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Introduction

The Witt algebra and its universal central extension, the Virasoro algebra, have been in-

tensively studied. They arised in many research fields in Mathematics and in Theoretical

Physics and have numerous applications (e.g. see [11]).

From a pure algebraic point of view, the construction of the Witt algebra is the following.

LetW :=
!

n2ZWn be a Z-graded vector space with one dimensional homogeneous spaces
Wn = vect(Ln). We define on W the Lie bracket [Ln, Lm] := (m ! n)Ln+ m. The algebra

(W, [, ]) is called the Witt algebra.

Thus the Witt algebra is an infinite-dimensional Lie algebra and is Z-graded.
The Witt algebra is not just an abstract algebraic construction but occurs in many math-

ematical fields. The Witt algebra W can be geometrically constructed as the Lie algebra

of meromorphic vector fields defined on the Riemann sphere that are holomorphic except

at two fixed points. Indeed, let the Riemann sphere be viewed as C " {#} , i.e. the com-

pactification of the complex plane and let the two fixed points be 0 and # . Then a basis

of W is given by { Ln := zn+1 !
!z | n $ Z} and [Lm, Ln] = (n ! m)Lm+ n.

The Witt algebra admits an universal (one-dimensional) central extension. A Lie algebra L̂

is a (one-dimensional) central extension of a Lie algebra L over a field K if there exists a Lie
algebra exact sequence 0 % Kc % L̂ % L where Kc is the one-dimensional trivial Lie alge-

bra and the image of Kc is contained in the center of L̂. It is well-known this is equivalent

to L̂ = L & Kc with the Lie bracket [x, y]öL = [x, y]L + ! (x, y) ác, where ! is a 2-cocycle

of L. The universal central extension of the Witt algebra is called the Virasoro algebra and

its usual normalization is given by the normalized 2-cocycle ! (Ln, Lm) =
1

12(n
3 ! n)" 0

n+ m.

In mathematics we find many generalizations of the Witt algebras. For example there are

the generalized Witt algebras [15], which are graded Lie algebras over an abelian group

and whose homogeneous spaces are not necessary finite-dimensional. We also find gener-

alization to Lie super-algebras: the super-Witt and super-Virasoro algebras [2].

In this thesis we are interested in two particular generalizations of the Witt algebra.

The first are the Witt type algebras. Starting from the algebraic construction of the Witt

algebra, the following question occurs: let � be an abelian group, and let V :=
!

" 2! V"

1



Introduction 2

be a �-graded K-vector space with one-dimensional homogeneous spaces V" := Ke# ; what

are all �-graded Lie algebra structures on V?

This question was posed by Kirillov at the European School on Groups of Luminy in 1991.

A partial solution to this question are the Witt type algebras. They have been introduced

by R. Yu [38] in 1997. Given a map f : � % K, Rupert Yu considers the �-graded algebra

V with the bracket [e# , e$ ] = (f (#) ! f ($ ))e# + $ . Under some conditions on f , V becomes

a Lie algebra called Witt type algebra. For example, any additive function f gives a Lie

algebra structure. If � is a free abelian group and f is an injective additive function, a Witt

type algebra admits an universal central extension very close to the Virasoro case.

The second generalization which is interesting to us are the Krichever-Novikov algebras.

This kind of generalization of the Witt and Virasoro algebra arose in the study of con-

formal field theory and was given by Krichever and Novikov in 1987 [18, 19] for Riemann

surfaces of higher genus. Let X be a fixed compact Riemann surface of genus g. We

choose two ’generic’ points P+ and P� and consider the Lie algebra of meromorphic vector

fields on X which are holomorphic on X \ { P+ , P�} . For g = 0, i.e. if X is the Riemann

sphere, this algebra is exactly the Witt algebra and its central extension is the Virasoro

algebra as described before. For higher genus g, this algebra is not graded anymore but

a weaker structure is still present: the almost-graded structure (see its definition below).

Krichever and Novikov showed that this algebra admits a central extension respecting the

almost-graded structure. Note that, in contrast to the Witt algebra, there are many non-

equivalent central extensions but only one which is compatible with the almost-grading (see

[33]). This algebra (with or without central extension) is now usually called the Krichever-

Novikov algebra (short: KN -algebra). Martin Schlichenmaier [34–36] give extension of the

KN -algebras to the multi-points case and give moreover explicit generators of the KN -

algebras which gives an almost-graded structure for the KN -algebras.

This thesis is split in two quite di↵erent parts but they are related to the Witt algebra. In

fact in the first part we study the Witt type algebras and in the second part, automorphic

algebras are linked to the theory of KN -algebras. Let us described each part more precisely.

The first part is about Lie-admissible structures on Witt type algebras. For any algebra

(A, ' ) over a field of characteristic di↵erent from 2, we define the algebra A� := (A, [, ])

and the algebra A+ := (A, ( ) where [x, y] = x ' y ! y ' x and x ( y = 1
2(x ' y + y ' x).

If A� is a Lie algebra, then A is called a Lie-admissible algebra. Lie-admissible algebras

were introduced by A.A. Albert in 1948 [1]. Much of the structure theory of Lie-admissible

algebras has been initially carried out under additional conditions such as the flexible iden-

tity (x ' y) ' x = x ' (y ' x) or the power-associativity (i.e. every element generates an
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associative sub algebra).

Finding flexible or third power-associative Lie-admissible algebras with prescribed algebra

A� has been a main problem in algebra. Benkart and Osborn [6] and Myung and Okubo [22]

gave in 1981 all flexible Lie-admissible algebras when A� is a finite-dimensional simple Lie

algebra. Benkart extended this result in 1990 [5] and gave all third power-associative Lie-

admissible algebra when A� is semi-simple and finite-dimensional. For infinite-dimensional

algebras the problem has been solved in the following cases: simple generalized Witt al-

gebras [15], Witt and Virasoro algebras [23] and Kac-Moody algebras [14]. Lie-admissible

algebras are also related with many problems in physics (see [25–29]).

Another class of Lie-admissible algebras are the left-symmetric algebras. An algebra (A, ' )

is left-symmetric if (x, y , z) = (y, x, z) where (x, y , z) = (x ' y) ' z ! x ' (y ' z) is the

associator. We can show that such an algebra is Lie-admissible. Left-symmetric algebras

arise in many areas of mathematics and physics. They have already been introduced by A.

Cayley in 1896, in the context of rooted tree algebras; see [7]. Then they were forgotten

for a long time until Vinberg [37] in 1960 and Koszul [17] in 1961 introduced them in the

context of convex homogeneous cones and a�nely flat manifolds. They appear now in

many mathematical theories like the theory of vector fields, theory of operads, or a�ne

structures on Lie groups. The graded left-symmetric structure on the Witt and Virasoro

algebras have been classified (see [3]).

In the first part of this thesis, we study the problem of finding Lie-admissible structures for

the case of Witt type algebras.

In the first section we give all preliminary definitions and properties. We begin by introduc-

ing the definitions of the Lie-admissibility, flexibility and third power-associativity. We then

define the Poisson structures and we explain their link with the flexible Lie-admissible alge-

bras, we also briefly remind the theory of central extension. Finally we treat in details the

Witt type algebras. In particular we show which among them are simple or graded-simple

algebras.

In the second section we determine all third-power associative Lie-admissible structures and

flexible Lie-admissible structures on Witt type algebras. We obtain a general result for any

Witt type algebra. For simple Witt type algebras, the third-power-associative or flexible

structures are of the same form as for the simple algebras studied before [5, 15, 23]. But
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our results are true even for non-simple Witt type algebras and then we see how the sim-

plicity acts on the third-power associative and flexible structures. Since Witt type algebras

are generalizations of the Witt algebra, our results of course coincide with those given

by H. Myung [23] in the case of the natural Witt algebra. Finally, we search for Poisson

structures on Witt type algebras. In fact for a flexible Lie-admissible algebra (A, ' ), finding

Poisson structures on A is equivalent to requiring the associativity of the commutator law

( . Thus, since there exists non trivial flexible Lie-admissible structures on some Witt type

algebras, looking for Poisson structures is rather a natural question. We give a condition

for their existence.

Next we deal with central extensions of Witt type algebras. We compute their second

Lie algebra cohomology with values in the trivial module. It is interesting to see that this

group depends on the gradation by the group �. Rupert Yu already studied central exten-

sions for a class of Witt type algebras which are very close to the Witt algebra. Using his

result, we generalize Myung’s paper on the Virasoro algebra [23]. More precisely we find

third power-associative Lie-admissible structures and flexible Lie-admissible structures on

the central extension of some Witt type algebras.

The computation of the 2-cocycles of Witt type algebras leads us to the problem of find-

ing symplectic structures. In fact a symplectic structure on a Lie algebra is given by a

non-degenerate 2-cocycle. It is well known that in the finite-dimensional case there is no

symplectic simple Lie algebras. We prove that the situation is di↵erent in the infinite-

dimensional case. Indeed we find symplectic structures on some of the simple Witt type al-

gebras. For a finite-dimensional Lie algebra A, any symplectic form induce a left-symmetric

product such that A� = (A, [, ]). A natural question is, whether this is also true for infinite-

dimensional Lie algebras. The answer to this question seems to be very di�cult. Neverthe-

less, for some specific Witt type algebras we can give explicitly all symplectic forms which

induce a graded left-symmetric product. In particular, we study the case of the classical

Witt algebra and, as the classification of its graded left-symmetric structures is known [3],

we determine which ones are induced by a symplectic form.

All these results are published in the Journal of Geometry and Physics [4].

In the second part of the thesis we study the automorphic algebras.

Starting from arbitrary compact Riemann surfaces we consider the action of finite sub-

groups of the automorphism group of the surface on certain geometrically defined Lie

algebras.
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These algebras are the algebras of all meromorphic functions, the algebras of meromorphic

functions with poles only on a finite subset of points, and their induced current algebras, re-

lated to finite-dimensional Lie algebras. In the case of finitely many points, where poles are

allowed, these algebras are algebras of Krichever-Novikov type and they allow an almost-

grading.

More precisely, for a finite subgroup G of automorphisms acting on the Riemann surface,

we relate the invariance subalgebras living on the surface to the algebras on the quotient

surface under the group action. The almost-graded Krichever-Novikov algebras structure

on the quotient gives in this way a subalgebra of a certain Krichever-Novikov algebra (with

almost-grading) on the original Riemann surface.

Specially discussed is the situation where the finite subgroup of the automorphism group

has also a faithful representation on the finite dimensional Lie algebra used to construct

the current algebra.

According to the di↵erence on the automorphism groups, the situation is divided in three

cases: genus g = 0 (Riemann sphere), g = 1 ( the complex torus ), and g greater or equal

2. In this thesis we study in details the cases of the Riemann sphere and the torus.

The second chapter is organized as follows. In the first section we remind all the material

needed about Riemann Surfaces. We give the basic definitions and properties on Riemann

surfaces, holomorphic maps and function and meromorphic functions. In particular the

situation of compact Riemann surfaces is described. Moreover, explicit descriptions of the

Riemann sphere and of the tori are given.

In the second section we are interested in the meromorphic functions with prescribed poles

on a compact Riemann surface X . For a finite set � containing at least two points of

X , we consider the algebra M (X, �) of the global meromorphic functions which are holo-

morphic in X \ �. This algebra is a Krichever-Novikov algebra and is almost-graded. We

give a description of the general situation of the Krichever-Novikov algebras and of their

almost-graded structure. The almost-graded structure of the Krichever-Novikov algebras

depends on a splitting of the set � into two non-empty subsets. We treat in more details

the situation of the algebra M (X, �) and we give explicit examples for a two points set �

in the case of the Riemann sphere and of the tori. Moreover we explain how we can find

an almost-graded structure in the case when � is a single point.
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The third section is dedicated to the finite groups acting on a Riemann surface. In par-

ticular we are interested in the finite groups G acting holomorphically and e↵ectively on a

Riemann surface X . Then we explain how the quotient space X/G can be equipped with a

Riemann surface structure such that the natural projection %: X % X/G is holomorphic.

There is a close link between stabilizer subgroups of the action and the ramification points

of the projection %. In the case of compact Riemann surfaces, using the Hurwitz Formula

we are able to describe explicitly the possible ramifications (and the stabilizer subgroups)

of the map %. In the particular case of the Riemann sphere we give explicitly the groups

which realize these ramifications and we give the complete classification of the finite au-

tomorphism groups. For the complex tori T , the finite groups acting on T contains two

types of automorphisms; the translations, which are not fixing any point of T , and the

rotations, which are fixing points. Using the possible ramifications of the map %we can

conclude on the genus of the quotient Riemann surface T/G . A quick description of the

higher genus situation is also given.

In the last section, we study the automorphic algebras. Automorphic algebras are algebras

which are invariant under the action of a finite automorphism group G of a Riemann surface

X . First we consider the associative algebra M (X ) of the meromorphic functions of X

and we show that the automorphic algebra M G(X ) of G-invariant meromorphic functions

is isomorphic to the algebra M (X/G ). Most interesting is to consider the Krichever-

Novikov algebras M (X, �) where � is a finite set of points of X . We prove that the

automorphic algebra M G(X, �) is also a Krichever-Novikov algebra and then admits an

almost-graded structure. Next we extend our study to the current Lie algebra which is

typically constructed by taking the tensor product of a finite-dimensional Lie algebra L and

the associative algebra C[z, z�1] . In fact as for the Krichever-Novikov algebras M (X, �)

a natural extension is to consider the Lie algebras L (X, �) := M (X, �) ) L . We consider

the action of special finite subgroups of Aut (M (X ) ) L ) that we obtain by using a faithful

representation of a finite automorphism group G of the Riemann surface X on the finite

dimensional Lie algebra L . In fact we show that considering these special groups which are

groups acting simultaneously on the both algebras M (X ) and L , is an important situation

and we study the automorphic algebra L G(X, �).

Finally, since the Lie algebra L (X, �) admits a natural almost-graded structure, we try

to describe the situation for the automorphic algebra L G(X, �) in the special case of the

Riemann sphere and of complex tori.



Chapter 1

Lie-admissible structures on Witt

type algebras.

1.1 Preliminaries

1.1.1 Flexibility - 3rd power-associativity

In the following we give the definitions of 3rd power-associative and flexible algebras. Also

we define the notion of Poisson structures.

Let K be a field of characteristic di↵erent from 2. For any algebra (A, ' ), we define two

products, [x, y] := x ' y ! y ' x and x ( y := 1
2(x ' y+y ' x). We denote by A� the algebra

(A, [ , ]) and by A+ the algebra (A, ( ).

DeÞnition 1.1. An algebra(A, ' ) is said Lie-admissible if the algebraA� is a Lie algebra.

Remark: Since the bracket [ , ] is skew-symmetric, an algebra (A, ' ) is Lie-admissible if

and only if the bracket [ , ] verifies the Jacobi identity.

Any associative algebra is Lie-admissible. Therefore we are mainly interested in non-

associative Lie-admissible algebra.

DeÞnition 1.2. For a given Lie algebra(L, [ , ]), a Lie-admissible product' on L is said

compatible with (L, [ , ]) or just compatible, if [x, y] = x ' y ! y ' x, * x, y $ L.

7



Chapter 1. Lie-admissible structures on Witt type algebras. 8

DeÞnition 1.3. Let (A, ' ) be an algebra. Forx, y , z $ A we deÞne the associator

(x, y , z) := (x ' y) ' z ! x ' (y ' z). Then:

1. The product ' or equivalently the algebra(A, ' ) is said3rd power-associative if

(x, x, x) = 0, * x $ A.

2. The product ' or equivalently the algebra(A, ' ) is said ßexible if

(x, y , x) = 0, * x, y $ A.

We give equivalent formulations of these definitions, in terms of [ , ] and ( :

Proposition 1.4. 1. The following properties are equivalent:

i) (A, ' ) is 3rd power-associative,

ii) [x, x ( x] = 0, * x $ A,

iii) 2[x, x ( y] + [y, x ( x] = 0, * x, y $ A,

iv) [x, y ( z] + [y, z ( x] + [z, y ( x] = 0, * x, y , z $ A.

2. The following properties are equivalent:

i) (A, ' ) is ßexible,

ii) [x, y] ( x = [x, y ( x], * x, y $ A,

iii) [x, y ( z] = [x, y] ( z + y ( [x, z] * x, y , z $ A,

Hence A is ßexible if and only if

ad(x) := [x, .] $ Der(A, ( ), * x $ A.

Proof. We suppose that ' is 3rd power-associative. Remark that x ' x = x ( x. Then:

(x, x, x) = (x ' x) ' x ! x ' (x ' x)

= (x ( x) ' x ! x ' (x ( x)

= [x, x ( x].
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This proves the equivalence between i) and i i)

Now we use the identity [x, x ( x] = 0, * x $ A with x + y:

[x + y, (x + y) ( (x + y)] = 0

+, [x, x ( x] + [x,2x ( y] + [x, y ( y] + [y, x ( x] + [y,2x ( y] + [y, y ( y] = 0

+, 2[x, x ( y] + 2[y, x ( y] + [x, y ( y] + [y, x ( x] = 0. (1.1)

We use now [x, x ( x] = 0, * x $ A with x ! y:

[x ! y , (x ! y) ( (x ! y)] = 0

+, [x, x ( x] ! [x,2x ( y] + [x, y ( y] ! [y, x ( x] + [y,2x ( y] ! [y, y ( y] = 0

+, ! 2[x, x ( y] + 2[y, x ( y] + [x, y ( y] ! [y, x ( x] = 0. (1.2)

Finally (1.1)-(1.2) gives

2[x, x ( y] + [y, x ( x] = 0. (1.3)

This proves i i) !% i i i).

To get the last identity, we use (1.3) with x + y and z. That gives

2[x + y, (x + y) ( z] + [z, (x + y) ( (x + y)] = 0

+, 2[x, x ( z] + 2[x, y ( z] + 2[y, x ( z]

+ 2[y, y ( z] + [z, x ( x] + 2[z, x ( y] + [z, y ( y] = 0.

From (1.3) we have 2[x, x ( z] + [z, x ( x] = 0 and 2[y, y ( z] + [z, y ( y] = 0. Hence we

get:

2[x, y ( z] + 2[y, x ( z] + 2[z, x ( y] = 0

+, [x, y ( z] + [y, z ( x] + [z, x ( y] = 0. (1.4)

This proves i i i) !% iv).

To conclude notice that iv) trivially implies i i)
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We suppose now that ' is flexible. That means that (x, y , x) = 0, * x, y $ A. Hence we

have:

(x ' y) ' x ! x ' (y ' x) = 0

+,
1

2
[x ' y , x] + (x ' y) ( x !

1

2
[x, y ' x] ! x ( (y ' x) = 0

+,
1

2

"
1

2
[x, y] + x ( y , x

#
+

$
1

2
[x, y] + x ( y

%
( x

!
1

2

"
x,
1

2
[y, x] + y ( x

#
! x (

$
1

2
[y, x] + y ( x

%
= 0

+,
1

4
[[x, y], x] +

1

2
[x ( y , x] +

1

2
[x, y] ( x + (x ( y) ( x

!
1

4
[x, [y, x]] !

1

2
[x, y ( x] !

1

2
x ( [y, x] ! x ( (y ( x) = 0

+, [x ( y , x] + [x, y] ( x = 0

+, [x, y] ( x = [x, y ( x]. (1.5)

We have to prove the last equivalence. We remark that:

[x, y ( z] = [x, y] ( z + y ( [x, z], * x, y , z $ A (1.6)

+,
"
x,
1

2
(y ' z + z ' y)

#
=
1

2
([x, y] ' z + z ' [x, y]) +

1

2
(y ' [x, z] + [x, z] ' y)

+, [x, y ' z] + [x, z ' y] = [x, y] ' z + z ' [x, y] + y ' [x, z] + [x, z] ' y

+, x ' (y ' z) ! (y ' z) ' x + x ' (z ' y) ! (z ' y) ' x

= (x ' y) ' z ! (y ' x) ' z + z ' (x ' y) ! z ' (y ' x)

+ y ' (x ' z) ! y ' (z ' x) + (x ' z) ' y ! (z ' x) ' y

+, (x, y , z) + (z, y , x) + (y, z, x) + (x, z, y) = (y, x, z) + (z, x, y). (1.7)

But ' is flexible if and only if

(x, z, y) + (y, z, x) = 0. (1.8)
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In fact by polarizing (x, y , x) = 0 we get:

(x + y, z, x+ y) = 0

+, ((x + y) ' z) ' (x + y) ! (x + y) ' (z ' (x + y)) = 0

+, (x ' z) ' x + (x ' z) ' y + (y ' z) ' x + (y ' z) ' y

! x ' (z ' x) ! x ' (z ' y) ! y ' (z ' x) ! y ' (z ' y) = 0

+, (x ' z) ' y + (y ' z) ' x ! x ' (z ' y) ! y ' (z ' x) = 0

+, (x, z, y) + (y, z, x) = 0.

Finally, the flexibility of ' gives (1.8). But if (1.8) is true, then (1.7) is true and then (1.6)

too. Conversely, the identity (1.7) with z = x gives clearly the flexibility of ' .

1.1.2 Poisson structures

DeÞnition 1.5.

1. Let A be aK-vector space with two products{ , } et á. (A, { , } , á) is a Poisson

algebra if (A, { , } )is a Lie algebra and if(A, á) is an associative and commutative

algebra such that:

{ x, y áz} = { x, y} áz + y á {x, z} , * x, y , z $ A. (1.9)

2. Let (L, [ , ]) be a Lie algebra. A Poisson structure onL is a product ásuch that

(L, [ , ], á) is a Poisson algebra.

3. Let (A, ' ) be an algebra. A is Poisson-admissible if(A, [ , ], ( ) is a Poisson algebra.

We Remind that [ , ] and ( are deÞned by[x, y] := x ' y ! y ' x and x ( y :=
1
2(x ' y + y ' x).

Proposition 1.6. An algebra(A, ' ) is Poisson-admissible if and only ifA is ßexible, Lie-

admissible and for allx, y , z $ A we have

2(x, y , z) = (y ' z) ' x ! (y ' x) ' z + x ' (z ' y) ! z ' (x ' y).
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Proof. We suppose that A is flexible, and Lie-admissible. By definition the product ( is a

commutative product. Moreover by proposition 1.4 the flexibility of ' is equivalent to

[x, y ( z] = [x, y] ( z + y ( [x, z] * x, y , z $ A.

That is exactly the identity 1.9 applied to [ , ] and ( .

Hence we just have to show that ( is an associative law if and only if

2(x, y , z) = (y ' z) ' x ! (y ' x) ' z + x ' (z ' y) ! z ' (x ' y).

By direct computation we get:

(x ( y) ( z = x ( (y ( z)

+, (x ( y) ' z + z ' (x ( y) = x ' (y ( z) + (y ( z) ' x

+, (x ' y + y ' x) ' z + z ' (x ' y + y ' x)

= (y ' z + z ' y) ' x + x ' (y ' z + z ' y)

+, (x ' y) ' z ! x ' (y ' z) ! (z ' y) ' x + z ' (y ' x)

= (y ' z) ' x ! (y ' x) ' z + x ' (z ' y) ! z ' (x ' y)

+, (x, y , z) ! (z, y , x)

= (y ' z) ' x ! (y ' x) ' z + x ' (z ' y) ! z ' (x ' y).

Then the law ( is associative if and only if

(x, y , z) ! (z, y , x) = (y ' z) ' x ! (y ' x) ' z + x ' (z ' y) ! z ' (x ' y). (1.10)

But we computed before (1.8) that the flexibility of ' is equivalent to

(x, y , z) + (z, y , x) = 0.

Hence the identity (1.10) becomes

2(x, y , z) = (y ' z) ' x ! (y ' x) ' z + x ' (z ' y) ! z ' (x ' y).

That ends the proof.

Proposition 1.7. An algebra(A, ' ) is Poisson-admissible if and only ifA is ßexible, Lie-

admissible and for allx, y , z $ A

(x, y , z) =
1

4
[y, [z, x]].



Chapter 1. Lie-admissible structures on Witt type algebras. 13

Proof. As for the previous proposition we just have to show that the associativity of ( is

equivalent to

(x, y , z) =
1

4
[y, [z, x]].

We proved in proposition 1.4 that (A, ' ) is flexible if and only if for all x $ A, ad(x) is a

derivation of (A, ( ). Moreover (A, ' ) is Lie-admissible if and only if for all x $ A, ad(x) is

a derivation of (A, [ , ]).

Hence (A, ' ) est flexible and Lie-admissible if and only if for all x $ A, ad(x) is a derivation

of (A, ' ).

By writing x ( y = x ' y ! 1
2 [x, y], we get that:

(x ( y) ( z = x ( (y ( z)

+, (x ' y) ' z !
1

2
[x ' y , z] !

1

2
[x, y] ' z +

1

4
[[x, y], z]

= x ' (y ' z) !
1

2
[x, y ' z] !

1

2
x ' [y, z] +

1

4
[x, [y, z]]

+, (x, y , z) !
1

2
[x ' y , z] !

1

2
[x, y] ' z +

1

2
[x, y ' z] +

1

2
x ' [y, z]

=
1

4
[x, [y, z]] !

1

4
[[x, y], z]

+, (x, y , z) +
1

2
[z, x ' y] +

1

2
[x, y ' z] !

1

2
[x, y] ' z +

1

2
x ' [y, z]

=
1

4
[x, [y, z]] +

1

4
[z, [x, y]]

+, (x, y , z) +
1

2
[z, x] ' y +

1

2
x ' [z, y] +

1

2
[x, y] ' z +

1

2
y ' [x, z]

!
1

2
[x, y] ' z +

1

2
x ' [y, z] = !

1

4
[y, [z, x]]

+, (x, y , z) +
1

2
[z, x] ' y !

1

2
y ' [z, x] = !

1

4
[y, [z, x]]

+, (x, y , z) +
1

2
[[z, x], y] = !

1

4
[y, [z, x]]

+, (x, y , z) =
1

4
[y, [z, x]].

1.1.3 Central extensions

DeÞnition 1.8. Let (L, [ , ]) be a Lie algebra. A skew-symmetric bilinear form& : L - L %

K is a 2-cocycle (scalar 2-cocycle) if:

&([x, y], z) + &([y, z], x) + &([z, x], y) = 0, * x, y , z $ L.
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For any linear form h : L % K, the bilinear form dh deÞned by

dh(x, y) := h([x, y]), * x, y $ L, is a 2-cocycle.

A 2-cocycle& is a 2-coboundary if there exists a linear formh of L such that & = dh.

