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Abstract

This thesis deals with automatic Dialogue Act (DA) recognition in Czech and in French.

Dialogue acts are sentence-level labels that represent different states of a dialogue, such

as questions, statements, hesitations, etc.

The first main contribution of this work is to propose and compare several approaches

that recognize dialogue acts based on three types of information: lexical, prosodic and

word positions. These approaches are tested on the Czech Railways corpus that contains

human-human dialogues, which are transcribed both manually and with an automatic

speech recognizer for comparison. The experimental results confirm that every type of

feature (lexical, prosodic and word positions) bring relevant and somewhat complemen-

tary information. The proposed methods that take into account word positions are espe-

cially interesting, as they bring global information about the structure of a sentence, at

the opposite of traditional n-gram models that only capture local cues. We propose three

approaches to model this information: the first one, the multiscale position approach, ex-

ploits a description of the sentence at several levels and smoothes the probabilities across

these levels. The second one, the non-linear merging approach, models the dependency

between the words in the sentence and their position with a Multilayer Perceptron. The

third one, the best position approach, exploits the Bayesian framework and assumes con-

ditional independence between the words and their position to infer the probability of the

dialogue act. We also propose a solution to the lack of training data problem, which is a

common issue in DA recognition systems. We develop the clustered unigram model, which

clusters the words in the sentences into several groups by maximizing mutual information

between two neighbor word classes. We show that this method is especially efficient when

the DA corpus is small. When word sequences are estimated from a speech recognizer, the

resulting decrease of accuracy of all proposed approaches is very small (about 3 %), which

confirms the capability to perform well in real applications.

One of the main issue in the domain of automatic dialogue act recognition concerns the

design of a fast and cheap method to label new corpora. The next main contribution is to

apply a general semi-supervised training approach based on the Expectation Maximization

algorithm to the task of labeling a new corpus with pre-defined DAs. We further propose

to filter out incorrect examples with two confidence measures, the maximum a posteriori

probability and the a posteriori probability difference methods. Experimental results show

that the proposed method is an interesting approach to create new dialogue act corpora

at low costs.



Resumé

Ce mémoire concerne la reconnaissance automatique des Actes de Dialogues (AD) en

tchèque et en français. Les actes de dialogues sont des unités au niveau de la phrase

qui représentent les différents états d’un dialogue, comme par exemple les questions, les

affirmations, les hésitations, etc.

La première contribution de ce travail est de proposer et comparer plusieurs approches

de reconnaissance des actes de dialogues qui sont basées sur trois types d’informations :

lexical, prosodique et relative à la position des mots dans une phrase. Ces approches

ont été testées sur un corpus tchèque de dialogues entre utilisateurs et personnels dans

le domaine de la réservation de billets de chemins de fer. Ce corpus a été transcris en

mots manuellement, et avec un moteur de reconnaissance automatique afin de valider les

approches dans des conditions réelles. Les résultats expérimentaux confirment que chaque

type d’attributs (lexical, prosodique et syntaxique de position) apporte des informations

pertinentes et complémentaires. Les méthodes proposées exploitant la position des mots

dans la phrase sont particulièrement intéressantes, parce qu’elles utilisent une information

globale sur la structure de la phrase, alors que les modèles statistiques traditionnels de type

n-gram modélisent seulement les dépendances locales. Nous avons proposé trois modèles

de ce type : la première approche, position multi-échelle, décrit une phrase sur plusieurs

niveaux et lisse les probabilités au travers de ces niveaux. La deuxième approche, fusion

non-linéaire, modélise la dépendance entre les mots dans une phrase et leur position avec

un réseau de neurones de type perceptron multi-couches. La troisième approche, meilleure

position, utilise un formalisme bayésien : elle suppose l’indépendance conditionnelle entre

les mots et leur position dans une phrase pour inférer la probabilité a posteriori d’un acte

