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Abstract

Statics, dynamics, rheology and scission recombination kinetics of self as-
sembling linear micelles are investigated at equlibrium state and under shear
flow by computer simulations using a newly proposed mesoscopic model. We
model the micelles as linear sequences of Brownian beads whose space-time
evolution is governed by Langevin dynamics. A Monte Carlo algorithm
controls the opening of a bond or the chain-end fusion. A kinetic param-
eter w modelling the effect of a potential barrier along a kinetic path, is
introduced in our model. For equilibrium state we focus on the analysis
of short and long time behaviors of the scission and recombination mech-
anisms. Our results show that at time scales larger than the life time of
the average chain length, the kinetics is in agreement with the mean-field
kinetics model of Cates. By studying macroscopic relaxation phenomena
such as the average micelle length evolution after a T-jump, the monomer
diffusion, and the zero shear relaxation function, we confirm that the ef-
fective kinetic constants found are indeed the relevant parameters when
macroscopic relaxation is coupled to the kinetics of micelles. For the non-
equilibrium situation, we study the coupled effects of the shear flow and the
scission-recombination kinetics, on the structural and rheological properties
of this micellar system. Our study is performed in semi-dilute and dynam-
ically unentangled regime conditions. The explored parameter w range is
chosen in order for the life time of the average size chain to remain shorter
than its intrinsic (Rouse) longest relaxation time. Central to our analysis
is the concept of dynamical unit of size A, the chain fragment for which the
life time 75 and the Rouse time are equal. Shear thinning, chain gyration
tensor anisotropy, chain orientation and bond stretching are found to de-
pend upon the reduced shear rate Sy = 474 while the average micelle size
is found to decrease with increasing shear rate, independently of the height

of the barrier of the scission-recombination process.
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Introduction

In the field of self-assembling structures, supramolecular polymers are attracting
nowadays much attention [1, 56]. The terminology of supramolecular polymer applies
to any polymer-like flexible and cylindrical superstructure obtained by the reversible
linear aggregation of one or more type of molecules in solution or in melt. These
supramolecular polymers are typical soft matter systems and the chain length dis-
tribution which determines their properties, is very sensitive to external conditions
(temperature, concentration, external fields, salt contents, etc...). Wormlike micelles
are one of the most common type of supramolecular polymer [2]. Self-assembled stacks
of discotic molecules [20] and chains of bifunctional molecules [21] are other examples.
All these examples differ by the nature of the intermolecular forces involved in the self-
assembling of the basic units, but they lead to a similar physical situation bearing much
analogy with a traditional system of polydisperse flexible polymers when their length
becomes sufficiently large with respect to their persistence length. The specificity and
originality of these supramolecular polymers comes from the fact that these chains are
continuously subject to scissions at random places along their contour and subject to
end to end recombinations, leading to a dynamical equilibrium between different chain
lengths species.

It is well known and schematically illustrated in figure 1 that some surfactant
molecules in solution can self-assemble and form wormlike micelles [2]. As their mass
distribution is in thermal equilibrium, they are therefore sometimes termed “equilib-
rium polymers” (EP) [1]. Similar system of equilibrium polymer are formed by liquid
sulfur [33, 34, 35], selenium [36] and some protein filaments [37]

The micellar solutions exhibit fascinating rheological behavior which has been re-
cently reviewed and discussed theoretically [56]. Quite commonly, under shear flow

in a Couette cell, an originally isotropic micellar solution undergoes a shear-banding



transition [3], producing a two phases system spatially organized in a concentric man-
ner with both phases lying either close to the inner or to the outer cylinder of the
rheometer. As the viscosity of both phases is different, a velocity profile with two
slopes is observed through the gap. This non-equilibrium phase separation is the object
of numerous studies [56]. The shear thinning and orientational ordering of wormlike
micelles [55] resembles the usual phenomenon observed in polymer solutions but, in
many micellar solutions close to the overlap concentration[4], one can also observe a
shear-thickening behavior whose microscopic origin is still a matter of debate nowa-
days. Much better understood is the trend of entangled micellar solutions to display a
Maxwell fluid rheological behavior [2]. The simple exponential relaxation behavior has
been theoretically explained by the reptation-reaction model[56], taking into account
the scission-recombination mechanism by which local entanglements can be released by
chain scission. The theoretical treatment of the scission-recombination process within
the rheological theoretical approaches, is usually based on a simple mean-field (MF)
approach in which correlations between successive kinetic events are fully neglected.
The way to take into consideration such correlated transitions has been detailed by
O’Shaughnessy and Yu [12] in order to explain some high frequency features of the rhe-
ological behavior of micellar systems. As the latter kinetics model interprets the stress
relaxation as the result of local effects between successive correlated transitions where
chain ends produced by a scission recombine with each other after a small diffusive ex-
cursion of the chain ends, such a rheological behavior was called “diffusion-controlled”
(DC) by opposition to the standard MF model.

Computer simulations at the mesoscopic scale offers an interesting route towards
the understanding of the generic properties of wormlike micelles solutions on the basis
of a well controlled microscopic (or mesoscopic) model. The first accent within the
simulation approach was put on testing the chain length distribution for various algo-
rithms producing, on a lattice or in continuum space, temporary linear self assembling
structures. Earlier Monte Carlo simulations using an asymmetric Potts model were
performed to study static properties of equilibrium polymers [38, 39, 40]. Rouault and
Milchev proposed a dynamical Monte Carlo algorithm [41], based on the highly efficient
bond fluctuation model (BFM) [42, 43|. In great detail, Wittmer and co-workers [13, 22]
investigate the static properties of EP in dilute and semi-dilute solutions using the

same BFM. They confirmed scaling predictions of the mean chain length in dilute and




semi-dilute limits. Rouault [15] verified the dependence of mean chain length with con-
centration using an off-lattice Brownian dynamics simulation. Dynamics at equilibrium
and direct simulation of systems in shear flow were also much investigated over the last
ten years. Kroger and co-workers study EP at equilibrium [58] and under shear flow
[17] by Molecular Dynamics using the particular pair potential FENE-C model. This
model is a variant of the traditional pair potential of the LI+FENE type used to model
(permanent) polymers, a pair potential which diverges both as r goes to zero (repulsive
forces) and at a distance » = R, where the corresponding attractive force between
neighboring monomers also diverges. The FENE-C potential is a truncated form of the
usual form which is set to a constant beyond a certain distance r = r,, < R, value,
creating a finite potential well for a bounded pair with respect to the unbounded pair
(r > rm). In this way, the covalent bond can break or recombine as the pair distance
crosses the rp, value. Using the same model, Padding and Boek [16] investigated the
recombination kinetics and the stress relaxation of wormlike micellar systems. They
found that at high concentrations, the kinetics is close to a diffusion-controlled mecha-
nism. Milchev and co-works [26] study micelle conformations and their size distribution
by an off-lattice microscopic model, to study solutions of EP in a lamellar shear flow
while Padding and Boek investigate the influence of shear flow on the formation of
rings in a EP system using FENE-C model [44]. All these studies predict a decrease of
the average micelle size as a result of the shear flow. Other simulation studies envisage
that ultimately, various simulations at different length and time scale will have to be
combined to fill the huge gap between the atomistic length and time scales where the
precise chemistry is relevant and the mesoscopic scale where rheological properties can
really be probed by simulation. Studies of this type mixing both the atomistic and
mesoscopic approaches to study wormlike micelles rheology are under progress[57].
The aim of our thesis on isotropic wormlike micelles solutions is to analyze, on the
basis of a dynamical simulation at the mesoscopic level, the influence on the macro-
scopic relaxation phenomena of the dynamical coupling between the usual “flexible
polymer” relaxation processes and the “scission-recombination” kinetics. We will re-
strict ourselves to unentangled solutions (working slightly below or above the isotropic
semi-dilute threshold with a very flexible mesoscopic equilibrium polymer model) to
avoid the prohibitive computer time needed to follow relaxation phenomena governed

by entangled dynamics. The relevance of the MF kinetics model and the microscopic



origin of the scission-recombination rate constants is one important target of our study.
Unentangled supramolecular polymers dynamics was indeed found to be relevant in
selenium rheology. At the occasion of this experimental rheological study, Faivre and
Gardissat [36] proposed an extension of the traditional Rouse theory to include the
scission kinetic effects on the Rouse modes relaxation. They predicted the way the
zero shear rate viscosity decreases as the scission and recombination kinetic constants
increase, introducing the concept of dynamical subunit whose size fixes the relaxation
time which governs the shear modulus relaxation.

The thesis is organized as follows: The theoretical aspects of wormlike micelles
statics (distribution of micelle sizes) and the dynamics (Cates MF kinetic model, Faivre
and Gardissat theory[36])are gathered in chapter L.

In chapter II, we detail the particular mesoscopic Langevin Dynamics model which
is adopted throughout our thesis. Given our aims, this model has the particularly
useful feature that the static properties (in particular the distribution of chain lengths)
and the dynamics of the scission-recombination can be tuned separately so that we
will often investigate how the relaxation at a unique state point (from a static point of
view) is modified by tuning the kinetic rate constants.

Chapter III reports the results of a series of simulations at equilibrium, performed
by Langevin Dynamics. Both a dilute and a semi-dilute state points are treated. We
check our results regarding the distribution of chain sizes with respect to theoretical
prediction and analyze in detail the microscopic origin of the relevant rate constants.

Chapter IV reports a systematic study of a single semi-dilute state point of micellar
solution under shear flow. Here two kinds of parameters, the shear rate and the scission-
recombination rate constants, are systematically varied. We discuss the evolution of
the average micelle size with shear rate and relate it to a different evolution of the two
types of rate constants (scission and recombination). We also discuss the nature of
the relevant reduced shear rate and extrapolate our viscosity data to zero shear rate,
allowing us to test the Faivre-Gardissat theory’s predictions [36].

Our general conclusions are gathered in the last chapter V.
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Figure 1: Some surfactant molecules in solution self-assemble and form long wormlike
micelles which continuously break and recombine. Their mass distribution is, hence, in
thermal equilibrium and they present an important example of the vast class of systems
termed “equilibrium polymers” [1].The free energy E of the (hemispherical) end cap of
these micelles has been estimated [2] to be of order of 10kgT. This energy penalty
(together with the monomer density) determines essentially the static properties and
fixes the ratio of the scission and recombination rates, k, and k,. Additionally, these
rates are influenced by the barrier height B which has been estimated to be similar to
the end cap energy. Both important energy scales have been sketched schematically as
a function of a generic reaction coordinate g (see chapter 8 of reference [23]).Following
closely the analytical description {2, 22, 13] these micellar systems are represented in
this study by coarse-grained effective potentials in terms of a standard bead-spring
model. The end cap free energy becomes now an energy penalty for scission events,
ie., the creation of two unsaturated chain ends. The dynamical barrier is taken into
account by means of an attempt frequency w = exp (—B/kgT). If w is large, suc-
cessive breakage and recombination events for a given chain can be assumed to be
uncorrelated and the recombination of a newly created chain ends will be of standard
mean-field type. On the other hand, the (return) probability that two newly created
chain ends recombine immediately must be particularly important at large w. These
highly correlated “diffusion controlled” [12] recombination events do not contribute to
the effective macroscopic reaction rates which determine the dynamics of the system.






Chapter 1

Theoretical Framework

In this chapter we will briefly present the theoretical framework of cylindrical micelles
and some standard polymer theoretical aspects which are pertinent to the flexible
micelles system. In Section 1, we introduce the statistical mechanics derivation of the
distribution of chain lengths and of the corresponding average chain length. Then in
section 2, for the scission-recombination kinetics at equilibrium, we study the theoretical
formalism of equilibrium polymers (EP) developed by Cates and co-workers [9, 2], based
on a mean-field approximation. And the third section of this chapter will focus on the
linear viscoelasticity of EP. In this section, a framework for linear viscoelacity of dilute
polymer solutions, and intrinsic shear modulus by the Rouse model are presented.
Finally, we briefly review the theory of Faivre and Gardissat [36] where a modification
of the standard Rouse theory of linear viscosity of a polydisperse polymer system is

proposed.

1.1 Statistical mechanics derivation of the distribution of
chain lengths

To treat a system of wormlike micelles theoretically, it is convenient to work at the
mesoscopic scale using a model of linear flexible polymers made of L monomers of size
b linked together by a non permanent bonding scheme. Within the system, individual
chain lengths fluctuate by bond scission and by fusion of chain ends of two different
chains. Statistical mechanics can be employed to predict the equilibrium distribution
of chain lengths[2]. In terms of the equilibrium chain number density cy(L), the average

chain length Ly and the total monomer density ¢ are given by



f:oLCO(L)
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L=0

where M denotes the total number of monomers in the system and V is the volume.
Conceptually, we consider the Helmholtz free energy F(V,T;{N(L)}, N;) of a mix-
ture of chain molecules of different length L in solvent where, in addition to the temper-
ature T, the volume V and the number of solvent molecules N;, the number of chains
of each specific length N(L) is fixed. Let F(V,T; M, Ny) be the Helmholtz free energy
of a similar system where only the total number of solute monomers M is fixed. The
equilibrium chain length distribution ¢g(L) = N(L)/V will result from the set {N(L)}

which satisfies the condition

x>
F(V,T; M, N;) = mingnyy | F(V,T5{N(L)}, Ns) + 1 LN(L)|  (1.3)
L=0
The parameter p is the Lagrange multiplier associated with the constraint that
the individual number of chains N(L) must keep fixed the total number of monomers
M = 35° LN(L). Minimization requires that the first derivative with respect to any
N(L') variable (1'=1,2, ...) is zero, giving

SF(V,T;{N(L)}, N)
IN(L)
We expect the entropic part of the total free energy F(V,T;{N(L)}, Ns) to be the

sum of translational and chain internal configurational contributions which both depend

+ul =0;L'=1,2,... (1.4)

upon the way the M monomers are arranged into a particular chain size distribution.
For the translation part, the polydisperse system entropy is estimated as the ideal

mixture entropy S;4

Sia(V,T;{N(L)}, N;) = —kg > _ N(L)In (CN(L)) + §°°" (1.5)
L

where C = b%/V is a dimensionless constant independent of L and where S*° is
the solvent contribution, independent of the N(L) distribution. The configurational

entropy of an individual chain with L monomers is written as S;(L) = kgln{y, in



1.1 Statistical mechanics derivation of the distribution of chain lengths

terms of {21, the total number of configurations of the chain. Adding the configurational

contributions to S;q as given by eq.(1.5), the total entropy becomes

S(V,T; {N(L)}, Ny) _—kBZN )In (CN(L)) = In Q] + S5 (1.6)

We now turn to the energy E(V,T;{N(L)}, N;) of the same system. If Ey(V,T;
L) represents the internal energy of a chain of L monomers and E, the energy of a

solvent molecule, the energy can be written as

E(V,T;{N(L ZN VE1(V,T; L) + N,E(V,T) (1.7)

The key contribution in E; is the chain end-cap energy E which corresponds to
the chain end energy penalty required to break a chain in two pieces. We will suppose
that E1(L) = E + L& where € is an irrelevant energy per monomer as Mé, its total
contribution to the system energy, is independent of the chain length distribution.

The present approximation of the total free energy of the system is thus given by

incorporating in the general expression (1.3) the expressions (1.6) and (1.7), giving

BF(V,T;{N(L)}, Ny) EN )InN(L) +nC —nQy + BE + BeL) (1.8)

where irrelevant constant solvent terms have been omitted as we only need the first
derivative of the free energy with respect to N(L), which now takes the form

SGF
SN(L)

=InN(L)4+InC—-InQp + BE + BEL + 1. (1.9)
With this expression, the minimization condition on N(L) becomes
InN(L)+InC-nQp+BE+1+ 4L =0 (1.10)

where ¢/ = (Bu + 5€). We note at this stage that the second derivative of BF(V,T;
{N(L)}) + ¢’ 3_p LN(L) with respect to N(L) and N(L') variables gives the non neg-
ative result I—‘f{‘&'—), indicating that the extremum is indeed a minimum.

Solving for N(L) in eq.(1.10), we get
N(L)=C""'exp—(4/'L + BE —InQy) (L.11)
where C' = eC while, according to eq. (1.2)), u’ must be such that

> Lexp—(W/'L+BE —1nQy) = MC' (1.12)
L



The equilibrium N(L) variables are also related to the equilibrium chain length
average Lg (see eq. (1.1)), so that

’
Zexp—(,u'L-i-ﬁE—anL) = M (1.13)
L Lo

To progress, we now need to specify the explicit L dependence of {1;,. The traditional
single chain theories of polymer physics provide universal expression of €y in terms of
the polymer size, the environment being simply taken into account through the solvent

quality and the swollen blob size in the semi-dilute (good solvent) case.

1.1.0.1 The case of mean field or ideal chains

The basic mean-field or ideal chain model for a L segments chain gives

QF = [C127] , (1.14)
where z is the single monomer partition function and C; a dimensionless constant.

Adapting eq.(1.11), one has

C
N(L) = 4 exp —(BE) exp (—p" L) (1.15)
where u” = y/ — Inz must, according to eq. (1.12), be such that
1 MC
Lexp—(WL)= — = =———— 1.16
S Lew =) = 1 = oo ) (1.16)
while eq.(1.13) takes the form
1 MC
exp—(u’L) = — = 1.17
oD = 5 = Lo <55] (L17)

In eqs.(1.16) and (1.17), sums over L from 1 to oo have been approximated by the
result of their continuous integral counterparts.
Combining egs.(1.15), (1.16) and (1.17), one gets the final expression for the chain

number densities

¢ L
L)y== - 1.
with the average polymer length given by
Lo = BY*¢7 exp (——52E> (1.19)

where By = eb3/C} is a constant depending upon the monomer size b and the prefactor

in the number of ideal chain configurations in eq.(1.14).

10




1.1 Statistical mechanics derivation of the distribution of chain lengths

1.1.0.2 The case of dilute chains in good solvent

Polymer solutions are in a dilute regime when chains do not overlap and in semi-dilute
regime when chains do strongly overlap while the total monomer volume fraction is still
well below its melt value. In the semi-dilute regime in good solvent condition, chains
remain swollen locally over some correlation length, known as the swollen blob size ¥,
but they are ideal over larger distances as a result of the screening of excluded volume
interactions between blobs.

Specifically, for a given monomer number density ¢, the blob size is given by the
condition that the blob volume x® = b3L*3 is equal to the total volume V divided by
the total number of blobs M/L* in the swollen blob. This gives estimates in terms of

the reduced number density ¢’ = b3¢,

L = ¢(v%) (1.20)
x = bglE®) (1.21)

where v = 0.588 in present good solvent conditions(8].

In living polymers characterized by a monomer number density ¢ and some averaged
chain length Ly, the semi-dilute conditions correspond to the case Ly >> L*. We
discuss in this subsection the theory for the dilute case where Ly << L*. We will come
back to the semi-dilute case in the next subsection.

Self-avoiding walks statistics apply to dilute chains in good solvent, and we thus
adopt the number of configurations[6, 7](See especially page 128 of the book of Grosberg
and Khokhlov [7])

QEV — ¢ L0-DL (1.22)

for a chain of size L, where + is the (entropy related) universal exponent equal to 1.165,
z is the single monomer partition function and C; a dimensionless constant.
Incorporating expression (1.22) in eq. (1.11), one gets
|4 (v=-1) »
N(L) = B—exp—(,@E)L” exp —(u” L) (1.23)
1

where B was introduced in eq.(1.19) and where p” = p/ —In 2z must be fixed by eq.(1.2)

Z L"exp —(u’L) = Bypexp (BE) (1.24)
L

11



while eq.(1.13) takes here the form

Z LYY exp — (L) = L;(b exp (BE) (1.25)
L
If L is treated as a continuous variable, eqs (1.24) and (1.25) can be rewritten in

terms of the Euler Gamma function satisfying I'(z) = zI'(z — 1) as

o F(y+1

/ LY exp —(u” L)dL = 7(7('”_1) Bigexp (E) (1.26)
0
/ LOYexp —(u”L)dL = I;(,ZY) = l‘?gb exp (BE) (1.27)
0
From egs (1.26) and (1.27), one gets
» o l
o= (1.28)
' Fiv+1

Bigexp (BE) = %Lg‘” Y (1.29)

These results lead then finally to the Schulz-Zimm distribution of chain lengths, namely

exp (—BE)

co(L) = — B

L
L0 exp (=) (1.30)

and an average polymer length given by

(7T BE
L= () Ao e () (181

1.1.0.3 The semi-dilute case

We consider here the semi-dilute case in good solvent where the average length of living
polymers Lg is much larger than the blob length L*. The usual picture of a semi-dilute
polymer solution is an assembly of ideal chains made of blobs of size x. Using this
approach, Cates and Candau [2] and later J.P. Wittmer et al [13] derived the relevant
equilibrium polymer size distribution. In this subsection, we adapt their derivation to
the theoretical framework presented above.

Let 2 be the number of internal configurations per blob and 2’ some coordination
number for successive blobs. As there are n, = L/L* blobs for a chain of L monomers,

we write the total number of internal configurations of a chain of size L as

Q5D = ¢y Lr0-NQE/ L LIl (1.32)

12




1.2 A kinetic model for scissions and recombinations

where 7 is the universal exponent in the excluded volume chain statistics met earlier
for chains in dilute solutions. The important factor L*"~1) can be seen as an entropy
correction for chain ends just like E was an energy correction to Lé. This entropic
term which involves the number of monomers per blob, is needed to take into account
that when a chain breaks, its two ends are subject to a reduced excluded volume
repulsion. The other factors in eq. (1.32) will lead to terms linear in L after taking
the logarithm and thus will be absorbed in the Lagrange multiplier definition, as seen
earlier in similar cases for ideal and dilute chains. The resulting expression of N (L) in

terms of the Lagrange multiplier (cf. eq.(1.15)) can then be written by analogy as
C *
N(L) = Et exp— [BE — (y—1)In L*]exp (—uL) (1.33)

Proceeding as in the ideal case (simply replacing at every step the constant SF

by BE — (y — 1)InL*, one recovers in the semi-dilute case the simple exponential

distribution
(£) = Lyexp (1) (134)
= — X —_—— .
co 7Rl
with a slightly different formula for the average polymer length
E
Ly o ¢% exp (—ﬁ2—> (1.35)

where a = (1 + =%) is about 0.6.

1.2 A kinetic model for scissions and recombinations

The interest for wormlike micelles dynamics came from the experimental observation
that entangled flexible micelles often display, after an initial strain, a simple exponential
stress relaxation. The mechanism of such relaxation is different from that of usual
dead polymer entangled melts. In the latter system, stress relaxation requires that
individual chains leave the strained topological tube created by the entangled temporary
network by a reptation mechanism. A theoretical model, taking into account the extra
relaxation mechanism caused by scissions and recombinations of micelles, leads [9] to an
exponential decay of the shearing forces with a decay Maxwell time equal to 7 ~ /ToTrep
where T.¢p is the chain reptation time and 7, is the mean life time of a chain of average

size in the system.
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We will assume in the following that the Cates’s scission-recombination model gov-
erning the population dynamics, originally devised to explain entangled equilibrium
polymer melt rheology, should also apply to the kinetically unentangled regime which
is explored in the present work.

This Cates kinetic model [9] assumes that

e the scission of a chain is a unimolecular process, which occurs with equal proba-
bility per unit time and per unit length on all chains. The rate of this reaction is
a constant k, for each chemical bond, giving

1
 ksLo

T

(1.36)
for the lifetime of a chain of mean length Ly before it breaks into two pieces.

e recombination is a bimolecular process, with a rate k. which is identical for all
chain ends, independently of the molecular weight of the two reacting species they
belong to. It is assumed that recombination takes place with a new partner with
respect to its previous dissociation as chain end spatial correlations are neglected
within the present mean field theory approach. It results from detailed balance

that the mean life time of a chain end is also equal to 7.

Let ¢(t, L) be the number of chains per unit volume having a size L at time ¢. On
the basis of the model, the following kinetic equations can be written [9]

dc(t, L)
dt

= —ksLc(t, L)+2ks/ c(t, L"YdL'
L
k L [e5)
+ ?T/ c(t, L’)c(t,L—L’)dL'—krc(t,L)/ c(t, L"YdL'  (1.37)
0 0

where the two first terms deal with chain scission (respectively disappearance or appear-
ance of chains with length L) while the two latter terms deal with chain recombination
(respectively provoking the appearance or disappearance of chains of length L).

