

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l'utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale.

Contact: ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

S/M3 96/6

DB127 121

Université de Metz UFR SciFA

Laboratoire de Chimie Organique

THESE

présentée à l'Université de METZ en vue de l'obtention du grade de

DOCTEUR DE L'UNIVERSITE DE METZ

MENTION CHIMIE

par

Catherine SCHIES

BIBL	BIBLIOTHEQUE UNIVERSITAIRE - METZ			
N° inv	inv 19960125			
Cote	SM3 96/6			
Loc	Majasin			

ETUDE DE LA REACTIVITE

DE MOLECULES SULFUREES FONCTIONNALISEES

VIS A VIS DE SYSTEMES

ELECTROPHILES ET NUCLEOPHILES

soutenue le 1er Avril 1996 devant la commission d'examen

Membres du Jury

M. J. M. DENIS

Directeur de recherches au C.N.R.S. de RENNES I (Rapporteur)

M. P. LE PERCHEC

Directeur de recherches au C.N.R.S. de VERNAISON (Rapporteur)

M. D. PAQUER

Professeur de l'Université de METZ (Directeur de thèse)

M. J. L. MIELOSZYNSKI

Professeur de l'Université de METZ

A mon Père

REMERCIEMENTS

Le travail décrit dans ce mémoire a été effectué au Laboratoire de Chimie Organique de l'Université de Metz, sous la diretion de Messieurs les Professeurs D. PAQUER et J.L. MIELOSZYNSKI. Je tiens à leur exprimer mes sincères remerciements pour l'appui et les conseils qu'ils m'ont toujours témoignés.

Je prie Monsieur J. M. DENIS, Directeur de Recherches au C.N.R.S. (Rennes) et Monsieur P. Le PERCHEC, Directeur de Recherches au C.N.R.S. (Vernaison) de croire à ma plus respectueuse reconnaissance pour m'avoir fait l'honneur de juger ce travail.

Je remercie également tous les membres du laboratoire qui m'ont permis, par leur collaboration ou par amitié, d'effectuer ce travail dans de bonnes conditions.

Je pense ainsi à Mademoiselle M. CURCI, maitre de conférence à l'université de Metz, pour la disponibilité et les conseils qu'elle m'a prodigués.

Mes pensées se tournent également vers tous les techniciennes du laboratoire et plus précisément M^{lle} C. LUCAS pour la réalisation des spectres de masse, M^{me} M. WANIOWSKI pour la réalisation des spectres de RMN ¹H et ¹³C, M^{me} F. WUNSCH et M^{me} V. PODDIG.

Que tous mes collègues du Laboratoire trouvent ici un témoignage de mon amitié et notamment : D. ROBERT, J.Y MELWIG, V. CARNOT, J. GEORGES, F. CAYE, D. JURY, Y. JULIEN, B. STEPHAN, P. CHAUDRON, F. PLUVINAGE ainsi que tous les autres.

ABREVIATIONS

Azo-bis-isobutyronitrile - AIBN

Acide paratoluène sulfonique - APTS

Anti-usure - A.U. **Butyle** - n.Bu Isobutyle - i.Bu Tertiobutyle - t.Bu Benzyle - Bz Composé - Cp Cyclohexyle - Cyclo(6) :

Diméthylformamide - DMF

Electrophile - E Point d'ébullition - Eb Extrême-pression - E.P.

Ethyle - Et

Chromatographie gazeuse / Spectrométrie de masse

- GC/MS : - HMPT : Hexaméthyl phosphorotriamide

Ionisation chimique - IC - I.C.U. : Indice charge usure Ionisation électronique

Infra-rouge

- 1E - I.R. : - L.C.O. : Laboratoire de chimie organique

Méthyle

Méthyléthylcétone - MEK Indice de réfraction - \mathbf{n}_{D}

Nucléophile - Nu Point de fusion - Pf

Phényle - Ph - Rdt - RMN Rendement

Résonance magnétique nucléaire

Technique d'écho de spin par transformée de Fourier - SEFT

Tétrahydrofuranne - THF Tétrahydropyranne - THP Tétraméthylsilane - TMS Temps de rétention - Tr Déplacement chimique - 9

SOMMAIRE

INLEODACLION	1
STRATEGIE DE SYNTHESE	3
CHAPITRE I : SYNTHESE DE MOLECULES SULFURIES FONCTIONNALISEES	9
I. Introduction	9
II. Préparation d'alcools et d'halogénures sulfurés	9
II.1. Synthèse d'alcools monosulfurés	9
II.1.1. Réaction entre des mercaptates alcalins et des alcools chlorés	10
II.1.2. Action d'un mercaptan sur une double liaison	12
II.1.3. Synthèse d'un alcool disulfuré non symétriq t.BuS2(CH2)2OH	ue 12
II.2. Synthèse d'halogénures sulfurés	14
II.2.1. Réaction de chloration d'alcools sulfurés	14
II.2.2. Réaction de thiochlorométhylation	15
II.2.3. Synthèse de bromures sulfurés	16
II.3. Synthèse de sulfoxydes et de sulfones	16
III. Synthèse de polysulfures	17
III.1. Synthèse de RS-A-SR	17
III.2. Synthèse de RS[(CH ₂) _n S] ₂ R	17
III.3. Synthèse de t.BuS[(CH ₂) ₂ S] ₃ t.Bu	18
IV. Synthèse d'hétérocycles sulfurés mono ou polyfonctionnalisés	19

IV.1. Synthèse du 3-méthoxythiacyclohexane	19
IV.2. Synthèse du 4,5-diméthoxy-3,3,6,6-tétraméthyl- thiacycloheptane	21
CHAPITRE II : REACTIVITE DE MOLECULES SULFUREES FONCTIONNALISEES	
ACTION DE NaI, [NaI + Me ₃ SiCl] ET Me ₃ SiI SUR DES SULFURES FONCTIONNALISES	23
I Présentation	23
I.1. Mise en évidence d'une réaction spécifique	23
I.2. Conditions de réaction	24
II. Réactions envisageables	25
III. Résultats expérimentaux	25
III.1. Résultats obtenus avec RSCH2CH2Cl [R ≠ t.Bu]	33
III.1.1. Cas de NaI	33
III.1.2. Cas de [NaI + Me ₃ SiCl] et Me ₃ SiI	38
III.2. Résultats obtenus avec RSCH ₂ CH ₂ Cl [R = t.Bu]	40
III.2.1. Cas du 1,4-dithiane	40
III.2.2. Cas des composés de type A2	42
III.3. Résultats obtenus avec i.BuS(CH ₂) _n Cl (n>2)	44
III.4. Résultats obtenus avec RSCH ₂ C(R ₁)(R ₂)Cl	46
III.4.1. Cas de RSCH ₂ CH(CH ₃)Cl	46
III.4.2. Cas de RSCH ₂ C(CH ₃) ₂ Cl	48
III.5. Autres sulfures et sulfones	49
III.6. Cas des sulfures hétérocycliques	50
III.7. Détermination des paramètres influençants la synthèse de dithiane	52

IV. Conclusion	53
REACTIONS SPECIFIQUES D'ALCOOLS SULFURES AVEC UN CATALYSEUR ACIDE [APTS OU HCL]	54
I. Introduction	54
II. Conditions des réactions	55
III. Réactions envisageables	55
IV. Résultats et discussions	56
V. Conclusion	58
CHAPITRE III : PARTIE ANALYTIQUE	
METHODES D'ANALYSE	59
I. Présentation	59
II. Résultats en GC/MS	59
II.1. Principe	59
II.2. Discussions des résultats	60
II.2.1. GC/MS des halogénures sulfurés RS-A-X [X = Cl, I]	60
II.2.2. GC/MS des sulfures de type A1	64
II.2.3. GC/MS des sulfures de type A2	66
II.2.4. GC/MS des dithianes	67
II.2.5. GC/MS de composés divers	69
III. Conclusion	70
annexes du chapitre iii : Tabileaux 3.9, 3.10, 3.11	
TABLEAU 3.9 : RECAPITULATIF DES MASSES OBSERVEES EN SM	86

TABLEAUX 3.10, 3.11 : COMPOSES A1 CARACTERISES PAR RMN	88
I. RMN ¹ H	88
п. RMN ¹³ С	88
CHAPITRE IV : PARTIE EXPERIMENTALE	
TECHNIQUES UTILISEES	96
PARTIE EXPERIMENTALE	97
I. Synthèse d'alcools et d'halogénures sulfurés	97
I.1. Synthèse d'alcools monosulfurés	97
I.1.1. Méthode de préparation du 5-chloropentanol	97
I.1.2. Réaction d'un mercaptan sur un alcool chloré	98
I.1.3. Réaction d'un mercaptan sur un alcène	104
I.2. Synthèse du 2-hydroxyéthyltertiobutyl disulfure	105
I.3. Synthèse de chlorures sulfurés	107
I.4. Préparation de composés thiochlorométhylés	112
I.5. Synthèse de bromures sulfurés	112
I.6. Synthèse de chlorosulfoxydes et sulfones	114
I.6.1. Synthèse de chlorosulfoxydes	114
I.6.2. Synthèse de chlorosulfones	116
п. Synthèse de polysulfures symétriques	116
II.1. Synthèse des composés du type A1	116
II.2. Synthèse des composés du type A2	122
II.3. Synthèse des composés du type A3	122
II.3.1. Préparation d'alcools polysulfurés	122

II.3.2. Préparation de chlorures polysulfurés	123
II.3.3. Préparation du composé de type A3	125
III. Synthèse d'hétérocycles sulfurés fonctionnalisés	126
III.1. Synthèse du 3-méthoxythiacyclohexane	126
III.1.1. Préparation du α,β'dicarbéthoxyméthyléthyl sulfure	126
III.1.2. Synthèse du 2 ou 4-carbéthoxy- thiacyclohexan-3-one	126
III.1.3. Synthèse du thiacyclohexan-3-one	127
III.1.4. Synthèse du thiacyclohexan-3-ol	128
III.1.5. Synthèse du 3-méthoxy- thiacyclohexane	128
III.2. Synthèse du 4,5-diméthoxy-3,3,6,6-tétraméthyl- thiacycloheptane	130
III.2.1. Synthèse de l'acide thiodipivalique	130
III.2.2. Synthèse du diéthyl thiodipivalate	131
III.2.3. Synthèse du 3,3,6,6-tétraméthyl- thiacycloheptan-4-one-5-ol	131
III.2.4. Synthèse du 3,3,6,6-tétraméthyl- thiacycloheptan-4,5-diol	132
III.2.5. Synthèse du 4,5-diméthoxy-3,3,6,6- tétraméthyl-thiacycloheptane	132
IV. Réactivité de molécules sulfurées vis à vis des systèmes le la	
NaI, [NaI + Me3SiCl] et Me3SiI	134
IV.1. En présence de NaI	134
IV.2. En présence de [NaI + Me3SiCl]	134
IV.3. En présence de Me3SiI	135
V. Réactivité d'alcools sulfurés vis à vis de catalyseurs acides [APTS, HCl]	135
V.1. En présence d'APTS	135

V.2. En présence d'HCl	135
CONCLUSION	136
CHAPITRE V : ANNEXES	
annexes I : tests mecaniques sur machines 4 billes	
EVALUATION DES PROPRIETES MECANIQUES	138
I. Introduction	138
I.1. Généralités	138
I.2. Composés (poly)sulfurés	138
II. Principe de fonctionnement de la machine 4 billes	140
III. Résultats expérimentaux	141
Annexes II : Indices de Refraction	145
Annexes III: Recapitulatif des Molecules synthetisees	150
REFERENCES BIBLIOGRAPHIQUES	156

INTRODUCTION

INTRODUCTION

La chimie des composés organo-soufrés a suscité, depuis de nombreuses années, un intérêt extrêmement important pour les chimistes qu'ils soient organiciens ou minéralistes. Ceci tient au fait que les propriétés présentées par ces molécules sont particulièrement "riches" tant au point de vue industriel que fondamental. Le nombre de publications consacrées à leur étude en est la parfaite illustration 1-6a.

Cette chimie reste toutefois relativement complexe et si beaucoup de mécanismes sont connus, d'autres nécessitent encore une attention

particulière.

Compte tenu de l'orientation de notre laboratoire (synthèse de molécules sulfurées et phosphorées), l'utilisation de composés sulfurés fonctionnalisés est fréquente en tant qu'intermédiaire de synthèse. Il en est ainsi des produits dont la formule générale est la suivante:

R-S-CH₂CH₂-X

(X = hétéroatome)

Ces molécules sont largement utilisées en synthèse et apparaissent dans de nombreux domaines:

- synthèse d'alcènes^{6b} ou d'alcynes^{6c},
- synthèse d'acryliques sulfurés^{6d-g},
- synthèse de molécules phospho-soufreés^{6h-j}...

Toutefois, ces composés conduisent très souvent à des produits non envisagés.

Ainsi, l'estérification d'acides avec les composés RS(CH2)nOH ne donne

de bons résultats que pour des valeurs de n≥3⁷⁻⁸.

A l'inverse, la réaction nucléophile d'un ion carboxylate sur un chlorure RS(CH₂)_nCl, par catalyse par transfert de phase, donne de bon rendement

uniquement lorsque n=2.

Ces mêmes problèmes ont été observés au cours d'autres synthèses notamment lors de la préparation de composés dithiophosphorés (RS(CH₂)_nO)PSSR, qui n'est possible que pour n>2, ainsi qu'au cours de tentatives pour améliorer la réactivité d'halogénures sulfurés en substituant un atome de chlore par un atome d'iode.

Le plus souvent, nous nous sommes jamais intéressés à ces produits secondaires.

C'est pourquoi nous avons décidé d'étudier fondamentalement la réactivité de composés sulfurés halogénés ou hydroxylés du type **R-S-(CH₂)_n-X** (X = OH, Cl, Br) envers des systèmes électrophiles ou nucléophiles.

$R-S-(CH_2)_nX$ E ou Nu

Les systèmes électrophiles (E) utilisés étant Me₃SiI et H⁺, tandis que NaI nous a servi de réactif nucléophile (Nu).

Ces réactions conduisant à un grand nombre de composés, il nous a semblé important de déterminer les corrélations pouvant exister entre la structure chimique des molécules testées et les produits formés.

Nous avons ainsi particulièrement examiné l'influence de la nature du radical R, de la longueur et l'encombrement de la chaine alkyle présente entre l'atome de soufre et l'halogène, ainsi que des conditions opératoires, sur la formation des différents produits identifiés.

Le protocole adopté pour cette étude est le suivant :

- caractérisation de tous les composés isolés.
 La méthode utilisée est le couplage d'une chromatographie gazeuse (GC) avec une spectrométrie de masse (MS).
- synthèse de la plupart des molécules identifiées afin de vérifier les structures proposées à partir des résultats analytiques de la GC/MS.

Suivant ces résultats, nous avons mis en évidence les mécanismes particuliers intervenants au cours de la réaction.

Nous avons également cherché à optimiser la synthèse de produits, issus de cette réaction, qui nous intéressaient. Pour cela, nous avons fait intervenir des plans d'expériences et/ou ACP.

Pour finir, du fait des spécialités du L.C.O., nous avons souhaité évaluer, à titre indicatif, les propriétés tribologiques (extrême-pression et anti-usure) de certains de ces composés; les polysulfures étant, en effet, couramment utilisés en tant qu'additifs pétroliers. Les résultats de ces essais sont présentés en annexe de ce travail.

Dans ce mémoire nous développerons successivement :

- la synthèse de sulfures fonctionnalisés, dont certaines préparations sont parfaitement maîtrisées par le laboratoire⁹,
- l'étude de la réactivité d'halogénures ou d'alcools sulfurés à l'égard de systèmes électrophiles et nucléophiles,
- les études analytiques,
- les résultats expérimentaux.

STRATEGIE DE SYNTHESE

L'objectif de ce travail repose sur l'étude de la réactivité de molécules sulfurées fonctionnalisées vis à vis de systèmes nucléophiles (NaI) et électrophiles ([NaI + Me₃SiCl], Me₃SiI et HX).

Pour cela, il nous a donc fallu, dans un premier temps, préparer des composés de départ suffisamment ciblés afin de répondre au mieux aux études envisagées.

Nous présentons dans les schémas suivants les principales réactions effectuées :

- Schéma 1 : Synthèse de molécules sulfurées fonctionnalisées

- Schéma 2a : Synthèse d'hétérocycle sulfuré monofonctionnalisé

- Schéma 2b : Synthèse d'hétérocycle sulfuré polyfonctionnalisé

- Schéma 3 : Réactivité d'halogénures sulfurés

Action de NaI ou [NaI + Me3SiCl] ou Me3SiI sur

R-S-(CH₂)_n-Cl

- Schéma 4 : Réactivité d'alcools sulfurés R-S-(CH₂)₂-OH en

présence d'un catalyseur acide [APTS ou HCl]

SCHIEMA 1

Synthèse de molécules sulfurées fonctionnalisées

RSH +
$$CH_3O$$

Q OH

RSH + CH_3O
Q OH

A étapes

RSH + CH_3O
Q OH

RSH | $x = 1, 2$

Na₂S.9H₂O
| $x = 1$
Q OH

RSH | $x = 1, 2$

SCHIEMIA 2a

Synthèse d'hétérocycle sulfuré monofonctionnalisé

SCHEMA 2b

Synthèse d'hétérocycle sulfuré polyfonctionnalisé

SCHIEMA 3

Réactivité d'halogénures sulfurés :

Action de NaI ou [NaI + Me3SiCl] ou Me3SiI sur R-S-(CH2)n-Cl

SCHIEMA 4

Réactivité d'alcools sulfurés R-S(CH2)2-OH en présence d'un catalyseur acide [APTS ou HCl]

$$\begin{array}{c} R \\ R \\ S \\ 2 \\ OH \end{array}$$

CHAPITRE I

Synthese de Molecules Sulfurees fonctionnalisees

SYNTHESE DE MOLECULES SULFUREES FONCTIONNALISEES

I) Introduction

Nos travaux, consacrés à l'étude de la réactivité spécifique de molécules sulfurées fonctionnalisées, vis à vis de systèmes nucléophiles et électrophiles nous ont amenés à préparer plusieurs séries de composés.

Ceux-ci peuvent être classés comme suit :

- Alcools monosulfurés,
- Alcools disulfurés non symétriques,
- Halogénures mono et disulfurés,
- Chloro-sulfoxydes et sulfones,
- Polysulfures symétriques,
- Hétérocycles sulfurés mono ou polyfonctionnalisés.

II) Préparation d'alcools et d'halogénures sulfurés

La chimie de ces composés, bien connue du L.C.O., a fait l'objet de nombreux travaux qui seront référencés dans les paragraphes ci-dessous. Cet acquis, nous l'avons developpé et diversifié dans le but de pouvoir réaliser nos objectifs.

II.1) Synthèse d'alcools monosulfurés

Les voies d'accès aux monosulfures hydroxylés sont nombreuses et bien décrites dans la littérature 10-16. Lors de nos synthèses, nous avons utilisé différentes méthodes suivant le composé visé et la réactivité éventuelle des fonctions présentes.

Tableau 1.1 a : Synthèse d'alcools sulfurés

RSH + Cl-(CH₂)_n-OH
$$\frac{\text{NaOH}}{\text{EtOH 95}^{\circ}}$$
 RS-(CH₂)_n-OH

Essai	n °	R	n	Rdt* (%)
1	1	n.Bu	2	83
2	2	i.Bu	2	78
3	3	t.Bu	2	84
4	4	Cyclo(6)	2	86
5	5	Ph	2	80
6	6	Bz	2	78
7	7	i.Bu	3	69
8	8	i.Bu	4	58
11	11	i.Bu	5	77
12	12	i.Bu	6	80

^{*} Les rendements sont calculés par rapport à l'alcool chloré

 $\underline{\text{Tableau 1.1 b}}$: Synthèse d'alcools sulfurés

Essai	n °	R	A	Rdt* (%)
13	13	i.Bu	CH2CH(Me)	83
14	14	t.Bu	CH2CH(Me)	75
15	15	i.Bu	CH2C(Me)2	73
16	16	t.Bu	CH2C(Me)2	78
17	17	i.Bu	CH2C(CH3)2CH2	67

^{*} Les rendements sont calculés par rapport à l'alcool chloré

II.1.1) <u>Réaction entre des mercaptates alcalins et des alcools</u> chlorés

La méthode utilisée est celle préconisée par E. Reids². Elle consiste à faire réagir un halogéno-alcool sur un mercaptate alcalin en milieu alcoolique. Les réactions réalisées, sur des alcools primaires et secondaires, sont les suivantes :

RSH + Cl OH EtOH 95° R S OH

$$n = 2-6$$
 Essais 1-8, 11-12

 $n^{\circ} = 1-8, 11-12$

RSH + Cl OH EtOH 95° R A OH

Essais 13-17

$$n^{\circ} = 13-17$$

Nous avons obtenu les composés souhaités avec, pour la plupart, de bons rendements (tableaux 1.1 a-c).

Tableau 1.1 c : Synthèse d'alcools sulfurés

2 RSH +
$$\left[\text{Cl-CH}_2\right]_2^2$$
CHOH $\frac{\text{NaOH}}{\text{EtOH 95}^{\circ}}$ $\left[\text{RS-CH}_2\right]_2^2$ CHOH

Essai	n°	R	Rdt* (%)
18	18	i.Bu	77
19	19	t.Bu	69

^{*} Les rendements sont calculés par rapport à l'alcool chloré

Remarque:

Les chloro-alcools utilisés sont tous commerciaux à l'exception du 5-chloropentan-1-ol que nous avons dû synthétiser.

Deux voies d'accès étaient envisageables.

L'une consistait à faire réagir l'acide chlorhydrique gazeux sur le tétrahydropyranne¹⁷. Cette réaction, difficilement contrôlable, est décrite avec un rendement médiocre. Nous avons alors choisi d'utiliser la méthode d'ouverture du tétrahydropyranne par le chlorure d'acétyle en présence de chlorure de zinc¹⁸.

$$R \longrightarrow Cl + ZnCl_{2} \xrightarrow{85^{\circ}C, 2h} \left[ZnCl_{3}\right]^{\Theta} + \left[R^{-}C^{=}O\right]$$

$$R \longrightarrow Cl + ZnCl_{2} \qquad R \longrightarrow Cl$$

$$Essai 9$$

$$n^{\circ} = 9$$

$$Rdt = 89 \%$$

Cette réaction, suivie d'une transestérification 19, permet d'obtenir le 5-chloropentan-1-ol avec un bon rendement.

R O Cl + EtOH NaOH HO Cl + R OEt

Essai 10

$$\mathbf{n}^{\circ} = \mathbf{10}$$
 $\mathbf{R} \mathbf{d} \mathbf{t} = 89 \%$

II.1.2) Action d'un mercaptan sur une double liaison

Cette méthode de préparation d'alcools sulfurés a été privilégiée lorsque les alcools chlorés de départ sont difficilement accessibles. Elle s'effectue selon un processus radicalaire, en présence d'azo-bis-isobutyronitrile (AIBN) comme agent d'initiation, et conduit aux produits d'addition anti-Markownikov^{12, 20}. Nous avons utilisé ce mode opératoire pour synthétiser un alcool à longue chaine alkylène (n=11) entre l'atome de soufre et la fonction hydroxyle.

i.BuSH +
$$\frac{\text{AIBN}}{\Delta}$$
 $\frac{\text{OH}}{\Delta}$ $\frac{\text{S}}{\text{i.Bu}}$ $\frac{\text{OH}}{11}$ $\frac{\text{Essai 20}}{\text{Rdt} = 81 \%}$

II.1.3) <u>Synthèse d'un alcool disulfuré non symétrique</u> t.BuS₂(CH₂)₂OH

Les disulfures disymétriques, difficiles d'accès, sont généralement obtenus à l'aide de réactions complexes^{3, 21, 22}. Ainsi, le 2-hydroxyéthyl tertiobutyl disulfure est obtenu à partir des travaux de S. J. Brois *et al.*²¹, qui utilisent les propriétés nucléophiles d'un mercaptate sur un dérivé méthoxycarbonylsulfénylé.

$$CH_3OCSSR + R'SH \longrightarrow RSSR'$$

Cette méthode se déroule en 4 étapes successives, à partir du perchlorométhylmercaptan, et peut se résumer de la façon suivante :

Synthèse du chlorure de chlorocarbonylsulfényle

Il est obtenu, selon la méthode de L. Field *et al.*²², par action du perchlorométhyl mercaptan sur de l'eau en milieu acide sulfurique concentré.

Cl₃CSCl + H₂O
$$\xrightarrow{\text{H}_2SO_4}$$
 Cl SCl O Essai 21
$$\mathbf{n}^{\circ} = 21$$
 Rdt = 57 %

♦ Synthèse du chlorure de méthoxycarbonylsulfényle

CH₃ÖH + Cl SCl
$$\xrightarrow{\text{éther}}$$
 CH₃O SCl $\xrightarrow{\text{Essai } 22}$ $n^{\circ} = 22$ Rdt = 82 %

♦ Action du 2-mercaptoéthanol sur le dérivé n° 22

CH₃O SCl + HS OH
$$\stackrel{\text{MeOH}}{\longrightarrow}$$
 CH₃O S S OH $\stackrel{\text{Essai}}{\bigcirc}$ 23 Rdt = 99 %

♦ Synthèse du 2-hydroxyéthyl tertiobutyl disulfure

CH₃O S 2 OH

$$t.BuSH$$
 $t.Bu$ S OH

 $Essai 24$
 $n^{\circ} = 24$
 $Rdt = 91 \%$

Tableau 1.2 a : Synthèse de chlorures sulfurés

$$RS(CH_2)_n OH + SOCl_2 \xrightarrow{CHCl_3} RS(CH_2)_n Cl$$

Essai	n °	R	n	Rdt* (%)
25	25	n.Bu	2	79
26	26	i.Bu	2	87
27	27	t.Bu	2	80
28	28	Cyclo(6)	2	86
29	29	Cyclo(6) Ph	2	92
30	30	Bz	2	81
31	31	t.BuS	2	65
32	32	i.Bu	3	89
33	33	i.Bu	4	56
34	34	i.Bu	5	72
35	35	i.Bu	6	85
36	36	i.Bu	11	79

^{*} Les rendements sont calculés par rapport à l'alcool sulfuré

<u>Tableau 1.2 b</u>: Synthèse de chlorures sulfurés

R-S-A-OH + SOCl₂
$$\xrightarrow{\text{CHCl}_3}$$
 R-S-A-Cl

Essai	n°	R	A	Rdt* (%)
37	37	i.Bu	CH2CH(Me)	89
38	38	t.Bu	CH2CH(Me)	75
39	39	i.Bu	CH2C(Me)2	91
40	40	t.Bu	CH2C(Me)2	76
41	41	i.Bu	CH2C(CH3)2CH2	85

^{*} Les rendements sont calculés par rapport à l'alcool sulfuré

II.2) Synthèse d'halogénures sulfurés

Les halogénures sulfurés sont obtenus à partir des alcools précédents, à l'exception toutefois de ceux qui ne comportent qu'un seul groupement méthylène entre le soufre et l'halogéne. Pour ceux-ci une mise en œuvre particulière est nécessaire.

II.2.1) Réaction de chloration d'alcools sulfurés

De nombreux composés minéraux (SOCl₂, PCl₅, HCl, ...) permettent le passage de l'alcool à l'halogénure. Suite aux travaux effectués au L.C.O, il est apparu que la méthode de W. R. Kirner²³, qui utilise le chlorure de thionyle comme agent de chloration, donne des résultats tout à fait satisfaisants dans le cas des alcools sulfurés.

Cette réaction consiste à additionner l'agent chlorant en deux temps, à température ambiante puis à reflux du chloroforme, afin d'avoir la réaction la plus complète possible.

Les différents rendements obtenus sont présentés dans les tableaux 1.2 a-c.

<u>Tableau 1.2 c</u>: Synthèse de chlorures sulfurés

$$\begin{bmatrix} RSCH_2 \end{bmatrix}_2^2 CHOH + SOCl_2 \xrightarrow{CHCl_3} \begin{bmatrix} RSCH_2 \end{bmatrix}_2^2 CHCl$$

Essai	n °	R	Rdt* (%)
42	42	i.Bu	88
43	43	t.Bu	82

^{*} Les rendements sont calculés par rapport à l'alcool sulfuré

Tableau 1.3 : Synthèse d'alkyles chlorométhyles sulfures

HCHO + RSH
$$\frac{\text{HCl}}{\text{Toluène}}$$
 RSCH₂Cl

Essai	n°	R	Rdt* (%)
44	44	n.Bu	20
45	45	i.Bu	0
46	46	Ph	85
47	47	Bz	69

^{*} Les rendements sont calculés par rapport à l'alcool sulfuré

II.2.2) Réaction de thiochlorométhylation

Elle consiste à faire réagir un mercaptan sur le formaldéhyde en présence d'acide chlorhydrique concentré. Cette réaction, connue pour le thiophénol, a également été testée avec d'autres mercaptans **RSH** (R = n.Bu, i.Bu, Bz) en appliquant directement les conditions opératoires décrites²⁴ (tableau 1.3) :

RSH + HCHO
$$\frac{\text{HCl}}{\text{Toluène, }40^{\circ}\text{C}}$$
 RSCH₂Cl

Il apparait que seul la réaction avec le thiophénol conduit au produit souhaité avec un bon rendement. En effet, dans les autres cas, on observe la présence d'une quantité non négligeable d'un produit secondaire, **RSCH2SR**, du à une réaction de thioalkylation.

Cette réaction secondaire s'explique par la formation, transitoire, d'un ion carbénium-sulfonium $^{24-27}$

$$\stackrel{\oplus}{\text{RS}=\text{CH}_2}$$
 $\stackrel{\longleftarrow}{\longleftarrow}$ $\text{RS}-\text{CH}_2^{\oplus}$

qui peut alors réagir avec une deuxième molécule de mercaptan.

Deux schémas réactionnels sont possibles 24 :

HCHO
$$\xrightarrow{\text{Voie 1}}$$
 H $-\overset{\text{H}}{\text{Cl}}$ $\xrightarrow{\text{OH}_2}$, $\text{Cl}}$ $\xrightarrow{\text{RSH}}$ $\xrightarrow{\text{Cl}^2}$ CH_2 $\overset{\text{Cl}^2}{\text{SR}}$ Voie 2 RSH RSCH_2 OH $\xrightarrow{\text{HCl}}$ RS^2 CH_2 $\overset{\text{Cl}}{\text{Cl}}$ $\xrightarrow{\text{RSH}}$ RSCH_2 SR

Si les deux voies sont envisageables, la **voie 1** est la plus couramment admise 24 .

$\underline{Tableau\ 1.4}$: Synthèse de bromures sulfurés

$$RS(CH_2)_n OH + PBr_3 \xrightarrow{\text{\'ether}} RS(CH_2)_n Br$$

Essai	n °	R	Rdt* (%)
48	48	i.Bu	72
49	49	t.Bu	85

^{*} Les rendements sont calculés par rapport à l'alcool sulfuré

Dans le cas du thiophénol, la réaction conduit uniquement au chlorométhylthiobenzène car la formation de l'ion sulfonium est moins favorisée. En effet, dans ce cas, le doublet du soufre est engagé dans le système électronique du noyau aromatique^{28, 29}.

II.2.3) Synthèse de bromures sulfurés

Ces composés ont été obtenus à partir des alcools sulfurés correspondants par action du tribromure de phosphore (PBr₃) selon la méthode de C. R. Noller³⁰.

Les résultats obtenus sont présentés dans le tableau 1.4.

II.3) Synthèse de sulfoxydes et de sulfones

L'oxydation des thioéthers en sulfoxydes et sulfones est facilement réalisable. Il existe à cet effet de nombreux agents d'oxydation tels que l'acide peracétique, le periodate de sodium, l'eau oxygénée...

Des travaux précédemment réalisés au L.C.O. 10, nous ont conduit à utiliser le peroxyde d'hydrogène (H2O2) à 30%31 pour obtenir les composés souhaités.

R = t.Bu

R = t.Bu

$$R = t.Bu$$
 $R = t.Bu$
 $R = t.Bu$

<u>Tableau 1.5 a</u>: Synthèse de polysulfures

$$RS(CH_2)_n CI + RSH \xrightarrow{NaOH} RS(CH_2)_n SR$$

Essai	n°	R	n	Rdt* (%)
52	52	n.Bu	2	81
53	53	i.Bu	2	90
54	54	t.Bu	2	94
55	55	Cyclo(6)	2	80
56	56	Cyclo(6) Ph	2	95
57	57	Bz	2	97
58	58	t.BuS	2	95
59	59	i.Bu	3	82
60	60	i.Bu	4	79
61	61	i.Bu	5	66
62	62	i.Bu	6	55
63	63	i.Bu	11	36

^{*} Les rendements sont calculés par rapport au chlorure sulfuré

<u>Tableau 1.5 b</u>: Synthèse de polysulfures

R-S-A-Cl + RSH
$$\frac{\text{NaOH}}{\text{EtOH 95}^{\circ}}$$
 RS-A-SR

Essai	n °	R	A	Rdt* (%)
64	64	i.Bu	CH2CH(Me)	62
65	65	t.Bu	CH2CH(Me)	57
66	66	i.Bu	CH2C(Me)2	52
67	67	t.Bu	CH2C(Me)2	19

^{*} Les rendements sont calculés par rapport au chlorure sulfuré

III) Synthèse de polysulfures

III.1) Synthèse de RS-A-SR

Ces composés sont simplement obtenus par réaction entre un halogénure sulfuré et un mercaptate alcalin en milieu alcoolique².

• RSH + Cl SR EtoH 95° R SR SR
$$\frac{\text{NaOH}}{\text{EtOH 95°}}$$
 RSH + Cl SR Essais 52-63 $\frac{\text{NaOH}}{\text{EtOH 95°}}$ RSH + Cl A SR $\frac{\text{NaOH}}{\text{EtOH 95°}}$ RSH SR $\frac{\text{Essais 64-67}}{\text{n° = 64-67}}$ $\frac{\text{Essais 64-67}}{\text{n° = 64-67}}$ $\frac{\text{Essais 64-67}}{\text{EtoH 95°}}$ $\frac{\text{Essais 68-69}}{\text{n° = 68-69}}$

Les rendements obtenus varient de façon significative d'un composé à l'autre et sont présentés dans les tableaux 1.5 a-c.

III.2) Synthèse de RS[(CH₂)_nS]₂R

Nous avons accèdé à ces polysulfures à partir des chlorures sulfurés (§ III.2.1.), en les faisant réagir sur du sulfure de sodium en milieu aqueux³².

<u>Tableau 1.5 c</u>: Synthèse de polysulfures

$$\begin{bmatrix} RSCH_2 \end{bmatrix}_2^{CHCl} + RSH \xrightarrow{NaOH} \begin{bmatrix} RSCH_2 \end{bmatrix}_2^{CHSR}$$

Essai	n°	R	Rdt* (%)
68	68	i.Bu	27
69	69	t.Bu	34

^{*} Les rendements sont calculés par rapport au chlorure sulfuré

<u>Tableau 1.6</u>: Synthèse de polysulfures

$$2 \text{ RS(CH}_2)_n \text{ Cl} + \text{Na}_2 \text{S.9H}_2 \text{O} \longrightarrow \text{RS} \left[(\text{CH}_2)_n \text{S} \right]_2^R$$

Essai	n°	R	n	Rdt* (%)
70	70	t.Bu	2	89
71	71	i.Bu	3	83
72	72	i.Bu	6	88

^{*} Les rendements sont calculés par rapport au chlorure sulfuré

Cette réaction permet d'aboutir aux produits purs souhaités avec des rendements tout à fait satisfaisants (tableau 1.6).

III.3) Synthèse de t.BuS[(CH2)2S]3t.Bu

La préparation de ce dérivé nécessite la mise en œuvre de plusieurs étapes qui peuvent se résumer selon le schéma réactionnel suivant :

tBuS Cl + HS OH NaOH EtOH 95° tBu S 2 OH

$$n^{\circ} 73$$
 $Rdt = 82 \%$
 $socl_2$
 $n^{\circ} 75$
 $Rdt = 83 \%$
 $socl_2$
 tBu
 $socl_2$
 s

Le rendement global est de 23 %.

IV) Synthèse d'hétérocycles sulfurés mono ou polyfonctionnalisés

Nous avons choisi de préparer deux hétérocycles sulfurés

- L'un monofonctionnalisé : le 3-méthoxythiacyclohexane
- L'autre polyfonctionnalisé : le 4,5-diméthoxy-3,3,6,6-tétraméthyl-thiacycloheptane.

IV.1) Synthèse du 3-méthoxythiacyclohexane

La préparation du 3-méthoxythiacyclohexane est obtenu au terme d'une série de quatre étapes successives qui se résume comme suit :

EtO CH₂SH + Br
$$_3$$
 OEt EtO S $_3$ OEt $_4$ OCH $_3$ OEt $_3$ OEt $_4$ OH $_4$ OH $_4$ OH $_5$ OH $_5$

Au cours de la réaction de cyclisation de Dieckmann^{33, 34}, effectuée sur le diester sulfuré **78**² en milieu basique, nous avons observé la formation d'un mélange de deux isomères **79 a** et **79 b** dans un rapport de : 80/20. L'obtention de ces composés peut s'expliquer selon le mécanisme suivant :

Nous n'avons pas cherché à séparer ces deux isomères et à partir de ce mélange, nous avons pu réaliser la synthèse de la thiacyclohexan-3-one (80) par simple décarboxylation³⁵ en milieu acide sulfurique. Ce composé, une fois réduit par de l'hydrure de lithium et d'aluminium³⁶, est méthylé par de l'iodure de méthyle³⁷ pour donner le composé final attendu (82).

Le rendement global de cette synthèse est de 30 %.

IV.2) Synthèse du 4,5-diméthoxy-3,3,6,6-tétraméthylthiacycloheptane

Tout comme pour le dérivé cyclique précédent, la synthèse de cette molécule nécessite plusieurs réactions :

2 Cl OH + Na₂S.9H₂O
$$\longrightarrow$$
 S OH \bigcirc OH \bigcirc Na Rdt = 59 % \bigcirc OOH \bigcirc Na Xylène \bigcirc S \bigcirc OEt \bigcirc OEt \bigcirc Na Xylène \bigcirc OEt \bigcirc OEt \bigcirc Na Xylène \bigcirc OEt \bigcirc OEt \bigcirc Na Xylène \bigcirc OEt \bigcirc OET \bigcirc Na Xylène \bigcirc OET \bigcirc OET \bigcirc OET \bigcirc Na Xylène \bigcirc Na Xylène \bigcirc Na Xylène \bigcirc Na Xylène \bigcirc OET \bigcirc OET \bigcirc OET \bigcirc OET \bigcirc Na Xylène \bigcirc OET \bigcirc OET \bigcirc OET \bigcirc Na Xylène \bigcirc Na Xylène \bigcirc Na Xylène \bigcirc Na Xylène \bigcirc OET \bigcirc OET \bigcirc OET \bigcirc Na Xylène \bigcirc Na Xylène \bigcirc Na Xylène \bigcirc OET \bigcirc OET \bigcirc Na Xylène \bigcirc Na Xylène \bigcirc OET \bigcirc OET \bigcirc Na Xylène \bigcirc OET \bigcirc OET \bigcirc Na Xylène \bigcirc Na

Rdt = 45 %

Rdt = 78 %

L'estérification de l'acide thiodipivalique, selon le procédé de G. Greene 38 , conduit au diester $\mathbf{84}$. Ce composé est alors cyclisé par la méthode de condensation aux acyloïnes 39 pour former le dérivé $\mathbf{85}$. Le 3 , 6 , 6 -tétraméthylthiacycloheptan- 4 -one- 5 -ol ainsi formé est réduit par l'hydrure de lithium et d'aluminium 36 en son diol correspondant. Ce dernier est méthylé par l'iodure de méthyle 37 .

Le rendement global de cette synthèse est de 11 %.

CHAPITRE II

REACTIVITE DE MOLECULES SULFUREES
FONCTIONNALISEES

ACTION DE NaI, [NaI + Me3SiCl] ET Me3SiI SUR DES SULFURES FONCTIONNALISES

I) Présentation

I.1) Mise en évidence d'une réaction spécifique

L'utilisation de dérivés sulfurés en chimie organique a connu un essort considérable depuis plusieurs années 1, 40-45. Ceci résulte des propriétés particulières de l'atome de soufre qui font de ces composés organiques des intermédiaires particulièrement intéressants en synthèse. Ainsi les halogénures sulfurés permettent l'accés à d'autres sulfures par différentes méthodes.

$$R$$
 X R R R

Dans le cas particuliers des dérivés chloro-sulfurés, on a cherché à améliorer la réactivité de la molécule en substituant le chlore par l'iode selon la réaction de Finkelstein⁴⁶. Pour cela, différentes méthodes sont envisageables⁴⁷⁻⁵⁷. Des travaux précédemment menés au laboratoire ont montré que suivant les conditions opératoires choisies^{58, 59}, ces composés présentent un comportement différent.

Ainsi l'action de l'iodure de sodium (NaI) dans la butanone (MEK)⁴⁷ permet d'obtenir les dérivés iodés attendus avec de bons rendements.

Par contre, cette même réaction dans l'acétonitrile conduit à des disulfures.

Il en va de même lorsque l'on utilise le système [NaI + Me3SiCl].

Il nous est alors apparu fondamental d'étudier cette réaction de manière plus complète.

I.2) Conditions de réaction

De manière générale, les différents modes opératoires appliqués pour cette étude sont les suivants :

- NaI (2eg) : chauffage à reflux dans l'acétonitrile durant 30 heures,
- NaI (2eq) + Me₃SiCl (3eq) : chauffage à reflux dans l'acétonitrile, sous atmosphère d'azote, pendant 30 heures,
- Me₃SiI (2eq) : chauffage à reflux dans l'acétonitrile, sous atmosphère d'azote, durant 30 heures.

Toutefois, afin d'évaluer la réactivité des halogénures sulfurés vis à vis de ces différents réactifs, nous avons fait varier :

- la nature du radical R,
- la chaîne hydrocarbonnée A,
- les conditions opératoires utilisées.

TABLEAU 2.1 : Numérotation et représentation des composés synthètisés

Composés	Sigles	n °
RS-A-Cl	Z -Cl	101-200
RS-A-I	Z -I	201-300
RS-A-SR	A 1	301-400
RS-A-S-A-SR	A2	401-500
Autres		501-1000

II) Réactions envisageables

Globalement, l'action de NaI, [NaI + Me₃SiCl] et Me₃SiI sur le sulfure RS-A-Cl conduit à la formation de plusieurs produits représentés ci-aprés :

$$\begin{bmatrix}
R & S & CI \\
R & S & A
\end{bmatrix}$$

$$\begin{bmatrix}
R & S & A & CI \\
R & S & A
\end{bmatrix}$$

$$\begin{bmatrix}
R & S & A & S \\
R & S & A
\end{bmatrix}$$

$$R & R & R$$

Dans un but de simplification, on adoptera désormais pour l'ensemble de ces composés les représentations et numérotations ci-contre (tableau 2.1).

