

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l'utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 <u>http://www.cfcopies.com/V2/leg/leg_droi.php</u> <u>http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm</u> b 108052

UNIVERSITE DE METZ INSTITUT DE PHYSIQUE - ELECTRONIQUE ET DE CHIMIE

THESE

présentée pour obtenir le grade de :

DOCTEUR DE L'UNIVERSITE DE METZ

EN PHYSIQUE

par

Abdelmjid EL GHEMMAZ

BIBLI	BIBLIOTHEQUE UNIVERSITAIRE		
N° inv	19960865		
Cote	S/M3 96/43		
Loc	Majaoin		

CONTRIBUTION A L'ETUDE DES PROPRIETES OPTIQUES DES METAUX LIQUIDES PAR ELLIPSOMETRIE SPECTROSCOPIQUE

Soutenue le 17 décembre 1996

JURY

M. B. KHELIFA	Président et rapporteur externe	(Université de Lens)
M. M. CERTIER	Professeur	(Université de Metz)
M. J. G. GASSER	Professeur	(Université de Metz)
M. L. JOHANN	Maître de Conférences	(Université de Metz)
M. R. KLEIM	Professeur (Directeur de thèse)	(Université de Metz)
M. C. REGNAUT	Professeur (Rapporteur externe)	(Université de Paris XII)

à la mémoire de mon père

REMERCIEMENTS

Le travail présenté dans ce mémoire a été réalisé au sein du groupe Optique du Laboratoire de Physique des Liquides et des Interfaces (L.P.L.I).

Je tiens, en premier lieu, à exprimer toute ma reconnaissance à Monsieur le Professeur R. Kleim qui a dirigé cette étude et en a suivi pas à pas l'évolution. Je le remercie pour l'aide constante et le soutient qu'il m'a apporté en me faisant profiter non seulement de ses compétences mais aussi de son enthousiasme.

Je suis très reconnaissant à Monsieur le Professeur J.G. Gasser, directeur du L.P.L.I, de m'avoir accueilli dans ce laboratoire, et de l'honneur qu'il m'a fait en acceptant de faire partie du jury.

Monsieur B. Khelifa, Professeur à l'université de Lens, m'a fait l'honneur de présider le jury de cette thèse. Je le prie de bien vouloir accepter l'expression de ma profonde gratitude.

Je tiens également à remercier Monsieur C. Regnaut, Professeur à l'université de Paris XII, Monsieur M. Certier, Professeur à l'université de Metz et Monsieur L. Johann Maître de Conférences à l'université de Metz de bien avoir voulu accepter de participer à ce jury malgré leurs multiples obligations scientifiques et administratives..

Je voudrais de plus témoigner ma reconnaissance à Monsieur B. Khelifa et Monsieur C. Regnaut d'avoir, de surcroît, accepté d'être les rapporteurs de ce travail.

Je tiens aussi à exprimer ma reconnaissance à Monsieur L. Johann, pour sa collaboration. Les nombreuses et fructueuses discussions que nous avons eues ainsi que son soutient et ses encouragements ont grandement aidé à leur aboutissement.

Mes remerciements s'adressent aussi :

- à A. Pawlowski et S.Bertutcci, ingénieurs C.N.A.M, sans qui l'ellipsomètre spectroscopique n'aurait pu évoluer.

- à C. Louis, ingénieur C.N.A.M, pour son aide en informatique, ses remarques et ses encouragements.

-à J. Lopez et J.C. Humbert, techniciens, pour l'aide qu'ils m'ont apportée, pour leurs compétences techniques, et pour l'amitié qu'ont su me témoigner en maintes occasions.

Je remercie égalament :

- N. Stein et A. En-naciri. Ils ont partagé mes journnées au laboratoire qui auraient été bien moins animées sans leur présence.

- Y. Rundstadler, E. Lamm, L.Kuntzler, A. Guiader et Madame N. Nicolas, Ingénieurs C.N.A.M, pour leurs conseils et leurs encouragements.

- A. Makradi et A. Yazi pour leur aide précieuse et leur soutien moral qui ne m'ont jamais fait défaut.

- Messieurs les Professeurs R. Cressely et F.X. Royer, Messieurs J.P Decruppe, J. Auchet, R. Makhloufi, Y. Grandati; A. Berard, B. Grodidier, Maîtres de conférences, qui m'ont soutenu et encouragé tout au long de mes études.

Enfin, à tous mes collègues de l'IPC, qui ont su me stimuler et encourager tout au long de mes études.

Table des matières

In	trodu	iction		5
1	PRO	OPRIÉ	TÉS OPTIQUES DES MÉTAUX LIQUIDES	7
	1.1	Éléme	nts de la théorie électromagnétique	7
		1.1.1	Equations de Maxwell	7
		1.1.2	Constante diélectrique et conductivité optique	9
		1.1.3	Détermination directe des indices optiques	11
		1.1.4	Coefficient de réflexion et d'absorption	13
		1.1.5	Profondeur de pénétration. Effet de peau	17
	1.2	Théor	ie électronique classique	19
		1.2.1	Absorption et dispersion dans les diélectriques	20
		1.2.2	Dispersion et indice de réfraction	22
		1.2.3	Modèle de l'électron libre	25
	1.3	Trans	itions interbandes. Transitions intrabandes	28
	1.4	Théor	ie électronique quantique	28
		1.4.1	Modèle de Sommerfeld	28
		1.4.2	Equation de Boltzmann et théorie linéaire du transport électronique .	32
		1.4.3	Calcul de la conductivité optique	36
		1.4.4	Calcul du temps de relaxation	38
		1.4.5	Elément de matrice du potentiel diffusant entre les états k et k' \ldots	39
	1.5	Corre	ection de la théorie de Ziman	40
		1.5.1	Niveaux d'énergie	41
		1.5.2	Conductivité et temps de relaxation	44

1

	1.6	Conclu	usion	47
2	ELI	IPSO	MÉTRIE SPECTROSCOPIQUE	49
	2.1	Introd	uction	49
	2.2	Princi	pes de base de l'ellipsométrie	50
	2.3	Calcul	des indices optiques en fonction des angles ellipsométriques	52
	2.4	Différe	ents types d'ellipsomètres	53
		2.4.1	L'ellipsométrie à annulation (ou zéro)	54
		2.4.2	L'ellipsomètre photométrique	56
	2.5	Descri	ption de l'ellipsomètre spectroscopique à polariseur tournant	59
	2.6	Procéd	lure d'alignement	62
	2.7	Expres	sion du flux lumineux reçu par le détecteur	63
		2.7.1	Détermination des angles ellipsométriques	67
		2.7.2	Traitement du signal	68
		2.7.3	Mesure des coefficients de Fourier du signal	70
	2.8	Calibra	age de l'ellipsomètre	71
	2.9	Erreur	s systématiques	72
		2.9.1	Matrices perturbation	73
		2.9.2	Incertitudes sur $ an \Psi$ et $\cos \Delta$	74
		2.9.3	Erreurs d'azimut	76
		2.9.4	Les imperfections des éléments optiques : erreurs d'ellipticité	77
		2.9.5	Autres erreurs systématiques : les fenêtres	79
	2.10	Erreur	s aléatoires	83
		2.10.1	Erreurs duent à la statique du comptage	83
		2.10.2	Erreur aléatoire due au polariseur	84
		2.10.3	Erreur aléatoire due à l'analyseur	84
	2.11	Différe	entes causes d'erreurs	85
		2.11.1	Ouverture du faisceau	85
		2.11.2	Déviation du faisceau par le polariseur	85
		2.11.3	Biréfringence parasite	85
	2.12	Conclu	1sion	86

2_

<u>TABLE DES MATIÈRES</u>

3 RÉSULTATS ET INTERPRÉTATIONS

	3.1	Dispos	sitif expérimental	87
		3.1.1	Introduction	87
		3.1.2	Cellule de mesure	87
	,	3.1.3	Four	88
		3.1.4	Dispositif de purification	92
	3.2	Dérou	lement et contrôle des essais	92
		3.2.1	Préparation des alliages	92
		3.2.2	Mode opératoire	93
	3.3	Choix	du modèle	93
	3.4	Résult	ats et discussion	94
		3.4.1	Généralités	94
		3.4.2	Plomb pur	99
		3.4.3	Etain pur	106
	3.5	Alliage	e étain-plomb	114
	36	Conclu	\mathbf{u} sion	127
	0.0	Concie		14.
Co	nclu	sion g	énérale	129
Co	onclu	sion ge	énérale	129 131
Co An A	onclu inexo Pola	sion ge e A arisatic	énérale on de la lumière	129 131 131
Cc Ar A	nclu nexe Pola	sion ge e A arisatic Généra	énérale on de la lumière alités	129 131 131 131
Co Ar A	nclu nexe Pola A.1 A.2	sion ge e A Arisatic Généra Polaris	énérale on de la lumière alités	129 131 131 131 131 133
Cc Ar A	nclu nexo Pola A.1 A.2 A.3	sion ge e A Généra Polaria Relatio	énérale on de la lumière alités	129 131 131 131 131 133
Co An A	nclu nexo Pola A.1 A.2 A.3	sion ge arisatic Généra Polaris Relatic l'ellips	énérale on de la lumière alités	129 131 131 131 133 133
Co An A	nclu nexo Pola A.1 A.2 A.3 A.4	sion ge arisatic Généra Polaris Relatic l'ellips Calcul	énérale on de la lumière alités sation elliptique on entre les équations paramétriques et les équations géométriques de e	129 131 131 131 133 137 139
Co An A	nclu nexo Pola A.1 A.2 A.3 A.4 A.5	sion ge sion ge e A Arisatic Généra Polaris Relatic l'ellips Calcul Représ	énérale on de la lumière alités	129 131 131 131 133 137 139 139

87

	A.5.2	Matrices de Jones	140
	A.5.3	Vecteur de Stokes	142
A.6	Polar	isation partielle	144
A.7	Matrie	ce de MUELLER	146
	A.7.1	Matrices de Mueller des principaux éléments optiques	147
,			140
Annex	e B		149

Annexe B

В	Réflexion par les surfaces	149
---	----------------------------	-----

.

B.1	Ondes planes monochromatiques polarisées rectilignement	149
B.2	Conditions aux limites	151
B.3	Réflexion et réfraction-Relations de Fresnel	152
	B.3.1 Lois géométriques de la réflexion et de la réfraction	152
	B.3.2 Amplitudes de la vibration réflechie et de la vibration transmise	154
	B.3.3 Mode P	155
	B.3.4 Mode S	156
B.4	Conservation du flux	157
B.5	Incidence normale	159
B.6	Réflexion sur un milieu absorbant	159
référen	ices	161

Liste des figures

Introduction

Ce travail a été effectué dans le Laboratoire de Physique des Liquides et des Interfaces (L.P.L.I), au sein du groupe d'optique.

Le L.P.L.I s'intéresse depuis plusieurs années aux propriétés structurales et de transport électronique des métaux et alliages liquides. La mise en commun des compétences dans le domaine des métaux liquides et de l'optique conduit tout naturellement à élargir les études du laboratoire au domaine pratiquement vierge de l'optique des métaux liquides.

Le choix de la technique de mesure, doit satisfaire aux critères suivants :

- pouvoir être utilisée sur des échantillons se trouvant dans des atmosphères très variées,
- être non destructrive,
- être très sensible,
- se prêter à des mesures in-situ pour des interfaces solide-gaz ou solide-liquide,
- fonctionner à des longueurs d'onde fixes ou en mode spectroscopique.

L'ellipsométrie est une technique optique d'analyse de surface basée sur la mesure de changement d'état de polarisation de la lumière après réflexion sur la surface étudiée. D'après ces mesures on peut calculer, si on dispose d'un modèle approprié, l'indice de réfraction, le coefficient d'absorption, et l'épaisseur d'une couche. C'est une technique qui satisfait à tous les critères énumérés ci-dessus.

Après avoir poursuivi des expériences avec l'ellipsomètre à modulation de phase, nous avons abondonné cette technique, car la détection synchrone utilisée ne permet pas une acquisition rapide. Par contre l'utilisation de technique d'échantillonnage en fait un des ellipsomètres les plus rapides. Nous n'avons pas jugé utile de poursuivre dans cette voie par absence d'infrastructure suffisante dans le domaine de l'électronique numérique.

Nous avons poursuivi par l'ellipsométrie à élément tournant (Analyseur, Polariseur, Compensateur) et notre choix s'est porté sur l'ellipsomètre à polariseur tournant à trois éléments.

Les mesures des propriétés optiques des métaux et alliages liquides sont liées à la résolution d'un certain nombre de problèmes expérimentaux :

- la protection contre l'oxydation des métaux liquides,
- la réactivité entre les métaux et les creusets,
- la pression de vapeur.

L'objectif de ce travail est donc :

- de réaliser une cellule de mesure qui tienne compte des impératifs précédents,
- d'adapter l'ellipsomètre spectroscopique à la mesure avec cette cellule,
- d'appliquer le dispositif à la mesure de l'alliage Sn-Pb, qui s'inscrit dans les préoccupations du laboratoire (métaux polyvalents) et présente un intérêt industriel évident.

Ce mémoire comporte trois parties :

- dans le premier chapitre, nous rappelons la théorie macroscopique et quantique des métaux, ainsi que la justification du modèle théorique employé pour l'interprétation de nos résultats expérimentaux.
- dans le chapitre deux, après avoir rappelé le principe de l'ellipsométrie, nous décrivons notre ellipsomètre.
- enfin, dans le troisième chapitre, nous appliquons l'ellipsométrie à l'étude des propriétés optiques des métaux liquides, notamment à l'étain, au plomb et à l'alliage étain-plomb.

Chapitre 1 PROPRIÉTÉS OPTIQUES DES MÉTAUX LIQUIDES

Nous traitons dans ce chapitre les propriétés optiques dans un métal d'abord dans le cadre de la théorie macroscopique, puis d'un point de vue microscopique.

Tout au long de ce travail, nous utiliserons le système MKSA.

1.1 Éléments de la théorie électromagnétique

1.1.1 Equations de Maxwell

Un champ électromagnétique dans le vide est caractérisé par deux vecteurs : le vecteur champ électrique \overrightarrow{E} et le vecteur champ magnétique \overrightarrow{H} . L'interaction d'un tel champ avec un milieu matériel est décrite par les équations de Maxwell :

$$\vec{\nabla} \wedge \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}$$
 (1.1)

$$\overrightarrow{\nabla} \wedge \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t} \tag{1.2}$$

$$\overrightarrow{\nabla} \overrightarrow{D} = \rho \tag{1.3}$$

$$\overrightarrow{\nabla} \overrightarrow{B} = 0 \tag{1.4}$$

et par les relations constitutives du milieu qui décrivent le comportement de la matière sous l'effet du champ :

$$\overrightarrow{J} = \sigma \overrightarrow{E} \tag{1.5}$$

$$\overrightarrow{D} = \varepsilon \overrightarrow{E}$$
 (1.6)

$$\overrightarrow{B} = \mu \overrightarrow{H} \tag{1.7}$$

où \overrightarrow{D} et \overrightarrow{B} sont respectivement les vecteurs induction électrique et induction magnétique. ρ est la densité de charge électrique.

 \overrightarrow{J} est le vecteur densité locale du courant électrique.

 ε , μ , σ caractérisent la réponse du milieu au champ électromagnétique et sont respectivement, la permittivité, la perméabilité et la conductivité électrique du milieu.

Dans le vide la permittivité ε_0 et la perméabilité μ_0 sont reliées par :

$$c = \sqrt{\varepsilon_0 \ \mu_0}$$

où c est la vitesse de la lumière dans le vide. On peut mettre en évidence l'effet de la matière sur l'onde électromagnétique en écrivant :

$$\varepsilon \overrightarrow{E} = \varepsilon_0 \overrightarrow{E} + \overrightarrow{P} = \varepsilon_0 \varepsilon_r \overrightarrow{E}$$
$$\frac{\overrightarrow{B}}{\mu} = \frac{\overrightarrow{B}}{\mu_0} - \overrightarrow{M} = \frac{\overrightarrow{B}}{\mu_0 \mu_r}$$

où :

 \overrightarrow{P} est la polarisation (le moment dipolaire électrique par unité de volume), \overrightarrow{M} est l'aimantation (le moment magnétique par unité de volume), $\varepsilon_r = \frac{\varepsilon}{\varepsilon_0}$ (ε_r est la constante diélectrique relative, sans dimension), $\mu_r = \frac{\mu}{\mu_0}$ (μ est la perméabilité relative, sans dimension).

Dans le domaine des fréquences optiques, les fréquences du champ sont de l'ordre de grandeur des fréquences propres des vibrations électroniques conduisant à la polarisation électrique. La constante diélectrique ne sera pas seulement une fonction des propriétés du milieu mais aussi de la fréquence.

Les fréquences propres de l'aimantation sont généralement très différentes de celles qui induisent la polarisation. En effet, aux fréquences optiques le processus d'aimantation ne pourra pas "suivre" la variation du champ. Par conséquent, la dispersion sera telle que l'on puisse admettre $\mu_r = 1$.

D'autre part, si les milieux étudiés sont conducteurs, la densité de charge ρ est négligeable, c'est-à-dire que le milieu n'a pas le temps de se polariser.

Pour les milieux isotropes ε , μ et σ sont des scalaires, par contre pour les milieux anisotropes, \vec{E} et \vec{D} n'ont pas en géneral, la même direction, mais leurs projections sont liées par des relations linéaires, les relations de dispersion deviennent plus compliquées en particulier la constante diélectrique est un tenseur.

Pour un milieu isotrope, les équations de Maxwell deviennent :

$$\vec{\nabla} \wedge \vec{H} = \epsilon \frac{\partial \vec{E}}{\partial t} + \sigma \vec{E}$$
(1.8)

$$\vec{\nabla} \wedge \vec{E} = -\frac{1}{\mu} \frac{\partial \vec{H}}{\partial t}$$
(1.9)

$$\overrightarrow{\nabla} \overrightarrow{E} = \mathbf{0} \tag{1.10}$$

$$\overrightarrow{\nabla} \overrightarrow{H} = 0. \tag{1.11}$$

1.1.2 Constante diélectrique et conductivité optique

Les propriétés optiques d'une substance sont déterminées par la réponse du milieu à un champ électromagnétique oscillatoire. Dans le domaine des fréquences du spectre visible $(\omega \ge 10^{14} Hz)$, les forces magnétiques et la polarisation engendrée par le champ magnétique sont très faibles. La réponse est due essentiellement au champ électrique.

Une telle réponse est décrite par la conductivité optique complexe $\hat{\sigma}(\vec{k}, \omega)$ où \vec{k} est le vecteur d'onde associé à l'électron et ω est la pulsation du champ électrique qui est de la forme :

$$\overrightarrow{E} = \overrightarrow{E}_{0} e^{i(\omega t - \overrightarrow{k} \cdot \overrightarrow{r})}.$$
(1.12)

L'application de ce champ fait apparaître une densité de courant \overrightarrow{J} qui lui est proportionnelle

$$\overrightarrow{J} = \widehat{\sigma}(\overrightarrow{k}, \omega) \overrightarrow{E}.$$
(1.13)

Dans le cas d'un milieu *isotrope* comme c'est le cas d'un métal liquide, \overrightarrow{J} et \overrightarrow{E} sont parallèles et $\hat{\sigma}(\overrightarrow{k}, \omega)$ est un scalaire [1].

Dans le domaine des fréquences optiques la vitesse de phase $\frac{\omega}{|\vec{k}|}$ est très supérieure à la vitesse des électrons au niveau de Fermi, et l'on montre que $\hat{\sigma}$ est pratiquement indépendant de \vec{k} ,

$$\hat{\sigma}(\overrightarrow{k},\omega) = \hat{\sigma}(0,\omega) = \hat{\sigma}(\omega)$$

On appelle conductivité optique la partie réelle $\sigma_1(\omega)$ de la conductivité complexe $\hat{\sigma}(\omega)$. A partir de (1.8) et (1.10) on obtient l'équation d'onde :

$$\varepsilon \frac{\partial^2 \overrightarrow{E}}{\partial t^2} + \sigma \frac{\partial \overrightarrow{E}}{\partial t} = \Delta \overrightarrow{E}, \qquad (1.14)$$

le terme $\frac{\partial \overrightarrow{E}}{\partial t}$ traduit l'atténuation de l'onde.

Pour une onde monochromatique de fréquence angulaire ω , l'équation d'onde peut être écrite sous la forme :

$$\Delta \overrightarrow{E}=\widehat{arepsilon}_{oldsymbol{r}}\left(\omega
ight)rac{\partial^{2}\overrightarrow{E}}{\partial t^{2}},$$

où $\hat{\varepsilon}_r(\omega)$ représente la constante diélectrique complexe en fonction de la fréquence du milieu conducteur :

$$\hat{\varepsilon}_r(\omega) = \varepsilon_r - i \frac{\sigma(\omega)}{\varepsilon_0 \omega},$$
(1.15)

les propriétés optiques deviennent identiques à celles du milieu transparent si la quantité $\varepsilon_r = n^2$ est remplacée par :

$$\hat{\varepsilon}_r(\omega) = \hat{n}^2(\omega) = (n - ik)^2, \qquad (1.16)$$

où *n* est l'indice de réfraction et *k* est l'indice d'extinction. Si on remplace dans l'équation (1.8), ε_r par $\hat{\varepsilon}_r(\omega)$, elle devient :

$$\overrightarrow{\nabla} \wedge \overrightarrow{H} = \varepsilon_0 \, \hat{\varepsilon}_r(\omega) \frac{\partial \overrightarrow{E}}{\partial t} + \overrightarrow{J} = \overrightarrow{J}_D + \overrightarrow{J}_C,$$

où \overrightarrow{J}_D est le vecteur courant de déplacement et \overrightarrow{J}_C est le vecteur courant de conduction.

Or, le courant de déplacement dans un milieu conducteur est la somme du courant de déplacement qui existe dans tous les milieux (même dans le vide), et du courant dû à la polarisation induite dans le milieu :

$$\varepsilon_0 \hat{\varepsilon}_r(\omega) \frac{\partial \overrightarrow{E}}{\partial t} = \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t} + \overrightarrow{J} = \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t} + \hat{\sigma}(\omega) \overrightarrow{E}, \qquad (1.17)$$

en posant $\frac{\partial \overrightarrow{E}}{\partial t} = i\omega \overrightarrow{E}$ dans l'équation (1.17), il vient :

$$i\omega \ \varepsilon_0 \ \hat{\varepsilon}_r(\omega) = i\varepsilon_0 \ \omega + \hat{\sigma}(\omega),$$
 (1.18)

on obtient la relation entre la conductivité optique complexe et la constante diélectrique complexe :

$$\hat{\sigma}(\omega) = i\varepsilon_0 \ \omega(\hat{\varepsilon}_r(\omega) - 1). \tag{1.19}$$

Pour des raisons d'écriture on supprimera dorénavant l'indice relarif r pour ε en se rappelant qu'il s'agit toujours de ε_r .

Pour faire apparaître les grandeurs réelles et imaginaires, posons :

$$\hat{\sigma}(\omega) = \sigma_1(\omega) - i\sigma_2(\omega)$$

 \mathbf{et}

$$\hat{arepsilon}(\omega) = arepsilon_1(\omega) - iarepsilon_2(\omega)$$

par identification avec (1.19) on détermine :

$$\sigma_1(\omega) = \varepsilon_0 \, \omega \varepsilon_2(\omega) \tag{1.20}$$

$$\sigma_2(\omega) = \varepsilon_0 \, \omega (1 - \varepsilon_1(\omega)). \tag{1.21}$$

La partie réelle $Re \ \hat{\sigma}(\omega) = \sigma_1(\omega)$ représente le courant en phase avec le champ électrique, c'est la conductivité optique. La partie imaginaire $Im \ \hat{\varepsilon}(\omega) = \varepsilon_2(\omega)$ caractérise l'absorption de l'onde.

1.1.3 Détermination directe des indices optiques

Si l'on considère une onde plane qui se propage dans la direction z, l'équation d'onde dans un métal liquide qui est donnée par l'équation (1.14), devient :

$$\varepsilon \frac{\partial^2 E_x}{\partial t^2} + \sigma \frac{\partial E_x}{\partial t} = \frac{\partial^2 E_x}{\partial z^2},\tag{1.22}$$

où E_x et la composante du vecteur champ électrique \overrightarrow{E} , dont l'expression dans le vide est donnée par l'équation (1.12).

Et d'après les équations (1.8) et (1.9) on trouve :

$$\varepsilon \frac{\partial E_x}{\partial t} + \sigma(\omega) E_x = -\frac{\partial H_x}{\partial z}$$
(1.23)

$$-\frac{\partial H_{\boldsymbol{y}}}{\partial t} = \frac{\partial E_{\boldsymbol{y}}}{\partial z}, \qquad (1.24)$$

où les composantes E_x et H_y ont pour expressions :

$$E_x = E_0 e^{i(\omega t - \frac{\omega \hbar}{c}z)}$$
(1.25)

$$H_{\boldsymbol{y}} = H_0 e^{i(\omega t - \frac{\omega n}{c}z}), \qquad (1.26)$$

en substituant (1.25) et (1.26) dans les équations (1.23) et (1.24) on trouve les relations [6, 2]

$$(i\omega\varepsilon_0 \varepsilon + \sigma(\omega))E_0 = i\omega \varepsilon_0 \hat{n}(\omega)H_0$$
(1.27)

$$H_0 = \hat{n}(\omega)E_0, \tag{1.28}$$

d'où :

$$\hat{n}^2(\omega) = \varepsilon - i \frac{\sigma(\omega)}{\varepsilon_0 \, \omega}.$$
(1.29)

En séparant les parties réelle et imaginaire dans les équations (1.28) et (1.29), on trouve

$$\varepsilon_1(\omega) = n^2 - k^2 \tag{1.30}$$

$$\varepsilon_2(\omega) = 2nk. \tag{1.31}$$

où n est l'indice de réfraction et k est l'indice d'extinction.

A partir des équations (1.30) et (1.31) on peut exprimer n et k en fonction de ε_1 et ε_2

$$n = \left\{ \frac{1}{2} \left(\varepsilon_1 + \sqrt{\varepsilon_1^2 + \varepsilon_2^2} \right) \right\}^{1/2}, \qquad (1.32)$$

$$k = \left\{ \frac{1}{2} \left(-\varepsilon_1 + \sqrt{\varepsilon_1^2 + \varepsilon_2^2} \right) \right\}^{1/2}.$$
 (1.33)

Si \hat{n} est écrit sous la forme :

$$\hat{n} = \sqrt{n^2 + k^2} \, e^{-i\gamma},\tag{1.34}$$

où la différence de phase γ entre \overrightarrow{E} et \overrightarrow{H} est donnée par :

$$\tan\gamma = \frac{k}{n},\tag{1.35}$$

et compte tenu de (1.16), (1.34) et (1.35) les équations (1.25) et (1.26) peuvent s'écrire sous la forme :

$$E_x = E_0 e^{i(\omega t - \frac{\omega}{c}(n - ik)z)} = E_0 e^{-\frac{\omega kz}{c}} e^{i(\omega t - \frac{\omega nz}{c})}$$
$$H_y = \hat{n}E_0 e^{i(\omega t - \frac{\omega}{c}(n - ik)z)} = \sqrt{n^2 + k^2}E_0 e^{-i\gamma} e^{i(\omega t - \frac{\omega nz}{c})},$$

et les parties réelles sont données par :

$$E_x = E_0 e^{-\frac{\omega kz}{c}} \cos(\omega t - \frac{\omega nz}{c}) = E_0 e^{-\frac{2\pi k}{\lambda}z} \cos(\omega t - \frac{\omega nz}{c})$$
$$H_y = \sqrt{n^2 + k^2} E_0 e^{-\frac{2\pi k}{\lambda}z} \cos(\omega t - \frac{\omega nz}{c} - \gamma),$$

d'après ces équations, l'indice d'absorption k, décrit l'amortissement de l'onde, puisque l'amplitude décroît d'un facteur e sur une longueur égale à $\frac{\lambda}{2\pi k}$. Cette distance permet de mesurer la profondeur de pénétration dans le métal.

1.1.4 Coefficient de réflexion et d'absorption

Compte tenu de (1.16) on peut écrire l'équation du champ électrique dans le milieu conducteur [3, 4]:

$$\overrightarrow{E} = \overrightarrow{E}_{0} e^{i(\omega t - \frac{\omega}{c}\hat{n}z)} = \overrightarrow{E}_{0} e^{-(\frac{\omega k}{c}z)} e^{i\omega(t - \frac{n}{c}z)}, \qquad (1.36)$$

l'expression (1.36) décrit l'onde de pulsation ω se propageant à la vitesse $\frac{c}{n}$ et s'amortissant suivant la loi $e^{-(\frac{\omega}{c}kz)}$.

Dans la pratique on mesure le flux de la lumière, qui est proportionnel au carré de l'amplitude du champ électrique (ou magnétique) de l'onde électromagnétique. L'expression (1.36) montre que la puissance de l'onde lumineuse se propageant dans un métal décroît avec la profondeur d'après la loi :

$$I(z) \simeq e^{\frac{-2\omega k}{c} z} = e^{-\alpha z}, \qquad (1.37)$$

où $\alpha = 2\omega k \frac{z}{c} = 4\pi \frac{k}{\lambda}$, et λ est la longueur d'onde dans le vide. La grandeur α s'appelle coefficient d'absorption et

Figure 1.1: Réflexion normale : interface vide-métal

s'exprime en m^{-1} .

Le coefficient de réflexion R qui décrit la partie de la lumière réfléchie par le métal est déterminé par la relation :

$$R = \frac{I_r}{I_i}.$$
 (1.38)

Considérons le cas de la réflexion normale, à l'interface de deux milieux, il y a superposition des ondes incidente, refléchie et refractée.

Le champ électrique dans le milieu (z > 0) est donné par :

$$\overrightarrow{E}_{x} = \overrightarrow{E}_{0} e^{i\omega(t - \frac{\hat{n} \cdot z}{c})}, \qquad (1.39)$$

pour (z < 0) le champ électrique est une superposition de l'onde incidente et de l'onde réfractée :

$$\overrightarrow{E}_{x} = \overrightarrow{E}_{1}e^{-i\omega(t-\frac{z}{c})} + \overrightarrow{E}_{2}e^{i\omega(t-\frac{z}{c})}.$$
(1.40)

En appliquant les conditions aux limites à z = 0, il y a continuité des composantes tangentielles de \overrightarrow{E} et \overrightarrow{H} ,

$$\vec{E}_{0} = \vec{E}_{1} + \vec{E}_{2}$$
$$\vec{H}_{0} = \vec{H}_{1} + \vec{H}_{2}.$$

Cette dernière relation donne, par l'intermédiaire de l'équation (1.10) :

$$-\hat{n}E_0 = E_2 - E_1$$

le coefficient de réflexion est donné par le rapport des flux incident et réfléchi :

$$R = \frac{|E_2|^2}{|E_1|^2} = \left|\frac{1-\hat{n}}{1+\hat{n}}\right| = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}.$$
(1.41)

La dépendance des indices optiques avec la fréquence, montre qu'elle joue un rôle important dans le comportement du milieu, et selon la fréquence du champ, le milieu peut être absorbant ou transparent.

Si la fréquence est très basse, la valeur approchée de l'indice de réfraction complexe est

$$\hat{n}^2(\omega) \simeq i \frac{\sigma_1(0)}{\varepsilon_0 \,\omega} \tag{1.42}$$

d'où

$$\hat{n}(\omega) \simeq \sqrt{\frac{\sigma_1(0)}{2 \,\varepsilon_0 \,\omega}} (1+i),$$
(1.43)

les parties réelle et imaginaire de \hat{n} sont du même ordre de grandeur, et avec une partie imaginaire aussi grande, l'onde s'amortit rapidement dans le métal. Le milieu est absorbant.

D'après (1.32) et (1.33) on trouve :

$$n = k \simeq \sqrt{\frac{\sigma_1(0)}{2 \varepsilon_0 \omega}},\tag{1.44}$$

et par conséquent la valeur approchée du coefficient de réflexion peut se mettre sous la forme

$$R \simeq 1 - \frac{2}{n} + \frac{1}{n^2} + \dots$$
(1.45)

Et d'après la loi de conservation d'énergie, on a :

$$R + A + T = 1$$

l'énergie de l'onde incidente est égale à la somme de l'énergie réfléchie, transmise, et absorbée. Pour les métaux, la réflexion est le régime dominant pour les fréquences du visible, et le terme T est négligeable, on a donc :

$$R \simeq 1 - A$$

avec

$$R \simeq 1 - 2\sqrt{\frac{2\,\varepsilon_0\,\omega}{\sigma_1(0)}} \tag{1.46}$$

$$A \simeq 2\sqrt{\frac{2\varepsilon_0 \,\omega}{\sigma_1(0)}},\tag{1.47}$$

l'équation (1.46) est connue sous le nom de relation de Hagen-Rubens.

