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Introduction

The Witt algebra and its universal central extension, the Virasoro algebra, have been in-
tensively studied. They arised in many research fields in Mathematics and in Theoretical
Physics and have numerous applications (e.g. see [11]).

From a pu're algebraic point of view, the construction of the Witt algebra is the following.
Let W := .7 Wh be a Z-graded vector space with one dimensional homogeneous spaces
W, = vect(Lp). We define on W the Lie bracket [Lp,Lm] := (m! n)Lp+m. The algebra
(W, [,]) is called the Witt algebra.

Thus the Witt algebra is an infinite-dimensional Lie algebra and is Z-graded.

The Witt algebra is not just an abstract algebraic construction but occurs in many math-
ematical fields. The Witt algebra W can be geometrically constructed as the Lie algebra
of meromorphic vector fields defined on the Riemann sphere that are holomorphic except
at two fixed points. Indeed, let the Riemann sphere be viewed as C" {#} , i.e. the com-
pactification of the complex plane and let the two fixed points be 0 and # . Then a basis
of W is given by {Ln := 2" - |n$ Z} and [Lm,Ln] = (N! M)Lmsn.

The Witt algebra admits an universal (one-dimensional) central extension. A Lie algebra L
is a (one-dimensional) central extension of a Lie algebra L over a field K if there exists a Lie
algebra exact sequence 0 % Kc % L % L where Kc is the one-dimensional trivial Lie alge-
bra and the image of Kc is contained in the center of L. It is well-known this is equivalent
to L = L & Kc with the Lie bracket [x,y]s = [X,y]L +! (X,y) &, where ! is a 2-cocycle
of L. The universal central extension of the Witt algebra is called the Virasoro algebra and

its usual normalization is given by the normalized 2-cocycle ! (Ln,Lm) = %(ns! "% m

In mathematics we find many generalizations of the Witt algebras. For example there are
the generalized Witt algebras [15], which are graded Lie algebras over an abelian group
and whose homogeneous spaces are not necessary finite-dimensional. We also find gener-
alization to Lie super-algebras: the super-Witt and super-Virasoro algebras [2].

In this thesis we are interested in two particular generalizations of the Witt algebra.

The first are the Witt type algebras. Starting from the algebraic construction of |the Witt

algebra, the following question occurs: let I be an abelian group, and let V =" ner W
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Introduction 2

be a -graded K-vector space with one-dimensional homogeneous spaces V- := Key; what
are all M'-graded Lie algebra structures on V?

This question was posed by Kirillov at the European School on Groups of Luminy in 1991.
A partial solution to this question are the Witt type algebras. They have been introduced
by R. Yu [38] in 1997. Given a map f : I % K, Rupert Yu considers the -graded algebra
V with the bracket [ex, es] = (f (#)! f($))ex+s. Under some conditions on f, V becomes
a Lie algebra called Witt type algebra. For example, any additive function f gives a Lie
algebra structure. If [ is a free abelian group and f is an injective additive function, a Witt
type algebra admits an universal central extension very close to the Virasoro case.

The second generalization which is interesting to us are the Krichever-Novikov algebras.
This kind of generalization of the Witt and Virasoro algebra arose in the study of con-
formal field theory and was given by Krichever and Novikov in 1987 [18, 19] for Riemann
surfaces of higher genus. Let X be a fixed compact Riemann surface of genus g. We
choose two 'generic’ points P+ and P_ and consider the Lie algebra of meromorphic vector
fields on X which are holomorphic on X \{ P+ ,P_}. For g =0, i.e. if X is the Riemann
sphere, this algebra is exactly the Witt algebra and its central extension is the Virasoro
algebra as described before. For higher genus g, this algebra is not graded anymore but
a weaker structure is still present: the almost-graded structure (see its definition below).
Krichever and Novikov showed that this algebra admits a central extension respecting the
almost-graded structure. Note that, in contrast to the Witt algebra, there are many non-
equivalent central extensions but only one which is compatible with the almost-grading (see
[33]). This algebra (with or without central extension) is now usually called the Krichever-
Novikov algebra (short: KN-algebra). Martin Schlichenmaier [34—36] give extension of the
KN -algebras to the multi-points case and give moreover explicit generators of the KN-

algebras which gives an almost-graded structure for the KN -algebras.

This thesis is split in two quite di Cerknt parts but they are related to the Witt algebra. In
fact in the first part we study the Witt type algebras and in the second part, automorphic

algebras are linked to the theory of KN -algebras. Let us described each part more precisely.

The first part is about Lie-admissible structures on Witt type algebras. For any algebra
(A,") over a field of characteristic di Lerknt from 2, we define the algebra A~ := (A, [,])
and the algebra A* := (A, () where [x,y] =x'y! y' xandx(y = 3(x'y+y"' x).
If A= is a Lie algebra, then A is called a Lie-admissible algebra. Lie-admissible algebras
were introduced by A.A. Albert in 1948 [1]. Much of the structure theory of Lie-admissible
algebras has been initially carried out under additional conditions such as the flexible iden-

tity (x"y)' x =x" (y"' X) or the power-associativity (i.e. every element generates an
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associative sub algebra).

Finding flexible or third power-associative Lie-admissible algebras with prescribed algebra
A~ has been a main problem in algebra. Benkart and Osborn [6] and Myung and Okubo [22]
gave in 1981 all flexible Lie-admissible algebras when A~ is a finite-dimensional simple Lie
algebra. Benkart extended this result in 1990 [5] and gave all third power-associative Lie-
admissible algebra when A~ is semi-simple and finite-dimensional. For infinite-dimensional
algebras the problem has been solved in the following cases: simple generalized Witt al-
gebras [15], Witt and Virasoro algebras [23] and Kac-Moody algebras [14]. Lie-admissible

algebras are also related with many problems in physics (see [25—29]).

Another class of Lie-admissible algebras are the left-symmetric algebras. An algebra (A,")
is left-symmetric if (X,y,z) = (y,X,z) where (X,y,z) = (x"y)' z! x' (y' z) is the
associator. We can show that such an algebra is Lie-admissible. Left-symmetric algebras
arise in many areas of mathematics and physics. They have already been introduced by A.
Cayley in 1896, in the context of rooted tree algebras; see [7]. Then they were forgotten
for a long time until Vinberg [37] in 1960 and Koszul [17] in 1961 introduced them in the
context of convex homogeneous cones and a Lnelly flat manifolds. They appear now in
many mathematical theories like the theory of vector fields, theory of operads, or a [nel
structures on Lie groups. The graded left-symmetric structure on the Witt and Virasoro

algebras have been classified (see [3]).

In the first part of this thesis, we study the problem of finding Lie-admissible structures for

the case of Witt type algebras.

In the first section we give all preliminary definitions and properties. We begin by introduc-
ing the definitions of the Lie-admissibility, flexibility and third power-associativity. We then
define the Poisson structures and we explain their link with the flexible Lie-admissible alge-
bras, we also briefly remind the theory of central extension. Finally we treat in details the
Witt type algebras. In particular we show which among them are simple or graded-simple

algebras.

In the second section we determine all third-power associative Lie-admissible structures and
flexible Lie-admissible structures on Witt type algebras. We obtain a general result for any
Witt type algebra. For simple Witt type algebras, the third-power-associative or flexible

structures are of the same form as for the simple algebras studied before [5, 15, 23]. But
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our results are true even for non-simple Witt type algebras and then we see how the sim-
plicity acts on the third-power associative and flexible structures. Since Witt type algebras
are generalizations of the Witt algebra, our results of course coincide with those given
by H. Myung [23] in the case of the natural Witt algebra. Finally, we search for Poisson
structures on Witt type algebras. In fact for a flexible Lie-admissible algebra (A,"), finding
Poisson structures on A is equivalent to requiring the associativity of the commutator law
(. Thus, since there exists non trivial flexible Lie-admissible structures on some Witt type
algebras, looking for Poisson structures is rather a natural question. We give a condition

for their existence.

Next we deal with central extensions of Witt type algebras. We compute their second
Lie algebra cohomology with values in the trivial module. It is interesting to see that this
group depends on the gradation by the group I'. Rupert Yu already studied central exten-
sions for a class of Witt type algebras which are very close to the Witt algebra. Using his
result, we generalize Myung's paper on the Virasoro algebra [23]. More precisely we find
third power-associative Lie-admissible structures and flexible Lie-admissible structures on

the central extension of some Witt type algebras.

The computation of the 2-cocycles of Witt type algebras leads us to the problem of find-
ing symplectic structures. In fact a symplectic structure on a Lie algebra is given by a
non-degenerate 2-cocycle. It is well known that in the finite-dimensional case there is no
symplectic simple Lie algebras. We prove that the situation is dilerknt in the infinite-
dimensional case. Indeed we find symplectic structures on some of the simple Witt type al-
gebras. For a finite-dimensional Lie algebra A, any symplectic form induce a left-symmetric
product such that A= = (A, [,]). A natural question is, whether this is also true for infinite-
dimensional Lie algebras. The answer to this question seems to be very di Cculk. Neverthe-
less, for some specific Witt type algebras we can give explicitly all symplectic forms which
induce a graded left-symmetric product. In particular, we study the case of the classical
Witt algebra and, as the classification of its graded left-symmetric structures is known [3],

we determine which ones are induced by a symplectic form.

All these results are published in the Journal of Geometry and Physics [4].

In the second part of the thesis we study the automorphic algebras.
Starting from arbitrary compact Riemann surfaces we consider the action of finite sub-
groups of the automorphism group of the surface on certain geometrically defined Lie

algebras.
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These algebras are the algebras of all meromorphic functions, the algebras of meromorphic
functions with poles only on a finite subset of points, and their induced current algebras, re-
lated to finite-dimensional Lie algebras. In the case of finitely many points, where poles are
allowed, these algebras are algebras of Krichever-Novikov type and they allow an almost-

grading.

More precisely, for a finite subgroup G of automorphisms acting on the Riemann surface,
we relate the invariance subalgebras living on the surface to the algebras on the quotient
surface under the group action. The almost-graded Krichever-Novikov algebras structure
on the quotient gives in this way a subalgebra of a certain Krichever-Novikov algebra (with
almost-grading) on the original Riemann surface.

Specially discussed is the situation where the finite subgroup of the automorphism group
has also a faithful representation on the finite dimensional Lie algebra used to construct
the current algebra.

According to the dilerknce on the automorphism groups, the situation is divided in three
cases: genus g = 0 (Riemann sphere), g = 1 ( the complex torus ), and g greater or equal

2. In this thesis we study in details the cases of the Riemann sphere and the torus.

The second chapter is organized as follows. In the first section we remind all the material
needed about Riemann Surfaces. We give the basic definitions and properties on Riemann
surfaces, holomorphic maps and function and meromorphic functions. In particular the
situation of compact Riemann surfaces is described. Moreover, explicit descriptions of the

Riemann sphere and of the tori are given.

In the second section we are interested in the meromorphic functions with prescribed poles
on a compact Riemann surface X. For a finite set I' containing at least two points of
X, we consider the algebra M (X, I') of the global meromorphic functions which are holo-
morphic in X \ T'. This algebra is a Krichever-Novikov algebra and is almost-graded. We
give a description of the general situation of the Krichever-Novikov algebras and of their
almost-graded structure. The almost-graded structure of the Krichever-Novikov algebras
depends on a splitting of the set " into two non-empty subsets. We treat in more details
the situation of the algebra M (X, ') and we give explicit examples for a two points set I’
in the case of the Riemann sphere and of the tori. Moreover we explain how we can find

an almost-graded structure in the case when I is a single point.
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The third section is dedicated to the finite groups acting on a Riemann surface. In par-
ticular we are interested in the finite groups G acting holomorphically and e [edtively on a
Riemann surface X. Then we explain how the quotient space X/G can be equipped with a
Riemann surface structure such that the natural projection %: X % X/G is holomorphic.
There is a close link between stabilizer subgroups of the action and the ramification points
of the projection % In the case of compact Riemann surfaces, using the Hurwitz Formula
we are able to describe explicitly the possible ramifications (and the stabilizer subgroups)
of the map % In the particular case of the Riemann sphere we give explicitly the groups
which realize these ramifications and we give the complete classification of the finite au-
tomorphism groups. For the complex tori T, the finite groups acting on T contains two
types of automorphisms; the translations, which are not fixing any point of T, and the
rotations, which are fixing points. Using the possible ramifications of the map % we can
conclude on the genus of the quotient Riemann surface T/G. A quick description of the

higher genus situation is also given.

In the last section, we study the automorphic algebras. Automorphic algebras are algebras
which are invariant under the action of a finite automorphism group G of a Riemann surface
X. First we consider the associative algebra M (X) of the meromorphic functions of X
and we show that the automorphic algebra M g(X) of G-invariant meromorphic functions
is isomorphic to the algebra M (X/G ). Most interesting is to consider the Krichever-
Novikov algebras M (X, ) where T is a finite set of points of X. We prove that the
automorphic algebra M (X, ") is also a Krichever-Novikov algebra and then admits an
almost-graded structure. Next we extend our study to the current Lie algebra which is
typically constructed by taking the tensor product of a finite-dimensional Lie algebra L and
the associative algebra C[z,z7] . In fact as for the Krichever-Novikov algebras M (X, I")
a natural extension is to consider the Lie algebras L(X, ") ;=M (X, ) )L . We consider
the action of special finite subgroups of Aut(M (X))L ) that we obtain by using a faithful
representation of a finite automorphism group G of the Riemann surface X on the finite
dimensional Lie algebra L. In fact we show that considering these special groups which are
groups acting simultaneously on the both algebras M (X) and L, is an important situation
and we study the automorphic algebra Lg(X, I').

Finally, since the Lie algebra L(X, ") admits a natural almost-graded structure, we try
to describe the situation for the automorphic algebra Lg(X, I') in the special case of the

Riemann sphere and of complex tori.



Chapter 1

Lie-admissible structures on Witt
type algebras.

1.1 Preliminaries

1.1.1 Flexibility - 3rd power-associativity

In the following we give the definitions of 3"% power-associative and flexible algebras. Also

we define the notion of Poisson structures.

Let K be a field of characteristic dilerknt from 2. For any algebra (A,"), we define two
products, [X,y] :=x"y! y' xandx(y := %(X' y+Vy' X). We denote by A~ the algebra
(A, [, ]) and by A* the algebra (A, ().

Debnition 1.1. An algebra(A,') is said Lie-admissible if the algeb&~ is a Lie algebra.

Remark: Since the bracket [, | is skew-symmetric, an algebra (A,"') is Lie-admissible if
and only if the bracket [, ] verifies the Jacobi identity.
Any associative algebra is Lie-admissible. Therefore we are mainly interested in non-

associative Lie-admissible algebra.

Debnition 1.2. For a given Lie algebrdL, [, ]), a Lie-admissible product on L is said
compatible with (L, [, ]) or just compatible, if[x,y]=x"y! y' X, *X,y $ L.



Chapter 1. Lie-admissible structures on Witt type algebras. 38

Debnition 1.3. Let (A,') be an algebra. Forx,y,z $ A we debne the associator
x,¥,z):=(x"y)" z! x' (y"' z). Then:

1. The product' or equivalently the algebrdA," ) is said3'® power-associative if

(x,X,x) =0, *x$ A.

2. The product' or equivalently the algebrdA, ') is said Rexible if

(X,y,X) =0, *x,y $ A.

We give equivalent formulations of these definitions, in terms of [, ] and (:
Proposition 1.4. 1. The following properties are equivalent:

) (A,') is 39 power-associative,

i) X, x(x]=0, *x$ A,

i) 2, x (y]+ [y, x(x] =0, *x,y $ A,

iv) Gy (zl+ [y, z(x]+[z,y(x]=0, *x,y,z$ A.

2. The following properties are equivalent:

i) (A,") is Bexible,
i) oyl (x =Dy (x], *x,y $ A,

i) oy (zl=Mxyl(z+y([x.z2] *xy,z$A,
Hence A is RBexible if and only if

ad(x) :=[x,.] $ Der(A,(), *x$ A.
Proof. We suppose that ' is 3'9 power-associative. Remark that X' x = x ( X. Then:

Gxx)=(x"x)t x ! xt(x"'x)
=x(x)"x! x" (x(x)

= [x,x ( x].
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This proves the equivalence between i) and ii)

Now we use the identity [X,X ( X] =0, *x $ A with X +y:

X+y,(xX+y)((x+y)]=0
o OX (X GX (Y] + XYy (Yl + Iy, x (] + Ty, 2x (Yl + [y, y (y] =0
+ 2 x(yl 2y, x(yl+ X,y (yl+ [y, x(x]=0. (1.1)

We use now [x,x ( X] =0, *x $ A with x! y:

X!y, (x!y)((x! y)]=0
0 DGX(OX] G2x (yl+ Xy (yl ! Ty, x (x]+ Ty, 2x(yl Y [y,y(yl=0
+ 0 2pGx(yl+ 2y, x (Yl + Xy (y]! [y, x(x]=0. (1.2)

Finally (1.1)-(1.2) gives
2, x (y]+ [y, x(x]=0. (1.3)

This proves ii) % iii).
To get the last identity, we use (1.3) with X +y and z. That gives

2x+y,(x+y)(z]+[z,(x+y) ((x+Yy)]=0
+ 2, x(z]+2[x,y (z]+2[y,x( Z]
+2ly,y (z]+ [z, x(X] +2[z,x(y] +[z,y (y] = 0.

From (1.3) we have 2[x,x( z] +[z,x( x] =0 and 2[y,y ( z] + [z,y ( y] = 0. Hence we
get:

2,y (2] 4+ 2y, x( z] +2[z,x(y] =0
+  Xxy(z]+ly.z(x]+[z,x(y]=0. (1.4)

This proves iii) Bo iv).

To conclude notice that iv) trivially implies ii)
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We suppose now that ' is flexible. That means that (Xx,y,Xx) =0, *x,y $ A. Hence we

have:

(x"y)" xt x' (y'x)=0

by y) (X Sy X X ((y* x) =0
" # % %

6o S Ex(yx 4 Syl x(y (X
" # $ %
! E xl[y X]+y(x ! x( 1[y X|+y(x =0
2 T2 27"
b IOy X b Cy ok 2Byl (X (x () (%

1
i
2y xSy (] ax ([yax]! X ((y (x) =0

4 2 2 !

4 X(y.x] Y (x=0

o Xyl (x=[xy(x]. (1.5)

We have to prove the last equivalence. We remark that:

[z<,y(21=[x.y](z#+y([x,Z], *X,¥,2$ A (1.6)
Xy zHzy) = (k] z ez D E oy Gzl y)
by 2Bz Yl =y z 2t Yy oz )y
Xy )y ) XX (@) (2 Y)

S () 2 Nz Rz () 2 ()
+y' ' x'z)ty' ' (z'x)+(x"z)'y! (z'X)'y
f(KY2) @Y+ 1,20+ (K,2,9) = (V,X,2) + (2,%,) (L7)

But ' is flexible if and only if

(x,z,y)+(y,z,x) =0. (1.8)
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In fact by polarizing (X,y,X) = 0 we get:

(x+y,z,x+y)=0
H ((x+y)' z)" (x+y)! (x+y)' (2" (x+y))=0
H (X'z)'x+(x"z)'y+(y z) x+(y'z)'y
Pxt @ )t xt@Zhy)y (@ )ty (z'y)=0
+ X"2)'y+(y'z)'x! x'(z'y)ly'(z'x)=0
+ (x,z,y)+(y,z,x)=0.

Finally, the flexibility of ' gives (1.8). But if (1.8) is true, then (1.7) is true and then (1.6)
too. Conversely, the identity (1.7) with z = x gives clearly the flexibility of ' . ]

1.1.2 Poisson structures

Debnition 1.5.

1. Let A be aK-vector space with two products{ , } eta (A,{, },d is a Poisson
algebra if (A,{ , })is a Lie algebra and ifA, § is an associative and commutative
algebra such that:

{x,yaz} ={x,ylaz+ya{,z}, *x,y,z$A (1.9)

2. Let (L, [, ]) be a Lie algebra. A Poisson structure oh is a productésuch that
(L, [, ], 8 is a Poisson algebra.

3. Let (A,") be an algebra. A is Poisson-admissible(&, [, ],() is a Poisson algebra.
We Remind that[, ] and ( are debPned byx,y] .= x'y! y' xandx(y =
(XY +y " x).

Proposition 1.6. An algebra(A,"') is Poisson-admissible if and only & is RBexible, Lie-
admissible and for alk,y,z $ A we have

2(x,y,z) =(y" z)" x! (y'x)" z+x" (2" y)! z* (x"y).
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Proof. We suppose that A is flexible, and Lie-admissible. By definition the product ( is a

commutative product. Moreover by proposition 1.4 the flexibility of ' is equivalent to
Ky(zl=[Kxyl(z+y([x,zZ] *x,y,z$A

That is exactly the identity 1.9 applied to [, | and (.

Hence we just have to show that ( is an associative law if and only if
2(x,¥,2)=(y'" )" x! (y'x)"' z4+x'" (z'y)l z' (x"y).
By direct computation we get:

x(y)(z=x((y(2)

o (x(y) z+zt (x(y)=x"(y(2)+(y(2z)" x

+ X'y+y'x)'z+z' (x'y+y'x)
=(y'z+z'y)'x+x"'(y'z+z'y)

o (xy)tzt xt(yt )l (Z2Ty) x+z" (Y x)
=" z2)'xt (y'x)" z+x"(z'y)l 2" (x"y)

t (xy.2)! (2,y.%)

=y'z)'x (y'x)'z+x"(z'y)! z' (x"y).
Then the law ( is associative if and only if
x,y,2)! (z,y,xX)=(y'"z)'x! (y"'x)"z+x"(z"y)! z' (x"y). (1.10)
But we computed before (1.8) that the flexibility of ' is equivalent to
(x,y,z)+(z,y,x) =0.
Hence the identity (1.10) becomes
2(x,y,z) =(y" z)" x! (y'x)" z4+x" (2" y)! z' (x"y).

That ends the proof. ]

Proposition 1.7. An algebra(A,") is Poisson-admissible if and only & is Rexible, Lie-
admissible and for alk,y,z $ A

(x,y,2) = 1,241
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Proof. As for the previous proposition we just have to show that the associativity of ( is

equivalent to

1
(x.y,2) = 71y, [2.X]).
We proved in proposition 1.4 that (A,"') is flexible if and only if for all x $ A, ad(x) is a
derivation of (A, (). Moreover (A,") is Lie-admissible if and only if for all x $ A, ad(x) is
a derivation of (A, [, ]).
Hence (A,") est flexible and Lie-admissible if and only if for all x $ A, ad(x) is a derivation
of (A,").
By writing x (y =x"' y! %[x,y],vve get that:
x(y)(z=x((y(2)
vo(xy) zt Syt Syl z 4 Ay
i) - 2 1 - 2 1 4 1 b
1 1 1
=x'(y'z) = 2l Zxt -
X'y )t Sy X 2]+ gDy, 2)
1 1 1 1
I Z[x" [ ' = ' Ve
f YD) S Y Sz Sy 2] X [y,
1 1
- [
T [y.2t 5lx.y).2]
+ (X z)+}[z X' ]+1[x ' z]! E[x ]'z+lx'[ Z]
1 !y7 2 1 y 2 ’y - 2 ’y 2 y1
1 1
= 2l Iy, 2l + 41z, V]
+  (x z)+l[z x]' +lx‘ [z ]+E[x ]'Z+E " [x,2Z]
, Y 512 y+s3 YISy Y X
1 1 1
([ ' Zx! —1 =
LSz X .z =t (2]
1 1 1
- ryl o Zy! =1 =
Gy, ) +5lz Xyt oyt zod =t gy (z,x]]
1 1
Gy, 2+ Sllzxbyl =t Zly. [z x]]

5 (6y.2)= 3y 2]

1.1.3 Central extensions

Debnition 1.8. Let (L, [, ]) be a Lie algebra. A skew-symmetric bilinear for&: L- L %
K is a 2-cocycle (scalar 2-cocycle) if:

&([x,y],z) + &(y, z],x) + &([z,x],y) =0, *X,y,z$ L.
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For any linear foom h : L % K, the bilinear form dh debned by
dh(x,y) :=h([x,y]), *x,y $ L, is a 2-cocycle.

