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Abstract

This PhD project is devoted to non-overlapping Schwarz domain decomposition methods for the
resolution of high frequency flow acoustics problems of industrial relevance. Time-harmonic solvers
are difficult to parallelize due to their high-oscillatory behaviour, and current solvers quickly reach
an upper frequency limit dictated by the available computer memory. Non-overlapping Schwarz
methods split the domain into subdomains at the continuous level and provide a suitable setting for
distributed memory parallelization. The problem is solved iteratively on the interface unknowns,
where the keystone for quick convergence relies on appropriate transmission conditions. The first
part of this thesis is devoted to the design of transmission operators tailored to convected and het-
erogeneous time-harmonic wave propagation. To this end we study two non-reflecting boundary
techniques that provide local approximations to the Dirichlet-to-Neumann operator. On the one
hand, Absorbing Boundary Conditions are designed based on microlocal analysis and pseudodiffer-
ential calculus. On the other hand, the convected acoustic stability issue is addressed for Perfectly
Matched Layers in convex domains with Lorentz transformation. The second part of this thesis
describes how to adapt a generic domain decomposition framework to flow acoustics, and applies
the newly designed transmission conditions to simple academic problems. We explain the relation
between the non-overlapping Schwarz formulation and an algebraic block LU factorization of the
problem. Finally we propose a parallel implementation of the method and show the benefit of the
approach for the three-dimensional noise radiation of a high by-pass ratio turbofan engine intake.

Keywords: time-harmonic convected acoustics, Dirichlet-to-Neumann operator, Perfectly Matched
Layer, Absorbing Boundary Conditions, domain decomposition, turbofan intake noise radiation.





Résumé
Ce travail de thèse est consacré aux méthodes de décomposition de domaine de Schwarz sans recou-
vrement pour la résolution de problèmes industriels hautes fréquences d’acoustique en écoulement.
Les méthodes de résolution en régime harmonique sont difficiles à paralléliser en raison de leur
caractère oscillatoire, si bien que les méthodes actuelles sont limitées par une fréquence maximale,
imposée par la mémoire disponible de l’ordinateur. Les méthodes de Schwarz sans recouvrement
divisent le domaine en sous-domaines d’un point de vue continu et fournissent un cadre approprié
en vue d’une parallélisation à mémoire distribuée. Le problème est résolu de manière itérative sur
les inconnues d’interface, où la convergence rapide repose sur des conditions de transmission appro-
priées. La première partie de cette thèse est consacrée à la conception d’opérateurs de transmission
adaptés à la propagation d’ondes harmoniques en milieu convecté et hétérogène. Dans ce cadre
nous étudions deux catégories de conditions aux limites non-réfléchissantes qui fournissent des ap-
proximations locales de l’opérateur Dirichlet-to-Neumann. Dans un premier temps, des conditions
aux limites absorbantes sont conçues basées sur l’analyse microlocale et le calcul pseudodifféren-
tiel. Dans un second temps, la problématique de la stabilité acoustique en écoulement des couches
parfaitement adaptées est abordée pour des domaines convexes par la transformation de Lorentz.
La deuxième partie de cette thèse étend une méthode générique de décomposition de domaine à
des problèmes d’acoustique en écoulement, et applique les conditions de transmission préalable-
ment étudiées à des problèmes académiques simples. Nous expliquons le lien entre la méthode
de Schwarz sans recouvrement et une factorisation algébrique LU par blocs du problème. Enfin,
nous proposons une mise en oeuvre parallèle et montrons l’intérêt de l’approche au rayonnement
acoustique tridimensionnel de l’avant d’un turboréacteur d’avion.

Mots-clés: acoustique en écoulement en régime harmonique, opérateur Dirichlet-to-Neumann,
couche parfaitement adaptée, conditions aux limites absorbantes, décomposition de domaine, ray-
onnement acoustique d’un turboréacteur.
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Introduction (en français)

La réduction des émissions sonores dans l’industrie des transports a pris une importance croissante
au cours des dernières décennies. Les outils de simulation acoustique sont aujourd’hui essentiels
pour une meilleure compréhension des phénomènes physiques et la conception de solutions de
réduction du bruit. Avec les méthodes expérimentales, ces outils façonnent et guident les avancées
des nouvelles technologies silencieuses. Mentionnons entre autre les plaques micro-perforées pour
les turboréacteurs [15, 134], les métamatériaux acoustiques pour l’isolation et l’absorption du bruit
[190], ou encore les nouvelles pales pour les éoliennes [154, 19] et hélicoptères [185]. Les prédictions
acoustiques resteront probablement d’une grande importance à l’avenir afin de réorganiser les
grandes villes à des fins environnementales et sanitaires.

Figure 1: Schéma simplifié de la propagation du bruit de corps en mouvement.

Choix du modèle physique

La simulation acoustique fait souvent partie d’un problème multi-physique complexe. Divers mod-
èles physiques existent pour décrire la propagation du son. Cette thèse est motivée par la prédiction
acoustique de corps en mouvement. Cette thématique est appelée acoustique en écoulement ou
aéroacoustique. Le choix d’un modèle approprié est difficile: celui-ci doit être à la fois simple et
représentatif de l’application concernée, et bien défini mathématiquement. La Figure 2 présente
une vue d’ensemble de certains modèles aéroacoustiques répandus, classés par complexité en termes
d’interprétation physique et de résolution numérique.

Les modèles peuvent être séparés en deux catégories: les modèles directs et les modèles hy-
brides. Les modèles directs visent à résoudre toutes les échelles physiques en un seul calcul,
mais sont généralement trop coûteux. Dans cette thèse, nous nous concentrons sur un modèle
hybride, où l’écoulement moyen et les perturbations acoustiques sont résolus séparément. Là en-
core, différents modèles existent en fonction des hypothèses sur l’écoulement et des interactions
écoulement-acoustique présupposées. Par exemple, les équations d’Euler linéarisées (LEEs) for-
ment un modèle riche qui supporte des perturbations acoustiques, entropiques et de vorticité. Ces
équations sont cependant sujettes à des instabilités. Dans ce travail, nous considérons un modèle
où seules les ondes acoustiques sont prises en compte, parfois appelé l’équation potentiel linéarisé
(LPE) ou encore équation d’onde convectée généralisée. Ce modèle a été utilisé pour la première
fois par Blokhintzev en 1946 [44], puis a été reformulé par Goldstein [90] dans sa forme moderne
actuelle. Bien qu’il soit limité à des écoulements irrotationnels, le modèle potentiel linéarisé décrit
la propagation d’une onde scalaire convectée, ce qui est suffisamment précis pour représenter des
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Navier-Stokes Euler
Boltzmann
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pas de viscosité
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extraction des sources

propagation des sources

Figure 2: Vue d’ensemble de quelques modèles aéroacoustiques. Adapté de [36].

problèmes du monde réel tels que des configurations particulières de rayonnement sonore de tur-
boréacteurs d’avion [16]. Ce modèle a l’avantage d’être décrit par une seule variable scalaire, le
potentiel de vitesse acoustique. Il prend en compte la convection des ondes acoustiques par un
écoulement moyen non-uniforme, mais néglige les effets sonores thermiques et les phénomènes de
réfraction d’onde par l’écoulement moyen. Nous choisissons en outre de considérer le problème
dans le domaine fréquentiel, c’est à dire harmonique en temps, ce qui est bien adapté à la prédic-
tion du bruit tonal de l’avant du turboréacteur d’avion. De plus, le modèle potentiel linéarisé peut
être utilisé pour propager des sources sonores précalculées à l’aide d’une analogie aéroacoustique
[148]. Les analogies aéroacoustiques relient les données de l’écoulement aux sources acoustiques, et
sont utilisées dans de nombreuses applications industrielles depuis leur introduction par Lighthill
en 1952 [131].

Les problèmes de Helmholtz sont vus comme une situation particulière sans écoulement moyen.
Au-delà du cadre de l’acoustique en écoulement, la résolution des problèmes de Helmholtz présente
un intérêt important dans d’autres domaines tels que l’électromagnétisme, la sismologie, la médecine,
les ondes en eau peu profonde, etc. Notons que l’équation d’onde convectée présente également
des applications en héliosismologie [49].

Solveurs numériques pour les problèmes harmoniques en temps

L’objectif de la thèse est de contribuer au développement de solveurs numériques efficaces pour les
problèmes d’acoustique en écoulement harmoniques en temps, ce qui constitue un défi numérique
majeur en hautes fréquences. En effet, la grande majorité des solveurs actuels atteignent rapide-
ment les limites des ressources de calcul en hautes fréquences rendant les simulations irréalisables en
pratique. La difficulté est héritée de la nature oscillatoire et non-locale de l’équation de Helmholtz.
Il s’agit d’une équation aux dérivées partielles elliptique mais qui provient de l’équation d’onde, qui
est hyperbolique. Sa formulation variationnelle conduit à un système fortement indéfini, à valeurs
complexes, difficile à résoudre avec les méthodes itératives classiques, et la situation se détériore
fortement lorsque la fréquence augmente. Même s’il existe des préconditionneurs prometteurs tels
que le préconditionneur “shifted-Laplace” [77], leur conception est également une tâche difficile et
constitue un sujet de recherche à part entière. En raison de ces difficultés, une factorisation directe
du système est préconisée.

Les problèmes de Helmholtz nécessitent des techniques de discrétisation spécifiques pour réduire
les erreurs numériques, qui peuvent être de deux sortes. La première provient de l’interpolation
de la solution par le schéma numérique. Pour les problèmes oscillatoires, la règle générale est
de choisir au moins 6 voire 8 degrés de liberté par longueur d’onde. La seconde est l’erreur de
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dispersion qui est la différence entre la phase réelle et la phase numérique de l’onde. Cette erreur
s’accumule et s’amplifie à travers le domaine de calcul. Cette amplification est nommée effet de
pollution. Ces deux difficultés sont fortement renforcées par la présence d’un écoulement, pour
lequel des effets supplémentaires de type aliasing peuvent apparaître [82]. Les erreurs numériques
pour les problèmes de Helmholtz ont été quantifiées par Ihlenburg et Babuška pour des solutions
réguilières [113], et l’impact de l’écoulement a été étudié dans [37].

Pour pallier ces problèmes, le groupe de recherche d’acoustique de Siemens a contribué au
cours des quinze dernières années à des avancées pratiques sur la méthode des éléments finis
conforme d’ordre élevé (p-FEM). Le coût numérique a été fortement réduit et les erreurs numériques
associées aux problèmes d’acoustique en écoulement sont désormais bien maîtrisées. Ces progrès
ont été réalisés grâce à un indicateur d’erreur a priori et à des règles d’adaptation d’ordre pour
l’acoustique en écoulement [35]. Bien que de nouvelles méthodes de discrétisation aient vu le jour,
cette approche reste compétitive par rapport aux méthodes basées sur des ondes planes ou de type
Galerkin discontinu, voir par exemple [129]. Ceci constitue le point de départ de la thèse pour
la discrétisation des problèmes d’acoustique en écoulement. L’accent est mis sur la simulation
de l’avant du turboréacteur d’avion, où l’écoulement moyen et les propriétés du milieu sont non-
uniformes en espace. Nous ne nous concentrons donc pas sur les méthodes intégrales ou éléments
de frontière, où la connaissance explicite de la fonction de Green est requise.

Une fois le système est discrétisé, une factorisation directe de la matrice éléments finis est
générée à l’aide d’une factorisation LU effectuée par une librairie externe adaptée aux matrices
creuses tel que MUMPS, PARDISO, SuperLU, etc. Pour une matrice creuse, la factorisation et la
descente-remontée ont une complexité de respectivement O(m2N) et O(mN), où m est la largeur
de bande et N la taille de la matrice. Des avancées récentes dans le domaine des solveurs directs
multifrontaux ont montré qu’il était possible de réduire la complexité de cette factorisation en
tirant parti de la structure rang faible du bloc matriciel [3]. Même si des schémas efficaces ont
été conçus, la complexité des solveurs directs croît approximativement en O(ω3) en termes de
temps et mémoire pour un calcul tridimensionnel à résolution numérique fixée [39]. De plus, une
parallélisation purement algébrique sur une architecture à mémoire distribuée est une tâche ardue
pour les solveurs directs, notamment avec un grand nombre de processeurs [4]. Cela nécessite en
effet de calculer le complément de Schur de la matrice, qui est dense par définition. Nous verrons
plus loin que cela revient à une approche coûteuse de la décomposition de domaine.

Une autre approche pour la parallélisation des problèmes de Helmholtz consiste à décomposer
le problème au niveau continu. Une attention particulière doit être accordée à la communication
entre les processus, notamment pour les problèmes hautement oscillatoires où les difficultés mathé-
matiques sont accuentuées. Depuis l’avènement des architectures informatiques modernes avec des
centaines voire des milliers de cœurs, la demande d’algorithmes parallèles efficaces est très forte.
Un certain nombre d’applications nécessite de résoudre un grand nombre de problèmes à haute
fréquence pour de l’optimisation, des problèmes inverses, et plus récemment pour alimenter des
réseaux de neurones artificiels. Un solveur harmonique en temps devient alors l’outil élémentaire
lorsqu’un grand nombre de calculs similaires doivent être lancés.

Décomposition de domaine

Les algorithmes parallèles pour les problèmes ondulatoires sont apparus en milieu universitaire
dans les années 1990. L’un des plus étudiés est l’algorithme de décomposition de domaine. Il a été
appliqué à de nombreux problèmes physiques et a gagné en popularité du à son succès en mécanique
computationnelle [80]. L’idée initiale provient de la stratégie "diviser pour régner". Celle-ci consiste
à diviser le domaine de calcul en sous-domaines, résoudre les sous-domaines en parallèle, commu-
niquer entre les interfaces, et finalement itérer ce processus jusqu’à convergence. Historiquement
la décomposition de domaine a été utilisée pour prouver l’existence et le caractère bien posé des
EDP lorsque les outils de l’analyse fonctionnelle n’existaient pas. Schwarz a prouvé le caractère
bien posé de l’équation de Laplace sur une géométrie complexe grâce à la méthode de Schwarz
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alternée [168]. L’idée a ensuite été adaptée dans les années 1950 pour résoudre des EDP elliptiques
en parallèle. Cependant, la méthode initiale ne converge pas pour l’équation de Helmholtz, et
c’est seulement dans les années 1990 que Lions a proposé d’appliquer une condition aux limites
de type Robin plus générale aux interfaces [132]. Després a ensuite prouvé la convergence de la
méthode pour les équations de Helmholtz et de Maxwell en utilisant des estimations d’énergie [65].
Des améliorations significatives ont été apportées depuis ces travaux, notamment concernant les
conditions de transmission. Elles ont été formulées comme un opérateur de frontière abstrait qui
agit sur les interfaces. Ces classes de méthodes sont appelées méthodes de Schwarz optimales [84].
On peut ajouter un recouvrement entre les sous-domaines pour améliorer la convergence. Nous
nous concentrons sur les méthodes sans recouvrement, qui entrent dans la famille des méthodes de
Schwarz optimales sans recouvrement. Un bref résumé de la méthodologie est présenté en Figure
3. Sur le plan mathématique, deux questions doivent être abordées : les sous-problèmes locaux

1) Résolution des sous-
problèmes ui dans Ωi

2) Mise à jour aux in-
terfaces gij sur Σij

Itérer jusqu’à convergence

Partitionnement du domaine
Γ∞gijΣij

uiΩi

Si

Figure 3: Gauche: schéma simplifié de l’algorithme de décomposition de domaine. Droite :
exemple de partitionnement sans recouvrement pour un problème de diffraction par un disque

.

sont-ils bien posés ? et la méthode itérative converge-t-elle ?
Le point clé de la méthode repose sur la communication entre les sous-domaines, ou en d’autres

termes l’information échangée aux interfaces via les conditions de transmission. De nombreuses
améliorations des conditions de transmission ont été apportées au fil des années pour les problèmes
de Helmholtz depuis les travaux de Desprès [65]. Nous en mentionnons ici quelques-unes:

• les conditions de transmission optimisées [84],

• les conditions de transmission d’ordre élevé avec ajout de fonctions auxiliaires [48],

• les couches parfaitement adaptées [76, 173],

• les opérateurs non-locaux [57, 157].

En théorie, l’onde doit quitter le sous-domaine sans réflexion parasite et être réintroduite dans les
sous-domaines voisins. Cela nécessite d’enregistrer l’information physique de l’onde à la frontière
du sous-domaine. Il s’ensuit qu’une bonne stratégie de communication dépend de l’aptitude à
concevoir une condition aux limites non-réfléchissante. En théorie, une communication optimale
peut être obtenue grâce à l’opérateur Dirichlet-to-Neumann (DtN). Cependant, cet opérateur est
non-local et conduit à une matrice dense qui n’est pas compatible avec la rapidité des méth-
odes numériques actuelles. En pratique, nous chercherons à concevoir des approximations locales
de l’opérateur DtN. Quand bien même une représentation du DtN locale et précise est possi-
ble, l’information qui est échangée entre les sous-domaines est seulement locale. Une stratégie de
communication globale, qui permet de propager l’information à plus grande échelle entre les sous-
domaines, est nécessaire pour pouvoir passer à l’échelle et espérer une parallélisation globale. Ceci
est connu sous le nom d’espace grossier ou de grille grossière [69]. Cette grille est peut être con-
struite via la décomposition de domaine, et est actuellement utilisée en tant que préconditionneur
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pour une résolution itérative globale. Il est intéressant de noter que la connaissance de l’opérateur
DtN peut être d’une grande aide pour passer à l’échelle avec le nombre de sous-domaines. Par
exemple une stratégie consiste à résoudre des problèmes aux valeurs propres généralisés pour con-
cevoir l’espace grossier [61, 47]. D’autres stratégies, plus similaires au formalisme de cette thèse,
consistent à “sweeper” dans une [187] et récemment plusieurs directions [62, 174].

D’autres problèmes se posent afin de pouvoir passer à l’échelle et espérer un solveur décom-
position de domaine complètement parallélisable. Tout d’abord, le partitionnement et donc la
géométrie des sous-domaines joue un grand rôle dans l’efficacité de la méthode car celle-ci affecte
directement la précision de la condition aux limites non-réfléchissante. De plus, le partitionnement
introduit en général des points de croisement entre les sous-domaines qui altèrent la convergence
de la méthode s’ils ne sont pas correctement traités. Le traitement des points de croisement dans
le cadre de la décomposition de domaine est un domaine de recherche actif [55, 157, 147].

Si toutes ces techniques peuvent être réunies, la mise en œuvre de la décomposition de domaine
de Schwarz sans recouvrement pourrait en théorie bénéficier d’une excellente efficacité parallèle
pour des problèmes réalistes. De nombreuses tentatives de conception de méthodes parallèles
basées sur la décomposition de domaine ont été développées ces dernières années. Elles peuvent
toutes être considérées comme des variantes de l’approche de Schwarz optimisée [85].

L’objectif principal de cette thèse est d’adapter l’approche de décomposition de domaine à des
problèmes industriels d’acoustique en écoulement, et éventuellement d’y incorporer les derniers
développements académiques. Le projet a été initié par Siemens il y a quelques années, dans
lequel les méthodes de type FETI pour “Finite Element Tearing and Interconnecting” ont été
étudiées et mises en œuvre pour l’équation de Helmholtz puis pour l’équation potentiel linéarisée,
avec des conditions de transmission de base [128]. Ce travail poursuit cette initiative en utilisant
un cadre de décomposition de domaine plus générique. La première étape de la thèse est donc
consacrée à l’étude des conditions de transmission appropriées pour l’opérateur d’onde convecté.
Ceci est fondamental pour retrouver les résultats déjà connus pour les problèmes de Helmholtz
[48]. Pour ce faire, nous nous concentrerons sur la conception de deux conditions aux limites non-
réfléchissantes bien connues, à savoir les conditions aux limites absorbantes (ABC) et les couches
parfaitement adaptées (PML). Il est à noter que le problème de la construction de conditions
aux limites non-réfléchissantes est un problème mathématique de longue date, indépendant des
méthodes de décomposition de domaine.

Troncature des domaines infinis

La conception de techniques de troncature spatiale précises pour la résolution de problèmes de
propagation d’ondes dans des domaines non bornés est un domaine de recherche actif. En effet
l’introduction d’une frontière fictive est nécessaire pour les méthodes numériques comme les élé-
ments finis ou les volumes finis, qui reposent sur une discrétisation volumique du problème. Pour
les problèmes de Helmholtz non bornés, la condition de rayonnement à l’infini, dite condition de
Sommerfeld, doit être satisfaite pour garantir le caractère bien-posé du problème. Cette condi-
tion décrit que l’onde doit rayonner l’énergie vers l’infini uniformément dans toutes les directions.
L’application de la condition de Sommerfeld sur une frontière fictive fait apparaitre l’opérateur
DtN, qui coïncide avec la condition de transmission optimale pour la décomposition de domaine.
Nous verrons que l’opérateur DtN est un opérateur pseudodifférentiel d’ordre +1, et donne lieu
après discrétisation à une matrice dense. Lors de l’utilisation de solveurs creux, il est également
habituel, dans le contexte des techniques de troncature spatiale, de rechercher des approximations
locales de cet opérateur.

Un historique détaillé des méthodes de troncature de domaine infinis peut être trouvé dans
[94, 182] pour des problèmes d’acoustique homogène mais aussi des problèmes hyperboliques plus
généraux. En pratique, il existe plusieurs façons de construire une frontière non-réfléchissante

• La plus ancienne est la technique des conditions limites absorbantes (ABCs), qui a été initiée
par Engquist et Majda en 1977 [74]. Cette technique est basée sur l’analyse pseudodifféren-
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Introduction (en français)

tielle de l’opérateur DtN. Quelques années plus tard, Bayliss et Turkel [27] ont proposé une
célèbre ABC locale basée sur l’expansion asymptotique de la solution. Les conditions locales
d’ordre élevé ont été conçues pour la première fois dans [56, 104] et ont été améliorées re-
spectivement dans [9, 101]. Toutes sont basées sur une expansion en fraction continue de
l’opérateur DtN.

• Les couches parfaitement adaptées (PML) ont été dévelopées par Bérenger pour les équa-
tions de Maxwell [33] et sont devenues très populaires notamment dans l’industrie. L’idée
est d’étendre le domaine de calcul par une couche fictive et d’absorber l’onde grâce à un pro-
longement analytique dans le plan complexe qui transforme les ondes propagatives en ondes
évanescentes [116].

• Les éléments infinis ont été introduits dans [43]. Ils nécessitent généralement des espaces
d’éléments finis non standard et supposent une solution à variables séparées [14, 106]. Des
travaux plus récents à ce sujet peuvent être trouvés dans [105].

• De nombreuses variantes ont été dévelopées au fil des années. Par exemple, la “double absorb-
ing boundary” est une approche plus récente initiée dans [96], qui combine des caractéristiques
des ABCs et des PMLs.

• Si le DtN est connu analytiquement, une implémentation directe ou une version tronquée de
l’opérateur DtN non-local peut être réalisée. Elle est très précise mais généralement limitée
à des géométries spécifiques et au prix d’un coût de calcul élevé.

Chacune des méthodes présente des avantages et des inconvénients, qui ont été étudiés pour une
grande variété de problèmes d’ondes. Une comparaison rigoureuse de ces méthodes est difficile, et
une tentative de comparaison des ABCs avec les PMLs a été initiée dans [162]. Il est clair que toutes
ces techniques sont étroitement liées mais aucun formalisme unifié n’est encore disponible. Certains
critères importants doivent être vérifiés dans la construction d’une frontière non-réfléchissante, et
sont abordés dans [88]. Nous rappelons certains de ces critères qui sont: le caractère bien posé,
la précision au niveau discret et continu, la stabilité, l’effort de calcul et l’implémentation. La
satisfaction de toutes ces propriétés est reconnue comme étant très difficile.

Néanmoins, la plupart des méthodes sont maintenant bien développées pour les problèmes
de Helmholtz homogènes. Des difficultés supplémentaires apparaissent lorsque l’on considère des
problèmes hétérogènes et/ou avec convection puisque la propagation est plus complexe et que des
solutions analytiques/exactes ne sont en général pas disponibles. Dans cette thèse, nous essayons
d’étendre les approches ABC et PML à l’acoustique en écoulement avec des coefficients variables
en espace.

Organisation de la thèse
La première partie de la thèse est consacrée à l’extension des approches ABC et PML aux prob-
lèmes Helmholtz hétérogène et Helmholtz convecté. La deuxième partie applique ces techniques
à des problèmes de décomposition de domaine d’acoustique en écoulement de complexité crois-
sante, allant d’un problème académique de type guide d’onde droit à un problème tridimensionnel
réaliste de turboréacteur régi par l’équation de Helmholtz convectée généralisée. Les deux parties
sont indépendantes. Le chapitre 1 se concentre sur les conditions aux limites absorbantes suiv-
ant l’approche originale d’Engquist et Majda [74]. Nous rappellons dans un premier temps les
définitions mathématiques nécessaires et les règles du calcul pseudo-différentiel. Nous appliquons
ensuite la théorie microlocale aux problèmes de Helmholtz hétérogènes avec et sans convection.
L’originalité repose sur l’application de la théorie aux opérateurs à coefficients variables en espace,
et sur la performance des ABCs avec une discretisation par éléments finis d’ordre élevé. Enfin,
nous essayons d’étendre ces contributions à un domaine avec des coins orientés à 90◦. Le chapitre
2 est consacré aux couches parfaitement adaptées pour l’acoustique en écoulement. Nous pas-
sons en revue et analysons les performances numériques des formulations existantes à ce sujet et
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proposons une formulation numérique robuste applicable à des formes convexes arbitraires et des
écoulements de direction arbitraire. Ce chapitre est indépendant du chapitre 1. La deuxième partie
commence par le chapitre 3 et rappelle les résultats théoriques sur la convergence des méthodes de
décomposition de domaine. Nous étendons ensuite l’algorithme de décomposition de domaine sans
recouvrement au modèle de potentiel linéarisé. Différentes conditions de transmission sont décrites
à l’aide des développements effectués dans les deux premiers chapitres. Le chapitre 4 applique la
décomposition de domaine sans recouvrement à des cas tests académiques relativement simples. Il
permet de comparer les résultats avec les attentes théoriques. Enfin, le chapitre 5 est consacré aux
applications industrielles, à savoir le rayonnement acoustique d’un turboréacteur d’avion. Nous
mettons en place un modèle axisymétrique bidimensionnel ainsi qu’un modèle tridimensionnel com-
plet. Nous démontrons ensuite les performances de notre approche de décomposition de domaine
dans différentes configurations et les comparons aux méthodes purement algébriques.

Contributions scientifiques
Cette thèse a donné lieu à la publication d’articles dans des revues scientifiques [130, 139, 138]

• A. Lieu, P. Marchner, G. Gabard, H. Bériot, X. Antoine, and C. Geuzaine. A non-overlapping
Schwarz domain decomposition method with high-order finite elements for flow acoustics.
Computer Methods in Applied Mechanics and Engineering, 369:113223, 2020.

• P. Marchner, H. Bériot, X. Antoine, and C. Geuzaine. Stable perfectly matched layers with
Lorentz transformation for the convected Helmholtz equation. Journal of Computational
Physics, 433:110180, 2021.

• P. Marchner, X. Antoine, C. Geuzaine, and H. Bériot. Construction and numerical assessment
of local absorbing boundary conditions for heterogeneous time-harmonic acoustic problems.
SIAM Journal on Applied Mathematics, 82-2:476-501, 2022.

Une partie de ces travaux a été présentée aux conférences suivantes

• Non-Overlapping Schwarz Domain Decomposition for Flow Acoustics, 14th World Congress
on Computational Mechanics (WCCM) and ECCOMAS Congress 2020, Virtual Congress.

• Local absorbing boundary conditions for heterogeneous and convected time-harmonic acous-
tic problems, Conference on Mathematics of Wave Phenomena 2022, Karlsruhe.

Enfin, la thèse comprend des contributions de développement logiciel

• GmshFEM [165], une bibliothèque d’éléments finis open source écrit en C++ basée sur Gmsh [87].
Les contributions comprennent l’implémentation des simulations numériques présentes dans
ce manuscrit, et certaines fonctionnalités du code source. Le code est disponible à l’adresse
https://gitlab.onelab.info/gmsh/fem, et les cas de tests numériques se trouvent dans
les dossiers “examples/helmholtz2d” et “examples/helmholtzFlow”.

• GmshDDM, un solveur open source de décomposition de domaine sans recouvrement basé sur
GmshFEM, écrit en C++. La parallélisation du code a été implémentée dans le cadre de la thèse
grâce à la bibliothèque MPI. Le code est disponible à l’adresse
https://gitlab.onelab.info/gmsh/ddm, et divers cas tests sont fournis dans le dossier
“examples/”.

• CodeFEMAO, qui est l’outil de pré-développement acoustique éléments finis d’ordre élevé adap-
tatif et anisotrope de Siemens. Il est écrit en Matlab.
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Introduction

In the transport industry, the reduction of noise emissions has become of increasing importance over
the past decades. Nowadays, acoustic simulations tools are crucial for an enhanced understanding
of physical phenomena and the design of noise reduction solutions. Together with experimental
techniques, they shape and guide the advances in quieter technologies. Without being exhaustive,
let us mention micro-perforated plates for turbofan engines [15, 134], acoustic metamaterials for
noise insulation and cloaking [190] or novel blade design for wind turbines [154, 19] and helicopters
[185]. Acoustic predictions are likely to remain of high importance in the future in order to
reorganize large cities for environmental and health purposes.

Figure 4: Simplified drawing of noise propagation from bodies in motion.

Choice of the physical model

Noise prediction is often part of a challenging multi-physics problem. Various physical models
exist to describe sound propagation. This thesis is motivated by the prediction of sound from
bodies in motion, which falls into the category of flow acoustics or aeroacoustics. The choice of
an appropriate model is not trivial: it should be both simple and representative of the application
of concern, and well-defined mathematically. Figure 5 presents an overview of some widely known
aeroacoustics models sorted by their complexity in terms of physical interpretation and numerical
resolution. The models can be separated into the direct and hybrid categories. Direct models aim
to solve all the physical scales in a single computation, but the numerical effort is usually too costly.
In this thesis we rather focus on a hybrid model, where the mean flow and acoustic perturbations
are solved in separated steps. Again various models exist depending on the flow assumptions and
presupposed flow-acoustic interactions. For example, the Linearized Euler Equations (LEEs) is
a rich framework that supports acoustic, entropy and vorticity perturbations but is subject to
instabilities. In this work we consider a model where only acoustic waves are described, sometimes
called the Linearized Potential Equation (LPE) or generalized convected wave equation. It was
first derived by Blokhintzev in 1946 [44], and later on reformulated by Goldstein [90] in its current
modern form. Although it is restricted to irrotational mean flows, the LPE takes the form of a
simple, convected wave equation which is accurate enough to represent real world problems such
as noise radiation from turbofan engines [16]. The model has the advantage to be described by a
single scalar variable, the acoustic velocity potential. It does account for the convection of acoustics
waves by a non-uniform mean flow, but neglects sound heating effects and wave refraction by the
mean flow. We further choose to consider the problem in the frequency domain, which is well-suited

9



Introduction

Navier-Stokes Full Euler
Boltzmann

(LBM schemes)
no viscosity

Aeroacoustic analogies
(Lighthill, FWH, ...)

Linearized
Navier-Stokes

Linearized
Euler/Galbrun

Acoustic per-
turbation

Linearized
potential

Convected
wave/Helmholtz

Wave/Helmholtz
equation

no hydro modes

irrotational mean flow

uniform mean flow no mean flow

linear perturbations

vector PDEs

scalar PDEs

Direct models (+ subgrid scale: LES, RANS, ...)

Hybrid models: time or frequency domain

extract sources

propagate sources

Figure 5: Overview of some common computational aeroacoustics models. Adapted from [36].

to predict tonal sound from turbofan engines intakes. In addition the linearized potential model
can be used to propagate precomputed sound sources thanks to an aeroacoustic analogy [148].
Aeroacoustic analogies relate mean flow data to acoustic sources, and are used in many industrial
applications since its introduction by Lighthill in 1952 [131].

Helmholtz problems are seen as a particular situation where no mean flow is present. Beyond
the framework of flow acoustics, the resolution of Helmholtz problems are of great interest in other
fields such as electromagnetics, seismology, medicine, water waves, etc. Note that the convected
wave equation has also applications in helioseismology [49].

Numerical solvers for time-harmonic problems

The goal of the thesis is to contribute to the development of efficient numerical solvers for time-
harmonic flow acoustics problems, which is a major computational challenge at high frequencies.
Indeed, the vast majority of current solvers rapidly reach computational resource limits at high
frequencies making simulations unfeasible. The difficulty is inherited from the oscillatory and
non-local nature of the Helmholtz equation. It is an elliptic equation but originates from the
wave equation which is hyperbolic. Its usual variational formulation leads to a strongly indefinite,
complex-valued system that is hard to solve with classical iterative methods, and the situation
badly deteriorates as the frequency grows [78]. Even if promising preconditioners exist such as the
shifted Laplace preconditioner [77], their design is also a hard task and constitutes a research topic
on its own. Because of these difficulties a direct factorization of the system is advocated.

Helmholtz problems require specific discretization techniques to avoid numerical errors, which
may be of two kinds. The first one originates from the interpolation of the solution by the numerical
scheme. For oscillatory problems the common rule of thumb is hence to select at least 6 or 8 degrees
of freedom per wavelength. The second error is the dispersion error which is the difference between
the actual and numerical phase of the wave. This error accumulates and amplifies across the
numerical domain, and is called the pollution effect. These two difficulties are much strengthened
by the presence of flow, for which additional aliasing effects may appear [82]. Numerical errors for
Helmholtz problems were quantified by Ihlenburg and Babuška for smooth solutions [113], and the
effects of the flow were investigated in [37].

To alleviate these issues, Siemens’ acoustic research group has contributed over the past fifteen
years to practical advances on conformal high-order finite element methods (p-FEM). The numer-
ical cost has been highly reduced and the numerical errors associated to flow acoustics problems
have become well-controlled. These advances have been achieved by means of an a priori error
indicator and order adaptivity rules tailored to flow acoustics [35]. Although new discretization

10



methods have emerged, the approach is a reasonable alternative compared to e.g wave-based or
discontinuous Galerkin approaches [129]. This constitutes the starting point of the thesis for the
discretization of flow acoustic problems. The focus is put towards the simulation of turbofan en-
gine intakes, where the mean flow and medium properties are non-uniform in space. We therefore
do not focus on integral nor boundary element methods where the explicit knowledge of Green’s
function is required.

Once the system is discretized, a direct factorization of the finite element matrix is computed
thanks to an LU factorization performed by an external sparse solver package such as MUMPS,
PARDISO, SuperLU, etc. For a sparse matrix the factorization and back-substitution scale respec-
tively with O(m2N) and O(mN), where m is the bandwidth and N the size of the matrix. Recent
advances on multi-frontal direct solvers have shown potential to lower the factorization complexity
by taking advantage of the matrix block low-rank structure [3]. Even though efficient schemes
have been devised, the complexity of direct solvers grows roughly with O(ω3) in terms of time
and memory for a three-dimensional computation at a fixed numerical resolution [39]. Moreover,
a purely algebraic parallelization is hard to achieve for direct solvers on a distributed memory
architecture, especially with a large number of processes [4]. It indeed requires to compute the
Schur complement of the matrix, which is fully populated. We will see later that it amounts to a
costly approach to domain decomposition.

A different approach to the parallelization of Helmholtz problems is to instead decompose the
problem at the continuous level. Special attention should be paid on communication between pro-
cesses, especially for highly oscillatory problems where there are inherent mathematical difficulties.
Since the advent of modern computer architectures with hundreds to thousands of cores, the de-
mand for scalable parallel algorithms is very high. A number of applications requires to solve a
large amount of high frequency problems for the purpose of optimization, inverse problems and
more recently to feed artificial neural networks. A basic frequency domain solver then becomes the
elementary tool when a large number of similar computations are to be launched.

Domain decomposition

Parallel algorithms for wave problems started to emerge in the academia in the 1990’s, and one of
the most studied one is domain decomposition. It has been successfully applied to other physical
problems and gained popularity for its use in computational mechanics [80]. The initial idea is
straightforward and comes from the “divide and conquer” strategy. It consists of splitting the
domain into subdomains, solve the subdomains in parallel, communicate between the interfaces,
and iterate over this process until convergence is fulfilled. In early days, domain decomposition has
been used to prove the existence and well-posedness of PDEs when tools from functional analysis
were not available. Schwarz proved the well-posedness of the Laplace equation on a complex
geometry thanks to the alternating Schwarz method [168]. The idea has later been adapted in
the 1950’s to solve elliptic PDEs in parallel. However the initial method does not converge for the
Helmholtz equation, and it was first in the 1990’s that Lions proposed to apply a more general Robin
boundary condition on the interfaces [132]. Després subsequently proved the convergence of the
method for Helmholtz and Maxwell equations using energy estimates [65]. Significant improvements
have been made since these works especially regarding transmission conditions. They have been
formulated as an abstract boundary operator that acts on the interfaces. These classes of methods
are referred to as optimal Schwarz methods [84]. One may add an overlap between the subdomains
to improve the convergence. We focus on non-overlapping methods, such that it falls into the
family of non-overlapping optimal Schwarz domain decomposition methods. A brief summary of
the methodology is shown in Figure 6. Mathematically, there are two questions to be addressed:
are the local sub-problems well-posed ? and does the iterative method converge ?

The keystone of the method relies on the communication between the subdomains, or in other
words the information that is exchanged on the interfaces thanks to the transmission condi-
tions. They have been a lot of improvements over the years regarding transmission conditions
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Figure 6: Left: brief summary of the domain decomposition algorithm. Right: example of a
non-overlapping partitioning for a disk scattering problem.

for Helmholtz problems since the work of Després [65]. Let us mention some of them:

• optimized transmission conditions [84],

• high-order transmission conditions with the use of auxiliary functions [48],

• perfectly matched layers [76, 173],

• non-local operators [57, 157].

In theory, the wave should leave the subdomain without spurious reflections and be reinjected
to its neighbours. This requires to record the physical information contained in the wave on the
subdomain boundary. It follows that a good communication strategy depends on the ability to
design a non-reflecting boundary condition. In theory, an optimal communication can be achieved
through the Dirichlet-to-Neumann (DtN) operator. However this operator is non-local and leads
to a fully populated matrix which is not compatible with fast numerical methods. In practice we
look instead for local approximations of the DtN map. Even if one has access to a local and precise
DtN representation, the information that is exchanged between the subdomains is only local. A
global communication strategy, that allows to propagate information at a larger scale between the
subdomains, is necessary to achieve scalability with the number of subdomains. This is known as
a coarse space or coarse grid [69]. Such a grid can be build from domain decomposition, and is
currently used as a preconditioner for a global iterative resolution. It is interesting to note that
the knowledge of the DtN map may be of great help to improve scalability with the number of
subdomains. For example one strategy consists in solving generalized eigenvalues problems for
building the coarse space [61, 47]. Other strategies that are closer to the thesis framework allow
to sweep in one [187] and recently in multiple directions [62, 174].

There are other issues that arise if one hopes to achieve parallel scalability of a domain decom-
position solver. First, the partition hence the geometry of the subdomains plays a great role in the
efficiency of the method because it affects the accuracy of the non-reflecting boundary condition.
Moreover, the partitioning introduces in general cross-points between subdomains which alters the
convergence of the method if they are not properly handled. Dealing with cross-points in domain
decomposition is an active research area [55, 147].

If all these techniques can be gathered, an implementation of the non-overlapping Schwarz
domain decomposition could in theory achieve parallel scalability for realistic problems. A lot of
attempts to design parallel methods based on domain decomposition have been developed in the
recent years. They can all be seen as variants of the optimized Schwarz approach [85].

The principal objective of this thesis is to adapt the domain decomposition approach to flow
acoustics, and possibly incorporate the latest developments from academia. The project was initi-
ated by Siemens a few years ago, in which the so-called Finite Element Tearing and Interconnecting
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(FETI) methods were studied and implemented for the Helmholtz and Linearized potential equa-
tions with basic transmission conditions [128]. This work follows this initiative by using a more
generic domain decomposition framework. The first step of the thesis is hence devoted to the study
of appropriate transmission conditions for the convected wave operator. This is fundamental to
retrieve the results that we already observe for Helmholtz problems [48]. To do so we will focus
on the design of two widespread non-reflecting boundary conditions, namely Absorbing Boundary
Conditions (ABC) and Perfectly Matched Layers (PML). It is worth mentioning that the prob-
lem of building non-reflecting boundary conditions is a longstanding mathematical problem and is
completely uncoupled from domain decomposition.

Truncating infinite domains
The design of accurate spatial truncation techniques for solving wave propagation problems in
unbounded domains is an active area of research, as the introduction of a fictitious boundary is
mandatory for numerical methods like finite elements or finite volumes that rely on a volume dis-
cretization of the problem. For unbounded Helmholtz problems it is well-known that the Sommer-
feld radiation condition at infinity should be satisfied to ensure the well-posedness of the problem.
This condition says that the wave must scatter energy towards infinity uniformly in all directions.
Applying the Sommerfeld condition on a finite fictitious boundary gives rise to the DtN operator,
which coincides with the optimal transmission condition for domain decomposition. We will see
that the DtN map is a pseudodifferential operator of order +1, and results after discretization in a
dense matrix. When using sparse solvers, it is also customary in the context of spatial truncation
techniques to look for local approximations of this operator.