The set of the 2-cocycles is denoted byZ 2(L, K) and the set of the 2-coboundaries is

noted by B2(L, K). The second (scalar) cohomology group ofL is the quotient group

H2(L, K) := Z 2(L, K)/B 2(L, K).

DeÞnition 1.9. Let (L, [ , ]L ) be a Lie algebra and& a 2-cocycle ofL. On the vector

spaceE := L & Kc we deÞne the bracket[ , ]E by:

[x, y]E := [x, y]L + &(x, y)c, * x, y $ L,

[x, c]E := 0, * x $ L.

The algebra(E, [ , ]E ) is a Lie algebra called the central extension of(L, [ , ]L ) by means

of the 2-cocycle&. The central extensions ofL, E1 by means of the 2-cocycle&1 and E2

by means of the 2-cocycle&2 are equivalent if and only if&1 ! &2 $ B2(L, K) (that means

they are in the same class inH2(L, K)).

Remark : Two equivalent central extensions are isomorphic Lie algebras.

DeÞnition 1.10. Let (L, [ , ]) be a Lie algebra. We say that(L, &) is a symplectic Lie

algebra if& is a non-degenerate 2-cocycle ofL. Note that in the Þnite dimensional case,

L must be even-dimensional. The form& is called a symplectic structure or a symplectic

form on L.

1.1.4 Witt type algebras

Now we summarize the definitions about Witt type algebras and we list important results

on simplicity. Also we recall the classification of Witt type algebras. More details can be

found in the paper of R. Yu [38].
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1.1.4.1 DeÞnitions and Þrst properties

Let K be a commutative field.
Let � be an abelian group and V :=

!
#2! V# a �-graded K-vector space such that

dimV# = 1 for all $ $ �. Let { e# } #2! be a basis of V such that V# = Ke# .

During the European School on Groups of Luminy in 1991, A.A. Kirillov posed the following

problem: characterize all Lie algebra structures on V. Witt type algebras give a partial

answer to this problem.

DeÞnition 1.11. Let f : � % K. We deÞne onV the product [ , ] : V - V % V given by

[e# , e$ ] = (f (#) ! f ($ ))e# + $

The algebra(V,[ , ]) is denotedV(f ).

A Witt type algebra is an algebraV(f ) which is a Lie algebra. Since the bracket is skew-

symmetric, V(f ) is a Lie algebra if and only if the Jacobi identity holds for[ , ].

Remark: Replacing f with f ! f (0), that does not change the bracket and V(f ) =

V(f ! f (0)). Hence, we can always consider functions f with f (0) = 0.

DeÞnition 1.12. Let E be the set of functionsf such that:

(E1) f (0) = 0,

(E2) f ($ + #)(f ($ ) ! f (#)) = (f ($ ) + f (#))(f ($ ) ! f (#)) * $, # $ �.

In regard of the definition of Witt type algebras, they are completely characterized by the

map f . We give more information about these maps.

Proposition 1.13. A Lie algebraV is a Witt type algebra if and only ifV = V(f ) with

f $ E.

Proof. We suppose that V is a Witt type algebra. By definition, V = V(f ) for some map

f : � % K and V is a Lie algebra. As remarked above, we can replace f by f ! f (0) and
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suppose that f (0) = 0. That means that (E1) holds.

As V(f ) is a Lie algebra, the Jacobi identity holds for its bracket and

&

cycl ic

[e# , [e$ , e" ]] = 0

+,
&

cycl ic

[e# , (f (' ) ! f (#))e$+ " ] = 0

+,
&

cycl ic

(f (' ) ! f (#))[e# , e$+ " ] = 0

+,
&

cycl ic

(f (' ) ! f (#))(f (# + ' ) ! f ($ ))e# + $+ " = 0

+, (f (' ) ! f (#))(f (# + ' ) ! f ($ )) + (f ($ ) ! f (' ))(f (' + $ ) ! f (#))

+ (f (#) ! f ($ ))(f ($ + #) ! f (' )) = 0.

For ' = 0 we get

! f (#)(f (#) ! f ($ )) + f ($ )(f ($ ) ! f (#)) + (f (#) ! f ($ ))f ($ + #) = 0

+, f ($ + #)(f (#) ! f ($ )) = (f (#) + f ($ ))(f (#) ! f ($ )).

This gives the identity (E2).

Conversely, we suppose that V = V(f ) with f $ E. As (E2) holds we have:

&

cycl ic

[e# , [e$ , e" ]]

=
&

cycl ic

(f (' ) ! f (#))(f (# + ' ) ! f ($ ))e# + $+ "

=
&

cycl ic

[f (# + ' )(f (' ) ! f (#)) ! f ($ )(f (' ) ! f (#))]e# + $+ " .

But by using (E2), the previous equality becomes then

=
&

cycl ic

[(f (' ) + f (#))(f (' ) ! f (#)) ! f ($ )(f (' ) ! f (#))]e# + $+ "

=
&

cycl ic

[f (' )2 ! f (#)2 ! f ($ )(f (' ) ! f (#))]e# + $+ "

=[f (' )2 ! f (#)2 ! f ($ )(f (' ) ! f (#))

+ f ($ )2 ! f (' )2 ! f (#)(f ($ ) ! f (' ))

+ f (#)2 ! f ($ )2 ! f (' )(f (#) ! f ($ ))]e# + $+ " = 0
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That is, the Jacobi identity, holds and V is a Lie algebra.

The following lemma gives some properties of maps in E:

Lemma 1.14. Let f $ E and let $, # $ �.

1. If f ($ ) .= f (#), hence f ($ + #) = f ($ ) + f (#).

2. f ($ ) = ± f (! $ ).

3. Set �0 := f �1(0).

a) The set �0 is a subgroup of�.

b) If $ / # modulo �0, hencef ($ ) = f (#).

Proof. 1. If f ($ ) .= f (#), then f ($ ) ! f (#) .= 0. By (E2) we have

f ($ + #) = f ($ ) + f (#).

2. In (E2), we set # = ! $ . We get

(f ($ ) + f (! $ ))(f ($ ) ! f (! $ )) = 0.

So f ($ ) = ± f (! $ ).

3. a) Let $, # $ �0. Apply (E2) to $ + # and ! # and note that f (! #) = ± f (#) = 0.

Hence we get

f ($ + #)2 = 0.

Hence $ + # $ �0. Moreover 0 $ �0, so �0 is a subgroup of �.

b) We suppose that $ / # modulo �0. We can suppose f ($ ) .= 0 (otherwise

$ $ �0, # $ �0 and f ($ ) = f (#) = 0). Hence f ($ ) .= f (# ! $ ) since # ! $ $ �0

and f ($ ! #) = 0. By 1) we conclude that

f (#) = f ($ + # ! $ ) = f ($ ) + f (# ! $ ) = f ($ ).

Lemma 1.15. Let f $ E and set �̃ := { $ $ �/ f ($ ) = f (! $ )} .

Then �̃ = �0 or �̃ = �.
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Proof. If car(K) = 2, we clearly have �̃ = � as * $ $ �, f (! $ ) = ± f ($ ).

So we suppose that car(K) .= 2.

Suppose first that �0 = { 0} . We show that if �̃ .= { 0} . Then �̃ is necessary equal to �.

Let $ $ �̃ which is not in �0 i.e. $ such that f ($ ) = f (! $ ) .= 0 and let ' be any element

of �.

First situation: f ($ ) = f (' ). If f (' ) = ! f (! ' ), then f ($ ) .= f (! ' ) (otherwise

f ($ ) = ! f (! $ )) and then f ($ ! ' ) = f ($ ) + f (! ' ) = 0. Therefore $ ! ' $ �0.

Hence $ = ' . But that is absurd because f (' ) = ! f (! ' ) and f ($ ) = f (! $ ), we should

get f ($ ) = 0.

Hence f (' ) = f (! ' ) and ± ' $ �̃. As well, if f (! ' ) = f ($ ) we show that ± ' $ �̃.

Second situation: f ($ ) .= f (' ) and f ($ ) .= f (! ' ).

Suppose that ' /$ �̃ i.e. that f (' ) = ! f (! ' ). As f ($ ) .= f (' ) and as

f (! $ ) = f ($ ) .= f (! ' ) we have:

f ($ + ' ) = f ($ ) + f (' )

and

f (! $ ! ' ) = f (! $ ) + f (! ' ) = f ($ ) ! f (' ).

But f (! $ ! ' ) = ± f ($ + ' ) so 2f ($ ) = 0 or 2f (' ) = 0. This is absurd. So ' $ �̃.

Finally, if �0 = { 0} and if �̃ .= �0 then �̃ = �. That is the expected result in the situation

�0 = { 0} .

Suppose now that �0 .= { 0} . From the lemma 1.14 the map f is well-defined on the

quotient G := �/ �0. Consider then the induced map f̃ : G := �/ �0 % K which belong
again to E. For this new map we haveG0 = { 0} and we can apply the previous computation:

G̃ = G0 or G̃ = G. But G̃ = �̃/ �0. Hence G̃ = G0 = { 0} +, �̃ = �0 and G̃ = G +,

�̃ = � because �0 0 �̃ .

Proposition 1.16. Suppose that� is 2-torsion free and 3-torsion free. Letf $ E be an

injective function, thenf is additive.

Proof. From part 1) of the Lemma 1.14 and the assumption that f is injective, we just

have to show that for $ .= 0, we have f (2$ ) = 2f ($ ).

By (E2) we have

f (2$ ! $ )(f (2$ ) ! f (! $ )) = (f (2$ ) + f (! $ ))(f (2$ ) ! f (! $ )). (1.11)

Moreover since � is 2-torsion free, $ .= ! $ . As f is injective, f (! $ ) .= f ($ ). Hence

f (! $ ) = ! f ($ ).
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Similarly, since � is 3-torsion free, 2$ .= ! $ . As f is injective, f (2$ ) .= f (! $ ). Thus in

the identity 1.11 we can divide by f (2$ ) ! f (! $ ) and we get f ($ ) = f (2$ ) + f (! $ ) i.e.

2f ($ ) = f (2$ ).

1.1.4.2 Simplicity of Witt type algebras

The Witt type algebras generalize the Witt algebra. So it is natural to study when these

algebras are simple.

DeÞnition 1.17. Let A be a �-graded algebra. A graded ideal ofA is an ideal which is a

graded sub-vector space ofA .

The algebraA is said graded-simple if there is no proper graded ideal inA .

A Lie algebraL is said perfect if[L, L ] = L. In particular simple and graded-simple Lie

algebras are perfect.

Theorem 1.18. Let f be a non-zero function ofE. V(f ) is graded-simple if and only if

�̃ = �0.

In particular if car(K) = 2, V(f ) is never graded-simple.

Proof. (=, )

We suppose that �̃ .= �0. By Lemma 1.15, �̃ = �. Hence f ($ ) = f (! $ ) for all $ $ �.

In these situation, as [e# , e$ ] = (f (#) ! f ($ ))e# + $ it is obvious that e0 /$ [V(f ), V(f )].

So V(f ) is not a perfect Lie algebra and cannot be graded-simple.

(+ =)

We suppose that f is non-zero and �̃ = �0. Hence car(K) .= 2 ( otherwise �̃ = �). Let I be

a non-trivial graded ideal of V(f ). We define �0 := { ' $ �/e " $ I } . Since I is not reduced

to zero, �0 is not empty. We want to show that $ + # $ �0 for all $ $ �0 and # $ �. In

this case we have �0 = �. In fact, let ' be in �0 since ! ' $ � we have 0 = ' ! ' $ �0.

Hence for all # $ � we have # = 0+# $ �0 and then �0 = �. As a consequence, I = V(f ).

Let $ $ �0 and # $ �. There is three situations :



Chapter 1. Lie-admissible structures on Witt type algebras. 20

1. If f ($ ) .= f (#) so 0 .= [e# , e$ ] $ Ke# + $ . As I is an ideal, e# + $ $ I and hence

$ + # $ �0.

2. If f ($ ) = f (#) .= 0 so # /$ �0 = �̃. Thus f (! #) = ! f (#). From (E2) we get

f (2# ! #)(f (2#) + f (#)) = (f (2#) ! f (#))(f (2#) + f (#))

+, (f (2#) + f (#))(2f (#) ! f (2#) = 0

+, f (2#) = ! f (#) or f (2#) = 2f (#).

So we cannot have f ($ ) = f (#) = f (2#), because in this case f (#) = 2f (#)

or f (#) = ! f (#). If f (#) = 2f (#) then # $ �0, against our assumption. If

f (#) = ! f (#) then f (#) = 0 since car(K) .= 2. Hence # $ �0 is this case too. Thus

f ($ ) .= f (2#).

Moreover we cannot have f (! #) = f ($ + 2#). In this case, as f ($ ) .= f (2#), we

should have

f (! #) = f ($ ) + f (2#) i.e. ! f (#) = f ($ ) + f (2#),

but f (2#) = ! f (#) or f (2#) = 2f (#) and:

If f (2#) = ! f (#) so f ($ ) = 0 which is supposed to be wrong.

If f (2#) = 2f (#) so f ($ ) = ! 3f (#) +, f ($ ) = 0 because car(K) .= 2.

In conclusion we have proven that f (! #) .= f ($ +2#) and f ($ ) .= f (2#). By 1) we

have $ + 2# $ �0 and $ + # = $ + 2# ! # $ �0.

3. If f ($ ) = f (#) = 0, since f is non-zero, there exists ' $ � such that f (' ) .= 0.

As �̃ = �0, f (! ' ) = ! f (' ). By 1) (since 0 = f ($ ) .= f (' )) we get $ + ' $ �0.

As well since f ($ + ' ) = f ($ ) + f (' ) = f (' ) .= f (! ' ) = f (# ! ' ), we get by 1)

($ + ' ) + (# ! ' ) $ �0.

Thus $ + # $ �0, * $ $ �0 and * # $ �.

Theorem 1.19. Let f $ E. The algebraV(f ) is simple if and only if the following state-

ments hold:

a) f is non-zero and injective,

b) � is 2-torsion free.
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Proof. See [38].

The following theorem gives in some cases a condition for two Witt type algebras to be

isomorphic.

Theorem 1.20. Let � be a free abelian group and letf , g $ E be two injective functions.

The algebrasV(f ) and V(g) are isomorphic (as Lie algebras) if and only if there exists

( $ K⇤ and ) $ Aut (�) such that (g = f ( ) .

In the following we give a classification of Witt type algebras.

DeÞnition 1.21. Let A be the set of additive functions from� to K.

Let P be the set of functions from� to K with the following property: there exists a

surjective group morphism* : � % Z/ 3Z and ( $ K⇤ such that

f ($ ) =

'
(()

((*

0 i f * ($ ) = 0,

( i f * ($ ) = 1,

! ( i f * ($ ) = ! 1.

Let C be the set of functions from� to K with the following property: there exists a

subgroup�0 of �, �0 .= � and ( $ K⇤ such that

f ($ ) =

'
)

*

0 if $ $ �0,

( otherwise.

Theorem 1.22. (Yu [38])

The set E is the union of the setsA , P and C. If car(K) /$ { 2, 3} , the union is a disjoint.

Proof. 1. Cardf (�) = 1 if and only if f = 0:

Since f (0) = 0, if Cardf (�) = 1 so it is obvious that f = 0.

2. Cardf (�) = 2 if and only if f $ C:

�0 is a subgroup of � and f (�0) = { 0} . If Cardf (�) = 2 so f (�\ �0) := ( $ K⇤. It
is easy to check that such a function is in E.

3. Cardf (�) = 3 if and only if car(K) .= 2 and f $ P :

If car(K) .= 2 and if f $ P so it is obvious that Cardf (�) = 3.

Assume now that f (�) = { 0, µ, ( } with ( .= µ non-zero. Since ( .= µ, by the lemma

1.14 we have ( + µ $ f (�) and then ( + µ = 0. Hence µ = ! ( and as ( .= µ, it
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is not possible if car(K) = 2. So car(K) .= 2. We have to show that there exists a

surjective morphism * : � % Z/ 3Z satisfying the conditions of the definition of P .

Assume that �̃ = �. Let $, # $ � such that f ($ ) = ( and f (#) = ! ( . Hence,

since f ($ ) .= f (#) we have f ($ + #) = f ($ ) + f (#) = 0. As well, 0 = f ($ + #) .=

f (! #) = ! ( . Thus:

( = f ($ ) = f ($ + # ! #) = f ($ + #) + f (! #) = ! (.

That is not possible because ( .= 0. hence �̃ = �0.

We define * as follow:

* : � % Z/ 3Z; * ($ ) =

'
(()

((*

0 si f ($ ) = 0,

1 si f ($ ) = (,

! 1 si f ($ ) = ! (,

It is quite easy to verify that * is a morphism and that f belong to P .

4. If Cardf (�) 1 4 then f is additive and non-zero:

Let # and ' be two elements of �. As Card(f (�)) 1 4 we can find $ $ � such that

f ($ ) .= f (' ), f ($ ) .= f (# + ' ) and f ($ ) .= f (#) ! f (' ).

Hence f (#) .= f ($ ) + f (' ) and as f ($ ) .= f (' ), we have f ($ + ' ) = f ($ ) + f (' ).

Thus f (#) .= f ($ + ' ). Finally:

f (# + ' ) + f ($ ) = f (# + (' + $ )) = f (#) + f (' + $ ) = f (#) + f (' ) + f ($ ).

This proves that f (# + ' ) = f (#) + f (' ).

Remark: If carK $ { 2, 3} , the union is not disjoint. In fact, if car(K) = 2 then P 0 C and

if car(K) = 3, P 0 A .

We now specialize Theorem 1.19 by distinguishing whether f belongs to A, P or C. This

is not in the paper of Yu [38] but is quite obvious in regards of Theorem 1.19.

Proposition 1.23. Let f be in A , then V(f ) is simple if and only iff is injective. As the

functions of A are additive,V(f ) is simple if and only if�0 = f �1(0) = { 0} .

Proof. If car(K) = 2 , no Witt type algebra is graded-simple.
Hence we suppose that carK .= 2. If � is not 2-torsion free there exists $ .= 0 such that

2$ = 0 and since f (2$ ) = 2f ($ ) = 0 we have $ $ �0. So �0 .= { 0} and f is not

injective.
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Proposition 1.24. Witt type algebrasV(f ) with f $ C are not simple.

Proof. If card(�) > 2 then f can’t be one-to-one since f (�) = { 0, ( } . So V(f ) is not

simple . If card(�) = 2 then � = Z/ 2Z, which is a 2-torsion group. Hence V(f ) is not

simple.

Proposition 1.25. Let f $ P then V(f ) is simple if and only if�0 = 0.

Proof. If car(K) = 2, there is no simple Witt type algebras. If car(K) .= 2, f is one-to-one

if and only if * is an injective morphism. Moreover �0 = f �1(0) = * �1(0). Hence f is

one-to-one if and only if �0 = 0. On the other hand, as * is a surjective morphism, f is

injective if and only if * is bijective. In this case � 2 Z/ 3Z which is 2-torsion free and so
V(f ) is simple.

Corollary 1.26. Let f $ E. The algebraV(f ) is simple if and only iff $ A " P \ { 0} and

�0 = { 0} .

Proof. This follows directly from the previous propositions.

Proposition 1.27. Suppose that car(K) .= 2. Let f be in E. Then V(f ) is graded-simple

if and only if f is a non-zero function inA " P \ { 0} .

If car(K) = 2, there is no graded-simple Witt type algebras.

Proof. If car(K) = 2 then f (! $ ) = f ($ ), * $ $ �. Hence �̃ = � and V(f ) is not simple-

graded. Now suppose that car(K) .= 2. For f $ C, if $ /$ �0 then ! $ /$ �0 and so

f ($ ) = f (! $ ). Hence �̃ = � and V(f ) is not simple-graded.

For f $ A , �̃ = �0 since f is additive. In the same way for f $ P , �̃ = �0 since * is

additive. So V(f ) is graded-simple for f $ A " P .

Any graded-simple Lie algebra L is perfect. That means that D(L) = L

where D(L) := [L, L ]. A perfect algebra is not necessarily graded-simple but this is true

for Witt type algebras. More precisely, the following assertions are equivalent:

1. DV(f ) = V(f ),
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2. �̃ = �0,

3. V(f ) is graded-simple.

In fact if �̃ = � then f ($ ) = f (! $ ), * $ $ �. In this case it is clear that e0 does not belong

to D(V(f )) since [e# , e�# ] = 0. In characteristic di↵erent from 2, non-perfect Witt type

algebras are V(f ) with f $ C. In this case it is trivial to compute that

DV(f ) = V! \! 0 ,

where V! \! 0 :=
!

" 2! \! 0
V" .

1.2 Third power-associative, ßexible and Poisson structures on

Witt type algebras

In this section we determine all 3rd power-associative structures and all flexible structures

on the Witt type algebras. Moreover we investigate for Poisson structures on them.

We consider Witt type algebras V(f ) over a field of characteristic not 2 with f .= 0. In

fact if f = 0, any commutative product on V(f ) is Lie-admissible compatible and 3rd

power-associative.

If ⇤ is a subset of � we denote the vector space
!

" 2" V" by V" . We search all third

power-associative products ' compatible with the Lie algebra structure. As the bracket of

V(f ) is known, finding ' is equivalent to finding the commutative product ( associated to

' . Hence, according to the previous definitions and results we have to find a commutative

product ( such that

[x, x ( x] = 0, * x $ V(f ). (1.12)

Therefore the product ' is then given by x ' y = 1
2 [x, y] + x ( y.

Suppose now that there exists a commutative ( such that [x, x ( x] = 0, * x $ V(f ). We

introduce the following notation: for any $, # $ � we set e# ( e$ :=
+

" 2! C#$
" e" with

C#$
" .= 0 for a finite number of ' $ �. For $ = #. We note C##

" := C#
" . Notice that

C#$
" = C$#

" since ( is commutative.
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1.2.1 Case of Witt type algebras of the type C

We consider in this section a Witt type algebra V(f ) with f in C. This means that there

exists a subgroup �0 of �, �0 .= � and ( $ K⇤ such that f ($ ) = 0 if $ $ �0 and f ($ ) = (

otherwise.

Let { e# } be a basis of V(f ) such that V# = vect(e# ), * $ $ �. For the elements of the

basis, the bracket [ , ] of V(f ) is given by

[e# , e$ ] =

'
(()

((*

0 if $, # $ �0 or $, # $ �\ �0

(e # + $ if # $ �\ �0 and if $ $ �0

! (e # + $ if # $ �0 and if $ $ �\ �0

We suppose that the product ' is third-power associative and Lie-admissible. In this case

we have the following results:

Lemma 1.28. Let $ $ �0 and # $ �\ �0. Then

1. e# ( e# $ V! 0,

2. e$ ( e$ $ V! \! 0 .

Proof. We write the identity (1.12) with x = e# :

[e# , e# ( e# ] = 0

+,

,

- e# ,
&

" 2!

C#
" e"

.

/ = 0

+,
&

" 2!

C#
" [e# , e" ] = 0

+,
&

" 2!

C#
" (f (' ) ! f ($ ))e# + " = 0

+,
&

" 2!

C#
" f (' )e# + " = 0, because $ $ �0

+, C#
" f (' ) = 0, * ' $ �.
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Hence C#
" = 0, * ' $ �\ �0, and

e# ( e# :=
&

" 2! 0

C#
" e" .

This proves the first assertion. A similar calculation gives the second one.

Lemma 1.29.

1. e$ ( e$ $ V$+! 0 , * # $ �.

2. e# ( e$ $ V! 0 & V$+! 0 for $ $ �0 and # $ �\ �0. Moreover :

C#$
" =

'
(()

((*

1
2C$

" + $�# * ' $ �0,
1
2C#

" + #�$ * ' $ # + �0,

0 otherwise.

3. e# ( e$ $ V! 0 for $, # $ �0 and e# ( e$ $ V! \! 0 for $, # $ �\ �0.

Proof. We use the polarized form of Equation (1.12):

2[x, x ( y] + [y, x ( x] = 0. (1.13)

For x = e$ and y = e# . Let $ $ �0 and # $ �\ �0. We have

2[e$ , e$ ( e# ] + [e# , e$ ( e$ ] = 0

+, 2

,

- e$ ,
&

" 2!

C#$
" e"

.

/ +

,

- e# ,
&

" 2! \! 0

C$
" e"

.

/ = 0

+, 2
&

" 2!

C#$
" [e$ , e" ] +

&

" 2! \! 0

C$
" [e# , e" ] = 0

+, 2
&

" 2!

C#$
" (f (' ) ! f (#)) e$+ " +

&

" 2! \! 0

C$
" (f (' ) ! f ($ ))e# + " = 0

+, 2
&

" 2! 0

C#$
" (! ( ) e$+ " +

&

" 2! \! 0

C$
" (e # + " = 0.
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We do the following changes of variables: ' % ' ! # in the first sum and ' % ' ! $ in

the second one. Then we get

+, 2
&

" 2$+! 0

C#$
" �$ (! ( ) e" +

&

" 2! \! 0

C$
" �# (e " = 0

+, 2
&

" 2$+! 0

C#$
" �$ (! ( ) e" +

&

" 2$+! 0

C$
" �# (e " +

&

" 2! \{! 0[$+! 0}
C$

" �# (e " = 0. (1.14)

The last equation gives:

C$
" �# = 0, * ' $ �\{ �0 " # + �0} .

Since $ $ �0, this is equivalent to

C$
" = 0, * ' $ �\{ �0 " # + �0} .

This means that

e$ ( e$ $ V$+! 0 .

Combined with the first assertion of the previous lemma, this proves the first part of 2).

In addition, equation (1.14) gives:

C#$
" �$ =

1

2
C$

" �# , * ' $ # + �0,

which is equivalent to

C#$
" =

1

2
C$

" + $�# , * ' $ �0.

We use again equation (1.13) but with x = e# and y = e$ when $ $ �0 and # $ �\ �0.

As before we get:

2[e# , e# ( e$ ] + [e$ , e# ( e# ] = 0

+, 2

,

- e# ,
&

" 2!

C#$
" e"

.

/ +

,

- e$ ,
&

" 2! 0

C#
" e"

.

/ = 0

+, 2
&

" 2!

C#$
" [e# , e" ] +

&

" 2! 0

C#
" [e$ , e" ] = 0

+, 2
&

" 2!