III) Résultats expérimentaux

Remarque : La feuille "volante" jointe est destinée à faciliter la lecture de ce mémoire.

	s de réaction : Chau				-
ssais	Réactifs	Solvant	Z-C1	Z-I	A1
	utilisés		Tr	Tr	Tr
			%	%	%
101	aucun	aucun	6,9		
			100%		
102	aucun	MeCN	6,8		
			100%		
103	NaI	aucun	7	11,2	18,9
			9%	29%	62%
113	NaI	MeCN		11,4	19,2
				7%	93%
164	[NaI + Me3SiCl]	MeCN	6,9	12,4	20,6
			2%	8%	90%
104	Me3SiI	MeCN	7,0	12,2	20,8
			36%	32%	32%

Conditi	ons de réaction	: Chaun	age a renux	d'aceto	mtrue po	endant 3	o neure	:5	
			D	7.01	7.1	A1	A2	Autres	Autos
Essais		RS-SR	Dithiane	Z-C1	Z-I			Tr	Autres Tr
		Tr	Tr	<u>Tr</u>	Tr %	Tr %	Tr %	%	——————————————————————————————————————
0 (01	7000 01	%	%	90	90	70	70	70	70
K-S-(CF	12)2-Cl								
111	R	12,9	5,2			21,7		34,0	6,5
111	n.Bu	6%	5%			73%		6%	10%
		070	370			7070	<u> </u>		RSR
112	n.Bu	12,8	5,1			21,6		33,8	6,5
	m.bu	6%	6%			71%		8%	9%
		3,0	0,0						RSR
			7.11						
113	i.Bu				11,4	19,2			
					7%	93%			
114	i.Bu				11,1	19,1	-		
				·	7%	93%			
115	t.Bu	11,5	5,2		8,7	14,2	28,1	39,7	
		2%	60%		27%	1%	6%	4%	
116	t.Bu		4,8		8,6		28,0	39,5	
			56%		33%		7%	4%	
117	Cyclo(6)	27,6	5,3			35,3		24,1	
		1%	4%			87%		8%	
118	Cyclo(6)	27,6	5,1			35,4		23,9	5,3
		1%	1%			91%		6%	1%
					210		- "-	?	R-I
119	Ph	27,7			21,3	34,6			
		2%			90%	8%			
100	DI	07.0			01.1	24.2			
120	Ph	27,6			21,1	34,3		_	
	:	2%			9490	470			
121	Bz	27,6	4,9			39,2		8,5	22,5
121	52	55%	8%			21%		12%	4%
	!	RSR	0,0			2170		R-I	
122	Bz	27,1	4,8			38,9		8,2	22,5
		52%	10%			24%		10%	40%
		RSR			-			R-I	
			 			<u> </u>			
Les tem	ips de rétention (Tr) sont e	exprimés en	minutes					
	rcentages indiqu					GC/MS			

Conditi	ons de re	action	: Chauii	age à reflux	a aceto	mtrue po	endant 3	o neure	es	
			D0 0D	5 444						
Essais		-	RS-SR	Dithiane	Z-Cl	Z-I	A1	A2	Autres	Autres
		-	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr
D C (OT	(O) O1	-	%	%	%	%	%	%	%	%
R-S-(CH	12)n-C1 R			<u> </u>				_		
100		n	0.0			140	01.0	00.4	7.0	05.0
123	i.Bu	3	9,6			14,6	21,3	36,4	7,0	25,9
		1	3%			44%	21%	6%	15%	2%
¥ I(CH2	101	-							¥	¥¥
		2) 27								31,5
	2)3-S-(CH2 1-S(CH2)3-)OT							9%
124		3				140	01.0	20.4	7.0	***
124	i.Bu	3	9,7			14,8	21,3	36,4	7,0	25,9
			3%			40%	22%	8%	14%	3%
¥ I(CH2)	121								¥	¥¥
	31 2)3-S-(CH2	2)27								31,5
			10 r							
TTT LDL	ı-S(CH2)3-	S-(CHZ)	13-1							¥¥¥
125	i.Bu	4	10,1			19,0	22,8		28,9	34,2
125	1.Du	4	18%		······································	27%	16%		9%	11%
			10%			27%	10%		39,1	43,5
I es com	nosés "au	tres" ne	cont nac	identifiés					10%	9%
126	i.Bu	4	9,2	uertigies		19,4	23,8		31,3	38,1
120	1.Du		26%	-		23%	20%		10%	11%
-			2070	-		2370	2070		1070	44,1
Tes com	posés "au	trae" na	cont nac	identifiés						10%
LC3 COM	poses au	TES TRE	soru pus	uernytes						1070
127	i.Bu	5				21,1				
						>95%				
128	i.Bu	5				21,1				
						>95%				
						7 0070				
129	i.Bu	6	4,0			24,6	30,1	49,3	18.1	46,0
			11%			40%	21%	9%	15%	4%
			RSR			1070			¥	¥¥¥
¥ I(CH2)	6I								•	
	ι-S(CH2)6-	S-(CH2)	6-I							
130	i.Bu	6	4,2			25,1	30,3	49,4	18,3	46,1
-			7%			45%	21%	6%	17%	4%
			RSR			-2.0		2.0	¥	¥¥¥
¥ I(CH2)	6I								_	
	ı-S(CH2)6-	S-(CH2)	6-I							
	• • • • • • • • • • • • • • • • • • • •									
		ntion (T	W cont o	xprimés en 1				······································		

Conditi	ons de réaction	: Chauff	age à reflux	d'acéto	nitrile p	endant 3	0 heur	es	
Essais		RS-SR	Dithiane	Z-C1	Z-I	A1	A2	Autres	Autres
		Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr
		%	%	%	%	%	%	%	%
R-S-(CF	I2)n-Cl								
	R n								-
131	i.Bu 11	ļ			38,4	42,2		33,3	
					48%	31%		21%	
¥ I(CH2								¥	
132	i.Bu 11				38,8	42,6		33,7	
		-			49%	32%		19%	
¥ I(CH2,)111			<u> </u>				¥	
R-S-CH	2CH(Me)-C1				<u> </u>				
	R								
133	i.Bu	9,9				19,1			
		34%				66%			
134	i.Bu	10,0			12,4	19,2			
		33%			4%	63%			
135	t.Bu	E	4,2		10,0	15,0		12,6	16,2
		!	5%		6%	14%		4%	17%
			7,3/8,0 48%					¥	28,9 6%
¥ R-S-C	U2 C D	:	46%						
136	t.Bu		4,6			14,4		12,2	15,7
130	t.Du	!	6%			9%		4%	26%
		:	6,8/7,6			370		¥	28,3
		1	51%					-	4%
¥ R-S-C	H2-S-R								
R-S-CH	2C(Me)2-C1								
100	R					10.0		4.0	
137	í.Bu	9,6				19,9		4,9	
		63%				14%		23%	
¥ DC CL	I=C(Me)2	,						¥	
138	i.Bu	9,7				20.0		4,8	16,1
199	I.DU	57%	-			20,0		26%	1%
		3770		<u> </u>		1070		¥	170
¥ RS-CF	H=C(Me)2	:							
Les tem	ps de rétention (°	Tr) sont e	xprimés en 1	minutes					
	rcentages indiqu				rvés en G	C/MS			

Conditi	ons de réactio	n : Chauff	age à reflux	d'acéto	nitrile p	endant 3	0 heur	es	
					<u>.</u>			T	
Essais		RS-SR	Dithiane	Z-C1	Z-I	A1	A2	Autres	Autre
		Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr
		%	%	%	%	%	%	%	%
R-S-CH	2C(Me)2-C1							· · ·	
	R						-		
139	t.Bu	6,8	9,2					3,4	12,0
		21%	26%	******				48%	5%
¥ RS-CH	I=C(Me)2						· · · · ·	¥	
140	t.Bu	6,9	9,2					3,4	
		22%	21%					57%	
¥ RS-CH	I=C(Me)2					<u> </u>		¥	
				·					
R-S-CH	C(Me)2CH2-C	1							
141	i.Bu	9,3		11,6	16,6				
		9%		88%	3%				
142	i.Bu	9,3		11,6	16,6				
		10%		87%	3%				
[R-S-CH	2]2CH-C1				*				
143	i.Bu	9,7				33,1		24,6	
		22%				75%		3%	
					<u> </u>			374	
144	i.Bu	9,7				33,0		24,6	
		25%		·		71%		4%	
								374	
145	t.Bu			<u></u>					
Cet essa	i est difficileme	nt exploita	ble du fait c	lu trop g	rand non	ibre de co	omposé:	s formés.	
R-S2(CI	[2)2Cl								
	R								
146	t.Bu	5,1			14,3	18,5			
		7%			78%	15%			
R-SO(CI									
147	t.Bu								
Cet essa	i est inéxploita	ble.							
es tem	os de rétention	(Tr) sont ex	xprimés en 1	minutes					

Condition	ns de réacti	on : Chauff	age à reflux	d'acéto	nitrile po	endant 3	0 heur	es	
Essais		RS-SR	Dithiane	Z-X	Z-I	A1	A2	Autres	Autres
		Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr
		%	%	%	%	%	%	%	%
R-S02(C	H2)2-C1								
148	t.Bu				18,9				
					100%				
R-S-(CH	2)2Br								
•	R								
149	i.Bu					18,1		-	
						>95%			
150	i.Bu					18,1			
						>95%			
151	t.Bu		3,7		6,9			25,7	
			60%		36%			4%	
152	t.Bu		3,6		6,8			25,9	
			74%		23%			3%	
T 4	es de rétention	n (Tw) comt							

Conditio	Conditions de réaction : Chauffage à reflux d'acétonitrile pendant 30 heures							
Essais		Composé	Autres					
		de départ						
		Tr	Tr					
		%	%					
153 3	3-méthoxythiacyclohexane							
		4,0						
		100%						
154 4	,5-diméthoxy-	3,3,6,6,-tétraméthylthiacyc	loheptane					
		14,7						
		100%						
Les temps	s de rétention (7	r) sont exprimés en minutes						
Les pour	centages indique	es correspondent à ceux obse	rvés en GC/MS					

onditi	ions de réactio	ons : Chauff	age à reflux	d'acétor	itrile, so	us azote	, pendant	30 heures
ssais		RS-SR	Dithiane	Z-C1	Z-I	A1	A2	Autres
		Tr	Tr	Tr	Tr	Tr	Tr	Tr
		%	%	%	%	%	%	%
R-S-(CI	12)2-Cl							
	R							
161	n.Bu				16,2	24,1		
					70%	30%		
162	n.Bu				15,9	24,0		
					70%	30%		
100	. 5			0.0	10.4	00.2		
163	i.Bu			6,8 7%	12,4 3%	20,3 90%		
104	, D.,				12,4	20,6		
164	i.Bu			6,9 2%	8%	90%		
				270	870	3070		
165	t.Bu		6,1	5,5	10,8	15,9		
			6%	10%	81%	3%		
166	t.Bu		6,2	5,6	11,4	16,1	30,0	
			6%	6%	80%	5%	3%	
								12
167	Cyclo(6)				22,8	37,7		6,7
					23%	77%		traces
								R-I
168	Cyclo(6)				22,7	37,5		
					23%	77%		
169	Ph			17,1	21,8			
				80%	20%			
170	Ph			17,1	22,4			
				80%	20%	-		<u></u>
171	Bz	29,4	6,2	21,5	28,0	42,4		
		74%	6%	7%	3%	10%		
		RSR	070	. , ,		23,0		
		1010						
						<u> </u>		
es ten	ps de rétention	n (Tr) sont ex	primés en m	inutes				

		ļ <u>.</u>							
Essais			RS-SR	Dithiane	Z-C1	Z-I	A1	A2	Autres
			Tr	Tr	Tr	Tr	Tr	Tr	Tr
			%	%	%	%	%	%	%
R-S-(CH	2)n-Cl								
	R	n							
172	i.Bu	3			11,2	17,5	23,9		8,9
					7%	81%	8%		4%
									I-(CH2)3-
173	i.Bu	4	11,7		14,7	20,3	26,8		12,8
			26%		46%	6%	18%		4%
									I-(CH2)4-
174	i.Bu	6			22,3	28,1	33,2		20,8
					13%	62%	18%		7%
									I-(CH2)6-
175	i.Bu	11				38,2	43,7		35,1
						48%	25%		27%
									I-(CH2)11
-	<u>-</u> -				·				

Essais		RS-SR	Dithiane	Z-C1	Z-I	A1	A2	Autres
		Tr	Tr	Tr	Tr	Tr	Tr	Tr
		%	%	%	%	%	%	%
R-S-CH2	CH(Me)-C1							
	R							
176	i.Bu	8,4				17,3		
		12%			1	88%		
177	t.Bu		8,4/9,2	6,6	11,7	16,4	30,7	42,0
			4% / 9%	4%	2%	38%	38%	5%
			270 / 070					?
178	t.Bu		8,3/9,1	6,4	11,4	16,5	30,6	
			7% / 11%	10%	10%	40%	20%	
R-S-CH2	C(Me)2-C1							
	R							
179	i.Bu	8,4				18,6		4,8
		70%				17%		13%
¥ RS-CH	=C(Me)2							¥
180	t.Bu		10,9					4,6
			10%		- -			85%
¥ RS-CH	=C(Me)2		20,0					¥
11001	O(MO)2					-		13,9
					<u> </u>			5%
								
[R-S-CH	2]2CH-C1							
	R							
181	t.Bu				L	<u> </u>	L	
Essai di	ficilement exp	loitable du f	ait du trop gr	and non	ibre de c	omposés	formés.	
				<u>.</u>		-		
Les tem	os de rétentior	n (Tr) sont ex	cprimés en m	inutes	1			
	centages indi				és en GC	/MS		

vis à v	is de [NaI + M e3SiCl]									
Condit	ions de réactions : Cha	ıffage à reflux d'ac	étonitrile, so	us azote	, pendan	t 30 heures				
Essais		Composé	autres	autres						
		de départ								
		Tr	Tr	Tr						
		%	%	%						
182	3-méthoxythiacycloher	rane								
			2,9							
-		/	100%							
			?							
183	4,5-diméthoxy-3,3,6,6-tétraméthylthiacycloheptane									
		14,6	8,6							
		44%	56%							
-			¥							
¥	2-[[1,1-diméthyl]-2-hydro.	xyéthyll-4,4-diméthu	ylthiacyclopen	tan-3-ol						
Les ten	ps de rétention (Tr) sont	exprimés en minute	es							

L'ensemble des essais réalisés est présenté dans les tableaux 2.2-2.4

- le tableau 2.2 regroupe les produits obtenus à partir de i.Bu-S-(CH₂)₂-Cl sous différentes conditions opératoires,
- les tableaux 2.3 et 2.4 présentent les résultats obtenus par action de NaI ou [NaI + Me₃SiCl] dans l'acétonitrile et chauffage à reflux pendant 30 heures.

A ce stade de notre étude, nous pouvons effectuer les premières observations suivantes :

- → Pour les essais "à blanc" réalisés sans solvant (essai 101) ou avec solvant (essai 102), aucune réaction n'est observée. Ces résultats montrent la stabilité thermique de l'halogénure sulfuré testé. Il est clair que pour ces réactions, l'atome de soufre "n'agit" pas seul, mais grâce à un activant életrophile ou nucléophile qui va lui conférer ses propriétés.
- ♦ Si le rôle de l'acétonitrile est essentiellement celui de solvant, il favorise aussi la formation des composés de type A. Ainsi dans le cas des essais 103 et 113, on remarque que la présence de solvant (MeCN) accroit sensiblement la quantité de dérivé Al formé. De plus, on observe la conversion totale du chlorure de départ pour une même durée de réaction.
- ◆ La réactivité des chlorures sulfurés vis à vis de NaI, [NaI + Me₃SiCl] et Me₃SiI varie d'un réactif à l'autre.

 Ainsi, selon les conditions de réaction, on obtient soit des composés différents, soit les même dérivés mais dans des pourcentages différents.
- ♦ L'utilisation de Me₃SiCl ou Me₃SiI est liée uniquement à un problème économique. Le dérivé iodé est, en effet, trés coûteux. Il se trouve heureusement que le système [NaI + Me₃SiCl] (essai**164**) est plus efficace que Me₃SiI (essai**104**).

Suite à ces essais et au nombre relativement important de composés obtenus, il semble évident que différents mécanismes interviennent au cours de ces réactions. Nous allons donc envisager les différents cas de figures conduisants à la formation de ces produits spécifiques et ceci pour chaque type de structure.

	12CH2-C	: Résultats ex	7022202	Total Pot	105 02		. cy po	
X-3-CI	ZCHZ-CI							
Essais	R	Conditions	Rđt	Tr	m/z	%	Produits	n°
		opératoires	%	(min)		GC		
111	n.Bu	NaI	100%	5,2	120	6%	dithiane	503
	II.Du		10070	6,5	146	10%	RSR	701
				12,9	178	5%	RSSR	601
				21,7	206	73%	Al	301
				34,0	200	6%		001
161	n.Bu	[NaI + Me3SiCl]	100%	16,2	244	70%	Z-I	201
				24,1	206	30%	<u>A1</u>	301
113	i.Bu	NaI	100%	11,4	244	7%	Z-I	202
				19,2	206	93%	Al	302
163	i.Bu	[NaI + Me3SiCl]	98%	6,8	152	2%	Z-Cl	102
103	1.Du	[Nai + Messicij	9070	12,4	244	8%	Z-C1 Z-I	202
				20,3	206	90%	A1	302
				20,0	200	9070	- AI	302
104	i.Bu	Me3SiI	64%	7,0	152	36%	Z-Cl	102
				12,2	244	32%	Z-I	202
				20,8	206	32%	A1	302
118	Cyclo(6)	NaI	100%	5,1	210	1%	R-I	704
	0,020(0)		10070	5,3	120	1%	dithiane	503
				23,9		6%	?	
				27,6	230	1%	RSSR	604
				35,4	258	91%	A1	304
167	Cyclo(6)	[NaI + Me3SiCl]	100%	6,7	210	traces	R-I	704
107	Cyclo(o)	[Nai + Messici)	10070	22,7	270	23%	Z-I	204
				37,5	258	77%	A1	304
119	Ph	NaI	100%	21,3	264	90%	Z-I	205
				27,7	218	2%	RSSR	605
				34,6	246	8%	A1	305
169	Ph	[NaI + Me3SiCl]	20%	17,1	172	80%	Z-Cl	105
				21,8	264	20%	Z-I	205

III.1) Résultats obtenus avec RSCH2CH2Cl [R ≠ t.Bu]

En réalisant ces essais, nous avons voulu déterminer l'influence du radical R sur la réactivité des chlorures sulfurés à l'égard des différents réactifs étudiés.

Les résultats obtenus, présentés précédemment, sont regroupés sous une autre forme dans les tableaux 2.5 a et 2.5 b afin d'en faciliter la lecture.

III.1.1) Cas de NaI

Selon que le radical R est un groupement alkyle ou aryle, les résultats obtenus sont différents.

- . Les essais 111, 113 et 118 donnent majoritairement le composé A1 (70-90%).
- . Pour R = Ph (essai 119), on isole 90% de dérivé iodé Z-I. La quantité de composé Al formée est négligeable.
- . Dans le cas du groupement benzyle (essai 121), nous obtenons 55% d'un monosulfure symétrique RSR et 21% du composé A1.

Afin, d'expliquer la formation de ces différents composés nous pouvons envisager les deux mécanismes suivants :

Mécanisme1: L'atome d'iode, très nucléophile, vient attaquer le carbone en α de l'atome de soufre. Il libère ainsi un mercaptate qui va pouvoir réagir avec une deuxième molécule d'halogénure sulfuré pour donner le composé A1.

$$R-S^{2}CH_{2}-CH_{2}-CI \xrightarrow{Na^{\bigoplus}I^{\bigoplus}} RS^{\bigoplus}Na^{\bigoplus} + [ICH_{2}CH_{2}CI] \xrightarrow{NaI} NaI$$

$$RSCH_{2}CH_{2}CI = [ICH_{2}CH_{2}I] + NaCI$$

$$RSCH_{2}CH_{2}SR + NaCI$$

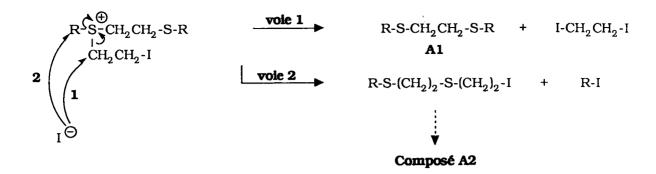
R-S-CH2	CH2-C	21						
Essais	R	Conditions	Rdt	Tr	m/z	%	Produits	n°
		opératoires	%	(min)		GC		
121	Bz	NaI	100%	4,9	120	8%	dithiane	503
				8,5	218	12%	R-I	706
				22,5		4%	?	
				27,6	214	55%	RSR	606
				39,2	274	21%	A1	306
171	Bz	[NaI + Me3SiCl]	93%	6,2	120	6%	dithiane	503
				21,5	186	7%	Z-Cl	106
				28,0	278	3%	Z-I	206
				29,4	214	74%	RSR	606
				42,4	274	10%	A1	306

Mécanisme 2 : Dans ce cas, on peut considérer que la réaction s'effectue en deux temps.

1) La première étape consiste en la substitution de l'atome de chlore par l'atome d'iode.

Le doublet électronique de l'atome de soufre venant ensuite attaquer le carbone porteur de l'halogène pour former un ion thiiranium⁶⁰⁻⁶³.

Cette réaction de substitution intramoléculaire, fréquente avec les dérivés sulfurés, s'explique par :


- la nucléophilie trés forte de l'atome de soufre,
- l'atome d'iode qui est un excellent groupe partant.

De plus cette hypothèse, concernant le passage par un ion thiiranium, est ettayée par différents travaux $^{64, 65}$.

2) A ce stade, l'ion sulfonium, trés réactif, peut subir une attaque nucléophile par un atome de soufre issu d'une deuxième molécule sulfurée.

Le sulfure symétrique est ensuite libéré sous l'action d'un ion iodure.

Si ces deux mécanismes sont envisageables, plusieurs observations tendent à montrer que la seconde hypothèse est la plus probable.

- \blacklozenge Le mécanisme 1 nécessite la présence d'un carbone en α de l'atome de soufre, très électrophile. Or la fonction sulfurée simple n'exerce, en général, qu'un effet électroattracteur faible⁶⁶.
- ♦ Les essais réalisés pour R = Ph conduisent principalement (~90%) au dérivé iodé Z-I.

Or si l'on considère le premier mécanisme, le fait que le doublet du soufre soit engagé dans le système électronique du noyau aromatique^{67, 68} devrait favoriser la réaction ci-après.

$$-S-CH_2CH_2-Cl$$

$$-NaI$$

$$-S, Na$$
+ I-CH₂CH₂-Cl

En effet l'ion thiophénate⁶⁹ ainsi formé est fortement stabilisé par résonnance. Il devrait conduire rapidement, soit au composé A1, soit au disulfure correspondant à l'oxydation du mercaptate^{70, 71}. Or on obtient que 2% de disulfure (essai 119)

Par contre, dans le cas du mécanisme 2, la délocalisation du doublet d'électrons de l'atome de soufre va gêner la formation de l'ion sulfonium et par conséquent celle du composé Al.

Les résultats observés sont en accord avec cette dernière hypothèse.

♦ Dans le cas où R = Bz, le doublet du soufre ne participe plus à la délocalisation du cycle aromatique. Bien que ce groupement ait un léger effet inductif, il reste insuffisant pour favoriser une attaque selon le mécanisme 1.

Par contre, la disponibilité du doublet électronique sur l'atome de soufre, nous permet d'envisager le passage par un ion thiiranium conduisant ensuite au composé A1.

Le résultat obtenu pour l'essai 121 montre que l'on isole, outre le composé attendu (21%), 55% d'un monosulfure symétrique **RSR** et 12% d'un dérivé iodé **R-I**.

La formation de RSR peut alors s'expliquer selon le mécanisme suivant :

1) Formation d'un ion sulfonium par substitution intramoléculaire.

La présence d'une charge positive sur l'atome de soufre induit la possibilité d'avoir deux charges partielles positives réparties comme suit :

Or dans le cas du -CH₂- benzylique, la charge partielle peut être stabilisée par le noyau aromatique.

De ce fait, on peut considérer que l'attaque nucléophile de l'ion épisulfonium par un ion I- s'effectue de la manière suivante :

2) Formation d'un ion sulfonium par réaction entre une molécule d'iodure sulfurée et d'iodure de benzyle présentes dans le milieu.

$$\begin{array}{c} & \bigoplus_{\text{CH}_2\text{-}\ddot{\text{S}}\text{-}(\text{CH}_2)_2\text{-}\text{I}} + \text{I}_{\overline{\text{J}}}\text{H}_2\text{C}\text{-} \\ & \bigoplus_{\text{CH}_2}\text{-}\text{C}\text{H}_2\text{-}\text{I} \\ & \bigoplus_{\text{CH}_2}\text{-}\text{C}\text{H}_2\text{-}\text{C}\text{H}_2\text{-}\text{I} \\ & \bigoplus_{\text{C}}\text{-}\text{C}\text{H}_2\text{-}\text{C}\text{H}_2\text{-}\text{C}\text{H}_2\text{-}\text{I} \\ & \bigoplus_{\text{C}}\text{-}\text{C}\text{H}_2\text{-}\text{C}\text{H}_2\text{-}\text{C}\text{H}_2\text{-}\text{I} \\ & \bigoplus_{\text{C}}\text{-}\text{C}\text{H}_2\text{-}\text{C}\text{H}_2\text{-}\text{C}\text{H}_2\text{-}\text{C}\text{H}_2\text{-}\text{I} \\ & \bigoplus_{\text{C}}\text{-}\text{C}\text{H}_2\text{-}\text{C}\text{-}\text{C}\text{H}_2\text{-}\text{C}\text$$

L'action d'un ion I- libérant ensuite le composé attendu R-S-R.

♦ Les essais 118 et 121 mettent en évidence la présence d'un produit secondaire R-I.

Or selon les hypothèses émises, ce composé ne peut être obtenu que si le mécanisme de la réaction est du type 2.

Au vue de ces différentes observations, nous arrivons à la conclusion que le mécanisme réactionnel, résultant de l'action de NaI sur les halogénures sulfurés RS(CH₂)₂Cl, repose entièrement sur la formation transitoire d'un ion thiiranium.

III.1.2) Cas de [NaI + Me3SiCl] et Me3SiI

[NaI + Me₃SiCl] et Me₃SiI ont été largement utilisés au cours de ces dernières années⁷²⁻⁸⁴. Différents travaux⁸⁴ ont montré que, placés dans l'acétonitrile, ces réactifs conduisent à un même type de complexe.

NaI + Me₃SiCl + MeCN
$$\longrightarrow$$
 $\left[Me_3SiN = C - CH_3\right]$, I^{Θ} + NaCl Me_3SiI + MeCN \longrightarrow $\left[Me_3SiN = C - CH_3\right]$, I^{Θ}

Il est donc logique de penser qu'ils vont donner le même type de mécanisme de réaction.

Selon G. A. Olah⁸⁵, Me₃SiI est un réactif dur-mou, l'ion silycénium (Me₃Si⁺) étant l'acide dur et l'ion iodure (I⁻) la base molle. Nous pouvons donc envisager, une activation électrophile de l'halogénure sulfuré de départ par Me₃Si⁺; l'atome de silicium formant une liaison relativement faible avec l'atome de soufre.

L'ion sulfonium peut alors subir une attaque par un ion iodure, très nucléophile, et former un intermédiaire silylé qui peut réagir avec une seconde molécule de chlorure sulfuré.

Remarque 1 : Il est bien évident que l'on peut aussi avoir l'action simultanée du mercaptate de triméthylsilyle (RSSiMe3) et de l'ion iodure sur un ion thiiranium.

Remarque 2 : Au niveau réaction, lorsque l'on opère en présence de [NaI + Me₃SiCl], on peut envisager la superposition de deux mécanismes :

- un mécanisme avec assistance électrophile que nous venons de présenter,
- un mécanisme impliquant l'action de NaI seul comme nous l'avons vu au § III.1.1.
- ♦ La réactivité des chlorures sulfurés vis à vis de Me₃SiI est nettement plus faible (essais 163 et 104). L'essai 104 montre que l'on obtient un mélange de Z-Cl, Z-I et de A1 dans des proportions identiques.
- ♦ Dans le cas d'un radical R alkyle, [NaI + Me₃SiCl] donne majoritairement le polysulfure Al (essais 163 et 167). On note une exception avec le produit n.Bu-S-CH₂CH₂-Cl pour lequel on trouve 70% de Z-I et seulement 30% de composé Al. Or pour ce même composé, l'action de NaI seul fournissait majoritairement le dérivé Al. Ceci prouve bien que les deux réactifs ne suivent pas le même mécanisme.

Ainsi, si l'on compare les essais 161, 163 et 167, on doit s'attendre à former l'intermédiaire activé ci-dessous :

$$\begin{array}{ll} \bigoplus \\ R\text{-}S\text{-}CH_2CH_2\text{-}Cl & R=n.Bu \\ \vdots & = i.Bu \\ Me_3SiI & = Cyclo(6) \end{array}$$

Cette intermédiaire aura d'autant plus de chance de se former que le soufre sera entouré d'électrons. Or si on compare les effets inductifs des trois radicaux, il est clair que n.Bu a l'effet inductif donneur le moins prononcé; ceci doit expliquer les résultats observés.

t.Bu-S-G	CH2CH2	2-C1						
Essais	R	Conditions	Rdt	Tr	m/z	%	Produits	n°
		opératoires	%	(min)		GC		
116	t.Bu	NaI	100%	4,8	120	56%	dithiane	503
				8,6	244	33%	Z-I	203
				28,0	266	7%	A2	403
				39,5		4%	?	
165	t.Bu	[NaI + Me3SiCl]	90%	5,5	152	10%	Z-Cl	103
				6,1	120	6%	dithiane	503
				10,8	244	81%	Z-I	203
				15,9	206	3%	A1	303

.

♦ Pour R = Ph (essai 169), le rendement de la réaction est faible et conduit exclusivement à Z-I (20%).
Par contre, dans le cas du groupement benzyle (essai 171), la réaction est quasi totale. On isole 74% d'un monosulfre symétrique RSR.

Ces deux essais illustrent bien la nette différence de comportement de ces deux composés.

Ainsi, si dans le cas de PhSCH2CH2Cl, les doublets du soufre ne sont plus accessibles aux orbitales du silicium,

ils sont parfaitement disponibles chez le dérivé BzSCH2CH2Cl.

De plus, l'activation du soufre par Me₃Si⁺ augmente le caractère positif de la charge partielle porté par le CH₂ benzylique et va favoriser la formation du composé R-S-R (74%).

Remarque: L'ensemble des composés isolés (ZCl, Zl, Al...), au cours des essais réalisés en présence de Nal ou [Nal + Me₃SiCl], ont été synthétisés par voie directe afin de confirmer les structures proposées.

III.2) Résultats obtenus avec RSCH2CH2Cl [R = t.Bu]

L'utilisation de ce dérivé conduit à des réactions particulières notamment la formation de 1,4-dithiane et de composé de type A2.

III.2.1) Cas du 1,4-dithiane

Les résultats obtenus par action de NaI et [NaI + Me₃SiCl] sont très différents (tableau 2.6).

La formation de dithiane⁸⁶⁻⁸⁸, en présence de NaI, s'explique au regard des propriétés basiques et nucléophiles de l'ion I-, mais aussi de la présence du groupement tertiobutyle ; ce radical favorise, en effet, les réactions de ß-élimination, comme il est courant d'avoir avec les ions sulfoniums⁸⁹.

Le mécanisme envisagé peut alors se résumer de la manière suivante :

- Comme précédemment (§ III.1.1), nous considérons, dans un premier temps, la formation transitoire d'un ion thiiranium à partir d'une molécule d'iodure sulfuré présente dans le milieu.

- Dans une deuxième étape, l'ion I- vient arracher un proton d'un groupement méthyle et favoriser ainsi une ß-élimination. Cette réaction s'accompagne de la formation d'isobutène et d'épisulfure. Ce dernier peut alors réagir avec une deuxième molécule d'iodure sulfuré.

$$H_3C-C-S$$
 H_3C-C-S
 H_3C-C-C
 H_3C-C
 H_3C-C

L'attaque nucléophile de l'ion iodure, sur l'ion sulfonium, conduit au 1,4-dithiane.

Remarque: Il est possible que la formation du 1,4-dithiane résulte de la polymérisation du sulfure d'éthylène en milieu basique^{90, 92}.

Les polymères ainsi formés peuvent, en effet, subir une dégradation thermique et donner le dithiane 93 a.

III.2.2) Cas des composés de type A2

Sur la base des hypothèses émises dans le paragraphe III.1.1, nous pouvons proposer le mécanisme ci-après, pour la formation des composés A2.

Le début de la réaction est analogue à celui du composé Al.

A partir de cet intermédiaire réactionnel, nous pouvons avoir les deux cas ci-aprés :

1^{er} cas : L'attaque de I⁻ sur l'ion sulfonium permet d'obtenir le dérivé A1.

$$\oplus$$
 R-S-CH₂CH₂-S-R \longrightarrow R-S-CH₂CH₂-S-R + I-CH₂CH₂-I CH₂CH₂-I \oplus A1

Celui-ci peut alors réagir avec un ion thiiranium et conduire au polysulfure A2.

$$R = S + R + S + CH_2CH_2 - S - R$$

$$R + S + CH_2CH_2 - S - R$$

$$CH_2CH_2 - S - R$$

$$R + S - (CH_2)_2 - S - (CH_2)_2 - S - R$$

$$R + R - I$$

2ème cas : L'attaque de l'ion iodure sur l'ion sulfonium donne une nouvelle molécule iodo-sulfurée (**II**). Cette dernière peut subir une cyclisation intramoléculaire et former, à son tour, un ion sulfonium.

Cet intermédiaire peut alors réagir avec une molécule iodo-sulfurée (I) pour conduire au composé attendu.

Remarque : Dans le même souci d'exactitude que précédemment (§.III.1) nous avons réalisé la synthèse des composés A2 par voie directe.

.Bu-S-(C		a : Résultats exp Cl						
1								
Essais	n	Conditions	Rdt	Tr	m/z	%	Produits	n°
		opératoires	%	(min)		GC		
123	3	NaI	100%	7,0	296	15%	I(CH2)3I	707
				9,6	178	31%	RSSR	602
				14,6	258	44%	Z-I	207
				21,3	220	21%	A1	307
				25,9	370	2%	I(CH2)3S(CH2)3I	807
				31,5	332	9%	RS(CH2)3S(CH2)3I	907
				36,4	294	6%	A2	407
172	3	[NaI + Me3SiCl]	93%	8,9	296	4%	I(CH2)3I	707
		[Mai Meddler]	0070	11,2	166	7%	Z-Cl	107
				17,5	258	81%	Z-I	207
				23,9	220	8%	Al	307
	· · · · · · · · · · · · · · · · · · ·			20,0		0,0		
125	4	NaI	100%	10,1	178	18%	RSSR	602
				19,0	272	27%	Z-I	208
				22,8	234	16%	A1	308
				28,9		9%	?	
				34,2		11%	?	
				39,1	<u> </u>	10%	?	
				43,5		9%	?	_
173	4	[NaI + Me3SiCl]	54%	11,7	178	26%	RSSR	602
				12,8	310	4%	I(CH2)4I	708
				14,7	180	46%	Z-Cl	108
				20,3	272	6%	Z-I	208
				26,8	234	18%	A1	308
127	5	Naĭ	100%	21,1	286	>95%	Z-I	209
		1100						
129	6	NaI	100%	4,0	146	11%	RSR	610
				18,1	338	15%	I(CH2)6I	210
				24,6	300	40%	Z-I	310
				30,1	262	21%	A1	410
				46,0	416	4%	RS(CH2)6S(CH2)6I	710
				49,3	378	9%	A2	910
174	6	[NaI + Me3SiCl]	87%	20,8	338	7%	I(CH2)6I	710
				22,3	208	13%	Z-Cl	110
				28,1	300	62%	Z-I	210
				33,2	262	18%	Al	310

III.3) Résultats obtenus avec i.BuS(CH₂)_nCl (n>2)

La réactivité particulière des composés précédents nous a amenés à nous intéresser à l'influence du nombre de groupements -CH₂-, présents entre l'atome de soufre et l'atome de chlore, sur le comportement de ces molécules vis à vis de nos différents réactifs.

La plupart des essais réalisés, que ce soit en présence de NaI ou [NaI + Me₃SiCl], conduisent majoritairement au dérivé iodé Z-I (essais 123, 172, 125, 127, 129, 174, 131 et 175).

Ces résultats peuvent être expliqués de différentes façons :

♦ Dans le cas de **NaI**, la formation de l'ion thiiranium intermédiaire est rendu très difficile.

En effet, le passage par la forme sulfonium dépend, en grande partie, de la géométrie de la molécule de départ et plus particulièrement de la position de l'atome soufre par rapport au carbone porteur de l'halogène.

Ainsi pour n=3, la réaction de substitution intramoléculaire est quasiment impossible. La présence des composés A1 et A2, dans le mélange, peut s'expliquer si l'on envisage le mécanisme suivant :

- Substitution de l'atome de chlore par l'atome d'iode

- déplacement nucléophile de l'halogéne par le doublet électronique d'un atome de soufre provenant d'une deuxième molécule d'iodure sulfurée

i.Bu-S-(0	CH2)n-	·Cl						
Essais	n	Conditions	Rđt	Tr	m/z	%	Produits	n°
		opératoires	%	(min)		GC		
131	11	NaI	100%		711			
			1	38,4	370	48%	Z-I	211
				42,2	332	31%	A1	311
175	11	[NaI + Me3SiCl]	100%	35,1	408	27%	I(CH2)11I	711
175	,			38,2	370	48%	Z-I	211
				43,7	332	25%	A1	311

- Attaque de l'ion sulfonium formé par un ion iodure.

i.Bu
$$\stackrel{\bigoplus}{S}$$
; CH₂CH₂CH₂-S-i.Bu a i.Bu-S-(CH₂)₃-S-(CH₂)₃-I b I-(CH₂)₃-I + i.Bu-S-(CH₂)₃-S-i.Bu

Le composé Al peut ensuite réagir avec une molécule d'halogénure sulfurée et conduire ainsi au composé A2.

$$\begin{array}{c} \text{i.Bu-S-CH}_2\text{CH}_2\text{CH}_2^{-1}\\ \\ \text{i.Bu-S-CH}_2\text{CH}_2\text{CH}_2^{-1}\\ \\ \text{i.Bu-S-CH}_2\text{CH}_2\text{CH}_2^{-1}\\ \\ \text{CH}_2\text{CH}_2\text{CH}_2^{-1}\\ \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2^{-1}\\ \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2^{-1}\\ \\ \text{CH}_2\text{CH}_$$

et

$$\begin{array}{c} \bigoplus \\ \text{S-CH}_2\text{CH}_2\text{CH}_2\text{-S-i.Bu} \\ \ominus \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{-i.Bu} \\ \end{array} \qquad \qquad \qquad \qquad \qquad \qquad \text{i.Bu-S-(CH}_2)_3\text{-S-i.Bu} \\ \bigoplus \\ \text{A2}$$

A partir de n = 4, le système devenant plus "souple", la formation de l'ion thiiranium est plus facile. On peut donc supposer que cette voie est à nouveau privilègiée pour former le composé A1.

On peut noter, cependant, que l'essai **127**, donne uniquement le dérivé iodé. Ce résultat semble lié à l'établissement d'un équilibre entre i.BuS(CH₂)₅-I et l'ion sulfonium, dont la formation est favorisé par l'assistance anchimérique de l'atome de soufre⁹³ b-c.

$$R-S_{\cdot}$$
 $R-S$

- ♦ Pour le système [NaI + Me3SiCl], nous avons vu au cours du chapitre III.1.2. qu'il peut y avoir une compétition entre deux mécanismes différents :
 - un mécanisme électrophile qui correspond à l'activation de l'halogénure sulfuré de départ par l'ion silycénium (Me₃Si⁺),
 - un mécanisme nucléophile lié à la présence de NaI dans le milieu.

Or, l'allongement de la chaine alkyle, présente entre l'atome de soufre et l'atome d'halogène, rend très difficile la formation des ions sulfoniums. Nous pouvons donc imaginer ici que la formation des polysulfures A1 repose intégralement sur l'action de Me3SiI.

Cependant, pour des valeurs de n suffisamment grandes ($n \ge 6$), nous pouvons à nouveau considérer que ces des deux processus interviennent simultanément.

III.4) Résultats obtenus avec RSCH₂C(R₁)(R₂)Cl

Afin d'évaluer l'influence de l'encombrement stérique sur la réactivié des halogénures sulfurés étudiés, nous avons décidé de greffer des substituants sur le carbone en ß de l'atome de soufre.

On observe des différences importantes selon le radical utilisé.

III.4.1) Cas de R-S-CH2CH(CH3)-Cl

- . Les essais 133 et 176 conduisent essentiellement au composé A1.
- . Pour R = t.Bu (essais 135,177), on isole, en fonction du réactif utilisé, les composés suivants :

Conditions opératoires H3)-C1 NaI [NaI + Me3SiCl] NaI	Rdt % 100% 100%	7r (min) 9,9 19,1 8,4 17,3 4,2 7,3 / 8,0 10,0 12,6 15,0	178 220 178 220 148 148 258 192	% GC 34% 66% 88% 5% 48% 6%	RSSR A1 RSSR A1 dithiane b dithianes a/b	602 312 602 312 513 a/b
opératoires H3)-Cl NaI [NaI + Me3SiCl]	100%	(min) 9,9 19,1 8,4 17,3 4,2 7,3 / 8,0 10,0 12,6 15,0	178 220 178 220 148 148 258	34% 66% 12% 88% 5% 48%	RSSR A1 RSSR A1 dithiane b dithianes a/b	602 312 602 312
opératoires H3)-Cl NaI [NaI + Me3SiCl]	100%	(min) 9,9 19,1 8,4 17,3 4,2 7,3 / 8,0 10,0 12,6 15,0	178 220 178 220 148 148 258	34% 66% 12% 88% 5% 48%	RSSR A1 RSSR A1 dithiane b dithianes a/b	602 312 602 312
NaI [NaI + Me3SiCl]	100%	9,9 19,1 8,4 17,3 4,2 7,3 / 8,0 10,0 12,6 15,0	178 220 148 148 258	34% 66% 12% 88% 5% 48%	RSSR A1 dithiane b dithianes a/b	312 602 312
NaI [NaI + Me3SiCl]	100%	19,1 8,4 17,3 4,2 7,3 / 8,0 10,0 12,6 15,0	178 220 148 148 258	12% 88% 5% 48%	RSSR A1 dithiane b dithianes a/b	312 602 312
NaI [NaI + Me3SiCl]	100%	19,1 8,4 17,3 4,2 7,3 / 8,0 10,0 12,6 15,0	178 220 148 148 258	12% 88% 5% 48%	RSSR A1 dithiane b dithianes a/b	312 602 312
		8,4 17,3 4,2 7,3 / 8,0 10,0 12,6 15,0	178 220 148 148 258	12% 88% 5% 48%	RSSR A1 dithiane b dithianes a/b	602
		8,4 17,3 4,2 7,3 / 8,0 10,0 12,6 15,0	148 148 258	5% 48%	Al dithiane b dithianes a/b	312
		17,3 4,2 7,3 / 8,0 10,0 12,6 15,0	148 148 258	5% 48%	Al dithiane b dithianes a/b	312
NaI	100%	4,2 7,3 / 8,0 10,0 12,6 15,0	148 148 258	5% 48%	dithiane b dithianes a/b	
NaI	100%	7,3 / 8,0 10,0 12,6 15,0	148 258	48%	dithianes a/b	513 a/t
NaI	100%	7,3 / 8,0 10,0 12,6 15,0	148 258	48%	dithianes a/b	513 a/b
		10,0 12,6 15,0	258			513 a/b
		12,6 15,0		6%		
		15,0	192	• •	Z-I	213
		ļ		4%	RSCH2SR	713
		1	220	14%	A1	313
		16,2		17%	?	
		28,9		6%	?	
[NaI + Me3SiCl]	96%	6,6	166	4%	Z-Cl	113
		8,4	148	4%	dithiane a	513a
		9,2	148	9%	dithiane b	513b
		11,7	258	2%	Z-I	213
		16,4	220	38%	A1	313
		30,7	294	38%	A2	413
		42,0		5%	?	
3)2-C1						<u> </u>
NaI	100%	4,9	144	23%	RSCH=C(CH3)2	714
		9,6	178	63%	RSSR	602
		19,9	234	14%	A1	314
17 7 17 00 00 00 10 10 10 10 10 10 10 10 10 10	1000/	10		100/	DOCT COTTON	714
[NaI + Me3SiCl]	100%	4,8	144	13%	RSCH=C(CH3)2	714
	<i>-</i>	 			- 	602
		18,6	234	17%	Al	314
DT T	1000/	0.4	1.4.4	4004	DOOL COLLOS	714
Nai	100%	H				714
		·				603
1						515
	<u> </u>	12,0	210	5%	?	
	10004	16	144	8E04	BSCH-C(CR3)0	714
INOL 1 Me2C:OU	100%					515
[NaI + Me3SiCl]	1					515
-	NaI [NaI + Me3SiCl]		[NaI + Me3SiCl] 100% 4,6 10,9	NaI 100% 3,4 144 6,8 178 9,2 176 12,0 210 [NaI + Me3SiCl] 100% 4,6 144 10,9 176	NaI 100% 3,4 144 48% 6,8 178 21% 9,2 176 26% 12,0 210 5% [NaI + Me3SiCl] 100% 4,6 144 85% 10,9 176 10%	NaI 100% 3,4 144 48% RSCH=C(CH3)2 6,8 178 21% RSSR 9,2 176 26% dithiane 12,0 210 5% ? [NaI + Me3SiCl] 100% 4,6 144 85% RSCH=C(CH3)2

t.Bu-S-CH₂CH(CH₃)-Cl

NaI

$$A_1 + A_2 + A_3 + A_4 + A_5$$

a

b

13%

La présence des deux isomères a et b s'expliquent par deux ouvertures possibles du 2-méthylthirane formé au cours de la réaction (§III.2.1).

Les ions sulfoniums ainsi obtenus conduisent aux composés attendus après attaque par un ion I⁻.

* R-S-CH₂CH(CH₃)-I
CH(CH₃)CH₂-S
$$\Theta$$
 Θ S-CH₂-CH-S-CH₂-CH-I
CH₃ Θ S-CH₂-CH-I
CH₃ Θ S-CH₂-CH-I
S-CH₂-CH

Comme précédemment (§ III.2.1), on peut aussi envisager que la formation des composés a et b résulte de la polymérisation du 2-méthylthirane.

III.4.2) Cas de R-S-CH₂C(CH₃)₂-Cl

. Pour l'ensemble des essais (137, 179, 139 et 180), on peut observer la présence d'un dérivé particulier du type R-S-CH = C(CH3)2 dont la formation est liée au deux groupements méthyles présents sur le carbone porteur de l'halogène. Ceux-ci favorisent, en effet, la réaction de β -élimination décrite ci-dessous.

$$R-S-CH = C(CH_3)_2$$

$$H CH_3$$

$$R-S-CH = C(CH_3)_2$$

. Dans le cas du composé t.Bu-S-CH₂C(CH₃)₂-Cl (essai 139, 180), la réaction conduit aux produits suivants :

t.Bu-S-CH₂C(CH₃)₂Cl
$$\longrightarrow$$
 t.BuSSt.Bu + t.BuSCH = C(CH₃)₂ +

			 			0/	D 4 11	
Essais	R	Conditions	Rđt	Tr	m/z	%	Produits	n°
		opératoires	%	(min)		GC		
RSCH2	C(CH3)20	CH2Cl						
141	i.Bu	NaI	12%	9,3	178	9%	RSSR	602
				11,6	194	88%	Z-Cl	116
_				16,6	286	3%	Z-I	216
RSCH2	22CHCI							
143	i.Bu	NaI	100%	9,7	178	22%	RSSR	603
				24,6	308	75%	A1	219
				33,1	374	3%	?	319
145	t.Bu	NaI	Résultat	inexploi	table			
RSS(CH								
146	t.Bu	NaI	100%	5,1	178	7%	RSSR	603
				14,3	276	78%	Z-I	219
				18,5	238	15%	A1	319
RSO2(C	H2)2C1							
148	t.Bu	NaI	100%	18,9	276	100%	Z-I	221
RS(CH2)2Br							
149	i.Bu	NaI	100%	18,1	220	>95%	A1	302
151	t.Bu	NaI	100%	3,7	120	60%	dithiane	503
				6,9	244	36%	Z-I	203
				25,7		4%	?	