A 2-cocycle& is a 2-coboundary if there exists a linear forim of L such that & = dh.

The set of the 2-cocycles is denoted by ?(L, K) and the set of the 2-coboundaries is
noted by B2(L, K). The second (scalar) cohomology group of is the quotient group
H2(L, K) := Z?(L, K)/B ?(L, K).

Debpnition 1.9. Let (L,[, ].) be a Lie algebra and& a 2-cocycle ofL. On the vector
spaceE := L & Kc we debne the brackef , g by:

[X,Yle == [X,ylL +&(X,y)c, *xX,y $ L,
[x,cle :=0, *x $ L.

The algebra(E, [, ]g) is a Lie algebra called the central extension @f, [ , ]_) by means
of the 2-cocycle&. The central extensions oL, E; by means of the 2-cocyclé&; and E»

by means of the 2-cocycl&, are equivalent if and only i&;! & $ B?(L, K) (that means
they are in the same class in?(L, K)).

Remark : Two equivalent central extensions are isomorphic Lie algebras.

Debnition 1.10. Let (L,[, ]) be a Lie algebra. We say thafL, &) is a symplectic Lie

algebra if& is a non-degenerate 2-cocycle df. Note that in the Pnite dimensional case,
L must be even-dimensional. The form& is called a symplectic structure or a symplectic
form on L.

1.1.4 Witt type algebras

Now we summarize the definitions about Witt type algebras and we list important results
on simplicity. Also we recall the classification of Witt type algebras. More details can be
found in the paper of R. Yu [38].
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1.1.4.1 DebPnitions and brst properties

Let K be a commutative field. |

Let I be an abelian group and V = ' #c1 Vi a -graded K-vector space such that
dimVg =1 forall $ $ . Let {ex}zer be a basis of V such that Vi = Key.

During the European School on Groups of Luminy in 1991, A.A. Kirillov posed the following
problem: characterize all Lie algebra structures on V. Witt type algebras give a partial

answer to this problem.

Debnition 1.11. Letf : T % K. We debne onV the product|[, |: V- V % V given by

[es,es] = (F(#) ! f($))esss

The algebra(V,[, ]) is denotedV (f ).
A Witt type algebra is an algebra/(f ) which is a Lie algebra. Since the bracket is skew-
symmetric, V(f) is a Lie algebra if and only if the Jacobi identity holds fér, ].

Remark: Replacing f with f I f(0), that does not change the bracket and V(f) =
V(f ! f(0)). Hence, we can always consider functions f with f (0) = 0.

Debnition 1.12. Let E be the set of functionsf such that:

(E1) f(0) =0,

(E2) f($+#)(F($)! f(#)=(F($)+THEH)F(S)! T(#) *$,#$T.

In regard of the definition of Witt type algebras, they are completely characterized by the

map f. We give more information about these maps.

Proposition 1.13. A Lie algebraV is a Witt type algebra if and only ifV = V(f ) with
f $E.

Proof. We suppose that V is a Witt type algebra. By definition, V = V(f ) for some map
f % KandV is a Lie algebra. As remarked above, we can replace f by f I f(0) and
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suppose that f (0) = 0. That means that (E1) holds.
As V(f ) is a Lie algebra, the Jacobi identity holds for its bracket and

[ex.[es, e ]] =0
cyclic
+ [ex, (FC)! f(#))es+-] =0
Céclic
g (FC )1 T()ler eser] =0
cyclic
+ FC)TEEFNEFE+)! £($))esrs4r =0
cyclic

O O FENEFL)LEE)+EG@)! FCNEC +8)! £(#))
+{EFH) @)@ +#)! T())=0.

For' =0 we get

L E#)F @) FS) T ($)(F($)! FE#) + (FE)! F($)F(S+#)=0
5 f@+HHE @) F($)=FE) +F@)FEE)! 1(3)).

This gives the identity (E2).

Conversely, we suppose that V. = V(f ) with f $ E. As (E2) holds we have:

[ex, [es, e]]
Céclic
= FCITEENEHEF+)! 1($))es+s4n
CéC“C
= [FEH+)EC)FE) F@E)EC)! F(#))]es+ s
cyclic

But by using (E2), the previous equality becomes then

&
= [ECH)HEENEC) FE)! FES)EC)! F(#))]essss

cyclic

= [P @ FS)EC)! F#)lessser

cyclic
=[f(")*! f@#)2 F($)F()! T(#)
+E($)21 £ )21 F@EG)! £())
+F#)2! £($)2! FC)F@)! £($))]essgsr =0
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That is, the Jacobi identity, holds and V is a Lie algebra. ]

The following lemma gives some properties of maps in E:

Lemma 1.14. Letf $E and let$,# $ T.

1. Iff($) =1 (#), hencef ($ +#) =1($) +T(#).
2. f($)=+f(1 $).
3. Set Iy :=f~1(0).

a) The setlg is a subgroup ofl".

b) If $/ # modulolg, hencef ($) = f (#).

Proof. 1. Iff($)=f(#), thenf($)! f(#)=0. By (E2) we have

f(S+#)=1($)+f#).

2. In(E2), weset# =1 $. We get
fF$)+fC$)EG)! T $)) =0.

Sof($)==f(9).

3. a) Let $,# $Tp. Apply (E2) to $ +# and ! # and note that f (! #) =+f(#) =0.
Hence we get
f($+#)2=0.

Hence $ +# $ I'g. Moreover 0$ g, so g is a subgroup of T.

b) We suppose that $ / # modulo Ip. We can suppose f ($) = 0 (otherwise
$STMo, #$Mpandf($)=Ff(#)=0). Hence f($) =Ff(#! $)since#! $$ o
and f($! #) =0. By 1) we conclude that

FH)=f(S+#! $)=F(S)+F#H! $)=1($).

Lemma 1.15. Letf $E and seti :=={$ $ I/ f ($)=f( $)}.
ThenT =Tgor T =T.
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Proof. If car(K) =2, we clearly have T =T as*$ $ T, f(I $)==f($).

So we suppose that car(K) = 2.

Suppose first that o = {0}. We show that if [ = {0}. Then [ is necessary equal to I".
Let $ $ I which is not in Ig i.e. $ such that f($) =f(! $) =0and let' be any element
of I'.

First situation: f($) = (). Iff() =11 "), then f($) = f(! ') (otherwise
f($) =!1f(1 %)) and then f($! ') =f($)+f(1 ") = 0. Therefore $! ' $ Ip.
Hence $ ="' . But that is absurd because f(* ) =! f(! ' )and f($) =f (' $), we should
get f($)=0.

Hence f(*)=f(!1 " )and " $T. Aswell, iff (! ') =f($) we show that +' $ [
Second situation: f($) =f(" )andf($)=F( ").

Suppose that ' /$ [ ie. that f(") = f(1'). As f($) = f(') and as
fO$)=F($)=f("") we have:

fS+")=1($)+1()

and

FOSI ) =F1$)+f(1")=F($)! ().

Butf(! $! ')=%f($+"')so2f($)=0o0r2f(")=0. Thisis absurd. So' $ .
Finally, if Fg = {0} and if M= o then I =T. Thatis the expected result in the situation
Mo ={0}.

Suppose now that g = {0}. From the lemma 1.14 the map f is well-defined on the
quotient G := '/ [y. Consider then the induced map f.G:=r1/ Mo % K which belong
again to E. For this new map we have Gyp = {0} and we can apply the previous computation:
G=GyorG=G. Bt G=1T1/Tp. Hence G=Gy ={0}+ [ =Tgand G=G+
I"=T because [0 [ . ]

Proposition 1.16. Suppose thatl" is 2-torsion free and 3-torsion free. Lef $ E be an
injective function, thenf is additive.

Proof. From part 1) of the Lemma 1.14 and the assumption that f is injective, we just
have to show that for $ = 0, we have f (2$) = 2f ($).
By (E2) we have

F$1 $)(F(28)! F(1$))=(F(2$)+F( $)FQR$)! £ 3$)). (1.11)

Moreover since I is 2-torsion free, $ =1 $. As f is injective, f(! $) = f($). Hence

f(1$)="1($).
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Similarly, since I is 3-torsion free, 28 =! $. As f is injective, f (2$) =f (! $). Thus in
the identity 1.11 we can divide by f(2$)! f(! $) and we get f ($) =f(2$) +f(! $) i.e.

2f ($) =1 (23).

1.1.4.2 Simplicity of Witt type algebras

The Witt type algebras generalize the Witt algebra. So it is natural to study when these

algebras are simple.

Debnition 1.17. Let A be al-graded algebra. A graded ideal & is an ideal which is a
graded sub-vector space oA.

The algebraA is said graded-simple if there is no proper graded idealAin

A Lie algebral is said perfect if[L,L] = L. In particular simple and graded-simple Lie
algebras are perfect.

Theorem 1.18. Let f be a non-zero function ofE. V(f) is graded-simple if and only if
I =To.
In particular if caK) = 2, V(f ) is never graded-simple.

Proof. (5 )

We suppose that I = [p. By Lemma 1.15, I =T. Hence f ($)=f (! $) forall $ $ T

In these situation, as [eg,eg] = (f (#)! f($))ex+s it is obvious that eg $ [V(f), V(f)].
So V(f) is not a perfect Lie algebra and cannot be graded-simple.

(+=)

We suppose that f is non-zero and ' = I'p. Hence car(K) = 2 ( otherwise ' =T). Let | be
a non-trivial graded ideal of V(f ). We define " :={" $ I'le~ $ I}. Since | is not reduced
to zero, [ is not empty. We want to show that $ +# $ M forall$$ M and# $T. In
this case we have " =T. In fact, let' bein since!' $Twehave0="1"$T1".
Hence for all # $ I we have # = 0+# $ " and then " =T. As a consequence, | = V(f).
Let $ $ I and # $ . There is three situations :
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1.IFf($) =f(#) s00 = [es,e5] $ Keyrg. As | is an ideal, e4+3 $ | and hence
$+#SI.

2. Iff($)=f#)=0so# $To="T. Thusf(! #) =" f(#). From (E2) we get

F# ! #)(F(2#) +F(#) = (F(2#)! f#)(F (2#) +f#))
+ o (F(2#) +f(#)(2f (#)! f(2#) =0
4 F(2#) =1 f(#) or f (2#) = 2f (#).

So we cannot have f($) = f(#) = f(2#), because in this case f (#) = 2f (#)
or f(#) ="1f(#). If f(#) = 2f (#) then # $ Iy, against our assumption. If
f(#)=""f#) thenf(#)=0since car(K) = 2. Hence# $ Iy is this case too. Thus
f($) =1 (2#).

Moreover we cannot have f (! #) = f($ + 2#). In this case, as f ($) = f (2#), we

should have
fO#)=F($)+f#)ie | T(#)=1($)+T(2#),

but f(2#) =" f#) or f (2#) = 2f (#) and:
If f(2#) =" f(#) so f($) =0 which is supposed to be wrong.
Iff(2#)=2f(#)sof($)="!3f(#)+ f($)=0 because car(K) = 2.

In conclusion we have proven that f (! #) =f($ +2#) and f($) = (2#). By 1) we
have $ +2#$Mand$+# =8 +2#! #$ T

3.Iff($) =f(#) = 0, since f is non-zero, there exists ' $ I such that f (" ) = 0.
AsT =Tg f(1")=1f(). By1) (since0=F($)=f(")) weget$+' $TI.
As well since f($+"' ) =f($)+f()=f(")=F("")=Ff#! ") wegetbyl)
S+ )+@#! ")$TI.

Thus$ +#$ T, *$$Mand *# $ T.

Theorem 1.19. Let f $ E. The algebraV(f) is simple if and only if the following state-
ments hold:

a) f is non-zero and injective,

b) I is 2-torsion free.
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Proof. See [38]. O]

The following theorem gives in some cases a condition for two Witt type algebras to be

isomorphic.

Theorem 1.20. Let I' be a free abelian group and Idt,g $ E be two injective functions.
The algebrasV(f) and V(g) are isomorphic (as Lie algebras) if and only if there exists
($K*and) $ Aut(l) suchthat(g =f ().

In the following we give a classification of Witt type algebras.

Debnition 1.21. Let A be the set of additive functions from™ to K.
Let P be the set of functions froml" to K with the following property: there exists a
surjective group morphisnt : I % Z/3Z and ( $ K* such that

0 if *($)=0,
f$)=, ( if *3$)=1,
(!( if *($)=11.

Let C be the set of functions froml" to K with the following property: there exists a
subgrouplg of I', o =T and( $ K* such that

) 0if$ $ I,
f($) =

*
( otherwise

Theorem 1.22. (Yu [38])
The set E is the union of the setsA, P and C. If car(K) $ { 2, 3}, the union is a disjoint.

Proof. 1. Cardf (') =1 if and only if f = 0:
Since f (0) =0, if Cardf (I') = 1 so it is obvious that f = 0.

2. Cardf (M) =2ifand only if f $ C:
Mo is a subgroup of " and f () = {0}. If Cardf () =2so f(MNlp) :=( $ K" It

is easy to check that such a function is in E.

3. Cardf () =3 if and only if car(K) =2 and f $P:
If car(K) =2 and if f $ P so it is obvious that Cardf (I') = 3.
Assume now that f (M) = {0, , ( } with ( = 1 non-zero. Since ( = W, by the lemma
1.14 we have ( +u $ f(I') and then ( + 1 =0. Hencep =! ( andas ( = |, it
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is not possible if car(K) = 2. So car(K) = 2. We have to show that there exists a
surjective morphism * : I % Z/ 3Z satisfying the conditions of the definition of P.
Assume that I = . Let $,# $ I such that f($) = ( and f(#) = ! (. Hence,
sincef($)=f(#)wehavef($+#)=Ff($)+f(#)=0. Aswel,L 0=F($ +#) =
f('#)=" (. Thus:

(=f($)=f(S+#! #)=FG+#)+1( #)=1 (.

That is not possible because ( = 0. hence r=Trp.

We define * as follow:

; 0 si f($)=0,
*T%ZIBZ*($)=, 1 si f($)=¢(
1 si £($)="!¢

It is quite easy to verify that * is a morphism and that f belong to P.

4. If Cardf (I') 1 4 then f is additive and non-zero:
Let # and ' be two elements of . As Card(f (I)) 1 4 we can find $ $ I' such that
fS)=1()f($)=Ff#+")andf($)=1F#)! ().
Hence f (#) =f($)+f(" )andasf($)=F( ), wehavef($+')=1($)+f(").
Thus f (#) =f($ +"' ). Finally:

fE+" )+ @S)=FF#+(C +3)=FfH#H)+f( +8)=Ff@#) +1()+1(F).

This proves that f (#+' ) =f(#) +f(" ).

OJ

Remark: If carK $ { 2, 3}, the union is not disjoint. In fact, if car(K) =2 then P 0 C and
if car(K) =3, POA .

We now specialize Theorem 1.19 by distinguishing whether f belongs to A, P or C. This
is not in the paper of Yu [38] but is quite obvious in regards of Theorem 1.19.

Proposition 1.23. Let f be inA, then V(f) is simple if and only iff is injective. As the
functions of A are additive,V(f ) is simple if and only if o = f ~(0) = {0} .

Proof. If car(K) =2, no Witt type algebra is graded-simple.
Hence we suppose that carK = 2. If I is not 2-torsion free there exists $ = 0 such that
2$ = 0 and since f(2$) = 2f($) = 0 we have $ $ Ip. So Iy = {0} and f is not

injective. ]
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Proposition 1.24. Witt type algebrasV(f ) with f $ C are not simple.

Proof. If card(l") > 2 then f can't be one-to-one since f (M) = {0,(}. So V(f) is not
simple . If card(l") = 2 then I' = Z/ 2Z, which is a 2-torsion group. Hence V(f) is not
simple. ]

Proposition 1.25. Letf $ P then V(f) is simple if and only iflg = 0.

Proof. If car(K) = 2, there is no simple Witt type algebras. If car(K) = 2, f is one-to-one
if and only if * is an injective morphism. Moreover g = f ~1(0) = * ~1(0). Hence f is
one-to-one if and only if g = 0. On the other hand, as * is a surjective morphism, f is
injective if and only if * is bijective. In this case I' 2 Z/ 3Z which is 2-torsion free and so
V(f) is simple. O]

Corollary 1.26. Letf $ E. The algebraV (f) is simple if and only if $A"P\{ 0} and
Mo ={0}.

Proof. This follows directly from the previous propositions. ]

Proposition 1.27. Suppose that caf(K) = 2. Let f be inE. Then V(f) is graded-simple
if and only iff is a non-zero function inA" P \{ 0}.
If car(K) = 2, there is no graded-simple Witt type algebras.

Proof. If car(K) =2 then f(1 $) =f($), *$ $ . Hence [ =T and V(f) is not simple-
graded. Now suppose that car(K) = 2. Forf $C, if $ 8 I'pthen! $ $ Iy and so
f($)=f($). Hence I =T and V(f) is not simple-graded.

For f $ A, [ = g since f is additive. In the same way for f $ P, I = g since * is
additive. So V(f) is graded-simple for f $ A"P . O]

Any graded-simple Lie algebra L is perfect. That means that D(L) = L
where D(L) := [L,L]. A perfect algebra is not necessarily graded-simple but this is true

for Witt type algebras. More precisely, the following assertions are equivalent:

1. DV(f) = V(f),
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2. T =Ty,

3. V(f) is graded-simple.

In fact if T = then f($) =f(! $),*$ $ . In this case it is clear that ey does not belong
to D(V(f)) since [ex,e_x] = 0. In characteristic diLerknt from 2, non-perfect Witt type
algebras are V(f ) with f $ C. In this case it is trivial to compute that

DV(f) =V,

where Vf\j, 1= Ve

"el \!0

1.2 Third power-associative, 3exible and Poisson structures on
Witt type algebras

In this section we determine all 379 power-associative structures and all flexible structures

on the Witt type algebras. Moreover we investigate for Poisson structures on them.

We consider Witt type algebras V(f) over a field of characteristic not 2 with f = 0. In
fact if f = 0, any commutative product on V(f) is Lie-admissible compatible and 3rd
power-associative.

If A is a subset of ' we denote the vector space ! wen Vooby Voo We search all third
power-associative products ' compatible with the Lie algebra structure. As the bracket of
V(f) is known, finding ' is equivalent to finding the commutative product ( associated to
' . Hence, according to the previous definitions and results we have to find a commutative
product ( such that

X, x(x]=0, *x$ V(f). (1.12)

Therefore the product ' is then given by X' y = %[X,y] +x(y.

Suppose now that there exists a commutative ( such that [X,x ( X] =0, *x $ V(f). We
introduce the following notation: for any $,# $ I we set ey (&5 = . c® e with
C* = 0 for a finite number of * $ . For $ = #. We note C# := C¥. Notice that

¥ = ¥ since ( is commutative.
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1.2.1 Case of Witt type algebras of the type C

We consider in this section a Witt type algebra V(f) with f in C. This means that there
exists a subgroup g of I', To =T and ( $ K* such thatf($)=0if$ $ g and f($) = (

otherwise.

Let {ex} be a basis of V(f) such that Vi = vect(eg), *$ $ I'. For the elements of the
basis, the bracket [, ] of V(f) is given by

;0 if$,# $Mpor$,# SNy
les,e5] =, (ex+g FH#HSMIMpandif$ $ M
! (e#+$ iT#$ ro and |f$$F\F0

We suppose that the product ' is third-power associative and Lie-admissible. In this case

we have the following results:

Lemma 1.28. Let $ $ g and# $ M. Then

1 es (e $Vy,

2. e5(€ %M,

Proof. We write the identity (1.12) with x = ey:

[es,ex (€] =0
&
+ -es, Clel =0
"el
&
+ Clex,e]=0
" el
&
+ CHE()! f($))ews =0
" el
+ C#f (" Yegs» =0, because $ $ Iy
"el

4 CH()=0,* $T.
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Hence C#¥ =0, *' $ MNTy, and

&
es (ey = Cfe.
"€ly

This proves the first assertion. A similar calculation gives the second one.

Lemma 1.29.

loeg(eg$ Vou, *#ST.

2. e (e $ M, & Vg4, for$ $pand# $ Mo Moreover :

(., v sn
CP = Llct, ¢ * $#+T0

¢

0 otherwise

3. ex(eg$ Vi for$,# $TMpandey (e5$ Vi, for $,# $ M.

Proof. We use the polarized form of Equation (1.12):
2, x (y]+[y,x(x] =0.
Forx =eg andy =ex. Let $ $ g and #3$ M. We have
2les. €5 (&x] + 16,85 (€] =0

& &
+ 26y, CPel 4-e, c’el/ =0
"el el

&
+ 2 CPleg,e]+ C¥les,e]=0
" el "el\lo
& &
2 CE(F()! f(#)ess + CH(f(")! f($))essr =0
s "€\l
&
2 O (eger + C¥eusr =0.

“elo "el\lg

(1.13)
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We do the following changes of variables: ' % ' ! # in the first sumand' % ' ! $ in

the second one. Then we get

& &
+ 2 C® (1 ()e + c? e =0
"e$H o "el\lg
&

& &
+ 2 c®s(t (e + c® e+ c® (e =0. (1.14)

"ESH o "e$H o "el\{l gU$+! o}

The last equation gives:
CP L, =0, * $N\{To" #+T0}.
Since $ $ N, this is equivalent to
C¥P =0, * $M\{Ip" #+ o).

This means that
e (e $ Vour o

Combined with the first assertion of the previous lemma, this proves the first part of 2).

In addition, equation (1.14) gives:
CiSy =P, * $#4T
g 5 T 0

which is equivalent to

1
cFe = EC;$+$7#1 * $To.

We use again equation (1.13) but with x = e andy = es when $ $ g and # $ M T.

As before we get:

2les,ex (€3] + 65,04 (€] =0

& &
+  2-e, CPel +-e, Cfel =0
"l "elg
& &
+ 2 CPle,e]l+  Clleg,e] =0
"l "elg
& &
2 CB(E(C) F$) e+ CHE(C)! F(#))eger =0
"el "el

& &
+ 2 C¥essr +  CF( ()egsr =0.