C#$
" (f (' ) ! f ($ )) e# + " +

&

" 2! 0

C#
" (f (' ) ! f (#))e$+ " = 0

+, 2
&

" 2! \! 0

C#$
" (e # + " +

&

" 2! 0

C#
" (! ( )e$+ " = 0.
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We do the following changes of variables: ' % ' ! $ in the first sum et ' % ' ! # in the

second one,

+, 2
&

" 2! \! 0

C#$
" �# (! ( )e" +

&

" 2$+! 0

C#
" �$ (e " = 0

+, 2
&

" 2$+! 0

C#$
" �# (! ( )e" + 2

&

" 2! \{! 0[$+! 0}
C#$

" �# (! ( )e" +
&

" 2$+! 0

C#
" �$ (e " = 0.

(1.15)

Equation (1.15) gives: C#$
" �# = 0, * ' $ �\{ �0 " # + �0} which is equivalent to

C#$
" = 0, * ' $ �\{ �0 " # + �0} since $ $ �0.

Moreover equation (1.15) gives: C#$
" �# =

1
2C#

" �$ , * ' $ # + �0 which is equivalent to

C#$
" =

1

2
C#

" + #�$ , * ' $ # + �0 since $ $ �0.

Thus the second assertion is proved.

To prove the last assertion of the lemma, just write Equation (1.13) for x = e# and y = e$

with $, # $ �0 and $, # $ �\ �0.

Lemma 1.30. Let $, # be in � then:

1. If $ ! # $ �0 then e# ( e$ $ V# +! 0 and

C#$
" =

0
1
2C$

" + $�# +
1
2C#

" + #�$ , * ' $ $ + �0,

0, otherwise.

2. If $ ! # /$ �0 then e# ( e$ $ V# +! 0 & V$+! 0 and

C#$
" =

'
(()

((*

1
2C$

" + $�# , * ' $ $ + �0,
1
2C#

" + #�$ , * ' $ # + �0,

0, otherwise.

Proof. We use now the second polarized form of equation (1.12):

[x, y ( z] + [y, z ( x] + [z, x ( y] = 0. (1.16)
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For x = e# , y = e$ and z = eµ with $, # $ �0 and µ $ �\ �0, we get

[e# , e$ ( eµ ] + [e$ , eµ ( e# ] + [eµ , e# ( e$ ] = 0

+,

,

- e# ,
&

" 2! 0

1

2
Cµ

" + µ�$ e" +
&

" 2µ+! 0

1

2
C$

" + $�µ e"

.

/

+

,

- e$ ,
&

" 2! 0

1

2
Cµ

" + µ�# e" +
&

" 2µ+! 0

1

2
C#

" + #�µ e"

.

/

+

,

- eµ ,
&

" 2! 0

C#$
" e"

.

/ = 0

+,
&

" 2! 0

1

2
Cµ

" + µ�$(f (' ) ! f ($ ))e# + " +
&

" 2µ+! 0

1

2
C$

" + $�µ (f (' ) ! f ($ ))e# + "

+
&

" 2! 0

1

2
Cµ

" + µ�# (f (' ) ! f (#))e" + $ +
&

" 2µ+! 0

1

2
C#

" + #�µ (f (' ) ! f (#))e" + $

+
&

" 2! 0

C#$
" (f (' ) ! f (µ))eµ+ " = 0

+,
&

" 2µ+! 0

1

2
C$

" + $�µ (e # + " +
&

" 2µ+! 0

1

2
C#

" + #�µ (e " + $ +
&

" 2! 0

C#$
" (! ( )eµ+ " = 0.

We do a change of variables in the first two sums: ' % ' + µ ! $ and ' % ' + µ ! #.

Thus:

&

" 2! 0

1

2
C$

" + $�# (e " + µ +
&

" 2! 0

1

2
C#

" + #�$ (e " + µ +
&

" 2! 0

C#$
" (! ( )eµ+ " = 0. (1.17)

Hence, Equation (1.17) gives for $, # $ �0:

C#$
" =

1

2
C$

" + $�# +
1

2
C#

" + #�$ , * ' $ �0. (1.18)

We use again the equation (1.16) for x = e# , y = e$ and z = eµ with $ $ �0 and

#, µ $ �\ �0. So we get

[e# , e$ ( eµ ] + [e$ , eµ ( e# ] + [eµ , e# ( e$ ] = 0

+,

,

- e# ,
&

" 2! \! 0

C$µ
" e"

.

/ +

,

- e$ ,
&

" 2! 0

1

2
Cµ

" + µ�# e" +
&

" 2µ+! 0

1

2
C#

" + #�µ e"

.

/

+

,

- eµ ,
&

" 2! 0

1

2
C$

" + $�# e" +
&

" 2$+! 0

1

2
C#

" + #�$ e"

.

/ = 0

+,
&

" 2! \! 0

C$µ
" (e # + " +

&

" 2! 0

1

2
Cµ

" + µ�# (! ( )e" + $ +
&

" 2! 0

1

2
C$

" + $�# (! ( )eµ+ " = 0.
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We do a change of variables in the last two sums: ' % ' + $ ! # and ' % ' + $ ! µ.

We get

&

" 2! \! 0

C$µ
" (e # + " +

&

" 2$+! 0

1

2
Cµ

" + µ�$(! ( )e" + #

+
&

" 2µ+! 0

1

2
C$

" + $�µ (! ( )e" + # = 0. (1.19)

Equation (1.19) gives for #, µ $ �\ �0:

If # + �0 = µ + �0, then

Cµ$
" =

0
1
2C$

" + $�µ +
1
2Cµ

" + µ�$ * ' $ µ + �0,

0 otherwise.
(1.20)

If # + �0 .= µ + �0, then

C#µ
" =

'
(()

((*

1
2C$

" + $�µ * ' $ µ + �0,
1
2Cµ

" + µ�$ * ' $ # + �0,

0 otherwise.

(1.21)

Finally, by combining equations (1.18), (1.20), (1.21) and the second part of the previous

lemma, we get the stated result.

1.2.2 Case of Witt type algebras of the type A or P

We suppose now that V(f ) is a Witt type algebra with f $ P " A .

We recall that f $ A means that the function f is additive and that f $ P means that

there exists a surjective group morphism * : � % Z/ 3Z and an element ( $ K⇤ such that

f ($ ) =

'
(()

((*

0 si *($ ) = 0,

( si * ($ ) = 1,

! ( si * ($ ) = ! 1.

If f is in A , it is additive and the following property holds:

f ($ ) = f (#) if and only if $ ! # $ �0. (1.22)
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If f is in P then

f ($ ) = f (#) +, * ($ ) = * (#) +, $ ! # $ �0.

We use this property in the proofs below.

We suppose that the product ' is third-power associative and Lie-admissible.

Lemma 1.31.

* $ $ �, e# ( e# $ V# +! 0 .

Proof. As in the above proofs we use the identity 1.12:

[x, x ( x] = 0, * x $ V(f ).

For x = e# , we get: &

" 2!

C#
" (f (' ) ! f ($ ))e# + " = 0. (1.23)

Using now the property 1.22, we get :

C#
" = 0, * ' such that ' ! $ /$ �0 i.e. ' /$ $ + �0.

This proves the lemma.

Lemma 1.32.

If $ ! # /$ �0, then:

'
(()

((*

C#$
" = 1

2C#
" + #�$ , * ' $ # + �0,

C#$
" = 1

2C$
" + $�# , * ' $ $ + �0,

C#$
" = 0, * ' /$ $ + �0 " # + �0.

If $ ! # $ �0, then:

C#$
" = 0, * ' /$ $ + �0 = # + �0.

Proof. We use the second polarized form of the identity 1.12:

* x, y $ V(f ), 2[x, x ( y] + [y, x ( x] = 0.
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For x = e# and y = e$ we get:

2
&

" 2!

C#$
" (f (' ) ! f ($ ))e# + " +

&

" 2# +! 0

C#
" (f (' ) ! f (#))e$+ " = 0.

+, 2
&

" 2!

C#$
" (f (' ) ! f ($ ))e# + " +

&

" 2$+! 0

C#
" �$+ # (f ($ ) ! f (#))e# + " = 0

Moreover f (' ) = f ($ ), * ' $ $ + �0.

Hence we have

0
* ' $ # + �0, 2C#$

" (f (#) ! f ($ )) + C#
" �$+ # (f ($ ) ! f (#)) = 0,

* ' /$ # + �0, 2C#$
" (f (' ) ! f ($ )) = 0.

Therefore there are two situations:

1. If $ ! # $ �0 then f ($ ) ! f (#) = 0 and the first identity is null. The second one

gives C#$
" = 0, * ' /$ $ + �0 = # + �0.

2. If $ ! # /$ �0 then f ($ ) ! f (#) .= 0 and the first identity gives:

* ' $ # + �0, C#$
" =

1

2
C#

" + #�$

By changing the roles of $ and # and since C#$
" = C$#

" , * ' $ �, we get as well:

* ' $ $ + �0, C#$
" =

1

2
C$

" + $�# .

And the second identity gives :

* ' /$ $ + �0 " # + �0, C#$
" = 0.

That ends the proof.

Lemma 1.33. For $, # in � such that $ ! # $ �0,

C#$
" =

1

2
C#

" + #�$ +
1

2
C$

" + $�# , * ' $ $ + �0.

Proof. We use the second polarized form of the identity 1.12:

* x, y , z $ V(f ), [x, y ( z] + [y, z ( x] + [z, x ( y] = 0.
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For x = e# , y = e$ and z = eµ with $ ! # $ �0 and µ /$ $ + �0 we get:

&

" 2$+! 0

1

2
Cµ

" + µ�$(f (' ) ! f ($ ))e" + # +
&

" 2µ+! 0

1

2
C$

" + $�µ (f (' ) ! f ($ ))e" + #

+
&

" 2µ+! 0

1

2
C#

" + #�µ (f (' ) ! f (#))e" + $ +
&

" 2# +! 0

1

2
Cµ

" + µ�# (f (' ) ! f (#))e" + $

+
&

" 2# +! 0

C#$
" (f (' ) ! f (µ))e" + µ = 0.

Since $ ! # $ �0 we get:

&

" 2µ+! 0

1

2
C$

" + $�µ (f (µ) ! f ($ ))e" + # +
&

" 2µ+! 0

1

2
C#

" + #�µ (f (µ) ! f ($ ))e" + $

+
&

" 2# +! 0

C#$
" (f ($ ) ! f (µ))e" + µ = 0.

We do a change of variables in the first two sums:

&

" 2# +! 0

1

2
C$

" �# + $(f (µ) ! f ($ ))e" + µ +
&

" 2$+! 0

1

2
C#

" �$+ # (f (µ) ! f ($ ))e" + µ

+
&

" 2# +! 0

C#$
" (f ($ ) ! f (µ))e" + µ = 0.

As µ /$ $ + �0, f (µ) ! f ($ ) .= 0 and so:

* ' $ $ + �0, C#$
" =

1

2
C#

" + #�$ +
1

2
C$

" + $�# . (1.24)

1.2.3 The general case

We consider now general Witt type algebra V(f ).

The lemmas of the two previous sections can be resumed by the following proposition which

is a general result:

Proposition 1.34. For all $, # $ �,

e# ( e$ $ V# +! 0 & V$+! 0 ,
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and

e# ( e$ =
&

" 2!

$
1

2
C#

" + #�$ " " +! 0
$+! 0

+
1

2
C$

" + $�# " " +! 0
# +! 0

%
e" .

Theorem 1.35. Third power-associative, Lie-admissible compatible products on a Witt

type algebraV(f ) with f .= 0 are:

x ' y =
1

2
[x, y] +

&

" 2! 0

u" (x)t " (y) + u" (y)t " (x),

where t " are the V(f )-morphisms deÞned byt " (e# ) := e# + " , * $ $ � and where

{ u" : V(f ) % K; ' $ �0} is a collection of linear form.

Proof. Let ' be a third power-associative, Lie-admissible product, and ( the associated

commutative product. We proved in the previous proposition that :

e# ( e$ =
&

" 2!

$
1

2
C#

" + #�$ " " +! 0
$+! 0

+
1

2
C$

" + $�# " " +! 0
# +! 0

%
e" , (1.25)

where C#
" are the constants given by e# ( e# :=

+
" 2# +! 0

C#
" e" .

This equation is equivalent to

e# ( e$ =
&

" 2$+! 0

1

2
C#

" + #�$ e" +
&

" 2# +! 0

1

2
C$

" + $�# e" .

After the following change of variables: ' % ' + # for the first sum ' % ' + $ for the

second one, we get

e# ( e$ =
&

" 2! 0

1

2
C#

" + # e$+ " +
&

" 2! 0

1

2
C$

" + $ e# + " . (1.26)

We define for each ' in �0, the linear form u" by :

u" (e# ) =
1

2
C#

# + " .

Hence the equation (1.26) becomes:

e# ( e$ =
&

" 2! 0

u" (e# )t " (e$) + u" (e$)t " (e# ).

By linearity of ( , u" and t " we get

x ( y =
&

" 2! 0

u" (x)t " (y) + u" (y)t " (x), * x, y $ V(f ).
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Finally, since x ' y = 1
2 [x, y] + x ( y, the result is proved.

Conversely, suppose now that there exists a collection of linear forms u" : V(f ) % K with
' $ �0 such that

x ( y =
&

" 2! 0

u" (x)t " (y) + u" (y)t " (x).

Then

[x, x ( x] = [x,
&

" 2! 0

2u" (x)t " (x)]

=
&

" 2! 0

2u" (x)[x, t" (x)].

In addition, it is easy to compute that [x, t" (x)] = [x, x], * ' $ �0 then:

[x, x ( x] =
&

" 2! 0

2u" (x)[x, x] = 0.

This proves that ' is third power-associative.

Remark: Since e# ( e# :=
+

" 2# +! 0
C#

" e" , just a finite number of C#
" are non-zero. Hence

we get that

* x $ V(f ), u" (x) .= 0 for a finite number of ' $ �0.

Proposition 1.36. (V(f ), ' ) with f .= 0 is ßexible Lie-admissible and compatible if and

only if

x ' y =
1

2
[x, y] +

&

" 2! 0

u" (x)t " (y) + u" (y)t " (x)

with the same conditions as in the previous theorem and in additionDV(f ) 0 ker(u" ), * ' $

�0.

Proof. Remind that (V(f ), ' ) is flexible if and only if:

[x, y] ( x = [x, y ( x]. (1.27)

The flexibility implies the third power-associativity, hence the product we ( is of the form:

x ( y =
&

" 2! 0

u" (x)t " (y) + u" (y)t " (x).
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Hence Equation (1.27) with x = e# , y = e$ gives

&

" 2! 0

u" ([e# , e$ ])t " (e# ) + u" (e# )t " ([e# , e$ ]) =
&

" 2! 0

u" (e$)[e# , e# + " ] + u" (e# )[e# , e$+ " ].

(1.28)

Remark that for all ' $ �0, we have [e# , e# + " ] = 0 and [e# , e$+ " ] = t " ([e# , e$ ]). So

(1.28) is equivalent to
&

" 2! 0

u" ([e# , e$ ])t " (e# ) = 0.

This means exactly that * ' $ �0, u" ([e# , e$ ]) = 0 or * ' $ �0, u" (DV(f )) = 0. That

proves the proposition.

Theorem 1.37. There are non-trivial ßexible Lie-admissible structures only on Witt type

algebras withf $ C.

Proof. It is obvious by the previous proposition and since in characteristic di↵erent from

2, we have DV(f ) .= V(f ) only for f $ C.

Remark. For f $ C we have DV(f ) = V! \! 0 . Hence, flexible Lie-admissible products on

V(f ) are given by

x ( y =
&

" 2! 0

u" (x)t " (y) + u" (y)t " (x),

with u" |V! \! 0
= 0.

We can now search for Poisson structures on Witt type algebras. Remember that we just

have to find flexible Lie-admissible products such that the associated commutative product

( is associative. So for Witt type algebras V(f ) with f $ A " P , Poisson structures are

trivial structures. For V(f ) with f $ C we need to find for which collections of linear forms

{ u" : V(f ) % K/ u " |V! \! 0
= 0; ' $ �0)} , the product

x ( y :=
&

" 2! 0

u" (x)t " (y) + u" (y)t " (x)

is associative.
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We compute the associator of ( :

(x ( y) ( z =

1

2
&

" 2! 0

u" (x)t " (y) + u" (y)t " (x)

3

4 ( z

=

1

2
&

" 2! 0

u" (x)t " (y) ( z + u" (y)t " (x) ( z

3

4

=

1

2
&

" 2! 0

u" (x)

1

2
&

µ2! 0

uµ (t " (y))tµ (z) + uµ (z)tµ (t " (y))

3

4

+u" (y)

1

2
&

µ2! 0

uµ (t " (x))tµ (z) + uµ (z)tµ (t " (x))

3

4

3

4

=
&

",µ 2! 0

u" (x)uµ (t " (y))tµ (z) + u" (x)uµ (z)tµ+ " (y)

+ u" (y)uµ (t " (x))tµ (z) + u" (y)uµ (z)tµ+ " (x).

As ( is commutative, we have x ( (y ( z) = (y ( z) ( x and then:

x ( (y ( z) =
&

",µ 2! 0

u" (y)uµ (t " (z))tµ (x) + u" (y)uµ (x)tµ+ " (z)

+u" (z)uµ (t " (y))tµ (x) + u" (z)uµ (x)tµ+ " (y).

Finally we get

(x, y , z) =
&

",µ 2! 0

u" (x)uµ (t " (y))tµ (z) + u" (x)uµ (z)tµ+ " (y) + u" (y)uµ (t " (x))tµ (z)

+ u" (y)uµ (z)tµ+ " (x) ! u" (y)uµ (t " (z))tµ (x) ! u" (y)uµ (x)tµ+ " (z)

! u" (z)uµ (t " (y))tµ (x) ! u" (z)uµ (x)tµ+ " (y)

=
&

",µ 2! 0

[u" (x)uµ (t " (y)) + u" (y)uµ (t " (x))]tµ (z)

! [u" (y)uµ (t " (z)) + u" (z)uµ (t " (y))]tµ (x)

+ u" (y)uµ (z)tµ+ " (x) ! u" (y)uµ (x)tµ+ " (z)

+ [u" (x)uµ (z) ! u" (z)uµ (x)]tµ+ " (y).

Hence, as u" |V! \! 0
= 0; for x, y $ V! 0 and z $ V! \! 0 the identity (x, y , z) = 0 is equivalent

to:

&

",µ 2! 0

u" (x)uµ (t " (y))tµ (z) + u" (y)uµ (t " (x))tµ (z) ! u" (y)uµ (x)tµ+ " (z) = 0. (1.29)
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By writing the last equation (1.29) with x = e# , y = e$ and z = e%, $, # $ �0 and ) $ �0

we get:

&

",µ 2! 0

[u" (e# )uµ (e$+ " ) + u" (e$)uµ (e# + " )]e%+ µ ! u" (e$)uµ (e# )e%+ µ+ " = 0 (1.30)

+,
&

",µ 2! 0

[u" (e# )uµ (e$+ " ) + u" (e$)uµ (e# + " )]e%+ µ !
&

",µ 2! 0

u" (e$)uµ (e# )e%+ µ+ " = 0

+,
&

µ2! 0

1

2
&

" 2! 0

[u" (e# )uµ (e$+ " ) + u" (e$)uµ (e# + " )]

3

4 e%+ µ !
&

&2! 0

&

" + µ= &
",µ 2! 0

u" (e$)uµ (e# )e%+ &= 0

+,
&

µ2! 0

1

2
&

" 2! 0

[u" (e# )uµ (e$+ " ) + u" (e$)uµ (e# + " )]

3

4 e%+ µ !
&

&2! 0

&

" 2! 0

u" (e$)u&�" (e# )e%+ &= 0

+,
&

µ2! 0

1

2
&

" 2! 0

[u" (e# )uµ (e$+ " ) + u" (e$)uµ (e# + " )]

3

4 e%+ µ !
&

µ2! 0

&

" 2! 0

u" (e$)uµ�" (e# )e%+ µ = 0

+,
&

µ2! 0

1

2
&

" 2! 0

[u" (e# )uµ (e$+ " ) + u" (e$)uµ (e# + " ) ! u" (e$)uµ�" (e# )]

3

4 e%+ µ = 0

+, * µ $ �0,
&

" 2! 0

[u" (e# )uµ (e$+ " ) + u" (e$)uµ (e# + " ) ! u" (e$)uµ�" (e# )] = 0. (1.31)

We remark that the last equation does not depend on ) . In fact if (1.31) is true, it is

easy to prove that (1.30) is true for any ) $ �. So by linearity we get Equation (1.29)

for any x, y $ V! 0 and z $ V(f ). Moreover since * ' $ �0, u" |V! 0
= 0, (1.29) is true for

all x, y , z $ V(f ). Hence (x, y , z) = 0, * x, y , z $ V(f ) is clearly verified. Finally ( is

associative if and only if for all $, # $ �0

&

" 2! 0

[u" (e# )uµ (e$+ " ) + u" (e$)uµ (e# + " ) ! u" (e$)uµ�" (e# )] = 0, * µ $ �0.

In particular if $ = # we get

&

" 2! 0

u" (e# )[2uµ (e# + " ) ! uµ�" (e# )] = 0, * µ $ �0.

Theorem 1.38. A ßexible Lie-admissible product' on a Witt type algebraV(f ) is a Poisson

product if and only if * $, #, µ $ �0

&

" 2! 0

[u" (e# )uµ (e$+ " ) + u" (e$)uµ (e# + " ) ! u" (e$)uµ�" (e# )] = 0.
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Open question: For easy choice of �0 (like Z2 or Z3), we get u" = 0, * ' $ �0. But

we did not prove anything for the general case. Do examples of Witt type algebra with a

non-trivial Poisson structure exist?

1.3 One-dimensional central extension of Witt type algebra

In his article [38], Rupert Yu he determines the one-dimensional central extension for some

Witt type algebras which are very close to the Witt and Virasoro algebras:

Theorem 1.39 (Yu). Let � be a free abelian group and suppose that carK = 0. If f $ E is

injective, then the Witt type algebraV(f ) has a universal one-dimensional central extension

given by the 2-coycle:

�(e# , e$) = "#,�$(f ($ )3 ! f ($ )).

Remark. The Witt type algebras which are considered in this theorem are a subclass of

the algebras V(f ) with f $ A .

We are interested in one-dimensional central extensions for other classes of Witt type

algebras.

1.3.1 Case of Witt type algebra of type C.

Let V(f ) be a Witt type algebra with f $ C. The set �\ �0 is denoted by �0.

Proposition 1.40. A bilinear form & of V(f ) is a 2-cocycle if and only if there exists a

skew-symetric bilinear form̃& on V! 0 and a linear formh on V! 0 such that :

1. &|V! 0⇥V! 0
= &̃,

2. &|V! 0⇥V! 0
= dh|V! 0⇥V! 0

; &|V! 0⇥V! 0
= dh|V! 0⇥V! 0

,

3. &|V! 0⇥V! 0
= 0.

Proof. Let & be a 2-cocyle of V(f ). Then & is skew-symmetric and

&([x, y], z) + &([y, z], x) + &([z, x], y) = 0, * x, y , z $ V. (1.32)
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For x = e# , y = e$ and z = e" with $, # $ �0, ' $ �0, we get:

&([e# , e$ ], e" ) + &([e$ , e" ], e$) + &([e" , e# ], e$) = 0 (1.33)

i.e. (& (e$+ " , e# ) ! (& (e# + " , e$) = 0. (1.34)

Hence if $ = 0, we obtain

&(e" , e$) = &(e$+ " , e0) =
1

(
&([e$,e" ], e0). (1.35)

Let be h : V! 0 % K; y 3% 1
' &(y, e0). Then h is a linear form of V! 0 . Moreover for

# $ �0, ' $ �0, by Equation (1.35) we have

&(e$ , e" ) = h([e$ , e" ]) = dh(e$ , e" ).

This proves the second statement.

The first is clear. For the last part , we write Equation (1.32) for x = e# , y = e$ and

z = e" with $, # $ �0, ' $ �0. We easily get:

&(e$+ " , e# ) = &(e# + " , e$).

In particular if ' = 0,

&(e$ , e# ) = &(e# , e$).

Since & is skew-symmetric we conclude that &(e# , e$) = 0, * $, # $ �0.

Conversely, one can easily verify that a skew-symmetric bilinear form verifying 1,2 and 3

also satisfies the 2-cocycle condition.

Theorem 1.41. Let f be in C. The second cohomology spaceH2(V(f ),K) is isomorphic

to C2(V! 0,K) the vector space of skew-symmetric bilinear form onV! 0.

Proof. A 2-cocycle & of V(f ) is a 2-coboundary if there exists a linear form g such that

& = dg. Since [V! 0, V! 0 ] = { 0} we have &̃ = 0 . Conversely if & is such that &̃ = 0, we

choose a linear form g with g|V! 0
= h and then & = dg. Therefore & is a 2-coboundary if

and only if &̃ = 0. We consider the following map:

� : Z 2(V(f ),K) % C2(V! 0,K);& 3%&̃.
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The map � is onto. Moreover ker� =
5

& $ Z 2(V(f ),K)/ &̃ = 0
6
= B2(V(f ),K).

Hence the vector space Z 2(V(f ),K)/B 2(V(f ),K) =: H2(V(f ),K) and the vector space
C2(V! 0,K) are isomorphic.

Since we know the 2-cocycles of V(f ), we are naturally interested by symplectic structures

on V(f ). We give conditions on � and �0 for the existence of symplectic structures.

Theorem 1.42. Let f be in C. If |�| is Þnite, there exists a symplectic structure on the

Witt type algebra V(f ) if and only if either[� : �0] = 2 or [� : �0] = 1 and |�| is even.

If |�| is inÞnite and if[� : �0] 4 2, there exists a symplectic structure on the Witt type

algebraV(f ).

Proof. The algebra V(f ) is symplectic if and only if there exists on V(f ) a non-degenerate

2-cocycle. Suppose that [� : �0] = 1. Then �0 = � and any skew-symmetric bilinear form

is a 2-cocycle. We just have to find a non-degenerate one. Since |�| = dimV(f ), if |�| is

finite and even, it is possible. If |�| is infinite, it is always possible. Indeed every infinite set

I is the disjoint union of two equipotent subsets since I is equipotent to I - { 0} 5 I - { 1} .

So � = �1" �2 with a bijection + between �1 and �2, then the skew-symmetric form defined

by &(e# , e$) = " $
( (# ) is non-degenerate.

We suppose now that [� : �0] = 2. Then � = �0
.
" ($ + �0) with $ /$ �0. Thus

V(f ) = V! 0 & V# +! 0 and we define the following 2-cocycle on V(f ):

&̃ = 0; h(e# ) = 1 and h(e# + " ) = 0, * ' $ �0\{ 0} .

