

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l'utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 <u>http://www.cfcopies.com/V2/leg/leg_droi.php</u> <u>http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm</u>

	T2
BIBLI	OTHEQUE UNIVERSITAIRE
N° inv.	19850305
Cote	S/Mz <i>85/15</i>
Loc	

)

THESE

présentée à

L'UNIVERSITE DE METZ

pour obtenir le grade de DOCTEUR ES SCIENCES PHYSIQUES

par

MARC FONTANA

MODE MOU ET FLUCTUATIONS CRITIQUES DANS LES TRANSITIONS

DE PHASE SUCCESSIVES DE KNb03

ANNEXES

ANNEXES

TABLE DES MATIERES

.

ANNEXE A :	THEORIE DE LANDAU APPLIQUEE AUX TRANSITIONS DE PHASE	
	DE KNbO3	A.01
	1. Théorie de Landau : formulation générale	A.03
	2. Application aux transitions ferroélectriques	A.05
	2.a-Cas d'un ferroélectrique uniaxe	A.06
	2.b-Application à KNbO ₃	A.15
ANNEXE B :	PROPRIETES DE SYMETRIE DES MODES DE VIBRATION DANS LES	
	DIFFERENTES PHASES	A.23
	1. Méthode de détermination des propriétés de symétrie	
	des modes propres de vibration	A.24
	2. Propriétés de symétrie des modes normaux de vibration	
	dans la phase cubique	A.27
	3. Propriétés de symétrie des modes normaux de vibration	
	dans la phase quadratique	A.35
	4. Propriétés de symétrie des modes normaux de vibration	
	dans la phase orthorhombique	A.43
	5. Relations de compatibilité entre les modes de vibration	
	appartenant à des phases différentes	A.47
ANNEXE C :	MATRICE D'INTERACTION A COURTE PORTEE DANS LES PHASES	
	CUBIQUE ET QUADRATIQUE	A.48
	1. Aspects généraux	A.49
	2. Résultats obtenus pour KNb0 ₃	A.52
ANNEXE D :	THEORIE DES FLUCTUATIONS APPLIQUEE AUX TRANSITIONS DE	
	PHASE FERROELECTRIQUES	A.61
	1. Généralités sur les fluctuations	A.62
	1.a- Système homogène : Théorie de Landau	A.62
	1.b- Système inhomogène	A.63
	2. Théorie d'Ornstein-Zernike	A.68
	2.a- Expression générale de l'énergie libre	A.68
	2.b- Etude de la phase paraélectrique	A.70
	2.c- Etude d'une phase ferroélectrique	A.74
	2.d- Influence de la dépendance temporelle des fluctuations	A.77

- ANNEXE A -

THEORIE DE LANDAU APPLIQUEE AUX TRANSITIONS DE PHASE DE KNbO₃

INTRODUCTION.

L'objet de cette annexe est de rappeler la théorie thermo-dynamique des transitions de phase élaborée par LANDAU (1937). Cette théorie phénoménologique permet de prédire dans le cadre de certaines approximations la dépendance en température (ou pression) de grandeurs telles que la constante diélectrique, la chaleur spécifique ou la polarisation spontanée. Elle établit également les conditions à respecter pour qu'une transition soit continue ou non.

Le concept fondamental sur lequel repose la théorie de Landau réside dans l'existence d'un paramètre d'ordre n, grandeur dont la valeur est nulle dans la phase haute température (haute symétrie) mais non nulle (finie) dans la phase basse température (basse symétrie). Pour une transition structurale, le paramètre d'ordre est directement lié au changement de symétrie qui intervient à la transition. Dans le cas de transitions displacives on prend comme paramètre d'ordre le déplacement des ions ; en particulier pour les transitions ferroélectriques n correspond à la polarisation spontanée P_S. Par contre dans les systèmes ordre-désordre, le paramètre d'ordre n peut consister en une différence de probabilités de présence d'un ion sur plusieurs sites.

La transition de phase est dite du second ordre si n est une fonction continue de la température au point de transition T_1 . Par contre si le paramètre d'ordre est une fonction discontinue, la transition est du premier ordre. La théorie de Landau est développée dans le cadre de l'approximation du champ moyen, pour laquelle la fonction de partition du système (le cristal) est le produit des fonctions de partition des différents sous-systèmes (les mailles élémentaires). Le paramètre d'ordre n est considéré comme homogène : il possède la même valeur quel que soit le sous-système. Dans ce cas, il suffit d'étudier l'énergie libre du sous-système (§ 1). Cette théorie fut appliquée aux composés ferroélectriques par DEVONSHIRE (1949, 1951, 1954). Elle permet d'obtenir les variations en température de grandeurs macroscopiques dans les différentes phases des composés ABO_3 (dont $KNbO_3$) (§ 2). La théorie de Landau ne prend pas en compte les fluctuations du paramètre d'ordre n qui peuvent être très importantes en particulier près du point de transition. Si le paramètre d'ordre n'est plus homogène mais fluctue d'une maille élémentaire à une autre, la théorie de Landau peut alors être modifiée en tenant compte de ces fluctuations (cf Annexe D).

1. THEORIE DE LANDAU : FORMULATION GENERALE.

L'hypothèse de base de la théorie de Landau stipule qu'au voisinage du point de transition T_1 le potentiel thermodynamique Φ d'un système hors d'équilibre peut être développé en une série de puissances du paramètre d'ordre η :

$$\Phi(\eta) = \Phi_0 + \alpha \eta + \frac{\beta}{2} \eta^2 + \frac{\gamma}{3} \eta^3 + \frac{\delta}{4} \eta^4 + \frac{\epsilon}{5} \eta^5 + \dots \quad (A.1)$$

où Φ_0 est le potentiel dans le cas où n = 0. Il dépend de la température et de la pression, comme en principe les coefficients α , β , γ ... du développement. La valeur à l'équilibre n_0 du paramètre d'ordre est déterminée par la minimalisation du potentiel thermodynamique qui, en l'absence de contraintes externes, s'écrit :

$$\left(\frac{\partial \Phi}{\partial n} \right) = 0$$
 (A.2)

où la dérivée de Φ par rapport à n est prise pour la valeur n₀. Les solutions n₀ de l'équation A.2 sont stables si la condition suivante est respectée :

$$\left(\frac{\partial^{2} \Phi}{\partial \eta^{2}}\right) > 0 \tag{A.3}$$

En principe, le développement A.1 du potentiel Φ n'est valable que pour les températures T telles que :

$$t = \frac{T - T_1}{T} < 1$$
 (A.4)

où t est la température réduite. Dans le cas du développement A.1 la condition d'équilibre A.2 s'écrit :

$$\frac{\partial \Phi}{\partial \eta} = \alpha + \eta (\beta + \gamma \eta + \delta \eta^2 + \epsilon \eta^3 + \dots) = 0$$
 (A.5)

La phase haute température (haute symétrie) est définie par la solution n = 0

- A.3 -

de l'équation A.5. Par conséquent, le terme d'ordre 1 du développement A.1 est nul ($\alpha = 0$). La solution $\eta = 0$ pour T > T₁ correspond à un état stable si la condition A.3 est respectée pour cette même valeur. L'équation A.3 s'écrit pour une solution quelconque η_0 :

,

$$\psi = \left(\frac{\partial^2 \Phi}{\partial \eta^2}\right) = \beta + 2\gamma\eta + 3\delta\eta^2 + 4\epsilon\eta^3 + \dots > 0$$
(A.6)
$$\eta_0$$

Pour que la solution $\eta=0$ soit stable, l'équation A.6 implique que ß soit positif.

L'autre solution de l'équation A.5 est non nulle et correspond à la phase basse température (basse symétrie). Cette solution n'est jamais unique et correspond en fait aux différents états de la phase basse symétrie. La solution $n_0 \neq 0$ est stable si ß est négatif.

Les limites de stabilité des phases haute et basse symétrie correspondent respectivement aux températures $T_0 et T_0^+$ pour lesquelles les conditions suivantes sont respectées :

$$\psi (T_0) = \left(\frac{\partial^2 \Phi}{\partial \eta^2}\right) = 0 = \beta$$
(A.7)

$$\psi (T_{O}^{+}) = \left(\frac{\partial^{2} \Phi}{\partial \eta^{2}}\right) = 0$$

$$\eta_{O}$$
(A.8)

Le coefficient β donné par l'équation A.7 peut donc s'exprimer sous la forme d'un développement limité qui au premier ordre s'écrit :

 $\beta = \beta' (T - T_0)$ (A.9)

où $\beta' = \partial \beta / \partial T$ est un coefficient indépendant de la température. Comme β change de signe à la transition, une transition est du second ordre si $\beta = 0$ pour $T = T_1$. On a donc nécessairement $T_1 = T_0$ pour une transition du second ordre : la température de transition T_1 coïncide avec la limite de stabilité de la phase haute symétrie T_0 et aussi par suite, avec la limite de stabilité de la phase basse symétrie T_0^+ .

De plus, pour qu'une transition soit du second ordre, les équations A.5 et

A.6 impliquent que $\gamma = 0$ et $\delta > 0$. Dans ce cas, le développement A.1 du potentiel thermodynamique peut se limiter au 4ème ordre :

$$\Phi = \Phi_{0} + \frac{\beta'}{2} (T - T_{0}) \eta^{2} + \frac{\delta}{4} \eta^{4}$$
 (A.10)

Par contre, la transition est du ler ordre lorsque la symétrie autorise un terme d'ordre 3 dans le développement du potentiel ($\gamma \neq 0$) ou lorsque même si $\gamma = 0$, le coefficient δ est négatif. Dans ce dernier cas, il faut tenir compte du terme d'ordre 6 dans le développement A.1 de Φ pour que l'état d' équilibre soit stable. L'équation A.1 peut alors s'écrire dans le cas où les termes impairs s'annulent en raison de la symétrie du cristal :

$$\Phi = \Phi_{0} + \frac{\beta'}{2} (T - T_{0}) \eta^{2} + \frac{\delta \eta^{4}}{4} + \frac{\gamma \eta^{6}}{6}$$
(A.11)

2. APPLICATION AUX TRANSITIONS FERROELECTRIQUES.

La fonction thermodynamique ¢ la plus appropriée pour décrire les transitions ferroélectriques de type displacif est la fonction élastique de Gibbs :

$$G = U + \sum_{i=1}^{3} X_{i} x_{i} - TS$$
 (A.12)

où U est l'énergie interne et S l'entropie du système à la température T subissant une déformation {x_i} sous l'effet de contraintes extérieures { X_i} i

La différentielle de la fonction de Gibbs s'écrit :

$$d G = d U + \sum_{i=1}^{3} \{X_i dx_i + x_i dX_i\} - T d S - S d T (A.13)$$

Pour un système soumis à un champ électrique \vec{E} et une contrainte { X_i } la variation de l'énergie interne s'écrit à une température donnée :

$$d U = T d S - \sum_{i=1}^{3} X_i dx_i + \vec{E} d \vec{P}$$
 (A.14)

où \vec{P} est le vecteur polarisation du système.

Par suite, en remplaçant dans l'équation A.6 dU par sa valeur donnée par l'équation A.7 on obtient pour la variation de l'énergie libre de Gibbs :

$$dG = -SdT + \sum_{i=1}^{3} x_i dX_i + \vec{E} d\vec{P}$$
 (A.15)

Si à présent on considère un système soumis à une contrainte extérieure constante (dX_i = 0 \forall i) l'équation A.8 devient :

$$dG = -SdT + \vec{E}d\vec{P}$$
(A.16)

d'où l'on peut tirer les expressions respectives du champ électrique ${\Vec E}$ et l'entropie S :

$$\vec{E} = \left(\frac{\partial G}{\partial P}\right)_{T} \qquad S = -\left(\frac{\partial G}{\partial T}\right)_{P} \qquad (A.17)$$

La dérivée seconde de G par rapport au paramètre d'ordre (la polarisation P) définit la susceptibilité diélectrique inverse χ^{-1} :

$$\left(\frac{\partial^{2} G}{\partial P^{2}}\right)_{T} = \left(\frac{\partial E}{\partial P}\right)_{T} = \psi = \chi^{-1}$$
(A.18)

2. a) Cas d'un ferroélectrique uniaxe.

On considère une transition de phase paraélectrique - ferroélectrique pour laquelle la structure haute température est centrosymétrique (pas de terme d'ordre impair dans le développement de G) et la structure basse température est ferroélectrique uniaxe (la polarisation ne peut apparaître que le long d'un seul axe). On étudie successivement le cas d'une transition du 2ème ordre et celui d'une transition du ler ordre.

α) Transition du 2ème ordre :

Le développement du potentiel G s'écrit selon les équations A.10 et A.16 (on change les notations par commodité) :

$$G = G_0 + \frac{a(T)}{2}P^2 + \frac{b(T)}{4}P^4 - EP$$
 (A.19)

où :

a
$$(T) = a' [T - T_0]$$

b $(T) > 0$

sont des coefficients dépendant de la température.

La condition générale d'équilibre A.2 s'écrit alors pour un champ E nul :

$$\left(\frac{\partial G}{\partial P}\right)_{P_{O}} = 0 = P_{O} \left[a (T) + b (T) P_{O}^{2}\right]$$
(A.20)

tandis que la condition de stabilité A.3 s'exprime sous la forme suivante :

$$\psi = \left(\frac{\partial^2 G}{\partial P^2}\right) = \chi^{-1} = a (T) + 3 b (T) P_0^2 > 0$$
 (A.21)

Le comportement de l'énergie libre de Gibbs en fonction de la température est représenté sur la figure A.1.

Dans la phase haute température T > T_1 le minimum de G donné par l'équation A.20 se situe à $P_0 = 0$. $P_0 = 0$ est une solution stable si a (T) est positif donc si T > T_0 . Comme on l'a indiqué précédemment T_1 et T_0 coïncident puisque a (T) doit s'annuler pour T = T_1 lors d'une transition continue. Cela correspond au fait que l'énergie libre possède un minimum plat P = 0 pour T = T_1 (figure A.1).

Dans la phase paraélectrique (T > T_1) les équations A.19 et A.21 deviennent :

$$G = G_0$$
 $T > T_0$ (A.22)
 $\chi^{-1} = \psi = a (T) = a' (T - T_0)$ $T > T_0$ (A.23)

$$x = \frac{C}{T - T_0} \qquad T > T_0 \qquad (A.24)$$

où C est la constante de Curie C = 1/a'. Par conséquent, χ diverge au point de transition.

La température T_0 qui est aussi ici la température de transition T_1 , est appelée température de Curie T_c .

$$P_0^2 = - \frac{a(T)}{b(T)} = - \frac{a'(T - T_0)}{b(T)}$$
 (A.25)

Comme a (T) est nécessairement négatif, on a aussi :

$$P_{0} = \pm \sqrt{\frac{a'}{b(T)}} |T_{0} - T|^{\frac{1}{2}}$$
(A.26)

Les solutions P_0^+ et P_0^- correspondent aux deux domaines ferroélectriques possibles de la phase basse température (figure A.1). Au vu de l'équation A.26 on s'aperçoit aisément que le paramètre d'ordre (la polarisation P_0^-) varie de manière continue pour T < T_0^- à partir de T_0^- (figure A.1). Dans la phase ferroélectrique (T < T_0^-) l'équation A.19 devient :

$$G = G_0 + \frac{1}{2} a (T) P_0^2 + \frac{1}{4} b (T) P_0^4$$

ou en remplaçant ${\rm P}_{{\rm O}}$ par sa valeur donnée par l'équation A.26 :

$$G = G_0 - \frac{a^{1^2}}{4 b (T)} |T_0 - T||^2$$
 (A.27)

L'équation A.21 devient pour T < T_{O} :

$$\Psi = \chi^{-1} = \left(\frac{\partial^2 G}{\partial P^2}\right) = a' (T - T_0) + 3 b (T) P_0^2$$

ou en remplaçant P_0 par sa valeur (équation A.26) :

$$\Psi = \chi^{-1} = 2 a' |T_0 - T| = -2 a' (T - T_0)$$
 (A.28)

Par suite, la susceptibilité diélectrique suit une loi de la forme :

$$X = \frac{C'}{T - T_0}$$
 $T < T_0$ (A.29)

avec une constante de Curie égale à présent à C' = - $\frac{1}{2a'}$.

FIGURE A.1 : Caractéristiques d'une transition de phase du deuxième ordre. Sont successivement représentés sur cette figure le comportement en température de l'énergie libre G, celui de la polarisation P_0 et de la susceptibilité diélectrique inverse $\psi = \chi^{-1}$.

La variation de la susceptibilité avec la température de part et d'autre du point de transition T_1 est représentée sur la figure A.1. La limite de stabilité T_0^+ de la phase ferroélectrique est déterminée par la température pour laquelle $\psi = \chi^{-1} = 0$. On a bien entendu $T_0^+ = T_1 = T_0$. Les limites de stabilité des deux phases sont confondues avec la température de transition.

β) Transition du ler ordre :

Le développement de l'énergie libre G s'écrit selon les équations A.11 et A.16, sous la forme suivante (pour E = 0) :

$$G = G_0 + \frac{a}{2} (T) P^2 + \frac{b}{4} (T) P^4 + \frac{c}{6} (T) P^6$$
 (A.30)

où : a (T) = a

$$(T) = a' (T - T_0)$$

sont des coefficients dépendant de la température. La figure A.2 représente l'évolution de G avec la température. La condition d'équilibre s'écrit :

$$\left(\frac{\partial G}{\partial P}\right)^{P} = P_{O}[a(T) + b(T) P_{O}^{2} + c(T) P_{O}^{4}] = 0$$
(A.31)

tandis que la condition de stabilité s'exprime sous la forme :

$$\Psi = \left(\frac{\partial^2 G}{\partial P^2}\right) = \chi^{-1} = a (T) + 3 b (T) P_0^2 + 5 c (T) P_0^4 > 0 \quad (A.32)$$

$$P_0$$

La solution $P_0 = 0$ correspondant à la phase paraélectrique (T > T_1) est stable pour a (T) > 0.

La limite de stabilité ${\rm T}_{{\textstyle \bigcirc}}$ de la phase paraélectrique est donnée par :

$$\Psi = \chi^{-1} = a' (T - T_0)$$
 (A.33)

Pour T < T₁ les solutions de l'équation A.31 correspondant à la phase ferro-

FIGURE A.2 : Caractéristiques d'une transition de phase du premier ordre. Sont successivement représentés sur cette figure le comportement en température de l'énergie libre G, celui de la polarisation P et de la susceptibilité diélectrique inverse $\psi = \chi^{-1}$. Les températures T₀, T₁ et T₀⁺ sont reliées entre elles par les équations A.35 et A.45.

électrique sont fournies par :

$$P_{0} = \pm \left\{ -\frac{b}{2c} \left[1 \pm (1 - \frac{4ac}{b^{2}})^{\frac{1}{2}} \right] \right\}^{\frac{1}{2}}$$
(A.34)
$$P_{0} = \pm (P_{\pm}^{2})^{\frac{1}{2}}$$

où a < O

Les solutions P_+^2 sont réelles pour toutes les températures T < T_0^+ telles que :

$$T_0^+ = T_0^- + \frac{1}{4} \frac{b^2}{a'c}$$
 (A.35)

On verra plus loin que T_0^+ correspond à la limite de stabilité de la phase ferroélectrique.

Les solutions P_{-}^2 sont réelles pour $T_0 < T < T_0^+$. Elles ne respectent pas la condition de stabilité et correspondent en fait à des maxima de l'énergie libre. Elles doivent donc être exclues en tant que solutions stables. Les seules solutions réelles et stables sont donc les solutions :

$$P_{0} = \pm \left\{ -\frac{b}{2c} \left[1 + \left(1 - \frac{4ac}{b^{2}}\right)^{\frac{1}{2}} \right] \right\}^{\frac{1}{2}}$$
(A.36)

Il est à noter que la polarisation a une valeur finie pour $T = T_0^+$ mais qu'elle n'est pas réelle :

$$P(T_0^+) = \pm \sqrt{-\frac{|b|}{2c}}$$
 (A.37)

En injectant la solution à l'équilibre $\rm P_{0}$ (équation A.36) l'équation A.32 devient pour T < $\rm T_{1}$:

$$\psi = \chi^{-1} = -2 (2 a + b P^{2})$$
$$= -\frac{b^{2}}{c} \left[1 - \frac{4 a c}{b^{2}}\right]^{\frac{1}{2}} \left\{1 + \left[1 - \frac{4 a c}{b^{2}}\right]^{\frac{1}{2}}\right\} (A.38)$$

La limite de stabilité T_0^+ de la phase ferroélectrique déterminée par le zéro de ψ a été donnée précédemment par l'équation A.35. Les limites de sta-

bilité des phases paraélectrique et ferroélectrique respectivement T_0 et T_0^+ , ne coïncident pas : c'est une caractéristique des transitions du ler ordre.

On peut à présent décrire l'évolution de l'énergie libre de Gibbs G en fonction de la température pour une transition du ler ordre (figure A.2) : - A basse température T < T_0 , G présente deux minima correspondant à P_0^+ et P_0^- (équation A.36) : la phase ferroélectrique est stable et comporte deux états possibles.

- Entre T_0 et T_1 , un troisième minimum correspondant à P = 0 apparaît. Ce minimum s'approfondit lorsque la température augmente. Tant qu'il reste moins profond que les deux autres minima (T < T_1) la phase paraélectrique est métastable tandis que la phase ferroélectrique est stable.

- A T = T_1 , les trois minima ont la même profondeur ; les énergies libres sont égales (équation A.39).

- Pour $T_1 < T < T_0^+$, le minimum central P = 0 est plus profond que les autres ; par conséquent, la phase ferroélectrique est métastable tandis que la phase paraélectrique est devenue stable.

- Pour T > T_0^+ , l'énergie libre G ne présente plus que le minimum P = 0. Seule la phase paraélectrique est stable.

La température effective T₁ de la transition est définie par la condition d'égalité des énergies libres pour les phases paraélectrique et ferroélectrique. On obtient :

$$G_0 = G_0 + P_1^2 \left(\frac{a_1}{2} + \frac{b}{4}P_1^2 + \frac{c}{6}P_1^4\right)$$
 (A.39)

où : P_1 est la valeur de la polarisation P_0 (équation A.36) et a₁ la valeur du coefficient a (T) pour la température particulière T = T₁ :

$$a_{1} = a' (T_{1} - T_{0})$$

$$P_{1} = \pm \left\{ -\frac{b}{2c} \left[1 - \frac{4a_{1}c}{b^{2}} \right]^{\frac{1}{2}} \right\}^{\frac{1}{2}}$$
(A.40)
(A.41)

Les coefficients b et c sont supposés indépendants de la température. L'équation A.39 peut aussi s'écrire : - A.14 -

$$\frac{a_1}{2} + \frac{b_1}{4} + \frac{c}{6} + \frac{c}{6} + \frac{c}{1} = 0$$
 (A.42)

En combinant cette équation à l'équation A.31 fournissant la condition d'équilibre, on obtient :

$$c = 3 a_1 / P_1^4$$

(A.43)

 $b = -4 a_1 / P_1^2$

Far suite on trouve :

et

$$a_1 = a' (T_1 - T_0) = \frac{3}{16} \frac{b^2}{c}$$
 (A.44)

relation d'où l'on tire la température de transition ${\rm T}^{}_1$:

$$T_{1} = T_{0} + \frac{3}{16} \frac{b^{2}}{c a'}$$
(A.45)

La transition entre les phases paraélectrique et ferroélectrique a lieu avant que la limite de stabilité de la phase paraélectrique ne soit atteinte. A la température T_1 , le minimum central P = 0 a la même profondeur que les minima P_1^+ et P_1^- donnés par l'équation A.41.

La polarisation P_1 obtenue pour $T = T_1$ peut aussi s'écrire en utilisant l'équation A.43 :

$$P_{1}^{2} = -\frac{3}{4} \frac{b}{c} = -\frac{4 a' (T_{1} - T_{0})}{b} = \frac{4 a' (T_{1} - T_{0})}{|b|}$$
(A.46)

Par suite, on peut décrire l'évolution de la polarisation P en fonction de la température en remplaçant dans l'équation A.36 les coefficients b et c par leurs valeurs respectives données par l'équation A.43 :

$$P^{2} = \frac{2}{3} P_{1}^{2} \left[1 + \left(1 - \frac{3}{4} - \frac{a}{a_{1}} \right)^{\frac{1}{2}} \right]$$

$$P^{2} = \frac{2}{3} P^{2} (T_{1}) \left\{ 1 + \left[1 - \frac{3}{4} - \frac{T - T_{0}}{T_{1} - T_{0}} \right]^{\frac{1}{2}} \right\}$$
(A.47)

ou

Au vu de cette équation A.47, on remarque aisément que la polarisation spontanée passe de façon discontinue de la valeur zéro pour T > T_1 à la valeur P_1 pour T = T_1 (figure A.2).

