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SUMMARY

This study focuses on the micromechanical modeling of particulate
viscoelastic composite materials in the quasi-static frequency domain to approximate
macroscopic damping behavior and has two main objectives. The first objective is the
development of a robust multiscale model in the quasi-static domain. For this
purpose, the static three phase self-consistent (SC) model introduced by Cherkaoui et
al [J. Eng. Mater. Technol. 116, 274-278 (1994)] is extended to the quasi-static
domain by employing the elastic-viscoelastic correspondence principle. The model is
then generalized by employing dilute strain concentration tensor formulation. The
developed model is validated by comparison with complex bounds from literature,
acoustic and static experimental data, and established models. The second objective
is a study of the SC model as a tool for the design of high loss materials. This
objective is met by presenting a case study of the lossy behavior of a multiscale
structure in the form of a vibrating sandwich plate representing an automobile
windshield. This multiscale structure is modeled with a nested hierarchy of models
which is validated by comparison with finite element approximations. Parametric
studies of damping behavior at structural and part length scales are performed which
provide information for the design of constituent sandwich plate materials. The
effects of microstructural variation on structure level damping predicted by the SC
model are quantified and discussed. The work concludes by summarizing important

results and contributions and giving perspectives and suggestions for future work.



RESUME DE LA THESE

Chapitre I : Introduction

Objectif

L’objectif principal de cette thése est la dérivation, développement, et
validation d’un modeéle micromécanique auto-cohérent quasi—stdtique afin
de faciliter [’exploration et génération des spécifications pour la

conception des matériaux amortissants.

Les applications pratiques nécessitant des matériaux possédants une forte
capacité d’amortir 1’énergie acoustique et vibrationnelle concernent presque toutes les
industries. Les industries automobile [1] et aérienne [2], par exemple, se servent des
matériaux amortisseurs afin de remplir éléments structurels creux. De tels matériaux
renforcent la structure et amortissent les vibrations et bruits simultanément. Les
matériaux amortissants présentent des avantages d’absorption aussi en les employant
en forme de couches ou de plies. Quelques exemples des structure traités avec les
couches ou plies de matériau amortissant sont les chambres de tranquillisation pour
diminuer le bruit des tuyéres [3], les structures vibrantes [4], et les pare-brises
automobiles [5]. De plus, il est connu que la capacité amortissante d’un matériau peut
étre amélioré en introduisant des hétérogénéités [6], et de ce fait en créant un
matériaux composite particulaire.

La modélisation des matériaux composites visco€lastiques est, donc, d’un
grand intérét du fait du grand nombre d’applications pour des matériaux amortissants.
Cela explique pourquoi la modélisation est un domaine de recherche trés actif depuis
presque cinquante ans [7, 8]. La recherche actuelle suggére la possibilité de créer les

composites qui possédent une capacité amortissante extrémement élevée [9-13] et le



potentiel réel de concevoir des matériaux pour des applications spécifiques [14, 15].
Ces deux développements donnent une impulsion renouvelée 4 la modélisation des
matériaux composites viscoélastique.

La capacité amortissante d’un systéme viscoélastique, qu’il s’agisse d’une
structure ou d’un matériau composite, est une fonction de 1’état de déformation des
éléments viscoélastique de la structure. Cet état de déformation peut étre approximé
par plusieurs méthodes différentes mathématiquement, mais fondamentalement il est
important de noter qu’une augmentation de 1’énergie de déformation des éléments
viscoélastique conduit 4 une augmentation de la capacité amortissante du systéme
globale [16]. En effet, les recherches récentes montrent que les inclusions instable [9,
10, .12], ou bistables [17, 18], induisent de grandes déformations du matériau hote
dans le voisinage des inclusions et ainsi contribuent fortement a une augmentation
important du comportement amortissant macroscopique. Le développement d’un
modéle multi-échelle robuste est un élément principal de cette thése. Celui-ci
permettra ’étude des effets de la forme, d’orientation, et du comportement constitutif
des inclusions sur le comportement macroscopique des composites particulaires.

La sélection des matériaux, qui est un élément clé du processus de la
conception traditionnelle des systémes [19], est un aspect trés limitatif de la
conception. En effet ’approche classique de la conception des systémes, qui prévaut
dans la communauté de la conception, suppose que la conception des éléments est
limitée par les propriétés physiques des matériaux disponibles [20]. Ce paradigme
change quand 1’approche de la conception des systémes est prolongée pour inclure la
conception des matériaux pour les applications multi-physiques et multi-
fonctionnelles [14, 15]. Cette nouvelle approche s’appelle la conception inductive.
Une méthodologie inductive dans le domaine de la conception implique la conception-
des matériaux pour la fabrication, tandis que les méthodes traditionnelles fabrique les
matériaux pour les utiliser dans la conception (approche déductive) [21]. Les modéles
multi-échelles robustes peuvent fournir des informations utiles pour la conception des

matériaux [14]. Cet élément est un trés important dans cette approche émergeante. La



conception effective des matériaux nécessite des modeéles capables de faire la
transition entre les échelles de temps et longueur disparates (les échelles de longueurs
entre I’atomique et le macroscopique et les échelles de temps entre les pico-secondes
et les années). De tels modéles n’existent pas et ne seront pas disponibles dans un
proche avenir. L’approche actuelle consiste en ’implémentation d’une hiérarchie des
modéles différents imbriqués ou chacun effectue une, ou plusieurs, transitions
d’échelle [20]. Cette méthodologie est difficile & cause d’un manque d’information
concernant, ou d’un comportement complexe, des modeles dans I’espace de la
conception [21]. Ces difficultés limitent I’implémentation d’un grand nombre de
modéles dans une stratégie de conception compléte. Un moyen de surmonter cette
difficulté consiste a effectuer plusieurs études multi-échelles élémentaires utilisant des
modéles rigoureux afin d’observer les tendances. Les tendances ainsi obtenues
peuvent étre approximées par des modéles simplifiés, les meta-modéls, et ainsi étre
intégrées dans une stratégie de conception des matériaux. Cette approche présentent
un moyen efficace d’explorer I’espace de conception [22]. Sans se soucier de la
méthode empl(;yée, tout processus de conception des matériaux nécessite a la fois des
modéles multi-échelles robustes et une connaissance du comportement d’un matériau
composite dans 1’espace de conception fournie par ces modeles. L ’objectif de cette
thése est donc le développement d’un modéle multi-échelle (micro > macro) des
matériaux amortissants a 1’aide d’un schéma auto-cohérent (AC) statique a partir
d'un modéle existant [23, 24] et de l'intégrer dans un hiérarchie de modéles
d’échelles de longueurs différentes afin de mettre en évidence les effets
microstructuraux sur [’amortissement des structures. Un pas vers la conception des

matériaux amortissants.

Hypothese



Le développement d’un modéle auto-cohérent micromécanique robuste
dans le domaine fréquentielle quasi-statique fournira un outil a la

conception des matériaux composites amortissants.

Afin de valider cette hypothése, il faut d’abord développer le modéle AC dans
le domaine fréquentiel quasi-statique pour les applications d’amortissement divers. Il
faut que ce modele puisse prendre en compte les propriétés viscoélastique des
matériaux constituants ainsi que la forme et I’orientation des hétérogénéités afin de
simuler le comportement global. Le modéle droit étre validé en le comparant avec
d’autres modéles d’homogénéisation, les bornes complexes, ainsi qu’avec les dbnnées
expérimentales. 1l est ensuite nécessaire de mettre en ceuvre un exemple simple de
structure multi-échelle et d’y intégrer le modéle AC. Enfin, il faut effectuer plusieurs
études sur le comportement de la structure a4 chaque échelle. L’effet de la
microstructure qui se propage a travers des échelles de longueurs et qui se manifeste

sur comportement structurel est étudié a ce stade.
Chapitre II: Revue Bibliographique et principes

Le deuxiéme chapitre présente un résumé des principes utilisés dans cette
thése. Ce chapitre commence par une discussion concernant la dissipation de
I’énergie dans les matériaux. Pour cela, nous présentons les sources différentes de
dissipation dans les matériaux homogénes et hétérogénes ainsi que les mesures de
cette dissipation d’énergie. Les principes physiques de la dissipation sont ensuit
introduits dans le cadre de I’énergie de déformation, qui est une approche souvent
employée souvent dans le domaine des vibration des structures. Le chapitre poursuite
par la présentation de quelques approches acoustiques basées sur les principes de la
dispersion des ondes décrivant les principes physiques de 1’amortissement des
composites particulaires. Ce chapitre se termine par une synthése bibliographique des

deux domaines principaux de la thése : (i) la modélisation des matériaux composites



particulaires & partir des méthodes micromécaniques statiques et des méthodes
acoustiques de dispersion simple et multiple, et (i) les développements importants des
méthodes de la conception des matériaux avec une approche multi-échelle et multi-

fonctionnelle.
Chapitre III : Modélisation micromécanique dans le domaine quasi-statique

Le modéle proposé dans cette thése est une approche micromécanique
d’homogénéisation AC. L’approche AC des composites particulaires fait parti d’une
classe de modéles dit champs moyenné [25]. La modélisation par champs moyenné
éonsiste en deux opérations fondamentaux: (i) la localisation et (i) la
homogénéisation [26, 27]. Ces opérations nécessitent I’existence de deux échelles de
longueurs intrinséque tel que le comportement et la structure du matériau a I’échelle
de longueur microscopique, qui représente 1’échelle des particules, n’a qu’un effet
moyenné sur le comportement du matériau a I’échelle macroscopique [27]. Le travail
d’Eshelby a fournit la perspicacité et outils mathématiques pour résoudre le probléme
de la localisation d’un chargement mécanique macroscopique imposé & ’infini a
1’échelle microscopique via le tenseur de localisation appel€ le tenseur d’Eshelby, Sy,
et la méthode d’inclusion équivalente. La capacité d’effectuer une localisation des
chargements mécaniques imposé & 1’échelle macroscopique & 1’échelle microscopique
est un besoin fondamental de 1’étape d’homogénéisation. Les propriétés effectives
d’un matériau composite sont obtenues depuis les champs moyens volumétriques de
contrainte et de déformation d’un matériau hétérogéne. Le moyen volumique est
obtenu depuis les champs locaux des déformations et des contraintes calculés pendant
1’étape de localisation [28-30].

La contribution fondamental d’Eshelby est suivi par une grande gamme de
modeles, dont quelques exemples représentatives sont ceux de Kroner [31],
Budiansky [32], Wu [28], et Mori et Tanaka [33]. Zeller et Dederichs ont amélioré la

méthode d’inclusions équivalentes en introduisant un formalisme de Green qui permet



le calcul de la contrainte et la déformation en chaque point d’un milieux hétérogéne a
I’échelle microscopique [34]. Mura [35] et Willis [36] ont ajouté la déformation
plastique a I’approche de Zeller et Dederichs et Berveiller ef al [37] ont généralisé
I’approche au cas de deux inclusions ellipsoidales plastiques et désorientées. Une
autre amélioration importante de I’approche des inclusions équivalentes est
Pintroduction des opérateurs interfaciaux qui relient I’état de contrainte et
déformation a travers d’une interfabe de deux matériaux différents [38, 39]. La
combinaison de ces deux techniques mathématiques fournit un outil de modélisation
des phénoménes physiques & 1’échelle microscopique extrémement puissant. Le
résultat important pour ce travail est que ces outils améliorent les opérations de
moyen volumétriques nécessaire pour effectuer I’homogénéisation. Le modéle AC
introduit par Cherkaoui et al [23, 40] doit sa précision au fait qu’il s’est servi de ces
outils. Le modéle développé dans cette thése est une extension au domaine
fréquentiel quasi-statique de leur mode¢le.

Tous les modéles micromécaniques nécessitent la sélection d’un volume

élémentaire représentatif (VER). Le VER représente le plus petit volume du matériau

hétérogéne qui se comporte de la
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Figure R-1: VER d’un matériau composite constitug
des inclusions enrobées plongées dans une milieu infini
de référence.

dessus. Un matériau composite

constitué d’inclusions

ellipsoidales enrobées plongées
dans un milieu homogéne de référence peut étre représenté par le VER montré par
Figure R-1. Le modele de Mori et Tanaka suppose que le matériau de référence dans

Figure R-1 soit une matrice avec les propriétés élastiques, CM. Le matériau de
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référence subit une déformation macroscopique, Ey, qui est la méme que celle dans la
matrice ng [33]. Le modéle Mori-Tanaka est, donc, limité aux applications ou la
fraction volumique des inclusions, f;, est faible. Un grand nombre d’autres modéles
sont limités aux cas de concentration diluée d’inhomogénéités parce qu’ils supposent
qu’il n’y a pas d’interaction entre les champs de déformation des inclusions [41].
Plusieurs moyens existent pour surmonter cette limitation. Par exemple, une
approximation numérique depuis une maille périodique basé sur des calcules par
éléments finis. Cette approche prend compte I’interaction des hétérogénéités d’une
maniére explicite mais elle nécessite les calcules intensifs [25]. Un autre exemple est
le modéle proposé par Molinari et E1 Mouden [42] qui applique le formalisme de
Green d’une paire d’inclusions ellipsoidales de Berveiller ef al [37]. Leur modéle
fiable obtiens les constants effectives du comportement des composites particulaires
avec une concentration d’inclusions élevée. Les modéles AC représentent une autre
démarche qui peut étre employé pour simuler le comportement d’une composite
particulaire avec une concentration d’inhomogénéités élevée. L’approche AC
suppose que le milieu de référence du VER en Figure R-1 se comporte selon les
propriétés élastiques effectives macroscopiques, C¥, et qu’elles sont inconnues [41].
Kroner a proposé cette démarche afin d’approximer le comportement des matériaux
polycristallins car la définition de la matrice n’est pas claire [31]. Budiansky [32] et
Hill [43, 44] ont amélioré 1’approche de Kréner et finalement Christensen et Lo 1’ont
généralisé [45]. La démarche AC n’est pas limitée au comportement statique des
matériaux composites. Chaban [46], Kuster et Toksoz [47], et Gaunaurd et Uberall
[48, 49] ont tous proposé des modeéles d’homogénéisation AC fiables par des
méthodes acoustiques. Les modéles micromécaniques AC obtiennent les équations
implicite qui engendre, parfois, les instabilités numériques [50]. Pour certains cas, ces
modeles peuvent aboutir & des valeurs erronés [51, 52]. Cependant, les modéles
micromécaniques AC restent fiables, commode et, en particulier, donnent de bonnes
approximations du comportement des composites ayant une haute fraction volumique

d’inclusions. Pour ces raisons le modele AC de Cherkaoui et al [23] est développé ici



dans le domaine fréquentiel quasi-statique, présenté par I’Equation (R.1), afin

d’approximer le comportement des composites viscoélastique [50, 53].
& =84 [ -6 )R (€9) e f[E0-E¥ A7) ®)

Dans cette relation les propriétés viscoélastique de la matrice, des inclusions, et de

I’enrobage sont notdes par les teneurs de rigidité complexes CY (a)) , ! (a)), et
c¢ (aJ) respectivement, f7 et fc représentent respectivement les fractions volumiques

des inclusions et de l’enrpbage, et Af (a)) et A€ (a)) sont les tenseurs de localisation.
des déformations de I’inclusion et I’enrobage. De plus, I’équation (R.1) utilise la
notation simplifiée C* (@) < C*.

Le modele introduit par Cherkaoui et al [23, 40, 54] se limite aux cas des
inclusions enrobées sphériques ou bien ellipsoidales. Malheureusement, quand les
inclusions sont ellipsoidales, le modéle est limité aux applications ou les phases
constitutives possédent les propriétés viscoélastiques identiques et les inclusions sont
toutes orientées identiquement. Etant donner que la majorité des vrais matériaux
n’appartiennent 4 ni I’un ni lautre de ces classifications, il est intéressant de
généraliser le modele. Spécifiquement, il est intéressant de développer le modéle afin
de simuler le comportement effectif d’un matériau qui consiste en une matrice
contenant les plusieurs types d’inclusions enrobées qui ont une distribution
d’orientation connu. II est possible d’arriver 4 ce niveau de généralité en étendant le
VER du modéle AC du Figure R-1 pour inclure toutes « familles » d’inclusions
enrobées différentes. Cette démarche s’appelle la formulation par tenseurs de
localisation des déformations diluées (ot « Dilute Strain Concentration Tensors »,
DSCT). Le VER utilisé pour la dérivation d’un modéle AC DSCT peut étre

décomposer selon le schéma montré dans le Figure R-2 [55-57].

XXiv



Figure R-2: Schéma de la décomposition d’un matériau composite particulaire par DSCT.
P _ p

Le modele AC quasi-statique provenant de la formulation par DSCT est décrit par

I’Equation (R.2).

T =& L Y7 (E0 - E): AV 4 p (69 -84):A%) R

i=1

Equation (R.2) montre que le modele DSCT prédit le comportement effectif avec une
sommation des effets de N familles d’inclusions enrobées différentes. Cette approche
raffine les approximations du modéle AC donnée par Equation (R.1) en permettant de

se rapprocher de la vraie composition des matériaux composites particulaires.
Chapitre I'V: Validation et application du modéle auto-cohérent QS

Avant d’intégrer le modéle micromécanique AC dans une stratégie de
conception des matériaux, il est d’abord nécessaire de valider le modéele. Le but de ce
chapitre est la validation du modéle AC quasi-statique qui s’accompli en deux étapes.
La premiére étape compare le modéle AC avec les bornes analytiques des milieux
hétérogeénes complexes prises de la littérature. La comparaison avec les bornes
complexe commence par une introduction des méthodes les plus applicables aux
matériaux €tudiés dans cette thése. Ensuit les valeurs obtenues par le modele AC
dans le domaine quasi-statique pour plusieurs matériaux hypothétiques sont comparé
avec ces bornes complexes. L’accord entre les bornes complexes et le mode AC
assure la validité du modéle dans le domaine fréquentiel quasi-statique. La deuxi¢me

partie de la validation du modele consiste en des études paramétriques et comparaison



avec 1’expérience. L’accord avec les données expérimentales montre la précision et la
flexibilité¢ du modéle pour son application aux divers problemes. Le chapitre se
termine avec une discussion de I’implémentation numérique du modele AC. Cette
partie discute quelques problémes rencontrés, suggére les méthodes pour
implémentation du modéle AC quasi-statique, et discute des observations sur les

instabilités numériques rencontrées.

Comparaison avec bornes complexes

Les techniques qui définissent les limites de wvalidit¢é des modeles
d’homogénéisation des composites élastiques sont bien connues, voir par exemple,
Hashin et Shtrikman [58], Walpole [59], Hill [60, 61], et pour une revue détaillée
Hashin [62]. De plus, ’approche AC rentre dans les bornes acceptés pour le cas
élastique (c'est-a-dire, les tenseurs de rigidité de chaque phase d’un composite
particulaire n’ont que les composants réelles) [43]. Par contre, il existe
comparativement peu de travail qui concerne les bornes du comportement effectif
complexe des composites viscoélastique. Hashin [8, 63, 64], Christensen [7],
Roscoe [65, 66] ont abordé le sujet avec leur études fondamentaux sur le sujet des
composites viscoélastique et les bornes complexes simples. " Plus récemment, les
techniques basées sur méthodes variationelles et translationelles ont fait leur
apparition. Cherkaev et Gibiansky [67] ont introduit cette approche rigoureuse qui est
liée au travail de Milton [68] et aussi celui de Miller [69]. Le résultat de leur travail
ont stimulé plusieurs contributions concernant le développement des bornes
complexes, notamment celles de Gibiansky et Milton [70], Milton et Berryman [71],
Gibiansky et Lakes [72, 73] et Gibiansky et Torquato [74]. Toutes ces méthodes
limitent les valeurs effectives des modules de cisaillement et d’élasticité volumique
dans une zone du plan complexe décrit par des arcs. Les arcs sont les fonctions des

modules complexes des phases constituantes et les fractions volumiques. Le



désavantage des ces méthodes est qu’elles sont limitées & ’application & chaque
fraction volumique et chaque fréquence d’intérét d’un matériaux composite.

Cette section de la thése met en évidence que le modéle AC quasi-statique
n’enfreint aucune loi physique. Il est montré que le modele est situé entres les bornes
de Roscoe en fonction de la fréquence et aussi bien que la fraction volumique. De
plus, il est montré que le modéle est en accord avec les bornes rigoureuses du module
de d’¢élasticité volumique proposé par Gibiansky et Lakes [72], Figure R-3, et du
module de cisaillement de Milton et Berryman [71], Figure R-4.
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Figure R-3: Bornes dans le plan complexe du module d’élasticité volumique calculé par les
bornes de Gibiansky et Lakes [72] et ’approximation par le modéle AC, ¢. Les bornes sont
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Figure R-4: Bornes du module de cisaillement dans le plan complexe depuis Milton et Berryman
[71]. —— Borne supérieure; — - - Borne inférieure. Le modéle AC, , rentre dans les

limites.

Comparaison avec ’expérience et les études paramétriques

Le principe de correspondance élastique-viscoélastique suggére que
’approximation du comportement d’un matériau composite viscoélastique par une
méthode micromécanique dans le domaine fréquentiel quasi-statique corresponde a
une approximation par 1’énergie de déformation [75]. La validation de cette logique
est extrémement importante pour I’implémentation future du modéle AC quasi-
statique dans le cadre de conception des matériaux amortissants. Il est pour cette
raison que I’approximation par le modéle AC est toute d’abord comparée avec les

données expérimentales et une modéle de dispersion acoustique de 1’indice



d’affaiblissement acoustique (IAA) d’une dalle de matériau viscoélastique composite
[76]. Les effets d’anisotropie, due aux inclusions enrobées ellipsoidales orientées,
sont le sujet de plusieurs études paramétriques. La preiniére s’agit d’une étude sur
I’TAA pour d’un matériau viscoélastique qui contient les renforcements oblates vides.
Toutes ces inclusions oblates ont leurs axes majeurs orientés avec plan x;-x2 et on
étudie ’TAA d’une dalle composite d’une épaisseur de 1 cm pour une onde incident
qui se propage selon I’axe x3. Figure R-5 montre que le modéle AC arrive & capter les

effets d’anisotropie induite par inclusions isotropes mais ellipsoidales et orientées.
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Figure R-5: JAA d’une dalle du matériau viscoélastique composite d’une épaisseur 1 cm. La
matrice viscoélastique contient 13% des inclusions enrobées oblates. L’orientation des inclusions
est telle que les axes longs sont perpendiculaires aux ondes incidentes. Etude paramétrique sur la

variation du rapport des axes: _— afc=1, _.. afc=15, ___ afc=2,
alc=2.5.

Dans le cadre d’anisotropie induit par les inclusions isotropes mais orientées le Figure

R-6 considére le coefficient d’affaiblissement d’une onde plane, la partie imaginaire



du nombre d’onde complexe : k=k +id, en fonction d’angle de propagation de
’onde plan pour plusieurs formes d’inclusion enrobée. Les résultats de cette étude
montre clairement que le modeéle peut étre applique aux problémes d’homogénéisation

4 une grande gamme de matériau composites viscoélastique.
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Figure R-6: Coefficient d’affaiblissement en fonction d’angle de propagation dans le plan x;-x;
dans un matériau composite viscoélastique avec 10% par volume d’inclusions de verre enrobée
par Lucite (6 = 0 représente I’axe x;). La fréquence des ondes incidentes est 50 kHz

Une faiblesse du modéle AC employée pour calculé les courbes de Figure R-5
et Figure R-6 est sa limitation aux applications avec les inclusions sphériques ou
ellipsoidales orientées. Une formulation DSCT rend le modéle AC plus robuste en
permettant les variations d’orientation et de propriétés viscoélastique des inclusions
enrobées. La formulation DSCT est validée avec plusieurs études et comparaisons
différentes. Le premier étude compare les calcules AC DSCT avec ceux de Berryman

[51] quand le matériau composite se comporte d’un maniére isotrope a cause d’une

orientation aléatoire d’inclusions ellipsoidales. Puis la formulation DSCT est



sollicitée afin d’approximer la dépendance directionnelle des propriétés effectives en
fonction de 1’écart-type de la variation de ’orientation des inclusions ellipsoidales.
Une autre validation de la formulation DSCT est la comparaison du tenseur de rigidité
effectif d’un schiste feuilletée possédant plusieurs matériaux différents et une
orientation préférentielle de plaquettes d’argile. Les calcules du modéle AC DSCT
montre un bon accord avec les données expérimentales de Jones et Wang [77] bien
que la modéle micromécanique de Horby et al [78]. Une aufre étude sur la
formulation DSCT montre un bon accord avec les données expérimentales et mod¢le
de dispersion multiple de Ledbetter and Datta [77] d’un composite SiC qui est
approximé comme un matériau consistant de trois échelle distincte: sous-
micron—>meso—>macro [79]. Finalement, le modéle AC avec une formulation DSCT
est sollicité encore une fois pour approximer IAA d’un composite viscoélastique en
prenant en compte un variation de 1’épaisseur de I’enrobage des billes de verre
creuses étudie par Baird er al [76]. Les résultats de ces calcules montrent une
amélioration importante d’accord du modéle avec les donnée expérimentales, voire

Figure R-7.
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Figure R-7: JAA calculé avec le modéle AC et AC DSCT comparée avec les données
expérimentales de Baird ef al [76].

La derniére partie de Chapitre IV discute les problémes numériques qui risque
de se manifester en employant le modéle AC. 1l existe certaines conditions qui rendre
le modéle AC instable numériquement. La nature implicite de la solution au modéle
AC est la racine de cette instabilité. . La majorité de matériaux composites ne
possédent pas une composition de phases et géométrie d’inclusions enrobées qui suffit
de rendre instable le modele AC. Malheureusement, la composition et géométrie
d’une grande partie des matériaux considérés par ce travail peuvent facilement rendre
instable le modéle AC. La présence d’instabilité est surtout prononcée surtout quand
le contraste des tenseurs de rigidité des inclusions et de la matrice est important et les
inclusions sont plus souples que la matrice. Cette section discute les conditions clés
qui ménent a I’instabilité et aussi plusieurs moyennes de surmonter le probléme.

En dépit des complications numériques qui peuvent se manifester avec le
modele AC pour des inclusions enrobées, le Chapitre IV montre, avec les études

paramétriques et comparaison avec 1’expérience, le niveau de généralité et précision



du modele AC quasi-statique. Le modele approxime sfirement le comportement
amortissant des éomposites viscoélastique parﬁculaires. Ce modéle surpasse les
modeles 3 base de dispersion acoustique dans le domaine fréquentiel quasi-statique
comme il permet d’intégrer facilement des phases anisotropes aussi bien que les effet
d’orientation des inclusions ellipsoidales. La généralité augmentée du modéle
micromécanique AC quasi-statique renforce 1’idée de I’intégrer dans une stratégie de

la conception des matériaux.

Chapitre V: Vers la conception des matériaux

Un aspect trés important de ’approche émergente de la conception des
matériaux est le développement des modéles mutli-échelles afin de fournir de
Pinformation du comportement multi-échelle et multi-physique au processus de la
conception [14]. Les deux chapitres précédents ont présentés et validés un modele
capable de passer de 1’échelle microscopique au comportement macroscopique d’un
matériau composite. Par contre, une approche compléte de la conception des
matériaux serait capable de faire le lien entre les échelles de longueur et temps trés
disparates (les échelles de longueurs entre atomistique et macroscopique et de temps
entre .pico-secondes et années). Les méthodes actuelles, et bien sir le modéle
présenté par le Chapitre III, n’est pas d’un tel niveau de complexité. Il est, donc,
proposé d’approximer un comportement multi-échelle, en forme d’une plaque
sandwich vibrante, avec une hiérarchie de modéles imbriqués, chacun capable de
passer entre, au minimum, deux échelles différentes. Cette approche permette la
sollicitation de 1’ensemble des modéles, qui posséde parfois un comportement trés
complexe dans 1’espace de conception, afin de renseigner les stratégies de conception
des matériaux amortissants [21].

Une méthode effective d’amortir les vibrations d’une plaque consiste en
Pintroduction d’une couche viscoélastique entre deux plaques fortement plus rigides

que la couche viscoélastique. Cette géométrie force la couche intérieur a subir des



grands déplacements en cisaillement avec 1’imposition d’un moment de flexion.
Applications pour cette configuration se trouve dans l’industrie aérienne [2] et
automobile [1, 5] & cause d’un comportement qui favorise I’isolation acoustique et
thermale [80]. Parmi les éléments structuraux dans I’industrie automobile possédant
une structure sandwich, on trouve le pare-brise. Celui-ci est I’objet d’étude de 1’étude
de cas de ce chapitre choisi pour illustrer une approche qui emploie une hiérarchie de
‘modeles imbriqués. L’étude de cas du pare-brise présenté, illustré par le schéma du
Figure R-8, consiste en une modéle qui comprendre quatre échelles: (i) la
microstructure des matériaux constituants, (if) les matériaux constituants (les piaques
individuelles), (iii) ’élément structurelle (la plaque sandwich), et (iv) la structure (la
plaque sandwich montée). Il est important de noter que méme si la discussion de ce
chapitre se centre autour du pare-brise, la démarche et 1’analyse peut s’étendre
facilement aux autres applications utilisant les plaques sandwich afin d’amortir

I’énergie.

Structural Level Modeling

Micro> Macro Level Modeling

Figure R-8: L’approche de la modélisation multi-échelle d’un pare-brise.
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La modélisation du comportement fréquentiel des plaques sandwichs est trés
développée. Une des premiéres contributions importantes est celle de Ross, Kerwin,
et Ungar (RKU) [81]. Leur modéle utilise une sorte d’homogénéisation de la plaque
tenant en compte le cisaillement de la couche viscoélastique suite & une onde de
flexion. Le module de flexion effective rendu par ce modele est complexe et dépende
de la fréquence. Suite & leur contribution, la recherche sur le comportement des
plaques sandwich s’est bien développée (voire des références exemples [82-87]).
Malgré toute cette recherche approfondie, le modéle RKU est souvent employé aux
premiéres étapes de 1’étude d’une structure sandwich grice 3 sa simplicité, sa
précision, et son acceptation universelle. De plus, sa nature analytique le rendre
efficace pour des études de sensibilité et pour I’intégration dans les calcules
complexe. Pour ces raisons, le modele RKU est utilisé dans ce travail afin
d’approximé le comportement d’une plaque sandwich.

L’étude de cas présenté introduit quelques variables clés de 1’espace de
conception du comportement amortissant et fourni des informations de leur
interaction et leur influence sur le comportement de la structure. L’analyse multi-
structurale commence par une section concernant la modélisation de la plaque
sandwich. La section met en évidence les effets de la géométrie et le comportement
constitutif des matériaux constituants. Une étude de la sensibilité montre clairement
que le moyen le plus efficace d’augmenter la capacité amortissante en gardant la
rigidité d’une plaque sandwich est la croissance du facteur de perte du matériau
viscoélastique en contraint. L’étude de la structure continue avec une analyse du
comportement des poutres et plaques vibrantes encastrées aux limites dans un
matériau viscoélastique. L’analyse des structures vibrantes consiste en une analyse
modale d’apres les modéles classiques qui intégre le module de flexion de la plaque
sandwich, réalisé avec le modéle RKU. Figure R-9 montre le bon accord avec cette
approche et un analyse par éléments finis, introduit par Daya et Potier-Ferry [83],
d’un poutre cantilever. La figure montre la variation du facteur de perte du system,

estimé par la méthode de la bande passante a trois dB, en fonction du facteur de perte
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de la couche et les conditions limite viscoélastique. La différence entre les deux
approches augmente avec la valeur du facteur de perte viscoélastique, mais
I’approximation par les méthodes simplifiées n’est fiable que pour les facteurs de
perte de la couche intérieure inférieures a 0.5 (77, <0.5). L’accord entre ces deux
approches justifie ’intégration du modéle RKU avec une formulation classique des
plaques et poutres vibrantes pour une analyse des plaques sandwiches pour 1’étude

¢élémentaire de la conception des matériaux.
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Figure R-9: Le facteur de perte du premier mode d’une poutre sandwiche encastrée dans un
matériau viscoélastique. Résultats analytique par une hiérarchie de modéles comparé avec une
analyse par éléments fini employant le modéle de Daya et Potier-Ferry [83].

Les résultats du Chapitre IV montrent que le modéle AC quasi-statique donne
les bonnes approximations du comportement amortissant des composites
viscoélastique. Le but de I’étude actuelle est le renseignement d’une stratégie de la

conception des matériaux par le modéle AC. 1l est, donc, intéressant d’étudier

PPamortissement en fonction de la variation de la microstructure de la couche



viscoélastique d’un pare-brise. Il faut d’abord étudier I’influence de la microstructure

sur le comportement de la plaque sandwiche. La Figure R-10 présente une mesure
d’amortissement des ondes de flexion, dﬂ“/ Ere qui estime la fraction d’amplitude
amorti par longueur d’onde [88]. La figure montre une forte augmentation de
I’affaiblissement d’une onde de flexion propageant dans la plaque sandwiche,

possédant les propriétés et la géométrie d’un pare-brise, en fonction de la faction

volumique des vides de la couche viscoélastique (PVB).
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Figure R-10: La fraction d’amplitude d’une onde de flexion amorti par longueur d’onde dans
une plaque sandwiche en fonction de la fraction volumique des vides dans la couche
viscoélastique approximée par les modéles RKU et micromécanique AC.

La hiérarchie de modéles permet aussi d’illustrer la propagation des effets de
la variation de la microstructure au passage de plusieurs échelles de longueurs. La

Figure R-11 montre une augmentation quasi-quadratique du facteur de perte modale

d’une plaque sandwich circulaire en fonction de la fraction volumique des vides de la



couche viscoélastique. L’augmentation du comportement amortissant observé a
I’échelle de la structure n’est pas, malheureusement, trés importante comme désiré,
ceci peut étre attribué aux matériaux traditionnels d’un pare-brise. La recherche
actuelle suggére qu’il est fort possible .que I'introduction des matériaux non-
conventionnels comme hétérogénéité dans la couche viscoélastique puisse mener a

augmenter la capacité amortissante & 1’échelle structurelle.
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Figure R-11: La variation du facteur de perte du premicr mode d’ume plaque sandwiche
circulaire en fonction de la fraction volumique des vides dans la couche viscoélastique, ¢ .

Un comportement non-conventionel qui méne & une hausse important de
I’amortissement macroscopique s’appelle « la rigidité négative. » Les mécanismes
d’instabilité de certains matériaux manifestent les grands déplacements suite & un petit
chargement qui est bien approximé par une rigidité négative. Le travail de Lakes et al

[9, 10, 12] montre clairement qu’un tel comportement entrain un croissance trés



important de 1’amortissement macroscopique. @ Une hausse significative en
comportement amortissant se manifeste quand la valeur du module qui corresponde
au chargement, par exemple f,, s’exprime en fonction du méme module de la
matrice, f,, par i, ~-1.14,, [9]. La Figure R-12 présente le comportement
amortissénte a I’échelle structurelle d’un pare-brise sandwich, dont la couche
viscoélastique comprend des inclusions ayant une rigidité négative [, = —1.142,,5 , par

approximation de I’TAA en fonction de la fréquence d’une onde plane incidente [89].
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Figure R-12: L’approximation de I’JAA d’une pare-brise dont la couche PVB comprend les
petites fractions volumique d’inclusions instables (u; = -1. 1upyg).

Les résultats montrent une croissance dramatique de la capacité de la structure pour
dissipé de I’énergie a la fréquence coincidente. Certainement, 1’introduction des
inhomogénéités de rigidité négative méne a une réduction en IAA a la fréquence

coincidente presque compléte, méme a faible fraction volumique des inclusions.



En dépite du faite que les courbes de la Figure R-12 représentent le
comportement d’un matériau hypothétique, il est trés intéressante de montrer que la
méthodologie d’une hiérarchie de modéles imbriqués capte bien ce comportement
non-conventionelle. Il met en évidence un niveau de control augmenté sur les
variables dans I’espace de conception. Il montre aussi la fiabilité, la puissance, et
surtout la flexibilité d’une telle stratégie pour renseigner la conception des matériaux.
L’étude de cas présenté valide, surtout, I’intégration du modéle micromécanique AC
dans une stratégie de la conception des matériaux et incite la recherche approfondie

des microstructures qui méne aux effets structurels amortissants prononces.

Chapitre VI: Conclusions et perspectives

Le chapitre final donne des conclusions générales de la theése. Les résultats et
contributions importants des modeles et méthodes présentées en chaque chapitre sont
résumés et discutés. Ils donnent des perspectives sur le role du travaille présenté et
suggére des avenues de recherche approfondi. Finalement, le chapitre se termine avec
une discussion de I’importance de la modélisation multi-échelle et multi-fonctionelle

des matériaux dans I’avenir de la conception des matériaux.



CHAPTER1

INTRODUCTION

1.1 Objective and motivation

The principal objective of this thesis is the derivation, development, and
validation of a quasi-static self-consistent micromechanical model to facilitate
the exploration and generation of design specifications for absorptive

materials.

Throughout history humankind has created tools and structures to satisfy
wants and needs. These structures are omnipresent in daily life and range in form and
function from buildings, to cars, to computers, to airplanes. The success of any given
structure depends entirely on a hierarchy of elements and the design of those
elements. This hierarchy includes the structure as a whole, the individual structural
elements, the components comprising each of those individual elements, the materials
from which each component is fabricated, and finally the composition of those
materials [90]. In other words, a structure can be viewed as a system which possesses
elements that exist at multiple length scales. Behavior of the structure as a whole is
governed by behavior at each individual length scale and by interactions between
those length scales [14]. True engineering design must take this fact into account. It
is clear, therefore, that successful design must consider not only the design of each
element at its length scale, but also the complex interaction of the hierarchy of length
scales [91]. This design philosophy can ideally be extended to include even the
design of the materials.



Classic design methods require the selection of materials which conform to the
needs of the preconceived whole [19]. This design methodology is well developed
and well understood. Unfortunately, the limiting factor in design when applying this
approach is very often the lack of available materials which meet the needs of the
structure, thereby limiting the entire design processes [14, 15]. The intertwined fields
of composite material design, manufacture, and modeling have developed in response
to this lack of ax;aﬂable materials and have greatly supplemented the design process.
Though these fields address the lack of available materials, as currently implemented
they still simply create materials to be selected from a list for subsequent design needs
through the material selection approach. Such an approach, though very useful for
many applications, ignores a more elegant solution which aims to create materials
specifically conceived for the demands of a given application [21]. Such an approach
not only creates materials for specific needs but also includes material creation in the
design of the system as a whole, and is therefore usually called material by design
[90].

Material by design, or simply material design, is a very active area of research.
One well accepted approach to material design aims to extend a systems design to
include the concurrent design of materials for specific high importance components
[14, 21, 91]. This extension is very natural as materials themselves can easily be
viex;ved as multiscale structures [90, 92]. Such a strategy ensures the function of the
structure and gives ultimate control to the designer. The study of material design is,
however, very new and requires considerable research before being a viable option for
engineers. Detailed development and investigation of multiscale structures, which
includes multiscale material models, is a key aspect of such research. These
investigations yield a great deal of information and understanding about the effects of
material structure on desired structural behavior [20, 22]. This information can then
be used to inform material design strategies.

Material design is inherently a multiscale and multi-physics problem as the

demands of a structure include thermal, electrical, and mechanical loading at all



length scales. One area of interest in many engineering domains is the dissipation of
energy. Applications for materials with a high capacity to absorb acoustic and
vibrational energy can be found in almost every industry. For example, high loss
materials are often used as a filler in structural elements such as the fuselage of an
aircraft [2] or the chassis of an automobile [1]. As filler, such materials
simultaneously reinforce the structure and reduce vibrations and noise. Similar
energy attenuation benefits are realized when these high loss materials are used in the
form of coatings and layers. Coating treatments have been employed for noise
abatement in plenum chambers and ducts [3], on vibrating structures [4], and in
automobile windshields [5]. Furthermore, it is known that the damping capacity of
materials can be increased by introducing heterogeneities [6] into the material,
thereby creating a particulate composite material. Due to the large number of
potential applications for lossy materials, constitutive modeling of viscoelastic
composite materials is of great interest and has been for nearly half a century [7, 8].
Recent research suggesting the possibility of creating composites that exhibit
extremely high damping [9-13] combined with advances in the design of materials
[14, 15] has given renewed impetus to research in the modeling of viscoelastic
composite materials. For this reason, this thesis concentrates on modeling particulate
composites for damping applications and moves towards the implementation of the

proposed model in a material by design scheme.

1.2  Hypothesis and strategy

The development of a quasi-static frequency domain self-consistent
micromechanical model will provide a tool for the design of absorptive

materials.



The first step in validating this hypothesis is the development of a robust
quasi-static frequency domain self-consistent (SC) micromechanical model. This
model must be capable of approximating the effective frequency dependent behavior
of various complex particulate composite materials. Model inputs will be the material
properties of each constituent phase and the inclusion shape and orientation. The
desired model output is the effective frequency dependent tensors describing isotropic
or anisotropic viscoelastic composite material behavior. Validation of the model will
be accomplished through comparisons with theoretical bounds for complex composite
media, accepted models, and experimental data and through parametric studies. To
further validate this hypothesis, the SC model will be integrated into a simple
multiscale structural model. The goal of this example is to observe trends, to compare
simulated multiscale model behavior with experimental data and finite element
approximations, and to study the effect of material microstructure on structural

behavior.

