

Finally, let us note that in MuZero, an observation is the sequence of last images and
actions. The images are directly the images from the game, and the actions are the possible
moves in the game.

6.4.2 Preliminary work

We have already undertaken initial work to facilitate the learning of our task. Specifically,
we have established a framework that enabled the training of a MuZero agent in a simple
exploration task. The framework has three key components:

101

6.4. Preliminary Study on Reinforcement Learning

• a ROS simulation environment,

• the MuZero agent itself,

• SEED-RL, an architecture designed to facilitate the efficient training of MuZero.

SEED-RL is a framework consisting of a single learner and multiple actors. The active
interactions between the agent and the environment, and the search in the Monte Carlo Tree
Search (MCTS), are performed by the actors, which can be distributed across multiple ma-
chines. On the other hand, training occurs in a centralized manner on a single learner.

In our preliminary work, we simplified the world into a 2D grid devoid of obstacles.
This world is represented as an image, where pixels are categorized as black (representing
unknown space), white (representing discovered space), or red (indicating the current robot’s
position). The Lidar field of view is depicted as a white disk centered on the robot. As
the robot navigates through the world, it progressively discovers more space, increasing the
number of white cells in the image. The action space is also simplified, with the agent having
a choice of five actions: remain stationary, move right, move left, move up, or move down.

In this simplified simulation, the reward is determined by the number of newly discovered
cells, and it becomes negative if the robot remains stationary. The observation consists of a
history of previous images and actions. With this simplified setup, we successfully validated
our framework and trained a MuZero agent, as illustrated in Figure 6.3.

6.4.3 Methodology Concept

This section outlines our methodology concept for transitioning from our current simplified
simulation and task to a coverage task in a more realistic and complex simulation environ-
ment. Ultimately, this transition leads to the central topic of this research: an exploration
policy designed to enhance map quality. As mentioned earlier, for MuZero, an observation is
precisely defined as the sequence of the last images and actions. For simplicity, when we use
the term observation in what follows, we are specifically referring to the last image in this
sequence.

Simulation Firstly, our objective is to validate our framework using a more intricate simu-
lation setup. Our plan involves utilizing Isaac Sim as the simulation platform, where a Husky
robot will navigate a world containing obstacles. Isaac-Sim 12 is a simulator provided by
Nvidia, known for its computational efficiency, capable of simulating very large scenes with
thousands of assets and robots, whereas Gazebo is more limited.

12https://developer.nvidia.com/isaac-sim

102

https://developer.nvidia.com/isaac-sim

6.4. Preliminary Study on Reinforcement Learning

Figure 6.3: Visualization of the simple simulation with a MuZero agent exploring space. Red
dot: the robot, black: unknown space, white: discovered space. Top left: total reward.

Coverage Task The initial step of our methodology concept involves training a MuZero
agent to perform a more complex task than what was conducted in the basic simulation used
in the preliminary work. This task consists in exploring the environment while avoiding
obstacles. To enable this, we will modify the observations, reward, and action space. The ob-
servation will be a ternary occupancy grid, encoding unknown space (grey), occupied space
(black) and free space (white), with the robot’s current position in red. This observation will
be built from the occupancy grid constructed from the robot’s interactions in the environment,
with traditional ROS packages as previously done in this research, with expanded obstacles.
The reward will remain based on the number of newly discovered cells, with a small penalty
when the robot remains stationary and a huge penalty when it collides with an obstacle. The
action space will be expanded by including diagonal moves, resulting in a set of nine possible
actions: remaining stationary, or moving to one of the eight adjacent cells. When construct-
ing this task, we will consider two methods for controlling the robot. Although actions have
been defined, the process of translating these actions into actual robot movement has not been
specified. Specifically, the choice of action determines which adjacent cell’s center the robot
must move to. We will now consider how the robot will execute this movement. The first
"control" approach will consist in regularly sampling the segment from the current robot po-
sition to the center of the target cell, and teleporting the robot to these sampled points. The

103

6.4. Preliminary Study on Reinforcement Learning

second approach will utilize a conventional planner and controller, chosen for their reliabil-
ity and execution speed. The advantage of the first method is its speed and robustness, two
important factors when training a reinforcement learning agent for hundreds of thousands of
steps. On the other hand, the second method is more easily transferable to a real robot.

Map Quality Exploration Task The second step is to train an agent on an even more com-
plex task, which is the core challenge of our research: exploring while considering map qual-
ity. Building upon the coverage task, we will maintain the same action space while modifying
the observations and the reward. For this task, we will utilize a predictor model similar to
the one presented in Chapter 5. This model will predict a 2d-grid representing map quality
based on the ground slice of the 3d-grid of viewpoint statistics. From this 2d-grid, we will
generate the observation, which will be a 3-channel image comprising:

1. the heatmap corresponding to the normalized 2d-grid quality,

2. the occupancy grid with expanded obstacles,

3. and the position of the robot.

Additionally, we will use the same heatmap to compute the reward. Instead of provid-
ing reward based on newly discovered space after each action, the reward will be a function
of the increment in the total value of the heatmap following each action. We will keep a
small penalty for not moving and a high penalty for colliding with obstacles. However, we
acknowledge a potential risk in this approach, as it heavily relies on the map quality predictor,
which may be too noisy for the task. A possible mitigation could be to increase the number
of channels in the image, and to provide separate heatmaps for each viewpoint statistic on
distinct channels instead of using the predicted 2d-grid quality. With this approach, the noise
in the observation should be more limited. Then, only the overall quality prediction would
be employed to calculate the reward. This prediction is expected to be more robust and better
suited for reward computation.

6.4.4 Experimental plan project

Once the methodology is implemented, we plan on evaluating our agents against baselines.
For the coverage task, the agent will be compared to state-of-the-art methods, such as [13]
introduced earlier. Then, for the map quality exploration task, the agent will be compared
to a new NBV policy baseline, based on viewpoint statistics, developed using the work pre-
sented in the previous section. We are considering the selection of the NBV with an RRT*
planner [39], searching this time for the next-best-trajectory instead of simply performing a

104

6.5. Summary

one-step-look-ahead prediction. In both cases, we plan on performing the evaluation on qual-
ity vs discovered space curves, as done earlier in this chapter, along with a comparison of the
execution speed.

