AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm
THESIS
PRESENTED FOR THE OBTENTION
OF THE DEGREE OF DOCTOR OF PHILOSOPHY OF
THE PAUL VERLAINE-METZ UNIVERSITY
AND OF
THE EÖTVÖS LÓRÁND UNIVERSITY

Subject: MATERIALS SCIENCE
Option: CHEMISTRY

by
Gabriella DRAVEČZ

on May 25, 2009

Study of the phase equilibria in the ternary systems
$X_2O-Li_2O-Nb_2O_5$ ($X = Na, Rb, Cs$), single crystal
growth and characterization of $LiNbO_3$

EXAMINING BOARD:

E. HORVÁTH
Professor, University of Pannonia, Referee (Hungary)

J. MADARÁSZ
Professor, Budapest University of Technology and Economics, Referee
(Hungary)

C. GOUTAUDIER
Professor, Claude Bernard Lyon I University, Referee (France)

GY. ZÁRAY
Professor, Eötvös Loránd University, President (Hungary)

M. ÖVÁRI
Professor, Eötvös Loránd University, Member (Secretary) (Hungary)

F. BILLES
Professor, Budapest University of Technology and Economics,
Member

(J Hungary)

J. KRISTÓF
Professor, University of Pannonia, Member (Hungary)

GY. LOVAS
Professor, Eötvös Loránd University, Member (Hungary)

M. COCHEZ
Associate Professor, Paul Verlaine-Metz University, Member (France)

K. POLGÁR
Ph.D., Research Institute for Solid State Physics and Optics,
Supervisor

(M Hungary)

M. FERRIOL
Professor, Paul Verlaine-Metz University, Supervisor (France)

M. ORBÁN
Professor, Eötvös Loránd University, invited member (Hungary)
Summary in English in French and in Hungarian
Study of the phase equilibria in the ternary systems $X_2O-Li_2O-Nb_2O_5$ ($X = Na, Rb, Cs$), single crystal growth and characterization of $LiNbO_3$

Summary of the Ph. D. work

Gabriella DRAVECZ

Research Institute of Solid State Physics and Optics (Hungarian Academy of Sciences)
University of Metz (Saint Avold, France)
University of Eötvös Lóránd (Budapest, Hungary)

Supervisors:
Lassányiné dr. Polgár Katalin (Research Institute of Solid State Physics and Optics)
Prof. Michel Ferriol (University of Metz)
Prof. Orbán Miklós (University of Eötvös Lóránd)

Budapest, 2008
I. Foreword

The present work is the result of a tri-lateral research among the Eötvös Lóránd University, the Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, both in Budapest, and the University Paul Verlaine (Metz, France).

I’ve joined this research in September 2004 as a shared Ph.D student of the University Eötvös Lóránd and the University of Metz. With an Eiffel Doctorat “co-tutelle” scholarship I’ve spent 15 months at a department of the University of Metz in Saint Avold (France).

Investigations in the K$_2$O - Li$_2$O - Nb$_2$O$_5$ ternary system near the existence region of lithium niobate proved that the use of K$_2$O as a solvent component permits the growth of stoichiometric LiNbO$_3$. The presented work extended these investigations by examining the suitability of other alkali oxides (Na$_2$O, Rb$_2$O and Cs$_2$O) instead of K$_2$O.

II. Background and objectives

Lithium (meta-) niobate (LiNbO$_3$, LN) doesn’t occur in nature, the first report on its preparation and ferroelectric properties was given by Matthias and Remeika in 1949 [1]. The versatility of LiNbO$_3$ arises from the unique combination of piezoelectric, pyroelectric, electro-optical and nonlinear optical properties enabling it to be used in a wide range of applications. Most basic measurements of acoustic wave propagation, electro-optic light modulation, optical second harmonic generation, and parametric oscillation have been published between 1965 and 1967. Lithium niobate was the first material found to exhibit photorefractivity — an effect where the trapping of photogenerated charge carriers induces reversible changes in the refractive indices — which can be used for holographic image processing and information storage. Lithium niobate can be used in surface acoustic wave (SAW) filters, optical frequency converters and optical parametric amplifiers based not only on single domain bulk crystals, but also on periodically poled structures or waveguides.

Congruent composition means that the liquid and the solid phases in equilibrium have the same composition. For LiNbO$_3$ the congruent composition corresponds to the [Li] /
\[\text{[Nb]} \approx 0.945 \text{ ratio. Using this starting composition in crystal growth, the segregation coefficients for both Li}_2\text{O and Nb}_2\text{O}_5 \text{ are equal to 1, single crystals of good quality and uniform composition can be grown. Congruent lithium niobate (cLN) crystals can be grown easily even on the industrial scale and this is the composition used in most applications [2, 3, 4]. The drawback in the application of the cLN crystal is its high Li-deficiency leading to a large concentration of intrinsic defects. This results in a low optical damage threshold seriously limiting applications in electro-optics and non-linear optics where high energy laser radiation is required (for 10 ns pulses of 1064 nm the damage threshold is about 250 kW/cm}^2\). Malovichko et al. found [5] that crystals grown under appropriate conditions from K\text{2O containing mixtures have lower intrinsic defect concentrations. Using appropriate compositions better optical parameters and a higher optical damage threshold can be achieved yielding crystals more suitable for use in electro-optics and non-linear optics (Q-switching and frequency converters) [5, 6]. Later it was recognised that potassium itself does not enter the crystal, K\text{2O serves merely as a solvent and pure LiNbO}_3 \text{ single crystal can be grown from the mixture. In this way it is possible to reach [Li]/[Nb] \sim 1 \text{ (stoichiometric composition, sLN). By now several methods have been developed for the preparation of sLN single crystals (Li enrichment by the vapour transport equilibration method, single crystal growth from 58 mol\% Li containing mixture by the continuous-refill double crucible method, the micro pulling down method for sLN fibers using stoichiometric melt, and High Temperature Top Seeded Solution Growth (HTTSSG)). Among them the composition closest to [Li]/[Nb] = 1 can be achieved by the HTTSSG method using a K\text{2O - Li}_2\text{O - Nb}_2\text{O}_5 ternary mixture [7]. Such a solution is especially convenient for the growth of sLN crystals, since it significantly lowers the crystallization temperature determining the stoichiometry of the crystal (and the composition of the crystal is constant for a given K content range) [8, 9, 10]. The increasing need of high quality stoichiometric LiNbO}_3 \text{ single crystals in the applications made it evident to look for other alkali metal oxide solvents beyond potassium oxide, in the hope that they can give us an easier growth process, lower crystallization temperatures or better yield of stoichiometric lithium niobate single crystals. For this end phase relations in the X\text{2O - Li}_2\text{O - Nb}_2\text{O}_5 (X = Na, Rb or Cs) ternary systems were investigated, some of the corresponding phase diagrams were constructed, new phases were identified, growth processes were carried out and the crystals were characterized by spectroscopic methods.}]}
III. Experimental methods

In order to understand the role of the alkali metal oxide addition in the growth of stoichiometric LiNbO$_3$ crystals several methods have been combined.

A series of X_2O - Li_2O - Nb_2O_5 ($X = Na$, Rb, and Cs) polycrystalline samples were prepared by solid state reactions at 1000-1200 °C (the whole amount of CO$_2$ was eliminated at 800 - 1000 °C) for thermal analytical, x-ray powder diffraction and crystal growth investigations. The constituent phases were assessed by X-ray phase analysis with a Philips PW 1710 diffractometer using Cu K$_{\alpha}$ radiation in the 2Θ range of 0-80° and with an INEL MPD CPS 120 diffractometer.

Thermal analytical measurements were used to determine the phase transition temperatures of polycrystalline samples in the composition range of $[X] = 10-16$ mol%, $[Li]/[Nb] = 1$ ($X = Na$, Rb, or Cs). The spectra were recorded with a PL Thermal Sciences 1500 Differential Scanning Calorimeter in Ar atmosphere with Al$_2$O$_3$ as the reference material. The calibration of the system was made by using 6N pure standard metals (In, Sn, Pb, Zn, Al, Ag, Au, Si).

Single crystal growth was done by the HTTSSG method from a starting composition of $[X_2O] = 10$ mol%, $[Li_2O] = 45$ mol% and $[Nb_2O_5] = 45$ mol%. (During crystal growth the solution is enriched in X_2O.) The growth process was conducted further than the single LiNbO$_3$ phase crystallization limit (after the single LiNbO$_3$ phase a multi-component polycrystalline phase appeared). This way the maximum amount of the LiNbO$_3$ phase was pulled out. The constituent phases were assessed by the above mentioned Philips PW 1710 X-ray diffractometer. The X content of the samples was determined by atomic absorption analysis by a Varian SpectrAA-20 spectrometer.

The Li$_2$O content of different parts of the LiNbO$_3$ crystals was determined using a calibration based on the UV absorption edge position [11] which was measured by a two-beam Jasco V-550 UV/VIS spectrometer with a best resolution of 0.05 nm.
Reflection correction had to be used before the evaluation of the spectra because of the high refractive indices of the crystal. With this correction the error caused by multiple reflected light beams can be avoided.

OH\(^-\) ions which are always present in air-grown LiNbO\(_3\) crystals [12] can be characterized by their vibration spectra in the infrared (IR) region. The peak intensities and full widths at half maximum in the IR spectrum are sensitive to the composition of the crystal so the OH\(^-\) vibrational spectroscopy is suitable for the composition determination of LiNbO\(_3\). The spectra were recorded at room temperature by a Bruker IFS 66v/S FTIR spectrometer in the 400-7000 cm\(^{-1}\) wavenumber range with a resolution of 0.5 cm\(^{-1}\).

The third spectroscopic method used for composition assessment in my Ph. D. work was the Raman scattering technique. With this method the vibrational modes of the chemical bonds of the matrix can be studied. For the 3m symmetry (LiNbO\(_3\)) the vibrational modes can be divided into three sets marked with A\(_1\), A\(_2\) and E. In the Raman spectrum of LiNbO\(_3\) four A\(_1\) and nine E modes can be found (the five A\(_2\) modes are Raman inactive). These modes are characteristic for the Li - O and the Nb – O vibrations and sensitive to the stoichiometry of the LiNbO\(_3\) crystals, so they can be used for composition determination. Raman measurements were carried out by a Renishaw RM1000 confocal Micro-Raman spectrometer using 633 nm He-Ne laser excitation (with a spectral resolution of about 3 cm\(^{-1}\)) and by a Labram spectrometer (Jobin-Yvon) using 633 nm He-Ne and 514.5 nm Ar-ion laser sources for the different parts of the crystals.

With the combination of the above mentioned methods – assuming that the X ion does not enter the crystal (which is true for Rb and Cs) – the compositional changes of the solution during the growth can be followed, since from the actual composition of the crystallized solid phase, the actual alkali oxide concentration of the liquid can be calculated from the pulled amount of the crystal. The real Li\(_2\)O content of the pure LN crystals can be determined by spectroscopic measurements (preferably UV absorption using the above mentioned calibration). The crystallization temperature of lithium niobate at a given composition can be deduced from the DTA measurements of the polycrystalline samples having the same composition as the actual flux from which the
crystal is growing. From the knowledge of the data triplets liquidus composition, solidus composition, and the corresponding crystallization temperature, the phase diagram – constructed by using the thermoanalytical results – can be refined.

IV. New results

1. The thermal behaviour of the $X_2O - Li_2O - Nb_2O_5$ ($X = Rb, Cs$) ternary systems was found to be very similar to that of the $K_2O - Li_2O - Nb_2O_5$ system, with nearly the same phase transition temperatures and constituent phases according to the thermal analytical and X-ray diffraction investigations. The limit of the LiNbO$_3$ liquidus surface was estimated to be near 16 mol% X_2O for the systems with Rb$_2O$ and Cs$_2O$ and with $[Li] / [Nb] = 1$ ratio. The ternary phase diagram of the $Cs_2O - Li_2O - Nb_2O_5$ system at room temperature was constructed, a new phase was found.

2. It was established that crystals with $[Li_2O] / [Nb_2O_5] = 1$ can be grown from all examined ternary systems containing between 10 - 16 mol% X_2O ($X = Na, Rb, Cs$). Rb$_2O$ and Cs$_2O$ behave as ideal solvents, since they do not enter the lattice and yield (nearly) stoichiometric LiNbO$_3$ single crystals. The crystallization temperatures are nearly the same for Rb$_2O$ and Cs$_2O$ containing fluxes, resulting in similar $[Li] / [Nb]$ ratios and yields of LiNbO$_3$ crystal.

3. A new method was developed for an easy and accurate determination of the Li$_2O$ content of undoped LiNbO$_3$ crystals close to the stoichiometric composition based on the measurement of the intensity ratio (R) of the two main hydroxyl ion vibration peaks (at 3465 and 3480 cm$^{-1}$) in the infrared absorption spectra. The composition can be determined from the equation $R(t) = S(t) \times (C - [Li_2O])$, where $S(t) = S_\infty - Aexp(-t/\tau)$. S_∞ represents the slope of the calibration line in thermal equilibrium, $[Li_2O]$ is the lithium oxide content of the crystal in mol%, C and A are constants, τ is the time constant describing OH$^-$ redistribution and t is the time passed after the crystal growth. In the case of unknown thermal history (unknown t) of the crystal a simple annealing at 1000°C reconstructs the as grown state ($t = 0$).
4. It was confirmed that the FWHM of the E(TO1) Raman mode changes with the Li$_2$O content of the LiNbO$_3$ crystal but without correction these measurements cannot be used, as assumed earlier, for a universal composition determination of LiNbO$_3$. Using the FWHMs of the E(TO1) Raman modes excited by a He-Ne laser (633 nm) and corrected with the spectral resolution, a calibration line was determined for the z(xy)z configuration. The uncertainty of the calibration was determined as ± 0.06 mol% Li$_2$O content which may come from the uncertainty of the correction factor and the possible inhomogeneity of the sample surface.

5. Na was shown to be incorporated into the LiNbO$_3$ lattice with an average segregation coefficient of $k_{\text{sol/liq}}$ (Na$_2$O) ~ 0.2. Accordingly the phase transition temperatures for Na$_2$O containing polycrystalline samples are found to be higher than for Rb$_2$O or Cs$_2$O containing ones and their spectroscopic properties show changed behaviour: the UV absorption edge positions shift to longer wavelengths, the OH$^-$ vibrational bands merge to only one asymmetric band and the Raman peaks also broaden and shift. According to normal coordinate analysis the A$_1$(TO1) mode is related to Nb-O vibration, while the A$_1$(TO2) mode mainly involves Li-O/Nb-O motions. Therefore the increase of the intensity of the A$_1$(TO2) mode induced by the incorporation of the Na ions into the lattice indicates that Na enters Li sites.

V. Practical application of the results

The versatility of the application of LiNbO$_3$ is well-known in the practical fields of acousto-electronics and non-linear optics and electro-optics. The optical damage threshold of stoichiometric LiNbO$_3$ is higher so it is more suitable for electro-optical and non-linear optical applications than the congruent crystal which can be grown easier. The growth difficulties justify the development of alternative preparation methods or the improvement of the existing methods. This emphasizes the importance of the growth of stoichiometric LiNbO$_3$ by the HTTSSG method not only from the K$_2$O - Li$_2$O - Nb$_2$O$_5$ ternary system but from the X$_2$O - Li$_2$O - Nb$_2$O$_5$ (X = Rb, Cs) systems as well. Using the presented phase diagrams the composition of the solution in equilibrium with a custom-tailored crystal composition can be determined. Most of the
physical parameters of LiNbO$_3$ are composition dependent. Even a small change of the composition (± 0.01 mol\%) causes large differences in the properties so the determination of the Li$_2$O content of the crystal with the highest possible accuracy is very important. The accuracy of the composition determination – described in detail in my thesis – based on the intensity ratio of the two characteristic bands in the OH$^-$ vibrational spectra of the near stoichiometric LiNbO$_3$ satisfies the requirements imposed by the applications.
Bibliography

Publications

Étude des équilibres entre phases et croissance cristalline dans les systèmes ternaires
$X_2O \cdot Li_2O \cdot Nb_2O_5$ (X=Na, Rb, Cs), et qualification de monocristaux de $LiNbO_3$

Résumé de la thèse

Par

Gabriella DRAVEČZ

Research Institute of Solid State Physics and Optics (Hungarian Academy of Sciences)
Université Paul Verlaine-Metz (Saint Avold, France)
Université Eötvös Loránd (Budapest, Hongrie)

Directeurs de thèse:
Lassányiné dr. Polgár Katalin (Research Institute of Solid State Physics and Optics)
Prof. Michel Ferriol (Université Paul Verlaine-Metz)
Prof. Orbán Miklós (Université Eötvös Loránd)

Budapest, 2008
I. Avant-propos

Des recherches précédentes dans le système ternaire K\(_2\)O-Li\(_2\)O-Nb\(_2\)O\(_5\) aux environs du domaine d’existence de LiNbO\(_3\) ont montré que l’utilisation de K\(_2\)O en tant que solvant rend possible la croissance de LiNbO\(_3\) stoechiométrique. Le travail présenté ici a étendu ces recherches en étudiant l’utilisation d’autres oxydes alcalins (Na\(_2\)O, Rb\(_2\)O et Cs\(_2\)O) au lieu de K\(_2\)O.

II. Background et objectifs

Le niobate (ou méta-niobate) de lithium (LiNbO\(_3\), LN) n’existe pas dans la nature. La première publication parue sur le sujet date de 1949 [1] et est due à Matthias et Remeika. La versatilité de LiNbO\(_3\) est due à la combinaison unique de propriétés piézoélectrique, pyroélectrique, optoélectronique et optique non linéaire qu’il présente et le rendent propre à de multiples applications techniques. Les mesures fondamentales concernant la propagation des ondes acoustiques, la modulation électrooptique de la lumière, la génération de deuxième harmonique et l’oscillation paramétrique ont été publiées entre 1965 et 1967. C’est sur LiNbO\(_3\) que la photoréfractivité a été détectée pour la première fois. La photoréfractivité est le phénomène où les porteurs de charge piégés introduisent des changements réversibles des indices de réfraction. Ce changement est employé dans l’holographie et dans le traitement d’information.

LiNbO\(_3\) est utilisé également dans les filtres à ondes acoustiques surfaciques (SAW), dans les convertisseurs de fréquence et dans les amplificateurs paramétriques optiques fabriqués à base des monocristaux monodomains, périodiquement polarisés ou dans des guides d’ondes.
La composition est congruente lorsque les phases solide et liquide (bain fondu) en équilibre ont les mêmes concentrations pour chaque composant. La composition congruente de LiNbO$_3$ correspond à $[\text{Li}]/[\text{Nb}] \approx 0.945$. Pour cette composition de départ, les coefficients de ségrégation de Li$_2$O et Nb$_2$O$_5$ sont donc égaux à 1. Par conséquent, à partir de cette composition, il est possible de faire croître des monocristaux de bonne qualité et de composition uniforme. Dans l’industrie il y a une production de masse de niobate de lithium congruente (cLN) qui correspond à la plupart des applications pratiques [2, 3, 4]. L’inconvénient des cristaux congruents est la présence d’un grand nombre de l’aucunes de Li qui engendrent une importante concentration de défauts intrinsèques dans la maille cristalline, entraînant un seuil de dommage optique bas, empêchant ainsi l’utilisation de cLN en optique non linéaire et en optoélectronique à haute puissance. Malovichko et al. [5] ont trouvé que dans les cristaux tirés à partir de bains contenant K$_2$O, la concentration de défauts intrinsèques était diminuée et que les cristaux possédaient des seuils de dommage élevés les rendant alors utilisables dans des applications en optique non linéaire [5, 6].

Plus tard il a été reconnu que le potassium ne pénètre pas dans le cristal. K$_2$O sert seulement de solvant et alors, des monocristaux de LiNbO$_3$ avec une composition proche de la stoéchiométrie ou même parfaitement stoéchiométrique (sLN) peuvent être obtenus.

Jusqu’à maintenant plusieurs méthodes ont été développées pour la préparation de sLN (enrichissement en lithium par transport en phase vapeur, croissance cristalline à partir d’un bain enrichi en Li, dans un double creuset avec recharge continue en matière première, “micro pulling down” à partir d’un bain stoéchiométrique et cristallisation par une méthode de flux (HTTSSG)). Parmi toutes ces méthodes, les cristaux, les plus proches de la stoéchiométrie ou même parfaitement stoéchiométriques peuvent être obtenus par la méthode HTTSSG à partir du système ternaire K$_2$O-Li$_2$O-Nb$_2$O$_5$ [7]. Une telle méthode est bien adaptée à la croissance de cristal sLN parce que non seulement, la température de cristallisation qui détermine la stoéchiométrie du cristal est abaissée, mais aussi, il y a une région de concentration en K$_2$O où la composition du cristal est constante (stoéchiométrique) [8, 9, 10]. En raison de la demande croissante en sLN de haute qualité, il était logique de poursuivre la recherche de nouveaux solvants et, tout d’abord, d’examiner les autres oxydes alcalins. Pour cela j’ai examiné les relations entre phases dans les systèmes ternaires X$_2$O-Li$_2$O-Nb$_2$O$_5$ (X = Na, Rb ou Cs). Quelques diagrammes de phases correspondants ont été construits et de nouvelles phases ont été
identifiées. J’ai fait croître des cristaux à partir de ces nouveaux fluxes qui ont été ensuite caractérisés par spectroscopie.