1.3 Thesis overview

This thesis is divided into six chapters. The following chapter, Chapter II,
summarizes the principles employed throughout the thesis and notes many important
works from which considerable background has been gathered. Chapter II begins
with a general discussion regarding energy dissipation in both homogeneous and
heterogeneous materials and recalls measures of energy dissipation. A structural
vibrations approach to energy dissipation is then discussed. The approach presented
employs the relationship between energy dissipation and strain energy. After
examining strain energy dissipation approximations the chapter then discusses
acoustic scattering in particulate composites, its fundamental physical principles, and
related modeling methods. This chapter terminates with a detailed bibliographical

review of the two prominent research areas covered in this thesis: (i) homogenization



techniques for modeling effective particulate composite material behavior from both
the static (micromechanical) and the dynamic (acoustic scattering) perspectives, and
(i) important developments in material by design research using a multiscale and
multi-physics approach.

Chapter ITI derives a SC micromechanical model in the quasi-static frequency
domain for a composite consisting of a viscoelastic host containing viscoe]astic
ellipsoidal coated inclusions. This is achieved by extending the static model of
Cherkaoui et al [23, 24] to include the constitutive frequency dependence of the
constituent phases. The derivation is posited on the elastic-viscoelastic
correspondence principle and employs Green’s formalisms and interfacial operators to
arrive at a general frequency dependent homogenization model for particulate
composites. The resulting quasi-static model is then generalized using dilute strain
concentration tensor (DSCT) formulation.  This generalization permits the
homogenization of composites containing a large array of coated inclusions, inclusion
orientation distributions, and coating thicknesses.

The purpose of Chapter IV is to validate the quasi-static SC model though
comparisons with accepted analytic bounds, acoustic scattering based models, and
static and acoustic experimental data. The chapter begins with an overview of the
important contributions in bounding methods for complex valued effective material
behavior. Three specific complex bounding techniques are introduced and
approximations from the quasi-static SC model derived in Chapter III are shown to
fall within those bounds. The model is then employed in several elementary studies
concerning the particulate composite lossy behavior. The SC model is employed to
approximate the isotropic composite material behavior of a viscoelastic material
containing spherical hollow glass micro-spheres [93]. SC model results are used to
calculate the transmission loss (TL) of a layer of this composite material submerged
in water. These results are shown to agree with an acoustic scattering model proposed
by Baird ef al [76] and experimental TL data from the same authors. Oriented

ellipsoidal coated inclusion effects are then examined via parametric studies of TL,



complex wavenumber, and complex sound speed for hypothetical materials created
from the same constituent phases as those studied by Baird et al [76]. The next
validation step is an illustration of SC DSCT model generality. The SC DSCT model
is first used to approximate isotropic behavior resulting from a uniform distribution of
ellipsoidal inclusions embedded in a host material. These results are compared with a
model proposed by Berryman for a lossy rock-water suspension as a function of
volume fraction [51]. This comparison validates the usage of the SC DSCT form to
approximate the effects of varying ellipsoidal inclusion orientation on macroscopic
composite material behavior. The ﬁext SC DSCT model check presents a parametric
study of inclusion orientation distribution on macroscopic composite anisotropy. The
SC DSCT model is compared with the experimentally obtained and theoretically
approximated stiffness values of a composite shale material studied by Jones and
Wang [77] and Hornby et al [78], respectively. The shale material studied by these
researchers consisted of several different mineral phases embedded in preferentially
oriented clay platelets. Effective stiffness tensor approximations provided by the SC
DSCT model show good agreement with both experimental and theoretical values
provided by these researchers. The SC DSCT model is then employed to approximate
the behavior of a silicon carbide — aluminum composite material. Due to fabrication
processes, the microstructure of this composite is best described as consisting of two
distinct length scales: (i) sub-micron SiC particulates embedded in an Al matrix, and
(ii) identically oriented mesoscopic Al particulates embedded in a SiC-Al composite.
The effective behavior of this composite was approximated using the SC DSCT via a
nested multiscale approach (sub-micron->meso—>macro) and shows good agreement
with both the multiple scattering model and experimental data provided by Ledbetter
and Datta [79]. Finally, the SC DSCT model is validated by returning to the analysis
of the particulate composite slab TL data provided by Baird ef al [76]. The SC DSCT
model is employed to approximate the effects of coating thickness variation on the
observed TL. The result of this approximation shows large improvement in

agreement with experimental data over the simple single-thickness approximation.



Chapter V investigates the feasibility of quasi-static SC model implementation
as a tool for a material by design strategy. This is achieved by integrating a hierarchy
of models which are valid on each length scale of a simple dynamic structure: a
vibrating sandwich plate. This structural element is analogous to an automobile
windshield and was chosen to show the practical implications of this approach.
Modeling begins by discussing the relevant part and structure level models for a
vibrating sandwich plate. Part level modeling consists of finding the effective
sandwich plate bending modulus using the constrained layer damping model derived
by Ross et al [81]. Analysis of sandwich plate behavior begins with parametric
studies on the constituent material behavior and geometry of a sandwich plate to
provide information about effective lossy sandwich plate behavior. Sensitivity
analysis of the effective modulus yields information which can be applied to
efficiently increase lossy plate behavior. This model is validated though comparison
with experimental TL data from several different layered windshield samples. Next,
models for a viscoelastically constrained beam and plate are employed to study the
contributions of lossy plate and boundary condition behavior to the modal loss factor
of a vibrating plate. The beam and plate models used for this study were derived
using classic beam and plate theory. These models represent the structural level
behavior of the simple multiscale example. The structure and part level models are
then integrated and compared with finite element approximations of the modal loss
factor for a viscoelastically constrained “cantilever” sandwich beam. Finally, SC
model approximations of the behavior of a particulate composite constrained layer
and/or boundary conditions are integrated into the part and structure level models to
yield a nested hierarchy of behavioral models. The integration of these models
permits the study of microstructural effects on the dissipation of structural vibrations.
Voided viscoelastic materials are shown to increase the structural damping of a
circular sandwich plate and the increases in modal loss factor is shown to increase
quadratically as a function of void fraction. Windshield TL is then approximated by

integrating part level and material homogenization models combined with the analytic



modified-mass law [89]. Voided interlayer materials yield TL improvements near
coincidence, though they are marginal. A simple example of high loss composites
employing negative stiffness inclusions [9, 10, 12], however, are shown to greatly
improve TL behavior at coincidence. The results of this chapter are very encouraging
and suggest that the quasi-static SC model can easily be implemented as tool in a
material by design strategy.

The final chapter, Chapter VI, concludes and summarizes the important results
and contributions from the models and methods presented in each chapter. This
chapter also presents some perspectives on the role of the work presented in this thesis

and suggests avenues for future research.



CHAPTERII

BIBLIOGRAPHIC REVIEW AND PRINCIPLES

2.1 Damping materials

Applications for materials with a high capacity to absorb acoustic and
vibrational energy can be found in almost every industry. For example, high loss
materials are often used as a filler in structural elements such as the fuselage of an
aircraft [2] or the chassis of an automobile [1]. As filler, such materials
simultaneously reinforce the structure and reduce vibrations and noise. Similar
energy attenuation benefits are realized when these high loss materials are used in the
form of coatings and layers. Coating treatments have been employed for noise
abatement in plenum chambers and ducts [3], on vibrating structures [4], and in
automobile windshields [S]. Furthermore, it is known that the damping capacity of
materials can be increased by introducing heterogeneities [6] into the material,
thereby creating a particulate composite material.

Due to the many different areas for application of high loss materials,
constitutive modeling of viscoelastic composite materials has been [8, 27] and
remains of high interest in many different engineering fields. This work derives,
develops, validates, and explores a multiscale material model of lossy composite
materials for future implementation in a material by design strategy. Such material
modeling begins with a fundamental understanding of the physical processes that lead
to damping behavior. This section, therefore, gives a brief overview of the

mechanisms that lead to energy absorption, the mathematical tools used to



approximate lossy behavior, and the simplifying assumptions employed throughout
this thesis.

In general, all materials that display damping behavior can be defined as
viscoelastic materials [75]. Viscoelastic behavior is fundamentally due to the intrinsic
absorption of dynamic strain energy in a material by conversion to heat.
Crystallographic materials, such as metals, convert strain energy to heat through
internal friction while energy absorption in polymeric materials is the result of
molecular chain sliding and relaxation. In general, the stress in a viscoelastic material
is dependent on imposed strain rate. This rate dependence translates to a stress
response in the frequency domain that is called a relaxation spectrum. The relaxation
spectrum of a viscoelastic material shows that the stress level is dependent on both the
magnitude and frequency of the applied strain [94]. In most cases the stress-strain
relationship in crystallographic materials is very weakly rate dependent and leads to a
broadband damping response in the frequency domain. The magnitude of this
broadband damping capacity is also very small and for these two reasons metals are
seldom referred to in the context of viscoelastic behavior. Polymeric materials, on the
other hand, display both high rate dependences and high losses and are therefore
classified as viscoelastic. It is important to note, however, that all small strain
behavior of real materials can be classified, to a certain degree, as viscoelastic [94].

A simple method to show the principles of viscoelastic material behavior is to
discuss the time dependent behavior of a one-dimensional sample such as a bar. The
phenomena that typify the viscoelastic response of a bar are creep and stress
relaxation. Creep is the strain increase over time due to constant applied stress and
stress relaxation is the decay of the stress level in a material when subjected to a
constant strain [75]. These two phenomena are shown graphically in Figure 2-1 and

Figure 2-2, respectively.
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Figure 2-1: Evolution of the strain, &, of a bar under constant stress, o, (creep response). I, II,
and I represent the three stages of creep. &is the value of the elastic strain.
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Figure 2-2: Stress relaxation, o(t), in a bar under constant strain, £5. o, is the value of the elastic
stress and o, is the limiting value of 6(t) as £ > .

The initial elastic response represents only an infinitesimally small fraction of the
total response time in most materials and has therefore not been included in the
figures above. It is also very important to stress that the viscoelastic response is not
characterized by the whole of the responses illustrated above because they display
both the elastic and plastic response of a material. Viscoelastic behavior involves
only recoverable deformation and therefore is more conceptually related to elasticity.
However viscous behavior, which is generally associated with inelastic deformation,

must be used to describe the lossy component of viscoelastic materials. These two
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figures clearly illustrate that the material response can be decomposed into two parts:
(i) the elastic part and (i) the viscous part [95]. Using this information, the moduli
relating the time dependent stress or strain to the loading condition is written in the

very general fdrm of Equations (II.1.1) and (I1.1.2) below.

O'(l‘)=0'0+]-E(t—T)%%T—)dT (I.1.1)
y do (7)
s(t)=£o+ .[J(t—T)TdT (I1.1.2)

In the above expressions, E(f) is the relaxation modulus and J(¢) is the relaxation

compliance of the material, O'(t) and s(t) represent the total stress and strain of the

material respectively at time ¢, o, and &, are the initial elastic stress and strain, and 7
is the retarded time. The elastic values of stress and strain are given via the one
dimensional Hooke’s law as: o, = Ey¢, and ¢, =0,/E, =J,0,. Expressions (II.1.1)
and (I1.1.2) show that the stress and strain at any given time is a function of both the
initial elastic response and some value that evolves with time according to the integral
on the right-hand side (RHS). This integral represents a material memory function
that takes the loading history into account in the present value and is the source of the
phase lag / hysteresis observed in viscoelastic materials when submitted to cyclic
loading [94].

Noting that Equations (II.1.1) and (II.1.2) are mathematically analogous, the
following analysis will be carried out for the stress relaxation case only. Given a time

varying imposed strain, £ (¢), the stress at any time can be determined from Equation

(II.1.3) below.
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In this expression, E° (t) represents the elastic part of the material response at time ¢,

and EY () is the rate dependent material memory function. The elastic function

represents the material stiffness at time ¢ and the memory function is dependent on the
mechanical loading history from time ¢ = 0 to the present time, £. This formulation of
the material behavior is called the Boltzmann equation which ta];es the relaxation of
the material into account [6]. From this relationship it is easy to show that Equation
(II.1.3) is the time domain representation of a complex Young’s modulus in the
frequency domain. The frequency dependent complex modulus is found by applying
the Fourier transform to both sides of Equation (II.1.3). The integral in (II.1.3)

represents the convolution of E* (¢) with the applied strain rate, de(r)/dr. The

application of the Fourier transform and some simplification will yield the following
frequency dependent complex modulus representation of the time dependent behavior

given in (I1.1.3) [6, 75]:
6 (o) = E (o)1~ if; (0) |2(0) (I.1.4)

where 7, (a)) represents the Young’s modulus loss factor defined as
fiz (0)=E’ (a))/ E'(®). The exact relationships between the variables E° (0,

EY(t), E'(t), and E'(r) depend on the material model employed and therefore are

not explicitly given here, see Christensen [96] for a more detailed analysis. It is

important to note that the Euler’s equation convention employed above is the ‘e~
convention shown in Equation (II.1.5). This convention is employed throughout this

work.
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e = cos(p)—isin(p) (I1.1.5)

Equation (II.1.4) can be written in the same form as its static equivalent. The
ability to describe viscoelastic material behavior by substituting complex valued
variables into classic behavioral laws in place or purely real variables is called the
elastic—viscoelastic correspondence principle [75]. The corresponding one

dimensional viscoelastic Hooke’s law is given in (I1.1.6).

&' (0)=E£"(0)& (o) (1L.1.6)

In the above expression the * indicates that the quantity is complex in general. The
real part of the complex Young’s modulus, £ (@), is called the storage modulus and
represents the part of the material behavior that stores energy. The imaginary part,
E"(w), is called the loss modulus, and describes material behavior that dissipates

energy. This complex representation of the rate dependent lossy behavior of
viscoelastic materials through complex moduli in the frequency domain greatly
facilitates material behavior calculations. It is for this reason that the lossy behavior
of a viscoelastic material is almost always represented in this simplified form and it

has been shown to be applicable to micromechanical modeling [53, 97-99].

Now consider the case where £(t) is imposed and is, therefore, a purely real

function of time. Equation (II.1.6) then simplifies to the following representation.

o, ") = Ees e
aL1.7)

W F o
o’ = Ee”s,
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Noting that the tangent of the loss angle, ¢, given in Equation (II.1.7) is the equal to

the Young’s modulus loss factor, 7, .

Mz =tang (IL1.8)
All variables with a subscript “,” in the above equations represent the magnitude of
the corresponding variable [6].

It is important to recognize that representing viscoelastic behavior by
employing the elastic-viscoelastic correspondence principle greatly simplifies
mathematical models of the complex physical mechanisms leading to lossy behavior
in any material. For example, when a time varying strain is imposed on a one-
dimensional material sample the material immediately develops some stress
depending on the strain rate and the specific material. The imposed deformation is
completely recovered upon unloading, but the recovery path is not linear (as is
evidenced from Equation(II.1.2)). Just after loading, the material relaxes leading to a
stress reduction. The stress relaxation results in a phase lag between the imposed
cyclic strain and the resulting cyclic stress. The phase lag, shown in Figure 2-3, is
directly related to the loss factor of the material through relation (II.1.8). This lag
corresponds to a hysteresis loop that is traced in the &(¢) — o(f) plane as a function of
time. The area of this hysteresis loop is what quantifies the absorption of the strain

energy by the viscoelastic material.
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Figure 2-3: Time domain response of a one dimensional sample of viscoelastic material to an
imposed cyclic strain.

Finally, it should be noted that the above simple demonstration only
considered material behavior in extension, though an identical analysis could have
been carried out for shear or volumetric behavior. It is therefore possible to extend
the one dimensional relations given above to the more general case of viscoelastic
anisotropy. As discussed above, due to the elastic-viscoelastic correspondence
principle, extension of the constitutive laws of one dimensional viscoelastic behavior
to behavior in three dimensions is almost trivial. Relations (II.1.9) and (II1.1.10) give

the constitutive viscoelastic material behavior laws for an anisotropic viscoelastic

solid.
6; (0)=Cpy (0) 8, (0) (11.1.9)

with:
Crt (@) = o (0) Lia — s (@) ] (IL.1.10)

Where I, represents the fourth order identity tensor defined below.

L =%(5ik6jl+6i16jk) (II.1.11)
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Equation (I1.1.9) is the general form of the elastic-viscoelastic correspondence

principle. In this form, both the frequency dependent stiffness, éy,d (aJ) , and the loss
factor, 7, (@), can depend on direction. A large part of this thesis deals with the

approximation of the frequency dependent complex stiffness tensor, é’;,d (a)) , of

viscoelastic particulate composites through micromechanical methods. The aim of
this modeling is to validate a material model for future introduction into a material
design strategy.

The following sections introduce two different approaches utilized to
approximate the macroscopic damping behavior of a particulate composite. Section
2.1.1 presents the idea of approximating structural damping capacity through strain
energy methods. This approach is wide spread in the field of structural vibrations, but
the same rationale can also be applied, within certain limits, to composite material
modeling. The strain energy approach approximates the damping capacity by
calculating the ratio of the strain energy in lossy components to the total strain energy
in the structure. Section 2.1.2 presents a completely different approach based on the
physics of acoustic wave propagation. This methodology is based on the mechanisms
of the reflection and mode conversion of waves incident on a material heterogeneity.
These two approaches are based on very different physical concepts. Each approach
merits study, however, since the physical mechanisms they describe are all present in

the dynamic behavior of particulate composites.

2.1.1 Strain energy methods for approximating damping capacity

One well known method for approximating the damping capacity of structures
with lossy components in the field of vibrations is called the strain energy method.

This approach consists of calculating the ratio of two different measures of strain
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energy. The numerator is the sum of the product of the strain energy, #;, and material
loss factor, #;, of all lossy elements of the structure, and the denominator is simply the
sum of the strain energy in every structural element [99]. Ungar and Kerwin

introduced this approach which relationship (II.1.12) summarizes [16].

N
> W,
Mot = "=}v (I1.1.12)
W,

i=1

This relationship is a direct result of the complex modulus formulation employed in
modeling viscoelastic materials. For the unidirectional loading case, the material’s
loss factor is related to the strain energy and the hysteresis area via the following

relationship:

n = D/no g, (I1.1.13)

Here D represents the hysteresis area and the denominator is the total strain energy of
one cycle of loading. Given the definition of specific strain energy (energy per unit
volume), W =7zo,¢,, and by setting N = 1, Equation (I.1.12) reduces to the
definition of the material loss factor for a single lossy element. Expression (II.1.12)
generalizes this rationale to a system of N different elements potentially having N
different damping capacities. The method described above is a simple, accurate, and
very amenable to finite element (FE) calculations [97-99]. This approach is employed
in many structural vibration applications where each element can easily be modeled as
a continuous material having a distinct viscoelastic response [100]. The works of
Ross et al[81], Soni [86], and Mead and Markus [85], are further examples of this
approach and its application to the approximation of the damping capacity of multi-

layered plates.
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The method explained above is conceptually easy to understand and to apply
at the structural level, especially though FE analysis, see the examples of Sun and Lu
[101], Nashif [102], or McDaniel and Ginsberg [103]. Unfortunately, the case of
particulate composites presents many difficulties to the application of this approach.
The difficulty stems from the fact that the calculation of the strain distribution in each
material phase is complicated by the shape, orientation, and distribution of the
inclusion phases. However, since the approach has proven robust and accurate at a
structural level, it is interesting to explore its potential for application to particulate
composites which represent structures in a more general sense. To this end, a brief
study of the strain energy of the composite sphere shown in Figure 2-4 is given. A
sphere, with bulk and shear moduli of K and g, respectively, has an outer radius b and

is subject to an external pressure pyand boundary conditions (BC), x, at r = a.

Figure 2-4: Composite sphere of inner and outer radii 2 and b respectively. The material has a
bulk and shear moduli denoted as K and z respectively. The boundary conditions at r = a can be
changed and are designated as 2.

When submitted to external loading, the strain energy in the material located between
r=aandr = b is be calculated from expression (II.1.14) below [104].
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W= Vj &CoutudV = Vj o,,dV (IL.1.14)

The following ratio is now defined in order to show the change in strain energy

located between these two different radii due to different BC imposed atr =a :

b
[[o% () s (r) + 02 (r) s (r) + 05" (r) 55 (r) |

R=+4-
al.[o;crs (r)e&(r)+05 (r)ess (r) +o5 (r)ee (r)] r’dr

(IL.1.15)

Where o& and £ represent the stress and strain in the x direction (either r, ¢, or &

in the spherical coordinate system) of a continuous sphere and o ° and £#° are the

same constants for the case of a composite sphere. When the loading is spherically
symmetric (as is the case for an imposed external pressure) the stresses and strains in
the material will only exhibit radial dependence. This dependence is derived by
solving the Navier-Stokes equations whose results are given in Equations (II.1.16)(a)-
(€) [104]. The values of coefficients a and S can then be determined from the BC at r

= g and the pressure, py, imposed at r = b.

@ ()=ar+5p @ o, () =3Ka - 485
®) &, (r) =a——2;ﬂ (e) o4 (r)=0,,(r) = 3Ka+4,u,6%(11.1.16)
r

(© aeo(r)=aw(r)=a+%—ﬂ

The resulting relationship expressing the total strain energy for a continuous sphere (a

= () is given below in Equation (I1.1.17):
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To show how the boundaries at » = a affect the total strain energy in the

composite sphere, the following cases will be investigated and compared: (i) rigid
boundary conditions at » = a (u,(a)=0), and (i) pressure release boundary
conditions at r = a (o,,(a)=0). The result of the evaluation of the ratio in Equation

(I1.1.15) for cases (i) and (ji) are given below in Equations (II.1.18) and (II.1.19) with

corresponding plots in Figure 2-5 and Figure 2-6.

35(1—f)

R =/‘—K (I1.1.18)
4f -3
y7,

Rﬁ:(l—lf)z{l_f[l%m(f )] 32((11+2V))f( f)} R
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Figure 2-5: Ratio of strain energy in matrix material of composite sphere for three different
values of Poisson’s ratio with rigid BC at r = g as a function of volume fraction, f= an.
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Figure 2-6: Ratio of strain energy in matrix material of composite sphere for three different
values of Poisson’s ratio with pressure release (6,, = 0) BC at r = a as a fanction of volume
fraction, f=a’/b’.

In Equations (II.1.18) and (II.1.19) f represents the volume fraction of the
composite sphere occupied by the rigid inclusion or void, f = &’/6°, and v is the
Poisson’s ratio of the material occupying the space between r = g and » = b. This
simple illustration demonstrates how the presence of voids in a material quickly raises
the total strain energy as a function of volume fraction. This strain energy rational to
approximate damping capacity implies that if the matrix material is lossy, voiding the
material greatly increases the composite material’s capacity to dissipate energy for a
given applied stress, represented in this case as py. Along the same lines of thought, if
the voids were replaced with inclusions having a lower stiffness value than that of the
matrix, the damping capacity of the composite would still be superior to a sphere
consisting of the matrix material alone for the same applied stress. It is also obvious
that rigid inclusions, or indeed inclusions that are stiffer than the matrix, diminish the
strain energy present in the matrix material for a fixed applied stress. In the case
where only the matrix is lossy, this would have a negative effect on the composite’s
damping capacity for the imposed stress case. It must be noted, however, that in
wave propagation problems the effects of inertia and multiple scattering render this
statement not necessarily true. - Converse to the arguments above, if the Composite
sphere is loaded with a fixed strain imposed at r = b, rigid inclusions will increase the
total strain energy present in the matrix material. For the imposed strain case all of
the arguments given above for the voided sphere will be true for the sphere containing
arigid inclusion.

Unfortunately, for a true composite material, the calculation of the strain
energy in each constituent phase is complicated by material stiffness contrasts and
anisotropy along with inclusion shape and spatial orientation. Approximation of the
overall loss factor of a particulate composite material through the strain energy

method therefore becomes difficult. However, a micromechanical approach, which
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relies on the calculation of the average strain field in each constituent phase of the
composite, provides a practical means to approximate the damping capacity of
particulate composites. A bibliographic review of the important contributions to

micromechanics and the specific work of this thesis will be given in Section 2.2.

2.1.2  Acoustic scattering methods for approximating damping capacity

Acoustic wave absorption is the result of the four following physical
mechanisms: (i) scattering by inhomogeneities, (if) mode conversion at the interfaces
of inhomogeneities, (iii) redirection, and (iv) intrinsic absorption by conversion to
heat [6]. Figure 2-7 illustrates the dominant physical processes that occur when a
plane wave impinges on an inhomogeneity in the form of a coated inclusion. The
propagation of a harmonic longitudinal plane wave in the x; direction is described by
Equation (II.1.20) below.

By (x,,1) = e @) (11.1.20)
k= 27” - % @.1.21)

In the above equations 4 represents the complex magnitude of the incident wave, k is
the wavenumber calculated using Equation (II.1.21), o is the angular frequency, 4 is

the wavelength (not the Lamé constant), and ¢ is the sound speed in the material.
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Figure 2-7: Illustration of the dominant physical mechanisms that take place when a longitudinal
plane wave impinges on an material inhomogeneity.

Figure 2-7 illustrates the four mechanisms leading to energy dissipation. The
first mechanism mentioned is scattering due to inhomogeneities. The incident wave is
scattered when longitudinal and shear waves are generated due to reflection at the
interface of the material discontinuity. These waves propagate out from the
inhomogeneity in all directions with magnitudes that depends on the angle (measured
with respect to the incident wave direction) and frequency of the incident wave [105].
Following scattering, the host material attenuates each new wave front and therefore it
is in this manner that scattering leads to more efficient absorption of wave energy and
not simply redirection of that energy. This process leads to an increased damping
capacity of the heterogeneous material as a whole. It is the goal of wave scattering
based models of composite materials to capture this physical behavior in order to
quantify the effective material stiffness and damping properties.

In general, each time a plane wave encounters an impedance difference a
portion of the incident energy is reflected and the rest is transmitted. A portion of the
reflected energy propagates as plane waves and the remaining energy propagates in
the form of different types of waves, a high percentage of which are shear waves. The
amount of energy propagating in each wave depends on the specific material
properties of the medium on each side of the interface and the angle of incidence

[106]. This process of generating several types of waves due to the reflection of a
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plane wave at a material inhomogeneity is known as mode conversion, and it leads to
more efficient damping. One of the reasons mode conversion increases damping
efficiency is difference in the wavelength of shear waves and longitudinal waves. The
wavelength of shear waves is shorter than that of longitudinal waves in the same
material for the same frequency. This difference in wavelength means that a shear
wave will undergo more cycles when propagating the same distance as a longitudinal
wave. Since lossy material absorb a given percentage of wave energy each cycle, this
process leads to more energy absorption for the same distance traveled. The fact that
most materials display a higher damping capacity in shear further increases the
damping capacity when mode conversion occurs. Mode conversion also creates more
wave fronts. Because each wave front propagates in the absorptive material, the net
result is an increase in the total damping efficiency. Mode conversion also occurs
when shear waves are also generated due to the transverse displacement of the
heterogeneity in the direction of propagation. This displacement results from the
stress gradient of the longitudinal wave. The gradient first pushes the inclusion to the
right, using Figure 2-7 as reference, until the maximum stress level is reached, and
then pulls it back to the left during rarefaction. It is obvious that this leads to shearing
motion in the host material in directions that are not parallel to the propagation
direction.

The way in which the redirection of wave energy leads to a reduction in
energy should be clarified. For an ideal infinite lossless medium, the energy of a
plane wave received at point B is the same as the energy when it was sent from point
A. If an heterogeneity is placed in between these two points, part of the energy
present at point 4 will never arrive at point B because of the reflection/scattering by
the heterogeneity. The result for the lossless medium is that the total energy in the
composite will remain unchanged. There will, however, be a decrease in the wave’s
amplitude at point B. The amplitude reduction due to the presence of an
heterogeneity could be quantified with a measure called the Insertion Loss (IL) [3].

When the host material is lossy and many inhomogeneities are present, redirection
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increases absorption by increasing the distance a single wave front travels due to
multiple reflections. Since the absorption of energy is a function of the distance
traveled, the final result is an increase in the damping capacity [6].

Finally, in all real materials acoustic wave absorption results from viscoelastic
material behavior discussed at the beginning of this section. Lossy behavior is, in
general, dependent on internal friction, molecular chain relaxation, and other physical
phenomena that change mechanical energy into thermal energy which ultimately heats
the material [75]. The capacity of a given material to damp a traveling wave is easily

quantified for propagation in the host medium using Equation (II.1.20) through the

complex wave number, k& (), defined in relation (I1.1.22) [106].

E(0)=0 [P — =k (0)+id (o (I1.1.22)
)0 fe b i) ria 0

In the above equation, p is the material density, C,;.,d (a)) is the complex frequency
dependent stiffness described by relation (II.1.10), »; and # are the normal directions

as described by the Christoffel equation,

Cpunt 1y~ pC’6,| =0 [106], &; is the
Kronecker delta, p; is the wave polarization describing the propagation direction,
I'c‘,f (@) is the real part of the wave number, and & () is the attenuation coefficient.

It is important to note that for realistic values of the loss factor (0 <7 <1) and if the

real part of the elastic moduli remains constant, the attenuation coefficient is a
monotonically increasing function of the host material loss factor. By inserting
(1I.1.22) into (II.1.20) it becomes obvious that the wave magnitude decays

exponentially as a function of @; and the distance traveled as shown in Equation

(IL1.23).
Pr(x,t)= ﬁe"""’e_i(m—k;x’) (I1.1.23)
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The relationships presented thus far show why a homogenization scheme that
correctly captures the mechanisms of scattering by finding a complex, frequency
dependent, effective stiffness tensor, can yield insight into the design of lossy
materials.

One problem with the method described in Section 2.1.1 is its limitation to the
quasi-static case. The quasi-static domain is defined by the ratio of the incident
wavelength to the descriptive inclusion dimension and is usually expressed via the
non-dimensional quantity ka where a represents the largest inclusion dimension and &k
is the wavenumber. The quasi-static domain is limited to those frequencies that
render ka << 1 [105].

Energy dissipation due to wave scattering by the presence of a material
inhomogeneity is well approximated in the quasi-static domain by the strain energy in
the near field of that inhomogeneity [6]. In this frequency range the “propagation” of
the wave at the inclusion scale is well represented as a time varying but spatially
uniform stress/strain field. At this scale the effects of wave scattering are very small
compared to the stress/strain concentration in the neighborhood of the inclusion.
Using this knowledge, a strain energy based approach delivers reliable particulate
composite damping capacity approximations in the frequency domain by introducing
the lossy, frequency dependent, constituent material behavior into static models [53].
In order for a model to be reliable for complex particulate composites careful
consideration must be taken in modeling the strain field everywhere in the composite.
This is the case for most mean field homogenization theories [25]. If, on the other
hand, the frequency of the propagating waves is such that ka = 1 or even ka > 1,
models based on mean stress/strain field theories are no longer valid. For these
frequencies such models neglect the physical mechanisms of scattering [107] and,
therefore, single or multiple scattering homogenization approaches must be employed.
The model and experimental data presented in this thesis are limited to the quasi-static

domain. However, in an effort to give a complete picture of the frequency dependent

28



behavior of particulate composites, a bibliographic review of the significant works in

the area of scattering based homogenization techniques is presented in Section 2.3.

2.2  Micromechanical homogenization of particulate composites

The most precise approach to modeling the macroscopic behavior of complex
materials would be one that takes its intrinsic multiscale structure into account. This
type of multiscale approach requires knowledge of the physical behavior of the
material at each scale as well as the nature of the interaction between scale levels. If a
modeling approach captures the material behavior at each scale level of interest and
the interaction mechanisms between scales, it is possible to approximate material
behavior at all scales based on knowledge of the material’s composition. The
micromechanical approach is, by definition, a multiscale modeling approach. It
assumes that two structural levels exist such that the effects of interfaces,
heterogeneities, and other physical phenomena at the lower level can be taken into
account at the upper level via an averaging approach. These structural levels are
defined by length scales such that /<<L where [ is the descriptive dimension at the
lower length scale and L describes the upper length scale. This tacitly assumes that
the upper length scale properties, referred to in this work as global or macroscopic,
are the result of an average of the behavior of the lower length scales and therefore
that no point to point interaction takes place between scales [27]. The idea behind this
approach is illustrated by defining a Representative Volume Element (RVE). A RVE
is the smallest material volume unit (element) whose effective behavior is assumed to
represent the macroscopic behavior of the complex material. Selection of a RVE
plays a large part in defining the limitations of any proposed micromechanical method
[26]. A RVE example for a composite consisting of a matrix with identically oriented
coated ellipsoidal inclusions is shown below in Figure 2-8. This RVE represents the
self-consistent (SC) model introduced by Cherkaoui et al [23]. This RVE assumes
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that the composite material behavior can be well approximated by writing the
constitutive equations of a single coated inclusion embedded in the effective material,

which has unknown material properties [23].

e A pe

Figure 2-8: RVE for the SC model of Cherkaoui ef al [23]. A, and g, represent the Lamé
constants and p, the density of material x. Cyld is the effective stiffness tensor and I, C, and M

specify respectively the inclusion, coating, and matrix.

Historically, all micromechanical mean field theories have been based entirely
on the physical principles of continuum mechanics. The approach taken in this thesis
will be no different. Since its inception nearly fifty years ago, micromechanics has
become a well developed field of study which has been shown capable of addressing
many different fields of science. The approach is even currently being adapted to
approximate the behavior of nanomaterials (ex: [55-57]). The development of this
field is the result of two distinct needs: (i) the need to approximate the macroscopic
behavior (elastic, plastic, thermal, electromagnetic, etc.) of materials containing
micro-scale heterogeneities (micro/p = macro/M scale transition) and (i7) the need to
localize macroscopically applied fields to inferior length scales (M->p scale
transition) [26, 27]. Indeed, the approximation of the macroscopic response of an
inhomogeneous material, which is an average of the microscopic behavior, requires

knowledge of the spatially varying microscopic fields [108].
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A good example that illustrates this point is the model proposed by Song et al
[109] to approximate the global response of a bi-phase composite material having
inclusions that can undergo phase transformation. This model applies a SC
homogenization approach to approximate the macroscopic elastic and thermal
material properties. The first step homogenizes the material (u>M) thereby
approximating the effective macroscopic composite properties based on its
composition and thermomechanical loading. At this point, the localization of the
imposed loads to the microscopic level (M—=>p) is performed in order to calculate
thermomechanical phase equilibrium of the inclusions via local physical laws and
localized loads. Given the change in the phase composition of the inclusion, which
changes the elastic and thermal properties, another homogenization step is made.
This process repeats itself during the entire loading history. The micromechanical
approach thus gives information of not only of the macroscopic response, but also of
the thermomechanical state of the inclusions at all times during the loading history.

The specific materials and behavior just discussed are much different than
those discussed in this work. However, the above example clearly shows the capacity
of micromechanical models to resolve multiscale problems and give material behavior
information simultaneously at multiple length scales. Further, the example illustrates
an important principle: the behavior of microscopic heterogeneities can have a
significant influence on the macroscopic behavior of a material. It is for these reasons
that the micromechanical modeling approach is a powerful tool that can be employed

to analyze multiscale problems.

2.2.1 Pertinent micromechanical modeling developments

The micromechanical approach employed in this work is a mean field model
for particulate composite materials. All mean field models are based, in one way or

another, on the seminal work of Eshelby [108]. Eshelby’s results marked a great
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improvement over elementary techniques such as the work of Voigt [110], Reuss
[111]. Voigt and Reuss used variational principles and strain energy which cannot
take inclusion shape into account.

The micromechanical modeling approach initiated by Eshelby consists of two
fundamental operations: (i) localization and (i) homogenization [26, 27]. As
previously stated, these operations require the existence of at least two length scales
within the material. It also assumes that the effect of material behavior and structure
at the microscopic particulate length scale has only an average effect on material
behavior at the macroscopic scale and that macroscopically applied loads can be
localized to the microscopic level [27]. Eshelby’s results [108] provide the insight
and mathematical tools to resolve the localization problem via the equivalent
inclusion method which results in localization tensor now called Eshelby’s tensor,
Syw- This capability to localize macroscopically applied mechanical loading to the
microscopic level is fundamental to the approximation of volumetric average stress
and strain fields in the heterogeneous material. This set of operations is called the
homogenization step. Localization allows volume averaging since it permits the
derivation of stress and strain fields as a function of position which depend not only
on the applied load, but also inclusion forms, orientations, and properties [28-30].

Following Eshelby’s fundamental contribution a large array of models, for
example those of Kroner [31], Budiansky [32], Wu [28], and Mori and Tanaka [33]
were developed. All of these models employ a similar equivalent inclusion approach.
Zeller and Dederichs [34], however, improved on the equivalent inclusion method by
introducing a Green’s function formalism that permits the calculation of the stress and
strain fields at every point in a heterogeneous material at the microscopic scale. Their
approach is based on the idea that the material behavior of a particulate composite can
be approximated on the local, or microscopic, scale via expressions of the form shown

below.

X (r) =X +6X(r) @.2.1)
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In this expression, X(r) represents the material properties or fields. of interest in the
heterogeneous medium. The concept behind this approach is that the material
properties and fields of interest are globally homogeneous, X’ with small
perturbations due to microscopic heterogeneities scattered throughout the host
material, 8X(r). The field generated by these heterogeneities can be approximated at
every point in the material using Green’s tensors and thereby providing a good
representation of the microscopic behavior. This approach was improved upon by
Mura [35] and Willis [36] to include plastic deformation and generalized for the case
of two disoriented ellipsoidal plastic inclusions by Berveiller ef al [37]. Another
important improvement over the equivalent inclusion method was the introduction of
interfacial operators which relate the stress and strain state across the interface of
dissimilar materials [38, 39].

The combination of these two mathematic techniques provides an extremely
powerful modeling tool of the physical phenomena present at the microscopic length
scale which, in turn, improves the volumetric average approximation required in the
homogenization step. The SC coated inclusion model of Cherkaoui et al [23, 24, 40],
which will be extended to account for frequency dependent viscoelastic constituent
phases in this work, owes its accuracy to the fact that it is derived using these tools.

It has been previously stated that all micromechanical models require the
selection of a RVE. Each individual model is then derived using constitutive laws
and the appropriate mathematical tools (Green’s functions and interfacial operators,
for example) based on the composition of the specific RVE. A RVE for a material
consisting of a matrix containing coated ellipsoidal inclusions is shown below in

Figure 2-9.
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Figure 2-9: RVE of composite material consisting of a matrix containing coated ellipsoidal
inclusions.

Inclusion

The Mori-Tanaka (MT) model, for example, assumes that the reference material of
Figure 2-9 is the matrix material having elastic properties, C¥, and the imposed global

strain, Ej, is that of the matrix, s;fl [33]. This modeling approach is limited to the

case of low inclusion volume fraction, f,, as are many others due to the assumption

that stress and strain fields of multiple inclusions do not interact [41]. In order to
overcome this limitation, several approaches can be taken. One is a computationally
expensive periodic array type of approach where the interaction of heterogeneities is
directly taken into account [25]. A strong example of this approach is the explicit
model proposed by Molinari and El Mouden [42] which applies Berveiller ef al’s [37]
paired inclusion Green’s formalism and agrees well with established models and
experiment for elevated volume fractions. Another approach is the SC approach
which assumes that the reference material of Figure 2-9 is an effective material
having unknown elastic properties, C% [41]. This approach was first proposed in the
area of mechanics of materials by Kroner [31] to approximate the behavior of
polycrystalline materials where the definition of a matrix is unclear. This approach
was later improved upon by Budiansky [32], Hill [43, 44], and Berveiller and Zaoui
[112], and finally generalized by Christensen and Lo [45].

The case of coated inclusions is of interest for several different reasons. One

reason is to approximate the behavior of a bi-phase composite by assuming that the
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material in the neighborhood of an inclusion, the “interphase,” behaves differently
than the matrix material. This is the aim of the model proposed by Jasiuk and
Kouider [113]. Another, more obvious, reason for choosing a coated inclusion RVE
is that the composite consists of a matrix containing coated inclusions. The model
proposed by Cherkaoui et al [23, 24, 40] can be used for either aspect of the coated
inclusion problem. Hervé and Zaoui [114] extended such an approach to model the
N-layered coated inclusion case and Lipinski ef al did so for the N-coated elliptical
inclusion case [115]. Approximation of the dynamic behavior of such materials by
employing the elastic-viscoelastic correspondence principle, in accordance with the
works of Hashin [8, 63, 64] and Christensen [7], is the subject of this thesis. This will
be done by extending the work of Cherkaoui et al [23, 24, 40] to the quasi-static
domain and further refining the model.

2.3  Homogenization of particulate composites through acoustic scattering

Homogenization models for particulate composites based on the effects of
wave scattering presented in Section 2.1.2 take two general forms: i) single scattering
models and if) multiple scattering models. Both approaches are based on resolution of
the problem posed by finding the acoustic field resulting when a wave traveling in a
host medium that encounters an heterogeneity. The difference between the two
modeling approaches, as suggested by the naming convention, resides in the treatment

of the interaction of waves reflected by the material discontinuity.