"el\lg "el
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We do the following changes of variables: ' % ' ! $ in the firstsumet' % ' ! # in the

second one,

& #$ & #
+ 2 C24( (e + C’ 4~ =0
"€\l g "E$H o
#$ #$ & #
+ 2 C24( (e +2 C24( (e + C’_g(er =0.
"e$+ o el \{l gU$+! o} "e$+ o

(1.15)

Equation (1.15) gives: Cff# =0, * $I\{p" # -+ o} which is equivalent to
C® =0, * $M\{Ip" #+To} since$ $ .
Moreover equation (1.15) gives: Cff# = %C’?_SB, *' $ # + g which is equivalent to

1
cH = 5C.’?*Jr#_$, * $#+Tosince$ $ Mo.

Thus the second assertion is proved.
To prove the last assertion of the lemma, just write Equation (1.13) for x = e4 andy = eg
with $,# $ g and $,# $ N I,. ]

Lemma 1.30. Let $,# be inT then:

1L.If$! #$Tothenes (€5 $ Vs , and
0

C#fﬁ$ _ %C‘;$+$_# + %C#Jr#_s;, ** $$ + T,

0, otherwise
2. 18! #8Totheney (eg $ Ven , & Vg1 , and
f 3CTs .y ' 8S4To,
Cﬁ$ = %C'?'#+#7$l *! $#+r0!
0, otherwise

Proof. We use now the second polarized form of equation (1.12):

.y (z]+1y,z(x] +[z,x(y] = 0. (1.16)
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Forx =ey,y =eg and z = e, with $,# $ I'p and u $ M T, we get

les,es (eu] + [es,eu (€] + [gu,ex (5] =0

& 1 & 1
_ $
+ E#," Ec-l.'l+“7$e' +” §C|+$7ue'/
E€lg eptl o
e 1 & 1
e, SO se + §C-’?‘+#ﬁue-/
€lo cu+! o
Y )
+-g, CPel =0
"€lyg
. Lo ) TS+ RS (0 18-
) 2 -+“7$ H #+ 2 .+$7“ H e#+
"elé "ep+ o
1 , 1 ,
+ 0 S0 () T))ers + SCL () f(#)ess
'éf!o "eut o
+ CR(E( ) f(u)ewsr =0
"€l
& 1 & 1 &
+ 2C'S'B+$7p(e #e" T Eczi#—p(e "+t ci (' ( )eH’f" =0.
"Ep+ o "eu+ g

"elg

We do a change of variables in the first two sums: ' % ' +u! $and' % ' +pu! #.
Thus:

13 & 1, & s

5Cu+$_#(e"+u+ EC"+#_$(e"+|J+ C" (' ()eu+" :0 (117)
"elo "elo "elo
Hence, Equation (1.17) gives for $,# $ Ip:

#$ _ L s 1 *1 r
G = §C'+$—# + 50'+#—$v $ To. (1.18)
We use again the equation (1.16) for X = e4,y = €g and z = €, with $ $ o and

#,L$ M. So we get

[ex,e5 ((eu] + [es. ey (ex] + ey, ex (€] =0

+ T ey, chel +- e, §C'H+p7#e' + chﬂr#_ue./
"el\lo "€l "ept o
’ & . & . .
+_ eli' §C§+$7#e' + EC'#+#7$eI/ e 0
"€lo "e$+ o
1 & 1 & 1.
+ C (e#+" + EC-+H_#(! ( )e-+$ + §C|+$*#(! ( )eu+.. = 0.
"ello vel, .

E€lo
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We do a change of variables in the last two sums: ' % ' +$! #and' %' +3$! W
We get
$ & 1
C-. l‘l(e#.;." + §C|:l+|>17$(l ()e"+#
"el\lg "e$H o
& 1 s
+ EC'+$7H(! ()e'+# :0 (119)
"ept! o
Equation (1.19) gives for #,u $ M Tp:
If # 4+Tg= MU+ Tp, then
0 1~$ 1M
*1
C.l.‘l$ _ iC"+$*|J+§C"+|J*$ $ u+r0| (120)
otherwise.
f#+To=HWn+Tp, then
%C§+$—u * $ P+,
c = %Cp+p—$ * $# 4T, (1.21)
0 otherwise.

Finally, by combining equations (1.18), (1.20), (1.21) and the second part of the previous

lemma, we get the stated result.

1.2.2 Case of Witt type algebras of the type A or P

We suppose now that V(f ) is a Witt type algebra with f $P "A .

]

We recall that f $ A means that the function f is additive and that f $ P means that

there exists a surjective group morphism * : I % Z/ 3Z and an element ( $ K* such that

0 si *($)=0,
( ( si *(%$)=1,
L(si *($)="1.

If f isin A, it is additive and the following property holds:

f($)=f#)ifandonlyif$! #$ Io.

(1.22)
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If f isin P then
f$)=f#H)+ *@)=*#)+ $! #$Tl.

We use this property in the proofs below.

We suppose that the product ' is third-power associative and Lie-admissible.

Lemma 1.31.
*$ ST, e (e $ Vew s

Proof. As in the above proofs we use the identity 1.12:
X, x(x]=0,*x$ V(f).
For X = ey, we get:
CEE()! T($))egs = 0. (1.23)
el
Using now the property 1.22, we get :

Cf=0,* suchthat' ! $B6Tpie '/$$+To.

This proves the lemma. ]

Lemma 1.32.
If$! #& o, then:

; c® =1ict,, ¢ * $#+T,
( P =3Ch g 4 * $$+T,
c*® —, IS+ " #+To.

f$! #3% My, then:
Cf® =0, *$$+To=#+T.

Proof. We use the second polarized form of the identity 1.12:

*x,y$ V() 2x,x(y]+]y,x(x]=0.
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For x = ey and y = eg we get:
& &
2 CE@EC)! £($))ess + CHE()! f(#))egsr = 0.

" el "e#+! o
&

&
+ 2 CP(E(C)! F($))essr + Clgrn(F($)! f(#))essr =0

" el "e$H

Moreover f (" ) =f($), *' $$ + To.
Hence we have

0
' $# 4T, 2CF (F(#)! £($))+CF 4, ,(F($)! f(#) =0,

IS #+ o, 2CP(F( )1 £($)) =0.
Therefore there are two situations:

1. If$! #$Tpthen f($)! f(#) = 0 and the first identity is null. The second one
gives C* =0, *' 1§ $ +To=#+ 0.

2. If$! #$ Tothen f($)! f(#) =0 and the first identity gives:
. 4 _ L
$#+r0, C" —5Cﬂ+#_$
By changing the roles of $ and # and since C*® = C™ | *' $ T, we get as well:
o 45 _ 18
$ $ + ro, C" = 5Cn+$7#.
And the second identity gives :
X' /$$+To" #+ T, CP =0.

That ends the proof. ]

Lemma 1.33. For $,# inT such that$! # $ Iy,
#$ 1 # 1 $ *1
C" —EC'+#7$+§C-+$7#, $$+r0

Proof. We use the second polarized form of the identity 1.12:

*x,y,2z$ V(f), [xy(z]+[y,z(x]+[z,x(y]=0.
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Forx =ey,y =egandz=¢, with$! #$pand p$ $ + My we get:

Lon FC) F($))ers + . les f()!f :

5C s ! 4 5C s (O T(8))e vy
"e$H o "EpH o
& 1 4 . & 1 ,

+ SC () T(#))ews + SC () T(#)es
"ep+! o "e#+l o

+ CEEC)! f(u)e+y =0

"ef#+l o

Since $! # $ Iy we get:

1 & 1
5C s (P! F($)e s + 5CT a0 f(8)e s
"eu+! o "ept o

+ CH(f($)! f(n)e+, =0,

"e#+ o

We do a change of variables in the first two sums:

1 g & 1,
§C-_#+$(f W! f($)e+u+ . 50-_$+#(f (W f($))e+y
"ef+ o "e$+ g
+ CR(f($)! f(u)e+y =0.

"e#+! o

Asus $+To, f(u)! f($)=0andso:

1 1
* $$ 4+, CP= §cﬁ+#,$ + Ecﬂ&#. (1.24)

1.2.3 The general case

We consider now general Witt type algebra V(f).

The lemmas of the two previous sections can be resumed by the following proposition which

is a general result:

Proposition 1.34. For all $,# $ T,

€y ( e$$V#+! 0&V$+! 0’
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and & $ %

# u'+! $ TR
es (e = ~Cliy g $+!°—|-7C..+$_# #+!0 e .
"el

Theorem 1.35. Third power-associative, Lie-admissible compatible products on a Witt
type algebraV(f ) with f =0 are:

1 &
xty=skyl+ Ot (y) +u(y)re (x),
"€lg
where t- are the V(f )-morphisms debned by~ (es) = e4+~, *$ $ [ and where
{u V()% K; ' $ g} is a collection of linear form.

Proof. Let ' be a third power-associative, Lie-admissible product, and ( the associated
commutative product. We proved in the previous proposition that :
& $ %

u'+! '+ 0

& (& = EC"+#—$ s+ o+ EC'+$—# 4+ € (1.25)
el
+
where C¥ are the constants given by ex ( ey == . el o Cfe .

This equation is equivalent to

& 1 4 & 1 g
e (e = §C..+#_$e' + EC.+$_#e-.
"e$+ o "cH+l o

After the following change of variables: ' % ' + # for the first sum"' % ' + $ for the

second one, we get

& &

1 1
e (e = EC#+#e$+" + §C$+$e#+"- (1.26)
"elg "elg

We define for each ' in g, the linear form u- by :
1
u(ey) = §C§+.- .

Hence the equation (1.26) becomes:

&
e (&g =  u-(ey)t- (o) + U (&)t (&%)

"el

By linearity of (, u+ and t- we get

&
x(y= w Xt (y) +uw(y)t(x), *x,y $ V(f).

"el,
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Finally, since X'y = %[x,y] +x (Y, the result is proved.

Conversely, suppose now that there exists a collection of linear forms u+ : V(f ) % K with
" $ o such that

&
x(y= w)t(y)+u(y)t(x).
Then

&
ox(x] =[x, 2u ()t (x)]
& "elog
= 2u- (X)[X, t= (X)].

"l

In addition, it is easy to compute that [x,t+ (X)] = [x,X], *' $ g then:

&
X, x(x] = 2u- (X)[x,x] = 0.
"€l

This proves that ' is third power-associative. ]

+
Remark: Since es (€4 = vy, C#e, just a finite number of C¥ are non-zero. Hence
we get that
*x$ V(f), u(x) =0 for a finite number of * $ .

Proposition 1.36. (V(f),") with f = 0 is RBexible Lie-admissible and compatible if and
only if . &
xty=skyl+ ()t (y) +u(y)te (x)

€lo
with the same conditions as in the previous theorem and in additbwv (f ) 0 ker(u-), *' $
Mo.

Proof. Remind that (V(f),") is flexible if and only if:

Dyl (x =[x,y (x]. (1.27)

The flexibility implies the third power-associativity, hence the product we ( is of the form:

&
x(y= wjt(y) +u (y)t (x).

"elo
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Hence Equation (1.27) with X = ex, y = €3 gives

&
u([ey, es])t- (&%) +u (es)t- ([ex.€5]) = w(eg)[es, €p4+] + U (&4 )[ey, €9+ ].
€lo (ST (128)

Remark that for all ' $ g, we have [eg,ex++] = 0 and [ex,e5+-] = t- ([ex,e5]). So
(1.28) is equivalent to
u ([ex, es])t- (ex) = 0.

"€lo
This means exactly that *' $ I, u-([eg,eg]) =0or *' $ I, u-(DV(f)) = 0. That

proves the proposition. ]

Theorem 1.37. There are non-trivial 3exible Lie-admissible structures only on Witt type
algebras withf $ C.

Proof. It is obvious by the previous proposition and since in characteristic di Cerbnt from
2, we have DV(f) = V(f) only for f $C. O

Remark. For f $ C we have DV(f) = Vi\;,. Hence, flexible Lie-admissible products on
V(f) are given by &
x(y= u ()t (y) +u (y)t-(x),

"el,

with Uy, = 0.

We can now search for Poisson structures on Witt type algebras. Remember that we just
have to find flexible Lie-admissible products such that the associated commutative product
( is associative. So for Witt type algebras V(f ) with f $ A" P |, Poisson structures are
trivial structures. For V(f) with f $ C we need to find for which collections of linear forms
{u V() % K/ uwyy, Vo = 0; ' $ o)}, the product

&
x(y:=  uw )t (y) +u (y)t (x)

"elyg

is associative.
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We compute the associator of (:

1 3
&
(x(y)(z=2 u (Xt (y) + w (y)t- (x)4 ( z
1 "€l 3
&
=27 w0t () (24 ()t (x) (24
19 1 3
& &
=2 u- (x) 2 Uy (t (Y)tu(2) + uu(2)tu(t- (y)4
"€lo 1u€! 0 33

&
e (Y)2 Ut Ot (2) + U (2)tu(t (x))4 4

nelo
&

= e OU(t (@) + i (U (@)t (¥)

"UEo

+ U (Y)up (b (3)tu(2) + U (Y)up (2)tpse - (X).

As (is commutative, we have X ( (y ( z) = (y ( z) ( X and then:

&
X(W(2)= @t @)+t ()t (2)

YRS

FU (Z)up (t (y))tu(X) + e (2)u ()t (y).
Finally we get

&
(x,y,2) = s U (b (Y)tu(2) + U (U (2)t s () 4 U (y)up (t (X))t (2)

"HElo
+ U (Y)Up (Z)tpe (X) 1w (Y)up(t (2)ta(X) 1 U (y)up ()t (2)
Pou (Z)ua(t (W)t () ! U (Z2)up (X)tps - (y)
= [u ()u(t- (y)) + u (y)up (t- (X))t (2)

W€l
P (y)uu(t-(2)) + ur (Z2)up (t- (y)]tu(x)
+ U (Y)Up (2t (X) 1 U (Y)upn(X)ts (2)
+ [ ()ua(2) 1w (Z)up ()]t ().

Hence, as us Mg = 0; for X,y $ M, and z $ Vi\;, the identity (X,y,z) = 0 is equivalent

to:

e () (b (V) (2) + W () (b O)(2) ! U (V) (Xt (2) = 0. (1.29)

"HEl
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By writing the last equation (1.29) with X =ey,y =eg and Zz =ey, $,# $pand) $ I’

we get:
&
[ur (€ )uy(€g++) + U (8s )Up(Es+ )]€0s ! U (€5)Up (€4 ey p+n =0 (1.30)
g &
B (e)uu(ese) b (es)uu(@ne o n ! U (E)Uu(8s) e = O
"1 e!f 3 "HElg
& & & &
+ 2 [ur (e )uy(€g++ ) + U (€g)Up (B4 4 N4 e ! U (€g)uy (e ey g = 0
el "€lo &€ o ""+ ulz &
1 3 Heo
& & & &
+ 2 [ur (e )uy(eg++) + U (€5 ) Uy (B4 )14 vy ! U (€5 )Ug— (€4 ) g =0
lJ.Elol"G!o 3 &l €lo
& & & &
+ 2 [ (& )up(Es++ ) + U (Eg) Uy (B~ 14 e u! U (8s)Uy— (e )€y = 0
helo "elo Helo" €log
& &
+ 2 [ur(ex)up(ess ) + U (ep)up(exsr) ! e (Bs)uy—r (€4)]4 ey =0
puelo "€lo
&
BrWSTo, [ (o)t (Eee ) + U (05)Uu(@r ) ! U (08)Uu (@)] = 0. (1.31)

We remark that the last equation does not depend on ). In fact if (1.31) is true, it is
easy to prove that (1.30) is true for any ) $ I'. So by linearity we get Equation (1.29)
for any X,y $ M, and z $ V(f). Moreover since *' $ o, u-), =0, (1.29) is true for
all x,y,z$ V(f). Hence (x,y,2) =0, *x,y,z$ V(f) is cleérly verified. Finally ( is
associative if and only if for all $,# $ Iy

[U- (& )up(Bg+ ) + U (€ )Up(Br+r) ! U (Bg)Uy— (84)] =0, *U $ To.

"€lyg
In particular if $ = # we get

u (e )[2uu(eg+) ! Ui ()] =0, *u $ lo.

Theorem 1.38. A Rexible Lie-admissible productton a Witt type algebraV (f ) is a Poisson
product if and only if* $,#,u $ g
&
[u- (e )uy (€4 ) + U (eg)up(es+-) ! U (€g)uu— (ex)] = 0.

"elg
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Open question: For easy choice of Iy (like Z or Z3), we get u» = 0, *' $ . But
we did not prove anything for the general case. Do examples of Witt type algebra with a

non-trivial Poisson structure exist?

1.3 One-dimensional central extension of Witt type algebra

In his article [38], Rupert Yu he determines the one-dimensional central extension for some

Witt type algebras which are very close to the Witt and Virasoro algebras:

Theorem 1.39 (Yu). Let I be a free abelian group and suppose that &= 0. If f $E is
injective, then the Witt type algebraV (f ) has a universal one-dimensional central extension
given by the 2-coycle:

O(es, 85) = "4, -s(f($)°! F($)).

Remark. The Witt type algebras which are considered in this theorem are a subclass of
the algebras V(f ) with f $ A .

We are interested in one-dimensional central extensions for other classes of Witt type

algebras.

1.3.1 Case of Witt type algebra of type C.

Let V(f) be a Witt type algebra with f $ C. The set M T is denoted by .

Proposition 1.40. A bilinear form & of V(f ) is a 2-cocycle if and only if there exists a
skew-symetric bilinear form& on Vi, and a linear formh on V. such that :

1 &y v, = &

2' &‘V!OXV!/ = dhlV|O><V|/v &‘V!/XV!O = thV!/XV[O!

3. &y, xv, = 0.

Proof. Let & be a 2-cocyle of V(f). Then & is skew-symmetric and

&(Ix,yl.z) + &(ly,zl.x) + &([z,x],y) =0,  *x,y,z$ V. (1.32)
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Forx =e;,y=6gandz=e with$,# $ g, ' $ 7 we get:

&([es.eg],e) + &([eg, e ], e5) + &([e', 4], €5) = 0 (1.33)
i.e. (& (e$+",e#)! (& (e#+",e$):O. (134)

Hence if $ = 0, we obtain

&(e ,e5) = &(es: - €p) = (1&<[e$,e-],eo>. (1.35)

Let be h 1 Vi» % K;y 3%21&(y,e). Then his a linear form of Vi.. Moreover for
#$T1' ' $ Iy, by Equation (1.35) we have

&(es,e ) = h([es,e]) = dh(es, e ).

This proves the second statement.
The first is clear. For the last part , we write Equation (1.32) for x = e4, y = €g and
z=e with$,# ST, ' $ . We easily get:

&(eg+r,€4) = &(E4+,05).
In particular if* =0,
&(eg,ey) = &(ey,e5).

Since & is skew-symmetric we conclude that &(ex,e5) =0, *$,# $ .

Conversely, one can easily verify that a skew-symmetric bilinear form verifying 1,2 and 3

also satisfies the 2-cocycle condition. ]

Theorem 1.41. Let f be inC. The second cohomology space?(V(f ), K) is isomorphic
to C?(Vi,, K) the vector space of skew-symmetric bilinear form ov .

Proof. A 2-cocycle & of V(f) is a 2-coboundary if there exists a linear form g such that
& =dg. Since M, Vi,] ={0} we have & = 0. Conversely if & is such that & = 0, we
choose a linear form g with g, = h and then & = dg. Therefore & is a 2-coboundary if

and only if & = 0. We consider the following map:

®:Z23(V(f),K) % C*(M,, K); & 3%8..
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5 6
The map @ is onto. Moreover ker® = &$ Z?(V(f),K)/&=0 = B2?(V(f),K).
Hence the vector space Z2(V(f),K)/B 2(V(f),K) =: H3(V(f ), K) and the vector space
C2(M,, K) are isomorphic. O

Since we know the 2-cocycles of V(f ), we are naturally interested by symplectic structures

on V(f). We give conditions on I' and Iy for the existence of symplectic structures.

Theorem 1.42. Let f be inC. If |[| is Pnite, there exists a symplectic structure on the
Witt type algebra V(f ) if and only if either[l : [g] =2 or [[ : o] = 1 and |l"| is even.

If | is inPnite and if[l" : [p] 4 2, there exists a symplectic structure on the Witt type
algebraV (f).

Proof. The algebra V(f ) is symplectic if and only if there exists on V(f ) a non-degenerate
2-cocycle. Suppose that [ : o] = 1. Then I'p =T and any skew-symmetric bilinear form
is a 2-cocycle. We just have to find a non-degenerate one. Since |I'| = dimV(f), if || is
finite and even, it is possible. If || is infinite, it is always possible. Indeed every infinite set
| is the disjoint union of two equipotent subsets since | is equipotent to | -{ 0}5 I -{ 1}.
So Tl =T1" T with a bijection + between I'; and 'y, then the skew-symmetric form defined
by &(ex,e) = "f(#) is non-degenerate.

We suppose now that [ : o] = 2. Then T = Tg" ($ + o) with $ 8 . Thus
V(f) =W, & Vs , and we define the following 2-cocycle on V(f ):

& =0; h(eg) =1and h(eg++) =0, *' $ K\ 0}.

We verify that & is non-degenerate: suppose that &(x,y) =0 for ally $ V(f). We can
+ +
write X = . ae andy = . bye, witha, b =0 for a finite number of * $ T.



Chapter 1. Lie-admissible structures on Witt type algebras. 42

Hence
& &
& ae, be)=0
"el "el
& & & &
+ & ae, be )+ & ae, b-e)=0
"€lg "eH#+ o '('&E#H 0 "€lg
+ a bysph(le, essp]) + ag+- byh([es+- e,]) =0
".Lj_e! 0 "HElg 3
& &
+ ( 2 a bygrph(esaey)! 2 buh(e#+"+p)4 =0
1 "M Eo 3 "M €l

&
+ (Z a"b#+p! a#+"bp§ =0
"4 p=0

& "HE
aby ! agibr =0. (1.36)

"l

4

Fory =e, withpu$ g (leby =1andb =0, *' =p ), Equation 1.36 gives ag_, = 0.
Likewise for y = €4+ with p$ Mo we getay, =0. Sowe geta =0, *' $ T, thisis to

say X = 0. This proves that & is non-degenerate.

Now suppose that [[]| is finite and that & is a symplectic form. From Proposition 1.40 , a
2-cocycle & verifies &y, xy,, = 0. Therefore if & is non-degenerate, for each X in i+ there

exists y in Vi, such that &(x,y) = 0. This means that the following map is injective:
& Vi % (M) X 3%&(X, .).

As [ is finite, the vector spaces M, and M, are finite dimensional too and
dim(M/) = ||, dim(M,) = |l'o|]. Hence || 4 |To| and then |[|!| To| 4 |To|. This
is equivalent to [l : [p] 4 2. O]

1.3.2 Case of Witt type algebras of type P.

Now let f be in P. We note 'y := f~1({1}) and .y := f-1({! 1}). Hence
V)=V, &V, &Vi,.
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A bilinear form & is a 2-cocycle if and only if & is skew-symmetric and if Identity (1.32)
holds . Since the Identity (1.32) is linear, it just has to be verified for generators. Hence

letx=ex, y=865, Z=¢e".