On a $A \ll R$, ce qui explique les propriétés réfléchissantes du métal. D'après l'équation (1.46), on note que l'énergie absorbée est inversement proportionnelle à la racine carrée de la conductivité, A diminue quand la conductivité augmente.

La relation de Hagen-Rubens n'est pas vérifiée expérimentalement dans le visible, mais est bien vérifiée dans la région des microondes et l'infra rouge lointain comme le montrent les résultats obtenus par Hagen-Rubens en 1903 pour des longueurs d'onde supérieures à 8μ m [9] :

Métal	Ag	Cu	Ni	Hg
$R \times 10^{-2}$ calculé	1,15	1,27	3,16	7,55
$R \times 10^{-2}$ mesuré	1,13	1,17	3,2	7,66

Tableau 1.1: Valeurs de R

1.1.5 Profondeur de pénétration. Effet de peau

On a vu que les propriétés d'un métal liquide changent avec la fréquence. D'après l'équation (1.36) on remarque que l'amplitude du champ électrique est atténuée exponentiellement au fur et à mesure de la propagation de l'onde dans le milieu. Cette atténuation est caractérisée par la distance δ correspondant à un rapport de flux égal à $\frac{1}{e}$. C'est le phénomène de l'effet de peau, et δ est appelé la profondeur de pénétration (ou épaisseur de peau).

L'amplitude, équation (1.36), est de la forme :

$$\overrightarrow{E}_0 e^{-\frac{\omega k}{c}z} = \overrightarrow{E}_0 e^{-\frac{z}{\delta}}.$$

. Aux basses fréquences

La profondeur de pénétration est donnée par :

$$\delta = \frac{c}{k\omega} = \sqrt{\frac{2\,\varepsilon_0\,c^2}{\omega\,\sigma_1(0)}},\tag{1.48}$$

cette relation n'est valable que dans le cas où $\omega \tau$ est très inférieur à un et si $\frac{\varepsilon_0 \omega}{\sigma_1(0)}$ est aussi très inférieur à un, ce qui correspond à :

$$\omega \ll \frac{1}{\tau}$$

 \mathbf{et}

$$\omega \ll \frac{\sigma_1(0)}{\varepsilon_0}$$

où τ est le temps de relaxation.

Pour avoir un ordre de grandeur des basses fréquences, nous considérons le cas du cuivre :

A température ordinaire, la conductivité mesurée est $\sigma = 5,76 \times 10^7 (\Omega m)^{-1}$, et le nombre d'électrons par unité de volume $N = 8,5 \times 10^{28} m^{-3}$.

Nous obtenons le temps de relaxation $\tau = 2, 4 \times 10^{-14} s$, et $\frac{\sigma_1(0)}{\varepsilon_0} = 6, 5 \times 10^{18} s^{-1}$.

Donc pour des fréquences inférieures à $10^{12}s^{-1}$, le cuivre aura le comportement basse fréquence.

. Aux hautes fréquences

la conductivité dépend de la fréquence et la relation (1.48), prend la forme :

$$\delta = \frac{c}{k\omega} = \sqrt{\frac{2\,\varepsilon_0\,c^2}{\omega\,\sigma_1(\omega)}},\tag{1.49}$$

La relation locale (1.16) et l'effet de peau normal sont de bonnes approximations, si :

• le libre parcours moyen L_m est très inférieur à la profondeur de pénétration : $L_m \ll \delta$, ce qui est le cas des métaux liquides, sauf les monovalents, ou dans le domaine du spectre optique, L_m est de l'ordre de 10Å

ou si :

• $\frac{v_f}{\omega} \ll \delta$ où, v_f est la vitesse de *Fermi*. C'est le cas des métaux liquides monovalents. Pour des longueurs d'onde inférieures à 2, 5 μ m, $\frac{v_f}{\omega}$ n'excède pas 10Å.

Quand la fréquence augmente, la conductivité optique diminue et la profondeur de pénétration devient inférieure au libre parcours moyen des électrons, on a alors l'effet de peau anormal, qui fut suggéré pour la première fois par *Pippare* [12], et étudié théoriquement par *Reuter* et *Sondheimer* [22]. Il se produit quand δ devient inférieur au libre parcours moyen des électrons. Dans ce cas, l'approximation dans la relation (1.48) n'est plus valable.

Cependant, pour les métaux liquides, dans le visible et le proche infrarouge, on a toujours l'effet peau normal.

Conclusion

La théorie électromagnétique nous permet de déterminer, pour chaque longueur d'onde, les deux constantes optiques n et k. Cette théorie est insuffisante quand on tient compte du phénomène de dispersion.

En résumé pour que la théorie électromagnétique soit complète il faudrait :

• faire une étude plus détaillée du mécanisme de la conduction des électrons libres sous l'influence d'un champ électrique oscillant de pulsation ω ,

• prendre en considération les électrons liés (électrons du cœur).

Malgré tout cela, la théorie électromagnétique ne peut pas être complètement satisfaisante et il faut faire intervenir la mécanique quantique pour pouvoir établir un lien entre les propriétés atomiques des métaux et leurs constantes optiques.

1.2 Théorie électronique classique

La théorie classique de la conduction dans les métaux est basée sur les approximations suivantes :

- Les électrons constituent un gaz électronique parfait soumis à l'agitation thermique caractérisée par le libre parcours moyen L_m et par le temps de relaxation τ .
- Les électrons échangent continuellement de l'énergie et de l'impulsion avec les ions du réseau, ce qui se traduit par un équilibre thermodynamique avec celui-ci.
- L'application d'un champ électrique superpose un mouvement ordonné des électrons et fait apparaître un courant électrique.

En l'absence d'un champ électrique \overrightarrow{E} et d'un gradient de température $\overrightarrow{\nabla T}$, les électrons d'un métal possèdent une vitesse de nature thermique et de moyenne vectorielle nulle.

Entre deux chocs successifs, dans les conditions citées ci-dessus, les électrons ont une vitesse thermique V_t non nulle donnée par la distribution de Maxwell. L'établissement d'un champ électrique \vec{E} s'accompagne d'un courant électrique de vecteur densité \vec{J} tel que :

$$\vec{J} = \frac{N \ e^2 \tau}{m} \vec{E} , \qquad (1.50)$$

On retrouve la loi d'Ohm qui donne le courant comme proportionnel au champ électrique. La constante de proportionnalité est la conductivité électrique $\sigma(0)$:

$$\sigma(0) = \frac{N \ e^2 \ \tau}{m}.\tag{1.51}$$

où N est le nombre d'électrons par unité de volume.

Cette expression fut établie par *Drude* dans le cadre de la théorie classique où l'électron ne suit pas le *principe de Pauli*.

Il en résulte que la dépendance en température de la résistivité établie sur cette base est erronée.

En outre, l'estimation de la *chaleur spécifique* n'est pas correcte. Les processus d'émission thermoélectrique et photoélectrique, ne peuvent être expliqués dans le cadre de la théorie classique.

1.2.1 Absorption et dispersion dans les diélectriques

Dans la théorie de dispersion, le milieu peut être considéré comme s'il était constitué d'un grand nombre d'électrons mobiles dans un champ extérieur périodique [2, 8].

Selon la théorie de *Lorentz* les milieux diélectriques contiennent des électrons liés par des forces quasi-élastiques, et ont donc une fréquence propre d'oscillation.

L'équation de mouvement d'un électron de masse m placé dans un champ électromagnétique sinusoïdal d'une onde polarisée linéairement (\vec{E} ne change pas de direction) est du type :

$$m\ddot{x} + m\gamma\dot{x} + m\omega_0^2 x = eE_{0x} e^{i\omega t}, \qquad (1.52)$$

où x est le déplacement de l'électron parallèle à la direction de \overrightarrow{E} . \ddot{x} represente l'accélération.

- Le deuxième terme du premier membre de l'équation (1.52) décrit le frottement dû à la relaxation (la force proportionnelle à la vitesse de l'électron),
- le troisième membre représente la force de rappel supposée la même dans toutes les directions (proportionnelle au déplacement de l'électron), cas de l'oscillateur isotrope (la force de rappel est la même dans toutes les directions),
- le membre de droite représente la force due au champ électrique extérieur (le champ local est négligé),
- $\gamma = \frac{1}{\tau}$ représente la constante d'amortissement et τ est le temps de relaxation.

Le déplacement oscille avec la fréquence du champ et nous pouvons poser,

$$x = x_0 e^{i\omega t}. (1.53)$$

En substituant $\dot{x} = i\omega x$ et $\ddot{x} = -\omega^2 x$, dans l'équation (1.52), nous pouvons calculer x en fonction de E, on trouve :

$$x = \frac{\frac{e}{m}E_x}{\omega_0^2 - \omega^2 + i\omega\gamma}.$$
 (1.54)

Par définition la densité de courant J est liée à la vitesse de translation des électrons par la relation :

$$J = N \ e\dot{x},\tag{1.55}$$

A partir des équations (1.53), (1.54) et (1.55) on détermine l'expression de J:

$$J = \frac{N e^2}{m} \frac{\omega^2 \gamma + i\omega(\omega_0^2 - \omega^2)}{\sqrt{(\omega_0^2 - \omega^2)^2 + \omega^2 \gamma^2}} E_{0x} e^{i\omega t}.$$
 (1.56)

La conductivité complexe (milieu absorbant) est exprimé par :

$$\hat{\sigma}(\omega) = \sigma_1(\omega) - i\sigma_2(\omega) = \frac{N e^2}{m} \frac{\omega^2 \gamma + i\omega(\omega_0^2 - \omega^2)}{\sqrt{(\omega_0^2 - \omega^2)^2 + \omega^2 \gamma^2}}.$$
(1.57)

Les parties réelle et imaginaire de la conductivité complexe, ont pour expression :

$$\sigma_1(\omega) = \frac{N e^2}{m} \frac{\omega^2 \gamma}{(\omega_0^2 - \omega^2)^2 + \omega^2 \gamma^2}$$
(1.58)

$$\sigma_2(\omega) = \frac{N e^2}{m} \frac{\omega(\omega_0^2 - \omega^2)}{(\omega_0^2 - \omega^2)^2 + \omega^2 \gamma^2}.$$
 (1.59)

L'application d'un champ électrique polarise les atomes et crée un moment dipolaire, proportionnel au champ électrique. La polarisation P est donnée par :

$$P=N p=N \alpha E,$$

la constante α est appelée la polarisabilité atomique et p est le moment dipolaire induit.

$$P = N \ e \ x = \frac{N \ e^2}{m} \frac{1}{\omega_0^2 - \omega^2 + i\omega\gamma} E_{0x} e^{i\omega t}.$$
 (1.60)

On en déduit la polarisabilité atomique et l'indice de réfraction complexe :

$$\hat{\alpha}(\omega) = \varepsilon_0(\hat{\varepsilon}(\omega) - 1) = \frac{N e^2}{m} \frac{1}{\omega_0^2 - \omega^2 + i\omega\gamma}.$$
(1.61)

$$\hat{n}^2(\omega) = \hat{\varepsilon}(\omega) = 1 + \frac{N \ e^2}{\varepsilon_0 \ m} \frac{1}{\omega_0^2 - \omega^2 + i\omega\gamma}.$$
(1.62)

1.2.2 Dispersion et indice de réfraction

Les parties réelle et imaginaire de la constante diélectrique déduite à partir de l'équation (1.62) sont :

$$\varepsilon_1(\omega) = n^2 - k^2 = 1 + \frac{N e^2}{\varepsilon_0 m} \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + \omega^2 \gamma^2},$$
(1.63)

$$\varepsilon_2(\omega) = 2nk = rac{N e^2}{\varepsilon_0 m} rac{\omega \gamma}{(\omega_0^2 - \omega^2)^2 + \omega^2 \gamma^2}.$$
 (1.64)

Si on considère un milieu transparent, ce qui correspond à :

$$\omega^2 \gamma^2 \ll (\omega_0^2 - \omega^2)^2,$$

alors $\varepsilon_1(\omega)$ est positif et $k \simeq 0$, et la relation de dispersion devient :

$$n^{2}(\omega) = 1 + \frac{N e^{2}}{\varepsilon_{0} m} \frac{1}{\omega_{0}^{2} - \omega^{2}} = 1 + \frac{\omega_{p}^{2}}{\omega_{0}^{2} - \omega^{2}},$$
(1.65)

l'indice de réfraction est réel.

$$\omega_{p}=\sqrt{rac{N~e^{2}}{arepsilon_{0}~m}}$$
 est la fréquence de plasma.

Ainsi, pour un système transparent, l'indice de réfraction est supérieur à l'unité, ce qui caractérise la majorité des cristaux ioniques et moléculaires dans le visible.

Les atomes ont plusieurs fréquences naturelles, chaque fréquence a sa propre constante de dissipation γ . En outre, "l'intensité" effective des modes est différente, ce dont il faut rendre compte en multipliant la polarisabilité pour chaque fréquence par la force d'oscillateur f. Dans ce cas la relation de dispersion est donnée par :

$$\hat{n}^2(\omega) = 1 + \frac{N e^2}{\varepsilon_0 m} \sum_i \frac{f_i}{\omega_{0i}^2 - \omega^2 + i\omega\gamma_i}.$$
(1.66)

En plus, si $n - 1 \ll 1$, alors :

$$n^{2}-1 = (n-1)(n+1) = 2(n-1),$$
 (1.67)

et l'équation (1.66) est de la forme :

$$\hat{n}(\omega) = 1 + \frac{Ne^2}{2\varepsilon_0 m} \sum_i \frac{f_i}{\omega_{0i}^2 - \omega^2 + i\omega\gamma_i},$$
(1.68)

Si la fréquence est suffisament éloignée de toute fréquence propre ω_{0i} du milieu, on peut alors négliger $\omega\gamma$ par rapport à $\omega_{0i}^2 - \omega_i^2$ dans l'équation (1.66), l'indice devient réel et on est dans une région de transparence avec une dispersion donnée par [4]:

$$n^{2}(\omega) = 1 + \frac{N e^{2}}{\varepsilon_{0} m} \sum_{i} \frac{f_{i}}{(\omega_{0i}^{2} - \omega^{2})}.$$
(1.69)

Considérons la forme générale de la courbe de dispersion (1.2):

- Dans la région de transparence n va toujours en augmentant lorsque la fréquence augmente (dispersion normale).
- A très basse fréquence ($\omega \ll \omega_{0i}$) l'indice de réfraction est presque constant (constante diélectrique statique),

$$\hat{n}(\omega) = 1 + \sum_{i} f_{i} \frac{\omega_{p}^{2}}{\omega_{0i}^{2}}, \qquad (1.70)$$

- Au voisinage de la première bande d'absorption, l'indice de réfraction croît rapidement et chute après jusqu'à une valeur minimale à partir de laquelle il croît de nouveau.
- Dans la région d'absorption $\sigma_1(\omega)$ est non nul et α a une valeur maximale pour :

$$\omega = \omega_0 - \gamma/2. \tag{1.71}$$

En substituant (1.71) dans les équations (1.58) et (1.61) on trouve:

$$\sigma_1(\omega)=rac{N\,e^2}{2m\gamma}, \qquad \qquad lpha(\omega)=rac{N\,e^2}{2m\gamma}rac{1}{\omega},$$

qui correspond à la région d'absorption $\sigma_1(\omega) = \omega \alpha$, et les équations (1.63) et (1.64) prennent la forme :

$$arepsilon_1=n^2-k^2=1+rac{lpha}{arepsilon_0}\qquad \qquad arepsilon_2=2nk=rac{lpha}{arepsilon_0}.$$

Figure 1.2: Variation de la conductivité optique et de la polarisabilité en fonction de la fréquence

• Si $\omega = \omega_0$, alors $\alpha = 0$ et $\varepsilon_1 = 1$ et la conductivité σ_1 est maximale :

$$\sigma_{1 max} = \frac{N e^2}{m \gamma}.$$

et:

$$n = 1/2 \sqrt{1 + \sqrt{1 + (\frac{\sigma_{max}^2}{\varepsilon_0 \,\omega})^2}}$$
(1.72)

$$k = 1/2 \sqrt{-1 + \sqrt{1 + (\frac{\sigma_{max}^2}{\varepsilon_0 \,\omega})^2}}.$$
 (1.73)

Figure 1.3: relation de dispersion

- Quand on approche de la deuxième zone d'absorption α décroît jusqu'à sa valeur minimale $\omega = \omega_0 + \gamma/2$ et en même temps n et k décroissent.
- Quand $\alpha = -\varepsilon_0$ on a $\varepsilon_1 = 0$ et vu les équations(1.72) et (1.73), on a $n = k = \sqrt{\frac{\sigma_{max}^2}{2\nu_0}}$.

La conductivité $\sigma_1(\omega)$ est de nouveau nulle quand $\omega - \omega_0 \gg \gamma$ et le milieu est transparent.

Le signe de ε_1 détermine si le milieu est transparent ou réfléchissant.

 α tend vers zéro comme $\frac{1}{\omega^2 - \omega_0^2}$, ε_1 est donc nécessairement positif à des fréquences assez élevées, et le milieu est transparent dans cette région.

1.2.3 Modèle de l'électron libre

La théorie classique des propriétés optiques des métaux, basée sur le modèle de l'électron libre, a été développée par *Drude* [11], *Zener* [23] et *Kronig* [25]. Dans le paragraphe précédent, nous avons discuté de la théorie de dispersion et de l'absorption des électrons liés par des forces quasi-élastiques. Dans le cadre de la théorie de l'électron libre, le système se comporte comme un ensemble d'oscillateurs de fréquences propres égales à zéro. L'équation (1.52) devient alors :

$$m\ddot{x} + m\gamma\dot{x} = eE_{0x}e^{i\omega t}.$$
(1.74)

Drude suppose que le métal est constitué d'un gaz d'électrons libres mobiles entre les ions qui forment le réseau. Ces électrons sont en équilibre thermique avec les ions. Lorsqu'on applique un champ électrique constant, les électrons sont accélérés dans la direction du champ et créent un courant électrique.

En posant $\omega_0 = 0$ dans les équations (1.58) et (1.63) on en déduit les expressions de :

$$\sigma_1(\omega) = \frac{N e^2}{m} \frac{\gamma}{\omega^2 + \gamma^2} = \frac{\gamma^2}{\omega^2 + \gamma^2} \sigma(0), \qquad (1.75)$$

$$\varepsilon_1(\omega) = n^2 - k^2 = 1 - \frac{N e^2}{\varepsilon_0 m} \frac{1}{\omega^2 + \gamma^2},$$
(1.76)

si $\omega = 0$ on retrouve l'expression de Drude :

$$\sigma_1(\omega) = \sigma(0) = \frac{N e^2}{m\gamma}.$$
(1.77)

Si on compare les équations (1.75) et (1.76) aux équations (1.58) et (1.63), on remarque qu'elles sont identiques pour $\omega_0 = 0$, ce qui signifie que les électrons libres ont les mêmes propriétés optiques que les diélectriques pour les hautes fréquences.

Si ε_1 est négatif, se qui correspond à n = 0 et $k = \sqrt{|\varepsilon_1|}$ la réflexion est métallique.

Si l'on considère un métal parfait dans lequel le libre parcours moyen L_m et le temps de relaxation τ sont infinis, le réseau n'échange pas d'énergie avec les électrons et n'absorbe pas d'énergie associée au champ électromagnétique. L'expression de l'indice de réfraction pour un tel métal est obtenue à partir de l'équation (1.65) en posant $\gamma = 0$ on obtient :

$$\hat{n}^{2}(\omega) = 1 - \frac{N \ e^{2}}{\varepsilon_{0} \ m \ \omega^{2}} = 1 - (\frac{\omega_{p}}{\omega})^{2}$$
 (1.78)

La dépendance des indices optiques avec la fréquence, montre que la fréquence joue un rôle important dans le comportement du milieu : - pour $\omega < \omega_p$ l'indice du métal a une partie imaginaire et les ondes sont amorties, le métal est absorbant,

- pour $\omega \gg \omega_p$ l'indice de réfraction est réel et le métal devient transparent.

Le modèle de Drude-Zener sert de base pour expliquer les propriétés physiques des métaux alcalins mesurées par Wood [10].

Zener a montré que le modèle du métal parfait pouvait être utilisé pour déterminer approximativement la fréquence pour laquelle le métal devient transparent, et en accord avec (1.78), la fréquence correspondante est donnée par :

$$\omega' = \sqrt{\frac{N \ e^2}{\varepsilon_0 \ m}}.\tag{1.79}$$

On considère trois régions du spectre optique :

1) $\gamma \gg \omega$: c'est la région d'absorption, on obtient facilement à partir des équations (1.75) et (1.76) les résultats suivants :

$$n^{2} \simeq \frac{N e^{2}}{\varepsilon_{0} m \gamma^{2}} \left\{ -1 + \sqrt{1 + (\frac{\gamma}{\omega})^{2}} \right\} \simeq \frac{N e^{2}}{2 \varepsilon_{0} m \gamma \omega}$$
(1.80)

$$k^{2} \simeq \frac{N e^{2}}{\varepsilon_{0} m; \gamma^{2}} \left\{ 1 + \sqrt{1 + (\frac{\gamma}{\omega})^{2}} \right\} \simeq \frac{N e^{2}}{2 \varepsilon_{0} m \gamma \omega}.$$
 (1.81)

Ces expressions peuvent être simplifiées à l'aide des équations (1.77), et on trouve

$$n = k = \sqrt{\frac{\sigma(0)}{2 \,\varepsilon_0 \,\omega}},\tag{1.82}$$

si on substitue (1.82) dans (1.41), on obtient les expressions de R et de A données par (1.46) et (1.47).

2) $\omega \sim \omega' \gg \gamma$: dans ce cas $\varepsilon_2 = 0$, ω est supérieur à γ d'un facteur 100 donc, on peut négliger γ devant ω et l'équation (1.76) devient :

$$n^2 - k^2 = 1 - \frac{N e^2}{\varepsilon_0 m \omega^2}$$

3) $\omega' \gg \omega \gg \gamma$: Les valeurs de $\sigma_1(\omega)$ et $\varepsilon_1(\omega)$ données par (1.75) et (1.76) dans cette région sont :

$$egin{aligned} \sigma_1(\omega) &= rac{N\,e^2\,\gamma}{m\,\omega^2} = (rac{Ne^2}{m\,\omega})^2rac{1}{\sigma(0)} \ arepsilon_1(\omega) &= 1 - rac{N\,e^2}{arepsilon_0\,m\,\omega^2} \end{aligned}$$

1.3 Transitions interbandes. Transitions intrabandes

Dans le paragraphe précédent, on a calculé la conductivité complexe en fonction de la fréquence. En générale la conductivité se compose de deux parties indépendantes qui sont dues à l'absorption par les électrons "quasi libres" de conduction à l'intérieur d'une bande, d'une part (absorption intrabande) et par des électrons liés passant d'une bande à une autre (absorption interbande) d'autre part. La conductivité totale est la somme des deux contributions [26] :

$$\sigma(\omega) = \sigma_D(\omega) + \sigma_{IR}(\omega).$$

où σ_D est la conductivité déterminée par le modèle de Drude et représentant l'absorption intrabande, et σ_{ID} représente l'absorption interbande.

Pour déterminer la structure interbande, on soustrait la contribution intrabande de la conductivité expérimentale totale. Il est donc important d'utiliser un modèle acceptable pour cette contribution intrabande.

1.4 Théorie électronique quantique

1.4.1 Modèle de Sommerfeld

Pour tenter de remédier aux insuffisances de la théorie classique, Sommerfeld a introduit \mathcal{J} les hypothèses suivantes :

- r les électrons sont dans un puits de potentiel limité par des barrières verticales (surface de l'échantillon).
 - La profondeur du puits est caractérisée par l'énergie d'un électron au repos E_0 . Selon les métaux E_0 varie entre -5 et -10eV.

- Ils sont libres à l'intérieur du métal et n'en sortent pas facilement. L'émission thermoélectrique ne devient importante qu'aux températures élevées. Quant à l'effet photoélectrique, il présente un seuil, le plus souvent dans l'UV.
- La fonction d'onde associée à un électron est nulle à l'extérieur du métal et par continuité elle est nulle aussi à la surface du métal.
 - Pour tenir compte du potentiel périodique du réseau (interaction électron-réseau), on fait coincider le fond du puits de potentiel avec sa valeur moyenne.
 - Les électrons ne sont soumis à aucune force, ils sont donc libres (potentiel constant). Avec cette hypothèse, le réseau disparaîtra et la seule grandeur caractérisant le métal sera la densité des électrons $\frac{N_a.Z}{V}$ (N_a est le nombre d'atomes par unité de volume V; Z est le nombre d'électrons par atome).
- Les électrons sont soumis au principe de Pauli, ils suivent la distribution de Fermi-Dirac.
 - Les chocs ont lieu sans échange d'énergie, ils sont élastiques. Les changements d'état quantique ne concernent que la surface de *Fermi*.
 - La neutralité électrique est satisfaite en introduisant la charge positive du réseau.
 On devra tenir compte des interactions coulombiennes entre charges. Celles-ci sont supposées distribuées uniformément dans le volume V avec une densité égale à :

$$\frac{Z N_a e}{V}$$

 \land La théorie quantique des électrons dans un métal, peut être basée sur le formalisme des pseudo-potentiels. Dans cette approche l'interaction électron-ion dans le métal est exprimée en fonction d'un potentiel effectif appelé pseudo-potentiel. Si ce pseudo-potentiel est faible, on peut utiliser la théorie des perturbations [14, 15].

⊾ La distribution des électrons du cœur dans les métaux simples (alcalins) est la même que pour les atomes libres, et les électrons de conduction résultent des électrons de valence des orbitales s et p. Dans l'étude des interactions électron-ion, l'énergie potentielle d'un électron est exprimée en fonction des potentiels des ions $w(\overrightarrow{r})$ à symétrie sphérique. Si les N ions sont localisés aux points R_1, R_2, \ldots, R_N , le potentiel total $W(\overrightarrow{r})$ est de la forme :

$$W(\overrightarrow{r}) = \sum_{j=1}^{N} w(|\overrightarrow{r} - \overrightarrow{R}_{j}|)$$
(1.83)

où \overrightarrow{R}_j est la position du j^{eme} ion.

On suppose que les électrons sont confinés dans une boîte cubique, et sont libres et indépendants (sans interaction coulombienne entre eux mais régis par le principe de *Pauli*), le potentiel des électrons de valence est constant à l'intérieur du métal.

La fonction d'onde Ψ d'un électron de position r satisfait l'équation de *Schrödinger* :

$$H\Psi = \left[-\frac{\hbar^2}{2m}\nabla^2 + W(\overrightarrow{r})\right]\Psi = E\Psi, \qquad (1.84)$$

où ψ est la fonction d'onde de l'électron,

E est l'énergie de l'électron, H est l'hamiltonien, ∇^2 est l'opérateur Laplacien, et $-\frac{\hbar^2}{2m}\nabla^2$ est l'énergie cinétique de l'électron.

Dans le cas des électrons libres, la fonction d'onde est décrite par une onde plane de vecteur d'onde \overrightarrow{k} et de position \overrightarrow{r} .

Cette approximation des électrons indépendants, rend l'équation de *Schrödinger* simple à résoudre, et en prenant une fonction d'onde plane on a :

$$-\frac{\hbar^2}{2m}\nabla^2\Psi_k^0 = \frac{\hbar^2k^2}{2m}\Psi_k^0 = E_k^0\Psi_k^0.$$
(1.85)

Si les électrons se trouvent dans une boîte cubique de volume V, la fonction d'onde normalisée est :

$$\Psi_k^0 = \frac{1}{\sqrt{V}} e^{ik.r}.$$
(1.86)

en utilisant les conditions aux limites périodiques (conditions de Born-Von-Karmun), on a :

$$\Psi_{k}^{0}(x+L,y,z) = \Psi_{k}^{0}(x,y+L,z) = \Psi_{k}^{0}(x,y,z+L) = \Psi_{k}^{0}(x,y,z), \quad (1.87)$$

et par conséquent :

$$e^{i\boldsymbol{k_x}\boldsymbol{L}} = e^{i\boldsymbol{k_y}\boldsymbol{L}} = e^{i\boldsymbol{k_z}\boldsymbol{L}} = 1,$$

les électrons sont dans des états caractérisés par trois nombres quantiques n_x , n_y , n_z qui sont des entiers positifs. L'énergie par rapport au fond de la bande (E_0) est donnée par :

$$E = \frac{\hbar^2 \pi^2}{2mL} (n_x^2 + n_y^2 + n_z^2).$$
(1.88)

Le vecteur d'onde \overrightarrow{k} a pour composantes k_x , k_y , k_z tel que :

$$k_{oldsymbol{x}}=rac{2\pi}{L}n_{oldsymbol{x}}, \qquad k_{oldsymbol{y}}=rac{2\pi}{L}n_{oldsymbol{y}}, \qquad k_{oldsymbol{z}}=rac{2\pi}{L}n_{oldsymbol{z}}$$

Il vient de la relation (1.88):

$$E = \frac{\hbar^2}{2m} (k_x^2 + k_y^2 + k_z^2), \qquad (1.89)$$

le nombre d'état dans l'élément de volume $d^3 \overrightarrow{k}$ autour du point \overrightarrow{k} est alors (compte tenu du *spin*)

$$n(\overrightarrow{k})d^{3}\overrightarrow{k} = \frac{V}{4\pi^{3}}d^{3}\overrightarrow{k}, \qquad (1.90)$$

Figure 1.4: densité d'état en fonction de l'énergie

La densité des états exprimée en fonction de l'énergie est

$$n(E) = \frac{V}{2\pi^2} (\frac{2m}{\hbar^2})^{3/2} E^{1/2}, \qquad (1.91)$$
L'état occupé de plus haute énergie correspond à une valeur :

$$E_F = \frac{\hbar^2}{2m} (\frac{3\pi \ Z \ N_a}{V})^{2/3},\tag{1.92}$$

appelée énergie de Fermi. Elle est reliée au nombre d'onde de Fermi par la relation :

$$E_F = \frac{\hbar^2 k_F^2}{2m},\tag{1.93}$$

où

$$k_F = \left(\frac{3\pi^2 Z N_a}{V}\right)^{1/3},\tag{1.94}$$

Si la température est différente de zéro, la probabilité d'occupation d'un niveau d'énergie est déterminée par la fonction de distribution de *Fermi-Dirac*

$$f_{FD}(E) = \frac{1}{e^{\frac{E-\mu_F}{k_B T}} + 1},$$
(1.95)

où k_B est la constante de *Boltzmann*, T la température absolue et μ le potentiel chimique, qui dans notre cas, est peu différent de l'énergie E_F du niveau de Fermi.

A
$$0K$$
, $f_{FD}(E) = 1$ pour $E \leq \mu_F$, et $f_{FD}(E) = 0$ pour $E > \mu_F$.

Le potentiel chimique est égal à E_F , et varie peu avec la température.

1.4.2 Equation de Boltzmann et théorie linéaire du transport électronique

Le mouvement des électrons est décrit par la fonction de distribution $f(\overrightarrow{r}, \overrightarrow{k}, t)$, où \overrightarrow{r} et $\overrightarrow{h \ k}$ sont respectivement, la position et la quantité de mouvement des électrons, considérés comme des particules quasi classiques.

Soit $f(\overrightarrow{r}, \overrightarrow{k}, t)d^3rd^3k$ le nombre d'électrons dans l'élément de volume à six dimensions de l'espace des phases à l'instant t et soit $\overrightarrow{\gamma}$ le vecteur accélération de l'électron. A l'instant

t + dt, l'électron de vecteur d'onde \overrightarrow{k} qui était au point \overrightarrow{r} se trouve au point $\overrightarrow{r} + \frac{\hbar k}{m} dt$ et de vecteur d'onde $\overrightarrow{k} + \frac{m \overrightarrow{\gamma}}{m} dt$. On peut alors écrire:

$$f(\overrightarrow{r} + \frac{\hbar \overrightarrow{k}}{m}, \overrightarrow{k} + \frac{m \overrightarrow{\gamma}}{\hbar} dt, t + dt) = f(\overrightarrow{r}, \overrightarrow{k}, t) + \frac{df}{dt}]_{col}.$$
(1.96)

En développant au premier ordre l'équation (1.96), on a:

$$\frac{\partial f}{\partial t} + \overrightarrow{\dot{r}} \overrightarrow{\nabla}_{\overrightarrow{r}} f + \overrightarrow{\dot{k}} \overrightarrow{\nabla}_{\overrightarrow{k}} f = \frac{df}{dt}]_{coll} .$$
(1.97)

où :

$$\overrightarrow{\dot{r}}=rac{\hbar \, \overrightarrow{k}}{m}, \quad \overrightarrow{\dot{k}}=rac{m \, \overrightarrow{\gamma}}{\hbar}$$

Le premier membre est simplement la dérivée totale de $f(\vec{r}, \vec{k}, t)$ et traduit la variation dans le temps (par le terme $\frac{\partial f}{\partial t}$), sous l'effet d'un champ électrique ou d'un gradient thermique.