de dialogue étant donnés les mots et leurs positions. Nous proposons aussi une solution au

problème du manque de données pour l’apprentissage, qui est un problème très courant

dans les systèmes de reconnaissance automatique des actes de dialogues. Un modèle uni-

gramme de classes a été notamment développé dans ce but. Ce modèle rassemble les mots

des phrases dans plusieurs groupes en maximisant l’information mutuelle entre les classes

de mots voisins. Nous avons démontré que cette méthode est particulièrement efficace sur

un petit corpus d’AD. Si les séquences de mots sont estimées par un moteur de recon-

naissance automatique, la précision de toutes les approches proposées ne diminue que très

peu relativement au cas idéal de la transcription manuelle. Ceci confirme la validité et

l’applicabilité des approches proposées dans des applications réelles.

Une autre contribution conséquente, également relative au manque de corpus étiquetés
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dans le domaine de la reconnaissance automatique des actes de dialoques, concerne le

développement et l’étude de méthodes d’étiquetage semi-automatique de nouveaux corpus.

Cette méthode est basée sur l’algorithme d’Espérance-Maximisation avec des AD prédéfinis

spécifiques à la tâche visée. Nous proposons deux mesures de confiance pour sélectionner

les exemples qui ont le plus de chance d’être classifiés correctement : la première utilise

le critère de maximisation de la probabilité a posteriori, et la seconde un critère basé sur

une différence de probabilités a posteriori. Les résultats expérimentaux démontrent que

la méthode proposée est une approche intéressante pour la création de nouveaux corpus

d’actes de dialogues à moindre coût.



Abstrakt

Tato dizertačńı práce se zabývá automatickým rozpoznáváńım Dialogových Akt̊u (DA)

v českém a francouzském jazyce. Dialogové akty jsou větné jednotky, které reprezentuj́ı

r̊uzné stavy dialogu, jako např. otázku, sděleńı, rozpaky, atd.

Prvńım hlavńım př́ınosem této práce je návrh a srovnáńı několika r̊uzných př́ıstup̊u roz-

poznáváńı dialogových akt̊u využ́ıvaj́ıce ťri druhy informace: lexikálńı, prozodickou a pozici

slov ve větě. Navržené př́ıstupy byly testovány na korpusu pro České dráhy (ČD), který

obsahuje rozhovory lid́ı v přirozeném jazyce. Korpus je pro srovnáńı účinnosti metod tran-

skribován ručně a pomoćı automatického rozpoznávače řeči. Výsledky pokus̊u potvrdily,

že př́ıznaky každého typu (lexikálńı, prozodické i pozice slov) přináš́ı d̊uležitou a vzájemně

se doplňuj́ıćı informaci. Navržené metody, které využ́ıvaj́ı pozici slov ve větě jsou velmi

zaj́ımavé, protože přinášej́ı informaci o globálńı struktuře věty, zat́ımco tradičńı statistické

modely typu n-gram modeluj́ı pouze lokálńı závislosti slov ve větě. Globálńı pozici slov

ve větě modeluj́ı ťri navržené metody. Prvńı metoda, multiscale position, využ́ıvá popis

věty na několika úrovńıch a vyhlazuje pravděpodobnostńı odhady mezi těmito úrovněmi.

Druhá metoda, non-linear merging, modeluje závislost mezi slovy a jejich pozićı ve větě

pomoćı neuronové śıtě typu v́ıcevrstvý perceptron. Třet́ı metoda, best bosition, využ́ıvá