2.3.1 Single scattering models

The basis of all single scattering approaches is the assumption that inclusion
concentration, usually referred to as scatterers, is low. This assumption allows the

approximation of the entire acousticly induced displacement field in the composite as
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a summation of the field scattered from each individual scatterer and that no
interaction between these fields takes place. The first influential single scattering
model of note was proposed by Ying and Truell [116] which resolves the emulsion
problem: fluid inclusions embedded in a fluid host medium. Their model introduces
the important basic ideas of material homogenization via scattering methods but lacks
the complexity needed to resolve the problem presented by heterogeneous solids.

The seminal work of Chaban [46] was a major contribution to the single
scattering approach. It introduced two important hypotheses. The first hypothesis is

that the total displacement field, #,,,, in the heterogeneous medium can be represented

as the summation of the incident displacement field, #,_, and the scattered field due

inc ?

to each scatterer, #,,. This approximation requires that there can be no interaction

between the scattered fields of the inclusions. Mathematically, this hypothesis is

expressed below in Equation (II.3.1).

N
B (X) % e (x)+ D, (B) B=x-%,, (IL3.1)

i=1

In the above expression, the observation point and scatterer location are represented
by x, and x,;, respectively [47]. The‘seéond hypothesis is the.assumption that the
scattered displacement field due to an inclusion having a volume, ¥}, and the effective
medium material properties is equivalent to the field scattered by the same volume of
composite material if the observation point is in the far-field [47, 49, 76, 117, 118].
Figure 2-10 shows a schematic of the “RVE” of the single scattering approach. One
implication of the second hypothesis is that the center of each inclusion must be

approximated as being located at the center of the scattering volume, ¥p. This is

cenler

mathematically expressed as: lx -X,;

”lx’xVo,
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Figure 2-10: The composite material, (a), and the RVE, (b), for the smgle scattering approach
introduced by Chaban [46].

To find the analytic solution to this problem, the equations of an incident plane wave
must be decomposed as a summation of spherical waves that encounter an inclusion
for the both case (a) and (b) illustrated above. The approximate solution is a series
expansion with respect to ka, where higher order ka terms are truncated [76]. This
truncation is only valid in the case where ka<<1 therefore corresponding to the quasi-
static case discussed in Section 2.1. Finally, the expressions arising from the
solutions of configurations (a) and (b) are set equal and it is then possible to resolve
the system for the effective material properties of the heterogeneous material.

The result of all of these approximations, especially the first hypothesis, is that
simple scattering models are only valid for low concentrations of inclusions, <10%
as a rule of thumb, and for ka<<I. This scattering regime is called Rayleigh
scattering in honor of Lord Rayleigh [89]. However, several clever approaches have
been found that provide a reliable approximation of the effective material behavior for
an increased volume fraction; on the order of <30% scatterer concentration. These
approaches are called SC scattering models. Chaban’s model incorporates the SC
approximation by assuming that the scattered field from multiple non-interacting
inclusions is equivalent to the field created by a single inclusion having effective

material properties [46].
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Another highly employed single scattering model was proposed by Kuster and
Toksoz (KT) [47] which is based on the integral equations for the displacement field
derived by Mal and Knopoff {119]. Their model has the capacity to approximate the
effective behavior of a material containing spherical and spheroidal inclusions, but
unfortunately has no dependence on the frequency outside of the frequency dependent
matrix material. The absence of frequency dependence results from the fact that the
model does not take into account inclusion resonant behavior. Though this model
gives reasonable approximations for several areas of study, such as geophysics, the
first resonance, which is related to monopole scattering, can have an important effect
on the effective behavior of the mateﬁal even. in the quasi-static domain [118, 120,
121]. Gaunaurd and Uberall (GU) included several higher order terms in the series
expansion described previously in order to address this problem [49]. The idea of
including resonant behavior is a result of their work with voided materials and bubbly
liquids. For such materials experimental results showed a marked deviation from
theoretical values calculated using KT methods which lack resonant scattering effects
[48]. It is, however, important to note that for certain types of materials, those where
the inclusion has a higher stiffness value than that of the matrix, the KT approach
provides a good approximation in the quasi-static domain. For this case, the
monopole resonance does not have a significant effect on the global behavior.
Indeed, the SC model proposed by Berryman for bi-phased composites with spherical
[122] or ellipsoidal [51] inclusions shows good agreement with the KT
approximation.

The work presented in this thesis focuses on the behavior of composite
materials in the quasi-static domain and, therefore, single scattering models are very
relevant to this discussion. Among the multitude of single scattering models, some of
the most relevant to this work are highlighted below. The model described by Kerr
[118] is a GU-type SC single scattering model for bi-phase composites. This model
was extended to the case of coated fluid inclusions by Baird et al [76] and its

approximations have been compared with experimental values of Transmission Loss
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(TL). The model of Anson and Chivers [123], also a GU-type single scattering
model, deserves mention as it is probably the most complete scattering model
describing isotropic composite behavior for a material consisting of a matrix
containing spherical coated micro-inclusions. Their model can approximate the
effective behavior of a composite material, a suspension, or an emulsion based on the
elastic, viscous, and thermal properties of the constituent phases. Though it is a very
complete model, its complexity is usually superfluous as the time scales for
viscoelastic and thermal processes in viscoelastic composites are very different [76].
It is for this reason that the only scattering model considered in this work is that of

Baird et al [76].

2.3.2 Multiple scattering models

Multiple scattering models are generally employed in order to overcome two
specific limitations of single scattering approaches: (i) the inability to provide reliable
approximations of the effective behavior of composites with high scattering
concentrations, and (i) the inability to model effective behavior at higher frequencies
[121, 124]. The first significant contribution to the multiple scattering problem was
that of Foldy [125]. Foldy’s work introduced a multiple scattering formalism based
on a set of truncated integral equations resulting from the fields of multiple point
scatterers in an isotropic host material. Lax extended this formalism to the case of
anisotropic scatterers by employing a correlation function for two particles [126].
These two confributions employ a complex wavenumber and depend on the
frequency, the scatterer volume fraction, and the far-field forward scattering
amplitude [121]. Waterman and Truell (WT) improved these models by adding the
effect of far-field back-scattering [127]. Their approach is the basis of a large number

of multiple scattering models. Models based on the WT approach include those of
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Bose and Mal [128], Lloyd and Berry [129], Ledbetter and Datta [79], Lu and Liaw
[29], and Aggelis et al [121].

Another very important contribution to the multiple scattering approach was
contributed by Twersky [130-132]. Twersky developed a method that takes the
interaction of inclusions into account via a pair correlation function. This was done in
a series of papers, most importantly for the free space [130] and two dimensional
[131] cases. The same methodology has since been employed by several authors,
notably Varadan ef al [124]. These authors designate relations (I1.3.2) and (I1.3.3)
shown below as the total displacement field for the multiple scattering case. Varadan
et al then employ the pair correlation function formalism of Twersky to relate these

fields [124].

N
i(x)=ii, (x)+>.4,(8); A=x-x, (1.3.2)
i=1
— — N —
us’,.(x)=um(x)+2ﬁs,j(pj); a<|ﬁj|<2a (I1.3.3)
j=i

In the above equations a represents the descriptive dimension of the scattering
heterogeneity.

The multiple scattering models introduced above provide a very realistic
picture of the physical processes taking place at the inclusion scale. One notable
drawback is that they are extremely mathematically complicated even for simple
cases such as an isotropic matrix containing spherical inclusions. Despite their added
complexity, several of these models, [124-126, 133, 134] for example, are still only
valid at Jow volume fractions of scatterers and for spherical inclusions. Further,
implementation of these models for non-spherical scatterers or anisotropic phases
becomes even more complicated, if not impossible. Though methods exist to
overcome these problems (see Anson and Chivers [135], Aggelis et al [121], or Yang

[136] for example), these approaches are generally more important for applications
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outside the quasi-static domain represented by ka=~1 or ka>1 [124] and for this

reason are not considered in this work.

2.4  Material by design

Classic system and structure design require material selection for each
material component. Material selection depends on the foreseen physical demands:
elastic, thermal, electric, etc [137, 138]. Unfortunately, the limiting factor in design is
often material behavior of the components. A clear example of material limiting
design is the microprocessor. Microprocessor performance depends on the thermal
properties of the material from which it is fabricated. By assuming that the material
properties cannot be changed, excellent solutions have been found to resolve the
problem as a heat transfer problem. A more elegant solution, however, would be the
design of a material uniquely created for the multifunctional needs of the
microprocessor. This latter approach is known as Inductive Design, an approach

studied in detail by Olsen [15, 90] and illustrated in Figure 2-11.

Goal / Means (Inductive)
/ Performance
@

/anse:md effect (Deductive)

Figure 2-11: Schematic representation of the two approaches to design, taken from Olsen [15,
90].

Processing
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The concept of inductive design requires the ability to design materials
according to the needs of a structure; design for manufacture and not the classic idea
of manufacture for design. The idea of material design is not entirely new (see, for
example, Cohen’s discussion on the reciprocity of structure and properties of a
material [139] or Smith’s work on hierarchical structure of materials [92]), however
the scientific community still does not truly design materials [20]. Material design is
a very active research area which is currently dominated by strategies that extend
system design, which is normally limited to the component level, to include materials
[14]. Several strong examples of the implementation of this methodology exist,
notably those of Seepersad et al on the multifunctional and multiphysics design of
cellular structures [91], Olsen er al concerning the design of high strength steels
[140], and Stupp and Braun on the design of biomaterials, ceramics, and semi-
conductors [141]. Implementing this methodology requires collaboration between
many different areas of research and development from economic analysis to the
modeling of macroscopic behavior of materials based on micro and molecular

structure [14], see Figure 2-12.

\ “(piscanec et al, WWW)

Figure 2-12: Schematic of complete system design, including the design of materials. Figure from
Seepersad [20], Cochran [142], Randle [143], and Piscanec [144].
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The work of this thesis does not try to put in place such an overreaching strategy, but
rather to improve an existing micromechanical model for damping applications. The
model is then cast as a tool for the material by design framework described above for

applications where damping is an important aspect.
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CHAPTER III

MICROMECHANICAL MODELING OF VISCOELASTIC COMPOSITES

CONTAINING COATED INCLUSIONS

3.1 Introduction

The previous chapter introduced the self-consistent homogenization technique
and examples were given in the static (ex: Cherkaoui ef al [23, 40]) and quasi-static
(ex: Gaunaurd and Uberall (GU) [48, 49] and Kuster and Toksoz (KT) [47]) domains.
Both methodologies approximate macroscopic behavior by modeling physical
processes at the microscopic scale and then applying averaging techniques to arrive at
homogeneous material approximations of the particulate composite macroscopic
behavior. The GU approach (which was employed by Kerr [118], Baird et al [76],
and Anson and Chivers [123, 135]) is based on elastic wave propagation in
heterogeneous media and is limited to the case where the wavelength of the incident
wave, A, is much larger than the inclusion’s descriptive dimension, a. The same
frequency dependent restriction on the wavelength also applies to the KT approach.
These quasi-static scattering approaches have been shown to be applicable across a
large range of length scales, from geophysics [47] to ultrasonics [76]. Further, the
GU approach has the added advantage of taking inclusion resonant behavior into
account, which is often important even in the quasi-static domain [48, 49, 76).
Implementing scattering based models is, unfortunately, extremely difficult or even
impossible when inclusions are non-spherical and/or constituent phases are

anisotropic. This restriction greatly limits scattering model application for the wide
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range of existing particulate composites. The micromechanical approach, on the other
hand, is not limited by the complexities presented by material anisotropy or non-
spherical inclusions.

As discussed in Chapter II, the elastic-viscoelastic correspondence principle
[63, 75] and strain energy arguments [16] suggest that macroscopic lossy behavior of
particulate viscoelastic composites will be well approximated through
micromechanical methods. It is with this rationale that the micromechanical model of
Cherkaoui et al [23] will be extended to the quasi-static regime in an effort to
approximate the macroscopic lossy behavior of particulate viscoelastic composites as
a function of frequency. This chapter aims to introduce and develop the self-
consistent micromechanical approach in the quasi-static domain for a- composite

material consisting of a homogeneous matrix containing coated ellipsoidal inclusions.

3.2  Derivation of quasi-static three phase self-consistent model

In general, micromechanical methods are based on two distinct steps: (i)
localization, which determines the relationship between the microscopic (local) fields
and the macroscopic (global) loading, and (ii) homogenization, which employs
averaging techniques to approximate macroscopic behavior [26]. Sections 3.2.1 —
3.2.3 of this chapter show the derivation of the average strain fields in the viscoelastic
inclusion and coating materials by employing the integral equation, Green’s
formalism, and interfacial operators by adopting the work of Cherkaoui et al [23, 24]
to the quasi-static domain. This is the localization step. Section 3.2.4 then applies a
self-consistent scheme to find the viscoelastic particulate composite’s frequency
dependent effective stiffness tensors via the relationships derived in Sections 3.2.1 —
3.2.3. This is the homogenization step. Finally, the quasi-static form of the model
presented by Cherkaoui et al will be generalized using dilute strain concentration

tensors in Section 3.3.
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The localization step is essentially based on the equivalent inclusion method
introduced by Eshelby [108]. Eshelby’s approach is modified in the present work by
solving an integral equation for the displacement field at every point in an infinite
homogeneous reference medium rather than by directly employing the equivalent
inclusion method. The integral equation employed in this work is the result of a
Green’s function relating the stiffness contrast between the reference medium and a
coated inclusion to the displacement field at each point in space [34, 37, 145]. This
integral equation will be coupled with interfacial operators to modify the solution to
the simpler problem of an inclusion in an infinite host medium and thereby find the
solution for a coated inclusion embedded in an infinite host [38, 39].

The first requirement for the derivation of the integral equation is the
definition of an elementary unit which is assumed to represent the particulate
composite studied. This unit is called the representative volume element (RVE) [26].
The RVE chosen to describe the material presently studied consists of a host material
containing two concentric ellipsoidal inclusions (see Figure 3-1). The two ellipsoids
represent the inclusion, J, and its coating, C [23]. In this work the coating thickness is
assumed to be sufficiently thin to permit the approximation of the strain field in the
coating as uniform in directions normal to the inclusion’s surface. This assumption
allows calculation of the average strain field in the coating via interfacial operators.
These operators are applied to the strain field in the inclusion, which is assumed to be
uniform in accordance with Eshelby [23, 108]. It is important to point out that the
thin coating approximation simplifies the following model but limits its applicability.
Fortunately, the methodology employed can be extended to the more general case of a
multi-coated inclusion that does not require the thin coating approximation which is

covered elsewhere, [146].
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Figure 3-1: Topology of a coated inclusion embedded in a limitless matrix. Xy and E; represent
the macroscopically applied stresses and strains, respectively.

The following quasi-static self-consistent model derivation for a
heterogeneous viscoelastic material closely follows Cherkaoui’s derivation of the
static analogue [147]. The following derivation is important, however, because it
employs the elastic-viscoelastic correspondence principle introduced in the previous
chapter and follows the rationale of Hashin [8, 63] and Christensen [7]. The
derivation will detail the physical principles captured by the model and explicitly state
limitations for its application.

The topology of the present coated inclusion problem consists of an inclusion

phase occupying a volume, ¥, whose frequency dependent mechanical behavior is
described by the viscoelastic stiffness tensor, (o Surrounding this inclusion phase is
a thin coating of another material whose viscoelastic behavior described by the tensor

CC and that occupies a volume, Vc. The coated inclusion is embedded in a host

material described by the viscoelastic stiffness tensor, C°. The following derivation

assumes that the viscoelastic stiffness tensor of each material is frequency dependent.
The frequency dependent behavior can be approximated by material models (Kelvin-
Voigt, Zener, etc) or from curve fits of experimental data (Havriliak-Negami [148],
etc). For this model the exact representation of the frequency dependence is not
important, it is only important to note that the model derivation does not make any

restriction on the constituent material viscoelastic behavior.
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At this point, several notation conventions need to be mentioned. First, tensor

quantities will be denoted either with index notation or in bold, for example:
éW < C. These two representations are interchangeable and will appear throughout

this thesis corresponding to the required clarity for the mathematical operations
employed. The next commonly employed convention is the representation of
complex frequency dependent quantities through any of the equivalent expressions

shown in Equation (I11.2.1).

X o X (0)= X" (0)-iX"(0)=X* (a))[l—z’nX (a))] =|X(a))|ei"’(”’) (Im.2.1)

Where X (a)) represents any complex variable in the frequency domain and o is the
frequency. The complex quantity consists of real, X* (), and imaginary, X" (@),
parts and has a loss factor and loss angle denoted by 7, (a)) and go(w) respectively.
The final convention employed is the “e™ Euler’s equation: e™* = cos(x)—isin(x).
This derivation is further limited to the case of viscoelasticity and small
perturbation theory. The interfaces matrix-coating and coating-inclusion interfaces
are assumed to be perfect, thus ensuring continuity of traction and displacement
across these boundaries [23]. One of the most limiting hypotheses for the application
of this theory in the frequency domain is the small perturbation approximation [63].
This approximation assumes that inertial effects within the composite are negligible

and, therefore, that the equilibrium equation (in the absence of body forces) reduces to

the following:

8y,~Par=0 = &;,=0 (I.2.2)
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It is this approximation that limits micromechanical methods to the quasi-static,
ka <<1, domain and can lead to large error when inertial terms are important as those
terms can lead to inclusion resonances and other important dynamic effects. Despite
this limitation, the micromechanical approach provides a very accurate approximation
of the frequency dependent lossy behavior of viscoelastic particulate composites when
applied in the correct frequency range. This enhanced modeling freedom makes the
quasi-static micromechanical approach very interesting for application in a material

by design stratagem.

3.2.1 Localization and the integral equation

Zeller and Dederichs proposed modeling the composite material shown in
Figure 3-1 as a homogeneous material whose elastic behavior varies spatially [34].
Taking this approach, the local behavior is dictated by the constitutive laws at each
point is space. Elastic-viscoelastic correspondence allows the expression of the

constitutive viscoelastic material behavior at each point in space through the
viscoelastic form of Hooke’s law: &, (r)=C,, (r)é,(r). The form proposed by

Zeller and Dederichs implies that local material properties can be approximated as
spatially dependent variations about the properties of the reference material which are
independent of position. The mathematical expression of their approach is shown in

Equation (II1.2.3) for the viscoelastic stiffness tensor [37].

C(r)=C"+5C(r) with reV (1.2.3)

In the above equation C° represents the viscoelastic stiffness tensor of the reference
material which is constant for all r, SC(r) denotes the spatially dependent

viscoelastic stiffness tensor variation, and V represents the volume of the
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homogeneous medium. It is now assumed that there exists some displacement field,

al = E %, imposed on the external surface of the reference medium, S, where %, € §

and E,.j is the macroscopically imposed strain. The localization step begins by

writing the equations for the stress and strain fields at every point in the homogenous
medium [147]. These relations will be derived from the local expression for
equilibrium, Equation (II1.2.2), the locaiconstitutive law, Equation (I11.2.3), and by
assuming that the contrast of the viscoelastic stiffness tensors of the constituent

materials can be approximated with a locally compatible strain field, £, (r) 34,371

The local constitutive law is first substituted into the local equilibrium equation

yielding:
(G ()i (x)) =0 (I1.2.4)

where #, (r) is the local compatible displacement field in the composite material at

every point in V. For the case of small perturbations, this displacement field is related
to the strain field with the classic relation: £, (r)= %[ﬁ, S(@)+a, (r)] [104]. Now,

when Equation (II1.2.3) is inserted into the form of the equilibrium Equation (I11.2.4)

giving:
dgﬂﬁk# (r)= [—56'9'” (r)éy (r):l ; (1IL.2.5)

Careful inspection of expression (II1.2.5) indicates that the left-hand side (LHS)
represents a distribution of fictitious volume forces which depend on the local

viscoelastic stiffness [34]. Equation (II1.2.5) can therefore be re-written as follows:
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fir)=[8Cuu (r)éa ()], (m2.6)

This form of the equilibrium equation implies that the differential equation given in
Equation (II1.2.5) can be solved by employing Green’s functions. This is done

through the second order Green’s tensor, G2, (r —r'), where the superscript 0 denotes

that the resulting solution propagates the effect of the volume force distribution
through the reference medium. In this case, Green’s tensor calculates the

displacement in the k direction at the point r due to a time varying force,

fi(t)=Re { fie.‘.’”".} , acting in the m direction and located at the point r'.

The second order Green’s tensor é,?m (r—r') is found by solving the

differential Equation (II1.2.7):
CGoy(r-1)+8,8(r-r")8(0-0')=0 (01.2.7)

for the boundary conditions on the external surface, S, of the homogeneous medium

[37]. In the above, &, is the Kronecker delta, & (a)—a)') is the frequency domain

Dirac delta function, and & (r - r') is the three dimensional Dirac delta function [37].

By modifying the work of Berveiller et al [37] to take the time variation of the
distributed body forces into account, it can be shown that the solution to Equation

(II1.2.5) is given by the two integral equivalent equations below.

i, (r)= °(r)+”G° (r-r) f(r')dr'do’ (II1.2.8)

i, (r) =4 (r)+ j jG° (r—r")[ 6Cuu ()4 (' )]j.dr'da)' (I1.2.9)
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Integrating (I11.2.9) by parts yieids the following displacement field:
i, (r) =5 (r) =~ [ [Gp.; (r—r')[ 6Cpu(r)5 (r)]dr'do’  (@2.10)
14

Recall the following property of the Green’s tensor.

~0 et ~0 ! R
éi(’,"’j'=6Gi,,,a(;. 1')=_6G1,,,£§: r)=—G3”J (I1.2.11)

J J

And lastly, the simplified integral equation (III.2.12) expressing the strain field in the

medium results from evoking the small strain approximation and the integral property

of the Dirac delta function, g(w)= Ig(w')é‘(a;— w')do' [34, 145):
£,(r)= E‘y - If‘g,d (r—r")3C,m (r")E,, (r') ' (1.2.12)
14

In the above expression, E,.j represents the uniform macroscopic strain field of the

medium which has no spatial dependence, and '3, (r—r') is known as the modified

Green’s tensor. The modified Green’s tensor is related to the previously introduced

second order Green’s tensor through expression (111.2.13).

n 1r A n
i, = —E[Gf,,j, (r-r)+Gy, (r-r')] (1.2.13)

Relation (II1.2.12) specifically shows that the strain field at the macroscopic length

scale can be approximated by averaging the effects of material variations within the
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volume, V. This reinforces Christensen’s statement that multiscale modeling requires
the effects of discontinuities at the microscopic length scale to have only an average
effect on the macroscopic behavior [27].

It is néw useful to define the spatial variation of the viscoelastic constants.

For the topology shown in Figure 3-1, this variation can be mathematically expressed

using the Heaviside step function H(r) [149].
5C(r)=(€"-C)" (r)+(C°-&°)[¢*(r)-¢' (r)]  (@2.14)

Where the Heaviside step functions of the inclusion, 8’ (r), and composite inclusion

(defined as the inclusion plus the coating), 6 (r) , are defined as:

&' (r)= 1 if re?;

0 if re?,
(II1.2.15)

if reV,

1
2 —
eO-fy  tror

where V; designates the inclusion volume and V> designates the volume of the
composite inclusion. Equation (II1.2.14) can then be expressed in a more compact

form by introducing viscoelastic stiffness contrast tensors and the Heaviside step

function variation, 86" (r) [24, 40].
8C(r) = AC"0' (r)+AC°56" (r) (I1.2.16)

In the relation above, ACY represents the difference, or contrast, between the

viscoelastic stiffness tensor of materials X and ¥, AC* =C* —C”. The variation
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50" (r) is defined by the upper expression in Equation (I2.17). The lower

relationship only hold true when the inclusion coating is thin.

80" (r) = H(x,,a, +Aa,)—6’1 (x,.,a,.)
(11.2.17)

Cherkaoui et al [24], have further shown that for the thin coating case, 6¢' (r) can be

approximated by Equation (I11.2.18).

Aa 2
LI 5(S,) (1.2.18)

80" (r)~p) —
Z g, q
In the above expression, x; are the coordinates of a point on the inclusion surface, a; is

the radius of the ellipsoidal inclusion, Ag; is the inclusion coating thickness along the
x; direction, &(S;) is the Dirac delta distribution for the surface of the inclusion, S,
and p is the perpendicular distance from the inclusion center to the tangent plane of

the surface at the point x;. The distance p can be calculated for any point on the
surface Sj using Equation (II1.2.19) [24].

2 2 2
g e ] (1.2.19)
4 o a4

Equations (I11.2.18) and (I11.2.16) can now be inserted into Equation (II1.2.12) to yield
an expression for strain at every point in the homogenous medium. The resulting

volume integral can be simplified by employing the following property of the Dirac

delta distribution: Ig (r)s(S)ar= Ig (r)as.
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8,(r)= &, ~ 1% (r—r)ACR, &, (r')dr
v,

_Y 2 (r-rt)ACS 4, () £ az_«}ds
o S;' [»4

Here, S; is the external surface of the inclusion, r is a point on the coating side of
the inclusion — coating interface, and the components of &, (r*) describe the strain

field inside the coating at a point very close to the inclusion — coating interface.

Equation (I11.2.20) is quite complicated and would be difficult to resolve in its present

form. Fortunately, it is possible to find a relationship between the field ¢, (r*) and

the strain field in the inclusion, which is assumed to be uniform in accordance with
Eshelby’s results [108]. This is done by employing interfacial operators [147], which

are the subject of the following section.

3.2.2 Interfacial operators

The stress and strain fields in the coating material can be very complicated in
general. This problem is exacerbated by the material discontinuity that exists at the
coating — inclusion and coating — reference material interfaces. This material
discontinuity leads to jumps in the stress and strain fields across material interfaces.
In order to approximate the stress and strain state in the coating material, this section
first makes simplifying hypothesis that the stress and strain fields are uniform
through the coating thickness in directions normal to the inclusion surface. This is a

reasonable approximation for a thin coating which is the case when Ag,/a, <<1.

Care must be taken, however, when this no longer holds true. By assuming that the
coating is thin, the interfacial operators studied by Walpole [38] and Hill [39] will be
employed in the following sections to relate thé stress and strain fields in the inclusion

to those in the coating material.

55



Interfacial operators are convenient mathematical tools which calculate the
stress or strain jump across a material interface. These operators are derived by
writing the equations for the continuity of displacement and traction across the

material interface. This derivation begins with the general case of two solid phases, 4

and B, with viscoelastic constants C# and € separated by a surface with unit

normal, # as shown in Figure 3-2.

Phase B

( 3 ’é; ) Interface

Figure 3-2: Schematic of the interface of two viscoelastic solids used im the derivation of
interfacial operators.

The interfacial operator derived below assumes that the bond between materials 4 and

B is perfect. This assumption leads to two requirements on the mechanical behavior
across the material interface: (i) continuity of displacemeﬂt, o , and (ii) continﬁity of
traction, 6;n;. These two mechanical behaviors are mathematically represented with

Equations (1I1.2.21) and (1I1.2.22), respectively [147].

[4]=a~a =0 (11.2.21)
[6,]n,=(6;-67)n; =0 @222
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where #; represent the components of the unit normal vector of the interface. The
values of the normal vector are determined from Equation (I11.2.23) when this

interface is assumed to be a closed surface in the form of and ellipsoid.
m=—%p (11m.2.23)

The continuity of displacement requirement given in expression (I11.2.21), allows the
calculation of displacement gradient jump at each point, r(x;), on the interface as

follows. It is first noted that du, =u, dx,, yielding the following from Equation

J

(1I1.2.21):
[, )dx, =(a, -, ) dx, =0 (I1.2.24)

Given that dx; denotes the direction tangent to the surface and that n.dx, =0 by

definition, (II1.2.24) is equivalent to the following expression [24]:
I:ﬁi,j] = ﬁfj - ﬁfj = ji"j (11I1.2.25)

In the above expression, ﬂ‘; represents the complex time varying displacement

gradient jump across the interface. Noting that the gradient field is symmetric with

respect to indices i and j, Equation (III.2.25) is altered to give the strain jump across

the material interface, denoted as [éy] .

[éfj :I = é; - é: = —(/’lqn ;T 'ljni) (111.2.26)

Now, continuity of traction and constitutive behavior gives the following statement.
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NA AA,. _ B 2B
= Cuéyn; =Cytyn; (I11.2.27)

In this form, the expression of continuity of traction permits the elimination of one of
the strain fields in Equation (II1.2.26). For example, if phase B is assumed to be the

reference material, é,.f can be eliminated leaving:

AB AB.. __ AA B, 7
Cy.,ds,dnj = C,.j,d (s,d + ﬂ%n,)nj

U ' (111.2.28)

~B A NrAB, _ A4 7
(Co, -G )éim, =Cpmm A,

The right-hand side (RHS) of the lower expression in Equation (II1.2.28) is

Christoffel’s matrix for material 4, I&if, defined as I%,,’: = é;k,n,n ,» multiplied by the

complex magnitude of the strain jump across the interface, Z; . From this expression,

the magnitude of the strain jump can be calculated from knowledge of the viscoelastic
stiffness tensors of each material, the outward unit normal of the surface, and the

strain field in the reference material via in Equation (I11.2.29).

J=(R2) (Gl Cit) 22, (II1.2.29)
Using the above expression, the strain jump is re-written as:

& -0 =P (Ch, - Ch,)EE (I1.2.30)

where the interfacial operator, }A’y“,;, , follows directly from the substitution of Equation

(II1.2.29) into (II1.2.26). The interfacial operator is defined in Equation (III.2.31)
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[40]. Note that the interfacial operator is only dependent on the constituent material

properties and the outward unit normal of the interface.

U (.2.31)

B4 E%[( )+ (RAY i+ (R2) mm +(R2) ]

The expressions above lead to the following general expressions relating the strain

field in phase A4 to that in phase B.

& = Bt (Con = Citn )+ Tyn |52,
(I1.2.32)
&7 = B (Cln = Coonn )+ Ty |6

Where the fourth order identity tensor, Jyu, is defined as I, =(1/2)(8,5, +5,6,)
and &, is the Kronecker delta. Interfacial operators have several important

mathematical propertics which have been detailed by Hill [39]. For the purposes of
this work, however, they are simply employed to calculate discontinuities of the stress

and strain fields across a material interface.

3.2.2.1 Application to local strain fields

The interfacial operators developed above can be used to simplify Equation
(II1.2.20) which describes the local strain field in the homogeneous medium. This
simplification occurs when the strain field in the coating is related to the strain field in

the inclusion by applying interfacial operators. These operators permit the calculation
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of the strain field at the inclusion-coating interface on the coating side, é,j (r*) , from

the strain field the same interface on the inclusion side, &, (r“) . This strain jump

calculation does not require any simplifying assumptions about the strain fields in

either medium. £, (r*) is calculated by adding the strain jump across the interface,

using equations in the form of (I11.2.32), to the strain field on the inclusion side of the

interface. This operation is shown mathematically in Equation (IIL.2.33).

>

8,(r")=4,(r)+ PoACE, 8, (1) (II1.2.33)

Here ACY is a tensor representing the contrast between the viscoelastic stiffness of
the inclusion, 7, and the coating, C. Eshelby showed that the strain field in the
inclusion, being on the smallest length scale, can be accurately approximated as
uniform in space. The best approximation of that uniform strain value is a volumetric

average [108]. Applying this logic to the current problem gives Equation (II1.2.34).

& E—;— [6,(x)dr rev, = & =2(r) (I1.2.34)

¥
1y,
Equation (II1.2.33) then simplifies to (II1.2.35).

&,(r*)=4; + BLACL, 2 (II1.2.35)

Finally, the expression above for £, (r*) is substituted into the integral equation. The

resulting expression for local strain field in the homogenous medium with spatially

varying viscoelastic constants simplifies to Equation (II1.2.36) [24]:
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£;(r)=E, _[1" (r—-r)ACR & dr'

2
—Z jr,,k,( r*) ACGn.EmP ia" g%dS (I1.2.36)
2
—Z j 5 (r — 1) MGG B A — = %e 49

It is important to point out that the above integral equation only depends on the
average strain field in the inclusion, the viscoelastic stiffness of the constituent
materials, and the geometry of the coated inclusion. When carrying out the
homogenization step, only the average strain field in each phase will be fequired.
Given that the stiffness tensor, C(r), is piece-wise uniform, it is possible to calculate

the macroscopic average strain from Equation (II1.2.36). The strain localization
tensor for the average strain in the inclusion and coating materials can be then found
from the resulting expression for the macroscopic strain [24]. This is the subject of

the next two sections.

3.2.3 Localization: Average strain fields in the inclusion and coating

The derivation of the integral equation in Sections 3.2.1 and 3.2.2, which used
techniques introduced by Zeller and Dederichs [34], Hill [39], and Walpole [38],
emphasizes one of the most basic requirements of multiscale modeling given by
Christensen [27]. The requirement is that inhomogeneities, representing the smallest
length scale, only have an average effect on the behavior observed at the macroscopic
scale. Following this logic, the integral equation representation (II1.2.36) describing
the local strain field will now be used to approximate the effective behavior of the

heterogeneous medium at the macroscopic scale by calculating the volumetric average

of &,(r).
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The volume average of the complex strains in the inclusion and coating, £

and éyc respectively, must first be defined.

=— Iey (r)dr

Vv,

(1.2.37)
_[ &y (r)dr

cV,_.

The volume average of Equation (II1.2.36) with respect to the inclusion gives [24]:

g =FE ——IIF?H(r r')ACL & dr'dr
Vivy,
A Aaa i
__Igsl{jr,ﬂd( rt) }AC,S,‘,’M & p - :—idS‘ (01.2.38)
1 2 Aa 2
SRt e

It is now necessary to employ the simplifying assumption that the strain field in the
coating is uniform through its thickness in directions normal to the inclusion surface.
By noting that ég is equal to &, (r*), the average strain field in the coating can
calculated from Equation (III.2.35). This expression illustrates that for a thinly coated
inclusion, the strain field in the coating only depends on the inclusion normal, the

average strain in the inclusion, and the constituent material properties of the inclusion

and coating.

g=g +Vi{ | ggdr}Aég,fmé,{m (I0.2.39)

c %
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Future equation treatment is simplified by defining the following tensor which

denotes the volume average of the modified Green’s tensor.

f’,ﬁd(é") jl" (r—r")dr' sireV, (I11.2.40)

This tensor is related to Eshelby’s tensor, S, as shown below [37, 108]:

~

S=1/(c’):C° (I1.2.41)

Using interfacial operators, Ifgu (r+ —r)dr is related to the relationship given in
Vr

(11.2.40) as follows [24]:

jry,d r* —r)dr =1, (€°)- B, (II1.2.42)

Substituting Equation (I11.2.42) into the expression for the average strain field of the
inclusion, (II1.2.38), eliminates the volume integral inside the summation and the
surface integral. The resulting expression is still complicated by terms containing the
projection, p, and interfacial operators, P’ , where * represents either the inclusion, the
coating, or the reference material. Fortunately, Equations (I11.2.38) and (II1.2.39) are
greatly simplified through further application of the thin coating assumption and
Equation (I11.2.42). The result is two expressions relating the average macroscopic
strain field to the average inclusion and coating strain fields, the viscoelastic material
properties of each constituent phase, and the coated inclusion geometry.

It is first shown that the volume of the coating is related to an integral on the

entire representative volume, V, through the Heaviside functions given in Equation

(I.2.15).
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Vo= [dr=] 6 (rj-ef (r)]dr (1.2.43)

The Heaviside step function variation, 59" (r), definition given by relation (II1.2.18)

is therefore related to the coating volume as shown in Equation (II1.2.44) when the

coating is assumed to be thin.

Ver [Yp Aa, x; L 5(S, ) = Z j LS (IT1.2.44)

v a; ai .4 ai

The far RHS of the expression above partially simplifies expression (II1.2.38)
describing the average strain in the inclusion. However, the expression is still
complicated by the surface integral of the interfacial operators. This problem will be
addressed in the following analysis. Equation (II1.2.40) is first integrated with respect

to the coating volume, V¢, and rearranged giving (I11.2.45) [24].

[ Bradr =V Ty (€)= [ [T (x* —x)dr*dr (II1.2.45)
Ve

734

Noting that V¢ = V> — V1, the term on the right above can be decomposed as follows:

[ [ (et =x)drtdr = [ [£,(r" —r)drdr - [ [T}, (r-r')drdr’ (111.2.46)

Ve A7 A2

Generalizing Equation (II1.2.40) yields the two following expressions [23]:
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T,jz (é')= If‘;.,d(r—r')dr' si reV,
Vs
| ([1.2.47)
ZE‘,(C')= _[f;.k,(r—r')dr' si reV,

4

Application of Equation (II1.2.47) simplifies the two terms on the RHS of (II1.2.46) to
the two following expressions relating the inclusion volume and the modified Green’s

function integral.

Vida (€)= [ [T (r—x')dr*dr

hh

(111.2.48)
VT (é') = I j‘f‘;ﬂ (r—r')dr'ar
Az
Substituting these relations into Equation (I11.2.46) gives [24]:
[ [E5u (e —x)drdr =7, (£2(€') -7 (€)) (II1.2.49)

Ye¥;

Inserting (I11.2.49) into Equation (I11.2.45) gives the following relationship describing

the volume integral of the interfacial operator in the coating.

[Brudr = Vo1, (€))7, (T2, (€) - T (€7)) (II1.2.50)

Ve

The integral of the interfacial operator, f", on V¢ is related to an integral over the
entire the representative volume, V, as shown in upper expression of Equation

(II1.2.51). The lower expression is simply a re-statement of Equation (II1.2.50).
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jpy,ddr jzzj,d(se'(r)dr > [Bup aaz—ids

2
a g 17 @

(I1.2.51)
=73 (€)W 12 (€) -1 (€)]

Using all of the above expressions, it is finally possible to express the average strain

fields as a function of tensors T’ (é’) and T2 (é'), the geometry of the coated

inclusion, and the viscoelastic stiffness tensors of the constituent materials. This is
done by substituting Equations (II1.2.44) and (II1.2.51) into integral equations
(111.2.38) and (111.2.39). The resulting expressions for the average strain field in the

inclusion and coating are given in Equations (I11.2.52) and (II1.2.53), respectively.

Al ol
& =FE -

if klm.n mn

o (€0)aCH, 2
T (€ )ACETL, (€°)ACK 2L
(I1.2.52)

~ |($: ~ |n§ .’ﬂ>

()14 () it

[ Ly + T (€°) ACE, || 12 (€°) T (€°) [ aCic 80

~

& =2l +[1‘;!,,, (cc)-g{z‘;;, (€°)-T(€° )}} ACE, &, (IL2.53)

Several important aspects of the integral of the modified Green’s tensor must

be highlighted at this point. First, T? (c) is calculated on the volume ¥, which

represents the combined volume of the inclusion and coating. This volume is

assumed to be ellipsoidal in shape and the volume integral is dependent on the ratio of

its axes, (a,+Aq,) / (a,+Aa,). Likewise, T’ (é'), is calculated on the volume V;
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and depends on the ratio g, /a; [147]. For the specific case where Ag,/a, = Aq,/a;,

the following results [23]:

( =2 (M1.2.54)
( . .

Therefore, when the ratio of the coating thickness to the inclusion axis is the same in

all directions and the coating is thin the following will always be true:

T2 (é')= T! (é') . The remainder of this work is based on the above assumption,

which further simplifies relations (I11.2.52) and (I11.2.53) to Equations (III.2.55) and
(O1.2.56).

Al f AT (PONAAIO Al
gy' —Ey_Zde (C )Acldmngmn

- -I%Tj,,, (€)ace 1t (€°)ack 2L (II.2.55)
(&)~ T (&) Jaci
& =4y +1,,(€C°)ACL, 8, (I11.2.56)

Equations (I11.2.55) and (II1.2.56) are used in the following section to find the

strain localization tensors, A’ and AC. These strain localization tensors ultimately

permit the calculation of the effective viscoelastic stiffness tensor of the composite

material. It is important to note that calculating T/ (é') for the general case is not

trivial [26, 37, 41]. The three different methods exist to numerically approximating
this tensor. They are: (i) Fourier transforms, (if) potential functions, and (iii) direct

implementation using Eshelby’s results [147]. The simplest of these methods,
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implementation of Eshelby’s results, can only be used when the host material is
isotropic. The Fourier transform technique, which is described in detail in Appendix
A, has been employed in this work. Further discussion on the numerical
approximation of this tensor during SC model implementation is addressed in Section

4.4.

3.2.4 Homogenization and the self-consistent approximation

The integral equations derived above provide a means to calculate the local
strain fields given the loading conditions imposed at the RVE boundary. It is possible
to use these expressions and averaging operations to approximate the macroscopic
behavior of a viscoelastic particulate composite in the dilute case. Unfortunately, the
assumptions implicit with the Green’s function formulation employed to derive the
integral equation do not take into account inclusion interaction. If inclusion volume
fraction is elevated it is necessary to account for these interactions. Several different
approaches exist to approximate this interaction and the method employed in this
work is the self-consistent method. The SC model is derived by defining the RVE as
shown below in Figure 3-3. It assumes that the reference material is the effective
material, an assumption that indirectly takes inclusion interaction into account [43].
The resulting SC model is an implicit set of tensor equations whose solution is the

effective viscoelastic stiffness tensor of the composite.
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Figure 3-3: The SC model RVE consists of a coated inclusion surrounded by the homogeneous
effective medium. The inclusion and coating are fully described by their viscoelastic properties

¢! and C°, an average strain field é; and g‘;, and volume fractions f7 and f€, respectively.

