

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

N°d’ordre : année 2006

T H E S E
en Cotutelle entre HUST et l’Université Paul Verlaine de Metz

Présentée en vue de l’obtention des

Doctorat de l’Université Paul Verlaine de Metz

Spécialité : Automatique

Et

Doctorat de l’Université de HUST
Spécialité : System integration & Analysis

Par

Anbo MENG

C O N T R I B U T I O N À L A M O D É L I S AT I O N E T
L ’ I M P L É M E N TAT I O N D ’ U N S Y S T È M E

D ’ E - É D U C AT I O N B A S É S U R L E S
M U LT I - A G E N T S

“Contributions to the Modeling and Implementation of

Multi-Agent Based e-Education System”

Soutenue le 15 novembre 2006 à Wuhan devant la commission d’Examen :

Rapporteurs : MM. Weiyou CAI
Tiebing JIANG
Bernard LAGET

Examinateurs : MM. Zhaohui LI
 Pierre PADILLA
 Jean RENAUD

Daniel ROY
Luqing YE

A Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy in Science

CONTRIBUTION TO THE MODELING AND

IMPLEMENTATION OF MULTI-AGENT BASED
E-EDUCATION SYSTEM (MAGE)

Ph.D. Candidate: MENG Anbo

Major: System Analysis & Integration

Supervisor: Prof. YE Luqing

 Prof. PADILLA Pierre

 Dr. ROY Daniel

Huazhong University of Science and Technology

Wuhan, 430074, P.R.China

nov. 2006

 I

TABLE OF CONTENT

0TABLE OF CONTENT.. 1 14 HI

1 HCHAPTER 1 INTRODUCTION .. 1 15 H1

2 H1.1 BACKGROUND & MOTIVATION .. 1 16 H1

3 H1.2 KEY ISSUES CONSIDERED IN THIS DISSERTATION 1 17 H3

4 H1.3 OBJECTIVES... 1 18 H5

5 H1.4 THESIS ORGANIZATION... 1 19 H6

6 HCHAPTER 2 STATE OF THE ART: E-EDUCATION, PEDAGOGIC

THEORIES & MAS .. 1 20 H8

7 H2.1 INTRODUCTION.. 1 21 H8

8 H2.2 LITERATURE ON E-EDUCATION .. 1 22 H8

9 H2.2.1 Definition ... 1 23 H8

1 0 H2.2.2 Evolution of e-Education ... 1 24 H10

1 1 H2.2.3 Advantages & Disadvantages.. 1 25 H12

1 2 H2.2.4 Trend of e-Education ... 1 26 H14

1 3 H2.3 COGNITIVE THEORY IN EDUCATION... 1 27 H14

1 4 H2.3.1 Cognitive Process .. 1 28 H15

1 5 H2.3.2 Taxonomy of Cognitive Domain .. 1 29 H17

1 6 H2.3.3 Learning Style .. 1 30 H18

1 7 H2.3.4 Constructivism ... 1 31 H21

1 8 H2.4 INTELLIGENT TUTORING SYSTEM .. 1 32 H25

1 9 H2.5 MULTI-AGENT SYSTEM ... 1 33 H30

2 0 H2.5.1 Background.. 1 34 H31

2 1 H2.5.2 Agent .. 1 35 H32

 II

2 2 H2.5.3 Multi-agent System .. 1 36 H33

2 3 H2.5.4 Mobile Agent.. 1 37 H35

2 4 H2.5.5 FIPA Standard.. 1 38 H37

2 5 H2.6 SUMMARY .. 1 39 H42

2 6 HCHAPTER 3 ARCHITECTURE OF MAGE ... 1 40 H45

2 7 H3.1 INTRODUCTION TO E-EDUCATION REFERENCE MODEL 1 41 H45

2 8 H3.1.1 A recommended e-Education reference model 1 42 H46

2 9 H3.1.2 Leaning Technology Systems Architecture (LTSA) of IEEE LTSC...... 1 43 H47

3 0 H3.1.3 LTSA Overview .. 1 44 H47

3 1 H3.1.4 Stakeholder perspectives ... 1 45 H50

3 2 H3.2 FRAMEWORK OF MULTI-AGENT E-EDUCATION SYSTEM (MAGE)

 1 46 H51

3 3 H3.2.1 classifications of agents in MAGE .. 1 47 H52

3 4 H3.3 LEARNING SCENARIOS... 1 48 H55

3 5 H3.3.1 Scenario 1—Agent enabled intelligent tutoring system (AITS)........... 1 49 H55

3 6 H3.3.2 Learning scenario 2—Teacher intervened learning............................ 1 50 H57

3 7 H3.4 SUMMARY... 1 51 H60

3 8 HCHAPTER 4 MAS BASED COURSE & EEO AUTHORING 1 52 H61

3 9 H4.1 INTRODUCTION ... 1 53 H61

4 0 H4.2 DESIGN PRINCIPL AND CONCEPT MODEL 1 54 H62

4 1 H4.3 LEARNING OBJECT DESIGN... 1 55 H63

4 2 H4.3.1 DEFINITION LEARNING OBJECT ... 1 56 H63

4 3 H4.3.2 STRUCTRUE MODEL OF LO.. 1 57 H65

4 4 H4.3.3 EXTENSION OF LO METADATA TO ENHANCE ADAPTIVIEY 1 58 H68

4 5 H4.3.4 PACKAGE MODEL ... 1 59 H68

4 6 H4.4 ARCHITECTURE STRUCTURE... 1 60 H69

 III

4 7 H4.5 COURSE AUTHORING SCENARIOS... 1 61 H71

4 8 H4.5.1 SERCHING LEARNING OBJECTS .. 1 62 H71

4 9 H4.5.2 SUBSCRIPTION.. 1 63 H73

5 0 H4.5.3 NEGOCIATON WITH LO CREATORS ... 1 64 H74

5 1 H4.6 SUMMARY .. 1 65 H75

5 2 HCHAPTER 5 MAS BASED ADAPTIVE & ACTIVE LEARNING

FRAMEWORK 1 66 H77

5 3 H5.1 INTRODUCTION.. 1 67 H77

5 4 H5.2 DOMAIN MODELING ... 1 68 H80

5 5 H5.3 ADAPTIVE INDIVIDUAL LEARNING ... 1 69 H82

5 6 H5.3.1 agent Architecute ... 1 70 H82

5 7 H5.3.2 AUTOMATICE LEARNING PATH GENERATION............................. 1 71 H83

5 8 H5.4 ADAPTIVE COLLECTIVE LEARNING ... 1 72 H86

5 9 H5.4.1 INTRODUCTION .. 1 73 H86

6 0 H5.4.2 peer help MODELING... 1 74 H87

6 1 H5.5 LEARNER GROUP FORMING MODELING............................... 1 75 H94

6 2 H5.5.1 INTRODUCTION .. 1 76 H94

6 3 H5.6 SUMMARY... 1 77 H100

6 4 HCHAPTER 6 AN INNOVATIVE E- ASSESSMENT APPROACH:

MOBILE AGENT BASED PARADIGM ... 1 78 H101

6 5 H6.1 INTRODUCTION .. 1 79 H101

6 6 H6.2 OVERALL FUNCTION STRUCTRUE .. 1 80 H103

6 7 H6.3 PROTOTYPE DESIGN OF GENETIC ALGORITHM BASED MAS TEST

GENERATION SYSTEM (GAMASTG).. 1 81 H105

6 8 H6.3.1 introduction.. 1 82 H106

6 9 H6.3.2 genetic algorithm... 1 83 H107

 IV

7 0 H6.3.3 test ontology design ... 1 84 H108

7 1 H6.3.4 design of ga.. 1 85 H110

7 2 H6.3.5 Architecture.. 1 86 H112

7 3 H6.3.6 state Chart ... 1 87 H115

7 4 H6.3.7 interactive model ... 1 88 H116

7 5 H6.4 DESIGN OF TEST DELIVERY .. 1 89 H119

7 6 H6.5 DESIGN OF EVALUATION & RESULT PUBLISHING 1 90 H121

7 7 H6.6 SUMMARY... 1 91 H124

7 8 HCHAPTER 7 MAS IMPLEMENTATION & SIMULATION BASED ON

JADE FRAMEWORK... 1 92 H125

7 9 H7.1 INTRODUCTION .. 1 93 H125

8 0 H7.2 JADE... 1 94 H126

8 1 H7.2.1 introduction.. 1 95 H126

8 2 H7.2.2 jade architecure ... 1 96 H128

8 3 H7.3 IMPLEMENTATION OF GAMASGT ... 1 97 H129

8 4 H7.4 IMPLEMENTATION OF TEST ONTOLOGY WHITH PROTEGE 1 98 H129

8 5 H7.4.1 7.4.1 design of agent behavior model.. 1 99 H130

8 6 H7.4.2 7.4.2 agent implementation ... 2 00 H134

8 7 H7.4.3 7.4.2.1 generic agent internal architecture 2 01 H134

8 8 H7.4.4 7.4.2.2 Implementation of Teacher agent .. 2 02 H135

8 9 H7.4.5 7.4.2.3 implementation of test generaration service agent (TGSAgent)

 2 03 H138

9 0 H7.4.6 7.4.2.4 implementation of GActrlagent ... 2 04 H139

9 1 H7.4.7 7.4.2.5 TPagent.. 2 05 H141

9 2 H7.4.8 7.4.3 platform implementation .. 2 06 H143

9 3 H7.4.9 7.4.3.1 simulation .. 2 07 H143

 V

9 4 H7.5 IMPLEMENTATION OF LEARNER MODEL AGENT 2 08 H146

9 5 H7.5.1 Protocoal implementation ... 2 09 H146

9 6 H7.5.2 Scenario ... 2 10 H151

9 7 H7.6 IMPLEMENTATON OF PEER HELP SYSTEM.. 2 11 H154

9 8 H7.7 SUMMARY .. 2 12 H158

9 9 HCHAPTER 8 CONCLUSIONS AND PERSPECTIVES............................ 2 13 H159

1 00 H8.1 CONCLUSIONS.. 2 14 H159

1 01 H8.2 PERSPECTIVES ... 2 15 H160

1 02 HACKNOLEDGEMENT .. 2 16 H161

1 03 HREFERENCES.. 2 17 H163

1 04 HAPPENDIX A :FIPA AGENT COMMUNICATIVE ACT LIBRARY......... 2 18 H174

1 05 HAPPENDIX B: MAS BASED E-EDUCATION SYSTEM.......................... 2 19 H177

1 06 HAPPENDIX C: ABBREVIATION.. 2 20 H181

1 07 HLIST OF PUBLICATIONS DURING DOCTORAL STUDY 2 21 H184

1 08 H. .. 2 22 H184

 1

CHAPTER 1 INTRODUCTION

This chaptered is focused on the background, motivation, objectives as well as some
key issues considered in this dissertation. Eventually, the thesis organization is also given.

1.1 BACKGROUND & MOTIVATION

The world is transforming into a global village with the rapid development of
Information and Communication Technology (ICT) (Nabil et al. 1997). In the past decades,
the Internet and Web have rapidly developed into the main platform of software
applications in a wide range of domains. Especially the advance of ICT has potentially
brought about drastic change in the instructional process by enhancing the way information
and knowledge are represented and delivered to learners. As one of the killer internet
applications, the emerging e-Education turns out to be an important aspect for the
educational area (Lennon et al. 2003) as well as for companies as part of a holistic
knowledge management approach (Hasebrook 2001). Most of literatures reveal that
e-Education paradigm has the potential to revolutionize the basic tenets of learning by
making it individual rather than institution-based, eliminating clock-hour measures in favor
of performance and outcome measures, and emphasizing customized learning solutions
rather than generic, one-size-fits-all instruction. consequently, it is not surprising that
e-Education is now becoming more acceptable to corporations, society, and academia
which offer various kinds of online learning environments in support of the flexible,
just-in-time, work-on-hand ,on-demand learning or training programs regardless of
geographical, temporal, physical, social, and economical constraints. As pointed out in
(ADL 2004): “E-learning paradigms and implementations have brought many advantages to
technology-based distance education.” it may be a frontier for new methods of
communication and new technologies giving rise to innovative teaching and learning
practices that may not be possible in traditional face-to-face classroom based education. In
fact, today’s e-Education may have a greater impact on the nature of higher education than
any innovation since the invention of the printing press and is being regarded as a force for
change in higher education, extending and improving education in general.

Although the benefits and potentials of the new generation of e-Education are obvious
and exiting, unfortunately, so far the great potential of e-Education has been far from being
taken full of advantage. Apparently, the current e-Education does not seem to fulfill its
promise to become the most important learning paradigm, especially in the context of the

 2

increased role of continuous and life-long learning. This is often explained by the fact that,
despite their recent impressive developments, most of the currently available e-Education
systems and environments are still less appealing than the traditional face-to-face teaching
methods for both learners and tutors. From the learner perspective, they often complain
about the lack of flexible performance tools in support of personalized and tailored learning,
value-added reflection, mutual simulative knowledge sharing, on-demand expertise finding,
just-in-time peer help as well as efficient and timely tutor guidance. From the tutor
perspective, the main drawback of current e-Education systems is that they tend to require
more effort in terms of authoring learning materials and preparing tests or examinations
than their classical counterparts do. The necessity of mastering technology-intensive
teaching tools and the lack of the tutor’s computer literacy often make tutors reluctant to
participate in online teaching activity. Based on the analysis of the aforementioned
limitations existing current e-Education systems, it is obvious that on one hand, we need to
provide learner with more intelligent learning environment that supports various
customized learning services as needed, on the other hand, we need innovative mechanism
to alleviate tutor workload in terms of facilitating the development of learning contents and
test/exam by hiding as much technique details as possible. Nowadays more and more
educators believe that the above-identified factors are a key to the future successful
e-Education and thus naturally become the focus and motivation of this dissertation. Other
motivations come from the gap between existing and ideal e-Education system that is
identified as several key issues considered in this dissertation, which we can observe in next
section. Nevertheless, the direct motivation of this dissertation derived from the
DUO-FRANCE project co-jointly initiated by ENIM & HUST aiming at developing an
intelligent, flexible, personalized and open e-Education environment in order to improve
learning outcomes and teaching efficiency. To achieve such goal, we explored, and adopted
a series of innovative methodologies, theories, algorithms, and technologies derived from
multiple disciplines such as Multi-Agent System (MAS), Learning Object (LO), Cognitive
Theory (CT), Knowledge Management (KM), Genetic Algorithm (GA), eXtensible Markup
Language (XML), J2EE and so on. In particular, we, in this dissertation, concentrate on the
approach of MAS as a container and supporting environment to integrating and
encapsulating the above mentioned technologies and methodologies, as well as to modeling
and implementing several typical e-Education applications at different levels and different
contexts in terms of content authoring, individual and collective learning, expertise peer
help finding, and test generation, delivery, assessment in distributed learning environment.

 3

1.2 KEY ISSUES CONSIDERED IN THIS DISSERTATION

The following issues at high level are identified as important considerations in this
dissertation, reflecting the motivation and research concerns from different perspectives
through deliberate analysis of the state of the art on e-Education.

 Educational theory: There is an increasing recognition that successful e-Education
requires not only rational and sound technology but an appropriate educational theory,
which has also had an impact on using ICT as technology, is increasingly looked to as
an enabler of learning. Consequently, e-Education has to consider didactical theories in
terms of behaviorism, cognitivism and constructivism (Dietinger 2003) as well as
psychological aspects like cognitive styles, learning strategies, etc. (Blöchl et al. 2003).
The rise of constructivism as the predominant post-modern learning theory and the
recognition of the importance of the social context for learning are changing curricula
and teaching practice. Currently, most of the WEB-based learning systems and
environments are prominently based on objectivist school of thought. Their approaches
to the online learning environment usually transfer traditional classroom instruction to
an online setting, recasting reading materials as web-based materials without taking
into consideration the learner’s different learning style, preference, cognitive ability etc.
from our point of view, these are basically mere Internet-based correspondence courses
which just reflect low-level learning. In this dissertation, we model MAGE on
constructivism basis, taking into consideration the different learner profiles in
individual and collective learning contexts, respectively.

 Interoperability: Due to the necessity of high-quality content, interoperability issues
like transferability and reusability of content as well as the usage of learning object
repositories have to be considered (Qu et al. 2002). In particular, standards for
describing and exchanging e-Education content should be supported by an e-Education
environment. In fact, the standardization process in the field of e-Education is still in
progress and only a few specifications are standardized. Hence, many aspects of
e-Education content can only be described with proprietary specifications, which,
additionally, do not fully support learner-centered adaptivity as shown in (Mödritscher
et al. 2004). In such case, most e-Education system cannot interoperate. In MAGE, our
practice is, on one hand, to assure interoperation as high as possible through
incorporating mainstreaming e-Education specification (e.g. LOM specification), on
the other hand, to enhance the adaptivity by extending existing specification.

 Adaptivity: the lack of adaptivity is considered one important drawback in most

 4

e-Education systems. A paradigm shift from consumption of static learning contents to
well tailored; highly personalized learning sessions is needed (Garcia et al. 2004).
Adaptability has been considered as an important aspect for characterizing and
comparing different systems' behaviors. Therefore, an e-Education environment has to
provide methods to adapt to the learner as well as to the teacher. In MAGE, we
distinguish four categories of adaptivity: Adaptive Interface (AI), Adaptive Content
Delivery (ACD), Adaptive LO Discovery and Assembly (ALODA) and Adaptive
Collaboration Learning (ACL). AI refers to adaptations that take place at the system’s
interface and are intended to facilitate or support the user’s interaction with the system,
without, however, modifying in any way the learning “content” itself, ACD refers to
adaptations that are intended to tailor a course content to the individual learner,
ALODA refers to the application of adaptive techniques in the discovery and assembly
of learning object from potentially distributed LO repositories and ACL is intended to
capture adaptive support in learning processes that involve communication between
multiple users (and, therefore, social interaction), and, potentially, collaboration
towards common objectives. This is an important dimension to be considered as we are
moving away from “isolationist” approaches to group learning, which are at odds with
what modern learning theory increasingly emphasizes the importance of collaboration,
cooperative learning, and communities of learners, social negotiation, and
apprenticeship in learning (Wiley, 2003). Adaptive techniques can be used in this
direction to facilitate the communication / collaboration process, ensure a good match
between peer learners, etc.

 Reusability: the conversion from stand-alone Computer Based Instruction (CBI) to
Web-based learning content was direct adaptations of existing products from CD-ROM
to online delivery. The Web was used initially as little more than a replacement
distribution medium. Content was still static and monolithic (i.e., designed to address
one specific set of learning objectives as a contiguous whole, and not easily broken into
components with significant reuse potential). The situation obviously prevents the
reusability and share of content objects in other application contexts. Furthermore,
failing to separate content and the logic controlling the display and presentation further
aggravate the situation. Therefore, reusable, sharable learning objects and intelligent
authoring methodologies, and adaptive learning strategies should be taken into
consideration. In MAGE, we developed a flexible learning object model and designed a
powerful framework to assure several possibilities of reusability applied to different
contexts.

 5

 Social Intelligence: the application of Artificial Intelligent to education is not a new
thing, including several paradigms, such as Intelligent Computer Aided Instruction
(ICAI), Micro-world, Intelligent Tutoring Systems (ITS), and Intelligent Learning
Environment (ILE). Nevertheless, their intelligence is often restricted in single-user,
single-computer systems because of the lack of dealing with large-scale social
communication ability among different intelligent components in distributed
e-Education context. From my personal point of view, the higher level of intelligence
should be obtained during the process of cooperation, collaboration, negotiation, even
competition among distributed agents on behalf of different particular services,
resources, and human agents. The intention of achieving such intelligence forces us to
have to consider new technology and architecture. Fortunately, the recent emerging
MAS technology seems to fulfill our need and ambition for the purposes of the
provision of efficient mechanism and approach to promoting the intellectual exchange,
collective learning, collaborative endeavors, and socialization. The next section will
further elaborate on the rational of MAS applied in this dissertation.

 Scalability, Robustness and Maintainability: these issues are also considered important
factors that contribute to the success of an e-Education system. From the literature, we
can see that most of traditional e-Education systems are characterized by data-centered,
content-oriented, computing-concentrated, function-interdependent, and logic-coupled.
This obviously impairs the possibility of scalability, reusability, robustness, and
maintenance reliability from technology and system development perspective. How to
address these issues is still an open question. However, from the next section, we can
see that MAS has the most promise to deal with the aforementioned issues.

1.3 OBJECTIVES

The overall goal of this thesis attempts to build a flexible, scalable, adaptive and
intelligent e-Education system aiming at providing an efficient mechanism to personalize
the learner’s learning process, diversify the learning paradigms, help find tailored expertise
and peers and facilitate the development of learning materials and tests through the
integration of some advanced technologies such as MAS, MA, LO, GA, XML and KM as
well as well-established teaching and learning theory.
More specifically, we pursue the following create objectives:

 To develop a multi-agent based learning management system in order to provide an
efficient mechanism to personalize the learner’s learning process, evaluate learner’s
performance, diversify the learning scenarios, offer adaptive course sequencing and

 6

navigation etc.
 To develop a multi-agent enabled e-Education object & course authoring system in

order to provide an efficient and powerful mechanism to facilitate the developing
process of courses and learning objects including searching the appropriate courses
and EEOs, subscription to LCMA as well as negotiation between course and EEO
developers.

 To develop a distance assessment system. In particular, to implement the automatic
test generation system (GAMASTG) in order to facilitate for the tutor or system
agent to automatically compose tests according to the desired parameters (adaptive
or specified by tutor) associated with a test.

 To develop a peer help system in e-Education context in order to provide seamless
access for learners to a variety of distributed help resource including human
resources, like peer help and tutor advice, as well as electronic resources, like
threads in discussion forums, FAQ entries, and web-resources.

 To develop a KM based collaborative learning environment to facilitate collective
thinking, collaborative endeavor, knowledge sharing.

1.4 THESIS ORGANIZATION

The dissertation is composed of eight chapters described as follows:
Chapter 1 introduces the background, motivation, objectives from the general

perspective of the whole thesis.
Chapter 2 focuses on examining the state of the art on e-Education and related

pedagogic theories, methodologies and technologies (MAS in particular) in order to
identify the key components that can be served as the foundation of this dissertation from
pedagogic and technology perspectives.

Chapter 3 analyzes the e-Education reference model based on LTSA of IEEE LTSC
and presents a recommended architecture of multi-agent e-Education system, which
consists of three types of agents: learner-side agents, server-side agents and learning
content-side agents. With this architecture, it is convenient to facilitate the construction of
various flexible learning scenarios and the development of learning contents.

Chapter 4 puts forward an architecture of multi-agent enabled course authoring model based
on e-Education object (MEEOCAS), under support of this subsystem, the course designers may
conveniently develop their courses through assembling the ready-made EEOs instead of
creating them from the scratch. As far as learners are concerned, in MEEOCAS-enabled
environment, they may choose among several available learning patterns (e.g.

 7

course-oriented learning, EEO-oriented learning, self-paced learning, teacher-centered
learning or collective learning pattern etc.).

Chapter 5 proposes a MAS based integrated framework in support of adaptive and
active learning. The aim is to address the adaptive learning issues such as how to
dynamically generate learning path and present tailored learning objects catering for a
learner’s knowledge state and learning preference, how to find appropriate help resources
(e.g. peer learners, learning materials, or other applications) for a learner when s/he
encounters difficulty in learning certain domain concept or topic, how to build collective
learning environment in support of constructivist learning, e.g. a learner can take the
initiative to construct a desired learning group for his or her particular purpose

Chapter 6 puts forward a new approach to building the e-assessment subsystem
applying MAS.. One of the key innovative points is that the core functionality is mostly
carried out by relative mobile agents, as compared with the traditional client-server
computing paradigm, the advantages is obvious such as: communication latency and
bandwidth, asynchronous execution, protocol encapsulation and parallel execution.

Chapter 7 aims at implementing part of models proposed in previous chapters in order
to verify and validate their feasibility and efficiency. The simulation results show the
feasibility and efficiency of the models proposed in this dissertation.
Chapter 8 draws the conclusions and conducts some perspectives.

 8

CHAPTER 2 STATE OF THE ART: E-EDUCATION,

PEDAGOGIC THEORIES & MAS

This chapter focuses on examining the state of the art on e-Education and related
pedagogic theories, methodologies and technologies(MAS in particular) in order to identify
the key components that can be served as the foundation of this dissertation from pedagogic
and technology perspectives

2.1 INTRODUCTION

E-Education paradigms and implementations have brought many advantages to
technology-based e-Education as pointed out in (ADL 2004). Since e-Education on its own
is accompanied by many disadvantages, it is recommended that technology-based learning
should be combined with conventional courses (Garcia et al. 2004). Besides, e-Education
has to consider pedagogic theories in terms of behaviorism, cognitivism and constructivism
(Dietinger 2003) as well as psychological aspects like cognitive styles, learning strategies,
etc. (Blöchl et al. 2003). Furthermore, it is believed that adaptation, personalization and
socialization will greatly improve learning quality and enhance learning efficiency.
Therefore, e-Education is a big picture, which involves several cross disciplines such as
computers, psychology, pedagogy and so on. To go deep into this thesis, it is necessary to
introduce and examine the relative topics involving e-Education and related pedagogic
theories, methodologies and technologies, which will applied to the relevant architectures,
models or algorithms in the following chapters.

2.2 LITERATURE ON E-EDUCATION

2.2.1 DEFINITION

There are many terms for e-Education. Frequently used vocabularies include:
e-Education, e-learning, distributed learning, distance education, distance learning, online
learning, virtual education, Internet-based education, Web-based education, and education
via computer mediated communication (CMC) etc. Although they can be considered as
interchangeable and equivalent at most cases, sometimes, they make us confused. From the
literature observation, the commercial community tends to use e-learning while the

 9

academia tends to use distance education. The possible reason is that e-learning providers
often focus on course content, while distance education institutions emphasize on the whole
range of educational services. In this dissertation, we tends to use e-Education throughout
this dissertation except that we have to respect the original references, the reason is based
on the following considerations:

 The research scope is constrained within online education via Internet, the concept
distance appears not to be anymore important;

 E-Education not only includes e-learning but e-teaching. More specifically, an ideal
e-Education system needs to provide channels to facilitate both learning and teaching.

Since e-Education is our focus in this dissertation, it is necessary to examine its
definitions from mainstream literature. Actually, there exist no acknowledged standard
definition; the following lists of definitions are used to interpret the concept e-Education
from different perspectives (note that we referred to the original terms for e-Education put
forward by the authors).

According to Desmond Keegan’s (1988), distance education is characterized by:
 the separation of teachers and learners which distinguishes it from face-to-face

education;
 the influence of an educational organization which distinguishes it from self-study

and private tutoring;
 the use of a computer network to present or distribute some educational content;
 the provision of two-way communication via a computer network.
DerekStockley (2004) defines e-learning as “the delivery of a learning, training or

education program by electronic means. E-learning involves the use of a computer or
electronic device in some way to provide training, educational or learning material.”

Porter (1997) shared that distance learning was education or training offered to
learners who are in a different location than the source or provider of instruction. Porter
went on to say that the technologies used in distance learning, the structure of a course or
program, and the degree of supervision for a distance learning course can be varied to meet
a particular’s group’s needs or interests.

Taking into consideration these definitions it can be summarized that all of them
comprise the combination of the following basic components: learning activities and
teaching via different electronic media. That is why it becomes very important to be aware
of some instructional and technological aspects during the development process of any
e-Education system. In this context, the main goal of this dissertation is to investigate the

 10

didactical aspects of e-Education as it concerns the development of e-Education
environments as well as it refers to the use of these environments and all proper
technological tools. The strong expectations that high-level technological tools will increase
the quality of any e-Education course often follow to an underestimation of the educational
objectives being set. According to our experience, the crucial question is not what
technological tools are to be used during the development process of an e-Education system?
The core problem is how to design and plan an e-Education course that ensures the
achievement of the educational objectives?

2.2.2 EVOLUTION OF E-EDUCATION

The history of E-Education is also a history of communication technologies. As new
communication technologies have been developed, they have joined the repertoire of the
distance educator. Generally, each of the emerging educational delivery technologies has
been incorporated into different e-Education systems, resulting in a total multimedia-based
e-Educational system comprised of various generations of distance technology and media.
In other words, the different technologies and media have complemented and supported
each other, rather than replaced existing ones. Historically, e-Education operations have
evolved through the following four generations: first, the Correspondence Model based on
print technology; second, the Multi-media Model based on print, audio and video
technologies; third, the Tele-learning Model, based on applications of telecommunications
technologies to provide opportunities for synchronous communication; and fourth, the
Flexible Learning Model based on online delivery via the internet. Although the latter
approach is still gaining momentum, as we stride into the new millennium, there is already
emerging the fifth generation of e-Education based on the further exploitation of new
technologies. The fifth generation has the potential to decrease significantly the cost of
online tuition and thereby increase significantly access to education and training
opportunities on a global scale. Through the application of automated response systems,
which entail the use of software that can scan the text of an incoming electronic message
and respond intelligently- without human intervention. In fact, the fifth generation of
e-Education is a derivation of the fourth generation, which aims to capitalize on the features
of the Internet and the Web. To place the fifth generation Intelligent Flexible Learning
Model into a meaningful conceptual framework, it is first worth reviewing briefly certain
features of the previous four generations of e-Education. Some of the characteristics of the
various models of e-Education that are relevant to the quality of teaching and learning are
summarized in Table 2-1, along with an indicator of institutional variable costs (Taylor et al.
1993). In traditional e-Education delivery, the distribution of packages of self-instructional

 11

materials (audiotapes, videotapes, etc) is a variable cost, which varies in direct proportion
to the number of learners enrolled. Internet-based delivery, however, changes significantly
the institutional costs associated with learners gaining access to learning experiences. For
example, a key consideration for the fifth generation is the use of automated response
systems to reduce the variable cost of computer-mediated communication (CMC), which in
the fourth generation is quite resource- intensive.

Table 2-1: Models of E-Education - A Conceptual Framework

Models of E-Education and Characteristics of Delivery Technologies
Flexibility Advanced

Interactive Associated Delivery Technologies
Time Place Pace Delivery

Institutional
Variable Costs
Approaching
Zero

First Generation - Correspondence
Model
 Print

Yes

Yes

Yes

No

No

Second Generation - Multi-media Model
 Print
 Audiotape
 Videotape
 Computer-based learning
 Interactive video (disk and tape)

Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes

No
No
No
Yes
Yes

No
No
No
No
No

Third Generation - Telelearning Model
 Audio teleconferencing
 Videoconferencing
 Audio graphic Communication
 Broadcast TV/Radio and

Audio teleconferencing

No
No
No
No

No
No
No
No

No
No
No
No

Yes
Yes
Yes
Yes

No
No
No
No

Fourth Generation –
Flexible Learning Model
 Interactive multimedia (IMM)
 Internet-based access to WWW

resources
 Computer mediated communication

Yes
Yes

Yes

Yes
Yes

Yes

Yes
Yes

Yes

Yes
Yes

Yes

Yes
Yes

No

Fifth Generation –
Intelligent Flexible Learning Model
 Interactive multimedia (IMM)
 Internet-based access to WWW

resources
 Computer mediated communication,

using automated response systems.

Yes
Yes

Yes

Yes
Yes

Yes

Yes
Yes

Yes

Yes
Yes

Yes

Yes
Yes

Yes

 12

2.2.3 ADVANTAGES & DISADVANTAGES
The chief advantages of E-Education programs are that learners can learn at their

convenience thus accommodating work and personal life and that it can be accessed by
those who do not live near or who cannot attend traditional training centers and universities.
This is tempered, however, by some of the costs and personal motivation needed to
complete programs. For faculty, teaching at a distance requires a large shift in what is
normally performed from being just a teacher to being a combination of facilitator, coach,
and mentor. Last-minute preparation in isolation cannot happen since one needs to work
with a team of professionals. Typically, teaching at a distance requires more time and
faculty workload (Billings 1997). Cravener (1999) found in her review of 185 articles that
having learners at a distance increased faculty time demands when compared with the
classroom courses. For example, in a graduate epidemiology course, administrators
complained of the number of e-mails and feedback needed to make learners feel less
isolated and supported (Rose et al. 2000).

In e-Education, the learner is usually isolated. The motivational factors arising from
the contact and competition with other learners are absent. The learner also lacks the
immediate support of a teacher who is present and able to motivate and, if necessary, give
attention to actual needs and difficulties that crop up during study. Distant learners and their
teachers often have little in common in terms of background and day-to-day experiences
and therefore, it takes longer for learner-teacher rapport to develop. Without face-to-face
contact distant learners may feel ill at ease with their teacher as an “individual” and
uncomfortable with their learning situation. In e-Education settings, technology is typically
the conduit through which information and communication flow. Until the teacher and
learners become comfortable with the technical delivery system, communication will be
greatly inhibited.

Other advantages and disadvantages have been identified from numerous studies of
e-Education in diverse fields (see Table 2-2).

 13

Table 2-2: Advantage and Disadvantage of E-Education

Advantages Disadvantages

Convenience
Ability to participate in learning
activities at the learners’
convenience, at work or at home.

Team
approach

Need a team of technical and
pedagogical experts to develop
course and content.

Accessible

Learners in rural areas can learn
without incurring lengthy
transportation costs. Women in
traditional societies can learn at
home.

Faculty
workload

Need new teaching methods to offer
same content; Typing comments or
corrections makes grading slower.
No chance for improvisation.
Learners need more support than in
traditional courses. Volume of
communications increase.

Cost savings

Can be realized by decreasing
learning time for learners and
saving travel time and expenses to
send faculty or learners to remote
sites. School buildings are not
required.

Cultural
differences

Wider attendance means difficulty
in addressing curriculum to different
segments of learners.

Just-in-time

Access to more material for wider
audience. Access to training
means workers can immediately
applies knowledge and skills to
the job.

New
technology

Must teach learners e-mail,
computer skills, and networking.
User guides have to be developed.

Computer
proficiency

Those that use computers in
e-Education programs often gain
high computer proficiency.

Lack of visual
and nonverbal
cues

Written communications are more
structured and formal than verbal.
Isolation and alienation is an issue.

Instructional
quality

A team of professionals often
crafts e-Education programs.
Many programs go through
extensive quality control.

Higher room
for error

The increased number of people on
the development team needs
heightened coordination.

Teamwork
Distance learners tend to support
each other more and develop
strong networks.

Over reliance
on technology

Often depends on control of
institution. Service failures, power
losses, malfunctioning of computers
or audiocassette players.

Inexpensive
Costs saving increase over time as
up-front development costs are
absorbed and more learners enroll.

Expense of
technology

Programs that rely on satellites
and/or computers cost a great deal.

High degree of
motivation

Dropout rates are very high due to
the high degree of self-directedness
required to finish.

 14

2.2.4 TREND OF E-EDUCATION
Literatures show that the future of e-Education imposes: the development of adaptive

e-Education environments have to take into account the pedagogical and psychological
theories of learning, enhancement of the standards and specifications for e-learning as it
concerns some didactical issues, and investigations concerning the elaboration of the
methodology for developing learning content and conducting e-Education with the
technological tools being worked out. The emerging trends in e-Education identified by
Ohio(2004) are shown as table 2-3.

Table 2-3: Current and Emerging Trends in e-Education from (Ohio 2004)

Traditional Emerging

Learners are considered receptacles
Learners share responsibility for their learning;
self-directed learning

Faculty own content Faculty act as director of learning team
Institutions act independently Institutions act through partnerships for learning

Learning is confined by semesters, quarters, etc.
Learning happens in varying timeframes, open
entry, open exit, etc.

Degrees based on credit hours Degrees based on competency exams
Learning in the classroom Learning takes place in multiple areas
Courses packaged one way Courses packaged multiple ways: i.e. modules
Faculty-centered Learner-centered

Relatively homogeneous learner population
Varied learner population: diversity in culture,
age, etc.

Emphasis on college experience Emphasis on learning

Faculty to learner model
Customer service model: demands for immediate
information

Less competition for higher education
More competition: corporate and for-profit
institutions

Technology played a small role in delivery of
coursework and is less accessible to the masses

Technology plays a major role in course delivery
and is more readily accessible to the masses

Technology evolved but not at rapid pace Technology innovations change daily and have
high cost

2.3 COGNITIVE THEORY IN EDUCATION

Cognition can be defined as “the act or process of knowing”; or more specifically, “an
intellectual process which transforms perception or ideas into knowledge” (Web 1913).
Cognition was crucial in the development of psychology as a scientific discipline. There are
a variety of perspectives and emphases within cognitive psychology that are currently

 15

impacting educators’ concern about how to improve the teaching and learning process. For
instance, the Cognitive Processing focuses on the study of the structure and function of
mental processing within specific contexts or environments (Rau 1995). The Taxonomy of
the Cognitive Domain (Bloom 1956) is widely used to classify the variety of educational
objectives related to what and how people know. The Cognitive/Learning Style Theory may
be used to predict the most effective instructional strategies or methods for a given
individual learning task. The Constructivist Learning Theory may be used as a guide to
build modern learner-centered constructivist learning environment.

Consequently, it is necessary to discuss the aforementioned cognitive theories and
their implications to e-Education as there is an increasing recognition that successful
e-Education requires not only rational technologies but sound cognitive learning theories
which provide both theoretical foundation and practical opportunity for this thesis to move
towards building MAS based constructivist learning environments in support of developing
learner’s individual and social ability from different perspectives.

2.3.1 COGNITIVE PROCESS
Cognitive learning theory explains how mental processes transform information

received by the sensory organs into knowledge and skills in human memory. In general, the
human being has a three-level memory structure: sensory memory, working memory, and
long-term memory. Cognitive learning theory explains the human being’s cognitive process
of learning with several key ideas (Clark and Mayer 2002): (1) human memory has two
channels, visual and auditory, and a limited capacity for processing information, (2)
learning occurs by active processing in the memory system, and (3) new knowledge and
skills must be retrieved from long-term memory for transfer to the job. As Clark pointed
out, when a learner interacts with a tutoring system, a lesson’s visual and auditory
information enters the learner’s eyes and ears. This information is briefly stored in the
sensory memory. It then enters working memory and is finally stored in long-term memory.
The working memory is the center of cognition where all active thinking takes place but its
capacity is very limited. Learning requires new knowledge and skills stored in working
memory to be integrated with existing knowledge in long-term memory. The integration
process is an encoding procedure, which requires active processing of the information in
working memory. The active processing in working memory is called rehearsal. Later, the
learner must be able to retrieve those skills from long term memory back into working
memory for solving problems. It is obvious that the human being’s learning is active
information processing procedure. Thus, it is very natural that more learner control
strategies should be used in tutoring system in order to optimize the learning outcome and

 16

increase the involvement and autonomy of learners in learning.
Because the learner’s cognitive system has limited capacity competed by many

sources of information, the learner must select those that best match his/her goals. Thus the
tutoring systems should provide learners with information selection opportunities as well as
selection guidance. The integration work requires that the limited working memory
capacity be not overloaded, so the systems should enable learners to reduce their cognitive
loads. To support the knowledge retrieval process, the systems must provide a job context
during learning that will contain the needed retrieval links for learners’ use. In addition, just
as a computer has an operating system to manage data transfer, the human processor has
metacognition to manage the learning processes. Metacognition refers to the mental
management processes that monitor those information processing. A learner with effective
metacognitive skills is able to set learning goals, decide in effective ways to reach those
goals, oversee the progress, and make necessary adjustments. A good tutoring system
should provide some of the management processes to enable high metacognitive learners to
take advantage of them and also help learners with low metacognitive skills for successful
learning.

In (Clark and Mayer 2002), there are multiple options identified for the learner control
strategy:

 Content and content sequencing. Learners can select instructional goals and
contents, and control the display order of the courses, topics, and screens within a lesson.

 Pacing. Learners can control the time spent on each lesson. Except for short video
or audio sequences, learners can allocate different time periods to lessons for mastery
according to their own needs.