Bayesovský rámec a k odvozeńı pravděpodobnosti dialogového aktu předpokládá nezávislost

mezi slovem a jeho pozićı ve větě. Navrhli jsme též řešeńı problému s nedostatkem

trénovaćıch dat, což je jedńım z úskaĺı systémů pro rozpoznáváńı dialogových akt̊u. Vyv-

inutá metoda, clustered unigram model, shlukuje slova ve větě do skupin na základě max-

imalizace vzájemné informace mezi dvěma sousedńımi slovńımi ťŕıdami. Ukázali jsme, že

tato metoda je zvláště účinná, pokud máme k dispozici pouze malý DA korpus. Pokud jsme

použili slovńı sekvence źıskané pomoćı automatického rozpoznávače řeči, přesnost všech

našich př́ıstup̊u z̊ustala téměř shodná jako v př́ıpadě použit́ı manuálńı transkripce (pokles

pouze o 3%). Tento výsledek potvrdil schopnost navržených metod fungovat spolehlivě

i v reálných aplikaćıch.

Jeden z hlavńıch nedostatk̊u v oblasti automatického rozpoznáváńı dialogových akt̊u se

týká nedostatku trénovaćıch dat a návrhu rychlé a levné metody pro značkováńı nových

korpus̊u dialogovými akty. Daľśım hlavńım př́ınosem této práce je použit́ı obecné metody

trénováńı s učitelem i bez, která je založena na algoritmu Expectation Maximization,

v úloze značkováńı nového korpusu předdefinovanými dialogovými akty. Zde jsme navrhli

dvě metody mı́ry d̊uvěry na odstraněńı prvk̊u, které by mohly být klasifikovány neko-

rektně. Metody se nazývaj́ı: maximum a posteriori probability a a posteriori probability

difference. Výsledky experimentu ukázaly, že navržená metoda je účinným př́ıstupem pro

rychlou a levnou tvorbu korpusu dialogových akt̊u.
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Chapter 1

Introduction

Modeling and automatically identifying the structure of spontaneous dialogues is very

important to better interpret and understand them. The precise modeling of spontaneous

dialogues is still an open issue, but several specific characteristics of dialogues have already

been clearly identified. Dialogue Acts (DAs) are one of these characteristics.

Austin defines in [6] the dialogue act as the meaning of an utterance at the level of

illocutionary force. In other words, the dialogue act is the function of a sentence (or

its part) in the dialogue. For example, the function of a question is to request some

information, while an answer shall provide this information.

Table 1.1 shows an example of the beginning of a dialogue between two friends, with Peter

(A) calling Michal (B) on the phone. The corresponding DA labels are also shown. Each

utterance is labeled with a unique DA.

Speaker Dialogue Act Czech French English

A Conventional-
opening

Haló!? Hallo!? Hallo!?

B Conventional-
opening

Ahoj Petře! Bonjour Pierre! Hi Peter!

B Statement To jsem já, Michal. C’est moi, Michel. It’s me, Michael.
B Question Jak se máš? Ca va? How are you?

A Conventional-
opening

Čau Michale! Salut Michel! Hello Michael!

A Statement Moc dobře. Très bien. Very well.
A Question A ty? Et toi? And you?
B Statement Taky dobře. Aussi bien. I’m well too.

Table 1.1: Example of the beginning of a dialogue between persons A and B in Czech,
French and English with the corresponding DA labels.

1
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1.1 Applications

There are many applications of automatic dialogue acts detection. We mention here

only the most important ones: dialogue systems, machine translation, Automatic Speech

Recognition (ASR), topic identification [41] and animation of talking head.

In dialogue systems, DAs can be used to recognize the intention of the user, for instance

when the user is requesting some information and is waiting for it, or when the system

is trying to interpret the feedback from the user. An example of dialogue management

system that uses DA classification is the VERBMOBIL [2] system.

In machine translation, dialogue acts can be useful to choose the best solution when several

translations are available. In particular, the grammatical form of an utterance may depend

on its intention.

Automatic detection of dialogue acts can be used in ASR to increase the word recognition

accuracy, as shown for example in [127]. In this work, a different language model is applied

during recognition depending on the actual DA.

