

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l'utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 <u>http://www.cfcopies.com/V2/leg/leg_droi.php</u> <u>http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm</u>

6121186

ANNEE 1998

S |MZ 9815

THESE

Présentée à

L'UNIVERSITE DE METZ

en vue de l'obtention

DU GRADE DE DOCTEUR

Spécialité : Automatique

par

Rachid OUBRAHIM

AUTO-REGLAGE PID PAR STRUCTURE UNIFIEE ET PERFORMANTE

Date de soutenance le 15 janvier 1998 devant le jury :

Y

DB121 186

REMERCIEMENTS

Je tiens à remercier Monsieur Pierre PADILLA, Directeur de thèse, Directeur de l'ENI et du Laboratoire Génie Industriel de Production Mécanique de Metz (LGIPM) qu'il trouve ici toute ma gratitude pour m'avoir accueilli dans son laboratoire et pour son soutien et ses conseils tout au long de ce travail.

Je tiens à adresser mes vifs remerciements à Monsieur François LEONARD co-Directeur de thèse et Maître de Conférences à l'ENI de Metz pour son suivi, sa rigueur scientifique et ses qualités humaines qui ont permis une collaboration dans ce travail dans d'excellentes conditions.

J'exprime mes remerciements à Monsieur Jean-Claude BERTRAND, Professeur et Directeur de l'IUSPIM de Marseille, et à Monsieur Eric OSTERTAG, Professeur à l'ENSPS de Strasbourg, membres de jury pour avoir accepté la lecture attentive de ce rapport.

Je remercie Monsieur François VERNADAT, Professeur à l'Université de Metz d'avoir aimablement accepté d'être membre du jury.

Je remercie Monsieur Christian MAGAR, Ingénieur à la société JUMO d'avoir aimablement accepté d'apporter sa vision sur le plan industriel à ce travail.

Je tiens à remercier Mademoiselle Brigitte FINEL, Ingénieur de recherche au LGIPM (ENIM) pour ses conseils en informatique.

Mes remerciements vont également à tous les membres du LGIPM, plus particulièrement à mon collègue Ayman YOUSSEF pour sa disponibilité et son écoute tout au long de ce parcours commun.

SOMMAIRE

CHAPITRE I : INTRODUCTION

I.1 Introduction		2
I.2 Aperçu sur les correcteurs industrie	ls	3
I.2.1 Les correcteurs de tempé I.2.2 Les correcteurs de procé I.2.3 Quelques constructeurs c	érature dés le correcteurs avec des techniques adaptatives	4 4 4
I.3 Organisation de ce mémoire		5
CHAPITRE II : ETAT DE L'A	ART SUR LES REGULATEURS PID	
II.1 Introduction		7
II.1.1 L'algorithme de base		7
II.1.2 L'action proportionnelle	e	7
II.1.3 L'action intégrale		8
II.1.4 L'action dérivée		8
II.1.5 Atouts de la commande	PID	9
II.1.6 Quand la commande PI	D est suffisante	9
II.1.7 Quand la commande PI	D n'est pas suffisante	9
II.2 Réglage de la commande PID		10
II.3 Méthodes de réglage empiriques e	t analytiques	10
II.3.1 Méthodes de ZIEGLE	R-NICHOLS	10
II.3.2 Méthode de TAKAHA	ASHI	11
II.3.3 Méthode de BROÏDA		12
II.3.4 Méthode de HALL ET	SATORIUS	12
II.3.5 Méthode des polynôm	es de GRAHAM et LATHROP	13
II.3.6 Méthode de CHIEN-H	IRONES RESWICK	13
II.3.7 Méthode de SHINSKI	EY	14
II.3.8 Méthode du prédicteu	r de SMITH	14
II.3.9 Méthode de NASLIN		14
II.3.10 Méthode modifiée de	ZIEGLER-NICHOLS	14
II.3.11 Méthode d'ALZONI		16
II.3.12 Méthode par placemen	nt de pôles	17
II.3.13 Méthode d'annulation	des pôles de procédé	19
II.3.14 Méthodes de KESSLE	∃R	20
II.3.15 Méthode Kappa-Tau		22

CHAPITRE III : IDENTIFICATION ET NORMALISATION DES PARAMETRES DES PROCEDES

III.1 Introduction	25
III.2 Fonctionnement du relais	27
III.3 Détermination de la période, du gain ultime et du gain statique	28
III.3.1 Procédé en boucle fermée III.3.1.1 Calcul de T_{μ} et K_{μ}	28 30
III.3.1.2 Calcul de K_{r} et l	31
III.3.2 Procédé en boucle ouverte	32
III.4 Illustration par simulation	33
III.4.1 Procédé sans intégrateur	33
III.4.1.1 Approche en boucle fermée	34
III.4.1.2 Approche en boucle ouverte	35
III.4.2 Procédé avec intégrateur	36
III.5 Normalisation des paramètres des procédés	37
III.5.1 Introduction	37
III.5.2 Domaine temporel	38
III.5.3 Domaine fréquentiel	38
III.5.4 Normalisation des paramètres	39
III.5.4.1 Le temps de retard normalisé	40
III.5.4.2 Le gain du procédé normalisé	40
III.5.4.3 Le pic de perturbation normalisé	41
III.5.4.4 Le temps de montée normalisé	41
III.5.4.5 Le temps d'établissement normalisé	41
III.6 Conclusion	42
CHAPITRE IV : STRUCTURE DE COMMANDE PID UNIFIEE	
IV.1 Introduction	44
IV.2 Etude de la structure PID proposée par ÅSTRÖM	46
IV.3 Etude de la structure PID proposée par LANDAU	47
IV.4 Etude de la structure PID proposée par DE LARMINAT	48
IV.5 Etude de la structure PID proposée par EITELBERG	50

IV.6 Etude de la structure STR	51
IV.7 Structure PID unifiée	52
IV.8 Etude comparative	53
IV.8.1 Méthode de réglages	54
IV.8.2 Spécification des performances	55
IV.8.3 Résultats des simulations	56
IV.9 Conclusion	59

CHAPITRE V: REGLAGE DU PID PAR LA STRUCTURE UNIFIEE (RSU)

V.1 Introduction	62
V.2 Réglage de C_1	63
V.3 Réglage de C_2	63
V.4 Caractérisation des procédés	64
V.5 Résultats	67
V.6 Etude comparative	68
V.7 Conclusion	72

CHAPITRE VI : AUTO-REGLAGE ET VALIDATION EXPERIMENTALE

VI.1 Introduction	74
VI.2 L'auto-réglage	74
VI.3 Le choix de la période d'échantillonnage	76
VI.4 Résultats	77
VI.4.1 Résultats du test du relais VI.4.2 Résultats et comparaisons des réponses	79 79

CHAPITRE VII : CONCLUSION ET PERSPECTIVES

VII.1 Conclusion VII.2 Perspectives	82 83
RESUME ETENDU	84
BIBLIOGRAPHIE	90
ANNEXE	94

INTRODUCTION

I.1 Introduction

- I.2 Aperçu sur les correcteurs industriels
 - I.2.1 Les correcteurs de température
 - I.2.2 Les correcteurs de procédés
 - I.2.3 Quelques constructeurs de correcteurs avec des techniques adaptatives

I.3 Organisation de ce mémoire

I.1 Introduction

Avant de commencer ce travail, nous sommes partis des constats suivants : premièrement, le réglage du PID par la méthode de Ziegler-Nichols est basé sur un modèle simple dans le domaine fréquentiel ($T_u \ et K_u$) qui correspond au point (-1) dans le plan de Nyquist. Cette méthode donne généralement de bons résultats en régulation (le rejet de la perturbation) pour des systèmes à petits retards, mais elle est très décevante en poursuite (dépassement élevé de l'ordre de 50%). Deuxièmement, Åström a développé une méthode automatique qui utilise le relais pour la détermination des paramètres caractérisant le modèle de Ziegler-Nichols en boucle fermée, ce qui permet de concevoir aisément une boucle de régulation auto-réglable. Il a aussi proposé une structure PID qui pondère par un facteur β l'entrée de référence. Ce qui permet de réduire le dépassement excessif produit par la méthode de ziegler -Nichols, avec le même rejet de la perturbation de charge que la méthode de Ziegler -Nichols, mais le temps de montée augmente. Il propose aussi des formules empiriques pour calculer le facteur β en fonction des paramètres caractérisant le procédé (gain statique et gain ultime) pour un dépassement donné (10% ou 20%).

Le travail de cette thèse est motivé par le désir d'obtenir des améliorations des performances en poursuite par rapport aux méthodes de réglage de Ziegler-Nichols et celles apparentées (exemple : la méthode de pondération de la consigne d'Åström), tout en gardant la simplicité du modèle et les bonnes performances en régulation de la méthode de Ziegler-Nichols.

L'intérêt que continuent à porter les chercheurs aux correcteurs PID est justifié par le fait que 90% [AST 95] des boucles de régulateurs en industrie est de type PI (PID) et que les industriels tiennent à garder le PID comme correcteur, car les performances et la robustesse obtenues par ce dernier peuvent être suffisantes dans la majorité des cas, ce qui leur permet d'avoir un rapport qualité/prix convenable. Malheureusement, la plupart des correcteurs PI ou PID rencontrés dans l'industrie sont mal réglés. Un audit mené par Bialkowski [BIA 93] auprès des usines d'imprimerie au Canada, a montré qu'une usine d'imprimerie typique possède plus de 2000 boucles de commande. 97% de ces boucles utilisent la commande PI et seulement 20% travaillent correctement. Les raisons des mauvaises performances étaient dues pour 30% au mauvais réglage, pour 30% à des problèmes de valves de commande, et les 20% restants fonctionnant mal pour diverses raisons telles que : les problèmes de capteurs, les mauvais choix de la période d'échantillonnage et du filtre anti-repliement.

L'avènement des calculateurs numériques a permis le développement des techniques de commandes adaptatives qui sont des algorithmes de commande dont les paramètres évoluent en permanence dans le temps, en fonction de la variation de la dynamique du procédé ou d'une variation de la perturbation. Ces algorithmes sont souvent complexes et nécessitent une connaissance approfondie du modèle. La plupart des procédés industriels ont un modèle dont les paramètres ou les perturbations varient si lentement qu'ils pourraient être considérés comme fixes. Dans ce cas, l'utilisation de la commande adaptative peut s'avérer disproportionnée. La solution préconisée alors peut être la méthode d'auto-réglage qui fait partie intégrante des techniques adaptatives.

L'auto-réglage (auto-tuning) est une des procédures regroupant un ensemble de techniques pour l'ajustement automatique des paramètres du correcteur. Cette procédure est faite sur demande de l'opérateur ou peut être automatiquement initialisée.

La procédure d'auto-réglage est composée de deux parties qui sont les suivantes :

1. Identification du modèle du procédé, qui se fait soit en boucle ouverte (ex : réponse indicielle), soit en boucle fermée (ex : méthode du relais).

2. Calcul des paramètres du correcteur.

Pour avoir de bonnes performances dans l'auto-réglage, il faut s'assurer que les variations de la dynamique du procédé soient suffisamment lentes pour être considérées comme fixes et que l'ajustement des paramètres du correcteur reste fixe jusqu'à la prochaine demande d'auto-réglage.

I.2 Aperçu sur les correcteurs industriels

Les correcteurs PID réglés par des techniques adaptatives ont été commercialisés dans les années 80. Sur le marché, on peut trouver deux classes de correcteurs [AST 93] : des correcteurs de température, conçus spécialement pour la commande des boucles de

3

température et des correcteurs appelés correcteurs de procédés, conçus pour travailler dans • toute boucle de procédés industriels.

I.2.2 Les correcteurs de température

Ce sont des correcteurs bon marché par rapport aux correcteurs de procédés, car leur adaptation et leur réglage en ligne (grande constante de temps) sont plus faciles à réaliser que dans les correcteurs de procédés. De plus, les boucles de commande de température ont plusieurs caractéristiques communes, c'est la raison principale de l'introduction rapide du réglage automatique dans les correcteurs de température. Toutefois il faut signaler une nonlinéarité dans les boucles de commande de température, à partir du moment où la dynamique de refroidissement et de chauffage est différente.

I.2.3 Les correcteurs de procédés

Etant donné que les procédés peuvent avoir de grandes différences dans leur dynamique, le réglage et l'adaptation deviennent plus difficiles par rapport à la boucle de commande de température. Un des premiers correcteurs adaptatifs de procédés a été réalisé par Leed & Northrup Co en 1982 [HAW 83]. On peut noter que l'application d'un correcteur de température dans une boucle de pression donne des résultats très pauvres, car les boucles de pression sont normalement plus rapides et plus sensibles que les boucles de températures.

I.2.4 Quelques constructeurs de correcteurs avec des techniques adaptatives [AST 93]

Nous allons, dans cette partie, présenter quelques PID mis sur le marché par les constructeurs tels que le PID EXACT (760/761) de Foxboro, qui utilise l'analyse de la réponse en échelon pour l'identification et des règles heuristiques pour le réglage. La société SattControl présente le PID ECA400 lequel utilise le relais et un modèle de base pour le réglage. Le PID UDC 6000 de Honeywell emploie l'analyse de réponse en échelon pour l'auto-réglage et une base de règle pour l'adaptation. Enfin, le SLPC-181 281 de Yokogawa utilise l'analyse de la réponse en échelon pour l'auto-réglage et une base de règle pour l'adaptation. Enfin, le SLPC-181 281 de Yokogawa utilise l'analyse de la réponse en échelon pour l'auto-réglage et une base pour le réglage.

I.3 Organisation de ce mémoire

Ce mémoire est composé de 7 chapitres.

Le chapitre II est consacré à l'état de l'art des différents méthodes de réglage du PID.

Le chapitre III traite du problème d'identification, notamment l'utilisation du relais pour la détermination automatique des paramètres caractérisant le procédé. Une normalisation des paramètres caractérisant la boucle ouverte et la boucle fermée, est présentée en seconde partie de ce chapitre.

Le chapitre IV est consacré à la structure PID unifiée que nous proposons dans ce travail.

Dans le chapitre V, nous proposons un réglage PID pour la structure unifiée baptisé : Réglage PID par Structure Unifiée (RSU).

Le chapitre VI présente la validation des résultats théoriques et des simulations du réglage détaillé dans le chapitre V, ainsi qu'une procédure d'auto-réglage.

Le chapitre VII résume les résultats de ce travail et ouvre sur des perpectives.

ETAT DE L'ART SUR LES REGULATEURS PID

II.1 Introduction

- II.1.1 L'algorithme de base
- II.1.2 L'action proportionnelle
- II.1.3 L'action intégrale
- II.1.4 L'action dérivée
- II.1.5 Atouts de la commande PID
- II.1.6 Quand la commande PID est suffisante
- II.1.7 Quand la commande PID n'est pas suffisante
- II.2 Réglage de la commande PID
- II.3 Méthodes de réglage empiriques et analytiques
 - II.3.1 Méthodes de ZIEGLER-NICHOLS
 - II.3.2 Méthode de TAKAHASHI
 - II.3.3 Méthode de BROÏDA
 - II.3.4 Méthode de HALL ET SATORIUS
 - II.3.5 Méthode des polynômes de GRAHAM et LATHROP
 - II.3.6 Méthode de CHIEN-HRONES RESWICK
 - II.3.7 Méthode de SHINSKEY
 - II.3.8 Méthode du prédicteur de SMITH
 - II.3.9 Méthode de NASLIN
 - II.3.10 Méthode de ZIEGLER-NICHOLS modifiée
 - II.3.11 Méthode d'ALZONI
 - II.3.12 Méthode par placement de pôles
 - II.3.13 Méthode d'annulation des pôles du procédé
 - II.3.14 Méthodes de KESSLER
 - II.3.15 Méthode Kappa-Tau

II.1 Introduction

Le correcteur PID est de loin l'algorithme de commande le plus utilisé, à 90% dans les applications industrielles. Il est implanté sous différentes formes comme régulateur analogique ou numérique [DIR 86] [BAR 88].

Plusieurs milliers d'instruments utilisent de nos jours de tels régulateurs. L'algorithme peut être approché de plusieurs façons différentes : il peut être regardé comme un appareil que l'on peut manipuler avec quelques règles, mais il peut aussi être approché analytiquement. Dans ce chapitre, nous présentons une introduction sur la commande PID. L'algorithme de base est une description des propriétés du correcteur dans la boucle de commande.

II.1.1 L'algorithme de base

L'équation du PID est donnée comme suit :

$$u(t) = K \left[e(t) + \frac{1}{T_i} \int e(s) ds + T_d \frac{de(t)}{dt} \right]$$
(II.1)

où u est la variable de commande et e est le signal d'erreur $(e = y_r - y)$; c'est la différence entre la consigne y_r et la valeur de sortie. La variable de commande est ainsi la somme de trois termes : le terme proportionnel P, c'est à dire proportionnel à l'erreur, le terme I, proportionnel à l'intégrale de l'erreur, le terme D, proportionnel à la dérivée de l'erreur. Les paramètres du correcteur sont donc le gain proportionnel K, le temps d'intégration T_i et le temps de dérivation T_d .

II.1.2. L'action proportionnelle

Dans le cas de la commande proportionnelle pure, la loi de commande se réduit à : u(t) = Ke(t)

La commande est simplement proportionnelle au signal d'erreur, son action diminue cette erreur en statique et augmente la rapidité tant que le système n'est pas oscillatoire.

II.1.3 L'action intégrale

Le correcteur proportionnel s'avère insuffisant (sauf s'il y a déjà un intégrateur dans la chaîne à réguler) chaque fois que l'on souhaite régler la sortie avec une erreur nulle en régime permanent . D'autre part, dans le cas des processus industriels où l'on désire une marge de stabilité assez élevée, il faut s'imposer des gains faibles, ce qui a pour conséquence d'engendrer des erreurs importantes. La fonction intégrale permet d'éliminer cet écart. Cette action exige une attention particulière. En effet, lorsque le signal d'erreur est important l'actionneur qui se situe en aval se sature rapidement et la boucle de régulation est alors ouverte. Le système n'est alors commandé que par une des valeurs limites de la saturation. Il se passe un laps de temps important avant que l'erreur ne soit réduite et que la boucle de régulation ne revienne à la plage linéaire. Ce phénomène s'appelle l'emballement du terme intégral (integral wind-up), il cause des réponses chaotiques et des commandes très chahutées ce qui nuit à la durée de vie de l'ensemble ainsi régulé.

Il y a plusieurs moyens d'éviter cet emballement de l'intégrateur ; le premier consiste à geler la mise à jour de l'intégrateur quand la commande est saturée ou quand le signal d'erreur est grand. Ce qui revient à dire que pendant cette phase le PI ou PID est remplacé par P. Les autres méthodes de non emballement demandent que la modélisation de la saturation soit intégrée dans le régulateur, ce qui conduit à diverses techniques de modification de l'action intégrale, parmi lesquelles les méthodes de Franklin [FRA 89] et Åström [AST 90].

II.1.4 L'action dérivée

Le but de l'action dérivée est d'améliorer la stabilité en boucle fermée, mais cette action est très sensible aux bruits de haute fréquence car elle les amplifie. Pour limiter l'amplification des bruits, l'action dérivée est filtrée par un système de premier ordre avec comme constante de temps $\frac{T_d}{N}$. En second lieu, elle sature l'actionneur lors d'un changement brusque de la consigne. Pour y remédier, en pratique on dérive seulement la sortie du processus et non plus l'erreur [AST 88].

II.1.5 Les atouts de la commande PID [DEL 96]

- La commande PID est standardisée du point de vue matériel, et on la trouve dans toutes les technologies (électronique, hydraulique).

- Tous les automaticiens expérimentés connaissent les effets de chacune des trois actions du PID.

- Le PID peut être réglé sur le site, empiriquement, par un technicien qui observe la réponse en boucle fermée et rectifie son réglage selon des principes parfois informulés, mais efficaces.

II.1.6 Quand la commande PID est suffisante [AST 88]

La commande PID est suffisante pour les processus dont les dynamiques dominantes sont du second ordre. Afin d'établir que les systèmes sont du second ordre, on utilise la réponse fréquentielle. Si cette réponse fréquentielle du système est monotone avec un retard de phase de moins de 180°, alors le système est du second ordre.

II.1.7 Quand la commande PID n'est pas suffisante [AST 88]

La commande PID donne généralement des résultats décevants pour des systèmes à très grand retard, surtout si c'est un retard pur, car on sait qu'un retard pur ne pourra pas être annulé ou réduit. Pour les processus stables en boucle ouverte, la réponse au signal de commande peut être améliorée en introduisant un compensateur de temps mort. Le rejet de la perturbation de charge peut être aussi beaucoup améliorée , car un compensateur de temps mort permet un gain de boucle plus élevé qu'un correcteur PID. Donc les systèmes à temps de retard dominants et les systèmes avec modes oscillatoires sont candidats pour une commande plus élaborée que le PID.

II.2 Réglage de la commande PID

Le choix d'un régulateur pour un système en boucle fermée dépend des performances que l'on souhaite obtenir pour ce système. Les performances souhaitées sont généralement :

- le dépassement réduit

- le temps de réponse rapide ou la bande passante large

- l'écart entre la sortie et la consigne du système est nul en régime permanent.

- une bonne robustesse par rapport à la perturbation et aux variations des paramètres du système.

Il existe plusieurs méthodes pour calculer les paramètres du régulateur, pour que le système en boucle fermée ait la réponse désirée. Ces méthodes peuvent être empiriques ou analytiques.

II.3 Méthodes de réglage empiriques et analytiques

II.3.1 Méthodes de ZIEGLER-NICHOLS

Ces auteurs [ZIE 42] ont présenté deux méthodes, l'une dans le domaine temporel où il s'agit d'enregistrer la réponse du système en boucle ouverte, l'autre dans le domaine fréquentiel où, cette fois, il s'agit d'insérer une action proportionnelle de gain K en boucle fermée et de faire varier le gain K jusqu'à obtenir des oscillations entretenues. Le critère pour obtenir les performances souhaitées est le rapport d'un quart de deux périodes successives pour une entrée de perturbation de type échelon.

Défauts de la méthode : le système en boucle fermée possède par rapport à une consigne en échelon, un fort dépassement de l'ordre de 30 à 50%, ce qui peut être gênant.

	Réponse indicielle (<i>a</i> , <i>L</i>)		phér	nomène de (K _u , 7	e pompage ()	
Correcteur	K	T_i	T _d	K	T_i	T _d
Р	1/a			0,5 <i>K</i> "		
PI	09/a	3L		0,4 <i>K</i> _u	0,8 <i>T</i> _u	
PID	12/a	2L	0,5L	0,6 <i>K</i> _u	0,5 <i>T</i> _u	0,125 <i>T</i> _u

a, L : sont définis par la figure II.5.

 K_u, T_u : représentent respectivement le gain et la période ultimes du procédé dans le domaine fréquentiel.

FIG.II.5 : Caractérisation des paramètres de la méthode de Ziegler-Nichols dans le domaine temporel

II.3.2 Méthode de TAKAHASHI [TAK 70]

Takahashi a étendu la méthode de Ziegler-Nichols à la commande par calculateur. Le critère utilisé par cette méthode est la minimisation de l'erreur $(\sum_{0}^{\infty} |e|)$. Le réglage du PID numérique en boucle ouverte (réponse indicielle) est caractérisé par *a et L* représentant respectivement la pente et le temps mort apparent (voir chapitre III) et, en boucle fermée (phénomène du pompage) par (K_u, T_u) respectivement le gain ultime et la période ultime.

Défauts de la méthode : cette méthode donne de bons résultats en régulation (rejet de la perturbation) mais des résultats peu précis en poursuite.

II.3.3 Méthode de BROÏDA [BRO 69]

Cette méthode est basée sur l'identification du système en premier lieu et le calcul des paramètres en second lieu. On mesure les temps T_2 et T_3 qui correspondent respectivement aux temps de réponse à 28% et à 40% de la valeur finale de la réponse indicielle.

On a alors :

 $\theta = 5,5(T_3 - T_2)$

 $\tau = 2,8T_2 - 1,8T_3$

Les paramètres du correcteur PID sont :

K _p	$\frac{\theta}{1,2K\tau}$
T_i	θ
T _d	0,4τ

Défauts de la méthode : la méthode utilisée pour l'identification est simple mais si la réponse est bruitée, la détermination avec précision de θ et τ est très délicate.

II.3.4 Méthode de HALL ET SATORIUS [BOR 93]

La méthode proposée par Hall et Satorius consiste, pour un système linéaire, à rechercher un asservissement minimisant

$$\int_{0}^{\infty} e^{2}(t) dt$$

l'intégrale du carré de l'erreur d'un système en boucle fermée

II.3.5 Méthode des polynômes de GRAHAM ET LATHROP [GRA 53]

Dans cette méthode, les auteurs ont utilisé un critère consistant à minimiser l'intégrale :

 $\int t |e(t)| dt$

Un tel critère accorde une valeur prépondérante à l'amortissement du régime transitoire ; les erreurs peuvent être importantes au début de la réponse.

II.3.6 Méthode de CHIEN-HRONES RESWICK [ZEL 94]

Cette méthode s'applique au système ayant une fonction de transfert du premier ordre qui a une constante de temps T avec retard τ . Le réglage des paramètres se fait soit par rapport à la consigne (poursuite), soit par rapport à la perturbation (régulation). Deux réglages de cette méthode sont proposés (voir tableau ci-dessous) pour des dépassements (D)respectifs de 0% et 20% avec un temps de montée (t_r) minimum.

	<i>D</i> =	0%	<i>D</i> =	20%
Correcteur	t_r minimum		t, mir	nimum
PID	Régulation Poursuite F		Régulation	Poursuite
k ₀	$0,95\frac{T}{\tau}$	$0,6\frac{T}{\tau}$	$1,2\frac{T}{\tau}$	$0,95\frac{T}{\tau}$
T_i	2,4τ	Т	2τ	1,35 <i>T</i>
T_d	0,42τ	0,57	0,42τ	0,47τ

 $k_0 = KK_p$ représente le gain de la boucle ouverte $(K, K_p$ respectivement le gain du procédé et le gain du régulateur). Le problème avec cette méthode est qu'il faut choisir un jeu de paramètres (k_0, T_i, T_d) , soit en régulation soit en poursuite, donc les performances de la boucle fermée avantageront l'un par rapport à l'autre en fonction du choix des paramètres (k_0, T_i, T_d) .

II.3.7 Méthode de SHINSKEY

Cette méthode suit la même approche de performance que celle de Ziegler-Nichols, c'est à dire en minimisant l'écart

$$\int_{0}^{\infty} |e(t)| dt$$

Shinskey a remarqué que l'intégrale de l'écart pour un régulateur PI est minimale pour un retard de 28° au niveau du régulateur, produisant une période d'oscillation égale à 5,8 fois le temps mort. De même pour un PID l'intégrale de l'écart est minimale pour un déphasage de 10° produisant une période d'oscillation égale à 3,6 fois le temps mort.

II.3.8 Méthode du prédicteur de SMITH [SMI 57]

Le régulateur de Smith est un type de correcteur conçu pour les systèmes ayant des retards purs importants. Son principe est que si le processus est modélisé par $G(p)e^{-\psi}$, on calcule les paramètres du régulateur tels que la fonction de transfert en boucle fermée désirée soit indépendante du retard.

II.3.9 Méthode de NASLIN [NAS 68]

C'est une méthode analytique basée sur les polynômes dits à amortissement réglable et sur des relations empiriques déterminées expérimentalement.

II.3.10 Méthode modifiée de ZIEGLER-NICHOLS [AST 88]

D'après l'interprétation fréquentielle de la méthode de Ziegler-Nichols, le correcteur de la méthode déplace le point ultime $\left(-\frac{1}{K_u}, 0\right)$ au point $\left(-0.6 - 0.28i\right)$ dans le plan de Nyquist. D'autres points que le point $\left(-0.6 - 0.28i\right)$ peuvent être obtenus à partir des spécifications de la marge de gain et de la marge de phase [HO 95]. Soit $G_{P}(j\omega)$ la fonction de transfert du procédé pour la pulsation ω :

$$G_P(j\omega) = r_p e^{i(\pi + \varphi_P)}$$

 $B(j\omega)$ le point désiré de la boucle ouverte corrigée pour cette pulsation ω : $B(j\omega) = r_s e^{i(\pi + \varphi_s)}$

et $G_R(j\omega)$ la fonction de transfert du régulateur pour cette pulsation ω :

$$G_R(j\omega) = r_R e^{i\varphi_R} = K_P \left[1 + j \left(\omega T_d - \frac{1}{\omega T_i} \right) \right]$$

On a alors : $r_S e^{i(\pi + \varphi_S)} = r_P r_R e^{i(\pi + \varphi_P + \varphi_R)}$

Soit :

 $r_{S} = r_{P}r_{R}$ $\varphi_{S} = \varphi_{P} + \varphi_{R}$

$$r_{R}e^{i\varphi_{R}} = \frac{r_{S}}{r_{p}}e^{i(\varphi_{S}-\varphi_{P})} = \frac{r_{S}}{r_{p}}\left[\cos(\varphi_{S}-\varphi_{P})+i\sin(\varphi_{S}-\varphi_{P})\right]$$
$$K_{P} = \frac{r_{S}}{r_{p}}\cos(\varphi_{S}-\varphi_{P})$$

et

$$\omega T_d - \frac{1}{\omega T_i} = \frac{r_s}{r_p} \sin(\varphi_s - \varphi_p) = K_p tg(\varphi_s - \varphi_p)$$

Après résolution et avec $T_d = \alpha T_i$:

$$T_{d} = \frac{1}{2\omega} \left[-K_{P} tg(\varphi_{S} - \varphi_{P}) + \sqrt{4\alpha + K^{2} tg^{2}(\varphi_{S} - \varphi_{P})} \right]$$

II.3.11 Méthode d'ALZONI [ALZ 89]

Etant donné le schéma suivant :

FIG.II.6 Schéma bloc du système bouclé

Le but principal de cette méthode est de calculer les paramètres du régulateur (PID) de telle sorte que la sortie du système en boucle fermée approche une trajectoire de référence désirée $y_r(t)$. L'auteur propose d'intervertir l'emplacement du régulateur avec celui du processus ; ainsi le calcul des paramètres se fait à partir du schéma suivant :

FIG.II.7 Schéma bloc du système après l'échange

D'après la figure II.7 le correcteur à identifier a comme entrée X(t) et comme sortie $y_r(t)$, et t est l'instant d'échantillonnage. Si le correcteur est un PID, on a la relation suivante :

$$y_r(t) = X(t)[K_p + \frac{K_l}{1 - z^{-1}} + K_d(1 - z^{-1})] = K_p X_p(t) + K_l X_l(t) + K_d X_d(t)$$
(II.1)

Les signaux $X_p(t)$, $X_1(t)$, $X_d(t)$ sont pour t = 1, ..., N $X_p(t) = X(t)$

$$X_{I}(t) = X_{I}(t-1) + X(t)$$
$$X_{d}(t) = X(t) - X(t-1)$$

Pour estimer les paramètres K_P, K_I, K_d du PID par la méthode des moindres carrés pour N observations, la relation (II.1) est mise la sous la forme suivante :

$$Y_r = M.K$$

où Y_r , K sont respectivement le vecteur de la trajectoire de sortie et celui des paramètres du PID pour N observations, M étant la matrice d'observation. Le problème des moindres carrés peut être ainsi formulé, et le critère à minimiser sera :

$$J = \left(Y_r - M.K\right)^T \left(Y_r - M.K\right)$$

La solution optimale de ce critère est le vecteur des paramètres inconnus K:

$$K = (M^T M)^{-1} M^T Y_r$$

L'avantage de cette méthode est qu'il n'y a aucune condition ni modification sur le processus. C'est une méthode apparentée à la méthode par placement de pôles.

II.3.12 Méthode par placement de pôles [AST 88]

C'est une méthode de conception qui donne de bons résultats pour des systèmes ayant des fonctions de transfert d'ordre bas, car le PID possède seulement trois paramètres. On considère un système caractérisé par un modèle de second ordre :

$$G_{p}(p) = \frac{K_{p}}{(1+pT_{1})(1+pT_{2})}$$

Ce modèle a trois paramètres, le correcteur PID en possède aussi trois. Il est alors possible de placer arbitrairement les pôles de la boucle fermée.

La fonction de transfert du PID est donnée comme suit :

$$C_p(p) = \frac{K(1 + pT_i + p^2T_iT_d)}{pT_i}$$

L'équation caractéristique du système en boucle fermée est :

 $1 + G_p(p)C_p(p) = 0$

Ce qui donne après développement :

$$p^{3} + p^{2} \left[\frac{1}{T_{1}} + \frac{1}{T_{2}} + \frac{KK_{P}T_{d}}{T_{1}T_{2}} \right] + p \left[\frac{1}{T_{1}T_{2}} + \frac{K_{P}K}{T_{1}T_{2}} \right] + \frac{K_{P}K}{T_{i}T_{1}T_{2}} = 0$$
(II.2)

La boucle fermée désirée a pour équation caractéristique la forme suivante :

$$(p + \alpha \omega)(p^2 + 2\xi \omega p + \omega^2)$$
(II.3)

Cette dernière contient deux pôles dominants avec un coefficient d'amortissement relatif ξ et ω comme fréquence propre et un pôle réel localisé à $-\alpha\omega$. Par identification entre les relations (II.2) et (II.3) on a :

$$\frac{1}{T_1} + \frac{1}{T_2} + \frac{K_p K T_d}{T_1 T_2} = \omega (\alpha + 2\xi)$$

$$\frac{1}{T_1 T_2} + \frac{K_P K}{T_1 T_2} = \omega^2 (1 + 2\xi \alpha)$$
$$\frac{K K_P}{T_i T_1 T_2} = \alpha \omega^3$$

D'après ces trois dernières relations on détermine les trois paramètres du PID :

$$K = \frac{T_1 T_2 \omega^2 (1 + 2\xi \alpha) - 1}{K_p}$$
$$T_i = \frac{T_1 T_2 \omega^2 (1 + 2\xi \alpha) - 1}{T_1 T_2 \alpha \omega^3}$$
$$T_d = \frac{T_1 T_2 \omega (\alpha + 2\xi) - T_1 - T_2}{T_1 T_2 \omega^2 (1 + 2\xi \alpha) - 1}$$

avec comme condition $K, T_i, T_d \ge 0$

d'où
$$\omega \ge \frac{T_1 + T_2}{T_1 T_2 (\alpha + 2\xi)} = \omega_c$$

On note que dans le cas du PID la borne inférieure de la bande passante du système en boucle fermée est donnée par ω_c , la borne supérieure est donnée par la validation de la simplification du modèle.

