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This study focuses on the micromechanical modeling of particulate

viscoelastic asmFosite materials in the quasi-static frequency domain to approximate

macroscopls damping behavior and has two main objectives. The fust objective is the

development of a robust multiscale model in the quasi-static domain. For this

purpose, the static three phase selÊconsistent (SC) model introduced by Cherkaoui er

al lJ. Eng. Mater. Tecbnol. 116, 274-278 (1994)l is extended to the quasi-static

domain by employing the elastic-viscoelastic correspondence principle. The model is

then generalized by employing dilute strain concentration tensor formulation. The

developed model is validated by comparison with complex bounds from literature,

acoustic and static experimental dat+ and established models. The second objective

is a study of the SC model as a tool for the design of high loss materials. This

objective is met by presenting a casie study of the lossy behavior of a multiscale

stucture in the form of a vibrating sandwich plate representing an automobile

windshield. This multiscale structure is modeled with a nested hierarchy of models

which is validated by comparison with finite element approximations. Parametric

studies sf damFing behavior at structurai and part length scales are performed which

provide information for the design of constituent sandwich plate materials. The

effects of microstuctural variation on structure level damFing predicted by the SC

model are quantified and discussed. The work concludes by summarizing important

results and connibutions and giving perspectives and suggestions for futrne work.
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Chapitre I : Introduction

Objectif

L'objectif principal de cette thèse est la dérivatio4 développement, et

valîdotion d'un modèle micromécanique auto-cohérent quasi-statique afin

de faciltter I'exploration et génération des spécifications pour Ia

conceptîon des matériaux amortissants.

Les applications pratiques necessitant des matériaux possédants une forte

capacité d'emortir l'énergie acoustique et vibrationnelle concement presque toutes les

industries. Les industries automobile [] et aérienne l2l,par exemple, se servent des

matériaux amortisseurs afin de remplir éléments structurels creux. De tels matériaux

renforcent la structure et amortissent les vibrations et bruits simultanément. Les

matériaux amortissants présentent des avantages d'absorption aussi en les employant

en forme de couches ou de plies. Quelques exemples des sfucture traités avec les

couches ou plies de matériau amortissant sont les chambres de tanquillisation pour

diminuer le bruit des tuyères [3], les structures vibrantes [4], et les pare-brises

automobiles [5]. De plus, il est connu que la capacité amortissante d'un matériau peut

êfe amélioré en inûoduisant des hétérogénéités [6], et de ce fait en créant un

matériaux composite particulaire.

La modélisation des matériarD( composites viscoélastiques est donc, d'un

gand intérêt du fait du grand nombre d'applications pour des matériaux amortissants.

Cela explique pourquoi la modélisation est un domaine de recherche très actif depuis

presque cinquante ans [7, 8]. La recherche actuelle zuggère la possibilité de créer les

composites qui possèdent une capacité emortissante exftêmement élevée [9-13] et le
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potentiel réel de concevoir des matériaux pour des applications spécifi.ques [14, 15].

Ces deux développements donnent une impulsion renouvelée à la modélisation des

matériaux composites viscoélastique.

La capacité amortissante d'un système viscoélastique, qu'il s'agisse d'une

structure ou d'un matériau composite, est une fonction de I'état de déformation des

éléments viscoélastique de la structure. Cet étzt de déformation peut être approximé

par plusieurs méthodes diftrentes mathématiquement mais fondamentalement il est

important de noter qu'une augmentation de l'énergie de déformation des éléments

viscoélastique conduit à une augmentation de la capacité amortissante du système

globale [16]. En effe! les recherches récentes montrent que les inclusions instable [9,

10, l2l, ou bistables [17, 18], induisent de grandes déformations du matériau hôte

dans le ysisinage des inclusions et ainsi contibuent fortement à une augmentaton

important du comportement amortissant macroscopique. Le développement d'un

modèle multi-échelle robuste est un élëment principal de cette thèse. Celui-ci

permettra l'étude des ffits de laforme, d'orientation, et du comportement constitutif

des inclusions sar le comportement macroscopique des composites particalaires.

La sélection des matériaux, qui est un élément clé du processus de la

conception traditionnelle des systèmes [9], est un aspect fès limitatif de la

conception. En effet I'approche classique de la conception des systèmes, qui prévaut

dans la communauté de la conception, suppose que la conception des éléments est

limitée par les propriétés physiques des matériaux disponibles [20]. Ce paradigme

change quand l'approche de la conception des systèmes est prolongée pour rnch,tre la

conception des matériatn pour les applications multi-physiques et multi-

fonctionnelles [4, 15]. Cette nouvelle approche s'appelle la conception inductive.

Une méthodologie inductive dans le domaine de la conceptisn implique la conception

des matériaux pour la fabrication, tandis que les méthodes traditionnelles fabrique les

matériarur pour les utiliser dans la conception (approche déductive) [21]. Les modèles

multi-échelles robustes peuvent foumir des informations utiles pour la conception des

matériaux [14]. Cet élément est un très important dans cette approche émergeante. La
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conception effective des matériaux nécessite des modèles capables de faire la

transition ente les échelles de temps et longueur disparates Qes échelles de longueurs

entre I'atomique et le macroscopique et les échelles de temps entre les pico-secondes

et les années). De tels modèles n'existent pas et ne seront pas disponiflss dans un

proche avenir. L'approche actuelle consiste en I'implémentation d'une hiérarchie des

modèles différents imbriqués ou chacun effectue une, ou plusieurs, transitions

d'échelle [20]. Cette méthodologie est difficile à cause d'un manque d'information

conceman! ou d'un comportement complexe, des modèles dans l'espace de la

conception [21]. Ces difficultés limitent I'implémentation d'un gand nombre de

modèles dans une shatégie de conception complète. Un moyen de surmonter cette

difficulté consiste à effectuer plusieurs études multi-échelles élémentaires utilisant des

modèles rigoureux afin d'observer les tendances. Les tendancss ainsi obtenues

peuvent êfie approximées par des modèle5 5implifiés, les meta-modèls, et ainsi êtue

intégrées dans une shatégie de conception des matériaux. Cette approche présentent

un moyen efficace d'explorer l'espace de conception 1221. Sans se soucier de la

méthode employée, tout processus de conception des matériaux nécessite à la fois des

modèles multi-échelles robusûes et une connaissance du comportement d'un matériau

composite dans l'espace de conception fournie par ces modèles. L'objectîf de cette

thèse est donc le développement d'un modèle multi-échelle (micro ) macro) des

maiériatÆ amortissants à I'aide d'un schéma auto-cohérent (AC) statique à partir

d'un modèle existmtt [23, 24J et de I'intégrer dans un hiërarchie de modèles

d'échelles de longueurs dffirentes afrn de mettre en évidence les effets

microstructuratn sur I'amortîssement des struchtres. Un pas vers la coræeption des

matériarn amortis s ants.

Ilypothèse
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Le développement d'un modèle auto-cohérent micromécanique robuste

dans le domaine fréquentielle quasi-statique fournira un outil à la

conception des matériaux composites amortissants.

Afin de valider cette hypothèse, il faut d'abord développer le modèle AC dans

le domaine fréquentiel quasi-statique pour les applications d'rmortissement divers. Il

faut que ce modèle puisse prendre en compte les propriétés viscoélastique des

matériaux constituants ainsi que la forme et l'orientation des hétérogénéités afin de

simuler le comportement global. Le modèle droit être validé en le comparant avec

d'autes modèles d'homogénéisation, les bornes complexes, ainsi qu'avec les données

expérimentales. I1 est ensuite nécessaire de mette en æuwe un exemple simple de

structure multi-échelle et d'y intégrer le modèle AC. Enfin, il faut effectuer plusieurs

études sur le comportement de la structure à chaque échelle. L'effet de la

microstructure qui se propage à travers des échelles de longueurs et qui se manifeste

sur comportement structurel est étudié à ce stade.

Chapitre If: Revue Bibliographique et principes

Le deuxième chapitre présente un résumé des principes utilisés dans cette

thèse. Ce chapitre commence par une discussion concernant la dissipation de

l'énergie dans les matériaux. Pour cel4 nous présentons les sources différentes de

dissipation dans les matériaux homogènes et hétérogènes ainsi que les mesures de

cette dissipation d'énergie. Les principes physiques de la dissipation sont ensuit

introduits dans le cadre de l'énergie de déformation, qui est une approche souvent

employée souvent dans le domaine des vibration des sfuctures. Le chapite poursuite

par la présentation de quelques approches acoustiques basées sur les principes de Ia

dispersion des ondes décrivant les principes physiques de l'amortissement des

composites particulaires. Ce chapihe se termine par une synthèse bibliographique des

deux domaines principaux de la thèse: (i) la modélisation des matériaux composites
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particulaires à partir des méthodes micromécaniques statiques et des méthodes

acoustiques de dispersion simple et multiple , et (ii) les développements im.portants des

méthodes de la conception des matériaux avec une approche multi-échelle et multi-

fonctionnelle.

Chapitre III : ModéIisation micromécanique dans Ie domaine quasi-statique

Le modèle proposé dans cette thèse est une approche micromecanique

d'homogénéisation AC. L'approche AC des composites particulaires fait parti d'une

classe de modèles dit champs moyenné [25]. La modélisation par champs moyenné

consiste en deux opérations fondamentaux: (l) la localisation et (ii) la

homogénéisation ï26,271. Ces opérations nécessitent l'existence de deux échelles de

longueurs intrinsèque tel que le comportement et la structure du matériau à l'échelle

de longueur microscopique, qui représente l'échelle des particules, n'a qu'un effet

moyenné sur le comportement du matériau à l'échelle macroscopique 1271. Le favail

d'Eshelby a fournit la perspicacité et outils mathématiques porrr résoudre le problème

de la localisation d'un chargement mécanique macroscopique imposé à I'infini à

l'échelle microscopique via le tenseur de localisation appelé le tenseur d'Eshelby, S;r'H,

et la méthode d'inclusion équivalente. La capacité d'effectuer une localisation des

chargements mecaniques imposé à I'echelle macroscopique à l'échelle microscopique

est un besoin fondamental de l'étape d'homogénéisation. Les propriétés effectives

d'un matériau composite sont obtenues depuis les champs moyens voluméfiques de

contrainte et de déformation d'un matériau hétérogène. Le moyen volumique est

obtenu depuis les champs locaux des déformations et des containtes calculés pendant

l'étape de localisation [28-30].

La conûibution fondamental d'Eshelby est suivi par une grande gamme de

modèles, dont quelques exemples représentatives sont ceux de Krôner [31],

Budiansky [32], Wu [28], et Mori et Tanaka 1331. Zeller et Dederichs ont amélioré la

méthode d'inclusions équivalentes en introduisant un formalisme de Green qui permet
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le calcul de la contrainte et la déformation en chaque point d'un milieux hétérogène à

l'échelle microscopique [34]. Mura [35] et Willis [36] ont ajouté la déformation

plastique à l'approche de Zeller et Dederichs et Berveiller et al [37] ont généralisé

l'approche au cas de deux inclusions ellipsoi'dales plastiques et désorientées. Une

aute amélioration importante de l'approche des inclusions équivalentes est

I'intoduction des opérateurs interfaciaux qui relient I'étz:t de contrainte et

déformation à havers d'une interface de deux matériaux diftrents [38, 39]. La

combinaison de ces deux tecbniques mathématiques foumit un outil de modélisation

des phénomènes physiques à l'échelle microscopique extrêmement puissant. Le

résultat imFortant pour ce travail est que ces outils améliorent les opérations de

moyen volumétriques nécessaire pour effectuer l'homogénéisation. Le modèle AC

introduit par Cherkaovt et al 123, 401doit sa précision au fait qu'il s'est servi de ces

outils. Le modèle développé dans cette thèse est une exûension au domaine

fréquentiel quasi-statique de leur modèle.

Tous les modèles micromecaniques nécessitent la sélection d'un volume

élémentaire représentatif CVER). Le VER représente le plus petit volume du maGriau

hétérogène qui se comporte de la

même manière que le matériau

macroscopique. Chaque modèle

est obtenu en appliquant les lois

de comportement au VER

spécifique au modèle et en servant

des outils mathématiques décris

dessus. Un matériau composite
R-1: YER doun matériau composite

inclusions enrobées plongées dans une milieu infin
référence.

constitué d'inclusions

ellipsoi'dales enrobées plongees

dans ut milieu homogène de référence peut êfre représenté par le VER monfré par

Figure R-1. Le modèle de Mori et Tanaka suppose que le matériau de référencs dans

Figrre R-l soit une mahice avec les propriétés élastiques, d. Le matériau de
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référence subit une déformation mzrcroscopique, Eii, qui est la même que celle dans la

mahice ed 1221. Le modèle Mori-Tanaka est, donc, limité aux applications ou la

fraction volt'mique des inclusioffi,rt, est faible. Un grand nombre d'autres modèles

sont limités arx cÉrs de concentation diluée d'inhomogénéités parce qu'ils supposent

qu'il n'y a pas d'interaction entre les champs de déformation des inclusions [41].

Plusieurs moyens existent pour sumonter cette limitation. Par exemple, une

approximation mrmérique depuis une maille périodique basé sur des calcules par

éléments finis. Cette approche prend compte l'interaction des hétérogénéités d'une

manière explicite mais elle nécessite les calcules intensifs [25J. Un autre exemple est

le modèle proposé par Molinari et El Mouden pzl qtt applique le formalisme de

Green d'une paire d'inclusions ellipsoi'dales de Berveiller et al [37]. Leur modèle

fiable obtiens les constants effectives du comportement des composites particulaires

avec une concentration d'inclusions élevée. Les modèles AC représentent une aute

démarche qui peut être employé pour simuler le comportement d'une composite

particulaire avec une concentratiol d'inhomogénéités élevée. L'approche AC

suppose que le milieu de référence du VER en Figure R-l se comporte selon les

propriétés élastiques effectives macroscopiques, Cû , etqu'eIles sont inconnues [41].

Krôner a proposé cette démarche afin d'approximer le comportement des matériaux

polycristallins car la définition de la matice n'est pas claire [31]. Budiansky [32] et

Hill [43, 441ont amélioré I'approche de Krôner et finalement Christensen et Lo I'ont

généralisé [45]. La démarche AC n'est pas limitée au comportement statique des

matériaux composites. Chaban [46], Kuster et Toksoz 1471, et Gaunarud et Ûberall

148, 491 ont tous proposé des modèles d'homogénéisation AC fiables par des

méthodes acoustiques. Les modëles microm{saniques AC obtiennent les équations

implicite qui engendre, parfois, les instabilités numériques [50]. Pour certains cÉrs, ces

modèles peuvent aboutir à des valeurs erronés l5l, 521. Cependang les modèles

micromécaniques AC restent fiables, commode et en particulier, donnent de bonnes

approximations du comportement des composites ayantune haute fraction yslrrmique

d'inclusions. Pour ces raisons le modèle AC de Cherkaoui et al l23l est développé ici
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dans le domaine fréquentiel quasi-statique, présenté par l'Équation (R1),

d'approximer le comportement des comFosites viscoélastique [50, 53].

èq =u + f,[c -c']'Â'(ea; * f,lë" -tvl'Â'(ôa) G.1)

)ans cette relation les propriétés viscoélastique de la matrice, des inclusions, et de

l'enrobage sont notées par les teneurs de rigidité complexes ( (r), CI (o), et

C'(.) respectivemerfi,fr et/g représentent respectivement les fractions volumiques

des inclusions et de l'enrobage, et AI (at) et A" (r) sont les tenseurs de localisation

des déformations de I'inclusion et I'enrobage. De plus, l'équation (R.1) utilise la

notation simplifiée C'(r)<+ Ô".

Le modèle introduit par Cherkaow et al 123, 40,54] se limite aux cas des

inclusions enrobées sphériques ou bien ellipsoïdales. Malheureusement quand les

inclusions sont ellipsoi'dales,le modèle est limite aux applicationsi ou les phases

constitutives possèdent les propriétés viscoélastiques identiques et les inclusions sont

toutes orientées identiquement. Etant donner que la majorité des rnais matériaux

n'appartiennent à ni I'un ni I'aute de ces classificatiom, il est intéressant de

généraliser le modèle. Spécifiquemen! il est intéressant de développer ls 6sd|ls afin

de simuler le comportement effectif d'un matériau qui consiste en une matice

contenant les plusier.rs types d'inclusions enrobées qui ont une distibution

d'orientation connu. Il est possible d'arriver à ce niveau de généralité en étendant le

VER du modèle AC du Figure R-l pour inclure toutes << familles > d'inclusions

enrobées différentes. Cette démarche s'appelle la formulation par tenseurs de

localisation des déformations diluées (où < Dilute Strain Concentration Tensors >>,

DSCT). Le VER utilisé pour la dérivation d'un modèle AC DSCT peut ête

décomposer selon le schéma monté dans le Figure R-2 [55-57].
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Figure R-2: Schéna de la décomposition d'un matériau composite particulaire par DSCT.

Le modèle AC quasi-statique proveftmt de la formulation par DSCT est décrit par

I'Equation (R.2).

ëq = A +à],r,,(ô,,, -CM), Â,,, + 7c; (èc.t -ty), Â.')

Equation @.2) monte que le modèle DSCT prédit le comportement effectif avec une

sommation des effets de Nfamilles d'inclusions enrobées diftrentes. Cette approche

raffne les approximations du modèle AC donnée par Equation (R.l) en permettant de

se rapprocher de la vraie composition des matériaux composites particulaires.

Chapitre IV: Validation et application du modèle auto-cohèrent QS

Avant d'intégrer le modèle micromécanique AC dans uno shatégie de

conception des matériaux, il est d'abord nécessaire de valider le modèle. Le but de ce

chapite est la validation du modèle AC quasi-statique qui s'accompli en deux étapes.

La première étape compare le modèle AC avec les bomes analytiques 6ss milieux

hétérogènes complexes prises de la littérature. La comparaison avec les bornes

complexe commence par uoe innoduction des méthodes les plus applicables aux

matériaux étudiés dans cette thèse. Ensuit les valeurs obtenues par le modèle AC

dans le domaine quasi-statique pour plusieurs matériaux hypothétiques sont comparé

avec ces bomes ssmplexes. L'accord entre les bomes complexes et le mode AC

assure la validité du modèle dans le domaine fréquentiel quasi-statique. La deuxième

partie de la validation du modèle consiste en des études paraméhiques et comparaison



avec l'expérience. L'accord avec les données expérimentales monte la précision et la

flexibilité du modèle pour son application aux divers problèmes. Le chapitre se

tenrrine avec une discussion de l'implémentation numérique du modèle AC. Cette

partie discute quelques problèmes rencontrés, suggère les méthodes pour

implémentation du modèle AC quasi-statique, et discute des observations sur les

instabilités numériques rencontrées.

Comparaison avec bornes complexes

Les tecbniques qui définissent les limites de validité des modèles

d'homogénéisation des composites élastiques sont bien connues, voir par exemple,

Hashin et Shtrilanan [58], Watpole [59], Hill [60, 61], et pour une revue détaillée

Hashin [62]. De plus, l'approche AC rentre dam les bomes acceptés pour le cas

élastique (c'est-à-dire, les tenseurs de rigidité de chaque phase d'un composite

particulaire n'ont que les composants réelles) 1431. Par conte, it efste

comparativement peu de tavail qui concerne les bomes du comportement effectif

complexe des composites viscoélastique. Hashin [8, 63, 64], Chdstensen [7],

Roscoe 165, 661ont abordé le sujet avec leur études fondamentaux sur le sujet des

çomposites viscoélastique et les bornes complexes simples. Plus Ésemmen! les

techniques basées sur méthodes variationelles et translationelles ont fait leur

apparition. Cherkaev et Gibiansky [67] ont intoduit cette approche rigoureuse qui est

liée au travail de Milton [68] et aussi celui de Miller [69]. Le résultat de leur travail

ont stimulé plusieurs contibutions concernant le développement des bomes

complexes, notarnment celles de Gibiansky et Milton [70], Milton et Berryman [71],

Gibiansky et Lakes [72, 731et Gibiansky et Torquato [74]. Toutes ces méthodes

limitent les valeurs effectives des modules de cisaillensal et d'élasticité volumique

dans une zone du plan complexe décrit par des arcs. Les arcs sont les fonctions des

modules complexes des phases constituantes et les fractions volumiques. Le
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désavantage des ces méthodes est qu'elles sont limitées à l'application à chaque

fraction volumique et chaque fréquence d'intérêt d'un matériatx composite.

Cette section de la thèse met en évidence que le modèle AC quasi-statique

n'enfreint aucune loi physique. Il est montré que le modèle est situé entres les bornes

de Roscoe en fonction de la fréquence et aussi bien que la fraction volumique. De

plus, il est montré que le modèle est en accord avec les bomes rigoureuses du module

de d'élastisif{ yslrrmique proposé par Gibiansky et Lakes 1721, Figare R-3, et du

module de cisaillement de Milton et Berryman [71], Figure R-4.

Figure R-3: Bornes dans Ie plan complexe du module d'élasticité volumique calculé par les
bornes de Gibiansky et Lakes l72l et I'approximation par le modèle AC, o. Les bornes sont
délimité par quatre courbes, *tr-a), qui parfois se recouvrenL
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Figure R-4: Bomes du module de cisaillement dans le plan conplexe depuis Milton et Berr5man

I7ll. Borne supérieure; - - - Borne inférieure. Le modèle AC, o , rentre dans les
limites.

Comparaison avec l'æ1tértence et les études paramétn@ues

Le principe de correspondance élastique-viscoélastique suggère que

I'approximation du comportement d'un materiau comFosite viscoélastique par une

méthode micromécanique dans le domaine fréquentiel quasi-statique conesponde à

une approximation par l'énergie de déformation [75]. La validation de cette logique

est exhêmement imFortante pour I'implémentation futrue du modèle AC quasi-

statique dans le cadre de conception des matériaux amortissants. Il est pour cette

raison que l'approximation par le modèle AC est toute d'abord comparée avec les

données expérimentales et une modèle de dispersion acoustique de I'indice
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d'a.ffaiblissement acoustique (IAA) d'une dalle de matériau viscoélastique composite

t761. Les efFets d'anisotropie, due aux inclusions enrobées ellipsoi'dales orientées,

sont le sujet de plusieurs éfudes paramétriques. La première s'agit d'une étude sur

1'IAA pow d'un matériau viscoélastique qui contient les renforcements oblates vides.

Toutes ces inclusions oblates ont leurs axes majeurs orientés avec plan xrxz et on

étudie I'IAA d'une dalle composite d'une épaisseur de I cm pour une onde incident

qui se propage selon l'axe xr. Figure R-5 monhe que le modèle AC arrive à capter les

effets d'snisotropie induite par inclusions isotropes mais ellipsoi'dales et orientées.

Figure R-5: IAA d'une dalle du matériau viscoélastique composite d'une épaisseur 1 cm. La
matrice viscoélastique contient 13% des inclusions enrobées oblates. L'orientation des inclusions
est telle que les axes longs sont perpendiculaires aux ondes incidentes. Etude paramétrique sur Ia

var ia t ion  du  rappor t  des  axes :  -  a fc=1,  - . -  a lc=1.5 ,  - - -  a lc -2 r . . . . . . . . .

af c =2.5.

Dans le cadre d'anisohopie induit par les inclusions isotopes mai5 srisalées le Figure

R-6 considère le coeffi.cient d'affaiblissement d'une onde plane, la partie imaginafue
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du nombre d'onde complexe, Ê=îc'+tà, en fonction d'angle de propagation de

I'onde plan pour plusieurs fonnes d'inclusion enrobée. Les résultats de cette étude

montre clairement que le modèle peut ête applique aux problèmes d'homogénéisation

à une grande garnme de matériau composites viscoélastique.

Attenuatioh Coefficient at 50 kHz vs Propagation Angle for Different lnclilsioR Forms
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Figure R-6: Coefficient d'affaiblissement en fonction d'angle de propagation dans le plan ry-r3
dans un matériau composite viscoélastique ayec lOVo par volume d'inclusions de verre enrobée
par Lucite (d: 0 représente l'axe x3). La fréquence des ondes incidentes est 50 I(Hz

Une faiblesse du modèle AC employée pow calculé les courbes de Figure R-5

et Figr:re R-6 est sa limitation atu( applications avec les inclusions sphériques ou

ellipsoîdales orientées. Une formulation DSCT rend le modèle AC plus robuste en

permettant les variations d'orientation et de propriétés viscoélastique des inclusions

enrobées. La formulation DSCT est validée avec plusieurs études et comparaisons

différentes. Le premier étude compare les calcules AC DSCT avec ceux de Berryman

[51] quand le materiau composite se comporte d'un manière isotrope à cause d'une

orientation aléatoire d'inclusions ellipsoi'dales. Puis la formulation DSCT est
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sollicitee afin d'unntoximer la dépendance directionnelle des propriétés effectives en

fonction de l'écart-type de la variation de l'orientation des inclusions ellipsoïdales.

Une autre validation de la formulation DSCT est la comparaison du tenseur de rigidité

effectif d'un schiste feuilletée possédant plusieurs materiaux diftrents et une

orientation préférentielle de plaquettes d'argile. Les calcules du modèle AC DSCT

montre un bon accord avec les données expérimentales de Jones et Wang l77l bien

que la modèle micromécanique de Horby et al 178]. Une autre étude sur la

formulation DSCT monte un bon accord avec les données expérimentales et modèle

de dispersion multiple de Ledbeffer and Datta [77] d'un composite SiC qui est

approximé ssmme un matériau consistant de trois échelle distincte: sous-

micronàmeso)macro [79]. Finalement le modèle AC avec une forrrulation DSCT

est sollicité encore une fois pour approximer IAA d'un composite viscoélastique en

prenant en compte un variation de l'épaisseur de l'enrobage des billes de verre

creuses étudie par Baird et al [76]. Les résultats de ces calcules monfrent une

amélioratioa imFortante d'accord du modèle avec les donnée expérimentales, voire

Figure R-7.
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Figure R-7: IAA calculé ayec le nodèle AC et AC DSCT comparée avec les données
expérimentales de Baird d al176l.

La dernière partie de Chapite [V discute les problèmes numériques qui risque

de se manifester en employant le modèle AC. n existe certaines conditions qui rendre

le modèle AC instable numériquement. Lanature imFlicite de la solution au modèle

AC est la racine de cette instabilité. La majorité de matériaux composites ne

possèdent pas une çsmposition de phases et géométie d'inclusions enrobées qui suffit

de rendre instable le modèle AC. Malheureusement, la composition et géoméfrie

d'une grande partie des matériaux considérés pur ce Favail peuvent facilement rendre

instrable le modèle AC. La présence d'instabilité est surtout prononcée surtout quand

le contraste des tenseurs de rigidité des inclusions et de la mafice est important et les

inclusions sont plus souples que la matrice. Cette section discute les conditions clés

qui mènent à f instabilité et aussi plusier:rs moyennes de surmonter le problème.

En dépit des complications numériques qui peuvent se manifester avec le

modèle AC pour des inclusions enrobées, le Chapite IV montre, avec les études

paraméhiques et comparaison avec l'expérience, le niveau de généralité et précision
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du modèle AC quasi-statique. Le modèle approxime sûrement le comportement

amortissant des composites viscoélastique particulaires. Ce modèle surpasse les

modèles à base de dispersion acoustique dans le domaine fréquentiel quasi-statique

comme il permet d'integrer facilement des phases anisotropes aussi bien que les effet

d'orientation des inclusions ellipsoîdales. I-a gén&alite augmentee du modèle

-1ç1e6$çanique AC quasi-statique renforce l'idée de I'intégrel dans une stratégie de

la conception des matériarx.

Chapitre V: Vers Ia conception des matériaux

Un aspect très important de I'approche émergente de la conception des

matériaux est le développement des modèles mutli-échelles afin de fournir de

l'information du comportement multi-échelle et multi-physique au processus de la

conception [4]. Les deux chapitres précédents ont présentés et validés un modèIe

capable de passer de l'échelle microscopique au comporûement macroscopique d'un

materiau composite. Par confre, une approche complète de la conception des

matériaux serait capable de faire le lien entre les échelles de longueur et temps très

disparates (les échelles de longueurs entre atomistique et macroscopique et de temps

ente .pico-secondes et années). Les méthodes actuelles, et bien sûr le modèle

présenté par le Chapitre TTT, n'est pas d'un tel niveau de complexite. Il esL donc,

proposé d'approximer un comportement multi-échelle, en forme d'une plaque

sandwich vibrante, avec une hiérarchie de modèles imbriqués, chacun capable de

passer ente, au minimum, deux échelles diftrentes. Cette approche permette la

sollicitation de I'ensemble des modèles, qui possède parfois un comportement très

complexe dans l'espace de conception, afin de renseigner les stratégies de conception

des matériaux amortissants [21].

Une méthode effective d'amortir les vibrations d'une plaque consiste en

l'inhoduction d'une couche viscoélastique enfre deux plaques fortement plus rigides

que la couche viscoélastique. Cette géoméfrie force la couche intérieur à zubir des
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grands déplacements en cisaillement avec l'imposition d'un moment de flexion.

Applications pour cette configuration se trouve dans l'indusfuie aérienne L2l et

automobile [1, 5] à cause d'un comportement qui favorise l'isolation acoustique et

thermale [80]: Parmi les éléments structuraux dans I'indushie automobile possédant

une stucture sandwich, on houve le pare-brise. Celui-ci est I'objet d'étude de l'étude

de cas de ce chapitre choisi pour illusher une approche qui emploie une hiérarchie de

modèles imbriqués. L'étude de cas du pare-brise présenté, illustré par le schéma du

Figure R-8, consiste en une modèle qui comprendre quate échelles: (z) la

microstructure des matériatrx constituants, (ii) les matériaux constituants (les piaques

individuelles), (iii) l'élément stiucturelle Qa plaque sandwich), et (rv) la structure Qa

plaque sandwich montée). Il est important de noter que même si la discussion de ce

chapihe se cenhe autour du pare-brise, la démarche s1 ['analyse peut s'étendre

facilement aux aufes applications utilisant les plaques sandwich afin d'amortir

l'énergie.

Figure R-8: L'approche de la modélisation multi-échelle d'un parebrise"

)oo(Iv

Structural Level Modeling

Micro) Macro Level Modeling

v

@,



La modélisation du comportement fréquentiel des plaques sandwichs est très

développée. Une des premières contributions importantes est celle de Ross, Kerwin,

et Ungar (RK[D [81]. Leur modèle utilise une sorte d'homogénéisation de la plaque

tenant en compte le cisaillement de la couche viscoélastique suite à une onde de

flexion. Le module de flexion effective rendu par ce modèle est complexe et dépende

de la fréquence. Suite à leur conhibution, la recherche sur le comportement des

plaques sandwich s'est bien développée (voire des références exemples [82-87]).

Malgré toute ceffe recherche approfondie, le modèle RKU est souvent employé aux

premières étapes de l'étude d'une stucture sandwich grâce à sa simplicité, sa

précision, et son acceptation universelle. De plus, sa nature analytique le rendre

efficace pour des études de sensibilité et pour l'intégration dans les calcules

complexe. Pour ces raisons, le modèle RKU est utilisé dans ce tavail afin

d'approximé le comportement d'une plaque sandwich.

L'étude de cas présenté introduit quelques variables clés de l'espace de

conception du comportement amortissant et fourni des informations de leur

interaction et leur influence sur le ssmportement de la structure. L'analyse multi-

sfucfurale commence par une section concernant la modélisation de la plaque

sandwich. La section met en évidence les effets de la géométrie et le comportement

constitutif des matériaux constituants. Une étude de la sensibilité montre clairement

que le moyen le plus efficace d'augmenter la capasité amortissante en gardant la

rigidité d'une plaque sandwich est la croissance du facteur de perte du matériau

viscoélastique en contraint. L'éfude de la structure continue avec une analyse du

comportement des poutres et plaques vibrantes encastrées aux limites dans utr

matériau viscoélastique. L'analyse des structures vibrantes consiste en une analyse

modale d'après les modèles classiques qui intègre le module de flexion de la plaque

sandwicb, réalisé avec le modèle RKU. Figure R-9 monte le bon accord avec cette

approche et un analyse par éléments finis, intoduit par Daya et Potier.Ferry [83],

d'un poutre cantilever. La figure montre la variation du facteur de perte du system,

estimé par la méthode de la bande passante à fiois dB, en fonction du facteur de perte
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de la couche et les conditions limite viscoélastique. La différence entre les deux

approches augmente avec la valeur du facteur de perte viscoélastique, mais

l'approximation par les méthodes simplifiées n'est fiable que pour les facteurs de

perte de la couche intérieure inférieures à 0.5 (îty, < 0.5 ). L'accord entre ces deux

approches justifie l'intégration du modèle RKU avec une formulation classique des

plaques et pouhes vibrantes po'ur une analyse des plaques sandwiches pour l'étude

élémentaire de la conception des matériaux.

Figure R-9: Le facteur de perte du premier mode doune poutre sandwiche encastrée dans un
matériau viscoélastique. Résultats analytique par une hiérarchie de modèles comparé ayec une
analyse par éléments fini employant le modèle de Daya et Potier-Ferry [831.

Les résultats du Chapihe IV montent que le modèle AC quasi-statique donne

les bonnes approximations du comportement amortissant des composites

viscoélastique. Le but de l'étude actuelle est le renseignement d'une stratégie de la

conception des matériarx par le modèle AC. Il esl donc, intéressant d'étudier

l'amortissement en fonction de la variation de la microstucture de la couche
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viscoélastique d'un pare-brise. Il faut d'abord étudier l'influence de la microstructure

sur le comportement de la plaque sandwiche. La Figure R-10 présente une mesure

d'amslis5ement des ondes de flexion, 6tt* f fi"tt*, qui estime la fraction d'amplitude

amorti par longueur d'onde [88]. La figure monte une forte augmentation de

l'affaiblissement d'une onde de flexion propageant dans la plaque sandwiche,

possédant les propriétés et la géométrie d'un pare-brise, en fonction de la faction

volumique des vides de la couche viscoélastique (PVB).
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Figure R-10: La fraction d'amplitude doune onde de flexion amorti par longueur d'onde dans
une plaque sandwiche en fonction de la fraction volumique des vides dans la couche
viscoélastique approximée par les nodèles RKU et micromécanique AC.

La hiérarchie de modèles permet aussi d'illustrer la propagation des effets de

la variation de la microstucûue au passage de plusieurs échelles de longueurs. La

Figure R-11 montre une augmentation quasi-quadratique du facteur de perte modale

d'une plaque sandwich circulaire en fonction de la fraction volumique des vides de la
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couche viscoélastique. L'augmentation du comportement ,mortissant observé à

l'échelle de la structtne n'est pas, malheweusement, très importante cofllme désiré,

ceci peut êhe athibué aux matériaux traditionnels d'ur pare-brise. La recherche

actuelle suggère qu'il est fort possible .que I'inhoduction des matériaux non-

conventionnels comme héterogénéité dans la couche viscoélastique puisse mener à

augmenter la capacité amortissante à l'échelle structurelle.
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Figure R-11: La variation du facteur de perte du premier mode d'une plaque sandwiche
circulaire en fonction de ta fraction volumique des vides dans la couche viscoélastique, /.

Un ssmportement non-conventionel qui mène à une hausse important de

I'amortissement macroscopique s'appelle ( la rigidité négative. > Les mécanismes

d'instabilité de certains matériaux manifestent les grands déplacements suite à un petit

chargement qui est bien approximé par une rigidité négative. Le travail deLakes et al

[9, 10, 12] monfie clairement qu'un tel comportement entain un croissance tès
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imFortant de I'amortissement macroscopique. Une hausse significative en

çomportement amortissant se manifeste quand la valeur du module qui corresponde

au chargement, par exemple p,, s'exprime en fonction du même module de la

matrice, Ê, , p* it, x -l.lp^a t9l. La Figure R-12 présente le comporûement

amortissante à l'échelle structurelle d'un pare-brise sandwich, dont la couche

viscoélastique comprend des inclusions ayant une rigidité négative ft, * -l.litpw ,pû

approximation de I'IAA en fonction de la fréquence d'une onde plane incidente [89].

Figure R-12: L'appro*imation de I'IAA d'une pare-brise dont Ia couche PVB comprend les
petites fractions volumique d' inclusions instable.s (tq : - 1. 1 lt pw).

Les résultats montent une croissance dramatique de la capacité de la structure pour

dissipé de l'énergie à la fréquence corncidente. Certainement I'introduction des

inhomogénéites de rigidité négative mène à une réduction en IAA à la fréquence

corncidente presque çemplète, même à faible fraction volrrmique des inclusions.
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En dépite du faite que les cowbes de la Figure R-12 représentent le

comportement d'un matériau hypothétique, il est fuès intéressante de montrer que la

méthodologie d'une hiérarchie de modèles imbriqués capte bien ce comportement

non-conventionelle. Il met en évidence un niveau de confol augnenté sur les

variables dans I'espace de conception. Il montre aussi la fiabilité, la puissance, et

surtout la flexibilité d'une telle sfoatégie pour renseigner la conception des matériaux.

L'étude de cas présenté valide, surtout l'intégration du modèle micromécanique AC

dans une statégie de la conception des matériaux et incite la recherche approfondie

des microstructures qui mène aux effets structurels amortissants prononcés.

Chapitre Vf: Conclusions et perspectives

Le chapitre final donne des conclusions générales de la thèse. Les résultats et

contributions importants des modèles et méthodes présentées en chaque chapitre sont

résumés et discutés. Ils donnent des perspectives sur le rôle du tavaille présenté et

suggère des avenues de recherche approfoafi. f inalemen! le chapite se termine avec

une discussion de I'importance de la modélisation multi-échelle et multi-fonctionelle

des matériau:r dans l'avenir de la conception des matériaux.
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CHAPTER I

IxrnooucrroN

1.1 Objective and motivation

The princtpal objective of this thesis ts the derivation, development, and

validation of a quasi.-static self-consistent micromechantcal model to facilîtate

the exploration and generation of desîgn specifications for absorptîve

materîals.

Throughout history humankind has created tools and structures to satisÛ

wants and needs. These sfructures æs omnipresent in daily life and range in form and

function from buildingso to cars, to computers, to airplanes. The success of any given

structure depends entirely on a hierarchy of elements and the design of those

elements. This hierarchy includes the structure as a whole, the individual structural

elementg the components comprising each of those individual elements, the materials

from which each component is fabricate4 and finally the composition of those

materials [90]. In other words, a structure can be viewed as a sysûem which possesses

elements that exist at multiple length scales. Behavior of the structure as a whole is

govemed by behavior at each individual length scale and by interactions between

those length scales [14]. True engineering design must take this fact into account. It

is clear, therefore, that successful design must consider not only the design of each

element at its length scale, but also the complex interaction of the hierarchy of length

scales [91]. This design philosophy can ideally be extended to include even the

design of the materials.



Classic design methods require the selection of materials which conform to the

needs of the preconceived whole [19]. This design methodology is well developed

and well understood. Unfortunately, the limiting factor in design when applying this

approach is very often the lack of available materials which meet the needs of the

sfucture, thereby limitfug the entire design processes U4, 15]. The intertrvined fields

of composite material design, manufacture, and modeling have developed in response

to this lack of available materials and have greatly supplemented the design process.

Though these fields address the lack of available materials, as currently implemented

they still 5imply create materials to be selected from a list for subsequent design needs

tbrough the material selection approach. Such an approach" though very useful for

many applications, ignores a more elegant solution which aims to create materials

specifically conceived for the demands of a given application [21]. Such an approach

not only creates materials for specifi.c needs but also includes material creation in the

design of the system as a whole, and is therefore usually called material by design

teOl.
Material by design, or simply material design, is a very active area of research.

One well accepted approach to material design aims to extend a systems design to

include the concurrent design of materials for specific high imFortance components

ll4,2l,9lj. This extension is very natural as materials themselves can easily be

viewed as multiscale structures [90, 92]. Such a sfiategy ensures the function of the

structure and gives ultimate contol to the designer. The study of material design is,

however, very new and requires considerable research before being a viable option for

engineers. Detailed development and investigation of multiscale structr.ues, which

includes multiscale material models, is a key aspect of such research. These

investigations yield a great deal of information and understanding about the effects of

material structure on desired structural behavior 120,221. This information can then

be used to inform material design strategies.

Material design is inherently a multiscale and multi-physics problem as the

demands of a structure include thermal, electical, and mechanical loading at all



length scales. One area of interest in many engineering domains is the dissipation of

energy. Applications for materials with a high capacity to absorb acoustic and

vibrational energy can be found in almost every indusby. ps1 sxample, high loss

materials are often used as a filler in sEucfural elements such as the fuselage of an

aircraft 12) or the chassis of an automobile tl]. As filler, such materials

simultaneously reinforce the sfucture and reduce vibrations and noise. Similar

energy attenuation benefits are realized when these high loss materials are used in the

form of coatings and layers. Coating treatuents have been employed for noise

abatement in plenum chambers and ducts [3], on vibrating structures [4], and in

automobile windshields [5]. Furthermore, it is known that the damping capacity of

materials can be increased by introducing heterogeneities [6] into the material,

thereby creating a particulate composite material. Due to the large number of

potential applications for lossy materials, consiitutive modeling of viscoelastic

composite materials is of great interest and has been for nearly half a century [7, 8].

Recent research suggesting the possibility of creating composites that exhibit

exEemely high damFing [9-13] combined with advances in the design of materials

[14, 15] has given renewed impetus to research in the 6edsling of viscoelastic

composite materials. For this rffrson, this thesis concentrates on modeling particulate

composites for damFing applications and moves towards the implementation of the

proposed model in amaterial by design scheme.

Hypothesis and stratery

The development of a quasi-statîc frequency domain self-consistent

micramechanical model wiII provide a tool for the desîgn of absorptive

materials.