6.5 Summary

In this chapter, we developed a methodology for Next-Best-View (NBV) selection based on
observation viewpoint statistics. This work leveraged the observation viewpoint statistics 3D
grid presented in Chapter 5. In this work we created four policies, each for a specific statistic
(number of observation nobs, minimum range rmin, number of angular sectors nΩ or spherical
variance σθ).

Our method involved calculating a costmap and identifying candidate NBVs. Following
that, the policy consisted in a balance between the cost and the expected information gain of
the candidate NBVs. The expected information gain of each candidate was calculated from
the information gain for each cuboid region, that was defined as the surprisal.

Our results were depicted through quality vs. discovered space curves, in environments
differently challenging with respect to the reconstruction, ranging from most structured to
most unstructured. We compared our methods against different baselines: random-frontier,
closest-frontier, and random-free. Generally, our NBV policies produced better map than
baselines during the exploration process. Notably, the improvement in map quality was most
pronounced in challenging environments.

As we look ahead, we propose a methodology concept to solve this task using deep Rein-
forcement Learning, where the observations and rewards are derived from the work presented
in the preceding chapters of this thesis.

105

7

Conclusion

106

7.1. Summary

The motivation behind this thesis was to address the challenge of an autonomous ground
robot exploring an environment, constructing a map from its 3D-lidar observations, all with
the overarching objective of enhancing map quality in the process.

During our journey, we discovered that some concepts that may have seemed trivial at
first glance were, in fact, challenging tasks in natural environments. These environments
are simultaneously unstructured and sparse, two difficulties that amplify each other when
building maps. Consequently, the first challenge we encountered was related to map quality.
Defining what constitutes a good map is a complex question that leads to an entire chapter in
this thesis.

With the first question answered, we could focus on the core motivation behind this re-
search: how to integrate map quality criteria into exploration in a natural environment. Our
intuition was that local map quality was closely tied to how the local area was observed. To
explore this further, we developed statistics summarizing how the area was observed, our ob-
servation viewpoint statistics. We demonstrated that these statistics were indeed indicators of
local map quality. As a result, when local map quality can be estimated a priori, it eliminates
the need for a reference map, which is typically unavailable in exploration tasks.

Building on this insight, we incorporated these indicators into Next-Best-View exploration
policies, where the information gain is computed based on these statistics. Exploring with
these policies led to better maps than traditional exploration policies.

7.1 Summary

7.1.1 Local Approach and Map Quality

The initial phase of our work involved establishing a framework to enable the evaluation of
methods we would later develop, all with the primary objective of creating an exploration
strategy for potentially vast natural environments, aiming to enhance map quality. As we
delved deeper into this research, it became clear that adopting a localized perspective was
necessary. This localized approach not only enabled our exploration strategy but also its
evaluation. To address this need, we decided to divide the environment into smaller cuboid
regions, each containing local information, such as map quality and viewpoint statistics.

Chapter 3 framework: local maps and experiments formulated our methodology for
this localized approach. In this chapter, we detailed how we extracted local regions, specifi-
cally intersecting cuboid regions, from both the map built from the robot’s 3D-lidar observa-
tions, expressed as a 3D-grid, and the reference map, another 3D-grid. These cuboid regions
formed the foundation upon which we built all of our work. Chapter 3 also introduced our

107

7.1. Summary

experimental framework, which encompassed both simulations and real-world experiments.
It explained how we built the maps from the 3D-lidar data using Octomap and transformed
it into a 3D-grid of occupancy likelihoods. Similarly, it described how we transformed the
reference map, either the mesh from the simulation or the point cloud from the Total Station
in the real-world experiments, into a comparable 3D-grid. Finally, it outlined how we gen-
erated simulated environments, featuring different assets characterized by varying levels of
complexity with respect to the reconstruction. Additionally, it introduced the various types
of experiments we considered throughout this research.

When the aim of an exploration strategy was to enhance map quality, as it was in this
research, the first step was to evaluate the map quality itself. However, in the context of nat-
ural environments, assessing 3D map quality posed significant challenges. Traditional map
quality assessment usually sought a single metric to summarize the overall map quality. Nev-
ertheless, in our case, it was necessary to obtain a localized measure of map quality. Firstly,
because map quality varied within a potentially large and complex environment. Secondly,
because this localized approach enabled the implementation and evaluation of our explora-
tion policies. Hence, our work, presented in Chapter 4 measuring map quality, utilized the
cuboid regions introduced previously.

In the scenario we explored, the robot used 3D-Lidar observations to construct a 3D-grid
map with occupancy likelihood information for each voxel. In this context, commonly used
map quality measures, such as surface coverage and reconstruction accuracy, might not al-
ways provide meaningful information. This is especially true in natural environments, which
are both unstructured and sparse. Mapping in such environments is further complicated by
the challenges related to the robot’s localization within the map and by the increased noise
level in the 3D-lidar inherent to natural environments. In Chapter 4, we demonstrated the
limitations of traditional metrics, initially in a simulation, and later in a real-world experi-
ment. We investigated various 3D reconstruction metrics, including both conventional and
less conventional ones, with the specific goal of reliably measuring map quality. Leverag-
ing the cuboid regions introduced before, in Chapter 4, we computed six distinct metrics:
surface coverage, reconstruction accuracy, Average Hausdorff Distance, Cohen’s Kappa co-
efficient, Kullback-Leibler Divergence, and Wasserstein Distance to measure map quality at
a local scale. Then, we developed a dedicated methodology for evaluating these metrics, in-
volving controlled 3D reconstructions by progressively degrading ground-truth cuboids using
six distinct degradation models. Furthermore, we proposed a method to assess the metrics’
performance as classifiers with two distinct quality levels. Our evaluation showed that no
single metric could provide a meaningful measure in all situations. The choice of metric
largely depended on the specific purpose of the quality assessment. For the topic of interest

108

7.1. Summary

in this research, autonomous robot mapping in natural environments, the Average Hausdorff
Distance appeared to be the most suitable metric, particularly because of its robustness.