II.3.13 Méthode d'annulation des pôles du procédé

L'idée de base de cette méthode est le choix des paramètres du correcteur de telle manière que les pôles dominants du processus soient annulés par les zéros du correcteur. Dans le cas du PID, avec ses deux zéros il ne peut simplifier que deux pôles dominants du processus. Cette méthode est très simple à utiliser et donne de bons résultats pour l'entrée de référence. Cependant cette méthode donne souvent des résultats décevants pour le rejet de la perturbation. Pour pallier cette défaillance et si la condition de sécurité est satisfaite, la commande par modèle interne peut être appliquée. Les formules de réglages ont été données par Morari et Zafiriou [MOR 89].

Pour un système de premier ordre avec retard voir le tableau suivant : $\frac{K_p e^{-L_p}}{1+Tp}$

Correcteur	K	T_i	T _d	λ suggérée
PI	$\frac{1}{K_{P}}\frac{2T+L}{2\lambda}$	$T + \frac{L}{2}$		$\lambda \ge 0.2T$ $\lambda \ge 1.7L$
PID	$\frac{1}{K_p} \frac{2T+L}{2\lambda+L}$	$T + \frac{L}{2}$	$\frac{TL}{2T+L}$	$\lambda \ge 0.2T$ $\lambda \ge 0.25L$

où λ représente la constante de temps désirée de la boucle fermée.

II.3.14 Méthodes de KESSLER [VOD 94]

Kessler a présenté deux méthodes pour le réglage des paramètres du PID. L'une appelée l'optimum symétrique (OS) (symétrie par rapport à l'axe imaginaire dans le diagramme de Bode), l'autre appelée l'optimum du module (OM). Ces méthodes sont des méthodes algébriques de placement de pôles basées sur le calcul analytique et quelques règles heuristiques.

Le type de procédé utilisé est le suivant :

$$G(p) = \frac{G_0 e^{-T_n p}}{\prod_{m=1}^{2} (1 + T_m p) \prod_{j=1}^{n-1} (1 + T_j p)}$$

où

 T_n : désigne un petit retard (par rapport à T_m).

 T_i : désigne les petites constantes de temps.

 T_m : désigne les grandes constantes de temps par rapport à la somme des petites constantes de temps.

$$T_m \ge \sum_{j=1}^n T_j = T_{\Sigma}$$

 G_o : désigne le gain statique.

L'idée de Kessler est d'obtenir une fonction de transfert en boucle ouverte (après correction GC) :

- pour OS,
$$GC = \frac{\omega^2}{p^2(p+2\omega)}$$
, $\omega = \frac{1}{2T_{\Sigma}}$

- pour OM,
$$GC = \frac{\omega^2}{p(p+2\zeta\omega)}$$
, $\omega = \frac{1}{\sqrt{2T_{\Sigma}}}$, $\zeta = \frac{1}{\sqrt{2}}$

Les tableaux suivants donnent les paramètres du correcteur PI où T_{Σ} est le paramètre de synthèse le plus essentiel.

PI	
K _p	$\frac{1}{2}\frac{T}{G_0}\frac{1}{T_{\Sigma}}$
T_i	$4T_{\Sigma}$

Tableau de réglage de PI pour la méthode OS

PI	
K _p	$\frac{1}{2} \frac{T}{G_0} \frac{1}{T_{\Sigma}}$
T_i	Т

Tableau de réglage de PI pour la méthode OM

T: est la constante de temps dominante du procédé.

Les performances en boucle fermée de ces méthodes sont :

- un dépassement compris entre 43% (pour un procédé qui contient un intégrateur) et 4% (dans le cas $T = 4T_{\Sigma}$).

- un temps de montée à 90% compris entre $3{,}1T_{\Sigma}$ (pour un procédé qui contient un intégrateur) et $4{,}7T_{\Sigma}$ (dans le cas $T = 4T_{\Sigma}$).

Les limites de validité : le domaine de validité pour le principe d'optimum symétrique est le suivant :

- la limite supérieure : $T >> 4T_{\Sigma}$
- la limite inférieure : $T = 4T_{\Sigma}$

Le principe du module optimum s'applique pour $T \le 4T_{\Sigma}$. L'une des limites de la méthode réside dans la simplification du pôle du procédé par le zéro du correcteur, qui peut donner une réponse lente à une perturbation de charge à l'entrée du procédé. Dans sa thèse Voda [VOD 94] s'inspire des deux méthodes de Kessler pour élaborer une méthode d'auto-calibrage du PID baptisée KLV (Kessler, Landau, Voda), où le paramètre de synthèse est la somme des petites constantes de temps (T_{Σ}) qui se détermine dans le plan de Nyquist par le point ($\omega_{-135^{\circ}}$ $K_{-135^{\circ}}$). D'autres réglages utilisent ces méthodes [LOR 97] [AST 95].

II.3.15 Méthode Kappa-Tau

ÅSTRÖM [AST 95] a proposé une nouvelle méthode empirique de réglage des paramètres du PID. L'idée de cette méthode est de trouver une relation entre les paramètres normalisés du correcteur et les paramètres normalisés du procédé, en utilisant la méthode de placement de pôles. Le modèle de cette méthode est caractérisé par trois paramètres qui sont : la période et le gain ultimes, ainsi que le gain statique au lieu des deux paramètres de la méthode de ZIEGLER-NICHOLS. Le paramètre de réglage est le maximum de la sensibilité défini comme suit :

$$M_s = \max_{\omega} \left| \frac{1}{1 + G_p(i\omega)G_c(i\omega)} \right|$$

22

CHAPITRE II

Les valeurs typiques de ce paramètre sont comprises entre 1.2 et 2. Deux méthodes sont proposées dans le domaine temporel et fréquentiel.

Les paramètres normalisés du correcteur PID en fonction du temps-mort normalisé

(Tau : τ) du procédé exprimé par $f(\tau) = a_0 e^{a_1 \tau + a_2 \tau^2}$ da	ins le domaine temporel.
---	--------------------------

M _s	1,4			2,0		
	a ₀	<i>a</i> ₁	a ₂	<i>a</i> ₀	<i>a</i> ₁	a ₂
aK	3,8	-8,4	7,3	8,4	-9,6	9,8
T_i / L	5,2	-2,5	-1,4	3,2	-1,5	-0,93
T_i / T	0,46	2,8	-2,1	0,28	3,8	-1,6
<i>T_d / L</i>	0,89	-0,37	-4,1	0,86	-1,9	-0,44
<i>T_d / T</i>	0,077	5,0	-4,8	0,076	3,4	-1,1
β	0,40	0,18	2,8	0,22	0,65	0,051

Les paramètres normalisés du correcteur PID en fonction du gain statique normalisé (Kappa : κ) du procédé exprimé par $f(\kappa) = a_0 e^{a_1 \kappa + a_2 \kappa^2}$ dans le domaine fréquentiel,

M _s	1,4			2,0		
	a_0	a_1	a ₂	<i>a</i> ₀	<i>a</i> ₁	a ₂
K / K _"	0,33	-0,31	1,0	0,72	-1,6	1,2
<i>T_i / T_u</i>	0,76	-1,6	-0,36	0,59	-1,3	-0,38
T_d / T_u	0,17	-0,46	-2,1	0,15	-1,4	-0,56
β	0,58	-1,3	3,5	0,25	0,56	0,12

a, L sont définis par la figure II.5.

 K_u, T_u : représentent respectivement le gain et la période ultimes du procédé dans le domaine fréquentiel.

 β est le facteur de pondération de l'entrée de référence (voir chapitre IV).

IDENTIFICATION ET NORMALISATION DES PARAMETRES DES PROCEDES

III.1 Introduction

III.2 Fonctionnement du relais

III.3 Détermination de la période, du gain ultime et du gain statique

III.3.1 Procédé en boucle fermée III.3.1.1 Calcul de T_u et K_u III.3.1.2 Calcul de K_p et l III.3.2 Procédé en boucle ouverte

III.4 Illustration par simulation

III.4.1 Procédé sans intégrateurIII.4.1.1 Approche boucle ferméeIII.4.1.2 Approche boucle ouverteIII.4.2 Procédé avec intégrateur

III.5 Normalisation des paramètres des procédés

- III.5.1 Introduction
- III.5.2 Domaine temporel
- III.5.3 Domaine fréquentiel
- III.5.4 Normalisation des paramètres
 - III.5.4.1 Le temps de retard normalisé
 - III.5.4.2 Le gain du procédé normalisé
 - III.5.4.3 Le pic de perturbation normalisé
 - III.5.4.4 Le temps de montée normalisé
 - III.5.4.5 Le temps d'établissement normalisé

III.6 Conclusion

III.1 Introduction

Toutes les méthodes de commande de procédé nécessitent la connaissance d'un modèle dynamique du procédé. Ce modèle peut être paramétrique (ex : fonction de transfert, équations aux différences) ou non paramétrique (ex : réponse fréquentielle, réponse à un échelon). Le premier type de modèle peut être décrit par des lois régissant l'évolution du système, ces dernières peuvent être d'ordre physique, chimique, etc. Le deuxième type de modèle est basé sur une expérience.

On définit l'identification d'un procédé par modèle comme étant l'expérience ou la procédure pour déterminer les paramètres du modèle. Elle comporte 5 étapes qui sont :

Parmi les méthodes très connues, la réponse à un échelon est une méthode non paramétrique qui permet d'obtenir un modèle paramétrique. A partir de la forme de la réponse, on choisit le type de modèle. Ces modèles peuvent être du premier ou deuxième ordre ou encore d'ordres plus élevés, par exemple les modèles proposés par Broïda, Strejc, Schware, Hudzovic [HUD 73]. Ce dernier propose un modèle à plusieurs constantes de temps. On détermine graphiquement les paramètres du modèle ainsi choisi. Cette méthode peut s'appliquer aussi bien dans le cas continu que dans le cas échantillonné. Mais elle présente un certain nombre d'inconvénients qui sont les suivants [LAN 93]:

- signaux de test d'amplitude importante
- précision réduite
- influence néfaste de la perturbation
- pas de possibilité de modélisation des perturbations
- procédures longues
- pas de validation du modèle

L'analyse fréquentielle peut être utilisée pour déterminer le modèle en utilisant des entrées sinusoïdales. On trace point par point, dans le diagramme de Bode ou celui de Nyquist, le gain et la phase sur une plage de fréquences suffisamment grande.

L'avènement des calculateurs numériques a permis le développement des modèles discrets et des algorithmes d'estimation automatique des paramètres de ces modèles. Ces algorithmes sont souvent de formulation récursive bien adaptée aux problèmes d'identification en temps réel. La figure III.1 montre le principe d'estimation des paramètres par modèle discret.

FIG.III.1 : Principe de l'estimation des paramètres d'un modèle

Cette structure présente un modèle discret de paramètres ajustables, implanté sur calculateur. L'erreur entre la sortie du procédé y(t) à l'instant t et la sortie prédite par le

modèle, s'appelle erreur de prédiction. Elle est utilisée par un algorithme d'adaptation paramétrique qui à chaque instant d'échantillonnage va modifier les paramètres du modèle afin de minimiser cette erreur. En général, on utilise comme entrée une séquence binaire pseudo-aléatoire très riche en fréquences. Plusieurs modèles sont proposés en prenant en compte, dans la modélisation, les perturbations aléatoires et les bruits de mesure tels que les modèles ARX, DARX, ARMAX, DARMAX [LJU 87] [LAN 93] [BOR 91].

Dans ce travail nous choisissons la méthode fréquentielle de Ziegler-Nichols qui a l'avantage d'être une méthode simple dans sa procédure d'utilisation (méthode du pompage), et le modèle du procédé se détermine par un seul point (-1) du plan de Nyquist, qui caractérise la fréquence et le gain ultimes. En plus des performances que pourrait obtenir la méthode de Ziegler-Nichols par rapport à la perturbation, ces deux avantages font que la méthode de Ziegler-Nichols ou les méthodes apparentées résistent bien aux nouvelles méthodes basées sur des modèles plus complexes. Toutefois, l'inconvénient principal de la méthode du pompage est que l'on ne peut pas contrôler l'amplitude des oscillations de sortie du procédé, ce qui peut être dommageable pour le procédé si l'amplitude des oscillations devient élevée. Ceci rend difficile l'utilisation de la méthode du pompage en réglage automatique. C'est pourquoi Åström [AST 84] a proposé une méthode de détermination d'un point dans le plan de Nyquist par l'utilisation d'un relais.

III.2 Fonctionnement du relais

Pour déterminer la fréquence et le gain ultimes correspondant au point (-1) dans le plan de Nyquist, on utilise un relais avec hystérésis afin d'éviter le problème de commutation intempestive du relais, causé par un bruit (voir fig.III.2). En l'absence de perturbation et de biais, le signal de sortie du relais est un signal carré et le signal de sortie du procédé est un signal sinusoïdal. Pour expliquer le fonctionnement du système bouclé référons-nous à la figure III.1. La sortie carrée du relais peut être décomposée en série de Fourrier et le procédé passe-bas atténue les harmoniques élevés. Dans ce cas on peut considérer que seul le premier harmonique influence la sortie du procédé, on obtient alors des oscillations dont la fréquence principale est la fréquence ultime. Si d est l'amplitude du relais, alors l'amplitude du premier harmonique est $\frac{4d}{\pi}$ et si a est l'amplitude des oscillations de la sortie du procédé alors :

$$G(i\omega_u) = -\frac{\pi a}{4d}$$

On voit d'après la relation ci-dessus que l'amplitude des oscillations de sortie a est proportionnelle à l'amplitude d du relais, ce qui permet de contrôler l'amplitude a en ajustant l'amplitude du relais et d'automatiser plus facilement l'expérimentation du relais. On note que généralement la stabilisation des oscillations se fait rapidement, ce qui implique que l'amplitude et le gain peuvent être déterminés dans un temps raisonnable.

FIG.III.2 : Principe d'auto-réglage

III.3 Détermination de la période, du gain ultime et du gain statique

III.3.1 Procédé en bouclé fermée

En présence d'une perturbation de charge constante à l'entrée du procédé notée l, la détermination de T_u et K_u est fortement erronée [HAN 88] [HAN 93] [SCH 94]. Cette perturbation se traduit par une sortie du relais R(t) non carrée mais périodique, de période $T = T_1 + T_2$, où T_1 et T_2 correspondent respectivement à l'état haut et l'état bas du relais (voir fig.III.3).

FIG.III.3 : Sortie du relais symétrique

La valeur moyenne du signal de R(t) notée R_{DC} vaut alors :

$$R_{DC} = \frac{1}{T_1 + T_2} \int_0^{T_1 + T_2} R(t) dt = \frac{1}{T_1 + T_2} [(R_0 + d)T_1 + (R_0 - d)T_2]$$

$$R_{DC} = R_0 + d \frac{(T_1 - T_2)}{(T_1 + T_2)}$$
(III.1)

Pour compenser cette perturbation de charge constante l, Hang propose d'ajouter un biais B opposé à cette perturbation (voir fig.III.2). Toutefois en pratique, la perturbation n'est pas connue, ce qui fait qu'elle devient une inconnue supplémentaire qui a conduit Hang à prendre 2 biais différents B_1 et B_2 , et à établir 2 équations à 2 inconnues qui permettent de calculer K_p et l. B_1 est choisi en supposant que K_p est compris entre 0.5 et 2, ce qui n'est pas le cas de tous les procédés industriels. Si le gain statique n'est pas dans la fourchette 0.5 à 2, alors le calcul du gain statique et de la perturbation de charge sera légèrement erroné, dans la mesure où l'on n'est pas forcément proche du point de fonctionnement désiré.

Nous proposons dans ce travail une méthode apparentée à celle de Hang composée de deux étapes présentées ci-après. La première étape consiste à centrer le relais directement sur la valeur moyenne de la sortie d'un PID déjà dans la boucle, ce qui permet d'avoir des cycles d'oscillations symétriques en sortie du procédé, malgré la présence de la perturbation de charge. La deuxième étape consiste à provoquer une asymétrie par le rajout d'un biais B et à calculer le gain statique et la perturbation de charge.

III.3.1.1 Calcul de T_u et K_u

Le commutateur K est en position 1 (PID) comme le montre la figure 1, et B = 0; alors on peut écrire la relation suivante : $U_{DC} = l + I_{DC}$ où I_{DC} représente la valeur moyenne du signal à la sortie du PID qui assure une erreur permanente nulle. Dans ce cas on a $Y_{DC} = y_r$. On peut alors écrire que la sortie (voir fig.III.2) est égale à :

$$Y_{DC} = (l + I_{DC})K_{P} = y_{r}$$
(III.2)

 K_p : gain statique du procédé.

Si on commute K vers la position 2 (relais), alors R la sortie du relais s'écrit comme suit :

$$R_{DC} = R_0 + d \frac{(T_1 - T_2)}{(T_2 + T_2)}$$
(III.3)

Dans ce cas :

 $U_{DC} = l + B + R_{DC}$

Soit

$$Y_{DC} = (l + R_0 + d \frac{(T_1 - T_2)}{(T_1 + T_2)} + B) K p$$
(III.4)

Si on centre le relais sur I_{DC} et si le biais B = 0, alors on a $R_0 = I_{DC}$ et $T_1 = T_2$, malgré la présence d'une perturbation de charge, les cycles des oscillations en sortie du procédé sont symétriques. Donc on peut estimer la période et le gain ultimes, qui sont la période et l'amplitude du signal de sortie du procédé. La relation (III.4) s 'écrit alors comme suit :

$$Y_{DC_1} = (l + I_{DC}) K p \tag{III.5}$$

On a aussi

$$T_u = 2T_1 = 2T_2, \quad K_u = \frac{1}{|G(i\omega_u)|} = \frac{4d}{\pi a}$$

III.3.1.2 Calcul de K_p et l

Une fois que les oscillations sont stables, on provoque l'asymétrie des cycles par l'addition d'un biais *B* comme le montre la figure III.1. Ce biais peut être une fraction de I_{DC} . Les cycles ne seront plus symétriques ($T_1 \neq T_2$) la relation (III.3) s'écrit :

$$Y_{DC_2} = (l + I_{DC} + d \frac{(T_1 - T_2)}{(T_1 + T_2)} + B) Kp$$
(III.6)

Si on fait la différence entre les relations (III.5) et (III.6), on a :

$$Y_{DC_{2}} - Y_{DC_{1}} = \left(d \frac{(T_{1} - T_{2})}{(T_{1} + T_{2})} + B\right) Kp$$
(III.7)

Le gain statique du procédé est alors égal à :

$$Kp = \frac{Y_{DC_2} - Y_{DC_1}}{d \frac{(T_1 - T_2)}{(T_1 + T_2)} + B}$$
(III.8)

Il suffit de choisir le biais B et l'amplitude d du relais et de mesurer Y_{DC} qui est la valeur moyenne de la sortie du procédé (Y_{DC_1}) avant et pendant l'asymétrie cyclique des oscillations (Y_{DC_2}) et enfin de mesurer $T_1'etT_2'$ pour avoir le gain statique du procédé K_p . D'autre part, on peut calculer la perturbation de charge une fois le gain statique connu, il suffit d'utiliser par exemple la relation (III.2) :

$$Y_{DC_{1}} = (l + I_{DC}) K p$$

$$l = \frac{Y_{DC_{1}}}{K p} - I_{DC}$$
(III.9)

Remarques : l'idée de base de cette approche est d'utiliser la commande en régime permanent d'un régulateur de type intégral connu pour supprimer une perturbation de charge, et de centrer correctement le relais, ce qui permet d'avoir immédiatement la symétrie des oscillations. L'utilisation de cette approche n'est pas contraignante, puisque dans l'industrie les procédés sont très souvent déjà commandés par un PI ou un PID. Si toutefois le procédé est en boucle ouverte, un essai de type échelon permet de déterminer le gain statique K_p avant l'utilisation du relais comme le montre le paragraphe III.3.2.

III.3.2 Procédé en boucle ouverte

Si le procédé est en boucle ouverte, sans connaissance a priori d'un régulateur intégral stabilisant, on procède aussi en deux étapes pour la détermination des paramètres du modèle (K_u, T_u, K_p) . On détermine d'abord le gain statique K_p par un essai de type échelon.

Pour cela on applique un échelon de faible amplitude au procédé et on mesure la sortie en régime établi en faisant le rapport variation de sortie sur variation d'entrée ; on obtient ainsi le gain statique K_p et ceci malgré la perturbation de charge.

FIG.III.4 : Identification du gain statique en boucle ouverte

D'après la figure III.4 on peut écrire la relation suivante :

$$y = K_p U = K_p (l + y_r)$$

En prenant deux points de cette relation on peut facilement déterminer le gain statique. Le premier correspond au point de fonctionnement désiré, le second correspond à une petite variation autour du point de fonctionnement.

$$y_1 = K_p \left(l + y_{r1} \right)$$

CHAPITRE III

$$y_2 = K_p \left(l + y_{r2} \right)$$

Alors le gain statique est égal à :

$$K_P = \frac{y_1 - y_2}{y_{r1} - y_{r2}} = \frac{\Delta y}{\Delta y_r}$$

La deuxième étape consiste en la détermination de la période et du gain ultimes par la méthode du relais en boucle fermée. Deux cas peuvent se présenter pour centrer le relais.

Soit le gain statique est fini, dans ce cas le relais est centré sur $\frac{y_r}{K_p}$ (voir [HAN 93]) sachant que les oscillations obtenues ne sont pas symétriques à cause de la présence de la perturbation de charge *l*. Pour annuler l'effet de cette perturbation et rendre le cycle des oscillations symétrique, on rajoute un biais *B* en utilisant l'expression suivante [HAN 93] :

$$B = \frac{T_1 - T_2}{T_1 + T_2} d + \frac{1}{K_P (T_1 + T_2)} \int_r^{r + T_1 + T_2} e dt$$
(III.10)

Soit le gain statique est infini (atteint la saturation) ; dans ce cas il existe au moins un intégrateur dans le procédé, il faut centrer la valeur moyenne du relais sur zéro. Dans ce cas non plus le cycle des oscillations n'est pas symétrique. Pour le rendre symétrique, on utilise la même méthode que précédemment. En faisant $K_p = \infty$ dans la relation (III.10), on obtient alors

$$B = \frac{T_1 - T_2}{T_1 + T_2} d$$
 (III.11)

III.4 Illustration par simulation

III.4.1 Procédé sans intégrateur

On prend par exemple un procédé dont la fonction de transfert est modélisée par :

$$F(p) = \frac{2}{\left(p+1\right)^4}$$

III.4.1.1 Approche en boucle fermée

Avec les valeurs théoriques suivantes : $T_u = 6,28$ s, $K_u = 2$ et Kp = 2 on choisit un biais B = 0,3V, une perturbation de charge statique en échelon d'amplitude l = 0,5V et une entrée de référence $y_r = 2V$. On centre le relais sur la valeur $I_{DC} = 0.5V$ comme le montre la figure.III.5, avec une amplitude du relais d = 0.5V.

FIG.III.5: Réponse de la sortie et de la commande du procédé déjà bouclé par PID ou PI

FIG.III.6: Réponse de la sortie du procédé après centrage du relais

La figure.III.6 montre que à t=25s. le rajout du biais provoque une asymétrie des cycles d'oscillations du relais et du procédé.

On trouve les valeurs suivantes :

 $T_1 = T_2 = 3,2s, \quad T_u = 6,4s, \quad K_u = 1,92, \quad T_1' = 1,9s, \quad T_2' = 4,8s, \quad K_p = 1,97, \quad l = 0,51V$

Les erreurs relatives entre les valeurs théoriques et les valeurs pratiques sont de 2% sur T_u , 4% sur K_u , 1.5% sur K_p , 2% sur l.

III.4.1.2 Approche en boucle ouverte

On utilise le même procédé que celui de la boucle fermée ; on a une perturbation de charge l = 0.5V et une variation de consigne $\Delta Y_r = 1V$ (voir fig.III.7) ; on obtient une variation de la sortie $\Delta Y = 2V$, on a alors $K_p = \frac{\Delta Y}{\Delta Y_r} = 2$. Une fois le gain statique calculé, on centre la valeur moyenne du relais sur $\frac{Y_r}{K_p}$ sachant que les oscillations ne seront pas symétriques en présence d'une perturbation de charge. A t=25s on rajoute le biais B = -0.5V calculé d'après la relation (III.10). Les oscillations deviennent alors symétriques comme le montre la figure III.8.

FIG.III.8: Réponse de la sortie et de l'erreur par centrage du relais

Les valeurs trouvées avant l'introduction du biais sont :

$$T_1 = 2,25s, T_2 = 4,5s$$

alors le biais calculé d'après la relation (III.10) donne B = -0.5V

Les valeurs trouvées après l'introduction du biais sont :

 $T_1 = T_2 = 3,2s, T_u = 6,5s, K_u = 1,96$

III.4.2 Procédé avec intégrateur

On choisit pour simulation le procédé suivant :

$$F_1(p) = \frac{2}{p(1+p)^4}$$
, avec une perturbation de $l = 0, 1V$

Dans ce cas le relais sera centré sur zéro ; malgré cela la valeur moyenne de l'erreur n'est pas nulle et les oscillations de sortie sont asymétriques ; on rajoute un biais B = -0.1V à t=30s, ce qui rend les oscillations symétriques (voir fig.III.9).

FIG.III.9 : Réponse de la sortie et de l'erreur par centrage du relais

Les valeurs trouvées avant l'introduction du biais sont : $T_1 = 6,3s, T_2 = 9,5s$ alors le biais calculé d'après la relation (III.11) B = -0.1VLes valeurs trouvées après l'introduction du biais sont : $T_1 = T_2 = 7,7s, T_u = 1,5.8s, K_u = 0,281$

III.5 Normalisation des paramètres des procédés

III.5.1 Introduction

Après avoir choisi un modèle approprié du procédé, et déterminé les paramètres de ce modèle, on peut extraire des paramètres caractérisant sa dynamique dans le domaine temporel ou fréquentiel. Dans notre étude, nous nous intéressons à deux classes de procédés qui couvrent largement tous les procédés industriels.

La première classe est modélisée par la fonction de transfert suivante :

 $G_1(p) = \frac{K_p}{1+pT}e^{-Lp}$ qui est une approximation analytique des procédés stables sans action intégrale.

La seconde classe correspond à des procédés avec action intégrale, dont la fonction de transfert modélisée par $G_2(p) = \frac{K_v}{p(1+pT_v)}e^{-Lp}$ est une approximation analytique.

III.5.2 Domaine temporel

On suppose que la réponse indicielle est monotone ou essentiellement monotone sur une grande partie de la réponse. De tels procédés peuvent être divisés en deux classes.

La première classe correspond à des procédés dits stables, c'est-à-dire sans effet intégrateur. Leur dynamique peut être caractérisée par trois paramètres K_p, L, T qui représentent respectivement le gain statique, le temps mort apparent et la constante de temps apparente du procédé. Ces paramètres peuvent être obtenus par une excitation de type échelon (voir fig.III.10).

FIG.III.10 : Réponse à un échelon

III.5.3 Domaine fréquentiel

La réponse fréquentielle est une autre méthode simple pour caractériser la dynamique d'un procédé. On suppose que la courbe de Nyquist est monotone ou essentiellement monotone, c'est-à-dire que la phase et l'amplitude sont monotones en fonction de la fréquence. La principale différence entre les deux classes de procédés est que pour les systèmes dits stables on a un gain statique fini ; par contre pour les procédés dit instables on a un gain statique infini. Les deux classes de systèmes ont un point commun qui les caractérise, c'est la première intersection de la courbe de Nyquist avec l'axe des réels négatifs (voir fig.III.11). Ce point (ω_{180}, K_{180}) est décrit par les paramètres suivants K_u, T_u qui sont respectivement appelés le gain ultime et la période ultime avec :

$$K_u = \frac{1}{K_{180}}, T_u = \frac{2\pi}{\omega_{180}}$$

FIG.III.11 : Réponse fréquentielle

III.5.4 Normalisation des paramètres

Toutes les branches des sciences de l'ingénieur définissent des paramètres sans dimension. Åström [COH 53] [AST 92] fait remarquer que ces paramètres ne sont pas beaucoup utilisés en automatique ; il en a introduit alors plusieurs, en boucle ouverte : le temps de retard normalisé, le gain du procédé normalisé, et en boucle fermée : le temps de montée normalisé, le temps d'établissement normalisé et le pic d'erreur de perturbation. Ces derniers nombres servent à prédire et à évaluer les performances de la commande des procédés en boucle fermée.

III.5.4.1 Le temps de retard normalisé

Le temps de retard normalisé peut être défini pour les procédés dits stables, comme étant le rapport entre le temps de retard apparent et la constante de temps apparente :

$$\theta_1 = \frac{L}{T} \tag{III.12}$$

Ce nombre θ_1 est sans dimension et peut être utilisé comme une mesure de la difficulté à corriger un procédé donné. Les procédés dont le θ_1 est petit sont faciles à corriger, par contre ceux dont le θ_1 est grand sont difficiles à corriger. Le même paramètre θ peut aussi être introduit pour les procédés avec une action intégrale :

$$\theta_2 = \frac{L}{T_v} \tag{III.13}$$

III.5.4.2 Le gain du procédé normalisé

Le gain statique d'un procédé stable n'est pas nécessairement un nombre sans dimension. Cependant il peut le devenir si on le multiplie par le facteur K_u . On définit alors k_1 comme le gain du procédé normalisé :

$$k_1 = K_p K_u = \frac{G(0)}{\left|G(i\omega_u)\right|} \tag{III.14}$$

Le paramètre k_1 est aussi un paramètre de prédiction de la facilité du contrôle du procédé. Si ce paramètre est grand, le procédé est facile à contrôler, et s'il est petit le procédé correspondant est difficile à corriger. Le même paramètre peut être défini pour les systèmes avec action intégrale :

$$k_{2} = \frac{\lim_{p \to 0} pG(p)}{\omega_{u} |G(i\omega_{u})|} = \frac{K_{v}K_{u}}{\omega_{u}} = \frac{K_{v}K_{u}T_{u}}{2\pi}$$
(III.15)

III.5.4.3 Le pic de perturbation normalisé

La réponse d'un échelon de perturbation est un moyen important pour l'évaluation des performances des systèmes. L'effet de la perturbation dépend de son point d'application. Tout au long de ce travail, on supposera que la perturbation agit sur l'entrée du procédé à commander. Pour des procédés dit stables, on définit le pic de perturbation normalisé :

$$\lambda_1 = \frac{l_{\max}}{l_0 K_p}$$

où le paramètre l_{max} est le maximum de la réponse à la perturbation, et l_0 est l'amplitude de l'échelon de perturbation. On peut définir de même le paramètre λ_2 pour les procédés avec action intégrale :

$$\lambda_2 = \frac{2\pi l_{\max}}{l_0 K_v T_u}$$
(III.16)

III.5.4.4 Le temps de montée normalisé

Le temps de montée en boucle fermée est une mesure de la rapidité du système bouclé. Pour obtenir un paramètre normalisé, on définit le rapport suivant pour les procédés en boucle fermée :

$$\tau = \frac{t_r}{L} \tag{III.17}$$

où t_r est le temps de montée et L est le retard apparent de la boucle ouverte, défini précédemment.

III.5.4.5 Le temps d'établissement normalisé

Le temps d'établissement mesure le degré de stabilité du système : plus ce temps est élevé plus le degré de stabilité est faible et réciproquement. On définit le temps d'établissement normalisé pour les deux classes de procédés, considéré comme étant le rapport du temps d'établissement t_s sur le retard apparent L:

$$\varepsilon = \frac{t_s}{L} \tag{III.18}$$

III.6 Conclusion

La méthode du relais que nous proposons est très utile dans le cas d'auto-réglage des procédés, car elle prend en compte la perturbation dans l'estimation des paramètres du modèle (K_u, T_u, K_p) ce qui minimise l'erreur d'estimation sans avoir à estimer au préalable le gain statique. D'autre part, cette méthode permet de calculer l'amplitude de la perturbation de charge constante, afin d'annuler éventuellement son effet par l'ajout du biais B = -l lorsque le procédé est bouclé par le correcteur sans intégrateur.

D'autre part la connaissance de ces paramètres normalisés en boucle ouverte, définis précédemment, sert à prédire les performances atteintes par le PID réglé par la méthode de Ziegler-Nichols et de proposer d'autres réglages dans le cas où le PID ne convient pas. Les paramètres normalisés en boucle fermée peuvent servir à évaluer si oui ou non, le correcteur PID est bien réglé. Dans la suite de ce travail nous allons utiliser ces paramètres pour développer une méthode d'auto-réglage.