On peut remarquer que l'on isole, outre le dérivé alcénique majoritaire, 10-30% de 2,2,6,6-tétraméthyl-1,4-dithiane. Ce dernier, tout comme l'alcène, est obtenu suite à une réaction de β -élimination (§ III.2.1).

III.5) Autres sulfures et sulfones

. L'essai 141 donne peu de réaction. On récupère principalement le chlorure de départ.

Ce résultat met en évidence l'incapacité du composé i.BuSCH₂C(CH₃)₂CH₂Cl à former l'ion thiiranium. La position de l'atome de soufre par rapport au carbone porteur de l'halogène, ainsi que l'encombrement stérique de la chaine alkyle, empêche en effet, toute substitution nucléophile intramoléculaire.

. Le composé [RSCH₂]₂CH-Cl conduit à des réactions différentes suivant le radical utilisé (essais 143 et 145).

Si pour R = i.Bu, on obtient une forte proportion de dérivé A1, la compléxité du mélange obtenu avec R = t.Bu le rend difficilement interprétable.

. Au niveau des sulfones (essai 148) nous observons uniquement la présence de dérivé iodé Z-I; l'abscence de doublets électroniques libres sur l'atome de soufre empéche la formation de l'ion sulfonium intermédiaire.

. L'utilisation de dérivés bromo-sulfurés (essais 149, 151) à la place des chlorures sulfurés correspondants ne modifie en rien les résultats obtenus.

Essais		Conditions	Rđt	Tr	m/z	%	Produits	n°	
		opératoires	%	(min)		GC			
153	3-méth	oxythiacyclohex	ane						
		NaI	0%	4,0	132	100%	Cp de départ	124	
182	3-méth	oxythiacyclohex	ane						
		[NaI + Me3SiCl]	100%	2,9	?	100%	?	724	
154	4,5-diméthoxy-3,3,6,6-tétraméthylthiacycloheptane								
		NaI	0%	14,7	232	100%	Cp de départ	125	
183	4,5-dim	 ét hoxy-3,3,6,6- t	tane						
		[NaI + Me3SiCl]	56%	8,6	186	56%	¥	725	
				14,6	232	44%	Cp de départ	125	
¥	2-[[1,1-d	liméthyl]-2-hydrox	yéthyl]-4	1,4-dimét	h ylthia cy	ıclopentan	-3-ol		
			-			-			

III.6) Cas des sulfures hétérocycliques

Récemment, V. Cerè et al.⁹⁴ ont montré que l'utilisation de [NaI + Me₃SiCl] sur des hétérocycles sulfurés fonctionnalisés conduit à un réarrangement particulier.

$$H_3$$
CO OCH₃

$$\frac{[\text{NaI} + \text{Me}_3\text{SiCl}]}{\text{MeCN/80°C}}$$
OH
$$S$$
1

Dans le cadre de nos travaux, il nous a alors paru intéressant d'étudier le comportement de tels systèmes vis à vis de nos réactifs.

. Les essais 153 et 154, réalisés en présence de NaI seul, ne donnent aucune réaction. Les hétérocycles sulfurés testés sont retrouvés intégralement en fin de manipulation.

Par contre ces même essais réalisés en présence du mélange [NaI + Me₃SiCl] (essais 182 et 183), conduisent bien à la formation de nouveaux composés.

Cependant, si pour l'essai 183, on obtient le produit de réarrangement escompté, il n'en va pas de même avec l'essai 182. Dans ce cas, le composé de départ est dégradé et nous n'avons pas réussi à identifier les constituants du mélange.

Nous avons alors cherché à comprendre le réarrangement observé. Le principe général imaginé pour ce processus est très proche de celui proposé pour les halogénures sulfurés. Nous avons choisi de l'illustrer à partir de la réaction de V. Cerè.

Dans un premier temps, on considère l'activation du dérivé sulfuré par l'ion Me₃Si⁺ généré au cours de la réaction.

L'ion sulfonium formé peut ensuite être attaquer par un ion iodure et donner un mercaptate de triméthyle silyle.

$$H_3CO$$
 OCH_3 H_3CO OCH_3 $OCH_$

Le composé final est alors obtenu à la suite de la substitution nucléophile d'un groupement méthoxy par l'atome de soufre.

Conditions										
			RS-SR	Dithiane	Z-C1	Z-I	A1	A2	Autres	Autre
191 MeCN/1 NaI 3,9 7,0 14%		Conditions	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr
191 MeCN/1 Nal 3.9 7.0 14%			%	%	%	%	%	%	%	%
191 MeCN/1 Nal 3.9 7.0 14%										
30 h; MeCN : 30 ml 90% 14% 14% 192 MeCN/2 NaI 3.8 6.9 33% 30 h; MeCN : 30 ml 66% 33% 193 MeCN/3 NaI 3.9 6.9 30 h; MeCN : 30 ml 81% 19% 194 MeCN/2 NaI 3.7 30 h; MeCN : 15 ml 100% 195 MeCN/2 NaI 3.8 6.8 35% 196 MeCN/2 NaI 3.7 6.9 15 h 54% 46% 197 MeCN/2 NaI 3.8 7.1 45 h 87% 13% 13% 13% 13% 13% 100% 100% 199 Cyclohexane : 30 ml 100%			MeCN cor		t	<u> </u>				
192 MeCN/2 NaI	191									
30 h; MeCN: 30 ml 66% 33% 33% 33% 34% 34% 34% 35% 30 h; MeCN: 30 ml 81% 19% 30 h; MeCN: 15 ml 100% 35% 35% 30 h; MeCN: 45 ml 65% 35% 35% 35% 30 h; MeCN: 45 ml 65% 35%		30 h; MeCN : 30	ml	90%		14%				
30 h; MeCN: 30 ml 66% 33% 33% 39 6,9 30 h; MeCN: 30 ml 81% 19% 19% 19% 194 MeCN/2 NaI 3,7 30 h; MeCN: 15 ml 100% 35% 35% 30 h; MeCN: 45 ml 65% 35% 35% 15 h 54% 46% 46% 197 MeCN/2 NaI 3,8 7,1 45 h 87% 13% 13% 100% 198 MeK/2 NaI 7,2 30h; MeK: 30 ml 100% 100% 199 Cyclohexane: 30 ml 100%	192	MeCN/2 NaI		3.8		6.9				
193 MeCN/3 Nai			ml	 		 			-	
30 h; MeCN : 30 ml										-
194 MeCN/2 NaI	193	MeCN/3 NaI		3,9	-	6,9				
30 h; MeCN: 15 ml 100%		30 h; MeCN: 30	ml	81%		19%				
30 h; MeCN: 15 ml 100%	104	M-0N (0 N Y		0.7						
195 MeCN/2 NaI	194		1	· · · · · · · · · · · · · · · · · · ·						
30 h; MeCN: 45 ml 65% 35% 196 MeCN/2 NaI 3,7 6,9 15 h 54% 46% 197 MeCN/2 NaI 3,8 7,1 45 h 87% 13% 3.Bu-S-(CH2)2-Cl avec différents solvants 198 MEK/2 NaI 7,2 30h; MEK: 30 ml 100% 199 Cyclohexane/2 NaI 7,5 30 h; Cyclohexane: 30 ml 100% 200 HMPT/2 NaI 6,8 30 h; HMPT: 30 ml 100% 201 EtOH/2 NaI 3,7 4,1 1 30 h; EtOH: 30 ml 5% 90% \$		30 n; MeCN : 15	mi	100%					-	
30 h; MeCN: 45 ml 65% 35% 196 MeCN/2 NaI 3,7 6,9 15 h 54% 46% 197 MeCN/2 NaI 3,8 7,1 45 h 87% 13% 3.Bu-S-(CH2)2-Cl avec différents solvants 198 MEK/2 NaI 7,2 30h; MEK: 30 ml 100% 199 Cyclohexane/2 NaI 7,5 30 h; Cyclohexane: 30 ml 100% 200 HMPT/2 NaI 6,8 30 h; HMPT: 30 ml 100% 201 EtOH/2 NaI 3,7 4,1 1 30 h; EtOH: 30 ml 5% 90% \$	195	MeCN/2 NaI		3.8		6.8				
15 h 54% 46% 197 MeCN/2 NaI 3,8 7,1 45 h 87% 13% E.Bu-S-(CH2)2-Cl avec différents solvants 198 MEK/2 NaI 7,2 30h; MEK : 30 ml 100% 199 Cyclohexane/2 NaI 7,5 30 h; Cyclohexane : 30 ml 100% 200 HMPT/2 NaI 6,8 30 h; HMPT : 30 ml 100% 201 EtOH/2 NaI 3,7 4,1 1 30 h; EtOH : 30 ml 5% 90%		 	ml	+	·	+				
15 h 54% 46% 197 MeCN/2 NaI 3,8 7,1 45 h 87% 13% 3.Bu-S-(CH2)2-Cl avec différents solvants 198 MEK/2 NaI 7,2 30h; MEK : 30 ml 100% 199 Cyclohexane/2 NaI 7,5 30 h; Cyclohexane : 30 ml 100% 200 HMPT/2 NaI 6,8 30 h; HMPT : 30 ml 100% 201 EtOH/2 NaI 3,7 4,1 1 30 h; EtOH : 30 ml 5% 90%										
197 MeCN/2 NaI	196	MeCN/2 NaI		3,7		6,9				
45 h 87% 13%		15 h		54%		46%				
45 h 87% 13%									ļ	
### 198 MEK/2 NaI	197	· - · · · · · · · · · · · · · · · · · · ·		· · ·		+				
198 MEK/2 NaI 7,2 30h; MEK : 30 ml 100% 199 Cyclohexane/2 NaI 7,5 30 h; Cyclohexane : 30 ml 100% 200 HMPT/2 NaI 6,8 30 h; HMPT : 30 ml 100% 201 EtOH/2 NaI 3,7 30 h; EtOH : 30 ml 5% 90% \$ \$		45 h		87%		13%				
198 MEK/2 NaI 7,2 30h; MEK : 30 ml 100% 199 Cyclohexane/2 NaI 7,5 30 h; Cyclohexane : 30 ml 100% 200 HMPT/2 NaI 6,8 30 h; HMPT : 30 ml 100% 201 EtOH/2 NaI 3,7 30 h; EtOH : 30 ml 5% 90% \$ \$	B11-S-	(CH2)2-Cl avec d	lifférents	eolvante						
30h; MEK : 30 ml 100% 199 Cyclohexane/2 NaI 7,5 30 h; Cyclohexane : 30 ml 100% 200 HMPT/2 NaI 6,8 30 h; HMPT : 30 ml 100% 201 EtOH/2 NaI 3,7 4,1 1 30 h; EtOH : 30 ml 5% 90%			Jointales		7.2					
30 h; Cyclohexane : 30 ml 100% 200 HMPT/2 NaI 6,8 30 h; HMPT : 30 ml 100% 201 EtOH/2 NaI 3,7 4,1 1 30 h; EtOH : 30 ml 5% 90% \$		· · · · · · · · · · · · · · · · · · ·	nl							***************************************
30 h; Cyclohexane : 30 ml 100% 200 HMPT/2 NaI 6,8 30 h; HMPT : 30 ml 100% 201 EtOH/2 NaI 3,7 4,1 1 30 h; EtOH : 30 ml 5% 90% \$										
200 HMPT/2 NaI 6,8 30 h; HMPT : 30 ml 100% 201 EtOH/2 NaI 3,7 4,1 1 30 h; EtOH : 30 ml 5% 90% \$	199					7,5				
30 h; HMPT : 30 ml 100% 201 EtOH/2 NaI 3,7 4,1 1 30 h; EtOH : 30 ml 5% 90% \$		30 h; Cyclohexa	ne: 30 m	1		100%				
30 h; HMPT : 30 ml 100% 201 EtOH/2 NaI 3,7 4,1 1 30 h; EtOH : 30 ml 5% 90% \$	000	111 CON (C 11 1				0.0				-
201 EtOH/2 NaI 3,7 4,1 1 30 h; EtOH : 30 ml 5% 90% \$	200	<u> </u>	1			 				
30 h; EtOH : 30 ml 5% 90% \$		30 II; HMP1 : 30	IIII			100%				
30 h; EtOH : 30 ml 5% 90% \$	201	EtOH/2 NaI		3.7					4.1	17,9
		·	ml	·	-		-		+	5%
\$ t.Bu-S-(CH2)2-OEt									· · · · · · · · · · · · · · · · · · ·	?
	\$	t.Bu-S-(CH2)2-C	Et							
			<u> </u>							
es temps de rétention (Tr) sont exprimés en minutes es pourcentages indiqués correspondent à ceux observés en GC/MS							0.486			

III.7) Détermination des paramétres influençants la synthèse de dithiane

Dans le cas particulier des dithianes, il nous a paru intéressant d'améliorer les rendements obtenus. Pour cela, nous avons cherché à déterminer les facteurs pouvant influencer la réaction.

Nous avons alors choisi d'effectuer cette étude pour le chlorure sulfuré suivant :

t.Bu-S-CH2CH2-Cl

Différents essais ont ainsi été réalisés en faisant varier :

- le nombre d'équivalents de NaI (essais 191-193),
- le volume d'acétonitrile (essais 194-195),
- le temps de réaction (essais 196-197),
- la nature du solvant (essai 198-201).

Dans cette étude, l'essai 192 est utilisé comme référence.

Les différents résultats obtenus, répertoriés dans le tableau 2.10, conduisent aux conclusions suivantes :

- . L'utilisation d'une quantité variable en NaI ne modifie pas de façon importante les résultats obtenus.
- . Le volume de solvant utilisé pour la réaction a une influence notable sur la synthèse de dithiane.

En effet, pour un volume minimum en acétonitrile (15 ml), on obtient 100% du produit désiré. Par contre, une augmentation de la dilution conduit aux mêmes résultats que l'essai de référence.

- . L'essai 197, pour lequel le temps de réaction est le plus long, améliore la conversion de **Z-I** et par conséquent le pourcentage de dithiane formé.
- . La nature du solvant joue un rôle important dans la formation du composé souhaité.
- dans la méthyléthylcétone, le cyclohexane et l'hexaméthyl phosphorotriamide, l'action de l'iodure de sodium sur le t.BuS(CH₂)₂Cl conduit uniquement au composé iodé **Z-I**.
- dans l'éthanol, on obtient majoritairement le produit de substitution de l'halogène par le groupement méthoxy du solvant.

IV) Conclusion

Dans ce chapitre, nous nous sommes attachés à étudier le comportement particulier de sulfures halogénés vis à vis des systèmes NaI, [NaI + Me₃SiCl] ou Me₃SiI; ceux-ci conduisent à la formation de polysulfures [A] du type :

$R-S-(CH_2)_n-S-R$

Nous avons ainsi montré que :

- cette réaction spécifique est fortement favorisée lorsque le chlorure sulfuré ne comporte que deux groupement CH₂ entre l'atome de soufre et d'halogéne.
- les meilleurs résultats sont obtenus lorsque le réactif utilisé est l'iodure de sodium, les systèmes [NaI + Me₃SiCl] ou Me₃SiI étant largement moins efficaces.
- le mécanisme dû à l'action de NaI sur les composés halogéno-sulfurés implique le passage par un ion sulfonium.

Finallement à partir du dérivé t.BuS(CH₂)₂Cl, nous avons déterminé les conditions opératoires les plus adaptées pour la formation de 1,4-dithianes (15 ml d'acétonitrile, 2 équivalent de NaI et chauffage à reflux pendant 30 heures).

REACTIONS SPECIFIQUES D'ALCOOLS SULFURES AVEC UN CATALYSEUR ACIDE [APTS OU HCI]

I) Introduction

Dans ce chapitre, nous avons tenté de comparer la réactivité d'alcools sulfurés en milieu acide à celle des halogénures sulfurés vis à vis de NaI ou [NaI + Me₃SiCl].

Au cours de travaux précédents, réalisés au L.C.O.^{7, 95-96}, il est apparu que l'utilisation des alcools RS(CH₂)nOH, en milieu acide paratoluène sulfonique donnent des réactions particulières lorsque la valeur de n est égale à 2.

OMe + HO-(CH₂)_n-S-t.Bu
$$\xrightarrow{APTS}$$
 O(CH₂)_n-S-t.Bu O

$$0$$

$$n = 2 \quad Rdt = 37\%$$

$$n = 3 \quad Rdt = 92\%$$

De même, en 1966, L. N. Owen *et Al* ⁹⁷ ont montré que l'action d'acide chlorhydrique 0,7 N sur ces alcools sulfurés RS(CH₂)₂OH conduit à la formation de polysulfures symétriques qui ont été caractérisés après leur oxydation en disulfones correspondantes.

$$\begin{array}{c|c} & & & & \\ R & & & \\ \hline & & \\$$

II) Conditions des réactions

Afin de mieux cerner la réactivité des alcools sulfurés étudiés, nous avons appliqué les modes opératoires suivants :

- APTS (10% molaire) : Chauffage à reflux dans le cyclohexane pendant 24 heures,
- HCl 0,7N: Chauffage à reflux durant 24 heures.

III) Réactions envisageables

Ces réactions sont très complexes et conduisent à de nombreux produits représentés ci-aprés :

R-S-(CF	[2]2-OF	ľ						
R-5-(C1	2,2-01							
Essais	R	Conditions	Tr	m/z	%	%	Produits	n°
		opératoires	(min)		GC/ IC	GC/IE		
200	t.Bu	APTS/	6,1	134	12,9	7,0	t.BuS(CH2)2OH	127
		Cyclohexane	11,3	190	20,0	38,7	t.BuS(CH2)2Ot.Bu	727
			21,7	194	14,3	7,9	t.Bu[S(CH2)2]2OH	827
			25,8	250	/	22,4	t.Bu[S(CH2)2]2Ot.Bu	927
	•		26,2	250	25,0	8,2	[t.BuS(CH2)2]2O	1027
			30,7	266	7,3	5,3	t.Bu[S(CH2)2]2St.Bu	403
			37,8	310	1,5	10,5	t.Bu[S(CH2)2]2O(CH2)2St.Bu	1227
201	t.Bu		127					
			10,6	190	19,8	3,2	t.BuS(CH2)2Ot.Bu	727
			22,7	194	34,6	15,4	t.Bu[S(CH2)2]2OH	827
			25,4	250	16,6	14,4	t.Bu[S(CH2)2]2Ot.Bu	927
			30,9	266	7,3	1,7	t.Bu[S(CH2)2]2St.Bu	403
			35,4	254	8,2	43,6	t.Bu[S(CH2)2]3OH	1127
			37,5	310		3,2	t.Bu[S(CH2)2]2O(CH2)2St.Bu	1227
202	i.Bu	APTS/	7,4	134	22,0	21,8	i.BuS(CH2)2OH	126
		Cyclohexane	8,4	190	10,9	1	i.BuS(CH2)2Oi.Bu	726
			28,7	250	67,1	78,2	[i.BuS(CH2)2]2O	1026

IV) Résultats et discussions

Précision: Comme pour les halogénures sulfurés, nous n'avons jamais tenté d'isoler les composés principaux obtenus; notre objectif était, en effet de caractériser les produits formés lors de ces essais (tableau 2.11).

. L'action de l'acide paratoluène sulfonique (essai **200**) ou de l'acide chlorhydriqure 0,7N (essai **201**) sur le t.BuS(CH₂)₂OH conduit à un mélange quasi-identique de produits.

Cependant, le pourcentage relatif de chacun des composés identifiés varie suivant les conditions de réaction.

De même, il ne semble pas exister de régle définie permettant d'expliquer le fait qu'un produit est majoritaire plutôt qu'un autre.

On peut remarquer, qu'il existe des différences importantes entre les pourcentages indiqués en spectrométrie de masse IE ou IC. Ces différences sont tout à fait normales et proviennent pour une large part de la présence d'alcools dans le milieu.

Il reste néanmoins que les pourcentages observés sont significatifs et qu'ils indiquent que l'utilisation d'un catalyseur acide ne permet absolument pas d'obtenir un composé parfaitement pur, ce qui n'est pas le cas avec les alcools sulfurés où n=3 ou plus⁸⁷.

. Afin de vérifier, éventuellement, le rôle du radical R des alcools RS(CH₂)₂OH, nous avons étudié l'action de l'APTS sur le dérivé i.BuS(CH₂)₂-OH (essai 202).

Il est en effet possible que l'encombrement stérique lié à la présence du radical tertiobutyle induise des réactions particulières.

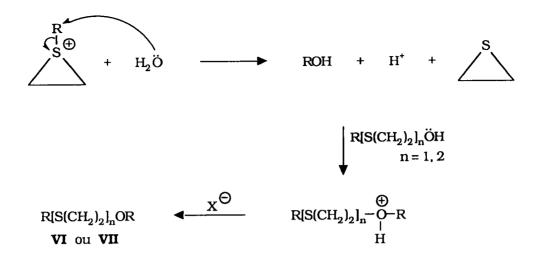
Comme nous pouvons le constater, il n'en est rien et les résultats observés sont très proches de ceux décrits précédemment.

Nous avons alors cherché à comprendre comment ces différents composés peuvent être formés. Pour ce faire nous avons envisagé, sur la base des hypothèses émises pour les halogénures sulfurés, le mécanisme proposé ci-dessous :

♦ Dans un premier temps, le doublet du soufre vient attaquer le carbone porteur de la fonction hydroxyle et former un ion thiiranium. Cette réaction de substitution intramoléculaire est rendu possible aprés la protonation de la fonction alcool qui devient extrêment labile.

$$RSCH_{2}CH_{2}OH \xrightarrow{HX} R\ddot{S}CH_{2}CH_{2}\overset{\bullet}{\longrightarrow} H, X \Theta \xrightarrow{R} H$$

♦ Au niveau de l'étape suivante, l'alcool sulfuré initial intervient de deux manières différentes (voies 1 et 2).


Les sulfures correspondants sont ensuite libérés sous l'action de l'ion X^- .

$$\begin{array}{c} \bigoplus_{\substack{\text{CH}_2\text{CH}_2\text{-S-R} \\ \text{CH}_2\text{CH}_2\text{-S-R} \\ \end{array}}} \text{R-S-(CH}_2)_2\text{-O-(CH}_2)_2\text{-S-R} \\ \mathbf{I} \end{array}$$

et

A ce stade, on peut envisager que l'alcool sulfuré ${\bf I}$ réagit à son tour et forme les composés ${\bf III}, {\bf IV}$ et ${\bf V}.$

Dans le cas des composés RS(CH₂)₂OR (**VI**) et RS(CH₂)₂S(CH₂)₂OR (**VII**), leur présence s'explique si l'on considère qu'il y a attaque de l'ion épisulfonium par une molécule d'eau; L'ion oxonium réagissant ensuite avec un alcool sulfuré, présent dans le mélange.

V) Conclusion

. Ces travaux, concernant la réaction entre un alcool sulfuré et un catalyseur acide, nous ont permis de montrer le comportement, toujours particulier, des sulfures possédant une fonction en ß de l'atome de soufre.

Dans notre cas, la présence de l'atome de soufre fait que des ions réactifs peuvent être créés dans le milieu par simple apport d'un catalyseur. On observe alors des réactions multiples qui conduisent à un très grand nombre de composés.

. Dans le cas des travaux de L. N. Owen *et Al* ⁸⁸, la reproduction de certains de leurs essais montre que ces auteurs se sont heurtés à l'époque, à des problèmes d'identification des composés issus de leurs synthèses et que la réaction qu'ils présentent donne un rendement très faible pour le produit mentionné.

CHAPITRE III

PARTIE ANALYTIQUE

METHODES D'ANALYSE

I) Présentation

Dans le cadre de notre étude, le couplage de la chromatographie en phase gazeuse (GC) avec la spectrométrie de masse (MS)^{98, 99} constitue une méthode de choix dans l'identification des composés obtenus après action des différents réactifs étudiés sur des alcools et halogénures sulfurés. Toutefois, dans un souci d'exactitude, nous avons choisi de synthétiser la plupart de ces dérivés, par voie directe, et de les caractériser par RMN¹H, RMN¹³C et GC/MS.

II) Résultats en GC/MS

II.1) Principe

Le couplage GC/MS est actuellement l'une des méthodes d'analyse les plus performantes en synthèse organique. Elle permet, en effet, d'allier les propriétés séparatives de la chromatographie gazeuse à un detecteur, trés sensible, le spectromètre de masse dont le principe de base repose sur la fragmentation des molécules lors d'un bombardement électronique (IE) ou chimique (IC), puis la séparation des ions ainsi formés selon leur rapport masse/charge dans un tube analyseur.

Par cette méthode nous avons ainsi obtenu :

- le spectre de masse de chaque produit,
- le temps de rétention [noté Tr] des différentes molécules,
- le pourcentage relatif des composés dans un mélange. A ce propos, on notera l'absence d'étalonnage interne qui implique que les valeurs indiquées peuvent être soumises à caution. En effet, nous ne disposions pas de tous les étalons. Nous avons cependant réalisé plusieurs étalonnages pour les réactions conduisant à des composés synthétisés (ex : essais113, 119). Nous constatons que nos valeurs sont parfaitement correctes.

II.2) Discussions des résultats

Les conditions d'analyse en GC/MS ont été rigoureusement les mêmes pour chacun de nos composés, à savoir :

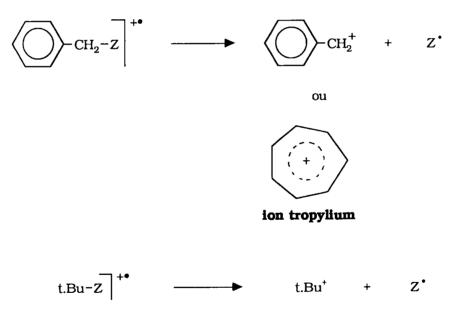
- température de l'injecteur : 300°C
- température du détecteur : 280°C
- colonne capillaire : SE 30 de 25 mètres
- programmation de température : 60°C pendant 3 minutes puis augmentation de 4°C par minute jusqu'à 300°C.

Pour un même produit, on note toutefois de légères différences qui peuvent s'expliquer par :

- l'évolution de la colonne avec le temps,
- les programmations de température et de pression qui ne sont pas idéalement reproductibles.

Cependant, ces fluctuations restent faibles et peu génantes.

Remarque : En vue de faciliter la lecture des résultats ceux-ci sont présentés par familles de composés.


II.2.1) GC/MS des halogénures sulfurés RS-A-X [X = Cl, I]

Les différents spectres de masse des chlorures et iodures sulfurés sont résumés dans les tableaux **3.1**, **3.2** et **3.3**.

- le premier regroupe les analyses obtenues pour les dérivés chlorés,
- le second celles corespondantes aux iodures,
- le dernier permet la comparaison entre les deux familles de composés.

A partir de ces résultats plusieurs points peuvent être soulignés.

- ◊ Le pic moléculaire [M]+* est toujours présent quelque soit le composé analysé,
- ♦ Le signal [M (X)]+, absent pour les composés chlorés est caractéristique de leurs homologues iodés. Il correspond le plus souvent au signal le plus intense (100%),
- ♦ Dans le cas des iodures, on retrouve parfois un pic 100% dû au système [RSCH2]+,
- ◊ Le signal [R]+ est le plus souvent perçu. Il est particulièrement important lorsque R = t.Bu ou Bz. En effet, il est très rare que le groupe Bz, d'un composé, ne donne pas le pic le plus intense (ion tropylium)⁹⁸; il en va souvent de même avec le groupement t.Bu.

♦ La distinction entre un chlorure et l'iodure correspondant est particulièrement visible avec le fragment [X]+. Car s'il est toujours perceptible pour l'iode, il est quasiment inexistant pour le chlore.

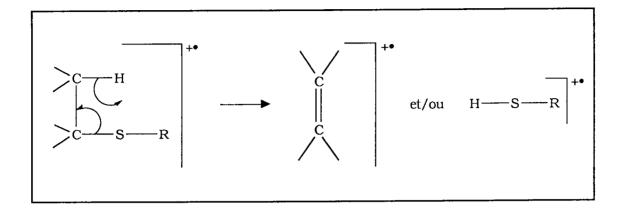

En dehors de ces fragmentations, nous retrouvons des ions-radicaux qui illustrent des réarrangements de type **PS**, précédemment décrits dans notre laboratoire, ainsi que le fragment m/z = 61 qui correspond probablement à l'élimination de l'atome d'halogène à partir du réarrangement PS. L'évolution d'un tel réarrangement est présentée, sur un exemple simple, au niveau du **schéma 1**.

Schéma 1: Réarrangement de type PS

$$\begin{bmatrix} \text{CH}_3\text{-CH}_2\text{-CH} & \text{H} \\ \text{CH}_2 & \text{S} & \text{CH}_2\text{-CH}_2\text{-X} \end{bmatrix}^{+\bullet} \\ \text{Inschipting the constraint of the c$$

En fait, ce type de réarrangement peut conduire à deux ions radicaux selon la nature des molécules sulfurées étudiées [schéma 2].

Schéma 2:

Il est évident que si l'on peut observer un signal m/z=56 pour un réarrangement PS on peut tout aussi bien percevoir l'ion complémentaire. Ceci est illustré par l'exemple proposé dans le schéma ci-après :

Schéma 3:

i.Bu-S-
$$(CH_2)_4$$
-Cl

PS

Me

$$CH = CH_2$$

Me

$$m/z = 56, \text{ non observé}$$

$$H-S-(CH_2)_4$$
-Cl

$$m/z = 124, \text{ observé}$$

II.2.2) GC/MS des sulfures de type A1

Si les sulfures de type A1 sont généralement non décrits, leurs spectres restent proches de ceux de sulfures plus classiques, dont le laboratoire maîtrise bien l'interprétation⁹⁹.

Les résultats obtenus pour ces composés sont répertoriés dans les tableaux **3.4** et **3.5**, ce dernier permettant une meilleure comparaison entre les fragments isolés pour chacun d'eux.

De plus, de la même manière que pour les halogénures sulfurés, on a observé différentes fragmentations et réarrangements, qui sont résumés, pour un exemple particulier, au niveau du schéma 4.

Ainsi on peut noter la présence :

- de deux ions que l'on retrouve pour toutes les molécules : l'ion
 [M]+ et l'ion [R]+.
 - On constate de nouveau ici le comportement particulier des groupes R = t.Bu et Bz pour lesquels ce signal est le plus intense,
- des fragments [M R]+ et [M RS]+,
- de réarrangements PS,
- de fragments **HS(CH₂)_nSH** observés pour tous les composés pouvant mener au réarrangement PS.

Il est important de signaler que ces fragmentations confirment totalement les structures proposées.

Schéma 4:

Pic Moléculaire (M+•)

i.Bu-S-CH₂CH₂-S-i.Bu

m/z = 208

M - R

i.Bu-S-CH₂CH₂-S-i.Bu
$$+ \bullet$$
 i.Bu-S-CH₂CH₂-S $+ \bullet$ R $+ \bullet$ R $+ \bullet$

M - SR

i.Bu-S-CH₂CH₂-S-i.Bu
$$\rightarrow$$
 i.Bu-S-CH₂CH₂ \rightarrow + RS $\stackrel{\bullet}{m/z}$ = 117

R-S

i.Bu-S-CH₂CH₂-S-i.Bu
$$+$$
 i.Bu-S-CH₂CH₂ $+$ m/z = 89

m/z = 89 est minoritaire par rapport à m/z = 149

HSCH₂CH₂ + peut provenir de diverses fragmentations dont le réarrangement PS (m/z = 94)

Schéma 4 [suite]:

Réarrangement de type PS 1

$$H - C(Me)_2$$
i.Bu-S-CH₂CH₂-SH + (Me)₂C = CH₂

$$m/z = 150$$

Réarrangement de type PS 2

$$HS-C(Me)_{2}$$

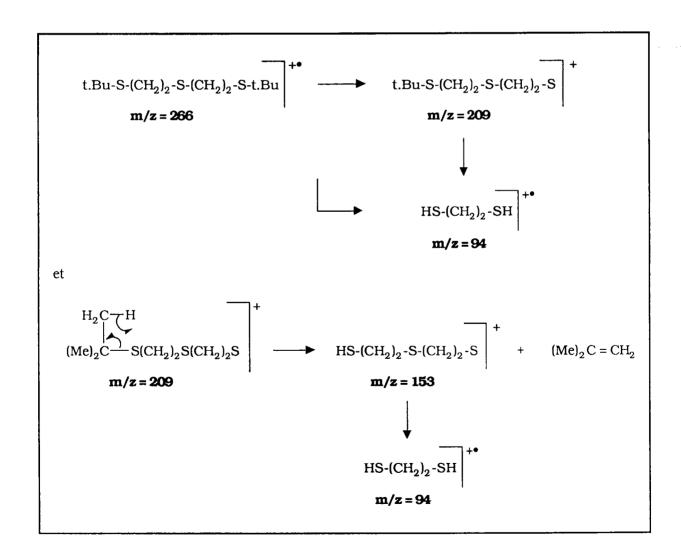
$$HS-CH_{2}CH_{2}-SH$$

$$+ (Me)_{2}C = CH_{2}$$

$$m/z = 150$$

Coupure en "ß" du soufre; M/2 dans notre cas

i.Bu-S-CH₂CH₂-S-i.Bu + RSCH₂ + RSCH₂
$$m/z = 103$$


II.2.3) GC/MS des sulfures de type A2

Les spectres de masse des composés de type A2 sont tout à fait comparables à ceux de type A1. Les différents résultats obtenus pour ces dérivés sulfurés sont présentés dans le tableau **3.6.**

Nous ne reprendrons pas la discussion exposée pour les composés précédents (A1) mais nous présentons dans le **schéma 5** les autres réarrangements de type PS possibles. En effet, du fait du nombre d'atomes de soufre présents dans ces molécules, les possibilités de réarrangements de ce type augmentent.

Les exemples, ainsi présentés, illustrent cette particularité.

Schéma 5: t.BuS(CH₂)₂S(CH₂)₂St.Bu

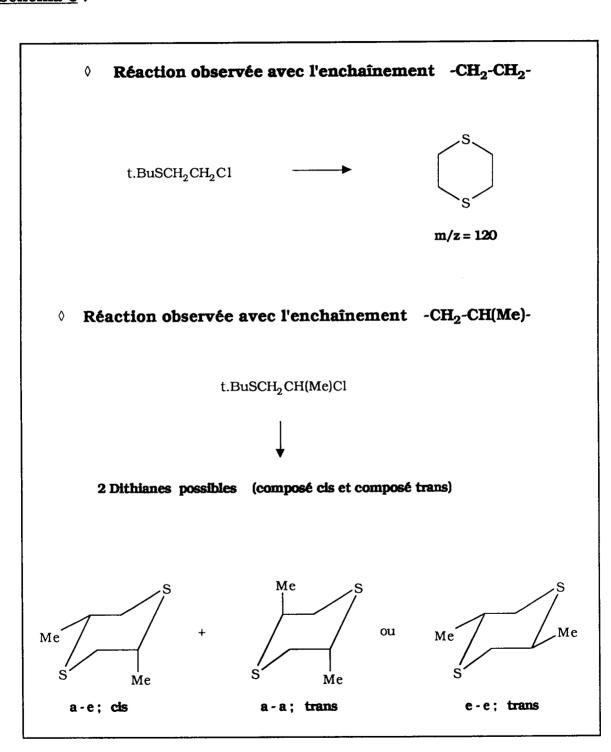
Schéma 5 (suite):

De plus, en dehors de ces réarrangements il est possible d'observer le signal du type suivant :

$$HSCH_2CH(CH_3)SH$$

 $m/z = 108$

qui résulte de l'évolution des fragments PS.


II.2.4) GC/MS des dithianes

Ces composés sont principalement obtenus aprés action de NaI ou [NaI + Me₃SiCl] sur des chlorures sulfurés dont le radical R est le tertiobutyle.

Bien qu'uniquement caractérisées par GC/MS (tableau 3.7), les structures proposées sont parfaitement sûres et confirmées grâce à la banque de données de l'ordinateur.

On a ainsi identifié plusieurs types de structure suivant l'halogénure sulfuré de départ **(schéma 6)**.

Schéma 6:

Schéma 6 (suite):

II.2.5) GC/MS de composés "divers"

Au niveau de la synthèse organique et de l'interprétation des mécanismes réactionnels proposés, ces molécules revêtent une importance extrême. En effet, bien que les rendements pour ces composés soient faibles, ils nous permettent de verifier les hypothèses émises.

Les résultats obtenus sont consignés dans le tableau **3.8**. On y retrouve principalement :

- des iodures du type $I-(CH_2)_n-I$ qui sont connus et caractérisés par la bibliothèque de l'ordinateur.

Dans le cas particulier de I-(CH₂)₂-I, le spectre de masse n'a pu être proposé en raison de la volatilité du composé dans les conditions d'expérience utilisées,

- deux iodures particuliers : Cyclo(6)-I et Bz-I qui confortent le mécanisme réactionnel proposé,
- l'alcène t.Bu-S-CH=C(Me)2 obtenu majoritairement au cours de la réaction avec le composé t.BuSCH₂C(Me)₂Cl (**115**),

- le 3-méthoxythiacyclohexane et le 4,5-diméthoxy-3,3,6,6-tétraméthylthiacycloheptane,
- Les alcools i.BuS(CH2)2OH et t.BuS(CH2)2OH, ainsi que les produits obtenus aprés réaction en milieu acide [APTS, HCl].

On y présente également des spectres dont l'interprétation est émise avec une certaine réserve.

III) Conclusion

Les attributions de structures des composés identifiés, au cours de l'étude de la réactivité de molécules sulfurées fonctionnalisées à l'égard de systèmes électrophiles ou nucléophiles, sont en grande majorité non contestables.

Pour plus de certitude, nous avons vérifié la validité de ces résultats soit en synthétisant ces composés par voie directe, soit en comparant leurs spectres avec ceux fournis par la banque de données de l'appareil.

Nous devons cependant préciser qu'il peut rester un léger doute concernant le composé **725** dont la synthèse directe n'a pu être réalisée.

mposé		Tr (min)	Signal	Туре	m/z	%
		, , , ,			MS	MS
105	Ph-S-(CH2)2-Cl					
100	1 H-G-(C112)2-C1	15,3	M+• (C1/37)	+•	174	22
		10,0	M+•(C1/35)	+•	172	62
			RSCH2	+	123	100
		+	RS	+	109	54
			Ph	+	77	14
			111	+	65	30
-		-		· '		- 00
106	Bz-S-(CH2)2-CI					
		20,9	M+• (C1/37)	+•	188	10
			M+• (C1/35)	+•	186	29
			PhCH2	+	91	100
107	i.Bu-S-(CH2)3-Cl					
107	1.Du-5-(C112)3-C1	9,7	M+• (Cl37)	+•	168	15
		1	M+• (Cl35)	+•	166	44
			PS	+•	110	28
			M - 15	+	151	10
			HS(CH2)2	+	61	96
			R	+	57	26
				+	41	100
100	1 P C (OVIO)4 OI					
108	i.Bu-S-(CH2)4-Cl	12,3	M+• (Cl37)	+•	182	16
		12,0	M+• (Cl37)	+•	180	46
			PS	+•	126	12
			PS	+•	124	20
			RSCH2	+	103	31
-			R	+	57	32
				+	55	69
				+	41	100
109	i.Bu-S-(CH2)5-Cl	16,8	M+• (Cl37)	+•	196	6
		10,0	M+• (Cl37) M+• (Cl35)	+•	196	26
			1VIT* (CISS)		111	18
			M - Cl	+	159	18
		-	RSCH2	+	103	38
			HS(CH2)2	+	61	45
		+	113(0172)2	+ +	41	100

ompos	é	Tr (min)	Signal	Туре	m/z	0/
<u>-</u>		(,	5-6-141	турс	MS	% MS
		 			МЗ	MS
101	n.Bu-S-(CH2)2-Cl					-
		7,9	M+• (C1/37)	+•	154	29
			M+• (C1/35)	+•	152	80
			M - (C3H7)	+	111	19
			M - (C3H7)	+	109	52
			RSCH2	+	103	28
<u> </u>			RS	+	89	20
			HS(CH2)2	+	61	100
			R	+	57	60
			PS	+•	56	60
				+	45	90
				+	41	78
100	10.0/00000	-				
102	i.Bu-S-(CH2)2-Cl					
		11,0	M+• (C1/37)	+•	154	15
			M+• (C1/35)	+•	152	40
			M - (C3H7)	+	111	18
			M - (C3H7)	+	109	58
			RSCH2	+	103	25
			RS	+	89	6
				+•	84	50
			R	+	57	58
			PS	+•	56	100
			CH2Cl	+	49	46
			i.Pr	.+	43	15
103	t.Bu-S-(CH2)2-Cl					
-		19,0	M+• (Cl/37)		154	10
		10,0	M+• (C1/37)	+•	154	12
		- +	M - 15	+•	152	34
			M - 15	+	139	6
		-	HS(CH2)2	+	137 61	<u> </u>
			R	+ +	57	traces
					- 31	100
104	Cyclo(6)-S-(CH2)2-C1					
		15,7	M+• (C1/37)	+•	180	35
			M+ (Cl/35)	+•	178	100
			R	+	83	traces
			PS	+•	82	82
			HS(CH2)2	+	61	6
				+	55	100

		- (· · · · · · · · · · · · · · · · · ·	Cland	Туре	m/z	%
mposé		Tr (min)	Signal	Type	MS	MS
						