III. Méthodes expérimentales

Pour comprendre le rôle de l’addition des oxydes alcalins dans la croissance de LiNbO$_3$ stoechiométrique, plusieurs techniques d’étude ont été utilisées.

Une série d’échantillons céramiques appartenant aux systèmes X$_2$O-Li$_2$O-Nb$_2$O$_5$ (X = Na, Rb et Cs) ont été préparés par synthèse en phase solide entre 1000 et 1200 °C pour les études par analyse thermique, diffraction des rayons X et pour la croissance cristalline. Les phases constituantes ont été identifiées par analyse de phase par rayons X. L’appareillage était soit un diffractomètre Philips PW 1710, soit un diffractomètre INEL MPD CPS 120 utilisant la radiation Cu K$_\alpha$ dans la région 2Θ: 0-80°.

J’ai effectué des mesures d’analyse thermique pour la détermination des températures de transition des échantillons céramiques dans la région de composition [X] = 10-16 mol%, [Li]/[Nb] = 1 (X = Na, Rb et Cs). Les thermogrammes ont été enregistrés avec un calorimètre différentiel à balayage (DSC) PL Thermal Sciences 1500 en atmosphère d’Ar et avec comme référence : Al$_2$O$_3$. L’instrument a été calibré avec des métaux de pureté 6N (In, Sn, Pb, Zn, Al, Ag, Au, Si).

Les cristaux ont été obtenus par la méthode HTTSSG à partir d’une composition [X$_2$O] = 10 mol%, [Li$_2$O] = 45 mol% et [Nb$_2$O$_5$] = 45 mol%. (au cours de la croissance des monocristaux la solution s’enrichit en X$_2$O). La croissance a été poursuivie au-delà de la limite de cristallisation de LN. Ainsi, il a été possible de tirer le maximum de cristal LiNbO$_3$ et de déterminer avec le plus de précision possible la limite de cristallisation. Après cristallisation de LN monophasé, une phase polycristalline se manifeste. Les phases constituantes ont été identifiées par diffraction des rayons X (diffractomètre Philips PW 1710). La concentration des alcalins X a été déterminée par spectroscopie d’absorption atomique (spectromètre Varian SpectrAA-20).
La teneur en Li$_2$O des parties différentes des cristaux de LiNbO$_3$ a été obtenue par mesure de la position du seuil d’absorption UV [11], déterminé sur un spectrophotomètre à deux faisceaux Jasco V-550 UV/VIS avec une résolution de 0.05 nm. Nous avons utilisé une correction de réflexion pour éviter l’erreur due aux réflexions multiples des faces internes qui peuvent être particulièrement importantes à cause des indices de réfraction élevés.

Les ions OH$^-$, toujours présents dans les cristaux LiNbO$_3$ obtenus sous air, ont pu être étudiés par leurs spectres vibrationnels dans l’infrarouge (IR). Les intensités des pics et leurs largeurs à mi-hauteur étant sensibles à la composition des cristaux, la spectroscopie infrarouge est une méthode appropriée à la détermination de composition de LiNbO$_3$. Les spectres ont été enregistrés sur un spectromètre FTIR type Bruker IFS 66v/S dans la région 400-7000 cm$^{-1}$ avec une résolution de 0.5 cm$^{-1}$.

La troisième méthode utilisée pour la détermination de la composition des cristaux est la technique de diffusion Raman. Par cette méthode, on peut étudier les modes vibrationnels des liaisons chimiques. Les modes vibrationnels du groupe ponctuel 3m sont partagées en trois groupes nommés A$_1$, A$_2$ et E. Dans les spectres Raman, on peut observer quatre modes A$_1$ et neuf modes E (les cinq modes A$_2$ sont inactifs en Raman). Les modes sont caractéristiques des vibrations Li-O et Nb-O et sont sensibles à la stœchiométrie du cristal de LiNbO$_3$. Par conséquent, la spectroscopie Raman est utilisable pour la détermination de la composition. Nos mesures Raman ont été réalisées avec un spectromètre micro-Raman confocal, type Renishaw RM1000 fonctionnant avec une longueur d’onde laser excitatrice de 633 nm (He-Ne), avec une résolution spectrale d’environ 3 cm$^{-1}$, et, alternativement, avec un spectromètre Labram (Jobin-Yvon) et deux longueurs d’onde excitatrices : 633 nm (He-Ne) et 514.5 nm (Ar) appliquées sur les différentes parties des cristaux.

Par la combinaison des méthodes décrites et en supposant que les ions X n’entrent pas dans la maille de cristal (ce qui est valable pour Rb et Cs), l’évolution de la composition du bain au cours de la croissance peut être suivie. En supposant que la composition de la phase solide cristallisée est totalement stœchiométrique, il est possible de calculer la concentration réelle en X du bain à partir de la quantité du cristal tiré au même moment.

Le contenu réel en Li$_2$O de la phase LiNbO$_3$ peut être déterminé par mesure du seuil d’absorption UV en utilisant la méthode précédemment décrite. La température de
cristallisation primaire d’une composition donnée peut être déduite des mesures d’analyse thermique effectuées sur des échantillons céramiques de la même composition que celle du flux à partir duquel le cristal a été tiré. Connaissant les paramètres correspondants : composition du liquidus, composition du solidus, température de cristallisation, les diagrammes de phases, tracés à partir des résultats d’analyse thermique, peuvent ainsi être confirmés et précisés.

IV. Résultats nouveaux

1. J’ai montré que les systèmes ternaires X₂O-Li₂O-Nb₂O₅ (X = Rb, Cs) sont similaires au système K₂O-Li₂O-Nb₂O₅. Les températures de transitions de phases sont très proches les unes des autres, et, d’après les résultats d’analyse thermique et de diffraction des rayons X, les phases constitutantes sont analogues. Les limites des surfaces de liquidus de LiNbO₃ sont estimées proches de 16 mol% Rb₂O et Cs₂O ([Li]/[Nb] = 1). Sur la base de ces résultats, j’ai construit le diagramme de phase des équilibres solide-solide (isotherme à température ambiante) du système ternaire Cs₂O-Li₂O-Nb₂O₅ et mis en évidence une nouvelle phase.

2. J’ai démontré qu’il est possible de faire croître des monocristaux de niobate de lithium à partir des systèmes ternaires examinés entre 0-16 mol% X₂O (X = Na, Rb, Cs) avec [Li₂O]/[Nb₂O₅] = 1. Rb₂O et Cs₂O se comportent comme des solvants idéaux, car Rb et Cs ne pénètrent pas dans la maille et les cristaux de LiNbO₃ obtenus sont très proches de la stoechiométrie. Les températures de cristallisation des bains sont très proches dans les deux cas et les cristaux obtenus à partir de bains de compositions analogues ont les mêmes compositions.

3. J’ai développé une méthode simple et précise pour la détermination de la teneur en Li₂O des cristaux LiNbO₃ non dopés, proches de stoechiométrie. La méthode est basée sur la mesure du rapport (R) des intensités des deux pics vibrationnels principaux des ions OH⁻ à 3465 et 3480 cm⁻¹ dans le spectre d’absorption infrarouge. La composition peut être déterminée à partir de l’équation \(R(t) = S(t) \times (C - [Li₂O]) \), où \(S(t) = S_\infty - A\exp(-t/\tau) \). \(S_\infty \) représente la pente de la droite d’étalonnage à l’équilibre, [Li₂O] est la
teneur en oxyde de lithium du cristal exprimée en % molaire, C et A sont des constantes,
τ est la constante de temps décrivant la redistribution des OH$^-$, et t est le temps écoulé
depuis la croissance du cristal. Si l’histoire thermique du cristal (t) n’est pas connue, on
peut revenir à l’état originel (“as-grown”, $t = 0$) par un simple traitement thermique à
1000 °C.

4. J’ai confirmé que la largeur à mi-hauteur du pic Raman E(TO1) dépend de la teneur
en Li$_2$O du cristal LiNbO$_3$. Contrairement aux suppositions préalables, cette évolution
peut être utilisée pour la détermination générale de la composition du niobate de lithium
seulement en tenant compte d’un facteur de correction, caractéristique des propriétés de
l’appareillage de mesure. Utilisant cette méthode, il a été possible de déterminer
l’incertitude sur notre étalonnage (configuration $z(xy)z$, excitation 633 nm) qui est égale
à ± 0.06 mol% Li$_2$O. Cette incertitude pourrait être due au facteur correctionnel ou à
l’éventuelle inhomogénéité de surface de l’échantillon.

5. J’ai démontré que le sodium pénètre dans la maille de LiNbO$_3$ avec un coefficient de
ségrégation moyen $k_{sol/\text{liq}}$(Na$_2$O) ~ 0,2. En accord avec ceci, les températures de
transition de phase des céramiques contenant Na$_2$O sont plus élevées que celles
mesurées pour les céramiques contenant Rb$_2$O ou Cs$_2$O. Les propriétés
spectroscopiques sont aussi différentes: la position du seuil d’absorption UV est
déplacée vers les plus grandes longueurs d’onde, les bandes vibrationnelles de OH$^-$
forment une seul bande asymétrique et les bandes Raman s’élargissent et se déplacent
également. D’après l’analyse des modes normaux, le pic A_1(TO1) est en relation avec
les vibrations Nb-O, le pic A_1(TO2) est en relation les mouvements Li-O/Nb-O. En se
basant sur l’augmentation de l’intensité du mode A_1(TO2), on peut conclure que Na
occuppe les sites Li dans la maille cristalline de LN.

V. Applications potentielles

La versatilité de LiNbO$_3$ est bien connue dans le domaine de l’électronique acoustique
(filtres SAW), de l’optique non linéaire et de l’optique électronique. Alors que les
applications de LiNbO$_3$ congruent sont répandues dans le domaine de l’électronique
acoustique et de l’optique où les puissances ne sont pas très élevées, le seuil de
dommage optique étant relativement bas, les applications sont limitées dans le domaine
des fortes puissances lumineuses. Le seuil de dommage optique de LiNbO$_3$
stoechiométrique est plus haut et rend nécessaire l’utilisation d’une méthode de
croissance plus difficile (flux). Les difficultés de la méthode de croissance par flux
justifie la recherche en vue de développer des méthodes alternatives ou d’améliorer les
méthodes élaborées. Dans ma thèse j’ai présenté des solvants alternatifs à la croissance
de monocristaux de LiNbO$_3$ à partir du système ternaire K$_2$O-Li$_2$O-Nb$_2$O$_5$. J’ai prouvé
qu’il est possible de faire croître des cristaux stoechiométriques par la méthode
HTTSSG à partir des systèmes ternaires X$_2$O-Li$_2$O-Nb$_2$O$_5$ (X = Rb, Cs). Les
diagrammes de phase tracés et précisés au cours de ce travail sont importants et donnent
la possibilité de composer le flux à partir duquel il est possible d’obtenir le cristal de son
choix. Comme pour les matériaux typiquement non stoechiométrique, les paramètres
physiques de LiNbO$_3$ sont très sensibles aux moindres variations de la composition
(\pm 0.01 mol%). La détermination précise de la composition est donc très importante.
Dans ma thèse, j’ai élaboré une nouvelle méthode de haute précision basée sur le
rapport des deux principaux pics vibrationnels OH dans l’infrarouge. Cette méthode a
une précision qui satisfait les exigences de qualification des cristaux de LiNbO$_3$.

20
Références

Publications

G. Dravec, Á. Péter, K. Polgár, L. Kovács “Alkali metal oxide solvents in the growth of stoichiometric LiNbO₃ single crystal” Journal of Crystal Growth 286 (2006) 334

Fázisegyensúlyok vizsgálata az X_2O-Li_2O-Nb_2O_5 (X = Na, Rb, Cs) hármas rendszerekben, LiNbO$_3$ egykristály növesztése és vizsgálata

Doktori (Ph. D.) értekezés tézisei

Dravecz Gabriella

Magyar Tudományos Akadémia Szilárdtestfizikai és Optikai Kutató Intézet
Paul Verlaine Egyetem (Saint Avold, Franciaország)
Eötvös Lóránd Tudományegyetem (Budapest, Magyarország)

Témavezető:
Lassányiné dr. Polgár Katalin (MTA SZFKI)
Prof. Michel Ferriol (Paul Verlaine Egyetem, Metz)
Prof. Orbán Miklós (Eötvös Lóránd Tudományegyetem)

Budapest, 2008
I. Előszó

A bemutatásra kerülő munka három intézmény, az Eötvös Lóránd Tudományegyetem, a Magyar Tudományos Akadémia Szilárdtestfizikai és Optikai Kutató Intézete, valamint a metzi Paul Verlaine Egyetem együttműködésének eredménye. 2004-ben csatlakoztam az MTA SZFKI Kristálytechnológiai csoportjához megosztott Ph. D. hallgatóként az Eötvös Lóránd Tudományegyetem és a Paul Verlaine Egyetem közös témavezetésében. Doktori éveim alatt az „Eiffel” francia állami ösztöndíjnak köszönhetően 15 hónapot töltöttem a metzi egyetem egy kihelyezett tagozatán, Saint Avoldban. A $K_2O - Li_2O - Nb_2O_5$ hármas rendszer fázisviszonyainak vizsgálata bizonyította, hogy a K_2O oldószerkomponensként való alkalmazása lehetővé teszi sztöchiometrikus lítium-niobát növesztését. A bemutatásra kerülő dolgozat témája ezen kutatások kiterjesztése a K_2O-on kívül egyéb alkáli oxidok (Na_2O, Rb_2O és Cs_2O) alkalmasságának vizsgálatára.

II. Elméleti háttér, kitűzőtt célok

Kongruens összetételnél az egymással egyensúlyban lévő olvadék és szilárd fázis összetétele azonos. \(\text{LiNbO}_3 \) esetén a kongruens összetétel \([\text{Li}] / [\text{Nb}] \approx 0.945\), amely eltér a szöchiometrikus összetételtől. Ebből az arányból kiindulva a komponensek (\(\text{Li}_2\text{O}, \text{Nb}_2\text{O}_5 \)) megoszlási hányadosa a szilárd és folyadék fázis között 1, jó minőségű, állandó összetételű egykristály (kongruens lítium-niobát (cLN)) növeszthető. A Li hiányos szerkezetű (saját anyagú, intrinszik hibahelyeket tartalmazó) cLN kristály ipari növesztése egyszerű, tulajdonságai az alkalmazási követelmények nagy részét kielégítik [2, 3, 4], ezért széles körben használják. A saját anyagú hibahelyek igen magas koncentrációjából adódóan viszont a nagy energiájú lézersugárzás (már 250 kW/cm\(^2\), 1064 nm-es lézerrel, 1 ns-os pumpálással) optikai sérülést okoz a kristályban, ami jelentős mértékben korlátozza elektrooptikai és nemlineáris optikai alkalmazását. Malovichko és társai [5] tapasztalták, hogy \(\text{K}_2\text{O} \) – ot tartalmazó olvadékból kiindulva a növesztett kristály lényegesen kevesebb saját anyagú hibahelyet tartalmaz. Az ily módon előállított kristályok jobb optikai tulajdonságokkal rendelkeznek, magasabb az optikai sérülési küszöbüket, így alkalmaszabbak elektrooptikai és nemlineáris optikai célú felhasználásra (Q – kapcsolók, frekvencia átalakítók) [5, 6].

Később kimutatták, hogy kálium nem épül be a kristályba, növesztés során csak az oldószer szerepét tölti be, valamint, hogy a módszer alkalmas adalékolatlan, sztöchiometrikus összetételű \(\text{LiNbO}_3 ([\text{Li}] / [\text{Nb}] = 1) \) kristályok (sLN) növesztésére [7]. Napjainkra számos módszert fejlesztettek ki közel sztöchiometrikus LN egykristály előállítására (gőz fáziszon keresztül való Li dúsítás, 58 mol\% Li tartalmú olvadékból kiinduló dupla tégelyű ráttöltéses módszerrel való egykristály növesztés, mikroszállhúzás sztöchiometrikus összetételű olvadékból, maggal vezérelt magas hőmérsékletű oldat olvadékos növesztés (HTTSSG)). Közülük a \([\text{Li}] / [\text{Nb}]=1\), sztöchiometrikus összetételhez legközelebb eső \(\text{LiNbO}_3 \) tömbkristályt a \(\text{K}_2\text{O} - \text{Li}_2\text{O} - \text{Nb}_2\text{O}_5 \) hármas keveréket használó HTTSSG módszerrel lehet elérni [7]. Ez az oldat különösképpen alkalmas sLN kristály növesztésére, ugyanis jelentősen csökkenti a kristály sztöchiometriájáért felelős kristályosodási hőmérsékletet (és bizonyos K tartalom tartományban a kristály összetétele állandó) [8, 9, 10].

Jó minőségű sztöchiometrikus \(\text{LiNbO}_3 \) kristályokra egyre nagyobb igény mutatkozik. Doktori munkám célja a káliumon kívül más alkálifémt oxidok vizsgálatára az egyszerűbb növesztési eljárás, alacsonyabb kristályosodási hőmérséklet, vagy a sztöchiometrikus lítium-niobát egykristály jobb kihúzási hányadának elérlése reményében. Ehhez tanulmányoztam az \(\text{X}_2\text{O} - \text{Li}_2\text{O} - \text{Nb}_2\text{O}_5 \) (\(\text{X} = \text{Na}, \text{Rb}, \text{vagy Cs} \)) hármash rendszerek
fázisviszonyait, megfelelő fázisdiagramokat szerkesztettem, új fázisokat azonosítottam, kristálynövesztési kísérleteket végztem, a növesztett kristályokat spektroszkópiai módszerekkel minősítettem.

III. Vizsgálati módszerek

Számos vizsgálati módszert alkalmaztam az alkálifém oxid oldatkomponensek LiNbO$_3$ kristály növesztésekor betöltött szerepének megértése érdekében.

1000–1200 °C szilárd fázisú reakcióval (a CO$_2$ 800 – 1000 °C-on történő teljes eltávolítása után) X$_2$O - Li$_2$O - Nb$_2$O$_5$ (X = Na, Rb, vagy Cs) polikristályos minták sorozatát állítottam elő termoanalitikai, röntgen diffrakciós és kristálynövesztési vizsgálatokhoz. A kialakuló fázisok azonosítása Philips PW 1710 – mely a Cu K$_\alpha$ sugárzását használja a 0-80°-ig terjedő 2Θ régióban –, valamint INEL MPD CPS 120 röntgen diffraktométerrel történt.

Termoanalitikai mérésekkel fázisátalakulási hőmérsékleteket határoztam meg [Li]/[Nb] = 1, [X] = 10-16-mol% (X = Na, Rb, vagy Cs) összetétel tartományba eső polikristályos mintákon. A spektrumokat PL Thermal Sciences 1500 berendezéssel vettem fel, Ar atmoszférában Al$_2$O$_3$ referencia anyagot használva. A rendszer kalibrációját 6N tisztaságú fémekkel (In, Sn, Pb, Zn, Al, Ag, Au, Si) végezem.

[X$_2$O] = 10 mol%, [Li$_2$O] = 45 mol%, [Nb$_2$O$_5$] = 45 mol% összetételű oldatból kiindulva HTTSSG módszerrel LiNbO$_3$ kristályokat növesztettem. (Az egykristály növesztése során az anyaoldat X$_2$O koncentrációja nő.) A folyadék-fázis határának pontos meghatározása érdekében a növesztést a LiNbO$_3$ egyfázis kristályosodásának határán túl folytatattam, kihúzva a maximális LiNbO$_3$ mennyiséget (a LiNbO$_3$ egyfázist követően többkomponensű polikristályos fázis jelent meg). A kialakuló fázisokat és a téglamemlíték komponenseit a fent említett Philips PW 1710 röntgen diffrakciós berendezéssel azonosítottam. A kristály X tartalmát atomabszorpciós analízissel határoztam meg Varian SpectrAA-20 készülék segítségével.
Kétsugaras Jasco V-550 UV/VIS spektrométert használva, 0,05 nm felbontással felvettem a LiNbO₃ kristályok különböző pontjairól vett minták abszorpciós spektrumát, majd egy UV abszorpciós él mérésen alapuló kalibráció [11] segítségével meghatároztam Li₂O tartalmukat. A kristály nagy törésmutatója miatt a többszörösen visszaverődött fénysugarak okozta mérési hibát reflexiós korrekció figyelembe vételével küszöbölttem ki.