A talking head is a model of the human head that reproduces the speech of a speaker in

real-time. It may also render facial expressions that are relevant to the current state of

the discourse. Exploiting DA recognition in this context might make the animation more

natural, for example by raising the eyebrows when a question is asked. Another easier

option is to show this complementary information with symbols and colors near the head.

1.2 Motivations

Recognizing dialogue acts can be seen as the first level of dialogue understanding and is

an important clue for applications, as it has been shown in the previous section. However,

this information is often missing in the current systems. Our first motivation is thus to

implement a module to automatically detect DAs, which can be easily integrated into

different systems, and particularly into dialogue systems and animated talking heads.

One of the main issues with DA recognition comes from the fact that the optimal DA tag-

set is usually not the same for different applications. Hence, manual labeling of a corpus

is usually required every time DAs are considered for use in a new system. But manual

labeling is a very time-consuming and expensive task. Therefore, our next motivation to

propose and implement a method for semi-automatic corpus labeling. This method should

be as general as possible to be able to create, at a low cost, new DA corpora in several

languages, with several DA tag-sets.

1.3 Objectives

This memory deals with automatic dialogue act recognition in Czech and in French. The

main goal is to study the existing dialogue act recognition approaches and to propose new
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approaches that address some of their limitations. Different kinds of information can be

used to recognize DAs. Another goal is thus to study the existing classifier combination

methods and to propose and implement some original solutions to improve the accuracy

of recognition.

The final objective is to make our proposals applicable in different languages and tasks,

so that our work can be applied in other settings than the particular experimental setup

developed in this thesis. Our third and last general objective is thus to propose solutions

to facilitate the development of new DA recognition systems at a low cost.

1.4 Contributions

The main contributions proposed in this thesis for automatic dialogue act recognition are

summarized below:

• Proposition of three new dialogue act recognition approaches based on lexical infor-

mation and word position in the utterance:

– multiscale position,

– non-linear merging and

– best position approach.

• Proposition of a new dialogue act recognition model, the clustered unigram model,

based on word clustering.

• Analysis and comparison of several methods of classifier combination for DA recog-

nition.

The main contributions in semi-automatic labeling are:

• Proposition of a new DA tag-set for radio broadcast news, based on the Dialogue

Act Markup in Several Layers (DAMSL) [3] and Meeting Recorder [36] projects.

• Proposition and implementation of two confidence measures methods: maximum

a posteriori probability and a posteriori probability difference.

• Use of these confidence measure methods to improve the performances of the Ex-

pectation Maximization (EM) algorithm for semi-supervised dialogue act tagging.

• Semi-automatic creation of a new French DA corpus based on the ESTER [34] corpus.

1.5 Framework

This work is developed in the context of two platforms: the first one at the Henri Poincaré

University in Nancy in France and the second one at the University of West Bohemia in

Pilsen in the Czech Republic.
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The first potential outcome of this work concerns the design and implementation of a soft-

ware for the deaf and hearing-impaired children to help them to better understand the

teacher at school and to facilitate their integration in classrooms with normal-hearing

children.

The software is based on the following principle: a microphone captures the speech signal of

the teacher, which is then passed to a phonetic speech recognizer. The sequence of phones

recognized by the system is then translated into “Langage Parlé Completé”(LPC [26],

Cued Speech in English), which is a visual representation of the phonetic content of the

sentence. This representation, well-known by part of the deaf community, is based on lips

movements enriched by hands and fingers positions. In the laptop used by a child, a 3D

talking head [69] reproduces these lips and hand movements. The information about the

DA type will be used to enrich the LPC transcription that appears on the laptop screen,

for example by displaying a DA type mark near the talking head. Another possibility is

to animate the face in function of the DA (for example by displaying different types of

eyebrows in function of the current DA).

The second outcome of this work is the creation of a dialogue system that could be used in

the Czech railway stations. This system shall be able to communicate with the passengers

with a limited vocabulary in natural language. The passengers can ask for train departure

or arrival times. This system will also be able to reserve and buy train tickets.