1. IfF$,#," $T fori ${! 1,0,1}, Identity (1.32) holds.

2. f$,# $lpand' $T, i ${ 1,1}, Identity (1.32) holds if and only if

&(ey,e) = &(ep, €4+ ), *$$ o, " $T. (1.37)

3.f$$TMpand#," $T, i ${ 1,1}, Identity (1.32) holds if and only if

&IV!iXV!i :0

4. 1f$$TM, #8571, " $ g, Identity (1.32) holds if and only if

19 :
&(esrs,@) =5 &(ersr,05) + &(Epir €) .
5.1 $,# $ Ty and " $ Ij with i,j ${ 1,1}, i =], Identity (1.32) holds if and only if
so does (1.37) .

_ | ) t&(eo ), *$ ST
Let be the linear form h: V(f) % K defined by h(ex) =, and

| L&(ep &), *$$ Ty
taking any values on V.

Hence, we get:

Proposition 1.43. On V(f) with f $ P , a bilinear form& is a 2-cocycle if and only if
there exists a linear formh of V(f ) such that & is the skew-symmetric bilinear form debned

by:

1 &y xy, =0, i${ 1,1},
2. &y xv, =d(hy,), i ${ 1,1},

9 :
3. &(Euss, ) =1 &(e4sv,03) + &(E5e,€4) , *$ ST, #$T_1, ' $To.

Remark: The equation of the first part of Proposition 1.43 for' = 0 gives &(eg, ')Mo =0.

Therefore there is not homogeneous symplectic form on V(f) forf $P .

Proposition 1.44. On V(f), a 2-cocycle& is a 2-coboundary if and only i&|\40x\40 =0
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Proof. If & is a 2-coboundary, then & = dg with g a linear form on V(f). Let X,y $ Vi,
Then &(x,y) =g([x,y]) = 0.
Conversely suppose that &y, oMy = 0. Thus, by the assertion 3 of the previous proposition
we have:

&(eus+v,e5) + &(€g4m,04) =0, *$$ T, #S$T_1, " $ .

This proves that for $,$’ $ My and #,#' $ T_1 such that $ +# =$' +#', we get

&(ey,e5) = &(ey, €9/).

Hence for ' $ I, take h(e) = ! %&(e#,eg;) for any $,# such that ' = $ +#. So
& = dh and & is a 2-coboundary. ]

Lemma 1.45. An abelian groupG such that for allg $ G\{ 0} the quotient group G/€g7
is of Pnite order is a Pnite abelian group or is isomorphic Zo

Proof. Obviously the property holds for every finite abelian group. So we suppose that G
is an infinite abelian group. We show that G is torsion-free. In fact, if there exists a torsion
element g $ G, then the subgroup 637 is of finite order. As the quotient group G/6g7 is
of finite order too, the group G should be of finite order. Hence G is torsion-free.

The quotient group G/ 637 is of finite order. We denote by {qQs, ...dn} its elements. Hence
G is generated by {Qs, ...Qn, g}, it is a finitely generated abelian group. But we said that G
is torsion free. This means that G is a finitely generated free group, i.e. isomorphic to Z!
with | > 0. We suppose that | > 1. Hence the quotient group G/6g7 with g = (0,1, ..., 1)
is isomorphic to Z, which is not possible. This proves that | = 1, i.e.that G is isomorphic
to Z. L]

Proposition 1.46. If [y is a Pnite abelian group or is isomorphic t8, all 2-cocycles of
V(f) are 2-coboundaries. In particular the second group of cohomology(V(f),K) is
null.

Proof. Let & be a 2-cocycle of V(f).

We said before that the identity 3 of the proposition 1.43 give us &(ep, ')Mo = 0. Hence
ifweset# =1%$ 1 in the identity 3, we get &(eg+-,e_4) = &(ex,e_4+-). Hence
forall$ ST, #$0M_q, if' :=%$+#$ Ny, we have

&(ey,e5) = &(y4+, €5 ).
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Therefore if $/ $ My, #/ $M_q1 aresuchthat' =$+#=%"+# and $'! $$6 7 we
have
&(ex,e5) = &(eyr, €9/). (1.38)

We consider the quotient group '/ 6 7 and the canonical projection %: T % /6 7. For a
fixed ' $ Mg we define the map ®" : %1) % K;$ 3%&(ex, e _») which is well defined
since  Identity (1.38)  holds. Moreover, —we can remark that
card(%(1)) = card(%T o)) = card(T'o/ 6 7).

Let' beinTp. Forall $1,%$2 % M and u $ Ny we have

&€, —#y+m . ) = &(€ iy €y) = &(€, s+ 1, ).

Hence by using again identity 3, we get
&(e#l*'kl’e—#l*'" —Ll) ! &(e#l’ € s+ —H) = &(e#z+u- € #o+" —H) ! &(e#zve—#2+" —ll)-
So, forall ', $Tpand $1,$,$ 'y we get

O ($1+E)! P ($) =D ($2+[)! D ($2). (1.39)

By the previous lemma and the condition on Mg, we know that for all * $ g the quotient
group Mo/ 6 7is of finite order. Since card(%{"1)) = card(Fo/ 6 7) the map @ has a finite
number of value. For p $ g, let K be the order of p. We have

H($)! (S +HE) =+ S +KD! + S+ K! DR ++ ($+(K! D)
L+ ($4+(K! @)+ ... ++ ($+20)! + ($+q).

By (1.39) we have
FE) @D = HK! DD A @K ==+ (S HE)! + (S +20).

Hence

S F S =1 K)F($)! (S +m),

and then
H($)=+ S +H) =+ F+H),*$$T, .1 $ o
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That proves that each map ®"," $ I take just one value. That proves that for $,$’$ 'y
and #,#’ $ '; such that $ +# = $' +#' we have &(ex,e5) = &(exs,€5/). In this case,
identity (3) gives &|V!oXV!o = 0. Hence & is a 2-coboundary. O

1.4 Third power-associative structure on the central extensions
of Witt type algebras.

In the following we study the relation between third power-associative structures on a Lie
algebra L and third power-associative structures on a central extension E of L. Also we
give the third power-associative structures on the central extension of some Witt type

algebras.

Let E := L & Kc be a central extension of a Lie algebra L by means of a 2-cocycle &.
Let ' g be a third power-associative product on E compatible with the Lie structure and
(g the associated commutative product on E defined by X (g y = %(X EY+Y'EX). We

remind that ' g is third power-associative if and only if [X,X (g X]Je =0, *x$ E.

Since (g is commutative product, there exists:

1. (L a commutative product of L,

2. ) is a symmetric bilinear form of L,
3. Ais an endomorphism of L,

4. (is a linear form of L,

5."$Land pu$ K,

such that

X(ey=x(Ly+)(Xy)c *xy$L,
X(ec=c(ex=AX)+((x).c *x$L,

c(ec=" +p.c.

Moreover, since [X,X (g X]Jg =0, *x $ E we get:
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1. [X,x(LX]L =0, *x$ L and then (is a third power-associative product of L,
2. &(x,x (L x) =0, *x$ L,

3. ad(x) (A =ad(A(x)) *x $ L and A is &-symmetric:
We use the linearized form of [X,X (g X]g = 0: 2[x, X (g Y]ge + [V, X (g X]Je = 0; with

x$Landy =c. We get
2, x(ecle =0+  [X,A(X)]L + &(x,A(x)).c = 0.
So A(X) $ kerad(x) 8 ker &(x,.), *x $ L and that is equivalent to
&(x,A(y)) = &(A(x),y), *x,y $ L

and
X, AL = [AX), Y]L, *X,y $ L

l.e. ad(x) (A =ad(A(x)) *x$ L and A is & symmetric.

4. " $Z(L)8 keré&:
We get this result by using the same equation with x =c andy $ L.

Conversely suppose that there exists on L a third power-associative product ' | . We denote
by (L the associated commutative product. We choose ), A, (, ', 1 verifying the four

previous properties. Hence, we can define the product (g on E by

X(ey=x(Ly+)Xy)c *xy$L,
X(ec=c(egx=AX)+((x).c *x$L,

c(gc="+uc

It is easy to check that if &(X,x (L X) = 0,*X $ E, we have [X,X (g X]g =0, *x $ E.
Hence that defines a third power-associative product on E.
As a consequence and since X 'gy = %[x,y] + X (g y and [E,c] = 0, the following

proposition holds.

Proposition 1.47. Let L be a Lie algebra an®E := L & K.c be a central extension of.
by means of the 2-cocycle&.
Any third power-associative structuré ¢ on E induce a third power-associative structure
onlL by

X'Ly=p(X'ey) *x,y$ L
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Moreover' | verify &(x,x"' | X) =0, *x $ L (or equivalently&(x,x (L X) =0 .
Conversely any third power-associative structurg onL such that&(x,x' | x) =0, *x$ L
can be extended orkE by

x'Ey=X'Ly+)(x,y)-6+%&(x.y).c :
x'gc=c'gx=AKX)+((x).c ,

c'ec="'+uc ,

with ) is a symmetric bilinear form ofL; A an endomorphism ofL such that A is &-
symmetric and adx) ( A = ad(A(x)) *x $ L; ( a linear form ofL; ' $ Z(L) 8 ker & and
e K.

Note that ' ¢ is non-unique.

We study now the particular case of Witt type algebra given in the theorem 1.39. That
is an algebra V(f) over a field K of characteristic zero with I' a free abelian group and
f : T % K a injective function. By the theorem 1.39, V(f ) has a unique universal central

extension given by the 2-cocycle

O(ey,e5) = "5, -s(f(3)°! f(3)).

Let W be such a Witt type algebra and V its central extension.

As f is injective we have 'g = {0}, and then any third power associative structure on W

is given by

X'w Y = S Ylw UGy +u(y)x,

where u is a linear form of W.

Proposition 1.48. Third power-associative products oW compatible with the Lie algebra
structure are:

1
X vy = SBYlw UGy + U)X +) (GY)C TXY S W,
x'ye=c(pyx=kx+((x)c *x$W,

c'ycC=uc,

wherek, pu $ K, ) is a symmetric bilinear form of¥ and (,u are linear forms ofW.
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Proof. For all x $ W, X (w X = 2u(x)x and then, as @ is skew-symmetric, we have
d(x, X (w X) =0, *x$ W. By the previous proposition that means that there is a third-
power associative product on V. Moreover in W we have ker ad(x) 8 ker &(x,.) = C ax
and Z(W) = {0}. Hence the linear form A is necessary an homothecy (we note its ratio

by k) and' = 0. That gives the result, according to the previous proposition. ]

Proposition 1.49. The only RBexible product orV which is compatible with the Lie algebra
structure is the trivial one:

1
X'VVZE[XA’]W X,y $ W
X'yc=c(px=0 *X$W

c'yc=0

Proof. Any compatible flexible product 'y, on V is third power associative and then, is as
describe in the previous proposition. The aim is to show that the flexibility implies that
) =0, (=0u=(=0andk =p=0.

Remind that the flexibility of ', holds if and only if:

[u,v(ywly =v(yuwly+w(yluVvly, *uv,ws$V. (1.40)
Wesetin1.40u=x3$ W, v=y $ W and w = c. Hence we get
X,y (vely =c(v[xylv.

This is equivalent to
(kI e(x,y) = ((x,ylw).

If k! p = 0, ® should be a 2-coboundary but that is not true. So k = p and
((X,¥ylw) =0, *x,y $ W. Since [W,W] =W we get that ( =0.
Now we set in 1.40 u=w =X and v =Y. We get

X,y (v xly =[x ylv(v,
which is equivalent to
ux)®(x,y)c = ((X)®(x,y)c +) (X, ylw,X)c + kP(x,y)x + u([x, ylw)x, *x,y $ W.

So we have
u([x,ylw) ="! k®(x,y) *x,y $ W, (1.41)
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and
u(x)®(x,y) =) (X, ylw,x) *x,y $ W. (1.42)

We suppose that k = 0. Hence according to 1.41, @ should be a 2-coboundary. So k =0
and as k =, we have k = 4 = 0. Moreover if k = 0 we have u([x,y])w = 0. As before
that means that u = 0.

As u =0, identity 1.42 becomes:

) (X ylw,x) =0*x,y $ W.

By polarization of this identity we get that ) is an invariant symmetric bilinear form on W.

This means
) (Xylz) =) (X, [y, z]) *x,y,z$ W.

We can show that there is not non-zero invariant symmetric bilinear form on W. In fact,

in the last identity we set X = ey,y = €y and z = eg with $,# $ I'. We get

) ([ex.eo],€5) =) (e, [eo, €3]) *$,# $ T.

This is equivalent to
f($+#)) (e, 03)=0*$,# $T.

Therefore for all $ +# = 0 (f is injective) we get
) (ex,63) = 0.
By using again the invariance identity we get
) ([es,e—#],€0) =) (&4, [e-4,€0]), *$ S T.

That is equivalent to:

I2f($)) (€0, €0) = f($)) (€4, €-#).

Soforall$ =0,) (es,e_4) =" 2)(ey,€). But for $ +# =0 and # = 0 the invariance
identity still gives ) ([ex,€s],€_x+3)) =) (&, [6s,€_+g)]). So

F(#1$)) (ervs € rog) =1(1 $1 2#)) (es,024),
and since ) (ex,e_#) = 2) (ep,€0), *$ $ I, we get

) (€0, &) = 0.
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We conclude that ) = 0. O]

Corollary 1.50. Let 20 be the Witt algebra andy the Virasoro algebra. Third power-
associative compatible products on the Virasoro algebra are:

1
X'gy= E[x,y]m+U(X)y+U(y)X+) (x,y).c *X,y$ W
X'gc=c(yx=kx+((X).c *x$0

c'gC=UC

wherek, p $ K, ) is a symmetric bilinear form o5 and (,u are linear forms of2J.
Moreover the only Rexible compatible product o is the trivial one.

Remark. This corollary is a result of Myung [23]. Our proof for the flexible structure is
quite diLerknt than the proof of Myung and gives an additional information: p = 0.

1.5 Left-symmetric structures induced by symplectic structures
on Witt type algebras

This chapter is devoted to the study of some left-symmetric structures on certain Witt

type algebras and their connection with symplectic structures.

An algebra (A,") is said left-symmetric if

(x,y,2) =(y,%,2), *X,y,z$A.

If (A,") is a left-symmetric algebra then A~ is a Lie algebra. For a given Lie algebra

(L, [, ]), a left-symmetric structure ' is said compatible with the Lie algebra structure if

X,y =x"y! y"'x

Let (L, [, ], &) be a finite-dimensional symplectic Lie-algebra. Since & is a non-degenerate

bilinear form, there exists *x,y $ L a unique element x ' y such that
&(x'y,z)="&(y,[x,z]) *z$G.

In this way we define a left-symmetric product * which is compatible with L.
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J. Helmstetter has showed in [13] that if (L, [, ]) is a finite-dimensional Lie algebra such
that there exists a compatible left-symmetric structure then [L,L] = L. Consequently if L

is a non-zero semi-simple Lie algebra then L is not symplectic.

Remark. We can prove that a semi-simple finite-dimensional Lie algebra L is not symplectic
without using the Helmstatter's result. Indeed, if B is the Killing form of L and & a

2-cocycle of L then there exists a derivation " of L such that

&(x,y) =B("(x),y), *y$L.

Since L is a finite-dimensional semi-simple Lie algebra, " is an inner derivation. So there

exists t $ L such that " = ad(t). Ift =0 then & =0 and if t =0, then
&(t,y) =B(ad(t)t,y) =0, *y $G

This proves that & is degenerate. We conclude that L is not symplectic.

The following examples proves that there exists an infinite-dimensional symplectic semi-
simple Lie algebras. In fact if k $ Z,Ithen the following bilinear form defines a symplectic

structure on the Witt algebra W =" ., < Xy >:

&(X,Y) = X4 (X, ¥]), *X,y S W, k$ Z

Debpnition 1.51. Let (L, [, ],&) be a (inPnite-dimensional) symplectic Lie algebra. If for
eachx,y $ L there exists an elemenk ' y such that:

&(x"y,z)="! &(y,[x,z]), (1.43)

we say that & is left-symmetric admissible. Note thatx ' y is then unique since is
non-degenerate.

If & is left-symmetric admissible, thenh is a compatible left-symmetric product otf..

Let K be a field of characteristic zero. We consider a free abelian group I' and an injective
function f : ' % K. In this case f belongs to A and the second cohomology group

H2(V(f),C) is a one-dimensional vector space generated by the 2-cocycle

O(ey,e5) = "4, —s(f($)°! 1(3)).
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Consequently any 2-cocycle & of W is of the following form:
&=(®+dh, ($K, h$L(WK).

!
Let W=V(f)= .. <e- > bethe Witt type algebra defined by f.

Debnition 1.52. A bilinear form & of W is said homogeneous of degree$ I ( or , -
homogeneous) if

&(ey,e3) =0 *$,# suchthat$ +#+, =0.

Proposition 1.53. A homogeneous symplectic form oW is left-symmetric admissible and
the induced left-symmetric structure is graded.

Proof. Let & be a, -homogeneous symplectic form on W. Let ey, eg be two homogeneous
elements of W. Weset 'g:=! $! #! |, We define the linear map h by

h:W%K; e 3% !&(eg, [ex,e]).
Since & is , -homogeneous, we get :
h(e)=0 *" $T\{"o}.
Let g be the linear map defined by:
g: W% K, e 3%&(ex+3,€ ).
Likewise, since & is , -homogeneous and non-degenerate, we get
ge)=0 *" $TY o},

and
g(e,) = 0.

Hence kerg O kerh and there exists (45 $ K such that h = (u$9. Therefore
&((us€4+g,6 ) =" &(es,[€4,€6]). Hence s ' €5 := (ug€4+3. Then, by linearity, for all
X,¥ $ W there exists X' y $ W such that & (x' y,z) =! &(y, [X, z]). We conclude that

& is left-symmetric admissible. Moreover it is clear that ' is graded. ]
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Remark: Note that this proposition is even true for any I'-graded Lie algebra with one-
dimensional homogeneous spaces.

Proposition 1.54. Let & be a bilinear form onW. Then & is a, -homogeneous symplectic

form if and only if, 2 and & = pde* ¢ with p $ K*. Heree*, is the linear form debned
by e*g(e)=01if " =1, ande’g(e_g) = 1.

Proof. We suppose that & is a ,-homogeneous symplectic form. Hence there exists a
linear form h on W such that

&= (®+dh.

As &(eg, €) = 0 and & is non-degenerate, then, = 0. Let $,# $ ' such that $ +# = 0.
Then

0=8&(ey,e5) = ((f($)°! £($))+dh(ey,es)

= ((F($)°! £($))+(F(#)! f($))h(eo).

Since f is injective and additive we get

3
nen) = ST Lt

*$ =0.

Since I is infinite, there are two elements $g and #g such that #y = +$g. So f ($o)2 =
f (#0)%. Hence ( =0, h(eg) = 0 and & = dh.

Since & = dh and & is , -homogeneous we have

0= &(eo,e5) = f (#)h(es), *# =1 ..

Therefore {eg, $ $ T\{! ,}} 0 kerh. So there exists p $ K such that h = pe*,. More-
over W = 0 because & = 0. Finally if ,

2% where $ $ T, then
&(e_#,e5) = h([e_#,e5]) = 0, *# $ I'. Since & is non-degenerate, we conclude that
, B 2r.

Conversely the 2-cocycle pde*, is clearly ,-homogeneous and if , & 2I then
&(es,e_gu) = puf (!, ! 28) = 0, *$ $ I Hence & is non-degenerate because
&(ey,e3) = 0 for all $,# $ I such that $ +#+, = 0. So & is a ,-homogeneous
symplectic form.

]

Theorem 1.55. Let & be a symplectic form onW. If & is left-symmetric admissible and
if the induced left-symmetric structure is graded, the& is homogeneous.
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Proof. Let $,# $ T, then ex ' eg is the unique element of W such that
9 :
& e;' eg,e0 =1 &eg,[ex,e]), *' $T. (1.44)

Since ' is graded, there exists (3 $ K such that es ' eg == (#s€s+s.
By the identity (1.44) we have:

(43 &(eg+s,0) = (F($)! £ ))&(es, €44). (1.45)
In (1.45) we set $ = 0. Hence we get:
(os&(es, &) =! f(" )&(es, ),

which is equivalent to
(Cos +f('))&(eg,e)=0. (1.46)

For each # $ T, since & is non-degenerate, there exists necessarily an element ' ¢ $ I' such
that &(eg,e) = 0. By (1.46) we have

(os ="!f(s).

Since (og is unique and f injective, ' ¢ is unique too. Thus &(eg,e ) = 0 if and only if

"="g. Weset, :=1"g.
In order to show that & is , -homogeneous, we to prove that # +' ¢ does not depend on
# and that we have #+'g="o=!,, *#S$T.
If we use again equation (1.45) and set ' =0, we get

(43 &(€0,€4+5) =T ($)&(ey,€3). (1.47)
We have *$ = 0, f($)&(es,e5) = 0 if and only if # = '4 Hence
*$ =0, (#,&(€p,€4++,) = 0. In addition &(ep,e-) =0 ifandonlyif' ="og=1,.
Hence we have $ +'4s ="'9g =1, *$ = 0. Finally we proved that &(es,e5) = 0

forall $,# $ I such that $+#+, = 0. That exactly means that & is , -homogeneous. [

Corollary 1.56. The left-admissible symplectic forms oW such that their induced left-
symmetric structure is graded are:

&& = l..ld ei&,
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with , & 2 andp $ K*.
Moreover the left-symmetric product induced bg, is given by:

o PG+ +H)( +2#) .
€ € .= f(,—|—2($—|—#)) €+, $,# $T.

Proof. The first assertion results from Proposition 1.54 and Theorem 1.55 . We just have
to give the induced left-symmetric product. By equation (1.45):

(#s&(epss. @) =fF(S! ")&(es, €44 ),*$,#," $T.
Let $,#," $T. Since & = &g ;= pde* g with , & 2I", we get:
(sspdelg(esrg,0) =F($! ' )udelq(es, ep4),
which is equivalent to

(#$f(' I $! #)ei&(e#+$+-'):f($! ')f ($+' ! #)ei&(e#+$+~).

For$ +#+"' +, =0 we have
(ssf(1, 1 2$+#)=FQS +#+,)F (1 2#1 ,).

Remark that f (! , ! 2($ +#)) =0 since, & 2I'. Hence

RS +#+ (2% +,)

(#s = 126 +8) XS H ST,

]

Remark. This result holds for a class of Witt type algebras which contains the Witt algebra.
Graded left-symmetric structures on the Witt algebra are classified (see [3]). There are two
classes of such structures denoted ('in [3] ) by Vi), $,- $ C statisfying - =0or-"1$ Z
and VK # $ C and k $ Z satisfisfying # = k. Our graded left-symmetric structures

induced by a symplectic form belong to the first class Vi) with $ =1 and - = %(.



Chapter 2

Automorphic algebras.

2.1 Generalities on Riemann surfaces

In this part we remind definitions and general results about Riemann surfaces. We give
more precisions for the situation of the Riemann sphere and for the tori.

Details of this part (and in particular the proofs) can be found in the book of Otto Forster
[10] or in the book of Rick Miranda [21].