A levegőn növesztett LiNbO₃ kristályokban mindig jelen levő OH⁻ ionokat [12] az infravörös tartományba eső rezgési spektrumuk jellemzi. Az észlelt csúcsok intenzitása és félátfok-szélessége egyaránt érzékeny a kristály összetételére, következésképpen az OH⁻ rezgési spektroszkópia alkalmas LiNbO₃ összetételének meghatározására. Ennek vizsgálatára Bruker IFS 66v/S FTIR spektrométer segítségével IR spektrumokat vettem fel 0,5 cm⁻¹-es felbontással a 400 – 7000 cm⁻¹ hullámszám tartományban.

Ph. D. munkám során az összetétel meghatározására szolgáló harmadik spektroszkópiai módszer, a kémiai kötések rezgési módusait vizsgáló Raman szórás volt. A LiNbO₃ 3m szimmetriájához tartozó rezgési módusok három különböző csoportba oszthatók (A₁, A₂ és E). A LiNbO₃ Raman spektrumában – a Li-O és Nb-O rezgésekre jellemző – négy A₁ és kilenc E módus figyelhető meg (az öt A₂ módus Raman inaktív). Ezen módusok érzékenyek a LiNbO₃ kristály sztöchiometriájára, vizsgálatuk alkalmas lehet összetétel meghatározásra. Renishaw RM1000 konfokális Mikro-Raman spektrométerrel 633 nm-es He-Ne lézer gerjesztéssel (kb. 3 cm⁻¹-es spektrális felbontás mellett), valamint Labram spektrométerrel (Jobin-Yvon) 633 nm He-Ne és 514,5 nm Ar-ion lézer források használatával Raman spektrumokat vettem fel a kristályok különböző pontjairól vett mintákról.

Feltételezve, hogy az X ion nem épül be a kristályba (ez a Rb és Cs esetén teljesül), a fenti vizsgálati módszerek kombinálásával a növesztés során bekövetkező oldat összetétel-változások nyomon követhetők. A kristály mindenkori összetétele és a kihúzott mennyiség ismeretében az aktuális folyadék fázis összetétele, amelyből nőtt, kiszámítható. A kristály különböző pontjairól vett minták valódi Li₂O tartalma spektroszkópiai mérésekből – a fent említett kalibrációk segítségével – meghatározható. Az adott összetételhez tartozó kristályosodási hőmérséklet az adott ponton az oldatfázissal megegyező összetételű polikristályos minták termoanalitikai méréseiből
adódik. Így az összetartozó oldatösszetétel – kristályösszetétel – kristályosodási hőmérséklet pontokat ismervé a termoanalitikai mérésekből szerkesztett fázisdiagram finomítható.

IV. Új tudományos eredmények

1. Termoanalitikai és röntgen diffrazciós mérésekkal bizonyítottam, hogy az X₂O - Li₂O - Nb₂O₅ (X = Rb, Cs) hármas rendszer termikus tulajdonságai hasonlóak a K₂O - Li₂O - Nb₂O₅ rendszeréhez, analóg fázisátalakulási hőmérsékletekkel és kialakuló fázisokkal. A LiNbO₃ egyfázis kristályosodási határa 16 mol% X₂O tartalomra tehető mind a Rb₂O-t, mind a Cs₂O-t tartalmazó rendszer esetén ([Li]/[Nb] = 1). Megszerkesztettem a Cs₂O - Li₂O - Nb₂O₅ hármas rendszer szobahőmérsékletű fázisdiagramját, melyben egy új fázist azonosítottam.

2. Bebizonyítottam, hogy mindhárom vizsgált hármas rendszer esetén a [Li₂O] / [Nb₂O₅] = 1, 10 – 16 mol% X₂O (X = Na, Rb, Cs) összetétel tartományból kiindulva növeszthető LiNbO₃ egykristály. A Rb₂O és Cs₂O ideális oldatkomponensként viselkednek, az alkáli fémionok nem épülnek be a kristályrácsba, így lehetővé teszik (közel) sztöchiometrikus LiNbO₃ kristály előállítását. A kristályosodási hőmérséklet, a kihúzási hányad és az egyensúlyi szilárd fázis megfelelő [Li]/[Nb] arányai közel azonosnak adódtak Rb₂O és Cs₂O oldatkomponenst alkalmazva.

3. Az előző tapasztalatokra alapozva kvantitatívvá tettet az infravörös spektroszkópiai mérésen alapuló adalékolatlan LiNbO₃ egykristály Li₂O tartalmának egyszerű és pontos meghatározását. Alapja a hidroxid ion infravörös rezgési spektrumában megjelenő két fő csúcs (3465 és 3480 cm⁻¹) intenzitásarány (R) változásának mérése. Az összetétel az R(t) = S(t) x (C - [Li₂O]) egyenletből határozható meg, ahol S(t) = S₀ - Aexp(-t/τ). S₀ a kalibráció meredekségét mutatja termikus egyensúlyban, [Li₂O] a kristály lítium oxid tartalma mol%-ban, C és A állandók, τ az OH⁻ átrendeződési folyamat időállandója, t a kristálynövesztéstől eltelt idő. Bizonyítottam, hogy ismeretlen termikus előletű kristályminta esetén (t ismeretlen) 1000 °C-os hőkezeléssel visszaállítható a növesztés utáni állapot (t = 0).
4. Bizonyítást nyert, hogy az E(TO1) Raman módus félérték-szélessége a LiNbO\textsubscript{3} kristály Li\textsubscript{2}O tartalmával monoton változik. Igazoltam, hogy – a korábbi feltevésekkel ellentétben – ezek a mérések összetétel meghatározására kizárólag egy korrekciós faktor figyelembe vételével használhatók, mely magában foglalja a lézernyaláb minőségét, valamint a berendezés és a mérési körülmények egyéb technikai paramétereit. Az E(TO1) Raman módus korrígált félérték-szélességét használva kalibrációs egyenest határoztam meg z(\textit{xy})z konfigurációra, He/Ne lézeres (633 nm) gerjesztés mellett. A kalibráció bizonytalansága ± 0,06 mol\% Li\textsubscript{2}O tartalomra tehető, amit a korrekciós faktor meghatározásának pontatlansága, illetve a minta felületének esetleges egyenetlensége okozhat.

5. Kimutattam, hogy a nátrium \textsubscript{k}szil/foly (Na\textsubscript{2}O) ~ 0,2 átlagos megoszlási hányadossal beépül a LiNbO\textsubscript{3} rácsba. Ennek megfelelően a Na\textsubscript{2}O tartalmú polikristályos minták fázisátalakulási hőmérsékletei is magasabbak a Rb\textsubscript{2}O és Cs\textsubscript{2}O tartalmúakéhoz képest, de a Na\textsubscript{2}O tartalmú oldatból növesztett kristály spektroszkópiai képe is megváltozott tulajdonságokra utal: az UV adsorpciói él hosszabb hullámhosszak felé tolódik, az OH− rezgési spektrum sávjai egy széles, aszimetrikus csúccsá olvadnak össze, míg a Raman sávok kiszélesednek és eltolódnak. Normál koordináta analízis alapján az \textit{A}\textsubscript{1}(TO1) Raman módus főként a Nb-O, míg az \textit{A}\textsubscript{1}(TO2) a Li-O/Nb-O rezgésekre jellemző. A Na beépülésekor az \textit{A}\textsubscript{1}(TO2) módus intenzitása megnő, amiből arra következtethetünk, hogy a Na a rácsban Li helyet foglal el.

V. Eredmények gyakorlati alkalmazásának lehetőségei

A LiNbO\textsubscript{3} kristályok gyakorlati alkalmazásának sokfélése közismert az akusztiko-elektronika, a nemlineáris optika és az elektro-optika különböző területein. A sztöchiometrikus összetételű LiNbO\textsubscript{3} kristályoknak magasabb az optikai sérlési küszöbe, így alkalmasabb elektrooptikai és nemlineáris optikai célú felhasználásra a könnyebben előállítható kongruens összetételű kristályhoz képest. A növesztés nehézségei indokolják alternatív előállítási módok kifejlesztését, a már ismertek továbbfejlesztését más anyagok bevonásával. Ezért lényeges annak bizonyítása, hogy HTTSSG módszerrel a K\textsubscript{2}O - Li\textsubscript{2}O - Nb\textsubscript{2}O\textsubscript{5} rendszeren kívül X\textsubscript{2}O - Li\textsubscript{2}O - Nb\textsubscript{2}O\textsubscript{5} (X = Rb, Cs) hármas
keverékekből is növeszthető sztöchiometrikus LiNbO₃. A közölt fázisdiagramok alapján meghatározható az alkalmazás kívánalmainak megfelelő kristályösszetételhez tartozó egyensúlyi oldatösszetétel. A LiNbO₃ fizikai paramétereinek jelentős része összetételfüggő. Kis összetétel változás (már ± 0,01 mol%) nagy tulajdonságbeli eltérést idéz elő. Ezért a kristály Li₂O tartalmának minél pontosabb meghatározása kulcsfontosságú a különböző alkalmazások szempontjából. A dolgozatban részletesen bemutatott, a közel sztöchiometrikus LiNbO₃ OH⁻ rezgési spektrumában található két karakterisztikus sáv intenzitásarányán alapuló összetétel meghatározás pontossága kielégíti az alkalmazás támasztotta követelményeket.
Irodalomjegyzék

A dolgozat témájában megjelent közlemények

G. Draveczi, B. Shackmann, M. Cochez, M. Ferriol “Investigations of new fluxes for the single-crystal growth of stoichiometric lithium niobate: study of phase relations in the ternary system of Cs$_2$O - Li$_2$O - Nb$_2$O$_5$” Journal of Thermal Analysis and Calorimetry 90 (2007) 343-345

Foreword

The present work is the result of a tri-lateral research among the Eötvös Lóránd University, the Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, both in Budapest, and the University Paul Verlaine (Metz, France). There has been a more than 10 year’s cooperation between the Optical, Photonic Materials and Systems laboratory of the University of Metz and the Crystal Technology Department of the Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences (former Research Laboratory for Crystal Physics). This cooperation has not only been restricted to joint research work and the exchange of samples and researchers, publication of common papers (20), but also included the exchange of PhD students and the bilateral supervision.

I’ve joined the group in September 2004 as a shared Ph.D student of the University Eötvös Lóránd and the University of Metz. With an Eiffel Doctorat “co-tutelle” scholarship I’ve spent 15 months in Saint Avold (France) and another 15 months in Budapest.

Based on the results of the previous investigations concerning the phase relations of the K$_2$O - Li$_2$O - Nb$_2$O$_5$ ternary system near the existence region of lithium niobate the common research was extended to the investigation of the potential use of other alkali oxides (instead of K$_2$O), namely Na$_2$O, Rb$_2$O and Cs$_2$O as solvent components in the growth of stoichiometric lithium niobate. The methods I’ve got acquainted with and the results we obtained in this period are summarized in my thesis.
Contents

Summary in English in French and in Hungarian... 2
Contents .. 34
Background and objectives ... 36
1. Physics and chemistry of crystalline LiNbO₃ ... 38
 1.1. The LiNbO₃ crystal structure ... 39
 1.2. Phase relations in the Li₂O - Nb₂O₅ binary system.. 43
 1.3. Phase relations in the K₂O - Li₂O - Nb₂O₅ ternary system............................... 45
 1.4. Crystal growth processes ... 47
 1.4.1. High temperature top seeded solution growth (HTTSSG) method 49
 1.5. Crystal composition and characterization methods ... 51
2. Experimental methods and instruments .. 57
 2.1. Solid state reactions, thermoanalytical investigations and phase characterization ... 58
 2.2. Crystal growth and refinement of the phase diagram .. 61
 2.3. Spectroscopy .. 63
3. Results ... 64
 3.1. Phase identification and phase diagram determined on polycrystalline samples 65
 3.1.1. Thermal analysis and X-ray phase identification in the X₂O - Li₂O - Nb₂O₅ ternary systems .. 65
 3.1.2. Phase diagram of the Cs₂O – Li₂O – Nb₂O₅ ternary system....................... 72
 3.2. Single crystal growth and characterization .. 77
 3.2.1. Crystal growth experiments in the X₂O – Li₂O – Nb₂O₅ ternary systems.... 77
 3.2.2. Solid composition determination by UV/Vis spectroscopic measurements. 81
3.2.3. Phase relations along the vertical section of LiNbO$_3$-X$_2$O systems 87
3.3. Spectroscopic characterization and composition determination of the crystals
grown from alkali metal oxide fluxes ... 89
3.3.1. IR absorption measurements... 89
 3.3.1.1. OH vibrational spectra of crystals grown from Rb$_2$O and Cs$_2$O
 containing fluxes ... 89
 3.3.1.2. OH spectra of crystals grown from Na$_2$O containing flux 103
3.3.2. Raman spectroscopic properties of the crystals 105
 3.3.2.1. Composition calibration for lithium niobate crystals based on Raman
 experiments... 105
 3.3.2.2. Raman spectra of crystals grown from Rb$_2$O and Cs$_2$O containing fluxes
 .. 107
 3.3.2.3. Raman spectra of crystals grown from Na$_2$O containing flux 113
4. Summary .. 115
5. New results ... 116

Publications ... 118
Acknowledgements .. 120
Bibliography ... 121
Appendix ... 126
 A.1. Definitions ... 126
 A.2. List of abbreviations .. 128
 A.3. Crystal growth methods ... 129
 A.3.1. Bridgman technique ... 129
 A.3.2. Czochralski technique .. 130
 A.3.3. High temperature solution growth (HTSG) methods 131
 A.3.4. Double crucible method ... 134
 A.4. Examination and characterization methods .. 136
 A.4.1. Differential scanning calorimetry ... 136
 A.4.2. X-ray diffraction ... 138
 A.4.3. Ultraviolet/visible and infrared spectroscopy 140
 A.4.4. Raman spectroscopy ... 145
 A.5. Residual X-ray diffractograms for chapter 3.1.2. 147
Background and objectives

Lithium (meta-) niobate (LiNbO$_3$, LN) does not occur in nature, the first report on its preparation and ferroelectric properties was given by Matthias and Remeika in 1949 [1]. The versatility of LiNbO$_3$ arises from the unique combination of piezoelectric, pyroelectric, electro-optical and nonlinear optical properties enabling it to be used in a wide range of applications. Most basic experiments on acoustic wave propagation, electro-optic light modulation, optical second harmonic generation, and parametric oscillation were performed between 1965 and 1967. Lithium niobate was also the first material found to exhibit photorefractivity — an effect where the trapping of photogenerated charge carriers induces reversible changes in the refractive indices — which can be used for holographic image processing and information storage. Lithium niobate can be used in surface acoustic wave filters, optical frequency converters and optical parametric amplifiers based on single domain bulk crystals, periodical structures or waveguides.

Single crystals of good quality and uniform composition can be grown from the congruent melt that corresponds to the [Li] / [Nb] \approx 0.945 ratio. For this composition the liquid and the solid phases in equilibrium have the same concentration of each component. Consequently, using this starting composition in crystal growth, the segregation coefficients for both Li$_2$O and Nb$_2$O$_5$ are equal to 1. Congruent lithium niobate (cLN) crystals can be grown easily and this is the composition used in most applications [2, 3, 4]. The drawback of the cLN crystal is its high Li-deficiency leading to a large concentration of intrinsic defects. This results in a low optical damage threshold seriously limiting applications in electro-optics and non-linear optics requiring high energy laser radiation. It was found [5] that crystals grown under appropriate conditions from K$_2$O containing mixtures have lower intrinsic defect concentrations.
Using similar procedures better optical parameters and a higher optical damage
threshold can be achieved making the crystals more suitable for use in electro-optics
and non-linear optics (Q-switching and frequency converters) [5, 6].
Later it was recognised that potassium itself does not enter the crystals grown in this
way and lithium niobate crystals with the ratio near to [Li]/[Nb] ~ 1 (stoichiometric
lithium niobate, sLN) can be grown. By now several other methods have also been
developed for the preparation of sLN single crystals and the composition closest to 50
mol% Li$_2$O can be achieved by the high temperature top seeded solution growth
(HTTSSG) method using a K$_2$O - Li$_2$O - Nb$_2$O$_5$ ternary mixture [7]. Such a solution is
especially convenient for the growth of sLN crystals, since it significantly lowers the
crystallization temperature determining the stoichiometry of the crystal [8, 9, 10].
The increasing need of high quality stoichiometric single crystals in the applications
made it evident to look for other alkali metal oxides beyond potassium oxide in the hope
that they can give us an easier growth process, lower crystallization temperatures or
better yield of stoichiometric lithium niobate single crystals. For this end phase relations
in the X$_2$O - Li$_2$O - Nb$_2$O$_5$ (X = Na, Rb or Cs) ternary systems were investigated, some
of the corresponding phase diagrams were constructed, new phases were identified,
growth processes were carried out and the crystals were characterized by spectroscopic
methods.

The first chapter of my thesis reviews the LiNbO$_3$ crystal structure, phase diagram,
crystal growth and characterization methods published in the literature. The
experimental methods are described in the second chapter while chapter 3 contains a
detailed presentation of the results. The work performed is summarized in chapter 4,
and the new scientific results are listed in chapter 5.
1. Physics and chemistry of crystalline LiNbO$_3$

The first chapter summarizes basic knowledge about LiNbO$_3$ crystals. The crystallographic structure and the physical properties will be reviewed. The phase diagrams of the Li$_2$O - Nb$_2$O$_5$ binary and the K$_2$O - Li$_2$O - Nb$_2$O$_5$ ternary systems will be presented. Different crystal growth methods will be demonstrated with their advantages and disadvantages. The difficulties of the composition determination of the LiNbO$_3$ single crystal and suitable methods for an exact high precision composition calibration will be given.
1.1. The LiNbO$_3$ crystal structure

LiNbO$_3$ is an ionic material with partially covalent character. The structure of LiNbO$_3$ at room temperature belongs to the rhombohedral (trigonal) space group R3c, the corresponding point group is 3m. This form is stable up to the ferroelectric phase transition around 1200°C, where a transition to the nonpolar point group 3m occurs (space group R$\tilde{3}$c) (Fig. 1.1.). The unit cell parameters are given in Table 1.1.

![Figure 1.1.](image)

Figure 1.1. (a) Three dimensional model of the LiNbO$_3$ structure (red circles are oxide ions, blue ones are lithium ions and the green are niobium ions), (b) the displacement of cations relative to the oxygen planes for the two possible directions of polarization in the ferroelectric state [1]
Table 1.1. Unit cell parameters and density of LiNbO$_3$ in the hexagonal [4, 11, 12] representation

<table>
<thead>
<tr>
<th></th>
<th>Congruent crystal</th>
<th>Stoichiometric crystal</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_H [Å]</td>
<td>5.15052(6)</td>
<td>5.14739(8)</td>
</tr>
<tr>
<td>c_H [Å]</td>
<td>13.86496(3)</td>
<td>13.85614(9)</td>
</tr>
<tr>
<td>d [g/cm3]</td>
<td>4.648(5)</td>
<td>4.635(5)</td>
</tr>
</tbody>
</table>

number of formula units: 6 per unit cell

For describing the LiNbO$_3$ crystal symmetry two representations are used: the rhombohedral and the hexagonal. For the description of the physical properties an orthogonal representation is often used. The relations of these three representations are illustrated in Fig. 1.2.

In the rhombohedral setting the three axes are equal in length. The interaxial angles are also identical and are 55.87° for LiNbO$_3$ [13]. Each of the triad axes is a body diagonal of a rhombohedron. The axes of the rhombohedron form an angle of about 33° with the triad axes. Hexagonal axes are chosen perpendicular to the mirror planes (Fig. 1.2 b). According to the conventions, these hexagonal axes have to be chosen in such a way that the rhombohedron is in the obverse position. This obverse position is indicated in Fig. 1.2 (a) by dashed lines. The interrelation between the rhombohedral and the hexagonal axes imposes strict limitations on the possible indices of faces in the hexagonal system.
For most physical applications the orthogonal setting (Fig. 1.2 c) is preferred, with all axes orthogonal, but with different length. Tensor components of physical properties, such as elastic moduli, piezoelectric coefficients, dielectric constants, and others, are given with respect to these axes. In the present work the hexagonal and the orthogonal representations are used.

The frame of the crystal structure (Fig. 1.1) consists of oxygen octahedra sharing faces with each other and empiled along the polar z-axis. The space created by the oxide ions is occupied by the cations in alternating sequence and every third site is empty.

In the paraelectric state the Nb ion is in the centre of the oxygen octahedra while the Li ion is situated in the plane of the oxide ions. In the ferroelectric phase at 295 K the Nb ion is displaced by 0.277 Å and the Li ion by 0.675 Å in the same direction from their symmetrical positions. These displacements along the polar axis are the origin of the spontaneous polarization. An opposite displacement reverses the direction of spontaneous polarization [13, 14, 15] as shown in Fig. 1.1 b.

In ideal stoichiometric LiNbO$_3$ the Li sites are occupied by Li$^+$ and the Nb sites are occupied by Nb$^{5+}$. The presence of excess Nb$^{5+}$ in congruent crystals leads to the formation of anti-site (Nb$_{Li}$) defets in the lattice Several models of instrinsic defects have been proposed in the literature to describe the congruent LiNbO$_3$ crystal. The Li vacancy model [16] assumes that the Nb sublattice is completely filled, extra Nb$^{5+}$ ions enter Li sites forming anti-site defects. The charge neutrality is achieved by empty Li sites whose number is four times that of antisite Nb defects.