7.1.2 Linking Map Quality to Viewpoint Statistics and Integrating them
into Next- Best-View

Obtaining a robust local measure of map quality allowed us to delve into the central question
of this research: how to explore a natural environment while incorporating map quality cri-
teria? To address this, we proposed estimating map quality a priori by relying on viewpoint
statistics derived directly from the robot’s data. Building upon that, we integrated this prior,
extracted from the viewpoint statistics, into an exploration policy through the selection of the
Next-Best-View.

Chapter 5 Linking Map Quality and View-Point Statistics outlined our methodology.
Four viewpoint statistics were introduced: the number of observations, their minimum range,
the number of angular sectors covered by a viewpoint, and the spherical variance of the view-
points. We detailed their computation in a 3D-grid, the same 3D-grid used in Chapter 4 to
assess local map quality. Our findings highlighted the link between map quality and view-
point statistics through quality vs. statistics plots. More importantly, we rigorously proved
through hypothesis testing that these viewpoint statistics were valid indicators of local map
quality. Finally, we trained a Random Forest Regressor to model quality from the viewpoint
statistics, and we evaluated the relative importance of each feature in the learning.

Notably, in Chapter 5, our results emphasized the importance of different statistics in
structured or unstructured environments. In unstructured environments, a combination of
statistics, including the number of observations, the minimum range of the observations, and
one reflecting viewpoint diversity, such as the number of angular sectors of the viewpoints or
their spherical variance, proved essential for accurate prediction, contrasting with structured
environments where the number of observations alone might suffice.

The contributions from Chapter 5 laid the groundwork for the exploration policies dis-
cussed in Chapter 6 Autonomous Exploration with View-Point Statistics-Based Policy.

Chapter 6 introduced exploration policies based on these viewpoint statistics individu-
ally. Once we identified candidates for the Next-Best-View, we calculated the expected infor-
mation gain of each candidate. This method built upon the 3D grid of viewpoint statistics,
where we compared the current and updated 3D grid, considering the new viewpoints from
the candidate. The expected information gain for the candidate was defined as the sum of
the surprisal in each cell. Finally, the Next-Best-View was selected as the candidate that best
balanced high information gain and low distance.

109

7.2. Future Work

The results were presented in Chapter 6, in environments differently challenging with re-
spect to the reconstruction. Our policies were compared against traditional baselines, such as
random or closest frontier explorations. These results demonstrated that our Next-Best-View
policies, based on viewpoint statistics, produced better maps than traditional baselines during
the exploration process. Notably, the improvement in map quality was most pronounced in
challenging environments.

Chapter 6 presented our conceptual methodology to enhance these policies using rein-
forcement learning, where observations and rewards were derived from the groundwork laid
out in this thesis. This concept would help scale our policies, enabling the selection of the
Next-Best-View along the complete trajectory.

7.2 Future Work

This section summarizes the questions raised by this thesis that will be investigating in future
work.

Map quality Firstly, Chapter 4 showed that the Average Hausdorff Distance appeared the
more robust metric when measuring map quality in natural environments. Nonetheless, such a
metric only considers occupied points, i.e., voxels from the map whose occupancy likelihood
is above some selected threshold. It totally discards any information below this threshold. A
solution for an even more robust map quality estimation would be to combine metrics, such as
the Average Hausdorff Distance and the Kullback-Leibler Divergence, the first being sensitive
to Euclidean distance in the errors, the seconds to the level of certainty in the complete cuboid.
Secondly, complementary investigation could be done on the Wasserstein Distance. The work
presented in Chapter 4 focused on conventional optimal transport, yet it would be interesting
in future work to explore unbalanced optimal transport [22]. This would enable measures
between positive values that are not necessary probability distributions. That would eliminate
the current normalization step, allowing the comparison of cuboids with different mass. This
could lead to a more robust map quality assessment.

Predicting Map Quality from Viewpoint Statistics Building upon the work presented in
Chapter 5, future work will focus on the learning task. Particularly, it will require acquiring
more data to enable training a more robust predictor. Different approaches may be explored.
It could be a Random Forest Regressor, as it was the case in this work, but it may also be
a Neural Network. With enough data and a Convolutional Neural Network, we could be

110

7.2. Future Work

able to learn the 3d-grid map quality from the 3d-grids of viewpoint statistics, allowing the
incorporation of neighboring cues. It is likely that map quality follows a spatial pattern.

Exploration Policies Finally, following Chapter 6, future work will focus on crafting ex-
ploration policies with reinforcement learning. This work will start with implementing the
methodology concept described in Chapter 6, and continue with the proposed evaluation plan.

111

A

Theoretical Metrics Comparison

112

Figure A.1: Illustration of the different metrics behavior when the reconstruction moves fur-
ther from the ground-truth. One line per metric, one column per type of degradation applied
to the gt. For each sub-figure, the x-axis is the number of iteration n, the y-axis the value of
the metric θ. The results are grouped by type of asset in the world. In each sub-figure, the
line corresponds to the median value from all cuboids in the type of world and the filled area
shows the spread of 80% of the population.

113

Figure A.2: Precision-Recall curves when we vary the value of the threshold θ̂ for each metric.
One line per metric, one column per type of degradation, one color per type of world. The
three markers display precision-recall points for three values of θ̂ for each metric. The results
are displayed for a level of degradation of the cuboid of 20%. The points in (0,0) corresponds
to points where it is not possible to compute precision and recall (division by 0 in Eq. 4.13
and 4.14)

114

Glossary

UAV: Unmanned Aerial Vehicule
UGV: Unmanned Ground Vehicule
IMU: Inertial Measurement Unit
GPS: Global Positioning System
RTK-GPS: Real Time Kinematics-GPS
Lidar: LIght Detection And Ranging
SLAM: Simultaneous Localization and Mapping
NBV: Next-Best-View
AHD: Average Hausdorf Distance
COV: Surface Coverage
ACC: Reconstruction Accuracy
WD: Wasserstein Distance
DKL: Kullback-Leibler Divergence
KAP: Cohen’s Kappa
Uocc: Set of cuboids in occupied space
Uempty: Set of cuboids in empty space
Cgt: A cuboid from the ground-truth dataset
Crec: A cuboid from the reconstruction dataset
nobs: Number of observations
rmin: Minimun range of the observations
nΩ: Number of angular sectors covered by the observations
σθ: Spherical variance of the observations
RECT: Experiment in a world with rectangular cuboids
CROSS: Experiment in a world with cross extruded shape
HELICOID: Experiment in a world with helicoidal shapes
TREES: Experiment in a world with simulated trees
REAL: Real world experiment
NAVIGATION: Experiments where the robot navigates autonomously towards a goal