We verify that & is non-degenerate: suppose that &(x, y) = 0 for all y $ V(f ). We can

write x =
+

" 2! a" e" and y =
+

µ2! bµ eµ with a" , b" .= 0 for a finite number of ' $ �.
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Hence

&(
&

" 2!

a" e" ,
&

" 2!

b" e" ) = 0

+, &(
&

" 2! 0

a" e" ,
&

" 2# +! 0

b" e" ) + &(
&

" 2# +! 0

a" e" ,
&

" 2! 0

b" e" ) = 0

+,
&

",µ 2! 0

a" b# + µ h([e" , e# + µ ]) +
&

",µ 2! 0

a# + " bµ h([e# + ", eµ ]) = 0

+, (

1

2
&

",µ 2! 0

a" b# + µ h(e" + # + µ ) !
&

",µ 2! 0

a# + " bµ h(e# + " + µ )

3

4 = 0

+, (

1

7
7
2

&

" + µ=0
",µ 2! 0

a" b# + µ ! a# + " bµ

3

8
8
4 = 0

+,
&

" 2! 0

a" b#�" ! a# + " b�" = 0. (1.36)

For y = eµ with µ $ �0 (i.e bµ = 1 and b" = 0, * ' .= µ ), Equation 1.36 gives a#�µ = 0.

Likewise for y = e# + µ with µ $ �0 we get a�µ = 0. So we get a" = 0, * ' $ �, this is to

say x = 0. This proves that & is non-degenerate.

Now suppose that |�| is finite and that & is a symplectic form. From Proposition 1.40 , a

2-cocycle & verifies &|V! 0⇥V! 0
= 0. Therefore if & is non-degenerate, for each x in V! 0 there

exists y in V! 0 such that &(x, y) .= 0. This means that the following map is injective:

=
& : V! 0 % (V! 0)

⇤; x 3%&(x, .).

As � is finite, the vector spaces V! 0 and V! 0 are finite dimensional too and

dim(V! 0) = |�0|, dim(V! 0) = |�0|. Hence |�0| 4 | �0| and then |�| ! | �0| 4 | �0|. This

is equivalent to [� : �0] 4 2.

1.3.2 Case of Witt type algebras of type P.

Now let f be in P . We note �1 := f �1({ 1} ) and ��1 := f �1({! 1} ). Hence

V(f ) = V! �1 & V! 0 & V! 1 .
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A bilinear form & is a 2-cocycle if and only if & is skew-symmetric and if Identity (1.32)

holds . Since the Identity (1.32) is linear, it just has to be verified for generators. Hence

let x = e# , y = e$ , z = e" .

1. If $, #, ' $ �i for i $ {! 1, 0, 1} , Identity (1.32) holds.

2. If $, # $ �0 and ' $ �i , i $ {! 1, 1} , Identity (1.32) holds if and only if

&(e# , e" ) = &(e0, e# + " ), * $ $ �0, ' $ �i . (1.37)

3. If $ $ �0 and #, ' $ �i , i $ {! 1, 1} , Identity (1.32) holds if and only if

&|V! i
⇥V! i
= 0.

4. If $ $ �1, # $ ��1, ' $ �0 , Identity (1.32) holds if and only if

&(e# + $ , e" ) =
1

2

9
&(e# + " , e$) + &(e$+ " , e# )

:
.

5. If $, # $ �i and ' $ �j with i , j $ {! 1, 1} , i .= j , Identity (1.32) holds if and only if

so does (1.37) .

Let be the linear form h : V(f ) % K defined by h(e# ) =

'
)

*

1
' &(e0, e# ), * $ $ �1

! 1
' &(e0, e# ), * $ $ ��1

and

taking any values on V! 0 .

Hence, we get:

Proposition 1.43. On V(f ) with f $ P , a bilinear form& is a 2-cocycle if and only if

there exists a linear formh of V(f ) such that & is the skew-symmetric bilinear form deÞned

by:

1. &|V! i
⇥V! i
= 0, i $ {! 1, 1} ,

2. &|V! 0⇥V! i
= d(h|V! i

), i $ {! 1, 1} ,

3. &(e# + $ , e" ) =
1
2

9
&(e# + " , e$) + &(e$+ " , e# )

:
, * $ $ �1, # $ ��1, ' $ �0.

Remark: The equation of the first part of Proposition 1.43 for ' = 0 gives &(e0, .)|V! 0
= 0.

Therefore there is not homogeneous symplectic form on V(f ) for f $ P .

Proposition 1.44. On V(f ), a 2-cocycle& is a 2-coboundary if and only if&|V! 0⇥V! 0
= 0
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Proof. If & is a 2-coboundary, then & = dg with g a linear form on V(f ). Let x, y $ V! 0

Then &(x, y) = g([x, y]) = 0.

Conversely suppose that &|V! 0⇥V! 0
= 0. Thus, by the assertion 3 of the previous proposition

we have:

&(e# + " , e$) + &(e$+ " , e# ) = 0, * $ $ �1, # $ ��1, ' $ �0.

This proves that for $, $ 0 $ �1 and #, # 0 $ ��1 such that $ + # = $ 0 + # 0, we get

&(e# , e$) = &(e# 0 , e$ 0).

Hence for ' $ �0, take h(e" ) = ! 1
2' &(e# , e$) for any $, # such that ' = $ + #. So

& = dh and & is a 2-coboundary.

Lemma 1.45. An abelian groupG such that for all g $ G\{ 0} the quotient group G/6g7

is of Þnite order is a Þnite abelian group or is isomorphic toZ.

Proof. Obviously the property holds for every finite abelian group. So we suppose that G

is an infinite abelian group. We show that G is torsion-free. In fact, if there exists a torsion

element g $ G, then the subgroup 6g7 is of finite order. As the quotient group G/6g7 is

of finite order too, the group G should be of finite order. Hence G is torsion-free.

The quotient group G/6g7 is of finite order. We denote by { q1, ...qn} its elements. Hence

G is generated by { q1, ...qn, g} , it is a finitely generated abelian group. But we said that G

is torsion free. This means that G is a finitely generated free group, i.e. isomorphic to Zl

with l > 0. We suppose that l > 1. Hence the quotient group G/6g7with g = (0, 1, ..., 1)

is isomorphic to Z, which is not possible. This proves that l = 1, i.e.that G is isomorphic

to Z.

Proposition 1.46. If �0 is a Þnite abelian group or is isomorphic toZ, all 2-cocycles of

V(f ) are 2-coboundaries. In particular the second group of cohomologyH2(V(f ),K) is

null.

Proof. Let & be a 2-cocycle of V(f ).

We said before that the identity 3 of the proposition 1.43 give us &(e0, .)|V! 0
= 0. Hence

if we set # = ! $ $ ��1 in the identity 3, we get &(e# + " , e�# ) = &(e# , e�# + " ). Hence

for all $ $ �1, # $ ��1, if ' := $ + # $ �0, we have

&(e# , e$) = &(e# + " , e$�" ).
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Therefore if $ 0 $ �1, # 0 $ ��1 are such that ' = $ + # = $ 0 + # 0 and $ 0 ! $ $ 6' 7, we

have

&(e# , e$) = &(e# 0 , e$ 0). (1.38)

We consider the quotient group �/ 6' 7 and the canonical projection %: � % �/ 6' 7. For a

fixed ' $ �0 we define the map �" : %(�1) % K; $̄ 3%&(e# , e" �# ) which is well defined

since Identity (1.38) holds. Moreover, we can remark that

card(%(�1)) = card(%(�0)) = card(�0/ 6' 7).

Let ' be in �0. For all $ 1, $ 2 $ �1 and µ $ �0 we have

&(e# 1�# 1+ " �µ , eµ ) = &(e" �µ , eµ ) = &(e# 2�# 2+ " �µ , eµ ).

Hence by using again identity 3, we get

&(e# 1+ µ , e�# 1+ " �µ ) ! &(e# 1, e�# 1+ " �µ ) = &(e# 2+ µ , e�# 2+ " �µ ) ! &(e# 2, e�# 2+ " �µ ).

So, for all ', µ $ �0 and $ 1, $ 2 $ �1 we get

�" ($̄ 1 + µ̄) ! �" ($̄ 1) = �" ($̄ 2 + µ̄) ! �" ($̄ 2). (1.39)

By the previous lemma and the condition on �0, we know that for all ' $ �0 the quotient

group �0/ 6' 7 is of finite order. Since card(%(�1)) = card(�0/ 6' 7) the map �" has a finite

number of value. For µ $ �0, let K be the order of µ. We have

+" ($̄ ) ! +" ($̄ + µ̄) = +" ($̄ + K µ̄) ! +" ($̄ + (K ! 1)µ̄) + +" ($̄ + (K ! 1)µ̄)

! +" ($̄ + (K ! 2)µ̄) + ... + +" ($̄ + 2µ̄) ! +" ($̄ + µ̄).

By (1.39) we have

+" ($̄ ) ! +" ($̄ + µ̄) = +" ($̄ + (K ! 1)µ̄) ! +" ($̄ + K µ̄) = ... = +" ($̄ + µ̄) ! +" ($̄ + 2µ̄).

Hence

+" ($̄ ) ! +" ($̄ + µ̄) = (1 ! K ) [+" ($̄ ) ! +" ($̄ + µ̄)] ,

and then

+" ($̄ ) = +" ($̄ + µ̄) = +" ($ + µ), * $ $ �1, ', µ $ �0.
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That proves that each map �" , ' $ � take just one value. That proves that for $, $ 0 $ �1

and #, # 0 $ �1 such that $ + # = $ 0 + # 0 we have &(e# , e$) = &(e# 0 , e$ 0). In this case,

identity (3) gives &|v! 0⇥V! 0
= 0. Hence & is a 2-coboundary.

1.4 Third power-associative structure on the central extensions

of Witt type algebras.

In the following we study the relation between third power-associative structures on a Lie

algebra L and third power-associative structures on a central extension E of L. Also we

give the third power-associative structures on the central extension of some Witt type

algebras.

Let E := L & Kc be a central extension of a Lie algebra L by means of a 2-cocycle &.

Let ' E be a third power-associative product on E compatible with the Lie structure and

( E the associated commutative product on E defined by x ( E y = 1
2(x ' E y + y ' E x). We

remind that ' E is third power-associative if and only if [x, x ( E x]E = 0, * x $ E.

Since ( E is commutative product, there exists:

1. ( L a commutative product of L,

2. ) is a symmetric bilinear form of L,

3. A is an endomorphism of L,

4. ( is a linear form of L,

5. ' $ L and µ $ K,

such that

x ( E y = x ( L y + ) (x, y).c * x, y $ L,

x ( E c = c ( E x = A(x) + ( (x).c * x $ L,

c ( E c = ' + µ.c.

Moreover, since [x, x ( E x]E = 0, * x $ E we get:
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1. [x, x ( L x]L = 0, * x $ L and then ( L is a third power-associative product of L,

2. &(x, x ( L x) = 0, * x $ L,

3. ad(x) ( A = ad(A(x)) * x $ L and A is &-symmetric:

We use the linearized form of [x, x ( E x]E = 0: 2[x, x ( E y]E + [y, x ( E x]E = 0; with

x $ L and y = c. We get

2[x, x ( E c]E = 0 +, [x, A(x)]L + &(x, A(x)).c = 0.

So A(x) $ ker ad(x) 8 ker&(x, .), * x $ L and that is equivalent to

&(x, A(y)) = &(A(x), y), * x, y $ L

and

[x, A(y)]L = [A(x), y]L , * x, y $ L

i.e. ad(x) ( A = ad(A(x)) * x $ L and A is &-symmetric.

4. ' $ Z (L) 8 ker&:

We get this result by using the same equation with x = c and y $ L.

Conversely suppose that there exists on L a third power-associative product ' L . We denote

by ( L the associated commutative product. We choose ), A, (, ', µ verifying the four

previous properties. Hence, we can define the product ( E on E by

x ( E y = x ( L y + ) (x, y).c * x, y $ L,

x ( E c = c ( E x = A(x) + ( (x).c * x $ L,

c ( E c = ' + µ.c .

It is easy to check that if &(x, x ( L x) = 0, * x $ E, we have [x, x ( E x]E = 0, * x $ E.

Hence that defines a third power-associative product on E.

As a consequence and since x ' E y = 1
2 [x, y] + x ( E y and [E, c] = 0, the following

proposition holds.

Proposition 1.47. Let L be a Lie algebra andE := L & K.c be a central extension ofL

by means of the 2-cocycle&.

Any third power-associative structure' E on E induce a third power-associative structure

on L by

x ' L y = pL (x ' E y), * x, y $ L.
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Moreover ' L verify &(x, x ' L x) = 0, * x $ L (or equivalently&(x, x ( L x) = 0 ) .

Conversely any third power-associative structure' L on L such that&(x, x' L x) = 0, * x $ L

can be extended onE by

x ' E y = x ' L y + ) (x, y).c +
1

2
&(x, y).c ,

x ' E c = c ' E x = A(x) + ( (x).c ,

c ' E c = ' + µ.c ,

with ) is a symmetric bilinear form ofL; A an endomorphism ofL such that A is &-

symmetric and ad(x) ( A = ad(A(x)) * x $ L; ( a linear form ofL; ' $ Z (L) 8 ker& and

µ $ K.

Note that ' E is non-unique.

We study now the particular case of Witt type algebra given in the theorem 1.39. That

is an algebra V(f ) over a field K of characteristic zero with � a free abelian group and

f : � % K a injective function. By the theorem 1.39, V(f ) has a unique universal central

extension given by the 2-cocycle

�(e# , e$) = "#,�$(f ($ )3 ! f ($ )).

Let W be such a Witt type algebra and V its central extension.

As f is injective we have �0 = { 0} , and then any third power associative structure on W

is given by

x ' W y :=
1

2
[x, y]W + u(x)y + u(y)x,

where u is a linear form of W.

Proposition 1.48. Third power-associative products onV compatible with the Lie algebra

structure are:

x ' V y =
1

2
[x, y]W + u(x)y + u(y)x + ) (x, y).c * x, y $ W,

x ' V c = c ( V x = k.x + ( (x).c * x $ W,

c ' V c = µ.c,

wherek, µ $ K, ) is a symmetric bilinear form ofW and (, u are linear forms ofW.
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Proof. For all x $ W, x ( W x = 2u(x)x and then, as � is skew-symmetric, we have

�(x, x ( W x) = 0, * x $ W. By the previous proposition that means that there is a third-

power associative product on V. Moreover in W we have ker ad(x) 8 ker&(x, .) = C áx

and Z (W) = { 0} . Hence the linear form A is necessary an homothecy (we note its ratio

by k) and ' = 0. That gives the result, according to the previous proposition.

Proposition 1.49. The only ßexible product onV which is compatible with the Lie algebra

structure is the trivial one:

x ' V y =
1

2
[x, y]W * x, y $ W

x ' V c = c ( V x = 0 * x $ W

c ' V c = 0

Proof. Any compatible flexible product ' V on V is third power associative and then, is as

describe in the previous proposition. The aim is to show that the flexibility implies that

) = 0, ( = 0, u = ( = 0 and k = µ = 0.

Remind that the flexibility of ' V holds if and only if:

[u, v ( V w]V = v ( V [u, w]V + w ( V [u, v]V , * u, v , w $ V . (1.40)

We set in 1.40 u = x $ W, v = y $ W and w = c. Hence we get

[x, y ( V c]V = c ( V [x, y]V .

This is equivalent to

(k ! µ)�(x, y) = ( ([x, y]W ).

If k ! µ .= 0, � should be a 2-coboundary but that is not true. So k = µ and

( ([x, y]W ) = 0, * x, y $ W. Since [W, W] =W we get that ( = 0.

Now we set in 1.40 u = w = x and v = y. We get

[x, y ( V x]V = [x, y]V ( V ,

which is equivalent to

u(x)�(x, y)c = ( (x)�(x, y)c + ) ([x, y]W , x)c + k�(x, y)x + u([x, y]W )x, * x, y $ W.

So we have

u([x, y]W ) = ! k�(x, y) * x, y $ W, (1.41)
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and

u(x)�(x, y) = ) ([x, y]W , x) * x, y $ W. (1.42)

We suppose that k .= 0. Hence according to 1.41, � should be a 2-coboundary. So k = 0

and as k = µ, we have k = µ = 0. Moreover if k = 0 we have u([x, y])W = 0. As before

that means that u = 0.

As u = 0, identity 1.42 becomes:

) ([x, y]W , x) = 0 * x, y $ W.

By polarization of this identity we get that ) is an invariant symmetric bilinear form on W.

This means

) ([x, y], z) = ) (x, [y, z]) * x, y , z $ W.

We can show that there is not non-zero invariant symmetric bilinear form on W. In fact,

in the last identity we set x = e# , y = e0 and z = e$ with $, # $ �. We get

) ([e# , e0], e$) = ) (e# , [e0, e$ ]) * $, # $ �.

This is equivalent to

f ($ + #)) (e# , e$) = 0 * $, # $ �.

Therefore for all $ + # .= 0 (f is injective) we get

) (e# , e$) = 0.

By using again the invariance identity we get

) ([e# , e�# ], e0) = ) (e# , [e�# , e0]), * $ $ �.

That is equivalent to:

! 2f ($ )) (e0, e0) = f ($ )) (e# , e�# ).

So for all $ .= 0, ) (e# , e�# ) = ! 2) (e0, e0). But for $ + # .= 0 and # .= 0 the invariance

identity still gives ) ([e# , e$ ], e�(# + $)) = ) (e# , [e$ , e�(# + $) ]). So

f (# ! $ )) (e# + $ , e�(# + $)) = f (! $ ! 2#)) (e# , e�# ),

and since ) (e# , e�# ) = 2) (e0, e0), * $ $ �, we get

) (e0, e0) = 0.
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We conclude that ) = 0.

Corollary 1.50. Let W be the Witt algebra andV the Virasoro algebra. Third power-

associative compatible products on the Virasoro algebra are:

x ' V y =
1

2
[x, y]W + u(x)y + u(y)x + ) (x, y).c * x, y $ W

x ' V c = c ( V x = k.x + ( (x).c * x $ W

c ' V c = µ.c

wherek, µ $ K, ) is a symmetric bilinear form ofW and (, u are linear forms ofW.

Moreover the only ßexible compatible product onV is the trivial one.

Remark. This corollary is a result of Myung [23]. Our proof for the flexible structure is

quite di↵erent than the proof of Myung and gives an additional information: µ = 0.

1.5 Left-symmetric structures induced by symplectic structures

on Witt type algebras

This chapter is devoted to the study of some left-symmetric structures on certain Witt

type algebras and their connection with symplectic structures.

An algebra (A, ' ) is said left-symmetric if

(x, y , z) = (y, x, z), * x, y , z $ A.

If (A, ' ) is a left-symmetric algebra then A� is a Lie algebra. For a given Lie algebra

(L, [ , ]), a left-symmetric structure ' is said compatible with the Lie algebra structure if

[x, y] = x ' y ! y ' x.

Let (L, [ , ], &) be a finite-dimensional symplectic Lie-algebra. Since & is a non-degenerate

bilinear form, there exists * x, y $ L a unique element x ' y such that

&(x ' y , z) = ! &(y, [x, z]) * z $ G.

In this way we define a left-symmetric product ' which is compatible with L.
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J. Helmstetter has showed in [13] that if (L, [ , ]) is a finite-dimensional Lie algebra such

that there exists a compatible left-symmetric structure then [L, L ] .= L. Consequently if L

is a non-zero semi-simple Lie algebra then L is not symplectic.

Remark. We can prove that a semi-simple finite-dimensional Lie algebra L is not symplectic

without using the Helmstatter’s result. Indeed, if B is the Killing form of L and & a

2-cocycle of L then there exists a derivation " of L such that

&(x, y) = B(" (x), y), * y $ L.

Since L is a finite-dimensional semi-simple Lie algebra, " is an inner derivation. So there

exists t $ L such that " = ad(t ). If t = 0 then & = 0 and if t .= 0, then

&(t, y ) = B(ad(t )t, y ) = 0, * y $ G

This proves that & is degenerate. We conclude that L is not symplectic.

The following examples proves that there exists an infinite-dimensional symplectic semi-

simple Lie algebras. In fact if k $ Z, then the following bilinear form defines a symplectic
structure on the Witt algebra W :=

!
k2Z < x k > :

&(x, y) = x⇤2k+1 ([x, y]), * x, y $ W, k $ Z.

DeÞnition 1.51. Let (L, [ , ], &) be a (inÞnite-dimensional) symplectic Lie algebra. If for

eachx, y $ L there exists an elementx ' y such that:

& (x ' y , z) = ! &(y, [x, z]), (1.43)

we say that & is left-symmetric admissible. Note thatx ' y is then unique since& is

non-degenerate.

If & is left-symmetric admissible, then' is a compatible left-symmetric product ofL.

Let K be a field of characteristic zero. We consider a free abelian group � and an injective

function f : � % K. In this case f belongs to A and the second cohomology group

H2(V(f ),C) is a one-dimensional vector space generated by the 2-cocycle

�(e# , e$) = "#,�$(f ($ )3 ! f ($ )).
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Consequently any 2-cocycle & of W is of the following form:

& = ( �+ dh, ( $ K, h $ L (W,K).

Let W = V(f ) =
!

" 2! < e" > be the Witt type algebra defined by f .

DeÞnition 1.52. A bilinear form & of W is said homogeneous of degree, $ � ( or , -

homogeneous) if

&(e# , e$) = 0 * $, # such that $ + # + , .= 0.

Proposition 1.53. A homogeneous symplectic form onW is left-symmetric admissible and

the induced left-symmetric structure is graded.

Proof. Let & be a , -homogeneous symplectic form onW. Let e# , e$ be two homogeneous

elements of W. We set ' 0 := ! $ ! # ! , . We define the linear map h by

h :W % K; e" 3% !&(e$ , [e# , e" ]).

Since & is , -homogeneous, we get :

h(e" ) = 0 * ' $ �\{ ' 0} .

Let g be the linear map defined by:

g :W % K; e" 3%&(e# + $ , e" ).

Likewise, since & is , -homogeneous and non-degenerate, we get

g(e" ) = 0 * ' $ �\{ ' 0} ,

and

g(e" 0) .= 0.

Hence ker g 0 ker h and there exists ( #$ $ K such that h = ( #$ g. Therefore

&(( #$ e# + $ , e" ) = ! &(e$ , [e# , e" ]). Hence e# ' e$ := ( #$ e# + $ . Then, by linearity, for all

x, y $ W there exists x ' y $ W such that & (x ' y , z) = ! &(y, [x, z]). We conclude that

& is left-symmetric admissible. Moreover it is clear that ' is graded.
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Remark: Note that this proposition is even true for any �-graded Lie algebra with one-

dimensional homogeneous spaces.

Proposition 1.54. Let & be a bilinear form onW. Then & is a , -homogeneous symplectic

form if and only if , /$ 2� and & = µde⇤�& with µ $ K⇤. Heree⇤�& is the linear form deÞned

by e⇤�&(e" ) = 0 if ' .= ! , and e⇤�&(e�&) = 1.

Proof. We suppose that & is a , -homogeneous symplectic form. Hence there exists a

linear form h on W such that

& = ( �+ dh.

As &(e0, e0) = 0 and & is non-degenerate, then , .= 0. Let $, # $ � such that $ + # = 0.

Then

0 = &(e# , e$) = ( (f ($ )3 ! f ($ )) + dh(e# , e$)

= ( (f ($ )3 ! f ($ )) + (f (#) ! f ($ ))h(e0).

Since f is injective and additive we get

h(e0) =
( (f ($ )3 ! f ($ ))

2f ($ )
=

(
2
(f ($ )2 ! 1), * $ .= 0.

Since � is infinite, there are two elements $ 0 and #0 such that #0 .= ± $ 0. So f ($ 0)2 .=

f (#0)2. Hence ( = 0, h(e0) = 0 and & = dh.

Since & = dh and & is , -homogeneous we have

0 = &(e0, e$) = f (#)h(e$), * # .= ! ,.

Therefore { e# , $ $ �\{! , }} 0 ker h. So there exists µ $ K such that h = µe⇤�&. More-

over µ .= 0 because & .= 0. Finally if , = 2$ where $ $ �, then

&(e�# , e$) = h([e�# , e$ ]) = 0, * # $ �. Since & is non-degenerate, we conclude that

, /$ 2�.

Conversely the 2-cocycle µde⇤�& is clearly , -homogeneous and if , /$ 2� then

&(e# , e�&�# ) = µf (! , ! 2$ ) .= 0, * $ $ �. Hence & is non-degenerate because

&(e# , e$) .= 0 for all $, # $ � such that $ + # + , = 0 . So & is a , -homogeneous

symplectic form.

Theorem 1.55. Let & be a symplectic form onW. If & is left-symmetric admissible and

if the induced left-symmetric structure is graded, then& is homogeneous.
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Proof. Let $, # $ �, then e# ' e$ is the unique element of W such that

&
9
e# ' e$ , e"

:
= ! &(e$ , [e# , e" ]), * ' $ �. (1.44)

Since ' is graded, there exists ( #$ $ K such that e# ' e$ := ( #$ e# + $ .

By the identity (1.44) we have:

( #$ &(e# + $ , e" ) = (f ($ ) ! f (' ))&(e$ , e# + " ). (1.45)

In (1.45) we set $ = 0. Hence we get:

( 0$ &(e$ , e" ) = ! f (' )&(e$ , e" ),

which is equivalent to

(( 0$ + f (' ))&(e$ , e" ) = 0. (1.46)

For each # $ �, since & is non-degenerate, there exists necessarily an element ' $ $ � such

that &(e$ , e" $ ) .= 0. By (1.46) we have

( 0$ = ! f (' $).

Since ( 0$ is unique and f injective, ' $ is unique too. Thus &(e$ , e" ) .= 0 if and only if

' = ' $ . We set , := ! ' 0.

In order to show that & is , -homogeneous, we to prove that # + ' $ does not depend on

# and that we have # + ' $ = ' 0 = ! ,, * # $ �.

If we use again equation (1.45) and set ' = 0, we get

( #$ &(e0, e# + $) = f ($ )&(e# , e$). (1.47)

We have * $ .= 0, f ($ )&(e# , e$) .= 0 if and only if # = ' # Hence

* $ .= 0, ( #" # &(e0, e# + " # ) .= 0. In addition &(e0, e" ) .= 0 if and only if ' = ' 0 = ! , .