Le deuxième membre de (1.97) traduit la variation de la fonction de distribution f, due aux collisions. Lorsqu'on supprime les perturbations extérieures, ce sont ces collisions qui ramènent le système à l'équilibre, et f devient simplement la fonction de distribution de *Fermi-Dirac*.

L'équation (1.97) traduit la variation de la fonction de distribution dans le temps qui est due à deux effets antagonistes :

D'une part celui dû à l'action du champ électrique qui tend à écarter le système de l'équilibre et d'autre part celui dû aux collisions qui agissent dans le sens de son rétablissement.

Le terme de collision peut être exprimé à l'aide de la probabilité de transition.

Soit $P(\overrightarrow{k}, \overrightarrow{k'})$ la probabilité de transition par unité de temps, pour qu'un électron occupant l'état \overrightarrow{k} soit diffusé dans l'état $\overrightarrow{k'}$, initialement vide. Si on suppose que les collisions sont parfaitement élastiques, on a :

$$P(\overrightarrow{k}, \overrightarrow{k'}) = P(\overrightarrow{k'}, \overrightarrow{k}),$$

le terme de collision peut s'écrire :

$$\frac{\partial f}{\partial t} = -\sum \left[f(k)(1 - f(k')) - f(k')(1 - f(k)) \right] P(\overrightarrow{k}, \overrightarrow{k'}), \tag{1.98}$$

le terme $f(k')(1 - f(k))P(\overrightarrow{k}, \overrightarrow{k'})$ désigne la diminution du nombre d'électrons dans l'état \overrightarrow{k} , le terme $f(k)(1 - f(k'))P(\overrightarrow{k}, \overrightarrow{k'})$ désigne l'augmentation du nombre d'électrons due aux transitions inverses.

Pour ne pas introduire de transitions interbandes, le champ électrique doit être faible, la fonction de distribution peut être décrite à tout instant par une perturbation au premier ordre Δf_k telle que:

$$f_k \simeq f_0 + \Delta f_k, \tag{1.99}$$

où Δf_k est l'écart entre la fonction perturbée et la fonction non perturbée et f_0 est la fonction de *Fermi Dirac* en l'absence d'un champ extérieur. Dans ces conditions le terme de collision se réduit à :

$$\frac{df}{dt} \bigg]_{coll} = \sum_{k'} \left[\nabla f_{k'} - \nabla f_k \right] P(\overrightarrow{k}, \overrightarrow{k'}) d^3 k' , \qquad (1.100)$$

c'est l'équation de Boltzmann pour les électrons.

Il est difficile de trouver une solution générale à l'équation de *Boltzmann*, car les collisions sont de natures diverses : interactions électron-ion, électron-électron et électronimpureté. Pour simplifier le calcul, on admet que le système répond exponentiellement à une perturbation, avec un temps de relaxation τ ,

$$\frac{df}{dt}\bigg]_{coll} = -\frac{\Delta f}{\tau} = -\frac{g_k}{\tau}.$$
(1.101)

où $g_k = f_k - f_0$

Dans le cas d'une perturbation très faible, on peut écrire explicitement les termes de l'équation (1.97)

$$\overrightarrow{r} \overrightarrow{\nabla}_{\overrightarrow{r}} f = \overrightarrow{v}_{k} \overrightarrow{\nabla}_{\overrightarrow{r}} g_{k},$$
$$\overrightarrow{k} \overrightarrow{\nabla}_{\overrightarrow{k}} f = \overrightarrow{k} \overrightarrow{\nabla}_{\overrightarrow{k}} E \frac{\partial f^{0}}{\partial E},$$
$$\overrightarrow{\nabla}_{\overrightarrow{k}} E = \hbar \overrightarrow{v}_{k} \qquad et \qquad \hbar \frac{\partial \overrightarrow{k}}{\partial t} = e \overrightarrow{E}$$

on obtient :

$$\vec{k} \overrightarrow{\nabla}_{\vec{k}} f = \frac{\partial f^0}{\partial E} \overrightarrow{v}_k e \overrightarrow{E},$$

 \mathbf{et}

$$\left(\frac{\partial f}{\partial t}\right) = -\frac{\partial g_k}{\partial t} = -\overrightarrow{\dot{g}}_k.$$

On obtient donc l'équation de Boltzmann linéarisée :

$$\frac{\partial f^0}{E} \overrightarrow{v}_k e \overrightarrow{E} + \overrightarrow{\nabla}_{\overrightarrow{r}} g_k \overrightarrow{v}_k + \overrightarrow{g}_k = -\frac{g_k}{\tau}.$$
(1.102)

Si on suppose que le champ électrique est de la forme :

$$\overrightarrow{E} = \overrightarrow{E}_{0} e^{i(\omega t - \overrightarrow{k} \cdot \overrightarrow{r})}, \qquad (1.103)$$

$$g_{k} = \left(-\frac{\partial f^{0}}{\partial \mathcal{E}}\right) \frac{e \tau \overrightarrow{v}_{k} \overrightarrow{E}_{0}}{1 - i\tau(\omega - \overrightarrow{k} \overrightarrow{v}_{k})} e^{i(\omega t - \overrightarrow{k} \cdot \overrightarrow{r})}.$$
(1.104)

Dans le volume élémentaire de l'espace des phases d^3k , le nombre dN d'électrons par unité de volume de l'échantillon, à l'instant t, est égal à $f_k \frac{2d^3k}{8\pi^3}$. Ces électrons créent une densité élémentaire de courant $d\overrightarrow{J}$ définie par :

$$dJ = ev \, dN = ev \, f_k \frac{d^3k}{4\pi}$$

En intégrant \overrightarrow{v}_k sur tout le volume de l'espace des phases puis en utilisant la relation (1.99) on a :

$$\overrightarrow{J} = \frac{e}{4\pi^3} \int_{k} \overrightarrow{v}_{k} f^0 d^3 k + \frac{e}{4\pi^3} \int_{k} \overrightarrow{v}_{k} g_k d^3 k, \qquad (1.105)$$

la première intégrale est nulle, car la distribution f^0 ne donne aucune contribution au courant, d'où :

$$\overrightarrow{J} = \frac{e}{4\pi^3} \int_k \overrightarrow{v}_k g_k d^3 k.$$
(1.106)

Remplaçons g_k par l'expression (1.104), on a alors :

$$\vec{J} = \frac{e^2}{4\pi^3} \int_k \left(-\frac{\partial f^0}{\partial E} \right) \frac{\tau \overrightarrow{v}_k (\overrightarrow{v}_k \overrightarrow{E})}{1 - i\tau (\omega - \overrightarrow{k} \overrightarrow{v}_k)} d^3k.$$
(1.107)

L'intégration sur l'espace des \overrightarrow{k} peut s'effectuer en découpant l'espace par des surfaces d'énergie constante :

$$d^{3}k = \frac{dSdE}{|\overrightarrow{\nabla}_{k}\overrightarrow{E}|} = \frac{dSdE}{\hbar|\overrightarrow{v}_{k}|}$$

où $\left(-\frac{\partial f^0}{\partial E}\right)$ se comporte approximativement comme une distribution de *Dirac* :

$$\left(-\frac{\partial f^0}{\partial E}\right) \simeq \delta(E - E_F)$$

il vient :

$$\vec{J} = \frac{e^2}{4\pi^3\hbar} \int_{SDF} \frac{\tau \overrightarrow{v}_k(\overrightarrow{v}_k \overrightarrow{E})}{1 - i\tau(\omega - \overrightarrow{k} \overrightarrow{v}_k)} d^3k, \qquad (1.108)$$

l'intégrale étant calculée sur la sphère de Fermi.

1.4.3 Calcul de la conductivité optique

Dans le domaine optique, la vitesse de phase de l'onde électromagnétique est très supérieure à la vitesse des électrons au niveau de Fermi donc :

$$\overrightarrow{k} \overrightarrow{v}_k \ll \omega,$$

et comme le milieu est un liquide le terme \overrightarrow{v}_k . \overrightarrow{v}_k est un scalaire et on a :

$$v_k v_k = \frac{|v_k|^2}{3},$$

dans ces conditions, la densité de courant s'écrit :

$$\overrightarrow{J} = \frac{e^2}{12\pi^3\hbar} \int_{SDF} \frac{\tau |v_k|^2 \overrightarrow{E}}{1 - i\tau\omega} dS_F.$$
(1.109)

D'après (1.13) : $\overrightarrow{J} = \hat{\sigma}(\omega)\overrightarrow{E}$, la conductivité complexe s'écrit:

$$\hat{\sigma}(\omega) = \frac{e^2}{12\pi^3\hbar} \int_{SDF} \frac{\tau |v_k|^2}{1 - i\tau\omega} dS_F = \frac{e^2}{12\pi^3\hbar} \frac{1 + i\tau\omega}{1 + i\tau^2\omega^2} \int_{SDF} \tau |v_k|^2 dS_F.$$
(1.110)

A fréquence nulle,

$$\hat{\sigma}(0) = \sigma_1(0) = \frac{e^2}{12\pi^3\hbar} \int_{SDF} \tau |v_k|^2 dS_F, \qquad (1.111)$$

d'où :

$$\hat{\sigma}(\omega) = \sigma_1(0) \frac{1 + i\tau\omega}{1 + i\tau^2 \omega^2}.$$
(1.112)

La conductivité électrique $\sigma_1(\omega)$ s'explique simplement, compte tenu que :

$$|\overrightarrow{v}_{kF}| = \frac{\hbar |\overrightarrow{k}_F|}{m},$$

et qu'au niveau de Fermi :

$$\int_{SF} dS_F = 4\pi |\overrightarrow{k}_F|^2$$

l'expression de $\sigma_1(0)$ est donnée par :

$$\sigma_1(0) = \frac{e^2 \tau}{3\pi^2 m} k_F^3. \tag{1.113}$$

Rappelons que, d'après la théorie des électrons libres, la densité des porteurs de charge N est égale à $\frac{k_F^3}{3\pi^2}$ et par conséquent, la conductivité optique s'écrit en fonction du temps de relaxation τ au niveau de Fermi et de la densité des porteurs de charge N:

$$\sigma_1(0) = \frac{N \, e^2 \, \tau}{m}.\tag{1.114}$$

Les parties réelle et imaginaire $\sigma_1(\omega)$ et $\sigma_2(\omega)$ sont reliées entre elles par la relation de *Kramers-Kronig.* D'après la relation (1.112) on peut écrire la conductivité complexe sous la forme :

$$\hat{\sigma}(\omega) = \frac{\sigma_1(0)}{1 + \omega^2 \tau^2} - i \frac{\sigma_1(0)\omega\tau}{1 + \omega^2 \tau^2},$$
(1.115)

où :

$$\sigma_1(\omega) = \varepsilon_0 \, \omega \, \varepsilon_2(\omega) = \frac{\sigma_1(0)}{1 + \omega^2 \tau^2}, \qquad (1.116)$$

$$\sigma_2(\omega) = -\varepsilon_0 \,\omega \left(\varepsilon_1(\omega) - 1\right) = \frac{\sigma_1(0)\omega\tau}{1 + \omega^2 \tau^2},\tag{1.117}$$

En remplaçant $\sigma_1(0)$ par son expression (1.114), et en introduisant la fréquence de coupure ω_p (ou fréquence de plasma) :

$$\varepsilon_1(\omega) = 1 - \frac{\omega_p^2 \tau^2}{1 + \omega^2 \tau^2}$$
(1.118)

$$\varepsilon_2(\omega) = \frac{\omega_p^2}{\omega} \frac{\tau}{1+\omega^2\tau^2}$$
(1.119)

1.4.4 Calcul du temps de relaxation

Pour calculer la conductivité électrique, il faut évaluer le temps de relaxation au niveau de *Fermi*. L'introduction d'un temps de relaxation unique est justifiée lorsque les collisions sont essentiellement élastiques.

Dans le cadre de la diffusion élastique qui repose sur les hypothèses suivantes :

- les collisions des électrons avec le réseau sont élastiques, l'énergie reste constante E(k) = E(k'),
- seule la direction du vecteur d'onde est modifiée: | \$\vec{k}\$ | = |\$\vec{k}\$'|; on définit le vecteur de diffusion : \$\vec{k}\$' \$\vec{k}\$ = \$\vec{q}\$; le terme (\$\frac{\partial f}{\partial t}\$) est exprimé en fonction de la probabilité de diffusion de l'état \$\vec{k}\$ vers l'état \$\vec{k}\$', \$P(\$\vec{k}\$, \$\vec{k}\$') par unité de temps. La variation de (\$\frac{\partial f}{\partial t}\$) résulte de la différence entre toutes les transitions de \$\vec{k}\$ vers \$\vec{k}\$' et de \$\vec{k}\$' vers \$\vec{k}\$' vers \$\vec{k}\$' vers \$\vec{k}\$' et de \$\vec{k}\$' vers \$\vec{k}' vers \$\vec{k}' vers \$\vec{k}' vers \$\vec{k}' vers \$\v

Ces transitions sont pondérées par la probabilité d'occupation de l'état de départ et la probabilité que l'état d'arrivée soit vacant.

On obtient après calcul :

$$rac{1}{ au} = rac{V}{8\pi^3}\int_{V_{m k}} P(\overrightarrow{k},\overrightarrow{k'})(1-rac{k'_x}{k_x})d^3k'$$

 $P(\overrightarrow{k}, \overrightarrow{k'})$ est donnée par la règle d'or de Fermi dans le cadre de la théorie des perturbations dépendantes du temps :

$$P(\overrightarrow{k}, \overrightarrow{k'})dS' = \frac{2\pi}{\hbar} | \langle \overrightarrow{k} + \overrightarrow{q} | W | \overrightarrow{k} \rangle |^2 N_f(E)dS', \qquad (1.120)$$

où :

$$|\langle \overrightarrow{k} + \overrightarrow{q} | W | \overrightarrow{k} \rangle|^{2} = \int \Psi_{\overrightarrow{k} + \overrightarrow{q}} W \Psi_{\overrightarrow{k}} d\overrightarrow{k}, \qquad (1.121)$$

représente l'élément de matrice du potentiel diffusant.

 N_f est la densité des états finaux.

Si on désigne par θ l'angle entre \overrightarrow{k} et $\overrightarrow{k'}$, le temps de relaxation τ s'écrit :

$$rac{1}{ au} = 2\pi \int P(heta)(1-\cos heta)k'^2\sin heta d heta$$

A l'état liquide, les surfaces d'énergie constante sont sphériques, on a finalement :

$$\frac{1}{\tau} = \frac{k_f \ mV}{2\pi\hbar^3} \int_0^{2\pi} |\langle \overrightarrow{k} + \overrightarrow{q} | W | \overrightarrow{k} \rangle |^2 (1 - \cos\theta) \sin\theta d\theta,$$

on peut également écrire :

$$\frac{1}{\tau} = \frac{k_f \ mV}{\pi\hbar^3} \int_0^1 |\langle \overrightarrow{k} + \overrightarrow{q} | W | \overrightarrow{k} \rangle |^2 4 \left(\frac{q}{2k_f}\right)^3 d(\frac{q}{k_f}). \tag{1.122}$$

Dans cette relation W est le potentiel perturbateur responsable de la diffusion.

1.4.5 Elément de matrice du potentiel diffusant entre les états k et k'

Dans l'expression (1.122) la probabilité de transition par unité de temps pour qu'un électron passe sous l'influence d'un potentiel perturbateur $W(\overrightarrow{r})$, d'un état \overrightarrow{k} à l'état $\overrightarrow{k'}$ (tous les deux sur la surface de *Fermi*) a été exprimée au premier ordre. L'élément de matrice du potentiel responsable de la transition s'écrit alors :

$$\langle \overrightarrow{k'} | W | \overrightarrow{k} \rangle = \frac{1}{V} \int e^{-i(\overrightarrow{k'} - \overrightarrow{k}) \overrightarrow{r}} W(\overrightarrow{r}) d^{3} \overrightarrow{r}, \qquad (1.123)$$

on remplace W par son expression (1.83), l'élément de matrice devient :

$$\langle \overrightarrow{k'}|W|\overrightarrow{k} \rangle = \frac{1}{V}\sum_{j} e^{-i\overrightarrow{q}\cdot\overrightarrow{R_{j}}} \int e^{-i\overrightarrow{q}\cdot\overrightarrow{r}} w(\overrightarrow{r}) d^{3}\overrightarrow{r}, \qquad (1.124)$$

L'intégrale est prise sur tout le volume de l'échantillon V qui contient N ions. On effectue le regroupement suivant :

$$\langle \overrightarrow{k} + \overrightarrow{q} | W | \overrightarrow{k} \rangle = \left(\frac{1}{N} \sum_{j} e^{-i \overrightarrow{q} \cdot \overrightarrow{R}_{j}} \right) \frac{N}{V} \int e^{-i(\overrightarrow{k'} + \overrightarrow{q}) \cdot \overrightarrow{r}} w(\overrightarrow{r}) e^{i \overrightarrow{k} \cdot \overrightarrow{r}} d^{3} \overrightarrow{r} \quad (1.125)$$

pour mettre l'élément de matrice sous la forme d'un produit de deux termes :

$$\langle \vec{k} + \vec{q} | W | \vec{k} \rangle = S(q) \tilde{w}(q),$$
 (1.126)

avec

$$S(q) = \frac{1}{N} \sum_{j} e^{-i \overrightarrow{q} \cdot \overrightarrow{R}_{j}}, \qquad (1.127)$$

 \mathbf{et}

$$\tilde{w}(q) = \frac{N}{V} \int e^{-i \overrightarrow{q} \cdot \overrightarrow{r}} w(\overrightarrow{r}) d^3r. \qquad (1.128)$$

où $\tilde{w}(q)$ est appelé facteur de forme qui est indépendant de la position individuelle des ions. C'est la transformée de Fourier de potentiel dû à un ion.

S(q) est le facteur de structure qui ne dépend que de la position des ions. Il peut être mesuré, par exemple, par diffraction de neutron, de rayons X ou d'électrons

1.5 Correction de la théorie de Ziman

Le formalisme de la théorie de la conductivité électrique dans les métaux liquides développé par Ziman [15] ne rend pas toujours compte de la réalité expérimentale. Faber [13, 14] d'une part et Helman et Baltensperger [17, 18] d'autre part ont apporté des modifications au formalisme de Ziman, que nous résumons dans ce paragraphe.

Ziman considère que les électrons de valence se comportent comme des électrons libres, la conductivité électrique est calculée à partir de l'équation de *Boltzmann* :

$$\sigma(0) = \frac{N e^2 \tau}{m},\tag{1.129}$$

 τ est le temps de relaxation, dont l'expression est donnée par :

$$\frac{1}{\tau} = \frac{m}{12\pi^3 N} \int_0^{2k_F} k^3 dk |w(k)|^2 S(k), \qquad (1.130)$$

w(k) est le pseudopotentiel représentant l'interaction électron-ion, et S(k) est le facteur de structure.

Dans son article *Faber* donne les raisons pour lesquelles la théorie de *Ziman* est incomplète :

- la conductivité optique dépend de la fréquence, la détermination de σ par la théorie de l'électron libre est valable dans le cas des basses fréquences, par contre à haute fréquence, il faut tenir compte des électrons du cœur,
- La masse de l'électron libre utilisée dans la conductivité ne semble pas correcte. Effectivement en considérant N comme la densité des électrons de conduction, les résultats basés sur la théorie de l'électron libre s'écartent des résultats expérimentaux. Faber suggère d'introduire la masse effective m^* , qui correspond à la densité d'état des électrons non libres, afin d'améliorer les résultats de la conductivité.
- Le modèle de l'électron presque libre (NFE) suppose que les électrons de conduction puissent être traités comme des particules indépendantes, chacune d'elles est donc décrite par une fonction d'état avec un seul nombre d'onde k. Ce modèle est valable, quand le libre parcours moyen L_m est de l'ordre de la distance interatomique, ce qui est le cas des métaux polyvalents.

Par contre quand le libre parcours moyen est supérieur à la distance interatomique, il y a une incertitude sur la valeur de k, ce qui rend difficile la détermination de la limite supérieure de l'intégrale dans l'équation (2.99), et par conséquence la surface de Fermi n'est pas bien définie.

1.5.1 Niveaux d'énergie

Les niveaux d'énergie des électrons sont séparés en états de cœur et en états de la bande de conduction. La règle des sommes pour les transitions des électrons est définie par où f_{ij} est l'intensité de l'oscillateur entre les états *i* et *j*. La somme tient compte des transitions $E_j > E_i$, pour lesquelles $f_{ij} > 0$, et $E_j < E_i$, pour lesquelles $f_{ij} < 0$.

On suppose qu'on a deux types d'électrons dans un métal liquide, les électrons de valence qui se comportent comme des électrons libres, et les électrons du cœur liés au noyau. Soit N_v et N_c le nombre de ces électrons par unité de volume.

$$\sum_{1}\sum_{2}f_{ij} + \sum_{1}\sum_{3}f_{ij} = N_c, \qquad (1.132)$$

$$\sum_{2} \sum_{1} f_{ij} + \sum_{2} \sum_{3} f_{ij} = -\sum_{1} \sum_{2} f_{ij} + \sum_{2} \sum_{3} f_{ij} = N_{v}, \qquad (1.133)$$

Figure 1.5: Bandes d'énergie des métaux liquides

La conductivité optique $\sigma_1(\omega)$ est associée à la transition réelle dans laquelle l'état initial est rempli et l'état final est vide. D'après la définition de l'intensité de l'oscillateur on a :

$$\int_{\omega_0}^{\infty} \sigma_1^c(\omega) d\omega = \frac{\pi e^2}{2m} \sum_1 \sum_3 f_{ij}, \qquad (1.134)$$

on a :

$$\int_{\omega_0}^{\infty} \sigma_1^c(\omega) d\omega = \frac{\pi e^2}{2m} \sum_1 \sum_3 f_{ij}, \qquad (1.134)$$

$$\int_0^\infty \sigma_1^{\boldsymbol{v}}(\omega)d\omega = \frac{\pi e^2}{2m} \sum_2 \sum_3 f_{ij},\tag{1.135}$$

or la conductivité totale $\sigma_1(\omega)$ est la somme de $\sigma_1^{\boldsymbol{v}}(\omega)$ et $\sigma_1^{\boldsymbol{c}}(\omega)$ tel que :

$$\frac{2m}{\pi e^2} \int_0^\infty \sigma(\omega) d\omega = N_t, \qquad (1.136)$$

donc :

$$\int_0^\infty \sigma(\omega) d\omega = \frac{\pi e^2}{2m} N_t, \qquad (1.137)$$

où $N_t = N_v + N_c$, est le nombre total des électrons par unité de volume.

Pour $\omega < \omega_0$, $\sigma_1^c(\omega) = 0$.

En comparant les équations (A.16), (1.133), (1.134) et (1.135) on a les inégalités :

$$\frac{2m}{\pi e^2} \int_{\omega(0)}^{\infty} \sigma_1^c(\omega) < N_c, \qquad (1.138)$$

$$\frac{2m}{\pi e^2} \int_0^\infty \sigma_1^f(\omega) > N_v. \tag{1.139}$$

Le nombre effectif des électrons de valence par atome pour une transition de fréquence entre 0 et ω est défini par :

$$n^*(\omega) = \frac{2m}{N_a \pi e^2} \int_0^\omega \sigma_1^f(\omega') d\omega'$$
(1.140)

où N_a est le nombre d'atomes par unité de volume. A haute fréquence, $n^*(\omega)$ tend vers la valeur limite de n^* qui peut être déterminée par la mesure de $\sigma_1(\omega)$. En comparant (1.138), (1.139) et (1.140) on montre que :

$$n^* > \frac{N_v}{N_a} \tag{1.141}$$

Si la conductivité $\sigma_1^v(\omega)$ vérifie la formule de Drude, alors il faut remplacer N_v par n^*N_a , ou n^* satisfait l'équation (1.141).

L'inégalité (1.141) est valable pour un métal avec un gap entre la bande de valence et les électrons de cœur. Par contre pour les métaux nobles et de transition dans lesquels l'extension spatiale des orbitales d est trop grande, (ce qui provoque un recouvrement des orbitales des ions voisins), elle n'est pas valable.

1.5.2 Conductivité et temps de relaxation

Faber [14, 13] a utilisé la théorie des perturbations pour calculer la conductivité optique, en se basant sur les travaux théoriques de *Edwards* [30].

La fonction propre de l'énergie est décrite par :

$$\Psi(E)e^{-i\frac{Et}{\hbar}},\tag{1.142}$$

sous l'influence du champ électrique, des transitions se produisent entre les états occupés et les états vides. La conductivité optique associée à ces transitions peut être calculée par la théorie des perturbations, son expression est donnée par :

$$\sigma(\omega) = \frac{2\pi e^2 \hbar^2}{m^2 \omega} \int_0^\infty dE[f(E) - f(E + \hbar \omega)] \times n(E)n(E + \hbar \omega)|D(E, \omega)|^2, \quad (1.143)$$

où f(E) est la fonction de distribution de Fermi-Dirac.

L'élément de matrice $D(E, \omega)$ est donné par :

$$D(E,\omega) = \int \Psi^*(E+\hbar\omega) \frac{\partial}{\partial x} \Psi(E) dx dy dz,$$
 (1.144)

la formule (1.144) est donnée dans la direction de x du vecteur champ électrique, mais les résultats sont indépendants de la direction. Pour le détail des calculs, il faut se référer à l'article de Faber [13]. L'expression finale de $\sigma_1(\omega)$ est :

$$\sigma(\omega) = \frac{n_v N_a \ e}{m\gamma_0} \times \frac{(1+\lambda)^2 [1 - \frac{1}{24} (\frac{\hbar\omega}{E_F})^2 + \dots]}{1 + (\frac{\omega^2}{\gamma_0^2}) (\frac{m}{m^*})^2 [1 - \frac{1}{8} (\frac{\hbar\gamma_0}{E_F})^2 + \dots]}.$$
(1.145)

où n_v est le nombre d'électrons de valence par atome et N_a est le nombre d'atomes par unité de volume.

En comparant les valeurs de $\hbar \omega$ avec l'énergie de Fermi E_F , on trouve que les termes $(\frac{\hbar\gamma_0}{E_F})^2$ et $(\frac{\hbar\omega}{E_F})^2$ sont faibles dans le visible et l'infrarouge, on retrouve donc la formule de Drude, avec :

$$n^* = \frac{N_v}{N_a} = (1+\lambda)^2 (\frac{m^*}{m}) n_v, \qquad (1.146)$$

 $\mathbf{e}t$

$$\gamma = \gamma_0 \left(\frac{m^*}{m}\right), \tag{1.147}$$

le facteur $(1 + \lambda)^2$ résulte de la normalisation de la fonction d'onde est supérieur à 1. Le facteur de correction $\frac{m^*}{m}$ résulte de la perturbation du premier ordre des électrons de valence.

Helmann et Baltensperger [17, 18] ont calculé la constante diélectrique d'un métal liquide par la méthode des fonctions de Green thermiques, dans les domaines de fréquence $\omega_p > \omega \gg \xi_0$.

 ω_p désigne la fréquence de plasma, et ξ_0 la fréquence de relaxation de la résistivité en régime statique.

La diffusion des électrons est traitée dans l'approximation de Born, à l'aide du facteur de structure dynamique de Van Hove, et d'un pseudopotentiel écranté pour les ions.

$$\varepsilon(\omega) = 1 - \frac{4\pi N e^2}{m\omega^2} \left[1 + \xi(\omega) - i\frac{\gamma(\omega)}{\omega} \right]^{-1}.$$
 (1.148)

Les fonctions $\xi(\omega)$ et $\gamma(\omega)$ sont déterminées à partir du pseudopotentiel $\tilde{w}(q)$ qui décrit l'interaction électron-ion, et par le facteur de structure S(q):

$$\xi(\omega) - i\frac{\gamma(\omega)}{\omega} = \frac{k_F}{6\pi^6 N k_{TF}^2 \omega^2} \int_0^\infty q^6 |\tilde{w}(q)|^2 dq S(q) [\varepsilon(q,0) - \varepsilon(q,\omega)], \qquad (1.149)$$

où, $\varepsilon(q, \omega)$ est la fonction diélectrique de *Lindhards*, $k_{TF} = \sqrt{\frac{6\pi Ne^2}{E_F}}$ est le paramètre de *Thomas-Fermi*, et $E_F = \frac{k_F^2}{2m}$ est l'énergie de *Fermi*, avec $\hbar = 1$.

Si $\omega \to 0$, l'équation (1.149) se réduit à :

$$\xi(0) = \frac{m^2}{3\pi^4 N} \int_0^\infty q |\tilde{w}(q)|^2 dq S(q) \times \left[\frac{1}{4} ln |\frac{q+2k_f}{q-2k_f}| - \frac{qk_f}{(2k_f)^2 - q^2} \right], \quad (1.150)$$

$$\gamma_0 = \gamma(0) = \frac{\omega}{12\pi^3 N} \int_0^{2k_F} q^3 dq |\tilde{w}(q)|^2 S(q), \qquad (1.151)$$

et si $\omega \ll E_F$ l'équation (1.148), devient :

$$\varepsilon(\omega) = 1 - (\frac{\omega_p}{\omega})^2 [1 + \xi(0) - i\frac{\gamma(0)}{\omega}]^{-1},$$
(1.152)

comme $\xi(0)\ll \frac{\gamma(0)}{\omega}$ on retrouve la formule de Drude :

$$\varepsilon(\omega) = 1 - \left(\frac{\omega_p}{\omega}\right)^2 \left[1 - i\frac{\gamma(0)}{\omega}\right]^{-1}.$$
(1.153)

A haute fréquence : $\hbar \gamma \ll \hbar \omega \ll E_F$:

$$n^* = n_v (1 + \xi_0)$$

 \mathbf{et}

$$\gamma=\gamma_0.$$

A basse fréquence : $\omega \ll \gamma$

$$n^* = n_f (1 - \xi_0]^{-1}$$

 $\mathbf{e}t$

$$\gamma = \gamma_0 (1 - \xi_0)^{-1},$$

si la valeur de $\xi_0 \ll 1$, la différence entre n^* à haute et à basse fréquence est très petite. C'est par exemple le cas du sodium où $\xi = 0,06$.

1.6 Conclusion

Nous avons présenté des modèles théoriques, qui permettent de calculer les constantes optiques. La théorie classique de Maxwell est incomplète quand on tient compte de la dispersion. Le modèle de Drude corrigé est une bonne approximation aux basses fréquences, mais ne tient compte que des électrons libres.

Les corrections apportées par Ziman [15], Faber [13], Helman [17], ainsi que d'autres auteurs [20, 19] montrent qu'à basse fréquence, on retrouve le modèle de Drude.

Dans notre cas, on a fait des mesures à basse fréquence, et donc on utilisera le modèle de Drude pour exploiter nos résultats.

.

Chapitre 2 ELLIPSOMÉTRIE SPECTROSCOPIQUE

2.1 Introduction

L'ellipsométrie est une technique optique non destructive d'analyse des surfaces, basée sur la mesure de la variation de l'état de polarisation de la lumière après réflexion sur une surface [31, 32, 33].

Une des méthodes ellipsométriques les plus anciennes est celle de *Drude* [34], qui met en œuvre les éléments classiques : polariseur, compensateur, analyseur et fonctionne en mode statique. Mais ce n'est qu'en 1946 que le terme ellipsométrie a été introduit par *Rothen* [35], pour désigner le montage utilisé pour la mesure de l'épaisseur des couches minces.

Couramment utilisée dans le domaine du visible et du proche U.V depuis les années 1960 [36, 37, 38, 39], pour déterminer les constantes optiques des matériaux, l'ellipsométrie à connu un intérêt accru durant les deux dernières décennies [40, 41, 42, 43, 44]. Cela est dû en particulier aux besoins de plus en plus grand de mesures et de contrôles dans le domaine de la micro-électronique, de l'optique, des traitements de surface et aussi aux performances des micro-ordinateurs et de l'électronique.