The effective medium is submitted to macroscopic stress and strain fields, 2,1 and E’ij, and has

viscoelastic stiffness tensor C7 .

The first homogenization step defines the volumetric composition of the
composite material. The total volume of the particulate composite is decomposed into
portions that are occupied by the inclusion, ¥}, coating, V¢, and matrix, Vj,, according

to V =V,, +V; +V,. This equation yields the volume fraction relation below.

M+ =1 (I.2.57)

Here f* is the volume fraction of phase X and is related to the total volume fraction
of the composites by f* =V*/V .

"

The uniform stress and strain fields of the composite, %, and Ey, must be

defined in terms of their local analogues, &,(r) and £;(x). The classic approach

defines the macroscopic fields as the volumetric average of the local fields defined by
(111.2.58) and (I11.2.59) [26].

A 1 S
k== [&,(r)ar (IIL.2.58)
14
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A 1 ¢
%, = 7 I . (r) dr (111.2.59)

Homogenization begins by relating the macroscopic stress and strain to each other
through Hooke’s law for viscoelastic solids using the elastic-viscoelastic

correspondence principle.
5,=CZE, (II1.2.60)

In the above equation, C? denotes the effective viscoelastic stiffness tensor of the
composite. The concept of a strain localization tensor, A(r), is now introduced.

This tensor relates the macroscopic strain field to the local strain field as shown below
in Equation (II1.2.61) [35, 41].

g,(r)=4,(r)E, (I1.2.61)

The average macroscopic strain and stress are then found through application

of Equations (II1.2.57) — (II1.2.59) [26].

E,= M8 +f'&)+ f°8 (I1.2.62)
S, =fM6) + 6] + fC65 (IL.2.63)

The two following relations result from application of Equation (III.2.61). These
expressions relate the macroscopic strain field and the average strain in the inclusion

and coating materials.
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A A

=~ ALE, (I11.2.64)

~
I
&y

A

8 =15 F, (I1L.2.65)

It is also important to recalling the constitutive laws for each material phase:

51 = CLél (I11.2.66)
65 =C5,85 (I11.2.67)
GM = Chsk (I11.2.68)

The simple relationship between the average local stress field in material X and the
macroscopic strain field, (II1.2.69), results from the substitution of relations in the

form of Equations (II1.2.64) and (II1.2.65) into the constitutive law equations [26].
= Cri oy (II1.2.69)

The average strain field in the matrix is found by inserting Equations (II1.2.64) and
(II1.2.65) into relation (I11.2.62). The stress field in the matrix is then given through
application of Equation (II1.2.68) [24]. The results of these operations are given
below in expressions (I11.2.70) and (II1.2.71), respectively.

éxju = fLM(Ithd _fl%l-u _fc‘;leld)ﬁld (IH-2-7O)
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e 12 . Vg
S =f_Mc;,{, (L = " = € A ) B (I1.2.71)

The average stress in the matrix material can also be found by combining Equation

(II1.2.63) and stress localization equations in the form of (III.2.69) as shown in
(11.2.72).

S =f—M(c;£,, ~f1Ch A - 1Cu G, ) B 1.2.72)

The effective viscoelastic stiffness tensor of the particulate composite is finally found

by equating relations (II1.2.71) and (II1.2.72) and solving for C7 [24].

T =E 4 1 (C O )i A+ /(- E):AY auam)

The strain localization tensors, A! and AC, must be found to complete this
model. These tensors are dependent on the volumetric composition of the composite,
the geometry of the coated inclusions, the constituent material properties, and the
effective material properties [23]. Expressions for these terms must be found via the
integral equations derived in the previously. This is done by re-arranging (III.2.55)
and (II1.2.56) as shown below in Equation (I11.2.74).

B=(4) & (0L.2.74)

Here X represents the inclusion, I, or the coating, C. After re-arranging these

expressions into the above form, the model is rendered self-consistent by setting the

effective material properties equal to the reference material (€° =€) in keeping
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with the RVE given in Figure 3-3. The resulting strain localization equations are
given in Equations (II1.2.75) and (II1.2.76).

(&) =L+ 1(€9):0E + L4 (67 ): a7 () a2
! (I1.2.75)
e [31(e0) -7 (6] a0 |

1

AC=(1,+17(€°): A(‘:’C) L A! (m.2.76)

One further term of interest is the strain localization tensor for the matrix material.

This can be useful in several applications such strain energy studies.
AM 1 TRl CAC
A =——[I4—fA —f A] .2.77)
1-¢

The contrast tensors are again defined as AC* =C* —€7 where X represents the

inclusion or coating, I is the fourth order identity tensor, and ¢ is the volume fraction
of the composite inclusion: @ = f'+ . Equations (Il1.2.73), (II1.2.75), and

(II1.2.76) constitute Cherkaoui’s general SC micromechanical model extended to the
quasi-static frequency domain through application of the -elastic-viscoelastic

correspondence principle.

3.3  Generalization using Dilute Strain Concentration Tensors

True particulate composite material composition can vary widely based on
number of constituent materials, coated inclusion geometry combinations, and

inherent fabrication and property variations. Unfortunately, the model derived in
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Section 3.2 is limited in the types of composites that can be treated. The form of
Equations (I11.2.73), (II1.2.75), and (I1.2.76) only allow approximation of the
effective material behavior for the simple case of a composite material consisting of
three material phases: matrix, inclusion, and coating, where the coated inclusions have
identical shapes and orientation in space [52]. This limitation is a direct result of the
derivation of the strain localization tensors and, more specifically, the integral
equation approximation. The SC model can be generalized to include the effects of
multiple types of coated inclusion materials, variations of coating thickness, multiple
coated inclusion geometries, and variations in coated inclusion orientation. This level
of generality is achievable through the application of dilute strain concentration
tensors (DSCT) [52]- Recently, models employing DSCT formulation to approximate
the effective behavior of polymers containing nano-tubes have illustrated the
generality of this approach [55-57]. These applications have shown that
micromechanical models formulated with DSCT formulation accurately approximate
nanotube shape and orientation distribution effects on the global behavior of the
composite. The DSCT approach applied in this work expands the RVE to include all
of the different coated inclusion variations. This change of RVE will lead to a SC
model that is analogous to the one derived in Section 3.2. Because the SC DSCT
approach assumes that the reference material surrounds each coated inclusion, it is
easy to visualize the expanded RVE employed in this section as a summation of N

different sub-RVE’s as shown below in Figure 3-4.

+ ... +

i3 ea fIHgoN

PR
e e e @ e g, &

Figure 3-4: Schematic representation of DSCT formulation of the SC model as the sum of N
different RVE's corresponding to each coated inclusion family.
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The RVE representation in Figure 3-4 schematically shows the SC DSCT
approach. In what follows, all coated inclusions that have identical material type,
spatial orientation, and shape are referred to as a coated inclusion family. The entire
composite consists of N different coated inclusion families chosen to represent the

nature of the material. Each family is assumed to be surrounded by the effective
material and to occupy a volume fraction, @f = f'¢+ . DSCT formulation

assumes that the effects of each coated inclusion family can be superimposed in order
to arrive at a reasonable approximation of the effective behavior of the particulate
composite. The DSCT approach also assumes that the descriptive dimension of all
coated inclusion families is of the same order of magnitude and, like all
micromechanical approaches, that this dimension is much smaller than the
macroscopic length scale [27]. DSCT formulation, as all other micromechanical
approaches, is limited to total low volume fraction inclusions unless inclusion
interaction is taken into account in some way [57]. In the following sections, the
derivation presented in Sections 3.2.1 — 3.2.4 is adapted for a composite containing
coated inclusion families thereby deriving a SC DSCT model analogous to Equations
(11.2.73), (II1.2.75), and (II1.2.76). The generality of this SC DSCT model allows
accurate viscoelastic composite material homogenization for materials containing
coated inclusions with a wide range of material properties, spatial orientations, and
shapes. For the sake of brevity, the following “derivation” is not a detailed repetition
of all equations in Sections 3.2.1 — 3.2.4, but rather a summary of the prior derivation

adapted to the multiple coated inclusion case.

33.1 Localization and the integral equation

Derivation of the SC DSCT model requires several changes to the previous
derivation to ensure the accurate localization. First, differences in the topology of the

RVE must be addressed. The single coated inclusion RVE shown in Figure 3-1
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represents only a single family of coated inclusions when applying DSCT. In the
DSCT approach, an RVE such as the one shown in Figure 3-5 will consist of N
different sub-RVE’s each of which are analogous to the RVE shown in Figure 3-1.

Matrix, M

Coating, C°

X3
Inclusion, F

X1

Figure 3-5: Topology of a particulate viscoelastic composite with N coated inclusion families.

The topology of the above RVE corresponds to N coated inclusion families where

each family, ¢, is represented with a single inclusion of volume, Vi, and viscoelastic
stiffness, €%, and is coated with another material having a volume, V., and
viscoelastic stiffness, C°*. Each family is also assumed to have a unique ellipsoidal
shape characterized by major axes, af , aligned with the /ocal coordinate system, X°.
Euler angles &, ¢°, and y* relate the local coordinate system to the global
coordinates using the “x” convention (see Appendix B) [149]. As in the previous
section, all coated inclusions are embedded in the reference material with viscoelastic
stiffness, C°.

It is now possible to start the derivation of the SC DSCT model beginning

with the expression for the local behavior of the composite material. The viscoelastic

stiffness tensor of the heterogeneous material can again be expressed as a
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homogeneous material having spatially varying viscoelastic properties. For the RVE

shown in Figure 3-5 this variation is expressed identically to Equation (II1.2.3).
C(r)=C"+5C(r) with re¥V (IL3.1)

C° represents the spatially uniform viscoelastic stiffness tensor of the reference

material and V is the RVE volume. Unlike the previous derivation, however, the
spatial variation tensor, &C (r) , must be modified to approximate the influence of N

different coated inclusion families. Equation (II1.2.14) is therefore generalized to the

form shown below.

5C(r)=(€4 - €)0 (r) + (€5 - &) [ 6% () -0 (x)]
+(€2 - 8)0% (r) + (€7 - €°)[ 6 (r) - "2 (r)]

+ (éI,N _ éo)em (r)+ (éC,N _ éo)[ez,zv (r)-o"™* (r)] (II1.3.2)

=i(Aé’ %4g"¢ (r)+ AC550™* (r))

¢=l1

In Equation (I1.3.2) the shorthand viscoelastic contrast tensors, AC¥% = €< —C°,

denote the contrast between the ¢® coating or inclusion and the reference material.

The Heaviside step functions 6'¢(r), 6> (r), and 56" (r) defined below are

generalizations of Equations (II1.2.15) and (I11.2.17):
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65 (r) = 1 if re?;,
0 if rel;,

6 (x) = 1 if rev,,
0 if reV,,

50" (r) = 6 (r)- 6" (r)

(II1.3.3)

It is important to note that the form of Equations (II.3.2) and (III.3.3) assumes that all
viscoelastic stiffness tensors and Heaviside step functions are expressed with respect
to the global coordinate system. This fact requires the rotation of each quantity from
their local coordinate system to the global coordinate system.

The derivation of the SC DSCT model can now be taken up from the modified
equilibrium equation given in Equations (III.2.5) and (II1.2.6). These equations will
be used to derive the N different modified Green’s tensors which take the shape,
orientation, and stiffness contrast of each family into account. Equation (III.3.4)

below gives the equilibrium equation for the N coated inclusion families.

ykt”kxj (r)=

I: JC,H (r)é,(r) ] =£(v)
ﬁ: [{Acg,g-cal.; (r)+ACG* (8% (r)-6'"* (r))} &y (r)] | (II.3.4)

¢=1

zf ()

For the N coated inclusion family case, it is obvious that the distribution of fictitious
forces is the result of the summation of N distributions, each described by Equation

(T11.2.6). The Green’s tensor solution to this differential equation, therefore, must be

represented as the sum of N Green’s tensors, Gf,,f (r -r" ) , Which is permitted due to

the superposition properties of the Green’s functions. Each individual Green’s tensor
is a function that calculates the displacement in the & direction at the point r when a

time varying unit force due to the inhomogeneity of the ¢® family of coated
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inclusions, ff (r) , is applied at the point r* in the m direction. Equation (II1.2.7)

must therefore be changed to the following form.
é,j’,dé,?,fﬂ (r—r";)+5,.m§(r—r"§)5(a)—a;')=0 (]]1.3.5)

Given this expression, which is analogous to (III.2.7), the resultant integral equation
for the displacement field becomes a summation of N integrals with Green’s tensor

kernals representing each coated inclusion family as shown below in Equation

(I1L.3.6):
3, () =38 (r) -3 | [625, (r ) Co () 5 () Jdr do’ (13,6

Where £ (r) represents the compatible strain at the point r due to the ¢™ family of

coated inclusions. The integral equation (III.3.7)describing the strain field at every
point in the homogenous material is found by applying the properties of the Dirac

delta function for the frequency integral and the small strain approximation.
N A
& (r)=E, = [T (r-r*)6C,,, (r*<) &, (r*)dr (I1.3.7)
v

The modified Green’s tensor for each coated inclusion family, f’g;f, , given in (I11.3.7)

is expressed below in relation (I11.3.8).

o6 = =[G, (r-r'%)+ G (r-r)] W3.8)
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It is again important to note that in the present form, all of the terms in the
above equations are defined with respect to the global coordinate system, x. The
interfacial operators described in Sections 3.2.2 and 3.2.3 can now be employed to
simplify the Equation (IIL3.7),. These operations are greatly simplified when
working in the local coordinate system, X°, and then rotating the result to the global
reference system. Indeed, the entire interfacial operator derivation given in Section
3.2.2 is identical for each coated inclusion family with respect to their local
coordinate system. Equations leading to SC model generalization through DSCT
formulation are found in the following section by simply restating the important
results in local coordinates. In the following paragraphs all variables represented as
X¢ represent the variable X* with respect to the local coordinates of the ¢™ coated

inclusion family.

3.3.2 Interfacial operators and average strain fields of coated inclusion families

The interfacial operators derived in Section 3.2.2 are general expressions that
only assume that the reference coordinates of phases 4 and B are identical. Because
of this, no re-derivation is necessary for the multiple coated inclusions problem.
However, for the sake of simplicity in the following analysis, Equations (II1.2.31) and
(I11.2.32) are re-stated here clearly delineating the variables as being referenced to the

local coordinates.

and
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24 | salfB Fa 2B
12| B (o = Gl + T |

if Kmn kimn ifmn |“mn
(I11.3.10)

28 [ 38 (Ba A |24

& =| B (Cldmn_cklmn)+1y'mn Emn

Here KZ represents Christoffel’s matrix for material ¥ with respect to the local

coordinates and is defined by I%;',f = Cz',j.‘k,ﬁ,ﬁ -

In order to apply the interfacial operators in the local coordinate system it is
first necessary to return to Equation (III.3.4). More specifically, the Heaviside step
function variation, 86'* (r) , and viscoelastic contrast tensors must be specified for
application with respect to the local coordinates. The Heaviside step function

variation is expressed in local coordinates with Equation (III.3.11), the analogue to
expression (111.2.18).

_\2
56" () ~ pgzﬂi(—’i—)-a(@,g) (@I.3.11)

~c 7. \2
a, (ai)

Here p° is the perpendicular distance from the center of the ¢ coated inclusion to its

tangent plane at the point X°, a° represents the o™ major axes, and S‘,,g the surface of

the inclusion of the ¢ coated inclusion family. The perpendicular distance, p°, is
found by applying Equation (III.2.19) in the local system. Equations (II1.3.2) and
(I11.3.11) are then combined to yield an expression for the ¢™ variation in viscoelastic

constants (IT1.3.12).

2 2 5\ ~ s 3 AG°¢ (J?g)z -
§Cg(r)=(C”§—Co)ﬁl(r)+(CC'g—C°)f)§Z&—g“ 22-6(8,, ) (M.3.12)

2
~c
« (%)
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It is important to stress that the calculation of this variation requires the rotation of the
reference material to the local coordinates. Equation (II1.3.13) below results from the
insertion of (III.3.12) into the integral equation (III.3.7) and application of the

appropriate rotation matrices.

£,(r)=E, —i:R;R;V [ 10 (F—F'<) ACIReE,, (' )i
5= T

(11.3.13)

_N\2
—iR,in-s > If“,’s,i, (f'—f'*’g)AC;ﬁ,‘,’,;fém (i—’f-c)l",s a (xi)z ds

¢=1 a §7;

Where R; is the rotation matrix determined from the Euler angles of the ¢® coated

inclusion family using relations given in Appendix B. The modified Green’s tensor in
the local coordinate system is determined through the evaluation of Equation (II1.3.5)
when the reference material and all spatial variables have been rotated to the local
reference frame.

It is now possible to calculate the average strain in the inclusion and coating of
each coated inclusion family. The strain jump between inclusion and coating
materials must first be found through application of the interfacial operators given
above. Using this information, the equation describing the strain at a position just
outside the ¢ coated inclusion can be calculated via the local equivalent of Equation

(I11.2.35) given below.
8 () =8+ PSACL B (I1L.3.14)

The average strain in each phase is then calculated using the classic equations shown
in (1I1.3.15):
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3 1 2 ~
s;" = —VI—CV;[ £y (F)dar

(111.3.15)
fe =L [ &)

Cs Ve

Using these expressions, the integral equation given in (II.3.13) simplifies to give the

average strain in the inclusion and coating of each family with respect to the local

coordinates via the two following equations.

g:';'; = ﬁ‘y —;11:1/;[ 17,'[ f",‘};j (f' - F"‘)Aé‘lf;’;‘fé"ﬁfdi-‘u;df
; L% (¢ Seoszre 50 075 () e 3.16
Syt S, @

~r\2
-2 { [T3 (f'—f+‘)di"}AC:',fb‘;f}:’”‘j;§qA(f"C€§’v€ LA

parsrs ¢ ~~\2
1 @ §_|v, %a (ai)
2Ce _ 2lg 1 5Cs Alcs e
& =5+ — [ BiFdt t ACKSEL (II1.3.17)
Ce Ve,

It is now necessary to define the volume integral of the modified Green’s tensor. In

accordance with Equation (I11.2.47), this integral is defined for each family of coated

inclusions using the following equation.
f]?,gg(é‘)= [T (F-7)dis if £, (I13.18)
VZ-;

Where ¥, represents the inclusion or composite inclusion volume and * represents

either the inclusion, the coating, or the reference material. Because the coating is
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assumed to be thin for each family, Equations (II1.2.43) and (III.2.44) can be

combined and re-stated for each family as follows:

Veo = [[6%(r)-0" (r)]ar

- i () (I1.3.19)

- [3 A (5) A
IZ (a) ( )di: Zi:.[ & WS

The derivation of equations equivalent to (II1.2.45)-(I11.2.51) with respect to the local
coordinates of the ¢ coated inclusion family is identical to the analysis carried out in
Section 3.2.3. Expressions (II1.3.21) and (I11.3.22) which relate the inclusion and
coating volumes to the integral of the modified Green’s tensor by employing the
interfacial operator property described by (II1.3.20) are given here for continuity and
clarity.

jé,;p&nﬁ;(“) | jr,,,, (F - ) (I11.3.20)
2

27

[y (7 —F)dF'dF = ( (c g) T (Cf)) (I.3.21)

[P L ——
N ey

jgﬂ;d? jP 550" (F)dF = ij:,,;p

~5
Ve a §, " (aa

) (1.3.22)

oo ) ]

Now assume Ag,/a,=Aa;/a; and insert the above expressions into Equations

(II1.3.16) and (I11.3.17). This yields Equations (II1.3.23) and (111.3.24) for the average

inclusion and coating strain for the ¢ coated inclusion family.
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21 _ 7m0\ AFI0gAlg
&; —E,.j ]:.j,d (C )ACHmnsmn

V. 2 (2 2. 2 2 2 A
- ﬁz;gf (c") ACIHT (CC‘) AC5gls (I11.3.23)
£
Vo T2 2. (2
(o) (e o
1¢

2 _ Blg Al [Ce Y\ AFICsELs
&;" =& + 1] (C )AC,‘,,,,,,.E,,‘,l (IIL.3.24)

It is now possible to employ these expressions in the homogenization step and derive

the SC model generalized using DSCT.

3.3.3 Homogenization and effective material properties

The next step m the derivation of the SC DSCT model must begin with a
discussion of the RVE. The simplest visualization of the RVE for SC model DSCT
formulation has been given in Figure 3-4. This representation breaks the true RVE
into N different RVE’s, each representing a coated inclusion family. Each of these
individual RVE’s are identical to the one presented in Figure 3-3. The ¢™ RVE

consists of a single inclusion having viscoelastic properties €’ which occupies a

fraction of the total volume, f'*, and is coated by a different material with

viscoelastic constants C* which occupies a fraction of the total volume, f¢<. The
coated inclusion is embedded in the effective homogeneous medium with viscoelastic
rigidity tensor C7 . The entire RVE is assumed to be subjected to a time varying

macroscopic strain represented by Ey . Further, as in Section 3.2.4, the following

identity is noted for the sum of the volume fractions of all phases.
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The macroscopic strain and stress definitions given in Equations (II1.2.62) and
(II1.2.63) are modified for the N coated inclusion family case as shown below.

N
B, =% oy ()de =y a2 (reage + ooae)  anaze)
V &=

& 1¢, X . .
5, = |8 (r)dr = f464 + Z( f1961F + f565%) (I11.3.27)
14 g=1

Where the strain and stress values on the RHS of the above equations denote the
average value in their respective phase.

The N strain localization tensors for each phase are always defined via the
general expression (I11.2.61). Equations relating the average strain in the inclusion

and coating phase of each family are therefore given as:

&* = AFE, (I11.3.28)
85 = AC5E, (II1.3.29)

It is now possible to express the average strain and stress fields in the matrix material.
To do so, Equation (TI1.3.26) and the strain localization relations above are employed

to give the following expression for the average strain in the matrix.

&M =7}7[1y. =D (oA - 1o 5;5)]15“ (I11.3.30)
¢=1
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Then by using the local constitutive law, the average stress in the matrix is:

6 =fLMé;,{, {Ik,m = (A + 15455 ) | B (I1.3.31)

The average stress in the matrix can also be deduced from the combination of
Equation (III.3.27), the local constitutive laws, and the strain localization equations of
the form of equation (II1.3.28). This combination yields the following expression for

the average stress in the matrix material.

~ N ~ ~ A ) ~ ~
=L[C,§‘;;—Z(f"Ci,’-ffAL;i,,+fC"C§,fAE;;)]Em @332

¢=1

Setting equations (II1.3.31) and (III.3.32) equal and solving for the effective
viscoelastic stiffness tensor yields Equation (I11.3.33).

CT =M +i[ ad (S ol BV S A (o o ): Ac-f] (I11.3.33)

¢=1

Equation (II1.3.33), coupled with the strain localization tensors that follow, is the
DSCT form of the SC model. This represents a more general form of the quasi-static
SC model given in Section 3.2 and further generalizes the model originally derived by
Cherkaoui et al [23].

The strain localization tensors for each phase are derived by rearranging
Equations (I11.3.23) and (1I1.3.24) into the form:

B, =(4) 8% (I01.3.34)
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In this expression X can represent either the inclusion or the coating in each family.

It is important to note that the strain localization tensors of each coated
inclusion family are derived from Equations (I11.3.23) and (III.3.24). For this reason
they are defined with respect to the local coordinate system of the ¢™ coated inclusion
family. It is therefore necessary to rotate the strain localization tensor quantities given
in Equations (TII.3.35) and (II1.3.36) to the global coordinates before substituting

them into Equation (II1.3.33) to evaluate the effective properties.

(fx"f)l—l +T"(é ) ACE#

fc‘T”(é ) ACEs T”(ch) ACTs| @I3.35)

e e o) v )] o
Jre

Ao = (1,10 (&) &) @336

In the above expressions AC*# = C*¥ — €% is the contrast tensor between material X
and the effective material where X represents either the inclusion or coating, and L is
the fourth order identity tensor. The local expressions of the strain localization
tensors given above are then rotated to the global system according to the Euler angles

of the ¢ coated inclusion family as follows:

AZF = RE RS RE RE A5, (IIL3.37)

Finally, as for the identical coated inclusions case presented in Section 3.2.4, it is
possible to calculate strain localization tensor for the matrix material. The expression

for the SC mode DSCT formulation is given below in Equation (II1.3.38).

88



N A A
AY = 1 1¢ [14 —Z( SIEATE 4 fOSASS )} (I11.3.38)
_ -

Where ¢ is the total volume fraction of all coated inclusion families given by
(111.3.39).

N

o=2(f"+1%) (111.3.39)

¢=1

Equations (I11.3.33), (II1.3.35), and (I11.3.36) constitute a generalized form of
the quasi-static SC micromechanical model developed in Section 3.2 using DSCT.
This generalized form of the SC model permits approximation of the effective elastic
or viscoelastic properties for a wide variety of particulate composites. Indeed, the
attractiveness of this SC model formulation is its ability to approximate the effective
behavior of a wide variety of particulate composites including lossy composites. It
presents an improvement in the static domain over the model as introduced by
Cherkaoui et al [23, 24], and a vast improvement in the quasi-static domain for the
approximation of lossy behavior over the scattering based models.

Before employing this model in a material by design strategy, however, it is
first necessary to verify its accuracy and robustness. The aim of the following chapter
is to validate this model derived above in the quasi-static regime through two different
methods. First, the model will be compared to established bounds in the complex
domain. This will ensure that the formulation of the model does not violate energy
restrictions. Second, the model will be validated by comparing SC approximations
against experimental data taken from the literature in both the static and quasi-static
domain. Following this validation, Chapter V will then present an elementary

multiscale material by design example which employs the quasi-static this SC model.
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CHAPTER IV

VALIDATION AND APPLICATION OF THE SELF-CONSISTENT MODEL IN

THE QUASI-STATIC DOMAIN

4.1 Overview

The aim of this chapter is the validation and application of the SC model in the
quasi-static regime. This will be accomplished in two steps. The first step is the
comparison of the SC model with existing bounds for complex composite media.
This section begins with an introduction of complex bounding methods available in
the literature. Following a detailed introduction, the SC is used to approximate the
effective complex behavior of several different hypothetical composite media and the
results are compared to accepted bounds. Agreement with existing bounds insures
that the derived SC model does not violate basic physical laws. The second part of
the SC model validation is done via parametric studies and comparison with
experiment. To begin, the general SC model is employed to carry out parametric
studies of the effective lossy behavior of viscoelastic composite materials containing
oriented ellipsoidal inclusions. The transmission loss (TL) of a slab of a viscoelastic
composite is calculated from the effective material behavior approximated using the
general SC model. These results are then compared to experimental data and the SC
single scattering model of Baird, Kerr, and Townend (BKT) [76]. Following this
analysis, SC DSCT model approximations are compared with experimental data for
viscoelastic composite materials having varying orders of anisotropy, multiple

inclusion types, multiple length scales, and varying coating thicknesses. All of the
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above steps validate the use of the SC model in the quasi-static domain and indicate
the robushiess of the DSCT formulation. Finally, the last section of this chapter
discusses several numerical difficulties encountered during SC model implementation

and the solution paths employed.

4.2  Complex bounds and the self-consistent model

In order to properly frame the use of the SC model for quasi-static wave
propagation problems, the issue of bounds must be addressed. Insight into the
validity and optimality of any mean field model can be established by investigating
the effective properties calculated with the model and comparing the results to well-
established bounds [150]. Comparison with bounds has a two fold purpose. Bounds
on the effective behavior of composite materials describe the limits of possible
effective material properties due to minimal and maximal energy restrictions. They
are dependent on constituent material properties and the volume fractions of each
phase. Disagreement with bounds invalidates a material model as it implies a
violation of physical laws during model derivation. Verification that a proposed
effective medium theory (EMT) falls within accepted bounds is, therefore, a first
order model check. The second purpose for comparison with bounds is to check
composite material optimality. Bounds provide information concerning the optimality
of effective material behavior because they are derived from upper and lower energy
restrictions. For this reason, proximity to an upper or lower bound gives a measure of
how nearly optimal the phase composition, inclusion geometry, inclusion orientation,
or any combination of these factors renders the effective behavior of the composite
[67].

Bounding techniques for purely elastic materials, meaning that no losses occur
and all material properties are modeled as real, are well known; see, for example,

Hashin & Shtrikman [58], Walpole [59], Hill [60, 61], and for a detailed summary see
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Hashin [62]. It is well known that the n-phase SC model falls within accepted bounds
in the purely elastic case [43]. There has been comparatively little work done
regarding the bounds of composites containing constituent phases with complex
material properties. The subject of bounding the effective complex moduli of
multiphase composites has been addressed in several papers starting with Hashin [8,
63, 64], Christensen [7], and Roscoe [65, 66]. Hashin’s work proposes a method for
calculating the effective complex moduli as a function in the frequency domain for
elementary composites and only briefly mentions bounds which are restricted to very
simple material mixtures. Christenson discusses the bounding problem, but restricts
the discussion to the application of Hashin-Shtrikman (HS) bounds for a bi-phase
viscoelastic matrix material containing either voids or rigid inclusions. Christenson’s
approach is simply the application of HS bounds to the real and imaginary parts of the
effective moduli separately. Roscoe takes a similar approach to bounding effective
viscoelastic behavior by applying the Voigt and Reuss bounds separately to the real
and imaginary parts of a viscoelastic composite; the simplest and least restrictive
complex bounding technique in the literature. These bounds were derived from
variational principles expressing minimal and maximal strain energy in the
viscoelastic composite, but the interaction of the real and imaginary parts was not
considered. Recent developments in bounding the effective behavior of complex
composites are based on the variational techniques of Cherkaev and Gibiansky [67]
(see also Milton [68] and Miller [69]) which couple contributions from the real and
imaginary parts of the constitutive phases on the expressions for overall energy.
Results based on this approach are detailed in a series of related papers: Gibiansky &
Milton [70], Milton & Berryman [71], Gibiansky & Lakes [72, 73], and Gibiansky &
Torquato [74]. Many of the works referenced above were introduced for bounding
the effective behavior of any complex composite medium which includes such
material properties as effective electrical conductivity, magnetic permeability, or
viscoelastic moduli. The methods derived by the above authors bound the effective

bulk and/or shear moduli of bi-phase viscoelastic composite in zones prescribed by
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arcs in the complex plane. These arcs are functions of the complex moduli and
volume fractions of the constituent phases. The variatic;nal approaches of the above
authors are more restrictive than those proposed by Roscoe, Hashin, or Christensen
because they relate the complex bounds of the effective moduli to the real and
imaginary parts of the constituent phases. For the elastic case, all of these approaches
reduce to the Hashin-Shtrikman bounds for an isotropic bi-phase composite.-

All of the bounding methods introduced above have limitations, especially
when applied to composites containing coated ellipsoidal inclusions. The most
relevant restrictions concerning this application are the number of constituent phases
and composite anisotropy. Applying bounds derived for purely elastic composites to
the real and 1mag1nary parts of a viscoelastic composite separately, as proposed by
Roscoe [65, 66] and Christenson [7], does not limit the resultant bounds to any
specific number of constituent phases. Unfortunately, the Reuss [111], Voigt [110],
and HS [58] bounds require the constituent phases and the composite material to be
isotropic. More importantly, the interaction between the real and imaginary parts,
which are related by the principle of causality [151, 152], is neglected. More
restrictive bounds have been introduced by Cherkaev and Gibiansky are derived from
variational methods do take storage and loss moduli interactions into account.
Unfortunately, these bounds are restricted to bi-phase composites and also require
both constituent and effective materials be isotropic. Though these methods are
limited in terms of the number of phases and material anisotropy, they are the most
developed bounds to be found in published literature. The three most tractable
approaches available, those of Roscoe [65, 66], Milton and Berryman [71], and
Gibiansky and Lakes [72], are summarized and plotted together with SC model

estimates in the following section.

42.1 Complex shear and bulk modulus bounds proposed by Roscoe
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The upper and lower bounds derived by Roscoe for a viscoelastic composite
reduce to the application of Voigt and Reﬁss bounds separately to the real and
imaginary parts of the composite [12]. These bounds provide the least restrictive
limits of possible effective viscoelastic properties and can be calculated as a function
of either inclusion volume fraction or frequency. Though these bounds are not
" restrictive they represent a good starting point for the validation of the SC model in
the quasi-static domain.

The equations used to derive bounds proposed by Roscoe are analogous
statements of the potential energy equations which are the basis of the extremum
principles used to find the bounds for elastic composites, see Voigt [110] and Reuss
[111]. The result of this analysis in the complex domain, see Appendix C, yields the
bounds described by Equations (IV.2.1) and (IV.2.2) which are the weighted
harmonic average and weighted average of the constituent phase properties,

respectively.

i =(Z§J K = (Z f] ava1)

r K
Hay =D [t Kiw = D K Iv.2.2)

In the above relationships, RL and RU denote the lower and upper bounds derived by
Roscoe and are analogous to the Reuss and Voigt bounds, respectively. It is now

important to note that due to energy considerations the following is true:

Py 2 My Koy 2Ky
(IV2.3)

Ju Zj;f I zl‘;}
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An important aspect of these bounds is their lack of restrictions with respect to
the frequency inspected, the total number of constituent viscoelastic phases, 7, or the
total volume fraction, ¢. This logic leads to the following restrictions on the possible

values for the effective viscoelastic moduli:

1 (0,0) < iy (0,0) < iy (@,0)
(IV.2.4)
ki (@.0) < kg (0,0) < k7 (0,0)

where o is the frequency of interest. It is also useful to note that f, .. =1—¢.

At this stage the quasi-static SC model is compared to these elementary
complex bounds. This is achieved through two different comparisons. The
approximations from the quasi-static SC model are first compared to the upper and
lower bounds for a fixed frequency while the coated inclusion volume fraction is
varied from 0 to 1 for a hypothetical viscoelastic composite created from the materials
studied by Baird ef al [76]. The frequency dependent SC model approximation of a
viscoelastic composite with a fixed volume fraction is then compared the same
bounds. The constituent material properties employed in these studies are listed in
Table 4-1. The two composite materials containg identical coated inclusion phases of
varying volume fractions, but are distinguishable by their polymer matrix properties.
The matrix materials of these two composite materials, composite / and composite 2,

are decribed as “soft” and “stiff”, respectively.

Table 4-1: Constituent material properties of the viscoelastic composites studied by Baird ef al
76].

Composite 1 Composite 2

Bulk modulus of matrix (Pa): KM 3x10° 3x10°
Density of matrix (kg/m"): pM 935 1090
Dynamic shear modulus coefficients: Ay 5.93978 6.675 69

A, 2.6618x 10 3.954x 10™

A, -3.613x 10™ 9.39x 107

As 4.1x107 3.85x107

. nte: Bo | cosyyi10? 9.792x 10*




Composite 1 Composite 2
B, 1.9374 x 10” 59x10*
B, -6.209 x 10* 6.89 x 10™
. Bs 8.19x 10° 925x 10
Bulk Modulus of coating (Pa): K°© 2.1x10° 2.1x10°
Density of coating (kg/m”): p© 1700 1700
Shear modulus of coating (Pa): e 1.26x 10° 126x 10°
Loss factor of coating: n° 0.1 0.1
Bulk modulus of air at 1 atm (Pa): K 14x10° 14x10°
Density of air at 1 atm (kg/m"): p' 1.28 1.28
Average coating fraction: g 2.5¢10” 25e10”
Average outer shell radius: b 5x107° 5x10°

The frequency dependent shear modulus of the matrix materials detailed in the above
table is approximated through Equations (IV.2.5) — (IV.2.7) and by applying the

following relationships.

log 1) = 4y + 4, log f + 4,(log £} + 4;(log £}’ (Iv.2.5)
8, =By +B,log f +B,(log f)} + B (log /)’ (IV.2.6)
ﬂM(.f_):.uAIfl(l_itanaM) av.2.7)

It is important to point out that fin these equations represents the frequency of interest
and not the volume fraction. These equations and coefficients were found by fitting
experimental data obtained from a Dynamic Mechanical Thermal Analyzer (DMTA)
[76].

The results of the two studies comparing the quasi-static SC model
approximation to the elementary bounds proposed by Roscoe are given below in
Figure 4-1 through Figure 4-4. The matrix material is the “soft” material given in
Table 4-1.
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Figure 4-1: Real and imaginary parts of the effective shear modulus as function of coated
inclusion volume fraction for a fixed frequency. SC model approximation shown with the upper
and lower bounds proposed by Roscoe. (Lower bound of imaginary part is zero everywhere).
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Figure 4-2: Real and imaginary parts of the effective bulk modulus as a function of coated
inclusion volume fraction for a fixed frequency. SC model approximation shown with the upper
and lower bounds proposed by Roscoe. (Lower bound of imaginary part is zero everywhere).
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Figure 4-3: Real and imaginary parts of the effective shear modulus as a function of frequency
for a fixed coated inclusion volume fraction. SC model approximation shown with the upper and
lower bounds proposed by Roscoe. (Lower bound of imaginary part is zero everywhere).
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Figure 4-4: Real and imaginary parts of the effective bulk modulus as a function of frequency for
a fixed coated inclusion volume fraction. SC model approximation shown with the upper and
lower bounds proposed by Roscoe. (Lower bound of imaginary part is zero everywhere).

The above plots show that the SC model approximation falls within the
complex bounds derived by Roscoe for viscoelastic composites as a function of both
frequency and coated inclusion volume fraction. Though this study is far from
exhaustive and not a direct proof, the plots suggest that no physical laws have been
violated during the derivation of the quasi-static model. These observations are
encouraging. However, since these bounds are the least restrictive, it is prudent to
compare the SC model against more restrictive bounds. The restrictive bounds
chosen to further validate the quasi-static SC model are the shear and bulk bounds for
bi-phase viscoelastic composites derived by Milton and Berryman [71] and Gibiansky

and Lakes [72], respectively.
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4.2.2 Complex bounds using variational and translational techniques

- The two bounding techniques described in this section stem from the
complementary works of Milton [68j7 and Cherkaev and Gibiansky [67]. The
objective of their work was to simplify the algebraic calculations required to find the
bounds for complex valued effective material properties resulting from heterogeneous
media. This is done via a fractional-linear Y-transformation [74]. These methods
were derived for any complex valued material property whose fields are dissipative
and time varying. The resulting bounds can therefore be applied to physical
properties as disparate as electrical conductivity and viscoelasticity. Using complex
valued expressions of Hooke’s law and strain energy density, Cherkaev and
Gibiansky [67] formulated four different min-max variational principles. These
principles lead to rigorous bounds for the effective viscoelastic moduli of a bi-phase
composite material. This approach inspects a bi-phase viscoelastic composite at a
fixed inclusion volume fraction and prescribes a zone in the complex modulus plane
which bounds the set of permissible values describing effective material behavior.
Their results yield coupled bounds. Coupled bounds restrict the effective complex
valued moduli based on functions of both the real and imaginary parts of the
constituent phase moduli. Gibiansky and Lakes employed this approach to find the
bounds on the effective viscoelastic bulk modulus [72]. Those bounds are defined by
four arcs that intercept each other at two points in the complex plane. The outer-most
of those four arcs define the limits of permissible effective complex bulk modulus
values of a bi-phase viscoelastic composite. The approach derived by Milton and
Berryman [71] to find bounds on the effective shear modulus is similar in its
derivation and also based wholly on the work of Cherkaev and Gibiansky [67] and
Milton [68]. Both of these bounding approaches, which are summarized in Appendix
C, are restricted to the following cases: (i) bi-phase viscoelastic composites, (i7)
isotropic behavior of both the composite and constituent phases, and (iii) calculation

of bounds for a single frequency and a single volume fraction. These restrictions limit

101



quasi-static SC model validation. The third restriction is the most limiting for the
inspection of a wide range of material compositions and exciting frequencies. These
restrictions illustrate why these methods do not easily lend themselves to inspect the
validity of an effective medium theory as a function of either volume fraction or
frequency. Bounds based on these variational techniques are, however, the most
rigorous available. Therefore, despite these limitations, it is valuable to check SC
model approximations against these bounds. The following sub-sections employ the
bounds described in Appendix C and plot the bounds together with the quasi-static SC
approximation. This analysis provides further validation of the SC model in the

quasi-static frequency domain.