1.2



The first step in validating this hypothesis is the development of a robust

quasi-static frequency domain selÊconsistent (SC) micromechanical model. This

model must be capable of approximating the effective frequency dependent behavior

of various complex particulate composite materials. Model inputs will be the material

properties of each constifuent phase and the inclusion shape and orientation. The

desired model output is the effective frequency dependent tensors describing isotropic

sl anisotropic viscoelastic composite material behavior. Validation of the model will

be accomplished through comparisons with theoretical bounds for complex composite

medi4 accepted models, and experimental data un6[ 1fr1srrgh paramefic studies. To

firther validate this hypothesis, the SC model will be integrated into a simple

multiscale structural model. The goal of this example is to observe trends, to compare

simulated multiscale model behavior with experimental data and finite element

approximations, and to sfudy the effect of material microstructure on struchral

behavior.

Thesis overview

This thesis is divided into six chapters. The following chapter, Chapter tr,

summarizes the principles employed throughout the thesis and notes many imFortant

works from which considerable background has been gathered. Chapter tr begins

with a general discussion regarding energy dissipation in both homogeneous and

heterogeneous materials and recalls measures of energy dissipation. A structural

vibrations approach to energy dissipation is then discussed. The approach presented

employs the relationship between energy dissipation and strain energy. After

examining strain energy dissipation approximations the chapter then discusses

acoustic scattering in particulate ssmposites, its fundamental physical principles, and

related 6sdsling methods. This chapter terminates with a detailed bibliographical

review of the two prominent research areasi covered in this thesis: (i) homogenization

4



tecbniques for modeling effective particulate composite material behavior from both

the static (micromechanical) and the dynamic (acoustic scattering) perspectives, and

(ii) important developments in material by design research using a multiscale and

multi-physics approach.

Chapter III derives a SC micromechanical model in the quasi-static frequency

domain for a composite consisting of a viscoelastic host containing viscoelastic

ellipsoidal coated inclusions. This is achieved by extending the static model of

Cherkaoui et aI 123, 241 to include the constitutive frequency dependence of the

constituent Phases. The derivation is posited on the elastic-viscoelastic

correspondence principle and employs Green's formalisms and interfacial operators to

arrive at a general frequency dependent homogenization model for particulate

composites. The resulting quasi-static model is then generalized using dilute strain

concentration tensor (DSCT) formulation. This generalization permits the

homogenization of composites containing a large array of coated inclusions, inclusion

orientation distributions, and coating thicknesses.

The purpose of Chapter [V is to validate the quasi-static SC model though

çsmparisons with accepted anatytic bounds, acoustic scattering based models, and

static and acoustic experimental data- The chapter begins with an overview of the

imFortant contibutions in bounding methods for complex valued effective material

behavior. Three specific complex bounding techniques are intoduced and

approximations from the quasi-static SC model derived in Chapter III are shown to

fall v,'ithin those bounds. The model is then employed in several elementary studies

concerning the particulate composite lossy behavior. The SC model is employed to

approximate the isotropic composite material behavior of a viscoelastic material

containing spherical hollow glass micro-spheres [93]. SC model results are used to

calculate the tansmission loss (TL) of a layer of this composite material submerged

in water. These results are shown to agree with an acoustic scattering model proposed

by Baird et al 176) and experimental TL data from the same authors. Oriented

ellipsoidal coated inclusion effects are then exâmined via paramehic studies of TL,



complex wavemrmber, and complex souni speed for hypothetical materials created

from the same constituent phases as those studied by Baird et al 176]. The next

validation step is an illustration of SC DSCT model generality. The SC DSCT model

is first used to approximate isohopic behavior resulting from a uniform distibution of

ellipsoidal inclusions embedded in a host material. These results are compared with a

model proposed by Berryman for a lossy rock-water suspension as a function of

volume fraction [51]. This comparison validates the usage of the SC DSCT form to

approximate the efflects of varying ellipsoidal inclusion orientation on macroscopic

composite material behavior. The next SC DSCT model check presents a parametric

study of inclusion orientation distibution on mircroscopic comFosite anisotropy. The

SC DSCT model is compared with the experimentally obtained and theoretically

approximated stiftess values of a composite shale material studied by Jones and

Waog l77l and Hornby et al f781, respectively. The shale material studied by these

researchers consisted of several different mineral phases embedded in preferentially

oriented clay platelets. Effective stifhess tensor approximations provided by the SC

DSCT model show good agreement with both experimental and theoretical values

provided by these researchers. The SC DSCT model is then employed to approximate

the behavior of a sitcon carbide - aluminum composite material. Due to fabrication

prooesses, the microstructure of this çsmposite is best described as consisting of two

distinct length scales: (r) sub-micron SiC particulates embedded in an Al matix, and

(ff) identically oriented mesoscopic Al particulates embedded in a SiC-Al composite.

The efFective behavior of this composite was approximated using the SC DSCT via a

nested multiscale approach (sub-micron)meso)macro) and shows good agreement

with both the multiple scattering model and experimental data provided by Ledbetter

and Datta [79]. Finally, the SC DSCT model is validated by retuming to the analysis

of the particulate composite slab TL data provided by Baird et al 1761. The SC DSCT

model is employed to approximate the effects of coating thickness variation on the

observed TL. The result of this approximation shows large improvement in

agreement with experimental data over the 5imple singls-thiçlaress approximation.



Chapter V investigates the feasibility of quasi-static SC model implementation

as a tool for a material by design strategy. This is achieved by integrating a hierarchy

of models which are valid on each length scale of a simple dynamic structure: a

vibrating sandwich plate. This structural element is analogous to an automobile

windshield and was chosen to show the practical implications of this approach.

Modeling begins by discussing the relevant part and structure level models for a

vibrating sandwich plate. Part level modeling consists of finding the effective

sandwich plate bending modulus using the constrained layer damFing model derived

by Ross et al l8lf. Analysis of sandwich plate behavior begins with parametric

studies on the constituent material behavior and geomeûy of a sandwich plate to

provide inforrnation about effective lossy sandwich plate behavior. Sensitivity

analysis of the effective modulus yields information which can be applied to

efficiently increase lossy plate behavior. This model is validated though comparison

with experimental TL data from several different layered windshield samples. Nex!

models for a viscoelastically constrained beam and plate are employed to study the

contributions of lossy plate and boundary condition behavior to the modal loss factor

of a vibrating plate. The beam and plate models used for this study were derived

using classic be"m and plate theory. These models represent the stucfural level

behavior of the simple multiscale example. The sfucture and part level models are

then integrated and compared vvift finite element approximations of the modal loss

factor for a viscoelastically consfained "cantilever" sandwich beam. Finally, SC

model approximations of the behavior of a particulate composite consfrained layer

and/or boundary conditions are integrated into the part and structure level models to

yield a nested hierarchy of behavioral models. The integration of these models

permits the study of microstructural effects on the dissipation of struchral vibrations.

Voided viscoelastic materials are shown to increase the stuctural damFing of a

circular sandwich plate and the increases in modal loss factor is shown to increase

quadratically as a function of void fraction. Windshield TL is then approximated by

integrating part level and material homogenization models combined with the analytic



modified-mass law [89]. Voided interlayer materials yield TL improvements near

coincidence, though they are marginal. A simple example of high loss composites

employing negative stifhess inclusions [9, 10, 12], however, are shown to greafly

improve TL behavior at coincidence. The results of this chapter are very encouraging

and suggest that the quasi-static SC model can easily be implemented as tool in a

material by design shategy.

The final chapter, Chapter VI, concludes and summarize5lfos important results

and contributions from the models and methods presented in each chapter. This

chapter also presents some perspectives on the role of the work presented in this thesis

and suggests avenues for future research.



CHAPTER II

Bm,rocn lpmc Rnvmw lxo PnnvcrprÆs

2.1 Damping materials

Applications for materials with a high capacity to absorb acoustic and

vibrational energy can be found in almost every indusûry. For example, high loss

materials are often used as a filler in structual elements such as the fuselage of an

aircraft l2l or the chassis of an automobile tU. As fi.ller, such materials

simultaneously reinforce the sfucture and reduce vibrations and noise. Similar

energy attenuation benefits arerep-liz.ed when these high loss materials are used in the

form of coatings and layers. Coating freatments have been employed for noise

abatement in plenum chambers and ducts [3], on vibrating sfuctures [4], and in

automobile windshields [5]. Furthermore, it is known that the damping capacity of

materials can be increased by introducing heterogeneities [6] into the material,

thereby creating a particulate composite material.

Due to the many different areas for application of high loss materials,

constitutive modeling of viscoelastic composite materials has been [8, 271 and

remains of high interest in many different engineering fields. This work derives,

develops, validates, and explores a multiscale material model of lossy composite

materials for future implementation in a material by design strategy. Such material

modeling begins with a fundamental understanding of the physical processes that lead

to damping behavior. This section, therefore, gives a brief overview of the

mechanisms that lead to energy absorption, the mathematical tools used to



approximate lossy behavior, and ûs simpfirying assumptions employed throughout

this thesis.

In general, all materials that display damping behavior can be defined as

viscoelastic materials [75]. Viscoelastic behavior is fundamentally due to the intinsic

absorption of dynamic strain energy in a material by conversion to heat.

Crystallographic materials, such as metals, convert strain energy to heat through

internal friction while energy absorption in polymeric materials is the result of

molecular chain sliding and relæration. In general, the stress in a viscoelastic material

is dependent on imposed sûain rate. This rate dependence translates to a sûess

response in the frequency domain that is called a relaxation spectum. The relaxation

spectrum of a viscoelastic material shows that the stress level is dependent on both the

magnitude and frequency of the applied shain [94]. In most cases the shess-strain

relationship in crystallographic materials is very weakly rate dependent and leads to a

broadband damping resporu;e in the frequency domain. The magnitude of this

broadband damping capacity is also very small and for these two reasors metals are

seldom referred to in the context of viscoelastic behavior. Pollmeric materials, on the

other han4 display both higb rate dependences and high losses and are therefore

classified as viscoelastic. It is important to note, however, that all small sfrain

behavior of real materials can be classified, to a certain degree, as viscoelastic pal.

d 5imple method to show the principles of viscoelastic material behavior is to

discuss the time dependent behavior of a one-dimensional samFle such as a bar. The

phenomena that t5'piff the viscoelastic response of a bar zue creep and sfress

relanation. Creep is the strain increase over time due to constant applied shess and

shess relæration is the decay of the stess level in a material when subjected to a

constant shain [75]. These two phenomena are shown graphically in Figure 2-1, and

Figure 2-2, respectively.
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Figure 2-1: Evolution ofthe strain, e, ofa bar under constant stress, o4 (creep response). I, II,
and III represent the three stages of creep. ea is the value of the elastic strain.

Applied Strain

o

Og

log t

Figure 2-2: Stress relaxation, o(t), in a bar under constant strain, e6 asis the value ofthe elastic
stress and o- is the timiting vatue of o(t) as / ) co.

The initial elastic response represents only an infinitesimally small fraction of the

total response time in most materials and has therefore not been included in the

figures above. It is also very important to stress that the viscoelastic response is not

characteized by the whole of the responses illusEated above because they display

both the elastic and plastic response of a material. Viscoelastic behavior involves

only recoverable deformation and therefore is more conceptually related to elasticity.

However viscous behavior, which is generally associated with inelastic deformation,

must be used to describe the lossy s6mponent of viscoelastic materials. These two
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figures clearly illustrate that the material response can be decomposed into two parts:

(t) the elastic part and (ii) the viscous part [95]. Using this information, the moduli

relating the time dependent stress or stain to the loading condition is wriffen in the

very general form of Equations (II.1.l) and (tr.1.2) below.

o(t)= oo*'1"1, -ù#0,
0

Gr,1.1)

e (t) = 
"o *'1, 1, - 4E-@- a,

0

(tr.r.2)

In the above expressions, E(t) is the relanation modulus and J(t) is the relaxation

compliance of the material, o-(r) and a(r) represent the total stress and strain of the

material respectively at time t, oo and to are the initial elastic stress and strain, and z

is the retarded time. The elastic values of stress and sfain are given via the one

dimensional Hooke's law as: oo= Eoto and eo = oolEo = Jooo. Expressions @.1.1)

and (II.l.2) show that the shess and sfrain at any given trme is a function of both the

initial elastic response and some value that evolves with time according to the integal

on the right-hand side (RHS). This integral represents a material memory firnction

that takes the loading history into account in the present value and is the source of the

phase lag / hysteresis observed in viscoelastic materials when submitted to cyclic

loading [94].

Noting that Equations (II.l.1) and (tr.1.2) are mathematically analogous, the

following analysis will be carried out for the shess relaxation case only. Given a time

varying imposed strain" 
"(t), 

the stess at any time can be determined from Equation

(tr.1.3) below.

t2



o(t)= E" (t)e (t)*'1ru (t -4t-@ a,
d t ' d r

(tr.1.3)

In this expression, Z" (t) represents the elastic part of the material response athme t,

and EM (t) ir the rate dependent material memory firnction. The elastic function

represents the material st'ffrress at time / and the memory firnction is dependent on the

mechanical loading history from time t : 0 to the present time, f. This formulation of

the material behavior is called the Boltzmann equation which takes the relaxation of

the material into account [6]. From this relationship it is easy to show that Equation

(tr.1.3) is the time domain representation of a complex Young's modulus in the

frequency domain. The frequency dependent complex modulus is found by applyng

the Fourier transform to both sides of Equation (tr.1.3). The integral in (II.l.3)

represents the convolution of n' (r) with the applied strain nte, de(t)f dt. The

application of the Fourier ûansform and some simFlification will yield the following

frequency dependent ssmplex modulus representation of the time dependent behavior

given in (tr.I.3) f6,751:

ô (r) = n' (at)lr - tr7, (o)]ê (a) (tr.r.4)

where ,1"(r) represents the Young's modulus loss factor defined as;

û,(r)= Ê"(a,)lz'('). rhe exact between the variables n" (t\,

n' (r), g'(t), and E" (r) depend on the mateialmodel employed and therefore are

not explicitly given here, see Christensen [96] for a more detailed analysis. It is

important to note that the Euler's equation convention employed above is the c 
"-iot 

t

convention shown in Equation (tr.1.5). This convention is employed throughout this

work.



e-tQ =cos(p)-;sin(p) (tr.1.5)

Equation (II.1.4) can be written in the same fonn as its static equivalent. The

ability to describe viscoelastic material behavior by substituting complex valued

variables into classic behavioral laws in place or purely real variables is called the

elastic-viscoelastic correspondence principle [75]. The corresponding one

dimensional viscoelastic Hooke's law is given in (tI.l.6).

ô' ( r )= Ê ' ( r )ê ' ( r ) (rr.1.6)

In the above expression the 
* 

indicates that the quantity is complex in general. The

real part of the comFlex Young's modulus, n'(r), is called the storage modulus and

represents the part of the material behavior that stores energy. The imaginary part,

Ê" (t), is called the loss modulus, and describes material behavior that dissipates

energy. This complex representation of the rate dependent lossy behavior of

viscoelastic materials through ssmplex moduli in the frequency domain greafly

facilitates material behavior calculations. It is for this reason that the lossy behavior

of a viscoelastic material is almost always represented in this simplified form and it

has been shown to be applicable to micromechanisal 6sdsling 153,97-991.

Now consider the case where s(r) is imposed and is, therefore, a purely real

function of time. Equation (tr.1.O 15sa 5imFlifies to the following representation.

ooe-i(d-e) - Eoeta toe-^

ooe@ = Eoeryeo

G.1.4
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Noting that the tengent of the loss angle, ç, gven in Equation (tr.1.7) is the equal to

the Young's modulus loss factor, f".

ff, =tanp (tr.1.8)

All variables with a subscript "6" 
'rn 

the above equations represent the magrritude of

the corresponding variable [6].

It is important to recoenize that representing viscoelastic behavior by

employing the elastic-viscoelastic correspondence principle greatly simplifies

mathematical models of the complex physical mechanisms leading to lossy behavior

in any material. For example, when a time varying strain is imposed on a one-

dimensional material sample the material immediately develops some stess

depending on the strain rate and the specific material. The imposed deformation is

completely recovered upon unloading, but the recovery path is not linear (as is

evidenced from Equation@.1.2)). Just after loading, the material relæres leading to a

stress reduction. The stress relanation results in a phase lag between the imposed

cyclic shain and the result'ng cyclic stress. The pbase lag, shown in Figure 2-3, is

directly related to the loss factor of the material tbrough relation (tr.1.8). This lag

corresponds to a hysteresis loop that is traced in the (t) - a(r) plane as a function of

time. The area of this hysteresis loop is what quantifies the absorption of the strain

energy by the viscoelastic material.
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Figure 2-3: Time domain response of a one dimensional sample of viscoelastic material to an
imposed cyclic strain.

Finally, it should be noted that the above 5imFle demonstration only

considered material behavior in extension, thoWh an identical analysis could have

been carried out for shear or volumetric behavior. It is therefore possible to extend

the one dimensional relations given above to the more general cÉrse of viscoelastic

anisotopy. As discussed above, due to the elastic-viscoelastic correspondence

principle, extension of the constitutive laws of one dimensional viscoelastic behavior

to behavior in three dimensions is almost trivial. Relations (tr.1.9) and @.1.10) gtve

the constihrtive viscoelastic material behavior laws for an anisotropic viscoelastic

solid.

a'o@): ôrr(a)ê;(ar)

with:

ôk@)= cr.,-,(r)lt,* -t t-*(r)f

Where /4,a represents the fourth order identity tensor defined below.

I *=%(6*6, ,+6u6n)

(tr.1.e)

(tr.r.r0)

t6

Gr. l .1r)



Equation (tr.1.9) is the general form of the elastic-viscoelastic correspondence

principle. In this form, both the frequency dependent stif&ress, Ô*(t), and the loss

factor, ù*(r), can depend on direction. A large part of this thesis deals with the

approximation of the frequency dependent complex stiftess tensor, Ôrr(a), of

viscoelastic particulate ssmposites through micromechanical methods. The aim of

this modeling is to validate a material model for future introduction into a material

design shategy.

The following sections intoduce two different approaches utilized to

approximate the macroscopic damping behavior of a particulate composite. Section

2.1.1 presents the idea of approximating sfuctural damFing capacity through shain

energy methods. This approach is wide spread in the field of sfuctural vibrations, but

the same rationale can also be applied, within certain limits, to composite material

modeling. The strain energy approach approximates the damFing capacity by

calculæing the ratio of the strain energy in lossy components to the total strain energy

in the stnrcture. Section 2.1.2 presents a completely different approach based on the

physics of acoustic wave propagation. This methodology is based on the mechanisms

of the reflection and mode conversion of waves incident on a material heterogeneity.

These two approaches are based on very different physical concepts. Each approach

merits study, however, since the physical mechanisms they describe are all present in

the dynamic behavior of particulate composites.

2.1.1 Strain enerry methods for approximating danping capacity

One well known method for approximating the damping capacity of structures

with lossy components in the field of vibrations is called the strain energy method.

This approach consists of calculating the ratio of two different measures of stain

l7



energy. The.numerator is the sum of the product of the stain energy, Wi, and material

loss factor, r1;, of all lossy elements of the strucfure, and the denominator is simply the

sum of the strain energy in every stuctural element [99]. Ungar and Kerwin

introduced this approach which relationship @.1.12) summarizes [16].

tv

ln,w,
rlr, = 1-

Zw,
t=l

(tr.1. 12)

This relationship is a direct result of the complex modulus formulation employed in

modeling viscoelastic materials. For the unidirectional loading case, the material's

loss factor is related to the strain energy and the hysteresis area via the following

relationship:

r7 = Df ttooe, (tr.r.13)

Here D represents the hysteresis area and the denominator is the total shain energy of

one cycle of loading. Given the definition of specific stain energy (energy per unit

volr:me), ll=nTao%, ed by setting N: l, Equation (tr.1.12) reduces to the

definition of the material loss factor for a single lossy element. Expression (tr.1.12)

generalizes this rationale to a system of N different elements potentially having N

different damping capacities. The method described above is a simple, accurate, and

very amenable to finite element (FE) calculations 197-991. This approach is employed

in many sfructural vibration applications where each element can easily be modeled as

a continuous material having a distinct viscoelastic response [00]. The works of

Ross e/ all9lf, Soni [86], and Mead and Markus [85], are firther s;amFles of this

approach and its application to the approximation of the damFing capacity of multi-

layered plates.
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The method explained above is conceptually easy to understand and to apply

at the structural level, especially though FE analysis, see the examples of Sun and Lu

[101], Nashif U021, or McDaniel and Ginsberg [103]. Unfortunately, the case of

particulate composites presents many difficulties to the application of this approach.

1Xe difficult! stems from the fact that the calculation of the shain dishibution in each

material phase is complicated by the shape, orientation, and distribution of the

inclusion phases. However, since the approach hrs proven robust and accurate at a

structural level, it is interesting to explore its potential for application to particulate

comFosites which represent structures in a more general sense. To this end, a brief

study of the strain energy of the composite sphere shown in Figure 24 is given. A

sphere, with bulk and shear moduli of Kand p, respectively, has an outer radius b and

is subject to an extemal pressurepp and boundary conditions @C), N, at r : a.

{-

Figure 2-4: Composite sphere of inner and outer radii a and É respectively. The material has a
bulk and shear moduli denoted as K and p respectively. The boundary conditions at t : a can be
changed and are designated as7.

When submitted to extenral loading, the stain energy in the material located between

r: aandr: b is be calculated from expression (tr.1.14) below [104].
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W_ Gr.1.14)

The following ratio is now defined in order to show the change in sfain energy

located between these two different radii due to different BC impose d at r : a :

[":' (r)"7' ?)*'7i @"îi' ?)* o',â' V)8' Q)]r'ar

I'1: V) "i' ?) * off (,) "ff (r) + off (,) "ff (r)fr' dr

Where o$ and a$ represent the stress and strain in the x direction (either r, g, or 0

in the spherical coordinate system) of a continuous sphere ̂d oY ^d 
"gt 

are the

same constants for the case of a composite sphere. When the loading is spherically

symmetric (as is the case for an imposed external pressure) the stesses and shains in

the material will only exhibit radial dependence. This dependence is derived by

solving the Navier-Stokes equations whose results are given in Equations (tr.1.16)(a)-

(e) [10a]. The values of coefficients a and f cnthen be determined from the BC atr

: a and the pressure, po, impos ed at r : b.

f,[","u,",ar 
=][o,uuav

(a)u,(r)= o, +l F

(b) e- (r)=o-jO

(c) eo(r)="*(r)=o. jO

(d) o*(r) :3Xa-OOPÏ

(e) oo (r) = o*(r) = 3xa * o rn lGI. 
l.16)

The resulting relationship expressing the total stain energy for a continuous sphere (a

: 0) is given below in Equation (tr.1.17):
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(tr,1.r7)

To show how the boundaries at r : a affect the total shain energy in the

composite sphere, the following cases will be investigated and compared: (r) rigd

boundary conditions at r : a (u,(") = O ), und (iz) pressure release boundary

conditions at r : a (o-(") = O). The result of the evaluation of the ratio in Equation

(tr.1.15) for cases (t) and (ii) are given below in Equations (tr.1.18) and @.1.19) with

corresponding plots in Figure 2-5 and Figure 2-6.

wcs=%"(#)

D t _
I L _

zL,J- r)
Gr.l. l8)
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Figure 2-5: Ratio of strain enerry in matrix material of composite sphere for th-ree dilferent
values of Poisson's ratio with rigid BC at | = a as a function of volume fraction,f : dff.
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Figure 2-6: Ratio of strain energf in matrix material of composite sphere for three dilferent
values of Poisson's ratio with pressure release (o* : 0) BC at t = a as a function of volume
frzction,T: s!763.

In Equations (II.1.18) and (tr.1.19) / represents the volume fraction of the

composite sphere occupied by the rigid inclusion or void,/: d/bs, and v is the

Poisson's ratio of the material occupying the space between r : a and r : b. This

simple illustration demonstrates how the presence of voids in a material quickly raises

the total strain energy as a firnction of volume fraction. This strain energy rational to

approximate damFing capacity implies that if the mafix material is lossy, voiding the

material greatly increases the composite material's capacity to dissipate energy for a

given applied stress, represented in this case aspg. Along the same lines of thought, if

the voids were replaced with inclusions having a lower stiftess value than that of the

makix, the damFing capacity of the comFosite would still be superior to a sphere

consisting of the matix material alone for the same applied stress. It is also obvious

that rigid inclusions, or indeed inclusions that are stiffer than the matrix, diminish the

shain energy present in the matrix material for a fixed applied stress. In the case

where only the matrix is lossy, this would have a negative effect on the ssmFosite's

demping capacity for the imFosed sfess case. It must be noted, however, that in

\Àrave propagation problems the effects of inertia and multiple scattering render this

statement not necêssarily true. ' Converse to the arguments above, if the composite

sphere is loaded with a frxeÂ strain imposed atr : b,rigld inclusions will increase the

total strain energy present in the mafix material. For the imposed shain case all of

the arguments given above for the voided sphere will be tue for the sphere containing

a rigid inclusion.

Unfortunately, for a tue composite material, the calculation of the strain

energy in each constituent phase is complicated by material stifhress contasts and

anisohopy along with inclusion shape and spatial orientation. Approximation of the

overall loss factor of a particulate composite material through the strain energy

method therefore becomes difficult. However, a micromechanical approach, which
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relies on the calculation of the average strain field in each constituent phase of the

composite, provides a practical means to approximate the damping capacity of

particulate comFosites. A bibliographic review of the important contributions to

micromechanics and the specific work of this thesis will be given in Section 2.2.

2.1.2 Acoustic scattering methods for appro*imating damping capacity

Acoustic v/ave absorption is the result of the four following physical

mechanisms: (i) scattering by inhomogeneities, (if) mode conversion at the interfaces

of inhomogeneities, (lfi) redirection, and (iv) intrinsic absorption by conversion to

heat [6]. Figure 2-7 lIhust'rater flfs dsminant physical processes that occur when a

plane wave imFinges on an inhomogeneity in the form of a coated inclusion. The

propagation of a hannonic longitudinal plane wave in the xi direction is described by

Equation (tr. 1,20) below.

îr, (r,,t) 
- )r-i('t-*'''1 (rr.1.20)

(tr.1.2r)

In the above equations I represents the complex masnitude of the incident wave, Ë is

the wavenumber calculated using Equation (II.l.2l), ar is the angular frequency,2 is

the wavelength (not the Lamé constant), and c is the sound speed in the material.

, 2n ct)
K = - = -

) " c
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Sheuwaves generated by
tr ansyers e displacement of
the inclusion

b*(r,t)= fui(a-'t1

a z t ' - - - -

, - - - - - - .

b,(r , t )-  ) ; (" , t1

v

/\ _ _ - /

/ b, (r,t) = iet(ts't)

lfl.lzl/-
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Figure 2-7: Illustration of the dominant physical mechanisms that take place when a longitudinal
plane wave impinges on an material inhomogeneity.

Figure 2-7 illustrates the four mechanisms leading to energy dissipation. The

fust mechanism mentioned is scattering due to inhomogeneities. The incident wave is

scattered when longitudinal and shear waves are generated due to reflection at the

interface of the material discontinuity. These waves propagate out from the

inhomogenelty in all directions with magnitudes that depends on the angle (measured

with respect to the incident wave direction) and frequency of the incident wave [105].

Following scaffering, the host material attenuates each new wave front and therefore it

is in this manner that scattering leads to more efficient absorption of wave energy and

not simFly redirection of that energy. This process leads to an increased damping

capacity of the heterogeneous material as a whole. It is the goal of waye scattering

based models of composite materials to capture this physical behavior in order to

quantiS the effective material stifÊress and damping properties.

In general, each time a plane wave encounters sn impedance difference a

portion of the incident energy is reflected and the rest is transmitted. A portion of the

reflected energy propagates as plane waves and the rs6aining energy propagates in

the form of difiFerent t5pes of waves, a high percentage of *ni"n are shear waves. The

amount of energy propagating in each \Mave depends on the specifi.c material

properties of the medium on each side of the interface and the angle of incidence

t106]. This process of generating several types of waves due to the reflection of a

t
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plane wave at a material inhomogeneity is known as mode conversion, and it leads to

more efficient damping. One of the reasons mode conversion increases damping

efficiency is difference in the wavelength of shear waves and longitudina] waves. The

wavelength of shear waves is shorter than that of longitudinal \À/aves in the same

material for the same frequency. This difference in wavelength means that a shear

wave will undergo more cycles when propagating the same distance as a longitudinal

wave. Since lossy material absorb a given percentage of wave energy each cycle, this

process leads to more energy absorption for the same distance traveled. The fact that

most materials display a higher damFing capacity in shear firrther increases the

damping capacity when mode conversion occurs. Mode conversion also creates more

wave fronts. Because each wave front propagates in the absorptive material, the net

result is an increase in the total damping efficiency. Mode conversion also occurs

when shear waves ure also generated due to the transverse displacement of the

heterogeneity in the direction of propagation. This displacement results from the

sFess gradient of the longitudinal vrave. The gradient first pushes the inclusion to the

right" using Figure 2-7 as reference, until the maximum stress level is reached, and

then pulls it back to the left druing rarefaction. It is obvious that this leads to shearing

motion in the host material in directions that are not parallel to the propagation

direction.

The way in which the redirection of vrave energy leads to a reduction in

energy should be clarified. For an ideal infinite lossless medium, the energy of a

plane lvave received at point B is the sâme as the energy when it was sent from point

A. If an heterogeneity is placed in between these two points, part of the energy

present at point I will never arrive at point B because of the reflection/scattering by

the heterogeneity. The result for the lossless medium is that the total energy in the

composite will remain unchanged. There will, however, be a decrease in the vfave's

amplitude at point B. The amplitude reduction due to the presence of an

heterogeneity could be quantified with a measure called the Insertion Loss (IL) t3l.

When the host material is lossy and many inhomogeneities are presen! redirection
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increases absorption by increasing the distance a 5ingle wave front travels due to

multiple reflections. Since the absorption of energy is a function of the distance

traveled, the final result is an increase in the damping capacify [6].

Finally, in all real materials acoustic wave absorption results from viscoelastic

material behavior discussed at the beginning of this section. Lossy behavior is, in

general, dependent on internal friction, molecular chain relaxation, and other physical

phenomena that change mechanical energy into thennal energy which ultimately heats

the material [75]. The capacity of a given material to damp a ffaveling wave is easily

quantified for propagation in the host medium using Equation (tr.1.20) through the

complex wave numb 
"r, 

n(r), defined in relation (11.1.22) t1061.

(tr.1.22)

In the above equation, p is the material density, C*(r) is the complex frequency

dependent stifhess described by relation (tr.1.10), ni rnd nkare the normal directions

as described by the Christoffel equation, lCurn,no-pc'6ul=g [106], âil is the

Kronecker deltq py is the wave polarization describing the propagation direction,

n,(t) is the real part of the wave number, and â,(r) is the attenuation coefficient.

[1 is important to note that for realistic values of the loss factor (0 < Tl < I ) and if the

real part of the elastic moduli remains constant the attenuation coefficient is a

monotonically increasing function of the host material loss factor. By inserting

Q.1.22) into (tr.1.20) it becomes obvious that the \ryave magnitude decays

exponentially as a function of a; and the distance traveled as shown in Equation

(tr.1.23).

b, (r,,t) - )r-n'' r-i(^-d'')

nifu): a T-=- =î:,(a)+tâ,(a)
Lù.H\@)njnkpt
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The relationships presented thus far show why a homogenization scheme that

correctly captures the mechanisms of scattering by finding a complex,'frequency

dependen! eflective stifFness tensor, can yield insight into the design of lossy

materials.

One problem with the method described in Section 2.1.1 is its limitation to the

quasi-static case. The quasi-static domain is defined by the ratio of the incident

wavelength to the descriptve inclusion dimension and is usually expressed via the

non-dimensional quantity ks wherc a represents the largest inclusion dimension and k

is the wavenumber. The quasi-static domain is limited to those frequencies that

render lca<< I U051.

Energy dissipation due to wave scattering by the presence of a material

inhomogeneity is well approximated in the quasi-static domain by the strain energy in

the near field of that inhomogeneity [6]. In this frequency range the "propagatiod' of

the wave at the inclusion scale is well represented as a time varying but spatially

uniform stress/strain field. At this scale the effects of wave scattering are very small

compared to the stess/strain concentration in the neighborhood of the inclusion.

Using this knowledge, a shain energy based approach delivers reliable particulate

composite damFing capacity approximations in the frequency domain by introducing

the lossy, frequency dependent constituent material behavior into static models [53].

ln order for a model to be reliable for complex particulate composites careful

consideration must be taken in modeling the strain field everywhere in the composite.

This is the case for most mean field homogenization theories [25]. If, on the other

hand, the frequency of the propagating waves is such t}.at l(a = I or even kn ) l,

models based on mean stress/sûain field theories are no longer valid. For these

frequencies such models neglect the physical mechanisms of scattering [107] and,

therefore, single or multiple scattering homogenization approaches must be employed.

The model and experimental data presented in this thesis are limited to the quasi-static

domain. However, in an effort to give a complete picture of the frequency dependent
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behavior of particulate composites, a bibliographic review of the significant works in

the area of scattering based homogenization techniques is presented in SectionZ.3.

2.2 Micromechanical homogenization of particulate composites

The most precise approach to modeling the macroscopic behavior of complex

materials would be one that takes its intrinsic multiscale structure into accourt. This

type of multiscale approach requires knowledge of the physical behavior of the

material at each scale as well as the nature of the interaction between scale levels. If a

modeling approach captures the material behavior at each scale level of interest and

the interaction mechanisms between scales, it is possible to approximate material

behavior at al7 scales based on knowledge of the material's composition. The

micromechanical approach is, by definition, a multiscale modeling approach. It

assumes that two structural levels exist such that the effects of interfaces,

heterogeneities, and other physical phenomena at the lower level can be taken into

account at the upper level via an averaging approach. These stuctural levels are

defined by length scales such that l<<L where / is the descriptive dimension at the

lower length scale and Z describes the upper length scale. This tacitly assumes that

the upper length scale properties, referred to in this work as global or macroscopic,

are the result of an average of the behavior of the lower length scales and therefore

that no point to point interaction takes place between scales B7l. T\e idea behind this

approach is illustated by defining a Representative Volume Element (RVE). A RVE

is the smallest material volume trnit (element) whose effective behavior is assumed to

represent the macroscopic behavior of the complex material. Selection of a RVE

plays a large part il dsfining the limitations of any proposed micromechanical method

1261. A RVE example for a composite consisting of a matrix with identically oriented

coated sllipsoidal inclusions is shown below in Figure 2-8. This RVE represents the

self-consistent (SC) model introduced by Cherkaoui et al B3l. This RVE assumes
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that the composite material behavior can be well approximated by writing the

constitutive equations of a single coated inclusion embedded in the effective material,

which has unknown material properties [23].

Irs Ar Pr tffi'',P'f'

F.".,'' ...'- È

l.tw,&w,iiw

$a AaPc

Figure 2-8: RVE for the SC nodel of Cherkaoui et al [23]. l" and Æ represent the Lamé

constants and p, the density of naterial - Cffi is the effective stilfness tensor and .I, C, znd M

specify respectively the inclusion, coating, and natrix

Historically, all micromechanical mean field theories have been based entirely

on the physical principles of continuum mechanics. The approach taken in this thesis

will be no different. Since its inception nearly fiffy years ago, micromechanics has

become a well developed field of study which has been shown capable of addressing

many different fields of science. The approach is even curently being adapted to

approximate the behavior of nanomaterials (ex: [55-57]). The development of this

field is the result of two distinct needs: (l) the need to approximate the macroscopic

behavior (elastic, plastic, thermal, electromagnetic, etc.) of materials containing

micro-scale heterogeneities (micro/p ) macroAvl scale fransition) and (il) the need to

localize macroscopically applied fields to inferior length scales (M>p scale

ûansition) 126,271. Inded the approximation of the macroscopic response of an

inhomogeneous material, which is an average of the microscopic behavior, requires

knowledge of the spatially varying microscopic fields [08].
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A good example that illusbates this point is the model proposed by Song et al

[109] to approximate the global response of a bi-phase composite material having

inclusions that can undergo phase hansfonnation. This model applies a SC

homogenization approach to approximate the macroscopic elastic and thermal

material properties. The first step homogenizes the material (p)M) thereby

approximating the effective macroscopic composite properties based on its

composition and thermomechanical loading. At this poinL the localization of the

imposed loads to the microscopic level (M)p) is performed in order to calculate

thermomechanical phase equilibrium of the inclusions via local physical laws and

1sçaliz.ed loads. Given the change in the phase composition of the inclusion, which

changes the elastic and thermal properties, another homogenization step is made.

This process repeats itself during the entire loading history. The micromechanical

approach thus gives information of not only of the mzrcroscopic response, but also of

the thermomechanical state ofthe inclusions at all times during the loading history.

The specific materials and behavior just discussed are much different than

those discussed in this work. However, the above example clearly shows the capacity

of micromechanical models to resolve multiscale problems and give material behavior

information simultaneously at multiple length scales. Further, the example illustrates

an important principle: the behavior of microscopic heterogeneities can have a

significant influence on the macroscopic behavior of a material. It is for these reasorx;

that the micromechanical modeling approach is a powerfirl tool that can be employed

to znzlyze multiscale problems.

2.2.1 Pertinent micromechanical modeling developments

The micromechanical approach employed in this work is a mean field model

for particulate composite materials. All mean field models are based, in one \À/ay or

another, on the seminal work of Eshelby [108]. Eshelby's results marked a great

3t



improvement over elementar5r techniques such as the work of Voigt [110], Reuss

[111]. Voigt and Reuss used variational principles and strain energy which cannot

take inclusion shape into account.

The micromechanical modeling approach initiated by Eshelby consists of two

fundamental operations: (i) Iocahzation and (fi) homogenization p6, 271. As

previously stated, these operations require the existence of at least two length scales

ïr,rithin the material. It also assumes that the effect of material behavior and structure

at the microscopic particulate length scale has only an average effect on material

behavior at the macroscopic scale and that macroscopically applied loads can be

localized to the microscopic level [27f. Eshelby's results [108] provide the insight

and mathemattcal tools to resolve the localization problem via the equivalent

inclusion method which results in localization tensor now called Eshelby's tensor,

S,jH. This capability to locaïzn macroscopically applied mechanical loading to the

microscopic level is fundamental to the approximation of volumetic aver:age sfess

and stain fields in the heterogeneous material. This set of operations is called the

homogenization step. Localization allows volume averaging since it permits the

derivation of sûess and strain fields as a function of position which depend not only

on the applied load but also inclusion forms, orientations, and properties [28-30].

Following Eshelby's fundamental contribution a large array of models, for

example those of Krôner [31], Budiansky ï321, Wu [28], and Mori and Tanaka [33]

were developed. All of these models employ a similar equivalent inclusion approach.

7æller and Dederichs [34], however, improved on the equivalent inclusion method by

innoducing a Green's firnction formalism that permits the calculation of the stress and

stain fields at every point in a heterogeneous material at the microscopic scale. Their

approach is based on the idea that the material behavior of a particulate composite can

be approximated on the local, or microscopic, scale via expressions of the form shown

below.

x(t )=Xo+ax(")
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In this expression, X(r) represents the material properties or fields. of interest in the

heterogeneous medium. The concept behind this approach is that the material

properties and fields of interest are globally homogeneous, Xo, with small

perturbations due to microscopic heterogeneities scattered throughout the host

material, ôX(r). The field generated by these heterogeneities can be approximated at

every point in the material using Green's tensors and thereby providing a good

representation of the microscopic behavior. This approach was improved upon by

Mura [35] and Willis [36] to include plastic deformation and generalized for the case

of two disoriented ellipsoidal plastic inclusions by Berveiller et al 137f. Another

importrant improvement over the equivalent inclusion method was the inhoduction of

interfacial operators which relate the sfiess and shain state across the interface of

dissimilar materials [38, 391.

The combination of these two mathematic tecbniques provides an exhemely

powerful modeling tool of the physical phenomena present at the microscopic length

scale which, in turn, improves the volumetic average approximation required in the

homogenization step. The SC coated inclusion model of Cherkaow et al123,24,4O1,

which will be extended to account for frequency dependent viscoelastic constituent

phase5 in this worh owes its accurzrcy to the fact that it is derived using these tools.

It has been previously stated that all micromechanical models require the

selection of a RVE. Each individual model is then derived using constitutive laws

and the appropriate mathematical tools (Green's firnctions and interfacial operators,

for example) based on the composition of the specific RVE. A RVE for a material

consisting of a matix containing coated ellipsoidal inclusions is shown below in

Figure 2-9.
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Figure 2-9: RVE of composite material consisting of a matrix containing coated ellipsoidal
inclusions.

The Mori-Tanaka (I\ff) model, for examFle, assumes that the reference material of

Figure 2-9 isthe mahix material having elastic properties, (, and.the imposed global

stain' Eii, is that of the matix, { IZZI. This modeling approach is limited to the

case of low inclusion volume fraction, f,, æ are many others due to the assumption

that sress and strain fields of multiple inclusions do not interact [41]. In order to

overcome this limitation, several approaches can be taken. One is a computationally

expensive periodic array tlpe of approach where the interaction of heterogeneities is

directly taken into account [25]. A sfiong example of this approach is the explicit

model proposed by Molinari and El Mouden [42] which applies Berveiller et al's f37f

paired inclusion Green's formalism and agrees well with established models and

experiment for elevated volume fractions. Another approach is the SC approach

which assumes that the reference material of Figure 2-9 is an effective material

having unknown elastic properties, Cq V\. This approach was first proposed in the

area of mechanics of materials by Krôner [31] to approximate the behavior of

polycrystalline materials where the definition of a matix is unclear. This approach

was later improved upon by Budiansky [32], Hill f43,44f, and Berveiller and Zaovt

Ul2f, and finally generalized by Christensen and Lo [45].

The case of coated inclusions is of interest for several different rezùsons. One

reÉNon is to approximate the behavior of a bi-phase composite by assuming that the
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material in the neighborhood of an inclusion, ttre "interphase," behaves differently

than the mahix material. This is the aim of the model proposed by Jasiuk and

Kouider [113]. Another, more obvious, reason for choosing a coated inclusion RVE

is that the composite consists of a matrix containing coated inclusions. The model

proposed by Cherkaow et al f23,24,40] can be used for either aspect of the coated

inclusion problem. Hervé and Zaota [114] extended such an approach to model the

N-layered coated inclusion case and Lipinski et al dtd so for the .l/-coated elliptical

inclusion case [ 15]. Approximation of the dynamic behavior of such materials by

employing the elastic-viscoelastic conespondence principle, in accordance with the

works of Hashin [8, 63, 64] and Christensen [4, is the subject of this thesis. This will

be done by extending the work of Cherkaotli et al U23,24,40] to the quasi-static

domain and further lsfining the model.