 Access to learning support. Learners can control when to access which
instructional components of lessons such as helps, examples, practice items, and coaches.

 Instructional interaction method. Learners can decide whether to learn individually
or collaboratively, select peers as learning partners, and negotiate with systems on
instructional goals and course contents.

The last option of instructional interaction method is generated with the emergence of
collaborative learning and constructive learning. All these control options represent the
different tutoring and learning needs. In tutoring systems, they can be controlled by learners
to different degrees through corresponding software mechanisms. Note that although
learners can control tutoring and learning, the learner control strategies are eventually
implemented by software tutoring systems.

 17

2.3.2 TAXONOMY OF COGNITIVE DOMAIN
Beginning in 1984, a group of educators undertook the task of classifying educational

goal and objectives. The intent was to develop a classification system for three domains: the
cognitive, the affective, and psychomotor. Work on the cognitive domain was completed in
1956 by Bloom and commonly referred to as Bloom’s Taxonomy of the Cognitive Domain
that is now most widely used ways of categorizing level of abstraction of questions that
commonly occur in educational settings. The major idea of the taxonomy is that educator
may organize knowledge following a complexity hierarchy from lesser to more complex
concepts. The taxonomy is demonstrated in table 2-4 with sample verbs for each level.

Table 2-4: Taxonomy of Cognitive Objectives/Educational Objective in Cognitive

LEVEL DEFINITION SAMPLE VERBS

KNOWLEDGE

Learner recalls or recognizes
information, ideas, and principles in
the approximate form in which they
were learned.

Write List Label
Name State Define

COMPREHENSION
Learner translates, comprehends, or
interprets information based on prior
learning.

Explain Summarize
Paraphrase Describe
Illustrate

APPLICATION

Learner selects, transfers, and uses
data and principles to complete a
problem or task with a minimum of
direction.

Use Compute Solve
Demonstrate Apply
Construct

ANALYSIS

Learner distinguishes, classifies, and
relates the assumptions, hypotheses,
evidence, or structure of a statement
or question.

Analyze Categorize
Compare Contrast
Separate

SYNTHESIS
Learner originates, integrates, and
combines ideas into a product, plan
or proposal that is new to him or her.

Create Design
Hypothesize Invent
Develop

EVALUATION
Learner appraises, assesses, or
analyzes on a basis of specific
standards and criteria.

Judge Recommend
Critique Justify

Bloom's Taxonomy is a convenient way to describe the degree to which we want our
learners to understand and use concepts, to demonstrate particular skills, and to have their
values, attitudes, and interests affected. Therefore, it permits teachers to introduce a
pedagogical decision rule in their teaching material, based on learner abilities, to determine
the learner’s state of knowledge and adapt learning materials. One of its applications in this

 18

thesis can be found in chapter 6

2.3.3 LEARNING STYLE
The ways in which an individual characteristically acquires, retains, and retrieves

information are collectively termed the individual’s learning style (Felder 1995). As Felder
pointed out that people never learn in the same way, but always in many ways—“by seeing
and hearing; reflecting and acting; reasoning logically and intuitively; memorizing and
visualizing”. The notion of learning style has been introduced by educationalists as a
“description of the attitudes and behaviors that determine our preferred way of learning”
(Honey 2001). In the past decades, researchers from different disciplines have intended to
define and classify learning styles aiming at facilitating the individualized teaching and
learning process. Literatures show that learning style theory has been important pedagogic
foundation of intelligent tutoring system. However, there exist many different ways of
categorizing learning styles. For example, Pask’s (1975) Serialist Versus Holist indicates
serialists prefer to learn in a sequential fashion while holists prefer to learning in a
hierarchal manner. Kolb’s Learning Style Inventory describes learning styles on a
continuum running from concrete experience, through reflective observation, to abstract
conceptualization, and finally active experimentation (Kolb and Fry 1975; Kolb 1984).
Gardener’s Multiple Intelligences (Gardner 1993) divides learning styles as dealing with
words (Vernal/Linguistic), questions (Logical/Mathematical), pictures (Visual/Spatial),
music (Music/Rhythmic), moving (Body/Kinesthetic), socializing (Interpersonal), and
alone (Intrapersonal). The other popular learning style theories include the
Felder-Silverman Learning Style Theory (Felder and Silverman 1988; Felder 1993),
Litzinger and Osif Theory of Learning Styles (Litzinger and Osif 1993), Myers-Briggs
Type Indicator (MBTI) (Briggs and Myers 1977; Myers and McCaulley 1985).

Especially in the recent years, some instructional practitioners have started to adopt
learning style theories and explore the delivery of learning contents adapted to the learner’s
learning style preference in Web-based systems. For instance: the system developed by
Carver et al. (1996, 1999) relates learning styles based on Felder- Silverman Learning Style
Theory to course components, this system presents a list of links by order to each learner
according to their learning style, leaving the individual learner to explore the course by
clicking these links. The Web-based system created by Paredes and Rodriguez (2002) uses
Felder-Silverman Learning Style Theory and Index of Learning Styles to assess learner’s
learning styles. Then the assessment result is used to automatically adapt Web-based
educational systems’ content sequencing for learner. However, the system only supports
two dimensions of four dimensions in the Felder-Silverman Learning Style Theory. The

 19

Arthur system (Gilbert and Han 2002) assumes four leaning styles: auditory, visual, tactile
or a combination of these styles, and there is respective course material for each style.
When learner first time enters the system, the course content is delivered to learner
randomly. Then the system monitors learner’s learning process and base on learner’s
evaluation to update learner’s learning styles (auditory, visual, tactile or a combination of
them). According to learner’s latest learning styles, the system provides the suitable course
content. The learning styles supported by the system are not based on any educational
learning style theory, so its learning styles are more or less like preference. The other
reportable applications and contribution in such direction can be observed in (Specht and
Oppermann 1998; and Hong and Kinshuk 2004). Different systems have various ways to
collect learner’s learning styles, such as interview, questionnaire, and monitor learner’s
behavior. However, an important point that has to be kept in mind is to how to get a useful
learner’s learning style actually is a psychological test process that specially designed, and
not by a simple interview (Brusilovsky, 2001).

Although most of the systems mentioned above have incorporated learning style
theory into the learning material design, the main existing problem consists in their
pedagogies and technologies are not suited to dynamic adjustment to learners’ learning
styles. The knowledge is still delivered in a static way and the learning materials are more
or less preset for a certain type of learning style preference, and will not be changed or
adjusted according to a change of learning style of the user over time. The pedagogy that
integrates learning object and learning style, which we have applied in this thesis, is able to
dynamically organize and deliver learning materials to satisfy individual learning
preference requirements. The key support for dynamic adaptivity is assured by the
incorporation of multi-agent technology into our system. More details on this application
can be referred to chapter 4. The other situation of application of learning style theory to
dynamically grouping learners for collaborative learning in the context of this thesis can be
found in chapter 5

From the existing learning style theory, the Felder-Silverman Learning Style Model is
chosen to be implemented in this thesis. The reasons to choose this learning style theory
are:

 Its Index of Learning Style (ILS) questionnaire (Felder and Soloman, 2003)
provides a convenient and practical approach to establish the dominant learning style of
each learner.

 The results of ILS can be linked easily to adaptive environments (Paredes and
Rodriguez, 2002).

 20

 It is most appropriate and feasible to be implemented for WEB-based courseware
(Carver and Howard, 1999).

Consequently, in the following sections, we describe The FSLSM (Felder-Silverman
Learning Style Model). This model was developed on the basis of theories of psychological
types (Jun 1921) and theory of experiential learning (Kolb 1984) and are now used widely
in the science education and computer assisted learning system. FSLSM categorizes an
individual’s preferred learning style by a sliding scale of five dimensions: sensing-intuitive,
visual-verbal, inductive-deductive, active-reflective and sequential-global. Currently, the
inductive-deductive dimension has been deleted from the previous theory, because of
pedagogical reasons. As shown in table 1, this theory situates a learner’s learning style
preference within a four-dimensional space (see table 2-5), with the following four
independent descriptors:

Table 2-5: Felder’s learning dimensions (Carver, et al., 1999)

Definition Dimension Definitions
Do it Active Reflective Think about it

Learn facts Sensing Intuitive Learning concepts
Require Pictures Visual Verbal Require reading or lecture

Step by step Sequential Global Big picture

The FSLSM learning style dimensions were partially defined in terms of the answers
to the following four questions:

 What type of information does the learner preferentially perceive: sensory—sights,
sounds, physical sensations, or intuitive— memories, ideas, insights?

 Through which modality is sensory information most effectively perceived:
visual— pictures, diagrams, graphs, demonstrations, or verbal—written and spoken words
and formulas?

 How does the learner prefer to process information: actively—through engagement
in physical activity or discussion, or reflectively— through introspection?

 How does the learner progress toward understanding: sequentially—in a logical
progression of small incremental steps, or globally—in large jumps, holistically?

In order to detect the learners learning style, a questionnaire –Index of Learning Styles
(ILS), is developed by Felder and Soloman (2003). The aim of the ILS questionnaire is to
help learners to identify their own dominant learning styles. Currently, the questionnaire
consists of 44 questions that each comes with two possible answers, a or b. All question are
classified correspond to four pairs in the Felder and Silverman Learning Style theory. The
results of questionnaire are explained as follows:

 21

 If your score on a scale is 1-3, you have a mild preference for one or the other
dimension but you are essentially well balanced. (For example, a 3a in the ACT/REF
category indicates a mild preference for active learning.).

 If your score on a scale is 5-7, you have a moderate preference for one dimension
of the scale and will learn more easily in a teaching environment, which favors that
dimension.

 If your score on a scale is 9-11, you have a strong preference for one dimension of
the scale. You may have real difficulty learning in an environment, which does not support
that preference.

2.3.4 CONSTRUCTIVISM
Theoretically, the commonly used instructional design models fall into

objectivism-based instructional design models (Gagne et al. 1992), and
constructivism-based instructional design models (Spiro 1992; Jonnassen 1998 & Hannafin
1999). The objectivist models are associated with behaviorism and cognitivism. They are
both governed by an objective view of the nature of knowledge and what it means to know
something. Behaviorism influenced traditional design models by providing prescriptions
about the correlation between learning conditions and learning outcomes. Cognitive science
has also contributed to traditional models by emphasizing the learner’s schema as an
organized knowledge structure. Objectivists believe that knowledge and truth exist outside
the mind of the individual and are, therefore, objective. Learners may be told about the
world and be expected to replicate its content and structure in their thinking (Jonnassen,
1991). Constructivists, on the other hand, believe that knowledge and truth are constructed
by the learner and do not exist outside of his mind (Duffy and Jonassen, 1992). Therefore,
according to constructivists, “learners construct their own reality or at least interpret it
based upon their perceptions of experiences, so an individual's knowledge is a function of
one's prior experiences, mental structures, and beliefs that are used to interpret objects and
events.”(Jonasson 1991).

As a theory of learning, Constructivism is a philosophical view about knowledge,
understanding and learning that has roots both philosophy and psychology. The essential
core of constructivism is that learners actively construct their own knowledge and meaning
from their experiences (Fosnot 1996; Steffe and Gale 1995). Constructivism holds that
learning is a process of building up structures of experience. By contrast with the traditional
view of education as a process involving the transmission of knowledge from teachers to
learners, a constructivist view believes that learning occurs through a process in which
learners play active roles in constructing the set of conceptual structures that constitute their

 22

own knowledge base.
Constructivist learning theory acknowledges that learners encode their understandings

in language. Hence, communication is essential for all learning. Learning is a social act that
cannot occur in isolation from others, even if they are not physically present. Knowledge,
therefore, is something that belongs to both the individual and the community. Learning is
set in context so that learners are aware of the purposes and applications of their learning,
and recognize the effect that the context itself has on their learning.

Most of constructivist models are based on a set of philosophical assumptions and
provide designers with a set of very general guidelines and principles that can facilitate
designing a constructivist-learning environment. Among several constructivist instructional
design models (e.g., Bednar et al.1995; Doolittle and Virginia 1999, Hannafin et al. 1999 &
Jonassen 1999), Doolittle et al. (1999) put forward eight primary pedagogical
recommendations in online education environment:

 Learning should take place in authentic and real-world environments.
 Learning should involve social negotiation and mediation.
 Content and skills should be made relevant to the learner.
 Content and skills should be understood within the framework of the learner’s

prior knowledge.
 Learners should be assessed formatively, serving to inform future learning

experiences.
 Learners should be encouraged to become self-regulatory, self-mediated, and

self-aware.
 Teachers serve primarily as guides and facilitators of learning, not instructors.
 Teachers should provide for and encourage multiple perspectives and

representations of content.
Doolittle discussed each of the eight principles and gave each pedagogic statement a

“grade” that reflects the online education’s ability to meet or implement these statements.
For example, Doolittle thought that the fourth pedagogic statement is the most difficult for
online education to handle as probing and responding learner’s prior knowledge in an
asynchronous environment is less fluid and flexible than in synchronous environment. In
the same period, Jonassen (1999), in his model, also presented eight design principles that
can be used to design and develop what he calls the “constructivist learning environment”.
These design principles are as follows:

 Create real world environments that employ the context in which learning is
relevant;

 23

 Focus on realistic approaches to solving real-world problems;
 The instructor is a coach and analyzer of the strategies used to solve these

problems;
 Stress conceptual interrelatedness, providing multiple representations or

perspectives on the content;
 Instructional goals and objectives should be negotiated and not imposed;
 Evaluation should serve as a self-analysis tool;
 Provide tools and environments that help learners interpret the multiple

perspectives of the world;
 Learning should be internally controlled and mediated by the learner.

It is not hard to find that these learning design principles for constructivism both
emphasize on the fact that the designer should produces a learning environment that is
much more facilitative in nature than prescriptive, the content should not be prescribed
beforehand, direction should be determined by the learner and evaluation should be much
more formative assessment and systems should provide more individual and collective
learning supporting agency for facilitating learner to develop understanding through
observation, reflection, experimentation, and interactions with the surrounding environment.
These aspects are also what we consider very important in this thesis. As Doottle stated that
the key to online education and constructivism is not whether or not the potential exists, but
rather, whether or not the potential will be actualized.

Literature on the state of current online education market shows that most of today’s
e-Education systems are dominated by the objectivist school and the use of technology as a
substitute for a teacher delivering instruction. Current approaches to the online learning
environment usually transfer traditional classroom instruction to an online setting, recasting
reading materials as web-based materials. These are basically mere Internet-based
correspondence courses which rely on information acquisition and reflect low-level
learning. As we see in most existing learning systems, the learners learn individually
through computer-mediated communication. They interact with web-based instructional
materials stored at remote locations and have minimal interaction with teachers and peers.
The aim of such systems is to develop a planned online learning environment with
structured, guided but often rigorous study courses and tasks for individual reflection and
problem solving. These courses contain learning objectives, methods, materials and an
evaluation scheme defined by the tutor him/herself. It contains the idea that there is a body
of objective knowledge that can be delivered to learners through presentation and
explanation. Obviously, The online learning environment based on objectivism has a

 24

number of drawbacks, limitations and shortcomings (Mangal 1990), as it does not
encourage learners to develop higher-order complex skills like creativity, problem-solving,
designing and decision-making abilities and the acquisition of knowledge through social
interaction.

It is worth noting that while the traditional objectivism has suffered much criticism,
they still play important role in some context for example, training learners to perform a
task the same way to enable consistency.

With the rapid evolution of information and communication, the advantages of
constructivism are now attracting more and more instructional designers and practitioners
to engage in learning design based on constructivism. Pedagogical methods using the
constructivist approach include collaborative learning and creating learning situations that
enable learners to engage in active exploration and social collaboration. The learners
actively construct knowledge by formulating ideas into words, and these ideas are
developed through the reactions and responses of others. The conversation (verbalizing),
multiple perspectives (cognitive restructuring) and arguments (conceptual conflict
resolutions) that arise in cooperative groups may explain why collaborative groups
encourage a greater cognitive development than the same individuals achieve when
working alone (Sharon 1980). According to the constructivist standpoint that knowledge
has to be discovered, constructed, practiced, and validated by each learner, a collective
learning environment is intended to develop complex skills like creativity, problem-solving,
designing and decision-making abilities (McDonald et al. 1998). The best example
supporting such collaborate learning is the current emerging CSCL (Computer-supported
collaborative learning) paradigm that provides a framework to bring individual learners
together to achieve a shared learning goal by managing their learning processes, using
asynchronous and synchronous communication tools. Based on constructivist theories of
learning, the online education environment can be designed on the assumption that learners
themselves are an active agent and that they use social skills to undertake and complete
group tasks and the tutor should foster the learner’s constructive process and the role of
tutor should be a guide or facilitator to provide expert feedback during knowledge building
through structured collaborative learning tasks. One of the limitations of
constructivist-based environment is that it does not always produce predictable learning
outcomes. For example, in a situation where conformity is essential, divergent thinking and
action may cause problems. Consequently, while the constructivism is becoming the trend
of modern learning theory, there still exists some debate between objectivist and
constructivist instructional design models (Bednar et al. 1995; Dick 1995 & Rowland 1995).

 25

Especially some instructional design practitioners tend to believe that instructional
designers and developers must allow circumstances surrounding the learning situation to
help them decide which approach to learning is most appropriate. In addition, Schwier
(1995) pointed out that it is necessary to realize that some learning problems may require
prescriptive solutions, whereas others are more suited to learner control of the environment.

As we see it, an efficient distributed constructivist learning environment (CLE) is a
technology-rich, open learning space where a learner can use a variety of tools and
information or human resources in her/his pursuit of learning goals and problem-solving
activities. Since CLEs are constructed from the perspective of learners, sensitive to their
learning styles, needs, paces, preferences, prior knowledge, and therefore, such system
should provide learners with scaffoldings that contain tools, strategies, and guides, which
enable learners to interact with construction tools in ways that best enable them to build the
learning systems at different levels of knowledge structure and technological sophistication.

2.4 INTELLIGENT TUTORING SYSTEM

This section briefly examines the state of the art on the main components of traditional
intelligent tutoring system (ITS) and gives some summary analysis for its limitations as
well as its implication to MAS based ITS.

Computer has been used in education for over 20 years, Computer-based training
(CBT) and computer-aided instruction (CAI) were the first such systems deployed as an
attempt to teach using computers. While both CBT and CAI may be somewhat effective in
helping learners, they do not provide the same kind of individualized attention that a learner
would receive from a human tutor (Bloom 1984). For a computer based educational system
to provide such attention, it must reason about the domain and the learner. This has
prompted research in the field of intelligent tutoring systems (ITSs). Especially, the
Carbonell’s (1970) proposal SCHOLAR system created an historical framework for ITSs
that are computer-based instructional systems with models of instructional content that
specify what to teach, and teaching strategies that specify how to teach (Wenger 1987,
Ohlsson 1987).

The concept known as ITS or ICAI (Intelligent Computer-Aided Instruction) has many
roots in Education, Psychology, and Artificial Intelligence (see figure 2-1). Nowadays,
prototype and operational ITS provide practice-based instruction to support corporate
training, college education, and military training.

 26

Fig 2-1. ITS Domain

The goal of an ITS is to provide the benefits of one-to-one instruction automatically

and cost effectively. Unlike other computer-based training technologies, ITSs assess each
learner’s knowledge, skills, and expertise. Based on the learner model, ITS can tailor
instructional strategies, in terms of both the content and style, and provide explanation,
hints, examples, demonstration, and practice problems as needed. By contrast, to CBT,
ITSs offer more considerable flexibility in presentation of material and a greater intelligent
mechanism to adapt to learner individual needs. These systems achieve their intelligence by
making inferences about a learner’s mastery of topics or tasks in order to dynamically adapt
the content or style of instruction. Content models (or knowledge bases, or expert systems,
or simulations) give ITSs depth so that learners can “learn by doing” in realistic and
meaningful contexts. Models allow content to be generated on the fly. ITSs allow
"mixed-initiative" tutorial interactions, where learners can ask questions and have more
control over their learning. Instructional models allow the computer tutor to more closely
approach the benefits of individualized instruction by a competent pedagogue.

However, an ITS will typically constrain the learner to learn by a predetermined
method or strategy (Rid 1989 & Kin 1997). ITS uses a model of the learner’s knowledge
(learner model) so that the learner is presented with new information only when he/she
requires it. This is carried out in order to reinforce a point, to progress in the learning and/or
to identify misconceptions and wrong-rules (Sle 1982). Such systems have been criticized
for constraining the learner to solving a problem in a particular way (Rid 1989). In most
complex problem domains, there can be many methods to achieve a correct solution. Some
people may find one particular method that suits their way of thinking better than others, it
has been argued that learners should be able to experiment with their own ideas and find

 27

methods that naturally suit them.
Literature shows that a number of ITSs implement the cognitive tutoring strategy

(Koedinger 2001; Anderson 1995). While most of today’s ITSs may appear to be
monolithic systems, for the purposes of conceptualization and design, it is often easier to
think about them as consisting of several interdependent components. Previous research by
Wanger (1984), Woolf (1994) and Oliveira (1994) has identified four major components: (1)
the expert module containing the domain knowledge, (2) the learner module, which
accumulates information about the learner’s knowledge, misconceptions and behavior, (3)
the pedagogic module, which includes the pedagogical expertise, and (4) the interface
module (Figure 2-2).

Fig 2-2. Intelligent Tutoring System Architecture adapted from (Wenger 1987)

 The expert module (domain model) is a dynamic representation of the knowledge

domain. It contains domain knowledge, such as facts, concepts, processes, productions, and
procedures required to solve problems. The model allows evaluation of the learner’s
solutions, and can provide examples of correct problem solutions.

 The pedagogy model (curriculum module) sequences the curriculum by comparing

 28

the expert the learner model, has testing procedures that indicate the extent of the learner’s
knowledge, contains strategies that focus on how to teach best, and controls feedback. If the
system is sensitive to misconceptions, this module contains remediation procedures.

 The interface module provides a uniform view of the environment to the user. It
allows the user to interact with the system (as the curriculum module prescribes) by
accessing the tutorial discourse, problems, examples, scores, progress summaries,
representations, and resources (e.g., examples, diagrams, lectures).

 The learner model captures the knowledge status of the learner at any point during
the teaching process. Simple learner models only keep track of topics that the learner has
mastered, and which topics have not yet been covered (Knowledge Spaces, Doignon and
Falmagne 1999). More advanced learner models record misconceptions, build bug libraries,
and implementing VanLehn’s repair theory (VanLehn 1990; Brown and VanLehn 1980), or
record which teaching strategies work best for a specific learner. Unlike other modules, the
learner model deals within formation that is specific to individual learners. Sison (1998)
states in his learner model survey that every learner modeling system is obviously limited
to observable responses of the learner to a stimulus in a domain. He calls this learner
behavior, which can be plain input, an action, a result, or intermediate scratch work. Each
of these options entails a different behavioral complexity and, thus, requires different
strategies to extract useful modeling information. Sison categorizes systems by how many
atomic behaviors they need to gain some information about the learner. He states that
systems, such as Anderson’s tutors (Anderson 1995) build one extreme of the spectrum, as
they verify each keystroke of the user and, thus, use single behaviors to build the user
model. Other modelers derive higher-level structures through rule or decision tree induction
by using multiple behaviors as input.

While ITSs have proven to be successful on a small scale, several problems must be
overcome before they have widespread impact on computer-based learning. Literatures
from Wenger (1987), Bloom (1995), and Mutter (1988) among others have identified a
wide range of limitations associated with the expert module, the learner model, the
pedagogical module, and the interface. They stated that some fundamental shortcomings of
ITS may not by overcome simply through incremental improvements to various ITS
components. These limitations are summarized in table 2-6.

 29

Table 2-6: Limitations of ITS

LIMITATIONS EXPLANATION
In user modeling

In educational design

Self (1990) states that the philosophy behind ITS is only
concerned with “knowledge communication” (Wenger 1987)
and that the goal of teaching is to “transmit a particular subject
matter to the learner” (Ohlsson 1986). Therefore, this view
neglects the general constructivist educational philosophy that
holds that knowledge cannot be communicated or transmitted,
but has to be actively constructed by learners themselves.
However, the research community developing ITSs proved to
be resistant to the adaptation of ideas from educational
psychology for a long time (Self 1990).

In teaching and
pedagogic expertise

Most of ITSs have very impoverished pedagogic component,
Such components often comprise a collection of rules that seem
to work reasonably well in practice, and there is no scientific
encyclopedia of good tutoring heuristics to consult. To improve
the pedagogic capability of a ITS, one needs to enhance the
rule-base coaching of learners, this has to enrich the pedagogic
knowledge base (Ohl 1991).

authoring, architecture
and delivery platform,

bloom (1995) identified four problems in ITS:
1. ITS authoring is complex, requiring special domain
authors.
2. The real world communities (the end users) seem
unwilling to accept the ITS paradigm, mainly because they
do not understand the technology and nothing is offered to
the human teacher.
3. There is very little reuse of ITS architecture across
applications, this argument corresponds with the criticism
of Kinshuk (1997) in that a new ITS is generally developed
for each new domain of applications. Bloom pointed out
that an ITS mut have the ability to reuse the learner model,
the instructional model and the knowledge base inference
mechanism.
4. Most ITSs require specialist delivery platform, i.e.,
they may not suit the systems that the end-user may already
have, although this is less likely to be case today as
computer systems are more and cheaper.

These limitations may be account for the phenomena that very few ITSs are available

over WWW. Besides the limitations mentioned above, one of the main difficulties in

 30

designing intelligent tutoring systems is the time and cost required. A large team, including
computer programmers, domain experts, and educational theorists, is needed to create just
one ITS. Estimates of construction time indicate that 100 hours of development translates
into 1 hour of instruction (Murray and Woolf 1992). One approach to alleviate the
difficulties for developing ITSs is to provide Authoring Tool so that fewer developers
would be needed for the construction of educational software. Another approach to
simplifying ITS construction is to take advantage of the modularity of each system. Despite
the natural breakdown of an ITS into the four components discussed previously, there has
been little effort towards reusing components from one system in the development of
another. This should not only involve developers just reusing their own components, but
should also mean sharing components among different designers. Currently, several
difficulties impede such modularization. First, tutors are written in many different
programming languages that are incompatible. Second, this component view of ITSs is
more of an ideal situation than a reality. Frequently, implementers intertwine the
components into one monolithic system. Furthermore, since the field of ITS is relatively
young, there are not accepted standards for kinds of components nor for their contents.
Finally, there is no protocol for communication between the various parts of an ITS. In this
thesis, we address such issues through incorporation of Multi-agent System. These distinct
advantages of MAS such as reusability, modularity, standard agent communication
language and interactive protocol make easy to solve most of the aforementioned problems
in a natural and graceful fashion. As the reader can see, ITSs match very well with MAS
technology, where each module could be an agent or a set of agents. The related MAS
technology will be discussed in detail in the next section as it is the underpinning and
scaffolding in support of building a personalized intelligent learning environment in this
thesis.

2.5 MULTI-AGENT SYSTEM

Multi-agent system is a relatively new strand of research stemming from distributed
artificial intelligence. This technology has long been perceived as a viable solution for large
complex applications in dynamic environments such as the Internet and the Web. In
particular, in the last few years, a plethora of models, toolkits, methodologies, modeling
languages and so on have appeared in a very short period of time. In the domain of
e-learning, MAS technology is now attracting more and more attention from researchers
and practitioners because of its promise as a new paradigm for conceptualizing, designing,
and implementing increasingly complex distributed learning environments in which various

 31

resources (i.e., online learning resources, human resources, tools) are typically distributed
in different locations in a dynamical fashion, system behaviors are often unpredictable and
system requirements are always changeable. Annex 2 lists several recent applications of
MAS to e-Education, which shows that MAS theory has begun to walk into internet
applications although they are still far away from the mature phase.

In order to better reveal the features of MAS and provide sound theoretic foundation
for subsequent chapters, the following sections will concentrate on reviewing the literature
on topics closely relevant to this dissertation. Consequently, if necessary, some key points
may be explained or demonstrated through some specific agents developed in our system.

2.5.1 BACKGROUND
In the past a few years, the Internet and Web have rapidly developed into the main

platform of software applications in a wide range of domains. In addition to the common
features of distributed systems such as concurrency, distributed, hypermedia, etc., the Web
and Internet based systems have the new features of autonomy, evolutionary life-cycle,
collaboration, etc. Consequently, software engineering of such systems is confronted with a
number of challenges, such as to deal with service-oriented computing, dynamic integration
of autonomous components, distributed and mobile computing, etc. Furthermore, real
problems involve distributed, open systems (Hewitt 1986). An open system is one in which
the structure of the system itself is capable of dynamically changing. The characteristics of
such a system are that its components are not known in advance; can change over time; and
can consist of highly heterogeneous agents implemented by different people, at different
times, with different software tools and techniques. Perhaps the best-known example of a
highly open software environment is the internet. The internet can be viewed as a large,
distributed information resource, with nodes on the network designed and implemented by
different organizations and individuals. In an open environment, information sources,
communication links, and agents could appear and disappear unexpectedly. Currently,
agents on the internet mostly perform information retrieval and filtering. The next
generation of agent technology will perform information gathering in context and
sophisticated reasoning in support of user problem-solving tasks. These capabilities require
that agents be able to interoperate and coordinate with each other in peer-to-peer
interactions. In addition, these capabilities will allow agents to increase the problem-solving
scope of single agents. Such functions will require techniques based on negotiation or
cooperation, which lie firmly in the domain of MASs (Jennings et al. 1998; O’Hare and
Jennings 1996; Bond and Gasser 1988). The growth of the MAS field is indisputable.
Research in MASs is concerned with the study, behavior, and construction of a collection

 32

of possibly preexisting autonomous agents that interact with each other and their
environments.

2.5.2 AGENT
In general, intelligent software agents have their root in three domains (i.e., Artificial

Intelligence, Software Engineering and Human Interface). According to Russel and Norvig
(1996), architecture and program compose an agent. From the architecture perspective, an
agent is anything that can be viewed as perceiving its environment through sensor and
acting upon that environment through effectors. However, from the software perspective,
an agent is substantially a program, which has a specific plan of action, defined in a limited
domain and a behavior pattern, which allows it to change at the right moment, its own
interaction with the world depending on stimuli from the environment (Colazzo and
Silvestri 1997).

Wooldridge and Jennings (1995) divided the notions of agents in two ways: a weak
and a strong approach. The weak notion of agent refers to the following properties:

 autonomy: agents work by their own and have some kind of control over their
actions and internal state;

 social ability: agents interact with other agents (and humans beings) via some kind
of agent communication language and common ontology;

 reactivity: agents perceive their environment, (which may be the physical world, a
user via a graphical user interface, a collection of other agents, the Internet, or all of these
combined), and respond in a timely fashion to changes that occur in it;

 pro-activeness: agents do not simply act in response to their environment, they are
able to exhibit goal-directed behavior by taking the initiative.

The strong notion of agent, in addition to having the properties identified above, is
either conceptualized or implemented using concepts that are more usually applied to
humans. For example, it is quite common in Artificial Intelligence to characterize an agent
using mental notions, such as knowledge, belief, intention, and obligation.

In AI literature, some researchers have further pointed out other interesting properties
as follow:

 Agents must be subservient, i.e., must act on behalf of someone else. It is the
originalsense of the term in AI, where an agent is to perform other's instructions explicitly
(Shoham 1993);

 Agents are persistent software entities (they work all the time during program
execution) dedicated to a specific purpose (so they are distinguished from subroutines)
(Simith et al. 1994);

 33

 They have many functions, but three are essential: perception of dynamic
conditions of the environment action to affect these conditions, reasoning to interpret
perceptions, solve problems, draw inferences and determine actions (Hayes-Roth 1995);

 Agents must be rational - a rational agent is one that does the right thing. The agent
rationality depends on the performance measure that defines degree of success and
perception history (the actions that the agent can perform) (Russel and Norvig 1996);

2.5.3 MULTI-AGENT SYSTEM
Today’s distributed systems are facing to more and more complex, realistic, and

large-scale problems. Such problems are obviously beyond the capabilities of an individual
agent. The capacity of a single intelligent agent is limited by its knowledge, its computing
resources, and its perspective. Just as in human society we have the adage that “no man is
an island”, indicating the fact that no one person is sufficient on her own so also it applies
in the agent universe. A multi-agent system is a collection of agents; each agent is situated
in some environment and is able to interact with its environment and with other agents. As
seen from Distributing Artificial Intelligent, a multi-agent system is a loosely coupled
network of problem solver entities that work together to find answers to problems that are
beyond the individual capabilities or knowledge of each entity. More recently, the term
multi-agent system has been given a more general meaning, and it is now used for all types
of systems composed of multiple autonomous components showing the following
characteristics (Flores-Méndez, 1999):

 Each agent has incomplete information or capabilities to solve a problem and thus
a limited viewpoint.

 There is no global system control.
 Data is decentralized.
 Computation is asynchronous.

Therefore, a multi-agent system should have the following skills (Camacho, 2002):
 Social Organization
 Coordination
 Cooperation
 Negotiation
 Communication

Obviously, such skills differentiate MAS from other related disciplines such as
distributed computing, object-oriented systems, and expert systems. In particular, the
motivations or the increasing interest in MAS research include the ability of MASs to do
the following:

 34

 First is to solve problems that are too large for a centralized agent to solve because
of resource limitations or the risk of having one centralized system that could be a
performance bottleneck or could fail at critical times. Such problem is increasingly obvious
in today’s client-server distributed computing paradigm.

 Second is to allow for the interconnection and interoperation of multiple existing
legacy systems. To keep pace with changing business needs, legacy systems must
periodically be updated. Completely rewriting such software tends to be prohibitively
expensive and is often simply impossible. Therefore, in the short to medium term, the only
way that such legacy systems can remain useful is to incorporate them into a wider
cooperating agent community in which they can be exploited by other pieces of software.
Incorporating legacy systems into an agent society can be done, for example, by building an
agent wrapper around the software to enable it to interoperate with other systems
(Genesereth 1994).

 Third is to provide solutions to problems that can naturally be regarded as a society
of autonomous interacting components-agents. For example, in meeting scheduling, a
scheduling agent that manages the calendar of its user can be regarded as autonomous and
interacting with other similar agents that manage calendars of different users (Garrido and
Sycara 1996; Dent et al. 1992). Such agents also can be customized to reflect the
preferences and constraints of their users. Other examples include air-traffic control (Kinny
et al. 1992; Cammarata, McArthur, and Steeb 1983) and multi-agent bargaining for buying
and selling goods on the internet.

 Fourth is to provide solutions that efficiently use information sources that are
spatially distributed. Examples of such domains include sensor networks (Corkill and
Lesser 1983), seismic monitoring (Mason and Johnson 1989), and information gathering
from the internet (Sycara et al. 1996).

 Fifth is to provide solutions in situations where expertise is distributed. Examples
of such problems include concurrent engineering (Lewis and Sycara 1993), health care, and
manufacturing.

 Sixth is to enhance performance along the dimensions of (1) computational
efficiency because concurrency of computation is exploited (as long as communication is
kept minimal, for example, by transmitting high level information and results rather than
low level data); (2) reliability, that is, graceful recovery of component failures, because
agents with redundant capabilities or appropriate inter agent coordination are found
dynamically; (3) extensibility because the number and the capabilities of agents working on
a problem can be altered; (4) robustness, the system’s ability to tolerate uncertainty,

 35

because suitable information is exchanged among agents; (5) maintainability because a
system composed of multiple components-agents is easier to maintain because of its
modularity; (6) responsiveness because modularity can handle anomalies locally, not
propagate them to the whole system; (7) flexibility because agents with different abilities
can adaptively organize to solve the current problem; and (8) reuse because functionally
specific agents can be reused in different agent teams to solve different problems.

2.5.4 MOBILE AGENT
Today's most widespread paradigm for distributed computing follows the client-server

paradigm. In this paradigm, the server is defined as a computational entity that provides
some services. The client requests the execution of these services by interacting with the
server. After the service is executed, the result is delivered back to the client. The server
therefore provides the knowledge of how to handle the request as well as the necessary
resources. A limitation of the client-server model is that the client is limited to the
operations provided at the server. Therefore, if a client needs a service that a particular
server does not provide, the client must find a server that can satisfy the request by sending
out messages to all servers. This clearly is an inefficient use of network bandwidth. As a
valuable alternative to the traditional programming model, the mobile agent paradigm
involves the mobility of an entire computational entity, along with its code, state and
probably the potential resources (e.g., ontology schemas) from host to host on a network.
Dag (1994) implemented a computational metaphor that is analogous to how most people
conduct business in their daily lives: visit a place, use a service, and then move on.
Generally, the itinerary map whereby to travel through different network nodes can either
be predefined or determined by the mobile agent on the fly, based on the its current state or
its computing logic.

As compared with the traditional client-server model, the mobile agent paradigm has
several advantages shown as below (Lange 1999, Wong 1999, and Chess 1998):

 Communication latency and bandwidth: If the communication between two
interacting entities involves a considerable amount of data, it may be beneficial to move
one of them close to the server instead of moving the data between them. The locality of the
two entities allows them to decrease the latency and save bandwidth in the communication.
Based on the locality information the agent may decide to move to the server location
instead of invoking the server functions remotely. Since the interaction is carried out locally,
it is independent of the network traffic.

 Asynchronous execution: Instead of interacting with a server in many RPC-type
communications, a client can bundle the requests within a mobile agent. Having reached the

 36

server the agent starts interacting with the services locally. This allows the user to
disconnect from the network when delegating agent to perform certain task on the remote
machine. Particularly in mobile computing, roaming devices such as PDA or laptops are
often disconnected from the network. For instance, a simple scenario may be happen in
MAGE: one morning, Professor Julier switches on her computer, logs on to her campus
portal, her assistant agent named Angie appears as animated character on her screen. “Good
morning, Prof. Julier, here is a coming exam activity taking place next week Thursday.”
Prof. Julier arouses her Test Assistant Agent named Louis, “MAEAm, What can I help
you?” Prof. Julier begins to type in the exam paper control parameters, requests Louis to go
for a trip, and eventually turns off her computer and leaves her office. The next day, when
Prof. Julier log on again, holding coffer on hand, Louis is coming back with a set of exam
paper……

 Dynamic adaptation: Mobile agents have the ability to adapt dynamically to
changes in their environment. They can, for instance, react autonomously to balance the
load in the network or move on to a replica of a current node that is failing. This behavior
also provides mobile agents with robustness and a degree of fault tolerance. For example, in
automatic test generation subsystem of MAGE, when the destination server where the item
pool resides collapse, it is possible for the Control Agent to automatically choose the
nearby mirror servers for continued execution.

 Protocol encapsulation: Today's networks consist of many legacy applications. As
their protocols evolve, legacy problems often occur. Mobile agents can move to the remote
legacy application and encapsulate its protocol. Thus, other applications can communicate
with this application via the agent.

 Parallel execution: since mobile has the ability to clone itself to perform parallel
tasks. The GAMASTP in MAGE is a typical application of parallel execution.

The disadvantage of mobile agents is the need to install a support agent platform at
each host the agents need to visit. Besides, agent code and data must be as short as possible
in order to achieve the benefits of the technology. Furthermore, it is important to mention
security. This hard problem is faced by all technologies of developing distributed systems
(Chess 1998; Tahara 2000).

Although the mobile agent technology has not yet found its way into today's more
prominent applications, whereas the potential benefit of the mobile agent paradigm has
been widely accepted, especially in the past few years, several mobile agent platforms such
as (JADE 2006), Agent Tcl (Tcl 2005), Aglets (IBM 2005), Mole (Mole 2005), and
Voyager (Voyer 2006) have emerged. They greatly stimulate and promote the development

 37

of mobile agent based applications
In MAGE, within the framework of JADE, we designed and implemented a couple of

mobile agents running on online examination system. Each of them is responsible for
distinct particular tasks corresponding to generating test, deliver test and evaluate test,
respectively. More details can be referred to chapter 7.