Extended reviews of domain truncation methods can be found in [94, 182] for homogeneous
acoustics and more general hyperbolic problems. In practice, they are several ways to construct a
non-reflecting boundary

• The oldest one is realized through Absorbing Boundary Conditions (ABCs), which was ini-
tiated by Engquist and Majda in 1977 [74]. The technique is based on pseudodifferential
analysis of the DtN map. A few years later Bayliss and Turkel [27] proposed a famous local
ABC based on the asymptotic expansion of the solution. High-order local conditions were
first devised in [56, 104] and have been further improved in respectively [9, 101]. All are
based on a continued fraction expansion of the DtN map.

• Perfectly matched layers (PMLs) were initiated by Bérenger for the Maxwell equations [33]
and have become very popular especially in the industry. The idea is to extend the compu-
tational domain by a fictitious layer and absorb the wave thanks to a complex scaling that
transform propagative waves into evanescent ones [116].

• Infinite elements were introduced in [43]. They usually require non-standard finite element
spaces and a separable solution [14, 106]. Recent advances on this topic can be found in
[105].

• A number of variants were developed over the years. For example, the double absorbing
boundary is a more recent approach initiated in [96], which combines features from ABCs
and PMLs.

• If the DtN is analytically known, a direct implementation or a truncated version of the
non-local DtN map can be achieved. It is very precise but is usually restricted to specific
geometries and at the price of a high computational cost.

Each of the methods has advantages and drawbacks, and has been studied for a broad variety
of wave problems. A comparison of these methods is not trivial but an attempt to compare
ABCs with PMLs was made in [162]. It is clear that all the techniques are closely related but
no unified formalism is yet available. Some important criteria that need to be fulfilled in the
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construction of a non-reflecting boundary are addressed in [88]. We recall some of the criteria that
are: well-posedness, accuracy at the discrete and continuous level, stability, computational effort
and implementation. Satisfying all these properties is recognized to be very difficult.

Nevertheless most of the methods are now well-developed for homogeneous Helmholtz problems.
Additional difficulties arise when considering heterogeneous and/or convective problems since the
propagation is more complex and analytic/exact solutions are not available for general situations.
In this thesis we attempt to extend the ABC and PML approaches to flow acoustics with possibly
spatially varying coefficients.

Organisation of the thesis
This first part of the thesis is devoted to the extension of the ABC and PML approaches to hetero-
geneous Helmholtz and convected Helmholtz problems. The second part applies these techniques
to flow acoustics domain decomposition problems of increasing complexity, from a straight waveg-
uide academic problem to a realistic three-dimensional turbofan intake governed by the generalized
convected Helmholtz equation. The two parts are independent. Chapter 1 focuses on Absorbing
Boundary Conditions following the original approach from Engquist and Majda [74]. The nec-
essary mathematical definitions and pseudo-differential calculus rules are recalled. We apply the
microlocal theory to heterogeneous Helmholtz problems with and without convection. The origi-
nality relies in the application of the theory to operators with spatially varying coefficients, and
the performance of the ABCs with high-order finite elements. Finally, we try to extend these
contributions to a domain with 90◦ corners. Chapter 2 is devoted to perfectly matched layers for
flow acoustics. We review and analyze the numerical performance of existing formulations on this
matter and propose a general numerically robust formulation to arbitrary convex shapes with a
flow of arbitrary direction. It is independent from Chapter 1. The second part starts with Chap-
ter 3 and recalls theoretical results on the convergence of domain decomposition methods. We
further set up the non-overlapping DDM to the linearized potential model. Various transmission
conditions are described thanks to the developments done in the first two chapters. Chapter 4
applies the non-overlapping DDM to relatively simple academic test cases. It allows to compare
the results with theoretical expectations. Finally Chapter 5 is dedicated to industrial applications,
namely noise radiation from turbofan engines. We set up a two-dimensional axisymmetric model
as well as a full three-dimensional model. We then demonstrate the performance of our domain
decomposition approach in different configurations and compare them to purely algebraic methods.
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Chapter 1

Absorbing boundary conditions for
heterogeneous and convected
time-harmonic problems

This chapter is devoted to the derivation and assessment of local Absorbing Boundary Conditions
(ABCs) for numerically solving heterogeneous and convected time-harmonic acoustic problems. To
this end, we develop a strategy inspired by the work of Engquist and Majda [74] to build local
approximations of the Dirichlet-to-Neumann operator for heterogeneous media, which is still an
open problem. The total symbol of the DtN operator is expressed as an asymptotic expansion in
the microlocal sense, and pseudodifferential calculus rules are used to compute the most significant
symbols of the expansion. We focus on simplified but characteristic examples to highlight the
strengths and weaknesses of the proposed ABCs: the propagation in a duct with a longitudinal
or transverse variation of the speed of sound and/or density, the propagation in a non-uniform
mean flow using a convected wave operator, and finally free-field propagation for circular and
square boundaries. For each case, we follow the same systematic approach to construct a family
of local ABCs and explain their implementation in a high-order finite element context. Numerical
simulations allow to validate the accuracy of the ABCs, and to give recommendations for the tuning
of their parameters.
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1.1. Microlocal analysis for Helmholtz problems

1.1 Microlocal analysis for Helmholtz problems

We recall in this section the necessary formalism that we will use from microlocal analysis.
Let us define the two-dimensional half-space Ω = {x = (x, y) ∈ R2; x ≤ L} with straight

vertical fictitious boundary Γ = {x = L}, L > 0. We look for a formal derivation of the DtN
operator Λ̃+ at Γ for the Helmholtz problem in Ω with a variable density ρ0(x) = ρ0(x, y) and
speed of sound c0(x) = c0(x, y). More precisely, the heterogeneous Helmholtz equation (for the
eiωt convention with time frequency ω > 0) is associated to the partial differential operator

H(x, y, ∂x, ∂y, ω) = ρ−1
0 ∂x(ρ0∂x) + ρ−1

0 ∂y(ρ0∂y) + ω2c−2
0 . (1.1)

The operator Λ̃+ is then defined as

Λ̃+ : H1/2(Γ)→ H−1/2(Γ)
u|Γ 7−→ ∂nu|Γ = −iΛ̃+u|Γ

, (1.2)

where n = (1, 0) is the outwardly directed unit normal vector to the straight boundary Γ, which
means that ∂n = ∂x. All the developments that follow could readily be extended to the 3D case,
but would require further algebraic computations leading to more complicated formulas to analyze.
The analysis could also be extended to the case of a curved convex boundary based on the tangent
plane approximation [9]. The methodology can also be applied to non-linear problems, see e.g
[169].

We formally compute the DtN operator in the framework of microlocal analysis by using the
tools of pseudo-differential operator calculus [177], as initiated by Engquist and Majda [74] for
hyperbolic systems. To this end, we consider that the density ρ0 and the speed of sound c0 are
smooth functions of the spatial variable x. In addition, since we will work with classical pseudo-
differential operators, it is well-known that the analysis is not valid for grazing waves and would
require the introduction of new classes of operators (like e.g. Gevrey classes [123]). This specific
point will be clarified later when we enter into the details of the concrete cases.

1.1.1 Preliminary definitions

A partial differential operator may be defined as [177]

P(x, ∂x) =
∑
|α|≤m

(−i)αaα(x)∂αx , (1.3)

with x ∈ Rd (d = 2 here), α = (α1, . . . , αd) ∈ Nd a multi-index, |α| =
∑d
j=1 αj and m the order of

the operator P. We define its symbol p to be the polynomial

p(x, ξ) =
∑
|α|≤m

aα(x)ξα, (1.4)

setting ξ ∈ Rd and ξα = ξα1
1 . . . ξαdd . If we introduce the Fourier transform of a smooth function u

of compact support in Rd

û(ξ) =
∫

Rd
u(x)e−ix·ξdx, (1.5)

where the property (̂∂αx u)(ξ) = (−iξ)αû(ξ) can be justified, a partial differential operator can be
seen as the inverse Fourier representation of its symbol

P(x, ∂x)u(x) = 1
(2π)d

∫
Rd
eix·ξp(x, ξ)û(ξ)dξ. (1.6)
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Chapter 1. ABCs for heterogeneous and convected time-harmonic problems

We next introduce the principal symbol σ(P) of an operator P, which is the highest order homo-
geneous term in ξ

σ(P)(x, ξ) =
∑
|α|=m

aα(x)ξα. (1.7)

This point of view allows to work with a wide range of operators, where the symbol is not necessarily
a polynomial, but a smooth function p = p(x, ξ). This leads to the broad theory of pseudo-
differential operators [177]. We will denote by P = Op(p) ∈ OPSm the pseudo-differential operator
of order m associated to the symbol p. Roughly speaking, the symbol should have a polynomial
growth that equals the order of the operator when |ξ| → ∞. Sets of admissible symbols were
introduced by Hörmander [107] and we will use the set of classical symbols Smcl , that are defined
by the estimate ∣∣∣∂βx∂αξ p(x, ξ)

∣∣∣ ≤ C(1 + |ξ|)m−|α|, ∀(x, ξ) ∈ K × Rd,

for each pair of multi-indices α,β, a compact set K of Rd and a constant C = C(α,β,K) ∈ R.
We make the correspondence p ∈ Smcl ⇔ P ∈ OPSm. Finally, we define OPS−∞ =

⋂
m∈R OPSm to

be the set of regularizing operators. This corresponds to operators with a smooth integral kernel,
for which the symbol decays faster than any polynomial. In practice, algebraic computations can
be performed at the symbol level to construct approximations of increasing orders of the DtN
operator. We only give the necessary formula for the computations and refer to [177] for more
details on the underlying theory.

1.1.2 Symbols computation

The first step to derive the DtN operator for the heterogeneous Helmholtz problem consists in
splitting the Helmholtz operator into two operators that characterize the forward and backward
parts of the reflected wave field u. The procedure is well-known for the wave operator in the
time-domain, where the wave equation can be factored along its bicharacteristic curves. We here
briefly recall the procedure. If a solution u of a partial differential operator P satisfies Pu = 0, the
characteristic set is given by p(x, ξ) = 0. The null bicharacteristics are the parametric curves γ(`)
solutions to the Hamilton equations

dx

d`
= ∇ξp (x(`), ξ(`)) , dξ

d`
= ∇xp (x(`), ξ(`)) , (1.8)

which carry the singularities of the solution [107], and leads to the notion of reflected family [136].
For the wave equation, one can split x = (n, τ, t) into a normal, tangential and time component
and denote by ξ = (η, ξ, ω) the associated symbols. Then the roots of the characteristic set (to
simplify we assume a constant density)

p(n, τ, t, η, ξ, ω) = −η2 − ξ2 + ω2c0(n, τ)−2, (1.9)

with respect to η are given by the homogeneous symbols of order 1

η∗ = ±
√
ω2c−2

0 − ξ2. (1.10)

The sign of η∗ corresponds to the sign of the rays ±dn/d` from Hamilton equations. This quantity
is also the group velocity of the wave

Vg = ±dn/d` = ±c2
0η/ω, (1.11)

whose positive or negative sign characterizes respectively the outgoing and ingoing characteristic.
We see that choosing η, ω > 0 selects the positive sign of in front of the square-root. We can further
distinguish different wave behaviour regimes depending on the sign of the radicand in Equation
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1.1. Microlocal analysis for Helmholtz problems

(1.10). We will come back to it in Section 1.1.3. According to the Lectures of Nirenberg [153,
page 27, page 50], one may factor the symbol p in a neighbourhood of its roots such as

p(n, τ, t, η, ξ, ω) =
(
η −

√
ω2c−2

0 − ξ2
)(

η +
√
ω2c−2

0 − ξ2
)
.

Going back to the operator level, we can say that there exist two pseudo-differential operators
Λ± = Λ±(x, y, ∂y) of order +1 such that

P = (∂x + iΛ−)(∂x + iΛ+) mod OPS−∞, (1.12)

where the equality holds modulo a regularizing pseudo-differential operator. This factorization will
be referred to as Nirenberg’s factorisation theorem [153], but is also used in the book of Hörmander
[107, eq. (24.2.6)]. Majda and Osher [136] showed that the factorization theorem is valid for general
variable coefficients operators, and Taylor [176] extended the approach for hyperbolic systems.
Note that P could also be factorized as (∂x + iΛ̂−)(∂x + iΛ̂−). This alternative factorization was
introduced by Lax and Nirenberg to control the incident wave, while we are interested in the
reflected wave. The reformulation enlightens the role of the DtN operator, which is the trace of the
outgoing (or ingoing) characteristic of the wave on the boundary Γ. Equation (1.12) can be seen
as a reformulation of the wave equation as two “one-way” equations. In a microlocal sense, the
solution to the Helmholtz problem is determined by the operators (Λ+,Λ−). We straightforwardly
apply the procedure to the Helmholtz equation by seeing “iω” as the symbol of the time derivative
“∂t”. For the constant coefficients case and a plane wave of the form ei(ωt−kxx), the factorization
of the Helmholtz operator takes the explicit form

H = (∂x + iΛ−)(∂x + iΛ+), (1.13)

Λ± = ±kx, kx =
√
ω2c−2

0 + ∂2
y . (1.14)

where the sign represents the propagation of the outgoing wavepacket to the positive and negative
x directions, respectively. The two operators are indeed pseudo-differential of order +1. However,
we will see that it is only an approximation in the heterogeneous case, and we cannot obtain in the
general case an explicit form of the factorization. Rather than looking for the DtN map directly
in its operator form, a more suitable approach is to look for its symbol. We turn back to the
heterogeneous Helmholtz operator and develop the factorisation (1.12) as

H =
(
∂2
x + i∂x

(
Λ+
)

+ iΛ−∂x − Λ−Λ+
)

mod OPS−∞. (1.15)

From definition (1.6), we obtain for the wave field u

∂x(Λ+u) = (2π)−1∂x

(∫
R
eiyξλ+û dξ

)
= (2π)−1

∫
R
eiyξ

(
∂xλ

+û+ λ+∂xû
)
dξ (1.16)

= Op
{
∂xλ

+
}
u+ Λ+∂xu, (1.17)

where λ+ is the symbol of Λ+. The Helmholtz operator can be recast as

H =
(
∂2
x + i

(
Λ+ + Λ−

)
∂x + iOp

{
∂xλ

+
}
− Λ−Λ+

)
mod OPS−∞. (1.18)

With this form, one is able to identify in (1.1) and (1.18) the first and zeroth order x-derivatives,
which leads to the system{

Λ+ + Λ− = −iρ−1
0 ∂x(ρ0)

−Λ−Λ+ + iOp
{
∂xλ

+} = ω2c−2
0 + ρ−1

0 ∂y(ρ0∂y)
, (1.19)

from which we can eliminate Λ− and obtain an equation for the outgoing operator Λ+

(Λ+)2 + iρ−1
0 ∂x(ρ0)Λ+ + iOp

{
∂xλ

+
}

= ω2c−2
0 + ρ−1

0 ∂y(ρ0∂y). (1.20)
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Chapter 1. ABCs for heterogeneous and convected time-harmonic problems

This equation is still a reformulation of the initial problem. The simplification occurs thanks to
the asymptotic expansion property of classical symbols. Since Λ+ is of order +1, the asymptotic
expansion writes

λ+ ∼
∞∑

j=−1
λ+
−j = λ+

1 + λ+
0 + λ+

−1 + · · ·

where each symbol λ+
−j is homogeneous of order −j in (ω/c0, ξ), and the equivalence class ∼ has

the meaning

∀m ≥ −1, λ+ −
m∑

j=−1
λ+
−j ∈ S

−(m+1)
cl .

Note that we interpret ω as the symbol of the time derivative, and is hence considered as a
homogeneous term for λ+

−j . The asymptotic expansion gives a notion of “convergence” for pseudo-
differential operators and allows to compute successive approximations of their symbol with respect
to their homogeneity order. If we express (1.20) in its symbolic form, one obtains

(λ+)2 + iρ−1
0 ∂x(ρ0)λ+ + i∂xλ

+ = ω2c−2
0 − ξ

2 − iξρ−1
0 ∂y(ρ0). (1.21)

There are well-defined calculus rules for classical symbols allowing them to be obtained in a recur-
sive manner [7]. For instance, the composition rule for pseudo-differential operators [177] can be
used to compute the square of the symbol λ+,

(λ+)2 ∼
∑
α≥0

(−i)α

α! ∂αξ λ
+∂αy λ

+ (1.22)

where one can further sort the terms by their decaying homogeneity degree. The second and first
order homogeneous terms are

(λ+)2 = (λ+
1 )2 mod S1

cl (1.23)
= (λ+

1 )2 + 2λ+
0 λ

+
1 − i∂ξλ

+
1 ∂yλ

+
1 mod S0

cl. (1.24)

The identification of the second-order homogeneous terms in (1.21) yields a choice for the principal
symbol

λ+
1 =

√
ω2c−2

0 − ξ2, (1.25)

where the sign has been chosen from Equation (1.10) in order to select outgoing waves. We can
notice the link to the operator (1.14) in the constant coefficients case. Alternatively, the principal
symbol could be defined in a inhomogeneous manner by identifying the second order terms in the
left-hand side of (1.21) only (which yields a semi-classical symbol)

λ+
1 =

√
ω2c−2

0 − ξ2 − iξρ−1
0 ∂y(ρ0), (1.26)

from which one may associate the operator

Λ+
1 =

√
ω2c−2

0 + ρ−1
0 ∂y(ρ0∂y). (1.27)

When dealing with semi-classical symbols, the golden rule is to ensure that in the high frequency
limit lim

ω→+∞
Re(λ+

1 ) ≥ 0, such that the wave is outgoing. Although both choices could be valid, we
use for now expression (1.25) to be the principal symbol. Once it is fixed, the lower order symbols
are uniquely determined. For a transverse heterogeneous medium (no x-dependence), Nirenberg’s
factorization theorem suggests that expression (1.27) is the most appropriate operator to represent
the DtN map. This will be emphasized and confirmed in Section 1.2.2. For the choice of λ+

1 (1.25)
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1.1. Microlocal analysis for Helmholtz problems

we identify the first-order homogeneous terms from relation (1.21) and get the zeroth order symbol
λ+

0 satisfying

2λ+
0 λ

+
1 − i∂ξλ

+
1 ∂yλ

+
1 + iρ−1

0 ∂x(ρ0)λ+
1 + i∂xλ

+
1 = −iξρ−1

0 ∂y(ρ0). (1.28)

Standard calculus rules lead to

∂ξλ
+
1 = − ξ

λ+
1
, ∂xλ

+
1 = ω2∂x(c−2

0 )
2λ+

1
, (1.29)

and similarly for the y-derivative. It results the zeroth order symbol

λ+
0 = −i

(
∂x(ρ0)

2ρ0
+ ξ∂y(ρ0)

2ρ0λ
+
1

+ ω2∂x(c−2
0 )

4(λ+
1 )2 + ξω2∂y(c−2

0 )
4(λ+

1 )3

)
. (1.30)

There are four terms of decreasing powers of λ+
1 . It means that the density variations have the

largest impact on the overall wave behaviour. If Im(λ+
1 ) = 0 holds, we can interpret the zeroth

order symbol as an amplitude correction to the wave. In a similar manner, the rest of the symbols
can formally be obtained from the composition rule.

1.1.3 Microlocal regimes

The sign of the radicand in the principal symbol (1.25) defines three different microlocal regimes.
When the frequency is such that ω > c0|ξ|, only propagative modes are modeled (low-frequency
spatial modes). It defines a cone of propagation and characterizes the hyperbolic zone in microlocal
analysis [136]. When the frequency is such that ωc−1

0 ≈ |ξ|, the wave is said to be in the grazing
zone. The microlocal approach is not valid in this regime and we will see that this situation
introduces a singularity for higher order symbols. The last situation ωc−1

0 < |ξ| corresponds to
the elliptic zone and describes evanescent modes. The hyperbolic and elliptic regimes are defined
from a conic neighbourhood of the null bicharacteristics, where the sign of the rays determines the
direction of propagation. It is also valid for variable coefficients operators [136]. Another way to
see the elliptic regime consists in selecting the branch-cut of the principal symbol to be along the
negative real axis

λ+
1 = −i

√
ξ2 − ω2c−2

0 , |ξ| > ωc−1
0 . (1.31)

In view of numerical approximation, we introduce a rotation of the square-root branch-cut by an
angle α in the complex plane such as

λ+
1 = eiα/2

√
e−iα(ω2c−2

0 − ξ2), α ∈ [0,−π] (1.32)

which will allow to build square-root approximations that are mapped onto the complex plane,
instead of being restricted to the real axis. This idea was suggested by Milinazzo et al. [143] in
order to take into account both propagative and evanescent modes. The idea was introduced for
parabolic equations in underwater acoustics, and adapted to ABCs for homogeneous Helmholtz
problems in [9]. We can see that we recover the hyperbolic regime for α = 0 and the elliptic
regime for α = −π. The angle α can be seen as a parameter to be selected in order to find a good
balance between the modeling of the propagative and evanescent modes, which will be highlighted
later on in the numerical simulations. Note that the sign of the angle α depends on the chosen
time-harmonic convention. Appendix C shows the effect of the rotation angle α on the square-root
function in the complex plane.
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Chapter 1. ABCs for heterogeneous and convected time-harmonic problems

1.1.4 Summary

We can build an approximate surface DtN operator Λ̃+
M , called DtNM , by i) keeping the M first

symbols in the sum

∂nu = −iΛ+
Mu, Λ+

M =
M−2∑
j=−1

Op(λ+
−j), (1.33)

and then ii) taking the trace on the boundary Γ to obtain Λ̃+
M . In the following, to simplify the

notations, we forget the tilde ˜ and the plus sign + when considering the trace on the boundary
of the outgoing operator. As an example, the surface operator Λ̃+

M is denoted by ΛM .
We will now consider some simplified situations and explicitly build local ABCs for four practical

situations of increasing difficulty:

• the propagation in a duct with a longitudinal variation of the speed of sound;

• the propagation in a duct with a transverse variation of the speed of sound and density;

• the propagation in a non-uniform mean flow using the generalized convected wave operator
with spatial mean flow variations;

• the free-field convected propagation in a uniform mean flow for circular and square bound-
aries.

These cases allow to numerically analyze the strengths but also the inherent limitations of the de-
veloped approach. The novelty of the two first situations is the construction of a local and accurate
operator representation of the DtN map combined with a high-order discretization method. To
the best of our knowledge, we believe the application of the microlocal theory to build ABCs for
the general convected Helmholtz operator is new. In that regard we provide an ABC for very high
Mach numbers and convex boundary shape, and also incorporate the effect of a non-uniform mean
flow for a uniaxial configuration. Finally we try to complement our ABC by a corner condition,
for which we face technical difficulties.

1.2 Application to time-harmonic waves in heterogeneous media

1.2.1 Longitudinal heterogenous problem

We consider the situation of a constant density set to unity (ρ0 = 1) and a speed of sound varying
along the propagation direction, namely c0(x, y) = c0(x). We specifically revisit the case of a linear
profile

c−2
0 (x) = ax+ b, (1.34)

since an analytic expression for the DtN operator is available [8, 75]. We always suppose a 6= 0,
otherwise we have the homogeneous case. In this situation the early study of Engquist and Madja
[75] compares the “frozen” with the “variable” coefficients technique. While the former uses local
values of the heterogeneous field, the latter explicitly incorporates its spatial variation to enhance
the quality of the ABC. Regarding longitudinal density variations, an approximate factorization
of the Helmholtz operator has been obtained in [23, 24] with several local approximations of the
DtN map. Moreover density variations have been incorporated into ABCs for curved boundaries
as initiated in [7]. We therefore emphasize our study on a longitudinal variable speed of sound.
We first analyze the method in the case of a straight waveguide problem.
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1.2. Application to time-harmonic waves in heterogeneous media

1.2.1.1 Symbols and associated operators

We approximate the DtN symbol by the first two terms of the asymptotic expansion. Setting the
y-derivatives to zero in Equation (1.30) leads

λ+ ≈ λ+
1 + λ+

0 =
√
ω2c−2

0 − ξ2 − i ω2∂x(c−2
0 )

4(ω2c−2
0 − ξ2)

. (1.35)

Note that the above expression is valid for a general profile. The next step is to go back at
the operator level by inverse Fourier transform. We propose the first- and second-order DtNM
operators respectively defined by

Λ1 =
√
ω2c−2

0 + ∆Γ mod OPS−2, (1.36)

Λ2 =
√
ω2c−2

0 + ∆Γ −
iω2∂x(c−2

0 )
4 (ω2c−2

0 + ∆Γ)−1 mod OPS−3, (1.37)

where ∆Γ = ∂2
y is the Laplace-Beltrami operator along the transverse direction y. By construction,

the symbols of Λ1 and Λ2 are exactly λ+
1 and λ+

1 +λ+
0 , respectively. This is because the symbols are

evaluated at x = L and thus do not depend on the transverse variable y, leading a natural choice
for the operators. These operators are still non-local but follow a hierarchic degree of regularity
with respect to the exact DtN. Note that the regularity estimate for the second-order condition Λ2
is based on the next symbol λ+

−1. It is computed by the composition rule

2λ+
1 λ

+
−1 +

(
λ+

0

)2
+ i∂xλ

+
1 = 0, (1.38)

resulting in the expression

λ+
−1 =

5ω4
[
∂x(c−2

0 )
]2

32
(
λ+

1

)5 − ω2∂2
x(c−2

0 )

8
(
λ+

1

)3 , (1.39)

which corresponds to an operator in OPS−5 for a linear profile.

1.2.1.2 Construction of the ABCs

To derive an ABC that can be easily implemented in a finite element method, we need an additional
approximation of the non-local operators DtNM to represent them through local partial differential
operators. This can be achieved thanks to Taylor and Padé approximants, with the “angle of
incidence” (ξc0/ω) as a small parameter.

Let us start with the Taylor expansion. From the first symbols, we can build some so-called
local complete radiation boundary conditions as defined in [7]. For example, we can compute the
second-order Taylor expansion (denoted by (·)2) of the first four symbols

Λ2
4 = Op

 2∑
j=−1

(λ+
−j)2

 , on Γ. (1.40)

With the help of the Python library SymPy [141], we formally compute the Taylor approximation
with respect to (ξc0/ω), leading the local condition

Λ2
4 =

 ω

c0
− i∂x(c−2

0 )
4c−2

0
+

5
[
∂x(c−2

0 )
]2

32ωc−5
0

+ i
15
[
∂x(c−2

0 )
]3

64ω2c−8
0

 (1.41)

+

 c0
2ω + i

∂x(c−2
0 )

4ω2c−4
0
−

25
[
∂x(c−2

0 )
]2

64ω3c−7
0

− i
15
[
∂x(c−2

0 )
]3

16ω4c−10
0

∆Γ, (1.42)
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where we have set the second- and third-order derivatives of c−2
0 to zero for a linear profile. The

Python code used for the formal derivation of Λ2
4 is given in Appendix A. Note that any lower

order condition can easily be recovered by dropping some terms. The above condition is one of the
most accurate ABCs that can be directly built with standard (mass and stiffness) finite element
matrices, but as we will see, is less accurate than the Padé-based conditions. In the following, it
will be denoted by ABCT2

4 .
The Padé expansion, which is expected to be more robust than its Taylor counterpart, requires

an additional computational cost. We only consider the approximation of the first two symbols,
and rewrite the second-order nonlocal operator DtN2 as

Λ2 = k0
√

1 +X − i∂x(c−2
0 )

4c−2
0

(1 +X)−1, k0 = ω/c0, X = ∆Γ/k
2
0. (1.43)

The usual diagonal Padé approximation for the square root
√

1 +X, X → 0 implies

Λ2 ≈ k0

(
1 +

N∑
`=1

(a`X) (1 + b`X)−1
)
− i∂x(c−2

0 )
4c−2

0
(1 +X)−1, (1.44)

a` = 2
2N + 1 sin2

(
`π

2N + 1

)
, b` = cos2

(
`π

2N + 1

)
. (1.45)

This condition is still non-local because of the inverse operators. We use auxiliary functions to
give them a local, hence sparse discrete representation. A total of N auxiliary functions is required
for the Padé-type ABC based on Λ1 since it is defined by the square-root operator, and (N + 1)
functions are needed for the ABC related to Λ2. The implementation is detailed in Section 1.2.1.4.

Until now, the proposed conditions are only valid in the hyperbolic zone, whenever the square-
root term of the principal symbol is strictly positive. Thanks to the branch-cut rotation introduced
in (1.32), the Taylor approximants are extended in the elliptic regime as

√
1 +X ≈ eiα/2

N∑
`=0

(
1/2
`

)(
(1 +X)e−iα − 1

)`
, (1.46)

and the Padé approximants take the extended form

√
1 +X ≈ C0 +

N∑
`=1

A`z

1 +B`z
, (1.47)

where (C0, A`, B`) are complex coefficients given in Appendix C. One may write the Padé approx-
imation in the equivalent form [146]

√
1 +X ≈ eı

α
2

[
1 + 2

2N + 1

N∑
`=1

c`

(
1− eıα(c` + 1)

(eıαc` + 1) +X

)]
, c` = tan2

(
`π

2N + 1

)
. (1.48)

In the following, the Padé-type ABC with N terms and rotation angle α, based on M symbols, is
denoted by ABCN,αM . When α 6= 0, we also denote the Taylor-type ABCs accordingly, for example
ABCT2,α

4 . Note that the angle α only modifies the approximation related to the principal symbol.
The grazing zone leads to the situation ξ2 ≈ ω2c−2

0 , which introduces an explicit singularity for
higher order symbols. A workaround is to complexify the frequency ω in the denominator of the
zeroth order symbol by adding a local damping term ε near the singularity, i.e. we set: ωε = ω−iε.
Thus λ+

0 is modified to be the regularized symbol

λ+
0 = −i ω2∂x(c−2

0 )
4(ω2

εc
−2
0 − ξ2)

. (1.49)

In the specific case of a linear profile, it is possible to choose ε such that it minimizes the reflection
coefficient at the turning point. The optimal value εopt is given in the next section. Its derivation
is inspired from the approach used in [9]. In practice, this zone is expected to be limited to isolated
frequencies.
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1.2. Application to time-harmonic waves in heterogeneous media

1.2.1.3 Description of the test case

For the numerical test case, we choose a two-dimensional straight duct problem as shown in Fig-
ure 1.1 with a strictly positive, linear speed of sound profile. The domain Ω represents a connected
semi-infinite duct that has been truncated by a straight boundary. Since they involve the Laplace-
Beltrami operator on Γ, the introduced ABCs could be applied to any smooth convex geometry
by considering a tangent plane approximation. However, analytic and/or references test cases for
heterogeneous Helmholtz problems are scarce and we therefore focus on this simpler situation.

wave direction
c−2

0 (x) = ax+ b

∂nu = 0, Γ2

Γ1
∂nu = g

Γ3
∂nu = −iΛu

0

Ω = [0, L]× [0, H]

H

L x

y

Figure 1.1: Sketch of the numerical case: two-dimensional acoustic propagation in a heteroge-
neous waveguide.

For a linear profile, the heterogeneous Helmholtz equation

∂2
xu+ ∂2

yu+ k2
0(x)u = 0, k0(x) = ω/c0(x), c−2

0 (x) = ax+ b, (1.50)

can be explicitly solved by separation of variables. The exact outgoing solution uex (with the eiωt
convention) for a given mode n and a strictly positive increasing speed of sound profile is given
thanks to Airy’s function [126, 75] as

uex(x, y) = cos(kyy)Ai
(
e−

2iπ
3
k2
y − k2

0(x)
(aω2)2/3

)
, ky = nπ

H
, n ∈ N. (1.51)

Note that the choice of a decreasing profile is also possible but is more challenging to set up
numerically (see [126], pp. 122-125). The x-derivative of the exact solution is

∂xuex(x, y) = −e−
2iπ

3 (aω2)1/3 cos(kyy)Ai’
(
e−

2iπ
3
k2
y − k2

0
(aω2)2/3

)
, (1.52)

such that the exact DtN operator on Γ3 is given by

Λ = −ie−
2iπ

3 (aω2)1/3Ai’(z)
Ai(z) , z = e−

2iπ
3
k2
y − ω2(aL+ b)

(aω2)2/3 , (1.53)

with L being the x-position of the fictitious boundary. From the asymptotic expansion of Airy’s
functions Ai(z) and Ai’(z) for large arguments [2], we have

Ai’(z)
Ai(z) ∼ −z

1/2 − 1
4z
−1, |z| → ∞ (1.54)

such that at high frequencies we have

Λ ∼
√
ω2c−2

0 (L)− k2
y − i

aω2

4(ω2c−2
0 (L)− k2

y)
, ω → +∞,

which coincides with the symbolic asymptotic expansion in Equation (1.35). It also confirms that
the DtN operator (1.53) correctly captures the outgoing wave. Note the special situation whenever

k2
y = ω2(ax+ b), (1.55)
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which we may solve for x or ω. When this specific situation occurs, the principal symbol cancels
and we are in the microlocal grazing regime. The nature of the wave changes and shows a transition
from cut-off to cut-on (or vice versa). The x-location where equation (1.55) holds is called a turning
point [164] and denoted by xt. We can compare at the theoretical level what we may expect from
the DtN approximations. Figure 1.2 shows the difference |Λ− ΛM | for M = {1, 2, 3} according
to the cumulative sum of the symbols λ+

1 , λ
+
0 and λ+

−1 respectively for a fixed mode n (hence a
fixed value for ξ). As expected, the accuracy increases when adding more symbols but deteriorates
around the turning point. As a remedy, we can introduce the local damping term from Equation
(1.49) and look for

min
ε>0
|Λ− Λ2,ε| , at xt. (1.56)

In this case the minimization problem can be solved explicitly, and computations give

εopt = 2 ky√
axt + b

sin(2π/3)

1−

√√√√1 + Ai(0)
8 sin2(2π/3)Ai’(0)

(
a

ky(axt + b)

)2/3
 . (1.57)

|Λ− ΛM |

Figure 1.2: Difference between the exact and approximate DtN operators as a function of the
frequency ω for the mode n = 5, and parameters a = 5, b = 0.1, H = 0.5, L = 0.5.

1.2.1.4 Weak formulation

We write the variational formulation of the waveguide boundary value problem for the exact DtN
operator: find u ∈ H1(Ω) such that

∀v ∈ H1(Ω),
∫

Ω
{∇u · ∇v − k2

0u v} dΩ + i

∫
Γ3

Λu v dΓ3 =
∫

Γ1
g v dΓ1, (1.58)

and g is given by the normal derivative of the exact solution at x = 0

g = e−
2iπ

3 (aω2)1/3 cos(kyy)Ai’
(
e−

2iπ
3
k2
y − bω2

(aω2)2/3

)
. (1.59)

We now present how to implement the Padé-type ABCs in a finite element context. The
auxiliary variables related to the principal and the zeroth order symbols are respectively denoted
by (ϕ1, · · · , ϕN ) and ψ. The weak form of ABCN,α2 given by (1.43) together with (1.47) leads to
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1.2. Application to time-harmonic waves in heterogeneous media

the coupled system: for (u, ϕ1, · · · , ϕN , ψ) ∈ H1(Γ3)×H1(Γ3)N ×H1(Γ3)

i

∫
Γ3

ABCN,α2 u v dΓ3 = i

∫
Γ3
k0C0u v dΓ3 − i

∫
Γ3

A`
k0
∇Γ3ϕ` · ∇Γ3v dΓ3 +

∫
Γ3

∂x(c−2
0 )

4c−2
0

ψ v dΓ3, (1.60)

∀v` ∈ H1(Γ3),
∫

Γ3
k2

0ϕ` v` dΓ3 −B`
∫

Γ3
∇Γ3ϕ` · ∇Γ3v` dΓ3 =

∫
Γ3
k2

0u v` dΓ3, (1.61)

∀µ ∈ H1(Γ3),
∫

Γ3
k2

0ψ µdΓ3 −
∫

Γ3
∇Γ3ψ · ∇Γ3µdΓ3 =

∫
Γ3
k2

0uµ dΓ3. (1.62)

In its discrete matrix form, the complex-valued sparse linear system for the global problem is
similar to (1.58) but includes the ABCN,α2 terms (1.60)-(1.62) of size [ndof,Ω + (N + 1)ndof,Γ3 ] ×
[ndof,Ω + (N + 1)ndof,Γ3 ]

AU = F , U =


u
ϕ1
...
ϕN
ψ

 , F =


−g
0
...
0
0

 , (1.63)

where the FEM matrix has a quasi block-diagonal structure

A =



K− k2
0M + ik0C0MΓ3 −iA1

k0
KΓ3 · · · −iANk0

KΓ3
∂x(c−2

0 )
4c−2

0
MΓ3

−k2
0MΓ3 k2

0MΓ3 −B1KΓ3 0 · · · 0
... 0 . . . 0

...

−k2
0MΓ3

... 0 k2
0MΓ3 −BNKΓ3 0

−k2
0MΓ3 0 · · · 0 k2

0MΓ3 − KΓ3


. (1.64)

One can remove the last row and column to obtain the matrix associated to ABCN,α1 , which is
of size [ndof,Ω + Nndof,Γ3 ] × [ndof,Ω + Nndof,Γ3 ]. In the above notations, the number of degrees of
freedom in Ω (respectively on Γ3) is denoted by ndof,Ω (respectively ndof,Γ3). The mass and stiffness
matrices for the volume problem are M and K. For the surface Γ3, the mass and stiffness matrices
are MΓ3 and KΓ3 , respectively. The implementation of low-order Taylor conditions directly follows
from the application of Green’s theorem for the Laplace-Beltrami operator, and involve the usual
mass and stiffness elementary matrices. For higher order Taylor conditions, we may also introduce
auxiliary variables (ϕT

1 , · · · , ϕT
N ) and recursively encode the application of the Laplace-Beltrami

operator

∆Γ3ϕ
T
`+1 = ϕT

` , ϕT
1 = u, ` ∈ [1, N ].

Under the condition that MΓ3 is invertible, it gives at the discrete level

ϕT
` = (−1)`(M−1

Γ3
KΓ3)`u, ` ∈ [1, N ].

1.2.1.5 Numerical results

Let us now study the numerical behavior of the ABCs and the effect of the various parameters. We
use a high-order finite element scheme equipped with a basis of integrated Legendre polynomials
[170] to discretize the weak formulations. Such a scheme allows to effectively control the interpola-
tion and dispersion errors associated to Helmholtz problems [39], and is well-suited for testing the
accuracy limits of the ABCs. The implementation uses the GmshFEM finite element library. The
ABCs effectiveness is measured by the relative L2-error (in %) in the domain Ω = [0, L]× [0, H] as

EL2 = 100
‖uex − uh‖L2(Ω)
‖uex‖L2(Ω)

, (1.65)
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where uh refers to the discretized solution. As a reference, we consider the numerical solution
obtained with the exact DtN operator (1.53), such that the remaining error is only due to the
finite element discretization. The reference solution is simply obtained by using Equation (1.53)
as a boundary condition on Γ3, which is a constant for a single mode. The speed of sound profile
is assumed strictly increasing and we use c−2

0 (x) = 5x+ 0.1. The duct is taken of length L = 1 and
height H = 0.5. The mesh is generated by Gmsh and is composed of linear quadrangle elements
Q4 of size h = 1/40. The p-FEM shape function order is fixed to p = 6, and the integration on
the reference element is computed by a tensorised Gauss quadrature rule.

For the first experiment, we set up the single mode n = 3 on the input left boundary Γ1. We
present in Figure 1.3 the real part of the reference numerical solution for single frequencies and
the location of the turning point as a function of ω.

ω = 10, xt = 0.69

ω = 60, xt < 0

ω = 20, xt = 0.16

xt(ω)

Figure 1.3: Real part of the reference numerical solution uh for fixed frequencies ω and location
of the turning point xt.

We can distinguish three frequency regimes

• if xt > L, the mode is evanescent;

• if 0 < xt < L, the mode shows an evanescent to propagative transition within the duct. The
mode becomes cut-on at x = xt;

• if xt < 0, the mode is propagative.

We report in Figure 1.4 the relative L2-error for the Taylor and Padé-based ABCs of different
orders M as a function of the input frequency ω. The parameters α and ε are for now fixed to
zero, and will be gradually turned on throughout the numerical experiments. As expected, adding
symbols in the ABCs results in a decrease of the error. It results from a better DtN approximation
which takes into account the speed of sound variation ∂x(c−2

0 ). Regarding Taylor-based conditions,
ABC2

4 reaches a very good accuracy at no additional cost. Moreover, the contribution from the
zeroth order symbol has the highest impact on the ABC accuracy. For Padé-based conditions,
ABCN,01 reaches an error plateau as N grows. A plateau is also reached for the condition ABCN,02 ,
but is approximately two orders of magnitude lower than ABCN,01 . This is in contrast to the
homogeneous case, where N can be increased up to the reference error precision. For such a
heterogeneous case, a higher number of auxiliary fields N adds high-order terms to the ABC that
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1.2. Application to time-harmonic waves in heterogeneous media

do not match the full DtN operator, but only its truncated version DtNM . This is confirmed by
the numerical tests, since each condition reaches an error that is consistent with the orderM of the
ABC. A proper localization procedure ensures that the maximal efficiency of the ABC is attained.
Note that in this situation, the duct is large enough such that the low frequencies associated to
evanescent modes are damped regardless of the ABC and the parameter α.
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Figure 1.4: Relative L2-error for Taylor-based (left) and Padé-based (right) ABCs as a function
of the input frequency ω for α = 0 and ε = 0. Reference solution from the exact DtN map
( ).