2.1.1 Debpnition and examples

Debnition 2.1. Let X be a Hausdor! topological space. A complex chart oiX is an
homeomorphism! : U % V of a open subsetU 0 X to an open subsetv 0 C. Two
complex charts! 1 : Up % Vi and! 5 : U, % V, are said to be compatible if the map

Po( Pyt 1(Ur8Uy) % ! (U 8 Uy)
is biholomorphic.

A complex chart ! : U % V on X is said centered at the point p if ! (p) = 0.

A system A :={!;:U % M,i $ 1} of compatible charts such that X =" iel Ui is called
an atlas. We define on the set of atlases an equivalence relation: two atlases A1 and A,

are equivalent if the set of charts A1 "A » are again an atlas. This means that every chart

57
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of A1 is compatible with every chart of A».

Debnition 2.2. A complex structure on a topological spac¥ is an equivalence class of
atlases.

A Riemann surface is a paifX, ) of a connected Hausdor! topological space and a
complex structure.

Usually, to define a Riemann surface, we just give an altas A on X. Then the corresponding

Riemann surface is the pair (X, A) where A is the equivalence class of the atlas A.

Let us give some examples of Riemann surfaces:

1. The complex plane C with the complex structure given by the one chart atlas {id¢ :
C% C}.

2. The Riemann sphere C,,. Let Co := C"{#} . The topology on C4 is given as
follows: the open sets in C4, are the usual open sets of C together with the sets of
the form V "{#} where V is the complement of a compact subset K 0 C. That
makes C, into an Hausdor Ccbnnected topological space. The complex structure is
defined by the altlas {! i : Ui % M,i = 1,2} with

U=C U=C"{

0
1z f C*
!lZid(C !2(2)22 z orz$

0 forz=#.
Note that the Riemann sphere is a compact Riemann surface.

3. The complex tori: Let &; and & be two complex numbers which are linearly inde-

pendent over R. We define the lattice L by
L :=272& + Z& = {m1& + my&s | my, my $ Z}.

The lattice L is a subgroup of C. Let X = C/L be the quotient group. On X we put
the usual quotient topology which makes the projection map %continuous. With this
topology, C/L is an Hausdor Ctbpological space and since C is connected, C/L is
also connected. Moreover, this is a compact topological space since %is continuous.

In fact C/L = %P ) where P is the compact parallelogram

P :={a& +b&la,b$ [0, 1]}.
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The complex structure of C/L is given as follow:

A chart is defined using the map % Let V O C be an open subset such that no two
points in V are equivalent under I'. Then U := %(V) is an open set and %V is a
homeomorphism from V to U. Take the inverse ! : U % V. This is a complex chart
on C/L . We have to check that the set A of charts obtained in this way is an atlas.
It is clear that C/L is covered by the charts of A. Then, we just have to check the
compatibility of the charts. Let! 1 : U; % Vi and ! 5 : Up % W, be two charts of A.

Then consider the map
=1 (71U 8 U) % ! 2(Us 8 Uy).

Let z$ ! 1(Up 8 Uy). We have %. (z)) = %z) and thus . (z)! z$ . Since lis
a discrete set, this proves that . (z)! z is constant on every connected component

-1

of 1 1(U; 8 Uz). Thus . is holomorphic and the same proof gives that . is also

holomorphic. That proves the compatibility of the charts of A.

The complex structure on C/L is defined by the atlas A.

Remark: For every compact Riemann surface X there exists a unique topological type given
by the genus g = g(X) $ N. Equivalently, g(X) is the dimension of the space of global
holomorphic diCerkntials on X. In our examples, g(Cs) = 0 and g(C/L ) = 1.

2.1.2 Holomorphic maps

Debnition 2.3. SupposeX andY are two Riemann surfaces. A continuous mdp: X % Y
is called holomorphic if for every charts; : U1 % Vp on X and! » : U % Vb, on Y with
f(U1) 0 Uy, the map

o(F('7HVi% V%,

is holomorphic (in the sense of the theory of complex functions).

The mapf is called an isomorphism if it is bijective and if the mdp ! is also holomorphic.
An isomorphism fromX to X is called an automorphism. The set of all automorphisms of
X is denoted byAut (X).

If there exists an isomorphism between two Riemann surfacésnd Y, then they are called
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isomorphic.

Remark: Due to the local behaviour of holomorphic map (see below), if F : X % Y is a
holomorphic and bijective map then F~1 is automatically holomorphic.

Note that Aut(X) is a group with the usual composition law.

Theorem 2.4 (Local behaviour of holomorphic maps). Let F : X % Y be a non-constant
holomorphic map between two Riemann surfaceésand Y. Fix p $ X. There is a unique
integerm 1 1 satisfying: for every chart®’ : U’ % V' on Y centered atF (p), there exists
achart®:U% V on X centered atp such that®' ( F ( ®~1(z) = z™.

Corollary 2.5. Let X and Y be Riemann surfaces anfl : X % Y be a non-constant
holomorphic map. Thenf is open.

Debnition 2.6. The multiplicity of a holomorphic mapF at p is the unique integem given
in the previous theorem. The multiplicity o at p is denoted bymult,(F).

Debnition 2.7. Let F : X % Y be a nonconstant holomorphic map. A poinp $ X is a
ramiPcation point forF if mult,(F) 1 2. A pointy $ Y is a branch point if it is the image
of a ramibcation point forF. Note that the set of ramibcation points as well as the set of
branch points are discrete.

Proposition 2.8. Let F : X % Y be a non constant holomorphic map between compact
Riemann surfaces. For each $ Y we debnedy (F) as

&
peF~1(y)

Then dy (F) is (a Pnite) constant, independent of .

Depnition 2.9. Let F : X % Y be a non constant holomorphic map between compact
Riemann surfaces. The degree & is the integerdy (F) for anyy $ Y. It is denoted by
deg(F).
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Proposition 2.10. A holomorphic map between compact Riemann surface is an isomor-
phism if and only if it has degree one.

Theorem 2.11 (Hurwitz's formula). Let F : X % Y be a nonconstant holomorphic map
between compact Riemann surfaces. Then

&
29(X)! 2=deg(F)(29(Y)! 2)+  [multy(F)! 1]
pex

whereg(X) and g(Y) are the genus ofX and Y respectively.

Theorem 2.12 (ldentity theorem). SupposeX and Y are Riemann surfaces anfi,f; :
X % Y are two holomorphic mappings which coincide on a s&t0 X having a limit point
a$ X. Then f; andf, are identically equal.

2.1.3 Holomorphic functions

DePnition 2.13. Let X be a Riemann surface and an open subset ofX. A function
f 1Y % C is called holomorphic if for every chart : U % V on X, the function

f(r 11 (U8BY)%C

is holomorphic.

This dePnition coincides with the depPnition of holomorphic maps between the Riemann
surfacesX and C.

The set of holomorphic functions ofY is denoted byO(Y)

Theorem 2.14 (Riemann's Removable Singularities Theorem). Let U be an open subset
of a Riemann surface and led $ U. Suppose that a functionf $ O (U\{ a}) is bounded
in some neighborhood oé. Then f can be extended uniquely to a functioh $ O (U).

Theorem 2.15 (Maximum principle). SupposeX is a Riemann surface and a non-
constant holomorphic function ofX. Then |f | does not attain its maximum.
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Corollary 2.16. Every holomolorphic function on a compact Riemann surface is constant.

2.1.4 Meromorphic functions

Let X be a Riemann surface, let p be a point of X. By punctured neighborhood of p we
mean a set of the form U!{ p} where U is a neighborhood of p. The concept of type
of singularities for usual complex functions can be extended to functions on a Riemann

surface.
Debnition 2.17. Let f be a holomorphic function in a punctured neighborhood ofa$ X.
(a) We sayf has a removable singularity at if and only if there exists a chart : U % V
with p $ U, such that the compositionf ( +~1 has a removable singularity at(p).

(b) We sayf has a pole atp if and only if there exists a chartr : U % V with p$ U
such that the compositionf ( +~* has a pole at+(p).

(c) We sayf has an essential singularity gi if and only if there exists a chart- : U % V

with p $ U such that the compositionf ( +~ has an essential singularity at(p).

Note that this debnition does not depend of the choice of the chald.

If f is a holomorphic function on a punctured neighborhood of a point p $ X, the behaviour

of f (x) for x near p determine which kind of singularity f has at p.

(a) If |f (x)| is bounded in a neighborhood of p, then f has a removable singularity at p.
In this case, limy_p f (X) exists and if we define f (p) to be this limit, f is holomorphic

at p.
(b) If |[f (x)] approaches # as x approaches p, then f has a pole at p.

(c) If |f (x)| has no limit as X approaches p, then f has an essential singularity at p.

Debnition 2.18. A function f on X is meromorphic at a pointp $ X if it is either
holomorphic, has a removable singularity, or has a pole,mtWe sayf is meromorphic on
an open setW if it is meromorphic at every point ofw.
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We can now give an equivalent definition for meromorphic functions

Debnition 2.19. Let X be a Riemann surface and an open subset oK. A meromorphic
function f : Y % C is a holomorphic functionf : Y’ % C whereY’ is an open subset o
with:

() Y\ Y'is a set of isolated points.

(i) For every pointp $ Y\ Y’ we have

lim |f (x)] = # .

X—=p

The points of Y \ Y’ are called the poles of . The set of meromorphic functions of
Y is denoted byM (Y).

Meromorphic functions are particular cases of holomorphic maps:

Theorem 2.20. Let X be a Riemann surface and $ M (X). If we debne for each
pole p of f, f(p) :=#, thenf : X % C is a holomorphic map. Conversely, consider
f : X % C, a holomorphic map. Iff ~1(# ) consists of isolated points, therf : X % C

is a meromorphic function with poles ifi ~1(# ). If f ~1(# ) does not consist of isolated
points thenf is identically equal to# by the identity theorem.

2.1.4.1 Laurent series and order

Let f be defined and holomorphic on a punctured neighborhood of p$ X. Let +: U % V
be a chart on X with p $ U. We have that f ( +71 is holomorphic in a neighborhood of

zo := +(p). Therefore we can expand f ( +~1in a Laurent series about zg:

&
f(+ @)= (2! 2)

This is called the Laurent series for f about p with respect to +. The Laurent series
obviously depends of the choice of the chart +. We can however use Laurent series to

check the nature of the singularity of f at p:
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Proposition 2.21. The function f has a removable singularity gb if and only if any one
of its Laurent series has no negative terms. The functidnhas a pole atp if and only if
any one of its Laurent series has Pnitely many (but not zero) negative terms. The function
f has an essential singularity gb if and only if any one of its Laurent series has inPnitely
many negative terms.

This characterization of the nature of the singularity is possible because the value {minn | ¢, = 0}

does not depend of the choice of the chart +. Hence we can define the order of f at p.

Debnition 2.22. Let f be a meromorphic function ap. Consider its Laurent series with
respect to a local chart+ : U % V: ¥ nCn(z! z9)". The order of f at p, denoted by
ordy(f) is:

ordy(f) := min{n|cy, = 0}

Lemma 2.23. Let f be a meromorphic function afp. Then f is holomorphic atp if and
only if ordy(f) 1 0. In this casef (p) = 0 if and only ifordy(f) > 0. f has a pole atp if
and only ifordy(f) < 0. f has neither a zero nor a pole g if and only ifordy(f) = 0.

Note that the order of a meromorphic f function at a point p $ X is related with the
definition of multiplicity given before. In fact, consider the meromorphic function f as a

holomorphic map F from X to C,,. Then

(a) If p$ X is a zero of f, then multp(F) = ordy(f).
(b) If p$ X is a pole of f, then multy(F) ="! ordy(f).

(c) If p$ X is neither a zero nor a pole of f, then multy,(F) =1 ordy(f ! f(p)).

From the definition of the degree of a holomorphic map we can extract the following:

Let f be a non-constant meromorphic function on a compact Riemann surface X. Let
F : X % C be its associated holomorphic map. Let {X} be the points of X mapping to
0 and {y;} be the points of X mapping to # . The x/s are exactly the zeroes of f and the
yj’s are its poles. Let d be the degree of F. By definition of d, we have

& &
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We explained before that the only points of X where f has nonzero order are its zeroes

and poles. Moreover we have
multy (F) =ordy (f) and multy(F) =" ordy(f)

Hence

Proposition 2.24. Let f be a non-constant meromorphic function on a compact Riemann
surfaceX. Then

& & & &
orde(f) = ordy (f)+ ordy (f) = multy, (F)! multy (F) = 0.
p i j i j

Note that this proposition means that a meromorphic function on a compact Riemann

surface has as many zeroes as poles.

2.1.4.2 Meromorphic functions on the Riemann sphere

Meromorphic functions on the Riemann sphere C, can be easily described.

Let R : C % C be a rational complex function. The function R is a meromorphic func-
tion on € and can be extended to a meromorphic function on Cy, by defining R(# ) :=
lim;—00 R(Z). fR(# ) =# then# isapoleof Randif R(# )$ C then R is holomorphic
in# .

Conversely, let R be any meromorphic function on C,. Since C is a compact topological
space, R has just a finite number of poles {ps,...,pn}. Suppose that # is not a pole of R.
Since R is a meromorphic function of C,, the restriction Rc of R to C is a meromorphic
function of C with poles in {p1,...,pn}. Let hy,...,hy be the principal parts of Rc.
Hence, we can consider the holomorphic function g := Rc! (hy +aa#& hy). Since the h
are rational function of C, they can be viewed as meromorphic functions of C,, with poles
in pi. Thus the map g can be extended as a holomorphic function of C,. But Cy is a
compact Riemann surface and holomorphic functions of C, are the constants. Thus g is
a constant and R is a rational function (since the h;’s are rational functions).

If R has a pole in # , consider the meromorphic function % which does not have a pole
in # . By the same justification we prove that % is a rational function and then R is a
rational function too.

We just gave the proof of the following proposition:

Proposition 2.25. Meromorphic functions on the Riemann spher€,, are the rational
functions:
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2.1.4.3 Meromorphic functions on tori

Fix a complex number * in the upper half plane and consider the lattice L :=Z + Z*. We
will see later that we can always consider lattices of this form. We form the complex torus
X :=C/L.

Let f be a meromorphic function on C. We call f doubly periodic (with respect to L) if

f(z+n+m*)=1f(z), *nm$%Z z$C

Such a function f descends to the quotient X = C/L to a function f $M (X). Conversely,
if g $ M (X) we get by defining f (z) := g(z + L) a function f $ M (C) which is doubly
periodic and satisfies f = g. Hence the doubly periodic functions are the meromorphic

functions of the torus.

There are two remarkable doubly periodic functions: the Weierstrass / -function and its
derivative function /'

0,
& ¥ , %

1

* eL\{0}

2

. &
/'(z) =1 T &e

* el

The function / has poles of order 2 in each point of the lattice L. Thus/ is a meromorphic
function on X with a pole of order 2 in 0.
The function / ’ has poles of order 3 in each point of the lattice L. Thus/ ’is a meromorphic
function on X with a pole of order 3 in 0.
Note that the function / is even and that the function / ’ is odd. Hence since / / is doubly
periodic, we have

1'(12)=1"(*I2)=1"(1/2+*/2)=0.

Moreover, as X is a compact Riemann surface and as /’ has a pole of order 3 in 0, the
points 1/2, */ 2 and 1/2 4+ */ 2 are the only zeros of / /.

These two doubly periodic functions are algebraically related by the following relation

(12 =413 gof ! g3
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with & .
92 - 60 @

* cL\{0}
& 1

* eL\{0}

The g2, g3 are called the Eisenstein series. For a fixed lattice they are constants. It is
possible to show that the discriminant function A(*) := g3(*)! 27g3(*) is never equal to

ZEro.

For a fixed lattice, consider the polynomial equation 4t3 ! got ! g3 = 0 and note e, e
and €3 these roots. As the discriminant A = g3 ! 2793 is not zero, no two of these roots

are equal. Moreover the following relations occur:
eg+e+e3=0

02 = ! 4(ere + €163 + ere3) = 2(e? + €5 + e2)
g3 = 4ejezes.

Since 1/2,*/ 2 and 1/2 4+ */ 2 are the zeros of / / and since (/ /)2 =4/ 31 go/ ! g3, we
get that
J(U2)=er 1 (12)=e | (12+*2)=es

Note that since ey, €, €3 are the roots of the polynomial equation 4t3! got! g3 =0, the
di Cerkntial equation (/)% =4/ 31 go/ | g3 is equivalent to

(I =4(" e)(l ! e)(/ ! es).

Using / and /' we can describe the set of meromorphic functions on X:

Theorem 2.26. The beld of meromorphic functions on the toruX can be given as
M (X)=C(,1 ")

That means that each meromorphic function oiX is a rational function of/ and/’.

More details about the Weierstrass / -function can be found in the book of Martin Schlichen-
maier [30] or in the the book of Farkas and Kra [8].
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Another approach to describe the meromorphic functions on the torus X are via theta-

functions. We define

0z) =" ettt sz
nez

This series converges absolutely and uniformly on compact subsets of C. Hence O is a
holomorphic function on C
Note that 0(z + 1) = 0(z) for every z $ C. We need to know how O transforms under

translation by *. An easy computation shows that
0(z +*) = e "l *22l0(z).

Thus it is clear that zg is a zero of O if and only if zg + L are zeroes of 0. In fact the only
zeros of 0 are the points 1/2 +*/ 2 + L and these zeroes are simple.

So if we consider the function
0¥ (z):=0(z! 1/2! */21 x)
we get a function with simple zeroes at the points X + L. Moreover we have
0% (z+1)=0%(z) and 0¥ (z +*) =1 e 2" (z)

Now we consider the ratio

<
iflel 0 (z)

R(z) := jn:1 000 (2)

The function R is a meromorphic function on C with n simple poles at the y;’s and m

simple zeroes at the X;'s. Moreover R is obviously periodic, i.e., R(z 4+ 1) = R(z) but

R(Z +*) _ (! 1)m7ne72+i[(mfn)z+zj Yi—>i Xi]R(Z).

Therefore to obtain a doubly periodic function we need m = n (which it is not a surprising

+ +
in regards of Proposition 2.24) and ; x; ! i Yi $ Z.

We have proved the following:

Theorem 2.27. Fix an integerd and choose two disjoint sets ofl complex numberq x;}
+

+
and {y;} such that ;x; ! i ¥i is an integer. Then the ratio of the translated theta
functions <
| 009 (2)
R(z) = <t——

jO(YJ)(z)
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is a meromorphicL-periodic function onC, and descends to a meromorphic function on
X =CIL.

We remark that the ratio R has simple zeroes at the points X; + L and simple poles at the
points y; + L.
Moreover, let f be a meromorphic function on X and let {p;j} and {q;} be the two sets of
its zeroes and poles respectively. Suppose that ¥ ip= ¥ i G in the quotient space X. We
S_an choo_si_e two sets {Xi} and {y;} of complex numbers with X; = Q and yj = q; such that
iXi = ;¥j. Thus by considering the ratio function R(z) := ;0%)(z)/ ; 0M)(2),
we get a meromorphic function on X with zeroes at the pj’'s and poles at the gj's. Thus
the function f/R is a holomorphic function on the compact Riemann surface X. So f/R
is a constant, and f is equal to R, up to a constant.
In fact we are able to prove that any meromorphic function on the torus X verifies the
iollowing_{_condition: let {pi} be the set of its zeroes and {qj} be the set of its poles, then
iki= ;0. .
In fact suppose that ;pi = L] q; for a+meromorphic function f $ M (X). Choose
two points pg and Qg such that idzo pi = idzo gi and then form the ratio of translated
theta-functions R(z) := ) id:O o) (z)/ ?:o 0)(z) as above. Consider the meromorphic
function g := R/f and note that g has just a zero at pp and a pole at qp.
Let G: X % C, be the holomorphic map to the Riemann sphere which corresponds to
the meromorphic function g. Since g has a single simple zero and a single simple pole, G
has degree one. Hence G is an isomorphism by Proposition 2.10. But that is not possible
since X has genus one and C, genus zero.

This contradiction shows that we must have ;p; = i G-

We just proved two important facts:

Proposition 2.28. On a complex torus, there is no meromorphic function with a single
simple pole.

Proposition 2.29. Any meromorphic function on a complex torus is given by a ratio of
translated theta-functions (up to a multiplicative constant).

More details about theta functions can be found in the book of Farkas and Kra [8] and in
the book of Rick Miranda [21]
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2.2 Meromorphic functions with prescribed poles on a compact
Riemann surface.

In this section we discuss the situation of meromorphic functions with prescribed poles on
a compact Riemann surface.

Let X be a compact Riemann surface. Let I :={P1, Py, ..., P} (k1 2) be a set of distinct
points. We consider the algebra M (X, I') of global meromorphic functions of X which are
holomorphic on X \ I'. What we mean is the set of meromorphic functions on X such that
poles can only appear at the points in I'.

These algebras are a particular case of a more general situation: the algebras of Krichever-

Novikov type.

2.2.1 Algebras of Krichever-Novikov type.

Let us give a short definition of algebras of Krichever-Novikov type. More details can be
found in [34-36].

Let K be the canonical line bundle of the Riemann surface X. Its associated sheaf of local
sections is the sheaf of holomorphic dilerkntials. For every ( $ Z consider the bundle
K®' . with the usual convention: K® := O is the trivial bundle, and K=1 := K* is the
holomorphic tangent line bundle (its associated sheaf is the sheaf of holomorphic vector
fields). Denote by F' the vector space of global meromorphic sections of K which are
holomorphic on X \ T

Locally, sections of F' (I") look like

f(z)=$(z)dz, with dz :=(dz)®

where $ is a local meromorphic function without poles outside of T

Hence if ( = O we get the above set of functions M (X, T) or just M () if X is fixed.
Other special cases are of particular interest: ( = 1 which is the case of dilerkntials, and
( ="' 1 which is the vector field case. The set F ~1(I") is usually denoted by L(I"). By
multiplying sections by functions we again obtain sections. Thus the space M (') becomes
an associative algebra and the spaces F' (I") become M (I")-modules. The vector fields in
L (") operate on F' (I) too by:

% %
$$(z)d ég#(z)dz' : ::$$(z)d#(z) + (# (z)ﬁ(z) dz .
dz dz dz
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The space L (") becomes a Lie algebra and the space F' (I') becomes a Lie module over
L(I).

2.2.2 Almost-graded structure.

For infinite dimensional algebras and their representation theory a graded structure is usually
of importance to obtain structure results. A typical example is given by the Witt algebra W.
In our more general context the algebras will almost never be graded. But it was observed
by Krichever and Novikov in the two-point case that a weaker concept, an almost-graded
structure (they call it a quasi-graded structure), will be enough to develop an interesting

theory of representations (highest weight representations, Verma modules, etc.).