A présent, si on injecte l'équation A.45 dans les équations A.33 et A.38 fournissant la susceptibilité inverse respectivement dans les phases paraélectrique et ferroélectrique, on obtient successivement :

$$\chi^{-1} = a' (T - T_{1}) + \frac{3 b^{2}}{16 c} \qquad T > T_{1} \qquad (A.48)$$

$$\chi^{-1} = -\frac{1}{16} \frac{b^{2}}{c} \left[1 - \frac{16 a'c}{b^{2}} (T - T_{1})\right]^{\frac{1}{2}} \left\{2 + \left[1 - \frac{16 a'c}{b^{2}} (T - T_{1})\right]^{\frac{1}{2}}\right\}$$

$$T < T_{1} \qquad (A.49)$$

On remarque que lorsque T = T₁, la susceptibilité inverse n'est pas nulle dans le cas d'une transition du ler ordre.

Au contraire, si T tend vers T_1 , χ^{-1} tend vers la valeur limite 3 b²/16 c = a_1 . Le comportement de la susceptibilité inverse χ^{-1} en fonction de la température décrite par les équations A.48 et A.49 est illustré sur la figure A.2.

2. b) Application à KNbO3.

a) Forme du potentiel thermodynamique :

Pour KNb0₃ comme pour de nombreux composés perovskites ABO₃, le paramètre d'ordre est tridimensionnel : la polarisation P possède des composantes qui peuvent être non nulles selon les trois directions <100 > du cube. Il s'agit par conséquent de réécrire la formulation générale A.1 dans le cas à trois dimensions. A cet effet, on introduit un paramètre d'ordre n_i avec $i = x, y, z; n_i$ est réel car on se limite ici aux transitions de phase liées à une instabilité centre de zone.

Comme toutes les transitions successives de KNbO_3 sont connues être du premier ordre et que dans la phase cubique paraélectrique le cristal possède un centre d'inversion (groupe spatial O_h), le développement de l'énergie libre G donné par l'équation A.30 est tout à fait approprié en l'étendant à trois dimensions :

$$G = G_0 + \frac{1}{4} a \left(P_X^2 + P_y^2 + P_z^2 \right) + \frac{1}{4} B \left(P_X^2 + P_y^2 + P_z^2 \right)^2 + \frac{1}{6} C \left(P_X^2 + P_y^2 + P_z^2 \right)^2 + \frac{1}{6} C \left(P_X^2 + P_y^2 + P_z^2 \right)^2 + \frac{1}{6} C \left(P_X^2 + P_y^2 + P_z^2 \right)^2 + \frac{1}{6} C \left(P_X^2 + P_y^2 + P_z^2 \right)^2 + \frac{1}{6} C \left(P_X^2 + P_y^2 + P_z^2 \right)^2 + \frac{1}{6} C \left(P_X^2 + P_z^2 + P_z^2 \right)^2 + \frac{1}{6} C \left(P_X^2 +$$

Si on développe le 3ème terme, on trouve :

$$G = G_{0} + \frac{1}{2} a \left(P_{x}^{2} + P_{y}^{2} + P_{z}^{2}\right) + \frac{1}{4} b_{1} \left(P_{x}^{4} + P_{y}^{4} + P_{z}^{4}\right) + \frac{1}{2} b_{2} \left(P_{x}^{2} - P_{y}^{2} + P_{z}^{2}\right) + \frac{1}{2} b_{2} \left(P_{x}^{2} - P_{z$$

Par la suite on se limitera aux termes explicitement indiqués dans ce développement où en principe les coefficients a, b_1 et c sont dépendant de la température. On a montré auparavant que $b_1 < 0$, c > 0 et a = a' (T - T_0) où T_0 est la limite de stabilité de la phase paraélectrique. Les conditions d'équilibre qui doivent être simultanément respectées s'écrivent :

$$(\partial G / \partial P_i)_{P_i,o} = 0$$
 $\forall i = x, y, z$ (A.51)

tandis que les conditions de stabilité sont :

$$\Psi_{ij} = \chi_{ij}^{-1} = \left(\frac{\partial^2 G}{\partial P_i \partial P_j}\right) \qquad \forall i, j = x, y, z$$

$$P_{i,0} P_{j,0} \qquad (A.52)$$

β) Les différents états d'équilibre :

La résolution de ces équations est plus complexe que dans le cas unidimensionnel mais on verra par la suite que l'on peut toujours s'y ramener et par conséquent utiliser les résultats décrits dans le paragraphe $2.a/\beta$ Les équations A.51 s'écrivent explicitement (l'indice 0 indiquant l'état d'équilibre est omis) :

$$\frac{\partial G}{\partial P_{x}} = a P_{x} + b_{1} P_{x}^{3} + b_{2} P_{x} (P_{y}^{2} + P_{z}^{2}) + c P_{x}^{5} = 0$$

$$\frac{\partial G}{\partial P_{y}} = a P_{y} + b_{1} P_{y}^{3} + b_{2} P_{y} (P_{x}^{2} + P_{z}^{2}) + c P_{y}^{5} = 0$$

$$\frac{\partial G}{\partial P_{z}} = a P_{z} + b_{1} P_{z}^{3} + b_{2} P_{z} (P_{x}^{2} + P_{y}^{2}) + c P_{z}^{5} = 0$$
(A.53)

Les solutions de ces équations sont successivement :

$$P_{x} = 0 \quad ou \quad a + b_{1} \quad P_{x}^{2} + b_{2} \quad (P_{y}^{2} + P_{z}^{2}) + c \quad P_{x}^{4} = 0$$

$$P_{y} = 0 \quad ou \quad a + b_{1} \quad P_{y}^{2} + b_{2} \quad (P_{x}^{2} + P_{z}^{2}) + c \quad P_{y}^{4} = 0$$

$$P_{z} = 0 \quad ou \quad a + b_{1} \quad P_{z}^{2} + b_{2} \quad (P_{x}^{2} + P_{y}^{2}) + c \quad P_{z}^{4} = 0$$
(A.54)

Les trois conditions A.54 doivent être simultanément respectées. Il existe quatre types de solution :

- solution 1 : $P_x = P_y = P_z = 0$ $P_c = 0$ Cette solution définit la phase cubique paraélectrique. - solution 2 : $P_x = P_y = 0$ $P_z = P \neq 0$ $P_Q = P$ Cette solution définit la phase quadratique ferroélectrique, ainsi que toutes les solutions analogues déduites de celle-ci par simple rotation des axes x, y, z.

P est solution de l'équation :

$$a + b_1 P^2 + c P^4 = 0$$
 (A.55)

- solution 3 : $P_y = 0$ $P_x = P_z = P \neq 0$ $P_0^2 = P_x^2 + P_z^2 = 2 P^2$ Cette solution définit la phase orthorhombique ferroélectrique ainsi que les solutions analogues. La composante P de la polarisation spontanée P_0 est solution de l'équation :

$$a + (b_1 + b_2) P^2 + c P^4 = 0$$
 (A.56)

- solution 4 : $P_x = P_y = P_z \neq 0$ $P_R^2 = P_x^2 + P_y^2 + P_z^2 = 3 P$ Cette solution définit la phase rhomboédrique ferroélectrique. La composante P de la polarisation dans la phase rhomboédrique est solution de l'équation :

$$a + (b_1 + 2b_2) P^2 + c P^4 = 0$$
 (A.57)

Ces 4 solutions existent effectivement pour KNbO_3 mais ce n'est pas toujours le cas (PbTiO_3) . Il est à noter que l'on a considéré ici le module de la polarisation P solution des équations d'équilibre A.54. En fait, en plus des solutions dérivées de la rotation sur les axes x, y, z, il faut tenir compte des solutions déduites du changement de sens du vecteur polarisation $\pm \vec{P}$, ce qui donne lieu aux domaines antiparallèles. On s'aperçoit que quelle que soit la phase considérée la polarisation spontanée s'écrit sous la forme générale :

$$P_{\rm S}^2 = \mu P^2$$
 (A.58)

où P est la composante suivant l'axe z, solution de l'équation générale :

$$a + b P^2 + c P^4 = 0$$
 (A.59)

où les valeurs $\mu\,$ et b dépendent de la phase considérée.

Phase	С	Q	0	R		
μ	0	1	2	3		
b	/	b ₁	^b 1 ^{+ b} 2	^b 1 + 2 ^b 2		
Tableau A.1 : Valeurs des coefficients μ et b.						

L'équation générale A.59 est semblable à l'équation A.31 trouvée dans le cas unidimensionnel. Pour que les considérations et résultats présentés dans le paragraphe 2.a/ β restent valables, il est nécessaire de vérifier également les conditions de stabilité.

 $\gamma)$ Expression de l'énergie libre dans chaque phase :

En tenant compte des solutions de la condition d'équilibre correspondantes, l'énergie libre pour chaque phase s'écrit :

- phase cubique :

$$G = G_0$$
 On pose $G_0 = 0$

- phase quadratique :

$$G_{Q} = \frac{a}{2} P^{2} + \frac{b_{1}}{4} P^{4} + \frac{c}{6} P^{6}$$
 (A.60)

- phase orthorhombique :

$$G_{0} = \frac{a}{2} \left(P_{x}^{2} + P_{z}^{2} \right) + \frac{b_{1}}{4} \left(P_{x}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{2} P_{x}^{2} P_{z}^{2} + \frac{c}{6} \left(P_{x}^{6} + P_{z}^{6} \right)$$
(A.61)

ou

$$G_0 = 2\left(\frac{a}{2}P^2 + \frac{b_1}{4}P^4 + \frac{b_2}{4}P^4 + \frac{c}{6}P^6\right)$$
 (A.61 bis)

- phase rhomboédrique :

$$G_{R} = \frac{a}{2} \left(P_{X}^{2} + P_{y}^{2} + P_{z}^{2} \right) + \frac{b_{1}}{4} \left(P_{X}^{4} + P_{y}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{2} \left(P_{X}^{2} P_{y}^{2} + P_{x}^{2} P_{z}^{2} + P_{y}^{2} P_{z}^{2} \right) + \frac{b_{1}}{4} \left(P_{X}^{4} + P_{y}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{2} \left(P_{x}^{2} P_{y}^{2} + P_{x}^{2} P_{z}^{2} + P_{y}^{2} P_{z}^{2} \right) + \frac{b_{1}}{4} \left(P_{x}^{4} + P_{y}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{2} \left(P_{x}^{2} P_{y}^{2} + P_{x}^{2} P_{z}^{2} + P_{y}^{2} P_{z}^{2} \right) + \frac{b_{1}}{4} \left(P_{x}^{4} + P_{y}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{2} \left(P_{x}^{2} P_{y}^{2} + P_{x}^{2} P_{z}^{2} + P_{y}^{2} P_{z}^{2} \right) + \frac{b_{1}}{4} \left(P_{x}^{4} + P_{y}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{2} \left(P_{x}^{2} P_{y}^{2} + P_{x}^{2} P_{z}^{2} + P_{y}^{2} P_{z}^{2} \right) + \frac{b_{1}}{4} \left(P_{x}^{4} + P_{y}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{2} \left(P_{x}^{2} P_{y}^{2} + P_{x}^{2} P_{z}^{2} + P_{y}^{2} P_{z}^{2} \right) + \frac{b_{1}}{4} \left(P_{x}^{4} + P_{y}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{2} \left(P_{x}^{2} + P_{y}^{2} + P_{z}^{2} + P_{z}^{2} \right) + \frac{b_{1}}{4} \left(P_{x}^{4} + P_{y}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4} + P_{z}^{4} \right) + \frac{b_{2}}{4} \left(P_{x}^{4} + P_{z}^{4} + P_{z}^{4}$$

$$\frac{c}{6} \left(P_{x}^{6} + P_{y}^{6} + P_{z}^{6} \right)$$
(A.62)

оu

+

$$G_{R} = 3\left(\frac{a}{2}P^{2} + \frac{b_{1}}{4}P^{4} + \frac{2b_{2}}{4}P^{4} + \frac{c}{6}P^{6}\right)$$
 (A.62 bis)

On remarque que l'énergie libre peut s'écrire sous la forme générale :

$$G = \mu \left(\frac{a}{2} P^{2} + \frac{b}{4} P^{4} + \frac{c}{6} P^{6} \right)$$
 (A.63)

οù μ et b prennent les valeurs indiquées dans le tableau A.1 selon la phase considérée et où P² est solution de l'équation générale A.59.
L'équation A.63 a la même forme que l'équation A.30 du cas unidimensionnel.
En conséquence des équations A.59, A.63 et du tableau A.1 les résultats trouvés précédemment (§ 2.a/β) peuvent être généralisés au cas à trois dimensions.

δ) Polarisation spontanée et susceptibilité diélectrique :

A la température T_1 de la première transition (cubique-quadratique)

la polarisation P subit un saut brusque de la valeur O à la valeur P $_1$ donnée par l'équation A.46 qui s'écrit ici :

$$P_{1}^{2} = -\frac{3}{4} \frac{b_{1}}{c} = \frac{4 a_{1}}{|b_{1}|} = \left(\frac{3 a_{1}}{c}\right)^{\frac{1}{2}}$$
(A.64)

où $a_1 = a' (T_1 - T_0)$

et où b₁ et c sont indépendants de la température. La composante selon z de la polarisation spontanée, solution de l'équation A.59 peut être définie en fonction de sa valeur minimale P_1 . On pose :

$$P^{2} = z P_{1}^{2}$$
 (A.65)

D'autre part, on a vu (équation A.48 et A.49) que pour T = T_1 , la susceptibilité inverse a une valeur limite :

$$\Psi_1 = \chi_1^{-1} = a_1 = \frac{3 b_1^2}{16 c}$$
 (A.66)

Par suite on peut aussi définir la susceptibilité inverse en fonction de cette valeur minimale dans la phase cubique :

$$x^{-1} = \psi = a (T) = a' (T - T_1) + \psi_1 = \psi_1 T'$$
 (A.67)

où : $T' = \frac{T - T_0}{T_1 - T_0}$ (A.68)

Pour la phase quadratique, en remplaçant dans l'équation A.55 a (T) et P² par les expressions A.67, A.64 et A.65 on obtient :

 $T' \psi_{1} - 4 z \psi_{1} + 3 \psi_{1} z^{2} = 0$ $3 z^2 - 4 z + T' = 0$ (A.69)

En résolvant cette équation du deuxième degré en z, on obtient la polarisation pour l'état d'équilibre dans la phase quadratique, en fonction de T' et P₁ uniquement.

On retrouve ainsi le comportement de P en fonction de la température donné par l'équation A.47.

ou encore

- A.21 -

$$P^{2} = \frac{2}{3} P_{1}^{2} \left\{ 1 + \left[1 - \frac{3}{4} T' \right]^{\frac{1}{2}} \right\}$$
(A.70)

avec T' donné par l'équation A.68.

En procèdant d'une manière analogue pour les autres phases, les équations A.56 et A.57 s'écrivent :

- phase orthorhombique :

$$3 z^{2} + 4 (\alpha - 1) z + T' = 0$$
 (A.71)

- phase rhomboédrique :

$$3 z^{2} + 4 (2\alpha - 1) z + T' = 0$$
 (A.72)

où le coefficient α est donné par :

$$\alpha = \frac{b_2}{|b_1|} = -\frac{b_2}{b_1}$$
(A.73)

On obtient à partir de l'équation A.71 la dépendance en température de la composante P_{z} dans la phase orthorhombique :

$$P^{2} = P_{1}^{2} 2 \gamma \left[1 + \left(1 - \frac{T'}{3 \gamma^{2}}\right)^{\frac{1}{2}}\right]$$
(A.74)

avec : $\gamma = \frac{2}{3} (1 - \alpha)$

A partir de nouvelles expressions de G fonction de z, α , T', ψ_1 on peut obtenir les éléments ψ_{ij} du tenseur susceptibilité inverse définis par l'équation A.52 :

- phase cubique :

$$\Psi_{xx} = \Psi_{yy} = \Psi_{zz} = a (T) = \Psi_1 T'$$
 (A.75)

- phase quadratique :

$$\psi_{xx} = \psi_{yy} = \psi_1 (T' + 4\alpha z)$$

$$\psi_{zz} = \psi_1 (T' - 12 z + 15 z^2)$$
(A.76)

- phase orthorhombique :

$$\Psi_{xx} = \Psi_{zz} = \Psi_{1} (T' - 12 z + 4\alpha z + 15 z^{2})$$

$$\Psi_{yy} = \Psi_{1} (T' + 8\alpha z) \qquad \chi_{xz} = 4\alpha z \Psi_{1}$$
(A.77)

ou selon le repère orthorhombique (cf figure 3.4).

$$\psi_{33} = \psi_1 (T' - 12 z + 8 \alpha z + 15 z^2)$$

$$\psi_{11} = \psi_1 (T' - 12 z + 15 z^2)$$
(A.78)

$$\psi_{22} = \psi_1 (T' + 8 \alpha z)$$

- ANNEXE B -

PROPRIETES DE SYMETRIE DES MODES DE VIBRATION DANS LES DIFFERENTES PHASES

INTRODUCTION.

L'objet de cette Annexe est de fournir diverses propriétés de symétrie que présente le réseau cristallin de KNbO₃ dans ses différentes phases : cubique, quadratique, orthorhombique et rhomboédrique. Nous déterminons en particulier les propriétés de symétrie des modes de vibration dans les phases cubique et quadratique. Ces résultats sont utilisés pour la mise en oeuvre d'un modèle de dynamique cristalline dans ces phases. Nous donnons également les aspects essentiels concernant la phase orthorhombique. Enfin nous présentons les relations de compatibilité entre les phonons de même vecteur d'onde à travers les transitions de phase successives. Ces considérations sont utiles à la compréhension du mécanisme transitionnel.

1. METHODE DE DETERMINATION DES PROPRIETES DE SYMETRIE DES MODES PROPRES DE VIBRATION.

A l'aide de la théorie des groupes, on se propose d'établir pour chaque phase :

- la décomposition en représentations irréductibles de la représentation mécanique T (\vec{q}) du groupe ponctuel $G_0(\vec{q})$ pour chaque vecteur d'onde \vec{q} ;

- les vecteurs symétrisés adaptés à chaque représentation irréductible à l'aide des opérateurs de projection. Pour chaque vecteur d'onde \vec{q} , on procède de la manière suivante :

a) On établit pour chaque structure (phase) le groupe spatial et le groupe ponctuel du cristal. On rappelle que le groupe spatial rassemble toutes les opérations de symétrie qui laissent le cristal invariant. On définit ensuite la zone de Brillouin.

b) On recherche parmi les opérations de symétrie du groupe spatial du cristal celles qui laissent invariante la direction du vecteur d'onde \vec{q} considéré. Le groupe ponctuel $G_0(\vec{q})$ du vecteur d'onde \vec{q} ne regroupe que les éléments purement rotationnels.

c) Pour chaque vecteur d'onde \dot{q} et chaque opération de symétrie R de $G_0(\dot{q})$, on construit la matrice T (\dot{q}, R) dont les éléments sont donnés par :

$$T_{\alpha\beta} (\kappa\kappa'/q, R) = R_{\alpha\beta} \Lambda (\kappa,\kappa'/R)$$
(B.1)
:
$$\Lambda (\kappa,\kappa'/R) = \delta[\kappa, F_{\alpha\beta} (\kappa', R)] \exp iq [\dot{r} (\kappa) - R \dot{r} (\kappa')]$$

avec

où la fonction δ exprime le fait que le facteur Λ pour l'élément $\kappa - \kappa'$ et l'opération R est non nulle uniquement si l'opération R fait passer un atome du site κ' au site κ . L'ensemble des matrices { T (\vec{q} , R) } fournit une représentation mécanique de $G_{\Omega}(\vec{q})$.

d) On réduit la représentation T (\dot{q} , R) en une somme directe de représentations irréductibles (r. i.) τ (\dot{q} , R) à l'aide de la méthode dite des caractères. Le nombre de fois que la s^{ième} r.i. est contenue dans la représentation mécanique s'écrit :

$$C_{s} = \frac{1}{g} \sum_{R} \chi(\dot{q}, R) \chi^{(s)*}(\dot{q}, R)$$
 (B.2)

où :

g est l'ordre de $G_0(\vec{q})$ $\chi(\vec{q}, R)$ est le caractère de T (\vec{q}, R) : $\chi(\vec{q}, R) = \text{Tr T}(\vec{q}, R) = \sum_{\kappa \alpha} R_{\alpha \alpha} \delta[\kappa, F_0(\kappa, R)] x$ (B.3) $\exp i\vec{q} [\vec{r}(\kappa) - R\vec{r}(\kappa)]$ $\chi^{(s)*}(\vec{q}, R)$ est le complexe conjugué du caractère $\chi^{(s)}(\vec{q}, R)$ de la r.i. $\tau^{(s)}(\vec{q}, R)$: $\chi^{(s)}(\vec{q}, R) = \text{Tr } \tau^{(s)}(\vec{q}, R)$ (B.4)

e) On construit les opérateurs de projection qui sont des matrices de dimensions 3 n x 3 n (15 x 15 pour $KNbO_3$) définies par :

$$P_{\lambda\lambda'}^{(s)}(\dot{q}) = \frac{f_s}{g} \sum_{R} \tau_{\lambda\lambda'}^{(s)*}(\dot{q}, R) T(q, R)$$
(B.5)

où $\lambda = 1, 2... f_s$ caractérise les vecteurs propres linéairement indépendants associés à la valeur propre ω_s^2 (q) qui est dégénérée f_s fois.

f) On détermine les vecteurs symétrisés adaptés à chaque r.i. par application de l'opérateur de projection à un vecteur ψ arbitraire à 3 n (15) composantes :

$$E(\dot{q}/s\lambda) = P_{\lambda\lambda}^{(s)}(\dot{q}) \psi$$
(B.6)

On définit également la matrice $P^{(s)}(\dot{q})$ qui projette la partie du vecteur qui se transforme selon la s^{ième} r.i :

$$P^{(s)}(\vec{q}) = \sum_{\lambda} P^{(s)}_{\lambda\lambda}(\vec{q}) = \frac{f}{g} \sum_{R} \chi^{(s)*}(q, R) T(q, R)$$
(B.7)

g) On établit enfin les relations de compatibilité des modes de vibration entre les différents points de la zone de Brillouin.

Considérons un vecteur d'onde \vec{q} le long d'une ligne de symétrie du réseau réciproque. G₀ (\vec{q}) est son groupe ponctuel. Si \vec{q} arrive en un point limite \vec{q} ' (centre ou bord de la zone de Brillouin), la symétrie de ce point est

- A.25 -

égale à celle de \vec{q} ou plus élevée. Par suite $G_0(\vec{q})$ constitue un sous-groupe de $G_0(\vec{q'})$ et une r.i de $G_0(\vec{q'})$ fournit une représentation de $G_0(\vec{q})$. On constitue les relations de compatibilité en utilisant les r.i. correspondant aux représentations respectives des groupes $G_0(\vec{q})$ et $G_0(\vec{q'})$. Le nombre de fois que la s^{ième} r.i de $G_0(\vec{q})$ est contenue dans la t^{ième} r.i de $G_0(\vec{q'})$ est donné par une relation analogue à l'équation B.2 :

$$C_{s} = \frac{1}{g} \sum_{R} \chi'^{(t)} (\dot{q}', R) \chi^{(s)*} (\dot{q}, R)$$
(B.8)

où g est l'ordre du groupe $G_0(\dot{q})$ et $\chi'^{(t)}$ et $\chi^{(s)}$ sont les caractères respectifs des représentations.