The Nb vacancy model [17] assumes Nb vacancies at the Nb site act as charge compensators for Li defficiency. Four vacant Nb sites are needed to compensate the charge of five Nb on antisites.
Abdi et al. [18] assumed that both Li and Nb vacancies can coexist to some extent, and that their ratio is determined by the crystal composition. In both congruent and stoichiometric case the O positions are supposed to be completely filled.
1.2. Phase relations in the Li$_2$O - Nb$_2$O$_5$ binary system

The first phase diagram of the system Li$_2$O – Nb$_2$O$_5$ was published by Reisman and Holtzberg [19] describing two incongruently and two congruently melting compounds: lithium meta-niobate (LiNbO$_3$, melting point 1253 °C) and lithium ortho-niobate (Li$_3$NbO$_4$, melting point 1408 °C). Lerner et al. [16] made a substantial improvement, showing that LiNbO$_3$ has a fairly large solid solubility range, and the maximum melting temperature does not occur at the stoichiometric composition but between 48 and 49 mol% Li$_2$O. The congruent composition is reported to be between 48.35 and 48.60 mol% Li$_2$O [16, 20, 21, 22, 23, 24] depending on the purity of the starting materials, growth conditions, measuring methods and also on the direction of the crystal growth [21, 22]. In the homogeneity range (~ 47 – 50 mol% Li$_2$O [16]) the physical parameters are sensitively changing (e. g. lattice constant, density, ferroelectric Curie temperature, refractive index, phase matching temperature of the 2$^{\text{nd}}$ harmonic generation, the position of the ultraviolet absorption edge, position and shape of the OH$^-$ vibration spectrum). Several calibration methods use these variations for the precise determination of the compositions of the crystals as will be shown later. A slight shift in the composition causes a large change in the physical parameters in this composition range; therefore the exact knowledge of the Li$_2$O content of the crystal is very important.

The clearest representation of the phase diagram was given by Svaasand et al. [25] shown in Fig. 1.3.
While the congruent LN crystal can be grown easily with uniform composition, its high Li-deficiency limits the technical application in electro-optics and non-linear optics because the high number of intrinsic defects sensitizes the crystal against high energy laser radiation.
1.3. Phase relations in the K$_2$O - Li$_2$O - Nb$_2$O$_5$ ternary system

The investigations of the K$_2$O - Li$_2$O - Nb$_2$O$_5$ ternary system started in the 1960’s. Potassium lithium niobate (K$_3$Li$_2$Nb$_5$O$_{15}$, KLN) with good non-linear optical and electrooptical properties was grown from this system [26, 27]. A new interest was given to the subject when the composition of lithium niobate (LN) grown from K$_2$O containing starting material was found to have better properties (sharper NMR and EPR lines) than those grown from congruent melt [28]. Based on these first results in-depth investigations of the ternary oxide system were started. It was established that lithium niobate bulk crystals with the compositions closest to stoichiometric can be grown from this system (Polgár et al. [9]). Within the confines of the lithium niobate existence field the phase boundaries of the stoichiometric lithium niobate existence field were determined as shown in Fig. 1.4.

![Diagram of polythermal projection of LiNbO$_3$ (LN) crystallization field in the K$_2$O - Li$_2$O - Nb$_2$O$_5$ ternary system](image)

Figure 1.4. View of the polythermal projection of LiNbO$_3$ (LN) crystallization field in the K$_2$O - Li$_2$O - Nb$_2$O$_5$ ternary system where the grey region shows the crystallization region of LiNbO$_3$ while the area marked with squares corresponds to the crystallization region of stoichiometric LiNbO$_3$ phase [9], (KN = KNbO$_3$, L3N = Li$_3$NbO$_4$, KLN = K$_{6-x}$Li$_{4+x}$Nb$_{10+x}$O$_{30}$ ternary solid solution, where x = 0.51-0.55 and LN3 = LiNb$_5$O$_8$ phases, E is the ternary eutectic point, P is the peritectic point and T is the quasi-peritectic point of the system)
The LiNbO$_3$ liquidus surface is limited by four monovariant lines: Liq. + Li$_3$NbO$_4$ + LiNbO$_3$, Liq. + KNbO$_3$ + LiNbO$_3$, Liq. + KLN + LiNbO$_3$ and Liq. + LiNb$_3$O$_8$ + LiNbO$_3$. The ternary eutectic reaction [8] occurs at 997 °C: Liq. ↔ β-Li$_3$NbO$_4$ + KNbO$_3$ + LiNbO$_3$. The composition of the eutectic liquid (E) is 45.0 ± 1.5 mol% Nb$_2$O$_5$, 26.0 ± 1.5 mol% K$_2$O and 29.0 ± 1.5 mol% Li$_2$O. A quasi-peritectic reaction (Liq. + KLN solid solution ↔ KNbO$_3$ + LiNbO$_3$) has also been identified at a temperature of about 1050 - 1055 °C. The quasi-peritectic liquid (T) has a composition roughly equal to: 49 mol% Nb$_2$O$_5$, 25.5 mol% K$_2$O and 25.5 mol% Li$_2$O.

Phase relations in the analogous X$_2$O - Li$_2$O - Nb$_2$O$_5$ (where X = Na, Rb or Cs) ternary systems have not been investigated yet. The first results will be reported for X = Na and Rb and the complete phase diagram at room temperature will be given for X = Cs in the present thesis.
1.4. Crystal growth processes

Congruent LiNbO$_3$ single crystals are generally grown by the Czochralski method even on the industrial scale. High purity materials are melted in a crucible and are solidified with the same composition on a crystal seed.

Several attempts have been undertaken to prepare crystals with stoichiometric ([Li]/[Nb]~1, sLN) composition. These crystals are expected to have less lattice defects and therefore better properties for high energy laser applications.

The preparation of stoichiometric samples from congruent single crystalline wafers or fibres was successful using the vapour transport equilibration (VTE) method where previously grown congruent samples were annealed in the vapour of Li-rich LiNbO$_3$ powder. The lithium enrichment of the crystal occurs via the vapour phase by diffusion. For thin samples this method yielded compositions rather close to the stoichiometric (49.95 mol% Li$_2$O [23]); the drawback is that for thicker crystals, extremely long diffusion times have to be used [23, 29].

Czochralski growth starting from stoichiometric and other off-congruent melts did not give satisfactory results, since the composition of the growing crystals was shifting along the growth axis as the growth proceeded.

The HTTSSG (High Temperature Top Seeded Solution Growth) method is a suitable method for growing sLN crystals up to 50 mol% Li$_2$O content. The method allows to decrease the crystallization temperature because the components of the desired substance are dissolved in a solvent (sometimes referred as “flux”), which is a molten salt. Choosing the right solvent is very important for the HTTSSG technique. The main selection criteria for the solvent are: the solvent should not react with the crystal material, should not enter the lattice as a dopant, should significantly lower the crystallization temperature and the temperature dependence of solubility of the solute in the flux should be positive and significant.

The K$_2$O - LiNbO$_3$ system has proved to be an ideal solvent system since K$_2$O does not enter the lattice whereas it significantly lowers the crystallization temperature [7, 30, 31]. It was established that the key parameter which determines the composition of the growing crystal is the growth temperature [31]. A lower temperature threshold for crystallization has been found to be at about 1114°C. The values of similar thresholds for possible new solvents clearly limit their choice for the growth of stoichiometric LiNbO$_3$ single crystals. From this it also follows that the Li-rich self-fluxes can never result in a Li/Nb ratio as close to 1 as the K$^+$ containing flux does, since according to the
binary Li$_2$O - Nb$_2$O$_5$ phase diagram the temperature limit of growth in that system is at 1160 °C (see Fig. 1.4).

Kitamura et al. [32] improved the HTTSSG and invented a continuous filling double crucible method. They used a Li$_2$O-rich self-flux. During the growth a powder which has the same composition and amount as that of the pulled crystal is continuously refilled to the solution. Since the material pulled out is immediately recharged, the composition of the flux is kept constant and a crystal with uniform composition can be grown.

The Li$_2$O content in their starting mixture was 58 mol%, so the maximum attainable Li$_2$O content of the crystal by this method is 49.79 mol% limited by the phase relations in the Li$_2$O - Nb$_2$O$_5$ binary system.

Most of the methods applied for growing stoichiometric crystals produce stoichiometric or nearly stoichiometric LiNbO$_3$ with a real Li$_2$O content between ≈49.5 and 50.0 mol% in the crystal.
1.4.1. High temperature top seeded solution growth (HTTSSG) method

The starting materials (the solvent and the solute) are mixed and melted in a crucible and kept at high temperature for homogenization. An oriented crystal seed (with the same composition as that of the crystal to be grown) is brought into connection with the surface of the mixture. After reaching thermal equilibrium between the seed and the solution close to the saturation temperature, with the slow lowering of the temperature the crystal begins to grow on the seed with corresponding orientation. During the procedure the seed is rotated and pulled (fig. 1.5). The temperature programme of the growth is chosen in a way that the diameter of the crystal increases continuously from the few mm diameter of the seed crystal to the maximal size required and maintains this constant diameter till the end of the growth. If the crystal reaches the expected length, it is detached from the flux.

At first sight the technical setup is very similar to that of the Czochralski growth but there are significant differences. In HTTSSG the temperature of the growing interface is
diminishing during the crystal growth insuring the maintenance of the saturation conditions while in Czochralski method the temperature of the growing interface is constantly at the melting point. The typical pulling rate for HTTSSG is slow (0.1 – 10 mm/day) so the growth process can last several weeks which is at least ten times more than a Czochralski run. This implies that the requirements against the long term stability of the equipment are rather high which applies for the pulling rate, the rotation speed, and in particular the temperature.

Finding the good solvent is also crucial for the HTTSSG technique.
1.5. Crystal composition and characterization methods

As shown on the phase diagram (Fig. 1.3) LiNbO$_3$ has a homogeneity range between 47.5 – and 50 mol% Li$_2$O content at room temperature (see Fig. 1.3). The real composition can be expressed by the [Li] / [Nb] ratio. The determination of the main components (~ 50 mol%) with the application-required 0.01 mol% precision is not possible by quantitative chemical analysis. For atomic absorption spectroscopy (AAS) the accuracy of the measured Li$_2$O content is not better than 1-2 mol%.

Since several physical properties (e.g. Curie point, birefringence, phase-matching temperature for second harmonic generation, etc.) of lithium niobate are sensitive to the composition they can be used for the high precision determination of the crystal composition. A summary of calibration methods based on well-measurable physical properties is given in a review paper [33].

The determination of the interrelation between Curie temperature and melt stoichiometry was performed by Bergman et al. [34]. This temperature is shifting by 150 °C between 46 and 50 mol% Li content. Later on, Carruthers et al. [35] related the Curie point to the crystal composition. Polycrystalline samples were prepared and the Curie points of these samples have been compared to the single crystals pulled out from melts. With this method calibration between the Curie temperature and the crystal composition (Li content or [Li] / [Nb] ratio) can be done. The absolute accuracy of the Curie temperature measurement was estimated to be 0.3 and 0.6 °C (0.01 mol%) for single crystals and powders, respectively.

The phase matching temperature of the optical second harmonic generation sensitively depends on the crystal composition [36] and thus can be used for the characterization of the composition. The phase matching temperature can be measured with an accuracy usually better than 1 K yielding a theoretical sensitivity of better than 0.01 mol% for the composition determination.

The position of the fundamental absorption edge is also very sensitive to the composition of LiNbO$_3$ [37, 38]. Although the relationship is not linear, the measurement of the UV absorption edge is a very convenient way for characterizing the crystal composition. The position of the band edge was defined as the wavelength where the absorption coefficient is 20 cm$^{-1}$. This non-destructive, fast and simple method can be applied at room temperature for the wide range between sub-congruent and stoichiometric compositions with a very high accuracy (a relative accuracy of better than 0.01 mol%, see calibration curve in Fig. 1.6).
Li$_2$O content of the crystal [mol%]

Another spectroscopic method which can be used for composition determination is OH$^-$ vibrational spectroscopy. OH$^-$ ions are always present in air-grown LiNbO$_3$ crystals [39], their vibrations can be easily measured by infrared (IR) spectroscopy. The peak intensities and positions in the IR spectrum are sensitive to the composition of the crystal. In congruent LiNbO$_3$ the absorption band of the OH$^-$ stretching mode peaking at \(\approx 3485 \text{ cm}^{-1} \) has a full width at half maximum (FWHM) of about \(30 \text{ cm}^{-1} \) due to several overlapping components. In nearly stoichiometric LiNbO$_3$ crystals only two relatively sharp band components appear at about 3465 and 3480 \text{ cm}^{-1} [7] (Fig. 1.7). These phenomena are of structural origin [40].
The main band observed at 3465 cm\(^{-1}\) is characteristic of the perfect stoichiometric LiNbO\(_3\) crystal, while the satellite band at about 3480 cm\(^{-1}\) is related to intrinsic defects still present due to incomplete stoichiometry. The satellite band at 3480 cm\(^{-1}\) completely disappears in the spectrum of the stoichiometric crystal and only a sharp peak at 3465 cm\(^{-1}\) can be observed with an FWHM of at about 2-3 cm\(^{-1}\). It has been observed that the intensity ratio \(R = \frac{I_{3480}}{I_{3465}}\) of the two components changes with the Li\(_2\)O content in the ≈ 49.5 – 50.0 mol\% range [33], therefore \(R\) may be used for the estimation of the crystal composition. Up to now, however, no such calibration has been performed due to the shape of the OH\(^-\) band, which depends slightly on the impurities and the time passed since the crystal was grown.

The third spectroscopic method used for composition calibration during my PhD work was the Raman scattering technique. With this method the vibrational modes of the chemical bonds can be studied. For the 3m symmetry (LiNbO\(_3\)) the vibrational modes can be divided into three kinds of groups marked with A\(_{1}\), A\(_{2}\) and E. In the Raman spectrum of LiNbO\(_3\) four A\(_{1}\) and nine E modes can be found (the five A\(_{2}\) modes are Raman inactive). These modes are characteristic of the Li and the Nb vibrations interacting with the oxygen cage. The displacement patterns corresponding to different modes were investigated by Caciuc et al. [41]. They found that the A\(_{1}\)(TO1) transverse optical mode corresponds to the movements of the Nb ions while the A\(_{1}\)(TO2) mode
reflects mainly the Li movement. The Nb and Li vibrations in the E modes are confined to the \((xy)\) plane, while those in the A modes to the \((z)\) direction. These modes are sensitive to the stoichiometry of the LiNbO$_3$ crystals, resulting in the shift and broadening of some Raman bands, which can be used for composition determination. For an accurate determination of the composition generally the FWHM of the E-mode at 156 cm$^{-1}$ was chosen [18, 42-49] because it shows weak directional dispersion and does not overlap with other bands (Fig. 1.8).

![E(TO) and A$_1$(LO) modes of a congruent lithium niobate crystal in the Raman spectra excited by He-Ne laser (633 nm) in z(xx)z polarization](image)

Figure 1.8. E(TO) and A$_1$(LO) modes of a congruent lithium niobate crystal in the Raman spectra excited by He-Ne laser (633 nm) in z(xx)z polarization [50]

There are several calibrations for the composition determination in the literature using FWHM values of the E(TO1) mode [18, 42-49]. Fig. 1.9 summarizes these calibration lines corresponding to the different measurements in the near stoichiometric range.
It can clearly be seen that they are quite different. The FWHM values depend on the polarization and the wavelength of the exciting laser as well. Spectra measured on the same sample with the same exciting laser but in different polarization may give different FWHM values for the E(TO1) mode as it was shown by Sidorov et al. [44]. Comparing the results obtained from Ref. [43] and Ref. [46] we can see that crystals with the same composition and with the same orientation but excited by different lasers
(He-Ne and Ar) provide different FWHM values. The results can be influenced by other factors as well, like the spectrometer resolution [42] and the quality of the sample surface [51].

It can be concluded that a universal calibration cannot be done by Raman measurements without any correction. A calibration based on the FWHM of the E(TO1) Raman mode can only be used locally, assuring identical circumstances for all studied samples.
2. Experimental methods and instruments

In the second part of the thesis the experimental work will be shown. The used basic materials and their treatment for the different experiments and the methods and instruments for this work will be presented in detail. The process for combining these methods for gaining more accurate information will be described.
2.1. Solid state reactions, thermoanalytical investigations and phase characterization

In order to understand the role of the alkali metal oxide solvents in the growth of sLN crystals several methods have been combined. Series of $\text{X}_2\text{O} - \text{Li}_2\text{O} - \text{Nb}_2\text{O}_5$ ($\text{X} = \text{Na, Rb, and Cs}$) polycrystalline samples were prepared by solid state reaction for thermal analytical, x-ray powder diffraction and crystal growth investigations.

The raw materials used were Na_2CO_3 (Merck, analytical grade), K_2CO_3 (Merck, analytical grade), Rb_2CO_3 (99.9 % (Johnson-Matthey), Cs_2CO_3 (Merck, extra pure), Li_2CO_3 (Merck, Suprapur) and Nb_2O_5 (Starck, LN grade). The sample preparation was carried out in a high temperature electric furnace. In all cases the starting materials were dried (200 °C for 12 hours), weighed with 0.1 mg precision, mixed and reacted in solid phase (800 °C for 3 hours) then cooled to room temperature and reground. The release of the whole amount of CO_2 was controlled by weighing. The samples used for thermal analyses and for crystal growth were prepared by a second reaction step: melted at 1200°C or sintered just below the melting temperature (1100 °C), respectively. The constituent phases were assessed by X-ray phase analysis with a Philips PW 1710 diffractometer using Cu K$_\alpha$ radiation in the 2Θ range of 0-80° for the measurements described in chapter 3.1.1. For the results in chapter 3.1.2. an INEL MPD CPS 120 diffractometer was used.

DSC measurements were used to determine the phase transition temperatures of $\text{X}_2\text{O} - \text{Li}_2\text{O} - \text{Nb}_2\text{O}_5$ ($\text{X} = \text{Na, Rb or Cs}$) polycrystalline samples in the composition range of $[\text{X}] = 10$-16 mol% and $[\text{Li}]/[\text{Nb}] = 1$. The DSC curves were recorded with a PL Thermal Sciences 1500 differential scanning calorimeter in Ar atmosphere with Al_2O_3 as the reference material. The calibration of the system was done by using 6N pure standard metals (In, Sn, Pb, Zn, Al, Ag, Au, Si). The calorimeter was heated up to 1370°C at a rate of 10°C/min and then cooled down at the same rate to 300°C.

For the determination of the phase transition temperatures the heating part of the curves was taken into account in order to eliminate the mistakes from supercooling.

The compositions of the polycrystalline samples are represented in a ternary diagram shown in Fig. 2.1.
Figure 2.1. Representation of the selected compositions of the polycrystalline samples along the [Li]/[Nb] = 1 line (where X is a selected alkali metal ion)

From the measured phase transition temperatures a vertical cut of the ternary phase diagram can be constructed (Fig. 2.2) and the most suitable composition for crystal growth can be chosen.
Figure 2.2. Typical vertical section of the ternary phase diagram along the LiNbO$_3$-X$_2$O join constructed from DTA and X-ray results (where the horizontal lines correspond to an eutectic (green line) and a subsolidus (blue line) reaction, A, B and C are the identified phases (A = the phase to be crystallized, Liq. = liquid phase), a is the selected starting composition for crystal growth and T is the crystallization temperature).

Crystal growth experiments were carried out from a selected flux composition (a in Fig. 2.2). The growth process was conducted further than the single A phase crystallization limit (in our case $A = \text{LiNbO}_3$ phase). This way the maximum amount of the LiNbO$_3$ phase was pulled out and the composition of the liquidus phase boundary could be determined. New phases appeared at the bottom of the LN crystals which were assessed by X-ray diffraction analysis. The separation of the consecutively crystallizing phases, their qualitative and quantitative analysis yielded data on the evolution of the monovariant lines.
2.2. Crystal growth and refinement of the phase diagram

Crystal growth was done by the HTTSSG method from fluxes along the line in the ternary diagram joining to the LiNbO₃-X₂O join of the X₂O – Li₂O – Nb₂O₅ (X = Na, Cs or Rb) ternary systems from the starting composition of X₂O = 10 mol% and [Li₂O] / [Nb₂O₅]=1.

For the growth experiments <00.1> oriented LiNbO₃ seeds were used. The crystals were pulled at rates of 0.3-0.5 mm/h and rotated with 8-10 rpm (rotation / minute).

If it is assumed that the system shows no solid solubility for the X ion (it does not enter into the LN lattice) the compositional changes which occur during the solidification may be simply traced. In a first approximation, assuming a stoichiometric composition for the crystallized solid phase, the actual alkali oxide concentration of the liquid can be calculated from the pulled amount of the crystal. The real solid composition (the Li₂O content) of the pure LN crystals can be determined by ultraviolet/visible (UV/Vis) spectroscopic measurements. In the previous studies K₂O based fluxes proved to be ideal solvents [7] therefore a similar behaviour was expected also for the other alkali ions.