105	Ph-S-(CH2)2-Cl					
		15,3	M+• (C1/37)	+•	174	22
			M+•(C1/35)	+•	172	62
			RSCH2	+	123	100
-			RS	+	109	54
			Ph	+	77	14
				+	65	30
106	Bz-S-(CH2)2-C1	20.0	M+• (C1/37)	+•	188	10
		20,9	M+• (C1/37)	+•	186	29
			PhCH2	+	91	100
			FIICIIZ	<u>·</u>		
107	i.Bu-S-(CH2)3-Cl	-				
		9,7	M+• (Cl37)	+•	168	15_
			M+• (Cl35)	+•	166	44
			PS	+•	110	28
			M - 15	+	151	10
			HS(CH2)2	+	61	96
		-	R	+	57	26
				+	41	100
	1 D - C (CH9)4 C1					
108	i.Bu-S-(CH2)4-Cl	12,3	M+• (Cl37)	+•	182	16
		12,0	M+• (Cl35)	+•	180	46
			PS	+•	126	12
			PS	+•	124	20
			RSCH2	+	103	31
			R	+	57	32
				+	55	69
				+	41	100
						-
109	i.Bu-S-(CH2)5-Cl	10.0	M+• (Cl37)	+•	196	6
		16,8	M+• (Cl37)	+•	194	26
			1V1 (C100)	+	111	18
			M - Cl	+	159	18
			RSCH2	+	103	38
				+	61	45
			HS(CH2)2	+	41	100

omposé		Tr (min)	Signal	Туре	m/z	%
					MS	MS
110	i Pro C (OVIO)C OI					
110	i.Bu-S-(CH2)6-C1	00.5	M - (O107)		010	-
		20,5	M+• (Cl37) M+• (Cl35)	+•	210 208	9
			M - X	+•	173	28
			RS(CH2)2	+	117	25
			HS(CH2)2	+	61	44
			R	+	57	48
	- D.H.			+	41	100
						100
111	i.Bu-S-(CH2)11-Cl					
		33,4	M+• (Cl37)	+•	280	4
		-	M+• (Cl35)	+•	278	16
			M - R	+	221	54
			R	+	57	100
				+	41	100
112	i.Bu-S-CH2-CH(Me)-Cl					
		8,3	M+• (Cl37)	+•	168	26
			M+• (Cl35)	+•	166	58
			M - R	+	131	13
				+	117	42
			RSCH2	+	103	100
		-	R	+	57	100
				+	41	89
113	t.Bu-S-CH2-CH(Me)-Cl					
110	t.bu-5-Cli2-Cli(Me)-Cl	5,1	M+• (Cl37)	+•	168	10
		0,1	M+• (Cl37)	+•	166	34
	7.		M - 15	+	153	traces
		_	M - 15	+	151	traces
			R	+	57	100
						<u> </u>
114	i.Bu-S-CH2C(Me)2-Cl					
		9,5	M+• (Cl37)	+•	182	16
			M+• (Cl35)	+•	180	44
			RSCH2	+	103	100
				+	61	24
				+	41	60

omposé		Tr (min)	Signal	Туре	m/z	%
					MS	MS
,,,,,,	4 D. C 01100016-10 01			-		
115	t.Bu-S-CH2C(Me)2-Cl	6,3	M+• (Cl37)	+•	182	5
		0,3	M+• (Cl37)	+•	180	14
			RS	+	89	19
		-	R	+	57	100
-				+	41	51
				<u> </u>		
116	i.Bu-S-CH2C(Me)2-CH2C					
	<u> </u>	11,9	M+• (Cl37)	+•	196	15
			M+• (Cl35)	+•	194	41
			RSCH2	+	103	48
				+	61	31
				+	41	100
117	[i.Bu-S-CH2]2CH-Cl					
		26,4	M+• (Cl37)	+•	256	2
			M+• (Cl35)	+•	254	7
			M - R	+	197	11
				+	129	100
				+	73	21
				+	41	64
118	[t.Bu-S-CH2]2CH-Cl				070	
		22,9	M+• (C1/37)	+•	256	1
			m+• (C1/35)	+•	254	4
			M - R	+	199	13
			M - R	+	197	39
				+	143	8
				+	141	25
			RS	+	89	19 100
			R	+	57	100
119	t.Bu-S-S-(CH2)2-Cl					
		9,2	M+• (Cl/37)	+•	186	2
			M+• (C1/35)	+•	184	7
			PS	+•	128	3
				+	99	7
				+	59	28
			R	+	57	100
				+	41	60

omposé		Tr (min)	Signal	Туре	m/z	%
					MS	MS
201	n.Bu-S-(CH2)2-I	16,2				
		1	M+•	+•	244	7
				+•	216	3
			M - RS	+	155	28
			iode	+	127	24
			M - I	+	117	100
			HS(CH2)2	+	61	27
			R	+	57	12
202	i.Bu-S-(CH2)2-I					
		11,4	M+•	+•	244	10
				+•	216	5
			M - RS	+	155	40
			iode	+	127	38
			M - I	+	117	100
			HS(CH2)2	+	61	50
			R	+	57	80
203	t.Bu-S-(CH2)2-I					
		8,8	M+•	+•	244	7
				+•	216	4
			M - RS	+	155	10
	· · · · · · · · · · · · · · · · · · ·		iode	+	127	15
			M - I	+	117	52
			HS(CH2)2	+	61	29
			R	+	57	100
204	Cyclo(6)-S-(CH2)2-I			atten is a		
204	Cyclo(0)-5-(CH2)2-1	22,7	M+•	+•	270	8
		22,1	M - I	+	143	100
			iode	+	127	25
			R	+	83	50
			HS(CH2)2	+	61	98
				<u> </u>		
205	Ph-S-(CH2)2-I					
		21,3	M+•	+•	264	15
				+•	236	5
			M - RS	+	155	10
			M - I	+	137	100
			iode	+	127	12
			RS	+	109	100
			R	+	77	4

omposé		Tr (min)	Signal	Туре	m/z	%
			······		MS	MS
206	Bz-S-(CH2)2-I					-
200	B2-5-(CH2)2-1	28,0	M+•	+•	278	15
		20,0	M - I	+	151	30
			iode	+	127	12
		-	R	+	91	100
207	i.Bu-S-(CH2)3-I					
		14,6	M+•	+•	258	32
			PS	+•	202	5
			M - RS	+	169	10
			M - I	+	131	100
			Iode	+	127	10
			R	+	57	40
000	1 7 6 (6776) -					
208	i.Bu-S-(CH2)4-I	10.0	3.6		070	1.4
		19,0	M+•	+•	272	14
	79 30 11 11		M - RS M - I	+	183 145	18 81
			Iode	+	127	17
			RSCH2	+	103	100
			RS	+	89	52
			R	+	57	69
			IX.	т		- 03
209	i.Bu-S-(CH2)5-I					
		18,8	M+•	+•	286	2
			M - I	+	159	83
			RSCH2	+	103	67
				+	69	63
			R	+	57	70
				+	41	100
210	i.Bu-S-(CH2)6-I				: - · · · · · · · · · · · · · · · · · · ·	
		24,6	M+•	+•	300	2
			M - I	+	173	100
			Iode	+	127	15
			RS(CH2)2	+	117	48
			_	+	83	39
			R	+	57	77
		1		+	41	100

omposé		Tr (min)	Signal	Туре	m/z	%
			<u> </u>	**	MS	MS
011						
211	i.Bu-S-(CH2)11-I	00.5		·		
		38,7	M+•	+•	370	10
			M - R	+	313	20
	· · · · · · · · · · · · · · · · · · ·		M - I	+	243	68
			RS(CH2)4	+	187	21
			Iode	+	127	7
]	R	+	57	48
				+	41	100
212	i.Bu-S-CH2-CH(Me)-I					
		12,4	M+•	+•	258	5
	,,,=			+•	216	11
			M - RS	+	169	12
			M - I	+	131	75
			RS	+	89	7
			R	+	57	59
				+	41	100
213	t.Bu-S-CH2CH(Me)-I	100				
		10,0	M+•	+•	258	2
		ļ <u>.</u>		+•	216	25
			M - R	+	201	5
			M - RS	+	169	4
			M - I	+	131	25
			Iode	+	127	18
			-	+	75 5.5	99
			R	+	57	100
216 i.	Bu-S-CH2C(CH3)2CH2-1					
-		16,5	M+•	+•	286	23
			M - R	+	229	2
			M - I	+	159	30
			Iode	+	127	7
			RSCH2	+	103	82
			R	+	57	91
				+	41	100

ABLEAU	3.2 [suite] : Spectres d	e masse d	es iodures sul	furés		
Composé			Signal	Туре	m/z	%
					MS	MS
219	t.Bu-S-S-(CH2)2-I					
		14,3	M+•	+•	276	10
				+•	192	3
			M - RS	+	155	10
				+•	128	4
			Iode	+	127	4
				+	93	4
			R	+	57	100
221	t.Bu-SO2-(CH2)2-I					
		18,9	M+•	+•	276	10
			M - RSO2	+	155	10
-			RSO2	+	121	7
			R	+	57	100

es chiffre	PG TV	rtés co	rrespo	ndent	ragmenta aux % GC	C/MS														
es pice n	nolec	nilgires	(M+•)	indian	és corres	ponder	it à cei	ıx obte	nus av	ec le c	hlore	35								
es pics ii	10100	diane n	n eign	al non	observé (ou très	faible													
Se signe (1 111	T T	II SIEI		ODDO2 VO															
21-1	. 1	R-S-(CH	2)= C1	at D.C	-7-C1															
Chlorures	: 1	110)-C-N	Z)II-CI	CL IX-C	72-01				-											
		n.Bu	i.Bu	+ D	Cyclo(6)	Ph	Bz	i.Bu	i.Bu	i.Bu	i.Bu	i.Bu	i.Bu	t.Bu	i.Bu	t.Bu	i.Bu	i.Bu	t.Bu	t.Bu
	R	n.bu	1.Du	t.Du	Cyclo(o)	- 1 11	DL	1.24	2124											
				2	2	2	2	3	4	5	6	11	z1	z1	z2	z2	z 3	z4	z4	z5
	n	2	2					-												
			40	34	100	62	29	44	46	26	28	16	58	34	44	14	41	7	4	7
M+•		80	40	34	100	- 02		7.1	10											
		*	*	*	*		*	*	*	18	34	*	*	*	*	*	*	*	*	*
M - X				ļ	-					10						 				
		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
M - SR		<u> </u>	-						 			<u> </u>		-		 				
			0=	*	*	100	*	*	31	38	*	*	100	*	100	*	48	*	*	*
RSCH2		28	25		Ţ	100			- 51	30		 	100	 				1	 	
			100	*	82	*	*	28	30	*	*	*	*	*	*	*	*	*	*	3
PS		60	100	ļ <u>-</u>	82	· ·		20	- 30	-			ļ						1	
				*	*	54	*	-*	*	*	*	*	*	*	*	19	*	*	19	*
RS		20	6	<u> </u>		34		-	ļ	 	ļ	 	 	 	-				+	1
				100	*	14	100	26	32	*	48	100	100	100	*	100	*	*	100	100
R		60	58	100	ļ -	14	100	20	32	-	1 40	100	100	100		100	1	 		+
		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Cl				ļ	ļ			 		· · ·			 			 	 	 	-	1
	<u> </u>		*	*	6	*	*	96	*	45	44	*	*	*	24	*	31	*	*	*
m/z = 61		100		ļ	0			30		10	+	 	+		 -			<u> </u>		1
	L			<u> </u>		ļ	<u></u>	-	-	 	 	+	 			+	+	+	+	+
						ļ		ļ	ļ		1			 	 			+	+	+
		CH3)			<u> </u>				ļ. <u>.</u>				-						+	-
		H3)2		<u> </u>				 	ļ	 		-	 	 	 	-			+	+
		H3)2CH	[2		<u></u>		<u> </u>	<u> </u>	ļ		-		-					+		+
	2]2C						ļ 			ļ			<u> </u>	ļ			 		+	+
z5 : SCI	12CI	12			1				1	l	1		ļ	1				ļ.——		+

Tableau 3	3.3 (sı	uite]:	Comp	araiso	n des frag	menta	tions												1	
Les chiffr Le sigle [es po	ortes co adique	nrespo	nal no	n observé	C/MS	e faihl	<u> </u>												
	, <u>,</u>		un 0.8	110		ou ac	,s raibi	<u>.</u>							<u></u>					-
Iodures:	R-8	3-(CH2)	n-I et	R-S-Z-	C 1															
	R	n.Bu	i.Bu	t.Bu	Cyclo(6)	Ph	Bz	i.Bu	t.Bu	i.Bu	i.Bu	i.Bu	i.Bu	t.Bu	i.Bu	t.Bu	i.Bu	i.Bu	t.Bu	t.Bı
	n	2	2	2	2	2	2	3	4	5	6	11	z1	z1	z2	z2	z3	z4	z4	z 5
M+•		7	10	7	8	15	15	32	14	2	2	10	5	2	*	*	23	*	*	10
M - X		100	100	52	100	100	30	100	81	83	100	68	75	25	*	*	30	*	*	*
M - SR		28	40	10	*	10	*	10	18	*	*	*	12	4	*	*	*	*	*	15
RSCH2		*	*	*	*	*	*	*	100	67	*	*	*	*	*	8	82	*	*	*
PS		*	*	*	*	*	*	5	*	*	*	*	*	*	*	*	*	*	*	*
RS		*	*	*		10	*	*	52	*	*	*	7	*	*	*	*	*	*	*
R		12	80	100	50	4	100	40	69	70	77	48	59	100	*	*	91	*	*	100
iode		24	38	15	25	12	12	10	17	*	15	7	*	18	*	*	7	*	*	*
m/z = 61		27	50	29	98	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
=1 : CH2																				
22 : CH2 23 : CH2			2				<u> </u>													
]2CH	1					-		-											
ZU : SCH	ZURZ	6																		

Compose	f Tr (m	in) Signal	Туре	m/z	%	%	%
			-320	MS	MS	MS	MS
	RS-(CH2)2-SR						
301	19,2				R = n.Bu	R = i.Bu	R = t.Bu
302	16,2		+•	206	25	14	24
303	12,2		+•	150	16	24	9
		M - SR	+.	117	52	24	2
		ß du soufre : M/2	+	103	14	33	2
		PS2	+•	94	10	38	24
		TTC/CTTC/C	+•	88	16	14	2
	-	HS(CH2)2	+	61	100	57	5
		R	+	57	18	100	100
304	Cyclo(6)-S-(CH	2)2-S-Cwolo(6)		~			
	35,4			050	05		
	00,4	PS1	+•	258	25		
		M - R	+•	176 175	23		
		M - SR	+ +		3		
			+	143	15		
		ß du soufre : M/2	+	129	10	-	
		RS	+	115	29		
		PS2	+•	114	46		
		132	+•	94	4		
		R	+	93	15		
		IX	+	83	45		
		HS(CH2)2	+	81	36		
		115(C112)2	+	61	29		
305	Ph-S-(CH2)2-S-1	Ph					
	33,6	M+•	+•	246	24		
		M - SR	+	137	100	-	
		β du soufre : M/2	+	123	100		
		RS	+	109	52		
		R	+	77	10		
			+	65	10		
					-		
306	PhCH2-S-(CH2):	2-S-CH2Ph					
	37,0	M+•	+•	274	12		
		M - R	+	183	28		
		RS	+	123	19		,
		R	+	91	100		

	Tr (min)	Signal	Туре	m/z	%	
omposé	II (min)	Oignui		MS	MS	
307	i.Bu-S-(CH2)3-S-i.	Bu				
	21,8	M+•	+•	220	27	
		M - R	+	163	93	
		HS(CH2)3SH	+•	108	7	
			+	107	100	·
			+	87	11	
		HS(CH2)3	+	74	33	
		R	+	57	76	
			+	41	69	
308	i.Bu-S-(CH2)4-S-i			234	29	
	22,3	M+•	+•	177	100	
		M - R	+	145	100	
		M - SR	+	121	71	
		HS(CH2)4S	+	103	62	
		RSCH2	+	87	62	
			+	57	100	
		R	+	41	95	
				+		
309	i.Bu-S-(CH2)5-S-	i.Bu	-			
	25,2	M+•	+•	248	19	
		M - R	+	191	24	
		M - SR	+	159	14	
		HS(CH2)5S	+	135	14	
		RSCH2	+	103	71	
			+	87	14	
			+	69	29	
		R	+	57	67	
				41	100	
310	i.Bu-S-(CH2)6-S-	i.Bu M+•	+•	262	31	
	30,1	M - R	+	205	11	
		M - R M - SR	+	173	31	
<u> </u>		HS(CH2)6S	+	129	11	
		113(C112)03	+	115	51	
			+•	116	44	
		RS(CH2)2	+	117	29	
<u> </u>		RSCH2	+	103	27	
		R	+	57	73	
L			+	41	100	

ompos	s é	Signal	Туре	m/z	%	
				MS	MS	
311	i.Bu-S-(CH2)11-	C i D.				
	40,6	M+•		000		
_	10,0	M - R	+•	332	7	
		M - SR	+	275 243	11	
·		M - SIC	+	219	100	
		HS(CH2)11SH	+	220	9	
		110(0112)11011	+	185	11	
		RSCH2	+	103	7	
		100112	+	87	11	
		R	+	57	29	
				41	29	
			+	41	29	
312	i.Bu-S-CH2CH(Me)-S-i.Bu	+			
	16,4	M+•	+•	220	8	
		PS1	+•	164	5	
		M - SR	+	131	8	
			+	117	100	
		R	+	57	30	
			+	41	33	
010						
313	t.Bu-S-CH2CH(Me					
	12,5	M+•	+•	220	11	
		M - R	+	163	7	
		M - SR	+	131	1	
			+	117	9	
		HSCH2CH(Me)	+	75	7	
		R	+	57	100	
			+	41	33	
314	i.Bu-S-CH2C(Me)2	-S-i.Bu				
	18,2	M+•	+•	234	24	
		PS1	+•	178	2	
		M - R	+	145	22	
		M - SR	+	131	82	
		RSCH2	+	103	3	
		HSCH2C(Me)2	+	89	20	
		<u> </u>	+	75	31	
		R	+	57	48	
-			+	41	100	

		tres de masse des c				
omposé		Signal	Туре	m/z	%	
ZOIII POSC				MS	MS	
317	[i.Bu-S-CH2]2CH-S	-i.Bu				
	30,6	M+•	+•	308	9	
		M - R	+	251	6	
			+•	218	6	
			+	149	43	
			+	129	100	
		RSCH2	+	103	20	
			+	87	14	
			+	73	16	
		R	+	57	43	
			+	41	20	
318	[t.Bu-S-CH2]2CH-	S-t.Bu				
	27,8	M+•	+•	308	traces	
		M - R	+	251	4	
			+	195	12	
·		[HSCH2]2CHS	+	139	21	
			+	73	6	
		R	+	57	100	
			+	41	37	
0.70	1 D . 0 0 (0770) 0 0	4 Dec		<u> </u>		
319	t.Bu-S-S-(CH2)2-S	M+•	+•	238	traces	
	19,2	PS1	+•	182	1	
		PSI	+•	150	traces	
		M - RS2	+	117	29	
		R	+	57	100	
			+	41	16	

Tableau 3	3.5 :	Comp	araisoı	des f	ragmenta	tions												<u> </u>		
Les chiffr Le sigle [es por	rtes co	in sig	nel no	aux % G	C/MS	e foible													
To pre (,	arque	un arg	la lio	u obscive	ou ac	S IGIDI												<u></u>	
Composés	A1:	R-S-	(CH2):	n-S-R e	et R-S-Z-S	-R														-
	R	n.Bu	i.Bu	t.Bu	Cyclo(6)	Ph	Bz	i.Bu	i.Bu	i.Bu	i.Bu	i.Bu	i.Bu	t.Bu	i.Bu	t.Bu	i.Bu	i.Bu	t.Bu	t.B
	n	2	2	2	2	2	2	3	4	5	6	11	z1	z1	z 2	z2	z 3	z4	z4	z 5
M+•		25	14	24	25	24	12	27	29	19	31	7	8	11	24	*	*	9	*	*
PS1		16	24	9	23	*	*	*	*	*	*	*	*	*	2	*	*	*	*	1
M - R		*	*	*	3	*	28	93	100	24	11	11	*	7	22	*	*	6	4	*
M - SR		52	24	2	15	100	*	*	10	14	31	100	8	1	92	*	*	*	*	*
M/2		14	33	2	10	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
PS2		10	38	24	4	*	*	7	*	*	*	7	*	*	*	*	*	*	*	*
RS		*	*	*	29	52	19	*	*	*	*	*	*	*	*	*	*	*	*	*
HS(CH2)n / HSZ		100	57	5	29	*	*	33	*	*	*	*	*	7	20	*	*	*	21	*
R		18	100	100	45	10	100	76	100	100	73	29	30	100	48	*	*	43	100	100
21 : CH2 22 : CH2 23 : CH2 24 : CH2 25 : SCH	C(CH: C(CH: J2CH	3)2 3)2CH2	2																	

Composé		Tr (min)	Signal	Туре	m/z	%
		(,	Oighti	турс	MS	MS
					MIS	1412
403	t.Bu-S[(CH2)2S]2-t.B1	1				
		26,5	M+•	+•	266	traces
			M - R	+	209	6
			M - RSH	+•	176	5
 .				+	153	12
			t.BuSCH=CH2	+•	116	22
			HS(CH2)2SH	+•	94	11
			R	+	57	100
				+	41	48
407	I D. CKOYOGGO I -					
407	i.Bu-S[(CH2)3S]2-i.Bu					
		34,8	M+•	+•	294	18
			M - R	+	237	6
			M - RS(CH2)3	+	163	84
			RS(CH2)3	+	131	100
				+	107	48
				+	75	34
			R	+	57	62
				+	41	70
410	i.Bu-S[(CH2)6S]2-i.Bu	-				
		49,3	M+•	+•	378	12
			M - R	+	321	2
			M - RS	+	289	3
			RS(CH2)6S	+	205	19
		**	-	+	199	19
			RS(CH2)6	+	173	91
			i.BuSCH=CH2	+•	116	91
			R	+	57	10
				+	41	87
412	+ Dec SIOTIONTOTION					
412	t.Bu-S[CH2CH(CH3)S]		M+•	+•	294	3
		30,7	M - R	+	237	12
			M - RSH	+•	204	13
			DOOLLO GETTE	+	181	18
			RSCH2CH(CH3)	+	131	35
			HSCH2CH(CH3)SH	+•	108	7
			HSCH2CH(CH3)	+	75	96
			R	+	57	100

Composé		Tr (min)	Signal	Туре	m/z	%
 -			-		MS	MS
						1110
503	1,4-Dithiane					
		5,2	M+•	+•	120	100
				+	105	8
				+•	92	22
				+	73	8
				+•	64	20
				+	61	37
				+•	60	21
				+	59	16
	2,5-diméthyl-	1,4-dithian	е			
2 dithian	ies caractérisés	donnent de	s fragmentatio	ns comparabl	es	-
ignore lec	que correspond	à la forme c	is ou trans			· · · · · · · · · · · · · · · · · · ·
						<u> </u>
513 a		4,6	M+•	+•	148	59
·				+	133	42
				+•	106	60
				+•	74	24
						
				+•	59	100
				_		
				+•	59	100
Elot		7.6		+•	59 41	100 33
513 b		7,6	M+•	+•	59 41 148	100 33 76
513 b		7,6	M+•	+• + + + +	59 41 148 133	100 33 76 5
513 b		7,6	M+•	+• +• +• +•	59 41 148 133 106	100 33 76 5 42
513 b		7,6	M+•	+• + + + + + + +	148 133 106 75	100 33 76 5 42 43
513 b		7,6	M+•	+• + + + + + •	148 133 106 75 60	100 33 76 5 42 43 100
513 b		7,6	M+•	+• + + + + + + +	148 133 106 75	100 33 76 5 42 43
	2 6.dim&+h-1			+• + + + + + •	148 133 106 75 60	100 33 76 5 42 43 100
513 b	2,6-diméthyl-	1,4-dithiane	>	+• + + + + + + + + + + + + + + + +	148 133 106 75 60 45	100 33 76 5 42 43 100 31
	2,6-diméthyl-			+• + + + + + + + + + + + + + + + + + +	59 41 148 133 106 75 60 45	100 33 76 5 42 43 100 31
	2,6-diméthyl-	1,4-dithiane	>	+• + + + + + + + + + + + + + + + + + +	59 41 148 133 106 75 60 45	100 33 76 5 42 43 100 31
	2,6-diméthyl-	1,4-dithiane	>	+• + + + + + + + + + + + + + + + + + +	59 41 148 133 106 75 60 45 148 133 119	100 33 76 5 42 43 100 31 92 3 52
	2,6-diméthyl-	1,4-dithiane	>	+• + + + + + + + + + + + + + + + + + +	59 41 148 133 106 75 60 45 148 133 119 106	100 33 76 5 42 43 100 31 92 3 52 57
	2,6-diméthyl-	1,4-dithiane	>	+• + + + + + + + + + + + + + + + + + +	148 133 106 75 60 45 148 133 119 106 75	100 33 76 5 42 43 100 31 92 3 52 57 34
	2,6-diméthyl-	1,4-dithiane	>	+• + + + + + + + + + + + + + + + + + +	59 41 148 133 106 75 60 45 148 133 119 106 75 60	100 33 76 5 42 43 100 31 92 3 52 57 34 100
	2,6-diméthyl-	1,4-dithiane	>	+• + + + + + + + + + + + + + + + + + +	148 133 106 75 60 45 148 133 119 106 75	100 33 76 5 42 43 100 31 92 3 52 57 34

Composé	Tr (min)	Signal	Туре	m/z	%
					MS	MS
515	2,2,6,6-tétramét	hyl-1,4-d	lithiane			
	9	3,2	M+•	+•	176	15
· ·				+	133	100
				+	99	28
				+	73	5
				+	55	24
				+	41	15

NBu-S-n.Bu Structure vérifiée par la bibliothèque Structure vérifiée par	Composé		Tr (min)	Signal	Туре	m/z	%
701 n.Bu-S-n.Bu Structure vérifiée par la bibliothèque 6,5 M+• +• 146 38 RS(CH2)2 + 117 5 RSCH2 + 103 12 RSSH +• 90 23 RSH +• 96 1 100 CH3CH2CH = CH2 +• 56 77 CH3CH2CH = CH2 +• 56 77 CH3CH2CH = CH2 +• 178 16 RS + 123 31 RR + 91 100 Ph + 77 5 RS + 455 11 RS + 457 100 Structure vérifiée par la bibliothèque 12,8 M+• +• 178 38 RSSH +• 122 36 RSSH +• 178 16 RSSH +• 178 16 RSSH +• 178 178 18 RTUCTURE VÉRIFIÉE PAR IA BIBBIOTHÈQUE				9	<u> </u>		-
Structure vérifiée par la bibliothèque 6,5 M++							
	701	n.Bu-S-n.Bu					<u> </u>
RS(CH2 2	Structure	vérifiée par la	bibliothè	que			
RSCH2			6,5	M+•	+•	146	38
RSH				RS(CH2)2	+	117	5
CH3CH2CH = CH2				RSCH2	+	103	12
CH3CH2CH = CH2				RSH	+•	90	23
Head of the second color					+	61	100
Structure vérifiée par la bibliothèque				CH3CH2CH = CH2	+•	56	77
Structure vérifiée par la bibliothèque					+	41	40
Structure vérifiée par la bibliothèque							
27.4 M+•	606	Bz-S-Bz					
Head	Structure	vérifiée par la	bibliothè	que			
RS			27,4	M+•	+•	214	trace
R	·				+•	178	trace
Ph				RS	+	123	31
Head				R	+	91	100
Harmonia Harmonia				Ph	+	77	5
601 n.Bu-S-S-n.Bu Structure vérifiée par la bibliothèque 12,8 M+• +• 178 38 RSSH +• 122 36 RSSH + 87 7 R + 57 100 602 i.Bu-S-S-i.Bu Structure vérifiée par la bibliothèque 9,6 M+• +• 178 16 RSSH +• 122 8 RSSH +• 122 8 RSSH +• 57 100 603 t.Bu-S-S-t.Bu Structure vérifiée par la bibliothèque 11,5 M+• +• 178 9 RSSH +• 122 9 RSSH +• 122 9 + 107 2 + 76 2					+	65	11
12,8 M+• +• 178 38 RSSH +• 122 36 RSSH +• 122 36 RSSH + 57 100 R					+	45	9
12,8 M+• +• 178 38 RSSH +• 122 36 RSSH +• 122 36 RSSH + 57 100 R							
12,8 M+• +• 178 38 RSSH +• 122 36 RSSH + 87 7 R + 57 100 R + 57 100 R + 178 16 RSSH +• 178 16 RSSH + 87 4 R + 87 4 R + 87 4 R + 87 4 R + 178 100 R + 178 100 R + 178 100 R + 178 100 R + 178 9 R + 107 2 R + 107 2 R + 76 2	601	n.Bu-S-S-n.B	u				
RSSH	Structure	vérifiée par la	bibliothè	lue			
+ 87 7			12,8	M+•	+•	178	38
R				RSSH	+•	122	36
602 i.Bu-S-S-i.Bu					+	87	7
	·			R	+	57	100
9,6 M+• +• 178 16 RSSH +• 122 8 RSSH + 87 4 R + 57 100 R + 57 100 R + 178 9 R + 107 2 H 107 2			1. 1				
RSSH +• 122 8 + 87 4 R + 57 100 603 t.Bu-S-S-t.Bu Structure vérifiée par la bibliothèque 11,5 M+• +• 178 9 RSSH +• 122 9 + 107 2 + 76 2	Structure v	vérifiée par la l	bibliothèc	lue			
RSSH			9,6	M+•	+•	178	16
Head				RSSH	+•	122	
603 t.Bu-S-S-t.Bu Structure vérifiée par la bibliothèque 11,5 M+• +• 178 9 RSSH +• 122 9 + 107 2 + 76 2					+	87	
Column C				R	+	57	100
11,5 M+• +• 178 9 RSSH +• 122 9 + 107 2 + 76 2		<u></u>					
RSSH +• 122 9 + 107 2 + 76 2	tructure v	érifiée par la l	oibliothèc	ue			
RSSH +• 122 9 + 107 2 + 76 2			11,5	M+•	+•	178	9
+ 107 2 + 76 2				RSSH	+•		
+ 76 2					+		
					+		
				R	+		······

composé		Tr (min)	Signal	Туре	m/z	%
omposo					MS	MS
	01-(6) 5 5 6	Overla(G)				
604	Cyclo(6)-S-S-	27,6	M+•	+•	230	6
		27,6	RSSH	+•	148	21
- · · · · · · · · · · · · · · · · · · ·			ROOM	+	83	73
				+	55	100
		 - 	R	+	41	50
605	Ph-S-S-Ph					
		27,7	M+•	+•	218	57
				+•	186	16
				+•	154	13
			RSH	+•	110	100
				+•	84	15 22
			R	+	77	37
				+•	66	22
			<u> </u>	+	51	22
713	t.Bu-S-CH2-S	S-t.Bu				
		12,2	M+•	+•	192	22
			RSCH2SH	+•	136	6
			RSCH2	+	103	11
			RS	+	89	100
			R	+	57	73
704	Cyclo(6)-I					
	caractérisé à l'é	tat de trac	es			
Structure	vérifiée par la	bibliothèqu				
		5,3	M+•	+•	210	28
			iode		127	64
			M-I	+	83	100
				+	55	92
706	PhCH2-I					
	e vérifiée par la	bibliothèqu	ıe			
		8,5	M+•	+•	218	6
			iode		127	35
			M-I	+	91	100
				+	65	28

Composé		Tr (min)	Signal	T		
		(2181191	Туре	m/z MS	% Ms
						IVI:
707	I-(CH2)3-I					-
Structure	vérifiée par la		ne			-
	_	7,0	M+•	+•	296	38
				+•	254	10
		<u> </u>	M-I	+	169	100
	 		iode		127	49
710	I-(CH2)6-I					
		31-11-41-5				
oncime v	érifiée par la b					
 _	+	18,1	M+•	+•	338	18
	 			+•	254	6
	+		M-I	+	211	64
	 	 		+	169	52
	+			+	155	100
	-		iode		127	47
				+	55	80
711	I-(CH2)11-I					
	- (3.22)11-1	33,3	M+•	 	400	
	 	00,0	M - I	+•	408	4
			I(CH2)7	+	281	3
			I(CH2)6	+	225	6
			I(CH2)5	+	211	7
			I(CH2)4	+	197	9
		-	I(CH2)3	+	183	15
			I(CH2)2	+	169	14
			Iode	+	155	36
			1040	+	127	9
					97	12
				+ +	55	100
				T	41	100
807	I-(CH2)3S(CH2	2)3-I				
		25,9	M+•	+•	370	11
			M-I	+	243	100
			M - CH2I	+	215	4
			I(CH2)3S	+	201	20
			I(CH2)3	+	169	32
			ICH2	+	141	8
			Iode		127	13
				+	61	25
				+	41	52

composé	Tr (min)	Signal	Туре	m/z	%
ompose				MS	MS
007	i.BuS(CH2)3S(CH2)3I				
907	31,5	M+•	+•	332	11
	31,3	M - R	+	275	51
		I(CH2)3	+	201	5
		RS(CH2)3S	+	163	100
		Iode		127	9
		HS(CH2)3S	+	107	78
		R	+	57	50
			+	41	80
910	i.BuS(CH2)6S(CH2)6				
	46,0	M+•	+•	416	3
<u> </u>		M-R	+	359	3
		M - SR	+	327	7
		M - I	+	289	11
		RS(CH2)6S	+	205	8
·		RS(CH2)6	+	173	36
		I(CH2)2	+	155	12
		Iode		127	12
		RSCH = CH2	+	116	12
· · · · · · · · · · · · · · · · · · ·			+	55	100
			+	41	78
714	i.Bu-S-CH = C(Me)2				
	4,9	M+•	+•	144	52
			+	101	19
		PS	+•	88	100
			+	73	9
		R	+	57	40
715	t.Bu-S-CH = C(Me)2				
	3,4	M+•	+•	144	32
		PS	+•	88	100
			+	73	9
		R	+	57	32

124 3-méthoxythiacyclohexane	Composé		Tr (min)	Signal	Туре	m/z	%
124 3-méthoxythiacyclohexane			1		2,700		+
4,0 M+*						- 1420	1410
+ 117 5 + 100 13 + 85 31 + 71 100 + 58 33 + 41 14 125 4,5-diméthoxy-3,3,6,6-tétraméthylthiacycloheptane 14,7 M+*	124	3-méthoxyth	iacyclohexa	ane			
Head Head			4,0	M+•	+•	132	56
+ 85 31					+	117	5
+ 71 100 + 58 33 + 41 14 125 4,5-diméthoxy-3,3,6,6-tétraméthylthiacycloheptane 14,7 M+•					+•	100	13
125 4,5-diméthoxy-3,3,6,6-tétraméthylthiacycloheptane					+	85	31
125 4,5-diméthoxy-3,3,6,6-tétraméthylthiacycloheptane 14,7 M+• +• 232 13 13 14,7 M+• +• 216 14 14 14 14 14 14 14					+	71	100
125 4,5-diméthoxy-3,3,6,6-tétraméthylthiacycloheptane 14,7 M+• +• 232 13 +• 216 traces +• 188 5 +• 188 5 +• 161 14 +• 132 24 +• 100 69 +• 86 67 + 85 100 + 77 86 725 2-[[1,1-diméthyl]-2-hydroxyéthyl]-4,4-diméthylthiacyclopentan-3 ol 8,6 M ⋅ 18 +• 186 34 +• 130 22 +• 130 22 +• 115 48 +• 98 10 +• 98 10 +• 98 10 +• 69 13 +• 59 6					+•	58	33
14,7 M+• +• 232 13					+	41	14
14,7 M+• +• 232 13							
+ • 216 trace + • 201 trace + • 188 5 + • 161 14 + • 132 24 + • 100 69 + • 86 67 + 85 100 + 77 86 + 77 86 + 77 86 + 130 22 + 115 48 + • 130 22 + 115 48 + • 186 34	125	4,5-diméthoz			ycloheptane		
+ 201 traces			14,7	M+•	+•	232	13
+ 188 5					+•	216	trace
725 2-[[1,1-diméthyl]-2-hydroxyéthyl]-4,4-diméthylthiacyclopentan-3 ol 8,6 M - 18 + • 130 22 + • 130 22 + • 130 22 + • 115 48 + • 98 10 + • 69 13 + 59 6 + 55 13					+	201	trace
+					+•		5
+• 100 69					+	161	14
+					+•		24
725 2-[[1,1-diméthyl]-2-hydroxyéthyl]-4,4-diméthylthiacyclopentan-3 ol 8,6 M - 18 + 186 34 + 115 48 + 98 10 + 83 94 + 69 13 + 59 6 + 55 13					+•		69
725 2-[[1,1-diméthyl]-2-hydroxyéthyl]-4,4-diméthylthiacyclopentan-3 ol 8,6 M - 18 + 186 34 + 130 22 + 115 48 + 98 10 + 83 94 + 59 6 + 55 13				 	+•		67
725 2-[[1,1-diméthyl]-2-hydroxyéthyl]-4,4-diméthylthiacyclopentan-3 ol					·		
8,6 M-18 +• 186 34 +• 130 22 + 115 48 +• 98 10 + 83 94 + 69 13 + 59 6 + 55 13					+	77	86
8,6 M-18 +• 186 34 +• 130 22 + 115 48 +• 98 10 + 83 94 + 69 13 + 59 6 + 55 13	725	2-111 1 dim 6+1	ardi O badaa				
+• 130 22 + 115 48 +• 98 10 + 83 94 + 69 13 + 59 6 + 55 13		2-[[1,1-dimet]					
+ 115 48 +• 98 10 + 83 94 + 69 13 + 59 6 + 55 13	· · · · · · · · · · · · · · · · · · ·		0,0	IVI - 10			
+• 98 10 + 83 94 + 69 13 + 59 6 + 55 13	· · · · · ·				 		
+ 83 94 + 69 13 + 59 6 + 55 13							
+ 69 13 + 59 6 + 55 13							· -
+ 59 6 + 55 13					+		
+ 55 13					 		
				······································			
					 		<u>-</u>

Composé	Tr (min)	Signal	Туре	m/z	%
Compose				MS	MS
126	i.Bu-S-(CH2)2-OH				
	5,5	M+•	+•	134	62
		RSCH2	+	103	37
		CH2S(CH2)OH	+	91	36
		HS(CH2)2	+	61	100
		R	+	57	82
726	iBu-S-(CH2)2-O-i.Bu	M+•	+•	190	1
	9,0	IAI+A	+•	162	35
		M - R	+	133	6
			+	117	8
		RS(CH2)2 RSCH2	+	103	27
<u></u>		RS RS	+	89	30
		KO	+•	72	84
		R	+	57	100
		K	<u> </u>		100
1026	i.Bu-S-(CH2)2-O-(CH2)	2-S-i.Bu	<u> </u>		
	28,7	M+•	+•	250	1
		M-R	+	193	2
		RSCH=CH2	+•	116	79
		HSCH2CH2	+	61	66
		R	+	57	100
127	t.Bu-S-(CH2)2-OH			104	25
	4,2	M+•	+•	134	
		R	+	57	100
727	t.Bu-S-(CH2)2-O-t.Bu				
121	11,3	M+•	+•	190	17
	11,0	RS(CH2)2OH	+•	134	8
		RSCH2	+	103	12
		R	+	57	100
		IX	+	41	56

Composé	Tr (mir	Signal	Туре	m/z	%
- Compose	11 (11111	o organi	Турс	MS	MS
				1120	1410
827	t.Bu-S-(CH2)2-S-(CH2	2)2-OH		<u> </u>	
	21,7	M+•	+•	194	8
		RS(CH2)2SCH=CH2	+•	176	3
		RS(CH2)2SH	+•	150	7
		M - RS	+	105	14
		M - RSCH2	+	91	16
		HS(CH2)2	+	61	45
		R	+	57	100
			+	41	52
927	t.Bu-S-(CH2)2-S-(CH2	2)2-O-t.Bu			
	25,8	M+•	+•	250	2
		M - R	+	193	1
		M - OR	+	177	3
		RS(CH2)2SH	+•	150	12
		RSCH=CH2	+•	116	10
		S(CH2)2S	+•	92	20
		R	+	57	100
			+	41	45
1027	t.Bu-S-(CH2)2-O-(CH2				
	26,2	M+•	+•	250	trace
		M - R	+	193	4
		RS(CH2)2OCH=CH2	+•	160	trace
		RS(CH2)2O	+	133	5
		RS(CH2)2	+	117	25
		HS(CH2)2	+	61	14
		R	+	57	100
			+	41	42
1107	4 D. C (0770) C C (5	NO 0 (0770) 05-			
1127	t.Bu-S-(CH2)2-S-(CH2	 			
***	35,4	M+•	+•	254	1
		H[S(CH2)]3OH	+•	198	5
		RS(CH2)SCH=CH2	+•	176	9
		RS(CH2)2SH	+•	150	26
		RS(CH2)2	+	117	20
		M - RS(CH2)2S	+	105	44
<u>-</u>		M - RS(CH2)2SCH2	+	91	18
		HS(CH2)2	+	61	49
		R	+	57	100

		e masse des composés		m/z MS	% MS
Composé	Tr (min)	Signal	Туре		
_					
1227	t.Bu-S-(CH2)2-S-(CH2)2-S-(CH2)2-OH			
	37,8	M+•	+•	310	2
		M - R	+	253	3
		RS(CH2)2S(CH2)2OH	+•	194	3
		RS(CH2)2SH	+•	150	6
		RSCH=CH2	+•	116	11
		HS(CH2)2	+	61	16
		R	+	57	100
			+	41	28

ANNIEXES DU CHAPITRE III

TABLEAUX 3.9, 3.10 ET 3.11

TABLIZAU 3.9

Récapitulatif des masses observées en SM

ABLE	AU 3.9	: Récapitulatif des mass	es observées			
m/z	Essai	Composé	Conditions	Tr	Propositions	
			opératoires			
120	111	n.BuS(CH2)2Cl	NaI	5,2	1,4-dithiane	
120	116	t.BuS(CH2)2Cl	NaI	4,8	1,4-dithiane	
120	165	t.BuS(CH2)2Cl	[NaI + Me3SiCl]	6,5	1,4-dithiane	
120	118	Cyclo(6)S(CH2)2C1	NaI	5,3	1,4-dithiane	
120	121	BzS(CH2)2Cl	NaI	4,9	1,4-dithiane	
120	171	BzS(CH2)2Cl	[NaI + Me3SiCl]	6,2	1,4-dithiane	
120	151	t.BuS(CH2)2Br	NaI	5,7	1,4-dithiane	
144	137	i.BuSCH2CH(CH3)Cl	NaI	4,9	i.BuSCH=C(CH3)2	
144	179	i.BuSCH2CH(CH3)Cl	[NaI + Me3SiCl]	4,8	i.BuSCH=C(CH3)2	
	139	t.BuSCH2CH(CH3)Cl	NaI	3,4	t.BuSCH=C(CH3)2	
144		t.BuSCH2CH(CH3)Cl	[NaI + Me3SiCl]	4,6	t.BuSCH=C(CH3)2	
144	180	t.Bu3CH2CH(CH3)Cl	[Nai + Messici]	4,0	t.buoch-e(cho)2	
146	111	n.BuS(CH2)2Cl	NaI	6,5	n.BuSn.Bu	
146	129	i.BuS(CH2)6Cl	NaI	4,0	i.BuSi.Bu	
110	120					
148	135	t.BuSCH2CH(CH3)Cl	NaI	4,2/8,0	2,5-diméthyl-1,4-dithian	
148	135	t.BuSCH2CH(CH3)Cl	NaI	7,3	2,6-diméthyl-1,4-dithian	
148	177	t.BuSCH2CH(CH3)Cl	[NaI + Me3SiCl]	8,4	2,5-diméthyl-1,4-dithian	
148	177	t.BuSCH2CH(CH3)Cl	[NaI + Me3SiCl]	9,2	2,6-diméthyl-1,4-dithian	
176	139	t.BuSCH2C(CH3)2Cl	NaI	9,2	2,2,6,6-tétraméthyl-1,4-	
170	100	t.Duocrize(crio)zer	1141	0,2	dithiane	
176	180	t.BuSCH2C(CH3)2Cl	[NaI + Me3SiCl]	10,9	2,2,6,6-tétraméthyl-1,4	
170	160	t.Buochize(eno)zer	[Nat Meddler]	10,0	dithiane	
178	111	n.BuS(CH2)2Cl	NaI	12,9	n.BuSSn.Bu	
178	123	i.BuS(CH2)3Cl	NaI	9,6	i.BuSSi.Bu	
178	125	i.BuS(CH2)4Cl	NaI	10,1	i.BuSSi.Bu	
178	173	i.BuS(CH2)4Cl	[NaI + Me3SiCl]	11,7	i.BuSSi.Bu	
178	133	i.BuSCH2CH(CH3)Cl	NaI	9,9	i.BuSSi.Bu	
178	176	i.BuSCH2CH(CH3)Cl	[NaI + Me3SiCl]	8,4	i.BuSSi.Bu	
178	137	i.BuSCH2C(CH3)2Cl	NaI	9,6	i.BuSSi.Bu	
178	179	i.BuSCH2C(CH3)2Cl	[NaI + Me3SiCl]	8,4	i.BuSSi.Bu	
178	139	t.BuSCH2C(CH3)2Cl	NaI	6,8	t.BuSSt.Bu	
178	141	i.BuSCH2C(CH3)2CH2Cl	NaI	9,3	i.BuSSi.Bu	
178	143	[i.BuSCH2]2CHCl	NaI	9,7	i.BuSSi.Bu	
178	146	t.BuSS(CH2)2Cl	NaI	5,1	t.BuSSt.Bu	

m/z	Essai	Composé	Conditions	Tr	Propositions	
ш/2	Essai	Compose	opératoires	11	Fropositions	
190	200	4 D. C(0110)0011	ATORS	11.0	4 D. C(0110)004 D.	
		t.BuS(CH2)2OH	APTS	11,3	t.BuS(CH2)2Ot.Bu	
190	201	t.BuS(CH2)2OH	HCl 0,7N	10,6	t.BuS(CH2)2Ot.Bu	
190	202	i.BuS(CH2)2OH	APTS	8,4	i.BuS(CH2)2Oi.Bu	
192	135	t.BuSCH2CH(CH3)Cl	NaI	12,6	t.BuSCH2St.Bu	
194	200	t.BuS(CH2)2OH	APTS	21,7	t.Bu[S(CH2)2]2OH	
194	201	t.BuS(CH2)2OH	HCl 0,7N	22,7	t.Bu[S(CH2)2]2OH	
206	111	n.BuS(CH2)2Cl	NaI	21,7	n.BuS(CH2)2Sn.Bu	
206	161	n.BuS(CH2)2Cl	[NaI + Me3SiCl]	24,1	n.BuS(CH2)2Sn.Bu	
206	113	i.BuS(CH2)2Cl	NaI	19,2	i.BuS(CH2)2Si.Bu	
206	163	i.BuS(CH2)2Cl	[NaI + Me3SiCl]	20,3	i.BuS(CH2)2Si.Bu	
206	104	i.BuS(CH2)2Cl	Me3SiI	20,8	i.BuS(CH2)2Si.Bu	
206	165	t.BuS(CH2)2Cl	[NaI + Me3SiCl]	15,9	t.BuS(CH2)2St.Bu	
210	118	Cyclo(6)S(CH2)2Cl	NaI	5,1	Cyclo(6)I	
210	167	Cyclo(6)S(CH2)2Cl	[NaI + Me3SiCl]	6,7	Cyclo(6)I	
	107	Cyclo(0)0(C112)2C1	[Nai + McGGlei]	0,7	Cyclo(o)1	
214	121	BzS(CH2)2Cl	NaI	27,6	BzSBz	
214	171	BzS(CH2)2Cl	[NaI + Me3SiCl]	29,4	BzSBz	
218	119	PhS(CH2)2Cl	NaI	27,7	PhSSPh	
220	123	i.BuS(CH2)3Cl	NaI	21,3	i.BuS(CH2)3Si.Bu	
220	172	i.BuS(CH2)3Cl	[NaI + Me3SiCl]	23,9	i.BuS(CH2)3Si.Bu	
220	133	i.BuSCH2CH(CH3)Cl	NaI	19,1	i.BuSCH2CH(CH3)Si.Bi	
220	176	i.BuSCH2CH(CH3)Cl	[NaI + Me3SiCl]	17,3	i.BuSCH2CH(CH3)Si.Bı	
220	135	t.BuSCH2CH(CH3)Cl	NaI	15,0	t.BuSCH2CH(CH3)St.Br	
220	177	t.BuSCH2CH(CH3)Cl	[NaI + Me3SiCl]	16,4	t.BuSCH2CH(CH3)St.Br	
230	118	Cyclo(6)S(CH2)2Cl	NaI	27,6	Cyclo(6)SSCyclo(6)	
234	125	i.BuS(CH2)4Cl	NaI	22,8	i.BuS(CH2)4Si.Bu	
234	173	i.BuS(CH2)4Cl	[NaI + Me3SiCl]	26,8	i.BuS(CH2)4Si.Bu	
234	137	t.BuSCH2C(CH3)2Cl	NaI	19,9	t.BuSCH2C(CH3)2St.E	
234	179	t.BuSCH2C(CH3)2Cl	[NaI + Me3SiCl]	18,6	t.BuSCH2C(CH3)2St.Bu	
238	146	t.BuSS(CH2)2Cl	NaI	18,5	t.BuSS(CH2)2St.Bu	
200	140	1.000(0112)201	Ivai	10,0	L.DUSS(CHZ)ZSL.BU	

m/z	Essai	Composé	Conditions	Tr	Propositions	
			opératoires		Tropositions	
			•			
244	161	n.BuS(CH2)2Cl	[NaI + Me3SiCl]	16,2	n.BuS(CH2)2I	
244	113	i.BuS(CH2)2Cl	NaI	11,4	i.BuS(CH2)2I	
244	163	i.BuS(CH2)2Cl	[NaI + Me3SiCl]	12,4	i.BuS(CH2)2I	
244	104	i.BuS(CH2)2Cl	Me3SiI	12,2	i.BuS(CH2)2I	
244	116	t.BuS(CH2)2Cl	NaI	8,6	t.BuS(CH2)2I	
244	165	t.BuS(CH2)2Cl	[NaI + Me3SiCl]	10,8	t.BuS(CH2)2I	
244	151	t.BuS(CH2)2Br	NaI	6,9	t.BuS(CH2)2I	
246	119	PhS(CH2)2Cl	NaI	34,6	PhS(CH2)2SPh	
250	200	t.BuS(CH2)2OH	APTS	25,8	t.Bu[S(CH2)2]2Ot.Bu	
250	200	t.BuS(CH2)2OH	APTS	26,2	[t.BuS(CH2)2]20	
250	201	t.BuS(CH2)2OH	HCl 0,7 N	25,4	t.Bu[S(CH2)2]2Ot.Bu	
250	202	i.BuS(CH2)2OH	APTS	28,7	[i.BuS(CH2)2]2O	
07.						
254	201	t.BuS(CH2)2OH	HCl 0,7 N	35,4	t.Bu[S(CH2)2]3OH	
050	110				· · · · · · · · · · · · · · · · · · ·	
258	118	Cyclo(6)S(CH2)2Cl	NaI	35,4	Cyclo(6)S(CH2)2SCyclo(
258	167	Cyclo(6)S(CH2)2Cl	[NaI + Me3SiCl]	37,5	Cyclo(6)S(CH2)2SCyclo(
258	123	i.BuS(CH2)3Cl	NaI	14,6	i.BuS(CH2)3I	
258	135	t.BuSCH2CH(CH3)Cl	NaI	10,0	t.BuSCH2CH(CH3)I	
258	177	t.BuSCH2CH(CH3)CI	[NaI + Me3SiCl]	11,7	t.BuSCH2CH(CH3)I	
262	129	4 DC(OHO)CO1	37.7		. 5. 5/50.00	
262		i.BuS(CH2)6Cl	NaI	30,1	i.BuS(CH2)6Si.Bu	
202	174	i.BuS(CH2)6Cl	[NaI + Me3SiCl]	33,2	i.BuS(CH2)6Si.Bu	
264	119	PhS(CH2)2Cl	NaI	21,3	DECOMO	
264	169	PhS(CH2)2C1	[NaI + Me3SiCl]		PhS(CH2)2I	
	100	1110(0112)201	[Nai + Messici]	21,8	PhS(CH2)2I	
266	116	t.BuS(CH2)2Cl	NaI	28,0	t.Bu[S(CH2)2]2St.Bu	
266	200	t.BuS(CH2)2OH	APTS	30,7	t.Bu[S(CH2)2]2St.Bu	
266	201	t.BuS(CH2)2OH	HCl 0.7 N	30,9	t.Bu[S(CH2)2]2St.Bu	
			Tiero,, it	50,5	t.bu[5(C112)2]25t.bu	
270	167	Cyclo(6)S(CH2)2Cl	[NaI + Me3SiCl]	22,7	Cyclo(6)S(CH2)2I	
					0,000,000,012,21	
272	125	i.BuS(CH2)4Cl	NaI	19,0	i.BuS(CH2)4I	
272	173	i.BuS(CH2)4Cl	[NaI + Me3SiCl]	20,3	i.BuS(CH2)4I	
				-,-	,	
274	121	BzS(CH2)2Cl	NaI	39,2	BzS(CH2)2SBz	
274	171	BzS(CH2)2Cl	[NaI + Me3SiCl]	42,4	BzS(CH2)2SBz	