Cette dernière relation permet également d'établir les relations de correspondance entre les phonons le long d'une même ligne de symétrie pour différentes structures (phases) du cristal. On considère alors, d'une part le groupe $G_0(\vec{q}')$ de la phase mère cubique, et d'autre part successivement le groupe $G_0(\vec{q})$ de chaque phase FE (Q, O, R), qui est bien un sous-groupe de $G_0(\vec{q}')$. Dans ce cas \vec{q} et \vec{q}' représentent le même vecteur d'onde dens deux zones de Brillouin différentes.

2. PROPRIETES DE SYMETRIE DES MODES NORMAUX DE VIBRATION DANS LA PHASE CUBIQUE.

2.a. Groupe ponctuel du cristal.

Dans la phase cubique, le cristal appartient au groupe symmorphique 0_h^1 produit direct du groupe ponctuel 0_h et du groupe des translations. Le groupe ponctuel 0_h possède 48 éléments de symétrie : h_1 , h_2 , h_3 h_{48} selon la notation de Kovalev (1965) ces opérations se répartissent en dix classes de symétrie dont cinq se déduisent des cinq premières en multipliant chaque opération d'une classe par l'inversion I (h_{25})

Ε		:	h _l identité
3	с ₂	:	$h_2^{}$, $h_3^{}$, $h_4^{}$ rotations de 180° autour de x, y et z
8	с _з	:	$h_5, h_6 \cdots h_{12}$ rotations de 120° autour de <111>
6	°'2	:	$h_{13}, h_{16}, h_{17}, h_{18}, h_{21}, h_{23}$ rotations de 180° autour de < 110 >
6	C ₄	:	h_{14} , h_{19} , h_{24} rotations de 90° autour de < 100 >
		:	h_{15} , h_{20} , h_{22} rotations de 270° autour de < 100 >
Ι		:	h ₂₅ inversion
3	σ _h	:	h ₂₆ , h ₂₇ , h ₂₈ réflexions par rapport à des plan (100)
8	^S 6	:	$h_{29} \cdots h_{36}$ inversion puis rotation C_3
6	^S 4	:	h_{38} , h_{39} , h_{43} , h_{44} , h_{46} , h_{48} inversion puis rotation C_4
6	σd	:	h_{37} , h_{40} , h_{41} , h_{42} , h_{45} , h_{47} réflexions par rapport à des plans
			(110).

Le tableau B.a regroupe l'effet des opérations du groupe 0_h sur les ions de la cellule élémentaire cubique (figure 3. 1). Les ions K, Nb, $0_1 (0_z)$, $0_2 (0_y)$ et $0_3 (0_x)$ y sont notés respectivement 1, 2, 3, 4 et 5. Ces facteurs de maille sont utiles pour le calcul des représentations mécaniques T (q, R) (Cf équation B.1). L'origine est choisie sur le site de l'ion Nb.

2.b. Groupe ponctuel du vecteur d'onde.

La première zone de Brillouin cubique est représentée sur la figure B.1 où sont également indiquées les directions et les points de haute symétrie.

- A.28 -

Les vecteurs de base du réseau réciproque sont définis en fonction du paramètre a de la maille

$$\dot{g}_1 = \frac{2 \pi}{a} \hat{x}$$
 $\dot{g}_2 = \frac{2 \pi}{a} \hat{y}$ $\dot{g}_3 = \frac{2 \pi}{a} \hat{z}$

Les principaux vecteurs d'onde s'écrivent sous la forme :

 $\vec{k}_{4} = \xi (\vec{g}_{1} + \vec{g}_{2}) \qquad \Sigma$ $\vec{k}_{8} = \xi \vec{g}_{1} \qquad \Delta$ $\vec{k}_{9} = \xi (\vec{g}_{1} + \vec{g}_{2} + \vec{g}_{3}) \qquad \Lambda$ $\vec{k}_{10} = \frac{1}{2} \vec{g}_{3} \qquad X$ $\vec{k}_{11} = \frac{1}{2} (\vec{g}_{1} + \vec{g}_{2}) \qquad M$ $\vec{k}_{12} = 0 \qquad \Gamma$ $\vec{k}_{13} = \frac{1}{2} (\vec{g}_{1} + \vec{g}_{2} + \vec{g}_{3}) \qquad R$

où les rotations k_i sont celles utilisées par Kovalev (1965) et les lettres grecques majuscules correspondent aux notations de Bouckaert, Smoluckowski et Wigner (B S W) (1936).

Les groupes ponctuels de ces différents vecteurs d'onde sont les suivants :

 $G_0(k_4) = C_{2v}$ $G_0(k_8) = C_{4v}$ $G_0(k_9) = C_{3v}$

 $G_0 (k_{10}) = D_{4h} = G_0 (k_{11})$ $G_0 (k_{12}) = 0_h$ $G_0 (k_{13}) = 0_h$

FIGURE B.1 : Première zone de Brillouin du réseau réciproque dans la phase cubique.

°/	1	2	з	4	5
$E = h_1$	1	2	3	4	5
(h ₂	1 = (0,a,a)	2	3 - (0,0,a)	4 - (0,a,0)	5
$c_2 \langle h_1 \rangle$	1 - (a,0,a)	2	3 = (0,0,a)	4	5 - (a,0,0)
² (n ₄	1 - (a,a,0)	2	3	4 - (0,a,0)	5 - (a,0,0)
h _E	1	2	4	5	3
h _c	1 - (0,a,a)	2	4 - (0,a,0)	5	3 - (0,0,a)
h ₇	1 - (a,0,a)	2	4	5 - (a.0,0)	3 - (0,0,a)
) _{ha}	1 - (a,a,0)	2	4 - (0,a,0)	5 - (a.0,0)	з
$\binom{C_3}{h_0}$	1	2	5	3	4
h10	1 - (0,a,a)	2	5	3 - (0,0,a)	4 - (0,a,0)
h ₁₁	1 - (a.O,a)	2	5 - (a,0,0)	3 ~ (0,0,a)	4
ⁿ 12	1 - (a.a.0)	2	5 - (a,0,0)	3	4 - (0,a,0)
(^h 13	1 - (a,a,a)	2	3 - (0,0,a)	5 - (a,0,0)	4 - (0,a,0)
h16	1 - (0,0,a)	2	3 - (0,0,a)	5	4
).a ₁₇	1 - (a,a,a)	2	4 - (0,a,0)	3 - (0,0,a)	5 - (a,0,0)
^C 2)h ₁₈	1 = (a,0,0)	2	4	3	5 - (a,0,0)
h ₂₁	1 - (a,a,a)	2	5 - (a,0,0)	4 - (0,a,0)	3 - (a,0,0)
_n_23	1 = (0,a,0)	2	5	4 - (0,a,0)	3
. ¹ 14	1 - (C,a,O)	2	3	5 - (a,0,0)	4
h ₁₅	1 - (0,a,0)	2	3	5	4 - (0,a,0)
)n ₁₉	1 - (0,a,0)	2	4 - (0,a,0)	з	5
^C ₄	1 - (0,0,a)	2	4	3 - (0,0,a)	5
h22	1 - (a,0,0)	2	5 - (a,0,0)	4	3
h ₂₄	1 - (0,0,a)	2	5	4	3 - (0,0,a)
		f			
I = h ₂₅	1 - (a,a,a)	2	3 - (0,0,a)	4 - (0,a,0)	5 - (a,0,0)
$I = h_{25}$ $(^{h}_{26}$	1 - (a,a,a) 1 - (0,a,0)	2 2	3 - (0,0,a) 3	4 - (0,a,0) 4	5 - (a,0,0) 5 - (a,0,0)
$\begin{bmatrix} I = h_{25} \\ h_{26} \\ \sigma_{h} \end{bmatrix}^{n_{27}}$	1 - (a,a,a) 1 - (0,a,0) 1 - (0,a,0)	2 2 2	3 - (0,0,a) 3 3	4 - (0,a,0) 4 4 - (0,a,0)	5 - (a,0,0) 5 - (a,0,0) 5
$I = \frac{h_{25}}{n_{26}}$ $\sigma_{h} = \frac{h_{25}}{n_{27}}$	1 - (a,a,a) 1 - (0,a,0) 1 - (0,a,0) 1 - (0,0,a)	2 2 2 2	3 - (0,0,a) 3 3 3 - (0.0,a)	4 - (0,a,0) 4 4 - (0,a,0) 4	5 - (a,0,0) 5 - (a,0,0) 5 5
$I = h_{25}$ $\begin{pmatrix} h_{26} \\ \sigma_h \\ a_{27} \\ a_{28} \end{pmatrix}$	1 - (a,a,a) 1 - (0,a,0) 1 - (0,a,0) 1 - (0,0,a)	2 2 2 2	3 - (0,0,a) 3 3 3 - (0,0,a)	4 - (0,a,0) 4 4 - (0,a,0) 4	5 - (a,0,0) 5 - (a,0,0) 5 5
$I = h_{25}$ $\begin{pmatrix} h_{26} \\ \sigma_h \\ h_{27} \\ h_{28} \end{pmatrix}$ (h_{29})	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,0,a)$ $1 - (a,a,a)$	2 2 2 2	3 - (0,0,a) 3 3 $3 - (0,0,a)$ $4 - (0,a,0)$	4 - (0, a, 0) 4 $4 - (0, a, 0)$ 4 $5 - (a, 0, 0)$	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$
$I = h_{25}$ $\sigma_{h} \begin{pmatrix} h_{26} \\ a_{27} \\ a_{28} \end{pmatrix}$ $\left(\begin{array}{c} h_{29} \\ h_{30} \end{pmatrix} \right)$	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,0,a)$ $1 - (a,a,a)$ $1 - (a,a,a)$ $1 - (a,0,0)$	2 2 2 2 2 2 2 2	3 = (0,0,a) 3 3 3 3 = (0,0,a) 4 = (0,a,0) 4	4 = (0, a, 0) 4 $4 = (0, a, 0)$ 4 $5 = (a, 0, 0)$ $5 = (a, 0, 0)$	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3
$\begin{bmatrix} I = h_{25} \\ a_{26} \\ a_{7} \\ a_{28} \end{bmatrix}$ $\begin{pmatrix} h_{29} \\ a_{30} \\ b_{31} \end{pmatrix}$	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,0,a)$ $1 - (a,a,a)$ $1 - (a,a,a)$ $1 - (a,0,0)$ $1 - (0,a,0)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 = (0,0,a) 3 $3 = (0,0,a)$ $4 = (0,a,0)$ $4 = (0,a,0)$	4 = (0, a, 0) 4 $4 = (0, a, 0)$ 4 $5 = (a, 0, 0)$ $5 = (a, 0, 0)$ 5	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 3 $2 - (0,0,a)$
$ \begin{bmatrix} I &= h_{25} \\ \sigma_h &\stackrel{h_{26}}{\underset{a28}{\atop}} \\ \sigma_h &\stackrel{h_{27}}{\underset{a30}{\atop}} \\ f_{31} \\ s_6 &\stackrel{h_{31}}{\atop} f_{32} $	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,0,a)$ $1 - (a,a,a)$ $1 - (a,0,0)$ $1 - (0,0,a)$ $1 - (0,0,a)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 = (0,0,a) 3 3 3 4 = (0,0,a) 4 4 = (0,a,0) 4 4 = (0,a,0) 4	4 = (0,a,0) 4 $4 = (0,a,0)$ 4 $5 = (a,0,0)$ $5 = (a,0,0)$ 5 5 5 $2 = (a,0,0)$	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,0,a)$
$I = h_{25}$ $ \begin{array}{c} n_{26} \\ n_{26} \\ n_{27} \\ n_{28} \end{array} $ $ \begin{array}{c} n_{27} \\ n_{28} \\ n_{30} \\ n_{31} \\ n_{32} \\ n_{33} \\ n_{33} \end{array} $	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,0,a)$ $1 - (a,a,a)$ $1 - (a,a,a)$ $1 - (a,a,0,0)$ $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,a)$ $1 - (a,a,a)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 = (0,0,a) 3 $3 = (0,0,a)$ $4 = (0,a,0)$ 4 $4 = (0,a,0)$ 4 $5 = (a,0,0)$ $5 = (a,0,0)$	4 - (0,a,0) 4 $4 - (0,a,0)$ 4 $5 - (a,0,0)$ $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 2	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,a,0)$
$ \begin{bmatrix} I = h_{25} \\ n_{126} \\ n_{27} \\ n_{28} \\ n_{30} \\ n_{31} \\ n_{32} \\ n_{33} \\ n_{33} \\ n_{34} \end{bmatrix} $	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,0,a)$ $1 - (a,a,a)$ $1 - (a,0,0)$ $1 - (0,0,a)$ $1 - (0,0,a)$ $1 - (0,0,a)$ $1 - (a,a,a)$ $1 - (a,0,0)$ $1 - (a,0,0)$ $1 - (a,0,0)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 = (0,0,a) 3 3 $3 = (0,0,a)$ $4 = (0,a,0)$ 4 $4 = (0,a,0)$ 4 $5 = (a,0,0)$ $5 = (a,0,0)$	4 = (0, a, 0) 4 $4 = (0, a, 0)$ 4 $5 = (a, 0, 0)$ $5 = (a, 0, 0)$ 5 5 $3 = (0, 0, a)$ 3 2	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4
$ \begin{array}{c c} I & = & h_{25} \\ \hline & & h_{26} \\ & & h_{27} \\ & & h_{27} \\ & & h_{28} \\ \hline & & & h_{30} \\ & & h_{31} \\ & & h_{32} \\ & & h_{34} \\ & & h_{34} \\ & & h_{35} \\ \end{array} $	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,0,a)$ $1 - (a,0,0)$ $1 - (a,0,0)$ $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (a,a,a)$ $1 - (a,0,0)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 = (0,0,a) 3 3 $3 = (0,0,a)$ $4 = (0,a,0)$ 4 $4 = (0,a,0)$ 4 $5 = (a,0,0)$ $5 = (a,0,0)$ 5	4 = (0, a, 0) 4 $4 = (0, a, 0)$ 4 $5 = (a, 0, 0)$ $5 = (a, 0, 0)$ 5 5 $3 = (0, 0, a)$ 3 3 $2 = (0, 0, a)$	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,a,0)$ $4 - (0,a,0)$ $4 - (0,a,0)$
$ \begin{array}{c} \mathbf{I} = \mathbf{h}_{25} \\ \mathbf{r}_{h} \\ \mathbf{r}_{12} \\ \mathbf{r}_{28} \\ \mathbf{r}_{13} \\ \mathbf{r}$	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,0,a)$ $1 - (a,0,0)$ $1 - (a,0,0)$ $1 - (0,0,a)$ $1 - (a,a,a)$ $1 - (a,a,a)$ $1 - (a,0,0)$ $1 - (0,0,a)$ $1 - (0,0,a)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 = (0,0,a) 3 3 $3 = (0,0,a)$ $4 = (0,a,0)$ 4 $4 = (0,a,0)$ 4 $5 = (a,0,0)$ $5 = (a,0,0)$ 5 5 5	4 - (0, a, 0) 4 $4 - (0, a, 0)$ 4 $5 - (a, 0, 0)$ $5 - (a, 0, 0)$ 5 5 $3 - (0, 0, a)$ 3 $3 - (0, 0, a)$ 5	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,a,0)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4
$I = h_{25}$ $\begin{pmatrix} h_{26} \\ a_{27} \\ a_{28} \end{pmatrix}$ $\begin{pmatrix} h_{29} \\ a_{30} \\ b_{31} \\ a_{32} \\ a_{33} \\ a_{34} \\ a_{36} \\ a_{36} \end{pmatrix}$	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,0,a)$ $1 - (a,0,0)$ $1 - (a,0,0)$ $1 - (a,0,0)$ $1 - (a,a,a)$ $1 - (a,a,a)$ $1 - (a,a,a)$ $1 - (a,0,0)$ $1 - (0,a,0)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 = (0,0,a) 3 3 $3 = (0,0,a)$ $4 = (0,a,0)$ 4 $4 = (0,a,0)$ 4 $5 = (a,0,0)$ $5 = (a,0,0)$ 5 5 3 3 3	4 = (0, a, 0) 4 $4 = (0, a, 0)$ 4 $5 = (a, 0, 0)$ 5 5 $3 = (0, 0, a)$ 3 $3 = (0, 0, a)$ 5 $5 = (a, 0, 0)$	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4
$\begin{bmatrix} I = h_{25} \\ a_{1} \\ a_{26} \\ a_{27} \\ a_{28} \end{bmatrix}$ $\begin{bmatrix} h_{29} \\ h_{30} \\ b_{31} \\ a_{32} \\ a_{33} \\ b_{34} \\ b_{25} \\ a_{36} \end{bmatrix}$ $\begin{bmatrix} h_{37} \\ b_{40} \\ a_{1} \end{bmatrix}$	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (a,a,a)$ $1 - (a,a,a)$ $1 - (a,a,0)$ $1 - (0,a,0)$ $1 - (a,a,0)$ $1 - (a,a,0)$ $1 - (0,a,a)$ $1 - (a,a,0)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 = (0,0,a) 3 3 $3 - (0,0,a)$ $4 = (0,a,0)$ 4 $4 = (0,a,0)$ 4 $5 = (a,0,0)$ 5 5 3 3 4	4 - (0,a,0) 4 $4 - (0,a,0)$ 4 $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 3 $3 - (0,0,a)$ 5 $5 - (a,0,0)$ 3	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 5
$\begin{bmatrix} I = h_{25} \\ n_{1} = h_{26} \\ n_{27} \\ n_{28} \end{bmatrix}$ $\begin{pmatrix} h_{29} \\ n_{30} \\ h_{31} \\ n_{32} \\ n_{33} \\ h_{34} \\ n_{75} \\ n_{36} \\ n_{37} \\ n_{40} \\ h_{41} \\ n_{51} \\ n_{37} \\ n_{40} \\ n_{41} \\ n_{51} \\ n$	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (a,a,a)$ $1 - (a,a,a)$ $1 - (a,a,0)$ $1 - (0,a,0)$ $1 - (a,a,a)$ $1 - (a,a,0)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 = (0,0,a) 3 $3 = (0,0,a)$ $4 = (0,a,0)$ 4 $4 = (0,a,0)$ 4 $5 = (a,0,0)$ $5 = (a,0,0)$ 5 5 3 3 4 $4 = (0,a,0)$	4 - (0, a, 0) 4 $4 - (0, a, 0)$ 4 $5 - (a, 0, 0)$ $5 - (a, 0, 0)$ 5 $3 - (0, 0, a)$ 3 $3 - (0, 0, a)$ 5 $5 - (a, 0, 0)$ 3 $3 - (0, 0, c)$	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 5 5
$\begin{bmatrix} I = h_{25} \\ a_{h}^{h_{26}} \\ a_{28}^{h_{27}} \\ a_{28}^{h_{29}} \\ a_{30}^{h_{31}} \\ a_{32}^{h_{33}} \\ a_{33}^{h_{34}} \\ a_{32}^{h_{33}} \\ a_{33}^{h_{34}} \\ a_{34}^{h_{34}} \\ a_{36}^{h_{34}} \\ a_{36}^{h_{34}$	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,a)$ $1 - (a,a,a)$ $1 - (a,0,0)$ $1 - (0,a,0)$ $1 - (a,a,a)$ $1 - (a,a,a)$ $1 - (a,0,0)$ $1 - (a,a,0)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 = (0,0,a) 3 3 $3 = (0,0,a)$ $4 = (0,a,0)$ 4 $4 = (0,a,0)$ 4 $5 = (a,0,0)$ 5 5 3 3 4 $4 = (0,a,0)$ 5	4 - (0, a, 0) 4 $4 - (0, a, 0)$ 4 $5 - (a, 0, 0)$ $5 - (a, 0, 0)$ 5 $5 - (a, 0, 0)$ 3 $3 - (0, 0, a)$ 3 $3 - (0, 0, a)$ 3 $3 - (0, 0, a)$ $3 - (0, 0, a)$ 4	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 5 5 3
$ \begin{bmatrix} I = h_{25} \\ a_{12} \\ a_{28} \end{bmatrix} $	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (a,0,0)$ $1 - (a,0,0)$ $1 - (0,a,0)$ $1 - (a,a,a)$ $1 - (a,a,a)$ $1 - (a,a,0)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 = (0,0,a) 3 3 $3 = (0,0,a)$ $4 = (0,a,0)$ 4 $4 = (0,a,0)$ 4 $5 = (a,0,0)$ $5 = (a,0,0)$ 5 5 3 3 4 $4 = (0,a,0)$ 5 5 5 5 5 5 5 5 5 5	4 = (0, a, 0) 4 $4 = (0, a, 0)$ 4 $5 = (a, 0, 0)$ $5 = (a, 0, 0)$ 5 $5 = (a, 0, 0)$ 3 $3 = (0, 0, a)$ 3 $3 = (0, 0, a)$ 3 $3 = (0, 0, a)$ 4 4	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 5 5 3 $3 - (0,0,a)$
$I = h_{25}$ a_{26} a_{27} a_{28} a_{30} a_{31} a_{32} a_{33} a_{34} a_{34} a_{36} a_{36} a_{36} a_{37} a_{40} a_{41} a_{42} a_{45} a_{47}	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (a,0,0)$ $1 - (a,0,0)$ $1 - (a,0,0)$ $1 - (0,a,0)$ $1 - (a,a,0)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 = (0,0,a) 3 3 $3 = (0,0,a)$ $4 = (0,a,0)$ 4 $4 = (0,a,0)$ 4 $5 = (a,0,0)$ $5 = (a,0,0)$ 5 5 3 4 $4 = (0,a,0)$ 5 $5 = (a,0,0)$ 5 $5 = (a,0,0)$	4 - (0, a, 0) 4 $4 - (0, a, 0)$ 4 $5 - (a, 0, 0)$ $5 - (a, 0, 0)$ 5 $5 - (a, 0, 0)$ $3 - (0, 0, a)$ 4 4	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 5 5 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 5 5 $3 - (0,0,a)$ $4 - (0,a,0)$ $5 - (0,a,0)$ 5
$I = h_{25}$ $\left(\begin{array}{c} 1 = h_{25} \\ a_{27} \\ a_{28} \end{array}\right)^{h_{26}} \left(\begin{array}{c} a_{27} \\ a_{28} \\ a_{30} \\ a_{31} \\ a_{32} \\ a_{33} \\ a_{34} \\ a_{36} \\ a_{36} \\ a_{36} \\ a_{36} \\ a_{41} \\ a_{45} \\ a_{45} \\ a_{47} \\ a_{45} \\ a_{47} \\ a_{56} \\ a_{57} \\ a_{56} \\ a_{57} \\ a_{56} \\ a_{57} \\ a_{56} \\ a_{57} \\ a_{5$	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,0,a)$ $1 - (a,0,0)$ $1 - (a,0,0)$ $1 - (0,a,0)$ $1 - (a,a,a)$ $1 - (a,a,0)$ $1 - (a,a,0)$ $1 - (a,a,0)$ $1 - (0,a,a)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 - (0,0,a) 3 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $5 - (a,0,0)$ $5 - (a,0,0)$ 5 5 3 4 $4 - (0,a,0)$ 5 $5 - (a,0,0)$ 5 $5 - (a,0,0)$ 5 $5 - (a,0,0)$ $3 - (0,0,a)$ $3 - (0,0,a)$	4 - (0, a, 0) 4 $4 - (0, a, 0)$ 4 $5 - (a, 0, 0)$ 5 5 $3 - (0, 0, a)$ 3 $3 - (0, 0, a)$ 3 $3 - (0, 0, a)$ 3 $3 - (0, 0, a)$ 4 4 5 $5 - (a, 0, 0)$	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 5 5 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4
$I = h_{25}$ a_{12} a_{12} a_{12} a_{12} a_{12} a_{12} a_{13}	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,0,a)$ $1 - (a,0,0)$ $1 - (a,0,0)$ $1 - (a,0,0)$ $1 - (a,a,a)$ $1 - (a,a,0)$ $1 - (a,a,0)$ $1 - (a,a,0)$ $1 - (a,a,0)$ $1 - (a,a,a)$ $1 - (a,a,a,0)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 - (0,0,a) 3 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $5 - (a,0,0)$ $5 - (a,0,0)$ 5 5 3 3 4 $4 - (0,a,0)$ 5 $5 - (a,0,0)$ 5 $5 - (a,0,0)$ $3 - (0,0,a)$ $3 - (0,0,a)$	4 - (0, a, 0) 4 $4 - (0, a, 0)$ 4 $5 - (a, 0, 0)$ 5 5 $3 - (0, 0, a)$ 3 $3 - (0, 0, a)$ 3 $3 - (0, 0, a)$ 3 $3 - (0, 0, a)$ 4 4 5 $5 - (a, 0, 0)$ 3 $3 - (0, 0, a)$ 4 4 5 $5 - (a, 0, 0)$ 3 $3 - (0, 0, a)$ 4 4 5 $5 - (a, 0, 0)$ 3 $3 - (0, 0, a)$ 4 4	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 5 5 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $5 - (0,0,a)$
$I = h_{25}$ $\begin{pmatrix} h_{26} \\ a_{27} \\ a_{28} \\ a_{30} \\ b_{31} \\ a_{32} \\ a_{33} \\ a_{34} \\ a_{32} \\ a_{33} \\ a_{34} \\ a_{32} \\ a_{33} \\ a_{34} \\ a_{36} \\ a_{36} \\ a_{36} \\ a_{36} \\ a_{45} \\ a_{45} \\ b_{47} \\ b_{4$	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,a)$ $1 - (a,a,a)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 - (0,0,a) 3 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $5 - (a,0,0)$ 5 5 3 3 4 $4 - (0,a,0)$ 5 5 5 3 3 4 $4 - (0,a,0)$ 5 $5 - (a,0,0)$ $3 - (0,0,a)$ $3 - (0,0,a)$ 4 $4 - (0,0,a)$ 4	4 = (0,a,0) 4 $4 = (0,a,0)$ 4 $5 = (a,0,0)$ 5 5 $3 = (0,0,a)$ 3 $3 = (0,0,a)$ 3 $3 = (0,0,a)$ 4 4 5 $5 = (a,0,0)$ 3 $3 = (0,0,a)$ 4 4	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 5 5 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $5 - (a,0,0)$ $5 - (a,0,0)$
$ \begin{array}{c c} I = h_{25} \\ \hline & & h_{26} \\ \hline & & h_{27} \\ \hline & & h_{29} \\ \hline & & h_{30} \\ \hline & & h_{31} \\ \hline & & h_{32} \\ \hline & & h_{33} \\ \hline & & h_{34} \\ \hline & & h_{33} \\ \hline & & h_{41} \\ \hline & & h_{42} \\ \hline & & h_{45} \\ \hline & & h_{47} \\ \hline & & h_{39} \\ \hline & & h_{39} \\ \hline & & h_{34} \\ \hline & & h_{39} \\ \hline & & h_{34} \\ \hline & & h_{39} \\ \hline & & h_{44} \\ \hline & & h_{39} \\ \hline & & h_{44} \\ \hline & & h_{39} \\ \hline & & h_{44} \\ \hline & & h_{39} \\ \hline & & h_{44} \\ \hline & & h_{44} \\ \hline & & h_{46} $	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (a,0,a)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 - (0,0,a) 3 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $5 - (a,0,0)$ 5 5 3 3 4 $4 - (0,a,0)$ 5 $5 - (a,0,0)$ 5 $5 - (a,0,0)$ $3 - (0,0,a)$ $3 - (0,0,a)$ 4 $4 - (0,a,0)$ 5 5 $5 - (a,0,0)$	4 - (0, a, 0) 4 $4 - (0, a, 0)$ 4 $5 - (a, 0, 0)$ $5 - (a, 0, 0)$ $5 - (a, 0, 0)$ $3 - (0, 0, a)$ $3 - (0, 0, a)$ $3 - (0, 0, a)$ $4 - 4$ $5 - (a, 0, 0)$ $3 - (0, 0, a)$ $4 - 4$ $5 - (a, 0, 0)$ $3 - (0, 0, a)$ $4 - 4$ $4 - 5$ $5 - (a, 0, 0)$ $3 - (0, 0, a)$ $4 - 4$ $4 - 5$ $5 - (a, 0, 0)$ $3 - (0, 0, a)$ $4 - 4$ $4 - 5$ $5 - (a, 0, 0)$ $3 - (0, 0, a)$ $4 - 4$ $4 - 5$ $5 - (a, 0, 0)$ $4 - 4$ $4 - 5$ $5 - (a, 0, 0)$ $4 - 4$ $4 - 5$ $5 - (a, 0, 0)$ $4 - 4$ $4 - 5$ $5 - (a, 0, 0)$ $4 - 4$ $4 - 5$ $5 - (a, 0, 0)$ $4 - 4$ $4 - 5$ $5 - (a, 0, 0)$ $4 - 4$ $4 - 5$ $5 - (a, 0, 0)$ $4 - 4$ $4 - 5$ $5 - (a, 0, 0)$ $4 - 4$ $4 - 5$ $5 - (a, 0, 0)$ $5 - (a, 0, 0)$ $4 - 4$ $4 - 5$ $5 - (a, 0, 0)$	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 5 5 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $5 - (a,0,0)$
$ \begin{array}{c} \mathbf{I} = \mathbf{h}_{25} \\ \mathbf{a}_{h} \\ \mathbf{a}_{26} \\ \mathbf{a}_{27} \\ \mathbf{a}_{28} \\ \mathbf{a}_{27} \\ \mathbf{a}_{28} \\ \mathbf{a}_{27} \\ \mathbf{a}_{28} \\ \mathbf{a}_{30} \\ \mathbf{h}_{31} \\ \mathbf{a}_{30} \\ \mathbf{h}_{31} \\ \mathbf{a}_{32} \\ \mathbf{a}_{33} \\ \mathbf{h}_{34} \\ \mathbf{h}_{25} \\ \mathbf{a}_{36} \\ \mathbf{a}_{36} \\ \mathbf{a}_{44} \\ \mathbf{h}_{46} \\ \mathbf{h}$	1 - (a,a,a) $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (0,a,0)$ $1 - (a,0,a)$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 - (0,0,a) 3 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $5 - (a,0,0)$ $5 - (a,0,0)$ 5 5 3 3 4 $4 - (0,a,0)$ $5 - (a,0,0)$ $3 - (0,0,a)$ $3 - (0,0,a)$ 4 $4 - (0,a,0)$ 5 $5 - (a,0,0)$ $3 - (0,0,a)$ 4 $4 - (0,a,0)$ 5 $5 - (0,0,a)$ 4 $4 - (0,0,0)$ $5 - (0,0,0)$	4 - (0, a, 0) 4 $4 - (0, a, 0)$ 4 $5 - (a, 0, 0)$ $5 - (a, 0, 0)$ $5 - (a, 0, 0)$ $3 - (0, 0, a)$ 4 4 $5 - (a, 0, 0)$ $3 - (0, 0, a)$ 4 4 4 $5 - (a, 0, 0)$ $3 - (0, 0, a)$ 4 4 4 $5 - (a, 0, 0)$ $3 - (0, 0, a)$ 4 4 4 $5 - (a, 0, 0)$ 4 4 4 5 $5 - (a, 0, 0)$ 4 4 4 5 $5 - (a, 0, 0)$ 4 4 4 5 $5 - (a, 0, 0)$ 4 4 4 4 4	5 - (a,0,0) $5 - (a,0,0)$ 5 5 $3 - (0,0,a)$ 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 4 $4 - (0,a,0)$ 5 5 3 $3 - (0,0,a)$ $4 - (0,a,0)$ 5 5 $3 - (0,0,a)$ $4 - (0,a,0)$ $5 - (a,0,0)$ $5 - (a,0,0)$ $3 - (0,0,a)$ $3 - (0,0,a)$