2.5.5 FIPA STANDARD
The Foundation for Intelligent Physical Agents (FIPA) is an international non-profit

organization that is dedicated to promoting the industry of intelligent agents by openly
developing specifications supporting interoperability among agents and agent-based
applications in order to fulfill the requirements of today’s dynamic, heterogeneous and
distributed service provisioning applications. Within the arena of distributed software
infrastructures, FIPA promotes a landscape where agent platforms provide life support to
communities of agents, which in turn cooperate to enable services and application. FIPA
tries to support both agent-level and platform-level interoperability through a
comprehensive set of specification. Nowadays, it has widely been accepted as a de facto
standard by most agent community. Since MAGE intends to develop MAS based intelligent
learning environment conforming to FIPA specification in order to enhance the
interoperability and reusability with other FIPA-compliant MAS learning systems, it is
worth examining the state of the art on agent management reference model, agent
communication language, agent protocol library. As a matter of fact, the aforementioned
aspects form the underpinning of the agents running on MAGE for efficient agent
management, maintenance, and communication, cooperation, etc.

2.5.5.1 AGENT MANAGEMENT REFERENCE MODEL
Agent management provides the normative framework within which FIPA agents exist

and operate. It establishes the logical reference model (see Figure 3) for the creation,
registration, location, communication, migration and retirement of agents.

From figure 2-3, it can be seen that an Agent Platform (AP) provides the physical
infrastructure in which agents can be deployed. The AP consists of the machine(s),
operating system, agent support software, FIPA agent management components (DF, AMS
and MTS) and agents. Such logical components, each representing a capability set (i.e.,
services) are further described as follows:

 38

Fig 2-3. Agent Management Reference Model

 An agent is a computational process that implements the autonomous,

communicating functionality of an application. Agents communicate using an Agent
Communication Language (ACL) and Agent Ontology. For example, In MAGE, most of
agents can speak both XML and SL content languages, besides, to smooth the
communication and mutual understanding for specific application domains, several
ontologies have also been developed including Leaner-Model-Ontology,
Learning-Content-Management-Ontology, Test-Ontology and CSCL-Ontology. Of course,
the System-Management-Ontology and Mobility-Ontology are ready-made and available
anytime thanks to adoption of the modern FIPA-Compliant middleware-JADE. According
to FIPA, an agent is the fundamental actor on an AP which combines one or more service
capabilities, as published in a service description, into a unified and integrated execution
model. An agent must have at least one owner, for example, based on organisational
affiliation or human user ownership, and an agent must support at least one notion of
identity. This notion of identity is the Agent Identifier (AID) that labels an agent so that it
may be distinguished unambiguously within the agent universe. In fact, sometime it is not
easy to give agent an appropriate name. Consider, in automatic test generation subsystem of
MAGE, a population of agents are dynamically being created and killed during the
evolution process, in such situation, how to maintain unique and unambiguous AIDs is one
key task.

 39

 A Directory Facilitator (DF) is an optional component of the AP, but if it is
present, it must be implemented as a DF service. The DF provides yellow pages services to
other agents. Agents may register their services with the DF or query the DF to find out
what services are offered by other agents. For example, the LCMDFAgent (Learning
Content Management DF Agent) and HelperDFAgent in MAGE, are implemented as DFs
which provides learning content finding service and peer learner finding service,
respectively. Actually, Multiple LCMDFs exist within MAGE and they are federated in
order to cater for possible different Learning Object providers.

 An Agent Management System (AMS) is a mandatory component of the AP. The
AMS exerts supervisory control over access to and use of the AP. Only one AMS will exist
in a single AP. The AMS maintains a directory of AIDs which contain transport addresses
(amongst other things) for agents registered with the AP. The AMS offers white pages
services to other agents. Each agent must register with an AMS in order to get a valid AID.

 An Message Transport Service (MTS) is the default communication channel
between agents on different APs.

It should be noted that the concept of an AP does not mean that all agents reside on an
AP have to be co-located on the same host computer. FIPA envisages a variety of different
APs from single processes containing lightweight agent threads, to fully distributed APs
built around proprietary or open middleware standards.

2.5.5.2 AGENT COMMUNICATION LANGUAGE

The message types (communicative act types) are central to ACL specifications, which
impart a meaning to the whole messages, so it is worth having a look at the structure of an
ACL message. Figure 2-4 is an example of the structure of a message by the Learner Model
Agent sending to the Pedagogic Agent.

Figure 2-4 summarizes the main structural elements of an ACL message represented
as s-expressions. The first element of the message is a word that identifies the
communicative act being communicated, which defines the principal meaning of the
message. There then follows a sequence of message parameters, introduced by parameter
keywords beginning with a colon character. One of the parameters contains the content of
the message, encoded as an expression in some formalism. Other parameters help the
message transport service to deliver the message correctly (e.g. sender and receiver), help
the receiver to interpret the meaning of the message (e.g. language and ontology), or help
the receiver to respond in a conversion (e.g. reply-with, reply-by). This transport form is

 40

serialized as a byte stream and transmitted by the message transport service. The receiving
agent is then responsible for decoding the byte stream, parsing the components message
and processing it correctly.

Fig 2-4. Components of a message

As noted above, the message contains a set of parameters. Parameters may occur in

any order in the message. The only parameter that is mandatory in all messages is the
receiver parameter, so that the message delivery service can correctly deliver the message.
Clearly, no useful message will contain only the receiver. However, which other parameters
are needed for effective communication will vary according to the situation. Further
interpretations of the message parameters are shown as follows combined with the above
sample:

 Sender: Denotes the identity of the sender of the message, i.e. the name of the
agent of the communicative act. e.g., learner-model-agent

 Receiver: denotes the identity of the intended recipient of the message. e.g.,
pedagogy-agent.

 Content: denotes the content of the message; equivalently denotes the object of the
action. In general, the content can be encoded in any language, and that language will be
denoted by the language parameter.

 Reply-with: introduces an expression, which will be used by the agent responding
to this message to identify the original message. Can be used to follow a conversation

(Inform
 :sender learner-model-agent
 :receiver pedagogic-agent
 :content
 (<learner--model>
 <domain-independent-assessment>
 <capability-assessment>
 <memory-capability> excellent </memory-capability>
 <learning-speed> high </learning-speed>
 </capability-assessment>
 </domain-independent-assessment>
 </learner-model>)
 :language XML
 :ontology Learner-Model-Ontology
 : in-reply-to:
 :reply with learner-model
 :reply by 2000
 :protocol Request-Protocol
 :conversation-id 2355667344358
)

Begin message structure

Communicative act type

Message parameter

Message content

Parameter expression

ACL message

 41

thread in a situation where multiple dialogues occur simultaneously.
 In-reply-to: denotes an expression that references an earlier action to which this

message is a reply.
 Language: denotes the encoding scheme of the content of the action. e.g., as XML

in this sample.
 Ontology: denotes the ontology that is used to give a meaning to the symbols in the

content expression. e.g., as Learner-Model-Ontology in this sample.
 Reply-by: denotes a time and/or date expression, which indicates a deadline on the

latest time by which the sending agent would like a reply. e.g., as 2s in this sample.
 Protocol: introduces an identifier that denotes the protocol that the sending agent is

employing. The protocol serves to give additional context for the interpretation of the
message. e.g., as FIPA Request-Protocol in this sample, more details can be referred to the
next section.

 Conversation-id: Introduces an expression, which is used to identify an ongoing
sequence of communicative acts which together form a conversation. A conversation may
be used by an agent to manage its communication strategies and activities. In addition, the
conversation may provide additional context for the interpretation of the meaning of a
message. e.g., as 235566734358 in this sample referring to the conversation identifier used
to identify such kind of communication.

The available message types in FIPA ACL are grouped into the communicative act
library, which gives an informal and a formal explanation of the meaning of each
communicative act, grounding the whole library in a semantic framework using the speech
act theory as the communicative model, and the Beliefs-Desires-Intentions (BDI) model as
the formal logic framework. The detailed interpretation can be referred to annex 1.

2.5.5.3 INTERACTION PROTOCOL LIBRARY

Ongoing conversations between agents often fall into typical patterns. In such cases,
certain message sequences are expected, and, at any point in the conversation, other
messages are expected to follow. These typical patterns of message exchange are called
interaction protocols, which are used to design agent interaction providing a sequence of
acceptable messages and a semantic for those messages. While each FIPA ACL message is
given a formal semantics based on the speech-act theory, this is still not enough to satisfy
the need for sociality of agent system. This is because a typical agent interaction
encompasses more than a single message, so more comprehensive abstractions are needed.

 42

FIPA specifications provide this abstraction as a collection of interaction protocols. Some of
the most significant FIPA interaction protocols are:

 FIPA-request
 FIPA-query
 FIPA-request-when
 FIPA-contract-net
 FIPA-iterated-contract-net
 FIPA-auction-english
 FIPA-auction-ducth

FIPA-request protocol allows an agent to request another agent to perform some action.
This is similar to ordinary request/response protocols used in client/server systems, but with
a significant difference. Since software agents are autonomous entities, an agent can refuse
to perform the requested action even if able to do so. So, while a client/server call either
succeeds or fails raising an exception, a FIPA-request interaction can succeed, can fail for a
capability lack of the receiver agent, but can also fail for the unwillingness of receiver to
perform the task at hand. This FIPA protocol supports the whole set of outcomes arising
from the interaction: the agent starting protocol sends a request message to its peer,
containing the action it wants its peer to perform, if the receiving agent knows nothing
about the action requested it could answer with a not-understood message. Then, the
responder agent decides if it want to try to satisfy the request; if so, the answer will be an
agree message, otherwise a refuse message is sent back. After the agree communicative act,
the responder agent actually tries to execute the action, if all goes smoothly, the initiator is
notified with an inform message, otherwise a failure is sent. The other details of interaction
protocols can be referred to (FIPA 2000).

2.6 SUMMARY

This chapter examined the state of art on several related topics on e-Education.
Through the review and analysis on the present status and future tendency of e-Education, it
is found that in the current e-Education paradigm exist several disadvantages simply
pointed out as follows:

 From instructional design model perspective, most of e-Education systems are
based on objectivism rather than constructivism. Current approaches to the online learning
environment usually transfer traditional classroom instruction to an online setting, recasting
reading materials as web-based materials. These are basically mere Internet-based
correspondence courses which rely on information acquisition and reflect low-level

 43

learning;
 From cognitive control strategy perspective, most of e-Education systems are

system-centered rather than learner-centered, the learner cannot control the content
sequencing and learning pacing according to his/her preference and status;

 From network computing paradigm perspective, the client-server paradigm is
predominant in the existing e-Education systems. Although this paradigm greatly promotes
the development of e-Education, it has several drawbacks in terms of bandwidth; parallel
computing, resource distribution, etc. (see 2.5.4).

 From design and implementation perspective, the main modules in e-Education
systems are intertwined and thus interdependent.

 From user modeling perspective, the traditional e-Education systems apply
centralized server to modeling learner. It is obvious that such paradigm makes difficult to
manage and coordinate the data that are distributed, dynamical and sometime even
unpredictable.

 From personalization and adaptation perspective, the existing e-Education systems
just present the same interface and prescribed learning content to all the users, thus
apparently, these systems cannot personalize the learning process (e.g.,. according to
learning style and learning preference) and adapt to the learner’s knowledge status and
cognitive level.

 From interactive process perspective, the existing e-Education systems make hard
to communicate among tutors, learners, and other actors involved.

Based on the analysis on the state of art on the e-Education domain, it is apparent that
it is hard for a single discipline to address all the issues mentioned above. This is a typical
cross-discipline issue. In this dissertation, some new solutions to the existing issues have
been put forward and implemented taking advantage of some new methodology, theory and
tools. Especially, we apply MAS to the design and implementation of an e-Education
system; this is a significant shift from both software programming and network computing
paradigm perspective. This shift introduces a peer-to-peer network-computing paradigm
instead of the traditional client-server paradigm. These distinct advantages of MAS such as
reusability, modularity, standard agent communication language and interactive protocol
make promising to solve most of the aforementioned problems in a more natural and
graceful fashion. Besides the advantages mentioned in section 2.5, the most encouraging
feature of MAS consists in its capability as a container that can encapsulate any possible
tools and methodology involve in related disciplines. Therefore, when designing a MAS
based e-Education system, one possibility is to replace the components of ITS implemented

 44

as a monolithic system by a set of intelligent agents on behalf of learners, tutors, tools,
pedagogic tactic or electronic resources, respectively. These agents could model learners in
just-in-time manner, offer learners on-demand suggestions, build dynamical adaptive
learning group, motivate learners as needed, recommend desired peer helpers, personalized
learning materials, or administer adaptive test etc. Obviously, theses functionalities require
that we not only take into considerations the technology behind agents but the learner traits
such as different backgrounds, status of knowledge and learning styles in order to build a
fully-fledged individualized constructivist learning environment that facilitates learning
collaboration, learner autonomy, reflectivity and active engagement.

In the following chapters, we will concentrate on the research on how to model and
implement such a personalized and constructivist e-Education system taking advantage of
MAS and other relevant methodology, theory, and standards discussed in this chapter. In
particular, the focus of this paper will be aimed at how to develop an efficient MAS-based
e-Education system in order to

 personalize the learner’s learning process according to his/her learning preference,
learning style;

 offer adaptive course sequencing and navigation according to the learner model
and domain model;

 facilitate the developing process of courses and learning objects combined the LO
standard and MAS ;

 facilitate the test generation, delivery, evaluation and publication applying mobile
agent technology;

 provide seamless access for learners to a variety of distributed help resource
including human resources as well as electronic resources;

 facilitate collective thinking, collaborative endeavor, knowledge sharing.

 45

CHAPTER 3 ARCHITECTURE OF MAGE

This chapter firstly analyzes e-Education reference model based on LTSA of IEEE
LTSC. The result shows that it is convenient for us to map the abstraction functionality of
LTSA to each sub modular of MAGE, thus we could eventually build an e-Education
system that fully comply with the LTSA of IEE LTSC. Secondly, this chapter presents a
recommended architecture of multi-agent e-Education system, which consists of three types
of agents: learner-side agents, server-side agents and learning content-side agents. Finally,
several learning scenarios (i.e., intelligent tutoring system without the inversion of teachers;
teacher-centered learning paradigm; collective learning paradigm based learning task) are
also illustrated by the corresponding UML sequence schemas.

3.1 INTRODUCTION TO E-EDUCATION REFERENCE MODEL

As described in chapter 2, multi-agent technology will possibly bring us a powerful
and flexible solution to e-Education context thanks to its anthropopathic “intelligence”
feature such as autonomy, communication, cooperation, coordination and negotiation
among agents, however, from the system engineering perspective, it is, initially, imperative
that we build a flexible, robust reference model at the abstract level before implementing
this system. In general, this reference model should be a top level of functional abstract
regardless of the specific platform, content or technology. Through corporate effort, a
recommended e-Education reference model (REERM) (see figure 3-1) has already been
identified, which will act as the prototype model for guiding the concrete design of MAGE.
However, what surprises us most is that our recommended reference model is
inconceivably similar to the Leaning Technology Systems Architecture (LTSA 2004) of
IEEE LTSC (IEEE Learning Technology Standards Committee). So it is first worth
spending some effort on bringing REERM and LTSA into comparison. The comparison
result shows that the two models are basically identical though the latter considers more
aspects. As such, more reinforced confidence and encouragement will urge us to eventually
achieve a pro forma implementation conformance to the LTSA of IEEE LTSC through
incorporating the agent technology into our e-Education system.

 46

3.1.1 A RECOMMENDED E-EDUCATION REFERENCE MODEL

Course/EEO
Dat abase

co
nt

en
t

in
de

x

Guidance

Process

Learni ng
Record

Dat abase

se
ar

ch
in

g
in

de
x

ne
w

gr
ad

e

hi
st

or
y

gr
ad

e

Delivery

Process

Evaluation

Process

current grade

st
an

da
rd

an
sw

er
s

Learning

Process

learning
mode

multimedia
teaching

learning
behavior

learning content

Fig. 3-1 A recommended e-Education reference model (REERM)

As shown above, the REERM identifies four processes: learner process, evaluation
process, guidance process, and delivery process; two stores: learner records database and
learning course/EEO database; and ten information flows among these components:
learning behavior, multimedia, learning content, content index, searching index, history
grade, new grade, current grade, standard answers and learning mode.

1) Learning Process
 Receives learning contents from Delivery Process;
 Moreover, the learner’s learning behavior is sent to the Evaluation Process;
 The learner can select the appropriate learning mode with help of Guiding System.

2) Evaluation Process

 47

 Receive learning behavior from the learner and code it;
 Obtain evaluation information according to the correct answers from Delivering

Process and send it to Guidance Process;
 Store current grades and individual’s learning progress chart into Learning Record

Database.
2) Guidance Process
 Help select some appropriate learning mode for each learner;
 Mode choice may be determined by either this module or the learner、the teacher or

the learner’s parents.
 According the selected learning mode, this module can produce content index

through Searching Index Engine and send it to Delivery Process.
3) Delivery Process
 Retrieve learning contents, which should include a variety of resource such as

audio、video、documents、PowerPoint and so on.
 Transform the learning contents into the format of multimedia and present them to

learner.
 Send corresponding standard answers to Evaluation Process.

3.1.2 LEANING TECHNOLOGY SYSTEMS ARCHITECTURE (LTSA) OF IEEE
LTSC

LTSA specifies a high-level architecture for information technology-supported
learning, education, and training systems that describes the high-level system design and
the components of these systems. This Standard covers a wide range of systems, commonly
known as learning technology, education and training technology, computer-based training,
computer assisted instruction, intelligent tutoring, metadata, etc. This Standard is
pedagogically neutral, content-neutral, culturally neutral, and platform-neutral. This
Standard (1) provides a framework for understanding existing and future systems, (2)
promotes interoperability and portability by identifying critical system interfaces, and (3)
incorporates a technical horizon (applicability) of at least 5-10 years while remaining
adaptable to new technologies and learning technology systems.

3.1.3 LTSA OVERVIEW
Five refinement layers of architecture are specified, but only layer 3 (system

components) is normative in this Standard. This architecture is applicable to a broad range
of learning scenarios. These refinement layers are called, from highest to lowest levels (see
figure 3-2):

 48

 Learner and Environment Interactions (informative): Concerns the learner's
acquisition, transfer, exchange, formulation, discovery, etc. of knowledge and/or
information through interaction with the environment.

 Learner-Related Design Features (informative): Concerns the effect learners have
on the design of learning technology systems.

 System Components (normative): Describes the component-based architecture, as
identified in human-centered and pervasive features.

 Implementation Perspectives and Priorities (informative): Describes learning
technology systems from a variety of perspectives by reference to subsets of the system
components layer.

 Operational Components and Interoperability — coding, APIs, protocols
(informative): Describes the generic "plug-n-play" (interoperable) components and
interfaces of information technology-based learning technology architecture, as identified
in the stakeholder perspectives.

Fig. 3-2 The LTSA abstraction-implementation layers.

Note: Only layer 3 (system components) is normative in this Standard.
The LTSA is described in five successive refinement layers from highest to lowest.

Each layer describes a system at a different level. The lower layers are implementations of
the higher layers; the higher layers are abstractions of the lower layers. The five layers
represent five independent areas of technical analysis. For example, it is possible to discuss
an abstraction (e.g., the LTSA system components — layer 3, similar to REERM),
independently of an implementation (e.g., the coding, APIs, and protocols of an actual
implementation —layer 5). In other words, even though layer 3 contains components such
as "evaluation" and "coach", these components are "conceptual" in that there is no

 49

requirement for separable, identifiable components called "evaluation" and "coach" in
actual implementations. Because layer 3 (i.e. System Components) is normative and the
core of LTSA, so it needs us to take some extra effort to anatomize layer 3 (see figure 3-3)

Fig. 3-3 LTSA system components.

The LTSA identifies four processes: learner entity, evaluation, coach, and delivery
process; two stores: learner records and learning resources; and thirteen information flows
among these components: behavioral observations, assessment information, performance
and preference information (three times), query, catalog info, locator (twice), learning
content, multimedia, interaction context, and learning preferences. Briefly, the overall
operation has the following form:

 The learning styles, strategies, methods, etc., are negotiated among the learner and
other stakeholders and are communicated as learning preferences;

 The learner is observed and evaluated in the context of multimedia interactions;
 The evaluation produces assessments and/or performance information;
 The performance information is stored in the learner history database;
 The coach reviews the learner's assessment, preferences, past performance history,

and, possibly, future learning objectives;
 The coach searches the learning resources, via query and catalog info, for

appropriate learning content;
 The coach extracts the locators from the available catalog info and passes the

locators to the delivery process, e.g., a lesson plan; and
 The delivery process extracts the learning content from the learning resources,

based on locators, and transforms the learning content to an interactive multimedia
presentation to the learner.

Compared figure 7 with figure 5, we can see they are basically analogous. For
example,

 LTSA Coach can be mapped to REERM Guidance Process, similarly,
 LTSA Learner Entity vs. REERM Learning Process;

 50

 LTSA Delivery vs. REERM Delivery Process;
 LTSA Evaluation vs. REERM Evaluation Process;
 LTSA Learner Records vs. REERM Learning Record Database;
 LTSA Learning Resources vs. REERM Course/Learning Object.

3.1.4 STAKEHOLDER PERSPECTIVES

In LTSA, Stakeholder represents a group of persons, organizations, or entities that have
a common interest. For example, a "learning object (EEO) developer" stakeholder represents
all those who have material interest in learning object development; an “e-Education system
developer” stakeholder represents all those who have material interest in e-Education system
development, and so on. In LTSA, The stakeholder perspectives layer is considered a separate
refinement layer because this layer of granularity addresses a particular design issue: which
perspective, view, or subset is relevant to the lower-level design.

In LTSA Each stakeholder may identify its stakeholder perspective by using an
existing LTSA stakeholder diagram. The annex of LTSA (2001) contains an informative
summary of over 120 stakeholder perspectives (e.g., learner centered, assessment centered,
content developer, learning object,). It seems to be exhausting for us to understand so many
perspectives. In fact, it is not the case. The results of this analysis have been: (1)
verification and validation of the LTSA components in significant systems, stakeholders,
and industries, (2) discovery of which LTSA components are emphasized and
de-emphasized in different systems, stakeholders, and industries, and (3) indication of
varying priorities among higher-level and lower-level design issues.

As for MAGE, it is easy for us to find many appropriate “stakeholders” relevant to
MAGE (e.g., “learner centered”, “learning object”, “distributed learning”,” simulation”,
“content packaging”, “Intelligent tutoring tools”, “Learning tool to tool communication”,
etc.). Since MAGE is such a complicated distributed system, which may include several
subsystems that correlate yet have different emphasis/priority, that we should find an
effective analytical tool/method to determine which functionalities are more important or
less important in each subsystem (e.g., learning object development, e-assessment
subsystem, etc.). Fortunately, at the level of abstraction, these stakeholders perspectives of
LTSA may possibly provide an alternative means for us to analyze and identify these
priority functionalities of a specific subsystem or system though they can not provide any
recommendations of the actual implementation at all. In annex 1, consequently, several
related stakeholders from LTSA are enumerated for guiding the functional analysis at the
abstraction design phase and more importantly, at the time when introducing multi-agent
technology into e-Education system, they can facilitate the mapping of agent(s) to the
corresponding abstraction level.

 51

3.2 FRAMEWORK OF MULTI-AGENT E-EDUCATION SYSTEM

 (MAGE)

As described above, when accomplishing the generalized functional analysis at the
abstraction layer (i.e., system components layer), the next step that we should take into
consideration will be focused on the issues of further implementation. Namely, select some
appropriate technologies as the supporting tools/how to map these “intelligent” agents to
corresponding components compliant with LTSA and its stakeholder perspectives. Figure
3-4 is a recommended framework of multi-agent e-Education system.

Evaluation
Agent

Pedagogic Agent

Learner Modal
 Agent

Interface
 Agent

Learner

XSL

Collaboration
Agent

Learner-Side Agents

XML

Community
Agent

Other
Agents

A
uthoring Tools

A
uthoring Tools

Course
Database

Course Assistant
Agent

DTD/XML Schema

EEO Assistant
Agent

Learning Content
Management Agent

Learning
Object

Database

Course
Author

EEO
Author

 Course Material-Side
Agents (Server-Side)

Agent
Management

System

Directory
Facilitator

Agent

Community
Agent

Leaner
Management

Agent

Test Agent
system FQA Agent

Yellow
Page

Service

Leaner
Profiles

Server-Side
Agents

EEO Provider1
Agent

Course Provider
Agent

Learning
Object

Database

EEO Provider2
Agent

Peer Help
Agent

System

Fig. 3-4 Multi-agent e-Education system

 52

3.2.1 CLASSIFICATIONS OF AGENTS IN MAGE
According to the functionality of agents In MAGE, we classify all the agents into three

types: Learner-side agents, Server-side agents and Course content-side agents. Learner-side
agents are responsible for the provision of high quality learning service to a specific learner;
Server-side agents are responsible for the efficient management and maintenance of the
whole system; Course content-side agents are responsible for the management, maintenance,
authoring of course and learning object. All the agents in MAGE have a common runtime
environment so that they can communicate, negotiate and cooperate in an efficient and
effective manner.

3.2.1.1 LEARNER-SIDE AGENTS

 Learner Assistant agent (LAA)
LAA provides the learner with a personalized learning interface according to his/her

preference and performance. Its main function is responsible for the interaction between a
learner and MAGE so that it can actively react to the learner’s request and present tailored
learning content to learners.

 Learner model Agent (LMA)
LMA is responsible for the maintenance of the learner model including static and

dynamic information that may be domain-dependent and domain-independent.
 Learning evaluation Agent (LEA)

LEA is responsible for the learner’s performance assessment including pro-assessment,
process-assessment and post-assessment during the whole learning process. All assessment
information is used to update the learner’s model or provide aid for PA to make appropriate
learning strategy or learning path.

 Pedagogic agent (PA)
LPA takes charge of making tailored learning strategy and appropriate learning path,

and so on.
 Learning collaboration agent (LCA)

LCA can help the learner create a collective learning environment so that a learning
group can be formed.

 FAQ agent (FAQA)
FAQA is responsible for answering the learner’s common questions.
 Peer help Agent system(LHAS)

 53

This sub system is responsible for providing peer help.
 E-assessment agent system (EAAS)

This sub system is responsible for providing the whole services involved in the
e-exam.

3.2.1.2 SERVER-SIDE AGENTS

Server-side agents can be classified into two types: System management agents and
learning service agents. System management agents is responsible for the management and
maintenance of MAGE itself while learning service agents provides learning services to
client-side (learner-side) agents.

A). System Management Agents
System management agents are composed of AMS, RMA, DFA and ACC. All the

agents will be designed as conforming to the Foundation for Intelligent Physical
Association (FIPA) standard and specification.

 Agent Management System (AMS)
AMS provides a “white page” service/naming service (i.e. maintains a directory of

agent identifiers (AID) and ensures that each agent in MAGE/System platform has a unique
name). AMS also provides life-cycle service (i.e., manages the creation, deletion,
suspension, resumption, authentication and migration of agents in MAGE platform)

 Remote Monitoring Agent (RMA)
RMA agent can offer a graphical interface to platform administration, this agent

shows the state of the Agent Platform it belongs to (agents and agent containers) and offers
various tools to request administrative action from the AMS agent and to debug and test the
applications.

 Directory Facilitator agent (DFA)
DFA provides a “yellow page” service by means of which agents may register their

services with the DFA and an agent can find other agents providing the services he requires
in order to achieve his goals. In addition, a DFA can be allowed to federate with other DFAs
and to control (i.e. register, deregister, modify and search for agent descriptions) all the
network of federated DFAs.

 Agent Communicative Channel (ACC)
ACC is an agent that uses the information provided by the AMS to control all the

exchange of messages within MAGE platform, namely, all the agents residing on MAGE

 54

have a common runtime environment.
B). Learning Service Agents

 FQA agent (FQAA)
FQAA is responsible for handling the Question and Answer (Q&A) requests from

learner-side FQA agents.
 Community Agent (CA)

A community agent is responsible for online learning community management and
services. In MAGE, all the leaner-side collaboration agents are under the supervision of
server-side CA. with CA, it makes possible for learners and teachers to create a collective
learning environment.

 Learner profile agent (LPA)
Learner profile agent is responsible for the management and maintenance of the

profile database of all the learners. When initiating, learner-side learner model agent is
created in Applet within the browser and it can obtain its own learner model from LPA.

3.2.1.3 LEARNING RESOURCE-SIDE AGENTS

In general, learning resource-side agents also reside on server-side. However, the
course interface agent, course assistant agent and EEO agent can move to or be downloaded
on the client-side so that all the learning object authors and course authors can conveniently
develop their EEOs or course at dispersed places. Note that since MAGE is peer-to-peer
distributed system that provides a common environment, so the boundary of server-side and
client-side has become somewhat blurry in many cases.

 Course interface agent (CIA)
CIA serves as a GUI of the course author. CIA provides a template-based

course-authoring tool that facilitates developing consistent courses composed of EEOs,
RIOs or “raw assets”. Besides, as an autonomous agent CIA has all the characteristics of an
agent.

 Course assistant agent (CAA)
CAA helps course author perform many specific tasks such as searching existing

EEOs, subscribing services (e.g., EEO) to LCMA, negotiating with other EEO authors, etc.
 EEO interface agent (EEOIA)

Like CIA, EEOIA provide a EEO development environment facilitating EEO authors
to develop consistent EEO/RIO

 55

 EEO assistant agent (EEOAA)
Like CAA, EEOAA perform many specific tasks such as searching existing EEOs,

subscribing services (e.g., EEO) to LCMA, negotiating with other course authors, etc.
 EEO provider agent (EEOPA)

EEOPA is responsible for the communication with EEO/RIO/Raw asset
repositories/databases

 Course provider agent (CPA)
CPA is responsible for the communication with course repositories/databases
 Learning content management agent (LCMA)

LCMA responsible for the management of courses and learning objects, and the
maintenance of the XML-based metadata files, which include the metadata description of
courses, EEOs, RIOs or Raw assets, etc. LCMA also provides the yellow page service. For
example, when an EEO accomplished, it can be registered with LCMA agent so that Course
author can find it.

3.3 LEARNING SCENARIOS

Based on MAGE, it makes possible for learners to learn in many learning scenarios
such as intelligent tutoring system, teacher-intervened learning, collective learning, etc.

3.3.1 SCENARIO 1—AGENT ENABLED INTELLIGENT TUTORING SYSTEM
(AITS)

In this scenario, AITS consists of several agent performing different tasks. By means
of that, the learner can acquire personalized learning experience according to his/her
preference. Since all of the functions of LTSA components can be executed by the
corresponding agents, so AITS can be claimed fully compliant to IEEE LTSA. In fact, we
can see that there exists an apparent mapping relation between AITS and IEEE LTSA from
figure 3-5.

3.3.1.1 AGENTS INVOLVED

 Learning interface agent (LIA)
 Learning model agent (LMA)
 Evaluation agent (EA)
 Pedagogic agent (PA)

 56

 Learning content management agent (LCMA)
 Course provider agent (CPA)
 EEO provider agent (EEOPA)

3.3.1.2 UML SEQUENCE SCHEMA

 Step 1: the learner states a learning objective to learning interface agent;
 Step 2: LIA checks the learning objective and send ACL message to pedagogic

agent;
 Step 3: pedagogic agent request learning model agent for help;
 Step 4: learning model agent returns the learner’s preference information;
 Step 5: pedagogic agent makes some analysis and inference according to the

learner’s profiles and predefined strategy rule and then forms a piece of specific service
requirement ACL message which will transferred to learning content management agent;

 Step 6: learning content management agent will match its registered services and
response with a list of names of course/EEO provider agents providing such service. If no
match is available, learning content management agent returns null to pedagogic agent;

 Step 7: according to the list returned from LCMA, pedagogic agent requests the
corresponding course/EEO providers agents to provide services

 Step 8: course/EEO provider agents returns all the required learning contents to
learning interface agent

 Step 9: before presenting these learning contents to the learner, learning interface
agent informs evaluation agent of the arrival of learning contents and sends relevant context
to EA so that EA can monitor the learner’s behaviors during the learning process;

 Step 10: learning interface agent present the learning materials to learner in the
form that conforms to the learner’s preference with the help of a specific XML style sheet;

 Step 11, step 13 and step 16 represented by three blue lines with double arrows
indicate that the evaluation agent keeps monitoring the behaviors;

 Step 12, step 14 and step 15 represented by three lines with single arrow indicate
that the evaluation agent updates the learner’s model at an appropriate time;

 Step 17 implies that the evaluation agent considers that the learner cannot achieve
the expected learning objective according certain assessment algorithm. So EA reports the
learner’s current learning performance to the pedagogic agent. In this case, PA may be
readjust the learning strategy and make a new criteria for finding more tailored learning

 57

contents for the learner;
 Step 18 →step 22 repeats the step 5→step 9, a new cycle will begin again.

Learner

1

Learner
interface

agent

2

6

9

11

16

12

Learning
content

management
agent

8

10

Learner
model
agent

Pedagogic
agent

Evaluation
agent

5

3

4

13

17

18

19

14
15

20

21

22

Course/EEO
provider

agent

7

Fig.3-5 Intelligent tutoring UML sequence schema

3.3.2 LEARNING SCENARIO 2—TEACHER INTERVENED LEARNING
This scenario (see figure 3-6) provides an environment that supports the “face to face”

communication between the learner and the teacher who can help so that they can discuss
together some topic. When the teacher makes sense of the problem that takes place on the

 58

learner, he can identify some learning task appropriate to the learner and find some tailored
learning contents for the leaner.

Learner

1

Learner
interface

agent

2

7

23

24

29

25

Course/EEO
provider

agent

13

Learner
model
agent

Pedagogic
agent

Evaluation
agent

5

3

4

26

27
28

Leaning
content

management
agent

teacher
assistant

agent

Teacher
interface

agent

Teacher

6

9

8

10

14

12

18

19

20

21

15

16

17

22

Fig. 3-6 Teacher intervened learning UML sequence schema

3.3.2.1 LEARNING SCENARIO 3—COLLECTIVE LEARNING BASED ON
TASK

This learning scenario enables several learners to learn collectively and collaboratively.
First the teacher assigns a specific research task to a leaning group, and then the learners in the

 59

group discuss the subject together, identify their learning objective and sub task needed to be
accomplished by each learner, and eventually elect a group leader so that he/she can contact and
coordinate with the teacher on behalf of the learning group. In the collective learning context,
the group learners can exchange views each other. When accomplishing the given task, the
group leader will report the final results to the teacher. Figure 3-7 illustrates the process.

Learner1

1

2

Server
Community

agent

12

Learner1
model
agent

Pedagogic
agent

Collaboration
agent

5

3

4

Learning
content

managemen
t agent

Teacher

6

9

8

10

20

22

23

16

18

Learner2 Learner3

7

11

15

14

13

17

19

21

Select group leader

Collective learning space

Fig. 3-7 Collective learning UML sequence schema

 60

3.4 SUMMARY

This chapter proposed an agent enabled e-Education architecture, which can provide
the learner with flexible learning styles and personalized learning process, as well as the
course creator with facilitation of developing courses taking advantage of these existing
EEOs defined in MAGE. Compared with the conventional e-learning system (CELS),
MAGE has the following features:

 MAGE is a peer-to-peer distributed system, each agent in which acts as not only
server but also client, and yet in CELS, client-server based paradigm predominates,
consequently, there often exists the load balance problem on the server side.

 It is convenient for MAGE to personalize the learning process according to the
learner’s performance and preference thanks to the anthropopathic feature of agents, and
yet CELS, in most cases, just offers numerous static web pages that lack the mechanism of
tracking the learner’s dynamic information.

 In MAGE, certain agents are designed as mobile agents that can not only reduce
bandwidth usage but also allow the users to resume their work, even when the network is
disconnected.

 MAGE has the capability to develop courses by assembling or decomposing
numerous reusable EEOs or courses so that it is possible to build a self-improving and
increasingly accumulated e-Education resource library, and yet CELS lacks the mechanism
to reuse learning resources in other contexts.

Compared with other existing similar MAS based e-Education system, MAGE has the
following advantages:

 MAGE is large-scale MAS based peer-to-peer e-Education system in which
involve several group of agents or agent subsystems that speak specific agent
communication language with particular ontologies. From the literature, it can be found that,
in most MAS based e-Education system, there exist only single or few agents that are
locally embedded in traditional client-server paradigm in order to improve certain module
designed in the e-Education system. Therefore, to certain degree, this paradigm is a mixed
network-computing paradigm. However, MAGE is completely designed as FIPA-compliant
e-Education system although agents are purposely separated in client-side, server-side, and
resource-side for the purpose of easier analysis.

 Besides taking into consideration the MAS technology itself, we also incorporate
international learning standards, learning theory and some engineering view into the
relevant agents. Instead, the other MAS based e-Education systems focuses more on the
MAS technology itself and often ignore the pedagogic theory and learning standards.

 61

CHAPTER 4 MAS BASED EEO & COURSE AUTHORING

SYSTEM (MEEOCAS)

In this chapter, we first presented the philosophy of MEEOCAS in which all the
participant roles are both consumers and contributors. Based on the principle mentioned
above, we proposed the developing process of courses and learning objects by virtue of the
conceptual model of MEEOCAS. It provides an efficient and powerful mechanism to
facilitate corporation of software agents and learning object technologies. Secondly, for our
purpose, a new definition of learning object—EEO, which stems from the idea of
Object-Oriented Programming (OOP) and the model of Cisco’s reusable learning object
(RLO), was put forward. Furthermore, an XML based EEO packaging model was also
described. Thirdly, the implementation model of MEEOCAS based on JADE (Java Agent
DEvelopment Framework) platform fully complying with the FIPA specifications was
presented. Relying on the common platform, all the involved agents can conveniently
communicate, collaborate, and negotiate with each other, in order to perform some
specified tasks using the common domain ontology and XML content language. Finally,
some application scenarios based on UML schema, such as searching the appropriate EEOs,
subscription to LMMA and the negotiation between course and EEO developers, were
demonstrated. In conclusion, the aim of the MEEOCAS project is to make easy the
development and deployment of learning contents and to build a self-improving and
increasingly accumulated e-Education resource library.

4.1 INTRODUCTION

As is known that “content is king”, therefore, as far as e-learning is concerned, one
key issue is how to develop instructional materials of high quality that could be reused and
applied to different contexts. Unfortunately, these instructional contents are, traditionally,
expensive and time consuming to produce. In most situations, course authors have to create
their new course from the scratch, even though numerous online instructional materials are
conveniently accessible: course developers have to break them down into smaller
constituent components at the beginning, and then modify or reassemble them in their own
way in support of their individual instructional goals. Such repeated creating process,
without doubt, is tedious and time-consuming. The more important point is the difficulty in

 62

sharing and reusing of these courses even when they are available, how to share and reuse
them is still a big problem. Since the traditional courses generally fixed in length, sequence,
and scope, are built as such a large monolithic structure that it is difficult to re-purpose
them into other contexts at such a course-grained level via Internet. In fact, this large and
inflexible structure misses out on most of the benefits to authors and learners.

Fortunately, the recent emergence of learning object technology seems to be a
promising solution to the problem due to the potential of its reusability, interoperability,
adaptability, and scalability. However, another issue arises when taking into consideration
how to apply these ready-made learning objects to course authoring system and deploy
them to the learning process in an efficient and flexible manner. To address this issue, the
agent technology has been introduced in MEEOCAS. The combination of learning object
and agent technology makes it possible for MEEOCAS to facilitate the development of
course and learning object itself, and furthermore, to personalize learner’s learning process
and patterns.