	77000	Composé	Conditions	Tr	Propositions
m/z	Essai	Compose	opératoires		
-	-		-		
276	146	t.BuSS(CH2)2Cl	NaI	14,3	t.BuSS(CH2)2I
276	148	t.BuSO2(CH2)2Cl	NaI	18,9	t.BuSO2(CH2)2I
278	171	BzS(CH2)2Cl	[NaI + Me3SiCl]	28,0	BzS(CH2)2I
286	127	i.BuS(CH2)5Cl	NaI	21,1	i.BuS(CH2)5I
286	141	i.BuSCH2C(CH3)2CH2Cl	NaI	16,6	i.BuSCH2C(CH3)2CH2I
204	123	i.BuS(CH2)3Cl	NaI	36,4	i.Bu[S(CH2)3]2Si.Bu
294 294	177	t.BuSCH2CH(CH3)Cl	[NaI + Me3SiCl]	30,7	t.Bu[SCH2CH(CH3)]2St.Bu
000	123	i.BuS(CH2)3Cl	NaI	7,0	I(CH2)3I
296 296	172	i.BuS(CH2)3Cl	[NaI + Me3SiCl]	8,9	I(CH2)3I
290	172	1,540(C112)0C1	[rear : Meddiding		
300	129	i.BuS(CH2)6Cl	NaI	24,6	i.BuS(CH2)6I
300	174	i.BuS(CH2)3Cl	[NaI + Me3SiCl]	28,1	i.BuS(CH2)6I
308	143	[i.BuSCH2]2CHCl	NaI	24,6	[i.BuSCH2]2CHSi.Bu
310	173	i.BuS(CH2)3Cl	[NaI + Me3SiCl]	12,8	I(CH2)4I
310	200	t.BuS(CH2)2OH	APTS	37,8	t.Bu[S(CH2)2]2O(CH2)2St.Bi
310	201	t.BuS(CH2)2OH	HCl 0,7 N	37,5	t.Bu[S(CH2)2]2O(CH2)2St.Br
				01.5	i.BuS(CH2)3S(CH2)3I
332	123	i.BuS(CH2)3Cl	NaI	31,5	i.BuS(CH2)11Si.Bu
332	131	i.BuS(CH2)11Cl i.BuS(CH2)11Cl	NaI [NaI + Me3SiCl]	42,2	i.BuS(CH2)11Si.Bu
					V(OVO)OV
338	129	i.BuS(CH2)6Cl	NaI	18,1	I(CH2)6I I(CH2)6I
338	174	1.BuS(CH2)6Cl	[NaI + Me3SiCl]	20,8	I(CH2)01
370	123	i.BuS(CH2)3Cl	NaI	25,9	I(CH2)3S(CH2)3I
370	131	i.BuS(CH2)11Cl	NaI	38,4	i.BuS(CH2)11I
370	175	i.BuS(CH2)11Cl	[NaI + Me3SiCl]	38,2	i.BuS(CH2)11I
378	129	i.BuS(CH2)6Cl	NaI	49,3	i.Bu[S(CH2)6]2Si.Bu
408	131	i.BuS(CH2)11Cl	NaI	33,3	I(CH2)11I
408	175	i.BuS(CH2)11Cl	[NaI + Me3SiCl]	35,1	I(CH2)11I
416	129	i.BuS(CH2)6Cl	NaI	46,0	i.BuS(CH2)6S(CH2)6I

Tableaux 3.10, 3.11 Composés Al caractérisés par RMN

ANALYSE DES RESULTATS DE RMN DES COMPOSES A1

I) RMN ¹H

Cette technique d'analyse n'a qu'un faible intérêt dans ce cas. Les spectres obtenus, pour ces dérivés, sont peu caractéristiques. En effet, pratiquement pour tout les composés A1, on obtient des déplacements chimiques quasi-identiques.

Les résultats sont présentés dans la partie expérimentale.

II) RMN 13C

L'étude des dérivés sulfurés est une spécialisation de notre laboratoire. Suite aux travaux précédemment menés dans ce domaine⁵⁸, ⁵⁹, ¹⁰⁰⁻¹⁰⁶, différentes valeurs ont pu être attribuées aux incréments **Zi** utilisés dans le calcul théorique des déplacements chimiques.

Ces incréments sont déterminés de façon classique à partir des équations suivantes:

. en série aliphatique $\partial = -2.3 + Z\alpha + Z\beta + Z\gamma + Z \partial$ (+ terme correctif)

. en série aromatique $\partial = 128,5 + Zi [Z_1, Z_2, Z_3, Z_4]$

Nos travaux s'inscrivants parfaitement dans cette étude, nous avons vérifié la validité de certains incréments déterminés précédemment.

Nos mesures ont été réalisé sur un appareil fonctionnant à 250 MHz. Le solvant utilisé est le CDCl3 dont la raie centrale du signal (triplet) est fixée à 77,0 ppm. Les attributions de déplacements chimiques (a) des carbones sont réalisées à l'aide de la technique d'écho de spin (SEFT)¹⁰⁷, ¹⁰⁸.

Les résultats sont présentés dans les tableaux 3.10 et 3.11.

. Les tableaux 3.10 a-f regroupent les déplacements chimiques expérimentaux (∂ exp.) et le détail des calculs permentant de déterminer les déplacements théoriques (∂ calc.).

. Les tableaux 3.11 a-c présentent les ∂ exp., les ∂ calc. et les différences $\Delta \partial = \partial \exp$. - ∂ calc.

Tous les ∂ calculés ont été obtenus à l'aide des valeurs suivantes:

Tableau 3.1	2 a : Zi en	série alip	phatique	
Fonction	α	ß	γ	9
- C - S - SS	9,1 10,8 20,8	9,4 9,6 6,9	-2,5 -3,4 -4,0	0,3 -0,1 -0,6

Tableau 3.12 b	: Zi en séri	e aromati	ique	
Fonction	C1	C2	C3	C4
	porteur	ortho	méta	para
Ph-S-CC	7,0	0,9	0,1	-2,4
PhCH2-S-CC	10,1	0,8	0,1	-1,4

Les résultats des $\Delta \partial$ montrent que les écarts entre les valeurs expérimentales et calculées sont très faibles; de l'ordre de \pm 1 ppm avec parfois des variations de l'ordre de \pm 3-5 ppm. La concordance, entre les résultas expérimentaux et théoriques, est donc toute à fait satifaisante.

TABLE	AU 3.10	a:RM	N 13C d	es comp	osés A1				•••	
			R Me	R CH/C CH2	R CH2-S		CH2-S A1	CH2 A1	CH2 A1	
52	n.Bu-S	-(CH2)2-	S-n.Bu							
д ехр			13,6	32,0 21,9	31,7		31,8			
Pour de	s raisons	de com	modité le	e N° 1 est	donné au	Me du	groupe n.	Bu		
Calculs		base	α	α	ß	ß	γ	γ	9	total
C1	n.Bu	-2,3		9,1	-	9,4	•	-2,5	-0,1	13,6
C2		-2,3	9,1	9,1		9,4		-3,4		22,2
СЗ	n.Bu	-2,3	9,1	9,1	9,4	9,6		-2,5		
C4	n.Bu	-2,3	9,1	10,8	9,4	9,4	-2,5			
C5	A1	-2,3	10,8	9,1	9,4	9,6	-2,5	-2,5	0,6	32,2
53	i.Bu-S-((CH2)2-S	8-i.Bu							
д ехр			22,0	28,7	41,6		32,7			
Pour des	s raisons	de com	modité le	e N° 1 est	donné au	Me du	groupe i.E	Bu		
Calculs		base	α	α	ß	ß	γ	γ	9	total
C1	i.Bu	-2,3		9,1	9,4	9,4	•	-3,4	0,3	22,5
C2	i.Bu	-2,3	18,2	9,1	•	9,6		-2,5		
СЗ	i.Bu	-2,3	9,1	10,8	18,8	9,4		-2,5	-0,1	43,2
C4	A1	-2,3	10,8	9,1	9,4	9,6	-2,5	-2,5	0,9	32,5
54	t.Bu-S-	(CH2)2-9	S-t.Bu							
д ехр			31,0	42,6			28,8			
Pour des	s raisons	de com	nodité le	N° 1 est	donné au	Me du	groupe t.I	Bu		
Calculs		base	α	α	ß	ß	γ	γ	9	total
C1	t.Bu	-2,3		9,1	18,8	9,6	•	-2,5	0,3	33,0
C2	t.Bu	-2,3	27,3	10,8		9,4		-2,5	-0,1	42,6
C3	Al	-2,3	10,8	9,1	9,4	9,6	-7,5	-2,5	0,9	27,5
55	Cyclo(6	s)-S-(CH2	2)2-S-Cy	clo (6)						
д ехр			33,7 25,9 25,7	43,6			30,6			
Calculs		base	α	α	ß	ß	γ	γ	9	total
S-CH2	Al	-2,3	10,8	9,1	9,4	9,6	-5,0	-2,5	1,2	30,3
L										

TAE	LEA	U 3.10	a (suite)	: RMN	13C des	compos	és A1				7 ·
				Ar	Аг	R		A1	A1	A1	
				СН	CH	CH2-S		CH2-S	CH2	CH2	
_		D1 6 /6									
	6	Pn-S-(C	CH2)2-S-	P n 135,1	129,0			33,4			
06	хр			130,0	126,5			33,4			
				100,0	120,0						
Pou	r des	raisons	s de com	modité le	N° 1 est	donné au	carbor	ne aromati	que port	eur	
du s	subst	tituant									
٠,											4-4-1
Calc	cuis	Ar	base 128,5	7,0							total 135,5
C2	(o)	Ar	128,5	7,0	0,9						129,4
C3	(m)		128,5		0,0	0,1					128,6
C4	(p)	Ar	128,5			-,-	-2,4				126,1
	_										
			base	α	α	ß	ß	γ	γ	9	
C5		A1	-2,3	10,8	9,1	9,3	9,6	-2,6			33,9
5	7	Ph-CHS	2-S-(CH2	12-S-CH	2Ph						
	хр		(02.2	138,1		37,4		31,8			
	•			128,7	127,0						
										-	
			s de com	modité le	N° 1 est	donné au	carbon	ie aromati	que port	eur	
du s	subsi	tituant									
Calc	culs		base								total
C1	-	Ar	128,5	10,1							138,6
C2	(o)	Ar	128,5		8,0						129,3
СЗ	(m)	Ar	128,5			0,1					128,6
C4	(p)	Ar	128,5				-1,4				127,1
			base	α	α	ß	ß	γ	γ	9	
C5		R	-2,3	22,1	10,8	بر 9,4	Ų	-2,5	ī	-0,1	37,4
C6		A1	-2,3	10,8	9,1	9,4	9,6	-2,6	-2,5	0,3	31,8
			-,-		- • -			, -	•-	•	•

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TABLE	AU 3.10	b : RM	N 13C d	es comp	osés A1					·
Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ δ Total C1 i.Bu -2,3 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,6 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 9,1 9,4 9,4 -2,5 -3,4 0,9 31,4 C5 A1 -2,3 9,1 9,1 9,6 9,6 -2,5 -2,5 0,6 30,7 60 i.Bu-S-(CH2)4-S-i.Bu δ exp 21,9 28,5 41,3 32,2 28,7 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ δ Total C1 i.Bu -2,3 10,8 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,6 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,5 31,9 C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -3,4 0,6 29,6 61 i.Bu-S-(CH2)5-S-i.Bu δ exp 22,0 28,6 41,5 32,6 29,3 28,1 C4 C5 C6 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ δ Total C4 C5 C6 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ δ Total C4 C5 C6 C5 A1 -2,3 9,1 9,1 9,4 9,4 -2,5 -3,4 0,6 29,6 C6 i.Bu-S-(CH2)5-S-i.Bu δ exp 22,0 28,6 41,5 32,6 29,3 28,1 C4 C5 C6 C6 i.Bu -2,3 18,2 9,1 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,4 9,4 -3,4 0,3 22,5 C3 i.Bu -2,3 18,2 9,1 9,4 9,4 -3,4 0,3 22,5 C3 i.Bu -2,3 18,2 9,1 9,4 9,4 -2,5 -2,5 0,3 32,4 C3 i.Bu -2,3 18,2 9,1 9,4 9,4 -2,5 -2,5 0,3 32,4 C3 i.Bu -2,3 18,2 9,1 9,4 9,4 -2,5 -2,5 0,3 32,4 C3 i.Bu -2,3 18,2 9,1 9,4 9,4 -2,5 -2,5 0,3 32,4 C3 i.Bu -2,3 18,2 9,1 9,4 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 10,8 9,1 9,4 9,4 9,4 -2,5 -2,5 0,3 32,4 C3 i.Bu -2,3 18,2 9,1 9,4 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 10,8 9,1 9,4 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 10,8 9,1 9,4 9,4 9,4 -2,5 -2,5 0,5 0,3 32,4 C3 i.Bu -2,3 10,8 9,1 9,4 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 9,1 9,1 9,1 9,6 9,4 -2,5 -2,5 0,2 30,1 C6 A1 -2,3 10,8 9,1 9,1 9,6 9,4 -2,5 -2,5 0,2 30					CH/C						
Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ δ Total C1 i.Bu -2,3 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,6 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 9,1 9,4 9,4 -2,5 -3,4 0,9 31,4 C5 A1 -2,3 9,1 9,1 9,6 9,6 -2,5 -2,5 0,6 30,7 60 i.Bu-S-(CH2)4-S-i.Bu δ exp 21,9 28,5 41,3 32,2 28,7 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ δ Total C1 i.Bu -2,3 10,8 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,6 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,5 31,9 C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -3,4 0,6 29,6 61 i.Bu-S-(CH2)5-S-i.Bu δ exp 22,0 28,6 41,5 32,6 29,3 28,1 C4 C5 C6 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ δ Total C4 C5 C6 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ δ Total C4 C5 C6 C5 A1 -2,3 9,1 9,1 9,4 9,4 -2,5 -3,4 0,6 29,6 C6 i.Bu-S-(CH2)5-S-i.Bu δ exp 22,0 28,6 41,5 32,6 29,3 28,1 C4 C5 C6 C6 i.Bu -2,3 18,2 9,1 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,4 9,4 -3,4 0,3 22,5 C3 i.Bu -2,3 18,2 9,1 9,4 9,4 -3,4 0,3 22,5 C3 i.Bu -2,3 18,2 9,1 9,4 9,4 -2,5 -2,5 0,3 32,4 C3 i.Bu -2,3 18,2 9,1 9,4 9,4 -2,5 -2,5 0,3 32,4 C3 i.Bu -2,3 18,2 9,1 9,4 9,4 -2,5 -2,5 0,3 32,4 C3 i.Bu -2,3 18,2 9,1 9,4 9,4 -2,5 -2,5 0,3 32,4 C3 i.Bu -2,3 18,2 9,1 9,4 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 10,8 9,1 9,4 9,4 9,4 -2,5 -2,5 0,3 32,4 C3 i.Bu -2,3 18,2 9,1 9,4 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 10,8 9,1 9,4 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 10,8 9,1 9,4 9,4 9,4 -2,5 -2,5 0,5 0,3 32,4 C3 i.Bu -2,3 10,8 9,1 9,4 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 9,1 9,1 9,1 9,6 9,4 -2,5 -2,5 0,2 30,1 C6 A1 -2,3 10,8 9,1 9,1 9,6 9,4 -2,5 -2,5 0,2 30	E0.	i Des C	(OTTO)O (O d Dec							
Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ δ Total C1 i.Bu -2.3 9,1 9,4 9,4 -3,4 0,3 22.5 C2 i.Bu -2.3 18.2 9,1 9,6 -2.5 0,3 32.4 C3 i.Bu -2.3 10.8 9,1 9,4 9,4 -2.5 -3.4 0,9 31,4 C5 A1 -2.3 9,1 9,1 9,6 9,6 -2.5 0,6 30,7 60 i.Bu-S-(CH2)4-S-i.Bu δ exp 21,9 28.5 41.3 32.2 28.7 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ δ Total C1 i.Bu -2.3 9,1 10.8 18.8 9,4 -3.4 0,3 22.5 C2 i.Bu -2.3 18.2 9,1 9,4 9,4 -3.4 0,3 22.5 C3 i.Bu -2.3 9,1 10.8 18.8 9,4 -2.5 0,3 32.4 C3 i.Bu -2.3 9,1 10.8 18.8 9,4 -2.5 0,3 32.4 C3 i.Bu -2.3 9,1 9,1 9,4 9,4 -2.5 -2.5 0,5 31,9 C5 A1 -2.3 9,1 9,1 9,4 9,4 -2.5 -3.4 0,6 29,6 61 i.Bu-S-(CH2)5-S-i.Bu δ exp 22.0 28.6 41.5 32.6 29,3 28,1 δ exp 22.0 28.6 41.5 32.6 29,3 22,5 C3 i.Bu -2.3 18.2 9,1 9,1 9,4 9,4 -2.5 0,5 3,4 0,6 29,6 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base δ	1	1.DU-3-	(CH2)3-8		28,5	41,3		31,4	29.5		
Calcul base α α β β β γ γ δ Total C1 i.Bu -2.3 9.1 9.4 9.4 -3.4 0.3 22.5 C2 i.Bu -2.3 18.2 9.1 9.6 -2.5 0.3 32.4 C3 i.Bu -2.3 10.8 9.1 9.4 9.4 -2.5 -3.4 0.9 31.4 C5 A1 -2.3 9.1 9.1 9.6 9.6 -2.5 0.6 30.7 C6 A1 -2.3 10.8 9.1 9.4 9.4 -2.5 -2.5 0.6 30.7 C6 A1 -2.3 9.1 9.1 9.6 9.6 -2.5 -2.5 0.6 30.7 C6 A1 -2.3 9.1 9.1 9.1 9.6 9.6 -2.5 -2.5 0.6 30.7 C7 C8 C8 C9			_								
C1 i.Bu -2.3 9.1 9.4 9.4 -3.4 0.3 22.5 C2 i.Bu -2.3 18.2 9.1 9.6 -2.5 0.3 32.4 C3 i.Bu -2.3 10.8 9.1 9.4 9.4 -2.5 -3.4 0.9 31.4 C5 A1 -2.3 9.1 9.1 9.6 9.6 -2.5 0.3 32.4 C6 A1 -2.3 9.1 9.1 9.6 9.6 -2.5 0.3 32.4 C6 A1 -2.3 9.1 9.1 9.4 9.4 9.4 -2.5 -3.4 0.9 31.4 C5 A1 -2.3 9.1 9.1 9.6 9.6 -2.5 -2.5 0.6 30.7 C6 i.Bu-S-(CH2)4-S-i.Bu θ exp 21.9 28.5 41.3 32.2 28.7 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ θ Total C1 i.Bu -2.3 9.1 9.4 9.4 9.4 -3.4 0.3 22.5 C2 i.Bu -2.3 18.2 9.1 9.6 9.6 -2.5 0.3 32.4 C3 i.Bu -2.3 10.8 9.1 9.4 9.4 -2.5 0.5 31.9 C5 A1 -2.3 9.1 9.1 9.6 9.4 -2.5 -2.5 0.5 31.9 C5 A1 -2.3 9.1 9.1 9.6 9.4 -2.5 -3.4 0.6 29.6 C4 A1 -2.3 10.8 9.1 9.4 9.4 -2.5 -3.4 0.6 29.6 C4 C5 C6 C6 C4 C5 C6 C6 C4 C5 C6	Pour de	s raisons	s de com	modité le	e N° 1 est	donné au	ı Me du	groupe i.l	Bu		
C2 i.Bu -2.3 18,2 9,1 9,6 -2.5 0,3 32,4 C3 i.Bu -2.3 9,1 10,8 18,8 9,4 -2.5 0,3 43,6 C4 A1 -2.3 10,8 9,1 9,4 9,4 -2.5 -3,4 0,9 31,4 C5 A1 -2.3 9,1 9,1 9,6 9,6 -2.5 -2.5 0,6 30,7 60 i.Bu-S-(CH2)4-S-i.Bu	Calcul		base	α	α	ß	ß	γ	γ	9	Total
C3 i.Bu -2.3 9.1 10.8 18.8 9.4 -2.5 0.3 43.6 C4 A1 -2.3 10.8 9.1 9.4 9.4 -2.5 -3.4 0.9 31.4 C5 A1 -2.3 9.1 9.1 9.6 9.6 -2.5 -2.5 0.6 30.7 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	C1	i.Bu	-2,3		9,1	9,4	9,4		-3,4	0,3	22,5
C4 A1 -2,3 10,8 9,1 9,4 9,4 -2,5 -3,4 0,9 31,4 C5 A1 -2,3 9,1 9,1 9,6 9,6 -2,5 -2,5 0,6 30,7 60 i.Bu-S-(CH2)4-S-i.Bu ∂ exp 21,9 28,5 41,3 32,2 28,7 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ ∂ Total C1 i.Bu -2,3 18,2 9,1 9,4 9,4 -2,5 -2,5 0,5 31,9 C5 A1 -2,3 9,1 9,4 9,4 -2,5 -3,4 0,6 29,6 C1 i.Bu-S-(CH2)5-S-i.Bu ∂ exp 22,0 28,6 41,5 32,6 29,3 28,1 C4 C5 C6 Calcul base α α β β γ γ β Total C1 i.Bu-S-(CH2)5-S-i.Bu ∂ exp 22,0 28,6 41,5 32,6 29,3 28,1 C4 C5 C6 Calcul base α α β β γ γ β Total C1 i.Bu-S-(CH2)5-S-i.Bu ∂ exp 22,0 28,6 41,5 32,6 29,3 28,1 C4 C5 C6 Calcul base α α β β γ γ β Total C1 i.Bu-2,3 9,1 9,4 9,4 9,4 -3,4 0,3 22,5 C6 i.Bu-2,3 9,1 9,4 9,4 9,4 -3,4 0,3 22,5 C6 i.Bu-2,3 9,1 9,4 9,4 9,4 -3,4 0,3 32,5 C6 i.Bu-2,3 9,1 10,8 18,8 9,4 -2,5 0,3 32,4 C3 i.Bu-2,3 18,2 9,1 9,6 9,4 9,4 -2,5 0,3 32,4 C3 i.Bu-2,3 18,2 9,1 9,6 9,4 9,4 -2,5 0,3 32,4 C3 i.Bu-2,3 9,1 10,8 18,8 9,4 -2,5 0,3 32,4 C3 i.Bu-2,3 9,1 10,8 18,8 9,4 -2,5 0,3 32,4 C3 i.Bu-2,3 9,1 10,8 18,8 9,4 -2,5 0,3 32,4 C3 i.Bu-2,3 9,1 10,8 18,8 9,4 -2,5 0,5 0,3 32,4 C3 i.Bu-2,3 9,1 10,8 18,8 9,4 -2,5 0,5 0,9 32,3 C5 A1 -2,3 9,1 9,1 9,4 9,4 -2,5 -2,5 0,2 30,1	C2	i.Bu	-2,3	18,2	9,1		9,6		-2,5	0,3	32,4
C5 A1 -2,3 9,1 9,1 9,6 9,6 -2,5 -2,5 0,6 30,7 60 i.Bu-S-(CH2)4-S-i.Bu $\frac{1}{2}$ exp 21,9 28,5 41,3 32,2 28,7 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ ∂ Total C1 i.Bu -2,3 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,6 9,4 -2,5 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 9,1 9,4 9,4 -2,5 -2,5 0,5 31,9 C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -3,4 0,6 29,6 61 i.Bu-S-(CH2)5-S-i.Bu $\frac{1}{2}$ exp 22,0 28,6 41,5 32,6 29,3 28,1 $\frac{1}{2}$ C4 C5 C6 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ ∂ Total C1 i.Bu -2,3 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,4 9,4 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,3 32,4 C3 i.Bu -2,3 10,8 9,1 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 9,1 9,1 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 9,1 9,1 9,4 9,4 -2,5 -2,5 0,2 30,1	C3	i.Bu	-2,3	9,1	10,8	18,8	9,4		-2,5	0,3	43,6
60 i.Bu-S-(CH2)4-S-i.Bu ∂ exp 21.9 28.5 41.3 32.2 28.7 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ ∂ Total C1 i.Bu -2.3 9.1 9.4 9.4 -2.5 0.3 32.4 C3 i.Bu -2.3 10.8 9.1 9.4 9.4 9.4 -2.5 0.3 43.6 C4 A1 -2.3 10.8 10.8 10.8 A1 C4 C5 C6 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ ∂ Total C4 C5 C6 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ ∂ Total C1 i.Bu -2.3 9.1 9.4 9.4 9.4 9.4 9.4 9.5 9.6 22.0 28.6 41.5 32.6 29.3 28.1 C4 C5 C6 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ ∂ Total C1 i.Bu -2.3 9.1 9.4 9.4 9.4 -3.4 0.3 22.5 C2 i.Bu -2.3 18.2 9.1 9.6 -2.5 0.3 32.4 C3 i.Bu -2.3 9.1 9.4 9.4 9.4 -2.5 0.3 32.6 29.3 28.1 C4 C5 C6	C4	A 1	-2,3	10,8	9,1	9,4	9,4	-2,5	-3,4	0,9	31,4
Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ δ Total C1 i.Bu -2.3 9.1 9.4 9.4 -3.4 0.3 22.5 C2 i.Bu -2.3 18.2 9.1 9.6 -2.5 0.3 32.4 C3 i.Bu -2.3 10.8 9.1 9.4 9.4 -2.5 -2.5 0.5 31.9 C5 A1 -2.3 9.1 9.1 9.6 9.4 -2.5 -3.4 0.6 29.6 61 i.Bu-S-(CH2)5-S-i.Bu δ exp	C5	A 1	-2,3	9,1	9,1	9,6	9,6	-2,5	-2,5	0,6	30,7
Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ δ Total C1 i.Bu -2,3 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,6 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 -2,5 0,5 31,9 C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -3,4 0,6 29,6 61 i.Bu-S-(CH2)5-S-i.Bu δ exp	60	i.Bu-S-	(CH2)4-9	S-i.Bu							
Calcul base α α β β γ γ γ δ Total C1 i.Bu -2.3 18.2 9.1 9.4 9.4 -3.4 0.3 22.5 C2 i.Bu -2.3 18.2 9.1 9.6 -2.5 0.3 32.4 C3 i.Bu -2.3 10.8 9.1 9.4 9.4 -2.5 -2.5 0.5 31.9 C5 A1 -2.3 9.1 9.1 9.6 9.4 -2.5 -3.4 0.6 29.6 C4 C5 C6 C6 C4 C5 C6	∂ ехр				28,5	41,3		32,2	28,7		
C1 i.Bu -2.3 9.1 9.4 9.4 -3.4 0.3 22.5 C2 i.Bu -2.3 18.2 9.1 9.6 -2.5 0.3 32.4 C3 i.Bu -2.3 10.8 9.1 9.4 9.4 -2.5 -2.5 0.3 32.4 C5 A1 -2.3 9.1 10.8 18.8 9.4 -2.5 -2.5 0.5 31.9 C5 A1 -2.3 9.1 9.1 9.6 9.4 -2.5 -3.4 0.6 29.6 C4 C5 C6 C6 C4 C5 C6	Pour de	s raisons	de comi	modité le	N° 1 est	donné au	Me du	groupe i.E	Bu		
C1 i.Bu -2.3 9.1 9.4 9.4 -3.4 0.3 22.5 C2 i.Bu -2.3 18.2 9.1 9.6 -2.5 0.3 32.4 C3 i.Bu -2.3 10.8 9.1 9.4 9.4 -2.5 -2.5 0.3 32.4 C5 A1 -2.3 9.1 10.8 18.8 9.4 -2.5 -2.5 0.5 31.9 C5 A1 -2.3 9.1 9.1 9.6 9.4 -2.5 -3.4 0.6 29.6 C4 C5 C6 C7 C6 C6 C7 C6 C7	Calcul		hase	α	~	R	R	~	2/	a	Total
C2 i.Bu -2.3 18.2 9.1 9.6 -2.5 0.3 32.4 C3 i.Bu -2.3 10.8 9.1 10.8 18.8 9.4 -2.5 0.3 32.4 C5 A1 -2.3 9.1 10.8 18.8 9.4 -2.5 -2.5 0.5 31.9 C5 A1 -2.3 9.1 9.1 9.6 9.4 -2.5 -3.4 0.6 29.6 C4 C5 C6	1	i.Bu		•				1	-		
C3 i.Bu -2.3 9.1 10.8 18.8 9.4 -2.5 0.3 43.6 C4 A1 -2.3 10.8 9.1 9.4 9.4 -2.5 -2.5 0.5 31.9 C5 A1 -2.3 9.1 9.1 9.6 9.4 -2.5 -3.4 0.6 29.6 $\begin{array}{cccccccccccccccccccccccccccccccccccc$				18.2		0,1					
C4 A1 -2.3 10.8 9.1 9.4 9.4 -2.5 -2.5 0.5 31.9 C5 A1 -2.3 9.1 9.1 9.6 9.4 -2.5 -3.4 0.6 29.6 C6 A1 -2.3 9.1 9.1 9.6 9.4 -2.5 -3.4 0.6 29.6 C6 C6 C7 C4 C5 C6 C6 C7 C4 C5 C6 C7 C4 C5 C6 C7						18.8					i
C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -3,4 0,6 29,6 61 i.Bu-S-(CH2)5-S-i.Bu ∂ exp								-2 5			ı
Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ δ Total C1 i.Bu -2,3 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,6 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,3 43,6 C4 A1 -2,3 10,8 9,1 9,4 9,4 -2,5 -2,5 0,2 30,1 C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -2,5 0,2 30,1	ł										i
Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ δ Total C1 i.Bu -2,3 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,6 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,3 43,6 C4 A1 -2,3 10,8 9,1 9,4 9,4 -2,5 -2,5 0,2 30,1 C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -2,5 0,2 30,1	61	i Ru-S-(でせの に、	tai Baa							
C4 C5 C6 Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ γ ∂ Total C1 i.Bu -2,3 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,6 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,3 43,6 C4 A1 -2,3 10,8 9,1 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -2,5 0,2 30,1		1.54-5-(CIIZ)O-C		28.6	415		30 G	20.3	20.1	
Pour des raisons de commodité le N° 1 est donné au Me du groupe i.Bu Calcul base α α β β γ γ γ ∂ Total C1 i.Bu -2,3 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,6 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,3 43,6 C4 A1 -2,3 10,8 9,1 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -2,5 0,2 30,1	OCAP			22,0	20,0	41,5					
Calcul base α α β β γ γ γ ∂ Total C1 i.Bu -2,3 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,6 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,3 43,6 C4 A1 -2,3 10,8 9,1 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -2,5 0,2 30,1											
C1 i.Bu -2,3 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,6 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,3 43,6 C4 A1 -2,3 10,8 9,1 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -2,5 0,2 30,1	Pour de	s raisons	de comr	nodité le	N° 1 est	donné au	Me du	groupe i.E	Bu		
C1 i.Bu -2,3 9,1 9,4 9,4 -3,4 0,3 22,5 C2 i.Bu -2,3 18,2 9,1 9,6 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,3 43,6 C4 A1 -2,3 10,8 9,1 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -2,5 0,2 30,1	Calcul		base	α	α	ß	ß	γ	γ	9	Total
C2 i.Bu -2,3 18,2 9,1 9,6 -2,5 0,3 32,4 C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,3 43,6 C4 A1 -2,3 10,8 9,1 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -2,5 0,2 30,1	C1	i.Bu	-2,3		9,1	9,4	9,4			0,3	
C3 i.Bu -2,3 9,1 10,8 18,8 9,4 -2,5 0,3 43,6 C4 A1 -2,3 10,8 9,1 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -2,5 0,2 30,1	C2	i.Bu	-2,3	18,2	9,1		9,6		-2,5		
C4 A1 -2,3 10,8 9,1 9,4 9,4 -2,5 -2,5 0,9 32,3 C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -2,5 0,2 30,1	C3	i.Bu	-2,3	9,1	10,8	18,8	9,4		-2,5		
C5 A1 -2,3 9,1 9,1 9,6 9,4 -2,5 -2,5 0,2 30,1	C4	Al	-2,3	10,8	9,1	9,4	9,4	-2,5	-2,5		
	C5	A1	-2,3	9,1	9,1	9,6	9,4	-2,5			I
	C6	A1	-2,3	9,1	9,1	9,4	9,4	-3,4	-3,4	0,6	

TABLE	AU 3.10 1	o (suite)	: RMN	13C des	compos	s Al				
			R	R	R		CH2-S	CH2	CH2	
			Ме	CH/C CH2	CH2-S		A1	A1	A1	
62	i.Bu-S-(CH2)6-S	i-i.Bu							
∂ ехр			22,0	28,4	41,4		32,6	29,5 C5	28,5 C6	
Pour de	s raisons	de com	modité le	e N° 1 est	donné au	Me du	groupe i.l	Зu		
Calcul		base	α	α	ß	ß	γ	γ	9	Total
C1	i.Bu	-2,3		9,1	9,4	9,4	•	-3,4	0,3	22,5
C2	i.Bu	-2,3	18,2	9,1		9,6		-2,5	0,3	32,4
C3		-2,3	9,1	10,8	18,8	9,4		-2,5	0,3	43,6
C4	A 1	-2,3	10,8	9,1	9,4	9,4	-2,5	-2,5	0,9	32,3
C5	Al		9,1	9,1	9,6	9,4	-2,5	-2,5	0,6	30,5
C6	A1	-2,3	9,1	9,1	9,4	9,4	-3,4	-2,5	0,2	29,0
63	i.Bu-S-((CH2)11	-S-i.Bu							
∂ ехр			22,0	28,6	41,4		32,7	29,2	29,4	
							29,7	28,9	29,4	
Pour de	s raisons	de com	modité le	e N° 1 est	donné au	Me du	groupe i.l	Вu		
Calcul		base	α	α	ß	ß	γ	γ	9	Total
C1	i.Bu	-2,3		9,1	9,4	9,4		-3,4	0,3	22,5
C2	i.Bu	-2,3	18,2	9,1		9,6		-2,5	0,3	32,4
C3	i.Bu	-2,3	9,1	10,8	18,8	9,4		-2,5	0,3	43,6
C4	A 1	-2,3	10,8	9,1	9,4	9,4	-2,5	-2,5	0,9	32,3
C5	A1	-2,3	9,1	9,1	9,4	9,6	-2,5	-2,5	0,6	30,5
C6	A1	-2,3	9,1	9,1	9,4	9,4	-3,4	-2,5	0,6	29,4
C7	A 1	-2,3	9,1	9,1	9,4	9,4	-2,5	-2,5	0,2	29,9
C8	A1	-2,3	9,1	9,1	9,4	9,4	-2,5	-2,5	0,6	30,3
C9	A 1	-2,3	9,1	9,1	9,4	9,4	-2,5	-2,5	0,6	30,3

		R	R	R	CH2-S	C	Me	R'	R'	R'
		Me	CH/C	CH2-S	A1	A1	A1	S-CH2	CH/C	Me
Compos	é du ty	pe R-S-C	H2-CH(I	Me)-S-R'						
64	i.Bu-S-	СН2-СН	(Me)-S-i.	Bu						
∂ ехр		21,9	28,7	42,3	40,3	40,4	20,3	39,8	28,8	22,1
		C1	C2	C3	C4	C5	C6	C7	C8	C9
Pour des	raisons	s de com	modité le	N° 1 est	donné au	ı Me du ;	groupe i	.Bu noté I	₹	
Calcul		base	α	α	ß	ß	γ	γ	9	Total
C1	R	-2,3	9,1		9,4	9,4		-3,4	0,3	22,5
C2	R	-2,3	18,2	9,1		9,6		-2,5	0,3	32,4
C3	R	-2,3	9,1	10,8	18,8	9,4		-2,5	0,2	43,5
C4	A1	-2,3	10,8	9,1	18,8	9,6	-2,5	-2,5	0,9	41,9
C5	A 1	-2,3	18,2	10,8	9,6	9,4	-2,5	-2,5	0,9	41,6
C6 (Me)	A 1	-2,3	9,1		9,4	9,6	-3,4	-2,5	0,6	20,5
C7	R'	-2,3	10,8	9,1	9,4	18,8	-5,0		-0,1	40,7
C8	R'	-2,3	9,1	18,2	9,6		-2,5		0,6	32,7
C9	R'	-2,3	9,1		9,4	9,4	-3,4		0,3	22,5
65	t.Bu-S-	-CH2-CH	[(Me)-S-t	.Bu						
∂ ехр		31,0		43,6	37,6	37,8	23,1	42,2		31,5
		Cl		C2	C3	C4	C5	C6		C7
Pour des	s raisons	s de com	modité le	e N° 1 est	donné a	ı Me du	groupe i	.Bu noté l	3	
Calcul		base	α	α	ß	ß	γ	γ	9	Total
C1	R	-2,3	9,1		18,8	9,6		-2,5	0,3	33,0
C2	R	-2,3	27,3	10,8	9,4		-2,5		0,2	42,9
C3	A 1	-2,3	10,8	9,1	18,8	9,6	-7,5	-2,5	0,9	36,9
C4	A1	-2,3	18,2	10,8	9,6	9,4	-2,5	-7,5	0,9	36,6
C5 (Me)	A 1	-2,3	9,1		9,4	9,6	-3,4	-2,5	1,2	21,1
C6	R'	-2,3	27,3	10,8	9,4		-5,0		-0,1	40,1
C7	R'	-2,3	9,1		9,6	18,8	-2,5		0,6	33,3

W 3.10	d:RM	N 13C d	es comp	osés Al					
	R	R	R	CH2-S	C	Me	R'	R'	R'
	Ме	CH/C	CH2-S	A1	A1	A1	S-CH2	CH/C	Me
é du ty	pe R-S-(CH2-C(M	e)2-S-R'						
i.Bu-S-	CH2-C(I	4e)2-S-i .]	Bu						
	21,9	28,8	43,6	46,6	48,4	22,4	36.9	28.8	21,7
	C1	C2	C3	C4	C5	C6	C7	C8	C9
raison	s de com	modité le	N° 1 est	donné au	ı Me du	groupe i	.Bu noté F	R	
	base	α	α	ß	В	γ	γ	9	Total
R	-2,3	9,1		9,4		•	•		22,5
R	-2,3	18,2	9,1		9,6				32,4
R	-2,3	9,1	10,8	18,8					43,8
A1	-2,3	10,8	9,1			-2,5			51,3
A1	-2,3	27,3	10.8						50,7
A1	-2,3	9,1							29,9
R'	-2,3	10,8	9,1				,-		38,2
R'	-2,3	9,1	18,2	9,6	•				33,0
R'	-2,3	9,1		9,4	9,4	-3,4		0,3	22,5
t.Bu-S-	CH2-C(M	Ie)2-S-t.I	Bu						
				tre les C	et le Cl	H2			
	30,8		42,6					41.8	33,1
	C1		C2	C3	C4	C5		C6	C7
raisons	de com	nodité le	N° 1 est	donné au	Me du į	groupe i.	Bu noté R	.•	
	base	α	α	ß	ß	γ	ν	а	Total
R	-2,3		•			•	•		33,0
R	-2,3		10.8	- , -					43,2
A 1				28.2		-75			46,3
A 1									45,7
A1	-2,3		-,-				·		30,5
R'	-2,3	10,8	27,3	9,4	-,-	- 7, 5	_,0	-0,1	37,6
	-2,3	9,1	,-	9,6		. ,0		O, 1	0,,0
	i.Bu-S- raisons R R R A1 A1 R' R' R' t.Bu-S- On peu	R Me A du type R-S-C i.Bu-S-CH2-C(N 21,9 C1 s raisons de com base R -2,3 R -2,3 R -2,3 A1 -2,3 A1 -2,3 R' -2,3 R' -2,3 R' -2,3 R' -2,3 C1 raisons de com base R -2,3 R -2,3 R' -2,3 R' -2,3 R' -2,3 R' -2,3 A1 -2,3	R R Me CH/C de du type R-S-CH2-C(Me) i.Bu-S-CH2-C(Me)2-S-i.1 21,9 28,8 C1 C2 craisons de commodité le base α R -2,3 9,1 R -2,3 18,2 R -2,3 9,1 A1 -2,3 10,8 A1 -2,3 27,3 A1 -2,3 9,1 R' -2,3 9,1 C1 t.Bu-S-CH2-C(Me)2-S-t.1 On peut avoir des inversions de commodité le base α R -2,3 9,1 raisons de commodité le base α R -2,3 9,1 raisons de commodité le base α R -2,3 9,1 R' -2,3 9,1 raisons de commodité le	R R R R R R Me CH/C CH2-S See du type R-S-CH2-C(Me)2-S-R' 1.Bu-S-CH2-C(Me)2-S-1.Bu 21.9 28.8 43.6 C1 C2 C3 3 raisons de commodité le N° 1 est base α α α R -2.3 9.1 10.8 9.1 R -2.3 10.8 9.1 R' -2.3 10.8 9.1 R' -2.3 9.1 18.2 R' -2.3 9.1 R' -2.3 9.1 18.2 R' -2.3 9.1 R' -2.3	Me CH/C CH2-S A1 A1 A2 A2 A3 A4 A5 A4 A5 A6 A4 A6 A6 A7 A7 A6 A8 A8 A8 A9 A9 A9 A9 A9 A9 A1 A1 A1 A2 A3 A3 A4 A4 A5 A6 A6 A6 A7 A7 A8 A8 A9 A9 A9 A9 A9 A1 A1 A1 A2 A3 A3 A1 A3 A3 A4 A3 A4 A4 A5 A5 A6 A7 A7 A7 A7 A8 A8 A8 A9 A9 A9 A1 A1 A1 A1 A2 A3 A3 A3 A4 A4 A4 A5 A5 A6 A7 A7 A7 A7 A7 A7 A8 A8 A8 A9 A9 A8 A9 A9 A1 A8 A9 A1 A8 A1 A8 A9 A1 A8 A8 A9 A9 A8 A9 A9 A8 A9 A9	R R R R CH2-S A1 A1 de du type R-S-CH2-C(Me)2-S-R' i.Bu-S-CH2-C(Me)2-S-I.Bu 21.9 28.8 43.6 46.6 48.4 C1 C2 C3 C4 C5 raisons de commodité le N° 1 est donné au Me du base α α β β β β β R -2.3 9,1 9,4 9,4 9,4 R -2.3 10,8 9,1 28,2 9,6 A1 -2.3 9,1 18,8 9,6 R' -2.3 9,1 18,8 9,6 R' -2.3 9,1 18,8 9,6 R' -2.3 9,1 18,2 9,6 46,1 C1 C2 C3 C4 raisons de commodité le N° 1 est donné au Me du gent de la section de	R	R Me R CH/C CH2-S C A1 Me A1 R' S-CH2 A Mat A1 A1 A1 S-CH2 A Mat A1 A1 A1 S-CH2 A Mat CH2-C(Me)2-S-R' i.Bu-S-CH2-C(Me)2-S-I.Bu 21,9 28,8 43,6 46,6 48,4 22,4 36,9 C1 C2 C3 C4 C5 C6 C7 straisons de commodité le № 1 est donné au Me du groupe i.Bu noté R R -2,3 9,1 9,4 9,4 -3,4 R -2,3 9,1 9,4 9,4 -2,5 -2,5 R -2,3 9,1 10,8 18,8 9,4 -2,5 -2,5 A1 -2,3 9,1 10,8 18,8 9,4 -2,5 -2,5 A1 -2,3 9,1 18,8 9,6 -3,4 -2,5 -2,5 A1 -2,3 9,1 18,2 9,6 -2,5 -2,5	R R R R CH2-S C Me R' S-CH2 CH/C 6 du type R-S-CH2-C(M-)2-S-R' 1.Bu-S-CH2-C(M-)2-S-1.bu 21,9 28,8 43,6 46,6 48,4 22,4 36,9 28,8 28,8 21 22 23 28 28 28 28 28 28