<u>Tableau B.a</u> : Effets des éléments de symétrie du groupe 0_h sur les différents ions.

2.c. Décomposition des représentations mécaniques en représentations irréductibles.

Les tableaux B.b donnent les caractères des représentations irréductibles pour chaque vecteur d'onde k_i . Seules sont considérées les r.i. entrant effectivement dans la réduction de T (k_i, R) . On peut noter que le caractère est identique pour deux éléments de symétrie appartenant à une même classe. On reporte également sur ces tableaux les caractères des représentations mécaniques T (k_i, R) définies par l'équation B.1. On peut ainsi déduire pour chaque vecteur d'onde la décomposition de la représentation de G₀ (k_i) en somme directe de r.i. en appliquant la relation B.2. Les résultats obtenus sont rassemblés sur le tableau B.c. On peut remarquer que pour le point centre de zone, les notations usuelles des chimistes sont indiquées en plus de celles de B S W. Le degré de dégénérescence est présenté en indice supérieur entre parenthèses.

0 ₀ (k ₁₂)	E	эс ₂	8 °3	^{6 С'} 2	6 C ₄	I	³ ″h	8 S ₆	6 3 _d	6 S ₄
F25 ™ F2u	з	- 1	0	1	- 1	- 3	1	0	- 1	1
r ₁₅ = r _{1u}	3	- 1	с	- 1	1	÷ 3	1	0	1	- 1
T (k ₁₂ , R)	15	- 5	0	- 3	3	-15	5	0	3	- 3
G ₀ (k ₁₃)	Ξ	3 C ₂	8 C3	6 C'2	6 C ₄	I	3 o _h	8 S ₆	6 ₀ d	6 S ₄
R ₁	1	1	1	1	1	1	1	1	1	1
R ₁₂	2	2	- 1	0	o	2	2	- 1	э	0
R.15	з	- 1	0	- 1	1	Э	- 1	0	- 1	1
R'25	3	- 1	0	1	- 1	3	- 1	0	1	- I
R ₁₅	3	- 1	0	- 1	- 1	- 3	1	0	1	- 1
T (k ₁₉ , R)	15	- 3	0	6	6	9	3	0	18	- 6
G ₀ (k ₁₁)	Е	² C ₄	°2	² C' ₂	2 C"2	I	2 S ₄	ďh	2 ° v	2 d
M ₁	1	1	1	1	1	1	1	1	1	1
M2	1	1	1	- 1	- 1	1	1	1	- 1	- 1
M ₃	1	- 1	1	1	1	1	- 1	1	1	- 1
Ma	1	- 1	1	- 1	- 1	1	- 1	1	- 1	1
м ₅	2	0	- 2	0	0	2	0	- 2	0	0
M'2	1	1	1	- 1	- 1	- 1	- 1	- 1	1	1
м [,] Э	1	- 1	1	1	1	- 1	1	- 1	- 1	1
M'5	2	0	- ż	0	0	- 2	0	2	0	0
T (k ₁₁ , R)	15	- 2	- 1	2	- 6	- 3	2	5	- 2	6
G ₀ (k ₁₀)	Е	2 C4	с ₂	² C' ₂	² C"2	I	2 S4	^σ h	2 o _v	2 o _d
x ₁	1	1	1	1	1	1	1	1	1	1
×3	1	- 1	1	1	1	1	- 1	1	1	- 1
x ₅	2	0	- 2	0	0	2	0	~ 2	0	o
X'2	1	1	1	- 1	- 1	- 1	- 1	~ 1	1	1
x' 5	2	0	- 2	0	0	- 2	0	2	0	0
T (k ₁₀ , R)	15	- 2	- 1	2	- 6	- 3	2	5	- 2	6

G _O (k ₈)	E	2 C ₄	с ₂	² ° v	^{2 σ} d
۵ ₁	1	1	1	1	1
۵ ₂	1	- 1	1	1	- 1
۵ ₅	2	0	- 2	0	0
T (k ₈ , R)	15	3	- 5	5	3
G ₀ (k ₉)	E	2 C3	Зø _v		
^1	1	1	1		
^ ₂	1	1	- 1		
^ ₃	2	- 1	o		
T (), D)			1		

G _O (k ₄)	E	°2	° v	° v'
r 1	1	1	1	1
<mark>2</mark> 2	1	1	- 1	- 1
² 3	1	- 1	1	- 1
£ 4	1	- 1	- 1	1
T (k ₄ , R)	15	- 3	5	3
	$\begin{array}{c} G_{0} (k_{4}) \\ \\ \\ \boldsymbol{\Sigma}_{1} \\ \\ \\ \boldsymbol{\Sigma}_{2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c c} G_{0} & (\mathbf{k}_{4}) & \mathbf{E} \\ \hline & & & \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

<u>Tableau B.b</u> : Caractères des r.i et de la représentation mécanique pour chaque groupe de vecteur d'onde dans la phase cubique.

Direction de symétrie	Vecteur d'onde (en unités réduites)	Décomposition en r.i.
г (k ₁₂)	0, 0, 0	$\begin{cases} 4 F_{1u}^{(3)} + 1 F_{2u}^{(3)} \\ 4 F_{15}^{(3)} + 1 F_{25}^{(3)} \end{cases}$
Δ (k ₈)	ξ, Ο, Ο	$4 \Delta_1 + \Delta_2 + 5 \Delta_5^{(2)}$
Σ (k ₄)	ξ, ξ, Ο	$5\Sigma_1 + \Sigma_2 + 5\Sigma_3 + 4\Sigma_4$
Λ (k _g)	ξ, ξ, ξ	$4 \Lambda_1 + \Lambda_2 + 5 \Lambda_3^{(2)}$
x (k ₁₀)	½, 0, 0	$2 x_1 + x_3 + 3 x_5^{(2)} + 2 x'_2 + 2 x'_5^{(2)}$
M (k ₁₁)	½, ½, O	$ M_{1} + M_{2} + M_{3} + M_{4} + M_{5}^{(2)} + M'_{2} + 2M'_{3} + 3M'_{5}^{(2)} $
R (k ₁₃)	1/2, 1/2, 1/2	$R_1 + R_{12}^{(2)} + R_{15}^{(3)} + R'_{15}^{(3)} + 2 R'_{25}^{(3)}$

<u>Tableau B.c</u> : Décomposition de la représentation du groupe du vecteur d'onde en représentations irréductibles dans la phase cubique.

2.d. Construction des opérateurs de projection et des vecteurs symétrisés.

On détermine les opérateurs de projection et on en déduit la forme des vecteurs symétrisés à l'aide des équations B.5 et B.6. Les projecteurs construits pour les lignes de haute symétrie sont regroupés sur les tableaux B.d. Les vecteurs symétrisés obtenus sont reportés sur les tableaux B.e. ; le caractère transverse ou longitudinal des phonons correspondants y est indiqué.

TABLEAU B.d : Opérateurs de projection obtenus dans la phase cubique.

- A.32 -

		к	Nb	0,	0 ₂	°3	
۲ <mark>۲</mark> 15	4	a, 0, 0	ь, о, о	c. 0, 0	d, 0, 0	d, 0, 0	
ry 15	4	0, a, 0	о, ь, о	0, c, 0	0, d, O	0. d, 0	
r ^z 15	4	0, 0, a	о, о, ь	0, 0, c	0, 0, d	0, 0, d	
r [×] 25	1	-	-	a, 0, 0	-a, 0, 0	-	
г <mark>у</mark> 25	ı	-	-	0, a, O	-	0,-a, 0	
r ^z 25	1	-	-	-	0, 0, a	0, 0,-a	
Δ1	4	a, 0, 0	ь, о, о	c, 0, 0	d, 0, 0	di, 0, 0	L
⁴ 2	1	-	-	a, 0, 0	- a , 0, 0	-	L
s	5	0, a, O	0, 6, 0	0, c, 0	0, d, O	0, e, O	Ту
∆ ^z 5	5	0, 0, a	0,0,Ъ	0, 0, c	0, 0, d	0,0,e	T _z
ī.1	5	a, a, 0	b, b, O	c, c, 0	d, f, O	f, d, 0	L
Σ2	1	-	-	-	0,0,a	0, 0,-a	т _z
Σ3	5	a,-a, 0	b,-b, 0	c,-c, 0	d,-f, 0	f,-d, 0	^T xy
² 4	4	0, 0, a	0, 0, 6	0, 0, c	0.0,a	U, U, d	^T z
^ ₁	4	a,a,a	b, b, b	c, c, d	c, d, c	d, c, c	L
^2	1	-	-	a, a, O	a, 0, a	0, a, a	L
^3	10	a',-a",-a"'	b',-b',-b"'	c,-c',-c"	d,d',_d"	e,-e',-e"	т
AVEC	: a' -	a"-a"'≖0	b' - b"	-b'' = 0			
ļ	c - c	'- c" + d -	d' – d" + e –	e'-e"≖	0		
		к	Nb	°1	0 ₂	°3	
x ₁	2	-	a, 0, 0	ь, 0, 0	ь, 0, 0	-	
×3	1	-	-	ь, о, о	-b, O, O	-	
x ^y 5	3	-	0, a, 0	0, 6, 0	0, c, 0	-	
x ₅ ^z	Э	-	0,0,a	0,0,Ъ	0, 0, c	-	
x ₂	2	a, 0, 0	-	-	-	a, 0, 0	
x ₅ 'y	2	0, a, 0	-	-	-	О, Ъ, О	
x5 ^z	2	0,0,a	-	-	-	0, 0, ъ	

		к	Nb	0 ₁	0 ₂	°3
M ₁	1	-	-	-	a, 0, 0	0, a, 0
M2	1	-	-	-	0,-a, 0	a, 0, 0
M ₃	1	-	-	-	a, 0, 0	0,-a, 0
Ma	1	-	-	-	0, a, O	a, 0, 0
M'2	ı	0, C, a	-	-	-	-
M'3	2	-	0, 0, a	о, о, ь	-	-
M ⁽²⁾ 5	1	-	-	-	0, 0, a	0, 0, a
м ^L 5	3	a, a, O	ь, ь, О	c, c, O	-	-
м' ⁷ 5	з	aa, O	b,-b, O	c,-c, O	-	-
R	1			0, 0, a	0, a, 0	a, 0, 0
R ⁽²⁾ 12	1	-	-	0,0,a	0,-a, 0	-2a,0, 0
R ⁽³⁾ 15	1	-	a, b, c	-	-	-
R'(3) 15	1	-	-	a, b, O	c, 0,-b	0,-c,-a
R'(3) 25	2	a, b. c	-	d, e, O	f, 0, e	0, f, đ

<u>Tableau B.e</u> : Vecteurs symétrisés adaptés à chaque r.i. dans la phase cubique.
Le tableau B.f. représente les relations de compatibilité entre les branches le long des lignes de symétrie principale (Δ , Σ et Λ) et les points au centre de zone (Γ) et au bord de zone (X, M et R) respectivement. Le facteur de multiplicité est indiqué entre parenthèses.

Tableau B.f : Relations de compatibilité entre les modes le long des directions de haute symétrie pour la phase cubique.

3. <u>PROPRIETES DE SYMETRIE DES MODES NORMAUX DE VIBRATION DANS LA PHASE</u> QUADRATIQUE.

3.a. Groupe ponctuel du cristal.

Dans la phase quadratique, KNb0₃ appartient au groupe symmorphique C_{4v}^1 , produit direct du groupe ponctuel C_{4v} et du groupe des translations ; le groupe ne possède donc ni miroirs avec glissement, ni axes hélicoïdaux. Les huit éléments du groupe ponctuel sont dans la notation de Kovalev (1961) : h₁, h₁₄, h₄, h₁₅, h₃₇, h₂₇, h₄₀ et h₂₆. E = h₁ représente l'identité ; h₄ = C_2^z représente la rotation de 180 ° autour de l'axe z ; h₁₄ = C_4^{1z} la rotation de 90° autour de z ; h₁₅ = C_4^{3z} la rotation de 270° autour de z ; h₂₇ = σ_v^{xz} et h₂₆ = σ_v^{yz} représentent une réflexion plane perpendiculaire aux axes y et x respectivement ; enfin h₃₇ = σ_d^{xy} et h₄₀ = $\sigma_d^{x\bar{y}}$ représentent les réflexions perpendiculaires aux axes [110] et [ī10] respectivement.

Le tableau B.g fournit les effets des opérations de symétrie du groupe C $_{\rm 4v}$ sur les ions de la maille élémentaire quadratique.

3.b. Groupe ponctuel du vecteur d'onde.

On représente la lère zone de Brillouin dans la phase quadratique sur la figure B.2.

Les vecteurs de base du réseau réciproque sont définis par :

 $\dot{g}_1 = \frac{2 \pi}{a} \hat{x} \qquad \dot{g}_2 = \frac{2 \pi}{a} \hat{y} \qquad \dot{g}_3 = \frac{2 \pi}{a} \hat{z}$

On caractérise ainsi les directions et les points de haute symétrie (dans les notations de Kovalev et de B S W) :

$$\vec{k}_{3} = \xi_{2} \vec{g}_{2} + \xi_{3} \vec{g}_{3} \qquad \Delta \quad \text{si} \quad \xi_{3} = 0$$

$$\vec{k}_{4} = \xi_{1} \vec{g}_{1} + \frac{1}{2} \vec{g}_{2} + \xi_{3} \vec{g}_{3} \qquad Y \quad \text{si} \quad \xi_{3} = 0$$

$$\vec{k}_{5} = \xi(\vec{g}_{1} + \vec{g}_{2}) + \xi_{3} \vec{g}_{3} \qquad \Sigma \quad \text{si} \quad \xi_{3} = 0$$

$$\vec{k}_{12} = \frac{1}{2} \vec{g}_{2} + \xi_{3} \vec{g}_{3} \qquad X \quad \text{si} \quad \xi_{3} = 0$$

$$\vec{k}_{13} = \xi_{3} \vec{g}_{3} \qquad \Lambda \quad \text{si} \quad \xi_{3} = 0$$

$$\Gamma \quad \text{si} \quad \xi_{3} = 0$$

$$Z \quad \text{si} \quad \xi_{3} = 0$$

$$\vec{k}_{14} = \frac{1}{2} (\vec{g}_1 + \vec{g}_2) + \xi_3 \vec{g}_3$$
 V si $\xi_3 \neq 0$
M si $\xi_3 = 0$

On définit les groupes ponctuels ${\rm G}_{\rm O}$ (q) pour chaque vecteur d'onde ${\bf \vec{k}}_{\rm i}$:

 $G_0 (k_{13}) = G_0 (k_{14}) = C_{4v}$ $G_0 (k_3) = C_s$

$$G_0(k_4) = C_s = G_0(k_5)$$

$$G_0 (k_{12}) = C_{2v}$$

R	1	2	з	4	5
h ₁	1	2	3	4	5
h ₁₄	1 ~ (a, 0, 0)	2	3	5 - (a, 0, 0)	4
h ₁₅	1 - (0. a, 0)	2	3	5	4 - (0, a, 0)
h ₄	1 - (a, a, O)	2	3	4 = (0, a, 0)	5 - (a, 0, 0)
h ₂₇	1 ~ (0, a, 0)	2	з	4 = (0, a, 0)	5
h ₂₆	1 - (a, 0, 0)	2	3	4	5 - (a, 0, 0)
h ₃₇	1	2	3	5	4
^h 40	1 - (a, a, 0)	2	3	5 - (a, 0, 0)	4 - (0, a, 0)

 $\begin{array}{l} \underline{ Tableau \ B.g} : \ Effets \ des \ \acute{e}l\acute{e}ments \ de \ symétrie \ du \ groupe \ C_{4v} \ sur \ les \\ \\ différents \ atomes \ de \ la \ cellule \ \acute{e}l\acute{e}mentaire. \end{array}$

FIGURE B.2 : Première zone de Brillouin du réseau réciproque dans la phase quadratique.

3.c. Décomposition des représentations mécaniques en représentations irréductibles.

On reporte sur les tableaux B.h les représentations irréductibles pouvant entrer pour chaque vecteur d'onde dans la décomposition de la représentation mécanique. On rappelle que le caractère de la r.i. est fourni par la trace de la matrice de la r.i.

On donne les caractères des représentations mécaniques T (q, R) construites à l'aide de l'équation B.1 dans le tableau B.i. Ceci permet de réduire T (\dot{q} , R) en une somme directe de r.i. pour chaque vecteur d'onde \dot{q} . Les résultats sont rassemblés sur le tableau B.j. Le degré de dégénérescence de chaque r.i. est noté en indice supérieur entre parenthèses.