1.6 Thesis Structure

The first chapter presents an introduction about the importance of dialogue act recognition

with its main applications, our motivations, objectives and main contributions.

Chapter 2 presents the state of the art in the dialogue act domain. It defines the concept of

a dialogue act. Then, several DA tag-sets are cited with a particular focus on the Meeting

Recorder DA (MRDA) tag-set. Knowledge sources that are used for DA recognition are

described next. In particular, Sections 2.7 and 2.8 summarize the existing DA recognition

approaches, while Section 2.9 discusses several methods of classifier combination for DA

recognition.

Chapter 3 focuses on our main contributions about dialogue act recognition. It deals with

three proposed lexical and syntactic approaches that model utterance structure from the

words and their position. The fourth approach, the clustered n-gram model, is based on

word clustering and is described next. Our prosodic features and models are also described.

Several methods that combine the individual outputs of both types of approaches (lexical

and prosodic) are described in Section 3.5.

Chapter 4 deals with the experimental validation of the proposed approaches. The methods

that are evaluated respectively exploit lexical information (with and without sentence

structure), prosody information and a combination of both. They are evaluated in two

cases: with manual words transcription and with the transcription obtained from the

LASER speech recognizer.
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Chapter 5 deals with our proposal for semi-automatic labeling of the DA corpus. Our DA

tag-set is defined and an initial DA corpus is created. Then, the semi-supervised training

algorithm is proposed, developed and evaluated.

Chapter 6 discusses the research results and proposes some future research directions.



Chapter 2

State of the Art

2.1 Introduction

In this chapter, we summarize the main previous studies in the automatic DA recognition

domain. First, dialogue acts are described and the main DA tag-sets are presented with the

description of DAs that are used in our work. Next, the sentence modality term is described

with its relation to DAs. Section 2.5 describes the three main information sources used to

recognize dialogue acts: lexis (and syntax), prosody and the dialogue context. The existing

approaches of automatic DAs recognition are summarized and described in Sections 2.7

and 2.8. The last section deals with classifiers combination (in the general case and for

DA recognition).

2.2 Dialogue Acts

Generally speaking, a dialogue can be viewed as a sequence of complex elements of com-

municative behavior, intended to change the dialogue context. These elements are called

the Dialogue Acts (DAs). Several different definitions for DAs have further been proposed:

Dialogue acts are the functional units used by the speaker to change the context. These

functional units do not correspond to natural language utterances or other instances of

communication in a simple way, because utterances in general are multifunctional [18].

A dialogue act represents the meaning of an utterance at the level of illocutionary force [6]

or a DA is approximately the equivalent of the speech act [109].

A speech act is the action performed by means of a language, such as describing something

(“It is snowing.”), asking a question (“Is it snowing?”), making a request or an order

(“Could you pass the salt?”, “Drop your weapon or I’ll shoot you!”), or making a promise

(“I promise I’ll give it back.”) [105].

6
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A dialogue act is characterised by three properties:

• Communicative function

• Semantic content

• Utterance form

For example, the dialogue act “Does it snow?” takes the communicative function yes/no

question, the semantic content “it is snowing” and the utterance form “Does it snow?”.

The communicative function informs about the way of the context changes, provided that

the semantic content is given.

Each context takes global and local views. The global view remains constant from the

beginning of the dialogue while the local view keeps changing. Bunt distinguishes five

types of contexts [18]:

• Linguistic context is constituted from the previously pronounced text (local). It

contains also the language used by the participant of dialogue (global).

• Semantic context is formed by the objects concerning the task. The global view

generally includes the task. The local views are composed of specific elements, such

as the state of the task at a given time.

• Cognitive context consists of the aptitudes, of the goals and of the confidences of

the dialogue participants.

• Physical and perceptual context is characterised by the place and time. Its

characteristics are for example, whether the inter-actors see themselves or not, or

the type of communication channel that can be used, etc.