Cette technique, grâce au développement récent d'ellipsomètres spectroscopiques automatiques de grande précision [43, 45, 46], est devenue un outil très performant utilisé dansde nombreux domaines. On peut citer [47, 48, 49, 50, 51, 52]:

- les mesures des constantes optiques des matériaux;
- la mesure d'épaisseur de couches ultra minces (inférieure à 10 nm), de couches plus épaisses (plusieurs micromètres) et de films transparents (couches antireflets, couches d'or, de silice ou de silicium dans les circuits intégrés);
- le suivi in situ et en temps réel de l'évolution de l'épaisseur d'une couche grâce à son caractère non destructif.
- la caractérisation des interfaces liquide-solide ou liquide-liquide;
- l'analyse des couches de protection (électro-déposition, dépôt plasma, polymères), traitement de surface par recuit (application dans la métallurgie).

2.2 Principes de base de l'ellipsométrie

Lorsqu'un faisceau lumineux se réfléchit sur une surface plane, son état de polarisation est modifié. Les deux composantes orthogonales du vecteur champ électrique \overrightarrow{E} caractérisant l'onde incidente sont notées E_p^I et E_s^I . Elles sont respectivement les composantes parallèles et perpendiculaires au plan d'incidence défini par le rayon incident et la normale à la surface. Il en va de même pour les composantes du vecteur champ électrique de la lumière réfléchie notées E_p^R et E_s^R

Pour caractériser la réflexion, on définit les deux quantités suivantes :

$$\hat{r}_{p} = \frac{E_{p}^{R}}{E_{p}^{I}} = \frac{|E_{p}^{R}|}{|E_{p}^{I}|} e^{i(\delta_{p}^{R} - \delta_{p}^{I})} = |r_{p}|e^{i\delta_{p}}, \qquad (2.1)$$

$$\hat{r}_{s} = \frac{E_{s}^{R}}{E_{s}^{I}} = \frac{|E_{s}^{R}|}{|E_{s}^{I}|} e^{i(\delta_{s}^{R} - \delta_{s}^{I})} = |r_{s}| e^{i\delta_{s}}, \qquad (2.2)$$

 \hat{r}_p et \hat{r}_s sont les coefficients de réflexion complexes de la surface analysée. Leur module $|r_p|$

Figure 2.1: Réflexion d'une onde par une surface

et $|r_s|$ représentent la modification de l'amplitude et leurs arguments, δ_p et δ_s , le changement de phase dû à la réflexion.

Le changement de l'état de polarisation, qui résulte de la différence de comportement en amplitude et en phase des ondes p et s, peut alors être caractérisé par le rapport :

$$\rho = \frac{\hat{r}_p}{\hat{r}_s},\tag{2.3}$$

qui est exprimé généralement sous la forme :

$$\rho = \tan \Psi \ e^{i\Delta}, \tag{2.4}$$

avec

$$an \Psi \;\;=\;\; \left|rac{r_p}{r_s}
ight| \;\; (ext{est le rapport des modules})$$

 $\Delta = \delta_p - \delta_s$ (est la différence de phase).

Les angles Ψ et Δ caractéristiques de la surface étudiée, sont appelés "angles ou paramètres ellipsométriques". Il ne dépendent que de la longueur d'onde λ et de l'angle d'incidence θ ,

$$0\leq\Psi\leq\frac{\pi}{2},$$

 \mathbf{et}

$$0 \leq \Delta \leq 2\pi$$
.

Le rapport ρ , en géneral complexe est de module différent de l'unité, c'est-à-dire que les deux composantes de la vibration rectiligne incidente sont différemment atténuées et différemment retardées par la réflexion.

La connaissance des phases et des amplitudes absolues n'est pas nécessaire, ce qui rend la mesure indépendante des fluctuations éventuelles de la source.

Pour un materiau massif, la détermination des paramètres ellipsométriques Ψ et Δ , permet de remonter aux constantes optiques du milieu étudié.

2.3 Calcul des indices optiques en fonction des angles ellipsométriques

Pour déterminer les constantes optiques d'un substrat, on considère que les milieux étudiés sont optiquement isotropes.

Les coefficients de réflexion \hat{r}_p et \hat{r}_s sont donnés par les relations de Fresnel :

$$\hat{r}_{p} = \frac{\hat{n}\cos\theta - n_{0}\cos\theta'}{\hat{n}\cos\theta + n_{0}\cos\theta'}, \qquad (2.5)$$

$$\hat{r}_s = \frac{n_0 \cos \theta - \hat{n} \cos \theta'}{n_0 \cos \theta + \hat{n} \cos \theta'}, \qquad (2.6)$$

 \hat{n} est l'indice complexe du milieu réfléchissant (milieu absorbant) et n_0 est l'indice réel du milieu incident (air $n_0 = 1$), θ et θ' sont respectivement l'angle d'incidence et l'angle de réfraction reliés entre eux par la loi de Descartes :

$$n_0\sin\theta = \hat{n}\sin\theta',$$

si nous rapprochons les relations (2.1) et (2.2) de celles de Fresnel, nous avons :

$$\hat{r}_{p} = \frac{\tan(\theta - \theta')}{\tan(\theta + \theta')},$$
(2.7)

$$\hat{r}_s = \frac{\sin(\theta - \theta')}{\sin(\theta + \theta')},$$
(2.8)

en faisant le rapport membre à membre des relations (2.7) et (2.8) on trouve :

$$\tan \Psi \ e^{i\Delta} = \frac{\hat{r}_p}{r_s} = -\frac{\cos(\theta + \theta')}{\cos(\theta - \theta')},\tag{2.9}$$

pour la commodité de calcul on pose :

$$\frac{1 - \tan \Psi e^{i\Delta}}{1 + \tan \Psi e^{i\Delta}} = \frac{2 \cos \theta \cos \theta'}{2 \sin \theta \sin \theta'} = \frac{\sqrt{\hat{n}^2 - \sin^2 \theta}}{\tan \theta \sin \theta},$$
(2.10)

en développant l'expression (2.10), et après simplification on trouve :

$$\frac{\hat{n}^2 - \sin^2\theta}{\tan^2\theta\sin^2\theta} = \frac{\cos^2 2\Psi - \sin^2 2\Psi\sin^2\Delta - i\sin 4\Psi\sin\Delta}{(1 + \sin 2\Psi\cos\Delta)^2}.$$
(2.11)

Or, $\hat{n} = n - ik$, où n est l'indice réel de réfraction et k est l'indice d'extinction.

Par identification des parties réelle et imaginaire dans l'équation (2.11) on aboutit finalement aux équations :

$$\varepsilon_1 = n^2 - k^2 = \sin^2 \theta (1 + \tan^2 \theta \, \frac{\cos^2 2\Psi - \sin^2 2\Psi \sin^2 \Delta}{(1 + \sin 2\Psi \cos \Delta)^2}), \tag{2.12}$$

$$arepsilon_2 = 2nk = \sin^2 heta \tan^2 heta \; rac{\sin 4\Psi \sin \Delta}{(1+\sin 2\Psi \cos \Delta)^2}.$$
 (2.13)

2.4 Différents types d'ellipsomètres

Il existe différentes méthodes pour mesurer le couple (Ψ , Δ). Elles sont toutes décrites dans l'ouvrage de référence sur l'ellipsométrie édité par Azzam et Bashara [31].

2.4.1 L'ellipsométrie à annulation (ou zéro)

Dans cette technique, la caractérisation de la lumière réfléchie se fait à partir de la recherche du minimum du flux réfléchi.

Le montage le plus utilisé est celui proposé par Drude [34]. Il comprend : un polariseur, une lame quart d'onde et un analyseur.

Le flux est nul lorsque la lame quart d'onde transforme la vibration elliptique réfléchie par l'échantillon, en une vibration rectiligne, qui peut ensuite être éteinte par l'analyseur.

Figure 2.2: Schéma d'un ellipsomètre à extinction

Zones	Valeurs de Ψ et Δ				
1	$C = -rac{\pi}{4}$	$\Psi = A$	$\Delta=2P+rac{\pi}{2}$		
2	$C = +\frac{\pi}{4}$	$\Psi = A$	$\Delta = -2P - rac{\pi}{2}$		
3	$C = -\frac{\pi}{4}$	$\Psi = -A$	$\Delta=2P-rac{\pi}{2}$		
4	$C = +\frac{\pi}{4}$	$\Psi = -A$	$\Delta = -2P + \frac{\pi}{2}$		

Tableau 2.1: Valeurs de Ψ et Δ pour $C = \pm \frac{\pi}{4}$

$$\rho = -\tan A \frac{\tan C - i \tan(P - C)}{1 + i \tan C \tan(P - C)}$$

$$\tag{2.14}$$

où A, P et C sont respectivement les azimuts de l'analyseur, du polariseur et de la lame quart d'onde.

En choisissant $C = \pm \frac{\pi}{4}$, l'équation (2.14) devient particulièrement simple, car tan $C = \pm 1$.

A l'aide de l'expression :

$$\frac{1-i\tan\theta}{1+i\tan\theta} = e^{-i\,2\,\theta} \tag{2.15}$$

On trouve quatre combinaisons possibles des azimuts A et P, appellées 'zones'. Les résultats sont données dans le tableau 2.1.

L'inconvénient de cette technique est que les mesures sont relativement longues. Les nombreuses manipulations excluent son utilisation pour le contrôle "in-situ" de processus dynamiques. De plus, l'emploi d'une lame quart d'onde, ne permet pas au montage d'être spectroscopique.

2.4.2 L'ellipsomètre photométrique

On distingue deux types d'ellipsomètres photométriques :

• l'ellipsomètre à modulation de phase (E.M.P)[63, 66, 67, 68, 69, 70]

Son principe dont le schéma est présenté sur la figure 2.3, est dû à Jasperson et Schnatterly [63]. Le faisceau lumineux incident provenant d'une lampe xénon est polarisé linéairement. Son état de polarisation est ensuite modulé par un modulateur photoélastique, consistant en un barreau de silice collé à un cristal de quartz piézoélectrique dont la fréquence propre est de 50 kHz. L'excitation du cristal induit une onde stationnaire de contrainte uniaxiale dans le barreau de silice qui crée une biréfringence modulée $\delta = A \sin(\omega t)$. L'amplitude A est proportionnelle à la tension d'excitation du cristal et inversement proportionnelle à la longueur d'onde.

La lumière réfléchie par l'échantillon est finalement analysée par un analyseur linéaire puis focalisée sur la fente d'entrée d'un monochromateur avant d'être détectée par un photomultiplicateur. Le signal détecté, est composé d'un niveau continu et d'un signal modulé à la fréquence simple et double de la fréquence de modulation de phase.

Le choix du système de détection a une grande importance dans les E.M.P. L'utilisation de la détection synchrone ne permet pas une acquisition rapide, par contre l'utilisation de technique d'échantillonnage du signal, en fait un des ellipsomètre le plus rapide. Cet ellipsomètre est d'un grand intérêt si la rapidité des mesures est prioritaire [68, 70, 74].

• l'ellipsomètre à élément optique tournant

Lorsqu'un élément optique, compensateur, analyseur ou polariseur est animé d'un mouvement de rotation uniforme, on parlera d'élément optique tournant. Il existe trois types d'ellipsomètre à élément tournant :

1) compensateur tournant (E.C.T)[45, 71, 79, 80],

2) analyseur tournant (E.A.T); [43, 58, 59, 72, 73],

Figure 2.3: Ellipsométrie à modulation de phase

3) polariseur tournant; (E.P.T) [44, 75, 76, 77, 78].

Pour illustrer le principe de fonctionnement d'un ellipsomètre de ce type, considérons le cas du polariseur tournant à deux éléments :

Le montage comprend : une source, un polariseur tournant à la vitesse angulaire $\omega = 2 \pi f$, un analyseur fixe et un détecteur. L'évolution de l'état de polarisation de la lumière depuis la source jusqu'au détecteur est décrite par le formalisme de Stokes-Mueller (annexe A).

Le signal est d'abord échantillonné puis quantifié avant d'être analysé par la méthode de la transformée de Fourier discrète.

Le flux atteignant le détecteur s'écrit :

$$I(P) = I_0[a_0 + a_{2c} \cos 2P + a_{2s} \sin 2P] = I_0(1 + \alpha \cos 2P + \beta \sin 2P)$$

où α et β sont les coefficients de Fourier de l'harmonique 2P et sont donnés par :

$$\alpha = \frac{a_{2c}}{a_0} = \frac{\cos 2A - \cos 2\Psi}{1 - \cos 2A \cos 2\Psi}$$
(2.16)

$$\theta = \frac{a_{2s}}{a_0} = \frac{\sin 2A \sin 2\Psi \cos \Delta}{1 - \cos 2A \cos 2\Psi}.$$
(2.17)

L'inversion des équations (2.16) et (2.17) conduit aux grandeurs ellipsométriques tan Ψ et $\cos \Delta$:

$$\tan \Psi = \sqrt{\frac{1+\alpha}{1-\alpha}} \tan A \qquad (2.18)$$

$$\cos\Delta = \frac{\beta}{\sqrt{1-\alpha^2}} \tag{2.19}$$

La mesure des paramètres α et β permet donc de remonter à tan Ψ et cos Δ indépendamment de l'intensité absolue I_0 . En revanche, on ne mesure pas directement Δ mais cos Δ . Ceci est un inconvénient car le signe de Δ reste inconnu.

Le même formalisme reste valable pour l'ellipsomètre à analyseur tournant, à condition d'intervertir P et A dans les formules.

Les ellipsomètres à polariseur tournant (ou analyseur tournant) à deux éléments, permettent les mesures spectroscopiques du proche ultraviolet au proche infrarouge.

Ils présentent néanmoins des inconvénients :

 pour le montage à polariseur tournant, l'instrument est sensible à la polarisation résiduelle de la source, tandis que pour le montage à analyseur tournant, il est nécessaire d'utiliser un détecteur insensible à l'état de polarisation.

L'ellipsomètre à compensateur tournant permet de s'affranchir de toutes ces contraintes, mais il ne peut être utilisé qu'à une seule longueur d'onde.

Dans notre laboratoire nous avons mis au point un troisième type de montage rarement utilisé : l'ellipsomètre spectroscopique à polariseur tournant à trois éléments. Le but est de réaliser des spectres ellipsométriques en éliminant les inconvénients des ellipsomètres à élement tournant à deux éléments. C'est cet ellipsomètre que nous allons décrire.

La société SOPRA nous a fourni les deux moteurs pas à pas, le monochromateur, l'électronique de commande des moteurs et de comptage ainsi que le programme de gestion de ces éléments, écrit en Visual Basic.

Le logiciel de pilotage de l'ellipsomètre et le calibrage ont été réalisés au laboratoire par Bertucci et Pawlowski [81, 82], les essais qui ont permis de valider les solutions retenues, constitue l'apport de ce travail.

2.5 Description de l'ellipsomètre spectroscopique à polariseur tournant

Le schéma de principe est indiqué dans la figure (2.4). Le faisceau traverse le polariseur fixe placé entre les deux diaphragmes et le polariseur tournant avant de se réfléchir sur l'échantillon qui est placé dans une enceinte munie de deux fenêtres transparentes (voir chapitre III), permettant le passage du faisceau.

Après réflexion, il traverse un troisième polariseur, celui-ci porte le nom d'analyseur étant donnée sa place dans le montage, et il est focalisé par une lentille convergente de courte focale sur l'entrée d'une fibre optique assurant la liaison optique jusqu'au monochromateur et au détecteur qui convertit le flux lumineux en courant électrique.

- La source est une lampe à arc Xénon haute pression de 75 Watts (de faible puissance mais de très forte luminance), à polarisation résiduelle très faible. Elle émet dans tout le spectre visible, du proche ultraviolet au proche infrarouge. Elle est placée dans le plan focal objet d'une lentille de courte focale pour obtenir un faisceau parallèle avec un flux intense.
- Nous utilisons deux diaphragmes D1 et D2, placés respectivement avant le polariseur fixe et le polariseur tournant. Ils ont deux rôles dans le montage :

Figure 2.4: Schéma du montage de l'ellipsomètre.

1) ils réduisent le diamètre du faisceau avant chaque traversée des éléments optiques pour éviter toute réflexion parasite,

2) leur diamètre et leur espacement conditionnent la divergence du faisceau : une faible divergence est en effet nécessaire pour obtenir une bonne définition de l'angle d'incidence. Il faut trouver un juste compromis entre divergence du faisceau et valeur du flux. Nous utilisons des diaphragmes de 1,5 mm de diamètre espacés de 60 cm, la divergence du faisceau est de l'ordre de 5 mrad.

• Un polariseur fixe qui est un prisme de Glazebrook en calcite, il absorbe peu de lumière

et polarise parfaitement dans un domaine spectral étendu $(0,22\mu \text{m} \ge 1,5\mu \text{m})$. Il est monté sur une platine réglable manuellement par un vernier gradué dont la précision est la minute d'angle. De plus la platine est équipée d'un codeur optique affichant l'angle au centième de degré.

- Un polariseur tournant fourni par la société SOPRA initialement un polaroid : les polaroids présentent une forte absorption et ne polarisent pas parfaitement. Nous avons mis à leur place un polariseur type Glazebrook en calcite, il est monté sur une platine dotée d'un moteur pas à pas, est entraîné par un moteur à courant continu tournant à une vitesse de 10 tours/seconde, qui module l'intensité du flux lumineux.
- Un analyseur du même type que le polariseur tournant (Glazebrook).

Le repérage de la position des éléments est fait par des codeurs optiques, la précision de la position de l'analyseur est de l'ordre du centième de degré. Le codeur optique fixé sur l'axe du moteur relie la position angulaire du polariseur tournant au signal modulé détecté par le détecteur.

- Un double monochromateur constitué de deux éléments dispersifs montés en configuration de Czerny-Turner [65]. Il est composé :
 - d'un réseau plan "blazé" de 600 traits par mm et de dimension 58×58 (résolution 0,01 nm), dont l'étendue spectrale s'étend de 0,23 μ m à 2μ m;
 - d'un prisme en silice de dimension 50×50 , pour séparer les ordres superposés après diffraction par le réseau et rendre négligeable la quantité de lumière diffusée par les diverses surfaces optiques. Les fentes d'entrée et de sortie sont réglables de 0 à 1,5 mm par l'intermédiaire de deux vis micrométriques. Un tour de vis correspond à une ouverture de fente de 100μ m.

Le monochromateur est couplé à un photomultiplicateur, qui est monté en compteur de photon. Il fonctionne de l'U.V jusqu'au très proche I.R (0,25 μ m à 0,9 μ m).

• Un photomultiplicateur (PM), utilisé en détecteur de photons. Une carte électronique permet, par multiplexage, de répartir les impulsions électriques générées par le PM sur

huit compteurs cycliques et cela par demi-tour. Chaque compteur est donc incrémenté pendant un seizième de tour du polariseur tournant. Le début de cycle est synchrone avec le "top zéro" du codeur angulaire du polariseur tournant. Les sommes recueillies dans chaque compteur permettent d'effectuer une transformation de *Hadamard*, pour aboutir aux paramètres Ψ et Δ . Le monochromateur et l'électronique de mesure et de commande sont pilotés par un micro-ordinateur.

Il est très important, pour toutes les mesures effectuées, de ne pas atteindre le seuil de saturation du détecteur. Pour que la réponse du P.M. soit proportionnelle à l'intensité du flux arrivant au détecteur il faut impérativement travailler dans la zone de linéarité du système de détection (détecteur et électronique de comptage).

Le nombre de coups par seconde doit être compris dans l'intervalle [160 000, 360 000] pour une tension d'alimentation du P.M. de 840 volts [81].

2.6 Procédure d'alignement

Après avoir ajusté la hauteur de tous les composants optiques, à l'aide d'un laser He-Ne $(\lambda = 6328 \text{ Å})$. On procède à l'alignement de la lampe Xénon en centrant le faisceau sur les orifices des diaphragmes. On place ensuite la lentille de courte focale (3.5 cm) devant la lampe.

Les faces des polariseurs et de l'analyseur doivent être rigouresement perpendiculaires au faisceau.

Les deux diaphragmes servent d'éléments de référence pour le réglage, ce sont eux qui déterminent la direction du faisceau incident.

L'angle d'incidence réglable d'une façon mécanique est déterminé avec précision en mesurant les angles ellipsométriques d'un milieu d'indice optique parfaitement connu.

Il est déterminé à partir des mesures effectuées sur deux échantillons (SiO2/Si) d'épaisseurs égales à 106 nm et 130nm. Ces échantillons ont été choisis en raison de la stabilité de leurs indices en fonction du temps, de plus leurs indices sont parfaitement connu. Les mesures effectuées sur ces deux échantillons sont données dans le tableau 2.2, pour un angle d'incidence $\theta = 70^{\circ}$:

On trouve un écart sur n de l'ordre de 3 millième, ce qui correspond à une incertitude sur θ de l'ordre de centième de degré.

Echantillons	Angle A	Ψ	Δ	Indices et épaisseur
SiO2/Si ép. 106nm	+ 45° - 45°	45,7468 45,1356	80,7468 79,059	n=1,4636 e=106,53
	moyenne	45,4412	79,6582	
SiO2/Si ép. 130nm	+ 45° - 45° moyenne	71,9346 71,175 71,5548	87,9742 88,5868 88,2805	n=1,4662 e=130,20

Tableau 2.2: Résultats obtenus pour deux échantillons pour la longueur d'onde $\lambda = 0.6328 \mu m$

2.7 Expression du flux lumineux reçu par le détecteur

Le faisceau incident initialement polarisé linéairement passe à travers un polariseur animé d'un mouvement circulaire uniforme qui module le flux lumineux, avant de subir une réflexion sur l'échantillon. Le faisceau réfléchi passe ensuite à travers un analyseur avant d'arriver sur le détecteur. Le flux détecté est modulé aux fréquences doubles et quadruples de la fréquence de rotation du polariseur.

Pour le calcul du flux détecté on utilise les vecteurs de Stokes et le formalisme matriciel de Mueller (voir annexe A). Le vecteur de Stokes \overrightarrow{S}_f de la lumière reçue par le détecteur s'obtient en multipliant le vecteur de Stokes incident \overrightarrow{S}_i par l'ensemble des matrices de

Mueller des éléments constituants l'ellipsomètre (les éléments optiques sont supposés parfaits) :

$$\vec{S}_{f} = \left\{ R^{-1}(A) M_{A} R(A) \right\} M_{s} \left\{ R^{-1}(P_{t}) M_{P_{t}} R(P_{t}) \right\} \left\{ R^{-1}(P) M_{P} R(P) \right\} \vec{S}_{i}, \qquad (2.20)$$

 M_A, M_s, M_{P_t} et M_P sont respectivement les matrices de Mueller de l'analyseur, de l'échantillon, du polariseur tournant et du polariseur fixe.

• La lumière issue de la source est caractérisée par un vecteur de Stokes :

$$\vec{S}_{i} = \begin{bmatrix} S_{0} \\ S_{1} \\ S_{2} \\ S_{3} \end{bmatrix}$$

• Le polariseur fixe placé après la source lumineuse, intercepte le faisceau et le modifie en lumière rectiligne selon une direction faisant un angle P avec le plan d'incidence.

• Le polariseur tournant placé avant l'échantillon, module le flux :

$$M_p(\Omega t) = \begin{bmatrix} 1 & \cos 2\Omega t & \sin 2\Omega t & 0\\ \cos 2\Omega t & \cos^2 2\Omega t & \sin 2\Omega t \cos 2\Omega t & 0\\ \sin 2\Omega t & \sin 2\Omega t \cos 2\Omega t & \sin^2 2\Omega t & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

où $\Omega = 2\pi f$ et f est la fréquence de rotation du polariseur.

• l'échantillon réfléchit la lumière modulée incidente :

$$M_s = egin{bmatrix} 1 & -\cos 2\Psi & 0 & 0 \ -\cos 2\psi & 1 & 0 & 0 \ 0 & 0 & \sin 2\Psi \cos\Delta & \sin 2\Psi \sin\Delta \ 0 & 0 & -\sin 2\Psi \sin\Delta & \sin 2\Psi \cos\Delta \end{bmatrix}$$

• l'analyseur fixe placé après l'échantillon, et dont la matrice de Mueller est la même que celle du polariseur fixe.

 A, P_t et P sont les angles que font les axes rapides respectifs avec l'axe Ox du repère de référence, et sont comptés positivement dans le sens trigonométrique par rapport au plan d'incidence en regardant dans le faisceau (les conventions utilisées dans l'ensemble de ce mémoire sont celles proposées par Mueller, au congrès de NEBRASKA, complétées par celles de Hauge, Mueller, et Smith [33, 83, 84]).

Le flux est égal à la composante \overrightarrow{S}_0 du vecteur de Stokes \overrightarrow{S}_f . Il est obtenu en multipliant S_f , à gauche, par le vecteur ligne (1,0,0,0). Lorsque la lumière incidente n'est pas polarisée S_i est de la forme (1,0,0,0). A la sortie de l'analyseur \overrightarrow{S}_f s'écrira donc :

$$\overrightarrow{S_f} = \{M_A R(A)\} M_S \{R^{-1}(Pt) M_{Pt} R(Pt)\} \{R^{-1}(P) M_P\} \overrightarrow{S_i},$$
(2.21)

avec

$$\overrightarrow{S}_{i} = \{I_{0}, 0, 0, 0\}$$
, (2.22)

représente le vecteur de Stockes de la lumière incidente.

Le deuxième polariseur, tourne à la vitesse angulaire $\Omega = 2\pi f$, et le flux transmis devient une fonction périodique de période $\frac{2\pi}{\Omega}$. On peut le décomposer en série de Fourier

$$I(t) = I_0 \left[a_0 + \sum_{n=1}^{\infty} (a_{nc} \cos n\Omega t + a_{ns} \sin n\Omega t) \right], \qquad (2.23)$$

dans notre cas, n = 2, 4 (harmonique 2 et harmonique 4).

Le flux arrivant sur le détecteur est le premier élément du vecteur de Stockes donné par l'expression (2.21) :

$$I = I_0(a_0 + a_{2c}\cos 2P_t + a_{2s}\sin 2P_t + a_{4c}\cos 4P_t + a_{4s}\sin 4P_t)$$
(2.24)

où $I_{0}a_{0}$ est le flux moyen de la lumière incidente et $P_{t} = \Omega t$ est l'azimut de l'axe de transmission du polariseur tournant au temps t par rapport au plan d'incidence. Les coefficients de Fourier $a_{0}, a_{2c}, a_{2s}, a_{4c}$ et a_{4s} peuvent être considérés comme les éléments d'un vecteur \overrightarrow{a} donné par :

$$\overrightarrow{a} = \begin{bmatrix} a_0 \\ a_{2c} \\ a_{2s} \\ a_{4c} \\ a_{4s} \end{bmatrix}$$
(2.25)

Par identification avec l'expression (2.21) du vecteur de Stokes $\overrightarrow{S_f}$ on obtient les coefficients de Fourier suivant :

$$a_{0} = \frac{1}{2} (2 + \cos 2P \, \cos 2A - \cos 2P \, \cos 2\Psi) -2\cos 2A \, \cos 2\Psi + \cos \Delta \, \sin 2P \, \sin 2A \, \sin 2\Psi)$$
(2.26)

$$a_{2c} = \cos 2P + \cos 2A - \cos 2\Psi - \cos 2P \cos 2A \cos 2\Psi \qquad (2.27)$$

$$a_{2s} = \sin 2P - \cos 2A \cos 2\Psi \sin 2P + \cos \Delta \sin 2A \sin 2\Psi$$
(2.28)

$$a_{4c} = \frac{1}{2} (\cos 2P \, \cos 2A - \cos 2P \, \cos 2\Psi \\ -\cos \Delta \, \sin 2P \, \sin 2A \, \sin 2\Psi)$$

$$(2.29)$$

$$a_{4s} = \frac{1}{2} (\cos 2A \sin 2P - \cos 2\Psi \sin 2P + \cos 2P \cos \Delta \sin 2A \sin 2\Psi) . \qquad (2.30)$$

Si le détecteur utilisé est linéaire et sans bruit, l'intensité électrique observée est proportionnelle à \vec{S}_f . Dans la pratique, l'intensité électrique détectée s'écrit $I_{mes}(t) = GI(t)$, où G représente le gain total du montage qui tient compte non seulement de la source (par le terme I_0) mais aussi du détecteur et des circuits électroniques associés. C'est le signal $I_{mes}(t)$ qu'il va faloir mesurer, traiter et analyser pour remonter aux caractéristiques ellipsométriques de l'échantillon.

La quantité réellement mesurée à la sortie du détecteur suivi de son électronique de traitement s'exprime par :

$$I(t)_{mes} = \alpha_0 + \alpha_2 c \cos 2\Omega t + \alpha_{2s} \sin 2\Omega t + \alpha_{4c} \cos 4\Omega t + \alpha_{4s} \sin 4\Omega t \tag{2.31}$$

avec

$$\alpha_k = Ga_k$$
 $k = 0, 2c, 2s, 4c, 4s$ (2.32)

2.7.1 Détermination des angles ellipsométriques

L'inversion des équations (2.26) à (2.30) conduit aux grandeurs ellipsométriques $\cos \Delta$ et tan Ψ ,

$$\cos\Delta = \frac{2(\alpha_{4S}\cos 2P - \alpha_{4C}\sin 2P)}{\sqrt{Q}}.$$
(2.33)

où Q est égal à :

$$(2\alpha_{4C} + \alpha_{2C}\cos 2P + \alpha_{2S}\sin 2P + 2(1 - 2\cos 2P)(\alpha_{4C}\cos 2P + \alpha_{4S}\sin 2P)) \times (2\alpha_{4C} + \alpha_{2C}\cos 2P + \alpha_{2S}\sin 2P - 2(1 + 2\cos 2P)(\alpha_{4C}\cos 2P + \alpha_{4S}\sin 2P))$$

et pour Ψ

$$\tan \Psi = \tan A \sqrt{\frac{X}{Y}}.$$
(2.34)

où X et Y sont :

$$X = 2\alpha_{4C} + \alpha_{2C}\cos 2P + \alpha_{2S}\sin 2P + 2(1 - 2\cos 2P)(\alpha_{4C}\cos 2P + \alpha_{4S}\sin 2P)$$

$$Y = 2\alpha_{4C} + \alpha_{2C}\cos 2P + \alpha_{2S}\sin 2P - 2(1 + 2\cos 2P)(\alpha_{4C}\cos 2P + \alpha_{4S}\sin 2P).$$

Il est à noter que pour la détermination de Ψ et Δ , nous n'utilisons pas, contrairement à beaucoup d'autres montages d'ellipsométrie photométrique, la composante continue du signal.

La mesure des paramètres α_{2c} , α_{2s} , α_{4c} et α_{4s} permet donc de remonter à $\cos \Delta$ et tan Ψ sans connaître la valeur absolue du flux, c'est là un avantage certain de l'ellipsométrie par rapport à d'autres techniques comme la réflectivité. En revanche, L'E.P.T ne mesure pas directement Δ mais $\cos \Delta$. Ce qui pose un problème pour les applications qui nécessitent
la connaissance de Δ avec précision. C'est le cas par exemple pour les mesures d'indice des matériaux massifs faiblement absorbants où cos $\Delta \simeq \pm 1$, (Δ proche de 0 ou π).

En effet, la sensibilité de Δ aux erreurs de mesures augmente fortement comme le montre l'expression :

$$d\Delta = rac{d(\cos\Delta)}{\sin\Delta}.$$

Pour résoudre ce problème on peut ajouter une lame quart d'onde après le polariseur tournant, mais on perd l'achromatisme du montage [77].

2.7.2 Traitement du signal

Dans l'expression du signal électrique (2.31) on considère implicitement que l'axe de transmission du polariseur tournant se trouve dans le plan d'incidence au temps (t = 0) de début de l'échantillonnage. En pratique étant donné le positionnement du codeur optique, il est difficile de faire coïncider l'origine des temps avec le passage de cet axe dans le plan d'incidence. C'est pourquoi, nous devons introduire un angle P_0 qui est l'angle que fait la direction de polarisation du polariseur tournant avec le PI au début du premier échantillon mesuré du signal (top zéro). On aura ainsi :

$$I(t) = h_0 + h_2 c \cos 2\Omega t' + h_{2s} \sin 2\Omega t' + h_{4c} \cos 4\Omega t' + h_{4s} \sin 4\Omega t'$$
(2.35)

où $t' = t - t_0$, et si on pose $P = \Omega t$, $P' = \Omega t'$, et $P_0 = \Omega t_0$, il vient par identification

$$I(t) = h_0 + h_{2c} \cos 2(P - P_0) + h_{2s} \sin 2(P - P_0) + h_{4c} \cos 4(P - P_0) + h_{4s} \sin 4(P - P_0)$$
(2.36)

La figure 2.5 représente une configuration possible. A l'instant t'=0 l'axe de transmission occupe une position caractérisée par l'angle P_0 de cet axe par rapport au plan

Figure 2.5: Définition de l'angle P_0

d'incidence.