4.2.2.1 Complex bounds on the bulk modulus of bi-phase media

The bounds for the bulk modulus derived by Gibiansky and Lakes [72] are
defined for a bi-phase viscoelastic composite material. The composite’s composition
is defined by a phase I which occupies volume fraction f and its complex bulk and

shear moduli are represented as x; and u;, respectively. Conversely, phase 2 occupies

a volume fraction (1 -f ) and its bulk and shear moduli are represented as x, and x5,

respectively. The effective complex valued bulk modulus of the isofropic viscoelastic
composite will be constrained to a “lens-shaped” region in the complex bulk modulus
plane that is bounded by the outer-most pair of four circular arcs each of which
correspond to the four min-max variational principles proposed by Cherkaev and
Gibiansky [67] and Milton [68]. To illustrate their bounds, Gibiansky and Lakes
presented a hypothetical viscoelastic composite material whose composition and
constituent material properties are defined by the values given in Figure 4-5 below.
Figure 4-5 shows that the bi-phase isotropic SC model falls within the bulk modulus

bounds calculated by the relations above.
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Figure 4-5: Bounds in the complex bulk modulus plane calculated from reference [72] and SC
model approximation,®, of same composite. Bounds are delineated by four, sometimes
overlapping, lines: K9,

4.2.2.2 Complex bounds on the shear modulus of bi-phase media

The bounds on the effective complex shear modulus derived by Milton and
Berryman [71] are also based on the four variational principles and the Y-transform
introduced by Cherkaev and Gibiansky [67] and Milton [68]. Their results yield arcs
in the complex modulus plane which define the limits of permissible effective
complex shear modulus values of a bi-phase viscoelastic composite. The bounds are
best described by an algorithm in reference [71] which is summarized in Appendix C
for convenience. It must be noted that difficulties can arise in calculating these

bounds because some factors may be driven to infinity while the final result is always
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finite. Further, these bounds are sometimes not completely closed, and tangent lines
must be drawn to close the bounds. These complications make the process arduous
and less than ideal for an exhaustive evaluation of model validity as a function of
frequency or volume fraction, or both. Despite these difficulties, the comparison of
the quasi-static SC model and these bounds given in Figure 4-6 shows good

agreement and further suggests that the application of the SC model in the quasi-static

regime is valid.
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Figure 4-6: Bounds on the complex effective shear modulus given in reference [71].
Upper bound; - - - Lower bound. Calculated SC model point, ¢ , is shown to fall within
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43  Validation of the general SC model in the quasi-static domain
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The previous section described a fundamental check of the quasi-static SC
modeling apprOaL;h. The SC model was shown to fall within accepted complex
bounds'thﬁ's proving 'tﬁat no physical lavx;s were violated in the derivation of the
‘model. The SC model derived in Chapter III is therefore a valid effective medium
theory for applications in the guasi-static frequency domain. Model validation against
complex bounds is very important but it yields little information about the precision
and versatility of the SC model. The remainder of present section investigates the SC
model for more specific information about its capacity to model the effective bebavior
of various viscoelastic composite materials. This information is gathered through two
methods: comparison with experiment and parametric studies. Speciﬁca]ly, the SC
model precision is investigated by comparing model results with experimental data
while the versatility is validated though a series of parametric studies. These two
approaches provide a clear picture of SC model precision and its adaptability to model

many different types of viscoelastic composites.

4.3.1 Elementary validation of quasi-static SC model

The fundamentals detailed in Chapter II indicate that the effective lossy
behavior of a viscoelastic composite in the quasi-static domain is intimately related to
the strain energy in its lossy components. To illustrate this point, the increase in
strain energy in the “matrix” material of a voided composite sphere was given as an
example. The present section generalizes the voided sphere concept to the case of an
isotropic voided viscoelastic material. The following elementary parametric studies
show trends of the effective behavior of the voided viscoelastic material as calculated
by the SC model. The relationship of interest is between the composite’s macroscopic
lossy behavior and the void fraction. The goal of this simple study is to provide a first
order validation of the quasi-static SC model by showing that the trends calculated

with the SC model are in accordance with expectations.
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The viscoelastic composite studied is a hypothetical material resulting from
the introduction of spherical voids in a matrix of the “soft” polymer matrix material
studied by Baird ef al [76]. The properties of the matrix, together with all other
material properties which are important for the following examples, were given by
Baird et al and have been repeated in Table 4-1.

The fundamentals of the frequency dependent behavior of voided viscoelastic
materials is well understood, see, for example, Jarzynski [6]. The three following
trends are expected: (i) a decrease in the elastic moduli of the material, C,, with
increasing void fraction, ¢, (ii) an increased damping capacity with increasing
frequency, and (#i{) an increased damping capacity with increasing void fraction. The
first trend is the result of removing material and thereby weakening the resistance of
the whole to deformation. Figure 4-7 clearly shows that the SC model correctly

approximates this trend across all frequencies inspected.

, Effective Complex Shear Moduli of Voided "soft” BKT Polymer as a Function of Frequency
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Figure 4-7: Effective complex shear modulus of a voided viscoelastic material as a function of
frequency. The pure matrix response is shown together with three differnent values of void

fraction.
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The second trend, an increase in damping capacity with increasing frequency,
is the result of contributions from both wave scattering and constitutive viscoelastic
material behavior. The scattering contribution is described as follows. As frequency
increases, the relative void size increases with respect to incident wavelengths. This
is equivalent to Staﬁng that the non-dimensional number 4a increases. This “increase™
in void size leads to more efficient reflection, re-direction, and mode conversion by
voids thereby creating more wave-fronts which are subsequently attenuated by the
viscoelastic host material. The ultimate result is an increase in the absorptive quality
of the material’. The contribution from constitutive viscoelastic material behavior
results from an increase in the characteristic phase lag between the load and the
resulting strain with increasing frequency. The result is an increased hysteresis loop
area in stress-strain space (see Section 2.1.1). It is very important to note that this
behavior is not the case for all viscoelastic materials at all frequencies [153]. Typical
characteristics of the frequency dependant complex shear modulus are shown in
Figure 4-8. This figure shows that both the storage and loss modulus have a strong
frequency dependence and that the damping capacity of a viscoelastic material
increases monotonically as a function of frequency for 0< f < £, , . However, for the
materials and frequency ranges studied in these examples, the damping capacity will
increase monotonically as a function of frequency. It is also important to stress that
increases in lossy behavior with increasing frequency observed in the quasi-static
frequency domain are dominated by the constitutive behavior of the viscoelastic
behavior and that scattering contributions have a minimal contribution. The ability of
the SC model to correctly capture this behavior regardless of the void fraction is

shown in Figure 4-10.

! Incidentally, this argument is the same used by Lord Rayleigh to explain why the sky is blue. Blue
light, having the shortest wavelength in the visible spectrum, is more efficiently scattered by particles
in the air and is therefore more visible. His fundamental work in the area of wave scattering is also the
reason that Jow ka scattering is called Rayleigh scattering and that the limit of ka << I is called the
Rayleigh limit.
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H-N Model Real Component of Shiear Moduliss as Function of Frequency
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Figure 4-8: General characteristics of the frequency dependent shear modulus of viscoelastic.
The modulus is approximated by the Havriliak-Negami model [148]. Damping capacity of the
viscoelastic material is 2 monotonically increasing function of frequency for 0 <f<f.;.

The third trend, an increase in damping capacity with increasing void fraction,
is the result of both wave scattering and viscoelastic material strain energy
contributions. Increasing material void fraction results in more efficient wave
scattering at each frequency of interest because the scattering volume is increased.
Increasing material void fraction at a fixed frequency, therefore, is analogous to the
effect of increasing frequency for a fixed void fraction which was explained in the
previous paragraph. The increase in damping capacity with increasing void fraction
can also be explained using strain energy arguments. The time varying specific strain
energy, defined as the strain energy per unit volume, in any material is calculated

from either of the two expressions given in Equation (IV.3.1).

N (A

1
—6.8. = R 3.1
2 v (1/2)é,C,ués @v3.0

W=
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In the above equation W represents the specific strain energy, G the applied stress,
£, the strain, and J is the compliance tensor which is the inverse of the stiffness

tensor, C. It is noted that the strain and stress fields are not independent of each
other and the selction of the strain energy relationship can therefore be made for
simplicity depending whether the material is loaded with a known stress or know

displacement (strain). For a propagating wave of known magnitude the strain energy
should be calculated with the relation 2w= o“',.jjy,do",d. As previously stated,

increasing the void fraction of any material leads to a decrease in the elastic constants
and conversely to an increase in the compliance of the effective material. It is clear
from this expression that for a given applied stress level an increase in the magnitude
of the material compliance translates to an increase in the specific strain energy in the
effective material. Further, since voids cannot carry any load, this increase in strain
energy is concentrated in the viscoelastic host material. Chapter II illustrated that an
increase in strain energy of lossy materials leads to an increase in the total energy
absorbed. Figure 4-9 illustrates the ability of the SC model to correctly approximate
this expected physical behavior. The plot shows the ratio of the specific strain energy
in the voided material to that in a homogeneous material for the same applied shear
stress, T. The plot clearly shows that the SC model correctly captures the increase in

specific strain energy as the void fraction is increased for all frequencies.
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Ratio of Specific Strain Energy in Voided Material to Pure Matrix vs Frequency
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Figure 4-9: Increase in the specific strain energy of voided composites due to pure shear loading.
The ratio shown is the ratio of the specific strain energy in a voided composite to the strain
energy in 2 homogeneous material submitted to the same shear stress.

The result of the increased strain energy present in the viscoelastic matrix
material shown in Figure 4-9 is an increase in the macroscopic damping capacity of
the composite. Evidence of this increased damping capacity is best captured through
parametric studies of the longitudinal and shear wave attenuation coefficients. The
attenuation coefficient is the imaginary part of the complex wave number and is a
measure of the decay rate for a wave propagating in a medium with lossy properties.
Recalling equations (I1.1.20) and (II.1.21), the longitudinal and shear wave
attenuation coefficients for propagation in the voided polymer given here are found

from the two expressions below.

~e p o «A A X ~ —a il 0)1—]?
k”=a)/;‘;;ﬂ:,-=kﬂ+zaﬂ = p,(x.t)=4e"e (=-52)
aV.3.2)

kAL = L4 i IEL + i&L = ﬁL (x, f ) = ﬁe_d‘xe_i(m_ka)

A7+ 21
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These equations show that an increase in the magnitude of the attenuation coefficient
leads directly to an increase in the attenuation of the propagating wave. Figure 4-10
illustrates that the SC model captures the increased damping capacity of a voided

polymer with increasing void fraction and increasing frequency.

Shear and Longitudinal Attenuation Coefficients vs. Frequency
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Figure 4-10: Attenuation coefficients for shear and longitudinal wave p!"opagation in a pure
polymer compared with the effective behavior of three different voided composites approximated

by the SC model.

One very important observation about Figure 4-7 and Figure 4-10 is that the
increase in lossy behavior is the result of material softening caused by removing
material. The softening is best indicated by an increase in the magnitude of the
compliance tensor. For an imposed stress, o, (which is the case for classic
propagating wave) the strain energy increases in the lossy matrix and, as a direct
result, the overall damping capacity of the material is increased. This is further
illustrated by examining Figure 4-11 which shows the increase in the inverse of the

shear and longitudinal moduli as a function of void fraction.
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x10" 3 Part of Inverted Shear and Longitudinal Moduli vs. Frequency
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Figure 4-11: The imaginary part of the inverted shear and longitudinal moduli of a pure polymer
compared with the effective behavior of three different voided composites as approximated by
the SC model.

It is also important to specify that material softening increases lossy behavior
for the case presented above because the imposed loading is stress controlled.
However, the opposite is true when the prescribed loading is an imposed time-varying

strain. An increase in the overall lossy behavior of a viscoelastic composite results

from the reinforcement of a lossy host when loading is strain controlled since the
specific strain energy is computed from 2w = é,.jCA',.j,dé,d in that case. The true measure

of the absolute damping capacity of a composite material is therefore not its stiffness
tensor loss factor, but rather the magnitude of the imaginary part of the tensor
directly related to the loading condition. If the real part of the stiffness tensor is
constant, an increased stiffness loss factor is a sufficient measure of composite

damping capacity. For wave propagation in complex composites, however, the most
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accurate measure of damping capacity is the imaginary part of the effective
compliance tensor and related terms. The following section presents a measure
related to the compliance of a composite material, the Transmission Loss (TL).
Estimates of the effective complex moduli for a composite consisting of a'viscoelastic
matrix containing coated micfo—inclusions are compared with experimental data from
Baird ef al [76]. Parametric studies on inclusion geometry and orientation are also

given.

432 Comparison of modeling results with experimental TL data: Oriented

ellipsoidal inclusions

The following quasi-static SC model verification is a sound isolation
application. SC model estimates of the effective complex moduli of a viscoelastic
composite are used to calculate the TL of a material layer as a function of frequency.
The SC estimates of the TL are compared to experimental data and the low ka
scattering model of Baird ef al [76]. Following this comparison, parametric studies of
the inclusion geometry effects on the spatial dependence of composite material lossy
properties are presented in order to explore SC model strengths.

The following analysis details how the TL of a slab of viscoelastic composite
material is calculated from the effective material properties. TL is a measure of the
sound isolation provided by an obstruction between a sound source and receiver.
Specifically, TL is the ratio of the incident wave energy to the energy transmitted
through an obstruction, in this case the composite material layer [3]. Assume that a
submerged composite material layer is subjected to a normally incident plane wave.
The magnitude of the incident, reflected, and transmitted pressures can be calculated
by requiring continuity of pressure and velocity at the two water-composite interfaces

represented by x3 = 0 and x3 = L in Figure 4-12.

113



(@ X2 ®)
water water
b 1 (x, t) Composite
« 15" (x.1)
Rp' (x,1)
X

Figure 4-12: (a) Representation of a viscoelastic matrix slab containing identically oriented
ellipsoidal inclusions. (b) Incident, reflected, and transmitted plane-wave visnalization used to
calculate the TL of the composite material layer.

In the figure above, p’ is the magnitude of the incident pressure, R is the reflection

coefficient, T is the transmission coefficient, L is the thickness of the composite, and
a and c represent the major and minor axes of the oriented oblate coated inclusions.

Consider an isotropic fluid medium described by a mass density p and sound

speed c; in which an acoustic plane wave of the form ¢® s normally incident on
an infinitely long slab of thickness L, as shown in Figure 4-12b. The composite is

composed of a viscoelastic matrix material described by the complex Lamé constants,

i, and [, adensity p,, and contains coated ellipsoidal inclusions. This initial
M M

study considers the orthotropic case of a slab containing oblate spheroidal inclusions

all oriented such that their minor axes are along the x3 direction of propagation. The

inclusions are defined by their Lamé constants ):, and f, and a density p, , and the
coating by /’I’:C and /. and density p,. The coating has a thickness Aa where Aa/a is

assumed to be much less than unity. It is further assumed that Aa/a = Ac/c. For plane
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wave transmission in the x;3 direction through a composite material slab submerged in

water, the TL, in decibels, is defined in terms of the transmission coefficient T by

Equations (IV.3.3)— (IV.3.7) [105] :

TL = -10log,,(TT") (IV.3.3)

-1
N A o w water R
7 =2|2cos(BTL)—i| —Z5__+ (p c:e)ﬁ sin(£Z L) (IV.3.4)
(pc,) YA

The effective wavenumber of the composite material in the x3 direction is given by

. g ..
4 =a;,/ 1?4 = =k +igd (@IV.3.5)

and the effective density and impedance of the composite are, respectively,

Aa Aa
pT =p* —¢[pM —pc(3j‘—)—p’(l—37)] (Iv.3.6)
and
28 = pTed = M7 p? Iv.3.7)

In the above equations, M = é’;f is the complex plane wave modulus of the
material in the direction of wave propagation, éZ is the longitudinal phase velocity in
the x3 direction, d;{ is the longitudinal wave amplitude attenuation coefficient in the

x3 direction, ¢ is the volume fraction of coated inclusions, (pc,)"™ is the specific
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acoustic impedance of water known to be 1.5x10° Rayl, and the asterisk denotes the
complex conjugate.

It was previously shown that micromechanical models can be used to
approximate the global dynamic behavior of isotropic three phase lossy composites in
the low frequency, or quasi-static, regime [53]. In that study, viscoelastic composite
materials were created by introducing various volume fractions of spherical (a/c = a/b
= I) coated inclusions into the “stiff” matrix material whose properties are given in
Table 4-1. The TL resulting from layers of these viscoelastic composite materials
were measured for frequencies ranging from 0 to 100 kHz by Baird et al [76]. TL
estimates were calculated using the low ka limit scattering model introduced by Baird
et al (BKT) and the coated inclusion SC model derived in Chapter III. The results
have been reproduced in Figure 4-13. These plots replicate Figures 2 — 6 of reference
[76] but add SC model estimates. Two facts are readily apparent from inspection of
these plots. First, the quasi-static SC model is shown to have good agreement with
the low frequency scattering model. Second, the SC model provides accurate
estimates of frequency dependent lossy behavior as a function of both the frequency

and the coated inclusion volume fraction.
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Figure 4-13: SC and BKT model estimates of TL for a 1 em thick slab of viscoelastic composite
submerged in water. Experimental data taken by Baird et al [76].

Quasi-static SC model precision results from the fact that it accurately
approximates the mechanisms dominating the response of a particulate composite
material to time-varying loading. Namely, the micromechanical approach takes
small strains in the neighborhood of an inclusion into account using the well-
developed homogenization techniques of strain localization and volume averaging.
This approach therefore accounts for losses occurring during wave propagation in a
direct manner by calculating strain rather than through asymptotic scattering
approximations. This approach has the added advantage of being easily amenable to
the modeling of anisotropic composite material behavior resulting from preferentially
oriented non-spherical inclusions or anisotropic constituent phases.

The next section employs the SC model to approximate sound transmission
through a viscoelastic composite slab containing a fixed volume fraction of coated
oblate inclusions in order to observe the effect of varying aspect ratios. The

constituent materials are the same as those employed by Baird et al [76] for the case
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of a stiff matrix. Figure 4-14 plots the TL as a function of frequency for a fixed
coated inclusion volume“-fraction calculated using the SC model for identically

oriented inclusions as shown in Figure 4-12(a).

Transmission Loss of 1 cm thick Composite
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Figure 4-14: Transmission loss of 1 cm thick slab of composite material oriented as shown in
Figure 4-12(a) and containing 13% by volume of oblate coated inclusions of varying aspect ratios.

— afe=1,_._afc=15,___alc=2,.... afc=2.5.

Oscillations in TL observed at the lower frequencies are the result of thickness
resonances. Maximum transmission, i.e., minimum TL, occurs at the half-wavelength
resonances while maximum transmission losses occur at the odd quarter wavelength
resonances. It is observed that increasing the aspect ratio @/c results in a small
increase in TL (less than 2 dB in the 0 to 100 kHz range) because of the increased
shear strain in the neighborhood of the inclusion caused by its form. In other words,
for the same traveling compressional stress wave field, more deformation occurs in
the neighborhood of the oblate inclusions as compared to the spherical inclusions.

Thus more mode conversion to shear occurs, inducing increased losses. This trend is
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also confirmed by plotting the attenuation coefficient, @7, of the longitudinal wave
number as a function of the angle in the x1-3c3 pléne, as shown in Figure 4-16. The
angle is the polar angle, here denoted as 6, in spherical coordinates. The plot shows

the attenuation coefficient for a longitudinal wave traveling in the direction, m,
defined as n = <sin9¢os¢'f, sin@sing j, cosd f(> where @ is the azimuthal angle, in

an infinite medium containing oriented ellipsoidal inclusions oriented as shown in

Figure 4-15.

Oblate Spheroid: a=b >c¢

X2

Figure 4-15: Geometry of oblate spheroids and their orientation with respect to the global
coordinate system.

It is in this way that the influence of changing the orientation of inclusions with
respect to the coordinate system shown in Figure 4-12a is studied. It is interesting to
note that changing the incident direction, n, as described above is equivalent to fixing
the incident direction of the plane wave and rotating the oblate inclusions about the

x>-axis. The attenuation coefficient in the x;-x3 plane (@ = 0) as a function of polar

angle is calculated from Equation (IV.3.8).

&*(6) = &, sin’ 6+ & cos’ 0 (IV.3.8)
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Figure 4-16 shows that both the attenuation coefficient (in Np/m) and the anisotropy

factor, defined as (& —ds,;)/d;,,increase as the aspect ratio increases. One

interesting point is that as the polar angle increases, the attenuation coefficient is also
seen to increase. Here it is noted that there are competing factors which tend to
increase or decrease the lossy behavior with respect to the polar angle. These
competing factors are the effective shearing area of the inclusions, which depends on
inclusion form, and the increase or decrease in effective material stiffness of the
composite due to coated-inclusion properties. For the case shown in Figure 4-16, the
oblate form of the inclusions increases the shearing area parallel to the propagation
direction. This tends to increase the lossy properties of the composite and results in
an increase in the composite material’s damping capacity, described here by the

attenuation coefficient, as a function of polar angle.
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80 T 5 - [ - N T T
—_—

= iso
Oy g
=== %0
e O g

E .Ehmn""!""""; e

a

Z BB e . - .

+F e

c

X P il

QO e e iaen® -—-__---..--'-—-

% . _‘-'-_--‘-' -

o] L

O _,—"“

= ————

S ST S e :

g 80 jmmmmmmme T oo, H ST SR O

8 : - ,

E . I-I-.l‘-l_l-l-‘- ekt il T -

0 10 20 30 40 50 60 70 80 a0
Polar Angle {°), 6

Figure 4-16: Attenuation coefficient as a function of angle in the x1x; plane of material
containing oblate ellipsoidal inclusions of varying aspect ratios (9= 0 coincides with x;-axis). The
volume fraction of inclusions is 13% and the frequency of the incident wave is 50 kHz, .

alc=1, —_._afc=15,.._alc=2,... afc=2.5.
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In the example given below, that of prolate and penny shaped Lucite
inclusions, the opposite trend is observed as the inclusion and coating material
properties lead to an overall increase in stiffness which will dominate the increase in
shearing area related to inclusion geometry. Staying with the oblate inclusion
example, Figure 4-17 plots the real and imaginary parts of the complex wave speed in
the x3 -direction as a function of frequency for aspect ratios a/c = 1, 1.5, 2.0, and 2.5,
again for a fixed volume fraction ¢ = 0.13. The results show another aspect of the
change in inclusion form, specifically that for a fixed frequency, the real part of the
phase velocity decreases with increasing aspect ratio. This corresponds to a relative
softening of the composite in the x3-direction as the aspect ratio increases. The
softening, a result of oblate inclusion geometry, increases the specific strain energy in
the neighborhood of the inclusion for the same imposed stress levels. At the same
time, for single frequency, the absolute value of the imaginary part of the phase
velocity also decreases with increasing aspect ratio. This decrease in the imaginary
part is proportionally less than the decrease of the real part and therefore corresponds
to an increase in attenuation in the x3-direction for the oblate geometry. Otherwise
stated: the magnitude of the imaginary part of the inverted plane wave modulus along
x3 increases with increasing aspect ratio. As discussed in Section 4.3.1, this causes an
increase in the specific strain energy for a fixed value of imposed stress, thereby

increasing the absorptive qualities of the composite along x3.
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Complex Effective Longitudinal Sound Speed in x; Direction
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Figure 4-17: Real and imaginary parts of effective complex longitudinal wave speed in x;-
direction as function of frequency for a volume fraction inclusions of 13%. a/ c=1,

—.-afc=15,.__afc=2,.... alc=2.5.

The above discussion is for a specific case of a viscoelastic matrix containing
oblate coated inclusions. The SC model is more general, however, and can be used to
study the effects of prolate, needle shaped, and penny shaped inclusions (along with
any variation of these forms). In what follows, the SC model is applied to the case of
composite material composed of the same “stiff” viscoelastic matrix material
containing inclusion and coating materials with the properties given in Table 4-2.
This parametric study investigates the effects of such geometries on the overall

damping properties of the composite.

Table 4-2: Material properties of coating and inclusion for material modeled in Figure 4-18.

4 (GPa) v p (kg/m®)
Coating 1.40 0.40 1200
Inclusion 28.5 0.23 2300
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To display the SC model’s capabilities, five types of inclusions are considered:

spherical, oblate, prolate, penny-shaped, and needle-shaped ellipsoids. Table 4-3

gives the minor radius ratios, a/b and a/c, for each of these cases.

Table 4-3: Minor radius ratios for composite modeled in Figure 4-18.

Sphere Oblate Penny Prolate Needle
a/b 1 1 1 1 1
1 1
a/t 1 3 10 — —
¢ 3 10

Figme 4-18 shows the variation of the calculated attenuation coefficient in the x; — x3
plane as a function of polar angle. Minimum attenuation observed coincides with
propagation along the xs-axis (8 = 0) for a composite containing needle shaped
inclusions aligned with this axis. For the same composite, attenuation increases
monotonically with increasing angle between incident plane wave and the long-axis
of the needle shape inclusions. This plot also shows that attenuation diminishes for
propagation along the x;-axis (and therefore, by symmetry, the x>-axis) of a composite
containing penny-shaped inclusions whose large radii (a and b) are aligned with the
x;-x; plane. It was previously mentioned that this decreasing attenuation is the result
of increased stiffness in the direction that coinciding with the long major axes when
the composite inclusion has a higher stiffness value than the matrix. For the present
material studied, this affect dominates the increase in shearing area due to inclusion
geometry. Using the specific strain energy argument, the increase in composite
material stiffness in certain directions decreases the strain specific energy for stress
wave of fixed magnitude propagating in the same direction. This reasoning also
explains why the attenuation coefficient anisotropy factor of the oblate and penny
shaped inclusions is higher than for the needle shaped inclusions. The oblate form of
those inclusions renders the increase in shearing area increasingly influential with
respect to the reinforcement it imparts to the composite. For the oblate and penny-

shaped inclusions the increase in stiffness still dominates but the effects are reduced
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because the shearing area is significantly higher in this form of inclusion (compared

to the needle-shape).

Attenuation Coefficient at 50 kHz vs Propagation Angle for Different liiclusion Forms
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Figure 4-18: Attenuation coefficient as a function of angle in the x-x; plane for a composite
consisting of a viscoelastic matrix with Lucite coated glass ellipsoidal inclusions of different forms
(0 = 0 coincides with x;-axis). The volume fraction of inclusions is 10% and the frequency of the
incident wave is 50 kHz.

As expected, the composite containing spherical inclusions has a constant attenuation
regardless of propagation direction, and the oblate and prolate inclusion cases fall
somewhere between the limits of the penny-shape and needle-shape inclusions,
respectively. One point of interest is that the attenuation coefficient for propagation
along the x3 axis for materials containing both oblate and penny-shaped inclusions is
slightly superior to that of the material containing spherical inclusions. An
explanation of this behavior is that the shape of the inclusion leads to stronger mode

conversion at the boundaries resulting from stress concentrations related to the

inclusion form.
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At this point it is interesting to point out that all of the factors discussed above
give a few guidelines for the design of composite materials having a desired lossy
behavior. First, if inclusions are softer than the matrix material, increased inclusion
aspect ratios lead to increased damping capacity in all directions as compared to the
same inclusion volume fraction of spherical inclusions. The highest losses will be
observed in directions perpendicular to the outward normals of increased shear areas.
This is illustrated with the oblate inclusion case shown in Figure 4-16. Secondly, if
stiffness is required in one direction while high losses are desired in an orthogonal
direction, high modulus needle shaped inclusions are an ideal solution (see Figure
4-18). This type of inclusion leads to low losses and high reinforcement along the
longest inclusion minor axis but maintains lossy behavior nearly identical to spherical
inclusions, which is double the attenuation observed along the longest axis, for
propagation in all directions perpendicular to that axis. Using these two cases as
guidelines and the quasi-static general SC model for design, numerous types of
materials of varying lossy behavior can be conceived relatively easily.

The present section explored some of the strengths of the general SC model in
the quasi-static domain. The SC model used for these calculations is limited to a
single inclusion form, set of material properties, and spatial orientation.
Reformulation of the SC model using dilute strain concentration tensors (DSCT)
permits the approximation of the behavior of many different types of viscoelastic
composite materials with relative ease. It is the purpose of the following section to
show the level of generality achievable through application of the SC DSCT model

derived in Section 3.3.

4.3.3 Identical coated inclusions with a known orientational distribution

The most common application of dilute strain concentration tensors cited in

literature is the approximation of the globally isotropic material properties of
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composites containing identical non-spherical inclusions having a uniform orientation
distribution.  The generality of ' Equation ‘(111.3.33), however, permits the
homogenization of composites containing non-spherical inclusions with a preferential
orientation distribution just as easily as for the case of a uniform distribution. This is
done by taking the approach discussed below. First the orientational average or a

fourth order tensor quantity is defined in the following equation [56].

{Bu}= J’ D@13 1,01, 0, By A (v.3.9)

In this expression, o. is an integration factor, ay is the rotation matrix determined by
the appropriate Euler angles, 6, ¢, and y, B is a fourth order tensor defined with
respect to its local coordinate system, {B} is the orientational average of the same
tensor with respect to the global coordinate system, Q is the orientational space

defined by the Euler angles, and p(Q) is the orientation distribution function. It is

now useful to define a normalized distribution function, n(Q):

n(Q)=2 (Q) Ipp(g;‘)ig (IV.3.10)

Equation (IV.3.10) defines a distribution which has the desirable property that its
integral over the entire orientation space is unity. Substituting Eq. (IV.3.10) into Eq.

(I1vV.3.9) yields:

{Biu}= [1(9)8,48,,8,,8,BoppydQ (IV3.11)

Now, in order to find the effective properties of a composite containing ellipsoidal

inclusions with a known orientation distribution and a known inclusion and coating
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volume fraction ( f* and f©, respectively), it is helpﬁll to define the following tensor

quantity.
& = f1 (€7 -€¥): AT 4 £0 (€0 - E): AC Iv:3.12)

C" is simply the last two terms of Equation (II.2.73) and is calculated by the SC
model with respect to the local coordinate system for the family of inclusions having
the same orientation in space. Then, when all coated inclusions in the composite are

assumed to have identical shape and material properties, the effective material
properties of the composite can be found by taking the orientational average of Ce

and adding it to the matrix stiffness tensor, €M | as follows:
Gt =Cli + ;;Zn (6.¢.v)a,a,a,0,Cc AOAJAY  (IV.3.13)
14

Equation (IV.3.13) is a general expression that permits the calculation of the effective
properties of a composite consisting of identical oriented coated inclusions such as
those studied by Haberman et al [50], randomly oriented inclusions such as for the
composites studied by Berryman [51], and for any known preferential orientation

distribution such as can be observed in shale material studied by Hornby et al [78] by

selection of the appropriate orientation distribution. Equation (IV.3.12) for C” is
not, in general, an analytical expression and therefore the evaluation of the integral is

approximated by a summation in Equation (IV.3.13).

4.3.3.1 Approximation of globally isotropic properties

The section presents an initial-verification of the generalized SC model using

concentration tensors. The verification is simply a check on the agreement between
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the SC DSCT model and Berryman’s model [51] for the case of ellipsoidal inclusions
having a uniform orientation distribution. The effective compressional and shear
wave speeds in the materials studied by Berryman bave been reproduced for the
prolate and oblate inclusion cases (see Figures 5b, ¢ and 6b, c of reference [51]) in
Figure 4-19 and Figure 4-20, respectively. The materials studied are suspensions of
either prolate (/b = a/c = 10) or oblate (a/b =I; a/c = 10) rock particles in water.
The rock material is assumed to have the bulk and shear moduli K, = 44.9(1-0.004i)
GPa and u, = 37.9 GPa, respectively and a density of p, = 2700 kg/m’ while the same
properties for water are K, = 2.18 GPa, y, = 1-i682 Pa, and p,, = 1000 kg/m’. The
shear modulus of water is assumed to be lossy in accord with Berryman’s paper and a

very small (but non-zero) value is assigned to the real part in order to avoid

singularity problems with calculation of the strain localization tensor, A’ in the SC
DSCT model.
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Figure 4-19: Compressional and shear wave speeds and O ! values as a function of volume
fraction calculated using the SC DSCT model and Berryman’s model [S1] for the case of prolate
rock inclusions in water where a/b = a/ec = 10.

129



¢ for Water w/ Oblate Inclusions @ 10Hz Q7 for Water w/ Oblate Inclusions @ 10Hz

6000 — = ; .

— 8€ DSCT — SC DSCT
> 5000 ——- Berryman ——- Berryman
E | I S
‘i A—f‘e— )

H
o
Q.
7]
o} i L : . |
il 02 04 06 08 1 y ).2: 06 08 1
@ )
4000 i : _ , . .
— SCOSCT H — 8C DSCT
--- Berryman | ! —~- Berryman
R 1001 S a2 H : i
E LR D
@ :
;2000 [ - . :
& d 10" B o]
] 3 A .
\
10° 0k ]

0 062 04 08 08 1

Figure 4-20: Compressional and shear wave speeds and O ! values as a function of volume
fraction calculated using the SC DSCT model and Berryman’s model [51] for the case of oblate
rock inclusions in water where a/b=1 and a/c =10.

These plots illustrate that the behavior modeled by the SC DSCT model and
Berryman’s model (which were reproduced for reference using the equations (32) and
(33) along with the appendix of reference [51]) is qualitatively similar though there
are some significant quantitative differences. Firstly, the real parts of both the

compressional and shear wave speeds (¢, and cg respectively) are nearly constant as

a function of volume fraction up to a certain concentration where the effect of the
rock inclusions begins to have a marked effect on the global behavior and a sharp
increase in both wave speeds is observed. It is important to point out that the sharp
increases in effective sound speed observed at specific model dependent concentration
levels have a physical significance and that the apparent jump (or discontinuity) is due
to the numerical evaluation. The sharp increase in sound speed is directly related to
the fact that the elastic constants of the constituent phases differ by several orders of

magnitude. When the matrix material is significantly softer than that of the inclusion,

130



many models will predict a similar sharp increase in the effective elastic constants at
some level of concentration. This occurs at some concentration level that represents
‘the point at which the reinforcement of the stiffer phase becomes important and,
because the high contrast between the materials is high, the result is a sharp increase
in effective elastic properties as a function of volume fraction. Berryman refers to
this concentration as the “threshold of rigidity” and gives an excellent discussion of
the physics of the modeled behavior in Section V of reference [122] in terms of
different modeling approaches. Physically it is obvious that regardless of the
abruptness of this transition, there can never be a true jump in material properties as a
function of the volume fraction of constituent materials. Indeed, the magnitude of the
observed “jump” decreases as the step size used for evaluation decreases leaving
instead a very steep slope which is exacerbated by the implicit nature of the self-
consistent model [122]. Smaller concentration steps have not been employed in order
to reduce calculation time and because this behavior can be explained in terms of
physical phenomena and the modeling approach. It is important to note that the
specific volume fraction corresponding to the threshold of rigidity varies depending
on the inclusion aspect ratio and the elastic contrast of the constituents for both the SC
DSCT model and Berryman’s model.

The threshold of rigidity discussed above coincides with another observation,

the presence of a singularity in the values of Q; ! assocjated with the compressional
wave number for the same rock concentration value. Q;l is related to the damping
quality of the composite and calculated from the expression kAc = I«A:c St i/ 20, , » Where

k., is the complex compressional or shear wave number of the effective material,

indeed QA; =2 . Importantly, both the micromechanical SC DSCT model and

s
Berryman’s model show this result. For the case of prolate inclusions, the SC DSCT
formulation shows the singularity at ~23% rock, whereas Berryman’s model displays

this singularity at a concentration of ~30% and for the case of oblate inclusions these
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values are ~21% using SC DSCT and ~38% using Berryman’s model. Though the
location of the singularity in the SC DSCT model is different from that modeled by
Berryman, the behavior, as described at length by Berryman [122], is non-physical in
both cases and is due uniquely to SC modeling’s implicit solution formulation for
composites consisting of materials with such high contrast between elastic constants.
Here it is stressed, as was pointed out by Berryman [122], that the lossy component of
the effective wave speeds are over predicted near this singularity and that this is a
weakness of the SC modeling approach for high contrast composites. More
importantly, the trends of the DSCT formulation for the SC coated inclusion model
agree well with Berryman’s accepted model. Indeed Berryman’s SC relations were
derived by using the orientational averages of Wu’s “T-matrix” formulation [28]
(which is based on Eshelby’s solution) for the case of a uniform distribution of
orientation of ellipsoidal inclusions. The two approaches are therefore quite similar,
with Berryman’s formulation falling closer to the lower bound and the SC DSCT
being nearer the upper bound. The large quantitative difference between the two
models is due this fact coupled with the high contrast of constituent materials for this
particular case. The qualitative agreement with Berryman’s approach is pointed out
here as a validation the DSCT formulation for implementation in the quasi-static
regime when a composite material has a complex microstructure and yet displays
globally isotropic behavior because the identical inclusions have a random orientation
distribution.

At this point it is informative to show that the DSCT formulation can just as
easily be used allow an increased degree of flexibility in modeling particulate
composites that are globally anisotropic as a result of inherent material anisotropy,
preferential orientation of ellipsoidal inclusions, or both. The advantage of the SC
DSCT model is that modeling of such materials, which are globally anisotropic, is
treated in the exact same manner as discussed above, and therefore no additional
modeling complexity is added for homogenization of such composites. This is a

marked improvement over Berryman’s approach, which is limited to globally
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isotropic materials, or the SC model, which is limited to either spherical or identically
oriented inclusions. One further improvement that can be made by using the current
model, since it is valid for coated inclusions, is the implementation of the generalized
SC (GSC) model for the case of bi-phase composites. The GSC model, which was
introduced by Christensen and Lo [45], assumes that the | inclusion phase is
surrounded directly by the matrix material and that entire coated inclusion is then
embedded in an effective medium of unknown properties. This modification to the
SC model has been shown to yield better results than the SC, Mori-Tanaka, and

differential methods for increased volume fractions [154].

4.3.3.2 Approximation of globally anisotropic properties

DSCT formulation easily lends itself to computations of the effective material
properties for composite materials consisting of inclusions having non-spherical
geometries with a preferential orientation (neither aligned nor randomly oriented).
Such microstructures can be observed in geologic materials, such as the shales studied
by Hornby et al [78], or in fabricated materials due to manufacturing processes. This
section presents a parametric study of the attenuation coefficient as a function of
propagation angle in a composite consisting of prolate inclusions in a lossy matrix in
order to illustrate the capability of the SC DSCT model to capture these effects.

Consider a hypothetical material consisting of a polymer matrix having the
properties of the “soft” polymer characterized by Baird et al [76] which is assumed to
be incompressible at all frequencies and containing prolate glass inclusions (/b = a/c
=5, Uglass = 28.5 GPa, Vgss = 0.23 GPa, pgiass = 2300 kg/m’). The inclusions are
assumed to have an axis-symmetric preferential orientation along the x;-axis where
the level of preference is fully described by a Gaussian distribution of solid azimuthal

angle, 4, having an assumed standard deviation, o, (see Figure 4-21).
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X1

Figure 4-21: Orientation of prolate glass inclusions. 8 is the azimuthal angle.

The complete orientation distribution, n(Q), given in Equation (IV.3.10) is then

defined using the normalized Gaussian distribution for the azimuthal angle, 7, (6),

as follows:

1(9y) = Mg (6) Mg (6))

(IV.3.14)

where: 6, je[i,z]
) 22

It is important to note that the comma in Equation (IV.3.14) does not denote the
spatial derivative. This normalized distribution function can then be employed
directly in Equation (IV.3.13) to approximate the effective properties of a material
having inclusions of assumed orientational preference. This was done for a composite
consisting of 10% by volume glass inclusions at a frequency of 25 kHz for five
different values of o, ranging from 0° (all inclusions aligned along the x;-axis) to «o®
(uniform distribution yielding a globally isotropic composite). The results of the

parametric study are given below in Figure 4-22.
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Figure 4-22: Variation of attenuation coefficient as a function of azimuthal angle for
glass/polymer composite with varying degrees of anisotropy. Volume fraction of prolate
inclusions ¢ = 10%, a/b = a/c = 5, frequency inspected f=25 kHz.

Two intuitive checks are immediately obvious from the inspection of Figure 4-22.
First, the magnitude of anisotropy factor, defined here as (&, —@;)/d; , decreases
with increasing o, from the case of aligned prolate inclusions (o, =0) up to the
limit of o, = where the composite is isotropic and similar to the materials studied
in the previous section. Second, the minimum attenuation coefficient calculated is for
propagation along the x;-axis for the case of identically oriented glass inclusions
aligned with the x;-axis. This yields minimal attenuation because of the high-stiffness
and non-lossy material behavior of the inclusions. Several other interesting points can
be observed about these calculations. An interesting feature of this plot is that for
highly preferential orientation distributions one observes a slightly higher value of &
in directions orthogonal to the x;-axis over the uniform distribution case. This is due

to the increase in strain energy brought about by stress concentration at inclusion ends
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for plane wave incidence perpendicular to the major inclusion axis. Though this
effect is small, it is an interesting result of orientational preference. It also illustrates
the effects that can be captured by the quasi-static SC DSCT model that relate stress
concentration due different inclusion geometries and orientation distributions to the
macroscopic damping capacity of a viscoelastic composite. This parametric study

clearly shows the capability of the SC DSCT model to capture the variation of
| anisotropy depending on orientational preference of like inclusions. Since, either as a
patural occurrence or due to inherent variability in processing techniques, very few
real materials have identically oriented particulate inclusions this additional flexibility
is very useful. Indeed, the case study below shows a potential application of this

specific capability.

4.3.3.3 Comparison with experiment

The effective elastic constants of the shale material studied by the Hornby ef
al [78] are approximated here using the SC DSCT model as a case study. The shale
can be broadly described as a composite material consisting of a load bearing water-
filled porous clay containing three distinct “spherical” mineral inclusion phases
(quartz, feldspar, and pyrite) of different concentrations (see Figure 4-23). For a more

detailed description of the composition of the material see reference [78].
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Figure 4-23: Micrograph of shale studied by Horby ef al [78] (image from reference).