4.2 DESIGN PRINCIPL AND CONCEPT MODEL

When considering the design of MEEOCAS, to overcome the inflexible monolithic
structure of traditional course and the low efficiency of creating process, as well as, to
comply with the functional requirements of different occasions, our philosophy is: Learners,
course materials designers and teachers are both consumers and producers when using
MEEOCAS. That is to say, learners, course materials designers (i.e. learning object
designers and course designers), teachers not only directly or indirectly benefit from
MEEOCAS but also contribute to MEEOCAS and thus a self-improvement, and
increasingly accumulated learning resource library can probably be worked up. Figure 4-1
is the concept model of MEEOCAS, in which, we introduced the well-known concept of
learning object as supporting groundwork, which can be re-purposed for many use and we
emphasize more on the performance support than simply an information system composed
of learning objects. From learning activity-enabled perspective, learning object will play a
key role in several aspects in MEEOCAS (see figure 4-1) as follows:

· Facilitating the development of courseware, thanks to the reusability, deliverability
and discoverability of learning object, mainly through the support by Course Assistant
Agent (CAA) in cooperation with both Learning Content Management Agent (LCMA) and
EEO Assistant Agent (EEOAA).

 63

Fig. 4-1 Concept model of MEEOCAS

• Facilitating the development of learning object in virtue of its modifiability,

inheritability, and discoverability etc. This process is chiefly assisted by OLAA and
LMMA.

• Providing learners with personalized learning experiences and tailored learning
services through intelligent navigation and dynamic learning paths modification according
to their own learning performances and profiles in automatic tutoring mode, which is
supported by the cooperation and coordination between Pedagogic Agent (PA), Learner
Model Agent (LMA), and Evaluation Agent (EA) etc.

• Teachers can gain access to learning object libraries and make full use of them in
teacher-centered learning mode with support from Teacher Assistant Agent (TAA).

4.3 LEARNING OBJECT DESIGN

4.3.1 DEFINITION LEARNING OBJECT
In the e-Education context, the emergence of learning object is assuredly exciting and

encouraging. As [Wiley 2000] says Reusable Learning Objects (RLOs) are emerging as the

 64

“technology of choice in the next generation of instructional design, development, and
delivery, due to its potential for reusability, generativity, adaptability, and scalability.” It is
certain that having a library of learning objects to draw on will sharply shorten the course
development time when allowing for faster deployment of the learning and personalize the
learning process.

However, learning object is a relatively new term, thus we are not surprised to find
numerous versions of different definitions of learning object: Learning Object Metadata
(2001)-IEEE 1484.12.1 defines a learning object as “any entity, digital or not-digital, which
can used, re-used or referenced during technology supported learning”. Cisco (2001)
defines a learning object as “a granular, reusable chunk of information that is media
independent”. Wiley (2001) defines learning objects as ‘‘elements of a new type of
computer-based instruction grounded in the object-oriented paradigm of computer science”.

Besides various definitions of learning objects, there are also a large amount of terms
relevant to it, like “Reusable Learning Object (RLO)”, ”Reusable Information Object
(RIO)” (Cisco 2001), “Assignable unit”, “Sharable content object (SCO)” (ADL SCORM
2001), “knowledge objects” (Merrill, Li, &Jones 1991), “online learning materials”
(MERLOT 2000), “educational software components” (ESCOT 2001) and etc. This
dissertation uses the term E-Education Object (EEO) to describe its purpose and
functionalities. Here gives the definition of EEO conforming to the functionalities
requirement of learning object in MEEOCAS:

An E-Education Object (EEO) is a reusable, modifiable, scalable, inheritable,
polymorphous and multipurpose component that encapsulates well-organized “raw assets”
(i.e. contents, practices and assessments) as well as a common interface attached to it.

This definition is derived from some concepts of object-oriented programming, and
also references to the models of ADL’s SCORM and Cisco’s RLO. It is found to be an
effective way to describe and construct an EEO. The more detailed interpretation is given
as follows:

• Reusability indicates that an EEO can be reused in certain context at random times
without any modification.

• Inheritability implies that an EEO can be entirely or partially (contents, practices
or assessments) inherited by other ones. By this means, a wonderful experience of creating
a new EEO applied to other contexts can be gained.

• Modifiability denotes that an EEO can be modified and then form a new EEO, e.g.
when an EEO becomes out of date or not appropriate for most learners, this EEO should be
updated, modified or even deleted.

 65

• Scalability refers to the granularity of a learning object that can range from as
small as a section to as large as a lesson. (Note: in MEEOCASS, the hierarchy of a course
is like this: course->unit->lesson->section. In principal, the largest learning object is
constrained within a lesson consisting of units, several of lessons constitute a course
intended to deliver in MEEOCAS to learners for accomplishing their knowledge, skill,
competence etc.)

• Multipurpose implies that an EEO can be applied to several contexts. E.g. in
MEEOCAS, an EEO can be used by several actors/participants such as learners, teachers,
EEO designers, Course designers and related agents.

• Polymorphous implies that the same subject matter may possibly own several
versions of representing forms, e.g. simulations, demonstration, experiments, animations,
html, text, video clip and games etc, which are likely to point to a single learning objective
in order to accommodate to different learning style.

• EEO is a structural component that consists of well-organized “raw assets” such as
content, practice and assessment.

• EEO has a common interface, which makes it possible to be accessed, discovered
and connected to the outside world.

Of course, the issue of intellectual property has to be taken into account when an EEO
needs to be modified or reused by others rather than the original creator, an imaginable
approach to this problem is to get the permission of the original copyright holder or else
pay for the reuse of it.

4.3.2 STRUCTURE MODEL OF LEARNING OBJECT

Firstly, we introduce and discuss an influential model —Cisco Reusable Learning
Object (RLO) Model— and then present a more flexible and practical structural model of
EEO on the basis of it.

As a worldwide leader in networking for the Internet and one of the forerunners in
learning object design, creation, and deployment, Cisco is also actively participating in
standards groups such as IMS and ADL, whose RLO strategy has been attracting extensive
attention all the while. As such, it is worth looking at their RLO structure. The Cisco RLO
is created by combining an overview, a summary, and from five to nine (7±2) Reusable
Information Objects (RIO) (see figure 4-2). Each RIO is built upon a single objective.
Several RIOs are combined together to create a Reusable Learning Object (RLO). If a RIO
can be equated with an individual component of a learning objective, a RLO is the sum of
RIOs needed to fulfill that objective. To aid in content standardization, each RIO is further

 66

classified as concept, fact, procedure, process, or principle. Each of these RIO types has a
recommended template that authors can follow to build the RIO.

Fig. 4-2 Cisco’s RLO and RIO (Note: each column represents a single RIO)

As above-mentioned, the reusability of Cisco’s RLO model occurs at the level of RIO. Its
internal elements (i.e. content items, practices items and assessment) cannot be reused in other
contexts. Consequently, it is inconvenient and inflexible in the situation in which we only need
reuse or inherit part of a RIO. According to ADL SCORM, any deliverable “raw medias”, such
as illustrations, documents or media streams, can be seen as “assets” ready to be reused in other
“content object”. Although a single “asset” cannot be used as a learning object alone, multiple
learning objects can reuse these assets for gaining their objective. Consequently, from our
standpoint, each content, practice or assessment in Cisco’s RIO is also a valuable asset which
seems to be a more “meaningful chunk” than “raw media” mentioned in ADL SCORM.

Content

Content

Practice

Content

Assessment

Content

Content

Content

Content

Practice

Assessment

Content

Practice

Assessment Assessment

O
V
E
R
V
I
E
W

S
U
M
M
A
R
Y

RIO1 RIO2 RIO3 RIO4 RIO5

ASSESSMENTSPre Post

Fig. 4-3 Recommended E-Education Object (EEO) Model

From figure 4-3, we can see that there are mainly two differences between the Cisco
RLO model and the recommended EEO model: Firstly, the recommended model still
contains several RIOs, but the structure of each RIO included in an EEO is not exactly the
same. In Cisco RLO model, and yet all RIOs are as like as two peas, i.e. the internal
structure and sequence (content-> practice->assessment) of each RIO is unchangeable. In
recommended EEO model, however, the inside of different RIOs may manifest different

 67

structures and sequences. An example is that, in RIO3, the component “practice” can
possibly appear before the component “content” for some specific need. In another example,
RIO4 may only contain the elements “content”. The second and also the most different
point is that in the recommended EEO model, all the “assets” such as contents, practices or
assessments in an EEO can be entirely or partially reused /inherited by other EEO. To be
more exactly, all the boxes of different colors representing different assets in figure 3 can
possibly be reused in other contexts. An example is used here to illustrate this idea. In
Figure 4, assuming that an EEO designer is creating a new EEO3, like a course designer
does, it is not necessary for him/her to develop this EEO from the scratch since there is a
library of existing EEOs “waiting” for reuse. Therefore, the creation of EEO3 is relatively
an easy and comforting process.

Content

Content

Content

Practice

Assessment

Content

Practice

Assessment

Content3

Practice3

Assessment

Content

Practice

Assessment

Content

Practice

Assessment

Content

Practice

Assessment

Content3

Practice3

Assessment

Content

Practice

Assessment

Content

Content

Content

Practice

Assessment Assessment2

EEO3

EEO1 EEO2

Assessment1

Fig. 4-4 is an example of demonstrating how to inherit assets from existing EEOs.
As you see in figure 4-4, the accomplished EEO3 has inherited content3 and practice3

from EEO2 and furthermore almost all the assets in EEO1 with the exception of component
“Assessment1” that has modified into Assessment2 in EEO3. Of course, the remainder
represented by white boxes is created by the EEO designer himself/herself.

Using the recommended EEO model can bring us many benefits: On the one hand, it
provides more flexibility and greater return on investment from the perspective of
reusability and commerce. For example, in learning object-oriented learning pattern, a
learner can make use of an EEO as a stand-alone performance support tool. The EEO gives
learners the learning context, knowledge and skills needed to perform the given objective,
and a method to assess mastery. EEOs and RIOs can also appear as offerings on a “road
map” that is customized to the needs of each learner. Learners can see from this road map
what they need to take, what they have completed, and what their learning destination is.

 68

On the other hand, we can adequately “borrow” from Cisco other advanced ideas in
building a learning object, such as its strategies of taxonomy and sequencing. What excites
us most is that, based on our multi-agent system, a flexible, personalized and dynamical
e-Education environment can be formed because of the “participation” of EEO.

4.3.3 EXTENSION OF LO METADATA TO ENHANCE ADAPTIVIEY
Table 4-1: Metadata table of a learning object

General
Identifier
Title
Language
Description
Keywords
Domain
Structure
Aggregation Level

Meta-metadata
Identifier
Contribute
Scheme metadata
Language

Technical
Format
Size
Location
Requirements
Type
Name
Maximum
Version
Minimum
Version
Duration

Educational
Pedagogic Type
Interactivity
Type
Interactivity
Level
Semantic
density
Educational
Context
Duration
Difficulty Level
Age Range
Learning Time
Use Description

Management
Description
Name of author
Cost
Restriction

Life Cycle
Version
Status
Contribute

Relation
Kind
Identifier of
resource
Description

Annotation
Person
Date
Description

4.3.4 PACKAGE MODEL
After an EEO is well accomplished, it has to be packaged and stored into database so

that it can be reusable and accessible. When considering encapsulating an EEO into the
package, it is a good practice for us to comply with some international specifications or
standards (e.g. the specifications and standards of IMS, IEEE and SCORM). In the package,
the key is to clearly describe the structure of an EEO and its corresponding resource.
Fortunately, metadata has this ability to provide a common means to describe things so that
EEOs can be self-describing and can be searched, found and applied to a specific context.
Here gives a recommended package model of EEO (see figure 4-5), which includes:
manifest XML, EEO metadata XML, RIO metadata XML, Raw asset metadata XML,
Physical files and Package interchange file (PIF). Their functions are described as follows:

 69

Package i nt er change f i l e

Mani f est XML

EEO met adat a XML

RIO met adat a XML

Raw asset met adat a XML

Physi cal f i l es

Fig. 4-5 A recommended EEO package model

• PIF: it can be a zip file or other archive format allowing for standalone external
use.

• Manifest XML file: it describes the file list needed when using the EEO.
• EEO metadata XML file: it describes the structure and other metadata information

such as General, Lifecycle, Metadata, Technical, Education, Relation and Classification etc.
• RIO metadata XML files: it describes the content construct.
• Raw asset files: it describes itself.
• Physical files: The physical files are the actual resource files.

4.4 ARCHITECTURE STRUCTURE

As mentioned above, it is sure that having a library of read-made EEOs to draw on
will sharply shorten the course developing time. However, when allowing for how to make
them to be deployed conveniently in a system and to be found easier by EEO and course
developers, obviously, we still need a common communication environment to support it.
Naturally, we introduce multi-agent technology to realize our system—MEEOCAS, which
is based on Java Agent Development Environment (JADE 2003). JADE is a software
framework fully implemented in Java language. It simplifies the implementation of
multi-agent systems through a middle-ware that claims to comply with FIPA specifications
and through a set of tools that support the debugging and deployment phase. The agent
platform can be distributed across network and the configuration can be controlled via a
remote GUI. According to our experience of using JADE, it justifies this feasibility of

 70

building a flexible and powerful MEEOCAS (see figure 4-6) with JADE.
From figure 4-6, we can see that learning material-side agents reside on server-side.

However, the course interface agent, course assistant agent, EEO interface agent and EEO
assistant agent can move to or be downloaded on the client-side so that all the EEO and
course authors can conveniently develop their EEOs or courses at dispersed places. It is
worth of note that MEEOCAS is a peer-to-peer distributed system that provides a common
channel for communication, so the boundary of server side and client side has become
somewhat blurry in most cases. The following is their functionality description of all
involved agent in MEEOCAS and their further applications will be presented in the next
section.

• Course interface agent (CIA)
CIA serves as a GUI of the course author. CIA provides a template-based

course-authoring tool that facilitates developing consistent courses composed of EEOs.
Besides, as an autonomous agent, CIA has all the characteristics of an agent.

• Course assistant agent (CAA)
CAA helps course author perform many specific tasks such as searching existing

EEOs, subscribing services (e.g., EEO) to LCMA, negotiating with other EEO authors,
etc.
• EEO interface agent (EEOIA)
Like CIA, EEOIA provides an EEO development environment facilitating EEO

authors to develop consistent EEO/RIO
• EEO assistant agent (EEOAA)
Like CAA, EEOAA performs many specific tasks such as searching existing EEOs,

subscribing services (e.g., EEO) to LCMA, negotiating with other course authors, etc.
• EEO provider agent (EEOPA)

EEOPA is responsible for the communication with EEO repositories/databases
• Course provider agent (CPA)

CPA is responsible for the communication with course repositories/databases
• Learning material management agent (LCMA)

LCMA is responsible for the management of life cycle of all involved agent in
MEEOCAS such as the creation, deletion, suspension, resumption, authentication and
migration of agents. LCMA also provides the yellow page service. For example, when
an EEO accomplished, it can be registered with LCMA agent so that course author can
find it.

 71

A
uthoring Tools

A
uthoring Tools

Course
Database

Course Assistant
Agent

DTD/XML Schema

EEO Assistant
Agent

Learning Content
Management Agent

Learning
Object

Database

Course
Author

EEO
Author

 Course Material-Side
Agents (Server-Side)

EEO Provider1
Agent

Course Provider
Agent

Learning
Object

Database

EEO Provider2
Agent

Fig. 4-6 Architecture of agent enabled course-authoring model based on learning object

4.5 COURSE AUTHORING SCENARIOS

4.5.1 SERCHING LEARNING OBJECTS
With MEEOCAS, several application scenarios can be easily applied, such as

searching the appropriate EEOs, the subscription to LCMA and the negotiation between
course and EEO developers etc. To save spaces, only one UML sequence schema, used to
demonstrate the conversation protocols when searching an EEO, is given here. Figure 4-7
shows that course developers can search the EEOs that he/she prefers and subscribe to the
LCMA when the search fails. These agents involved include CIA, CAA, LCMA, EEOPA
and Federal LCMA. The detailed interaction steps are shown below.

• Step 1: course author states desired EEO as a goal to course interface agent; CIA
may provide a particular form consisting of learning object metadata (LOM) to facilitate the
course developer to customize his/her desired EEO (e.g., if the course developer needs such
an EEO as Context=’continuous formation’, Interactive Level=’middle’, Difficulty=’high’,
Keyword=’agent, communication’, Language=’French’, etc., s/he may fill out the
ready-made form compliant to the IEEE LOM standard (2002) to customize his/her
required EEO).

• Step 2: CIA sends an ACL message to CAA (note: the ontology of the ACL
message is called ‘EEO LOM Ontology’ in MEEOCAS, which, in fact, is the LOM schema
that represents the element concepts and their relations of LOM, and its content codec
language may be XML or SL language).

• Step 3: CAA responses to CIA, which refers to the acceptance of CIA’s request

 72

• Step 4: CAA asks for help from LCMA that can identify whether there exist EEO
provider agents providing such kind of service as described in the ACL message of CAA
(note: in MEEOCAS, this CAA message applies a template to searching such service). In
MEEOCAS, there maybe exist several LCMA agents that compose the federation enabling
the flexibility and distribution data storage. As such, when a local LCMA cannot find
appropriate EEO providers, it can deliver the CAA’s request to other federal LCMAs for
help.

• Step 5: LCMA returns a list of names of agents that match the template, if no
match is satisfied, LCMA sends a message inquiring whether CAA is willing to search
further.

• Step 6: CAA agrees with LCMA.
• Step 7: LCMA asks for help from the federal LMCA agents
• Step 8: Implying that the federal LMCA agent has found the intended EEO

provider.
• Step 9: According to the returned list of provider agents from federal LCMA,

CAA sends corresponding ACL messages to all of the EEO provider agents, which first
match the request with their own EEO metadata info. If these matches are satisfied, the
locators (e.g., a URL or URI pointing to the desired EEO) will be sent to CAA. Or else,
failed message may be presented to the course developer and CIA may inquire further
whether the course developer is willing to modify his/her form or subscribe to such service
from LCMA which will automatically notify CAA as soon as such service is available in
MEEOCAS.

• Step 10 and step 11: Course assistant informs CIA to present the desired EEO
with a XML type sheet to which the course developer prefers.

• Step 12: Once having accomplished a courseware by taking advantage of the
template-based course authoring tools, course developer can store his/her works into the
course repository. This process is performed through step 13 and step 14.

• Step 15: When a new course is stored into the course repository/database, course
provider agent will register the new service to LCMA agent.

• Step 16 and step 17: Return the message of success registration.

 73

Course developer

1

3

4

5

Course
interface agent

Course assistant
agent

2

6

7

9

10

11

12

15

14

16

17

13

Learning
content

management
agent

EEO provider
 agent

Federal LCMA

8

Fig. 4-7 UML sequence schema of searching target EEO

4.5.2 SUBSCRIPTION
Figure 4-8 aims at illustrating how to subscribe to LCMA.
Agents involved:
The agents involved in scenario 2 are similar to scenario 1.
UML sequence schema
The distinction between scenario 1 and scenario 2 is that when the local LCMA and its

federal LCMAs all have not registered services conforming to the request. Through from
step 11 to step 14, the subscription task can be performed. As such, once the subscribed
service is available in MAEES, LCMA will automatically notify the learner’s course
assistant agent. This process is illustrated from step 15 to step 22.

 74

Course developer

1

3

4

5

Course
 interface agent

Course assistant
agent

2

6

7

9

10

11

12

15

14

16

17

13

Learning
content

management
agent

EEO provider
agent

Federal LCAA

8

18

19

20

21

22

Fig. 4-8 Subscription to LCMA and the federal LCMA

4.5.3 NEGOCIATON WITH LO CREATORS

Figure 4-9 aims at illustrating how to negotiate between course and EEO authors.
Agents involved:
Course interface agent
Course assistant agent
Learning content management agent
OOE assistant agent
EEO interface agent
UML sequence schema:

 Step1 → step 5 represent the process of searching a EEO developer who provides

 75

the EEO that the course developer is interested in
 Step 6 → step 13 represent the connection process between course and EEO

developer. In figure 12, the EEO developer agrees to accept the negotiation with course
developer.

 Step 14: the bold red lines with double arrows represents the actual negotiation
process is taking place.

Course developer

1

3

4

5

Course interface
agent

Course assistant
agent

2

6

7

9

11

12

14

13

LCMA EEO
assistant agent

8

EEO
interface agent

EEO developer

10

Fig. 4-9 Negotiation between EEO and Course developer

4.6 SUMMARY

This chapter presented the architecture of a multi-agent based learning object and
course authoring system. With the introduction of EEO into MEEOCAS, we can find out

 76

that it brings many advantages as follows:
• Course designers may conveniently develop their courses through assembling the

ready-made EEOs instead of creating them from the scratch. It is sure that, when
contributing courses to MEEOCAS, they could also make full use of the existing courses,
which contain well-organized and well-tagged EEOs provided by MEEOCAS.

• From the standpoint of EEO designers, it is convenient for them to create EEOs
adapting to corresponding templates in accordance with an appropriate taxonomy, and to
update the old version of EEOs according to the feedbacks from all the other actors (e.g.
teachers, course designers, learners or the agents in MEEOCAS). In addition, EEO
designers can also formulate different EEOs satisfying diversified levels of learning
objectives by inheriting, modifying and reassembling the existing EEOs.

• From the perspective of teachers, they could take advantage of these ready-made
EEOs and courses to organize their teaching process or offer learners some
recommendations of useful learning recourses during their interactive pedagogic activities.

• As far as learners are concerned, in MEEOCAS-enabled environment, they may
choose among several available learning patterns (e.g. course-oriented learning,
EEO-oriented learning, self-paced learning, teacher-centered learning or collective learning
pattern etc.). In converse, the feedbacks from learners are also important references for
course and EEO designer to modify and improve their works.

Despite these potential advantages of EEO, it is still difficult to make them function
without a flexible supporting environment. Just because of the incorporation of agent
technology in MEEOCAS, which makes possible to provide a common channel for the
communication, cooperation and negotiation among all the agents. As such, it is convenient
to deliver and handle EEOs throughout MEEOCAS with the help of relevant agents. For
MEEOCAS, it not only facilitates the development of courses and EEOs, but also, when
MEEOCAS to the whole e-Education system, makes easy to personalize the learner’s
learning process and diversify their learning styles because of the wonderful features of
EEO and agent. With the advancement of multi-agent and Internet technology, it is believed
that similar systems dedicating to the development of e-Education resource library will
surely be emerged more and more.

 77

CHAPTER 5 MAS BASED ADAPTIVE & ACTIVE

LEARNING FRAMEWORK

This chapter proposed a MAS based integrated framework in support of adaptive and
active learning in both individual and collective learning spaces. In the adaptive individual
space, the key issue is how to dynamically generate personalized learning path consisting of
domain concepts and present associated learning objects catering for a learner’s knowledge
state and learning preference. As to this, this chapter put forward an efficient searching
algorithm for the presentation generation based on the proposed domain ontology model. In
the collective learning space, our focus is on the issue how to find appropriate help
resources (e.g. peer learners, learning materials, or other applications) and how to
dynamically build a tailored learning group on behalf of learners in a distributed network
according to their need. In this regard, this chapter proposed two corresponding
architectures: One is the peer help system; another is architecture of the learning group
forming system.

5.1 INTRODUCTION

As far as personalization and adaptation is concerned, we have to consider such issues
as how to dynamically generate learning path and present tailored learning objects (EEO)
catering for a learner’s knowledge state and learning preference; how to find appropriate
help resources (e.g. peer learners, learning materials, or other applications) for a learner
when s/he encounters difficulty in learning certain domain concept or topic and how to
build collective learning environment in support of constructivist learning, e.g. a learner can
take the initiative to construct a desired learning group for her own particular purpose.

To achieve the above goals, we have to carefully design the domain model which are
absolutely necessary modules for an adaptive learning system. The issue of how to design
and implement them is obviously dependent on the given domain and specific application.
Thus, what we contribute in these regards mainly consists in the proposition of some
generic modeling method, strategy and process rather than specific ones.

As far as adaptivity is concerned, MAGE provides learners with several adaptive
learning experiences available in both individual and collective learning spaces as shown in
figure 5-1. the distinct feature that is different than other adaptive learning systems is that
we distinguish between two types of adaptive mechanisms: individual adaptive learning

 78

(IAL)and collective adaptive learning (CAL). In MAGE, the IAL indicates the situation in
which the system helps to choose adaptive learning path consisting of domain concepts and
associated learning objects while the CAL means that the system searches for appropriate
peer learners in distributed network for the purpose of either facilitating the help session or
the collective learning by dynamically building learning groups according to the learner’s
preference. It is worth noting that these adaptive process can be controlled by the learner
himself or herself. That means it is the learner who decides to whether or not accept the
adaptive recommendations. For instance, for advanced learners, they are inclined to
navigate through the concept map (structure of a course) by their own desired ways while
the novice learners prefer to be guided by the system as they have few knowledge about the
course to be learned.

Fig. 5-1. Adaptive learning architecture

Obviously, this situation will probably change with the development of a learner’s
learning process. From the social-constructivist perspective, online collective learning has
important signification and influence on the development of social ability, human
interrelationship and learning motivation for active engagement, especially for virtual
learning environment without the chance of face-to-face contacts between tutors and
learners. To enhance such learning experience, we put forward a adaptive peer help model
and a adaptive collaborative learning model on the proposed domain model basis. From my
personal point of view, they have important contribution toward the constructivist learning.
At length, we summarize these adaptive considerations in table 5-1.

 79

Table 5-1: Category of adaptive strategy recommended in MAGE
Aspects of
adaptivity

Main agents involved Explanation

Adaptive
interface

Leaner model agent
Learner assistant agent

The system allows learners to choose the
preferred user interface or content display
style (e.g. font, color, style etc.)

Adaptive
learning path

Leaner model agent
Pedagogic Agent

LCMAgent Learner
assistant agent

The system can automatically recommend
learning path consisting of abstract domain
concepts, this adaptation is realized according
to the learner’s knowledge status

Adaptive
learning
objects

Leaner model agent
Pedagogic Agent

LCMAgent

The system can select adaptive learning
objects in a set of candidate EEOs associated
with a unique concept in support of
personalized learning. We achieve this goal
considering both the learner’s learning style
as well as his/her cognitive ability

Adaptive peer
learners

Helper Agent Matchmaker
Agent DFAgent

Learner assistant agent

The subsystem can search for tailored peer
learners according to a learner’s preference.
This adaptativity is obviously
constructivism-oriented, and it has important
significance in terms of supporting the
development of social ability, self-reflection
and meta knowledge in distributed online
learning environment.

Adaptive
learning group

Collaborative Agent
Broker Agent Learner

assistant agent

The subsystem can dynamically search and
form a learning group matching his
preference, and this system support the
knowledge internalization, externalization,
socialization, and combination from the
Knowledge Management perspective

From table 5-1, we can see that these adaptive strategies are respectively achieved by

cooperation among a set of agents with different goals and behaviors. Consequently, we
give attention to not only the models themselves not also the modeling process.

 80

5.2 DOMAIN MODELING

The representation of domain knowledge is a key starting point to implementing
flexible and adaptive mechanism. Literatures show that most of the existing online learning
support systems represent the tree-like domain course consisting of predetermined learning
materials that cannot dynamically adapt to the learner’s knowledge state and learning
preference. The domain model we proposed in this dissertation is composed of three layers:
ontology layer (of course structure), metadata layer and learning objects layer (see figure
5-3). We explicitly define the domain model as Dmodel={abstract concepts, semantic links,
metadata, learning objects}. In particular, the ontology layer is represented by a set of
abstract concepts/topics and semantic links instead of actual learning materials, in this
proposed model, we identified several different semantic links between domain concepts
(DC) and in this paper, they are defined as follows:

 IsPartOf(C1,C2) indicates that the concept of C1 is a child element of its parent
node C2. Obviously, C2 is a composite concept that has no direct learning objects
associated with it. Consequently, when C2 is chosen as the learning target, the actually
learning contents are its child concepts.

 IsRequiredBy(C1,C2) indicates that to learn C1 needs C2 as a prerequisite. This
relation poses a constraint on the delivery order of the DCs to the learner.

 SuggestedOrder(C1,C2) means that it is preferable to learn C1 and C2 in this order.
Note that also this relation poses a constraint on the DCs’ order but now it is not necessary
to learn C2 if the learner is interested in only C1.

 IsReferencedBy(C1,C2) indicates that there exist a similar concept C2 that
provides the chance to the learner refers to.

 IsTestedBy(C,TPi) indicates that the C has a test TPi for the evaluation of the
learner’s mastery of this concept.

All the proposed relations can be easily represented by arcs in a graph data structure
(where each node represents a DC). Besides the above relationships among DCs, we need a
link between the Ontology and the Metadata levels (see figure 5-2). This link is represented
as IsTaughtby(C, EEO), which indicates that the concept C can be taught by means of
learning object EEO which is described by the metadata M.

 81

Fig 5-2. Domain concept model

Besides, to enhance adaptability and flexibility, the following assumptions with regard
to the learning object should be met.

1. Defining different types of assets (e.g. text, picture, audio, video, hyperlink etc.)
2. Supporting different types of learning objects (e.g. content, exercises, assessment,

etc. and any combination of these types)
3. Providing different levels of detail for a learning object (e.g. novice, medium and

advanced learner)
4. Mapping a learning object to a learner’s characteristics (e.g. language, accessibility,

learning style, etc.)
5. Mapping a learning object to one concept specific to certain domain
From the domain model, it can be found that three remarkable feathers can be

identified as follows:
1. The course structure (ontology) and actual learning contents (learning objects) are

separated thus ensure that different learner can be delivered tailored learning objects
according to the knowledge state and learning preference. Note that these learning objects
to be delivered to learners are dynamically generated through learning object-searching
system described in chapter 4.

2. When to start to learn, the learner can control whether to learning through the
course map or be guided by the system by automatically generating learning path and
learning content.

3. This domain model is not isolated, it has direct link channel with MAS-supported

 82

agents in support of peer help and collective learning environment.

5.3 ADAPTIVE INDIVIDUAL LEARNING

5.3.1 AGENT ARCHITECTURE
In the proposed architecture, there is a distinct feature that distinguishes the other

learning frameworks. From figure 5-3, it is clear that individual learning and collective
learning are not isolated, instead they are efficiently combined into an learning framework
as a whole in support of personalized learning experiences in both individual and collective
online learning setting. As for individual learning, this architecture provides personalized
learning path and tailored learning objects closely associated with the concepts on the path
in order to explain the target domain concepts that a learner requested. This task is
delegated to the presentation generation agent, which is responsible for the generation of a
set of learning objects (EEOs) that explain (teach) the target

Fig. 5-3. Architecture of adaptive individual learning

 83

concepts stated by the learner. To enhance flexibility, improve learning efficiency and
develop the learner’s value-added reflection, mutual knowledge sharing. This architecture
also introduced the learning objects finding system (see chapter 4) and collective learning
space (see section 5.4) involving peer help system and learning group forming, respectively.
Image that if a learner is not satisfied with the learning contents recommended by the
system, how can we do in this case? To address such issue, this architecture provides
several channels for the learner to choose the next learning strategy. One possibility is that
the learner request the course agent to offer more suitable learning objects that are in fact
not included in the specified course, in this situation, the course agent can send a mobile
agent to the server that the learning content management agent resides. If no appropriate
results returns, the course agent even can subscribe to such service. The deeper details can
be referred to chapter 4. Another possibility is that the learner can ask for peer help. Since
when the learners choose to register the same course, they naturally share the same course
ontology. Of course, their capability of the course concepts can also be detected and
recorded. Thus, it is possible to find candidate learners who are competent in requested
domain concepts though the learner’s peer helper agent (see section 5.4.2). a third
possibility is that the learner wants to learning in a learning group. In this situation, the
learner can formulate the group profile (i.e., requirements for the group member) and
delegate his collaborator agent to perform the searching and invitation tasks. Of course, the
tutor can also participate in the group learning activity through beneficial suggestions to
certain member of the learning group or as a whole (see section 5.4.3).

From the above description, it can see that the proposed architecture is flexible enough
to address adaptive learning issue. Especially the incorporation of collective learning space,
to certain extent, compensates the lack of direct contact among learners and tutor compared
to the face-to-face class paradigm.

The next section, we will focus on the algorithm of automatic learning path generation.
This algorithm is performed by the presentation generation agent (PGA).

5.3.2 AUTOMATIC LEARNING PATH GENERATION

In this section we describe the automatic learning path generation algorithm that
performs the presentation generation including both adaptive learning path and learning
objects. In this paper, a Presentation(PR) is a list of EEOs delivered to a learner in order to
meet her/his learning requirements as much as possible. To obtain the PR, the learner has to
state a list of target concepts (TC) belonging to the learner’s learning objectives, and then
PGA will request Learner Model Agent (LMA) for this learner’s learning preference and

 84

knowledge state. Given them as input, PGA builds a Presentation, namely a list of EEOs
which satisfy all the TC taking into consideration the learner’s present state (i.e., Cognitive
State and the Learning Preferences). More precisely, a PR is an ordered list of EEOs (PR=
{l1,…,ln}) with the following properties:

1. The union of the EEOs (∪
ni

iEEO
,...,1=

) of PR is sufficient to explain to the learner all

the Target Concepts belonging to TC.
2. For each EEOi, EEOj ∈PR, if : IsTaughtby(C1,EEOi,) and IsTaughtby (C2,EEOj,)

and C1 ≺C2, then i<j, where the partial order relation ≺ between DCs is recursively
defined in the following manner:

a. if IsRequiredBy(x, y) then y ≺ x
b. if SuggestedOrder (x, y) then x ≺ y
c. if IsReferencedBy(x,y) then x≺ y
d. if IsTestedBy (x, y) then x ≺ y
e. if IsPartOf (x, z) and IsPartOf (y, w) and z ≺w then x ≺ y ∧ x ≺w ∧ z ≺ y.
3. PR should meet the learner’s learning preference(LP)and present knowledge state
While Points 1 and 3 of the above definition are self-explaining, Point 2 needs some

remarks. The relations among DCs pose a partial order on the elements (i.e., domain
concepts) of a didactic domain. Consequently, EEOs belonging to a same Presentation have
to respect this partial order. If, for instance, a Presentation contains li and lj, which explain,

respectively, the concepts Derivatives and Limits, then lj has to precede li. The same

situation occurs when EEOi and EEOj explain DCs not directly linked to each other by an

order relation (i.e., IsRequiredBy, SuggestedOrder, IsReferencedBy or IsTestedBy) but their
child components of DCs directly linked by an order relation.

The Presentation generation algorithm collects in a Concepts’ list named AtomicList
all those atomic DCs which can be reached starting from the Target Concepts and following
the links IsRequiredBy, SuggestedOrder, IsReferencedBy and IsTestedBy. Then AtomicList
is subsequently linearized. Finally, for each of the AtomicList DCs, the algorithm looks for
the EEO whose Metadata best match the learner’s learning preferences. The main searching
algorithm is shown in the table 5-2.

 85

Table 5-2 Presentation generation algorithm
Input: Target Concepts: DC list, KS: Knowledge State, LP: Learning Preferences.
Output: EEO list.
1. Check the course Ontology consistence.
2. Q:= TargetC, AtomicList:= Nil, PR:= Nil.
3. For each x ∈Q s.t. ¬Known(x, KS), do:

a. If [IsPartOf(y,x) or IsRequiredBy(x,y) or IsReferencedBy(x,y) or
IsTestedBy(x,y)] and y∉Q, then insert y in Q.

b. If ¬∃ y s.t. IsPartOf(y,x), then insert x in AtomicList.

4. AtomicList:= Sort(AtomicList, TargetC).
5. For each x ∈AtomicList do:
a. Let LOList be the list of all the EEOs e s.t. IsTaughtBy(x, e) and Consistent(e, LP).
b. BLO:= Choose_the_best_of (LOList,LP).
c. Insert BLO in PR.
d. For each x’ AtomicList s.t. IsTaughtBy(x’, BLO), delete x’ from AtomicList.
6. Return PR.

In the presentation generation algorithm, line 1 checks if the ontology that represents

course structure is consistent. This is done to avoid loops in the operations performed in
Lines 3 and 4. An Ontology is inconsistent when, for example, x ≺ y and y ≺ z and z ≺ x. The
check is easily realized through looking for a loop in the oriented graph representing the
Ontology. For each Target Concept, lines 3.a recursively collects all the DCs needed to
learn it. In Line 3.b, a DC is added to the list of atomic concepts if it has not child
components. Line 4 linearizes the atomic concept list just obtained.

Line 5, for each DC x of the atomic list, selects a most appropriate EEO among all
those EEOs able to explain x (let us call them LOList(x)). It is important to note that the
choice is local to LOList(x). Indeed, if we look to the example of Figure 1, a learning
object EEO can be linked to two or more DCs. For instance, EEO3 explains both
Derivatives and Integrals, thus, if in Line 5.b the function:

Choose_the_best_of (LOList(Derivatives),LP)
returns EEO3, then in Line 5.d Integrals is excluded. Nevertheless, in Line 5.b we

can have BLO = EEO2 because the function Choose_the_best_of depends only on
LOList(Derivatives) and on LP. In other words, EEO2 could be judged better filling the
learner preferences with respect to LO3, without taking into account any global

 86

optimization or minimization of the final EEO list. The reason of this choice arises from
the fact that a global optimization would lead to a combinatorial explosion, while we
generally have only very few EEOs linked to more then one DC. Finally, the functions
Known, Consistent and Choose_the_best_of are easily realized comparing DCs or EEOs
with the Knowledge State or Learning Preferences’ facts.

5.4 ADAPTIVE COLLECTIVE LEARNING

5.4.1 INTRODUCTION
One of the basic requirements for education in the future is to prepare learners for

participation in a networked, information society in which knowledge will be the most
critical resource for social and economic development. Computer-supported collaborative
learning (CSCL) is one of the most promising innovations to improve teaching and learning
with the help of modern information and communication technology. Collaborative or
group learning refers to instructional methods whereby learners are encouraged or required
to work together on learning tasks. It is widely agreed to distinguish collaborative learning
from the traditional direct transfer model in which the instructor is assumed to be the
distributor of knowledge and skills. The shift from face-to-face learning groups to
asynchronous DLGs introduces specific requirements for the design of CSCL environments
to overcome the constraints of space and time, and to compensate for many of the elements
that typically occur in face-to-face learning groups. One of these elements is the seemingly
effortless social interaction that takes place and has been recognized as the crucial element
underlying the current interactive learning perspectives meant to encourage shared
understanding (Mulder, Swaak, & Kessels, 2002), critical thinking (Bullen, 1998; Garrison,
Anderson, & Archer, 2001), social construction of knowledge (Jonassen, 1991a, 1991b,
1994) and the acquisition of competencies (Jochems, 1999; Keen, 1992). According to
Kearsley (1995) one of the most important instructional elements of contemporary distance
education is interaction due to its positive affects on the effectiveness of distance
educational courses. Social interaction appears to be particularly important for achieving
shared understanding and the construction of knowledge based on the social negotiation of
views and meanings. Hiltz (1984) underlined this when she stated that “the social process
of developing shared understanding through interaction is the ‘natural’ way for people to
learn”. CSCL environments embracing group learning, critical thinking, constructivist
learning, and competency-based learning emphasize social interaction.

In the following two subsections, we will focus on two approaches to facilitating the

 87

constructivist learning.