Hence we have $ + ' # = ' 0 = ! ,, * $ .= 0. Finally we proved that &(e# , e$) = 0

for all $, # $ � such that $+#+, .= 0. That exactly means that & is , -homogeneous.

Corollary 1.56. The left-admissible symplectic forms onW such that their induced left-

symmetric structure is graded are:

&& := µde⇤�&,
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with , /$ 2� and µ $ K⇤.
Moreover the left-symmetric product induced by&& is given by:

e# ' e$ :=
f (, + 2$ + #)f (, + 2#)

f (, + 2($ + #))
e# + $ , * $, # $ �.

Proof. The first assertion results from Proposition 1.54 and Theorem 1.55 . We just have

to give the induced left-symmetric product. By equation (1.45):

( #$ &(e# + $ , e" ) = f ($ ! ' )&(e$ , e# + " ), * $, #, ' $ �.

Let $, #, ' $ �. Since & = && := µde⇤�& with , /$ 2�, we get:

( #$ µde⇤�&(e# + $ , e" ) = f ($ ! ' )µde⇤�&(e$ , e# + " ),

which is equivalent to

( #$ f (' ! $ ! #)e⇤�&(e# + $+ " ) = f ($ ! ' )f ($ + ' ! #)e⇤�&(e# + $+ " ).

For $ + # + ' + , = 0 we have

( #$ f (! , ! 2($ + #)) = f (2$ + # + , )f (! 2# ! , ).

Remark that f (! , ! 2($ + #)) .= 0 since , /$ 2�. Hence

( #$ =
f (2$ + # + , )f (2# + , )

f (, + 2($ + #))
, * $, # $ �.

Remark. This result holds for a class of Witt type algebras which contains the Witt algebra.

Graded left-symmetric structures on the Witt algebra are classified (see [3]). There are two

classes of such structures denoted ( in [3] ) by V#,) , $, - $ C statisfying - = 0 or -�1 /$ Z
and V$,k , # $ C and k $ Z satisfisfying # .= k. Our graded left-symmetric structures

induced by a symplectic form belong to the first class V#,) with $ = 1 and - = 2
&.



Chapter 2

Automorphic algebras.

2.1 Generalities on Riemann surfaces

In this part we remind definitions and general results about Riemann surfaces. We give

more precisions for the situation of the Riemann sphere and for the tori.

Details of this part (and in particular the proofs) can be found in the book of Otto Forster

[10] or in the book of Rick Miranda [21].

2.1.1 DeÞnition and examples

DeÞnition 2.1. Let X be a Hausdor! topological space. A complex chart onX is an

homeomorphism! : U % V of a open subsetU 0 X to an open subsetV 0 C. Two

complex charts! 1 : UA % V1 and ! 2 : U2 % V2 are said to be compatible if the map

! 2 ( ! �1
1 : ! 1(U1 8 U2) % ! 2(U1 8 U2)

is biholomorphic.

A complex chart ! : U % V on X is said centered at the point p if ! (p) = 0.

A system A := { ! i : Ui % Vi , i $ I } of compatible charts such that X =
;

i2I Ui is called

an atlas. We define on the set of atlases an equivalence relation: two atlases A 1 and A 2

are equivalent if the set of charts A 1 " A 2 are again an atlas. This means that every chart

57
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of A 1 is compatible with every chart of A 2.

DeÞnition 2.2. A complex structure on a topological spaceX is an equivalence class⌃ of

atlases.

A Riemann surface is a pair(X, ⌃) of a connected Hausdor! topological space and a

complex structure⌃.

Usually, to define a Riemann surface, we just give an altas A on X . Then the corresponding

Riemann surface is the pair (X, Ā ) where Ā is the equivalence class of the atlas A .

Let us give some examples of Riemann surfaces:

1. The complex plane C with the complex structure given by the one chart atlas { idC :

C % C} .

2. The Riemann sphere C1. Let C1 := C " {#} . The topology on C1 is given as
follows: the open sets in C1 are the usual open sets of C together with the sets of
the form V " {#} where V is the complement of a compact subset K 0 C. That
makes C1 into an Hausdor↵ connected topological space. The complex structure is
defined by the altlas { ! i : Ui % Vi , i = 1, 2} with

U1 = C U2 = C⇤ " {#}

! 1 = idC ! 2(z) :=

0
1/z for z $ C⇤

0 for z = # .

Note that the Riemann sphere is a compact Riemann surface.

3. The complex tori: Let &1 and &2 be two complex numbers which are linearly inde-

pendent over R. We define the lattice L by

L := Z&1 + Z&2 = { m1&1 +m2&2 | m1, m2 $ Z} .

The lattice L is a subgroup of C. Let X = C/L be the quotient group. On X we put

the usual quotient topology which makes the projection map %continuous. With this

topology, C/L is an Hausdor↵ topological space and since C is connected, C/L is

also connected. Moreover, this is a compact topological space since %is continuous.

In fact C/L = %(P) where P is the compact parallelogram

P := { a&1 + b&2|a, b $ [0, 1]} .
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The complex structure of C/L is given as follow:

A chart is defined using the map %. Let V 0 C be an open subset such that no two
points in V are equivalent under �. Then U := %(V) is an open set and %|V is a

homeomorphism from V to U. Take the inverse ! : U % V. This is a complex chart

on C/L . We have to check that the set A of charts obtained in this way is an atlas.

It is clear that C/L is covered by the charts of A . Then, we just have to check the

compatibility of the charts. Let ! 1 : U1 % V1 and ! 2 : U2 % V2 be two charts of A .

Then consider the map

. := ! 2 ( ! �1
1 : ! 1(U1 8 U2) % ! 2(U1 8 U2).

Let z $ ! 1(U1 8 U2). We have %(. (z)) = %(z) and thus . (z) ! z $ �. Since � is

a discrete set, this proves that . (z) ! z is constant on every connected component

of ! 1(U1 8 U2). Thus . is holomorphic and the same proof gives that . �1 is also

holomorphic. That proves the compatibility of the charts of A .

The complex structure on C/L is defined by the atlas A .

Remark: For every compact Riemann surface X there exists a unique topological type given

by the genus g = g(X ) $ N. Equivalently, g(X ) is the dimension of the space of global

holomorphic di↵erentials on X . In our examples, g(C1) = 0 and g(C/L ) = 1.

2.1.2 Holomorphic maps

DeÞnition 2.3. SupposeX andY are two Riemann surfaces. A continuous mapf : X % Y

is called holomorphic if for every charts! 1 : U1 % V1 on X and ! 2 : U2 % V2 on Y with

f (U1) 0 U2, the map

! 2 ( f ( ! �1
1 : V1 % V2

is holomorphic (in the sense of the theory of complex functions).

The map f is called an isomorphism if it is bijective and if the mapf �1 is also holomorphic.

An isomorphism fromX to X is called an automorphism. The set of all automorphisms of

X is denoted byAut (X ).

If there exists an isomorphism between two Riemann surfacesX andY, then they are called
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isomorphic.

Remark: Due to the local behaviour of holomorphic map (see below), if F : X % Y is a

holomorphic and bijective map then F�1 is automatically holomorphic.

Note that Aut (X ) is a group with the usual composition law.

Theorem 2.4 (Local behaviour of holomorphic maps). Let F : X % Y be a non-constant

holomorphic map between two Riemann surfacesX and Y. Fix p $ X . There is a unique

integer m 1 1 satisfying: for every chart�0 : U0 % V 0 on Y centered atF(p), there exists

a chart � : U % V on X centered atp such that �0 ( F ( ��1(z) = zm.

Corollary 2.5. Let X and Y be Riemann surfaces andf : X % Y be a non-constant

holomorphic map. Thenf is open.

DeÞnition 2.6. The multiplicity of a holomorphic mapF at p is the unique integerm given

in the previous theorem. The multiplicity ofF at p is denoted bymultp(F).

DeÞnition 2.7. Let F : X % Y be a nonconstant holomorphic map. A pointp $ X is a

ramiÞcation point forF if multp(F) 1 2. A point y $ Y is a branch point if it is the image

of a ramiÞcation point forF . Note that the set of ramiÞcation points as well as the set of

branch points are discrete.

Proposition 2.8. Let F : X % Y be a non constant holomorphic map between compact

Riemann surfaces. For eachy $ Y we deÞnedy(F) as

dy(F) :=
&

p2F�1(y)

multp(F).

Then dy(F) is (a Þnite) constant, independent ofy.

DeÞnition 2.9. Let F : X % Y be a non constant holomorphic map between compact

Riemann surfaces. The degree ofF is the integerdy(F) for any y $ Y. It is denoted by

deg(F).
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Proposition 2.10. A holomorphic map between compact Riemann surface is an isomor-

phism if and only if it has degree one.

Theorem 2.11 (Hurwitz’s formula). Let F : X % Y be a nonconstant holomorphic map

between compact Riemann surfaces. Then

2g(X ) ! 2 = deg(F)(2g(Y) ! 2) +
&

p2X

[multp(F) ! 1]

whereg(X ) and g(Y) are the genus ofX and Y respectively.

Theorem 2.12 (Identity theorem). SupposeX and Y are Riemann surfaces andf1, f2 :

X % Y are two holomorphic mappings which coincide on a setA 0 X having a limit point

a $ X . Then f1 and f2 are identically equal.

2.1.3 Holomorphic functions

DeÞnition 2.13. Let X be a Riemann surface andY an open subset ofX . A function

f : Y % C is called holomorphic if for every chart! : U % V on X , the function

f ( ! �1 : ! (U 8 Y) % C

is holomorphic.

This deÞnition coincides with the deÞnition of holomorphic maps between the Riemann

surfacesX andC.

The set of holomorphic functions ofY is denoted byO(Y)

Theorem 2.14 (Riemann’s Removable Singularities Theorem). Let U be an open subset

of a Riemann surface and leta $ U. Suppose that a functionf $ O (U \ { a} ) is bounded

in some neighborhood ofa. Then f can be extended uniquely to a functioñf $ O (U).

Theorem 2.15 (Maximum principle). SupposeX is a Riemann surface andf a non-

constant holomorphic function ofX . Then |f | does not attain its maximum.
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Corollary 2.16. Every holomolorphic function on a compact Riemann surface is constant.

2.1.4 Meromorphic functions

Let X be a Riemann surface, let p be a point of X . By punctured neighborhood of p we

mean a set of the form U ! { p} where U is a neighborhood of p. The concept of type

of singularities for usual complex functions can be extended to functions on a Riemann

surface.

DeÞnition 2.17. Let f be a holomorphic function in a punctured neighborhood of ap $ X .

(a) We sayf has a removable singularity atp if and only if there exists a chart+ : U % V

with p $ U, such that the compositionf ( +�1 has a removable singularity at+(p).

(b) We sayf has a pole atp if and only if there exists a chart+ : U % V with p $ U

such that the compositionf ( +�1 has a pole at+(p).

(c) We sayf has an essential singularity atp if and only if there exists a chart+ : U % V

with p $ U such that the compositionf ( +�1 has an essential singularity at+(p).

Note that this deÞnition does not depend of the choice of the chartU.

If f is a holomorphic function on a punctured neighborhood of a point p $ X , the behaviour

of f (x) for x near p determine which kind of singularity f has at p.

(a) If |f (x)| is bounded in a neighborhood of p, then f has a removable singularity at p.

In this case, limx!p f (x) exists and if we define f (p) to be this limit, f is holomorphic

at p.

(b) If |f (x)| approaches # as x approaches p, then f has a pole at p.

(c) If |f (x)| has no limit as x approaches p, then f has an essential singularity at p.

DeÞnition 2.18. A function f on X is meromorphic at a pointp $ X if it is either

holomorphic, has a removable singularity, or has a pole, atp. We sayf is meromorphic on

an open setW if it is meromorphic at every point ofW.
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We can now give an equivalent definition for meromorphic functions

DeÞnition 2.19. Let X be a Riemann surface andY an open subset ofX . A meromorphic

function f : Y % C is a holomorphic functionf : Y 0 % C whereY 0 is an open subset ofY

with:

(i) Y \ Y 0 is a set of isolated points.

(ii) For every pointp $ Y \ Y 0 we have

lim
x!p

|f (x)| = # .

The points of Y \ Y 0 are called the poles off . The set of meromorphic functions of

Y is denoted byM (Y).

Meromorphic functions are particular cases of holomorphic maps:

Theorem 2.20. Let X be a Riemann surface andf $ M (X ). If we deÞne for each

pole p of f , f (p) := # , then f : X % C1 is a holomorphic map. Conversely, consider

f : X % C1 a holomorphic map. Iff �1(# ) consists of isolated points, thenf : X % C
is a meromorphic function with poles inf �1(# ). If f �1(# ) does not consist of isolated

points then f is identically equal to# by the identity theorem.

2.1.4.1 Laurent series and order

Let f be defined and holomorphic on a punctured neighborhood of p $ X . Let + : U % V

be a chart on X with p $ U. We have that f ( +�1 is holomorphic in a neighborhood of

z0 := +(p). Therefore we can expand f ( +�1 in a Laurent series about z0:

f (+�1(z)) =
&

n

cn(z ! z0)
n

This is called the Laurent series for f about p with respect to +. The Laurent series

obviously depends of the choice of the chart +. We can however use Laurent series to

check the nature of the singularity of f at p:
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Proposition 2.21. The function f has a removable singularity atp if and only if any one

of its Laurent series has no negative terms. The functionf has a pole atp if and only if

any one of its Laurent series has Þnitely many (but not zero) negative terms. The function

f has an essential singularity atp if and only if any one of its Laurent series has inÞnitely

many negative terms.

This characterization of the nature of the singularity is possible because the value {minn | cn .= 0}

does not depend of the choice of the chart +. Hence we can define the order of f at p.

DeÞnition 2.22. Let f be a meromorphic function atp. Consider its Laurent series with

respect to a local chart+ : U % V:
+

n cn(z ! z0)n. The order of f at p, denoted by

ordp(f ) is:

ordp(f ) := min { n | cn .= 0}

Lemma 2.23. Let f be a meromorphic function atp. Then f is holomorphic atp if and

only if ordp(f ) 1 0. In this casef (p) = 0 if and only if ordp(f ) > 0. f has a pole atp if

and only ifordp(f ) < 0. f has neither a zero nor a pole atp if and only if ordp(f ) = 0.

Note that the order of a meromorphic f function at a point p $ X is related with the

definition of multiplicity given before. In fact, consider the meromorphic function f as a

holomorphic map F from X to C1. Then

(a) If p $ X is a zero of f , then multp(F) = ordp(f ).

(b) If p $ X is a pole of f , then multp(F) = ! ordp(f ).

(c) If p $ X is neither a zero nor a pole of f , then multp(F) = ! ordp(f ! f (p)).

From the definition of the degree of a holomorphic map we can extract the following:

Let f be a non-constant meromorphic function on a compact Riemann surface X . Let

F : X % C1 be its associated holomorphic map. Let { xi } be the points of X mapping to

0 and { yj } be the points of X mapping to # . The x0i s are exactly the zeroes of f and the

y 0j s are its poles. Let d be the degree of F . By definition of d, we have

d =
&

i

multxi (F) =
&

j

multxj (F).
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We explained before that the only points of X where f has nonzero order are its zeroes

and poles. Moreover we have

multxi (F) = ordxi (f ) and multyj (F) = ! ordyj (f )

Hence

Proposition 2.24. Let f be a non-constant meromorphic function on a compact Riemann

surfaceX . Then

&

p

ordp(f ) =
&

i

ordxi (f ) +
&

j

ordyj (f ) =
&

i

multxi (F) !
&

j

multxj (F) = 0.

Note that this proposition means that a meromorphic function on a compact Riemann

surface has as many zeroes as poles.

2.1.4.2 Meromorphic functions on the Riemann sphere

Meromorphic functions on the Riemann sphere C1 can be easily described.
Let R : C % C be a rational complex function. The function R is a meromorphic func-

tion on C and can be extended to a meromorphic function on C1 by defining R(# ) :=

limz!1R(z). If R(# ) = # then # is a pole of R and if R(# ) $ C then R is holomorphic

in # .

Conversely, let R be any meromorphic function on C1. Since C1 is a compact topological
space, R has just a finite number of poles { p1, . . . , pn} . Suppose that # is not a pole of R.

Since R is a meromorphic function of C1, the restriction R|C of R to C is a meromorphic
function of C with poles in { p1, . . . , pn} . Let h1, . . . , hn be the principal parts of R|C.

Hence, we can consider the holomorphic function g := R|C ! (h1 + á á á+ hn). Since the hi

are rational function of C, they can be viewed as meromorphic functions of C1 with poles
in pi . Thus the map g can be extended as a holomorphic function of C1. But C1 is a
compact Riemann surface and holomorphic functions of C1 are the constants. Thus g is

a constant and R is a rational function (since the hi ’s are rational functions).

If R has a pole in # , consider the meromorphic function 1
R which does not have a pole

in # . By the same justification we prove that 1
R is a rational function and then R is a

rational function too.

We just gave the proof of the following proposition:

Proposition 2.25. Meromorphic functions on the Riemann sphereC1 are the rational

functions:

M (C1) = C(z)
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2.1.4.3 Meromorphic functions on tori

Fix a complex number * in the upper half plane and consider the lattice L := Z+Z* . We

will see later that we can always consider lattices of this form. We form the complex torus

X := C/L .

Let f be a meromorphic function on C. We call f doubly periodic (with respect to L) if

f (z + n+m* ) = f (z), * n, m $ Z, z $ C

Such a function f descends to the quotient X = C/L to a function f̄ $ M (X ). Conversely,

if g $ M (X ) we get by defining f (z) := g(z + L) a function f $ M (C) which is doubly
periodic and satisfies f̄ = g. Hence the doubly periodic functions are the meromorphic

functions of the torus.

There are two remarkable doubly periodic functions: the Weierstrass / -function and its

derivative function / 0:

/ (z) :=
1

z2 +
&

* 2L\{0}

$
1

(z ! &)2
!
1

&2

%
.

/ 0(z) := !
&

* 2L

2

(z ! &)3
.

The function / has poles of order 2 in each point of the lattice L. Thus / is a meromorphic

function on X with a pole of order 2 in 0.

The function / 0 has poles of order 3 in each point of the lattice L. Thus / 0 is a meromorphic

function on X with a pole of order 3 in 0.

Note that the function / is even and that the function / 0 is odd. Hence since / 0 is doubly

periodic, we have

/ 0(1/ 2) = / 0(* / 2) = / 0(1/ 2 + * / 2) = 0.

Moreover, as X is a compact Riemann surface and as / 0 has a pole of order 3 in 0, the

points 1/ 2, * / 2 and 1/ 2 + * / 2 are the only zeros of / 0.

These two doubly periodic functions are algebraically related by the following relation

(/ 0)2 = 4/ 3 ! g2/ ! g3
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with

g2 = 60
&

* 2L\{0}

1

&4

g3 = 140
&

* 2L\{0}

1

&6

The g2, g3 are called the Eisenstein series. For a fixed lattice they are constants. It is

possible to show that the discriminant function �(* ) := g3
2(* ) ! 27g

2
3(* ) is never equal to

zero.

For a fixed lattice, consider the polynomial equation 4t 3 ! g2t ! g3 = 0 and note e1, e2

and e3 these roots. As the discriminant � = g3
2 ! 27g2

3 is not zero, no two of these roots

are equal. Moreover the following relations occur:

e1 + e2 + e3 = 0

g2 = ! 4(e1e2 + e1e3 + e2e3) = 2(e2
1 + e2

2 + e2
3)

g3 = 4e1e2e3.

Since 1/ 2, * / 2 and 1/ 2 + * / 2 are the zeros of / 0 and since (/ 0)2 = 4/ 3 ! g2/ ! g3, we

get that

/ (1/ 2) = e1 / (* / 2) = e2 / (1/ 2 + * / 2) = e3.

Note that since e1, e2, e3 are the roots of the polynomial equation 4t 3 ! g2t ! g3 = 0, the

di↵erential equation (/ 0)2 = 4/ 3 ! g2/ ! g3 is equivalent to

(/ 0)2 = 4(/ ! e1)(/ ! e2)(/ ! e3).

Using / and / 0 we can describe the set of meromorphic functions on X :

Theorem 2.26. The Þeld of meromorphic functions on the torusX can be given as

M (X ) = C(/, / 0)

That means that each meromorphic function onX is a rational function of/ and / 0.

More details about the Weierstrass / -function can be found in the book of Martin Schlichen-

maier [30] or in the the book of Farkas and Kra [8].
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Another approach to describe the meromorphic functions on the torus X are via theta-

functions. We define

0(z) :=
&

n2Z
e+i [n2, +2 nz].

This series converges absolutely and uniformly on compact subsets of C. Hence 0 is a

holomorphic function on C
Note that 0(z + 1) = 0(z) for every z $ C. We need to know how 0 transforms under

translation by * . An easy computation shows that

0(z + * ) = e�+i [, +2 z]0(z).

Thus it is clear that z0 is a zero of 0 if and only if z0 + L are zeroes of 0. In fact the only

zeros of 0 are the points 1/ 2 + * / 2 + L and these zeroes are simple.

So if we consider the function

0(x)(z) := 0(z ! 1/ 2 ! * / 2 ! x)

we get a function with simple zeroes at the points x + L. Moreover we have

0(x)(z + 1) = 0(x)(z) and 0(x)(z + * ) = ! e�2+i (z�x)0(x)(z)

Now we consider the ratio

R(z) :=

< m
i=1 0(xi )(z)

< n
j =1 0(yj )(z)

The function R is a meromorphic function on C with n simple poles at the yj ’s and m

simple zeroes at the xj ’s. Moreover R is obviously periodic, i.e., R(z + 1) = R(z) but

R(z + * ) = (! 1)m�ne�2+i [(m�n)z+
P

j yj�
P

i xi ]R(z).

Therefore to obtain a doubly periodic function we need m = n (which it is not a surprising

in regards of Proposition 2.24) and
+

i xi !
+

j yj $ Z.

We have proved the following:

Theorem 2.27. Fix an integerd and choose two disjoint sets ofd complex numbers{ xi }

and { yj } such that
+

i xi !
+

j yj is an integer. Then the ratio of the translated theta

functions

R(z) :=

<
i 0(xi )(z)

<
j 0(yj )(z)



Chapitre 2. Automorphic algebras. 69

is a meromorphicL-periodic function onC, and descends to a meromorphic function on

X = C/L .

We remark that the ratio R has simple zeroes at the points xi + L and simple poles at the

points yj + L.

Moreover, let f be a meromorphic function on X and let { pi } and { qj } be the two sets of

its zeroes and poles respectively. Suppose that
+

i pi =
+

j qj in the quotient space X . We

can choose two sets { xi } and { yj } of complex numbers with x̄i = pi and ȳj = qj such that
+

i xi =
+

j yj . Thus by considering the ratio function R(z) :=
<

i 0(xi )(z)/
<

j 0(yj )(z),

we get a meromorphic function on X with zeroes at the pi ’s and poles at the qj ’s. Thus

the function f /R is a holomorphic function on the compact Riemann surface X . So f /R

is a constant, and f is equal to R, up to a constant.

In fact we are able to prove that any meromorphic function on the torus X verifies the

following condition: let { pi } be the set of its zeroes and { qj } be the set of its poles, then
+

i pi =
+

j qj .

In fact suppose that
+

i pi .=
+

j qj for a meromorphic function f $ M (X ). Choose

two points p0 and q0 such that
+ d

i=0 pi =
+ d

i=0 qi and then form the ratio of translated

theta-functions R(z) :=
< d

i=0 0(xi )(z)/
< d

i=0 0(yj )(z) as above. Consider the meromorphic

function g := R/f and note that g has just a zero at p0 and a pole at q0.

Let G : X % C1 be the holomorphic map to the Riemann sphere which corresponds to
the meromorphic function g. Since g has a single simple zero and a single simple pole, G

has degree one. Hence G is an isomorphism by Proposition 2.10. But that is not possible

since X has genus one and C1 genus zero.
This contradiction shows that we must have

+
i pi =

+
j qj .

We just proved two important facts:

Proposition 2.28. On a complex torus, there is no meromorphic function with a single

simple pole.

Proposition 2.29. Any meromorphic function on a complex torus is given by a ratio of

translated theta-functions (up to a multiplicative constant).

More details about theta functions can be found in the book of Farkas and Kra [8] and in

the book of Rick Miranda [21]
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2.2 Meromorphic functions with prescribed poles on a compact

Riemann surface.

In this section we discuss the situation of meromorphic functions with prescribed poles on

a compact Riemann surface.

Let X be a compact Riemann surface. Let � := { P1, P2, ..., Pk } (k 1 2) be a set of distinct

points. We consider the algebra M (X, �) of global meromorphic functions of X which are

holomorphic on X \ �. What we mean is the set of meromorphic functions on X such that

poles can only appear at the points in �.

These algebras are a particular case of a more general situation: the algebras of Krichever-

Novikov type.

2.2.1 Algebras of Krichever-Novikov type.

Let us give a short definition of algebras of Krichever-Novikov type. More details can be

found in [34–36].

Let K be the canonical line bundle of the Riemann surface X . Its associated sheaf of local

sections is the sheaf of holomorphic di↵erentials. For every ( $ Z consider the bundle
K⌦' , with the usual convention: K0 := O is the trivial bundle, and K�1 := K⇤ is the

holomorphic tangent line bundle (its associated sheaf is the sheaf of holomorphic vector

fields). Denote by F ' the vector space of global meromorphic sections of K' which are

holomorphic on X \ �.

Locally, sections of F ' (�) look like

f (z) = $ (z)dz' , with dz' := (dz)⌦'

where $ is a local meromorphic function without poles outside of �.

Hence if ( = 0 we get the above set of functions M (X, �) or just M (�) if X is fixed.

Other special cases are of particular interest: ( = 1 which is the case of di↵erentials, and

( = ! 1 which is the vector field case. The set F �1(�) is usually denoted by L (�). By

multiplying sections by functions we again obtain sections. Thus the space M (�) becomes

an associative algebra and the spaces F ' (�) become M (�)-modules. The vector fields in

L (�) operate on F ' (�) too by:

$
$ (z)

d
dz

%
á
9
#(z)dz' :

:=

$
$ (z)

d#
dz
(z) + (# (z)

d$
dz
(z)

%
dz' .
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The space L (�) becomes a Lie algebra and the space F ' (�) becomes a Lie module over

L (�).

2.2.2 Almost-graded structure.

For infinite dimensional algebras and their representation theory a graded structure is usually

of importance to obtain structure results. A typical example is given by the Witt algebra W.