In the second experiment, we analyze more precisely the low frequency regime. We fix the
frequency ω and vary the position of the ABC, that is the length of the duct L. The mode order
is chosen to be n = 5. Thanks to the turning point relation (1.55), we select the frequency such
that xt = 0.5, giving ω ≈ 19.5. The mode is evanescent at the input boundary and turns into
propagative if the ABC is located at L > xt. The ABC location is varied by adding a single mesh
layer to the duct for each computation. The rotation angle α is now turned on.

We focus here on the most accurate condition ABCN,α2 . In Figure 1.5a, the influence of the
angle α is consistent with its theoretical interpretation: a large angle improves the attenuation of
evanescent modes while deteriorating the attenuation of propagative modes. The latter effect can
be reduced by taking a large number of auxiliary fields N thus improving the localization of the
principal symbol, as shown in Figure 1.5c. For a sufficiently large N (here N = 6), there is no
more gain in the accuracy of ABCN,α2 and the error plateau corresponding to the expected DtN
approximation is attained.

However at L = 0.5, the ABC is located at the turning point and the condition ABCN,α2 clearly
shows a lack of accuracy. This is most likely linked to the inverse operator arising as a corrective
term because such a behaviour is not observed for the condition ABCN,α1 . As a workaround, we
turn on the parameter ε in ABCN,α2 , see Figure 1.5b. For conciseness, the parameter ε does not
appear in the notation ABCN,α2 but is introduced thanks to ωε = ω − iε. The optimal value
obtained theoretically in (1.57) results in a smaller error at the turning point, and improves the
ABC efficiency in the propagative low frequency regime. Another value of ε could be more efficient
globally, and more advanced strategies for the optimization procedure could be conducted. The
choice for ε is however case dependent, and such an optimal value is in practice difficult to determine
a priori.

Note that Taylor-based conditions can also be designed while rotating the branch-cut of the
principal symbol. As ABCs, such complexified Taylor conditions are less robust than Padé-based
conditions, which has been confirmed by our numerical experiments. Nonetheless, complexified
Taylor ABCs might be very effective as a transmission condition for domain decomposition methods
[130], and can be contructed numerically at no additional cost.

In more realistic situations, it is not always possible to predict whether the wave hitting the
interface will be propagative or evanescent. Therefore, we recommend to rotate the branch-cut of
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Figure 1.5: Influence of the tuning parameters for the Padé-based conditions ABCN,α2 on the
relative L2-error when varying the ABC location L. Reference solution ( ).

the principal symbol before the localization procedure. A sufficiently large number of auxiliary
fields N should be used in order to ensure a proper localization of the square-root operator,
especially for a large angle α. For high frequency applications, we recommend to keep α in the
range [0,−π/2] and increase N with α, e.g. α = −π/2 with N = 6.

A stability analysis remains to be conducted for the introduced ABCs. The stability of Padé-
based ABC have been addressed for homogeneous problems in [181], but the precise effect of the
rotation angle α remains to be examined.

1.2.2 Transverse variation

This section describes a second situation, also in the waveguide setting, where the wave behaviour is
more complex. We consider the heterogeneous Helmholtz equation subject to a transverse variation
of the speed of sound c0(x, y) = c0(y) and density ρ0(x, y) = ρ0(y)

∂2
xu+ ρ−1

0 ∂y(ρ0∂y)u+ k2
0u = 0, k0 = ω/c0. (1.66)

This situation was tackled in the work of Hagstrom et al. [99, section 6] where an extension to
the complete radiation condition [101] is adapted for layered, stratified and continuous transverse
heterogeneous media, and the ABC tuning coefficients associated to the auxiliary equations depends
on the local value of the heterogeneity. For the two-dimensional straight duct problem, we can still
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use the separation of variables and write the exact solution as a linear combination of modes

uex(x, y) =
∑
n≥0

Un(y)e−iknxx, (1.67)

and the exact DtN operator can be explicitly written for a single mode as

Λ̃± = ±knx on Γ3, (1.68)

where the knx are the propagation constants given by the Sturm-Liouville eigenvalue problem
{
U ′′(y) + ρ−1

0 ∂y(ρ0)U ′(y) + k2
0(y)U(y) = (kx)2U(y),

U ′(0) = 0, U ′(H) = 0,
(1.69)

where we consider homogeneous Neumann boundary conditions on the duct upper and lower walls.
In the constant coefficient case, the eigenmodes and eigenvalues are respectively given by

Un(y) = cos (kyy) , (knx)2 = k2
0 − k2

y, ky = nπ

H
, n ∈ N. (1.70)

Compared to the previous sections, the main difficulty is that all the information is contained in
the eigenvalues, which moreover depend on the boundary conditions on the walls. Fortunately the
operator remains self-adjoint with homogeneous Neumann boundary conditions and we can use
Sturm–Liouville theory to infer relevant features from the problem. Such problems are common in
various fields of physics such as but not limited to acoustics [164], optics [155] or geophysics [64].

1.2.2.1 Computation of the dispersion relation

For some specific profiles, one may derive the general solution of the boundary value problem
(1.69) and find the associated eigenvalues by looking for the zeros of a transcendental equation.
We solve the problem semi-analytically thanks to a one-dimensional spectral method, which leads
to highly accurate results for an arbitrary profile [180]. The approach allows to quickly compute
the dispersion relation, which relates the propagation constants knx to the input frequency ω. For
the speed of sound profile we choose the Gaussian profile given in [187]

c0(y) = 1.25
(
1− 0.4e−32(y−H/2)2)

, H = 1, (1.71)

and select the density such as ρ0(y) = c2
0(y). Hence, one may identify these quantities as a refractive

index for transverse electric and magnetic modes in optical waveguides [155]. Figure 1.6 compares
the dispersion relations associated to propagative modes for the homogeneous case and for the
Gaussian profile. A qualitative observation indicates that the speed of sound variations have the
most significant impact on the modal structure. The eigenvalues associated to the Gaussian profile
seem to be driven by one of the two lines of equation `1 = ω/max(c0) and `2 = ω/min(c0). The
limit case would be a constant piecewise profile, for which the eigenvalues accumulate along the
lines `1 and `2 in the high frequency limit [155].

Figure 1.7 presents the propagative eigenmodes at the fixed frequency ω = 37, where two types
of modes can be identified:

1. the guided modes, which are decaying close to the duct walls;

2. the radiating modes, which are fully oscillating.

Although not shown, evanescent modes are also present and have a purely imaginary propagation
constant. They are highly oscillatory and decay exponentially along the x-direction.
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c0(y) = 1.25

(a) Homogeneous

c0(y) = 1.25(1− 0.4e−32(y−H/2)2)

(b) Gaussian

Figure 1.6: Dispersion relation associated to propagative modes for a homogeneous and Gaussian
profile.

(a) Homogeneous (b) Gaussian

Figure 1.7: Normalized propagative eigenmodes for the homogeneous and Gaussian profiles
along the duct height y ∈ [0, H] at ω = 37 using color convention from Figure 1.6.

1.2.2.2 Transverse variation of the density - Strategies for the choice of the principal
symbol

We first consider the case of a variable density and constant speed of sound c0 = 1 and present
two strategies for selecting the principal symbol. The first one consists in choosing the classical
symbol

λ+
1 =

√
ω2 − ξ2,

together with the zeroth order symbol given in (1.30)

λ+
0 = −iξ∂y(ρ0)

2ρ0
√
ω2 − ξ2 .

By contrast to the case of longitudinal heterogeneity, the zeroth order symbol depends on the
transverse variable and the choice of an appropriate operator is less natural. Nevertheless, we can
choose here the operators such that the following correspondence holds

Op(λ+
1 ) =

√
ω2 + ∆Γ mod OPS−∞, Op(λ+

0 ) = ∂y(ρ0)
2ρ0

∇Γ(ω2 + ∆Γ)−1/2 mod OPS−∞. (1.72)
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1.2. Application to time-harmonic waves in heterogeneous media

Note that the choice for Op(λ+
0 ) is not unique and that a different choice might be more relevant

to the situation. The computation of the operator asymptotic expansion at the symbol level allows
to compare it with λ+

0 and next obtain the operator regularity estimate. We build the approximate
DtN maps ΛM based on the first M symbols in the high frequency limit ω →∞ as

Λ1 = ω
√

1 +X2, Λ2 = Λ1 + ∂y(ρ0)
2ρ0

X
(
1 +X2

)−1/2
, X = ∇Γ

ω
, (1.73)

such that Op(λ+) = Λ1 mod OPS0 and Op(λ+) = Λ2 mod OPS−1. We use a rotated branch-cut
Padé approximation for the inverse square-root [50]

(1 + z)−1/2 ≈
N∑
`=1

R`
S` + z

, R` = eiα/2c`/N, S` = 1 + eiα(−1 + c`), c` = 1 + tan2
(
π

2N

(
`− 1

2

))
,

(1.74)

and the resulting ABCs are again denoted ABCN,αM .
The second strategy is a semi-classical approach, which enriches the information contained in

the principal symbol. It consists in keeping all the terms in the right-hand side of (1.21). The
modified principal symbol is

λ+
S,1 =

√
ω2 − ξ2 − iξρ−1

0 ∂y(ρ0). (1.75)

A natural choice for its operator representation would be to choose the modified square-root, here
denoted ΛS

ΛS =
√
ω2 + ρ−1

0 ∇Γ (ρ0∇Γ). (1.76)

One observes that the principal symbol of ΛS is σ (ΛS) =
√
ω2 − ξ2, and that the next symbols of

ΛS coincide with the sequence {λ+
−j , j ≥ −1} from the first strategy. Hence we have

Op(λ+) = ΛS mod OPS−∞. (1.77)

As a consequence, the use of ΛS as an ABC should accurately represent the DtN operator since
they share the same symbolic expansion. The modified square-root operator is then written as

ΛS = ω
√

1 + Z, Z = ∆Γ + ρ−1
0 ∂y(ρ0)∇Γ
ω2 , (1.78)

and localized using the complex Padé approximants (1.47). The semi-classical ABC is denoted
ABCN,αS .

1.2.2.3 Transverse variation of the density - Weak formulation and numerical tests

We follow the methodology from the previous sections and consider the duct case problem boundary
value problem depicted in Figure 1.1. The variational form associated to the transverse Helmholtz
problem reads: find u ∈ H1(Ω) such that ∀v ∈ H1(Ω)∫

Ω
{∇u · ∇v − ρ−1

0 ∂y(ρ0)∂yu v − k2
0u v} dΩ + i

∫
Γ3

Λu v dΓ3 =
∫

Γ1
g v dΓ1. (1.79)

As input boundary condition we enforce a given mode n from the homogeneous case and set its
amplitude to unity:

g = cos
(
nπ

H
y

)
, n ∈ N. (1.80)

Since g is not an eigenfunction of the Sturm-Liouville problem (1.69), the solution exhibits the
propagation of multiple-modes. Moreover, the transverse oscillations present a more complex
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Chapter 1. ABCs for heterogeneous and convected time-harmonic problems

pattern compared to the homogeneous situation, as shown in Figure 1.8a. As a reference, we
consider a numerical solution using a large PML. The physical domain Ω is extended by Ωpml =
[L,Lpml]× [0, H] and the relative L2-error is again measured as

EL2 = 100

∥∥∥upml|Ω − uh
∥∥∥
L2(Ω)∥∥∥upml|Ω

∥∥∥
L2(Ω)

.

To validate the PML in the transverse heterogeneous case we perform a mode-by-mode analysis
where the semi-analytical solution for a fixed mode uex(x, y) = U(y)e−ikxx is generated thanks
to the one-dimensional spectral method used to solve (1.69). Each eigenfunction U(y) is used as
input boundary condition and the DtN map is given by the corresponding eigenvalue kx. The
variational form with the PML follows from the substitution ∂x̃ = ∂x − iσ(x)/ω in (1.79), where
σ is zero in Ω and given by the hyperbolic function σ(x) = σ0/(Lpml − x), σ0 ∈ C in Ωpml. Since
we later assess the ABCs accuracy in a multi-modal situation special attention must be paid to
grazing modes which are characterized by a high phase velocity. After numerical experiments we
conclude that the value σ0 = 40 together with a large PML of width |Lpml − L| = 40h yields an
optimal accuracy for all modes. As a result we obtain a reference solution that has the precision
of the DtN map, and by linearity it holds in the multi-modal case. Additional considerations can
be found in the appendix of [139]. For the simulations we still use Q4 elements of size h = 1/40
and set the p-FEM order to p = 6.

For the practical implementation of the ABCN,αS and ABCN,α2 with finite elements, we use
an augmented system with auxiliary functions on the boundary as explained in Section 1.2.1.
For ABCN,αS , the procedure is identical as for the terms (1.60)-(1.62) except that the operator
within the square root Z = (∆Γ + ρ−1

0 ∂y(ρ0)∇Γ)/ω2 has to be modified accordingly. For ABCN,α2 ,
2N supplementary auxiliary equations are required, and for simplicity we use the same tuning
parameters (N,α) for both the square root and inverse square root operator. The second set of
auxiliary functions (ψ1, · · · , ψN ) ∈ H1(Γ3)N is introduced through

R`ω
2u = (ω2S` + ∆Γ)ψ`, ` = {(N + 1), . . . , 2N}, on Γ3, (1.81)

according to (1.74), and the variational formulation is derived based on the procedure from (1.60)-
(1.62).

The results are first analyzed when for the fixed ABC position L = 2, where we expect propaga-
tive modes (corresponding to the hyperbolic zone) to have the largest impact on the ABC quality.
The rotation angle is set to α = −π/4. We report in Figure 1.8b the relative L2-error as a function
of the input frequency ω for ABCN,α1 , ABCN,α2 and ABCN,αS . The condition ABCN,α2 performs bet-
ter than ABCN,α1 especially in the high-frequency regime, and ABCN,αS outperforms the two other
conditions. The microlocal theory gives a consistent interpretation to the results. While ABCN,α2
only incorporates the contribution of the zeroth order symbol, the condition ABCN,αS encodes the
full asymptotic symbolic expansion of the DtN operator thus leading to an excellent ABC. Besides,
the performance of ABCN,αS can be improved by increasing the number of auxiliary functions N .
It means that Padé approximants are able to accurately represent the information contained in
the DtN symbols. This is not the case for ABCN,α1 neither ABCN,α2 , where the error reaches a
plateau when N grows. It confirms the approximate representation of the DtN map. Although
not reported, one may use a second order Taylor approximation for high frequencies. In that case,
the operators Λ2 and ΛS with the two first symbols reduce to the same expression:

Λ2
2 = ω + ∂y(ρ0)

2ωρ0
∇Γ + ∆Γ

2ω . (1.82)

Further numerical tests show that its performance is close to the one of ABCN,α2 . In Figure 1.8c
the length of the duct is varied at a fixed frequency ω = 30 to examine the effect of the rotation
branch-cut in the elliptic regime. By contrast to the case of a longitudinal heterogeneity, evanescent
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1.2. Application to time-harmonic waves in heterogeneous media

(a) Reference solution at ω = 30.
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(b) Influence of the frequency ω for L = 2.
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(c) Influence of the ABC location at ω = 30.

Figure 1.8: Real part of the reference solution for the mode n = 4 and relative L2-errors when
varying the frequency and ABC location.

modes are only present when the ABC is close enough to the input boundary. We observe as
expected that the reflection of evanescent modes becomes negligible beyond a certain value of
L. For the condition ABCN,αS , the rotation angle has a similar effect as in the homogeneous case.
Evanescent modes are better damped when α increases but to the detriment of propagative modes.
Therefore, we recommend to increase the number of auxiliary fields together with α as proposed
in the previous sections. Grazing waves deteriorate the overall ABC quality in such a multi-modal
situation, especially in the low frequency regime. All the ABCs show error peaks for a discrete
set of frequencies. They correspond to evanescent modes becoming cut-on and can be accurately
predicted by the dispersion relation. As a workaround we may follow the idea to complexify the
frequency within the square-root operator [9], but here the strategy did not significantly improve
the ABCs.

1.2.2.4 Transverse variation of the speed of sound

The effect of the heterogeneity is now examined with a transverse variation of the speed of sound
and a density set to unity. Following the analysis from Section 1.1 we choose the following operator
to represent the principal symbol

Op(λ+
1 ) =

√
ω2c−2

0 + ∆Γ mod OPS−2, λ+
1 =

√
ω2c−2

0 − ξ2. (1.83)

We remark that the next symbols of Op(λ+
1 ) are exactly the DtN symbolic expansion such that

we have

Op(λ+) =
√
ω2c−2

0 + ∆Γ mod OPS−∞, (1.84)
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Chapter 1. ABCs for heterogeneous and convected time-harmonic problems

which means that the square-root operator is an accurate representation of the DtN map from a
microlocal point of view. This result can be obtained more directly from Nirenberg’s factorization
procedure (1.12) since the speed of sound does not depend on the direction of propagation. The
situation is similar as for the operator ΛS (1.76) in the case of a variable density. However it is
here more involved to find a local representation of the square-root operator, because the speed of
sound variations affect the real part of λ+

1 for which the sign may change along the non-reflecting
boundary.

We examine two different ways to approximate the square-root operator, denoted Λω and Λk0

to allude to the factor in front of the square root

Λk0 = k0

√
1 + ∆Γ

k2
0
, Λω = ω

√
1 +

[
(c−2

0 − 1) + ∆Γ
ω2

]
, (1.85)

where we recall that k0 = ω/c0. The second approximation is often used in one-way modeling for
beam propagation in optical waveguides [133]. Once again, complex Padé approximants are used
for the localization procedure. The obtained ABCs are denoted ABCN,αk0

and ABCN,αω . In order to
analyze their potential accuracy, we compute the function of two variables at a fixed frequency ω

fk0(ξ, y) =
∣∣∣λ+

1 − σ
(
ABCN,αk0

)∣∣∣ , fω(ξ, y) =
∣∣∣λ+

1 − σ
(
ABCN,αω

)∣∣∣ , (1.86)

which is nothing but the difference between the DtN and ABC principal symbols.
We plot both functions in a logarithmic scale in Figure 1.9 for the parameters N = 8 and

α = −π/2. The condition ABCN,αω seems to be a better candidate than ABCN,αk to approximate
the DtN principal symbol. Both functions show a singularity along the characteristic line of
equation ξ = ±ωc−1

0 (y) where the square root vanishes. On the contrary to the homogeneous or x-
profile case, the turning region is not reduced to a single point and both oscillatory and evanescent
behaviour may be present for a fixed value of ξ (a given mode).

log10 fk0(ξ, y) log10 fω(ξ, y)

Figure 1.9: Difference in logarithmic scale between the DtN principal symbol and its approxi-
mation by Padé approximants (N = 8, α = −π/2) for the Gaussian speed of sound profile at
ω = 30.

We plot in Figure 1.10 an example of numerical solution and report the relative L2-error
for different conditions. As for the case of transverse variable density, we use a PML of width
|Lpml − L| = 40h as a reference solution.

The condition ABCN,αω is more accurate than ABCN,αk0
, which can be understood from Figure

1.9 by a better approximation of the DtN principal symbol. The parameters (N,α) have a marginal
impact on ABCN,αk0

, while we observe an improvement with N for ABCN,αω . This suggests that the
condition ABCN,αω is a good approximation of the DtN map, although a more efficient localization
of the square-root operator may be sought. As expected, grazing waves are not well tackled by
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1.2. Application to time-harmonic waves in heterogeneous media

the proposed ABCs. A more advanced analysis is required and is out of scope of this work. For
example, a microlocal cut-off function might be used to handle the singularity [64, 172].
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Figure 1.10: Real part of the reference solution at ω = 55 for the mode n = 4 and relative
L2-error for L = 2 when varying the frequency for the Gaussian speed of sound profile.

Finally, we propose to apply the previous development to a piecewise refractive index profile
that may be found in a planar optical fiber. Let us consider c0(y) = n(y)−1 as

c0(y) =
{

1/4, y ∈ [H/2− δ, H/2 + δ],
1, elsewhere, (1.87)

that may represent the core and cladding of the optical fiber. For this example we choose δ = H/4.
In theory, microlocal analysis requires the coefficients c0 and ρ0 to be smooth functions of the
spatial variables. In practice Figure 1.11 suggests that the conditions ABCN,αω are still reasonably
effective for multi-layered media. However one must choose a higher number of auxiliary fields
to achieve a given precision. This number may be large, especially for large rotation angles e.g
α = −π/2.
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Figure 1.11: Relative L2-error for L = 2 and input mode n = 4 when varying the frequency for
the piecewise speed of sound profile.

To conclude, Padé approximants provide a comprehensive way to design non-reflecting bound-
aries in the transverse heterogeneous case, but requires a careful implementation. We analyzed
heterogeneities coming from the density and speed of sound separately. Both can be combined into
a single operator

Λω,S = ω

√√√√1 +
[
(c−2

0 − 1) + ρ−1
0 ∇Γ(ρ0∇Γ)

ω2

]
, (1.88)
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Chapter 1. ABCs for heterogeneous and convected time-harmonic problems

and numerical tests show that the resulting Padé approximation gives an ABC of same quality.
The method can be extended to non-smooth heterogeneities at the price of a higher numerical
cost. It reaches its limits for grazing waves and for boundaries with corners. For such situations,
algebraic or numerical techniques to find sparse representations of the DtN map could be more
appropriate [32, 70, 125].

1.3 Application to time-harmonic convected propagation
In this section we apply the theory of pseudo-differential calculus to compute

1. the principal symbol of the generalized convected wave operator in the frequency domain for
an arbitrary convex shape and mean flow direction,

2. the zeroth-order symbol for a specific x-oriented non-uniform mean flow configuration.

Local ABCs are built and implemented thanks to auxiliary functions, followed by numerical ex-
amples. Let us mention related studies on the construction of ABCs for convected propagation

• Hagstrom et al. [97] derived high-order conditions in polar and spherical coordinates based
on the asymptotic behaviour of the acoustic field in the spirit of the Bayliss-Turkel approach.

• Bécache et al. [30] studied the performance and well-posedness of high-order ABCs for a
class of homogeneous anisotropic media in the two-dimensional half-space situation, based
on the framework of Hagstrom and Warburton [101].

• More recently, Barucq et al. [26] used the Lorentz transformation to design a second order
local condition for the convected Helmholtz equation.

Our goal is to build accurate ABCs for convected problems that are robust especially for very high
Mach numbers.

1.3.1 The generalized convected wave operator

In two-dimensions, the acoustic field is described by the general convected wave operator in the
frequency domain

L(x, ∂x, ω) = D0
Dt

( 1
c2

0

D0
Dt

)
− ρ−1

0 ∇ · (ρ0∇), D0
Dt

= iω + v0 · ∇, v0 = (vx, vy). (1.89)

This operator is commonly used in flow acoustics [90, 108, 164], and we will see more precisely in
Chapter 5 how it applies to the modeling of turbofan engine intakes. The operator governs the
acoustic velocity potential u

L(x, ∂x, ω)u = f,

with f a source term of compact support. The acoustic velocity is computed by v = ∇u. The
acoustic pressure variable p can be recovered through the relation

p = −ρ0
D0
Dt

u. (1.90)

The mean flow quantities v0, ρ0, c0 are steady and should satisfy the physical relations of a com-
pressible, irrotational and homentropic flow:

• mass conservation: ∇ · (ρ0v0) = 0,

• Bernoulli’s equation: v2
0
2 + c2

0
γ−1 = K1, γ = 1.4 being the adiabatic constant in dry air,

• isentropic state equation for a perfect gas: c2
0 = K2γρ

γ−1
0 .
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1.3. Application to time-harmonic convected propagation

We define the Mach number by M = ‖v0‖/c0 and impose the restrictions of a non-zero subsonic
mean flow 0 < |M | < 1, a positive density ρ0 > 0 and speed of sound c0 > 0. We expand this
operator to have a better understanding of the physics it encodes,

L(x, ∂x, ω) =
(
v0 · ∇
c0

)2
+ 2i ω

c2
0
(v0 · ∇)−

(
ω

c0

)2
+
(
v0 · ∇

( 1
c2

0

))
(iω + v0 · ∇)− ρ−1

0 ∇ · (ρ0∇).

(1.91)

We further introduce the mean flow components Mx = vx/c0, My = vy/c0 and the wavenumber
k0 = ω/c0. Using index notation we can extract the second order terms of this operator such as

L(x, ∂x, ω) =
∑
i,j

aij∂
2
xij + low order terms, aij =

{
M2
i − 1, if i = j

MiMj , if i 6= j.
(1.92)

We remark that the quantities involving spatial variations of the mean flow quantities are low
order operators. This will be important for the derivation of the symbols. Moreover, note that
cross-derivatives terms appear as soon as the mean flow is not aligned with one of the Cartesian
axis.

For finite element discretization, we start to derive the weak form on a computational domain Ω
as follows: we multiply the equation by ρ0 > 0 and use Green’s theorem on the material derivative,
which yields∫

Ω

[
ρ0∇u · ∇v −

ρ0
c2

0

D0u

Dt

D0v

Dt

]
dΩ +

∫
∂Ω

[
ρ0
c2

0

D0u

Dt
(v0 · n)− ρ0

∂u

∂n

]
v dS =

∫
Ω
fv , (1.93)

for all test functions v belonging to a suitable functional space. We have denoted by n and τ the
outward normal and tangential unit vectors of ∂Ω. We note that the volume bilinear term is self-
adjoint. The boundary integral may take different forms depending on the boundary conditions.
It can be rewritten as

Gu = ρ0
c2

0

D0u

Dt
(v0 · n)− ρ0

∂u

∂n
= ρ0ik0Mnu+ ρ0MnMτ

∂u

∂τ
+ ρ0

(
M2
n − 1

) ∂u
∂n

, (1.94)

where Mn = (v0 · n)/c0 and Mτ = (v0 · τ )/c0. In this section we attempt to replace the normal
derivative on the outgoing boundary by the DtN map in order to provide a suitable radiation
condition. It can be shown in e.g. [46] that for a subsonic mean flow, the variational problem with
a suitable outgoing radiation condition is a problem of Fredholm-type.

1.3.2 Symbols computation

As done previously in Sections 1.2.1 and 1.2.2, the objective is to compute the first terms from
the asymptotic expansion of the DtN symbol and further construct a hierarchical set of ABCs. In
order to apply Nirenberg’s factorization theorem we first need to normalize the operator by the
second order coefficient on the x-diagonal term, thus we define

L?(x, ∂x, ω) = L(x, ∂x, ω)/(M2
x − 1), (1.95)

Note that this scaling does not modify the DtN operator and that we always have (M2
x − 1) 6= 0

for a subsonic flow. Applying Nirenberg’s factorization theorem gives

L?(x, ∂x, ω) = (∂x + iΛ−)(∂x + iΛ+) mod OPS−∞, (1.96)

= ∂2
x + i

(
Λ+ + Λ−

)
∂x + iOp

{
∂xλ

+
}
− Λ−Λ+ mod OPS−∞. (1.97)

As done in Section 1.1, the identification of the first and zeroth order derivatives with the normal-
ized convected wave operator leads to a coupled system{

i
(
Λ+ + Λ−

)
= (A1 +A0) /(M2

x − 1)
−Λ−Λ+ + iOp

{
∂xλ

+} = (B2 + B1) /(1−M2
x) , (1.98)
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where the terms

A1 = 2ik0Mx + 2MxMy∂y, A0 = v0 · ∇(vxc−2
0 )− ρ−1

0 ∂x(ρ0), (1.99)
B2 = k2

0 − 2ik0My∂y + (1−M2
y )∂2

y , (1.100)
B1 = −iωv0 · ∇(c−2

0 )− v0 · ∇(vyc−2
0 )∂y + ρ−1

0 ∂y(ρ0)∂y, (1.101)

have been written relatively to their homogeneity order in ω. Eliminating Λ− from (1.98) gives an
operator equation for the outgoing problem(

1−M2
x

)
(Λ+)2 − i (A1 +A0) Λ+ + i(1−M2

x)Op
{
∂xλ

+
}

= B2 + B1 mod OPS−∞. (1.102)

1.3.2.1 Principal symbol

We suppose that the symbol of the DtN operator is classical, such as it can be expressed as an
asymptotic sum of symbols of decreasing orders. We can identify the second-order terms in (1.102)
to find the equation related to the principal symbol(

1−M2
x

)
(λ+

1 )2 + 2Mx(k0 −Myξ)λ+
1 − k

2
0 + 2k0Myξ + ξ2(1−M2

y ) = 0. (1.103)

We recall that the frequency ω is seen as the symbol of the time derivative, and is hence a term of
order +1 for the pseudo-differential computations. Solving the equation for the principal symbol
we obtain two solutions

λ+
1 = 1

1−M2
x

[
−Mx(k0 − ξMy)±

√
k2

0 − 2k0Myξ −
(
1−M2

x −M2
y

)
ξ2

]
. (1.104)

Using the criterion Re(λ+
1 ) ≥ 0 in the high frequency regime, we keep the positive sign in front of

the square-root.The symbol associated to ingoing waves λ−1 is obtained thanks to the first equation
of the system (1.98)

λ−1 = 1
1−M2

x

[
−Mx(k0 − ξMy)−

√
k2

0 − 2k0Myξ −
(
1−M2

x −M2
y

)
ξ2

]
(1.105)

This equation could also be obtained more directly by looking at plane wave solutions of the form
u(x, y) = e−ikxx−ikyy of the convected Helmholtz equation and solving for kx. It follows that
equation (1.104) is exactly the dispersion relation in a uniform flow. In that regard we can verify
the sign choice of λ±1 is linked to the good sign of the group velocity. To do so, let us denote
by k = (kx, ky) the wave vector and compute the group velocity by taking the derivative of the
dispersion relation for the operator (1.89) with uniform coefficients

Vg(k) = ∂

∂k

(
i2(k0 −M · k)2 + ‖k‖2

)
= 2

(
M + k

‖k‖

)
(1.106)

By writing the dispersion relation (1.104) with the analogy (λ±1 , ξ)↔ (kx, ky), and denoting µ the
radicand of the square root, one obtains

kx = 1
1−M2

x

[−Mx(k0 − kyMy)±
√
µ] .

We use the fact ‖k‖ = |k0 −Mxkx −Myky| to rewrite kx as

kx = 1
1−M2

x

[
∓Mx ‖k‖ − kxM2

x ±
√
µ
]

⇔
(

1 + M2
x

1−M2
x

)
kx = ∓Mx

1−M2
x

‖k‖ ±
√
µ

1−M2
x

⇔ kx = ∓Mx ‖k‖ ±
√
µ

44



1.3. Application to time-harmonic convected propagation

By dividing by ‖k‖ we find the projection of the group velocity along the x-coordinate to be

Vg,x := 2(Mx + kx/ ‖k‖) = ±2√µ/ ‖k‖ .

It tells that a positive group velocity is given by selecting the positive sign of the square root. Thus
it is not kx nor the principal symbol but the square-root term √η that encodes the outgoing or
ingoing nature of the wave. The microlocal development through Nirenberg’s factorization theorem
directly allows to make the good choice.

Let us analyze the square-root term. We recall that the analysis is valid microlocally and does
not hold when µ = 0. Here, the grazing region is defined for each couple (ω, ξ) satisfying

ω2c−2
0 − 2ωc−1

0 Myξ −
(
1−M2

x −M2
y

)
ξ2 = 0. (1.107)

The quadratic equation can be factorized as(
k0 −

(
My ±

√
1−M2

x

)
ξ

)(
k0 +

(
−My ±

√
1−M2

x

)
ξ

)
= 0, (1.108)

such that the grazing region can be put under the form of two lines equations

ωc0 =
(
My ±

√
1−M2

x

)
ξ, and ωc0 =

(
My ∓

√
1−M2

x

)
ξ. (1.109)

Because the mean flow is assumed subsonic we always have |My| <
√

1−M2
x . As a consequence,

there are exactly two characteristic lines of opposite sign in the (ω, ξ) plane for any sign combination
of mean flow values (Mx,My). Some examples are plotted in Figure 1.12. We now compute the
zeroth order symbol for a simplified situation.

ξ

ω

Mx = 0
My = 0

ξ

ω

Mx = 0.6 cos(π/4)
My = 0.6 sin(π/4)

ξ

ω

Mx = 0.9 cos(−2π/3)
My = 0.9 sin(−2π/3)

Figure 1.12: Characteristics lines and cone of propagation (hashed area) for different mean flow
values. Note that when Mx < 0, more spatial modes (ξ > 0) are allowed to propagate at fixed
ω, while there are less such modes when Mx > 0.

1.3.2.2 Zeroth order symbol

The principal symbol is chosen such as it matches with the DtN symbol in the uniform flow
situation. The next symbol is computed thanks to the composition rule (1.22). The identification
of the first-order terms in (1.102) gives(

1−M2
x

) (
2λ+

0 λ
+
1 − i∂ξλ

+
1 ∂yλ

+
1

)
− i

(
σ(A1)λ+

0 + σ(A0)λ+
1

)
+ i(1−M2

x)∂xλ+
1 = σ(B1). (1.110)

Sorting all the terms related to the zeroth-order symbol on the right-hand side leads

λ+
0 =

σ(B1) + iσ(A0)λ+
1 + i(1−M2

x)
(
∂ξλ

+
1 ∂yλ

+
1 − ∂xλ

+
1

)
2
√
k2

0 − 2k0Myξ −
(
1−M2

x −M2
y

)
ξ2

. (1.111)
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Chapter 1. ABCs for heterogeneous and convected time-harmonic problems

To simplify the calculations let us consider a situation where the mean flow quantities are oriented
along the x-direction. Then λ+

0 simplifies to

λ+
0 = i(M2

x − 1)∂xλ+
1 + iσ(A0)λ+

1 + σ(B1)

2
√
k2

0 − (1−M2
x)ξ2

, (1.112)

with σ(A0) = vx∂x(vxc−2
0 ) − ρ−1

0 ∂x(ρ0) and σ(B1) = −iωvx∂x(c−2
0 ). Because we assume a spatial

variation along the x-direction only, the mass conservation relation simplifies

∂x(ρ0)ρ−1
0 = −∂x(vx)v−1

x . (1.113)

Physically, an increase in the mean flow velocity is balanced by a smaller density. After the formal
calculation of the principal symbol derivative, we take advantage of the mass conservation relation
(1.113) to obtain the simplified expression thanks to the SymPy library [141]

λ+
0 = −i∂x(ρ0)

2ρ0

k2
0 − ξ2

k2
0 − (1−M2

x)ξ2 + i
∂x(c0)

2c0

k2
0 +M2

xξ
2

k2
0 − (1−M2

x)ξ2 , (1.114)

which is of order zero with respect to (ω, ξ). Intuitively, these terms correspond to an ampli-
tude correction factor of the wave. For Mx = 0, we retrieve the zeroth order symbol from the
heterogeneous Helmholtz situation (1.30).

1.3.3 Construction of the ABCs

To build ABCs, the next step is to associate appropriate operators to the symbols, and give them a
local representation. Based on the principal symbol, we can consider for a smooth convex boundary
the tangent plane approximation [9]

Op
(
λ+

1

)
= 1

1−M2
n

[
−Mnk0 + iMnMτ∇Γ +

√
k2

0 − 2ik0Mτ∇Γ + (1−M2)∆Γ

]
, (1.115)

where the Mach velocity vector components (Mn,Mτ ) are expressed in the basis (n, τ) related to the
boundary Γ. Note that Equation (1.115) also holds in the 3D case. For a smooth convex boundary
Λ1 = Op

(
λ+

1

)
is an approximation of the DtN map modulo lower order terms such as Λ = Λ1

mod OPS0. For a uniform mean flow and the half-space problem we have (Mn,Mτ ) = (Mx,My)
and the inverse Fourier representation is exact in the microlocal sense such that we can write
Λ = Λ1. For implementation purposes, we write

Λ1 = k0
1−M2

n

(
−Mn + iMnMτ

∇Γ
k0

+
√

1 +X

)
, X = −2iMτ

∇Γ
k0

+ (1−M2)∆Γ
k2

0
, (1.116)

such that the complex Padé approximants (1.47) can be used. For an x-aligned flow we have the
simplification

Λ1 = k0
−Mx +

√
1 +X

1−M2
x

, X = (1−M2
x)∆Γ
k2

0
, (1.117)

The lower order terms are much more involved to compute if one has to account for the boundary
curvature and the mean flow spatial variations. However for a half-space problem with a x-aligned
flow, we have derived the next symbol λ+

0 . This allows us to consider the operator

Op(λ+
0 ) = i

2

(
∂x(c0)
c0

(
k2

0 −M2
x∆Γ

)
− ∂x(ρ0)

ρ0

(
k2

0 + ∆Γ
))(

k2
0 + (1−M2

x)∆Γ
)−1

, (1.118)

leading to Λ2 = Λ1 + Op(λ+
0 ). We once more define the approximate DtN map by keeping the

operators based on the first M symbols

∂nu = −iΛMu on Γ, (1.119)
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setting

ΛM =
M−2∑
j=−1

Op(λ+
−j).

The resulting ABCs are again denoted by ABCN,αM after using the complex Padé approximants
with parameters (N,α). For grazing waves, one might introduce a complexified frequency ωε in
the inverse operator arising in the definition of λ+

0 , as done in the no-flow case in Equation (1.49).

1.3.4 Numerical study

1.3.4.1 ABC in a uniform mean flow: waveguide problem

Let us start with the propagation of modes in a two-dimensional straight waveguide. We use the
geometry from Figure 1.1, impose a given mode on the ingoing boundary Γ1 and test the efficiency
of Padé-based ABCs set up on the outgoing boundary Γ3. In that case the boundary integral
arising in the variational formulation (1.94) is∫

Γ3
Gu v dΓ3 =

∫
Γ3
ρ0
[
ik0Mx − i

(
M2
x − 1

)
ΛM

]
u v dΓ3 (1.120)

=
∫

Γ3
iρ0k0

√
1 +Xuv dΓ3. (1.121)

We set ρ0 and c0 to unity for this example. The exact solution for a single mode is

uex(x, y) = cos (kyy) e−ikxx, ky = nπ

H
, n ∈ N, (1.122)

and the exact DtN map for a single mode is given by the wavenumberkx = 1
1−M2

x

(
−Mxk0 +

√
k2

0 − (1−M2
x)k2

y

)
, k2

0 > (1−M2
x)k2

y,

kx = 1
1−M2

x

(
−Mxk0 − i

√
(1−M2

x)k2
y − k2

0

)
, k2

0 < (1−M2
x)k2

y,
(1.123)

such as Λ = kx. We measure the relative L2-error as defined in (1.65) for Mx = −0.8 and look
at the performance of ABCN,α in the hyperbolic and elliptic zones, shown respectively in Figures
1.13a and 1.13b. A duct of shorter length is used to evaluate the error in the elliptic zone since
the exact solution is evanescent and decays exponentially in the duct. Because the mean flow is
uniform, the ABC accuracy tends to the one obtained with the exact DtN operator as the number
of auxiliary functions N grows. The angle α corresponds to a trade-off between the attenuation of
evanescent and propagative modes. When k0 → 0, the mode does not propagate and the square-
root approximation is no longer accurate. As expected from microlocal analysis, none of the
conditions are able to tackle grazing waves. They are located respectively at k0 ≈ 23 and k0 ≈ 15
in Figures 1.13a and 1.13b. Similar results are obtained when Mx > 0, as shown in Figure 1.14 for
Mx = 0.8. The inverse upstream regime is clearly harder to capture, and a precise approximation
of the square-root is required to properly reduce reflections. Both Taylor and Padé-based ABCs
are consistent with their approximation order. Although high-order Taylor conditions are unstable
in the time-domain [74], they seem to be well-behaved in the frequency domain. Multi-modal
propagation is handled in the same way and leads to the same conclusions.

1.3.4.2 Extension to a non-uniform mean flow

We keep the straight waveguide situation from Figure 1.1 and apply it to the convected wave
operator (1.89) for a non-uniform flow along the x-direction (here the direction of propagation).
Unfortunately this situation is only physically relevant for a duct of variable cross-section, but
doing so would break the separable modal structure of the solution. Instead, we choose to drop the
assumption of the flow to be isentropic. Although being physically incorrect, the model remains
relatively simple and is still relevant to derive and test ABCs.
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Figure 1.13: Relative L2-error for the condition ABCN,α. Left: propagative regime for different
number of auxiliary fields N and α = 0. Right: evanescent regime for different rotation angles
α and N = 4. Reference solution ( ).
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Figure 1.14: Relative L2-error for various ABCs with Mx = 0.8 and α = 0. The gray area
highlight the inverse uptream regime. Reference solution ( ). H = 0.5, L = 1, n = 6.