23 Homo genization of particulate composites through acoustic scattering

Homogenization models for particulate composites based on the effects of

'wave scatûering presented in Section 2.l.2take two general forms: f) single scattering

models and fi) multiple scattering models. Both approaches are based on resolution of

the problem posed by finding the acoustic field resulting when a \À/ave ûaveling in a

host medium that encounters an heterogeneity. The difference between the two

modeling approaches, as suggested by the naming convention, resides in the treahrent

of the interaction of waves reflected by the material discontinuity.

2.3.1 Single scattering models

The basis of all single scattering approaches is the assumption that inclusion

concentation, usually referred to as scatterers, is low. This assumption allows the

approximation of the entire acousticly induced displacement field in the composite as
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a summation of the field scattered from each individual scatterer and that no

interaction between these fields takes place. The fust influential single scattering

model of note \ ras proposed by Ying and Truell [116] which resolves the emulsion

problem: fluid inclusions embedded in a fluid host medium. Their model introduces

the important basic ideas of material homogenization via scattering methods but lacks

the complexity needed to resolve the problem presented by heterogeneous solids.

The seminal work of Chaban [46] was a major contribution to the 5ingle

scattering approach. It inhoduced two important hypotheses. The first hypothesis is

that the total displacement fieLd, ùr,, in the heterogeneous medium can be represented

as the summation of the incident displacement field,, ùr", and the scattered fi.eld due

to each scatterer, /",,. This approximation requires that there can be no interactton

between the scattered fields of the inclusions. Mathemati"ily, this hypothesis is

expressed below in Equation (tr.3.1).

JV

û,, (*) o û," (x) +Ln,,, (p,); 4 = X - X".r
t=l

(tr.3.1)

In the above expression, the obsewation point and scatterer location are represented

by x, and xr,i, respectively 1471. The.second hlpothesis is the.assumption that the

scattered displacement field due to an inclusion having a volume, Vo, and the effective

medium material properties is equivalent to the field scattered by the same volume of

composite material fthe observation point is in the far-field f47, 49,76, 117, 1181.

Figure 2-10 shows a schematic of the 63R\lE" of the singls scattering approach. One

implication of the second hlpothesis is that the center of each inclusion must be

approximated as being located at the center of the scattering volume, Zo. This is

mathematically expressed as: lt 
- t",,1 ̂, lt 

- t o," *,1.
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Figure 2-10: The composite materialn (a), and the RVE, (b), for the single scattering approach
introduced by Chaban [46].

To find the analytic solution to this problem, the equations of an incident plane wave

must be decomFosed as a summation of spherical \ryaves that encounter an inclusion

for the both case (a) and (b) illushated above. The approximate solution is a series

expansion with respect to ka, where higher order ka terms are tuncated 1761. This

truncation is only valid in the case where kn<<I therefore corresponding to the quasi-

static case discussed in Section 2.1. Finally, the expressions arising from the

solutions of configr:rations (a) and (b) are set equal and it is then possible to resolve

the system for the effective material properties of the heterogeneous material.

The result of all of these approximations, especially the first hypothesis, is that

simple scattering models are only valid for low concentrations of inclusions, <1.Oyo

as a rule of thumb, and for I(a<<I. This scattering regime is called Rayleigh

scattering in honor of Lord Rayleigh [89]. However, several clever approaches have

been found that provide a reliable approximation of the effective material behavior for

an increased volume fraction; on the order of <30% scatterer concenhation. These

approaches are called SC scattering models. Chaban's model incorporates the SC

approximation by assuming that the scattered field from multiple non-interacting

inclusions is equivalent to the field created by a single inclusion having effective

material properties [46].
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Another highly employed single scattering model was proposed by Kuster and

ToksOz (KT) t47l which is based on the integral equations for the displacement field

derived by Mal and Knopotr [119]. Their model has the capacity to approximate the

effective behavior of a material containing spherical and spheroidal inclusions, but

unfortunately has no dependence on the frequency outside of the frequency dependent

matrix material. The absence of frequency dependence results from the fact that the

model does not take into account inclusion resonant behavior. Though this model

gives reasonable approximations for several areas of study, such as geophysics, the

first resonance, which is related to monopole scattering, can have 4r important effect

on the effective behavior of the material even in the quasi-static domain [118, 120,

l2ll. Gaunaurd and Ûberalt (GII) included several higher order terms in the series

expgnsisa described previously in order to address this problem [a9]. The idea of

including resonant behavior is a result of their work with voided materials and bubbly

liquids. For such materials experimental results showed a marked deviation from

theoretical values calculated using KT methods which lack resonant scattering effects

[48]. It is, however, important to note that for certain types of materials, those where

the inclusion has a higher stiffrress value than that of the matix, the KT approach

provides a good approximation in the quasi-static domain. For this case, the

monopole resonance does not have a significant effect on the global behavior.

Indeed, the SC model proposed by Berryanan for bi-phased composites with spherical

U22l or sllipsoidal t5U inclusions shows good agreement with the KT

approximation.

The work presented in this thesis focuses on the behavior of composite

materials in the quasi-static domain and, therefore, single scattering models are very

relevant to this discussion. Among the multitude of single scattering models, some of

the most relevanJ to this work are higblighted below. The model described by Kerr

[118] is a GU-t1pe 5Q 5ingle scattering model for bi-phase composites. This model

was extended to the case of coated fluid inclusions by Bafud et al [76] and its

approximations have been compared with experimental values of Transmission Loss
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(TL). The model of Anson and Chivers [123], also a GU-type single scattering

model, deserves mention as it is probably the most complete scattering model

describing isotropic composite behavior for a material consisting of a matrix

containing spherical coated micro-inclusions. Their model can approximate the

effective behavior of a composite material, a suspension, or an emulsion based on the

elastic, viscous, and thermal properties of the constituent phases. Though it is a very

complete model, its complexity is usually superfluous as the time scales for

viscoelastic and thermal processes in viscoelastic composites are very different [76].

It is for this reason that the only scattering model considered in this work is that of

Baird et al1761.

23.2 Multiple scattering models

Multiple scattering models are generally emFloyed in order to overcome two

specific limitations of single scattering approaches: (i) the inability to provide reliable

approximations of the effective behavior of composites with high scattering

concenfiations, and (fi) the inability to model effective behavior at higher frequencies

Il2l, 1247. The first significant confiibution to the multiple scattering problem was

that of Foldy ll25l. Foldy's work introduced a multiple scattering formalism based

on a set of truncated integral equations resulting from the fields of multiple point

scatterers in an isotropic host material. Lax extended this formalism to the case of

anisotopic scatterers by employing a correlation function for two particles [26].

These two contibutions employ a complex wavenumber and depend on the

frequency, the scatterer volume fraction, and the far-field forward scattering

amplitude U2ll. Waterman and Truell (WD improved these models by adding the

effect of far-field back-scatteringflz7l. Their approach is the basis of a large number

of muttiple scattering models. Models based on the WT approach include those of
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Bose and Mal [1281, Lloyd and Berry U29], Ledbetter and Datta l79f,Ln and Liaw

l29l,andAggelis et al ll?lj.

Another very important contribution to the multiple scattering approach was

conhibuted by Twersky [130-1321. Twersky developed a method that takes the

interaction of inclusions into account via a pair correlation function. This was done in

a series of papers, most importantly for the free space [130] and two dimensional

[131] cases. The same methodology has since been employed by several authors,

notably Varadan et al ll24l. These authors designate relations (tr.3.2) and (I.3.3)

shown below as the total displacement field for the multiple scattering case. Varadan

et aI then employ the pair correlation firnction formalism of Twersky to relate these

f,relds ll24l.

rV

t(t) = û*(*)+1a",(P,);
,=l

N

4, (t) = ù,. (*') +1{, (F,
j-'4

F i  = X - x t

);  a <lo, lcza

(tr.3.2)

(tr.3.3)

In the above equations a represents the descriptive dimension of the scattering

heterogeneity.

The multiple scattering models introduced above provide a very realistic

picture of the physical processes taking place at the inclusion scale. One notable

drawback is that they are exfremely mathematically complicated even for 5imple

cases such as an isotropic matrix containing spherical inclusions. Despite their added

complexity, several of these models, 1124-126,133,l34l gs1 sxample, are still only

valid at /ow volume fractions of scatterers and for spherical inclusions. Further,

implementation of these models for non-spherical scatterel5 s1 enisotropic phases

becomes even more complicated, if not impossible. Thougfu methods exist to

overcome these problems (see Anson and Chivers [35], Aggelis et al ll2ll, or Yang

[136] for examFle), these approaches are generally more important for applications
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outside the quasi-static domain represented by ka = I or kn>l U24] and for this

reason are not considered in this work.

Material by design

Classic system and structure design require material selection for each

material component. Material selection depends on the foreseen physical demands:

elastic, thermal, electric, etcll37,138]. Unfortunately, the limiting factor in design is

often material behavior of the components. A clear example of material limiting

design is the microprocessor. Microprocessor performance depends on the thermal

properties of the material from which it is fabricated. By assuming that the material

properties cannot be changed, excellent solutions have been found to resolve the

problem as a heat transfer problem. A more elegant solution, however, would be the

design of a material uniquely created for the multifunctional needs of the

microprocessor. This latter approach is known as Inductive Design, an approach

shrdied in detail by Olsen [15, 90] and illustated in Figure 2-11.

Figure 2-11: Schematic representation of the two approaches to design, taken from Olsen [15,
eOl.
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The concept of inductive design requires the ability to design materials

according to the needs of a structure; design for manufacture and not the classic idea

of manufacture for design. The idea of material design is not entirely new (see, for

example, Cohen's discussion on the reciprocity of sfucture and properties of a

material [139] or Smith's work on hierarchical structure of materials [92]), however

the scientific community still does not truly design materials [20]. Material design is

a very active research area which is currently dominated by shategies that extend

system design, which is normally limited to the component level, to include materials

[14]. Several strong examples of the implementation of this methodology exis!

notably those of Seepersad et al on the multifi:nctional and multiphysics design of

cellular structures [91], Olsen et al conceming the design of high shength steels

[140], and Stupp and Braun on the design of biomaterials, ceramics, and semi-

conductors [141]. Tmplementing this methodology requires collaboration between

many different areas of research and development from economic analysis to the

psdeling of macroscopic behavior of materials based on micro and molecular

structure [4], see Figare2-12.

\ <{PiscdrE st dl, vrlttÛt'vt

Figure 2-12: Schematic of complete system design, including the design of materials. Figure from
Seepersad [20], CochranllfiZl,Randle [1431, and Piscanec [144].
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The work of this thesis does not ûry to put in place such an overreaching sftategy, but

rather to improve an existing micromechanical model for damping applications. The

model is then cast as a tool for the material by design framework described above for

applications where damFing is an important aspect.
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CHAPTER III

MrcnowcHAMCAL Monnr,nqc or VrsconlAsrrc Cotræosrrgs

C onranvnvc C orrru INcr,usroxs

3.1 Introduction

The previous chapter introduced the selÊconsistent homogenization technique

and examples were given in the static (ex: Cherkaoui et aI 123, a0]) and quasi-static

(ex: Gaunaurd and Ûberall (GII) 148,491and Kuster and Toksôz (KT) I47l) domains.

Both methodologies approximate macroscopic behavior by modeling physical

processes at the microscopic scale and then applyng averaging techniques to arrive at

homogeneous material approximations of the particulate composite macroscopic

behavior. The GU approach (which was employed by Kerr [18], Baird et al 176f,

and Anson and Chivers 1123, 135]) is based on elastic wave propagation in

heterogeneous media and is limited to the case where the wavelength of the incident

wave, 2, is much larger than the inclusion's descriptive dimension" a. The same

frequency dependent resfiction on the wavelength also applies to the KT approach.

These quasi-static scattering approaches have been shown to be applicable across a

large range of length scales, from geophysics [47] to ultrasonics [76]. Further, the

GU approach has the added advant4ge of taking inclusion resonant behavior into

acconnt which is often important even in the quasi-static domain 148, 49, 761.

Tmplementing scattering based models is, unfortunately, exfremely difficult or even

imFossible when inclusions are non-spherical and/or constituent phases are

anisotopic. This resfiiction greatly limits scattering model application for the wide
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range of existing particulate composites. The micromechanical approach, on the other

hand, is not limited by the complexities presented by material anisotropy or non-

spherical inclusions.

As discussed in Chapter II, the elastic-viscoelastic correspondence principle

163,751and strain energy arguments [6] suggest that macroscopic lossy behavior of

particulate viscoelastic composites will be well approximated throt'gh

micromechanical methods. It is with this rationale that the micromechanical model of

Cherkaoui et al l23l will be extended to the quasi-static regme in an effort to

approximate the macroscopic lossy behavior of particulate viscoelastic composites as

a function of frequency. This chapter aims to introduce and develop the selÊ

consistent micromechanical approach in the quasi-static domain for a composite

material consisting of a homogeneous matrix containing coated elliFsoidal inclusions.

3.2 Derivation of quasi-static three phase self-consistent model

In general, micromecbanical methods are based on two distinct steps: (f)

localization, which determines the relationship between the microscopic (ocal) fields

and the macroscopic (global) loading, and (lr) homogenization, which employs

averaging techniques to approximate macroscopic behavior 1261. Sections 3.2.1 -

3.2.3 of this chapter show the derivation of the average stain fields in the viscoelastic

inclusion and coating materials by employing the integral equation, Green's

formalism, and interfacial operators by adopting the work of Cherkaori et al [23,24]

to the quasi-static domain. This is the localization step. Section 3.2.4 then applies a

self-consistent scheme to find the viscoelastic particulate çsmFosite's frequency

dependent effective stifÊress tensors via the relationships derived in Sections 3.2.1 -

3.2.3. This is the homogenization step. Finally, the quasi-static form of the model

presented by Cherkaow et al will be generalized using dilute shain concentration

tensors in Section 3.3.
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The localization step is essentially based on the equivalent inclusion method

introduced by Eshelby U08]. Eshelby's approach is modified in the present work by

solving an integral equation for the displacement field at every point in an infinite

homogeneous reference medium rather than by directly employing the equivalent

inclusion method. The integral equation employed in this work is the result of a

Green's firnction relating the stiffiress contrast between the reference medium and a

coated inclusion to the displacement field at each point in space 134, 37, 1451. This

integral equation will be coupled with interfacial operators to modiû the solution to

169 5impler problem of an inclusion in an infinite host medium and thereby find the

solution for a coated inclusion embedded in an infinite host [38, 39].

The first requirement for the derivation of the integral equation is the

definition of an elementary unit which is assumed to represent the particulate

comFosite studied. This unit is called the representative volume element (RVE) t261.

The RVE chosen to describe the material presently studied consists of a host material

containing two concenûic ellipsoidal inclusions (see Figure 3-l). The two ellipsoids

represent the inclusion, /, and its coating, C 1231. In this work the coating thickness is

assumed to be sufficiently thin to permit the approximation of the sbain field in the

coating as uniform in directions normal to the inclusion's surface. This asstrmption

allows calculation of the average sfiain field in the coating via interfacial operators.

These operators are applied to the shain field in the inclusion, which is assumed to be

uniform in accordance with Eshelby [23, 108]. It is important to point out that the

thin coating approximation simFlifies the following model but limits its applicability.

Fortunately, the methodology employed can be extended to the more general case of a

multi-coated inclusion that does not require the fhin coating approximation which is

covered elsewhere, U461.
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Coating, C

Inclusion, I

Figure 3-1: Topolory of a coated inclusion embedded in a limitless matrix 2g anù Eg represent
the macroscopically applied stresses and strains, respectively.

The following quasi-static self-consistent model derivation for a

heterogeneous viscoelastic material closely follows Cherkaoui's derivation of the

r1afis analogue [147]. The following derivation is important however, because it

employs the elastic-viscoelastic correspondence principle introduced in the previous

chapter and follows the rationale of Hashin [8, 63] and Christensen [7]. The

derivation will detail the physical principles captured by the model and explicitly state

limitations for its application.

The topology of the present coated inclusion problem consists of an inclusion

phase occupying a volume, Zr, whose frequency dependent mechanical behavior is

described by the viscoelastic stifFness tensor, Ô'. Sutroooding this inclusion phass i5

a thin coating of another material whose viscoelastic behavior described by the tensor

Ôc and that occupies a volume, 26,. The coated inclusion is embedded in a host

material described by the viscoelastic stiftess tensor, ô0. Th" following derivation

assumes that the viscoelastic 5lifFness tensor of each material is frequency dependent.

The frequency dependent behavior can be approximated by material models (Kelvin-

Voigt Zene4 etc) or from curve fits of experimental data (ttawiliak-Negami [48],

etc). For this model the exact representation of the frequency dependence is not

importan! it is only important to note that the model derivation does not make any

resfriction on the constituent material viscoelastic behavior.
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At this point, several notation conventions need to be mentioned. First, tensor

quantities will be denoted either with index notation or in bold, for example:

Ôr, oô. Th"r" two representations are interchangeable and will appear tlroughout

this thesis corresponding to the required clarity for the mathematical operations

employed. The next commonly employed convention is the representation of

complex frequency dependent quantities through any of the equivalent expressions

shown in Equation Gtr.2.1).

x e x (r) = x^ (où - tx' (t) = xR (o)lr- try- (t)l:lx (alle'd') g.z.r)

Where X (t) represents any complex variable in the frequency domain and. ot is the

frequency. The complex quantity consists of real, X* (t), and imaginary, X' (r) ,

parts and ha.s a loss factor and loss angle denoted by ,t*(t) and g(at) respectively.

Thefinalconventionemployedisthe"s-b"Fr.,lgtr'sequation: e-o =cos(r)-;sin(x).

This derivation is further limited to the case of viscoelasticity and small

perturbation theory. The interfaces matrix-coating and coating-inclusion interfaces

are assumed to be perfect thus ensuring continuity of haction and displacement

urcross these boundaries [23]. One of the most limiting hypotheses for the application

of this theory in the frequency domain is the small perturbation approximation [63].

This approximation assumes that inertial effects vvithin the composite are negligible

and, therefore, that the equilibrium equation (in the absence of body forces) reduces to

the following:

ôu.,- o#=o + ôr, i=o
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It is this approximation that. limits micromechanical methods to the quasi-static,

ka <<1, domain and can lead to large error when inertial tenns are important as those

terms can lead to inclusion resonances and other important dynamic effects. Despite

this limitation, the micromechanical approach provides a very accurate approximation

of the frequency dependent lossy behavior of viscoelastic particulate composites when

applied in the correct frequency range- This enhanced modeling freedom makes the

quasi-static micromechanical approach very interesting for application in a material

by design shatagem.

3.2.1 Localtzation and the integral equation

Zeller and Dederichs propossfl p6dsling the composite material shown in

Figure 3-l as a homogeneous material whose elastic behavior varies spatially [34].

Taking this approacb, the local behavior is dictated by the constitutive laws at each

point is spurce. Elastic-viscoelastic correspondence allows the expression of the

constitutive viscoelastic material behavior at each point in space through the

viscoelastic form of Hooke's law: ôo F)=Ô*(r)rô"(r). The form proposed by

Z,eller and Dederishs implies that local material properties can be approximated as

spatially dependent variations about the properties of the reference material which are

independent of position. The mathematical expression of their approach is shown in

Equation (Itr.2,3) for the viscoelastic stiftess tensor [37].

Ô(.) = ô' + aÔ(r) with r ev Gtr.2.3)

In the above equation ô0 represents the viscoelastic stifÊress tensor of the reference

material which is constant for all r, AÔ(r) denotes the spatially dependent

viscoelastic stiffiress tensor variation, and Z represents the volume of the
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homogeneous mediu:n. It is now assumed that there exists some displacement field,

ûl : Zrî, imposed on the extemal surface of the reference medium,,S, where f, e S

and Ê,, is the mzrcroscopically imposed strain. The localization step begins by

writing the equations for the shess and shain fields at every point in the homogenous

medinm ll47l. These relations will be derived from the local expression for

equilibrium, Equation FI.2.2),the local constitutive law, Equation QII.2.3), and by

assuming that the contrast of the viscoelastic stifhess tensors of the constituent

materials can be approximated with a locally compatible shain field, âu $) 7l+,111.

The local constitutive law is first substituted into the local equilibrium equation

yielding:

(cu,1"1a0,(")),, = o (m.2.4)

where ûo(") is the local compatible displacement field in the composite material at

every point in V. For the case of small perturbations, this displacement field is related

to the shain field with the classic relati 
^ / \ I r ^ 

1on: âuG) = 
,lû,.,(r)+û,,(r)] tto+]. Now,

when Equation (m.2.3) is inserted into the form of the equilibrium Equation @.2.4)

gling:

clrûrri(') = 
[-aô0, (.),â, (.)],, (rtr.2.s)

Careful inspection of expression @I.2.5) indicates that the left-hand side (LHS)

represents a dishibution of fictitious volume forces which depend on the local

viscoelastic stiffrress [34]. Equation (Itr.2.5) can therefore be re-written as follows:
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i (') : luô,,(")a" (")],, @.2.6)

This form of the equilibrium equation implies that the differential equation given in

Equation ([.2.5) can be solved by employing Green's firnctions. This is done

tbrough the second order Green's tensor, CLG- 
"'), 

where the superscript 0 denotes

that the resulting solution propagates the effect of the voltrme force distibution

through the reference psdirrm. In this case, Green's tensor calculates the

displacement in the k direction at the point r due to a time varying force,

IQ):Re{Îe-'''}, acting in the m direction and located at the point r' .

The second order Green's tenso, GL(.-r') is found by solving the

differential Equation @,.2.7):

Ôi,"êL.o(. -.') + 6*6 (r - r') a (at - t') = 0 (m.2.7)

for the boundary conditions on the extemal surface, E of the homogeneous medium

1371. In the above, ô", is the Kronecker delt4 6(r-ar') is the frequency domain

Dirac delta function, and â("-r') is the three dimensional Dirac delta function [37].

By modiffing the work of Berveiller et al l37l to take the time variation of the

disfributed body forces into account it can be shown that the solution to Equation

(trI.2.5) is given by the two integral equivalent equations below.

û. (r) = û'^ (r) * ! IC*(' 
-.') Î (r') dr' da'

< V

(trr.2.8)

û^(r)= î'ib)+ IJe* (.-.')[aô0, (.')â, ("')],r, dr'da' @.2.s)
a V
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Integrating (trI.2.9) by parts yields the following displacement field:

û ̂ (r) = û'^ (r) - T P* r\" - "') [aô0" ("') â" (r')far' a ro' (Itr.2. 1 0)
< V

Recall the following properly ofthe Green's tensor.

èL,,'= (rtr.2.1r)

And lastly, the simplified integral equation (m.2.12) expressing the strain field in the

medium results from evoking the small shain approximation and the integral properly

of the Dirac delta tuncti o\ g(û)):T S(r)d(at-ot')dot' [34,1451:

âo (t) : Ê,i - I& t" -r)6Ô**("')â-, (t')â'
v

(m.2.r2)

In the above expression, Eu represents the uniform macroscopic strain field of the

medium which has no spatial dependence, and il" (r -r') is known as the modified

Green's tensor. The modified Green's tensor is related to the previously introduced

second order Green's tensor through expression (m.2.13).

r!" = -Ile*,,,("-.') *èioo("-.')] (rtr.2.r3)

Relation (m.2.12) specifically shows that the shain field at the macroscopic length

scale can be approximated by averaging the effects of material variations within the



volume, Z. This reinforces Cbristensen's sûatement that multiscale modeling requires

the effects of discontinuities at the microscopic length scale to have only an average

effect on the macroscopic behavior [27].

It is now usefirl to define the spatial variation of the viscoelastic constants.

For the topology shown in Figure 3-1, this variation can be mathematically expressed

using the Heaviside step function e(r)1t+91.

aô(r) : (ô' -"')t'(r) + (ô' -ô')lt' (.) - a' G)] Gtr.2.r4)

Where the Heaviside step fi:nctions of the inclusion, 0' (r), and composite inclusion

(defined as the inclusion plus the coating), e'(r), are defined as:

"r: {;
tr= 

{;
e'(

0 ' (
r  eV,

r E,VI

r  eV,

r ç,v2

if

if

if

if

(rtr.2.1s)

where Z7 designates the inclusion volume and Vz designates the volume of the

composite inclusion. Equation (m.2.14) can then be expressed in a more compact

form by introducing viscoelastic stiftess contrast tensors and the Heaviside step

function variation, 60r (r) 124,401.

aÔ(r) = LèIooI (r)+lôcoaa'(r) (m.2.16)

In the relation above, LC)tr represents the difference, or contras! between the

viscoelastic stifÊress tensor of materialsXand Y. Lëxr =èr -è' . The variation
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de'(r) is defined by the upper expression in Equation @.2.17). The lower

relationship only hold true when the inclusion coating is rhin.

601 (r)= O(x,,a,+ La,)-0' (x,,a,)

o;ô-!' m,
7 ôa,

6eI(r)" r1+#â(s,)

(m.2.r7)

Cherkaoui et al p4f,have fiuther shown that for 1foe rhin coating case, 601 (r) can be

approximated by Equation @.2.18).

(trr.2.18)

In the above expression, \à1ê the coordinates of a point on the inclusion surface, ay is

the radius of the ellipsoidal inclusion, Âay is the inclusion coating thickness along the

x; direction, â(Sr) is the Dirac delta distibution for the surface of the inclusion, Sy,

and p is the perpendicular distance from the inclusion center to the tengent plane of

the surface at the point x1. The distance p can be calculated for any point on the

snrface STusing Equation (m.2.19) 12.41.

p-, = (rtr.2.re)

Equations (m.2.18) and (III.2.16) can now be inserted into Equation @.2.12) to yield

an expression for strain at every point in the homogenous medium. The resulting

volume integral can be simplified by employing the following property of the Dirac

delta dishibutio"' Js(")a(s)ar : Jg(.)æ.

t,*3,*?
4-4-4
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êo(4 = Êu- J4, (" -r')nÔ'f,,ê*,(r')dr'
VI

- I Jry, (' -".) nÔffi,ê*(') o*1^
a SI 

t '---' --- \ ' Oo dZ

(m.2.20)

Here, ,Si is the exûernal surface of the inclusion, r- is a point on the coating side of

the inclusion - coating interface, and the components of e,n(r*) describe the strain

field inside the coating at a point very close to the inclusion - coating interface.

Equation @.2.20) is quite complicated and would be difFcult to resolve in its present

form. Fortunately, it is possible to find a relationship between the field e-, (r.) and

the stain field in the inclusion, which is assumed to be uniform in accordance with

Eshelby's results U081. This is done by employing interfacial operators ll47l, which

are the subject of the following section.

3.2.2 Interfacial operators

The sfess and shain fields in the coating material can be very complicated in

general. This problem is exacerbated by the material discontinuity that exists at the

coating - inclusion and coating - reference material interfaces. This material

discontinuity leads to jumps in the stress and strain fields across material interfaces.

In order to approximate the sûess and strain state in the coating material, this section

first make5 simFlifiing hypothesis that the stress and strain fields are uniform

through the coating thicfurcss in dtrections normal to the înclusion surface. This is a

reasonable approximation for a thin coating which is the case when La,fa,<<l.

Care must be taken, however, when this no longer holds tue. By assuming that the

coating is thin, the interfacial operators studied by Walpole [38] and Hill [39] will be

employed in the following sections to relate the stress and shain fields in the inclusion

to those in the coating material.
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Interfacial operators are convenient mathematical tools which calculate the

stress or shain j u-p across a material interface. These operators are derived by

writing the equations for the continuity of displacement and traction across the

material interface. This derivation begins with the general case of two solid phases,l

and B, with viscoelastic constants ô' *d ÔB separated by a surface with unit

normal, â as shown in Figure 3-2.

Phase A

Phase B

ln

(4,êi)

CA

(ôî,êî) nirf,c"

Figure 3-2: Schematic of the interface of two viscoelastic solids used in the derivation of
interfacial operators.

The interfacial operator derived below assumes that the bond between materials r4 and

B is perfect. This assumption leads to two requirements on the mechanical behavior

across the material interface: (r) continuity of displacem en\ ù., and (fi) continuity of

haction, ôuni. These two mechanical behaviors are mathematically represented with

Equations(n.2.21)and@..2.22),respectivelyll4Tl.

lûJ=û! -û.f =6 @,2.21)

lô.f",=(ôî -ôBs)nj=6
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where \ rÇpresent the comFonents of the unit normal vector of the interface.

values of the normal vector are determined from Equation W.2.23) when

interface is assumed to be a closed surface in the forrn of and ellipsoid.

(m.2.23)

The continuity of displacement requirement given in expression (In.2.21), allows the

calculation of displacement gradient jump at each point r(x), on the interface as

follows. It is first noted that ffit:u,.j&j, yielding the following from Eqlrâtion

(rn.2.2r):

lû,,,fe, =(a!., -û!r)*, =o (m.2.24)

Given tbm;t ej denotes the direction tangent to the snrface and that nj&J:0 by

definition, (m.2.24) is equivalentto the following expression [24]:

lû,.,f= ûî,, - ûT, = în, (m.2.2s)

In the above expression, 4 represents the co-Flex time varying displacement

gradient j '-F across the interface. Notrng that the gradient field is symmetic with

respect to indices i and j, Equation (m.2.25) is altered to give the stain j '-F across

the material interface, denoted ̂ [,âu].

The

this

x,n'=êo

(m.2.26)

Now, continuity of traction and constitutive behavior gives the following statement.

[eu] = êî - ê,r =](^", * î,",)
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ôfn, = ôf n, =) Ôf^efi", =Ôfrêfin, Çn.2.27)

ln this fom, the expression of continuity of fraction permits the elimination of one of

the stain fields in Equation (m.2.26). For example, if phase B is assumed to be the

reference material, êf canbe eliminated leaving:

Ôt*e"rn, : e 14, ("t, * 4",) ",u
(r rl, - c ù4r) ê'"n r = ô rn n,n, î,

w,.2.28)

t
The right-hand side (RIIS) of the lower expression in Equation @.2.28) is

Christoffel's matix for material A, kî, defined ̂  kÎ:Ôo!rr,n, multiplied by the

complex magnitude of the strain jrrmp across the interface , în. Fto^this expression,

the magnitude of the sfrain jump can be calculated from knowledge of the viscoelastic

stifÊress tensors of each material, the outward unit normal of the surface, and the

sûain field inthe reference material via in Equation (m.2.29).

+ = (kl)-' n, (eÊ,* - ch") â"*, (m.2.2e)

Using the above expression, the shain jump is re-written as:

êî -êi :îti,(ril"-cil)êi (m.2.30)

where the interfacial operator,

(m.2.29) nto (N,.2.2Q. The

F,rfl, folows directly from the substitution of Equation

interfacial operator is defined in Equation (Itr.2.31)
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[40]. Note that the interfacial operator is only dependent on the constituent material

properties and the outward unit normal of the interface.

The expressions above lead to the following general expressions relating the stain

field in phase A to that in phase B.

njry +(ki)-' 
"r,)

u
njq +(kir)' niry +(rtll' n jnk +(*î,)-' 

"rrf

-cil)+ 4*,]efl

-c""*,)+ ç)efl

i'i,=ilrl.t'

F,î, =][t*;) '
(rtr.2.3r)

(m.2.32)
Iêî =1P,ftF",^

êi =lFi,F*

Where the fourth order identity tensor, Iilwis defined ̂ Iur=$12)(6&6jt+6u6o)

and 4 is the Kronecker delta- Int€rfacial operators have several imfortant

mathematical properties which have been detailed by Hill [39]. For the purposes of

this work, however, they are simply employed to calculate discontinuities of the stess

and shain fields across a material interface.

3.2.2.1Application to local strain fields

The interfacial operators developed above can be used to simpliû Equation

(m.2.20) which describes the local shain field in the homogeneousr medium. This

5implification occurs when the shain field in the coating is relæed to the sfain field in

the inclusion by applying interfacial operators. These operators permit the calculation
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of the sfain field at the inclusion-coating interface on the coating side, âu (r.), from

the stoain field the same interface on the inclusion side, ôu(r-). This strain jump

calculation does not require any simpliffing assumptions about the stain fields in

either medium. âu (.-) is calculated by adding the shain jump across the interface,

using equations in the form of (III.2.32), to the strain field on the inclusion side of the

interface. This operation is shown mathematically in Equation (II.2.33).

âu (t.) = âu ("-) + Pfrtcffi'e-,(t) (m.2.33)

Here ^Ô/c is a tensor representing the conhast between the viscoelastic stiftess of

the inclusio\ I, and the coating, C. Eshelby showed that the sfain field in the

inclusion, being on the smallest length scale, can be accr.rately approximated as

uniform in space. The best approximation of that uniform shain value is a volumetic

average [108]. Applyrng this logic to the current problem gives Equation (Itr.2.34).

u;=+lur(')a rev, = ê;=,â(r-) @,.2.34)

Equation (Itr.2.33) then simFlifies to (Itr.2.35).

eu (t') = êi + Êf,tctr*el (rtr.2.35)

Finally, the expression above for âu (r.) is zubstituted into the integral equation. The

resulting expression for local strain field in the homogenous medium with spatially

varying viscoelastic constants simplifies to Equation @,.2.3Q pal:
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âu (t) = Êv - Iil" (. -r')tÔ']*,ê',*dr'
VI

- I J+ (' -..) ncfi),e'*,p**^
o s i

w..2.36)

-I Iry" $-r.)tQiÊf*,ncfi;^nff*^
o s i

It is important to point out that the above integral equation only depends on the

average strain field in the inclusion, the viscoelastic stifÊress of the constituent

materials, and the geomefy of the coated inclusion. When carrying out the

homogenization step, only the average shain field in each phase will be required.

Given that the stiftess tensor, Ô(.), is piece-wise uniform, it is possible to calculate

the macroscopic average strain from Equation (Itr.2.36). The sfain localization

tensor for the average strain in the inclusion and coating materials can be then found

from the resulting expression for the macroscopic shain [2a]. This is the subject of

the next two sections.

3.23 Localization: Average strain fields in the inclusion and coating

The derivation of the integral equation in Sections 3.2.1 and3.2.2, which used

techniques inûoduced by ZelTer and Dederichs [34], Hill [39], and Walpole [38],

emphasizes one of the most basic requirements of multiscale modsling given by

Christensen 1271. Ttie requirement is that inhomogeneities, representing the smallest

length scale, only have an average efflect on the behavior observed at the macroscopic

scale. Following this logic, the integnl equation representation @.2.3Q describing

the local shain field will now be used to approximate the effective behavior of the

heterogeneous medium at the macroscopic scale by calculating the volumetic average

of âu (r) .
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The volume average of the complex sfrains in the inclusion and coating, â,j

nd êr1 respectively, must first be defined.

u;:+ J,u,(r)dr
ur.z.37)

The volume average of Equation (m.2.36) with respectto the inclusion gives [24]:

uî:ï[u,(,)dr

êi = Ê, -+ 
ilrr-(r-r')nôfl ,êI,dr,dr

+;J{ !,ior.(r-r)d'}rcnu:-,**^ Gtr238)

êi =êi.i{lrra"}rcne* Gtr23e)

It is now necessary to employ the simpliffing assumption that the snain field in the

coating is uniform through its thickness in direôtions normal to the inclusion surface.

By noting Ut ef is equal to êu(".), the average shain field inthe coating can

calculated from Equation (Itr.2.35). This expression illustrates that for a thinly coated

inclusion, the strain field in the coating only depends on the inclusion normal, the

average shain in the inclusion, and the constituent material properties of the inclusion

and coating.
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Future equation treahent is 5imFlified by defining the following tensor which

denotes the volume average of the modified Green's tensor.

f;,(ô')= Iflr(r-r')dr' si rev,
VI

This tensor is related to Eshelby's tensor, S, as shown below [37, 108]:

S = î '(c'): ô'

Using interfacial operators, Jry" (r. 
-r)fu is related to

VI

(m.2.40) as follows [24]:

Jil" (". -,)d, =f;"(è')- F;,
VI

(rtr.2.40)

(m.2.41)

the relationship giverr in

(m.2.42)

Substituting Equation (m.2.42) into the expression for the average shain field of the

inclusion, (m.2.38), sliminates the volume integral inside the sumrnation and the

surface integrat. The resulting expression is still complicated by terms containing the

projection, p, andinterfacial operators, Ê', where * represents either the inclusion, the

coating, or the reference material. Fortunately, Equations Gn.2.38) and (Itr.2.39) are

geatly simplified through firther application of the thin coating assumption and

Equation @,.2.42). The result is two expressions relating the average macroscopic

strain field to the average inclusion and coating strain fields, the viscoelastic material

properties of each constituent phase, and the coated inclusion geomeûry.

It is first shown that the volume of the coating is related to an integral on the

entire representative volume, Z, through the Heaviside functions given in Equation

(m.2.15).
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rrr= [ar: [o'(r)-a' G)]dt Itr.2.43)

The Heaviside step function variation, 6eI (r), definition given by relation (Itr.2.18)

is therefore related to the côating volume as shown in Equation 9I.2.44) when the

coating is assumed to be thin.

(m.2.M)

The far RHS of the expression above partially simplifies expression (Itr.2.38)

describing the average snain in the inclusion. However, the expression is still

complicated by the surface integral of the interfacial operators. This problem will be

addressed in the following analysis. Equation (Itr.2.40) is first integrated with respect

to the coating volume, Vs,aîdrearranged gving @,.2.45) t2,41.

vc

=1!,.Tfuv,*DpT#'l,

[Fk*=v,îk(ô')- JIi;" (,. -r)ar.a,
vc Ycvt

(m.2.4s)

Noting tlnt Vc : V2 - V1,the term on the right above can be decomposed as follows:

I Ji;" ('. -.) a'. tu = fifi, (r -,)a,. a,- J Jf;" (r -r')drdr' w.2.46)
Ycvt vzVr 4v t
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i,,"(ô')= Ji;,(r-r')dr' si rev,
v2

(m.2.47)

f;,(è'): Ji;" (r-r')dr' si rev,
yr

Application of Equation (Itr.2.47) simplifies the two terms on the RHS of (Itr .2.46) to

the two following expressions relating the inclusion volume and the pedified Green's

function integral.

v,f;, (è' )= J It;" (r - r') dr. dr
vzVt

v,f;,(è')= I Ii;, (r - r') dr'dr
vtvr

Substitnting these relations into Equation @.2.46) gives [24]:

J Ji;" (". - ')a'. dr =vr(tA, 1e'; - ry" (ô'))
vcvt

(rtr.2.48)

(m.2.4e)

Inserting W.2.49) into Equation (Itr.2.45) gives the following relationship describing

the volume integral ofthe interfacial operator in the coating.

I rk* = v,fi,(ô' ) - r, (fk(ô' ) - 4t (ô' )
vc

(rtr.2.s0)

The integral of the interfacial operator, Ê', on Vc is related to an intesal over the

entire the representative volume, Z, as shown in upper expression of Equation

(Itr.2.51). The lower expression is simply are-stiatement of Equation @.2.50).
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lU;* 
= [F;de' (,) a, :1 

!,ri,o **^

=v,fi,(ô") _ n, lf;,(è.)_1j, (ô')]
(rrr.2.51)

Using all of the above expressions, it is finally possible to express the average strain

fields as a firnction of tensors f'(Ô") and î'(ô-), the geometry of the coated

inclusion, and the viscoelastic stifFress tensors of the constituent materials. This is

done by substituting Equations (m.2.44) and @.2.51) into integral equations

(trI.2.38) and @.2.39). The resulting expressions for the average strain field in the

inclusion and coating are given in Equations W.2.52) and (III.2.53), respectively.

êi = Eu -f],(è')tô';,,â',,

- 
rk tk (è, ) rcffir i*, (ô" ) nô ke,^

- 

"Llr;F1-ry,p,)]ncge; 

(m'2,2)

*1,,*,+ {, ( ô' ) I CXllt; (ô, ) - t** (ô" )frcçe,^

ê,e = ê; .lrt (è, ) -?.{f;,(ô")- 4j, (ô" )}ftel;ex Gtr.2.53)

Several important aspects of the integral of the modified Green's tensor must

be higblighted at this point. First, t'(Ô') is calculated on the volume Vz wlfrch

represents the combined volume of the inclusion and coating. This volume is

assumed to be ellipsoidal in shape and the volume integral is dependent on the ratio of

its axes, (a,+La,)f(a,+M,). Likewis", tt(Ô'), is calculated on the volume Z1

I
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and depends on the ruÛo a,f a,ll47l. For the specific case where La,f a,= Aarf a,,

the following results [23]:

a,+ La, _
ar+ La,

+(r* */;,) 
_,,

4q-%
@.2.s4)

(rtr.2.ss)

Therefore, when the ratio of the coating thickness to the inclusion axis is the same in

all directions and the coating is thin the following will always be true:

î'(Ô')=î'(ô'). The remainder of this work is based on the above assumption,

which further simFlifies relations (m.2.52) and (trI.2.53) to Equations (tr.2.55) and

w,.2.56).

êi : Êu- fi" (ô')r ehê'*,
-î r;"(ô' ) rôfl ri*, (è" ) tô,ke,^

-ftlr;,(ô" ) - r,t (ô' )l o c'hê1,

êi = êi +fj"(ô')te'hê'*, (m.2.56)

Equations (Itr.2.55) and (Itr.2.56) are used in the following section to find the

shain localization tensors, Â' *d Ât. These strain localization tensors ultimately

permit the calculation of the effective viscoelastic stiftess tensor of the composite

material. It is important to note that calculating tr (Ô') f". the general case is not

trivial 12.6,37, 4lj. The three different methods exist to numerically approximating

this tensor. They are: (f) Fourier transforms, (fi) potential functions, and (iii) direct

implementation using Eshelby's results ll47l. 11s 5implest of these methods, lI
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implementation of Eshelby's results, can only be used when the host material is

isohopic. The Fourier tansform technique, which is described in detail in Appendix

,\ has been employed in this work. Further discussion on the mrmerical

approximation of this tensor during SC model imFlementation is addressed in Section

4.4.