5.4.2 PEER HELP MODELING

5.4.2.1 INTRODUCTION
To illustrate the functionality of peer help system (PHS), we will use an example

scenario. Imagine that a learner working on a programming assignment in a Computer
Science course still has problem on certain domain concept presented by the system. She
may delegate the task of finding help to her personal assistant agent. The personal agent
tries to find another agent (either application agent or another personal agent) that offers
information resources related to the help request. These resources can be electronic
resources, for example web pages created by the instructor or other learners (and
represented by their application agents in the system), or threads / postings in a discussion
forum (represented by discussion forum application agents). The agent can also find
"human help resources", i.e. learners who are currently on line and competent in the
concept of specified course. The agents share a common taxonomy for indexing the
information resources, based on the topics/concepts taught in the class. Usually the course
instructor creates the taxonomy (represented as the course ontology in this dissertation)
from the course outline when the system is configured for a given course. To find a most
appropriate peer helper, the learner’s assistant agent has to request a special agent named
matchmaker agent to perform such matching task. The key issue is how the matchmaker
agent locates the agents that possess information resources or represent users
knowledgeable on certain domain concept is facilitated by DFAgent agents that maintain
profiles of the knowledge and some other characteristics of users and applications.

Back to the scenario: if there is no appropriate electronic resource for the learner's
question, the matchmaker creates a ranked list of the learners who are on line and who
know something about the domain concept. The matchmaker sends this list to the personal
assistant agent of the learner who asked for help. The personal assistant agent starts
negotiation with each of the personal agents of the potential helpers on the list, trying to
find one that would agree to help at a satisfactory price. Once the negotiation process has
succeeded, the agent of the potential helper notifies its learner and asks her if she would be
willing to help. If not, the personal agent has to negotiate with other agents from the list of
suggested helpers. If the learner is willing to help, a communication channel is opened
between the two users (e.g. a simple chat tool), and a help session starts. After one of the
parties terminates the chat, an evaluation form (specific for the matchmaker that
recommended the helper) pops up allowing each learner to evaluate the other learner. This

 88

information is stored by the personal agents (i.e. each personal agent contains a model of
the other user); it is also forwarded back to the matchmaker to update profiles of users in its
database.

5.4.2.2 ARCHITECTURE OF PEER HELP

Fig. 5-4. The architecture of peer help system (PHS)

The proposed architecture of peer help system is illustrated in figure 5-4. It can be
found that this architecture is composed of several agents that perform different task
through cooperation, negotiation among them. These agents share the common
communication language (e.g., ACL) and ontology (e.g., HelperOntology). Each agent
manages specific resource of the user or the application it represents, for example the
knowledge resources of the user about the domain concepts, or the instructional materials
belonging to an application. Agents trade these resources when they need resources that
they do not possess. For this, they negotiate and establish long-term inter-agent
relationships, some of which reflect relationships between learners. In this way, we achieve
a complex multi-user, multi-application, adaptive, self-organizing system that supports

 89

learners in locating and using resources (other learners, applications, and information).
Most of the involved agents are briefly described and discussed as below:
Peer helper agent,(PHAgent), in the context of the peer help system, maintains partial

learner models containing certain basic learner characteristics. Examples of such
characteristics are lists of the learner’s friends and foes, preferences about how the agent
should negotiate on the user’s behalf, taking into consideration the subjective importance to
the learner of certain resources like time or money, and the user’s egoism or altruism. These
characteristics are set explicitly by the learner. They reflect the way the learner wishes to be
perceived by the “world” through his/her personal agent; therefore, indirectly, they also
represent a kind of model of the user. During negotiation with other agents, the PHAgent
acts as a representative of the user. The agents try to optimize their actions and to predict
the “opponent’s” actions. For this purpose, they create models of the other agent’s
“character”. Thus, each PHAgent models the character that the other user wants his/her
agent to represent in the agent community. LHAgent also take into account relationships
that may have previously formed between the learners, for example, by changing the
negotiation strategy (offering a discount for friends or an extra high price for “enemies”).
After repeated successful negotiations followed by successful help sessions between the
learners, the agents offer to add a new relationship between the learners in their models,
thus increasing the number of “friends”. In addition, PHAgent collects references to other
agents who keep information about the learner, e.g. learner model agent (LMA) that
records the knowledge mastery in the domain of a specified course, and different diagnosis
agents (DA) that are responsible for developing model of the learner’s knowledge in
various domain.

Course agent (CAgent) is an important application agent with GUI that represents the
course, which is matched to the taxonomy of domain concepts to be taught, when being
requested it, this agent can display on the screen this course map consisting of domain
concepts. It can also store user preferences with respect to the interface of the web-based
course. Of course, it keeps references to LCMAgent (see chapter 4) in support of locating
more appropriate learning objects when all learning objects provided by this course can not
meet the learner’s requirement. Besides, this agent also has links with the Peer helper agent
and Collaborate agent in order to get peer help or learn in a collective learning setting as
needed, for example, when a learner feels confused about certain course concept or desires
to discuss one domain concept collectively.

Communicative agents (CommAgent) are mainly responsible for the management of
communication being taking place (help session) between the learners

 90

Register Service Agent (RSAgent) performs a single task, i.e. to register the help
service information with Help service agent (see the following paragraphs). It is worth
nothing that in the service information also involves preference information such as the
preferred language, learning style, desired communication tools and so on besides the
domain concepts that have been well mastered.

Diagnostic agents (agents representing test items, questionnaires etc.) represent a
special type of application agent that creates learner models for a particular purpose. For
example, a learning style diagnostic agent detects the learner’s learning style by a
questionnaire composed of set of ILS questions according to the Felder-Silverman Learning
Style Model (see section 2.3.3). a monitor agent monitors user activities (browsing, reading
and posting in the discussion forum), checks time-stamps and updates the level of user
eagerness. There also exist agent that models users’ mastery of domain knowledge. some
diagnostic agent allows the learner to fill a self-evaluation form to initialize knowledge
model of the learner. Another kind of diagnostic agent translates learner assignment grades
into probabilities about the learner's level of knowledge about course concepts. There is no
integration of the different models of the learner’s knowledge at a central place, which is a
crucial difference with centralized user modeling approaches. Data is retrieved and
integrated “on the fly” from the various agents only when it is needed.

Help service agents (HSAgent) is extended from the FIPA DF agent (see FIPA 2000)
that has capability to publish and maintain any service. In this paper, especially we regard
the learner’s capability of mastery of the domain concepts as a kind of help service resource.
In fact, there are two possibilities to register help service with the Help service agents. One
is that the peer help system itself automatically performs such operation, in particular,
during the course learning, the diagnosis agent may assess the learner’s mastery of some
specified domain concepts at appropriate time and reports the results to the course agent, if
level of mastery of the tested concepts excess over a threshold, it makes clear that the
learner is competent in helping other peer learners understand such concepts. In this case,
the course agent commits the registration task to the Register service agent that registers the
peer help service with HSAgent. Another possibility is that the learner herself/himself takes
the initiative to declares or modify her/his help service information directly in manual
manner (see 7.5).

Matchmaking agents act as a special broker that is responsible for performing
matchmaking for specific purposes (e.g. locating the peer helper who is most
knowledgeable on certain domain concept, or locating a helper who has a compatible
learning style, etc.). In fact, there may exist many types of matchmaking agents, specialized
according to various purposes. Each agent finds suitable peer helpers according to different

 91

criteria. For example, one broker finds the most competent peers on the domain concept of
the help request. Another broker finds peers that are currently available (on-line). A third
broker finds peers that have particular social characteristics (e.g. eagerness, helpfulness,
class ranking) that might be beneficial for helpers. A fourth broker finds peers that have a
similar learning style to that of the learner asking for help. A fifth broker finds peer-helpers
only among the friends of a learner. Thus, each matchmaking agent takes a different set of
learner characteristics and calculates a score using a simple ranking algorithm. Typically
several broker agents work together and pipeline their results to produce ranked shortlists of
helpers that are optimal according to some combination of criteria.

Obviously, the proposed architecture is based on the cooperation and negotiation
between the involved agents; we will illustrate the peer help process in the next section.

5.4.2.3 MODELING APPROACH IN PEER HELP SYSTEM
As can be seen from the discussion above most of the communication and reasoning

about the learner’s knowledge is distributed among the agents in the system. Learner
modeling and adaptation is thus fundamentally fragmented and localized. In the peer help
system, there are several situations with regards to the multi-learner multi-agent modeling
approach. We describe them as below, respectively.

A. Learner Modeling Agents
The peer help agent, (as a representative of the learner), is allowed to modeled by its

owner, i.e., the learner can model this agent's character and strategy, i.e. how cooperative
this agent will be, and how it will engage in negotiation. Since the agent represents the
learner in the system, in some sense, this is how the learner is perceived by the other agents
and (indirectly) by the other learners. The "character" imprinted in the agent by the learner
is somewhat related to the notion of explicit user modeling (Rich, 1983) and open user
models (Bull & Pain, 1995; Paiva, et al., 1995). However, in the traditional notion of
“inspectability” of user models it is assumed that the learner can view the model that the
system has created of him/her and the learner corrects misrepresentations that the system
may hold about him/her. In our case the learner can create a personalized agent, which
deliberately differs from the learner’s.

B. Agent Modeling Other Agents
To negotiate better, the peer helper agent (as personal agent) needs to be able to

predict the next move of the other agent. This move depends on the strategy and
preferences of the opponent. Since all the personal agents are self-interested (they work to
satisfy best the needs of their users), it cannot be expected that the agents will reveal their
priorities. Creating and maintaining a model of the opponent and sharing this model with
other agents may help the agents overcome this problem. It is possible to use probabilistic

 92

influence diagrams to model the preferences of the opponent agent.
C. Users Modeling Other Users

A learner can instruct an agent about other users, either by providing evaluation in
some form to be interpreted by the agent or by explicitly setting values for certain features
in the models of other users (or their agents) maintained by the learner’s agents. For
example, in PHS, learners evaluate each other after a help-session. The peer helper agent of
each user gives a short evaluation form to fill; in effect, a simple model of the other user's
competence and helpfulness is constructed by the personal agent. Learners also can instruct
their agents about who their friends are and what their friends can be contacted about, what
domain concepts (or topics) they are good at, topics for which they should not be contacted.
Thus, the user creates simple models of other users; the personal agent of the learner
utilizes these models to navigate better in the social space of the environment.

D. Agents Modeling Users
This case comes closest to the traditional process of a system modeling the user. In

PHS, we hope that the diagnostic agents have the ability to use specific rules to infer values
of particular learner characteristics from raw data and from other agents. For example, the
diagnostic agent computing the eagerness of a given learner receives data about the number
of times the learner has logged into the system and the number of postings that the learner
has read and posted from the application agent of the discussion forum. Matchmakers
collect user model information about the knowledge of all learners that are in a given group
(class) from diagnostic agents specific to certain topics of the class taxonomy and from the
personal agents of the learners, from which they receive both results of learners’ self
evaluations and peer evaluations (after a help session). In integrating this information they
use specific rules (e.g. give more weight to more recent information, to diagnostic agents
over peer helper agents or to peer evaluation over self evaluation).

5.4.2.4 AGENT INTERACTIVE DIAGRAM

To clearly demonstrate the agent interactive process among the proposed peer help
system (PHS). the UML sequence diagram is used to illustrate a common scenario (see
figure 5-5) in which, a learner A can choose to learn a set of domain concepts in adaptive
individual learning space, when the system detects that the target concepts (all or partial)
that learner A has learned have been mastered, it will automatically register such capability
as a help service with the help service agent. Of course learner A can also specify the scope,
condition and strategy of service. While another learner B still cannot understand certain
concept after a period of learning time, he is willing to get peer help in collective learning
space. In this case, it is possible for him to commit the peer help searching task to his peer
helper agent. Once a list of peer helpers on line are returned, this agent will select a most

 93

appropriate peer helper according to the criteria “indoctrinated” by learner B. the detailed
steps are describe as below:

Fig. 5-5. Peer help sequence diagram

Step 1. Learner A request the course agent to display the specified course map
consisting of the domain concepts. Once this learner states the target concepts, the course
agent will send a request message to the learner model agent in order to initiate the
learner’s present knowledge state and learning preference. Given the chosen target concepts,
knowledge state and learning preference as input, the course agent has the ability to
generate an adaptive learning path (all the concepts necessary to explain the target concepts)
and associated learning objects.

Step 2. When a specified time arrives or learner A takes the initiative to take a
informal performance test so as to validate his learning performance on the target concepts,

 94

in this situation, the course agent requests the diagnosis agent to compose a test and records
the final results.

Step 3 and step 4 . Once there are tested concepts that have passed a give threshold,
the course agent asks the register service agent to register the help service information with
the help service agent.

Step 5. learner B would like to learner certain target concept though peer help system,
thus, he start his peer helper agent.

Step 6. the peer help agent sends necessary matching information to the corresponding
matchmaking agent in order to carry out peer helper searching.

Step 7. The matchmaking agent requests the help service agent to locate the peer
helpers who meet the matching requirement.

Step 8. The help service agent return a list of peer helpers, who are knowledgeable
about the requested domain concepts and satisfy other specified matching condition, to
learner B’s peer helper agent.

Step 9. The peer helper agent of learner B begins to negotiate with that of learner A
(supposed learner A is among the candidates of peer helpers). when this negotiation is
successfully reached, they will notify their learner, respectively. Otherwise, the peer helper
agent of learner B has to continue to negotiate with other peer helper agents that represent
the potential peer helpers.

Step 10 and step 11. Both of helper and helpee’s peer helper agents inform the
negotiation result to their learners

Step 12 and step 13. If successful negotiation is reached, the helper and the helpee
respectively start their communicative tools (as chat tool) and begin the help session.

Step 14. When the help session is terminated, learner B can evaluate the performance
of the peer helper.

5.5 LEARNER GROUP FORMING MODELING

5.5.1 INTRODUCTION
Most educators agree that advances in computational technology are going to have a

positive impact on educational activities. However, it is not so clear whether the emphasis
should be placed on individual or on collaborative learning. Collaborative learning
supported by computers seems to be very promising, since advances in computational
technology enable the widespread use of tools such as bulletin boards, chats, whiteboards,
and videoconferences. Individual learning provides benefits such as self-pacing and

 95

establishment of learning goals by the learner.
It would be interesting, if possible, to combine the two learning paradigms into a

common learning framework. However, this combination is not easily attainable. Usually,
collaborative learning environments emphasize Computer-Mediated Communication
(CMC), with tools to integrate e-mail, bulletin boards, whiteboard and chat rooms into
HTML pages (Collins-Brown, 1999). In this context, groups have to be previously assigned
to work together, and the administrator must create the corresponding e-groups. It is
assumed that the group will work together in order to achieve the common understanding
which should result from this community of learners. Nevertheless, with the incorporation
of multi-agent, similar to the peer help system, it is easy to construct the collaborative
learning environment still on the individual learning space basis.

This section presents architecture to dynamically establish collaboration groups for
individual learners sharing a common learning goal. In this architecture, individual learners
can establish a collaboration profile. Indicating the characteristics of the group, they would
like to participate. The proposed collective learning architecture is based on several agents,
which perform functions such as seeking for potential collaboration partners, expressing
which collaboration services are to be used, and monitoring collaborative learning
activities.

5.5.1.1 GROUP FORMING MODEL
From the technological point of view, collaboration among users of an on-line learning

environment depends on two tasks, which are the group definition and the establishment of
(synchronous or asynchronous) communication sessions. Therefore, a collaboration
framework should at least provide the tools to perform both tasks.

The definition of a study group is a trivial task when the required negotiation for
composing the group occurs off-line. However, in an on-line learning environment in which
a teacher may not be present, the learner ignores who are the other learners in the
environment and what they are studying, this task become quite complex.

In order to support learning groups in this kind of environment, the definition of a
learner collaboration profile is proposed. The adoption of this profile enables to find
collaborators with desirable levels of skill and knowledge, thus making possible the
composition of groups with common interests, which would potentially improve the
performance.

The key issue of the proposed framework, which aims at facilitating the establishment
of collaborative settings in an on-line learning environment, is the concept of group, a
dynamic set of learners who are brought together to discuss about some domain concept or

 96

special topic.
A group has a life cycle that starts with the identification of group profile by any

learner in the environment. This learner, who acts as the group owner, establishes the set of
desirable features for recognizing potential members for this group . i.e., the group profile
(see figure 5-6, a).

Fig. 5-6. Group Forming Process model

The group profile is composed of a list of conditions expressing the goal to achieve,
and optionally, a required degree of knowledge on the domain concept (expressed as a real
value between 0 and 1) that members of the group should have. For example, in order to
start learning group to study the domain concept “agent interactive protocol” with members
that already have a reasonable knowledge on agent theory, a learner can possibly customize
a group profile as below:

(Agent Theory, 0.6) AND (Agent interactive protocol)
The adoption of a mechanism to search for collaborators, based on conditions

connected by AND and OR operators, enables the owner to determine the degree of
homogeneity or heterogeneity for the group being created. For example, conditions related

 97

by OR operators sets a group in which its members competences are heterogeneous. This
flexibility enables to get higher educational benefits in defining heterogeneous groups as
stated in Johnson and Johnson (1996), or to define other learning conditions in which
homogeneity is more suitable.

The group profile is used by the collaborative learning framework to start a search for
users of the on-line learning environment whose individual profiles satisfy the proposed set
of conditions (see Figure 5-6, b). The result of this search is a list that may contain learners
and existing groups fitting the proposed group profile (see figure 5-6, c).

The learner proposing the group may then decide either to suspend the creation of a
new group and try to join an existing group (see figure 5-6, h), or to proceed with group
creation. The proponent learner may also not be satisfied by the search results. e.g., the list
of potential group members might be too long or too small. In this case, the learner might
choose to review the set of conditions in the group profile, either by restricting or by
relaxing the required degree of knowledge for the target concept or by introducing or
removing some conditions (see figure 5-6, d). The system can again perform the searching
process applying the new group profile (see figure 5-6, e).

When the learner receives a list of potential group members that satisfy the proposed
group profile, the searching phase ends and the framework starts the invitation phase (see
figure 5-6, f). First, the proponent learner (now the group owner) may select learners within
the list of group members and then the group owner then assigns the task of inviting the
selected potential group members to join the new group. Upon acknowledgment of all
invited learners, the framework concludes the creation of the group (see figure 5-6 g).

Besides enabling the creation of new groups, the framework shall provide
functionalities to monitor activities and participation of group members. A practical use of
this module is to detect the degree of individual participation of a learner within a group or
even the activity level of the group. This information could be used by the learner, in the
case of the participation monitoring, to change her/his behavior within the group in terms of
participation and, in the case of activities monitoring, to decide whether she/he is going to
continue to work, or not, with the group. Another possible module that can be provided is a
knowledge-monitoring module that may be used to evaluate the quality of the knowledge
achieved by the group and its members. Knowledge here is used in a broader sense,
meaning not only the acquired concepts on a given subject but also the methodology used
to get these concepts. The modules above mentioned will be used by the tutor who is
responsible for monitor whether the learning group has achieved a valid knowledge in the
subject being discussed.

 98

5.5.1.2 AGENT ARCHITECTURE
It is obvious that the proposed model is naturally implemented with MAS since the task

related to searching and invitation of peer collaborators is easily performed by agents. The
group creation process is time consuming, since the learner may be involved in successive steps
in profiles refinement process and in the searching and selection of the appropriate group
members. With software agents, the tasks related to the collaboration framework can be easily
done on behalf of the learners. The group agent performs the searching task, considering a
given group profile, and proceed to invite the selected partners or even to request the inclusion
in an existing group. This agent is also responsible for verify the matching between the
specified group profile against the individual learner profiles.

Fig. 5-7. Multi-agent architecture of learning group forming system

 99

From figure 5-7, it can seen that this architecture is composed of a set of agents which
jointly implement the collaborative learning framework. The collaborator agent on behalf
of it learner is responsible for receiving users goals specifications and performs actions to
fulfill these goals, this is also the point of access for learners to establish a group session or
to receive information of other agents to be passed to a learner.

The group agent performs the tasks related to searching and invitation processes. It is
the this agent that is responsible for keeping all the information about the groups opened by
a learner, including member list and control data from collaboration services. This agent
has some important properties. It must be active while there are active groups on line,
ensure the persistence and security of groups information, and be able to locate or to be
located by an owner.

In the searching and invitation process, mobile agents are useful. Lange and Oshima
(1999) has pointed that mobility is one desirable property of software agents, depending on
the tasks to be performed, the volume of the data to be manipulated and the characteristics
of the networks in terms of performance, quality of services (QoS), and topology. The
search for partners involves the query of one or more database servers which keep learner
profiles. These learner profiles contain information about characteristics of learner in terms
of theirs competences and skills in a set of subjects, and in terms of performance in group
activities. Based on some measure of network performance and data amount to be retrieved,
or on the evaluation of distribution of learners in the network, it may be useful to send an
agent (i.e., searching agent) through an itinerary of such servers, rather than retrieving the
data for local processing.

The collaborator agent is associated with any learner in the learning environment,
group owner or not. This agent is responsible to interact with searching agents sent by
group agent. During searching process, it can be important to know which are the resources
available in the computer platform used by the potential collaborator. Also, the agent
interacts with invitation agents in order to receive invitations and reply to them on behalf of
its owner, eventually with some human intervention.

The other two agents are the activity agent and advisor agent. Once a group activity
goes into effect, some collaboration services (i.e., communicative tools) are used. These
services are not part of the architecture, but they provide information that is collected by the
group agent. This information can be used by the activity group members, this may be
important to evaluate the effectiveness of a group.

The advisor agent performs most of the tasks related to group and members
knowledge monitoring. A group advisor (maybe a online tutor) must use this agent to send

 100

recommendations to a group as a whole or to one of its members. These recommendations
will be based on the members profiles and on the information related to the group activities,
as provided by the activities agent.

5.6 SUMMARY

This chapter proposed a distinct constructivist-learning framework that distinguish
other counterpart in the following aspects:

• The domain learning concepts and it concrete learning objects associated with it
are separated;

• How to teach lies on the learner preference and learning status and how to learn
lies on the learner’s control on his/her own;

• When difficulty occurs among domain concepts, a learner can directly request peer
help online or form a learning group in collective learning environment;

• The leaner and agent model is not static but dynamic and distributed modeling
process

Owing to the time and page constraints, some other issues are not profoundly
considered in the proposed learning framework. However, they are definitely worth taking
into consideration in the future work. For example, one issue on group learning that must be
considered is how to deal with group-based decisions. The voting criteria might be
important since, in terms of degree of relevance and acceptance, it can improve the
evaluation of an educational agent about the evolution and understanding of the subject by
the members of a group, both collectively and individually. This must be better studied in
order to implement a software agent. Another issue on the peer help system is how to build
the learner’s mental and social model, how to efficiently negotiate between the learners’
personal agents still deserves the further research, and eventually there maybe exist better
mechanism used to encourage the engagement of peer help. This work will be our focus in
the next work.

 101

CHAPTER 6 AN INNOVATIVE E- ASSESSMENT

APPROACH: MOBILE AGENT BASED PARADIGM

This thesis put forward an innovative holistic solution to modeling large-scale on-line
assessment system by applying the new generation of mobile agent based distributed
computing paradigm. In particular, the most significant innovative point consists in that we
proposed and designed an innovative model of automatic test generation by seamlessly
integrating genetic algorithm, mobile agent, and MAS.

6.1 INTRODUCTION

As is well known that whether in e-Education programs, e-learning portals, or the
traditional education environment, teaching and assessment cooperate as a complete
learning cycle. In traditional classroom based paradigm, the assessment is employed to
identify the strengths and weaknesses in the teaching process, determine whether that a
course has accomplished its objectives, or measure learners’ performance for purpose of
rating, feedback, or readjustment of teaching strategies and reorganization of teaching
materials. In e-Education context, the e-assessment (i.e. online assessment) plays the same
role but has the potential to provide more flexible and innovative assessment paradigms and
approaches. Some significant benefits or potentials of e-assessment are identified as
bellows:

 Greater flexibility for tutors, learners, evaluators with any place and any time
assessments.

 Saving time of tutors and administrative staff through simplified and quicker
examination procedures.

 Reduction in the workload of tutors when feedback is provided automatically or
evaluation work is done by other test evaluators.

 Monitoring the progress of large learner numbers is easier with e-assessments.
 Rapid feedback of individual and group results via result publishing system.
 More flexible and imaginative assessments possible. for instance, objective test

items submitted online can be evaluated by automatic evaluation engine while subjective
test items can be readily distributed among evaluators for marking or grading;

 Improved access for learners who are unable to attend for assessment on-campus

 102

due to physically disabilities or family commitments.
 Test result data can be captured and analyzed by the tutor or particular automatic

diagnostic components (i.e. agents), thus enabling personal learning experience.
Although the above benefits are exciting and attractive from both learner and tutor

perspective, its potentials is far from being brought into play. As Ryan (2000) pointed out
that “preliminary searches for good examples of online assessment reveal no mainstream
examples of the potential of the new media to construct authentic, flexible and meaningful
evaluation of the range of learner learning.” Some of this lack of innovation in assessment
may stem from the perception that e-Education is somehow “second class learning.” Hence,
universities undertaking e-Education assessments will not stray far from the assessment
practices of face-to-face traditional teaching as they recognize that “Only by meeting such
normal quality standards you will be recognized as being serious and the results of your
teaching effort may result in accreditation in the university context.” (Fritsch 2003).
However, a study of e-assessment confirms that the principles for quality e-assessment are
the same regardless of the delivery mode. In other words, validity, reliability, fairness and
flexibility are the key measures for quality assessment (Booth et al. 2003).

From the literature, it is found that the traditional computer based evaluation
mechanisms, such as Web Based Testing, rely predominately on the client-server model.
Generally, in Web Based Testing (WBT) systems, the learners on the client side download a
questionnaire as a web page and submit the answers back to the server. The server evaluates
the answers and returns the results to the client. Java Applets and scripting languages like
Java Script etc. are the frequently used techniques to enable front-end client processing.
Common Gateway Interface (CGI) scripts or Java Servlets are the most often used
techniques for server side processing. Such mechanisms usually do not scale well and do
not fully support features like automatic test generation, evaluation of subjective questions,
delivery of dynamic content, off-line examinations, flexible communication between online
evaluation components, and proactive event notification etc. Obviously, these features are
extremely desirable for e-assessment and there is a need for alternate ways of designing
such applications. In particular, there is a need to provide the following features:

 Comprehensive solution: automatic test generation, delivery, evaluation, and result
compilation as well as publishing are important components of the e-assessment application
and should be well integrated with each other and the rest of evaluation system.

 Support for subjective questions: Answers that involve written text or graphical
schematics would normally require manual evaluation by one or more evaluators. The
system should support a workflow of answer papers among these evaluators.

 103

 Delivery of dynamic content: Questions may need to be presented to the learners
using dynamic content in the form of audio, video, multimedia etc. Sometimes it might also
be necessary to send a tool (e.g. a compiler for client-side code compilation and testing) to
the learners.

 Offline examinations/operations: Unreliable links, security and other reasons might
require that learners, tutors, and evaluators work offline for certain durations.

 Support for push: There are cases where pushing information to the users is a
better alternative than the users pulling the information from the servers. E.g., such a need
may arise when some run-time notices are to be communicated to the learners. Since the
existing WBT mechanisms primarily use the client-server and pull model of distributing
information, we feel that it would be cumbersome to extend them to provide the above
features. Hence, there is a need for alternate mechanisms.

Under this context, this chapter put forward an innovative holistic solution to
modeling large-scale on-line assessment system by applying the new generation of mobile
agent based distributed computing paradigm. The promise of mobile agent paradigm makes
possible to address the above issues in a natural and elegant fashion. Consequently, we will
exhibit in this chapter the advantage and use of various mobile agents in four typical
e-assessment process: test generation, delivery, evaluation and result publishing. In
particular, the most significant contribution in this chapter is that we proposed and designed
an innovative model of automatic test generation by seamlessly integrating genetic
algorithm, mobile agent, and MAS. Since mobile agents are autonomous and dynamic
entities that have the ability to migrate between various nodes in the network, they offer
many advantages over traditional design methodologies like reduction in network load,
overcoming network latency and disconnected operations etc.

6.2 OVERALL FUNCTION STRUCTURE

In this section, we will discuss and describe the overall architecture of the proposed
mobile agent based e-assessment system (MAEA), and then elaborate on four assessment
services components necessary to e-assessment process. As shown in figure 6-1, MAEA is
built on four layers from functionality perspective, i.e., GUI layer, Test Service Layer, Data
Access Layer, and Agent Communication & Management Layer. It is worth noting that, in
MAEA, different agents on behalf of particular services, applications, or human actors,
either mobile or static, reside on client-side or server-side machines that may be dispersed
over internet physically. This is natural because of the characteristic of e-assessment
environment where different actors such as learners, tutors, test evaluators, administrators

 104

are typically located around the world.

Fig. 6-1 General Service Architecture of MAEA

In particular, in GUI layer, there exist four types of users who participate in the
e-assessment process: learners, tutors, evaluators and administrators. They play different
roles and undertake different tasks. More specifically, A learner is the candidate who takes
the formal exam (summary assessment). Besides, for specific purpose (e.g., diagnostic or
reflection), the learner may be persuaded by their personal agents, or even takes the
initiative to perform some self-evaluations (formative assessment) during learning process.
A tutor is the online course author or the teaching organizer who is responsible for
preparing/setting the paper by taking advantage of the read-made test generation service in
the test service layer, which has the capability of automatically generating test papers
according to the requirements specified by the tutor. Without doubt, this process is
significant and can largely alleviate the tutor’s workload. In this dissertation, we
differentiate between the two roles of tutor and evaluator. The reason is apparent that
assessing hundreds of test papers is a burdensome work. To address such issue, an efficient

 105

practice is to distribute these tests among different evaluators for scoring. Besides, in a
large-scale online examination environment, several exam delivery centers are often staffed
with administrators who are responsible for both the registration, authentication of all roles
as well as the invigilation of examinations. All the role mentioned above are supported by
their personal assistant agents (personal secretary) assisting in performing corresponding
tasks.

In test services layer, the four core components: test generation, delivery, evaluation
and publishing are integrated with each other and however designed as autonomous service
providers that may run on different servers. In particular, the main feature of this
architecture is that all the online assessment components are designed as several
independent services represented by corresponding autonomous mobile agents that have the
capability to migrate to the appropriate destinations and carry out local computation. This
innovative paradigm and design philosophy bring several benefits such as bandwidth
reduction, independent of connectivity of network, and enhance of robustness and
flexibility, for instance, once the breakdown of one service has no affect to another services,
as they are autonomous and distributed on different servers.

The data access layer provides the bridge to connect databases and agents that need
particular data access services, which are, in fact, also implemented as utility agents.

The agent communication and management layer is the runtime environment that
provides the common communication channel for interaction among agents as well as
provides management service (e.g., white or yellow service).

6.3 PROTOTYPE DESIGN OF GENETIC ALGORITHM BASED MAS

TEST GENERATION SYSTEM (GAMASTG)

Automatic test generating system in distributed computing context is one of the most
important links in on-line evaluation system. Although the issue has been argued long since,
there is not a perfect solution to it so far. This section proposed an innovative approach to
successfully addressing such issue by the seamless integration of genetic algorithm (GA)
and multi-agent system (MAS). In the design phase, test ontology was firstly defined for
smoothing the communication among agents. For the implementation of GA, The fitness
function and the structure of chromosome were identified on the basis of the analysis of
constraint conditions associated with a test. To demonstrate the task execution flow and
messages passing among agents, the activity diagram and sequence diagram were also
shown on the AUML basis. In addition, the state chart is used to clearly illustrate state

 106

transitions within the core agent GACtrlAgent that regulates the direction of evolution for
each generation of population. On these models basis, we implemented the prototype in the
next chapter, using JADE middle ware. The authentic, reliable simulation results reflect the
feasibility and reasonability of the proposed models designed in this section.

6.3.1 INTRODUCTION
It is well known that in order to verify the learner’s level of understanding and select

corresponding educational strategy, the most popular measurement tool of learners’
knowledge is a test. Therefore, the key issue is how to assure the efficiency and quality of a
test. Obviously, besides the quality of item bank itself containing a large number of test
question items, it also depends on an appropriate algorithm design. The test generation is a
typical multiple variable and multiple objective optimization problem. Naturally, the
genetic algorithm can be considered as the preferred alternative due to its capabilities of
adaptive global optimization and intelligent parallel searching in non-linear solution space
(Hammel et al. 1999). As compared with the traditional searching and optimization
methods, GAs search a population of points in parallel without requiring derivative
information or other auxiliary knowledge. Consequently, GA is highly suitable for such
solving problems as automatic test generation.

Another subsequent issue worth taking into account is how to automatically generate
tests in a distributed environment where diverse resources typically reside on different
network nodes. This obviously relates to the network-computing paradigm, the traditional
solutions to distributed applications are mostly based on client-server paradigm. Although
this model has been dominant in networks for many years, there still exist some inevitable
issues such as resources control, network bandwidth, latency, connectivity etc. Fortunately,
the emerging MAS, specially the mobile agent system, seems to be a promising alternative.
Compared with a client-server centralized system, the advantages of MAS include
distribution of processing, support for a more flexible peer-to-peer model, decentralization
of control, the reduction of network bandwidth use, etc.

The main contribution of this section is to propose a new methodology of integration
of GA and MAS in order to address the issue of automatically generating tests. In
GAMASTG (Genetic Algorithm Based Multi-Agent System Applied to Test Generation),
the involved agents have been beforehand indoctrinated with the experience knowledge of
GA and all the population individuals in GA are mapped into a group of individual agents
representing a group of potential solutions. In particular, a special agent called
GACtrlAgent was designed as a mobile agent that is able to migrate via Internet to the
destination node where the item pool exists. More specifically, this agent has the capability

 107

of constructing the evolutional environment and the authority for the determination on how
the population evolves.

6.3.2 GENETIC ALGORITHM
GA is a computational model inspired by evolution in the search for solutions to

complex problems. GAs operate on a population of potential solutions applying the
principle of survival of the fittest to produce (hopefully) better and better approximations to
a solution. At each generation, a new set of approximations is created by the process of
selecting individuals according to their level of fitness in the problem domain and breeding
them together using operators borrowed from natural genetics. This process leads to the
evolution of populations of individuals that are better suited to their environment than the
individuals that they were created from, just as in natural adaptation. GAs assess the
performance of individual members of a population with fitness function. This is done
through a fitness function that characterizes an individual’s performance in the problem
domain. Thus, the fitness function establishes the basis for selection of pairs of individuals
that will be mated together during reproduction. During the reproduction phase, each
individual is assigned a fitness value derived from its raw performance measure given by
the fitness function. This value is used in the selection to bias towards more fit individuals.
Highly fit individuals, relative to the whole population, have a high probability of being
selected for mating whereas less fit individuals have a correspondingly low probability of
being selected. Once the individuals have been assigned a fitness value, they can be chosen
from the population, with a probability according to their relative fitness, and recombined
to produce the next generation. Genetic operators manipulate the characters (genes) of the
chromosomes directly. The crossover operator is used to exchange genetic information
between pairs of individuals. It is applied with a probability when the pairs are chosen for
breeding. A further genetic operator, called mutation, is then applied to the new
chromosomes, again with a set probability. Mutation causes the individual genetic
representation to be changed according to some probabilistic rule. Mutation is generally
considered to be a background operator that ensures that the probability of searching a
particular subspace of the problem space is never zero. This has the effect of tending to
inhibit the possibility of converging to a local optimum, rather than the global optimum.
After recombination and mutation, the individual strings are then, if necessary, decoded, the
fitness function evaluated, a fitness value assigned to each individual and individuals
selected for mating according to their fitness, and so the process continues through
subsequent generations. Although the underlying mechanisms are simple, GA has proven
itself as a general, robust and powerful search mechanism (Adeli et al. 1994; Cai et al. 1996;

 108

Zitzler et al.2000).

6.3.3 TEST ONTOLOGY DESIGN
In recent years the development of ontology—explicit formal specifications of the

terms in the domain and relations among them (Gruber 1993)—has been moving from the
realm of artificial intelligence laboratories to the desktops of domain experts (Guarino et al.
1999; Holsapple et al. 2002; Rothenfluhh et al. 1996; Valente et al. 1999). It is well
accepted that a common ontology holds the key to fluent communication between agents
(Genesereth et al. 1994). As is known that, for agents to be able to communicate in a way
that makes sense for them, they must share the same language and vocabulary. For a
specific domain (e.g., e-examination), one must define its own vocabulary and semantic for
the content of the communication between agents. This requires ultimately the definition of
ontology.

In order to define the ontology of test generation, the key point is how to identify these
application-specific concepts and relations among them so that agents in GAMASTG can
ascribe the common meaning to them. Apparently, this is relevant to the constraint
conditions associated with a test paper. Therefore, it is necessary to analyze the parameters
of composing a test before the definition of ontology. Typically, the following procedures
should be taken into account when considering setting a paper in a certain discipline:

 To identify the scope of knowledge points and their distribution proportions in a
test.

 To identify the distribution of teaching requirements (can be represented by
Bloom's (1956) taxonomy: knowledge, comprehension, application, analysis, synthesis, and
evaluation).

 To identify the difficulty distribution, e.g., a test paper consisting of 10% of very
difficult test items ,20% of r difficult ones, 40% of medium ones, 20% of easy ones and
10% of very easy Ones, respectively.

 To identify the structure of a test paper, i.e., the types of test items, the quantity of
each type as well as its score.

Obviously, this is a multiple variables solving problem. It can be represented by a
graphical mathematical model as shown in figure 6-2.

The axis X, Y and Z respectively represent knowledge point, difficulty level and
teaching requirement, while the cubes with different colors and different weights
respectively stand for different item types and different scores. The issue of constructing a
test is just to select some appropriate cubes meeting the constraint conditions in each
dimension in this mathematic model.

 109

Fig. 6-2 Mathematical model of solutions space

Based on the above analysis, we defined the test ontology as shown in figure 6-3.
.

ContentElement
Can be used as the
content of an ACL
message

Predicate AgentAction Concept

TestPaper_Parameter
difficulty : Difficulty_level
structure : ItemType
knowledgePoint : Teaching_requirement

Difficulty_level
very_easy
easy
medium
difficult
very_difficult

Teaching_requirement
knowledgePointID : String
account_for : Float
known : Float
understood : Float
masted : Float

ItemType
quantity : Integer
type : String

TestResultReport
itemNo
knowledgePoint
difficultyLevel
teachingRequirement
score

GenerateTest

Fig. 6-3 Class diagram of Test ontology

This ontology describes the main elements that agents use to create the content of
messages, e.g., application-specific predicates and actions. Predicates are expressions that
indicate something about the status of the world and can be true or false. While agent
actions indicate actions that can be performed by some agents. This ontology defines these

 110

concepts such as test structure, score proportions of different types of test items with
different difficult levels, knowledge points and teaching requirements etc. Once this
ontology has been explicitly incorporated into the communication, it can be used to
construct the message content, one of the key points for communication.

6.3.4 DESIGN OF GA
As far as GA is concerned, there are mainly two aspects worth consideration. One is

the representation of a chromosome; the other is fitness function. As a result, the following
discussion will focus on the strategies for them.

6.3.4.1 STRUCTURE OF CHROMOSOME
Individual chromosome represents a potential solution (i.e. a test paper in

GAMASTG). Each test item is identified by its unique number. Consequently, each
chromosome consists of some ordering number of items. From figure 6-4, we can see that
such numbers with the same type are placed in the same segment; all the chromosomes
have the same sequence and length.

.
Fig. 6-4 Structure of chromosome

Apparently, such way of sequencing a chromosome makes easy to operate on the
genetic operators (i.e. crossover and mutation). With regard to crossover, it is the most
genetic operator contributing to GA. thanks to structure of the chromosome mentioned
above; it is convenient to exchange crossover information between two chromosomes.

For example, given two original chromosomes A and B consisting of n items as shown
below, they perform two-point crossover through exchanging part of test items.

Original chromosome A:

Original chromosome B:

Suppose that two crossover points randomly selected from the parent chromosomes
are g and m, respectively (where 1<g<m<n). All items between the two points should be

 111

swapped according to standard two-point crossover operation, thus rendering two child
chromosomes as follows:

Chromosome A after crossover

.