STRUCTURE DE COMMANDE PID UNIFIEE

IV.1 Introduction

IV.2 Etude de la structure PID proposée par ÅSTRÖM

IV.3 Etude de la structure PID proposée par LANDAU

IV.4 Etude de la structure PID proposée par DE LARMINAT

IV.5 Etude de la structure PID proposée par EITELBERG

IV.6 Etude de la structure STR

IV.7 Structure PID unifiée

IV.8 Etude comparative

IV.8.1 Méthode de réglagesIV.8.2 Spécification des performancesIV.8.3 Résultats des simulations

IV.9 Conclusion

IV.1 Introduction

Dans ce chapitre nous proposons de comparer les différentes structures analogiques et numériques du PID, ainsi que leurs avantages et leurs inconvénients par rapport au problème de poursuite et de régulation. De cette étude ressort une structure PID unifiée, qui permet l'implantation de ces différentes structures dans un régulateur industriel. Une analyse comparative des performances et de la robustesse de la boucle fermée pour ces différentes structures a été réalisée. Dans la plupart des applications industrielles, le procédé est corrigé via un correcteur série (voir fig.IV.1). Dans ce cas, le correcteur le plus utilisé est toujours le PID classique [AST 88] et ceci pour des raisons de simplicité et aussi d'efficacité. Un tel PID peut se mettre sous la forme suivante :

$$u_{c}(t) = K \left[e(t) + \frac{1}{T_{i}} \int e(t) dt + T_{d} \frac{de(t)}{dt} \right] \quad ou \quad \frac{U_{c}(p)}{E(p)} = \frac{K(1 + pT_{i} + p^{2}T_{i}T_{d})}{T_{i}p}$$
(IV.1)

 y_r : grandeur de référenceC(p) : la fonction de transfert du correcteury : grandeur de sortieG(p) : la fonction de transfert du procédée : le signal d'erreurP(p) : la perturbation

FIG.IV.1 : Structure classique d'une boucle fermée

Plusieurs méthodes différentes permettent le réglage des paramètres usuels (K, T_i, T_e) d'un tel PID [AST 88] régler par la méthode de Ziegler-Nichols [ZIE 42]. Toutefois cette dernière méthode fournit un dépassement important pour une entrée y_e en échelon; c'est pourquoi ÅSTRÖM propose une structure PID différente (voir fig.IV.3); dans ce cas la sortie du correcteur peut se mettre sous la forme :

$$u_{A}(t) = K \left[\beta y_{r} - y + \frac{1}{T_{i}} \int e(t)dt + T_{d} \frac{dy_{f}}{dt} \right]$$
(IV.2)

Avec

$$e = y_r - y$$
, $Y_f(p) = \frac{Y(p)}{1 + \frac{T_d}{N}p} = \frac{Y(p)}{Df(p)}$ où $Df(p) = 1 + \frac{T_d}{N}p$ et Y_f est la sortie filtrée

En développant l'expression (IV.2) pour faire apparaître la commande $U_{A}(p)$ comme fonction de $Y_{A}(p)$ et Y(p), nous obtenons :

$$u_{A}(t) = K \left[\beta y_{r} - y + \frac{1}{T_{i}} \int e(t)dt + T_{d} \frac{dy_{f}}{dt} \right] = K \left[\beta y_{r} + \frac{1}{T_{i}} \int y_{r}dt - y - \frac{1}{T_{i}} \int ydt - T_{d} \frac{dy_{f}}{dt} \right]$$
$$u_{A}(t) = K \left[\beta y_{r} + \frac{1}{T_{i}} \int y_{r}dt \right] - K \left[y + \frac{1}{T_{i}} \int ydt - T_{d} \frac{dy_{f}}{dt} \right]$$

ce qui donne, après transformation de Laplace :

$$U_{A}(p) = K\left[\beta Y_{r}(p) + \frac{1}{T_{r}p}Y_{r}(p)\right] - K\left[Y(p) + \frac{1}{T_{r}p}Y(p) + pT_{d}\frac{Y(p)}{\left(1 + \frac{T_{d}}{N}p\right)}\right]$$

et après factorisation :

$$U_{A}(p) = KY_{r}(p) \left[\beta + \frac{1}{T_{i}p}\right] - KY(p) \left[\frac{1 + p(T_{i} + \frac{Td}{N}) + p^{2}T_{i}T_{d}(\frac{N+1}{N})}{T_{i}p + \frac{T_{i}T_{d}}{N}p^{2}}\right]$$
(IV.3)

Finalement on peut mettre $U_{\lambda}(p)$ sous la forme suivante :

$$U_{A}(p) = C_{2}(p)Y_{r}(p) - C_{1}(p)Y(p)$$
(IV.4)

Ce qui nous permet d'introduire une structure unifiée de commande PID conformément à la figure IV.2.

FIG.IV.2 : Structure unifiée

A partir de cette dernière structure, on peut calculer les fonctions de transfert en boucle fermée H(p) et W(p) correspondant respectivement à l'entrée de référence $Y_{r}(p)$ et à la perturbation de charge P(p) :

$$H(p) = \frac{Y(p)}{Y_r(p)} = \frac{GC_2}{1 + GC_1} \quad W(p) = \frac{Y(p)}{P(p)} = \frac{G}{1 + GC_1}$$
(IV.5)

On montre alors dans ce chapitre que les structures PID proposées par ÅSTRÖM (§ IV.2), Landau (§ IV.3), De Larminat (§ IV.4), Eitelberg (§ IV.5), et enfin la structure STR (§ IV.6) peuvent se ramener à une structure unifiée en choisissant des correcteurs C_1 et C_2 adéquats. Mais cette structure ne peut être implantée sous cette forme, car elle présente un problème de stabilité, C_2 possédant un intégrateur comme nous le verrons au paragraphe IV.7.

IV.2 Etude de la structure PID proposée par ÅSTRÖM [AST 92]

Afin de réduire le dépassement excessif produit par le réglage du PID de Ziegler-Nichols, Åström propose une structure PID (voir fig.IV.3) qui pondère seulement l'entrée de référence par un facteur β , le réglage des paramètres usuels (K,T,T_{d}) se faisant par la méthode de Ziegler -Nichols [ZIE 42].

FIG.IV.3 : Structure PID proposée par Åström

Conformément aux relations (IV.3) et (IV.4) on tire :

$$C_{1}(p) = K \left[\frac{1 + p(T_{i} + \frac{Td}{N}) + p^{2}T_{i}T_{d}(\frac{N+1}{N})}{T_{i}p + \frac{T_{i}T_{d}}{N}p^{2}} \right] = K \left[\frac{1 + p(T_{i} + \frac{Td}{N}) + p^{2}T_{i}T_{d}(\frac{N+1}{N})}{T_{i}pDf} \right]$$
(IV.6)

et

$$C_2(p) = K \left[\beta + \frac{1}{T_i p} \right]$$
(IV.7)

où l'on remarque que le correcteur C_1 n'est autre que le correcteur PID classique (IV.1) avec un terme dérivé filtré.

Si on décompose G, C_1 , C_2 en numérateur et dénominateur, on obtient :

$$G = \frac{NG}{DG}$$
 $C_1 = \frac{NC_1}{DC_1}$ $C_2 = \frac{NC_2}{DC_2}$ (IV.8)

Ce qui fait que la fonction de transfert de la boucle fermée (IV.5) H(p) peut se mettre sous la forme suivante :

$$H_{\lambda}(p) = \frac{Y(p)}{Y_{\ell}(p)} = \frac{NG * NC_2}{NG * NC_1 + DG * DC_1} * \frac{DC_1}{DC_2} = \frac{Df * NG * NC_2}{NG * NC_1 + DG * DC_1}$$
(IV.9)

L'avantage principal de cette structure est la réduction du dépassement par rapport à la structure classique de Ziegler-Nichols. D'autre part, conformément à (IV.5), on constate que la structure d'Åström et la structure de Ziegler-Nichols rejettent de façon identique la perturbation de charge. Toutefois une augmentation du temps de montée est constatée, lors de l'utilisation de la structure d'Åström. On remarque aussi que le numérateur de $H_{A}(p)$ contient les zéros du procédé ainsi que le zéro de C_2 que l'on peut positionner à l'aide de β par l'intermédiaire d'un critère de dépassement [HAN 91].

IV.3 Etude de la structure PID proposée par LANDAU [LAN 90] [LAN 93]

On constate que dans la structure proposée par Åström, le zéro du correcteur C_2 est aussi le zéro de $H_A(p)$, il peut donc introduire suivant sa dynamique un dépassement en boucle fermée, ce qui n'est pas le cas de la structure PID que l'on peut trouver dans Landau [LAN 90] [LAN 93] (voir fig.IV.4).

FIG.IV.4 : Structure PID proposée par Landau

En effet :

$$U_{L}(p) = KY_{r}(p) \left[\frac{1}{T_{i}p \left(1 + \frac{T_{d}}{N}\right)} \right] - KY(p) \left[\frac{1 + pT_{i} + p^{2}T_{i}T_{d}(\frac{N+1}{N})}{T_{i}pDf} \right]$$

$$C_{1}(p) = K \left[\frac{1 + pT_{i} + p^{2}T_{i}T_{d}(\frac{N+1}{N})}{T_{i}pDf} \right]$$
(IV.10)

et

$$C_{2}(p) = K \left[\frac{1}{T_{i} p D f} \right]$$
(IV.11)

On remarque alors que $NC_2 = K$, si bien que le numérateur de la fonction de transfert en boucle fermée ne possède que les zéros du système en boucle ouverte. Mais l'inconvénient de cette structure est qu'on n'a pas la possibilité d'obtenir un compromis direct entre le dépassement et le temps de montée, comme c'est le cas de la structure d'Aström avec le réglage du paramètre β .

IV.4 Structure PID proposée par DE LARMINAT [DEL 93]

Cette structure est différente de la structure unifiée (voir fig.IV.2), le seul point commun étant le filtrage de l'entrée de référence (voir fig.IV.5).

FIG.IV.5 : Structure proposée par De Larminat

Alors on a ici :

$$U_{LT}(p) = (Y_{r}(p)R(p) - Y(p))C(p) = R(p)C(p)Y_{r}(p) - C(p)Y(p)$$

Dans le cas du correcteur PID, il est proposé de prendre :

$$C(p) = \frac{K(1 + pT_i + p^2T_iT_d)}{pT_i} \quad et \quad R(p) = \frac{1}{1 + pT_i + p^2T_iT_d}$$

Alors $C_1(p) = C(p)$ et $C_2(p) = C(p)R(p)$, si bien que, pour le correcteur PID on obtient :

$$C_{1}(p) = \frac{K(1 + pT_{i} + p^{2}T_{i}T_{d})}{pT_{i}}$$
(IV.12)

$$C_2(p) = \frac{K}{T_i p} \tag{IV.13}$$

On remarque que cette structure [DEL 93] s'applique aussi bien en numérique qu'en continu car le degré du numérateur est inférieur au degré du dénominateur. Mais l'inconvénient est qu'elle présente une erreur constante pour une consigne y_r de type rampe, car la boucle fermée poursuit y_c et non y_r . On remarque aussi ici que NC_2 est constant, si bien que le numérateur de la fonction de transfert en boucle fermée ne possède que les zéros du système en boucle ouverte, comme c'était déjà le cas pour la structure proposée par Landau (§ IV.3).

IV.5 Structure PID proposée par EITELBERG [EIT 87]

Cette structure pondère les trois actions du PID (voir fig.IV.6).

FIG.IV.6 : Structure PID proposée par Eitelberg

Ce qui donne pour la commande $u_{\varepsilon}(t)$:

$$u_{E}(t) = K \left[F_{P} y_{r} - y + \frac{1}{T_{i}} \int (F_{i} y_{r} - y) dt + T_{d} \frac{d(F_{d} y_{r} - y)}{dt} \right]$$

Soit

$$u_E(t) = K \left[F_P y_r + \frac{1}{T_i} \int F_i y_r dt + T_d \frac{F_d y_r}{dt} \right] - \left[y + \frac{1}{T_i} \int y dt + T_d \frac{dy}{dt} \right]$$

Soit après transformation de Laplace :

$$U_{E}(p) = KY_{r}(p) \left[F_{p} + \frac{F_{i}}{T_{i}p} + F_{d}T_{d}p \right] - KY(p) \left[\frac{1 + T_{i}p + T_{d}T_{i}p^{2}}{T_{i}p} \right]$$

Ce qui donne pour $C_1(p)$ et $C_2(p)$:

$$C_{i}(p) = \frac{\left[1 + pT_{i} + p^{2}T_{d}T\right]}{pT_{i}}$$
(IV.14)

et

$$C_{2}(p) = \frac{\left[F_{I} + F_{P}pT_{i} + F_{d}p^{2}T_{d}T_{i}\right]}{pT_{i}}$$
(IV.15)

Pour annuler l'erreur statique de la boucle fermée, il faut intégrer cette erreur, ce qui impose $F_i = 1$. On constate aussi que la structure d'Åström est un cas particulier de cette

structure (au filtrage près de la dérivée), il suffit en effet de prendre $F_d = 0$ et $F_p = \beta$ (voir aussi l'annexe). D'autre part, Mantz [MAN 89] a proposé une méthode de réglage de F_p et F_d pour des systèmes à minimum de phase.

IV.6 Structure STR [AST 73] [AST 90]

FIG.IV.7 : Structure STR

C'est une structure plutôt numérique.

$$U_{STR} = \frac{E}{S} = \frac{1}{S} \left(Ty_r - Ry \right) = \frac{T}{S} y_r - \frac{R}{S} y$$

La structure STR peut être ramenée à la structure unifiée en prenant :

$$C_2 = \frac{T}{S} et C_1 = \frac{R}{S}$$

Dans le cas d'un PID classique (IV.1), en prenant $p = \frac{1-q^{-1}}{T_e}$, les expressions T, S et R deviennent alors :

$$T(q^{-1}) = R(q^{-1}) = K\left(1 + \frac{T_e}{T_i} + \frac{T_d}{T_e}\right) - K\left(1 + 2\frac{T_d}{T_e}\right)q^{-1} + K\frac{T_d}{T_e}q^{-2}$$
(IV.16)

$$S(q^{-1}) = 1 - q^{-1}$$
 (IV.17)

L'avantage principal de cette structure est que l'on peut, dans le cas de procédés ne possédant pas de zéro instable, régler indépendamment les performances de la régulation et de la poursuite [LAN 93]. Toutefois, comme dans le cas de la structure de De Larminat, le filtrage de la consigne induit une erreur pour une consigne de type rampe.

IV.7 Structure PID unifiée

La structure présentée au § IV.1 et qui était appelée structure unifiée ne peut être physiquement implantée comme décrite (fig.IV.2), car $C_2(p)$ qui n'est pas dans la boucle fermée possède un intégrateur. Ainsi une consigne constante (et donc bornée) induit une sortie $y_2(p) = C_2(p)y_r(p)$ qui tend vers l'infini [VID 85]. Pour pallier cet inconvénient, on introduit un correcteur $C_2(p)$ (voir fig.IV.8) dans la fonction de transfert H(p) comme suit :

FIG.IV.8 : Structure unifiée directement implantable

On peut ainsi introduire une structure de commande unifiée (fig.IV.8), le correcteur $C_3(p)$ étant obtenu par la relation (IV.18). Cette structure fait intervenir le correcteur $C_2(p)$ déjà introduit, qui devra être de type intégral dans le cadre d'une commande PID, ainsi qu'un filtrage de la sortie par le correcteur $C_3(p)$. Cette structure unifiée permet naturellement l'implantation de toutes les structures PID décrites dans ce chapitre, pour cela on pourra se référer au tableau "Différentes structures PID et leurs implantations" en annexe, qui fournit pour chaque structure PID les correcteurs $C_1(p) \, et C_3(p)$ correspondants. Un autre avantage indéniable de la structure unifiée est que son implantation dans des régulateurs industriels [AST 88] est aisée puisqu'un tel régulateur industriel reçoit la mesure y et la consigne y_r et fournit la commande U_c :

FIG.IV.9 : Régulateur industriel

IV.8 Etude comparative

Dans ce paragraphe, les performances en boucle fermée (voir spécifications) des différentes structures (voir annexe) vont être comparées. Chaque structure a sa méthode de réglage propre. Cette étude a été menée sur plusieurs modèles de procédés définis par leurs fonctions de transfert :

$G_1(p) = \frac{1}{(1+p)(1+2p)(1+0.5p)}$	(procédé stable)
$G_2(p) = \frac{(1 - 0.5p)}{(1 + p)^3}$	(procédé à non-minimum de phase)
$G_3(p) = \frac{1}{p(1+p)(1+0.5p)}$	(procédé instable)
$G_4(p) = \frac{1}{(1+0.5p)(1+2\xi\frac{p}{\omega_0}+\frac{p^2}{\omega_0^2})}$	Avec $\xi = 0.01$ et $\omega_0 = 1$ rad / s

(procédé très faiblement amorti)

IV.8.1 Méthodes de réglages

Nous allons associer à chaque structure de correcteur (désignée par les trois premières lettres de son auteur) sa méthode de réglage propre :

- Correcteur de la structure classique (CLA) : la méthode de réglage de ZIEGLER-NICHOLS (ZIEGLER-NICHOLS) est proposée pour cette structure (il est clair que n'importe quelle autre méthode pourrait être associée ; nous avons choisi la méthode de ZIEGLER-NICHOLS car elle est la plus connue).

- Correcteur de la structure d'ÅSTRÖM (AST) : la méthode de réglage de cette structure consiste à déterminer, en plus des paramètres usuels du PID (K,T_i,T_d) qui sont déterminés par la méthode de ZIEGLER-NICHOLS, le coefficient β de pondération de l'action proportionnelle par des formules empiriques afin d'avoir un dépassement de 10% ou 20% pour l'entrée de référence [AST 92] [HAN 91]. On choisit ici $\beta = \frac{15-k}{15+k}$ correspondant à un dépassement de 10%, où k définit le gain du procédé normalisé [AST 92].

- Correcteur de la structure de LANDAU (LAN) : le réglage de cette structure se fait par placement de pôles en ne gardant en boucle fermée que les zéros du procédé (PID 2) [LAN 93]. On choisit l'équation caractéristique de la boucle fermée : $(p+\alpha\omega)^2(p^2+2\xi\alpha p+\omega^2) \quad \alpha vec \xi=0.7 et \alpha=5$. ω sera un paramètre de conception qui est fonction du procédé et qui détermine la bande passante de la boucle fermée.

- Correcteur de la structure de DE LARMINAT (LAR) : cette structure n'a pas de méthode de réglage spécifique, on a choisi la même méthode de réglage que celle de la structure LANDAU (placement de pôles).

- Correcteur de la structure STR : la méthode de réglage de cette structure n'est pas spécifiée, on choisit alors dans ce cas la méthode de placement de pôles [AST 88] qui simplifie les pôles les plus lents du procédé par les zéros du PID et qui a une équation caractéristique $p^2 + 2 \xi \omega p + \omega^2$ avec $\xi=0,7$. ω sera fixée par le procédé à corriger, ceci étant valable uniquement pour les procédés G_1 et G_2 . Pour le procédé G_3 on simplifie le pôle le plus lent (p=-1). Pour le procédé G_4 on simplifie le pôle p=-2 et pour ces deux derniers procédés, on choisit l'équation caractéristique : $(p + \alpha \omega)(p^2 + 2\xi \alpha p + \omega^2)$ avec $\xi = 0, .7, \alpha = 5$.

- Correcteur de la structure d'EITELBERG (EIT) : la méthode de réglage de cette structure consiste à déterminer, en plus des paramètres usuels du PID (K, T_i, T_d) qui sont déterminés par la méthode de ZIEGLER-NICHOLS, les trois coefficients de pondération (F_{p_i}, F_i, F_d) des trois actions du PID (proportionnelle, intégrale, dérivée). On choisit la méthode de réglage applicable normalement pour des systèmes à minimum de phase, proposée par MANTZ [MAN 84], où les coefficients de pondération sont les suivants : $F_p = 0,17, F_i = 1, F_d = 0,664$.

Pour chaque placement de pôles, la pulsation ω est fixée naturellement par le fait que le correcteur est de type PID (voir tableau IV.1).

ω(rd/s)	LAN	LAR	STR
G_1	0.3	0.3	1.42
G_2	0.27	0.27	1.17
G ₃	0.26	0.26	0.31
G_4	0.17	0.17	0.003

TABLEAU IV.1 : Pulsation ω des différents procédés en boucle fermée

IV.8.2 Spécification des performances [LAN 95]

Toutes les structures décrites précédemment utilisent la structure PID unifiée (§ IV.7) en ayant chacune sa méthode de réglage. Les spécifications de la boucle fermée sont :

- pour une entrée de référence en échelon :

 t_m : temps de montée (s), défini comme étant le temps nécessaire pour que la sortie passe de 10 à 90% de sa valeur finale.

D : dépassement maximal (%).

tr : temps d'établissement (s) à 5%, défini comme étant le temps nécessaire pour que la sortie atteigne et reste à l'intérieur de \pm 5% de sa valeur finale.

- pour une perturbation de charge en échelon :

 λ : pic maximal atteint lors du rejet de la perturbation (%).

 ρ : temps d'élimination de la perturbation (à 5%).

- La robustesse est évaluée par les paramètres suivants :

 ΔG : Marge de gain ($\Delta G \ge 2$) (voir [LAN 93]).

 $\Delta \phi$: Marge de phase (°). (30° $\leq \Delta \phi \leq 60°$).

 $\Delta \tau$: Marge de retard (s) (voir [LAN 93]).

 ΔM : Marge de module ($\Delta M \ge 05$) (voir [LAN 93]).

IV.8.3 Résultats des simulations

Les résultats de la simulation des performances, obtenus par les différentes structures sont décrits dans ce paragraphe sous forme de tableaux pour les 4 procédés cités plus haut.

	D%	tr	tm	λ%	ρ	ΔG	Δφ	Δτ	ΔM
CLA	46	6,85	0.81	14	3,1	~	28,6	0,34	0,46
AST	7,0	5,45	1,7	14	3,1	10,1	27,6	0,32	0,46
LAN	5,0	16,1	7,16	61	13,8	116,3	66	5,8	0,82
LAR	4,4	10,7	7,2	61	13,9	œ	67,2	5,9	0,82
EIT	0	3,8	3,0	14	3,1	œ	28,6	0,34	0,46
STR	4,6	1,96	1,4	23	6,7	œ	65,2	1,2	0,78

Procédé 1

CHAPITRE IV

	D%	tr	tm	λ%	ρ	AG	Δφ	$\Delta \tau$	ΔM
CLA	59,5	9,81	0,96	57	9,7	80	24,8	0,4	0,42
AST	44	9,95	1,3	57	9,4	11,3	24,3	0,38	0,42
LAN	4,9	12,6	8,4	193	28	30,5	56,7	2,6	0,85
AR	4,4	12,7	8,4	190	27,4	×	56,74	2,6	0,86
EIT	1,0	4,0	3,2	57	9,7	80	24,8	0,4	0,42
STR	36,6	26,8	3,0	210	37,6	x	42,6	2,4	0,73

Procédé 3

1	D%	tr	tm	λ%	ρ	ΔG	Δφ	Δτ	
CLA	21	6,77	1,08	43	6,2	2,4	46,3	1	0,49
AST	9	5,1	1,7	44	6,15	2,1	44,8	0,96	0,45
LAN	11	22,4	7,3	96	27,1	2,6	54,3	7,1	0,55
LAR								1	
EIT	0	7,3	5,45	43	6,3	2,4	46,3	1,0	0,48
STR	4,8	5,3	3,6	61	9,6	5,7	62	3,2	0,70

Procédé 2

	D%	tr	tm	λ%	ρ	ΔG	Δφ	$\Delta \tau$	ΔM
CLA	0	310	229	174	375	œ	40,8	0,70	0,66
AST	0	311	229	177	381	148	36,9	0,64	0,64
LAN	5	28	12,9	620	48,2	1,1	-12,1	-0,56	0,11
LAR									
EIT	0	312	230	180	375	œ	40,8	0,70	0,66
STR						1,0001			

Procédé 4

D'après les tableaux ci-dessus on voit que les structures AST, CLA, EIT fournissent des résultats similaires :

- D'une part, la robustesse est identique ($_{C_2C_3}$ identique au filtrage près du terme dérivé pour AST). Cette robustesse reste faible et souvent limite.

- D'autre part, on observe des résultats identiques en ce qui concerne la perturbation ($_{C_1}$ identique au filtrage près du terme dérivé pour AST). La perturbation est rapidement éliminée, c'est un des avantages majeurs de la méthode de ZIEGLER-NICHOLS.

- En ce qui concerne les performances de poursuite, on obtient presque toujours avec la méthode de ZIEGLER-NICHOLS un dépassement indésirable de l'ordre de 50%, ce qui justifie l'approche d'Åström garantissant un dépassement inférieur à 10% pour les procédés non intégrateurs ; ceci explique le dépassement de 44% du procédé (3).

Un dépassement très faible est obtenu par la structure EIT réglée par Mantz et des temps de réponses corrects ont été obtenus même pour le procédé (4), très délicat à corriger. Ce réglage réalise un bon compromis poursuite-régulation avec toutefois une robustesse moyenne.

Les structures LAN, LAR, STR fournissent aussi des résultats similaires en ce qui concerne la robustesse sauf pour le procédé (4) pour lequel le correcteur PID n'est pas recommandé. D'un autre côté, les performances de poursuite sont bonnes tandis que celles de régulation sont très moyennes.

Les résultats des procédés (2) et (4) de la structure STR ne sont pas mentionnés, car la boucle fermée obtenue est à la limite de l'instabilité. D'autre part, les PID obtenus pour la structure LAR, procédés (2) et (4), possèdent un ou deux zéros instables, ce qui fait que le filtrage de l'entrée (R(p) fig.IV.5) est instable. Cette instabilité conduit naturellement à une sortie du procédé non bornée.

Le dépassement de 36.6% du procédé (3) réglé par STR malgré un placement de pôles dominants avec ξ =0.7 s'explique par le fait qu'un zéro du PID relativement lent se retrouve en boucle fermée, ce qui ne peut arriver avec la structure LAN. Toutefois, un dépassement de 11% est obtenu par LAN et avec le procédé (2) qui est lié ici au zéro instable du procédé en p=-2.

IV.9 Conclusion

Dans ce chapitre, une structure unifiée du correcteur PID est proposée. Cette structure montre que le correcteur PID peut être subdivisé en deux correcteurs C_1 et C_2 , le premier est un correcteur PID classique (IV.1) qui agit sur la poursuite et la régulation. Par contre, le correcteur C_2 agit seulement sur la poursuite sans affecter les performances de la régulation (rejet de la perturbation). Mais cette structure unifiée ne peut être physiquement implantée comme décrite dans la figure IV.2, car $C_2(p)$, qui n'est pas dans la boucle fermée, possède un intégrateur. Ainsi une consigne constante (et donc bornée) induit une sortie qui tend vers l'infini [VID 85]. Pour pallier cet inconvénient, on introduit un correcteur $C_3(p)$ (voir la relation IV.18) qui permet de définir une structure unifiée conforme à la (fig.IV.9). et directement implantable. Cette nouvelle structure unifiée permet aisément de comparer les autres structures PID ; pour cela on pourra se référer au tableau ci-dessous. Un autre avantage indéniable de la structure unifiée est que son implantation dans des régulateurs industriels [AST 88] est aisée. Une seconde partie de ce chapitre est consacrée à l'analyse des performances et de la robustesse obtenues par les différentes structures PID proposées. Cette dernière étude illustre bien les remarques quant aux avantages et aux inconvénients de chaque structure PID. Ces résultats tirés par simulations peuvent aisément s'obtenir à l'aide de la seule structure PID unifiée proposée dans ce chapitre.

"DIFFERENTES STRUCTURES PID ET LEURS IMPLANTATIONS"

STRUCTURE	<i>C</i> ₁ (<i>p</i>)	<i>C</i> ₂ (<i>p</i>)	<i>C</i> ₃ (<i>p</i>)
CLASSIQUE	$\frac{K(1+pT_i+p^2T_iT_d)}{pT_i}$	$\frac{K\left(1+pT_i+p^2T_iT_d\right)}{pT_i}$	1
ÅSTRÖM	$K\left[\frac{1+p(T_i+\frac{Td}{N})+p^2T_iT_d(\frac{N+1}{N})}{T_ip\left(1+\frac{T_d}{N}p\right)}\right]$	$K\left[\frac{1+\beta T_i p}{T_i p}\right]$	$\left[\frac{1+p(T_i+\frac{Td}{N})+p^2T_iT_d(\frac{N+1}{N})}{\left(1+\beta T_ip\right)\left(1+\frac{T_d}{N}p\right)}\right]$
LANDAU	$K\left[\frac{1+pT_i+p^2T_iT_d(\frac{N+1}{N})}{T_ip\left(1+\frac{T_d}{N}p\right)}\right]$	$K\left[\frac{1}{T_i p\left(1+\frac{T_d}{N} p\right)}\right]$	$\left(1+pT_i+p^2T_dT_i\left(\frac{N+1}{N}\right)\right)$
DE LARMINAT	$\frac{K(1+pT_i+p^2T_iT_d)}{pT_i}$	$\frac{K}{pT_i}$	$(1+pT_i+p^2T_iT_d)$
EITELBERG	$\frac{K(1+pT_i+p^2T_iT_d)}{pT_i}$	$\frac{K(F_i + F_P p T_i + F_d p^2 T_d T_i)}{p T_i}$	$\frac{(1+pT_i+p^2T_iT_d)}{F_i+F_ppT_i+p^2F_dT_iT_d}$
STR	$\frac{K(r_0 + r_1q^{-1} + r_2q^{-2})}{1 - q^{-1}}$	$\frac{K(r_0 + r_1q^{-1} + r_2q^{-2})}{1 - q^{-1}}$	1

Avec $r_0 = \left(1 + \frac{T_e}{T_i} + \frac{T_d}{T_e}\right); r_1 = -\left(1 + 2\frac{T_d}{T_e}\right); r_2 = \frac{T_d}{T_e}$

Structure PID unifiée directement implantable

REGLAGE DU PID PAR LA STRUCTURE UNIFIEE (RSU)

V.1 Introduction

- V.2 Réglage de C_1
- V.3 Réglage de C_2
- V.4 Caractérisation des procédés
- V.5 Résultats
- V.6 Etude comparative
- V.7 Conclusion

V.1 Introduction

Dans la structure PID classique (fig.IV.1) la fonction de transfert du correcteur est de la forme suivante :

$$\frac{U_c(p)}{E(p)} = \frac{K(1 + T_i p + T_i T_d p^2)}{T_i p}$$
(V.1)

Le réglage empirique proposé par Z-N [ZIE 42] pour les trois paramètres usuels est le suivant

$$K = 0.6K_u; \quad T_i = \frac{T_u}{2}; \quad T_d = \frac{T_u}{8}$$
 (V.2)

Avec K_u, T_u respectivement le gain ultime et la période ultime.

Åström [AST 92] a remarqué que la fonction de transfert (V.1) du correcteur PID réglée par la méthode de Z-N peut être mise sous la forme suivante :

$$\frac{U_c(p)}{E(p)} = \frac{K(p+\alpha)^2}{2\alpha p}$$
(V.3)

Avec
$$\alpha = \frac{4}{T_u}$$

On voit alors que le correcteur PID réglé par la méthode de Z-N possède un zéro double dépendant uniquement de T_{μ} .

Dans la structure unifiée (§ IV.7) on a deux correcteurs à régler qui sont C_1 et C_2 . Pour définir les correcteurs C_1 et C_2 , on choisit la méthode de pondération des trois actions du PID (§ IV.5). Dans ce cas, d'après les relations (IV.14) et (IV.15) on a :

$$C_1(p) = \left[\frac{1+T_ip + T_iT_dp^2}{T_ip}\right]$$
$$C_2(p) = \left[\frac{F_i + F_pT_ip + F_dT_iT_dp^2}{T_ip}\right]$$

V.2 Réglage de C₁

D'après la relation (IV.5) seul le correcteur C_1 intervient dans la fonction de transfert de la perturbation, or la méthode de réglage de Z-N (V.2) donne de très bonnes réponses par rapport à une entrée de perturbation (IV.1). On choisit donc le réglage de Z-N (V.2) pour les paramètres usuels (K, T_i, T_d) du correcteur C_1 , on obtient ainsi un rejet de la perturbation identique à celui de Z-N.

V.3 Réglage de C₂

La relation (IV.5) montre que les correcteurs $C_1 et C_2$ agissent tous les deux sur la réponse à une entrée de référence ; le réglage de C_1 étant fixé (§ V.1), il reste alors à régler C_2 . Pour les paramètres usuels (K, T_i, T_d) du correcteur C_2 on garde le même réglage que dans celui du correcteur C_1 . D'autre part, il faut prendre le coefficient de pondération de l'action intégrale $F_i = 1$ pour annuler l'erreur en régime permanent dans le cas d'une entrée de type échelon (voir fig.V.3). Pour déterminer les coefficients F_p et F_d on choisit un zéro double pour le correcteur C_2 comme dans le cas du réglage de Z-N, on a alors :

$$C_{2}(p) = K \left[\frac{1 + F_{p}T_{i}p + F_{d}T_{i}T_{d}p^{2}}{T_{i}p} \right] = \frac{K(1 + \frac{p}{\alpha})^{2}}{T_{i}p}$$

$$C_{2}(p) = \frac{K(1 + \frac{p}{\alpha})^{2}}{T_{i}p}$$
(V.4)

Il s'agit de trouver des relations entre les paramètres F_p , F_d et le zéro double α' :

$$C_{2}(p) = K \left[\frac{1 + F_{p}T_{i}p + F_{d}T_{d}p}{T_{i}p} \right] = \frac{K(1 + F_{p}\frac{T_{u}}{2}p + F_{d}\frac{T_{u}^{2}}{16}p^{2})}{T_{i}p}$$

$$C_{2}(p) = \frac{K(1 + F_{p}\frac{T_{u}}{2}p + F_{d}\frac{T_{u}^{2}}{16}p^{2})}{T_{i}p}$$
(V.5)

Par identification des relations (V.4) et (V.5) on trouve :

$$\frac{2}{\alpha} = F_p \frac{T_u}{2} \tag{V.6}$$

$$\frac{1}{\alpha'^2} = F_d \frac{T_u^2}{16}$$
(V.7)

On déduit des relations (V.6) et (V.7) :

$$\alpha' = \frac{4}{F_p T_u}$$
(V.8)
$$F_d = F_p^2$$
(V.9)

Finalement d'après (V.8) et (V.9), on constate que le zéro double α du correcteur C_2 dépend uniquement du paramètre F_p , T_u étant fixée par le correcteur C_1 . D'autre part, d'après la relation (V.4) on constate que si on fait $F_p = 1$, le correcteur C_2 n'est autre qu'un PID réglé par la méthode de Z-N. On a alors $C_1 = C_2$ (voir § V.5), soit $C_3 = \frac{C_1}{C_2} = 1$, c'est à dire qu'on obtient la structure classique (fig.V.1) avec un correcteur PID réglé par la méthode de Z-N. Il apparaît alors clairement que F_p permet de déplacer le zéro du correcteur C_2 afin de diminuer le dépassement de la boucle fermée produit par le réglage usuel d'un correcteur PID réglé par Z-N.