3.2.4 Homogenization and the self-consistent approximation

The integral equations derived above provide a means to calculate the local

shain fields given the loading conditions imposed at the RVE boundary. It is possible

to use these expressions and averaging operations to approximate the macroscopic

behavior of a viscoelastic particulate composite in the dilute case. Unfortunately, the

assumptions implicit with the Green's finction formulation employed to derive the

integral equation do not take into account inclusion interaction- If inclusion volume

fraction is elevated it is necessary to account for these interactions. Several different

approaches exist to approximate this interaction and the method employed in this

work is the self-consistent method. The SC model is derived by defining the RVE as

shown below in Figure 3-3. It assumes that the reference material is the effective

material, an assumption that indirectly takes inclusion interaction into account [43].

The resulting SC model is an împlicif set of tensor equations whose solution is the

effective viscoelastic stiftess tensor ofthe çsmFosite.
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Figure 3-3: The SC model RYE consists of a coated inclusion surrounded by the homogeneous
effective medium. The inclusion and coating are fully described by their viscoelastic properties

Ôr and ô", 
"o 

average strain field ê1, and êf, , zndvolume fractions fI and f , respectively.

The effective medium is submitted to macroscopic stress and strain fields, iu and Ê,r,and has

viscoelastic stiffness tensor Ôd :

The first homogenization step defines the volumetric composition of the

composite material. The total volume ofthe particulate composite is decomposed into

portions that are occupied by the inclusion, V1, coatsng, Vç, and matrix, V9a, according

to V =Vu +V, + Z. . This equation yields the volume fraction relation below.

f' +.f' + f' =1 (m.2.s7)

Here fx is the volume fraction of phassXand is related to the total volume fraction

of the composites by f* :V* lV .

The uniform shess and sfain fields of the composite, iu and Êu, must be

defined in terms of their lssal analogues, ôl (r) and âu (r) . The classic approach

defines the macroscopic fields as the volumefic average of the local fields defined by

(m.2.s8) and (III.2.5e) 1261.

T

", =T !u,F
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(rtr.2.se)

Homogenization begrns by relating the macroscopic sfess and shain to each other

ftlsrrgh Hooke's law for viscoelastic solids using the elastic-viscoelastic

correspondence principle.

\ =cffiÊ, (m2.60)

In the above equation, Ôd denotes the effective viscoelastic stiftess tensor of the

composite. The concept of a strain localization tensor, Â("), is now innoduced.

This tensor relates the macroscopic stain field to the local sfiain field as shown below

in Equation (Itr.2.61) [35, 4U.

âu(") = 4,(.)Ê" (m.2.6r)

The average macroscopic stain and shess are then found througb application

of Equations W.2.57) - (m.2.59) 1261.

n, = 7M ê{ + f'ê; + f'ê; (m.2.62)

iu=fu{ +f'4+f ô; (rtr.2.63)

The two following relations result from application of Equation @.2.61). These

expressions relate the macroscopic shain field and the average shaiq in the inclusion

and coating materials.

t, =T 
|u,(r)dr
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êï = Aj,no (ttr.2.64)

êr = 41,Êu (m.2.65)

It is also imFortant 1s 1sçalling the constifutive laws for each material phase:

ô; =C;,êL (m.2.66)

ôî :c;Hêfr (ttr.2.67)

ry ="ffieff (m.2.68)

The simple relationship between the average local stress field in material X and the

macroscopic sfain field, (Itr.2.69), results from the zubstitution of relations in the

form of Equations (Itr.2.64) and (m.2.65) into the constitutive law equations [26].

ôi =crfr4*, (m.2.6e)

The average shain field in the matix is found by inserting Equations (trI.2.64) and

(Itr.2.65) into relation (U,.2.62). The shess field in the matrix is then given through

application of Equation (Itr.2.68) 1241. The results of these operations are given

below in expressions (Itr.2.70) and @,.2.71), respectively.

- f' 4,, - f'\ir)Ê,+ =j,(','

7l

(m.2.70)



ôr =iu,r,(r,-,- f'2h,- f" Æ.,)Ê,, (m.2.7r)

The average sfress in the matrix material can also be for:nd by combining Equation

(m.2.63) and shess localization equations in the form of (m.2.69) as shown in

@r.2.72).

ry = jrten- f'e;,Àl^,- f'cfuq,*)E^, (m.2.72)

The effective viscoelastic stifhess tensor of the particulate comFosite is finally found

by equating relations Qn.2.7l) andQn.2.72) and,solving tor Cd 1Z+1.

èq =A +f '  (c ' -Y) '  A'+f"(ô ' -c-) :Â' (m.2.73)

The stain localizatisl tensors, Â' *d Â", -o"t be found to complete this

model. These tensors are dependent on the volumetric compositon of the çsmposite,

the geometry of the coated inclusions, the constituent material properties, and the

effective material properties [23]. Expressions for these terms must be found via the

integral equations derived in the previously. This is done by re-arranging (Itr.2.55)

and (Itr.2.5Q as shown below in Equation @,.2.74).

(m.2.74)

Here X represents the inclusion, /, or the coating, C. After re-arranging these

expressions into the above fom, the model is rendered self-consistent by setting the

effective material properties equal to the reference material (Ôo = Ô*) n keeping

Êu =(ni,)' ei
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with the RVE given in Figure 3-3. The resulting strain localizatisn equations are

given in Equations @,.2.75) and @,.2.7Q.

Â') = r+*î' (ea1 : ̂ ôc *+*, (ë"): Âôc, t' (ô"): Âcc

. 
*lo, (ô. ) - r, (ô' )] : ̂ ôIc

.7s)

Â. = (ro +î, (ô.) : lô,.) : Â, (m.2.76)

One further term of interest is the strain localization tensor for the matrix material.

This can be useful in several applications such stain energy studies.

A' =*lr,- f'A' - f"A'f
L _  Q '

(m.2.77)

The contrast tensors are again defined as ^ôx =è* -ëû where Xrepresents the

inclusion or coating, Il is the fourth order identity tensor, nd e is the volume fraction

of the composite inclusion: e = fI + .f' . Equations W.2.73), (Itr.2.75), and

(m.2.76) constitute Cherkaoui's general SC micromechanical model exteirded to the

quasi-static frequency domain through application of the elastic-viscoelastic

correspondence principle.

Generalization using Dilute Strain Concentration Tensors

True particulate composite material composition can vary widely based on

number of constituent materials, coated inclusion geometry combinations, and

inherent fabrication and property variations. Unfortunately, the model derived in
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Section 3.2 is limited in the types of composites that can be treated. The form of

Equations çn.2.73), GII.2.75), and @,.2.76) only allow approximation ôf the

ef[ective material behavior for the 5imple case of a composite material consisting of

three material phases: matrix, inclusion, and coating, where the coated inclusions have

identical shapes and orientation in space [52]. This limitation is a direct result of the

derivation of the strain localization tensors and, more specifically, the integral

equation approximation. The SC model can be generalized to include the effects of

multiple types of coated inclusion materials, variations of coating thickness, multiple

coated inclusion geomefries, and variations in coated inclusion orientation. This level

of generality is achievabls thr'errgh the application of dilute stain concentration

tensors (DSCT) [52]. Recently, models employing DSCT fonnulation to approximate

the effective behavior of polymers containing nano-tubes have illustrated the

generality of this approach [55-57]. These applications have shown that

micromechanical models formulated with DSCT formulation accurately approximate

nanotube shape and orientation distibution effects on the global behavior of the

composite. The DSCT approach applied in this work expands the RVE to include all

of the different coated inclusion variations. This change of RVE v/itl lead to a SC

model that is ânalogous to the one derived in Section 3.2. Because the SC DSCT

approach assumes that the reference material surrounds each coated inclusion, it is

easy to visualize the expanded RVE employed in this section as a summation of N

different sub-RVE's as shown below in Figure 3-4.

Figure 34: Schematic representation of DSCT formulation of the SC model as the sum of N
different RYE's corresponding to each coated inclusion family.

l@.l+l 9,: I
ft,f'
CJ, Ô"J

FTl
l'.' 9: l*
f'"f'
e2, æ2

.f'3,f"3
dp, eg,

.f'N,.f")',
d,n, ô",,u
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The RVE representation in Figure 3-4 schematically shows the SC DSCT

approach. In what follows, all coated inclusions that have identical material type,

spatial orientation, and shape are referred to as a coated inclusion family. The entire

comFosite consists of N different coated inclusion families chosen to represent the

nature of the material. Each family is assumed to be surrounded by the effective

material and to occupy a volume fraction, pç : fI'ç +f''t. DSCT formulation

assumes that the effects of each coated inclusion family can be superimposed in order

to arrive at a reasonable approximation of the effective behavior of the particulate

composite. The DSCT approach also assumes that the descriptive dimension of all

coated inclusion families is of the same order of magnitude and, like alt

micromechanical approaches, that this dimension is much smaller than the

macroscopic length scale [27]. DSCT formulation, as all other micromechanical

approaches, is limited to total. low volume fraction inclusions unless inclusion

interaction is taken into account in some way [57]. In the following sections, the

derivation presented in Sections 3.2.1 - 3.2.4 is adapted for a composite containing

coated inclusion families thereby deriving a SC DSCT model analsgsus to Equations

@..2.73), (m.2.75), and @,.2.76). The generality of this SC DSCT model allows

accurate viscoelastiç ssmposite material homogenization for materials containing

coated inclusions with a wide range of material properties, spatial orientations, and

shapes. For the sake of brevity, the following "derivation" is not a detailed repetition

of all equations in Sections 3.2.1 -3.2.4, but rather a swnmary of the prior derivation

adapted to the multiple coated inclusion case.

33.1 Localization and the integral equation

Derivation of the SC DSCT model requires several changes to the previous

derivation to ensure the accuratelocalizaton. Firs! differences in the topology of the

RVE must be addressed. J[s single coated inclusion RVE shown in Figure 3-l
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represents only a 5ingle family of coated inclusions when applymg DSCT" In the

DSCT approacb, an RVE such as the one shown in Figure 3-5 will consist of ,l/

different sub-RVE's each of which are analogous to the RVE shown in Figure 3-1.

Figure 35: Topologt of a particulate viscoelastic composite with N coated inclusion fanilies.

The topology of the above RVE corresponds to N coated inclusion families where

each family, Ç, is represented with a 5ingle inclusion of volume, V4ç, and viscoelastic

stiffiress, 6r'r, and is coated with another material having a volume, Vs,ç, aîd

viscoelastic stifÊress, Ô" . F:rshfamily is also assumed to have a unique slliFsoidal

shape charastsnz.ed by major axes, af , aligned with the local coordinzte system, i6.

Euler anglss St, Qt, nd V' relate the local coordinate system to the global

coordinates usirg the '?" convention (see Appendix B) U491. As in the previous

section, all coated inclusions are e,mbedded in the reference material with viscoelastic

stiffi,ess, ô0.

It is now possible to start the derivation of the SC DSCT model beeinning

with the expression for the local behavior of the composite material. The viscoelastic

stifFness tensor of the heterogeneous material can again be expressed as a
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homogeneous material having spatially varying viscoelastic properties. For the RVE

shown in Figure 3-5 this variation is expressed identcally to Equation @.2.3).

ô(r) = Ôo + âÔ(r) *irh r eY (trr.3.1)

Ô0 represents the spatially uniform viscoelastic stifFness tensor of the reference

material and V is the RVE volume. Unlike the previous derivation, however, the

spatial variation tensor, aô(r), must be modifi.ed to approximate the influence of N

different coated inclusion families. Equation W.2.14) is therefore generalized to the

form shown below.

aô (r) = (ô'r - co) e', (r) + (ô'r - ô')leu (r) - a'r (r)]

* (ô', - èo)e', t"l * (ô., - c')le'z(r) - a'2 (r)]
:

+(ô''" -ëo)e'n(")+(ô'r -ô')le't'(r)-a'r(r)] (rl'3'2)

N

:t(od''re'" (r)+ Lëco.ç60'" (r))
ç-l

In Equation (Itr.3.2) the shorthand viscoelastic contrast tensors, LÔ*o" =U" -Ô0,

denote the contast between th" çû coating or inclusion and the reference material.

The Heaviside step tunctions e'"(r),0'''(r), and 60ls(r) defined below are

generalizaltons of Equations (Itr.2.15) and (fr,.2.17):
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rf r eV,,,

rf r eV,,,

f r eVr,,

rf r Ê.Vr"

(m3.3)

60Is (r) = 02,'(r) - A'r (r)

It is important to note that the form of Equations (trI.3.2) and (trI.3.3) assumes that all

viscoelastic stifÊress tensors and Heaviside step functions are expressed with respect

to the global coordinate system. This fact requires the rotation of each quantity from

their local coordinate system to the global coordinate system.

The derivation of the SC DSCT model can now be taken up from the modified

equilibrir:m equation given in Equations (m.2.5) and (Itr.2.6). These equations will

be used to derive the .l/ different modified Green's tensors which take the shape,

orientation, and stiftess contrast of each family into account.' Equation (Itr3.a)

below gives the equilibrium equation for the ̂ lfcoated inclusion families.

c],î'u$(") = 
[-âc* (")â" (")]., = Î (")

=i-l{^c;Ye'" (,)+ LC,e}ç (e'" (r)- ll'c(.))}â" (')] (r.3.4)
- ç = 7  L (  s u  \ /  ' r É  \  \ '  \ ' t  

, j

:Ëî ' (")

c-l

For the .l{ coated inclusion family case, it is obvious that the distribution of fictitious

forces is the result of the summation of N disfributions, each described by Equation

([.2.6). The Green's tensor solution to this differential equation, therefore, must be

represented as the sum of NGreen's tensors, Gff (r-r'" ), which is permitted due to

the zuperposition properties of the Green's firnctions. Each individual Green's tensor

is a firnction that calculates the displacement in the Ë direction at the point r when a

time varying unit force due to the inhomogeneity of the Cû fu-ily of coated

,,,, (") = {l
,''' (.) = 

{;

78



inclusions, îr'(r), is applied at the point r'r in the lz direction. Equation W.2.7)

must therefore be changed to the following form.

Ci*GEn("-" ' " )  +6.6(r-r"c)d(at-r ' )=0 ( [ .3.s)

Given this exp:ession, which is analogous 6 (m.2.7), the resultant integral equation

for the displacement field becomes a s 'mmation of N integrals with Green's tensor

kemals representing each coated inclusion family as shown below in Equation

(m.3.6):

,|v
û ̂ (r) = î'i G) -L ! [G'*,,, (. - .'' ) [ a c u, (r'' ) ei (r' " )]ar,,ç d cù' (mi.6)

ç= l  <V

Where êfr(r) represents the compatibte strain at the point r due to th" ç* famity of

coated inclusions. The integral equation @.3.7)describing the snain field at every

point in the homogenous material is found by applying the properties of the Dimc

delta function for the frequency integral and the small sûain approximation.

ôu (") = Êa -Ë Jf;f (r -r,")dc*^(",')ei(r,")tu,' (rr.3.7)
ç=l Ir

The modified Green's tensor for each coated inclusion family, ff6, given in @.3.4

is expressed below in relation (Itr.3.8).

i'uf,:-)]ef'r,(r-.'') *Glu(.-"")] Gtr.3.8)
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It is again important to note that in the present form, all of the terms in the

above equations are defined with respect to the global coordinate system, x. The

interfacial operators described in Sections 3.2.2 and 3.2.3 can now be employed to

simpliû the Equation (Itr.3.7),. These operations are greatly simplified when

working in the local coordinate system, iç, and then rotating the result to the global

reference system. Indeed, the entire interfacial operator derivation given in Section

3.2.2 is identical for each coated inclusion family with respect to their local

coordinate system. Equations leading to SC model gerrcralizÀtion through DSCT

formulation are found in the following section by simply restating the important

results in local çoordinates. In the following paragraphs all variables represented as

-it represent the variable Xç with respect to the local coordinates of the çft coated

inclusion family.

33.2 Interfacial operators and average strain fields of coated inclusion f2milies

The interfacial operators derived in Section 3.2.2 are general expressions that

only assume that the reference coordinates of phases A nd B are identical. Because

of this, no re-derivation is necessary for the multiple coated inclusions problem.

However, for the sake of simplicity inthe following analysis, Equations (Itr.2.31) and

U.2.32) are re-stated here clearly delineating the variables as beitg referenced to the

local coordinates.

(r3.e)

and

fron, =1 
[1,ar )' n,n, +( u; )' n,n, +(Ê,r ) 

" n,n o + (xX)' n,n rf
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a; =li',1 (uA-, - e *) + 4.]â",,
(rtr.3.10)

Here ki represents Christoffel's matrix for material X wtth respect to the local

coordinates and is defined fV X#:êfrn,Ar.

In order to apply the interfacial operators in the local coordinate system it is

first necessary to retum to Equation (m3.4). More specifically, the Heaviside step

function variation, 60Is (r), and viscoelastic contrast tensors must be specified for

application with respect to the local coordinates. The Heaviside step function

variation is expressed in local coordinates with Equation ([.3.11), the analogue to

expression (m.2.18).

a; =li'a (, *, - ô,,._) + 4,^fei

6â1"(i)-u,D#ffiuru,.)(rtr.3.11)

Herc fiç is the perpendicular distance from the center of the çû coated inclusion to its

. ngent plane at the point i6 , âl represents the atr major anes, and Sr,, û" surface of

the inclusion of th" ç* coated inclusion family. The perpendicular distance, fiç , is

found by applying Equation (Itr.2.19) in the local system. Equations (m.3.2) and

(m3.11) are then combined to yield an expression for the çft variation in viscoelastic

constants (Itr.3.12).

l- è')u, (.) * (ô.'aê'("; = (ô'"

8t

- è') u'Tffiffiô(s,,, ) Gn 3 12)



[1 is important to stess that the calculation sgthis variation requires the rotation of the

reference material to the local coordinates. Equation (Itr.3.13) below results from the

insertion of (III.3.12) into the integral equation (Itr.3.7) and application of the

appropriate rotation matices.

À/
6u (") : Ê, -|ry,ni, J Ê}1 (r-'.)r e'Hâ, (r'")æ'"

Ç=t i,.

-Ëo-;f>
Ç=r L '

r -. tz 1 @I.3.13)

J 
U*r (r -r"')r effi e,,(0.") F Effi ^ 

)

Where Rf is the rotation mahix determined from the Euler angles of the çû coated

inclusion family using relations given in Appendix B. The medified Green's tensor in

the local coordinate system is determined through the evaluation of Equation (Itr.3.5)

when the reference material and all spatial variables have been rotated to the local

reference frame.

It is now possible to calculate the average strain in the inclusion and coating of

each coated inclusion family. The shain j'-F between inclusion and coating

materials must first be found through application of the interfacial operators given

above. Using this information, the eqùation describing the sfrain a! a position just

outside th" ç* coated inclusion can be calculated via the local equivalent of Equation

CItr.2.35) given below.

au(i.) =e]+frfrte';*Êi (m.3.14)

The average shain in each phase is then calculated using the classic equations shown

in (Itr.3.1s):

t
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Using these expressions, the integral equation given in (Itr.3.13) simplifies to give the

average shain in the inclusion and coating of each family with respect to the local

coordinates viathe two following equations.

ei' =+ 
)"e,1r1æ

Ef"=+1.âu1i1æ

Êi'' = Ê, -+;,;"f?;E(r -i,')^ô,#êX&,'çffi

i;4 J"l;.u'rr' = r"; æ] Mffi ex a'' Effi ̂
i;4 J.l).ur1' - r" 1 æ] rcçl Ê'ste':Â a': p' Effi "

âf " = r;" . +U.utr *lrcsa,;

If:n(r-r,')dr,.' rr i et,,,
vH

(rtr.3.17)

It is now necessary to define the volume integral of the modifisd Green's tensor. In

accordance with Equation (D,.2.47), this integral is defined for each family of coated

inclusions using the following equation.

(rrr.3.ls)

(m.3.16)

(rtr.3.18)frfr,'(è')=

Where Z' represents the inclusion

either the inclusion, the coating, or

or composite inclusion volume and * represents

the reference material. Because the coating is

I
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assumed to be thin for each family, Equations (Itr.2.43) and W,.2.44) can be

combined and re-stated for each family as follows:

I

The derivation of equations equivalent to (m.2.45)-Gtr.2.51) with respect to the local

coordinates of the çtr coated inclusion family is identical to the analysis ca:ried out in

Section 3.2.3. Expressions (m3.21) and (III.3.22) which relate the inclusion and

coating volumes to the integral of the modified Green's tensor by employing the

interfacial operator properly described by @.3.20) are given here for continuity and

clarity.

vr,, = Ilt^' (r) - e'' (")]â
v.,,

" !1, Effi urt,W =1 !,u' #W 
Gtr 3 'e)

J"Ê;*:v;ik(ê.)- ;f;(r. 
-i)æ.æ (rtr3.20)

J !fn(r. 
-r)æ. 6 =v,,e(fr;t (è")-f#(ê")) (m.3.2r)

Y c v

I i,;t* = [i,;6 ae',ç (ft)e= I -J i,;l t, *%"
v"., n a st.c at" 

@i)"

: v",,f;,r(ô'" ) -r,.,li:,t (ô" ) - fri6(ô'" )]
w3.22)

Now assume M,lo,:Miloi and insert the above expressions into Equations

(Itr.3.16) and (Itr.3.17). This yields Equations (Itr.3.23) and @.3.24) for the average

inclusion and coating shain for the çft coated inclusion family.
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eï" = E,-fr;,;r (è')rc';xa',1
-7, r (è,) 4y t n F,') ne s e 2'
-7lr;r (a* ) - fr # (è')1tne s ail

Êf " = e;" *fr,ç (ê"')te'*j;'*

(m3.23)

(ms.24)

It is now possible to employ these expressions in the homogenization step and derive

the SC model generalized using DSCT.

333 Homogenization and effective material properties

The next step in the derivation of the SC DSCT model must begin with a

discussion of the RVE. The simFlest visualization of the RVE for SC model DSCT

formulation has been given in Figure 3-4. This representation breaks the true RVE

into i/ different RVE's, each representing a coated inclusion family. Each of these

individual RVE's are identical to the one presented in Figrne 3-3. The çft RVE

consists of a single inclusion having viscoelastic propertier ô'" which occupies a

fraction of the total volume, f''t, ^d is coated by a different material with

viscoelastic constants ôt't *hi"h occupies a fraction of the total volume, .f'". The

coated inclusion is embedded in the effective homogeneous medium with viscoelastic

rigldity tensor Ôd. The entire RVE is assumed to be subjected to a time varying

murcroscopic sfrain represented by Êu. Further, as in Section 3.2.4, the following

identity is noted for the sum of the volume fractions of all phases.

85



tv

f* +l(f '" + f'")=r (rtr.3.2s)

The macroscopic strain and shess definilisns given in Equations (m.2.62) and

(Itr.2.63) are modified for the Ncoated inclusion family case urs shown below.

A 1 f^ ,  . ,  ,  
lv

Êu =V 
!ur(")rr" 

= f* êf +l(f'''e,!,c * 7cs6c.e) {ns.26)

ê  I  f ^  ,  . , , .  t r
i, =i 

IuuF)* 
= f'4 +\(t'.'ôl,e * tc'e 6cs) (ms:7)

Where the shain and sfress values on the RHS of the above equations denote the

average value in their respective phase.

The N shain localization tensors for each phase are always defined via the

general expression (m.2.61). Equations relating the average strain in the inclusion

and coating phase of each family are therefore given as:

êi" = 4az, (rtr.3.28)

êl" = 4l Ê, (rtr.3.2e)

It is now possible to express the average shain and stess fields in the matrix material.

To do so, Equation @.3.26) and the stain localizatisa relations above are employed

to give the following expression for the average shain in the matix.

uy = i1,,, -LV, " 4fr . f " Er))n:,
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Then by using the local constitutive law, the average shess in the mafrix is:

ry= (rrr.3.31)

The average stress in the matrix can also be deduced from the combination of

Equation (m3.27), the local constitutive laws, and the strain localization equations of

the form of equation (Itr.3.28). This combination yields the following expression for

the average stress inthe mahix material.

ry: (rrr.3.32)

Setting equations (m.3.31) and (Itr.3.32) equal and solving for the effective

viscoelastic stiffness tensor yields Equation (Itr.3.33).

i unl,,^ ->.(t' " Æ * f " aç )fÊ*,

irlu* 
- L1r' " e :; zia + f " ci,r .qfrht] a.

(rtr.3.33)

Equation (m.3.33), coupled with the strain localization tensors that follow, is the

DSCT form of the SC model. This represents a more general form of the quasi-static

SC model given in Section 3.2 and further generalizes the model originally derived by

Cherkaoui et al p3l.

The shain localization tensors for each phase are derived by rearranging

Equations (m.3.23) and (Itr.3.24) into the form:

t, =(4;)-' â#'

èq : A +à1t,"(ô,' -c'), AI., + fcs (è,' -U), Â",']
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In this expression X canrepresent either the inclusion or the coating in each family.

It is important to note that the strain localization tensors of each coated

inclusion family are derived from Equations 0II.3.23) and @,324). For this reason

they are defined with respect to the local coordinate system of the çfr coated inclusion

family. It is therefore necessary to rotate the stain localization tensor quantities given

in Equations (III.3.35) and (III.3.3O to the global coordinates before zubstituting

them into Equation (trI.3.33) to evaluate the effective properties.

Â,''l' : 14 + f,.'(è"1: ^è,'

* 
*i, 

" (è-): ^ë".,, Ê," (ô.") : ̂ èrcc

.*l*,"(a*) -î,'(ô")]'LÔIC,C

î"., =(t. *'i',' (ê.") , nè,,"), A,"

(rtr.3.3s)

(m.3.36)

In the above expressions Lë* " = ë'" - ë6 is the contrast tensor between material X

and the effective material where Xrepresents either the inclusion or coating, and I+ is

the fourth order identity tensor. The local expressions of the shain localization

tensors given above are then rotated to the global system according to the Euler angles

of the çtr coated inclusion family as follows:

^ a

4É = R*Rçi"RtRîqA#H (m337)

Finally, as for the identical coated inclusions case presented in Section 3.2.4, it is

possible to calculate gtrai" localization tensor for the mafiix material. The expression

forthe SC mode DSCT formulation is given below in Equation (m338).

88



Lr= (m3.38)

Where g is the total volume fraction of all coated

(rtr.3.3e).

inclusion families given by

ry

a =>(f''' + f'''\
Ç=l

(m33e)

Equations (m333), (Itr.3.35), and (III.3.3Q constitute a generalized form of

the quasi-static SC micromechanical model developed in Section 3.2 using DSCT.

This generalized form of the SC model permits approximation of the effective elastic

or viscoelastic properties for a wide variety of particulate composites. Indeed, the

atfactiveness of this SC model formulation is its ability to approximate the effective

behavior of a wide variety of partieulate composites including lossy composites. It

presents an improvement in the static domain over the model as introduced by

Cherkaoui et al 123,24f, and a vast improvement in the quasi-static domain for the

approximation of lossy behavior over the scattering based models.

Before employing this model in a material by design sfategy, however, it is

first necessary to veriS its accuracy and robustness. The aim ofthe following chapter

is to validate this model derived above in the quasi-static reqime tbrough two different

methods. First, the model will be compared to established bounds in the complex

domain. This will ensure that the formulation of the model does not violate energy

resfiictions. Second, the model will be validated by comparing SC approximations

against experimental data taken from the literature in both the static and quasi-static

domain. Following this validation, Chapter V will then present an elementary

multiscale material by design example which employs the quasi-static this SC model.

+lt^ -V{t''' ^''' * r" " L" " )f
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Overview

The aim of this chapter is the validation and application of the SC model in the

quasi-static regime. This will be accomplished in trvo steps. The first step is the

comparison of the SC model with existing bounds for complex composite media

This section begins with an intoduction of complex bounding methods available in

the literature. Following a detailed inûoduction, the SC is used to approximate the

effective complex behavior of several different hypothetical composite media and the

results are compared to accepted bounds. Agreement with existing bounds insures

that the derived SC model does not violate basic physical laws. The second part of

the SC model validation is done via paramefic studies and comparison with

experiment. To begin, the general SC model is employed to carry out parametric

studies of the effective lossy behavior of viscoelastic composite materials containing

oriented ellipsoidal inclusions. The hansmission loss (TL) of a slab of a viscoelastic

composite is calculated from the effective material behavior approximated using the

general SC model. These results are then compared to experimental data and the SC

singls scattering model of Baird, Kerr, and Townend (BKT) t761. Following this

analysis, SC DSCT model approximatiorxi are compared with experimental data for

viscoelastic composite materials having varying orders of anisotropy, multiple

inclusion t5pes, multiple length scales, and varying coating thicknesses. All of the

4.1
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above steps validate the use of the SC model in the quasi-static domain and indicate

the robustress of the DSCT formulation. Finally, the last section of this chapter

discussès several numerical difficulties encountered during SC model imFlementation

and the solution paths employed.

Complex bounds and the self-consistent model

In order to properly frame the use of the SC model for quasi-static wave

propagation problems, the issue of bounds must be addressed. Insight into the

validity and optimality of any mean field model can be established by investigating

the effective properties calculated with the model and comparing the results to well-

established bounds U501. Comparison with bounds has a two fold pqpose. Bounds

on the effective behavior of composite materials describe the limits of possible

effective material properties due to minimal and maximal energy resfiictions. They

are dependent on constituent material properties and the volume fractions of each

pha,"e. Disagreement with bounds invalidates a material model as it implies a

violation of physical laws during model derivation. Verification that a proposed

effective medium theory (EI\[I) falls within accepted bounds is, therefore, a first

order model check. The second pu{pose for comparison with bounds is to check

composite material optimality. Bounds provide information conceming the optimality

of effective material behavior because they are derived from upper and lower energy

restrictions. For this reason, proximity to an upper or lower bound gives a measure of

how nearly optimal the phase semposition, inclusion geomeûry, inclusion orientation,

or any combination of these factors renders the effective behavior of the composite

1671.

$sunding techniques for purely elastic materials, meaning that no losses occur

and all material properties are modeled as real, are well known; see, for s;amFle,

Hashin & Shtrikman [58], Walpole [59], Hill [60, 61], and for a detailed summary see
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Hashin 1621. Itis well known that the n-phase SC model falls within accepted bounds

in the purely elastic case [43]. There has been comparatively little work done

regarding the bounds of comFosites containing constituent phases with complex

material properties. The subject of bounding the effective complex moduli of

multiphase composites has been addressed in several papers starting with Hashin [8,

63,64f, Christensen [7], and Roscoe 165,661. Hashin's work proposes a method for

calculating the effectivs ssmplex moduli as a function in the frequency domain for

elementary composites and only briefly mentions bounds which are reshicted to very

simple material mixtr:res. Christenson discusses the bounding problem, but reshicts

the discussion to the application of Hashin-Shtrikman (HS) bor:nds for a bi-phæe

viscoelastic matrix material containing either voids or rigid inclusions. Christenson's

approach is simFly the application of HS bounds to the real and imaginary parts of the

effective moduli separately. Roscoe takes a similar approach to bounding effective

viscoelastic behavior by applying the Voigt and Reuss bounds separately to the real

and imaginary parts of a viscoelastic composite; the simplest and least restrictive

complex bounding technique in the literatr:re. These bounds were derived from

variational principles expressing minimal and maximal shain energy in the

viscoelastis çsmposite, but the interaction of the real and imaginary parts was not

considered. Recent developments in bounding the effective behavior of complex

comFosites are based on the variational techniques of Cherkaev and Gibiansky [67]

(see also Mlton [68] and Miller [69]) which couple contributions from the real and

inaginary parts of the constitutive phases on the expressions for overall energy.

Results based on this approach are detailed in a series of related papers: Gibiansky &

Milton [70], Milton & Berryman [71], Gibiansky & Lakes 172,731, and Gibiansky &

Torquato [74]. Many of the works referenced above were infroduced for bounding

the effective behavior of any complex composite medium which includes zuch

material properties as effective elecfical conductivity, magnetic permeability, or

viscoelastic moduli. The methods derived by the above authors bor:nd the effective

bulk and/or shear moduli of bi-phase viscoelastic composite in zones prescribed by
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arcs in the complex plane. These arcs ure functions of the complex moduli and

volume fractions of the constituent phases. The variational approaches of the above

authors are more restictive than those proposed by Roscoe, f{ashin, or Christensen

because they relate the complex bounds of the effective moduli to the real and

parts of the constifuent phases. For the elastic case, all of these approaches

reduce to the Hashin-Shtrilman boturds for an isotropic bi-phase composite.

All of the bounding methods introduced above have limitations, especially

when applied to composites containing coated ellipsoidal inclusions. The most

relevant restrictions concerning this application are the number of constifuent phases

and composite anisotopy. Applyrng bounds derived for purely elastic composites to

the real and imaginary parts of a viscoelastic composite separately, zN proposed by

Roscoe [65, 66] and Christenson [7], does not limit the resultant bounds to any

specific number of constituent phases. Unfortunately, the Reuss [11], Voigt [10],

and HS [58] bounds require the constituent phasss and the composite material to be

isotropic. More importanfly, the interaction between the real an.d imaginary parts,

which are related by the principle of causality U51, 152], is neglected. More

reshictive bounds have been introduced by Cherkaev and Gibiansky are derived from

variational methods do take storage and loss moduli interactions into account.

Unfortunately, these bounds are resEicted to bi-phase composites and also require

both constituent and effective materials be isotropic. Though these methods are

limited in terms of the number of phases and material anisofopy, they are the most

developed bounds to be found in published literature. The three most tractable

approaches available, those of Roscoe ï65, 66f, Milton and Berryman [71], and

Gibiansky and Lakes 172], arc summarized and plotted together \r'ith SC model

estimates in the following section.

4.2.1 Complex shear and bulk modulus bounds proposed by Roscoe
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The upper and lower bounds derived by Roscoe for a viscoelastic composite

reduce to the application of Voigt and Reuss bounds separately to the real and

imaginary parts of the comFosite [12]. These bounds provide the least restrictive

limits of possible effective viscoelastic properties and ean be calculated as a function

of either inclusion volume fraction or frequency. Though these bounds are not

restrictive they represent a good starting point for the validation of the SC model in

the quasi-static domain.

The equations used to derive bounds proposed by Roscoe are analsgsu5

statements of the potential energy equations which are the basis of the exhemum

principles used to find the bounds for elastic composites, see Voigt [110] and Reuss

[111]. The result of this analysis in the complex domain, see Appendix C, yields the

bounds described by Equations GV.2.1) and (IV.2.2) which are the weighted

harmonic average and weighted average of the constituent phase properties,

respectively.

GV.2.1)iÀ"=(+#)' "r=(T#) 
'

In the above relationships, RZ and i?U denote the lower and upper bounds derived by

Roscoe and are analsgsus to the Reuss and Voigt bounds, respectively. It is now

important to note that due to energy considerations the following is tnre:

iÀu =>f,i: ii,u:>,f,i: (rv.2.2)

P;"> Pb Kàv>Kàr

iâ"> ib ri,.>rà
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An important aspect of these bounds is their lack of resfictions with respect to

the frequency inspected, the total mrmber of constituent viscoelastic phases, r, or the

total volume fraction, p. This logic leads to tÏe following restrictions on the possible

values for the effective viscoelastic moduli:

iL @,e) < i;u @,ç) < a;u @,ç)

"L(t,p)t 
ib@,ç) < 

"i, 
(t,p)

(rv.2.4)

where ar is the frequency of interest. It is also useful to note that fnd,t =l- e .

At this stage the quasi-static SC model is compared to these elementary

complex bounds. This is achieved tbrough two different comparisons. The

approximations from the quasi-static SC model are first compared to the upper and

lower bounds for a fixed frequency while the coated inclusion volume fraction is

varied from 0 to 1 for a hypothetical viscoelastic composite created from the materials

studied by Baird et al 1761. The frequency dependent SC model approximation of a

viscoelastis çsmposite with a fixed volume fraction is then compared the same

bounds. The constituent material properties employed in these strdies are listed in

Table 4-1. The two composite materials containg identical coated inclusion phases of

varying volume fractions, but are distinguishable by their pol;'mer matix properties.

The matrix materials of these two composite materials, composite I and composite 2,

are decribed as "soft" and *stifP', respectively.

Table 4-1: Constituent material properties of the viscoelastic composites studied by Baird et al
/ t

Composite I Composite2

Bulk modulus of mafrix @a): K" 3x l0 ' 3 x 1 0 "
Density ofmatrix (kdn ): p* 935 1090
Dynamic shear modulus coefficie,nts: Ao 5.93978 6.67s 69

A1 2.6618 x l0-' 3.954x10-"

A2 -3.613 x l0-' 9-39 x 10-'

A3 4.1 x 10-' 3.85 x 10-'

R-^-:^ l^^^ â-r^- ^^^CÊ^:
Bo <  o < r  -  r n - 2 9.792x10-"
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Composite I Composite 2

B1 l .9374xlO-' 5.9 x 10*

B2 -6.209 xl0-" 6.89 x l0-'

B3 8.19 x 10-' -9.25x10-'

Bulk Modulus of coating @a): K" 2. lx lO' 2. lxL0'

Density of coating (kdn-): p" 1700 1700
Shear modulus of coæing @a): p" l-26x10' l.26xl0'

Loss factor ofcoating: nt 0.1 0.1
Bulk modulus of air at 1 atu @a): K 1.4 x l0 ' 1.4 x 10'

Density of air at I atm ftg/m'): p' r.28 1.28

Average coafing fraction: I 2-5 e IO-' 2-5 e l0-"

Average outer shell radius: b 5 x l0-' 5 x 10-'

The frequency dependent shear modulus of the matix materials detailed in the above

table is approximated through Equations GV.2.5) - [V.2.7) and by applying the

following relationships.

loepl, = Ao + Arloe f + Ar!ogf)' * A'(oef)' GV.2.5)

6u : Bo + Brloe f + Brlog f)' + nr(log ff GV.2.O

puA = pfo(-itÀr^6M) (rv.2.7)

[1 is important to point out that/in these equations represents the frequency of interest

and not the volume fraction. These equatiom and coefficients were found by fitting

experimental data obtained from a Dynamic Mechanical Thermal Analyzer (DNffA)

t761.

The results of the two studies comparing the quasi-static SC model

approximation to the elementary bounds proposed by Roscoe are given below in

Figure 4-1 through Figure 44. The matix material is the "soff' material given in

Table 4-1.

I
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Figure 4-1: Real and inaginary parts of the effective shear modulus as function of coated
inclusion volume fraction for a fixed fhequency. SC model approximation shown with the upper
and lower bounds proposed by Roscoe- (Lower bound of imaginary part is zero eve4mhere).
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Figure 4-2: Real and imaginary parts of the effective bulk modulus as a function of coated
inclusion volume fraction for a frxed frequency. SC model approximation shown with the upper
and lower bounds proposed by Roscoe. (Lower bound of imaginary part is zero eve4mherQ.
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Figure 4-3: Real and imaginary parts of the effective shear modulus as a fonction of frequency
for a fixed coated inclusion yolume fraction. SC model approximation shown with the upper and
lower bounds proposed by Roscoa (Lower bound of inaginary part is zero everTwhere).
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Figure 4-4: Real and imaginary parb of the effective bulk modulus as a function of frequency for
a lixed coated inclusion volume fraction. SC model approxination shown with the upper and
lower bounds proposed by Roscoe. (Lower bound of imaginary part is zero everywhere).

The above plots show that the SC model approximation falls within the

ssmplex bor:nds derived by Roscoe for viscoelastic composites as a firnction of both

frequency and coated inclusion volume fraction. Though this study is far from

exhaustive and not a direct proof, the plots suggest that no physical laws have been

violated during the derivation of the quasi-static model. These observations are

encouraging. However, since these bounds are the least reshictive, it is prudent to

compare the SC model against more restrictive bounds. The reshictive bounds

chosen to firther validate the quasi-static SC model are the shear and bulk bounds for

bi-phase viscoelastic composites derived by Milton and Berrym.an pll and Gibiansky

and Lakes [72], respectively.
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4.2.2 Complex bounds using variational and translational techniques

The two bounding techniques described in this section stem from the

çsmplementary works of Milton t68j and Cherkaev and Gibiansky [67]. The

objective of their work was to simFli$ the algebraic calculations required to find the

bounds for complex valued effective material properties resulting from heterogeneous

media This is done via a fractional-linear I-transformation 1741. These methods

were derived for any complex valued maûerial properly whose fields are dissipative

and time varying. The resulting bounds can therefore be applied to physical

properties as disparate as electrical conductivity and viscoelasticity. Using ssnplex

valued expressions of Hooke's law atrd shain energy density, Cherkaev and

Gibiansky [67] formulated four different min-mor variational principles. These

principles lead to rigorous bounds for the effective viscoelastic moduli of a bi-phase

ssmposite material. This approach inspects a bi-phase viscoelastic composite at a

fixed inclusion volume fracton and prescribes a zone in the complex modulus plane

which bounds the set of permissible values describing effective material behavior.

Their rezults yield coupled bounds. Coupled bounds restrict the effectivs ssmplex

valued moduli based on functions of both the real and imaginary parts of the

constituent phase moduli. Gibiansky and Lakes employed this approach to find the

bounds on the effective viscoelastis frrlk modulus [72]. Those bounds are defined by

four arcs that intercept each other at two points in the ssmFlex plane. The outer-most

of those four arcs define the limits of permissible effective complex bulk modulus

values of a bi-phase viscoelastic composite. The approach derived by Milton and

Berrym.an [71] to find bounds on the effective shear modulus is similar in its

derivation and also based wholly on the work of Cherkaev and Gibiansky [67] and

Milton [68]. Both of these bounding approaches, which are summarized in Appendix

C, are restricted to the following cases: (i) bi-phase viscoelastic composites, (ii)

isofopic behavior of both the comFosite and constituent phases, and (fii) calculation

of bounds for asingle frequency and a single volume fraction. These restictions limit
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quasi-static SC model validation. The third restiction is the most limiting for the

inspection of a wide rânge of material compositions and exciting frequencies- These

reshictions illushate why these methods do not easily lend themselves to inspect the

vatidity of an effective medium theory as a function of either volume fraction or

frequency. Bounds based on these variational techniques are, however, the most

rigorous available. Therefore, despite these limitations, it is valuable to check SC

model approximations agqinst these bounds. The following sub-sections employ the

bounds described in Appendix C and plot the bounds together with the quasi-static SC

approximation. This analysis provides firther validation of the SC model in the

quasi-static frequency domai n.