It is remarkable that the static solution of this empirical kinetic model leads to an
exponential distribution of chain lengths. Indeed, direct substitution of solution ¢y (L)
in the above equation leads to the detailed balance condition:

Ky

¢2ks

= L2 (1.38)
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1.2 A kinetic model for scissions and recombinations

the ratio of the two kinetic constant being thus restricted by the thermodynamic state.
Detailed balance means that for the equilibrium distribution co(L), the number of
scissions is equal to the number of recombinations per unit time and volume. The total
number of scissions and recombinations per unit volume and per unit time, denoted

respectively as n; and n,, can be expressed as

o
ng = ks%/ Lexp(—L/Ly)dL = ks¢ (1.39)
0 Jo
B k’r ¢2 oo , oo ) L L” ¢2kr
n. = -2-Lé/0 dL/O AL exp (~ ) ep () = 572 (1.40)

and it can be easily verified that detailed balance condition equation 1.38 implies n, =
Ny

Mean field theory assumes that a polymer of length L will break on average after
a time equal to 7, = (k,L)~! according to a Poisson process. This implies that the
distribution of first breaking times (equal to the survival times distribution) must be

of the form

U(t) o exp () (1.41)

Ty

for a chain of average size. Detailed balance then requires that the same distribution
represents the distribution of first recombination times for a chain end[2]. Accordingly,
throughout the rest of this chapter, the symbol 7, will represent as well the average
time to break a polymer of average size or the average time between end chain recombi-
nations. In the same spirit, we stress that among the different estimates of 7, proposed
in this work, some are based on analyzing the scission statistics while others are based
on the recombination statistics.

Two additional points may be stressed at this stage:

e The mean field model in the present context has been questioned [12] because
in many applications, there are indications that a newly created chain end often
recombines after a short diffusive walk with its original partner. In that case, a
possibly large number of breaking events are just not effective and the kinetics

proceeds thus differently.

e Given the statistical mechanics analysis in the previous subsection, we see that
the equilibrium distribution of chain lengths resulting from the simple empirical

kinetic model is perfectly compatible with the equilibrium distribution in polymer
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solutions at the 6 point (ideal chains) or for semi-solutions (ideal chains of swollen
blobs). The kinetic model is still pertinent, given its simplicity, in the case of
dilute solutions in good solvent as the chain length distribution although non

exponential, is not very far from it.

1.2.1 Macroscopic thermodynamic relaxation

In equation (1.35) the average length Ly depends on the thermodynamic variables of
the system such as the temperature, the pressure, and the volume fraction of monomers
¢. Under a sudden change in one of the thermodynamic variables (for example, the
temperature), the distribution of the length of the chains in equation (1.37) relaxes
to a new equilibrium exponential distribution characterized by a new average length
Ly. The corresponding theory of macroscopic thermodynamic relaxation has been
given by Marques and Cates [27] and tested using a Monte Carlo study by Michev
and Rouault [46]. This is in general a complicated, nonlinear decay which can be
monitored experimentally by light scattering which probes the evolution of the average
length. The theory is based on the equations of distribution of length of chain (1.34)
and the kinetic model of Cates [9] i.e. equation (1.37). The characteristic time provides
information about the kinetics of the system.

Marques and Cates [27] show that for any amplitude of the perturbation which
conserves the total volume fraction of monomers (for instance, a temperature modifica-
tion having an arbitrary time-dependence), the distribution function ¢(t, L) of equation

(1.37) remains exponential versus L. Indeed, they show that

oft, L) = (1) exp {~Lf (1)} (1.42)
is a non-linear eigenfunction of equation (1.37) with a eigenvalue f(¢) that obeys
d _ Pkr o
I, [1 <01 (1.43)

where k, and k; the kinetic constants of the new equilibrium state, after, e.g. a T-jump.
The time evolution of f(t) for a thermodynamic jump is then the solution of (1.43) with
the initial condition f(t =0) = 1/Lg. One obtains [27]:

f(t) = LZ'tanh (t +Tt°> if Lo > Loo (1.44)
f(t) = L7lcoth (t +Tt°> if Lo < Ly (1.45)
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1.3 Linear viscoelasticity of unentangled micelles

where the constant ¢ is given by

L
to = 27 tanh (f—) if Lo > Ly (1.46)
0
L\ .
to = 27 coth (—L—> if Lo < Lom (147)
0
and the time
-1 1.48
"= kLl (148)

These equations describe the recovery of ¢(t,L) and (L(t)) the average chain length,
following a sudden change in temperature which is given by

(L) = 57~ (1.49)
f(® '

We see that by measuring the non-equilibrium 7 the relaxation time of the mean chain

length, one can get an estimate of the microscopic scission rate constant k.

1.3 Linear viscoelasticity of unentangled micelles

To describe the dynamics of cylindrical micelles in solution, each micelle can be mod-
elled as a linear collection of L identical fragments (L being proportional to the length
of the micelle), subject to Brownian motion to represent the dynamical effect of the
bath (the coupling to the rest of the degrees of freedom), subject to connecting forces
between adjacent fragments to enforce the linear structure of the micelle and possibly
subject to pair interactions between non connected fragment pairs. If, as the rela-
tive distance between adjacent fragments increases, the connecting tension force is not
bounded to a finite value to allow an intrinsic possibility of scission (e.g. the FENE-C
model of Kroger[17]), the scission and recombination processes must be incorporated
independently in the model. The latter must specify the way through which individ-
ual bonds can break (chain scission) or reform (chain end recombinations) by a pair
potential swap for the involved pair of fragments. The micelle dynamics thus needs
to combine all these various ingredients, implying that individual chain entities will
survive for a finite life time during which ordinary polymer relaxation takes place.
Within a theoretical approach of the dynamical properties of micellar solutions
where the emphasis lies in the search for analytical predictions, it is useful to explore

the validity of the traditional Rouse model to represent the “dead polymer” dynamics
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part (valid as long as an entity survives), when it can be assumed that excluded volume
and entanglement effects are absent or weak. In the present purely theoretical discus-
sion, we thus restrict ourselves to the unentangled dynamics of 4 solvent chains. We
briefly review the basic ingredients and essential results of the Rouse model for “dead
chains”, including linear viscoelasticity and we report the extension of this theory to
polymer chains when they are the object of scissions and recombinations, along the

lines proposed by Faivre and Gardissat [36].

1.3.1 The Rouse model

The Rouse model treats all chains as being independent. Consider a “dead chain” of
N elements at temperature T, where each fragment is subject to a friction force pro-
portional to its instantaneous velocity with friction coefficient £ and to a random force
modelled as a 3D white noise stochastic process whose statistical properties are given
by the fluctuation-dissipation theorem in terms of T" and €. The only interactions con-
sidered in the Rouse model are harmonic spring forces with spring constant k& between
neighboring beads to ensure the linear connectivity. Under this dynamics, the average
squared distance between adjacent monomers defines a typical mean distance b given
by b? = 3kpT/k, where kp is the Boltzmann constant. The mean squared end-to-end
distance is simply (N — 1)b%.

Chain dynamics considered via the end-to-end vector time relaxation function leads

at long times to an exponential decay with the main (Rouse) relaxation time
TR = ToN? (1.50)

where 79 = Eib;—wg, indicating that the global relaxation time of a chain of size N is
proportional to N2.
The way to derive this important result requires the introduction of modes (Rouse

modes), defined as
_ 1 &
Xo(t) = 5 D_AgRit)ig=0,1,2(N-1) (1.51)
j=1
where Rj is the coordinate of the j** monomer in a chain and Aa square matrix with

elements
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1.3 Linear viscoelasticity of unentangled micelles

According to this definition, the mode ¢ = 0 represents the center of mass diffusive
motion, while the other (N-1) modes ¢ > 0 are associated to the collective motion of
sub-chains of size N/q. The time autocorrelation of these internal chain modes are
_. — t
< Xq(t)X4(0) >=< Xg > exp <——> (1.53)

Tq
where

& [N\?
- - 54
07 3kpTa? \ g (1.54)
which shows that the Rouse time is the relaxation time associated to the mode ¢ =1,

while the relaxation time of higher index modes decreases as 1/¢2. For completeness,

the mode amplitudes are given by

Nb? 1
2 o —
< Xq >= —2-’”_—2? (155)
Rouse theory leads to an expression of the time autocorrelation of the chain end-

to-end vector S = Ry — Ry

- 2 Z; Tqexp (—t/7q)

< §(t).5(0) >= (N -1) (1.56)

q7q

where the prime in the sums means that the latter only involves the odd q mode
indices. This result shows a typical Rouse theory relaxation function: it is a sum
of terms implying the different mode relaxation, which explains that at long times,
only the slowest mode survives and the behavior of the time autocorrelation becomes

exponential with characteristic time 7g.

1.3.2 The Rouse model implications on the viscous response of a
monodisperse polymer solution

We now discuss the intrinsic shear modulus G(t) of a monodisperse polymer solution
which reflects the viscoelastic response of the system in the linear regime (limit of very
small shear rates). The Newtonian shear viscosity is related to the shear modulus

through -
no = / G(t)dt (1.57)
0

Rouse theory for a monodisperse solution of “dead” polymers of size N at monomer

number density ¢ gives [48]

d’ N-1 ¢ N-1
G(t) = yksT ; exp(—2t/7q) = -ksT ; exp(—2tq? /7R) (1.58)
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This important result indicates that, because of the independence of the dynamics
of the various chains in the system, Rouse theory gives for a collective and intensive
quantity like G(¢) an expression which is proportional to the solute concentration while
its viscoelastic behavior is strictly identical to the single chain viscoelastic relaxation
process. Therefore, the shear modulus again appears as a sum of terms expressing the
specific contributions of the various single chain modes in the relaxation process, with
at long times, a simple exponential time decay with characteristic time 7. By time
integration, according to eq.(1.57), the shear viscosity is then given (for N >> 1) by

_71": oksT
12 N

o = TR (1.59)

where 75 is given in eq. (1.50).

1.3.3 The theory of Faivre and Gardissat and the viscoelasticity of
micelles

The above subsection is dealing with a monodisperse dilute solution of “dead” chains.
The stress relaxation function of a micellar system is in reality the object of a coupling
between the stress relaxation and the scission-recombination process if the time scale of
the second process is shorter than the viscoelastic times scales. In our work, we adapt
the theory proposed by Faivre and Gardissat [36], originally developed to interpret
rheological data of liquid selenium. Faivre and Gardissat [36] proposed a modification
of the standard Rouse theory of linear viscosity of a polydisperse polymer system (8]
to incorporate the influence of the scission events.

If we have a polydisperse system of polymers with normalized weight function W),

the relaxation modulus given by the Rouse model should be given by
G(t) =) _ W,Gyl(t) (1.60)
p=1

where Gp(t) concerns the “polymer” part of chain of size p which, within the Rouse
model, reads (see eq.(1.58))

_olvo ot (e)
G,,(t)—Gopq:Zl p[ 2TO< )} (1.61)

p

where p is the polymerization degree, Gy = ¢kpT a material constant, and 7o the

local dynamic relaxation time which depends on the solvent viscosity. Notice that for

20



1.3 Linear viscoelasticity of unentangled micelles

physical reasons we have ¢ < p in the sum of Rouse modes for any upper limit p. As
mentioned earlier, the stress relaxation is a superposition of exponentials, each term
corresponds to the contribution to the relaxation of a particular Rouse mode. All terms
have the same amplitude but decay with a characteristic time

2
Ty = 705-2-

which depends on the p/q ratio which is the number of monomers per wave length for

(1.62)

that particular mode. If bond scission occurs independently and uniformly along the
chain with rate ks (per unit time and per bond), the lifetime of a chain of p/q monomers

should be

-4
e (1.63)

The Rouse mode ¢ in the original chain of length p should therefore have a survival
probability which decays in time as exp(—ks(p/q)t), hence the idea of multiplying the
contribution of each mode to the relaxation of G(t) by this survival probability to take

into account the effect of bond scissions. This leads to the expression

’ q 2
G(t) = Go—Zexp[ ks 1t—2;a (-) } (1.64)

D

When the life time 7, of the chain of average size is shorter than the internal Rouse
relaxation time of the same chain ToLg, the viscoelastic response is independent of the
mean chain length Ly but depends upon a new intrinsic time 74 which corresponds
to the relaxation of a dynamical unit of size A defined by the equality of the Rouse

relaxation time 79A? and the life time, (k,A)~!

T0A% = (k,A)71 . (1.65)
It leads to
= (1oks)™1/3 (1.66)
and
h =10/ k3 (1.67)

so that equation (1.64) can be rewritten as

2
G,(t) = Go~ Zexp (——— L_A +2 (%) D . (1.68)
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Identifying the number of Rouse beads with the number of beads in present work, using
a known distribution of lengths of the chains of our system (1.18), the weight function

for our equilibrium polymers is

1 p
W,=— - ). .
P= I exp < L0> (1.69)
So that G(t) for the equilibrium polymers is now given by
b !
G(t) =D _ W,G,(t). (1.70)
p=1

Note that this expression differs slightly from the Faivre and Gardissat final expres-
sion as apparently, in equation (18) of reference [36], they assume a relaxation time for
a segment of p monomers to be half of the usual Rouse time. (Note also that in their

. paper, the symbol 7y corresponds to half the time 7o used in our work).
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Chapter 2

The mesoscopic model of
worm-like micelles

The main goal our thesis is to exploit simulation techniques to improve our under-
standing of the link between the macroscopic behavior and microscopic aspects of the
structure and the dynamics of self-assembling micellar systems at equilibrium and un-
der shear flow. As it is pragmatically impossible to reach large enough scales of length
and time to determine those macroscopic properties using an atomistic level molecular
dynamics simulation approach, we adopt a mesoscopic model and a Langevin Dynamics
approach as done regularly in the studies on micellar systems. As sketched in figure 1,
micelles can be represented as linear sequences of Brownian beads which, in addition to
their usual Langevin Dynamics space-time evolution, can either fuse together to form
longer structures or break down into two pieces. The kinetics can be modelled by a
microscopic kinetic Monte-Carlo algorithm which generates new bonds between chain
ends adjacent in space or which breaks existing bonds between adjacent monomers. The
free energy E to creat this new end caps for these micelles becomes an energy penalty
for scission events, i.e., the creation of two unsaturated chain ends. This scission energy
determines the static propeties and influences the scission and recombination rates, k;
and k. In this model, the scission energy F of micelles is controlled by a scission en-
ergy parameter W which is defined as an additive potential term which influences the
switching probability between bonded and unbounded potentials. The barrier energy
of recombination B also influences the kinetic rate constants. The advantage of our
model is that the dynamical barrier height B can be taken into account by means of

the attempt frequency w associated to the Monte Carlo potential swap. If w is small,
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successive breakage and recombination events for a given chain can be assumed to be
uncorrelated and the recombination of newly created chain ends will be of standard
mean-field type. On the other hand, the (return) probability that two newly created
chain ends recombine immediately must be particulary important at large w. These
highly correlated “diffusion controlled” [12] recombination events do not contribute do
the effective macroscopic reaction rates which determine the dynamics of the system.
The mesoscopic model is based on a standard polymer model with repulsive Lennard-
Jones interactions between all monomer pairs and an attractive FENE (finitely extensi-
ble nolinear elastic) potential [24] to enforce (linear) connectivity. For the scission and
recombination events, a Monte Carlo procedure is set up to switch back and forth be-
tween the bounded potential and the unbounded potential. This new model is thus at
the same time justified by its link with a standard polymer model and by the advantage
that the scission/recombination attempt frequency is a control parameter governing dy-

namics, without affecting the thermodynamic and structural properties of the system.

2.1 The potential [19]

We consider a set of micelles consisting of (non-cyclic) linear assemblies of Brownian
particles. Within such a linear assembly, the bond potential U; (r) acting between ad-
jacent particles is expressed as the sum of a repulsive Lennard-Jones (shifted and trun-
cated at its minimum) and an attractive part of the FENE type [24]. The pair potential
Us(r) governing the interactions between any unbounded pair (both intramicellar and
intermicellar) is a pure repulsive potential corresponding to a simple Lennard-Jones
potential shifted and truncated at its minimum. This choice of effective interactions
between monomers implies good solvent conditions.

Using the Heaviside function ©(x) = 0 or 1 for < 0 or z > 0 respectively, explicit

expressions (see figure 2.1) are

Us(r)

4 [(%)12 - (%)6 + ﬂ 0(2Y8c — 1)) (2.1)
Ur(r) = Us(r)—0.5kR?In (1 - [%}2) — Unin = W (2.2)

In the second expression valid for r < R, k = 30¢/o? is the spring constant and
R = 1.50 is the value at which the FENE potential diverges. Uiy is the minimum

value of the sum of the two first terms of the second expression (occurring at 7, =
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2.2 The Langevin Dynamics
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Figure 2.1: Bounded potential U;(r) (continuous curve) and unbounded potential Us(r)
(dashed line) between a pair of monomers. W is a parameter tuning the energy required
to open the bond. The figure also shows the I' region where potential swaps (corre-
sponding to bond scissions or bond recombinations) are allowed during the Brownian
dynamics simulation. The unit of length is o, and for the energy is e.

0.960940 for the adopted parameters) while W is a key parameter which corresponds
to the typical energy gain (loss) when an unbounded (bounded) pair is the object of a

recombination (scission).

2.2 The Langevin Dynamics

The Langevin equation describes the Brownian motion of a set of interacting particles.
The action of the fluid is split into a slowly evolving viscous force and a rapidly fluc-
tuating random force. For a free particle in one dimension the equation is expressed
as

miti(t) = ~£0(t); + Fi(t) + Ri(t) (2.3)

where barv; is the velocity of particle ¢ with mass m; at time ¢, F; the systematic force,
& the friction coefficient, and R; represents the sum of the forces due to the incessant

collision of the fluid molecules. It is regarded as a stochastic force and is satisfying the
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condition (fluctuation-dissipation theorem) [47]:
< Rua(t)Rjs(t') >= 26k5T6,;8058(t - ') (2.4)
where the greek-letter subscripts af refer to the z, ¥y or z components.

2.2.0.1 Brownian Dynamics (BD)

If we assume that the time scales for momentum relaxation and position relaxation
are well separated, then it is possible to consider only time intervals longer than the
momentum relaxation times. In the diffusive regime the momentum of the particles has
relaxed and equation (2.3) can be modified by setting to zero the momentum variation

(left hand side of equation (2.4)). Then the “position Langevin equation” is given as
dry _ F(t) | Ri(t)
= bhal7) 2.
o R (2.5)

Earlier simulations within the present work were executed using an algorithm based on

(2.5) [25]). The single BD step of particle i subject to a total force F; is simply

Filt + At) = 7(t) + %At + Ay(At) (2.6)

where the last term given by

_ t+AE
Aoty = [ Rit)ar/e (2.7)
t
corresponds to a vectorial random Gaussian quantity with first and second moments
given by
<Ap(Aty> = 0 (2.8)
kgT
< Diag(Dt)Ajp(AL) > = 2(-—2—)&5&[351-,- (2.9)

for arbitrary particles i and j and where af stand for the z,y, z Cartesian components.
At this stage, it is useful to fix units. In the following, we will adopt the size of
the monomer ¢ as unit of length, the ¢ parameter as energy unit and we will adopt
£0%/(3me) as time unit. We also introduce the reduced temperature kgT/e = T*, so
that in reduced coordinates (written here with symbol*) the random displacement A},
is
<AL,> =0 (2.10)
* * 2 *
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2.2 The Langevin Dynamics

which means that each particle, if isolated in the solvent, would diffuse with a RMSD of
v/ 2T* /7 per unit of time. In the following, all quantities will be expressed in reduced

coordinates without the * symbol.

2.2.0.2 Langevin Dynamics velocity Verlet scheme

Most of the simulation of the present work are performed using Langevin Dynamics

(LD) velocity Verlet algorithmes based on the work of [50]. The explict expressions are

F;
it + AL = 7))+ ab()At+ ¢ %Atz + o7¢ (2.12)
_ _ coc2 \ Filt _
Diayz) = coli(t) + (f) #At + 60¢ (2.13)
_ _ 1 co\ Fi(t + At)
Uz(t + At) v1(1/2) + (')/At) (1 Cl) m At ( 14)

where the first equation updates the position, the second equation updates the “half”
step velocities and the third equation completes the velocity move. ~ = £/m, the

coeflicients for the above equations are:

g = e 7A (2.15)
a = (A1 - ) (2.16)
0 = (YA (1-¢) (2.17)
g = (yAt)™! (%—q) (2.18)

where €72 is approximated by its power expansion for vAt < 1. Each pair of vec-
torial component of 6r®, §vl, i.e. 6riGa, 5111% is sampled from a bivariate Gaussian
distribution[49] defined as

1

G G

p(or7, v ) =

( i m) o, u(l cgu)l/g

1 érg 2 51)1% 2 57"1% 51}2%
“Xp{‘m—c%v) (( >, ) * (7;) e (?) (Tv))}mg)

with zero mean values, variances given by

kgT - - - -
02 = <(6ri€’;)2> = Atz% (vAt)™? (2 — (vAt)™! (3—de P 1 e 27At)k2.20)

02 = ((66)) = L (1 - ey (2.21)

m
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and the correlation coefficient ¢, determined by
kgT _ 2
B (vAD)™? (1 _ e—EAt)

m
Each pair of cartesian components 6r1% and 61)5’; are obtained by the appropriate Gaus-

1

Tr0y

Cry = <5r%5vg> = At

(2.22)

sian distribution according to:

0ria. = orm (2.23)
ia = oy (Crvn1+7l2 (M)) (2.24)

where 77; and 72 are two independent random numbers with Gaussian distribution of

zero average and unit variance.

2.2.1 Nonequilibrium LD technique

In this sub-section we briefly present the technique adopted for imposing the shear flow

‘onto the system. We limit the study to a stationary, isovolumic and homogeneous planar
=T

Couette flow characterized by a velocity field @(r) = k r as illustrated in figure 2.2,

where the velocity gradient k is constant in space and time.

1 . T 1

>y

Figure 2.2: Sketch of planar Couette flow.

For a planar Couette flow in the z direction with a shear along the y axis, the

velocity gradient k is defined as

ol
f
o2 o
coo
oo o

Fh

where + is shear rate. With the imposition of the solvent velocity field, the equation of

motion becomes

miUi(t) = —m& (Bi(t) — @ (re)) + Fi(t) + Ri(t) (2.25)
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2.3 Monte-Carlo procedure

A modification of the periodic boundary conditions proposed by [51] has been adopted

t=0 t=t

y y
2L 2L
® ®
L L
[ ] L
X X
® [ ]
Ax=yt L
-L -L

Figure 2.3: Sketch of shear boundary conditions for planar Couette flow.

for establishing the shear flow. The scheme used is shown in figure 2.3. In essence, the
infinite periodic system is subjected to a uniform shear in zy plane. The box above
is moving at a speed 4L in the positive z direction. The box below moves at a speed
9L in the negative x direction. When a particle in the primary box with coordinates
(z,y) crosses a horizontal border one of its images enters from the opposite side at

2’ = x — 4tL, with velocity v/ = v — YL,

2.3 Monte-Carlo procedure

The bonding network is itself the object of random instantaneous changes provided by
a Monte-Carlo (MC) algorithm [19] which is built according to the standard Metropolis
scheme [49].

The probability P, to go from a bounding network m to a different one n is
written as

Pm,n — Atr'ia,lPacc (226)

m,n * m,n

where Aﬁﬁf;‘f is the trial probability to reach a new bounding network n starting from
the old one m, within a single MC step. This trial probability is chosen here to be

symmetric as usually adopted in Metropolis Monte Carlo schemes, and is chosen to be
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different from zero only if both bounding networks n and m differ by the status of a
single bond, say the pair of monomers (:5). To satisfy microreversibilty, the acceptance

probability Ppcs, for the trial (m — n) must be given by

P'r?ffp, - Mm[l, exp (_ (U({T}’ n) — U({’r}im)) )]

2.2
T (2.27)

In the present case, as a single pair (ij) changes its status, the acceptance probability

takes the explicit form

(Uz(riz) = Us(riz))

Prn = Min[lexp (- T )] (2.28)
P = Min[l,exp(—(Ul(rijL;TUZ(nj)))] (2.29)

for bond scission and bond recombination respectively.

The way to specify the trial matrix A:;fgl starts by defining a range of distances,
called T' and defined by 0.96 < r < 1.20 within the range r < R. For r € T, a
change of bounding is allowed as long as the two restricting rules stated above are
respected. Consider the particular configuration illustrated by figure 2.4 where M=7
monomers located at the shown positions, are characterized by a connecting scheme
made explicit by representing a bounding potential by a continuous line. The dashed
line between monomers 5 and 6 represents the changing pair with distance r € I' which
is a bond Uy (r) in configuration m but is just an ordinary intermolecular pair Us(r) in
configuration n.