Il est aussi intéressant de remarquer que Åström [AST 92] a utilisé une approche voisine en réduisant le dépassement par le réglage du zéro simple par le facteur β . Toutefois, le réglage proposé dans ce chapitre permet le déplacement de 2 zéros. Grâce à ces deux zéros on a garantit d'une meilleure stabilité de la boucle fermée que celle obtenue par la méthode Åström [AST 92].

V.4 Caractérisation des procédés

Nous définissons pour notre étude de simulation deux catégories de systèmes qui sont communs dans la commande des procédés [AST 92]. La première classe représente les procédés stables (sans intégrateur) dont les fonctions de transfert peuvent être modélisées par

$$G_{1} = \frac{e^{-pL}}{(1+p)^{2}} \qquad 0.1 < L < 3$$
$$G_{2} = \frac{1-\eta p}{(1+p)^{3}} \qquad 0 < \eta < 2$$
La seconde classe représente les procédés dits instables, dont les fonctions de transfert peuvent être modélisées par :

$$G_{3} = \frac{e^{-pL}}{p(1+p)} \qquad 0,05 \le L \le 0.8$$
$$G_{4} = \frac{1-\eta p}{p(1+p)} \qquad 0,05 \le \eta \le 0.75$$

Dans Åström [AST 92] et Hang [HAN 91] il est montré que la boucle ouverte de ces systèmes peut être caractérisée par deux paramètres sans dimension θ et K qui désignent respectivement le temps mort normalisé et le gain du procédé normalisé.

FIG.V.1 : Procédés stables $K_1 = f(\theta_1)$

FIG.V.2 : Procédés instables $K_2 = f(\theta_2)$

Ces deux paramètres ne sont pas indépendants l'un de l'autre, comme le montrent les résultats sur les figures V.1 et V.2, obtenus par simulation sur les deux catégories de procédés. Ces paramètres peuvent servir à prédire les performances que l'on peut atteindre avec un correcteur réglé par la méthode de Z-N. L'utilisation de ces paramètres peut aussi permettre d'automatiser la procédure de réglage [AST 92].

FIG.V.3 : Procédés stables :

réglage de F_p pour un dépassement en boucle fermée de 10% ou 20%

Pour la seconde classe de procédés (§ V.4) il n'y a pas de corrélation entre le coefficient de pondération F_p et le paramètre K_2 .

FIG.V.4 : Procédés instables : dépassement en boucle fermée réglable en fonction F_p

Le dépassement dépend uniquement du coefficient de pondération F_p comme le montre la figure V.4.

V.5 Résultats

Dans ce paragraphe nous présentons les résultats obtenus par simulation sur les deux catégories de procédés (§ V.4). Pour choisir un dépassement acceptable en boucle fermée de 10% ou 20% selon un critère spécifié, une corrélation entre le coefficient de pondération F_p et le paramètre K_1 a été trouvée pour la première classe de procédé (voir fig.V.3) qui conduit aux formules empiriques suivantes :

1^{er}cas: Procédé stable (2.25<K1<15)

a) dépassement de 10% :

$$F_p = 1.3 * \frac{(16 - K_1)}{(17 + K_1)}, \ F_d = F_p^2, \ F_i = 1$$

b) dépassement de 20% :

$$F_p = \frac{38}{(29+35^*K_1)}, F_d = F_p^2, F_i = 1$$

avec

$$K_1 = K_p K_u$$

- K_1 : gain statique normalisé.
- K_p : gain statique du procédé.
- K_{u} : gain ultime du procédé.

2^{ème}cas : Procédé instable (dépassement de 20%)

$$F_p = 0.1, F_d = F_p^2, F_i = 1.$$

V.6. Etude comparative

Dans ce paragraphe, les performances en poursuite, obtenues par la méthode modifiée du réglage de Ziegler-Nichols proposée dans ce chapitre, vont être comparées aux performances en poursuite obtenues par le réglage de Z-N et la méthode de réglage d'Åström (AS) [AST 92]. Les performances en régulation pour les trois différents réglages sont identiques (voir § V.1) comme le montre par exemple la figure V.8.

Ces performances sont testées sur les procédés représentant différents types de procédés industriels qui sont :

$$G_1 = \frac{e^{-p}}{(1+p)^2}$$
 $G_2 = \frac{1-0.5p}{(1+p)^3}$

$$G_3 = \frac{e^{-0.8p}}{p(1+p)} \qquad \qquad G_4 = \frac{e^{-p}}{(1+0.02p+p^2)}$$

 G_4 présente un procédé très faiblement amorti. Ces procédés ont tous un gain statique $K_p = 1$.

Pour les deux premiers procédés (voir fig.V.5, V.6) on voit que le réglage proposé diminue autant le dépassement produit par la méthode de Z-N que la méthode d'Åström, mais avec des temps de montée et d'établissement plus rapides que ce dernier réglage.

FIG.V.5 : Réponse à un échelon de G_1

 $Z - N : K = 1.62; T_i = 2.40 T_d = 0.6$ RSC : $F_p = 0.85; F_d = 0.72; F_i = 1.0$ AS : $\beta = 0.69$ Pour le procédé G_3 le dépassement dépend uniquement de F_P (§ V.5). Pour réduire ce dépassement de 40 % produit par la méthode de Z-N, il faut que F_P soit plus petit (voir fig.V.4). Dans ce cas, comme le montre la figure V.7, le temps de montée est plus long que celui des deux autres méthodes (Z-N, AS), mais avec un dépassement moindre de l'ordre de 20%.

FIG.V.6 : Réponse à un échelon de G_2

 $Z - N : K = 1.92; T_i = 2.65; T_d = 0.66$ RSC : $F_p = 0.8; F_d = 0.64; F_i = 1.0$ AS : $\beta = 0.65$

FIG.V.7 : Réponse à un échelon de G_3

 $Z - N : K = 0.83 T_i = 3.18; T_d = 0.79$ RSC : $F_p = 0.1; F_d = 0.01; F_i = 1.0$ AS : $\beta = 0.83$

FIG.V.8 : Réponse à un échelon de consigne et de perturbation de G_2

 $Z - N : K = 1.92; T_i = 2.65; T_d = 0.66$ $RSC : F_p = 0.8; F_d = 0.64; F_i = 1.0$ $AS : \beta = 0.65$ Pour le procédé G_4 le correcteur PID n'est pas adapté, car les pôles du procédé sont à la limite de l'instabilité.

V.7 Conclusion

Dans ce chapitre une méthode de réglage pour la structure PID unifiée (RSU) a été introduite pour réduire le dépassement excessif (de l'ordre de 50%) de la méthode de Z-N, en pondérant les trois actions PID sans pour cela affecter les performances obtenues par le réglage de Z-N pour la perturbation de charge. On obtient ainsi un dépassement raisonnable en boucle fermée (inférieur à 20%) tout en ayant un temps de montée et d'établissement plus rapide que le réglage proposé par Åström et avec un bon rejet de la perturbation de charge. D'autre part, ce réglage nécessite uniquement un modèle simplifié du procédé caractérisé par (K_u, T_u) et le gain statique K_p de ce dernier, ce qui permet son utilisation en tant que régulateur auto-réglable.

AUTO-REGLAGE ET VALIDATION EXPERIMENTALE

VI.1 Introduction

VI.2 L'auto-réglage

VI.3 Le choix de la période d'échantillonnage

VI.4 Résultats

VI.4.1 Résultats du test du relais

VI.4.2 Résultats et comparaisons des réponses

VI.1 Introduction

Le principe de base d'un correcteur auto-réglable par structure de commande unifiée comporte quatre grandes phases comme l'illustre la figure VI.1.

FIG.VI.1 : Schéma bloc d'une boucle auto-réglable

La 1^{ère} phase consiste à mesurer la valeur moyenne du PI ou PID déjà bouclé pour centrer la valeur moyenne du relais.

La 2^{ime} phase consiste à identifier les paramètres T_u , K_u , K_p par la méthode du relais.

La 3^{eme} phase consiste à calculer le paramètre $K = K_P K_u$ et, en fonction de la valeur de ce dernier, à dire si le PID convient ou non au procédé à régler. Si oui, on passe à la 4^{eme} phase, si non on préconise d'autres correcteurs.

La 4^{ème} phase consiste au paramétrage du correcteur PID à commande unifiée et au lancement de la régulation.

VI.2 L'auto-réglage

Tout le développement théorique de la commande PID unifiée a été conçu dans le temps continu. Des simulations sur calculateur ont été faites sur des fonctions de transfert modélisant des procédés industriels (voir les résultats en annexe). Ces simulations ont été réalisées avec le logiciel Matlab (simulink) et un programme en C que nous avons conçu, qui utilise, pour passer du domaine continu au domaine discret, la méthode d'approximation de Tustin $(p = \frac{2}{T_e} \frac{z-1}{z+1})$. Cette méthode offre une meilleure précision lorsque la période d'échantillonnage est petite. Les résultats des deux programmes sont voisins.

La procédure de base de ce programme est le calcul des coefficients en discret à partir des coefficients en continu d'une fonction de transfert. Ce passage se fait en plusieurs étapes énumérées comme suit :

1/ Décomposer la fonction de transfert en continu en un quotient de deux polynômes.

2/ Appliquer l'approximation de Tustin aux deux polynômes de l'étape 1.

3/ Calculer sous forme polynomiale les coefficients de la fonction de transfert en discret par utilisation du triangle de Pascal [STO 94].

D'autre part le retard pur e^{-Lp} peut être évalué approximativement en utilisant [LAM 93] :

- 1- Approximation de Taylor Mac-Laurin
- 2- Approximation de Padé (la plus utilisée)

Nous avons choisi pour le retard l'approximation de Padé (0,4) qui correspond à un numérateur d'ordre 0 et à un dénominateur d'ordre 4. Padé (0,5) donne une fonction de transfert instable.

A partir de la fonction de transfert en discret en boucle ouverte, il est aisé d'avoir la réponse simulée d'un procédé en calculant sa fonction de transfert en boucle fermée. Cette dernière se calcule à partir de plusieurs combinaisons de sommes et de produits de polynômes.

Pour la validation expérimentale du correcteur, nous avons choisi une maquette électronique simulant un procédé industriel dont la fonction de transfert peut être approchée par :

$$\frac{1}{\left(4p+1\right)^4}$$

Une carte d'acquisition entrées/sorties (MES2 du constructeur Eurosmart) délivre en sortie unipolaire une tension entre [0-10V] et une tension d'entrée comprise entre [0-10V]. Ce qui nous permet de nous placer dans le cas des procédés industriels.

Le programme de test du relais et l'implantation du correcteur de la structure de commande unifiée (RSU) ont été réalisés sur un micro-ordinateur PC en Gwbasic. L'implantation numérique de ce correcteur se fait par le passage du domaine continu (P) vers le domaine discret (Z) à l'aide de la relation de Tustin. Dans le cas où le degré du dénominateur de ce correcteur est inférieur à celui du numérateur, le signal de commande est oscillant du fait que la méthode de Tustin introduit des zéros instables en Z=-1. On rajoute alors des pôles lents au correcteur (qui n'influent pratiquement pas sur les réponses des systèmes) pour avoir le degré du numérateur du correcteur égal à celui de son dénominateur. C'est le cas de notre correcteur C_2 et de celui de Ziegler-Nichols. En pratique on prend généralement un pôle dix fois plus rapide que le zéro du correcteur.

VI.3 Le choix de la période d'échantillonnage

Le choix de la période d'échantillonnage est un des éléments capitaux qui influe sur la qualité de la boucle de régulation. Plusieurs méthodes de choix pratique de la période d'échantillonnage sont proposées dans la littérature [AST 88], [LAN 93]. La méthode d'Åström donne une relation (VI.1) entre la période d'échantillonnage et la pulsation de coupure (ω_{c0}) qui est un des paramètres caractérisant le système en boucle ouverte, contrairement à la relation de Landau qui utilise une relation entre la bande passante de la boucle fermée désirée et la période d'échantillonnage.

$$T_e \omega_{c0} \approx 0.15 \dot{a} 0.5 \tag{VI.1}$$

La relation utilisée par Åström a retenu notre attention, car elle utilise un paramètre de la boucle ouverte, ce qui correspond plus à notre démarche pour un correcteur auto-réglable. La pulsation de coupure est ainsi remplacée par la pulsation ultime ; ce choix est justifié par le fait que les deux pulsations sont voisines et dans la majorité des cas la pulsation ultime est plus grande que la pulsation de coupure. Dans ce cas la période d'échantillonnage est plus petite ce qui assure une meilleure précision. Les simulations intensives (voir annexe) sur plusieurs catégories de procédés et le résultat pratique n'ont jamais démenti ce choix. De plus, cette relation permet d'automatiser facilement le calcul de la période d'échantillonnage, étant donné que le paramètre ω_{μ} est déterminé par la méthode du relais (voir chapitre III). Pour les

simulations, nous avons pris la plus petite période d'échantillonnage fournie par la relation (VI.1):

$$T_e \approx \frac{0.15}{\omega_{\mu}} \tag{VI.2}$$

VI.4 Résultats

VI.4.1 Résultats du test du relais

Pour valider notre méthode du test du relais, nous avons délibérément choisi de nous placer dans le cas de la boucle fermée, car elle représente une majorité de situations industrielles. Le PID nous assure d'avoir une erreur permanente nulle ; on trouve alors pour le point de fonctionnement (1V) une commande moyenne de :

I = 0,998V

Le relais est alors centré sur cette dernière valeur (I = 0,998V). On est alors assuré d'avoir des cycles d'oscillations symétriques à la sortie du procédé malgré la présence d'une perturbation (voir chapitre III). Les réponses du relais et du procédé sont représentées sur la figure VI.2.

FIG.VI.2 : Réponse du relais et du procédé

Conformément au chapitre III et à la figure VI.2 la période et le gain ultimes seront calculés en premier avant l'ajout du biais (t < 75s). Le gain statique et la perturbation statique seront calculés après l'ajout du biais B = 0.5V à l'instant t=75s, on trouve alors les résultats suivants

$T_1 = 12s$: durée de l'état haut du relais avant ajout du biais.
$T_2 = 12s$: durée de l'état bas du relais avant ajout du biais.
$K_{\nu} = 3,6$: gain ultime.

$T_1' = 8s$: durée de l'état haut du relais après ajout du biais
$T_2' = 16,5s$: durée de l'état bas du relais avant ajout du biais.
$K_p = 0,95$: représente le gain statique du procédé.
<i>l</i> = 0,048 <i>V</i>	: représente la perturbation de charge.

Les paramètres qui caractérisent le procédé au voisinage du point de fonctionnement (1V) sont alors les suivants :

$$T_u = 24s, K_u = 3,6, K_P = 0,95$$

D'après la relation (VI.2) on peut calculer la valeur numérique de la période d'échantillonnage pour notre boucle de régulation :

$$T_e \approx \frac{0.15}{\frac{2\pi}{T_e}} = \frac{0.15*24}{2\pi} = 0.5s$$

VI.4.2 Résultats et comparaisons des réponses

Les résultats quantifiés avec les spécifications définies au paragraphe (IV.8.2) de la sortie du procédé pour les trois méthodes utilisées, c'est-à-dire la méthode du réglage par structure unifiée (RSU), celle d'Åström (AST) et de Ziegler-Nichols (Z-N), sont donnés dans le tableau suivant :

	D%	tr(s)	tm (s)	λ%	$ ho_{(s)}$	ΔG	$\Delta \phi$	$\Delta \tau$ (s)	ΔM
RSU	9	34	8	0,33	27,3	3,0	41,8	3,9	0,495
AST	10	36,2	9,2	0,32	27,3	2,56	36,9	3,6	0,45
Z-N	27	34,6	6,5	0,34	27,3	3,0	41,8	3,9	0,495

Ce tableau comparatif et la figure VI.3 montrent et confirment les résultats des simulations, à savoir que la réponse du procédé par la méthode de réglage de Z-N est la plus rapide mais avec un fort dépassement. La méthode RSU que nous proposons obtient un meilleur temps de montée que celui de la méthode AST, à dépassement égal (10%).

Les paramètres d'évaluation de la robustesse (ΔG , $\Delta \phi$, $\Delta \tau$, ΔM) indiquent que la robustesse de la méthode RSU et de celle de Z-N sont équivalentes, mais meilleures que celle de la méthode AST.

La réponse à la perturbation de charge est quasiment identique pour les trois méthodes.

FIG.VI.3 : Réponses indicielles et à perturbation de charge (t=75s) des trois régulateurs Z-N, AS, RSU

FIG.VI.4 : Réponses de commande des

trois régulateurs Z-N, AS, RSU

CHAPITRE VII : CONCLUSION ET PERSPECTIVES

VII.1 Conclusion

VII.2 Perspectives

VII.1 Conclusion

Dans ce travail nous proposons une structure correcteur PID unifiée où toute autre structure PID peut se subdiviser en deux correcteurs C_1 et C_2 . Le correcteur C_1 influe sur la poursuite et la régulation et C_2 influe uniquement sur la poursuite. Nous avions alors à régler deux correcteurs ; pour cela nous avons gardé le modèle de Ziegler-Nichols pour la simplicité de la détermination des paramètres (T_u, K_u) . Pour la détermination du gain statique par la méthode du relais, nous proposons deux procédures selon que le procédé est déjà bouclé par au moins un intégrateur ou bien que le procédé est en boucle ouverte. Pour le réglage PID par la structure unifiée nous avons choisi la méthode de pondération des trois actions du PID par trois facteurs (F_p , F_i , F_d) qui pondèrent respectivement l'action proportionnelle, l'intégrale et la dérivée. En estimant que la méthode de Ziegler-Nichols donne de bons résultats en régulation (rejet de la perturbation de charge) dans les limites des performances obtenues par le PID, nous avons alors choisi pour le correcteur C_1 le même réglage des paramètres usuels (K, T_i, T_u) que celui de Ziegler-Nichols. Pour le correcteur C_2 qui agit uniquement sur la poursuite (dépassement entre autre), que nous avons mis sous forme de zéro double, nous avons alors constaté que ce zéro dépend uniquement du facteur de pondération F_p . Après des simulations intensives, nous avons proposé des formules empiriques faisant intervenir le paramètre $k_1 = K_p K_u$. Ceci permet de réduire le dépassement excessif produit par la méthode Ziegler-Nichols de la même façon que la méthode d'Åström, mais le temps de montée est nettement inférieur à celui obtenu par la méthode d'Åström. Des simulations intensives ont été réalisées sur plusieurs fonctions de transfert modélisant des procédés industriels. Ces simulations ont été réalisées par un programme C que nous avons conçu. Pour valider l'approche théorique, nous avons choisi une maquette électronique modélisant une fonction de transfert. Les résultats obtenus par les tests sur cette maquette ont confirmé les résultats théoriques et ceux des simulations.

En résumé notre contribution peut être énumérée comme suit :

- 1/ Amélioration du test-relais en présence d'une perturbation.
- 2/ proposition d'une structure de commande PID unifiée.

3/ Proposition d'une méthode d'auto-réglage par structure unifiée.

les résultats qui s'ensuit est une amélioration du temps de montée sans augmenter le dépassement par rapport à la méthode d'Åström.

VII.2 Perspectives

Dans le prolongement naturel de ce travail nous voyons deux pistes intéressantes :

La première : c'est le découplage total du réglage entre la poursuite et la régulation ; ce qui a pour conséquence d'améliorer les performances de la poursuite sans altérer les performances de la régulation et vice-versa.

la seconde un système-expert de haut degré d'automatisation pour le choix d'un correcteur quasi idéal pour des procédés industriels. Les outils [AST 91] [AST 92] de ce système-expert seraient : premièrement, des informations caractérisant une large classe de procédés ; deuxièmement, l'extraction automatique de ces informations ; troisièmement, le choix d'un correcteur performant. En fonction de ces informations et des performances souhaitées par l'utilisateur, nous pouvons schématiser ce système-expert comme suit :

RESUME ETENDU

I. Introduction

La commande PID reste majoritaire dans 90% des cas de boucles de régulation industrielle pour les raisons suivantes :

1- Elle est standardisée du point de vue matériel et elle a traversé toutes les technologies (pneumatique, électronique, numérique...).

2- Elle est standardisée du point de vue conceptuel, c'est à dire que les automaticiens expérimentés connaissent l'effet spécifique de chaque action du PID.

3- Elle peut être réglée sur site empiriquement.

4- Malgré le prestige et la robustesse que peuvent obtenir les autres commandes nécessitant un modèle ou des règles plus ou moins complexes, elles n'assurent pas la garantie que les performances soient nettement meilleures que les performances obtenues par le PID.

Mais plusieurs études ont montré que dans 90% des cas le PID est mal réglé. Parmi les méthodes de réglage les plus connues et les plus utilisées, les deux méthodes empiriques de Ziegler-Nichols utilisent la structure dite classique, où un seul correcteur placé dans la chaîne directe règle à la fois les performances de la régulation (rejet de la perturbation) et de la poursuite (suivi de la consigne).

Cette structure ne permet donc pas un découplage du réglage entre la régulation et la poursuite. L'une des méthodes de Ziegler-Nichols utilise le domaine temporel et l'autre le domaine fréquentiel. Elles ont comme caractéristiques principales :

de donner de bonnes performances en régulation.

d'utiliser un modèle simple du procédé.

mais aussi de produire un dépassement important (de l'ordre de 50% voire plus).

Plusieurs auteurs (Åström, Landau, De Larminat, Eiltelberg) ont proposé des structures et des réglages ayant chacun sa spécificité pour réduire le dépassement excessif produit par la méthode de Ziegler-Nichols.

Le travail de notre thèse est motivé par le désir d'obtenir des améliorations des performances en poursuite par rapport aux méthodes de réglage de Ziegler-Nichols et celles apparentées (exemple : la méthode de pondération de la consigne d'Åström) : c'est-à-dire avoir un dépassement de 10% ou 20% avec un temps de montée rapide, tout en gardant la simplicité du modèle et les bonnes performances en régulation de la méthode de Ziegler-Nichols.

II. Structure unifiée

Nous avons proposé dans ce travail une structure PID baptisée structure PID unifiée (voir Fig.1) Elle est composée de 2 correcteurs C1 et C2. Toute autre structure peut se mettre aisément sous cette forme unifiée.

Fig.1 : Structure unifiée

L'avantage de cette structure est qu'elle permet un découplage partiel entre le réglage de la régulation (rejet de la perturbation) et le réglage de la poursuite (suivi de la consigne). Cela se justifie par le fait que C_1 intervient dans les fonctions de transfert par rapport à la perturbation et par rapport à la consigne, par contre C_2 intervient uniquement dans la fonction de transfert par rapport à la consigne. Ce qui nous permet de dire qu'on a 2 degrés de liberté par rapport au réglage. Cette structure ne s'implante pas directement car C_2 possède un intégrateur. Nous avons alors proposé une structure unifiée (voir Fig.2) implantable par des changements de variables adéquats ($C_3=C_1/C_2$) par rapport à la structure PID unifiée initiale.

Fig.2 : Structure unifiée implantable

Cette structure s'implante aisément dans un régulateur industriel (Fig.3) car les entrées/sortie sont compatibles avec les régulateurs industriels.

Fig.3 : Régulateur industriel

III. Réglage de la structure unifiée (RSU)

Le réglage de la structure PID unifiée que nous avons proposé est baptisé : Réglage par Structure Unifiée (RSU). Il se fait de la façon suivante :

Nous avons choisi la méthode de pondération des trois actions PID. Par conséquent et d'après la structure unifiée les correcteurs C_1 et C_2 sont des PID. Le premier C_1 est un correcteur PID classique, par contre C_2 est un correcteur PID pondéré. Il s'agit alors de trouver le réglage des paramètres des deux correcteurs (K, T_i, T_d, F_p F_i, F_d). Sachant que C_1 influe seulement sur les performances en régulation et comme la méthode Ziegler-Nichols donne de bonnes performances en régulation (rejet de la perturbation) alors nous avons choisi pour le correcteur C_1 la méthode de Ziegler-Nichols. Cela permet de fixer les trois paramètres (K, Ti, T_d). Pour le correcteur C_2 il reste à trouver uniquement les facteurs de pondération (F_p , F_i , F_d) car (K, T_i , T_d) sont déjà fixés par C_1 . Nous avons choisi un zéro double pour le correcteur C_2 , nous avons constaté que ce zéro dépend uniquement du facteur F_p , $F_d=F_p^2$, $F_i=1$ (afin d'assurer une erreur permanente nulle). En conclusion, on a un seul paramètre à régler, F_p .

Nous avons établi une corrélation entre le facteur F_p et les procédés stables (sans intégrateur) à travers un paramètre caractérisant le procédé en boucle ouverte ($K_1=K_pK_u$ respectivement gain du procédé normalisé, gain statique du procédé, gain ultime) dans le domaine fréquentiel pour des dépassements de 10% ou 20%. Ce qui nous permet d'établir des formules empiriques par des simulations sur plusieurs procédés de type industriel. Nous avons effectué une étude comparative entre notre méthode RSU et celle de Ziegler-Nichols sur plusieurs procédés. Celle-ci a montré que la méthode de Ziegler-Nichols fournit un dépassement important, alors que les méthodes d'Åström et RSU ont le même dépassement. De plus, la méthode RSU est plus rapide que celle d'Åström ce qui se traduit par un temps de montée moins élevé.

IV. Identification des paramètres du modèle fréquentiel

Etant donné que l'on a choisi le modèle fréquentiel de Ziegler-Nichols (T_u, K_u) respectivement la période et le gain ultimes, ces paramètres s'obtiennent automatiquement en insérant un relais en cascade avec un procédé en boucle fermée, ce qui permet de contrôler l'amplitude des oscillations en sortie du procédé. Alors que la méthode dite du pompage ne le permet pas. Mais pour centrer le relais en présence d'une perturbation, Hang propose d'estimer la valeur du gain statique entre 0.5 et 2, ce qui n'est pas le cas de tous les procédés industriels. Ce qui peut induire des erreurs sur le calcul du gain statique et de la perturbation. Nous avons alors proposé une procédure claire pour centrer le relais qui tient compte de la perturbation sans avoir à estimer le gain statique.

* La première étape consiste à mesurer la valeur moyenne de la sortie du PID déjà en place et de centrer le relais sur cette valeur. Ce qui permet de déterminer (T_u, K_u) .

* La deuxième étape consiste à provoquer une asymétrie par le rajout d'un biais B et à calculer le gain statique et la perturbation.

V. Auto-réglage et validation industrielle

L'auto-réglage est l'opération ou la procédure qui consiste à déterminer automatiquement les paramètres du correcteur (PID) à partir des paramètres du modèle du procédé déterminés eux aussi d'une façon automatique.

L'auto-réglage que nous avons proposé (Fig.4) a été testé et validé sur une maquette électronique modélisant parfaitement un procédé industriel. Il comprend trois phases :

FIG.4 : Schéma bloc d'une boucle auto-réglable

- 1- Mesurer la valeur moyenne de la sortie du PID déjà en place.
- 2- Déterminer le gain et la période ultimes, le gain statique et la perturbation de charge.
- 3- Calculer les paramètres du PID/RSU.

Les résultats obtenus par cette expérimentation (Fig.5) confirment les résultats des simulations à savoir que le PID/RSU réduit le dépassement de Ziegler-Nichols de la même façon que la méthode d'Åström avec un temps de montée plus rapide et que le rejet de la perturbation est identique pour les trois méthodes.

FIG.5 : Les réponses indicielles et à perturbation de charge (t=75s) des trois régulateurs Z-N, AS, RSU

VI. Conclusion et perspectives

En conclusion on peut énumérer l'essentiel notre de contribution comme suit :

- 1- Nous avons proposé une structure unifiée
- 2- Nous avons réglé cette structure unifiée (RSU).
- 3- Améliorer la procédure pour le test relais afin d'identifier le modèle du procédé en présence d'une perturbation de chargé.
- 4- Nous avons proposé une procédure pour l'auto-réglage par structure unifiée.

5- Nous avons améliorer le temps de montée et la robustesse par rapport à la méthode de réglage proposé par Åström

En perspective nous voyons deux pistes intéressantes :

La première : c'est le découplage total du réglage entre la poursuite et la régulation ; ce qui a pour conséquence d'améliorer les performances de la poursuite sans altérer les performances de la régulation et vice-versa.

La deuxième est un système expert qui a pour rôle principal de choisir le correcteur le plus adapté à un procédé donné d'après les paramètres du procédé et d'après les performances souhaitées par l'utilisateur.

BIBLIOGRAPHIE

[ALZ 89] Alzoni, Y. (1989). Conception et réalisation d'un régulateur auto-adaptatif industrialisable. Thèse de Doctorat, Nancy.

[AST 73] Åström, K.J. and B. Wintenmark (1973). On self tuning regulators. Automatica, 9, pp. 185-189.

[AST 84] Åström, K.J. and T. Hägglund (1984). Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica, 28, pp. 645-651.

[AST 88] Åström, K.J. and T. Hägglund (1988). Automatic tuning of PID controllers. ISA, Research Triangle Park, N.C., USA.

[AST 90] Åström, K.J. and B. Wintenmark (1990). *Computer controlled systems-theory and design*. Prentice-Hall, Englewood Cliffs, New Jersey, USA.

[AST 91] Åström, K.J. (1991). Assessment of achievable performance of simple feedback loop. Int. J. of Adaptive Control and Signal Processing, vol. 5, pp. 3-19.

[AST 92] Åström, K.J., C.C. Hang, P. Persson and W.K. Ho (1992). *Towards intelligent PID control.* Automatica, 28, pp. 1-9.

[AST 93] Åström, K.J., T. Hägglund, C.C. Hang, T. Hägglund and W.K. Ho (1993). *Automatic tuning and adaptation for PID controllers*. Control Eng. Practice, vol. 1, n° 4.

[AST 95] Åström, K.J. and T. Hägglund (1995). *PID controllers : theory, design, and tuning*. 2nd ISA, Research Triangle Park, N.C., USA.

[BAR 88] Barian, J.L. (1988). Conception et réalisation d'un logiciel de CAO en automatique: identification structurelle et commande PID. Thèse de Doctorat, Nice.

[BIA 93] Bialkowski, W.L. (1993) : "Dreams versus reality : a view from both sides of the gap." Pulp and paper, Canada, 94 : 11.

[BOR 90] Borne, P. et al. (1990). Commande et optimisation des processus. Technip, France. [BOR 91] Borne, P. et al. (1991). Modélisation et identification des processus. Tome 2. Technip, France.

[BOR 93] Borne, P. et al. (1993). Analyse et régulation des processus industriels. Tome 1. Technip, France.

[BRO 69] Broïda, V. (1969). L'extrapolation des réponses indicielles apériodiques. Automatisme, France.

[COH 53] Cohen, G.H. and G.A. Coon (1953). *Theoretical consideration of retarded control*. Trans. ASME, 75, pp. 827-834. [DEL 96] De Larminat P. (1996). Commande des systèmes linéaires. Hermes, France.

[DIR 86] Diracca C. (1986). Etude comparative de PID numériques auto-ajustables : applications à la commande d'un télépointeur. Thèse de Doctorat, Nice.

[EIT 87] Eitelberg, E. (1987). A regulating and tracking PI(D) controller. Int. J. of Control, 45, pp. 91-95.

[FRA 89] Franklin, G.F. Powell, J.D. (1989). *Digital control of dynamic systems*. Addison-Wesley, USA.

[GRA 53] Graham, D. Lathrop, C. (1953). *The synthesis of optimum response, criteria and standard forms.* Part 2. Transactions of the AIEE. Nov, pp. 273-288, USA.

[HAG 85] Hägglund, T. and Åström, K.J. (1985). *Automatic tuning of PID controllers based* on dominant pole design. Proc. IFAC Workshop on Adaptative Control of Chemical Processes, Frankfurt, FRG.

[HAN 88] Hang, C.C., K.J. Åström (1988). Practical aspects of PID auto-tuners based on relay feedback. Proc. of IFAC Int. Symposium on Adaptive Control of Chemical Processes. Copenhagen, Danemark, pp. 156-158.

[HAN 91] Hang, C.C., K.J. Åström, and W.K. Ho (1991). *Refinements of the Ziegler-Nichols tuning formula*. Proc. IEE, pt. D, 138, n° 2, pp. 111-118.

[HAN 93] Hang, C.C. Åström, K.J. and Ho, W.K. (1993). Relay auto-tuning in the presence of static load disturbance. Automatica, vol. 29, n° 2, pp. 563-564.

[HAW 83] Hawk, JR. W.M. (1983). *A self-tuning contained PID*. In Proc. American Control Conference, San Francisco, California, pp. 838-842.

[HO 95] Ho, W.K. and Hang, C.C. and Cao, L. (1995). *Tuning of PID controllers based on gain and phase margin specifications*. Automatica, vol. 31, n° 3, pp. 497-502.

[HUD 73] Hudzovic, P. (1973). Une méthode d'identification des systèmes à réponse apériodique. RAIRO, J-3, pp. 133-139.

[LAM 93] Lam, J. (1993). Model reduction of delay systems using Padé approximants. Int. J. of Control, vol. 57, n° 2, pp. 377-391.