The crystallization temperature of the lithium niobate crystal at a given composition can be deduced from the DTA measurements of the polycrystalline samples with the same composition as the actual flux from which the crystal is growing. The composition of different parts of the crystals was determined from slices cut perpendicular to the growth axes of the pulled-out LiNbO₃ crystals.

The knowledge of these two sets of data lets us determine the corresponding liquidus and solidus points (tie-lines) (Fig. 2.3).
If the flux enters the crystal lattice the composition of the liquid and the solid phase in equilibrium must be followed by chemical analysis. Therefore the actual Na, Rb and Cs content of the crystals was analyzed by a Varian SpectrAA-20 atomic absorption spectrometer.
2.3. Spectroscopy

The Li$_2$O content of different parts of the LiNbO$_3$ crystals was determined by a calibration based on the UV absorption edge position which was measured by a two-beam Jasco V-550 UV/VIS spectrometer with a best resolution of 0.05 nm. Reflection correction had to be used before the evaluation of the spectra because of the high refractive index of the crystal. With this correction the error caused by the multiple reflected light beams can be avoided. The correction used is described in detail in Ref. [38].

The IR spectra were recorded at room temperature by a Bruker IFS 66v/S FTIR spectrometer in the 400-7000 cm$^{-1}$ wavenumber region with a resolution of 0.5 cm$^{-1}$. Raman measurements were carried out by a Renishaw RM1000 confocal micro-Raman spectrometer using 633 nm He-Ne laser excitation (with a spectral resolution of about 3 cm$^{-1}$) for the investigations described in chapter 3.3.2.1. Other Raman spectra (chapter 3.3.2.2. and 3.3.2.3.) were measured by a Labram spectrometer (Jobin-Yvon) using 633 nm He-Ne and 514.5 nm Ar-ion laser sources.
3. Results

The third chapter specifies the information gained from the different experiments. First the results on $X_2O \cdot Li_2O \cdot Nb_2O_5$ ($X = Na, Rb, Cs$) polycrystalline samples will be shown, their thermoanalytical properties and their constituent phases at room temperature. The ternary phase diagram of the $Cs_2O \cdot Li_2O \cdot Nb_2O_5$ system will be discussed. Crystal growth results, photos of the crystals, their composition and the refinement of the phase relations will also be presented. For the determination of the Li_2O content two vibrational spectroscopic methods will be presented: IR spectroscopy of OH vibrations and Raman spectroscopy.
3.1. Phase identification and phase diagram determined on polycrystalline samples

3.1.1. Thermal analysis and X-ray phase identification in the $\text{X}_2\text{O} - \text{Li}_2\text{O} - \text{Nb}_2\text{O}_5$ ternary systems

The composition of the samples was chosen along the $[\text{Li}] / [\text{Nb}] = 1$ line so we can directly use the gained thermal analytical information for choosing the starting melt compositions for the growth of stoichiometric LiNbO$_3$ crystals from these ternary systems.

DSC curves and X-ray diffraction patterns for all $\text{X}_2\text{O} - \text{Li}_2\text{O} - \text{Nb}_2\text{O}_5$ systems are shown in Figs. 3.1 and 3.2.1-3, respectively. Similarly to the previously investigated $\text{K}_2\text{O} - \text{Li}_2\text{O} - \text{Nb}_2\text{O}_5$ system X-ray assessment reveals LN as the major phase. L3N and the alkali niobate phases are present as minor constituents.
Figure 3.1. Thermal analytical (DSC) curves of the \(X_2O - Li_2O - Nb_2O_5\) samples with \([\text{Li}]/[\text{Nb}] = 1\),
\((X = \text{Na (a), Rb (b), Cs (c))}\)
Figure 3.2.1. X-ray diffractograms of the Na$_2$O - Li$_2$O - Nb$_2$O$_5$ samples with [Li]/[Nb] = 1, (a) 12 mol\% Na$_2$O content, (b) 16 mol\% Na$_2$O content
Figure 3.2.2. X-ray diffractograms of the Rb₂O - Li₃O - Nb₂O₅ samples with [Li]/[Nb] = 1, (a) 12 mol% Rb₂O content, (b) 16 mol% Rb₂O content. Unidentified Rb – Nb - (Li) oxide phases were marked with A.
Figure 3.2.3. X-ray diffractograms of the Cs$_2$O - Li$_2$O - Nb$_2$O$_5$ samples with [Li]/[Nb] = 1, (a) 12 mol% Cs$_2$O content, (b) 16 mol% Cs$_2$O content. Unidentified Cs – Nb - (Li) oxide phases were marked with Q.
Table 3.1. Sample compositions, the observed phases at room temperature and the results of DSC analysis from samples with [Li]/[Nb] = 1. T1 and T2 denote the temperatures of the starting Liquid \rightarrow LN single- and Liquid \rightarrow LN + L3N two phase crystallization processes, respectively. T3 stands for the ternary eutectic reaction Liquid \rightarrow LN + L3N + alkali-niobate, and T4 is attributed to the LN + alkali-niobate \rightarrow L3N + Q quasi-peritectoid reaction. (LN = lithium niobate, L3N = lithium (-orto) niobate, KLN = potassium lithium niobate, A, Q = unidentified Li$_2$O- Nb$_2$O$_5$- X$_2$O mixture).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Composition [mol%]</th>
<th>Observed phases by X-ray diffraction at room temperature</th>
<th>Observed phase transition temperatures from DSC analysis [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Li$_2$O Nb$_2$O$_5$ X$_2$O</td>
<td>Main phases</td>
<td>Residual phases</td>
</tr>
<tr>
<td>K-10</td>
<td>45 45 10</td>
<td>LN</td>
<td>L3N KnBO$_3$</td>
</tr>
<tr>
<td>K-12</td>
<td>44 44 12</td>
<td>LN</td>
<td>L3N KnBO$_3$</td>
</tr>
<tr>
<td>K-16</td>
<td>42 42 16</td>
<td>LN</td>
<td>L3N KnBO$_3$</td>
</tr>
<tr>
<td>K-20</td>
<td>40 40 20</td>
<td>L3N</td>
<td>KLN KnBO$_3$</td>
</tr>
<tr>
<td>Na-12</td>
<td>44 44 12</td>
<td>LN</td>
<td>L3N NaNBO$_3$</td>
</tr>
<tr>
<td>Na-16</td>
<td>42 42 16</td>
<td>LN</td>
<td>L3N NaNBO$_3$</td>
</tr>
<tr>
<td>Na-20</td>
<td>40 40 20</td>
<td>LN</td>
<td>L3N NaNBO$_3$</td>
</tr>
<tr>
<td>Rb-10</td>
<td>45 45 10</td>
<td>LN</td>
<td>L3N A</td>
</tr>
<tr>
<td>Rb-12</td>
<td>44 44 12</td>
<td>LN</td>
<td>L3N A</td>
</tr>
<tr>
<td>Rb-16</td>
<td>42 42 16</td>
<td>LN</td>
<td>L3N A</td>
</tr>
<tr>
<td>Cs-10</td>
<td>45 45 10</td>
<td>LN</td>
<td>L3N Q</td>
</tr>
<tr>
<td>Cs-12</td>
<td>44 44 12</td>
<td>LN</td>
<td>L3N Q</td>
</tr>
<tr>
<td>Cs-16</td>
<td>42 42 16</td>
<td>LN</td>
<td>L3N Q</td>
</tr>
</tbody>
</table>

The results of the DSC measurements (the thermal reactions detected) and the RT XRD phase analyses are summarized in Table 3.1. Previous measurements in the K$_2$O containing system are included for comparison (bold) with the actual results.

The highest-temperature peak (T1) depends on the alkali metal oxide content of the samples and was identified as the crystallization temperature of the LN phase. The temperatures of the other peaks were characteristic of the given alkali metal oxide (X). These peaks were assigned to invariant reactions, as in the K$_2$O - Li$_2$O - Nb$_2$O$_5$ system (T2: two-phase crystallization processes of Liquid \rightarrow LN + L3N or Liquid \rightarrow LN + alkali niobate, T3: ternary eutectic reaction of Liquid \rightarrow LN + L3N + alkali-niobate, and T4: quasi-peritectoid reaction.)
For the same alkali metal content the crystallization temperature of LiNbO$_3$ single phase (T1) was the highest using fluxes with Na$_2$O. Although Rb$_2$O and Cs$_2$O based fluxes result in almost the same crystallization temperature, they are still somewhat higher than that of the K$_2$O containing flux (Fig. 3.3). The temperatures of the invariant reactions were also higher for Na$_2$O containing samples than those of K$_2$O, Rb$_2$O and Cs$_2$O.

The ternary liquid composition corresponding to the limit of the LiNbO$_3$ liquidus surface (i.e. starting of the co-crystallization processes of the LN + L3N phases) can be estimated from our measurements to be near 16 mol% X$_2$O for the systems with Rb$_2$O and Cs$_2$O and with [Li]/[Nb] = 1 ratio (for the K$_2$O - Li$_2$O - Nb$_2$O$_5$ system this value is 18 mol% [31]).
3.1.2. Phase diagram of the Cs$_2$O – Li$_2$O – Nb$_2$O$_5$ ternary system

According to the thermal analytical results detailed above – beside K$_2$O – Rb$_2$O and Cs$_2$O have a chance to be suitable for the growth of sLN with low crystallization temperature and high yield.

The ionic radius of Cs is the largest among all examined alkali ions so from a stereo chemical point of view it might be the best candidate for a solvent constituent. This is why the Cs$_2$O – Li$_2$O – Nb$_2$O$_5$ ternary system was selected as a first candidate for a detailed thermal analytical investigation [52].

Four isopleths were selected for investigation: the first (a) corresponds to the composition of [Li] / [Nb] = 1 (between 5-25 mol% Cs$_2$O), the second (b) to the 50 mol% Nb$_2$O$_5$ line (between 10-50 mol% Cs$_2$O), and the last two to the 10 mol% (c) and 20 mol% (d) Cs$_2$O content (between 35 - 55 mol% Nb$_2$O$_5$) (Fig. 3.4).

![Phase diagram of the Cs$_2$O – Li$_2$O – Nb$_2$O$_5$ ternary system](image)

Figure 3.4. Composition of polycrystalline samples investigated by X-ray diffraction

The constituent phases were assessed by X-ray powder diffraction and the analyses were used to outline the boundaries of the constituent phases stable at RT. In the investigated compositional region different types of XRD patterns were found (Fig.3.5.1-3, the rest can be found in the appendix).
Figure 3.5.1. X-ray diffractograms from the investigated region with the identified phases 1: compositions of the samples: 20 mol% Cs$_2$O, 30 mol% Li$_2$O, 50 mol% Nb$_2$O$_5$ (a), 50 mol% Cs$_2$O, 50 mol% Nb$_2$O$_5$ (b).

The unidentified peaks were signed with Q.
Figure 3.5.2. X-ray diffractograms from the investigated region with the identified phases 2: compositions of the samples: 10 mol% Cs$_2$O, 35 mol% Li$_2$O, 55 mol% Nb$_2$O$_5$ (c), 40 mol% Cs$_2$O, 10 mol% Li$_2$O, 50 mol% Nb$_2$O$_5$ (d). The unidentified peaks were signed with Q.
Figure 3.5.3. X-ray diffractograms from the investigated region with the identified phases: compositions of the samples: 25 mol% Cs$_2$O, 37.5 mol% Li$_2$O, 37.5 mol% Nb$_2$O$_5$ (e), 20 mol% Cs$_2$O, 40 mol% Li$_2$O, 40 mol% Nb$_2$O$_5$ (f). The unidentified peaks were signed with Q.
The identified phases at room temperature in the investigated part of the diagram as shown in Fig. 3.6 were the following:

- a single-phase domain called “Q”
- two two-phase domains: Q + β-Li$_3$NbO$_4$ (L3N) and Q + LiNbO$_3$ (LN)
- two three-phase regions: CsNbO$_3$ (CN) + Q + β-Li$_3$NbO$_4$ and Q + LiNbO$_3$ + β-Li$_3$NbO$_4$

The same series of peaks corresponding to the unidentified “Q” phase was found in the spectra of all investigated samples except for CsNbO$_3$ (Fig. 3.5.1. b). The spectrum of the 40 mol% Cs$_2$O, 10 mol% Li$_2$O, 50 mol% Nb$_2$O$_5$ sample (Fig. 3.5.2. d) contains only the Q peaks, so it can be identified as a single phase domain.
3.2. Single crystal growth and characterization

3.2.1. Crystal growth experiments in the X$_2$O – Li$_2$O – Nb$_2$O$_5$ ternary systems

Single crystals from melts of ternary compositions were grown by the HTTSSG method [7]. Based on the thermal analytical results (Fig. 3.7), detailed in chapter 3.1.1., the crystal growth experiments were started from 10 mol% alkali metal oxide (X$_2$O) content with [Li]/[Nb] = 1.

![Phase diagram](image)

Fig. 3.7. Constructed phase diagram from DTA results (where black dots are the measured phase transition temperatures, horizontal straight lines correspond to subsolidus reactions). The red lines show the selected growth compositions (10 mol% in both cases) and the corresponding crystallization temperature (at about 1185 °C). RN and CN correspond to the RbNbO$_3$ and the CsNbO$_3$ phases.
By choosing this concentration it was possible to embrace a concentration range from 10 mol% to the single phase boundary.
The growth experiments were successful for all examined alkali fluxes. Transparent and crack free crystals of 4-5 cm length could be grown starting from the composition of 10 mol% alkali content with [Li]/[Nb] = 1 (Fig.3.8).

Figure 3.8. Crystals grown from 10 mol% alkali content (Rb$_2$O – a, Cs$_2$O – b and Na$_2$O – c) with [Li]/[Nb] = 1
The growth process was conducted until the liquid composition reached one of the monovariant lines (the limit of the crystallization field of the primary LN phase). In this way the maximum amount of the LN phase was pulled out and the crystallization yield was determined (Table 3.2).

Table 3.2. Starting compositions used for growth experiments, the experimentally obtained yield of the LN phase and the X content of the crystal and the residue.

<table>
<thead>
<tr>
<th>X</th>
<th>Liquid composition [mol%]</th>
<th>Yield [LN]/[flux] [wt%]</th>
<th>X content in the crystal [mol%]</th>
<th>X content in the residue [mol%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>45 45 10</td>
<td>36.6</td>
<td>5.7</td>
<td>12.7</td>
</tr>
<tr>
<td>Rb</td>
<td>45 45 10</td>
<td>38.4</td>
<td>0.015</td>
<td>16.5</td>
</tr>
<tr>
<td>Cs</td>
<td>45 45 10</td>
<td>37.9</td>
<td>0.0002</td>
<td>15.8</td>
</tr>
</tbody>
</table>

At the end of the LiNbO₃ crystallization a white polycrystalline mass was grown, which contained two phases assessed by X-ray analysis.

The polycrystalline phase was identified as a mixture of LiNbO₃ and Li₃NbO₄ for crystals grown from Rb₂O- and Cs₂O-based flux, the same as before for the K₂O-based flux, while for Na₂O containing flux LiNbO₃ and NaNbO₃ were found.

Both in the single LN phase (samples cut from the clear part of the crystals) and in the two phase region of the crystals grown from Rb₂O- and Cs₂O-based fluxes, only traces of Rb and Cs ions (i.e. $10^{-3} - 10^{-4}$ atom/mol or less, Table 3.2) were detected by atomic absorption spectroscopy, similarly to the previous results reported on the incorporation of K ions in the crystals grown from K₂O containing flux [7]. The behaviour of Na ions was different. According to our AAS measurements Na ions do enter the crystal lattice with an average segregation coefficient of $k_{\text{sol/liq}}$ (Na₂O) ~ 0.2.

Since K₂O, Rb₂O and Cs₂O are practically insoluble in lithium niobate the evolution of the liquid composition may be traced during the crystallization of the LN phase. Assuming constant [Li]/[Nb] = 1 ratio, for Rb₂O and Cs₂O containing fluxes the alkali oxide content of the liquid at the crystallization limit of the LN phase was found to be 16.5 mol\% and 15.8 mol\%, respectively (this value for the previously investigated K₂O containing flux was 18 mol\%). These results correspond well to those obtained from the thermal analytical measurements. In this way the LN phase boundaries estimated by using the DTA results were verified and refined by the crystal growth experiments.
Since Na enters the lattice the properties of the crystal grown from Na$_2$O-based flux are quite different (e.g. higher phase transition temperatures). For this crystal, the [Li]/[Nb] ratio varies both in the liquid and solid phases because of the incorporation of Na ions into the lattice as a dopant. The alkali content of the liquid at the limit concentration of the crystallization of the LN phase may be estimated by assuming a constant effective segregation coefficient $k \sim 0.2$ for Na$_2$O. Thus, from the yield of the pulled amount of LN phase both the whole amount of the incorporated sodium oxide and the alkali content of the liquid can be calculated.

With this method for the limit concentration of Na$_2$O in the liquid we obtained around 14.1mol%. Results of the atomic absorption spectroscopy on the alkali content of the residues obtained after pulling out the maximum amount of LN single phase support the above estimates on the limit concentrations for these solvents.
3.2.2. Solid composition determination by UV/Vis spectroscopic measurements

The Li$_2$O content of the slices of the LiNbO$_3$ crystals grown from the different alkali metal oxide (Na$_2$O, Rb$_2$O and Cs$_2$O) containing fluxes [53] was determined using a Jasco V-550 UV/VIS spectrometer [38]. 2 mm thick z-slices were cut along the growth axes and polished for the spectroscopic experiments (see Fig. 3.9).

![Diagram of crystal cut](image)

Figure 3.9. Schematic diagram of crystal cut

UV edge measurements were carried out at room temperature on the z cut slices.
In each case, the wavelength value where the absorption coefficient reaches 20 cm\(^{-1}\) was determined. For all examined sample series this edge position was shifting to shorter wavelengths from the top to the end of the crystals (Fig. 3.10.). The evolution of the edge position as a function of the yield of the LN phase obtained from Rb\(_2\)O- and Cs\(_2\)O-containing flux is similar, while for crystals grown from K\(_2\)O-based flux it starts decreasing from a shorter wavelength and becomes constant above a given yield (~35 wt%). The UV-edge position for the crystal grown from Na\(_2\)O-containing flux differs remarkably: it starts at higher wavelength and shows only a slight change (Fig. 3.11).
Figure 3.11. Measured UV edge positions as a function of the yield (the yield is given in weight % because this is the only way for comparison of the properties of the Na-doped crystal with the pure LN crystals)

Table 3.3 contains the wavelength values at $\alpha = 20 \text{ cm}^{-1}$ and the calculated compositions. The composition calculation is based on the previous calibration - described in chapter 1.5 - between the UV absorption edge position and the Li$_2$O content of the crystal [38].

Since Rb and Cs ions do not enter the lattice, the [Li]/[Nb] ratio of the pure LiNbO$_3$ crystals can be determined from the UV absorption edge position measured. However, the Na ions were incorporated into the crystal (at the Li sites as it will be shown in chapter 3.3.2.3.) therefore the calibration mentioned above is inappropriate for the determination of the Li$_2$O concentration, but it is assumed to give acceptable results for the total alkali oxide (Na$_2$O + Li$_2$O) content.
Table 3.3. UV absorption edge positions and the calculated compositions of the different parts of the crystals. * For the crystal grown from Na$_2$O containing flux the Li$_2$O or the [Li] value means the [Li$_2$O + Na$_2$O] content in all cases.