Figure 1.15: Mean flow profile along the x-direction for the convected wave problem for s = 5.

We choose a sigmoid x-velocity profile that is inspired from axial flow variations in a turbofan
engine intake. The mean flow properties are shown in Figure 1.15. We choose the velocity profile
as

vx(x) = v0 + δv tanh(s(x− xc)), (1.124)

where we fix the mean value to v0 = −0.4c∞, the slope strength s = {5, 10}, the deviation
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1.3. Application to time-harmonic convected propagation

δv = 0.3c∞ and the center point xc = 1. The value c∞ = 340 serves as a reference for large x.
We also set a reference velocity v∞ = −0.1c∞. The integration of (1.113) with ρ∞ = 1.2 leads the
variable mean density

ρ0(x) = ρ∞

∣∣∣∣ v∞vx(x)

∣∣∣∣ ,
and Bernoulli’s relation relative to the reference point gives the speed of sound profile

c0(x) = c∞

√
1 + γ − 1

2

(
v2
∞ − v2

x(x)
c2
∞

)
.

We recall that these profiles are used as an example and do not aim to represent any realistic
physical situation. We expect the exact solution uex to have the modal structure

uex(x, y) = cos (kyy)A(x), ky = nπ

H
, n ∈ N, (1.125)

where A is an unknown oscillatory function. The velocity profile has been chosen such that the
initial data g can be based on the uniform flow situation. For example, a single propagative mode
is enforced as

ρ0(1−M2
x)g = i

(
−Mxk0 +

√
k2

0 − (1−M2
x)k2

y

)
cos(kyy). (1.126)

For a non-uniform flow, there is unfortunately no analytical solution for our problem, and we
must resort to a numerical alternative to compute a reference solution. Perfectly matched layers
seem a reliable option, although their efficiency for such heterogeneous problems remains unclear.
To bypass the effect of the medium heterogeneity in the PML, we follow a similar approach to
[60], extending the computational domain and further applying a PML in the region where the
mean flow is uniform. The PML is terminated by a homogeneous Neumann boundary condition. A
second issue for convected problems is the presence of inverse modes that makes the PML unstable
and ineffective in practice. Fortunately stabilization techniques are available and we will use the
stabilized version of the PML described in [139]. The strategy to compute the reference solution is
illustrated in Figure 1.16. Three closed domains are defined: the physical domain Ω = [0, L]×[0, H],
the extended domain Ωext = [L,Lref] × [0, H] and the PML domain Ωpml = [Lref, Lpml] × [0, H].
The relative L2-error (in %) is then measured in the truncated domain Ω as

EL2 = 100

∥∥∥upml|Ω − uh
∥∥∥
L2(Ω)∥∥∥upml|Ω

∥∥∥
L2(Ω)

, (1.127)

where upml is computed in {Ω ∪ Ωext ∪ Ωpml} = [0, Lpml]× [0, H] and further restricted in Ω. For
our simulations we choose a PML of width |Lpml − Lref| = 10h.

∂nu = 0

0

Ω Ωext Ωpml

H

LpmlLrefL x

y

Figure 1.16: Illustration of the strategy to compute the reference solution. The mean flow
derivative is assumed to be zero at x = Lref. The ABC boundary is at x = L.

In order to evaluate the efficiency of the ABCs we consider a set of frequencies and ABC
positions L for a given mode n. The selected frequencies span the elliptic, grazing and hyperbolic
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Chapter 1. ABCs for heterogeneous and convected time-harmonic problems

regimes. Figure 1.17 shows the real part of two reference solutions in Ω for Lref = 4 and L =
2. According to the mean flow profile in Figure 1.15 we set k∞ = ω/c∞ to be the reference
wavenumber.

The modal behaviour has interesting features in the grazing regime: at k∞ = 20, the mode is
cut-on at the input and cut-off when it reaches x = 2. When this behaviour occurs within the
computational domain, there is an interference pattern that does not appear in the uniform flow
case. The mode has to reflect at a turning point (see e.g. [164] section 8.5), where the square-root
term of the principal symbol (1.104) vanishes. The transition range is approximately k∞ ∈ [17, 25]
and we do not expect any ABCs to perform well in this regime. In the propagative regime at
k∞ = 40, the wavelength increases in the duct due to the mean flow variation. For a general
velocity profile, we have no a priori information on the location of the turning point. However
thanks to the separable structure of the solution one may infer that it is reduced to a fixed value
xt. Since the mean flow is analytically prescribed, we can find the turning point xt whenever the
equality

ω2 =
(
c2

0(xt)− v2
x(xt)

)(nπ
H

)2
(1.128)

holds. If xt lies in the duct, its value is reported in Figure 1.17.

(a) k∞ = 20, n = 4, xt ≈ 0.89 (b) k∞ = 40, n = 4

Figure 1.17: Real part of the reference solution at fixed frequencies

We present in Figures 1.18 and 1.19 the relative L2-error as a function of the ABC position L
and input wavenumber k∞ for two velocity profiles of respective slopes s = 5 and s = 10. When the
propagative regime is well developed (k∞ > 25), the condition ABCN,α2 shows in general a gain in
accuracy of more than one order of magnitude compared to ABCN,α1 , especially for the cases where
the mean flow derivative is non-zero. In this model, even a small value of the velocity derivative
has an impact on the ABC accuracy. It partially comes from relation (1.113) which imposes large
density variations to the mean flow. The velocity profile of slope s = 10 has a stronger variation
compared to the case s = 5 near the middle of the duct, but its variation is weaker near its ends
x = 0 and x = L. It is therefore more challenging and the gain in accuracy between ABCN,α2 and
ABCN,α1 is less pronounced for s = 10 than for s = 5.

Note that the contribution due to the density variations on the L2-error is more important
than the one due to the variation of the speed of sound. This is directly linked to the value of the
factors ∂x(ρ0)/ρ0 and ∂x(c0)/c0 in equation (1.118).

As expected, we observe challenging situations for the ABCs in the regime k∞ ∈ [17, 25], where
the wave is grazing and close to the critical situation from (1.128). More precisely when the ABC
is located before the turning point L < xt it has to capture a wave that propagates along both the
positive and negative x-direction, and such a behaviour is not tackled by our method. Although
improvements can be found locally by tuning a dissipation parameter ε for the inverse operator of
the zeroth order symbol (as it was done in Section 1.2.1.3), the results are not general enough to
be included. Finally for low frequencies where the mode is evanescent, the error can be reduced
with a higher value of α.

50



1.3. Application to time-harmonic convected propagation

To sum up, the most efficient condition is ABCN,α2 and the rules for tuning (N,α) are the
same as in Section 1.2.1.3. It confirms the effectiveness of the operators obtained from microlocal
analysis. As said before, we recommend to always rotate the branch-cut of the principal symbol,
since in practice we want the attenuation of all modes and do not know the turning point location,
in particular where there is a superposition of modes. We claim that the presented results stay
valid in a multi-modal situation.
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Figure 1.18: Relative L2-errors for ABC4,−π/4
1 ( ) and ABC5,−π/4

2 ( ) in comparison with
a PML reference solution. Velocity profile with slope s = 5.
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Figure 1.19: Relative L2-errors (%) for ABC4,−π/4
1 ( ) and ABC5,−π/4

2 ( ) in comparison
with a PML reference solution. Velocity profile with slope s = 10.

1.3.4.3 Extension to convex boundaries for a uniform mean flow

In order to deal with more realistic situations, we test the accuracy of the operator Λ1 given
in (1.115) as an absorbing boundary condition for a non-straight smooth boundary Γ. For that
purpose we consider the acoustic radiation of a point source in a circular domain of radius R with
a two-dimensional uniform mean flow defined by

Mx = M cos(θ), My = M sin(θ). (1.129)

The analytical solution for a source located at xs = (xs, ys)T is given by

uex(x, y) = − i

4βH
(2)
0 (k′0r′)eik

′
0Mxx′eik

′
0Myy′ , (1.130)

r′ =
√

(x− xs)′2 + (y − ys)′2, k′0 = k0/β, β =
√

1−M2, (1.131)
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where x′ = (x′, y′)T and x = (x, y)T are related through the Prandtl-Glauert-Lorentz transforma-
tion

x′ = x+ (v0 · x)
βc2

0(1 + β)
v0. (1.132)

More details are provided in Chapter 2 in sections 2.2.1 and 2.4.2. The boundary operator from
the variational formulation (1.94) reads

Gu = ρ0
c2

0

D0u

Dt
(v0 · n)− ρ0

∂u

∂n
= ρ0ik0Mnu+ ρ0MnMτ

∂u

∂τ
− iρ0

(
M2
n − 1

)
Λ1. (1.133)

Replacing Λ1 by its expression in equation (1.115) with ρ0 = 1 yields once more the simplification∫
Γ
Gu v dΓ =

∫
Γ
iρ0k0

√
1 +Xuv dΓ, X = −2iMτ

∇Γ
k0

+ (1−M2)∆Γ
k2

0
. (1.134)

The form of the boundary integral is very convenient since it has the same structure as for Helmholtz
problems. As a consequence we only need to focus on the proper approximation of the square-root
operator

√
1 +X. With Padé approximants written in the form (1.48), we have

∫
Γ
Gu v = i

∫
Γ
k0e

iα/2u v dΓ + i 2
2N + 1

N∑
i=1

∫
Γ
k0e

iα/2ci (u+ ϕi) v dΓ, (1.135)

where the auxiliary fields (ϕ1, · · · , ϕN ) ∈ H1(Γ)N are solutions of the surface PDEs

(1−M2)∆Γϕi − 2iMτk0∇Γϕi + k2
0

[(
eiαci + 1

)
ϕi + eiα (ci + 1)u

]
= 0, i ∈ {1 · · ·N} on Γ.

(1.136)

We still denote the Padé-based conditions ABCN,α1 . Here we also evaluate the ABC resulting from
the second order Taylor approximation at high frequencies

√
1 +X = 1 +X/2 +O(X2), yielding

ABCT2,α
1 = ik0 cos(α/2) + e−iα/2

(
Mτ∇Γ + i

β2

2k0
∆Γ

)
. (1.137)

Because we only account for the principal symbol, we do not expect a highly accurate ABC even
for the Helmholtz case (M = 0). The accuracy could be improved by adding the contribution of
higher order symbols which account for the curvature of the boundary [7]. However the extension
to the convective case involves substantial computations and is left for a future work. As a simpler
alternative we propose to account for the mean flow in the next order symbol based on the scaling
R′ = R/β that arises in the Prandtl-Glauert-Lorentz transformation

ABC2 = ABC1 + β

2R. (1.138)

We try different conditions and measure the L2-error with respect to the analytical solution in the
restricted domain Ω2h = Ω\B2h(xs), where B2h(xs) is the ball of radius 2h centered at xs, with h
the typical mesh size.

We vary the orientation and the magnitude of the Mach number for a source located at xs =
(0, 0). The boundary radius is R = 1 and the flow angle is fixed to θ = π/4. We set the typical
mesh size h = 0.025, polynomial order p = 9 such as the upstream wave is discretized with at least
6 points per wavelength in the worst case scenario (M = 0.95, k0 = 6π). When computing the
error we always verify that the projection error of the exact solution on the finite element basis is
some order of magnitude below the ABC error. For example the projection error is 8× 10−3% in
the case (M = 0.95, k0 = 6π). The errors are reported in Figure 1.20 for two starting frequencies
k0 = 3π and k0 = 6π. The implementation is available in GmshFEM, where various situations can
be tested in a straightforward way.

52



1.3. Application to time-harmonic convected propagation

0 0.2 0.4 0.6 0.80

2

4

6

8

M

E L
2
(%

)
k0 = 3π

0 0.2 0.4 0.6 0.80

2

4

6

8

M

k0 = 6π

ABCT0,0
1

ABCT2,0
1

ABC4,0
1

ABCT0,0
2

ABCT2,0
2

ABC4,0
2

Figure 1.20: Relative L2-error (in %) at k0 = 3π and k0 = 6π for different ABCs as a function
of the Mach number.

(a) R = 1, k0 = 6π, M = 0.95.
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(b) k0 = 6π, M = 0.95.

Figure 1.21: Left: real part of the numerical solution. Right: relative L2-error as a function of
the boundary radius R.

As an illustration we plot the real part of the solution in Figure 1.21a. Note that at M = 0.95
there is a factor (1+M)/(1−M) = 39 between the shortest and largest wavelengths in the domain.

The main result is that the accuracy of the Padé-based ABC does not deteriorate even for
very strong mean flows. Although there is room for improvement by accounting for the boundary
curvature, the ABC is relatively robust for smaller boundary radii, which is illustrated in Figure
1.21b. Here, the rotation angle α has been kept to zero and has a very small impact on the present
results. This comes from the specificity of the test case, where the source is infinitely small and
only propagative waves exist. Moreover, simulations show that the L2-error does not depend on
the flow angle θ. If we neglect the tangential component of the mean flow by setting Mτ = 0, the
ABC is only accurate at low Mach numbers.

1.3.4.4 The corner problem

Finally we discuss the issue related to non-smooth boundaries that are commonly found in domain
decomposition. We study the same problem but use a square exterior boundary instead of a
circular one, and try to design an appropriate ABC for this shape. In the Helmholtz case it is
well-known that the corners of the domain must be treated appropriately in order to maintain the
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well-posedness of the problem [22]. Compatibility conditions have been combined with Padé-based
ABCs in [146], where the ABC accuracy is found to reach the finite element projection error. This
can be understood from the microlocal theory, since the principal symbol of the DtN coincides
with the total symbol for a straight boundary. We briefly recall the strategy used in [146] and then
attempt to extend it to the convected Helmholtz equation.

The surface PDEs governing the auxiliary fields (1.136) involve second order derivatives, and
must be supplemented by appropriate boundary conditions at the corner point if the boundary
is not smooth. For a 90 degree corner and the no-flow case, we may use a Padé-based ABC
and impose N × N auxiliary fields through ϕi, i ∈ {1 . . . N} and ϕj , j ∈ {1 . . . N} on the two
neighbouring edges Γx and Γy, meeting at the corner point called P . These fields are classically
coupled with u through the surface PDEs

∂2
yϕ

x
i + k2

0

[(
eiαci + 1

)
ϕxi + eiα (ci + 1)u

]
= 0, i ∈ {1 · · ·N} on Γx, (1.139)

∂2
xϕ

y
i + k2

0

[(
eiαcj + 1

)
ϕyi + eiα (cj + 1)u

]
= 0, j ∈ {1 · · ·N} on Γy. (1.140)

Additional N ×N corner fields ϕxyij are introduced in order to derive the missing boundary condi-
tions. At the corner point P , the fields ϕxyij should satisfy by continuity

∂2
yϕ

xy
ij + k2

0

((
eiαci + 1

)
ϕxyij + eiα (ci + 1)ϕyj

)
= 0, at P, (1.141)

∂2
xϕ

xy
ij + k2

0

((
eiαcj + 1

)
ϕxyij + eiα (cj + 1)ϕxi

)
= 0, at P. (1.142)

Thanks to the isotropy of the Helmholtz equation, adding the last two relations leads the algebraic
relation [

eiαcj + eiαci + 1
]
ϕxyij + eiα(ci + 1)ϕyj + eiα(cj + 1)ϕxi = 0, at P. (1.143)

In the convected case the operator is anisotropic and we cannot derive such a relation at the
corner. It results that there is a priori no algebraic corner compatibility relation. Nevertheless
we can still evaluate numerically the behaviour of the compatibilty conditions (1.143) for the
convected problem. A less expensive and simpler strategy consists in prescribing a Sommerfeld
boundary condition at the corner point

∂yϕ
x
i = −ik0ϕ

x
i , i = 1 . . . N at P, (1.144)

∂xϕ
y
j = −ik0ϕ

y
j , j = 1 . . . N at P. (1.145)

To summarize we evaluate three approaches to deal with corners with the Padé-based ABC in the
convected case

• use (1.136) on each edge without corner conditions, called ABCN,α1 ,

• use (1.136) on each edge with Sommerfeld condition at the corners, called ABCN,α1,S ,

• use (1.136) on each edge with Helmholtz-type compatibility condition, called ABCN,α1,H . This
adds N2 corner auxiliary fields to the system.

For completeness we also supplement the second order Taylor condition with the well-known corner
treatment in the no-flow case [22], which reads

∂xu+ ∂yu+ 3ik0
2 u = 0, at P, (1.146)

and is referred to as ABCT2
1,C.

Figure 1.22 reports the L2-error as a function of the flow angle and the Mach number. Clearly,
neglecting the corner treatment in the ABC design produces significant reflections and is not
a reliable option. The two corner treatments ABCN,α1,H and ABCN,α1,S seem adequate for most of
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the configurations. Unlike the case M = 0, none of the corner treatments are able to reach
the projection error. The condition ABCN,α1,S seems slightly more robust than ABCN,α1,H for high
Mach numbers and is computationally cheaper. We hence select the condition ABCN,α1,S for future
corner treatments in the presence of a mean flow. We note that the second order Taylor condition
supplemented with the classical Helmholtz corner treatment performs reasonably well except at
very high Mach numbers. More investigations on this problem should be conducted in the future,
since precise conditions are of particular interest for general partitioning in domain decomposition.

0 0.2 0.4 0.6 0.80

5

10

15

20

M

E L
2
(%

)

θ = π/3

0 0.5π π 1.5π 2π2

3

4

5

θ

M = 0.8

ABCT0
1

ABCT2
1

ABC4
1

ABCT2
1,C

ABC4
1,S

ABC4
1,H

Figure 1.22: Relative L2-error (in %) at k0 = 6π for different ABCs as a function of the Mach
number and flow angle.

1.4 Discussion on the well-posedness of the ABCs

In this last section we initiate a discussion on the well-posedness of the absorbing boundary con-
ditions proposed in this chapter.

A lot of results are available for the homogeneous wave equation in the time-domain. For
example, the classical Padé conditions are known to be well-posed [74, 181]. The well-posedness
of complete radiation boundary conditions (CRBCs) is proved in [102], providing a more general
setting on the admissible ABC parameters. The extension to general anisotropic media is tackled
in [30] for the half-space problem. The proofs are usually based on the Kreiss criterion [121], and
on the upper bound |R| < 1 for the reflection coefficient. We emphasize however the bound |R| < 1
is a necessary but not sufficient condition for stability.

The situation is more technical in the frequency domain, which is mainly due to the difficulty
to characterize the outgoing wave. The well-posedness of Helmholtz type variational formulations
resorts to the Fredholm alternative and the unique continuation principle. In a nutshell, it states
that the variational problem has a unique solution except for the eigenvalues of the Helmholtz
operator, which forms a countable set of frequencies that accumulates at infinity. Such proofs for
different types of ABCs are available, see e.g [93]. From Fredholm’s alternative it is clear that
the problem is ill-posed for grazing modes, regardless of the absorbing boundary condition. For
evanescent waves the well-posedness is often accomplished by increasing the distance between the
artificial boundary and the source. The effect of rotated Padé approximants (with α 6= 0) has
not yet been analyzed with the Fredholm alternative, and seems technically challenging. However
we believe that the analysis can be put in the framework of CRBCs [98], since complexified Padé
coefficients correspond to a particular choice for the CRBCs coefficients [146].

For the convected Helmholtz operator, the Prandtl-Glauert-Lorentz transformation gives a
one-to-one correspondence with the Helmholtz operator. It can be used as a tool to recover well-
posedness of the ABCs, as it has been recently investigated in [26]. It follows that there is little
difference between the Helmholtz and convected Helmholtz situations at the theoretical level.

For the transverse heterogeneous case, one could attempt to apply the Kreiss criterion to vari-
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able coefficients, but this seems to be a challenging task. Finally, in the longitudinal heterogeneous
case, we introduce an additional boundary term in the ABC. To prove well-posedness the classical
approach is to decompose the variational form as a sum of a coercive and compact bilinear terms
and use Fredholm’s alternative. Doing so clearly requires technical investigations. Some results for
such ABCs based on the pseudo-differential theory are available in the time-domain for different
wave operators [8, 117].

1.5 Conclusion
In this chapter we have applied the microlocal theory to the construction of various local absorbing
boundary conditions. The theory provides a consistent way to understand the complexity of
the DtN map and what impacts the ABC quality. When designing an ABC for time-harmonic
heterogeneous problems, we have examined two situations that require special care

1. the spatial variation of the medium is normal to the absorbing boundary,

2. the spatial variation of the medium is tangent to the absorbing boundary.

In the first case, we have computed higher order symbols and could derive a natural operator rep-
resentation of these symbols. Although the process could in theory be followed up to an arbitrary
accuracy, the expression of the symbols become more complex; especially in more complicated
situations, for example a general curved boundary and non-uniform mean flow. One needs further-
more to localize the resulting operators in a cheap and accurate manner. For these reasons we have
restricted the study to the use of the zeroth order symbol which already provides an interesting
gain in terms of precision.

In the second case, we could encode the full symbol asymptotic expansion into a single square
root operator, which can be guided from a semi-classical approach or by Nirenberg’s factorization
theorem. It has resulted in very precise ABCs thanks to appropriate Padé approximations. Finally,
the presence of boundary corners leads to an important difficulty. While we believe straight corners
could be treated in a similar manner as in [146] in the heterogenous Helmholtz case, the extension
to convected propagation clearly needs more investigation.

In the next Chapter we shall investigate a second technique that allows to truncate infinite
boundaries, the Perfectly Matched Layer (PML). We will highlight the difficulty of the method to
adapt to flow acoustics, and propose a generic stabilization procedure to fix the issue.
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Chapter 2

Stable perfectly matched layers

Perfectly Matched Layers (PMLs) appear as a popular alternative to non-reflecting boundary
conditions for wave-type problems. The core idea is to extend the computational domain by a
fictitious layer with specific absorption properties such that the wave amplitude decays
significantly and does not produce back reflections. In the context of convected acoustics, it is
well-known that PMLs are exposed to stability issues in the time domain. It is caused by a
mismatch between the phase velocity on which the PML acts, and the group velocity which
carries the energy of the wave. The objective of this chapter is to take advantage of the Lorentz
transformation in order to design stable perfectly matched layers for generally shaped convex
domains in a uniform mean flow of arbitrary orientation. We aim at presenting a pedagogical
approach to tackle the stability issue. The robustness of the approach is demonstrated in the
frequency domain through several two-dimensional high-order finite element simulations of
increasing complexity.
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2.1. Introduction

2.1 Introduction

The Perfectly Matched Layer technique has been introduced by Bérenger for electromagnetics
in 1994 [33]. By virtue of its versatility and simplicity, it has gained a large popularity as an
alternative to non-reflecting boundary conditions for a wide range of wave-type problems. Further
developments have led to a general derivation based on a complex coordinate stretching, in which
the PML is viewed as an analytic continuation of the wave equation [52, 178]. The complex
stretching approach has been theoretically analyzed and extended to curvilinear coordinates by
Collino and Monk [59]. While the PML is well-understood on the continuous level, its performance
on a discrete level is hard to infer a priori and often cumbersome to optimize [58, 145]. Bermúdez
et al. [41] introduced an unbounded stretching function which turns out to be more robust with
respect to the PML parameters for finite element Helmholtz problems. The authors showed that
this peculiar function allows to exactly recover the solution of the acoustic scattering problem [42].
A comprehensive and concise introduction to the PML developments can be found in [116].

The issue of the PML stability for flow acoustics application has first been raised for the
linearized Euler equations in the time domain [1, 103, 109]. It has been shown that the convection
may generate a sign mismatch between the phase velocity on which the PML acts, and the group
velocity carrying the energy of the wave, which in turn leads to an exponentially growing solution
inside the layer. General, theoretical results have been obtained in [12]. Hu proposed a stable
formulation in unsplit physical variables [110] and later extended it to non-uniform flows [111].
Bécache et al. analyzed a closely related formulation for time-harmonic applications [28] and
mathematically justified the associated convergence properties. Stability issues have mainly been
addressed for uni-axial flows, and/or for Cartesian PMLs with axis-aligned flows. There are fewer
works examining the issue of PML stability in uniform flows of arbitrary orientation. Hagstrom
and Nazarov [95, 100] and Nataf [151] proposed novel methodologies to include cross flows for the
linearized Euler equations. Dubois et al. [71] used the Lorentz transformation to design a stable
absorbing layer. Diaz and Joly [67] analyzed the effect of a similar transformation based on the
slowness curve properties, in the spirit of [29] for anisotropic media. Parrish and Hu [158] derived
the x, y and corner layers independently. Most of these works are devoted to the linearized Euler
equations in the time domain, and the available literature on PMLs for the convected Helmholtz
equation in cross flows is still scarce. This is however of practical interest, since the convected
Helmholtz operator forms the basis of several finite element codes which are routinely used in
industry, e.g. to support the acoustic design of turbofan engines [16, 83]. While conventional PML
formulations still lead to exponential convergence in the frequency domain [28], they significantly
impact the numerical accuracy, especially at high Mach number flows, as will be demonstrated in
this study.

The underlying idea behind a stable formulation relies on the possibility of applying a trans-
formation to the wave equation that removes the presence of the so-called “backward” or “inverse”
waves. Within the framework of convected acoustics, similarity transformations have been studied
by Amiet and Sears [5], Taylor [175] and later by Chapman [51]. The Lorentz transformation,
that is commonly used in special relativity [115], seems to emerge as a general tool for similarity
transformations. Theoretical works have for instance been carried out using geometric algebra in
[91, 92]. The applications of such a transformation in acoustics has been recently reviewed by Hu
et al. [112], where the transformation is referred to as “Prandtl-Glauert-Lorentz”, to highlight the
different historical contributions. Such transformations were also used to design stable PMLs in
the context of anisotropic acoustics [63] and nonlinear Schrödinger equations [11]. It has also been
successfully used in the context of boundary element methods, where it allows to account for the
convection, while still resorting to the conventional Green’s function kernel [21, 137].

In this work, we focus on the Lorentz transformation to design general, numerically robust
convex PML domains for the convected wave equation in the frequency domain. Although the
construction of the PML is based on a uniform mean flow, the inner domain may be governed
by a convected wave equation with variable coefficients. We aim at providing a clear derivation
with illustrative examples, as well as an implementation strategy for practical purposes. The
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chapter is organized as follows: we first recall the convected wave equation and introduce the
Lorentz transformation, the PML stretching and carry out a plane wave stability analysis. In a
second section, the stability of PMLs for duct propagation in a uni-axial flow is revisited. The
third section examines the stabilization in free field for a two-dimensional Cartesian PML. Finally,
stable PMLs are introduced for generally shaped convex PML domains in the presence of a general
uniform cross flow. Numerical examples are provided throughout the study in order to illustrate
the efficiency of the formulations.

2.2 Lorentz transformation, PML and stability analysis
We focus in this chapter on the convected wave equation. It is a scalar equation for the acoustic
potential ϕ that describes the propagation of acoustic perturbations in a moving flow. It writes

Lϕ(x, t) =
{
− 1
c2

0
(∂t + v0 · ∇x)2 + ∆x

}
ϕ(x, t) = −f(x, t), (2.1)

where x = (x, y) is the spatial variable, t the time variable, c0 the local speed of sound, v0 =
(vx, vy)T the local mean flow velocity vector and f denotes the distribution of volume sources that
are assumed to be compactly supported. The notations ∇x and ∆x respectively denote the spatial
gradient and Laplacian operators. We introduce the local Mach number M = ‖v0‖ /c0, which is
the ratio between the local mean flow velocity to the speed of sound. The mean flow is assumed
to be uniform and subsonic. It implies that the mean flow components are constant and that the
condition M < 1 holds. The speed of sound is as well assumed constant. The differential operator
L, referred to as convected Helmholtz operator, can be expanded as

L =
(

1− v2
x

c2
0

)
∂2
x +

(
1−

v2
y

c2
0

)
∂2
y − 2vxvy

c2
0
∂2
xy − 2vx

c2
0
∂2
tx − 2vy

c2
0
∂2
ty −

1
c2

0
∂2
t . (2.2)

In the frequency domain, we use the eiωt convention and readily get

L = (1−M2
x)∂2

x + (1−M2
y )∂2

y − 2MxMy∂
2
xy − 2ik0Mx∂x − 2ik0My∂y + k2

0, (2.3)

where we have denoted Mx = vx/c0, My = vy/c0 the mean flow components, ω the angular
frequency and k0 = ω/c0 the free field wavenumber. Note that the acoustic pressure and velocity
fluctuations can be recovered from the acoustic potential by the relations

p(x, t) = −ρ0 (∂t + v0 · ∇)ϕ(x, t), v(x, t) = ∇ϕ(x, t),

where ρ0 is the fluid density.

2.2.1 Lorentz transformation

Various transformations are used in the literature for tackling sound propagation in uniform flow,
such as Doppler factors, Lorentz transformations or Prandtl-Glauert coordinates. Motivated by
the puzzling observation that these transformations are sometimes inconsistent, Chapman [51] has
proposed a framework for these similarity variables. It consists in observing a given field ϕ (here
an acoustic perturbation), with a different space and time representation (x, t)→ (x′, t′), yielding
a different mathematical function ϕ′

ϕ′(x′, t′) = ϕ(x, t).

The underlying idea is to modify the solution of the convected Helmholtz equation such that ϕ′ is
solution of a classical wave equation with modified, effective properties.

Hu et al. [112] emphasized that such a representation is not unique, which might explain
the development of various methods. One solution arises from the Lorentz transformation in the
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theory of special relativity [115, chapter 11]. It turns out that there is a remarkable geometric link
between flow acoustics and relativity, where acoustic waves are seen as fluctuations in a Lorentzian
geometry [188]. For example, the connection is useful to build an analogue model for black holes
and observe their properties as a fluid [184], the speed of sound playing the role of the speed of
light. This analogy has been clarified and formalized with tools from geometry algebra [92]. For
our purposes, the relevant representation comes through a combination of a Lorentz and Galilean
transformation. It writes, in its vectorial form

t′ = βt+ (M · x)
βc0

, x′ = x+ (M · x)
β(1 + β)M , β =

√
1−M2, M =

(
Mx

My

)
, (2.4)

where β can be seen as a frequency factor. The modified spatial coordinates are also known as
generalized Prandtl-Glauert coordinates, which are used to express compressibility effects for steady
subsonic flows [89]. We choose to call transformation (2.4) the Lorentz transformation. We would
like to mention that the transformation might be written through hyperbolic rotations and more
generally rotors [91]. The partial derivatives can be computed thanks to the chain differentiation
rule. In two-dimensions, one obtains

∂

∂x
=
(

1 + M2
x

β(1 + β)

)
∂

∂x′
+ MxMy

β(1 + β)
∂

∂y′
+ Mx

βc0

∂

∂t′
,

∂

∂y
= MxMy

β(1 + β)
∂

∂x′
+
(

1 +
M2
y

β(1 + β)

)
∂

∂y′
+ My

βc0

∂

∂t′
, (2.5)

∂

∂t
= β

∂

∂t′
.

The extension to the three-dimensional case is straightforward, but we will restrict the analysis
in two-dimensions for conciseness. In the frequency domain, the field ϕ(x, ω) may be developed
through its Fourier transform as

ϕ(x, ω) =
∫ +∞

−∞
ϕ(x, t)e−iωt dt,

and using the introduced transformation (2.4) leads to

ϕ(x, ω) =
∫ +∞

−∞
ϕ′(x′, t′)e

−iω
(
t′
β
− (M·x)

β2c0

)
dt′

β
.

We may define ω′ = ω
β and obtain the frequency domain relation

ϕ(x, ω) = 1
β
ϕ′(x′, ω′)eik′0(M ·x′), k′0 = ω′

c0
.

It follows that a translation and contraction in the time domain correspond respectively to a
phase shift and scaling factor in the frequency domain. Thanks to the Lorentz transformation, the
convected Helmholtz equation exactly reduces to a Helmholtz equation with a modified free field
wavenumber and right-hand side

L′ϕ′(x′, ω′) =
{
∂2
x′ + ∂2

y′ + k′20

}
ϕ′(x′, ω′) = −f ′(x′, ω′). (2.6)

We recall that this transformation is valid for a uniform mean flow of arbitrary direction, in time
or frequency domain.

2.2.2 PML as a complex stretching

Let us consider a one-dimensional right half-space and truncate the unbounded domain by the open
strip Ω = [0, Lpml), called the global domain. We introduce the physical domain Ωphy = [0, L) and
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the PML domain Ωpml = (L,Lpml). They share a common boundary at x = L which is denoted
Γint. At the continuous level, the PML in a given direction can be seen as a stretch of the spatial
coordinate in the complex space by a transformation of the form

x̃(x, ω) = x− i

k0
ζ(x), ζ(x) =

∫ x

L
σ(s) ds, x ∈ (L,Lpml), (2.7)

and the derivative writes

∂x̃ =
(

1− i

k0
σ(x)

)
∂x = γx∂x, (2.8)

where σ(x) > 0 is called the absorbing function or absorbing profile. The choice of σ is fundamental
to ensure the quality of the PML. It is assumed to be positive, smooth and increasing in Ωpml and
set to zero elsewhere.

In all that follows, we will use Bermúdez et al.’s unbounded function [41]

ζ(x) = −σ0 ln
(
Lpml − x
Lpml − L

)
, σ(x) = σ0

Lpml − x
, x ∈ (L,Lpml), σ0 ∈ C, (2.9)

where σ0 is a parameter to be selected. It is chosen to be purely real for propagative waves and
complex for evanescent waves. Let us consider a plane wave traveling along the positive x-axis
with wavenumber kx. In Ωpml, the plane wave becomes

ϕ̃(x, ω) = e−ikxx̃ = e−ikxxe
− kx
k0
ζ(x)

, x ∈ (L,Lpml), (2.10)

and the use of the unbounded function results in

ϕ̃(x, ω) = e−ikxx
(
Lpml − x
Lpml − L

)σ0
kx
k0
, x ∈ (L,Lpml). (2.11)

Since ϕ̃ is zero at the end of the layer, the wave is perfectly absorbed on the continuous level. If
we further choose σ0 = k0/kx, that is the phase velocity of the wave, we get a linear decay in the
PML. From a discrete, finite element point of view, it means that a single linear element can totally
cancel out reflections. In practical computations however, there is no a priori knowledge on the
phase velocity of the wave hitting the PML interface. For example, as soon as the incidence angle
of the wave θw is non-zero the propagation constant becomes kx = k0 cos(θw). While Bermúdez
et al.’s function might lead to an ‘exact’ PML, the decaying function is often not linear nor
polynomial, thus leading to interpolation errors by the numerical scheme (see also Appendix B).
In convected acoustics, the situation is worse because the phase velocity may, in some occasions,
become negative. In that case, the wave blows up exponentially. Such waves are called ‘backward’
and render the PML ineffective. A spatial Fourier type analysis is now carried out for the convected
wave equation in order to highlight the instability zones.

2.2.3 Plane wave stability analysis

In free field, we assume the acoustic potential to be expressed as a plane wave of the form

ϕ(x, y, ω) = e−ikxx−ikyy. (2.12)

Plugging this ansatz into the convected wave equation with zero right-hand side and c0 to unity
leads to

(M2
x − 1)k2

x + (M2
y − 1)k2

y + 2MxMykxky − 2Mxkxω − 2Mykyω + ω2 = 0, (2.13)

which is the Cartesian equation of an ellipse. The dispersion relation D(ω, kx, ky) = 0 sees the
circular frequency ω(k) as a function of the propagating wavenumber k = (kx, ky)T , which we may
write in terms of slowness vector

D(1,S) = 0, S = k

ω
, S =

(
S1
S2

)
.
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(a) Dispersion relation (2.13)
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Figure 2.1: Slowness diagrams associated to different dispersion relations for a Mach number
M = 0.8 oriented at an angle θ = π/4. Stabilization process from left to right. The instability
zones for a PML along the x-direction ( ) and y-direction ( ) are highlighted.

The set of points verifying the dispersion relation can be represented through the slowness diagram
[29], which is shown in Figure 2.1.

If the domain is bounded, the dispersion relation can exhibit multiple branches. This occurs
for modal propagation, as we will see in Section 2.3.1. More complex behaviour, such as band
gaps, are observed in metamaterials. At this point, it is useful to recall the definition of the phase
and group velocity vectors [29, 115]

Vp(ω(k)) = ω(k)
|k|

k

|k|
, Vg(k) = ∇kω(k) = −

(
∂D

∂ω
(ω(k),k)

)−1
∇kD(ω(k),k), (2.14)

so that the phase velocity points in the same direction as the slowness vector. In the slowness
diagram, the group velocity Vg is a vector pointing in the orthogonal direction to the slowness
curve, and the slowness vector S points from the origin towards the slowness curve. The instability
occurs when the slowness vector and group velocity are not oriented in the same way with respect
to the PML direction. This is shown in Figure 2.1. More precisely, the stability condition for a
PML in the x-direction is

∀k ∈ R2, (S · ex)(Vg(ω(k)) · ex) ≥ 0, (2.15)

and similarly with ey for a PML in the y-direction. We refer to [29, 31, 186] for additional details.
In other words, the instability occurs when the phase and group velocities of the wave colliding
the PML interface have opposite signs. We now apply the Lorentz transformation for the time
variable only. In the Fourier space, it amounts to the substitution

kx → kx −
ωMx

β2 , ky → ky −
ωMy

β2 ,

which removes the convective terms (related to the time-cross derivatives) in the convected Helmholtz
equation. After the substitution, the dispersion relation reduces to

(M2
x − 1)k2

x + (M2
y − 1)k2

y + 2MxMykxky + ω2

β2 = 0. (2.16)

The relation still describes an ellipse in the slowness diagram, but which is now centered at the
origin (see Figure 2.1b). Applying the PML on the associated differential equation would still lead
to instabilities, due to the presence of the mixed quadratic term. The second substitution acts on
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the spatial derivatives. In the Fourier space we have

kx →
(

1 + M2
x

β(1 + β)

)
kx + MxMy

β(1 + β)ky,

ky →
MxMy

β(1 + β)kx +
(

1 +
M2
y

β(1 + β)

)
ky,

which in the slowness diagram, rotates and shrinks the ellipse onto a circle of radius 1/β, see Figure
2.1c. The new dispersion relation

−k2
x − k2

y + ω2

β2 = 0, (2.17)

describes an isotropic medium. By reducing the convected Helmholtz equation into a classical
Helmholtz equation, the Lorentz transformation has removed all possible instabilities.

2.2.4 Summing up

The classical PML can be unstable due to the anisotropic nature of convected propagation. It
occurs when the phase and group velocities of the wave hitting the PML are of opposite signs.
As will be seen further, such instabilities can be of moderate growth or even insignificant for
some specific PML configurations in the frequency domain. However, the technique is not reliable
in the general case. Through the Lorentz transformation, the convected Helmholtz equation is
reduced to a classical Helmholtz equation with an effective wavenumber. The idea is then to apply
the usual PML on this modified equation, as one would do for Helmholtz problems. Finally, the
physical variables are retrieved by performing the inverse Lorentz transformation. This leads to
a new PML model, that we choose to call the Lorentz PML, which coincides with the convected
Helmholtz equation in the physical domain. The global procedure is summarized in Figure 2.2.
The derivation of the Lorentz transformed PML is now presented on several practical examples of
increasing complexity.

ϕ(x, ω) ϕ′(x′, ω′)

ϕ̃(x̃, ω) ϕ̃′(x̃′, ω′)

unstable

Lorentz

Inverse Lorentz

PML

Figure 2.2: Summary of the procedure to derive a stable PML formulation, leading numerical
robustness in the frequency domain.

2.3 Lorentz formulation for a uniaxial flow
Let us consider a quasi one-dimensional situation where the mean flow and PML are uniaxial
(My = 0). This model is suitable to describe convected modal propagation in a straight duct. The
Lorentz transformation in the frequency domain takes the simple form

ϕ(x, y, ω) = 1
β
ϕ′(x′, y′, ω′)eik′0Mx′ , (x′, y′) =

(
x

β
, y

)
, k′0 = k0

β
,

and the partial derivatives are

∂

∂x
= 1
β

(
∂

∂x′
+ ik′0M

)
,

∂

∂y
= ∂

∂y′
. (2.18)
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The convected Helmholtz equation becomes a Helmholtz equation in the Lorentz space, where we
can apply the complex stretching as defined in Section 2.2.2{

∂2

∂x̃′
2 + ∂2

∂ỹ′
2 + k′0

2
}
ϕ̃′(x̃′, ỹ′, ω′) = −f ′(x′, y′, ω′) in Ω′, (2.19)

where f ′ is the distribution of volume sources in the Lorentz space. We use the notations Ω′
and Ω′phy to refer respectively to the global and physical domains in the Lorentz space. Since
we consider waves traveling along the x-direction only, we set γy = 1 and develop the differential
operator as {

γ−1
x

∂

∂x′

(
γ−1
x

∂

∂x′

)
+ ∂2

∂y′2
+ k′0

2
}
ϕ̃′ = −f ′ in Ω′. (2.20)

We now need to revert to the physical variables (x, y, ω) by using the inverse Lorentz transfor-
mation. Doing so implicitly ensures the continuity of the formulation between Ωphy and Ωpml.
Inverting the operators in (2.18) gives

γ−1
x

∂

∂x′
= γ−1

x β

(
∂

∂x
− ik0M

β2

)
,

∂

∂y′
= ∂

∂y
, (2.21)

and the second order x′-derivative is developed as

∂

∂x′

(
γ−1
x

∂

∂x′

)
= β

∂

∂x′

(
γ−1
x

(
∂

∂x
− ik0M

β2

))
= β2

(
∂

∂x

(
γ−1
x

∂

∂x
− γ−1

x

ik0M

β2

)
− ik0M

β2

(
γ−1
x

∂

∂x
− γ−1

x

ik0M

β2

))
= β2 ∂

∂x

(
γ−1
x

∂

∂x

)
− 2γ−1

x ik0M
∂

∂x
− γ−1

x

k2
0M

2

β2 − ik0M
(
∂xγ

−1
x

)
.