The porous clay itself is best described by fully-connected oblate clay platelets with a
preferential orientation distribution (axis-symmetric about the x3-axis) arranged such
that ~11% porosity remains. For modeling purposes, it is assumed that the water-
filled pores can conversely be considered as oblate inclusions (@/b = 1, a/c = 20) with
preferential orientation (axis-symmetric about the x3-axis) in an otherwise continuous
isotropic clay matrix of known properties given in reference [78]. The material
properties used here are summarized in Table 1 and were taken from various sources
(Mavko et al [155] and Merkel et al [156],) since not all constituent phase properties

were specified in reference [78].

Table 4-4: Material properties of the constituent phases of shale studied by Hornby et al

Material data taken from various sources: clay [78], quartz and feldspar [155], pyrite [156].
K (GPa) 4 (GPa) p (kg/m’) 9 (%)
Clay 22.9 10.6 1826
Water 2.2 1x10° 1000 11
Quartz 36.4 45.0 2640 53
Feldspar 75.6 25.6 2630 11
Pyrite 103.7 109 5015 9

Hornby et al’s approximation of the effective properties of shale studied was done in
three different homogenization steps. First, the effective fluid-clay composite was

approximated as a transversely isotropic clay medium with 11% oblate water-filled
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pores. An orientational average was then taken of this medium by employing the
spatial distribution of pore orientation (approximated from micrographs of the shale)
yielding the effective properties of the fluid-clay matrix. Finally, the spherical
mineral phases were added to this effective fluid-clay composite to get an
approximation of the effective components of the stiffness tensor. For approximation
of the global effective properties of this shale material the SC DSCT model yields the
most accurate results when the modeling is done in two separate steps. First, a
transversely isotropic matrix fluid porous clay medium is approximated using
techniques described in Section 4.3.3.2 above. The pores are assumed to have an
orientation distribution similar to that given in Equation (IV.3.14), but for the case of
oblate inclusions the axis of symmetry is the x3-axis and the angular variations are for

the solid polar angle, ¢ (see Figure 4-15). The standard deviation of angular variation
was assume to be o, =30" in accordance with the histogram show in Fig. 9 of
reference [78]. This effective medium was then used as the matrix to which the three

spherical mineral phases were added. The results of this modeling approach are given
in Table 4-5.

Table 4-5: Experimental data and results of effective stiffness coefficients of shale (GPa) for
various modeling techniques. DSCT = Dilute strain concentration tensor; SC = Self~Consistent;
GSC = Generalized Self-Consistent.

Observed (GPa) | Hornby et al (GPa) | SC DSCT (GPa) | GSC DSCT (GPa)

Cu 343114 34.7 29.8 30.0
Caz 343114 34.7 29.8 30.0
Css 22.7£0.9 22.2 18.7 20.0
Cu 5.4+0.8 6.0 4.7 4.8

Css 54+0.8 6.0 4.7 4.8

Ces 10.6+1.6 10.8 8.3 8.4

Cn Not reported Not reported 12.3 12.4
Ci3 10.7£54 11.5 14.7 14.7
C 10.7+£ 5.4 11.5 14.7 14.7

The results of the SC DSCT model are in good agreement with the properties
observed by Jones and Wang [77] and modeled by Hornby et al [78].
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Approximations have been run using both the SC DSCT model as well as the GSC
model with DSCT formulation. Both of these techniques underestimate all of the
observed values of the components of the stiffness tensor except C;3 and C,3 with the
GSC model showing improved agreement with experimental values as would be
expected. The experimental error on the mean value of components C;3 and C3;s is
very high however, and so comparison of the model with the experimental values 1is
mostly for qualitative purposes. Indeed, the SC DSCT model predicts the effective
values of all stiffness coefficients to within 10% of the lower limit of the
experimentally observed values and the anisotropic behavior of the composite shale
due to the preferentially oriented oblate pores is well captured by the DSCT
formulation. With regards to the accuracy of the SC DSCT and GSC model
approximations with respect to the approach of Hornby et al, several points musts be
raised. First of all, the agreement of the two models is highly dependent on the values
used for the moduli of the constituent mineral phases. Due to the fact that these
values were not given in the reference, this could be one source of disagreement
between the results given here and those arrived at by Horby ef al. It is also important
to note that the agreement with the experimental data is partially dependent on the
modulus in question. The SC DSCT and GSC models show better agreement with the
values of the shear moduli whereas the approach Hornby ef al obviously approximates
the plane wave moduli (C;;, C2;, and C33) more accurately. Most importantly, the
application of the SC DSCT model to approximate the effective properties of this
material with good qualitative and quantitative agreement between model and

experiment is a strong example of the generality of the DSCT approach.

43.4 Sub-micron 2> Micro 2> Macro Modeling

Another area where the SC DSCT model can be show to be applicable is in the

area of multiscale modeling. Many complex materials are most accurately modeled
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as having behavior that can be modeled on several scales. The main problem
presented by these materials is the ability to tie behavior on multiple scales together in
a manner that yields a complete picture of the material behavior at the scale of interest
based on its multiscale composition. Indeed the micromechanical approach is, by
definition, a type of multiscale modeling. The materials modeled above, however,
have been for the simple case of two separate scales. In the following case the
influence of the material properties and geometry of one or multiple types inclusions
on the same length scale is homogenized in order to approximate the behavior of the
composite on a larger length scale. For multiscale modeling purposes, it is, in
general, assumed that there exist several length scales such that the effect of
inhomogeneities and interfaces at an inferior scale can be taken into account at the
next highest length scale through some type of averaging technique. This tacitly
assumes that the behavior at lower level length scales only have an effect on the next
highest level in some average way and that no point-to-point interactions are
important between length scales [27]. For the cases presented above, for example, the
effect of inclusions (whose interaction at their respective length scale is indirectly
taken into account via the self-consistent scheme) on the global homogeneous
behavior is done through an averaging scheme that involves finding the proper DSCT.
For composites consisting of more than two scales, homogenization techniques
analogous to the DSCT describe above must be developed between each length scale
and the next highest length scale, starting with the smallest scale to be considered and
increasing until the effective global behavior is approximated. This is a very
interesting problem that applies to nano-composites and many naturally occurring
materials displaying structural hierarchy. The approach requires the ability to model
inhomogeneities and interfaces on the local level (at their respective length scale) with
respect to the surrounding medium and then to use this information to model the
global behavior (see, for example, Spearot et al [157]). Problems of this kind are very
difficult due to the complexity of models at very small length scales, and are beyond
the scope of this work. Here the emphasis is simply on showing that the SC DSCT
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model can be used when the effect of multiple scales must be taken into account. To
do so, the results of the SC DSCT model of a silicon carbide-aluminum (SiC-Al)
composite material presented by Ledbetter and Datta are shown together with the

experimental and theoretical results presented in the reference [79].

4.3.4.1 Comparison with experiment

The material studied by Ledbetter and Datta is a bi-phase material with
complex microstructure due to manufacturing processes. Modeling this material
requires a scale transition between three different length scales. The smallest length
scale is that of prolate (/b = a/c = 3) SiC inclusions with a uniform orientation
distribution embedded in an aluminum matrix. These prolate inclusions have sub-
micron descriptive lengths (~250-750 nm) and are non-uniformly distributed within
the aluminum host (see Figure 4-24a). The distribution of the SiC particles within the
aluminum host is such that identically oriented oblate islands (@b = 1, a/c = 3) of
pure aluminum with descriptive lengths of ~2-4 pm remain. These pure aluminum
islands are surrounded by a “sea” of high volume fraction SiC—Al composite. The
length scale associated with the Al islands is an intermediate scale, which is referred
to as the meso-scale, between the sub-micron (nano) scale and the macroscopic scale.
The total volume fraction of SiC in the composite was experimentally determined to
be 30%, but, because of the non-uniformity of the spatial distribution, the
concentration level of SiC particles in the “sea” is approximated as being 50% [79].
For modeling purposes, the important material properties of SiC and Al were given
as: Kgic = 223.4 GPa, psic = 188.1 GPa, psic = 3160 kg/m3, Ky =749 GPa, pug =
26.7 GPa, and p 4 = 2700 kg/m’.
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Figure 4-24: Composite material studied by Ledbetter and Datta (image taken from reference
[79]). The material consists of a non-uniform distribution of sub-micron- prolate SiC particles in
an aluminum matrix. (a) Micrograph of material, SiC particles are dark areas, (b) Schematic of
modeling approach employed.

Ledbetter and Datta proposed a multiple scattering model which is valid for
ellipsoidal inclusions having either uniform or identically oriented orientation
distribution to approximate the effective material properties of this composite which
gives good results [79]. Their model illustrates the difficulty involved in developing
scattering-based models for approximation of the effective properties of composites
displaying complex microstructure. The modeling was done in two steps (see Figure
4-24b) the first of which involves approximating the “sea” as a homogeneous
isotropic medium resulting fro‘in the 50-50 mix of SiC prolate€ inclusions having a
uniform orientation distribution and the aluminum matrix. This isotropic medium is
then idealized as the matrix material of the global composite material which has
identically oriented (aligned with the x;-x; plane) oblate Al inclusions with a volume
fraction of 40%. The implementation of the SC DSCT model is done in an identical
manner. First the sub-micron->meso transition is made by employing the DSCT
formulation given in Section 4.3.3.1 to find a globally isotropic medium which acts as
the matrix for a meso—=>macro scale transition modeling step. The meso~>macro step
is done by employing the basic SC model given in Equations (II1.2.73), .(I]].2.75), and

([I1.2.76) where the matrix found in the previous step is assumed to contain 40%
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oblate’ Al inclusions aligned with the x;-x; plane. The results of this modeling
approach are tabulated in Table 4-6 together with the theoretical and experimental
values given by Ledbetter and Datta [79], the DSCT GSC, and the DSCT Mori-
Tanaka (MT) model results. |

Table 4-6: Observed and calculated values of the coefficients of the stiffness tensor (GPa) for Al-
SiC composite of Ledbetter and Datta [79]. (DSCT = Dilute strain concentration tensor; GSC =
Generalized Self-Consistent; MT = Mori-Tanaka; LD = Ledbetter and Datta).

Observed SCDSCT | GSCDSCT | MT DSCT LD
Cu 165.9 172.9 170.8 240.9 172.7
Cy 165.1 172.9 170.8 240.9 172.7
Css 148.3 161.7 160.7 118.7 148.0
Cu 433 . 479 473 4229 429
Css 434 T 479 473 29 429
Css 48.7 51.7 50.6 51.3 51.3
Cp 685 69.2 69.1 - 99.1 70.1
Cis 62.2 69.1 69.0 67.9 67.7
Cys 62.2 69.1 69.0 67.9 67.7

The DSCT GSC and DSCT MT models were run for comparison purposes. For this
particular composite, the MT model seems to greatly over-estimate the effective
material properties and approximates too high of a degree of anisotropy. This is not
unexpected, as the MT is known to overestimate effective material properties when
the matrix material is more stiff than the inclusion phase [158, 159]. As observed in
the previous section, the DSCT GSC model again shows improved agreement with
the experimental values as compared to the SC DSCT model. The capability of the
three-phase coated-inclusion SC model of Cherkaoui to be extended to a GSC scheme
is indeed one of the strengths which was also noted Section 4.3.3.3 that is stressed.
The results indicate that the SC DSCT and GSC models both over-estimate the
measured material properties and show a lower degree of anisotropy than that
observed; the difference in the values of C;; and C5; is negligible and the contrast

between Cy and Cgs is not as marked as is the actual material or the LD model.

Nevertheless, the theoretical transverse isotropy, Cag”” = (CISIC -Cy ) / 2, shows only

a 0.5% difference between the SC DSCT model and theoretical values of Cgs. The
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inodel is therefore shown to be giving consistent results. Here it must be noted that
the LD model yields a better approximation of the observed effective properties of the
SiC-Al composite than the SC DSCT model. The improved agreement more than
likely stems from the fact that the LD model is derived from multiple scattering
considerations and therefore is able to directly take into account high volume fractions
whereas the SC formulation implicitly approximates such behavior. As the volume
fraction increases, the error involved in the implicit scheme will increase and
therefore leads to the SC model’s lower precision approximation. It is important,
however, to stress that the generality of the SC DSCT model for applications to
composite materials of very different constituent phases, geometries, and orientational
preferences as displayed here and in the examples above is a great advantage over
models such as that proposed by Ledbetter and Datta which are restricted to

heterogeneities with identical orientations or a uniform orientation distribution.

4.3.5 Distribution of coating thicknesses

The last validation of the SC DSCT model is an example of how it can be
extended to capture the effect of the variation in coating thickness observed in real
materials. Previous sections showed that the SC model gives very good
approximations of the lossy behavior of a viscoelastic material containing hollow
microspheres by comparing calculated values of TL to experimental values. One of
the assumptions of that formulation is that all coated inclusions are identical. Though
the effect of the relative inclusions size with respect to other inclusions can be
assumed to have a negligible effect on the global properties since they are all on the
same length scale and must be several orders of magnitude smaller than the
wavelength of the incident wave in the host material, the distribution of coating
thickness can still have a non-negligible effect. This is due to the fact that the

contrast in material properties. between the inclusion (which is a void) and coating (a
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glassy material) is significant. Indeed, the model proposed by Baird et al [76],
included a modification for what they called a “size effect.” Though the appellation
of their model as capturing a “size-effect” is a misnomer as only the variation in
coating thickness is taken into account, their model shows improved agreement with
TL data for a 2.5 cm thick slab of viscoelastic composite. Here the SC model is
modified by using the concept of DSCT to take into account a variation in coating
thickness. This is done by recognizing that each family of composite inclusions that
have the same coating thickness can be modeled as representing a family of inclusions
with slightly different material properties. The homogenization scheme is then
represented similarly to that shown in Figure 3-4, where the coating thickness of the
inclusions is varied from family to family and there is no orientational eﬁ'ect because
of the inclusions are spherical.

In order to cast the tensor relations for the effective moduli of the composite
for a variation of coating thickness an approach similar to that outlined by Baird et al
is employed. First, the coating fraction, y,;, is defined which quantifies the percentage
of the composite inclusion volume which is coating for a family of spherical coated
inclusions with inner radius g; and outer radius b;. Here, the subscripts on y do not
denote a tensor quantity but simply the coating fraction for different values of inner
and outer radii, likewise the comma does not denote a spatial derivative. For this
idealized family of spherical composite inclusions, the coating fraction can then be

expressed as a function of the radii as shown below.

7l,j=1_(_] (IV.3.15)

It is further assumed that the relative size of the inclusions has a negligible effect on
the globally observed properties and that the inner radius has a constant value, auye.

The coating fraction for each family of inclusions then relates the inclusion and
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cbating volume fractions to total volume fraction of the family having the same outer

radius (and therefore coating fraction) with the following relations.

fc'i =@i7: (Iv.3.16)

f=g—fc :¢i(1_7i) (Iv.3.17)

It is important to note that the above relations also hold for ellipsoidal inclusions
(though it would be admittedly difficult to experimentally determine the coating
fraction for non-spherical inclusions). For a true composite material, it is obvious that
the coating thickness will be found in some distribution that can be related to a
measured distribution of outer radii through Equation (IV.3.15). From this measured
distribution, p(y), the normalized distribution, n(y), is calculated by using Equation
(IV.3.10). The resulting expression of the SC model for the case of varying coating

thicknesses is then written:

N ]p(”{(l*?’)Aé’M=A’(7)+7A6W:AC(7)}"7
¢ =Cre = - (IV.3.18)
[p(r)ar

—0

A A N ~ ~ A A
C? ~CH +¢Zn(yj){(l—yj)ACM A (7j)+7jACCM :AC (7j)}Ay

/=)

(IV.3.19)

The expression given in Equation (IV.3.18) is a continuous function of y though the

strain localization tensors, A*, cannot be integrated for the case of ellipsoidal
inclusions since they are not analytic functions. Equation (IV.3.19) must therefore be

employed for correct implementation for those cases or for simplified direct
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application in the case of spherical inclusions as the coating distribution function may
yield iﬁtégration extremely difficult or impossible for the case of spherical coated

inclusions.

4.3.5.1 Comparison with experiment

The use of DSCT for the case of a distribution of coating thicknesses will be
verified by implementing Equation (IV.3.19) to calculate the TL of a 2.5 cm thick
slab of viscoelastic material containing coated micro-inclusions submerged in water.
The results are compared with the experimental data of Baird et al [76] as well as the
SC approximation which only uses the average coating thickness hypothesis. The
viscoelastic composite material in question is composed of the “soft” viscoelastic
polymer and 10% by volume coated inclusions. The material properties of each phase
are given in Table 4-1. The coating fraction distribution is assumed to be well
approximated by the Rayleigh distribution given below based on heuristic grounds

and through “initial measurements” by Baird ef al [76]. The average coating fraction

is 7=2.5x107.

p(r)=2

ool -Z(2) | = a()= 2O
xp[ 4(7)] ()= jp() (IV.3.20)

272

This distribution is then used to calculate the complex effective stiffness tensor of the
viscoelastic composite through Equation (IV.3.19) and the TL is then calculated by
employing relations (IV.3.3)-(IV.3.7). The material is fully described by the two
Lamé coefficients since the inclusions are spherical and the composite is therefore
globally isotropic. It is also important to point out that due to the distribution of shell
thicknesses, the equation expressing the effective density of the composite, (IV.3.6),

must be calculated by the law of mixtures relationship below.
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p7 =pM (1—¢)+¢Zn(7j)|:(l—yj)p1 +yij:|A7 (Iv.3.21)
=

Figure 4-25 shows the results of the SC model as modified with DSCT for the
case of a variation in coating thickness when applied to the “soft” polymer composite
material with 10% coated inclusions tested by Baird et al [76]. Included on the plot is

the curve resulting from implementation of the uniform coating thickness model given
by Haberman er al [53].
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Figure 4-25: Transmission loss calculated using SC and SC DSCT with experimental data from
reference [76].

As can be clearly seen in the plot, the agreement of the model with the experimental
data is improved. The slope of the high frequency regime is very nearly the same as

the trend observed in the data which is a marked improvement over the uniform
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thickness model. Further, the value of the TL approximation in general is within 2-3
dB across the full range of frequencies inspected: 0—100 kHz.

44  Comments on numerical implementation of SC model

Successful SC model implementation depends on the ability to numerically
evaluate the implicit problem given in Equations (II1.2.73), (II1.2.75), and (II1.2.76).
These equations represent a tensor relationship whose solution must be found
implicitly. The implicit nature requires a careful consideration of numerical root-

finding and/or minimization techniques to find the effective viscoelastic stiffness

tensor, C?. For the case of spherical isotropic coated inclusions embedded in an
isotropic matrix, the resulting effective properties will also be isotropic and Equations
([11.2.73), (I1.2.75), and (I11.2.76) can be reduced to two implicit equations for the

effective Lamé constants, #% and A7 . These relations are given in Appendix A of

Haberman et al [53]. Solutions to this set of equations can be obtained by using a
two-dimensional Newton-Raphson numerical root-finding scheme. This technique
for the isotropic effective material is very robust and no convergence problems have
been observed regardless of material contrasts or volume fraction of coated
inclusions.

The implicit solution to the general anisotropic case is neither simple nor is it
guaranteed to converge for all combinations of material stiffness contrasts, inclusion
aspect ratios, or volume fractions. One approach to finding an approximate solution
of the composite’s effective viscoelastic properties is through minimization. The first
step in the minimization process it the re-arrangement of the SC tensor equations into
a vector function to be minimized to an acceptable level of accuracy. Orthotropic
materials are fully described by nine independent viscoelastic constants and therefore

the coefficients of the effective stiffness tensor can be re-arranged as a 9x1 vector,

149



C? 37 . The SC model and the approximate solution can then be used to create

the function shown below in Equation (IV.4.1).
h(v)=SC(v7 )—vef Iv.4.1)

In this relationship, h(v@f) is the function to be minimized and SC(veﬁ') is understood
to represent the result, represented in vector form, of the SC model given in Equations
(11.2.73), (II1.2.75), and (II.2.76) for an input of vZ — C7 . It is also important to

point out that the evaluation of T! (é" ) , given in Equation (II1.2.40), is required for

correct evaluation of the strain localization tensors, A’ and AC. This is achieved
through numerical integration of the modified Green’s tensor, I a (r - r') , through an

n-point Gauss-Legendre quadrature integration, after using Fourier transform
techniques to transform the ellipsoidal inclusions into spheres in the Fourier domain
as outlined in the Appendix A. A nine dimensional simplex method is then used to
minimize the implicit relationship given in Equation (IV.4.1) [160]. The simplex
method is robust and effective because it does not require the calculation of rates of
change in the function with respect to each individual variable. The technique
involves the evaluation of the SC model at ten points suspected to surround the
solution in the 9-dimensional space. During implementation, these points are chosen
by varying each of the nine elements of ¥Z of the previous volume fraction step by a
small percentage (1% used for this evaluation) thus yielding nine initial guess points
and then using the unaltered elements of ¥¥ for the tenth point. The algorithm then
uses a series of reflections and contractions of the ten points until an acceptable level
of convergence is found. Though the technique is robust, it is not guaranteed to
converge to the correct solution and calculation time can be significant for a high

volume fraction of inclusions.
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Several factors can cause significant problems in the convergence of the
numerical evaluation of the general SC model. Therefore, a few qualitative
observations may help for successfil implementation of the method. The parameter
that has the strongest influence on the convergence of the model is the contrast of the
moduli of the constituent phases. If the moduli of the inclusion materials are
significantly lower than that of the matrix (as is the case with voids or air inclusions)
the numerical scheme has great difficulty in converging to the correct solution. This
convergence difficulty is still observed when the inclusions are coated. Indeed, glass
coated voids embedded in a soft matrix prove to be one of the most difficult set of
parameters for the resolution of the general self-consistent model. .Another parameter
that has strong influence on the convergence of the general model is the aspect ratio
of the inclusions. As the aspect ratio (either a/b or a/c) increases, the likelihood of
poor convergence behavior also increases. It should be noted that poor convergence
due to the inclusion aspect ratio is coupled with the contrast of the material properties,
the higher the material contrast the less stable the SC method for any given aspect
ratio. However, no obvious practical guidelines can be given. Here it is emphasized
that, even with large aspect ratios, the model is strictly valid in the low-ka regime.
Yet another parameter that can influence convergence, though to a lesser extent, is the
ratio of Aa/a, i.e., the normalized coating thickness. It has been observed that values
of this parameter below 10 can lead to poor convergence behavior, though, like the
effect of the aspect ratio, the influence of 4a/a on the convergence is coupled to the
material contrast and therefore smaller ratios can be tolerated for lower contrast
situations. Other known issues are usual user defined parameters of root-finding
techniques, such as the initial values for the numerical search algorithm, the volume
fraction step size, and the number of points chosen for Gauss-Legendre evaluation of
the integral of the modified Green’s tensor.

Despite numerical difficulties manifest in the coated-inclusion SC model this
chapter has shown, through comparison with experiment and parametric studies, the

generality and precision of the SC model. The SC model has been shown to reliably
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approximate the lossy behavior of viscoelastic composites. This ability is a great
improvement over scattering based models because of the enhanced flexibility to
include material anisotropy and the effects of inclusion orientation which is afforded
by the micromechanical approach. The enhanced level of generality makes the SC
micromechanical model a strong candidate to play a role in a material by design
strategy. The next chapter will present a simple multiscale modeling application that
employs the SC model to enhance absorptive properties of a structure through

variation of material microstructure.
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CHAPTER V

TOWARDS SELF-CONSISTENT MODEL IMPLEMENTATION IN A MATERIAL

BY DESIGN STRATEGY

5.1 Overview

Material selection, traditionally a key component of the design process [19], is
a very limiting aspect of design. Indeed the systems design approach, which pervades
the design community, assumes that component design will be restricted by the
physical properties of available materials [20]. This paradigm is changing as the
systems approach is being extended to include the design of materials for multi-
functional and multi-physics applications [14, 15]. This approach is called inductive
design. Inductive material design aims to design materials for manufacture, while
traditional methods manufacture materials that will be used in design, a deductive
approach [21]. One very important aspect of this emerging design approach is the
development of robust multiscale material models that can be employed to inform the
material design process [14]. Models capable of bridging the disparate length and
time scales interest to material design (length scales ranging from atomistic to
macroscopic and time scales ranging from pico-seconds to years) are far beyond the
reach of current modeling approaches. Instead, researchers currently employ a nested
hierarchy of different models, each of which is capable of making one or more scale
transitions [20]. One of the most prominent problems with this approach is the lack of
information about, and/or the extremely complex behavior of, material models in the

design space [21]. These problems restrict the efficient implementation of many
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material models in an overarching material design scheme. One way this shortcoming
can be overcome is by solving simple multiscale problems in order to observe trends
that can inform future material by design strategies. Another approach would be to
employ metamodels that approximate material behavior between two specific scales
when models based on more rigorous physical considerations impede the design
process. The metamodel approach could be employed in material design, for
example, to approximate the scale transition between atomistic and continuum
behavior. These modeling simplifications permit an efficient means to perform
behavioral studies of a model or investigate the design space at multiple scales [22].
Regardless of the method employed, any material design process will require not only
robust multiscale models, but also the profound understanding of the material
behavior in the design space that a well developed model yields. The aim of this
chapter is to provide an introductory level example of self-consistent (SC) model
implementation in the design of a lossy structure. This is accomplished by studying
the damping properties of a simple structure: a vibrating sandwich plate. The results
of this study provide preliminary insight into the role the quasi-static SC model can
play in a material design strategy and lay the groundwork for more detailed research.

Metamodel implementation is left for future work.

5.2  Multiscale windshield modeling

Structural applications for layered sandwich plates are numerous and typically
aim to reduce overall weight while simultaneously maintaining structural rigidity.
Some examples of such sandwich structure applications include aircraft wings and
fuselage [2] or reinforcement and noise isolation in automobiles [1, 5]. One
consequence of sandwich plate geometry is a pronounced ability to provide acoustic
and thermal isolation [80]. An example of a structural element that fulfills all of the
roles highlighted above is the automobile windshield. Current windshield design is a
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layered structure consisting of two identical high performance glass layers
sandwiching an absorptive viscoelastic layer. From a mechanical perspective, the
interior viscoelastic layer serves the dual purpose of holding glass fragments in place
in the event of projectile impact while simultaneously providing enhanced structural
vibration dissipation and sound isolation qualities during normal operating conditions.
The ability to reduce sound transmission has become one of the many requirements
placed on the automobile windshield. This requirement stems from a desire to reduce
driver noise annoyance and to eliminate structural vibrations of the automobile frame
as a whole.

The case study presented in this chapter aims to model sandwich plate
behavior as a multiscale structure consisting of four distinct length scales. These
length scales are, from shortest to longest: (i) the constituent material microstructure,
(i) the macroscopic plate material, (iii) the sandwich plate, and (iv) the constrained
sandwich plate. In so doing, this study introduces the key variables which define the
design space and provides an important study of their interaction and influence on the
behavior of the structure. Figure 5-1 illustrates the multiscale windshield modeling
approach employed. The study begins with part level modeling. A simple sandwich
plate model is introduced and the mechanisms that enhance flexural wave damping
are discussed in the context of strain energy. Several parametric studies investigating
optimal damping design of a sandwich plate complete the part level modeling study.
Following this analysis the structural level model considered is the modal response of
a viscoelastically constrained plate and beam. The simple layered plate model is
incorporated into this modal analysis and results are compared with a sophisticated
finite element model. Finally, the study considers the effect of microstructural
behavior on structural level damping through SC homogenization. The aim of this
study is to observe the capability of microstructural behavior to increase the overall
absorptive properties of the plate while limiting negative effects on its structural
rigidity role. The present study thus provides insight to multiscale modeling for

damping applications.
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Figure 5-1: Multiscale windshield modeling approach.

53  Partlevel modeling: Damped flexural waves in a sandwich plate

The three layer structure of a windshield capitalizes on the lossy properties of
the sandwiched viscoelastic layer, the intérlayer, by inducing high shear strains in the
material upon vibrational excitation [5]. The high shear strain in the interlayer results
from the viscoelastic material’s relatively low shear resistance as compared to that of
the sandwiching plates and its location at the center of the layered plate. The high
shear compliance of the constrained viscoelastic layer means that shear stresses
resulting from an imposed bending moment will translate into large deformations in
the interlayer [81]. The ultimate consequence of this geometric configuration is an
increase in vibrational and acoustical energy damping capacity coupled with the

structural advantage of being highly shatter resistant [1].
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The study of sandwich structures is not a recent development. As early as
1959 Kerwin presented an analytic three-layered plate model [161]. The plates he
studied consisted of three isotropic layers and had no restriction on layer thicknesses
or symmetries. Following this introductory model, Ross, Kerwin, and Ungar derived
a more general analytic model that describes the flexural behavior of a three layered
plate to approximate the lossy behavior of structures with viscoelastic treatments such
as external viscoelastic layers and non-symmetric or symmetric viscoelastic sandwich
structures [81, 162]. Their model was followed by many other constrained plate
analytical models that are applicable to plates having simple Boundary conditions.
Representative examples include Ditaranto’s layered beam model [84], Mead and
Markus’s model of the forced vibration of a layered beam [85] , Yan and McDowell’s
work on the dynamic behavior of constrained layer plates [87] , and Cupial and Niziol
seminal work on the damping of a three layered plate [82]. The strength of analytical
models lies in their ability to quantitatively compare the behavior of different
sandwich structures with relative ease of implementation. For many cases, however,
such models are not applicable because they are limited to simple geometries and
simple boundary conditions (BC). True engineering problems often present
complexities that analytical models cannot take into account. It is for this reason that
many researchers have concentrated on the development of sandwich structure finite
element (FE) models which approximate dynamic lossy behavior. Representative
works in this area are those of Soni [86], Johnson and Kienholz [163], Rikards and
Chate [164], and Daya and Potier-Ferry [83]. For an excellent review of a significant
developments in constrained layer damping models, see Austin [165]. FE models are
more precise and provide a richer analysis of the dynamic stress and strain states in a
layered plate. Further, they can be implemented in structural analysis of higher order
structures, such as the structural behavior of an automobile as a whole. However, the
aim of this chapter is not to provide a detailed analysis of a complex structure but
rather to give an introductory level study of the effect of microstructure on the

structural damping properties of the multiscale modeling approach. It is for this
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~ reason that FE studies will only be employed in this study for quantitative qualitative

verification of analytical studies.

5.3.1 Approximation of the effective bending modulus of a sandwich plate

The concise study of the microstructural effects on the damping capacity of a
layered plate as a structural element first requires the selection of the appropriate part-
level model. The analytic model developed by Ross, Kerwin, and Ungar (RKU) [81]
is ideal for our present study. This model is computationally light and provides
reasonable estimates of the enhanced damping capacity of a constrained layer plate as
a function of frequency, material properties, and plate geométry [166].

The proceeding discussion has pointed out that the constrained layer geometry
and material stiffness contrast lead to the enhanced damping capacity of the layered
plate. These both contribute by inducing large shear deformation in the absorptive
central layer. This increased deformation leads to a large increase in strain energy
located in the lossy material thereby increasing the damping capacity of the layered
plate as a whole [162]. Kerwin [161] showed that the flexural behavior of such a
layered plate is reasonably approximated as a uniform plate having an effective
complex bending, or flexural, modulus. The real part of this modulus describes the
resistance to flexure due to an imposed time-varying bending moment and the

imaginary part is a descriptor of the composite plate’s capacity to absorb flexural

wave energy [81, 161]. For an out of plane flexural disturbance, w(x,¢), propagating

in the +x direction of a layered plate the damped wave is described using Equations
(V.3.1) and (V.3.2) below. These expressions are analogous to Equation (IV.3.2) for

pressure wave propagation.

(1) = A7) 2 joaes gt (V.3.1)
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where:

" ) n~ 2 _effptot \q
ol — st _ jgfe _ (M) (V32)

In the above expressions A is the complex amplitude, @ is the angular frequency,
k™ and ¢™ are componenis of the frequency dependent complex flexural

wavenumber, £, p7 is the effective density of the entire plate, #*” is the thickness

of the entire plate, and BY represents the complex effective frequency dependent
bending modulus of the layered plate. Note also that the present study treats
structural vibrations. Therefore, in keeping with the conventions of the vibrations
community, the ‘e’ ’ convention is employed in this section. The RKU model aims
to provide an accurate approximation of the effective bending modulus of the plate
which takes the exaggerated interlayer shearing into account. This is accomplished

by writing equations of motion for the plate element shown below in Figure 5-2.

Sandwich

< plate neutral
@ plane (b)

Figure 5-2: (a) Differential element of a sandwich plate ; (b) Cross sectional geometry.

The RKU model results from solving the wave equation for the out of plane

flexural disturbance described by Equation (V.3.3) together with the moment

equation, (V.3.4).
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M(x)=B7 %) = 23:11‘4, (x) +23:ﬁ;.Hjo (V.3.4)

=1 j=1

In these expressions j)(x) represents the frequency dependent and spatially varying
forcing pressure, M (x) denotes the total flexural moment applied to the plate,

M,(x) is the resulting moment in each layer, F,(x) is the net transverse force in

each layer, and Hj, represents the distance from the center j’h of the layer to the neutral
plane of the composite [81].
This resulting model has many restrictions for implementation which are listed

here [81]:

1) The Young’s modulus of the upper and lower layers (I and 3) must be

much larger than that of layer 2.

2) The flexural, shear, and longitudinal wavelengths of the composite plate

must be much larger than the total thickness of the plate.

3) The slope of the neutral plane must be very small, ®(x)<<1.

4) The thickness of the interlayer (layer 2) remains fixed (no standing waves

within the interlayer).
Ross et al derived their model for the effective bending modulus of a three layer plate
using these simplifying assumptions. The resulting RKU model does not have any
restrictions regarding material or geometric symmetries. If symmetry is required,
thereby creating a “sandwich™ plate, the following additional assumptions must be
added [167]:

5) Layers 1 and 3 have identical material properties and geometries. The

Young’s modulus is denoted as E, the density p, and the thickness 4
(H,=H,=h).
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The result of these many simplifying assumptions is the set of the implicit relations
(V.3.5), (V.3.6), and (V.3.7) describing the bomplex effective bending modulus of the

layered plate.

A 1 A é a3l oA
B=—ER|1+6Y =RB(1+ 3.5
6 [ (1+2§D (1+74,) (V3:5)

Here Y represents a variable called the geometric parameter and ¢ is the complex
shear parameter. This simple equation satisfies physical intuition about the behavior
of a layered plate since the term £7? /6 represents the bending rigidity of two plates

of thickness % about their base. The term within the parenthesis increases the bending
rigidity based on geometry and the interlayer’s shear resistance. The geometry and
shear parameters are defined in Equations (V.3.6) and (V.3.7) below.

Y=(1+H) with H=% (V.3.6)
. 1( (1 BT .. .
= 2 | = =8 (1+ 3.

In the above relationships, 4, is the interlayer’s complex shear modulus,

A, = [Lz (1 +J ﬁ ) , and the effective density of the composite plate is calculated using the law

of mixtures.
k4 =(1—H2/h'°')p+(H2/h“”)p2 (V3.8)

Ross et al further observed that assumption (2) listed above requires that ¢ be larger

than unity. As previously stated, this model yields an implicit solution for the

161



effective bending modulus. - Appendix D details a numerical solution scheme for
RKU model implementation.

It is now interesting to show constrained layer damping behavior as
approximated by the RKU model. For this purpose, consider a symmetric plate
composed of two identical glass layers sandwiching a Saflex® PVB (viscoelastic)
layer [168]. The layer geometry and material properties are given in Table 5-1. The
values chosen represent PVB complex moduli corresponding to observed behavior at
1 kHz and 20°C. Frequency dependent PVB shear modulus values were
approximated from Havriliak-Negami (HN) fits [148] of DMTA data, see Figure 5-3.
The HN model is given in Equation (V.3.9) and the HN coefficients for this PVB

material were found to be: g =235x10°, g, =4.79x10°, a, =046,

By =0.1946, and 7, =0.3979 .

g (0)=p,+ (1 —,um)[1+(ja)ro)l_aj|—ﬂ (V3.9)
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Figure 5-3: DMTA data and HN curve fits for PVB material.

Table 5-1: Layer properties representing windshield constituent properties and geometry.

Hy(m) | p(1+jB) (GPa) | E(I +jn) (GPa) | p (kg/m’) | f(Hz)
Layers 1&3 | 2.0x 102 | 29.5(1+0.02) | 72(1L+0.02)) | 2469 1000
Layer2 | 8.0x 10~ | 0.133(1 +0.137) | 0.396(1 + 0.13)) | 1115 1000

163




The plots below show parametric studies of the effective sandwich plate bending

modulus, B , shear parameter, g, and flexural wavenumber, £re , as a function of the

thickness ratio, H.
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Figure 5-4: Variation of sandwich plate complex bending modulus as a function of the thickness
ratio, H. Parametric study on the shear loss factor of the interlayer.
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Figure 5-5: Variation of sandwich plate complex flexural wavenumber as a function of the
thickness ratio, H. Parametric study on the shear loss factor of the interlayer.

Complex Shear Parameter vs. Thickness Ratio, H
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Figure 5-6: Variation of sandwich plate complex shear parameter as a fanction of the thickness
ratio, H. Parametric study on the shear loss factor of the interlayer.
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Several physically intuitive behaviors are apparent from these plots. Figure
5-4 shows that the plate’s resistance to flexure decreases with increasing H. Coupled
with this reduction in flexural rigidity is an increase in flexural loss factor. The
increased damping capacity results from augmented strain energy located in the lossy
interlayer. The increases in the magnitude of the flexural wavenumber and
attenuation coefficient shown in Figure 5-5 are the result of a complex combination of
increasing frequency and sandwich plate flexural compliance. Figure 5-6 illustrates

that the shear parameter’s loss factor also increases with increasing H and also as the

shear loss factor of the interlayer, Bz , increases. One very important observation is
that the RKU model is not valid for small values of | §| .

It is also interesting to inspect the flexural modulus variation as a function of
the shear parameter’s loss factor, 7 while keeping H constant. Figure 5-7 shows the

results of such a study.
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Figure 5-7: Complex effective flexural modulus calculated with BKT model as a function of the

shear parameter’s loss factor, y for fixed values of g’.

This figure clearly shows that at a given frequency, w, there exists some value of ¥
for each value of ¢ that yields optimal damping properties for a sandwich plate in
flexure, 77 . If all other parameters are fixed, this optimal value of 7 can be found
through inspection of the partial derivative 07j, / 0y . Figure 5-8 shows the complex
effective bending modulus for a large range of ¢ values when the associated value

loss factor is optimal, 7. Mathematically stated, the value of B is calculated as a

function of ¢ when the associated value of 7 is such that 87, /67 0.

g
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Figure 5-8: Optimally lossy complex effective bending modulus calculated as a function of 3.
The material properties employed are those given in Table 5-1

This plots clearly show that highest damping is expected with decreasing values of

& . It is imperative to keep in mind, however, that the RKU model is not valid for

small values of g . It is also important to observe that variations in & have large

effects on the plates overall resistance to flexural deformation. Large reductions in
flexural rigidity, though ideal for damping applications, are not acceptable for such
real-world applications as windshields which must fulfill multiple, often conflicting,

design requirements [1]. The ideal solution for such an application is a more robust
design that considers both the flexural rigidity, B, and damping capacity, 11,> in an

effort to find the highest damping capacity with a minimal reduction in rigidity.
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5.3.2 RKU Model Sensitivity Analysis

The automobile windshield is a good example of a structural element requiring
both structural rigidity and absorptive qualities. One simple manner to approach this
optimization problem is through sensitivity analysis of important variables. The
materials and geometry given in Table 5-1 are representative of actual values in

current windshield design, however, Figure 5-6 shows that they yield a shear
parameter far from optimal across all frequencies of interest: H = 0.4, g ~2 ,and
7~0.13 while 7% ~1.1. All of the above information suggests that the most
efficient means to increase the damping capacity of the plate while having a minimal
effect on the flexural rigidity as a whole is to increase y while minimally decreasing
the real part of the shear parameter, £ . It is assumed that structural design

constraints require the total thickness and the real parts of the material properties

remain constant. Therefore, the two remaining variables that can influence the plate’s
lossy behavior are the thickness ratio, H, and shear loss factor of the interlayer, ﬁz .

Figure 5-9 shows the results of this sensitivity analysis.
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Figure 5-9: Sensitivity of the complex shear parameter to changes in the thickness ratio and the
shear loss factor of the interlayer. Partial derivatives of g’ and 7 with respect to H and j, are
shown. For (a) and (c), #,=0.13; for (b) and (d), H=0.4.

Figure 5-9a and Figure 5-9c¢ show that varying the thickness ratio has a strong
negative effect on the stiffness, analogous to a decrease in £, with minimal
improvement of the damping capacity. On the other hand, it is obvious that an
increase of the shear loss factor of the interlayer will have a notable effect on the
damping capacity, 7, with a minimal increase in compliance. Indeed, Figure 5-9d
suggests that ¥ quadratically as a function of interlayer shear loss factor, ﬁz . The

previous chapter has shown that introducing inhomogeneities into a viscoelastic
material can change the macroscopic damping capacity significantly. Section 5.5 will
employ the SC model to investigate such microstructural effects on structural

damping behavior. It should also be noted that the dependence of the complex shear
parameter on the stiffness ratio, ﬁz / E , has also been studied. The results show,

however, that when in the RKU’s domain of applicability, specifically restriction (1),

170



variations of this ratio have little influence on the plate’s damping capacity as a
whole.