In our more general context the algebras will almost never be graded. But it was observed

by Krichever and Novikov in the two-point case that a weaker concept, an almost-graded

structure (they call it a quasi-graded structure), will be enough to develop an interesting

theory of representations (highest weight representations, Verma modules, etc.).

DeÞnition 2.30. a) Let L be an algebra (associative or Lie) admitting a direct decom-

position as vector spaceL =
!

n2Z L n. The algebraL is called an almost-graded

algebra ifdim L n < # and there are constantsR and S with

L n á Lm 9
n+ m+ S=

h= n+ m+ R

L h, * n, m $ Z (2.1)

The elements ofL n are called homogeneous elements of degreen.

b) Let L be an almost-graded (associative or Lie) algebra andF an L-module with

decompositionF =
!

n2Z Fn as vector space . The moduleF is called an almost-

graded module ifdimFn < # and there are constantsR0 and S0 with

L m á Fn 9
n+ m+ S0=

h= n+ m+ R 0
Fh, * n, m $ Z (2.2)

The elements ofFn are called homogeneous elements of degreen.

In the previous definition the homogeneous spaces L n and Fn are finite-dimensional. Thus

we can find adapted bases { An,p | n $ Z, p = 1, . . . , kn} of L and

{ fn,p | n $ Z, p = 1 . . . , hn} of F such that

L n = vect(An,p | p = 1, . . . , kn) Fn = vect(fn,p | p = 1, . . . , hn).

Such bases are called almost-graded basis of L and F adapted to the decompositions

L =
!

n2Z L n and F =
!

n2Z Fn.
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In practice for a given algebra L we try to find a basis { An,p | n $ Z, p = 1, . . . , kn} of L

such that An,p áAm,q $ vect(Ah,p | h = n+m+R, . . . , , n +m+ S, p = 1, . . . , kh). Thus

by defining

L n := vect(An,p | p = 1, . . . , kn)

we give an almost-graded structure of L .

Let us return now to the case of the three spaces M (�), L (�) and F ' (�) defined in the

section 2.2.1.

Theorem 2.31. Associated to any splitting of� into two non-empty subsets,� := I "̇ O,

one can introduce forM (�), L (�) and F ' (�) a decomposition into

M (�) =
=

n2Z
M n, L (�) =

=

n2Z
L n, F (�) =

=

n2Z
M n

such that M (�), L (�) and F ' (�) are almost-graded with respect to the decomposition.

In all cases, the lower shifts in the degree of the result can be made to zero.

It is very important to stress the fact that the almost-graded structure depends of the

splitting of � into two non-empty subsets.

This theorem is a central result for the Krichever-Novikov algebras. The di�cult proof

can be found in the works of Martin Schlichenmaier [30, 36] and is essentially based on

the Riemann-Roch Theorem. Explicit generators and explicit almost-graded basis can be

found for these algebras and modules [34, 35]. We give here an idea of the way how to

construct these generators for the case of the algebra M (�).

Suppose that � = I "̇ O with I = { P1, . . . , Pk } and O = { Q} . An almost-graded basis of

M (�) is given by elements An,p, n $ Z, p = 1, . . . , k which are essentially fixed by

ordPi (An,p) = (n+ 1) ! " p
i , i = 1, . . . , k

and complementary condition for the point Q of O. Then the almost-graded structure is

given by the decomposition M (�) =
!

n2ZM (�)n with

M (�)n := vect(An,p | p = 1, . . . , k ).

For example, for the two points situation (i.e. I = P and O = Q with P, Q in generic

position) the conditions are

ordP (An) = n ordQ(An) = ! n ! g
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with some modification at Q needed for small |n| values, e.g. we take always A0 = 1.

Until now we always considered a set � containing at least two distinct elements. This

condition was necessary to fulfil the conditions of the previous theorem: split the set �

into two non-empty subsets.

How is the situation for a one point set �? Can the algebra M (X, �) also be equipped

with an almost-graded structure?

The answer is yes but the gradation will depend on the choice of another point. Suppose

that � := { Q} . Choose now a point P .= Q in X . Hence we know by Theorem 2.31 that

the algebra M (X, { P} "̇{ Q} ) admits an almost-graded structure

M (X, { P} "̇{ Q} ) =
=

n2Z
M n.

In fact this almost-graded structure verifies the following:

1. M + :=
!

n�0 M n is an almost-graded subalgebra of M (X, { P} "̇{ Q} ).

2. M + = M (X, { Q} )

M + is the subalgebra of M (X, { P} "̇{ Q} ) consisting of functions also holomorphic in

P. Hence M (X, { Q} ) admits an almost-graded structure depending of the choice of the

reference point P.

2.2.3 Case of genus 0

Let X be the Riemann sphere and � := { P, Q} be a set of two distinct points of X . In this

case there is only one splitting: � = { P} "̇{ Q} . We can give here an explicit almost-graded

basis of M (X, �); the set of global meromorphic function on X which are holomorphic on

X \ �.

If P, Q .= # we define

An(z) := (z ! P)n á(z ! Q)�n * n $ Z.

If Q = # we define

An(z) := (z ! P)n * n $ Z.

If P = # we define

An(z) := (z ! Q)�n * n $ Z
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In every case, the set { An, n $ Z} is a basis of M (X, �). Hence

M (�) =
=

n2Z
M n

where M n := vect(An). Moreover

An áAm = An+ m.

Hence this is even a graded basis of M (X, �).

In this example, clearly the subalgebra M + is exactly the algebra M (X, { Q} ) and it admits

a graded structure.

2.2.4 Case of genus 1

We use the notation of the section 2.1.4.3.

Let L = Z+ * Z be a lattice with : (* ) > 0 and let X be the complex torus C/L . We give

here an explicit example of an almost-graded structure for a two points set �. We suppose

that � = { 1/ 2} "̇ 0. Then we define the following meromorphic functions:

A2k := (/ ! e1)
k , A2k+1 :=

1

2
/ 0(/ ! e1)

k�1.

Since / (1/ 2) = e1 and since / is even, the function (/ ! e1) has a pole of order 2 in 0

and a zero of order 2 in 1/ 2. Hence

ord0(A2k ) = ! 2k, ord1/ 2(A2k ) = 2k.

The function / 0 has a pole of order 3 in 0 and has a zero of order 1 in 1/ 2, * / 2 and

1/ 2 + * / 2. Hence

ord0(A2k+1 ) = ! (2k + 1), ord1/ 2(A2k+1 ) = 2k ! 1.

The set { An, n $ Z} is a basis of M (X, �). Hence by setting M n := vect(An) we get the

decomposition

M (X, �) =
=

n2Z
M n.
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Moreover, if n or m is even we have obviously

An áAm = An+ m.

If n = 2k + 1 and m = 2k 0 + 1 then using e1 + e2 + e3 = 0 we get

An áAm =
1

4
/ 02(/ ! e1)

k+ k 0�2

=
1

4
á4(/ ! e1)(/ ! e2)(/ ! e3)(/ ! e1)

k+ k 0�2

= (/ ! e1)(/ ! e1 + (e1 ! e2))(/ ! e1 + (e1 ! e3))(/ ! e1)
k+ k 0�2

= [(/ ! e1)
3 + (2e1 ! e3 ! e2)(/ ! e1)

2 + (e1 ! e2)(e1 ! e3)(/ ! e1)](/ ! e1)
k+ k 0�2

= (/ ! e1)
k+ k 0+1 + 3e1(/ ! e1)

k+ k 0 + (e1 ! e2)(2e1 + e2)(/ ! e1)
k+ k 0�1

= An+ m + 3e1An+ m�2 + (e1 ! e2)(2e1 + e2)An+ m�4

Hence that defines an almost-graded structure.

As above we remark that the subalgebra M + is exactly the algebra M (X, { 0} ). Thus we

have here an almost-graded structure of M (X, { 0} ) depending of the point 1/ 2.

2.3 Group Action on Riemann Surfaces

All details of this section can be found in the book of Rick Miranda [21].

2.3.1 Generalitites

Let G be a finite group and X a Riemann surface.

A left action of G on X is a map G - X % X : (g, p) 3%g.p which satisfies

a) (gh).p = g.(h.p) for g, h $ G and p $ X

b) e.p= p for p $ X and e the unit element of G.

The orbit of a point p $ X is the set G(p) := { g.p | * g $ G} . The stabilizer of a point

p $ X is the subgroup Gp := { g $ G | g.p = p} . We recall that two points in the same
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orbit have conjugate stabilizer. More precisely: Gg.p = gGpg�1. Moreover we have the

following relation:

|G(p)| á |Gp| = |G|.

The kernel of an action of G on X is the subgroup K := { g $ G | g.p = p * p $ X } .

Obviously, K is the intersection of all stabilizer subgroups and K is a normal subgroup.

Moreover the quotient group G/K acts on X with trivial kernel and with the same orbits

as for the action of G. So we usually assume that the kernel is trivial. Such an action is

called an e↵ective action.

For each g $ G, the map p 3%g.p is a bijection. The action is said to be continuous if

for all g $ G this bijection is continuous. The action is said to be holomorphic if for all

g $ G the bijection is holomorphic. In the holomorphic case, this bijection is necessary an

analytic automorphism of X .

The quotient space X/G is defined as the set of orbits. The natural projection % : X %

X/G sends a point p $ X to its orbit G(p). The usual way to give a topology to such a

quotient space is to declare a subset U 0 X/G to be open if and only if %�1(U) is open in

X . Clearly the projection % is then continuous. If the action is continuous, then % is an

open map.

Here we give some details about stabilizer subgroups of an e↵ective and holomorphic action:

Proposition 2.32. Let G be a group (not necessary Þnite) acting holomorphically and

e!ectively on a Riemann surfaceX , and Þx a pointp $ X . If the stabilizer subgroupGp is

Þnite then it is a Þnite cyclic group.

Obviously, ifG is a Þnite group, all stabilizer subgroups are Þnite cyclic subgroups.

Proposition 2.33. Let G be a Þnite group acting holomorphically and e!ectively on a

Riemann surfaceX . The points of X with nontrivial stabilizer subgroups are discrete.

If X is a compact Riemann surface, these points form a Þnite set.

Our goal is to put a complex structure on X/G such that % is a holomorphic map. This is

done by the following construction which can be found in [21]
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Proposition 2.34. Let G be a Þnite group acting holomorphically and e!ectively on a

Riemann surfaceX . Fix a point p $ X . Then there is an open neighborhoodU of p such

that:

a) U is invariant under the stabilizerGp: g áp $ U for everyg $ Gp and p $ U;

b) U 8 (g áU) = ; for everyg /$ Gp;

c) the natural map$ : U/Gp % X/G , induced by sending a point inU to its orbit, is a

homeomorphism onto an open subset ofX/G ;

d) no point of U except p is Þxed by any element ofGp.

Proof. See the book of Rick Miranda [21] (p77).

The above proposition helps us to define charts on X/G . We just have to define charts on

U/Gp and transport these to X/G via the map $ . More details can be found in the book

of Rick Miranda [21].

Theorem 2.35. Let G be a Þnite group acting holomorphically and e!ectively on a Riemann

surfaceX . Then there exists a complex structure onX/G such that X/G is a Riemann

surface and that the projection%: X % X/G is holomorphic. Moreover%is of degree|G|

and multp(%) = |Gp| for any p $ X .

Proposition 2.36. A group G acting holomorphically and e!ectively on a Riemann surface

X is isomorphic to a group of automorphisms ofX .

Hence in the following we will identify each group acting holomorphically and e↵ectively

on a Riemann surface with a group of automorphism.

We suppose now that X is a compact Riemann surface. Note that in this case, X/G is

compact too.

In the following we explain the link between stabilizer subgroups and the ramification points

of the quotient map %.

Let %: X % X/G be the projection map and y a point of X/G . The set of the pre-images

of y is a single orbit and for each point x of this orbit, we have multx(%) = |Gx |. Since

stabilizer subgroups of points of the same orbit are conjugated, multx(%) is a constant
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integer r . The set %�1(y) contains exactly s = |G|/r elements.

The set of ramification points of %corresponds exactly to the set of point with nontrivial

stabilizer subgroup. This set is a disjoint finite union of orbits. Moreover, these orbits

correspond to the branch points.

We apply the Hurwitz’s formula to the quotient map %. Let y1, ..., yk be the k branch

points in X/G of %and ri be the multiplicity of the |G|/r i points in %�1(yi ), with ri 1 2.

Then

2g(X ) ! 2 = |G|(2g(X/G ) ! 2)+
k&

i=1

|G|
ri
(ri ! 1) = |G|[2g(X/G ) ! 2+

k&

i=1

(1 !
1

ri
)] (2.3)

Set R :=
+ k

i=1 (1 ! 1
ri
). Then we get

2g(X ) ! 2 = |G|[2g(X/G ) ! 2 + R]. (2.4)

This equation is very important and gives us many pieces of information about the finite

groups which can act on a Riemann surface. Moreover the quantity R =
+ k

i=1 (1 ! 1
ri
) is

clearly important in studying the actions. Some special values of R will help us in the next

sections. The following lemma is elementary and can be shown by a direct check.

Lemma 2.37. Suppose thatk integer r1, . . . , rk with ri 1 2 for each i are given. Let

R =
+ k

i=1 (1 ! 1
ri
). Then

a) R < 2 +, k, { ri } =

'
((((()

(((((*

k = 1, any r1

k = 2, any r1, r2

k = 3, { ri } = { 2, 2, any r3} or

k = 3, { ri } = { 2, 3, 3} or { 2, 3, 4} or { 2, 3, 5}

b) R = 2 +, k, { ri } =

0
k = 3, { ri } = { 2, 3, 6} or { 2, 4, 4} or { 3, 3, 3} ;

k = 4, { ri } = { 2, 2, 2, 2}

We now consider the situation of the Riemann sphere and of the tori.



Chapitre 2. Automorphic algebras. 79

2.3.2 The situation of the Riemann sphere.

Using Identity (2.4) we are able to determine the finite groups acting holomorphically and

e↵ectively on the Riemann surface C1.
Suppose that G is a finite group acting holomorphically and e↵ectively on C1. Since C1
has genus 0, C1/G has genus 0 too. So the Hurwitz formula in this case says that

! 2 = |G|[! 2 + R].

We see that if G is not the trivial group (i.e. |G| > 1) then R .= 0 and there must be

ramification points. Moreover since |G| > 0 we must have R < 2.

We use the same notation as above.

Suppose that k = 1, then R = 1 ! 1
r for some r 1 2. So 0 < R < 1 and 2 > 2 ! R > 1;

hence |G| = 2/ (2 ! R) will not be an integer. That is not possible, thus k cannot be 1.

Suppose now that k = 2. From Lemma 2.37 any r1, r2 is possible. In fact not all possibilities

can occur and we show that r1 and r2 must be equal. To see this suppose that the branch

points are y1 and y2. Consider a small loop ' in C1/G around y1 which starts and ends

at a point y0 . This loop ' may be lifted to a curve in C1 starting at any of the |G|

points in the fiber of % over y0. The permutation of this fiber of % given by sending a

point p in the fiber to the endpoint of the lift of ' which starts at p, is of order r1. Similar

considerations apply to a small loop around y2 give a permutation of order r2. However

since C1/G /= C1, these two loops are homotopic; hence the permutations must have
the same order, so r1 = r2 = r .

In this case |G| = 2/ (2 ! R) = r . This is achieved by the cyclic group Zr of order r , acting

on C1 by multiplying the coordinate z by r th roots of unity.

In case k = 3, we see that:

i f { ri } = { 2, 2, r } , then |G| = 2r ;

i f { ri } = { 2, 3, 3} , then |G| = 12;

i f { ri } = { 2, 3, 4} , then |G| = 24;

i f { ri } = { 2, 3, 5} , then |G| = 60

The first case is achieved by the action of a dihedral group Dr . The latter cases are

achieved by actions of T, O, and I. These are the famous ”platonic solid actions”, which
are groups acting on the sphere leaving either a tetrahedron (the 2,3,3 case), a cube and
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a octahedron (the 2,3,4 case), or a dodecahedron and a icosahedron (the 2,3,5 case)

invariant.

Let us give explicitly the action of these groups in terms of finite groups of automorphism.

Note that we give for each case an explicit example of the realization of the action. Other

realizations can be given by conjugating these examples. For more details, see the paper

of Lombardo and Mikhailov [20]

1. The group ZN , N $ N⇤:
It is the group generated by the transformation

) (z) = ⌦z, ⌦ = exp

$
2%i
N

%
, ZN = { ) n/n = 0, 1, . . . , N ! 1}

There are two points which are fixed by elements of ZN : 0 and # . The orbits are:

ZN(0) = { 0} , ZN(# ) = {#} .

The stabilizer groups are

(ZN)0 = (ZN)1 = ZN .

2. The dihedral group DN :

It is of order 2N and generated by two transformations:

) s(z) = ⌦z, ) t (z) =
1

z
, ⌦ = exp

$
2%i
N

%

They verify ) N
s = ) 2

t = () s) t )2 = id and we have:

DN = { ) n
s , ) n

s ) t /n = 0, . . . , N ! 1}

We give the non-generic orbits (i.e. the orbits containing fixed points). If N is odd:

DN(0) = { 0, #} , |(DN)0| = N

DN(1) =
5
1, ⌦, . . . , ⌦N�16

, |(DN)1| = 2

DN(! 1) =
5

! 1, ! ⌦, . . . , ! ⌦N�16
, |(DN)�1| = 2

If N is even, then DN(1) = DN(! 1) but:

DN(i) =
5

i, i⌦, . . . , i ⌦N�16
, |(DN)i | = 2
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3. The group T (note that T /= A4):

It is of order 12 and generated by two transformations:

) s(z) = ! z, ) t (z) =
z + i
z ! i

.

We have ) 2
s = ) 3

t = () s) t )3 = id and

T = { ) n
t , ) n

t ) s) m
t |n, m = 0, 1, 2} .

There are three non-generic orbits. One coming from the two fixed points of the

transformation ) s; 0 and # :

T(0) = { 0, # , ± 1, ± i } , |(T)0| = 2

The transformation ) t has two fixed points, ' 1 =
1 + i

1 +
<
3
= & + i &̄ and

' 2 =
1 + i

1 !
<
3
= i& + &̄ with & = exp

$
2i%
3

%
and:

T(' 1) = {± (& + i &̄), ± (& ! i &̄)} , |(T)" 1 | = 3

T(' 2) = {± i(& + i &̄), ± i(& ! i &̄)} , |(T)" 2 | = 3

4. The group O (note that O /= S4):

It is of order 24 and generated by two transformations:

) s(z) = iz , ) t (z) =
z + 1
z ! 1

These generators verify ) 4
s = ) 2

t = () s) t )3 = id and we have

O = { ) n
s , ) n

s ) t ) m
s , ) s) 2

t ) s|n, m = 0, 1, 2, 3}

There are three non-generic orbits:

O(0) = T(0) = { 0, # , ± 1, ± i } , |T0| = 2

The above point ' 1 is a fixed point of ) t , hence:

O(' 1) = T(' 1)
>
T(' 2)

The point " = exp(i%/4) id a fixed point of z 3%i/z , hence:

O(" ) =
5

± ", ± "̄, i n(1 + " + "̄ ), i n(1 ! " ! "̄ )/n = 0, 1, 2, 3
6
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5. The group I (note that I /= A5):

It is of order 60 and generated by two transformation:

) s(z) = -z, ) t (z) =
(-2 + -3)z + 1

z ! -2 ! -3 , - = exp
$
2%i
5

%
.

The generators verify ) 5
s = ) 2

t = id and we have

I = { ) n
s , ) n

s ) t ) m
s , ) n

s ) t ) 2
s ) t ) m

s , ) n
s ) t ) 2

s ) t ) 3
s ) t |n, m = 0, 1, 2, 3, 4} .

There are three non-generic orbits:

I(0) =
5
0, # , - k+1 + -k�1, - k+2 + -k�2?

k = 0, 1, 2, 3, 4
6

,

The transformation ) 2
s ) t ) 2

s(z) =
(1 + -̄)z + 1

z ! 1 ! -
has two fixed points:

µ1 =
3 +

<
5 +

@
6(5 +

<
5)

4
= 1 ! &- ! &̄-̄,

µ2 =
3 +

<
5 !

@
6(5 +

<
5)

4
= 1 ! &̄- ! &-̄

The orbits I(µ1) = I(µ2) contain 20 points which are the roots of

z20 ! 228z15 + 494z10 + 228z5 + 1 = 0.

The point i is a fixed point of the transformation ) 2
s ) t ) 3

s ) t ) 2
s ) t (z) = ! 1/z . The

orbit I(i) contains 30 points which are the roots of

z30 + 522z25 ! 10005z20 ! 10005z10 ! 522z5 + 1 = 0.

DeÞnition 2.38. An homography ofC1 is a map from) : C1 % C1 such that

) (z) =
az+ b
cz + d

with ad ! bc .= 0, ) (! d/c ) = # , ) (# ) = a/c if c .= 0 and ) (# ) = # if c = 0.

The set of homographies is a group for the usual composition denoted byH.

The homographies are also called fractional linear transformations.



Chapitre 2. Automorphic algebras. 83

Let ) 1(z) = (a1z+b1)/ (c1z+d1) and ) 2(z) = (a2z+b2)/ (c2z+d2) be two homographies.

The composition ) 1 ( ) 2 is

) 1 ( ) 2(z) =
(a1a2 + b1c2)z + (a1b2 + b1d2)
(c1a2 + d1c2)z + (c1b2 + d1d2)

Hence the inverse of ) 1 is ) �1
1 (z) = (d1z ! b1)/ (! c1z + a1)

It is now clear that the homographies are related with the invertible 2x2 matrix. In fact

there is the following surjective group morphism:

! : GL(2,C) !% H
A

a b

c d

B

3!% z 3%
az+ b
cz + d

Moreover an homography is invariant by dividing a, b, c, d by
<

ad ! bc. Hence we can

always choose a, b, c, d such that ad ! bc = 1. Thus there is also the following surjective

group morphism:

! : SL(2,C) !% H
A

a b

c d

B

3!% z 3%
az+ b
cz + d

By the Isomorphism theorem we get :

H /= P SL(2,C) /= P GL(2,C)

where P SL(2,C) = SL(2,C)/ ± Id and P GL(2,C) = GL(2,C)/ C⇤Id .

Proposition 2.39.

Aut (C1) = H

Proof. Of course an homography is an automorphism of C1.
Let ) be in Aut (C1) . We said before that a holomorphic map from C1 to C1 can be
viewed as an meromorphic function of C1. Hence as ) is an automorphism of C1, it is
in particular a holomorphic map from C1 to C1 and can identified with a meromorphic
function of C1.
We proved before that the set of meromorphic functions of C1 is the set of the rational
functions C(z). Thus ) (z) = P(z)/Q (z) where P and Q are two polynomial functions.

Since ) is an automorphism, it has degree one. That implies that as a meromorphic

function ) must have a single simple zero and a single simple pole. So the polynomial



Chapitre 2. Automorphic algebras. 84

function P and Q must be respectively of the form az+ b and cz + d. Note that a = 0

correspond the case of a zero in # and b = 0 to a pole in # . Finally to avoid ) to be a

constant, P and Q must be non-proportional. Hence ad ! cb .= 0. That shows that ) is

an homography of C1.

We give now the classification of the finite groups of Aut (C1).

DeÞnition 2.40. Let A and B be two Þnite subgroups ofAut (C1). The groupsA and B

are said to be conjugated if there exists) $ Aut (C1) such that:

A = )B) �1.

The conjugation is an equivalence relation for the finite subgroups of Aut (C1). Of course
two conjugated groups are isomorphic.

Theorem 2.41. Up to conjugation, the only Þnite subgroups ofAut (C1) are

ZN , DN , T, O, I

with N $ Z.

For the proof see [16].

2.3.3 The situation of the tori.

Proposition 2.42. Let X andY be two complex tori given by latticesL andM respectively.

Then any holomorphic mapF : X % Y is induced by a mapG : C % C of the form

G(z) = 'z + a, where ' is a constant such that'L 0 M. That means the holomorphic

map G is a lift of F to the universal coverings of the tori (i.e.C).

The map F sends zero to zero if and only ifa $ M . The map F is an isomorphism if and

only if 'L = M.

The proof can be found in the book of Rick Miranda [21].

There are some special lattices:

The square lattices which have orthogonal generators of the same length. The hexagonal
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lattices which have generators of the same length separated by an angle of %/3.

Proposition 2.43. Let X = C/L be a complex torus. Any holomorphic mapF : X % X

Þxing0 is induced by the multiplication by some' $ C. If F is an automorphisms, then

either:

1. L is a square lattice and' is a 4th root of unity;

2. L is a hexagonal lattice and' is a 6th root of unity; or

3. L is neither square nor hexagonal and' = ± 1.

Using the two above proposition, we are able to describe all automorphisms of complex

tori. Let F : X % X be an automorphism of the complex torus X . The map F is induced

by a linear map G : C % C of the form G(z) = 'z + a where ' is either a 4th root of

unity, a 6th root of unity, or ' = ± 1, depending to the form of the lattice L. Note that

the only automorphisms without fixed points are translations.

Proposition 2.44. Let X be a complex torus andG a Þnite group acting holomorphically

and e!ectively on X . Then the Riemann surfaceX/G is of genus 1 if and only ifG is a

Þnite group of translations ofX .

If G contains at least one automorphism Þxing at least one point ofX ; then X/G is of

genus0. Moreover the possible ramiÞcation for the quotient map%are:

k = 3, { ri } = { 2, 3, 6} , { 2, 4, 4} , or { 3, 3, 3}

or

k = 4, { ri } = { 2, 2, 2, 2}

This means there arek ramiÞcation points with multiplicitiesri ; i = 1, . . . , k (i.e. k

nontrivial orbits with stabilizer subgroups of orderri ).

Proof. If X is a Riemann surface of genus 1 and G a finite group acting holomorphically

and e↵ectively on X , we get from Equation 2.4:

R = 2 ! 2g(X/G )

As R 1 0 it follows that g(X/G ) is at most one and R = 0 or R = 2. Moreover R = 0 if

and only if g(X/G ) = 1 and R = 2 if and only of g(X/G ) = 0.

Note that R = 0 means that there are no ramification points for the map %i.e. that there
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are no points in X with nontrivial stabilizer subgroups. According to the description of the

automorphisms of a complex torus, it is clear that the only automorphism with no fixed

points are translations. Hence G can be identified as a finite group of translations of X .