Chromosome B after crossover

For genetic operator mutation, the strategy adopted in this paper is to use a new

created random item to replace the old corresponding one according as the mutation
probability. The following chromosome is used to illustrate this operator.

6.3.4.2 OBJECTIVE FUNCTION AND FITNESS FUNCTION
The objective functions can be obtained as follows:

ini DLitemitemitemf =),...,,(21 i=1, 2… p 6-1

ini KPitemitemitemg =),...,,(21 i=1, 2… m 6-2

ijKTnitemitemitemijh =),...,2,1(i=1, 2, m; j=1, 2… k 6-3

Where:
DLi: the percentage of difficulty level i in relation to the total score of a test.
KPi: the percentage of knowledge point i in relation to the total score of a test.

KTij: the percentage of teaching requirement j belonging to knowledge point i in
relation to the score of knowledge point i.

p, m, k: denote the number of difficulty levels, knowledge points and teaching
requirements, respectively.

The constraint conditions of DLi, KPi and KTij are shown below:
DLi=DLCi KPi=KPCi KTij=KTCij 6-4

Where:
DLCi, KPCi, KTLCij: are the expected value of DLi, KPi, KTij, respectively.

Generally, they are constants specified by teachers or persons who set a test.
Evidently, these objective functions reflect a multiple variables optimization problem

with multiple constraint conditions. They have to be converted into fitness function in order

 112

to control the direction of evolution. To obtain the fitness function, two definitions are
firstly made in formula (5) and (6) respectively.

∑ −=
p

i
ii DLDLCE1 6-5

∑∑
= =

×−×=
m

i

k

j
ijiiji KTKPKTCKPCE

1 1
2 6-6

Where:
E1: the sum of error between the given value DLCi and the calculated value DLi:

E2: the sum of error between the given value KPCi × KTCij, and its
corresponding calculated value.

Finally, the fitness function is defined as follows:

⎩
⎨
⎧

−+−
≥≥

=
)1()1(
11

),...,,(
2211

21
21 EkEk

EorEif
itemitemitemF n

θ 6-7

The most interesting feature in function F is the use of parameters k1, k2 respectively
representing the weighting factors associated with E1 and E2 to which k1, k2 reflect the
extent of importance attached. Based on large numbers of experiments, it is found that it is
relatively more difficult to meet the constraint conditions on the teaching requirements and
knowledge points, so more importance should be given to k2 so as to protect these
individual chromosomes with good performance in teaching requirements and knowledge
points. The other interesting point is that, in function F, the fitness is set as a positive real
number approaching zero when a chromosome (i.e. a test paper) has too bad performance.

6.3.5 ARCHITECTURE
Figure 6-5 shows the proposed agent system architecture of GAMASTG, in which

there exist several types of agents (mobile or static) that might be geographically dispersed
on different internet nodes.

Tutor Personal Agent (TAA) is a personal assistant agent that performs some particular
tasks on behalf of a teacher. For instance, it can help a teacher set up initial parameters,
search other agents providing such service as composing tests, and eventually display or
edit the final result etc. In order to facilitate the access to GAMASTG through common
browsers, this agent can be downloaded on remote machines together with an applet and
then run in local Java Virtual Machine.

Learner Self-evaluation Agent (LSA) provides the opportunity for a learner to take
formative assessment. In this case, LSA will request Leaner Model Agent (see chapter 3) to

 113

inform the prior cognitive status of relevant knowledge points as so to identify the blind
spot of this learner. On this basis, LSA can ask for Test Generation Service Agent to
compose a tailor-made test that adapt to the learner’s knowledge status.

Fig. 6-5 Test Generation Architecture

Test Generation Service Agent (TGSA) is responsible for offering automatic test

 114

generation service. It runs persistently on an test generation server that provides a runtime
environment for all agents as well as manages their lifecycle. In fact, TGSA plays the role
of agent factory, which possesses the ability of dynamically produce mobile agents that
migrate to remote servers to perform particular tasks. Thus most of the concrete work will
be delegated to those mobile agents.

Courier Agent (CA) is a mobile agent that is responsible for dispatching test papers to
different Test Delivery Center Servers (TDCS). This agent is created by TGSA after the
generated test paper is verified, edited, and confirmed by the test setter (i.e. tutor). Once
TDCS is not available for some reasons(e.g, busy, or disconnection of network), such test
papers can buffered in temporary database so as to wait for appropriate time to send CA to
corresponding destinations.

GACtrlAgent is the core agent participating in the implementation of GA. It is created
by TGSA when a request of generating tests arrives (from either TPA or LSA). The
interesting point is that this agent is also designed as a mobile agent. Once obtaining initial
parameters from TGSA, it will migrate via Internet to the nodes where the item banks
reside. On arrival at the destination, it begins to construct the evolution environment by
creating a population of individual agents called TPAgent. These TPAgents respectively
represent a single potential solution (i.e. a test paper consisting of a set of test items with
different types, difficulty, knowledge points, and test objective) in problem domain. After
the evolution environment is successfully deployed, GACtrlAgent will gain the control (not
entirely) over the genetic operations of each generation of population. In other word,
GACtrlAgent begins to take charge of scheduling the genetic operations: selection,
crossover and mutation. In particular, it can make some strategies to control how the next
generation will evolve according to the evaluation of each TPAgent’s performance. More
exactly, for these TPAgents with good performance, they will win chance to reproduce
themselves and survive in the next generation, while others with bad performance might be
killed. During the process of evolution, all the TPAgents are the actual undertakers of GA,
that is to say, they can perceive needed information from the outer world (both from
GACtrlAgent and other TPAgents) carry out the genetic operators such as crossover,
mutation or even suicide for instance. It is worth noting that TPAgents may interact with
different databases, depending on the different requests. In particular, for requests from
LSA, TPAgents retrieve test items from self-evaluation database, however, for request from
TPA, the exam item bank applies. With regard to the detailed design and implementation of
GAMASGT can be referred to the section 5 and chapter 7.

To clearly describe the activities among agents, a UML based activity diagram is

 115

shown in figure 6-6.

Fig. 6-6 Agent UML activity diagram of GAMASGT

6.3.6 STATE CHART
Agents have behaviors and state. The state of an agent depends on its current activity

or condition. A state chart diagram shows the possible states of the agent during its life
period and the transitions that cause a change in state. State Diagrams view agent objects as
finite state machines that can be in one of a set of finite states and that can change its state
via one of a finite set of stimuli. Figure 6-7 are used to clearly exibit the internal states and
their transitions of GACtrlAgent and TPAgent.

 116

Initializtion

entry/ register language & ontologies
do/ addBehaviour(new GetTestParameters())
exit/ trigger behaviours scheduling

Transition

InitializtionAfterMove

entry/ register JDBC driver
entry/ register again language & onotologies
do/ produce a population of TPAgents
do/ ŝend test parameters to TPAgents

arrived

Statastic

event fitnessMessageArrives/ record fitness

create

ResultsReport

do/ r̂equestBestSolution
event bestSolutionArrives/ reportToTeacher
exit/ K̂illAllTPAgent
exit/ suicide

SelectionControl

do/ execute roulette wheel algorithm
do/ T̂PAgent.Select(num to be cloned)

[g=generation] / addBehaviour(new ReportResults)

[g<generation & s=population] / addBehaviour(new ControlSelection())

WaitingForCompletionOfSelection

[s<population]

[not arrived]

CrossoverControl

entry/ pair TPAgents off
do/ ŜendMessage(crossoverInfo)

[selectionCnt=clonedCnt] / addBehaviour(new ControlCrossover...

[selectCnt<ClonedCnt]

WaitingForCompletionOFCr
ossover

[crossoverPrepared] ^activate crossover
[crossoverNotPrepare...

ReceivingTestParameters

[notReceived]

[received] / move

Fig. 6-7 Statechart of GACtrlAgent

6.3.7 INTERACTIVE MODEL

To illustrate the message passing among agents, an AUML based sequence diagram is
shown (see figure 6-8).

 117

Fig. 6-8 Agent UML sequence diagram of GAMASTG

This diagram focuses on depicting the sequence of messages exchanged among agents,
along with their corresponding event occurrences. The detailed interpretation of messages
is as follows:

1. The TeacherAgent states these constraint conditions such as teaching requirements,
knowledge points and difficulty levels to ExamAgent on the basis of TestOnology.

 118

2. ExamCenterAgent creates a mobile agent called GACtrlAgent which acts as the
role of GA dispatcher

3. ExamCenterAgent assigns GACtrlAgent to migrate through internet to the remote
machine (i.e. node 3 where the item pool exists)

4. On arrival, GACtrlAgent begins to create a certain numbers of individual agents
called TPAgents each representing a test paper, i.e., a potential solution.

5. TPAgents composes a test represented by a set of random item numbers according
as test structure specified by the teacher and then extract item parameters from the local
database

6. TPAgents calculates their fitness values respectively using the formula (7).
7. TPAgents reports their own fitness to GACtrlAgent
8. Having collected all fitness values from TPAgents, GACtrlAgent performs some

essential statistic tasks such as the calculation of total fitness, average fitness, maximal
fitness and minimal fitness etc.

9. GACtrlAgent determines the survival chance of the old generation of TPAgents in
the new one applying the roulette algorithm [12].It is to say: those with the worst
performance will be ordered to suicide themselves, while others with better performance
will win opportunity to clone several times themselves.

10. After the selection operation is over, GACtrlAgent has to be responsible for the
crossover genetic operation, more in detail, it has authority to pair TPAgents off and
respectively send them the message contents with the crossover information, i.e., the agent
name to exchange chromosome information with and the crossover position specifying the
crossover point from where the latter of a chromosome will be used to exchange with the
mating agent.

11. When requested to perform the crossover genetic operation, the mating TPAgents
have to retrieve the test items to be exchanged from its own chromosome and send them to
each other. Eventually a new chromosome will be reassembled with the exchanged test
items.

12. Individual agents do the mutation operation according to their own mutation
probability. In practical operation, when one item needs to be mutated, it is sufficient to
replace this item with a new random item.

13. Once both the three genetic operations are over, the new generation of TPAgents
again calculates their fitness values and the subsequent messages passing process will

 119

repeat from step 7 to step 14 until the solutions eventually meet the desired expectation or
the total generation arrives.

14. When obtaining a set of test papers, GACtrlAgent sends the best solutions to the
teacher.

15. GACtrlAgent kills all the TPAgents including itself.
16. TeacherAgent displays the final results to the teacher.
It is worth noting that there are mainly two points of difference between the proposed

notation of agent-oriented UML and the object-oriented UML sequence diagrams. First, the
UML messages are sent from one Object to another in the form of method call while the
AUML messages are sent from one Agent to another in the form of ACL. Second, most of
the UML messages are synchronous where control is passed to called object until that
method has finished running while the AUML messages are absolute asynchronous where
the agent-readable message passing is somewhat similar to the human-readable e-mail
mechanism. Besides, in this dissertation, we use the package node to represent a separate
machine, loop to represent the iterative process of interaction, and the extended stereotype
<<Agent>> to represent Agent object as well as <<move>> to represent one agent’s
migration from one machine to another.

The concrete design, implementation and simulation of GAMASTG can be referred to
the next chapter.

6.4 DESIGN OF TEST DELIVERY

As shown in figure 6-9, this stage of test delivery mainly involves: (1) distribution of
test paper to different test delivery center servers, (2) creation of Delivery Agents that are
responsible for delivering test paper to distance learners (examinees), and (3) creation of
Answer Agent that is responsible for compiling answers collected by delivery agents (note
that these compiled answer paper will further be sent to Evaluation Server for final
assessment).

It is obvious that the architecture shown below exhibits to great extent the flexibility as
most of the activities in this stage are performed by mobile agents (such as Answer Agent,
Courier Agent, and Delivery Agent). In particular, we describe in detail the three stages:

 120

Fig. 6-9 Architecture of Test Delivery Service

(1) Distribution of test papers among Delivery Centers
In large-scale online test environment, there may exist several test delivery centers

distributed on different network nodes at which learners register with the vicinal servers. As
described in the previous section, the Courier Agent is created by the Test Generation
Service Agent (TGSA). Upon supplied with prepared test paper and itinerary of the
specified test delivery centers, this agent will migrate to the first Test Center Delivery
Server (see step 1a) as long as this operation is permitted and authorized by Test Delivery
Service Agent (TDSA) running within this server. After leaving over a copy of the test
paper in the local databases (see step 3), the Courier Agent moves on to the next location
(see step 1b). Upon completion of the itinerary, it returns to the Test Generation Server and
terminates if no any abnormity occurs. Or else, the above process needs to be repeated. If
the number of test delivery centers is large, more than one Courier Agent may be launched

 121

in parallel.
(2) Creation of Delivery agents and testing
One of the tasks to be performed by Test Delivery Service Agent (TDSA) is to detect

the exact moment when a scheduled assessment should be triggered. Of course, the time of
assessment can be predetermined by tutors, administrators (in case of compulsory summary
assessment), or even the learner himself (in case of self-evaluation). Once a compulsory
assessment needs to be launched, the personal agent of each learner who has to take the
assessment (according to the examinee list (see step 2) registered at this test delivery center)
will receive one notification of information about the upcoming assessment. When any
learner prepares well for taking the test, his/her personal agent has to respond with a
message requesting the migration of Delivery Agent. Then TDSA begins to create and
initiate one Delivery Agent per examinee. Once these Delivery Agents have extracted the
specified test paper, they start to migrate via network to the corresponding learner’s
machine. If necessary, the Delivery Agent may carry with utility tools for purpose of
facilitating the process of answering question items. Thanks to the mechanism of mobile
agent paradigm, the learners can take offline test. During the testing process, the Delivery
Agent presents the questions to a learner and records his/her answers. When the designated
examination duration terminates or if the learner finishes ahead of schedule and wants to
submit the results, the Delivery Agent returns to the Test Delivery Server with the answers
(see step 5). It is worth noting that when the type of assessment is self-evaluation, for rapid
feedback we assume that the test just consists of objective question items without any
subjective item. In this situation, the test can be automatically evaluated by Delivery Agent
and the learner can see the test result immediately.

(3) Creation of Answer Agents
The Test Delivery Service Agent needs to create another type of mobile agent

─Answer Agent— that is used to extract answers from the Delivery Agent and is later sent
to the Evaluation Server. Note that while the Delivery Agent itself could be sent to the
Evaluation Server, we use a separate Answer Agent to ensure security and anonymity. For
example, learner machines may not be trusted hosts and the use of Delivery Agent hides
information about the evaluation process from the learner Similarly, the Answer Agent
hides learner details from the evaluators.

6.5 DESIGN OF EVALUATION & RESULT PUBLISHING

This stage involves: (1) evaluation of answer papers and (2) compilation and
publication of test results (see figure 6-10).

 122

Fig. 6-10 Architecture of Evaluation and Result Publishing

(1) Evaluation of Answer Papers
If the type of assessment is mandatory formal examination, we assume that the test

paper consists of both objective and subjective question items. As a result, the part of
objective question items can be evaluated automatically by machine while the part of
subjective items must be evaluated by human (i.e., evaluators). Accordingly, we describe
the two types of evaluation process as follows:

 Evaluation of objective question items: the Answer Agent together with the
“answers paper” arrives at the Evaluation Server (see step 1) with the permission of
Evaluation Service Agent. The part of subjective question items (e.g., writing essay) in the
answer paper will be saved into local database (see step 2) for the preparation of subsequent
evaluation by distance test evaluators where appropriate. However, for the objective
question items (e.g., true/false, multiple choice, matching etc.), they can be sent to the

 123

evaluation engine (see step 3) where the correct answers associated with these question
items have beforehand been stored. After Evaluation Engine finishes this evaluation process,
the final results/scores need to be stored in result buffer database (see step 4).

 Evaluation of subjective question items: the division of work among several
evaluators is especially of signification as it is unimaginable that a single tutor can evaluate
hundreds of test papers. This situation is closely similar to the traditional pencil-pen-paper
based large-scale examination. Whereas, the incorporation of mobile agent paradigm
largely enhances the flexibility, independently of time, space, and connectivity of network.
With regard to the issue how to distribute among evaluators which separate part within a
test paper to be evaluated, it can be negotiated beforehand through their personal assistant
agents. Once they come to consistent agreement, all relevant information will be registered
with Evaluation Server. When everything goes smoothly, the manual evaluation process
begins to happen. More specifically, Evaluation Service Agent sends messages to all the
evaluators who are responsible for evaluation of one specified test paper, notifying that the
answers to be evaluated are already ready. If any evaluator is available online and request to
launch his/her evaluation process, Evaluation Service Agent start to create Allocatee Agent
that is responsible for extracting, from the local answer bank, the predetermined portion of
question items belonging to the share that the evaluator should do. After obtaining the
destination address of the evaluator from registration info database (see step 5), the
Allocatee Agent then moves to the evaluator’s machine (see step 6), Once arrival, it
presents a Graphical User Interface to the evaluator and prompts her to evaluate its answers.
When the evaluator completes relevant evaluation work within allowable duration,
Allocatee Agent will carry the evaluation result and returns to Evaluation Server. Eventually,
the result is likewise stored into the result buffer database temporarily (see step 7), waiting
for the appropriate time to later be sent to the Result Publishing Server. In particular, When
all the answers have been evaluated, Evaluation Service Agent creates Report Agent that is
responsible for assembling all the answers and then move to the Result Publishing Server
(see step 8) with the permission of Result Publishing Service Agent.

(2) Publication of Results
After Report Agent arrives at Result Publishing Server, result data are persisted in

local database. Eventually Publish Service Agent compiles analyses and publishes the final
results. In particular, it sends messages including final test results to relevant personal
assistant agents (see step 10, 11) on half of different users (tutor, or learner).

 124

6.6 SUMMARY

The chapter put forward a new approach to building an e-assessment system applying
MAS, especially Mobile Agent. Some innovative points can be summarized below:

1. This chapter proposed a new methodology and a prototype of GAMASTG., more
specifically,

 The items numbering method inside chromosome assure the facilitation of operate
on genetic operators.

 The seamless integration of GA and MAS can not only address the multi variable
optimization problems of convergence speed and multiple constraint conditions, but also
makes full use of social agents capabilities to solve distributed computing problems in an
elegant manner.

 The introduction of test ontology makes all involved agent understand well each
other in term of composing test requirements.

 GACtrlAgent is designed as a mobile agent; this brings many advantages such as
reducing network bandwidth, latency, etc.

2. For the other links (i.e., test delivery, evaluation and result publishing) in the
e-assessments, the core functionality is mostly carried out by relative mobile agents, as
compared with the traditional client-server computing paradigm, the advantage is obvious
as describe in chapter 2 such as:

 Communication latency and bandwidth:
 Asynchronous execution
 Protocol encapsulation
 Parallel execution

 125

CHAPTER 7 MAS IMPLEMENTATION & SIMULATION

BASED ON JADE FRAMEWORK

To verify and validate the feasibility and efficiency of the models proposed in this
thesis, this chapter implemented and simulated part of the models with the JADE
framework. Especially, three typical applications are implemented. First, we implemented
the simplified prototype of GAMASTP for the purpose of synthetically revealing how to
concretely implement a complex multi-agent system, which is concerned with several key
issue: how to implement test ontology and apply to the communication among agents; how
to design and implement agent behavior model according to the previous models; how to
deploy agents over different network nodes. The second application is implemented for the
purpose of how the learner model agent updates the learner model upon receiving the
refresh data as well as how to answer any questions from external agents, this example also
showed the application of interactive protocols such as FIPA request and FIPA query. The
third example is used to implement part of the peer help system aiming at demonstrating the
process how to find appropriate competent peer learners. The simulation results show the
feasibility and efficiency of the models proposed in this dissertation.

7.1 INTRODUCTION

The purpose of this chapter is to implement part of models proposed in previous
chapters in order to verify and validate their feasibility and efficiency. In the phase of
implementation, an important decision is to find the most suitable programming language.
Since we need a platform independent and on-line accessible system we choose Java, so we
needed a Java based agent system. Moreover, we want the agent system to be FIPA
-compliant since FIPA is the international organization responsible for standardizing the
agent based technology. We also wanted a system that is in growing and has possibilities to
be extended in the future. We found JADE framework (JADE 2005; Chmiel et al. 2004) to
be the best choice and the most suitable solution for our needs. The main reason for this
selection is that JADE is a widely adopted platform within the software agent development
and research communities. It is open-source and full FIPA compliant and runs on a variety
of operating systems including Windows and Linux. With support from JADE, it simplifies
the implementation and deployment of MAS based applications to a great extent. In the
next subsequent sections, we will pay more attention to presenting our experience of how to

 126

use JADE features to implement these models (i.e., GAMASTP, peer help system, and the
learner model agent) proposed in previous chapters in order to exhibit different approaches
to the practical agent design.

7.2 JADE

The section will introduce JADE middle ware that we chose to develop and validate
our applications.

7.2.1 INTRODUCTION

JADE (Java Agent Development Framework) is a software framework fully
implemented in the Java language. It simplifies the implementation of multi-agent systems
through a middle-ware that claims to comply with the FIPA specifications and through a set
of tools that supports the debugging and deployment phase. JADE agent platform tries to
keep high the performance of a distributed agent system implemented with the Java
language. In particular, its communication architecture tries to offer flexible and efficient
messaging, transparently choosing the best transport available and leveraging
state-of-the-art distributed object technology embedded within Java runtime environment.
All agent communication is performed through message passing and the FIPA ACL is the
language that is used to represent the messages. Each agent is equipped with an incoming
message box and message polling can be blocking or non-blocking with an optional timeout.
Moreover, JADE provides methods for message filtering. The developer can apply
advanced filters on the various fields of the incoming message such as sender, performative
or ontology. FIPA specifies a set of standard interaction protocols such as FIPA-request,
FIPA-query, etc. that can be used as standard templates to build agent conversations. For
every conversation among agents, JADE distinguishes the role of the agent that starts the
conversation (initiator) and the role of the agent that engages in a conversation started by
another agent (responder). According to the structure of these protocols, the initiator sends
a message and the responder can subsequently reply by sending a not understood or a refuse
message indicating the inability to achieve the rational effect of the communicative act, or
an agree message indicating the agreement to perform the communicative act. When the
responder performs the action he must send an inform message. A failure message indicates
that the action was not successful. JADE provides ready-made behavior classes for both
roles, following most of the FIPA specified interaction protocols. In JADE, agent tasks or
agent intentions are implemented through the use of behaviors. Behaviors are logical
execution threads that can be composed in various ways to achieve complex execution
patterns and can be initialized, suspended and spawned at any given time. The agent core

 127

keeps a task list that contains the active behaviors. JADE uses one thread per agent instead
of one thread per behavior to limit the number of threads running in the agent platform. A
scheduler, hidden to the developer, carries out a round robin policy among all behaviors
available in the queue. The behavior can release the execution control with the use of
blocking mechanisms, or it can permanently remove itself from the queue in run time.
Beside, JADE uses an agent model and a Java implementation that offer a good runtime
efficiency and software reuse. The following is the list of features that JADE supports the
agent development:

 Distributed agent platform. The agent platform can be split among several hosts
(provided they can be connected via RMI). Only one Java application, and therefore only
one Java Virtual Machine, is executed on each host. Agents are implemented as Java
threads and live within Agent Containers that provide the runtime support to the agent
execution.

 Graphical user interface to manage several agents and agent containers from a
remote host.

 Debugging tools to help in developing multi agents applications based on JADE.
 Intra-platform agent mobility, including transfer of both the state and the code

(when necessary) of the agent.
 Support to the execution of multiple, parallel and concurrent agent activities via

the behavior model. JADE schedules the agent behaviors in a non-preemptive fashion.
 FIPA-compliant Agent Platform, which includes the AMS (Agent Management

System), the DF (Directory Facilitator), and the ACC (Agent Communication Channel). All
these three components are automatically activated at the agent platform start-up.

 Many FIPA-compliant DFs can be started at run time in order to implement
multi-domain applications, where a domain is a logical set of agents, whose services are
advertised through a common facilitator. Each DF inherits a GUI and all the standard
capabilities defined by FIPA (i.e. capability of registering, deregistering, modifying and
searching for agent descriptions; and capability of federating within a network of DF's).

 Efficient transport of ACL messages inside the same agent platform. In fact,
messages are transferred encoded as Java objects, rather than strings, in order to avoid
marshalling and unmarshalling procedures. When crossing platform boundaries, the
message is automatically converted to/from the FIPA compliant syntax, encoding, and
transport protocol. This conversion is transparent to the agent implementers that only need
to deal with Java objects.

 Automatic registration and deregistration of agents with the AMS.
 FIPA-compliant naming service: At start-up, agents obtain their GUID (Globally

Unique IDentifier) from the platform.

 128

 Support for application-defined content languages and ontologies.

7.2.2 JADE ARCHITECURE
The JADE Agent Platform complies with FIPA specifications and includes all those

mandatory agents that manage the platform, that is the ACC, the AMS, and the DF. All agent
communication is performed through message passing, where FIPA ACL is the language to
represent messages. The software architecture is based on the coexistence of several Java
Virtual Machines (VM) and communication relies on Java RMI (Remote Method Invocation)
between different VMs and event signaling within a single VM. Each VM is a basic
container of agents that provides a complete run time environment for agent execution and
allows several agents to concurrently execute on the same host. In principle, the architecture
allows also several VMs to be executed on the same host; however, this is discouraged
because of the increase in overhead and the lack of whatever benefit. Each agent container is
a multithreaded execution environment composed of one thread for every agent plus system
threads spawned by RMI runtime system for message dispatching. A special container plays
the front-end role, running management agents and representing the whole platform to the
outside world. A complete Agent Platform (AP) is then composed of several agent containers
as shown in Figure 7-1. Distribution of containers across a computer network is allowed,
provided that RMI communication between their hosts is preserved.

Fig. 7-1 JADE architecture

 129

Each Agent Container is an RMI server object that locally manages a set of agents. It
controls the life cycle of agents by creating, suspending, resuming and killing them.
Besides, it deals with all the communication aspects by dispatching incoming ACL
messages, routing them according to the destination field (:receiver) and putting them into
private agent message queues; for outgoing messages, instead, the Agent Container
maintains enough information to look up receiver agent location and choose a suitable
transport to forward the ACL message.

The agent platform provides a Graphical User Interface (GUI) for the remote
management, monitoring and controlling of the status of agents, allowing, for example, to
stop and restart agents. The GUI allows also to create and start the execution of an agent on
a remote host, provided that an agent container is already running. The GUI itself has been
implemented as an agent, called RMA (Remote Monitoring Agent). All the communication
between agents and this GUI and all the communication between this GUI and the AMS is
done through ACL via an ad hoc extension of the FIPA-agent-management ontology.

7.3 IMPLEMENTATION OF GAMASGT

7.4 IMPLEMENTATION OF TEST ONTOLOGY WHITH PROTEGE

As described in chapter 7, for agents to be able to communicate in a way that makes
sense for them, they must share the common ontology within the content language. To
handle easily inside an agent, it is obvious that the information content needs to represented
as JAVA objects. However, theses easily manipulated objects have to be conversed into a
string or a sequence of bytes within the content slot for easy to transfer. Fortunately, This
conversion process is automatically performed in JADE (see figure 7-2)

Fig. 7-2 The conversion performed by the JADE support for content languages and ontologies

 130

A boring problem is that it is rather time consuming when implementing ontology

since we have to develop all definition classes (i.e., the schemas) for each predicate, action
and concept included in the test ontology. Fortunately, thanks to a plug-in called
Beangenerator developed by the University of Amsterdam (C.J. Van Aart 2000), it is
possible to define the test ontology using Protégé and make the well-defined ontology
classes to be created automatically. Figure 7-3 shows the screenshot applying Protégé to the
implementation of test ontology. With the Protégé tool, it is possible to allow developers to
reuse domain ontologies and problem-solving methods, thereby shortening the time needed
for development and program maintenance.

Fig. 7-3 A screenshot applying Protégé to the implementation of test ontology

7.4.1 7.4.1 DESIGN OF AGENT BEHAVIOR MODEL
The JADE behavior model allows an agent to execute several parallel tasks in

response to different external events. In order to make agent management efficient, every
JADE agent is composed of a single execution thread and its hidden scheduler carries out a
round-robin non-preemptive policy among all behaviors in the active behaviors queue.

 131

Figure 7-4 shows the behavior class hierarchy of GAMASTG agents based on
the .JADE behavior model (i.e. these classes in gray) in which the SequentialBehavior is a
composite behavior that executes its sub-behaviors sequentially and terminates when all sub
behaviors are done. Therefore, the actual operations performed by executing this behavior
are defined in its children behaviors. The abstract class CyclicBehavior models atomic
behaviors that must be executed forever. The abstract class OneShotBehavior models
atomic behaviors that must be executed only once and cannot be blocked.

 132

Behavior

CompositeBehavior

SimpleBehavior

SequencialBehavior

EvolutionSchedule

OneShotBehavior

CyclicBehavior

CreateNewAgent

Statatic

WaitForRequests
MigrateToDest

CreateTPAgents

ControlSelectionControlCrossoverInitializeTP CalculateFitness

ReadyToMove

PerformSelection

WaitForCrossoverInfo

PerformCrossover

PerformMutation

.Fig. 7-4 UML model of behavior class hierarchy

The following table is the function descriptions of each agent in GAMASTG and all
the tasks have been implemented as the JADE behaviors.

Table 7-1: Behavior types of each agent in GAMASTG

Agent
name

Behavior name
& type

General function descriptions

WaitForRequests
: CyclicBehviour

This behavior waits for the requests from TeacherAgents
that may want to compose a test paper on behalf of a
teacher. Besides, it is responsible for retrieving control
parameters associated to a test according to TestOntology.

Ex
am

C
en

te
rA

ge
nt

CreateNewAgent:
OneshotBehaviour

This behavior is dynamically created within the end
method of WaitRequest behavior. It is responsible for
creating a new agent, i.e., the core agent GACtrlAgent.

G
A

C
t

rlA
ge nt ReadyToMove

:CyclicBehavior
Before GACtrlAgent migrates, this behavior is responsible
for some initialization work.

 133

MigrateToDest:
:OneshotBehavior

This behavior will make GACtrlAgent migrate via Internet
to the destination node where the item pool exists upon
receiving request from ExamCenterAgent.

CreateTPAgents
: OneshotBehavior

This behavior produces a population of TPAgents in order
to construct the evolution environment.

Statatic
: CyclicBehvior

This behavior performs some statistic work such as the
calculations of total fitness, average fitness, maximal
fitness and minimal fitness in each generation. According
to these statistic, it has the authority of determine the
whole lifecycle of GA

EvolutionSchedule
:SequentialBehavior

This behavior is used to schedule its sub-behaviors in
order to make them execute sequentially.

ControlSelection
:OneShotBehavior

A sub behavior of EvolutionSchedule behavior, it uses the
Roulette Wheel Algorithm to direct the survival
probability of old TPAgents in the next generation.

ControlCrossover
:OneShotBehavior

A sub behavior of EvolutionSchedule behavior, it is
executed in such way that it randomly pairs all the
TPAgents off and determines the crossover location. It is
worth noting that not all TPAgents need to mate, this
depends on the crossover probability.

InitializeTP
:OneShotBehavior

This behavior randomly extracts a test paper from the local
database. The test paper represents an initial solution to
problem domain.

CalculateFitness
: OneShotBehvior

This behavior is responsible for the calculation of fitness
value of each TPAgent according to formula (7)

PerformSelection
: CyclicBehaviour

This behavior concretely performs the selection genetic
operation. It might clone or kill its owner agent (i.e.
TPAgent). This depends on the order from GACtrlAgent

WaitForCrossoverInfo
:CyclicBehavior

This behavior receives crossover information from
GACtrlAgent and prepares the test items to be exchanged
as well as sends them to the mating TPAgent.

PerformCrossover
: CyclicBehaviour

This behavior concretely performs the crossover genetic
operation. That is to say, it is responsible for reassembling
the chromosome.

TP
A

ge
nt

s

PerformMutation
: CyclicBehaviour

This behavior performs the mutation genetic operation
according to it own mutation probability

 134

7.4.2 7.4.2 AGENT IMPLEMENTATION

7.4.3 7.4.2.1 GENERIC AGENT INTERNAL ARCHITECTURE
All the agents that have been implemented in MAGE have the same internal

architecture as shown below. From figure 7-5, we can see that all the MAGE agents on
JADE basis have the following characteristics:

 agents are autonomous since each agent controls its own thread of execution and
has a private proxy of the life-cycle manager.

 Each agent decides itself when to read the incoming messages and which messages
to read

 Other agents have no way to get the agent object reference because of the
mechanism of asynchronous message communication

 Different behaviors can be executed concurrently; the scheduler of behaviors
carries out a round- robin non-preemptive policy among all the behaviors in the ready
behavior queue.

 The MAGE agents create their capabilities through the decomposition of task into
subtasks and implementation of them within particular behaviors. It is worth noting that
some behaviors are put into behavior queue in the initialization phase while others are
dynamically created according to the change of an agent’s belief or in case of the need of
behaviors cooperation

Fig. 7-5 Generic agent internal architecture

 135

7.4.4 7.4.2.2 IMPLEMENTATION OF TEACHER AGENT

(1) Building Teacher Agent with integrated GUI
As is known that, in the Java programming language, a GUI runs on its own thread

(the event-dispatching thread) that allows it to handle and react promptly to events that are
generated whenever the user interacts with the GUI via a component such as pressing a
button or resizing the window. On the other hand, an agent program runs on its own
execution thread, which allows it to handle its behaviors. Because it is not efficient to let
one thread call directly the methods of the other thread, JADE has provided an appropriate
mechanism to manage interactions between the two threads when integrating a GUI with an
agent.

The mechanism is simply based on event passing. Let us see how this mechanism
works by considering the two directions of the interaction beween a GUI and an agent.

 The agent interacting with the GUI - A GUI has already a built-in mechanism of
handling event which is implemented via the actionPerformed() method of every
component that is registered with an ActionListener object. To register a component of the
GUI with an ActionListener object, you either make your GUI implements the
ActionListener interface and then register all interactive components of your GUI such as
buttons with this ActionListener via the method addActionListener or for each of the
interactive components, we can anonymously create an ActionListener object and add it to
the component by passing it in argument to the same method addActionListener().
Whenever a call to the GUI is made, an ActionEvent is generated by the source component,
that invokes the actionPerformed() method. And according to the code provided within the
actionPerformed() method, the GUI responds by processing the event. When your agent
program interacts with the GUI, it just calls the method provided within the GUI program
that activates this mechanism.

 The GUI interacting with the agent - JADE has provided the abstract class
GuiAgent that extends the Agent class. This class has two specific methods: postGuiEvent()
and onGuiEvent(). These are the two methods that allow to handle the interactions between
a GUI and an agent program. To be able to use these methods, the agent program must
extend the GuiAgent class. Then we must provide the necessary code within the
onGuiEvent() method that the agent will use to receive and process events that are posted
by the GUI via the method postGuiEvent(). we may view the onGuiEvent() method as the
equivalent of the actionPerformed() method in the GUI. When an agent program extending
the GuiAgent class starts, it launches a specific behavior - the GuiHandlerBehaviour - that

 136

handles incoming events from the GUI and dispatches them to the appropriate handlers,
following exactly the same mechanism as in the GUI. To post an event to the agent, the
GUI simply creates a GuiEvent object, adds the required parameters and passes it in
argument to the method postGuiEvent(). Since this method belongs to the GuiAgent class,
it is necessary to provide the GUI with a reference to the agent class on which the GUI can
invoke that method.

Figure 7-6 shows GUI of Teacher Agent, which facilitate the teacher to configure his
or her preferred test paper parameters, the details can be referred to the previous chapter.

Fig. 7-6 The GUI of a Teacher Agent

(2) Task Implementation
Table 1 described in detail the main behaviors and core methods of Teacher Agent

designed based on JADE framework. All the behaviors and methods listed in this table are
triggered or activated by either particular events or incoming messages from other agents. It
is worth noting that some behaviors are launched in the initialization phase while some
behaviors are added to the behavior scheduler of this agent in dynamical fashion, depending
on the agent’s belief or task. The column task decomposition indicates in detail the main
subtasks designed in the corresponding behavior or automatic called methods. Note that the
implementation of other agents in GAMASTP is also represented as similar format of task
decomposition.

 137

Table 7-2: Task implementation of Teacher Agent

Behaviors

Methods
Triggered Event Task decomposition

Se
tu

p(
) When TeacherAgent is

created, this method is

automatically triggered.

This method performs initiations and addition of initial

behaviors. For GACtrlAgent, it is used to

1. register content language and ontologies. in particular, we

have to register:

 agent content language, i.e. SLCodec

 domain ontology i.e. ExamPaperOntology

2. add to behavior scheduler the following agent behaviors:

ResultShowBehavior

on
G

ui
Ev

en
t()

When GUI event arrives, this

method is triggered.

1. Extract the test paper parameters from the incoming

event object

2. send message containing the test paper parameter to

Test Generation Service Agent and request it to compose a test

paper according to the submitted constraint requirement

R
es

ul
tS

ho
w

B
eh

av
io

r When the incoming

messages satisfy the

following condition:

Sender=Test Generation

Service Agent

ConservatonID=

”result”

1. Extract message content and obtain the final test paper

according to the constraint requirements specified by the teacher

2. display the compiled test papers in the teacher’s

browser in order to assist the teacher in viewing, modifying, and

saving the final test paper on delivery Servers by courier agent

created by Test Generation Service Agent

(3) Deploy in Browser
To allow the service to run on client’s machine with a minimum (or no) installation

required. The JADE system proved to be a very good solution since it offers the possibility
for agents to live on the client's machine without them needing more than a Java enabled
web browser to be installed on that machine. The adopted solution was to create an applet
on the client’s browser. Using the JVM, created by the browser to run the applet, a new
agent container is created on the client’s machine using JADE API calls; figure 7-7
illustrates position of a Teacher Agent in the browser.

 138

Fig. 7-7 TAAgent in the Browser

7.4.5 7.4.2.3 IMPLEMENTATION OF TEST GENERARATION SERVICE AGENT
(TGSAGENT)

Table 7-3: Task implementation of Test Generation Service Agent
Behaviors
Methods

Triggered Event Task decomposition

Se
tu

p(
) When GACtrlAgent is

created, this method is
automatically triggered.

This method performs initiations and addition of initial
behaviors. For TGSAgent, it is used to

1. register content language and ontologies. in particular, we
have to register:

 agent content language, i.e. SLCodec
 mobility ontology i.e. MobilityOntology
 domain ontology i.e. ExamPaperOntology

2. add to behavior scheduler the following agent behaviors:
WaitForRequest

W
ai

tF
or

R
eq

ue
st

 if any incoming messages
that match:
Sender=authorized teacher
agents,
ConversationID=”Generate
Test Paper”

1. extract message content and obtain the test paper
2. Add to behavior scheduler the following agent

behaviors: SQBehavior

SQ
B

eh
av

io
r

when WaitForRequest
behavior terminates

Control its sub behaviors to execute sequentially. In particular,
this composite behavior contains two sub behaviors:
CreateNewAgent, and PassTestParameter. When SQBehavior is
triggered, it makes the first sub behavior available in the behavior
scheduler

 139

C
re

at
eN

ew
A

ge
nt

When SQBehavior is
triggered

1. create a new container in order to make the preparation
for the creation of a new agent (i.e., GACtrlAgent)

2. create and start GACtrlAgent

Pa
ss

Te
st

Pa
ra

m
et

er
 When CreateNewAgent

behavior terminates
Send message containg the test paper parameters to GACtrlAgent

R
et

ur
nR

es
ul

t if any incoming messages
that match:
Sender=GACtrlAgent,
ConversationID=”ResultRep
ort”

Send message containing the final generated test paper to the
requesting agent

C
re

at
eC

o
ur

ie
rA

ge
n

t

if any incoming messages
that match:
Sender=TeacherAgent,
ConversationID=”Confirmed
TestPaper”

Create courier agent that has the capability to carry the proved
test paper to the specified Test Delivery Servers

7.4.6 7.4.2.4 IMPLEMENTATION OF GACTRLAGENT
Table 7-4: Task implementation of GACtrlAgent

Behaviors
Methods Triggered event Task decomposition

Se
tu

p(
) When gactrlagent is created,

this method is automatically
triggered.