En développant les expressions trigonométriques et en identifiant les deux écritures (2.35) et (2.36) du flux, il vient :

$$h_0 = \alpha_0 \tag{2.37}$$

$$h_{2c} = \alpha_{2c} \cos 2P_0 + \alpha_{2s} \sin 2P_0 \tag{2.38}$$

$$h_{2s} = -\alpha_{2c} \sin 2P_0 + \alpha_{2s} \cos 2P_0 \tag{2.39}$$

$$h_{4c} = \alpha_{4c} \cos 4P_0 + \alpha_{4s} \sin 4P_0 \tag{2.40}$$

$$h_{4s} = -\alpha_{4c} \sin 4P_0 + \alpha_{4s} \cos 4P_0 \tag{2.41}$$

On en déduit les coefficients α_i (i = 0, 2c, 2s, 4c, 4s)

$$\alpha_0 = h_0 \tag{2.42}$$

$$\alpha_{2c} = h_{2c} \cos 2P_0 - h_{2s} \sin 2P_0 \tag{2.43}$$

$$\alpha_{2s} = h_{2c} \sin 2P_0 + h_{2s} \cos 2P_0 \tag{2.44}$$

$$\alpha_{4c} = h_{4c} \cos 4P_0 - h_{4s} \sin 4P_0 \tag{2.45}$$

$$\alpha_{4s} = h_{4c} \sin 4P_0 + h_{4s} \cos 4P_0 \tag{2.46}$$

Pour $P_0 = 0$, on trouve bien l'égalité $a_k = h_k$.

2.7.3 Mesure des coefficients de Fourier du signal

L'électronique de comptage de l'instrument permet par multiplexage de répartir les impulsions électriques issues du P.M. dans huit compteurs, en changeant de compteur tous les $1/16^e$ de tour du polariseur tournant. En fin de comptage, le contenu de ces huit compteurs noté S_1, S_2, \ldots, S_8 permet de calculer les coefficients $h_0, h_{2c}, h_{2s}, h_{4c}$ et h_{4s} de la série de Fourier.

La transformation de Hadamard est une méthode simple et efficace pour déterminer les composantes d'un signal de la forme :

$$I(P) = \alpha_0 + \sum_{1 \le i \le n} \alpha_{ic} \cos iP + \sum_{1 \le i \le n} \alpha_{is} \sin iP$$
(2.47)

avec P l'azimut du signal du polariseur tournant à l'instant t.

L'intégration du signal peut être réalisée par le comptage d'impulsions générées par un photomultiplicateur utilisé en comptage de photons [85]. Pour extraire les harmoniques deux et quatre du signal, il faut intégrer sur un demi-tour moteur, par huitième de période. Chacune des sommes peut être calculée à partir de l'expression du signal :

$$S1 = \int_{0}^{\pi/8} I(P')dP' \qquad S5 = \int_{\pi/2}^{5\pi/8} I(P')dP'$$

$$S2 = \int_{\pi/8}^{\pi/4} I(P')dP' \qquad S6 = \int_{5\pi/8}^{3\pi/4} I(P')dP'$$

$$S3 = \int_{\pi/4}^{3\pi/8} I(P')dP' \qquad S7 = \int_{3\pi/4}^{7\pi/8} I(P')dP'$$

$$S4 = \int_{3\pi/8}^{\pi/2} I(P')dP' \qquad S8 = \int_{7\pi/8}^{\pi} I(P')dP'$$

Après calcul, on obtient :

$$S1 = \frac{\pi}{8}h_0 + \frac{\sqrt{2}}{4}h_{2c} + \frac{2-\sqrt{2}}{4}h_{2s} + \frac{1}{4}h_{4c} + \frac{1}{4}h_{4s}$$
(2.48)

$$S2 = \frac{\pi}{8}h_0 + \frac{2-\sqrt{2}}{4}h_{2c} + \frac{\sqrt{2}}{4}h_{2s} - \frac{1}{4}h_{4c} + \frac{1}{4}h_{4s}$$
(2.49)

$$S3 = \frac{\pi}{8}h_0 + \frac{\sqrt{2}-2}{4}h_{2c} + \frac{\sqrt{2}}{4}h_{2s} - \frac{1}{4}h_{4c} - \frac{1}{4}h_{4s}$$
(2.50)

$$S4 = \frac{\pi}{8}h_0 - \frac{\sqrt{2}}{4}h_{2c} + \frac{2-\sqrt{2}}{4}h_{2s} + \frac{1}{4}h_{4c} - \frac{1}{4}h_{4s}$$
(2.51)

$$S5 = \frac{\pi}{8}h_0 - \frac{\sqrt{2}}{4}h_{2c} + \frac{\sqrt{2}-2}{4}a_{2s} + \frac{1}{4}h_{4c} + \frac{1}{4}h_{4s}$$
(2.52)

$$S6 = \frac{\pi}{8}h_0 + \frac{\sqrt{2}-2}{4}h_{2c} - \frac{\sqrt{2}}{4}h_{2s} - \frac{1}{4}h_{4c} + \frac{1}{4}h_{4s}$$
(2.53)

$$S7 = \frac{\pi}{8}h_0 + \frac{2-\sqrt{2}}{4}h_{2c} - \frac{\sqrt{2}}{4}h_{2s} - \frac{1}{4}h_{4c} - \frac{1}{4}h_{4s}$$
(2.54)

$$S8 = \frac{\pi}{8}h_0 + \frac{\sqrt{2}}{4}h_{2c} + \frac{\sqrt{2}-2}{4}h_{2s} + \frac{1}{4}h_{4c} - \frac{1}{4}h_{4s}$$
(2.55)

Par combinaison des différents S_i , on détermine les coefficients h_0 , h_{2c} , h_{2s} , h_{4c} et h_{4s} . On a donc :

$$h_0 = \frac{S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8}{2}$$
(2.56)

$$h_{2c} = \frac{S1 + S2 - S3 - S4 - S5 - S6 + S7 + S8}{2}$$
(2.57)

$$h_{2s} = \frac{S1 + S2 + S3 + S4 - S5 - S6 - S7 - S8}{2} \tag{2.58}$$

$$h_{4c} = \frac{S1 - S2 - S3 + S4 + S5 - S6 - S7 + S8}{2}$$
(2.59)

$$h_{4s} = \frac{S1 + S2 - S3 - S4 + S5 + S6 - S7 - S8}{2} \tag{2.60}$$

2.8 Calibrage de l'ellipsomètre

Le calibrage de l'ellipsomètre est une phase importante, pour le positionnement avec précision des éléments optiques par rapport au plan d'incidence, afin d'éliminer les erreurs systématiques d'azimut sur les angles ellipsométriques Ψ et Δ .

La détermination des azimuts (P, A, P_0) se fait par la mesure des coefficients de Fourier dans des cas particuliers.

Le but du calibrage [85] est de positionner les axes de transmission de l'analyseur et du polariseur fixes par rapport au plan d'incidence, ainsi que l'angle P_0 qui caractérise la position de l'axe du polariseur tournant en début de comptage (c'est le "top zéro").

Le calibrage par le module [86, 87, 88], est une méthode qui consiste à définir une fonction (en utilisant les modules des harmoniques deux et quatre), appelée "résiduelle", qui présente un extremum lorsque l'azimut de l'élément optique étudié, se trouve exactement dans le plan d'incidence. Pour le détail de la procédure voir les mémoires C.N.A.M de Bertucci [81] et de Pawlowski [82].

2.9 Erreurs systématiques

Dans la détermination du flux, nous avons supposé que les éléments optiques étaient parfaits, or dans la pratique la détermination, lors du calibrage, des azimuts A, P, et P_0 , n'est pas très précise, c'est pour cela qu'il faut évaluer analytiquement les erreurs systématiques commises sur les angles ellipsométriques tan Ψ et cos Δ . L'effet de chacune des causes d'erreur est étudié individuellement. L'erreur globale commise sur les angles ellipsométriques est obtenu en additionnant algébriquement les effets des différentes causes d'erreur.

Toutes les erreurs sont exprimées à travers les coefficients de Fourier α_0 , α_{2c} , α_{2s} , α_{4c} , α_{4s} . Les erreurs systématiques $\delta_{\alpha_{2c}}$, $\delta_{\alpha_{2s}}$, $\delta_{\alpha_{4s}}$, proviennent d'éléments optiques imparfaits, d'erreurs d'azimut, et peuvent être explicitées analytiquement pour chacune des causes d'erreur considérée en employant la formule générale du flux établie pour un système optique parfait. Le flux réel, celui qui tient compte des imperfections du système, peut être développé en série de Taylor, par rapport à l'ensemble des variables étudiées.

Si on appelle $\overline{S_f^0}$ le vecteur de Stokes de l'ellipsomètre parfait, et x la variable de perturbation, on a, au premier ordre [89] :

$$\overrightarrow{S}_{f} = \overrightarrow{S}_{f}^{0} + \sum_{i} \frac{\partial \overrightarrow{S}_{f}}{\partial x_{i}} \delta x_{i} = \overrightarrow{S}_{f}^{0} + \sum_{i} (\delta \overrightarrow{S}_{f})_{x_{i}}$$
(2.61)

En développant le second terme pour une perturbation x, on obtient les $\delta_{\alpha_{2c}}$, $\delta_{\alpha_{2s}}$, $\delta_{\alpha_{4c}}$, $\delta_{\alpha_{4s}}$ correspondants. Le développement ne tient compte que des termes d'ordre 1. Les termes d'ordre supérieur (multiples et croisés), sont négligés.

En pratique on étudie qu'une seule variable à la fois. Sa valeur est calculée directement en remplaçant la matrice de l'élément optique étudié, dans l'expression du flux, par la matrice "perturbation" qui lui est associée (différence entre la matrice réelle au premier ordre et la matrice idéale d'origine).

Le flux est obtenu en multipliant \overrightarrow{S}_f à gauche par le vecteur ligne (1, 0, 0, 0). Nous adopterons la notation vectorielle pour représenter les écarts à ce flux pour chacune des causes d'erreurs x_i envisagées.

$$\vec{\delta a} = \begin{bmatrix} \delta a_{0x_i} \\ \delta a_{2cx_i} \\ \delta a_{2sx_i} \\ \delta a_{4cx_i} \\ \delta a_{4sx_i} \end{bmatrix}.$$
(2.62)

2.9.1 Matrices perturbation

Le flux perturbé est obtenu en remplaçant les matrices idéales par les matrices perturbation des éléments optiques. Pour simplifier les calculs, on ne remplace qu'une seule matrice idéale à la fois par sa matrice réelle.

Pour une perturbation unique x, la matrice réelle de Mueller d'un élément optique peut s'écrire :

$$M(x) = M^{0}(x) + \delta M(x)$$
(2.63)

où :

 M^0 est la matrice idéale de l'élément optique

 δ M est la matrice perturbation.

On a donc :

$$\delta M(x) = M(x) - M^{0}(x)$$
(2.64)

En développant M(x) en série de Taylor :

$$M(x) = M^{0}(x) + \frac{\partial M(x)}{\partial x} \delta x + \frac{\partial^{2} M(x)}{\partial^{2} x} \delta x^{2} \dots, \qquad (2.65)$$

En remplaçant M(x), on obtient pour l'ordre 1 :

$$\delta M(x) = \frac{\partial M(x)}{\partial x} \delta x \tag{2.66}$$

2.9.2 Incertitudes sur $\tan \Psi$ et $\cos \Delta$

Les erreurs faites sur la mesure des paramètres ellipsomètriques $\tan \Psi$ et $\cos \Delta$, $\delta \tan \Psi$ et $\delta \cos \Delta$, se propagent uniquement à travers les coefficients de Fourier a_i , éléments du vecteur \overrightarrow{a} :

$$\vec{a} = \begin{bmatrix} a_0 \\ a_{2c} \\ a_{2s} \\ a_{4c} \\ a_{4s} \end{bmatrix} .$$
 (2.67)

Pour chaque type de perturbation x, il faudra calculer les $\delta \alpha_i$ correspondants et les substituer dans les expressions de $\delta \tan \Psi$ et $\delta \cos \Delta$.

On étudie toujours une seule source de perturbation à la fois, donc nous serons en présence d'autant de couples $\delta \tan \Psi$, $\delta \cos \Delta$ qu'il y a de perturbations à étudier. L'erreur totale est la somme de toutes les erreurs individuelles.

Les erreurs sur tan Ψ et $\cos \Delta$ s'obtiennent en dérivant les expressions de tan Ψ et $\cos \Delta$ en fonction des coefficients α_i .

$$\delta \tan \Psi = \delta \vec{a}^{T} \begin{bmatrix} 0 \\ ((1 - \cos 2A) \cos 2P(\cos 2A - \cos 2\Psi) \csc^{2} 2A \csc 2\Psi) \\ /((-1 + \cos 2A)(1 + \cos 2\Psi)) \\ ((1 - \cos 2A)(\cos 2A - \cos 2\Psi) \csc^{2} 2A \csc 2\Psi \sin 2P) \\ /((-1 + \cos 2A)(1 + \cos 2\Psi)) \\ (2(1 - \cos 2A)(\cos 2A - \cos 2P - 2 \cos 2A \cos^{2} 2P - \cos 2\Psi) \\ + \cos 2A \cos 2P \cos 2\Psi + 2 \cos^{2} 2P \cos 2\Psi) \csc^{2} 2A \csc 2\Psi) \\ /((-1 + \cos 2A)(1 + \cos 2\Psi)) \\ (2(1 - \cos 2A)(-1 - 2 \cos 2A \cos 2P + \cos 2A \cos 2\Psi) \\ + 2 \cos 2P \cos 2\Psi) \csc^{2} 2A \csc 2\Psi \sin 2P) \\ /((-1 + \cos 2A)(1 + \cos 2\Psi)) \end{bmatrix},$$
(2.68)

ſ	· 0]	
	$\cos\Delta\cos 2P\csc 2A\csc 2\Psi \ (\cot 2A\cot 2\Psi -\csc 2A\csc 2\Psi)$	
	$\cos\Delta\csc2A\csc2\Psi\ (\cot2A\cot2\Psi-\csc2A\csc2\Psi)\sin2P$	
$\delta \cos \Delta = \delta \overrightarrow{a}^T$	$\begin{array}{l} 2\csc 2A\csc 2\Psi(\cos\Delta\cot 2A\cot 2\Psi\\ -2\cos\Delta\cos^2 2P\cot 2A\cot 2\Psi\\ -\cos\Delta\cos 2P\cot 2\Psi\csc 2A\\ +\cos\Delta\cos 2P\cot 2\Psi\csc 2A\\ +\cos\Delta\cos 2P\cot 2A\csc 2\Psi\\ -\cos\Delta\csc 2A\csc 2\Psi\\ +2\cos\Delta\cos^2 2P\csc 2A\csc 2\Psi -\sin 2P) \end{array}$	
	$2 \csc 2A \csc 2\Psi (\cos 2P)$ - $2 \cos \Delta \cos 2P \cot 2A \cot 2\Psi \sin 2P$ - $\cos \Delta \cot 2\Psi \csc 2A \sin 2P$ + $\cos \Delta \cot 2A \csc 2\Psi \sin 2P$ + $2 \cos \Delta \cos 2P \csc 2A \csc 2\Psi \sin 2P)$	

75

(2.69)

2.9.3 Erreurs d'azimut

Les erreurs d'azimut sont provoquées principalement lors de la phase de calibrage. Les éléments optiques imparfaits perturbent la localisation du plan d'incidence. Pour une localisation incorrecte du P.I., on aura une détermination incorrecte de l'azimut des éléments optiques.

La matrice perturbation due à une erreur d'azimut θ est :

$$\delta R(\theta) = 2\delta\theta \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -\sin(2\theta) & \cos(2\theta) & 0 \\ 0 & -\cos(2\theta) & -\sin(2\theta) & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(2.70)

Polariseur

La perturbation du vecteur de Stokes $(\delta S_f)_{\theta}$ due à un défaut de positionnement du polariseur est donnée par :

$$(\delta S_f)_P = \{ M_A R(A) \} M_S \{ R^{-1}(P_t) M_{P_t} R(P_t) \} \{ \delta R^{-1}(P) M_P \} S_i$$
(2.71)

Seules les composantes de Fourier du premier élément de ce vecteur sont utilisées.

Ainsi pour le cas particulier où $A = \pm 45^{\circ}$ et $P = 0^{\circ}$, l'erreur d'azimut due au polariseur est :

$$\begin{bmatrix} \delta \tan \Psi \\ \delta \cos \Delta \end{bmatrix} = \delta P \begin{bmatrix} 2sgnA \cos \Delta(\cos 2\Psi - 1) \\ /(1 + \cos 2\Psi) \\ 2sgnA \left(-\cos^2 \Delta + \cos 2\Psi(\cos^2 \Delta - 1) \right) \end{bmatrix}.$$
 (2.72)

(par convention nous posons sgnA = 1 pour $A = 45^{\circ}$ et sgnA = -1 pour $A = -45^{\circ}$).

Au premier ordre, les erreurs sur tan Ψ et cos Δ , dues à un décalage angulaire δP du polariseur, peuvent être compensées en procédant à une mesure double-zone.

Analyseur

Pour l'analyseur, les calculs sont du même type que pour le polariseur. L'équation de départ est :

$$(\delta S_f)_P = \{ M_A \delta R(A) \} M_S \{ R^{-1}(P_t) M_{P_t} R(P_t) \} \{ R^{-1}(P) M_P \} S_i$$
(2.73)

Pour $A = \pm 45^{\circ}$ et $P = 0^{\circ}$:

$$\begin{bmatrix} \delta \tan \Psi \\ \delta \cos \Delta \end{bmatrix} = \delta A \begin{bmatrix} -2sgnA \ \tan 2\Psi \\ 0 \end{bmatrix}.$$
(2.74)

Au premier ordre, seule $\tan \Psi$ est sensible à un décalage δA de l'analyseur. Cette erreur peut être compensée par une mesure double zone.

2.9.4 Les imperfections des éléments optiques : erreurs d'ellipticité

Dans la réalité, l'état de polarisation de la lumière transmise par un élément n'est pas linéaire, mais légèrement elliptique. De ce fait, il faut en tenir compte dans la matrice perturbation. La matrice perturbation d'un polariseur imparfait est :

$$\delta M_p = 2\gamma_p \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$
(2.75)

 γ_p est l'ellipticité résiduelle due par exemple au pouvoir rotatoire du matériau (cas du quartz)

Polariseur

Un polariseur réel, ne transmet pas une lumière à polarisation rigoureusement rectiligne. Il subsiste toujours une très légère ellipticité.

$$(\delta S_f)_{\gamma P} = \{M_A R(A)\} M_S \{R^{-1}(P_t) M_{P_t} R(P_t)\} \{R^{-1}(P) \delta M_P\} S_i$$
(2.76)

Pour $A = \pm 45^{\circ}$ et $P = 0^{\circ}$:

$$\begin{bmatrix} \delta \tan \Psi \\ \delta \cos \Delta \end{bmatrix} = \gamma P \begin{bmatrix} 0 \\ 0 \end{bmatrix} . \tag{2.77}$$

L'imperfection γ du polariseur, n'influe pas sur les valeurs des paramètres ellipsométriques.

Analyseur

$$(\delta S_f)_{\gamma A} = \{\delta M_A R(A)\} M_S \{R^{-1}(P_t)M_{P_t}R(P_t)\} \{R^{-1}(P)M_P\} S_i$$
(2.78)

Pour $A = \pm 45^{\circ}$ et $P = 0^{\circ}$:

$$\begin{bmatrix} \delta \tan \Psi \\ \\ \delta \cos \Delta \end{bmatrix} = \gamma A \begin{bmatrix} 0 \\ -2SgnA \sin \Delta \end{bmatrix}.$$
 (2.79)

Au premier ordre, seule tan Ψ est sensible à l'imperfection de l'analyseur, mais on peut l'éliminer en faisant des mesures en double-zones.

Polariseur tournant

Le problème est le même que dans les deux autres cas :

$$(\delta S_f)_{\gamma Pt} = \{M_A R(A)\} M_S \{R^{-1}(P_t) \delta M_{Pt} R(P_t)\} \{R^{-1}(P) M_P\} S_i$$
(2.80)

Pour $A = \pm 45^{\circ}$ et $P = 0^{\circ}$:

$$\begin{bmatrix} \delta \tan \Psi \\ \\ \\ \delta \cos \Delta \end{bmatrix} = 2\gamma Pt \begin{bmatrix} sgnA\cos 2\Psi \sin \Delta \\ /(1 + \cos 2\Psi) \\ -sgnA\cos \Delta \sin \Delta \csc 2\Psi \end{bmatrix}.$$
 (2.81)

Une fois encore, les erreurs induites par l'imperfection γ du polariseur tournant, peuvent être compensées (au premier ordre) en effectuant une mesure double-zone.

2.9.5 Autres erreurs systématiques : les fenêtres

Dans notre cas, les échantillons étudiés, sont placés dans une enceinte, munie de deux fenêtres transparentes. Ces deux éléments supplémentaires perturbent le flux détecté par le PM. On assimile ces deux fenêtres aux lames de phase qui introduisent chacune un faible retard δW et ont un azimut w_i par rapport au PI.

La matrice de transfert peut s'écrire sous la forme :

$$M_W = R^{-1}(w)M(\delta W)R(w) \tag{2.82}$$

Pour les fenêtres on a :

$$(\delta S_f)_{\delta W} = \{M_A R(A)\} M_{W_b} M_S M_{W_a} \{R^{-1}(Pt) M_{Pt} R(Pt)\} \{R^{-1}(P) M_P\} S_i,$$
(2.83)

Pour la fenêtre d'entrée l'erreur sur tan Ψ et $\cos \Delta$:

$$\begin{bmatrix} \delta \tan \Psi \\ \delta \cos \Delta \end{bmatrix} = \delta_{Wa} \begin{bmatrix} 0 \\ -2\cos 2w_a \sin \Delta \end{bmatrix}.$$
 (2.84)

Au premier ordre, l'imperfection W_a de la fenêtre d'entrée modifie uniquement la valeur de $\cos \Delta$.

Et pour la fenêtre de sortie, on trouve :

$$\delta \tan \Psi \\ \delta \cos \Delta \end{bmatrix} = \delta_{W_b} \begin{bmatrix} sgnA(\cos 2\Psi - 2)(\sin \Delta \cot 2\Psi \cos 2w_b)/(1 + \cos 2\Psi) \\ -\frac{1}{2}sgnA \sin \Delta(\cos \Delta \sin 2w_b \cos 2\Psi - \cos 2w_b) \end{bmatrix} .$$
(2.85)

Au premier ordre, l'imperfection W_b de la fenêtre de sortie influe sur tan Ψ et cos Δ , mais on peut l'éliminer en faisant des mesures en deux-zones.

Interêt de la mesure double-zone

Elle consiste à déterminer la grandeur recherchée en prenant la moyenne arithmétique de deux mesures effectuées dans des conditions particulières.

Dans notre cas, il s'agit de deux positions symétriques de l'analyseur, par rapport au plan d'incidence : $A = \pm 45^{\circ}$

La mesure en double-zone, est une technique courante dans de nombreux domaines, permet de corriger au premier ordre les erreurs systématiques liées aux :

- imperfections des polariseurs,

- positionnement des polariseurs,
- fenêtres de la cellules.

Par mesures double-zone, la plus part des erreurs systématiques sont éliminées, seule l'erreur due à la fenêtre d'entrée, qui influe sur $\cos \Delta$, n'est pas éliminée.

	$oldsymbol{\delta} anoldsymbol{\varPsi}$
δP	$2sgnA\cos\Delta(\cos 2\Psi - 1) \\ /(1 + \cos 2\Psi)$
$\delta \overline{A}$	2 <i>sgnA</i> tan 2₽
γ_P	0
$oldsymbol{\gamma}_{Pt}$	$egin{aligned} \mathbf{2sgn}oldsymbol{A} & \sinoldsymbol{\Delta}\cos2oldsymbol{\Psi} \ /(1+\cos2oldsymbol{\Psi}) \end{aligned}$
γ_A	0
$\overline{W_a}$	0
$oldsymbol{W}_b$	$sgnA(\cos 2\Psi - 2)(\cos 2w_b \sin \Delta \cot 2\Psi) /(1 + \cos 2\Psi)$

Tableau 2.3: Erreurs systématiques sur tan Ψ . Cas particulier : $A = \pm 45^{\circ}$ et $P = 0^{\circ}$

	$\delta\cosarDelta$
δΡ	$sgnA(\cos^2 \Delta - 2\cos 2\Psi) \ / \sin 2\Psi$
δA	0
γ_P	0
$oldsymbol{\gamma}_{Pt}$	$oldsymbol{2} sgn oldsymbol{A}(\sin oldsymbol{\Delta} \cos oldsymbol{\Delta})\ / \sin oldsymbol{2} oldsymbol{\Psi}$
γ_A	$-2sgnA\sin\Delta$
W_a	$-2\cos 2w_a\sin\Delta$
W _b	$ \begin{array}{ } -\frac{1}{2} sgn A \sin \Delta (\cos \Delta \cos 2w_b) \\ -\cos 2w_b \end{array} $

Tableau 2.4: Erreurs systématiques sur $\cos \Delta$. Cas particulier : $A = \pm 45^{\circ}$ et $P = 0^{\circ}$

2.10 Erreurs aléatoires

Les erreurs aléatoires, ont pour conséquence la limitation de la sensibilité de l'ellipsomètre. Le gain est directement conditionné par une diminution du niveau de bruit.

Pour le cacul des erreurs aléatoires, nous reprenons les principaux résultats de A. Pawlowski [82].

2.10.1 Erreurs duent à la statique du comptage

Les variances de tan Ψ et cos Δ dues au comptage de photons sont respectivement données par :

$$\sigma_{\tan\Psi}^2 = \frac{\pi^2}{\sin^2 2\Psi} \left(\frac{\cos^2 2\Psi}{4(1+\cos 2\Psi)^2} + \tan^4 \Psi \right) \frac{\sigma_{\alpha_0}^2}{G^2}$$
(2.86)

$$\sigma_{\cos\Delta}^2 = \frac{\pi^2}{\sin^2 2\Psi} \left(\frac{\cos^2 \Delta}{4\sin^2 2\Psi} + \cos^2 \Delta \tan^2 \Psi + 1 \right) \frac{\sigma_{\alpha_0}^2}{G^2}$$
(2.87)

ou $\sigma_{\alpha_0}^2$ est la variance de la composante continue du signal.

Or $\alpha_k = G a_k$ où le gain G est proportionnel à N, le nombre total d'impulsions délivré par le photomultiplicateur.

On en déduit

$$\sigma_{\alpha\alpha}^2 = a_0^2 \sigma_G^2 \tag{2.88}$$

Or l'écart type σ_G est proportionnel à \sqrt{N} . Donc :

$$\frac{\sigma_{\alpha_0}^2}{G^2} = \frac{a_0^2}{N} \tag{2.89}$$

Pour $P = 0^{\circ}$ et $A = 45^{\circ}$ on a :

$$a_0 = -\frac{1}{2}\cos 2\Psi \tag{2.90}$$

En définitive :

$$\sigma_{\tan\Psi}^2 = \frac{\pi^2}{4N} \cot^2 2\Psi \left(\frac{\cos^2 2\Psi}{4(1+\cos 2\Psi)^2} + \tan^4 \Psi \right)$$
(2.91)

$$\sigma_{\cos\Delta}^2 = \frac{\pi^2}{4N} \cot^2 2\Psi \left(\frac{\cos^2 \Delta}{4\sin^2 2\Psi} + \cos^2 \Delta \tan^2 \Psi + 1 \right)$$
(2.92)

2.10.2 Erreur aléatoire due au polariseur

On a :

$$\sigma_{\tan\Psi}^2 = k_1^2 \, \sigma_P^2 \tag{2.93}$$

$$\sigma_{\cos\Delta}^2 = k_2^2 \, \sigma_P^2 \tag{2.94}$$

avec

$$k_1 = rac{\cos\Delta\left(\cos2\psi-1
ight)}{1+\cos2\Psi}$$

 \mathbf{et}

$$k_2=-rac{2}{\sin 2\Psi}\left(\sin^2\Delta\ \cos 2\Psi+\cos^2\Delta
ight)$$

2.10.3 Erreur aléatoire due à l'analyseur

.

On a :

$$\sigma_{\tan\Psi}^2 = k_3^2 \sigma_A^2 \tag{2.95}$$

$$\sigma_{\cos\Delta}^2 = k_4^2 \sigma_A^2 \tag{2.96}$$

 \mathbf{avec}

$$k_3=2{\cos 2\psi-1\over\sin 2\Psi}
onumber \ k_4=0$$

La variance due au trois causes d'erreurs est :

$$\sigma_{\tan\Psi}^2 = (\sigma_{\tan\Psi}^2)_N + (\sigma_{\tan\Psi}^2)_P + (\sigma_{\tan\Psi}^2)_A$$
$$\sigma_{\cos\Delta}^2 = (\sigma_{\cos\Delta}^2)_N + (\sigma_{\cos\Delta}^2)_P + (\sigma_{\cos\Delta}^2)_A$$

Nous adopterons comme incertitude sur le résultat l'écart type correspondant.

Il faut remarquer qu'il existe d'autres sources qui contribuent à l'incertitude totale : effet du second d'ordre, défaut d'alignement et de divergence du faisceau, vibration, état de la surface.

Les formules générales de propagation des erreurs permettent de calculer les incertitudes sur ε_1 et ε_2 , n et k ainsi que sur la conductivité optique σ_1 .

2.11 Différentes causes d'erreurs

2.11.1 Ouverture du faisceau

La divergence du faisceau incident sur la surface, peut engendrer des erreurs sur la détermination de l'angle d'incidence et donc fausser les mesures de Ψ et Δ , même si on pouvait la réduire à volonté, on serait limité (sauf emploi du laser) par la nécessité de conserver un flux incident suffisant pour permettre les mesures.

2.11.2 Déviation du faisceau par le polariseur

Dans notre ellipsomètre on fait intervenir la rotation du polariseur, si les faces de ce dernier ne sont pas parallèles entre elles, le rayon polarisé moyen forme un cône, ce qui engendre une variation de l'angle d'incidence et du plan d'incidence.

2.11.3 Biréfringence parasite

Pour la bonne précision des mesures, il est essentiel que les lames transparentes (fenêtres de la cellule de mesure) placées sur les trajets des faisceaux incident et réfléchi, n'introduisent aucune biréfringence parasite. Les lames utilisées, en quartz d'épaisseur 3 mm, ont été collées sur leur support flexible respectif par une colle élastique pour ne pas avoir de contrainte.

	Angle A	Psi	Delta	Indices et épaisseur
avec fenêtres	$+45^{\circ}$ -45° moyenne	45,7468 45,1356 45,4412	80,2574 79,059 79,6582	n=1,4636 e=106,53
sans fenêtres	$+45^{\circ}$ -45° moyenne	44,86 45,96 45,41	80,068 78,82 79,44	n=1,4656 e=106,23

Tableau 2.5: Influence des fenêtres de la cellule de mesure sur Ψ et Δ

Pour évaluer l'influence des fenêtres sur les mesures de Ψ et Δ nous avons effectué des mesures sur l'échantillon S_iO_2/S_i d'épaisseur 106 nm, avec fenêtres et sans fenêtres. Les résultats obtenus sont donnés dans le tableau 2.5.

2.12 Conclusion

Nous venons de décrire notre ellipsomètre spectroscopique à polariseur tournant à trois éléments, qui nous a permis de nous affranchir des inconvenients des ellipsomètres à deux éléments (E.A.T et E.P.A).

L'étude des erreurs systématiques, menée à l'aide du formalisme de Stokes-Muller, a permis notamment de corriger certaines de ces erreurs par mesures double-zone. Seule l'erreur due à la fenêtre de sortie subsiste.

Les calculs des erreurs aléatoires effectués par A. Pawlowski [82], nous ont permis d'évaluer les incertitudes sur la statique du comptage, du polariseur et de l'analyseur

Chapitre 3 RÉSULTATS ET INTERPRÉTATIONS

3.1 Dispositif expérimental

3.1.1 Introduction

Pour pouvoir étudier les propriétés optiques des métaux liquides, nous avons mis au point une cellule de mesure, que nous décrirons dans la première partie de ce chapitre.