This section has shown that a simple analytical model for the effective
vbending modulus of a sandwich plate can yield considerable knowledge about the
design space of a sandwich plate. The influence and interaction of design space
variables has been investigated resulting in several guidelines for the design of the
constituent materials. In short, the part level modeling performed here has given
insight and a few “design handles” for lossy structure design. Further knowledge can
be gained by exploring damping behavior on the structural level, the subject of the

following section.

5.4  Structure level modeling

The previous section has shown that much information about constrained layer
damping is gained from part level modeling and analysis. In application, however,
such plates will be mounted in structures which excite structural vibration. The
resulting structure level frequency response is governed by the part level behavior and
the plate’s boundary conditions [169]. Both the BC and the constitutive lossy
behavior of the plate have a significant effect on the damping capacity of the structure
as a whole. The analysis below extends the present analysis to forced vibration of
beams and plates with viscoelastic BC. The study examines the independent
influence of BC and plate lossy behavior on structural modal damping. It is limited to
the vibration of flat constrained layer sandwich structures with simple plate
geometries. The aim of this study is to approximate the behavior of a windshield
mounted in a rubbery material in order to observe modal loss factor trends resulting
from variations in the plate and BC material behavior. These trends are studied and it
is shown how this information can be used to inform design on the part and

microstructural scales. It is important to stress that the work presented here is an
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elementary step in the material by design approach. It is submitted more as a proof of
concept for SC model application as a material by design tool rather than as an
exhaustive study. More advanced modeling techniques, such as finite element
modeling, should be employed to approximate true BC and complex pIate geometries
which occur in reality. It is also instructive to study in-depth the systems approach to
material design by Seepersad [20].

One initial validation of RKU model implementation into structural level
models is a comparison of resonant frequency approximations and experimental
observations. The results of acoustic Transmission Loss (TL) tests of four sandwich
structures can be used for this purpose. The sandwich structures, prepared by Pacific
Northwest National Laboratory (PNNL), were geometrically identical but each has
slightly different viscoelastic interlayer materials. Generic sample geometry and
material properties are given below in Table 5-2. The exact material properties of
each interlayer material were not provided, but are known to be very close the PVB

values provided in Table 5-2.

Table 5-2: Generic layer and plate properties used to approximate resonant behavior. v ~ Poisson
ratio, L ~ sample length, and W ~ sample width.

H (mm) | p(I1+jB)(GPa) | v() | p (ke/m’) | L(cm) | W (cm)

Layers 1&3 2.0 29.5(1 +0.025) | 0.23 2469 30.5 30.5

Layer 2 08 | 0.133(1+0.13) | 049 | 1115 30.5 30.5

Two resonant frequency approximations, one corresponding to a Law of Mixtures
(LOM) homogenization and the other to RKU modeling of sandwich plate material
properties, are given below in Table 5-3. These values were calculated using the
information in Table 5-2 and eigenvalues based found through Rayleigh-Ritz methods
provided by Angloulvant [170].

Table 5-3: Approximate sandwich plate resonant frequencies from LOM and RKU model
homogenization.

Part- Resonant Frequency of 1% Six modes (Clamped Boundaries)

Levl | f @) | Sl | ) | faD) | S | fo @)
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LOM 580 1100 1620 1900 2390 3150

RKU 518 970 1418 1648 2100 2780

TL testing was done for third-octave bands between 125 Hz and 8 kHz in accordance
with SAE J1400 [171]. Samples were mounted in the test window between the
reverberant chamber and the semi-anechoic chamber of the Integrated Acoustics
Laboratory (IAL) at Georgia Institute of Technology in Atlanta. Figure 5-10 shows a

schematic of the test setup and Figure 5-12 shows an image of the test window.
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Figure 5-10: Schematic of general set-up used for SAE J1400 TL testing.

Figure 5-11 plot experimental TL results of the four different glass-viscoelastic
sandwich plates. This experimental data shows two important facts: (1) an increase in
the interlayer damping capacity (S4) leads to a notable increase in TL and (2)
incorporation of RKU part level modeling into structural models yields increased
accuracy in the approximation of the first and second resonant frequencies. The first
point validates the discussion given in the previous section and the second validates

employment of the RKU model in structural models such as modal analysis.
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Transmission Loss of all Samples with Clamped B.C.s
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Figure 5-11: TL due to four different windshield samples. Notches in TL at ~ 500 Hz and ~ 1000
Hz agree well with RKU model approximation.

One further validation provided by these experiments is the effect of BC on

observed TL. The experimental data in Figure 5-11 was taken with samples having
clamped BC as shown in Figure 5-12.
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Figure 5-12: TL experimental setup. Sample window contains stainless steel plug. Note red
clamps and isolation putty around exterior of test window.

The clamped conditions were modified in another set of tests by releasing the red
clamps seen above in Figure 5-12 to approximate viscoelastic boundary conditions.
The exact conditions are very difficult to quantify because the samples were held in
place only by isolation putty whose purpose is to seal air gaps between the reverberant
and semi-anechoic chambers. Though they are difficult to quantify analytically, the
experimentally observed quantitative difference in TL near the first resonant
frequency s significant (~ -4dB re 20uPa), see the results for S1 shown in Figure
5-13. These results also show the expected reduction in resonant frequency resulting
from the decreased “stiffness” of the structure as a whole resulting from the

viscoelastic BC.
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Figure 5-13: TL results for S1 with different boundary conditions. Viscoelastic BC show a
substantial increase in observed TL.

5.4.1 Analysis of the lossy behavior of simplified structures

The TL study results shown in Figure 5-13 illustrate the need to incorporate

plate boundary conditions into structural level models. The inclusion of influence of
BC on the structural level lossy behavior adds another degree of freedom to the design
space and more closely approximates real-life applications. This sub-section inspects
the influence of viscoelastic boundaries on the lossy behavior of two simplified
structures, a viscoelastically constrained beam and a viscoelastically constrained
circular plate, through modal analysis. The ultimate aim of this study is to allow the

approximation of changes in the structural level lossy behavior as a function of
variations in constituent material microstructure.

Such an analysis gives a clearer
picture of how microstructural variations propagate to higher length scales and

thereby illustrates the value of SC micromechanical modeling in the design process.
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5.4.1.1 Forced vibration of a beam with elastic boundary conditions

One of the simplest ways to quantify the modal loss factor of a uniform beam
due to different boundary conditions is to find the solution for the general case of a
vibrating beam with elastic boundary conditions as shown below in Figure 5-14. The
present analysis finds this solution for a beam of uniform cross-section and material
properties as a function of x. The present work is also limited to classic plate theory,
which is discussed at length elsewhere [172].

Figure 5-14: Schematic of an elastically constrained beam.

The advantage of finding a solution to the forced vibration of such a beam is

that it can easily be modified to approximate many different boundary conditions by

changing the values associated with the linear displacement springs, K, [N/m], the
rotational displacement springs, K,,,[N'm], or both, see Appendix E for examples

and model validation. Figure 5-15 shows one approach to approximating these
coefficients, representing viscoelastic boundary conditions at the extents of the beam,
from the viscoelastic material constants in which the beam is embedded and the
boundary geometry. Through application of the elastic-viscoelastic correspondence

principle the boundary conditions can be altered to study the effects of different
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viscoelastic boundary conditions and interlayer materials on modal damping. The

derivation of the general solution is given in Appendix E.

True B.C.
N[\\l ; K, ~ E t+ fi,ch 5 units —> N/m

Ky = i3y (2t +h)b* ; units > N -m

b —Beam width

Figure 5-15: Approximation of viscoelastic boundary conditions as linear and rotational springs.

One way to check this nested analytic multiscale modeling approach is to
compare modal analysis results from the analytic models above to FE approximations.
Figure 5-16 shows the results of a study that employed these two different
approximations methods. The subject of study is a sandwich beam with a length L+z,
a total thickness %, and a width 5. The beam is embedded at x = 0 in a viscoelastic
medium which has the same material properties as the beam interlayer. The beam
dimensions and material properties are given in Table 5-4. For this study the beam is
excited using a time varying spatially uniform pressure on the top surface thereby

simultaneously exciting all modes of vibration.

Table 5-4: Sandwich beam geometry and properties for analytic and FE study in Figure 5-16.

H@m) | L(m) t (m) bm | p(GPa) v() ( kg’/’ma)
Layer 1&3 [ 2.0x10° | 0.100 | 1.0x10* | 0.01 29.5 0.23 2469
Layer2 | 1.0x10° | 0.100 | 1.0x10* [ 0.01 [ 0.133+0.13j | 0.49 1115
BC 50x10°] -~ [ 1.0x10% | 0.01 [ 0.33+0.13j | 049 | 1115

The analytical approach employed approximates sandwich beam behavior

using the RKU model and the resulting effective bending modulus is used in model
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general vibrating beam model derived in Appendix E. It is important to stress that the
value used for the Poisson ratio, vy, is that of the glass plate material, v;3, for
implementation of the model derived in Appendix E. The analytic model results
- were compared to FE analysis to validate employing such a simplified multiscale
modeling approach. The FE results were calculated using the sophisticated FE model
of Daya and Potier-Ferry [83] where the viscoelastic boundaries were not
approximated as linear and rotational springs, but as an embedding material, and
therefore represent reality much more closely. In both cases the modal loss factor was
estimated using the half-power beam width method from the calculated beam

frequency response [169].

Loss Factor of 1%t Mode vs. VE Material LF
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Figure 5-16: Viscoelastically constrained beam LF as function of the LF of constraining and
interlayer materials. Multiscale model comparison with FEA model derived by Daya and Potier-

Ferry [83]

The results shown above have several encouraging points. First, it is obvious

that the viscoelastic material lossy behavior has a linear effect on the macroscopic
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damping properties of the structure for Jow loss factor values. This is to be expected
[169]. When the value of the loss factor increases the analytic approach presented
here will no longer be valid and more involved analytic models or FE models are
required. Indeed the plot suggests that the validity of the proposed method is

questionable for 7,, values exceeding ~ 0.5. Another encouraging point is the

agreement between this simple analytic approach and the FE model. Considering all
of the simplifying approximations, especially those concerning the viscoelastic
boundaries, the estimates provided by the analytic model are quite close. The over-
estimation provided by the analytic model is in part explained by the well-known fact
that the RKU model generally provides superior damping estimates to those observed
in reality [165]. More importantly, this comparison validates using the RKU model in
such a multiscale approach. The analytical nature of this nested multiscale model
approach permits efficient study of the influence of different BC, constituent material
properties, and microstructures on structural damping behavior, thereby reducing the
overall computational load. It is for this reason that it is attractive as a first step in the

design of absorptive materials.

5.4.1.2 Forced vibration of an elastically constrained circular plate

It is instructive to study a two dimensional plate in order to move closer to true
windshield structure. This is most easily accomplished through analytical methods by
studying the vibration of a circular plate. Due to symmetries, the circular plate
solution can be found through analytical methods thus eliminating the need for
Rayleigh-Ritz schemes which are inherent in two-dimensional rectangular plate
models [169, 172]. This fact simultaneously reduces modeling complexity and
computational load. Further, the main objective of the following study is to show the
effects of component viscoelasticity on the system response so the actual geometry is

unimj:ox’cant as long as the plate is two dimensional. As with prior beam problem, it is
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essential to first find the solution for the general case of a plate having cross-section
and material properties which are uniform in the plane of the plate with elastic
boundary conditions at » = a. Figure 5-17 illustrates this geometry. A detailed
derivation of the general solution of a vibrating circular plate with elastic BC is given
in Appendix E.

Figure 5-17: Schematic of elastically constrained circular plate.

The advantage of the resulting solution is that it is easily modified to represent

many different boundary conditions by changing the values associated with the
distributed linear displacement spring, K, [N/m?], the distributed rotational
displacement spring, K, [N], or both. These coefficients are chosen to represent
elastic boundary conditions at » = a by relating them to the material constants in
which the plate is embedded and the geometry of the plate-boundary interface. A
simple approximation scheme is shown below in Figure 5-18. Their effect on the

modal damping can then be studied by assigning complex values to the elastic BC and

plate materials.
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True B.C.

N(\\4 K, =~ E,; units —> N/m’

Ky ~ fip2n(ta+1t]+ah) ; units—> N

Figure 5-18: Approximation of viscoelastic boundary conditions as linear and rotational springs.

One of the main objectives of design is efficiency. Design efficiency refers to
the ability to arrive at a design that fulfills all requirements though minimal design
iterations and by reducing variables in the design space. Keeping this in mind, it is
interesting to study the relative effect each “component” contributes to damping plate
vibration at the first resonant frequency. The following study investigates the
independent effects of lossy behavior of the plate, linear spring, and rotational spring
on the modal loss factor of a viscoelastic constrained circular plate. This is done in an
effort to shed light on the most efficient means of damping resonant behavior and is
accomplished via three different studies. The plate geometry and material properties
employed in these parametric studies are detailed in Table 5-5. "It is important to note
that the plate studied in each of these studies is not a sandwich structure and therefore
only the effects of lossy plate behavior are studied.

In the first parametric study the plate is pinned at » =a (K, —> =) and the
plate material is a homogeneous non-lossy glass. The values for the rotational spring
are calculated according to the equation given in Figure 5-18 using shear modulus
values given in the PS1 row of Table 5-5. Shear modulus loss factor values are varied
between 0 and / and the half-power bandwidth method is employed to calculate the
loss factor of the first mode. For the second parametric study the slope of the plate is

required to be zero at 7 = a (K, — ») and the plate material is again a homogeneous
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non-lossy glass. The linear spring values are calculated from the equation given in
Figure 5-18 using shear modulus values given in the PS2 row of Table 5-5. Again the
shear modulus loss factor values are varied from 0 to  and the results of the structural
model yield the modal loss factor of the first mode via the half-power bandwidth

method. The final study represents the behavior of a clamped (K, > and
K, — ) viscoelastic plate where the plate material loss factor is varied between 0

and /. The results of these three studies are given in Figure 5-19.

Table 5-5: Plate geometry and material properties for parametric studies of component influence

on structural damping.
7 HVvE Ep Kw
a(m) | h(m) | t(m) (GPa) vz () (GPa) vp () (N/mz) K, (N)
ps1 | 0.100 | 0.005 | 0.010 | %133 | 049 | 720 | 023 | 1x10| cBlC
(1+n) eC
Ps2 | 0.100 | 0.005 | 0.010 (01113;) 049 | 720 | 023 Zag 1x101°
PS3 | 0.100 | 0.005 | 0.010 | 0.133 | 0.49 (E;g.) 023 | 1x10% | 1x10"°
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Figui'e 5-19: Modal loss factor of vibraﬁng plate as a function of each contributing element. PS1
indicates the influence of the rotational spring loss factor, PS2 indicates the effect of the linear
spring’s loss factor, and PS3 indicates the beam loss factor’s influence.

The results of these parametric studies clearly show that lossy plate behavior
dominates damping behavior on a structural scale. It is therefore obvious that the
most efficient means to achieve increased acoustic and vibrational isolation with a
constrained plate is to increase the plate material loss factor. It must be stated that
this study assumes that all other parameters remain equal, which is often difficult to
achieve in reality. Indeed, increasing the material loss factor usually implies an
undesired decrease in material strength: the classic dichotomy of material strength
versus damping. Recent research suggests, however, that the introduction of certain
trace microstructural heterogeneities can have marked effects on material damping
behavior while minimally affecting material strength [9, 10, 12]. For this reason it is
very interesting to study the present nested multiscale modeling approach and its

capacity to capture micro-scale influence on the structure-level damping behavior.

5.5 Microstructural influence on structural damping capacity

The final validation step for the proposed multiscale modeling approach is to
inspect the influence of microstructural changes on structure level damping. The
results of such a study will provide a complete picture of the role of microstructure in
structure-level damping of a vibrating sandwich plate. It will also illustrate how
multiscale modeling lends designers high levels of control and insight at each
individual scale and how changes at one level propagate through length scales. ‘This
section, therefore, endeavors to incorporate the quasi-static SC micromechanical
model developed in Chapter III into the multiscale model detailed in the prior sections
and to show microstructural influence on structural behavior.

Previous sections have investigated the influence of material loss factors and

sandwich geometry have on structural damping. Chapter IV made it abundantly
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obvious that changes in material microstructure can greatly increase material damping
capacity by altering the amount of strain energy present in lossy material phases under
identical loading conditions. The loads applied to windshield sandwich plates result
from air-structure coupling, frame vibrations, and projectile impacts. All of these
loads are fixed force/stress loads, as opposed to displacement or strain based loads.
The simplest way to increase strain energy in lossy material components for such
loading is to increase their compliance. Chapter IV illustrated that this can be
achieved by introducing inclusions into a viscoelastic material which are less rigid
than the host. Voiding a material is the most efficient known means of increasing a
composite viscoelastic compliance [28] and therefore voided viséoelastic material is
subject of this study. The scope of this study, however, is limited to isotropic bi-
phase particulate composites resulting from a viscoelastic host material containing
spherical voids.

Several points must be raised in regards to such a treatment for an automobile
windshield. Voiding a windshield interlayer material has both positive and negative
aspects. The most apparent drawback is that introducing heterogeneities of any kind
will have a negative impact on the light transmission. The same scattering
phenomena addressed in Chapter II with respect to acoustic waves are applicable to
light waves when there is a material discontinuity. The major difference is that for
light waves the ka value will be much larger and, consequentially, light scattering
effects will be pronounced. Light scattering leads to poor windshield transparency
and is a major restriction to the introduction of voids to achieve elevated windshield
damping capacity. However, the physical mechanisms leading to enhanced energy
dissipation, namely increasing strain energy in lossy components, are not restricted to
voids. Ideally a material can be found to take the place of voids which has weak
elastic constants but an index of refraction similar to the viscoelastic interlayer. This
would eliminate light scattering problems. It is also possible that materials can be
found which can analogously increase lossy behavior through the addition of only

infinitesimal amounts of heterogeneity. A positive aspect of introducing voids into
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the interlayer material is that the resulting sandwich windshield will have a lower
density. Lower overall density translates to increased energy efficiency which is a

very desirable consequence.

5.5.1 Microstructure > Part level modeling

To study void fraction effect on part level behavior, it is interesting to re-visit
the parametric studies shown in Section 5.3.1. Figure 5-4 — Figure 5-6 of that section
investigated changes in the complex effective bending modulus, the flexural
wavenumber, and the shear parameter as a function of the thickness ratio for several
values of interlayer shear loss factor. The plots showed that increasing interlayer
material loss factor has a positive influence on the plate damping capacity. The most
desirable result shown was that by only varying the material loss factor, i.e. no change
in shear stiffness, the bending loss factor increased while only slight change was
observed in the real part of the effective bending modulus. Similar plots are shown
below where the interlayer void fraction is varied in order to observe the effect on the
complex effective flexural behavior.

Figure 5-20 clearly shows that the void fraction has a strong influence on the
effective complex bending modulus. The reduction in real part, B, is rapid with
increasing void fraction for any fixed thickness ratio, . This is an undesirable result
of adding voids to the interlayer material. Conversely, the bending modulus loss

factor, 7,, quickly increases as a function of void fraction.

Table 5-6: Material properties used to produce Figure 5-20 - Figure 5-24 and Figure 5-26. The
viscoelastic properties are calculated from (V.3.9) and the HN coefficients given in the associated
paragraph for an exciting frequency of 1 kHz

v v p Hvoi Vvo P
pe(GPa) | %% EGPa) | & | g | GPa) | ()| ()

p
Q_| (kg/m’)

0.133 72.0

: -8
Property (140.13)) 049 [ 1115 (1+0.02)) 025 2469 | 1x10™ | 045 | 1.21
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Figure 5-20: Effective bending modulus as a function of layer thickness ratio for varying values
of interlayer void fraction at f =1 kHz.

The increased damping capacity is further evidenced by inspecting the results in
Figure 5-21 and Figure 5-22. The prior shows the effective complex flexural wave
number and the latter a measure of the attenuation per flexural wavelength suggested
by Kinsler et al [88], &"/k"™ . The wavenumber plot shows two interesting
aspects. The most obvious observation is that the magnitude of the flexural
attenuation coefficient, @™ , monotonically increases both for a fixed void fraction
with increasing thickness ratio and for a fixed thickness ratio with increasing void
fraction. This is due to the fact that both changes, increasing void fraction and
increasing thickness ratio, result in increased plate flexural compliance. The
increased compliance augments the strain energy present in the viscoelastic material
for a fixed applied moment/stress, thereby increasing thé damping capacity of the
plate. The less obvious result is the non-monotonic behavior of the real part, £/,

For a fixed frequency, an increase in real part of the wavenumber implies a decrease

in the wave speed, ¢, since k= w/é . Because the flexural wave speed is related
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indirectly to the inverse of the modulus through Equation (V.3.2), it would seem
apparent that a decrease in the real part of the flexural modulus would likewise lead to
an increase in the real part of the wavenumber. However, for high loss factor values,
this is not always the case. The relationship between the real parts of these two
quantities is not independent of the flexural modulus loss factor. It is for this reason
that Figure 5-22 shows non-monotonic curves for £ and that the maximum value
is observed for consecutively smaller thickness ratio values as the void fraction
increases. The non-dimensional measure of attenuation plotted in Figure 5-22 clearly
shows that the attenuation efficiency is a monotonic function of both the thickness
ratio and the void fraction despite the increased wave speed for all values inspected.

One further observation of effective plate behavior concerns the shear parameter.

Figure 5-23 shows that values of & decrease rapidly with increasing void fraction
and thickness ratio. The RKU model is only valid when & >1 implying that the

RKU model may give erroneous values for thickness ratios exceeding ~ 0.2.
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Figure 5-21: Effective flexural wavenumber as a function of the thickness ratio at f=1kHz for a
several different void fractions.
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Attenuation per Wavelength (aﬂex/k'ﬁex) vs. Thickness Ratio
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Figure 5-22: Measure of damping amplitude attenuation per flexural wavelength for layered
plate homogenized using RKU model with a voided interlayer.
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Figure 5-23: Effective shear parameter as a function of the layer thickness ratio for several
values of interlayer void fraction at f=1 kHz.
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5.5.2 Microstructure > Structure level modeling

The final subject of interest is the influence of microstructural changes, in the
form of void fraction, on structure-level damping. The results are presented in two
different ways. First changes in the modal loss factor of a vibrating circular sandwich
plate as a function of viscoelastic interlayer and boundary void fraction are shown.
This yields insight into the increased capacity of the sandwich structure to damp
resonant behavior. The second study approximates windshield transmission loss for
an incident plane wave as a function of frequency. The results of this study illustrate
relative acoustic isolation improvements of a voided interlayer.

Section 5.4.1.2 presented the effects of different lossy elements on the damped
behavior of a viscoelastically constrained circular plate. Though it was shown that the
most efficient means to damp flexural vibrations is by elevating the beam loss factor,
it is of interest to demonstrate the generality of the nested multiscale approach
through a study that take into account the behavior of voided viscoelastic boundary
conditions and sandwich interlayer. For this purpose the following studies the
damped I* resonance of a circular sandwich plate embedded at 7 = a in a voided
viscoelastic material. The interlayer material is also assumed to contain voids with
the same volume fraction. For this study the same materials and geometries are
employed as those presented in Table 5-5 and the modal loss factor was again
approximated using the half-power bandwidth method. Figure 5-24 shows interlayer
and boundary material void fraction effects on the modal loss factor of the first mode.
The plot clearly shows a quadratic correspondence, as was suggested in the RKU
model sensitivity analysis presented in Section 5.3.2. This quadratic correspondence
is due to the introduction of voids in the interlayer material, thereby increasing the
loss factor of that layer. Section 5.4.1 showed that viscoelastic plate and B.C.
behavior has only a quasi-linear influence on the modal loss factor, therefore the

quadratic tendency observe in Figure 5-24 is a result of constrained layer damping of
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the sandwich plate. These results are encouraging and show that microstructural

inhomogeneities can have noticeable influence on structure-level behavior.
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Figure 5-24: Variation of the loss factor of the 1% mode of vibration for a cantilever beam as a
function of interlayer void fraction, ¢.

Noise in an automobile interior has two distinctly different sources. A major
contributing source is sound radiated by structure borne vibrations that originate from
engine vibrations and, more importantly, the interaction between the road and the
automobile [1]. The efficiency with which the windshield radiates this vibrational
energy in the form of sound is dominated by its modal response. For this noise
source, the previous study is applicable. Figurg 5-24 has clearly shown that
increasing the void fraction of the viscoelastic interlayer and boundary materials
displays a desirable enhanced ability to reduce resonant behavior. The second source

of noise is sound originates outside the vehicle which is consequently transmitted
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through the windshield and other acoustic paths. The quality of noise isolation is
usually measured by the transmission loss (TL) discussed in previously. For a panel,
homogeneous, sandwich, or otherwise, the general characteristics of TL as a function

of frequency are shown in Figure 5-25 [166].
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Figure 5-25: General characteristics of TL versus frequency for a panel (figure from Buerhle et
al [166]).

Figure 5-25 illustrates the four regimes of panel transmission loss. From left
to right, the first is the stiffness controlled domain which represents the quasi-static
case for the plate, meaning acoustic wavelengths are much larger than the panel of
interest. This regime is not of interest in the present work. The second regime,
resonance controlled, is similar to the case studied above. It is reasonable to assume
that behavior due to air-borne waves exciting resonance behavior will be damped in
the same manner as structure borne vibrations and therefore this case was treated by
the previous study. In the mass controlled TL regime, acoustic wavelengths are much
smaller than panel dimensions and the panel is therefore approximated as a limp
hanging panel with a known mass per unit area. The pressure gradient of the incident

sound wave causes the panel to move as a whole and radiate sound on the other side.
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In this regime TL is dominated by the panel mass and a doubling the frequency leads
to a 6 dB TL increase [89]. It is obvious from this behavior that high density panels
are ideal for noise isolation. The final TL regime is the coincidence controlled
regime. In this frequency range the incident wavelength projected onto the panel
matches the wavelength of flexural waves in the panel. Coincidence occurs when
these two wavelengths match, resulting in near perfect transmission and a greatly
diminished TL. The result is a sharp decrease in observed TL at a specific frequency
depending on the air-borne plane wave angle of incidence. This region of high sound '
transmission is called the coincidence notch and the behavior is sometimes simply
termed coincidence [89].

Microstructural effects of resonant behavior were previously shown for a
vibrating plate so it is now interesting to inspect the effect of microstructural changes
on windshield TL in the mass-controlled and coincidence-controlled regimes. Panel
behavior in this frequency range is well approximated using the set of equations

below [89].

c? 5 BY )
Dpe =% where K= - Vsl
JE pT

TL =20log,,| 1 +——%—cos6,

53
2(pe),, )

In these expressions ¢, and p,;r represent the speed of sound (343 m/s) and density

(1.21 kg/m’) of air, respectively, @,,.. is the coincidence frequency, 2p represents

inc

the plate impedance, and the other variables have been previously introduced. Figure
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5-26 shows the TL calculated from Equations (V.5.1)-(V.5.3) for a sandwich
windshield consisting of the same materials and geometry as for the resonance
behavior discussed in Section 5.5.1. These results clearly show the expected mass
and coincidence-controlled regimes. In the mass controlled regime the interlayer void
fraction is small enough to have no detrimental effects on the TL. It also shows that
the non-voided interlayer material already provides substantial coincidence notch’
reduction. The voided materials do enhance damping in this frequency range, but
improvements are marginal at best, ~ 2 dB re 20uPa, and surely beyond the limits of

human perceptibility in noise reduction.
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Figure 5-26: Theoretical TL of layered windshield as a function of frequency for an incident
angle of ;= 60°. Slight improvements are predicted for voided PVB near coincidence frequency.

Unfortunately, the results of this study show only marginal damping
improvements at the structure-level. This can be attributed to the fact that only

traditional materials have been investigated. It is very possible that non-conventional
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inclusion materials or trace interlayer material treatments could translate to large
effects on the structure-level damping capacity. One specific inclusion behavior
leading to increased macroscopic material damping are negative stiffness inclusions.
Lakes et al [9, 10, 12] have shown that “snap-through” phenomena observed in
instable inclusion materials can be approximated as a negative stiffness. Their work
has clearly shown that this extreme damping is due to large strains induced in the
neighborhood of inclusions which exhibit “snap-through” behavior. The most
significant increases in macroscopic lossy behavior results from inclusions whose
modulus, /,, is related to the matrix modulus, /4, , as 2, =—1.14,, [9]. It has been
shown theoretically [9] and experimentally [10, 12] that treatments using inclusions
displaying negative stiffness behavior can significantly increase lossy behavior with
only trace amounts of the inhomogeneities. Indeed, Lakes called such treatment
“homeopathic.” Figure 5-27 investigates structural behavior, in the form of sandwich
windshield TL, when the interlayer contains small volume fractions of hypothetical
negative stiffness inclusions whose modulus obeys i, =—1.14,,, at each frequency
while all other materials and geometry are identical to those used to produce Figure
5-26.
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TL of Sandwich Panel with Negative Stiffness Inclusions in Intefayer vs Frequency
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Figure 5-27: Transmission Loss of sandwich panel when PVB interlayer contains small volume
fractions of negative stiffness inclusions (u; =-1.Zupyp). Coincidence notch moves to dramatically
lower frequencies and nearly vanishes.

This plot shows a dramatic increase in observed structural level energy
dissipation at coincidence. Indeed, the introduction of such inclusions nearly
eliminates the coincidence notch while simultaneously moving coincidence
phenomena to lower frequencies. Though the behavior shown in this plot is for a
hypothetical material, it is very interesting for future research to show that such
behavior can be captured by a nested multiscale modeling technique such as the one
presented in this chapter. It also encourages further research in the design of
materials with negative stiffness, or “snap-through,” behavior for use as treatments in
structures when energy dissipation is important. More importantly for this work, the
above study validates the incorporation of the SC micromechanical model as a tool
for a material by design strategy. The study also clears the way for more intense

research of microstructural behaviors which have more pronounced effects on

196



structural level damping. Such a search will provide microstructural specifications for

the design of absorptive materials.
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CHAPTER VI

CONCLUSIONS, PERSPECTIVES, AND SUGGESTIONS FOR FUTURE WORK

6.1 General conclusion and perspectives

Classic design methods require the selection of materials which conform to the
needs of a preconceived whole [19]. This design methodology is well developed and
well understood. Unfortunately, this approach is often limited by the lack of available
materials that meet the needs of the structure which, in turn, limits the entire design
processes [14, 15]. An elegant solution to this classic problem is the creation of
materials specifically conceived for structural demands [21]. This new approach,
material by design, not only creates materials for specific needs but also includes the
creation into the design of the system as a whole [90].

Material by design, or simply material design, is currently a very active area of
research. One well accepted material design approach aims to extend either optimal
or robust systems design to include the concurrent design of materials for specific
high importance components [14, 21, 91]. Extending the systems approach to include
material design is very natural as materials themselves can easily be viewed as
multiscale structures [90, 92]. This new methodology is very attractive because it
ensures structure functionality while simultaneously giving ultimate control to the
designer.

The development and study of multiscale material models is one of the many
areas of material design which requires further research before the method can

become tractable. This thesis aimed to derive, develop, and validate a quasi-static
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self-consistent micromechanical model for implementation as a tool in the design of
high loss materials. Achievement of this objective required three distinct steps. The
first step was the derivation of a robust quasi-static frequency domain
micromechanical model for application to a wide range of viscoelastic particulate
composite materials. Chapter III addressed model derivation by extending
Cherkaoui’s static SC coated inclusion model [23, 24] to include viscoelastic behavior
of the constituent phases. The model was further developed via DSCT tensor
formulation, thereby permitting the approximation of a broad range of viscoelastic
particulate composites. The second step was the validation of the quasi-static SC
model through comparisons with complex bounds and experimental data which was
the subject of Chapter IV. This chapter ensured that no laws were violated in model
derivation and displayed model accuracy for both static and quasi-static applications.
The final step in achieving the thesis objective was integration of the SC model into a
multiscale structural model. This was achieved by modeling the dynamic behavior of
a viscoelastically constrained sandwich plate, representing an automobile windshield,
through a hierarchy of nested models. The result is an initial contribution to the area
of material design coupled with a well developed and understood quasi-static
micromechanical model. The following summarizes the important contributions and
developments of each section of this thesis, gives perspectives on the results, and

suggests future avenues for detailed study.

6.1.1 Quasi-static model development

Frequency dependent approximations of heterogeneous material damping
properties depend strongly on the frequency range of interest. This thesis has been
restricted to applications where the mechanical loading is well represented as varying
with time at some frequency, o, but being spatially homogeneous. It has been shown
that this frequency range corresponds to heterogeneity length scales, d, which are
much smaller than the incident wavelengths, 2. This frequency domain is called the
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“low frequency” limit, low ka scattering, or the Rayleigh scattering limit. Material
behavior in this domain can be captured through static models by applying the elastic-
viscoelastic correspondence principle. Based on this reasoning, this thesis proposed a
micromechanical modeling approach rather than a scattering based model.
Micromechanical modeling approximates macroscopic frequency dependent behavior
uniquely through constituent material behaviors and neglects inertial effects present in
scattering models. Despite the fact that such an approach limits modeling to the
quasi-static domain, it greatly enhances the range of heterogeneous materials whose
frequency dependent effective behavior is accurately approximated. It is for this
reason that the micromechanical approach has been chosen to be developed as a tool
for the design of absorptive materials.

The micromechanical model derived in Chapter III is an extension of the static
coated inclusion self-consistent model introduced by Cherkaoui et al [23, 24].
Section 3.2 derived a model for the simple case of coated ellipsoidal inclusions
embedded in an infinite viscoelastic matrix. The model approximates the presence of
inhomogeneities as a spatial variation of elastic constants in accordance with Zeller
and Dederichs [34]. In the static domain, this approach yields an integral equation
based on Green’s formalisms for the local strain field. The kernel of this integral
equation is a Green’s function that relates material stiffness contrast between matrix,
inclusion, and coating phases to a distribution of volume forces. Extension of the
static model to the quasi-static frequency domain requires this distribution of volume
forces vary in time at some frequency, o, and integrates the static integral equation
across all frequencies. Finally, application of interfacial operators and volume
averaging of the local strain fields yields a quasi-static SC micromechanical model for
viscoelastic particulate composites containing coated ellipsoidal inclusions.

The quasi-static model derived in Section 3.2 is limited to the approximation
of effective material behavior resulting from a host containing identical spherical or
ellipsoidal inclusions. The model is further restricted to applications where the

inclusions are identically orientated in space when the inclusions are ellipsoidal, This
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limitation is addressed in Section 3.3 where the model is generalized by expanding the
representative volume element to include multiple coated inclusion families. Each
coated inclusion family possesses identical viscoelastic behavior, inclusion geometry,
and spatial orientation. Generalization is achieved through a dilute strain
concentration tensor (DSCT) approximation scheme. Generalization by DSCT yields
a much more flexible model which is capable of accommodating a vast range of
materials containing coated inclusions with various viscoelastic behaviors, ellipsoidal

geometries, and spatial orientation distributions.

6.1.2 Model validation

The quasi-static micromechanical model derived in Chapter III was first
validated before attempting implementation of the model as a material design tool.
Model validation and application was the aim of Chapter IV. The chapter first
compared quasi-static SC estimates to complex bounds from the literature.
Comparison with bounds has a two fold purpose. Bounds on the effective behavior of
composite materials describe the limits of possible effective material properties based
on minimal and maximal energy restrictions. They are dependent on constituent
material properties and the volume fractions of each phase. Disagreement with
bounds invalidates a material model as it implies that physical laws have been
violated during model derivation. For this reason, verification that a proposed
effective medium theory (EMT) falls within accepted bounds is a first order check of
model validity. The second purpose for comparison with bounds is to check
composite material optimality. Bounds provide information concerning the optimality
of effective material behavior because they are derived from upper and lower energy
restrictions. For this reason, proximity to an upper or lower bound gives a measure of
how nearly optimal the phase composition, inclusion geometry, inclusion orientation,

or any combination of these factors renders the effective behavior of the composite
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[67]. The quasi-static SC model was compared with three specific complex bounding
methods taken from the literature for these reasons. Section 4.2.1 clearly shows that
the three phase model falls within the bounds proposed by Roscoe [65, 66] as a
function of frequency and inclusion volume fraction. The two-phase isotropic SC
model was then successfully compared with the variational and translational bounds
for complex shear and bulk modulus introduced by Gibiansky and Lakes [72] and
Milton and Berryman [71], respectively. These studies validate the derivation given
in Chapter III as well as the implementation of the resulting model in the quasi-static

frequency domain.

6.1.2.1 Homogenization of composites containing oriented ellipsoidal inclusions

Section 4.3.2 employed the SC model to evaluate the effective viscoelastic
constants of an isotropic viscoelastic matrix containing coated, ellipsoidal elastic
inclusions. The lossy behavior of the resulting anisotropic composite was captured by
introducing complex frequency dependent matrix material moduli. The section
investigated the effects of constituent phase properties, inclusion orientation, and
inclusion aspect ratios through a series of parametric studies and comparison with
experiment. This validation step first investigated the transmission loss (TL) of a
plane wave normally incident on a slab of viscoelastic composite material submerged
in water for oblate, coated, inclusions with aspects ratios ranging from 1.0 (spherical)
to 2.5. For the range of material properties used, the effect of the inclusion geometry
on the TL was modest, less than 2 dB, but agreement with the spherical inclusion
approximation and experimental data taken from Baird et al [76] was good. The
variation of plane-wave attenuation coefficient was then studied as a function of
inclusion orientation angle for the same constituent material properties presented in
the TL study. Directional dependence in accordance with the physical dissipation

mechanisms were shown to be captured by the quasi-static SC model. The complex
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effective sound»speed of the material was then evaluated as a function of frequency,
inclusion aspect ratio, and volume fraction. The effects of different inclusion
geometries such as penny-shaped, needle-shaped, oblate, and prolate have also been
studied. The results of all these studies clearly showed that the quasi-static SC model
predicts directional variations of lossy composite material behavior induced by
aligned ellipsoidal inclusions. The calculations and discussion of Section 4.3.2
verified that the quasi-static micromechanical model allows for a level of generality in
modeling of lossy composites where scattering based approaches are limited. As
such, it was concluded that it could be a useful tool in the design of new anisotropic
damping materials for numerous applications, including cases where the anisotropy of

such materials is induced due to loading conditions or manufacturing processes.

6.1.2.2 Homogenization through DSCT formulation: Orientation distribution, multiple

scale modeling, and coating thickness variations

The next validation step presented was an inspection of the quasi-static SC
DSCT model. The SC model was modified in Section 3.3 to allow the approximation
of the effective properties of composites with many disparate coated-inclusion
properties, geometries, and orientation distributions. To illustrate the improved
modeling flexibility of the DSCT formulation, several cases studies were presented in
Sections 4.3.3, 4.3.4, and 4.3.5. Section 4.3.3.1 showed that SC DSCT approximation
of the lossy properties of globally isotropic composites containing uniform
orientational distributions of ellipsoidal inclusions has good qualitative agreement
with a model proposed by Berryman [51]. The formulation was then shown in
Section 4.3.3.2 to capture the effects of varying the orientational preference of
ellipsoidal inclusions through a parametric study on the compressional wave
attenuation coefficient of a bi-phase lossy composite. The ability to correctly capture

preferential inclusion orientation was then verified by comparison with experiment in

203



Section 4.3.3.3. That section showed, through comparison with experimental values
from Jones and Wang [77], that the SC DSCT model has the ability to accurately
homogenize composites containing multiple inclusion types together with preferential -
orientations of select inclusion phases. In Section 4.3.4, the multiscale capability of
the SC DSCT model was illustrated. A SiC-Al composite studied be Ledbetter and
Datta [79] was idealized as consisting of three distinct length scales. The effective
stiffness coefficients calculated using this formulation were shown to have good
agreement with experimental values and the multiple scattering model Ledbetter and
Datta [79]. Sections 4.3.3.3 and 4.3.4.1 showed another strength of the coated-
inclusion SC DSCT formulation, that being the simple extension to the form of a
generalized SC model for bi-phase composites. The GSC scheme shows slight
improvements of approximation without adding modeling difficulty. Finally, the SC
DSCT model was shown capable of improving the accuracy of TL approximations for
a previously studied composite [50, 53, 76] by taking variations in inclusion coating
thickness into account.