4.2.2.1Complex bounds on the bulk modulus of bi-phase media

The bounds for the bulk modulus derived by Gibiansky and Lakes [72] are

defined for a bi-phase viscoelastic composite material. The composite's composition

is defined by a phase / which occupies volume fraction/and its complex bulk and

shear moduli are represented as rr and /1, respectively. Conversely, phase 2 occupies

a volume fraction (t- t)and its bulk and shear moduli are represented as rcz and pz,

respectively. The effective complex valued bulk modulus of the isofropic viscoelastic

composite will be conshained to a "lens-shaped" region in the complex bulk modulus

plane that is bounded by the outer-most pair of four circular axcs each of which

correspond to the four min-mar variational principles proposed by Cherkaev and

Gibiansky [67] and Milton [68]. To illushate their bounds, Gibiansky and Lakes

presented a hlpothetical viscoelastic composite material whose composition and

constituent material properties are defined by the values given in Figure 4-5 below.

Figure 4-5 shows that the bi-phase isotopic SC model falls within the bulk modulus

bounds calculated by the relations above.
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4.2.2.2 Complex bounds on the shear modulus of bi-phase media

The bounds on the effective complex shear modulus derived by Milton and

Berrym.an l7ll are also based on the four variational principles and the l-transform

introduced by Cherkaev and Gibiansky [67] and Milton [68]. Their results yield arcs

in the complex modulus plane which define the limits of permissible effective

complex shear modulus values of a bi-phase viscoelastic composite. The bounds are

best described by an algorithm in reference [71] which is summarized in Appendix C

for convenience. It must be noted 1641 difEculties can arise in calculating these

bounds because some factors may be driven to infinity while the final result is always
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finite. Further, these bounds are sometimes not completely closed, and tangent lines

must be drawn to close the bounds. These comFlications make the process arduous

and less than ideal for an exhaustive evaluation of model validity as a firnction of

frequency or volume fiaction, or both. Despite these difficulties, the comparison of

the quasi-static SC model and these bounds given in Figure 4-6 shows good

agreement and firther suggests that the application of the SC model in the quasi-static

regime is valid.

Complex Bounds of Slear Modulus ard SC Model

Figure 4-6: Bounds on the complex elfective shear modulus given in reference [711.
Upper bound; - - - Lower bound. Calculated SC model poin! t 

, b shown to falt within
ellipsoidal bounded area.

Validation of the general SC model in the quasi-static domain43
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The previous secJion described a firndamental check of the quasi-static SC

modeling approach. The SC model was shown to fall within accepted complex

bounds thus proving tJpat no physical laws were violated in the derivation of the

model. The SC model derived in Chapter III is therefore a valid effective medium

theory for applications inthe qtrasi-static frequency domain. Model validation against

complex bounds is very important but it yields little information about the precision

and versatility of the SC model. 1[s ls6ainder of present section investigates the SC

model for more specific information about its capacity to model the effective behavior

of various viscoelastic composite materials. This information is gathered through two

methods: comparison with experiment and parametric studies. Specifically, the SC

model precision is investigated by comparing model results with experimental data

while the versatitty is validated though a series of parametric studies. These two

approaches provide a clear picture of SC model precision and its adaptability to model

many different tlpes of viscoelastic composites.

43.1 Elementary validation of quasi-static SC model

The fundamentals detailed in Chapter tr indicate that the effective lossy

behavior of a viscoelastic composite in the quasi-static domain is intimately related to

the stain energy in its lossy components. To illushate this point the increase in

sEain energy in the " afrix" material of a voided composite sphere was given as an

example. The present section generalizes the voided sphere concept to the case of an

isotropic voided viscoelastic material. The following elementary parameûic studies

show tends of the effective behavior of the voided viscoelastic material as calculated

by the SC model. The relationship of interest is between the composite's macroscopic

lossy behavior and the void fraction. The goal of this simple study is to provide a first

order validation of the quasi-static SC model by showing that the tends calculated

with the SC model are in accordance with expectations.
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The viscoelastic composite studied is a hypothetical material resulting from

the introduction of spherical voids in a matix of the "soff' polyrner matrix material

studied by Baird et al 1761. The properties of the matrix, together with all other

material properties which are important for the following sxrmples, were given by

Baird et al and have been repeated in Table 4-1.

The fundamentals of the frequency dependent behavior of voided viscoelastic

materials is well understood, see, for example, Jaramski [6]. The three following

tends are expected: (l) a decrease in the elastic moduli of the material, C', \tvith

increasing void fractioî, (p, (iù n increased damping capacity with increasing

frequency, and (iii) an increased damping capacity with increasing void fraction. The

fust tend is the result of removing makrial and thereby weakening the resistance of

the whole to deformation. Figure 4-7 clearty shows that the SC model correctly

approximates this trend across all frequencies inspected.

F'igure ,t-7: Effective complex shear modulus of a voided viscoelastic material as a function of
frequency. The pure matrix r€sponse is shown together with three differnent values of void
fraction.
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The second trend an increase in damping capacity with increasing frequency,

is rhe result of contributions from both wave scattering and constitutive viscoelastic

material behavior. The scattering contibution is described as follows. As frequency

increases, the relative void size increases with respect to incident wavelengths. This

is equivalent to stating that the non-dimensional nr:mber ka inqeases. This 'oincrease"

in void size leads to more efficient reflection, re-direction, and mode conversion by

voids thereby creating more lvave-fronts which are zubsequently attenuated by the

viscoelastic host material. The ultimate result is an increase in the absorptive quality

of the materiall. The contribution from constitutive viscoelastic material behavior

results from an increase in the characteristic phase lag between the load and the

resulting strain with increasing frequency. The result is an increased hysteresis loop

area in stess-shain space (see Section2.l.l). It is very important to note that this

behavior is not the case for all viscoelastic materials at all frequencies [153]. Typical

characteristics of the frequency dependant complex shear modulus are shown in

Figure 4-8. This figure shows that both the storage and loss modulus have a strong

frequency dependence and that the damFing capacity of a viscoelastic material

increases monotonically as a function of frequency for 0 < "f < f*. However, for the

materials and frequency ranges studied in these examples, the damping capacity will

increase monotonically as a function of frequency. It is also imFortant to sfiess that

increases in lossy behavior with increasing frequency observed in the quasi-static

frequency domain ffs dsminated by the constitutive behavior of the viscoelastic

behavior and that scattering confiibutions have a minimal contribution. The ability of

the SC model to correctly capture this behavior regardless of the void fraction is

shown in Figure 4-10.

t Incidentally, this argument is the same used by Lord Rayleigh to explain why the sky is blue. Blue
light having the shortest wavelength in the visible spectrum, is more efficiently scaffered by particles
in the air and is therefore more visible. His fundamental work in the area of wave scattering is also the
reason that low ka sattsing is called Rayleigh scattering and that the limit of ka << I is called the
Rayleigh limit

107



H.N Mgdql Real Componeil of Shear lVodulûs as Funcflon of Frequqnçy

106

1dç.
E)

t"
T'

ro'h:
I.:
t.,

10'L,
ri '
I

10",ç
1(I

' l

I
g'o;81-'
o l

5 o.e l-.
! l
3 o.c l-.r l
@ l

-e o-z I
I

0 :
1Cl'

dû
o

=
E
o

6
o
ut

loto '10*

Fr.çWency (H2)

Figure 4-8: General characteristics of the frequency dependent shear modulus of viscoelastic.
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The third trend, an increase ia damFing capacity with increasing void fraction,

is the result of both wave scattering and viscoelastic material strain energy

contibutions. Increasing material void fraction results in more efficient \ilave

scattering at each frequency of interest because the scattering volume is increased.

Increasing material void fractioî at a fixed frequency, therefore, is enalogous to the

effect of increasing frequency for a fixed void fraction which was explained in the

previousi paragraph. The increase in damping capacity with increasing void fraction

can also be explained using sEain energy arguments. The time varying specific sûain

energy, defined as the strain energy per unit volume, in any material is calculated

from either of the two expressions given in Equation GV.3.l).

^ 1^o f lyzlauiura,w:roreù=l1r4z1euô*ê,
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In the above equation û' represents the specific strain energy, ôo the applied shess,

êrthe shain, and Î is the compliance tensor which is the inverse of the stiftess

tensor, Ô. It is noted that the shain and shess fields me not independenl of each

other and the selction of the shain energy relationship can therefore be made for

simplicity depending whether the material is loaded vvith a known shess or know

displacement Gftain). For a propagating wave of known magnitude the shain energy

should be calculæed with the relation 2ût=ôrlorôu. As previously stated"

increasing the void fraction of any material leads to a decrease in the elastic constants

and conversely to an încrease in the compliance of the effective material. It is clear

from this expression that for a given applied shess level an increase in the magnitude

of the material compliance fanslates to an increase in the specific strain energy in the

effective material. Further, since voids cannot carry any load this increase in strain

energy is concentrated in the viscoelastic host maGrial. Cbapter tr illustrated that an

increase in sfrain energy of lossy materials leads to an increase in the total energy

absorbed. Figure 4-9 illushates the ability of the SC model to correctly approximate

this expected physical behavior. The plot shows the ratio of the specific shain energy

in the voided material to that in a homogeneous material for the same applied shear

stress, r. The plot clearly shows that the SC model correctly captures the increase in

specific sûain energy as the void fraction is increased for all frequencies.
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The result of the increased strain energy present in the viscoelastic matrix

material shown in Figure 4-9 is an increase in the macroscopic damping capacity of

the comFosite. Evidence of this increased damping capacity is best captured through

parameûic studies of the longitudinal and shear ïvave attenuation coeffi.cients. The

attenuation coefEcient is the imaginary part of the complex wave number and is a

measure of the decay rate for a wave propagating in a medium with lossy properties.

Recalling equations (tr.1.20) and (tr.1.21), the longitudinal and shear \tave

attenuation coefficients for propagation in the voided polymer given here are found

from the two expressions below.

fr
K o =  @ffi=Èo+iâo+ br(x,t) = À"-ur"-'(^-î'o)

GV.3.2)

= Ê" + ià, :+ fr ,(",t) - Êe-â"'e-'@-Ëu)î r '=  a
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These equations show that tur increase in the magnitude of the attenuation coefficient

leads directly to an increase in the attenuation of the propagating wave. Figure 4-10

illusfates that the SC model captures the increased damping capacity of a voided

polymer with increasing void fraction and increa.sing frequency.

Figure 4-10: Attenuation coelficients for shear and longitudinal wave propagation in a pure
polymer compared with'the effective behavior of three dilferent voided composites approximated
by the SC model

One very important observation about Figure 4-7 anld Figure 4-10 is that the

increase in lossy behavior is the result of material softening caused by removing

material. The softening is best indicated by an increase in the magnitude of the

compliance tensor. For an imposed sFess, o, (which is the case for classic

propagating wave) the snain energy increases in the lossy matix an{ as a direct

resul! the overall damping capacity of the material is increased. This is further

illushated by examining Figure 4-11 which shows the increase in the inverse of the

shear and longitudinal moduli as a function of void fraction.

Shear and Lorgitudinal Attenuation Coefficients tæ. Frquency
2000

6À
.a 1500

o

û'
o
o 1000
cg

È 500
c,

.c
a

40 50 60
Frequency (k+L)

40 50 60
Frequency (kHz)

90 100

."f
;,ï

0

(sÀ
J

oo
o
c
o

E-çî,
J

CD
c
o

J

111



I

I
I
I
I
I
I
I
t

3 Part of lnverted Shear and Lorgitudinal Moduli vs. Frequency

6

=të
n

,!o"

6
o-

,-
E
ol
+c
n

1.5

1

0.5

0
100

Frequency, (H4
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compared with the effective behavior of three different voided composites as approximated by
the SC model

It is also important to speciff that material softening increases lossy behavior

for the case presented above because the imposed loading is stêss contolled.

However, the opposite is tue when the prescribed loading is an imposed time-varying

sûain. An increase in the overall lossy behavior of a viscoelastic composite results

from the reinforcement of a lossy host when loading is stain controlled since the

specific sftain energy is computed from 2fr = ârÔrrê, in that ca-se. The true measure

of the absolute damping capacity of a composite material is therefore not îts stîfness

tensor loss factor, but rather the magnitude of the imagirury part of the tensor

directly related to the loading condition. If the real part of the stifFness tensor is

constant, an increased stiffness loss factor is a sufficient meastue of composite

da-.ping capacity. For wave propagation in complex composites, however, the most

1,1.2



zrccurate measure of damping capacity is the imaginary part of the effective

comFliance tensor and related terms. The following section presents a measure

related to the ôompliance of a composite material, the Transmission Loss (TL).

Estimates of the effective complex moduli for a composite consisting of a'viscoelastic

matrix containing coated micro-inclusions are compared with experimental data from

Bafud et al 1761. Parametric studies on inclusion geometry and orientation are alsô

grven.

43.2 Comparison of modeling re.sults with experimental TL data: Oriented

ellipsoidal inclusions

The following quasi-static SC model verification is a sound isolation

application. SC model estimates of the effective complex moduli of a viscoelastic

composite are used to calculate the TL of a material layer as a firnction of frequency.

The SC estimates of the TL are compared to experimental data and the low Êa

scattering model of Baird et al1761. Following this comparisons parametric studies of

the inclusion geometry effects on the spatial dependence of composite material lossy

properties are presented in order to explore SC model stengths.

The following analysis details how the TL of a slab of viscoelastic composite

material is calculated from the effective material properties. TL is a measure of the

sound isolation provided by an obstruction between a sound source and receiver.

Specifically, TL is the ratio of the incident wave energy to the energy transmitted

through an obstruction, in this case the composite material layer [3]. Assume that a

zubmerged composite material layer is subjected to a normally incident plane wave.

The magnitude of the inciden! reflected and transmiued pressures can be calculated

by requiring continuity of pressure and velocity at the two water-composite interfaces

represented by r.i : 0 andx3 : L in Figure 4-12.

I
I
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a)
water

î, '(*,t)

Tb'(r,t1
ni" (r,t)

Figure Ll2: (a\ Representation of a viscoelastic matrix slab containing identically oriented
ellipsoidal inclusions. @) Incident reflecte{ and transmitted plane-wave visualization used to
calculate the TL of the composite material layer.

In the figure above, pr is the magnitude of the incident pressure, .Ê is the reflection

coefficien! f ir th" fransmission coefficien! Z is the thickness of the composite, and

a and c represent the major and minor æres of the oriented oblate coated inclusions.

Consider an isotopic fluid medium described by a mass density pûd sound

speed c" in which an acoustic plane wave of the form e'(&--) is normally incident on

an infinitely long slab of thickness I, as shown in Figrre 4-12b. The composite is

semposed of a viscoelastic matix material described by the complex Lamé constants,

4, ^d ûr,adensity p* and contains coated stliFsoidal inclusions. This initial

study considers the orthotopic case of a slab containing oblate spheroidal inclusions

all oriented such that their minor ar(es are along the xg direction of propagation The

inclusions are defined by their Lamé constants 1, ^d fr, ^da density p, alrd the

coating by 1" and ûc and density p" . T\e coating has a thickness fu where h/a is

assumed to be much less than unity. It is further assumed that fu/a : Ac/c. For plane

tl4



wave ûansmission in the x3 direction through a composite material slab submerged in

water, the TL, in decibels, is defined in terms of the transmission coefficient f AV

Equations GV.3.3)- (rV3.A [0-s] :

TL = -l0logro(fi') GV.3.3)

GV.3.4)

The ef[ective wavenumber of the composite material in the x3 direction is given by

[ ,( zg -(p",)"*'f =zlzcos(k$L)--L- - --\.-rr -/ 'l(P"')"^"' ' 
2{

Ê{ =,ffi =k;{ +ia{

.r"rrfzr]

pû = p' - rlo' - o'(t*)- o'(t-r+)]

GV.3.s)

and the effective density and imFedance of the composite are, respectively,

Gv.3.O

and

2{ = pûê{ = GV.3.7)

In the above equations, î[û =C{ is the complex plane wave modulus of the

material in the direction of wave propagatio", ê{ is the longitudinal phase velocity in

the 13 direction, à{ isthe longitudinal wave amplitude attenuation coefEcient in the

x3 directioo, ô is the volume fraction of coated inclusions, 1p",)'^* is the specific

I

ûtû pd
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acoustic impedance of water known to be 1.5x106 Rayl, and the asterisk denotes the

complex conjugate.

It was previously shown that micromechanical models can be used to

approximate the global dynamic behavior of isofropic three phase lossy composites in

the low frequency, or quasi-static, regime [53]. In that study, viscoelastic composite

materials were created by introducing various volume fractions of spherical (a/c : a/b

: /) coated inclusions into the "stifP'matrix material whose properties are given in

Table 4-1. The TL resulting from layers of these viscoelastic composite materials

were measured for frequencies ranging from 0 to 100 Wlzby Bafud et al 1761. TL

estimates were calculated using the low kalimit scaffering model intoduced by Baird

et al @Kf) and the coated inclusion SC model derived in Chapter III. The results

have been reproduced in Figure 4-13. These plots replicate Figures 2 - 6 of reference

[76] but add SC model estimates. Two facts are readily apparent from inspection of

these plots. First, the quasi-static SC model is shown to have good agreement with

the low frequency scattering model. Second, the SC model provides accurate

estimates of frequency dqlendent lossy behavior as a function of both the frequency

and the coated inclusion volume fraction.
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Figure 4-13: SC and BtrCT model estimates of TL for a 1 cm thick slab of viscoelastic composite
submerged in water. Experimental data taken by Baird 4 all76l.

Quasi-static SC model precision results from the fact that it accurately

approximates the mechanisms dominating the response of a particulate composite

material to time-varying loading. Namely, the micromechanical approach takes

small strains in the neighborhood of an inclusion into account using the well-

developed homogenization techniques of shain localiznti6l and volume averaging.

This approach therefore accounts for losses occlming during wave propagation in a

direct manner by calculating shain rather than through asymptotic scattering

approximations. This approach has the added advantage of being easily amenable to

fts psdsling sf enisotropic composite material behavior resultrng from preferentially

oriented non-spherical inclusioa5 e1 ani 5efiopic constifuent phases.

The next section employs the SC model to approximate sound tansmission

through a viscoelastic composite slab containing a fixed volume fraction of coated

oblate inclusions in order to observe the eflect of varying aspect ratios. The

constituent materials are the same as those employed by Baird et all76l for the case

t l7



of a stiff matix. Figure 4-14 plots the TL as a function of frequency

coated inclusion volume fraction calculated using the SC model for

oriented inclusions as shown in Figure a-12(a).

for a fixed

identically

Tiansmission Loss of 1 cm thicl( Compôsite
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Figure 4-14: Transmission loss of 1 cm thick slab of composite material oriented as shown in
Figure 4.12(a) and containingl3o/o by volume of oblate coated inclusions of varying aspect ratios.

af  c=1,  - .  -  a f  c=1.5 , - -  -  a lc -2 , . . . . . . . . .  a f  c=2.5 .

Oscillations in TL observed at the lower frequencies are the result of thickness

resonances. Maximum tansmissioq i.e., minimrrm TL, occurs at the half-wavelength

resonances while maximum tansmission losses occur at the odd quarter wavelength

resonances. It is observed that increasing the aspect ratto dc results in a small

increase in TL Qess than 2 dB in the 0 to 100 ktlz range) because of the increased

shear shain in the neighborhood of the inclusion caused by its form. In other words,

for the same traveling compressional sfress wave field" more deformation occurs in

the neighborhood of the oblate inclusions as compared to the spherical inclusions.

Thus more mode conversion to shear occurs, inducing increased losses. This trend is
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also confirmed by plotting the attenuation coefficient" â6 , of the longitudinal wave

nnmber as a fimction of the angle in the xyfi plare, as shown in Figure 4-16. The

angle is the polar angle, here denoted as d, in spherical coordinates. The plot shows

the attenuation coefficient for a longitudinal wave taveling in the direction, n,

defined as n=(sindcospî,sindsinpi,cos9Ê) where g is the azimuthal engle, i1

an infinite medium containing oriented ellipsoidal inclusions oriented as shown in

Figure 4-15.

OblateSpheroid.a=b>c

ab
p= - : -

Figure 4-15: Geometry of oblate spheroids and their orientation with respect to the global
coordinate system.

It is in this way that the influence of changing the orientation of inclusions with

respect to tle coordinate system shown in Figure 4-l2a is studied. It is interesting to

note that changing the incident direction, n, as described above is equivalent to fixing

the incident direction of the plane wave and rotating the oblate inclusions about the

x2-axis. The attenuation coefficient in the xy4 plane (e :0) as a firnction of polar

angle is calculated from Equation GV.3.8).

â' (e) = firsin2 0 + fircos' 0
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Figure 4-16 shows that both the attenuation coefficient (in Np/-) and the anisotropy

factor, defined as (â"r-àrr)lâr, increase as the aspect ratio increases. One

interesting point is that as the polar angle increases, the attenuation coefficient is also

seen to increase. Here it is noted that there are competing factors which tend to

increase or decrease the lossy behavior with respect to the polar angle. These

competing factors are the effective shearing area of the inclusions, which depends on

inclusion form, and the increase or decrease in effective material stiffiress of the

composite due to coated-inclusion properties. For the case shown in Figure 4-l6,the

oblate form of the inclusions increases the shearing area parallel to the propagation

direction. This tends to increase the lossy properties of the composite and results in

an increase in the composite material's damping capacity, described here by the

attenuation coefficien! as a function of polar angle.

Figure ,t-16: Attenuation coefficient as a function of angle in ttre .rpr3 plane of material
containing oblate ellipsoidal inclusions of varying aspect ratios (9: 0 coincides with xsaxis). The
volume fraction of inclusions is 13% and the frequency of the incident wave is 50 kHz

af  c :1 ,  - .  -  a fc=1.5 , - -  -  a lc -2 , . . . . . . . . .a f  c :2 .5 .

Attenuation Coefricient at 50 kFlz vs. Propagation Direction
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In the example given below, that of prolate and penny shaped Lucite

inclusions, the opposite tend is observed as the inclusion and coating material

properties lead to an overall increase in stiffiress which will dominate the increase in

shearing area related to inclusion geometry. Stayiog with the oblate inclusion

example, Figure 4-17 plots the real and imaginary parts of the complex wave speed in

the x3 -direction as a firnction of frequency for aspect ratios a/c: l, \.5,2.0, and2.5,

again for a fixed volume fraction Q: 0.13. The results show another aspect of the

change in inclusion form, specifically that for a fixed frequency, the real part of the

phase velocity decreases with increasing aspect ratio. This corresponds to a relative

softening of the composite in the x3-direction as the aspect ratio increases. The

softening, a result of oblate inclusion geometry, increases the specific strain energy in

the neighborhood of the inclusion for the 5sps imposed stress levels. At the same

time, for single frequency, the absolute value of the imaginary part of the phase

velocity also decreases with increasing aspect ratio. This decrease in the imaginary

part is proportionally less than the decrease of the real part and therefore corresponds

to an increase in attenuation in the x3-direction for the oblate geomety. Otherwise

stated: the magnitude of the imaginary part of the inverted plane wave modulus along

rs increases with increasing aspect ratio. As discussed in Section 4.3.1, this causes an

increase in the specific strain energy for a fixed value of imposed stress, thereby

increasing the absorptive qualities ofthe composite alongx3.
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Figure ,L17: Real and imaginary parts of effective complex longitudinal wave speed in 13-

direction as function of frequency for a volume fraction inclusions of l3o/o. af c =1,
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The above discussion is for a specific case of a viscoelastic maûix containing

oblate coated inclusions. The SC model is more general, however, and can be used to

study the effects of, prolate, needle shaped and penny shaped inclusions (along with

any variation of these forms). In what follows, the SC model is applied to the case of

composite material çsmposed of the same 'ostiff' viscoelastic matrix material

containing inclusion and coating materials with the properties given rn Table 4-2.

This parametic study investigates the effects of zuch geomehies on the overall

damFing properties of the composite.

8.Table 4-22 MateriâI oroperties of coatinc and inclusion for material modeled in Fieure ,l-

z(GPa) v pkstd
Coatîng r.40 0.40 1200

Inclusion 28.5 0.23 2300
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To display the SC model's cqpabilities, five types of inclusions are considered:

spherical, oblate, prolate, penny-shaped, and needle-shaped ellipsoids. Table 4-3

gives the minss radius ratios, a/b and a/c,for each of these c{Nes.

Figure 4-18 shows the variation of the calculated attenuation coefficient in the xt - xs

plane as a function of polar angle. Minimum attenuation observed coincides with

propagation along the x:-aris (0 : 0) for a composite containing needle shaped

inclusions aliged with this axis. For the same composite, attenuation increases

monotonically with increasing angle between incident plane wave and the long-axis

of the needle shape inclusions. This plot also shows that attenuation diminishes for

propagation along the x1-axis (and therefore, by symmeûy, the ryaxis) of a composite

containing penny-shaped inclusions whose large radii (a and b) are aliped with the

xyx2 plane. It was previously mentioned that this decreasing affenuation is the result

of increased stiffness in the direction that coinciding with tle long major anes when

the composite inclusion has a higher stiftess value than the matuix. For the present

material studie{ this affect dsminates the increase in shearing area due to inclusion

geometry. Using the specific sfain energy argumen! the increase in composite

material stifhess in certain directions decreases the shain specific energy for stress

wave of fixed magnitude propagating in the same direction. This reasoning also

explains why the attenuation coefficient anisotropy factor of the oblate and penny

shaped inclusions is higher than for the needle shaped inclusions. The oblate form of

those inclusions renders the increase in shearing arca increasingly influential with

respect to the reinforcement it imparts to the composite. For the oblate and penny-

shaped inclusions the increase in stiftess still dsminates but the effects are reduced

t23

Table 4-3: IYIinor radius ratios for modeled in + E.

Sphere Oblate Penny Prolate Needle
q/b I I I I I

a/c I 3 l0 I
3

I
10



because the shearing area is significantly higher in this form of inclusion (compared

to the needle-shape).

Attenuatiôn eoefFciêht at 50 kHz vs Prôpagatioô AÉgle for Difrerent InClusion Fôims
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Figure 4-18: Attenuation coefficient as a function of angle in the x5x3 plane for a composite
consisting of a viscoelastic matrix with Lucite coated glass ellipsoidal inclusions of dilferent forms
(d = 0 coincides with r3-axis). The volume fraction of inclusions is 10% and the frequency of the
incident wave is 50 kHz

As expecte4 the composite containing spherical inclusions ha.s a constant attenuation

regardless of propagation direction, and the oblaG and prolate inclusion cases fall

somewhere between the limits of the penny-shape and needle-shape inclusions,

reqpectively. One point of interest is that the attenuation coeffi.cient for propagation

along the xj axis for materials containing both oblate and penny-shaped inclusions is

slightly superior to that of the material containing spherical inclusions. An

explanation of this behavior is that the shape of the inclusion leads to shonger mode

conversion at the boundaries resulting from shess concentations related to the

inclusion form.
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At this point it is interesting to point out that all of the factors discussed above

give a few guidelines for the design of composite materials having a desired lossy

behavior. First, if inclusions are softer than the matrix material, increased inclusion

aspect ratios lead to increased damFing capacity in all directions as compared to the

same inclusion volume fraction of spherical inclusions. The highest losses will be

observed in directions perpendicular to the outward normals of increased shear areurs.

This is illustated with the oblate inclusion case shown in Figure 4-16. Secondly, if

st'fÊress is required in one direction while high losses are desired in an orthogonal

direction, high modulus needle shaped inclusions are an ideal solution (see Figure

4-18). This type of inclusion leads to low losses and high reinforcement along the

longest inclusion minor axis but maintains lossy behavior nearly identical to spherical

inclusions, which is double the attenuation observed along the longest axis, for

propagation in all directions perpendicular to that axis. Using these two cases as

guidelines and the quasi-sûatic general SC model for design, numerous tlpes of

materials of varying lossy behavior can be conceived relatively easily.

The present section explored some of the strengths of the general SC model in

the quasi-static domain. The SC model used for these calculations is limited to a

singls inclusion form, set of material properties, and spatial orientation.

Reformulation of the SC model using dilute shain concentration tensors (DSCT)

permits the approximation of the behavior of many different tlpes of viscoelastic

composite materials with relative ease. It is the purpose of the following section to

show the level of generality achievable through application of the SC DSCT model

derived in Section 3.3.

433 Identical coated inclusions with a known orientational distribution

The most common application of dilrrte strain concentation tensors cited in

literature is the approximation of the globally isohopic material properties of
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composites containing identical non-spherical inclusions having a unifom orientation

dishibution: The generality of Equation (trI.3.33), however, permits the

homogenization of composites containing non-spherical inclusions with a preferential

orientation distibution just as easily as for the case of a uniform distribution. This is

done by taking the approach discussed below. First the orientational average or a

fourfh order tensor quantity is defined in the following equation [56].

b ur\ = 
* yf"V -a,a *a rB *n*dÇl 0v.3.e)

In this expression, a is an integration factor, ay is the rotation matix determined by

the appropriate Euler angles, 0, rp, and yr, B is a fourth order tensor defined with

respect to its local coordinate system, {n} ir the orientational average of dhe sâme

tensor with respect to the global coordinate system, Q is the orientational space

defined by the Euler angles, and p(O) is the orientation distribution function. It is

now useful to define a normalized dishibution firnction, n(O):

(rv.3.r0)

Equation (tV.3.10) defines a distribution which has the desirable property that its

integral over the entire orientation space is unity. Substituting Eq. (IV.3.10) into Eq.

GV.3.9) yields:

lu *l = [n (a) a *a ra *a rB,*rd(l
o

(rv.3.11)

Now, in order to find the effective properties of a composite containing ellipsoidal

inclusions with a known orientation disnibution and a known inclusion and coating
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volume fraction (f' and 1fc, respectively), it is helpful to define the followingtensor

quantity.

è'* = f' (ô' -c')' Â' + f" (." -c')' Â' (rv.3.12)

Ô'o" is simply the last two terms of Equation Qn.2.73) and is calculated by the SC

model with respect to the local coordinate system for the family of inclusions having

the same orientation in space. Then, when all coated inclusions in the composite are

assumed to have identical shape and material properties, the effective material

properties of the composite can be found by taking the orientational average of Ô'-

and adding it to the matrix stiffrress tensor, A , * follows:

cffi = Ô,y," *III, ( 0,(,y)a*ara*arc'ff*d'0l4l,ty (rv-3.13)
e ë v t

Equation (IV.3.13) is a general expression that permits the calculation of the effective

properties of a composite consisting of identical oriented coated inclusions zuch as

those studied by Haberman et al 150], randomly oriented inclusions such as for the

composites studied by Berryman [51], and for any known preferential orientation

distribution zuch as can be observed in shale material studied by Honrby et al l79lby

selection of the appropriate orientation d.isûibution. Equation (IV.3.12) for Ô'- is

not, in general, an analytical expression and therefore the evaluation of the integral is

approximated by a summation in Equation (IV.3.13).

4.3.3.1 Approximation of globally isotropic properties

The section presents an initial verification of the generalized SC model using

concentration tensors. The verification is simply a check on the agreement between

I
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the SC DSCT model and Berqm.an's model [51] for the case of ellipsoidal inclusions

having a unifonn orientation dishibution. The effective compressional and shear

rû/ave speeds in the materials studied by Berryman have been reproduced for the

prolate and oblate inclusion cases (see Figwes 5b, c and 6b, c of reference t51]) in

Figure 4-1,9 and Figure 4-20, respectively. The materials studied are suspensions of

eitherprolate (db: o/c: I0)or oblate (a/b:1; a/c: I0) rock particles inwater.

The rock material is assumed to have the bulk and shear moduli K, : 44.9(I-0.004i)

GPa and p,: 37.9 GPa,respectively and a density of p,:2700 kg/m3 while the same

properties for water are Kn : 2.18 GPa, pn: 1-i682 Pa, and p' : 1000 kg/ms. T\e

shear modulus of water is assumed to be lossy in accordwith Berrynnan's paper and a

very small (but non-zero) value is assigned to the real part in order to avoid

singularity problems with calculation of the shain localization tensor, Ât, in the SC

DSCT model.
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Figure 4-20: Compressional and shear wave speeds and Çr values as a function of volume
fraction calculated using the SC DSCT model and Berryman's model [51] for the case of oblate
rock inclusions in water where alb = | and a/c : 10.

These plots illusfrate that the behavior modeled by the SC DSCT model and

Berryman's model (which were reproduced for reference using the equations (32) and

(33) along with the appendix of reference [51]) is qualitatively similar though there

are some significant quantitative differences. Firstln the real parts of both the

compressional and shear wave speeds (c" andcs respectively) are nearly constant as

a function of volume fraction up to a certain concentration where the effect of the

rock inclusions begrns to have a marked effect on the global behavior and a shaç

increase in both wave speeds is observed. It is imFortant to point out that the sharp

increases in effective sound speed observed at specific model dependent concenhation

levels have a physical significance and that the apparcnt jump (or discontinuity) is due

to the numerical evaluation. The sharp increase in sound speed is direcfly related to

the fact that the elastic constants of the constituent phases differ by several orders of

magnitude. When the matix material is significantly softer than that of the inclusion,
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many models will predict a similar sharp increase in the effective elastic constants at

some level of concentation. This occurs at some concenhation level that represents

the point at which the reinforcement of the stiffer pha.se becomes important and,

because the high contast between the materials is higb, the result is a sharp increase

in effective elastic properties as a function of volume fraction. Berrym.an refers to

this concentration as the "threshold of rigidity" and gives an excellent discussion of

the physics of the modeled behavior in Section V of reference ll22l in terms of

different modeling approaches. Physically it is obvious that regardless of the

abruphess of this fansition, there can never be a true jump in material properties as a

firnction of the volume fraction of constituent materials. Indeed, the magnitude of the

observed 'Jump" decreases as the step size used for evaluation decreases leaving

instead a very steep slope which is exacerbated by the implicit nature of the selÊ

consistent model U221. Smaller concentration steps have not been employed in order

to reduce calculation time and because this behavior can be explained in terms of

physical phenomena and the modeling approach. It is important to note that the

specific volume fraction corresponding to the threshold of rigidity varies depending

on the inclusion aspect ratio and the elastic confiast of the constituents for both the SC

DSCT model and Berryrman's model.

The threshold of rigidity discussed above coincides with another obsenration,

the presence of a singulaxity in the values of Ô.' associated with the compressional

wave number for the same rock concentration value. Ô;' it related to the damping

quality of the composite and calculated from the expression É"o =È"o*tlZQ"r, where

f"o ir the complex compressional or shear wave number of the effective material,

indeed Ô;I:2â"o. TmFortantly, both the micromechanical SC DSCT model and

Berryn:r.an's model show this result. For the case of prolate inclusions, ttre SC DSCT

formulation shows the singularity at æ23Yo rock, whereas Berryman's model displays

this singularity at a concentation of *30Yo and for the case of oblate inclusions these
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values arc x2lYo using SC DSCT and æl$o/o using Berrym.an's model. Though the

location of the singularity in the SC DSCT model is different from that modeled by

Berryman, the behavior, as described at length by Berrymanfl22f, is non-physical in

both cases and is due uniquely to SC modeling's implicit solution formulation for

çsmposites consisting of materials with such high contast between elastic constants.

Here it is stressed, asi \ryas pointed out by Berrym.an U221, that the lossy component of

the effective wave speeds are over predicted near this singularity and that this is a

lrysakness of the SC modeling approach for high conhast composites. More

importanfly, the trends of the DSCT formulation for the SC coated inclusion model

agree well with Berry.rr.an's accepted model. Indeed Berr5rman's SC relatiols were

derived by using the orientational averages of Wu's "Z-matrix" formulation [28]

(which is based on Eshelby's solution) for the case of a uniform distibution of

orientation of ellipsoidal inclusions. The two approaches are therefore quite simils',

with Berryman's formulation falling closer to the lower bound and the SC DSCT

being nearer the upper bound. The large quantitative difference between the two

models is due this fact coupled with the high conhast of constituent materials for this

particular case. The qualitative agreement with Berryman's approach is pointed out

here as a validation the DSCT formulation fs1 implementation in the quasi-static

regime when a composite material has a complex microstructure and yet displays

globa[y isofiopic behavior because the identical inclusions have a random orientation

distribution.

At this point it is informative to show that the DSCT formulation can just as

easily be used allow an increased degree of flexibility ia 6sdeling particulafe

composites that are globally anisotopic as a result of inherent material anisotropy,

preferential orientation sf sllipsoidal inclusions, or both. The advantage of the SC

DSCT model is that modeling of such materials, which are globally snisoûopic, is

teated in the exact same manner as discussed above, and therefore no additional

nsdsling complexity is added for homogenization of zuch composites. This is a

marked improve,ment over Berryman's approach" which is limited to gtobally

132



isohopic materials, or the SC model, which is limited to either spherical or identically

oriented inclusions. One further imFroVement that can be made by using the cu:rent

model, since it is valid for coated inclusions, is the implementation of the generalized

SC (GSC) model for the case of bi-phase comFosites. The GSC model, which was

innoduced by Christensen and Lo [45], assumes that the inclusion phase is

surrounded directly by the matrix material and that entire coated inclusion is then

embedded in an effective medium of unknown properties. This modification to the

SC model has been shown to yield better results than the SC, Mori-Tanaka and

differential methods for increased volume fractions ll54l.

4.3.3.2 Approximation of elobally anisohopic properties

DSCT formulation easily lends iself to computations of the effective material

properties for composite materials consisting of inclusions having non-spherical

geometries with a preferential orientation (neither aliped nor randomly oriented).

Such microstructures can be observed in geologic materials, such as the shales studied

by Hornby et aI [78], or in fabricatedmatenals due to manufacturing processes. This

section presents a parametric study of the attenuation coefficient as a function of

propagation angle in a composite consisting of prolate inclusions in a lossy mahix in

order to illustrate the capability of the SC DSCT model to capture these effects.

Consider a hypothetical material consisting of a polyner matrix having the

properties of the "soft" polymer chaructsnzed by Baird et al 176l which is assumed to

be incompressible at all frequencies and containing prolate glass inclusions (a/b : a/c

: 5, ltst^: 28.5 GPa, o4oo : 0.23 GPa, pgro"r: 2300 k7/*t). The inclusions are

assumed to have an axis-slmmetric preferential orientation along the x1-aris where

the level of preference is fully described by a Gaussian distribution of solid azimuthal

angle, 0 ,havjrng an assumed standard deviation, o, (see Figure 4-21).
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F'igure 42lz Onentztion of prolate glass inclusions. d is the azimuthal angle.

The complete orientation disûibution, n(Cl), given in Equation (tV.3.10) is then

defined using the normalized Gaussian distribution for the azimuthal mgle, nr,,*(e),

as follows:

" 
(ou) = l tgaas@)nu,"(a,)

(rv.3.14)

where:

It is important to note that the comma in Equation (tV.3.14) does not <lenote the

spatial derivative. This normalized dishibution firnction can then be employed

directly in Equation (IV.3.13) to approximate the effective properties of a material

having inclusions of assumed orientational preference. This was done for a composite

consisting of l0%o by volume glass inclusions at a frequency of 25 kllz for five

different values of o, rangng from 0o (all inclusions aligned along the rl-axis) to æo

(uniform dishibution yielding a globally isotropic composite). The results of the

parametic study are given below nFigare 4-22.

,,,=l+,if
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Azutïiitial Anglè, 6, (9)

Figure Ç222 Yariation of attenuation coefficient as a fonction of azimuthal angle for
glasVpolymer composite with varying degrees of anisotropy. Volume fraction of prolate
inclusions q = l0Yo, a/b : o/c :5, frequency inspected/: 25 k't

Two intuitive checks are immediately obvious from the inspection of Figare 4-22.

First the magnitude of anisoûopy factor, defined here as (Ar-q)làr, decreases

with increasirrg o, from the case of aligned prolate inclusions (o, = 0 ) up to the

limit of oe: @ where the composite is isofropic and similar to the materials studied

in the previous section. Second, the minimum attenuation coefficient calculated is for

propagation along the x1-axis for the case of identically oriented glass inclusions

aliped with the xr-axis. This yields minimal attenuation because of the high-stiftess

and non-lossy material behavior of the inclusions. Several other interesting points can

be observed about these calculations. An interesting feature of this plot is that for

highly preferential orientation distibutions one observes a slightly higher value of â

in directions orthogonal to the r1-æris over the uniform dishibution case. This is due

to the increase in strain energy brought about by stess concenûation at inclusion ends
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for plane wave incidence perpendicular to the major inclusion axis. ThoWh this

effect is small, it is an interesting result of orientational preference. It also illustrates

the effects that can be captured by the quasi-static SC DSCT model that relate stess

concentration due different inclusion geometries and orientation distibutions to the

murcroscopic damping capacity of a viscoelastic composite. This parametric study

clearly shows the capability of the SC DSCT model to capture the variation of

anisotopy depending on orientational preference of like inclusions. Since, either as a

nahral oocurrence or due to inherent variability in processing techniques, very few

real materials have identically oriented particulate inclusions this additional flexibility

is very useful. Indeed, the case study below shows a potential application of this

specific capability.

4.3 .3.3 Comparison with experiment

The effective elastic constants of the shale maGrial studied by the Homby ef

al l78l are approximated here using the SC DSCT model as a case study. The shale

can be broadly desc,libed asi a composite material consisting of a load bearing water-

filled porous clay containing three distinct "spherical" minetal inclusion phassg

(qtarz,feldspar, and pyrite) of different concentrations (see Figrre 4-23). For a more

detailed description of the composition ofthe material see reference [78].
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Figure 4-23: Micrograph of shale studied by Horby et al 1781(image from reference).