Debnition 2.30. a) Let L be an Ialgebra (associative or Lie) admitting a direct decom-
position as vector spacd = nez Ln. The algebral is called an almost-graded
algebra ifdimL, < # and there are constantR and S with

n+=m+S

Lhaln 9 Lh, *nm$ Z (2.1)

h=n+m+R
The elements ofL, are called homogeneous elements of degnee

b) Let L be an almoslt-graded (associative or Lie) algebra akd an L-module with
decompositionF =~ |, Fn as vector space . The modul& is called an almost-
graded module ifdimF, < # and there are constantR’ and S’ with

n+-m+ S’

LmaF, 9 Fh, *nm$7Z (2.2)

h=n+m+R’

The elements ofF,, are called homogeneous elements of degnee

In the previous definition the homogeneous spaces L, and Fp are finite-dimensional. Thus
we can find adapted bases {Anp | N $ Z, p = 1,...,ke} of L and
{fapIN$ Z, p=1...,hp} of F such that

Ln - Vect(An’p | p - 1, “e ,kn) Fn = Vect(fn’p | p = 1, .. .,hn).

SuchI bases are called allmost—graded basis of L and F adapted to the decompositions

L="ezlnand F =" ., Fn.



Chapitre 2. Automorphic algebras. 72

In practice for a given algebra L we try to find a basis {Anp |[N$ Z, p=1,...,kn} of L
such that Anp 8Amg $ vect(App [h=n+m+R,...,,n+m+S, p=1,...,kn). Thus
by defining

Ln:=vect(Anp|p=1,...,kn)

we give an almost-graded structure of L.

Let us return now to the case of the three spaces M ('), L(I') and F' (I) defined in the

section 2.2.1.

Theorem 2.31. Associated to any splitting ofl” into two non-empty subsets, := 1" O,
one can introduce forM (I'), L(I") and F' (I") a decomposition into

M@T)= Mn L(IND= Ln F(M= My
neZ nez nez

such that M (), L(I") and F" (I") are almost-graded with respect to the decomposition.
In all cases, the lower shifts in the degree of the result can be made to zero.

It is very important to stress the fact that the almost-graded structure depends of the
splitting of I into two non-empty subsets.

This theorem is a central result for the Krichever-Novikov algebras. The di Cculk proof
can be found in the works of Martin Schlichenmaier [30, 36] and is essentially based on
the Riemann-Roch Theorem. Explicit generators and explicit almost-graded basis can be
found for these algebras and modules [34, 35]. We give here an idea of the way how to

construct these generators for the case of the algebra M (7).

Suppose that ' = 1" O with | = {Pq,...,Px} and O = {Q}. An almost-graded basis of
M (") is given by elements Anp, N $Z,p=1,...,k which are essentially fixed by

OrdPI(An’p):(n+l)| "ip.,i:]_,...,k

and complementary condition for the|point Q of O. Then the almost-graded structure is

given by the decomposition M (F) = ., M (I)n with
M (M)n = vect(Anp |p=1,...,k).

For example, for the two points situation (i.e. | = P and O = Q with P,Q in generic

position) the conditions are

ordp(An) =n ordg(An) =!n! g
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with some modification at Q needed for small |n| values, e.g. we take always Ag = 1.

Until now we always considered a set ' containing at least two distinct elements. This
condition was necessary to fulfil the conditions of the previous theorem: split the set I
into two non-empty subsets.

How is the situation for a one point set '? Can the algebra M (X, ") also be equipped
with an almost-graded structure?

The answer is yes but the gradation will depend on the choice of another point. Suppose
that I := {Q}. Choose now a point P = Q in X. Hence we know by Theorem 2.31 that
the algebra M (X, {P}"{ Q}) admits an almost-graded structure

M (X, {P}{ Q)= Mn.

NEZ

In fact this almost-graded structure verifies the following:

!
1. My = 5oMpisan almost-graded subalgebra of M (X, {P}"{ Q}).

2. M4+ =M (X, {Q})

M .+ is the subalgebra of M (X, {P}"{ Q}) consisting of functions also holomorphic in
P. Hence M (X, {Q}) admits an almost-graded structure depending of the choice of the

reference point P.

2.2.3 Case of genus 0

Let X be the Riemann sphere and I := {P, Q} be a set of two distinct points of X. In this
case there is only one splitting: ' = {P}"{ Q}. We can give here an explicit almost-graded
basis of M (X, I'); the set of global meromorphic function on X which are holomorphic on
XA\T.

If P,Q=# we define

An(z) :=(z! P)"a(z! Q)" *n$ Z.

If Q=# we define
An(z) = (z! P)" *n$ Z.

If P =# we define
An(z) =(z! Q™" *n$ Z
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In every case, the set {An, N'$ Z} is a basis of M (X, I'). Hence

where M |, := vect(An). Moreover
An éAm - An+ m:-
Hence this is even a graded basis of M (X, I').

In this example, clearly the subalgebra M . is exactly the algebra M (X, {Q}) and it admits

a graded structure.

2.2.4 Case of genus 1

We use the notation of the section 2.1.4.3.

Let L =Z+*Z be a lattice with : (*) > 0 and let X be the complex torus C/L . We give
here an explicit example of an almost-graded structure for a two points set I'. We suppose

that ' = {1/2}" 0. Then we define the following meromorphic functions:

1
Aaci= (1 e)l,  Ager =l (1 1 e

Since / (1/2) = e; and since / is even, the function (/ ! e;) has a pole of order 2 in 0

and a zero of order 2 in 1/ 2. Hence
ordo(Az) =1 2k, ordy 2(Agk) = 2k.

The function /’ has a pole of order 3 in 0 and has a zero of order 1 in 1/2,*/ 2 and
1/2+*/ 2. Hence

ordo(Agk+1 ) =" (2k + 1), ordy o(Agk+1 ) =2k ! 1.

The set {An, n$ Z} is a basis of M (X, I'). Hence by setting M , := vect(An) we get the

decomposition

MX )= M
nezZ
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Moreover, if n or m is even we have obviously
An éAm - An+m.
Ifn=2k +1 and m =2k’ + 1 then using e; + & + e3 = 0 we get
. L k+k/—2
An aAm - Z/ (/ ' e]_)

:%éﬂ(/ e/ ! e2)(I ! eg)(/ ! e)ktk -2

=( el et(al @) ! et (e! e)) ! )
=[(/! 61)3+(2€1! e3! e)(/ ! e1)2+(e1! e)er! &)/ ! e)](/ ! el)k+k’72
=1 e) K L3e(/ 1 @)K (e e)(2er +e)(/ 1 e)ktK L

=An+m +3€1Anrm_2+(e1! e)(2e1 +e)Antm-4a

Hence that defines an almost-graded structure.

As above we remark that the subalgebra M . is exactly the algebra M (X, {0} ). Thus we
have here an almost-graded structure of M (X, {0}) depending of the point 1/ 2.

2.3 Group Action on Riemann Surfaces

All details of this section can be found in the book of Rick Miranda [21].

2.3.1 Generalitites

Let G be a finite group and X a Riemann surface.
A left action of Gon X isamap G- X % X : (g, p) 3%g.p which satisfies

a) (gh).p=g.(h.p) forg,h$ Gand p$ X

b) e.p=p for p$ X and e the unit element of G.

The orbit of a point p$ X is the set G(p) :={g.p| *g $ G}. The stabilizer of a point
p$ X is the subgroup G, :={g $ G| g.p = p}. We recall that two points in the same
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orbit have conjugate stabilizer. More precisely: Ggp = nggfl. Moreover we have the

following relation:
IG(p)l & Gpl = |GI.

The kernel of an action of G on X is the subgroup K :=={g$ G| gp=p*p $ X}.
Obviously, K is the intersection of all stabilizer subgroups and K is a normal subgroup.
Moreover the quotient group G/K acts on X with trivial kernel and with the same orbits
as for the action of G. So we usually assume that the kernel is trivial. Such an action is

called an e [edtive action.

For each g $ G, the map p 3%g.p is a bijection. The action is said to be continuous if
for all g $ G this bijection is continuous. The action is said to be holomorphic if for all
g $ G the bijection is holomorphic. In the holomorphic case, this bijection is necessary an

analytic automorphism of X.

The quotient space X/G is defined as the set of orbits. The natural projection %: X %
XIG sends a point p $ X to its orbit G(p). The usual way to give a topology to such a
quotient space is to declare a subset U 0 X/G to be open if and only if %‘1(U) is open in
X. Clearly the projection %is then continuous. If the action is continuous, then %is an

open map.

Here we give some details about stabilizer subgroups of an e Ledtive and holomorphic action:

Proposition 2.32. Let G be a group (not necessary Pnite) acting holomorphically and
electively on a Riemann surfaceX, and Px a pointp $ X. If the stabilizer subgroupG, is
Pnite then it is a Pnite cyclic group.

Obviously, ifG is a Pnite group, all stabilizer subgroups are Pnite cyclic subgroups.

Proposition 2.33. Let G be a Pnite group acting holomorphically and electively on a
Riemann surfaceX. The points of X with nontrivial stabilizer subgroups are discrete.
If X is a compact Riemann surface, these points form a bnite set.

Our goal is to put a complex structure on X/G such that %is a holomorphic map. This is

done by the following construction which can be found in [21]
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Proposition 2.34. Let G be a Pnite group acting holomorphically and electively on a
Riemann surfaceX. Fix a pointp $ X. Then there is an open neighborhoold of p such
that:

a) U is invariant under the stabilizeG,: gép $ U for everyg $ G, andp $ U;
b) U8 (gauU) =; for everyg $ Gp;

c) the natural map$ : U/G, % X/G , induced by sending a point it to its orbit, is a
homeomorphism onto an open subset &/G ;

d) no point of U exceptp is bPxed by any element d&;.

Proof. See the book of Rick Miranda [21] (p77). O]

The above proposition helps us to define charts on X/G . We just have to define charts on
U/G, and transport these to X/G via the map $. More details can be found in the book
of Rick Miranda [21].

Theorem 2.35. Let G be a bnite group acting holomorphically and electively on a Riemann
surface X. Then there exists a complex structure oiX/G such that X/G is a Riemann
surface and that the projectior%: X % X/G is holomorphic. Moreovegfabis of degree|G|
and mult, (% = |G| for anyp $ X.

Proposition 2.36. A group G acting holomorphically and electively on a Riemann surface
X is isomorphic to a group of automorphisms of.

Hence in the following we will identify each group acting holomorphically and e Ledtively

on a Riemann surface with a group of automorphism.

We suppose now that X is a compact Riemann surface. Note that in this case, X/G is
compact too.

In the following we explain the link between stabilizer subgroups and the ramification points
of the quotient map %

Let %: X % X/G be the projection map and y a point of X/G . The set of the pre-images
of y is a single orbit and for each point x of this orbit, we have multy (%) = |Gx|. Since

stabilizer subgroups of points of the same orbit are conjugated, multy (%) is a constant
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integer r. The set % 1(y) contains exactly s = |G|/r elements.
The set of ramification points of % corresponds exactly to the set of point with nontrivial
stabilizer subgroup. This set is a disjoint finite union of orbits. Moreover, these orbits

correspond to the branch points.

We apply the Hurwitz's formula to the quotient map % Let yi,...,Yk be the k branch
points in X/G of %and r; be the multiplicity of the |G|/r; points in % 1(y;), with r; 1 2.
Then

& |g| & 1
29(X)! 2 =|G|(29(X/G)! 2)+ T(ri 1) =|G|[2g(XIG)! 2+ (1! r—_)] (2.3)
i=1 ! i=1 !

* ok 1
Set R:= - (1! 7). Then we get

2g(X)! 2=[G|[2g(X/G)! 2+R]. (2.4)

This equation is very important and gives us many pieces of information about the finite
+

groups which can act on a Riemann surface. Moreover the quantity R = ik=1 (1! %) is

clearly important in studying the actions. Some special values of R will help us in the next

sections. The following lemma is elementary and can be shown by a direct check.

Lemma 2.37. Suppose thatk integerrq,...,rx with r; 1 2 for eachi are given. Let
+
R= (1! 2). Then

k=1, anyn;
k=2, anyrq,ro
E k=3, {ri} ={2,2,anyr3z} or
k=3, {ri} ={2,3,3} or{2,3,4} or{2,3,5}

a) R<2+ Kk, {r}=

k=3, {ri} ={2,3,6} or{2,4,4} or{3,3,3};

by R=2+ Kk, {r}= k=4, {r} ={227272

We now consider the situation of the Riemann sphere and of the tori.
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2.3.2 The situation of the Riemann sphere.

Using Identity (2.4) we are able to determine the finite groups acting holomorphically and
e Ledtively on the Riemann surface Cy.
Suppose that G is a finite group acting holomorphically and e Ledtively on C,. Since C

has genus 0, C,./G has genus 0 too. So the Hurwitz formula in this case says that
' 2=|G|['! 2+ R].

We see that if G is not the trivial group (i.e. |G| > 1) then R = 0 and there must be
ramification points. Moreover since |G| > 0 we must have R < 2.

We use the same notation as above.

Suppose that k =1, then R =1 %forsomerl 2.S00<R< land2>2! R> 1;
hence |G| = 2/ (2! R) will not be an integer. That is not possible, thus k cannot be 1.

Suppose now that K = 2. From Lemma 2.37 any rq, r2 is possible. In fact not all possibilities
can occur and we show that r; and ro must be equal. To see this suppose that the branch
points are y; and Y. Consider a small loop ' in Coo/G around y; which starts and ends
at a point Yo . This loop ' may be lifted to a curve in C, starting at any of the |G|
points in the fiber of % over yg. The permutation of this fiber of % given by sending a
point p in the fiber to the endpoint of the lift of © which starts at p, is of order ry. Similar
considerations apply to a small loop around y» give a permutation of order r,. However
since Co/G L Cso, these two loops are homotopic; hence the permutations must have
the same order, sory =r, =r.

In this case |G] = 2/ (2! R) =r. This is achieved by the cyclic group Z, of order r, acting

rth

on C by multiplying the coordinate z by roots of unity.

In case k = 3, we see that:
if {r}={22r}, then |G|]=2r;
if {r}={2,3,3}, then |G]=12

if {r}={23,4}, then |G| =24
if {r}={2,3,5}, then |G|=60
The first case is achieved by the action of a dihedral group D;. The latter cases are

achieved by actions of T, @, and I. These are the famous " platonic solid actions”, which

are groups acting on the sphere leaving either a tetrahedron (the 2,3,3 case), a cube and
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a octahedron (the 2,3,4 case), or a dodecahedron and a icosahedron (the 2,3,5 case)

invariant.

Let us give explicitly the action of these groups in terms of finite groups of automorphism.
Note that we give for each case an explicit example of the realization of the action. Other
realizations can be given by conjugating these examples. For more details, see the paper
of Lombardo and Mikhailov [20]

1. The group Zy, N $ N*:
It is the group generated by the transformation

o
$ 006

)(z) =Qz, Q=exp N Zn ={)"In =0,1,...,N! 1}

There are two points which are fixed by elements of Zy: 0 and # . The orbits are:
Zn(0) ={0}, Zn(# ) ={# .

The stabilizer groups are
(Zn)o = (ZN) o = ZN.-

2. The dihedral group Dy:
It is of order 2N and generated by two transformations:

1 $20/i%
0
)S(Z):QZ, )t(Z):E, Q:exp W

They verify )N =)2 = () s) )2 = id and we have:
Dy ={)2,)9¢/m=0,...,N! 1}
We give the non-generic orbits (i.e. the orbits containing fixed points). If N is odd:

Dy (O) = {01#} ) |(DN>0| =N
5 .6
Dn(1) = 1,Q,...,QY 17 |(Dy)1] =2
5 .6
D D)= 11,0 Q... QN (Dy)-1] =2

If N is even, then Dy (1) = Dyn(! 1) but:

Dn (i) :Si,iQ,...,iQN’16, |(Dy)i| = 2
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3. The group T (note that T L Az):

It is of order 12 and generated by two transformations:

zZ+i

z!

)s(z) =1z, )(2)=

We have )2 =)2=()s)¢)® =id and
T={){){s){In,m=0,12}.

There are three non-generic orbits. One coming from the two fixed points of the

transformation ) g; 0 and # :

T(0) ={0,# ,+1,%i}, [(T)o| =2

1+ .
The transformation )¢ has two fixed points, '1 = J% = & + i& and
_ $ 020 1+ 3
141 . ) 2
‘2:%:|&+&Wlth&:exp 70 and:

T( 1) ={¢ (&+i&),+(&! i&)}, [(T),|=3
T( 5) ={ti(&+i&),+i(&' i&}, |(T),|=3

4. The group O (note that O L Sa):

It is of order 24 and generated by two transformations:

Cz241
Szl 1

These generators verify ) & =)2 = () ) ¢)® = id and we have

@:{)Qi)g)t)?’)s)tz)slnvm:O!11213}

There are three non-generic orbits:

The above point ' 1 is a fixed point of )¢, hence:

>
O(1)=T("1) T(2)

The point " = exp(i%/4) id a fixed point of z 3%i/z , hence:

5 _ _ 6
OC)= #"+7i"(1+"+7),i"11 "I Tn =0,1,2,3
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5. The group T (note that I L As):

It is of order 60 and generated by two transformation:

(-24+-3z+1 % 06

)s(z) =-z, )t(Z)Im, TEep

The generators verify ) 2 =) 2 =id and we have

I=08) DTN HIT)D DDV m=0,1,2,3,4}.

There are three non-generic orbits:

S k+1 k—1 k+2 k—2? 6
I(0) = 0,# ,-<" 4K K 4 k=0,1,2,3,4 ,

1+-)z+1
The transformation ) 2) 1) 2(z) = % has two fixed points:
<_ @*@
3+ 5+ 65+ B5)
M1 = =1! &1 &5
4
<. @
3+ 51 65+ B5)
o = ; —11 & &

The orbits I(p1) = I(M2) contain 20 points which are the roots of

7201 228715 4 494710 4 22875 + 1 = 0.

The point i is a fixed point of the transformation ) 2){) 3)¢)2)((z) =! 1/z.

orbit I(i) contains 30 points which are the roots of

730 1+ 5227251 10005z2°1 100052101 5227° + 1 = 0.

Debpnition 2.38. An homography ofC, is a map from) : C,, % C., such that

with ad! bc=0,)(!dlc)=#,)# )=alcifc=0and) (# )=# ifc=0.
The set of homographies is a group for the usual composition denoted Hyy
The homographies are also called fractional linear transformations.

The
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Let) 1(z) = (aaz+b1)/ (c1z+d1) and) 2(z) = (apz+bo)/ (c2z+d2) be two homographies.

The composition )1 () 2 is

. (8.18.2 + b1C2)Z + (albz + b1d2)

)1()2(2) = (c1ap + d1C2)Z + (C1by + dhd2)

Hence the inverse of ) 1 is ) 12(z) = (d1z! by)/ (! c1z + &)

It is now clear that the homographies are related with the invertible 2x2 matrix. In fact

there is the following surjective group morphism:

1 - o,
: GL2.CY % H

a b
36 23020
c d cz+d

<
Moreover an homography is invariant by dividing a,b,c,d by ad! bc. Hence we can
always choose a, b, c,d such that ad! bc = 1. Thus there is also the following surjective

group morphism:
- D,
o SL.Cy % H

a b
3 z3%2 TP
c d cz+d

By the Isomorphism theorem we get :
HLPsSL2 C)LPGLE2 C)

where PSL(2,C) = SL(2,C)/+1d and PGL(2,C) = GL(2,C)/ C*Id.

Proposition 2.39.
Aut(Cy) =H

Proof. Of course an homography is an automorphism of Cg.

Let ) be in Aut(C.,) . We said before that a holomorphic map from C, to C, can be
viewed as an meromorphic function of C,,. Hence as ) is an automorphism of C, it is
in particular a holomorphic map from C, to C4, and can identified with a meromorphic
function of C.

We proved before that the set of meromorphic functions of C,, is the set of the rational
functions C(z). Thus ) (z) = P(z)/Q (z) where P and Q are two polynomial functions.
Since ) is an automorphism, it has degree one. That implies that as a meromorphic

function ) must have a single simple zero and a single simple pole. So the polynomial
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function P and Q must be respectively of the form az + b and ¢z 4+ d. Note thata=0
correspond the case of a zero in # and b =0 to a pole in # . Finally to avoid ) to be a
constant, P and Q must be non-proportional. Hence ad! cb = 0. That shows that) is

an homography of C,. ]

We give now the classification of the finite groups of Aut(Cy).

Debnition 2.40. Let A and B be two Pnite subgroups oAut(C.,). The groupsA and B
are said to be conjugated if there exists $ Aut(C,) such that:

A=)B) L.

The conjugation is an equivalence relation for the finite subgroups of Aut(Cy). Of course

two conjugated groups are isomorphic.

Theorem 2.41. Up to conjugation, the only bnite subgroups oAut(C.,) are
Zn, Dy, T, O, I

with N $ Z.

For the proof see [16].

2.3.3 The situation of the tori.

Proposition 2.42. Let X andY be two complex tori given by lattices andM respectively.
Then any holomorphic mapF : X % Y is induced by a mapG : C % C of the form
G(z) ='z +a, where' is a constant such thatL 0 M. That means the holomorphic
map G is a lift of F to the universal coverings of the tori (i.e C).

The map F sends zero to zero if and only &#$ M . The map F is an isomorphism if and
only if 'L =M.

The proof can be found in the book of Rick Miranda [21].

There are some special lattices:

The square lattices which have orthogonal generators of the same length. The hexagonal



Chapitre 2. Automorphic algebras. 85

lattices which have generators of the same length separated by an angle of %/3.

Proposition 2.43. Let X = C/L be a complex torus. Any holomorphic map : X % X
bxing 0 is induced by the multiplication by somé $ C. If F is an automorphisms, then
either:

1. L is a square lattice and is a4!" root of unity;
2. L is a hexagonal lattice and is a6 root of unity; or

3. L is neither square nor hexagonal arid= * 1.

Using the two above proposition, we are able to describe all automorphisms of complex
tori. Let F : X % X be an automorphism of the complex torus X. The map F is induced
by a linear map G : C % C of the form G(z) = 'z + a where ' is either a 4" root of
unity, a 6t root of unity, or ' = £ 1, depending to the form of the lattice L. Note that

the only automorphisms without fixed points are translations.

Proposition 2.44. Let X be a complex torus ands a Pnite group acting holomorphically
and electively on X. Then the Riemann surfaceX/G is of genus 1 if and only ifG is a
Pnite group of translations ofX.

If G contains at least one automorphism Pxing at least one point &f; then X/G is of
genus0. Moreover the possible ramibcation for the quotient maypare:

k=3,{n} ={273,6},{2,4,4}, or {3,3,3}

or
k=4,{r} ={2,222}

This means there arek ramibcation points with multiplicitiesr;; i = 1,...,k (i.e. k

nontrivial orbits with stabilizer subgroups of order).

Proof. If X is a Riemann surface of genus 1 and G a finite group acting holomorphically

and e Ledtively on X, we get from Equation 2.4:

R=2! 29(X/G)

As R 1 0 it follows that g(X/G ) is at most one and R =0 or R = 2. Moreover R = 0 if
and only if g(X/IG ) =1 and R =2 if and only of g(X/G ) = 0.

Note that R = 0 means that there are no ramification points for the map %i.e. that there
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are no points in X with nontrivial stabilizer subgroups. According to the description of the
automorphisms of a complex torus, it is clear that the only automorphism with no fixed
points are translations. Hence G can be identified as a finite group of translations of X.
If R = 2, then X/IG is of genuizero and there are k é 1 rarﬂ'fication points for %0 Remem-
berthatr; 1 2andthatR:= S, (1! &). As34 11 1 4 1 it'sclearthat34 k4 4.
A direct check shows that R = 2 is only possible for {ri} ={2,3,6},{2,4,4}, or {3,3,3}
fork =3 and {ri} ={2,2,2,2} for k = 4.