115

TELEPORT: Experiments where the robot is teleported on a goal
FRONT: Experiment where the robot drives toward the object
LAT: Experiment where the robot drives with the object on the side
WAYPOINTS: Experiments where the robot follows autonomously a list of waypoints
RANDOM: Experiments where the robot is teleported to a goal that is randomly sampled
NBV-XP: Experiments where the robot is teleported to a goal selected by the policy

116

List of Figures

1.1 The Husky Robot with its sensor suite and the type of environment we consider. 2
1.2 System diagram showing the interaction between the different chapters of this

thesis. 5

2.1 Key concepts of mobile robots (adapted from [67]). The concepts used in
this work are highlighted in bold in the diagram. 9

2.2 Top-left: external view of the scene. Top-right: image from the camera. Bot-
tom: point-cloud from the Lidar. Top-right and bottom correspond to what
the robot "sees". The dashed trapezoid provides an idea of the correspon-
dence between camera and point-cloud. The color in the point-cloud simply
encodes the height, for visualization purpose. 11

2.3 This figure illustrates 3D-Lidar. The light rays are emitted from the Lidar,
in known directions (angles α). When the ray hits an obstacle, the distance
of the returned point is computed (distances r), along with the intensity of
the signal i. A point P (x, y, z, i) is added to the point-cloud. Rays that does
not return are not in the point-cloud. In this example, although five rays are
emitted, the point-cloud contains only four points. 13

2.4 Illustration of the concept of frames in a 2D-example. On the left: different
coordinate systems, or frames. The external reference frame is called map,
the robot frame is called base_link, and the Lidar frame is called lidar. On
the right, the tree structure storing the transformations between frames. . . . 14

2.5 Example of a 2D occupancy grid map, mapping the same place depicted in
Figure 2.2. Black: pixel corresponding to occupied space, light-grey: free
space, dark-grey: unknown space. 17

117

2.6 Illustration of the effect of noise on the map, on a toy-case. The noise is
applied either on the localization, on the sensor, or on both. Top: the sim-
ulation: a husky-robot facing a cross-extruded shape. All the other figures
display the point-clouds accumulated for five seconds in a given map frame.
The frame is either the perfect localization from the simulation (0), or a noisy
localization, where we apply a Gaussian noise to (0). We display two level
of noise: (1) and (2). Rows A, B: the Lidar sensor is perfect. Rows C, D:
the Lidar sensor is noisy. Rows A, C: the robot is not moving. Rows B, D:
the robot is moving. If we focus on the cross-extruded shape, we can see that
the higher the noise in the localization and / or on the sensor, the blurrier the
shape. 19

2.7 Illustration of the structured or unstructured nature of the environment on the
sampling of the surface. The middle picture is the point-cloud of the place
shown in the top picture, acquired with the Leica Total Station. The bottom
pictures highlight the rectangle areas above by zooming in. 22

2.8 Illustration of the sparsity of the data output of the 3D-Lidar. The white dots
corresponds to the point-cloud acquired by the Total Station. The colored
points corresponds to a single point-cloud from the robot’s Ouster-16. The
spheres are debugging tools, used to display residual errors in the localization. 23

2.9 Challenges with meshing: (a) the real tree, (b) the point-cloud from the Total
Station (c) an example of mesh failing to describe the actual surface of the
fine elements of the tree. 24

2.10 Example of a 3D-grid map, mapping the same place depicted in 2.2. Each
cube is a 5cm side voxel, representing only the occupied space. The color
encodes only the height, to help the visualization. 25

2.11 Illustration of the concept of frontier points in an occupancy grid. The current
position of the robot is the green square. A, B and C are the main clusters of
frontier points . 28

3.1 From [35]. Example of an octree storing free (shaded white) and occupied
(black) cells. The volumetric model is shown on the left, and the correspond-
ing tree representation on the right. 32

118

3.2 Visualization of a cuboid (10x10x10 voxels). On the left part of the figure,
each row of images correspond to a single cuboid, each column in the row
to a slice of the cuboid. The color encodes the occupancy likelihood, from
free space in black, to occupied space in white, as shown in the colorbar. The
grey corresponds to the unknown. The first row is the ground-truth cuboid,
Cgt. The second row is the reconstruction cuboid, Crec, encoding the occu-
pancy likelihood. The last row is the binary version of Crec: Ĉrec, where
the voxels whose occupancy likelihood is above 0.8 are set to occupied, the
others to empty. The right part of the figure displays in green Cgt, in blue the
thresholded Ĉrec. 35

3.3 Illustration of the different assets used in simulation: rectangular cuboid,
cross-extruded shape, helicoidal cone, simulated tree. 36

3.4 Illustration of four simulated words where the four types of assets share the
same spatial distribution. In this example, the number of assets is set to create
a sparse environment. 37

3.5 Illustration of an experiment, with the Husky robot at the center in an envi-
ronment containing only trees. 39

3.6 Illustration of a real world experiment. Top: right: the Leica Total Station,
left: the Husky. Bottom: the point-cloud from the Leica 41

4.1 Visualization of the degradation models. Left-most is one slice of ground-
truth cuboid. Others: degraded cuboids, after 200 iterations, with the differ-
ent degradation models. 56

4.2 Top: illustration of the different metrics behavior when the reconstruction
moves further from the ground-truth. One line per metric, one column per
type of degradation applied to the gt. For each sub-figure, the x-axis is the
number of iteration n, the y-axis the value of the metric θ. The results are dis-
played only for the CROSS worlds. In each sub-figure, the line corresponds
to the median value from all cuboids and the filled area shows the spread of
80% of the population. Down: Same information, displayed in all the type
of worlds for AHD and ACC with a Noccdegradation model. 57