This method performs initiations and addition of initial
behaviors. For gactrlagent, it is used to

3. Register content language and ontologies. In particular,
we have to register:

 Agent content language, i.e. Slcodec
 Mobility ontology i.e. Mobilityontology
 Domain ontology i.e. Exampaperontology

4. Add to behavior scheduler the following agent
behaviors:

Receiveexampaperparameter, Statastic, startcrossover, and
isclonefinishedinfo

R
ec

ei
ve

Ex
am

Pa
pe

rP
ar

am

If incoming message
matches the following
conditions:
Sender=tgsagent ,and
Conversation ID=
“exampaper_Parameter”

1. To extract test parameters from message content,
including item type, number, teaching requirement, and difficult
requirement;

2. To locate the GUID of the container (to migrate on)
that runs on the Item Bank Server. This is realized through
sending query to AMS.

3. To perform the operation of migration by calling the
domove method. It should be noted that this method just changes
the agent state to TRANSIT. The actual migration takes place
asynchronously.

 140

af
te

rM
ov

e(
)

After gactrlagent arrives at
the remote destination agent
container in Item Bank
Server, this method is
triggered

We overrode this placeholder method to perform the
following actions:

1. Reregister content language and ontology as they can
be migrated with the agent itself

2. Create a set of tpagents according to the predefined
number of population

3. Broadcast message containing test parameters to all the
created tpagents

St
as

tic
 When any incoming message

that matches:
Sender=any tpagent,
conversationid=”Fitness”

1. Record the fitness values sent by tpagents
2. After each generation, this behavior is responsible for

calculating the maximal, minimal and average fitness value and
saving them.

3. When having collected all the fitness values for each
generation and the current count of generation is lower than the
preset total generation, this behavior will add the behavior
controlselection to behavior scheduler

C
tro

lS
el

ct
io

n

After each generation is over

1. Calculate the number of each tpagent that survives in
the next generation, applying Roulette Wheel Algorithm.

2. Send messages to all of the tpagents of the current
generation in order to order them to perform corresponding
actions according to 1. In particular,

 If number>1, the tpagent can clone itself by number-1
 If number=1, the tpagent does nothing
 If number=0, the tpagent has to suicide.

Is
C

lo
ne

IF
in

is
he

dn
fo

When the incoming
messages satisfy the
following condition:
Sender=any tpagent
Conservatonid=
“confirmifcopyisfinished”

1. Count the number of messages coming from the
tpctrlagents that clone themselves

2. Once the count arrives at the specified number, this
behavior adds new behavior controlcrossover for the
transmission of crossover information

C
on

tro
lC

ro
ss

ov
er

After the task
transfercrossoverinfo is
finished

1. Randomly pairs all the tpagents off and produces the
crossover positions.

2. Send messages containing the crossover position
information to the paired tpagents that need to use that for the
crossover operation

St
ar

tC
ro

ss
ov

er
 When the incoming

messages satisfy the
following condition:
Sender=any tpagent
Conservatonid=
”crossoverprepared”

1. Count the number of messages coming from the
tpagents that have received the crossover information

2. Send messages to the paired tpagents in order to really
start crossover operation when they have prepared well the
question items that need to be exchanged according to the
crossover position

 141

7.4.7 7.4.2.5 TPAGENT
Table 7-5: Task implementation of TPAgent

Behaviors
Methods

Triggered event Purpose and task decomposition

Se
tu

p(
) When tpagent is created, this

method is automatically
triggered.

This method performs initiations and addition of initial
behaviors. For gactrlagent, it is used to
1. Register content language and ontologies. In particular, we
have to register:
 Agent content language, i.e. Slcodec
 Domain ontology i.e. Exampaperontology

2. Add to behavior scheduler the following agent behavior:
Sqbehavior
Selectionbehaviour;
Waitcrossoverparameterbehaviour;
Crossoverbehaviour;
Reportresultbehaviour

SQ
B

eh
av

io
r

 When setup() finishes its
initiation

Control its sub behaviors to execute sequentially. In particular,
this composite behavior contains two sub behaviors:
getexampaperparameterbehaviour, and
initializepopulationbehaviour. When sqbehavior is triggered, it
makes the first sub behavior available in the behavior scheduler

G
et

Ex
am

Pa
pe

rP
ar

am
et

er
B

eh
av

io
ur

If incoming message
matches:
Sender=gactrlagent ,and
Conversation ID=
“exampaper_parameterfromc
trlagent”

Receive test paper parameters by extracting message content

In
iti

al
iz

eP
op

ul
at

io
n

B
eh

av
io

ur

When
getexampaperparameter
Behaviour terminates

1. Separate the test paper parameters in order to obtain each
item type and its number
2. Obtain the connection of local database containing item
bank
3. Randomly produce the specified number of items within the
preset scope for each item type
4. Extract item characteristics by SQL statements
5. Calculate the fitness value according to formule (7) in the
previous chapter
6. Send message containing fitness information to gactrlagent

 142

Se
le

ct
io

n
B

eh
av

io
ur

If incoming messages match:
Sender=gactrlagent ,and
Conversation ID=
“clone”

This behavior is used to perform the selection genetic operator
Extract the message content and obtain the number that
determines the time needing to be cloned by tpagent
If number=0 then suicide
If number=1 then do nothing
If number>1 then clone itself number-1 time by calling doclone
method

af
te

rC
lo

ne
()

When the clone operation
terminates

Send message with conversationid= “confirmifcopyisfinished “ to
inform gactrlagent that the operation selection has terminated. It
is worth noting the message content is empty.

W
ai

tC
ro

ss
ov

er
Pa

ra
m

et
er

B
eh

av
io

ur

If incoming message
matches:
Sender=gactrlagent ,and
Conversation ID=
“crossoverparameter”

1. Extract message content and obtain crossover information
including the agent identifier to which the receiving tpagent will
send the question items to be exchanged, and crossover point
2. Prepare the crossover content according to the crossover
point indicated by the message content
3. Send message to gactrlagent in order to notify that the
crossover content has well been prepared
4. Wait for the confirmation information from gactrlagent in
order to ensure that all tpagents that need to perform crossover
operation, have made advance preparation for the forthcoming
crossover operation
5. When the confirmation information arrives, then really
launch the crossover operation by sending message containing
the items to be exchanged to the specified tpagent

C
ro

ss
ov

er

B
eh

av
io

ur
 If incoming message

matches:
Sender=gactrlagent ,and
Conversation ID=
“crossovermsg”

1. Extract message content and obtain the question items that
are used to reassemble the test paper
2. Perform the mutation operation according to the specified
mutation probability. After this operation, a new test paper (i.e., a
new chromosome) is created
3. Obtain the connection of local database containing item
bank
4. Extract item characteristics by SQL statements according to
the new created test paper represented by a set of item numbers
5. Calculate the new fitness value according to formule (7) in
the previous chapter
6. Send message containing fitness information to gactrlagent

 143

7.4.8 7.4.3 PLATFORM IMPLEMENTATION

7.4.9 7.4.3.1 SIMULATION
To perform the simulation studies, we firstly created five tables respectively

representing five different types of test items in a database of MySQL. Each table contains
1000 records created in a random manner and has the same table structure as follows:

Item No Knowledge point Teaching requirement Difficulty level Score/item

Where: { } points. knowledgedifferent five indicates kp5-kp1kp5kp4,kp3,kp2,kp1,point(KP) Knowledge ∈

{ }master,understand know,t(TR)requiremen Teaching ∈
{ }difficult very difficult, medium, easy, easy,very level Difficulty ∈

item each test for valuescore therepresents:Score/item

The GA initial parameters mainly include the size of population (set by 30), the
number of generations (set by 15), the crossover probability (set by 90%), mutation
probability (set by 5%), the length of a chromosome (this depends on the total quantity of
test items) as well as the weighting factors: k1 (set by 2) and k2 (set by 3) defined in
formula 6-7.

Besides, the definitions of initial parameters for the test composition are specified by a
teacher as shown from table 7-6 to table 7-9. It is worth noticing that

Table 7-6: the definition of a test structure

Item type Number of items Score/item Subtotal

1 10 2 20

2 5 2 10

3 10 2 20

4 6 5 30

5 4 5 20

Total score of this test: 100

Table 7-7: the definition of difficulty levels

Difficulty level very easy easy medium difficult very difficult

Score percentage 10% 20% 40% 20% 10%

Table 7-8: the definition of knowledge points

Knowledge point kp1 kp2 kp3 kp4 kp5

Score percentage 10% 20% 30% 30% 10%

 144

Table 7-9: the definition of teaching requirements

KP\TR know understand master

kp1 80% 20% 0

kp2 20% 60% 20%

kp3 20% 50% 30%

kp4 30% 40% 30%

kp5 0 60% 40%

Figure 7-8 is a snapshot that illustrates the interactive conversation process among

GAMASTP agents

Fig. 7-8 Interactive process among GAMASTP agents

 145

The final simulation results are shown as follows:
The best solution (i.e. the best chromosome consisting of a collection of test

items)={114, 382, 542, 219, 600, 878, 196, 767, 197, 898, 1169, 1069, 1163, 1487, 1286,
2511, 2894, 2577, 2721, 2191, 2270, 2855, 2583, 2976, 2770, 3681, 3745, 3323, 3942,
3204, 3721, 4712, 4687, 4901, 4323}. Thanks to the chromosome structure defined in
section 6.3.4.1, consequently, the requirements defined in table 7-6 are naturally met.

Figure 7-9 records the average fitness of each generation. It shows that the population
of individual agents always evolves towards a better solution.

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

generations

a
v
g
F
i
t
n
e
s
s

Fig. 7-9 Evolution of the average fitness of each generation

The simulation results with respect to difficulty levels, knowledge points and teaching

requirements are shown as table 7-11, table 7-12 and table 7-13.
Table 7-11: the simulation results for difficulty levels

Difficult level Very easy easy medium difficult Very difficult
Score percentage 8% 23% 42% 18% 7%

Table 7-12: the simulation results for knowledge points

Knowledge point kp1 kp2 kp3 kp4 kp5
Score percentage 10% 14% 36% 32% 8%

 146

Table 7-13: the simulation results for teaching requirements

KP\TR know understand master
kp1 60% 20% 20%
kp2 14.3% 71.4% 14.3%
kp3 16.7% 50% 33.3%
kp4 37.4% 31.3% 31.3%
kp5 0 50% 50%

Compared with table 7-7, table 7-8 and table 7-9, we can obtain E1=10%, E2=24%

and Fmax=4.08 according to the formulas 7-5, 7-6 and 7-7. They basically meet the
requirements specified in table 7-7, table 7-8 and table 7-9. In order to verify the stability,
we carried out hundreds of tests on the same problem, what make us excited is that the
simulation results are still very stable. This shows the recommending prototype and its
implementation model is feasible and robust.

7.5 IMPLEMENTATION OF LEARNER MODEL AGENT

The learner model agent is a key to personalize the learner’s learning experience and
adapt the system behaviors to the learner’s personal profile. As we see from the previous
chapter, This agent is responsible for updating the specific learner model, and answering
any relative query from outside agents in terms of the learner’s user profile such as personal
information, interactive history, knowledge status etc. the implementation process involves
the ontology generation, database creation, and the interaction protocol implementation.
From our experience, to realize the second function, the key is to how to identify and
understand the query content and achieve rational effect. This process is realized through
implementing the standard FIPA query and request interaction protocol. Therefore, this
example is used to demonstrate how to implement agent interaction protocol (IP) in JADE
setting.

7.5.1 PROTOCOAL IMPLEMENTATION
Ongoing conversations between agents often fall into typical patterns. In such cases,

certain message sequences are expected, and, at any point in the conversation, other
messages are expected to follow. These typical patterns of message exchange are called
interaction protocols. A designer of agent systems has the choice to make the agents
sufficiently aware of the meanings of the messages and the goals, beliefs and other mental

 147

attitudes the agent possesses, and that the agent’s planning process causes such IPs to arise
spontaneously from the agents’ choices. This, however, places a heavy burden of capability
and complexity on the agent implementation, though it is not an uncommon choice in the
agent community at large. An alternative, and very pragmatic, view is to pre-specify the IPs,
so that a simpler agent implementation can nevertheless engage in meaningful conversation
with other agents, simply by carefully following the known IP. Therefore, this section will
introduce two IPs (i.e., FIPA Query IP and FIPA Request IP) involved in the Learner Model
Agent conversations and furthermore shows the state chart applying FSM.

A. FIPA Request IP AUML diagram—update learner model
We apply this protocol to updating the learner’s model. The FIPA Request Interaction

Protocol (IP) allows one agent to request another to perform some action. The
representation of this protocol is given in Figure 7-10 which is based on extensions to UML
1.x. (Odell 2001). This protocol is identified by the token FIPA-request as the value of the
protocol parameter of the ACL message. The Participant processes the request and makes a
decision whether to accept or refuse the request. If a refuse decision is made, then “refused”
becomes true and the Participant communicates a refuse. Otherwise, “agreed” becomes
true.

If conditions indicate that an explicit agreement is required (that is, “notification
necessary” is true), then the Participant communicates an agree. The agree may be optional
depending on circumstances, for example, if the requested action is very quick and can
happen before a time specified in the reply-by parameter. Once the request has been agreed
upon, then the Participant must communicate either:

 A failure if it fails in its attempt to fill the request,
 An inform-done if it successfully completes the request and only wishes to indicate

that it is done, or,
 An inform-result if it wishes to indicate both that it is done and notify the initiator

of the results.
Any interaction using this interaction protocol is identified by a globally unique,

non-null conversation-id parameter, assigned by the Initiator. The agents involved in the
interaction must tag all of its ACL messages with this conversation identifier. This enables
each agent to manage its communication strategies and activities, for example, it allows an
agent to identify individual conversations and to reason across historical records of
conversations.

 148

Fig. 7-10 FIPA request protocol

B. FIPA query IP AUML diagram —querying learner model
The Initiator requests the Learner Model Agent to perform some kind of inform action

using one of two query communicative acts, query-if or query-ref (see (FIPA00037)). The
query-if communication is used when the Initiator wants to query whether a particular
proposition is true or false and the query-ref communication is used when the Initiator
wants to query for some identified objects. The Learner Model Agent processes the query-if
or query-ref and makes a decision whether to accept or refuse the query request. If the LMA
makes a refuse decision, then “refused” becomes true and the Learner Model Agent
communicates a refuse. Otherwise, “agreed” becomes true.

 149

Fig. 7-11 FIPA query protocol

If conditions indicate that an explicit agreement is required (that is, “notification
necessary” is true), then the Participant communicates an agree. The agree may be optional
depending on circumstances, for example, if the requested action is very quick and can
happen before a time specified in the reply-by parameter. If the Participant fails, then it
communicates a failure. In a successful response, the Participant replies with one of two
versions of inform:

 The Participant uses an inform-t/f communication in response to a query-if where
the content of the inform-t/f asserts the truth or falsehood of the proposition, or,

 The Participant returns an inform-result communication in response to a query-ref
and the content of the inform-result contains a referring expression to the objects for which
the query was specified.

Any interaction using this interaction protocol is identified by a globally unique,
non-null conversation-id parameter, assigned by the Initiator. The agents involved in the
interaction must tag all of its ACL messages with this conversation identifier. This enables

 150

each agent to manage its communication strategies and activities, for example, it allows an
agent to identify individual conversations and to reason across historical records of
conversations.

C. Implementation of Query IP using Finite State Machine
For every interaction protocol mandated by FIPA specifications, two roles can be

played by an agent:
 Initiator role: the agent contacts one or more other agents to start up a new

conversation, evolving according a specific interaction protocol.
 Responder role: in response to a message received from some other agent, the

agent carries on a new conversation following a specific interaction protocol. In this
example, it is obvious that the Learner Model Agent plays such role.

JADE provides a Behavior object for each one of these two protocol roles; these
behaviors often are abstract classes that application programmers must extend in order to
provide application specific code to handle the various protocol steps. Figure 7-12 and
figure 7-13 shows the state chart of the initiator and responder agent, respectively.

Fig. 7-12 FSM state chart of Initiator

 151

Fig. 7-13 FSM state chart of Learner Model Agent

7.5.2 SCENARIO
This section demonstrates two concrete application scenarios accompanied by a sequence of

screenshots intercepted from our simulation environment developed in JBuilder. The scenario is
described blow:

Case 1: A Pedagogic Agent named into wants to query for the education status of a
learner named Louis from his learner profile database.

Query structure from Pedagogic Agent:

((iota ?myedustatus
(EducationStatusIs ?myedustatus (Learner :name louis))))

Answer results from Learner Model Agent:

((=
 (iota ?myedustatus
 (EducationStatusIs ?myedustatus (Learner
 :name louis)))
 (EducationStatus
 :major
 (sequence automation "system analysis and integration")
 :preferredDomain MAS
 :area e-learning
 :obtainedDegrees
 (sequence automation "system analysis and integration"))))

 152

Figure 7-14 show the conversation ACL message between the two agents more clearly.

Fig. 7-14 Snapshot of ACL Messages for Learn Model Agent and Pedagogic Agent

Figure 7-15 illustrates the incoming message and outgoing message boxes within

Learning Model Agent; furthermore, we can see the dynamic behavior pool at the bottom of
figure 7-15.

 153

Fig. 7-15 snapshot of the message box and behavior pool for Learner Model Agent
Case 2: The Evaluation Agent send a message to Learner Model Agent and request it

to update a learner’s cognitive ability. Different from the prior case, the message content is
represented as XML language instead of SL expression. This shows that an agent has the
capability to speak more than one language although the agents in ongoing conversation
have to speak the same language respect the same protocol.

<CONTENT_ELEMENT type="NotifyInfo">
<assessInfo type="CognitiveConstruct">

<cognitiveAbility>
<avgScoreForEasyKP>0.0</avgScoreForEasyKP>
<knowledgeLevel>justsoso</knowledgeLevel>
<analysisLevel>good</analysisLevel>
<evaluationLevel>double</evaluationLevel>
<rank>0</rank>
<avgScoreForMediumKP>0.0</avgScoreForMediumKP>
<applicationLevel>poor</applicationLevel>
<avgScoreForHardKP>0.0</avgScoreForHardKP>

<COMPREHENSIONLEVEL>TRES

BIEN</COMPREHENSIONLEVEL>

<totalScore>0.0</totalScore>
</COGNITIVEABILITY>

<DomainID>computer</DomainID>
</assessInfo>
</CONTENT_ELEMENT>

 154

7.6 IMPLEMENTATON OF PEER HELP SYSTEM

For the sake of saving pages, we focus on the scenario description involved in this
example, concerning the agent implementation details; we do not list them here. Thus, we
demonstrate this subsystem in the light of the sequence of a whole help session

1. Register service with Help Service Agent
Figure 7-16 illustrates the user interface for the service registration (i.e., capability and

preference publishing) with Help Service Agent by a Register Service Agent. Actually, this
process can not only performed by filling in the form manually according to the learner’s
willing, but also by the peer help system automatically. This mechanism makes more
flexible for the learner to publish his/her capability.

Fig. 7-16 Register service with DFAgent

2. Request matchmaker agent to find desired peer helpers
Table 7-14: Message slots for Learner Assistant Agent

Purpose
Search online peer learners from DFAgent, who are
knowledgeable about topic 5 and are willing to speak
English with chat tool

Sender PeerHelpertAgent
Receiver MatchmakingAgent
Communicative act Request
Language XML
Ontology Help
Protocol FIPA-Request
Conversaton-id pa@louis:1099/JADE321344553553
Reply-with pa@louis:1099/JADE321344553553
Content See below

Communication content is represented in the form of XML as below:

 155

<CONTENT_ELEMENT type="help">
<topic>topic5</topic>
<communicationTool>chat</communicationTool>
<competence>very high</competence>
<language>English</language>
</CONTENT_ELEMENT>

3. Search prospective peer learners

Table 7-15: Message slots for Matchmaking Agent

Purpose Return a list of online learners who meet the specified constraint
imitator Learner 1
Sender matchmakingAgent
Receiver DFAgent
Communicative act Request
Language fipa-sl0
Ontology FIPA-Agent-Management
Protocol FIPA-Request
Conversaton-id matchmaker@louis:1099/JADE1139931568312
Reply-with matchmaker@louis:1099/JADE1139931568312
Content See below

Communication content is represented as below in SL:

((action
 (agent-identifier
 :name df@louis:1099/JADE
 :addresses (sequence http://louis:7778/acc))
 (search
 (df-agent-description
 :languages (set English)
 :services
 (set (service-description
 :name topic5
 :properties (set (property :name competence :value "very high")))))
 (search-constraints :max-results -1))))

 156

4 Return a list of online learners who meet the specified constraint
Table 7-16: Message slots for Help Service Agent

Purpose Return a list of online learners who meet the specified constraint
imitator Learner 1
Sender HelpServiceAgent
Receiver matchmakingAgent
Communicative act Request
Language fipa-sl0
Ontology FIPA-Agent-Management
Protocol FIPA-Request
Conversaton-id matchmaker@louis:1099/JADE1139931568312
Reply-with matchmaker@louis:1099/JADE1139931568312
Content See below

Communication content is shown below:

((result
 (action
 (agent-identifier
 :name df@louis:1099/JADE
 :addresses (sequence http://louis:7778/acc))
 (search
 (df-agent-description
 :services (set (service-description
 :name topic5
 :properties (set (property :name competence :value "very high"))))
 :languages (set English))
 (search-constraints :max-results -1)))
 (sequence
 (df-agent-description
 :name (agent-identifier :name learner2@louis:1099/JADE :addresses (sequence
http://louis:7778/acc))
 :services
 (set (service-description
 :name topic5
 :ownership learner2
 :properties
 (set (property :name competence :value "very high")
 (property :name communication :value chat)
 (property :name rank :value help.ontology.Help@5c1eae))))
 :protocols (set "")

 157

 :languages (set English)
 :ontologies (set MASCourse))
 (df-agent-description
 :name (agent-identifier :name learner1@louis:1099/JADE :addresses (sequence
http://louis:7778/acc))
 :services
 (set (service-description
 :name topic5
 :ownership learner1
 :properties
 (set (property :name competence :value "very high")
 (property :name communication :value chat)
 (property :name rank:value help.ontology.Help@1909385))))
 :protocols (set "")
 :languages (set English)
 :ontologies (set MASCourse)))))

5 Invite chosen peer helper to participate in help session

Fig. 7-17 UI of help invitation

6 Start the help session

Fig. 7-18 UI of help session

 158

7.7 SUMMARY

In this chapter, we implemented three applications. First, we implemented the simplified
prototype of GAMASTP for the purpose of synthetically revealing how to concretely
implement a complex multi-agent system, which is concerned with several key issue: how
to implement test ontology and apply to the communication among agents; how to design
and implement agent behavior model according to the previous models; how to deploy
agents over different network nodes. the second application is implemented for the purpose
of how the learner model agent updates the learner model upon receiving the refresh data as
well as how to answer any questions from external agents, this example also showed the
application of interactive protocols such as FIPA request and FIPA query. The third example
is used to implement part of the peer help system aiming at demonstrating the process how
to find appropriate competent peer learners. In this example, for purpose of the
simplification, we focus on implementing several particular agents such as DFAgent that
makes possible for learners to publish their services, here indicating the cognitive abilities
on different topics/concepts shared by learners, learning styles, or other personal profiles,
MatchMaking Agent that is responsible for search for prospective peer learners who meet
the specified help constraint, and the ChatAgent that is used to communicate messages in a
help session. This agent is activated when a successful negotiation between helper and
helpee has been arrived at. The results of simulation show that the models proposed in this
thesis is feasible and reasonable..

 159

CHAPTER 8 CONCLUSIONS AND PERSPECTIVES

8.1 CONCLUSIONS

An integrated solution to the MAS based e-Education is proposed in this dissertation.
The main contributions of this dissertation can be concluded in the following points:

1. Contribution to the modeling of multi-user & multi-agent in the distributed context.
In particular, this thesis addressed the agent communication issue, we designed a set of
FIPA-compliant ontologies such as learner model ontology, learning content management
ontology, test ontology so that all the interacting agent can speak the same language and
apply the same set of vocabulary. Instead of adopting the traditional server-centered
monolithic user modeling method, we put forward a just-in-time multi-user multi-agent
modeling method that allows different agent to use different modeling method and take
different forms of model representation so as to enhance the robustness and flexibility and
modularity in large-scale, complicated and open e-Education environment.

2. Proposed a powerful and flexible multi-agent based framework to facilitate the
development of course contents and support just-in-time individualized learning experience
for learners with different needs and cognitive ability by making full use of a repository of
reusable learning objects;

3. Designed a efficient learning path generation algorithm aiming at recommending a
tailored learning path consisting of domain concepts in support of explaining the target
concepts specified by the learner according to both the learner’s knowledge state and
learning preference.

4. Proposed a flexible and innovative collaborative learning reference model
according to the principle of constructivism, in support of learners to create tailored
learning group by virtue of different matchmaking agents on different criteria basis,
moreover, this model makes easy for teachers to monitor and organize the activity of
learning groups.

5. Addressed the issue how to find appropriate electronic resources, peer learners,
tutors in the distributed learning space through the smart help system.

6. Put forward an innovative holistic solution to modeling large-scale on-line
assessment system involving four typical e-assessment process: test generation, delivery,
evaluation and result publishing. by applying the new generation of mobile agent based
distributed computing paradigm. In particular, the most significant contribution of this

 160

model is that we proposed and designed an innovative model of automatic test generation
by seamlessly integrating genetic algorithm, mobile agent, and MAS. The incorporation of
mobile agent paradigm not only addressed the issues such as bandwidth latency, network
traffic, fault tolerance, load balance etc. but also greatly enhanced the flexibility in terms of
generating, delivering and assessing test.

8.2 PERSPECTIVES

When the old problems are solved, new problems will appear. The history of the
science and technologies always run in this way. The further study will be conducted as
below:

1. From development and system perspective, e-Education is increasingly becoming
more and more dynamic, open, unpredicted, and complex distributed system. As a
new generation of solution to the distributed computing paradigm, MAS exhibits
its powerful application perspective in the domain of e-Education. However, the
predominant and popular network computing paradigm at present is on the
client-server paradigm basis. Therefore, we will pay more attention to explore how
to combine the MAS system with the traditional network service architecture (e.g.
J2EE). Obviously, there are two directions to be expected: one possibility is to
encapsulate the latter with multi-agent, another is that the MAS system can be
regarded as a standalone service within the former.

2. From standard view, as is known that it brings us several benefits with regard to
exchangeability, reusability, communication, etc. however, most of the learning
standards seems not to put more efforts on the adaptive and personalized learning.
Inevitably, how to further extend them will be a focus in the near future. Besides,
how to develop interfaces that facilitate the application of these standards is
another aspect that we are interested.

3. From MAS perspective, so far, few environments can provide the capability of
developing practical MAS based applications. Our experience in the development
of MAGE shows that a whole cycle for the MAS development has to be involved
in several phases including analysis, modeling, programming, debugging and
deployment. The development work will be a very burdensome and rather complex
process without a MAS development environment. Thus, our future research will
also be on how to implement a FIPA-compliant MAS development environment
based on the object-oriented modeling language UML.

 161

ACKNOLEDGEMENT

In the last few years, I have been guided and supported by a number of people without

whom; it would have been very difficult to navigate the Ph.D. journey.

To start with, I want to thank my advisor professors Luqing YE, Pierre PADILLIA and

Daniel ROY. I am very grateful to them for having provided me with ample scope to freely

explore research avenues and learn from my adventures! They have also taught me by

example to give attention to detail without loosing sight of the bigger picture.

Dr. Romuald STOCK has also greatly guided my work and influenced my thinking. I

am grateful to him for having introduced me to the fascinating world of human cognition

and learning. Needless to say, his friendship, understanding and encouragement have

provided me with great strength and inspiration.

I am grateful to Latifa REZG for her friendly reception and kind consideration.

I must specially thank everybody at the LGIPM and HUST Laboratory for having

provided me with an intellectually rich and supporting environment in conducting my

research.

I also take this opportunity to thank my roommate Chen PENG for his time and

encouragement.

I thank all my colleagues Yongqing LIU, Chuang FU, Xiuliang LIU, Hongzhu LIANG,

Zhengrong LI, Hongxia XIONG, Ren YU, Yuanchu CHENG for their feedback and for

supporting me through my dissertation.

Specially, I wish to express sincere appreciation to my Chinese supervisor professor

Luqing YE for his assistance and insight through my dissertation research. He has provided

me with invaluable feedback, advice and criticism and has been an excellent role model. He

has given me the opportunity and guidance to grow up as a researcher and a person.

My parents give me the gift of life and natured me who I am. They are always there

for me. Everything I am and will be is a complex combination of their unconditional love,

patience and unique ways. I dedicate this effort to them and hope to be worthy of the lives

they live. Finally, thanks to my family and friends who have provided me with all the

 162

support and encouragement I needed.

Finally, I must also mention that through the long sleepless nights spent working on

my dissertation, I have been inspired by the love of my wife. I would like to thank for her

support and patience during the very difficult time.

I am also grateful for the financial support from the DUO-France, and I would like to

thank the authors of free software applications especially the JADE open source project

team.

DEDICATION To My Dear Parents and My Dear Wife

 163

REFERENCES

Agent Tcl. (2005). R.S. Gray. Agent Tcl: A flexible and secure mobile-agent system.
In Forth Annual UsenixTcl/Tk Workshop, 1996.

IBM. (2005). Aglets Workbench. http://www.trl.ibm.co.jp/aglets/index.html.
M. Strasser, J. Baumann, and F. Hohl. Mole (1997).- a java based mobile agent system.
� �In M. M uhlh auser, editor, Special Issues in Object Oriented Programming, pages

301-308. dpunkt Verlag, 1997.
Voyager, (2005). ORB 3.0 Developer Guide, 1999.http://www.objectspace.com.
ADL (2004) Advanced Distributed Learning: SCORM, 2004. Last visit: 2004-03-26,

URL: http://www.adlnet.org/index.cfm?fuseaction=scormabt
Anderson, John R. (1995). Cognitive Tutors: Lessons Learned. The Journal of the

Learning Sciences 4 (2):167-207.
Andrade, Adja F. de; Jaques, Patrícia A.; Jung, João Luiz; Bordini, Rafael H.; Vicari,

Rosa M.. (2001). A Computational Model of distance Learning Based on Vygotsky´s
Socio-cultural Approach. Workshop Multi- Agent Architectures for Distributed Learning
Environments. Proceedings International Conference on AI and Education, San Antonio,
Texas, May, 2001. P.33-40.

Ayala, G., Yano, Y. (1996). Intelligent Agents to Support the Effective Collaboration
in a CSCL Environment, Proceedings of the ED-TELECOM 96 World Conference on
Educational. Communications, June 17 - 22, 1996, Boston, Mass. AACE, Patricia Carlson
and Fillia Makedon (Eds.) pp. 19-24

Ayala, G., Yano, Y. A. (1998). Collaborative Learning Environment Based on
Intelligent Agents, Expert Systems with Applications, Pergamon Press, pp. 129-137. 1998

Bednar, A. K., Cunningham, D. Duffy, T. M. & Perry, J. D. (1998). Theory into
practice: How do we link? In T. M Duffy and D. H. Jonassen (Eds.) Constructivism and
technology of instruction: A conversation, Hillsdale, NJ: Lawrence Erlbaum Associates,
17-35.

Bloom, B.S. (1984). The 2 Sigma Problem: The Search for Methods of Group
Instruction as Effective as One-to-One Tutoring. Educational Researcher, 13, 3-16.

Bloom, C.P. (1995) Roadblocks to successful ITS Authoring in Industy. In
Proceedings of AI-ED-95 Workshop on Authoring Shell for Intelligent Tutoring System.
Washionton.DC, 16, 1-6.

Bloom, M.D. (1956) Engelhart, E.J. Furst, W.H. Hill, & D.R. Krathwohl Taxonomy of

 164

Educational Objectives, Handbook I: Cognitive Domain (McKay, New York).
Bond, A. H., Gasser, L. (Eds.) (1988) Readings in Distributed Artificial Intelligence.
Bradshaw, J.M., Dutfield, S., Benoit, P. and Woolley, J.D. KAoS: Toward An

Industrial-Strength Open Agent Architecture. In: Software Agents, J.M. Bradshaw (Ed.),
Menlo Park, Calif., AAAI Press, 1997, pages 375-418.

Bratman, M. E., Israel, D. J., and Pollack, M. E. (1988). Plans and resource-bounded
practical reasoning. Computational Intelligence, 4:349–355.

Brauer, W. and Weiss, G. Multi-machine scheduling, a multi-agent approach. In
Proceedings of the Third International Conference on Multi Agent Systems, pages 42-48,
1998.

Briggs, K. C. and Myers, I. B. (1977). Myers-Briggs Type Indicator, Palo Alto, CA:
Consulting Psychologist Press, Inc.

Brown, J. S., and K. VanLehn. (1980). Repair Theory: A Generative Theory of Bugs
in Procedural Skills. Cognitive Science (4):379-426.

Brown, J. S., and K. VanLehn. (1980). Repair Theory: A Generative Theory of Bugs
in Procedural Skills. Cognitive Science (4):379-426.

Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User Adapted
Interaction, Ten Year Anniversary Issue (Alfred Kobsa, ed.) 11 (1/2), 87-110

Camacho Fernández, D. Recuperación e Integración de Información disponible en
Web para la Resolución de Problemas, Universidad Carlos III de Madrid, 2002.

Cammarata, S.; McArthur, D.; and Steeb, R. 1983. Strategies of Cooperation in
Distributed Problem Solving. In Proceedings of the Eighth International Joint Conference
on Artificial Intelligence (IJCAI-83), 767–770. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence.

Capuano, N.; Marsella, M.; Salerno, S. ABITS: An Agent Based Intelligent Tutoring
System for Distance Learning. In : Proceedings of the International Workshop in
Adaptative and Intelligent Web-based Educational Systems. Available at
1 09 Hhttp://virtcampus.cl-ki.uni-osnabrueck.de/its-2000/.

Carbonell, J. R. AI in CAI: na artificial intelligence approach to computer assisted
instruction. IEEE Transactions on Man Machine Systems, v.11, n.4, p.190-202, 1970.

Carver, C. A., Howard R. A. and Lavelle E. (1996). Enhancing learner learning by
incorporating learner learning styles into adaptive hypermedia. Proceedings of EDMEDIA
96 - World Conference on Educational Multimedia and Hypermedia, Boston, MA, pp.
118-123.

Carver, C. A., Howard, R. A. and Lane, W. D (1999). Enhancing Learner Learning

 165

Through Hypermedia Courseware and Incorporation of Learner Learning Styles, IEEE
Transactions on Education, vol. 42, no. 1, 1999, pp. 33-38.

Chess D., Harrison C.G., and Kershenbaum A. 1998, Mobile agents: Are they a good
idea? In G. Vigna, editor, Mobile Agents and Security, LCNS 1419, pages 25-47. Springer
Verlag,.

Chess D.M.. 1998, Security issues in mobile code systems. In Mobile Agents and
Security.

Cohen, P.R., Cheyer, A., Wang, M., and Baeg, S.C. An open agent architecture. In:
Proceedings of the AAAI Spring Symposium. 1994.

Colazzo, L.; Silvestri, 1997, L. The pragmatics of the Tutor:A proposal of modelling.
AI-ED97 : Eighth World Conference on Artificial Intelligence in Education - Workshop V :
Pedagogical Agents, 8.,1997. Proceedings... Kobe: Japan, 1997.

Corkill, D. D., and Lesser, V. R. 1983. The Use of Metalevel Control for Coordination
in a Distributed Problem- Solving Network. In Proceedings of the Eighth International Joint
Conference on Artificial Intelligence (IJCAI-83), 767–770. Menlo Park, Calif.:
International Joint

Corkill, D. D., and Lesser, V. R. 1983. The Use of Metalevel Control for Coordination
in a Distributed Problem- Solving Network. In Proceedings of the Eighth International Joint
Conference on Artificial Intelligence (IJCAI-83), 767–770. Menlo Park, Calif.:
International Joint

Dag Johansen, Robert van Renesse and Fred B. Schneider, “Operating System Support
for Mobile Agents”, Department of Computer Science, Cornell University, USA,
November 1994.

D'Amico, C.B.; Viccari, R.M.; Alvares, L.O. (1977) A Framework for Teaching and
Learning Environments. In: Simpósio de informática Na educaçao, VIII, 1977, Sao Paulo,
SP.

D'Amico, C.B.; Pereira, A.S.; Geyer, C.F.R., Viccari, R.M. (1998) Adapting Teaching
Strategies in a Learning Environment on WW. In: Proceedings of the WebNet World
Conference of the WWW, Internet & Intranet, Florida, USA. 1998.

Davidson, K. (1998). Education in the Internet--linking theory to reality,
http://www.oise.on.ca/~kdavidson/cons.html

Decker, K., Sycara, K. and Williamson, (1998) M. Middle-Agents for the Internet. In:
Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI-97),
January, 1997.

Decker, K., Williamson, M. and Sycara, K. Matchmaking and Brokering. (1996) In:

 166

Proceedings of the Second International Conference on Multi-Agent Systems (ICMAS-96),
December, 1996.

Dent, L.; Boticario, J.; McDermott, J.; Mitchell, T.; and Zabowski, D. 1992. A
Personal Learning Apprentice. In Proceedings of the Tenth National Conference on
Artificial Intelligence, 96–103. Menlo Park, Calif.: American Association for Artificial
Intelligence.

DerekStockley (2004) E-learning Definition and Explanation (Elearning, Online
Training, Online Learning), 2004. Last visit: 2004-04-29, URL:
1 10 Hhttp://derekstockley.com.au/elearningdefinition. html

Dick, W. (1995). Instructional design and creativity: A response to the critics.
Educational Technology, 35 (4), 5-11.

Dietinger T. (2003) Aspects of E-Learning Environments. Graz University of
Technology, Dissertation, 2003.

Doignon, J.-P., and J.-C. Falmagne. (1999). Knowledge Spaces: Springer-Verlag.
Doolittle P. E., Virginia T. (1999). Constructivism and Online Education,

(http://edpsychserver.ed.vt.edu/workshops/tohe1999/pedagogy.html)
Duffy, T. M. & Jonassen, D. H. (1992). Constructivist and the technology of

instruction: A conversation, Hillsdale, NJ: Lawrence Erlbaum Associates.
Ertmer, P. A. & Newby, T. J. (1993). Behaviorism, cognitivism, constructivism:

Comparing critical features from an instructional design perspective. Performance
Improvement Quarterly, 6 (40), 50-72.

Felder R.M. 1995, Learning and Teaching Styles In Foreign and Second Language
Education Foreign Language Annals, 28,1, 21–31

Felder, R. M. and Soloman, B. A. (2003). Index of Learning Styles Questionnaire,
Available online in: http://www.ncsu.edu/felder-public/ILSdir/ilsweb.html

Felder, R.M., and L.K. Silverman. 1988. Learning and Teaching Styles in Engineering
Education. Engineering Education 78,7, 674-681.

Felder, R.M.1993. Reaching the Second Tier: earning and Teaching Styles in College
Science Education. J. Coll. Sci. Teaching 23,5, 286-290.

Ferguson, I. A. (1992a). TouringMachines: An Architecture for Dynamic, Rational,
Mobile Agents. PhD thesis, Clare Hall, University of Cambridge, UK. (Also available as
Technical Report No. 273, University of Cambridge Computer Laboratory).