[LAN 90] Landau, I.D. (1990). Systems identification and control designing PIM software. Prentice Hall, Englewood Cliffs, New Jersey, USA.

[LAN 93] Landau, I.D. (1993). Identification et commande des systèmes. Hermes, France.

[LAN 95] Landau, I.D., D.Rey, A.Karimi, A.Voda, A.Franco (1995). *A Flexible transmission* system as a benchmark for robust digital control. ECC, pp. 1932-1938, Rome, Italie.

[LJU 87] Ljung, L. (1987). System identification theory for the user. Prentice Hall, Englewood Cliffs, New Jersey, USA.

[LOR 97] Loron, L. (1997). Tuning of PID controllers by non symmetrical optimum method. Automatica, vol. 33, n° 1, pp. 103-107.

[MAN 89] Mantz, R.J. and E.J. Tacconi (1989). Complementary rules to Ziegler and Nichols' rules for a regulating and tracking controller. Int. J. of Control, 49, pp. 1465-1471.

[NAS 68] Naslin, P. (1968). Technologie et calcul pratique des systèmes asservis. Dunod, France.

[SCH 94] Shei, T.S. (1994). Automatic tuning of PID controllers based on transfer function estimation. Automatica, vol. 12, pp. 1983-1994.

[SMI 57] Smith, O.J.M. (1957). Closer Control of loop with deadtime. Chemical. Engineering. Progress, 53, May, pp. 217-219.

[STO 94] Stoten, D.P. and Harrison, J.L. (1994). Generation of discrete and continuous time transfer function coefficients. Int. J. of Control, vol. 59, n° 5, pp. 1159-1172.

[TAK 70] Takahashi, Y. Chan, C. Auslander, D. (1970). *Parameter tuning of DCC algorithms*. ASME publication, 345 EAST, 47th Street.

[VID 85] Vidyasagar, M. (1985). Control system synthesis. MIT press.

[VOD 94] Voda, A.A. (1994). Contribution à la méthodologie d'auto-calibrage des régulateurs numériques. Thèse de Doctorat, Institut National Polytechnique de Grenoble.

[ZEL 94] Zelazny, M. Giri, F. Bennani, T. (1994). *Systèmes asservis*. Tome 2 : synthèse, application, instrumentation. Eyrolles.

[ZIE 42] Ziegler, J.G. and N.B. Nichols (1942). *Optimum setting for automatic controllers*. Trans. ASME, 64, pp. 759-768.

ANNEXE

Dans cette annexe, nous présentons les résultats des simulations obtenus par la méthode de réglage Åström (β) et notre méthode RSU (F_p) en utilisant le programme en langage C avec les fonctions de transferts suivantes :

sys1 :
$$\frac{e^{-Lp}}{(1+p)^2}$$

sys2 :
$$\frac{(1-\alpha p)}{(1+p)^3}$$

sys3:
$$\frac{e^{-Lp}}{p}$$

sys4 :
$$\frac{e^{-Lp}}{p(1+p)}$$

sys5 :
$$\frac{(1-\alpha p)}{p(1+p)}$$

- L : Retard.
- T_u : Période ultime.
- OS : Dépassement (overshoot).
- US : (undershoot).
- θ_1 : Retard normalisé.
- κ_1 : Gain statique normalisé.
- τ : Temps de montée normalisé.
- λ_1 : Pic de perturbation.
- $\kappa_1 \lambda_1$: Pic de perturbation normalisé.
- T_s : Temps d'établissement.
- L_{AP} : Retard apparent,
- C_t : Constante de temps.
- ε : Temps d'établissement normalisé.
- IAE/bf : IAE par rapport à la consigne.
- IAE/p : IAE par rapport à la perturbation.
- β : Facteur de pondération utilisé dans la méthode d'Åström.
- F_p : Facteur de pondération utilisé dans la méthode RSU.

<u>.</u>											-			· · · · · · · · · · · · · · · · · · ·
β=0,1	1													
sys1														
L	Tu	OS	US	θ_1	κ ₁	τ	λ	$\kappa_1 \lambda_1$	T _s	L _{AP}	Ct	ε ΙΑ	E/bf	IAE /p
0,10	1,40	14	10	0,13	20,50	1,65	0,08	1,7	2,64	0,37	2,72	0,14	0,88	11,64
0,20	2,00	9	5	0,17	10,50	1,98	0,16	1,6	3,44	0,46	2,72	0,13	1,21	16,55
0,40	2,90	1	2	0,24	5,70	2,35	0,27	1,5	2,56	0,65	2,72	0,25	1,75	23,81
0,60	3,60	0	0	0,31	4,00	2,57	0,37	1,5	3,87	0,84	2,73	0,22	2,37	29,33
1,00	4,80	0	0	0,45	2,70	3,64	0,51	1,4	7,33	1,23	2,72	0,17	3,64	38,63
1,50	6,10	0	0	0,63	2,10	3,83	0,64	1,3	10,19	1,71	2,72	0,17	5,17	48,55
2,00	7,30	0	0	0,81	1,74	3,89	0,73	1,3	15,51	2,20	2,72	0,14	6,78	57,50
2,50	8,50	0	0	0,98	1,55	3,78	0,80	1,2	19,28	2,68	2,73	0,14	8,39	66,46
3,00	9,50	0	0	1,16	1,44	3,79	0,86	1,2	22,45	3,17	2,73	0,14	9,77	73,88
								·						
sys2													<u> </u>	
α	Tu	OS	US	θ_1	κ ₁	τ	λ ₁ μ	$c_1\lambda_1$	Γ _s L	'AP (C _t {	E IAE	/bf L	AE /p
0,00	3,60	3	6	0,21	8,00	2,37	0,19	1,5	5,84	0,76	3,70	0,13	2,11	29,71
0,01	4,10	1	1	0,23	6,20	2,51	0,24	1.5		0.96	2 (0	0.24	2.40	33 71
0,25	4,60	1						1,5	3,62	0,00	3,69	0,24	2,48	55,71
0,50			0	0,28	4,60	2,60	0,32	1,5	3,62 4,50	1,01	3,69	0,24	2,48	37,60
	5,30	0	; 0	0,28 	4,60 3,20	2,60 2,77	0,32	1,5 1,5 1,4	3,62 4,50 7,72	1,01	3,69 3,65 3,53	0,24	2,48 2,93 3,77	37,60
1,00	5,30 6,30	0	; 0	0,28 0,36 0,55	4,60 3,20 2,00	2,60 2,77 3,63	0,32 0,44 0,67	1,5 1,5 1,4 1,3	3,62 4,50 7,72 10,83	1,01 1,28 1,78	3,69 3,65 3,53 3,24	0,24 0,23 0,17 0,16	2,48 2,93 3,77 5,61	37,60 42,90 50,02
1,00 1,50	5,30 6,30 6,90	0 0 0	; 0 ; 0 0 0	0,28 0,36 0,55 0,75	4,60 3,20 2,00 1,45	2,60 2,77 3,63 3,80	0,32 0,44 0,67 0,87	1,5 1,5 1,4 1,3 1,3	3,62 4,50 7,72 10,83 14,50	1,01 1,28 1,78 2,21	3,69 3,65 3,53 3,24 2,94	0,24 0,23 0,17 0,16 0,15	2,48 2,93 3,77 5,61 7,07	37,60 42,90 50,02 53,71
1,00 1,50 2,00	5,30 6,30 6,90 7,40	0 0 0 0	; 0 ; 0 0 0	0,28 0,36 0,55 0,75 0,96	4,60 3,20 2,00 1,45 1,14	2,60 2,77 3,63 3,80 4,33	0,32 0,44 0,67 0,87 1,06	1,5 1,5 1,4 1,3 1,3 1,2 1,2 1	3,62 4,50 7,72 10,83 14,50 18,37	1,01 1,28 1,78 2,21 2,57	3,69 3,65 3,53 3,24 2,94 2,67	0,24 0,23 0,17 0,16 0,15 0,14	2,48 2,93 3,77 5,61 7,07 8,78	37,60 42,90 50,02 53,71 56,50
1,00 1,50 2,00	5,30 6,30 6,90 7,40	0 0 0 0	; 0 0 0 0	0,28 0,36 0,55 0,75 0,96	4,60 3,20 2,00 1,45 1,14	2,60 2,77 3,63 3,80 4,33	0,32 0,44 0,67 0,87 1,06	1,5 1,5 1,4 1,3 1,3 1,2	3,62 4,50 7,72 10,83 14,50 18,37	0,80 1,01 1,28 1,78 2,21 2,57	3,69 3,65 3,53 3,24 2,94 2,67	0,24 0,23 0,17 0,16 0,15 0,14	2,48 2,93 3,77 5,61 7,07 8,78	37,60 42,90 50,02 53,71 56,50
1,00 1,50 2,00 sys3	5,30 6,30 6,90 7,40	0 0 0 0	; 0 0 0 0	0,28 0,36 0,55 0,75 0,96	4,60 3,20 2,00 1,45 1,14	2,60 2,77 3,63 3,80 4,33	0,32 0,44 0,67 0,87 1,06	1,5 1,5 1,4 1,3 1,3 1,2	3,62 4,50 7,72 10,83 14,50 18,37	0,80 1,01 1,28 1,78 2,21 2,57	3,69 3,65 3,53 3,24 2,94 2,67	0,24 0,23 0,17 0,16 0,15 0,14	2,48 2,93 3,77 5,61 7,07 8,78	37,60 42,90 50,02 53,71 56,50
1,00 1,50 2,00 sys3 L	5,30 6,30 6,90 7,40	0 0 0 0	; 0 0 0 0 US	0,28 0,36 0,55 0,75 0,96 	4,60 3,20 2,00 1,45 1,14 κ ₁	2,60 2,77 3,63 3,80 4,33 τ	$ \begin{array}{c} 0,32\\ 0,44\\ 0,67\\ 0,87\\ 1,06\\ \hline \lambda_1 \end{array} $	1,5 1,5 1,4 1,3 1,3 1,2 $\kappa_1\lambda_1$	3,62 4,50 7,72 10,83 14,50 18,37	1,01 1,28 1,78 2,21 2,57	3,69 3,65 3,53 3,24 2,94 2,67 Ct	0,24 0,23 0,17 0,16 0,15 0,14 ε ΙΑ	2,48 2,93 3,77 5,61 7,07 8,78 E/bf	37,60 42,90 50,02 53,71 56,50
1,00 1,50 2,00 sys3 L 0,50	5,30 6,30 6,90 7,40 T _u 2,00	0 0 0 0 0 0 0 21	; 0 0 0 0 0 US 4	$ \begin{array}{c} 0,28 \\ 0,36 \\ 0,55 \\ 0,75 \\ 0,96 \\ \hline \theta_1 \\ 0,50 \\ \end{array} $	$ \begin{array}{r} 4,60 \\ 3,20 \\ 2,00 \\ 1,45 \\ 1,14 \\ \hline \kappa_1 \\ 1,00 \\ \end{array} $	2,60 2,77 3,63 3,80 4,33 τ 1,77	$ \begin{array}{r} 0,32 \\ 0,44 \\ 0,67 \\ 0,87 \\ 1,06 \\ \\ \lambda_1 \\ 1,78 \\ \end{array} $	$ \begin{array}{r} 1,5 \\ 1,5 \\ 1,4 \\ 1,3 \\ 1,3 \\ 1,2 \\ \hline \kappa_1 \lambda_1 \\ 1,8 \\ \end{array} $	3,62 4,50 7,72 10,83 14,50 18,37 T _s 3,63	0,80 1,01 1,28 1,78 2,21 2,57 L _{AP} 0,48	3,69 3,65 3,53 3,24 2,94 2,67 C _t 0,90	0,24 0,23 0,17 0,16 0,15 0,14 ε ΙΑ 0,13	2,48 2,93 3,77 5,61 7,07 8,78 E/bf	37,60 42,90 50,02 53,71 56,50 IAE /p 16,18

sys4														
L	Tu	OS	US	θ_1	κ	τ	λ	$\kappa_1\lambda_1$	Ts	L _{AP}	Ct	ε IA	E/bf	IAE /p
0,05	1,41	18	17	0,05	4,60	0,59	0,39	1,8	4,28	1,03	1,00	0,24	0,98	11,72
0,10	2,01	18	14	0,10	3,30	0,54	0,55	1,8	4,99	1,51	0,97	0,30	1,34	16,63
0,15	2,49	21	13	0,15	2,71	0,95	0,72	1,9	6,48	1,12	1,00	0,17	1,74	20,48
0,20	2,90	18	10	0,20	2,40	1,07	0,76	1,8	5,54	1,17	1,00	0,21	1,85	23,76
0,25	3,27	18	9	0,25	2,16	1,06	0,84	1,8	6,25	1,25	1,00	0,20	2,06	26,67
0,30	3,61	18	8	0,30	2,00	1,23	0,90	1,8	6,89	1,26	1,00	0,18	2,27	29,30
0,35	3,93	18	7	0,35	1,88	1,29	0,96	1,8	7,51	1,31	1,00	0,17	2,46	31,75
0,40	4,23	18	6	0,40	1,78	1,34	1,01	1,8	7,98	1,36	1,00	0,17	2,66	34,01
0,50	4,80	18	5	0,50	1,64	1,34	1,10	1,8	6,76	1,45	1,00	0,21	3,04	38,24
0,60	5,34	18	4	0,60	1,54	1,49	1,17	1,8	7,65	1,54	1,00	0,20	3,40	42,16
0,75	6,10	19	3	0,75	1,43	1,47	1,25	1,8	9,17	1,79	1,00	0,19	3,95	48,07
0,80	6,40	18	3	0,80	1,40	1,56	1,27	1,8	9,63	1,76	1,00	0,18	4,11	50,54
sys5														
α	Τu	OS	US	θ	κ	τ	λ_1	$\kappa_1 \lambda_1$	Τs	Lap	Ct	E I.	AE/bf	IAE /p
0,05	1,40	19	17	0,05	4,50	0,58	0,40	1,8	4,28	1,04	1,00	0,24	0,99	11,64
0,10	2,00	18	14	0,10	3,20	0,75	0,57	1,8	4,97	1,08	1,00	0,22	1,33	16,55
0,15	2,43	20	13	0,15	2,58	0,93	0,71	1,8	6,03	1,12	1,00	0,19	1,63	20,00
0,20	2,80	20	11	0,20	2,23	0,97	0,83	1,9	5,55	1,17	1,00	0,21	1,88	22,93
0,25	3,10	22	11	0,25	2,00	1,10	0,94	1,9	6,29	1,21	1,00	0,19	2,14	25,26
0,30	3,44	21	9	0,30	1,82	1,11	1,02	1,9	6,98	1,26	1,00	0,18	2,33	27,88
0,35	3,71	22	8	0,35	1,69	1,15	1,11	1,9	7,62	1,31	1,00	0,17	2,54	29,92
0,40	3,97	22	8	0,40	1,58	1,19	1,19	1,9	8,25	1,35	1,00	0,16	2,75	31,84
0,45	4,21	23	8	0,45	1,49	1,15	1,26	1,9	8,84	1,40	1,00	0,16	2,95	33,60
0,50	4,40	24	8	0,50	1,41	1,23	1,34	1,9	9,45	1,45	1,00	0,15	3,18	34,93
0,60	4,86	25	7	0,60	1,29	1,27	1,45	1,9	10,79	9 1,55	1,00	0,14	3,58	38,39
0,70	5,25	26	7	0,70	1,19	1,22	1,58	1,9	12,03	3 1,64	1,00	0,14	4,02	41,68

β=0,3	•	<u> </u>												
sys1														
L	Tu	OS	US	θ_1	κ	τ	λ_1	$\kappa_1\lambda_1$	Ts	L _{ap}	Ct	I 3	AE/bf	IAE /p
0,10	1,40	19	12	0,13	20,50	1,56	0,08	1,7	2,54	0,37	2,72	0,14	0,82	11,64
0,20	2,00	14	6	0,17	10,50	1,77	0,16	1,6	3,44	0,46	2,72	0,13	1,10	16,55
0,40	2,90	4	2	0,24	5,70	1,92	0,27	1,5	2,15	0,65	2,72	0,30	1,51	23,81
0,60	3,60	0	0	0,31	4,00	2,05	0,37	1,5	3,01	0,84	2,73	0,28	2,02	29,33
1,00	4,80	0	0	0,45	2,70	3,46	0,51	1,4	6,88	1,23	2,72	0,18	3,16	38,63
1,50	6,10	0	0	0,63	2,10	3,75	0,64	1,3	9,32	1,71	2,72	0,18	4,56	48,55
2,00	7,30	0	0	0,81	1,74	3,65	0,73	1,3	15,16	2,20	2,72	0,14	6,05	57,50
2,50	8,50	0	0	0,98	1,55	3,63	0,80	1,2	18,67	2,68	2,73	0,14	7,55	66,46
3,00	9,50	0	0	1,16	1,44	3,51	0,86	1,2	21,55	3,17	2,73	0,15	8,82	73,88
										•				
sys2														**
α	Τu	OS	US	θ_1	κ_1	τ	λ_1	$\kappa_1\lambda_1$	Ts	L _{ap}	Ct	ε 1.	AE/bf	IAE /p
0,00	3,60	8	7	0,21	8,00	2,03	0,19	1,5	5,76	0,76	3,70	0,13	1,87	29,71
0,10	4,10	4	5	0,23	6,20	2,17	0,24	1,5	5,97	0,86	3,69	0,14	2,14	33,71
0,25	4,60	1	0	0,28	4,60	2,06	0,32	1,5	3,62	1,01	3,65	0,28	2,49	37,60
0,50	5,30	0	0	0,36	3,20	2,18	0,44	1,4	7,34	1,28	3,53	0,17	3,24	42,90
1,00	6,30	0	0	0,55	2,00	3,46	0,67	1,3	9,93	1,78	3,24	0,18	4,98	50,02
1,00	6,90	0	0	0,75	1,45	3,50	0,87	1,3	13,84	2,21	2,94	0,16	6,38	53,71
2,00	7,40	-0	0	0,96	1,14	4,19	1,06	1,2	17,49	2,57	2,67	0,15	8,04	56,50
sys3						· · ·					- · ·			
L	Tu	OS	US	θ	κ	τ	λ_1	$\kappa_1 \lambda_1$	Ts	L _{ap}	Ct	E	IAE/bf	IAE /p
0,50	2,00	23	5	0,50	1,00	1,48	1,78	1,	8 3,44	0,48	0,90	0,14	1,40	16,18

sys4														
L	Tu	OS	US	θ_1	κ	τ	λ_1	$\kappa_1\lambda_1$	Ts	Lap	Ct	8	AE/bf	IAE /p
0,05	1,41	25	20	0,05	4,60	0,49	0,39	1,8	4,24	1,03	1,00	0,24	0,96	11,72
0,10	2,01	24	17	0,10	3,30	0,51	0,55	1,8	4,89	1,51	0,97	0,31	1,28	16,63
0,15	2,49	27	16	0,15	2,71	0,85	0,72	1,9	6,36	1,12	1,00	0,18	1,66	20,48
0,20	2,90	24	12	0,20	2,40	0,95	0,76	1,8	6,72	1,17	1,00	0,17	1,74	23,76
0,25	3,27	24	11	0,25	2,16	1,00	0,84	1,8	6,01	1,25	1,00	0,21	1,93	26,67
0,30	3,61	23	9	0,30	2,00	1,03	0,90	1,8	6,72	1,26	1,00	0,19	2,11	29,30
0,35	3,93	23	8	0,35	1,88	1,08	0,96	1,8	7,32	1,31	1,00	0,18	2,28	31,75
0,40	4,23	23	7	0,40	1,78	1,12	1,01	1,8	7,88	1,36	1,00	0,17	2,46	34,01
0,50	4,80	23	6	0,50	1,64	1,26	1,10	1,8	8,94	1,45	1,00	0,16	2,80	38,24
0,60	5,34	23	5	0,60	1,54	1,24	1,17	1,8	9,56	1,54	1,00	0,16	3,12	42,16
0,75	6,10	23	4	0,75	1,43	1,22	1,25	1,8	8,45	1,79	1,00	0,21	3,62	48,07
0,80	6,40	22	4	0,80	1,40	1,30	1,27	1,8	9,01	1,76	1,00	0,20	3,75	50,54
							·							.
sys5					•	i							<u> </u>	
sys5 α	Tu	OS	US	θ1	κ ₁	τ	λ ₁	$\kappa_1\lambda_1$	Ts	L _{AP}	Ct	3	IAE/bf	IAE /p
sys5 α 0,05	^T u 1,40	os 25	US 20	θ ₁ 0,05	κ ₁ 4,50	τ 0,48	λ ₁ 0,40	κ ₁ λ ₁ 1,8	T _s 4,24	L _{AP} 1,04	C _t 1,00	ε 0,24	IAE/bf 0,96	IAE /p 11,64
sys5 α 0,05 0,10	T _u 1,40 2,00	os 25 25	US 20 16	θ ₁ 0,05 0,10	κ ₁ 4,50 3,20	τ 0,48 0,66	λ ₁ 0,40 0,57	$\frac{\kappa_1\lambda_1}{1,8}$	T _s 4,24 4,87	L _{AP} 1,04 1,08	C _t 1,00 1,00	ε 0,24 0,22	IAE/bf 0,96 1,27	IAE /p 11,64 16,55
 sys5 α 0,05 0,10 0,15 	^T u 1,40 2,00 2,43	os 25 25 26	US 20 16 15	θ ₁ 0,05 0,10 0,15	κ ₁ 4,50 3,20 2,58	τ 0,48 0,66 0,78	λ_1 0,40 0,57 0,71	$\frac{\kappa_1\lambda_1}{1,8}$ 1,8 1,8	T _s 4,24 4,87 5,98	L _{AP} 1,04 1,08 1,12	C _t 1,00 1,00 1,00	ε 0,24 0,22 0,19	IAE/bf 0,96 1,27 1,56	IAE /p 11,64 16,55 20,00
 sys5 α 0,05 0,10 0,15 0,20 	T _u 1,40 2,00 2,43 2,80	os 25 25 26 26	US 20 16 15 13	 θ₁ 0,05 0,10 0,15 0,20 	κ ₁ 4,50 3,20 2,58 2,23	τ 0,48 0,66 0,78 0,86	λ_1 0,40 0,57 0,71 0,83		T _s 4,24 4,87 5,98 6,89	L _{AP} 1,04 1,08 1,12 1,17	C _t 1,00 1,00 1,00	ε 0,24 0,22 0,19 0,17	IAE/bf 0,96 1,27 1,56 1,79	IAE /p 11,64 16,55 20,00 22,93
 sys5 α 0,05 0,10 0,15 0,20 0,25 	T _u 1,40 2,00 2,43 2,80 3,10	os 25 25 26 26 27	US 20 16 15 13	 θ₁ 0,05 0,10 0,15 0,20 0,25 	κ ₁ 4,50 3,20 2,58 2,23 2,00	τ 0,48 0,66 0,78 0,86 0,92	λ_1 0,40 0,57 0,71 0,83 0,94		T _s 4,24 4,87 5,98 6,89 7,70	L _{AP} 1,04 1,08 1,12 1,17 1,21	C _t 1,00 1,00 1,00 1,00 1,00	ε 0,24 0,22 0,19 0,17 0,16	IAE/bf 0,96 1,27 1,56 1,79 2,03	IAE /p 11,64 16,55 20,00 22,93 25,26
 sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 	T _u 1,40 2,00 2,43 2,80 3,10 3,44	os 25 26 26 27 27	US 20 16 15 13 13 11	θ_1 0,05 0,10 0,15 0,20 0,25 0,30	 κ₁ 4,50 3,20 2,58 2,23 2,00 1,82 	τ 0,48 0,66 0,78 0,86 0,92 0,98	λ_1 0,40 0,57 0,71 0,83 0,94 1,02		T _s 4,24 4,87 5,98 6,89 7,70 6,73	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26	C _t 1,00 1,00 1,00 1,00 1,00	ε 0,24 0,22 0,19 0,17 0,16 0,19	IAE/bf 0,96 1,27 1,56 1,79 2,03 2,19	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71	os 25 25 26 26 27 27 27	US 20 16 15 13 13 11 10	 θ₁ 0,05 0,10 0,15 0,20 0,25 0,30 0,35 	 κ₁ 4,50 3,20 2,58 2,23 2,00 1,82 1,69 	τ 0,48 0,66 0,78 0,86 0,92 0,98 0,95	$\begin{array}{c} \lambda_1 \\ 0,40 \\ 0,57 \\ 0,71 \\ 0,83 \\ 0,94 \\ 1,02 \\ 1,11 \end{array}$		T _s 4,24 4,87 5,98 6,89 7,70 6,73 7,35	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31	C _t 1,00 1,00 1,00 1,00 1,00 1,00	ε 0,24 0,22 0,19 0,17 0,16 0,19 0,18	IAE/bf 0,96 1,27 1,56 1,79 2,03 2,19 2,39	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97	0s 25 25 26 26 27 27 27 27 27 28	US 20 16 15 13 13 11 10 10	θ_1 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40	 κ₁ 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 	τ 0,48 0,66 0,78 0,86 0,92 0,98 0,95 1,05	$\begin{array}{c} \lambda_1 \\ 0,40 \\ 0,57 \\ 0,71 \\ 0,83 \\ 0,94 \\ 1,02 \\ 1,11 \\ 1,19 \end{array}$		T _s 4,24 4,87 5,98 6,89 7,70 6,73 7,35 7,96	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35	C _t 1,00 1,00 1,00 1,00 1,00 1,00 1,00	ε 0,24 0,22 0,19 0,17 0,16 0,19 0,18 0,17	IAE/bf 0,96 1,27 1,56 1,79 2,03 2,19 2,39 2,59	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21	0s 25 26 26 27 27 27 27 27 28 28	US 20 16 15 13 13 11 10 10 9	θ_1 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 $	τ 0,48 0,66 0,78 0,86 0,92 0,98 0,95 1,05 1,08	$\begin{array}{c} \lambda_1 \\ 0,40 \\ 0,57 \\ 0,71 \\ 0,83 \\ 0,94 \\ 1,02 \\ 1,11 \\ 1,19 \\ 1,26 \end{array}$	$\kappa_1\lambda_1$ 1,8 1,8 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	T _s 4,24 4,87 5,98 6,89 7,70 6,73 7,35 7,96 8,54	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40	C _t 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,24 0,22 0,19 0,17 0,16 0,19 0,18 0,17 0,16	IAE/bf 0,96 1,27 1,56 1,79 2,03 2,19 2,39 2,59 2,77	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40	0s 25 26 26 27 27 27 27 27 28 28 28 29	US 20 16 15 13 13 13 11 10 10 9 9 9	$ \theta_1 $ 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50		τ 0,48 0,66 0,78 0,86 0,92 0,98 0,95 1,05 1,08 1,01	$\begin{array}{c} \lambda_1 \\ 0,40 \\ 0,57 \\ 0,71 \\ 0,83 \\ 0,94 \\ 1,02 \\ 1,11 \\ 1,19 \\ 1,26 \\ 1,34 \end{array}$	$\kappa_1\lambda_1$ 1,8 1,8 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	T _s 4,24 4,87 5,98 6,89 7,70 6,73 7,35 7,96 8,54 9,14	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45	C _t 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,24 0,22 0,19 0,17 0,16 0,19 0,18 0,17 0,16 0,16	IAE/bf 0,96 1,27 1,56 1,79 2,03 2,19 2,39 2,59 2,77 3,00	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40 4,86	08 25 26 26 26 27 27 27 27 27 27 28 28 28 29 29	US 20 16 15 13 13 13 11 10 10 9 9 9 8	$ \theta_1 $ 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 1,41 1,29 $	τ 0,48 0,66 0,78 0,86 0,92 0,98 0,95 1,05 1,05 1,08 1,01 1,05	$\begin{array}{c} \lambda_1 \\ 0,40 \\ 0,57 \\ 0,71 \\ 0,83 \\ 0,94 \\ 1,02 \\ 1,11 \\ 1,19 \\ 1,26 \\ 1,34 \\ 1,45 \end{array}$	$ \kappa_1 \lambda_1 $ 1,8 1,8 1,8 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	T _s 4,24 4,87 5,98 6,89 7,70 6,73 7,35 7,96 8,54 9,14 10,44	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,24 0,22 0,19 0,17 0,16 0,19 0,18 0,17 0,16 0,16 0,15	IAE/bf 0,96 1,27 1,56 1,79 2,03 2,19 2,39 2,59 2,77 3,00 3,36	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,39
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60 0,70	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40 4,86 5,25	OS 25 26 26 27 27 27 27 27 27 27 28 28 29 29 30	US 20 16 15 13 13 13 11 10 10 9 9 9 8 8 8	$ \theta_1 $ 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60 0,70	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 1,41 1,29 1,19 $	τ 0,48 0,66 0,78 0,86 0,92 0,98 0,95 1,05 1,05 1,05 1,05 1,05 1,15	λ_1 0,40 0,57 0,71 0,83 0,94 1,02 1,11 1,19 1,26 1,34 1,45 1,58	$\kappa_1\lambda_1$ 1,8 1,8 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	T _s 4,24 4,87 5,98 6,89 7,70 6,73 7,35 7,96 8,54 9,14 10,44 11,66	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55 1,64	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,24 0,22 0,19 0,17 0,16 0,19 0,18 0,17 0,16 0,16 0,15 0,14	IAE/bf 0,96 1,27 1,56 1,79 2,03 2,19 2,39 2,59 2,59 2,77 3,00 3,36 3,78	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,39 41,68