For further purposes, we have also indicated in figure 2.4 by a dotted line all pairs
with r € I" which are potentially able to undergo a change from a non bounded state
to a bounded one in the case where the (56) pair, on which we focus, is non bounded
(state n). Note that the bond (35) is not represented by a dotted line eventhough the
distance is within the I" range: a bond formation in that case is not allowed as it would
lead to a cyclic conformation. Note also that in state n, monomer 5 could thus form
bonds either with monomer 2 or with monomer 6 while monomer 6 can only form a
bond with monomer 5.

We now state the algorithm and come back later on the special (rn — n) transition
illustrated in figure 2.4.

During the LD dynamics, with an attempt frequency w per arm and per unit of time,

a change of the chosen arm status (bounded U (r) to unbounded Us(r) or unbounded
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2.3 Monte-Carlo procedure

to bounded) is tried. If it is accepted as a “trial move” of the bounding network, it

obviously implies the modification of the status of a paired arm belonging to another

monomer situated at a distance r € I" from the monomer chosen in the first place.
The trial move goes as follows: a particular arm is chosen, say arm 1 of monomer

i, and one first checks whether this arm is engaged in a bounding pair or not.

e If the selected arm is bounded to another arm (say arm 2 of monomer j) and the
distance between the two monomers lies within the interval r;; € I', an opening
is attempted with a probability 1/(N; + 1), where the integer N; represents the
number of monomers available for bonding with monomer i, besides the monomer
J (Nj is thus the number of monomers with at least one free arm whose distance
to the monomer carrying the originally selected arm i lies within the interval T,
excluding from counting the monomer j and any particular arm leading to a ring
closure). If the trial change consisting in opening the (ij) pair is refused (either
because the distance is not within the I" range or because the opening attempt
has failed in the case N; > 0), the MC step is stopped without bonding network
change (This implies that the LD restarts with the (ij) pair being bonded as
before).

o If the selected arm (again arm 1 of monomer 1) is free from bonding, a search is
made to detect all monomers with at least one arm free which lie in the “reactive”
distance range r € I" from the selected monomer i (Note that if monomer i is a
terminal monomer of a chain, one needs to eliminate from the list if needed, the
other terminal monomer of the same chain in order to avoid cyclic micelles config-
urations). Among the monomers of this “reactive” neighbour list, one monomer
is then selected at random with equal probability to provide an explicit trial
bonding attempt between monomer ¢ and the particular monomer chosen from
the list. Note that if the list is empty, it means that the trial attempt to create a
new bond involving arm 1 of monomer i has failed and no change in the bonding

network will take place.

In both cases, if a trial change is proposed, it will be accepted with the probability
Pr7 defined earlier. If the change is accepted, LD will be pursued with the new bonding
scheme (state n) while if the trial move is finally rejected, LD restarts with the original

bonding scheme corresponding to state m.
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Figure 2.4: Exemplary configuration of a 7 monomers system in state n where monomers
3,4 and 5 form a trimer and monomers 6 and 7 a dimer. All pairs of monomers with
mutual distances within the I' region are indicated by a dotted or a dashed line. In the
text, we consider the Monte Carlo scheme for transitions between states n and m which
only differ by the fact that in state n and m the 5-6 pair is respectively open or bounded.
The n — m transition corresponds to the creation of a pentamer by connecting a dimer
and a trimer while the m — n transition leads to the opposite scission. The cross
symbol on link 3-5 indicates that in state n, when looking to all monomers which could
form a new link with monomer 5, monomer 3 is excluded because it would lead to a
cyclic polymer which is not allowed within the present model.

Coming back to figure 2.4, we now show that the MC algorithm mentioned above
garantees that the matrix A7 is symmetric, an important issue as it leads to the
micro-reversibility property when combined with the acceptance probabilities described
earlier. Let us define as P, = 1/2N the probability to select a particular arm, a
uniform quantity.

If configuration m with pair (56) being “bounded” is taken as the starting con-
figuration, the number of available arms to form alternative bonds with monomer 5
and monomer 6 are respectively N5 = 1 and Ng = 0. Therefore, applying the MC
rules described above, the probability to get configuration n where the pair (56) has to
be unbounded is given by the sum of probabilities to arrive at this situation through

selection of the arm of monomer 5 engaged in the bond with monomer 6 or through

selection of the arm of monomer 6 engaged in a bond with monomer 5. This gives

1 3

At'rial=Pr P —_—_— =
m,n am*N5+1+ armN6+1 2

% Parm (2.30)

If configuration n with pair (56) being “unbounded” is taken as the starting config-

uration, the application of the MC rules lead to the probability to get configuration m
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2.3 Monte-Carlo procedure

where the pair (56) has to be bounded is given by the sum of probabilities to arrive at
this situation through selection of the free arm of monomer 5 (which has two bounding
possibilities, namely with monomers 2 and 6) or through selection of the free arm of

monomer 6 which can only form a bond with monomer 5. This gives

. 1 3
AZ;:# = Lgrm * 5 + Poyrm = 2 * Porm (2'31)

showing the required matrix symmetry.
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Chapter 3

Equilibrium Properties

We have exploited the model introduced in chapter II in a series of Langevin Dynam-
ics (LD) simulations at equilibrium with different bonding energy parameter W and
different number density ¢, and hence, in this chapter, we will present the resulting
equilibrium static and dynamic properties of cylindrical micelles.

Within the static properties, the theoretical prediction of the chain size distribution
has been given by Cates (2] and tested in great detail by Monte Carlo simulation by
Wittmer et al. [13, 52] who also investigated conformational properties of chains at
equilibrium. For static properties, our aim is thus mainly to check that our results on
a different model are compatible with the analysis of the previous works [13, 52].

The two main parameters governing the static properties are the monomer density
¢ and the end cap energy E. Our choice of these two parameters is set up with the
aim to simulate three thermodynamic states corresponding to a dilute solution and two
semi-dilute solutions at the same ¢ but different F, leading to the system with two
average chain lengths ~ 56 and ~ 150.

For static properties, the distribution of chain lengths, the gyration radius, and
the end-to-end distance versus chain length will be analyzed and compared with pre-
vious studies. We have also investigated ge.(r) the pair correlation function of end
monomers and P(r) the distribution of bond lengths which are quantitative pertinent
in the microscopic formulation of the kinetic rate constants.

The dynamic properties of the micelles which are given and interpreted in this
chapter form the core of the work. The detailed trajectory of diffusing micelles which
are continuously breaking and recombing allows us to analyze the microscopic origin of

rate constants in terms of structural features (e.g. chain end pair correlation function)
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and dynamic quantities to be related to the statistics of life times of a newly created
chain end. For the latter, we show that the Poisson statistics dominates at long times
while a fraction of correlated recombinations happen at short times. Exploiting these
microscopic features, we characterize the macroscopic scission energy F and the barrier
of recombination B and estimate their values for various state points investigated.
Some macroscopic dynamic properties are then studied with an accent on the mod-
ification of various dynamic relaxation processes due to the scission-recombination pro-
cess. We investigate the monomer diffusion and the stress relaxation function. Finally,
we perform a T-jump experiment in order to point out that the previously estimated
macroscopic kinetic constants are indeed the key parameters governing the relaxation

of the chain length distribution.

3.1 Static properties

The main aim of this section is to test the model of chapter II by comparing the struc-
tural properties, including the average chain length, the distribution of chain lengths
and the conformations of the chains, with the theory [9, 27] and previous simulation
works [13, 52].

3.1.1 List of simulation experiments and chain length distribution

The model is studied at three state points. The number of monomers, the number
density ¢, the energy parameter W, and the attempt frequency w per arm are chosen

for

1. A solution at the number density ¢ = 0.05 and an energy parameter W = 8.
The number of monomers is M=1000. The attempt frequencies of bond scis-
sion /recombination per arm w are 0.1, 0.5, 1 and 5. This choice will be shown to

lead to a dilute solution.

2. A solution at the number density ¢ = 0.15 and an energy parameter W = 10.
The number of monomers is M=1000. The attempt frequencies of bond scis-
sion/recombination per arm w are 0.1, 0.5, 1 and 5. (will be shown to be a

semi-dilute solution)
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3.1 Static properties

3. A solution at the number density ¢ = 0.15 and an energy parameter W = 12.
The number of monomers is M=5000. The attempt frequencies of bond scis-
sion/recombination per arm w are 0.02, 0.06, 0.1, 0.5 and 1 (will be shown to be

a semi-dilute solution).

Each systerﬁ evolves according to the Langevin Dynamics algorithm with time step
At = 0.005 and is subject to random trials of bond scission/recombination with the arm
attempt frequency w. All the experiments and the results of static properties which
include the average chain length Lj, the mean square end-to-end vector, the radius
of gyration and Lg/L*, the number of blobs in a chain of length Ly, are listed in the
table 3.1. Where (R?) and (R2) are defined as

Lo—-1Lg-1

Z Z <7:n ' Fm) (3~1)

‘n=1 m=1
Lo Lo

(R2), = ﬁ S°S T {(Ba - B)?), (32)

n=1m=1

(B*) L

where 7, = Rp41 — R,. And L* is defined by equation (1.21) (also see section 3.1.2).
As shown in the table, we observed that all the static properties are independent

of w and therefore, all data can be averaged over all w values.

3.1.1.1 The dilute case

From Table 3.1, it can be observed that the first state point experiment (W = 8,¢ =
0.05) is a dilute solution since its average chain length Lo = 11.48(1) is much smaller
than its crossover value at the monomer number density as calculated by equation (1.20),
L* = 50.5. Dilute solution conditions are confirmed by the chain length distribu-
tion shown in figure 3.1. For dilute conditions, a distribution given by (1.30) is ex-
pected [13, 52]. We fit our data with a single parameter B; of function (1.30), where
Ly is given its computed average value and where v is given its expected value, v = 1.165
[13]. The fit gives B; = 1.08. This curve is significantly better than the simple expo-
nential distribution expected for ideal or semi-dilute chain. If « is left as a second free

parameter in the fit, it gives v = 1.161 which is also very close to its expected value.
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Table 3.1: List of simulation experiments and the values of static properties. W is the
scission energy parameter, ¢ the number density, T, the total simulation time, w the

attempt frequency, Ly the average chain length, ,/(R2) L, the end-to-end distance of

the average chain, and 1/(Rg) Lo its radius gyration. Lg/L* is the ratio of the average
chain length over the blob length L*

Wl ¢ T, w Lo \/ (R2),, \/<Rg> 1 | Lo/L*
0.05 | 2.5%10° | 0.1 | 11.48(6) | 4.93(2 1.9(2 0.2

)
0.05 | 2.5%10° | 0.5 | 11.46(2) 9(1) 0.2
0.05 | 25%10° | 1. [11.50(3) | 4.94(1) 1.9(1) 0.2

) )

)

0.05 | 2.5%10° 5. | 11.51(2 0.2

(
(
E
10 [0.15 | 25%10° | 0.1 | 56.2(6) | 12.2(1) 4:8(2 47
10 [0.15 | 25%10° | 0.5 | 56.2(1) | 12.4(1) | 4.9(3) 47
(
(
(
(
(

10 [0.15 | 25%10° | 1. | 56.2(2) | 12.3(1) | 4.903) 47
10 [0.15 | 25%10° | 5. | 56.6(2) | 12.4(1) | 4.9(4) 47
12 [ 0.15 | 6.2510° | 0.02 | 151(4) | 20.9(5) | 8.3(4) | 12.6
12 [ 0.15 | 45+10° | 0.06 | 153(4) | 21.5(7) | 8.5(5

12.6

)

12 [0.15 | 45%10° | 0.1 | 150.7(5) | 21.2(2) | 8.4(3) | 12.6
12]0.15 | 3%10°5 | 0.5 | 150.3(5) | 20.9(1) | 8.4(2) | 125
12]0.15 | 3%10° | 1 | 150.4(6) | 20.92(3) | 8.5(4) | 125

3.1.1.2 The semi-dilute case

Both the second state point (W = 10,¢ = 0.15) and the third state point (W =
12,¢ = 0.15) experiments are found to be in semi-dilute regime, since their average
chain lengths are 56.4(1) and 151.4(4), respectively, which are several times larger
than their crossover value L* = 12 at ¢ = 0.15 according to equation (1.20). Semi-
dilute solution conditions are confirmed by the observation of a simple exponential
distribution of chain lengths. In figure 3.2 and figure 3.3, we show, for the second
and the third state point experiments respectively, the agreement of our data with the

expected simple exponential distribution (1.34).

3.1.2 Chain length conformational analysis

In this subsection we are interested in the conformational properties of micelles in
equilibrium and studied as a function of chain size within our polydisperse system.
We have calculated the mean square end-to-end distance and the mean square radius

of gyration < R? > (L) and < R2 > (L) averaged over subsets of chains of length L.
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3.1 Static properties
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Figure 3.1: Distribution of chain lengths for the dilute case in good solvent. The data
(squares) are fitted using equation (1.30) with the single parameter B; and imposed
value v = 1.165 (continuous curve). The fit gives B = 1.08. The dashed line shows
the simple exponential distribution ¢g(L) o exp(—L/Lg) which does not fit the data.

Figure 3.4 and figure 3.5 are the results for the dilute state point and the two semi-dilute
state points experiments respectively. As shown in figure 3.4 relative to the dilute case,
the squares and circles represent our data of < R > and < Rg > respectively. With
the solid line and the dashed line, we indicate, for long chains (L 2 25), standard
power law scaling L? with v = 0.588. The data show a reasonable agreement of this
asymptotic regime in the range of application.

The chains in the semi-dilute system are expected to behave as ideal chains for
L > L* ~ 12 where L* is estimated from equation.(1.20) with ¢ = 0.15. Figure 3.5
shows the <R2> and <Rg> of the two semi-dilute cases. Results of <R2> and <R§>
for the two cases, are superimposed. We indicate for the long chains the ideal chain
conformation <R2> and (Rg) x L. The agreement of the fitting lines with simulation
data appears to start at L 2 60.

The conformational properties of the chain in the two semi-dilute cases are found
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Figure 3.2: Distribution of chain lengths for the state point W = 10,¢ = 0.15 (ac-
cumulated over all w values). The data (circles) are fitted very well by the simple
exponential function, equation (1.34), with imposed average chain length Ly = 56.4.
The Dashed line shows the function exp(—1.165L/Lg) which does not fit the data.

to be identical as expected. The size R of a chain of length L > L* is

0.5
R=bL™ (Li) (3.3)

where b is the monomer size and v is the good solvent scaling exponent while L*

(function of ¢ only) is the same in both cases.

3.1.3 Pair correlation function of chain ends and the distribution of
bond length

Equilibrium polymers are polydisperse polymers endowed with scission and recombi-
nation processes. Whereas a scission can happen between any bounded pair, a recom-
bination may happen only with two chain ends for linear chains. Thus it is interest-
ing to study the spatial distribution of the chain ends and the bond length distribu-
tion. For the dilute case the population of bonds ready to open within the I" range
(—0.96 < r < 1.2) is < Njr >= 552 and represents 61% of the bonded pairs < Ny >,

while the population of free arm pairs ready to close, again within the same I range, is
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Figure 3.3: Distribution of chain lengths for the state point W = 12,¢ = 0.15 (ac-
cumulated over all w values). The data (circles) are fitted very well by the simple
exponential function, equation 1.34, with imposed average chain length Ly = 151.4.
The Dashed line shows the function exp(—1.165L/Lg) which does not fit the data.

only < Nor >= 1.16. Figures 3.6 and 3.7 show respectively the pair correlation func-
tion gee(r) (where the pairs between the two ends of the same chain are eliminated) for
chain ends (unsaturated arms) and the distribution of the distances between bounded
monomers, in particular within the I" region where potential changes can occur by scis-
sion or recombination. The ”free arm” fraction, namely 1 — N;/M = 0.0957, is close
to Ly! =< Ng/M >= 0.0964.

For the semi-dilute case (we show here only the case W = 10) the number of bonds
ready to open in the I' region is < Nir >= 597, while the population of free arms
pairs ready to close within I region is < Nor >= 0.183. The pair distribution of chain
ends and the distribution of distances of bounded pairs are respectively given in figures
3.6 and 3.7, where we have also plotted the dilute case data. We note that the gec(r)
function between free ends is not very different from the dilute case. The “free arm”
fraction 1—N; /M = 0.021 is 5 times smaller than in the dilute case, which is consistent

with the chains average length being 5 times larger.

41



1000

TV
vl

100

2
g

2,

<R™>or<R >
=)

TV
soa sl

T
\

\
taaaend

—_
o

100

Figure 3.4: Conformational properties in the dilute case: < R? > (squares, lower curve)
and < Rg > (circles, upper curve) versus chain length L. The fitting functions which
are power laws with fixed exponent 2v = 1.176 (prefactors 0.226 for < Rg > and 1.461
for < R? >) fit the data for long chains only.

3.2 Dynamic properties

In this section we explore the results of the dynamic properties. Focusing on the
two semi-dilute state points where chain dynamics is still essentially unentangled. We
extract for various attempt frequencies w of the phenomenological kinetic constants by
a statistical analysis of all scission-recombination events recorded in our simulations.
We check the micro-reversibility of the model at equilibrium state. We then perform
a T-jump experiment, analyze the mean square displacement of the monomers, and
estimate the stress autocorrelation function of our system, in order to point out that
the previously estimated macroscopic kinetic constants are indeed the key parameters

governing the dynamic properties of the EP system.
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Figure 3.5: < R? > and < Rﬁ > versus chain length L in the two semi-dilute cases.
The data for the two semi-dilute case (W = 10 and of W = 12) are superimposed.
The fitting functions (linear in L) assume ideal chain statistics with prefactors 0.42 for
< R23 > and 2.80 for < R%Z >. The lower curves show < R? >, whereas the upper
< R; >

3.2.1 Kinetics Analysis

3.2.1.1 Scission and recombination events

The aim of this subsection is to understand the short and long time behavior of the dis-
tribution of the scission and recombination times and to determinate the macroscopic
scission rate constant ks and the recombination rate constant k,. For different attempt
frequencies w investigated, the number of Monte-Carlo accepted scissions and accepted
recombinations are obtained by simple counting during the simulation. In Table 3.2,
we list the number n, of “accepted” scissions and the number n, of “accepted” recom-
binations per unit time and unit volume, for the two state points and for different w.
For each state point, we observe that the number of scissions per unit of time is, as ex-
pected, proportional to w and we have also verified that the number of recombinations
differs from the number of scissions only by marginal amounts (0.05%), which shows
that the chain length distributions are well equilibrated during the simulation run for

data analysis.

43



T T [T T [T T T T [T T Ty [T [ Y e [y Ty T [ rrr v es

- = dilute
— semi-dilute

PN U T T |

T T T T T T T T T

g,

0.5

PRI ST S R W Y T T S T ST T T S S S

o by [ITTTEREIV] IR AN EEEENE AR RREE NI ER TN UUTNI SRURENR AR SRR TN AR Nl SR URR RN
0 1 2 3 4 5 6 7
r

oo

Figure 3.6: Chain end pair distribution function ge.(r) in the dilute (¢ = 0.05, W = 8)
and semi-dilute (¢ = 0.15, W = 10) experiments. Note that the I" region where the
bounding changes take place correspond to the region of first (fast) increase of the
distribution function around r = 1.

3.2.1.2 Distribution of First Recombination Times

The aim of this subsection is to present a method of estimating the rate constants. In
our explored w range, we find that a large fraction of elementary scissions are followed
by recombinations of the same original chain monomers. This kind of recombinations
which happens almost immediately after the scission event do not lead to any effective
effect on the long time relaxation. To extract estimates of the rate constants defined
by the kinetic model of Cates, it is thus important to eliminate the spurious transitions
from the effective ones. The best way for this is certainly to approach the problem via
a time scale separation between scission-recombination processes taking place on a fast
time scale and effective transitions taking place on the reaction time scale 7.

The first approach is to analyze the distribution of first recombination times ¥(t)

satisfying the renormalization
o0
/ U(t)dt = 1. (3.4)
0
Hence, we have to compute the histogram of all first recombination times t = t3 — #;

(limited for pragmatic reasons to a time 7,4, = 1000) for an arm which became free
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Figure 3.7: Normalized distribution function P(r) of the distance between bounded
monomers in the semi-dilute experiment. The corresponding function in the dilute
solution experiment is marginally different from the semi-dilute case and is therefore
not shown in the figure.

by scission at time ¢; and which recombines for the first time at time 5. The short
time behavior of the distribution can be analyzed by plotting the function versus time
on a logarithmic scale. In figure 3.8, the resulting histogram ¥(t) for w = 0.5 is shown
together with a partition of the recombination events between those which reform the
same original pair and those where the arm we consider binds with a new partner
with respect to the one it detached from in the first place. This function is properly
normalized by imposing that its integral over the time interval of observation is the ratio
of the total number of observed first recombinations over the total number of scissions
used in the sampling. At short time (¢ < 10), there is a much higher probability for a
recombination with the same partner. The theory of diffusion controlled recombination
kinetics [12] predicts an algebraic decay At~/ for ¥(t) and we observe that the self-
recombination part of our data beyond ¢t = 1 follows very well this power law decay.
Similar power laws are observed for the simulation with other attempt frequencies,
except at the hightest one (w = 5) where the slope is steeper by 20%. When w becomes

1

so large that the time w™" is smaller than the time required for a free arm to diffuse over
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Table 3.2: Scission and recombination frequencies for the two semi-dilute cases for
various scission-recombination attempt frequencies w. n, and n, denote the number of
scissions and of recombinations per unit time and per unit volume respectively.

Wil w g Ty

10 | 0.1 | 3.29(4)107% | 3.29(3)10°°
10 | 0.5 | 1.64(1)107° | 1.63(2)107°
10| 1 | 3.31(3)10™° | 3.31(3)107°
10 { 5 | 1.652(4)10~* | 1.652(4)107*
12 | 0.02 | 1.05(4)10=7 | 1.05(4)10~"
12 | 0.1 | 5.28(4)10=7 | 5.27(5)10~"
12 | 1 | 5.348(9)107° | 5.348(9)10°°

a distance I', the mechanism for quasi immediate recombination is different and largly
decoupled from diffusion. In figure 3.8, the two curves corresponding to the two types
of contributions cross each other around ¢t = 25 and at later times, the recombination
with another partner quickly dominates.

The self-recombinations dominating at short times are considered to make no change
in chain topology, since the recombinations happen almost immediately following a scis-
sion. We consider these transitions as not effective. Actually, noneffective transitions
may also come from more complex particular transition sequences. Consider a chain
end monomer (say monomer %) lying close in space to another chain at the level of two
adjacent monomers j and k. At high w, a scission of the bond jk may be immediately
followed by a recombination between j or k with monomer 4. In turn, the ik or 77 bond
may reopen and recombine to restore the very first situation, ending with no effective
transition without being detected through the criterion of a successive recombination
with the same partner. The occurrence of such events is proven indirectly in the fol-
lowing by noting almost immediate chain end recombination with another partner (see
figure 3.8).

The first recombination times data have further been analyzed by considering that
U(t) is exponential decaying at long times. Figures 3.9 and 3.10 show the result on
semi-logarithmic scale for the two state points and all w studied. At long times the
curves of U(t) are exponential with time. Imposing a fraction of effective transitions,
K, one can define

K U/ T
Vasymp(t) = -e*/™. (3.5)
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Figure 3.8: Distribution of first recombination times ¥(t) for the semi-dilute case (W =
10) for attempt frequencies w = 0.5 (open square). The partition between contributions
from recombinations with the same partner (filled circles) or with a new partner (filled
triangles) are distinguished. The dashed line (with slope -5/4) represents the power
law t~5/% expected for short times. The solid line indicates the long time mean-field
prediction (for t > 30).

Thus, the slope is interpreted as the inverse of the average life time of a chain end

which is denoted as ’7'151). The ordinate intercept of the function fitted to ¥(t) at long

time corresponds to %, and can be use to determine k. The value x obtained using
the function (t) is denoted as x(1). Specific values for the different w's and W's are
indicated in Table 3.3.