After multiplication by eik′0Mx′ and γx, equation (2.20) leads to the Lorentz PML model in the
physical variables

(1−M2) ∂
∂x

(
γ−1
x

∂ϕ̃

∂x

)
− 2ik0Mγ−1

x

∂ϕ̃

∂x
+
(
k2

0
(
γx − γ−1

x M2)
(1−M2) − ik0M

(
∂xγ

−1
x

))
ϕ̃+ γx

∂2ϕ̃

∂y2 = −f in Ω.

(2.22)

When γx = 1, we immediately recover the usual convected equation

(1−M2)∂2
xϕ+ ∂2

yϕ− 2ik0M∂xϕ+ k2
0ϕ = −f in Ωphy. (2.23)

2.3.1 Modal propagation in a straight two-dimensional duct

A boundary value problem associated to the model (2.22) is formulated. The setup and boundary
conditions are defined in a truncated, connected semi-infinite duct specified in Figure 2.3. An
acoustic duct mode is injected on Γ1 along the x-direction and homogeneous Neumann boundary
conditions are used on the upper and lower boundaries denoted Γ2. A PML is appended at the
outlet, at the end of which a homogeneous Neumann boundary condition is prescribed.

In the physical domain, the acoustic field is the homogeneous solution of (2.23), and can be
formulated into right-propagating duct modes as follows

ϕex(x, y) = A cos (kyy)e−ikxx, ky = nπ

H
, A ∈ C, n ∈ N, (x, y) ∈ Ωphy, (2.24)

where the wavenumber kx is given by the dispersion relationkx = 1
1−M2

(
−Mk0 +

√
k2

0 − (1−M2)k2
y

)
, if k2

0 > (1−M2)k2
y,

kx = 1
1−M2

(
−Mk0 − i

√
(1−M2)k2

y − k2
0

)
, if k2

0 < (1−M2)k2
y,

(2.25)
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wave direction

mean flow, −1 < M < 1

∂nϕ = 0, Γ2

Γ1

∂nϕ = g
Ωpml

Γint

Γ3

∂nϕ = 0

0

Ωphy

H

L Lpml
x

y

Figure 2.3: Sketch of the numerical case: 2D acoustic duct propagation in a uniform mean flow.
The PML interface is Γint = Ωphy ∩ Ωpml and the global domain Ω is the open set such that
Ω = Ωphy ∪ Ωpml. The PML outer boundary is Γ3 and n is the outward normal.

depending on the sign of the square-root term, which is here chosen such that the modes are
outgoing. The general solution of the duct problem involves a linear superposition of all modes,
see e.g [164]. The values taken by kx describe respectively propagative (cut-on) and evanescent
(cut-off) modes. Since the domain is bounded in the y-direction, the ky values are discrete. The
plane wave (n = 0) is always propagative and the new branches of the dispersion relations, called
modes, propagate when k0 >

√
1−M2ky.

We can use the analysis carried out in Section 2.2.3 to understand the PML instability issue.
Here, the propagation only occurs along the positive half-plane. For propagating waves, the phase
velocity is the inverse of the slowness vector, which is

Vp = k0
kx

=
(
1−M2) k0

−Mk0 +
√
k2

0 − (1−M2)
(
nπ
H

)2 , (2.26)

and the group velocity is

Vg = ∂k0
∂kx

=
(
1−M2)√k2

0 − (1−M2)
(
nπ
H

)2
k0 −M

√
k2

0 − (1−M2)
(
nπ
H

)2 . (2.27)

When M > 0 and n 6= 0, the wave may have a positive group velocity but negative phase velocity.
This happens if k0 lies in the range√

1−M2
(
nπ

H

)
< k0 <

nπ

H
.

We then distinguish two types of propagating regimes by increasing values of k0. They will be
respectively referred to as inverse upstream and propagative. The group and phase velocities for
three distinct modes are represented in Figure 2.4a, where both regimes are emphasized. Note that
there is no instability when M < 0. We do not discuss the behaviour on evanescent modes since
the PML only adds an oscillatory part to the solution [116], which remains true for the convected
problem.

For high frequencies, i.e. high values of k0, the phase and group velocities tend to be those of
the plane wave

Vg = Vp = (1 +M).

If we now consider the Lorentz PML model (2.22), it can be shown that

ϕ̃(x, y) = A cos(kyy)e−ikxxe−
k′x
βk0

ζ(x) = A cos(kyy)e−ikxxe−
k̃x
k0
ζ(x)

, (x, y) ∈ Ω, (2.28)

satisfies equation (2.22). The modified wavenumber k̃x that is seen by the PML

k̃x = k′x
β

= 1
β

√
k′0

2 − k2
y =

√
k2

0 − (1−M2)k2
y

1−M2 , (2.29)
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(a) Physical wave properties
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(b) effective PML wave properties
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Figure 2.4: Phase Vp (plain lines) and group Vg (dashed lines) velocities for three propagative
modes n = {0, 3, 6} and M = 0.8. The shaded areas highlight the inverse upstream regime.

is always positive for propagative modes. The convective instability, coming from the shift by
−Mk0/β

2 in relation (2.25), has been removed from the PML point of view, see Figure 2.4b. We
now present how to set up the weak formulation of this model for a use in a finite element context.

2.3.2 Weak formulation

In order to build the weak formulation, we start from the transformed Helmholtz-PML equation
(2.20). For conciseness, we omit the ·̃ notation when writing weak formulations. We set f ′ = 0
since the source is coming from the boundary condition on Γ1. After multiplying the equation by
γx and using Green’s formula, one obtains for ϕ′ ∈ H1(Ω′)

∀ψ′ ∈ H1(Ω′),
∫

Ω′

(
γ−1
x ∂x′ϕ

′ ∂x′ψ′ + γx∂y′ϕ
′ ∂y′ψ′ − γxk′0

2
ϕ′ ψ′

)
dΩ′

=
∫
∂Ω′

(
γ−1
x ∂n′xϕ

′ ψ′ + γx∂n′yϕ
′ ψ′
)
ds′,

(2.30)

where n′x and n′y are the normal unit vectors with respect to the x′- and y′-axes. The boundary
integral may be split as∫

∂Ω′

(
γ−1
x ∂n′xϕ

′ ψ′ + γx∂n′yϕ
′ ψ′
)
ds′ =

∫
Γ1∪Γ3

γ−1
x ∂n′xϕ

′ ψ′ dy′ +
∫

Γ2
γx∂n′yϕ

′ ψ′ dx′.

Regarding the volume integral, the x′-derivative product of the trial and test functions becomes

∂x′ϕ
′ ∂x′ψ′ =

(
β∂xϕ−

ik0M

β
ϕ

)
eik
′
0Mx′

(
β∂xψ + ik0M

β
ψ

)
e−ik

′
0Mx′

= β2∂xϕ∂xψ − ik0Mϕ∂xψ + ik0M∂xϕψ + k2
0M

2

β2 ϕψ.

(2.31)

The coordinates in the Lorentz space are stretched by the Jacobian matrix of the transformation
from Ω′ to Ω as

L =

∂x′

∂x
∂x′

∂y

∂y′

∂x
∂y′

∂y

 =
(

1/β 0
0 1

)
,

so that dΩ′ = det(L)dΩ = 1
βdΩ. The formulation (2.30) can be rewritten in the physical variables,

for ϕ ∈ H1(Ω), as

∀ψ ∈ H1(Ω),
∫

Ω
γ−1
x

(
β2∂xϕ∂xψ − ik0Mϕ∂xψ + ik0M∂xϕψ + k2

0M
2

β2 ϕψ

)
1
β
dΩ

+
∫

Ω
γx

(
∂yϕ∂yψ −

k2
0
β2ϕψ

)
1
β
dΩ =

∫
Γ1∪Γ3

γ−1
x

(
β∂nx

ϕ− ik0Mnx

β
ϕ

)
ψ dy +

∫
Γ2

γx∂ny
ϕψ

1
β
dx,
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where Mnx = ±M depending on the orientation of the normal nx. The boundary integrals on Γ3
and along the y-direction vanish because homogeneous Neumann boundary conditions are imposed
on x = Lpml, y = 0 and y = H. After multiplication by β, we obtain on the input boundary Γ1 the
same boundary integral that one would derive for the usual convected Helmholtz problem without
PML ∫

Γ1

(
β2∂nxϕψ − ik0Mnxϕψ

)
dy =

∫
Γ1

(
β2gψ + ik0Mϕψ

)
dy.

Finally, the Lorentz-PML weak formulation for the boundary value problem from Figure 2.3 states

Find ϕ ∈ H1(Ω) such that, ∀ψ ∈ H1(Ω),

β2
∫

Ω
γ−1
x ∂xϕ∂xψ dΩ + ik0M

∫
Ω
γ−1
x

(
∂xϕψ − ϕ∂xψ

)
dΩ− k2

0
β2

∫
Ω

(
γx − γ−1

x M2
)
ϕψ dΩ

+
∫

Ω
γx∂yϕ∂yψ dΩ = ik0M

∫
Γ1
ϕψ dy + β2

∫
Γ1
gψ dy.

(2.32)

When γx = 1, we retrieve the volume terms from the usual convected Helmholtz problem. On the
interface between the physical and PML domain we have the continuity requirements

ϕ, γ−1
x ∂nxϕ continuous at x = L.

The continuity of ϕ in Ω is ensured by construction of the weak formulation. The same can be
said for the normal derivative if we set γx = 1 at x = L. With finite elements, the continuity
of ϕ is implicitly enforced by considering one coincident nodal value (i.e. by merging nodes) at
the interface vertices. In this PML model, the integrals involved for the construction of the mass
matrix are coupled with the function γx. Note that an additional application of Green’s formula
allows to exactly recover the terms of equation (2.22).

2.3.3 Alternative formulation

The model presented above is not the only way to treat the convective instability. Another possibil-
ity, described by Bécache et al. [28], consists in transforming the convected Helmholtz equation in
the PML domain only. The procedure is illustrated in Figure 2.5. The method actually corresponds
to a Lorentz transformation except that there is no contraction factor in the time-domain

t∗ = t+ M

β2c0
x.

In the frequency domain (eiωt convention), one goes from the physical space to the transformed
space thanks to the substitution of the spatial partial derivative

∂x → ∂x∗ + iλ(x), λ(x) =
{

k0M
1−M2 in Ωpml,

0 otherwise.
(2.33)

This alternative transformation is based on the analysis of the dispersion relation (2.25) to remove
the presence of unstable modes. It gives two different weak statements:

• in the physical domain, the weak formulation associated to the usual convected Helmholtz
problem

∀ψ ∈ H1(Ωphy), (1−M2)
∫

Ωphy
∂xϕ∂xψ dΩ +

∫
Ωphy

∂yϕ∂yψ dΩ + ik0M

∫
Ωphy

(
∂xϕψ − ϕ∂xψ

)
dΩ

− k2
0

∫
Ωphy

ϕψ dΩ = ik0M

∫
Γ1
ϕψ dy + β2

∫
Γ1
g ψ dy,

(2.34)
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• and in the PML domain, plugging (2.33) into (2.34) gives the problem in the transformed
space

∀ψ∗ ∈ H1(Ωpml), (1−M2)
∫

Ωpml
γ−1
x ∂x∗ϕ

∗ ∂x∗ψ∗ dΩ +
∫

Ωpml
γx∂y∗ϕ

∗ ∂y∗ψ∗ dΩ

− k2
0

1−M2

∫
Ωpml

γxϕ
∗ ψ∗ dΩ = 0,

(2.35)

where we have denoted by ϕ∗ the alternative PML solution. Note that this transformation does
not ‘stretch’ the space and we write directly Ω instead of Ω∗. We may associate to equation (2.35)
the strong form

(1−M2)∂2
x∗ϕ̃
∗ + ∂2

y∗ϕ̃
∗ + k2

0
1−M2 ϕ̃

∗ = 0, in Ωpml. (2.36)

In comparison to the exact solution obtained through the Lorentz transform in (2.28), we can see
that

ϕ̃ = e
i
k0M

1−M2 xϕ̃∗ in Ωpml, (2.37)

and remark that both solutions differ by a phase factor in Ωpml. This is summarized in Table
2.1, which provides the continuous (exact) solutions of the plane wave mode in Ωphy and Ωpml
for each PML formulation. It turns out that the Lorentz and alternative formulations coincide if
one imposes the jump condition defined in [28, eq. (3.13)] on the PML interface. However, the
jump condition acts on the normal derivative and as a result, cannot be enforced in a conventional
H1-conformal finite element basis. Although such a condition can be used in the time domain [67],
we will see that it is not a strict requirement in the frequency domain.

ϕ(x, ω) ϕ∗(x∗, ω) ϕ̃∗(x̃∗, ω)
Transformation PML

Figure 2.5: Summary of the alternative stable procedure in Ωpml. Note that the two steps of
the procedure are independent. Compared to the procedure from Figure 2.2, there is no inverse
transformation into the physical variables, explaining an additional phase factor in the PML.

Table 2.1: Summary of the x-dependence of the exact solutions ϕ̃ for the three PML formulations.

Model Ωphy Ωpml

Classical e−ikxx e−ikxxe
− kx
k0
ζ(x)

Alternative e−ikxx e−ĩkxxe
− k̃x
k0
ζ(x)

Lorentz e−ikxx e−ikxxe
− k̃x
k0
ζ(x)

2.3.4 Numerical illustrations

In this section, we present the numerical properties of the introduced models for a broadband
frequency range, and illustrate their convergence properties. The numerical results have been
obtained with the mesh generator Gmsh and Siemens’ CodeFEMAO finite element implementation
written in Matlab. We use a high-order finite element scheme equipped with a basis of integrated
Legendre polynomials [170] to discretize the weak formulations. The p-FEM is less sensitive to
dispersion errors and has shown to provide substantial reductions in memory and CPU time when
compared to conventional low-order FEM on both Helmholtz [39] and convected Helmholtz [83]
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applications. The integration on the reference element is computed by a tensorised Gauss quadra-
ture rule with (p + 1)2 points, where p is the order of the integrated Legendre polynomial shape
functions.

As a reference solution, the solution obtained from the exact non-reflecting boundary condition
at the duct output boundary is used. This reference solution gives a useful insight into the different
error contributions, as it allows to separate the PML induced errors from the p-FEM discretization
errors. It is given by the Dirichlet-to-Neumann (DtN) operator, which may write for a single mode

∂xϕref = −ikxϕref, at x = L. (2.38)

It follows the discretization of a one-dimensional mass matrix. The relative L2-error is recorded in
Ωphy as

EL2 = 100
‖ϕex − ϕh‖L2(Ωphy)

‖ϕex‖L2(Ωphy)
, (2.39)

where ϕh refers to the discretized solution and ϕex to the exact solution (2.24). For convected
applications, the resulting global error shares the same features as Helmholtz problems [37], and
exponential convergence is expected under p-refinements for smooth solutions. The rectangular
duct is chosen to be of size L = 0.5 and H = 0.25. Linear quadrangle elements Q4 are used to
mesh the physical domain Ωphy. The domain Ωpml is automatically extruded with 4 layers of Q4
elements. The width of each layer is equal to the mesh size of the physical domain, chosen for
instance as

h = 1
20
√
LH.

We use the unbounded function (2.9) as absorbing function. The parameter σ0 could be selected,
for instance, to match the phase velocity seen by the PML in the high frequency approximation

σ0 = k0
kx

=
k0→+∞

(1 +M) classical PML,

σ0 = k0

k̃x
=

k0→+∞
(1−M2) = β2 Lorentz and alternative PMLs,

in such a way that the decay of plane waves in the PML is linear, resulting in a reflectionless
layer. In practice, it is not clear how to choose σ0 because the phase velocity seen by the PML
depends directly on the input mode, the mean flow, the input frequency, and becomes large close
to cut-off (see Figure 2.4). More precisely, one can notice from equation (2.11) that the amplitude
of ϕ̃ behaves in the layer as

(1− x)α, x ∈ [0, 1],


α > 1, if σ0 > Vp,

α < 1, if σ0 < Vp,

α = 1, if σ0 = Vp,

where we emphasize that Vp differs whether the classical or stable PML is used. As a result,
our method is expected to converge exponentially under p-refinement only if σ0 > Vp, and will
be algebraic otherwise [72], driven by the ratio between σ0 and Vp. In the experiments, we fix
σ0 = 4β2 to ensure a good convergence rate for all models in the selected frequency range. The
choice for σ0 and its role on the convergence rate is examined more precisely in Appendix B. Here,
we do not aim to optimize the discrete properties, but rather focus on the formulations. More
details on the optimization of the PML in discrete contexts can be found in [58, 145]. Note that a
precise tuning of the PML mesh can largely improve its efficiency. Some guidelines can be found
for instance in [54, 73, 118] and a promising approach based on hp-adaptivity has been studied in
[142].
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Figure 2.6: Inverse upstream mode: k0 = 30. Real part of the numerical solution for the three
formulations. Reference L2-error: 9.1 × 10−5 %. Mach number M = 0.8, input mode n = 3,
shape function order p = 4. The dashed line ( ) is the PML interface.
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Figure 2.7: Propagative mode: k0 = 70. Real part of the numerical solution for the three
formulations. Reference L2-error: 1.3 × 10−3 %. Mach number M = 0.8, input mode n = 3,
shape function order p = 4. The dashed line ( ) is the PML interface.

Let us consider two frequencies k0 = 30 and k0 = 70, respectively in the inverse upstream and
propagative regimes, for the third mode n = 3 and a mean flow M = 0.8. The propagation occurs
along the positive x-direction. Figures 2.6 and 2.7 illustrate the differences between the three PML
models. When the wave is inverse upstream, the classical PML shows an exponential growth in
the layer. Note that it ultimately converges towards the physical solution, see Figure 2.9. Both
stable formulations correct this unsought growth by making the mode evanescent in the PML, and
the L2-error is close to the one from the reference solution. When the wave is propagative, the
alternative and Lorentz models show a different absorption behaviour in Ωpml. As seen by the
analysis at the continuous level, there is a phase shift mismatch between Ωphy and Ωpml for the
alternative formulation: the frequency is higher in Ωpml than in Ωphy, thus leading to a higher
discretization error and numerical reflections. This confirms the results from Table 2.1.

We further report the L2-error for a broadband frequency range in Figure 2.8. The results
are shown for the third and sixth modes. For both modes, the Lorentz model is close to the
reference solution. The classical PML suffers from instability in the inverse upstream regime
and the alternative PML from discretization errors since the frequency is higher in Ωpml. This
phenomenon increases for high-order modes, as the number of oscillations grows in the y-direction.

As mentioned above, exponential p-convergence is expected for smooth solutions. Figure 2.9
reports the influence of the shape function polynomial order p on the L2-error. When the wave is
inverse upstream, at k0 = 30, the usual PML is not robust and the convergence is hampered up
to the order p = 5. The Lorentz and alternative formulations fit the error from the exact non-
reflecting condition when p increases, thus confirming their effectiveness in this regime. At k0 = 70,
the errors from the classical and Lorentz methods are close to the one from the reference solution.
The alternative formulation has a comparable convergence rate, although the discretization error
is higher. An optimal convergence rate is observed for all PMLs, regardless of the accuracy of the

71



Chapter 2. Stable perfectly matched layers

20 30 40 60 80 120

10−4

10−2

100

102

k0

E L
2

n = 3

40 60 80 100 140 180
10−3

10−1

101

103

k0

n = 6

Figure 2.8: L2-error (in %) for the classical ( ), alternative ( ) and Lorentz ( ) PMLs.
Parameters: M = 0.8, p = 4 and σ0 = 4β2. The shaded areas highlight inverse upstream
propagation. Reference solution ( ).

formulation. As stated earlier, if the parameter σ0 is not properly tuned, a singularity may arise
at the end layer. The convergence rate of all PMLs would be immediately affected, in the sense
that the error would deviate from the reference solution for high values of p.
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Figure 2.9: L2-error (in %) for fixed frequencies as a function of the shape function order p for
the classical ( ), alternative ( ) and Lorentz ( ) PMLs. Parameters: n = 3, M = 0.8
and σ0 = 4β2. Reference solution ( ).

2.4 Cartesian PML for a flow of arbitrary direction

Cross flows are characterized by the presence of a spatial cross derivative in the convected equation.
Thereby, treating only the convective terms does not lead to a stable formulation (see Figure 2.1b).
Dealing with cross flows is of practical interest for industrial applications, for example when a
complex scatterer is present. As mentioned in Section 2.2.1, different choices are possible to cancel
the cross derivative. Instead of the Lorentz transformation, Diaz and Joly [67] used a different
space-time transformation, which is

t∗ = t+ Mx

β2c0
x+ My

β2c0
y, x∗ = x, y∗ = y + MxMy

1−M2
x

x. (2.40)

The chain rule yields the partial derivatives

∂x = ∂∗x + MxMy

1−M2
x

∂∗y + Mx

β2c0
∂∗t , ∂y = ∂∗y + My

β2c0
∂∗t , ∂t = ∂∗t . (2.41)
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2.4. Cartesian PML for a flow of arbitrary direction

In the frequency domain, it leads to the modified equation in the transformed space

(
1−M2

x

) ∂2ϕ̃∗

∂x∗2
+
(

1−
M2
y

1−M2
x

)
∂2ϕ̃∗

∂y∗2
+ k2

0
β2 ϕ̃

∗ = −f∗, (2.42)

which differs from a Helmholtz-type equation. It is the natural extension of the alternative model
from Section 2.3.3 when My 6= 0. The transformation relies on the analysis of the dispersion
relation and does not ‘stretch’ the physical space. The slowness diagram describes an ellipse,
whose principal axes are the (x, y)-directions. For that reason, the resulting PML is stable, but
the absorption might not be equally effective in the x- and y-directions. In order to avoid a jump
condition issue at the PML interface, we follow the stabilization procedure explained in Figure 2.2,
which is designed for the entire domain Ω.

2.4.1 Point source in free field - weak formulations

In this example, we consider the acoustic radiation of a point source in a square domain. The
problem is specified in Figure 2.10. We remind that we impose a homogeneous Neumann condition
on the outer boundary. We do not apply any specific treatment in the PML corner regions and
simply let γx 6= 0 and γy 6= 0.

(xs, ys)

M

Ωphy

Ωpml

Γint

∂nϕ = 0

x

y

Figure 2.10: Sketch of the numerical case: 2D point source radiation in a cross flow with straight
boundaries. The global domain Ω is the open set such that Ω = Ωphy ∪Ωpml. It is delimited by
respectively L and Lpml.

The derivation of the weak formulation is similar to Section 2.3.2, but the calculations are more
complex. It can be written as

Find ϕ ∈ H1(Ω) such that, ∀ψ ∈ H1(Ω),∫
Ω

(
γy
γx
∂−1
x′ ϕ∂

−1
x′ ψ + γx

γy
∂−1
y′ ϕ∂

−1
y′ ψ −

k2
0
β2γxγy ϕψ

)
dΩ =

∫
Ω
fψ dΩ,

(2.43)

where the notations ∂−1
x′ and ∂−1

y′ stress that the operators should be understood as inverse operators
to the physical variables. From Lorentz’s transformation (2.5), we can switch the role of the partial
derivatives and obtain

∂−1
x′ = β

((
1 +

M2
y

β(1 + β)

)
∂x −

MxMy

β(1 + β)∂y −
ik0Mx

β2

)
, (2.44)

∂−1
y′ = β

((
1 + M2

x

β(1 + β)

)
∂y −

MxMy

β(1 + β)∂x −
ik0My

β2

)
. (2.45)

In practice, the inverse transformation is written as is in the finite element routine, and there
is no need to develop the Lorentz model explicitly. We detail in the next Section how to write
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Chapter 2. Stable perfectly matched layers

a general equation in terms of matrix transformations. For comparison, the alternative inverse
transformation associated to (2.40) takes a simpler form

∂−1
x∗ = ∂x −

MxMy

1−M2
x

∂−1
y∗ −

ik0Mx

β2 , ∂−1
y∗ = ∂y −

ik0My

β2 . (2.46)

The associated weak formulation is built from domain equation (2.42) and reverted to the physical
variables by applying the operators ∂−1

x∗ and ∂−1
y∗ . Intuitively, the difference with the Lorentz model

lies in the way the cross derivatives are handled.

2.4.2 Point source in free field - numerical setup and results

The point source is defined as a single monopole. In free field, the analytical solution is naturally
defined thanks to the transformed Lorentz variables as

ϕex(x, y, ω) = 1
β
ϕ′ex

(
x′, y′, ω′

)
eik
′
0Mxx′eik

′
0Myy′ , (2.47)

where

ϕ′ex
(
x′, y′, ω′

)
= − i4H

(2)
0
(
k′0r
′) r′ =

√
(x− xs)′2 + (y − ys)′2,

and H
(2)
0 is the Hankel function of the second kind and xs = (xs, ys)T is the source position.

The solution ϕex is then implemented in the physical variables (x, y, ω) through the initial trans-
formation (2.4). For the computations, we define the number of degrees of freedom per shortest
wavelength as [37]

dλ = 2πp
ωh

(1−M). (2.48)

Unless explicitly mentioned in the numerical results, we fix the shape function order to p = 6, the
frequency to ω = 6π and choose a meshsize h = 0.07. The Mach number is M = 0.8, leading to
dλ ≈ 5.7. The flow is defined at an angle θ ∈ [0, 2π]. We surround the physical domain by two PML
layers of size h. The PML parameter is set to σ0 = β, which is later justified by the simulations.
Linear triangular elements T3 are used to generate an unstructured mesh in both Ωphy and Ωpml.

The analytical solution is singular at xs and special attention is required to compute the
domain L2-error. We use the strategy suggested in [120], which consists in excluding the one-ring
neighbourhood elements to the point source. In that way, the authors have shown that the usual
finite element convergence properties are recovered. The relative L2-error is defined as

EL2 = 100
‖ϕex − ϕh‖L2(Ωρ)

‖ϕex‖L2(Ωρ)
, Ωρ = Ωphy\Bρ(xs), (2.49)

where Bρ(xs) is the ball of radius ρ centered at xs. In the simulations, the source is set at the
origin where the mesh is refined by a factor 2. Using a finer mesh close to the source allows to
confine the singularity errors in a more compact region. The ball radius should be of the order of
the meshsize: it is set to ρ = 2h.

In addition to the domain L2-error, we measure the interface L2-error on Γint, defined as

EIL2 = 100
‖ϕex − ϕh‖L2(Γint)
‖ϕex‖L2(Γint)

, Γint = Ωphy ∩ Ωpml, (2.50)

and the computational mesh is constrained to have nodes along the control line Γint.
The real part of the numerical solution is shown in Figure 2.11 for the three models at θ = π/4.

The local interface error is plotted along Γint in Figure 2.12. This immediately highlights a stronger
symmetry property of the Lorentz stabilization. The error pattern repeats itself after a 180◦

74



2.4. Cartesian PML for a flow of arbitrary direction
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Figure 2.11: Real part of the numerical solution at ω = 6π, M = 0.8 and θ = π/4 for the three
PML models with σ0 = β.

rotation for the alternative model, while this reduces to 90◦ for Lorentz’s model. Note that this
property has been observed for both symmetric and non-symmetric meshes.

The same conclusion follows in Figure 2.13 where the flow angle is varied in the range [0, 2π].
With Lorentz’s model, the error is always maximal when θ = π/4±π/2 (when the flow is oriented
towards the corner). This accuracy difference between the two stable formulations is most likely
linked to the equations in the transformed space, respectively (2.42) and (2.6) for the alternative
and Lorentz models. Note that if the flow orientation is orthogonal to one of the PML layers, both
models are equivalent.

0

15

30

45

60

7590105
120

135

150

165

180

195

210

225

240
255 270 285

300

315

330

345

1 2 3 4 5

·10−2

|ϕex − ϕh|
Lorentz

Alternative

Figure 2.12: Polar diagram of the local error
along the PML interface associated to Figures
2.11b and 2.11c.

0 π
2

π 3π
2

2π
0

2

4

E L
2

Classical Alternative Lorentz

0 π
2

π 3π
2

2π
0

5

10

15

θ

EI L
2

Figure 2.13: Domain and interface L2-
errors (in %) as a function of the flow
angle θ for M = 0.8 with σ0 = β.

Since the Lorentz PML acts on a Helmholtz problem, it should inherit from the same discrete
properties. Because the wave propagates in free field, we could choose by extension σ0 ≈ βc0
as recommended by Bermúdez et al. [41]. This choice is confirmed in Figure 2.14, where the
domain L2-error is shown as a function of the normalized parameter σ0/β. One remarks that, for
a small parameter range, the classical PML gives a solution with a reasonable accuracy. This hides
the unstable nature of the formulation, a slight variation of σ0 would completely deteriorate the
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Chapter 2. Stable perfectly matched layers

solution. In Figure 2.15, we see that both the classical and stabilized models converge towards
the physical solution when the number of PML layers increases. This property has been proven in
[28]. One must be careful when using the classical formulation. Unlike in time-domain acoustics,
it is possible to incidentally obtain a PML of rather good accuracy if the instabilities are not ‘too
strong’. A similar conclusion was drawn for an unstable PML applied to the Schrödinger equation,
where the phenomenon is referred to as conditional stability [68].
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Figure 2.14: L2-error (in %) with the unbounded PML profile (2.9) as a function of σ0 for
M = 0.8 and ω = 6π.
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Figure 2.15: Influence of the number of PML layers N on the L2-error (in %) at θ = π/4,
M = 0.8, ω = 6π and σ0 = β.

We would like to study the robustness of the Lorentz PML with respect to the Mach number.
While doing so it is helpful to maintain an equivalent discretization accuracy when M varies. We
resort to the a priori error indicator proposed in [35], which adjusts the order across the mesh
so as to achieve a given, user defined L2-error target accuracy ET . In practice, the edge orders
are first determined based on a 1D error indicator, which accounts for the local in-flow dispersion
relation properties and possible edge curvature. In a second step, the element interior (directional)
orders are assigned through a set of simple element-type dependent conformity rules. Note that
this approach does not account for the pollution effect. The orders are here defined to be in the
range p ∈ [1, 15]. To serve as a reference, we measure the relative L2-error between the exact
solution and its L2-projection Pϕex onto the high-order finite element space,

EbestL2 = 100
‖Pϕex − ϕex‖L2(Ωρ)

‖ϕex‖L2(Ωρ)
. (2.51)

This error (also referred to as best interpolation error) corresponds to the best numerical solution
that can be achieved in the physical domain by a given approximation basis, regardless of the
chosen formulation (see e.g. [129, section 5]).

Figure 2.16 presents the dependence of the domain L2-error when the Mach number varies,
for ET = 3% and ET = 0.5% as target errors. Results are shown for θ = 0 and θ = π/4. The
usual PML shows decent performance but deteriorates when the flow is strong or not aligned with
the PML. When θ = 0, both approaches exhibit similar accuracy except for M = 0.9. When
θ = π/4, the instability of the classical model is more significant for high values of M (from
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2.5. Lorentz PML of arbitrary convex shape

M ≈ 0.6) since the non-zero cross flow strengthens the instability. It is worth mentioning that the
best L2-error remains constant on the full Mach number range, which indicates that the a priori
error indicator appropriately selects the order distribution for each configuration, which varies
significantly between low and high Mach number values.

When θ = π/4, the convergence rate of the stable PML seems slightly affected for high Mach
numbers. Numerical experiments have shown that it is mostly imputable to the PML reflections,
which may come from a corner effect.
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Figure 2.16: L2-error (in %) as a function of the Mach number for two target errors with
σ0 = β. Legend: classical - ET = 3% ( ), Lorentz - ET = 3% ( ), classical - ET = 0.5%
( ), Lorentz - ET = 0.5% ( ), best interpolation for ET = 3% ( ) and ET = 0.5% ( ).

2.5 Lorentz PML of arbitrary convex shape

We now extend the approach to a PML domain of arbitrary convex shape. The basic idea consists
in formulating the PML in curvilinear coordinates as described by Collino and Monk [59], but in the
Lorentz space. Then, we apply the inverse Lorentz transformation to obtain the new PML model.
In curvilinear coordinates, it is possible to recast the PML formulation in Cartesian coordinates
as follows

∇x · (Λpml∇xϕ̃) + αpmlk
2
0ϕ̃ = −f, (2.52)

where

Λpml = αpmlJ
−1
pmlJ

−T
pml, αpml = detJpml, Jpml = ∂x̃

∂x
. (2.53)

The matrix Λpml is symmetric and couples the metric of Ωpml with the complex stretching pa-
rameters. It encodes all the information related to the PML. For the following development, we
write

Λpml =
(

Λ11 Λ12
Λ21 Λ22

)
, Λ12 = Λ21. (2.54)

If for instance the PML domain is rectangular, the entries are Λ11 = γy/γx, Λ22 = γx/γy, Λ12 =
Λ21 = 0. Note that one could use a more complicated tensor that accounts for the discrete
properties of the mesh such as, but not limited to, the locally-conformal PML technique [40, 156].

Independently of the technique used, we shall apply the inverse Lorentz transform to the
Helmholtz-PML equation in the Lorentz space

∇−1
x′ ·

(
Λpml∇−1

x′ ϕ̃
)

+ αpmlk
′
0

2
ϕ̃ = −f, k′0 = k0

β
, (2.55)

77



Chapter 2. Stable perfectly matched layers

where ∇−1
x′ is the modified gradient from the inverse Lorentz transformation

∇−1
x′ = L−1∇x −

ik0
β
M , Lij = δij +

MxiMxj

β(1 + β) , δij =
{

1, if i = j,

0, if i 6= j.
(2.56)

A simple calculation shows that det(L) = 1/β. We can now develop equation (2.55) to get a
general stabilized model in free field

L−1∇x ·
(
ΛpmlL

−1∇xϕ̃
)
− ik0

β
M · (ΛpmlL

−1∇xϕ̃)− k2
0
β2 [M · (ΛpmlM)− αpml] ϕ̃

− ik0
β

(
L−1∇x

)
· (ΛpmlM ϕ̃) = −f. (2.57)

By using the product rule on the last term of the left-hand side, and the symmetry of L−1 and
Λpml, the model is recast as

L−1∇x ·
(
ΛpmlL

−1∇xϕ̃
)
− 2 ik0

β

(
L−1ΛpmlM

)
· ∇xϕ̃−

k2
0
β2 [M · (ΛpmlM)− αpml] ϕ̃

− ik0
β
M ·

[
(L−1∇x) ·Λpml

]
ϕ̃ = −f. (2.58)

where (L−1∇x) ·Λpml is a column vector of components[
(L−1∇x) ·Λpml

]
i

=
∑
j,k

L−1
jk ∂xk(Λji), i = {1, 2}. (2.59)

Thanks to the useful relation L−1M = βM [112], we may recognize a generalization of model
(2.22). The weak formulation is obtained similarly by starting from Equation (2.55). This approach
leads by construction to a symmetric bilinear formulation. In terms of PML Jacobian matrix
[140, 178], we may express

Find ϕ ∈ H1(Ω) such that, ∀ψ ∈ H1(Ω),∫
Ω

[
(J−Tpml∇−1

x′ ϕ) · (J−Tpml∇−1
x′ ψ)− k2

0
β2ϕψ

]
det(JpmlL) dΩ =

∫
Ω
f ψ det(L) dΩ.

(2.60)

Since det(L) 6= 0, it can here be simplified. This term is however important to recover non-
homogeneous boundary conditions in the physical variables. Let us develop the integrand related
to the inverse transformation

(J−Tpml∇−1
x′ ϕ) · (J−Tpml∇−1

x′ ψ) =
(

(JpmlL)−T∇xϕ−
ik0
β

(J−TpmlM)ϕ
)
·
(

(JpmlL)−T∇xψ + ik0
β

(J−TpmlM)ψ
)

= (JpmlL)−T∇xϕ · (JpmlL)−T∇xψ + k2
0
β2 (J−TpmlM)ϕ · (J−TpmlM)ψ

+ ik0
β

(JpmlL)−T∇xϕ · (J−TpmlM)ψ − ik0
β

(J−TpmlM)ϕ · (JpmlL)−T∇xψ.

Each term is a 2 × 1 vector and resemble the uni-axial situation (2.32). The expanded weak
statement directly follows. To sum up, the method consists in three steps:

1. set up the bilinear form associated to the modified Helmholtz equation in the Lorentz space,

2. apply the curvilinear PML through the Jacobian matrix Jpml or the matrix Λpml,

3. modify the definition of the usual gradient thanks to the inverse Lorentz transformation.
This process only involves metric transformations, the rest being automatically handled by the
finite element code. It is also worth emphasizing that although the construction of the stabilized
formulation is based on the entire domain Ω, it does not change the convected Helmholtz equation
in the physical domain. This implies that one could potentially solve a non-uniform flow problem
in Ωphy, such as the linearized potential equation [35], and use the formulation (2.60) only in Ωpml.
One must ensure however that the flow properties do not vary on the PML interface.
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2.5. Lorentz PML of arbitrary convex shape

2.5.1 Illustration for a circular PML

For a circular boundary, the PML Jacobian matrix in polar coordinates (r, φ) is

J−Tpml =
(

cosφ/γ sinφ/γ
− sinφ/γ̂ cosφ/γ̂

)
, γ̂ = 1− i

rk0
ζ(r), γ = 1− i

k0
σ(r), (2.61)

where ζ and σ are defined in (2.9) for the radial variable r ∈ [R,Rpml]. For the illustrations, we
choose a flow magnitude M = 0.8 and a running frequency ω = 20π. The mesh size is h = 0.03
and the shape function orders are given by the anisotropic order assignement with an error target
ET = 0.5% [35]. The physical domain is composed of T3 elements. Two PML layers of Q4 elements
are extruded with extrusion length h from the physical domain, of size R = 1. Note that such a
hybrid mesh is not a requirement for the proposed method. The PML parameter is σ0 = β, and
the mesh is refined by a factor 2 around the origin.

We present in Figure 2.17 the difference between the classical and Lorentz formulations for a
multiple point sources configuration. The setup can be assimilated to a lateral quadrupole: four
equally spaced monopoles with alternating phase are positioned at the corners of a square of size
δ = 5e-3. Note that the frequency in the physical domain spans from ωmin = ω/(1 + M) to
ωmax = ω/(1 −M). As expected the flow has also a large impact on the radiation pattern of the
quadrupole. The four directivity lobes are not symmetric anymore, and the sound is refracted up-
stream. Interestingly, the upstream silence cone is found to be narrower, while the one downstream
is significantly enlarged.

The classical PML formulation is affected by the instability of the upstream wave and does
not yield an accurate solution for this configuration, with an error measured at EL2 = 35%, as
shown in Figure 2.17a. The Lorentz formulation on the other hand, presented in Figure 2.17b is
well behaved, and delivers a solution with an error close to the target accuracy. Note that the
typical shape function order for this approximation, as determined by the a priori error indicator
is p = 7. The full discrete model involves approximately 350 000 degrees of freedom and 17 million
non-zeros entries, of which approximately 6% originate from the PML.
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Figure 2.17: Real part of the numerical solution at ω = 20π, M = 0.8 and θ = π/2 for the
classical and Lorentz and PML models with σ0 = β.

Figure 2.18a presents the domain and interface errors when the flow angle varies, for the
monopole and lateral quadrupole configurations. By contrast to the Cartesian case, the error is
almost independent of the flow direction, and the behaviour does not appear to be altered by
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the complexity of the source. Note that a slightly lower error is observed for the quadrupole at
θ = 0± π/2, when the flow is oriented along the non-convected quadrupole zone of silence. Figure
2.18b shows that the formulation is robust with respect to the Mach number in the sense that the
error follows the trend of the best interpolation, which holds even for high Mach numbers.
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Figure 2.18: L2-error (in %) for the circular PML as a function of the flow angle and Mach
number.

Finally we demonstrate that the formulation can easily be combined with more advanced PMLs
techniques, such as the so-called Automatic Matched Layer (AML) [38]. Figure 2.19 presents again
the multiple point sources configuration set up in a spline shaped domain, and a mean flow oriented
at an angle θ = π/4. Two PML layers of size h are automatically extruded. The relative L2-error
in the physical domain is 0.69% for the Lorentz PML, and the relative interface L2-error is 1.21%.
In this case, reaching the prescribed 0.5% target accuracy with the classical PML requires 7 layers,
which results in a 30% relative additional cost in terms of degrees of freedom.
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Figure 2.19: Real part of the numerical solution at ω = 20π, M = 0.8 and θ = π/4 for
the classical and Lorentz PML models in a spline shaped domain with σ0 = β. The arrow
epitomizes the direction of the mean flow.