119

4.3 Left: Precision-Recall curves when we vary the value of the threshold θ̂ for
each metric. One line per metric, one column per type of degradation. The re-
sults are shown only for CROSS worlds. The three markers display precision-
recall points for three values of θ̂ for each metric. The results are displayed for
a level of degradation of the cuboid of 20%. The points in (0,0) corresponds
to points where it is not possible to compute precision and recall (division by
0 in Eq. 4.13 and 4.14) Right: Same information, displayed in all the type of
worlds for AHD and ACC with a Nocc degradation model. 59

4.4 Distribution of the values of the metrics among the cuboids from Uocc in
the experiments. The blue corresponds to the values of the cuboids where
nrec = 0. The orange to the other cuboids. The values are computed only
for “observed" cuboids (at least one voxel in Crec has p < 0.4 or p > 0.6,
explained in Sec. 4.2.2). The figure display one line per type of world and
one column per metric, with two extra-columns showing nrec and ngt. . . . 60

4.5 Correlation Matrix of the metrics. The correlation can be positive or negative
depending on the type of metric (score or distance). 62

4.6 Example of a cuboid in a RECT environment. In the left, the first group
of rows corresponds to the cuboids reconstructed with the FRONT driving
behavior. GT is the ground-truth cuboid, F0, F1, F2 correspond to the re-
constructions obtained with three noise level in the robot localization. The
second group of rows corresponds to the LAT driving behavior. L0, L1, L2
to the reconstructions with the three noise levels. Two slices of the cuboids
(3 and 8) remain mostly unknown: the Lidar used in this study is a 16-plane
Lidar, and those slices remain situated between two of those planes during
the experiments. The right part of the figure displays the values of the met-
rics, with the two different driving behaviors. Distance and score metrics
are displayed with different colors to facilitate the interpretation (distance:
lower is better, score: higher is better). The errorbars display the variation
between the min and the max of each metric, for each driving behavior, when
the reconstruction is built with the three noise levels in the robot localization. 63

4.7 Example of a cuboid in a TREE environment. The figure display the same
information as Fig. 4.6. 67

4.8 Example of a cuboid in a real environment. 8 cuboids are displayed (A to H).
Each time, top row: Cgt, bottom row: Crec. The last row shows the metrics
corresponding to the 8 cuboids, one plot per metric. Distance metrics are
blue circles, score metrics orange triangles. 68

120

5.1 Illustration of the impact of the viewpoints on the quality of a cuboid, and on
the value of the viewpoint statistics. Top: the cuboids. The first line is the
ground-truth, on the second and third lines, the cuboids obtained from two
different driving motions (FRONT and LAT). Bottom: the statistics (blue)
and quality measure (orange) corresponding to the two cuboids. 79

5.2 Distribution of the map quality against the viewpoint statistics. The first row
corresponds to cuboids inUocc, the second row to cuboids inUempty. Each col-
umn correspond to a different viewpoint statistic: σθ, nobs, nΩ, rmin. The line
corresponds to the median value of the metric against the viewpoint statistic,
the filled area corresponds to the IQR of the value against the viewpoint statistic. 80

5.3 Distribution of the map quality depending on the height z of the cuboid in
the map. Top: cuboids in Uocc. Bottom: cuboids in Uempty. One column per
value of z. 84

5.4 Models evaluation with R2 coefficient on the training and test sets, when
learning to predict quality from viewpoint statistics. Blue: in Uocc, orange: in
Uempty. In each graph, each bar corresponds to a different type of environment
(RECT or TREES). 85

5.5 Importance of the input variables to the generalization of the model. Blue:
in Uocc, orange: in Uempty. In each graph, each bar corresponds to a different
input (the viewpoint statistics). 86

5.6 Correlation Matrix of the viewpoint statistics in the dataset 87
5.7 Confusion Matrix that display the occurrence of true and predicted values on

the test set. Right: in Uocc, left: in Uempty. The color scale is normalized for
each matrix, from purple 0, to yellow max. 88

6.1 Visualization of an experiment, showing the costmap (the grey, pink, red and
blue image), the candidates (the green squares), their information gain (the
transparency of the green squares), and the best candidate (the yellow sphere). 99

6.2 Quality of reconstruction expressed as a function of the proportion of discov-
ered space in the ground plane. The plots are arranged with an increasing
difficulty in the scene. In each figure, the line is the mean of the exper-
iments, the area is between the min and the max. Our proposed methods
(nobs, rmin, nΩ, σθ) are compared to the baselines (random-frontier, closest-
frontier, random-free). 100

121

6.3 Visualization of the simple simulation with a MuZero agent exploring space.
Red dot: the robot, black: unknown space, white: discovered space. Top left:
total reward. 103

A.1 Illustration of the different metrics behavior when the reconstruction moves
further from the ground-truth. One line per metric, one column per type of
degradation applied to the gt. For each sub-figure, the x-axis is the number
of iteration n, the y-axis the value of the metric θ. The results are grouped
by type of asset in the world. In each sub-figure, the line corresponds to the
median value from all cuboids in the type of world and the filled area shows
the spread of 80% of the population. 113

A.2 Precision-Recall curves when we vary the value of the threshold θ̂ for each
metric. One line per metric, one column per type of degradation, one color
per type of world. The three markers display precision-recall points for three
values of θ̂ for each metric. The results are displayed for a level of degradation
of the cuboid of 20%. The points in (0,0) corresponds to points where it is
not possible to compute precision and recall (division by 0 in Eq. 4.13 and
4.14) . 114

122

Bibliography

[1] P. F. Alcantarilla, C. Beall, and F. Dellaert. Large-Scale Dense 3D Reconstruction from
Stereo Imagery. 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2013.

[2] R. Almadhoun, A. Abduldayem, T. Taha, L. Seneviratne, and Y. Zweiri. Guided next
best view for 3D reconstruction of large complex structures. Remote Sensing, 11(20):1–
20, 2019.

[3] S. Aravecchia, M. Clausel, and C. Pradalier. Comparing Metrics for Evaluating 3D Map
Quality in Natural Environment. under review, 2023.