β=0,7	' 													
sys1														
L	Tu	OS	US	θ1	κ_1	τ	λ_1	$\kappa_i \lambda_i$	Ts	L _{AP}	Ct	3	IAE/bf	IAE /p
0,10	1,40	44	20	0,13	20,50	1,01	0,08	1,7	3,31	0,37	2,72	0,11	0,94	11,64
0,20	2,00	37	12	0,17	10,50	1,15	0,16	1,6	3,44	0,46	2,72	0,13	1,17	16,55
0,40	2,90	26	4	0,24	5,70	1,28	0,27	1,5	3,25	0,65	2,72	0,20	1,46	23,81
0,60	3,60	18	2	0,31	4,00	1,33	0,37	1,5	3,78	0,84	2,73	0,22	1,77	29,33
1,00	4,80	8	7	0,45	2,70	1,21	0,51	1,4	6,19	1,23	2,72	0,20	2,44	38,63
1,50	6,10	3	3	0,63	2,10	1,11	0,64	1,3	8,30	1,71	2,72	0,21	3,47	48,55
2,00	7,30	1	5	0,81	1,74	1,11	0,73	1,3	14,81	2,20	2,72	0,15	4,66	57,50
2,50	8,50	1	2	0,98	1,55	1,06	0,80	1,2	18,06	2,68	2,73	0,15	5,90	66,46
3,00	9,50	1	3	1,16	1,44	1,07	0,86	1,2	20,87	3,17	2,73	0,15	7,00	73,88
								,						
sys2												· ,		
sys2 α	T _u	OS	US	θ1	κ ₁	τ	λ ₁	$\kappa_1 \lambda_1$	T _s	L _{AP}	Ct	3	IAE/bf	IAE /p
sys2 α 0,00	т _и 3,60	OS 30	US 11	θ ₁ 0,21	κ ₁ 8,00	τ 1,58	λ ₁ 0,19	$\frac{\kappa_1\lambda_1}{1,5}$	T _s 7,13	L _{AP} 0,76	C _t 3,70	ε 0,11	IAE/bf 1,92	IAE /p 29,71
sys2 α 0,00 0,10	T _u 3,60 4,10	OS 30 25	US 11 8	θ ₁ 0,21 0,23	κ ₁ 8,00 6,20	τ 1,58 1,48	λ_1 0,19 0,24	$\frac{\kappa_1\lambda_1}{1,5}$	T _s 7,13 6,07	L _{AP} 0,76 0,86	C _t 3,70 3,69	ε 0,11 0,14	IAE/bf 1,92 2,07	IAE /p 29,71 33,71
sys2 α 0,00 0,10 0,25	T _u 3,60 4,10 4,60	os 30 25 21	US 11 8 6	θ ₁ 0,21 0,23 0,28	κ ₁ 8,00 6,20 4,60	τ 1,58 1,48 1,41	λ_1 0,19 0,24 0,32	$\frac{\kappa_1\lambda_1}{1,5}$ $\frac{1,5}{1,5}$	T _s 7,13 6,07 6,37	L _{AP} 0,76 0,86 1,01	C _t 3,70 3,69 3,65	ε 0,11 0,14 0,16	IAE/bf 1,92 2,07 2,29	IAE /p 29,71 33,71 37,60
sys2 α 0,00 0,10 0,25 0,50	T _u 3,60 4,10 4,60 5,30	os 30 25 21 13	US 11 8 6 4	θ ₁ 0,21 0,23 0,28 0,36	κ ₁ 8,00 6,20 4,60 3,20	τ 1,58 1,48 1,41 1,19	λ_1 0,19 0,24 0,32 0,44	$ \frac{\kappa_1\lambda_1}{1,5} $ 1,5 1,5 1,4	T _s 7,13 6,07 6,37 5,19	L _{AP} 0,76 0,86 1,01 1,28	C _t 3,70 3,69 3,65 3,53	ε 0,11 0,14 0,16 0,25	IAE/bf 1,92 2,07 2,29 2,62	IAE /p 29,71 33,71 37,60 42,90
sys2 α 0,00 0,10 0,25 0,50 1,00	T _u 3,60 4,10 4,60 5,30 6,30	os 30 25 21 13 0	US 11 8 6 4 0	θ ₁ 0,21 0,23 0,28 0,36 0,55	κ ₁ 8,00 6,20 4,60 3,20 2,00	τ 1,58 1,48 1,41 1,19 1,10	$\begin{array}{c} \lambda_{1} \\ 0,19 \\ 0,24 \\ 0,32 \\ 0,44 \\ 0,67 \end{array}$		T _s 7,13 6,07 6,37 5,19 8,27	L _{AP} 0,76 0,86 1,01 1,28 1,78	C _t 3,70 3,69 3,65 3,53 3,24	ε 0,11 0,14 0,16 0,25 0,22	IAE/bf 1,92 2,07 2,29 2,62 3,72	IAE /p 29,71 33,71 37,60 42,90 50,02
sys2 α 0,00 0,10 0,25 0,50 1,00 1,50	T _u 3,60 4,10 4,60 5,30 6,30 6,90	os 30 25 21 13 0 0	US 11 8 6 4 0 0	 θ₁ 0,21 0,23 0,28 0,36 0,55 0,75 		τ 1,58 1,48 1,41 1,19 1,10 2,90	$\begin{array}{c} \lambda_{1} \\ 0,19 \\ 0,24 \\ 0,32 \\ 0,44 \\ 0,67 \\ 0,87 \end{array}$		T _s 7,13 6,07 6,37 5,19 8,27 10,05	L _{AP} 0,76 0,86 1,01 1,28 1,78 2,21	C _t 3,70 3,69 3,65 3,53 3,24 2,94	ε 0,11 0,14 0,16 0,25 0,22 0,22	IAE/bf 1,92 2,07 2,29 2,62 3,72 4,99	IAE /p 29,71 33,71 37,60 42,90 50,02 53,71
sys2 α 0,00 0,10 0,25 0,50 1,00 1,50 2,00	T _u 3,60 4,10 4,60 5,30 6,30 6,90 7,40	os 30 25 21 13 0 0 0	US 11 8 6 4 0 0 0	 θ₁ 0,21 0,23 0,28 0,36 0,55 0,75 0,96 	$ \begin{array}{r} \kappa_1 \\ 8,00 \\ 6,20 \\ 4,60 \\ 3,20 \\ 2,00 \\ 1,45 \\ 1,14 \\ $	τ 1,58 1,48 1,41 1,19 1,10 2,90 3,09	$\begin{array}{c} \lambda_{1} \\ 0,19 \\ 0,24 \\ 0,32 \\ 0,44 \\ 0,67 \\ 0,87 \\ 1,06 \end{array}$		T _s 7,13 6,07 6,37 5,19 8,27 10,05 15,19	L _{AP} 0,76 0,86 1,01 1,28 1,78 2,21 2,57	C _t 3,70 3,69 3,65 3,53 3,24 2,94 2,67	ε 0,11 0,14 0,16 0,25 0,22 0,22 0,17	IAE/bf 1,92 2,07 2,29 2,62 3,72 4,99 6,56	IAE /p 29,71 33,71 37,60 42,90 50,02 53,71 56,50
sys2 α 0,00 0,10 0,25 0,50 1,00 1,50 2,00	T _u 3,60 4,10 4,60 5,30 6,30 6,90 7,40	OS 30 25 21 13 0 0 0	US 11 8 6 4 0 0 0	 θ₁ 0,21 0,23 0,28 0,36 0,55 0,75 0,96 	$ \begin{array}{r} \kappa_1 \\ 8,00 \\ 6,20 \\ 4,60 \\ 3,20 \\ 2,00 \\ 1,45 \\ 1,14 \\ \end{array} $	τ 1,58 1,48 1,41 1,19 1,10 2,90 3,09	$\begin{array}{c} \lambda_1 \\ 0,19 \\ 0,24 \\ 0,32 \\ 0,44 \\ 0,67 \\ 0,87 \\ 1,06 \\ \end{array}$	$ \kappa_1 \lambda_1 $ 1,5 1,5 1,5 1,4 1,3 1,3 1,2	T _s 7,13 6,07 6,37 5,19 8,27 10,05 15,19	L _{AP} 0,76 0,86 1,01 1,28 1,78 2,21 2,57	C _t 3,70 3,69 3,65 3,53 3,24 2,94 2,67	ε 0,11 0,14 0,16 0,25 0,22 0,22 0,17	IAE/bf 1,92 2,07 2,29 2,62 3,72 4,99 6,56	IAE /p 29,71 33,71 37,60 42,90 50,02 53,71 56,50
sys2 α 0,00 0,10 0,25 0,50 1,00 1,50 2,00 sys3	T _u 3,60 4,10 4,60 5,30 6,30 6,90 7,40	OS 30 25 21 13 0 0 0	US 11 8 6 4 0 0 0	 θ₁ 0,21 0,23 0,28 0,36 0,55 0,75 0,96 		τ 1,58 1,48 1,41 1,19 1,10 2,90 3,09	$\begin{array}{c} \lambda_1 \\ 0,19 \\ 0,24 \\ 0,32 \\ 0,44 \\ 0,67 \\ 0,87 \\ 1,06 \\ \end{array}$	$ \kappa_1 \lambda_1 $ 1,5 1,5 1,5 1,4 1,3 1,3 1,2	T _s 7,13 6,07 6,37 5,19 8,27 10,05 15,19	L _{AP} 0,76 0,86 1,01 1,28 1,78 2,21 2,57	C _t 3,70 3,69 3,65 3,53 3,24 2,94 2,67	ε 0,11 0,14 0,16 0,25 0,22 0,22 0,17	IAE/bf 1,92 2,07 2,29 2,62 3,72 4,99 6,56	IAE /p 29,71 33,71 37,60 42,90 50,02 53,71 56,50
sys2 α 0,00 0,10 0,25 0,50 1,00 1,50 2,00 sys3 L	T _u 3,60 4,10 4,60 5,30 6,30 6,90 7,40 T _u	OS 30 25 21 13 0 0 0 0	US 11 8 6 4 0 0 0 0 0 US	$ \theta_1 $ 0,21 0,23 0,28 0,36 0,55 0,75 0,96 $ \theta_1 $		τ 1,58 1,48 1,41 1,19 1,10 2,90 3,09 τ	$\begin{array}{c} \lambda_{1} \\ 0,19 \\ 0,24 \\ 0,32 \\ 0,44 \\ 0,67 \\ 0,87 \\ 1,06 \\ \\ \lambda_{1} \end{array}$		T _s 7,13 6,07 6,37 5,19 8,27 10,05 15,19 T _s	L _{AP} 0,76 0,86 1,01 1,28 1,78 2,21 2,57 L _{AP}	C _t 3,70 3,69 3,65 3,53 3,24 2,94 2,67 C _t	ε 0,11 0,14 0,16 0,25 0,22 0,22 0,17 ε	IAE/bf 1,92 2,07 2,29 2,62 3,72 4,99 6,56	IAE /p 29,71 33,71 37,60 42,90 50,02 53,71 56,50 IAE /p
sys4														
--	--	--	--	---	--	---	--	--	---	---	---	---	--	--
L	Tu	OS	US	θ	κ_1	τ	λ_1	$\kappa_1 \lambda_1$	Ts	Lap	Ct	3	IAE/bf	IAE /p
0,05	1,41	52	32	0,05	4,60	0,36	0,39	1,8	5,08	1,03	1,00	0,20	1,19	11,72
0,10	2,01	52	28	0,10	3,30	0,35	0,55	1,8	6,00	1,51	0,97	0,25	1,55	16,63
0,15	2,49	52	26	0,15	2,71	0,64	0,72	1,9	7,79	1,12	1,00	0,14	1,98	20,48
0,20	2,90	50	21	0,20	2,40	0,65	0,76	1,8	6,92	1,17	1,00	0,17	2,02	23,76
0,25	3,27	50	19	0,25	2,16	0,62	0,84	1,8	7,81	1,25	1,00	0,16	2,22	26,67
0,30	3,61	49	17	0,30	2,00	0,75	0,90	1,8	8,53	1,26	1,00	0,15	2,41	29,30
0,35	3,93	49	16	0,35	1,88	0,79	0,96	1,8	9,01	1,31	1,00	0,14	2,59	31,75
0,40	4,23	49	14	0,40	1,78	0,82	1,01	1,8	7,78	1,36	1,00	0,17	2,77	34,01
0,50	4,80	48	12	0,50	1,64	0,79	1,10	1,8	8,94	1,45	1,00	0,16	3,11	38,24
0,60	5,34	48	11	0,60	1,54	0,83	1,17	1,8	10,07	1,54	1,00	0,15	3,44	42,16
0,75	6,10	47	9	0,75	1,43	0,90	1,25	1,8	11,65	1,79	1,00	0,15	3,95	48,07
0,80	6,40	46	8	0,80	1,40	0,96	1,27	1,8	12,22	1,76	1,00	0,14	4,06	50,54
									•					
sys5														
sys5 α	Tu	OS	US	θ1	κ ₁	τ	λ_1	$\kappa_1 \lambda_1$	T _s	L _{AP}	Ct	3	IAE/bf	IAE /p
sys5 α 0,05	T _u 1,40	os 53	US 33	θ ₁ 0,05	κ ₁ 4,50	τ 0,36	λ ₁ 0,40	κ ₁ λ ₁ 1,8	T _s 5,08	L _{ap} 1,04	C _t 1,00	ε 0,20	IAE/bf 1,20	IAE /p 11,64
sys5 α 0,05 0,10	T _u 1,40 2,00	os 53 52	US 33 27	θ ₁ 0,05 0,10	κ ₁ 4,50 3,20	τ 0,36 0,44	λ ₁ 0,40 0,57	$\frac{\kappa_1\lambda_1}{1,8}$	T _s 5,08 5,97	L _{AP} 1,04 1,08	C _t 1,00 1,00	ε 0,20 0,18	IAE/bf 1,20 1,54	IAE /p 11,64 16,55
 sys5 α 0,05 0,10 0,15 	T _u 1,40 2,00 2,43	os 53 52 52	US 33 27 25	θ ₁ 0,05 0,10 0,15	κ ₁ 4,50 3,20 2,58	τ 0,36 0,44 0,57	λ_1 0,40 0,57 0,71	$\frac{\kappa_1\lambda_1}{1,8}$ 1,8 1,8	T _s 5,08 5,97 7,31	L _{AP} 1,04 1,08 1,12	C _t 1,00 1,00 1,00	ε 0,20 0,18 0,15	IAE/bf 1,20 1,54 1,86	IAE /p 11,64 16,55 20,00
 sys5 α 0,05 0,10 0,15 0,20 	T _u 1,40 2,00 2,43 2,80	os 53 52 52 52 53	US 33 27 25 23	 θ₁ 0,05 0,10 0,15 0,20 	κ ₁ 4,50 3,20 2,58 2,23	τ 0,36 0,44 0,57 0,57	λ_1 0,40 0,57 0,71 0,83		T _s 5,08 5,97 7,31 6,89	L _{AP} 1,04 1,08 1,12 1,17	C _t 1,00 1,00 1,00	ε 0,20 0,18 0,15 0,17	IAE/bf 1,20 1,54 1,86 2,11	IAE /p 11,64 16,55 20,00 22,93
 sys5 α 0,05 0,10 0,15 0,20 0,25 	T _u 1,40 2,00 2,43 2,80 3,10	os 53 52 52 53 53	US 33 27 25 23 22	θ_1 0,05 0,10 0,15 0,20 0,25	κ ₁ 4,50 3,20 2,58 2,23 2,00	τ 0,36 0,44 0,57 0,57 0,67	λ_1 0,40 0,57 0,71 0,83 0,94		T _s 5,08 5,97 7,31 6,89 7,84	L _{AP} 1,04 1,08 1,12 1,17 1,21	C _t 1,00 1,00 1,00 1,00	ε 0,20 0,18 0,15 0,17 0,15	IAE/bf 1,20 1,54 1,86 2,11 2,39	IAE /p 11,64 16,55 20,00 22,93 25,26
 sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 	T _u 1,40 2,00 2,43 2,80 3,10 3,44	os 53 52 52 53 54 52	US 33 27 25 23 22 20	θ_1 0,05 0,10 0,15 0,20 0,25 0,30	κ ₁ 4,50 3,20 2,58 2,23 2,00 1,82	τ 0,36 0,44 0,57 0,57 0,67 0,65	λ_1 0,40 0,57 0,71 0,83 0,94 1,02		T _s 5,08 5,97 7,31 6,89 7,84 8,62	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26	C _t 1,00 1,00 1,00 1,00 1,00	ε 0,20 0,18 0,15 0,17 0,15 0,15	IAE/bf 1,20 1,54 1,86 2,11 2,39 2,54	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88
 sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71	os 53 52 52 53 54 52 53	US 33 27 25 23 22 20 18	θ_1 0,05 0,10 0,15 0,20 0,25 0,30 0,35	κ ₁ 4,50 3,20 2,58 2,23 2,00 1,82 1,69	τ 0,36 0,44 0,57 0,57 0,67 0,65 0,68	$\begin{array}{c} \lambda_{1} \\ 0,40 \\ 0,57 \\ 0,71 \\ 0,83 \\ 0,94 \\ 1,02 \\ 1,11 \end{array}$		T _s 5,08 5,97 7,31 6,89 7,84 8,62 9,39	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31	$ \begin{array}{c} C_t \\ 1,00 \\ 1,$	ε 0,20 0,18 0,15 0,17 0,15 0,15 0,14	IAE/bf 1,20 1,54 1,86 2,11 2,39 2,54 2,76	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92
 sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97	os 53 52 52 53 54 52 53 53	US 33 27 25 23 22 20 18 17	θ_1 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 $	τ 0,36 0,44 0,57 0,57 0,67 0,65 0,68 0,70	λ_1 0,40 0,57 0,71 0,83 0,94 1,02 1,11 1,19	$\kappa_1\lambda_1$ 1,8 1,8 1,8 1,9 1,9 1,9 1,9 1,9 1,9	T _s 5,08 5,97 7,31 6,89 7,84 8,62 9,39 10,05	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35	$ \begin{array}{c} C_t \\ 1,00 \\ 1,$	ε 0,20 0,18 0,15 0,17 0,15 0,15 0,15 0,14 0,13	IAE/bf 1,20 1,54 1,86 2,11 2,39 2,54 2,76 2,96	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21	os 53 52 52 53 54 52 53 53 53	US 33 27 25 23 22 20 18 17 17	θ_1 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 $	τ 0,36 0,44 0,57 0,57 0,67 0,65 0,68 0,70 0,72	λ_1 0,40 0,57 0,71 0,83 0,94 1,02 1,11 1,19 1,26	$\kappa_1\lambda_1$ 1,8 1,8 1,9 1,9 1,9 1,9 1,9 1,9 1,9	T _s 5,08 5,97 7,31 6,89 7,84 8,62 9,39 10,05 10,55	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40	$ \begin{array}{c} C_t \\ 1,00 \\ 1,$	ε 0,20 0,18 0,15 0,17 0,15 0,15 0,15 0,14 0,13	IAE/bf 1,20 1,54 1,86 2,11 2,39 2,54 2,76 2,96 3,16	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40	os 53 52 52 53 54 52 53 53 53 53 54	US 33 27 25 23 22 20 18 17 17	θ_1 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50	$ \kappa_1 4,503,202,582,232,001,821,691,581,491,41 $	τ 0,36 0,44 0,57 0,57 0,67 0,65 0,68 0,70 0,72 0,72	$\begin{array}{c} \lambda_1 \\ 0,40 \\ 0,57 \\ 0,71 \\ 0,83 \\ 0,94 \\ 1,02 \\ 1,11 \\ 1,19 \\ 1,26 \\ 1,34 \end{array}$	$\kappa_1\lambda_1$ 1,8 1,8 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	T _s 5,08 5,97 7,31 6,89 7,84 8,62 9,39 10,05 10,55 11,34	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45	$ \begin{array}{c} C_t \\ 1,00 \\ 1,$	ε 0,20 0,18 0,15 0,17 0,15 0,15 0,15 0,14 0,13 0,13	IAE/bf 1,20 1,54 1,86 2,11 2,39 2,54 2,76 2,96 3,16 3,41	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93
$ sys5 \alpha 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60 \\ $	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40 4,86	OS 53 52 52 53 54 53 53 53 53 53	US 33 27 25 23 22 20 18 17 17 17	 θ₁ 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60 	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 1,41 1,29 $	τ 0,36 0,44 0,57 0,57 0,67 0,65 0,68 0,70 0,72 0,72 0,75	$\begin{array}{c} \lambda_1 \\ 0,40 \\ 0,57 \\ 0,71 \\ 0,83 \\ 0,94 \\ 1,02 \\ 1,11 \\ 1,19 \\ 1,26 \\ 1,34 \\ 1,45 \end{array}$	$\kappa_1\lambda_1$ 1,8 1,8 1,8 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	T _s 5,08 5,97 7,31 6,89 7,84 8,62 9,39 10,05 10,55 11,34 10,09	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55	$ \begin{array}{c} C_t \\ 1,00 \\ 1,$	ε 0,20 0,18 0,15 0,17 0,15 0,15 0,14 0,13 0,13 0,13	IAE/bf 1,20 1,54 1,86 2,11 2,39 2,54 2,76 2,96 3,16 3,41 3,79	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,39
$\begin{array}{c} \text{sys5} \\ \hline \alpha \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \\ 0,45 \\ 0,50 \\ 0,60 \\ 0,70 \\ \end{array}$	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40 4,86 5,25	os 53 52 52 53 54 53 53 53 53 54 54	US 33 27 25 23 22 20 18 17 17 17 17 15 15	 θ₁ 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60 0,70 	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 1,41 1,29 1,19 $	τ 0,36 0,44 0,57 0,57 0,67 0,65 0,68 0,70 0,72 0,72 0,72 0,75 0,77	$\begin{array}{c} \lambda_1 \\ 0,40 \\ 0,57 \\ 0,71 \\ 0,83 \\ 0,94 \\ 1,02 \\ 1,11 \\ 1,19 \\ 1,26 \\ 1,34 \\ 1,45 \\ 1,58 \end{array}$	$ \kappa_1 \lambda_1 $ 1,8 1,8 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	T _s 5,08 5,97 7,31 6,89 7,84 8,62 9,39 10,05 10,55 11,34 10,09 11,28	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55 1,64	$\begin{array}{c} C_t \\ 1,00 \\ 1,0$	ε 0,20 0,18 0,15 0,17 0,15 0,15 0,15 0,13 0,13 0,13 0,15	IAE/bf 1,20 1,54 1,86 2,11 2,39 2,54 2,76 2,96 3,16 3,41 3,79 4,24	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,39 41,68

β=1,0)			i						<u></u>				
sys1														
L	Тu	OS	US	θ_1	κ	τ	λ_1	$\kappa_1\lambda_1$	Ts	L _{AP}	Ct	1 3	AE/bf	IAE /p
0,10	1,40	70	28	0,13	20,50	0,82	0,08	1,7	4,04	0,37	2,72	0,09	1,15	11,64
0,20	2,00	61	16	0,17	10,50	0,94	0,16	1,6	4,44	0,46	2,72	0,10	1,38	16,55
0,40	2,90	48	5	0,24	5,70	1,07	0,27	1,5	4,15	0,65	2,72	0,16	1,67	23,81
0,60	3,60	40	2	0,31	4,00	0,92	0,37	1,5	4,04	0,84	2,73	0,21	1,96	29,33
1,00	4,80	29	4	0,45	2,70	0,93	0,51	1,4	7,91	1,23	2,72	0,16	2,57	38,63
1,50	6,10	23	12	0,63	2,10	0,85	0,64	1,3	10,34	1,71	2,72	0,17	3,49	48,55
2,00	7,30	16	18	0,81	1,74	0,87	0,73	1,3	14,64	2,20	2,72	0,15	4,38	57,50
2,50	8,50	13	22	0,98	1,55	0,76	0,80	1,2	17,86	2,68	2,73	0,15	5,38	66,46
3,00	9,50	12	26	1,16	1,44	0,72	0,86	1,2	20,41	3,17	2,73	0,16	6,41	73,88
						<u> </u>								
sys2										<u></u>				
α	Tu	OS	US	θ_1	κ	τ	λ_1	$\kappa_1 \lambda_1$	Ts	L_{AP}	Ct	1 3	AE/bf	IAE /p
0,00	3,60	53	15	0,21	8,00	1,24	0,19	1,5	7,48	0,76	3,70	0,10	2,24	29,71
0,10	4,10	47	10	0,23	6,20	1,25	0,24	1,5	7,63	0,86	3,69	0,11	2,36	33,71
0,25	4,60	43	7	0,28	4,60	1,08	0,32	1,5	6,48	1,01	3,65	0,16	2,56	37,60
0,50	5,30	34	3	0,36	3,20	0,99	0,44	1,4	5,69	1,28	3,53	0,22	2,85	42,90
1,00	6,30	17	4	0,55	2,00	0,76	0,67	1,3	5,87	1,78	3,24	0,30	3,48	50,02
1,50	6,90	5	11	0,75	1,45	0,67	0,87	1,3	8,73	2,21	2,94	0,25	4,06	53,71
2,00	7,40	0	0	0,96	1,14	0,69	1,06	1,2	13,25	2,57	2,67	0,19	5,45	56,50
sys3						- 11				• • • •			<u> </u>	
L	Tu	OS	US	θ_1	κ	τ	λ_1	$\kappa_1\lambda_1$	Ts	L _{AP}	Ct	E	lAE/bf	IAE /p
0,50	2,00	71	12	0,50	1,00	0,69	1,78	1,8	4,82	0,48	0,90	0,10	1,79	16,18

sys4														
L	Tu	OS	US	θ_1	κ_1	τ	λ_1	$\kappa_1\lambda_1$	Ts	L _{ap}	Ct	3	IAE/bf	IAE /p
0,05	1,41	79	44	0,05	4,60	0,29	0,39	1,8	5,89	1,03	1,00	0,18	1,50	11,72
0,10	2,01	78	38	0,10	3,30	0,29	0,55	1,8	7,15	1,51	0,97	0,21	1,94	16,63
0,15	2,49	78	36	0,15	2,71	0,53	0,72	1,9	7,85	1,12	1,00	0,14	2,44	20,48
0,20	2,90	76	30	0,20	2,40	0,53	0,76	1,8	8,52	1,17	1,00	0,14	2,49	23,76
0,25	3,27	76	27	0,25	2,16	0,56	0,84	1,8	7,88	1,25	1,00	0,16	2,72	26,67
0,30	3,61	75	25	0,30	2,00	0,62	0,90	1,8	8,70	1,26	1,00	0,14	2,94	29,30
0,35	3,93	75	23	0,35	1,88	0,65	0,96	1,8	9,38	1,31	1,00	0,14	3,15	31,75
0,40	4,23	75	21	0,40	1,78	0,60	1,01	1,8	10,10	1,36	1,00	0,13	3,35	34,01
0,50	4,80	74	18	0,50	1,64	0,71	1,10	1,8	8,94	1,45	1,00	0,16	3,76	38,24
0,60	5,34	73	16	0,60	1,54	0,75	1,17	1,8	10,07	1,54	1,00	0,15	4,13	42,16
0,75	6,10	73	14	0,75	1,43	0,65	1,25	1,8	11,80	1,79	1,00	0,15	4,73	48,07
0,80	6,40	72	13	0,80	1,40	0,69	1,27	1,8	12,38	1,76	1,00	0,14	4,86	50,54
														·
sys 5														
α	Tu	OS	US	θ_1	κ	τ	λ	$\kappa_1\lambda_1$	Ts	Lap	Ct	3	IAE/bf	IAE /p
0,05	1,40	80	44	0,05	4,50	0,29	0,40	1,8	5,88	1,04	1,00	0,18	1,52	11,64
0,10	2,00	79	37	0.10	2 20									
0,15				- ,	3,20	0,40	0,57	1,8	7,11	1,08	1,00	0,15	1,92	16,55
	2,43	79	35	0,15	2,58	0,40 	0,57 0,71	1,8 1,8	7,11 7,43	1,08 1,12	1,00	0,15	1,92 2,31	16,55 20,00
0,20	2,43	79 79	35	0,15	2,58 2,23	0,40 0,41 0,52	0,57 0,71 0,83	1,8 1,8 1,9	7,11 7,43 8,56	1,08 1,12 1,17	1,00 1,00 1,00	0,15 0,15 0,14	1,92 2,31 2,61	16,55 20,00 22,93
0,20 0,25	2,43 2,80 3,10	79 79 80	35 32 32	0,15 0,20 0,25	2,58 2,23 2,00	0,40 0,41 0,52 0,49	0,57 0,71 0,83 0,94	1,8 1,8 1,9 1,9	7,11 7,43 8,56 9,62	1,08 1,12 1,17 1,21	1,00 1,00 1,00 1,00	0,15 0,15 0,14 0,13	1,92 2,31 2,61 2,94	16,55 20,00 22,93 25,26
0,20 0,25 0,30	2,43 2,80 3,10 3,44	79 79 80 79	35 32 32 28	0,15 0,20 0,25 0,30	3,20 2,58 2,23 2,00 1,82	0,40 0,41 0,52 0,49 0,52	0,57 0,71 0,83 0,94 1,02	1,8 1,8 1,9 1,9 1,9	7,11 7,43 8,56 9,62 8,71	1,08 1,12 1,17 1,21 1,26	1,00 1,00 1,00 1,00 1,00	0,15 0,15 0,14 0,13 0,14	1,92 2,31 2,61 2,94 3,12	16,55 20,00 22,93 25,26 27,88
0,20 0,25 0,30 0,35	2,43 2,80 3,10 3,44 3,71	79 79 80 79 79	35 32 32 28 26	0,15 0,20 0,25 0,30 0,35	3,20 2,58 2,23 2,00 1,82 1,69	0,40 0,41 0,52 0,49 0,52 0,54	0,57 0,71 0,83 0,94 1,02 1,11	1,8 1,8 1,9 1,9 1,9 1,9	7,11 7,43 8,56 9,62 8,71 9,48	1,08 1,12 1,17 1,21 1,26 1,31	1,00 1,00 1,00 1,00 1,00 1,00	0,15 0,15 0,14 0,13 0,14 0,14	1,92 2,31 2,61 2,94 3,12 3,37	16,55 20,00 22,93 25,26 27,88 29,92
0,20 0,25 0,30 0,35 0,40	2,43 2,80 3,10 3,44 3,71 3,97	79 79 80 79 79 79 79	35 32 32 28 26 25	0,15 0,20 0,25 0,30 0,35 0,40	3,20 2,58 2,23 2,00 1,82 1,69 1,58	0,40 0,41 0,52 0,49 0,52 0,54 0,49	0,57 0,71 0,83 0,94 1,02 1,11 1,19	1,8 1,8 1,9 1,9 1,9 1,9 1,9 1,9	7,11 7,43 8,56 9,62 8,71 9,48 10,24	1,08 1,12 1,17 1,21 1,26 1,31 1,35	1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,15 0,15 0,14 0,13 0,14 0,14 0,14	1,92 2,31 2,61 2,94 3,12 3,37 3,61	16,55 20,00 22,93 25,26 27,88 29,92 31,84
0,20 0,25 0,30 0,35 0,40 0,45	2,43 2,80 3,10 3,44 3,71 3,97 4,21	79 79 80 79 79 79 79 79	35 32 32 28 26 25 24	0,15 0,20 0,25 0,30 0,35 0,40 0,45	3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49	0,40 0,41 0,52 0,49 0,52 0,54 0,49 0,57	0,57 0,71 0,83 0,94 1,02 1,11 1,19 1,26	1,8 1,9 1,9 1,9 1,9 1,9 1,9 1,9	7,11 7,43 8,56 9,62 8,71 9,48 10,24 10,96	1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40	1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,15 0,15 0,14 0,13 0,14 0,13 0,14 0,13	1,92 2,31 2,61 2,94 3,12 3,37 3,61 3,84	16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60
0,20 0,25 0,30 0,35 0,40 0,45 0,50	2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40	79 79 80 79 79 79 79 79 80	35 32 32 28 26 25 24 24	0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50	3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 1,41	0,40 0,41 0,52 0,49 0,52 0,54 0,49 0,57 0,58	0,57 0,71 0,83 0,94 1,02 1,11 1,19 1,26 1,34	1,8 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	7,11 7,43 8,56 9,62 8,71 9,48 10,24 10,96 11,77	1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,15 0,15 0,14 0,13 0,14 0,13 0,14 0,13 0,13 0,12	1,92 2,31 2,61 2,94 3,12 3,37 3,61 3,84 4,15	16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93
0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60	2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40 4,86	79 79 80 79 79 79 79 79 80 79	35 32 32 28 26 25 24 24 22	0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60	3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 1,41 1,29	0,40 0,41 0,52 0,49 0,52 0,54 0,54 0,57 0,58 0,52	0,57 0,71 0,83 0,94 1,02 1,11 1,19 1,26 1,34 1,45	1,8 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	7,11 7,43 8,56 9,62 8,71 9,48 10,24 10,96 11,77 13,11	1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,15 0,15 0,14 0,13 0,14 0,14 0,14 0,13 0,13 0,12 0,12	1,92 2,31 2,61 2,94 3,12 3,37 3,61 3,84 4,15 4,59	16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,39
0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60 0,70	2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40 4,86 5,25	79 79 80 79 79 79 79 79 80 79 79	35 32 32 28 26 25 24 24 22 22	0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60 0,70	3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 1,41 1,29 1,19	0,40 0,41 0,52 0,49 0,52 0,54 0,54 0,57 0,58 0,52 0,54	0,57 0,71 0,83 0,94 1,02 1,11 1,19 1,26 1,34 1,45 1,58	1,8 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	7,11 7,43 8,56 9,62 8,71 9,48 10,24 10,96 11,77 13,11 14,66	1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55 1,64	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,15 0,14 0,13 0,14 0,13 0,14 0,14 0,13 0,13 0,12 0,12 0,11	1,92 2,31 2,61 2,94 3,12 3,37 3,61 3,84 4,15 4,59 5,12	16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,39 41,68
0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60 0,70 0,75	2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40 4,86 5,25 5,40	79 79 80 79 79 79 79 80 79 79 80	35 32 32 28 26 25 24 24 22 22 22 22	0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60 0,60 0,70	3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 1,41 1,29 1,19 1,15	0,40 0,41 0,52 0,49 0,52 0,54 0,54 0,57 0,58 0,52 0,54 0,53	0,57 0,71 0,83 0,94 1,02 1,11 1,19 1,26 1,34 1,45 1,58 1,65	1,8 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9	7,11 7,43 8,56 9,62 8,71 9,48 10,24 10,96 11,77 13,11 14,66 15,34	1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55 1,64 1,69	$ \begin{array}{r} 1,00 \\ 1,00 \\ 1,00 \\ 1,00 \\ 1,00 \\ 1,00 \\ 1,00 \\ 1,00 \\ 1,00 \\ 1,00 \\ 1,00 \\ 1,00 \\ 1,00 \\ \end{array} $	0,15 0,14 0,13 0,14 0,13 0,14 0,14 0,13 0,13 0,13 0,12 0,12 0,12 0,11	1,92 2,31 2,61 2,94 3,12 3,37 3,61 3,84 4,15 4,59 5,12 5,40	16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,39 41,68 43,11