The porous clay itself is best described by fully-connected oblate clay platelets with a

preferential orientation disfiibution (a:ris-symmetric about the x3-axis) arranged zuch

that -11% porosity remains. pe1 msdsling puq)oses, it is assumed that the water-

filled pores can conversely be considered as oblate inclusions (db : 1, a/c : 20) wirh

preferential orientation (axis-rymmetric about the xs-axis) in an otherwise continuous

isotropic clay matix of known properties given in reference [78]. The material

properties used here are summarized in Table I and were taken from various sources

(Mavko et al }551and Merkel et al fl56l,) since not all constituent phase properties

were specified in reference [78].

Homby et al's approximation of the effective properties of shale studied was done in

three different homogenization steps. First, the effective fluid-clay composite was

approximated as a tansversely isotropic clay medium \À/ith I lYo oblate water-filled

I

r37

Table 4-4: Material properties of the constituent phases of shale studied by Hornby et aL
Material data taken from various souroes: clav I7El. suarh and r

K (GPa) p (GPa) p (ks/m') a eÂ)
Clav 22.9 10.6 1826
Water 2.2 l x l0 " 1000 11
Qtarn 36.4 45.0 2640 53

Feldsnar 75.6 25.6 2630 1 l
Pwîte t03.7 109 501s 9



pores. Aa orientational average was then taken of this medium by employing the

spatial dishibution of pore orientation (approximated from micrographs of the shale)

yielding the efflective properties of the fluid-clay mahix. Finally, the spherical

mineral phases \ilere added to this effective fluid-clay composite to get an

approximation of the effective components of the stiffiress tensor. For approximation

of the global effective properties of this shale material the SC DSCT model yields the

most accurate results when the modeling is done in trvo separate steps. First, a

transversely isohopic matrix fluid porous clay medium is approximated using

techniques described in Section 4.3.3.2 above. The pores are assumed to have an

orientation distribution simila to that given in pquation (IV.3.14), but for the case of

oblate inclusions the aris of symmetry is the x3-axis and the angular variations are for

tle solid polar angle, p (see Figure 4-15). The standard deviation of angular variation

was assume to be 6ç=30" in accordance with the histogram show in Fig. 9 of

reference [78]. This effective medium was then used as the matrix to which the three

spherical mineral phases were added. The results of this 6edeling approach are given

in Table 4-5.

Table 4-5: Experirnental data and results of effective stiffness coefficients of shale (GPa) for
various modeling techniques. DSCT : Dilute strain concentration tensoq SC = Self-Consistent;
GSC : Generalized Self-ConsistenL

The results of the SC DSCT model are in good agreement with the properties

observed by Jones and Wang l77l and modeled by Hornby et al [78].

Observed (GPa) Hornby et al (GPa) SC DSCT (GPa) GSC DSCT (GPa)

Cn 34.3+ 1.4 34.7 29.8 30.0
C>t 34.3+ 1.4 34.7 29.8 30.0
Ccc 22.7+0.9 22.2 18.7 20.0
Cu 5.4+ 0.8 6.0 4.7 4.8
Css 5.4+ 0.8 6.0 4.7 4.8
Cot 10.6+ 1.6 10.8 8.3 8.4
Ctz Not reported Not reported t2.3 12.4
Cts 10.7 + 5.4 11.5 14.7 t4.7
Czs 10.7 + 5.4 11 .5 14.7 14.7
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Approximations have been run using both the SC DSCT model as well as the GSC

model with DSCT fonnulation. Both of these techniques underestimate all of the

observed values ofthe components of tle stiftess tensor except Cts and Czs with fh.e

GSC model showing improved agreement with experimental values as would be

expected. The experimental error on the mean value of components Cn and Czs is

very high however, and so comparison of the model with the experimental values is

mostly for qualitative purposes. Indeed the SC DSCT model predicts the effective

values of all stiffiress coefficients to within l0% of the lower limit of the

experimentally observed values and the anisofopic behavior of the composite shale

due to the preferentially oriented oblate pores is well captured by the DSCT

formulation. With regards to the accuracy of the SC DSCT and GSC model

approximations with respect to the approach of Hornby et al, several points musts be

raised. First of all, the agreement of the two models is highly dependent on the values

used for the moduli of the constituent mineral phases. Due to the fact that these

values were not given in the reference, this could be one source of disagreement

between the results given here and those arrived at by Horby et al. It is also important

to note that the agreement with the experimental data is partially dependent on the

modulus in question. The SC DSCT and GSC models show better agreement with the

values of the shear moduli whereas the approach Hornby ef a/ obviously approximates

the plane \ilave moduli (Ctr Czz, and C::) more accwaGly. Most importantly, the

application of the SC DSCT model to approximate the effective properties of this

material with good qualitative and quantitative agreement between model and

experiment is a shong example ofthe generality of the DSCT approach.

43.4 Sub-micron ) Micro à Macro Modeling

Another area where the SC DSCT model can be show to be applicable is in the

area of multiscale modeling. Many complex materials are most accurately modeled
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as having behavior that can be modeled on several scales. The main problem

presented by these materials is the ability to tie behavior on multiple scales together in

4 6annêr that yields a complete picture of the material behavior at the scale of interest

based on its multiscale composition. Indeed the micromechanical approach is, by

definition, a tlpe of multiscale modeling. The materials modeled above, however,

have been for the simple case of two separate scales. In the following case the

influence of the material properties and geomeûry of one or multiple tlpes inclusions

on the same length scale is homogenized in order to approximate the behavior of the

composite on a larger length scale. For multiscale modeling purposes, it is, in

general; assumed that there exist several length scales such that the effect of

inhomogeneities and interfaces at an inferior scale can be taken into account at the

next highest length scale through some type of averaging 1sçhnique. This tacifly

assumes that the behavior at lower level length scales only have an effect on the next

highest level in some average v/ay and that no point-to-point interactions are

imFortant between length scales B7l. For the cases presented above, for example, the

effect of inclusions (whose interaction at their respective length scale is indirectly

taken into account via the self-consistent scheme) on the global homogeneous

behavior is done through an averaging scheme that involves finding the proper DSCT.

For composites consisting of more than two scales, homogeniætion techniques

analogous to the DSCT describe above must be developed between each length scale

and the next highest length scale, starting with the smallest scale to be considered and

increasing until the effective globat behavior is approximated. This is a very

interesting problem that applies to nano-composites and many naturally occurring

materials displaying structural hierarchy. The approach requires the ability to model

inhomogeneities and interfaces on the local level (at their respective length scale) with

respect to the surrounding medium and then to use this information to model the

global behavior (see, for example, Spearot et al ll57f). Problems of this kind are very

difficult due to the complexity of models at very small length scales, and are beyond

the scope of this work. Here the emphasis is simFly on showing that the SC DSCT
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model can be used when the effect of multiple scales must be taken into account. To

do so, the resrllts of the SC DSCT model of a silicon carbide-aluminum (SiC-Al)

comJrosite material presented by Ledbetter and Datta are shown together with the

experimental and theoretical results presented in the reference [79].

4.3.4.1, Comparison with experiment

The material studied by Ledbetter and Datta is a bi-phase material with

complex microstructure due to manufacturing processes. Modeling this material

requires a scale tansition between three different length scales. The smallest length

scale is that of prolate (db : a/c : 3) SiC inclusions with a uniform orientation

distribution embedded in an aluminum mahix. These prolate inclusions have sub-

micron descriptive lengths (^250-750 nm) and are non-uniformly distibuted within

the aluminum host (see Figure 4-24a). The distribution of the SiC particles within the

aluminum host is such that identically oriented oblate islands (db : 1, a/c : 3) of

pure aluminum with descriptive lengths of -24 Frm remain. These pure aluminum

islands are surrounded by a 'osea" of high volume firaction SiC-Al composite. The

length scale associated with the Al islands is an intermediate scale, which is referred

to as the meso-scale, between the sub-micron (nano) scale and the macroscopic scale.

The total volume fraction of SiC in the composite was experimentally determined to

be 30yo, buL because of the non-uniformity of the spatial disfribution, the

concenfation level of SiC particles in the "sea" is approximated as being 50% 1791.

For modeling purposes, the important material properties of SiC and Al were given

as: K5;c' : 223.4 GPa, psp: 188.1 GPa, psis: 3160 kg/m3, KAt:74-9 GPa, F,eI:

26.7 GPa, ûd p,Er: 2700 kg/^t.
I
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Figure L24: Composite material studied by Ledbetter and Datta (image taken from reference
[79]). The material consists of a non-uniform distribution of sub-micron'prolate SiC particles in
an aluminum matrix. (a) Micrograph of material, SiC particles are dark areas, (b) Schematic of
modeling approach employed.

Ledbetter and Datta proposed a multiple scattering model which is valid for

ellipsoidal inclusions having either uniform or identically oriented orientation

dishibution to approximate the effective material properties of this composite which

gives good results [79]. Their model illustrates the difficulty involved in developing

scaftering-based models for approximation of the effective properties of composites

displaying complex microstructure. The modeling was done in trvo steps (see Figure

4-24b) the first of which involves approximating the "sea'' as a homogeneous

isotropic medium resulting from the 50-50 mix of SiC prolatë inclusions having a

uniform orientation distribution and the aluminum matix. This isotopic medium is

then idealized as the mafrix material of the global composite material which has

identically oriented (aligned with the xyx2plane) oblate Al inclusions with a volume

fraction of 40Vo. The implementation of the SC DSCT model is done in an identical

manner. First the sub-micronàmeso transition is made by employing the DSCT

formulation given in Section 4.3.3.I to find a globally isotopic medium which acts as

the matrix for a meso)macro scale tansition modeling step. The mesoàmacro step

is done by employing the basic SC model given in Equations (fi.2.73),(III.2.75), and

W*2.76) where the matrix for:nd in the previous step is assumed to contain 40%
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oblate Al inclusions aligned with fhe xrxz plane. The results of this modeling

approach are tabulated in Table 4-6 together with the theoretical and experimental

values given by Ledbetter and Datta 1791, the DSCT GSC, and the DSCT Mori-

Tanaka (lvfD model results.

Table 4-6: Observed and calculated values of the coefficients of the stiffness tensor (GPa) for Al-
SiC composite of Ledbetter and Dattz 1791. (DSCT : Dilute strain concentration tensorl GSC =

The DSCT GSC and DSCT MT models were run for comparison pu{poses. For this

particular composite, the MT model seerxi to greatly over-estimate the effective

material properties and approximates too high of a degree of anisotropy. This is not

unexpected, as the MT is known to overestimate effective material properties when

the matix material is more sliffrhan the inclusion phase [158, 159]. As observed in

the previous section, the DSCT GSC model again shows improved agreement with

the experimental values as compared to the SC DSCT model. The capability of the

three-phase coated-inclusion SC model of Cherkaoui to be extended to a GSC scheme

is indeed one of the strengths which was also noted Section 4.3.3.3 that is stressed.

The results indicate that the SC DSCT and GSC models both over-estimate the

measured material properties and show a lower degree of anisoûopy than that

observed; the difference in the values of Cn and Cx is negligible and the contrast

between Caa and Ceo is not as marked as is the actual material or the LD model.

Nevertheless, the theoretical tansverse isotropy, C#"'= ("ff -Cif)12, shows only

a 0.5Yo difference between the SC DSCT model and theoretical values of Coc. The

Generalized Self-Consistenfi MT: Mori-Tanaka: LD: Ledbetter and
Observed SC DSCT GSC DSCT MT DSCT LD

C,, 765.9 172.9 170.8 240.9 172.7
C,, 16s.1 t72.9 170.8 240.9 t72.7
C,, t48.3 161,.7 t60.7 118.7 r48.0
Cu 43.3 47.9 47.3 42.9 42.9
Cçç 43.4 47.9 47.3 42.9 42.9
Crs 48.7 51.7 50.6 51.3 51.3
Cn 68.5 69.2 69.r 99.r 70.1
Cts 62.2 69.1 69.0 67.9 67.7
Czt 62.2 69.1 69.0 67.9 67.7
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model is therefore shown to be giving consistent results. Here it must be noted that

the LD model yields a better approximation of the observed effective properties of the

SiC-Al composite than the SC DSCT model. The improved agreement more than

likely stems from the fact that the LD model is derived from multiple scattering

considerations and therefore is able to directly take into account high volume fractions

whereas the SC forrrulation implicitly approximates such behavior. As the volume

fraction increases, the error involved in the implicit scheme will increase and

therefore leads to the SC model's lower precision approximation. It is important,

however, to stress that the generality of the SC DSCT model for applications to

comFosite materials of very different constifuent phases, geometries, and orientational

preferences as displayed here and in the examples above is a great advantage over

models such as that proposed by Ledbetter and Datta which are reshicted to

heterogeneities with identical orientations or a uniform orientation distribution.

43.5 Distribution of coating thicknesses

The last validation of the SC DSCT model is an example of how it can be

extended to capture the effect of the variation in coating thickness observed in real

materials. Previous sections showed that the SC model gives very good

approximations of the lossy behavior of a viscoelastic material containing hollow

microspheres by comparing calculated values of TL to experimental values. One of

the assumptions of that formulation is that all coated inclusions are identical. Though

the effect of the relative inclusions size with respect to other inclusions can be

assumed to have a negligible effect on the global properties since they are all on the

same length scale and must be several orders of magnitude smaller than the

wavelength of the incident wave in the host material, the distribution of coating

thickness can still have a non-negligible effect. This is due to the fact that the

contrast in material properties between the inclusion (which is a void) and coating (a
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glassy material) is significant. Indee4 the model proposed by Baird et al 1761,

included a modification for what they called a"size effect." Though the appellation

of their model as capturing a "size-effecf is a misnomer as only the variation in

coating thickness is taken into accoun! their model shows imFroved agreement with

TL data fot a 2.5 cm thick slab of viscoelastic composite. Here the SC model is

modified by using the concept of DSCT to take into account a variation in coating

thickness. This is done by recognizing that each family of composite inclusions that

have the some coating thickness can be modeled as representing a family of inclusions

with slightly different material properties. The homogenization scheme is then

represented similarly to that shown in Figure 34, where the coating thickness of the

inclusions is varied from family to family and there is no orientational effect because

ofthe inclusions are spherical.

In order to cast the tensor relations for the effective moduli of the comFosite

for a variation of coating thickness an approach 5imilar to that outlined by Batd et al

is employed. First, the coating fraction, y6 is defined which quantifies the percentage

of the çemFosite inclusion volume which is coating for a family of spherical coated

inclusions with inner radius ai arrd outer radius b;. Here, the subscripts on 7 do not

denote a tensor quantity but simFly the coating fraction for different values of inner

and outer radii, likewise the comma does not denote a spatial derivative. For this

idealized family of spherical composite inclusions, the coating fraction can then be

expressed as a function of the radii as shown below.

(rv.3.15)

It is further assumed that the relative size of the inclusions has s lsgligible effect on

the globally observed properties and that the inner radius has a consfant yalue, a-r.

The coating fraction for each family of inclusions then relates the inclusion and

T,i:'1 [e)'
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coating volume fractions to total volume fraction of the famity having the same outer

radius (and therefore coating fraction) with the following relations.

f"J = e,T, GV.3.1O

f '  
j  =Q,-  f ' ' '  =P,(-Y,) (rv.3.17)

t1 i5 imFortant to note that the above relations also hold for ellipsoidal inclusions

(though it would be admittedly difficult to experimentally determine the coating

fraction for non-spherical inclusions). For a true composite material, it is obvious that

the coating thickness will be found in some distibution that can be related to a

measured distribution of outer radii through Equation (IV.3.15). From this measured

disfribution, pV) , the normalized dishibution, n(y), is calculated by using Equation

(IV.3.10). The resulting expression of the SC model for the case of varying coating

thicknesses is then written:

1o?)ar
(rv.3.18)ôq:*.rLjp(rXtr -r)^c* :A' (v)+vtè* , A" (r)Vr

^r
èû oA +ai"V){Q-4)tè* : A' (r,)*r j^èeI , }" (r,)lM

j=1

(rv.3.re)

The expression given in Equation (IV.3.18) is a continuous function of y though the

shain localization tensors, Â", 
"anoot 

be integrated for the case 6f sllipsoidal

inclusions since they are not anatytic functions. Equation OV.3.l9) must therefore be

employed for correct implementation for those cases or for simplified direct
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applicæion inthe case of spheriéal inclusions as the coating distibution firnction may

yield integration exhemely difficult or impossible for the case of spherical coated

inclusions.

4.3.5.1 Comparis_on with experiment

The use of DSCT for the case of a distribution of coating thicknesses will be

verified by implementing Equation (tV.3.19) to calculate the TL of a 2.5 cm thick

slab of viscoelastic material containing coated micro-inclusions submerged in water.

The results are comFared with the experimetal data of Baird et al f76l as well as the

SC approximation which only uses the average coating thickness hypothesis. The

viscoelastic composite material in question i5 ssmFosed of the "soff' viscoelastic

polym.er andT}Yo by volume coated inclusions. The material properties of each phase

are given in Table 4-1. The coating fraction disnibution is assumed to be well

approximated by the Rayleigh distribution given below based on heuristic grounds

and through *initial mqxurements" by Baird et al1761. The average coating fraction

is y =2.5x10-2 .

:> n(r)= 
b_9,

(rv.3.20)

This distribution is then used to calculate the complex effective stifFness tensor of the

viscoelastis composite tbrougb Equation (IV.3.19) and the TL is then calculated by

employing relations (IV.3.3)-(IV.3.7). The material is fully described by the two

Lamé coefficients since the inclusions are spherical and the composite is therefore

globally isotropic. It is also important to point out that due to the distribution of shell

thicknesses, the equation expressing the effective density of the composite, (IV.3.O,

must be calculated by the law of mixfures relationship below.

p(r):#"*(-+(;)')

I
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p6 = p' (r - ç) * rV"V S|0 - r,) r' + y ip'f^y (rv.3.21)

Figure 4-25 shows the results of the SC model as modified with DSCT for the

case of a variation in coating thickness when applied to the "soff'polyner composite

material \Àrith 10% coated inclusions tested by Baird et al f761. Included on the plot is

the curve resulting from implementation ofthe uniform coating thickness model given

by Haberman et al153f.

Figure 4-25: Transmission loss calculated using SC and SC DSCT with experimental data from
reference [761.

As can be clearly seen in the plot the agreement of the model with the experimental

data is improved. The slope of the high frequency regime is very nearly the same as

the trend observed in the data which is a marked improvement over the uniform
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thickness model. Further, the value of the TL approximation in ge,neral is wifhin 2-3

dB across the firll range of frequencies inspected: 0-100 kFIz.

Comments on numerical implementation of SC model

Successful SC model imFlementation depends on the ability to mrmerically

evaluate the implicit problem given in Equations Qn.2.73), (m.2.75), and @.2.7Q.

These equations represent a tensor relationship whose solution must be found

implicitly. The implicit nature requires a carefirl consideration of numerical root-

finding and./or minimizati6l 1gçhniques to find the effective viscoelastic stifhess

tensor, Ôd. For the case of spherical isotropic coated inclusions embedded in an

isoûopic matrix, the resulting effective properties will also be isotopic and Equations

(m.2.73), (m.2.75), and @..2.76) can be reduced to two imptcit equations for the

effective Lamé constants, pû nd 2û . T\ese relations are given in Appendix A of

Haberman et al f531. Solutions to this set of equations can be obtained by using a

two-dimensional Newton-Raphson numerical root-finding scheme. This technique

for the isotropic effective material is very robust and no convergenoe problems have

been observed regardless of material contasts or volume fraction of coated

inclusions.

The implicit solution to the general anisofiopic case is neither simple nor is it

guaranteed to converge for all combinations of material stiffiress contrasts, inclusion

aspect ratios, or volume fractions. One approach to finding an approximate solution

of the sqmposite's effective viscoelastic properties i51fi1srrgh minimization. The first

step in the minimization process it the re-arrangement of the SC tensor equations into

a vector function to be minimized to an acceptable level of accuracy. Orthotropic

materials are fully described by nine independent viscoelastic constants and therefore

the coefficients of the effective stiffiress tensor can be re-arranged as a 9xl vector,

4.4

t49



è6 -+i6 . The SC model and the approximate solution can then be used to create

the firnction shown below in Equation (IV.4.l).

n(ç*)= sc(iû)-id GV.4.1)

In this relationship , h("*) is the function to be minimized and SC("t) is understood

to represent the resulq represented in vector form, of the SC model given in Equations

(m.2.73), W.2.75), and, @..2.76) for an input of i6 -+ Ôt. It is also important to

point out that the evaluation of î/ (ôt), given in Equation Cm.2.40),is required for

correct evaluation of the strain localization tensors, Â' *d Ât . this is achieved

through numerical integration of the psdified Green's tensor, iir|- 
"') 

, through an

n-point Gauss-Legendre quadrature integration, after using Foruier hansform

tecbniques to fansform the ellipsoidal inclusions into spheres in the Fourier domain

as outlined in the Appendix A. A nine dimensional simplex method is then used to

minimize the imFlicit relationship given in Equation (IV.a.l) U601. The simplex

method is robust and effective because it does not require the calculation of rates of

change in the function with respect to each individual variable. The technique

involves the evaluation of the SC model at ten points suspected to surround the

solution in the 9-dimensional space. During imFlementation, these points are chosen

by varying each of the nine elements of 7û of the previous volume fraction step by a

small percentage (1% used for this evaluation) thus yielding nine initial guess points

and then using the unaltered elements of iû for the tenth point. The algorithm then

usies a series of reflections and contractions of the ten points until an acceptable level

of convergence is found. Though the technique is robust, it is not guaranteed to

converge to the correct solution and calculation time can be sisrificant for a high

volume fraction of inclusions.
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Several factors can cause significant problems in the convergence of the

nnmerical evaluation of the general SC model. Therefote, a few qualitative

observations may help for successful implementation of the method. The parameter

that has the shongest influence on the convergence of the model is the conhast of the

moduli of the constituent phases. If the moduli of the inclusion materials are

significantly lower than that of the mahix (as is the case with voids or air inclusions)

the numerical scheme has great difficulty in conversing to the correct solution. This

convergence difficulty is still observed when the inclusions are coated. Indeed, glass

coated voids embedded in a soft matrix prove to be one of the most difficult set of

parameters for the resolution of the general selÊconsistent model. Another parameter

that has stong influence on the convergence of the general model is the aspect ratio

of the inclusions. As the aspect ratio (either a/b or a/c) tncreases, the likelihood of

poor convergence behavior also increases. It should be noted that poor convergence

due to the inclusion aspect ratio is coupled with the conhast of the material properties,

the higher the material contast the less stable the SC method for any given aspect

ratio. However, no obvious practical guidelines can be given Here it is emphasized

that even with large aspect ratios, the model is strictly valid in the low-Éa regime.

Yet another parameter that can influence convergence, though to a lesser exten! is the

ratio of h/a, i.e., the normalized coating thickness. It has been observed that values

of this parameter below l0-3 can lead to poor convergence behavior, thor gh, like the

effect of the aspect ratio, the influence of Aa/a on the convergence is coupled to the

material contrast and therefore smaller ratios can be tolerated for lower contrast

situations. Other known issues are usual user defined parameters of root-finding

techniques, such as the initiat values for the numerical search algorithm, the volume

fraction step size, and the number of points chosen for Gauss-Legendre evaluation of

the integral ofthe modified Green's tensor.

Despiæ nr:merical difficulties manifest in the coated-inclusion SC model this

chapter has shown, through comFarison with experiment and parametric studies, the

generality and precision of the SC model. The SC model has been shown to reliably
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approximate the lossy behavior of viscoelastic composites. This ability is a great

improvement over scattering based models because of the enhanced flexibility to

include material anisotropy and the efflects of inclusion orientation which is afforded

by the micromechanical approach. The enhanced level of generality makes the SC

micromechanical model a shong candidate to play a role in a material by design

stuategy. The next chapter will present a simple multiscale modeling application that

employs the SC model to enhance absorptive properties of a structure through

variation of material microstructure.
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Material selection, taditionally a key component of the design process [9], is

a very limiting aspect of design. Indeed the systems design approacb, which pervades

the design community, assumes that component design will be restricted by the

physical properties of available materials [20]. This paradigm is changing as the

syst€ms approach is being extended to include the design of materials for multi-

firnctional and multi-physics applications [14, 15]. This approach is called inductive

design. Inductive material design aims to design materials for manufacture, while

taditional methods manufacture materials that will be used in design, a deductive

approach [21]. One very imFortant aspect of this emerging design approach is the

development of robust multiscale material models that can be employed to inform the

material design process [14]. Models capable of bridging the disparate length and

t'me scales interest to material design (length scales rangtng from atomistic to

macroscopic and time scales rangrng from pico-seconds to years) are far beyond the

reach of current modeling approaches. Instead" researchers currently employ a nested

hierarchy of different models, each of which is capable of making one or more scale

ûansitions [20]. One of the most prominent problems with this approach is the lack of

information abou! and/or the extremely complex behavior of, material models in the

design space [21]. These problems restrict the efficient imFlementation of many
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material models in an overarching material design scheme. One way this shortcoming

can be overcome is by solving simple multiscale problems in order to observe trends

that can inform future material by design stategies. Another approach would be to

employ metamodels that approximate material behavior between two specific scales

when models based on more rigorous physical considerations impede the design

process. The metamodel approach could be emFloyed in material design, for

example, to approximate the scale fansition between atomistic and continuum

behavior. These modeling simFlifications permit an efficient means to perform

behavioral studies of a model or investigate the design space at multiple scales [22].

Regardless of the method employed, any material design process will require not only

robust multiscale models, but also the profound understanding of the material

behavior in the design space that a well developed model yields. The aim of this

chapter is to provide an infoductory level example of self-consistent (SC) model

implementation in the design of a lossy stucture. This is accomplished by studying

fts damFing properties of a simple structure: a vibrating sandwich plate. The results

of this study provide preliminary insight into the role the quasi-static SC model can

play in a material design stategy and lay the groundwork for more detailed research.

Metamodel implementation is left for future work

Multiscale windshield modeling

Stuctural applications for layered sandwich plates are numerous and typically

aim to reduce overall weight while simultaneously maintaining sfructural rigdity.

Some examples of such sandwich structure applications include aircraft wings and

fuselage [2] or reinforcement and noise isolation in automobiles [1, 5]. One

consequence of sandwich plate geometry is a pronounced ability to provide acoustic

and thermal isolation [80]. An example of a shuctural element that fulfills all of the

roles higùlighted above is the automobile windshield. Cr.urent windshield design is a
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layered structure consisting of two identical high perfonnance glass layers

sandwiching ân absorptive viscoelastic layer. From a mechanical perspective, the

interior viscoelastic layer serves the dual pu{pose of holding glass fragments in place

in the event of projectile impact while simultaneously providing enhanced structual

vibration dissipation and sound isolation qualities during normal operating conditions.

The ability to reduce sound ûansmission has become one of the many requirements

placed on the automobile windshield. This requirement stems from a desire to reduce

driver noise ânnoyance and to eliminate structural vibrations of the automobile frame

as a whole.

The case study presented in this chapter aims fe model sandwich plate

behavior as a multiscale structure consisting of four distinct length scales. These

length scales are, from shortest to longest: (Ù the constituent material microstructure,

(iz) the macroscopic plate material, (fii) the sandwich plate, and (tv) the constrained

sandwich plate. In so doing, this study introduces the key variables which define the

design space and provides an important study of their interaction and influence on the

behavior of the sfucture. Figure 5-1 illustrates the multiscale windshield 6edsling

approach employed. The study beeins with part level modeling. A simple sandwich

plate model is intoduced and the mechanisms that enhance flenral wave damFing

are discussed in the context of strain energy. Several parametric studies investigating

optimal damFing design of a sandwich plate complete the part level modeling study.

Following this analysis the structural level model considered is the modal response of

a viscoelastically conshained plate and beam. 1Xs 5imple layered plate model is

incorporated into this modal analysis and results are compared with a sophisticated

finite element model. Finally, the study considers the effect of microstuctural

behavior on structural level damFing through SC homogenization. The aim of this

study is to observe the capability of microstructural behavior to increase the overall

absorptive properties of thç plate while limiting negative effects on its structural

rigidity role. The present study thus provides insight to multiscale modeling for

damping applications.
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Figure 5-1: Multiscale windshield modeling approach.

53 Part level modeling: Damped flexuralwaves in a sandwich plate

The three layer structure of a windshield capitalizes on the lossy properties of

the sandwiched viscoelastic layer, the interlayer, by inducing high shear strains in the

material upon vibrational excitation [5]. The high shear shain in the interlayer results

from the viscoelastic material's relatively low shear resistance asi compared to that of

the sandwiching plates and its location at the center of the layered plate. The high

shear compliance of the conshained viscoelastic layer means that shear stresses

resulting from an imposed bending moment will tanslate into large deformations in

the interlayer [81]. The ultimate corxiequence of this geometic configuration is an

increase in vibrationat and acoustical energy da-Fing capacity coupled with the

stuctural advantage of being highly shatter resistant [].
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The study of sandwich stuctures is not a recent development. As early as

1959 Kerwin presented an analyic three-layered plate model [161]. The plates he

studied consisted of three isotopic layers and had no reshiction on layer thicknesses

or slmmetries. Following this intoductory model, Ross, Kerwin, and Ungar derived

a more general anatytic model that describes the flexural behavior of a three layered

plate to approximate the lossy behavior of structures with viscoelastic teahents such

as extemal viscoelastic layers and non-symmetric or symmetic viscoelastic sandwich

structures [81, 162]. Their model was followed by many other conshained plate

analytical models that are applicable to plates having simFle boundary conditions.

Representative examples include Ditaranto's layered berm model [84], Mead and

Markus's model of the forced vibration of a layered beam [85] , Yan and McDowell's

work on the dynamic behavior of constrained layer plates [87] , and Cupial and Niziol

seminal work on 1fis damping of a three layered plate [82]. The strength of analytical

models lies in their ability to quantitatively compare the behavior of different

sandwich stuctures with relative ease of implementation. For many casies, however,

such models are not applicable because they are limited 1s simple geometies and

simFle boundary conditions (BC). True engineering problems often present

complexities that analytical models cannot take into account. It is for this reason that

many researchers have concentrated on the development of sandwich stucture finite

element (FE) models which approximate dynamic lossy behavior. Representative

works in this area are those of Soni [8fl, Johnson and Kienholz 1163], Rikards and

Chate U647, and Daya and Potier-Ferrr' [83]. For an excellent review of a significant

developments in constrained layer damping models, see Austin U65]. FE models are

more precise and provide a richer analysis of the dynamic sfess and strain states in a

layered plate. Further, they can be imFlemented in structural analysis of higher order

structures, such as the structural behayior of an automobile as a whole. However, the

aim s1' this chapter is not to provide a detailed analysis of a complex structure but

rather to give an intoductory level study of the effect of microstucture on the

structural damFing properties of the multiscale modeling approach. It is for this
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reason that FE studies will only be employed in this study for quantitative qualitative

verification of analytical studies.

53.1 Approximation of the effective bending modulus of a sandwich plate

The concise study of the microstructural effects on the damping capacity of a

layered plate as a stuctural element first requires the selection of the appropriate part-

level model. The analytic model developed by Ross, Kerwin, and Ungar (RKU) t81]

is ideal for our present study. This model is computationally light and provides

reasonable estimates of the enhanced damping capacity of a.constrained layer plate as

a firnction of frequency, material properties, and plate geomeûry [66].

The proceeding discussion has pointed out that the consfained layer geometry

and material stiffiress conhast lead to the enhanced damping capacity of the layered

plate. These both confribute by inducing large shear deformation in the absorptive

cental layer. This increased deformation leads to a large increase in shain energy

located in the lossy material thereby increasing the damping capacity of the layered

plate as a whole |162l. Kerwin [161] showed that the flexural behavior of such a

layered plate is reasonably approximated as a uniform plate having an effective

complex fsnding, or flexural, modulus. The real part of this modulus describes the

resistance to flexure due to 41 imFosed time-varying bending moment and the

imaginary part is a descriptor of the composite plate's capacity to absorb flexural

\f,'ave energy [8], 16U. For an out of plane flexural disturbance, îv(x,t), propagating

in the +x direction of a layered plate the damFed wave is described using Equations

(V.3.1) and (V.3.2) below. These expressions are onalogous to Equation (tV.3.2) for

pressure \trave propagation.

fr (x,t) = )"i(a-Êt' 4 = Àru*' 
"i(at-ît': 

x)
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where:

N.3.2)

In the above expressions I is the complex amplitude, o is the angular frequency,

kn*: and âllo are components of the frequency dependent complex flexural

wavenumb 
"r, 

îro , pû isthe effective density of the entire plate, htot isthe thickness

of the entire plate, and Êû represents the com.plex effective frequency dependent

bending modulus of the layered plak. Note also that the present study freats

structural vibrations. Therefore, in keeptng wtth the conventîons of the vibratîons

commrntity, the 'eid ' conyention is employed în this section. The RKU psde[ aims

to provide an accurate approximation of the effective bending modulus of the plate

which takes the exaggerated interlayer shearing into account. This is accomplished

by writing equations of motion for the plate element shown below in Figure 5-2.

Figure *22 (a) Differential element of a sandwich plate ; @) Cross sectional geometry.

The RKU model results from solving the wave equation for the out of plane

flexural disturbance described by Equation (V.3.3) together with the moment

equation, CV.3.4).
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v4û,(ù-!-#n@)=# (v.3.3)

t ^ r ( - \ - à " î a ô ( x )  
3  -  3  -

M \*) = n"" -È- =Zù,@\ +l{n, (v.3.4)

In these expressions p(x) represents the frequency dependent and spatially varying

forcing pressure, U (*) denotes the total flexural moment applied to the plate,

tt,(") is the resuhirg moment in each layer, 4(r) is the net transverse force in

each layer, and Hlorepresents the distance from the center f of the layer to the neutral

plane ofthe composite [81].

This resulting model has many restrictions for implementation which are listed

here [81]:

l) The Young's modulus of the upper and lower layers (/ and 3) must be

much larger than that of layer 2.

2) The flexural, shear, and longitudinal wavelengths of the composite plate

must be much larger than the total thickness of the plate.

3) The slope of the neutal plane must be very small, O(r) << t .

4) The thickness ofthe interlayer (ayer 2) remains fixed (no standing v/aves

\ /ithin the interlayer).

Ross e/ a/ derived their model for the effective bending modulus of a three layer plate

using these simFli$ing assumptions. The resulting RKU model does not have any

restrictions regarding material or geometric slmmeties. If symmetry is required,

thereby creating a "sandwich" plate, the following additional assumptions must be

added 1167l:

5) Layers 1 and 3 have identical material properties and geometies. The

Young's modulus is denoted N E, the density p, ùrd the thickness ft

( H t - -  H E = h ) -
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The result of these many simpliSing assumptions is the set of the implicit relations

(V.3.5), (V.3.6), and (V.3.7) describing the complex effective bending modulus of the

layered plate.

(v.3.s)

Here I'represents a variable called the geometric parameter and â is the complex

shear paremeter. This simple equation satisfies physical intuition about the behavior

of a layered plate since the term Êlt3fe represents the bending rigrdity of two plates

of thickness ft about their base. The term within the parenthesis increases the bending

rigidity based on geometry and the interlayer's shear resistance. The geometry and

shear parameters are defined in Equations (V.3.O and (V.3.7) below.

it = !nn'('. *(&)) : u ( * i,r,)

f=(1 *H)'with H=+

n-F- n,,<
tæFæ: s'(r+ iî)

ry3.O

(v.3.7)

In the above relationships, k is the interlayer's complex shear modulus,

î4 = à(r* iB), and the effective density of the composite platê is calculæed using the law

of mixtures.

pû = (t - n, I n'') p * (u, I t'^) o, (v.3.8)

Ross e/ a/ further observed that assumption (2) listed above requires that g' be larger

than unity. As prwiously stated, this model yields s1 implicit solution for the

u:#(h)

t
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effective bending modulus. Appendix D details a numerical solution scheme for

RKU model implementation.

It is now interesting to show constained layer damping behavior as

approximated by the RKU model. For this purpose, consider a symmetric plate

composed of two identical glass layers sandwiching a Saflex@ PVB (viscoelastic)

layer [168]. The layer geometry and material properties are given in Table 5-1. The

values chosen represent PVB complex moduli corresponding to observed behavior at

I k}lz and 20"C. Frequency dependent PVB shear modulus values were

approximated from Havriliak-Negami (IIN) fits [a8] of DMTA data, see Figure 5-3.

The HN model is given in Equation (V.3.9) and the HN coefficients for this PVB

material were found to be: F.=2.35x108, 14:4.79x105, dÆ,r=0.46,

Êw = 0.1,946 , and ro = 0.3979 .

p' (r) = p- + (n - a-)lt * (j rro)'')u (v.3.e)
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Figure S3: DMTA data and HN curve frb for PVB material

I'able 5-l: Layc windshield constituen and

H* (m) u il+ i0 (GPa) E(I + iù (GPa) p (ks/m') f (Hz)
Layers 1&3 2.0 x l0-' 29.5(l + 0.02r) 72(l + 0.02r) 2469 1000

Laver2 8.0 x 10* 0.1330 + 0.13i) 0.396(L + 0.13r) 1115 1000
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The plots below show parametic studies of the effective sandwich plate bending

modulus, Ê , shear parameter, â, and flexural wavemrmb 
"r, 

iflu, as a firnction of the

thickness ràlto, H.

Effectlys Complex Berding Moduta \É. Thldræ Ratio, H

Ttlctcpss Rdlo, tt ( )

Figure 5-4: Variation of sandwich plate complex bending modulus as a function of the thickness
ratio, E. Parametric study on the shear loss factor of the interlayer.
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Figure $5: Variation of sandwich plate complex flexural wavenumber as a function of the
thichess ratio, E. Parametric study on the shear loss factor of the interlayer.

Compb( StEû Pararnetq ys. TtûckEss RsUo, H
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Figure 5-6: Variation of sandwich plate complex shear paraneter as a function of the thichess
ratio, H. Paranetric study on tle shear loss factor of the interlayer.
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Several physicalty intuitive behaviors are apparent from these plots. Figure

54 shows that the plate's resistance to flexure decreases with increasng H. Coupled

with this reduction in flexural rigdity is an increase in flexural loss factor. The

increased damping capacity rezults from augmented stain energy located in the lossy

interlayer. The increases in the magnitude of the flexural wavenumber and

attenuation coefficient shown in Figure 5-5 are the result of a complex combination of

increasing frequency and sandwich plaûe flexural compliance. Figure 5-6 illusfrates

that the shear pammeter's loss factor also increases with increasing H and also as the

shear loss fac{or of the interlayer, p, , io"r"^".. One very imFortant observation is

that the RKU model is not valid for small values of lâl .

It is also interesting to inspect the flexural modulus variation as a fi:nction of

the shear parameter's loss factor, i whie keeping .Ff constant. Figure 5-7 shows the

results of zuch a study.
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Effec{ive Complex Bending Modulus ræ 7

100

ro

Figure 97: Complex effective flexural modulus calculated with BKT model as a function of the
shear parameter's loss factor, 7 for fixed values of g'.

This figrne clearly shows thzt at a given frequency, ar, there exists some value of f

for each value of g' that yields optimal damping properties for a sandwich plate in

flexure, ,1"{ . If all otherparameters are fixd this optimal value of i canbe found

through inspection of the partial derivative ArlrlAy. Figure 5-8 shows the complex

effective bending modulus for a large range of $' values \ilhen the associated value

loss factor is optimal, f'r. Mathematically statd the value of É is calculated as a

tunction of f' whenthe associated value of 7 is zuch that Aûp lAilry =0 .
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Figure $.8: Optimally lossy conplex effective bending modulus calculated as a function of i.
The material properties employed are those given in Table Al

This plots clearly show that highest damping is expected with decreasing values of

g' . It is imperative to keep in mind, however, that the RKU model is not valid for

small values of Ê'. It is also important to observe that variations in f' have large

effects on the plates overall resistance to flexr.ral deformation. Large reductions in

flexural rigdity, though ideal for damFing applications, are not acceptable for such

real-world applications as windshields which must fulfill multiple, often conflicfug,

design requirements []. The ideal solution for such an application is a more robust

design that considers both the flexural rigdlty, .â', and damping capacity, û0, in an

effort to find the highest damping capacity with a minimal reduction in rigidity.
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5.3.2 RI(U Model Sensitivity Analysis

The automobile windshield is a good example of a structural element requiring

both sfuctural rigdlty and absorptive qualities. g1e 5imFle maûler to approach this

optimization problem is ftlsrrgh sensitivity ane.lysis of important variables. The

materials and geometry given in Tabte 5-1 are representative of actual values in

current windshietd design, however, Figure 5-6 shows that they yield a shear

pammeter far from optimat across all frequencies of interest: H: 0.4, $' x2 , and

ix0.l3 while ioo'ol.l. All of the above information suggests that the most

efficient meâns to increase the damping capacity of the plate while having a minimal

effect on the flexural rigldity as a whole is to increase f while minimally decreasing

the real part of the shear parameter, g' . It is assumed that structural design

constraints require the total thickness and the real parts of the material properties

remain constant. Therefore, the two remaining variables that can influence the plate's

lossy behavior zre the thickness ratio, H, andshear loss factor of the interlayer, pr.

Figure 5-9 shows the results of this sensitivity analysis.
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Figure $9: Sensitivity of the complex shear parameter to changes in the thiclmess ratio and the
shear loss factor of the interlayer. Partial derivatives of g' and 7 with respect to trl and f 2 àne
shown. For (a) and (c\ f 2: 0.13; for @) and (d), E = 0.4.