	R Me	R CH	R CH2-S		S-CH2 A1	CH-S A1		R' CH2S	R' CH	R' Me
Compos	é du typ	e [R-S-(CH2]2-CH	-S-R'						
68	[i.Bu-S-	CH2]2-	CH-S-i.Bu							22.2
д ехр	22,1 22,0	28,8	42,4		37,2	46,6		40,5	28,7	22,0 22,0
Pour de	s raisons	de com	modité le	N° 1 est	donné a	u Me du g	roupe i.	Bu noté F	ર	
Calcul		base	α	α	ß	ß	γ	γ	9	Total
Calcui C1	R	-2,3		9,1	9,4	9,4		-3,4	0,3	22,5
C2	R	-2,3	18,2	9,1		9,6		-2,5	0,3	32,4
C3	R	-2,3	9,1	10,8	18,8	9,4		-2,5	0,2	43,5
C4	A 1	-2,3	10,8	9,1	18,8	9,6	-3,4	-5,0		38,8
C5	A 1	-2,3	18,2	10,8	9,4	19,2	-5,0	-2,5	1,2	49,0
C6	R'	-2,3	10,8	9,1	9,4	18,8	-5,0		-0,2	40,6
C7	R'	-2,3	9,1	18,2	9,6		-2,5		0,6	32,7
C8	R'	-2,3	9,1		9,4	9,4	-3,4		0,3	22,5
69	[t.Bu-S	-CH2]2-	-CH-S-t.B	u						01.5
д ехр	31,0		43,9	34,6		43,2		42,4		31,5
Pour de	es raisons	de con	nmodité le	N° 1 es	t donné a	u Me du į	groupe t	Bu noté	R	
Calcul		base	α	α	ß	ß	γ	γ	9	Tota
C1	R	-2,3	9,1		18,8	9,6		-2,5	0,3	33,0
C2	R	-2,3	27,3	10,8		9,4		-2,5	0,2	42,9
C3	A1	-2,3	10,8	9,1	18,8	9,6	-10,0	-3,4	1,2	33,8
C4	A1	-2,3	18,2	10,8	19,2	9,4	-5,0	-7,5	1,8	44,6
C5	R'	-2,3	10,8	27,3	9,4		-5,0		-0,2	40,0
C6	R'	-2,3	9,1		9,6	18,8	-2,5		0,6	33,

		R	R	R	CH2-S	CH2-S	R'	R'	R'
		Me	CH/C CH2	C-S	A1	A1	C-S	CH/C CH2	Me
58 t.B	u- S2- (CH2)2	-S-t.Bu							
д ехр		29,9		47,9	40,5	28,2	42,9		31,1
Pour des rais	sons de com	modité le	N°1 est a	attribué	au Me du	groupe F	R-SS		
	sons de com base	modité le α	N°1 est a					a	total
Calculs				attribué ß 18,8	au Me du ß 6,9	groupe F	γ	∂ 0.3	total 30.3
Calculs C1	base	α		ß	ß			0,3	30,3
Calculs C1 C2 C3	base -2,3	α 9,1	α	ß	ß 6,9		γ - 2, 5		30,3 52,6
Calculs C1 C2 C3 C4	base -2,3 -2,3 -2,3 -2,3	α 9,1 27,3	α 20,8	ß 18,8	ß 6,9 9,4	γ	γ -2,5 -2,5	0,3 -0,1	30,3 52,6 37,5
Pour des rais Calculs C1 C2 C3 C4 C5	base -2,3 -2,3 -2,3	α 9,1 27,3 20,8	α 20,8 9,1	ß 18,8 9,4	ß 6,9 9,4 9,6	γ -7,3	γ -2,5 -2,5 -2,5	0,3 -0,1 0,9	30,3 52,6

					-94-					
					s Al	composé	.3C des	: RMN 1	AU 3.11 a	ABLE
							D-2-6(6)	R-S-(CH	sé du type	വസവ
							2)2-G-K	K-5-(C1	oc du type	, o.m.po
C9	C8	C7	C6	C5	C4	C3	C2	C1		
									n.Bu	52
				31,8	31,7	32,0	21,9	13,6	∂ ехр	
				32,2	31,3	32,7	22,2	13,6	∂ calc.	
				-0,4	0,4	-0,7	-0,3	0,0	Δ∂	
									i.Bu	53
					32,7	41,6	28,7	22,0	∂ exp	
					32,5	43,2	32,4	22,5	∂ calc.	
					0,2	-1,6	-3,7	-0,5	Δ∂	
									t.Bu	54
						28,8	42,6	31,0	д ехр	
						27,5	42,6	33,0	∂ calc.	
						1,3	0,0	-2,0	$\Delta \partial$	
									Ph	56
				33,4	126,5	129,0	130,0	135,1	∂ ехр	
				33,9	126,1	128,6	129,4	135,5	∂ calc.	
				-0,5	0,4	0,4	0,6	-0,4	Δ∂	
									Bz	57
			31,8	37,4	127,0	128,4	128,7	138,1	∂ ехр	
			31,8	37,4	127,1	128,6	129,3	138,6	∂ calc.	
			0,0	0,0	-0,1	-0,2	-0,6	-0,5	$\Delta \partial$	
						2_S_+ D	-СНОСШ	t.Bu-\$-\$	sé du type	omnos
					•	~~ ,, ,, ,,,,,			, po	
									t.Bu	58
			31,1	42,9	28,2	40,5	47,9	29,9	-	
			33,0	42,1	24,8	37,5	52,6	•		
			-1,9	8,0	3,4	3,0	-4,7	-0,4	$\Delta \partial$	
			31,1 33,0	42,1	28,2 24,8	40,5 37,5	47,9 52,6	29,9 30,3	∂ exp ∂ calc.	

Compose du type i.Bu-S-(CH2)n-S-i.Bu C1	C9
59 3 ∂ exp 21,9 28,5 41,3 31,4 29,5 ∂ calc. 22,5 32,4 43,6 31,4 30,7 Δ∂ -0,6 -3,9 -2,3 0,0 -1,2 60 4	C9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
60 4 θ exp 21,9 28,5 41,3 32,2 28,7 θ calc. 22,5 32,4 43,6 31,9 29,6 Δθ -0,6 -3,9 -2,3 0,3 -0,9 61 5 θ exp 22,0 28,6 41,5 32,6 29,3 28,1 θ calc. 22,5 32,4 43,6 32,3 30,1 28,5 Δθ -0,5 -3,8 -2,1 0,3 -0,8 -0,4 62 6 θ exp 22,0 28,4 41,4 32,6 29,5 28,5 θ calc. 22,5 32,4 43,6 32,3 30,5 29,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
∂ calc. $22,5$ $32,4$ 43.6 $31,9$ 29.6 $\Delta \partial$ $-0,6$ $-3,9$ $-2,3$ $0,3$ $-0,9$ 61 5 ∂ exp $22,0$ $28,6$ $41,5$ 32.6 29.3 28.1 ∂ calc. $22,5$ $32,4$ 43.6 32.3 $30,1$ 28.5 $\Delta \partial$ $-0,5$ $-3,8$ $-2,1$ $0,3$ $-0,8$ $-0,4$ 62 6 ∂ exp $22,0$ $28,4$ $41,4$ $32,6$ $29,5$ 28.5 ∂ calc. $22,5$ $32,4$ $43,6$ $32,3$ $30,5$ $29,0$	
61	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
∂ calc. 22.5 32.4 43.6 32.3 30.1 28.5 $\Delta \partial$ -0.5 -3.8 -2.1 0.3 -0.8 -0.4 62 6 ∂ exp 22.0 28.4 41.4 32.6 29.5 28.5 ∂ calc. 22.5 32.4 43.6 32.3 30.5 29.0	
62 6 $\partial \exp 22.0 28.4 41.4 32.6 29.5 28.5 \partial \operatorname{calc}. 22.5 32.4 43.6 32.3 30.5 29.0$	
62 6 $\partial \exp 22.0 28.4 41.4 32.6 29.5 28.5 \partial \operatorname{calc} 22.5 32.4 43.6 32.3 30.5 29.0$	
 θ exp 22,0 28,4 41,4 32,6 29,5 28,5 d calc. 22,5 32,4 43,6 32,3 30,5 29,0 	
∂ calc. 22,5 32,4 43,6 32,3 30,5 29,0	
∂ calc. 22,5 32,4 43,6 32,3 30,5 29,0	
$\Delta \partial$ -0.5 -4.0 -2.2 0.3 -1.0 -0.5	
63 11	
$\theta \exp 22.0 28.6 41.4 32.7 29.7 29.2 28.9 29.4$	
d calc. 22,5 32,4 43,6 32,3 30,5 29,4 29,9 30,3	29,4
$\Delta \partial$ -0.5 -3.8 -2.2 0.4 -0.8 -0.2 -1.0 -0.9	29,4 30,3

			-							
TABLE	AU 3.11 c	: RMN 1	.3C des	composé	s A1					
Compo	sé du type	P-S-CH	OCHICH!	2)_S_(B.,						
Compe	se du type	K-G-CII	ecincii.	3)-3-1.Du						
		C1	C2	СЗ	C4	C 5	C6	C7	C8	C9
64	i.Bu									
	∂ ехр	21,9	28,7	42,3	40,3	40,4	20,3	39,8	28,8	22,1
	∂ calc.	22,5	32,4	43,5	41,9	41,6	20,5	40,7	32,7	22,5
	Δ∂	-0,6	-3,7	-1,2	-1,6	-1,2	-0,2	-0,9	-3,9	-0,4
65	t.Bu									
	д ехр	31,0	43,6	37,6	37,8	23,1	42,2	31,5		
	∂ calc.	33,0	42,9	36,9	36,6	21,1	40,1	33,3		
	Δ∂	-2,0	0,7	0,7	1,2	2,0	2,1	-1,8		
Compo	sé du type	R-S-CH	SC(CH3)	2-S-R						
Compo	se du type	K O OII		2-0-IX						
		C1	C2	C3	C4	C 5	C6	C7	C8	С9
66	i.Bu									
	∂ ехр	21,9	28,8	43,6	46,6	48,4	22,4	36,9	28,8	21,7
	∂ calc.	22,5	32,4	43,8	51,3	50,7	29,9	38,2	33,0	22,5
	Δ∂	-0,6	-3,6	-0,2	-4,7	-2,3	-7,5	-1,3	-4,2	-0,8
67	4 D.,									
67	t.Bu	20.6	40 G	10 C	46 1	20.7	41.0	22.1		
	∂ exp	30,8	42,6	48,6	46,1	29,7	41,8	33,1		
	∂ calc. ∆∂	33,0	43,2 -0,6	46,3 2,3	45,7	30,5 -0,8	37,6			
	Δo	-2,2	-0,6	2,3	0,4	-0,8	4,2	-0,5		
Compo	sé du type	[R-S-CH	2]2CH-S	-R						
		C1	C2	C3	C4	C5	C6	C 7	C8	C9
68	i.Bu									
	∂ ехр	22,1	28,8	42,4	37,2	46,6	40,5	28,7	22,0	
	∂ calc.	22,5	32,4	43,5	38,8	49,0	40,6	32,7	22,5	
	$\Delta \partial$	-0,4	-3,6	-1,1	-1,6	-2,4	-0,1	-4,0	-0,5	
69	t.Bu	01.0	40.0	0.4.0	46.0	40.4	01 -			
	∂ exp	31,0	43,9	34,6	43,2	42,4	31,5			
	∂ calc.	33,0	42,9	33,8	44,6	40,0	33,3			
	Δ∂	-2,0	-1,0	8,0	1,4	2,4	-1,8			
L										

CHAPITRE IV

PARTIE EXPERIMENTALE

TECHNIQUES UTILISEES

Les spectres de **RMN ¹H** ont été enregistrés sur un appareil fonctionnant à 250 MHz. Les solvants utilisés sont le CCl₄ et le CDCl₃. Le tétraméthylsilane (TMS) est pris comme référence interne.

Les abréviations employées pour caractériser les signaux sont :

s: singulet d: doublet t: triplet q: quadruplet

Les spectres de **RMN ¹³C** ont été enregistrés sur un appareil fonctionnant à 250 MHz. Le solvant utilisé est le CDCl₃ dont la raie centrale du signal (triplet) est fixée à 77,0 ppm. La technique utilisée est l'écho de spin par transformé de Fourier (SEFT).

Les spectres de masse **(GC/MS)** ont été réalisés sur un appareil HEWLETT PACKARD 5971 A (tension d'ionisation 70 ev).

PARTIE EXPERIMENTALE

I) Synthèse d'alcools et d'halogénures sulfurés

I.1) Synthèse d'alcools monosulfurés

I.1.1) Méthode de préparation du 5-chloropentanol

• Préparation de l'acétate du 5-chloropentyle

Dans un réacteur muni d'un réfrigérant, d'un thermomètre, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 100 mmol de chlorure d'acétyle et 110 mmol de tétrahydrofurane (THF). A 0°C, on ajoute, par fractions, 2 mmol de chlorure de zinc (ZnCl₂), puis on porte le mélange à 85°C pendant 2 heures.

Après refroidissement, le mélange est repris par 75 ml de cyclohexane, lavé à l'eau froide et par une solution saturée en bicarbonate de sodium (NaHCO3) puis séché sur sulfate de sodium (Na₂SO₄). Le solvant est éliminé sous pression réduite.

Le produit obtenu est purifié par distillation sous vide.

n° 9

Rdt = 89 %

 $Eb = 64^{\circ}C$ sous 1 mm Hg

 $RMN^{-1}H:$

CH₂O

CH₂Cl

CH2

CH3

δ (ppm)

4,05 m (2H)

3,55 m (2H)

1,8 -1,3 m (6H)

 $2.0 \, s$

Préparation du 5-chloropentanol

Dans un réacteur muni d'un réfrigérant et équipé d'une agitation magnétique, on introduit 80 mmol du composé n° 9, 56 mmol d'éthanol et 40 ml d'une solution de soude (NaOH) 2,5 N. On laisse agiter pendant 48 heures à température ambiante, puis on évapore le solvant sous pression réduite. Le résidu obtenu est repris dans du toluène, lavé à l'eau et séché sur sulfate de sodium.

Le solvant est éliminé sous pression réduite.

Le produit obtenu est purifié par distillation sous vide.

n° 10

Rdt = 89 %

Eb = 64°C sous 1 mm Hg

 $RMN ^{1}H:$

CH₂O

OH CH2Cl

CH₂

δ (ppm)

3,65 t (2H)

3,55 t (2H)

2,35 s (1H) 1,55-1,8 m (6H)

I.1.2) réaction d'un mercaptan sur un alcool chloré

Dans un réacteur muni d'un réfrigérant, d'un thermomètre, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 0,11 mole de soude dans 40 ml d'éthanol à 95°.

Après dissolution à 50°C, on ajoute 0,1 mole d'alkyle mercaptan et on maintient le chauffage pendant 30 minutes.

Une fois la solution revenue à température ambiante, on additionne, goutte à goutte, 0,1 mole de chloroalcool, puis on porte le mélange à reflux pendant

Après refroidissement, on filtre le sel formé et on neutralise le filtrat par une solution d'acide chlorhydrique (HCl) 1N. On extrait la solution au dichlorométhane, l'éthanol est éliminé par lavages successifs à l'eau et par une solution saturée en chlorure de sodium (NaCl).

La phase organique est séchée sur sulfate de sodium et le solvant est évaporé sous pression réduite.

Le composé obtenu est purifié par distillation sous vide.

i

TABLEAU 4.1 a : RMN 1H des alcools sulfurés de départ

		R Me	R CH/CH2	R CH2-S CH-S	CH2-0	CH2-S	ОН
1	n.Bu-S-(CH2)2-OH	0,95 t	1,6 m 1,4 m	2,55 t	3,75 t	2,7 t	2,8 ps
2	i.Bu-S-(CH2)2-OH	0,95 d	1,8 m	2,4 d	3,7 t	2,7 t	2,6 ps
3	t.Bu-S-(CH2)2-OH	1,35 s			3,75 t	2,8 t	2,6 ps
4	Cyclo(6)-S-(CH2)2-	ОН	1,9 m 1,7 m 1,2 m	2,6 m	3,7 t	2,8 t	1,6 ps

	R Ar	R CH2S	CH2-0	CH2-S	ОН
5	Ph-S-(CH2)2-OH 7,4 п	1	3,9 t	3,2 t	2,5 ps
6	Ph-CH2-S-(CH2)2-OH 7,4 pa	s 3,8 s	3,7 m	2,65 t	2,2 ps

		R Me	R CH/CH2	R CH-S	CH2-O	CH2-S	CH2	ОН
7	i.Bu-S-(CH2)3-OH	0,95 d	1,8 m	2,4 d	3,8 t	2,7 t	1,8 m	2,6 ps
8	i.Bu-S-(CH2)4-OH	0,95 d	1,75 m	2,4 d	3,6 m	2,55 m	1,9/1,7 m	2,1 ps
11	i.Bu-S-(CH2)5-OH	0,95 d	1,75 m	2,35d	3,6 m	2,55 t	1,4/1,6 m	2,0 ps
12	i.Bu-S-(CH2)6-OH	0,95 d	1,75 m	2,35d	3,6 t	2,55 t	1,3/1,6 m	2,0 ps

TABLEAU 4.1 a (suite) : RMN 1H des alcools sulfurés de départ

	R Me	R CH/CH2	R CH-S	CH2-0	CH2-S	Ме	ОН
13	i.BuSCH2CH(Me)OH	·					
	0.95 d	1,7 m	2,4 m	3,8 m proton x	2,6 m Jab=13,6 Jax=3,8 Jbx=8,6	1,2 d	2,7 ps
14	t.BuSCH2CH(Me)OH						
	1,30 s			3,8 m proton x	2,7 m Jab=12,8 Jax=4,0 Jbx=8,3	1,2 d	2,6 ps
15	i.Bu-S-CH2-C(Me)2-OH						
	0.95 d	1,75 m	2,4 d		2,6 s	1,2 s	4,7 ps
16	t.Bu-S-CH2-C(Me)2-OH						
	1,30 s				2,6 s	1,25 s	2, 5 ps
17	i.Bu-S-CH2-C(Me)2-CH2-O	H					
	0,95 d	1,8 m	2,45 d	3,45 s	2,55 s	1,0 s	2,0 ps
18	[i.Bu-S-CH2]2-CH-OH						
	0,95 d	1,8 m	2,4 d		2,7 Jab=13,45 Jax=4,85 Jbx=7,3		3,0 ps
19	[t.Bu-S-CH2]2-CH-OH]
	1,25 s			3,8 m proton x	2,7 Jab=12,8 Jax=5,2 Jbx=7,0		2,9 ps

TABLEAU 4.1 b : RMN 13C des alcools sulfurés de départ

		R	R	R	CH2-0	CH2-S
		Me	CH2/CH	C-S		
1	n.Bu-S-(CH2)2-OH					
1	H.Bu-5-(CH2)2-011	13,5	21,7	31,6	60,2	34,9
		,	31,2			
2	i.Bu-S-(CH2)2-OH					
		21,9	28,6	40,8	60,2	35,7
3	t.Bu-S-(CH2)2-OH	01.1		42,3	61,4	31,6
		31,1		42,3	01,4	01,0
4	Cyclo(6)-S-(CH2)2-	он				
*	Cyclo(o)-5-(Cl12)2		33,7 (C2')	43,1	60,7	33,1
			26,2 (C4')			
			25,7 (C3')			

		Ar C1/C2	Ar C3/C4	R CH2-S	CH2-O	CH2-S
5	Ph-S-(CH2)2-OH	134,7	130,0		60,2	37,0
		129,0	126,5			
6	Ph-CH2-S-(CH2)2-	ОН				
		138,0	128,8	35,6	60,1	34,2
		128,5	127,1			

· · · · ·		R Me	R CH2/CH	R CH2-S	CH2-0	CH2-S	CH2	CH2
7	i.Bu-S-(CH2)3-OH	22,0	28,5	41,4	61,9	31,9	29,4	
8	i.Bu-S-(CH2)4-OH	21,9	28,5	41,3	62,2	32,5	31,8 (C2)	25,6
11	i.Bu-S-(CH2)5-OH	22,0	28,5	41,4	62,5	32,2	32,6	29,4 24,9
12	i.Bu-S-(CH2)6-OH	22,0	28,5	41,4	62,6	32,6	32,5 29,6	28,6 25,3

TABLEAU 4.1b (suite) : RMN 13C des alcools sulfurés de départ

	R	R	R	CH2-O	CH2-S	С	Me
	Me	CH	C-S				
13	i.Bu-S-CH2-CH(Me)OH						
	21,7	28,6	41,3	65,3	42,1		21,7
14	t.Bu-S-CH2-CH(Me)OH						
	31,0		42,3	66,2	38,0		22,2
15	i.Bu-S-CH2-C(Me)2-OH						
	21,8	28,9	43,7	70,2	47,5		28,4
16	t.Bu-S-CH2-C(Me)2-OH						
	30,9		42,0	69,3	42,3		28,8
17	i.Bu-S-CH2-C(Me)2-CH2-C	Н					
	22,0	28,7	43,1	70,8	43,3	36,6	24,1
18	[i.Bu-S-CH2]2CH-OH						
	21,9	28,6	41,8	68,8	38,8		
19	[t.Bu-S-CH2]2CH-OH						
	31,0		42,4	69,8	35,0		
		<u>.</u>					

TABLEAU 4.1 c : Spectres de masse des alcools sulfurés

Composé		Tr (min)	Signal	Туре	m/z MS	% MS
1	n.BuS(CH2)2OH	7,5	M+•	+•	134	31
		7,0	RSCH2	+	103	13
			CH2S(CH2)OH	+	91	12
			HS(CH2)2	+	61	100
2	i.BuS(CH2)2OH					
_		5,5	M+•	+•	134	62
			RSCH2	+	103	37
			CH2S(CH2)OH	+	91	36
			HS(CH2)2	+	61	100
			R	+	57	82
3	t.BuS(CH2)2OH					a =
		4,2	M+•	+•	134	25
			R	+	57	100
4	Cyclo(6)S(CH2)2OH				100	45
		16,0	M+•	+•	160	45
			RSCH2	+	129	16
			RS	+	115	27
				+•	82	10
				+	67	84
5	PhS(CH2)2OH				154	77
		16,0	M+•	+•		100
			RSCH2	+	123 109	44
			RS	+	109 77	18
			R	+	51	15
				т	31	10
6	BzS(CH2)20H	00.0	M+•	+•	168	23
		20,9	RS	+	123	21
			R R	+	91	100
			K	+	65	11

TABLEAU 4.1 c (Suite) : Spectres de masse des alcools sulfurés

Compo	sé	Tr (min)	Signal	Туре	m/z	%
					MS	MS
7	1 D . C(CTTO) 0 0					
7	i.BuS(CH2)3OH					
		11,3	M+•	+•	148	33
				+	105	6
			110/011010	+•	92	18
			HS(CH2)2	+	61	100
			R	+	57	62
				+	41	43
11	i.BuS(CH2)50H					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17,9	M+•	+•	176	57
			RSCH2	+	103	100
			RS	+	89	57
			HS(CH2)2	+	61	64
			R	+	57	88
				+	41	93
12	i.BuS(CH2)60H					
		18,1	M+•	+•	190	44
			M - R	+	133	5
				+ .	129	13
			M - R - H2O	+ '	115	48
			RSCH2	+	103	32
			(CH2)5OH	+	87	46
				+	81	7 9
				+	67	44
			R	+	57	86
				+	41	100
20	i.BuS(CH2)110H					
		32,6	M+•	1.0	060	0.1
		02,0	141 A	+•	260 185	31
				+	185	100 13
				+	101	37
				+	69	52
			R	+	57	90
				+	41	93
				•	41	90

TABLEAU 4.1 c (Suite) : Spectres de masse des alcools sulfurés

Composé		Tr (min)	Signal	Туре	m/z	%
		•	•		MS	MS
İ						
13	i.BuSCH2CH(CH3)OH					
	, ,	7,4	M+•	+•	148	46
			RSCH2	+	103	11
			HS(CH2)2	+	61	51
			R	+	57	100
15	i.BuSCH2C(CH3)2OH					
	•	7,1	M+•	+•	162	10
			M - 17	+	145	15
			RSCH2	+	103	30
			R	+	57	100
				+	41	61
16	i.BuSCH2C(CH3)2OH					
	•	4,0	M+•	+•	162	6
		,		+	104	14
			M - RSCH2	+	59	8
			R	+	57	100
17	i.BuSCH2C(CH3)2CH	20 H				
		13,7	M+•	+•	176	72
			M - CH2OH	+	145	12
			RSCH2	+	103	27
			M - RSCH2	+	73	80
			R	+	57	75
				+	41	100
18	[i.BuSCH2]2CHOH					
	-	25,9	M+•	+•	236	12
		-	M - H2O	+•	218	4
			M-R	+	179	20
				+	129	2 8
			R	+	57	62
				+	41	100
18	[i.BuSCH2]2CHOH					
	-	25,9	M+•	+•	236	2
		•	M - R	+	179	32
				+	123	37
			R	+	57	100
				+	41	61

• RS-(CH_2)_n-OH

n°	R	n	Rdt %	Eb °C (mm Hg)
1	n.Bu	2	83	81 (1)
2	i.Bu	2	78	69 (2)
3	t.Bu	2	8 4	73 (1)
4	Cyclo(6)	2	86	91 (1)
5	Ph	2	8 0	102 (0,5)
6	Bz	2	78	108 (0,5)
7	i.Bu	3	6 9	75 (1)
8	i.Bu	4	5 8	102 (2)
11	i.Bu	5	77	102 (1)
1 2	i.Bu	6	8 0	105 (1)
				ľ

RS-Z-OH

n °	R	Z	Rdt %	Eb °C (mm Hg)
1 3	i.Bu	CH ₂ CH(CH ₃)	83	64 (0,5)
1 4	t.Bu	CH ₂ CH(CH ₃)	75	1
1 5	i.Bu	CH ₂ C(CH ₃) ₂	73	63 (1,5)
1 6	t.Bu	CH ₂ C(CH ₃) ₂	78	53 (1,5)
17	i.Bu	CH ₂ C(CH ₃) ₂ CH ₂	67	84 (1,5)

• $\left[RSCH_{2} \right]_{2}^{CHOH}$

n °	R	Rdt %	Eb °C (mm Hg)
1 8	i.Bu	77	126 (1,5)
1 9	t.Bu	69	105 (1)

RMN ^{1}H : Voir tableau n° **4.1 a** RMN ^{13}C : Voir tableau n° **4.1 b** GC/MS: Voir tableau n° **4.1 c**

I.1.3) Réaction d'un mercaptan sur un alcène

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 0,1 mole de undécène-lol et 0,4 g d'azo-bis-isobutyronitrile (AIBN) dans 30 ml de cyclohexane. A reflux, on additionne, goutte à goutte, 0,11 mole d'alkyle mercaptan puis on maintient le chauffage pendant 30 minutes. Après refroidissement, le mélange est lavé par une solution de soude 2N et de l'eau. La phase organique, séchée sur sulfate de sodium, est évaporée sous pression réduite.

Le produit obtenu est purifié par distillation sous vide.

i. Bu
S·($\mathrm{CH_2}$)_11 OH

n° **20**

Rdt = 81 %

Eb = 156°C sous 1 mm Hg

RMN ¹H

MN ¹ H :	CH2O	CH2S	OH	CH2/CH	СН3
δ (ppm)		2,55 m (2H) 1,8 m (1H)	1,9 ps (1H)	1,3/1,6 (18H)	0,95 d (3H)

RMN 13C:

CH2O	CH2S	CH2	CH2	CH3/CH
62,8	41,4 32,6 (C11)	32,7 (C2) 29,7 29,5 29,4 29,4	29,3 29,1 28,8 25,6 (C3)	28,5 22

GC/MS: Voir tableau n° 4.1 c

I.2) Synthèse du 2-hydroxyéthyltertiobutyl disulfure

• Synthèse du chlorure de chlorocarbonylsulfényle

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome, d'un thermomètre et équipé d'une agitation magnétique, on introduit 53 ml d'acide sulfurique concentré. On additionne, goutte à goutte, 0,25 mole d'eau, puis à température ambiante et sous vive agitation, 0,25 mole de perchlorométhylmercaptan.

Le mélange est chauffé à 45-50°C pendant 2 heures.

Après refroidissement, la phase organique est recupérée, séchée sur sulfate de sodium et évaporée sous pression réduite.

Le résidu jaune obtenu est purifié par distillation sous vide.

n° **21**

Rdt = 57 %

 $Eb = 26^{\circ}C$ sous 16 mm Hg

I.R.:
$$V (C=O) = 1750 \text{ cm}^{-1}$$

• Synthèse du chlorure de méthoxycarbonylsulfényle

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 0,15 mole de chlorure de chlorocarbonylsulfényle dans 55 ml d'éther. On additionne, goutte à goutte, 0,15 mole de méthanol dilué dans 10 ml d'éther et on laisse agiter, à température ambiante, pendant 24 heures. Le solvant est éliminé sous pression réduite.

n° **22**

Rdt = 82 %

Eb°C = 44°C sous 16 mm

I.R. : V (C=O) = 1760 cm⁻¹

 $RMN^{1}H:$

CH3

δ (ppm)

3.91 s (3H)

• Synthèse du 2-hydroxyéthylméthoxycarbonyl disulfure

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome, d'un thermomètre et équipé d'une agitation magnétique, on introduit 0,1 mole du composé n°21 dans 250 ml de méthanol. Après refroidissement à 0°C, on additionne, goutte à goutte, 0,1 mole de 2-mercaptoéthanol. On laisse agiter, à cette température, pendant 1 heure. Le solvant est éliminé sous pression réduite.

 $H_3COCS_2(CH_2)_2OH$

n° 23

Rdt = 99 %

 $RMN ^{1}H:$

CH3 OH CH2S CH₂O 3,9 s (9H) 2,6 s (1H) 2,9 t (2H) δ (ppm) 3,7 t (2H)

• Synthèse de t.BuS₂(CH₂)OH

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 90 mmol de disulfure et une quantité catalytique de triéthylamine dans 20 ml de méthanol. On additionne, goutte à goutte, 90 mmol de tertiobutyl mercaptan et on laisse agiter pendant 1 heure. Le solvant est éliminé sous pression réduite.

107-

 $t.BuS_2(CH_2)_2OH$

n° 24

Rdt = 91%

RMN ^{1}H :				
δ (ppm)	CH2O 3,9 t (2H)	CH ₂ S 2,9 t (2H)	OH 2,7 s (1H)	CH3 1,35 s (9H)
<i>RMN</i> ¹³ <i>C</i> :				
δ (ppm)	CH2O 60,6	CH ₂ S	СНЗ	С
· (PPIII)	00,0	42,7	29,8	47,8

I.3) Synthèse de chlorures sulfurés

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 50 mmol d'alcool sulfuré dans 25 ml de chloroforme.

On additionne, goutte à goutte, 50 mmol de chlorure de thionyle (SOCl₂) diluées dans 15 ml de chloroforme.

A la moitié de l'addition, on porte le mélange à reflux et le chauffage est poursuivi jusqu'à complète réaction (6 heures environ). On évapore ensuite le solvant sous pression réduite.

Le composé jaune obtenu est purifié par distillation sous vide.

N.B.: Dans le cas des composés où n = 4,5 et lorsque la molécule présente une double insaturation, on modifie le mode opératoire en ajoutant une quantité stœchiométrique de triéthylamine avant l'ajout du chlorure de thionyle. Après refroidissement, la phase organique, lavée par une solution d'acide chlorhydrique 1N, séchée sur sulfate de sodium, est évaporée sous pression réduite.

TABLEAU 4.2 a : RMN 1H des chlorures sulfurés de départ

		R Me	R CH/CH2	R CH-S	CH2-C1	CH2-S
25	n.Bu-S-(CH2)2-CI					
		0,90 t	1,5 m 1,35 m	2,55 t	3,6 t	2,8 t
26	i.Bu-S-(CH2)2-Cl	0.05.4	1.75	0.4.1	0.0	
27	4 P C (CTO)O O	0,95 a	1,75 m	2,4 d	3,6 m	2,8 m
21	t.Bu-S-(CH2)2-C1	1,3 s		3,6 t	2,85 t	
28	Cyclo(6)-S-(CH2)2-	CI				
			1,9 m 1,75 m 1,6 m 1,3 m	2,6 m	3,6 t	2,85 t
31	+ P., C C (OTTO) 0 01		1,0 III			
31	t.Bu-S-S-(CH2)2-Cl	1,35 s			3,7 t	3,0 t

	R Ar	R CH2-S	CH2-Cl	CH2-S	
29	Ph-S-(CH2)2-Cl 7,35 m		3,65 t	3, 2 t	:
30	Ph-CH2-S-(CH2)2-Cl 7,35 m	3,8 s	3,55 t	2,8 t	

TABLEAU 4.2 a (suite) : RMN 1H des chlorures sulfurés de départ

		R Me	R CH/CH2	R CH-S	CH2-C1	CH2-S	CH2	CH2
32	i.Bu-S-(CH2)3-Cl	0,95 d	1,75 m	2,4 d	3,65 t	2,65 t	2,0 m	
33	i.Bu-S-(CH2)4-Cl	0,95 d	1,75 m	2,4 d	3,6 m	2,55 m	1,9 m	1,75 m
34	i.Bu-S-(CH2)5-Cl	1,0 d	1,8 m	2,4 d	3,6 t	2,55 t	1,6 m	
35	i.Bu-S-(CH2)6-Cl	0,95 d	1,6 m	2,4 d	3,5 t	2,5 t	1,4/1,7 m	
36	i.Bu-S-(CH2)11-C	l 0,95 d	1,6 m	2,4 d	3,5 t	2,5 t	1,3/1,9 m	

-		R	R	R	CH2-Cl	CH2-S	CH2	Me
		Me	CH/CH2	CH-S	CH-Cl			
37	i.Bu-S-CH2-CH(Me	e)C1						
		0,95 d	1,75 m	2,5 d	4,5 m proton x	2,8 m J(ab)=13,6 J(ax)=5,3 J(bx)=8,6		1,6 d
38	t.Bu-S-CH2-CH(M	e)Cl 1,3 s			4,05 m	2,8 m ABX		1,5 m
39	i.Bu-S-CH2-C(Me)	2-Cl 1,0 d	1,8 m	2,5 d		2,9 s		1,6 s
40	t.Bu-S-CH2-C(Me)	2-Cl 1,3 s				2,95 s		1,65 s
41	i.Bu-S-CH2-C(Me)	2-CH2-C 0,95 d		2,45 d	3,5 s	2,55 s		1,05 s

TABLEAU 4.2 a (suite) : RMN 1H des chlorures sulfurés de départ

	R	R	R	CH-C1	CH2-S
	Ме	СН/СН2	CH-S		
42	[i.Bu-S-CH2]2CH-C1				
	0,95 d	1,75 m	2,45 d	4,1 m	3,0 m
				proton x	J(ab)=13,9
					J(ax)=6,1
					J(bx)=6.5
43	[t.Bu-S-CH2]2CH-Cl				
	1,35 s	•		4,1 m	3,0 m
				proton x	J(ab) = 13.4
					J(ax)=6,2
					J(bx)=6,7

TABLEAU 4.2b : RMN 13C des chlorures sulfurés de départ

		R Me	R CH2/CH	R C-S	CH2-Cl	CH2-S
25	n.Bu-S-(CH2)2-Cl	13,6	32,0 21,8	31,7	43,0	34,1
26	i.Bu-S-(CH2)2-Cl	21,8	28,6	41,5	43,0	34,6
27	t.Bu-S-(CH2)2-Cl	30,9		42,9	43,5	30,9
28	Cyclo(6)-S-(CH2)2-	Cl	33,6 (C2') 25,6 (C4') 25,9 (C3')	43,7	43,3	32,1
31	t.Bu-S2-(CH2)2-Cl	29,8		48,1	41,6	42,4

		Ar C1/C2	Ar C3/C4	R CH2-S	CH2-Cl	CH2-S
29	Ph-S-(CH2)2-Cl					
•		134,1	130,3		42,2	36,0
		129,1	127,0			
30	Ph-CH2-S-(CH2)2	2-C1				
		137,7	128,7	36,3	42,8	33,2
		128,5	127,2			

TABLEAU 4.2 b (suite) : RMN 13C des chlorures sulfurés de départ

		R	R	R	CH2-C1	CH2-S	CH2	CH2
	. m. a (arra)a a	Me	CH2/CH	C-S				
32	i.Bu-S-(CH2)3-Cl	22,0	28,6	41,4	43,5	29,6	32,3	
33	i.Bu-S-(CH2)4-Cl	22,0	28,5	41,4	44,5	31,5	31,8	26,7
34	i.Bu-S-(CH2)5-Cl	22,0	28,6	41,5	44,8	32,2	32,5	29,0/26,1
35	i.Bu-S-(CH2)6-Cl	21,9	28,5	41,4	44,9	32,4		28,0 (C4) 26,4 (C3)
36	i.Bu-S-(CH2)11-Cl	22,0	28,5	41,4	45,1	32,6	32,7 (C2)	3 * 29,4
							32,6 29,7	29,2 2 * 28,8

	F	2	R	R	CH2-Cl	CH2-S	C	Me
	M	e	CH2/CH	C-S				
37	i.Bu-S-CH2-CH(Me)Cl							
	23	,8	28,6	42,2	56,8	42,3		21,8
38	t.Bu-S-CH2-CH(Me)Cl							
	30	,9		42,7	57 ,1	38,0		24,1
39	i.Bu-S-CH2-C(Me)2-Cl							
	21	,9	28,8	43,8	70,3	48,7		31,2
40	t.Bu-S-CH2-C(Me)2-Cl							
	30	,8		42,3	69,5	43,7		31,6
41	i.Bu-S-CH2C(Me)2CH2	-C1						
	21	,9	28,8	42,9	54,0	43,4	37,0	25,0
42	[i.Bu-S-CH2]2CH-Cl							
	21	,9	28,7	42,4	60,9	39,2		
43	[t.Bu-S-CH2]2CH-C1							
	31.	0		42,9	61,7	35,4		

• RS·(CH_2)_n·Cl

n °	R	n	Rdt %	Eb °C (mm Hg)
2 5	n.Bu	2	79	56 (1)
26	i.Bu	2	87	47 (1,5)
2 7	t.Bu	2	8 0	48 (1,5)
28	Cyclo(6)	2	86	86 (1)
2 9	Ph	2	92	85 (1)
3 0	Bz	2	8 1	105 (1)
3 1	t.BuS	2	65	1
3 2	i.Bu	3	89	56 (1)
3 3	i.Bu	4	56	78 (0,5)
3 4	i.Bu	5	72	/
3 5	i.Bu	6	8 5	/
3 6	i.Bu	11	79	1

RS-Z-Cl

n °	R	Z	Rdt %	Eb °C (mm Hg)
3 7	i.Bu	CH ₂ CH(CH ₃)	8 9	52 (1,5)
3 8	t.Bu	CH ₂ CH(CH ₃)	75	1
3 9	i.Bu	CH ₂ C(CH ₃) ₂	91	54 (1)
4 0	t.Bu	CH ₂ C(CH ₃) ₂	76	47 (1)
4 1	t.Bu	CH ₂ C(CH ₃)CH ₂	85	65 (1)

• [RSCH₂]CHCl

n °	R	Rdt %	Eb °C (mm Hg)
4 2	i.Bu	88	1
4 3	t.Bu	82	106 (1,5)

RMN ^{1}H : Voir tableau n° **4.2 a** RMN ^{13}C : Voir tableau n° **4.2 b** GC/MS: Voir tableau n° **3.1**

I.4) Préparation de composés thiochlorométhylés

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 0,1 mole de polyoxyméthylène [(CH₂O)_n] dans 75 ml de toluène. Après quelques minutes d'agitation, on ajoute rapidement 37,5 ml d'acide chlorhydrique concentré, puis on porte le mélange à 30°C pendant 10 minutes. On additionne ensuite, goutte à goutte, 0,1 mole d'alkyle mercaptan. A la fin de l'addition, le mélange est chauffé à 50°C pendant 4 heures. Après refroidissement à température ambiante, la phase organique est lavée par une solution de soude 2N, séchée sur sulfate de sodium et évaporée sous pression réduite.

Le composé obtenu est purifié par distillation sous vide.

RSCH2Cl

n °	R	Rdt %
4 4	n.Bu	20
4 5	i.Bu	0
4 6	Ph	85
4 7	Bz	69

RMN ^{1}H : Voir tableau n° **4.3 a** RMN ^{13}C : Voir tableau n° **4.3 b**

I.5) Synthèse de bromures sulfurés

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 60 mmol d'alcool sulfuré dans 75 ml d'éther anhydre. A 0°C, on ajoute, goutte à goutte, 20 mmol de bromure de phosphore III (PBr3). Pendant l'addition on maintient la température à 20°C, puis on laisse agiter pendant 5 heures. Le mélange est alors lavé à l'eau et par une solution saturée en chlorure de sodium. Après séchage sur sulfate de sodium, le solvant est évaporé sous pression réduite.

Le composé obtenu est purifié par distillation sous vide.

TABLEAU 4.3 a : RMN 1H des chlorométhyles sulfures

		Ar	R Me	R CH/CH2	R CH-S	CH2-CI
44	n.Bu-S-CH2-Cl		0,93 t	1,53 m	2,6 t	4,66 s
45	i.Bu-S-CH2-Cl Composé non isol	é				
46	Ph-S-CH2-Cl	7,2 m				4,7 s
47	PhCH2-S-CH2-Cl	7,3 m			3,85 s	4,6 s

TABLEAU 4.3 b : RMN 13C des chlorométhyles sulfurés

		R Me	R CH2	R CH2S CHS	CH2-Cl
44	Bu-S-CH2-Cl	13,6	28,8 22,2	31,9	46,7
45	i.Bu-S-CH2-Cl Produit non isolé			_	

		Ar C1/C2	Ar C3/C4	R CH2S	CH2-Cl
46	Ph-S-CH2-Cl				
		134,9	130,8		50,9
		129,2	127,9		
47	PhCH2-S-CH2-Cl				
		136,3	128,7	34,4	48.1
		128,6	127,0		
		120,0	127,0		

TABLEAU 4.4 a : RMN 1H des bromures sulfurés de départ

		R Me	R CH/CH2	R CH-S	CH2-Br	CH2-S
48	i.Bu-S-(CH2)2-Br	0,95 d	1,75 m	2,4 d	3,5 m	2,9 m
49	t.Bu-S-(CH2)2-Br	1,3 s			3,4 t	2,9 t

TABLEAU 4.4 b : RMN 13C des bromures sulfurés

		R Me	R CH	R C-S	CH2-Br	CH2-S
48	i.Bu-S-(CH2)2-Br	21,8	28,7	41,5	30,5	34,6
49	t.Bu-S-(CH2)2-Br	31,1		43,2	30,9	30,5

• RS-(CH₂)₂-Br

n °	R	Rdt %	Eb °C (mm Hg)
4 8	i.Bu	72	68 (4)
4 9	t.Bu	85	

RMN ^{1}H : Voir tableau n° **4.4 a** RMN ^{13}C : Voir tableau n° **4.4 b**

I.6) Synthèse de chlorosulfoxydes et sulfones

I.6.1) Synthèse de chlorosulfoxydes

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome, d'un thermomètre et équipé d'une agitation magnétique, on introduit 50 mmol de chlorure monosulfuré.