O]

Using the results on holomorphic maps between complex tori we can give the classification
of complex tori.

First we remark that every complex torus is isomorphic to a complex torus X, defined by
a lattice L, generated by 1 and *, where * is a complex number with positive imaginary
part. In fact, if a lattice L is generated by &; and &z, then using ' := 1/&; maps L into
the lattice generated by 1 and &»/& 1. If the ratio &»/& 1 is in the upper half-plane, then
this is *; otherwise we take the equivalent generator * =1 &/& 1.

Now, in order to classify complex tori we ask when X, and X : are isomorphic. This is the
case if there exists a complex number ' such that 'L | =L ,. Since L, and L / are both
generated by 1 and respectively * and *’, this is equivalent to having the two numbers
" and "* generating L /. So we need that ' and '* lie in L : there must be integers
a,b,c,dsuch that' =c* +d and "™ =a*' +b. That gives * = (a*’ + b)/ (c*' +d).
Moreover for ' and '* to generate L /, we must have the determinant ad! bc equal to
+ 1. In fact, since both *,* " are in the upper half plane it must be equal to 1. These two

conditions are clearly su Lcieht, and we have proven the following:

Proposjtion 2g5. Two complex tori X, and X . are isomorphic if and only if there is a

a b
matrix g in SL(2,Z) such that* = (a*’ +b)/ (c*' +d).
c
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2.3.4 Higher genus situation.

Let X be a compact Riemann surface of genus g1 2.

Theorem 2.46 (Hurwitz [9]).
1. Aut(X) is always Pnite.
2. |Aut(X)| 4 84(g! 1).

3. A generic Riemann surface of genug 1 3 does not have any non-trivial automor-
phisms.

Remark: “Generic” is a loose expression for the following fact, if you take a completely
arbitrary Riemann surface of genus g 1 3 then it will have with very high chance no non-
trivial automorphism.

Mathematically more precise is that the moduli space compact Riemann surfaces of genus
g >= 2 has (complex) dimension 3g! 3 and the set of Riemann surfaces with nontrivial

automorphism for genus g >= 3 is a “subscheme of codimension” at least 1.

Despite the Result 3 of the theorem above there are very interesting Riemann Surfaces

with nontrivial automorphism groups.

1. Hurwitz Riemann surfaces.
A Riemann surface of genus g 1 2 which has exactly the automorphisms group of

order 84(g! 1) is called a Hurwitz Riemann surface.

2. Hyperelliptic Riemann surfaces.
They generalize tori (also called elliptic surfaces) and are compact Riemann surfaces
which are a twofold covering of the Riemann sphere. Interchanging the covering
sheets gives an automorphism which is of order 2 (an involution).
In the case of genus 2 all Riemann surface are hyperelliptic.
If we take as subgroup of the automorphism group of an hyperelliptic Riemann surface
the subgroup generated by the involution we obtain as quotient the Riemann sphere
and as quotient map the covering map defining the hyperelliptic Riemann surface.
Moreover if we check (2.4) we see that the number of branch points is exactly 2g-+2.
As the ramification indices are always exactly 2, over each branch point there lies
exactly one ramification point. As they constitute the set of fixed points of the
involution, the hyperelliptic involution has exactly 2g + 2 fixed points.
This result is also true for genus one. Here the involutionisz mod L 3% !z mod L

and the fixed points are the points 1/2,*/ 2, (1 +*)/ 2.
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2.4 Automorphic algebras

2.4.1 G-invariant functions

Let X be an arbitrary compact Riemann surface. Let G be a finite group acting holomor-
phically on X. Associated to this left action on X there is a left action on M (X)), the set

of meromorphic function of X,

G-M (X)%M (X):(g,f) 3%g af

where the meromorphic function g &f is defined by

g &f (p) :=f(g " ap)

Debnition 2.47. A meromorphic function onX is called G-invariant if for allg $ G,
gf =f.
The set of G-invariant function of X is denoted byM g (X)

Debnition 2.48. There is a natural projection fromM (X) to M g(X):

6% M(X)%M g(X)
1 &

f 3%676 = @

g.f
geG

The following is immediate:

Proposition 2.49. Let f be a function of M (X).

a & 75 is a G-invariant function.
b If f is G-invariant & 75 = f

C 6677, = 6 75

Proposition 2.50. Let N be a normal subgroup ofs. Then
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Proof. We proof first that the projection 6 g is well defined for f $ M N(I). Suppose
that @ = h in the quotient group G/N, so that g7*h $ N. Then g~ th &f = f since
f $M N(X) and so haf =g af. That proves that 6 §y is well defined for f $ M y(I1).

And now:

IN| & INf & 1 &  Nj1 & .
8hien =g 930N =15 Ay T g 9@
gcG/N geG/N heN 9cG/N
heN
1 &
=G | & since @ ={gh,h$ N}
| lgeG/N
leg
1 & | &f &7
e — a —
|G| leG ©

Proposition 2.51. Consider the kernel subgroul of the action of G on X. Then
7% =f, *f $M (X)

and
67 = & 7ok

HenceM g(X) =M gk (X).

Due to the previous proposition it is enough to consider holomorphic and e Ledtive actions
on X. Recall that in this case, such a group acting on X can be identified with a subgroup

of automorphisms of X.

From now on, an action will be holomorphic and e [edtive.

Let us give some properties of G-invariant functions.

Proposition 2.52. Let f be aG-invariant function.

For anyx $ X, ordx(f) = ordgx(f) for all g $ G. This means that iff has a pole or
zero inx then f has a pole or zero of the same order m.x for all g $ G. Likewise iff is
holomorphic inx, then f is holomorphic ing.x for allg $ G.
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Proof. Let K be the order of f in x (i.e. K :=ordy(f)). We choose a local coordinate z

centered around X and expand the function f as a Laurent series around X:

&
f(z) = anz", a =0.
n>K

Let g be an element of G. We write the automorphism g~ in local coordinates as a Laurent
series. We choose a local coordinate z’ centered around g.x and the local coordinate z
centered around X (the same local coordinate as above). Since g~ is an automorphism

hence its Laurent series is

&
giz)= byz", by=0.

n>1

By composition of the two above Laurent series we get the Laurent series of the function
f ( g~ in the local coordinate z’ around gx. We get
1 3,

=15/ & 2 & m4 & n
f (g (z") = an bmz = cnz",
n>K m>1 n>K

for some ¢, $ C with ck = 0. Hence the order of the function f ( g~t in g.x is K. But

since f is a G-invariant function we have

f(gt=H.

So
ordgxf = ordgxf ( g_l = K = ordyf.

Proposition 2.53. The algebrasM g(X) and M (X/G ) are isomorphic.

Proof. Let us give the isomorphism. Consider

®:M(XIG)%M g(X)
f 3uf

where f (x) := f(X) for all X $ X/G . Said dilerkntly, f = f ( Y%where %is the usual
quotient map from X to X/G .

Note that f is meromorphic since %is a holomorphic map and f a meromorphic function.
Moreover f is G-invariant: f(g.x) =f(gX) =f(X) =f(x) forallg$ G and x $ X.
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It is easy to verify that ® is a morphism of algebras. To show that this morphism is an

isomorphism we give the inverse of the map:

P Mg(X)%M (XIG)
f 30

where f (X) := f (x). The function f is well defined since f is G-invariant. We just have to
show that the function f is a meromorphic function of X/G . We know that there is just a
finite set of points of X with non trivial stabilizer group. We denote this set by S. Then for
each point p of X/G \ %S), the group Gy is of order 1 and then multp(%) = 1. This means
that %is local homeomorphism in p. So it is clear that the function f is meromorphic in
X \'S. As the poles of f are isolated points, we can find for each point S$ S an open set
Us such that f is holomorphic in Us\{ %(s)}. Then %) is a singularity of f. But %s)
cannot be an essential singularity because in this case f should have an essential singularity
in each points of % 1(%s)), and that is not true. Hence %(s) is an removable singularity

or a pole and hence f is meromorphic on X/G .

Let I" be a finite set of points of a Riemann surface X. We consider the Krichever-Novikov

algebra M (X, I') of global meromorphic functions on X which are holomorphic on X \ T.

Debnition 2.54. The set of global meromorphic functions orX which are holomorphic
on X\ I and G-invariant is a subalgebra d#l (X) and of M (X, I') denoted byM g (X, I').

Proposition 2.55. 1. Mg(X,I)=Mg(X)8M (X,T).

2. The setT can always be split into two subsetB; and ', such that I'; contains all
the full orbits and ", the other points and we have

MG(X,T) =M (X, ).
3. Suppose thatl; =" L, G(P;). Hence

M (X, T) =M a(X, 1) &M (XG,%(I1)).
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Note that %) = %P1) " 444 "%Py).

Proof. 1. It is obvious by the definition of M g (X, I").

2. According to Proposition 2.52 a non-constant G-invariant function cannot have a
pole at a point P without having poles at each point of the orbits G(P). This clearly

proves the assertion 2.

3. It is just by restriction of the isomorphism of Proposition 2.53.

We can remark that if [ =;, then M g(X, ) =M g(X,;) =0(X) =C.

Hence without restriction it is enough to consider sets [ which are the union of full orbits.
Corollary 2.56. Let I be a union of full orbits.

The algebraM ¢ (X, IN) is a Krichever-Novikov algebra.

Hence the algebraM (X, ') admits almost-graded structures. There are three situations:

1. If ' =;, then M (X, N = C and the almost-graded decomposition is trivial.

2. 1fr="7; G(P,) with N > 1, then associated to any splitting of” into two disjoint
sets of orbits,M g(X, I') admits an almost-graded decompaosition.

3. If I = G(Q) consists of oneG-orhit, then for any choice of orbit G(P) with
P $ G(Q), M g(X, I admits an almost-graded decomposition coming from the
algebraM . of the algebraM g(X,G(P)" G(Q)).

Proof. It is obvious since M g(X, ) & M (XIG,%(T")) and since M (X/G,%(T")) is a

KN-algebra. O]

Note that M g(X, ") is a subalgebra of the Krichever-Novikov algebra M (X, ") and is
isomorphic to the Krichever-Novikov algebra M (X/G, %(I")).

2.4.2 G-invariant current algebras

Let L be a finite dimensional Lie algebra. The classical current algebra associated to L is
the algebra L := C[z,z71])L with Lie structure

™) x,z2™) y]=z"") [x,y], X,y$A,nm$7Z
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The algebra L can be described as the Lie algebra of L-valued meromorphic functions on

the Riemann sphere which are holomorphic outside 0 and # . Starting from this description,

the natural extension to a higher genus compact Riemann surface X is to replace C[z,z 7]

by an associative algebra of meromorphic functions on X.
More generally if L is a Lie algebra and A an associative, commutative and unital algebra

then the tensor vector space A)L is a Lie algebra with the bracket

[a) x,b) y]:=ab) [x,y].

In this way we define some Lie algebras:
Debnition 2.57. Let L be a Pnite dimensional Lie algebr¥ a Riemann surface andl a
Pnite set of points of X. We debne the following Lie algebras

1. L(X):=M (X)) L

2.L(X, N :=M (X, IN)L
Consider now any Pnite groufs acting onL (X).

3. Lg(X) :={a$L(X)|g.a=a, *g$ G}. Thisis just the set ofG-invariant elements

of L(X).

4. Lg(X,T) :={a$L(X,I)|ga=a, *g $ G}. Note that Lg(X,I") = Lg(X) 8
L(X,T).

5 LY:=6L7,={a$LLC)L| ga=a *g$G}

The following facts are immediate:

1. L(X,T), Lg(X) and Lg(X, I') are subalgebras of L (X).
2. Lg(X, ) is a subalgebra of Lg(X).

3. LL C)L is a subalgebra of L(X).

4, Lg is a subalgebra of L.

5. The algebra L (X) is a natural M (X)-module: gé&(f) a) :=gf) aforg,f $M (X)
anda$L.

6. Likewise the algebra L (X, I') is naturally a M (X, ') module.
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7. As for G-invariant functions, for any element a$ L (X) we define

1 &

IG1,g

We have Lg(X) = 6L(X)7;.

Proposition 2.58. For any splitting of I" into two subsetsl and O, the Lie algebral (X, I')
admits a natural almost-graded structure coming from the almost-grading of the associative
algebraM (X, IN).
For a single point setl = {Q}, the Lie-algebraL (X, I') admits a natural almost-graded
structure depending of a second reference poiRt

!
Proof. Let M (X,I) := .M p be the almost-graded decomposition of M (X, I') of
Theorem 2.31. Then

LX, M) = Ly
nez

where Ly ;= M )L . Since L is supposed to be a finite-dimensional Lie algebra, the
subspaces L are finite-dimensional too. This decomposition gives obviously an almost-
graded structure to L(X, I).

If T ={Q}, as above we choo|se a reference point P and we consider the almost-graded
structure M (X, {P}"{ Q}) = ez M p associated to'the splitting I ={P}"{ Q}. Thus
the algebra M (X, I') is equal to the algebra M 4 := n>oM n. That gives an almost-
graded structure to the algebra M (X, I'). Hence the decomposition

LX) = L,
n>0

with L :=M )L , *n 1 0 gives as above an almost-graded structure to the Lie algebra
L(X, Q). O

Proposition 2.59. Let G be a bnite group acting orl. (X) and N a normal subgroup of
G. Then foralla$L (X)

Proof. It is exactly the same proof as for Proposition 2.50. ]
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The elements of L(X) can be described as the L-valued meromorphic functions on the
Riemann surface X. For this we have to define what we exactly mean by " meromorphic”,

"poles”, "holomorphic” for the elements of L (X).

Debnition 2.60. Let a$ L (X). Let {ey,...,ey} be a basis of the Lie algebr&d. Thus
+
a= [, fie wheref; $ M (X) (for convenience we dropped the sigh) . For all point
p in X, we choose a local coordinate and we expand each functiofy as a Laurent series
aroundp. Thus a is locally written as
&

a(z) = anz
n>M

n

wherea, $L, *n$ L and withay, = 0. This series is called the Laurent series afat
the point p.
Using the Laurent series of an elemert$ L (X) we can debne the order o in a point
p$ X by

ordpa =M

As for functions the order is well-dePned (it does not depend on the chosen coordinate)
andp is a pole ofaif M < 0, ais holomorphic inp if M 1 0 andp is a zero ofaif M > 0.

2.4.3 Groups acting on L(X)

Here we give a natural way to get a finite group acting on the tensor Lie algebra L (X). We
explain how we can reduce to some groups which are isomorphic to finite groups acting on
a Riemann surface X and which are acting simultaneously on M (X) and L. This method
can be found in the paper of Lombardo and Mikhailov [20] for the genus O case but it is

still true for higher genus Riemann surfaces.

The first restriction is to consider subgroups of the direct product group Aut(X)- Aut(L):

Proposition 2.61. The direct product groupAut (X )- Aut (L) is a subgroup ofAut (L (X)).

Proof. The elements of Aut(X)- Aut(L) can be identified with elements of Aut(L (X)).
Let (g,) ) $ Aut(X)- Aut(L). We define the automorphism

(9,)) : L(X) % L(X)
f)a3vgaf) ) (a)
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where g &f is the action defined in the section 2.4.1.
This is clearly a Lie algebra morphism since g is associated to a morphism of M (X) and

) a morphism of L. Moreover the inverse map of (g,) ) is just the map (g7%,) 7). O

We can now reduce our discussion to finite subgroups of Aut(X)- Aut(L) acting simul-

taneously on M (X) and L. This is the topic of the two following results:
Theorem 2.62 ([20]). Consider two groupsA and B and G a subgroup of the direct group
A- B. We debne:

U :=G8(A- id), U,:=G8(id- B), K :=U;aU

Then:

1. Uz, U, andK are normal subgroups o6

2. %(U;) is a normal subgroup o%(G) for i = 1,2 (where% and% are the projections
on A andB).

3. There is two isomorphisms

C1:GK % % (G)%(K), .2:GK % %(G)/%;(K)

4. GK Ldiag(. 1(GK)- . 2(GK)) ={(. 1(g),. 2(9)) | g $ GIK }

Proposition 2.63 ([20]). Let G 0 Aut(X)- AutA be a Pnite group. Consider the normal
subgroupsU;, U and K of the previous theorem. Then
EF G H Er G H

Lg(X) = 6L = BLOO)Ty, y, 0 = BLOOT, 4, gy -

Note that in the paper of Lombardo and Mikhailov [20] the Riemann surface X is always
supposed to be the Riemann sphere but the proposition is even true for any Riemann

surface.

Using Theorem 2.62 and Proposition 2.63 we can conclude the following:
Let G 0 Aut(X) - AutL be a finite group. The group Uy consists of the automorphism
of G which are acting just on M (X). Thus averaging over U is equivalent to replace in

M (X))L the associative algebra M (X) by the subalgebra M ., (y,)(X). In the same way,
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averaging over U is equivalent to replacing the Lie algebra L by the Lie algebra L,
of the % (G)-invariant elements of L. Hence new eledts (beyond the already discussed
action on M (X) and the automorphisms of L separately) will only appear if we have simul-
taneous transformation and we might even assume the subgroup K to be trivial to study
these e [edts. But from Theorem 2.62, if K is trivial then GL % (G) L %(G).

Hence, if Gis finite in this case it will be isomorphic to a finite subgroup G of Aut(X) and
finally (again using theorem 2.62) G = diag(G, . (G)), where . : G % Aut(L) is a group
monomorphism.

We study more precisely this situation in the following.

We have similar results as for the G-invariant function:

Proposition 2.64. Let G be a Pnite group acting orl. (X) and G the corresponding Pnite
group of Aut (X).

Let a be inLg(X)

For anyx $ X, ordx(a) = ordgx(a) for all g $ G. If ais holomorphic inx, then a is
holomorphic ing.x for allg $ G.

Proof. That follows directly from Proposition 2.52. ]

Proposition 2.65. Let G be a bnite group acting orl. (X) and G the corresponding Pnite
group of Aut(X). Let I be a Pnite set of point ofX. We split I into '; and ", such that
"1 contains all the full orbits and, the other points.

1. Lg(X, ) =Lg(X, 1)

2. 1My =, then Lg(X, ) = 6L7;.

3. The Lie algebralL g(X) is aM g(X)-module.

4. The Lie algebral g(X, ) is aM g(X, I')-module.

5. Forf $M g(X)anda$L (X)

Proof. The first assertion is a direct consequence of the previous proposition: a G-invariant
element with a pole in p has necessarily a pole in each points of the orbit G(p).

The other assertions are obvious. O
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We remark that as before it is enough to consider sets I" of full orbits.

2.4.4 Almost-graded structures G-invariant current algebras

Let L be a finite-dimensional Lie algebra, X a compact Riemann surface, G a finite group
of Aut(X) and . : G % Aut(L) a group monomorphism.
We consider the average 6 ¢ : L(X) % L (X) defined as

1 & 1 & .
&) X7 :=-— gaf) x)=— gaf ) . (g)ax
IG| |G
geg geG

foralllg $|V|G(X) and x$ L.
Since 6% G = 6 . this is a projection of the vector space L (X).

The projection 6 ¢ can be restricted to a projection of the vector space L:

1 &

(@) &x,  *xS$L.
geG

Hence

L=1Im6 3 &Ker6 .

Note that the above restricted average is exactly the usual average 6 ¢ of the faithful
representation . of the finite group G, and the subspace Im6 § is exactly the G-module
LS of the invariant element of L. From now on we will use the notation 6 % to denote
the restricted average to L and LC to denote the space of the invariant elements of L.

From now on this decomposition will be noted as

L=L®&Ker6%.

The following properties are obvious:

1. LS :={x$L|.(g)&x =X, *g$ G}.

2..(9)(67=6%(.(9)=6%, *g$G.

3. LY and Ker6 g are both G-modules.
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Proposition 2.66.

1. L® is a Lie subalgebra of .
2. [L,Ker6 §] 0 Ker6 % .

3. Letf $M (X)andx $LC

In particularf ) x is G-invariant if and only iff $M g(X).

4. Letf $M (X) andy $ Ker6 %
&) yl; $M (X)) Ker6 §.

In particular if f is a constant map,& ) y7; = 0.

Proof. 1. L® is a vector subspace of L and since for all g $ G the map . (g) is an

automorphism of Lie algebra, we have

(@) ax,y] = [ (9)&,. (9)&y] = [x,y], *x,y$LC.
So [L6,LC]9L © and L® is a Lie subalgebra of L.

2. Let x$L andy $ Ker6 . We have

1& ) 1& ) ) 1& )
6x,yl7s = égeG. (9)ax,y] = égeG[. (9)ax,. (9) &y] = 6966[- (9) &, 0] = 0.

Hence [x,y] $ Ker6 %.

3. Sincex$LC, . (g)ax =x for all g$ G. Hence

&
iG] gaf ) . (g)x 1 gaf ) x=675) x.

) XTg o .

geG

4. Since Ker6 g is a G-module, . (g)ay $ Ker6 g forallg$ G. So

&
§) yl,= = g4 ) . (g)ay$M (X)) Ker6 .
|G|geG
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Let N be the dimension of L and let K(4 N) be the dimension of L©.

Let {e1,...,en} be a basis of L such that {ey,...,ex} is a basis of the algebra L€ and
{ek+1,...,en} a basis of the vector space Ker6 %. Any element a of L(X) is written as
&
a= fi) g
i=1

with fi $M (X), *i=1,...,N.

+
Proposition 2.67. Let a $ L g(X). In the above decompositiora = iNzl fi) e, for
i =1,...,K the functionsf; are G-invariant (i.e. fi $ M g(X)).

Proof. Since a$ L g(X) we have

Hence

& &
fi) e= &) e7;.
i=1 i=1

From point 4 of Proposition 2.66 we have
ﬁi) e|7$ M (X)) Ker 6 z_} =vectM(x)(a<+1,...,eN), *I=K+1,...,N.
Moreover from the point 3 of the Proposition 2.66 we have

&) e7=67) &,  *i=1,...,K

Hence
i) 67$M (X)L 9 =vectyxy(er,...,ex), *i=1,...,K

Soin N f)e= N g
oin ;1 fi) e= I 6) &7; we have

& &
&) el;= fi) e
i=K+1 i=K+1
and
& &
&) elg= fi) e.
i=1 i=1

Since &) 7=67;) e fori=1,...,K, we get

& &
Gi7z) e= fi) e
i=1 i=1



Chapitre 2. Automorphic algebras. 101

and so
&= *i=1...,K

Hence fori = 1,...,K the function f; are in M g(X). 0

2.4.4.1 The case of the Riemann sphere

The situation on the Riemann sphere has been already studied in a paper of Lombardo and
Mikhailov [20]. In fact in this paper many examples are given. We give here a more general

result.

We use the same notation as above but here the Riemann surface X is the Riemann sphere
Cx and G is a finite group of Aut(C,).