Figure 5-9a and Figure 5-9c show that varying the thickness ratio has a stong

negative effect on the stifhess, analogous to a decrease in â', ,r/ith minimal

improvement of the damFing capacity. On the other hand, it is obvious that an

increase of the shear loss factor of the interlayer will have a notable effect on the

damFing capacity, Î,with a minimal increase in compliance. Indeed" Figure 5-9d

suggests that i quadratically as a function of interlayer shear loss factor, pr. The

previous chapter has shown that inuoducing inhomogeneities into a viscoelastic

material 
"- 

çfuange the macroscopic damFing capacity significantly. Section 5.5 \ilill

employ the SC model to investigate such microstnrctural effects on sfucûual

damFing behavior. It should also be noted that the dependence of the complex shear

parameter on the stifÊress ratio, î41Ê', has also been studied. The results show,

however, that when in the RKU's domain of applicability, specifically resûiction (/),
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variations of this ratio have little influence on the plate's damping capacity as a

whole.

This section has shown that a simple analytical model for the effective

bending modulus of a sandwich plate can yield considerable knowledge about the

design space of a sandwich plate. The influence and interaction of design space

variables has been investigated resulting in several guidelines for the design of the

constituent materials. In shorÇ the part level modeling perfomred here has given

insight and a few "design handles" for lossy structure design. Further knowledge can

be gained by exploring damping behavior on the structural level, the subject of the

following section.

Structure level modeling

The previous section has shown that much information about conshained layer

damFing is gained from part level modeling and analysis. In application, however,

such plates will be mounted in structures which excite stuctural vibration. The

resulting skucture level frequency response is governed by the part level behavior and

the plate's boundary conditions [169]. Both the BC and the constitutive lossy

behavior of the plate have a significant effect on the damFing capacity of the stucfiue

as a whole. The analysis below extends the present analysis to forced vibration of

beams and plates with viscoelastic BC. The study examines the independent

influence of BC and plate lossy behavior on structural modal damping. It is limited to

the vibration of flat cnnsfr'atned layer sandwich stuctures with simple plate

geometries. The aim of this study is to approximate the behavior of a windshield

mounted in a rubbery material in order to observe modal loss factor trends resulting

from variations in the plate and BC material behavior. These trends are sfudied and it

is shown how this information can be used to inform design on the part and

microsfucfural scales. It is imFortant to stress tbat the work presented here is an
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elementary step in the material by design approach. It is submitted more as a proof of

concept for SC model application as a material by design tool rather than as an

exhaustive study. More advanced modeling techniques, such as finite element

modeling, should be employed to approximate true BC and complex piate geometies

which occur in reality. It is also instuctive to study in-depth the systems approach to

material design by Seepersad [20].

One initial validation of RKU model implementation into stuctrual level

models is a comparison of resonant frequency approximations and experimental

observations. The results of acoustic Transmission Loss (TL) tests of four sandwich

structures can be used for this purpose. The sandwich structures, prepaied by Pacific

Northwest National Laboratory (PNNL), were geometrically identical but each has

slighfly different viscoelastic interlayer materials. Generic sample geometry and

material properties are given below in Table 5-2. The exact material properties of

each interlayer material were not provided, but are known to be very close the PVB

values provided in Table 5-2.

Two resonant frequency approximations, one corresponding to a Law of Mixtures

(LOIO homogenization and the other to RKU modeling of sandwich plate material

properties, are given below in Table 5-3. These values were calculated using the

information in Table 5-2 arrd eigenvalues based found through Rayleigfu-Ritz methods

provided by Angloulvant U701.

Table $2: Generic layer and plate properties used to approximate resonant behavior. v - Poisson
ratio, L - sample a,nd, L7- width.

H,(mm') u(I+ iï lGPa) v ( ) p (ke/m' L km) W km\
Lavers l&3 2.0 29.5(l + 0.02r) 0.23 2469 30.5 30.5

Laver2 0.8 0.133(1 + 0.13r) 0.49 l1 l5 30.5 30.5

Table 5-3: Approximate sandwich plate resonant frequencies from LOM and RKU model
tion.

Pafi-
Level
Model

Resonant Frequencv of l* Six modes (Clamped Boundories)

tu(ru) fiz (ru) fn (Ib) tu(ru) fx (Hz) fss (ru)
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LOM 580 I  100 1620 1900 2390 3150
RKU 518 970 1418 1648 2t00 2780

TL testing was done for third-octave bands between 125 Hz and 8 kIIz in accordance

with SAE J1400 t1711. Samples were mounted in the test window between the

reverberant chamber and the semi-anechoic chamber of the Integrated Acoustics

Laboratory GAL) at Georgia Institute of Technology in Atlanta- Figure 5-10 shows a

schematic of the test setup and Figure 5-12 shows an image of the test window.

Figure S10: Schematic of general set-up used for SAE J1400 TL testing.

Figure 5-11 plot experimental TL results of the four different glass-viscoelastic

sandwich plates. This experimental data shows two important facts: (l) an increase in

the interlayer damping capacity (S4) leads to a notable increase in TL and (2)

incorporation of RKU part level modeling into structural models yields increased

accuracy in the approximation of the first and second resonant frequencies. The first

point validates the discussion given in the previous section and the second validates

employment of the RKU model in structural models such as modal analysis.
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Figure $11: TL due to four different windshield samples. Notches in TL at - 500 Hz and - 1000
Hzagree well with Rtr(U model approximation.

One further validation provided by these experiments is the effect of BC on

observed TL. The experimental data in Figure 5-ll was taken with samples having

cla-Fd BC as shown in Figure 5-12.
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Figure *12: TL experimental setup. Sample window ssatains stainless steel plug. Note red
clamps and isolation putty around exterior of test window.

The clamped conditioru; were modified in another set of tests by releasing the red

clamps seen above in Figure 5-12 n approximat€ viscoelastic boundary conditions.

The exact conditions are very difficult to quanti$ because the samples \tere held in

place only by isolation pulfy whose pu{pose is to seal air gaps between the reverberant

and semi-anechoic chambers. Though they are difficult to quanti$ analytically, the

experimentally observed quantitative difference in TL near the first resonant

frequency,is sisrificant (- 4dB re 20pPa), see the results for Sl shown in Figure

5-13. These results also show the expected reduction in resonant frequency resulting

from the decreased "stifh.ess" of the stucture as a whole resulting from the

viscoelastic BC.
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Figure $13: TL results for 51 with different boundary conditions. Viscoelastic BC show a
substantial increase in observed TL.

5.4.1 Analysis of the lossy behavior of simplified structures

The TL study results shown in Figure 5-13 illustrate the need to incorporate

plate boundary conditions into structural level models. The inclusion of influence of

BC on the structural level lossy behavior adds another degree of freedom to the design

space and more closely approximates real-life applications. This sub-section inspects

the influence of viscoelastic boundaries on the lossy behavior of two simplified

stuctures, a viscoelastically constrained beam and a viscoelastically consfrained

circular plate, through modal analysis. The ultimate aim of this study is to allow the

approximation of changes in the sfuctwal level lossy behavior as a function of

variations in constituent material microstructure. Such an analysis gives a clearer

picture of how microstructural variations propagate to higher length scales and

thereby illustates the value of SC micromechanical modeling in the desigo process.
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5.4.1.L Forced vibration of a beam with elastic boundary conditions

One of the simplest ways to quantiff the modal loss factor of a uniform beam

due to different boundary conditions is to find the solution for the general case of a

vibrating beam with elastic boundary conditions as shown below in Figure 5-14. The

present analysis finds this solution for a beam of uniform cross-section and material

properties as a function of x. The present work is also limited to classic plate theory,

which is discussed at length elsewhere ll72l.

Figure 5-14: Schematic of an elastically constrained beam.

The advantage of finding a solution to the forced vibration of such a beam is

that it can easily 6" medified to approximate mâny different boundary conditions by

changing the values associated with the linear displacement springs, K,,,, [N/-1, the

rotational displacement springs, Kr,, [N'ml, or both, see Appendix E for examples

and model validation. Figure 5-15 shows one approach to approximating these

coefficients, representing viscoelastic boundary conditions at the extents of the beam,

from the viscoelastic material constants in which the bearn is embedded and the

boundary geometry. Through application of the elastic-viscoelastic correspondence

principle the boundary conditions can be altered to study the effects of different
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viscoelastic boundary conditions and interlayer materials on modal damFing. The

derivation ofthe general solution is given in Appendix E.

Figure 5-15: Approximation of viscoelastic boundary conditions as linear and rotational springs.

One way to check this nested analytic multiscale modeling approach is to

compare modal analysis results from the analytic models above to FE approximations.

Figure 5-16 shows the results of a study that employed these two different

approximations methods. The subject of study is a sandwich beam with a lenglh L+t,

a total thickness h, and a width b. The beam is embedded at x : 0 n a viscoelastic

medium which has the same material properties as the beam interlayer. The beam

dimensions and material properties are given in Table 54. For this study the beam is

excited using a time varying spatially uniform pressure on the top snrface thereby

simultaneously exciting all modes of vibration.

The analytical approach employed approximates sandwich beam behavior

using the RKU model and the resulting effective bending modulus is used in model
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Table $4: Sandwich beam seonetry and properties for analtrtic and FE study in Figure 5-l

H (m) L (m) t (m) b (m) p(GPa) vo rcJst
Laver 1&3 2.0 x 10-" 0.100 1.0 x 10-' 0.01 29.s 0.23 2469

I-aver2 1.0 x 10-' 0.100 1.0 x 10-' 0.01 0.133+0.13i 0.49 1115
BC 5.0 x 10-' 1.0 x 10-' 0.01 0.133+0.13i 0.49 1115



general vibrating beom model derived in Appendix E. It is important to shess that the

value used for the Poisson ratio, vtz, is that of the glass plate material, v13, for

implementation of the model derived in Appendix E. The analytic model results

v/ere compared to FE analysis to validate employing such a simplified multiscale

modeling approach. The FE results were calculated using the sophisticated FE model

of Daya and Potier-Ferry t83] where the viscoelastic boundaries \ryere not

approximated as linear and rotational springs, but as an embedding material, and

therefore represent reatity much more closely. In both cases the modal loss factor was

estimated using the half-power beam vridth method from the calculated beom

frequency response [1 69].

Figure $16: Viscoelastically constrained beam LF as function of the LF of constraining and
interlayer materials. Multiscale model comparison with IIEA model derived by Daya and Potier-
Ferry [8[t]

The results shown above have several encouraging points. Ffust, it is obvious

that the viscoelastic material lossy behavior has a linear effect on the macroscopic
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damping properties of the structure for low loss factor values. This is to be expected

t169]. When the value of the loss factor increases the anatytic approach presented

here will no longer be valid and more involved analytic models or FE models are

requiied. Indeed the plot suggests that the validity of the proposed method is

questionable for r7* values exceeding - 0.5. Another encouraging point is the

agreement between this simple analytic approach and the FE model. Considering all

of the simpliffing approximations, especially those conceming the viscoelastic

boundaries, the estimates provided by the analytic model are quite close. The over-

estimation provided by the analytic model is in part explained by the well-known fact

that the RKU model generally provides superior damping estimates to those obsewed

in reality [165]. More importantly, this comparison validates using the RKU model in

such a multiscale approach. The analytical nature of this nested multiscale model

approach permits efficient study of the influence of different BC, constituent material

properties, and microsfuctures on stucturat damFing behavior, thereby reducing the

overall computational load. It is for this reason that it is atfractive as a first step in the

design of absorptive materials.

5.4.1.2 Forced vibration of an elasticallv consEained circular plate

It is instructive to study a two dimensional plate in order to move closer to tnre

windshield sfucture. This is most easily accomplished through analytical methods by

studying the vibration of a circular plate. Due to slmmeties, the circular plate

solution can be found through analytical methods thus eliminating the need for

Rayteigh-Ritz schemes which are inherent in t'wo-dimensional rectangular plate

models U69, 172!. This fact simultaneously reduces 6sdsling complexity and

computational load. Further, the main objective of the following study is to show the

effects of component viscoelasticity on the system response so the actual geomeûry is

unimporknt as long as the plate is two dimensional. As urith prior beam problem, it is
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essential to first find the solution for the general case of a plate having cross-section

and material properties which ur" ulrifor- in the plane of the plate with elastic

boundary conditions at r : a. Figure 5-17 illustrates this geometry. A detailed

derivation of the general solution of a vibrating circular plate with elastic BC is given

in Appendix E.

Figure $17: Schematic of elastically constrained circular plate.

The advantage of the resulting solution is that it is easily modified to represent

many different boundary conditions by changing the values associated with the

disfributed linear displacement spring, Ko [N/m'], the disfiibuted rotational

displacement spring, K, [Nl, or both. These coefficients are chosen to represent

elastic boundary conditions at r : a by relating them to the material constants in

which the plate is embedded and the geomefiy of the plate-boundary interface. A

5imFle approximation scheme is shown below in Figure 5-18. Their effect on the

modal damFing can then be studied by assigning complex values to the elastic BC and

plate materials.
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Figure $18: Approximation of viscoelastic boundary conditions as linear and rotational springs.

One of the main objectives of design is efficiency. Design efficiency refers to

the ability to anive at a design that fulfills all requirements though minimal design

iterations and by reducing variables in the design space. Keeping this in min{ it is

interesting to study the relative effect each "component" contributes to damping plate

vibration at the first resonant frequency. The following study investigates the

independent effects of lossy behavior of the plate, linear spring, and rotational spring

on the modal loss factor of a viscoelastic conshained circular plate. This is done in an

effort to shed light on the most efficient means of damping resonant behavior and is

accomplished via three different studies. The plate geometry and material properties

employed in these parametic studies are detailed in Table 5-5. It is important to note

that the plate studied in each of these studies is not a sandwich structure and therefore

only the effects of lossy plate behavior are studied.

In the first parametric study the plate is pinned û. r :a (K, -+ æ) and the

plate material is a homogeneous non-lossy glass. The values for the rotational spring

are calculated according to the equation given in Figure 5-18 using shear modulus

values given in the PSI row of Table 5-5. Shear modulus loss factor values are varied

between 0 and I and the halÊpower bandwidth method is employed to calculate the

loss factor of the first mode. For the second parametic study the slope of the plate is

required to be zero atr : a (Kw + æ) and the plate material is again a homogeneous
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non-lossy glass: The linear spring values are calculated from the equation given rn

Figure 5-18 using shear modulus values given in the PS2 row of Table 5-5. Again the

shear modulus loss factor values are varied from 0 to / and the results of the structural

model yield the modal loss factor of the first mode via the halÊpower bandwidth

method. The final study represents the behavior of a clamFed (K"+- and

K, ) co) viscoelastic plate where the plate material loss factor is varied between 0

and 1. The results of these tbree studies are given in Figure 5-19.

Loss Fador of 1* Mode rc Gomponent Loss Factor

0.3 0.4 0.5 0.6 0.7
Cornponerû kiss Fador, q, ( )

Table 5-5: Plate geometry and material properties for parametric studies of component influence
on structural

a (m) h(*) t (m) ltvu
(GPa\ vrco EP

(GPa\ vpo K,
(N/m2\ Kv (N)

PSl 0.100 0.005 0.010 0.133
(l+711 0.49 72.0 0.23 1x10lo

calc
eC

P52 0.100 0.005 0.010 0.133
(l+7i1 0.49 72.0 0.23

calc
eC

1x10lo

PS3 0.100 0.005 0.010 0.133 0.49 72.0
(7+ni\ 0.23 l x l0 lo lx10lo
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Figure $.19: Modal loss factor of vibrating plate as a function of each contributing element PSI
indicates tle influence of the rotational spring loss factor, PS2 indicates the effect of the linear'
spring's loss factor, and PS3 indicates the beam Ioss factor's influence.

The results of these pafttmetric studies clearly show that lossy plate behavior

dominates damping behavior on a structural scale. It is therefore obvious that the

most efficient means to achieve increased acoustic and vibrational isolation with a

constained plate is to increase the plate material loss factor. It must be stated that

this study assumes that all other parameters remain equal, which is often difficult to

achieve in reality. Indeed, increasing the material loss factor usually implies an

undesired decrease in material shength: the classic dichotomy of material stength

versus damFing. Recent research suggests, however, that the introduction of certain

tace microstructural heterogeneities can have marked effects on material damping

behavior while minimally affecting material strength [9, 10, 12]. For this reason it is

very interesting to study the present nested multiscale msdsling approach and its

capacity to capture micro-scale influence on the structureJevel damping behavior.

5.5 Microstrucfural influence on structural damping capacity

The final validation step for the proposed multiscale modeling approach is to

inspect the influence of microstructural changes on structure lsvsl damping. The

results of zuch a study will provide a complete picture of the role of microstructrue in

stnrcture-level damping of a vibrating sandwich plate. It will also illusnate how

multiscale msdsling lends designers high levels of contol and insight at each

individual scale and how changes at one level propagate tlrough length scales. This

section, therefore, endeavors to incorporate the quasi-static SC micromechanical

model developed in Chapter Itr into the multiscale model detailed in the prior sections

and to show microstuctural influence on strucfural behavior.

Previous sections have investigated the influence of material loss factors and

sandwich geometry have on sûuctural damping. Chapter [V made it abundantly
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obvious that changes in material microstructure can greafly increase material damping

capacity by altering the amount of snain energy present in lossy material phases under

identical loading conditions. The loads applied to windshield sandwich plates result

from air-structure coupling, frame vibrations, and projectile imFacts. All of these

loads are fixed force/stess loads, as opposed to displacement or strain based loads.

The simplest way to increase strain energy in lossy material çsmponents for such

loading is to increase their compliance. Chapter [V illushated that this can be

achieved by introducing inclusions into a viscoela.stic material which are less rigid

than the host. Voiding a material is the most efficient known mearxi of increasing a

composite viscoelastic compliance [2S] and therefore voided viscoelastic material is

subject of this study. The scope of this study, however, is limited to isotropic bi-

phase particulate composites resulting from a viscoelastic host material containing

sphericat voids.

Several points must be raised in regards to such a fteafuent for an automobile

windshield. Voirling a windshield interlayer material has both positive and negative

aspects. The most apparent drawback is that intoducing heterogeneities of any kind

will have a negative impact on the tight transmission. The same scattering

phenomena addressed in Chapter tr with respect to acoustic waves are apptcable to

light waves when there is a material discontinuity. The major difference is thæ for

light waves tJle ka value will be much larger and, consequentially, light scattering

effects will be pronounced. Light scattering leads to poor windshield ûansparency

and is a major reshiction to the intoduction of voids to achieve elevated windshield

damFing capacity. However, the physical mechanisms leading to enhanced energy

dissipation, namely increasing shin energy in lossy ssmponents, are not restricted to

voids. Ideally a material can be found to take the place of voids which has weak

elastic constants but an index of refractiol similar to the viscoelastic interlayer. This

would eliminate light scattering problems. It is also possible that materials can be

found which can analogously increase lossy behavior tbrough the addition of only

infinitesimal amounts of heterogeneity. A positive aspect of introducing voids into
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the interlayer material is that the resulting sandwich windshield will have a lower

density. Lower overall density tanslates to increased energy efficiency which is a

very desirable consequence.

5.5.1 Microstrucfure à Part level modeling

To study void fraction effect on part level behavior, it is interesting to re-visit

the paramefic studies shown in Section 5.3.1. Figure 54 - Figure 5-6 of that section

investigated changes in the complex effective bending modulus, the flexural

wavenumber, and the shear parameter as a firnction of the thickness ratio for several

values of interlayer shear loss factor. The plots showed that increasing interlayer

material loss factor has a positive influsass on the plate damping capacity. The most

desirable result shown was that by only varying the naterial loss factor, i.e. no change

in shear stifÊress, the bending loss factor increased while only slight change was

observed in the real part of the effective bending modulus. Similar plots are shown

below where the interlayer void fraction is varied in order to observe the effect on the

complex effective fl exural behavior.

Figure 5-20 clearly shows that the void fraction has a strong influence on the

effective complex bending modulus. The reduction in real par! ,Ê', is rapid with

increasing void fraction for any fixed thickness ratio, Ir'. This is an undesirable result

of adding voids to the interlayer material. Conversely, the bending modulus loss

factor, fo, guickly increases as a function of void fraction.

Table 5-6: Material properties used to produce Figure $20 - Figure *24 a;nù Figure $26. The
viscoelastic properties are calculated fron (V3.9) and the HN coefficients given in the associated

for an exciting frequency ofl kIIz-

pyB(GPa)
vvg
( ) rc!,*'tEr(GPa)

vp
r) mlrst Itwia

(GPa)
lvod

( ) *Jst
Property

0.133
(1+0.13r")0-49 1115

72.0
(1+0.02r)0.25 2469 lx10{ 0.45 t .2 l
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Figure S20: Effective bending modulus as a function of layer thiclmess ratio for varying values
of interlayer void fraction ttf : 1 kFfr.

The increased damping capacity is further evidenced by inspecting the results in

Figure 5-21 and Figure 5-22. The prior shows the effective complex flexural wave

number and the lat1cer a measure of the attenuation per flexural wavelength suggested

by Kinsler et al f88f, 6wffitt*:. The wavenumber plot shows two interesting

aspects, The most obvious observation is that the magnitude of the flexural

attenuation coefficien! âno , monotonically increases both for a fixed void fraction

with increasing thickness ratio and for a fixed thickness ratio with increasing void

fraction. This is due to the fact that both changes, increasing void fraction and

increasing thickness ratio, result in increased plate flexural compliance. The

increased sempliance augments the strain energy present in the viscoelastic material

for a fixed applied moment/shess, thereby increasing the damping capacity of the

plate. The less obvious result is the non-monotonic behavior of the real parÇ Êt-: .

For a fixed frequency, an increase in real part of the wavenumber implies a decrease

in the wave speed, êlo, since Ê=alê. Because the flexural ïvave speed is related
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indirectly to the inverse of the modulus through Equation (V.3.2), it would seem

apparent that adecrease in the real part of the flexural modulus would likewise lead to

an increase in the real part of the wavenrunber. However, for high loss factor values,

this is not always the case. The relationship between the real parts of these two

quantities is not independent of the flexural modulus loss factor. It is for this reason

that Figwe 5-22 shows non-monotonic curves for Êl'*: and that the maximum value

is observed for consecutively smaller thickness ratio values as the void fraction

increases. The non-dimensional measure of attenuation plotted in Figure 5-22 clearly

shows that the attenuation efficiency is a monotonic function of both the thickness

ratio and the void fraction despite the increased wave speed for all values inspected.

One further observation of effective plate behavior concerns the shear parameter.

Figure 5-23 shows that values of f' decrease rapidly with increasing void fraction

and thickness ratio. The RKU model is only valid when â' > I implying that the

RKU model may give erroneous values for thickness ratios exceeding æ 0.2 .
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Figure $21: Effective flexural wavenumber as a ftrnction of the thichess ratio atf = I klrz fel 1
several different void fractions.
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Ætenuatiôn per Wavelength (oflJKf,J w. Thickness Ratio

Figure $22: Measure of damping amplitude attenuation per flexural wavelength for Iayered
plate honogenized using RKU model with a voided interlayer.
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5.5.2 Microsfrucfure à Stmcture level modeling

The final subject of interest is the influence of microstuctural changes, in the

form of void fraction, on sfucture-level damping. The results are presented in two

different \ilays. First changes in the modal loss factor of a vibrating circular sandwich

plate as a function of viscoelastic interlayer and boundary void fraction are shown.

This yields insight into the increased capacity of the sandwich structure to damp

resonant behavior. The second study approximates windshield tansmission loss for

an incident plane wave as a firnction of frequency. The results of this study illustate

relative acoustic isolation improvements of a voided interlayer.

Section 5.4.1.2 presented the effects of different lossy elements on the damped

behavior of a viscoelastically constrained circular plate. Though it was shown that the

most efficient means to damp flexural vibrations is by elevating the beam loss factor,

it is of interest to demonsfiate the generality of the nesûed multiscale approach

tbrough a study that take into account the behavior of voided viscoelastic boundary

conditions and sandwich interlayer. For this purpose the following studies the

damFed ,ls resonance of a circular sandwich plate embedded at r : a in a voided

viscoelastic material. The interlayer material is also assumed to contain voids with

the same volume fraction. For this study the ssme materials and geometries are

employed as those presented in Table 5-5 and the modal loss factor was again

approximated using the half-power bandwidth method. Figure 5-24 shows interlayer

and boundary material void fraction effects on the modal loss factor of the first mode.

The plot clearly shows a quadratic correspondence, as was zuggested in the RKU

I model sensitivity analysis presented in Section 5.3.2. This quadratic correspondence

is due to the intoduction of voids in the interlayer material, thereby increasing the

loss factor of that layer. Section 5.4.1 showed that viscoelastic plate and B.C.

behavior has only a quasi-linear influence on the modal loss factor, therefore the

quadratic tendency observe in Figure 5-24 is a result of conshained layer damping of
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the sandwich plate. These results are encouraging and show that microstructural

inhomogeneities can have noticesfle influence on structure-level behavior.

FigUre *24: Yariation of the loss factor of tle ls mode of vibration for a cantilever beam as a
function of interlayer void fractionn /.

Noise in an automobile interior has two distinctly different sources. A major

contributing sowce is sound radiated by skucture borne vibrations that originate from

engine vibrations and, more importantly, the interaction between the road and the

automobile [1]. The efficiency with which the windshield radiates this vibrational

energy in the form of sound is dominated by its modal response. For this noise

source, the previous study is applicable. Figure 5-24 has clearly shown that

increasing the void fraction of the viscoelastic interlayer and boundary materials

displays a desirable enhanced ability to reduce resonant behavior. The second source

of noise is sound originates outside the vehicle which is consequently fiansmitted

r
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through the windshield and other acoustic paths. The quality of noise isolation is

usually measured by the transmission loss (TL) discussed in previously. For a panel,

homogeneous, sandwich, or otherwise, the general characteristics of TL as a firnction

of frequency are shown in Figure 5-25 U66}
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Figure $25: General characteristics of IL versus frequency for a panel (figure from Buerhle 4
at 1166l).

Figure 5-25 illusfrates the for:r regimes of panel transmission loss. From left

to right, the first is the stiffiress contolled domain which represents the quasi-static

case for the plate, meaning acoustic wavelengths are much larger than the panel of

interest. This regime is not of interest in the present work. The second regime,

resorutnce contolled, ls similar to the case studied above. It is reasonable to assume

that behavior due to air-bome waves exciting resorumce behavior will be damFed in

the same manner as structure borne vibrations and therefore this case was treated by

the previous study. In the mass controlled TL regime, acoustic wavelengths are much

smaller than panel dimensions and the panel is therefore approximated as a limp

hanging panel with a known mass per unit area The pressure gradient of the incident

sound \ilave causes the panel to move as a whole and radiate sound on the other side.
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In this regrme TL is dominated by the panel mass and a doubling the frequency leads

to a 6 dB TL increase [89]. It is obvious from this behavior that high density panels

are ideal for noise isolation. Thc final TL regime is the coincidence controlled

reeime. In this frequency range the incident wavelength projected onto the panel

matches the wavelength of flexural \ilaves in the panel. Coincidence occurs when

these two wavelengths match, resulting in near perfect transalis5isn and a greatly

diminished TL. The result is a sharp decrease in observed TL at a specific frequency

depending on the air-bome plane wave angle of incidence. This region of high sound

tuansmission is called the coincidence notch and the behavior is sometimes simply

termed coincidence [89].

Microstructural effects of resonant behavior were previously shown for a

vibrating plate so it is now interesting to inspect the effect of microstructural changes

on windshield TL in the mass-contolled and coincidence-contuolled regimes. Panel

behavior in this frequency mnge is well approximated using the set of equations

below [89].

ô- t * : "'*G where k:# (v.s.r)

(v.s.2)

r L = 2o tos,,llt . h"", u l' ]
(v.5.3)

In these expressions caiT and paiTrepresett the speed of sound Qa3 n/s) and density

(1.21 kg/m3; of uir, respectivel y, ô-nn is the coincidence frequency, 2, represents

the plate impedance, and the other variables have been previously introduced. Figure

i  p = aryd h- 
{u,(*) '  

sina 0,- ' l '  - (*) ' . '  u]}
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5-26 shows the TL calculated from Equations (V.5.1)-(V.5.3) for a szurdwich

windshield consisting of the same materials and geometry as for the resonance

behavior discussed in Section 5.5.1. These results clearly show the expected mass

and coincidence-controlled reeimes. In the mass confolled regime the interlayer void

fraction is small enough to have no detimental effects on the TL. It also shows that

the non-voided interlayer material already provides substantial coincidence notch'

reduction. The voided materials do enhance damping in this frequency range, but

improvements are marginal at best, - 2 dB re 20pPa, and surely beyond the limils e1

human perceptibility in noise reduction.
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Figure $26: Theoretical IL of layered windshield as a function of frequency for an incident
angle of 01: 60'. Slight improvements are predicted for voided PVB near coincidence frequency.

Unfortunately, the results of this study show only marginal damping

improvements at the sfucture-level. This can be atfributed to the fact that only

traditional materials have been investigated. It is very possible that non-conventional
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inclusion materials or fiace interlayer material fieatuents could translate to large

ef[ects on the structure-level damping capacity. One specific inclusion behavior

leading to increased macroscopic material damping are negative stifÊress inclusions.

Lakes et al 19, 10, 721have shown that "snap-through" phenomena observed in

instable inclusion materials can be approximated as a negative stiffiress. Their work

has clearly shown that this extreme damping is due to large strains induced in the

neighborhood of inclusions which exhibit "snap-through" behavior. The most

significant increases in macroscopic lossy behavior results from inclusions whose

modulus, û, , is related to the matrix modulus, fiu, æ it, o -l.lit^a t9]. It has been

shown theoretically [9] and experimentally flD,l2f that treahents using inclusionS

displaying negative stifhess behavior can significantly increase lossy behavior with

only trace amounts of the inhomogeneities. Indeed, Lakes called such treaûnent

"homeopathic." Figtre 5-27 investigates stnrctural behavior, in the form of sandwich

windshield TL, when the interlayer contains small volume fractions of hlpothetical

negative stiffrress inclusions whose modulus obeys [t, æ-l.litp^ at each frequency

while all other materials and geomeûry are identical to those used to produce Figure

s-26.

I

19s



TL of Sandwich Panel with Negative Stiffness lnclusions in lnterlayer vs Frequency
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Figure $27: Transmission Loss of sandwich panel when PVB interlayer contains small volume
fractions of negative stiffness inclusions (h= -l.Ittpw). Coincidence notch moyes to dramatically
lower frequencies and nearly vanishes.

This plot shows a dramatic increase in observed structural level energy

dissipation at coincidence. Indeed the introduction of such inclusions nearly

eliminates the coincidence notch while simultaneously moving coincidence

phenomena to lower frequencies. Though the behavior shown in this plot is for a

hlpothetical material, it is very interesting for future research to show that zuch

behavior can be captured by a nested multiscale modeling technique such as the one

presented in this chapter. It also encourages further research in the design of

materials with negative stiffiress, or "snap-through," behavior for use as treafuents in

stnrctures when energy dissipation i5 important. More importanfly for this work, the

above study validates the incorporation of the SC micromechanical model as a tool

for a material by design shategy. The study also clears the way for more intense

research of microstructural behaviors which have more pronounced effects on
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sfuctural level damping, Such a search will provide microsfiuctural specifications for

the design of absorptive materials.
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General conclusion and perspectives

Classic design methods require the selection of materials which conform to the

needs of a preconceived whole [19]. This design methodology is well developed and

well understood. Unfortunately, this approach is often limited by the lack of available

materials that meet the needs of the structue whicb, in turn, limits the entire design

processes [14, 15]. An elegant solution to this classic problem is the creation of

materials specifically conceived for stuctural demands [21]. This new approacb,

material by design, not only creates materials for specific needs but also includes the

creation into the design of the system as a whole [90].

Materiat by design, s1 simply material design, is currently a very active area of

research. One well accepted material design approach airirs to extend either optimal

or robust systems design to include the concurrent design of materials for specific

high importance components U4,21,91]. Extending the systems approach to include

material design is very natural as materials themselves can easily be viewed as

multiscale sfuctures 190,927. This new methodology is very attractive because it

ensures stucture functionality while simultaneously giving ultimate control to the

designer.

The development and study of multiscale material models is one of the many

areas of material design which requires fi:rther research before the method can

become tactable. This thesis aimed to derive, develop, and validate a quasi-static
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selÊconsistent micromechanical model fû implementation as a tool in the design of

high loss materials. Achievement of this objective required tbree distinct steps. The

fust step v/as the derivation of a robust quasi-static frequency domain

micromechanical model for application to a wide rzmge of viscoelastic particulate

composite materials. Chapter m addressed model derivation by extending

Cherkaoui's static SC coated inclusion model l23,24lto include viscoelastic behavior

of the constituent phases. The model was further developed via DSCT tensor

formulation, thereby permitting the approximation of a broad range of viscoelastic

particulate comFosites. The second step was the validation of the quasi-static SC

model through ssrnparisons with complex bounds and experimental data which was

the subject of Chapter tV. This chapter ensured that no laws were violated in model

derivation and displayed model accuracy for both static and quasi-static applications.

The final step in achieving the thesis objective was integration of the SC model into a

multiscale structural model. This was achieved by modeling the dynamic behavior of

a viscoelastically conshained sandwich plate, representing an automobile windshield,

through a hierarchy of nested models. The result is an initial conûibution to the area

of material design coupled with a well developed and understood quasi-sta:tic

micromechanical model. The following summarizes fts imFortant conhibutions and

developments of each section of this thesis, gives perspectives on the results, and

suggests future avenues for detailed study.

6.1.1 Quasi-static model development

Frequency dependent approximations of heterogeneous material damping

properties depend shongly on the frequency range of interest. This thesis has been

reshicted to applications where the mechanical loading is well represented as varying

with time at some frequency, o4butbeing spatially homogeneous. It has been shown

that this frequency range corresponds to heterogeneity length scales, a, which are

much smaller than the incident wavelengths, 2. This frequency domain is called the

I

I
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"low frequency" limi! Iow kn scattering, or the Rayleigh scattering limit. Ma.terial

behavior in this domain can be captured through static models by applying the elastic-

viscoelastic correspondence principle. Based on this reasoning, this thesis proposed a

micromechanical modeling approach rather than a scattering based model.

Micromechanical modeling approximates macroscopic frequency dependent behavior

uniquely through constituent material behaviors and neglects inertial effects present in

scattering models. Despite the fact that such an approach limits modeling to the

quasi-static domain, it greafly enhances the range of heterogeneous materials whose

frequency dependent effective behavior is accurafely approximated. It is for this

reason that the micromechanical approach has been chosen to be developed as a tool

for the design of absorptive materials.

The micromechanical model derived in Chapter III is an extension of the static

coated inclusion self-consistent model innoduced by Cherkaovt et al 123, 241.

Section 3.2 derived a model for the 5imple case of coated ellipsoidal inclusions

embedded ia sn infinite viscoelastic matrix. The model approximates the presence of

inhomogeneities as a spatial variation of elastic constants in accordance with Z'etler

and Dederichs [34]. In the static domairl this approach yields an integral equation

based on Green's formalisms for the local stain field. The kemel of this integral

equation is a Green's firnction that relates material stiffiress contrast between matrix,

inclusion, and coating phases to a distribution of volume forces. Extension of the

static model to the quasi-static frequency domain requires this dismibution of volume

forces vary in time at some frequency, o), aîd integrates the static integral equation

across all frequencies. Finally, application of interfacial operators and volume

averaging of the local sfiain fields yields a quasi-static SC micromechanical model for

viscoelastic particulate composites containing coated ellipsoidal inclusions.

The quasi-static model derived in Section 3.2 is limited to the approximation

of effective material behavior resulting from a host containing identical spherical or

ellipsoidal inclusions. The model is firther resticted to applications where the

inclusions are identically orientated in space when the inclusions are ellipsoidal. This
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limitation is addressed in Section 3.3 where the model is generalized by expanding the

representative volume element to include multiple coated inclusion families. Each

coated inclusion family possesses identical viscoelastic behavior, inclusion geometry,

and spatial orièntation. Generalization is achieved through a dilute strain

concentration tensor (DSCT) approximation scheme. Genemlizatron by DSCT yields

a much more flexible model which is capable of accommodating a vast range of

materials containing coated inclusions with various viscoelastic behaviors, ellipsoidal

geometries, and spatial orientation dishibutions.

6.1.2 Modelvalidation

The quasi-static micromechanical model derived in Chapter Itr was first

validated before attempting implementation of the model as a material design tool.

Model validation and application was the aim of Chapter IV. The chapter first

compared quasi-static SC estimates to complex bounds from the literature.

Comparison with bounds has 4 twq fold purpose. Bounds on the effective behavior of

composite materials describe the limits of possible effective material properties based

on minimal and maximal energy resfiictions. They are dçendent on constituent

material properties and the volume fractions of each phase. Disagreement with

bounds invalidates a material model as it imFlies that physical laws have been

violated during model derivation. For this reason, verification that a proposed

effective medium theory (EN[I) falls within accepted bounds is a first order check of

model validity. The second purpose for comparison with bounds is to check

composite material optimality. Bounds provide information conceming the optimality

of effective material behavior because they are derived from upper and lower energy

restrictions. For this reason, proximity to an upper or lower bound gives a measure of

how nearly optimal the phase composition, inclusion geometry, inclusion orientation,

or any combination of these factors renders the effective behavior of the'composite
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[67]. The quasi-static SC model was compared vrith three specific complex bounding

methods taken from the literature for these reasons. Section 4.2.1 clearly shows that

the three phase model fatls within the bounds proposed by Roscoe [65, 66] as a

function of frequency and inclusion volume fizction. The two-phase isotopic SC

model was then successfrrlly compared with the variational and translational bounds

for complex shear and bulk modulus introduced by Gibiansky ,:rd Lakes l72l and

Milton and BerrymanlTlf, respectively. These studies validate the derivation given

in Chapter III as well as the imFlementation of the resulting model in the quasi-static

frequency ds6ain.

Section 4.3.2 employed the SC model to evaluate the effective viscoelastic

constants of an isotopic viscoelastic matix containing coated, ellipsoidal elastic

inclusions. The lossy behavior of the resulting anisofiopic ssmFosite was captured by

introducing complex frequency dependent matix material moduli. The section

investigated the effects of constituent phase properties, inclusion orientation, and

inclusion aspect ratios through a series of paramehic studies and comparison with

experiment. This validation step first investigated the tansmission loss (TL) of a

plane wave normally incident on a slab of viscoelastic composite material submerged

in water for oblate, coated, inclusions with aspects ratios rangng from 1.0 (spherical)

to 2.5. For the range of material properties used, the effect of the inclusion geometry

on the TL was modes! less than 2 dB, but agreement with the spherical inclusion

approximation and experimental data taken from Baird et al f76f was good. The

variation of plane-wave attenuation coefficient was then sfudied as a firnction of

inclusion orientation angle for the same constituent material properties presented in

the TL study. Directional dependence in accordance with the physical dissipation

mechanisms were shown to be captured by the quasi-static SC model. The complex
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effective sound speed of the material was then evaluated as a function of frequency,

inclusion aspect ratio, and volume fraction. The effects of different inclusion

geometries such as penny-shaped, needle-shaped, oblate, and prolate have also been

studied. The results of all these studies clearly showed that the quasi-static SC model

predicts directional variations of lossy composite material behavior induced by

aligned ellipsoidal inclusions. The calculations and discussion of Section 4.3.2

verified that the quasi-static micromechanical model allows for a level of generality in

modeling of lossy composites where scattering based approaches are limited. As

sucb, it was concluded that it could be a useful tool in the design of new anisotopic

damping materials for numerous applications, including cases where the anisohopy of

such materials is induced due to loading conditions or manufacturing processes.

6.1,.2.2 Homogenization throueù DSCT formulation: Orientation distribution multiple

scale modeling. and coating thickness variations

The next validation step presented was an inspection of the quasi-static SC

DSCT model. The SC model was 6sdified in Section 3.3 to allow the approximation

of the effective properties of composites with many disparate coated-inclusion

properties, geomefuies, md orientation distributions. To illustrate fts improved

psdsling flexibility of the DSCT formulation, several cases studies were presented in

Sections 4.3.3,4.3.4, and 4.3.5. Section 4.3.3.1showed that SC DSCT approximation

of the lossy properties of globally isotopic composites containing uniform

orientational dishibutions of ellipsoidal inclusions has good qualitative agreement

with a model proposed by Berryman [51]. The formulation was then shown in

Section 4.3.3.2 to capture the effects of varying the orientational preference of

ellipsoidal inclusions through a parametric study on the compressional lÀrave

attenuation coefFcient of a bi-phase lossy composite. The ability to correctly capture

preferential inclusion orientation was then verified by comparison with experiment in
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Section 4.3.3.3. That section showed, through comparison with experimental values

from Jones and Wang 1771, that the SC DSCT model has the ability to accurately

homogenize comFosites containing multiple inclusion types together with preferential

orientations of select inclusion phases. In Section 4.3.4, the multiscale capability of

the SC DSCT model was illustated. A SiC-At composite studied be Ledbetter and

Datta [79] was idealized as consisting of tlrree distinct length scales. The efflective

stifÊress coefficients calculated using this formulation were shown to have good

agreement with experimental values and the multiple scattering model Ledbetter and

Datta 1791. Sections 4.3.3.3 and 4.3.4.1 showed another strength of the coated-

inclusion SC DSCT forrnulation, that being the simFle extension to the form of a

generalized SC model for bi-phase composites. The GSC scheme shows slight

imFrovements of approximation without adding modeling difficulty. Finally, the SC

DSCT model was shown capable of improving the accuracy of TL approximations for

a previously studied composite [50, 53, 76]by taking variations in inclusion coating

thickness into account.

The comparisons detailed above illustate the flexibility and level of generality

achievable using the quasi-static SC DSCT model. The model is not without its

drawbacks, however, and several points of caution must be addressed. First it is

known that SC models can display some numerical instability due to its implicit form.