$F_p=0,$	1													
sys1														
L	Tu	OS	US	θ_1	κ ₁	τ	λ_1	$\kappa_1 \lambda_1$	Ts	L _{ap}	Ct	ا ع	AE/bf	IAE /p
0,10	1,40	15	10	0,13	20,50	1,65	0,08	1,7	2,71	0,37	2,72	0,13	0,90	11,64
0,20	2,00	10	6	0,17	10,50	2,09	0,15	1,6	3,63	0,46	2,72	0,13	1,24	16,55
0,40	2,90	2	2	0,24	5,70	2,35	0,26	1,5	2,63	0,65	2,72	0,25	1,76	23,81
0,60	3,60	0	0	0,31	4,00	2,57	0,36	1,4	3,78	0,84	2,73	0,22	2,37	29,33
1,00	4,80	0	0	0,45	2,70	3,46	0,50	1,4	7,33	1,23	2,72	0,17	3,64	38,63
1,50	6,10	0	0	0,63	2,10	3,83	0,63	1,3	10,34	1,71	2,72	0,17	5,17	48,55
2,00	7,30	-0	0	0,81	1,74	3,89	0,72	1,3	15,16	2,20	2,72	0,14	6,78	57,50
2,50	8,50	0	0	0,98	1,55	4,01	0,79	1,2	19,08	2,68	2,73	0,14	8,39	66,46
3,00	9,50	0	0	1,16	1,44	3,93	0,85	1,2	22,23	3,17	2,73	0,14	9,77	73,88
sys2		·												
α	Tu	OS	US	θ	κ ₁	τ	λ_1	$\kappa_1 \lambda_1$	Ts	LAP	Ct	3	AE/bf	IAE /p
0,00	3,60	4	6	0,21	8,00	2,48	0,19	1,5	6,02	0,76	3,70	0,13	2,12	29,71
0,10	4,10	1	0	0,23	6,20	2,51	0,24	1,5	3,62	0,86	3,69	0,24	2,44	33,71
0,25	4,60	0	0	0,28	4,60	2,60	0,31	1,4	4,50	1,01	3,65	0,23	2,94	37,60
0,50	5,30	0	0	0,36	3,20	2,77	0,43	1,4	7,59	1,28	3,53	0,17	3,79	42,91
1,00	6,30	0	0	0,55	2,00	3,63	0,65	1,3	10,83	1,78	3,24	0,16	5,50	50,02
1,50	6,90	0	0	0,75	1,45	3,80	0,84	1,2	14,50	2,21	2,94	0,15	7,07	53,69
2,00	7,40	0	0	0,96	1,14	4,26	1,02	1,2	18,37	2,57	2,67	0,14	8,73	56,44
sys3									-					
L	Tu	os	US	θ_1	$\overline{\kappa_1}$	τ	λ_1	$\kappa_1 \lambda_1$	Ts	L _{AP}	Ct	3	IAE/bf	IAE /p
0,50	2,00	22	5	0,50	1,00	1,77	1,78	1,8	3,63	0,48	0,90	0,13	1,54	16,18

														
sys4		_												
L	Tu	os	US	θ_1	κ_1	τ	λ_1	$\overline{\kappa_l}\lambda_l$	Ts	L _{AP}	Ct	Е I	AE/bf	IAE /p
0,05	1,41	19	18	0,05	4,60	0,59	0,39	1,8	4,44	1,03	1,00	0,23	1,02	11,72
0,10	2,01	19	15	0,10	3,30	0,57	0,54	1,8	5,09	1,51	0,97	0,30	1,39	16,63
0,15	2,49	22	14	0,15	2,71	1,01	0,70	1,9	6,66	1,12	1,00	0,17	1,79	20,48
0,20	2,90	19	11	0,20	2,40	1,07	0,73	1,8	5,68	1,17	1,00	0,21	1,90	23,76
0,25	3,27	19	9	0,25	2,16	1,19	0,81	1,7	6,40	1,25	1,00	0,20	2,12	26,67
0,30	3,61	19	8	0,30	2,00	1,23	0,87	1,7	7,15	1,26	1,00	0,18	2,34	29,30
0,35	3,93	19	8	0,35	1,88	1,29	0,92	1,7	7,79	1,31	1,00	0,17	2,53	31,75
0,40	4,23	19	7	0,40	1,78	1,34	0,97	1,7	8,38	1,36	1,00	0,16	2,73	34,02
0,50	4,80	19	6	0,50	1,64	1,50	1,06	1,7	9,51	1,45	1,00	0,15	3,12	38,24
0,60	5,34	19	5	0,60	1,54	1,49	1,12	1,7	10,20	1,54	1,00	0,15	3,48	42,16
0,75	6,10	20	4	0,75	1,43	1,47	1,21	1,7	9,17	1,79	1,00	0,19	4,04	47,93
0,80	6,40	19	4	0,80	1,40	1,56	1,22	1,7	9,63	1,76	1,00	0,18	4,19	50,33
									-					
sys5														
sys5 α	Tu	OS	US	θ ₁	κ	τ	λ ₁	κιλι	Ts	L _{ap}	Ct	εΙ	AE/bf	IAE /p
sys5 α 0,05	^T u 1,40	os 20	US 18	θ ₁ 0,05	κ ₁ 4,50	τ 0,58	λ ₁ 0,40	κ ₁ λ ₁ 1,8	T _s 4,41	L _{AP} 1,04	C _t 1,00	ε I 0,23	AE/bf	IAE /p 11,64
sys5 α 0,05 0,10	T _u 1,40 2,00	os 20 19	US 18 15	θ ₁ 0,05 0,10	κ ₁ 4,50 3,20	τ 0,58 0,75	λ ₁ 0,40 0,56	$\frac{\kappa_1\lambda_1}{1,8}$	T _s 4,41 5,06	L _{AP} 1,04 1,08	C _t 1,00 1,00	ε I 0,23 0,21	AE/bf 1,03 1,38	IAE /p 11,64 16,55
sys5 α 0,05 0,10 0,15	^T u 1,40 2,00 2,43	os 20 19 21	US 18 15 13	θ ₁ 0,05 0,10 0,15	κ ₁ 4,50 3,20 2,58	τ 0,58 0,75 0,93	λ_1 0,40 0,56 0,69	$\frac{\kappa_1 \lambda_1}{1,8}$ 1,8 1,8	T _s 4,41 5,06 6,27	L _{AP} 1,04 1,08 1,12	C _t 1,00 1,00 1,00	ε I 0,23 0,21 0,18	AE/bf 1,03 1,38 1,69	IAE /p 11,64 16,55 20,00
 sys5 α 0,05 0,10 0,15 0,20 	T _u 1,40 2,00 2,43 2,80	OS 20 19 21 21	US 18 15 13 12	 θ₁ 0,05 0,10 0,15 0,20 	κ ₁ 4,50 3,20 2,58 2,23	τ 0,58 0,75 0,93 0,97	λ_1 0,40 0,56 0,69 0,80	$ \frac{\kappa_1 \lambda_1}{1,8} $ 1,8 1,8 1,8	T _s 4,41 5,06 6,27 7,22	L _{AP} 1,04 1,08 1,12 1,17	C _t 1,00 1,00 1,00	ε I 0,23 0,21 0,18 0,16	AE/bf 1,03 1,38 1,69 1,94	IAE /p 11,64 16,55 20,00 22,93
 sys5 α 0,05 0,10 0,15 0,20 0,25 	T _u 1,40 2,00 2,43 2,80 3,10	OS 20 19 21 21 23	US 18 15 13 12 12	θ_1 0,05 0,10 0,15 0,20 0,25	κ ₁ 4,50 3,20 2,58 2,23 2,00	τ 0,58 0,75 0,93 0,97 1,10	λ_1 0,40 0,56 0,69 0,80 0,91		T _s 4,41 5,06 6,27 7,22 8,07	L _{AP} 1,04 1,08 1,12 1,17 1,21	Ct 1,00 1,00 1,00 1,00 1,00	ε I 0,23 0,21 0,18 0,16 0,15	AE/bf 1,03 1,38 1,69 1,94 2,21	IAE /p 11,64 16,55 20,00 22,93 25,26
 sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 	T _u 1,40 2,00 2,43 2,80 3,10 3,44	OS 20 19 21 21 23 22	US 18 15 13 12 12 10	θ_1 0,05 0,10 0,15 0,20 0,25 0,30	 κ₁ 4,50 3,20 2,58 2,23 2,00 1,82 	τ 0,58 0,75 0,93 0,97 1,10 1,17	λ_1 0,40 0,56 0,69 0,80 0,91 0,98		T _s 4,41 5,06 6,27 7,22 8,07 7,14	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26	C _t 1,00 1,00 1,00 1,00 1,00	ε I 0,23 0,21 0,18 0,16 0,15 0,18	AE/bf 1,03 1,38 1,69 1,94 2,21 2,40	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88
 sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71	OS 20 19 21 21 23 22 23	US 18 15 13 12 12 10 10	θ_1 0,05 0,10 0,15 0,20 0,25 0,30 0,35	 κ₁ 4,50 3,20 2,58 2,23 2,00 1,82 1,69 	τ 0,58 0,75 0,93 0,97 1,10 1,17 1,15	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06	$\kappa_1 \lambda_1$ 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8	T _s 4,41 5,06 6,27 7,22 8,07 7,14 7,79	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31	Ct 1,00 1,00 1,00 1,00 1,00 1,00	ε I 0,23 0,21 0,18 0,16 0,15 0,18 0,17	AE/bf 1,03 1,38 1,69 1,94 2,21 2,40 2,62	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97	OS 20 19 21 23 22 23 23	US 18 15 13 12 12 10 10 9	$\begin{array}{c} \theta_1 \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \end{array}$	 κ₁ 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 	τ 0,58 0,75 0,93 0,97 1,10 1,17 1,15 1,19	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06 1,13	$\kappa_1 \lambda_1$ 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8	T _s 4,41 5,06 6,27 7,22 8,07 7,14 7,79 8,44	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35	C _t 1,00 1,00 1,00 1,00 1,00 1,00 1,00	ε I 0,23 0,21 0,18 0,16 0,15 0,18 0,17 0,16	AE/bf 1,03 1,38 1,69 1,94 2,21 2,40 2,62 2,84	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21	OS 20 19 21 21 23 22 23 23 23 24	US 18 15 13 12 12 10 10 9 9	$\begin{array}{c} \theta_1 \\ \hline 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \\ 0,45 \end{array}$	$ \kappa_1 4,503,202,582,232,001,821,691,581,49 $	τ 0,58 0,75 0,93 0,97 1,10 1,17 1,15 1,19 1,29	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06 1,13 1,20	$ \begin{array}{r} \kappa_1 \lambda_1 \\ 1,8 \\ $	T _s 4,41 5,06 6,27 7,22 8,07 7,14 7,79 8,44 9,05	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε I 0,23 0,21 0,18 0,16 0,15 0,18 0,17 0,16 0,15	AE/bf 1,03 1,38 1,69 1,94 2,21 2,40 2,62 2,84 3,04	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60
$ sys5 \alpha 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 $	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40	OS 20 19 21 21 23 22 23 23 23 24 25	US 18 15 13 12 12 10 10 9 9 9 9	$\begin{array}{c} \theta_1 \\ \hline 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \\ 0,45 \\ 0,50 \\ \end{array}$	 κ₁ 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 1,41 	τ 0,58 0,75 0,93 0,97 1,10 1,17 1,15 1,19 1,29 1,23	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06 1,13 1,20 1,28	$ \begin{array}{r} \kappa_1 \lambda_1 \\ 1,8 \\ $	T _s 4,41 5,06 6,27 7,22 8,07 7,14 7,79 8,44 9,05 9,77	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε I 0,23 0,21 0,18 0,16 0,15 0,18 0,17 0,16 0,15 0,15 0,15 0,15	AE/bf 1,03 1,38 1,69 1,94 2,21 2,40 2,62 2,84 3,04 3,27	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93
$ sys5 \alpha 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60 $	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40 4,86	OS 20 19 21 23 23 23 24 25 26	US 18 15 13 12 12 10 10 9 9 9 9 8	$ \theta_1 $ 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60	$ \kappa_1 4,503,202,582,232,001,821,691,581,491,411,29 $	τ 0,58 0,75 0,93 0,97 1,10 1,17 1,15 1,19 1,29 1,23 1,27	$\begin{array}{c} \lambda_1 \\ 0,40 \\ 0,56 \\ 0,69 \\ 0,80 \\ 0,91 \\ 0,98 \\ 1,06 \\ 1,13 \\ 1,20 \\ 1,28 \\ 1,39 \end{array}$	$ \begin{array}{r} \kappa_1 \lambda_1 \\ 1,8 \\ $	T _s 4,41 5,06 6,27 7,22 8,07 7,14 7,79 8,44 9,05 9,77 11,02	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε I 0,23 0,21 0,18 0,16 0,15 0,18 0,17 0,16 0,15 0,15 0,15 0,15 0,15 0,14	AE/bf 1,03 1,38 1,69 1,94 2,21 2,40 2,62 2,84 3,04 3,27 3,68	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,27
$\begin{array}{c} \text{sys5} \\ \hline \alpha \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \\ 0,45 \\ 0,50 \\ 0,60 \\ 0,70 \\ \end{array}$	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40 4,86 5,25	OS 20 19 21 23 22 23 24 25 26 27	US 18 15 13 12 12 10 10 10 9 9 9 9 9 8 8 8	$\begin{array}{c} \theta_1 \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \\ 0,45 \\ 0,50 \\ 0,60 \\ 0,70 \\ \end{array}$	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 1,41 1,29 1,19 1,19 $	τ 0,58 0,75 0,93 0,97 1,10 1,17 1,15 1,19 1,29 1,23 1,27 1,30	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06 1,13 1,20 1,28 1,39 1,50		T _s 4,41 5,06 6,27 7,22 8,07 7,14 7,79 8,44 9,05 9,77 11,02 12,28	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55 1,64	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε I 0,23 0,21 0,18 0,16 0,15 0,15 0,17 0,16 0,15 0,15 0,15	AE/bf 1,03 1,38 1,69 1,94 2,21 2,40 2,62 2,84 3,04 3,27 3,68 4,11	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,27 41,46

F _p =0,	3			,,									
sys1													
L	Tu	OS	US	$\overline{\boldsymbol{\theta}}_1$	κ	τ	λ_1	$\kappa_1\lambda_1$	Ts	L _{AP}	Ct	ε IAE/bf	IAE /p
0,10	1,40	17	12	0,13	20,50	1,56	0,08	1,7	2,57	0,37	2,72	0,14 0,80	11,64
0,20	2,00	12	6	0,17	10,50	1,88	0,15	1,6	3,53	0,46	2,72	0,13 1,07	16,55
0,40	2,90	3	2	0,24	5,70	2,14	0,26	1,5	2,22	0,65	2,72	0,29 1,50	23,81
0,60	3,60	0	0	0,31	4,00	2,26	0,36	1,4	3,27	0,84	2,73	0,26 2,01	29,33
1,00	4,80	0	0	0,45	2,70	3,36	0,50	1,4	6,88	1,23	2,72	0,18 3,16	38,63
1,50	6,10	0	0	0,63	2,10	3,75	0,63	1,3	9,61	1,71	2,72	0,18 4,56	48,55
2,00	7,30	0	0	0,81	1,74	3,73	0,72	1,3	14,64	2,20	2,72	0,15 6,05	57,50
2,50	8,50	0	0	0,98	1,55	3,78	0,79	1,2	18,26	2,68	2,73	0,15 7,54	66,46
3,00	9,50	0	0	1,16	1,44	3,65	0,85	1,2	21,32	3,17	2,73	0,15 8,82	73,88
									·····				
sys2													
α	Тu	OS	US	$\overline{\boldsymbol{\theta}}_1$	κ	τ	λ_1	$\kappa_1 \lambda_1$	Ts	L _{AP}	Ct	ε IAE/bf	IAE /p
0,00	3,60	6	6	0,21	8,00	2,25	0,19	1,5	5,76	0,76	3,70	0,13 1,82	29,71
0,10	4,10	2	5	0,23	6,20	2,39	0,24	1,5	3,03	0,86	3,69	0,28 2,06	33,71
0,25	4,60	0	0	0,28	4,60	2,27	0,31	1,4	3,84	1,01	3,65	0,26 2,48	37,60
0,50	5,30	0	0	0,36	3,20	2,47	0,43	1,4	7,09	1,28	3,53	0,18 3,26	42,91
1,00	6,30	0	0	0,55	2,00	3,46	0,65	1,3	10,08	1,78	3,24	0,18 4,87	50,02
1,50	6,90	0	0	0,75	1,45	3,72	0,84	1,2	13,84	2,21	2,94	0,16 6,38	53,69
2,00	7,40	0	0	0,96	1,14	4,26	1,02	1,2	17,49	2,57	2,67	0,15 7,99	56,44
									····		<u>,</u>		
sys3										<u>.</u>			<u>.</u>
L	Tu	OS	US	θι	κι	τ	λ	$\kappa_1\lambda_1$	Ts	Lap	Ct	ε IAE/bf	IAE /p
0,50	2,00	24	5	0,50	1,00	1,58	1,78	1,8	3,39	0,48	0,90	0,14 1,38	16,18

sys4														
L	Tu	OS	US	θ1	κ	τ	λ ₁	$\kappa_1 \lambda_1$	Ts	L _{ap}	Ct	E 1	AE/bf	IAE /p
0,05	1,41	22	20	0,05	4,60	0,52	0,39	1,8	4,31	1,03	1,00	0,24	0,94	11,72
0,10	2,01	22	16	0,10	3,30	0,54	0,54	1,8	4,94	1,51	0,97	0,31	1,26	16,63
0,15	2,49	24	15	0,15	2,71	0,90	0,70	1,9	6,42	1,12	1,00	0,17	1,63	20,48
0,20	2,90	22	12	0,20	2,40	1,01	0,73	1,8	6,92	1,17	1,00	0,17	1,70	23,76
0,25	3,27	22	11	0,25	2,16	1,06	0,81	1,7	6,17	1,25	1,00	0,20	1,89	26,67
0,30	3,61	22	9	0,30	2,00	1,09	0,87	1,7	6,81	1,26	1,00	0,19	2,07	29,30
0,35	3,93	21	8	0,35	1,88	1,22	0,92	1,7	7,41	1,31	1,00	0,18	2,24	31,75
0,40	4,23	21	8	0,40	1,78	1,27	0,97	1,7	7,98	1,36	1,00	0,17	2,42	34,02
0,50	4,80	22	7	0,50	1,64	1,34	1,06	1,7	9,17	1,45	1,00	0,16	2,75	38,24
0,60	5,34	21	6	0,60	1,54	1,33	1,12	1,7	10,07	1,54	1,00	0,15	3,07	42,16
0,75	6,10	22	5	0,75	1,43	1,39	1,21	1,7	8,59	1,79	1,00	0,21	3,56	47,93
0,80	6,40	21	4	0,80	1,40	1,48	1,22	1,7	9,01	1,76	1,00	0,20	3,68	50,33
sys5													<u> </u>	
sys5 a	Tu	OS	US	θ_1	κ	τ	λ ₁	$\kappa_1\lambda_1$	Ts	L _{ap}	Ct	ε	IAE/bf	IAE /p
sys5 α 0,05	т _и 1,40	os 23	US 20	θ ₁ 0,05	κ ₁ 4,50	τ 0,52	λ ₁ 0,40	$\frac{\kappa_1\lambda_1}{1,8}$	T _s 4,31	L _{AP} 1,04	^C t 1,00	ε 0,24	IAE/bf 0,95	IAE /p 11,64
sys5 α 0,05 0,10	T _u 1,40 2,00	os 23 22	US 20 16	θ ₁ 0,05 0,10	κ ₁ 4,50 3,20	τ 0,52 0,71	λ ₁ 0,40 0,56	$\frac{\kappa_1\lambda_1}{1,8}$	T _s 4,31 4,92	L _{AP} 1,04 1,08	C _t 1,00 1,00	ε 0,24 0,22	IAE/bf 0,95 1,25	IAE /p 11,64 16,55
sys5 α 0,05 0,10 0,15	T _u 1,40 2,00 2,43	os 23 22 23	US 20 16 15	θ ₁ 0,05 0,10 0,15	κ ₁ 4,50 3,20 2,58	τ 0,52 0,71 0,83	λ ₁ 0,40 0,56 0,69		T _s 4,31 4,92 6,09	L _{AP} 1,04 1,08 1,12	C _t 1,00 1,00 1,00	ε 0,24 0,22 0,18	IAE/bf 0,95 1,25 1,53	IAE /p 11,64 16,55 20,00
sys5 α 0,05 0,10 0,15 0,20	T _u 1,40 2,00 2,43 2,80	os 23 22 23 24	US 20 16 15 13	 θ₁ 0,05 0,10 0,15 0,20 	κ ₁ 4,50 3,20 2,58 2,23	τ 0,52 0,71 0,83 0,92	λ_1 0,40 0,56 0,69 0,80		T _s 4,31 4,92 6,09 7,02	L _{AP} 1,04 1,08 1,12 1,17	C _t 1,00 1,00 1,00	ε 0,24 0,22 0,18 0,17	IAE/bf 0,95 1,25 1,53 1,76	IAE /p 11,64 16,55 20,00 22,93
sys5 α 0,05 0,10 0,15 0,20 0,25	T _u 1,40 2,00 2,43 2,80 3,10	os 23 22 23 24 25	US 20 16 15 13	 θ₁ 0,05 0,10 0,15 0,20 0,25 	κ ₁ 4,50 3,20 2,58 2,23 2,00	τ 0,52 0,71 0,83 0,92 0,98	λ_1 0,40 0,56 0,69 0,80 0,91		T _s 4,31 4,92 6,09 7,02 7,92	L _{AP} 1,04 1,08 1,12 1,17 1,21	C _t 1,00 1,00 1,00 1,00	ε 0,24 0,22 0,18 0,17 0,15	IAE/bf 0,95 1,25 1,53 1,76 2,00	IAE /p 11,64 16,55 20,00 22,93 25,26
$ sys5 \alpha 0,05 0,10 0,15 0,20 0,25 0,30 $	T _u 1,40 2,00 2,43 2,80 3,10 3,44	os 23 22 23 24 25 25	US 20 16 15 13 13 11	 θ₁ 0,05 0,10 0,15 0,20 0,25 0,30 	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 $	τ 0,52 0,71 0,83 0,92 0,98 1,04	λ_1 0,40 0,56 0,69 0,80 0,91 0,98		T _s 4,31 4,92 6,09 7,02 7,92 6,82	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26	C _t 1,00 1,00 1,00 1,00 1,00	ε 0,24 0,22 0,18 0,17 0,15 0,18	IAE/bf 0,95 1,25 1,53 1,76 2,00 2,15	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88
$ sys5 \alpha 0,05 0,10 0,15 0,20 0,25 0,30 0,35 $	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71	os 23 22 23 24 25 25 25	US 20 16 15 13 13 11 11	 θ₁ 0,05 0,10 0,15 0,20 0,25 0,30 0,35 	 κ₁ 4,50 3,20 2,58 2,23 2,00 1,82 1,69 	τ 0,52 0,71 0,83 0,92 0,98 1,04 1,08	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06		T _s 4,31 4,92 6,09 7,02 7,92 6,82 7,44	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31	C _t 1,00 1,00 1,00 1,00 1,00 1,00	ε 0,24 0,22 0,18 0,17 0,15 0,18 0,18	IAE/bf 0,95 1,25 1,53 1,76 2,00 2,15 2,36	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92
$ sys5 \alpha 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 $	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97	os 23 22 23 24 25 25 25 25 26	US 20 16 15 13 13 11 11 11	 θ₁ 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 	 κ₁ 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 	τ 0,52 0,71 0,83 0,92 0,98 1,04 1,08 1,12	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06 1,13		T _s 4,31 4,92 6,09 7,02 7,92 6,82 7,44 8,15	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35	C _t 1,00 1,00 1,00 1,00 1,00 1,00 1,00	ε 0,24 0,22 0,18 0,17 0,15 0,18 0,18 0,17	IAE/bf 0,95 1,25 1,53 1,76 2,00 2,15 2,36 2,55	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84
$ sys5 \alpha 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 \\ $	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21	os 23 22 23 24 25 25 25 25 25 26 26	US 20 16 15 13 13 11 11 11 10 10	 θ₁ 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 $	τ 0,52 0,71 0,83 0,92 0,98 1,04 1,08 1,12 1,15	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06 1,13 1,20		T _s 4,31 4,92 6,09 7,02 7,92 6,82 7,44 8,15 8,74	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40	C _t 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,24 0,22 0,18 0,17 0,15 0,18 0,18 0,17 0,16	IAE/bf 0,95 1,25 1,53 1,76 2,00 2,15 2,36 2,55 2,73	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60
$\begin{array}{c} \text{sys5} \\ \hline \alpha \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \\ 0,45 \\ 0,50 \end{array}$	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40	os 23 22 23 24 25 25 25 25 25 26 26 26 28	US 20 16 15 13 13 11 11 10 10 10	 θ₁ 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 1,41 $	τ 0,52 0,71 0,83 0,92 0,98 1,04 1,08 1,12 1,15 1,09	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06 1,13 1,20 1,28		T _s 4,31 4,92 6,09 7,02 7,92 6,82 7,44 8,15 8,74 9,35	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,24 0,22 0,18 0,17 0,15 0,18 0,17 0,16 0,16	IAE/bf 0,95 1,25 1,53 1,76 2,00 2,15 2,36 2,55 2,73 2,95	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93
$\begin{array}{c} \text{sys5} \\ \hline \alpha \\ \hline 0,05 \\ \hline 0,10 \\ \hline 0,15 \\ \hline 0,20 \\ \hline 0,25 \\ \hline 0,20 \\ \hline 0,25 \\ \hline 0,30 \\ \hline 0,35 \\ \hline 0,40 \\ \hline 0,45 \\ \hline 0,50 \\ \hline 0,60 \\ \hline \end{array}$	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40 4,86	os 23 22 23 24 25 25 25 25 26 26 26 26 28 28	US 20 16 15 13 13 13 11 11 10 10 10 9	 θ₁ 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60 	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 1,41 1,29 $	τ 0,52 0,71 0,83 0,92 0,98 1,04 1,08 1,12 1,15 1,09 1,20	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06 1,13 1,20 1,28 1,39		T _s 4,31 4,92 6,09 7,02 7,92 6,82 7,44 8,15 8,74 9,35 10,56	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,24 0,22 0,18 0,17 0,15 0,18 0,17 0,16 0,16 0,15	AE/bf 0,95 1,25 1,53 1,76 2,00 2,15 2,36 2,55 2,73 2,95 3,32	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,27
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60 0,70	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40 4,86 5,25	os 23 22 23 24 25 25 25 25 26 26 26 28 28 28 29	US 20 16 15 13 13 13 11 11 10 10 10 9 9 9	 θ₁ 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60 0,70 	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,69 1,58 1,49 1,41 1,29 1,19 $	τ 0,52 0,71 0,83 0,92 0,98 1,04 1,04 1,08 1,12 1,15 1,09 1,20 1,22	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06 1,13 1,20 1,28 1,39 1,50		T _s 4,31 4,92 6,09 7,02 7,92 6,82 7,44 8,15 8,74 9,35 10,56 11,78	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55 1,64	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,24 0,22 0,18 0,17 0,15 0,18 0,18 0,18 0,17 0,16 0,16 0,15	IAE/bf 0,95 1,25 1,53 1,76 2,00 2,15 2,36 2,55 2,73 2,95 3,32 3,72	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,27 41,46

$F_p=0,$	7													
sys1														
L	Tu	OS	US	θ_1	κ	τ	λ_1	$\kappa_1\lambda_1$	Ts	Lap	Ct	E I	AE/bf	IAE /p
0,10	1,40	33	18	0,13	20,50	1,10	0,08	1,7	3,21	0,37	2,72	0,11	0,77	11,64
0,20	2,00	26	10	0,17	10,50	1,36	0,15	1,6	3,34	0,46	2,72	0,14	0,95	16,55
0,40	2,90	15	4	0,24	5,70	1,28	0,26	1,5	2,84	0,65	2,72	0,23	1,18	23,81
0,60	3,60	7	3	0,31	4,00	1,33	0,36	1,4	3,09	0,84	2,73	0,27	1,44	29,33
1,00	4,80	0	1	0,45	2,70	1,31	0,50	1,4	6,07	1,23	2,72	0,20	2,20	38,63
1,50	6,10	0	1	0,63	2,10	1,28	0,63	1,3	8,16	1,71	2,72	0,21	3,34	48,55
2,00	7,30	0	0	0,81	1,74	3,33	0,72	1,3	4,12	2,20	2,72	0,16	4,59	57,50
2,50	8,50	0	0	0,98	1,55	3,25	0,79	1,2	17,25	2,68	2,73	0,16	5,84	66,46
3,00	9,50	0	0	1,16	1,44	3,15	0,85	1,2	19,96	3,17	2,73	0,16	6,92	73,88
									····	•••••••••		-		
sys2												· <u>-</u> · <u>-</u> ·		<u> </u>
α	Tu	OS	US	θ	κ ₁	τ	λ_1	$\kappa_1\lambda_1$	Ts	Lap	Ct	3	IAE/bf	IAE /p
0,00	3,60	20	11	0,21	8,00	1,58	0,19	1,5	5,50	0,76	3,70	0,14	1,55	29,71
0,10	4,10	15	8	0.23	(20									
0,25	1 60			0,25	6,20	1,60	0,24	1,5	5,87	0,86	3,69	0,15	1,64	33,71
	4,60	11	6	0,28	6,20 4,60	1,60 1,52	0,24	1,5 1,4	5,87 6,26	0,86 1,01	3,69 3,65	0,15 0,16	1,64 1,87	33,71 37,60
0,50	4,60	11	6	0,25	6,20 4,60 3,20	1,60 1,52 1,48	0,24 0,31 0,43	1,5 1,4 1,4	5,87 6,26 6,58	0,86 1,01 1,28	3,69 3,65 3,53	0,15 0,16 0,19	1,64 1,87 2,25	33,71 37,60 42,91
0,50 1,00	4,60 5,30 6,30	11 2 - 0	6 6 0	0,23 0,28 0,36 0,55	6,20 4,60 3,20 2,00	1,60 1,52 1,48 3,13	0,24 0,31 0,43 0,65	1,5 1,4 1,4 1,3	5,87 6,26 6,58 8,42	0,86 1,01 1,28 1,78	3,69 3,65 3,53 3,24	0,15 0,16 0,19 0,21	1,64 1,87 2,25 3,62	33,71 37,60 42,91 50,02
0,50 1,00 1,50	4,60 5,30 6,30 6,90	11 2 - 0 0	6 6 0 0	0,23 0,28 0,36 0,55 0,75	6,20 4,60 3,20 2,00 1,45	1,60 1,52 1,48 3,13 3,20	0,24 0,31 0,43 0,65 0,84	1,5 1,4 1,4 1,3 1,2	5,87 6,26 6,58 8,42 12,03	0,86 1,01 1,28 1,78 2,21	3,69 3,65 3,53 3,24 2,94	0,15 0,16 0,19 0,21 0,18	1,64 1,87 2,25 3,62 5,00	33,71 37,60 42,91 50,02 53,69
0,50 1,00 1,50 2,00	4,60 5,30 6,30 6,90 7,40	11 2 - 0 0 0	6 6 0 0 - 0	0,23 0,28 0,36 0,55 0,75 0,96	6,20 4,60 3,20 2,00 1,45 1,14	1,60 1,52 1,48 3,13 3,20 3,91	0,24 0,31 0,43 0,65 0,84 1,02	1,5 1,4 1,4 1,3 1,2 1,2	5,87 6,26 6,58 8,42 12,03 15,72	0,86 1,01 1,28 1,78 2,21 2,57	3,69 3,65 3,53 3,24 2,94 2,67	0,15 0,16 0,19 0,21 0,18 0,16	1,64 1,87 2,25 3,62 5,00 6,52	33,71 37,60 42,91 50,02 53,69 56,44
0,50 1,00 1,50 2,00	4,60 5,30 6,30 6,90 7,40	11 2 - 0 0 0	6 6 0 0 - 0	0,23 0,28 0,36 0,55 0,75 0,96	6,20 4,60 3,20 2,00 1,45 1,14	1,60 1,52 1,48 3,13 3,20 3,91	0,24 0,31 0,43 0,65 0,84 1,02	1,5 1,4 1,4 1,3 1,2 1,2	5,87 6,26 6,58 8,42 12,03 15,72	0,86 1,01 1,28 1,78 2,21 2,57	3,69 3,65 3,53 3,24 2,94 2,67	0,15 0,16 0,19 0,21 0,18 0,16	1,64 1,87 2,25 3,62 5,00 6,52	33,71 37,60 42,91 50,02 53,69 56,44
0,50 1,00 1,50 2,00 sys3	4,60 5,30 6,30 6,90 7,40	11 2 - 0 0 0	6 6 0 - 0	0,28 0,36 0,55 0,75 0,96	6,20 4,60 3,20 2,00 1,45 1,14	1,60 1,52 1,48 3,13 3,20 3,91	0,24 0,31 0,43 0,65 0,84 1,02	1,5 1,4 1,4 1,3 1,2 1,2	5,87 6,26 6,58 8,42 12,03 15,72	0,86 1,01 1,28 1,78 2,21 2,57	3,69 3,65 3,53 3,24 2,94 2,67	0,15 0,16 0,19 0,21 0,18 0,16	1,64 1,87 2,25 3,62 5,00 6,52	33,71 37,60 42,91 50,02 53,69 56,44
0,50 1,00 1,50 2,00 sys3 L	4,60 5,30 6,30 6,90 7,40	11 2 - 0 0 0 0	6 0 0 - 0 US	0,23 0,28 0,36 0,55 0,75 0,96 θ ₁	6,20 4,60 3,20 2,00 1,45 1,14 κ ₁	1,60 1,52 1,48 3,13 3,20 3,91 τ	$0,24 \\ 0,31 \\ 0,43 \\ 0,65 \\ 0,84 \\ 1,02 \\ \lambda_1$	$ \begin{array}{r} 1,5 \\ 1,4 \\ 1,3 \\ 1,2 \\ 1,2 \\ \kappa_1 \lambda_1 \end{array} $	5,87 6,26 6,58 8,42 12,03 15,72 T _s	0,86 1,01 1,28 1,78 2,21 2,57 L _{AP}	3,69 3,65 3,53 3,24 2,94 2,67 C _t	0,15 0,16 0,19 0,21 0,18 0,16 ε	1,64 1,87 2,25 3,62 5,00 6,52 IAE/bf	33,71 37,60 42,91 50,02 53,69 56,44 IAE /p