A 0°C, on additionne, goutte à goutte, 52,5 mmol d'eau oxygénée (H₂O₂) à 30%, puis on laisse agiter le mélange, à température ambiante, pendant 24 heures.

La solution est alors extraite au chloroforme et la phase organique, séchée sur sulfate de sodium, et évaporée sous pression réduite.

t.BuSO(CH₂)₂Cl

n° 50

Rdt = 77 %

RMN ¹H : Voir tableau n° **4.5 a** RMN ¹³C : Voir tableau n° **4.5 b**

TABLEAU 4.5 a : RMN 1H de sulfoxyde et sulfone chloré

		R Me	R CH/CH2	R CH-S	CH2-CI CH-CI	CH2-S
50	t.Bu-SO-(CH2)2-Cl					
		1,3 s			3,8 t	2,9 t
51	t.Bu-SO2-(CH2)2-C1					
		1,4 s			3,9 t	3,4 t

TABLEAU 4.5 b : RMN 13C de sulfone et sulfoxyde chloré

	R Me	R CH	R C-S	CH2-Cl	CH2-S
t.Bu-SO-(CH2)2-0	22,7		53,2	38,0	48.6
t.Bu-SO2-(CH2)2	- C1 23,1		59,7	35,1	48,2

I.6.2) Synthèse de chlorosulfones

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome, d'un thermomètre et équipé d'une agitation magnétique, on introduit 50 mmol de chlorure monosulfuré.

A 0°C, on additionne, goutte à goutte, 105 mmol d'eau oxygénée (H2O2) à 30%, puis on laisse agiter, à température ambiante, jusqu'à l'obtention d'une solution limpide (~24 heures). On chauffe alors le mélange à reflux pendant 3 heures.

La solution est extraite au chloroforme et la phase organique, séchée sur sulfate de sodium, et évaporée sous pression réduite.

Le solide blanc obtenu est recristallisé dans le cyclohexane.

t.BuSO₂(CH₂)₂Cl

n° 51

Rdt = 68 %

RMN ${}^{1}H$: Voir tableau n° **5.5 a** RMN ${}^{13}C$: Voir tableau n° **5.5 b**

II) Synthèse de polysulfures symétriques

II.1) Synthèse des composés de type A1

Dans un réacteur muni d'un réfrigérant, d'un thermomètre, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 0.11 mole de soude dans 40 ml d'éthanol à 95°.

Après dissolution à 50°C, on ajoute 0,1 mole d'alkyle mercaptan et on maintient le chauffage pendant 30 minutes.

Une fois la solution revenue à température ambiante, on additionne, goutte à goutte, 0,1 mole de chlorure soufré, puis on porte le mélange à reflux pendant 4 à 6 heures.

Après refroidissement, on filtre le sel formé et on neutralise le filtrat par une solution d'acide chlorhydrique 1N. On extrait la solution au dichlorométhane, l'éthanol est éliminé par lavages successifs à l'eau et par une solution saturée en chlorure de sodium.

La phase organique est séchée sur sulfate de sodium et le solvant est évaporé sous pression réduite.

Le composé obtenu est purifié par distillation sous vide ou par chromatographie sur colonne (éluant : éther de pétrole 95 / éther 5).

-117-

TABLEAU 4.6 a : RMN 1H des composés du type A1

		R	R	R	CH2-S
		Н3	CH2/CH	CH2-S	
52	n.Bu-S-(CH2)2-S-n.Bu				
	0,	,9 t	1,6 m	2,6 t	2,7 s
			1,4 m		
53	i.Bu-S-(CH2)2-S-i.Bu				
	9,0	95 d	1,75 m	2,4 d	2,65 s
54	t.Bu-S-CH2-CH2-S-t.Bu				:
	1,	,3 s			2,7 s
55	Cyclo(6)-S-CH2-CH2-S-C	Cyclo(6			
			1,2-2,2 m	2,6 m	2,8 s
58	t.Bu-S2-(CH2)2-S-t.Bu				
	1,3,	/1,2 s			2,65/2,75 s

		R Ar	R CH2-S	CH2-S	
56	Ph-S-CH2-CH2-S-Ph	7,3 m		3,1 s	
57	Bz-S-CH2-CH2-S-Bz	7,3 m	3,7 s	2,6 s	

		R CH3	R CH2/CH	R CH2-S	CH2-S	CH2
59	i.Bu-S-(CH2)3-S-i.Bu	1,0 đ	1,65 m	2,3 d	2,9 m	2,2 m
60	i.Bu-S-(CH2)4-S-i.Bu	0,95 d	1,75 m	2,35 d	2,5 m	1,65 m
61	i.Bu-S-(CH2)5-S-i.Bu	1,0 d	1,8 m	2,4 d	2,5 t	1,5-1,7m
62	i.Bu-S-(CH2)6-S-i.Bu	1,0 d	1,7 m	2,3 d	2,4 m	1,4-2,0 m
63	i.Bu-S-(CH2)11-S-i.B	u 1,0 d	1,8 m	2,4 d	2,5 t	1,3-1,4 m 1,5-1,6m

TABLEAU 4.6 a (suite) : RMN 1H des composés du type A1

	R CH3	R CH2/CH	R CH2-S	CH2-S	СНЗ
64	i.Bu-S-CH2-CH(Me)-S-i,Bu				
	0,95 d	1,8 m	2,4 m	2,5 m 2,85 m	1,3 d
65	t.Bu-S-CH2-CH(Me)-S-t.Bu				
	1,35 s			2,55 t 2,85 t	1,3 d
66	i.Bu-S-CH2-C(Me)2-S-i.Bu				
	0,95 d	1,75 m	2,4 t	2,7 s	1,35 s
67	t.Bu-S-CH2-C(Me)2-S-t.Bu				
	1,4 s			2 ,85 s	1,45 s
	1,3 s				į
68	[i.Bu-S-CH2]2-CH-S-i.Bu				
	1,0 d	1,8 m	2,45 m	2,9 m	
69	[t.Bu-S-CH2]2-CH-S-t.Bu				
	1,3 d			2,8-3,0 m	

TABLEAU 4.6 b: RMN 13C des composés A1

	R Me	R CH/C CH2	R CH2-S	CH2-S
52	n.Bu-S-(CH2)2-S-n.Bu			
	13,6	32,0 21,9	31,7	31,8
53	i.Bu-S-(CH2)2-S-i.Bu			:
	22,0	28,7	41,6	32,7
54	t.Bu-S-(CH2)2-S-t.Bu			
	31,0		42,6	28,8
55	Cyclo(6)-S-(CH2)2-S-C	yclo(6)		
		33,7 (C2)	43,6	30,6
		25,9 (C3)		
		25,7 (C4)		
58	t.Bu-S2-(CH2)2-S-t.Bu	L		
	La première valeur con	respond à t	.Bu-S2-	
	29,9	47,9		40,5
	31,1	42,9		28,2

	Ar	Ar	R	CH2-S
	C1/C2	C3/C4	CH2-S	
56	Ph-S-(CH2)2-S-Ph			
	135,1	130,0		33,4
	129,0	126,5		
57	Ph-CH2-S-(CH2)2-S-CH	2-Ph		
	138,1	128,7	37,4	31,8
	128,4	127,0		

TABLEAU 4.6 b (suite) : RMN 13C des composés A1

	R	R	R	CH2-S	CH2	CH2
	Ме	CH/C CH2	CH2-S			
59	i.Bu-S-(CH2)3-S-i.Bu					:
	21,9	28,5	41,3	31,4	29,5	
60	i.Bu-S-(CH2)4-S-i.Bu					
l :	21,9	28,5	41,3	32,2	28,7	i
61	i.Bu-S-(CH2)5-S-i.Bu					
	22,0	28,6	41,5	32,6	29,3	28,1
<u> </u>				C4	C5	C6
62	i.Bu-S-(CH2)6-S-i.Bu					
	22,0	28,4	41,4	32,6	29,5	28,5
					C5	C6
63	i.Bu-S-(CH2)11-S-i.Bu					
	22,0	28,6	41,4	32,7	29,4	29,2
				29,7	29,4	28,9

	R	R	R	CH2-S	С	Me	R'	R'	R'
	Me	CH/C	CH2-S				S-CH2	CH	Me
Cas d	es compo	sés R-C	:: :::::::::::::::::::::::::::::::::::	₹'					
64	i.Bu-S-	СН2-СН	(Me)-S-i.Bu						
	21,9	28,7	42,3	40,3	40,4	20,3	39,8	28,8	22,1
	C1	C2	C3	C4	C5	C9	C6	C7	C8
65	t.Bu-S-	СН2-СН	(Me)-S-t.Bu						
	31,0		43,6	37,6	37,8	23,1	42,2		31,5
	C1		C2				C5		C6
Cas d	es compo	sés R-C	:H2-C(Me)2-R	į.					
66	i.Bu-S-	CH2-C(N	/le)2-S-i.Bu						
	21,9	28,8	43,6	46,6	48,4	22,4	36,9	28,8	21,7
			C3	C4	C5		C6		
67	t.Bu-S-	CH2-C(1	Me)2-S-t.Bu						
	On peu	t avoir	des inversion	is entre les C	et le C	H2			
	30,8		42,6	48,6	46,1	29,7		41,8	33,1
	C1		C2	C3	C4	C7		C5	C6

-119TABLEAU 4.6 b (suite): RMN 13C des composés A1

	R	R	R	CH2-S	R'	R'	R'
1	Лe	CH	CH2-S	CH-S	S-CH2	CH	Me
•			c-s				
Cas des co	mpos	sés [R-(CH2]2-CH-F	ι'			
68 [i.H	Bu-S-	CH2]2-	CH-S-i.Bu				
2	2,1	28,8	42,4	46,6	40,5	28,7	22,0
2	2,0			37,2			22,0
69 [t.]	Bu-S-	CH2]2-	·CH-S-t.Bu				
3	1,0		43,2	43,9	42,4		31,5
				34,6			

• $RS(CH_2)_nSR$

n °	R	n	Rdt %	Eb °C (mm Hg)
5 2	n.Bu	2	81	115 (1)
5 3	i.Bu	2	90	110 (1)
5 4	t.Bu	2	94	97 (1)
5 5	Cyclo(6)	2	80	180 (2)
5 6	Ph	2	95	/
5 7	Bz	2	97	/
5 8	t.BuS	2	95	1
5 9	i.Bu	3	82	121 (1)
60	i.Bu	4	79	/
6 1	i.Bu	5	66	/
6 2	i.Bu	6	55	160 (1)
63	i.Bu	11	36	/

• RS-Z-SR

n°	R	Z	Rdt %
6 4	i.Bu	CH ₂ CH(CH ₃)	62
6 5	t.Bu	CH ₂ CH(CH ₃)	57
6 6	i.Bu	CH ₂ C(CH ₃) ₂	52
6 7	t.Bu	CH ₂ C(CH ₃) ₂	19

• $\left[\text{RSCH}_2 \right]_2$ CHSR

n °	R	Rdt %
6 8	i.Bu	27
6 9	t.Bu	34

RMN 1H : Voir tableau n° **4.6 a** RMN ^{13}C : Voir tableau n° **4.6 b** GC/MS: Voir tableau n° **3.4**

TABLEAU 4.7 a : RMN 1H des composés A2

	R Me	R CH	R CH2-S	CH2-S	CH2	CH2
70	t.Bu-S-(CH2)2-S-(CH	2)2-S-t.Bu				
	1,3 s			2,7 s		
71	i.Bu-S-(CH2)3-S-(CH	2)3-S-i.Bu				
	1,0 m	1,8 m	2,4 m	2,6 m	1,8 m	
72	i.Bu-S-(CH2)6-S-(CH	2)6-S-i.Bu				
	1,0 d	1,75 m	2,4 d	2,5 t	1,4 m	1,55 m

TABLEAU 4.7 b : RMN 13C des composés A2

	R	R	R	CH2-S	CH2	CH2
	Ме	СН	CH2-S			
70	t.Bu-S-(CH2)2-S-(CH2)2-S-t	.Bu				
	31,0		42,6	32,5	28,6	
71	i.Bu-S-(CH2)3-S-(CH2)3-S-i	.Bu				
	22,0	28,7	41,4	31,5	30,9	29,4
				C4	C6	C5
72	i.Bu-S-(CH2)6-S-(CH2)6-S-i	.Bu				
	22,0	28,6	41,4	32,6	32,0	29,5

II.2) Synthèse des composés du type A2

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 31 mmol de sulfure de sodium hydraté dans 20 ml d'éthanol à 95°. On additionne, goutte à goutte, 60 mmol de dérivé chloro-sulfuré puis on porte à reflux pendant 8 heures. Au cours du chauffage, on maintient une légère agitation. Après refroidissement, on additionne 50 ml d'une solution saturée en chlorure de sodium puis on extrait à l'éther. La phase organique, séchée sur sulfate de sodium, est évaporée à sous pression réduite.

Le composé obtenu est purifié par chromatographie sur colonne (éluant : éther de pétrole 95 / éther 5).

•
$$RS = (CH_2)_n S = R$$

n°	R	n	Rdt %
70	i.Bu	2	8 9
7 1	i.Bu	3	83
7 2	i.Bu	6	8 8
1			

RMN 1H : Voir tableau n° **4.7 a** RMN ^{13}C : Voir tableau n° **4.7 b** GC/MS: Voir tableau n° **3.6**

II.3) Synthèse du composé de type A3

La préparation de ce composé fait appel à plusieurs réactions successives. Les méthodes de synthèse mises en jeu sont au nombre de trois.

II.3.1) Préparation d'alcools polysulfurés

Dans un réacteur muni d'un réfrigérant, d'un thermomètre, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 0,11 mole de soude dans 40 ml d'éthanol à 95°. Après dissolution à 50°C, on ajoute 0,1 mole de 2-mercaptoéthanol et on maintient le chauffage pendant 30 minutes.

Une fois la solution revenue à température ambiante, on additionne, goutte à goutte, 0,1 mole de dérivé chlorosulfuré, puis on porte le mélange à reflux pendant 4 à 6 heures.

Après refroidissement, on filtre le sel formé et on neutralise le filtrat par une solution d'acide chlorhydrique (HCl) 1N. On extrait la solution au dichlorométhane, l'éthanol est éliminé par lavages successifs à l'eau et par une solution saturée en chlorure de sodium (NaCl).

La phase organique est séchée sur sulfate de sodium et le solvant est évaporé sous pression réduite.

Le composé obtenu est purifié par chromatographie sur colonne (éluant : chloroforme).

•
$$t.Bu = S(CH_2)_2 = OH$$

n °	n	Rdt %
7 3 7 5	2	8 2 8 3

RMN ¹H et RMN ¹³C: Voir tableau n° 4.8

II.3.2) Préparation de chlorures polysulfurés

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 50 mmol d'alcool sulfuré et 50 mmol de triéthylamine dans 25 ml de chloroforme. On additionne, goutte à goutte, 50 mmol de chlorure de thionyle (SOCl₂) diluées dans 15 ml de chloroforme.

A la moitié de l'addition, on porte le mélange à reflux et le chauffage est poursuivi jusqu'à réaction complète (6 heures environ). On évapore ensuite le solvant sous pression réduite. Après refroidissement, la phase organique, lavée par une solution d'acide chlorhydrique 1N, séchée sur sulfate de sodium, est évaporée sous pression réduite.

Le composé obtenu est purifié par chromatographie sur colonne (éluant : éther de pétrole 95 / éther 5).

TABLEAU 4.8 : RMN 1H et RMN13C des composés intervenants dans la préparation du composé A3

RMN1H 75 t RMN1H	t.Bu CH3 1,3 s .Bu-S-(CH2)2-S-(C t.Bu CH3 1,3 s t.Bu CH3 30,8		CH2-O 3,7 t 2)2-OH CH2-O 3,7 t	2,8 m	OH 2,7 ps CH2-S 35,0		CH2-S 28,4
75 t <i>RMN1H</i>	CH3 1,3 s .Bu-S-(CH2)2-S-(C t.Bu CH3 1,3 s t.Bu CH3	t.Bu C-S	3,7 t 2)2-OH CH2-O	2,8 m CH2-S 2,7 m CH2-O	OH 2,7 ps CH2-S 35,0	32,1	
RMN1H	1,3 s .Bu-S-(CH2)2-S-(C t.Bu CH3 1,3 s t.Bu CH3	t.Bu C-S	3,7 t 2)2-OH CH2-O	2,8 m CH2-S 2,7 m CH2-O	OH 2,7 ps CH2-S 35,0	32,1	
RMN1H	t.Bu CH3 1,3 s t.Bu CH3	t.Bu C-S	2)2-0H CH2-O	CH2-S 2,7 m	OH 2,7 ps CH2-S 35,0	32,1	
RMN1H	t.Bu CH3 1,3 s t.Bu CH3	t.Bu C-S	CH2-O	2,7 m	2,7 ps CH2-S 35,0	32,1	
	CH3 1,3 s t.Bu CH3	C-S		2,7 m	2,7 ps CH2-S 35,0	32,1	
	CH3 1,3 s t.Bu CH3	C-S		2,7 m	2,7 ps CH2-S 35,0	32,1	
RMN 13C	t.Bu CH3	C-S	3,7 t	CH2-O	CH2-S 35,0	32,1	
RMN 13C	СН3	C-S			35,0	32,1	
					35,0	32,1	
	30,8	42,5		60,5			28,4
					00.0		
					32,3	31,7	
_	type R-[S-(CH2)2]1 :.Bu-S-(CH2)2-S-(C						
RMN1H	t.Bu						
	СНЗ		CH2-Cl	CH2-S	CH2-S		
	1,3 s		3,6 t	2,9 t	2,7 ps		
76 t	t.Bu-S-(CH2)2-S-(C	CH2)2-(CH	2)2-C1				
RMN1H	t.Bu						
	СНЗ		CH2-Cl	CH2-S	CH2-S		
	1,3 s		3,6 t	2,9 t	2,7 ps		
RMN 13C	t.Bu	t.Bu		CH2-Cl	CH2-S	CH2-S	CH2-S
	СН3	C-S					
	30,9	42,5		42,9	34,1 $32,4$		28,5

TABLEAU 4.8 (suite): RMN 1H et RMN13C des composés intervenants dans la préparation du composé A3

mposés d	u type R-[S-(CH2)2]:	3-S-R			
77	t.Bu-S-(CH2)2-S-(C	CH2)2-S-(CH2):	2-S-t.Bu		
RMN1H	t.Bu				
	СНЗ		CH2-S		
	1,3 s		2,7-2,8 m	1	
MN 13C	t.Bu	t.Bu	CH2-S	CH2-S	CH2-S
	СНЗ	C-S			
	30,9	42,5	32,4	32,1	28,5

•	t.Bu S(C	$(H_2)_2$ Cl
---	----------	--------------

n °	n	Rdt %
7 4 7 6	2	82 83

RMN 1H et RMN 13C: Voir tableau n° 4.8

II.3.3) Préparation du composé de type A3

Ce polysulfure symétrique est enfin obtenu en appliquant sur le dérivé chlorosulfuré n°**74** la même méthode que que celle employée dans la synthèse des composés de type A1.

Le composé obtenu est purifié par chromatographie sur colonne (éluant : éther de pétrole).

tBuS
$$\left[(CH_2)_2 S \right]$$
 t.Bu n° 77 Rdt = 79 %

RMN 1H et RMN 13C: Voir tableau nº 4.8

III) Synthèse d'hétérocycles sulfurés fonctionnalisés

III.1) Synthèse du 3-méthoxythiacyclohexane

III.1.1) Préparation du α.β'dicarbéthoxyméthyléthyl sulfure

Dans un réacteur muni d'un réfrigérant, d'un thermomètre, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 0,22 mole de soude dans 80 ml d'éthanol à 95°.

Après dissolution à 50°C, on ajoute 0,2 mole d'éthyl 2-mercaptoacétate et on

maintient le chauffage pendant 30 minutes.

Une fois la solution revenue à température ambiante, on additionne, goutte à goutte, 0,2 mole d'éthyl 4-bromobutyrate, puis on porte le mélange à reflux pendant 12 heures.

Après refroidissement, on filtre le sel formé et on neutralise le filtrat par une solution d'acide chlorhydrique 1N. On extrait la solution au dichlorométhane, l'éthanol est éliminé par lavages successifs à l'eau et par une solution saturée en chlorure de sodium.

La phase organique est séchée sur sulfate de sodium et le solvant est évaporé sous pression réduite.

Le composé obtenu est purifié par distillation sous vide.

EtO2CCH2S(CH2)2CO2Et

n° 78

Rdt = 87 %

RMN ¹H et RMN ¹³C: Voir tableau n° 4.9

III.1.2) Synthèse du 2 ou 4-carbéthoxythiacyclohexan-3-one

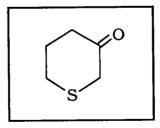
Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 0,23 mole de méthylate de sodium dans 150 ml d'éther anhydre.

On additionne, goutte à goutte, 0,15 mole de diester sulfuré puis on laisse

agiter, à température ambiante, pendant une nuit.

On verse, alors, le tout dans 150 ml d'un mélange glace-eau et on décompose le milieu par de l'acide acétique glaciale (15 ml).

La phase aqueuse est extraite à l'éther. Les phases organiques sont réunies, séchées sur sulfate de sodium et évaporées sous pression réduite.


n° 79 et 79'

Rdt = 85 %

RMN ¹H et RMN ¹³C: Voir tableau n° 4.9

III.1.3) Synthèse du thiacyclohexan-3-one

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 0,15 mole du mélange de β cétoester cyclique dans 100 ml d'acide sulfurique 2N. On porte le mélange à reflux pendant 12 heures. Après refroidissement, le milieu est extrait au dichlorométhane. Les phases organiques sont réunies, séchées sur sulfate de sodium et évaporées sous pression réduite.

n° 80

Rdt = 74 %

RMN ¹H et RMN ¹³C: Voir tableau n° **4.9**

III.1.4) Synthèse du thiacyclohexan-3-ol

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 0,052 mole d'hydrure de lithium et d'aluminium (LiAlH4) dans 65 ml de tétrahydrofuranne (THF) anhydre. On additionne, goutte à goutte, 0,1 mole de thiacyclohexan-3-one dissout dans 15 ml de THF anhydre, puis on porte le mélange à reflux pendant 4 heures.

Après refroidissement à 0°C, on hydrolyse l'excés de LiAlH4 par 10 ml d'eau et on extrait le mélange à l'éther. La phase organique est recupérée, séchée

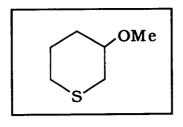
sur sulfate de sodium et évaporée sous pression réduite.

n° **81**

Rdt = 75 % Eb = 102 °C sous 19 mm Hg

RMN ¹H et RMN ¹³C: Voir tableau n° **4.9**

III.1.5) Synhtèse du 3-méthoxythiacyclohexane


Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 55 mmol d'hydrure de sodium (NaH) dans 20 ml de dimétylformamide (DMF). On additionne, goutte à goutte, 50 mmol de thiacyclohexan-3-ol diluées dans 100 ml de DMF. Après 45 minutes d'agitation à température ambiante, on refroidit le mélange à 0°C et on additionne, goutte à goutte, 90 mmol d'iodure de méthyle (Mel) en solution dans 9 ml de DMF. Le mélange est chauffé à 50°C pendant 2 heures.

Après retour à température ambiante, on hydrolyse l'excès de NaH par de l'eau et on extrait le mélange au dichlorométhane. Les phases organiques sont réunies, séchées sur sulfate de sodium et évaporées sous pression

réduite.

TABLEAU 4.9 : RMN 1H et RMN13C des composés intervenants dans la préparation du 3-méthoxythiacyclohexane

78	Et-O-CO-CH2-S-(CI	12)3-CO- 0	-Et				
RMN1H	Et	Et					
	OCH2	Me	CH2-S		CH2-CO	CH2	
	4,1 m	1,2 m	3,2 s		2,5 t	1,9 m	
			2,7 t				
RMN 13C	C=O	OEt	OEt	SCH2	SCH2	COCH2	CH2
		CH2	Me				
	172,9	61,3	14,1	33,3	31,8	32,8	24,0
	170,3	60,4	14,1	C4	C5	C7	C6
80	thiacyclohexan-3-	one					
RMN1H	H2	Н6	H4	Н5			-
MMM	3,2 ps	2,8 pt	2,5 m	2,5 m			
	•	-					
RMN 13C	C1	C2	C4	C5	C6		
	C=O						
	203,9	41,9	33,4	28,6	38,7		
81	thiacyclohexan-3-	ol					
RMN1H	H1	H2	H4	H5/6	ОН		
	3,9 m	2,8 m	2,7 m	1,5/2,0	2,6 ps		
RMN13C	СН-О	C2	C4	C5	C6		
	66,7	35,6	27,9	25,6	34,1		
82	3-méthoxythiacyc	lohexane	-				
RMN1H	Me-O	CH-O	CH2				
	3,3 s	3,4 m	1,4/2,8				
	-,	•	m				
RMN13C	СН-О	Me-O	CH2	CH2			
	77,6	55,7	32,2	28,1			
			32,0	27,6			

n° 82

Rdt = 72 %

RMN ¹H et RMN ¹³C: Voir tableau n° **4.9**

GC/MS: Voir tableau n° 3.8

III.2) Synthèse du 4,5-diméthoxy-3,3,6,6-tétraméthyl thiacycloheptane

III.2.1) Synthèse de l'acide thiodipivalique

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 0,3 mole de sulfure de sodium nonahydraté (Na₂S.9H₂O) dans 30 ml d'eau.

Après dissolution, on ajoute, goutte à goutte et sur une période de 30 minutes, 0,3 mole d'acide chloropivalique dissout dans 100 ml d'eau et neutralisé par 0,15 mole de carbonate de sodium(Na₂CO₃).

On laisse ensuite agiter pendant 24 heures à température ambiante. Après filtration, on acidifie le filtrat par de l'acide sulfurique à 50%. On laisse agiter pendant 15 minutes, à basse température, et le précipité formé est récupéré par filtration.

Le dérivé obtenu est alors recristallisé dans l'acide acétique.

 $S[CH_2C(CH_3)_2COOH]_2$

n° 83

Rdt = 59 %

 $Pf = 163 \, ^{\circ}C$

RMN ¹H et RMN ¹³C: Voir tableau n° 4.10

III.2.2) Synthèse du diéthyl thiodipivalate

Dans un réacteur muni d'un Dean-Stark, d'un thermomètre et équipé d'une agitation magnétique, on introduit 0,1 mole d'acide thiodipivalique, 35 ml d'éthanol, 100 ml de cyclohexane et 0,7 ml d'acide sulfurique concentré. On chauffe le mélange à reflux jusqu'à élimination totale de l'eau formée. Après refroidissement, le mélange est lavé à l'eau et par une solution de bicarbonate de sodium, puis séché sur sulfate de sodium. Le solvant est éliminé sous pression réduite.

S[CH₂C(CH₃)₂COOEt]₂

n° 84

Rdt = 97 %

RMN 1H et RMN 13C: Voir tableau nº 4.10

III.2.3) <u>Synthèse du 3,3,6,6-tétraméthylthiacycloheptan-4-one-5-ol</u>

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit, sous vive agitation, 0,4 mole de sodium dans 200 ml de xylène bouillant. On additionne, goutte à goutte, 0,1 mole de diéthyl thiodipivalate diluée dans 40 ml de xylène et on maintient l'agitation pendant 3 heures à reflux.

Après refroidissement, on acidifie le milieu par de l'acide sulfurique à 50%. La phase organique est séparée, lavée à l'eau et par une solution de bicarbonate de sodium. Après séchage sur sulfate de sodium, le solvant est éliminé sous pression réduite.

Le résidu obtenu est alors placé dans 40 ml d'acide acétique puis cristallisé à froid.

 n° **85** Rdt = 56 %

 $Pf = 84 \, ^{\circ}C$

RMN ¹H et RMN ¹³C: Voir tableau n° 4.10

III.2.4) Synthèse du 3,3,6,6-tétraméthylthiacycloheptan-4.5-diol

Dans un réacteur muni d'un réfrigérant d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 0,052 mole d'hydrure de lithium et d'aluminium (LiAlH4) dans 65 ml de tétrahydrofurane (THF) anhydre. On additionne, goutte à goutte, 0,1 mole de céto-alcool dissout dans 15 ml de THF anhydre puis on porte le mélange à reflux pendant 4

Après refroidissement à 0°C, on hydrolyse l'excés de LiAlH4 par 10 ml d'eau, puis on extrait le mélange à l'éther. La phase organique est recupérée, séchée sur sulfate de sodium et évaporée sous pression réduite.

n° 86

Rdt = 45 %

 $Pf = 178 \, ^{\circ}C$

RMN ¹H et RMN ¹³C: Voir tableau n° **4.10**

III.2.5) Synthèse du 4,5-diméthoxy-3,3,6,6-tétraméthylthiacycloheptane

Dans un réacteur muni d'un réfrigérant, d'une ampoule à brome et équipé d'une agitation magnétique, on introduit 105 mmol d'hydrure de sodium (NaH) dans 40 ml de dimétyle formamide (DMF). On ajoute, lentement, 50 mmol de 3,3,6,6-tétraméthylthiacycloheptan-4,5-diol diluées dans 80 ml de DMF. Après 45 minutes d'agitation à température ambiante, on refroidit le mélange à 0°C et on additionne, goutte à goutte, 180 mmol d'iodure de méthyle (Mel) en solution dans 20 ml de DMF. Le mélange est alors chauffé à 50°C pendant 2 heures.

Après refroidissement, on hydrolyse l'excès de NaH par de l'eau et on extrait le mélange au dichlorométhane. Les phases organiques sont réunies, séchées

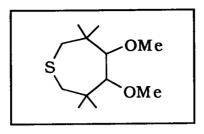

sur sulfate de sodium et évaporées sous pression réduite.

TABLEAU 4.10 : RMN 1H et RMN 13C des composés intervenants dans la préparation du 4,5-diméthoxy-3,3,6,6-tétraméthylthiacycloheptane

83	Acide thiodipivalio	lue					
RMN1H	CH2-S 2,5 s	CH3 0,9 m	OH 9,1 ps				
RMN13C	C=O 178,1	SCH2 42,9	C 44,3	CH3 23,9			
84	Diéthyl thiodipiva	late					
RMN1H	Et OCH2 4,1 q	Et CH3 1,3 m	CH2-S 2,8 s		CH3 1,2 m		
RMN13C	CO 176,4	O-CH2 60,5	CH3 14,1	S-CH2 45,1	C 44,1	CH3 25,6	
85	3,3,6,6-tétraméth	ylthiacycl	oheptan-4	one-5-ol			
RMN1H	H2 4,2 s	H4/H6 2,7 m 2,1 s		OH 3,5 ps	Me 1,3 s 1,2 s	Me 1,1 s 0,8 s	
RMN13C	C1 C=O	C2	C3/C7	C4/C6		Me	Ме
	177,1	78,8	50,3 47,3	42,5 42,4		27,6 27,2	23,5 20,7
86	3,3,6,6-tétraméth	ylthiacycl	oheptan-4	,5-diol			
RMN1H	Spectre ef	fectué dans	s le DMSO				
RMN13C	CH-O 72,4	C 47,0	CH2-S 43,9			Me 28.4	Me 19,9

TABLEAU 4.10 (suite): RMN 1H et RMN 13C des composés intervenants dans la préparation du 4,5-diméthoxy-3,3,6,6-tétraméthyl-1-thiacycloheptane

87	4,5 -diméthoxy-3,3,6,6-tétraméthylthiacycloheptane				
RMN1H	СН-О	Me-O	CH2	Me	Me
	3,8 ps	34 s	2,5 m	1,1 s	1,0 s
		3,3 s		1,0 s	1,0 s
RMN13C	Me-O	СН-О	CH2	Me	Me
	91,8	61,9	44,9	28,9	24,5
	85,9	58,0	43,3	28,1	23,1

n° 87

Rdt= 78 %

RMN 1H et RMN 13C: Voir tableau nº 4.10

GC/MS: Voir tableau n° 3.8

IV) Réactivité de molécules sulfurées vis à vis des systèmes NaI, [NaI + Me3SiCi] et Me3SiI

IV.1) En présence de NaI

Dans un réacteur muni d'un réfrigérant, d'un thermomètre et équipé d'une agitation magnétique, on introduit 20 mmol de dérivé sulfuré et 40 mmol d'iodure de sodium (Nal) dans 30 ml d'acétonitrile (MeCN) anhydre. On chauffe le mélange à reflux (82°C) pendant 30 heures. Après refroidissement, le mélange est filtré sur coton puis complété à 100 ml, dans un fiole jaugée, par de l'acétonitrile.

La solution ainsi obtenue est alors analysée en spectrométrie de masse.

IV.2) En présence de [NaI + Me₃SiCl]

Dans un réacteur muni d'un réfrigérant, d'un thermomètre et équipé d'une agitation magnétique, on introduit, sous atmosphère d'azote, 20 mmol de dérivé sulfuré, 40 mmol d'iodure de sodium (Nal) et 60 mmol de chlorure de triméthylsilyle (Me3SiCl) dans 30 ml d'acétonitrile (MeCN) anhydre. On chauffe le mélange à reflux (82°C) pendant 30 heures. Après refroidissement, le mélange est filtré sur coton puis complété à 100 ml, dans un fiole jaugée, par de l'acétonitrile.

La solution ainsi obtenue est alors analysée en spectrométrie de masse.

IV.3) En présence de Me3SiI

Dans un réacteur muni d'un réfrigérant, d'un thermomètre et équipé d'une agitation magnétique, on introduit 20 mmol de dérivé sulfuré et 40 mmol d'iodure de triméthylsilyle (Me3SiI) dans 30 ml d'acétonitrile (MeCN) anhydre. On chauffe le mélange à reflux (82°C) pendant 30 heures. Après refroidissement, le mélange est filtré sur coton puis complété à 100 ml, dans un fiole jaugée, par de l'acétonitrile.

La solution ainsi obtenue est alors analysée en spectrométrie de masse.

V) Réactivité d'alcools sulfurés vis à vis de catalyseurs acides [APTS, HCl]

V.1) En présence d'APTS

Dans un réacteur muni d'un réfrigérant et équipé d'une agitation magnétique, on introduit 50 mmoles d'alcool-sulfuré et de l'APTS (10% molaire) dans 50 ml de cyclohexane. On chauffe le mélange à reflux pendant 24 heures. Le solvant est alors éliminé sous pression réduite.

Le résidu obtenu est analysé par spectrométrie de masse.

V.2) En présence d'HCl

Dans un réacteur muni d'un réfrigérant et équipé d'une agitation magnétique, on introduit 50 mmoles d'alcool-sulfuré dans 100 ml d'HCl 0,7N. On chauffe le mélange à reflux pendant 24 heures. Après refroidissement, on extrait le mélange au chloroforme. La phase organique est séchée sur sulfate de sodium et évaporée sous pression réduite.

Le résidu obtenu est analysé par spectrométrie de masse.

CONCLUSION

Comme nous l'avons souligné au début de ce travail, les molécules organo-soufrées sont des composés qui de par leurs multiples applications industrielles ont beaucoup intéressé les chimistes.

Nos travaux ont été principalement axés sur l'étude de la réactivité d'alcools et d'halogénures sulfurés vis à vis de systèmes électrophiles (H+ et Me₃SiI) ou nucléophiles (NaI).

Dans un premier temps, ce travail a consisté à préparer des molécules sulfurées fonctionnalisées en utilisant soit des méthodes déja décrites, soit des voies de synthèses que nous avons mises au point.

A partir de certains de ces composés, nous avons cherché à cerner les différents paramètres intervenants au cours des réactions étudiées.

Nous avons ainsi pu démontrer que la substitution d'un atome de chlore, par un atome d'iode dans un système R-S-(CH_2)_n-Cl, dépend essentiellement de la nature du radical R et de la longueur de la chaine alkyle présente entre l'atome de soufre et l'atome d'halogéne.

Nous avons également montré l'influence des conditions de réaction (réactifs, solvant,...) sur la formation des différents produits mis en évidence.

De plus, nous avons montré que le mécanisme de réaction, issu de l'action de NaI sur les halogénures sulfurés, implique le passage par un ion sulfonium cyclique.

D'autre part, ces travaux nous ont permis d'optimiser la réaction afin de favoriser la formation de dithianes.

D'un point de vue analytique, ce travail a contribué au développement des recherches entreprises au laboratoire. Nous avons ainsi pu caractériser un grand nombre de nos composés par GC/MS et vérifier la validité des incréments utilisés dans le calculs des déplacements chimiques en RMN.

D'un point de vue pratique, nous avons observé, grâce aux essais mécaniques réalisés sur machine quatre billes, la faible efficacité de nos composés en tant qu'additifs extrême-pression ou anti-usure.

Enfin, les résultats de cette étude nous ont permis, d'une part, la synthèse de produits nouveaux et d'autre part de mettre en évidence de nouvelles voies d'accés à des composés polysulfurés.

CHAPITRE V

annexes

annexe i

TESTS MECANIQUES

SUR MACHINE 4 BILLES

Soufre	Elémentaire, mono, di et polysulfures, graisses soufrées, hydrocarbures soufrés, dithiocarbonates
Phosphore	Organophosphates, organophosphites, organophosphonates, organophosphinates
Chlore	Alkyl et aryl chlorés, graisses chlorées, silicones chlorés
Brome, iode, sélénium, plomb, étain, molybdène, zinc, nickel, manganèse	Divers composés organiques et complexes de coordination

Tableau (I.1): Principaux éléments chimiques et type de molécules formant des films réactionnels

EVALUATION DES PROPRIETES MECANIQUES

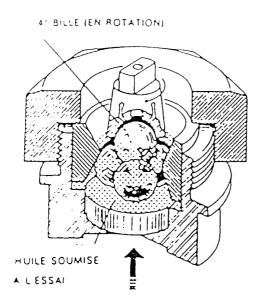
I) Introduction

I.1) Généralités

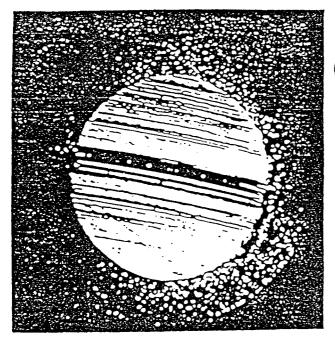
Le domaine des lubrifiants a connu un progrés important grâce, notamment, à l'apport d'additifs¹⁰⁹ dans l'huile. Parmis ceux-ci, on distingue les additifs de viscosités¹¹⁰, anti-oxydants^{111, 112}, détergents-dispersants¹¹³, mais surtout les additifs anti-usures¹¹⁴⁻¹¹⁷ (A.U.) et extrême-pressions¹¹⁸⁻¹²² (E.P.) auxquels le laboratoire de Chimie Organique s'intéresse tout particulièrement depuis de nombreuses années.

Ces derniers sont, généralement, préparés à partir de composés organiques sous forme de combinaisons particulières de phosphore, de soufre mais aussi de métaux (tableau I.1). Ils forment, par réactions chimiques au niveau des contacts, un film caractérisé par une grande résistance à l'écrasement. Leur mode d'action est lié à la présence des hétéroatomes précédemment cités ainsi qu'à la température élevée générée localement par les frottements.

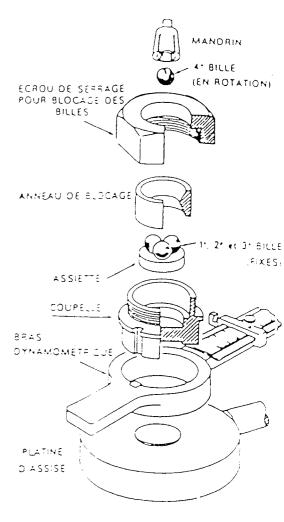
I.2) Composés (poly)sulfurés


Les dérivés sulfures, sulfures et polysulfures, représentent une grande classe d'additifs.

Différents travaux¹²³⁻¹²⁹ ont montré que ces composés, en solution dans l'huile, conduisent, par contact avec la surface de métaux, à des sulfures métalliques qui assurent l'effet lubrifiant.


Le mécanisme d'action, encore mal défini, comporterait deux étapes :

- une action A.U. par adsorption sur la surface métallique avec formation d'un mercaptate,
- une action E.P. par décomposition du mercaptate avec apparition de sulfure métallique.


MACHINE 4 BILLES E.P.

(A) <u>Disposition des billes dans</u> <u>la coupelle</u>.

Empreinte d'usure d'une bille inferieure (Gossie 100 fois)

B <u>Schéma</u> de montage des billes

D Soudure des 4 billes

Machines 4 Billes

Principe

4 billes SFK de diamètre 12,7 mm en acier à roulement 100 C6, disposées en tétrahèdre.

La bille supérieure tourne sur les trois autres.

Types de machine

Machine 4 billes E.P. ("E.P. tester")

- charge 800 à 1000 daN

- vitesse 1425 à 1480 tr/mn (0,56 à 0,58 m/s)

- température : - mécanique : ambiante

les trois billes inférieures sont fixes

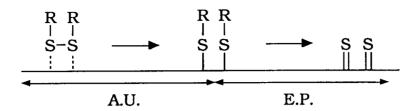
Machine 4 billes Usure ("wear tester")

- charge plus faible 0,1 à 50 daN et jusqu'à 600 daN selon

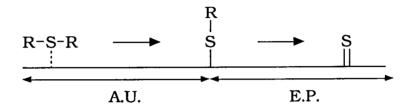
modèles

- vitesse variable 600 à 20000 tr/mn selon modèles

jusqu'à 230 ou 540 °C - température


- mécanique les trois billes inférieures sont fixes

Machine 4 billes Usure ("wear tester")


- vitesse : fixe ou variable - température : ambiante ou variable - mécanique : les trois bills : les trois billes inférieures sont libres en

rotation

♦ Cas des disulfures

♦ Cas des monosulfures

A titre indicatif, nous avons voulu évaluer les propriétés mécaniques, A.U. et E.P. de quelques produits. Pour cela, les additifs sont testés sur des appareils d'essais reproduisant les conditions de contact métal/métal qui se rapprochent le plus de la réalité. Parmi les machines les plus couramment utilisées dans l'industrie, on trouve :

- la machine TIMKEN130
- la machine à engrenage F.Z.G. 131
- la machine 4 billes¹³².

C'est cette dernière que nous avons utilisée; d'un usage aisée, elle permet une comparaison directe des propriétés A.U. et E.P. d'une série d'additifs.

II) Principe de fonctionnement de la machine 4 billes

Le montage se constitue d'une coupelle thermostatée dans laquelle on place 3 billes fixes ainsi que l'huile contenant l'additif. La quatrième bille tourne sur les trois autres. Par un système de bras de levier, on applique à l'ensemble différentes charges. Les conditions d'utilisation étant normalisées, on distinguera deux types d'essais.

◊ Les essais de capacité de charge

Ils permettent d'évaluer, selon la norme ASTM D 2783-71, les propriétés extrême-pression des lubrifiants. Les critères d'évaluation retenus sont la valeur de l'indice charge-usure (ICU), la dernière charge avant grippage et la charge de soudure des billes. La durée des tests est de 10 secondes.

♦ Les essais d'usure

Ils ont pour but de déterminer les caractéristiques anti-usure des lubrifiants selon la norme française NF E 48, 617. Le critère d'évaluation est le diamètre moyen d'usure, en mm, des trois billes présentes dans la coupelle en fin d'essai. Les charges appliquées sont de 40, 60, 80 Kgf pendant 1 heures.

Remarque: Des travaux antérieurs réalisés au laboratoire ont montré que:

- les propiétés E.P. et A.U. des additifs ne varient pas toujours dans le même sens.
- les mesures A.U. sous 60 et 80 Kgf sont les plus représentatives.

III) Résultats expérimentaux

Précisions :

- . Pour tous les essais nous avons utilisé une huile minérale visqueuse généralement employée pour la lubrification des transmissions automobiles et répondant à la classification SAE 30.
- . L'huile de base pure ainsi que le ditertiobutyl dissulfure ont servi de référence. Les expériences sur machine ont été réalisées en additionnant à cette huile un pourcentage précis (1,5% en masse dans l'huile) de polysulfure.
- . Les résultats obtenus sont regroupés dans les tableaux 5.1 et 5.2. Nous avons également rapporté, pour comparaison, les additifs testés par d'autres chercheurs au laboratoire 100, 133.

Résultats:

<u>Note</u>: Les propriétés E.P. des additifs augmentent avec la valeur de l'I.C.U. alors que les propriétés A.U. s'améliorent inversement aux diamètres d'empreinte des billes.

◊ Les propriétés extrême-pressions (E.P.)

On peut noter que:

- le nombre d'atomes de soufre dans la molécule accroit de façon sensible l'I.C.U.. Cette augmentation est d'autant plus grande que l'additif présente un motif **S-S** dans sa structure.
- la nature des radicaux présents intervient sur la valeur de l'I.C.U.. On peut d'ailleurs les classer selon l'ordre d'influence croissant suivant :

$Ph \le n.Bu < i.Bu < t.Bu < Bz$

Nous pouvons constater que pour un même type de radical, l'I.C.U. augmente avec le nombre de ramifications.

n.Bu < i.Bu < t.Bu

♦ Les propriétés anti-usures (A.U.)