G ₀ (k ₁₄)	h ₁		h ₁₅	h ₄	^h 26	h ₂₇	h ₃₇	^h 40
г ₁	1	1	1	1	1	1	1	1
r ₂	1	. 1	1	1	- 1	- 1	- 1	- 1
r ₃	1	- 1	- 1	1	1	1	- 1	- 1
г _д	1	- 1	- 1	1	- 1	- 1	1	1
r ₅	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$	$\begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	$\binom{0 1}{1 0}$	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$

G ₀ (k ₁₂)	h ₁	h ₄	^h 27	^h 26
×1	1	1	1	1
x ₂	1	1	- 1	- 1
x ₃	1	- 1	1	- 1
x ₄	1	- 1	~ 1	1

G ₀ (k ₃)	h ₁	^h 27	G ₀ (k ₅)	h ₁
Δ ₁	1	1	Σ 1	1
۵ ₂	1	- 1	^۲ 2	1

Tableau B.h: Représentations irréductibles des groupes ponctuels desvecteurs d'onde principaux dans la phase quadratique.

R q	h ₁	h ₁₄	^h 15	h ₄	h ₂₇	^h 26	h ₃₇	^h 40
^k 13	15	3	3	- 5	5	5	3	3
^k 14	15	1	1	- 1	1	1	3	3
k ₃	15				5			
k ₅	15						З	
^k 12	15			- 1	5	1		

<u>Tableau B.i</u>: Caractères des représentations mécaniques T (q, R) en phase quadratique.

Direction de symétrie	Vecteur d'onde (en unités réduites)	Décomposition en r.i.
Г	0, 0, 0	$4 A_{1} + B_{1} + 5 E^{(2)}$ $4 \Gamma_{1} + \Gamma_{3} + 5 \Gamma_{5}^{(2)}$
Λ	Ο, Ο, ξ	$4 \Lambda_1 + \Lambda_3 + 5 \Lambda_5^{(2)}$
Z	0, 0, ½	4 Z ₁ + Z ₃ + 5 Z ₅
۵	ξ, Ο, Ο	$10 \Delta_{1} + 5 \Delta_{2}$
х	1/2, 0, 0	$5 X_1 + 2 X_2 + 5 X_3 + 3 X_4$
Σ	ξ, ξ, Ο	$9 \Sigma_1 + 6 \Sigma_2$
М	½, ½, 0	$3 M_1 + M_2 + M_3 + 2 M_4 + 4 M_5^{(2)}$

<u>Tableau B.j</u> : Décomposition de la représentation mécanique du groupe du vecteur d'onde en représentations irréductibles dans la phase quadratique.

3.d. Construction des opérateurs de projection et des vecteurs symétrisés.

Les opérateurs de projection ainsi que les vecteurs symétrisés adaptés à chaque r.i. obtenus dans la phase Q, sont reportés respectivement sur les tableaux B.k et B.l. Le degré de multiplicité de chaque r.i. est indiqué dans les tableaux B.1 ainsi que le caractère (purement T ou L) de chaque mode associé.

р_г

г**хх** 15

Tableau B.k: Opérateurs de projection pour chaque r.i. et chaque vecteur
d'onde de haute symétrie dans la phase Q.Les opérateurs pour les points Λ et Z sont identiques à ceux
obtenus pour le point Γ . L'opérateur correspondant à la re-
présentation Γ_5^{yy} est déduit de celui trouvé pour Γ_5^{xx} en ef-
fectuant une rotation d'axes et une permutation des oxygènes.

		К	Nb	0 ₁	0 ₂	03	
r ₁	4	0, 0, a	0, 0, b	0, 0, c	0, 0, d	0, 0, d	1
г _з	1	-	-	-	0, 0, e	0, 0,-e	
r ₅	5	a, 0, 0	b, O, O	c, 0, 0	d, O, O	f, 0, 0	
г ^у 5	5	0, a, 0	О, Ъ, О	0, c, O	0, d, 0	0, f, O	
٨	10	a O b	c 0 d	f 0 g	b O i	k 0, 1	
-1 ^		0 = 0	0 h 0		, e, j	0, f, 0	т
2	5	0, a, 0	0, 0, 0	0, 0, 0	, u, U	·, ·, ·	-
٤1	9	a, a, b	c, c, d	f, f, g	h, j, k	j, h, k	
^Σ 2	6	a,-a, O	b,-b, O	c,-c, 0	h,-j, k	j,-h,-k	
x ₁	5	a, 0, 0	0, 0, b	0, 0, c	0, 0, d	f, 0, 0	
x ₂	2	0, a, 0	-	-	-	0, b, O	Т
x ₃	5	0, 0, a	b, O, O	c, 0, 0	d, 0, 0	0, 0, f	
x ₄	3	-	0, a, 0	0, Ъ, О	0, c, O	-	Т
							•••••••
M ₁	3	-	0, 0, a	0, 0, c	0, d, 0	d, 0, 0	
M2	1	-	-	-	d, O, O	0,-d, 0	
м _з	1	-	-	-	0, d, 0	-d, O, O	
M ₄	2	0, 0, a	-	-	b, O, O	0, b, O	
M ₅ (α)	4	a, a, O	b, b, O	c, c, 0	0, 0, d	0, 0,-d	
М ₅ (в)	4	a,-a, O	b,-b, O	c,-c, 0	0, 0, d	0, 0,-d	
					1		

 $\begin{array}{l} \underline{ Tableau \ B.l} \ : \ Vecteurs \ symétrisés \ adaptés \ à \ chaque \ r.i. \ dans \ la \ phase \ Q. \\ \\ Pour \ \Lambda \ et \ Z \ les \ résultats \ sont \ analogues \ à \ ceux \ reportés \ pour \ \Gamma. \end{array}$

Les relations de compatibilité entre les modes le long des directions Δ , Σ et Λ sont reportées sur le tableau B.m. Les facteurs de multiplicité sont indiqués entre parenthèses.

<u>Tableau B.m</u> : Relations de compatibilité entre les modes dans la phase quadratique.

4. PROPRIETES DE SYMETRIE DES MODES NORMAUX DE VIBRATION DANS LA PHASE ORTHORHOMBIQUE.

4.a. Groupe ponctuel du cristal.

Dans la phase 0, KNb0_3 appartient au groupe spatial symmorphique $C_{2v}^{14} = \text{Bmm2}$, produit du groupe ponctuel C_{2v} et du groupe des translations. Le groupe ponctuel possède quatre éléments de symétrie : h_1 , h_4 , h_{26} et h_{27} (dans la notation de Kovalev 1965). Ces opérations correspondent à l'identité, à un axe binaire selon [101] et à deux miroirs plans perpendiculaires aux directions [010] et [101] (dans le repère pseudocubique).

4.b. Groupe ponctuel du vecteur d'onde.

La première zone de Brillouin dans la phase O est représentée sur la figure B.3. Les vecteurs de base du réseau réciproque sont définis dans le repère orthorhombique par :

$$\dot{g}_1 = -\frac{2 \pi}{a'} \hat{x}' - \frac{2 \pi}{c'} \hat{z}' = g_1 \hat{x}$$

$$\mathbf{g}_2^{\dagger} = \frac{2 \pi}{\mathbf{b}} \mathbf{\hat{y}'} = \mathbf{g}_2 \mathbf{\hat{y}}$$

$$\dot{g}_3 = \frac{2 \pi}{a'} \hat{x}' + \frac{2 \pi}{c'} \hat{z}' = g_3 \hat{z}$$

où a', b et c' sont les paramètres de la maille orthorhombique. On caractérise les principaux vecteurs d'onde de la manière suivante :

$$\vec{k}_{2} = \mu(\vec{g}_{1} + \vec{g}_{3}) + \mu_{2} \vec{g}_{2} \qquad \Delta \quad \text{si} \quad \mu = 0$$

$$\vec{k}_{3} = \mu_{3} \vec{g}_{3} - \mu_{1} \vec{g}_{1} \qquad \Sigma \quad \text{si} \quad \mu = 0 \text{ et } \mu_{2} = \frac{1}{2}$$

$$\sum \quad \text{si} \quad \mu_{1} = \mu_{3}$$

$$X \quad \text{si} \quad \mu_{1} = \mu_{3} = \frac{1}{2}$$

$$E \quad \text{si} \quad \mu_{3} = 0$$

$$\vec{k}_8 = \mu(\vec{g}_1 + \vec{g}_3) \qquad \Gamma \quad \text{si} \ \mu = 0$$

$$Z \quad \text{si} \ \mu = \frac{1}{2}$$

On trouve les groupes ponctuels suivants :

$$G_{0} (k_{2}) = C_{s} (h_{1}, h_{26}) \qquad G_{0} (k_{3}) = C_{s} (h_{1}, h_{27})$$

$$G_{0} (k_{8}) = C_{2v} (h_{1}, h_{4}, h_{26}, h_{27})$$

Le choix du repère pseudocubique permet d'effectuer les comparaisons avec les autres phases.

FIGURE B.3 : Première zone de Brillouin du réseau réciproque dans la phase orthorhombique.

4.c. Résultats obtenus.

Nous reportons sur le tableau B.n la décomposition de la représentation mécanique en r.i. pour chaque vecteur d'onde considéré. Nous reproduisons sur le tableau B.o les vecteurs symétrisés obtenus par Currat et al (1974). Enfin nous donnons les relations de compatibilités entre les modes le long des directions principales de symétrie sur le tableau B.p.

Direction de symétrie	Vecteur d'onde (en unités réduites)	Décomposition en r.i.
Г	0, 0, 0	$5 A_1 + A_2 + 4 B_2 + 5 B_1$ $5 \Gamma_1 + \Gamma_2 + 4 \Gamma_3 + 5 \Gamma_4$
Λ	ξ, Ο, ξ	5 ¹ + ¹ + ⁴ ¹ + ⁵ ⁴
Σ	ξ, Ο, ξ	10 Σ ₁ + 5 Σ ₂
Δ	Ο, ξ, Ο	9 ^Δ ₁ + 6 ^Δ ₂
Ē	ξ, Ο, Ο	10 = 1 + 5 = 2

Tableau B.n : Décomposition de la représentation du groupe du vecteur d'onde en r.i. dans la phase 0.

N.B. : Le repère utilisé est le repère pseudocubique.

Г	Δ	Σ	Ē	Λ
r ₁ (5)	Δ ₁ (5)	Σ ₁ (5)	E ₁ (5)	Λ ₁ (5)
Γ ₂ (1)	∆ ₂ (1)	Σ ₂ (1)	E ₂ (1)	۸ ₂ (1)
r ₃ (4)	۵ ₁ (4)	Σ ₂ (4)	E ₂ (4)	۸ ₃ (4)
Γ ₄ (5)	۵ ₂ (5)	Σ ₁ (5)	5 ₁ (5)	۸ ₄ (5)

Tableau B.p : Relations de compatibilité dans la phase O.

		K	Nb	01	02	03
г ₁	5	a, 0, a	0, 0, b	c, 0, d	f, 0, f	d, O, c
г ₂	1	-	-	0, e, 0	-	0,-e, 0
r ₃	4	0, a, 0	0, b, O	0, c, 0	0, d, 0	0, c, 0
۵ ₁	9	a, b, a	c, d, c	f, g, h	j, k, j	h, g, f
Δ2	6	a, 0,-a	b, O,-b	c, d, f	g, 0,-g	-f,-d,-c
Σ ₁	10	a, 0, b	c, 0, d	f, 0, g	h, O, j	k, 0, 1
Σ ₂	5	0, a, 0	0, b, 0	0, c, 0	0, d, 0	0, f, 0
	1					

 $\begin{array}{l} \underline{\mbox{Tableau B.o}} : \mbox{Vecteurs de symétrie adaptés à chaque r.i. dans la phase 0.} \\ & \mbox{Les résultats pour Λ et Z sont analogues à ceux trouvés pour Γ .} \\ & \mbox{Les résultats pour Ξ sont semblables à ceux reportés pour Σ.} \end{array}$

5. <u>RELATIONS DE COMPATIBILITE ENTRE LES MODES DE VIBRATION APPARTENANT A</u> DES PHASES DIFFERENTES.

On établit les relations de correspondance entre phonons des différentes phases le long d'une même ligne de symétrie, à l'aide de l'équation B.8. Les résultats sont reportés sur le tableau B.q. Ils permettent d'effectuer des comparaisons concernant le comportement des phonons à travers les transitions de phase successives.

Direction de symétrie	Quadratique	Cubique	Orthorhombique
0, 0, 0	$4 E^{(2)} + 4 A_1 E^{(2)} + B_1$	$4 F_{1u}^{(3)} \\ F_{2u}^{(3)}$	$\begin{array}{c} 4 \ A_{1} + 4 \ B_{1} + 4 \ B_{2} \\ A_{1} + B_{1} + A_{2} \end{array}$
ξ, ο, ο	10 4 ₁ 5 4 ₂	$4 \begin{array}{c} 4 \\ 1 \end{array} + \begin{array}{c} 4 \end{array} + \begin{array}{c} 5 \end{array} + \end{array} + \begin{array}{c} 5 \end{array} + \begin{array}{c} 5 \end{array} + \begin{array}{c} 5 \end{array} + \end{array} + \begin{array}{c} 5 \end{array} + \begin{array}{c} 5 \end{array} + \begin{array}{c} 5 \end{array} + \end{array} + \begin{array}{c} 5 \end{array} + \begin{array}{c} 5 \end{array} + \end{array} + \begin{array}{c} 5 \end{array} + \begin{array}{c} 5 \end{array} + \begin{array}{c} 5 \end{array} + \end{array} + \begin{array}{c} 5 \end{array} + \begin{array}{c} 5 \end{array} + \end{array} + \begin{array}{c} 5 \end{array} + \end{array} + \begin{array}{c} 5 \end{array} + \end{array} + \\{c} + \end{array} + \end{array} + \end{array} + \\ + \end{array} + \end{array} + \\ + \end{array} + \end{array} + \\ + \end{array} + \end{array}$	¹⁰ [≡] 1 5 [≡] 2
Ο,ξ,Ο	10 Δ ₁ 5 Δ ₂	$\begin{array}{c}4 \Delta_1 + \Delta_2 + 5 \Delta_5^{(y)}\\5 \Delta_5^{(x)}\end{array}$	^{9 Δ} 1 + 6 ^Δ 2
Ο, Ο, ξ	$\begin{array}{c}4 \Lambda_1 + \Lambda_2 \\ 5 \Lambda_5 \end{array}$	$\begin{array}{rrrr}4& \Delta_1 & + & \Delta_2 \\ & 5 & \Delta_5 \end{array}$	
ξ,ξ,Ο	^{5 ε} 1 ε ₂ 4 ε ₁ + 5 ε ₂	$5 \frac{\varepsilon_1}{\varepsilon_2}$ $5 \frac{\varepsilon_3}{\varepsilon_3} + 4 \frac{\varepsilon_4}{\varepsilon_4}$	
ξ, Ο, ξ		5 Σ ₁ Σ ₂ 4 Σ ₄ 5 Σ ₃	5 ¹ ¹ 4 ¹ 3 5 ¹ 4
ξ, Ο, ξ		$5 \begin{array}{c} 5 \\ 2 \\ 2 \end{array} + 5 \begin{array}{c} 5 \\ 3 \\ 5 \\ 4 \end{array}$	10 ^r 1 5 ^r 2

<u>Tableau B.q</u> : Relations de compatibilité entre les modes cubiques d'une part, et les modes quadratiques ou orthorhombiques d'autre part. Les axes sont donnés dans le repère pseudocubique.

- ANNEXE C -

١

MATRICE D'INTERACTION A COURTE PORTEE DANS LES PHASES CUBIQUE ET QUADRATIQUE

INTRODUCTION.

L'objet de cette Annexe porte sur la construction de la matrice d'interaction à courte portée R, de dimensions 15 x 15. On traite ici le cas de la phase quadratique en liaison avec la distorsion cubique-quadratique. On retrouve aisémenet les résultats obtenus dans la phase cubique par Cowley (1964) en posant dans nos relations a = c (égalité des paramètres de maille) et $\delta_{\kappa} = 0$ (nullité du déplacement de chaque ion par rapport à sa position cubique). On peut ainsi décrire la transition de phase C-Q à l'aide du même modèle dynamique. 1.a. Procèdure de calcul.

Pour chaque type d'interaction κ $-\kappa'$ entre deux ions κ et κ' , on opère de la manière suivante :

i) On place l'origine sur le site de l'ion κ et on établit les diverses liaisons entre l'ion κ et l'ion κ ' appartenant à la même cellule l ou à des cellules l' les plus proches.

On part de la forme générale du tenseur d'interaction entre les ions $\binom{1}{r} \binom{1}{r}$:

$$-\phi \left(\begin{array}{c} 1 & 1' \\ \kappa & \kappa' \end{array} \right) = \left(\begin{array}{c} a & b & c \\ b & d & e \end{array} \right)$$

$$c & e & f$$
(C.1)

Comme ce tenseur de constante de force est symétrique par rapport à la diagonale principale, il existe au maximum six composantes $\phi_{\alpha\beta}$ différentes. Les propriétés de symétrie de la liaison $\binom{1 \ l'}{\kappa \ \kappa'}$ permettent de réduire le nombre d'éléments indépendants et non nuls de ce tenseur. Ainsi si l'opération de symétrie S conserve la liaison, on écrit :

$$S \phi \left(\frac{1}{\kappa} \frac{1}{\kappa'} \right) S^{-1} = \phi \left(\frac{1}{\kappa} \frac{1}{\kappa'} \right)$$
(C.2)

ii) On considère en premier l'interaction particulière entre les ions κ et κ' de la même cellule l. Pour chaque composante $\phi_{\alpha\beta} \begin{pmatrix} l & l' \\ \kappa & \kappa' \end{pmatrix}$, on calcule les diverses contributions à cette constante de force, parallèlement à la liaison, perpendiculairement à celle-ci, à la fois dans le plan et hors du plan. En additionnant les différents termes on obtient ainsi la constante de force $\phi_{\alpha\beta} \begin{pmatrix} l & l' \\ \kappa & \kappa' \end{pmatrix}$ dans une forme fournie par l'équation 2.109.

iii) On détermine les différents tenseurs $\phi \begin{pmatrix} l & l' \\ \kappa & \kappa' \end{pmatrix}$ d'interaction entre l'ion $\binom{l}{\kappa}$ et l'ion $\binom{l'}{\kappa'}$. Les composantes de ces tenseurs sont déduites par symétrie de celles du tenseur $\phi \begin{pmatrix} l & l' \\ \kappa & \kappa' \end{pmatrix}$.

iv) On construit la contribution courte portée de la matrice dynamique sous la forme (Cf équation 2.88) :

$$R_{\alpha\beta} (\kappa\kappa'/q) = \sum_{i} \phi_{\alpha\beta} (\frac{1}{\kappa} \frac{1}{\kappa'}) \exp i \vec{q} [\vec{r} (\frac{1}{\kappa'}) - r (\frac{1}{\kappa})]$$
(C.3)

Une fois ce travail effectué pour chaque interaction $\kappa - \kappa'$ on détermine les composantes R_{$\alpha\beta$} ($\kappa \kappa/0$) pour les self-interactions $\kappa - \kappa$ en utilisant la relation 2.111.

1.b. Notations utilisées.

i) On caractérise les paramètres A et B définissant chaque type d'interaction κ - κ ' à l'aide de l'indice k dont la valeur est donnée par le tableau ci-dessous.

ii) On affecte les composantes du tenseur de force ϕ $\begin{pmatrix} 1 & 1' \\ \kappa & \kappa' \end{pmatrix}$ d'un indice j caractérisant le type d'interaction $\kappa - \kappa'$ en distinguant parmi les ions oxygène l'ion 0₁ de 0₂ ou 0₃ (voir tableau ci-dessous).

De plus, on ajoute l'indice supérieur prime afin de discerner entre deux liaisons $\binom{1}{k} \binom{1}{k}$ de longueurs différentes.

iii) Pour chaque liaison $\kappa - \kappa'$ on définit le déplacement statique relatif dans la phase Q par :

$$\delta (\kappa - \kappa') = \delta(\kappa') - \delta(\kappa) = \Delta(\kappa - \kappa') \times c \qquad (C.4)$$

où $\delta(\kappa)$ est le déplacement statique absolu de l'ion κ par rapport à sa position dans la phase cubique.

On dénote les déplacements relatifs $\delta(\kappa - \kappa')$ et $\Delta(\kappa - \kappa')$ par l'indice j (voir tableau ci-dessous).

iv) Pour définir les facteurs de phase entrant dans la relation C.3, on utilise les notations réduites suivantes :

où ξ_x , ξ_y et ξ_z sont les composantes du vecteur d'onde réduit définies par $\dot{q} = \xi_x \frac{2 \pi}{a} \hat{x} + \xi_y \frac{2 \pi}{a} \hat{y} + \xi_z \frac{2 \pi}{c} \hat{z}$ Enfin, on introduit un facteur de phase lié à la distorsion quadratique, affecté du même indice j que les déplacements relatifs :

$$E_{j} = \exp i \ 2 \pi \xi_{z} \ \delta_{j} / c = \exp i \ 2 \pi \xi_{z} \ \Delta_{j}$$
(C.5)

Interaction	о ₁ – К	о ₂ – к о ₃ – к	0 ₁ – Nb	0 ₂ – Nb 0 ₃ – Nb	$0_2 - 0_1 \\ 0_3 - 0_1$	0 ₃ - 0 ₂
Indice j	1	2	3	4	5	6
Indice k	1	1	2	2	3	3

FIGURE C.1 : Les différentes interactions à courte portée entre 0_2 et K.

2. RESULTATS OBTENUS POUR KNb03.

On considère les diverses interactions de type 0_2 - K représentées sur la figure C.1. Les ions ont les coordonnées suivantes en unités (a, a, c) selon les axes x, y et z :

$$O_{2} = O, \quad \frac{1}{2}, \quad \Delta \quad (O_{2})$$

$$K_{1} = \frac{1}{2}, \quad \frac{1}{2}, \quad \frac{1}{2}, \quad \frac{1}{2} + \Delta \quad (K)$$

$$K_{2} = -\frac{1}{2}, \quad \frac{1}{2}, \quad \frac{1}{2}, \quad \frac{1}{2} + \Delta \quad (K)$$

$$K_{3} = \frac{1}{2}, \quad \frac{1}{2}, \quad -\frac{1}{2} + \Delta \quad (K)$$

$$K_{4} = -\frac{1}{2}, \quad \frac{1}{2}, \quad -\frac{1}{2} + \Delta \quad (K)$$

On définit le déplacement relatif statique :

$$\Delta_2 = \delta_2/c = \Delta(K) - \Delta(O_2)$$

$$\alpha$$
) Tenseur ϕ (0₂ - K₁).

Le tenseur de constante de force a la forme générale :

$$- \phi (0_2 - K_1) = \begin{pmatrix} \alpha_2 & \beta_2 & \gamma_2 \\ \beta_2 & \lambda_2 & \sigma_2 \\ \gamma_2 & \sigma_2 & \chi_2 \end{pmatrix}$$
(C.6)

La liaison $0_2 - K_1$ est invariante par l'application de l'opération miroir plan normal à y ($\sigma \begin{array}{c} xz \\ v \end{array}$ ou h_{27}) qui échange y en -y. Par suite $\beta_2 = 0 = \sigma_2$. On recherche à présent les diverses contributions selon les directions.