La conception de cette cellule, sera liée à la résolution d'un certain nombre de problèmes pratiques inhérents aux techniques de mesure qui se posent à haute température, ainsi qu'au choix des matériaux étudiés. Par exemple, le lithium qui a une forte affinité chimique pour l'oxygène et l'azote devra être préparé et fondu sous atmosphère neutre. Il ne pourra pas être contenu dans un creuset en silice, qui réagit vivement avec les alliages à base de lithium.

3.1.2 Cellule de mesure

Les figures (3.1, 3.2, 3.3) montrent l'agencement de la chambre de mesure (enceinte étanche sous atmosphère controlée). L'ensemble est en acier inox qualité 304L. Les joints toriques sont en viton.

Les fenêtres sont en silice et fixées avec une colle élastique, pour réduire au maximum la polarisation induite par la biréfringence parasite due aux contraintes mécaniques. Elles sont montées sur des tombacs, munis de trois vis, afin de régler l'orthogonalité du faisceau et des fenêtres. L'ensemble est conçu de manière à pouvoir varier l'angle d'incidence entre 60° et 70° .

Pour éviter les problèmes de vibrations, l'enceinte est fixée sur un support antivibratoire.

3.1.3 Four

Le four est en cuivre, et composé de deux parties (figure 3.2) : la partie basse, de forme cylindrique, de diamètre externe 6 cm et de hauteur 3 cm, dans laquelle est logé le creuset en inox.

La partie haute est un bloc cylindrique qui sert de couvercle pour réduire le gradient de température dans le métal liquide.

L'élément chauffant est un thermocoax type 1NC, enroulé autour du four. Il est constitué d'un fil chauffant Nickel-Chrome, gainé sous tube métallique (inconel) et électriquement isolé. Son diamètre est de 2mm, sa résistance de ligne de $3, 1 \ ohms/m$.

Pour éviter la dispersion de chaleur dans l'enceinte, nous utilisons des écrans thermiques en inox, disposés de part et d'autre du four.

L'utilisation de fenêtres en plexiglass, qui supportent une température maximale de $80^{\circ}C$, nous limite en température. Pour résoudre ce problème, nous avons installé un tube en cuivre, en forme de Té, qui répartit l'arrivée d'argon sur les deux fenêtres, ce qui permet de diminuer leur température. En outre, nous utilisons des ventilateurs. Ainsi la température maximale du four peut atteindre 500°C.

Ces fenêtres seront prochainement remplacées par d'autres en silice

La température est mesurée par deux couples thermoélectriques en Chromel/Alumel. L'un est sous le creuset et en contact avec lui. L'autre est solidaire du couvercle. Les indications données par les deux couples ne diffèrent pas de plus de $1^{\circ}C$.

Figure 3.1: Cellule de mesure : vue de face

Figure 3.2: Cellule de mesure : vue de côté

3.1.4 Dispositif de purification

Les mesures sur les métaux et alliages liquides doivent être effectuées sous atmosphère inerte. Afin d'éviter l'oxydation du métal, nous avons utilisé de l'argon préalablement purifié par un banc de purification de gaz neutre double ligne $H_2O - O_2 - N_2$ avec régulation de pression fabriqué par la société Jacomex. Le banc est un prototype réalisé pour nos expériences, selon un cahier des charges bien défini. En premier lieu, il ne doit pas créer de vibrations et ce problème a été résolu en entraînant le gaz par une turbine qui remplace la pompe. Il doit purifier l'argon en éliminant l'oxygène et l'eau pour éviter l'oxydation de la surface des métaux. Enfin l'étude du lithium nécessite une atmosphère sans azote. En effet le nitrure de lithium se forme déjà à température ambiante. C'est un solide noir qui ne fond qu'à 845°C. En conséquence nous avons fait installer un épurateur d'azote.

3.2 Déroulement et contrôle des essais

3.2.1 Préparation des alliages

Les compositions des alliages sont exprimées en pourcentage atomique (% atom.) :

$$X_A = 100 imes rac{nombre \ atome \ A}{nombre \ atome \ A + nombre \ atome \ B}.$$

Dans ces conditions, le rapport des masses m_A et m_B des éléments d'un alliage A-B s'écrit :

$$\frac{m_A}{m_B} = \frac{X_A}{X_B} \frac{M_A}{M_B}$$

où M_A et M_B sont les masses atomiques correspondantes.

Toutes les compositions d'alliages sont exprimées, dans ce travail, en pourcentage atomique. L'incertitude sur les concentrations est de 0,01%.

3.2.2 Mode opératoire

Lorsque le montage est réalisé, l'enceinte est placée sous vide pour vérifier la bonne étanchéité du dispositif. Avant de commencer à chauffer, on effectue une entrée d'argon hydrogéné (5% d'hydrogène). On introduit de l'hydrogène de manière à réduire les oxydes encore présents dans l'enceinte. La purification dure une journée à température ambiante, afin d'éliminer toute trace d'oxygène. Pour contrôler la teneur en oxygène, une lampe à filament de tungstène de 7 volts, dont on a scié l'ampoule, sert de témoin. Pour pouvoir réaliser des mesures, deux conditions sont nécessaires :

- avoir une bonne homogénéité de la température du métal; pour cela le four est porté pendant quelques heures à une centaine de degrés au-dessus de la température de fusion du métal,
- avoir une surface refléchissante (condition nécessaire mais pas forcément suffisante....).

Pour satisfaire à cette deuxième condition, on procède au raclage de la surface, avec un racloir en acier inoxydable, pour éliminer les impuretés et, en particulier, la couche d'oxyde formée.

Dans le cas ou la surface n'est toujours pas réfléchissante, on solidifie le métal, et on élimine la couche en grattant la surface solide. Il est souvent nécessaire de répéter cette opération deux ou trois fois.

3.3 Choix du modèle

Comme nous l'avons décrit dans le deuxième chapitre, l'ellipsométrie nous permet de déterminer les paramètres ellipsométriques aux constantes optiques n et k ou ϵ_1 et ϵ_2 donnés par (cf chapitre II)

$$\varepsilon_1 = n^2 - k^2 = \sin^2 \theta (1 + \tan^2 \theta \, \frac{\cos^2 2\Psi - \sin^2 2\Psi \sin^2 \Delta}{(1 + \sin 2\Psi \cos \Delta)^2}),$$
(3.1)

$$\varepsilon_2 = 2nk = \sin^2 \theta \tan^2 \theta \frac{\sin 4\Psi \sin \Delta}{(1 + \sin 2\Psi \cos \Delta)^2}.$$
(3.2)

Les résultats peuvent s'interprèter dans le cadre du modèle de Drude. Le choix de ce modèle, sa justification et ses limites ont été discutés dans le chapitre I.

Les expressions de ε_1 , ε_2 sont données par :

$$\varepsilon_1(\omega) = 1 - \frac{\omega_p^2 \tau^2}{1 + \omega^2 \tau^2}$$
(3.3)

$$\epsilon_2(\omega) = \frac{\omega_p^2 \tau}{\omega(1+\omega^2 \tau^2)}$$
(3.4)

où $\omega_p^2 = \frac{N e^2}{m \varepsilon_0}$ N est le nombre d'électrons de conduction par unité de volume, et m leur masse, ε_0 est la constante diélectrique du vide, e est la charge de l'électron.

3.4 Résultats et discussion

Les métaux et leurs alliages que nous pouvons étudier, ne doivent pas avoir un point du fusion supérieur à 400°C, ni une tension de vapeur trop élevée. Les métaux utilisés proviennent de la société JMC Puratronic, d'une pureté métallique de 99,999%.

3.4.1 Généralités

Evaluation de l'incertitude sur les mesures expérimentales :

Dans le deuxième chapitre, nous avons montré que les erreurs systématiques, se compensent par des mesures en double zone.

Pour évaluer l'ordre de grandeur de l'incertitude due aux erreurs aléatoires, nous avons fait nos calculs sur l'étain, d'après les données suivantes :

Longueur d'onde $\lambda = 560nm$ Nombre d'impulsions par seconde N = 170000Angle d'incidence $\theta = 71, 37^{\circ}$ Azimut du polariseur $P = 0^{\circ}$ Azimut de l'analyseur $A = 45^{\circ}$ $\tan \Psi = 0, 71$ et $\Psi = 35, 37^{\circ}$ $\cos \Delta = -0, 579$ et $\Delta = 125, 41^{\circ}$

Les incertitudes sur $\tan \psi$, $\cos \Delta$, n, k, ε_1 et ε_2 dues à N, P et A pour une incertitude de l'ordre de 0, 1° sur l'angle d'incidence, sont données dans les tableaux 3.1, 3.2 et 3.3.

En prenant en considération, non seulement les erreurs aléatoires, mais aussi d'autres sources d'erreurs (défaut d'alignement, divergence du faisceau, ...), nous estimons l'incertitude sur nos mesures à deux fois l'écart type calculé précédemment.

Remarque

Pour illustrer l'importance de la précision sur l'angle d'incidence, nous avons calculé $\sigma_n, \sigma_k, \sigma_{\varepsilon_1}$ et σ_{ε_2} , pour deux σ_{θ} différents, respectivement 0,03° et 0,5°.

Les résultats récapitulatifs sont donnés dans les tableaux 3.4 et 3.5, et montrent que l'incertitude sur nos résultats est très liée aux soins apportés au réglage de l'angle d'incidence.

	N P		А	total
$\sigma_{ an\Psi}$	$0,69 \times 10^{-3}$	$0, 1 \times 10^{-3}$	$0, 5 \times 10^{-3}$	$0,98 imes 10^{-3}$
$\sigma_{\cos\Delta}$	$1, 5 imes 10^{-3}$	$0,71 \times 10^{-3}$	0	$1,6 \times 10^{-3}$

Tableau 3.1: Incertitudes sur $\tan \Psi \operatorname{et} \cos \Delta$

ϵ_1	σ_{ε_1}	ε_2	σ_{ε_2}
-17,71	0,26	19,54	0,26

Tableau 3.2: Incertitudes sur ε_1 et ε_2

n	σ _n	k	σ_k
2,082	9 × 10 ⁻³	4,69	$23 imes 10^{-3}$

Tableau 3.3: Incertitudes sur n et k

$\sigma_{oldsymbol{ heta}}=0,03^{\circ}$	$arepsilon_1$	σ_{ε_1}	$arepsilon_2$	σ_{ε_2}	n	σ_n	k	ε_{k}
	-17,71	0,12	19,54	0,12	2,082	$4,3 imes10^{-3}$	4,69	$10 imes 10^{-3}$

Tableau 3.4: Incertitudes sur $\varepsilon_1, \varepsilon_2, n$ et k pour $\sigma_{\theta} = 0,03^{\circ}$.

$\sigma_{\theta} = 0, 5^{\circ}$	ε_1	σ_{ε_1}	ε_2	σ_{ε_2}	n	σ_n	,k	Ek
	-17,71	1,18	19,54	1,24	2,082	$41 imes 10^{-3}$	4,69	$107 imes 10^{-3}$

Tableau 3.5: Incertitudes sur ε_1 , ε_2 , n et k pour $\sigma_{\theta} = 0.5^{\circ}$.

Comparaison des données expérimentales avec le modèle de Drude

Dans le modèle de Drude il faut déterminer la densité effective N^* des électrons, et le temps de relaxation. Nous avons utilisé la méthode du simplex de Nelder et Mead [94]. Elle permet de minimiser une fonction non linéaire quelconque à multiples variables. On part d'un point initial connu et on détermine successivement d'autres points de manière à se rapprocher du minimum de la fonction.

 $\cos \Delta_{mes}$ et tan Ψ_{mes} sont les mesures ellipsométriques. Le problème consiste donc à déterminer par itérations successives à partir d'un couple de valeurs initiales (tan Ψ_{cal0} et $\cos \Delta_{cal0}$), les paramètres $\frac{N^*}{m}$ et τ de la loi de Drude qui minimisent la fonction :

$$F = (\cos \Delta_{mes} - \cos \Delta_{cal})^2 + (\tan \Psi_{mes} - \tan \Psi_{cal})^2$$
(3.5)

où N^* est le nombre effectif d'électrons par unité de volume, m la masse de l'électron et τ le temps de relaxation.

 $\cos \Delta_{cal}$ et tan Ψ_{cal} sont calculés à partir de ε_1 et ε_2 déterminés par les équations (3.3) et (3.4).

On peut néanmoins procéder d'une autre manière pour évaluer les paramètres de la loi de Drude. Le temps de relaxation τ peut être estimé à partir de la conductivité statique $\sigma(0)$

$$\sigma(0) = \frac{N e^2 \tau}{m} \tag{3.6}$$

où la valeur de $\sigma(0)$ est obtenue à partir de la littérature. Pour calculer le nombre d'électrons de conduction, il faut connaître la valence du métal (on adopte habituellement 4 pour l'étain et le plomb) et la masse volumique à l'état liquide en fonction de la température [95], [96].

Ce calcul fournit ce que nous appellerons dans ce qui va suivre "loi de Drude théorique". Elle est représentée en pointillé sur les figures.

Remarque

Dans la suite de ce chapitre nous adoptons également la notation déjà utilisée dans le chapitre I, à savoir :

 $n^* = \frac{N^*}{N_a}$ et $n_v = \frac{N_v}{N_a}$ où N_a est le nombre d'atomes par unité de volume et N_v est le nombre d'électrons par unité de volume.

3.4.2 Plomb pur

Les résultats expérimentaux présentés sur les figures 3.4, 3.5, 3.6 ont été mesurés à la température 390°C, dans une gamme d'énergie de 1,5 eV à 3,1 eV.

Les pricipaux résultats sur le plomb à l'état liquide ont été obtenus par Kent [109] en 1919, Hodgson [101] en 1961, Smith [99] en 1967, Comins [102] en 1972 et Inagaki [103] en 1982. Récemment une étude théorique sur le plomb à l'état solide et liquide a été publiée par Hütner en 1995 [106]. Le calcul est en accord avec les résultats publiés pour l'état liquide par Inagaki.

Paramètres du modèle de Drude théorique

Le volume spécifique en fonction de la température est représenté par l'équation :

$$V = 0,0938 \times [1 + 119 \times 10^{-6} (T - T_F) + 3,5 \times 10^{-9} (T - T_F)]$$
(3.7)

où T_F est la température de fusion du plomb.

En utilisant la masse atomique du plomb (207,2 g/mol), et en prenant le nombre d'électrons de valence égal à 4, on détermine le rapport

$$rac{N_v}{m} = 1,35 imes 10^{59} \; m^{-3}.kg^{-1}$$

La résistivité du plomb à 390° est calculée à partir des résultats expérimentaux de Ben Abdellah (1994) [98] :

$$\rho = a_0 + a_1 T + a_2 T^2$$

dont les coefficients sont :

 $a_0 = 86,319 \,\mu\Omega.cm, \ a_1 = 2,8747 \times 10^{-2} \,\mu\Omega.cm \, T^{-1}$ et $a_2 = 9,8343 \times 10^{-6} \,\mu\Omega.cm \, T^{-2}$. avec T en degré Celsius.

La conductivité statique à $390^{\circ}C$ est donc :

$$\sigma(0) = 1009830 \,\Omega^{-1} \, m^{-1}$$

Nous en déduisons le temps de relaxation τ :

$$au = 2,91 imes 10^{-16} \, s$$

Ajustement des données expérimentales par le modèle de Drude

En ajustant nos résultats, nous obtenons :

$$rac{N^*}{m} = 1,26 imes 10^{59} \; m^{-3}.kg^{-1}$$

 \mathbf{et}

$$au = 3,26 imes 10^{-16} \, s$$

En comparant avec les valeurs calculées pour une valence 4, on trouve :

$$\frac{n^*}{n_v}=0,93$$

ce qui correspond à une valence égale à 3,73.

La figure 3.4 représente nos valeurs expérimentales de tan Ψ et cos Δ et montre le bon accord avec celles calculées avec la formule de Drude. Néanmoins, il existe une différence (tableau 3.6) entre les valeurs ajustées $\frac{n^*}{n_v}$, τ et le modèle de Drude qui peut s'interpréter en prenant en compte l'incertitude.

Plomb liquide	Température (°C)	$\tau(10^{-16}s)$	$rac{n^*}{n_v}$	$\frac{\sigma(\omega \to 0)}{\sigma(0)}$	références
Modèle de Drude théorique	390	2,91	1	1	
ce travail (1996)	390	3,26	0,93	1,05	
Smith (1967)	390		1,25		[99]
Hodgson (1961)	567	2,3	1,17	0,94	[101]
Hodgson (1961)	785	2,18	1,14	0,93	[101]
Comins (1972)	600		1,19		[102]
Comins (1972)	800		1,13		[102]
Kent (1919)	400		1,28		[109]

Tableau 3.6: Valeurs de τ et $\frac{n^*}{n_v}$

Sur les figures 3.5, 3.6 nos résultats sont comparés à ceux de Inagaki [103], Smith [99], et, à titre de comparaison, le modèle de Drude.

Smith [99] a effectué ses mesures à la même température que nous (390°C) et sous vide (10^{-6} torr) . Inagaki [103] a opéré à 341°C, soit 12°C au dessus de la température de fusion, et sous ultra vide 2×10^{-8} torr.

Smith obtient la valeur $\frac{n^*}{n_v} = 1,25$ proche de la notre. Il interprète son résultat en terme de masse effective électronique inférieure à m, ou bien en terme de valence effective plus grande que 4. Il affirme qu'une contamination de la surface est exclue, les valeurs obtenues restant stables suite à des nettoyages successifs de la surface.

Dans le tableau 3.6, nous avons représenté les valeurs de $\frac{n^*}{n_v}$, en comparant avec d'autres auteurs. Il est à noter que l'écart entre nos résultats et ceux de Smith qui a effectué ces mesures à la même température que nous (390°C) est important, de l'ordre de 0,32 sur le rapport $\frac{n^*}{n_v}$.

Les résultats de Inagaki se situent au dessus des prédictions du modèle de Drude, et Inagaki interprète l'écart par des transitions interbandes. En retranchant la conductivité intrabande (Drude) de la conductivité totale (expérimentale), il détermine la conductivité interbande. Il compare la conductivité optique du plomb à l'état solide obtenu par Matahewson et Myers [110] et ses résultats à l'état liquide, et en déduit que les transitions interbandes de l'état solide, persistent à l'état liquide, ce qui se traduit par un pic à 2,5 eV.

Les résultats de Inagaki, ont été retrouvés théoriquement par, Hütner [106] à l'état liquide (T=600 K) qui confirme la transition interbande, Jank et Hafner [107] en utilisant le modèle du pseudopotentiel, et expérimentalement par Indelkofer et al. [111], par la méthode UPS (ultraviolet photoemission spectroscopy).

Vu nos résultats, et compte tenu des erreurs expérimentales, nous proposons d'adopter pour le plomb liquide une valence de 4 et une masse égale à celle de l'électron libre.

Figure 3.4: Variation de tan Ψ et cos Δ avec l'énergie

Figure 3.5: Variation de n et k avec l'énergie

Figure 3.6: Variation de ε_1 et ε_2 avec l'énergie

3.4.3 Etain pur

Les résultats expérimentaux présentés sur les figures 3.7, 3.8, 3.9 ont été mesurés à la température 360°C, dans la gamme d'énergie de 1,5 eV à 3,1 eV.

La température de fusion de l'étain est assez basse (231,9°) et sa pression de vapeur saturante faible. Lorsqu'il est fondu, l'étain s'oxyde superficiellement. Le film d'oxyde formé, étudié par diffraction électronique, se présente comme un mélange des deux oxydes stanneux et stannique. Peu de travaux ont été réalisés sur cet élément. A notre connaissance seul Hodgson [101], Comins [102], Kent [109], et plus récemment Petrakian [104] en 1980, ont étudié les propriétés optiques de l'étain à l'état liquide.

Paramètres du modèle de Drude théorique

Le volume spécifique est représenté en fonction de la température par l'équation [95]:

$$V = 0,1432 \times [1 + 104 \times 10^{-6} (T - T_F)]$$
(3.8)

où T_F étant la température de fusion de l'étain.

En utilisant la masse atomique de l'étain (118,69 g/mol), et en prenant le nombre d'électrons de valence égal à 4, on détermine le rapport

$$rac{N_v}{m} = 1,54 imes 10^{59} \ m^{-3} kg^{-1}$$

La résistivité de l'étain est calculée à partir des résultats expérimentaux de J.G. Gasser (1982) [97],

$$\rho = a_0 + a_1 T + a_2 T^2$$

avec :

$$a_0 = 41, 6136 \,\mu\Omega.cm \;,\; a_1 = 0, 0263869 \,\mu\Omega.cm \,\,^\circ T^{-1} \;\; ext{et}\; a_2 = -4, 11771 imes 10^{-7} \,\mu\Omega.cm \,\, T^{-2}.$$

A 360°C la conductivité est égale :

$$\sigma_0 = rac{1}{
ho} = 195\,8498, 7(\Omega\,m)^{-1}$$

A partir des valeurs de $\frac{N_u}{m}$ et de $\sigma(0)$ nous calculons le temps de relaxation τ :

$$\tau = 4,97 \times 10^{-16} \, s$$

Ajustement des données expérimentales par le modèle de Drude

En ajustant nos résultats par la méthode de Nelder et Mead [94] en obtient :

$$\frac{N^*}{m} = 1,54 \times 10^{59} \ m^{-3} kg^{-1}$$

 $\mathbf{e}\mathbf{t}$

 $\tau = 2,97 \times 10^{-16} s$

Si les résultats pour $\frac{N^*}{m}$ sont comparables, il n'en n'est pas de même pour les temps de relaxation qui sont très différents.

Interprétation et discussion

Nos résultats expérimentaux en fonction de l'énergie sont comparés à d'autres auteurs, ainsi qu'avec les courbes théoriques du modèle de Drude (électrons libres) et du modèle quantique de Helmann [17] (modèle de pseudopotentiel).

Dans le tableau 3.7, nous avons représenté les valeurs de τ et de $\frac{n^*}{n_v}$, en comparant avec d'autres auteurs : Petrakian [104], Hodgson [101], Comins [102] et Kent [109].

Tout d'abord, la comparaison de nos conditions expérimentales avec celles des divers auteurs nous paraît indispensable. Comins a d'abord fait le vide jusqu'à 10^{-5} torr, et, une fois le métal fondu, il a introduit de l'hydrogène pour réduire l'oxyde qui s'est formé au niveau de la surface.

Etain liquide	Température (°C)	$ au(10^{-16}s)$	$\frac{n^*}{nv}$	$\frac{\sigma(\omega \rightarrow 0)}{\sigma(0)}$	références
Modèle de Drude théorique	360	4,97	1	1	
ce travail (1996)	360	2,97	1,00	0,60	
Petrakian (1980)	261	4,90	1,02	0,95	[104]
Hodgson (1961)	446	3,90	1,17	0,934	[101]
Hodgson (1961)	858	$3,\!52$	$1,\!15$	0,928	[101]
Comins (1972)	600	4,11	1,10	0,98	[102]
Comins (1972)	800	3,88	1,05	0,96	[102]
Kent (1919)	400		1,02		[109]
Etain solide					
Hodgson (1961)	20	37,4	0,33	0,55	[101]
MacRae (1967)	20	42	0,325	0,63	[108]

Tableau 3.7: Comparaison des résultats de l'étain liquide et solide

Hodgson a fondu le métal dans un creuset en silice ou en carbone, le tout enfermé dans une enceinte où il a introduit de l'hydrogène. Par contre Petrakian a travaillé sous ultra vide (2×10^{-8} torr), et, une fois le métal fondu, il a procédé au raclage in situ de la surface.

Sur les figures 3.8 et 3.9, nous avons représenté les valeurs des constantes optiques conjointement avec celles de Petrakian [104], Hodgson [101] et les courbes théoriques de Drude et de Cisneros et Helman [105] utilisant le modèle de pseudopotentiel.

Nous n'avons pas pu comparer nos résultats avec ceux de Comins de [102], car il a fait des mesures uniquement dans l'infrarouge.

Cisneros et Helman [105] ont fait une étude théorique sur l'étain, basée sur l'approche quantique, en utilisant le pseudopotentiel de Heine-Animalu. Leurs résultats théoriques sont en bon accord avec les résultats expérimentaux de Petrakian, Hodgson et Comins. Par contre ils trouvent un écart avec le modèle de Drude de l'ordre de 5% pour des énergies inférieures à 4eV, et de 15% pour des énergies comprises entre 4eV et 12 eV.

Les écarts entre nos valeurs expérimentales et celles des autres auteurs, ainsi que ceux avec la loi théorique de Drude, sont importants et ne peuvent s'expliquer en faisant intervenir les incertitudes de mesure ni les conditions expérimentales différentes, en particulier la température de la mesure. La valeur de 1,00 que nous avons obtenues pour $\frac{n^*}{n_v}$ est tout à fait comparable à celle de Petrakian (1,02). Cependant pour être totalement en accord avec le modèle de l'électron libre de Drude, il faut également que le temps de relaxation déterminé par ajustement de nos résultats ($\tau = 2,97$) soit comparable au temps de relaxation calculé à partir de la conductivité statique, or ce n'est pas le cas. L'ordre de grandeur correspond bien à un métal liquide, cependant le rapport $\frac{\sigma(\omega \to 0)}{\sigma(0)} = \frac{N^* e^2 \tau}{m \sigma(0)} = 0,60$ donné dans le tableau 3.7 est très inférieur à la valeur calculée par les autres auteurs sur les mêmes métaux liquides. Par contre elle est proche des valeurs obtenues pour l'étain solide.

La présence de transitions interbandes, évoquée dans le cas du plomb, ne nous paraît pas de nature à expliquer l'importante différence constatée pour l'étain. Nous pensons que l'écart par rapport au modèle de Drude est dû à une couche superficielle, d'oxyde par exemple. L'influence de la présence d'une couche sur les paramètres mesurés tan Ψ et cos Δ fera l'objet d'une étude détaillée dans la partie consacrée au système Sn-Pb.

C'est par ailleurs pour éviter la formation d'une couche d'oxyde sur un échantillon

préalablement et soigneusement purifié (par dégazage pendant 65 heures et nettoyage mécanique de la surface pendant 20 heures) que Petrakian a travaillé sous ultra vide plutôt que sous hydrogène.

Figure 3.7: Variation de tan Ψ et cos Δ avec l'énergie

Figure 3.8: Variation de n et k avec l'énergie

Figure 3.9: Variation de ε_1 et ε_2 avec l'énergie

3.5 Alliage étain-plomb

Les propriétés optiques de l'alliage étain-plomb ont été mesurées par Kent en 1919 [109] pour trois longueurs d'onde $0,579 \,\mu$ m, $0,546 \,\mu$ m et $0,404 \,\mu$ m.

Nous avons fait des mesures pour trois concentrations 20 at%, 26,1 at% et 60 at% du plomb et à quatre températures 200°C, 250°C, 300°C et 350°C.

Figure 3.10: Diagramme de phase de Sn-Pb.

Le système Sn-Pb présente un diagramme de phase eutectique simple (figure 3.10). Le point eutectique a pour température 183,3°C et sa composition correspond à 26,1 at% en plomb.

Le volume molaire varie avec la température, et pour le calculer, nous avons utilisé les travaux de Crawley [96].

Le volume molaire $V_{\cal M}$ d'un alliage binaire est donné par la formule :

$$\Delta V_M = V_M - V_{ideal}$$

où ΔV_M est le volume d'excès

$$\Delta V_M = \frac{x_A A + x_B B}{\rho_{AB}} - (\frac{x_A A}{\rho_A} + \frac{x_B B}{\rho_B})$$

et x_A et x_B sont respectivement les pourcentages atomiques des éléments constitutifs, A et B sont les poids atomiques,

 ρ_A , ρ_B et ρ_{AB} sont respectivement les densités spécifiques des constituants A, B et de l'alliage AB.

D'après Crawley, dans le cas de l'alliage étain-plomb, $\Delta V_M = 0$, et ρ_{AB} est déterminé par :

$$\rho_{AB} = \frac{x_A A + x_B B}{(\frac{x_A A}{\rho_A} + \frac{x_B B}{\rho_B})}$$

Les résultats obtenus pour τ et $\frac{n^*}{n_v}$ sont donnés dans les tableaux 3.8, 3.9, 3.10.

20%Pb	350°	300°	250°	200°
$rac{n^*}{n_v}$	0,50	0,41	0,31	0,22
$ au(10^{-16}s)$ théorique	4,45	4,54	4,62	4,72
$ au(10^{-16}s) \ { m ajust}$ é	3,90	4,28	4,88	6,76

Tableau 3.8: Paramètres ajustés et théoriques de Drude pour 20 at% Pb

26,1%Pb	350°	300°	250°	200°
$rac{n^*}{n_v}$	0,58	0,60	0,60	0,59
$ au(10^{-16}s)$ théorique	4,33	4,41	4,48	4,57
$ au(10^{-16}s) \ { m ajust}$ é	5,75	4,79	5,84	6,38

Tableau 3.9: Paramètres ajustés et théoriques de Drude pour 26,1 at% Pb

۱

60%Pb	350°	300°	250°	200°
$rac{n^*}{n_v}$	0,72	0,75	0,73	0,74
$ au(10^{-16}s)$ théorique	3,59	3,75	3,74	3,75
$ au(10^{-16}s) \ { m ajuste}$	3,21	3,20	3,45	3,49

Tableau 3.10: Paramètres ajustés et théoriques de Drude pour 60 at% Pb

Pour une température fixée (350° C) on représente tan Ψ et cos Δ en fonction de l'énergie pour trois concentrations(fig 3.11). On constate que les valeurs expérimentales sont inférieures à la théorie, et l'écart se creuse lorsque la concentration en étain augmente. La même constatation est valable pour les constantes optiques n et k (fig 3.12) ainsi que pour ε_1 et ε_2 (fig 3.13).

L'effet de la température est plus accentué pour les alliages à forte concentration en étain, aussi bien pour tan Ψ et cos Δ (fig 3.14) que pour les constantes optiques (fig 3.15).

Il faut remarquer que pour la formule de Drude théorique, l'effet de la température s'introduit d'une part par n_v qui dépend de la masse volumique et d'autre part par τ qui dépend de la résistivité.

Nous avons tenté d'ajuster le modèle de Drude sur les données expérimentales, pour trois concentrations (dont celle de l'eutectique) et quatre températures, les paramètres ajustés étant $\frac{N^*}{m}$ et τ . Les résultats sont rassemblés, sous une forme légèrement différente $(\frac{N^*}{m}$ est remplacé par $\frac{n^*}{n_v}$ mieux adapté à la discussion) dans les tableaux 3.8, 3.9, 3.10.

On constate d'abord que les écarts entre les valeurs théoriques et ajustées sont importants pour les faibles concentrations en plomb, aussi bien pour $\frac{n^*}{n_v}$ que pour τ , et ces écarts diminuent avec l'augmentation de la concentration en plomb. Une constatation analogue est valable pour l'évolution thermique des paramètres, avec une très forte variation pour les alliages pauvres en plomb. Il faut remarquer que la variation des paramètres théoriques reste plus faible.

Il est intéressant de comparer ces valeurs à celles du corps purs. Pour l'étain, $\frac{n^*}{n_v} = 1,00$ et $\tau = 2,97 \times 10^{-16}s$ à comparer à la valeur théorique $\tau = 4,97 \times 10^{-16}s$. Pour le plomb $\frac{n^*}{n_v} = 0,93$ et $\tau = 3,26 \times 10^{-16}s$ à comparer à la valeur théorique $\tau = 2,91 \times 10^{-16}s$. Il n'est pas exclu que les écarts observés pour l'alliage puissent être imputés à l'existence d'une couche superficielle d'oxydes d'étain, beaucoup plus difficile à éliminer que dans le corps pur par les traitements dejà décrits.

Kent [109] qui a étudié les alliages de plomb avec Cd, Bi et Sn, signale "que travailler avec l'alliage Pb-Sn est extrèmement difficile", et pense qu'une couche d'oxyde se forme au bout de quelques secondes à la surface en dépit d'une atmosphère d'hydrogène pur.

Figure 3.11: Variation de tan Ψ et cos Δ en fonction de l'énergie pour différentes concentrations.

Figure 3.12: Variation de n et k en fonction de l'énergie pour différentes concentrations.

.

Figure 3.13: Variation de ε_1 et ε_2 en fonction de l'énergie pour différentes concentrations.

Figure 3.14: Variation de tan Ψ et cos Δ en fonction de la température.

Figure 3.15: Variation de n et k en fonction de la température.