[4] S. Aravecchia, A. Richard, M. Clausel, Pradalier, and Cédric. Next-Best-View selection
with view-points statistics on the observations. In IEEE International Conference on
Intelligent Robots and Systems, 2023.

[5] S. Aravecchia, A. Richard, M. Clausel, and C. Pradalier. Measuring 3D-reconstruction
quality in probabilistic volumetric maps with the Wasserstein Distanc. In International
Symposium on Robotics (ISR Europe), 2023.

[6] N. Aspert, D. Santa-Cruz, and T. Ebrahimi. MESH: Measuring errors between surfaces
using the Hausdorff distance. In Proceedings - 2002 IEEE International Conference on
Multimedia and Expo, ICME 2002, volume 1, 2002.

[7] P. Babin, P. Dandurand, V. Kubelka, P. Giguère, and F. Pomerleau. Large-Scale 3D
Mapping of Subarctic Forests. Springer Proceedings in Advanced Robotics, 16:261–
275, 2021.

[8] L. Bartolomei, L. Teixeira, and M. Chli. Perception-aware Path Planning for UAVs using
Semantic Segmentation. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5808–5815, 2020.

123

[9] A. Batinovic, T. Petrovic, A. Ivanovic, F. Petric, and S. Bogdan. A Multi-Resolution
Frontier-Based Planner for Autonomous 3D Exploration. IEEE Robotics and Automa-
tion Letters, 6(3):4528–4535, 2021.

[10] I. Ben Salah, S. Kramm, C. Demonceaux, and P. Vasseur. Summarizing large scale 3D
mesh for urban navigation. Robotics and Autonomous Systems, 152:104037, 2022.

[11] B. Berger, M. S. Waterman, and Y. W. Yu. Levenshtein Distance, Sequence Com-
parison and Biological Database Search. IEEE Transactions on Information Theory,
67(6):3287–3294, 2021.

[12] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The ball-pivoting
algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer
Graphics, 5(4):349–359, 1999.

[13] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart. Receding horizon
next-best-view planner for 3D exploration. Proceedings - IEEE International Confer-
ence on Robotics and Automation, 2016-June:1462–1468, 2016.

[14] L. Breiman. Random Forests. Machine Learning, 45:5–32, 2001.

[15] L. Breiman. Manual on setting up, using, and understanding random forests v3. 1.
Statistics Department University of California Berkeley, CA, USA, 58:3–42, 2002.

[16] A. Bulbul, T. Capin, G. Lavoue, and M. Preda. Assessing visual quality of 3-D polygonal
models. IEEE Signal Processing Magazine, 28(6):80–90, 2011.

[17] S. T. Burgard, Wolfram Mark, Moors Dieter, Fox Reid and Sebastian. Collaborative
Multi-Robot Exploration. In IEEE international conference on robotics and automation,
2000.

[18] N. O. Center and A. A. N. C. Services. Lidar 101 : An Introduction to Lidar Technology
, Data , and Applications. NOAA Coastal Services Center, (November):76, 2012.

[19] G. Chahine, C. Pradalier, G. Chahine, C. Pradalier, S.-a. Alignment, and N. Outdoor.
Semantic-aware spatio-temporal Alignment of Natural Outdoor Surveys To cite this ver-
sion : HAL Id : hal-03738518 Semantic-aware spatio-temporal Alignment of Natural
Outdoor Surveys. 2022.

[20] G. Chahine, M. Vaidis, F. Pomerleau, and C. Pradalier. Mapping in unstructured nat-
ural environment: a sensor fusion framework for wearable sensor suites. SN Applied
Sciences, 3(5):1–14, 2021.

124

[21] S. W. Cheng, T. K. Dey, and J. R. Shewchuk. Delaunay mesh generation. Delaunay
Mesh Generation, pages 1–386, 2012.

[22] L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard. Unbalanced optimal transport:
Dynamic and Kantorovich formulations. Journal of Functional Analysis, 2018.

[23] J. Cohen. A Coefficient of Agreement for Nominal Scales. Educational and Psycho-
logical Measurement, 20(1):37–46, 1960.

[24] P. I. Corke, W. Jachimczyk, and R. Pillat. Robotics, vision and control: fundamental
algorithms in MATLAB. Springer, 2011.

[25] R. Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In
International conference on computers and games, pages 72–83. Springer, 2006.

[26] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances
in Neural Information Processing Systems, pages 1–9, 2013.

[27] M. P. Fay and M. A. Proschan. Wilcoxon-Mann-Whitney or T-test? on assumptions
for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys,
4:1–39, 2010.

[28] R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon,
L. Chapel, A. Corenflos, K. Fatras, N. Fournier, L. Gautheron, N. T. Gayraud, H. Janati,
A. Rakotomamonjy, I. Redko, A. Rolet, A. Schutz, V. Seguy, D. J. Sutherland, R. Tave-
nard, A. Tong, and T. Vayer. POT python optimal transport library. Journal of Machine
Learning Research, 22(78):1–8, 2021.

[29] D. Fox, S. Thrun, and W. Burgard. Probabilistic Robotics. Kybernetes, 2006.

[30] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The KITTI dataset.
International Journal of Robotics Research, 32(11):1231–1237, 2013.

[31] J. Gonzalez, A. Ollero, and A. Reina. Map building for a mobile robot equipped with
a 2D laser rangefinder. Proceedings - IEEE International Conference on Robotics and
Automation, (pt 3):1904–1909, 1994.

[32] G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based SLAM with Rao-
Blackwellized particle filters by adaptive proposals and selective resampling. IEEE
International Conference on Robotics and Automation, 2005:2432–2437, 2005.

125

[33] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream To Control: Learning Behaviors
By Latent Imagination. 8th International Conference on Learning Representations,
ICLR 2020, pages 1–20, 2020.

[34] G. Hardouin, J. Moras, F. Morbidi, J. Marzat, and E. M. Mouaddib. Next-Best-View
planning for surface reconstruction of large-scale 3D environments with multiple UAVs.
IEEE International Conference on Intelligent Robots and Systems, pages 1567–1574,
2020.

[35] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. OctoMap: An
efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots,
34(3):189–206, 2013.