* Direction parallèle à la liaison $_{2-K_{1}}$: Les cosinus directeurs de r_{//} = | r (K₁) - r (0₂) |_{//} sont :

$$\epsilon_{1} = \frac{a/2}{\sqrt{\frac{a^{2}}{4} + (\delta_{2} + \frac{c}{2})^{2}}} \qquad \epsilon_{2} = 0 \qquad \epsilon_{3} = \frac{c/2 + \delta_{2}}{\sqrt{\frac{a^{2}}{4} + (\delta_{2} + \frac{c}{2})^{2}}}$$

Par suite on a :

$$r_{//} = \epsilon_1 (x_{K_1} - x_{O_2}) + \epsilon_3 (z_{K_1} - z_{O_2})$$

et le potentiel d'interaction s'écrit :

$$- \phi_{//} (O_2 - K_1) = \frac{1}{2} A_1 r_{//}^2$$

où A_1 est le paramètre d'interaction entre l'oxygène et le potassium (Cf équation 2.108) agissant parallèlement à la liaison. On obtient par dérivation :

$$- \phi_{xx}^{/\prime} = \varepsilon_{1}^{2} A_{1} \qquad - \phi_{xz}^{\prime\prime} = \varepsilon_{1} \varepsilon_{3} A_{1} - \phi_{yy}^{\prime\prime} = 0 \qquad - \phi_{zz}^{\prime\prime} = \varepsilon_{3}^{2} A_{1}$$
(C.7)

* Direction perpendiculaire à la liaison dans le plan de celle-ci. Les cosinus directeurs de r_1 sont :

$$n_{1} = \frac{-\left(\frac{c}{2} + \delta_{2}\right)}{\sqrt{\frac{a^{2}}{4} + \left(\delta_{2} + \frac{c}{2}\right)^{2}}} \qquad n_{2} = 0 \qquad n_{3} = \frac{a/2}{\sqrt{\frac{a^{2}}{4} + \left(\delta_{2} + \frac{c}{2}\right)^{2}}}$$

On peut écrire :

$$r_{\perp} = n_1 (x_{K_1} - x_{O_2}) + n_3 (z_{K_1} - z_{O_2})$$

et

$$- \phi_{\perp} (O_2 - K_1) = \frac{1}{2} B_1 r_{\perp}^2$$

où B_1 est le paramètre d'interaction O-K s'exerçant dans la direction normale à la liaison (Cf équation 2.108'). On obtient par dérivation :

$$-\phi_{\mathbf{x}\mathbf{x}}^{\perp} = \eta_{1}^{2} B_{1} \qquad -\phi_{\mathbf{x}\mathbf{z}}^{\perp} = \eta_{1} \eta_{\mathbf{z}} B_{1}$$

$$-\phi_{\mathbf{y}\mathbf{y}}^{\perp} = 0 \qquad -\phi_{\mathbf{z}\mathbf{z}}^{\perp} = \eta_{3}^{2} B_{1} \qquad (C.8)$$

δ) Passage phase cubique - phase quadratique.

Dans la phase quadratique, il y a lieu de distinguer entre, d'une part les liaisons $O_2 - K_1$ et $O_2 - K_2$, et d'autre part les liaisons $O_2 - K_3$ et $O_2 - K_4$ plus courtes. On s'aperçoit aisément sur la figure C.1 que la longueur de la liaison $O_1 - K$ dans la phase cubique est intermédiaire entre les distances $O_2 - K_3 (K_4)$ et $O_2 - K_1 (K_2)$ de la phase quadratique (tous les ions K sont équivalents entre eux dans la phase cubique). Au vu des constantes de forces déterminées pour chacun des cas, on peut établir les relations suivantes, indiquant la modification des interactions lors du changement de phase cubique-quadratique :

 $\phi_{xx}^{Q} (O_{2} - K_{1}) < \phi_{xx}^{C} (O_{2} - K) < \phi_{xx}^{Q} (O_{2} - K_{3})$ $\phi_{zz}^{Q} (O_{2} - K_{1}) < \phi_{zz}^{C} (O_{2} - K) < \phi_{zz}^{Q} (O_{2} - K_{3})$ $\phi_{xz}^{Q} (O_{2} - K_{1}) < \phi_{xz}^{C} (O_{2} - K) < \phi_{xz}^{Q} (O_{2} - K_{3})$ $\phi_{yy}^{Q} (O_{2} - K_{1}) = \phi_{yy}^{C} (O_{2} - K) = \phi_{yy}^{Q} (O_{2} - K_{3})$

Les inégalités précédentes sont prévisibles en considérant uniquement les longueurs respectives des liaisons correspondantes puisque les forces à courte portée dérivent d'un potentiel central.

2.b. Tableaux des résultats pour toutes les interactions.

Les résultats obtenus pour chaque interaction $\kappa - \kappa$ ' sont reportés sur les tableaux suivants. Il faut noter que les paramètres A_k et B_k sont fournis en unités e ²/2v tandis que les composantes $R_{\alpha\beta}$ sont données en unités e ²/v. Par suite on a :

$$r_{//} = \epsilon_1 (x_{K_1} - x_{O_2}) + \epsilon_3 (z_{K_1} - z_{O_2})$$

et le potentiel d'interaction s'écrit :

$$-\phi_{//}(O_2 - K_1) = \frac{1}{2}A_1 r_{//}^2$$

où A_1 est le paramètre d'interaction entre l'oxygène et le potassium (Cf équation 2.108) agissant parallèlement à la liaison. On obtient par dérivation :

$$- \phi_{xx}^{//} = \varepsilon_{1}^{2} A_{1} \qquad - \phi_{xz}^{//} = \varepsilon_{1} \varepsilon_{3} A_{1}$$

$$- \phi_{yy}^{//} = 0 \qquad - \phi_{zz}^{//} = \varepsilon_{3}^{2} A_{1} \qquad (C.7)$$

* Direction perpendiculaire à la liaison dans le plan de celle-ci. Les cosinus directeurs de r_1 sont :

$$n_{1} = \frac{-\left(\frac{c}{2} + \delta_{2}\right)}{\sqrt{\frac{a^{2}}{4} + \left(\delta_{2} + \frac{c}{2}\right)^{2}}} \qquad n_{2} = 0 \qquad n_{3} = \frac{a/2}{\sqrt{\frac{a^{2}}{4} + \left(\delta_{2} + \frac{c}{2}\right)^{2}}}$$

On peut écrire :

$$r_{\perp} = n_1 (x_{K_1} - x_{0_2}) + n_3 (z_{K_1} - z_{0_2})$$

et

$$- \phi_{1} (O_{2} - K_{1}) = \frac{1}{2} B_{1} r_{1}^{2}$$

où B₁ est le paramètre d'interaction O-K s'exerçant dans la direction normale à la liaison (Cf équation 2.108'). On obtient par dérivation :

$$-\phi_{xx}^{\perp} = \eta_{1}^{2} B_{1} \qquad -\phi_{xz}^{\perp} = \eta_{1} \eta_{z} B_{1}$$

$$-\phi_{yy}^{\perp} = 0 \qquad -\phi_{zz}^{\perp} = \eta_{3}^{2} B_{1} \qquad (C.8)$$

* Direction perpendiculaire à la liaison hors du plan de celle-ci : Les cosinus directeurs de r'_l sont les suivants :

 $\mu_1 = 0$ $\mu_2 = 1$ $\mu_3 = 0$

On écrit :

$$r'_{1} = \mu_{2} (y_{K_{2}} - y_{0_{2}})$$

$$-\phi_{1}$$
, $(O_{2} - K_{1}) = \frac{1}{2} B_{1} r_{1}^{2}$,

On obtient :

$$-\phi \frac{\perp}{xx} = 0 \qquad -\phi \frac{\perp}{xz} = 0$$

$$-\phi \frac{\perp}{yy} = B_1 \qquad -\phi \frac{\perp}{zz} = 0$$
(C.9)

* On somme les diverses contributions C.7, C.8, C.9. On obtient :

$$- \phi (0_2 - K_1) = \begin{pmatrix} \alpha_2 & 0 & \gamma_2 \\ 0 & \lambda_2 & 0 \\ \gamma_2 & 0 & \chi_2 \end{pmatrix}$$

avec
$$\alpha_2 = \epsilon_1^2 A_1 + \eta_1^2 B_1 = \frac{a^2/4 A_1 + (c/2 + \delta_2)^2 B_1}{a^2/4 + (\delta_2 + c/2)^2}$$

$$\gamma_2 = \epsilon_1 \epsilon_3 A_1 + \eta_1 \eta_3 B_1 = \frac{a/2 (\delta_2 + \delta_2)^2 (A_1 - B_1)}{a^2/4 + (\delta_2 + c/2)^2}$$

$$\lambda_{2} = B_{1}$$

$$\chi_{2} = \epsilon_{3}^{2} A_{1} + n_{3}^{2} B_{1} = \frac{(c/2 + \delta_{2})^{2} A_{1} + a^{2}/4 B_{1}}{a^{2}/4 + (\delta_{2} + c/2)^{2}}$$

$$\beta) \underline{\text{Tenseurs } \phi(0_2 - K_2), \phi(0_2 - K_3), \phi(0_2 - K_4).}$$

On passe de la liaison $0_2 - K_1$ à la liaison $0_2 - K_2$ en remplaçant x par -x. (opération $h_{26} = \sigma_v^{yz}$). Par suite, on obtient :

$$-\phi (0_{2} - K_{2}) = \begin{pmatrix} \alpha_{2} & 0 & -\gamma_{2} \\ 0 & \lambda_{2} & 0 \\ -\gamma_{2} & 0 & \chi_{2} \end{pmatrix}$$

D'autre part, on passe de la matrice ϕ $(O_2 - K_1)$ à ϕ $(O_2 - K_3)$ par application de l'opération σ_v^{Xy} qui n'est pas un élément de symétrie dans la phase Q. En fait, les liaisons $O_2 - K_1$ et $O_2 - K_3$ ont des longueurs différentes. Il s'agit donc de remplacer dans chaque composante δ_2 par $-\delta_2$ et de modifier le signe de la composante ϕ_{xz} . On peut également passer des éléments α_2 , γ_2 ... à α'_2 , γ'_2 en changeant simplement c en -c.

$$-\phi (0_2 - K_3) = \begin{pmatrix} \alpha'_2 & 0 & \gamma_2 \\ 0 & \lambda'_2 & 0 \\ \gamma'_2 & 0 & \chi'_2 \end{pmatrix}$$

avec :

$$'_{2} = \frac{a^{2}/4 \quad A_{1} + (\delta_{2} - c/2)^{2} \quad B_{1}}{a^{2}/4 + (\delta_{2} - c/2)^{2}}$$

etc...

α

Enfin on passe du tenseur ϕ (0₂ - K₃) au tenseur ϕ (0₂ - K₄) par application de l'opération $\sigma_v^{yz} = h_{26}$. On obtient :

$$-\phi (0_{2} - K_{4}) = \begin{pmatrix} \alpha'_{2} & 0 & -\gamma'_{2} \\ 0 & \lambda'_{2} & 0 \\ -\gamma'_{2} & 0 & \chi'_{2} \end{pmatrix}$$

γ) <u>Calcul des éléments R</u> $_{\alpha\beta}$ <u>(0</u> $_2$ - K).

On détermine les éléments R $(O_2 - K)$ par application de l'équation C.3. On obtient avec les notations introduites précédemment (en unités e^2/v) :

$$R_{xx} = -C_{x} E_{2} (\alpha_{2} \exp i \pi \xi_{z} + \alpha'_{2} \exp - i \pi \xi_{z})$$

$$R_{xz} = -i S_{x} E_{2} (\gamma_{2} \exp i \pi \xi_{z} - \gamma'_{2} \exp - i \pi \xi_{z})$$

$$R_{yy} = -2 \lambda_{2} E_{2} C_{x} C_{z}$$

$$R_{zz} = -C_{x} E_{2} (\chi_{2} \exp i \pi \xi_{z} + \chi'_{2} \exp - i \pi \xi_{z})$$

δ) Passage phase cubique - phase quadratique.

Dans la phase quadratique, il y a lieu de distinguer entre, d'une part les liaisons $O_2 - K_1$ et $O_2 - K_2$, et d'autre part les liaisons $O_2 - K_3$ et $O_2 - K_4$ plus courtes. On s'aperçoit aisément sur la figure C.1 que la longueur de la liaison $O_1 - K$ dans la phase cubique est intermédiaire entre les distances $O_2 - K_3 (K_4)$ et $O_2 - K_1 (K_2)$ de la phase quadratique (tous les ions K sont équivalents entre eux dans la phase cubique). Au vu des constantes de forces déterminées pour chacun des cas, on peut établir les relations suivantes, indiquant la modification des interactions lors du changement de phase cubique-quadratique :

$$\phi_{xx}^{Q} (O_{2} - K_{1}) < \phi_{xx}^{C} (O_{2} - K) < \phi_{xx}^{Q} (O_{2} - K_{3})$$

$$\phi_{zz}^{Q} (O_{2} - K_{1}) < \phi_{zz}^{C} (O_{2} - K) < \phi_{zz}^{Q} (O_{2} - K_{3})$$

$$\phi_{xz}^{Q} (O_{2} - K_{1}) < \phi_{xz}^{C} (O_{2} - K) < \phi_{xz}^{Q} (O_{2} - K_{3})$$

$$\phi_{yy}^{Q} (O_{2} - K_{1}) = \phi_{yy}^{C} (O_{2} - K) = \phi_{yy}^{Q} (O_{2} - K_{3})$$

Les inégalités précédentes sont prévisibles en considérant uniquement les longueurs respectives des liaisons correspondantes puisque les forces à courte portée dérivent d'un potentiel central.

2.b. Tableaux des résultats pour toutes les interactions.

Les résultats obtenus pour chaque interaction $\kappa - \kappa$ ' sont reportés sur les tableaux suivants. Il faut noter que les paramètres A_k et B_k sont fournis en unités e ²/2v tandis que les composantes $R_{\alpha\beta}$ sont données en unités e ²/v.

INTERACTION O	INTERACTION $O_1 - K$ $O_1 = 0, 0, \frac{1}{2} + \frac{1}{2}(O_1)$ $\Delta_1 = \frac{1}{2}(C = \Delta(K) - \Delta(O_1))$											
к _i	к ₁	к ₂	к	3	ĸ ₄							
Coordonnées	% % % + Δ () $-\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ + Δ (K)	- ¼ - ¼	½ + Δ (K)	1/2 - 1/2	% + ∆ (К)						
- ф (0 ₁ - К)	$\begin{array}{cccc} \mathbf{a}_1 & \mathbf{\beta}_1 & \mathbf{Y}_1 \\ \mathbf{\beta}_1 & \mathbf{a}_1 & \mathbf{Y}_1 \\ \mathbf{Y}_1 & \mathbf{Y}_1 & \mathbf{X}_1 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccc} \alpha & 1 & \beta_1 \\ \beta & 1 & \alpha_1 \\ -\gamma_1 & -\gamma_1 \end{array} $	- Y 1 - Y 1 X 1	$\begin{vmatrix} \alpha_1 & - \beta_1 \\ - \beta_1 & \alpha_1 \\ \gamma_1 & - \gamma_1 \end{vmatrix}$	γ ₁ - γ ₁ x ₁						
Phase qua	dratique	Forme générale de R (0 aß 1	- K)	Phase cubique								
$\alpha_1 = \frac{a^{2/4}}{a^{2/2} + \delta_1^2}$	$-[A_1 + (1 + \frac{4 \delta_1}{a^2}) B_1$	$\begin{bmatrix} R_{xx} = -2 \alpha_1 & E_1 & C_x & C_y \end{bmatrix}$		$\alpha_1 = \frac{1}{2} (A_1 + B_1)$								
$\beta_1 = \frac{a^2/4}{a^2/2 + \delta}$	$\frac{1}{1} (A_1 - B_1)$	$R_{xy} = 2 \beta_1 \frac{5}{1} S_x S_y$		$B_{1} = \frac{1}{2} (A_{1} - B_{1})$								
$Y_1 = \frac{a \frac{4}{2}}{a^{\frac{3}{2}} + \delta^2}$	$\frac{2}{1}$ (A ₁ - B ₁)	$R_{xz} = -i 2 \gamma_1 E_1 S_x C_y$		Y 1 = 0								
$x_1 = \frac{a^2/2}{a^2/2 + \delta}$	$\frac{1}{2} (B_1 + \frac{2 \delta_1^2}{a^2} A_1)$	$R_{yz} = -i 2 \gamma_1 E_1 C_x S_y$		x ₁ = 9 ₁								
E ₁ = exp (i 2	πξ _z Δ ₁)	$R_{zz} = -2 \chi_1 E_1 C_x C_y$		E ₁ = 1								

INTERACTION $0_2 = K$ $0_2 = 0, \frac{1}{2}, \frac{1}{2}(0_2)$ $b_2 = \frac{1}{2}(c_2 = \Delta(K) - \Delta(0_2))$											
к _i	К			к ₂		к _з			Кд		
Coordonnées	7. %	½ + Δ (K)	- %	4	½ + Δ (K)	%	{ - ½ + △	(K)	- % %	- ½ + Δ (K)	
	a ₂ 0	¥2	٩2	c	- Y ₂	a'2 (° 1'2		°'2 0	- *' ₂	
- •(0 ₂ - К)	ο ^λ 2	0	0	×2	0	о у	2 0		0 [×] ′2	0	
	Y ₂ 0	×2	- Y ₂	С	×2	Ϋ́2	o x'2		- Y'2 0	×'2	
Phase quadratique Forme générale de R $_{\alpha\beta}(0_2 - K)$								Phase cubique			
$a_2 = \frac{a^2/4}{a^2/2}$	$\frac{\lambda_1 + (\delta_2 \pm c/2)}{(\delta_2 \pm c/2)^2}$	2) ² B ₁	$\frac{\mathbf{F}_{\mathbf{x}}}{\mathbf{F}_{\mathbf{x}}} = -C_{\mathbf{x}} E_{\mathbf{z}} \left(a_{\mathbf{z}} \exp i\pi \mathbf{\xi}_{\mathbf{z}} - a_{\mathbf{z}}^{\dagger} \exp - i\pi \mathbf{\xi}_{\mathbf{z}}\right)$						= a' ₂ = ½ (A ₁	+ 9 ₁)	
$r_2 = \frac{a/2}{r_2^2} = \frac{a/2}{a^2/4}$	$\frac{\delta_2 \pm c/2}{4 + (\delta_2 \pm c/2)}$	$(-B_1)^2$	$R_{xz} = -iS_{x}E_{2}(\gamma_{2}\exp iE\xi_{z} - \gamma'_{2}\exp -iE\xi_{z})$) $Y_2 = Y'_2 = \frac{1}{2} (A_1 - B_1)$			
λ ₂ = λ' ₂ = Ι	81		R yy = -	2 × 2	E ₂ C _x C _z			^ئ 2	= $\lambda'_2 = B_1$		
$\chi'_{2} = \frac{(\delta_{2} \pm c)}{a^{2}/4}$	$\frac{(2)^{2} A_{1} + a^{2}}{(\delta_{2} \pm c/2)^{2}}$	/4 B ₁	$R_{zz} = -C_{x} E_{2} (x_{2} \exp i\pi f_{z} + x'_{2} \exp - i\pi f_{z})$					$x_2 = x'_2 = x (A_1 + B_1)$			
E ₂ ≃ exp (i ;	² π ξ Δ ₂)							^E 2	= 1		

<u>N.B.</u> : Les composantes a_i , γ_i , ... correspondent au signe + dans les relations tandis que les composantes a'_i , γ'_i , ... sont associées au signe -

^K i		К	1	К2 К3							4
Coordonnées	12	%	½ + Δ (K)	*	- 13	½ + ∆ (K)	4 %	- ½ + & (K)	%	- %	- ½ + Δ (К)
	^ک 2	c	0	×2	0	C	λ' ₂ Ο	0	× '2	0	0
- •(° ₃ - к)	0	۵2	۲2	0	°2	- Y ₂	0 °'2	- Y'2	0	۹'2	۲'2
	0	۴2	×2	0	- Y ₂	×2	0 - v	'2 ×2	0	۲'2	×'2
	•			Forme	général	e de R _{a8} (0 ₃	- К)		1		
			R _x :	x = - 2	² ¹ ₂ ^E ₂	C C Z	+ a'_ exp	- iπε)			
			́У:	y = - (′y [™] 2 `	² ² ²	2 2 2 2 2 2	- 1 / ² /			
			Ry	z = - 3	y E	2 ^{(Y} 2 ^{exp i}	πε _z - τ' ₂	exp - i î ζ)	1		
			Rz	z = - (C _y E ₂ (X ₂ exp iπ ξ	, + χ ' ₂ exp	- iπ ξ _z)			

- A.58 -

Nbi		Nb,		Nb_				
Coordonnées	o	0	1 + <u>A</u> (Nb)	0	0	∆ (Nb)		
	°3	0	0	°'3	0	0		
• ф (0 ₁ – Nb)	0	°3	0	0	°,3	0		
	0	0	x ₃	0	0	×'3		
Phase guad	ratique		F	orme génés	ale de F	α _β (O ₁ - Nb)		Phase cubique
(avec dilatation	thermique)						
$a_3 = B_2 / \mu_{+}$			$R_{xx} = -\frac{1}{2}E_{3}$	(a 3 exp :	. n ç _z + o	' ₃ exp - in	z)	α ₃ = α' ₃ = ^B ₂
$a'_3 \approx B_2 / \mu_1$			$R_{yy} = R_{xx}$					$x_3 = x'_3 = A_2$
$x_3 = A_2 / \mu_+$			$R_{zz} = -\frac{1}{2}E_3$	(x ₃ exp :	ιn ξ _z + ;	(' ₃ exp - іЛ)	z)	E ₃ = 1
('3 = A ₂ /µ -								
$\mu_{+} = \left(\frac{c/2 - \delta_{3}}{a/2}\right)^{\frac{1}{2}}$								
$\mu_{} = \left(\frac{c/2 - \delta_{\underline{3}}}{a/2}\right)^2$								
E ₃ = exp (i 2 Π ξ	z ⁴ 3)							

INTERACTION 02	+ Nb	^о 2	= Ο, ½, Δ ()	⁰ 2 ⁾		∆ 4 = ⁶ 4	/c = ∆(Nb) - <i>i</i>	a (0 ₂)
Nb _i		N6+			Nr_			
Coordonnées	0	1	Δ (Nb)	0	0	∆ (Nb)		
	°4	0	0	² 4	0	0		
- •(0 ₂ - Nb)	0	×4	³ 4	C	λ_4	- °4		
	0	°4	×4	С	- °4	×4		
Phase	quadratiqu	e		F	orme géné	rale de R af	(0 ₂ - Nb)	Phase cubique
$a_4 = B_2$	ς2 Π.			Ŗ	xx = - a	4 ^E 4 ^C y		$\alpha_4 = B_2$
$\lambda_4 = \frac{a^2/4}{a^2/4} + \frac{a^2}{4}$	δ ² ₄			. в	y y = - λ	4 ^E 4 ^C y		$\lambda_4 = A_2$
$x_{4} = \frac{\delta_{4}^{2} + a_{2}^{2} + a_{3}^{2}}{a^{2}/4 + a_{4}^{2}}$	6 ² 4 B ₂			R	zz = - x	4 ^E 4 ^C y	x ₄ = ^B 2	
$\sigma_4 = \frac{a \delta_4/2}{a \delta_4/2}$	(A ₂ - B ₂)			R	yz = - i	σ ₄ E ₄ S _y		σ _A = 0
a*/4 +	54							E ₄ = 1
E ₄ = exp (i 2π.	ξ _z Δ ₄)							

INTERACTION 03 -	Nb	°3 =	½, 0, Δ (0 ₃)	1	۵ ₄ =	Nb) - Δ(0 ₃)		
Nbi		Nb ₊			Nb_			
Coordonnées	1	0	Δ (Nb)	o	0	Δ (Nb)		
- • (0 ₃ - 110)	λ ₄ 0 σ ₄	0 °4 0	°⊿ 0 ×4	λ 4 0 - σ ₄	0 °°4 0	- σ ₄ ο × ₄		
			Forme ; R _{XX} = - R _{yy} = - R _{ZZ} = - R _{XZ} =	_{générale d} - λ ₄ E ₄ - α ₄ E ₄ - α ₄ E ₄ - χ ₄ E ₄ - ίσ ₄ E ₄	e R _{ad} (0 ₃ C _x C _x C _x S _x	- Nb)		

 $\underbrace{\text{N.B.}}_{l}: \text{ Les paramètres } \alpha_A, \quad \lambda_A, \text{ E}_A \ \dots \text{ sont identiques à ceux définis pour l'interaction 0}_2 - \text{Nb}.$

	Α		5	9	-
--	---	--	---	---	---

INTERACTION	° ₂ - ° ₁	, ⁰ 2 =	0, ½, (0 ₂)		'-Δ ₅ = -δ	$\frac{1}{5}/c = \Delta(0_1) - \frac{1}{5}$	Δ (0 ₂)	······································
0 _{1,1}	° ₁	,а	0 _{1,t}	,	°1,	.c	0 ₁	d
Coordonnées	0 1	$\frac{1}{2} + \Delta(0_1)$	0 0	$\frac{1}{2} + \Delta(0_1)$	0 1	$-\frac{1}{2} + \Delta(0_1)$	0 0	- ½ + Δ(0 ₁)
	°5 0	0	a ₅ 0	0	°'5 0	0	°'5 ⁰	0
- •(0 ₂ - 0 ₁)	⁰ کړ د	*5	⁰ کې	- °5	ο λ' ₅	- °'5	0 ¹ 5	°'5
	0 05	×5	ο - σ ₅	× 5	00'5	×'5	0 °'5	x'5
P1	hase quadra	tique		For	ne générale d	Phase cubique		
α ₅ = B ₃ = α'	5			R _{xx} = - 2	°5 ^E 5 ^C y	α ₅ = ^B ₃		
$\frac{x_5}{x'_5} = \frac{a^2/4}{a}$	$A_3 + (c/2 \pm 1/4 + (c/2 \pm 1/4))$	$\frac{\delta_5^{2}}{\pm \delta_5^{2}}$		R _{yy} = - E	5 ^C (^λ 5 ^{ex}	$\lambda_5 = \lambda'_5 = \frac{A_3 + B_3}{2}$		
$\sigma_5 = \frac{(c/2)}{a^2/4}$	$\frac{\pm \delta_5}{\pm (c/2 \pm \delta_5)}$ a/2) ^a (A ₃ - B	3)	R _{yz} = - i	E ₅ S _y (σ ₅ e)	$\sigma_5 = \sigma'_5 = \frac{A_3 - B_3}{2}$		
$\frac{x_5}{x'_5} = \frac{(c/2)}{a}$	$(\frac{t}{5})^2 A_3$ $(c/2)^2 A_3$	$\frac{+a^{2}/4}{\pm}\frac{B_{3}}{5}$		R _{zz} = - C	y ^E 5 (x ₅ exp	in t _z + x'5 ex	دp – i ۳ ق _z)	x ₅ = x' ₅ = λ ₅
E ₅ = exp (i	2 T & \$5							E ₅ = 1
			<u></u>					

<u>N.B.</u>: Les composantes χ_i , λ_i ... correspondent au signe + tandis que les composantes χ'_i , λ'_i ... sont associées au signe -.