Pour justifier cette interprétation, nous avons adopté un substrat dont l'indice de réfraction complexe est calculé à partir de Drude théorique et une couche d'épaisseur 5nm, 10nm, 15nm et 20nm. Deux cas sont envisagés : une couche transparente d'indice n = 1, 5 et k = 0et une couche absorbante n = 1, 5 et k = 0, 2, à la longueur d'onde $\lambda = 400nm$.

Comme nous mesurons directement $\cos \Delta$ et tan Ψ , la comparaison se fera sur ces paramètres.

Les résutats sont donnés dans les tableaux 3.11, 3.12.

Les deux tableaux (3.11, 3.12) traduisent une tendance : avec une couche absorbante, tan Ψ et cos Δ varient dans le bon sens. La présence de la couche rapproche les valeurs calculées de celles effectivement mesurées. Cependant, la comparaison ne peut être que grossière : d'une part nous ignorons si les constantes optiques de l'alliage sont bien données par la loi de Drude théorique, et d'autre part les paramètres réels de la couche restent inconnus.

substrat	$ an \Psi = 0,818$	$\cos\Delta=-0,459$
substrat + couche 5nm	$ an \Psi = 0,834$	$\cos\Delta=-0,313$
substrat + couche 10nm	$ an \Psi = 0,851$	$\cos \Delta = -0, 180$
substrat + couche 15nm	$ an \Psi = 0,867$	$\cos \Delta = -0,064$
substrat + couche 20nm	$ an \Psi = 0,867$	$\cos\Delta=-0,064$

Tableau 3.11: Substrat et couche transparente d'indice n=1,5.

substrat	$ an \Psi = 0,818$	$\cos\Delta=-0,459$
substrat + couche 5nm	$ an \Psi = 0,805$	$\cos\Delta=-0,306$
substrat + couche 10nm	$ an \Psi = 0,797$	$\cos\Delta=-0,166$
substrat + couche 15nm	$ an\Psi=0,795$	$\cos\Delta=-0,044$
substrat + couche 20nm	$ an \Psi = 0,797$	$\cos\Delta=-0,059$

Tableau 3.12: Substrat et couche absorbante d'indice n = 1, 5 - 0, 2i

3.6 Conclusion

Le modèle classique de Drude rend assez bien compte de la réalité expérimentale. Certains auteurs [21, 106, 19] ont cherché à calculer les propriétés optiques des métaux liquides en faisant appel à un formalisme beaucoup plus complexe. Les conclusions sont les mêmes dans tous les cas : la théorie de Drude rend bien compte de la réalité expérimentale. Comme très peu de systèmes ont été étudiés expérimentalement, il serait hasardeux d'en déduire un comportement général. Il est probable que de nombreux systèmes, par exemple Li-Pb, Mg-Bi.... présentent un comportement qui s'éloigne de ce qui est couramment admis actuellement. Des études dans ce sens sont prévues au laboratoire. ı.

Conclusion générale

Nous nous sommes proposés dans ce travail d'apporter une contribution à l'étude des propriétés optiques des métaux et alliages liquides en nous intéressant plus particulièrement aux métaux polyvalents.

Dans une première étape nous avons mis au point un ellipsomètre spectroscopique à polariseur tournant, pour l'appliquer à l'étude des propriétés optiques des métaux liquides. L'ellipsomètre à polariseur tournant à trois éléments nous a permis de nous affranchir des inconvénients du montage à polariseur tournant ou à analyseur tournant à deux éléments.

La mise au point de cet appareil a nécessité une étude détaillée de l'effet des imperfections des composants optiques sur la détermination du couple (Ψ et Δ) ainsi que la mise au point d'une méthode de calibrage.

La réduction des erreurs systématiques par la mesure double-zone et l'évaluation des erreurs aléatoires sont basées sur des travaux développés antérieurement au laboratoire [82, 81].

La deuxième partie de notre travail a été de concevoir et de réaliser une cellule de mesure adapté à l'étude des propriétés optiques des métaux liquides.

Enfin ce dispositif expérimental a été appliqué à l'étude : de l'étain, du plomb et de l'alliage étain-plomb.

L'interprétation théorique des résultats expérimentaux a été faite en employant la théorie des électrons libres de Drude. Des méthodes théoriques plus élaborées de calcul des propriétés optiques utilisant les fonctions de Green [17, 21] ou le formalisme du pseudopotentiel [106, 19] conduisent à la conclusion que le modèle de Drude est une bonne approximation. Compte tenu du petit nombre de résultats expérimentaux disponibles à ce jour, il faut cependant éviter une généralisation hative, et nous pensons que des systèmes tel que LiPb, MgBi etc... présentant des composés définis ou une transition métal- non métal pourraient s'écarter notablement du comportement habituellement observé. Dans le cas du plomb un accord satisfaisant est obtenu entre nos résultats expérimentaux et le modèle de Drude, contrairement aux résultats d'Inagaki qui interprète l'écart par des transition interbandes. Par contre, pour l'étain, nos mesures s'écartent du modèle de l'électron libre, mais la présence de transitions interbandes, évoquée dans le cas du plomb par Inagaki, ne nous paraît pas de nature à expliquer cette importante différence. Nous pensons qu'elle est probablement due à l'existence d'une couche superficielle.

Les propriétés optiques de l'alliage étain-plomb ont été déterminées pour trois concentrations de plomb et à quatre températures.

Malgré la mise en oeuvre d'une atmosphère d'argon très pur et en présence d'hydrogène, l'alliage Sn-Pb semble poser des problèmes dont la résolution pourraient progresser par la mise en oeuvre d'une analyse fine de la surface du composé solide (Auger, SIMS...) lors de chaque cycle fusion- solidification.

Nous envisageons de poursuivre nos études avec d'autres systèmes, en particulier Li-Pb déjà évoqué et dont les propiétés structurales [112] et thermodynamiques [113] sont bien connues. Pour cela, il est indispensable d'étendre le domaine de température vers les valeurs élevées, de l'ordre de 1000°C. L'extension de la gamme spectrale vers l'ultraviolet (transitions interbandes) et infrarouge (validation des modèles) est aussi nécessaire.

Annexe A Polarisation de la lumière

A.1 Généralités

Dans la théorie électromagnétique de Maxwell [91], une onde lumineuse est composée des vecteurs champ électrique $\vec{E}(x, y, z, t)$ et champ magnétique $\vec{H}(x, y, z, t)$, de même fréquence et perpendiculaires entre eux. L'onde se propage dans la direction perpendiculaire au plan formé par \vec{E} et \vec{H} .

La polarisation d'une onde se réfère au comportement dans le temps du vecteur qui représente cette onde, en un point déterminé de l'espace [71, 116, 117]. Pour la décrire, contrairement à d'autres phénomènes : interférences, diffraction, théorie d'approximation de l'optique géométrique, l'aspect vectoriel de l'onde est donc nécessaire. La vibration lumineuse est souvent assimilée au vecteur champ électrique \vec{E} car l'interaction de la lumière avec la matière résulte essentiellement de la force exercée par \vec{E} sur les électrons, l'action du champ magnétique \vec{H} pouvant être négligée.

Pour une onde plane monochromatique de pulsation ω se propageant dans un milieu quelconque selon l'axe oz, le vecteur champ électrique peut s'écrire dans un système d'axes orthogonaux :

$$\overrightarrow{E}\left(x,y,z,t
ight)=E_{x}\overrightarrow{x}+E_{y}\overrightarrow{y}$$

où :

$$E_x = A_x \cos(\omega t - kz + \delta_x)$$

$$E_{y} = A_{y} \cos(\omega t - kz + \delta_{y})$$

où: A_x, A_y représentent les amplitudes des vibrations;

 δ_x, δ_y sont les phases des vibrations.

k est le vecteur d'onde orienté selon la direction de propagation de l'onde.

Avec :

$$\omega = 2\pi \,\,
u \,\, t$$
 $k = rac{2\pi}{\lambda}$

Figure A.1: Propagation d'une onde lumineuse et nature oscillatoire des vecteurs champ électrique et champ magnétique : a)dépendance spatiale des deux ondes à un instant donné; b)dépendance temporelle des ondes en un point de l'espace.

A.2 Polarisation elliptique

Lorsque les phase δ_x et δ_y sont différentes, la polarisation de la lumière est dite elliptique. En effet l'extremité du vecteur champ électrique \overrightarrow{E} décrit une ellipse sur un plan orthogonal à la direction de propagation.

Quand la différence de phase $\Phi = \delta_y - \delta_x$ est comprise entre 0 et π , l'ellipse est dite droite (sens des aiguille d'une montre en regardant dans le faisceau). L'ellipse est dite gauche si elle est parcourue dans le sens trigonométrique en regardant dans le faisceau ($-\pi < \Phi < 0$).

Pour une complète caractérisation de la polarisation elliptique quatre paramètres sont définis :

- l'orientation dans l'espace du plan de l'ellipse : définie par le vecteur unité \vec{s} , normal au plan.
- l'orientation de l'ellipse dans son plan, sa forme et son sens de parcours :

- son orientation est représentée par l'azimut θ qui est l'angle compris entre entre le grand axe de l'ellipse et la direction positive de l'axe ox; il définit l'orientation de l'ellipse dans son plan.

$$-\frac{\pi}{2} < \theta < \frac{\pi}{2}$$

- sa forme, définie par la quantité e appelée ellipticité, est le rapport du petit axe de l'ellipse sur le grand axe.

$$e = \frac{b}{a} = \tan e$$

où ϵ est l'angle d'ellipticité.

- son sens de parcours :

ellipse droite, décrite dans le sens des aiguilles d'une montre en regardant dans le faisceau. Par convention e > 0,

ellipse gauche dans le cas opposé, e < 0

• l'amplitude de l'ellipse qui est :

$$A = \sqrt{a^2 + b^2}$$

• la phase temporelle absolue qui donne la position du vecteur \overrightarrow{E} à t = 0 dans le système d'axe de l'ellipse.

Polarisation rectiligne :

La polarisation est dite rectiligne si les deux composantes de \overrightarrow{E} ont même fréquence ω et le déphasage $\Phi = 0$ ou π . L'ellipse se réduit alors à un segment de droite.

Polarisation circulaire

La polarisation est circulaire si les deux composantes du vecteur champ électrique \overrightarrow{E} ont même amplitude $A_x = A_y$ et un déphasage constant $\Phi = \pm \frac{\pi}{2}$. L'extrémité du vecteur champ électrique décrit un cercle de rayon a. Le signe de déphasage détermine le sens de parcours du cercle.

Si $\Phi = \pi/2$ on a une polarisation circulaire droite.

Si $\Phi = -\pi/2$ on a une polarisation circulaire gauche.

Figure A.2: Représentation d'une lumière polarisée rectiligne. a)le long de l'axe Ox; b)le long de l'axe Oy: c)avec une orientation de 45° par rapport à l'axe Ox.

Figure A.3: Représentation d'une lumière polarisée elliptiquement à gauche: a)composantes linéaires orthogonales; b) représentation du vecteur somme des deux composantes aux points 1 à 4; c) matérialisation de l'ellipse décrite par l'extrémité du vecteur somme quand on regarde dans le faisceau; d) résultante du vecteur champ électrique.

A.3 Relation entre les équations paramétriques et les équations géométriques de l'ellipse

Les composantes des parties réelles du vecteur champ électrique \overrightarrow{E} , sont données dans le système d'axe (ox, oy) par :

$$E_x = A_x \cos(\tau + \delta_x) \tag{A.1}$$

$$E_y = A_y \cos(\tau + \delta_y) \tag{A.2}$$

où, $\tau = \omega t - kz$ et A_x , A_y sont les amplitudes selon les axes x et y.

En éliminant τ , on trouve :

$$A_{y}^{2}E_{x}^{2} + A_{x}^{2}E_{y}^{2} - 2A_{x}A_{y}E_{y}E_{z}\cos\Phi = A_{x}^{2}A_{y}^{2}\sin\Phi, \qquad (A.3)$$

où $\Phi = \delta_y - \delta_x$ représente le déphasage.

L'expression (A.3) décrit l'équation d'une ellipse inscrite dans un rectangle dont les côtés sont parrallèles aux axes du repère orthogonal. Les longueurs des côtés sont $2A_x$ selon x et $2A_y$ selon y.

Une rotation d'angle θ fournit les coordonnées dans le système des axes de l'ellipse :

 $E_{x'} = E_x \cos \theta + E_y \sin \theta \tag{A.4}$

$$E_{y'} = -E_x \sin \theta + E_y \cos \theta \tag{A.5}$$

En utilisant l'équation de l'ellipse on a :

$$b^2 E_{x'}^2 + a^2 E_{y'}^2 = a^2 b^2, (A.6)$$

et en injectant les équations (A.4) et (A.5) dans (A.6) on obtient :

$$(b^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta)E_{x}^{2} + (a^{2}\cos^{2}\theta + b^{2}\sin^{2}\theta)E_{y}^{2} + 2(b^{2} - a^{2})\sin\theta\cos\theta E_{x}E_{y} = a^{2}b^{2}$$
(A.7)

Figure A.4: Ellipse de polarisation

En comparant les coefficients des équations (A.3) et (A.7), on a :

$$A_x^2 + A_y^2 = a^2 + b^2 \tag{A.8}$$

$$A_x^2 - A_y^2 = (a^2 - b^2) \cos 2\theta$$
 (A.9)

$$2A_x A_y \cos \Phi = (a^2 - b^2) \sin 2\theta \qquad (A.10)$$

$$A_x A_y \sin \Phi = ab \tag{A.11}$$

.

les paramètres ψ et ε sont définient par :

$$\tan \psi = \frac{A_x}{A_y}$$
$$\tan \varepsilon = \frac{b}{a}$$

et d'après les équations (A.8) à (A.11) on trouve :

$$\tan 2\theta = -\tan 2\psi \cos \Phi \tag{A.12}$$

$$\sin 2\varepsilon = \sin 2\psi \sin \Phi \tag{A.13}$$

$$\cos 2\psi = -\cos 2\epsilon \cos 2\theta \tag{A.14}$$

$$\tan \Phi = \frac{\tan 2\varphi}{\sin 2\theta} \tag{A.15}$$

A.4 Calcul du flux lumineux

Dans l'ellipsométrie à élément tournant, les angles Ψ et Δ sont déterminés à partir du calcul d'un flux. Il existe deux formalismes mathématiques pour y parvenir :

tan 21

- le formalisme de JONES : il donne l'amplitude du champ qui multipliée par son conjugué permet d'obtenir le flux. Si le calcul à partir des matrices de JONES permet de connaître la phase absolue du vecteur champ électrique, il n'est par contre pas possible de traiter le cas d'une lumière partiellement polarisée ou de tenir compte dans les calculs d'une éventuelle dépolarisation introduite par le système lui-même.
- le formalisme de Mueller : l'emploi des matrices de Mueller permet de réaliser directement le calcul des flux d'une lumière totalement ou partiellement polarisée.

A.5 Représentation mathématique de l'état de polarisation

A.5.1 Vecteur de Jones

L'état de polarisation de la lumière est entièrement déterminé par les amplitudes et les phases relatives des composantes de \overrightarrow{E} .

Le champ électrique d'une onde plane transverse peut être représenté par le vecteur colonne, appelé vecteur de *Jones* :

$$\begin{bmatrix} E_x(t) \\ E_y(t) \end{bmatrix}$$
(A.16)

où :

$$E_x(t) = |A_x(t)|e^{i\delta_x(t)} \tag{A.17}$$

$$E_y(t) = |A_y(t)|e^{i\delta_y(t)} \tag{A.18}$$

Expérimentalement, on ne mesure que l'intensité de l'onde, celle-ci peut s'obtenir en additionnant les carrés des amplitudes :

$$I = \langle E_x E_x^* \rangle + \langle E_y E_y^* \rangle$$
 (A.19)

A.5.2 Matrices de Jones

Un faisceau de lumière polarisée qui se propage à travers un système optique subit des changements de son état de polarisation.

Ce système polarisant peut être décrit par une matrice T, appelée matrice de Jones, à condition que :

- la lumière soit une onde uniforme, transversale monochromatique;
- l'interaction avec le système soit linéaire et conserve la fréquence;
- seules les propriétés terminales nous intéressent (avant et après la traversée du système). Soit un système T, \overrightarrow{E}_e le vecteur de Jones de la lumière incidente, \overrightarrow{E}_s le vecteur de Jones de le lumière émergente.

$$\vec{E}_{e} = \begin{bmatrix} E_{ex} \\ E_{ey} \end{bmatrix}$$
(A.20)
$$\overrightarrow{E}_{s} = \begin{bmatrix} E_{sx'} \\ E_{sy'} \end{bmatrix}$$
(A.21)

Le système étant linéaire, les relations entre les composantes s'écrivent sous la forme :

$$E_{sx'} = T_{xx}E_{ex} + T_{xy}E_{ey}$$
$$E_{sy'} = T_{yx}E_{ex} + T_{yy}E_{ey}$$

soit :

$$\begin{bmatrix} E_{sx'} \\ E_{sy'} \end{bmatrix} = \begin{pmatrix} T_{xx} & T_{xy} \\ T_{yx} & T_{yy} \end{pmatrix} \begin{bmatrix} E_{ex} \\ E_{ey} \end{bmatrix}$$

c'est-à-dire :

 $E_s = T.E_e$

avec :

$$T = \begin{pmatrix} T_{xx} & T_{xy} \\ T_{yx} & T_{yy} \end{pmatrix}$$

où T est la matrice de Jones, matrice de dimension 2x2, du système.

La matrice de Jones T prend souvent une forme particulièrement simple si les axes des coordonnées sont colinéaires avec les axes privilégiés du dispositif optique (direction de polarisation d'un polariseur, axe neutre d'une lame...).

Si ces derniers tournent d'un angle θ par rapport aux axes de référence, la matrice de Jones devient :

$$T' = R(-\theta).T.R(\theta)$$

avec $R(\theta)$ qui est la matrice de rotation :

$$R(heta) = egin{pmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{pmatrix}$$

Figure A.5: Représentation par les matrices de Jones de N dispositifs optiques placés en cascade

Si le système optique est composé d'un nombre N d'éléments caractérisés chacun par une matrice de transfert, l'expression (A.5.2) reste valable et nous avons

$$\overrightarrow{E_t} = T_N \cdot T_{N-1} \quad \dots \quad T_2 \cdot T_1 \cdot \overrightarrow{E_i} \tag{A.22}$$

Il est à noter l'ordre inverse du produit des matrices : la dernière matrice T_1 du produit matriciel représente le premier élément rencontré par le rayon lumineux.

A.5.3 Vecteur de Stokes

Le calcul de l'intensité lumineuse à partir des matrices de Jones donne l'amplitude du champ qu'il sera nécessaire de multiplier par son complexe conjugué pour obtenir le flux. Le calcul à partir des matrices de Jones permet de connaître la phase absolue du vecteur champ électrique, mais pour caractériser une polarisation elliptique trois quantités indépendantes sont nécessaires. Ces paramètres ont des dimensions physiques et qui sont introduites par *Stokes* en 1852 d'où le nom paramètres de *Stokes* [115].

Les paramètres de Stokes pour une onde plane monochromatique sont représentés par quatre quantités qui ont les dimensions d'une puissance.

Par définition, le vecteur de Stokes \overrightarrow{S} s'écrit :

$$\overrightarrow{S} = \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix}$$

où :

$$S_0 = \langle E_x^2(t) \rangle + \langle E_y^2(t) \rangle$$
(A.23)

$$S_1 = \langle E_x^2(t) \rangle - \langle E_y^2(t) \rangle$$
(A.24)

$$S_2 = 2 < E_x(t)E_y(t)\cos(\delta_y(t) - \delta_x(t)) >$$
 (A.25)

$$S_{3} = 2 < E_{x}(t)E_{y}(t)\sin(\delta_{y}(t) - \delta_{x}(t)) >$$
(A.26)

où < ... > représente la moyenne temporelle.

 S_0 est le flux total de l'onde,

 S_1 est la différence de flux entre les composantes de l'onde polarisées verticalement et horizontalement,

 S_2 est la différence de flux entre les composantes de l'onde polarisées linéairement, orientées à $+45^{\circ}$ et -45° ,

 S_3 représente la différence de flux entre les composantes de l'onde polarisées à droite et à gauche [116, 117].

Ces paramètres ont les dimensions d'une puissane. Seulement trois paramètres sont indépendants, on a :

$$S_0^2 = S_1^2 + S_2^2 + S_3^2 \tag{A.27}$$

 S_0 représente le flux total, toujours positif, qui est mesuré expérimentalement.

L'équation (A.27) caractérise une sphère de rayon S_0 , appelée sphère de *Poincaré*. Les paramètres de *Stokes* sont liés aux paramètres θ et ϵ ou ψ et Φ par les équations suivantes :

$$S_1 = S_0 \cos 2\varepsilon \cos 2\theta = -S_0 \cos 2\psi \tag{A.28}$$

$$S_2 = S_0 \cos 2\varepsilon \sin 2\theta = S_0 \sin 2\psi \cos \Phi \tag{A.29}$$

$$S_3 = S_0 \sin 2\varepsilon = S_0 \sin 2\psi \sin \Phi \tag{A.30}$$

Les relations (A.28),(A.29),(A.30), montrent la représentation géométrique simple des états de polarisation possibles.

A.6 Polarisation partielle

Dans le cas d'une onde monochromatique, la lumière est totalement polarisée. Par contre si cette onde traverse des milieux dépolarisants ou si la lumière est naturelle, on est alors en présence de la lumière partiellement polarisée. Dans plusieurs cas et notamment en ellipsométrie, on a de la polarisation partielle, composée de lumière polarisée et de lumière dépolarisée.

La relation (A.27) est satisfaite uniquement dans le cas de la polarisation totale. Par contre pour une onde non polarisée on a :

$$S_1 = S_2 = S_3 = 0$$
 et $S_0 \neq 0$

Il convient alors de séparer la lumière en deux composantes, une totalement polarisée et l'autre non polarisée. La représentation de Stokes se prête bien à la description de la lumière partiellement polarisée et la définition d'un degré de polarisation.

$$S_0 = S_{0n} + S_{0p} = S_{0n} + \sqrt{S_1^2 + S_2^2 + S_3^2}$$
(A.31)

où: S_{0n} est le flux de la lumière non polarisée,

 S_{0p} est le flux de la lumière polarisée.

Le degré de polarisation P est déterminé par :

$$P = \frac{S_{0p}}{S_0} = \frac{\sqrt{S_1^2 + S_2^2 + S_3^2}}{S_0} \le 1$$
(A.32)

si on utilise les relations (A.28), (A.29) et (A.30) dans l'équation (A.32) on trouve :

$$P = \sqrt{\cos^2 2\psi + \sin^2 2\psi (\cos^2 2\Phi + \sin^2 \Phi)} = 1$$
 (A.33)

- Si P = 1 la lumière est totalement polarisée.

- Si P = 0 la lumière est dite non polarisée .

- 0 < P < 1 la lumière est partiellement polarisée.

Les différents états sont représenté par : lumière non polarisée :

$$\vec{S} = S_0 \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$
(A.34)

lumière partiellement polarisée $P = |\cos 2\psi| \preceq 1$:

$$\vec{S} = S_0 \begin{bmatrix} 1\\ a\\ 0\\ 0 \end{bmatrix}$$
(A.35)

lumière polarisée linéairement, P = 1:

$$\vec{S} = S_0 \begin{bmatrix} 1\\ \pm 1\\ 0\\ 0 \end{bmatrix}$$
(A.36)

lumière polarisée elliptiquement, P = 1:

$$\vec{S} = S_0 \begin{bmatrix} 1 \\ -\cos 2\psi \\ \sin 2\psi \cos \Phi \\ -\sin 2\psi \sin \Phi \end{bmatrix}$$
(A.37)

polarisation circulaire, P = 1:

$$\overrightarrow{S} = S_0 \begin{bmatrix} 1\\0\\0\\\pm 1 \end{bmatrix}$$
(A.38)

A.7 Matrice de MUELLER

Dans le cas d'une lumière monochromatique et d'un système optique non-dépolarisant, la matrice de Mueller M d'un élément optique est une matrice de dimension 4x4 qui s'obtient à partir de la matrice de Jones T par la relation [116, 117]:

$$M = A(T^* \otimes T)A^{-1} \tag{A.39}$$

où T * T est le résultat du produit direct de la matrice de Jones T par T conjuguée et où A est :

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & i & -i & 0 \end{bmatrix}$$
(A.40)

Dans le cas plus général d'une lumière partiellement polarisée et d'un système optique dépolarisant, la matrice de Mueller permet de calculer le flux émergent

$$\vec{S}_t = M \vec{S}_i \tag{A.41}$$

où \overrightarrow{S}_i est le vecteur de Stokes du faisceau incident et \overrightarrow{S}_t le vecteur de Stokes du faisceau transmis.

En cas d'association de N éléments optiques, le produit matriciel de l'expression (A.22) reste valable et nous avons

$$\overrightarrow{S_t} = M_N \cdot M_{N-1} \quad \dots \quad M_2 \cdot M_1 \cdot \overrightarrow{S_i} \tag{A.42}$$

A.7.1 Matrices de Mueller des principaux éléments optiques

La matrice de Mueller d'un élément optique k sera notée M_k :

• matrice de Mueller d'un analyseur ou d'un polariseur supposé parfait:

• matrice de Mueller d'un échantillon parfaitement réfléchissant:

$$M_{S} = \kappa \begin{bmatrix} 1 & -\cos 2\Psi & 0 & 0 \\ -\cos 2\Psi & 1 & 0 & 0 \\ 0 & 0 & \sin 2\Psi \cos \Delta & \sin 2\Psi \sin \Delta \\ 0 & 0 & -\sin 2\Psi \sin \Delta & \sin 2\Psi \cos \Delta \end{bmatrix}.$$
 (A.44)

 \mathbf{avec} :

$$\kappa = (r_p^2 + r_s^2)/2$$

Cette constante κ n'apparaîtra pas dans les calculs, elle sera implicitement comprise dans I_0 lors du calcul des flux;

• introduction de la matrice rotation:

Le calcul de la propagation du flux lumineux à travers des éléments optiques par l'intermédiaire des matrices de Mueller se fait dans un système d'axes déterminé. Aussi, lorsque le flux traverse un élément optique tel qu'un polariseur ou un analyseur, il faut ramener les axes de transmissions de ces éléments dans le système d'axes de calcul. On utilisera pour le calcul du flux, une matrice rotation, notée $R(\theta)$ et son inverse, notée $R^{-1}(\theta)$.

La matrice de Mueller d'un élément k, dont un des axes privilégiés (axe de transmission pour un polariseur) fait un angle θ avec l'axe Ox du repère de référence (généralement une parallèle au plan d'incidence et sa normale), est obtenue par la relation

$$M_k(\theta) = R^{-1}(\theta) M_k R(\theta) , \qquad (A.45)$$

avec:

$$R(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & \cos 2\theta & \sin 2\theta & 0\\ 0 & -\sin 2\theta & \cos 2\theta & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} .$$
 (A.46)

La matrice de Mueller pour une lame de phase est :

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \delta & \sin \delta \\ 0 & 0 & -\sin \delta & \cos \delta \end{bmatrix}$$
(A.47)

Annexe B

Réflexion par les surfaces

B.1 Ondes planes monochromatiques polarisées rectilignement

Les ondes monochromatiques peuvent être caractérisées par un vecteur unique (on choisit généralement le vecteur champ électrique). Les composantes de ce vecteur peuvent s'écrire, en notation complexe, sous la forme:

$$\overrightarrow{E} = \overrightarrow{E}_{0} e^{i(\omega t - \overrightarrow{k} \cdot \overrightarrow{r})}.$$
(B.1)

 \overrightarrow{E} représente le vecteur caractéristique de l'onde au point \overrightarrow{r} et à l'instant t, ω est sa pulsation. Ainsi, en tout point du plan défini par l'équation $\overrightarrow{k} \cdot \overrightarrow{r} = Cste$, le vecteur \overrightarrow{E} prend la même valeur à un instant donné t. Une telle onde est appelée onde plane, le vecteur \overrightarrow{k} (vecteur d'onde) est orienté dans la direction de propagation et son module $|\overrightarrow{k}| = \frac{2\pi n}{\lambda}$ est le nombre d'onde; λ représente la longueur d'onde du rayonnement dans le vide.

Pour une onde plane se propageant dans un milieu homogène et isotrope les équations de Maxwell se simplifient.

En posant :

$$\frac{\partial}{\partial t} \rightarrow i\omega$$
 $\nabla \rightarrow -ik$

Les équations (1.1) et (1.2) prennent la forme:

$$\overrightarrow{B} = \frac{\overrightarrow{k} \wedge \overrightarrow{E}}{\omega}, \qquad \qquad \overrightarrow{E} = -\frac{c}{n} \frac{\overrightarrow{k} \wedge \overrightarrow{B}}{|\overrightarrow{k}|}.$$
 (B.2)

Ces deux relations montrent que les vecteurs \overrightarrow{E} , \overrightarrow{B} , \overrightarrow{k} sont perpendiculaires entre eux.

Figure B.1: Réflexion d'une onde plane sur une interface

La figure (B.1) suggère que pour l'étude de la réflexion de la lumière sur une interface plane, deux cas sont à considérer:

- le vecteur champ électrique \overrightarrow{E} est un vecteur du plan d'incidence. L'onde est du type "p" (comme parallèle).

- le vecteur champ électrique \overrightarrow{E} est perpendiculaire au plan d'incidence. L'onde est du type "s" (comme "senkrecht"qui signifie perpendiculaire, en allemand).

Toute autre polarisation peut se décomposer selon ces deux polarisations particulières.

B.2 Conditions aux limites

Les vecteurs champs électrique \overrightarrow{E} et magnétique \overrightarrow{H} vérifient les équations de Maxwell en n'importe quel point du milieu de propagation et, en particulier, à la surface de séparation entre deux milieux différents. Ceci impose certaines conditions aux limites qui vont permettre de relier les valeurs des champs dans les deux milieux. Les équations de Maxwell doivent être complétées par les équations de continuité à la surface de séparation. Pour cela on les écrit sous leur forme intégrale, en utilisant les théorèmes de *Gauss* et de *Stokes*.

$$\int \int_{A} \overrightarrow{\nabla} \wedge \overrightarrow{H} . \overrightarrow{dA} = \int_{C} \overrightarrow{H} . \overrightarrow{dl} = \int \int_{A} (\overrightarrow{j} + \frac{\partial D}{\partial t}) . \overrightarrow{dA}$$
(B.3)

$$\int \int_{A} \overrightarrow{\nabla} \wedge \overrightarrow{E} \cdot \overrightarrow{dA} = \int_{C} \overrightarrow{E} \cdot \overrightarrow{dl} = -\frac{\partial}{\partial t} \int \int \overrightarrow{B} \cdot \overrightarrow{dA}$$
(B.4)

$$\int \int \int \overrightarrow{\nabla} \cdot \overrightarrow{D} \, dV = \int \int \int \int \rho \, dV = \int \int \overrightarrow{D} \cdot \overrightarrow{dA}$$
(B.5)

$$\int \int \int \vec{\nabla} \cdot \vec{B} \, dV = \int \int \vec{B} \cdot \vec{dA} = 0 \tag{B.6}$$

dA est un élement de la surface.

Les composantes normales de \overrightarrow{D} et \overrightarrow{B}

En developpant les équations (B.5) et (B.6), on aboutit aux relations :

$$(\overrightarrow{D_1} - \overrightarrow{D_2}) \cdot \overrightarrow{s_{12}} = \rho_s, \tag{B.7}$$

$$(\overrightarrow{B_1} - \overrightarrow{B_2}) \cdot \overrightarrow{s_{12}} = 0, \tag{B.8}$$

où $\overrightarrow{s_{12}}$ est le vecteur unitaire, normal à la surface, dirigé du milieu (1) vers le milieu (2). ρ_s est la densité superficielle de charge.

- Si la densité superficielle de charge est nulle, les composantes normales de \overrightarrow{D} sont continues à travers la surface de séparation.
- Les composantes normales de \overrightarrow{B} sont toujours continues à travers la surface de séparation.

Les composantes tangentielles de \overrightarrow{E} et \overrightarrow{H}

Le developpement des équations (B.3) et (B.4) conduit aux relations :

$$\overrightarrow{s_{12}} \wedge (\overrightarrow{H_2} - \overrightarrow{H_1}) = \overrightarrow{j_s}, \qquad (B.9)$$

$$\overrightarrow{s_{12}} \wedge (\overrightarrow{E_2} - \overrightarrow{E_1}) = 0,$$
 (B.10)

avec j_s la densité de courant superficielle.

- La composante tangentielle du champ magnétique \overrightarrow{H} subit une discontinuité, sauf si $\overrightarrow{j_s} = 0.$
- La composante tangentielle de \overrightarrow{E} est continue à travers la surface de séparation.