<table>
<thead>
<tr>
<th>Alkali ion in the flux</th>
<th>N° of the slice</th>
<th>Yield at the slice [wt%]</th>
<th>Abs. coeff. at 20 cm$^{-1}$</th>
<th>Li$_2$O content of the slice [mol%]</th>
<th>[Li]/[Nb] ratio of the slice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>1</td>
<td>3.25</td>
<td>312.8</td>
<td>49.38*</td>
<td>0.9755*</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.66</td>
<td>312.7</td>
<td>49.39*</td>
<td>0.9759*</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14.45</td>
<td>312.5</td>
<td>49.42*</td>
<td>0.9771*</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>20.24</td>
<td>312.2</td>
<td>49.45*</td>
<td>0.9782*</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>26.00</td>
<td>312.2</td>
<td>49.45*</td>
<td>0.9782*</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>30.43</td>
<td>311.9</td>
<td>49.48*</td>
<td>0.9794*</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>2.00</td>
<td>307.4</td>
<td>49.82</td>
<td>0.9928</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.00</td>
<td>307.3</td>
<td>49.83</td>
<td>0.9932</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10.28</td>
<td>306.8</td>
<td>49.86</td>
<td>0.9944</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>15.00</td>
<td>306.6</td>
<td>49.87</td>
<td>0.9948</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>19.38</td>
<td>305.9</td>
<td>49.90</td>
<td>0.9960</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>22.12</td>
<td>305.0</td>
<td>49.94</td>
<td>0.9976</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>26.30</td>
<td>304.3</td>
<td>49.96</td>
<td>0.9984</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>31.68</td>
<td>303.1</td>
<td>49.98</td>
<td>0.9992</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>34.06</td>
<td>302.6</td>
<td>49.99</td>
<td>0.9996</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>38.90</td>
<td>302.2</td>
<td>49.99</td>
<td>0.9996</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>41.26</td>
<td>302.2</td>
<td>49.99</td>
<td>0.9996</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>43.00</td>
<td>302.2</td>
<td>49.99</td>
<td>0.9996</td>
</tr>
<tr>
<td>Rb</td>
<td>1</td>
<td>4.12</td>
<td>309.0</td>
<td>49.72</td>
<td>0.9889</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.60</td>
<td>308.5</td>
<td>49.76</td>
<td>0.9904</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>18.21</td>
<td>307.8</td>
<td>49.80</td>
<td>0.9920</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>25.74</td>
<td>306.5</td>
<td>49.87</td>
<td>0.9948</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>33.07</td>
<td>305.0</td>
<td>49.94</td>
<td>0.9976</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>38.03</td>
<td>303.6</td>
<td>49.98</td>
<td>0.9992</td>
</tr>
<tr>
<td>Cs</td>
<td>1</td>
<td>0.50</td>
<td>308.8</td>
<td>49.74</td>
<td>0.9897</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13.81</td>
<td>307.7</td>
<td>49.81</td>
<td>0.9924</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>16.84</td>
<td>307.5</td>
<td>49.82</td>
<td>0.9928</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>26.21</td>
<td>306.2</td>
<td>49.89</td>
<td>0.9956</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>36.46</td>
<td>303.3</td>
<td>49.98</td>
<td>0.9992</td>
</tr>
</tbody>
</table>
For the most stoichiometric part of the Rb-LN and Cs-LN crystals the [Li]/[Nb] ratio was calculated to be 0.9992 (49.98 mol% Li$_2$O). The [Li]/[Nb] ratio closest to 1 was obtained for the K-LN crystal with a measured absorption edge of about 302.2 nm corresponding to [Li]/[Nb] ~ 0.9996 (49.99 mol% Li$_2$O).

The composition of the samples (grown from 10 mol% Rb or Cs containing fluxes) changed between 49.72 – 49.98 mol% Li$_2$O content, the typical range what is called “nearly stoichiometric”. Though the [Li]/[Nb] ratio of the melts was changing during growth from 1 to 1.002, 1.005 and 1.004 for K, Rb and Cs, respectively, these changes could be neglected in the analysis.

The data of Table 3.4 are represented in Fig. 3.12.

Figure 3.12. Comparison of the Li$_2$O content in the solid as a function of the alkali metal ion content in the flux for the crystals grown from Rb$_2$O and Cs$_2$O with the crystal grown from K$_2$O containing fluxes ([Li] / [Nb]= 1 in all cases)
3.2.3. Phase relations along the vertical section of LiNbO$_3$-X$_2$O systems

With the method described in chapter 2 we can determine tie-lines (corresponding compositions of the liquidus and solidus at a given temperature) of the ternary phase diagram along the vertical section of LiNbO$_3$-X$_2$O by the combination of the results of the thermal analytical, X-ray, crystal growth and spectroscopic measurements. Table 3.4 and Fig. 3.13 summarize the data gained for our nearly sLN crystals grown from Rb$_2$O or Cs$_2$O containing fluxes.

Table 3.4. The data correspond to the composition of liquid and solid phases in equilibrium at the given temperature

<table>
<thead>
<tr>
<th>X$_2$O content of the flux [mol%]</th>
<th>Li$_2$O content of the crystal [mol%]</th>
<th>Crystallization temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb 10.08</td>
<td>49.72</td>
<td>1185</td>
</tr>
<tr>
<td>11.05</td>
<td>49.76</td>
<td>1179</td>
</tr>
<tr>
<td>11.96</td>
<td>49.8</td>
<td>1171</td>
</tr>
<tr>
<td>13.02</td>
<td>49.87</td>
<td>1150</td>
</tr>
<tr>
<td>14.24</td>
<td>49.94</td>
<td>1125</td>
</tr>
<tr>
<td>15.67</td>
<td>49.98</td>
<td>1091</td>
</tr>
<tr>
<td>Cs 10.10</td>
<td>49.74</td>
<td>1185</td>
</tr>
<tr>
<td>11.56</td>
<td>49.81</td>
<td>1179</td>
</tr>
<tr>
<td>12.00</td>
<td>49.82</td>
<td>1163</td>
</tr>
<tr>
<td>13.30</td>
<td>49.89</td>
<td>1143</td>
</tr>
<tr>
<td>15.15</td>
<td>49.98</td>
<td>1079</td>
</tr>
</tbody>
</table>
As it was established before, the key parameter for the composition of the solution grown LiNbO$_3$ is the crystallization temperature. Consequently the shape of the solidus curves must be the same for all ideal solvents as it is demonstrated by Table 3.4 and Fig. 3.13. (We note that the accuracy of temperature reading in this case is about ± 5 °C.)
3.3. Spectroscopic characterization and composition determination of the crystals grown from alkali metal oxide fluxes

3.3.1. IR absorption measurements

3.3.1.1. OH\(^-\) vibrational spectra of crystals grown from Rb\(_2\)O and Cs\(_2\)O containing fluxes

As it is shown in chapter 1.5 the intensity ratio of the two principal OH\(^-\) vibrational peaks of the nearly stoichiometric LiNbO\(_3\) crystal can be suitable for determining the composition of the crystal.

The IR spectra – of the LN crystals grown from different alkali metal oxide containing solvents – were recorded at room temperature by an FTIR spectrometer with a resolution of 0.5 cm\(^{-1}\) immediately after crystal growth (Fig. 3.14). The composition of the samples was in the 49.7 – 50.0 mol\% Li\(_2\)O range (according to the UV absorption measurements).
The spectra were normalized to the 3480 cm\(^{-1}\) satellite band. It is clearly seen that the higher the Li\(_2\)O content of the crystal, the higher the intensity of the 3465 cm\(^{-1}\) main line, i.e. the intensity ratio \(R = I_{3480} / I_{3465} \) of the two components decreases with increasing Li\(_2\)O content. Although the \(R \) value seems to be usable for the determination of the crystal composition, one has to take into account the dependence of the spectral changes on temperature and time [54].

For the observation and characterization of this phenomenon a long term systematic investigation was conducted. The IR spectra of the samples were also recorded 7.5, 16, 18, and 20 months after the crystal growth. Between the measurements the samples were kept at room temperature.

Figure 3.15 shows the time dependence of the OH\(^-\) absorption spectra. For the sake of simplicity one characteristic slice was chosen from each crystal. It is clearly seen on the
normalized spectra that the intensity of the main line decreases monotonously with increasing time.

Fig. 3.15. Time dependence of the OH⁻ absorption spectra of the 5ᵗʰ and 4ᵗʰ slices of the LN crystals grown from Rb₂O (a) and Cs₂O (b) containing fluxes, respectively.
The accuracy of the absorbance measurements was better than 0.001, which results in $R = I_{3480} / I_{3465}$ values more accurate than 0.01 even for weak OH⁻ signals and taking into account the background uncertainty of the spectra.

The intensity ratio of the two bands (R, or 1 / R, Table 3.5) has been calculated applying background correction (the figures show background-corrected spectra) and reading the absorbance maxima near 3465 and 3480 cm⁻¹.

Table 3.5. Calculated 1/R values from the IR absorption spectra for all the slices measured 0, 7.5, 16, 18 and 20 months after the crystal growth

<table>
<thead>
<tr>
<th>Alkali ion in the flux</th>
<th>No. of the slice</th>
<th>Li₂O content of the slice [mol%]</th>
<th>Intensity ratios of the IR bands, 1/R = I_{3465}/I_{3480}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Rb</td>
<td>1</td>
<td>49.72</td>
<td>4.69</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>49.76</td>
<td>5.17</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>49.8</td>
<td>6.37</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>49.87</td>
<td>8.76</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>49.94</td>
<td>16.79</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>49.98</td>
<td>48.13</td>
</tr>
<tr>
<td>Cs</td>
<td>2</td>
<td>49.81</td>
<td>6.24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>49.82</td>
<td>6.51</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>49.89</td>
<td>9.53</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>49.98</td>
<td>35.65</td>
</tr>
</tbody>
</table>
The R values were plotted as a function of the crystal composition (Fig. 3.16) for different times passed after the crystal growth. We obtained straight lines with different slopes (S). The change of R as a function of time is related to the redistribution of hydroxyl ions among the different defect sites (approaching their room temperature equilibrium).

The phenomenon can be formulated by a general equation:

$$R(t) = S(t) \times (C - [Li_2O]), \quad (3.1)$$

where $[Li_2O]$ is the lithium oxide concentration of the crystal in mol%. Using least square fits the parameter C was always equal to 50 with an accuracy of < 0.005 mol%. This result has been expected, since at the stoichiometric composition, at $[Li_2O] = 50$ mol%, the OH^- defects appearing at 3480 cm$^{-1}$ due to non-stoichiometry should disappear ($R = 0$).
Equation (3.1) provides an easy and fast determination of the sample composition at 0, 7.5, 16, 18, and 20 months after crystal growth. The relative accuracy of the present method in the $[\text{Li}_2\text{O}] = 49.7 – 50.0$ mol% composition range is about 0.01 mol%, similarly to the UV edge method. The fact that R takes the 0 value exactly at 50 mol% in all cases proves that the absolute accuracy is also in the range of 0.01 mol%. A posteriori this also confirms that the UV absorption edge method on its turn, used for the composition determination of the samples, has an absolute accuracy of at least 0.01 mol% in this region. Earlier this was assumed to be only at about 0.1 mol% and the composition calibration, in the absence of a ‘zero-parameter’ like R, was only based on the less precise Curie-temperature measurements [23].

Figure 3.17 shows the time dependence of the slopes of the calibration lines. The obtained values fit well to a first order exponential curve

$$S(t) = S_\infty - A \times \exp(-t/\tau), \quad (3.2)$$
where S_{∞} represents the slope of the calibration line at $t = \infty$ (i.e. in thermal equilibrium at room temperature, which in our case was 22 ± 2 °C), and τ is the time constant of the thermally induced change of the OH⁻ bands ($S_{\infty} = 2.01 \pm 0.02 \ [1/\text{mol\%}]$, $A = 1.27 \pm 0.02 \ [1/\text{mol\%}]$, $\tau = 6.2 \pm 0.3$ months). Equations (3.1) and (3.2) allow us to determine the Li$_2$O content of the crystal kept at room temperature for any time after the growth. Although τ depends on the exact value of room temperature, the accuracy of [Li$_2$O] is better than 0.01 for ± 1 °C and about 0.02 for ± 2 °C temperature uncertainties.

The redistribution rate of hydroxyl defects can be accelerated by heating the LiNbO$_3$ crystals to higher temperatures [54]. The thermal equilibrium state of the OH⁻ defects is different at different temperatures. After heating the crystal up to 1000 °C and then cooling back to room temperature it returns to its initial state measured immediately after the growth.

Two slices were chosen for investigating the temperature dependence of the redistribution rate of OH⁻ defects. These samples were the 2$^{\text{nd}}$ and the 4$^{\text{th}}$ slices of the crystal grown from Rb$_2$O containing flux with 49.76 and 49.87 mol% Li$_2$O content, respectively. The heating and cooling rates applied were about 300 °C/hour which is about 3 times faster than the cooling rate used after crystal growth. Partial recovery was reached by heat treatments at intermediate temperatures (at 100 °C, 250 °C, or 500 °C for 10 – 30 minutes, see Fig. 3.18), with the R values approaching but not reaching those obtained after crystal growth at the $t = 0$ moment.
IR spectra of the 2nd slice after the heat treatment at

- 100 °C
- 250 °C
- 500 °C
- 1000 °C

IR spectra of the 4th slice after the heat treatment at

- 100 °C
- 250 °C
- 500 °C
- 1000 °C
After annealing at 1000 °C the ratio of the peaks returned to their original value measured just after the crystal growth. The OH⁻ spectra of these two slices were then re-measured after 4, 11, 21, 37, and 72 days (Fig. 3.19).
IR spectra of the 2nd slice after the heat treatment at 1000°C

IR spectra of the 4th slice after the heat treatment at 1000°C
Figure 3.19. IR spectra and the change of R as a function of time passed after the heat treatment at 1000 °C for two selected LN slices.

The slopes obtained after the 1000 °C heat treatment with 4, 11, 21, 37, and 72 days perfectly fit the line calculated by equation (3.2) using the parameter values given above (see empty circles in Fig. 3.20). This means that the crystal indeed returned to its initial state after the heat treatment at 1000 °C.
The method of determination of the crystal composition from the OH$^-$ spectra has been tested by measuring the intensity ratio of the two peaks of 5 different nearly stoichiometric samples kept at room temperature for several years (thermally equilibrated samples). The [Li$_2$O] content of the crystals was found to be between 49.6 – 49.9 mol% based on the calibration by the UV absorption edge method (Fig.3.21). Their Li$_2$O content was also determined using equation (3.1) and was compared to those obtained from the UV absorption edge calibration (Table 3.6).
Figure 3.21. UV absorption and OH\(^{-}\) vibration spectra of a series of 5 different nearly stoichiometric LN samples in thermal equilibrium
Table 3.6. Sample compositions obtained by two different calibration methods

<table>
<thead>
<tr>
<th>N°. of the sample</th>
<th>UV measurements</th>
<th>IR measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abs. edge position at 20 cm(^{-1})</td>
<td>Corresponding Li(_2)O content [mol%]</td>
</tr>
<tr>
<td>1</td>
<td>310.3</td>
<td>49.62</td>
</tr>
<tr>
<td>2</td>
<td>309.9</td>
<td>49.65</td>
</tr>
<tr>
<td>3</td>
<td>309.3</td>
<td>49.7</td>
</tr>
<tr>
<td>4</td>
<td>308.7</td>
<td>49.73</td>
</tr>
<tr>
<td>5</td>
<td>307.9</td>
<td>49.78</td>
</tr>
</tbody>
</table>

The difference between the two values was smaller than or equal to 0.01 mol\% proving that the accuracy of the OH\(^-\) band method allows us to determine the Li\(_2\)O content of the samples with an accuracy of about 0.01 mol\%. The peak at 3488 cm\(^{-1}\) is more intensive in these spectra (Fig. 3.21) than it was observed with the samples used for the calibration which can be explained by the less Li\(_2\)O content of these crystals. The compositions of two samples out of five in the table were in the range of 49.6 - 49.7 mol\% which is far from the stoichiometric composition therefore it seems plausible to assume that our calibration can be extended towards the lower Li content up to the merging of the two distinct peaks in the spectrum.

R can easily be measured on samples in a wide thickness range of about 0.5 – 10 mm (below 0.5 mm the intensity of the 3480 cm\(^{-1}\) band is too weak, while above 10 mm the intensity of the 3465 cm\(^{-1}\) band is too high to be accurately measured) which is an advantage against the calibration based on the UV-edge position. The latter method can optimally be used only for 1 – 3 mm thick samples as described in Ref. [38].

The method described above is based on the measurements of undoped crystals. So it can be used for the determination the Li\(_2\)O content of any other undoped LN samples falling into the indicated composition range after appropriate heat treatment.
3.3.1.2. OH$^-$ spectra of crystals grown from Na$_2$O containing flux

For the crystal grown from Na$_2$O containing flux the OH$^-$ spectra were found remarkably different due to the incorporation of Na ions. The UV absorption edge position was at 312 – 313 cm$^{-1}$ corresponding to about 49.38 – 49.48 mol% alkali oxide content ([Li$_2$O] + [Na$_2$O], see also Table 3.3), which is rather far from the stoichiometric composition. In the IR spectra only one wide, asymmetric band was found at about 3473 cm$^{-1}$ which can be attributed to various kinds of Na-OH defects [56] (Fig. 3.22).

Figure 3.22. IR absorption spectra of the different slices of the Na-LN crystal (a) and time dependence of the 3rd slice compared with that of stoichiometric LN (3rd slice of the Rb-LN crystal) (b)
Time dependence can also be observed for the spectra of the Na-LN crystal. The intensity of the peak at 3473 cm\(^{-1}\) decreases while a new peak at 3483 cm\(^{-1}\) appears. The two peaks that could have been applied for the calibration of the composition are not present in this case.
3.3.2. Raman spectroscopic properties of the crystals

3.3.2.1. Composition calibration for lithium niobate crystals based on Raman experiments

As it was shown in chapter 1.5 composition calibrations of lithium niobate crystals based on the full width at half maximum (FWHM) measurements of the E(TO1) Raman mode cannot be directly compared. The main reason of this phenomenon is the overlap of the Lorentzian-shaped Raman band and the apparatus function. The apparatus function expresses the apparent broadening of a signal due to the experimental limitations. It is determined, for example, by the quality (sharpness) of the laser excitation, the spectral analysis (e.g. widths of internal slits, focal length, number of grooves per millimetre at the grating), the technical resolution of the detector, and other features of the optical pathway (quality of adjustment, confocality, etc.) [57]. The half-width of the apparatus function is often reported as the spectral resolution of the measurement. To deduce the real FWHM of a Raman band, its measured FWHM has to be corrected for the apparatus function. Assuming the apparatus function to have a Gaussian shape, band-width correction can be done by deconvolution. Assuming a triangularly shaped apparatus function a simplified equation can be derived [57]:

$$\Delta \nu = \Delta \nu_{\text{meas}} \sqrt{1 - 2 \left(\frac{s}{\Delta \nu_{\text{meas}}} \right)^2}$$ \hspace{1cm} (3.3)

where $\Delta \nu$ is the real FWHM, $\Delta \nu_{\text{meas}}$ is the measured FWHM and s is the spectral resolution of the respective Raman system. This mathematical correction yields reliable real FWHMs only if $\Delta \nu \geq 2s$. It has to be mentioned that for broad bands ($\Delta \nu \gg s$) the correction can be neglected. For the relatively narrow lines, especially in nearly stoichiometric LiNbO$_3$ crystals, the correction is necessary, as shown below.

E(TO1) Raman modes at 152 cm$^{-1}$ of undoped lithium niobate crystal slices with different Li$_2$O contents (48.60 – 49.99 mol%, determined by the UV absorption edge position method, see chapter 1.5) were measured in z(xy)z geometry with He-Ne laser excitation (633 nm) and the FWHM of this peak was determined by fitting with a Lorentzian function. The instrumental function (s) for this apparatus was determined by measuring the FWHM of the Rayleigh line and was found to be about 3 cm$^{-1}$. Figure
3.23 shows the measured and the corrected (determined by equation 3.3) halfwidths for the different samples.

![Graph showing the relationship between Li$_2$O content and FWHM](image.png)

Fig. 3.23. FWHMs of the E(TO1) Raman mode of lithium niobate crystal samples with different Li$_2$O content (black circles are the $\Delta \nu_{\text{meas}}$ values while the red ones are the corrected FWHMs ($\Delta \nu$))

The bandwidth of the E(TO1) mode changes unambiguously with the stoichiometry of the samples. The highest FWHMs correspond to the less stoichiometric samples. The real FWHMs are about 1 cm$^{-1}$ below the measured values. The corrected points can be fitted well with a linear function except the last one corresponding to a Li$_2$O content higher than 49.9 mol%. This function can be described by FWHM [cm$^{-1}$] = 148 - 2.84(Li$_2$O content [mol%]). Above 49.9 mol% Li$_2$O content the deviation from the linear function can be explained by the inaccuracy of the correction ($\Delta \nu \leq 2s$).
3.3.2.2. Raman spectra of crystals grown from Rb$_2$O and Cs$_2$O containing fluxes
Raman measurements were carried out by a micro Raman spectrometer using 633 nm He-Ne and 514.5 nm Ar-ion laser sources, with a spatial resolution of about 1 μm. The Raman spectra of y and z cut samples of the crystals were measured in different polarization configurations. Fig. 3.24 shows only those spectra which contain the E(TO) modes measured with the two different excitations.
Figure 3.24. E(\text{TO1}) modes measured with different excitations in different configurations y(xz)y (a), y(zx)y (b), z(yy)z (c, d) (the slices were y cut of Rb-LN (a, b), the 1st slice (c) and the 5th slice (d) of Cs-LN)
In the configurations presented in Fig. 3.24 c, d the A_1(LO) longitudinal modes also appear beside the 9 E(TO) transversal modes. The spectra excited by the two different lasers are essentially similar, but slight differences occur in both the relative band intensities and the FWHMs. The spectra were recorded for 5 different compositions. Fig. 3.25 shows that the FWHM of the E(TO1) mode decreases with increasing Li$_2$O content of the samples (Table 3.3). The halfwidth values listed in Table 3.7 were obtained fitting the spectra by using Lorentzian functions. The observed differences depend not only on the exciting wavelength but on the polarization configuration as reported in chapter 1.5.