The comparisons detailed above illustrate the flexibility and level of generality
achievable using the quasi-static SC DSCT model. The model is not without its
drawbacks, however, and several points of caution must be addressed. First, it is
known that SC models can display some numerical instability due to its implicit form.
This drawback was discussed at length in Section 4.4 and must be considered when
modeling composites with high contrast phases. Another drawback of the model,
which is also linked to its implicit nature, are the singularities observed in the
imaginary part of the complex wavenumber around the threshold of rigidity for high
contrast composites. With these drawbacks in mind, the level of achievable generality
and accuracy of the SC DSCT model displayed in this chapter far outweigh these
negative aspects. Indeed, the ability of this generalized model to capture the effects of
complex material microstructure in the static and quasi-static regimes make the SC

DSCT model an ideal candidate for the design of absorptive materials.
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6.1.3 Towards the implementation of the SC model as a material by design tool

Chapter'V investigated quasi-static SC model implementation as a material
design tool by presenting and studying the damping behavior of a multiscale structure.
The aim of this chapter was to provide an introductory level example of quasi-static
SC model implementation in the design of a lossy structure. This was accomplished
by presenting a case study of the damping properties of a simple structure: a vibrating
sandwich plate. A vibrating sandwich plate was chosen to represent an automobile
windshield, a common structural element. Such a choice clearly shows practical
implementation and the potential wide-range impact of the material by design
approach. This case study provided preliminary insight into the role the quasi-static
SC model can play in a material design strategy and laid the groundwork for more
detailed research.

A constrained sandwich plate was idealized as consisting of four distinct
length scales. These length scales are, from shortest to longest: (i) the constituent
material microstructure, (i7) the macroscopic plate material, (iif) the sandwich plate,
and (iv) the constrained sandwich plate. Length scales (iii) and (iv) are referred to as
the structural element, or part, level and structure level length scales, respectively.
The lossy behavior of this multiscale structure was modeled using a nested hierarchy
of models where each model was capable of making one or more scale transitions.

The damped behavior of the structure as a whole was approximated with the
loss factor of the first mode of vibration calculated for a viscoelastically constrained
sandwich plate or beam. Modal analysis was performed via classic methods
discussed by Liessa [172]. This study quantified lossy behavior at the highest length
scale. Modeling behavior at the structure level required information about part level
behavior, in other words, this model made the scale transition from length scales (ii7)
=2 ().

The structural element of interest to this case study was represented by a

sandwich plate and was modeled using a simple constrained layer damping model
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introduced by Ross, Kerwin, and Ungar (RKU) [81]. This simple analytic model
yielded insight into lossy sandwich plate behavior based on constituent layer material
behavior and geometry. The RKU model was successfully employed to model
effective sandwich plate behavior as a function of frequency and made the scale
transition from macroscopic plate materials and geometry to structural element,
represented as scale transition (i) > (iii).

The final model employed was the SC model which has already been
discussed in detail and which performed the scale transition from constituent material
microstructure to macroscopic material behavior, length scales (i) > (if). This section
showed that the SC model adds design variables, design flexibility, and behavioral
insight to the design process. Multiscale structural behavior approximated via this
nested hierarchy of models was verified through comparison with finite element
approximations employing a sophisticated model proposed by Daya and Potier-Ferry
[83].

The final section of this chapter investigated the employment of the SC model
to yield insight in order to enhance part and structural level damping capacity. This
study aimed to quantify the effects of microstructural variations on damping
properties at the part and structural levels. This was done by studying the effect of
introducing voids into the viscoelastic interlayer of the sandwich plate. Structural
element level effects were first studied. The introduction of 10% voids into the
interlayer material yielded 5 — 10% increases in sandwich plate damping capacity.
The damping capacity measure employed was the amplitude attenuation per flexural
wavelength, ¢ /k" . Though this is significant on the part level, the effects
observed at the structural length scale were marginal. Circular sandwich plate modal
loss factor calculations showed a quadratic dependence on void fraction, but the
magnitude of this influence was minimal. Indeed, 10% interlayer void fraction was
only shown to increase modal loss factor by ~2% over the non-voided interlayer case.
Further, the sandwich plate suffers a simultaneous significant reduction in flexural

resistance upon introduction of voids. The effects of interlayer void fraction on the
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frequency dependent TL of the sandwich plate ‘was also inspected. The TL
approximation was made using the nested multiscale modeling approach coupled with
fundamental acoustic relationships given by Pierce [89]. Interlayer voiding showed
minimal TL improvement at coincidence. The improvement calculated was merely 2
dB, a level imperceptible to human hearing. Though the modeling approach was
validated by this case study and microstructural influence was observed to propagate
through lengths scales, these results were discouraging in terms of design benefit.

Fortunately, new research suggests that very small volume fractions of
instable microstructural inclusions yield extreme increases in macroscopic damping
behavior [9, 10, 12]. The set of material models was therefore employed to
approximate windshield TL for a sandwich plate whose interlayer contained trace
amounts of a hypothetical instable material. The results of this multiscale study
showed the propagation of these microstructural variations through multiple length
scales finally manifesting in very effective increases in structural level damping.
Additions of only 1% instable inclusions nearly removed the TL coincidence notch,
and 4% inclusions were shown completely damp coincidence phenomena. Though
the material studied was hypothetical, such broadband material damping has been
experimentally observed by Lakes et al [10, 12], and these results are therefore very
encouraging for the design of high loss materials.

6.2  Perspectives and suggestions for future work

This thesis has derived, developed, and validated a quasi-static self-consistent
micromechanical model and presented a simple multiscale problem within the
framework of material by design. However, this work represents but a small
contribution to the complex material by design research area which remains rich for
study. It has been shown that micromechanical modeling as a material by design tool

can easily be incorporated into a nested hierarchy of models thereby simultaneously
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approximating structural bebavior at many different levels. This approach gives
considerable information and freedom to the design process and represents an initial
step towards the integration of material by design into the overall design of any
structure. This thesis has shown that development and study of micromechanical
models is extremely important to this emergent design process. These models give
substantial insight into the influence of material microstructures which translate into
desirable structural behavior while also being a key tool to approximate final design
performance. Indeed, the robust quasi-static self-consistent model derived,
developed, and validated in this thesis has been shown to enhance knowledge of
absorptive behavior and the influence of microstructural behavior on damping at
macroscopic, elemental, and structural length scales. This work has therefore given
promising results for future development of micromechanical tools for application in

strategies to design absorptive materials.

6.2.1.1 Suggestions for future work

It has been previously stated that the domain of material by design is rich for
study. Future research in this domain could include a vast range of areas including
the study of detailed overarching design strategies, fabrication processes and
variability, computationally efficient design, collaborative systems design,
nano—>micro scale modeling, and molecular dynamics or quantum approximations of
sub-continuum material behavior. For this reason, the suggestions for future research
given here are limited to the development of micromechanical tools for the material
by design process with a specific emphasis on the design of high loss materials.

One limitation of the micromechanical model presented in this thesis is its
limitation to quasi-static applications. This problem is specifically important when
investigating high frequency wave propagation applications where the quasi-static

approximation is no longer valid. This problem could be addressed using an approach
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similar to the micromechanical approach presented by this thesis without neglecting
inertial terms in the first stages of model development. This is not a trivial modeling
problem. Successful evaluation of this problem would, however, yield a model

capable of approximating both quasi-static and non-quasi-static material behavior

while maintaining the generality of the quasi-static SC model presented in this work.

Another interesting research area in the domain of EMT is the development of
more tractable complex bounding techniques. The present complex bounds are either
not restrictive enough or give too little information. Roscoe’s bounds provide the
ability to inspect effective complex material behavior as a function of frequency or
volume fraction, but are too admissive to study composite optimality. Bounds derived
from variational and translational techniques, on the other hand, provide a very
accurate restriction on permissible effective values. Unfortunately, these bounding
techniques do no lend themselves easily to EMT comparison as a function of
frequency or volume fraction. The development of bounds for complex composite
materials which can be easily implemented for a wide range of exciting frequencies,
volume fractions, and constituent material properties is therefore attractive.

Future research of micromechanical modeling tools for material design
applications must include implementation of meta, or surrogate, models to map the
effects of microstructural behavior to macroscopic behavior. Meta-models are design
tools that permit efficient exploration of the design space [20]. For example meta-
models approximating submicron material behavior as the result of localized macro-
scale loading can be used as an input to existing micromechanical models (see Figure
6-1). This approach is a powerful method to evaluate macroscopic and constituent
material behavior while limiting computational loads usually required for precise
evaluation of behavior at such small scales [22]. The meta-modeling approach gives
extremely important information regarding the effects of submicron material behavior
and geometry on the macro-scale. This information is of high importance for a
material design strategy [22]. An example of this approach with respect to damping

behavior would be the implementation of meta-models to approximate various
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negative-stiffness behaviors. Meta-models can be created to mimic instable behavior

resulting from macroscopic thermomechanical loading localized to the microstructural

scale. These models could subsequently be integrated into the SC model derived and

validated in this thesis in order to further inform the design of high loss materials.

INPUTS OUTPUT.
—
Loading »  Metamodel
Parameter
s | i [ Metamodel
-2
-E
1  Metamodel
o g(6,0.¥)—
»  Metamodel » Others? —

Figure 6-1: Schematic of a meta-model mapping procedure. The microscale variables represent,
from top to bottom, the constituent material properties, the volume fractions, the inclusion form,
the inclusion orientation, and any other variables to be defined.

A related area of considerable interest for lossy material design is detailed

research on instable material behavior at small scales (micron-, submicron-, or nano-

scales). This thesis has shown that instable behavior leads to extreme damping at the

macroscopic scale even when volume fractions of materials displaying this behavior

are miniscule. Research regarding the onset of instable behavior as well as methods

to introduce instable materials into a host is of utmost interest. Another very

interesting aspect that must be studied with regards to material instability is the ability

to stabilize such phases under nominal operating conditions while eliciting instable

behavior upon slight loading changes in preferential directions or along certain

loading paths. These, and many other behavioral trends, should be first explored

through a meta-modeling approach and finally implemented into a material design

scheme.
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6.2.1.2 Comments on material by design

Material by design is an emergent and extremely ambitious research field with
the potential for considerable impact in many fields of science and engineering. The
elementary study provided in the Chapter V clearly illustrated this point by showing
efficient enhancement in the absorptive bebavior of a simple structural element
through a limited material design approach. This was accomplished through
application of knowledge obtained from the quasi-static self-consistent model and the
nested hierarchy multiscale models. The result of the work done in this thesis is,
therefore, a well developed material design tool which has provided insight into the
microstructural mechanisms that lead to enhanced damping behavior across length
scales. It has further provided a tool to be integrated into a multiscale and multi-
physics material design scheme. The combination of this research with other studies
that target key areas of material by design will provide this exciting field with

significant information and bring designers closer to its practical implementation.
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APPENDIX A

FOURIER TRANSFORMATION APPROXIMATION OF T’ (CX)

Implementation of the SC technique requires the numerical approximation of
the modified Green’s tensor for cases where the surrounding matrix is anisotropic
(this includes cases when the actual material phases are anisotropic or when the
inclusions are ellipsoidal and oriented). The numerical evaluation is done via Fourier
transform techniques as explained in Mura and Berveiller et al [26, 37]. For
evaluation using the FT technique, the assumption is made that the displacement field
caused by the presence of the inclusion can be represented by the superposition of an
infinite sum of spatially regular displacement fields. This assumption, by the very
nature of the Fourier transform, implies that the spacing of inclusions is regular.
Though this can be a gross estimate, the method has been proven to provide very good
approximations to true composite material behavior [26]. The method employed is
rather involved, but stated simply it involves using the Fourier integral to transform
the ellipsoid into a sphere in Fourier domain. The transform variable in this case
represents the “wave number” of the strain field with spatial regularity in an infinite
homogeneous medium due to the presence of inclusions. The transformation allows
for numerical integration around a spherical volume using numerical techniques to
evaluate Equation (111.2.40).

Let the Fourier transform of the Green’s tensor in the reference material X and

its inverse be defined as follows:



(A.D)

where the vector k is the “wave-number” of the displacement (and therefore strain)
field in an infinite homogeneous medium due to the presence of the coated inclusion.
Integrating through all frequencies and then applying the Fourier transform to
Equation (I11.2.7) gives:

CLhek,GE (E)=s, (A2)

If the inclusion is ellipsoidal, it is convenient to introduce the following change of

variables:
X, X, =x k, K, =k
7= x2:>R=<X2_%x2 and k=4k, > K=" 2=9k2 (A.3)
X3 a ks c
LX3 —Zx3 K3 =;k3

k-7F=K-R (A.4)

o O

k,=®,K, where: [D,]=|0 (A5)

o e o

o |8
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Equation (A.2) can then be expressed as for the case of an ellipsoidal inclusion:

CLE®,K®,GL(E)=5, (A.6)

Then, defining K, = Ky, , where K is the magnitude and ¥, are the direction cosines,

leads to:

éi}‘;lq)ltq)jultlu = Mki
(A.7)
K*GE (R) =113}

which depends only on the magnitude of the vector K. This expression can then be

substituted into the inverse Fourier transform in order to evaluate t' , and therefore

T/ (éx ) as follows:

Fimy = a_l;_c_ :fsin Bdezjl:K ZCL?,;Y,, (IZ )] 20,2, ,do

(A8)

By (€)= e )

For efficient and accurate numerical evaluation of the integral in Equation (A.8), an »
point Gaussian—Legendre quadrature has been employed. It was found that, for most
cases studied, 10-point quadrature was sufficient. Finally, it should be reiterated that
the integral of the modified Green’s tensor is related to Eshelby’s tensor through the

following relationship.
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§=1 ((":X) Lol (A.9)
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APPENDIX B

TENSOR ROTATION AND EULER ANGLES

According to Euler's rotation theorem, any rotation may be described using
three angles. If the rotations are written in terms of rotation matrices B, C, and D,

then a general rotation can be written as the product of those rotations [149].

R =BCD | (B.1)

The three angles giving the three rotation matrices are called Euler angles. There are
several conventions for Euler angles, depending on the axes about which the rotations
are carried out. One of the most common conventions is the “x”-convention which

has been employed in this thesis and is illustrated in Figure B-1.

Figure B-1: Visualization of Euler angles employed in the x-convention [149].

The rotations associated with this convention consist of a rotation, ¢, about the z-axis,
followed by a rotation, 8, about the rotated x-axis and finally a rotation, y, about the

rotated z-axis. In general the Euler angles, (g, 8, y), can take the following values:



pel0 27]

fel0 =] B.2)
yel0 27]

The individual rotation matrices are defined in Equations (B.3), (B.4), and (B.5).

cosy siny O]
B=|-siny cosy 0 B.3)

0 0 1]

1 0 0 |
C=|0 cosf@ sind (B4)

0 —sin@ cost9_

[ cosp sing O]
D=|-singp cosp O B.5)
0 0 1

The resulting components of the rotation matrix R are detailed in Equations (B.6).

R,, =cosy cos@ —cos@singsiny
R, =cosy sing +cosfcos@siny
R; =sinysind

R,, =—sinycos@—cosfsinpcosy
R,, =—siny sin@ —cos@cospcosy
R;, =sinfsing

(B.6)

R;, =—sinfcosg@
R,; =cosf

The rotation of any second order tensor, X;;, from one coordinate system to its

representation in another, X ;> using the rotation matrix, R, is shown in Equation

(B.7).
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X'y‘ =R,R, X, B.7)

The rotation of any fourth order tensor, Xumpg, from one coordinate system to its

representation in another, X s » Which is related by the above Euler angles is given in

Equation (B.8).

Xy = Ry Ry R Ry X (B.8)
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APPENDIX C

SUMMARY OF COMPLEX BOUNDS

Complex bounds proposed by Roscoe

The equations used to derive the complex bounds the proposed by Roscoe are
analogous to statements of potentiai energy used as the basis for the extremum
principles which yield the bounds for elastic composites, see Voigt [110] and Reuss
[111]. The following analysis employs the notation used by Roscoe. First the
isotropic and deviatoric parts of the relevant tensors are separated in order to simplify
the derivation. Doing so yields the following classic relations for the stress and strain

in a material.

o, =00; +5; (C.1)

o, =£0;+e; (C.2)

In the equations above the hydrostatic and deviatoric stress values are denoted as o

and s respectively, the analogous strain values are assigned the variables ¢ and e,

respectively, and J; is the Kronecker delta function. In the low frequency limit the

elastic-viscoelastic correspondence principle can be employed and the well-known

stress-strain relationship for the ™ phase is given as [65, 66].

s, =2ue, o, =3k.€, (C3)



e =—].8, g, =—l0 (C4)

In these expressions an asterisk, * denotes that the quantity has a complex value, .
and x, represent the shear and bulk moduli and j, and I, represent the deviatoric and
isotropic compliances of the " phase. The two elementary extremum principles used
for classic elastic composites [110, 111] and applied here to viscoelastic composites

are summarized with the two points below.

1. Assume (s) =g, and <0'> = ¢, for each phase, r, where (s) and <0'> are the
global deviatoric and isotropic stresses respectively.
2. Assume (e) =e, and (s) =¢, for each phase, r, where (e) and (¢) are the

global deviatoric and isotropic strains respectively.

Applying assumption 1 to the expression for strain energy yields Equation (C.5)

below.

1. _\ 1. _ 1 o — 1. _
L ARSI ONEARESY AR ALANNCD

r

A bar over any quantity in the above expression denotes the complex conjugate of that

quantity and ¥, is the volume of the #* phase with V =ZV,. Similarly, for

assumption 2, the strain energy relationship is written:

24y (e, (7, )+ 365 (5,15, ) = %Z [(erieye, +3x05,8,)av,  (CH)
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It is important to note that Equations (C.5) and (C.6) each represent two separate
relationships each of which relate the real or imaginary parts of macroscopic material
behavior and mechanical loading to the analogous quantities of the constituent phases.
Denoting the real and imaginary parts of a complex quantity as x =x +ix , these

relationships are shown below.

LS ANEAT ACHICAS zj( s+, )dV, )

205 (e,)(2,) +3x5 (,) () = ZI(Zu,eye +3x5,5,)dV,  (C8)

viscoelastic analogues to the elastic Reuss and Voigt bounds are then found by
matching terms on the LHS and RHS of relations (C.7) and (C.8). These bounds are
simply the weighted harmonic average and weighted average of the constituent phase

properties given below:

) ) e
=D S Ky =2 fK (C.10)

In the above relationships, RL and RU denote Roscoe’s lower and upper bounds,
respectively. It is now important to note that due to energy considerations the

following is true:

(C.11)



An important aspect of these complex bounds is the lack of restrictions with
respect to the frequency inspected, the total number of constituent viscoelastic phases,
r, or the total volume fraction, p. This logic leads to the following restrictions on the

possible values for the effective viscoelastic moduli:

i (0,0) < tiy (0,0) < i, (2,0)
(C.12)

xir (0,0) < x (0,0) < x5y (2,0)

where o is the frequency of interest and ¢ is the total volume fraction of inclusion

phases. Note: f, ... =1-9.

Complex bulk modulus bounds

According to the work of Gibiansky and Lakes [72], the effective complex
valued bulk modulus of the isotropic viscoelastic composite is constrained to a “lens-
shaped” region in the complex bulk modulus plane. This region is bounded by the
outer-most pair of four circular arcs, each of which correspond to the four min-max
variational principles proposed by Cherkaev and Gibiansky [67] and Milton [68]. The
equations defining these arcs are calculated from Equations (C.13) - (C. 17)Below.

1=k -x)
(1-f)x, + fr, + Y0 (7)

O (for)=fra+ (1= f) -

(C.13)
for n=123,4

222



For this relation £, where f €[0,1] and represents the volume fraction of phase 2, is

fixed and y varies along the real axis from [0, 1]. Functions y(") () are the previously

mentioned Y-transforms and are defined for the bulk modulus as shown below.

yO = —(7#1 +({1-7)m,) (C.14)

y9() = (7’ = 7)] (C.15)

H Hy

()= "K1+[(%+K‘)(4T%+Kl)]* 1 (C.16)
[7(——+KI)+(1—7)(4TM+K1):|
W)= =, +[(4§1 +K2)(4T%+K2)]* (C.17)

[t a-n(fgen]]

Complex Shear modulus bounds

Milton and Berryman derived bounds for the complex shear modulus of a bi-phase
isotropic complex composite material using the variational principles introduced by
Cherkaev et Gibiansky [67]. Application of these bounds is achieved through the
following algorithm. Given the complex valued bulk and shear moduli of the
constituent phases, k;, k2 uj, M2, the algorithm calculates the bounds in the
transformed complex plane. Note that the same notation for viscoelastic composite
composition and material properties is used for these bounds as for the complex bulk

modulus bounds derived by Gibiansky and Lakes [72]. The algorithm begins by
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defining a range of angles which represent the phase angle of the shear modulus

bounds in Y-transform space must be defined [71]:

oelo, 6,]

with (C.18)

{HL = 7 + max {arg(x, ) arg (x, ) arg (14 ) arg (4 )}
6, = min{arg (x; ), arg (x, ) arg (14) . are ()}

Because both real and imaginary parts of the moduli are forced to be positive for the
evaluation of these bounds, the values of 8y and 6y, will always fall between 0 and =,
and —  and 0, respectively. In the Y-transform space the bounds are defined by some
single valued function, f*", represented in Equation (C.19) in the most general terms

possible [71].
y=f""(x), ifandonlyif z*~ =x+iyedB™" (C.19)

&B*" in Equation (C.19) represents the upper and lower boundary, respectively, of
the set of all admissible values of z*~ in complex Y-space, x and y are the real and
imaginary parts of the complex shear modulus in Y-space on that boundary, and the
complex number, z*", is some as function of the viscoelastic composite’s constituent
properties and composition. The resulting bounds can now be plotted either in the Y-
transformed space or complex shear modulus space via the relationships given below.
First, z*~ must be defined in terms of the viscoelastic constituent properties and the -

Y-space phase angle 6 with the equations below [71]:
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1(8 + 901) ( cuut)
= (6)= #6(2 + cl) 3(2+¢,)

2 (0)= [ 6@+c,) 60, (C_Z_LJT

ﬂk(8+9cz) B+9e )\

Im '-iﬂ Im i

For z”, the variables 4, and x, are defined as:

where

HM,, otherwise

2, ={/‘1= if Im[(/“l _ﬂz)e_w]so

K5 ifIm[(xl—xz)e'w]sO
K, =

k,, otherwise

and, for z*, the variables z, and x; are defined as:

L ={/‘1= if Tmf(l/ s, -1/, )6 |20

M,, otherwise

k,, otherwise

"'1 ={Kl, if Im[(l/xl—l/xz)ew]zo

(C.20)

(C.21)

(C22)

(C23)

Upon implementation of this algorithm either ¢; > ® or ¢z = «. The former occurs

when one of the shear moduli determines either of the limiting angles in Equation

(C.21) and the latter occurs when one of the bulk moduli determines either of the

limiting angles in the same equation. It should also be noted that the despite this

problem evaluation of the above equations does not always lead to a closed space.

This problem is eliminated by extending tangent lines from the limiting angles using

the following relationships [71]:
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=z (0,)+se”, 2z =27(6,)-se™ (C24)

z" = [z+ (6, )+ se }l , z" = [z+ (6,)-se Tl (C.25)

The variable s in Equations (C.24) and (C.25) represents a real variable that can takes

any value in the range [0 o) required to close the upper and lower bounds. The Y-

transform space bounds given by Equations (C.18) — (C.25) can then be transformed

to the complex shear modulus space using the following relationship [71].

u = 22:[ Jo — ]_ -z (C.26)

In the above expression, f, and g, denote the volume fraction and shear modulus of

phase n.
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APPENDIX D

RKU MODEL EVALUATION ALGORITHM

The effective flexural modulus relation derived by Ross et al [81] is given in
Equations (D.1) — (D.3). In order to efficiently evaluate these implicit equations and
to simplify sensitivity analyses, it is desirable to find analytical expressions for both

the real and imaginary parts of the bending modulus and shear parameter denoted as:

Al

BT, 5,, 8 ,and 7.

A

ﬁ”f=—é—l?h3(l+6Y( g2 J]=éeﬂ’"(1+1‘ﬁp) (D.1)

1+2g

In the above expression Y denotes the geometric parameter and g is the complex

shear parameter. These parameters are calculated using Equations (D.2) and (D.3),

respectively.

Y=(Q1+H) (D-2)
. 1 (Y1 BT .. ..
g =h_2( ‘Hj o rpe £ () ®3)

In these equations, H is the ratio of interlayer thickness to the thickness of the top and

bottom plates (H = Hyh), /i, is the complex shear modulus of the viscoelastic

interlayer where 4, =i (1 + jﬁ), E is the complex Young’s modulus of the upper



and lower plates with £=£ (1+jf), @ is the frequency of interest, 2 is the

thickness of the sandwich plate, and p? is the effective sandwich plate density.

Given the material properties and sandwich plate geometry, a rough estimate
of the sandwich plate effective bending modulus is: BZ” z%Ehz =B7 (1+J'77;)-

This represents the resistance of the top and bottom plates to flexure about their
bottom plane. Using this estimate the evaluation loop described by Equations (D.4) —
(D.11) will yield the effective flexural modulus at each frequency and plate geometry
of interest. Note: frequency dependence denoted by “~” is not included in these

equations.

Y =(+HY v D4)

x=,f1+,/1+77; (D.5)

-J_Lﬂé/ B 2 1 L\ Mo
& =W EH mzh,,,,p,,ﬂ{z (1+n2)[x(l+"”ﬂ et ")]} D-6)

p=lea-nrda 0l /{0 -Sne-n} - @D

Define:

4={g* (1+2g")+28° (Y} [{(1+22") +(27'Y ] ©3)

4= {r(1+28")-2g"7'} / {(1 +2g) + (2g"'y')2} ®.9)

B =%E'h3 [1+6Y(A;' ~n4)] (D.10)
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n ={n(1+64¥)+64x} [{1+6¥ (4 -n4)} D.11)
BT+ = gl (1 + jﬂ:'l)

This model is well-behaved and simple root finding techniques such as bi-section

reliably converge. One suggested convergence criteria is given in (D.12).

“Beﬁ'.Hl _IBq7'.i|
&=

B D.12)
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APPENDIX E

FORCED VIBRATION OF ELASTICALLY CONSTRAINED BEAMS AND

CIRCULAR PLATES

This section finds the solution for the y-displacement for a uniform forcing
pressure as a function of frequency for the general case of a beam with uniform cross-
section and material properties in the x-direction and elastic boundary conditions at x

= (0 and x = L. The diagram in Figure E-1 shows this case:

Figure E-1: Schematic of elastically constrained beam.

The well known differential equation for the space and time varying out of
plane displacement, y(x,), for a vibrating beam of uniform cross section and material
properties along its length, which is found via the dynamics of beam elements using
the Euler-Bemnoulli beam bending assumptions [169], is given below in Equation

(E.1).

4 2
El%f—’t)+pbhé—}%l=p(x,t)b E.D



In this equation E is the Young’s modulus of the beam, / is the beam’s area moment
of inertia (I = bh3/12), p is the mass per unit volume of the beam, b is the width of

the beam cross section, % is the beam’s height, and p(x,#) is the space and time varying
forcing pressure. The first step in solving this partial differential equation to first take
the Fourier transform of the out of plane displacement with respect to time, yielding

the non-homogeneous ordinary differential equation below.

d4y(x) ,B4A() p(JC) (E2)

Where 8*=w’pbh/El =12w’p/ER* and represents the flexural wave number in the

beam. One arrives at the solution to this ordinary differential equation through the
resolution of the homogeneous and particular parts. For simplification of the solution

of the particular part, exciting pressure is assumed to be constant in space and a
harmonic of the form p(r,6,t)— p(t)=p,cos(wt)= Rel: poe"”"]. The resulting

general solution is shown below in Equation (E.3).

y(x0)= |:bl cos(Bx) + b, sin(Bx) + b, cosh (Bx) + b, sinh ( fx) - mf,ooh ] cos (wrt) (E.3)

The undetermined coefficients of the relationship given in Equation (E.3) are
dependent on the specific boundary conditions of the beam, and are found through the

resolution of the following four boundary conditions.
Resolution of System for Elastic boundary conditions

For the elastically constrained beam shown in Figure E-1, the determination of

the coefficients b; — b, require expressions for the shear and moment at the extents of
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the beam. The boundary conditions are expressed below in the four relations given in

(E4).

) M(0.1)=-K,, L)

(@) V(0,0)=K,y(0,f) () V(Lt)=-K,,y(L.t)

@g’t) (i) M(Lt)=K,,

Where K2 are the rotational spring coefficients on the left and right limits
respectively (having the units of N'm) and K,,; 2 are the linear displacement spring
coefficients at the left and right limits respectively (having units of N/m).
Approximate values for the linear and rotational springs are approximated using the
conventions shown in Figure E-2. These shear and moment sign conventions for

beam bending shown below in Figure E-3.

True B.C.

M K, =~ Et+ ph ; units —> N/m

h by\\ [
3

Ky = i (2t +h)b ; units > N-m

—Y\ -« [

Figure E-2: Approximation of boundary conditions as linear spring and rotational spring. b is the
beam width.

Figure E-3: Sign conventions used in the derivation of the beam bending problem.
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Expressions for the shear and moment can also be derived from the deflection

expression using the following [173].

M ()= r T2

(E.5)

V( )_GM(xt) A

Inserting expression (E.3) for the out of plane displacement into the RHS of the
boundary conditions given in Equations (E.4) where the LHS is determined using the
relations for shear and moment given in equations (E.5) yields a system of four
equations having four unknowns. These four unknowns are the undetermined
coefficients b; 4 and can be resolved in terms of the specific beam material and
geometry specified by E, p, b, h, and L, the elastic boundary conditions: X, >, and
K, 12, and the loading conditions p,, and w. Useful in this derivation are the

following spatial derivations.

@d(xx) = —b,Bsin(fx) + b, B cos(Bx) + b,Bsinh (Px) +b,Pcosh(Bx)
I - cos((85) " sin (B2) + 5,5 cosn (8)+ 5,8 sin () )
dijgx) =5’ sin (ﬂx) ~ b, cos (ﬂx) +b,f sinh (,Bx) +b,8’ cosh (ﬂx)

Using all of this information, the following system of equations results:

-EIB K, Ep K, 5) [ o (E.7)

K.y -Ep’ K, Hp bz k| n.
~EBoos(BL)+ K, sin(BL) ~Elfsin(BL)-K,cos(fL) Elfcosh(BL)~K,,sinh(BL)  H Bsink(BL)- Ky, cosh(AL) 0 | pho?
Eipsin(ALY+ K.p08(AL) ~EIFcos(PL)+ K.ysin(BL) EPsiah(ALY+ K.zeosh(pL) BIP cosh(BL)+K. smh(ﬂL) K.,
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The system is characterized as a function of frequency by solving this system of
equations for the unknown coefficients ({6} :[A]_1 {c}) at each exciting frequency.

Or, more simply, a search for the zeros of the characteristic equation of the [A] matrix
yields the resonant frequencies for any system that can be simulated using the elastic
boundary conditions above (which includes, cantilevered, simply-supported — simply
supported, clamped — simply-supported, etc ). Using this system of equations, the
above model was verified by checking the first three calculated eigenvalues, BL, with
those tabulated in the literature [170] which employs an Rayleigh quotient method.

This is summarized in Table E-1 below.

Table E-1: First three eigenvalues taken from literature and comparison with current model.

Cantilevered (C.—F.) S.S.—S.S. C.-S.S.

Ref [170] | Model | Ref.[170] | Model | Ref. [170] | Model
(BL); 1.875 1.875 T 3.142 3.927 3.927
(BL), 4.694 4.694 2% 6.286 7.069 7.069
(BL)3 7.855 7.855 3n 9.425 10.210 10.210

It is important to note that the conditions at x = 0 and x = L required to approximate a
clamped B.C. were that K,,;>=1Xx 10" N/m and K12 =1 x 10'® N'm, and for the
simply-supported B.C., Ky,12=1x 10'° N/m and K, ;2 = 0 N'm were used. As can be
seen from this table, this model is easily adaptable to different boundary conditions by
simply varying the values of the elastic constants at the extents of the beam. This can
now be employed in order to study the effects of viscoelastic elements on the modal
damping of the system. The most straightforward manner to quantify modal damping

using the system response relations above is the half-power bandwidth method.
Frequency response of an elastically constrained circular plate
The general case of a plate having uniform cross-section and material
properties in the r- and -directions and having elastic boundary conditions at r = a.

The diagram in Figure E-4 shows this case:
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Figure E-4: Schematic of elastically constrained circular plate.

For a vibrating plate of uniform cross section and material properties in the 7-
and §-directions, the well known differential equation for the space and time varying
out of plane displacement, w(,#), which is found via the dynamics of plate elements

using classic Kirchhoff plate theory [172], is given below in Equation (E.8).

w(r 6 t)

BV*(r,0,t)+ ph p(r.0,1) (E.8)

Where B is the frequency dependent bending modulus described by the relationship
B=EW / 12(1 — vz), w is the out of plane displacement, p is the mass per unit volume,

h is the thickness of the plate, and p is the forcing pressure. Now, making the
simplifying assumption that the forcing pressure is a harmonic and constant in space

as shown in Equation (E.9)
(r,6,1) > p(¢) = p, cos(@r) = Re[ p,e™ ] (E.9)

Taking the Fourier transform with respect to time of Equation (E.8), the result is
Equation (E.10).
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V4 (r,0)- kY (r.0)=

bd)l"ﬁ)

(E.10)

Where k* = pho®/B and is the bending wave number. The general solution to this

partial differential equation is done by first finding the solution to the homogencous
part as follows. The LHS of the above equation can first be factored into two

Laplacian operator relations.
(VZ—IGZ)(VZHGZ)W,, (r,0)=0 (E.11)

Now, due to symmetry, we know that W, must be periodic in 6 ie.
W(r,0 =0)=W(r,0 =2x). Therefore, in taking a separation of variables approach

such that W, (r,6,t) = R(r)®(@)e™ , it is apparent that ©(6) must be of the form:

©(6)= {cf’s("e)} (E.12)

Then, returning Equation (E.11), the two similar relations below will require

solutions:
V2 {R(r)®(6)}-£*{R(r)©(6)} =0 (E.13)
v2{R(r)®(8)}+ & {R(r)©(6)} =0 (E.14)

Now, applying the Laplacian operator in cylindrical coordinates and noting that the
form of ®(6) given in equation (11) requires @ (6)=-n’®(0), the following two

equations result.
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R (,)+G)R' (r)—(léz +’:—jJR(r) =0 (E.15)

R (r)+(%]1z' (r)+(1€2 —%]R(r) =0 @.16)

These are identified as equations whose solutions are respectively the regular and
modified Bessel and Neuman functions of the first kind. The complete solution for
the homogeneous out-of-plane displacement is therefore described with the following

complete solution.
(E.17)

Now, the solution can be simplified by noting specifics of the geometry. First, due to
the symmetry about the z-axis, we can discard one of the two functions in 6.
Secondly, because the plate is continuous at » = 0, the regular and modified Neuman
functions must be discarded. This leaves the following relationship for the solution to

the homogeneous part of Equation (E.10).

W, (r,0,1) = {nf:[,un (fr)+ B,1, (r) |cos (ne)}e-'"" E.18)

=0

Note that there are two unknown coefficients which must be determined from the
shear and moment boundary conditions imposed at » = a.
To find the particular solution, we must take into account that the exciting

pressure is uniform in space and harmonic. This leads to the simple hypothesis that
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the particular solution be simply of the form
W, (r,0,t) > W, (¢) = Ccos(wt) = Re[Ce""’”] . Substituting this solution into

Equation (E.10), we have the following.
V(G e )= Chteo = Bo g .19
(Ce™) ; (E.19)

The first term on the LHS of Equation (E.19) is zero, and the remaining terms yield an
expression for the constant, C, in terms of the forcing pressure. The final general

solution of (E.10) is then given below.

Ll

w(r,0,t)= {Z[AMJ,, (Er) +B.I (Ier)] cos(n@)— ;‘ZL;T} e (E.20)

n=0
Resolution of system for elastic boundary conditions

For the elastically constrained plate shown in Figure E-4, the determination of
the coefficients 4, and B, require expressions for the shear and moment at the extents

of the plate. The boundary conditions are expressed below in relations (E.21) and
(E.22).

M, (a,6,) = Kw?%ﬁ)— (E21)
V. (a,0,t)=-K,%(a,0,) (E22)

Where the linear and rotational spring values are approximated from the true

boundary conditions using the convention shown in Figure E-5.
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N{\j K, = E,;; units > N/m’
O

Ky z,uVEZn'(t[a+t]+ah) ; units > N

At
—Y\\ «—— [

Figure E-5: Approximation of boundary conditions as linear spring and rotational spring. a is the
plate radius, & is the plate thickness, and # is the radial thickness that the plate is embedded in the
elastic boundary.

As was done in the previous example, the resolution of the problem requires
expressions relating the shear and moment to the displacement equation derived
above and given in Equation (E.20). The necessary classic plate relations for this
problem were taken from Liessa [172] and are given below in Equations (E.23) —
(E.26) describing the plate bending moments, the transverse shearing forces, and the

Kelvin-Kirchhoff edge reactions in terms of the out-of-plane displacement.

. Jotw (1ow 18w
M. =-R pp| 22207 23
’ [ar2 V(rar ” 66’2]] (E-23)
. . a(1ow
M., =-D(1-v)=|-ZZ 24
o ==D( V)Br[r ae) E-24)
0 =—1§3(V2w) (B-25)
r or
n A 10M
V=0 +——2 2
r Qr r 69 (E 6)
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The evaluation of the boundary conditions will lead to two simultaneous equations at.
r = g that can then be solved for the undetermined coefficients 4, and B,. The system

of equations is given below in Equations (E.27) — (E.31).

27“ _ 0 Kwpa
{ f?,,} - {1} B phar® ®27

Where the frequency dependent functions in the matrix of the LHS are specified

§‘>

£, (ka) 41, (fa)
£, (fa) 8, (F)

below. Note that in the following the “~” designation has been removed for clarity,

but that all entities are still dependent on the frequency:

Ln(ka)=J;(ka)+(% Ka ] (ka)—( ) J, (ka) (E.28)
M"(ka)=1;(ka)+({;+ ”I;Z)I;(ka)—-(—%ln(ka) ©29)

R,(ka)=J, (ka)+—J (ka) 1222, () { (i) Ko }Jn(ka)

(ta) (k) Blka)
(E.30)
5, (k)= I () 1, k) S ) {((,ja)) - }zn (ta)
(E31)

Solving relationship (E.27) for 4, and B, in terms of the forcing function and the

elastic boundary conditions yields the following expressions.

240



_poKw M" (ka)

= 32
“ BE'pho® A(ka) €32)
ka
» P;;Kw - Ln( ) (E.33)
Bk’ phae* A(ka)
Where A (ka) is the characteristic equation of the matrix in Equation (E.27).

A(ka) =L, (ka)S (ka) - M, (ka) R, (ka) (E.34)

From Equations (E.32) — (E.34) it is obvious that resonance is reached when the
characteristic equation of the coefficient matrix of Equation (E.27) is equal to zero as
would be expected. Equations (E.27) — (E.34) give a complete solution for a thin
circular plate with a uniform harmonic exciting pressure and allow modeling of the
forced frequency response of the system for a large variety of boundary conditions. It
is important to note that for simple implementation of these relationships, it is
convenient to use the following recursion relationships for the regular and modified

Bessel functions taken from Blackstock [105].

X1 (k) = 22X, (ka) - X, , (ka) (£35)
X, (ka) =X, (ka) - X, , (ka)] (E.36)
2y ) % (k)= k) X, (k) ®37)
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Where X,(ka) represents either the regular or modified Bessel or Neumann function
of the first kind.

To verify the formulation outlined by Equations (E.27) — (E.34), the first few
eigenvalues of circular plates having different boundary conditions has been checked
with models derived by Leissa [172] for the specific case given. The results are given
below in Table E-2, Table E-3, and Table E-4.

Table E-2: First four eigenvalues of clamped circular plate taken from literature [172] and
comparison with current model. v=0.30

Plate Clamped at r = g, with v=0.30
n=0 n=1 n=2
,B,is - | Ref.[172] | Model | Ref. [172] Model | Ref. [172] | Model
By 10.2 10.22 21.2 21.26 34.8 34.80
By 39.7 39.76

Table E-3: First four eigenvalues of a simply-supported circular plate taken from literature [172]
and comparison with current model. v=0.30

Plate Simply-Supported at » = a, with v=0.30
n=0 n=1 n=2
B B Ref.[172] | Model | Ref.[172] | Model | Ref. [172] | Model
,B,io 4.9 494 13.9 13.90 25.6 25.61
B 29.7 29.72

Table E-4: First five eigenvalues of free -circular plaie ‘taken from literature [172] and
comparison with current model. v=0.25

Free Plate with v=0.25
n=0 n=1 n=2 n=3
2 Ref. Ref. Ref. Ref.
B, [172] Model [172] Model [172) Model [172] Model
Blo 5513 | 4600 | 1275 | 127
ﬂ,il 8.892 8.884 20.41 19.97 35.28 33.60

1Here the index s indicates the number of nodal circles on the plate (not including the
boundary). It is important to note that the conditions at » = a required to approximate
a clamped B.C. were that X, = 1 x 10° N/m? and K,=1x 10° N, and for the simply-
supported B.C., K, =1 x 10° N/m” and K, = 0N were used. As can be seen from the
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results, the model derived here yields results for three extremely different boundary
conditions which are acceptably close, though not identical, to the specific individual
models of Liessa [172]. The model is therefore ideal for studies on the effects of
various elastic (and viscoelastic) boundary conditions on the lossy behavior of the

system.
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