2.5.2 Additional remarks for more complex problems

Extensions to the Lorentz transformation could be investigated if the flow has to be non-uniform
on the PML interface. Taylor [175] proposed an extension to low Mach number potential flows,
which was further proven in [91] to be valid for all frequencies. If novel instabilities come out, it
would be interesting to analyze the impact of the Taylor-Lorentz transformation over the Lorentz
one. Hu [111] noticed that for a certain category of non-uniform flows, the modes follow a peculiar
pattern on the dispersion relation diagram, and that convective instabilities could still be handled
in a similar fashion.
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2.6. Conclusion

The present work could not a priori be extended to the linearized Euler equations for cross
flows, because there is currently no space-time transformation that can treat the instabilities simul-
taneously for acoustic, vorticity and entropy waves [158]. Lorentz transformation is no exception
to it, but seems nevertheless to be applicable if the linearized Euler equations are written in terms
of momentum instead of velocity perturbations [71].

2.6 Conclusion
Following the pioneer work from Bécache et al. [28] and Hu [110, 111], we have proposed a practical
procedure to design a numerically robust curvilinear PML for the convected Helmholtz equation
with a flow of arbitrary orientation. The heart of the method lies in the Lorentz transformation.
By reducing the convected Helmholtz equation into a classical Helmholtz equation, the proposed
Lorentz PML is well-behaved and shares the same features as usual PMLs. The analysis was
conducted in two-dimensions but the extension to the three-dimensional case is direct. Numerical
investigations pointed out the limit of the classical PML in the frequency domain and justified the
use of Lorentz’s PML over existing formulations in terms of numerical accuracy. The efficiency of
the method was illustrated for both modal and free field problems. We believe that the proposed
Lorentz PML is also valid in the time-domain, which is a topic worth of additional investigations.
Extension to the linearized Euler equations and application as a transmission condition for domain
decomposition will be investigated in the future.
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Summary and perspectives

We have studied and implemented two non-reflecting boundaries techniques motivated by the
industrial framework of the Linearized Potential Equation in the frequency domain. At first glance,
ABCs and PMLs seem to be very different techniques, since the ABC acts on the boundary while
the PML is a volumic method. They both allow to build a local representation of the DtN operator.
They have been promising attempts to combine [96, 119] and compare [162] the methods, but the
task is technically very challenging.

From the academic perspective, i) we have applied the microlocal theory and the Padé localiza-
tion strategy to some heterogeneous and convective media, ii) we have linked the Prandtl-Lorentz-
Glauert transformation with the stabilization of PMLs to more general and practical settings.
From an industrial perspective, the presented ABCs and PMLs may be implemented in frequency
domain solvers. Additional tests, most particularly in 3D, would give more information about the
capacity of these non-reflecting techniques to efficiently handle industrial situations. A promising
application is to use them as transmitting boundary conditions in Schwarz domain decomposition
methods for solving heterogeneous and convected time-harmonic problems. Indeed, the choice of
well-designed transmitting boundary conditions provides fast converging iterative solvers for the
simulation of large scale physical situations. This constitutes a natural next step of our develop-
ments.

The presented non-reflecting boundary conditions have been limited so far to a scalar equa-
tions. The non-trivial extension to vectorial time-harmonic problems, such as the Linearized Euler
equations is of particular interest in the industry. Many aeroacoustical applications require to
capture the interaction between the acoustic, entropy and hydrodynamic waves.
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Part II

Application to Domain
Decomposition
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Chapter 3

General formalism of non-overlapping
Schwarz domain decomposition

In this chapter, we present the formalism for non-overlapping Schwarz domain decomposition
methods. It first is recalled for Helmholtz problems and then extended to the convected case
including a non-uniform mean flow. We write the continuous and algebraic forms of the domain
decomposition problem, and further state the conditions for the well-posedness and optimal
convergence of the method. In particular, we point out the link with the parallel block LU
factorization of the global problem. The second section describes various types of transmission
conditions that may be used to communicate relevant information between the interfaces of the
subproblems. We use transmission conditions based on absorbing boundary conditions and
perfectly matched layers, which were studied in the first two chapters of the thesis. Finally we
discuss recently developed solutions to cope with interior and boundary cross-points, and point
out limitations of our approach.
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3.1. Non-overlapping optimized Schwarz formulation

3.1 Non-overlapping optimized Schwarz formulation

3.1.1 The Helmholtz case

Let us recall the standard non-overlapping domain decomposition formulation for Helmholtz prob-
lems, following the description in [10, 179]. We consider a closed computational domain Ω parti-
tioned in a finite number of Ndom disjoint subdomains Ω =

⋃
i Ωi, i ∈ D := {0, · · · , Ndom − 1}.

Each surface Γ where a boundary condition is imposed is decomposed as Γi = Γ
⋂
∂Ωi. For

each j ∈ D, the interface that is shared between two subdomains, when it exists, is denoted
Σij = Σji = ∂Ωi

⋂
∂Ωj . For a given subdomain i, we denote the indices of connected subdomains

by Di := {j ∈ D; j 6= i; Σji 6= ∅}. The outward oriented normals to Ωi and Ωj are respectively
denoted ni and nj . The notations are specified in Figure 3.1 on a disk scattering toy model, which
we will use to illustrate the method.

gijΣij

ujui

Ωi Ωj

Γ∞i

Γsi
ni

nj

Figure 3.1: Typical problem specification for non-overlapping domain decomposition.

The idea of non-overlapping Schwarz methods consists in adding interface unknowns to the
system, introduce a global surface coupling between these unknowns, and iterate over them such
that they ultimately match the local outgoing solution of the subproblem. At the continuous level,
one step of the additive Schwarz method consists in solving for each subdomain i ∈ D the boundary
value problems


∆ui + ω2ui = 0, in Ωi,

∂niui + iΛ̃+ui = 0, on Γ∞i ,
∂niui + iSiui = gij , on Σij , ∀j ∈ Di,
ui = −usi , on Γsi ,

(3.1)

where we have introduced the scattered incident field usi , the interface unknowns gij and the
transmission operator Si that will be detailed in section 3.2. It acts on the volume data ui in
the sense of the trace, and should accurately represent the DtN map. In fact when gij = 0, the
interface condition becomes a non-reflecting boundary condition. Note that for Helmholtz type
problems, imposing only the continuity of ui and its normal derivative ∂niui results in a model that
is ill-conditioned, see [69, section 2.2.1] and [65, 132]. Optimal Schwarz methods rather impose
Robin-based continuity interface conditions

∂niui + iSiui = ∂niuj + iSiuj , on Σij , ∀j ∈ Di. (3.2)

Because we consider a non-overlapping formulation, we will see that the convergence of the domain
decomposition algorithm heavily relies on an appropriate choice for the operator Si. We need
another equation that couples the interface unknowns to the subproblems (3.1). Since the normals

89



Chapter 3. General formalism of non-overlapping Schwarz domain decomposition

of two neighbouring subdomains face each other, we can write on Σij

∂niui + iSiui = −∂njuj + iSiuj
= −(∂njuj + iSjuj) + i(Si + Sj)uj
= −gji + i(Si + Sj)uj .

where we have introduced a second pair of interface unknowns for the subdomain Ωj through
∂njuj + iSjuj = gji. We have linked all the interfaces to the volumic subproblems through the
so-called interface problem

gij + gji = i(Si + Sj)uj , on Σij , ∀j ∈ Di, (3.3)

where no normal derivative is involved. Here we suppose that Si 6= Sj , although they are often
chosen to be equal in the Helmholtz case. The interface problem (3.3) can be reinterpreted as
one step of a fixed point iterative procedure. To do so we split by linearity the local solution
ui = ũi + fi into its contribution from the interface (or “artificial”) sources ũi and physical sources
fi. For example fi here accounts for the Dirichlet boundary condition on Γs. If we define the
iteration operator updating the interface unknowns

Tijgij := −gij + i(Si + Sj)ũi, (3.4)

and in the same way

Tjigji := −gji + i(Si + Sj)ũj ,

acting on the subdomain j, we obtain the global system(
gij
gji

)
=
(

0 Tji
Tij 0

)
︸ ︷︷ ︸

A

(
gij
gji

)
+ i(Si + Sj)

(
fj
fi

)
, on Σij , ∀j ∈ Di. (3.5)

We further set

bij = i(Si + Sj)fj , bji = i(Si + Sj)fi,

such that the global update of g = (gij , gji)T is

(I − A)g = b, (3.6)

with b = (bij , bji)T the right-hand side containing the physical sources, and I the identity operator.
The matrix (I − A) is called the iteration matrix, and encodes all the information related to the
transmission conditions. Any iterative solver can be used to solve the problem, from stationary
iterative methods (Jacobi, Gauss-Seidel, etc.) to Krylov subspace methods (conjugate gradient,
GMRES, etc.).

During the iterative procedure, each subdomain computes independently the next iterate (n+1)
as follows

1. given the interface data g(n)
ij , solve the volume problems to get u(n+1)

i ,

2. update the (n+ 1) interface data as g(n+1)
ji = −g(n)

ij + i(Si + Sj)u(n+1)
i .

This makes the method suitable for parallel computing, because each subdomain may be assigned
to a different computer process. However a communication pass is necessary at each iteration,
where each subdomain has to receive the interface data gij from its connected neighbourhoods
and further send the updated information gji. If the number of iterations is small, such a method
allows to reduce significantly the memory requirements compared to a direct solver.
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3.1. Non-overlapping optimized Schwarz formulation

3.1.2 Extension to generalized convected Helmholtz problems

We now extend the methodology to the generalized convected wave equation. On each subdomain
i ∈ D, we want to solve the boundary value problems governed by the volume equations

ρ0
D0
Dt

( 1
c2

0

D0ui
Dt

)
−∇ · (ρ0∇ui) = 0 in Ωi,

D0
Dt

= iω + v0 · ∇, (3.7)

where we recall that ρ0, c0,v0 are spatially dependent functions that describe the properties of
the mean flow. These quantities are usually pre-computed from an external flow solver. For well-
posedness, the volumic equation should be complemented by a suitable non-reflecting boundary
condition such as

ρ0(1−M2
ni)
(
∂niui + iΛ̃+ui

)
= 0, on Γ∞i , (3.8)

with Mni = (v0 ·ni)/c0. To this end one may use an absorbing boundary condition or a perfectly
matched layer adapted to convected Helmholtz problems such as described in Part I. Any additional
boundary condition that does not affect well-posedness of the subdomain boundary value problem
may be added, such as an impedance material treatment or a modal condition. We refer to Chapter
5 for such a practical example. Following the form of the non-reflecting boundary condition we
introduce the coupling on the interfaces

ρ0(1−M2
ni) (∂niui + iSiui) = gij , on Σij , ∀j ∈ Di. (3.9)

As done in the Helmholtz case, we can eliminate the normal derivatives

gij = ρ0(1−M2
n)
(
−∂njuj + iSiuj

)
(3.10)

= −gji + iρ0(1−M2
n)(Si + Sj)uj , (3.11)

yielding the interface coupling

gij + gji = iρ0(1−M2
n)(Si + Sj)uj , on Σij , ∀j ∈ Di. (3.12)

At the continuous level, there is conceptually little change compared to the Helmholtz case. There
is an additional flow scaling factor (1 −M2

n) coming from the volume equation (3.7). Moreover,
we will see that the operators Si and Sj differ from each other in the flow acoustic case. Apart
from these changes, the algorithm remains the same as the one without flow, and the complexity
is hidden in the choice of the transmission operators. To this end we will also use the local
approximations of the Dirichlet-to-Neumann map that were studied in Part I.

3.1.3 Weak formulation

We choose to solve the volume and surface problems by a continuous Galerkin method. For
the generalized convected Helmholtz problem there are several possibilities to obtain a suitable
variational formulation. We use a symmetric formulation that is commonly used in the industry,
see e.g [163]. To be concise we here only emphasize the terms relevant to domain decomposition.
We focus on a subdomain Ωi with a single interface Σij and a compact volumic source fi. We look
for ui in a suitable functional space V ⊆ H1(Ωi). Integrating over the domain and using Green’s
formula gives

∫
Ωi

[
ρ0∇ui · ∇vi −

ρ0
c2

0

D0ui
Dt

D0vi
Dt

]
dΩi +

∫
∂Ωi

[
ρ0
c2

0

D0ui
Dt

(v0 · ni)− ρ0
∂ui
∂ni

]
︸ ︷︷ ︸

Gui

vi dS =
∫

Ωi
fivi dΩi,

(3.13)
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Chapter 3. General formalism of non-overlapping Schwarz domain decomposition

for all tests functions vi ∈ V. The boundary operator acting on the interface is

Gui = ρ0
c2

0

D0ui
Dt

(v0 · ni)− ρ0
∂ui
∂ni

= ρ0ik0Mniui + ρ0MniMτi

∂ui
∂τi

+ ρ0
(
M2
n − 1

) ∂ui
∂ni

, (3.14)

with τi the tangent unit vector to the interface. Thanks to the interface condition (3.9) on Σij ,
the boundary integral takes the form∫

Σij
ρ0ik0Mniuivi dS +

∫
Σij

ρ0MniMτi

∂ui
∂τi

vi dS −
∫

Σij
gijvi dS + i

∫
Σij

ρ0
(
1−M2

ni

)
Siuivi dS.

(3.15)

The first two terms arise from Green’s formula because of the chosen symmetric formulation. We
will see that these terms are cancelled by an adequate choice for Si. For the interface coupling, we
look for gij in the trace space W ⊆ H−1/2(Σij). The weak statement writes∫

Σij

[
gij + gji − iρ0(1−M2

n)(Si + Sj)ui
]
wij dS = 0, (3.16)

for all test functions wji ∈ W?, where W? is the dual space of W. We can gather the different
terms into a global functional framework. Given the data gij , find (ui, gji) ∈ V ×W such as

∀vi ∈ V, κ(ui, vi) = f(vi) + 〈gij , vi〉V , (3.17)
∀wij ∈ W, 〈gji, wij〉W + s(ui, wij) = −〈gij , wij〉W , (3.18)

where 〈 . , . 〉 is the inner product, κ and s are bilinear operators respectively acting on V and W,
and f is a linear operator containing the physical sources. In this thesis we discretize the weak
formulation on a tessellation of finite elements thanks to a high-order, conformal H1-basis [170]
for both functional spaces V and W.

3.1.4 Algebraic formulation

The goal of this section is to derive an algebraic point of view of the non-overlapping optimal
Schwarz formulation. To do so we follow the framework in [135] and start by writing an algebraic
global problem relating two subdomains (i, j) and a single interface Σ KΩ

i 0 KΩ,Σ
i

0 KΩ
j KΩ,Σ

j

KΣ,Ω
i KΣ,Ω

j KΣ,Σ
i + KΣ,Σ

j


uΩ

i

uΩ
j

uΣ

 =

 f Ω
i

f Ω
j

f Σ
i + f Σ

j

 , (3.19)

where we omit the indices Σij for clarity. The vector (uΩ
i ,u

Ω
j ,u

Σ) denotes the degrees of freedom
for respectively the two subdomains and the shared interface. The same splitting is used for
the right-hand side (f Ω

i ,f
Ω
j ,f

Σ) with f Σ = f Σ
i + f Σ

j . The matrices K are specified by their
subdomain index and their mapping from the volume to the interface. They are obtained from
a given discretization strategy. The global problem (3.19) can be split into the resolution of two
independent subproblems(

KΩ
i KΩ,Σ

i

KΣ,Ω
i KΣ,Σ

i + Si

)(
uΩ
i

uΣ
i

)
=
(

f Ω
i

f Σ
i + gij

)
,

(
KΩ
j KΩ,Σ

j

KΣ,Ω
j KΣ,Σ

j + Sj

)(
uΩ
j

uΣ
j

)
=
(

f Ω
j

f Σ
j + gji

)
, (3.20)

which are algebraic systems corresponding to the discretization of a volumic PDE completed by
generalized Robin boundary conditions on the interface. The interface unknowns gij and gji are
here interpreted as Lagrange multipliers. We call the matrices Si and Sj the discrete transmission
matrices; we will come back to them later. From the last line of (3.19), one can notice that these
subsystems must be completed by the following compatibility conditions

uΣ
i = uΣ

j , (3.21)
gij + gji = (Si + Sj)uΣ

i , (3.22)
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3.1. Non-overlapping optimized Schwarz formulation

in order to retrieve the equivalence with the global problem. From the first subproblem we can
compute the solution to the volume unknown uΩ

i

uΩ
i =

(
KΩ
i

)−1 (
f Ω
i − KΩ,Σ

i uΣ
i

)
, (3.23)(

KΣ,Σ
i + Si

)
uΣ
i = f Σ

i + gij − KΣ,Ω
i uΩ

i , (3.24)

in order to express the solution for uΣ
i in terms of the right-hand-sides

uΣ
i = (�i + Si)−1

(
gij + f Σ

i − KΣ,Ω
i

(
KΩ
i

)−1
f Ω
i

)
, �i := KΣ,Σ

i − KΣ,Ω
i

(
KΩ
i

)−1
KΩ,Σ
i . (3.25)

The same holds for the second subsystem. The matrices �i and �j are dense and we recognize local
Schur complements. It is well known that they are the discrete equivalent of Dirichlet-to-Neumann
mappings. Finally if we replace the solutions uΣ

i and uΣ
j into the interface equation (3.22), we

obtain the global algebraic interface problem(
I I− (Si + Sj)(�j + Sj)−1

I− (Si + Sj)(�i + Si)−1 I

)(
gij
gji

)
=
(
bij
bji

)
. (3.26)

with

bij = (Si + Sj)(�j + Sj)−1
(
f Σ
j − KΣ,Ω

j (KΩ
j )−1f Ω

j

)
,

bji = (Si + Sj)(�i + Si)−1
(
f Σ
i − KΣ,Ω

i (KΩ
i )−1f Ω

i

)
,

where we have supposed the matrices (�i +Si) and (�j +Sj) to be invertible. Problem (3.26) only
involves the degrees of freedom defined on the interfaces between subdomains, and is therefore of
a much smaller size than the global system. We recognize the discrete form of the global interface
system (3.6) resulting from the continuous non-overlapping Schwarz domain decomposition algo-
rithm. We see that we immediately solve the system if we choose Si = �j and Sj = �i. In practice
we shall use sparse approximations of the Schur complements, and build the solution of the in-
terface problem iteratively by local matrix-vector products. The implementation of the procedure
will be further explained in Chapter 5.

3.1.5 Well-posedness and convergence

In practice, the domain decomposition algorithm calls a direct solver for each volume subproblem
and an iterative solver for the interface problem. It follows that two properties must be satisfied
in order to ensure the global well-posedness of the domain decomposition method:

1. the local subproblems are well-posed,

2. the iterative method converges.

The well-posedness of the local Helmholtz-type subproblems is described by Fredholm’s theory.
We assume these subproblems to be of Fredholm type, or in other words we assume that we use
well-posed approximations of the DtN map for the non-reflecting boundary condition. We refer to
the discussion initiated in Section 1.4 in this regard.

The convergence of the iterative method is driven by the complex eigenvalues {λ1, · · · , λm} of
the matrix A. Since the iterative method can be seen as a fixed point algorithm, the convergence
is ensured if

lim
n→+∞

A(n) = 0, (3.27)

which is equivalent to say that the iterative method converges if and only if the spectral radius is
smaller than unity

ρ(A) < 1, ρ(A) := max{|λ1|, · · · , |λm|}. (3.28)
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Chapter 3. General formalism of non-overlapping Schwarz domain decomposition

In practice, the number of iterations and cost per iteration should be small in order to benefit from
the domain decomposition approach. For simple geometries it is possible to explicitly compute A
and analyze its convergence properties, as we will do in Chapter 4. In more complex situations
we can only numerically verify the clustering of the eigenvalues. In practice we will use Krylov
subspace methods instead of stationary iterative methods. Krylov methods are more costly per
iteration, but their convergence is often faster and more robust in the sense that they can handle
isolated eigenvalues whose modulus is larger than unity. The convergence of domain decomposition
for indefinite problems was first proved by Desprès with the simple operator Si = Sj = ω (or k0)
in the Helmholtz case [65]. The proof has then been extended to other governing equations for a
general class of symmetric positive definite second order operators [69]. It is worth mentioning that
although indefinite transmission operators do not guarantee the convergence of stationary iterative
methods in the general case, they may lead to a fast convergence of Krylov methods. We will
see that it is indeed the case for some transmission operators inspired from absorbing boundary
conditions. The convergence of the iterative method usually deteriorates when the mesh size h
is refined, and it has been show that h-uniform convergence can only be achieved with non-local
operators [157]. Further theory on convergence properties for a more general class of transmission
operators is tackled in [124, 157].

3.1.6 Optimal convergence scenario

We now discuss the ideal case scenario for the convergence of the iterative problem. Let us sup-
pose that we have access to the exact Dirichlet-to-Neumann map. Since it exactly represents the
radiation condition at infinity on a finite boundary, the local well-posedness of the subproblems is
automatically satisfied. If we split the domain into Ndom = 2 subdomains, we solve at the first
iteration the volume problem u0. The volume data is mapped onto the interface data through the
Lagrange multiplier g01. Since by definition g01 encodes the data from a non-reflecting boundary, it
will be cancelled by the second Lagrange multiplier g10 coming from the neighbouring subdomain
at the second iteration, when u1 is obtained. If we start with g(0) = (0, 0), the iterations are
updated thanks to the iteration operator (3.4) as follows(

g
(0)
01
g

(0)
10

)
=
(

0
0

)
−→

(
g

(1)
01
g

(1)
10

)
= i(S0 + S1)

(
u1
u0

)
−→

(
g

(2)
01
g

(2)
10

)
= i(S0 + S1)

(
u1 − u0
u0 − u1

)
. (3.29)

From the definition of the Robin interface condition (3.2), we have

i(S0 + S1)(u1 − u0) = iS0(u1 − u0) + iS1(u1 − u0)
= ∂n0u0 − ∂n0u1 + ∂n1u0 − ∂n1u1 = 0.

It follows that A2 = 0, that is the iteration operator is nilpotent of degree 2. With a Ndom
subdomains layered partition the same principle applies and convergence is ensured in N iterations.
More generally if one has access to the DtN map, the algorithm is expected to converge in a number
of iterations that equals the length of the partitioning connectivity graph from the source to the
outgoing boundary [152].

We can give another interpretation of the ideal case scenario in terms of the iteration operators.
From the definition of the iteration operator, the interface data g01 for the subdomain 0 is updated
through

g01 = T10g10.

By definition this gives

∂n0u0 + iS0u0 = T10 (∂n1u1 + iS1u1) .

Thanks to the continuity of the Robin trace, the iteration operator can be expressed as

T10 = ∂n0u0 + iS0u0
−∂n0u0 + iS1u0

. (3.30)
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3.2. Transmission conditions

When the analytical solution to the problem is known, we can compute the normal derivatives of
the solution and obtain the analytical DtN maps for u0 and u1 such that

∂n0u0 = −iΛ̃+u0, ∂n1u1 = iΛ̃−u1. (3.31)

This gives a general expression for the iteration operators

T10 = S0 − Λ̃+

S1 + Λ̃+
, T01 = S1 + Λ̃−

S0 − Λ̃−
. (3.32)

We deduce the eigenvalues of the iteration matrix A

λ = ±
√
T10T01. (3.33)

In general, the symbol of the exact DtN map depends continuously on the cotangent variable ξ,
which can be interpreted as a modal variable m in the physical space. Hence, the convergence of
the iterative method is guaranteed if

∀m, ρ(m) :=
∣∣∣√T m01 T m10

∣∣∣ < 1. (3.34)

We call this quantity the convergence radius [69]. We see that the convergence radius is zero if
the transmission operators are the DtN maps related to the complementary of each subdomain,
S0 = Λ̃+ and S1 = −Λ̃−. It exactly corresponds to the algebraic condition Si = �j , that is the
discrete interface condition must be the Schur complement of the neighbourhood subdomain. At
the discrete level, we can draw a parallel with the block LU factorization of the global problem
(3.19), which writes I 0 0

0 I 0
KΣ,Ω
i (KΩ

i )−1 KΣ,Ω
j (KΩ

j )−1 I


KΩ

i 0 0
0 KΩ

j 0
0 0 �


I 0 (KΩ

i )−1KΩ,Σ
i

0 I (KΩ
j )−1KΩ,Σ

j

0 0 I

 ,
where the matrix

� = �i + �j

is the global Schur complement matrix. If we were to solve the global problem by a direct method,
we would need to invert the subdomain matrices and the global Schur complement problem. We
see that the domain decomposition approach equipped with the ideal interface conditions does
the block LU factorization of the global problem. Because the DtN operator is pseudo-differential,
Schur complements are fully populated matrices and very costly to inverse. Domain decomposition
can be seen as an iterative solver for the Schur complement system, preconditioned by appropriate
interface conditions in order to maintain the sparsity of the finite element discretization. In other
words, the interface conditions that we develop build an approximate block LU factorization of
the global problem. A purely parallel algebraic approach would need to build and communicate
the full Schur complements for each subdomain, which becomes very costly and cannot scale in
parallel.

3.2 Transmission conditions

In this section we describe the different types of transmission operators that will be used in practical
computations, which are inspired from ABCs and PMLs. The main difference from non-reflecting
boundary conditions is that the interface boundary may be close to the sources, hence all modes
(propagating, evanescent and grazing) need to be handled efficiently. The convergence properties
of the following conditions are studied in Chapter 4 on simple geometries.
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Chapter 3. General formalism of non-overlapping Schwarz domain decomposition

Considering the various physical situations to be tackled, we consider a class of operators of
the form

S ′ = S ′λ1 + S ′λ0 , (3.35)

S ′λ1 = eiα/2s1

√
1 + (e−iα(1 +X1)− 1), X1 → 0, s1 ∈ C, (3.36)

S ′λ0 = s0(1 +X0)−1, X0 → 0, s0 ∈ C, (3.37)

where (X1, X0) are second order differential operators acting on the interface boundary Σij , and
(s1, s0) are parameters that depend on the problem under consideration. The conditions are chosen
to fit the operator representation of the first two symbols of the DtN map from Chapter 1, and the
subscripts λ1 and λ0 refer to respectively the contributions from the first and zeroth order symbols
of the DtN map. We use the notation S ′ instead of S because we will see that there is a slight
difference for the convected operator. The rotation of the branch cut is driven by the angle α in
order to damp evanescent modes. The use of S ′λ0

will be restricted to specific situations, and takes
in general a more complicated form if one would include the effects of a curved interface and/or
non-uniform mean flow.

3.2.1 Heterogeneous Helmholtz problems

The first situation is the heterogeneous Helmholtz problems from Sections 1.2.1 and 1.2.2. We
suppose that we use straight interfaces with the normals oriented along the x-direction, and that
there are density ρ0(y) and speed of sound c0(x, y) spatial variations. In these cases we have
Λ̃+ = −Λ̃− and can simply use Si = Sj . The introduced coefficients and operators take the form

X1 =
(
c−2

0 − 1
)

+ ρ−1
0 ∇Σ(ρ0∇Σ)

ω2 , s1 = ω, (3.38)

X0 = ∆Σ

ω2c−2
0
, s0 = −i∂x(c−2

0 )
4c−2

0
. (3.39)

For a non-straight interface the form of the operator S ′λ0
should be modified, and for a more general

varying density ρ(x, y) along the x-direction Si 6= Sj since Λ̃+ = −Λ̃− − iρ−1
0 ∂x(ρ0).

3.2.2 Convected Helmholtz problems

In the convected case, they are additional boundary terms on the interface due to the form of
the variational formulation. If we take the principal symbol of the DtN operator as transmission
condition

Si = 1
1−M2

ni

[
−Mnik0 + iMniMτi∇Σ +

√
k2

0 − 2ik0Mτi∇Σ + (1−M2)∆Σ

]
, (3.40)

and plug this expression into equation (3.15), we obtain the simplification on Σij

−
∫

Σij
gijvidS + i

∫
Σij

ρ0k0S
′
λ1uividS, (3.41)

such that we are left with a single square-root operator where s0 = 0, s1 = k0 and

X1 = −2iMτi

∇Σ
k0

+ (1−M2)∆Σ
k2

0
.

Moreover since τi and τj are of opposite signs, Mτi∇Σ and Mτj∇Σ have the same sign and

Si + Sj = 2
1−M2

n

[√
k2

0 − 2ik0Mτi∇Σ + (1−M2)∆Σ

]
, (3.42)
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such that the interface coupling reads

∀wij ∈ W?,

∫
Σij

gijwij + gjiwij − 2iρ0k0S
′
λ1uiwij dS = 0. (3.43)

In the case of a uniform flow and straight interface we have an exact representation of the DtN
operator, where the flow is fully taken into account through the operator X1. The supplementary
boundary terms from the variational formulation have been cancelled by the DtN operator. In
other words, the domain decomposition formulation for convected Helmholtz problems enjoys the
same structure as in the Helmholtz case. We may also incorporate spatial variations of ρ0 and c0,
but such conditions will not be tested and are left for a future work.

3.2.3 Taylor-based approximation

Low order Taylor approximations have the advantage of a cheap numerical cost, since its imple-
mentation only requires the pre-existing mass and stiffness finite element matrices. Second order
Taylor approximations for the square-root and inverse operators write

√
1 +X = 1 + X

2 +O(X2) (3.44)

(1 +X)−1 = 1−X +O(X2). (3.45)

When adding the branch-cut rotation α, we obtain the approximation

S ′λ1 ≈ s1 cos(α/2) + s1
e−iα/2

2 X1. (3.46)

Adding the contribution from the zeroth-order operator leads to

S ′λ1 + S ′λ0 ≈ (s1 cos(α/2) + s0) + s1

(
e−iα/2

2 X1 − s0X0

)
. (3.47)

The implementation is done by using Green’s theorem on Σij∫
Σij

∆Σuivi dS = −
∫

Σij
∇Σui∇Σvi dS +

∫
C
∂nuivi dC, (3.48)

where a cross-point term appears. Because domain decomposition is a weak coupling, there is no
need to explicitly treat the corner term. An appropriate cross-point treatment is however expected
to accelerate the convergence since it will enhance the quality of the DtN approximation [146]. For
a 90◦ corner we will try to use the corner condition (1.146).

3.2.4 Padé-based approximation

Padé-based transmission conditions approximate the square-root operator by polynomial rational
operators. A set of auxiliary functions has to be prescribed on the interface. The goal of the
approach is to improve the design of the transmission operator at the price of a small additional
cost for the local subproblems. In the Helmholtz case they lead to faster convergence than Taylor-
based conditions for simple interface geometries, see e.g [48]. The DDM implementation is very
close to the one used for the ABCs. If we use the Padé coefficients from equation (1.48), the
integral on the interface from the domain decomposition weak formulation (3.15) takes the form

∀vi ∈ V, −
∫

Σij
gijvidS + ieiα/2(2N + 1)

∫
Σij

ρ0k0uivi dS + 2i eiα/2

2N + 1

N∑
`=1

∫
Σij

ρ0k0c`ϕi,`vi dS,

(3.49)

97



Chapter 3. General formalism of non-overlapping Schwarz domain decomposition

for each auxiliary field ϕi,` ∈ H1(Σij), ` ∈ {1 · · ·N}, and we have used the identity

N∑
`=1

tan2
(

`π

2N + 1

)
= N(2N + 1).

The auxiliary fields are coupled through

∀` ∈ {1 · · ·N},
∫

Σij
eiα(c` + 1)uivi,`dS =

∫
Σij

(eiαc` + 1)ϕ`ivi,` dS +
∫

Σij
X1ϕi,`vi,` dS, (3.50)

for all tests functions vi,` ∈ H1(Σij), ` ∈ {1 · · ·N}. The interface coupling reads

∫
Σij

[
gij + gji − 2ieiα/2(2N + 1)ρ0k0ui − 4i eiα/2

2N + 1

N∑
`=1

∫
Σij

ρ0k0c`ϕi,`

]
wij dS = 0, (3.51)

for all wij ∈ W?. The integral term in (3.50) involves a Laplace-Beltrami operator, and the
application of Green’s formula leads again to a cross-point term. Contrary to the second-order
Taylor condition, the cross-point term is defined on the auxiliary fields. This impacts the definition
of the DDM problem if a Padé condition is set as outgoing boundary condition [146].

For the additional implementation of the operator S ′λ0
, we simply add another auxiliary field

ψi and couples it to the DDM formulation following the same principle.

3.2.5 Cross-point treatment

We have not yet addressed how to modify the transmission operators in the presence of cross-
points. We mainly follow the strategies described in [147], and refer to the article for additional
details. We distinguish two categories of cross-points:

1. boundary cross-points, where the outgoing boundary intersects a partition interface,

2. interior cross-points, where two interfaces intersect.

In three dimensions cross-edges also appear and the situation becomes much more technical. We
only focus on the two-dimensional case, as illustrated in Figure 3.2.

Ω2Ω1

Ω3Ω4

Γ∞ Σ Interface cross-point
Boundary cross-point
Corner point

Figure 3.2: Terminology for domain decomposition cross-points, taken from [146].

For boundary cross-points, a compatibility condition may be imposed at the intersection be-
tween the interface and the outgoing boundary Γ∞. By compatibility we mean that that if a
boundary condition is imposed on Γ∞, the same condition is imposed on the boundary cross-point.
For example if for i ∈ D we have

∂nui + Λ̃+ui = 0, on Γ∞i ,

we may set on the boundary cross-point

∂ngij + Sigij = 0, on Γ∞i ∩ Σij , ∀j ∈ Di.

By doing so we expect to slightly reduce the number of iterations. However such a cross-point
condition is not a strict requirement because it does not affect the consistency of the global problem.
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3.2. Transmission conditions

The situation becomes critical if auxiliary fields are used for the implementation of Λ̃+ on the
outgoing boundary. In that case we must define auxiliary interface unknowns gCij on the boundary
cross-points to preserve the continuity of the auxiliary fields on Γ∞. Otherwise we cannot recover
the solution from the original problem. One strategy is to use the same corner treatment for the
transmission operator Si and the outgoing ABC Λ̃+.

In the second case of interface cross-points, the cross-point treatment is directly linked to the
quality of the ABC, and is expected to accelerate the iterative solver convergence. One idea is
simply to use the ABC corner treatment on the interior cross-point. Additional auxiliary interior
cross-points unknowns gCij may be defined to this end. In practice it is technically involved to find
an efficient cross-point treatment. It has to be very precise in order to obtain a noticeable decrease
of the number of iterations. Moreover it raises theoretical questions on the convergence of the
domain decomposition algorithm. Recent advances on these issues can be found in [55, 66] .

Another possibility that is worth mentioning is to set a PML as outgoing boundary. If for
example a homogeneous Neumann boundary condition is satisfied on the exterior PML boundary,
the global problem is consistent with the interface problem because by default a homogeneous
Neumann boundary condition is also set on the boundary cross-points. A question that arises next
is how to modify the transmission operators when the interface crosses the PML. There are two
points of views:

1. since the wave is evanescent in the PML layer, the branch-cut rotation involved in the trans-
mission operators may directly handle the PML evanescent waves. Numerical tests from
Section 4.2.2 suggest that this simple strategy is satisfying,

2. study the modified DtN operator in the PML through microlocal analysis as done in Chapter
1, and derive well-suited transmission operators. This approach is expected to be more
precise but requires further technical development.

A concrete application of some cross-point strategies for a convected Helmholtz problem are
proposed in Sections 4.2.2 and 4.2.3.

3.2.6 PML transmission conditions

There are different strategies to handle the PML as a transmission operator. We will use the
recent strategy proposed in [166], where a set of Lagrange multipliers We denote these Lagrange
multipliers by γpml. Without domain decomposition, the standard variational formulation in the
Helmholtz case is extended in the global domain Ω = Ωphy ∪ Ωpml with Lagrange multipliers as

κ(u, v) + c(γpml, v) = f(v), (3.52)
c(u, µ) = 0, (3.53)

where c(·, ·) is sesquilinear form on the PML interface Γpml, which explicitly enforces the continuity
between the physical uphy and PML upml volumic solutions

c(u, µ) =
∫

Γpml
(uphy − upml)µ dΓpml.

The approach is flexible but introduces a saddle point problem. PML-Lagrange multipliers may
indeed be defined on the same geometrical entity, leading an over-determined problem. The well-
posedness of the formulation depends on the inf-sup stability condition [45]. Different strategies to
circumvent this problem are tackled in [166]. We will use the approach referred to as “continuous
discretization”, where the same basis is used to discretize u and γpml, and additional constraints
are imposed in the presence of cross-points. For a given DDM subdomain Ωi (which may contain a
PML), the transmission operator is encoded through the PML Neumann trace as follows ∀j ∈ Di

κ(ui, vi) + c(γpml,i, v) = f(vi) + 〈gij , vi〉V (3.54)
c(ui, µi) = 0 (3.55)

〈gji, wij〉W − 2i〈γpml,i, wij〉W = −〈gij , wij〉W , (3.56)
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Chapter 3. General formalism of non-overlapping Schwarz domain decomposition

where we have set Si := γpml,i. Such an approach works well for the Helmholtz case because
the transmission operators are symmetric. For the extension to flow acoustics, the transmission
operators are symmetric but we can modify the definition of the PML Lagrange multipliers γpml,i
and transmission variables gij as follows

ρ0(1−M2
ni)
(
∂niui + i

[
γpml,i −

k0Mni

1−M2
ni

ui

])
= gij , on Γpml,i, ∀j ∈ Di,

such as γpml,i = S ′λ1
now encodes a symmetric square-root operator. Since we have Mni = −Mnj

we can sum the transmission variables gij and gji such as the interface coupling is the same as in
the Helmholtz case

〈gji, wij〉W − 2i〈γpml,i, wij〉W = −〈gij , wij〉W .

The formulation is interesting from an implementation point of view. Starting from the Helmholtz
case, one only needs to modify the volumic weak formulation k(·, ·) since the boundary terms from
(3.15) cancel. However the symmetry from the square root operator is lost when the tangential
component to the mean flow is non-zero Mτ 6= 0, and we cannot apply the same approach. This
has been confirmed by numerical experiments, where we loose the convergence of the decomposed
solution towards the mono-domain solution. This limitation is currently under investigation.

3.3 Limitations and conclusion
We have seen that the optimized Schwarz domain decomposition approach can be interpreted as
an efficient iterative solver for the global Schur complement system set on the Robin traces. The
efficiency comes from an appropriate choice of transmission operators, which are at the discrete
level sparse approximations of the local Schur complements. We have extended the approach to
time-harmonic problems in the presence of medium heterogeneities and non-uniform mean flow,
and proposed different methods to adapt the transmission operators in this context. In this chapter
we only tackled the problem of local interactions between subdomains, thus limiting the scaling
of our approach with the number of subdomains. Global information exchange is of high interest
and may be achieved thanks to coarse space techniques [47, 174]. Sweeping preconditioners based
on DtN approximations and have been studied in this regard [62, 187].
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Chapter 4

Application to academic acoustics and
flow acoustics problems

In this chapter we apply the non-overlapping domain decomposition method to several academic
examples. In the first section we perform numerical experiments on a two-dimensional waveguide
partitioned in layers, and assess the efficiency of local representations of the DtN map as
transmission conditions. Scalability tests with respect to the frequency, Mach number and
number of subdomains are reported. Three configurations are studied: the longitudinal
heterogenous problem from Section 1.2.1, the transverse heterogeneous problem from Section
1.2.2 and the convected problem from Section 1.3.4.1. The second section analyzes the radiation
of a point source in a uniform mean flow as done in Section 1.3.4.3. We evaluate the impact of
different partition shapes on the iterative solver convergence, and test the influence of some
cross-point treatments. Finally we select the transmission condition that will be used for
industrial computations. The examples are available in GmshDDM, in which additional examples
and situations are provided for further testing.
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4.1. Waveguide problems

4.1 Waveguide problems
Let us consider a waveguide geometry partitioned in Ndom equally distributed subdomains in [0, L],
as shown in Figure 4.1. We investigate the performance of different transmission operators for i)
the heterogeneous Helmholtz problem with a longitudinal variation of the speed of sound, ii) the
transverse heterogeneous Helmholtz problem with a transverse variation of the speed of sound and
density, iii) the convected Helmholtz problem for a uniform mean flow. For each case, we compute
the theoretical convergence factor and solve the interface problem (I−A)g = f by a Jacobi and/or
GMRES iterative method.

∂nu = 0 Γ2

Γ1
∂nu = g

Γ∞
(DtN or PML)

0

H

L x

y

Ω0

Σ01

Ω1

Σ12

Ω2

Σ23

Ω3

Figure 4.1: Layered domain decomposition partitioning of a rectangular waveguide geometry
with Ndom = 4 subdomains. An input mode is enforced on Γ1.

4.1.1 Longitudinal variation

Let us recall the heterogeneous Helmholtz equation with a longitudinal variation of the speed of
sound

∂2
xu+ ∂2

yu+ k2
0(x)u = 0, k0(x) = ω/c0(x), c−2

0 (x) = ax+ b.