• Social context consists of the type of interactive situation and the roles of the

participants in that situation. The institutional context is the global view of this

context as well as the social status of the inter-actors. The local view means the

action performed by the obligation and by the rights to answer in function to the

local linguistic context.

Generally, a dialogue can not change all contexts on request. Only the linguistic, cognitive

and local social contexts can be modified during a dialogue. Furthermore, local views are

usually easier to change than global views.

The authors in [18] make a distinction between Task-Oriented (TO) and Dialogue Con-

trol (DC) dialogue acts. Task-oriented DAs allow to change the semantic context, while

dialogue control DAs allow to change the social or physical context. Several DAs can be

classified as informative DAs that correspond to information queries (such as questions),

or to propositions (such as inform or answer). Informative DAs and Dialogue Control

DAs form two distinct categories. For example, “It is the energy.” is an informative task

oriented utterance and “I can’t hear you.” is an informative dialogue control utterance.
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2.3 Dialogue Act Tag-set

Before performing DA recognition, it is necessary to define a DAs tag-set. This is a very

difficult task, because of two important requirements: the DAs tag-set should be generic

enough to be applicable to many different problems; and the DA tags definition must be

clear enough in order to be easily separable, which maximizes the agreement between the

human labelers.

Therefore, there is no general DAs tag-set in the literature. Most researchers define their

own DAs tag-sets, which is usually derived from one or more existing DAs tag-sets.

The most common DAs tag-sets are the Dialogue Act Markup in Several Layers (DAMSL)

[3], Switchboard SWBD-DAMSL [57], Meeting Recorder [36] and VERBMOBIL [52] DAs

tag-sets.

DAMSL, which was initially designed to be universal, is the most popular DA taxonomy.

Its annotation scheme is composed of four levels (or dimensions): communicative status,

information level, forward looking functions and backward looking functions. Generally,

the dimensions are orthogonal and it is possible to find examples of any possible combi-

nation of labels. Communicative status states whether the utterance is uninterpretable,

abandoned or is a self-talk. This feature is not used for most of the utterances. Information

level provides an abstract characterization of the content of the utterance. It is composed

of four categories: task, task-management, communication-management and other-level.

The forward looking functions are organized into a taxonomy, in a similar way as actions

in traditional speech act theory. The backward looking functions show the relationship

between the current utterance and the previous dialogue, such as accepting a proposal or

answering the question. DAMSL is composed of 42 DA classes.

SWBD-DAMSL is the application of DAMSL in the domain of telephone conversation.

Usually, there is a correspondence between the SWBD-DAMSL and DAMSL labels. First,

the dialogue utterances have been labeled with 220 tags. 130 of those labels that occurred

less than 10 times have been clustered, leading to 42 classes.

The Meeting Recorder DA (MRDA) tag-set is based on the SWBD-DAMSL taxonomy.

The MRDA corpus contains about 72 hours of naturally occurring multi-party meetings

manually-labeled with DAs and adjacency pairs. Meetings involve regions of high speaker

overlap, affective variation, complicated interaction structures, abandoned or interrupted

utterances, and other interesting turn-taking and discourse-level phenomena. The tags are

not organized anymore on a dimensional level (such as DAMSL), but the correspondences

are rather listed at the tag level. Each DA is described by one general tag, which may

be for several DAs completed by one (or more) specific tag. A specific tag is used when

the utterance cannot be sufficiently characterised by a general tag only. For example,

the utterance “Just write it down!” is characterised by one general tag statement and by

an additional specific tag command. MRDA contains 11 general tags and 39 specific tags.

The DA hierarchy in VERBMOBIL is organized as a decision tree. This structure is

chosen to facilitate the annotation process and to clarify relationships between different

DAs. During the labeling process, the tree is parsed from the root to the leaves, and
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a decision about the next branch to parse is taken at each node (c.f. Figure 2.1).