Ce sont les conditions aux limites qui permettent de résoudre les problèmes de passage d'un milieux 1 à un milieu 2.

B.3 Réflexion et réfraction-Relations de Fresnel

La réflexion d'une onde électomagnétique et sa transmission à travers l'interface de deux milieux homogènes sont décrites par les équations de Fresnel qui se déduisent des équations de Maxwell en considérant la continuité des composantes tangentielles à l'interface.

B.3.1 Lois géométriques de la réflexion et de la réfraction

Considérons maintenant la réflexion et la réfraction d'une onde plane.

Figure B.2: Réflexion et réfraction d'une onde plane

Soit (ox, oy) l'interface séparant les deux milieux transparents, homogènes et isotropes.

Le faisceau incident est dans le plan (ox, oz) qui est le plan d'incidence (PI). On veut retrouver d'abord les lois géométriques de la réflexion et de la réfraction à partir des équations de passage.

Les champs incident $\overrightarrow{E^{i}}$, réfléchi $\overrightarrow{E^{r}}$ et transmis $\overrightarrow{E^{t}}$ s'écrivent:

$$\overrightarrow{E}^{i} = \overrightarrow{E}_{0} e^{i(\omega t - k_{x} x - k_{z} z)}$$
(B.11)

$$\overrightarrow{E}^{\tau} = \overrightarrow{E}_{0}^{\prime\prime} e^{i(\omega^{\prime\prime}t - k_{x}^{\prime\prime} x - k_{y}^{\prime\prime} y - k_{z}^{\prime\prime} z)}$$
(B.12)

$$\overrightarrow{E}^{t} = \overrightarrow{E}_{0}^{\prime} e^{i(\omega^{\prime}t - k_{x}^{\prime} x - k_{y}^{\prime} y - k_{z}^{\prime} z)}, \qquad (B.13)$$

En écrivant la continuité des composantes tangentielle de \overrightarrow{E} :

$$\vec{E}_t^i + \vec{E}_t^r = \vec{E}_t^t$$
(B.14)

(B.15)

qui doivent être vérifiées pour z = 0 et quels que soient x et y :

$$\overrightarrow{E_0}e^{i\omega t} + \overrightarrow{E_0''}e^{i\omega''t} = \overrightarrow{E_0'}e^{i\omega't}.$$
(B.16)

Cette relation doit être vérifiée à tout instant, ce qui impose :

$$\omega = \omega' = \omega'' \tag{B.17}$$

$$k_x = k'_x = k''_x.$$
 (B.18)

La relation (B.17) exprime que la réflexion ou la réfraction ne change pas la fréquence de l'onde.

La relation (B.18) s'écrit en fonction des vitesses de propagation :

$$rac{\omega}{v_i}\sin heta=rac{\omega}{v_i}\sin heta''=rac{\omega}{v_t}\sin heta',$$

soit:

$$\hat{n}\sin heta=\hat{n}\sin heta''=\hat{n'}\sin heta'.$$

d'où :

$$\frac{\sin\theta}{\sin\theta'} = \frac{\hat{n'}}{\hat{n}}$$

Ce sont les lois de Descartes à la surface de séparation, écrites avec les indices de réfraction complexe.

B.3.2 Amplitudes de la vibration réflechie et de la vibration transmise

Pour z = 0 les facteurs exponentiels sont les mêmes pour tous les termes des équations de passage, de sorte que nous pouvons les omettre et écrire les conditions aux limites pour les amplitudes. L'égalité des composantes tangentielles de \overrightarrow{E} et de \overrightarrow{H} entraı̂ne :

$$\vec{E_x^i} + \vec{E_x^r} = \vec{E_x^t} \tag{B.19}$$

$$\overrightarrow{E_y} + \overrightarrow{E_y} = \overrightarrow{E_y}$$

$$(111)$$

$$(112)$$

$$(112)$$

$$(112)$$

$$(112)$$

$$\overrightarrow{H_y^i} + \overrightarrow{H_x^r} = \overrightarrow{H_x^t}$$
(B.21)

$$\overrightarrow{H}_{y}^{i} + \overrightarrow{H}_{y}^{r} = \overrightarrow{H}_{y}^{t}$$
(B.22)

B.3.3 Mode P

 \overrightarrow{E} est parallèle au plan d'incidence, et seule la composante de \overrightarrow{B} selon la direction oy perpendiculaire au plan d'incidence est non nulle, de plus on sait que \overrightarrow{H} est lié à \overrightarrow{E} par:

$$|\overrightarrow{B}| = rac{\hat{n}\mu}{c} |\overrightarrow{E}|,$$

En appliquant les conditions aux limites on a :

$$\hat{n}E_{y}^{i} + \hat{n}E_{y}^{r} = \hat{n'}E_{y}^{t} \tag{B.23}$$

Pour calculer les coefficients de reflexion et de transmission, on utilise la relation :

$$\overrightarrow{
abla} \wedge \overrightarrow{H} = -\varepsilon \frac{\partial \overrightarrow{E}}{\partial t}$$
 (B.24)

qui donne pour une onde plane

$$-i\overrightarrow{k}\wedge\overrightarrow{H}=\varepsilon\,i\,\omega\,\overrightarrow{E}\tag{B.25}$$

en utilisant l'équation (B.19) et avec $k_y = 0$ on obtient :

$$\frac{k_z \hat{n} E^i}{\hat{n}^2} + \frac{k_z'' \hat{n} E^r}{\hat{n}^2} = \frac{k_z' \hat{n}' E^r}{\hat{n}'^2}$$
(B.26)

comme $k_{z}'' = -k_{z}$ on obtient :

$$\hat{n}(E^{i} - E^{r}) = (\frac{\hat{n}}{\hat{n}'})^{2} (\frac{k'_{z}}{k_{z}}) \hat{n'} E^{t}$$
(B.27)

En posant $E^r = r_p E^i$ et $E^t = t_p E^i$ et à l'aide des relations (B.23) et (B.27) on déduit :

$$r_{p} = \frac{\hat{n}\cos\theta' - \hat{n}'\cos\theta}{\hat{n}\cos\theta' + \hat{n}'\cos\theta}$$
(B.28)

$$t_p = 2 \frac{\cos\theta \sin\theta'}{\sin(\theta + \theta')\cos(\theta - \theta')}.$$
 (B.29)

Si l'incidence est voisine de la normale, on peut assimiler les sinus et les tangentes aux angles et les cosinus à un, d'où:

$$r_p = -\frac{\hat{n}' - \hat{n}}{\hat{n}' + \hat{n}}$$
 (B.30)

$$t_p = \frac{2\hat{n}}{\hat{n} + \hat{n}'}.\tag{B.31}$$

B.3.4 Mode S

 \overrightarrow{E} est perpendiculaire au plan d'incidence, la seule composante non nulle est selon *oy* et \overrightarrow{B} est dans le plan d'incidence.

En appliquant les équations de passage, et après simplifications on trouve :

$$k_z E_y^i + k_z' E_y^r = k_z'' E_y^t \tag{B.32}$$

et comme $k''_z = -k_z$:

$$E_{y}^{i} - E_{y}^{r} = \frac{k_{z}'}{k_{z}} E_{y}^{t}$$
(B.33)

En posant par définition : $E^r = r_s E^i$ et $E^t = t_s E^i$ on déduit :

$$r_s = -\frac{\sin\left(\theta - \theta'\right)}{\sin\left(\theta + \theta'\right)} \tag{B.34}$$

$$t_s = \frac{2\sin\theta'\cos\theta}{\sin(\theta+\theta)}.$$
 (B.35)

Si l'incidence est voisine de la normale, on obtient :

$$r_s = -rac{\hat{n}'-\hat{n}}{\hat{n}'+\hat{n}} \qquad \qquad t_s = rac{2\hat{n}}{\hat{n}'+\hat{n}}.$$

Les coefficients de réflexion r_p et r_s varient en fonction de l'angle d'incidence. Pour l'onde S, R_s est toujours plus grand que R_p ($R_s > R_p$), sauf dans les cas de l'incidence normale ($\theta = 0$) et de l'incidence rasante ($\theta = \pi/2$). En outre, d'après l'équation (1.13), on voit que $r_p = 0$ pour $\theta + \theta' = \frac{\pi}{2}$.

Pour cette valeur particulière de l'angle d'incidence qui est désigné par θ_B (angle de Brewster) les rayons réfléchi et réfracté sont perpendiculaires. On peut écrire:

$$\hat{n}\sin heta_B=\hat{n}'\sin heta'=\hat{n}'\cos heta_B,$$

d'où:

$$\tan\theta_B = \frac{\hat{n}'}{\hat{n}},$$

Sous l'incidence de Brewster, la vibration parallèle au plan d'incidence n'est pas réfléchie.

B.4 Conservation du flux

Le flux d'énergie électromagnétique est égal au flux du vecteur de Poynting:

$$\overrightarrow{S} = \overrightarrow{E} \wedge \overrightarrow{H},$$

de module

$$S = \sqrt{\frac{\varepsilon}{\mu}} E^2.$$

On a d'autre part:

$$v = rac{1}{arepsilon \mu} = rac{1}{\sqrt{arepsilon_0 \mu_0} \sqrt{arepsilon_r \mu_r}} = rac{c}{\sqrt{arepsilon_r}},$$

avec $\mu_r = 1$ pour les diélectriques. En comparant à $\frac{c}{n}$, on trouve que $n = \sqrt{\varepsilon_r}$, et on en déduit que:

$$S=\sqrt{\frac{\varepsilon_0}{\mu_o}}\,nE^2,$$

c'est-à-dire que le flux incident est proportionnel à nE^2 .

Si le milieu est transparent, le flux incident est égal à la somme du flux réfléchi et du flux transmis.

Pour exprimer la conservation du flux, il faut tenir compte que les sections droites du faisceau incident et du faisceau transmis ne sont pas les mêmes, et que les indices sont différents.

Les flux incident, réfléchi et transmis sont respectivement proportionnels à:

$$egin{aligned} &< S_i >= n \, E^2 \cos heta, \ &< S_r >= n \, E^2 r^2 \cos heta'', \ &< S_t >= n \, E^2 t^2 \cos heta', \end{aligned}$$

Le facteur de réflexion de la surface est le rapport du flux réflechi et du flux incident,

$$R = \frac{\langle S_r \rangle}{\langle S_i \rangle} = |r|^2, \tag{B.36}$$

et le facteur de transmission est le rapport des flux transmis et incident:

$$T = \frac{\langle S_t \rangle}{\langle S_i \rangle} = \frac{n' \cos \theta'}{n \cos \theta} |t|^2.$$
(B.37)

La conservation de l'énergie s'écrit :

$$\langle S_i \rangle = \langle S_r \rangle + \langle S_t \rangle,$$

soit :

$$R+T=1.$$

La réflectivité et la transmitivité dépendent de l'état de polarisation de l'onde incidente, d'après les équations de Fresnel.

B.5 Incidence normale

Pour une incidence normale ($\theta = 0$), il n'y a pas de différence entre les ondes s et p, et les formules de *Fresnel* se réduisent à:

$$r_s=r_p=rac{\hat{n}-\hat{n}'}{\hat{n}+\hat{n}'},$$
 $t_s=t_p=rac{2\hat{n}}{\hat{n}+\hat{n}'}.$

Et la réflectance et la transmittance deviennent alors:

$$egin{aligned} R_p &= R_s = (rac{\hat{n} - \hat{n}'}{\hat{n} + \hat{n}'})^2, \ T_p &= T_s = rac{4 \hat{n} \, \hat{n}'}{(\hat{n} + \hat{n}')^2}. \end{aligned}$$

B.6 Réflexion sur un milieu absorbant

Pour un milieu absorbant l'indice de réfraction est complexe. Soit $\hat{n} = n - ik$, l'indice de réfraction du milieu absorbant et n_1 l'indice de réfraction du milieu 1 (air).

L'application directe de la loi de Descartes donne:

$$n_1\sin\theta = (n-ik)\sin\theta',$$

l'angle θ' est complexe et il convient donc de reécrire la loi de *Descartes* :

$$k_{1z}=k_{2z}=\frac{2\pi}{\lambda}\sin\phi_1,$$

Les équations de Fresnel deviennent alors:

$$r_s = \frac{k_{1x} - k_{2x}}{k_{1x} + k_{2x}}, \tag{B.38}$$

$$r_p = \frac{n_1^2 k_{2x} - \hat{n}^2 k_{1x}}{n_1^2 k_{2x} + \hat{n}^2 k_{1x}}, \tag{B.39}$$

où k_{1x} et k_{2x} sont normaux aux vecteurs d'onde des milieux 1 et 2. Soit k_{1z} la composante tangentielle du vecteur d'onde :

$$k_{1z}=rac{2\pi}{\lambda}\sin\phi_1=rac{\omega}{c}\sin\phi_1,$$

alors k_{1x} et k_{1y} peuvent s'écrire :

$$k_{1x} = \left[\left(\frac{\omega}{c} n_1\right)^2 - k_{1z}^2 \right]^1 / 2 = \left[\left(\frac{\omega}{c}\right)^2 - k_{1z}^2 \right]^1 / 2, \tag{B.40}$$

$$k_{2x} = \left[\left(\frac{\omega}{c}\hat{n}\right)^2 - k_{1z}^2 \right]^1 / 2 = \left[\left(\frac{\omega}{c}\right)^2 (n - ik) - k_{1z}^2 \right]^1 / 2, \tag{B.41}$$

sous incidence normale, les coefficients r_p et r_s sont égaux :

$$r_p = r_s = \frac{1 - (n - ik)}{1 + (n - ik)},$$
 (B.42)

$$R = |r_p|^2 = |r_s|^2 = \frac{(1-n^2)^2 + k^2}{(1+n^2)^2 + k^2},$$
 (B.43)

et la différence de phase à la réflexion est :

$$\tan\varphi = \frac{2k}{1-n^2-k^2}.\tag{B.44}$$

Références

- [1] J.N. Hodgson, Liquid Metals (Ed by SYlvan Z.Beer 1972).
- [2] A.V. Sokolov, Optical Properties of Metals (Blackie and sons 1961).
- [3] Y. Quéré, Physique des Matériaux (Edition Ellipse 1988).
- [4] Feynman, *Electomagnétisme* T2 (InterEdition, Paris 1979).
- [5] M. Born; E.Wolf, Principles of Optics (Pergaman Press, Oxford, Sixth edition 1985).
- [6] G. Bruhat, Cours de Physique générale : Optique (4e édition revue et corrigé par A. Kastler), Masson et Cie édition, Paris, 1954.
- [7] B. Deviot, Propriétés électroniques des métaux et alliages (Ecole d'été de Royan, Septembre 1971, Masson 1973).
- [8] P. Yeh, Optical Waves in Layered Media (John Wiley and Sons 1988).
- [9] P. Jacquinot, Optique électromagnétique des milieux isotropes (Edition Claude Hermant)
- [10] R.W. Wood, Phys.Rev. 44, 353 (1933).
- [11] P. Drude The theory of optics (Longmans-Green, London 1902).
- [12] A.B. Pippard, The Dynamics of Conduction Electrons (Gordon and Breach, New York 1965).
- [13] T.E. Faber, "The Théory of the Electrical Conductivity of Liquid Metals," Adv.Phys, 15, 547-581 (1966).
- [14] T.E. Faber, An Introduction to the Theory of liquid Metals (Cambridge University Press 1972).

- [15] J.M. Ziman, Principles of the theory of solid (Cambridge University Press 1972).
- [16] J.M. Ziman, Phil.Mag; 6, 1013 (1961).
- [17] J.S. Helman, W. Baltensperger, "The Dielectric Constant of Liquid Metals," Phys. Kondens. Materie 5, 60-72 (1966).
- [18] J.S. Helman, W. Baltensperger, "Memory fonction for the reponse of conduction electrons in metals," Phys.Rev. 17, 2427-2428 (1978).
- [19] S. Wang and C.B. So "Electronic Structure of metals : VII. Optical Absorption of Simple Metals," J. Phys. F: Metal Phys., 9, 579-589 (1979).
- [20] R.W. Shaw, "Reformulation of the model potential theory of simple metals," Stanford University, Ph.D., (1968).
- [21] N. P. Kovalenko and Yu. P. Krasnyi "Theory of Optical Properties of Liquid metals," Opt. Spekt., bf 35, 681-686 (1973).
- [22] G.E.H. Reuter et E.H. Sondheimer, Proc. Roy. Soc. A 191, 385-399 (1947).
- [23] C. Zener, Nature, 132, 986 (1953).
- [24] R.L. Kronig, Nature, **132**, 601 (1933)
- [25] R.L. Kronig, Nature, 133, 601 (1934).
- [26] H. Ehrenreich, The Optical Properties of Solids, (Edition J.Tauc, New York, Academic Press 1966).
- [27] N.W. Ashcroft and K. Sturm, Phys. Rev., 3, 1898 (1971).
- [28] S.F. Edwards, Phil.Mag., 3, 1020 (1958).
- [29] S.F. Edwards, Phil.Mag., 6, 617 (1962).
- [30] S.F. Edwards, Proc.R.Soc.A, 267, 518 (1965).
- [31] R.M.A. Azzam, N.M. Bashara, Ellipsometry and polarized Light (North Holland, Amsterdam 1977).

- [32] A. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, Berlin, 1990).
- [33] R.H. Muller, Surface Science, 16, 14 (1969).
- [34] P. Drude, Ann. Phys. U. Chem, 32, 594 (1887).
- [35] R.A. Rothen, "The Ellipsometer, an apparatus to measure thickness of thin surface films," Rev. Sci. Instrum. 16(3), 26-30 (1946).
- [36] K.H. Zaininger and A.G. Revesz, "Ellipsometry-avaluable tool in surface research," RCA Rev. 25, 85 (1964).
- [37] R.F. Potter, J. opt. Soc. Am., 54, 904, (1964).
- [38] A. Vašíček, Ellipsometry in the measurements of surfaces and thin films (Misc. Publ., Washington, 1964).
- [39] R.J. Archer, J. opt. Soc. Am., 52, 970 (1962).
- [40] D.E. Aspnes, "Studies of surface, thin film and interface properties by automatic spectroscopic ellipsometry," J.Vac.Sci.Tech 18, 289 (1981).
- [41] R.M.A. Azzam "ellipsometry configuration and techniques," Proc.Soc.Photoopt.Instrum.Eng 276, 180 (1981).
- [42] R.M.A. Azzam (editeur), selected papers on Ellipsometry SPIE, MS 27 (SPIE Optical Engineering Press, Washington, 1990).
- [43] R.W. Collins, "Automatic rotating element ellipsometers: Callibration, operation and real-time application" Rev. Sci.Instrum. 61, 2029-2061 (1990).
- [44] R.W. Stobie, B. Rao and M.J. Dignam, AppliedOptics 14, (4), 999 (1975).
- [45] P.S. Hauge and F.H. Dill, "A rotating-compensator Fourier ellipsometer", Opt.Comm., 14, 431-437 (1975).
- [46] D.E. Aspnes, Proc. SOC. Photo-Optical Instrumentation Engineers (SPIE). 452, 60 (1983).

- [47] K.J. Kim, "Ellipsometric study of optical transitions in $Ag_{1-x}In_x$ alloys," Phys. Rev., 38, 13107-13112 (1988).
- [48] R. Dahmani and L. Salamanca-Riba, "determination of the optical constants of ZnSe films by spectroscopic ellipsometry," J. Appl. Phys., 76 514-517 (1994).
- [49] S. Sacre and L.K. Thomas, "Ellipsometric investigation of thickness dependence of the optical constants of thin tungsten oxide films," Thin Solid Films, 203, 221-226 (1991).
- [50] F.H.P.M. Habraken, O.L.J. Gijzeman and G.A. Bootsma, "ellipsometry of clean surfaces, submonolayer and monolayer films," Surf. Sci., 96, 482-507 (1980).
- [51] T.E. Faber and N.V. Smith, "optical Measurements on Liquid Metal Using a New Ellipsometer," J. Opt. Soc. Am., 58, 102-108 (1967).
- [52] S.S. So, "ellipsometric analyses for an absorbing surface film an absorbing substrate with or without an intermediate surface layer," Surf. Sci., 56, 97-108 (1976).
- [53] P. Bousquet, Spectroscopie Instrumentale (Dunod, 1969).
- [54] A. Vašíček, Optics of thin films (North-Holland, Amsterdam, 1960).
- [55] F. Meyer, "Les méthodes optiques de caractérisation des couches minces : un point de vue industriel," Acta Electronica, 24, 125-130 (1981/1982).
- [56] M.S.A. Youssef and A.R.M. Zaghloul, "Ellipsometric function of a film-substrate system
 : characterization and detailed study," J. Opt. Soc. Am., 6, 355-366 (1989).
- [57] M. Malin and K. Vedam, "Generalized ellipsometric method for the determination of all the system : Optically absorbing film on absorbing substrate," Surface Science, 56, 49-63 (1976).
- [58] D.E. Aspnes, "Fourier transform detection system for rotating-anlyser ellipsometers", Opt.Comm., 8, 222-225 (1973).
- [59] P.S. Hauge and F.H. Dill, "Design and operation of ETA an automated ellipsometer", IBM J.Res.Develop., 17, 472-489 (1973).

- [60] R. Kleim, Polarisation de la lumière- Modulation acoustique, DESS Informatique Industrielle et Optoélectronique, (Metz 1991/92).
- [61] J.R. Beattie, G.K.T. Conn, Phil.Mag., 46, 222 (1955).
- [62] R. Tousey, J. Opt. Soc. Am., 29, 235 (1939).
- [63] S.N. Jasperson and S.E. Schnatterly,"An Improved for High Reflectivity Ellipsometry Based on a New polarization Modulation Technique," Rev. Sc. Instr., 40, (16), 761-767 (1969).
- [64] Applied Materials "Instruction manual for Ellipsometer" santa Clara, Applied Materials (1976).
- [65] M. Czerny and A. E. turner, Z.f. Phys., 61, 792 (1930).
- [66] S.N. Jasperson, D.K. Burge and R.C. O'Handley," A Modulated Ellipsometer for studying thin film optical properties and dynamics," Surf.Sci.,37, 548-558 (1973).
- [67] V.M. Bermudez and V.H. Ritz, Appl. Opt., 17, 542-552, (1978).
- [68] B. Drevillon, J. Perrin, R. Marbot, A. Violet and J.L. Darby, Rev.Scientific Instr., 53, (7), 969 (1982).
- [69] R. Benferhat "Thèse de doctorat d'état," Université Pierre et Marie Curie -Paris 6-Juillet 1987.
- [70] O. Archer, E. Bigan, and B. Drevillon, "Improvements of phase-modulated ellipsometry," Rev. Sci. Instrum. 60, 65-77 (1989).
- [71] R. Kleim, L. Kuntzler and A. El Ghemmaz, "Systematic error in rotating-compensator ellipsometry," J. Opt. Soc. Am. A 11, 2550-2559 (1994).
- [72] D.E. Aspnes, T. Opt. Soc. Am. 64; 812 (1974).
- [73] D.E. Aspnes and A.A. Sdtudna, "High precision scanning ellipsometer", Appl. Opt., 14, 220-228 (1975).

- [74] R.A. Canillas, E. Pascual, and B. Drévillon,"Phase-modulated ellipsometer usin a Fourier infrared spectrometer for real time applications," Rev. Sci. Instrum. 64, 2153-2159 (1993).
- [75] Ilsin An and R.W. Collins, "Waveform analysis with optical multichannel detectors : Applications for rapid-scan spectroscopic ellipsometry," Rev. Sci. Instrum., 62, 1904-1911 (1991).
- [76] J.B. Theeten, F.Simondet, M. Erman and J.Pernas, Proc. of the 4th. Int. Conf. on Solide Surface, 201, 1071 (1980).
- [77] M. Erman, "Ellipsometrie spectroscopique du proche IR au proche UV., appareillage et méthodologie. Application à l'étude de l'implantation ionique dans les semi-conducteurs, Thèse de doctorat, Université d'Orsay, Mars 1982.
- [78] A. Straaijer, M.H.W. Verbruggen, J.J.M. de Nijs, and H.H. Brongersam, "Novel fast spectroscopic rotating-polarizer ellipsometer," Rev. Sci. Instrum., 64, 1468-1473 (1993).
- [79] P.S. Hauge, "Generalied rotating componsator ellipsometry", Surf.Sci., 56, 148-160 (1976).
- [80] D.E. Aspnes, "Rotating-compensator/analyzer fixed-analyzer ellipsometer : Analysis and comparison to other automatic ellipsometers," J.Opt.Soc.Am. 66, 949-954 (1976).
- [81] S. Bertucci, "Contribution à l'étude d'un ellipsomètre spectroscopique : Mise en œuvre, Programme d'exploitation, Calibrage, Erreurs systématiques, Détection" (Mémoire CNAM, Metz 1995).
- [82] A. Pawlowski, "Contribution à l'étude d'un ellipsomètre spectroscopique : Mise en œuvre, Programme d'exploitation, Calibrage, Erreurs aléatoires, Systèmes optiques" (Mémoire CNAM, Metz 1995)
- [83] P.S. Hauge, R.H Muller and C.G. Smith, "Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry," (North-Holland, 1980).
- [84] P.S. Hauge, R.H Muller and C.G. Smith, Surface Science, 96, 81 (1980).

- [85] F. Bernoux, J.P. Piel, J.H. Lecat, J.L. Stehle *Ellipsométrie* (Techniques de l'Ingénieur, traité Mesures et Controle, R6490).
- [86] J.M.M de Nijs, A.H.M. Holtslag, A. Hoeksta and A. van Silfhout, "Calibration method for rotating-analyzer-ellipsometer," J.Opt.Soc.Am. A, 1466-1471 (1988).
- [87] D.E. Aspnes, "Effects of component optical activity in data reduction an calibration of rotating-analyzer-ellipsometer," J.Opt.Soc.Am. 64, 812-819 (1974).
- [88] L. Kuntzler, "Contribution à l'amélioration des performances d'un ellipsomètre à compensateur tournant" (Mémoire CNAM, Metz 1993).
- [89] N. Nicolas, "Contribution à la détermination des erreurs systématiques d' ellipsomètres à élément tournant" (Mémoire CNAM, Metz 1994).
- [90] A. Guiader "Contribution de la mise au point d'un ellipsomètre à élément tournant" (Mémoire CNAM, Metz 1992).
- [91] K.D. Möller, Optics (University Science Books 1988).
- [92] R. Kleim Polarisation et Ellipsométrie, Cours DESS, Metz 1994.
- [93] "Principes of ellipsometry," Advances in electrochemstry and electrochemical engineering, 9 (1973).
- [94] J. A. Nelder and R. Mead, " A simplex method for function minimization," J. Compt. (U.S.A), 7, 308-313 (1965).
- [95] L. D. Lucas, Mémoires Scientifiques Revue de Metallurgie 6, 479-493 (1972).
- [96] A. F. Crawley, Int. Met. Rev. 19, 32 (1974).
- [97] J. G. Gasser Thèse d'Etat, Université de Metz, décembre 1982.
- [98] A. Ben Abdellah M.Erman, Thèse de doctorat, Université de Metz, Juillet 1994.
- [99] N. V. Smith "The Optical Properties of Liquid Metals," Adv. Phys., 16, 629 (1967).
- [100] N. V. Smith "Drude Theorie and Optical Properties of Liquid Mercury," Phys. Letters, 26 126 (1968).

- [101] J. N. Hodgson "The Opticals Properties of Liquid Germanium, Tin and Lead," Phil. Mag, 6, 509-515 (1961).
- [102] N. R. Comins "The Opticals Properties of Liquid Metal," Phil. Mag., 16, 817-831 (1972).
- [103] T. Inagaki "Optical of Liquid Pb and Bi between 0,6 and 3,7eV," Phys. Rev., 25, 6130-6138 (1961).
- [104] J. P. Petrakian, A. R. Cathers, J. E. Parks, R.A. MacRae, T. A. Callcott, and E. T. Arakawa "Optical properties of Liquid Tin between 0,62 and 3,7eV," Phys. Rev., 21, 3043-3046 (1980).
- [105] G. Cisneros, J. S. Helman "Dielectrique of Liquid Tin between 250°C and 1100°," Phys. Rev., 25, 4248-4251 (1982).
- [106] B. Hüttner "Optical Properties of Polyvalent Metal in the Solid and Liquid state : Lead," J. Phys.: condens. Matter, 7, 907-918 (1995).
- [107] W. Jank and J. Hafner, Phys. Rev. 41, 1497 (1990).
- [108] R. A. MacRae, E. T. Arakawa and M. W. Williams, Phys. Rev., 162, 615 (1967).
- [109] C. V. Kent "The Optical Constants of Liquid Alloys," Phys. Rev., 14, 459-489 (1961).
- [110] A. G. Mathewson and H. P. Myers, Phys. Sci., 4, 291 (1971).
- [111] G. Indlekofer, A. Pflugi, P. Oelhafen, D. Chauveau, C. Guillot and J. Lecante, J. Non-cryst. Solid, 117/118, 351 (1990).
- [112] H. Ruppersberg, W. Speicher "Density and compressibility of Liquid Li-Pb Alloys," Z. Naturforsch, 31, 47-52 (1976).
- [113] H. Ruppersberg "A neutron diffraction investigation of Liquid Lithium-Lead Alloys," Phys. Lett. A, 46A, 75 (1973).
- [114] H. Mueller, "The Foundations of Optics," J. Opt. Soc. Am 38, 661 (1948).
- [115] G.C. Stokes, "On The Composition and Resolution of Streams of Polarized Light from Different Sources," Trans. Cambridge Phil. Soc. 9, 399 (1852).

- [116] S. Huard, Polarisation de la lumière (Edition Masson 1994).
- [117] D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy, (Academic Press, Inc., Harcourt Brace Jovanovich, Publishers 1990).
- [118] H. Poincaré, *Théorie Mathématique de la lumière II* (George Carré (ed.) Press, Cambridge, Massachusetts, 1962).

.

-

.

-

3.13	Variation de ε_1 et ε_2 en fonction de l'énergie pour différentes concentrations.	121
3.14	Variation de tan Ψ et cos Δ en fonction de la température	122
3.15	Variation de n et k en fonction de la température	123
A.1	Propagation d'une onde lumineuse et nature oscillatoire des vecteurs champ	
	électrique et champ magnétique : a)dépendance spatiale des deux ondes à un	
	instant donné; b)dépendance temporelle des ondes en un point de l'espace.	1 32
A.2	Représentation d'une lumière polarisée rectiligne. a)le long de l'axe Ox; b)le	
	long de l'axe Oy; c) avec une orientation de 45° par rapport à l'axe Ox. \dots	135
A.3	Représentation d'une lumière polarisée elliptiquement à gauche: a)composantes	
	linéaires orthogonales; b) représentation du vecteur somme des deux com-	
	posantes aux points 1 à 4; c) matérialisation de l'ellipse décrite par l'extrémité	
	du vecteur somme quand on regarde dans le faisceau; d) résultante du vecteur	
	champ électrique.	136
A.4	Ellipse de polarisation	138
A.5	Représentation par les matrices de Jones de N dispositifs optiques placés en	
	cascade	142
B.1	Réflexion d'une onde plane sur une interface	150
B.2	Réflexion et réfraction d'une onde plane	153

Liste des Figures

1.1	Réflexion normale : interface vide-métal	14
1.2	Variation de la conductivité optique et de la polarisabilité en fonction de la	
	fréquence	24
1.3	relation de dispersion	25
1.4	densité d'état en fonction de l'énergie	31
1.5	Bandes d'énergie des métaux liquides	42
2.1	Réflexion d'une onde par une surface	51
2.2	Schéma d'un ellipsomètre à extinction	54
2.3	Ellipsométrie à modulation de phase	57
2.4	Schéma du montage de l'ellipsomètre	60
2.5	Définition de l'angle P_0	69
3.1	Cellule de mesure : vue de face	89
3.2	Cellule de mesure : vue de côté	90
3.3	Coupe de la cellule de mesure	91
3.4	Variation de tan Ψ et cos Δ avec l'énergie	103
3.5	Variation de n et k avec l'énergie	104
3.6	Variation de ε_1 et ε_2 avec l'énergie	105
3.7	Variation de tan Ψ et cos Δ avec l'énergie	111
3.8	Variation de n et k avec l'énergie	119
3.9	Variation de ε_1 et ε_2 avec l'énergie	113
3.10	Diagramme de phase de Sn-Pb.	114
3.11	Variation de tan Ψ et cos Δ en fonction de l'énergie pour différentes concen-	
	trations.	119
3.12	Variation de n et k en fonction de l'énergie pour différentes concentrations.	120