We specify the problem by the same boundary conditions as in Section 1.2.1.3. In particular we fix
for the moment the input mode, characterized by the integer n, such that we can use the analytical
DtN as outgoing boundary condition, and explicitly compute the transmission operators Tij and
Tji. Here we have Λ̃+ = −Λ̃−, and we set Si = Sj yielding

Tij = Tji = Si − Λ̃+

Si + Λ̃+
,

and the convergence radius for each Fourier mode m is

ρ(m,x) =
∣∣∣√T mij T mji ∣∣∣ .

We see that the convergence radius actually corresponds to a reflection coefficient once applied
on the interface Σij , and here depends on the x-coordinate. We study the performance of the
following transmission operators, following the ABCs construction from Section 1.3.3

• Taylor-based: ABCT0,α
1 , ABCT2,α

1 and ABCT2,α
2 ,

• Padé-based: ABCN,α1 and ABCN,α2 with ε = εopt.

We use the speed of sound profile c−2
0 (x) = 5x + 0.1 and focus on two interfaces positions xΣ =

{0.1, 0.5}. We set the frequency ω = 30 and plot the theoretical convergence radius as a function
of the Fourier mode m in Figure 4.2. We can find the critical modal value, where the evanescent
to propagative transition occurs, thanks to the turning point relation mt = ω/

√
axΣ + b, yielding

mt ≈ {23.2, 48.4} for respectively xΣ = {0.1, 0.5}. As a result, the value of εopt (see equation
(1.57)) for the condition ABCN,α2 depends on the location of the interface. It roughly varies as an
inverse function with xΣ.
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Figure 4.2: Theoretical convergence radius for two interface locations xΣ with c−2
0 (x) = 5x +

0.1, ω = 30. The black dashed line shows the turning point mt.

There is little improvement of ABCT2,−π/2
2 over ABCT2,−π/2

1 . The Taylor expansion used for
the symbol λ+

0 is not robust enough to compensate the loss of accuracy associated to λ+
1 (with

the rotation branch-cut α = −π/2) in the propagative regime. The improvement of ABCT2,0
2

over ABCT2,0
1 is only relevant when α = 0 (not shown here). Regarding Padé-based conditions,

ABCN,α2 has an overall better convergence radius than ABCN,α1 . The convergence radius is robust
with respect to α and is reduced at mt thanks to εopt. The choice ε = 0 results in a convergence
radius greater than one at that point, and may lead convergence issues.

We solve the waveguide domain decomposition problem with Ndom = 4 subdomains. We use
the Jacobi solver and impose the single mode n = 5 at the frequency ω = 30. The waveguide
length and height are respectively L = 1, H = 0.5. We use finite element shape functions of order
p = 4 and choose the mesh size such that we have a minimum of dλ = 12 degrees of freedom for
the shortest wavelength where

dλ = 2πp
ωh max

Ω
(c−1

0 )
, max

Ω
(c−1

0 ) =
√
aL+ b.

We plot the numerical eigenvalues of the interface problem in Figure 4.3a and report the residual
history in Figure 4.3b, for α = −π/2 and α = 0.
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(a) Numerical eigenvalues
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(b) Residual history - Jacobi solver

Figure 4.3: Eigenvalues distribution in the complex plane and interface residual history for the
Jacobi solver with Ndom = 4, n = 5, ω = 30.

As in the homogeneous Helmholtz case, a better representation of the DtN map gives a better
clustering of the eigenvalues. There is little difference in the clustering between ABCN,α1 and
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ABCN,α2 . This is because most of the clustering originates from high order evanescent modes, and
the damping of such modes is well handled for both conditions as m→∞ according to Figure 4.2.
We have observed that the numerical eigenvalues are more spread out than the theoretical ones,
which is due to the number of subdomains and finite element discretization, see e.g [187] for more
details.

Since we have injected a single propagative mode, no evanescent modes hit the interface and
the choice α = 0 results in a faster or equal speed of convergence for the Jacobi method. With
α = −π/2 some eigenvalues may lie out of the unit circle. For example the Jacobi solver does
not converge with the condition ABCT0,−π/2

1 . The choice for α is less sensitive for Padé-based
conditions because we have selected a sufficiently high number of auxiliary fields, here N = 6.
It is interesting to compute the average L2-error with respect to the analytical solution over all
subdomains after the third iteration:

ABCT0,−π/2
1 : 37 %, ABCT2,−π/2

1 : 13 %, ABC6,−π/2
1 : 3.6 %, ABC6,−π/2

2 : 0.57 %,

such that we retrieve the ABC performance hierarchy. The condition ABCN,α2 has the lowest
L2-error when the mode hits the outgoing boundary.

Until now we have chosen a very specific situation where a single mode propagates, and the
GMRES solver converges for all conditions in 6 iterations, that is when the mode has traveled
one forward and backward sweep. To be more realistic we consider a multi-modal input boundary
condition composed by the sum of the first 21 modes with amplitude set to unity

g(0, y) =
20∑
n=0

cos
(
nπ

H

)
, y ∈ [0, H],

and set a large PML (as validated in Section 1.2.2.3) as outgoing boundary condition. For simplicity
we do not take into account the PML into the partitioning, such as the last subdomain is much
larger than the other ones. We set α = −π/4, vary either ω or Ndom, and report scalability results
in Table 4.1. We obtain the DDM performance hierarchy:

ABCN,α2 > ABCN,α1 > ABCT2,α
1 > ABCT0,α

1 .

The improvement of ABCN,α2 over ABCN,α1 is visible, but is limited by the gain in the DtN approx-
imation and smoothed by the GMRES solver. In short we need approximately 3 sweeps to reach
convergence with ABCN,α2 .

Table 4.1: Number of GMRES (Jacobi) iterations for a stopping criterion at 10−6 on the interface
residual when varying the frequency (left, Ndom = 8) and number of subdomains (right, ω = 40)
for dλ = 12 and α = −π/4 (dnc: did not converge).

ω ABCT0,α
1 ABCT2,α

1 ABC6,α
1 ABC6,α

2
20 69 (dnc) 50 (109) 31 (45) 28 (35)
40 76 (dnc) 51 (87) 34 (37) 24 (27)
80 88 (dnc) 55 (97) 29 (33) 22 (23)
160 106 (dnc) 59 (99) 26 (31) 21 (21)

Ndom ABCT0,α
1 ABCT2,α

1 ABC6,α
1 ABC6,α

2
2 12 (19) 9 (9) 5 (5) 3 (4)
4 37 (dnc) 23 (31) 14 (15) 10 (11)
8 76 (dnc) 51 (87) 34 (37) 24 (27)
16 138 (dnc) 98 (319) 62 (91) 49 (75)

4.1.2 Transverse variation

The second waveguide problem with a transverse variation of the speed of sound c0(x, y) = c0(y)
and density ρ0(x, y) = ρ0(y) is governed by the equation

∂2
xu+ ρ−1

0 ∂y(ρ0∂y)u+ k2
0u = 0, k0 = ω/c0.

We choose a Gaussian speed of sound and density profile

c0(y) = 1.25
(
1− 0.4e−32(y−H/2)2)

, ρ0(y) = c2
0(y),
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and set L = 1, H = 0.5. We compare once again the performance of different ABCs as DDM
transmission operators. They correspond to the approximations of the square root operators from
equations (1.85) and (1.88)

• Taylor-based: ABCT0,α, ABCT2,α
k0

, ABCT2,α
ω,S ,

• Padé-based: ABCN,αk0
, ABCN,αω,S .

We know from the experiments from Section 1.2.2 in what extend these operators approximate the
DtN map. The convergence factor now depends on both the Fourier mode m and the y-coordinate.
To understand the impact of the heterogeneity on the convergence radius, we plot in Figure 4.4 the
convergence radii at y = argmax

y∈[0,H]
|∂y(ρ0)| ≈ 0.35, and y = 0.5 where ∂y(ρ0) = 0. At y = 0.35 the

convergence radius at mt is small for ABCN,αω,S . This is because the total symbol of this operator
incorporates an imaginary part (see equation (1.75)), yielding a natural damping at this point.
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Figure 4.4: Theoretical convergence radius for two y-positions at ω = 50. The black dashed
lines highlight mt.
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Figure 4.5: Corresponding theoretical eigenvalues from Figure 4.4 for two y-positions at ω = 50.

It is interesting to look at the theoretical eigenvalues. At y = 0.5, there is a good clustering
for the condition ABCN,αk0

but does not occur towards the point (1, 0). The condition ABCN,αω,S cor-
rects this mismatch and shifts the clustering towards (1, 0). The same observation holds regarding
ABCT2,α

k0
and ABCT2,α

ω,S . At y = 0.35, the heterogeneity is mainly driven by the density variation.
There are some poorly clustered isolated eigenvalues for ABCN,αk0

, which may be associated to graz-
ing modes. The condition ABCN,αω,S provides a better clustering. In short, the family of conditions
ABCN,αω,S seems to be the most appropriate.
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We next solve the domain decomposition problem with the input boundary condition

g = cos
(
nπ

H

)
, n ∈ N,

with n = 4 and use a large PML as outgoing boundary condition. We set α = −π/4 and report
scalability results in Table 4.2. We also solve the same problem without domain decomposition
such that we can measure the relative “mono-domain” L2-error in each subdomain. After the third
iteration, the L2-error is 6.0% for the condition ABCN,αk0

and 3.4× 10−4% for ABCN,αω,S .
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Figure 4.6: GMRES interface residual history at ω = 40, Ndom = 4 and dλ = 12.

The residual history in Figure 4.6 highlights the quick convergence of ABCN,αω,S . If one increases
the number of auxiliary fields N and numerical resolution dλ, ABCN,αω,S converges in Ndom iterations.
This happens for example with dλ = 24 and N = 12. It means that we have found the exact block
LU factorization for this problem at the continuous level. The required number of auxiliary fields
to attain such precision depends on the complexity of the speed of sound and density profiles. We
have not reported the scalability results for the condition ABCT2,α

ω,S . The simulations show that it
outgoes ABCT2,α

k0
by a few iterations, and has the same general behaviour.

Table 4.2: Number of GMRES (Jacobi) iterations for a stopping criterion at 10−6 on the interface
residual when changing the frequency (left, Ndom = 4) and number of subdomains (right, ω = 40)
for dλ = 12 and α = −π/4. (dnc: did not converge)

ω ABCT0,α
k0

ABCT2,α
k0

ABC6,α
k0

ABC6,α
ω,S

20 38 (dnc) 25 (55) 16 (29) 7 (9)
40 43 (dnc) 28 (81) 21 (27) 9 (9)
80 52 (dnc) 33 (189) 19 (21) 9 (9)
160 54 (dnc) 34 (dnc) 17 (21) 9 (9)

Ndom ABCT0,α
k0

ABCT2,α
k0

ABC6,α
k0

ABC6,α
ω,S

2 28 (126) 19 (50) 9 (12) 3 (3)
4 43 (dnc) 28 (81) 21 (27) 9 (9)
8 74 (dnc) 55 (dnc) 46 (67) 14 (21)
16 138 (dnc) 106 (dnc) 85 (dnc) 45 (51)

4.1.3 Convected propagation

The last waveguide situation is the convected Helmholtz problem with uniform mean flow. We
focus on the impact of the mean flow on the convergence of domain decomposition with i) ABC
based transmission operators, and ii) PML based transmission operators.

4.1.3.1 ABC transmission operators

When the mean flow is uniform and the interface is straight, one has access to the analytical
DtN map. We compute the convergence radius for several flow configurations and the following
conditions,

• Taylor-based: ABCT0,α, ABCT2,α,

• Padé-based: ABCN,α,
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which are based on the square-root approximation of the DtN principal symbol and matches
here the total symbol, see equation (1.104). As transmission conditions we aim to use a good
approximation of Si ≈ Λ̃+ and Sj ≈ −Λ̃−. They account for the orientation of the mean flow with
respect to the interface. If we denote again by √µ the radicand of the square-root in equation
(1.104) and µN,α its approximation by Taylor or Padé approximants, the convergence radius as
defined in (3.34) writes explicitly

ρ =

∣∣∣∣∣∣
(
µN,α −√µ

)
−2Mxk0 +

(
µN,α +√µ

)
∣∣∣∣∣∣ , (4.1)

and we see that whenever Mx > 0 this quantity blows up for the Fourier mode m = ω/β, that is
the transition between a forward and backward propagative mode. Hence we expect convergence
difficulties in the inverse upstream regime.
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Figure 4.7: Theoretical convergence radius for two mean flow configurations at ω = 30. The
black dashed line highlights m = ω/β and the red line m = ω.

We see in Figure 4.7 for a fixed frequency how the mean flow direction impacts the convergence
radius. When Mx > 0 we can identify the inverse upstream regime in the modal regime m ∈
[ω, ω/β]. The convergence is problematic for inverse upstream modes with Taylor based conditions
because they do not perform well as ABCs, especially when α = −π/2 (see Section 1.3.4.1). The
convergence radius for ABCT2,α behaves better in the propagative regime for a lower value of α, but
still takes local values greater than 1 when m ≈ ω, that is in the propagative to inverse upstream
transition. It follows that Taylor based transmission conditions will have difficulties to converge
with the Jacobi solver.

We run a first numerical test for Mx = 0.8, ω = 30, Ndom = 4, the single mode n = 3 and the
Jacobi solver. The analytical DtN is used as outgoing boundary condition. The mode is inverse
upstream and we confirm that only a sufficiently precise approximation of the square-root operator
(such as Padé-based ABCs) are able to converge in this case. If we switch the sign of the mean flow
to Mx = −0.8 the second order Taylor condition has better convergence properties, as suggested
by the theoretical convergence radius. We can say that the quality of the DtN approximation is of
utmost importance when inverse upstream modes are present.

We turn to a multi-modal situation as done in Section 4.1.1. We use the first 21 modes as input
boundary condition and use a PML as outgoing boundary. We set α = −π/4 and run scalability
tests with respect to ω and Ndom, and report the results in Table 4.3 forMx = 0.8 and in Table 4.4
for Mx = −0.8 while fixing the numerical discretization to dλ = 12 for the upstream wave, where

dλ = 2πp
ωh

(1− |Mx|).

The finite element order is fixed to p = 4.
The conclusion is similar to the previous sections. Using a better ABC as transmission condition

reduces the number of iterations and the average L2-error. The Padé condition converges in Ndom
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4.1. Waveguide problems

Table 4.3: Number of GMRES (Jacobi) iterations atMx = 0.8 for a stopping criterion at 10−6 on
the interface residual when changing the frequency (left, Ndom = 4) and number of subdomains
(right, ω = 40) for dλ = 12 and α = −π/4. (dnc: did not converge)

ω ABCT0,α ABCT2,α ABC4,α ABC8,α

20 46 (dnc) 38 (dnc) 11 (17) 7 (9)
40 77 (dnc) 62 (dnc) 11 (15) 9 (9)
80 148 (dnc) 101 (dnc) 13 (15) 7 (9)
160 169 (dnc) 71 (dnc) 9 (9) 3 (3)

Ndom ABCT0,α ABCT2,α ABC4,α ABC8,α

2 24 (dnc) 22 (dnc) 3 (5) 3 (3)
4 77 (dnc) 62 (dnc) 11 (15) 9 (9)
8 178 (dnc) 125 (dnc) 25 (49) 11 (21)
16 >300 (dnc) 223 (dnc) 49 (121) 20 (45)

Table 4.4: Number of GMRES (Jacobi) iterations at Mx = −0.8 for a stopping criterion at
10−6 on the interface residual when changing the frequency (left, Ndom = 4) and number of
subdomains (right, ω = 40) for dλ = 12 and α = −π/4. (dnc: did not converge)

ω ABCT0,α ABCT2,α ABC4,α ABC8,α

20 32 (dnc) 22 (165) 9 (13) 7 (9)
40 36 (dnc) 23 (38) 9 (9) 6 (9)
80 45 (dnc) 25 (48) 9 (9) 6 (6)
160 31 (dnc) 17 (17) 3 (3) 3 (3)

Ndom ABCT0,α ABCT2,α ABC4,α ABC8,α

2 11 (19) 7 (12) 3 (3) 3 (3)
4 36 (dnc) 23 (38) 9 (9) 6 (9)
8 84 (dnc) 50 (dnc) 21 (33) 11 (21)
16 173 (dnc) 101 (dnc) 45 (71) 20 (45)

iterations if the number of auxiliary fields is large enough and the numerical solution sufficiently
well-resolved.

4.1.3.2 PML transmission operators

We perform the same tests with the PML based transmission conditions. Note that since Lagrange
multipliers are introduced to encode the Neumann trace on the interface, the initial problem
is slightly different and we do not directly compare the performance of PML against ABCs as
transmission condition. The number of PML layers used for the transmission operator is denoted
Npml, and the width of a single PML layer is set to the meshsize h. It means that the width of the
PMLs vary with the frequency since we keep constant dλ = 12 and p = 4. We use the hyperbolic
absorbing profile with σ0 = 4β2 as suggested in Appendix B. We report the residual history for
the GMRES solver when varying Npml for Mx = 0.8, ω = 40, Ndom = 4 in Figure 4.8.
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Figure 4.8: Residual history for the stable (plain) and unstable (dotted) PML used as transmis-
sion condition with a GMRES solver for Ndom = 4, ω = 40.

We observe that the method converges in a few iterations, since the PML is a very good
approximation of the DtN map. It is also interesting to compare the method with the classical
PML formulation, but only as transmission condition. We still use the Lorentz PML as outgoing
boundary for numerical efficiency and robustness. We observe that the classical PML transmission
operator converges at a slower rate than the stable PML with a GMRES solver. When using a
Jacobi solver, the classical PML operator has only converged in the case Mx = −0.8, Npml = 8.

Finally we perform scalability tests with respect to ω and Ndom. We conclude that the PML
transmission operator has approximately the same performance as the Padé transmission operator
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with a few auxiliary fields, which makes the method very attractive in view of more complex
situations.

Table 4.5: Number of GMRES (Jacobi) iterations atM = 0.8 for a stopping criterion at 10−6 on
the interface residual when changing the frequency (left, Ndom = 4) and number of subdomains
(right, ω = 40) for dλ = 12. (dnc: did not converge)

ω Npml = 1 Npml = 4
20 14 (35) 7 (10)
40 13 (33) 7 (10)
80 13 (32) 7 (9)
160 9 (10) 5 (7)

Ndom Npml = 1 Npml = 4
2 9 (30) 5 (7)
4 13 (33) 7 (10)
8 23 (38) 12 (19)
16 45 (51) 20 (41)

4.2 Point source in free-field

We now turn to the example of the free field radiation of a point source in a uniform mean flow,
as described in Sections 1.3.4.3 and 1.3.4.4. We discuss the influence of the partitioning on the
convergence, and analyze the performance of various transmission conditions with and without
cross-points treatment.

4.2.1 Circle partition

The first situation of interest is a circular domain with a circular partitioning, and is the direct
extension to the waveguide problem. There is no interior nor boundary cross-points in this case,
but the mean flow is of arbitrary orientation such that Mτ 6= 0. Before going into numerical
tests, we present in Figure 4.9 the impact of the mean flow orientation on the convergence radius
for a straight interface. It gives an idea, although approximate, of the transmission conditions
performance in the circular case. We remark that when θ 6= 0, the tangential component of the
mean flow enhances the condition ABCT2,α especially in the propagative regime (low order spatial
modes). At θ = 0 and θ = π we retrieve the results from Figure 4.7.
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Figure 4.9: Theoretical convergence radius when varying the flow angle θ at ω = 30 andM = 0.8.

For the numerical tests, we set a point source at xs = (0, 0)T and fix the external radius R = 1.
We use a PML as outgoing boundary condition of width 4h, where h is the typical mesh size. The
mesh is refined by a factor 3 around the point source. The mesh size and polynomial order are
selected such as the mesh density is dλ = 8 for the shortest wavelength. The polynomial order is
increased steadily with M . Figure 4.10 shows the domain decomposition solutions after the 4th
iteration of the GMRES solver for the conditions ABCT2,α and ABC4,α with Ndom = 5 at M =
0.9, θ = π/4. The mono-domain L2-error is reported in the restricted domain Ω2h = Ω\B2h(xs).
We immediately see the good accuracy of ABC4,α after a single forward sweep. We extract the
numerical eigenvalues for a smaller size problem (M = 0.7, Ndom = 2) and report a typical interface
residual history for the GMRES and Jacobi solver with Ndom = 5 in Figure 4.11.
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4.2. Point source in free-field

(a) ABC4,−π/4, EL2 = 1.7% (b) ABCT2,−π/4, EL2 = 24%

Figure 4.10: Numerical solution after 4 iterations of the GMRES solver. M = 0.9, θ = π/4, p =
9, dλ = 8. The black lines highlight the partitioning. The L2-error between the PML and
analytical solution is 0.8%.
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(b) Residual history with Ndom = 5

Figure 4.11: Distribution of the numerical eigenvalues in the complex plane and residual history
for M = 0.7, θ = π/4, p = 6, dλ = 8. Plain lines: GMRES, Dotted lines: Jacobi.

We further assess the scalability of the transmission conditions with respect to the Mach number
and the number of subdomains in Figure 4.12. While the convergence of low order conditions
deteriorates at high Mach numbers, Padé conditions are more robust and can almost maintain
a constant number of iterations up to M = 0.95, for which there is a factor 39 between the
shortest and largest wavelength. As expected, the number of iterations increases with the number
of subdomains at a rate of O(Ndom). Further tests show that Padé conditions are little sensitive
to dλ and ω, in the same fashion as in the Helmholtz case [48].
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Figure 4.12: Number of GMRES iterations to reach an interface residual of 10−6 as a function
of the Mach number (left) for Ndom = 5 and the number of subdomains (right) for M = 0.7,
using the color convention from Figure 4.11.

4.2.2 Square partition

We propose to run the same test case but with a square exterior boundary and partitioning. A
PML of size 4h is set as outgoing boundary condition. We keep the simulation parameters from the
previous case, namely dλ = 8 and ω = 6π. An illustration of the converged solution for M = 0.9 is
shown in Figure 4.13a. The domain decomposition problem is solved with the GMRES algorithm
for different transmission operators. We show a typical interface residual history in Figure 4.13b
for a fixed number of subdomains Ndom = 3× 3 and different ABCs as transmission conditions. In
particular we assess the efficiency of the Padé-based operator equipped with a Sommerfeld cross-
point treatment on the interior cross-points. The Sommerfeld cross-point treatment consists of
applying the relation

∂nϕ` = −ik0ϕ`, ∀` ∈ [1, N ] on P.

for each interior cross-point P . Note that this treatment does not introduce any additional numer-
ical cost compared to the Padé condition without cross-points. We neglect boundary cross-points
since a homogeneous Neumann boundary condition is imposed by default at the end of the PML.
The resulting condition with the Sommerfeld corner treatment is denoted ABCN,αS . We note a slight
improvement in the convergence when the cross-point treatment is activated, which is consistent
with the interpretation of the transmission condition as an ABC. Even if the condition ABCN,α
does not perform well as an ABC in the presence of corners, it results in reasonable convergence
properties when used as transmission condition. We have observed no difference when treating the
corners for the condition ABCT2,α, and do not report the results here. A careful analysis of the
corner treatment should be conducted as for example initiated in [66], in particular regarding the
coercivity of the transmission operator.

As in the circular case, we show in Figure 4.14 how the method scales numerically with respect
to the Mach number and the number of subdomains. The robustness with the Mach number is
similar to the circular case, but is nevertheless slightly deteriorated due to the approximate cross-
points treatment. With ideal transmission conditions, the number of iterations would increase as
O(
√
Ndom), which corresponds to the increase in the length of the connectivity graph from the

source to the outgoing boundary. In practice we found a higher numerical rate, and a rough fitting
of our experiments gives O(N0.625

dom ).
In the present situation, the partitioning is intersecting the PML domain. We have observed

numerically that all the presented conditions converge towards the mono-domain solution, and the
associated error in the L2-norm has the order of the stopping criterion for the relative residual.
This can be understood because the original and decomposed problems are compatible at the
continuous level. We further run some tests where the exterior boundary is set to be a high-order
boundary condition instead of a PML. Auxiliary fields are set on the outgoing boundary, and
boundary cross-points must be treated to recover the solution from the original problem [146]. We
compare the performance of two-conditions:
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4.2. Point source in free-field

(a) Converged solution at M = 0.9.
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Figure 4.13: Left: Converged numerical solution. The black lines highlight the partitioning.
The L2-error between the PML and analytical solution is 1.6%. Right: Residual history for
various transmission conditions with a GMRES (plain) and Jacobi (dotted) solver. Simulation
parameters: ω = 6π, θ = π/4, dλ = 8.
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Figure 4.14: Number of GMRES iterations to reach an interface residual of 10−6 as a function
of the Mach number (left) for Ndom = 3× 3 and the number of subdomains (right) for M = 0.7.

1. the Padé-based transmission condition with a Padé-based Helmholtz compatibility condition
as cross-point treatment, denoted ABCN,αH . This requires to define (4×N) additional interface
corner unknowns for interior cross-points and (2×N) unknowns for the boundary cross-points.
To ease the numerical implementation we use the same parameters (N,α) on all boundaries.

2. the 2nd order Taylor transmission condition ABCT2,α with a Sommerfeld condition on the
boundary cross-points, yielding (2×N) supplementary corner unknowns.

We report the performance of both conditions in Table 4.6. Preliminary numerical experiments
confirm that none of the conditions converge towards the original solution without boundary cross-
point treatment. The quality of the outgoing boundary condition is as expected deteriorated for
moderate and high Mach numbers compared to the PML case. For example we note in Table
4.6 that using ABC8,−π/2

H as exterior boundary condition at M = 0.9 induces more than 10% of
error. It does not change however the overall behaviour of the transmission conditions. The gain
of ABCN,αH over ABCT2,α is significative at M = 0, because the Helmholtz compatibility condition
at the corners is exact. The condition is no more exact whenM 6= 0, but ABCN,αH still outperforms
ABCT2,α by a few iterations. In practical flow acoustic applications one may prefer to use ABCT2,α

since its implementation is straightforward and does not require any supplementary cost.
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Table 4.6: Number of GMRES iterations to reach an interface residual of 10−6 for ABCT2,−π/2

vs ABC8,−π/2
H with different number of subdomains and Mach numbers, where ABC8,−π/2

H is
used as outgoing boundary condition. The point source is located at xs = −(0.8, 0.8)T . The
last line reports the averaged analytical L2-error for Ndom = 9× 9.

Ndom—M 0 0.5 0.9
3×3 30/11 32/19 46/31
5×5 46/14 48/36 73/57
9×9 77/22 82/79 136/105
EL2 (%) 0.02 5.26 12.9

4.2.3 Automatic partition

In industrial computations it is convenient to decompose the domain automatically. External
automatic partitioning tools can be tuned to minimize the size of the interface problem and provide
a good “load-balancing”, meaning subdomains with approximately the same amount of degrees
of freedom. The drawback of this approach is the lack of control of the geometrical interface
shapes. They are usually non-smooth, making the design of an efficient transmission operator
more challenging. We still consider the point source radiation test case with a square domain and
generate an automatic partition of Ndom subdomains thanks to METIS as illustrated in Figure
4.15. The point source is at xs = (0, 0)T and the flow oriented at the angle θ = π/4. The interface
problem is solved by the GMRES solver and we assess the performance of ABCT0,0, ABCT2,α and
ABCN,αS as transmission operators.

Figure 4.15: Example of a METIS partitioning on a square domain for Ndom = 8 (left) and
Ndom = 256 (right).

Figure 4.16 presents the evolution of the number of iterations with Ndom up to 256 subdomains,
as well as the sensitivity of ABCT2,−π/2 with ω and dλ. We see that the growth rate with Ndom is
smaller compared to the situation with square partitions. This can be explained by the number of
connections between the subdomains. With square partitions, a given subdomain has either 2, 3 or
4 connected neighbours. With arbitrary subdomains shapes, there is on average more connections
between subdomains leading a shorter connectivity graph hence fewer GMRES iterations. For
example with 256 subdomains we have on average 5.6 connected neighbours per subdomain.

We see that when increasing the number of subdomains, the second order Taylor transmission
condition performs equally well and sometimes better than the Padé-based condition. It suggests
that the Padé condition we have implemented is not the most appropriate for such a convected
problem. The second order Taylor condition also shows good robustness with respect to ω and
dλ, although an appropriate Padé condition would be less sensitive to these parameters. In this
particular example the condition ABCT2,−π/2 results in 165 GMRES iterations for 256 subdomains.

Figure 4.17 shows the dependency of the number of GMRES iterations with respect to the Mach
number for Ndom = 16. Here we observe a strong deterioration of the number of iterations for all
transmission conditions especially for high Mach numbers, which we interpret as the deterioration
of the ABC quality for arbitrary, non-smooth subdomains.

To sum up, the second order Taylor condition seems to be an excellent trade-off between the
number of iterations and the cost of each iteration. The implementation is besides straightforward
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Figure 4.17: Number of GMRES iterations to reach an interface residual of 10−6 as a function
of the Mach number with Ndom = 16, ω = 6π and dλ = 8 for the METIS partitioning strategy.

given an existing finite element code. We will keep this operator for industrial three-dimensional
applications.

4.3 Conclusion
We have analyzed and applied the non-overlapping domain decomposition method to academic
time-harmonic propagation examples including strong convection and heterogeneous effects. It
allowed us to understand and choose an appropriate and robust transmission operator in view of
three-dimensional industrial computations. We will use the second order Taylor condition with the
rotation of the branch-cut tailored to flow acoustics, which proved to be very competitive up to
strong Mach numbers (M ≈ 0.85) and a large number of subdomains.

Padé-based transmission conditions are very effective for simple partitions and are very robust
with respect to the Mach number and the medium heterogeneity. In some cases they even lead
to an exact or quasi-exact block LU factorization of the domain decomposition problem while
preserving the sparsity of the finite element discretization. The benefit of Padé-based conditions
is however not well-suited yet for complex shaped partitions with cross-points and strong mean
flows. Future development that may further reduce the number of iterations may concentrate on

1. corner conditions for arbitrary shaped domains with and without convection,

2. the extension of PMLs as transmission condition [166] to the non-symmetric and three-
dimensional case. Currently, we could only extend the method in the square partition case
when the mean flow is aligned with the one of the subdomain boundary.

3. coarse space preconditioners for strongly indefinite problems.
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Chapter 5

Application to industrial flow
acoustics problems

This chapter is dedicated to the application of the optimized Schwarz non-overlapping domain
decomposition method to a three-dimensional situation of industrial relevance. We focus on the
acoustic radiation from a generic turbofan engine intake. The first section specifies the problem,
emphasizes the underlying physical models and presents the particular boundary conditions that
need to be handled. In the second section we explain our high-performance computing environ-
ment. We present weak scalability results that highlight the benefits of domain decomposition
on a distributed memory computer architecture. We present some industrial results and provide
guidelines for a numerically efficient and robust sound noise prediction. We conclude by giving
future research directions towards a better scalability of our approach.
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5.1. The industrial turbofan engine intake problem

5.1 The industrial turbofan engine intake problem

Aircraft external noise results from the contribution of many components such as the landing gear,
lift devices, fuselage or fan exhaust. Among them, engine noise is an important acoustic source
during take-off. The dominant sources from a modern high by-pass ratio turbofan engine come from
the inlet turbofan, hot jet exhaust and by-pass duct. We focus on the noise generated by the rotor-
stator blade interaction through the inlet duct of the turbofan. This problem can be described as
a hybrid model in the sense that the mean flow and acoustic propagation are solved independently.
During take-off the aircraft engine is at full power such that a strong air flow is entering the
nacelle, which is referred to as the “Sideline” air flow configuration. Various configurations are
used for noise flight certification, as shown in Figure 5.2. The “Sideline” configuration is the most
challenging for acoustic computations because it induces important local variations of the acoustic
wavelength. Figure 5.3 shows that the Mach number takes local values up to M = 0.83. Acoustic
waves propagate upstream to the mean flow, such that the wavelength is shortened up to a factor
6 compared to the no-flow case. The air flow is modeled as steady, potential, inviscid compressible
flow. It is solved externally and then given as an input data for the acoustic computation. The
mean flow problem and governing equation is explained in Section 5.1.1. ! ! " # $ % & ' % ( $ ) & * % )
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Figure 5.1: Typical high by-pass ratio turbofan
engine [164]

Figure 5.2: Aircraft noise certification configu-
rations [17].

For a given static flow configuration, the acoustic spectrum emission has both broadband and
tonal components. Figure 5.4 shows the actual sound pressure level (SPL) in dB radiated by a
typical turbofan intake measured in an anechoic chamber along a 45 deg forward arc. Tonal noise
has the highest overall contribution and must be reduced foremost, which is why a time-harmonic
model is often used in the industry. Most of the tonal noise is generated at integer multiples of the
so-called “Blade Passing Frequency” (BPF). These tones can be modeled by specific acoustic modes
thanks to the Tyler-Sofrin analogy, and is explained in Section 5.1.3. Although being relatively
simple, the generalized convected Helmholtz operator

L = D0
Dt

( 1
c2

0

D0
Dt

)
− ρ−1

0 ∇ · (ρ0∇), D0
Dt

= iω + v0 · ∇, (5.1)

can accurately model this problem for a subsonic flow (M < 1) [16]. Validations between finite
element simulations and experimental measurements have been successfully performed [36]. Nu-
merical simulations are then of high interest for understanding and mitigating tonal noise. They
can further be used as part of an optimization process to design micro-perforated panels located on
the inner wall of the nacelle. We will see in Section 5.1.2 that such panels can be modeled thanks
to an impedance boundary condition. We focus on the boundary value problem specified in Figure
5.5 for a generic high by-pass ratio turbofan geometry. For the outgoing boundary condition, we
extend Γ∞ by a layer of twice the typical mesh size and set up a stable perfectly matched layer
in cylindrical coordinates (x, r, θ), as described in Chapter 2. We explain in the following sections
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Chapter 5. Application to industrial flow acoustics problems

the mean flow mapping, and the peculiar boundary conditions of the model on the boundaries Γs
and Γ`.

Figure 5.3: Mach numberM = ‖v0‖ /c0 for the
Sideline static mean flow configuration

Figure 5.4: Typical SPL for an engine intake as
a function of the frequency from a static engine
test [17].

D0
Dt

(
1
c20

D0
Dt

)
− ρ−1

0 ∇ · (ρ0∇)

Ω Γ∞

Γs

Γ`

acoustic lining

ρ0(x), c0(x),v0(x)

Figure 5.5: 2D cut in the XY plane of the boundary value problem. The gray dashed line
epitomizes the physical fan face location. The input duct is extended to ensure a uniform mean
flow on the input boundary Γs.

5.1.1 Computing and mapping the mean flow

The mean flow is governed by the mass and momentum conservation equations for a steady,
potential, inviscid compressible flow. For a potential mean flow we have v0 = ∇φ, where φ is the
mean flow potential. The mass conservation equation reads

∇ · (ρ0∇φ) = 0, in Ω,

which is the domain equation to be solved. It is a non-linear elliptic PDE because the mean flow
density ρ0 depends on the velocity potential. It can be expressed thanks to Bernoulli’s conservation
relation for a perfect gaz and steady flow

ρ0 = ρ∞

(
1 + γ − 1

2
v0,∞ − |∇φ|2

c2
∞

) 1
γ−1

,
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5.1. The industrial turbofan engine intake problem

where ρ∞, c∞ and v0,∞ are reference values on Γ∞, and γ = 1.4 is the adiabatic constant in dry air.
For the reference values we suppose the mean flow to be uniform on the outgoing boundary Γ∞ and
use ρ∞ = 1.2, c∞ = 340, v0,∞ = −(c∞/4, 0, 0)T such as the reference Mach number is M∞ = 0.25.
If ρ0 is constant, one only needs to solve a Poisson problem. A finite element computation can
be performed for the non-linear problem thanks to an iterative method [161]. We use Gelder’s
algorithm [86] which provides a fast converging method. It is based on an incompressible flow
computation to initialize the iterative method. After convergence, the speed of sound is retrieved
by the isentropic state equation c0 = c∞(ρ0/ρ∞)(γ−1)/2. In the Sideline static flow configuration,
the main parameter to set up is the Mach number on the fan face, Mf = 0.55. The normal
component of the fan face velocity is given again by Bernoulli’s relation

v0,f · ns = Mfc∞

√√√√2 +M2
∞(γ − 1)

2 +M2
f (γ − 1)

, ns = (−1, 0, 0)T .

To simplify the computation of the mean flow, we solve in practice only the first iteration of
Gelder’s algorithm with GmshFEM for an axisymmetric version of the problem. The 3D data are
then generated through a transformation from polar to cylindrical coordinates. For each node of
the acoustic mesh, we assign the corresponding mean flow value based on the shortest distance
strategy, and use a linear interpolation between the nodes. This strategy introduces numerical
errors, but has the advantage to be of low computational cost. In the future a complete 3D
compressible mean flow solver should be integrated in GmshFEM.

5.1.2 Acoustic lining boundary condition

Turbofan engine intakes use a specific acoustic treatment to damp noise, called acoustic liners.
They are located on the inner walls of the nacelle, and take advantage of the Helmholtz resonator
principle to dissipate acoustic energy. A liner typically consists in a micro perforated plate made
of a perforated sheet, supplemented by an air cavity and terminated by a solid plate. An example
of single layer liner is shown in Figure 5.6. A liner can be described by an acoustic impedance,
which describes the ratio between the acoustic pressure and normal velocity

Z(ω) = p(ω)
v(ω) · n = R(ω) + iχ(ω).

Such a model is called “locally reacting” or “pointly reacting” because the impedance only depends
on the local value of the acoustic field.

Figure 5.6: Typical single degree of freedom
perforated panel induced by the viscous effects occurring within the perforation due to the viscous boundary layer and around

its edges at the panel surface due to the distortion of the acoustic flow. The reactive part accounts for the

motion of an air cylinder, which is thicker than the perforation depth. This is because of the mass loading

associated to the sound radiation of the perforation and to the distortion of the acoustic flow at the panel

surface, which contribute to make the air in the neck heavier and more difficult to move. This inertial effect

amounts to increasing the mass of the vibrating air and is accounted for using correction lengths, which need

to be added to the neck depth. The differences between the existing models reside both in the expressions of

the viscous dissipation part (resistance) and the inertial part (reactance) according to the ratio of the

perforation size and the acoustic wavelength.

To simplify the derivation, the perforation of the plate is assumed of cylindrical shape (thickness: d; radius:

r) and impinged by a normal incidence plane wave. Thus, the Biot’s parameters for cylindrical pores parallel to

the wave direction of propagation can be utilized. For straight cylindrical pores it has been shown [5] that the

viscous and the thermal characteristics lengths, � and �0, respectively, are equal to the hydraulic radius of the

pores, that is � ¼ � ¼ r. The flow resistivity s is related to the perforation radius r and to the perforation rate

f by s ¼ 8Z/fr2, where Z is the dynamic viscosity of air. Due to the small thickness and shape of the pores,

thermal effects are negligible. The impedance ZA0, at the front face, inside a perforation at point A0 (see Fig. 1),

is mainly governed by the viscous and inertial effects. Both effects are accounted for in the expression of the

effective density ~re. For acoustic wavelengths much larger than the plate thickness, the normal surface

�RTICLE IN PRESS

Fig. 1. Configuration of interest: perforated plate excited by a plane wane and backed by an infinite fluid medium.

Fig. 2. Physical phenomena involved in a perforated plate.

N. Atalla, F. Sgard / Journal of Sound and Vibration 303 (2007) 195–208 197

Figure 5.7: Physical phenomena involved in one
perforation [18].

The impedance of a perforated plate has a resistive R(ω) and reactance χ(ω) component.
The resistivity encodes viscous dissipation within the perforation and eventually accounts for the
distortion of the acoustic flow around the edges of the perforation [18]. The reactive part encodes
inertial effects that are due from both the air cavity and the surface of perforation. Both effects
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Chapter 5. Application to industrial flow acoustics problems

induce a mass air loading in the perforation that oscillates and radiates sound, see Figure 5.7.
Sound absorption is maximal when the reactance term cancels, which corresponds to resonances
of the system. For our problem we consider a simplified model for a single degree-of-freedom
perforated panel [149]

Z(ω) = R+ ik0Mf − i 1
tan(k0h) , k0 = ω

c0
, (5.2)

where R = 2 is the flow resistivity [Pa·s/m3], Mf = 0.02286 is the mass reactance [Pa·s/m3] of
the perforation and the term “tan(k0h)” is the reactance of the back cavity of depth h = 0.02 m.
Note that the resistivity is here constant which means that the viscous boundary layer effect is
neglected. We will see that this assumption is consistent with the use of the boundary condition for
numerical implementation. From the impedance (5.2) one may compute the reflection coefficient

r(ω) =
∣∣∣∣Z(ω)−Z0
Z(ω) + Z0

∣∣∣∣ ,
relatively to the free-field impedance Z0 = ρ0c0 over a given frequency range. We see in Figure 5.8
that sound absorption will be the most effective at the first resonance frequency ωr/(2π) = 2215
Hz.
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Figure 5.8: Properties of the acoustic liner given by equation (5.2). Left: real and imaginary
parts of 1/Z, called the admittance. Right: reflection coefficient. The dashed line highlights the
first resonance frequency.