Ferguson, I. A. (1992b). Towards an architecture for adaptive, rational, mobile agents.
In Werner, E. and Demazeau, Y., editors, Decentralized AI 3 — Proceedings of the Third
European Workshop on Modelling Autonomous Agents and Multi-Agent Worlds

 167

(MAAMAW-91), pages 249–262. Elsevier Science Publishers B.V.: Amsterdam, The
Netherlands.

Fikes, R. E. and Nilsson, N. (1971). STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 5(2):189–208.

Flores-Mendez R.A. (1999) Standardization of Multi-Agent System Frameworks,
University of Calgary 1999.

Fosnot, C. T. (1996), Constructivism: Theory, perspective, and practice, New York:
Teachers College Press.

Frasson, Claude; Martin, Louise; Gouarderes, Guy; Aimeur, Esma. (1998) LANCA: A
Distance Learning Architecture Based on Networked cognitive Agents. In lecture Notes in
Computer Science. Intelligent Tutoring Systems. Proceedings of 4th International
Conference, ITS 1998, San Antonio, Texas, August 1998. P. 594-603.

Gagné, R. M., Wager, W. W. & Briggs, L. J. (1992). Principles of instructional design
(4th ed.), New York: Holt, Rinehart and Winston.

Garcia Barrios, V.M.; Gütl, Ch.; Preis, A.M.; Andrews, K.; Pivec, M.; Mödritscher, F.;
Trummer, Ch.: AdeLE (2004) A Framework for Adaptive E-Learning through Eye
Tracking. In proceedings of IKnow’ 04, 2004.

Gardner, H. (1993). Multiple Intelligences: The Theory in Practice. New York: Basic
books.

Garrido, L., and Sycara, K. 1996. Multiagent Meeting Scheduling: Preliminary
Experimental Results. In Proceedings of the Second International Conference on
Multiagent Systems, 95–102. Menlo Park, Calif.: AAAI Press.

Genesereth, M. R., and Ketchpel, S. P. 1994. Software Agents. Communications of the
ACM 37(7): 48–53

Georgeff, M. P. and Lansky, A. L. (1987). Reactive reasoning and planning. In
Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI-87), pages
677–682, Seattle, WA.

Giráldez Betrón, J.I. (1999) Modelo de Toma de Decisiones y Aprendizaje en
Sistemas Multi-Agente, Universidad Politécnica de Madrid,.

Gilbert, J. E. and Han C. Y. (1999). Arthur: Adapting Instruction to Accommodate
Learning Style. Proceedings ofWebNet�99, World Conference of the WWW and Internet,
Honolulu, HI, 433-438.

Gilbert, J. E. and Han, C. Y. (2002). Arthur: A Personalized Instructional
System..Journal of Computing In Higher Education. 14, 1, Norris Publishers, Amherst,
MA.

 168

Johnson, C. and Orwig, C. (1998). What is learning style.
http://www.sil.org/lingualinks/library/Llearning/CJ0625/CJ0676.html

Hall, B. (1997). Web-based training cookbook. New York: Wiley.
Hannafin, M., Land, S. & Oliver, K. (1999). Open learning environments: Foundations,

methods, and models. In C. M. Reigeluth (Ed.), Instructional design theories and models: A
new paradigm of instructional theory (Vol. II), New Jersey: Lawrence Erlbaum Associates,
115-142.

Hasebrook J.P. (2001) Learning in the Learning Organisation. In journal J.UCS, vol. 7,
pp. 472-487, 2001.

Hayes-Roth,B. 1995, Directed Improvisation with animated puppets. CHI’95:
Conference on Human-Computer Interaction, 1.,1995.Proceedings... Denver: 1995.

Honey, P. (2001). Honey and Mumford Learning Styles Questionnaire. PeterHoney
Learning, http://www.peterhoney.com/product/learningstyles. Accessed Apr 2004.

Hong, H. & Kinshuk (2004). Adaptation to Learner Learning Styles in Web Based
Educational Systems, ED-MEDIA 2004, 491-496.

Jennings, N. R. (1993). Specification and implementation of a belief desire
joint-intention architecture for collaborative problem solving. Journal of Intelligent and
Cooperative Information Systems, 2(3):289–318.

Jonassen, D. H. & Grabowski, B. L. (1993). Handbook of individual differences,
learning and instruction, Hillsdale, NJ: Lawrence Erlbaum Associates.

Jonassen, D. H. (1999). Designing consructivist learning environments. In C. M.
Reigeluth (Ed.) Instructional design theories and models: A new paradigm of instructional
theory (Vol. II), New Jersey: Lawrence Erlbaum Associates, 215-239.

Jonnassen, D. H. (1991). Objectivist vs. constructivist: Do we need a new
philosophical paradigm? Educational Technology: Research and Development, 39 (3),
5-14.

Kinny, D.; Ljungberg, M.; Rao, A.; Sonenberg, E.; Tidhard, G.; and Werner, E. 1992.
Planned Team Activity. In Artificial Social Systems, eds. C. Castelfranchi and E. Werner.
New York: Springer-Verlag.

Kinshuk, Patel,A. (1997). A Conceptual Framework for Internet based Intelligent
Tutoring Systems. Knowledge Transfer 2,117-124.

Koedinger, Kenneth R. (2001). Cognitive tutors as modeling tool and instructional
model. In Smart Machines in Education, edited by Feltovich. Menlo Park, CA: AAAI
Press.

Kolb, D. & Fry, R. (1975). Towards an applied theory of experiential learning, in

 169

Theories of group processes, ed. C.L. Copper London: John Wiley, 33-58.
Kolb, D. (1984). Experiential learning: Experience as the source of learning and

development, Englewood Cliffs, NJ: Prentice-Hall.
Lange D.B. and Oshima M. (1999), Seven good reasons for mobile agents.

Communciations of the ACM, 45(3):88-89, March.
Lennon, and J., Maurer, H. (2003): Why it is Difficult to Introduce e-Learning into

Schools And Some New Solutions. In journal J.UCS, vol. 9, pp. 1244-1257, 2003.
Lewis, C. M., and Sycara, K. (1993). Reaching Informed Agreement in Multispecialist

Cooperation. Group Decision and Negotiation 2(3): 279–300.
Litzinger, M.E., & Osif. B. (1993). Accommodating diverse learning styles: Designing

instruction for electronic information sources. In What is Good Instruction Now? Library
Instruction for the 90s. ed. Linda Shirato. Ann Arbor, MI: Pierian Press.

Maes, P. (1995) "Artificial Life meets Entertainment: Interacting with Lifelike
Autonomous Agents." Special Issue on New Horizons of Commercial and Industrial AI,
Vol. 38, No. 11, pp. 108-114, Communications of the ACM, ACM Press.

Maes, P. (1989). The dynamics of action selection. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence (IJCAI-89), pages 991–997, Detroit,
MI.

Maes, P. (1990). Situated agents can have goals. In Maes, P., editor, Designing
Autonomous Agents, pages 49–70. The MIT Press: Cambridge, MA.

Maes, P. (1991). The agent network architecture (ANA). SIGART Bulletin,
2(4):115–120.

Mangal S. K.(1990).General psychology, Sterling Publishers Private Ltd.
Mason, C., and Johnson, R. 1989. DATMS: A Framework for Distributed

Assumption- Based Reasoning. In Distributed Artificial Intelligence, Volume 2, eds. M.
Huhns and L. Gasser, 293–318. San Francisco, Calif.: Morgan Kaufmann.

Mason, R., & Kaye, A.R.(1990) Toward a new paradigm for distance education. In L.
M. Harasim (Ed.), Online education: Perspectives on a new environment. New York, NY:
Praeger Publishers

McDonald J.; Gibson, C. C. (1998) ‘Interpersonal dynamics and group development in
computer conferencing’, The American Journal of Distance Education, 12(1), p. 6-21,.

Morgan Kaufmann. Bradshaw, J.M. An Introduction to Software Agents. In: Software
Agents, J.M. Bradshaw (Ed.), Menlo Park, Calif., AAAI Press, 1997, pages 3-46.

Müller, J. P. (1994). A conceptual model for agent interaction. In Deen, S. M., editor,
Proceedings of the Second International Working Conference on Cooperating Knowledge

 170

Based Systems (CKBS-94), pages 213–234, DAKE Centre, University of Keele, UK.
Müller, J. P. and Pischel, M. (1994). Modelling interacting agents in dynamic

environments. In Proceedings of the Eleventh European Conference on Artificial
Intelligence (ECAI-94), pages 709–713, Amsterdam, The Netherlands.

Müller, J. P., Pischel, M., and Thiel, M. (1995). Modelling reactive behaviour in
vertically layered agent architectures. In Wooldridge, M. and Jennings, N. R., editors,
Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume 890), pages
261–276. Springer-Verlag: Heidelberg, Germany.

Murray, T. and B. Woolf. 1992. Results of Encoding Knowledge with Tutor
Construction Tools. In Proceedings of the Tenth National Conference on Artificial
Intelligence, San Jose, CA, July, pp. 17-23.

Myers, I.B. and McCaulley, M.H. (1985). A guide to the development and use of the
Myers-Briggs Type Indicator. Consulting Psychologists Press.

Nabil, A., Awerbuch, B., Slonim, J. Wegner, P. & Yesha, Y. (1997). Globalizing
business, education, and culture through the Internet. Communications of the ACM, 40(2).

Nii, H.P. Blackboard Systems. In: The Handbook of Artificial Intelligence, A. Barr,
P.R. Cohen and E.A. Feingenbaum (Eds.), Addison-Wesley, New York, 1989, Volume IV,
chapter XVI, pages 1-82.

Nwana, H. S. and Ndumu, D. T. 2000 A Perspective on Software Agents Research,
Nwana, H. S. and Ndumu, D. T. IN: The Knowledge Engineering Review, 14(2), pages
125-142, Cambridge University Press.

Ohio (2004) Future of Distance and e-Learning in Ohio: A Report of the Ohio
Learning Network Task Force on the Future of Distance and e-Learning in Ohio

Ohlsson, S. (1986). Some principles of intelligent tutoring. Instructional Science
14:293-326.

Ohlsson, S. (1987). Some Principles of Intelligent Tutoring. In Lawler & Yazdani
(Eds.), Artificial Intelligence and Education, Volume 1. Ablex: Norwood, NJ, pp. 203-238.

Oliveira, F. M.. Critérios de equilibração para Sistemas Tutores Inteligentes. Porto
Alegre: CPGCC da UFRGS, 1994. Tese de Doutorado.

Paredes, P., and Rodriguez, P. (2002). Considering Learning Styles in Adaptive
Web-based Education. Proceedings of the 6th World Multiconference on Systemics,
Cybernetics and Informatics en Orlando, Florida, 481-485.

Pask G. (1975) Conversation, Cognition, and Learning. New York:Elsevier,1975.
Pereira, A.S.; D'Amico, C.B.; Geyer C.F.R. Gerenciamiento do Conhecimiento do

ambiente AME-A. 1 11 Hhttp://www.inf.ufrgs.br/~adriana/vcied.doc
Porter, L. R. (1997) Creating virtual classroom: Distance learning with the internet.

 171

New York: J. Wiley & Sons.
Robert S. Gray. “Agent Tcl: A transportable agent system”, Proceedings of the CIKM

Workshop on Intelligent Information Agents, Fourth International Conference on
Information and Knowledge Management (CIKM 95), Baltimore, Maryland, December
1995.

Rosatelli, M.C.; Self, J.A.; Thiry, M. LeCS: a collaborative case study system, in G.
Gauthier, C. Frasson and K. VanLehn(eds.), Intelligent Tutoring Systems, Berlin:
Springer-Verlag, p232-241, 2000.

Rowland, G. (1995). Instructional Design and Creativity: A Response to the Criticized.
Educational Technology, 35 (5), 17-22.

Russel, S.; Norvig,P. 1996, Artificial Intelligence: A modern Approach. New
Jersey:Prentice Hall,1996.

Schwier, R. A. (1995). Issues in emerging interactive technologies. In G. J. Anglin
(Ed.) Instructional technology: Past, present and future (2nd Ed.), Englewood, CO:
Libraries Unlimited, 119-127.

Self, John. (1990). Theoretical Foundations for Intelligent Tutoring Systems. Journal
of Artificial Intelligence in Education 1 (4):3-14.

Sharon, S.(1980) Cooperative learning in small groups: recent methods and effects on
achievement, attitudes and ethnic relations, Review of Educational Research, 50(2),
241-247.

Shoham,Y. (1993), Agent-oriented programming. Artificial Intelligence, 60,1,1993.
SILVEIRA, Ricardo. 2000 Modelagem Orientada a Agentes Aplicada a Ambientes

Inteligentes Distribuídos de Ensino - JADE - Java Agent framework for Distance learning
Environments Porto Alegre: CPGCC da UFRGS,. Dissertação de Mestrado.
1 12 Hhttp://www.inf.ufrgs.br/~rsilv/Jade/jade.html

Sison. 1998. Learner Modelling and Machine Learning. International Journal of
Artificial Intelligence in Education 9:128-158.

Smith, D.C.; Cypher,A.; Spohrer,J. KindSim, 1994,: Programming Agents Without a
Programming Language. Communication of the ACM, 37,7,1994.

Specht, M. and Oppermann, R. (1998). ACE - Adaptive Courseware Environment.
The New Review of Hypermedia and Multimedia 4, 141-161.

Spiro, R. J., Feltovich, P. J., Jacobson, M. J. & Coulson, R. L. (1992). Cognitive
flexibility, constructivism, and hypertext: Random access instruction for advanced
knowledge acquisition in ill-structured domain. In T. Duffy & D. Jonassen (Eds.)
Constructivist and the technology of instruction, Hillsdale, N.J.: Lawwrence Erlbaum
Association Publishers, 57-75.

 172

Steffe, L. P., & Gale, J. (Eds.) (1995). Constructivism in education. Hillsdale, NJ:
Earlbaum.

Sycara, K.. Multiagent Systems. AI Magazine, vol. 18, nº 2, 1998.
Sycara, K.; Decker, K.; Pannu, A.; Williamson, M.; and Zeng, D. 1996. Distributed

Intelligent Agents. IEEE Expert 11(6): 36–46.
Tahara Y., Ohsuga A., and Honiden S.. 2000, Safety and security in mobile agents. In

Draft Proceedings of AOSE2000.
Thibodeau, Marc-André; Bélanger, Simon; Frasson, Claude. 2000 Matchmaking of

User Profiles Based on discussion analysis Using Intelligent Agents. In Lectures Notes in
Computer Science. Intelligent Tutoring Systems. Proceedings of 5th International
Conference, ITS 2000, Montreal, Canada, June 2000. P.113-122.

VanLehn, K. (1990). Mind Bugs. Cambridge, MA: MIT Press.
Vassileva, J., Greer, J., McCalla, G., Deters, R., Zapata, D., Mudgal, C. And Grant, S

1999. ARIES Lab, A Multiagent Approach to the Design of Peer´help Environments.
AIED’99 Submission,.

Vassileva, Julita; Detters, Ralph; Geer, Jim; Maccalla, Gord; Bull, Susan; Kettel, Lori.
(2001) Lessons from Deploying I-Help. Workshop - Multi-Agent Architectures for
Distributed Learning Environments. Proceedings of International Conference on AI and
Education, San Antonio, Texas, May, 2001. P.3-11.

Vere, S. and Bickmore, T. (1990). A basic agent. Computational Intelligence, 6:41–60.
Vosniadou, S., and W. F. Brewer. (1989). The Concept of the Earth's Shape: A Study

of Conceptual Change in Childhood. Unpublished paper.
Webber, Carine; Bergia, Loris; Pesty, Sylvie; Balacheff, Nicolas. (2001) The Baghera

project: a multi-agent architecture for human learning. Workshop - Multia-Agent
Architectures for Distributed Learning Environments. Proceedings International
Conference on AI and Education, San Antonio, Texas, May, 2001.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems. Los Altos, CA:
Morgan Kaufmann.

Wiederhold, G. Mediators in the Architecture of Future Information Systems. In: IEEE
Computer, March 1992, pages 38-49.

Wiley, David A. (2000). Connecting learning objects to instructional design theory: A
definition, a metaphor, and a taxonomy. In D.A. Wiley (Ed.). The Instructional Use of
Learning Objects [on-line]. Available: http://reusability.org/ read/.

Willis, B. (1994) (Ed.) Distance education: Strategies and tools. EnglewoodCliffs, NJ:
Educational Technology Publications.

Wilson, B. G. & Cole, P. (1991). Cognitive dissonance as an instructional variable.

 173

Ohio Media Spectrum, 43(4), 11-21.
Wong D., Paciorek N., and Moore D.1999, Java-based mobile agents. Communication

of the ACM, 42(3):93-102, March.
Wooldridge, M., and Jennings, N. 1995. Intelligent Agents: Theory and Practice.

Knowledge Engineering Review 10(2): 115–152.

 174

APPENDIX A: FIPA AGENT COMMUNICATIVE ACT

LIBRARY

Since communicative acts are central to FIPA ACL specification, a brief informal
description of the different communicative acts is given as follows. To facilitate
understanding better, each communicative act is followed by a simple example derived
from partial agent performatives in MAGE.

 Accept-proposal is a general-purpose acceptance of a proposal that was previously
submitted (typically through a propose act). The agent sending the acceptance informs the
receiver that it intends that (at some point in the future) the receiving agent will perform the
action, once the given precondition is, or becomes, true. E.g., the Pedagogic Agent informs
the Teacher Agent that it accepts an offer from the Teacher Agent to communicate with each
other by telephone.

 Agree is a general-purpose agreement to a previously submitted request to perform
some action. The agent sending the agreement informs the receiver that it does intend to
perform the action, but not until the given precondition is true. E.g. the Teacher Assistant
Agent agrees to the request from Learner Agent that help the learner make a learning style
or leaning strategy.

 Cancel allows an agent to stop another agent from continuing to perform (or
expecting to perform) an action, which was previously requested. Note that the action that
is the object of the act of cancellation should be believed by the sender to be ongoing or to
be planned but not yet executed. E.g. the Course Assistant Agent asks Learning Content
Management Agent to cancel the service of subscription to a specific leaning object because
the course developer thinks that s/he no longer needs it.

 CFP is a general-purpose action to initiate a negotiation process by making a call
for proposals to perform the given action. The actual protocol under which the negotiation
process is established is known either by prior agreement, or is explicitly stated in the
protocol parameter of the message. E.g. the Course Assistant Agent asks EEO Provider
Agent to submit its proposal to provide a learning object that should meet the following
conditions: Context=’continuous formation’, Interactive Level=’middle’, Difficulty=’high’,
Keyword=’agent, communication’, Language=’French’, etc.

 Confirm allows the sender informs the receiver that a given proposition is true,
where the receiver is known to be uncertain about the proposition. E.g. the Learner Agent

 175

confirms to the EEO Provider Agent that the version of learner’s Browser is 6.0.
 Disconfirm allows an agent to disconfirm the value of a proposition; the sender

informs the receiver that a given proposition is false, where the receiver is known to believe,
or believe it likely that, the proposition is true. E.g. the Learner Agent confirms to the EEO
Provider Agent that the version of learner’s Browser is not 6.0.

 Failure is an action of telling another agent that an action was attempted but the
attempt failed. E.g. The DF Agent informs the Collaboration Agent that it cannot find some
learners who have the common interests.

 Inform allows the sender to inform the receiver that a given proposition is true. E.g.
the Learner Modal Agent informs the Pedagogic Agent that the learner is an active one.

 Inform-if is an abbreviation for informing whether or not a given proposition is
believed. The agent which enacts an inform-if macro-act will actually perform a standard
inform act. The content of the inform act will depend on the informing agent's beliefs. E.g.
the Pedagogic Agent request the Lerner Model Agent to inform whether or not the learner is
bad in memory.

 Inform-ref macro action allows the sender to inform the receiver some object that
the sender believes corresponds to a definite descriptor, such as a name or other identifying
description. E.g. the Pedagogic Agent requests Learner Model Agent to tell it the current
learning progress of a specific course.

 Not-understood is a general-purpose action where the sender informs the receive
that it does not understand the actions this agent did. The sender of the act (e.g. i) informs
the receiver (e.g. j) that it perceived that j performed some action, but that i did not
understand what j just did. A particular common case is that i tells j that i did not
understand the message that j has just sent to i. E.g. the Leaner Modal Agent did not
understand the query-if message from the Pedagogic Agent because it did not recognize the
ontology.

 Propose is a general-purpose action to make a proposal or respond to an existing
proposal during a negotiation process by proposing to perform a given action subject to
certain conditions being true. The actual protocol under which the negotiation process is
being conducted is known either by prior agreement, or is explicitly stated in the protocol
parameter of the message. E.g. the Teacher Agent proposes to the Pedagogic Agent of a
leaner that s/he wants to discuss with the learner by telephone.

 Query-if is the act of asking another agent whether (it believes that) a given
proposition is true. The sending agent is requesting the receiver to inform it of the truth of
the proposition. The Pedagogic Agent asks Evaluation Agent if the learner has completed

 176

the post-assessment.
 Query-ref is the act of asking another agent to inform the requestor of the object

identified by a definite descriptor. The sending agent is requesting the receiver to perform
an inform act, containing the object that corresponds to the definite descriptor. E.g. The
Course Assistant Agent asks the Learning Content Agent the available service.

 Refuse is performed when the agent cannot meet all of the preconditions for the
action to be carried out, both implicit and explicit. For example, the agent may not know
something it is being asked for, or another agent requested an action for which it has
insufficient privilege. E.g. An EEO Assistant Agent refuses the Course Assistant Agent to
modify a specific EEO because the EEO developer has no time at the moment.

 Reject-proposal is a general-purpose rejection to a previously submitted proposal.
The agent sending the rejection informs the receiver that it has no intention that the
recipient performs the given action under the given preconditions. E.g. the Pedagogic Agent
informs the Teacher Agent that it refuses an offer from the Teacher Agent to communicate
with each other by telephone.

 Request denotes that the sender is requesting the receiver to perform some action.
The content of the message is a description of the action to be performed, in some language
the receiver understands. The action can be any action the receiver is capable of performing:
pick up a box, book a plane flight, and change a password etc. e.g. the Pedagogic Agent
request the Learner Model Agent to offer the score of test 5.

 Request-when allows an agent to inform another agent that a certain action should
be performed as soon as a given precondition, expressed as a proposition, becomes true. E.g.
when the pre-assessment is completed.

 Request-whenever allows an agent to inform another agent that a certain action
should be performed as soon as a given precondition, expressed as a proposition, becomes
true, and that, furthermore, if the proposition should subsequently become false, the action
will be repeated as soon as it once more becomes true. E.g. the Pedagogic Agent requests
the Evaluation Agent to notify it whenever the case that the score of any assessment part is
blow 20 occurs.

 Subscribe is the act of requesting a persistent intention to notify the sender of the
value of a reference, and to notify again whenever the object identified by the reference
changes. E.g. Course Assistant Agent tells Learning Content Management Agent to notify it
whenever an intended learning object appears in MAGE.

 177

APPENDIX B: MAS BASED E-EDUCATION SYSTEM

This annex briefly describes some of the most recent approaches of MAS based
systems oriented to education:

 White Rabbit (Thibodeau et al, 2000). The White Rabbit system intends to
enhance cooperation among a group of people by analyzing their conversation. Each
user is assisted by an intelligent agent, which establishes a profile of his or her interests.
Next, with its autonomous and mobile behavior, the agent will reach the personal
agents of other users to be introduced and presented to the ones that seem to have
similar interests. A mediator agent is used to facilitate communication among personal
agents and to perform clustering on the profiles that they have collected. Conversation
between users takes place in a chat environment adapted to the needs of the system.

 LeCS (Learning from Case Studies). This is an intelligent system for remote
education that has, according to Rosatelli et al. (2000), an architecture based on a
Federal System of agents. LeCS supports web-based distance learning from case
studies, allowing collaborative learning between a group of learners that is
geographically dispersed. It provides the necessary tools to carry out the case solution
development and accomplishes functions that altogether assist the learning process.
LeCS is used to give CSCL (Computer Supported Collaborative Learning) through the
Web. The method of machine used Learning is based on CBR (Case Based Reasoning).
In this agent-agent architecture, direct communication does not exist, but all is done by
a special agent called Facilitator. This Facilitator is in charge to store all the
information needed for the communication. Three types of agents exist in the system:
1. Agent Interface: stores the individual interactions of each user
2. Information Agent: stores information regarding didactic materials (HTML page,

images, interactions on the chat, etc) and keeps a knowledge base for the solutions of the
developed cases

3. Advisor Agent: has mechanisms to guess situations in which an aid to the user is
needed

 Baghera (Webber et al., 2001). The Baghera platform is founded on the principle
that the educational function of a system is an emerging property of the interactions
organized between its components: agents and humans, and not a mere functionality of one
of its parts. Their first achievements include a web-based multi-agent architecture for
learning environments and an operational prototype for the learning of geometry. Learners
and teachers interact with different agents, according to the activities they will carry on and

 178

the educational approach of Baghera. Each learner is supported by three artificial agents:
1. Learner's Personal Interface Agent: associated with the learner's interface
2. Tutor Agents: can interact with mediator agents, assistant agents and other tutors
3. Mediator Agent: the aim of this agent is to choose an appropriate problem solver to

send the learner's solutions
In a similarly way, two artificial agents give support to each teacher:
1. Teacher's Personal Interface Agent: associated with the teacher's interface
2. Assistant Agent: a kind of personal agent whose goals include assisting the teacher

with the creation and distribution of new activities, which are kept in the teacher's
electronic folder.

 Help (Vassileva et al., 2001). I-Help is based on a multi-agent architecture,
consisting of personal agents (of human users) and application agents (of software
applications). These agents use a common ontology and communication language. Each
agent manages specific resources of the user (or application) it represents, including for
example, the knowledge resources of the user about certain concepts, or the instructional
materials belonging to an application. The agents use their resources to achieve the goals of
their users, their own goals, and goals of other agents. Thus all the agents are autonomous
and goal-driven. In their goal pursuit the agents can also use resources borrowed from other
agents, i.e. they are collaborative. For this, they have to negotiate. Each agent possesses a
model of its user and of other agents; it has encountered and negotiated with. The agents
communicate with each other and with matchmaker agents to search for appropriate help
resources for their users, depending on the topic of the help-request. If an electronic
resource is found (represented by application agents), the personal agent "borrows" the
resource and presents it to the user in a browser. However, if a human helper is located, the
agents negotiate the price for help, since human help involves inherent costs (time and
effort) for the helper. Help is arranged (negotiated) entirely by the personal agents, thus
freeing the learner from the need to bargain and think about the currency spent / earned. In
this way the personal agents trade the help of their users on a virtual help market. Thus the
multi-agent architecture involves various levels of organization, including the negotiation
between agents, an economical model and control / policing institutions. In this way, we
achieve a distributed (multi-user, multi-application) adaptive (self-organized) system that
supports users in locating and using help resources (other users, applications, and
information) to achieve their goals.

 AME-A (D'Amico et al., 1997; D'Amico et al., 1998; Pereira et al., 2001). AME-A
is an education-learning multi-agent, which sets out the study and the development of an
interactive educational system for education. The proposal is generic and adapts education
to the psico-pedagogical characteristics of the learner. The system uses both static learning

 179

and dynamic one. The static learning corresponds to the first interaction of the learner with
the environment, where an agent models the apprentice according to his/her affective
characteristics, motivation and level of knowledge. The dynamic learning takes places
during the interaction, when the learner model (like the pedagogical strategies in force) is
validated.

 Electrotutor (D'Amico et al., 1997; D'Amico et al., 1998; Pereira et al., 2001).
Electrotutor III implements distributed environments of intelligent education learning based
on a multi-agent architecture for teaching Physics. Agents dynamically perceive the
conditions of their environment and make decisions to change it. Seven agents, each one of
them with a specific function compose the society of agents. In order to be able to act on
the environment, each agent has an internal partial representation of the world that
surrounds it. The metaphor of mental states is used to model this way the knowledge base
that represents the states of the environment where the agent is living. The seven agents are:

1. Dominion Managing Agent: recovers information referring to the dominion on
which the learner is going to work

2. Exercises Managing Agent: provides exercises and their answers to the learner
3. Examples Managing Agent: provides examples to the learner
4. Activities Managing Agent: in charge to provide extra activities to the learner
5. Learner Model Agent: in charge to construct and to maintain a knowledge base

that models the state of the learners who are or been have connected to the system
6. Agent Interface: controls what appears on the Navigator (an agent interface exists

per learner).
7. Communication Managing Agent: in charge of the communication of each agent

Interface with the others.
 JADE (Silveira, 2000). This environment contains a special agent responsible for

each teaching strategy developed, that is, for the domain knowledge retrieval over each
point to be presented to the learner, for the task of proposing exercises and evaluating
proposals, examples and extra activities. JADE architecture encompasses, therefore, a
Multi-Agent environment composed of an agent responsible for the system general control
(Learner s Model), and a Communication Manager and other agents (Pedagogical Agents),
which are responsible for tasks related to their teaching tactics, where each agent may have
its tasks specified according to its goal. All actions of learner’s data accessing are taken by
the Learner s Model, thus when a pedagogical agent is required to update the learner’s
historic, this agent sends to the Learner Model data to be updated, as well as any other
change in the learner s state of teaching.

 GRACILE (Ayala-Yano, 1996; Ayala-Yano, 1998). For Computer-Supported
Collaborative Learning (CSCL) environments, they propose intelligent agents that assist the

 180

learners and cooperate in order to create possibilities of effective collaboration in a virtual
community of practice. They have developed two kinds of software agents: mediator agents
that play the role of facilitators that support the communication and collaboration among
learners, and domain agents, which provide assistance concerning the appropriate
application of domain knowledge in the network. Mediator agents cooperate exchanging
their beliefs about the capabilities, commitments and goals of the learners. Doing this each
mediator agent is able to construct a representation of its learner's collaboration possibilities
in the group (referred as the learner's group-based knowledge frontier), considering the
social and structural aspects of knowledge development. The mediator agent proposes the
learner to commit to tasks that require the application of knowledge elements in the
learner's group-based knowledge frontier, which results in an increment of the collaboration
possibilities between learners, the creation of zones of proximal development, and therefore
more learning possibilities.

 A Computational Model of Distance Learning Based on Vygotsky's
Social-Cultural Approach (Andrade et al., 2001). This framework is based on Vygotsky's
social-cultural theory and is designed as a multi-agent society supporting distance learning.
The goal of this research is to propose an environment that privileges collaboration as form
of social interaction, through the use of language, symbols and signs. To support
collaborative learning, they present a society formed of the following artificial agents: ZPD
agents, mediating agents, semiotic agent and social agent; it also involves human agents
who have either the role of tutors or learners.

 ABITS: An Agent Based Intelligent Tutoring System for Distance Learning
(Capuano, 2000). ABITS is able to support a Web-based Course Delivery Platform with a
set of "intelligent" functions providing both learners modeling and automatic curriculum
generation. Such functions found their effectiveness on a set of rules for knowledge
indexing based on Metadata and Conceptual Graphs following the IEEE Learning Object
Metadata (LOM) standard. Moreover, in order to ensure the maximal flexibility, ABITS is
organized as a multi-agent system composed by pools of three different kinds of agents
(evaluation, pedagogical and affective agents). Each agent is able to solve in autonomous
way a specific task and they work together in order to improve the WBT learning
effectiveness adapting the didactic materials to user skills and preferences.

 181

APPENDIX C: ABBREVIATION

AAgent—Allocatee Agent
ACC—Agent Communicative Channel
ACL—Agent Communication Language
ADL —Advanced Distributed Learning
AID —Agent Identifier
AMS —Agent Management System
AP—Agent Platform
API — Application Programming Interface
AUML—Agent Unified Modeling Language
CAA—Course Assistant Agent
CA—Courier Agent
CAgent— Course Agent
CAI—computer aided instruction
CAL—collective adaptive learning
CBT— Computer-based training
CGI — Common Gateway Interface
CIA—Course Interface Agent
CMC—computer mediated communication
CommAgent—Communicative Agents
CPA— Course Provider Agent
CSCL— Computer-supported collaborative learning
DAgent— Diagnostic Sgents
DF — Directory Facilitator
EAAS—E-Assessment agent system
EEOAA —EEO Assistant Agent
EEOIA— EEO Interface Agent
EEOPA— EEO Provider Agent
ExamCenterAgent—Exam Center Agent
FAQ—AFAQ agent
FIPA—Foundation of International Physical Association
FSLSM —Felder-Silverman Learning Style Model

 182

GACtrlAgent —Genetic Algorithm Control Agent
GA—genetic algorithm
GA—Genetic Algorithm
GA—Group Agent
GAMASTG—Genetic Algorithm Based MAS Test Generation system
GUI —Graphic User Interface
GUID —Globally Unique IDentifier
HSAgent— Help Service Agents
IAL—individual adaptive learning
ICAI—Intelligent Computer Aided Instruction
ICT—Information and Communication Technology
ILE—Intelligent Learning Environment
ILS—Index of Learning Style
IP — Interaction Protocol
ITS—Intelligent Tutoring Systems
J2EE —Java 2 Enterprise Edition
JADE —Java Agent DEvelopment Framework
JVM—Java Virtual Machines
KM— Knowledge Management
LAA —Learner Assistant Agent
LCA—Learning Collaboration Agent
LEA—Learning Evaluation Agent
LMA —Learner Model Agent
LO—Learning Object
LOM—Learning Object Metadata
LPA—Learner Profile Agent
MAEA—Mobile Agent E-Assessment System
MAGE— MAS Based e-Education System
MAgent—Matchmaking Agent
MAS—Multi-Agent System
MEEOCAS—Mas based EEO Course Authoring System
MTS —Message Transport Service
PA—Pedagogic Agent
PGA—presentation generation agent
PHAS—Peer Help Agent System

 183

RIO —Reusable Information Object
RMA—Remote Monitoring Agent
RSAgent — Register Service Agent
SCORM—Sharable Content Object Reference Model
TAA—Tutor Personal Agent
TC— target concepts
TDSATest —Delivery Service Agent
TGSA—Test Generation Service Agent
TPAgent—Test Paper Agent
WBT—Web Based Testing
XML— eXtensible Markup Language XML

 184

1 13 HLIST OF PUBLICATIONS DURING DOCTORAL STUDY

1. MENG Anbo, Luqing Ye Daniel Roy, Pierre Padilla,”Genetic Algorithm
Based Multi-Agent System Applied to the Automatic Generation of Test Papers”,
Computers & Education, 2006 (SCI, accepted).

2. MENG Anbo, Luqing Ye Romuald Stock Pierre Padilla, “A Multi-agent
enabled e-Education Object & Course Authoring System”, International Journal of
Distance Education and Application, Vol. 2. No.8, p3-15, 2005.

3. MENG Anbo, YE Luqing,et al., “Application of Genetic Algorithm in
Adaptive Governor with Variable PID Parameters”, Control Theory and Application ,
Vol. 3. CN 44-1240/TP, p398-404, 2004 (EI).

4. MENG Anbo, YIN Hao et al., “A Niw 2-D Fuzzy Control System in Traffic
Lights Based on PLC”, Journal of Electrical Automation, Vol. 4. CN 32-176/TM, p8-11,
2004.

5. MENG Anbo, YIN hao et al., “Application of Neural Network in the
Modeling of Hydro Turbine”, Journal of.DADianji, vol. 6.CN 23-1253, p39-43, 2003.

6. MENG Anbo, YIN hao et al.,“A New Method for Calculation of Water
Hammer Based on Precise Model”, Journal of North China Institute of Water
Conservancy and Hydroelectric Power, Vol.4. CN41-5058/TV, p44-50, 2003.

7. MENG Anbo, YIN hao et al.,“Application of S-Function to the Non-Linear
Modeling For Hydro-Turbine”, Journal of North China Institute of Water Conservancy
and Hydroelectric Power, Vol.4. CN41-5058/TV, p38-40, 2003.

.

	TABLE OF CONTENT
	Chapter 1 INTRODUCTION
	1.1 BACKGROUND & MOTIVATION
	1.2 KEY ISSUES CONSIDERED IN THIS DISSERTATION
	1.3 OBJECTIVES
	1.4 THESIS ORGANIZATION

	Chapter 2 STATE OF THE ART: E-EDUCATION, PEDAGOGIC THEORIES & MAS
	2.1 INTRODUCTION
	2.2 LITERATURE ON E-EDUCATION
	2.2.1 DEFINITION
	2.2.2 EVOLUTION OF E-EDUCATION
	2.2.3 ADVANTAGES & DISADVANTAGES
	2.2.4 TREND OF E-EDUCATION

	2.3 COGNITIVE THEORY IN EDUCATION
	2.3.1 COGNITIVE PROCESS
	2.3.2 TAXONOMY OF COGNITIVE DOMAIN
	2.3.3 LEARNING STYLE
	2.3.4 CONSTRUCTIVISM

	2.4 INTELLIGENT TUTORING SYSTEM
	2.5 MULTI-AGENT SYSTEM
	2.5.1 BACKGROUND
	2.5.2 AGENT
	2.5.3 MULTI-AGENT SYSTEM
	2.5.4 MOBILE AGENT
	2.5.5 FIPA STANDARD

	2.6 SUMMARY

	Chapter 3 ARCHITECTURE OF MAGE
	3.1 INTRODUCTION TO E-EDUCATION REFERENCE MODEL
	3.1.1 A RECOMMENDED E-EDUCATION REFERENCE MODEL
	3.1.2 LEANING TECHNOLOGY SYSTEMS ARCHITECTURE (LTSA) OF IEEE LTSC
	3.1.3 LTSA OVERVIEW
	3.1.4 STAKEHOLDER PERSPECTIVES

	3.2 FRAMEWORK OF MULTI-AGENT E-EDUCATION SYSTEM (MAGE)
	3.2.1 CLASSIFICATIONS OF AGENTS IN MAGE

	3.3 LEARNING SCENARIOS
	3.3.1 SCENARIO 1—AGENT ENABLED INTELLIGENT TUTORING SYSTEM (AITS)
	3.3.2 LEARNING SCENARIO 2—TEACHER INTERVENED LEARNING

	3.4 SUMMARY

	Chapter 4 MAS BASED EEO & COURSE AUTHORING SYSTEM (MEEOCAS)
	4.1 INTRODUCTION
	4.2 DESIGN PRINCIPL AND CONCEPT MODEL
	4.3 LEARNING OBJECT DESIGN
	4.4 ARCHITECTURE STRUCTURE
	4.5 COURSE AUTHORING SCENARIOS
	4.6 SUMMARY

	Chapter 5 MAS BASED ADAPTIVE & ACTIVE LEARNING FRAMEWORK
	5.5 LEARNER GROUP FORMING MODELING
	5.5.1 INTRODUCTION
	7.4.1 7.4.1 DESIGN OF AGENT BEHAVIOR MODEL
	7.4.2 7.4.2 AGENT IMPLEMENTATION
	7.4.3 7.4.2.1 GENERIC AGENT INTERNAL ARCHITECTURE
	7.4.4 7.4.2.2 IMPLEMENTATION OF TEACHER AGENT
	7.4.5 7.4.2.3 IMPLEMENTATION OF TEST GENERARATION SERVICE AGENT (TGSAGENT)
	7.4.6 7.4.2.4 IMPLEMENTATION OF GACTRLAGENT
	7.4.7 7.4.2.5 TPAGENT
	7.4.8 7.4.3 PLATFORM IMPLEMENTATION
	7.4.9 7.4.3.1 SIMULATION

	 REFERENCES
	 APPENDIX A: FIPA AGENT COMMUNICATIVE ACT LIBRARY
	 APPENDIX B: MAS BASED E-EDUCATION SYSTEM
	 APPENDIX C: ABBREVIATION
	 LIST OF PUBLICATIONS DURING DOCTORAL STUDY
	.