INTERACTION	° ₃ - °	1	° ₃ -	= ½, 0,	%, 0, 4 (0 ₃)			$- \delta_5 = - \delta_5 / c = \Delta (0_1) - \Delta (0_3)$					
0 _{1,i}		° ₁	,a		° ₁	,t	0 ₁ ,c				0 _{1,d}		
Coordonnées	1	0	% + ∆ (0 ₁)	0	c	'ξ + Δ (0 ₁)	1	0	+ ½ + 6 (0 ₁)	0	0	- ½ + Δ (0 ₁)	
- + (° ₃ + ° ₁)	λ ₅ Ο ⁹ 5	0 95 0	°5 0 ×5	λ ₅ 0 ~°5	с °5 0	- °5 0 x ₅	×'ح 0 - عاج	0 a'5 0	- σ'5 Ο κ'5	λ' ₅ Ο σ' ₅	. 0 2'5 0	е'5 С Х'5	
	Forme générale de R_{ag} ($O_3 = O_1$)												
$R_{xx} = -E_5 C_x (\lambda_5 \exp i \pi \xi_2 + \lambda_5 \exp - i\pi \xi_2)$ $R_{yy} = -2 a_5 E_5 C_x C_2$ $R_{xz} = -i E_5 S_x (a_5 \exp i \pi \xi_2 - a_5 \exp - i\pi \xi_2)$ $R_{zz} = -C_x E_5 (\chi_5 \exp i \pi \xi_2 + \chi_5 \exp - i\pi \xi_2)$.													

 $\underline{\text{N.B.}}: \text{ les paramètres } \mathfrak{a}_5, \ \lambda_5, \ \mathbb{E}_5 \ \dots \ \text{sont identiques à ceux définis par l'interaction } \ \mathbb{O}_2 = \mathbb{O}_1.$

INTERACTION 03	- °2			03 = 2, 0, 0				$\Delta (0_2) - \Delta (0_3) = 0$					
0 _{2,i}		0 _{2,a}		с _{2,6}			°2,c			°2,d			
Coordonnées	1	%	0	o	4	0	0	- ½	0	1	- %	o	
- • (0 ₃ - 0 ₂)	а5 Вб О	^в б ^а б О	0 0 ¥6	α6 -86 0	- 8 ₆ 3 ₆ 0	ი ა ×6	^а б ^в б О	86 96 0	с 0 ×6	°6 - ⁹ 6 0	- 8 ₆ °6 0	0 0 ×6	
Phase qua	dratiqu	ie		Forme	génér	ale de	R ₃₁₈ (0 ₃	- 0 ₂)		Pt	nase cubi	ique	
$a_6 = \frac{A_3 + B_3}{2}$				R =	- 2	°6 ^C x	C = F	уу		°e =	A ₃ + B	3	
$\beta_6 = \frac{A_3 - B_3}{2}$				R _{zz} ≂	- 2	x ₆ ^C x	с _у			^s 6 ≈	A ₃ - B ₃ 2	3	
x ₆ = ^B ₃				R _{xy} =	R _{yx} =	2 B ₆	s _x s _y			×6 =	^B 3		

SELF - INTERACTIONS

INTERACTION K - K	$R_{xx} = R_{yy} = 2 \alpha_{1} + \alpha_{2} + \alpha'_{2} + 2 \lambda_{2}$ $R_{zz} = 2 (\chi_{1} + \chi_{2} + \chi'_{2})$
INTERACTION ND - ND	$R_{xx} = R_{yy} = \frac{1}{2} (\alpha_3 + \alpha'_3) + \alpha_4 + \lambda_4$ $R_{zz} = \frac{1}{2} (\chi_3 + \chi'_3) + \chi_4$
INTERACTION O ₁ - O ₁	$R_{xx} = R_{yy} = 2 \alpha_1 + \frac{1}{2} (\alpha_3 + \alpha'_3) + 2 \alpha'_5$ $R_{zz} = 2 \chi_1 + \frac{1}{2} (\chi_3 + \chi'_3) + 2 (\chi_5 + \chi'_5)$
INTERACTION 0 ₂ - 0 ₂	$R_{xx} = \alpha_{2} + \alpha'_{2} + \alpha_{4} + 2 \alpha_{5} + 2 \alpha_{6}$ $R_{yy} = 2 \lambda_{2} + \lambda_{4} + 2 \alpha_{6} + \lambda_{5} + \lambda'_{5}$ $R_{zz} = \chi_{2} + \chi'_{2} + \chi_{4} + \chi_{5} + \chi'_{5} + 2 \chi_{6}$
INTERACTION 0 ₃ - 0 ₃	$R_{xx} = 2 \lambda_{2} + \lambda_{4} + 2 \alpha_{6} + \lambda_{5} + \lambda'_{5}$ $R_{yy} = \alpha_{2} + \alpha'_{2} + \alpha_{4} + 2 \alpha_{5} + 2 \alpha_{6}$ $R_{zz} = \chi_{2} + \chi'_{2} + \chi_{4} + \chi_{5} + \chi'_{5} + 2 \chi_{6}$

 $\underline{\text{N.B.}}: \text{ Les paramètres } \alpha_i, \ \beta_i, \ \dots \ \text{ont \acute{e}t\acute{e} définis pour les phases cubique } et quadratique dans les pages précédentes.}$

.

- ANNEXE D -

THEORIE DES FLUCTUATIONS APPLIQUEE AUX TRANSITIONS DE PHASE FERROELECTRIQUES

1. GENERALITES SUR LES FLUCTUATIONS.

1.a. Système homogène : Théorie de Landau.

Dans le cadre de la théorie de Landau (Annexe A) on considère que le paramètre d'ordre est uniforme dans tout le cristal. Cette hypothèse revient à considérer que la valeur la plus probable du paramètre d'ordre n_0 est en même temps la valeur moyenne $\langle n \rangle$. On suppose à présent que le paramètre d'ordre subit une légère déviation par rapport à sa valeur à l'équilibre n_0 .

$$\eta = \eta_0 + \delta \eta \tag{D.1}$$

Cette variation $\delta \eta$ est supposée constante dans tout le cristal. La variation correspondante de l'énergie libre s'écrit :

$$\Delta G = G - G_0 = \frac{1}{2} a (T) (\eta - \eta_0)^2 + \frac{1}{4} b (\eta - \eta_0)^4 + \dots$$
 (D.2)

où les coefficients a (T), b... sont ceux qui ont été préalablement définis dans l'Annexe A. G₀ correspond ici à l'énergie libre pour l'état d'équilibre n_0 .

Si on suppose que la probabilité, pour que le système soit dans un état caractérisé par la valeur n, soit décrite par la statistique de Boltzmann :

$$W(\eta) = A \exp \left[-\Delta G / k_{B}^{T} \right]$$
(D.3)

où la constante A peut être déduite de la condition de normalisation

$$\int_{-\infty}^{+\infty} W(\eta) \, d\eta = 1$$
 (D.4)

le carré moyen des fluctuations du paramètre d'ordre s'écrit sous la forme :

$$< \delta \eta^{2} > = \int \delta \eta^{2} W(\eta) d\eta \qquad (D.5)$$
$$-\infty$$

En se limitant au terme carré dans le développement D.2 de \triangle G, on obtient :

$$\begin{array}{r} + \infty \\ < \delta \eta^{2} >= A \int \delta \eta^{2} \exp \{-\frac{a(T) \delta \eta^{2}}{2 k_{B}T} \} d\eta \\ - \infty \\ = A \frac{2 k_{B}T}{a(T)} \end{array}$$
(D.6)

où le coefficient A fourni par l'équation D.4 prend la valeur :

$$A = [2 \Pi / a(T)]$$

On peut donc encore écrire l'équation D.6 sous la forme :

$$\langle \delta \eta^{2} \rangle = \left(\frac{2}{\Pi a(T)}\right)^{\frac{1}{2}} k_{B} T = \sqrt{\frac{2}{\Pi}} \frac{k_{B} T}{[a' (T - T_{0})]} \chi$$
 (D.6')

Par suite, comme a(T) = 0 pour $T = T_0$ lors d'une transition du deuxième ordre (Cf Annexe A § 2.A/ α) on s'attend à une divergence de la variance de nà la transition. Le système devient donc instable sous l'effet de l'augmentation des fluctuations. Pour une transition du ler ordre, les fluctuations sont très grandes à la température de la transition $T = T_1$, sans pour autant devenir infinies. La théorie de Landau exposée dans l'Annexe A doit donc être modifiée dans le cas où le système inclut de grandes fluctuations du paramètre d'ordre, ce qui est particulièrement vrai au voisinage de la transition.

Remarquons que l'équation D.6 fournit dans le cas d'un paramètre d'ordre homogène une formulation du théorème de fluctuation-dissipation que nous verrons plus loin :

$$\langle \delta \eta^2 \rangle \propto k_{\rm B} T_{\chi}$$
 (D.7)

1.b. Système inhomogène.

a) Fonction de corrélation et théorème de fluctuation-dissipation.

On considère à présent un système inhomogène pour lequel le paramètre d'ordre est fonction à la fois du point \dot{r} et du temps t : $\eta = \eta (\dot{r}, t)$. La fluctuation du paramètre d'ordre s'écrit alors :

$$\delta \eta (\vec{r}, t) = \eta (\vec{r}, t) - \langle \eta (\vec{r}, t) \rangle = \eta (\vec{r}, t) - \eta$$
 (D.8)

On définit la fonction de corrélation du paramètre d'ordre par la relation :

$$f(\vec{r}, \vec{r}', t, t') = \langle [\eta(\vec{r}, t) - \eta] [\eta(\vec{r}', t') - \eta'] \rangle$$
ou encore:
$$f(\vec{r}, \vec{r}', t, t') = \langle \delta \eta(\vec{r}, t) - \delta \eta(\vec{r}', t') \rangle$$
(D.9)

La fonction de corrélation indique comment la déviation du paramètre d'ordre par rapport à sa valeur moyenne, qui se produit au point \vec{r} , à l'instant t se répercute au point $\vec{r'}$ à l'instant t'.

On suppose que le cristal présente des propriétés de translation dans l'espace et dans le temps. Par suite, si on considère uniquement la fluctuation spatiale, on a en posant $< \eta(\vec{r}) > = < \eta(\vec{r'}) > = \eta$:

$$f(\vec{r}, \vec{r}') = f(\vec{r} - \vec{r}') = \langle \eta(\vec{r}) - \eta(\vec{r}') \rangle - \eta^2$$
 (D.10)

La quantité $\langle \eta (\vec{r}) \eta (\vec{r'}) \rangle$ exprime la probabilité pour que le paramètre d'ordre ait une valeur donnée $\eta (\vec{r})$ au point \vec{r} s'il possède la valeur $\eta (\vec{r'})$ en $\vec{r'}$ (probabilité conditionnelle).

On s'aperçoit que si | r - r' | + ∞ , η (\vec{r}) et η (\vec{r}') ne sont plus corrélées :

$$| \mathbf{r} - \mathbf{r}' | \rightarrow \infty \Longrightarrow \langle \eta (\vec{r}) \eta (\vec{r}') \rangle + \langle \eta (\vec{r}) \rangle \langle \eta (\vec{r}') \rangle + \eta^{2}$$
(D.11)

de sorte que :

$$f(\vec{r} - \vec{r'}) = 0$$
 si $|r - r'| + \infty$ (D.11')

La fonction de corrélation f $(\dot{\mathbf{r}}, \dot{\mathbf{r}}')$ décrit également la modification de la valeur moyenne du paramètre d'ordre produite par la variation d'un champ extérieur inhomogène E $(\dot{\mathbf{r}})$ (Landau et Lifshitz 1959) :

$$\delta < \eta(\mathbf{r}) > = (k_B T)^{-1} \int f(\vec{r}, \vec{r'}) \delta E(\vec{r'}) d\mathbf{r'}$$
(D.12)

Par suite, on obtient la susceptibilité spatiale :

$$\chi(\vec{r}) = \frac{\partial \eta(\vec{r})}{\partial E(\vec{r})} = (k_B T)^{-1} \int f(\vec{r}, \vec{r'}) dr' \qquad (D.13)$$

Toutes ces considérations sont également valables si on traite les fluctuations temporelles. La susceptibilité généralisée décrivant la réponse du système à un champ extérieur inhomogène et dépendant du temps est donc reliée à la fonction de corrélation par l'intermédiaire de la relation suivante :

$$\chi(\vec{r} - \vec{r'}, t - t') = i \pi \theta (t - t') < \delta \eta(\vec{r}, t) \delta \eta(\vec{r'}, t') > (D.14)$$

où : $\theta = 0$ pour x < 0 $\theta = 1$ pour x > 0

A l'aide de la transformée de Fourier de la fonction de corrélation :

$$F(K, \omega) = \int_{-\infty}^{+\infty} d(t - t') \int d(\vec{r} - \vec{r'}) f(\vec{r} - \vec{r'}, t - t') \exp[i\omega(t - t') - \omega(t - t')]$$

$$-i\vec{K}(\vec{r} - \vec{r'})]$$
(D.15)

et de la relation D.13, on obtient le théorème de fluctuation-dissipation (Kubo 1957) :

$$F(K, \omega) = -\frac{h}{\pi} [n(\omega) + 1] \chi''(K, \omega)$$
(D.16)
où n(\omega) = (exp fi \omega / k_{B}T)^{-1}

Or la quantité F (K, ω) est fournie expérimentalement par l'intensité diffusée S (K, ω) = A F (K, ω) lors d'une mesure de diffusion de particules (neutrons) ou de lumière.

La relation de Kramers-Kronig permet par la suite d'accèder à la partie réelle de $\chi(K, \omega)$:

$$\chi(K, \omega) - \chi(K, \infty) = \int_{-\infty}^{+\infty} \frac{\chi''(K, \omega')}{\Pi \omega'} d\omega' \qquad (D.17)$$

Les méthodes de diffusion permettent donc de connaître la fonction de corrélation par l'intermédiaire de la mesure de la susceptibilité χ (K, ω). En choisissant un vecteur de transfert \vec{K} constant, on peut ainsi étudier la dépendance temporelle des fluctuations possèdant un vecteur d'onde \vec{K} . D'autre part, on peut relier l'intensité intégrée à la moyenne du carré des fluctuations et à la susceptibilité statique χ (K, O). En effet, à partir des équations D.16 et D.17 on obtient :

$$\chi (K, \omega = 0) = P \int_{-\infty}^{+\infty} \frac{\chi''(K, \omega')}{\Pi \omega'} d\omega' = P \int_{-\infty}^{+\infty} F(K, \omega') d\omega'$$
$$= \beta < \eta (K)^{2} >$$
(D.18)

ou

$$\chi$$
 (K, $\omega = 0$) = B I(K) si $\hbar \omega' \leq k_{\rm B}$ T (D.18')

où P désigne la partie principale $\beta = 1/k_{B}T$ et $B = \beta/A$

Par suite, l'exposant critique γ utilisé habituellement pour décrire la divergence de la susceptibilité statique $\chi(q_c, 0) = C (T - T_c)^{-\gamma} (q_c \text{ est}$ le vecteur d'onde pour lequel la transition a lieu) concerne également la dépendance en température de l'intensité intégrée d'un spectre de diffusion ainsi que celle du carré moyen des fluctuations du paramètre d'ordre.

β) Déviations par rapport aux lois classiques.

En fait, la relation D.18' ci-dessus n'est strictement valable que si le coefficient de couplage A entre le paramètre d'ordre et la sonde expérimentale (neutrons, lumière) est indépendant de la température. Une exception est par exemple fournie par la diffusion Raman dans le cas d'une transition PE-FE. Le mode mou pour le vecteur d'onde critique $q_c = 0$ est en effet inactif Raman pour T > T_c mais devient actif pour T < T_c avec une efficacité proportionnelle au carré du paramètre d'ordre : $A = < \eta^2 > A'$. L'intensité intégrée s'écrit par conséquent :

$$I (q_{c} = 0) = A < n^{2} > = A' < n^{2} > \chi (0, 0)$$

$$(D.19)$$

$$\propto < n^{2} > < n^{2} >$$

Puisque le paramètre d'ordre $< \eta >$ varie comme t^{β} et que $< \eta^2 >$ évolue en t^{$-\gamma$} (où t = |T - T_c | / T_c) on attend une variation en température de l'intensité intégrée sous la forme :

$$I \quad \alpha \quad t^{2 \beta - \gamma} \tag{D.20}$$

Or, contrairement à ce qui est observé expérimentalement, aucune divergence de I n'est prévue dans le cadre de la théorie du champ moyen puisque $\beta = \frac{1}{2}$ et $\gamma = 1$ (Cf Annexe A). Ceci constitue un cas où la théorie de Landau fait défaut. D'autres modèles ont été successivement proposés pour tenir compte de l'importance des fluctuations dans les phénomènes critiques (modèle d' Ising, d'Heisenberg...). Les valeurs des exposants critiques trouvées pour c différents modèles sont rassemblées dans le tableau suivant D.a.

Quantité	Définition	Exposant	Landau	<pre>Ising (d = 2)</pre>	Ising (d = 3)	Heisenberg (d = 3)
Paramètre d'ordre	(Τ _c - Τ) ^β	β	1/2	1/8	≃ 5/16	0.37
Suscepti- bilité pour T > T c	$(T - T_{c})^{-Y}$	Ŷ	1	≃ 7/4	<i>≃</i> 5/4	1.37
Suscepti- bilité pour T < T c	(T _c -T)-Y	Υ'	1	≃ 7/4	$\approx \frac{5}{4} - \frac{21}{16}$?
Longueur de corrélation pour T > T c	$(T - T_{c})^{-v}$	ν	1/2	1	≃ 0.64	0.7
Longueur de corrélation pour T < T c	(Τ _c - Τ) ^{- ν'}	v '	1/2	1	?	?

Tableau D.a. : Valeurs des exposants critiques.

La longueur de corrélation ξ sera définie dans le paragraphe suivant ; sa valeur dans le cadre de la théorie de Landau est déduite de l'équation D.6'.

L'ensemble de ces descriptions a conduit à la théorie moderne du groupe de renormalisation (voir par exemple Stanley 1971).

Une des approches intermédiaires entre la théorie du champ moyen et la théorie du groupe de renormalisation est constituée par la théorie d'Ornstein-Zernike.
La théorie d'Ornstein-Zernike se propose de fournir les corrections qui peuvent être apportées à la théorie de Landau si l'on tient compte des fluctuations du paramètre d'ordre.

On suppose que le système cristallin peut être subdivisé en soussystèmes dans chacun desquels le paramètre d'ordre fluctue d'une quantité $\delta \eta (\mathbf{r}) = \eta (\mathbf{r}) - \langle \eta (\mathbf{r}) \rangle$. Ici le point \mathbf{r} concerne donc un sous-système constitué au moins par une maille élémentaire. Par la suite, en posant $\langle \eta (\mathbf{r}) \rangle$ on écrira simplement $\delta \eta (\mathbf{r}) = \eta (\mathbf{r})$ pour caractériser la fluctuation du paramètre d'ordre. De plus, on ne considère ici que les fluctuations spatiales.

2.a. Expression générale de l'énergie libre.

L'énergie libre totale du système de volume V résulte de l'intégration sur tout ce volume de la densité d'énergie libre g (n + r):

$$G = \int_{V} g(\eta \overrightarrow{r}) d^{3}r$$

avec :

 $g(n_{\dot{r}}, T) = g_0(T) + \frac{1}{2} a(T) n_{\dot{r}}^2 + \frac{1}{4} b n_{\dot{r}}^4 - \frac{1}{2} f (\nabla n_{\dot{r}})^2 + \dots$ (D.21)

où g_(T) représente l'énergie libre (par unité de volume) pour l'état d'équilibre < n (\vec{r}) > = 0.

Cette équation est analogue au développement de Landau sans fluctuations (Cf équation A.19) mais à présent l'énergie libre dépend de η (\vec{r}) au point \vec{r} et de ses dérivées spatiales :

$$\frac{(\frac{\partial \eta}{\partial x})^2}{\frac{\partial x}{\partial y}} + \frac{(\frac{\partial \eta}{\partial x})^2}{\frac{\partial y}{\partial z}} + \frac{(\frac{\partial \eta}{\partial x})^2}{\frac{\partial z}{\partial z}} = (\nabla \eta_{\Gamma}^{+})^2$$

D'autre part, les valeurs des quantités $g_0(T)$, a(T), b ... sont en principe différentes de celles de l'équation A.19.

Le coefficient du terme du second degré est de la forme :

$$a(T) = a'(T - T_0)$$

On applique ici ces considérations générales au cas d'une transition PE-FE. Le paramètre d'ordre au point \vec{r} respecte donc les conditions suivantes :

$$\langle \mathbf{P}(\vec{\mathbf{r}}) \rangle = \langle \mathbf{\eta}(\vec{\mathbf{r}}) \rangle = 0 \qquad \delta \mathbf{\eta}(\vec{\mathbf{r}}) = \mathbf{\eta}(\vec{\mathbf{r}}) \qquad \mathbf{T} \rangle \mathbf{T}_{0}$$

$$\langle \mathbf{\eta}(\vec{\mathbf{r}}) \rangle \neq 0 \qquad \delta \mathbf{\eta}(\vec{\mathbf{r}}) = \mathbf{\eta}(\vec{\mathbf{r}}) - \langle \mathbf{\eta}(\vec{\mathbf{r}}) \rangle \qquad \mathbf{T} \langle \mathbf{T}_{0} \qquad (D.22)$$

Par suite, les valeurs locales de la polarisation P (\vec{r}) représentent des déviations par rapport à l'état d'équilibre.