Figure 3.11 shows the first recombination times at long times and at short times
for the three w for the cases W = 10 and W = 12. To indicate the universality at
long time, we rescale t by 7, and ¥(t) by Wosymp(7s), forcing all curves to match at

+ = 1. The dashed line indicates the universal exponential which is indeed followed

Ty
by all curves as Tib > 1. The short time part of the curves tends closer and closer to 1,

as k approaching to unity.
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Figure 3.9: Distribution of first recombination times ¥(¢) for the semi-dilute case (W =
10) for the four attempt frequencies w = 0.1 (filled circles), w = 0.5 (filled square),
w =1 (opened circles), and w =5 (filled triangles). The average chain length Ly for
this state point is Ly = 56.4(1) and is independent of w.

3.2.1.3 Cumulative Hazard Analysis

Another way to analyze the recombination kinetics is the hazard rate plotting technique
advocated by Helfand [30] to analyze the rates of conformational transitions in butane
and other short alkane molecules. We first summarize the theoretical foundations of the
method, using the particular case of equilibrium polymer kinetics to directly illustrate
the concepts. The cumulative hazard plot has the advantage of avoiding the necessity
of binning recombination time data which become scars at long times. It also exploits
statistically some additional information (useful for low rates) from portions of the 2M
trajectories between a scission and the next recombination in a way which is truncated
either at the beginning or at the end of the LD run.

Let h(t)dt be the probability that a free arm, created at time ¢ = 0 and which
is still free at time t, undergoes a first recombination in the interval [t,t + dt]. Let
P(t) be the probability that a free arm, created at time ¢ = 0, has undergone a (first)

recombination between 0 and t.
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Figure 3.10: Distribution of first recombination times U(t) for the semi-dilute case
(W = 12) for the three attempt frequencies w = 0.02 (dots), w = 0.1 (squares), and
w =1 (triangles). The average chain length L for this state point is Ly = 151.4(4).

Using these definitions, the following steps can be written

1-Pit+dt)] = [1-P@)](1- h(t)dt) (3.6)
SU-PO) = —h(®)[1- P() (57)
1-P(t)] = exp(- /0 h(¥)dt') = exp [~ H (2) (38)

where H(t) = fot h(t')dt’ is the cumulative hazard. In the present case, we anticipate a
complex process involving correlated events at short times h(t) = h**(t) and a Poisson
process emerging at long times with uniform frequency lim;_oh(t) = X where ) is
the recombination rate constant. On the relevant time scale of the kinetics, one thus

should find for the cumulative hazard function and the P(t) probability

H(t) = Hi+ M (3.9)
P(t) = 1—exp(—Hj)exp(—Xt) (3.10)

where Hj, the ordinate intercept of the function H(t) versus t, can be seen as the

time integral of (h°"(t) — ) from 0 to co. If a good time scale separation exists,
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Figure 3.11: Rescaled first recombination times function (t) shows an universal ex-
ponential behavior after —T'-t; The dashed line indicates the universal exponential. The
case (W = 12,w = 0.02) is the most “mean field” case.

equation.(3.10) implies that ¢ = P(07) = 1 — exp (—Hj) is the fraction of correlated
transitions, k(2 = 1 — ¢ being the estimate according to the present analysis of the
average probability for a newly created free arm to recombine by the Poisson “mean
field” kinetic process postulated by Cates in his theory [9].

We now explain how the estimate of the cumulative hazard function is effectively
computed. We start by extracting from the LD trajectory a collection of times {f}
where each member corresponds to the elapsed time between a scission of a particular
arm at time t; and its next recombination at time ¢, so £ = t5 — t;. All the 2M arms
of the system contribute to the ¢ data sample which, for each arm, can contain several
times of this kind between the start (at ¢ = 0) and the end (at ¢t = Tjye,) of the LD
trajectory.

Moreover, if the first change of status of a particular arm since the beginning of the
LD simulation is a recombination taking place at time t, we can say that this time is
a lower bound T of an additional unknown elapsed time ¢ between a scission (out of

our reach) and the next recombination (we observed). Also, if the last change of arm
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3.2 Dynamic properties

status before the end of the LD trajectory is a scission taking place at time t, then, the
time T = Tpnee —t is a similar lower bound of yet another time of interest. The analysis
thus furnishes a set of K times {f} and M lower bounds times {I'}) which are then
separately ordered from the shortest time up to the longer one and indexed accordingly
as (fy, %y, f3,..tx) and (Tl, Ty, T3, TM) Let us consider successively all individual arm
life times {£}. For any time {; of that collection, the probability that a free arm which
had survived up to the previous time #;_; changes its status and becomes engaged in the
formation of new bond between times #;_; and ¢; is given with our available statistics
by 1/N(#;—;) where the denominator is the number of cases (including both types of
times ¢ and ff’) where recombination takes place at a time longer than #;_1, i.e.

~

N(ti-1) = [K = (i = )] + [M — m;_y)] (3.11)

where m(;—1) is the index of largest T value which is still inferior to ti—1. In terms of

these definitions, the cumulative hazard function H(t) can be evaluated at each time £

i—1
H(E) = Z; N(ltj) (3.12)

If the function is linear in time, it implies a Poisson process with a rate of transitions
given by the slope of that linear portion.

Figure 3.12 and 3.13 shows the resulting cumulative hazard functions for the four
w values in the case W = 10 and the three w values in the case W = 12. Fort the
case W = 10, a linear behavior starts around 100 — 150 for all w and it lasts up to
times of the order of 1000 where statistical noise sets in. As shown in figure 3.13, for
the case W = 12, the linear behavior lasts up to very long times (up to t ~ 50000 for
w = 0.02). The inset of the figure is a close view of the ordinate at origin of this case,
showing that in the smallest attempt frequency case w = 0.02, having it’s ordinate at
origin Hy ~ 0, represents the most “mean field” case with x = 0.93. For each case, the
inverse slopes of the linear portions provide estimates 7'152) of the mean life time of a
chain end. Specific values for both thermodynamic states (W = 10 and 12) are gathered
in Table 3.3. They are compatible with the values extracted from the histogram of first
recombination times. Using the procedure described at the beginning of this subsection,
one gets from the ordinate intercepts of H(t) the x estimate indicated in Table 3.3 for

the two states points and various w.
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Table 3.3: Kinetic data for the two semi-dilute cases for various investigated w values.
The superscript (i) refers to the methodology used to get various estimates of a given
quantity, namely ¢ = 1 for the method based on the direct analysis of the distribution
of first recombination times, and 7 = 2 for the cumulative hazard method. 7, is the
average first recombination time and also the typical life time of a chain of average
length Ly. The estimate Téz) is obtained by the long time behavior of the relevant
dynamical function used in methodology (i). & is the fraction of transitions which
are effective as mentioned in method (7). Such transitions can be seen as those which
do not belong to sequences of correlated transitions (chain scission followed by almost
immediate recombination ending into no change in chains topology). n§2) is obtained on

the basis of k% through equations (3.13 and 3.14). Q57 and Q77 are obtained through
equations (3.20) and (3.21) respectively (see text). Q57 and Q7! are obtained from the
structural functions (equations (3.22) and (3.26) respectively (see text)).

Wl w | k0| &3 Tb(l) Tb(z) k0105 | k2105 | nlP108 | Q59 %104 | Q% x10t | QX
10 | 0.1 | 0.80 | 0.82(2) | 1049 | 1026(22) { 1.69 1.72 3.2 1.077 | 4.535 | 1.093 | 4.497
10 | 0.5 | 0.51 | 0.49(1) | 347 321(5) 5.11 5.51 17.0 1.102 | 4.705 | 1.113 | 4.420
10 1 0.38 | 0.32(1) | 226 231(3) 7.84 7.63 36.1 1.077 | 4.534 | 1.121 | 4.444
10 5 0.13 | 0.11(1) | 145 140.5(8) 1.22 1.26 | 171.5 1.092 | 4.666 | 1.096 | 4.477
12 | 0.02 | 0.91 | 0.93(1) | 10170 10422 6.49 6.39 10.3 - - - -
12 ] 0.1 |0.73 | 0.72(1) | 2501 2596 2.64 2.57 53.3 - - - -
12 1 | 028 |025(1) | 705 609 | 937 | 954 | 57 - . 5 -
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Figure 3.12: Cumulative Hazard curves of recombination times for the case W = 10.
The average chain length Lo for this state point is Ly = 56.4(1) and is independent of w.
Data are shown for various attempt frequencies, from bottom to top, namely w = 0.1
(continuous line), w = 0.5 (dashed line), w = 1.0 (dot line) and w = 5 (dot-dashed line).
The straight line associated to the w = 1 case gives an example of the linear asymptote
of H(t) of slope A = 1/7, and ordinate at origin H; = -In &

3.2.1.4 Estimation of rate constants: comparison of the various methods

Explicitly, the scission rate constants ks and k, of the “mean-field” kinetic model can

be estimated from our data in two distinct ways.

e On the basis of the total number of transitions ng per unit time and per unit vol-
ume, and on the basis of an estimate of by one of the methods discussed above,
the rates can be estimated from a trivial modification of equations (1.39,1.40),

namely
k. ¢?
2L

where xn, corresponds to the number of scissions per unit of time and per unit

kng = ks = (3.13)

volume which lead to an effective recombination with a new partner.

e On the basis of the long time behavior of a dynamical function relevant to the

particular methodology adopted, the “chain end” life time can be directly esti-
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Figure 3.13: Cumulative Hazard curves of recombination times for the case W = 12.
The average chain length Lo for this state point is Ly = 151.4(4). Data are shown
for various attempt frequencies, namely w = 0.02 (continuous line), w = 0.1 (dashed
line), and w = 1 (dot-dashed line). Notice that the smallest attempt frequency case
w = 0.02, having it's ordinate at origin H; = 0, represents the most 'mean field’ case
with k = 0.93

mated. As the latter is equivalent to the typical life time of a chain of average
length denoted as 75, one gets rate constants through the equivalence

1 2L
- ksLO - kr¢

Tb (3.14)

where the last equality follows from detailed balance requirements. Two method-
ologies for the estimation the value of 7, are discussed in the previous subsection
and their corresponding ks obtained via this relation are listed in the Table 3.3
as kgl) and kgz), respectively for the method of distribution of first recombination
times and for the cumulative hazard analysis. We can easily check the values of
ks by comparing the values of n;, computed through equations (3.13, 3.14) and

giving k:gl) or k§2)

Denoted as n§2) and listed in Table 3.3, the numbers of scissions (per per unit

(2)
8

with the values of n; accounted directly during the simulations.

volume per unit time) obtained by using ks”’ are compatible with n; accounted

directly during the simulations (listed in Table 3.3).
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3.2 Dynamic properties

Looking at all values in the tables, we get an overall consistency between all method-
ologies. It indicates that all our strategies to extract the “macroscopic” rate constants
do work. Among them, the cumulative hazard analysis appears the most straightfor-
ward to analyze once H(t) is known and is particularly robust as noise influence seems

minimal.

3.2.1.5 The microscopic analysis of the rate constants

The previous subsection has demonstrated that we need to be careful with the concept
of scission/recombination kinetic events, as we have to distinguish the effective transi-
tion from the whole set of transitions which are potential swaps Monte-Carlo accepted
moves. Hence, in the following we will add the subscript “st” to n, to show that we
consider all kinetic events. We have also added the subscript “eff” to n, when we deal
only with the effective numbers of transition. Let us first consider ns (nft) the total
numbers of scissions or recombinations per unit of time per unit of volume. This allows

us to define short time rate constants at equilibrium kg* and k%, according to

nst = kgt <1 - Li()) ) (3.15)

1 ¢ \?
st _ _kst 1

where Ly is the average micelle length at equilibrium. The term (1 — Ll—o) =~ 1 for
Lo > 1. Further, we introduce the bond scission probability Q%7 and the recombination
probability Q7%. The former quantity is the probability that a randomly selected bond
is ultimately changed into two chain ends while the second quantity is defined such
that %%Qﬁq is the probability for a randomly selected free arm to form a new bond
with any other free arm available in the system. In terms of these, we have

nst
kSt = 2wQ% = 7;— (3.17)

kSt = 2wQ¢. (3.18)

When following dynamical relaxation over mesoscopic times, much longer than the
local dynamics time scale, t > Ticro = 1, only uncorrelated transitions (expected to
be Poisson distributed) will be involved in the effective rate calculation. To determine

these rate constants, we will use the concept of an effective transmission coefficient
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0 < k(w) < 1 introduced in the previous subsection. By assembling equations (3.15) to
(3.18), the total number of effective transitions (per unit of time and per unit volume)

can then be expressed as

néf (w) = nftk(w) = 2wk(W)Q%Nd = k¢

2 2
= nﬁff(w) = nitn(w) = -;- ({—) 2wr(W)QRH = % (%) k, (3.19)
0 0

where the last equalities for the two expressions define the scission and recombination
rate constants. At equilibrium for the state ¢ = 0.15, W = 10, we get an average
micelle length Ly = 56.4 £ 0.1, independent of the arm change attempt frequency w.
The values of @57, Q7% and k(w) were listed in Table (3.3). The Q57 were computed by

Qs =ni'¢™ (2w) 7, (3.20)

and Q57 by

2
&7 = oSt (%) (2w)~! (3.21)

It should be noted that the probabilities Q5% and Q;? are, for our microscopic model,
only function of the thermodynamic state (¢,T), and not the attempt frequency w.

¢ and Q7 can be analyzed microscopically in terms of static structural functions,

i.e. P(r) the distribution of bond length and ge.(r) the pair correlation function of

end-monomers.

1. For bond scissions between pairs of adjacent monomers distributed according to
P(r) (distribution normalized over r from 0 to R, where R, = 1.5 is the value

at which the FENE potential diverges), one has

QY = /Fdrqs(r) = /FdrP(r)Pfcc(r) (3.22)
P2 ~ p,(r)Min(1,exp(—BAU(r))) (3.23)
polr) = (7 (3.24)
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3.2 Dynamic properties

where pr,(r) is an extra probability factor appearing in our algorithm where N;+ 1
is the total number of free ends which would be potentially available in the appro-
priate I' region to reform a new bond with the originally selected monomer (see
Section 2.3). As N; is almost always O in the case of a semi-dilute solution and
the approximation of equations (3.23) and (3.24) has no real quantitative influ-
ence. The term Min(1,exp(—BAU(r))) is the probability with which a scission
event is accepted by the Monte-Carlo process, where AU(r) = Us(r) — Uy(r) is
the difference of the two potentials considered in this model for a given 7. The

gs(r) = P(r)P¢°(r) function will be discussed in the next subsection.

2. For recombinations between end-monomers along the pair correlation function
gee(r) of end-monomers, the probability of recombination comes from the end-
monomers in the I' zone and from the probability to accept this closing. The

probability of closing Py is

— 2¢ 2 pacc — 1 ¢ eq
Py = /Fdrgee(r)Loélﬂr Pre(r) = 5T, Qs (3.25)

This gives Q57 and ¢, as

o = / dra,(r) = 4 / dr oo (r)4mr2 P2 (1) (3.26)
r r
Pee(r) = Min(1,exp(+BAU(r))) (3.27)
where ¢,(r) function will be discussed in the next subsection.
Using the distribution functions P(r) and gee(r) computed by the simulation, Q£?
and Q7 for each state points are obtained from equation (3.22) to (3.27). The values
are denoted as Q57 and Q2 and listed in the Table 3.3 for comparison with the value,

denoted as Q57 and Q7?, obtained from 78 and ng’. The comparison shows a good

agreement.

3.2.1.6 Micro-reversibility at equilibrium

With our algorithm, micro-reversibility is expected at equilibrium. This implies that

we should obtain an equality between the number of scissions and recombinations per
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unit time and volume, for any given interval [r,r + dr] in the I region. Combining
equations (3.15) to (3.27), the micro-reversibility then requires
1¢

QS(T)(I - Lal) = E'L_g(h(r) (328)

Using our results for P(r) and ge.(r), this property is verified in figure 3.14. The
small observed difference may be caused by the approximation of the term <_Nil+_1>,,.’
by <N_11‘_“T>1‘ averaged over the T interval. We observe also from figure 3.14 that g,(r)
is independent of w, as expected. The same observation has been noticed for ¢,(r) as

well.
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Figure 3.14: Test of micro-reversibility at equilibrium for the two state points (W=10,
w=0.1, 0.5, 1, 5 and W=12, w=0.02, 0.1). For W = 10 case, %—L?;qr(r) is shown for
0

w = 0.1 (dots), 0.5 (empty squares), 1 (triangles), 5 (diamonds), and (1 — flaqs(r)) is
shown for w = 1 (upper continuous line). For W = 12 case, %Zq’gqr(r) is shown for
0

w = 0.02 (open circles), and 0.1 (filled squares), and (1 — Lioqs(r)) is shown for w = 0.1
(lower continuous line) (see text)
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3.2.1.7 Estimate of the macroscopic energy of scission E and the barrier
energy of recombination B

As a variant, the kinetics can be reformulated in terms of a competition between pairs of
free end-monomers which attempt to fuse and bonds which attempt to open, according

to two processes of first order in terms of the number of pairs, used as kinetic variables.
Let us define

Ny(r) = P(r)¢(1 — Lg") (3.29)

as the number of bonds per unit volume and per unit of length r having a length

r € [0, R.}, which are available to a scission, and

2
R (r) = 27r(2£%) 2o (r) (3.30)

as the number of pairs of free end-monomer per unit of volume and per unit of
length at a distance 7. Integrating in both cases over the interval r € [0, R.], one finds

on the one hand the number of bounded pairs per unit of volume

I PN 1
N, = / dri,(r) = (1 — L7 (331)
0

and on the other hand the quantity

Be & (29)% (B
N, = drNy(r) = 21— drr® gee(r) (3.32)
0 Lg Jo

which is extracted from all pairs of free ends those which lie in the close neighborhood.
This defines on the basis of criterion of proximity r < R., a chemical species of pair of
“close” free ends. Let us stress here that this definition is independent of the choice of
the interval T" € [0, R.], where kinetic effects are possible.

We can thus define a new kinetic constant ks (closing of pair) which, applied to
N, gives again the number of recombinations per unit of time and volume, quantity

expressed according to the member of right-hand side of equation 3.19, that is
1. (¢\?
k¢Ny = <k, | — | . 3.33
f 5 ( Lo) (3.33)
By combining equations (3.19), (3.26), (3.32), and (3.33), the new kinetic constant

is expressed in terms of the chain end pair correlation function ge.(r) as
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4r [ drrgee(r) P25 (r)
47 fOR" drr2gee(r)
By combining equation (3.19), (3.22), (3.29), and (3.31), the kinetic constant ks can be

expressed in a symmetric way,

ki = 2wek(w)

= 2wk(w) (PF°) g, (3.34)

int(lfcdrP(r)P:“(r)
fORC drP(r)
On the basis of the equality k¢N, = k;NN,, and expression (3.34),(3.35), we obtain the

relation

ks = 2wk(w) = 2wk(w) (P3“)p (3.35)

C

Ns (P:CC>RC = N'r <PTGCC>RC (336)

The natural definition of the bonding energy (energy absorbed or released for the
transitions) is
N, (F*)g
exp(BE) = — = ——= 3.37
(85) = 5 = (P 337

The barrier to scission A, = E + B and the barrier to recombination A, = B can

C

be expressed immediately via expressions (3.34) and (3.35) as

ks = exp(—0B) (3.38)
ks = exp(— (6B + E)) (3.39)
BB = —In (2wk(w) (PF*°) g ) (3.40)

where 2w is the frequency of attempts of scissions or recombinations of “bonds” per
unit of time. The expression (3.40) gives the barrier of energy to get a successful
fusion per unit of time for an “interactive” pair of ends (r < R.). In addition, the
expression of the average length of the chains in the theory of (ideal) living polymers
arises naturally from our definition of F in equation (3.37). Substituting the numbers
of pairs in the member of right-hand side of equation (3.37) by their expression (3.31)
and (3.32) and making the approximation of ideal chains g..(r) = 1, we find, as in

chapter I (equation (1.19)),

Lo = CY/261/2 exp (ﬁTE> (3.41)
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To test the quantitative aspects of the above discussion, we compute the value of N,
and N; for each state point by using equations (3.31) and (3.32) based on the simulated
gee(r) and the mean micelle length Ly. Thus, the bonding energy E is obtained via
equation (3.37) and the barrier of the recombination B is expressed via expression
(3.39). The values of E and B for each equilibrium state point are listed in Table 3.4.
The three first rows of Table 3.4 contain the cases of W = 12 for which the value of Lg
is found to be 151.4. One should be reminded that in expression (3.41), C is a constant
depending upon the monomer size (chapter I).

We also notice from Table 3.4 that E = W + constant, implying Lg o« exp (%)
So our pair potential bonding energy parameter W plays the same role as E. Table 3.4
also gives our estimate of the barrier B. We observe that B is independent of E (or

W) and that B increases when w decreases, as expected.

Table 3.4: The values of macroscopic energy of scission E, the barrier energy of recom-
bination B, and the indicator X (see text) for various investigated W and w values.
Because of the definition of E in terms of static quantities (equation (3.37)) the values
of E are independent of w.

Wil w K N, | Nx10*] E] B|] X

12 1 0.02 | 0.93 | 0.149 0.11 95|47 04
12| 0.1 | 0.72 | 0.149 0.11 95|33 16
12 1 0.25 | 0.149 0.11 95120 58
11} 0.1 | 0.66 | 0.148 0.31 85|34 06
11 1 0.29 | 0.148 0.31 8520176
10| 0.1 | 0.82 | 0.147 0.81 7534 1.3
10 | 0.5 | 0.49 | 0.147 0.80 75|23 6.6
10 1 0.32 | 0.147 0.81 75119 13

10 5 0.11 | 0.147 0.80 75|14 66

3.2.1.8 Mean chain length vs. scission energy E

We examine now the scaling law of the average chain length versus the energy parame-
ter E. In order to have enough results, an additional thermodynamic state point at the
same 7' =1, ¢ = 0.15, with W = 11 have been investigated using attempt frequency
w = 0.1 and 1. For this state point (W = 11), we get Ly = 91.2. We consider for

these three semi-dilute solutions at the same ¢ the average chain length following the
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function (1.19), written here as

Lo(W) = CY2¢% exp (ﬂ@) (3.42)

where E(W) is scission free energy [2] for a given value of parameter W. In figure
3.15, we plot in semi-log the average chain length (average over all the w) of the case of
W =10, W =11, and W = 12 as a function of F using the value of SF of Table 3.4.
The slope of the fitting line is found to be 0.5, and a value of C = 11.5(2). This confirms
well the scaling law of Cates, i.e. equation (1.19) and also validates our estimate of E

from statistical information at equilibrium.
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Figure 3.15: Average chain length Lg versus energy of scission §E. The slope is found
to be ~ 0.5, which confirms the theoretical prediction (equation 1.19).

3.2.1.9 Relevance of different time scales for the kinetics

In this subsection, a discussion presented by O’Shaughnessy and Yu [12], closely related
to subsection 3.2.1.7, is analyzed. In this article [12], one considers as indicator of the

type of kinetics the dimensionless ratio

x=tr (3.43)

st
Ty
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3.2 Dynamic properties

ty is the conceptual time it would take for a newly created free end to diffuse through the
fluid over a distance corresponding to the mean distance between free ends h = (%3)1/ 3
(assuming it does not react), and 75t = m is the life time of the average chain (in
the short time analysis sense where all transitions are considered).

The definition of X can be reformulated using the kinetic constants. We show
here that our new kinetic constant k; defined by equation (3.33) is identical to Qyec
of Ref. [12], the recombination rate of two overlapping chain ends of size b. From the

definition of kf, and assuming « (w) — 1, one has for the recombination rate constant

kst .
T Rc
kSt = dkdm drr®gee(r) = 4k, (3.44)
0

Where b is the chain end size according to the notation of O’Shaughnessy and Yu [12].