Figure 3.25. Normalized spectra of the E(TO1) modes for different compositions measured by He-Ne laser in z(yy)z configuration
Table 3.7. Measured (uncorrected) FWHMs of the E(TO1) modes in different polarizations and with different lasers. The y slices were cut from the parts of the crystals between the 2nd and 3rd slice (Rb-LN) and between the 3rd and 4th slice (Cs-LN).

<table>
<thead>
<tr>
<th>Alkali ion in the flux</th>
<th>N° of the slice</th>
<th>Laser</th>
<th>Configuration</th>
<th>FWHM of the E(TO1) mode [cm(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb</td>
<td>1</td>
<td>Ar</td>
<td>z(yy)z</td>
<td>9.84</td>
</tr>
<tr>
<td>Cs</td>
<td>1</td>
<td></td>
<td></td>
<td>9.58</td>
</tr>
<tr>
<td>Cs</td>
<td>5</td>
<td></td>
<td></td>
<td>9.18</td>
</tr>
<tr>
<td>Rb</td>
<td>1</td>
<td>He-Ne</td>
<td>z(yy)z</td>
<td>7.61</td>
</tr>
<tr>
<td>Cs</td>
<td>1</td>
<td></td>
<td></td>
<td>7.32</td>
</tr>
<tr>
<td>Cs</td>
<td>5</td>
<td></td>
<td></td>
<td>6.77</td>
</tr>
<tr>
<td>Rb</td>
<td>Y cut slice</td>
<td>He-Ne</td>
<td>y(xz)y</td>
<td>5.86</td>
</tr>
<tr>
<td>Cs</td>
<td>Y cut slice</td>
<td></td>
<td></td>
<td>5.72</td>
</tr>
<tr>
<td>Rb</td>
<td>Y cut slice</td>
<td>He-Ne</td>
<td>y(zx)y</td>
<td>5.39</td>
</tr>
<tr>
<td>Cs</td>
<td>Y cut slice</td>
<td></td>
<td></td>
<td>5.2</td>
</tr>
</tbody>
</table>

Small differences in FWHM may also come from either the compositional difference of the sample or from the surface quality. For this purpose 3 different parts of 2 selected samples (with 49.74 and 49.98 mol% Li\(_2\)O content) were measured and compared (Fig. 3.27). The spectra were also recorded on the two different surfaces (+z and –z) of the same sample. The curves strongly overlap and the differences between the FWHM values are about ± 0.15 cm\(^{-1}\).
Figure 3.27. The z(yy)z Raman spectra of the 1st Cs-LN slice measured by a He-Ne laser at 3 different points.

The apparatus function (s, see chapter 3.3.2.1.) for this Labram spectrometer was found to be about 2.2 for the He-Ne laser in z(yy)z configuration. Correction was made using equation 3.3 and the Li$_2$O content of the samples was calculated from the calibration line FWHM [cm$^{-1}$] = $148 - 2.84 \times$ (Li$_2$O content [mol%]). The results were compared to those obtained from the UV absorption edge method (Table 3.8). The uncertainty of the Li$_2$O content calculated from the calibration based on the FWHMs of the E(TO1) mode was 0.05 mol%. This can be explained by the error of the FWHM determination (\pm 0.15 cm$^{-1}$, see above) related to the inhomogeneity and the surface quality. For this apparatus ($s = 2.2$) the \pm 0.15 cm$^{-1}$ uncertainty of $\Delta \nu_{\text{meas}}$ causes \pm 0.06 mol% uncertainty in the calculated Li$_2$O content in the z(yy)z configuration using a 633 nm He-Ne laser.
Table 3.8. Comparison of the Li$_2$O content from the two different calibration methods (Raman, UV)

<table>
<thead>
<tr>
<th>Sample</th>
<th>$\Delta \nu_{\text{meas}}$ [cm$^{-1}$]</th>
<th>$\Delta \nu$ [cm$^{-1}$]</th>
<th>Li$_2$O content calculated from the FWHMs [mol%]</th>
<th>Li$_2$O content from UV absorption measurements [mol%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb-1</td>
<td>7.61</td>
<td>6.94</td>
<td>49.67</td>
<td>49.72</td>
</tr>
<tr>
<td>Cs-1</td>
<td>7.32</td>
<td>6.63</td>
<td>49.78</td>
<td>49.74</td>
</tr>
<tr>
<td>Cs-5</td>
<td>6.77</td>
<td>6.01</td>
<td>50.00</td>
<td>49.98</td>
</tr>
</tbody>
</table>

It can be concluded that, although the FWHM of the E(TO1) Raman mode changes unambiguously with the Li$_2$O content of the LiNbO$_3$ crystal, for a precise composition calibration an accurate correction of the measured values is required. For this correction the apparatus function for the given laser in the given polarization must be known. Another inaccuracy of the measured FWHM comes from the surface inhomogeneity and causes ± 0.06 mol% error in the calculated Li$_2$O content.
3.3.2.3. **Raman spectra of crystals grown from Na\textsubscript{2}O containing flux**

The Raman spectra of the crystal grown from Na\textsubscript{2}O containing solution differ from those grown from Rb\textsubscript{2}O, Cs\textsubscript{2}O containing solutions (Fig. 3.28). Most of the bands were shifted and broadened as compared to pure sLN indicating the presence of a high number of lattice defects induced by the incorporation of Na ions into the crystal.

![Raman spectra comparison](image)

Figure 3.28. Comparison of the Raman spectra of the Na\textsubscript{2}O containing crystal and the nearly stoichiometric LN (Li\textsubscript{2}O content equal to 49.74 mol\%) measured in \(y(\text{zz})y\) (a) and \(y(xz)y\) (b) configurations by He-Ne (633 nm) laser.
There is a remarkable difference between the spectra of the nearly stoichiometric and the Na doped crystal, namely the intensity ratio of the A_1(TO1) and A_1(TO2) modes measured in the y(zz)y configuration (Fig. 3.29).

According to normal coordinate analysis the A_1(TO1) mode is related to Nb-O vibration, while the A_1(TO2) mode mainly involves Li-O/Nb-O motions [41]. Therefore the increase of the intensity of the A_1(TO2) mode induced by the incorporation of the Na ions into the lattice indicates that Na probably enters Li sites as it is expected from the similarities of the alkali ions.
4. Summary

We have investigated the $\text{X}_2\text{O} - \text{Li}_2\text{O} - \text{Nb}_2\text{O}_5$ ($\text{X} = \text{Na}_2\text{O}, \text{Rb}_2\text{O}, \text{Cs}_2\text{O}$) ternary systems with special emphasis on using them as flux for the growth of (nearly) stoichiometric LiNbO$_3$ single crystals by the HTTSSG (high temperature top seeded solution growth) technique. Comparison was made with the previously used $\text{K}_2\text{O} - \text{Li}_2\text{O} - \text{Nb}_2\text{O}_5$ ternary system. In our research program thermal analytical, x-ray phase analysis, crystal growth and several spectroscopic methods (UV, IR, Raman) were used.

Samples with different compositions were synthesized by solid state reactions, their phase transition temperatures were determined by thermal analytical methods, the formed phases were assessed by x-ray phase analysis. Phase diagrams were constructed. The consecutively crystallizing phases were separated by crystal growth, the phase identification was done by x-ray phase analysis as well. The composition of the single crystalline LiNbO$_3$ phase was determined by spectroscopic methods. The phase diagrams of the ternary systems were refined according to the gained information. The crystallization yields were calculated for each solvent. The crystals were characterized by different spectroscopic methods. A simple non-destructive spectroscopic method based on the OH$^-$ spectra of the crystals was developed for the determination of the crystal composition.
5. New results

1. The thermal behaviour of the $X_2O \cdot Li_2O \cdot Nb_2O_5$ ($X = Rb, Cs$) ternary systems was found to be very similar to that of the $K_2O \cdot Li_2O \cdot Nb_2O_5$ system, with nearly the same phase transition temperatures and constituent phases according to the thermal analytical and X-ray diffraction investigations. The limit of the $LiNbO_3$ liquidus surface was estimated to be near 16 mol% X_2O for the systems with Rb_2O and Cs_2O and with $[Li] / [Nb] = 1$ ratio. The ternary phase diagram of the $Cs_2O \cdot Li_2O \cdot Nb_2O_5$ system at room temperature was constructed, a new phase was found.

2. It was established that crystals with $[Li_2O] / [Nb_2O_5] = 1$ can be grown from all examined ternary systems containing between 10 - 16 mol% X_2O ($X = Na, Rb, Cs$). Rb_2O and Cs_2O behave as ideal solvents, since they do not enter the lattice and yield (nearly) stoichiometric $LiNbO_3$ single crystals. The crystallization temperatures are nearly the same for Rb_2O and Cs_2O containing fluxes, resulting in similar $[Li] / [Nb]$ ratios and yields of $LiNbO_3$ crystal.

3. A new method was developed for an easy and accurate determination of the Li_2O content of undoped $LiNbO_3$ crystals close to the stoichiometric composition based on the measurement of the intensity ratio (R) of the two main hydroxyl ion vibration peaks (at 3465 and 3480 cm$^{-1}$) in the infrared absorption spectra. The composition can be determined from the equation $R(t) = S(t) \times (C - [Li_2O]),$ where $S(t) = S_\infty - A \exp(-t/\tau).$ S_∞ represents the slope of the calibration line in thermal equilibrium, $[Li_2O]$ is the lithium oxide content of the crystal in mol%, C and A are constants, τ is the time constant describing OH$^-$ redistribution and t is the time passed after the crystal growth.
In the case of unknown thermal history (unknown t) of the crystal a simple annealing at 1000°C reconstructs the as grown state ($t = 0$).

4. It was confirmed that the FWHM of the E(TO1) Raman mode changes with the Li$_2$O content of the LiNbO$_3$ crystal but without correction these measurements cannot be used, as assumed earlier, for a universal composition determination of LiNbO$_3$. Using the FWHMs of the E(TO1) Raman modes excited by a He-Ne laser (633 nm) and corrected with the spectral resolution, a calibration line was determined for the z(xy)z configuration. The uncertainty of the calibration was determined as ± 0.06 mol% Li$_2$O content which may come from the uncertainty of the correction factor and the possible inhomogeneity of the sample surface.

5. Na was shown to be incorporated into the LiNbO$_3$ lattice with an average segregation coefficient of $k_{\text{sol/liq}}$ (Na$_2$O) ~ 0.2. Accordingly the phase transition temperatures for Na$_2$O containing polycrystalline samples are found to be higher than for Rb$_2$O or Cs$_2$O containing ones and their spectroscopic properties show changed behaviour: the UV absorption edge positions shift to longer wavelengths, the OH$^-$ vibrational bands merge to only one asymmetric band and the Raman peaks also broaden and shift. According to normal coordinate analysis the A_1(TO1) mode is related to Nb-O vibration, while the A_1(TO2) mode mainly involves Li-O/Nb-O motions. Therefore the increase of the intensity of the A_1(TO2) mode induced by the incorporation of the Na ions into the lattice indicates that Na enters Li sites.
Publications

G. Dravec,
Á. Péter,
K. Polgár,
L. Kovács “Alkali metal oxide solvents in the growth of stoichiometric LiNbO₃ single crystal” Journal of Crystal Growth 286 (2006) 334-337

G. Dravec,
L. Kovács,
Á. Péter,
K. Polgár,
Sol. (c) 4 (2007) 1313-1316

G. Dravec,

G. Dravec,
B. Shackmann,
M. Cochez,

I. Hajdara,
K. Lengyel,
G. Dravec,
L. Kovács,
Á. Péter,

Á. Péter,
I. Hajdara,
K. Lengyel,
G. Dravec,
L. Kovács,
I. Hajdara, K. Lengyel, L. Kovács, Á. Péter, G. DravecZ., Zs. Szaller “Compositional
dependence and structure of hydroxyl ion defects in ferroelectric potassium lithium
niobate” Ferroeletrics 369 (2008) 98-107
Acknowledgements

I would like to thank my supervisor Dr. Katalin Polgár for her guidance throughout my years at the Research Institute for Solid State Physics and Optics. Without her professional support this work could not have been completed. I would also like to thank Prof. Michel Ferriol with whom the majority of work in Chapter 3.1.2 has been done during my stay at the Paul Verlaine University of Metz.

I would like to express my gratitude towards Ágnes Péter and Dr. László Kovács for the lots of explanations for understanding the thermal analytical and the spectroscopic phenomena and for having dedicated their valuable time to carefully reading the manuscript and adding their indispensable comments to it.

Thanks for the X-ray diffraction measurements to Dr. Mária Tóth and for the chemical (AAS) analysis to Dr. László Bencs.

I would also like to thank all the members of the Departments of Crystal Technology and Crystal Physics whom I had the opportunity to work with, for creating and maintaining an inspiring working and social atmosphere. In addition to those already mentioned from these groups, I would like to thank Dr. Zsuzsanna Szaller, Dr. Krisztián Lengyel and Ivett Hajdara.

Special thanks to the professors at the University of Paul Verlaine, namely Prof. Marianne Chochez, Prof. Michel Aillerie, Prof. Patrice Bourson and Prof. Marc Fontana for many helpful discussions on DTA and Raman processing and for their hospitality during my stay at France.

In particular, I would like to thank Dr. István Földvári, Head of Department and Dr. János Kollár, Institute Director for supporting and supervising.
Bibliography

R. J. Holmes, W. J. Minford “The effects of boule to boule compositional variations on the properties of LiNbO$_3$ electrooptic devices – an interpretation from defect chemistry studies” Ferroelectrics 75 (1987) 63

A. Reisman, F. Holtzberg “Heterogeneous equilibria in the systems Li$_2$O - Ag$_2$O - Nb$_2$O$_5$ and oxide models” J. Am. Chem. Soc. 80 (1958) 6503

[27] T. Ikeda, K. Kiyohashi “Study of subsolidus equilibria in K$_2$O – Li$_2$O – Nb$_2$O$_5$ system” Japan J. Appl. Phys. 9 (1970) 1541

Appendix

A.1. Definitions

Liquidus
A line on a binary phase diagram (or surface on a ternary phase diagram) that indicates the temperature at which solidification begins on cooling or at which melting is completed on heating under equilibrium conditions.

Liquidus temperature
This is the maximum temperature at which crystals can co-exist with the melt in thermodynamic equilibrium. Above the liquidus temperature the material is homogeneous. Below the liquidus temperature the crystal begins to grow.

Solidus
A line on a binary phase diagram (or a surface on a ternary phase diagram) that indicates the temperature at which a system becomes completely solid on cooling or at which melting begins on heating under equilibrium conditions.

Solidus temperature
Below this temperature the given substance is completely crystallized. The solidus and liquidus do not align or overlap in all cases. If a gap exists between the solidus and

* IUPAC Gold Book (http://goldbook.iupac.org)
liquidus, then within that gap, the substance consists of solid and liquid phases simultaneously.

Eutectic reaction*
An isothermal, reversible reaction between two (or more) solid phases during the heating of a system, as a result of which a single liquid phase is produced.

Peritectic reaction*
An isothermal, reversible reaction between two phases, a liquid and a solid, that results, on cooling of a binary, ternary, ..., n system in one, two, ... ($n-1$) new solid phases. Synonymous with incongruent reaction.

* IUPAC Gold Book (http://goldbook.iupac.org)
A.2. List of abbreviations

LN – Lithium – meta niobate, LiNbO$_3$

sLN – Stoichiometric lithium niobate

cLN – Congruent lithium niobate

L3N – Lithium – ortho niobate, Li$_3$NbO$_4$

LN3 – LiNb$_3$O$_8$

KLN – Potassium lithium niobate, K$_3$Li$_2$Nb$_5$O$_{15}$

HTSG – High temperature solution growth

HTTSSG – High temperature top seeded solution growth

DSC – Differential scanning calorimetry

IR - Infrared

UV - Ultraviolet

[Z] – Concentration of Z in mol%

Liq. – Liquidus

AAS – Atomic absorption spectroscopy

FTIR Spectroscopy – Fourier-transformed infrared spectroscopy

Na-LN – Na doped lithium niobate crystal grown from a flux containing 10 mol% Na$_2$O and 45 mol% of both Li$_2$O and Nb$_2$O$_5$

K-LN – Stoichiometric lithium niobate crystal grown from a flux containing 10 mol% K$_2$O and 45 mol% of both Li$_2$O and Nb$_2$O$_5$

Rb-LN – Stoichiometric lithium niobate crystal grown from a flux containing 10 mol% Rb$_2$O and 45 mol% of both Li$_2$O and Nb$_2$O$_5$

Cs-LN – Stoichiometric lithium niobate crystal grown from a flux containing 10 mol% Cs$_2$O and 45 mol% of both Li$_2$O and Nb$_2$O$_5$

FWHM – Full width at half maximum
A.3. Crystal growth methods

The technical application of the oxide crystals needs chemically well defined single crystals free from crystallographic defects. For growing bulk oxide crystals the Czochralski, the Bridgman, and the high temperature solution growth (HTSG) methods are widely used. The high temperature top seeded solution growth (HTTSSG) is a variant of the HTSG method.

The Czochralski and the Bridgman techniques produce good quality crystals within a relatively short time. A disadvantage is that they can be used only for the growth of congruently melting materials.

A.3.1. Bridgman technique

The method involves heating polycrystalline material in an elongated container above its melting point and slowly cooling it from one end where a seed crystal can be located. Single crystal material is progressively formed along the length of the container. The process can be carried out in a horizontal or vertical geometry.

The original technique involves a crucible filled with the material to be grown, that will be melted and lowered through a two (or more)-zone furnace. The growth of single crystal starts at the tip of the container and the solidification interface moves slowly (fig. A.1). The rates of the movement for such processes range from about 0.1 to 200 mm/h but are generally in the range 1 to 30 mm/h.

The requirement that the freezing isotherm should move systematically through the molten charge can be satisfied by moving the crucible or the furnace, or by continuously shifting the furnace temperature.

There is no need to have the whole charge molten at one time. There are advantages in having only one part of the charge molten. Such methods are referred to as zone melting (or zone refining) methods. This process is widely used for the purification of materials and may be followed by single crystal growth in the same system.

The advantage of the Bridgman method is that crystals with good dimensional tolerances can be obtained relatively quickly, it employs relatively simple technology and requires neither elaborate control system nor many man-hours supervision.
A.3.2. Czochralski technique

The basic method is simple. A typical routine is the following. The raw material is melted in a crucible. The melt is heated to a temperature few degrees above the melting point. An oriented seed crystal is brought into contact with the melt surface. After the thermal equilibrium between the melt and the seed is established (the seed is not melting and no crystallization is observed), pulling and rotation of the seed are commenced. Normally an electronic diameter control system insures the increase of the diameter of the crystal. Growth at a constant diameter is maintained until the desired length of crystal has grown. Growth is then terminated. In some cases this is done by sharply increasing the pulling rate so that the crystal breaks contact with the melt. Another procedure is to increase the furnace’s temperature so that the crystal diameter decreases fairly slowly to zero. After growth has been terminated, the system should be cooled slowly.

The apparatus used is similar to that described for the HTTSSG method in the main text (fig. 1.5). By this method, large, good quality crystals can be grown. The Czochralski growth is an important industrial method, so much the more as it can be easily
automatized. It has different modifications: the liquid encapsulation Czochralski (LEC), Kyropoulos growth, the Stepanov method and the edge-defined film-fed growth. Advantages are due to the fact that the growing crystal is no longer in contact with the crucible, so it contains less strain induced dislocations and the contamination by the crucible material can be kept at a low level.

A material suitable for growth by this method should have the following properties:
(a) congruent melting,
(b) no destructive phase changes between the melting point and room temperature,
(c) low vapour pressure of each component (this condition, however, can be circumvented due to technical improvements like LEC growth of GaP),
(d) low viscosity.

A.3.3. High temperature solution growth (HTSG) methods
This is a method of crystal growth where the components of the desired substance are dissolved in an appropriate molten substance (flux) and growth takes place at the saturation temperature. A saturated solution is prepared by keeping the constituents of the desired crystal and the flux at a temperature slightly above the saturation temperature long enough to form a homogeneous solution. Then the material is cooled to the saturation temperature and the growth is started. The growth can happen by spontaneous nucleation or growth on a seed. Rates of growth from solution falls in the range 0.1 to 10 mm/day, much smaller than the rates of melt growth for the methods discussed above.

The advantages of solution growth compared to the Czochralski- and the Bridgman techniques are that its work temperature is lower than the pure material’s melting point and single crystals of those substances can be grown which are impossible to obtain with other methods because:
(a) they don’t melt congruently (sLN),
(b) they have destructive phase transition just below the melting point (BaTiO$_3$),
(c) the material decomposes at the melting point,
(d) the melting point is too high so there is no material available for crucible or furnace construction,
(e) we want to crystallize a low temperature phase of the material (β-BBO).

There are different versions: slow cooling method, temperature-difference method (large rare-earth ion garnet crystals), high-pressure method (diamond), solvent
evaporation method (Al_2O_3, TiO_2, CeO_2, etc.), electrolytic processes (borides, oxides, sulphides, arsenides, phosphides, germanides, silicides) and liquid-phase epitaxy (semiconductors, oxidic materials).