D'autre part, on suppose que le coefficient f du développement D.21 est positif ; en effet si f < O l'énergie libre ne peut présenter de minimum et le cristal ne peut jamais être uniformément polarisé. On définit les transformées de Fourier suivantes :

$$P(\vec{r}) = \sum_{k} P_{k} e^{i\vec{k}\cdot\vec{r}}$$
 $P_{k} = \frac{1}{V} \sqrt{P(\vec{r})} e^{-i\vec{k}\cdot\vec{r}} d^{3}r$

Comme P (\vec{r}) est réel on a :

$$P_{k}^{*} = P_{-k}^{*}$$
 (D.23)

D'autre part :

$$\nabla P(\vec{r}) = \sum_{k} i k P_{k} e^{i \vec{k} \cdot \vec{r}}$$

Par suite, dans le développement de l'énergie libre (équation D.21), on remplace chaque terme par sa transformée de Fourier. On obtient en intégrant sur tout le volume du système :

$$G = V g_{0} (T) + \frac{a (T)}{2} k_{1}^{\Sigma} k_{2} P (k_{1}) P (k_{2}) \int_{V} e^{i(\vec{k}_{1} + \vec{k}_{2})\vec{r}} d^{3}\vec{r}$$

$$+ \frac{f}{2} k_{1}^{\Sigma} k_{2}^{-k_{1}} k_{2} P (k_{1}) P (k_{2}) \int_{V} e^{i(\vec{k}_{1} + \vec{k}_{2})\vec{r}} d^{3}\vec{r}$$

$$+ \frac{b}{4} k_{1} k_{2}^{\Sigma} k_{3} k_{4} P (k_{1}) P (k_{2}) P (k_{3}) P (k_{4}) \int_{V} e^{i(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3} + \vec{k}_{4})\vec{r}} d^{3}\vec{r}$$

$$+ \dots \dots \qquad (D.24)$$

- A.69 -

- A.70 -

Si on tient compte du fait que :

$$\int_{V} e^{i(\vec{k}_{1} + \vec{k}_{2})\vec{r}} d^{3}\vec{r} = \begin{cases} V & \text{si } \vec{k}_{1} + \vec{k}_{2} = 0 \\ 0 & \text{si } \vec{k}_{1} + \vec{k}_{2} \neq 0 \end{cases}$$
(D.25)

on obtient la variation d'énergie libre par unité de volume sous la forme :

$$\frac{\Delta G}{V} = G - G_{g} = \frac{a (T)}{2} \frac{\Sigma}{k} P (k) P (-k) - \frac{f}{2} \frac{\Sigma}{k} k^{2} P (k)$$

$$P(-k) + \frac{b}{4} \vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3} + \vec{k}_{4} = 0 \quad P(k_{1}) \quad P(k_{2}) \quad P(k_{3}) \quad P(k_{4}) + \dots$$
(D.26)

où G_s est l'énergie libre statique obtenue pour l'équilibre du système. Ce développement correspond à l'expression d'un Hamiltonien effectif. On peut remarquer que l'on retrouve le développement sans fluctuations si k = 0 Les vecteurs \vec{k} ne sont pas quelconques mais respectent les conditions aux limites :

$$k_{X} L + k_{V} L + k_{Z} L = n 2 \Pi$$
 (D.27)

où n est un nombre entier et L la périodicité du système constitué par les sous-systèmes caractérisés chacun par n (\mathbf{r}) :

$$\eta$$
 (x, y, z) = η (x + L, y, z) = η (x, y + L, z) = η (x, y, z + L)(D.27')

Il s'ensuit que :

$$\vec{k} = \frac{2 \Pi}{L} (n_x \hat{x} + n_y \hat{y} + n_z \hat{z})$$
 (D.27")

où \hat{x} , \hat{y} et \hat{z} sont les vecteurs unitaires le long des axes x, y, z. Le vecteur \vec{k} peut ne pas coïncider avec le vecteur \hat{q} du réseau réciproque cristallin défini par $q = \frac{2 \pi}{a} n$ (a, paramètre du réseau).

2.b. Etude de la phase paraélectrique.

Si on se limite, en première approximation, aux termes carrés du

développement D.26, on obtient :

$$\frac{\Delta G}{V} = G_1 = \frac{1}{2} \frac{\Sigma}{k} A (k) P (k) P (-k)$$
(D.28)

avec :

$$A(k) = a(T) + f k^{2}$$
 (D.28')

Si P (k) est une grandeur complexe telle que : P (k) = P' (k) + i P" (k) P (- k) = P' (k) - i P" (k)

la transformée de Fourier de la fonction de corrélation s'écrit :

$$< P(k) P(-k) > = < |P(k)|^{2} = < P'(k)^{2} > + < P''(k)^{2} >$$

L'équation D.28 peut alors s'écrire :

$$G_1 = \sum_{k} A(k) (< P'(k)^2 > + < P''(k)^2 >)$$

où Σ' désigne la somme sur le demi-espace des k. A partir du théorème de fluctuation-dissipation (Cf équation D.18), on écrit :

< P' (k)² > = < P''(k)² > = k_B T
$$\chi$$
 (k) = $\frac{k_B T}{\partial^2 G_1 / \partial P'(k)^2}$

d'où l'on déduit le carré moyen de la fluctuation de la polarisation :

$$< |P(k)|^{2} > = \frac{k_{B}T}{A(k)} = \frac{k_{B}T}{a'(T - T_{O}) + fk^{2}}$$
 (D.29)

et la susceptibilité diélectrique :

$$\chi$$
 (k) = $\frac{1}{A(k)}$ = $\frac{1}{a'(T - T_0) + f k^2}$ (D.30)

La fonction A (k) détermine par conséquent la limite de stabilité de la phase PE. En définissant la longueur de portée des corrélations par :

$$\xi^{2} = \frac{f}{a(T)} = \frac{f}{a'(T - T_{0})} = \frac{\xi^{2} 0}{T - T_{0}}$$
 (D.31)

où ξ_0 est la valeur pour des températures éloignées de la région critique, on peut redéfinir les expressions D.29 et D.30 sous les formes respectives suivantes :

$$< |P(k)|^{2} > = \frac{k_{B}T}{a'(T - T_{0})} \frac{1}{1 + \xi^{2} k^{2}}$$
 (D.29')

$$\frac{k_{\rm B} T C}{\xi_{\rm O}^2 \left(\frac{1}{\xi^2} + k^2\right)}$$
(D.29")

$$\chi(k) = \frac{1}{a'(T - T_0)} \frac{1}{1 + \xi^2 k^2}$$
(D.30')

$$= \frac{C}{\xi_0^2 \left(\frac{1}{\xi^2} + k^2\right)} = \frac{1}{f \left(\frac{1}{\xi^2} + k^2\right)}$$
(D.30")

où C est la constante de Curie C = 1/a'. Par transformée de Fourier inverse de l'équation D.29 on obtient l'expression de la fonction de corrélation (Cf équation D.9) :

$$P(r - r') = \langle [P(r) - \langle P(r) \rangle] [P(r') - \langle P(r') \rangle]$$

= $\langle |P(r)|^2 \rangle \frac{\exp(-|r - r'|/\xi)}{|r - r'|}$ (D.32)

Dans le cas d'une transition du 2ème ordre, on s'aperçoit que la longueur de corrélation ξ devient infinie pour T = T₀. Il s'ensuit au vu de la relation D.32 que les corrélations deviennent plus fortes au voisinage de la transition. D'autre part, on constate que le carré moyen des fluctuations augmente de manière analogue à la susceptibilité χ (k). Cet accroissement est d'autant plus important que le vecteur d'onde \vec{k} considéré est plus petit.

On peut également réécrire l'équation D.30' sous la forme :

$$\chi(k) = \frac{\chi(0)}{1 + \xi^2 k^2}$$
(D.33)

où $\chi(0)$ est la susceptibilité obtenue pour k = 0 et ω = 0. Par conséquent $\chi(k)$ ou encore l'intensité intégrée I (k) qui lui est proportionnelle (Cf équation D.18') peuvent fournir, à une température donnée, - A.73 -

la variation des fluctuations en fonction du vecteur d'onde \tilde{k} . Cette dépendance est fournie dans ce cas par une lorentzienne de largeur à mi-hauteur $2/\xi$. Le facteur $(1 + \xi^2 k^2)^{-1}$ constitue la correction à la théorie de Landau introduite par les fluctuations du paramètre d'ordre.

La relation D.33 est établie dans l'hypothèse où les termes d'ordre supérieur à 2 peuvent être négligés dans le développement D.26. Ceci n'est vérifié que si le module de \vec{k} est faible. Considérons à présent le terme d'ordre 4 et effectuons l'approximation suivante :

$$P(k_1) P(k_2) P(k_3) P(k_4) = P(k_1) P(k_2) < |P(k)|^2 > (D.34)$$

On obtient alors successivement :

$$\frac{\Delta G}{V} = G'_{1} = \frac{1}{2} \left[a (T) + f (k^{2}) \right] \frac{\Sigma}{k} P (k) P (-k) + \frac{b}{4} \vec{k}_{1} + \vec{k}_{2} = 0 P (k_{1}) P (k_{2}) < |P(k)|^{2} > (D.35)$$

ou encore :

$$\frac{\Delta G}{V} = G'_{1} = \frac{1}{2} \frac{\Sigma}{k} A' (k) P (k) P (-k)$$
(D.35')

avec

où :

Puisque la polarisation P₀ est nulle dans la phase cubique, l'approximation dans laquelle on s'est placé est valable quelle que soit la valeur de k. Les expressions D.29, D.30, D.33 restent vérifiées même si l'on tient compte des termes d'ordre supérieur à 2 dans le développement D.26.

Au lieu d'être isotropes, les fluctuations peuvent se développer préférentiellement selon certaines directions ou dans un plan particulier. Envisageons le cas de l'anisotropie cubique pour laquelle les corrélations sont unidimensionnelles dans la phase cubique. La longueur de corrélation ξ peut alors se projeter selon les trois axes cubiques x, y et z :

$$\xi_x = \xi \cos \alpha$$
 $\xi_y = \xi \cos \beta$ $\xi_z = \xi \cos \gamma$

où $\alpha,\ \beta$ et γ sont les cosinus directeurs que fait la direction de ξ avec ces axes.

$$\chi (k) = \frac{\chi (0)}{1 + \xi_{X}^{2} k_{X}^{2} + \xi_{y}^{2} k_{y}^{2} + \xi_{z}^{2} k_{z}^{2}}$$
(D.37)

La largeur de la distribution de l'intensité dans les directions x, y et z est dans ce cas proportionnelle respectivement à $1/\xi_x$, $1/\xi_y$ et $1/\xi_z$. L'équation D.34 peut encore s'écrire :

$$\chi (k) = \frac{\chi (0)}{1 + \frac{\xi^2}{k^2} (k_x^4 + k_y^4 + k_z^4)}$$
(D.38)

$$= \frac{\chi (0)}{1 + \xi^2 k^2 - \xi^2 \Delta / k^2}$$

où
$$\Delta = 2 (k_x^2 + k_y^2 + k_z^2 + k_z^2 + k_z^2 + k_z^2)$$

Si le vecteur d'onde k est égal à k_x ou k_y ou k_z on retrouve la relation D.33, puisqu'alors $\Delta = 0$. Par suite, on s'aperçoit que dans le cas de l'anisotropie cubique, les fluctuations diminuent lorsqu'on s'écarte des directions k_x , k_y et k_z .

2.c. Etude d'une phase ferroélectrique.

Si l'on envisage l'étude d'une phase PE on doit considérer d'une part l'intervention des termes d'ordre 4 dans le développement D.26, et d'autre part l'influence des forces à longue portée liées à la polarisation permanente. On reprend par conséquent l'expression D.36 dans laquelle la valeur à l'équilibre de la polarisation P_0 est obtenue par minimisation de l'énergie libre : $P_0^2 = -a$ (T) / b (Cf équation A.25). L'équation D.36 devient :

A' (k) = 2 a' (
$$T_0 - T$$
) + f k² (D.39)

On en déduit le carré moyen de la fluctuation de la polarisation ainsi que la susceptibilité diélectrique :

$$< |P(k)|^{2} > = \frac{k_{B}T}{2 a' (T_{0} - T)} \frac{1}{1 + \xi^{2} k^{2}} T < T_{0}$$
 (D.40)

$$\chi(k) = \frac{1}{2 a' (T_0 - T)} \frac{1}{1 + \xi^2 k^2} \qquad T < T_0 \qquad (D.40')$$

où la longueur de corrélation est à présent définie par :

$$\xi^{2} = -\frac{f}{2 a (T)}$$
(D.41)

Si, de plus, on fait intervenir l'anisotropie des fluctuations, il est nécessaire de remplacer le coefficient unique f par un tenseur \tilde{f} dont les éléments sont fonction de la direction du vecteur d'onde \tilde{k} . L'équation D.35' est alors modifiée en remplaçant le coefficient A' (k) par un coefficient A'' (k) donné par :

A" (k) = a' (T - T₀) + 3 b P₀² +
$$\Sigma_{\beta}$$
 f _{$\alpha\beta$} k _{α} k _{β} (D.42)

La largeur de la lorentzienne représentant χ (k) ou I (k) dépend à présent de la direction du vecteur d'onde d'observation.

Dans le cas d'une phase ferroélectrique, il est nécessaire de considérer en plus l'intervention des forces à grand rayon d'action, ce qui implique une nouvelle modification de l'équation D.26. La distribution spatialement inhomogène de la polarisation électrique permanente crée en effet un champ de dépolarisation fonction de la direction du vecteur d'onde (Cf Chapitre II équation 2.101).

$$E(\vec{k}) = -\frac{4 \Pi}{|k|^2} (\vec{k} \cdot P(\vec{k})) \cdot \vec{k}$$
 (D.43)

Par suite, ce champ de dépolarisation introduit un terme supplémentaire dans le développement de l'énergie libre :

$$-\frac{1}{2} \int E(\vec{r}) P(\vec{r}) d^{3}r = \frac{1}{2} \frac{\Sigma}{k} \frac{k_{\alpha} k_{\beta}}{|k|^{2}} P_{\alpha}(\vec{k}) P_{\beta}(\vec{k})$$
(D.43')

On obtient alors :

$$\frac{\Delta G}{V} = \frac{1}{2} \sum_{k}^{\Sigma} (a_{\alpha\beta}(T) + 4\pi \frac{k_{\alpha} k_{\beta}}{|k|^{2}} + f_{\alpha\beta i j} k_{i} k_{j}) P_{\alpha}(\vec{k}) P_{\beta}(-\vec{k})$$
(D.44)

où les indices α , β se réfèrent aux axes du cristal et les indices i, j aux directions des composantes du paramètre d'ordre multidimensionnel. Considérons le cas particulier du ferroélectrique uniaxial et négligeons l'anisotropie des fluctuations. On pose P = P_z et f_{aßij} = f $\delta_{ij} \delta_{\alpha\beta}$ L'équation D.44 s'écrit :

$$\frac{\Delta G}{V} = \frac{1}{2} \sum_{k} (a_{zz}(T) + 4 \pi \frac{k_{z}^{2}}{|k|^{2}} + f k^{2}) P_{z}(\vec{k}) P_{z}(-\vec{k})$$
(D.45)

Il s'ensuit que :

<
$$|P_{z}(k)|^{2}$$
 > = $\frac{k_{B}^{T}}{a_{zz}^{(T)} + 4 \Pi \cos^{2} \theta + f k^{2}} = k_{B}^{T} \chi(k)$ (D.46)

avec :

$$\cos \theta = k_{z} / \vec{k}$$

Deux cas peuvent être envisagés selon que la direction du vecteur d'onde est parallèle ou perpendiculaire à la polarisation P_{τ} . On obtient respectivement

$$\langle |P_{//}(k)|^{2} \rangle = \frac{k_{B}T}{a(T) + 4 \Pi + f k^{2}} = k_{B}T \chi(k)$$
 (D.47)
si $\vec{P}_{Z} //\vec{k}$

$$\langle |P_{\perp}(k)|^{2} \rangle = \frac{k_{B}T}{a(T) + f k^{2}} = k_{B}T \chi(k)$$
 (D.48)
si $\vec{P}_{z} \perp \vec{k}$

On remarque que lorsque \vec{k} est normal à \vec{P}_z la susceptibilité $\chi(k)$ présente une forme semblable à celle de la phase cubique (cas isotrope) (Cf équation D.30) : les fluctuations P_z s'accroissent au voisinage de la transition. Par contre, selon la direction k_z , les fluctuations sont atténuées fortement. Même dans la limite $\vec{k} \rightarrow 0$, les fluctuations P_z ne divergent plus pour $T = T_0$ dans la direction \vec{k}_z .

2.d. Influence de la dépendance temporelle des fluctuations.

Jusqu'à présent, nous avons négligé dans la théorie d'Ornstein-Zernike l'effet de la variation des fluctuations en fonction du temps. La susceptibilité statique $\chi(k)$ ainsi disponible peut alors fournir une information sur la distribution spatiale des fluctuations ; cette susceptibilité est reliée à l'intensité diffusée intégrée sur toutes les fréquences, qui est par exemple accessible par diffraction de rayons X. Or il est également important de connaître la cinétique des fluctuations, c'est-à-dire la vitesse avec laquelle s'établissent les valeurs à l'équilibre des fluctuations. On fait alors appel à la fonction de corrélation qui dépend du temps et des coordonnées spatiales (Cf équation D.9) et à sa transformée de Fourier qui est la susceptibilité généralisée $\chi(k, \omega)$ (Cf équations D.15 et D.16). La susceptibilité $\chi(k, \omega)$ décrit la réponse du système à une excitation de fréquence ω dépendant du temps et peut être fournie par l'intensité diffusée S (K, ω) détectée lors des expériences de diffusion de neutrons ou de lumière.

Dans ce qui suit, on considère le cas k = 0 afin de s'abstraire de la dépendance spatiale des fluctuations. On accède ainsi à χ (0, ω) = χ (ω) fournie par les expériences de diffusion de lumière. L'équation de mouvement du paramètre d'ordre n (k = 0, t) = n (t) s'écrit :

$$m \eta + \gamma \eta + \frac{\partial \phi}{\partial \eta} = E(t)$$
 (D.49)

où :

m est la masse
E (t) la force externe appliquée
\$\$\$ le potentiel thermodynamique\$}

 γ le facteur d'atténuation de la fluctuation en fonction du temps. Si on considère la déviation de n par rapport à sa position d'équilibre n_O : $\delta n = n - n_O$, on obtient :

$$m \delta \ddot{n} + \gamma \dot{n} + \frac{\partial^2 \phi}{\partial \eta^2} \delta \eta = E (t)$$
 (D.49')

ou encore, puisque l'on peut toujours poser $\eta_0 = 0$

$$m \ddot{\eta} + \gamma \dot{\eta} + \frac{\partial^2 \phi}{\partial \eta^2} \eta = E (t)$$
 (D.49")

Cette équation est l'équation générale d'un oscillateur amorti. La dérivée seconde du potentiel thermodynamique par rapport au paramètre d'ordre représente par définition l'inverse de la susceptibilité statique χ (k) indépendante de la fréquence et égale ici à χ (k = 0) (Cf Annexe A et équation D.30).

Afin d'analyser la dépendance temporelle des fluctuations on pose E (t) = E (ω) e^{-i ω t}; on obtient :

$$n (t) = n(\omega) e^{-i\omega t} = \frac{E(\omega) e^{-i\omega t}}{\chi^{-1}(k = 0) - m\omega^2 - i\omega\gamma}$$

$$= \frac{E(\omega) e^{-i\omega t}}{m(\omega_0^2 - \omega^2 - i\omega\Gamma)}$$
(D.50)

où
$$\omega_0 = \left(\frac{\chi^{-1}}{m}\right)^{\frac{1}{2}}$$
 est la fréquence propre du mode

et $\Gamma = \gamma/m$ sa constante d'amortissement. Par suite, la densité spectrale des fluctuations $< |\eta(0, \omega)|^2 > = < |\eta(\omega)|^2$ s'obtient par intégration sur le temps :

<
$$|n(\omega)|^{2}$$
 > = $\frac{< |E(\omega)|^{2} >}{m^{2} [(\omega_{0}^{2} - \omega^{2})^{2} + \Gamma^{2} \omega^{2}]}$ (D.51)

A l'aide de la définition de la susceptibilité $\chi(\omega)$: $\eta(\omega) = \chi(\omega) E(\omega)$ et du théorème de fluctuation-dissipation (Cf équation D.16) on déduit :

$$\chi (\omega) = \frac{1}{m (\omega_0^2 - \omega^2 - i \Gamma \omega)}$$
(D.52)

(D.53)

et

$$< |n(\omega)|^{2} > = \frac{k_{B}T}{\pi \omega} \chi''(\omega)$$
 si $\hbar \omega << k_{B}T$

avec

$$\chi''(\omega) = \frac{\Gamma}{(\omega_0^2 - \omega^2)^2 + \Gamma^2 \omega^2}$$

La relation D.52 fournit de manière générale la réponse d'un système à une excitation de fréquence ω . On peut remarquer que si $\Gamma < \omega_0$, la fréquence $\omega_0 = (\frac{\chi^{-1}}{m})^{\frac{1}{2}}$ correspond à la fréquence propre d'un mode mou puisque χ^{-1}

doit s'annuler à T = T_c pour une transition du 2ème ordre. Par contre, si l'amortissement est grand devant ω_0 , les fluctuations du paramètre d'ordre ont alors un caractère relaxationnel ; dans ce cas $\tau^{-1} = \omega_0^2/\Gamma = \chi^{-1}/\gamma$ désigne la vitesse de relaxation. On obtient alors :

$$\chi(\omega) = \frac{1}{1 + i \omega \tau}$$
(D.54)

On s'attend alors à la condition $\tau^{-1} \rightarrow 0$ lorsque $T \rightarrow T_c$. Cette réponse est par exemple celle d'un système de fluctuations corrélées qui s'atténuent dans le temps selon une loi en exp $-t/\tau$. De telles relaxations de fluctuations donnent lieu à un pic central dans une expérience de diffusion de lumière ou de neutrons. La largeur de ce pic central est proportionnelle à τ^{-1} .

On peut également envisager un système où mode mou et fluctuations reliées à un pic central coexistent ; dans ce cas, la susceptibilité $\chi(\omega)$ a la forme (Cf équation 6.70) :

$$\chi (\omega)^{-1} = \left[\omega_0^2 - \omega^2 - \Pi (\omega) \right]$$
 (D.55)

où II (ω) est la self-énergie.

On peut alors obtenir diverses réponses du système selon la fréquence ω , les relations D.52 et D.54 fournissant les cas extrêmes. Ainsi à haute fréquence ($\omega > \tau^{-1}$) les fluctuations de position n'ont pas le temps d'établir leur valeur à l'équilibre et seules les fluctuations liées à l'agitation thermique (phonon mou) peuvent être détectées.

La susceptibilité généralisée $\chi(k, \omega)$ dépendant du vecteur d'onde et de la fréquence résulte de la composition de $\chi(k, \omega = 0)$ fournie par les équations D.30, D.33, D.37 ou D.40' selon le modèle, et de $\chi(k = 0, \omega)$ donnée par l'équation D.52, D.54 ou D.55.

Ainsi dans le cas d'un système isotrope de fluctuations (Cf équation D.33) on a de manière générale :

$$\chi (k, \omega) = \frac{1}{(\omega_0^2 - \omega^2 - \Pi (\omega))} \frac{1}{1 + \xi^2 k^2}$$
(D.56)

Pour des fréquences ω de l'ordre des fréquences phononiques, ou dans le cas d'un bon système displacif, cette susceptibilité s'écrit :

$$\chi (k, \omega) = \frac{1}{\Omega_{s}^{2} - \omega^{2} - i \Gamma \omega} \frac{1}{1 + \xi^{2} k^{2}}$$
(D.57)

d'où pour $\omega = 0$ on déduit :

$$\chi(k, \omega = 0) = \frac{1}{\Omega_{s}^{2}} \frac{1}{1 + \xi^{2}k^{2}} = \chi(k)$$
(D.58)

Par analogie avec le cas k = 0, pour lequel l'inverse de la susceptibilité χ (0) correspond à la fréquence Ω_s^2 d'un mode sans fluctuations, on peut écrire :

$$\chi(k)^{-1} = \omega(k)^{2} = \Omega_{S}^{2} (1 + \xi^{2} k^{2})$$
 (D.58')

On peut ainsi obtenir la dépendance en vecteur d'onde de la fréquence du mode mou.

Remarque : Généralisation de la théorie d'Ornstein-Zernike.

Ainsi qu'on l'a vu auparavant (§ 1.b/ β) les relations déduites de la théorie d'Ornstein-Zernike peuvent être étendues à des cas non classiques, pour lesquels l'exposant critique γ (de la susceptibilité χ) et l'exposant ν (de la longueur de corrélation ξ) sont différents respectivement des valeurs 1 et $\frac{1}{2}$ (Cf tableau D.a).

Ainsi, à titre d'exemple, la relation D.33 devient :

$$\chi(k) = \frac{C t^{-\gamma}}{1 + \xi_0^2 k^2 t^{-2\nu}}$$
(D.59)

où :

t est la température réduite $(T - T_0)/T_0$ C = 1/a' est la constante de Curie ξ_0 est défini par la relation D.31.