According to scission-recombination equilibrium, one has

Qrec * bspznds = pends/Tba (3'45)

where pends = Flg is the density of ends. The right hand side represents the breakup

rate. AS pengs = %%, T = HlLE’ equations (3.45) can be rewritten as:

1 s (20\° 1 (20 s
5Q,"M*b <-L_0) _5<L—0> (ksLo) = pk2t. (3.46)

Notice that in the last equality, we assumed & (w) — 1 (ks ~ kgt). According to equa-
tion (3.19),

1/¢)\°
sty — [ st A7
o= (£ ) # (3.47)
This results in (see (3.44) and (3.46)):
Qrec = kf- (348)

Further, the authors of [12] introduced a time t* which corresponds to the average
time needed for two chain ends newly created by a scission to recombine with one
another. The explicit expression of ¢* is related to our kinetic constant k. In fact, we

define x4+ the diffusion distance corresponding to t* (Rouse regime) as
z2 = At1/2, (3.49)

It is equivalent to

Ty = AV, (3.50)
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As we have [12]

t*Qrech®
Plrecd” 1, (3.51)
z
t*
i.e. the total recombination probability at time ¢* after a scission is equal to 1. We

obtain ((3.50)+(3.51) and (3.44)+(3.48))

4 4
. A3/2 4A3/2
t" = (m) = < k,,. ) , (352)

On the other hand, we have h% = At,ll/ 2 (Rouse regime), and h = (

)

1/3
) giving

s\

The ratio of {5 to t* gives

1/3 4 7/3 4
tn_ (L ) | Lk ) _ ya (3.54)
tr \273g1/342 | (20)4/342 | — 7 7 )
As kSt = ?RI_I?E’ equation (3.54) confirms
b

Ly th

O’Shaughnessy and Yu [12] defined situations where X > 1 to obey diffusion con-
trolled kinetics (self-recombination dominate). The opposite cases X < 1 correspond
to mean field kinetics where a chain end recombines with a arbitrary uncorrelated free
end. Using our result for the constant A (A = 1) [18], we have ¢, =~ 1080 and 4018
for W = 10 and 12 respectively, while TbSt = 82w™! and 170w~ respectively, this gives
values of X for our different state points (listed in Table 3.4). Despite that values
of X are larger or around unity, the dynamics of our micellar system at equilibrium
may follow MF kinetics predictions for the relaxation of dynamical quantities, provided
the rate constants are interpreted as the effective ones (obtained e.g. by a cumulative
hazard analysis). This turns out to be equivalent to a renormalization of the rates to

eliminate the effects of the unavoidable self-recombinations.
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3.2 Dynamic properties

3.2.2 Analysis of the Monomer Diffusion

The mean square displacements (MSD) of the segments of the polymers, as a function
of time, is an interesting probe of the polymer dynamics. For a system of unentangled
monodisperse dead polymers of size L, the MSD usually follows a Rouse-type behavior
for short times (scaling as t%6 or t*%) followed by an Einstein diffusion behavior for
long times. The crossover time is on the order of the single chain Rouse relaxation time
7r = 7oL?. For “living” polymer system, as the monomers belong to a polydisperse
set of chains which continuously break and recombine, the behavior of the MSD is
expected to be rather complex. Thus, in this subsection we will focus on the analysis
of the coupling between the Rouse relaxation and the effect of scission-recombination

mechanism.

------- W=10, =5
W=10,0=1

--- W=10,0=05

—- W=10,®=0.1

~— dead polydisperse chains

T T TTI7T

100

<Ar(t)2>

T T TTTTT7T

Ll a ol el L1

10 100 1000 10000
t

Figure 3.16: Mean square displacements of monomers (semi-dilute case (W=10)). The
continuous curve has been obtained for the relevant polydisperse sample but with w
set to zero, averaging over many independent initial configurations. It is a reference
from which the other curves depart at decreasing times when increasing values of w are
considered. The cases w = 0.1 (thick dashed lines), w = 0.5 (thin dashed lines), w = 1.0
(dot-dashed lines) and w = 5.0 (dotted lines) are shown together with two indicative
power laws which suggest the evolution of the subdiffusive scaling regime to the normal
diffusion limit.

The mean squared displacement (MSD) of all monomers as a function of time is
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shown in Figure 3.16 for all w’s in one of the semi-dilute cases (W=10). As shown in
figure 3.16, up to a time of 100, the MSD is w independent and presents a Rouse-like
behavior with a time dependence t%5. In the reference case where w was set to zero (we
simulate a polydisperse sample of dead polymers), this power law behavior persists at
least up to the time 5000, a time corresponding to the Rouse time of a chain of length
54. When scissions and recombinations are allowed, the MSD deviates from the master
curve (of dead polymers) to adopt progressively a MSD linear in time. This takes place
sooner and sooner for increasing values of w. At long times (¢ > 2000), the MSD has

evolved towards usual Einstein diffusion with a diffusion coefficient increasing with k.

150 . T . | . ,

— C R end-to-end vector correlation
- - Fitting line

0 100 ' 200 ' 300
/100

Figure 3.17: The end-to-end vector relaxation function obtained by a Brownian dy-
namics run on a monodisperse sample of 20 dead polymers of length L = 50. The
Rouse relaxation time 7z = 4.24 10% is given by the fit. Results for ¢ > 300 are very
noisy and should be zero.

To discuss the monomer mean squared displacement, it is also important to have

an estimate of the longest internal relaxation (Rouse) time of the chains. Performing a
separate Brownian dynamics run on a monodisperse sample of 20 “dead” polymers of

\ length L=>50 (corresponding roughly to the mean polymer length of our living polymer
sample) at the same semi-dilute state point (T' = 1, ¢ = 0.15, W = 10), as shown in

figure 3.17, we get from the long-time exponential behavior of the end-to-end vector
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3.2 Dynamic properties

relaxation function a value of 7 = 4.24 10® [48]. For our very flexible polymers, the

scaling of the Rouse time with L in the semi-dilute conditions should be

Tr(L) = 1o L?, (3.56)

where 79 is a constant depending on the solvent conditions and the persistence length [48].

On the basis of our estimated value of 7x4, we get 7 =~ 1.70.
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Figure 3.18: Characteristic times as a function of polymer size. The Rouse relaxation
time 7g = 1.70 x L2, shown as continuous curve, must be compared to the life time of
a polymer of size L, given by 7, = (ksL)~!. Three frequencies are illustrated, namely
w = 1.0, W = 10 (dot-dashed line), w = 0.1, W = 10 (dashed line) and w = 0.02,
W = 12 (double dot dashed line) using effective ks values. The largest values of length
A for the two state points studied are indicated by the dot lines namely Ajg and Aqa
respectively. The relaxation times corresponding to the two A values are also indicated.
We show on the same graph the distribution of monomers (thin dashed curve) as a
function of the size of the polymer to which they belong to for the case W = 10 (see
text).

For living polymers, the degree to which the relaxation of chains is affected by the
scission and recombination kinetics depends on their relative time scales. The time

scale for the scission/recombination process has been estimated so far in terms of the
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Table 3.5: Table of A, 75, 7* and the diffusion coefficient D for the cases of W = 10

and W =_12.
Wil w k A TA ™ D Lo

10| 01 [1.72107° [ 32.43 | 1788 | 4401 | 2.42107% | 56.2(6)
10| 05 [ 5.51107° [ 22.02 | 824 | 2283 |3.14107° | 56.2(1)
10] 1 [763107°]19.75] 663 | 1465 | 3.74107° | 56.2(2)
10] 5 [126107%[16.72 | 475 | 1199 | 4.051073 | 56.6(6)
12 [ 0.02 | 6.39 10~7 | 97.28 | 16087 | 42076 | 7.0110~* | 151(4)
12| 0.1 |2.57107° | 61.17 | 6361 | 14616 | 1.1310~° | 150.7(5)
121 1 [9.54107%|39.50 | 2653 | 6427 | 1.6310~° | 150.4(6)

average survival time %Lo for the chain of average size, a quantity which was found
to vary from ~ 100 up to =~ 10000 in the investigated w range (see table 3.3). In the
present context, we consider the explicit I dependent survival time o k—sl—L—, at a given
w value, and figure 3.18 shows the resulting functions for two such frequencies. In
figure 3.18 the distribution of monomers as a function of the size of the chain to which
they belong to is also given.

On the basis of the above considerations, it is useful to recall the definition (see
Chapter 1) of the particular chain length A for which the Rouse time is equal to the

survival time [36, 14] ,
1

77 = 1oA% = A (3.57)
giving
A = (roks)~Y3 (3.58)
and
=1y kR (3.59)

where 75 = 1.70.

Using our previous estimations of ks (Table 3.3), A and 7, are calculated and listed
in Table 3.5. Chains longer than A have their internal dynamics strongly altered by the
kinetics, while chains shorter than A should have an internal dynamics little affected
with respect to dead polymers of the same size. As figure 3.18 illustrates, when the
scission attempt frequency increases, the fraction of monomers which belong to chains

whose dynamics is little affected by scissions decreases. The inequality A < Lg verified
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3.2 Dynamic properties

in our simulations implies that the chain dynamics is strongly affected by the scission-

recombination mechanism. This inequality and equation (3.58) also imply
ks > (oL3) ™! (3.60)

The implications of the scission-recombination mechanism on the mean squared
displacement of monomers is analyzed as follows. As we see in figure 3.18, monomers
belong dominantly to chains of length L > A so that, in the absence of scissions, the
monomer diffusion within a chain of size L would become Einstein-type after a time
~ Tr(L) = 7oL? needed for all the slowest intramolecular modes to have relaxed to
zero. The effect of scissions will restrict the lifetime of a chain fragment of length L' to
(L") = 1/(ksL’) and thus restrict similarly the life time of any Rouse mode implying
a number L’ of monomers to 7,(L’). This means that within a chain of size L > A, the
Rouse modes associated with chain fragments of length L’ in the range of A < L' < L
will relax artificially fast, on a time scale 7,(L’) which is even shorter than 74. On the
other hand, the Rouse modes associated with chain fragments of length L’ shorter than
A will relax as in similar fragments of dead polymers. Consequently, at long times, the
monomer mean squared displacement will thus become Einstein-type after a time of
order of 74.

The crossover time between Rouse-type and Einstein-type is verified. In figure 3.19,
we show the mean squared displacement of monomer for w = 0.1, 0.5, 1,5 for the case
W =10 and w = 0.02,0.1,1 for the case W = 12. We plot the asymptotes of the short
time (%) and long time (¢!). Their intercept defines the crossover time 7*. Numerical
values of 7* for the different w and W are listed in Table 3.5.

Figure 3.20 shows 7* vs k; on a log-log scale. A two parameters fit gives In7* =
1.06 — 0.671In k,. This shows 7™ « k;z/s, i.e. the ks dependence of 7* is identical to
that of 7. Using equation (3.59) and the value of the prefactor, we obtain 7* & 2.47,,
as indicated by Table 3.5 as well. This confirms that 74 is indeed the relaxation time

regarding the dynamics of the living polymer chains.
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Figure 3.19: Mean squared displacements of monomers for w = 0.1,0.5,1 and 5 for
the case W = 10 and for w = 0.02,0.1 and 1 for the case W = 12. For w = 0.02 the
short time (t>6) and long time (t!) asymptotes are drawn. Their intercept defines the
crossover time t*.

3.2.2.1 Self-diffusion coefficient D of the monomers versus the scission rate
constant k,

The mean square displacement in the long time limit gives the self-diffusion coefficient

of a monomer. The diffusion coefficient D can be obtained by using the relation:
D = lim — {[r(t) — 7(0)*) (3.61)
— 0

The value of D for the studied cases are listed in Table 3.5. We can plot D as a
function of k;. As shown in figure 3.21 the diffusion coefficient D is observed to scale
like k;/ 3 in the explored w range. The result is in good agreement with the 1/3 power
law behavior observed by Milchev with the lattice bond fluctuation model (BFM) [14].
The 1/3 power law scaling can be explained by assuming that clusters of A monomers
are responsible for the long time behavior of living polymers, giving

RS(A) A

D x m X F X A_l 6.8 k;'/a. (362)
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Figure 3.20: 7* is plotted versus k; on a log-log scale. The dashed line with slope
-2/3

(—2/3) corresponds to a power law 7* o k;

This result shows again the relevance of the characteristic length A in describing the

dynamics of the living polymers.

3.2.3 Zero-shear stress time autocorrelation functions

The stress relaxation function is an important macroscopic relaxation function for mi-
cellar system. Our dynamically unentangled system must indeed be the object of a
coupling between the stress relaxation and the scission-recombination process if the
corresponding times scales distributions of both processes overlap.

According to the theoretical description presented in chapter I, the stress relaxation

function is

G(t) = i WG, (t) (3.63)
p=1

where the weight function W), can be obtained from the distribution of chain lengths

qﬂA +2 (%)2] ) (3.64)

¢o(L), and where

TA

: 1< t
G,(t) = Go= Zexp <——
pq=1
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Figure 3.21: Monomeric Einstein diffusion coefficient as a function of k, for the two
semi-dilute cases (W = 10 and W = 12). The value of D is obtained from the long
time behavior of the monomeric mean square displacement shown in figure 3.19. The
dashed line represents a ki/ 3 power law.

is the relaxation function for chains of length p. It is an equation with only three
parameters, namely Gy, ks, and 79 or equivalently Gy, A, and 73. Actually, in the case
where Ly > A, the long time (¢ > 7)) asymptotic expression of the stress relaxation
function becomes independent of the chain length distribution and one gets [36]

lim G(¢) = Aﬁexp(—t/Trelax), (3.65)

t>TA

where the relaxation time 7,0z = (22/ 3/3)7a and where A = Go\/m

We have performed at equilibrium, a series of long runs, with three of our w values,
namely w = 0.1,1, and 5, to compute the stress-stress time correlation function. Within
the linear response theory, this stress-stress time correlation function is related to the
stress relaxation function in case of weak external perturbation. From our LD trajec-
tories, we estimated the zero shear stress relaxation modulus G(t) via the equilibrium

stress tensor time correlation function [8]

G(t) = 1ors 724 (2)721(0) (3.60)
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3.2 Dynamic properties

As it has often been experienced in the past, these functions are extremely noisy and
require very long runs to get a signal out of the noise. We therefore applied an aliasing
procedure with time window equal to 400. Given the noise in our data, we simply
checked the plausibility of expression (1.64) by estimating it with the known values
of 75 and A mentioned in Section 3.2.2. Adjusting Gy as the single free parameter
to match simultaneously the three curves corresponding to w=0.1, 1, and 5, we get
Go = 0.22. The resulting curves shown in figure 3.22 indicate a reasonable agreement
with simulation data for ¢ > 7,44z, confirming that our equilibrium polymer system
behaves in a way consistent with the hypotheses of Faivre and Gardissat, on the basis

of the effective rate constants determined separately.
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Figure 3.22: Simulation results of the zero shear stress relaxation modulus G(t) for
w = 0.1 (dots), w = 1 (squares), and w = 5 (circles). The lines represent the theoretical
curves based on equation (3.63), after fitting the amplitude Gy (see text).

3.2.4 Macroscopic relaxation behavior

In order to make another check of the macroscopic relevance of the effective kinetic
constants determined at temperature 7=1.0 for various attempt frequencies w, we
performed a T-jump experiment [27, 46] in a particular case. First, the system is

equilibrated at a temperature Ty with average length Lo(Tp). At some arbitrary time,
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chosen as time origin, we switch the temperature to T < Tj in the LD simulations and
we follow the transient evolution of the averaged chain length from Ly(Tp) to Lo(T).
The theoretical expression for the macroscopic relaxation behavior of a T-jump has
been given in chapter I. In equations (1.46) and (1.47), 7 can be related to the average

chain length life time 7, [Equation (1.36)] through

1 1
T = m = '2'Tb(T) (367)

Notice that 7,(T") (or ks(T")) are already known by equilibrium simulations

In figure 3.23, we display our results of the transient mean chain length < L(t) >
versus t for w=1 based on an average of 50 independent LD trajectories, starting with
equilibrium at Tp=1.2 [at which Lo(Tp) = 26] and setting T=1 |[having Lo(T) = 56.5]
abruptly. The data correspond to state point 2. The simulation results are fitted
with the theoretical curve [Equation (1.45)], using a single free parameter 7, giving
an estimate of the kinetic constant k; = 8.02 x 107%, using equation (3.67), in good

agreement with our previous estimates based on microscopic kinetics, 7.63 10~° (Table
3.3).

3.3 General comments

In this chapter, we have exploited our mesoscopic model of cylindrical micelles to study
the structure and the dynamics of these complex systems at dilute and at semi-dilute
equilibrium state points. The results of static properties, found to be governed by the
monomer density and the end cap energy, are consistent with the theory and previous
simulation works. The dynamics and kinetics at the semi-dilute state points has been
more specifically investigated. Qur study is focused on the evolution of various dynam-
ical properties when, for the two state points corresponding to semidilute situations,
the barrier height of the scission/recombination process is varied over a large range.
This range is however, restricted in this study to the most interesting situation where
a significant coupling exists between the intramolecular relaxation of the “temporary”
chains and the scission/recombination mechanism.

The simple mean-field kinetic model of Cates [9, 27] is found to be valid for times
of the order and beyond the mean lifetime of a chain of average size provided that

the “short time” kinetic constants computed directly from the number of Monte Carlo
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Figure 3.23: Time evolution of (L(t)) for the T-jump experiments, with w=1, starting
at equilibrium at temperature Tp=1.2 and setting at t=0 the temperature to T=1.
Simulation results are shown as circles and the theoretical curve according to equa-
tion (1.45) by the continuous line.

accepted binding/unbinding changes are rescaled by a transmission coefficient x. The
quantity (1— &) can be interpreted as a measure of the fraction of unsuccessful scissions
which are almost immediately followed by a recombination of the two ends just cre-
ated. Dynamic properties sensitive to the “intermediate” and “long” time effects of the
scission/recombination kinetics, such as the average chain length time dependence in a
T-jump experiment, the monomer diffusion and the stress relaxation, were all found to
be related to the effective rate constants, according to mean-field-like theories. These
effective constants need to be distinguished from their short time values and we note
that the correcting transmission coefficient was found to vary from 0.93 down to 0.12
when going from the lower to the hightest w values chosen.

We observed that, as it could be expected, the transmission coefficient estimated
on the basis of a time scale separation turns out to be close to the fraction of recom-
binations involving the reunion of a chain end with a new partner with respect to the
partner it originally detached from. The effective rate constants have been estimated by

different techniques. The cumulative hazard technique introduced by Helfand to com-
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pute isomerization rates in chain molecules has been found to be particularly efficient
as it avoids the need of binning recombination time data or the explicit computation of
time correlation functions. The distribution of first recombination times (¢) remains,
however, a central function. At short times, it is dominated by its self-recombination
contribution which follows the t~5/4 power law decay predicted by O’Shaughnessy and
Yu [12]. At long times, it becomes exponential with a time decay characterized by the
average chain length lifetime (k:—Lo) providing an estimate of the effective rate constants.

To sum up, we find that in cylindrical micellar solutions the distinction between
mean-field and diffusion controlled kinetics can be entirely related to the value of the
transmission coeflicient k. When this value is close to unity, the kinetics is purely mean
field and no recombination with the original partner is observed within the process of
relative separation of the newly created chain ends by diffusion. When s is much
smaller than unity, the diffusion controlled kinetics model applies but simply means
that only a fraction (1 — k) of scissions survive on the long time scale which can still
be described by the mean-field kinetics model of Cates, provided that rescaled kinetics
constants are used. The kinetic constants can be related to the structural functions, i.e.
the distribution of bonding lengths P(r) and the chain ends pair correlation function
gee(r). This analysis allows us to verify the micro-reversibility of the system and to
estimate the macroscopic energy of scission E and the barrier energy of recombination
B. The latter analysis shows that the pair potential bonding energy parameter W of
our model plays a role equivalent to E, i.e. Ly o exp (‘BTW) The barrier B increases
when w decreases, and as expected, it follows wx(w) o exp (—8B). By the studies
of the monomer diffusion and zero-shear stress functions, we also find that the main
relaxation time in the system is indeed 74, the life time of the dynamical units of chain
size A for which the life time of chain (éA—) is equal to it’s Rouse relaxation time 9AZ2,

which is found to play an essential role in the linear viscoelasticity.
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Chapter 4

Non-equilibrium properties

In this chapter we are interested in the rheology and the kinetics of scission-recombination
of giant cylindrical micelles in a dynamically unentangled semi-dilute solution. The
main goal of our study is to investigate the viscous and structural responses to the im-
position of an homogeneous shear flow in this particular self-assembling system when
the micelle scission-recombination kinetics and the shear flow influence are strongly
coupled.

Based on the analysis of monomer diffusion at equilibrium addressed in section 3.2.2,
we can expect a coupling between the shear flow ordering effects and the scission-
recombination relaxation mechanism when the life time of the equilibrium average size

chain is smaller than its Rouse relaxation time,

Tb(LO) < TR(Lo) = T()L%. (4.1)

The w values for the equilibrium state were precisely chosen to satisfy this inequality,
and thus, we have kept the same four values w = 0.1, 0.5, 1 and 5 for the non-equilibrium

state. We are led to define a central parameter which is the reduced shear rate

Ba = ¥7A (4.2)

and we show in this chapter that most physical properties of our system are universal
functions of this reduced rate.

Shear flow was maintained by setting up Lees Edwards boundary conditions [49, 51)
together with imposing a solvent velocity field #(y) = 4yl;. After eliminating the

transient period needed to reach stationary conditions at the imposed temperature, all
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simulation runs were followed for a total time of Tipqp = 2.5 10° corresponding to 5 107
time steps. Values of shear rates were selected in the range 5.6 107% < 4 < 0.21 to
adjust specific reduced shear rates 85 = 0.1,0.25,0.5,1,5, 10,50 and 100 for the four w

values studied at equilibrium (see table 4.1).

4.1 Collective rheological behavior

The present section deals with the collective rheological behavior of giant cylindrical
micelles in semi-dilute solution, the main point under investigation being the influence
of the scission-recombination kinetics upon the viscous and structural responses to shear

for this type of complex fluids, which, otherwise, shares many analogies with polymer
solutions [54, 53].

4.1.1 Orientation of the chains

To investigate the orientational properties of the cylindrical micelles system subjected
to a simple shear flow, we have adapted the methodology used to standard polymer
solution. When polymer solutions are subjected to shear flow, the chains in the solution
are oriented (on average) and deformed by the flow. Birefringence and neutron or light
scattering experiments [59] reveal that individual polymers increasingly deform and
orient along the flow direction as the shear rate increases. Those phenomena can be
quantitatively probed through the anisotropy arising in any relevant tensorial quantity,
such as the bond order parameter tensor 5, the polymer bond stress tensor &, and the

radius of gyration tensor G defined respectively as

- 1 N e 1

SR < i §> 9
1 N N-1 N _ o

o= _V <Z m;U;U; + Z Z (R,L - RJ)F”> (4.4)

i=1 i=1 j=i+1
_ 1 I E L
G(L) =573 > D {(Ba = Rrm) (Rn — Rn)) (4.5)
n=1m=1

where N = )" N{(a) is the total number of polymeric monomers, a an index over

all polymers in the system and N(«) the number of monomers of polymer a. Where
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4.1 Collective rheological behavior

#; = Ry —R;, 1 is the unit tensor, and Fij is the force exerted by particle j on particle
i. At equilibrium the system is isotropic and the tensorial quantity, say A reduces to

a scalar. In the presence of a shear flow 4,(7) = 4yl,, any tensoral quantity takes the

structure
. Ay Azy O
A= Ayx Ayy 0 (4.6)
0 0 A,

as a result of the symmetry.
The extinction angle xp, defined through the relation

Ogg — Oyy

zy

(4.7)

measures the rotation around z-axis of the principal axes (I,I1,III) of the tensor 0]
with respect to the flow axes (z,y, 2). In shear flow, O, starts linearly with 4 while
the first contribution to O; — Oyy is of order 4. Therefore the linear (Newtonian)
regime is characterized by xo = m/4. Outside the linear regime, xo decrease to zero
for increasing shear rate.

Single polymer theories{8] have shown that, for a polymer solution with chains of

size L, the birefringence angle xp decreases with shear rate according to

o

cot (2xé) o (4.8)

where mg, know as the flow resistance, is a constant which depends upon the solvent
quality and the importance of hydrodynamic interactions. At larger shear rates, equa-
tion 4.8 is still used as a definition of the effective flow resistance mo(8z), a quantity
which has been measured by simulation of polymers in shear flow, as shown in Ref [53].

It is found that mo follows an effective power law mgp = cﬁg'ﬁ. This leads to

cot (2xé) =c71p¢, (4.9)

where a = 0.4 for the extinction angle. The crossover from the linear regime taking
place around Gy, ~ 2

Similarly to the birefringence angle xo, the anisotropy can also be probed through
the stress tensor & or the average single chain gyration tensor é, defining x, and
X¢ using equation 4.8. For xg, we note that equation (4.9) applies also to xg with
a = 0.46 [53].
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Applying the expressions (4.9) to individual chains within a polydisperse sample,
longer chains will be oriented closer to the flow direction than shorter ones. If x5 (or
x%) the conceptual orientation angle specific to the subset of chains of size L within

the sample subject to shearing flow, one should have
cot (2x§) = ¢ ¥ g LM, (4.10)

where we have assumed that 7, = 79L* in terms of the monomer local time scale 7
and the effective exponent u = 2v + v/ depending upon the exponents related to the

chain size R o« LV and the chain hydrodynamic radius Ry o LY.