If R = 2, then X/G is of genus zero and there are k 1 1 ramification points for %. Remem-

ber that ri 1 2 and that R :=
+ k

i=1 (1!
1
ri
). As 1

2 4
C
1 ! 1

ri

D
4 1, it’s clear that 3 4 k 4 4.

A direct check shows that R = 2 is only possible for { ri } = { 2, 3, 6} , { 2, 4, 4} , or { 3, 3, 3}

for k = 3 and { ri } = { 2, 2, 2, 2} for k = 4.

Using the results on holomorphic maps between complex tori we can give the classification

of complex tori.

First we remark that every complex torus is isomorphic to a complex torus X, defined by

a lattice L, generated by 1 and * , where * is a complex number with positive imaginary

part. In fact, if a lattice L is generated by &1 and &2, then using ' := 1/& 1 maps L into

the lattice generated by 1 and &2/& 1. If the ratio &2/& 1 is in the upper half-plane, then

this is * ; otherwise we take the equivalent generator * := ! &2/& 1.

Now, in order to classify complex tori we ask when X, and X, 0 are isomorphic. This is the

case if there exists a complex number ' such that 'L , = L, 0 . Since L, and L, 0 are both

generated by 1 and respectively * and * 0, this is equivalent to having the two numbers

' and '* generating L, 0 . So we need that ' and '* lie in L, 0 : there must be integers

a, b, c, d such that ' = c* 0 + d and '* = a* 0 + b. That gives * = (a* 0 + b)/ (c* 0 + d).

Moreover for ' and '* to generate L, 0 , we must have the determinant ad ! bc equal to

± 1. In fact, since both *, * 0 are in the upper half plane it must be equal to 1. These two

conditions are clearly su�cient, and we have proven the following:

Proposition 2.45. Two complex tori X, and X, 0 are isomorphic if and only if there is a

matrix

A
a b

c d

B

in SL(2,Z) such that * = (a* 0 + b)/ (c* 0 + d).



Chapitre 2. Automorphic algebras. 87

2.3.4 Higher genus situation.

Let X be a compact Riemann surface of genus g 1 2.

Theorem 2.46 (Hurwitz [9]).

1. Aut (X ) is always Þnite.

2. |Aut (X )| 4 84(g ! 1).

3. A generic Riemann surface of genusg 1 3 does not have any non-trivial automor-

phisms.

Remark: “Generic” is a loose expression for the following fact, if you take a completely

arbitrary Riemann surface of genus g 1 3 then it will have with very high chance no non-

trivial automorphism.

Mathematically more precise is that the moduli space compact Riemann surfaces of genus

g >= 2 has (complex) dimension 3g ! 3 and the set of Riemann surfaces with nontrivial

automorphism for genus g >= 3 is a “subscheme of codimension” at least 1.

Despite the Result 3 of the theorem above there are very interesting Riemann Surfaces

with nontrivial automorphism groups.

1. Hurwitz Riemann surfaces.

A Riemann surface of genus g 1 2 which has exactly the automorphisms group of

order 84(g ! 1) is called a Hurwitz Riemann surface.

2. Hyperelliptic Riemann surfaces .

They generalize tori (also called elliptic surfaces) and are compact Riemann surfaces

which are a twofold covering of the Riemann sphere. Interchanging the covering

sheets gives an automorphism which is of order 2 (an involution).

In the case of genus 2 all Riemann surface are hyperelliptic.

If we take as subgroup of the automorphism group of an hyperelliptic Riemann surface

the subgroup generated by the involution we obtain as quotient the Riemann sphere

and as quotient map the covering map defining the hyperelliptic Riemann surface.

Moreover if we check (2.4) we see that the number of branch points is exactly 2g+2.

As the ramification indices are always exactly 2, over each branch point there lies

exactly one ramification point. As they constitute the set of fixed points of the

involution, the hyperelliptic involution has exactly 2g+ 2 fixed points.

This result is also true for genus one. Here the involution is z mod L 3% !z mod L

and the fixed points are the points 1/ 2, * / 2, (1 + * )/ 2.
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2.4 Automorphic algebras

2.4.1 G-invariant functions

Let X be an arbitrary compact Riemann surface. Let G be a finite group acting holomor-

phically on X . Associated to this left action on X there is a left action on M (X ), the set

of meromorphic function of X ,

G - M (X ) % M (X ) : (g, f ) 3%g áf

where the meromorphic function g áf is defined by

g áf (p) := f (g�1 áp)

DeÞnition 2.47. A meromorphic function onX is called G-invariant if for all g $ G,

g.f = f .

The set of G-invariant function of X is denoted byM G(X )

DeÞnition 2.48. There is a natural projection fromM (X ) to M G(X ):

6 7G : M (X ) % M G(X )

f 3% 6f 7G :=
1

|G|

&

g2G

g.f

The following is immediate:

Proposition 2.49. Let f be a function ofM (X ).

a 6f 7G is a G-invariant function.

b If f is G-invariant 6f 7G = f

c 66f 7G7G = 6f 7G

Proposition 2.50. Let N be a normal subgroup ofG. Then

6f 7G = 66f 7N 7G/N
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Proof. We proof first that the projection 6 7G/N is well defined for f $ M N(�). Suppose

that ḡ = h̄ in the quotient group G/N , so that g�1h $ N. Then g�1h áf = f since

f $ M N(X ) and so h áf = g áf . That proves that 6 7G/N is well defined for f $ M N(�).

And now:

66f 7N 7G/N =
|N|
|G|

&

øg2G/N

g á 6f 7N =
|N|
|G|

&

øg2G/N

g á
1

|N|

&

h2N

=
|N|
|G|
1

|N|

&

øg2G/N
h2N

gh áf

=
1

|G|

&

øg2G/N
l2øg

l áf since ḡ = { gh, h $ N}

=
1

|G|

&

l2G

l áf = 6f 7G

Proposition 2.51. Consider the kernel subgroupK of the action of G on X . Then

6f 7K = f , * f $ M (X )

and

6f 7G = 6f 7G/K

HenceM G(X ) = M G/K (X ).

Due to the previous proposition it is enough to consider holomorphic and e↵ective actions

on X . Recall that in this case, such a group acting on X can be identified with a subgroup

of automorphisms of X .

From now on, an action will be holomorphic and e↵ective.

Let us give some properties of G-invariant functions.

Proposition 2.52. Let f be a G-invariant function.

For any x $ X , ordx(f ) = ordg.x (f ) for all g $ G. This means that if f has a pole or

zero in x then f has a pole or zero of the same order ing.x for all g $ G. Likewise if f is

holomorphic inx, then f is holomorphic ing.x for all g $ G.
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Proof. Let K be the order of f in x (i.e. K := ordx(f )). We choose a local coordinate z

centered around x and expand the function f as a Laurent series around x:

f (z) =
&

n�K

anzn, aK .= 0.

Let g be an element of G. We write the automorphism g�1 in local coordinates as a Laurent

series. We choose a local coordinate z0 centered around g.x and the local coordinate z

centered around x (the same local coordinate as above). Since g�1 is an automorphism

hence its Laurent series is

g�1(z0) =
&

n�1

bnzn, b1 .= 0.

By composition of the two above Laurent series we get the Laurent series of the function

f ( g�1 in the local coordinate z0 around gẋ. We get

f ( g�1(z0) =
&

n�K

an

1

2
&

m�1

bmzm

3

4

n

=
&

n�K

cnzn,

for some cn $ C with cK .= 0. Hence the order of the function f ( g�1 in g.x is K . But

since f is a G-invariant function we have

f ( g�1 = f .

So

ordg·x f = ordg·x f ( g�1 = K = ordx f .

Proposition 2.53. The algebrasM G(X ) and M (X/G ) are isomorphic.

Proof. Let us give the isomorphism. Consider

� : M (X/G ) % M G(X )

f̄ 3%f

where f (x) := f̄ (x̄) for all x̄ $ X/G . Said di↵erently, f = f̄ ( %where % is the usual

quotient map from X to X/G .

Note that f is meromorphic since % is a holomorphic map and f̄ a meromorphic function.

Moreover f is G-invariant: f (g.x) = f̄ (g.x) = f̄ (x̄) = f (x) for all g $ G and x $ X .
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It is easy to verify that � is a morphism of algebras. To show that this morphism is an

isomorphism we give the inverse of the map:

��1 : M G(X ) % M (X/G )

f 3%f̄

where f̄ (x̄) := f (x). The function f̄ is well defined since f is G-invariant. We just have to

show that the function f̄ is a meromorphic function of X/G . We know that there is just a

finite set of points of X with non trivial stabilizer group. We denote this set by S. Then for

each point p of X/G \ %(S), the group Gp is of order 1 and then multp(%) = 1. This means

that % is local homeomorphism in p. So it is clear that the function f̄ is meromorphic in

X \ S. As the poles of f̄ are isolated points, we can find for each point s $ S an open set

Us such that f̄ is holomorphic in Us \ { %(s)} . Then %(s) is a singularity of f̄ . But %(s)

cannot be an essential singularity because in this case f should have an essential singularity

in each points of %�1(%(s)), and that is not true. Hence %(s) is an removable singularity

or a pole and hence f̄ is meromorphic on X/G .

Let � be a finite set of points of a Riemann surface X . We consider the Krichever-Novikov

algebra M (X, �) of global meromorphic functions on X which are holomorphic on X \ �.

DeÞnition 2.54. The set of global meromorphic functions onX which are holomorphic

on X \ � andG-invariant is a subalgebra ofM G(X ) and ofM (X, �) denoted byM G(X, �).

Proposition 2.55. 1. M G(X, �) = M G(X ) 8 M (X, �).

2. The set � can always be split into two subsets�1 and �2 such that �1 contains all

the full orbits and�2 the other points and we have

M G(X, �) = M G(X, �1).

3. Suppose that�1 =
; N

i=1 G(Pi ). Hence

M G(X, �) = M G(X, �1) /= M (X/G, %(�1)).
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Note that %(�1) = %(P1) " á á á "%(PN).

Proof. 1. It is obvious by the definition of M G(X, �).

2. According to Proposition 2.52 a non-constant G-invariant function cannot have a

pole at a point P without having poles at each point of the orbits G(P). This clearly

proves the assertion 2.

3. It is just by restriction of the isomorphism of Proposition 2.53.

We can remark that if �1 = ; , then M G(X, �) = M G(X, ; ) = O(X ) = C.

Hence without restriction it is enough to consider sets � which are the union of full orbits.

Corollary 2.56. Let � be a union of full orbits.

The algebraM G(X, �) is a Krichever-Novikov algebra.

Hence the algebraM G(X, �) admits almost-graded structures. There are three situations:

1. If � = ; , then M G(X, �) = C and the almost-graded decomposition is trivial.

2. If � =
; N

i=1 G(Pi ) with N > 1, then associated to any splitting of� into two disjoint

sets of orbits,M G(X, �) admits an almost-graded decomposition.

3. If � = G(Q) consists of oneG-orbit, then for any choice of orbit G(P) with

P /$ G(Q), M G(X, �) admits an almost-graded decomposition coming from the

algebraM + of the algebraM G(X, G(P) " G(Q)).

Proof. It is obvious since M G(X, �) /= M (X/G, %(�)) and since M (X/G, %(�)) is a

KN-algebra.

Note that M G(X, �) is a subalgebra of the Krichever-Novikov algebra M (X, �) and is

isomorphic to the Krichever-Novikov algebra M (X/G, %(�)).

2.4.2 G-invariant current algebras

Let L be a finite dimensional Lie algebra. The classical current algebra associated to L is

the algebra L̄ := C[z, z�1] ) L with Lie structure

[zn ) x, zm ) y] = zn+ m ) [x, y], x, y $ A , n, m $ Z
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The algebra L̄ can be described as the Lie algebra of L -valued meromorphic functions on

the Riemann sphere which are holomorphic outside 0 and # . Starting from this description,

the natural extension to a higher genus compact Riemann surface X is to replace C[z, z�1]

by an associative algebra of meromorphic functions on X .

More generally if L is a Lie algebra and A an associative, commutative and unital algebra

then the tensor vector space A ) L is a Lie algebra with the bracket

[a ) x, b ) y] := ab ) [x, y].

In this way we define some Lie algebras:

DeÞnition 2.57. Let L be a Þnite dimensional Lie algebra,X a Riemann surface and� a

Þnite set of points ofX . We deÞne the following Lie algebras

1. L (X ) := M (X ) ) L

2. L (X, �) := M (X, �) ) L

Consider now any Þnite groupG acting on L (X ).

3. LG(X ) := { a $ L (X ) | g.a= a, * g $ G}. This is just the set ofG-invariant elements

of L (X ).

4. LG(X, �) := { a $ L (X, �) | g.a = a, * g $ G}. Note that LG(X, �) = LG(X ) 8

L (X, �).

5. L 0
G := 6L7G = { a $ L /= C ) L | g.a= a, * g $ G}

The following facts are immediate:

1. L (X, �), LG(X ) and LG(X, �) are subalgebras of L (X ).

2. LG(X, �) is a subalgebra of LG(X ).

3. L /= C ) L is a subalgebra of L (X ).

4. L 0
G is a subalgebra of L .

5. The algebra L (X ) is a natural M (X )-module: g á(f ) a) := gf ) a for g, f $ M (X )

and a $ L .

6. Likewise the algebra L (X, �) is naturally a M (X, �) module.
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7. As for G-invariant functions, for any element a $ L (X ) we define

6a7G :=
1

|G|

&

g2G
g áa.

We have LG(X ) = 6L(X )7G .

Proposition 2.58. For any splitting of� into two subsetsI and O, the Lie algebraL (X, �)

admits a natural almost-graded structure coming from the almost-grading of the associative

algebraM (X, �).

For a single point set� = { Q} , the Lie-algebraL (X, �) admits a natural almost-graded

structure depending of a second reference pointP.

Proof. Let M (X, �) :=
!

n2ZM n be the almost-graded decomposition of M (X, �) of

Theorem 2.31. Then

L (X, �) =
=

n2Z
L n

where L n := M n ) L . Since L is supposed to be a finite-dimensional Lie algebra, the

subspaces L n are finite-dimensional too. This decomposition gives obviously an almost-

graded structure to L (X, �).

If � = { Q} , as above we choose a reference point P and we consider the almost-graded

structure M (X, { P} "̇{ Q} ) =
!

n2ZM n associated to the splitting � = { P} "̇{ Q} . Thus

the algebra M (X, �) is equal to the algebra M + :=
!

n�0 M n. That gives an almost-

graded structure to the algebra M (X, �). Hence the decomposition

L (X, �) :=
=

n�0

L n

with L n := M n ) L , * n 1 0 gives as above an almost-graded structure to the Lie algebra

L (X, Q).

Proposition 2.59. Let G be a Þnite group acting onL (X ) and N a normal subgroup of

G. Then for all a $ L (X )

6a7G = 66a7N7G/N .

Proof. It is exactly the same proof as for Proposition 2.50.
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The elements of L (X ) can be described as the L -valued meromorphic functions on the

Riemann surface X . For this we have to define what we exactly mean by ”meromorphic”,

”poles”, ”holomorphic” for the elements of L (X ).

DeÞnition 2.60. Let a $ L (X ). Let { e1, . . . , en} be a basis of the Lie algebraL . Thus

a =
+ n

i=1 fi ei where fi $ M (X ) (for convenience we dropped the sign) ) . For all point

p in X , we choose a local coordinatez and we expand each functionfi as a Laurent series

aroundp. Thus a is locally written as

a(z) =
&

n�M

anzn

wherean $ L , * n $ L and with aM .= 0. This series is called the Laurent series ofa at

the point p.

Using the Laurent series of an elementa $ L (X ) we can deÞne the order ofa in a point

p $ X by

ordpa= M

As for functions the order is well-deÞned (it does not depend on the chosen coordinate)

and p is a pole ofa if M < 0, a is holomorphic inp if M 1 0 and p is a zero ofa if M > 0.

2.4.3 Groups acting on L (X )

Here we give a natural way to get a finite group acting on the tensor Lie algebra L (X ). We

explain how we can reduce to some groups which are isomorphic to finite groups acting on

a Riemann surface X and which are acting simultaneously on M (X ) and L . This method

can be found in the paper of Lombardo and Mikhailov [20] for the genus 0 case but it is

still true for higher genus Riemann surfaces.

The first restriction is to consider subgroups of the direct product group Aut (X )- Aut (L ):

Proposition 2.61. The direct product groupAut (X )- Aut (L ) is a subgroup ofAut (L (X )).

Proof. The elements of Aut (X ) - Aut (L ) can be identified with elements of Aut (L (X )).

Let (g, ) ) $ Aut (X ) - Aut (L ). We define the automorphism

(g, ) ) : L (X ) % L (X )

f ) a 3%g áf ) ) (a)
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where g áf is the action defined in the section 2.4.1.

This is clearly a Lie algebra morphism since g is associated to a morphism of M (X ) and

) a morphism of L . Moreover the inverse map of (g, ) ) is just the map (g�1, ) �1).

We can now reduce our discussion to finite subgroups of Aut (X ) - Aut (L ) acting simul-

taneously on M (X ) and L . This is the topic of the two following results:

Theorem 2.62 ([20]). Consider two groupsA and B and G a subgroup of the direct group

A - B. We deÞne:

U1 := G 8 (A - id), U2 := G 8 (id - B), K := U1 áU2

Then:

1. U1, U2 and K are normal subgroups ofG

2. %i (Ui ) is a normal subgroup of%i (G) for i = 1, 2 (where%1 and%2 are the projections

on A and B).

3. There is two isomorphisms

. 1 : G/K % %1(G)/%1(K ), . 2 : G/K % %2(G)/%2(K )

4. G/K /= diag(. 1(G/K ) - . 2(G/K )) := { (. 1(g), . 2(g)) | g $ G/K }

Proposition 2.63 ([20]). Let G 0 Aut (X ) - Aut A be a Þnite group. Consider the normal

subgroupsU1, U2 and K of the previous theorem. Then

LG(X ) = 6L(X )7G =
EF

6L(X )7U1

G
U2

H

G/K
=

EF
6L(X )7U2

G
U1

H

G/K
.

Note that in the paper of Lombardo and Mikhailov [20] the Riemann surface X is always

supposed to be the Riemann sphere but the proposition is even true for any Riemann

surface.

Using Theorem 2.62 and Proposition 2.63 we can conclude the following:

Let G 0 Aut (X ) - Aut L be a finite group. The group U1 consists of the automorphism

of G which are acting just on M (X ). Thus averaging over U1 is equivalent to replace in

M (X ) )L the associative algebra M (X ) by the subalgebra M +1(U1)(X ). In the same way,
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averaging over U2 is equivalent to replacing the Lie algebra L by the Lie algebra L +2(G)

of the %2(G)-invariant elements of L . Hence new e↵ects (beyond the already discussed

action on M (X ) and the automorphisms of L separately) will only appear if we have simul-

taneous transformation and we might even assume the subgroup K to be trivial to study

these e↵ects. But from Theorem 2.62, if K is trivial then G /= %1(G) /= %2(G).

Hence, if G is finite in this case it will be isomorphic to a finite subgroup G of Aut (X ) and

finally (again using theorem 2.62) G= diag(G, . (G)), where . : G % Aut (L ) is a group

monomorphism.

We study more precisely this situation in the following.

We have similar results as for the G-invariant function:

Proposition 2.64. Let G be a Þnite group acting onL (X ) and G the corresponding Þnite

group of Aut (X ).

Let a be in LG(X )

For any x $ X , ordx(a) = ordg.x (a) for all g $ G. If a is holomorphic inx, then a is

holomorphic ing.x for all g $ G.

Proof. That follows directly from Proposition 2.52.

Proposition 2.65. Let G be a Þnite group acting onL (X ) and G the corresponding Þnite

group of Aut (X ). Let � be a Þnite set of point ofX . We split � into �1 and �2 such that

�1 contains all the full orbits and�2 the other points.

1. LG(X, �) = LG(X, �1)

2. If �1 = ; , then LG(X, �) = 6L7G .

3. The Lie algebraLG(X ) is a M G(X )-module.

4. The Lie algebraLG(X, �) is a M G(X, �)-module.

5. For f $ M G(X ) and a $ L (X )

6f áa7G = f á 6a7G

Proof. The first assertion is a direct consequence of the previous proposition: a G-invariant

element with a pole in p has necessarily a pole in each points of the orbit G(p).

The other assertions are obvious.
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We remark that as before it is enough to consider sets � of full orbits.

2.4.4 Almost-graded structures G-invariant current algebras

Let L be a finite-dimensional Lie algebra, X a compact Riemann surface, G a finite group

of Aut (X ) and . : G % Aut (L ) a group monomorphism.

We consider the average 6 7G : L (X ) % L (X ) defined as

6f ) x7G :=
1

|G|

&

g2G
g á(f ) x) =

1

|G|

&

g2G

g áf ) . (g) áx

for all f $ M (X ) and x $ L .

Since
F
6 7G

G
G = 6 7G , this is a projection of the vector space L (X ).

The projection 6 7G can be restricted to a projection of the vector space L :

6x7G =
1

|G|

&

g2G

. (g) áx, * x $ L .

Hence

L = Im6 7G & Ker 6 7G .

Note that the above restricted average is exactly the usual average 6 7G of the faithful

representation . of the finite group G, and the subspace Im6 7G is exactly the G-module

L G of the invariant element of L . From now on we will use the notation 6 7G to denote

the restricted average to L and L G to denote the space of the invariant elements of L .

From now on this decomposition will be noted as

L = L G & Ker 6 7G .

The following properties are obvious:

1. L G := { x $ L | . (g) áx = x, * g $ G} .

2. . (g) ( 6 7G = 6 7G ( . (g) = 6 7G , * g $ G.

3. LG and Ker6 7G are both G-modules.
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Proposition 2.66.

1. L G is a Lie subalgebra ofL .

2. [L , Ker6 7G] 0 Ker6 7G .

3. Let f $ M (X ) and x $ L G

6f ) x7G = 6f 7G ) x

In particular f ) x is G-invariant if and only iff $ M G(X ).

4. Let f $ M (X ) and y $ Ker6 7G

6f ) y7G $ M (X ) ) Ker6 7G .

In particular if f is a constant map,6f ) y7G = 0.

Proof. 1. L G is a vector subspace of L and since for all g $ G the map . (g) is an

automorphism of Lie algebra, we have

. (g) á[x, y] = [. (g) áx, . (g) áy] = [x, y], * x, y $ L G.

So [L G, L G] 9 L G and L G is a Lie subalgebra of L .

2. Let x $ L and y $ Ker 6 7G. We have

6[x, y]7G =
1

G

&

g2G

. (g) á[x, y] =
1

G

&

g2G

[. (g) áx, . (g) áy] =
1

G

&

g2G

[. (g) áx,0] = 0.

Hence [x, y] $ Ker 6 7G.

3. Since x $ L G, . (g) áx = x for all g $ G. Hence

6f ) x7G =
1

|G|

&

g2G

g áf ) . (g).x =
1

|G|

&

g2G

g áf ) x = 6f 7G ) x.

4. Since Ker 6 7G is a G-module, . (g) áy $ Ker 6 7G for all g $ G. So

6f ) y7G =
1

|G|

&

g2G

g áf ) . (g) áy $ M (X ) ) Ker 6 7G .
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Let N be the dimension of L and let K (4 N) be the dimension of L G.

Let { e1, . . . , eN } be a basis of L such that { e1, . . . , eK } is a basis of the algebra L G and

{ eK +1 , . . . , eN } a basis of the vector space Ker6 7G. Any element a of L (X ) is written as

a=
N&

i=1

fi ) ei

with fi $ M (X ), * i = 1, . . . , N .

Proposition 2.67. Let a $ L G(X ). In the above decompositiona =
+ N

i=1 fi ) ei , for

i = 1, . . . , K the functions fi are G-invariant (i.e. fi $ M G(X )).

Proof. Since a $ L G(X ) we have

a= 6a7G .

Hence
N&

i=1

fi ) ei =
N&

i=1

6fi ) ei 7G .

From point 4 of Proposition 2.66 we have

6fi ) ei 7 $ M (X ) ) Ker 6 7G = vectM(X )(eK +1 , . . . , eN), * i = K + 1, . . . , N.

Moreover from the point 3 of the Proposition 2.66 we have

6fi ) ei 7= 6fi 7G ) ei , * i = 1, . . . , K.

Hence

6fi ) ei 7 $ M (X ) ) L G = vectM(X )(e1, . . . , eK ), * i = 1, . . . , K.

So in
+ N

i=1 fi ) ei =
+ N

i=1 6fi ) ei 7G we have

N&

i= K +1

6fi ) ei 7G =
N&

i= K +1

fi ) ei

and
K&

i=1

6fi ) ei 7G =
K&

i=1

fi ) ei .

Since 6fi ) ei 7= 6fi 7G ) ei for i = 1, . . . , K , we get

K&

i=1

6fi 7G ) ei =
K&

i=1

fi ) ei
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and so

6fi 7G = fi * i = 1, . . . , K.

Hence for i = 1, . . . , K the function fi are in M G(X ).

2.4.4.1 The case of the Riemann sphere

The situation on the Riemann sphere has been already studied in a paper of Lombardo and

Mikhailov [20]. In fact in this paper many examples are given. We give here a more general

result.

We use the same notation as above but here the Riemann surface X is the Riemann sphere

C1 and G is a finite group of Aut (C1).
Let Q $ X be a point with a trivial stabilizer group GQ. Let P be a second point

of X such that G(P) 8 G(Q) = ; . Let � := G(P)"̇ G(Q). Recall that the algebra

M G(X, �) is isomorphic to the algebra M (X/G, { %(P)} "̇{ %(Q)} ). A graded basis of

M (X/G, { %(P)} "̇{ %(Q)} ) is

Āk (z) =
$

z ! %(P)
z ! %(Q)

%k

, * k $ Z.

The corresponding graded basis of M G(X, �) is

Ak (z) =

1

2
I

g2G

z ! g áP
z ! g áQ

3

4

k

, * k $ Z,

with

Ak áAl = Ak+ l , * k, l $ Z

Let { e1, . . . , eN } be the above basis of L . We define the following elements:

ek
i = Ak ) ei , * k $ Z, i = 1, . . . , K ;

e1
i =

J
1

(z ! Q)
) ei

K

G
, i = K + 1, . . . , N ;

ek
i = Ak�1 áe1

i , * k $ Z, i = K + 1, . . . , N ;

It is clear that the ek
i are elements of LG(X, �).
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Proposition 2.68. For all i = 1 . . . N and k $ Z the elementsek
i (z) are non-zero and

linearly independent.