Feadback positive

Accept Confirm

Figure 2.1: Part of the DAs decision tree hierarchy.

42 DAs for German, English and for Japanese are defined in VERBMOBIL with 18 DAs

at the illocutionary level.

The DA tag-set used and defined in this work is based on a some important DAs that are

described next in details.

2.3.1 Statements

The primary goal of statements is to make claims about the world as in utterances such as

“Il neige, aujourd’hui.” (It is snowing, today.) or “Mám rád sýr.” (I like cheese.), and as

in answers to questions. Usually, the content can be evaluated as being true or false. As

in SWBD-DAMS, statements can be distinguished between statement-non-opinion and

statement-opinion. Statement-opinions are explicitly expressing the opinion (or idea)

of the speaker while statement-non-opinions are not.

Examples of statement-opinions are: “Nemohu si představit kráĺıky jako domáćı ma-

zĺıčky.” (I cannot imagine rabbits as domestic pets.) or “Je pense que c’est bien.” (I think

it is right.). The statement-non-opinion tag is used for instance when the speaker is telling

a story and the topic is personal: “J’ai quatorze ans et j’habite à Plzeň.” (I am fourteen

and I’m living in Plzeň) or “Máme kočku. Je j́ı asi pět let.” (We have a cat. She is prob-

ably five years old.). However, as noted in [57], it is not clear yet that such a distinction

between statements is really useful.

2.3.2 Questions

A question is an utterance normally used by a speaker to request some information from

the listener. This information usually takes the form of an answer. Alternatively, one

may state that the question is the request itself, which is expressed by the interrogative

sentence. In the following, we will use the former definition. Questions resemble other

requesting expressions as well as commands, which all normally elicit a response. Several

types of questions are defined in the literature, but we describe next only two of them,

which are the most common in dialogues.

Yes/no questions are questions, which possible answers are “Yes” or “No”. They are

usually characterised by an inversion of subject-verb or by a characteristic intonation.

Examples of yes/no questions are: “Jsi to ty?” (Is it you?) or “Pleut-it?” (Is it raining?).
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The DA class Wh-question contains questions that require a specific answer. The ques-

tion usually contains a “wh” word such as: what, which, where, when, who, why, or how.

Note however that some questions with a “wh” word are not wh-questions, for instance

open-ended questions1. Wh-questions are for example: “Quelle heure est-il?” (What time

is it?) or “Jak se máte?” (How are you?).

For information about other types of question, please refer to [36].

2.3.3 Action Motivators

This group contains utterances that are at the origin of future actions. Such a future

action may happen immediately or after a long time. Action motivators can be classified

into commands, suggestions and commitments. Following the MRDA tag-set classification,

this DA class is usually considered as a special case of statements or questions. Therefore,

it is represented by one general DA tag and the specific DA tag action motivator.

The DA class Commands imposes somebody to make something. It may be syntactically

in the form of a question, e.g. “Chtěl bys zavř́ıt dveře?” (Do you want to close the door?)

or as a statement, e.g. “Fermez la porte!” (Close the door!). Commands are often confused

with suggestions. The distinction between both DAs may be made based on the kind of

responses or the social role of the speaker. Thus, rejecting a suggestion is not considered

as impolite as rejecting a command. This may be considered when manually labeling the

corpus. The role of the speaker has also some impact on classification, as suggestions made

by the speaker who is running a meeting are often considered as commands.

The Suggestion tag marks proposals, offers, advices, and most obviously, suggestions.

This class is often using the form ”maybe we should ...” or ”perhaps I can ...”. Examples

of suggestions are: “Voulez-vous courir aujourd’hui?” (Do you want to run today?) or

“Snad to můžeme vźıt teď.” (Maybe we can take it at once.).

Commitments are utterances, where a speaker commits himself to some course action in

the future. The main difference with suggestion is about the degree of certitude that the

action will be realized. Examples of commitments are: “Budu na tom pracovat.” (I will

work on that.) or “Je vous attendrai.” (I will wait for you.).