4.1.1.1 Orientation order parameter and extinction angle

The bond orientation and the degree orientation has been computed in terms of the
orientation order parameter. The principal axis system I,II,I1] is such that axis I
corresponds to the orientation of the eigenvector with the largest eigenvalue S; and
its orientation with respect to the flow direction z corresponds to the extinction angle
xo if the intrinsic birefringence dominates. The values of xo(w,%) and Sj(w,¥) are
listed in Table 4.1. As shown in figure 4.1 (S;) and figure 4.2 (xo), the data were
plotted as a function of reduced shear rate G5 and as a function of absolute shear rate
4 respectively. A clear trend to universality is observed for data plotted against (4.
As the shear rate increases, yo decreases from its 45 degrees value for (¥ — 0) down

to 0 degrees, while the scalar order parameter Sy increases from 0 to 1 asymptotically.

4.1.1.2 Average bond length versus [

The bond length elongation due to shear flow has also been investigated. The average
bond length over all bonds () are listed in Table 4.1. Figure 4.3 shows the average bond
length increase due to shear flow as a function of the absolute shear rate for each w
value. For the sake of comparison, we also show the bond elongation obtained in a test
experiment where, starting from configurations generated at equilibrium from a normal
run at finite scission rate, we follow at finite shear rate the Langevin Dynamics at w = 0
(i.e., interrupting completely the kinetic process) the establishment of the stationnary
state for a similar “dead polymer” polydisperse system under shear. As expected, the
bonds of the temporary chains do not reach the “dead” polymer average value, because

the bond extension which is governed by the relaxation time of the polymer it belongs
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4.1 Collective rheological behavior

Table 4.1: Average bond length 4, average extinction angle xo, reduced viscosity
/10, and average orientation order parameter S; for each set of (w, %) (see text)

w g Ba {0) Xo o+ S
01] 0 0 | 0.970732(3) - :
0.1 | 0.000056 | 01 [0070732(3) | @ | 1o o001
0.1 | 0.00014 | 0.25 | 0.070734(3) | 39(2) | 1.05(9) | 0.003
0.1 | 0.00028 | 0.5 | 0.070735(7) | 37.339(8) | 0.97(8) | 0.007
0.1 | 0.00056 | 1.0 | 0.070752(3) | 32.20(4) | 0.97(5) | 0.016

0.1 | 0.0028 | 5.0 | 0.97092(2) | 16.6676(3) | 0.62(3) | 0.075
0.1| 00056 | 10 | 0.97121(3) | 12.915(7) | 0.49(3) | 0.126
0.1| 0028 | 50 | 0.97289(2) | 8.762(5) | 0.221(3) | 0.275
0.1| 0056 | 100 | 0.97403(3) | 8.422(1) | 0.151(6) | 0.332
0.5 0 0 |0.970732(3) - - -
0.5 | 0.00012 | 0.1 | 0.970737(7) | 42(7) 0.9(2) | 0.002
0.5 | 0.0003 | 0.25 | 0.970742(4) | 41.9(2) | 1.04(5) | 0.006
(5)
(8)
)

05| 0.0006 | 0.5 |0.970751(5) | 36.961(1) | 0.95(2) | 0.011
0.5 | 00012 | 1.0 | 0.970752(8) | 31.08(8) | 0.89(2) | 0.023
0.5| 0006 | 5.0 | 0.970991(8) | 17.156(6) | 0.565(6)

05| 0012 | 10 | 0.97135(1) | 13.709(5) | 0.431(6) | 0.150
05| 006 | 50 | 0.97332(2) | 9.777(2) |0.195(4) | 0.305
05| 012 | 100 | 0.97460(2) 9.1765(8) 0.133(2) | 0.366

0.094

1 0 0 | 0.970730(3) - -

1 | 0.00015 | 0.1 | 0.970733(7) (2) 1.0(1) | 0.002
1 | 0.00038 | 0.25 | 0.970729(9) | 40(2) 1.00(5) | 0.006
1 | 0.00075 | 0.5 | 0.970736(6) | 36.751(1) | 0.883(8) | 0.012
1 | 0.0015 | 1.0 | 0.970753(5) | 31.67(9) | 0.88(1) | 0.025
1 | 0.0075 | 5.0 | 0.971016(6) | 17.718(6) | 0.547(9) | 0.099
1 | 0015 | 10 | 0.97136(1) | 14.3344(4) | 0.407(5) | 0.153
1 | 0075 | 50 | 0.97330(1) | 10.221(1) | 0.185(1) | 0.309
1 0.15 | 100 | 0.97459(1) | 9.668(1) | 0.127(2) | 0.370
5 0 0 | 0.970724(7) - - -

5 | 0.00021 | 0.1 | 0.970733(5) | 40.7(6) | 0.95(5) | 0.003
5 | 0.00053 | 0.25 | 0.970742(4) | 41.09(2) | 0.96(4) | 0.007
5 | 0.00105 | 0.5 | 0.970743(3) | 35.8(3) | 0.92(1) | 0.014
5 | 0.0021 | 1.0 | 0.970762(3) | 30.92(2) | 0.867(8) | 0.029
5 | 0.0105 | 5.0 | 0.971056(5) | 18.263(3) | 0.532(4) | 0.105
5 | 0.021 | 10 | 0.971376(4) | 15.214(4) | 0.395(5) | 0.158
5 | 0.105 | 50 | 0.97313(1) | 11.346(1) | 0.176(2) | 0.305
5 0.21 | 100 | 0.97439(1) | 10.673(1) | 0.122(1) | 0.368
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Figure 4.1: Orientation order parameter Sy as a function of the reduced shear rate 8y
and, in inset, as a function of the bare shear rate 4. Data corresponds to w = 0.1(circle),
w = 0.5(square), w = 1(triangle) and w = 5(diamond). Notice that the results for
w = 0.1 is a little off, because of its A = 32, quite close to Ly = 56.

to, cannot achieve its dead polymer long time limit as a result of continuous scissions
and recombinations. For a given shear rate +, the less elongated bonds are those where
the w rate is highest and this suggests plotting again the same results as a function of
the shear rate reduced by the inverse of the characteristic time of the dynamical units
Ba. The inset of Figure 4.3 shows indeed a universal behavior of the effective elongation

respect to equilibrium case in terms of this reduced shear rate.

4.1.2 Viscosity

In connection with rheological experiments, we observe a strongly non-Newtonian char-
acter for the viscosity 7 expressed as a function of (w,%). In our non-equilibrium sta-
tionary simulations, the rheology can be determined by measuring the average of the
instantaneous stress tensor. Under a shear flow in the z direction, n(w, ) is obtained
by dividing the zy component of the stress tensor by the absolute shear rate +:

(024(2,1)

n(w,¥) = (4.11)
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4.1 Collective rheological behavior
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Figure 4.2: Extinction angle xo as a function of the reduced shear rate 34 and, in inset,
as a function of the bare shear rate. Data correspond to w = 0.1 (circles), w = 0.5
(squares), w = 1 (triangles) and w = 5 (diamonds).

A recent experimental observation on entangled micelles showing shear thinning be-
havior has expressed that the effective viscosity of micelles under flow is decreasing
exponentially with a local orientational order parameter [55]. By analogy we plot the
shear viscosity for each (w,%) as a function of the corresponding order parameter. We
observe in figure 4.4 an exponential behavior 1 = 7y exp (—a; Sy) for each set of points
relative to a particular w value. Therefore, the Newtonian viscosity at zero shear rate,
7o, has been estimated by the extrapolation using a simple exponential fitting for the
non-Newtonian viscosity. The g values obtained are 8.3(6), 5.6(2), 5.1(1), and 4.33(7)
for w = 0.1, w = 0.5, w = 1, and w = 5 respectively. Figure 4.5 shows that the ra-
tio n/no is a universal exponential function of Sj, which is obtained by a single free
parameter fitting giving a; = 5.68.

We previously estimated 7o for different choices of k; (and hence of 74) by the
integration of stress-stress correlation function in our earlier BD simulation work [18].
Due to the large noise on the simulation data, the Faivre-Gardissat G(t) expression [36]

at equilibrium could only be verified qualitatively. Here, by extrapolation of the effec-
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Figure 4.3: Average bond length extension Al with respect to equilibrium, as a function
of the bare shear rate and, in inset, as a function of the reduced shear rate 85. Data
corresponds to w = 0.1 (circle), w = 0.5 (square), w = 1 (triangle) and w = 5 (diamond).
The remaining data (filled circles) correspond to a polydisperse “dead” polymer sample
structurally similar to the micellar solution

tive viscosity obtained in non-equilibrium Langevin Dynamics simulation at high shear
rates, we get a more precise estimate of 79. The zero shear viscosity expressed in terms
of 75 can be tested by the expression of Faivre-Gardissat [36]. Using a single parameter
Gy in the integrated form of equation (1.70) of chapter I, the functional form with free
parameter Gy, in figure 4.6, with Gy = 0.26(1), represents quite well the increase of
the zero shear rate viscosity as the scission rate decreases. In figure 4.7, we show that
My X Tlt/ 2. as predicted by [36].

As shown in figure 4.1, Sy itself is a function of §5. Therefore the ratio of viscosities
n/no must also be a function of that reduced shear rate, which is indeed shown in
figure 4.8. In the regime 0 < Bz < 100, the shear thinning behavior of the viscosity
(reduced by the corresponding Newtonian value), appears to be a universal function

represented by the ad hoc function

= f(z) = exp [—a(ln (1 + z))] (4.12)
o
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4.2 Chain length distribution and chain size dependent properties
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Figure 4.4: Shear viscosity as a function of the order parameter S;. Data correspond
to w = 0.1 (circle), w = 0.5 (square), w = 1 (triangle), w = 5 (diamond) and dashed
lines are two parameters exponential fits (see text).

where z = [ for a = 0.2838,b = 1.3045.

With the analysis of the collective properties, one notes that for shearing rates in
the non-linear response regime, the extinction angle xo for the system, the collective
order parameter S, the average bond length between successive monomers, and the
effective viscosity reduction % appear to be universal properties of a unique parameter
Ba which combines the shear rate and the scission rate constant, i.e. 85 = 47A. This
could be expected as the main relaxation time in the system is indeed the life time of
the dynamical units of size A which was found to play an essential role in the linear

viscoelasticity and in the relaxation dynamics at equilibrium.

4.2 Chain length distribution and chain size dependent
properties

4.2.1 Effect of shear flow on distribution of chain lengths

We first remind here that the distribution ¢o(L/Lg) of lengths of the micelle at equi-

librium for a semi-dilute solution presents a simple exponential form, i.e. co(L) o
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Figure 4.5: The shear thinning factor % as a function of the order parameter Sy for all
pairs of ¥ and w demonstrates the universality of the relationship and its exponential
decay character. The zero shear rate viscosity 79(w) has been obtained by linear fitting
of In(n) against Sy for a series of points corresponding to various shear rate.

exp(—L/Ly) (see section 3.1). When a stationary planar Couette flow is switched on,
the distribution of chain lengths is qualitatively modified, as figure 4.9 illustrates. For
comparison, the equilibrium case with w = 0.5 is given and we observe that it is in-
deed very close to an exponential. In presence of shear flow, the distribution of chain
lengths is ~ exp (—yL/ (L)) when (L) is the non-equilibrium stationary chain length
average and ~y a prefactor larger than 1. Increasing of shear rate leads to an increase
of 4. This observation is in agreement with recent Monte Carlo [26] and Molecular
Dynamics simulation [17, 44] works. The change in the distribution of lengths in shear
flow is interpreted as the result of the breaking of long chains to reduce the tension
remaining in the bonds after the alignment of a chain.

The values of (L) for each w and each #% are listed in Table (4.2). Essentially, (L)
decreases with increasing shear rate in agreement with previous studies [17, 26, 44].
Figure 4.10 shows that the average micelle length (L) as a function of the absolute
shear rate 4, for the various w’s (notice that Ly is the equilibrium mean length). All

results lie on a unique master curve which decreases with increasing shear rate. The
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4.2 Chain length distribution and chain size dependent properties
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Figure 4.6: The Newtonian shear viscosity is plotted against the corresponding 74
value. Data are fitted by the single parameter Gy with the Faivre-Gardissat expression,
equations ((1.68)+(1.69)+(1.70)).

inset illustrates that the average micelle length is not an universal function of the
reduced shear rate 35. We will come back to this curve later when we analyze kinetic

rates in shear flow.

4.2.2 Saturation effect on orientational properties

Our micelles system is polydisperse with chain length of life time ksLL depending upon
their size. To investigate the effect of scission-recombination mechanism on the orien-
tation angle as function of chain size, it is useful to perform two additional experiments

with “dead” chain:

1. A monodisperse system. The parameter set up at L = N = 57, kgT = 1,
¢ = 0.15, reduced shear rate 8y = §7, equal to 0.26, 0.89, 1.12, 0.89, 1.68, 2.79,
8.83, 16.76, 33.53, 55.89, 167.67, and 279.45.

2. A polydisperse system made of a series of configurations with the equilibrium
chain length distribution of our micellar system with average chain length ~ 56,
kpT = 1, ¢ = 0.15, that we study under shear at absolute shear rate ¥ = 0.01
and 0.03.
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Figure 4.7: The Newtonian shear viscosity is plotted against the corresponding 74
value. Data are fitted with the integral form of the long time (¢ > 74) asymptotic
expression of the stress relaxation function of Faivre-Gardissat, equations (3.65). With

the exponent fixed at 1/2, the fit gives a prefactor A ~ 0.2. This fit confirms the
1/2

expected relation 7g o 7,

For the monodisperse case, the extinction angle xp, and the orientation angle x¢
for each value of By have been computed based on equations 4.3 and 4.7. In figure 4.11
we plot cot(2xp) and cot(2x¢) as a function of By. We find that cot(2xp) o By for
the small shear rate region (6y < 3) and cot(2xp) x ﬂ?f for B > 3 for both xp and
xc- This confirms the results of Ref [53].

The work is then focused on the comparison between our micellar system and the
“dead” polydisperse system. Figure 4.12 shows the extinction angle xé as a function
of the chain size L for the two systems. Two different shear rates are considered
and for each of them we compare the case of “dead” polydisperse polymers (Langevin
Dynamics with the scission-recombination mechanism being switched off) to “living”
polymers characterized by a particular attempt frequency rate w. As expected, for
the polydisperse “dead” polymers, Xé decreases monotonously with increasing L. We
have observed in figure 4.11 that the large reduced shear rate behavior predicted by
equation (4.9) is valid for rates above 8, =~ 2 — 3. It implies that the large reduced
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Figure 4.8: Shear viscosity reduced by its Newtonian limit, as a function of the reduced
shear rate 8. Data corresponds to w=0.1 (circle), w=0.5 (square), w=1 (triangle) and
w=>5 (diamond). The dotted line is an ad hoc function (see text).

shear rate behavior should be observed for L > L, where L, ~ 1.29~1/2. The value
of L. is then 12 and 7 for the chosen shear rates ¥ = 0.01 and 4 = 0.03 respectively.
As shown in the figure 4.12, for the chains L > L. we observe a behavior roughly
consistent with cot(2xp) o L** with ua = 0.8, supposing here unentangled chains with
p = 2(v =0.5, = 1), which is the situation rather closely satisfied in our simulation
performed in the semi-dilute regime [19, 18] and in which hydrodynamic interactions
are not taken into account. For “living” polymers, the results correspond to the case
w=0.149=0.03 and w = 0.5 4 = 0.01, giving equilibrium rates k;, = 5.4 * 10~° for
w = 0.5 and ks = 1.7 % 107% for w = 0.1. For the average size chain at equilibrium,
it corresponds to life times T=328, and T=1043 respectively, to be compared to the
much longer Browian relaxation time of a “dead” polymer of similar size 77,=5523. For
“living” polymers, we thus expect a strong coupling between the flow and the internal
kinetics. In figure 4.12, the evolution of the extinction angle towards a plateau value as
L increase is the very new observation. This saturation effect at large polymer size must
be related to the too short time, giving their finite life time, for these long polymers

to reach the stationnary state observed for “dead” polymers of similar size under the
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Figure 4.9: Distribution of chain lengths at equilibrium and under shear flow. For
the attempt frequency w = 0.5, we compare the equilibrium case (squares) with two
different shear rates 85 = 10 (triangles) and 84 = 50 (dots) (see text).

same shear flow.

On the contrary, short chains with L < A (where A, obtained by using equation 1.66,
is the particular crossover chain size for which the life time and the Brownian relaxation
time are equal, namely 74 ) orient similarly to dead polymers of similar size. The values
of A (computed with equation (1.66)) are A =22 and A = 32 for w = 0.5 and w = 0.1
respectively.

By a closer look in the region where L < A, we observe that the chains of this
region are slightly more oriented than the corresponding “dead” polymers. The reason
of this slight opposite effect is that a fraction of the chains where L < A are the scission
fragments of the originally longer chains which were somewhat more oriented and more
elongated.

The saturation effect observed on x5 is also seen on the order parameter S;. In
figure 4.13 we compare the order parameter versus chain length L for the “dead”
polymers and the “living” polymers characterized by the same attempt frequency w
and 4 as those for the extinction angle. For the two “dead” polymers, the order

parameter increase monotonously with L. For “living” polymers, the order parameter
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Figure 4.10: Average micelle length as a function of shear rate for various w. Data
correspond to w = 0.1 (circles), w = 0.5 (squares), w = 1 (triangles), and w = 5
(diamonds). We observe that the average micelle length is independent of w. Inset
illustrates that the average micelle length is not an universal function of the reduced
shear rate.

increases with L for A < L and then levels off again.

The chain length A is thus a crossover critical length. For chains L < A, “living”
polymers orient and order as “dead” polymer, while for chains length L > A, the
systematic orientation and ordering trend is interrupted by the scission-recombination
mechanism. This point is also confirmed by the plot of the orientation angle ys versus
the chain length. For “living” polymer, a universal behavior and a saturation effect
are expected at the chain length A for different attempt frequency w. In figure 4.14
we plot cot(2xg)/By (a = 0.46, see Ref.[53]) versus the reduced chain length L/A for
the four w with different 4: w = 0.1(% = 0.03), w = 0.5(% = 0.01), w = 1(¥ = 0.015),
w = 5(§ = 0.021). The four curves show a universal behavior. The increase of the
orientation angle appears for chain lengths L /A < 1 and saturates at L/A = 1 with
cot(2xg) /B34 = ¢! (c ~ 1) for all the four cases.
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Figure 4.11: Extinction angle xo, stress orientation angle x, and gyration tensor
orientation angle x¢ for monodisperse chains. For Oy < 3, the three angles follow
ctg(2xa) o« By and for By > 3, ctg(2xa) x B%*. For all value of By investigated
X0 ™~ Xo-

4.3 Scission-recombination kinetics under flow

The previous sections have shown that under shear flow, the single chain orientational
properties and the rheological properties appear to be universal properties of G4 which
depends on both the values of attempt frequency w and the shear rate 4. On the
contrary the average micelle length (L) was found to decrease with increasing shear
rate, independently from the scission rate constant value, just as it was the case for the
equilibrium situation [19, 18].

To understand the origin of the independence of the micelle length from the kinetic
parameter w, we will compare the non-equilibrium situation to what happens at equi-
librium. When a planar Couette flow is introduced, the system becomes anisotropic
so that all rates obtained from the actual number of transitions or from the cumu-
lative hazard analysis of free ends life times, represent an orientational average over
nonequivalent directions. We thus interpret the 4 dependence of the average micelle

length (L) as the result of the cancellation of w dependent terms in the effective scission
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4.3 Scission-recombination kinetics under flow

Table 4.2: Average chain length (L), and the short time scission and recombination
probabilities ), and Q. for each set of (w,%) (see text).

w] F [ A (L) [Qx*10"] @Q
0.1 0 0 | 56.2(6) | 1.077 | 4.535
0.1 | 0.000056 | 0.1 | 56.1(3) | 1.101 | 4.628
0.1 | 0.00014 | 0.25 | 56.4(7) | 1.159 | 4.917
0.1 | 0.00028 | 0.5 | 56.8(7) | 1.067 | 4.595
0.1 | 0.00056 | 1.0 | 56.9(8) | 1.115 | 4.820
01| 00028 | 5.0 | 55.4(3) | L.111 | 4.547
0.1| 0.0056 | 10 | 54.2(3) | 1.083 | 4.244
01| 001 |17.9] 52.2(4) | 1.186 -
01| 002 |358] 48.7(5) | 1.389 -
01| 0028 | 50 | 45.7(4) | 1.528 | 4.249
01| 0056 | 100 | 39.7(3) | 2.060 | 4.340
0.5 0 0 | 56.6(1) | 1.102 | 4.705
0.5 | 0.00012 | 0.1 | 57.0(4) | 1.105 | 4.784
05| 0.0003 | 025 56.6(4) | 1.007 | 4.680
05| 0.0006 | 0.5 | 56.5(3) | 1.085 | 4.616
05| 00012 | 1.0 | 56.1(3) | 1.137 | 4.767
05| 0006 | 5.0 | 54.1(3) | 1.156 | 4.504
05| 0012 | 10 | 51.5(1) | 1.159 | 4.100
05| 0.06 50 | 40.9(1) | 1.637 | 3.657
05| 0.2 | 100 | 35.6(2) | 2222 |3.763
1 0 0 | 56.2(2) | 1.077 |4.534
1 | 0.00015 | 0.1 | 57.0(3) | 1091 |4.721
1 | 0.00038 | 0.25 | 56.7(3) | 1.089 | 4.672
1 | 0.00075 | 0.5 | 56.2(2) | 1.094 | 4.615
1 | 0.0015 | 1.0 | 55.6(1) | 1.090 | 4.496
1 | 0.0075 | 5.0 | 53.2(2) | 1.143 | 4.311
1 001 | 66 | 52.5(3) | 1.177 -
1 | 0015 | 10 | 50.3(3) | 1.173 | 3.957
1 002 |13.3] 48.6(4) | 1.257 -
1 | 0075 | 50 | 39.5(1) | 1.624 | 3.372
1 0.15 | 100 | 33.7(1) | 2.185 | 3.305
5 0 0 | 56.6(2) | 1.092 | 4.666
5 | 0.00021 | 0.1 | 56.4(1) | 1.097 | 4.649
5 | 0.00053 | 0.25 | 56.5(2) | 1.099 | 4.670
5 | 0.00105 | 0.5 | 56.4(3) | 1.097 | 4.655
5 | 00021 | 1.0 | 56.1(2) | 1.105 | 4.634
5 | 0.0105 | 5.0 | 52.2(2) | 1.135 | 4.123
5 | 0021 | 10 | 48.3(3) | L.191 | 3.698
5 | 0105 | 50 | 36.0(1) | 1.560 | 2.699
5 0.21 | 100 | 32.13(3) | 2.006 | 2.761
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Figure 4.12: Extinction angle (cot(2x5)) as a function of the micelle length. Shown
is the single molecule deformation and alignment within a polydisperse system subject
to a stationary shear flow. For a given shear rate, we compare a polydisperse dead
polymer solution and a solution of living polymers characterized by a particular attempt
frequency rate w. Open circle and open square refer to a polydisperse system of dead
polymers subjected to a shear flow with ¥ = 0.03 and 0.01 respectively. Filled circles
and filled squares refer to living polymer with attempt frequencies w = 0.1 and w = 0.5
respectively.

and recombination rates according to a balance between scissions and recombinations
in a non-equilibrium situation. Exploiting all dependencies in w and 4, the number of

scissions or recombinations (per unit time and unit volume) are expressed as

P w) = KAt = A A)n
2
= ko= (ghy) Fed (4.13)

where, based on our results, one supposes that the micelle average length is independent
of w and where the effective rate constants can be expressed in terms of the non-
equilibrium quantities
ko(w, 4) = 2wr(w, %) Qs (0, 4) (4.14)
kr(w,%) = 2wk(w, ¥)Qr(w,¥), (4.15)
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4.3 Scission-recombination kinetics under flow
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Figure 4.13: Order parameter Sy as a function of chain size L. Open circles and open
squares refer to a polydisperse system of dead polymers subjected to a shear flow with
4 = 0.03 and 0.01 respectively. Filled circles and filled squares refer to living polymers
with attempt frequencies w = 0.1 (¥ = 0.03) and w = 0.5 (¥ = 0.01) respectively.

where (J; is now the probability in an anisotropic Coutte flow that a selected bond,
its replacement by two free ends is accepted by our algorithm. And the recombination
term @), is the average probability for two randomly selected chain ends to form a new
bond (the ends belonging to the same chain being excluded). The values of Q;, @, and
k(w, ) for each (w, ) were computed on the basis of the value of ks and k, obtained by
cumulative hazard function computed under shear and listed in Table (4.2). The way
to interpret the dependency of the average micelle length on the shear rate can be based
on equation (4.13). At a fixed w value, the rate constants both increase with 4 but
much more strongly in the case of ks than in the case of k.. Therefore, the micelles must
be shorter to increase the chain end density so that equation (4.13) remains satisfied.
At a given shear rate, the effective scission/recombination rate constants both increase
with w in a way which turns out to be identical to the way it depends of w in the
equilibrium situation. This is illustrated in figure 4.15. Based on our results, for the

scission case, one finds that the effective rate constants at finite 4 are equal to
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Figure 4.14: (90_;(&)%0_)) versus reduced chain length L/A for various sets w = 0.1

A
(¥ =0.03), w=0.5 ( =0.01), w =1 (¥ = 0.015), and w = 5(§ = 0.021). A universal
behavior is observed.

ks(w, ) = wr(w)(1 + 18.51%]) Q5 (4.16)

and for the recombination case,
kr(w,¥) = wr(w)(1 + 2.5]¥) Q7 (4.17)

where the equilibrium transmission coefficient «(w) is involved and where Q37 and Q57
are the factor introduced in equations (3.17) and (3.18) of chapter III.
Substituting equation (4.16) and (4.17) into (4.13) leads to

L 141859
(L) 1+25]°

(4.18)

The above relation is verified and shown in figure 4.16.
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4.3 Scission-recombination kinetics under flow
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Chapter 5

Conclusions

Cylindrical micelles are self-assembled curvilinear unidimensional supramolecular “poly-
mers” consisting of amphiphilic molecules.