Proof. Suppose first that i = 1, . . . , K . Then ek
i = Ak ) ei is clearly a non-zero element.

Suppose now that i = K+1, . . . , N . If the e1
i (z) are non zero, then the ek

i (z) are non-zero.

So we just have to prove that the e1
i (z) are non-zero. Remember that

e1
i (z) :=

1

|G|

&

g2G

$
g á

1

z ! Q

%
) . (g) áei

For all g $ G the function gá 1
z�Q is a global meromorphic function with single simple poles

in g áQ. Since Q is supposed having a trivial stabilizer subgroup, hence for g .= h in G,

g áQ .= h áQ. Hence in the sum, the functions g á 1
z�Q are functions with a single simple

pole in di↵erent points. Moreover for all g $ G we have . (g) áei .= 0 since . (g) is an

automorphism of L . So the sum cannot be null and e1
i is non-zero.

Let us show that the ek
i (z) are linearly independent. We have L = L G & Ker 6 7G. Hence

LG(X, �) =
9
M (X, �) ) L G: =

(M (X, �) ) Ker 6 7G)

Moreover we know that the ek
i for i = 1, . . . , K are in M (X, �) ) L G and that the ek

i for

i = K + 1, . . . , N are in M (X, �) ) Ker 6 7G. Hence we can show separately that the ek
i

for i = 1, . . . , K and the ek
i for i = K + 1, . . . , N are linearly independent.

1. For i = 1, . . . , K :

Let { ( i ,k , i = 1, . . . , K, k $ F} be a finite set of complex numbers (here F is a finite

subset of Z). Suppose that

&

k2F

&

i=1 ...K

( i ,k ek
i = 0.

We have

&

k2F

&

i=1 ...K

( i ,k ek
i =

&

k2F

&

i=1 ...K

( i ,k Ak ) ei

=
&

i=1 ...K

A
&

k2F

( i,k Ak

B

) ei

Hence
+

k2F
+

i=1 ...K ( i ,k ek
i = 0 if and only if

+
k2F ( i,k Ak = 0 for all i = 1, . . . , K .

But each Ak is of order k in P, so each ( i ,k has to be zero.

Hence the ek
i for i = 1, . . . , K are linearly independent.
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2. For i = K + 1, . . . , N :

The element e1
i can be written:

e1
i =

N&

l= K +1

al el

with al $ M (X ). The meromorphic entries al are linear sums of functions g á 1
z�Q .

Moreover only ai will have pole at Q of order 1 (besides maybe at other points of

G(Q)). The aj , j .= i will be holomorphic at Q. If 6. | .7 is the standard scalar

product in L extended to L (X ) such that the ei are unitary, this can be resumed by:

ordQ
9F

e1
i | ei

G:
= ! 1 and ordQ

9F
e1

i | ej
G:
= 0, * j .= i .

So since ordQ (Ak ) = ! k and since ek
i = Ak�1e1

i we have:

ordQ
9F

ek
i | ei

G:
= ! k and ordQ

9F
ek

i | ej
G:
= ! k + 1, * j .= i

Let { ( i ,k , i = K + 1, . . . , N, k $ F} be a finite set of complex numbers (here F is a

finite subset of Z). Suppose that

&

k2F

N&

i= K +1

( i,k ek
i = 0

We choose a local coordinate around Q and expand ek
i as a Laurent series:

ek
i (z) = bi

�k ei z�k +
&

l> �k

B i
l z

l , bi
�k .= 0

where bi
�k $ C⇤ and Bi

l $ vect(eK +1 , . . . , ei�1, ei+1 , . . . , eN)

LetM be the maximal element of F . We expand the linear sum
+

k2F
+ N

i= K +1 ( i,k ek
i

as a Laurent series in the same coordinate around Q:

A
&

k2F

N&

i= K +1

( i,k ek
i

B

(z) =

A
N&

i= K +1

( i,M bi
�M ei

B

z�M +
&

l> �M

Dl zl

with Dl $ L .

Hence if
+

k2F
+ N

i= K +1 ( i,k ek
i = 0, we have necessarily

N&

i= K +1

( i,M bi
�M ei = 0.
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Since { ei , i = K + 1, . . . , N } are linearly independent and since bi
�M .= 0 for

i = K + 1, . . . , N , we get

( i ,M = 0, * i $ { K + 1, . . . , N } .

We can now repeat this process for each ”new” maximal element of F . That proves

( i ,k = 0, * i $ { K + 1, . . . , N } , * k $ F.

Thus the ek
i for i = K + 1, . . . , N are linearly independent.

Theorem 2.69. The set

5
ek

i , i = 1, . . . , K, k $ N; ek
i , i = K + 1, . . . , N, k $ N⇤

6

is a basis ofL G(X, G(Q)).

Proof. We proved in the previous proposition that the ek
i are linearly independent. We

just have to show that any element a of LG(X, G(Q)) is generated by the above ek
i .

The element a can be written as

a=
N&

i=1

fi ) ei .

We proved before that since a is G-invariant, the functions fi for i = 1, . . . , K are in

M G(X ). Moreover, since a $ L G(X, G(Q)) the functions fi are in M G(X, G(Q)). But the

functions Ak form a basis of the algebra M G(X, �) and in particular the functions Ak for

k 1 0 form a basis of M (X, G(Q)). Hence for all i = 1, . . . , K the function fi is written

as

fi =
&

l2N
cl Al

with a finite number of ci
l .= 0.

Hence
K&

i=1

fi ) ei =
K&

i=1

&

l2N
ci

l Al ) ei =
K&

i=1

&

l2N
ci

l e
l
i .

We prove here that { ek
i , i = 1, . . . , K, k $ N} is a basis of

M (X, G(Q)) ) L G = vectM(X )(ei , i = 1, . . . , K ).
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Consider now the element of LG(X, { Q} )

b := a !
K&

i=1

&

l2N
ci

l e
l
i =

N&

i= K +1

fi ) ei .

Suppose that b has a pole in Q with ordQ(a(z)) = L, L < 0. We choose a local coordinate

around Q and expand b into a Laurent series:

b =
&

k�L

bk zk , bk $ L , aL .= 0.

Suppose that the lower element bL =
+ N

i= K +1 di
L ei with di

L $ C.
As in the proof of the previous proposition, we consider the Laurent series of the e�L

i for

i = K + 1, . . . , N around Q:

e�L
i (z) = bi

L ei zL +
&

l>L

Bi
l z

l , bi
k .= 0

where bi
L $ C⇤ and Bi

l $ L .

We consider the element

b0(z) := b(z) !
N&

i= K +1

di
L

bi
L

eL
i (z).

By writing the Laurent series of b0 around Q we see that ordQ(b0) > L . Moreover the

element b0 is G-invariant since it is the linear sum of G-invariant elements. Thus by Theorem

2.64 we know that ordQ(b0) = ordg·Q(b0) > L, * g $ G.

We can repeat this method and get an element

b !
�L&

k=1

N&

i= K +1

di
k

bi
k

ek
i

of LG(X, G(Q)) which is holomorphic in the points of G(Q). More precisely we know that

b !
+ �L

k=1
+ N

i= K +1
di

k
bi

k
ek

i is a holomorphic element of

M (X ) ) Ker 6 7G = vectM(X )(eK +1 , . . . , eN). But since the ei are not G-invariant the

only holomorphic element of M (X ) ) Ker 6 7G is 0. Hence

b !
�L&

k=1

N&

i= K +1

di
k

bi
k

ek
i = 0.

Since b := a !
+ K

i=1
+

l2N ci
l e

l
i we have
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a !
K&

i=1

&

l2N
ci

l e
l
i !

�L&

k=1

N&

i= K +1

di
k

bi
k

ek
i = 0.

That prove that
5

ek
i , i = 1, . . . , K, k $ N; ek

i , i = K + 1, . . . , N, k $ N⇤
6
is a basis of

L G(X, G(Q)).

We introduce the following decomposition of LG(X, G(Q)):

LG(X, G(Q)) =
=

k�0

L k
G

where L k
G = vectC(e

k
i | i = 1, . . . , N ) for all k > 0 and L 0

G = vectC(e
0
i | i = 1, . . . , K ).

We remark that L 0
G = L G = vectC(ei | i = 1, . . . , K ).

Theorem 2.70. The decomposition

LG(X, G(Q)) =
=

k�0

L k
G

is an almost-graded decomposition of the Lie algebraLG(X, G(Q)) and

[L k
G , L l

G] 9 L k+ l�2
G & L k+ l�1

G & L k+ l
G .

Proof. First it is easy to check that for all k, l $ N:

Al á Lk
G 9 L k+ l

G .

We check now the almost-grading under the bracket.

For i , j $ { 1, . . . , K } and k, l $ N:
We proved before that L G is a Lie subalgebra of L . Hence [ei , ej ] $ L G = vectC(en | n = 1, . . . , K ).

Hence:

[ek
i , el

j ] = Ak áAl ) [ei , ej ] = Ak+ l ) [ei , ej ] $ vectC(ek+ l
n | n = 1, . . . , K ) 0 L k+ l

G

For i $ { 1, . . . , K } , j $ { K + 1, . . . , N } and k $ N, l $ N⇤:
We proved before that [L G,Ker 6 7G] 0 Ker 6 7G and that

el
j $ vectM(X )(en | n = K + 1, . . . , N ). Hence it is clear that

[ei , e1
j ] $ vectC(e

1
n | n = K + 1, . . . , N ).
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So

[ek
i , el

j ] = Ak áAl�1[ei , e1
j ] $ vectC(e

k+ l
n | n = K + 1, . . . N) 0 L k+ l

G .

For i , j $ { K + 1, . . . , N } and k, l $ N⇤:
The bracket [e1

i , e1
j ] is a G invariant element with poles of order 2 at the points of G(Q).

So we have

[e1
i , e1

j ] $ L 0
G & L 1

G & L 2
G .

Hence

[ek
i , el

j ] = Ak�1 áAl�1[e1
i , e1

j ] $ L k+ l�2
G & L k+ l�1

G & L k+ l
G .

Theorem 2.71. The algebraL̃G(X, �) := vectC(ek
i | i = 1, . . . N, k $ Z) is a Lie subalge-

bra of LG(X, �) and admits an almost-graded decomposition

L̃G(X, �) :=
=

k2Z
L̃ k
G

whereL̃ k
G := vectC(ek

i | i = 1, . . . N). Moreover

[L k
G , L l

G] 9 L k+ l�2
G & L k+ l�1

G & L k+ l
G .

Proof. It is just an extension of the previous proof: our arguments are available for negative

k. Hence the vector space L̃G(X, �) is closed under the bracket. So it is a Lie subalgebra

which inherits the almost-graded structure.

Remark: Even if the ek
i for positive integers k generate the algebra LG(X, G(Q)), the

negative ones do not generate the algebra LG(X, G(P)). Hence the algebra L̃G(X, �) is

just a Lie subalgebra of LG(X, �). It is not clear if the full algebra LG(X, �) admits or not

an almost-graded decomposition.

2.4.4.2 Examples

Here the Riemann surface X is still the Riemann sphere C1.
We choose here for L the Lie algebra sl(2,C) of the traceless matrices of order 2 - 2.
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The usual basis of sl(2,C) is { x, y , h} where

x =

A
0 1

0 0

B

, y =

A
0 0

1 0

B

, h =

A
1 0

0 ! 1

B

.

The bracket is the commutator and we have

[x, y] = h, [x, h] = ! 2x, [y, h] = 2y.

The automorphisms of sl(2,C) are given by the conjugation by an invertible matrix:

Aut (sl(2,C)) = { a 3%MaM�1 | M $ GL(2,C)}

Note that Q and cQ with c .= 0 give the same automorphism.

1. Our first example can be found in details in the paper of Lombardo and Mikahailov

[20].

Let G be the dihedral group D2. We said before that it is a group of order 4 and

generated by the transformations

) s(z) = ! z, ) t (z) =
1

z

Since an automorphism of sl(2,C) is given by a invertible matrix up to a multiplica-
tive constant, a monomorphism . : D2 % Aut (sl(2,C)) is nothing but a faithful
projective representation of D2 into P GL(2,C): .̃ : D2 % P GL(2,C). Here there
is just one class of equivalent faithful representations given by the representation .̃

such that

S := .̃ () s) =

A
1 0

0 ! 1

B

, T := .̃ () t ) =

A
0 1

1 0

B

.

Hence our group G= diag(G, . (G)) is generated by two transformations

gs : L (X ) % L (X );a(z) % Sa(! z)S�1, gt : L (X ) % L (X );a(z) % T a(1/z )T�1

and the group average is

6a(z)7G =
1

4

9
a(z) + Sa(! z)S�1 + T a(1/z )T�1 + T Sa(! 1/z )S�1T�1:

.

We easily check that

6x7G = 6y7G = 6h7G = 0.
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In this example the subalgebra L G is reduced to zero. We take as a basis of Ker6 7G
the basis { x, y , h} . Let Q be an elements with a trivial stabilizer subgroup and

P an element such that G(P) 8 G(Q) = ; . Hence, for P only the elements of

C1 \ { 0, # , ± 1, ± i } are allowed. Let � := G(P) " G(Q)

We give here the explicit almost-graded basis of the algebra L̃G(X, �) (Theorem

2.71). Of course by Theorem 2.70, this also gives an almost-graded basis of LG(X, G(Q)).

We compute the element e1
x , e1

y and e1
h :

e1
x (z) =

J
x

z ! Q

K

G
=

A
0 z

2(z2�P2)
z

2(1�z2P2) 0

B

,

e1
y (z) =

J
y

z ! Q

K

G
=

A
0 z

2(1�z2P2)
z

2(z2�P2) 0

B

,

e1
h(z) =

J
y

z ! Q

K

G
=

P(1 ! z4)

2(z2 ! P2)(1 ! z2P2)

A
1 0

0 ! 1

B

.

Here the elements Ak (which are a graded basis of M G(X, �)) are fixed by the

condition resP A1 = 1. Hence

A1(z) = $
(z2 ! Q2)(1 ! z2Q2)

(z2 ! P2)(1 ! z2P2)
, $ =

2P(P4 ! 1)
(Q2 ! P2)(1 ! Q2P2)

,

Ak = Ak
1.

And the element ek
i are

ek
x = Ak�1e1

x , ek
y = Ak�1e1

y , ek
h = Ak�1e1

h , k $ Z.

For n, m $ :

[ek
x , el

y ] =
1

16

9
aek+ l�1

h + ek+ l
h

:
,

[ek
h , el

x ] =
1

16

9
bek+ l�2

x ! cek+ l�1
h + 2ek+ l

x

:
,

[ek
h , el

y ] =
1

16

9
! bek+ l�2

y + cek+ l�1
x ! 2ek+ l

y

:
.

where

a=
2Q2(1 ! P4)

P(Q2 ! P2)(1 ! P2Q2)
, b =

4P(1 +Q4 ! 4Q2P2 + P4 + P4Q4)

(1 ! P4)(Q2 ! P2)(1 ! P2Q2)
,

c =
8P
1 ! P4 .
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2. We consider now an example with the subalgebra L G .= { 0} . Let G = Z2 the fi-

nite group generated by the transformation ) (z) = ! z. As in the first example, a

monomorphism . : G % Aut (sl(2,C)) is equivalent to a faithful projective repre-
sentation .̃ : Z2 % P GL(2,C). .̃ is determined by the image of ) . Since ) is

a transformation of order 2, the matrix S := .̃ () ) is of order 2. Let we choose

S = .̃ () s) =

A
1 0

0 ! 1

B

.

Therefore the group G= diag(G, . (G)) is generated by the transformation

g : L (X ) % L (X ); a(z) % Sa(! z)S�1

and the average 6 7G is

6a(z)7G =
1

2

9
a(z) + Sa(! z)S�1:

.

We have

6x7G =
1

2

AA
0 1

0 0

B

+

A
1 0

0 ! 1

B A
0 1

0 0

B A
1 0

0 ! 1

BB

= 0,

6y7G =
1

2

AA
0 0

1 0

B

+

A
1 0

0 ! 1

B A
0 0

1 0

B A
1 0

0 ! 1

BB

= 0,

6h7G =
1

2

AA
1 0

0 ! 1

B

+

A
1 0

0 ! 1

B A
1 0

0 ! 1

B A
1 0

0 ! 1

BB

= h.

Hence L G = vectC(h) and a basis of Ker6 7G is { x, y} . Let Q be a point with a

trivial stabilizer subgroup (i.e. Q .= 0, # ) and P a point such that G(P)8 G(Q) = ; ;

let � := G(P) " G(Q).

We give here the explicit almost-graded basis of the algebra L̃G(X, �) (Theorem

2.71). Of course by Theorem 2.70, this also gives an almost-graded basis of LG(X, G(Q)).

A graded basis of M G(X, �) is

Ak (z) :=
$

z2 ! P2

z2 ! Q2

%k

, k $ Z

if P .= # , and

Ak (z) :=
$

1

z2 ! Q2

%k

, k $ Z
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if P = # .

Now we define

e1
x (z) :=

J
x

z ! Q

K

G
=

! z
z2 ! Q2 x,

e1
y (z) :=

J
y

z ! Q

K

G
=

! z
z2 ! Q2 y,

and for k $ Z

ek
x (z) := Ak�1e1

x (z),

ek
y (z) := Ak�1e1

y (z),

ek
h (z) := Ak h.

The brackets of these elements are:

[ek
x , el

h] = ! 2ek+ l
x

[ek
y , el

h] = 2e
k+ l
y

[ek
x , el

y ] = aek+ l
h + bek+ l�1

h + cek+ l�2
h

where

a=
Q2

P4 ! 2P2Q2 ! Q4 , b =
! P2 ! Q2

P4 ! 2P2Q2 ! Q4 , c =
P2

P4 ! 2P2Q2 ! Q4

if P .= # , and

a= Q2, b = 1, c = 0

if P = # .

Note that for P = # the almost-grading is just

[L k
G , L l

G] 9 L k+ l�1
G & L k+ l

G .

2.4.4.3 The case of the complex tori

Let X = C/L be a complex torus. Let G .= { id} be a finite group of automorphism of

X . We suppose here that G contains at least one automorphism fixing at least one point

of X . We know that in these situations X/G is isomorphic to the Riemann sphere. Let

%: X % X/G be the canonical projection.

Let { P, Q} be two points which are not fixed by the elements of G and such that the

orbits G(P) and G(Q) are disjoints. We consider the set � := G(P) " G(Q). Note that
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%(�) = %(P) " %(Q).

We saw above that the algebra M G(X, �) is isomorphic to M (X/G, %(�)). We gave an

explicit basis of M (X/G, %(�)):

Ãk (z) := (z ! %(P))k (z ! %(Q))�k

The corresponding basis of M G(X, �) can be expressed in terms of translated theta-

function: in fact � = { g áP, g áQ, g $ G} and since the group G is not a group of

translation we have
+

g2G g áP =
+

g2G g áQ = 0. In fact we can consider (up to a

translation) that the automorphism of G are fixing 0. And by Proposition 2.43 the orbit

of a point R consists of the points 1R where 1 runs through all Nth roots of unity, with

suitable N. As their sum equals zero the sum over the full orbit will be 0 too.

Let { pg, g $ G} and{ qg, g $ G} be the sets of complex numbers which satisfy conditions

of theorem 2.27. Then consider

Ak (z) :=

1

2
I

g2G

0(pg)(z)

3

4

k

á

1

2
I

g2G

0(qg)(z)

3

4

�k

The set { An, n $ Z} is a graded basis of the algebra M G(X, �).

Let L be a finite-dimensional Lie algebra and { e1, . . . , eN } a basis of L such that { e1, . . . , eK }

is a basis of L G and { eK , . . . , eN } is a basis of Ker6 7G.

Let f $ M (X ) be a meromorphic function with a single pole in P and Q and holomorphic

elsewhere. Such a function always exists but is not unique. We introduce the following

elements of LG(X, �):

ek
i = Ak ) ei , * k $ Z, i = 1, . . . , K ;

e1
i = 6f ) ei 7G , i = K + 1, . . . , N ;

ek
i = Ak�1 áe1

i , * k $ Z, i = K + 1, . . . , N ;

Note that

6f ) ei 7G =
1

|G|

&

g2G
g á(f ) ei ) =

1

|G|

&

g2G

(g áf ) ) . (g) áei )

Moreover it’s clear that the elements ek
i (z) are G invariant.

Proposition 2.72. For all i = 1 . . . n and k $ Z the elementsek
i (z) are non-zero and

linearly independant.
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Proof. It is the same proof as the proof of Proposition 2.68.

Let L1
G be the subvector space of L (X, �) of the G-invariant elements which are holomor-

phic in X \ G(P) " G(Q) with poles in G(P) and G(Q) of order maximum 1. This vector

space contains the elements e1
i for i = 1, . . . , n and the elements e0

i for i = 1, . . . , K .

Since these elements are linearly independent we complete them to a basis of L1
G . In fact

since the holomorphic elements of LG(X, �) are all generated by the e0
i for i = 1, . . . , K ,

just some elements with poles of order 1 left. Let -1, . . . , - M be these elements.

Theorem 2.73. The set

5
-1, . . . , - M ;ek

i , i = 1 . . . N, k $ Z
6

is a basis ofL G(X, �).

Proof. We proved in the previous proposition that the ek
i are linearly independent. It is ob-

vious that
5

-1, . . . , - M ;ek
i , i = 1, . . . , N, k $ Z

6
is a set of linearly independent elements.

Thus we just have to show that any element of LG(X, �) is generated by the - j and the

ek
i .

Let a $ L G(X, �). The element a can be written as

a=
N&

i=1

fi ) ei .

We proved before that since a is G-invariant, the functions fi for i = 1, . . . , K are in

M G(X ). Moreover, since a $ L G(X, { Q} ) the functions fi are in M G(X, { Q} ). But the

functions Ak form a basis of the algebra M G(X, �) and in particular the functions Ak for

k 1 0 form a basis of M (X, { Q} ). Hence for all i = 1, . . . , K the function fi is written as

fi =
&

l2N
cl Al

with a finite number of ci
l .= 0.

Hence
K&

i=1

fi ) ei =
K&

i=1

&

l2N
ci

l Al ) ei =
K&

i=1

&

l2N
ci

l e
l
i .

We prove here that { ek
i , i = 1, . . . , K, k $ N} is a basis of

M (X, { Q} ) ) L G = vectM(X )(ei , i = 1, . . . , K ).
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Consider now the element of LG(X, { Q} )

b := a !
K&

i=1

&

l2N
ci

l e
l
i =

N&

i= K +1

fi ) ei .

Suppose that b has a pole in Q with ordQ(a(z)) = L, L < 0. We choose a local coordinate

around Q and expand b into a Laurent series:

b =
&

k�L

bk zk , bk $ L , aL .= 0.

Suppose that the lower element is bL =
+ N

i= K +1 di
L ei with di

L $ C.
It is easy to check that for i = K + 1, . . . , N and j .= i

ordQ
F
ek

i | ei
G
= ! k, ordQ

F
ek

i | ej
G
= ! k + 1, * k 1 1,

ordP
F
ek

i | ei
G
= 0, ordP

F
ek

i | ej
G
= 0, * k 1 2,

We consider the Laurent series of the e�L
i for i = K + 1, . . . , N around Q:

e�L
i (z) = bi

L ei zL +
&

l>L

Bi
l z

l , bi
k .= 0

where bi
L $ C⇤ and Bi

l $ L .

We consider the element

b0(z) := b(z) !
N&

i= K +1

di
L

bi
L

eL
i (z).

By writing the Laurent series of b0 around Q we see that ordQ(b0) > L . Moreover the

element b0 is G-invariant since it is the linear sum of G-invariant elements. Thus by theorem

2.64 we know that ordQ(b0) = ordg·Q(b0) > L, * g $ G.

We can repeat this method and get an element

b0 = b !
�L&

k=2

N&

i= K +1

di
k

bi
k

ek
i

of LG(X, �) which has poles of order at most 1 at the points of G(Q).

By using the elements ek
i for i = K + 1, . . . , N with k 4 0 we can reduce as well to the

order 1 the order of the poles at the points of G(P) of the element b0. Finally we get an

element b0 which have poles of order 1 at the points of G(P) and G(Q). Hence b0 $ L 1
G .

That ends the proof.
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R«esum«es de la thèse

Structures Lie-admissibles sur les algèbres de type Witt et les algèbres automorphes.

L’algèbre de Witt a été intensivement étudiée. Elle est présente dans de nombreux do-
maines des Mathématiques. Cette thèse est l’étude de deux généralisations de l’algèbre de
Witt: les algèbres de type Witt et les algèbres de Krichever-Novikov. Dans une première
partie on s’intéresse aux structures Lie-admissibles sur les algèbres de type Witt. On donne
toutes les structures troisième-puissance associatives et flexibles Lie-admissibles sur ces
algèbres. De plus, on étudie les formes symplectiques qui induisent un produit symétrique-
gauche.
Dans une seconde partie on étudie les algèbres automorphes. Partant d’une surface de Rie-
mann compacte quelconque, on considère l’action d’un sous-groupe fini du groupe des au-
tomorphismes de la surface sur des algèbres d’origines géométriques comme les algèbres de
Krichever-Novikov. Plus précisément nous faisons le lien entre la sous-algèbre des éléments
invariants sur la surface et l’algèbre sur la surface quotient. La structure presque-gradue
des algèbres de Krichever-Novikov induit une presque-graduation sur ces sous-algèbres de
certaines algèbres de Krichever- Novikov.

Lie-admissible structures on Witt type algebras and automorphic algebras.

The Witt algebra has been intensively studied and arise in many research fields in Math-
ematics. We are interested in two generalizations of the Witt algebra: the Witt type
algebras and the Krichever-Novikov algebras. In a first part we study the problem of find-
ing Lie-admissible structures on Witt type algebras. We give all third-power associative
Lie-admissible structures and flexible Lie-admissible structures on these algebras. More-
over we study the symplectic forms which induce a graded left-symmetric product.
In the second part of the thesis we study the automorphic algebras. Starting from arbitrary
compact Riemann surfaces we consider the action of finite subgroups of the automorphism
group of the surface on certain geometrically defined Lie algebras as the Krichever-Novikov
type algebras. More precisely, we relate for G a finite subgroup of automorphism acting on
the Riemann surface, the invariance subalgebras living on the surface to the algebras on the
quotient surface under the group action. The almost-graded Krichever-Novikov algebras
structure on the quotient gives in this way a subalgebra of a certain Krichever-Novikov
algebra (with almost-grading) on the original Riemann surface.