[36] S. Isler, R. Sabzevari, J. Delmerico, and D. Scaramuzza. An information gain formu-
lation for active volumetric 3D reconstruction. Proceedings - IEEE International Con-
ference on Robotics and Automation, 2016-June:3477–3484, 2016.

[37] M. Juliá, A. Gil, and O. Reinoso. A comparison of path planning strategies for au-
tonomous exploration and mapping of unknown environments. Autonomous Robots,
33(4):427–444, 2012.

[38] L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101:99–134, 1998.

[39] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for optimal motion
planning. The international journal of robotics research, 7(30):846–894, 2011.

[40] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In Eurograph-
ics symposium on Geometry processing, volume 7, 2006.

[41] A. Khoche, M. K. Wozniak, D. Duberg, and P. Jensfelt. Semantic 3D Grid Maps for
Autonomous Driving. IEEE Conference on Intelligent Transportation Systems, Pro-
ceedings, ITSC, 2022-Octob:2681–2688, 2022.

[42] I. Kostavelis and A. Gasteratos. Semantic mapping for mobile robotics tasks: A survey.
Robotics and Autonomous Systems, 66:86–103, 2015.

[43] S. Kriegel, C. Rink, T. Bodenmüller, and M. Suppa. Efficient next-best-scan planning
for autonomous 3D surface reconstruction of unknown objects. Journal of Real-Time
Image Processing, 10(4):611–631, 2015.

126

[44] M. Kulkarni, M. Dharmadhikari, M. Tranzatto, S. Zimmermann, V. Reijgwart, P. De
Petris, H. Nguyen, N. Khedekar, C. Papachristos, L. Ott, R. Siegwart, M. Hutter, and
K. Alexis. Autonomous Teamed Exploration of Subterranean Environments using
Legged and Aerial Robots. Proceedings - IEEE International Conference on Robotics
and Automation, pages 3306–3313, 2022.

[45] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of Mathe-
matical Statistics, 22(1), 1951.

[46] J. Laconte, S. P. Deschênes, M. Labussière, and F. Pomerleau. Lidar measurement bias
estimation via return waveform modelling in a context of 3D mapping. Proceedings
- IEEE International Conference on Robotics and Automation, 2019-May:8100–8106,
2019.

[47] S. LaValle and A. Others. Rapidly-exploring random trees: Progress and prospects.
Algorithmic and computational robotics: new directions, 2001.

[48] G. Louppe. Understanding Random Forests: From Theory to Practice. PhD thesis,
2014.

[49] A. Mahé, A. Richard, S. Aravecchia, M. Geist, and C. Pradalier. Evaluation of prior-
itized deep system identification on a path following task. Journal of Intelligent and
Robotic Systems, 2021.

[50] H. B. Mann and D. R. Whitney. On a Test of Whether one of Two Random Variables is
Stochastically Larger than the Other. The Annals of Mathematical Statistics,, 18(1):50–
60, 1947.

[51] N. A. Massios and R. B. Fisher. A Best Next View Selection Algorithm Incorporating
a Quality Criterion. D, 2, 1998.

[52] H. P. Moravec and A. Elfes. High resolution maps from wide angle sonar. In IEEE
international conference on robotics and automation, pages 116–121, 1985.

[53] D. Müller, I. Soto-Rey, and F. Kramer. Towards a guideline for evaluation metrics in
medical image segmentation. BMC Research Notes, 15(1):1–7, 2022.

[54] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto. Voxblox: Incremental
3D Euclidean Signed Distance Fields for on-board MAV planning. IEEE International
Conference on Intelligent Robots and Systems, 2017-Septe:1366–1373, 2017.

127

[55] C. Oliveira, S. Aravecchia, C. Pradalier, V. Robin, and S. Devin. The use of remote
sensing tools for accurate charcoal kilns’ inventory and distribution analysis: Compar-
ative assessment and prospective. International Journal of Applied Earth Observation
and Geoinformation, 105:102641, dec 2021.

[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and É. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12, 2011.

[57] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat. Comparing ICP variants on
real-world data sets. Autonomous Robots, 34(3):133–148, 2013.

[58] M. Popović, T. Vidal-Calleja, G. Hitz, J. J. Chung, I. Sa, R. Siegwart, and J. Nieto. An
informative path planning framework for UAV-based terrain monitoring. Autonomous
Robots, 44(6):889–911, 2020.

[59] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[60] A. Richard, S. Aravecchia, M. Geist, and C. Pradalier. Learning Behaviors through
Physics-driven Latent Imagination. In Conference on Robot Learning, pages 1190–
1199, 2021.

[61] A. Richard, S. Aravecchia, T. Schillaci, M. Geist, and C. Pradalier. How To Train Your
HERON. IEEE Robotics and Automation Letters, 2021.

[62] J. Ruckin, L. Jin, and M. Popovic. Adaptive Informative Path Planning Using Deep
Reinforcement Learning for UAV-based Active Sensing. In Proceedings - IEEE Inter-
national Conference on Robotics and Automation, pages 4473–4479, 2022.

[63] W. J. Rucklidge. Efficiently Locating Objects Using the Hausdorff Distance. Interna-
tional Journal of Computer Vision, 24(3):251–270, 1997.

[64] J. Santos, M. Oliveira, R. Arrais, and G. Veiga. Autonomous scene exploration for
robotics: A conditional random view-sampling and evaluation using a voxel-sorting
mechanism for efficient ray casting. Sensors (Switzerland), 20(15):1–30, 2020.

[65] R. Saravanan and R. D. Levine. Surprisal analysis of diffusion processes. Chemical
Physics, 556(November 2021):111450, 2022.

128

[66] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,
E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver. Mastering Atari, Go,
chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

[67] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to autonomous mobile
robots. 2011.

[68] S. Song and S. Jo. Surface-Based Exploration for Autonomous 3D Modeling. Proceed-
ings - IEEE International Conference on Robotics and Automation, pages 4319–4326,
2018.

[69] S. Soudarissanane, R. Lindenbergh, M. Menenti, and P. Teunissen. Scanning geometry:
Influencing factor on the quality of terrestrial laser scanning points. ISPRS Journal of
Photogrammetry and Remote Sensing, 66(4):389–399, 2011.