In the first chapter, we have reviewed the statistical theory of these systems which,
at equilibrium, minimize their free energy by producing a phase of cylindrical micelles
having a broad specific distribution of lengths. Crucial parameters determining the
static properties are the “monomer” density, the reduced energy GE required to split
a micelle into two parts (and thus creating two new end-caps) and the solvent quality.
The static properties of these particular complex fluids systems are now well understood
theoretically [9, 2] thanks also to intensive simulation studies [22, 13, 44].

The dynamical properties of micelles are also interesting because very little is known
at the individual micelles level in this potentially very rich domain. Quite generally, one
expects a coupling between the flexible micelle dynamical relaxation and their scission-
recombination kinetics but the manifestations of this coupling could show up in diverse
ways, depending on the monomer density, the solvent quality, and more importantly
the reactive time scale of the kinetics with respect to other relaxation processes. The
key parameter determining the scission-recombination kinetics is the reduced barrier
energy B in the free energy profile along a reaction coordinate path which describes
the progressive fusion of two micelle chain ends, starting from free ends.

In this thesis, we have studied by a Langevin Dynamics simulation technique the
static and dynamic properties of a new variant of a mesoscopic model of cylindrical
micelles. We have decided to restrict ourselves to the dilute and semi-dilute regimes,

where calculations are somewhat more practical than for entangled systems which could
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be studied using the same model. A large part of our work is devoted to the rheological
properties of our model system for the same solutions.

In chapter II, we have introduced a micelle model as a temporary linear assembly
of Brownian particles. Two pair potentials are defined in the model, the precise form
being unessential: sufficient to mention that the bonded form allows to form the linear
assemblies while the unbounded form, which is a short distance purely repulsive poten-
tial, applies between all non connected pairs. At this stage, this model is a popular and
standard polymer model. By allowing in addition interchanges of these two potentials
(potential swaps) for a pair of monomers in an appropriate relative distance window,

we introduce the micelle kinetics model in terms of three “operational” key parameters:

1. BW is the fixed reduced energy by which the bonded potential minimum is shifted
with respect to the unbound pair energy level at large distance. It indirectly fixes

the reduced energy SE which governs the average size of the model micelles.

2. 2w is the frequency at which bonded pairs and unbounded pairs are sampled to
try, on the basis of a Metropolis Monte-Carlo like algorithm (satisfying detailed
balance at equilibrium), a potential swap. Pair potential interchanges are further
only attempted if the relative distance between monomers lies within a restricted
window (0.96 < I < 1.2) which is a fraction of the total range allowed for bounded
pairs (strictly confined in the window I defined by 0 < Z < 1—} = 1.5 where R, is
the distance at which the bounded potential diverges as the bond length increases
(o is the LJ hard core diameter of the monomers). The combined choice of w and
T indirectly fixes the reduced barrier energy 8B which governs the scission and

recombination rates.

The explicit link between the key operational variables (W and w) and the theoret-
ically relevant physical variables F and B is explicitly discussed in chapter III (see
section 3.2.1.7). The quantity SE is defined as the natural logarithm of the ratio of the
total number of bonded pairs over the total number of free ends pairs at close distance,
close distance being defined as the range 0 < r < R,. Similarly B is defined in terms
of the rate at which pairs of free ends at close distance are closing up.

Our model has the great advantage over closely related models like the FENE-C
model that the structural and dynamical effects can be separately analyzed without

mutual interferences. The structural properties at equilibrium are strictly independent
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of the attempted rate w, which allows us to perform global averages over our equilibrium
static results for a set of experiments performed at the same state point (8W,¢03), but
different attempt frequencies w. Moreover, we can single out how kinetics effects affect
the dynamics at a unique (structural and thermodynamical) state point, varying the
rates over a large spectrum.

The results of our work are gathered into two main chapters. Chapter III reports
all results at equilibrium, for both static and fluctuation dynamics properties while
Chapter IV reports the rheological results at a single state point (8W = 10, ¢o® =
0.15). The main results are the following:

At equilibrium, four state points have been investigated by LD with a total of
M=1000 monomers, mainly

The states (BW = 8, ¢o3 = 0.05) and (W = 10, ¢o® = 0.15) while a few exper-
iments have also been conducted for the cases (BW = 11, ¢o® = 0.15) (BW = 12,
¢o3 = 0.15). For the two first cases, the average micelle length turns out to be
Lo = 11.48(1) (BW = 8, ¢o® = 0.05) and Ly = 56.4(4) for the case (BW = 10,
¢o® = 0.15). The distribution of lengths is found to be characteristic of good sol-
vent conditions in the first case, which is fully coherent with dilute solution condi-
tions as the monomer density predicts a semi-dilute blob size of L* = 50. In the
second case, an exponential chain length distribution indicating ideal chain statistics is
found. This suggests a large screening of excluded volume interactions for this semi-
dilute case where the average chain length turns out to be five times larger than the
blob size L* = 12. The latter system and the two other experiments at the same
monomer density but different values of W remain in the semi-dilute regime (giving
Lo =91.2 and Ly = 151.4) and are found to be consistent with the ideal chain predic-
tion Ly = CY2?(¢pa3)1/2 exp(ﬁ%) where C ~ 11.5 and ' ~ W+2.5. We thus empirically
observe a constant (possibly slightly ¢ and T dependent) shift between the operational
variable W and the relevant quantity SE defined as stated earlier.

The dynamical properties at equilibrium are very sensitive to the specific choice of
our attempted frequency w parameter, the I' range where potential swaps are possible
being supposed to be fixed once for all. It must be noticed that each w value leads,
for a given state point, to a specific scission (k;) and recombination (k,) rate constant
which are quantities defined as effective overall constants, supposed to be valid for all

bonds or for any free end pair. On the basis of a very detailed analysis, we found that
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these rates can be expressed as the product of a kinetic factor and a static factor. For
the bond scission rate, we get ks = 2wk(w)Qs(¢, W) where 2w is the rate at which
a given bond is selected and @), the probability the opening is accepted, that is the
outcome of the Monte-Carlo procedure where the acceptance probability involves first
the need to be in the I' range and in addition, the difference between both potentials
for the particular r value. The extra factor x(w) is the probability that a given bond
opening resulting from a successful Monte-Carlo potential swap is a “real” one and
not a “ineflicient” one. We indeed found that quite generally, our algorithm produces
at short times some correlated events where typically a bond scission is immediately
followed by a bond recombination between the same partners. The fraction (1 — )
of such correlated transitions increases as w increases: we show in our thesis that this
fraction can be properly estimated by a data analysis, known as the cumulative hazard
analysis [30], in which a subset of non-Poisson distributed random events at short times
is extracted from the analysis to compute the effective “long time” kinetic rates.

We mainly studied the kinetics at the state point (W = 10, ¢o3 = 0.15), which
is also the state point for which rheological studies were performed (see chapter IV).
In addition, we studied kinetic aspects in various LD simulations at equilibrium per-
formed at the same monomer density but for increasing W energy, in order to deal
with longer chains at the same monomer density. The choice of w was always guided
by the request that the average chain life time, given by 1/(ksLg), was shorter than
the Rouse relaxation time of the same average chain. Indeed, this condition appears
to be crucial to get a coupling between relaxation dynamics (dominated by polymer
relaxation) and the kinetic processes. The same condition can be expressed as A < Ly
where A is the particular micelle size (denominated as dynamical unit in the following)
for which the chain relaxation time and its life time are equal. This condition implies
a minimum value for w and thus forced us, given the Ly values mentioned earlier, to
adopt relatively high values for w for which the x factor was found to range between
0.93 and 0.11. In chapter III, we discuss the single monomer diffusion, the stress tensor
time auto-correlation function and a so called T-jump experiment in which a sudden
temperature change drives the system towards a new chain length distribution, appro-
priate to the new state point. All these studies underline the relevance of the Cates
kinetic model in which the effective rates k; and k, were first introduced, and confirm

our prediction that relevant rate constants involve only the effective transitions.
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The rheology of micelles was studied by Langevin Dynamics in shear flow (with
Lees-Edwards boundary conditions) on the basis of our model at the well investigated
semi-dilute state point (BW = 10, ¢o® = 0.15), varying both the shear rate 4 and
the operational kinetic parameter w. In shear flow, it is well known that the relevant
physical parameter is the reduced shear rate S = ¥7relar Where Treiqz is the equilib-
rium internal relaxation time of the solute. Polymers of size L are strongly deformed
and oriented by the shear flow when the reduced shear rate 8, = 79L?4 > 1. When
we analyze the orientation and the deformation of our micelles in a given shear flow
4, we observed the following situation: for small size chains with L < A, there is a
systematic increase of the deformation and ordering as the size increases, as predicted
by the increasing reduced shear rate §; while for chains longer than A, one gets a
saturation effect in the ordering because, it is the reduced shear rate 8, which is per-
tinent for all longer chains as the life time of the dynamical unit becomes the relevant
time scale of the relaxation and thus governs the importance of the shearing effects.
This is confirmed by our results on the global properties of our sheared micelles sys-
tem: the bond length increase, the birefringence extinction angle, the alignment order
parameter S; (largest eigenvalue of the overall bond order tensor) and more impor-
tantly the ratio n/ng of the effective viscosity over its zero shear rate value, are found
to approach universal functions when these properties are plotted as a function of the
reduced shear rate 87. Regarding more precisely the effective viscosity, we found a
simple exponential dependence with respect to the order parameter Sy, as it had been
empirically observed experimentally in more concentrated micellar systems [55]. We
exploited this exponential behavior to fit a series of viscosity data at fixed w, but at
different shear rates. In this way, we have been able to get rather precise estimates
of mp(w) and hence the dependency of the zero shear rate viscosity upon the time 74
associated with the relaxation of the dynamical units. Our results confirm the validity
of the Faivre-Gardissat theory motivated by the rheology of liquid selenium where sin-
gle atoms are supposed to bind covalently in non-permanent linear assemblies to form
unentangled temporary chain networks. The measured rheological properties of liquid
selenium were interpreted in terms of a variant of the Rouse theory where, in addition
to polydispersity, the scission/recombination kinetics is included in the theory in an ad
hoc way by introducing an extra relaxation mechanism affecting the amplitudes of the

contributions of the particular Rouse modes. One of the major results of our thesis
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is indeed that our model micellar system leads to a viscosity which decreases as the
kinetics gets faster, i.e., as the size of the dynamical units getting smaller.

Finally, our model also predicts that the average micelle size decreases as the shear
rate increases. In our case, we found that this decrease is only a function of the bare
shear rate and is apparently independent of the kinetics, tuned with the w parameter.
We found that actually the shear rate produces effective scission and recombination
rates in which the w dependence remains the one observed at equilibrium, while the
acceptance probability gets larger as the shear rate increases. As the rate relative to the
scission process is more strongly increased by the shear rate than the rate controlling
the recombination process, the chains need to decrease in size in order to increase the
chain end population and satisfy in this way the stationary condition under shear which
require an identical number of events of each type.

Many future perspectives are opened by our work:

The study of dense (possibly entangled) micellar systems is a topic of primary
interest. Efforts are made presently by different groups. On the basis of a micelle
model very similar to ours in which the pair potentials and the I"' range are chosen
differently (but this should not affect the general physical context), work is in progress
in Strasbourg in J. Wittmer group to study 3D and 2D model fluids at high monomer
density.

The study of our model in presence of a planar wall is also an interesting topic as
the anisotropy in the diffusion may induce specific inhomogeneity features and lead to

unexpected features.
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Résumé

Les propriétés statiques, dynamiques, rhéologiques et la cinétique de scissions et recombi-
naisons de micelles linéaires auto-assemblées sont étudiées & 1’équilibre et sous-écoulement par
simulations sur ordinateur, en utilisant un modele mésoscopique nouveau. Nous représentons les
micelles comme des séquences linéaires de billes browniennes dont 1’évolution spatio-temporelle
est gouvernée par la dynamique de Langevin. Un algorithme de Monte-Carlo contréle I'ouverture
des liens ou la fusion de deux chaines par les bouts. Un parameétre cinétique w, qui modélise
I'effet une barriere le long d’un chemin de réaction, est introduit dans notre model.

A TVéquilibre, nous nous concentrons sur les mécanismes de scission/recombinaison au
temps court et au temps long. Nos résultats montrent que pour les temps plus grands que le
temps de vie d’une chaine moyenne, la cinétique est en accord avec le modéle champ-moyen de
Cates. L’étude de phénomenes de relaxation macroscopique tels que 1'évolution de la longueur
moyenne aprés un T-jump (saut en température) et la fonction de relaxation de contrainte
a cisaillement nul confirme que nos constantes cinétiques effectives obtenues aux temps longs
sont en effet les parametres pertinents quand ces relaxations macroscopiques sont couplés a la
cinétique scission/recombinaison des micelles.

Pour la situation hors équilibre, nous étudions les effets du couplage entre un écoulement
de cisaillement et la cinétique de scission et recombinaison, sur les propriétés structurales et
rhéologiques du systéme micellaire. Nous nous placons dans un régime semi-dilué et dynamique-
ment 'unentangled’. Le parametre w est choisi de fagon a ce que la durée de vie d'une chaine
moyenne soit plus courte que son temps de relaxation de Rouse le plus long. Nos analyses font
apparaitre une longueur dynamique A, le fragment de chaine dont la durée de vie 75 est égale
a son temps de Rouse. Nous trouvons que les propriétés telles que le rhéo-fluidification, 1’aniso-
tropie du tenseur de giration, l'orientation des chaines et ’étirement des liens sont des fonctions
du taux de cisaillement réduit 8y = 7o (ol ¥ est le tau de cisaillement, alors que la longueur
moyenne des micelles est une fonction décroissante du taux de cisaillement, Indépendamment

de la barriére du processus scission/recombinaison.



0.0 Introduction

Les solutions de micelles linéaires font partie de systémes macromoléculaires auto-assemblés
qui ont attiré beaucoup d’attention ces derniéres années[1, 2]. Ces derniers, comprenant égale-
ment, entre autres, I’empilement de disques auto-assemblés ou chaines de molécules bi-fonctionnelles,
possede une caractéristique commune, cad qu'’ils peuvent étre vus comme des systémes polydis-
perses de polymeres flexibles. IIs ont néanmoins une spécificité : ces ‘polymeéres’ sont sans cesse
soumis & des processus de scission (d’une chaine en deux) ou de recombinaison (de deux chaines
en une) par les bouts. C’est pourquoi on les appelle le ‘polymeéres vivants’ (en anglais ‘equilibrium -
polymers’). Cette spécificité leur confere des propriétés rhéologiques tout & fait particulieres. Sur
le plan expérimental, les solutions micellaires ont fait objet d’investigations depuis une dizaine
d’années. Le caractére Maxwellien de ces solutions a été constaté[3]. D’autres phénomenes, tels
que les bandes de cisaillement[4] et la transition de rhéo-épaississement|[5] ont été observés. Etant
donné la complexité de ces systemes, il n’est pas aisé d’interpréter les résultats en repérant les
facteurs dominants. Une des complexités est que c’est un systéme & échelles multiples. Dans une
solution micellaire, différentes échelles spatiales et temporelles sont présentes. Il y a par exemple
Péchelle moléculaire du surfactant, ou I’échelle de la dynamique de la micelle qui est compliquée
par le fait qu’elle est ‘vivante’ (par scission/recombinaison). Alors que la théorie des polymeres
est bien établie depuis 50 ans(6, 7, 8], 'étude de polymeéres vivants est relativement récente[1, 2].
Etant donné qu’il est impraticable de construire une approche théorique & I’échelle moléculaire,
des approches basées sur 'approximation 'champ moyen’ ou équations phénoménologiques non-
locales ont été proposées avec certain succes|9, 10, 11], au prix d’approximations raisonnables
mais souvent drastiques, dont certaines ont été questionnées depuis. Par exemple, concernant la
cinétique scission /recombinaison des micelles, une étude théorique par O’Shaughnessy et Yu[12]
propose qu’a part le modele 'champ moyen’, la cinétique peut aussi se passer selon un méca-
nisme contrdlé par la diffusion (diffusion controlled). D’autres parts, les études théoriques ont
pour la plupart étudié les régimes semi-dilués et concentrés, 1a ol les phénomenes de rhéologie
non-linéaire sont les plus spectaculaires et 1a o1 le champ moyen est plus applicable. Il y a donc
un ‘espace’ & explorer concernant des régimes & la limite entre dilué et semi-dilué, ou la théorie de
Rouse classique doit étre élargie(8]. Citons, sur ce sujet, les travaux de Faivre et Gardissat[13],
qui traite la viscoélascité linéaires de polymeéres vivants en régime ’unentangled’, qui permit
d’interpréter la rhéologie du sélénium liquide (possédant un réseau de liens transitoires).

Parallelement, les simulations par ordinateur peuvent éclairer beaucoup d’aspects de ces
systémes, grace aux techniques empruntées de la simulation des polymeéres. Par une modélisa-
tion mésoscopique, les micelles linéaires sont représentées par des chaines de polymeres vivants
capables de scission et de recombinaison. L’avantage des simulations numériques est leurs pos-
sibilités d’étre comparées soit aux expériences soit & la théorie, étant donné que ces systémes
sont difficiles & caractériser expérimentalement et que les résultats ne sont pas simples & in-
terpréter. Le modele sur réseau ’bond fluctuation model’ (BFM) a été utilisé pour étudié les
propriétés statiques et dynamiques des polymeres vivants & ’équilibre[14, 15]. Concernant les
approches dans I’espace continu, on peut citer {16, 17, 18, 19], pour des propriétés d’équilibre

ou sous cisaillement, avec néanmoins des modeéles de micelles qui ne semblaient pas satisfaire la
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micro-réversibilité.

Nous adoptons donc une approche dans I’espace continu, en proposant un nouveau modéle
de micelle respectant la microréversibilité. L’évolution spatio-temporelle des monomeres est régie
par la dynamique de Langevin, et les transitions scission/recombinaisons sont contrdlées par
un algorithme Mont Carlo. Nous introduisons dans notre modéle un paramétre de fréquence de
transition w qui permet de modifier la cinétique des micelles sans changer les propriétés statiques,
telles que la distribution de longueurs, ou la longueur moyenne. Ce paramétre nous permet de
révéler des aspects fondamentaux de la dynamique des micelles.

La thése est organisée comme suit : Chl est consacré & une révision théorique, Ch2 présente
le modéle mésoscopique des micelles ainsi que P'algorithme numeérique utilisée. Dans Ch3 nous
présentons nos résultats du systéme & I’équilibre, notamment concernant la cinétique et les
propriétés dynamiques, tandis que Ch4 traite la situation du systéme sous cisaillement, avec
l’accent mis sur le couplage entre la cinétique et le champ d’écoulement. Dans Ch5 nous donnons
les conclusions.



0.1 Cadre théorique

Dans ce chapitre, nous présentons le cadre théorique de physique statistique qui étudie
un systéme de polymeres vivants & ’équilibre. Ce probléme a vu un progres considérable depuis
les travaux de Cates et d’autres auteurs[2]. Nous avons également revu certaines notions fonda-
mentales dans un article récents[20]. Dans les sections suivantes nous allons présenter : 1) La
distribution des chalnes & 1'équilibre; 2) Le modele de cinétique de Cates et 3) La relaxation
macroscopique et 4) La viscoélasticité des polymeres vivants.

0.1.1 La fonction de distribution des chaines & 1’équilibre

Considérons un systéme de chaines de polymeres vivant, défini par M monomeres dans un
volume V, la densité des monomeres est ¢ = M/V, Penergie de scission est E et la température
du solvant est 7. Comme nous avons montré dans [20], la mécanique statistique d’équilibre
permet de calculer la distribution des longueurs cg(L) et la longueur moyenne Lg. Nous avons,
notamment, pour les chaines idéales :

L
eo(E) = 3 exp (~ 1) o

et B
Ly = Bl/qu% exp (%) (2)

otl B = eb3/C; est une constante dépendant notamment de la taille des monomeres b.

Pour une solution diluée, nous avons Une distribution de Schulz-Zimm :

eo(t) = FRPE 100 exp () 3)
et .
(2NF ety o [ E
LO—(F(v)) Broe ep((uv))' )

ol1 v = 1.167 est une constante universalle des marches au hasard auto-évidente.

Pour une solution semi-diluée, la distribution est donnée par :

_9 L
et la longueur moyenne par :
E
Ly o ¢% exp (%) (6)

ol a=3(1+ 33,%) est environ 0.6 (v = 0.588 est la constante de Flory).

0.1.2 Modele cinétique de Cates pour la scission et la recombinaison

Soit c(t, L) la distribution des chaines au temps ¢, Cates[9] a proposé ’équation cinétique
suivante :
de(t,L)

(o]
= —kyLo(t, L) + 2ks / oft, L')dL’ (7)
dt L

oo
C

kr L ! / ! / /
+ 7 /O ot, I')e(t, L — I'YdL' — kee(t, L) /0 (t,L')dL (8)

6



ou ks et k, sont des constantes cinétique de scission (recombinaison). Naturellement la distribu-
tion d’équilibre co(L) est la solution stationnaire, et k; et k. sont reliés par :
kfr 2
— =1L 9
= 13 ©)
La théorie champ moyen suppose qu’un polymere de longueur Ly a une durée de vie
Ty = 1/(ksLo). Le processus de scission et de recombinaison suit une loi de Poisson. Ce qui
implique que la distribution des temps de premiéres scissions est de la forme :
t
U(t) = exp(——) (10)

Th

pour une chaine de taille moyenne. Pour le bilan détaillé, ¥(t) est aussi la distribution des
premieéres recombinaisons.

0.1.3 Relaxation macroscopique

La relaxation que nous présentons ici correspond & une expérience T-jump (saut de tem-
pérature). Un calcul théorique en champ moyen permet d’exprimer ’évolution de la longueur
moyenne des chaines vers I’équilibre, aprés un saut brutal de température[21]. Si le systéme est
équilibré a T et qu’il est brutalement amené a la température T < Ty (T-jump), la longueur
moyenne évolue de Lo(Tp) vers Ly(T') selon :

< L(t) >= Lo(T)/ coth (t ;th,) (11)
ol
to = 27 coth™ [Lo(T")/Lo(Tp)) (12)
avec T relié au temps de vie moyen 7,(7") par :
r - L (D) (13)

T 2%(T)Lo(T) 2

Donc, cette relaxation de longueur moyenne est intimement reliée & la constante cinétique k4(T).