The implementation of such an impedance as a boundary condition in a flow acoustic solver is
a delicate topic. Ingard [114] and Myers [150] proposed a boundary condition that suppresses the
mean flow near the liner surface hence neglects all boundary layer effects, see Figure 5.9. It has
been the topic of discussions and debates regarding the physical accuracy of such an assumption.
It is nevertheless a reasonable assumption for our time-harmonic model where sound is propagated
over a simple inviscid potential mean flow.

Figure 5.9: Illustration of Ingard-Myers approximation for the usage of an impedance boundary
condition with a base flow, from [36].

The original Ingard-Myers boundary condition reads

v · n` = − p
Z
− v0 · ∇

(
p

iωZ

)
+ p

iωZn` · (n` · ∇v0), on Γ`, (5.3)
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5.1. The industrial turbofan engine intake problem

where n` is the outward normal to the lined surface. The substitution p = −ρ0D0u/Dt then gives
the boundary condition for the acoustic potential. For a constant mean density, it can be expressed
as

∂u

∂n`
= ρ0
iωZ

(
D0
Dt
− n` · (n` · ∇v0)

)
D0u

Dt
.

A direct finite element implementation of Ingard-Myers condition is technically difficult because
it involves second order derivatives. Eversman [79] proposed a simplification that is suitable in
a weak formulation. It further has the advantage to be symmetric. The derivation is based on
vectorial algebraic relations and a judicious use of Stokes theorem. The boundary operator results
in the following expression∫

Γ`
−ρ0

∂u

∂n`
v dΓ` =

∫
Γ`

ρ0
Zc0

(
iωuv + (v0 · ∇Γu) v − u (v0 · ∇Γv)− 1

iω (v0 · ∇Γu) (v0 · ∇Γv)
)
dΓ`.

(5.4)

The condition is only valid if the admittance 1/Z has a smooth spatial variation along the nacelle
surface, which is not the case in our boundary value problem. This implies a singularity of the
numerical solution and results in an ill-posed problem. Note that the impedance depends on the
frequency and local values of the mean flow velocity, speed of sound and density. The implemen-
tation of this boundary condition has been validated in GmshFEM for a uniform mean flow thanks
to CodeFEMAO and a reference solution obtained by mode matching [81].

5.1.3 Input mode

The selection of the mode to be imposed on the fan face at a given frequency can be guided by the
Tyler-Sofrin analogy [183]. It starts by analyzing the acoustic pressure distribution on the rotor
blades of the fan. If the fan has a number of B rotor blades, the pressure distribution may be
written by periodicity as the sum of the pressure on all blades, which are spaced by an angle of
2π/B radians

p(r, θ) =
B−1∑
k=0

p

(
r, θ − 2πk

B

)
.

If the rotor is spinning at the constant angular speed Ωs, the pressure field in the absolute frame
is also periodic in time

p(r, θ, t) =
B−1∑
k=0

p

(
r, θ − 2πk

B
− Ωst

)
=

+∞∑
n=−∞

pn(r)e−inB(θ−Ωst) ,

and can be extended as a Fourier series. From the circumferential periodicity we can associate
the rotation speed to the blade passing frequency ω = nBΩs. We now draw the analogy with the
duct modes. In our problem we assume the fan face inlet duct to be of annular geometry and
subjected to a constant mean flow. In that case both the acoustic pressure p and velocity potential
u are governed by the convected Helmholtz equation, and we can consider the following modal
decomposition in cylindrical coordinates

u(x, r, θ) =
∞∑

m=−∞

∞∑
n=1

umn(r)e−imθ
(
α+
mne

−ik+
x,mnx + α−mne

+ik−x,mnx
)
, (α+

mn, α
−
mn) ∈ C2, (5.5)

such that the radiated acoustic field at the blade passing frequency can be related to the azimuthal
mode order m = nB. The radial function umn(r) is

umn(r) = Jm (krr)−
J ′m (krRin)
Y ′m (krRin)Ym (krr) , (5.6)
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and for each couple (m,n) ∈ N2, kr is the positive real number satisfying the characteristic equation

J ′m (krRout)Y ′m (krRin)− J ′m (krRin)Y ′m (krRout) = 0.

We have denoted by Jm and Ym the cylindrical Bessel functions of respectively first and second
kind, and by J ′m and Y ′m their derivatives with respect to the radial variable. The geometrical
inner and outer annular radii are respectively Rin = 0.3586 and Rout = 1.2. Finally the axial
wavenumber k±x,mn is recalled from the dispersion relation

k±x,mn =
−Mxk0 ±

√
k2

0 − (1−M2
x) k2

r

1−M2
x

,

where we use the constant value Mx = −0.55 on the fan face. In practice we impose a fixed
x-positive propagating mode through the condition

∂u

∂n
= ik+

x u on Γs,

with an amplitude set to unity for simplicity. At the blade passing frequency, only certain sets of
integers (m,n) result in a purely real propagation constant k+

x . Among these admissible propa-
gating modes, we use the azimuthal order m = nB suggested by the Tyler-Sofrin analogy and the
first radial order. Note that other set of modes may be relevant to numerical simulation in order
to model “buzz-saw” or “interaction” tones [17]. Two annular modes are illustrated in Figure 5.10.
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Figure 5.10: Normalized real part of the analytical modal function (5.5) on the fan face for two
fixed modes at ω = 1300 Hz, Mx = −0.55. In our model, the mode (24, 1) contributes the most
to the radiated sound at 1 BPF.

5.1.4 Active perfectly matched layer

We have seen how to enforce a single annular acoustic duct mode by imposing the normal derivative
of a prescribed modal function on the fan face. The drawback of such a condition is that it cannot
handle modes that might be back-scattered into the fan face. Back-scattering effects become
dominant when the acoustic lining is activated. The latter strongly affects the distribution of the
modes and their propagation direction, as explained in [164].

One solution to absorb back-scattered modes is to extend the computational domain beyond the
fan face and impose a non-reflecting boundary condition on the reflected field. The current advo-
cated industrial solution is to use a so-called “active” PML [34]. The idea consists in decomposing
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the total field into an incident and reflected parts

u = uI + uR, (5.7)

and absorb only the reflected field uR in the “active” PML. We denote this additional domain
Ωapml. The incident field uI is given by the modal decomposition from equation (5.5). Following
the stable PML formulation and notations from Chapter 2, the bilinear form for uR in the extended
active PML domain reads

κapml(uR, vR) =

−
∫

Ωapml

[
(J−Tpml∇−1

x′ uR) · (J−Tpml∇−1
x′ vR)− k2

0
β2uR vR

]
det(JpmlL) dΩ +

∫
Γs
GuR vR dΓs,

for all tests functions vR in a suitable functional space. The outward pointing normal to the fan
face Γs from the active PML domain point of view is oriented towards the positive x-direction.
The mean flow is supposed to be uniform and oriented along x only on Γs. With these assumptions
the boundary term simplifies to

GuR = β2∂xuR − ik0MxuR, on Γs.

By linearity, the decomposition from equation (5.7) yields

κapml(uR, vR) = κapml(u, v)− κapml(uI , vI).

We can now write the global bilinear form on Ω = Ωphy ∪ Ωapml

κ(u, v) = κapml(u, v)− κapml(uI , vI) + κphy(u, v). (5.8)

On Γs, the reflected field cancels since the normals on Γs arising from Ωphy and Ωapml are of
opposite sign. We are left with a boundary operator that acts only on the incident field

GuI = β2∂xuI − ik0MxuI = β2ik+
x uI − ik0MxuI , on Γs, (5.9)

where uI is given by equation (5.5), and can be chosen as any linear combination of modes. In
short, the active PML formulation contains the usual volume PML terms, but has an original
right-hand-side κapml(uI , vI) composed of

1. the volume active PML terms applied to the prescribed incident field uI ,

2. the boundary operator on the fan face also applied to uI .

The implementation of the “active” PML has been validated in GmshFEM on several examples, in
particular for the validation of the Ingard-Myers boundary condition.

5.2 Parallel implementation and scalability
In this section we describe the parallel algorithm and implementation that allows to solve in
practice the three-dimensional turbofan problem thanks to the non-overlapping Schwarz domain
decomposition approach. The implementation is available in GmshDDM, which relies on Gmsh and
GmshFEM.

5.2.1 Mesh generation

A mandatory preliminary step consists in generating and partitioning an appropriate finite element
mesh for the problem depicted in Figure 5.5, which is done thanks to the C++ interface to Gmsh.
The meshing needs specific attention in several regions:
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1. the throat of the nacelle, where the mean flow and geometry curvature are strong. A local
refinement is applied in this region.

2. the spinner tip, which has a pointing shape. The mesh is locally refined.

3. the region close to the outgoing boundary. The mean flow is milder and a coarser mesh is
used,

4. the transitions with the acoustic lining boundary condition. We expect a discontinuity in the
numerical solution, and the mesh needs to be fine enough to capture the discontinuity.

5. the fan face region, where the mesh has to capture the annular geometry and account for the
mean flow value at the fan face.

For a given mesh, we evaluate the degree of freedom density per wavelength based on the specified
local element size. The evaluation is done in three regions: the fan face, the outgoing boundary
and the throat of the nacelle. We use quadratic tetrahedron elements to mesh the domain and
finite element shape functions of fixed order p = 4. Note that an adaptive order selection rule such
as proposed in [35, 39] would allow more flexibility in the design of the acoustic mesh. The mesh
is next partitioned using METIS, and each partition is stored as a separate file for the initialization
of the parallel solver. The topology information encoding the connections between subdomains is
retrieved internally by Gmsh.

5.2.2 Parallel procedure and implementation

The parallel algorithm assigns each subdomain to a different computer process. Each process
can further be multi-threaded. Each process performs in parallel the high level steps specified
in Algorithm 1. The Message Passing Interface (MPI) library is called at each iteration of the
GMRES solver and performs asynchronous communication to exchange the interface unknowns
gij . The most computational demanding task for the iterative solver is the sparse matrix-vector
product, which has a cost of O(mNs) per iteration, where Ns is the size of the interface matrix
and m its bandwidth. The cost is split between the processes thanks to distributed memory
parallelization. The implementation is done with PETSc thanks to a specific matrix-vector product.
The benefit of the algorithm is due to the sparsity of the interface matrix, allowing a cheap cost
per iteration. We next give further details on the implementation procedure and emphasize the
parallel implementation using the MPI library.

5.2.2.1 Initialization of the interface problem

At initialization we must set up, for a given partitioned mesh, the connectivity between the degrees
of freedom (dofs) sharing a subdomain in common, including the consistency in the edges and faces
orientations for a high-order finite element basis. To do so we create a MPI data type in Listing
5.1 that allows to exchange a degree of freedom object.

1 // Create MPI structure
2 MPI_Aint struct_data [2] = { offsetof ( gmshfem :: dofs :: RawDofKey , numType ),

offsetof ( gmshfem :: dofs :: RawDofKey , entity )};
3 int block_lengths [2] = {1, 1};
4 MPI_Datatype types [2] = { MPI_UNSIGNED_LONG_LONG , MPI_UNSIGNED_LONG_LONG };
5

6 // Commit the new datatype
7 MPI_Datatype MPI_DOF ;
8 MPI_Type_create_struct (2, block_lengths , struct_data , types , & MPI_DOF );
9 MPI_Type_commit (& MPI_DOF );

Listing 5.1: Definition of the MPI degree of freedom datatype.

We then initialize a vector encapsulation to describe the degrees of freedom for a field ui, on an
interface Σij linked to a subdomain Ωi.
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Algorithm 1 Domain decomposition algorithm from the point of view of the i-th process linked
to the subdomain Ωi

1. Initialization:

(a) read the partitioned mesh,
(b) map the mean flow data onto the acoustic mesh,
(c) initialize the interface problem,

2. Assembly: assemble the finite element matrix with GmshFEM,

3. Factorization: call the external MUMPS solver via PETSc and run a sparse LU decom-
position for the volume subproblem,

4. Surface Assembly: assemble the surface interface problem,

5. Iterative solver: enter the GMRES iterative solver for the interface problem (I −A)g =
f . At each iteration do until convergence:

(a) receive gij and send the updated data gji to the connected subdomains,
(b) compute the local matrix-vector product,

6. Post-process: save the solution.

1 vector < vector < vector < vector < gmshfem :: dofs :: RawDofKey > * > > > dofKeys ;

The RawDofKey object contains two integers that fully encodes a degree of freedom on a given
geometrical entity (node, edge, face), namely

1. a dof tag number,

2. a tag linked to the geometrical entity.

It results in a unique dof identifier that is given as a key to a hashmap, which allows to quickly
recover any dof value and coordinate. To initialize the interface problem we send and receive the
dofs information to the connected neighbours through asynchronous MPI communication in Listing
5.2.

1 // loop for each subdomain , interface and field
2 MPI_Irecv (&(* dofKeys [ currentSubdomain ][ currentInterface ][ currentField ])[0],
3 dofs.size (), MPI_DOF , mpi :: rankOfSubdomain (it ->first), tagJI ,
4 MPI_COMM_WORLD , requests .back ());
5 MPI_Send (& myDofKeys [0], dofs.size (), MPI_DOF , mpi :: rankOfSubdomain (it ->first),
6 tagIJ , MPI_COMM_WORLD );

Listing 5.2: Asynchronous communication for the exchange of the RawDofKey vector.

Finally we free the datatype from the memory to conclude the initialization phase.
1 MPI_Type_free (& MPI_DOF );

5.2.2.2 Initial assembly and factorization

The assembly and factorization steps are embarrassingly parallel. It is therefore of high importance
to have a good load-balancing between processes. The assembly can efficiently handle multi-
threading, which was assessed in [165]. For the factorization step, we call the MUMPS solver that
is classically used in finite element computations. It can also take advantage of multi-threading.
The factorization has a complexity of O(m2N), where the bandwidth m is directly related to the
number of non-zeros. The latter increases with the order of the finite element shape function.
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5.2.2.3 Iterative solver

The actual parallelization starts when entering the iterative solver, for which we use the PETSc
GMRES implementation with a user-defined matrix-vector product. We desactivate the bilinear
terms in the weak formulation such that we can reuse the MUMPS factorization during the iter-
ations. We start by creating a PETSc distributed vector, that we fill with the initial right-hand
side.

1 Vec RHS;
2 VecCreateMPI ( PETSC_COMM_WORLD , locSize , PETSC_DETERMINE , &RHS);

The matrix-vector product is defined in Listing 5.3 thanks to a matrix free PETSc shell [20], and
does not require to explicitly store the matrix.

1 Mat A;
2 MatCreateShell ( PETSC_COMM_WORLD , locSize , locSize ,
3 globSize , globSize , this , &A);
4 MatShellSetOperation (A, MATOP_MULT ,
5 (void (*)(void)) & MatVectProduct < T_Scalar >);

Listing 5.3: Definition of the matrix free shell operation.

It remains to specify the routine MatVectProduct(Mat A, Vec X, Vec Y) for the operation Y =
AX, and the call to the GMRES specified in in Listing 5.4 immediatly follows.

1 KSP ksp;
2 PC pc;
3 KSPCreate ( PETSC_COMM_WORLD , &ksp);
4 KSPSetFromOptions (ksp);
5 KSPSetOperators (ksp , A, A);
6 ... // set additional KSP options
7 KSPSolve (ksp , RHS , Y); // Y is the new PETSc iterate

Listing 5.4: call to the iterative PETSc Krylov subspace solver.

We detail in Listing 5.5 the MatVectProduct function: it takes as input the vector of interface
unknowns called X, and outputs the new iterate Y → AX. We first fill the vector gij thanks to
the function _fillG, where the MPI communication occurs. We can then assemble and solve the
local volume and surface problems. After the solve, we store the updated gij on the corresponding
dofs thanks to the hashmap, and concatenate the gij for all j ∈ Di to obtain the new global iterate.
The parallel communication is done in the function _fillG in Listing 5.6, where we send gij to and
receive gji from the neighbours We measure the convergence of the solver based on the interface
problem residual, and set the stopping criterion at 10−6. When the iterative solver has converged,
we perform a communication pass to obtain the final solution. We measure in the next section the
scalability of the implementation. Note that strong scalability is not relevant for this problem, and
we rather focus on the weak scalability property.

5.2.3 Parallel scalability

We assess the weak scalability of our code for the 3D turbofan problem without mean flow at a
fixed numerical resolution, namely we increase the running frequency with the typical mesh size to
keep a density of dλ = 7.5 dofs per wavelength. For the current assessment we use a Sommerfeld’s
radiation condition as outgoing boundary instead of a PML. The input mode (m,n) = (12, 0)
was prescribed at the frequency f = 2268 Hz for Ndom = 8 (meaning 8 # MPI processes). With
1024 processes, the running frequency is multiplied by a factor 5 and reaches f = 11429 Hz.
It corresponds to a Helmholtz number k0Rin ≈ 250, Rin = 1.2. The size of the domain is a
cylinder of radius 2.5 and length 3.4, such as the numerical domain totalizes 114 wavelengths
for the highest running frequency. The results were run on the LUMI-C CPU partition (https:
//www.lumi-supercomputer.eu) and are reported in Table 5.1. The weak scaling is summarized
in Figure 5.11 for a single GMRES iteration, where we highlight the increase of the problem size
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1 template < class T_Scalar >
2 static int MatVectProduct (Mat A, Vec X, Vec Y)
3 {
4 Formulation < T_Scalar > * formulation ;
5 MatShellGetContext (A, (void **)& formulation );
6 formulation -> _fillG (array);
7

8 // assemble and solve volume problems
9 for(auto idom = 0ULL; idom < formulation -> _volume .size (); ++ idom) {

10 if(mpi :: isItMySubdomain (idom)) {
11 formulation -> _volume [idom]-> assemble ();
12 formulation -> _volume [idom]->solve(true);
13 }
14 }
15

16 // assemble and solve surface problems
17 for(auto idom = 0ULL; idom < formulation -> _surface .size (); ++ idom) {
18 if(mpi :: isItMySubdomain (idom)) {
19 for(auto it = formulation -> _surface [idom ]. begin ();
20 it != formulation -> _surface [idom ]. end (); ++it) {
21 it ->second -> assemble ();
22 it ->second ->solve(true);
23 }
24 }
25 }
26

27 MPI_Barrier ( PETSC_COMM_WORLD );
28

29 // loop for each subdomain , interface and field and get the solved g_ij
30 ...
31 (* itField ->first)(idom , it ->first). getUnknownVector (g_ij ,
32 gmshfem :: dofs :: RawOrder :: Hash);
33 // concatenate to get one vector per process
34 g_local . concatenate (g_ij);
35 ...
36 // end loop
37

38 VecCopy ( g_local . getPetsc (), Y);
39 // copy in a PETSc vector
40 }

Listing 5.5: Sample of the matrix-vector product called by PETSc.

1 // loop for each subdomain , interface and field
2 gmshfem :: algebra :: Vector < T_Scalar > g_ij
3 (std :: vector < T_Scalar >(& array[pos], &array[pos + size ]));
4 (* itField ->first)(idom , it ->first). setUnknownVector
5 (g_ij , gmshfem :: dofs :: RawOrder :: Hash);
6

7 MPI_Irecv (&(* g_ji[ currentSubdomain ][ currentInterface ][ currentField ])[0],
8 size , MPI_C_DOUBLE_COMPLEX , mpi :: rankOfSubdomain (it ->first),
9 tagJI , MPI_COMM_WORLD , requests .back ());

10 MPI_Send (& g_ij [0], size , MPI_C_DOUBLE_COMPLEX , mpi :: rankOfSubdomain (it ->first),
11 tagIJ , MPI_COMM_WORLD );

Listing 5.6: Exchange of the interface unknowns in the _fillG function.
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Table 5.1: LUMI CPU partition - Cray EX - 2x AMD EPYC 7763 64 cores CPUs (2.45 GHz
base, 3.5 GHz boost). The wall time is reported in seconds.

# MPI processes
(#nodes)

Total #
cores

Total # dofs Wall time
assembly

Wall time
factorization

Wall time
single iteration

Total wall
time

8 (1) 128 5 818 042 3.84 110.1 1.3 115.2
16 (2) 256 11 379 598 3.88 110.6 1.3 115.8
32 (4) 512 22 329 782 5.33 118.7 1.4 125.4
64 (8) 1024 44 016 340 4.44 115.8 1.4 121.6
128 (16) 2048 87 190 818 4.47 113.8 1.3 119.57
256 (32) 4096 174 211 618 5.55 114.1 1.3 120.9
512 (64) 8192 357 655 483 7.15 124.0 1.5 132.7
1024 (128) 16 384 752 794 575 7.83 136.9 1.8 146.5

with the number of MPI processes. The same scaling holds and is observed in the convected case
since both discrete problems share the same algebraic structure.

We show the peak memory usage over all processes in Figure 5.12. The peak is reached during
the call to MUMPS for the factorization. For 1024 subdomains the peak memory varies from 19.6
to 33.9 Gb, which is more than 40 % relative increase. As a comparison, the relative peak memory
increase is 20 % with 8 subdomains. This could be improved in the future by tuning the METIS
options. In the current implementation we have used the option that minimizes the size of the
interface problem. Note that we have observed differences in the load-balancing when running
METIS several times on the same mesh.
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Figure 5.11: Weak scaling timing for 1 iteration normalized by the max # dofs over all processes

The total wall time is presented in Figure 5.13, where we have estimated the time that would
be needed for 50 GMRES iterations. For a small number of subdomains, the computational most
intensive task comes from the time and memory used for the factorization. When the number of
subdomains is large the most computational intensive task becomes the iterative solver, because
the number of iterations scales as O(N1/3

dom) in 3D. An efficient computation hence relies on a
trade-off between the total number of subdomains and the size of each subdomain. This balance
should also be adjusted depending on the available computational resources. For example, using a
large number of subdomains would be beneficial on a computer with a large number of cores with
low-memory. We recall that the additional memory required for the GMRES solver is negligeable
compared to the memory required for the volume factorization, since the iterations are performed
locally on a small number of surface unknowns. The limitation of this approach is the increase in
the number of iterations. We will now present industrial results on the 3D turbofan problem and
see the benefit of using adapted transmission conditions.
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5.3 Industrial results

5.3.1 Validation for the 2D axisymmetric problem

The test case has first been validated on a axisymmetric version of the problem, where the acoustic
solution is sought under the form

u(x, y, z) = u(x, r)e−imθ, (5.10)

where (r, θ) are the polar coordinates associated to the Cartesian coordinates (y, z). The ansatz
(5.10) is then substituted in the generalized convected Helmholtz operator (5.1). The resulting
variational formulation is solved as a 2D problem in the half-plane domain for r > 0. Note that
the transmission conditions must be adapted to the axisymmetric ansatz. More precisely the 3D
Laplace-Beltrami and surface gradient operators are decomposed as

∇Γ,3D = ∇Γ,2D + ∂θ = ∇Γ,2D − i
m

r

∆Γ,3D = ∆Γ,2D + ∂2
θ = ∆Γ,2D −

m2

r2 .

It results in an additional mass matrix term for the transmission operators Si and Sj .

5.3.2 Tonal noise computations for the Sideline static flow configuration

We consider the three-dimensional turbofan flow acoustic problem for the Sideline static flow
configuration at multiples of blade passing frequency fBPF = 1300 Hz. We set a perfectly matched
layer of two times the typical meshsize width for the outgoing boundary, and the same is done for
the ingoing boundary to impose the input mode. The acoustic lining or Ingard-Myers boundary
condition is activated. The input mode is (m,n) = (24, 1). Current industrial computations use a
direct solver for this problem, and can reach around 10 millions high-order unknowns at the cost
of one to several terabytes of memory [83]. In such cases the factorization needs to be performed
out-of-core. We would like to reduce the computational resources for a fixed size problem, and
further increase the available upper frequency limit. After meshing the problem, we obtain a total
of 890k tetrahedrons. We use finite element shape functions of order 4. The global size of the
problem is 10 millions unknowns with 730 millions of non-zeros entries.

We focus on the impact of distributed memory parallelism and run the same computation with
an increasing number of MPI processes on a single thread. For the transmission condition we
use the second order Taylor approximation with rotation branch-cut α = −π/2 tailored to flow
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acoustics. In Figure 5.14 we see that the number of iterations grows roughly as O(N1/3
dom) which

is consistent with the theoretical expectations. The size of the subproblems are typically divided
by a factor 2 each time we double the number of MPI processes. It results in a reduction of the
required memory per process as shown in Figure 5.15, that scales superlinearly for a small number
of processes. For example the domain decomposition solver with Ndom = 64 has peak memory
usage of 5 Gb over all processes. By contrast, the direct solver for this problem requires 740 Gb for
the factorization. The computational time follows the same trend, however increasing the number
of processes raises the communication time. The problem with 2 subdomains took almost 7 hours,
while solving with 8 subdomains required 1 hour and 14 minutes, and less than 10 minutes is needed
from Ndom ≥ 128. Beyond a certain number of subdomains the volume subproblems become small
and there is no further gain from domain decomposition on this problem. Finally for Ndom = 64
we have tried to use the Sommerfeld transmission condition (zeroth order Taylor approximation
with α = 0). The computation did not converge within 2000 GMRES iterations and stopped at a
relative residual of 10−3.
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Figure 5.16: Real part of the acoustic velocity potential for the mode (24, 1) at the first BPF
(1300 Hz) without (left) and with (right) acoustic lining treatment.

We continue and solve the problem at 2 BPF, with the mode (m,n) = (48, 1) as input boundary
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Figure 5.17: Real part of the acoustic velocity potential for the mode (48, 1) at the second BPF
(2600 Hz) without (left) and with (right) acoustic lining treatment.

condition. The global size of the problem is 73 millions unknowns and 5 billions of non-zeros
entries. The solution converged with 64 and 128 single-thread processes in respectively 535 and
712 iterations, for a total computational time of respectively 6h6min and 2h3min. The maximum
memory usage for 64 and 128 processes was respectively 61.0 and 26.1 Gb. We notice a relative
increase of approximately 40% in the number of iterations when doubling the frequency. We also
observed some differences in the convergence speed without the presence of the acoustic lining.
The real part of the numerical solutions are illustrated in Figures 5.16 and 5.17 at respectively 1
BPF and 2 BPF, with and without the presence of the acoustic lining. One may notice near the
throat of the nacelle the shortening of the acoustic wavelength as well as a convective amplification
effect. The domain captures approximately 25 and 50 acoustic wavelengths at respectively 1 and
2 BPF. As a post-processing operation we compute the acoustic pressure p = −ρ0D0u/Dt and the
sound pressure level

pdB = 10 log10

(
p2

p2
ref

)
, p0 = 2× 10−5.

The sound pressure level near field directivity at 1 and 2 BPF is shown in Figure 5.18. We clearly
see the noise reduction due to the acoustic lining.
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Figure 5.18: Sound pressure level (dB) near field directivity with and without acoustic lining
along a semi-circle of radius 2m centered on the spinner tip in the XY plane. Left: 1 BPF, right:
2 BPF.
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5.3.3 Towards a scalable parallel solver

We have seen that our parallel non-overlapping domain decomposition method is weakly scalable up
to 80% on 1024 processes. The bottleneck of our approach is the number of iterations required by
the iterative solver, which increases with the number of subdomains. We also observed an increase
of the number of iterations with the frequency for the industrial flow acoustic problem. Nevertheless
the second order Taylor approximation of the principal symbol with branch-cut rotation seems to
be an appropriate transmission condition in this context. Empirical observations suggest that the
value α = −π/2 gives the lowest number of iterations in 3D. The extension to a larger number of
subdomains would require a well-designed coarse space. Its design is a hard task but if properly
done, the dependency of the number of iterations with Ndom could be highly reduced. The current
solver is ready to use at the industrial level. We recommend the usage of domain decomposition
only for high frequency problems when the computer memory limit is attained. The computational
balance should be adjusted depending on the available resources. For example a practical solution
would be to fix the maximum of unknowns per subdomain, and then split into the necessary number
of subdomains.
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Conclusion

This thesis has been split into two research axes: non-reflecting boundary conditions and non-
overlapping domain decomposition. In the first part, we have developed local absorbing boundary
conditions based on approximations to the Dirichlet-to-Neumann operator, and seen in what ex-
tend the conditions could be adapted to time-harmonic propagation with strong heterogeneous
and convective effects. We investigated a second category of non-reflecting boundary conditions,
namely the widely used perfectly matched layer technique. We proposed a general extension of the
convective instability issue to general convex boundaries, based on the Prandtl-Glauert-Lorentz
transformation. The method has been integrated in an industrial implementation, and has been
coupled to an automatic convex extrusion of the perfectly matched layer.

In the second part, we have applied a modern non-overlapping Schwarz domain decomposition
method to a generalized convected wave operator. We have pointed out the benefit of the method
compared to a purely algebraic approach. We have described how to integrate the developed
non-reflecting boundary conditions as transmission conditions, for both the absorbing boundary
conditions and perfectly matched layer techniques. We studied the benefit of using adapted trans-
mission conditions on several academic examples, including heterogeneous and convective effects.
Thanks to the development done in the first part of the thesis, we could reach an almost ideal
convergence rate on simple problems. For three-dimensional complex industrial problems we have
proposed a robust second order condition, that will serve as a basis for future developments. Cur-
rently, our approach only allows local information exchange between subdomains, and is limited by
the availability of the transmission conditions to behave as non-reflecting boundaries. Finally we
have contributed to the implementation of an efficient open-source parallel domain decomposition
solver and performed large scale simulations. We obtained a scalability of 80% up to 1024 dis-
tributed processes. The solver is robust with respect to the computational parameters, and ready
to use in an existing industrial code for generalized convected Helmholtz and Helmholtz problems.
Moreover the entire parallel process can be hidden for the end-user. As a proof of concept, we
solved on a distributed memory architecture two realistic problems of 10 and 70 millions high-order
unknowns in respectively 5min and 2hours, up to several billions of non-zeros entries.

Perspectives

Regarding absorbing boundary conditions, the perspectives concern on the one hand the non-
trivial extension to boundaries with corners in particular for the convected Helmholtz equation,
and on the other hand the extension of Padé-based approximations to more advanced partial
differential operators [6] such as the linearized Euler equations [122], which is of interest for the
industry. In the near future we plan to run additional large scale computations, and apply the
method to the propagation of time-harmonic waves coming from the turbofan exhaust. Recent
advances in aeroacoustic modeling [171] have shown that a slight modification in the coefficients
of the generalized convected wave operator, called Pierce’s equation [160], can accurately model
time-harmonic waves propagation over more complex mean flows such as those found in jet engines.
Besides we will continue to investigate the work on transmission conditions. In particular the use of
PMLs is appealing and could allow more flexibility in the solver, especially regarding cross-points
[166]. However the approach remains to be adapted to unsymmetric transmission operators.
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A promising perspective towards a fully automatic parallel solver would be to partition the
computational domain with straight partitions directly through the computational mesh, and em-
bed transmission conditions in an immersed boundary method [159, 144]. To this end a detailed
study must be carried out regarding the applicability of ABCs and PMLs as immersed boundary
conditions. We have found in preliminary tests that an “immersed PML” concept may perform
equally well as the conventional PML, under the condition that the p-th first derivatives of the
absorbing function are zero-valued at the transition between the physical and PML domains such
as to ensure enough regularity of the approximated solution. In addition such immersed bound-
aries may be combined with immersed domain methods [167, 13], where one could treat the entire
problem on a structured Cartesian grid and easily handle complex geometries. In that regard
modern discretization techniques, such as the hybrid high-order [53] or hybridizable discontinuous
Galerkin methods [25], allow to reformulate the problem on a mesh skeleton and could be ideally
suited to non-overlapping domain decomposition methods [127].
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Appendix A

Formal computation of the DtN
symbols for the linear profile

1 from sympy import diff , series , Function , symbols , poly
2 from sympy import I, discriminant , simplify , sqrt , collect
3 from sympy import init_printing
4 init_printing ()
5

6 # Physical variables
7 x, xi = symbols (’x xi’, positive =True , real=True)
8 w = symbols (’omega ’, positive =True , real=True)
9 n = Function ("n", real=True , positive =True); # refractive index n(x)=c_0 ^{ -2}(x)

10

11 # -------------- lambda1 --------------
12 X = symbols (’X’) # polynomial variable
13 Charac_eq = poly( X**2 + xi **2 - w**2*n(x), X)
14 D = discriminant ( Charac_eq )
15 lambda1 = simplify (sqrt(D)/2)
16 lambda1_Taylor = series (lambda1 , xi , 0, 3)
17

18 # -------------- lambda0 --------------
19 dlambda1_x = diff(lambda1 ,x) # partial_x1 ( lambda_1 ^+)
20 lambda0 = simplify (-I* dlambda1_x /(2* lambda1 )) # composition rule for symbols
21 lambda0_Taylor = series (lambda0 , xi , 0, 3)
22

23 # -------------- lambda -1 --------------
24 dlambda0_x = diff(lambda0 ,x)
25 lambdaM1 = simplify ( (- lambda0 **2 - I* dlambda0_x )/(2* lambda1 ) ) # composition rule

for symbols
26 lambdaM1_Taylor = series (lambdaM1 , xi , 0, 3)
27

28 # -------------- lambda -2 --------------
29 dlambdaM1_x = simplify (diff(lambdaM1 ,x))
30 lambdaM2 = simplify ( (-2* lambda0 * lambdaM1 - I* dlambdaM1_x )/(2* lambda1 ) ) #

composition rule for symbols
31 lambdaM2_Taylor = series (lambdaM2 , xi , 0, 3)
32

33 # sum the contribution of the four symbols to obtain the DtN approximation
34 DtN_app = series ( lambda1_Taylor + lambda0_Taylor + lambdaM1_Taylor + lambdaM2_Taylor ,xi

,0 ,3)
35

36 # finally cancel the high order speed of sound derivatives for the linear case
37 DtN_app_quadratic = simplify ( DtN_app .subs(diff(diff(diff(n(x),x),x),x) ,0))
38 DtN_app_linear = simplify ( DtN_app_quadratic .subs(diff(diff(n(x),x),x) ,0))
39 # rearrange the terms and print
40 print( collect ( DtN_app_linear ,xi))

Listing A.7: Sympy code for the computation of Λ2
4.
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Appendix B

Selection of the PML parameter for
high-order FEM

In this appendix, we discuss the influence of the PML parameter σ0 on the convergence rate of the
p-FEM. Let us consider the duct case from Section 2.3.1 and set M = 0 for simplicity. We use the
third mode at the frequency k0 = 50. Four equally-spaced elements are used to mesh the PML
domain along the x-direction. To begin with, Figure B.1a depicts the modulus of the exact PML
solution ϕ̃ in one-dimension, which is given by equation (2.11). It is clear that the induced decay
function |ϕ̃| has a singularity at x = Lpml when σ0 < Vp, is polynomial of order n when σ0 = nVp
(|ϕ̃| is linear when σ0 = Vp) and otherwise, gains in regularity as σ0 > Vp grows. We recall that
since the absorbing function σ is unbounded, the PML is reflectionless at the continuous level.
Note that the homogeneous Neumann boundary condition imposed at x = Lpml (see Figure 2.3)
is not verified when σ0 ≤ Vp, because a homogeneous Dirichlet condition is automatically enforced
by the use of the unbounded absorbing function [42]. We have conducted additional experiments
and observed little numerical impact due to the end layer boundary condition.

Figure B.1b presents the associated L2-error in Ωphy for an increasing order p for the values of
σ0 depicted in Figure B.1a. It may be observed that the convergence rate is algebraic for σ0 = Vp/2
and only partially exponential for σ0 = 3Vp/2, due to the lack of regularity of the solution at the
layer end. On the other hand, the p-convergence is optimal for σ0 = Vp and nearly optimal for
σ0 = 5Vp/2 respectively. Interestingly, the p-convergence is exponential for σ0 = 20Vp but the
error is orders of magnitude higher than the reference solution.
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Reference solution ( ).

Figure B.1: Modulus of the exact PML solution in one-dimension and relative L2-error (in %)
in Ωphy as a function of p. Parameters: n = 3, M = 0, k0 = 50.

In order to further interpret these results, the relative L2-error and the best L2-error defined
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Appendix B. Selection of the PML parameter for high-order FEM

in equation (2.51) are recorded as a function of σ0 for different orders p, this time not in Ωphy, but
in Ωpml only. This is shown in Figure B.2. The relative L2-error fits the best interpolation, which
confirms that the maximal accuracy is achieved at a given order p. As expected, the interpolation
(of the non oscillatory part) of the solution is exact when the ratio σ0/Vp is an integer. However if
σ0 is chosen too large, the fast decay of ϕ̃ cannot be fully captured by the PML mesh and the error
increases. Most importantly, Figure B.2 highlights that the regularity of |ϕ̃| at x = Lpml governs
the potential gain in accuracy when increasing the polynomial order, which confirms previous
observations. It is worth mentioning that the same results were obtained when removing the y-
dependency, hence the performance of the PML can be analyzed through a simple 1D interpolation
problem. In short, we can affirm that there exists an optimal σ0 regime where the interpolation
error of the one-dimensional decay function (the non-oscillatory part) is small enough such that
the discrete PML is efficient. It is attained from roughly σ0 > Vp. The regime is referred to as
sub-optimal when σ0 < Vp and sup-optimal when σ0 � Vp [40].
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Figure B.2: Relative L2-error ( ) in % and corresponding best L2-interpolation error ( )
in Ωpml for the 2D duct problem with k0 = 50, M = 0, n = 3.

The same argumentation holds for the convected problem, the important parameter to consider
being the phase velocity seen by the PML. Since the latter clearly depends on the mode, the
frequency and the mean flow, we see that there is a priori no perfect choice for σ0. The criterion
σ0 > Vp guarantees a good regularity of the continuous PML solution. This explains the choice in
the article, where the value σ0 = 4β2 allows to avoid the sub-optimal regime for all PML models
in the considered frequency range, thus a fair comparison.

One might extend this analysis to the free field situation. In that case the phase velocity seen
by the PML is driven by the incidence angle of the wave, and one would obtain the criterion σ0 > c0
(and σ0 > βc0 for the Lorentz model) in order to avoid the sub-optimal regime.
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Appendix C

Square-root function and
approximations in the complex plane

Let us consider the complex-valued function

f(z) =
√

1 + z, z ∈ C,

where the branch-cut is located along the ray R = −1+reiπ, r > 0. The rotation of the square-root
branch-cut by an angle α, as proposed by Milinazzo et al. [143] writes

fα(z) = eiα/2
√
e−iα(1 + z), α ∈ [0,−π], z ∈ C.

We show in Figure C.1 the effect of α in the complex plane. We see that the branch-cut is now
located along the ray Rα = −1 + rei(π+α), r > 0, hence the rotation moves singularities away from
the negative real line.
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Figure C.1: Phase and modulus of fα(z) in the complex plane for α = {0,−π/4,−π/2}. The
phase is visualized by means of a color hue, and the modulus is shown by contour lines. The
plots were generated thanks to the routines [189].

We next want to approximate fα(z) by a rational function when z → 0. Diagonal Padé
approximants can be used for that purpose. The real diagonal Padé approximation with N terms
writes

fN (z) = 1 +
N∑
`=1

a`z

1 + b`z
, a` = 2

2N + 1 sin2
(

`π

2N + 1

)
, b` = cos2

(
`π

2N + 1

)
.

The approximation can be extended to the complex plane by rewriting fα as

fα = eiα/2
√

1 + (e−iα(1 + z)− 1)
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The complex approximation is then

fN,α(z) = C0 +
N∑
`=1

A`z

1 +B`z
, C0 = ei

α
2 fN

(
e−iα − 1

)
,

A` = e−
iα
2 a`

(1 + b` (e−iα − 1))2 , B` = e−iαb`
1 + b` (e−iα − 1) ,

and are referred to as complex Padé approximants. We plot fN,α in Figure C.2 for N = {1, 4, 8}
and α = −π/4. There are exactly N poles and N zeros of the resulting rational function, which
are all located along the branch-cut.
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Figure C.2: Phase and modulus contours of fN,α(z) in the complex plane for N = {1, 4, 8} and
α = −π/4. Poles and zeros are highlighted in respectively white and black.

Finally we compute in Figure C.3 the absolute error along the real line

|f(x)− fN,α(x)| , x ∈ R,

for different sets of (N,α). We see that for α = 0, the approximation is inaccurate for x < −1
because of the poles introduced by the Padé approximation along this line. As α increases, the poles
are rotated away from the real negative line and the quality of the approximation improves. On
the contrary, the approximation along the axis x > −1 deteriorates with α at fixed N . Increasingly
high accuracy is obtained with a larger value of N except at the singularity x = −1. Even when
α approaches −π, it seems that f converges towards fN,α for sufficiently large N . Since the choice
α = −π/2 moves the poles along the imaginary axis, it seems to provide the best trade-off between
the approximation of the two real lines x > −1 and x < −1.
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Figure C.3: Absolute error along the real line between the square-root function and its complex
rational approximation. Legend: N = 1 ( ), N = 2 ( ), N = 8 ( ), N = 16 ( ).
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