Choosing the right solvent is very important for the HTSG technique. The main selection criteria for the solvent are: the solvent should not react with the crystal material, should not enter the lattice as a dopant, should significantly lower the crystallization temperature and the temperature dependence of solubility of the solute in the flux should be positive and significant. Table A.1 gives some examples. [J. C. Brice “Crystal growth processes”, Blackie Halsted Press (1986), Glasgow]

Table A.1.: Solvents used for the growth of some materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al_2O_3</td>
<td>$\text{PbF}_2 + \text{B}_2\text{O}_3$</td>
</tr>
<tr>
<td>B</td>
<td>Pt</td>
</tr>
<tr>
<td>BaFe_2O_4</td>
<td>Na_2CO_3</td>
</tr>
<tr>
<td>BaTiO_3</td>
<td>Bi_2O_3</td>
</tr>
<tr>
<td>BeAl_2O_4</td>
<td>$\text{PbO, Li}_2\text{MoO}_3, \text{PbMoO}_4$</td>
</tr>
<tr>
<td>CeO_2</td>
<td>$\text{NaF} + \text{B}_2\text{O}_3$</td>
</tr>
<tr>
<td>Fe_2O_3</td>
<td>$\text{Na}_2\text{B}_4\text{O}_7$</td>
</tr>
<tr>
<td>GaAs</td>
<td>Ga, Sn</td>
</tr>
<tr>
<td>GaFeO_3</td>
<td>$\text{Bi}_2\text{O}_3 + \text{B}_2\text{O}_3$</td>
</tr>
<tr>
<td>GaP</td>
<td>Ga, Sn</td>
</tr>
<tr>
<td>Ge</td>
<td>$\text{In, Sn} + \text{Pb}$</td>
</tr>
<tr>
<td>GeO_2</td>
<td>$\text{Li}_2\text{Mo}_2\text{O}_7, \text{Li}_2\text{W}_2\text{O}_7$</td>
</tr>
<tr>
<td>KNbO_3</td>
<td>KF, KCl</td>
</tr>
<tr>
<td>$\text{KTa}x\text{Mb}{1-x}\text{O}_3$</td>
<td>K_2CO_3</td>
</tr>
<tr>
<td>MgFe_2O_4</td>
<td>$\text{Bi}_2\text{O}_3 + \text{B}_2\text{O}_3$</td>
</tr>
<tr>
<td>NiFe_2O_4</td>
<td>$\text{Na}_2\text{B}_4\text{O}_7$</td>
</tr>
<tr>
<td>PbZrO_3</td>
<td>PbF_2</td>
</tr>
<tr>
<td>SiC</td>
<td>Si</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>$\text{Na}_2\text{B}_4\text{O}_7 + \text{B}_2\text{O}_3$</td>
</tr>
<tr>
<td>$\text{Y}_3\text{Al}5\text{O}{12}$</td>
<td>$\text{PbO} + \text{B}_2\text{O}_3, \text{PbO} + \text{PbF}_2$</td>
</tr>
<tr>
<td>$\text{Y}_3\text{Fe}5\text{O}{12}$</td>
<td>$\text{PbO, PbO} + \text{PbF}_2, \text{BaO} + \text{B}_2\text{O}_3$</td>
</tr>
<tr>
<td>ZnO</td>
<td>PbF_2</td>
</tr>
<tr>
<td>ZnS</td>
<td>ZnF_2</td>
</tr>
<tr>
<td>ZnTe</td>
<td>$\text{In, Ga, Sn, Bi, Pb}$</td>
</tr>
</tbody>
</table>
A.3.3.1. High temperature top seeded solution growth (HTTSSG) method
Described in chapter 1.4.1.

A.3.3.2. Pedestal Growth
The goal of this method is to grow homogeneous single crystals with non-equilibrium composition (for example: off-congruent LiNbO$_3$) by keeping the composition of the crystallizing material constant.
The starting mixed powder is sintered and pressed to a ceramic bar and the material on the top of that is melted by radiation (lamp, laser, etc.) hereby a drop appears. A seed is brought into contact with the surface of the drop where the melt is crystallized. Since only a small amount of the whole mixture is melted, the crystal is grown from the melted drop which has the same composition. There is almost no possibility for segregation because the melted part is only one drop due to the steep temperature gradient. Crystals grown by this method have small size (typically 0.1 – 2 mm in diameter and up to 10 cm long).

A.3.3.3. Micro Pulling Down method
This method involves growing single crystals through a micro nozzle by pulling in the downward direction (fig. A.2). The growth equipment consists of a micro crucible with a nozzle at the bottom, an afterheater made from Pt wire, an annealing furnace, and crystal lowering mechanism.

![Figure A.2.: Explanation of the micro pulling down](image)

The raw material is melted in the crucible and a droplet of the melt is allowed to pass through the micro nozzle. For oriented crystallization of a fiber crystal a seed is brought into contact with the drop and is slowly pulled down forming a fiber-like single crystal.
The amount of starting material is merely 1-10 g and due to the small volume of crystallizing droplet and the lack of segregation the composition of the growing crystal may be off-equilibrium (overdoped or off-congruent), this method is ideal for exploratory crystal preparation. By this method high quality crystals can be grown with a small size (typically 0.1 – 2 mm in diameter and 50 – 100 mm long).

A.3.4. Double crucible method

With this method single crystals with high quality and high homogeneity from congruent or off-congruent melt can be grown (by Czochralski, or HTSG method) with almost any size. The melt is divided into two parts by a double structure (two chamber system) crucible. The crystal is grown from the inner melt, and powder with the same composition as the growing crystal is continuously supplied to the outer melt. The powder is supplied smoothly at the rate of weight increase of the growing crystal. The scheme of the apparatus is presented in fig. A.3.

![Figure A.3.: Schematic diagram of the double crucible method.](image)

(1) – feeding tube, (2) – feeding system, (3) – automatic powder supply controller, (4) – outer wall, (5) - inner wall, (6) - double crucible, (7) – crystal weighing system
The advantage of the system is that the surface level of the melt is always constant. This suggests that the crystals can be grown in constant thermal conditions, diminishing the effect of changes in melt convection caused by the decrease in the depth of the melt during conventional pulling growth methods.
A.4. Examination and characterization methods

A.4.1. Differential scanning calorimetry

By this method the thermal behaviour of materials can be studied. It maps the heat effects of phase transformations which allows the determination of the transition temperatures and the involved enthalpy changes.

Differential scanning calorimetry (DSC) is a technique for measuring the energy necessary to establish a zero temperature difference between a substance and an inert reference material, as the two specimens are subjected to identical temperature regimes in an environment heated or cooled at a controlled rate.

Alumina, Al$_2$O$_3$ and SiC have been extensively used as reference substances for inorganic samples. Both solid samples and reference materials are usually used in powdered form. The particle size influences the results. The furnace system is usually purged with an inert gas.

Heat flux DSC

In heat-flux DSC, the sample and the reference, in equivalent holders, usually flat pans, are placed on individual thermally conducting bases (fig. A.4). The thermocouple junctions are attached to these bases and are thus not directly in the sample or reference material. The configuration has the advantage that the output signal is less dependent upon the thermal properties of the sample, but the response is slower.

Figure A.4.: Diagram of a heat flux differential scanning calorimeter
In power-compensated DSC (fig. A.5), the sample and a reference material are maintained at the same temperature throughout the controlled temperature programme. Any energy difference in the independent supplies to the sample and the reference is recorded against the programme temperature.

DSC curves

Thermal events in the sample appear as deviations from the DSC baseline, in either an endothermic or exothermic direction, depending upon whether more or less energy has to be supplied to the sample relative to the reference material. A typical DSC curve can be seen in Fig. A.6.

www.answers.com/topic/differential-scanning-calorimetry
A.4.2. X-ray diffraction

X-rays are electromagnetic radiation of wavelength about 1 Å (10^{-10} m), which is about the same size as an atom.

X-ray diffraction has been used in two main areas, for the determination of the structure of crystalline materials and their fingerprint characterization. Each crystalline solid has its unique characteristic X-ray powder pattern which may be used as a “fingerprint” for its identification. If the material has been identified, X-ray crystallography on single crystals can be used to determine its structure, i.e. how the atoms pack together in the crystalline state and what the interatomic distances and angles are. X-ray diffraction is one of the most important characterization tools used in solid state chemistry and materials science. We can determine the size and the shape of the unit cell for any compound most easily using the diffraction of x-rays.

Bragg diffraction

As the wave enters the crystal, some portion of it will be reflected by the first layer, while the rest will continue through to the second layer, where the process continues.

A single monochromatic wave is incident on aligned planes of lattice points with separation d at angle Θ as shown in figure A.7. The path difference between the two
reflected beams is two times the AB distance. The interference is constructive when the phase shift is multiple to 2π, this conditions can be expressed by Bragg’s law:

$$n\lambda = 2d \cdot \sin\Theta$$ \hspace{1cm} (A.1)

where n is an integer, λ is the wavelength of x-rays, d is the spacing between the planes in the atomic lattice and Θ is the angle between the incident ray and the scattering planes.

X-ray powder diffraction

Powder diffraction is a scientific technique using X-Ray or neutron diffraction on powder or microcrystalline samples for structural characterization of materials. Ideally, every possible crystalline orientation is represented equally in the sample, leading to smooth diffraction rings around the beam axis rather than the discrete spots observed for single crystal diffraction. In accordance with Bragg's law, each ring corresponds to a particular reciprocal lattice vector in the sample crystal, with intensity proportional to the number of such planes. In practice, it is sometimes necessary to rotate the sample orientation to eliminate the effects of texturing and achieve true randomness. The dedicated machine to perform such measurements is called a powder diffractometer and the registered parameters are automatically the counts (fig. A.8).

![X-ray powder diffractogram of lithium niobate](image)

Figure A.8.: X-ray powder diffractogram of lithium niobate
A.4.3. Ultraviolet/visible and infrared spectroscopy

Lambert-Beer law
Consider a monochromatic beam of intensity I_0 with a perpendicular incidence onto a sample with parallel faces and a thickness d. Absorption takes place in the sample and the beam of radiation leaves the sample with a smaller intensity I, while a fraction of light is absorbed by the sample (Fig. A.9).

![Figure A.9.: Basic phenomena underlying the Beer-Lambert law](image)

The following definitions assume that the entire incident light is either transmitted or absorbed, while reflection or scattering is negligible. The amount of radiation absorbed may be then described by several quantities below:

\[
\text{Transmittance:} \quad T = \frac{I}{I_0} \tag{A.2}
\]

\[
\text{Absorbance:} \quad A = \log \left(\frac{I_0}{I} \right) = \log \left(\frac{1}{T} \right) = -\log T \tag{A.3}
\]

The absorbance A is proportional to the absorption path length d (sample thickness):

\[
\text{Absorbance (Lambert’s law):} \quad A = \alpha \cdot d \tag{A.4}
\]

where α is the linear absorption coefficient in [cm$^{-1}$]. The quantity α depends on the energy of radiation and is specific for a given material. By inserting equation A.4 to equation A.3, we obtain:

\[
I = I_0 \cdot 10^{-\alpha d} \tag{A.5}
\]
Equation A.4 can be expanded to describe also the dependence on concentration c of the absorbing species:

Beer’s law: \[\alpha = \varepsilon c \] \hspace{1cm} (A.6)

Absorbance (Lambert-Beer law): \[A = \varepsilon cd \] \hspace{1cm} (A.7)

The proportionality constant ε is now called the molar absorption coefficient (if c is measured in mol; otherwise, specific absorption coefficient).

In cases when the refractive index is high (e.g. for LiNbO3 crystal $n_o = 2.38$ at $\lambda = 450$ nm) the reflection is not negligible and correction has to be used before the evaluation of the spectra. With this correction the error caused by the multiple reflected light beams can be avoided. The reflection factor (R) can be expressed as:

\[R = (\bar{n} - 1)^2 / (\bar{n} + 1)^2 \] \hspace{1cm} (A.8)

where \bar{n} is the complex refractive index of the material. The corrected absorption coefficient can be calculated [38]:

\[\alpha = -\frac{1}{d} \ln \left(-\frac{(1 - R)^{1 - x}}{2RT^*} + \sqrt{\left(\frac{(1 - R)^{1 - x} - 1}{2RT^*}\right)^2 + \frac{1}{R^*}} \right) \] \hspace{1cm} (A.9)

Ultraviolet-visible spectrophotometer

The basic parts of a spectrophotometer are a light source (often an incandescent bulb for the visible wavelengths, or a deuterium arc lamp in the ultraviolet), a holder for the sample, a diffraction grating or monochromator to separate the different wavelengths of light, and a detector. The detector is typically a photodiode or a CCD.

A spectrophotometer can be either single beam or double beam. In a double-beam instrument (Fig. A.10), the light is split into two beams before it reaches the sample. One beam is used as the reference; the other beam passes through the sample. Some double-beam instruments have two detectors (photodiodes), and the sample and reference beam are measured at the same time. In other instruments, the two beams pass through a beam chopper, which blocks one beam at a time. The detector alternates between measuring the sample beam and the reference beam.
Figure A.10.: Diagram of a double-beam UV/vis spectrophotometer
Infrared spectroscopy

The infrared portion of the electromagnetic spectrum is divided into three regions; the near-, mid- and far infrared, named for their relation to the visible spectrum. The far-infrared, (approx. 400-10 cm\(^{-1}\)) lying next to the microwave region, has low energy and may be used for rotational spectroscopy. The mid infrared (approx. 4000-400 cm\(^{-1}\)) may be used to study the fundamental vibrations and associated rotational-vibrational structure, whilst the higher energy near IR (14000-4000 cm\(^{-1}\)) can excite overtone or harmonic vibrations.

In order to measure a sample, a beam of infrared light is passed through the sample, and the amount of energy absorbed at each wavelength is recorded. This may be done by scanning through the spectrum with a monochromatic beam, as in a UV/VIS spectrophotometer, or by using a Fourier transform instrument which records an interferogram, the Fourier transform of the spectrum. From this, a transmittance or absorbance spectrum may be plotted.

Our IR absorption spectra were recorded by a FTIR spectrometer.

Fourier transform infrared (FTIR) spectroscopy

This is a fast and sensitive method for measuring the absorption spectra. The method is based on a Michelson interferometer (fig. A.11).

![Schematic illustration for the mechanism of the Michelson interferometer](image)
Light from a source is collimated and then divided at a beam splitter into two beams. These beams are reflected by two separate mirrors, one fixed and the other movable. Each single beam strikes the beam splitter again, where they are recombined and split again. The two components in the recombined beam interfere with each other and form a spot whose intensity depends upon the different paths traversed by the two beams before recombination.

An interferogram is the intensity at the detector as a function of the position of the moving mirror (the light path difference). From the interferogram, a single-beam spectrum can be calculated by Fourier transformation. The ratio of the single-beam spectrum with and without the sample in the light path gives the transmission spectrum. From here, absorption is determined as in UV spectroscopy.

OH ions in the LiNbO₃ crystal

OH⁻ ions are always present in air-grown LiNbO₃ crystals. The OH⁻ ions enter into the lattice at the growing temperature from the humidity of the environment. The OH⁻ ions substitute for regular O²⁻ in the lattice and the O-H bond is usually oriented to the neighbouring O²⁻ ion.

The stretching vibrational mode of the OH⁻ ions in LiNbO₃ can be measured by infrared spectroscopy at about 3420-3540 cm⁻¹. From the vibrational spectrum the amount of the OH⁻ ions in the crystal can be estimated of about 10¹⁷ – 10¹⁹ cm⁻³.
A.4.4. Raman spectroscopy

The vibrational transitions can not only be observed in the infrared, but in the Raman spectra as well. The origin of the Raman spectra is markedly different from that of IR spectra. In Raman spectroscopy, the sample is irradiated by an intense laser beam in the UV-visible region and the scattered light is usually observed in the direction perpendicular to the incident beam.

The scattered light consists of two types: one, called Rayleigh scattering, is strong and has the same frequency as the incident beam (ν_0) and the other, called Raman scattering, is very weak (10^{-5} of the incident beam) and has frequencies $\nu_0 \pm \nu_m$. The $\nu_0 - \nu_m$ and $\nu_0 + \nu_m$ lines are called the Stokes and anti-Stokes lines, respectively. Thus, in Raman spectroscopy, we measure the vibrational frequency (ν_m) as a shift from the incident beam frequency (ν_0). In contrast to IR spectra, Raman spectra can be measured in the UV-visible region where the excitation as well as Raman lines appear.

Figure A.12. illustrates Raman scattering in terms of a simple energy level structure. The line thickness is roughly proportional to the signal strength for the different transitions.

![Energy level diagram for Raman scattering](www.mediscientech.com/append/OpticalBiopsyPill.htm)

www.mediscientech.com/append/OpticalBiopsyPill.htm
Raman scattering in lithium niobate

Lithium niobate belongs to the space group \(R3c \) and has point group symmetry \(3m \) (see chapter 1.1). There are two formula units per unit cell and therefore 30 degrees of vibrational freedom. To a first approximation, vibrations with wave vector near zero may be characterized by group theory as 5 \(A_1 \), 5 \(A_2 \) and 10 \(E \) phonon branches. Of these, one \(A_1 \) and one \(E \) are the acoustic branches, the five \(A_2 \) fundamentals are Raman inactive, and the remaining 4 \(A_1 \) and 9 \(E \) optical branches are Raman active.

The difference in Raman scattered intensity between transverse (TO) and longitudinal (LO) optic-phonon modes in piezoelectric crystals can be ascribed to an electro-optic effect arising from the electric field associated with the LO phonon.

In this thesis a spectrum was described by four symbols, for example: \(z(xy)z \) (where \(x \), \(y \) and \(z \) are the standard set of orthogonal principal axes for trigonal symmetry, see chapter 1.1). The symbols denote, from left to right, the direction of the incident radiation, its polarization, the polarization of the detected Raman (back)scattered radiation, and the direction of its observation, respectively. Vibrations of different symmetry can be detected in different polarization settings.

Table A.2 shows the appearing Raman modes in different polarizations in LiNbO\(_3\).

Table A.2.: Raman modes of LiNbO\(_3\) for different configurations detected in backscattered geometry (the \(a(bc)a \) and \(a(cb)a \) configurations are equivalents because of the symmetry of the Raman tensors)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Modes in the spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x(yy)x)</td>
<td>(A_1(\text{TO}) + E(\text{TO}))</td>
</tr>
<tr>
<td>(x(yz)x)</td>
<td>(E(\text{TO}))</td>
</tr>
<tr>
<td>(x(zz)x)</td>
<td>(A_1(\text{TO}))</td>
</tr>
<tr>
<td>(y(xx)y)</td>
<td>(A_1(\text{TO}) + E(\text{LO}))</td>
</tr>
<tr>
<td>(y(xz)y)</td>
<td>(E(\text{TO}))</td>
</tr>
<tr>
<td>(y(zz)y)</td>
<td>(A_1(\text{TO}))</td>
</tr>
<tr>
<td>(z(xx)z)</td>
<td>(A_1(\text{LO}) + E(\text{TO}))</td>
</tr>
<tr>
<td>(z(xy)z)</td>
<td>(E(\text{TO}))</td>
</tr>
<tr>
<td>(z(yy)z)</td>
<td>(A_1(\text{LO}) + E(\text{TO}))</td>
</tr>
</tbody>
</table>
A.5. Residual X-ray diffractograms for chapter 3.1.2.

A.5.1. Samples with 10 mol% Cs$_2$O content

35 mol% Nb$_2$O$_5$

LiNbO$_3$

Li$_3$NbO$_4$

Q

40 mol% Nb$_2$O$_5$

LiNbO$_3$

Li$_3$NbO$_4$

Q
50 mol% Nb$_2$O$_3$

LiNbO$_3$

Li$_3$NbO$_4$

Q

Intensity [a. u.]

2 Θ [degrees]
A.5.2. Samples with 20 mol% Cs\(_2\)O content

35 mol% Nb\(_2\)O\(_5\)

- CsNbO\(_3\)
- Li\(_3\)NbO\(_4\)
- Q

45 mol% Nb\(_2\)O\(_5\)

- LiNbO\(_3\)
- Li\(_3\)NbO\(_4\)
- Q
Intensity [a. u.]

2Θ [degrees]

55 mol% Nb_2O_5

LiNbO$_3$

Q
A.5.3. Samples with Li / Nb = 1 ratio

5 mol% Cs$_2$O

LiNbO_3

Li_3NbO_4

Q

10 mol% Cs$_2$O

LiNbO_3

Li_3NbO_4

Q
A.5.4. Sample with 30 mol% Cs$_2$O, 50 mol% Nb$_2$O$_5$ and 20 mol% Li$_2$O content

![X-ray diffraction pattern of a sample with 30 mol% Cs$_2$O, 50 mol% Nb$_2$O$_5$, and 20 mol% Li$_2$O content. Peaks at 2Θ° angles corresponding to LiNbO$_3$, Li$_3$NbO$_4$, and Q are indicated.]