0.1.4 La viscoélasticité des polymeéres vivants

La viscoélasticité des polymeres vivants est fortement influencée par la cinétique scis-
sion /recombinaison. Pour les systémes semi-dilués et concentrés, Cates et al.[2] ont prédit une
relaxation a un temps, du type Maxwell, avec Trejqz = \/TbTrep OU Trep €5t un temps de reptation
d’une chaine. Pour nous systémes qui sont semi-dilués mais proches du régime dilué, les chaines
sont ’'unentangled’ sur le plan dynamique. Nous devons donc appliquer la théorie de Faivre de
Gardissat[13] qui généralise le modele de Rouse[8]. 1l est prédit, notamment, que la relaxation
du module de cisaillement s’exprime :

t;iir"l_A G(t) = Go\/gﬂ '7‘;59‘ exp (_t/'rrelaz) (14)

ol le temps de relaxation 7yep; = (22/ 3/3)r, ot 1y = 7'b2 / 3(L0)T112/0136(L0). Ce temps 7, n’est rien

d’autre que le temps caractéristique 74, qui correspond & une longueur de chaine A telle que son



temps de Rouse est égal & son temps de vie (cf[15]) : Trouse(A) = 70A? = 7(A) = 1/(ksA). Donc
A est 7p dépendent de k; :

TA = 7_3/3]%—2/3; A = (oks)™Y/3 (15)

Nous allons montrer 'importance de 74 aux Ch3 et Ch4.



0.2 Un modele mésoscopique de polymeéres vivants

Dans ce chapitre, nous présentons un nouveau modele de polymeére vivant qui sert de
modele de base pour nous études numériques des Ch.3 et Ch.4. Nous présentons aussi les al-
gorithmes numériques qui gouvernent ’évolution spatio-temporelle des monomeres et celle du
réseau de liens entre monomeres. Notre modele est inspiré de celui des polymeres FENE[22], tout
en tenant compte de I’aspect scission/recombinaison des chaines, caractéristiques des polymeéres
vivants. Par rapport aux modeéles existants, il préserve la micro-réversibilité par construction
et il permet la variation de la barriére de recombinaison, conduisant & des études intéressantes
sur la cinétique scission/recombinaison. Nous présenterons d’abord le potentiel de pair liées et
non-liées, ensuite nous expliciterons la technique de la Dynamique de Langevin, ensuite nous

présenterons la méthode Monte Carlo utilisé pour faire évoluer le réseau de liaisons.

0.2.1 Le potentiel de paire

Dans notre modele, les monomeres s’intéragissent via un potentiel de paire, dont la forme
differe selon qu’ils sont liés ou non-liés. En effet, les monomeres non-liés s’intéragissent avec Uy
qui est un potentiel de Lennard-Jones répulsif, et les paires liées sont sous U; qui consiste en un
potentiel FENE additionné de Us. La figureldonne un schéma des potentiels Uy et Us.
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FIG. 1 - Le potentiel d’une paire liée U;(r) (courbe continue) et non-liée Us(r) (courbe en
pointillés). W représente ’énergie nécessaire pour ouvrir un lien. La région I" ol les potentiels

s’échangent pendant la simulation en dynamique de Langevin est aussi indiquée.
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F1G. 2 - Représentation schématique d’un écoulement de Couette plan.
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0.2.2 La dynamique de Langevin

Durant nos simulations, ’évolution spatio-temporelle des monomeéres est régie par la dy-
namique de Langevin, qui représente les mouvements de particules browniennes dans un solvant.

En absence d’écoulement macroscopique du solvant, ’équation de Langevin s’écrit :
myti(t) = ~mEvi(t); + Fi(t) + Ri(t) (16)
Avec, pour les forces aléatoire }—?‘,L-, les propriétés suivantes (théoréme de fluctuation-dissipation) :
< Ria(t)Rjp(t") >= 2m;&ikpT 6;;0,50(t — t') (17)

ot a(/3) sont les composants x,y ou z. Une résolution numérique (par pas de temps fini) a été
proposée par[23] qui est basée sur I’algorithme Velocity-Verlet.

En présence du cisaillement, nous avons un champ de vitesse @ with u, = 4y (voir fig2).
L’équation de Langevin devient : Pour assurer le cisaillement & travers les frontiéres de la boite
de simulation, nous adoptons les conditions aux limites de Lees-Edwards|[24] (voir fig3).

0.2.3 Algorithme Monte Carlo

Comme indiqué précédemment, les polymeéres vivants subissent des scissions et des recom-
binaisons & cause des fluctuations thermodynamique (et aussi sous l’effet du cisaillement quand
celui-ci est présent). Nous considérons donc qu’a chaque instant le systéme est représenté par 2M
liens, donc certains sont des vrais liens, d’autres des ’bras pendants’ (chaque monomeére a deux
bras, peuvent donc avoir 0, 1 ou 2 liens). Nous proposons d’utiliser un algorithme Monte Carlo
pour controler la transition entre un état m et un état n du réseau de liens. Cet algorithme est
expliqué en détail dans[20]. Notons que cette probabilté de transition est proportionnelle & w, la
fréquence d’essai par bras. Et les transitions se passent quand deux monomeres se trouvent dans
la zone de distance I" (voir figl). Le parametre w est introduit afin de modéliser une barriere
de recombinaison selon w o exp (—B). Dans nos simulations, w est la fréquence d’essai pour
Pexchange U1 & U; ou l'inverse, par bras de monomere (chacun ayant 2 bras).

10
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F1G. 3 - Représentation schématique de conditions périodiques en cas d’écoulement de Couette
plan.

0.3 Propriétés a 1’équilibre

Ce chapitre est consacré aux propriétés a ’équilibre de nos solutions micellaires, selon
le modele mésoscopique du Ch2. Nos systémes sont composés de M monomeres, dans un vo-
lume V, dans un solvant & température T. Nous fixons la température, ainsi que la viscosité
du solvant. Trois états thermodynamiques ont été explorés. Ces états sont déterminés par les
parametres W (énergie de liaison entre monomeres) et ¢ = M/V la densité des monomeres.
En adoptant les unités de Lennard-Jones, nous avons, pour les trois états, les couples (W, ¢)
suivants : 1.(8,0.05) ; 2.(10,0.15) et 3.(12,0.15), la température T = 1/kp et la viscosité n = 1.
Le nombre de monomeres dans la boite de simulation a été fixé &4 M = 1000. Nous avons pris
pour chaque état plusieurs valeurs de fréquences w. Les résultats de ce chapitre ont fait I'objet
de deux publications|20, 25].

0.3.1 Propriétés statiques

Les premieéres proriétés statiques sont la distribution de longueur de chaine ¢y(L) et la
longueur moyenne Lg. Comme attendu, ces résultats sont indépendants de w. Nous obtenons
Ly = 11.5, 56 et 151 pour les trois états respectivement. Il s’ensuit que I'état 1 est dilué et
les 2 autres semi-dilué. Nous avons vérifié ’accord avec les prédictions théoriques de Chl, avec
E identifiable & W, a une constante additive pres. Les résultats de conformation des chaines

confirment les lois d’échelle bien connues, selon le régime de concentration.
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0.3.2 Propriétés dynamiques

Cette partie constitue une contribution originale que notre modéle permet de faire, grace &
sa capacité & varier w, pour le méme état thermodynamique. En effet, les propriétés dynamiques,
aussi bien la cinétique de scission/recombinaison que la diffusion des monomeéres, dépendent
fortement de w.

L’un des lers calculs que nous avons fait concerne l’estimation de constantes cinétiques
de scission et de recombinaison ks et k, apparaissant dans la théorie champ moyen de Cates[9].
Nous avons montré qu’il est trés important de séparer les échelles de temps dans tout processus
dynamique. En effet, au temps court, les transitions de scission ou recombinaison sont souvent
tout de suite suivies par une transition dans le sens inverse. Ces événement corrélés ne contribuent
pas & la transition ‘vraie’, au sens champ moyen, qui implique, par exemple, une recombinaison de
‘i’ avec ‘k’ apres s’étre séparé de ‘j’ et avoir diffusé. Une facon d’estimer les constantes cinétiques
effectives est de calculer la fonction de distribution des temps de premiéres recombinaison apres
une cassure de lien, qui donne le temps de vie 7, et permet de calculer k; et k, & travers les
relations du Chl. Sur la figd, nous montrons cette distribution ¥(¢) en fonction du temps pour un
cas semi-dilué et & w = 0.5. Nous séparons les recombinaisons ‘self’ (avec son ancien partenaire
suivant une séparation) et les recombinaisons ‘cross’ (avec un autre partenaire que celui duquel le
monomere est séparé). Nos courbes montrent clairement qu’au temps court, les recombinaisons
‘self’ dominent, et qu’au temps long, la tendance est inversée. Le comportement au temps long
correspond & un processus de Poisson et permet d’estimer 7.

Sur la figh, nous présentons ¥(t) pour plusieurs valeurs de w. Nous montrons ainsi que
. plus w est petit, plus vite la limite ‘champ moyen’ est atteinte. Ce qui s’explique par une plus

grande possibilité pour les monomeres de diffuser avant une nouvelle recombinaison.

Bien que ¥(t) permette d’estimer les constantes cinétiques, elle présente un inconvénient
technique dii au manque de statitiques au temps long. Une autre méthode plus précise due
4 Helfand[26, 20] a été appliquée & nos systémes. La fonction H(t) (hasard cumulé) relative
aux statistiques de recombinaisons est engendrée durant nos simulations. Au temps long, cette
fonction est linéaire dont le pente donne 1/7,. L’interception de H(t) avec ’axe des ordonnées
donne —Ink, ol k est le coefficient de transmission, cad la proportion de transitions qui sont
effectives au sens ‘champ moyen’. Sur la figh, nous montrons H(¢) pour P'état 3 (semi-dilué),
illustrant ainsi les comportement aux temps long et court. Les différentes méthodes d’estimation
de ks et k, ont été présentées et commentées dans(25].

Une autre propriété dynamique que nous avons étudiée est le déplacement quadratique
moyen (DQM) des monomeres. Comme ceux-ci appartiennent & des chaines de longues différentes
qui subissent sans cesse des scissions et recombinaisons, 'interprétation du DQM n’est pas aisée.
Cependant, suivant I'idée de Milchev[15] invoquée au Chl, nous pouvons examiner le DQM sous
Pangle de 74. Fig7 montre le DQM des monomeres pour les deux états semi-dilué que nous
avons étudiés et pour plusieurs valeurs de w. Nous constatons un changement de comportment
(Rouse/Einstein) au temps de croisement 7* qui dépend de w. Connaissant le temps 75 par
ailleurs (& travers k), nous observons que 7* & 2.475 pour tous les cas étudiés, montrant qu’en

réalité, c’est 74 qui gouverne ce ‘cross-over’ du DQM. Pour renforcer cette observation, nous
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Fi1G. 4 — Distribution des temps de premieres recombinaisons ¥(t) pour le cas semi-dilué
b
(W = 10) avec une fréquence d’essai w = 0.5. Nous distinguons la recombinaison avec le méme
partenaire (cercles pleins) ou avec un nouveau partenaire (triangles pleins). La ligne en pointillés
(avec une pente —5/4 représente une loi de puissance t~%/* attendue au temps courts[18]. La
ligne solide indique la prédiction ‘champ moyen’ au temps long (pour t > 30).
g

portons dans fig8 7* vs ks pour chaque w, nous observons en effet une loi de puissance —2/3,
comme pour A .

Dans cette partie de thése, nous avons aussi étudié la fonction d’auto-corrélation des
contraintes G(t), ainsi qu’une relaxation macroscopique (T-jump)[25]. Nous avons vérifié que
G(t) suit la prédiction de Faivre et Gardissat invoquée au Chl. Nous avons pu fitter nos résul-
tats avec cette théorie en ayant un seul parameétre libre Gg. Pour la T-jump, notre expérience
numérique de la relaxation de la longueur moyenne < L(t) > apres un T-jump est tout & fait en
accord avec la prédiction théorique[21] basé sur une approche ‘champ moyen’, pourvu que l'on

prenne les constantes cinétiques effectives (estimation au temps long).
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F1G. 5 — Distribution des temps de premiéres recombinaisons ¥(t) pour le cas semi-dilué (W =
10) pour 4 fréquences d’essai, w = 0.1 (cercle plein), 0.5 (carré plein), 1 (cercle vide) et 5 (triangle
pleins). La longueur moyenne pour cet état est Ly = 56.4 et est indépendant de w.

0.4 Propriétés sous écoulement

Ce chapitre est consacré a I’étude de nos solutions micellaires sous cisaillement. Le modeéle
est toujours celui du Ch2. L’état choisi est un état semi-dilué, avec Ly = 56 & I’équilibre. Forts de
nos expériences du Ch3, nous avons choisi les valeurs de w pour qu’il y ait un fort couplage entre
la dynamique des chaines et le processus scission/recombinaison, cad Lo > A. Le but est d’étudier
le couplage entre I’écoulement de cisaillement et cette cinétique de scission/recombinaison. Cette
coulage se manifeste & deux niveaux, d’une part sur les propriétés rhéologiques collectives, d’autre
part sur les propriétés dépendant de longueur de chaines.

0.4.1 Comportement rhéologique collectif

Sous ’écoulement, les micelles ont tendance & s’aligner dans la direction de celui-ci. Cette
propriété peut étre mesurée par ’angle d’extinction xo en fonction du taux de cisaillement 7.
Cette propriété est tracée en figd. On constate que comme prévu, xo est une fonction monotone
décroissante de <, de 45° pour ¥ — 0 & quelques degrés pour les grandes valeurs de . Nous
remarquons également que cette décroissance est plus lente quand w diminue, di a un plus
faible k;. Ce qui est remarquable, c’est quand nous réduisons + par le temps caractéristique
TA, en tracant xo vs Sa = ¥7a, nous trouvons une courbe universelle (indépendante de w). Ce
résultat montre que 'important pour le systéme, c’est 4/(1/74), et non pas % seul. '

Dans fig.10, nous tragons la variation de la longueur de liaison moyenne Al sous Deffet
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F1G. 6 — La fonction du hasard cumulé H(t) pour le cas W = 12. La longueur moyenne est
Lo = 151.4. Les courbes correspondent & plusieurs fréquences d’essai w, qui a pour valeur
0.02 (ligne continue), 0.1(ligne en pointillés) et 1(pointillés et tirets). Remarquons que la cas
dew = 0.02, présentant une interception H; =~ 0 est trés proche du cas ‘mean field’, avec un
coefficient de transmission x = 0.93.

du cisaillement. C’est une fonction croissante de +, et cette croissance dépend de w. Ainsi, w
grand donne une plus faible croissance, due aux scissions/recombinaisons plus nombreuses. En

revanche, quand nous tragons Al vs 85, le méme comportement universel est observé.

La viscosité du systeme se calcule avec la formule 7 = 04, /4. D’aprés|27], cette propriété
est reliée & la structure du systéme, notamment le paramétre d’ordre d’orientation Sy, & travers la
relation n o« exp(—aSr) . Nos expériences numériques vérifient en effet cette relation (voir figl1).

Une extrapolation permet de trouver avec précision la limite Newtonnienne ny pour chaque w.

Dans figl2, nous tragons n/no en fonction du taux réduit 8. D’abord, nous remarquons
que nous avons une courbe maitresse (indépendante de w), ensuite, nous constatons que le
systeme est rhéo-fluidifiant, comme attendu.

L’intérét de connaitre avec précsion 7y pour différente valeurs de w réside dans le fait qu’il
permet de remonter & la théorie de Faivre et Gardissat (viscoélasticité linéaire). Dans Chl, nous
avons donné G(t) qui dépend de deux parametres libres, 75 et Go. Or, l'intégrale de G(t) donne
no- En tracant np en fonction de 75 dans figl3, nous trouvons Gy par un fit. La valeur trouvée
est tres proche du fit basé sur un calcul direct de G(t) [25], avec, la-bas beaucoup de bruits
numeériques.
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FiGg. 7 — Déplacement quadratique moyen des monomeres pour w = 0.1,0.5,1,5 du cas W = 10
et w = 0.02,0.1,1 du cas W = 12. Pour w = 0.02, les comportements au temps court (t*¢) et
au temps long (t!) sont représentés. Ces asymptotes se croisent au temps 7*.

0.4.2 Analyse des propriétés dépendant de la longueur des chaines

Nos études des propriétés dépendant de la longueur ont montré un résultat remarquable :
il y a un phénomeéne de saturation des propriétés matériels, telles que ’angle d’extinction, ou le
parametre d’ordre d’orientation, en fonction de la longueur. Cette situation est mise en évidence
quand nous comparons le comportement de nos polymeres vivants avec celui de systémes polydis-
perses ‘morts’, qui eux, suivent des lois d’échelles déja observées par d’autres auteurs(28, 29, 30].
Et cette saturation arrive pour une longueur L ~ A (voir figl4). Ceci montre que les chaines
plus longues que A se ‘cassent’ avant d’étre alignées par ’écoulement, démontrant de nouveau
le couplage fort entre la cinétique et 1’écoulement.

Une autre propriété structurale que nous avons mesurée est la longueur moyenne des
chaines < L > en fonction du taux de cisaillement (voir figl5). Contrairement aux autres pro-
priétés, celle-ci, une fonction décroissante de %, est indépendante de w, comme & 1’équilibre.
L’explication de ce constat n’est pas encore complete. Il semble que ce soit lié au fait qu’en
écoulement stationnaire, < L > doit satisfaire < L >2= ¢k, /(2k,). Or nous avons constaté que,
sous cisaillement, ks(w,¥) = s(w)Qs(¥) et kr(w,¥) = k(w)Qr(¥), ol k(w) est le coefficient de
transmission a 1’équilibre. Ce qui résulte le comportement de la longueur moyenne en fonction
du taux de cisaillement.
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F1G. 8 — 7* est représenté en fonction de k; dans une écjelle log-log. La ligne en pointillés avec

une pente —2/3 correspond & une loi de puissance 7 o ks 23,

0.5 Conclusions

Dans cette thése, nous avons proposé une nouvelle version de modéle mésoscopique de
polymeres vivants en solution. Et nous avons exploré ce modeéle pour étudier la structure, la
dynamique et la rhéologie de ces systémes complexes & ’aide de simulations numériques et aux
points thermodynamiques en régimes dilués et semi-dilué.

La dynamique et la rhéologie d’un état semi-dilué ont été spécifiquement étudiées. Cet
état présente une longueur de contour moyenne Ly = 57 monomeres. Cette chaine peut étre
vue comme une collection de ‘blobs’ de taille g ~ 37. Etant donné le caractére tres flexible de
nos chaines et le fait que le systéme est modérément semi-dilué, nous sommes dans un régime
dynamique ‘non-entangled’. Par consequent, le temps de relaxation d’une chaine de longueur
L suit une dépendance en L2. Ainsi, nous avons défini une longueur dynamique A telle que
son temps de vie est égal & son temps de Rouse. Il n’ensuit que les chaines plus longues que A
voient leur dynamgiue fortement influencée par la cinétique scission/recombinaison. Nous avons
choisi 'intervalle du parametre de barriére w telle que l'on a des systémes ou Ly > A. Nous
avons pu mettre en évidence de fagon convaincante ’aspect unversel de A et de 7o concernant la
dynamique des solutions micellaires. Nos études ont aussi permis d’apporter un éclairecissement
sur la distinction entre ‘mean field’ ou ‘diffusion contrélled’ concernant la cinétique des micelles.
En fait le passage entre I'un et 'autre se manifeste par un coefficient de transmission k < 1 qui
mesure la proportion de transitions au sens ‘champ moyen’. Nous avons pu & la fois quantifier

K et estimer les constantes cinétiques effectives au sens ‘mean field’. Ces derniers prédisent des
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F1G. 9 — L’angle d’extinction xo en fonction du taux de cisaillement réduit £y, et, dans ’encart,
en fonction du taux de cisaillement 4. Les symboles correspondent & w = 0.1(cercle), 0.5 (carré),
1 (triangle) et 5 (diamand).

relaxations macroscopiques cohérentes avec les théories existantes. En soumettant le systéme &
un écoulement de cisaillement, nous avons, pour la 1ére fois concernant les systémes micellaires,
obtenu des courbes maitresse de rhéologie et de structure du systeme en portant ces propriétés
en fonction du taux de cisaillement réduite par un taux dynamique intrinséque du systéme
1/7p. Ces résultats marquent les lers pas d’études de nos systemes hors équilibre, qui vont é&tre
poursuivies avec l'attention sur la cinétique sous cisaillemnt et le lien entre la cinétique et la

réponse structurale du systéme sous cisaillement.
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Fi1G. 11 — La viscosité en fonction du parametre d’ordre S;. Les symboles correspondent
w = 0.1(cercle), 0.5 (carré), 1 (triangle) et 5 (diamand). Les droites en pointillés sont des fits
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FiG. 13 — La viscosité statique 7y est tracée en fonction de 7 correspondant, & ’aide d’un fit &
un parametre Gy et la théorie de Faivre et Gardissat (Chl).
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Statics, Dynamics, and Rheological properties of Micellar solutions by Computer Simulation
Statics, dynamics, rheology and scission-recombination kinetics of self-assembling linear micelles are
investigated at equlibrium state and under shear flow by computer simulations using a newly proposed
mesoscopic model. We model the micelles as linear sequences of Brownian beads whose space-time
evolution is governed by Langevin dynamics. A Monte Carlo algorithm controls the opening of a bond
or the chain-end fusion. A kinetic parameter ®, modelling the effect of a potential barrier along a
kinetic path, is introduced in our model.

For equilibrium state we focus on the analysis of short and long time behaviors of the scission and
recombination mechanisms. Our results show that at time scales larger than the life time of the average
chain length, the kinetics is in agreement with the mean-field kinetics model of Cates. By studying
macroscopic relaxation phenomena such as the average micelle length evolution after a T-jump, the
monomer diffusion, and the zero shear relaxation function, we confirm that the effective kinetic
constants found are indeed the relevant parameters when macroscopic relaxation is coupled to the
kinetics of micelles.

For the non-equilibrium situation, we study the coupled effects of the shear flow and the scission-
recombination kinetics, on the structural and rheological properties of this micellar system. Our study
is performed in semi-dilute and dynamically unentangled regime conditions. The explored parameter
o range is chosen in order for the life time of the average size chain to remain shorter than its intrinsic
(Rouse) longest relaxation time. Central to our analysis is the concept of dynamical unit of size A, the
chain fragment for which the life time 7, and the Rouse time are equal. Shear thinning, chain
orientation and bond stretching are found to depend upon the reduced shear rate Ba=yts while the
average micelle size is found to decrease with increasing shear rate, independently of the height of the
barrier of the scission-recombination process.

Propriétés statiques, dynamiques et rhéologiques de solutions micellaires par simulation sur
ordinateur

Les propriétés statiques, dynamiques, rhéologiques et la cinétique de scissions et recombinaisons de
micelles linéaires auto-assemblées sont étudiées a l'équilibre et sous-écoulement par simulations sur
ordinateur, en utilisant un modéle mésoscopique nouveau. Nous représentons les micelles comme des
séquences linéaires de billes browniennes dont I'évolution spatio-temporelle est gouvernée par la
dynamique de Langevin. Un algorithme de Monte-Carlo controle 'ouverture des liens ou la fusion de
deux chaines par les bouts. Un paramétre cinétique ®, qui modélise I'effet d'une barri¢re le long d'un
chemin de réaction, est introduit dans notre model.

A I'équilibre, nous nous concentrons sur les mécanismes de scission/recombinaison aux temps long
et court. Nos résultats montrent que pour les temps plus grands que le temps de vie d'une chaine
moyenne, la cinétique est en accord avec le modéle champ-moyen de Cates. L'étude de fonctions de
relaxation macroscopique confirme que nos constantes cinétiques effectives obtenues aux temps longs
sont pertinentes pour ces relaxations.

Pour la situation hors équilibre, nous étudions les effets du couplage entre un écoulement de
cisaillement et la cinétique de scission et recombinaison sur les propriétés structurales et rhéologiques
du systéme micellaire. Nous nous plagons dans un régime semi-dilué et dynamiquement
'unentangled'. Le paramétre o est choisi de fagon a ce que la durée de vie d'une chaine moyenne soit
plus courte que son temps de relaxation de Rouse le plus long. Nos analyses font apparaitre une
longueur dynamique A, le fragment de chaine dont la durée de vie 7, est égale a son temps de Rouse.
Nous trouvons que les propriétés telles que la rhéo-fluidification, l'orientation des chaines et
I'étirement des liens sont des fonctions du taux de cisaillement réduit $,= y1, , alors que la longueur
moyenne des micelles est une fonction décroissante du taux de cisaillement, indépendamment de la
barriére du processus scission/recombinaison.
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