This drawback was discussed at length in Section 4.4 and must be considered when

msdsling composites with high confast phasss. Anotlier drawback of the model,

which is also linked to its imFlicit nature, are the singularities observed in the

imaginary part of the complex wavenumber around the threshold of rigidity for higfu

contast composites. With these drawbacks in min4 the level of achievable generality

and accuracy of the SC DSCT model displayed in this chapter far outweigh these

negative aspects. Indee{ the ability of this generalized model to captnre the effects of

complex material microstructure in the stLatic and quasi-static regimes make the SC

DSCT model an ideal candidate for the design of absorptive materials.
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6.1.3 Towards the implementation of the SC model as a material by design tool

Chapter V investigated quasi-static SC model implementation as a material

design tool by presenting and studying the damping behavior of a multiscale structure.

The aim of this chapter was to provide an intoductory level example of quasi-static

SC model implementation in the design of a lossy structure. This was accomplished

by presenting a curse study of the damping properties of a simple structure: a vibrating

sandwich plate. A vibrating sandwich plate was chosen to represent an automobile

windshield, a common structural element. Such a choice clearly shows practical

implementafion and the potential wide-range impact of the material by design

approach. This case study provided preliminary insight into the role the quasi-static

SC model can play in a material design sfrategy and laid the groundwork for more

detailed research.

A conshained sandwich plate was idealized as consisting of four distinct

length scales. These length scales are, from shortest to longest (l) the constituent

material microsFucture, (fi) the macroscopic plate material, (iif) the sandwich plate,

and (rv) the constrained sandwich plate. Length scales (iii) and (rv) are referred to as

the structural elemen! or par! level and sfucture level length scales, respectively.

The lossy behavior of this multiscale structure was modeled using a nested hierarchy

of models where each model was capable of making one or more scale fiansitions.

1as damFed behavior of the structure as a whole was approximated with the

loss factor of the fust mode of vibration calculated for a viscoelastically constrained

sandwich plate or beam. Modal analysis was performed via classic methods

discussed by Liessa ll72l. This study quantified lossy behavior at the highest length

scale. Modeling behavior at the structure level required information about part level

behavior, in other words, this model made the scale tansition from length scales (iil)

) (ty).

The shuctural element of interest to this case study was represented by a

sandwich plate and was modeled using a simFle constrained layer damping model
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inhoduced by Ross, KerwirU and Ungar (RK[I) t811. This simFle analytic model

yielded insight into lossy sandwich plate behavior based on constituent layer material

behavior and geometry. The RKU model was successfirlly employed to model

effective sandwich plate behavior as a function of frequency and made the scale

transition from macroscopic plate materials and geometry to sfuctural element

represented as scale fiansition (ii) > (iii).

The final model employed was the SC model which has already been

discussed in detail and which performed the scale transition from constituent material

microstructure to macroscopic material behavior,length scales (t) à (tt). This section

showed that the SC model adds design variables,.design flexibility, and behavioral

insight to the design process. Multiscale structural behavior approximated via this

nested hierarchy of models was verified through comparison with finite element

approximations employing a sophisticated model proposed by Daya and Potier-Ferry

t831.

1as final section of this chapter investigated the emplolm.ent of the SC model

to yield insight in order to enhance part and sfuctural level d"mping capacity. This

study aimed to quantifr the effects of microstructural variations on da-Ping

properties at the part and structural levels. This was done by studying the effect of

innoducing voids into the viscoelastic interlayer of the sandwich plate. Structural

element level effects were first studied. The intoduction of 10% voids into the

interlayer material yielded 5 - l0% increases in sandwich plate damping capacity.

1Xs damping capacity measure employed was the amFlitude attenuation per flexural

wavelength, Af*fÊfl^:. Though this is significant on the part level, the effects

observed at the sfiuctural length scale were marginal. Circular sandwich plate modal

loss factor calculations showed a quadratic dependence on void fraction, but the

magnitude of this influence was minimal. Indee{ l0% interlayer void fraction was

only shown to increase modal loss factor by -2o/o over the non-voided interlayer case.

Further, the sandwich plaûe suffers a simultaneous significant reduction in flexural

resistance upon intoduction of voids. The effects of interlayer void fraction on the
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frequency dependent TL of the sandwich plate.was also inspected. The TL

approximation \À/as made using the nested multiscale modeling approach coupled with

fundamental acoustic relationships given by Pierce [89]. Interlayer ysiding showed

minimâl TL improvement at coincidence. The improvement calculated was merely 2

dB, a level imperceptible to human hearing. Though the modeling approach was

validated by this case study and microstructural influence was observed to propagate

through lengths scales, these results were discotraging in terms of design benefit.

Fortunately, new research suggests that very small volume fractions of

instable microshuctural inclusions yield exheme increases in macroscopic damping

behavior [9, L0, lzf. The set of material models was therefore employed to

approximate windshield TL for a sandwich plate whose interlayer contained trace

amounts of a hypothetical instable material. The results of this multiscale study

showed the propagation of these microstructural variations through multiple length

scales finally manifesting in very ef[ective increases in sfructr:ral level damFing.

Additions of only 1% instable inclusions nearly removed the TL coincidence notch,

and 4Yo inclusions were shown completely damp coincidence phenomena Though

the material studied was hlpothetical, such broadband material damping has been

experimentally observed by Lakes et al11,0,l2l, and these results are therefore very

encouraging for the design of high loss materials.

6.2 Perspectives and suggestions for future work

This thesis has derived" developed and validated a quasi-static selÊconsistent

micromechanical model and presente6 a simple multiscale problem within the

framework of material by design. However, this work represents but a srnall

contribution to the complex material by design research area which lsmains rich for

study. It has been shown that micromechanical modeling as a material by design tool

can easily be incorporated into a nested hierarchy of models thereby simultaneously
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approximating sfuctural behavior at many different levels. This approach gives

considerable inforrnation and freedom to the design process and represents an initial

step towards the integration of material by design into the overall design of any

stucture. This thesis has shown that development and study of micromechanical

models is exhemely important to this emergent design process. These models give

substantial insight into the influence of material microstructures which translate into

desirable sfructural behavior while also being a key tool to approximate final design

performance. Indeed, the robust quasi-stratic selÊconsistent model derived

developed, and validated in this thesis has been shown to enhance knowledge of

absorptive behavior and the influence of microsfuctural behavior on damping at

macroscopic, elemental, and structural length scales. This work has therefore given

promising results for future development of micromechanical tools for application in

stategies to design absorptive materials.

6.2.l.l Suggestions for future work

It has been previously stated that the domain of material by design is rich for

study. Future research in this domain could include a vast ftmge of areas including

the study of detailed overarching design stategies, fabrication processes and

variability, computationally efficient design, collaborative systems design,

nano)micro scale modeling, and molecular dynamics or quantum approximations of

sub-continuum material behavior. For this reason, the suggestions for futrne research

given here are limited to the development of micromechanical tools for the material

by design process with a specific emphasis on the design of high loss materials.

One limitation of the micromechanical model presented in this thesis is its

limitation to quasi-static applications. This problem is specifically important when

investigating high frequency wave propagation apptcations where the quasi-stratic

approximation is no longer valid. This problem could be addressed using an approach
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similar to thç micromechanical approach presented by this thesis without neglecting

inertial terms in the first stages of model development. This is not a hivial modeling

problem- Successfirl evaluation of this problem would, however, yield a model

capable of approximating both quasi-static and non-quasi-static material behavior

while maintaining the generality ofthe quasi-static SC model presented inthis work.

Another interesting research area in the domain of EMT is the development of

more tractable complex bounding techniques. The present complex bounds are either

not restictive enough or give too little information. Roscoe's bounds provide the

ability to inspect effective complex material behavior as a function of frequency or

volume fraction, but are too admissive to study composite optimality. Bounds derived

from variational and translational techniques, on the other hand, provide a very

accurate restriction on permissible effective values. Unfortunately, these bounditg

techniques do no lend themselves easily to EMT comparison as a function of

frequency or volume fraction. The development of bounds for complex composite

materials which can be easily implemented for a wide ftrnge of exciting frequencies,

volume fractions, and constituent material properties is therefore attractive.

Future research of micromechanical modeling tools for material design

applications must include implementation of met4 or surrogate, models to map the

effects of microstructural behavior to macroscopic behavior. Meta-models are design

tools that permit efficient exploration of the design space [20]. For example meta-

models approximating zubmicron material behavior as the result of localized macro-

scale loading can be used as an input to existing micromechanical models (see Figrne

6-1). This approach is a powerful method to evaluate macroscopic and constituent

material behavior while limiting computational loads usually required for precise

evaluation of behavior at such small scales 1221. T\e meta-modeling approach gives

exhemely important information regarding the effects of submicron material behavior

and geomeûry on the macro-scale. This information is of high importance for a

material design strategy 1221. An example of this approach with respect to damping

behavior would be the implementation of meta-models to approximate various

209



negative-stiffhess behaviors. Meta-models can be created to mimic instable behavior

resulting from macroscopic therrnomechanical loading localized to the microstructural

scale. These models could subsequenfly be integrated into the SC model derived and

validated in this thesis in order to further inform the design of high loss materials.

Figure Gl: Schematic of a meta-model mapping procedure. Ihe microscale variables repre'sent
from top to bottom, the constituent material properties, the volume fractions, the inclusion form'
the inclusion orientation, and any other variables to be defined.

A related area of considerable interest for lossy material design is detailed

research on instable material behavior at small scales (micron-, submicron-, or.nano-

scales). This thesis has shown that instable behavior leads to exheme damFing at the

macroscopic scale even when volume fractions of materials displaying this behavior

ar.e miniscule. Research regarding the onset of instable behavior as well as methods

to introduce instable materials into a host is of utm.ost interest. Another very

inaeresting aspect that must be studied with regards to material instability is the ability

to stabilize such phases under nsminal opemting conditions while eliciting instable

behavior upon slight loading changes in preferential directions or along certain

toading paths. These, and many other behavioral tends, should be first explored

through a meta-modeting approach and finally imFlemented into a material design

scheme.
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6.2.1.2 Comments on material by design

Material by design is an emergent and exhemely ambitious research field with

the potential for considerable impact in many fields of science and engineering. The

elementary study provided in the Chapter V clearly illustrated this point by showing

efficient enhancement in the absorptive behavior of a simple structural element

through a limited material design approach. This was accomplished through

application of knowledge obtained from the quasi-static self-consistent model and the

nested hierarchy multiscale models. The result of the work done in this thesis is,

therefore, a well developed material design tool which has provided insight into the

microstructr:ral mechanisms that lead to enhanced damping behavior across length

scales. It has fiuther provided a tool to be integrated into a multiscale and multi-

physics material design scheme. The combination of this research with other studies

that target key areas of material by design will provide this exciting field with

significant information and bring designers closer to its practical implementation.
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APPENDIXA

F ounm,n TR^q,NsroRMAfroN Appno>mrarroN oF ft (Ô" )

TmFlementation of the SC technique requires the numerical approximation of

the modified Green's tensor for cases where the surrounding matrix is anisotopic

(this includes ctrses when the actual material phass5 are anisohopic or when the

inclusions are ellipsoidal and oriented). The mrmerical evaluation is done via Fourier

transform techniques as explained in Mura and BerverTlet et al p.6, 371. For

evaluation using the FT technique, the assumption is made that the displacement field

caused by the presence of the inclusion can be represented by the superposition of an

infinite sum of spatially regular displacement fields. This assumption, by the very

nature of the Fourier transform, implies that the spacing of inclusions is regular.

Though this can be a gross estimate, the method has been proven to provide very good

approximations to tue composite material behavior 1261. The method employed is

rather involvd but stated simply it involves using the Fourier integral to fiansform

the elliFsoid into a sphere in Fourier domain. The transform variable in this case

represents the '\rave number" of the sfrain field with spatial regularity in sn infinite

homogeneous medium due to the presence of inclusions. The tansformation allows

for numerical integration around a spherical volume using numerical techniques to

evaluate Equation (m.2.40).

Let the Fourier transform of the Green's tensor in the reference material X and

its inverse be defined as follows:



Kr: k,

K ,  =b  k ,
a

K, = 9k,
a

(4.1)

(A.3)

(4.4)

where the vector Ë ir th" 'kave-number" of the displacement (and therefore strain)

field in 41 infinite homogeneous medium due to the presence of the coated inclusion.

Integrating through all frequencies and then applying the Fourier transform to

Equation (m.2.7) gives:

ô;r,n,e;(Ë)= u*

If the inclusion is ellipsoidal, it is convenient to

variables:

introduce the following change of

ln'
and ,: lu,

LË'

l*,' :1',+R=
Lxr

X t = x t

X, =T*,
x, =!x,

c

= - = {

The following equalities are then useful:

E.r = k-R

k , :ÔuK,  where :  [oo ] :

100
oao

b

0 0a
c
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Equation (A.2) can then be expressed as for the case of an ellipsoidal inclusion:

êftK,a,K,a rGâ(Ë)= u*

Then, defining K, = KI,, where K is the magnitude and

leads to:

L ûe the direction cosines,

(A.6)

(A.7)

which depends only on the magnitude of the vector K. This expression can then be

substituted into the inverse Fourier transform in order to evaluate î1 , and therefore

î'(Ô') as fotlows:

ô{-a,,erl,r,= ùa

K'cil(*): r-;

î L.j = *" !"^ t o ïil*, e; (R)f z,o r r "e rd e
(A.8)

For efficient and accurate numerical evaluation of the integral in Equation (A.8), an n

point Gaussian-Legendre quadrature has been employed. It was found that, for most

cases studied" lO-point quadrature was sufficient. Finally, it should be reiterated that

the integral of the modified Green's tensor is related to Eshelby's tensor throug! the

following relationship.

fi,,(ô-)=|{*, *î1.,1
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APPENDIX B

TENson RorAfroN AI\ID Eur,rn ANcr,rs

According to Euler's rotation theorem, any rotation may be described using

three angles. If the rotations are written in terms of rotation mafuices B, C, and D,

then a general rotation can be written as the product of those rotations Ï1491.

R=BCD (B.l)

The three angles gving the three rotation matices are called Euler anglss. There are

several conventions for Euler angles, depending on the axes about which the rotations

are carried out. One of the most common conventions is the "x"-convention which

has been employed in this thesis and is illushated in Figne B-1.

Figure B1: Visualization of Euler angles employed in tlex-convention [1491.

The rotations associated with this convention consist of a rotatio\ e, abottthe z-axis,

followed by a rotatio4 0, about the rotated x-axis and finally a rotation, y, about the

rotated z-axis. In general the Euler anglss, (ç,0,V), can take the following values:



a elo 2"1
o efo rl
vl elo 2ol

The individual rotationmaûices are defined in Equations (B.3), (B.4), and (8.5).

(8.4)

The resulting components of the rotation matrix R are detailed in Equations (8.6).

.Q, = cosyr cosp - cos 0 stng stny

R, = costy sinp + cosdcospsinpt

Rr: = sinr/u sind

&t = - snt{cos p - cos 0 srnp cosry

RD = -srnysnq -cosdcospcosy

&r:s inds inP

\z:  -s indcosP

&s = cosd

The rotation of any second order tensor, Xrr, from one coordinate system to its

representation in another, *u, *iog the rotation matrix, R, is shown in Equation

(8.7).

f 
cosrlz snz tl

"=L-'ir 
cost/ 

|

[1 o o.l

"= lO 
cosd s ind l

L0 -sind cosdl

I cosp slr^e 0l
D=l-sinr cosp ol

Lo o rl
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Xg.: R*Ri,Xo (8.7)

The rotation of any fourth order tensor, X,*,pq, from one coordinate system to its

representation in another, i*, which is related by the above Euler angls5 is given in

Equation (B.8).

ir, = Ro',R7'R4RtsXn pu (B.8)
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APPENDIX C

Sumrmnv or Conær,nx Bouxos

Complex bounds proposed by Roscoe

The equations used to derive the complex bounds the proposed by Roscoe are

analogous to statements of potential energy used as the basis for the extremum

principles which yield the bounds for elastic composites, see Voigt [110] and Reuss

[11U. The following analysis employs the notation used by Roscoe. First the

isotropic and deviatoric parts of the relevant tensors are separated in order to simpli$

the derivation. Doing so yields the following classic relations for the stress and strain

in a material.

ou=o6u+su (c.1)

oo=e6u+eu (c.2)

In the equations above the hydrostatic and deviatoric stress values are denoted as o

and s respectively, the analogous stain values are assigned the variables e and e,

respectively, and âu is the Kronecker delta firnction. ln the low frequency limit the

elastic-viscoelastic correspondence principle can be enployed and the well-known

stress-strain relationship for the rtr phase is given as [65, 66].

o, =3r)e,s, :2Ple , (c.3)



l . r
e '  =  

,J  
' s ' " , : ! l )o

i+{irsusn+ Ib,au)a',

(c.4)

In these expressions an asterisk, 
*, 

denotes that the quantity has a complex value, P,

and rc, represent the shear and bulk moduli ̂ d j, and l, represent the deviatoric and

isotropic compliances of the rùphase. The two elementary extremum principles used

for classic elastic composites [110, 111-] and applied here to viscoelastic composites

are summarized with the two points below.

l . Assume (") = 
", 

and (o') : d. for each phase, r, where (s) and (o-)are the

global deviatoric and isotropic stesses respectively.

Assume (")=",and(e) :t, for each phase, r, where (") *a (e) are the

gtobal deviatoric and isotropic stains respectively.

Applyrng assumption 1 to the expression for strain energy yields Equation (C.5)

below.

l, * l',) {s,7 * lr *(".u Xuo ) = (c.s)

A bar over any quantity in the above expression denotes the complex coqjugate of that

quantity and, V, is the vohrme of the rft phase with V =)V,. Similarly, for

asstrmption 2,the stain energJ relationship is written:

z p * (e u) (a u) * z ù( ", X u, ) : +UP ri',p, + 3 ri e ue u) dv,
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It is important to note that Equations (C.5) and (C.Q each represent two separate

relationships each of which relate the real or imaginary parts of macroscopic material

behavior and mechanical loading to the analogous quantities of the constituent phases.

Denoting the real and imaginary parts of a complex quantity as r' = .x + ix', these

relationships are shown below.

(c.7)

z p* (e u) (an) + z rc * (" ) (r) = 
T1 t, 

p ; u uêv + 3 rc i e ueu) dv, (c.8)

viscoelastis qnalsgues to the elastic Reuss and Voigt bounds are then found by

matching terms on the LHS and RHS of relations (C.7) and (C.8). These bounds are

simply the weighted hannonic average and weighted average of the constituent phase

properties given below:

(c.e)

)i* F,)(s,) +!r;(',X';) = +U(it, ,,u, *!r; o,uu)ar.

ià,=(+#)' "t=[T#) 
'

rc62r*

rL>+

tti,u =1f,P: ii,u:lf,ni (c.10)

In the above relationships, RZ and RU denote Roscoe's lower and upper bounds,

respectively. It is now important to note that due to energy considerations the

following is tue:

P;r> Pb

jÀ,> ib
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An important aspect of these complex bounds is the lack of restrictions with

respect to the frequency inspected, the total number of constituent viscoelastic phases,

r, or the total volume fraction, p. This logic leads to the following reshictions on the

possible values for the effective viscoelastic moduli:

where al is the frequency of interest and e is the total volume fraction of inclusion

phases. Note: f,*o =l-P.

Complex [ulk modulus bounds

According to the work of Gibiansky and Lakes f721, the effective complex

valued bulk modulus of the isotropic viscoelastic composite is constrained to a "lens-

shaped" region in the complex bulk modulus plane. This region is bounded by the

outer-most pair of four circular arcs, each of which correspond to the four min-max

variational principles proposed by Cherkaev and Gibians$ 167l and Milton [68]. The

equations defining these arcs are calculated from Equations (C.13) - (C.l7)below.

pL@,ç) t i;, (t,p) < r;u @,P)

i|@,q) = ià (',ç) < 
"i" 

(r,p)
(c.r2)

(c.13)

*(') (f ,y) : fKr+ (1 - tl.r- ffi

f o r  n=1 ,213 ,4
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For this relanonf, where f e10,1] and represents the volume fraction of phase 2, is

fixed and 7 varies along the real axis from [0, 1]. Functions y@ ( ù are the previously

mentioned l-fuansfonns and are defined for the bulk modulus as shown below.

!(') =1U"+(l- ùp,) (c.14)

v@v)=i(i.+)" (c.1s)

, {3) (y)=

(c.lo

,(a\ (y)=

(c.17)

Complex Shear modulus bounds

Milton and Berryman derived bounds for the complex shear modulus of a bi-phase

isohopic complex composite material using the vaxiational principles introduced by

Cherkaev et Gibiansky t67]. Application of these bounds is achieved through the

following algorithm. Given the complex valued bulk and shear moduli of the

constifuent phases, r1, K2, Fb F2, the algorithm calculates the bounds in the

transformed complex plane. Note that 1fos same notation for viscoelastic composite

composition and material properties is used for these bounds as for the complex bulk

modulus bounds derived by Gibiansky *d Lakes [72]. The algorithm begins by

-K,*t(+ .^)(+.",)].
l,(+*",)* ,-^(+.')]
-",.1(+.r)(+.",)].
l,(+.*,)*r-^(+.",)]



defining a range of angles which represent the phase angle of the shear modulus

bounds in l-transform space must be defined [71]:

oelo, eul

\Àrith (c.18)

ft, = -o + -* {arg (rcr),arg(rcr),*e(n),*e(ùI

Itu =ffi {*g (", ), arg (r, ), ar e(n),*e(n)l

Because both real and imaginary parts of the moduli are forced to be positive for the

evaluation of these bounds, the values of 0u and 0r will always fall between 0 and zu,

and - z and 0, respectively. In the l-tansform space the bounds are defined by some

singls valued function, f*'- ,represented in Equation (C.19) in the most general terms

possible [71].

y = f 
*'- (x), if and only rf z*'- = x I i! e ôB*'- (c.1e)

ôB*,- rnEquation (C.19) represents the upper and lower boundary, respectively, of

the set of all admissible values of z*'- in complex I-space, x and y are the real and

imaginary parts of the complex shear modulus in l-space on that boundary, and the

complex number, z*,- ,is some as function of the viscoelastic composite's constituent

properties and composition. The resulting bounds can novr be plotûed either in the I-

tansformed space or complex shear modulus space via the relationships given below.

First, z*'- must be defined in terms of the viscoelastic constituent properties and the -

I-space phase angle A v/ith the equations below [71]:

224



(c.20)

(c.2r)

(c.22)

where

For z-,thevariablesp, and Kj ?redefinedas:

,r=ffiandcr=#p4

f *[ûr, - prb-''f<o
otherwise

ir no(*, - *rY-"f. o
otherwise

p, ={h'
l4z,

*, :{7r',

and" for z* ,the variables pu ûd q are defined as:

pu ={h'
l4z,

*, =f*"
lKz'

ir m(r7a -rlp)""|>o
otherwise

ir hkr7", -tlrc,p''f>-o
(c.23)

otherwise

Upon implementation of this algorithm either ct ) æ 01 c2 à oo. The former occurs

when one of the shear moduli determines either of the limiting engles in Equation

(C.21) and the latter occurs when one of the bulk moduli determines either of the

limiting angles in the same equation. It should also be noted that the despite this

problem evaluation of the above equations does not always lead to a closed space.

This problep i5 sliminated by extending tangent lines from the limiting angles using

the following relationships [71]:
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z- = z- (ou)+ se'tu , z- = z- (or.)- trtt' (c.24)

,* =V*(or)+ se-'ult , ,* =V* @r)- rr-""1' (c.2s)

The variable s in Equations (C.24) and (C.25) represents a real variable that can takes

any value in the rurge [O *) required to close the upper and lower bounds. The Y-

fransform space bounds given by Equations (C.18) - (C.25) can then be fansformed

to the complex shear modulusi space using the following relationship [71].

p*'- =7"1#=f-' -,.- (c.26)

In the above expression, f, ^d pn denote the volume fraction and shear modulus of

Pha*e n.
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APPENDIX D

RI(U Moonr, EvALUAIToN Ar,CONrrNVr

The effective flexural modulus relation derived by Ross et al lSlf is given rn

Equations (D.l) - (D.3). In order to efficiently evaluate 1fosse implicit equations and

to simpliff sensitivity analyses, it is desirable to find analytical expressions for both

the real and imaginary parts of the bending modulus and shear parameter denoted as:

6o: , ût, s' ,und i '  -

(D.l)

In the above expression I denotes the geometric parameter and $ is the complex

shear parameter. These parameters are calculated using Equations @.2) and (D.3),

respectively.

r=( l  +HY (D.2)

Êq =Ir,.'[t *uri*)) = no: (t* iû,)

I t  Ê " r  ^ , t 1

tæFæ:â'(' 
+iî)u=#(h) (D.3)

In these equations, Ë/is the ratio of interlayer thickness to the thickness of the top and

bottom plates (H : H2/h), Ih is the complex shear modulus of the viscoelastic

interlayer where k= m(r* iB), ,Ê is the complex Young's modulus of the upper



and lower plates with E = Ê'(t + irt), ar is the frequency of interesL h'' is the

thickness of the sandwich plate, md p6 is the effective sandwich plate density.

Given the material properties and sandwich plate geometry, a rough estimate

of the sandwich plate effective bending modulus is: 86'' *lnn'- 3û:r (t* iry;).
6 \

This represents the resistance of the top and bottom plates to flexure about their

bottom plane. Using this estimate the evaluation loop described by Equations (D.4) -

(D.11) will yield the effective flexural modulus at each frequency and plate geometry

of interest. Note: frequency dependence denoted by "n" is not included in these

equations.

y =(r+ HY (D.4)

Define:

(D.s)

. ' ' ' =1  à
è  h2EH

,' ={*'@ -,t).}rL!.ril} 
f{'',t 

+ryl)-*r;@ -ù}

4 = ls', ( r + z g'r ) + z s' r (f )' I I l0 + 2 s' r )2 + p r' t r' 7' 1

4 = {r Q + 2 s' t) - 2 s'' r'I I {(r + z r"' 1' + p r' t r'1'1

(D.7)

(D.8)

(D.e)

n r[t+r;i

B' r+t - 
It' r'lt + er (,1, - q 4)) (D.10)



,r'i, ={z(r* e#)+eey}f {r+er(4-ra)l cl.r1)

geîi+r = fr'r+rF* iryîr)

This model is well-behaved and simFle root finding techniques zuch as bi-section

reliably converge. One suggested convergence criteria is given in (D.12).

lln*n'1-lnû,ll
":"-6; @'12)

I
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APPENDTX E

F'oncno VnrunoN oF Eusrrcll,r,y Coxsrnamrnu Bpaus axo

Cm.cur,an Pr,nrus

This section finds the solution for the y-displacement for a uniform forcing

pressure as a function of frequency for the general case of a beam with uniform cross-

section and material properties in the x-direction and elastic boundary conditions at x

: 0 andx -- L. The diagram in Figure E-l shows this case:

Figure E-1: Schenatic of elastically constrained beam.

The well known differential equation for the space and time varying out of

plane displacemen! y(x,t),for a vibrating beam of uniform cross section and material

properties along its length, which is found via the dynamics of beam elements using

the Euler-Bemoulli beam bending assumptions [169], is given below in Equation

(E.1).

,ry* pbhfuP= p(x,t)b (8.1)



ln this equation E is the Young's modulus of the beam, 1is the beam's area moment

of inertia (I = bh3 flD, p is the mass per unit volume of the beam, ô is the width of

the beam cross sectio4his the beam's height andp(x,t) is the space and time varying

forcing pressure. The first step in solving this partial differential equation to first take

the Fourier lansform of the out of plane displacement with respect to time, yielding

the non-homogeneous ordinary differential equation below.

ry-Boi,(,)=b(*)n (8.2)

Where Fo = a] pbnf U =tZa2 pf Z,h2 and represents the flexural wave number in the

beam. One arrives at the solution to this ordinary differential equation through the

resolution of the homogeneous and particular parts. For simplification of the solution

of the particular par! exciting pressure is assumed to be constant in space and a

harmonic of the form p(r,0,t)-+ p(t)= p"cos(at)=R"lp"r-'^f. The resulting

general solution is shown below in Equation (E.3).

t (x, t)= 
l_4 "o, (/, ) + b,sn (p x) + â, cosh (px) + bo sinh (& ) - #fu

EI

cos(ar) (E.3)

The undetermined coefficients of the relationship given in Equation @.3) are

dependent on the specific boundary conditions of the be'm, and are found through the

resolution of the following four boundary conditions.

Resolution of System for Elastic boundary conditions

For the elastically consfiained berm shown in Figure E-1, the determination of

the coefficients âr - âa require expressions for the shear and moment at the extents of
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the beam. The boundary conditions are expressed below in the fow relations given in

cE.4).

(r) u(o,t)=-K,)ry Qii) u(r,t)=K,2ry @.4)
(ii) V (0, r) = K,.rv (0,t) tzul v (t,t) = -K*! (L,t)

Where Ky4,z ate the rotational spring coefficients on the left and right limits

respectively (having the units of N'm) and KrJ,z are the linear displacement spring

coefficients at the left and right limits respectively (having units of N/m).

Approximate values for the linear and rotational springs are approximated using the

conventions shown in Figure E-2. These shear and moment sign conventions for

beam bending shown below in Figure E-3.

Figure E 2: Approximation of boundary conditions as linear spring and rotational spring. b is the
beam width.

Figure E-3: Sign conventions used in tle derivation of the beam bending problem.

True B.C.

(

l*" 
* E*t + p*h; units -+ N lm

.+\ {
+7 1

[."* 
- p*(2t+n)n2; unrts -> N'm

,411T1\
W
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Expressions for the shear and moment can also be derived from the deflection

expression using the following 11,731.

M(x,t):rrfuP
(E.5)

v ( x-t\ - 
ôM (x't) = EI 

ô' ! (''t)
\ ' t  A x  A x '

Inserting expression @.3) for the out of plane displacement into the RHS of the

boundary conditions given in Equations @.4) where the LHS is determined using the

relations for shear and moment given in equations @.5) yields a system of four

equations having four unknowns. These four unknowns are the undetermined

coefficients bt,...,.n and can be resolved in terms of the specific beam material and

geomeûry specified by E, p, b, h and L, the elastic boundary conditions: K,4,1,2, and

K,y,t,z, and the loading conditions po, alad a. Useful in this derivation are the

following spatial derivations.

ry 
= -n B sn (B x) + b,p cos (B x) + b,p sinh ( p x) + b o p corh ( p4

+, EP
-EIÊ -("

Kvt

uÊ
4 l  I o lql=ff-,|_t:
4l I o leho"
L )  t { , J

ry 
= -b,p' cos(px)-nrp'sn(Bx)+ b,p2 cosh(Bx)+bot'sinn(Br) @'6)

ry 
= b,p'sin (Éx) - b,B' cos(px) + b,f'sinh (Br) + bof'cosh (px)

Using all of this information, the following system of equations results:

-EIP
- Y

-Epw(fL)+rv2siÂ(pL) -HpdE(pL)-r?2@(81) ErpcBh?'.L)-4'rsi'h(pr) ElsiDh(PL)-+r@h(PL)
EIf :ia(BL)+K.ræ(B\ -af æ(PL)+K-2:iB(PLl Ef dah(pL)+r-t6h(lI) .4/6h(Br)+r.':i'nh(pL)
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The system is characterized as a function of frequency by solving this system of

equations for the unknown coefficientr ({ô} :ldl-t {c}; at each exciting frequency-

Or, more 5imFly, a search for the zeros of the characteristic equation of the [A] matrix

yields the resonant frequencies for any system that can be simulated using the elastic

boundary.conditions above (which includes, cantilevered, simply-supported - simply

supported, clamped - 5imply-supported, etc ). Using this system of equations, the

above model was verified by checking the fust three calculated eigenvalues, PL,with

those tabulated in the literature [170] which employs an Rayleigh quotient method-

This is summarized in Table E-l below.

f1 fs important to note that the conditions atx :0 and x : L required to approximate a

clamped B.C. were thzt Kw,r,z: I x 1010 N/m and, Kyr,t,z: I x l0l0 N'm, and for the

simply-supported 8.C., Kn,Lz: I x 1010 N/m and Kv,,r,z= 0 N'm were used. As can be

seen from this table, this model is easily adaptable to dtfferent boundary conditions by

simply varying the values of the elastic constants at the extents of the beam. This can

now be employed in order to study the effects of viscoelastic elements on the modal

r{amping of the system. The most sfraightforward manner to quantiff modal damping

using the system response relations above is the half-power bandwidth method.

x'requency response of an elastically constrained circular plate

The general case of a plate having uniform cross-section and material

properties in the r- and â-directions and having elastic boundary conditions at r : a.

The diagram in Figure E-4 shows this case:
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Table E-1: First three eisenvalues taken rom literature and comparison with current modeL

Cantilevered (C. - F.) S.S. _ S.S. C. _ S.S.
Ref. 11701 Ivtodel Ref. 11701 Model Ref. 11701 Model

(8Dr 1.875 1.875 'IE 3.142 3.927 3.927
(BL)z 4.694 4.694 2n 6.286 7.069 7.069
(0L)s 7.855 7.855 3n 9.425 l0.2lo 10.210



Figure E-4: Schematic of elastically constrained circular plate-

For a vibrating plate of uniform cross section and material properties in the r-

and d-directions, the well known differential equation for the space and time varying

out of plane displacemenl w(x,t), which is found via the dynamics of plate elements

using classic Kircbhoffplate theory ll72l, is given below in Equation (8.8).

Êvnû,(r,e,,)* orryA = î(r,o,t) (E.8)

Where B is the frequency dependent bending modulus described by the relationship

Ê = zlf f tz(t-"'),w is the out ofplane displacemen!p is the mass per unit volume,

/z is the thickness of the plate, nd p is the forcing pressure. Now, making the

simpli$ing assumption that the forcing pressure is a harmonic and constant in space

as shown in Equation @.9)

fr(r,0,t) + b(t)= pocos(at) = R"[p,r-''] (E.e)

Taking the Fourier tansform with respect to time of Equation (E.8), tle rezult is

Equation (E.10).
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v4 îv (r, o) - noo 1r, e'1 = ^L,B (8.10)

Where fio = pha'fÊ and is the bending wave number. The general solution to this

partial differential equation is done by first finding the solution to the homogeneous

part as follows. The LHS of the above equation can first be factored into two

Laplacian operator relations.

(v' - r' ) (v' + î,')o, (r,o) = s (E.11)

Now, due to symmetry, we know that îvh must be periodic in 0 i.e.

i,(r,o - 0) = 'û,(r,0 =2rr). Therefore, in taking a separation of variables approach

such that îvo(r,0,t): n(r)O(a)"-'^ , it is apparent that @(P) must be of the form:

a
@(a)={r[#]]

Then, returning Equation (E.11), the two 5imilar relations below will

solutions:

v'z{n(r)o (o)l-k' {n(r)o(a)}= o

v' {n (r) o (e)l+ Ê' {n (r) o (a)} = o

(E.12)

requue

(8.13)

(E.14)

Now, applyrng the Laplacian operator in cylindrical coordinates and noting that the

form of @(A) given in equation (11) requires @" (A) =-n'g(O), the following two

equations result.



n (,).(i)" ?t-(t, *\)nç1=o

n" ("). [i)- (,) * [t' 
-$)^v', :o

These are identified as equations whose solutions are respectively the regular and

modified Bessel snd \srrman functions of the fust kind. The complete solution for

the homogeneous out-of-plane displacement is therefore described with the following

complete solution.

û,(r,0,,)=1ftËll.É9,)l{i..;al,^ ." 17,
Now, the solution can fs 5implified by noting specifics of the geometry. First due to

the symmety about the z-æris, we can discard one of the two fi.rnctions in d.

Secondly, because the plate is continuous at r : 0,the regular and nodified Ner:man

fimctions must be discarded. This leaves the following relationship for the solution to

the homogeneous part of Equation @.10).

û,0(r,0,t)= 
{à[** 

(r). B^r,(b)f"o"(nQ]"-'^ (E.18)

Note ftat there are two unknown coefficients which must be determined from the

shear and moment boundary conditions imposed atr : a.

To find the particular solution, we must take into account that the exciting

pressure is unifsrm in space and harmonic. This leads to ûs 5imple h5pothesis that
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the particular solution be simply of the form

û,o(r,o,t) + fr o(r) = C"or( alt) =ne[Ce-'']. Substituting this solution into

Equation (E.10), we have the following.

vo (C e-'*) - ifii 
"-tan 

= 
# 

r-'^ (E.1e)

The first term on the LHS of Equation (E.19) is zero, and the remaining terms yield an

expression for the constan! C, in terms of the forcing pressure. The final general

solution of @.10) is then given below.

û,(r,o,t)={Zl^t,(").8,1,(t*)f"os(ne)-fu}*^(E.20)

Resolution of system for elastic boundary conditions

For the elasticalty constrained plate shown in Figure E4, the determination of

the coefficients A, and Bnrequire expressions for the shear and moment at the extents

of the plate. The boundary conditions are expressed below in relations (E.21) and

@.22).

î[,(a,o,t)= qt#A (E.21)

û, (o, e, t) = - K,fr (a, o, t) (8.22)

Where the linear and rotational spring values are approximated from the true

boundary conditions using the convention shown in Figure E-5.
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r
I

l*,*E*; 
vrrits-+Nfm'

r --\{
- l

["* 
- s2n(tfa+tl+ ah): units + N

Figure E-5: Approximation of boundary conditions as linear spring and rotational spring. a is the
plate radiusr ft is the plate thiclcness, and / is the radial thickness that the plate is embedded in the
elastic boundala.

As was done in the previous example, the resolution of the problem requires

expressions relating the shear and moment to the displacement equation derived

above and given in Equation @.20). The necessary classic plate relations for this

problem were taken from Liessa ll72l and are given below in Equations @.23) -

(8.26) describing the plate bending moments, the ransverse shearing forces, and the

Kelvin-Kirchhoff edge reactions in terms of the out-oÊplane displacement.

(E.23)ftr-=-Ê1ry-'(ty.lqg)-lt ' z ' -  " la r '  '  ' [ "  
ô r  

'  
r2  ôe '  ) )

ù*:-D(r -ù*(:#)

ô,=-.Ê*(o,o)

t,=ô,.:W

(8.24)

(E.25)
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The evaluation of the boundary conditions will lead to two simultmeous equations at

r : athatcan then be solved for the undetermined coefficients Anand 8,. '|bie system

of equations is given below in Equations @.27) - (E.31).

liil\î,rilgtt.tm(8.27)

(E.28)

I

Where the frequency dependent firnctions in the matix of the LHS are specified

below. Note that in the following the "Â" designation has been removed for clarity,

but that all entities are still dependent on the frequency:

1 Qq = r: (ko).(L. H), @) - # 
r. Q-)

M. (r*) : | (ra) +(*. H)r" wl - & \ Q*)

& (k") : r; Q*) * *r: @ -vr r. @4.lw ffilr. Q-)

s ̂ (ko) : r: Q*). *,: (q -ffi r) @a) +{w ffilr ^Q-)
(E.31)

Solving relationship @.27) for An ard B, in terms of the forcing firnction and the

elastic boundary conditions yields the following expressions.

(E.30)
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tr - 
-PoKo M,(l*)

"n 
Bk3 phot2 L(l*)

@.32)

p _ PoKn L,(k")
-n 

Bk3phaf LQ-)
(8.33)

Where L(k") is the characteristic equation of the matrix in Equation @.27).

L(k") = L" (k") s (k") - M 
" 
(t*) 4, Q*) (E.34)

From Equations @.32) - (E.34) it is obvious that resonance is reached when the

characteristic equation of the coefficient matrix of Equation @.27) is equal to zero as

would be expected. Equations @.27) - (E.34) give a complete solution for a thin

circular plate with a uniform hannonic exciting pressure and allow modeling of the

forced frequency response of the system for a large variety of boundary conditions. It

is important to note that for 5imFle implementation of these relationships, it is

convenient to use the following recursion relationships for the regular -4 66dified

Bessel fi.mctions taken from Blackstock [05].

x ̂ ., (tu) = ffx, @") - x,-, (t-)

x:, (kn) = 
|l*,-, (t-) 

- x,., (k")]

hlr^" x. @)f= Q*)" x,-, (t*)

(E.3s)

(E.30
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Where X"(ka) represents either the regular or modified Bessel s1]rJsumann firnction

of the first kind.

To veriff the formulation outlined by Equations @.27) - (8.34), the fust few

eigenvalues of circular plates having different boundary conditions has been checked

with models derived by Leissa $72]1 for the specific case given. The results are given

below in Table E-2,Table E-3, and Table E-4.

Table E 2: First four eigenvalues of clamped circular plate taken from literature [172] and
comparison@

Table E-3: First four eigenvalues of a simply-supported circular plate taken from literature ll72l
and comparison with current model v

Table E-4: First five eigenvalues of itee circular phte taken from literature [172] and
comparison with current model v 0Æ

lHere the index s indicates the number of nodal circles on the plate (not including the

bor:ndary). It is important to note that the conditions atr : a required to approximate

a clamped B.C. were that Kw: 1 x tOe Nlm2 and Kr: 1 x 10e N, and for the simply-

zupported 8.C., Kn: 1 x tOe Nlm2 and Kr: 0 N were used. As can be seen from the

Plate Clampedatr: a, witlv:0.30
n :0 n :1 n:2

B:,, Ref. [172] Model Ref. [172] Model Ref. [172] Model

Fîo 10.2 1,0.22 21.2 21.26 34.8 34.80

Êît 39.7 39.76 X X X X

Plate Simply-Supportd, atr: a, \trithv : 0.30
n :0 n :  I n :2

B:. Ref. [172] Model Ref. [172] Model Ref. [172] Model

B:., 4.9 4.94 t3.9 13.90 25.6 25.61

F,,, 29.7 29.72 X X X X

Free Plate with v :0.25

n=0 n : l î=2 n :3

p:, Ref.
t1721

Model
Ref.
t1721

Model
Ref.
t1721

Model
Ref.
n721 Model

93p X X >< X s.513 4.600 t2.75 12.71

fît 8.892 8.884 20.41 t9.97 35.28 33.60 X X
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results, the model derived here yields results for three exhemely differenJ boundary

conditions which are acceptably close, though not identical, to the specific individual

models of Liessa U72| The model is therefore ideal for studies on the effects of

various elastic (and viscoelastic) boundary conditions on the lossy behavior of the

system.
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