[70] C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based exploration using
rao-blackwellized particle filters. Robotics: Science and Systems, 1:65–72, 2005.

[71] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. 2018.

[72] A. A. Taha and A. Hanbury. Metrics for evaluating 3D medical image segmentation:
Analysis, selection, and tool. BMC Medical Imaging, 15(1), 2015.

[73] D. E. Tyler. Statistical Analysis for the Angular Central Gaussian Distribution on the
Sphere. Biometrika, 74(3):579–589, jan 1987.

[74] C. Villani. Optimal transport: old and new. Springer Verlag., 2009.

[75] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wil-
son, K. J. Millman, N. Mayorov, A. R. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa,
P. van Mulbregt, A. Vijaykumar, A. P. Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner,
A. Scopatz, A. Lee, A. Rokem, C. N. Woods, C. Fulton, C. Masson, C. Häggström,
C. Fitzgerald, D. A. Nicholson, D. R. Hagen, D. V. Pasechnik, E. Olivetti, E. Mar-
tin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G. A. Price, G. L. Ingold,
G. E. Allen, G. R. Lee, H. Audren, I. Probst, J. P. Dietrich, J. Silterra, J. T. Webber,
J. Slavič, J. Nothman, J. Buchner, J. Kulick, J. L. Schönberger, J. V. de Miranda Cardoso,
J. Reimer, J. Harrington, J. L. C. Rodríguez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz,

129

M. Thoma, M. Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N. J.
Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P. A. Brodtkorb, P. Lee, R. T. McGibbon,
R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik,
T. Oshima, T. J. Pingel, T. P. Robitaille, T. Spura, T. R. Jones, T. Cera, T. Leslie, T. Zito,
T. Krauss, U. Upadhyay, Y. O. Halchenko, and Y. Vázquez-Baeza. SciPy 1.0: funda-
mental algorithms for scientific computing in Python. Nature Methods, 17(3):261–272,
2020.

[76] G. Vosselman. Airborne and Terrestrial Laser Scanning. Whittles Publishing, 2010.

[77] Y. Wang and A. Del Bue. Where to Explore Next? ExHistCNN for History-Aware
Autonomous 3D Exploration. In Computer Vision–ECCV European Conference, pages
125–140. Springer International Publishing, 2020.

[78] U. Wickramasinghe, E. Remelli, G. Knott, and P. Fua. Voxel2Mesh: 3D Mesh Model
Generation from Volumetric Data. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
12264 LNCS:299–308, 2020.

[79] T. Wiemann, F. Igelbrink, S. Pütz, and J. Hertzberg. A File Structure and Reference
Data Set for High Resolution Hyperspectral 3D Point Clouds. IFAC-PapersOnLine,
52(8):93–98, 2019.

[80] J. Williams, S. Jiang, M. O’brien, G. Wagner, E. Hernandez, M. Cox, A. Pitt, R. Arkin,
and N. Hudson. Online 3D Frontier-Based UGV and UAV Exploration Using Direct
Point Cloud Visibility. IEEE International Conference on Multisensor Fusion and In-
tegration for Intelligent Systems, 2020-Septe:263–270, 2020.

[81] B. Yamauchi. Frontier-based approach for autonomous exploration. Proceedings of
IEEE International Symposium on Computational Intelligence in Robotics and Automa-
tion, CIRA, pages 146–151, 1997.

[82] B. Zhou, H. Xu, and S. Shen. RACER: Rapid Collaborative Exploration With a Decen-
tralized Multi-UAV System. IEEE Transactions on Robotics, pages 1–19, 2023.

[83] J. Zhou, X. Fu, L. Schumacher, and J. Zhou. Evaluating geometric measurement ac-
curacy based on 3d reconstruction of automated imagery in a greenhouse. Sensors
(Switzerland), 18(7):1–16, 2018.

130

[84] H. Zhu, J. J. Chung, N. R. J. Lawrance, R. Siegwart, and J. Alonso-Mora. Online
Informative Path Planning for Active Information Gathering of a 3D Surface. In IEEE
International Conference on Robotics and Automation, 2021.

131

	Introduction
	Motivation
	Outline
	Contributions

	Principles
	Mobile Robots
	Perception
	Localization

	Mapping
	Fundamentals of mapping
	Sparse and Unstructured Environments
	Map Representations

	Autonomous Exploration
	Autonomous Navigation
	Exploration
	Next Best View

	Framework: local maps and experiments
	Mapping
	Map building
	Local Maps - cuboid regions

	Experimental Framework
	Simulation Framework
	Real World Experimental Framework
	Summary of the experiments

	Summary

	Measuring Map Quality
	Related Work
	3D reconstruction metrics
	Comparing probabilities

	Method
	Comparison metrics
	Evaluation Methodology

	Experiments and Results
	Experiments
	Results
	Theoretical Metrics Comparison
	Metrics Comparison on experimental reconstructions
	Qualitative comparaison

	Summary

	Linking Map Quality and View-Point Statistics
	Related Work
	Factors impacting the map quality
	Hypothesis Testing
	Random Forest Regressor
	Importance Measure

	Method
	Statistics from the observation viewpoints
	Validation of the indicators with statistical tests
	Coefficient of Determination and Feature Importance

	Experiments and Results
	Showcasing the angular sectors and the spherical variance
	Apparent correlation between map quality and viewpoint statistics
	Validation with hypothesis testing
	Learning to predict map quality from viewpoint statistics

	Summary

	Autonomous exploration with View-Point Statistics based policy
	Related Work
	Exploration Policies
	Next-Best-View Policies
	Policies

	Method
	Costmap and Candidate NBV
	Expected Information Gain
	NBV selection policy
	Evaluation Methodology

	Experiments and Results
	Experiments
	Results

	Preliminary Study on Reinforcement Learning
	Related Work
	Preliminary work
	Methodology Concept
	Experimental plan project

	Summary

	Conclusion
	Summary
	Local Approach and Map Quality
	Linking Map Quality to Viewpoint Statistics and Integrating them into Next- Best-View

	Future Work

	Theoretical Metrics Comparison
	Glossary
	List of Figures
	Bibliography