Dans le cas de nos composés, on remarque que les résultats obtenus sont relativement médiocres. On observe une amélioration lorsque l'additif présente le motif **S-S** dans sa molécule.

Des travaux précédemment réalisés au laboratoire, par Es Seddiki¹⁰⁰, avaient d'ailleurs démontré l'excellent comportement des dérivés di et trisulfures par rapport à ceux, beaucoup plus moyens, des monosulfures. Il apparaissait, de plus, que la nature du radical présent, avait une influence sur les propriétés anti-usures. Une classification, selon l'usure décroissante, a ainsi été établie et se présente comme suit :

Ph > n.Bu > i.Bu > Bz > t.Bu

		E.P.	E.P.	A.U.	A.U.	A.U.
		ICU	Charge de	40 Kgf	60 Kgf	80 Kgf
			soudure			<u> </u>
Composés étu	diés par Es Se	ddiki (résu	mé) conc. =	: 0,4% en ma	sse	
Huile pure	SAE 90	22,5	160	0,82	1,98	2,08
n.Bu-S-n.Bu		29,9	200	1,10	1,62	1,72
t.Bu-S-t.Bu		33,1	160	0,47	0,60	1,39
Ph-S-Ph		27,5	160	0,47	1,61	2,02
Bz-S-Bz		35,4	200	0,33	0.61	1,62
BE-G-BE		00,4	200	0,11	0,01	1,02
ı.Bu-S-S-n.Bu		38,1	315	0,52	1,50	1,87
i.Bu-S-S-i.Bu		38,4	315	0,59	1,00	1,85
t.Bu-S-S-t.Bu		45,7	315	0,52	0,66	1,04
Ph-S-S-Ph		32,8	250	0,57	0,87	1,95
Bz-S-S-Bz		57,4	400	0,56	0,78	1,16
0	#14 D. D.	\$ t (t	-6)	= 0,4% en ma		
Composés étu	utes par D. Ko	bert (resur	пе) сопс. =	= U,4% CH III	issc .	
Huile pure	SAE 30	21,3	126	0,80	2,39	2,45
t.Bu-S-(CH2)3-	ОН	28,9	200	0,94	1,25	2,25
t.Bu-S-(CH2)3-	S-t.Bu	23,1	160	0,72	2,05	2,22
t.Bu-S-S-(CH2)	3-S-t.Bu	40,4	250	0,84	0,95	1,80
t.Bu-S-(CH 2)3-	SO-t.Bu	36,8	200	0,68	1,10	2,05
t.Bu-S-(CH2)3-	SO2-t.Bu	26,9	160	0,87	1,95	2,35

		E.P.	E.P.	A.U.	A.U.	A.U.
		ICU	CU Charge de 4	40 Kgf	60 Kgf	80 Kgf
·			soudure			
Composés étu	idiés lors de ce	travail	conc. = 1,5% e	n masse		
Huile pure	SAE 30	21,4	1126	0,83	2,02	2,55
t.Bu-S-(CH2)2	-ОН	34,6	200	0,77	1,86	1,87
n.Bu-S-(CH2)2	-S-n.Bu	23,1	160	1,06	1,92	2,08
i.Bu-S-(CH2)2-	-S-i.Bu	24,9	200	0,97	1,83	2,05
t.Bu-S-(CH2)2	-S-t.Bu	25,1	200	0,77	2,02	2,07
Ph-S-(CH2)2-S	-Ph	23,3	160	0,63	1,91	2,09
Bz-S-(CH2)2-S	-Bz	26,9	200	0,59	1,01	1,72
t.Bu-[S-(CH2)2	2]2-S-t.Bu	26.0	200	0,74	0,97	2,19
t.Bu-[S-(CH2)2	l]3-S-t.Bu	32,7	250	0,69	0,96	1,79
t.Bu-S-S-(CH2)2-S-t.Bu	35,9	250	0,61	0,89	1,71
t.Bu-SO2-(CH2	2)2-SO2-t.Bu	26,3	200	0,97	2,00	2,11
t.Bu-S-S-t.Bu	(référence)	41,5	250	0,60	1,03	1,60

		E.P.	A.U.	A.U.
Composés	Es Seddiki	ICU	60Kgf	80 Kgf
Huile pure	SAE 90	22,5	1,98	2,08
n.Bu-S-n.Bu		29,9	1,62	1,72
t.Bu-S-t.Bu		33,1	0,60	1,39
Ph-S-Ph		27,5	1,61	2,02
Bz-S-Bz		35,4	0,61	1,62
ı.Bu-S-S-n.Bu		38,1	1,50	1,87
i.Bu-S-S-i.Bu		38,4	1,00	1,85
t.Bu-S-S-t.Bu		45,7	0,66	1,04
Ph-S-S-Ph		32,8	0,87	1,95
Bz-S-S-Bz		57,4	0,78	1,16
Composés	D. Robert	ICU	60Kgf	80 Kgf
Huile pure	SAE 30	21,3	2,39	2,45
t.Bu-S-(CH2)3		28,9	1,25	2,25
		20,0		
t.Bu-S-(CH2)3	-S-t.Bu	23,1	2,05	2,22
t.Bu-S-S-(CH2)3-S-t.Bu	40,4	0,95	1,80
t.Bu-S-(CH2)3	-SO-t.Bu	36,8	1,10	2,05
t.Bu-S-(CH2)3	-SO2-t.Bu	26,9	1,95	2,35
Nos Composés		ICU	60Kgf	80 Kgf
Huile pure	SAE 30	21,4	2,02	2,55
t.Bu-S-(CH2)2		34.6	1,86	1,87
n.Bu-S-(CH2)2	2-S-n R11	23,1	1,92	2.08
i.Bu-S-(CH2)2		24,9	1,83	2,05
t.Bu-S-(CH2)2		25,1	2,02	2,07
Ph-S-(CH2)2-S		23,3	1,91	2,09
Bz-S-(CH2)2-S		26,9	1,01	1,72
t.Bu-[S-(CH2)2		26,0	0,97	2,19
t.Bu-[S-(CH2)2		32,7	0,96	1,79
()-		· -		
t.Bu-S-S-(CH2	2)2-S-t.Bu	35,9	0,89	1,71
t.Bu-SO2-(CH		26,3	2,00	2,11
1 D . O O 1 D .	(référence)	41,5	1,03	1,60

annexe II

INDICES DE REFRACTION

INDICES DE REFRACTION

- . La mesure des indices de réfraction a été réalisée sur la plupart des composés synthétisés.
 - . Les résultats obtenus sont regroupés dans les tableaux 5.3 a-d.

Résultats:

On peut noter que:

- la nature des radicaux présents a une influence importante sur l'indice de réfraction (np) (Schéma 1).

Les groupements cyclohexyle, benzyle et phényle donnent les meilleurs résultats.

Nous pouvons remarquer que pour un même type de radical, l'indice de réfraction est peu modifié et tend à diminuer avec le nombre de ramification.

n.Bu > i.Bu > t.Bu

- le nombre d'atome de soufre dans la molécule accroit sensiblement l'indice de réfraction (n_D) **(Schéma 1).** Cette augmentation est d'autant plus grande que la molécule présente un motif **S-S** dans sa structure (composé **31** et **58**).
- pour les composés A1, l'éloignement des deux atomes de soufre présents dans la molécules diminue fortement l'indice de réfraction (Schéma 2).

Cette influence est quasi inexistante dans le cas des alcools et halogénures sulfurés.

TABLEAU 5.3 a : Etude comparative des indices de réfraction [nD] des principaux composés

Les mesures des indices de réfraction ont été réalisées à 22°C

Alcools sulfurés

n °	Composés	nD
1	n.Bu-S-(CH2)2-OH	1,4845
2	i.Bu-S-(CH2)2-OH	1,4810
3	t.Bu-S-(CH2)2-OH	1,4800
4	Cyclo(6)-S-(CH2)2-OH	1,5180
5	Ph-S-(CH2)2-OH	1,5935
6	Bz-S-(CH2)2-OH	1,5780
7	i.Bu-S-(CH2)3-OH	1,4800
8	i.Bu-S-(CH2)4-OH	1,4815
11	i.Bu-S-(CH2)5-OH	1,4810
12	i.Bu-S-(CH2)6-OH	1,4810
20	i.Bu-S-(CH2)11-OH	1,4790
14	t.Bu-S-CH2CH(CH3)-OH	1,4740
16	t.Bu-S-CH2C(CH3)2-OH	1,4470
19	[t.Bu-S-CH2]2CH-OH	1,5005

TABLEAU 5.3 b : Etude comparative des indices de réfraction [nD] des principaux composés

Les mesures des indices de réfraction ont été réalisées à 22°C

Chlorures sulfurés

n °	Composés	nD
25	n.Bu-S-(CH2)2-Cl	1,4865
26	i.Bu-S-(CH2)2-Cl	1,4830
27	t.Bu-S-(CH2)2-Cl	1,4820
28	Cyclo(6)-S-(CH2)2-Cl	1,5235
29	Ph-S-(CH2)2-Cl	1,5860
30	Bz-S-(CH2)2-Cl	1,5685
31	t.Bu-S-S-(CH2)2-Cl	1,5220
20	. D. G. (GMO)0. GI	1.4015
32	i.Bu-S-(CH2)3-Cl	1,4815
33	i.Bu-S-(CH2)4-Cl	1,4815
34	i.Bu-S-(CH2)5-Cl	1,4810
35	i.Bu-S-(CH2)6-Cl	1,4810
36	i.Bu-S-(CH2)11-Cl	1,4795
37	i.Bu-S-CH2CH(CH3)-Cl	1,4775
38	t.Bu-S-CH2CH(CH3)-Cl	1,4755
39	i.Bu-S-CH2C(CH3)2-Cl	1,4745
40	t.Bu-S-CH2C(CH3)2-Cl	1,4735
42	[i.Bu-S-CH2]2CH-Cl	/
43	[t.Bu-S-CH2]2CH-Cl	1,5065

TABLEAU 5.3 c : Etude comparative des indices de réfraction [nD] des principaux composés

Les mesures des indices de réfraction ont été réalisées à 22°C

Composés A1

n °	Composés	nD
52	n.Bu-S-(CH2)2-S-n.Bu	1,4915
53	i.Bu-S-(CH2)2-S-i.Bu	1,4950
54	t.Bu-S-(CH2)2-S-t.Bu	1,4935
55	Cyclo(6)-S-(CH2)2-S-Cyclo(6)	/
56	Ph-S-(CH2)2-S-Ph	/
57	Bz-S-(CH2)2-S-Bz	1,6105
58	t.Bu-S-S-(CH2)2-S-t.Bu	1,5215
45 b	i.Bu-S-CH2-S-i.Bu	1,5015
59	i.Bu-S-(CH2)3-S-i.Bu	/
60	i.Bu-S-(CH2)4-S-i.Bu	1,4920
61	i.Bu-S-(CH2)5-S-i.Bu	1,4910
62	i.Bu-S-(CH2)6-S-i.Bu	/
63	i.Bu-S-(CH2)11-S-i.Bu	1,4875
64	i.Bu-S-CH2CH(CH3)-S-i.Bu	1,4915
65	t.Bu-S-CH2CH(CH3)-S-t.Bu	1,4880
66	i.Bu-S-CH2C(CH3)2-S-i.Bu	1,4930
67	t.Bu-S-CH2C(CH3)2-S-t.Bu	1,4960
68	[i.Bu-S-CH2]2CH-S-i.Bu	1,5105
69	[t.Bu-S-CH2]2CH-S-t.Bu	/

TABLEAU 5.3 d : Etude comparative des indices de réfraction [nD] des prinipaux composés

Les mesures des indices de réfraction ont été réalisés à 22°C

Composés A2 et A3

n °	Composés	nD
70	t.Bu-[S-(CH2)2]2-S-t.Bu	1,5180
71	i.Bu-[S-(CH2)3]2-S-i.Bu	1,5145
72	i.Bu-[S-(CH2)2]6-S-i.Bu	1,5025
77	t.Bu-[S-(CH2)2]3-S-t.Bu	1,5430

Schéma 1

Variation de l'indice de réfraction (nD)

en fonction du radical R

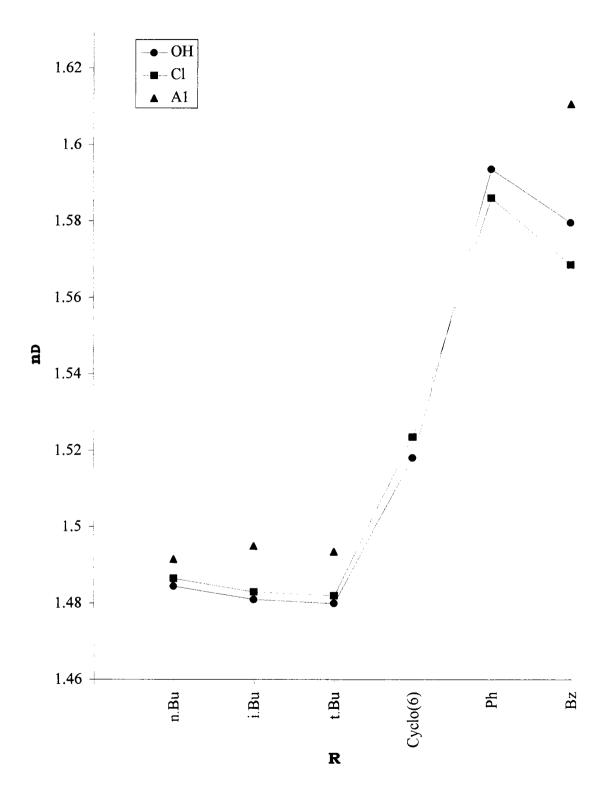
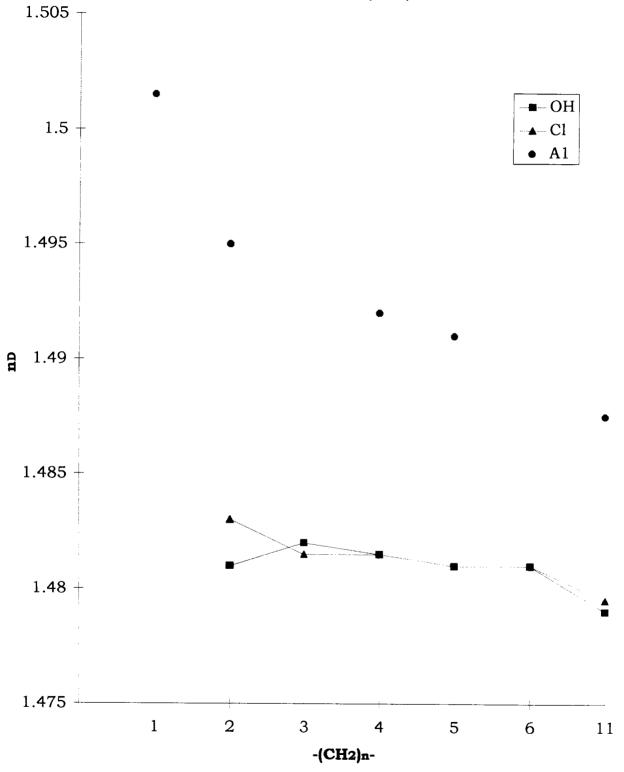



Schéma 2

Variation de l'indice de réfraction (nD)
en fonction de -(CH2)n-

annexe III

RECAPITULATIF DES MOLECULES SYNTHETISEES

RECAPITULATIF

 $R-S-(CH_2)_n^-OH$

$\mathbf{R} = \text{n.Bu}$	$\mathbf{n} = 2$	$N^{\circ} = 1$
$\mathbf{R} = i.\mathbf{B}\mathbf{u}$	$\mathbf{n} = 2$	$N^{\circ} = 2$
$\mathbf{R} = \text{t.Bu}$	$\mathbf{n} = 2$	$N^{\circ} = 3$
$\mathbf{R} = \text{Cyclo}(6)$	$\mathbf{n} = 2$	$N^{\circ} = 4$
$\mathbf{R} = Ph$	$\mathbf{n} = 2$	$N^{\circ} = 5$
$\mathbf{R} = \mathbf{B}\mathbf{z}$	$\mathbf{n} = 2$	$N^{\circ} = 6$
$\mathbf{R} = i.Bu$	n = 3	$N^{\circ} = 7$
R = i.Bu R = i.Bu	$ \mathbf{n} = 3 \\ \mathbf{n} = 4 $	$N^{\circ} = 8$
$\mathbf{R} = i.Bu$	$\mathbf{n} = 4$	$N^{\circ} = 8$
R = i.Bu R = i.Bu	$ \begin{array}{c} \mathbf{n} = 4 \\ \mathbf{n} = 5 \end{array} $	$\mathbf{N}^{\circ} = 8$ $\mathbf{N}^{\circ} = 11$

R-S-CH₂CH(CH₃)-OH

$$\mathbf{R} = i.Bu$$
 $\mathbf{N}^{\circ} = 13$ $\mathbf{R} = t.Bu$ $\mathbf{N}^{\circ} = 14$

R-S-CH₂C(CH₃)₂-OH

$${f R} = {
m i.Bu} \qquad {f N}^{\circ} = 15 \\ {f R} = {
m t.Bu} \qquad {f N}^{\circ} = 16$$

R-S-CH₂C(CH₃)₂CH₂-OH

$$\mathbf{R} = i.Bu$$
 $\mathbf{N}^{\circ} = 17$

$$R = i.Bu$$
 $N^{\circ} = 18$ $R = t.Bu$ $N^{\circ} = 19$

H ₃ C CO·(CH ₂) ₅ ·Cl O	Cl-(CH ₂) ₅ -OH		
N ° = 9		N ° = 10	
ClC·S·Cl O	H	I ₃ COC-S-Cl O	
$N^{\circ} = 21$		$N^{\circ} = 22$	
H ₃ COC·S·S·(CH ₂) ₂ OH O	t.ì	Bu·S·S·(CH ₂) ₂ O	H
N ° = 23		N ° = 24	
$R-S-(CH_2)_n^-Cl$	R = n.Bu R = i.Bu	n = 1 n = 1	N° = 44 N° = 45
	R = Ph R = Bz	$\mathbf{n} = 1$ $\mathbf{n} = 1$	$\mathbf{N}^{\circ} = 46$ $\mathbf{N}^{\circ} = 47$
	R = n.Bu R = i.Bu R = t.Bu	n = 2 $n = 2$ $n = 2$	N° = 25 N° = 26 N° = 27
	R = Cyclo(6) R = Ph	$\mathbf{n} = 2$ $\mathbf{n} = 2$	$N^{\circ} = 28$ $N^{\circ} = 29$
	$\mathbf{R} = \mathbf{B}\mathbf{z}$	$\mathbf{n} = 2$	$N^{\circ} = 30$

 $\mathbf{R} = t.BuS$

 $\mathbf{R} = i.Bu$

 $\mathbf{R} = i.Bu$

 $\mathbf{R} = i.Bu$

 $\mathbf{R} = i.Bu$ $\mathbf{R} = i.Bu$ $\mathbf{n} = 2$

 $\mathbf{n} = 3$

 $\mathbf{n} = 4$ $\mathbf{n} = 5$

 $\mathbf{n} = 6$

 $\mathbf{n} = 11$

 $N^{\circ} = 31$

 $N^{\circ} = 32$

N° = 33 N° = 34 N° = 35 N° = 36 R-S-CH₂CH(CH₃)-Cl

$$N^{\circ} = 37$$

 $N^{\circ} = 38$

 $R-S-CH_2C(CH_3)_2-Cl$

$$\mathbf{R} = i.Bu$$

 $\mathbf{R} = t.Bu$

$$\mathbf{N}^{\circ} = 39$$

 $\mathbf{N}^{\circ} = 40$

R-S-CH₂C(CH₃)₂CH₂-Cl

$$\mathbf{R} = i.Bu$$

$$N^{\circ} = 41$$

$$\left[\text{R-S-CH}_2 \right]_2$$
 CH-Cl

$$N^{\circ} = 42$$

 $N^{\circ} = 43$

$$R-S-(CH_2)_2-Br$$

$$\mathbf{R} = i.Bu$$

 $\mathbf{R} = t.Bu$

$$N^{\circ} = 48$$

 $N^{\circ} = 49$

$$R-SO_x-(CH_2)_2-Cl$$

$$\mathbf{R} = \text{t.Bu}$$

 $\mathbf{R} = \text{t.Bu}$

$$\mathbf{x} = 1$$

 $\mathbf{x} = 2$

$$\mathbf{N}^{\circ} = 50$$

 $\mathbf{N}^{\circ} = 51$

R-S-	(CH ₂))-S-R n
------	--------------------	------------

$\mathbf{R} = \text{n.Bu}$	n = 2	$N^{\circ} = 52$
$\mathbf{R} = i.Bu$	$\mathbf{n} = 2$	$N^{\circ} = 53$
$\mathbf{R} = \mathbf{t}.\mathbf{B}\mathbf{u}$	$\mathbf{n} = 2$	$N^{\circ} = 54$
$\mathbf{R} = \text{Cyclo}(6)$	$\mathbf{n} = 2$	$N^{\circ} = 55$
$\mathbf{R} = P\mathbf{h}$	$\mathbf{n} = 2$	$N^{\circ} = 56$
$\mathbf{R} = \mathrm{Bz}$	$\mathbf{n} = 2$	$N^{\circ} = 57$
$\mathbf{R} = \text{t.BuS}$	$\mathbf{n} = 2$	$N^{\circ} = 58$
$\mathbf{R} = i.Bu$	n = 3	N ° = 59
$\mathbf{R} = i.Bu$	$\mathbf{n} = 4$	$N^{\circ} = 60$
$\mathbf{R} = i.Bu$	n = 5	$N^{\circ} = 61$
$\mathbf{R} = i.Bu$	$\mathbf{n} = 6$	$N^{\circ} = 62$
$\mathbf{R} = i.Bu$	$\mathbf{n} = 11$	$N^{\circ} = 63$

R = i.Bu
$$N^{\circ}$$
 = 64 **R** = t.Bu N° = 65

$${f R} = {f i.Bu} \qquad {f N}^{\circ} = 66 \\ {f R} = {f t.Bu} \qquad {f N}^{\circ} = 67$$

$$R = S - (CH_2) \frac{1}{n} S - R$$

$$\mathbf{R} = \text{t.Bu}$$
 $\mathbf{n} = 2$
 $\mathbf{N}^{\circ} = 70$
 $\mathbf{R} = \text{i.Bu}$
 $\mathbf{n} = 3$
 $\mathbf{N}^{\circ} = 71$
 $\mathbf{R} = \text{i.Bu}$
 $\mathbf{n} = 6$
 $\mathbf{N}^{\circ} = 72$

$$t.Bu\bigg\{S\cdot (CH_2)_2\bigg\}_n^OH$$

$$\mathbf{n} = 2$$
 $\mathbf{n} = 3$

$$N^{\circ} = 73$$

 $N^{\circ} = 75$

$$t.Bu \bigg[S \cdot (CH_2)_2 \bigg]_n^C l$$

$$\mathbf{n} = 2$$
 $\mathbf{n} = 3$

$$\mathbf{N}^{\circ} = 74$$

 $\mathbf{N}^{\circ} = 76$

$$tBu-S[(CH_2)_2S]_3^tBu$$

$$\mathbf{n} = 3$$

$$N^{\circ} = 77$$

$$\begin{array}{ccc} \operatorname{EtOC\cdot CH_2S(CH_2)_2\cdot COEt} \\ \operatorname{O} & \operatorname{O} \end{array}$$

$$N^{\circ} = 78$$

$$N^{\circ} = 79 \text{ a/b}$$

$$N^{\circ} = 80$$

$$N^{\circ} = 81$$

$$N^{\circ} = 82$$

$$S = \left[CH_2C(CH_3)_2COOH \right]_2$$

$$N^{\circ} = 83$$

$$S = \left[CH_2C(CH_3)_2COOEt \right]_2$$

$$N^{\circ} = 84$$

$$N^{\circ} = 85$$

$$N^{\circ} = 86$$

$$N^{\circ} = 87$$

REFERENCES BIBLIOGRAPHIQUES

REFERENCES BIBLIOGRAPHIQUES

- 1. D. Barton, W. D. Ollis "Comprehensive organic chemistry"; vol **3**, 3-487 (1979)
- 2. E. E. Reids
 "Organic chemistry of bivalent sulfur"
 Chemical Publishing Co, N.Y., vol. 1, 118 (1958)
- 3. E. E. Reids
 "Organic chemistry of bivalent sulfur"
 Chemical Publishing Co, N.Y., vol. 3, 362 (1960)
- 4. G. Capozzi, G. Modeva
 "The chemistry of thiol group", Ed. Wiley (1974)
- 5. J. March "Advanced organic chemistry", Ed. Wiley (1992)
- 6 a. S. Oae, J. T. Doi
 "Organic sulfur chemistry", Ed. CRC Press (1991)
- 6 b. R. H. Mitchell Tetrahedron Letters 4395 (1973)
- 6 c. R. H. Mitchell J. Chem. Soc. Chem. Commun. 955 (1973)
- 6 d. F. E. Bailey, E. M. La Combe J. Macromol. Sci. Chem. **4**(6) 1293 (1970)
- 6 e. T. Yoshi JP 01, 180, 854 [89, 180 854] (1989); C.A. 112 : 56997 d
- 6 f. F. E. Bailey, E. M. La Combe, R. H. Raines U. S. 3, 278,500 (1966); C. A. 66: 19036 a
- 6 g. H. G. Batz, V. Hoffman, H. Ringsdorf Ger. Hoffen. 2, 434, 550 (1975); C. A. 83: 136897 u

- 6 h. R. Dumon
 "Le phosphore et les composés phosphorés, propriétés et utilisations" (1980)
- 6 i. A. Darlington, D. Partos, S. Ratts
 "Toxicology and applied pharmacology" **18**, 542 (1971)
- 6 j. O. Brien
 "Toxic phosphorus esters" Academic Press N. Y., London (1960)
- 7. J. M. Ndong Mebah, C. Schies, M. Schneider, J. L. Mieloszynski, D. Paquer Sulfur Letters 17, 251 (1994)
- 8. C. Schies, J. C. Wilhelm, M. Schneider, J. L. Mieloszynski, D. Paquer Sulfur Letters 17, 251 (1994)
- 9. O. Aberkane, J. L. Mieloszynski, D. Robert, M. Born, D. Paquer Phosphorus sulfur and silicon **79**, 245 (1993)
- 10. O. Aberkane Thèse de Doctorat de l'Université, Metz (1990)
- D. N. Harpp, J. G. Gleason, J. P. Snyder
 J. Am. Chem. Soc. 90, 4181 (1968)
- 12. K. Griesbaum Angew. Chem. Intern. Ed. **9**, 273 (1970)
- 13. H. C. Brown, M. M. Midland J. Am. Chem. Soc. **93**, 3291 (1971)
- 14. A. W. Herriot, D. Picker Synthesis 447 (1975)
- 15. Y. Tamura, T. Saito, H. Ishibashi, M. Ikeda Synthesis 641 (1975)
- 16. Y. Tanigawa, H. Kanamaru, S. Murahashi Tetrahedron Letters **52**, 4655 (1975)

- 17. D. Start, R.M. Hixon Org. Synth. Coll., vol II, 571 (1943)
- 18. M. E. SynerholmJ. Am. Chem. Soc. 69, 2581 (1947)
- 19. D. E. Ames, P. J. Islip J. Chem. Soc. 4363 (1963)
- 20. A. A. Oswald, K. Griesbaum
 "Organic Sulfur Compounds"
 Perg., N.Y., vol.2, 233-56 (1966)
- 21. S. J. Brois, J. F. Pilot, H. W. Barnum J. Am. Chem. Soc. **92**, 7629 (1970)
- L. Fied, R. RavichandranJ. Org. Chem. 44, 2624 (1979)
- 23. W. R. Kirner, W. Windus Org. Synth. Coll., vol **II**, 136 (1943)
- 24. D. James, R. Massy Synthesis **7**, 589 (1987)
- 25. I. E. Pollak, G. F. Grillot J. Org. Chem. **32**, 3101 (1967)
- 26. R. G. Kallen J. Am. Chem. Soc. **93**, 6236 (1971)
- O. S. Wong, L. A. SternsenJ. Am. Chem. Soc. 107, 6421 (1985)
- 28. F. G. Bordwell, G. D. Cooper, H. Morita J. Am. Chem. Soc. **79**, 376 (1956)
- 29. C. C. Price, S. Oae "Sulfur bonding", 9 (1962)

- 30. C. R. Noller, R. Dinsmore Org. Synth. Coll., vol **III**, 358 (1955)
- 31. D. S. Tarbell, C. Weaver J. Am. Chem. Soc. **63**, 2939 (1941)
- 32. R. W. Bost, M. W. Conn Org. Synth. Coll., vol **II**, 547 (1943)
- J. P. Schaefer, J. J. Bloomfield Org. Reactions **15**, 1 (1967)
- 34. R. B. Woodward, R. H. Eastman J. Am. Chem. Soc. **68**, 2229 (1946)
- 35. N. J. Leonard, J. Figueras J. Am. Chem. Soc. **74**, 917 (1952)
- 36. W. F. Gannon, H.O. House Org. Synth. Coll., vol **40**, 14 (1960)
- 37. V. Cerè, C. Paolucci, S. Pollicino, E. Sandri, A. Fava J. Org. Chem. **53**, 5689 (1988)
- 38. J. L. Greene, H. J. Hagemeyer J. Am. Chem. Soc. **77**, 3016 (1955)
- 39. Ae. de Groot, H. Wynberg J. Org. Chem. **31**, 3954 (1966)
- 40 . L. Field Synthesis 713 (1978)
- 41. W. E. Truce Sulfur reports **9**, N°4, 351 (1990)
- 42. T. Satoh, K. Yamakawa Synlett 455 (1992)

- 43. E. Block Angew. Chem. Int. Ed. **31**, 1135 (1992)
- 44. "Phosphorus, sulfur and silicon; and the related elements"

 Proceeding of the 15th International Symposium on the Organic Chemistry of Sulfur; vol **74**, n° 1-4 (1993)
- 45. "Phosphorus, sulfur and silicon; and the related elements"

 Proceeding of the 16th International Symposium on the Organic Chemistry of Sulfur; vol **95-96**, n° 1-4 (1994)
- 46. H. Finkelstein Ber. **43**, 1528 (1910)
- 47. A. H. Ford-Moore Org. Synth. Coll., vol **IV**, 84 (1963)
- W. K. V. Musgrave, E. H. Rodd
 "Chemistry of carbon compounds", Ed. Elsevier publishing compagny, 2d Ed., Chapter 3, vol 1, Part A (1964)
- 49. P. Breslow "Organic reactions mechanism", Ed. W. A. Benjamin (1966)
- 50. E. J. Corey, J. E. Anderson J. Org. Chem. **32**, 4160 (1967)
- 51. J. A. Miller, M. J. Nunn Tetrahedron Letters 2691 (1974)
- 52. J. A. Miller, M. J. Nunn J. Chem. Soc. Perkin Trans. I 416 (1976)
- 53. T. Morita, Y. Okamoto, H. Sakurai Tetrahedron Letters 2523 (1978)
- 54. P. Tundo, P. Venturello Synthesis 952 (1979)
- 55. G. A. Olah, S. C. Narang, L. D. Field J. Org. Chem. **46**, 3727 (1981)

- K. B. Yoon, J. K. KochiJ. Chem. Soc. Chem. Commun. 46, 1013 (1987)
- 57. C. Schröder, S. Wolff, W. C. Agosta J. Am. Chem. Soc. **109**, 5491 (1987)
- 58. H. Chantar, M. Curci, J. L. Mieloszynski, D. Paquer Sulfur Letters **15**, 5, 213 (1992)
- 59. H. Chantar, J. C. Wilhelm, J. Georges, M. Schneider, J. L. Mieloszynski, D. Paquer Sulfur Letters 17, 2, 63 (1993)
- 60. W. H. Mueller Angew. Chem. Int. Ed. **7**, (1968)
- 61. G. H. Schmid Topics Sulf. Chem. **3**,102 (1977)
- 62. C. C. Price, S. Oae "Sulfur bonding", Ed : Wiley, N.Y., 387-412 (1981)
- D. C. Dittmer, B. H. Patwardhan "The chemistry of sulfonium group", Ed: Wiley (1981)
- 64. R. G. Pearson J. Am. Chem. Soc. **85**, 3533 (1963)
- 65. J. Hine
 "Structural effect on equilibria in organic chemistry", Ed: Wiley,
 N.Y., (1975)
- 66. C. J. M. Stirling
 "In organosulfur chemistry", Ed. S.Oae, Plenum, N.Y., (1976)
- 67. W. H. Mueller, P. E. Butler J. Am. Chem. Soc. **90**, 2075 (1968)
- 68. W. H. Mueller Angew. Chem. Int. Ed. **8**, 482 (1969)

- 69. A. H. Herz, D. S Tarbel J. Am. Chem. Soc. **75**, 4657 (1953)
- 70. B. M. Trost, D. P. Curran Tetrahedron Letters **22**, 1287 (1981)
- 71. J. Drabowicz, H. Micolajczyk Org. Prep. Proc. Intern. **14**, 14-89 (1982)
- 72. T. L. Ho, G. A. Olah Angew. Chem. Int. Ed. **15**, 774 (1976)
- 73. T. L. Ho, G. A. Olah Synthesis 417 (1977)
- 74. G. A. Olah, B. G. B. Gupta, S. C. Narang Synthesis 583 (1977)
- 75. M. E. Jung, M. A. Lyster J. Org. Chem **42**, 3761 (1977)
- 76. M. E. Jung, M. A. Lyster J. Am. Chem. Soc. **99**, 968 (1977)
- 77. G. A. Olah, B. G. B. Gupta, S. C. Narang Synthesis 137 (1978)
- 78. M. E. Jung, M. A. Lyster J. Chem. Soc. Chem. Commun. 315 (1978)
- 79. M. E. Jung, M. A. Mazurek, R. M. Lim Synthesis 588 (1978)
- 80. G. A. Olah, R. Malhotra, S. C. Narang Synthesis 58 (1979)
- 81. G. A. Olah, Y. D. Vankar, A. P. Fung Synthesis 59 (1979)

- 82. G. A. Olah, S. C. Narang, B. G. B. Gupta, R. Malhotra Synthesis 61 (1979)
- 83. G. A. Olah, Y. D. Vankar, M. Arvanaghi Synthesis 984 (1979)
- 84. G. A. Olah, S. C. Narang, B. G. B. Gupta, R. Malhotra J. Org. Chem **44**, 1247 (1979)
- 85. G. A. Olah, S. C. Narang Tetrahedron **38**, n°15, 2225 (1982)
- 86. R. P. Bell
 "The proton in chemistry", 2d Ed.: Cornell University Press, Ithca,
 New-York (1973)
- 87. T. L. Ho Synthesis 510 (1975)
- H. L. Finston, A. C. Rychtman
 "A new view of current acid base theories", Ed.: Wiley (1982)
- 89. Knipe
 "The Chemistry of the sulfonium group", pt. 1;
 Wiley: New York 334 (1981)
- 90. R. Livingstone, E. H. Rodd
 "Chemistry of carbon compounds"; Ed. Elsevier publishing compagny, 2d Ed, Chapter 1, vol **IV**, Part A (1973)
- 91. M. Délepine, S. Eschenbrenner Bull. Soc. Chim. Fr. 27, 740 (1920)
- 92. M. Délepine Compt. rend. **171**, 36 (1920)
- 93 a. G. M. Bennet J. Chem. soc. 1803 (1927)

- 93 b. P. Caubère
 "Utilisation des dérivés du soufre en chimie organique" Masson,
 Paris, N. Y., Barcelone, Milan, Mexico, San Paulo (1984)
- 93 c. M. E. Garst, B. J. McBride, A.T. Johnson J. Org. Chem. **48**, 8 (1983)
- 94. V. Cerè, C. Mazzini, C. Paolucci, S. Pollicino, A. Fava Communication to ISOCS 15 (Caen 1992)
- 95. M. Cerf, J. L. Mieloszynski, D. Paquer Sulfur Letters **15**, 61 (1992)
- 96. M. Cerf, J. L. Mieloszynski, D. Paquer Sulfur Letters **16**, 25 (1993)
- 97. E. D. Brown, S. M. Iquedal, L. N. Owen J. Chem. Soc. 415 (1966)
- 98. P. Longevialle
 "Spectrométrie de masse des substances organiques"
 Masson Ed. (1981)
- 99. J. L. Mieloszynski, O. Aberkane, D. Paquer, M. Born, G. Parc Sulfur Letters **9**, 17 (1989)
- 100. S. Es-Seddiki Thèse de Doctorat d'Etat de l'Université de Metz (1986)
- J. L. Mieloszynski, J. V. Weber, M. Schneider, M. Born, G. Parc,
 D. Paquer
 Sulfur Letters 8, 27 (1988)
- J. L. Mieloszynski, O. Aberkane, M. Schneider, D. Paquer, M. Born, G. Parc Sulfur Letters **8**, 31 (1988)
- J. L. Mieloszynski, O. Aberkane, M. Schneider, D. Paquer, M. Born, G. Parc Sulfur Letters **8**, 115 (1988)

- J. M. Poirier, C. Vottero, J. L. Mieloszynski, Z. Achour, M. Schneider, D. Paquer Sulfur Letters 10, 169 (1989)
- M. Schneider, J. L. Mieloszynski, O. Aberkane, D. Paquer,
 J. M. Poirier, C. Vottero
 Sulfur Letters 10, 175 (1989)
- 106. M. Schneider, J. L. Mieloszynski, Y. Fort, D. Paquer Sulfur Letters **14**, 175 (1991)
- 107. R. Benn, N. Gunther Angew. Chem. Int. Ed. **22**. 350 (1983)
- 108. K. Kessler, M. Gehrke, C. Griesinger Angew. Chem. Int. Ed. 27, 490 (1988)
- 109. A. Dorinson, K. C. Ludema
 "Mechanisms and chemistry in lubrication"; vol. 9, Tribology Series
 Ed. Elsevier, New York (1985)
- J. Briant, J. Denis, G. Parc "Propriétés rhéologiques des lubrifiants"; Ed. Technip. (1985)
- 111. F. G. Rounds Asle Trans. **18**, 79 (1989)
- 112. G. W. Kennerly, W. L. Patterson Ind. and Eng. Chem. 48 (1956)
- 113. S. Q. Rizvi, S. Augustin Brevet Americain 308 179 (1989); C. A.: 26143 j
- 114. E. S. Forbes Wear **15**, 87 (1970)
- 115. J. M. Martin, J. M. Georges Revue de l'I.F.P. **30**, 2, 333 (1975)
- 116. P. A. Willermet, L. A. Mahoney, C. M. Bishop Asle Trans. **23**, 215 (1987)

- 117. J. M. Palacios Wear **114**, 41 (1987)
- 118. K. G. Allum, J. F. FordJ. Inst. Petrol. 51, 497, 145 (1965)
- R. W. Hiley, H. A. Spikes, A. Cameron Lubrication Engineering **37**, 12, 732 (1981)
- 120. F. T. Barcroft, D. Park Wear **108**, 215 (1986)
- 121. A. Cameron Proc. Inst. Mech. Eng. 355 (1987)
- M. Born, G. Parc, D. PaquerJ. Chim. Phys. 84, 2, 315 (1987)
- 123. W. Davey, E.D. Edwards Wear **1**, 291 (1957)
- 124. T. Sakurai, S. Ikeda, H. Okabe Asle Trans. **5**, 67 (1962)
- 125. A. Dorinson, V. E. Bronan Asle Trans. **5**, 75 (1962)
- 126. T. Sakurai, S. Ikeda, H. Okabe Asle Trans. **8**, 39 (1965)
- 127. K. G. Allum, E. S. Forbes J. Inst. Petrol. **53**, 174 (1967)
- 128. E. S. Forbes Wear **15**, 87 (1970)
- 129. E. S. Forbes, A. J. Reid Asle Trans. **16**, 50 (1973)

130.	"Tests pour huiles lubrifiantes (propriétés E	.P.)"
	Norme ASTM D 2782-82	

- 131. "Essais de capacité de charge"
 Méthode d'essais PEUGEOT-RENAULT N°1048
- 132. "Evaluation des propriétés A.U. (machine quatre billes), lubrifiants liquides"
 Méthode d'essais PEUGEOT-RENAULT N°1078
- 133. D. Robert Thèse de Doctorat de l'Université de Metz (1994)

Résumé

La réactivité de molécules sulfurées fonctionnalisées vis à vis de systèmes électrophiles (Me3SiI, H⁺) ou nucléophiles (NaI) a été étudiée dans ce mémoire.

Dans ce but, différents composés ont été synthétisés : alcools (poly)sulfurés, halogénures (poly)sulfurés, chlorosulfoxydes et sulfones, polysulfures symétriques et hétérocycles sulfurés (poly)fonctionnalisés.

Grâce à cette étude, nous avons réussi à maîtriser l'influence de différents paramètres sur la réaction et avoir une meilleur approche des mécanismes intervenants dans la formation des produits identifiés.

D'autre part, la réaction a été optimisée afin de favoriser la synthèse de 1,4-dithianes.

Ces travaux ont conduit à de nouveaux produits et permis de mettre en évidence une nouvelle voie d'accès à des molécules polysulfurées.

Abstract

Reactivity of sulfurated functionnalised compounds towards electrophilic (Me3SiI, H^+) or nucleophilic (NaI) systems has been developed in this study.

In a first step, we have prepared: (poly)sulfurated alcohols, (poly)sulfurated halides, chloro-sulfoxides and sulfones, symmetrical polysulfides and polyfunctionnalised heterocycles containing sulfur.

Thus, we controlled the influence of different parameters on the reaction as well as a better understanding of the mechanisms involved in the formation of the identified products.

Moreover, the reaction has been optimised in order to promote the synthesis of 1,4-dithiane.

This works have led to new products and allowed to highlight a new synthetical method for the preparation of polysulfides.

					Distance	RSSR	Divers
Composés de départ	Chlorure	Iodure	A1	A2	Dithiane	/RSR	DIACIS
	ZCl	ZI				/K3K	
						601/701	
n.BuS(CH2)2Cl	101	201	301			602	
i.BuS(CH2)2Cl	102	202	302	100	E00	602	
t.BuS(CH2)2Cl	103	203	303	403	503		704
Cyclo(6)S(CH2)2Cl	104	204	304			604	704
PhS(CH2)2Cl	105	205	305			605	706
BzS(CH2)2Cl	106	206	306			606	706
i.BuS(CH2)3Cl	107	207	307	407		ļ	707,807,90
i.BuS(CH2)4Cl	108	208	308			ļ	708
i.BuS(CH2)5Cl	109	209	309				
i.BuS(CH2)6Cl	110	210	310	410		610	710, 910
i.BuS(CH2)11Cl	111	211	311				711
							<u> </u>
i.BuSCH2CH(CH3)Cl	112	212	312	412			
t.BuSCH2CH(CH3)Cl	113	213	313		513		713
i.BuSCH2C(CH3)2Cl	114	214	314				714
t.BuSCH2C(CH3)2Cl	115	215	315		515		715
BuSCH2C(CH3)2CH2Cl		216					
Duomination, and a second		-					
[i.BuSCH2]2CHCl	117		317				
[t.BuSCH2]2CHCl	118		318				
[t.Duoon2]20110-							
t.BuSS(CH2)2Cl	119	219	319				
t.BuSO(CH2)2C1	120						
t.BuSO2(CH2)2Cl	121	221	1				
<u> </u>							
	+						
			_				
	 			-		1	
e composé 704 correspo	and à Cycle						
		7(0)-1		-			
e composé 706 correspo			andent à	I(CH3)nI	+		
es composés 707, 708,							
e composé 807 correspo	ond a I(CH)	Z)nS(CH2	i)III	2(0110)=1	,		
es composés 907 et 910) correspor	ident a R	S(CH2)III	Т Т	<u> </u>		
Le composé 713 correspo Les composés 714 et 715	ond a RSCI	H25K		1			

•

			ı				
Composés de départ	Cp départ	Iodure	A1	A2	Dithiane	RSSR	Divers
	ZX	ZI				/RSR	
i.BuS(CH2)2Br	122		302				
t.BuS(CH2)2Br	123	223					
3-méthoxythiacyclo-	124						724
hexane							
4,5-diméthoxy-3,3,6,6-	125						
tétraméthylthia-							725
cyloheptane							
i.BuS(CH2)2OH	126						726, 1026
t.BuS(CH2)2OH	127						727,827;927
							1027,1127,122
e composé 724 n'a pu êt							
e composé 725 est le 2-l	(1,1-diméth	yl)-2-hyd	lroxyéthy	yl]-4,4-	diméthylthi	acyclop	entan-3-ol
es composés 726 et 727	correspond	lent à R-S	S-(CH2)2	-O-R			
e composé 827 correspo	nd à R-S-(C	H2)2-S-(CH2)2-C	Н			
e composé 927 correspo	nd à R-S-(C	H2)2-S-(CH2)2-0	-R			
es composés 1026 et 102	27 correspo	ndent à l	R-S-(CH	2)2-0-(CH2)2-S-R		
e composé 1127 corresp	ond à R-S-(CH2)2-S-	(CH2)2-	S-(CH2	2)2-OH	_	
pood 1127 contesp	outa a 17-0-(C112)2-0-	(CDZ)Z-	3-(CH2	2)2-OH 2)2-S-R		