sys4		-												
L	Tu	OS	US	θι	κ ₁	τ	λ_1	$\kappa_1\lambda_1$	Ts	Lap	Ct	3	IAE/bf	IAE /p
0,05	1,41	41	29	0,05	4,60	0,36	0,39	1,8	5,05	1,03	1,00	0,20	1,02	11,72
0,10	2,01	40	25	0,10	3,30	0,38	0,54	1,8	5,95	1,51	0,97	0,25	1,31	16,63
0,15	2,49	41	23	0,15	2,71	0,64	0,70	1,9	7,67	1,12	1,00	0,15	1,66	20,48
0,20	2,90	38	19	0,20	2,40	0,65	0,73	1,8	6,78	1,17	1,00	0,17	1,68	23,76
0,25	3,27	38	17	0,25	2,16	0,75	0,81	1,7	7,65	1,25	1,00	0,16	1,83	26,67
0,30	3,61	37	15	0,30	2,00	0,75	0,87	1,7	8,27	1,26	1,00	0,15	1,98	29,30
0,35	3,93	37	14	0,35	1,88	0,79	0,92	1,7	6,94	1,31	1,00	0,19	2,12	31,75
0,40	4,23	37	13	0,40	1,78	0,82	0,97	1,7	7,47	1,36	1,00	0,18	2,27	34,02
0,50	4,80	36	11	0,50	1,64	0,87	1,06	1,7	8,59	1,45	1,00	0,17	2,55	38,24
0,60	5,34	36	9	0,60	1,54	0,91	1,12	1,7	9,69	1,54	1,00	0,16	2,81	42,16
0,75	6,10	35	8	0,75	1,43	0,90	1,21	1,7	11,21	1,79	1,00	0,16	3,22	47,93
0,80	6,40	34	7	0,80	1,40	0,96	1,22	1,7	11,61	1,76	1,00	0,15	3,31	50,33
sys5														
sys5 a	Tu	OS	US	θ_1	κ ₁	τ	λ ₁	$\overline{\kappa_1\lambda_1}$	Ts	L _{AP}	Ct	3	IAE/bf	IAE /p
sys5 α 0,05	т _и 1,40	os 41	US 30	θ ₁ 0,05	κ ₁ 4,50	τ 0,36	λ ₁ 0,40	$\frac{\kappa_1\lambda_1}{1,8}$	T _s 5,05	L _{AP} 1,04	C _t	ε 0,21	IAE/bf 1,03	IAE /p 11,64
sys5 α 0,05 0,10	T _u 1,40 2,00	os 41 40	US 30 25	θ ₁ 0,05 0,10	κ ₁ 4,50 3,20	τ 0,36 0,53	λ ₁ 0,40 0,56	$\frac{\kappa_1\lambda_1}{1,8}$	T _s 5,05 5,92	L _{AP} 1,04 1,08	C _t 1,00 1,00	ε 0,21 0,18	IAE/bf 1,03 1,30	IAE /p 11,64 16,55
sys5 α 0,05 0,10 0,15	T _u 1,40 2,00 2,43	os 41 40 41	US 30 25 23	θ ₁ 0,05 0,10 0,15	κ ₁ 4,50 3,20 2,58	τ 0,36 0,53 0,57	λ ₁ 0,40 0,56 0,69	$ \overline{\kappa_1 \lambda_1} 1,8 1,8 1,8 1,8 1,8 $	T _s 5,05 5,92 7,19	L _{AP} 1,04 1,08 1,12	C _t 1,00 1,00 1,00	ε 0,21 0,18 0,16	IAE/bf 1,03 1,30 5 1,56	IAE /p 11,64 16,55 20,00
 sys5 α 0,05 0,10 0,15 0,20 	T _u 1,40 2,00 2,43 2,80	os 41 40 41 41	US 30 25 23 21	θ_1 0,05 0,10 0,15 0,20		τ 0,36 0,53 0,57 0,63	λ_1 0,40 0,56 0,69 0,80		T _s 5,05 5,92 7,19 6,82	L _{AP} 1,04 1,08 1,12 1,17	C _t 1,00 1,00 1,00	ε 0,21 0,18 0,16 0,17	IAE/bf 1,03 3 1,30 5 1,56 7 1,76	IAE /p 11,64 16,55 20,00 22,93
 sys5 α 0,05 0,10 0,15 0,20 0,25 	T _u 1,40 2,00 2,43 2,80 3,10	os 41 40 41 41 41 42	US 30 25 23 21 20	θ_1 0,05 0,10 0,15 0,20 0,25		τ 0,36 0,53 0,57 0,63 0,67	λ_1 0,40 0,56 0,69 0,80 0,91		T _s 5,05 5,92 7,19 6,82 7,70	L _{AP} 1,04 1,08 1,12 1,17 1,21	C _t 1,00 1,00 1,00 1,00	ε 0,21 0,18 0,16 0,17	IAE/bf 1,03 1,30 5 1,56 7 1,76 5 1,99	IAE /p 11,64 16,55 20,00 22,93 25,26
$ sys5 \alpha 0,05 0,10 0,15 0,20 0,25 0,30 $	T _u 1,40 2,00 2,43 2,80 3,10 3,44	os 41 40 41 41 41 42 41	US 30 25 23 21 20 17	θ_1 0,05 0,10 0,15 0,20 0,25 0,30		τ 0,36 0,53 0,57 0,63 0,67 0,72	λ_1 0,40 0,56 0,69 0,80 0,91 0,98		T _s 5,05 5,92 7,19 6,82 7,70 8,46	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26	C _t 1,00 1,00 1,00 1,00 1,00	ε 0,21 0,18 0,16 0,17 0,16	IAE/bf 1,03 1,30 5 1,56 7 1,76 5 1,99 5 2,11	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88
$ sys5 \alpha 0,05 0,10 0,15 0,20 0,25 0,30 0,35 $	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71	OS 41 40 41 41 41 42 41 41	US 30 25 23 21 20 17 16	$\begin{array}{c} \theta_1 \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \end{array}$	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 $	τ 0,36 0,53 0,57 0,63 0,67 0,72 0,75	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06		T _s 5,05 5,92 7,19 6,82 7,70 8,46 9,21	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31	C _t 1,00 1,00 1,00 1,00 1,00 1,00	ε 0,21 0,18 0,16 0,17 0,16 0,15 0,14	IAE/bf 1,03 1,30 1,56 1,76 1,99 2,11 2,29	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92
$ sys5 \alpha 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 $	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97	OS 41 40 41 41 41 41 41 41	US 30 25 23 21 20 17 16 15	$\begin{array}{c} \theta_1 \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \end{array}$	$ \begin{array}{r} \kappa_1 \\ 4,50 \\ 3,20 \\ 2,58 \\ 2,23 \\ 2,00 \\ 1,82 \\ 1,69 \\ 1,58 \\ \end{array} $	τ 0,36 0,53 0,57 0,63 0,67 0,72 0,75 0,77	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06 1,13	$ \begin{array}{r} \kappa_1 \lambda_1 \\ 1,8 \\ $	T _s 5,05 5,92 7,19 6,82 7,70 8,46 9,21 9,86	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35	C _t 1,00 1,00 1,00 1,00 1,00 1,00 1,00	ε 0,21 0,18 0,16 0,17 0,16 0,15 0,14	IAE/bf 1,03 1,30 1,56 1,76 1,99 2,11 2,29 2,46	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84
$ sys5 \alpha 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 \\ $	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21	OS 41 40 41 41 41 41 41 41 41	US 30 25 23 21 20 17 16 15 15	$\begin{array}{c} \theta_1 \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \\ 0,45 \end{array}$	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 $	τ 0,36 0,53 0,57 0,63 0,67 0,72 0,75 0,77 0,72	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06 1,13 1,20	$ \begin{array}{r} \kappa_1 \lambda_1 \\ 1,8 \\ $	T _s 5,05 5,92 7,19 6,82 7,70 8,46 9,21 9,86 10,25	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40	C _t 1,00 1,00 1,00 1,00 1,00 1,00 1,00	ε 0,21 0,18 0,16 0,17 0,16 0,15 0,14 0,14	IAE/bf 1,03 1,30 1,56 1,76 1,76 1,99 2,11 2,29 2,46 2,62	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60
$ sys5 \alpha 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 $	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40	OS 41 40 41 41 41 41 41 41 41 42	US 30 25 23 21 20 17 16 15 15 15	$\begin{array}{c} \theta_1 \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \\ 0,45 \\ 0,50 \end{array}$	$ \begin{array}{r} \kappa_1 \\ 4,50 \\ 3,20 \\ 2,58 \\ 2,23 \\ 2,00 \\ 1,82 \\ 1,69 \\ 1,58 \\ 1,49 \\ 1,41 \\ $	τ 0,36 0,53 0,57 0,63 0,67 0,72 0,75 0,77 0,72 0,72 0,80	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06 1,13 1,20 1,28	$ \begin{array}{r} \kappa_1 \lambda_1 \\ 1,8 \\ $	T _s 5,05 5,92 7,19 6,82 7,70 8,46 9,21 9,86 10,25 11,03	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,21 0,18 0,16 0,17 0,16 0,15 0,14 0,14 0,14	IAE/bf 1,03 1,30 1,30 1,56 1,76 1,99 2,11 2,29 2,46 2,62 2,84	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93
$\begin{array}{c} \text{sys5} \\ \hline \alpha \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \\ 0,45 \\ 0,50 \\ 0,60 \\ \end{array}$	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40 4,86	OS 41 40 41 41 41 41 41 41 41 41 42 42 42	US 30 25 23 21 20 17 16 15 15 15 13	$\begin{array}{c} \theta_1 \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \\ 0,45 \\ 0,50 \\ 0,60 \\ \end{array}$	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 1,41 1,29 $	τ 0,36 0,53 0,57 0,63 0,67 0,72 0,75 0,77 0,72 0,72 0,80 0,82	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06 1,13 1,20 1,28 1,39	$ \begin{array}{r} \kappa_1 \lambda_1 \\ 1,8 \\ $	T _s 5,05 5,92 7,19 6,82 7,70 8,46 9,21 9,86 10,25 11,03 9,86	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,21 0,18 0,16 0,17 0,16 0,15 0,14 0,14 0,14 0,14	IAE/bf 1,03 1,30 1,56 1,76 1,76 1,99 2,11 2,29 2,46 2,62 2,84 3,16	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,27
$\begin{array}{c} \text{sys5} \\ \hline \alpha \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \\ 0,45 \\ 0,50 \\ 0,60 \\ 0,70 \\ \end{array}$	$ T_u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21 4,40 4,86 5,25 $	OS 41 40 41 41 41 41 41 41 41 41 41 42 42 42 42	US 30 25 23 21 20 17 16 15 15 15 13 13	$\begin{array}{c} \theta_1 \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \\ 0,45 \\ 0,50 \\ 0,60 \\ 0,70 \\ \end{array}$	$ \kappa_1 4,50 3,20 2,58 2,23 2,00 1,82 1,69 1,58 1,49 1,41 1,29 1,19 1,19 1,19 $	τ 0,36 0,53 0,57 0,63 0,67 0,72 0,75 0,77 0,72 0,72 0,72 0,80 0,82 0,84	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06 1,13 1,20 1,28 1,39 1,50	$ \begin{array}{r} \kappa_1 \lambda_1 \\ 1,8 \\ $	T _s 5,05 5,92 7,19 6,82 7,70 8,46 9,21 9,86 10,25 11,03 9,86 11,03	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55 1,64	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,21 0,18 0,16 0,17 0,16 0,17 0,16 0,14 0,14 0,14 0,14 0,14	IAE/bf 1,03 1,30 1,56 1,76 1,76 2,11 2,29 2,46 2,62 2,46 2,62 3,16 3,53	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,27 41,46

$F_p=1$,	0								_					
sys1														
L	Tu	OS	US	θ_1	κι	τ	λ_1	$\kappa_1\lambda_1$	Ts	L _{AP}	Ct	۲ <u>3</u>	IAE/bf	IAE /p
0,10	1,40	56	28	0,13	20,50	0,73	0,08	1,7	3,94	0,37	2,72	0,09	0,94	11,64
0,20	2,00	48	17	0,17	10,50	0,94	0,15	1,6	4,25	0,46	2,72	0,11	1,09	16,55
0,40	2,90	36	8	0,24	5,70	0,86	0,26	1,5	4,08	0,65	2,72	0,16	1,27	23,81
0,60	3,60	28	5	0,31	4,00	0,82	0,36	1,4	4,30	0,84	2,73	0,19	1,47	29,33
1,00	4,80	20	10	0,45	2,70	0,75	0,50	1,4	5,84	1,23	2,72	0,21	2,00	38,63
1,50	6,10	15	20	0,63	2,10	0,68	0,63	1,3	7,57	1,71	2,72	0,23	2,90	48,55
2,00	7,30	10	26	0,81	1,74	0,71	0,72	1,3	14,12	2,20	2,72	0,16	3,81	57,50
2,50	8,50	9	32	0,98	1,55	0,61	0,79	1,2	16,84	2,68	2,73	0,16	4,82	66,46
3,00	9,50	9	35	1,16	1,44	0,57	0,85	1,2	19,28	3,17	2,73	0,16	5,80	73,88
<u> </u>														
sys2														
α	Tu	OS	US	θ	κ ₁	τ	λ_1	$\kappa_1 \lambda_1$	Ts	Lap	Ct	3	IAE/bf	IAE /p
0,00	3,60	41	17	0,21	8,00	113	0.10		7.10	0.76	3 70	0.11	1 75	29,71
0,10	1 10					1,15	0,19	1,5	7,13	0,70	5,70	0,11	1,75	,
	4,10	36	13	0,23	6,20	1,13	0,19	1,5	5,78	0,70	3,69	0,11	1,79	33,71
0,25	4,10	36 31	13 10	0,23 0,28	6,20 4,60	1,03	0,19 0,24 0,31	1,5 1,5 1,4	7,13 5,78 6,37	0,70 0,86 1,01	3,69 3,65	0,11 0,15 0,16	1,79 1,96	33,71 37,60
0,25 0,50	4,10 4,60 5,30	36 31 22	13 10 7	0,23 0,28 0,36	6,20 4,60 3,20	1,03 1,08 0,89	0,19 0,24 0,31 0,43	1,5 1,5 1,4 1,4	7,13 5,78 6,37 6,71	0,70 0,86 1,01 1,28	3,69 3,65 3,53	0,11 0,15 0,16 0,19	1,79 1,96 2,17	33,71 37,60 42,91
0,25 0,50 1,00	4,10 4,60 5,30 6,30	36 31 22 7	13 10 7 11	0,23 0,28 0,36 0,55	6,20 4,60 3,20 2,00	1,03 1,08 0,89 0,76	0,19 0,24 0,31 0,43 0,65	1,5 1,5 1,4 1,4 1,3 1,3 1	7,13 5,78 6,37 6,71 7,67	0,70 0,86 1,01 1,28 1,78	3,69 3,65 3,53 3,24	0,11 0,15 0,16 0,19 0,23	1,73 1,79 1,96 2,17 2,81	33,71 37,60 42,91 50,02
0,25 0,50 1,00 1,50	4,10 4,60 5,30 6,30 6,90	36 31 22 7 0	13 10 7 11 11	0,23 0,28 0,36 0,55 0,75	6,20 4,60 3,20 2,00 1,45	1,03 1,08 0,89 0,76 0,74	0,19 0,24 0,31 0,43 0,65 0,84	1,5 1,5 1,4 1,4 1,3 1,2	7,13 5,78 6,37 6,71 7,67 9,22	0,70 0,86 1,01 1,28 1,78 2,21	3,69 3,65 3,53 3,24 2,94	0,11 0,15 0,16 0,19 0,23 0,24	1,79 1,79 1,96 2,17 2,81 3,97	33,71 37,60 42,91 50,02 53,69
0,25 0,50 1,00 1,50 2,00	4,10 4,60 5,30 6,30 6,90 7,40	36 31 22 7 0 0	13 10 7 11 11 0	0,23 0,28 0,36 0,55 0,75 0,96	6,20 4,60 3,20 2,00 1,45 1,14	1,03 1,08 0,89 0,76 0,74 3,02	0,19 0,24 0,31 0,43 0,65 0,84 1,02	$ 1,5 \\ 1,5 \\ 1,4 \\ 1,4 \\ 1,3 \\ 1,2 \\ 1,2 $	7,13 5,78 6,37 6,71 7,67 9,22 14,13	0,70 0,86 1,01 1,28 1,78 2,21 2,57	3,69 3,65 3,53 3,24 2,94 2,67	0,11 0,15 0,16 0,19 0,23 0,24 0,18	1,79 1,79 1,96 2,17 2,81 3,97 5,41	33,71 37,60 42,91 50,02 53,69 56,44
0,25 0,50 1,00 1,50 2,00	4,10 4,60 5,30 6,30 6,90 7,40	36 31 22 7 0 0	13 10 7 11 11 0	0,23 0,28 0,36 0,55 0,75 0,96	6,20 4,60 3,20 2,00 1,45 1,14	1,03 1,08 0,89 0,76 0,74 3,02	0,19 0,24 0,31 0,43 0,65 0,84 1,02	1,5 1,5 1,4 1,4 1,3 1,2 1,2	7,13 5,78 6,37 6,71 7,67 9,22 14,13	0,70 0,86 1,01 1,28 1,78 2,21 2,57	3,69 3,65 3,53 3,24 2,94 2,67	0,11 0,15 0,16 0,19 0,23 0,24 0,18	1,73 1,79 1,96 2,17 2,81 3,97 5,41	33,71 37,60 42,91 50,02 53,69 56,44
0,25 0,50 1,00 1,50 2,00 sys3	4,10 4,60 5,30 6,30 6,90 7,40	36 31 22 7 0 0	13 10 7 11 11 0	0,23 0,28 0,36 0,55 0,75 0,96	6,20 4,60 3,20 2,00 1,45 1,14	1,03 1,08 0,89 0,76 0,74 3,02	0,19 0,24 0,31 0,43 0,65 0,84 1,02	1,5 1,5 1,4 1,4 1,3 1,2 1,2	7,13 5,78 6,37 6,71 7,67 9,22 14,13	0,70 0,86 1,01 1,28 1,78 2,21 2,57	3,69 3,65 3,53 3,24 2,94 2,67	0,11 0,15 0,16 0,19 0,23 0,24 0,18	1,73 1,79 1,96 2,17 2,81 3,97 5,41	33,71 37,60 42,91 50,02 53,69 56,44
0,25 0,50 1,00 1,50 2,00 sys3 L	4,10 4,60 5,30 6,30 6,90 7,40 T _u	36 31 22 7 0 0 0	13 10 7 11 11 0 US	$\begin{array}{c} 0,23\\ 0,28\\ 0,36\\ 0,55\\ 0,75\\ 0,96\\ \hline\\ \theta_1\\ \end{array}$	6,20 4,60 3,20 2,00 1,45 1,14 κ ₁	1,03 1,03 1,08 0,89 0,76 0,74 3,02	0,19 = 0,24 = 0,31 = 0,43 = 0,65 = 0,84 = 1,02 = 0,84 = 0,65 = 0,84 = 0,000 = 0,0000 = 0,00000 = 0,00000000	$ \begin{array}{r} 1,5 \\ 1,5 \\ 1,4 \\ 1,4 \\ 1,3 \\ 1,2 \\ 1,2 \\ \hline \kappa_1 \lambda_1 \\ \hline \kappa_1 \lambda_1 $	7,13 5,78 6,37 6,71 7,67 9,22 14,13 T _s	0,70 0,86 1,01 1,28 1,78 2,21 2,57	3,69 3,65 3,53 3,24 2,94 2,67	0,11 0,15 0,16 0,19 0,23 0,24 0,18 ε	1,73 1,79 1,96 2,17 2,81 3,97 5,41	33,71 37,60 42,91 50,02 53,69 56,44
0,25 0,50 1,00 1,50 2,00 sys3 L 0,50	4,10 4,60 5,30 6,30 6,90 7,40 T _u 2,00	36 31 22 7 0 0 0 0 0 59	13 10 7 11 11 0 US 11	$\begin{array}{c} 0,23\\ 0,28\\ 0,36\\ 0,55\\ 0,75\\ 0,96\\ \\ \theta_1\\ 0,50\\ \end{array}$	 6,20 4,60 3,20 2,00 1,45 1,14 κ₁ 1,00 	1,03 1,08 0,89 0,76 0,74 3,02 τ 0,39	$0,19$ $0,24$ $0,31$ $0,43$ $0,65$ $0,84$ $1,02$ λ_{1} $1,78$	$ \begin{array}{c} 1,5 \\ 1,5 \\ 1,4 \\ 1,4 \\ 1,3 \\ 1,2 \\ 1,2 \\ \hline \kappa_1 \lambda_1 \\ 1,8 \\ \end{array} $	7,13 5,78 6,37 6,71 7,67 9,22 14,13 T _s 4,54	0,70 0,86 1,01 1,28 1,78 2,21 2,57 L _{AP} 0,48	3,69 3,65 3,53 3,24 2,94 2,67 C _t 0,90	0,11 0,15 0,16 0,19 0,23 0,24 0,18 ε 0,11	1,73 1,79 1,96 2,17 2,81 3,97 5,41 IAE/bf 1,44	33,71 37,60 42,91 50,02 53,69 56,44 IAE /p 16,18

								· · · · ·						
sys4														
L	Tu	OS	US	θ	κ_1	τ	λ_1	$\kappa_1 \lambda_1$	Ts	L _{ap}	Ct	3	IAE/bf	IAE /p
0,05	1,41	66	43	0,05	4,60	0,26	0,39	1,8	5,86	1,03	1,00	0,18	1,31	11,72
0,10	2,01	65	37	0,10	3,30	0,25	0,54	1,8	7,05	1,51	0,97	0,21	1,65	16,63
0,15	2,49	64	34	0,15	2,71	0,42	0,70	1,9	7,67	1,12	1,00	0,15	2,04	20,48
0,20	2,90	63	29	0,20	2,40	0,47	0,73	1,8	8,31	1,17	1,00	0,14	2,06	23,76
0,25	3,27	62	26	0,25	2,16	0,50	0,81	1,7	7,57	1,25	1,00	0,16	2,23	26,67
0,30	3,61	61	24	0,30	2,00	0,48	0,87	1,7	8,36	1,26	1,00	0,15	2,39	29,30
0,35	3,93	61	22	0,35	1,88	0,50	0,92	1,7	9,01	1,31	1,00	0,14	2,53	31,75
0,40	4,23	60	20	0,40	1,78	0,52	0,97	1,7	9,69	1,36	1,00	0,14	2,69	34,02
0,50	4,80	60	18	0,50	1,64	0,63	1,06	1,7	10,77	1,45	1,00	0,13	2,98	38,24
0,60	5,34	59	16	0,60	1,54	0,58	1,12	1,7	9,43	1,54	1,00	0,16	3,26	42,16
0,75	6,10	58	13	0,75	1,43	0,57	1,21	1,7	11,07	1,79	1,00	0,16	3,70	47,93
0,80	6,40	57	12	0,80	1,40	0,61	1,22	1,7	11,46	1,76	1,00	0,15	3,78	50,33
														- <u>.</u>
sys5														~
sys5 α	Tu	OS	US	θ1	κ	τ	λ_1	$\kappa_1\lambda_1$	Ts	L _{AP}	Ct	3	IAE/bf	IAE /p
sys5 α 0,05	T _u 1,40	os 67	US 44	θ ₁ 0,05	κ ₁ 4,50	τ 0,26	λ ₁ 0,40	$\frac{\kappa_1\lambda_1}{1,8}$	T _s 5,85	L _{ap} 1,04	C _t 1,00	ε 0,18	IAE/bf 1,33	IAE /p 11,64
sys5 α 0,05 0,10	T _u 1,40 2,00	os 67 65	US 44 37	θ ₁ 0,05 0,10	κ ₁ 4,50 3,20	τ 0,26 0,35	λ ₁ 0,40 0,56	$\frac{\kappa_1\lambda_1}{1,8}$	T _s 5,85 7,02	L _{AP} 1,04 1,08	C _t 1,00 1,00	ε 0,18 0,15	IAE/bf 1,33 1,64	IAE /p 11,64 16,55
sys5 α 0,05 0,10 0,15	T _u 1,40 2,00 2,43	os 67 65 65	US 44 37 34	θ ₁ 0,05 0,10 0,15	κ ₁ 4,50 3,20 2,58	τ 0,26 0,35 0,36	λ_1 0,40 0,56 0,69	$\frac{\kappa_1\lambda_1}{1,8}$ 1,8 1,8	T _s 5,85 7,02 7,25	L _{AP} 1,04 1,08 1,12	C _t 1,00 1,00 1,00	ε 0,18 0,15 0,15	IAE/bf 1,33 1,64 1,94	IAE /p 11,64 16,55 20,00
sys5 α 0,05 0,10 0,15 0,20	T _u 1,40 2,00 2,43 2,80	OS 67 65 65 65	US 44 37 34 31	θ_1 0,05 0,10 0,15 0,20	κ ₁ 4,50 3,20 2,58 2,23	τ 0,26 0,35 0,36 0,46	λ_1 0,40 0,56 0,69 0,80		T _s 5,85 7,02 7,25 8,36	L _{AP} 1,04 1,08 1,12 1,17	C _t 1,00 1,00 1,00 1,00	ε 0,18 0,15 0,15 0,14	IAE/bf 1,33 1,64 1,94 2,17	IAE /p 11,64 16,55 20,00 22,93
sys5 α 0,05 0,10 0,15 0,20 0,25	T _u 1,40 2,00 2,43 2,80 3,10	OS 67 65 65 65 65	US 44 37 34 31 30	θ_1 0,05 0,10 0,15 0,20 0,25	κ ₁ 4,50 3,20 2,58 2,23 2,00	τ 0,26 0,35 0,36 0,46 0,43	λ_1 0,40 0,56 0,69 0,80 0,91		T _s 5,85 7,02 7,25 8,36 9,40	L _{AP} 1,04 1,08 1,12 1,17 1,21	C _t 1,00 1,00 1,00 1,00	ε 0,18 0,15 0,15 0,14 0,13	IAE/bf 1,33 1,64 1,94 2,17 2,43	IAE /p 11,64 16,55 20,00 22,93 25,26
 sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 	T _u 1,40 2,00 2,43 2,80 3,10 3,44	os 67 65 65 65 66 64	US 44 37 34 31 30 26	$\begin{array}{c} \theta_1 \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \end{array}$	κ ₁ 4,50 3,20 2,58 2,23 2,00 1,82	τ 0,26 0,35 0,36 0,46 0,43 0,46	λ_1 0,40 0,56 0,69 0,80 0,91 0,98		T _s 5,85 7,02 7,25 8,36 9,40 8,38	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26	C _t 1,00 1,00 1,00 1,00 1,00	ε 0,18 0,15 0,15 0,14 0,13 0,15	IAE/bf 1,33 1,64 1,94 2,17 2,43 2,54	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71	os 67 65 65 65 66 64 64	US 44 37 34 31 30 26 25	$\begin{array}{c} \theta_1 \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \end{array}$	$ \begin{array}{r} \kappa_1 \\ 4,50 \\ 3,20 \\ 2,58 \\ 2,23 \\ 2,00 \\ 1,82 \\ 1,69 \\ $	τ 0,26 0,35 0,36 0,46 0,43 0,46 0,47	λ_1 0,40 0,56 0,69 0,80 0,91 0,98 1,06		T _s 5,85 7,02 7,25 8,36 9,40 8,38 9,12	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31	Ct 1,00 1,00 1,00 1,00 1,00 1,00	ε 0,18 0,15 0,15 0,14 0,13 0,15 0,14	IAE/bf 1,33 1,64 1,94 2,17 2,43 2,54 2,74	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92
 sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 	$ \begin{array}{r} T_u \\ \overline{1,40} \\ 2,00 \\ 2,43 \\ 2,80 \\ 3,10 \\ 3,44 \\ 3,71 \\ 3,97 \\ 3,97 \\ \end{array} $	OS 67 65 65 65 66 64 64 64	US 44 37 34 31 30 26 25 24	$\begin{array}{c} \theta_1 \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \end{array}$	$ \begin{array}{r} \kappa_1 \\ 4,50 \\ 3,20 \\ 2,58 \\ 2,23 \\ 2,00 \\ 1,82 \\ 1,69 \\ 1,58 \\ \end{array} $	τ 0,26 0,35 0,36 0,46 0,43 0,46 0,47 0,49	$\begin{array}{c} \lambda_1 \\ 0,40 \\ 0,56 \\ 0,69 \\ 0,80 \\ 0,91 \\ 0,98 \\ 1,06 \\ 1,13 \end{array}$		T _s 5,85 7,02 7,25 8,36 9,40 8,38 9,12 9,86	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00	ε 0,18 0,15 0,15 0,14 0,13 0,15 0,14 0,14	IAE/bf 1,33 1,64 1,94 2,17 2,43 2,54 2,74 2,92	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45	T _u 1,40 2,00 2,43 2,80 3,10 3,44 3,71 3,97 4,21	OS 67 65 65 65 66 64 64 64 64	US 44 37 34 31 30 26 25 24 22	θ_1 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45	$ \begin{array}{r} \kappa_1 \\ 4,50 \\ 3,20 \\ 2,58 \\ 2,23 \\ 2,00 \\ 1,82 \\ 1,69 \\ 1,58 \\ 1,49 \\ 1,49 \\ $	τ 0,26 0,35 0,36 0,46 0,43 0,46 0,47 0,49 0,57	$\begin{array}{c} \lambda_1 \\ 0,40 \\ 0,56 \\ 0,69 \\ 0,80 \\ 0,91 \\ 0,98 \\ 1,06 \\ 1,13 \\ 1,20 \end{array}$		T _s 5,85 7,02 7,25 8,36 9,40 8,38 9,12 9,86 10,55	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,18 0,15 0,15 0,14 0,13 0,15 0,14 0,14 0,13	IAE/bf 1,33 1,64 1,94 2,17 2,43 2,54 2,74 2,92 3,10	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50	$ \begin{array}{r} T_u \\ \overline{1,40} \\ 2,00 \\ 2,43 \\ 2,80 \\ 3,10 \\ 3,44 \\ 3,71 \\ 3,97 \\ 4,21 \\ 4,40 \\ \end{array} $	OS 67 65 65 65 66 64 64 64 64 64	US 44 37 34 31 30 26 25 24 22 22	$ \theta_1 $ 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50	$ \begin{array}{r} \kappa_1 \\ 4,50 \\ 3,20 \\ 2,58 \\ 2,23 \\ 2,00 \\ 1,82 \\ 1,69 \\ 1,58 \\ 1,49 \\ 1,41 \\ $	τ 0,26 0,35 0,36 0,46 0,43 0,46 0,47 0,49 0,57 0,51	$\begin{array}{c} \lambda_1 \\ 0,40 \\ 0,56 \\ 0,69 \\ 0,80 \\ 0,91 \\ 0,98 \\ 1,06 \\ 1,13 \\ 1,20 \\ 1,28 \end{array}$		T _s 5,85 7,02 7,25 8,36 9,40 8,38 9,12 9,86 10,55 11,24	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,18 0,15 0,15 0,14 0,13 0,14 0,14 0,13 0,13	IAE/bf 1,33 1,64 1,94 2,17 2,43 2,54 2,74 2,92 3,10 3,34	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60	$ \begin{array}{r} T_u \\ \overline{1,40} \\ 2,00 \\ 2,43 \\ 2,80 \\ 3,10 \\ 3,10 \\ 3,10 \\ 3,44 \\ 3,71 \\ 3,97 \\ 4,21 \\ 4,40 \\ 4,86 \\ \end{array} $	OS 67 65 65 65 66 64 64 64 64 64 64 63	US 44 37 34 31 30 26 25 24 22 22 20	$ \theta_1 $ 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60		τ 0,26 0,35 0,36 0,46 0,43 0,46 0,43 0,46 0,47 0,49 0,57 0,51 0,52	$\begin{array}{c} \lambda_1 \\ 0,40 \\ 0,56 \\ 0,69 \\ 0,80 \\ 0,91 \\ 0,98 \\ 1,06 \\ 1,13 \\ 1,20 \\ 1,28 \\ 1,39 \end{array}$		T _s 5,85 7,02 7,25 8,36 9,40 8,38 9,12 9,86 10,55 11,24 12,65	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,18 0,15 0,15 0,14 0,13 0,15 0,14 0,13 0,13 0,12	IAE/bf 1,33 1,64 1,94 2,17 2,43 2,54 2,74 2,92 3,10 3,34 3,67	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,27
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60 0,70	$ \begin{array}{r} T_u \\ \overline{1,40} \\ 2,00 \\ 2,43 \\ 2,80 \\ 3,10 \\ 3,10 \\ 3,10 \\ 3,44 \\ 3,71 \\ 3,97 \\ 4,21 \\ 4,40 \\ 4,86 \\ 5,25 \\ \end{array} $	OS 67 65 65 65 66 64 64 64 64 64 64 63 63	US 44 37 34 31 30 26 25 24 22 22 20 19	$\begin{array}{c} \theta_1 \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \\ 0,45 \\ 0,50 \\ 0,60 \\ 0,70 \\ \end{array}$		τ 0,26 0,35 0,36 0,46 0,43 0,46 0,43 0,46 0,47 0,49 0,57 0,51 0,52 0,54	$\begin{array}{c} \lambda_1 \\ 0,40 \\ 0,56 \\ 0,69 \\ 0,80 \\ 0,91 \\ 0,98 \\ 1,06 \\ 1,13 \\ 1,20 \\ 1,28 \\ 1,39 \\ 1,50 \end{array}$		T _s 5,85 7,02 7,25 8,36 9,40 8,38 9,12 9,86 10,55 11,24 12,65 13,91	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55 1,64	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,18 0,15 0,15 0,14 0,13 0,15 0,14 0,14 0,13 0,12 0,12	IAE/bf 1,33 1,64 1,94 2,17 2,43 2,54 2,74 2,92 3,10 3,34 3,67 4,07	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,27 41,46
sys5 α 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,60 0,70 0,75	$\begin{array}{c} T_u \\ 1,40 \\ 2,00 \\ 2,43 \\ 2,80 \\ 3,10 \\ 3,44 \\ 3,71 \\ 3,97 \\ 4,21 \\ 4,40 \\ 4,86 \\ 5,25 \\ 5,40 \end{array}$	OS 67 65 65 66 64 64 64 64 64 64 64 63 63 63	US 44 37 34 31 30 26 25 24 22 22 20 19 20	$\begin{array}{c} \theta_1 \\ 0,05 \\ 0,10 \\ 0,15 \\ 0,20 \\ 0,25 \\ 0,30 \\ 0,35 \\ 0,40 \\ 0,45 \\ 0,50 \\ 0,60 \\ 0,70 \\ 0,75 \\ \end{array}$	$ \begin{array}{r} \kappa_1 \\ 4,50 \\ 3,20 \\ 2,58 \\ 2,23 \\ 2,00 \\ 1,82 \\ 1,69 \\ 1,58 \\ 1,49 \\ 1,41 \\ 1,29 \\ 1,11 \\ 1,15 \\ 1,15 \\ $	τ 0,26 0,35 0,36 0,46 0,43 0,46 0,43 0,46 0,47 0,49 0,57 0,51 0,51 0,52 0,54 0,53	$\begin{array}{c} \lambda_1 \\ 0,40 \\ 0,56 \\ 0,69 \\ 0,80 \\ 0,91 \\ 0,98 \\ 1,06 \\ 1,13 \\ 1,20 \\ 1,28 \\ 1,39 \\ 1,50 \\ 1,56 \end{array}$		T _s 5,85 7,02 7,25 8,36 9,40 8,38 9,12 9,86 10,55 11,24 12,65 13,91 14,70	L _{AP} 1,04 1,08 1,12 1,17 1,21 1,26 1,31 1,35 1,40 1,45 1,55 1,64 1,69	Ct 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	ε 0,18 0,15 0,15 0,14 0,13 0,15 0,14 0,14 0,14 0,13 0,12 0,12 0,12	IAE/bf 1,33 1,64 1,94 2,17 2,43 2,54 2,74 2,92 3,10 3,34 3,67 4,07 4,31	IAE /p 11,64 16,55 20,00 22,93 25,26 27,88 29,92 31,84 33,60 34,93 38,27 41,46 42,81

.