Let Q $ X be a point with a trivial stabilizer group Gg. Let P be a second point
of X such that G(P)8 G(Q) = ;. Let T := G(P)"G(Q). Recall that the algebra
M g(X, T) is isomorphic to the algebra M (X/G, {%P)}"{ %(Q)}). A graded basis of
M (XIG, {%P)}{ %UQ)}) is

$ %,
_ z! %P)
A = —= *k$ Z.
k(2) 2T %Q) $
The corresponding graded basis of M g(X, ) is
1 3k
I z1 gap
A(z)=2 =4 *k$ Z
k(2) 2T 950 $ 2z,
G
with
AkéA|=Ak+|, *K,I$Z
Let {e1,...,en} be the above basis of L. We define the following elements:

A=A e, *k$7Z i=1,..,K;
I K

1_ - .

e = 1 Q))e' . i=K+1,...,N;

e =A 14!, *k$Z i=K+1,...,N;

It is clear that the ek are elements of Lg(X, I").
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Proposition 2.68. For alli = 1...N andk $ Z the elementseX(z) are non-zero and
linearly independent.

Proof. Suppose first thati =1,...,K. Then elk = Ax ) € is clearly a non-zero element.
Suppose now thati = K +1,...,N. If the &1 (z) are non zero, then the e (z) are non-zero.

So we just have to prove that the eil(z) are non-zero. Remember that

&S %

z! Q

e'(z) = Gl ga
geG

) - (9)ae

For all g $ G the function gaz%Q is a global meromorphic function with single simple poles

in g aQ. Since Q is supposed having a trivial stabilizer subgroup, hence for g = h in G,

g aQ = haQ. Hence in the sum, the functions g ézfQ are functions with a single simple

pole in dilerknt points. Moreover for all g $ G we have . (g) &e = 0 since . (@) is an

automorphism of L. So the sum cannot be null and eil IS non-zero.
Let us show that the eik(z) are linearly independent. We have L = L® & Ker6 %. Hence

Lg(X,I) = 9M X, )L 6~ (M (X,T)) Ker6 %)

Moreover we know that the eik fori=1,...,KareinM (X,IN))L G and that the eik for
i=K+1,...,Narein M (X,I')) Ker6 g. Hence we can show separately that the eik
fori =1,...,K and the eik fori =K +1,...,N are linearly independent.

1. Fori=1,...,K:
Let {(ik,i =1,...,K,k $ F} be a finite set of complex numbers (here F is a finite
subset of Z). Suppose that

& & ‘
(ike =0.
keF i=1..K
We have
& & ‘ & &
(ke = (ikAk) e
keF i=1..K keF i=15K B
& &
= (ikAc ) &
i=1.K keF
+ + . o+ _
Hence cp i1k (ik€ =0ifandonlyif . (ikAx=0foralli=1,...,K.

But each Ay is of order k in P, so each (jk has to be zero.

Hence the X fori = 1,...,K are linearly independent.
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2. Fori=K +1,...,N:

The element e! can be written:

&
€ = q €
I=K+1
with @ $ M (X). The meromorphic entries g are linear sums of functions g éz_lQ.
Moreover only & will have pole at Q of order 1 (besides maybe at other points of

G(Q)). The @, j = i will be holomorphic at Q. If 6.7 is the standard scalar
product in L extended to L (X) such that the g are unitary, this can be resumed by:

9, G 9F, G o
ordg & |6 =!landordg € |g =0, *j=i.
So since ordQ (Ak) =1 k and since eik — Akfleil we have:

9FI< G: 9FI< G: o
ordo €'|e =!kandordg € |g =!k+1, *j=i

Let {(ik,i =K +1,...,N,k $ F} be a finite set of complex numbers (here F is a
finite subset of Z). Suppose that

& & ’
(ikg* =0
keF i=K+1

We choose a local coordinate around Q and expand eik as a Laurent series:

e(z)=b ,ez*+ Bz, b, =0
1> —k
where b' |, $ C* and B| $ vect(€c+1,---,€—-1,€+1,-.-,€N)

+
Let M be the maximal element of F. We expand the linear sum | . :\‘:K+l ( i,keik

as a Laurent series in the same coordinate around Q:

A B A B

& & ‘ & _ u & |
(ke (z2)= (imbiye z7% + Dz
keF i=K+1 i=K+1 I>—M
with Dy $ L.
Hence if cr  izk+1 (ik€ =0, we have necessarily
& [
(imb_ye =0.

i=K+1
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Since {g,i = K 4+ 1,...,N} are linearly independent and since bLM = 0 for
i=K+1,...,N , we get

(im =0, *I${K+1,...,N}.
We can now repeat this process for each "new" maximal element of F. That proves
(ixk=0, *I${K+1,...,N},*k $ F.

Thus the € for i =K +1,...,N are linearly independent.

Theorem 2.69. The set
k H k *6
g, i=1,.... K, k$N; ¢, i=K+1,....,N, k$ N

is a basis ofLg (X, G(Q)).

Proof. We proved in the previous proposition that the eik are linearly independent. We
just have to show that any element a of Lg(X, G(Q)) is generated by the above eX.

The element a can be written as

&
a= fi) &
i=1
We proved before that since a is G-invariant, the functions f; for i = 1,...,K are in

M g(X). Moreover, since a$ L g(X,G(Q)) the functions fi are in M g(X,G(Q)). But the
functions Ax form a basis of the algebra M g(X, I') and in particular the functions Ay for
k 1 0 form a basis of M (X,G(Q)). Hence for alli = 1,...,K the function fj is written

as

&
fi= <A
lEN
with a finite number of Cli =0.
Hence
& & & & &
fi) &= GA) &= c'el.
i=1 i=1 leN i=1 IeN
We prove here that {eik, i = 1,...,K, k $ N} is a basis of

M (X,G(Q)))L © =vectyx)(e, i=1,...,K).
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Consider now the element of Lg(X, {Q})

& & &
b:=al clel = fi) e.
i=1 1eN i=K+1
Suppose that b has a pole in Q with ordg(a(z)) = L, L < 0. We choose a local coordinate

around Q and expand b into a Laurent series:

&
b= bz b $L, a =0.
k>L

+ . .
Suppose that the lower element by = L, ., d e withd $C.
As in the proof of the previous proposition, we consider the Laurent series of the ei_" for
i=K+1,...,N around Q:

. & .
e (z)=blez" + Bz, b =0
I>L
where bl $ C* and B $L.
We consider the element
! & dIi_ L
b'(z) :=b(z)! b—ieI (2).
i=K+1 L
By writing the Laurent series of b’ around Q we see that ordg(b’) > L. Moreover the
element b’ is G-invariant since it is the linear sum of G-invariant elements. Thus by Theorem
2.64 we know that ordg(b’) = ordg.q(b’) >L, *g$G.

We can repeat this method and get an element

of Lg(X, G(Q)) which is holomorphic in the points of G(Q). More precisely we know that
+

L + N di K . .
b ! k=1 i=K+1 p & is a holomorphic element of
k
M (X)) Ker6 g = vectM(X)(eK+1 ,.-.,en). But since the g are not G-invariant the

only holomorphic element of M (X)) Ker6 % is 0. Hence

+ .+
- — ial
Sinceb:=a! ; |cnCl€ we have
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& & & & i
al cel'! Xel =o0.
i=1 leN k=1i=K+1 K
5 ) ) 6 _
That prove that eik, i=1,....K, kK $N; eik, i=K+1,...,N, K$ N* is a basis of

La(X,G(Q)).

We introduce the following decomposition of Lg(X,G(Q)):

LoX.G(Q) = L§
k>0
where L'é = vectc(e¥ |i=1,...,N) forallk > 0and L% = vectc(e® |i =1,...,K).
We remark that Lg = L® = vecte(g | i =1,...,K).

Theorem 2.70. The decomposition

Lg(X,G(Q) = LY
k>0

is an almost-graded decomposition of the Lie algebta; (X, G(Q)) and
[Lk’ng] oL 5""2&L5""1&Lg"'.
Proof. First it is easy to check that for all k,| $ N:
AlaLgoL g,

We check now the almost-grading under the bracket.
Fori,j${1,...,K} and k,I $ N:

We proved before that L ® is a Lie subalgebra of L. Hence [&;, €] $ L © = vectc(en [n=1,...

Hence:
[ef. el =AcaA) [e,] =Acs1) [e,g]$ vecte(ef* |n=1,...,K)0oL§"'

Fori${1,....,K},j${K+1,...,N} andk $ N, | $ N*:
We  proved before that [LC, Ker6 g] 0 Ker6 ¢ and that
ej' $ vectpxy(en [N =K +1,...,N). Hence it is clear that

e, 6" $ vecte(ey [IN=K +1,...,N).

K).
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So
e, 6] = Ac 8A_1[e, '] $ vecte(ef™ [n=K +1,...N)o LK.

Fori,j ${K +1,...,N} and k,| $ N*:
The bracket [el, ejl] is a G invariant element with poles of order 2 at the points of G(Q).

So we have
el ellsLdaLb&aL?.

Hence
[eik,ejl] :Ak—]_ éAl—l[e|l,ejl] $ Lg+|—2&LE+|—1&Lg+|

Theorem 2.71. The algebral (X, ) := vectc(ek |i=1,...N, k $ Z) is a Lie subalge-
bra of Lg(X, I') and admits an almost-graded decomposition

Lo(X, M) = L¥
keZ

where§, := vectc(ef | i = 1,...N). Moreover

k 1 kK+1-2 k+1-1 k+1
LS LgloL 2Ll !-teLkr.

Proof. It is just an extension of the previous proof: our arguments are available for negative
k. Hence the vector space I:g(X, IN) is closed under the bracket. So it is a Lie subalgebra

which inherits the almost-graded structure. ]

Remark: Even if the eik for positive integers k generate the algebra Lg(X,G(Q)), the
negative ones do not generate the algebra Lg(X,G(P)). Hence the algebra Lg(X,T) is
just a Lie subalgebra of Lg(X, IN). It is not clear if the full algebra Lg(X, I') admits or not

an almost-graded decomposition.

2.4.4.2 Examples

Here the Riemann surface X is still the Riemann sphere C.

We choose here for L the Lie algebra sl(2,C) of the traceless matrices of order 2 - 2.
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The usual basis of sl(2,C) is {X,y, h} where

The bracket is the commutator and we have
x,y]=h, [x,h="!2x, |[y,h]=2y.
The automorphisms of sl(2, C) are given by the conjugation by an invertible matrix:
Aut(sl(2,C)) ={a3%vaM 1 |M $ GL(2,C)}

Note that Q and cQ with ¢ = 0 give the same automorphism.

1. Our first example can be found in details in the paper of Lombardo and Mikahailov
[20].
Let G be the dihedral group D,. We said before that it is a group of order 4 and

generated by the transformations

@)=tz )@=,

Since an automorphism of sl(2, C) is given by a invertible matrix up to a multiplica-
tive constant, a monomorphism . : Dy % Aut(sl(2,C)) is nothing but a faithful
projective representation of Iy into PGL(2,C): .” : D2 % PGL(2,C). Here there
is just one class of equivalent faithful representations given by the representation .

such that

Hence our group G=diag(G, . (G)) is generated by two transformations
gs: L(X) %L (X);a(z) % Sa(! z)S™1, g L(X)%L(X);a(z)% Ta(1/z)T 1
and the group average is

19 ;
6a(2)7; = ; a(z) +Sa(! 2)S +Ta(l/z)T 1+ Tsa(! 1/z)s7 111 .

We easily check that
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In this example the subalgebra LC is reduced to zero. We take as a basis of Ker6 %

the basis {X,y,h}. Let Q be an elements with a trivial stabilizer subgroup and

P an element such that G(P) 8 G(Q) = ;. Hence, for P only the elements of
Co\{0,# ,+£1,%i} are allowed. Let I :=G(P)" G(Q)

We give here the explicit almost-graded basis of the algebra Lg(X, ) (Theorem
2.71). Of course by Theorem 2.70, this also gives an almost-graded basis of L g(X, G(Q)).

We compute the element ey, ey and ep:

J K A B
1(2) - X . 0 2(222_p2)
&= v Tz 0 ’
g 2(1-22P?)
J K A , B
1(2) _ y _ 0 2(1—z2P?)
SE= 09 T i o ’
2(22-P?)
J K A B
y P(1! z% 1 0

z1 Q , 2(z2' P(1! 22P?) ¢ |1

Here the elements Ax (which are a graded basis of M g(X, ) are fixed by the
condition ress A1 = 1. Hence

B (22 [ QZ)(l I ZZQZ) B 2P(P4 I'1)
A]_(Z) =% (22 i Pz)(l i ZZPZ), $ = (Qz 1 PZ)(]_ I Q2P2)1
A, = AX.

And the element e are

e)'(‘ = Ak,]_e)}, e)'f = Ak,]_e;', e,‘f = Ak,leﬁ, k$Z.

Fornm$:
19 +1— +:
[ebe;/]zﬁ aqf ! 1+ey|f .
1 9 +]— +|— +:
e el = g eI 21 cef! gt
e, e!] _1169! bek*1-2 4 celtt 11 2e)|/<+|:_
where
g 2Q2(1! P*%) b AP+ Q%! 4Q%P% 4 P% + PIQY)

~ P(Q?! PY)(1! P2Q2)’ (1T PH(Q?2! P)(1! P2Q?)

P
CTTipE
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2. We consider now an example with the subalgebra L® = {0}. Let G = Z, the fi-
nite group generated by the transformation ) (z) =! z. As in the first example, a
monomorphism . : G % Aut(sl(2,C)) is equivalent to a faithful projective repre-
sentation . : Zs % PGL(2,C). . is determined by the image of ). Since ) is

a transformatign of ogler 2, the matrix S := () is of order 2. Let we choose

~ 1 0
S:-()s): 011

Therefore the group G= diag(G, . (G)) is generated by the transformation
g:L(X)%L(X); a(z) % Sa(! z)S7!
and the average 6 ¢ is

19 4"
Ga(z)7; = 5 a(z)+Sa(! z)s7 .

We have
AA B A BA BA BB
1 01 1 0 01 1 0
&7 = = + =0,
2 00 0o!17 00 o0!'1
AA B A BA BA BB
6y7_1 N 1 0 00 1 0 _
72 011 0 0 !1 ’
AA B A BA BA BB
1 1 0 1 0 1 0 1 0
2 011 ot!1 o01'!'1 o01!1

Hence LS = vectc(h) and a basis of Ker6 % is {X,y}. Let Q be a point with a
trivial stabilizer subgroup (i.e. Q = 0,# ) and P a point such that G(P)8 G(Q) = ;;

let T:=G(P)" G(Q).

We give here the explicit almost-graded basis of the algebra Lg(X, ) (Theorem
2.71). Of course by Theorem 2.70, this also gives an almost-graded basis of Lg(X, G(Q)).

A graded basis of M g(X, IN) is

$
Ak(Z) =

221 p2 &
m , k$Z

if P =# , and

A(z) := k$7Z

z2! Q2 7
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ifP=#.
Now we define J K
L(z) = X oz «
& 21 Q , 221 Q2°
J y K | 5
1 _ _ -
ey(z) z! Q T 72 QZy’
and fork $ Z

ek (z) == Ac_16(2),
el (2) = Ac_18(2),
ek(z) == Ach.

The brackets of these elements are:

e, en] = ! 2¢f™!

ef o] = 26"
k+1—1 k+1—2

[k, )] = agf"! + bef* !~ + céef

where
QZ I P2| QZ PZ
8= par op2gzr @ P T par P22l o © T P41 op2grl OF
fP =#, and
a=Q% b=1 c=0
fP=#.

Note that for P =# the almost-grading is just

kol k+1-1 K+1
[LE LEloL kI taLkr,

2.4.4.3 The case of the complex tori

Let X = C/L be a complex torus. Let G = {id} be a finite group of automorphism of
X. We suppose here that G contains at least one automorphism fixing at least one point
of X. We know that in these situations X/G is isomorphic to the Riemann sphere. Let
%: X % X/G be the canonical projection.

Let {P,Q} be two points which are not fixed by the elements of G and such that the
orbits G(P) and G(Q) are disjoints. We consider the set I := G(P) " G(Q). Note that
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AI) =%P)" %Q).
We saw above that the algebra M g(X, IN) is isomorphic to M (X/G,%(I")). We gave an
explicit basis of M (X/G, %(I")):

Ac(z) = (2! %P)(z! %Q))™

The corresponding basis of M g(X, ") can be expressed in terms of translated theta-
function: in fact ' = {g aP,g&Q, g $ G} and since the group G is not a group of
translation we have ¥ gec 9 @P = ¥ 9ec 98Q = 0. In fact we can consider (up to a
translation) that the automorphism of G are fixing 0. And by Proposition 2.43 the orbit
of a point R consists of the points 1R where 1 runs through all Nt roots of unity, with
suitable N. As their sum equals zero the sum over the full orbit will be 0 too.

Let {pg, 9 $ G} and{ag, g $ G} be the sets of complex numbers which satisfy conditions
of theorem 2.27. Then consider

1 3¢ 1 3

| I
Ac(z):=2 0P)(z)4 a2 0% (z)4
geG geG

The set {An, n'$ Z} is a graded basis of the algebra M g(X, I).

Let L be a finite-dimensional Lie algebra and {ey,...,en} abasisof L such that {es,...,ex}
is a basis of L® and {ex,...,en} is a basis of Ker6 .

Let f $M (X) be a meromorphic function with a single pole in P and Q and holomorphic
elsewhere. Such a function always exists but is not unique. We introduce the following
elements of Lg(X, IN):

e“=A) e, *k$7Z i=1,...,K;
gt=6) a7, i=K+1,...,N;
e =A 14!, *k$Z i=K+1,...,N;

Note that

1 &
gaf) e)==  (géaf)) . (9) ae)

&) g7, =
o 1G] ec

1
1G] ,g

Moreover it's clear that the elements ei"(z) are G invariant.

Proposition 2.72. For alli = 1...n andk $ Z the elementseX(z) are non-zero and
linearly independant.
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Proof. It is the same proof as the proof of Proposition 2.68. ]

Let Lél be the subvector space of L (X, I') of the G-invariant elements which are holomor-
phic in X\ G(P)" G(Q) with poles in G(P) and G(Q) of order maximum 1. This vector
space contains the elements eil fori = 1,...,n and the elements ei0 fori =1,...,K.
Since these elements are linearly independent we complete them to a basis of Lél. In fact
since the holomorphic elements of Lg(X, I') are all generated by the ei0 fori=1,...,K,

just some elements with poles of order 1 left. Let -1,...,-m be these elements.

Theorem 2.73. The set

5 . 6
1M, T =1...N, kK$ Z

is a basis ofLg(X, I').

Proof. We5proved in the previous proposition that the eik are linearly independent. It is ob-
vious that -1,...,-Mm; eik, i=1,...,N, k$ Z isa set of linearly independent elements.

Thus we just have to show that any element of Lg(X, I') is generated by the -; and the

ex.

Let a$ L g(X,I). The element a can be written as

&
a= fi) &
i=1
We proved before that since a is G-invariant, the functions f; for i = 1,...,K are in

M g(X). Moreover, since a$ L g(X, {Q}) the functions fj are in M g(X, {Q}). But the
functions Ag form a basis of the algebra M g(X, I') and in particular the functions Ay for
k 1 0 form a basis of M (X, {Q}). Hence for alli =1,...,K the function f; is written as

&
fi= caA
leEN
with a finite number of C|i =0.
Hence
& & & & &
fi) &= CIAI) & = clel.
i=1 i=1 leN i=1 leN
We prove here that {eik, i = 1,...,K, k $ N} is a basis of

M (X, {Q}))L € =vectyx)(e, i =1,...,K).



Chapitre 2. Automorphic algebras. 114

Consider now the element of Lg(X, {Q})

& & &

Suppose that b has a pole in Q with ordg(a(z)) =L, L < 0. We choose a local coordinate

around Q and expand b into a Laurent series:

&
b= kak, by $L, a =0.
k>L

+ . .
Suppose that the lower element is by = iN=K+1 d e withd $ C.
It is easy to check that fori =K +1,...,N and j =i

F.. G F. G
ordg €°|e =!k, ordo | =!k+1, *k11,

Fo, G Fo, G
ordpelle. =0, ordpe||ej =0, *k12,

We consider the Laurent series of the ef" fori=K +1,...,N around Q:

. & .
e (z)=blez" + Bz, b =0
I>L
where b} $ C* and B] $L.
We consider the element
/ & dIi_ L
b'(z) :=b(z)! b—ieI (2).
i=K+1 L
By writing the Laurent series of b’ around Q we see that ordg(b’) > L. Moreover the
element b’ is G-invariant since it is the linear sum of G-invariant elements. Thus by theorem
2.64 we know that ordg(b’) = ordg.q(b’) >L, *g$G.
We can repeat this method and get an element

&L & i
b’ =bh! K gk

of Lg(X, ') which has poles of order at most 1 at the points of G(Q).

By using the elements eX for i = K +1,...,N with k 4 0 we can reduce as well to the
order 1 the order of the poles at the points of G(P) of the element b’. Finally we get an
element b’ which have poles of order 1 at the points of G(P) and G(Q). Hence b’ $ L 51.
That ends the proof. ]
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Resumes de la these

Structures Lie-admissibles sur les alggbres de type Witt et les alggbres automorphes.

L'algebre de Witt a été intensivement étudiée. Elle est présente dans de nombreux do-
maines des Mathématiques. Cette these est I'étude de deux généralisations de |'algebre de
Witt: les algébres de type Witt et les algébres de Krichever-Novikov. Dans une premiére
partie on s'intéresse aux structures Lie-admissibles sur les algebres de type Witt. On donne
toutes les structures troisieme-puissance associatives et flexibles Lie-admissibles sur ces
algebres. De plus, on étudie les formes symplectiques qui induisent un produit symétrique-
gauche.

Dans une seconde partie on étudie les algebres automorphes. Partant d'une surface de Rie-
mann compacte quelconque, on considere |'action d'un sous-groupe fini du groupe des au-
tomorphismes de la surface sur des algebres d’origines géométriques comme les algebres de
Krichever-Novikov. Plus précisément nous faisons le lien entre la sous-algebre des éléments
invariants sur la surface et |'algebre sur la surface quotient. La structure presque-gradue
des algebres de Krichever-Novikov induit une presque-graduation sur ces sous-algebres de
certaines algebres de Krichever- Novikov.

Lie-admissible structures on Witt type algebras and automorphic algebras.

The Witt algebra has been intensively studied and arise in many research fields in Math-
ematics. We are interested in two generalizations of the Witt algebra: the Witt type
algebras and the Krichever-Novikov algebras. In a first part we study the problem of find-
ing Lie-admissible structures on Witt type algebras. We give all third-power associative
Lie-admissible structures and flexible Lie-admissible structures on these algebras. More-
over we study the symplectic forms which induce a graded left-symmetric product.

In the second part of the thesis we study the automorphic algebras. Starting from arbitrary
compact Riemann surfaces we consider the action of finite subgroups of the automorphism
group of the surface on certain geometrically defined Lie algebras as the Krichever-Novikov
type algebras. More precisely, we relate for G a finite subgroup of automorphism acting on
the Riemann surface, the invariance subalgebras living on the surface to the algebras on the
quotient surface under the group action. The almost-graded Krichever-Novikov algebras
structure on the quotient gives in this way a subalgebra of a certain Krichever-Novikov
algebra (with almost-grading) on the original Riemann surface.