2.3.4 Backchannels and Acknowledgments

This group contains utterances that are most often responses and that usually confirm

to the speaker who has the floor, i.e. the speaker who is currently talking, that the

listener is listening and understanding. Generally, they do not elicit feedback, and the

purpose of these DAs is not to interrupt the speaker who has the floor. This broad DA

class contains: backchannels, acknowledgments, assessments/appreciations and rhetorical

question backchannels.

1An open-ended question is a question, designed to encourage a full, meaningful answer using the
subject’s own knowledge and/or feelings [36].
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Backchannels are utterances said by the listener to inform that the listener is following

the discourse of the speaker. It is usually not possible to identify backchannels from

the vocabulary only, because they share some words with other DAs, such as: accepts,

floor holders, etc. Additional features are thus required to identify backchannels, e.g. the

context of the DA or the corresponding audio record. Backchannels are often confused with

acknowledgments and accepts. A useful contextual information to distinguish them comes

from the speaker who has the floor: accepts agree the previous utterance of the speaker,

and they generally occur at the end of these utterances. Acknowledgments occur usually

after the end of the utterance of the speaker, and they confirm the semantic meaning of

the previously pronounced content. Common backchannels are for example: “Uh-huh”,

“Huh” or “Hm”.

Acknowledgments correspond to expressions that confirm the previous utterance (or its

significant part) pronounced by another speaker. They are neither positive nor negative,

in the sense that acknowledgments serve to confirm, not to agree or disagree. Common

acknowledgments are for example: “Okay”, “Oui” (Yes), “Je vois” (I see) or “Souhlaśım”

(All right).

2.3.5 Responses

This group contains utterances that represent the reaction to the previously pronounced

utterance (or utterances) in the dialogue1. It is divided into three main groups: positive,

negative and uncertain responses. The most important responses are described as follows:

Accepts (sometimes also called Agreements) are positive utterances that express agree-

ment to or acceptance of a previous question, proposal or statement. Accepts are usually

short utterances. They are often confused with backchannels and acknowledgments (c.f

Subsection 2.3.4), because they share a very similar vocabulary. To distinguish accepts

from other DAs, it is useful to look at the context of the utterance and to listen to the cor-

responding audio record. Usually, accepts have much more energy and are more assertive

than backchannels and acknowledgments. Examples of accept are: “Oui volontiers” (Yes

with pleasure) or “Presně tak” (Exactly).

Rejects are utterances that contain negative reactions to questions, proposals or state-

ments. Common rejects are: “Ne” (No) or “Non pas du tout” (No not at all).

The maybe tag marks utterances that express the probability or possibility about the

content of the previously pronounced utterance (or utterances). Probability or possibility

can be represented by the word “maybe” or by other words denoting incertitude. Maybes

are often confused with suggestions, such as “maybe we should ...”. Examples in context

(maybe after a question) are: “Savez-vous? Peut-être.” (Do you know? Maybe.) or

“Jakým př́ızvukem mluv́ıte? Pravděpodobně západńım.” (What accent are you speaking?

Probably western.).

1Note that following the MRDA tag-set classification, this DA class is usually considered as a special
case of statements.
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2.3.6 Floor Mechanisms

Floor mechanisms contains the DAs pertaining to the mechanisms of grabbing or main-

taining the floor. The main DAs in this broad class are the following:

Floor grabbers usually occur at moments without speech, when a speaker wants to gain

the floor so that he may start speaking. They are often repeated by the speaker to gain

attention or are used to interrupt the actual talking speaker. Usually, floor grabbers occur

at the beginning of a speaker’s turn. They are often louder than the neighbouring speech.

They share a common vocabulary with floor holders, backchannels and accepts. Other

features, such as the context or the corresponding audio record are then required to label

them. Common floor grabbers are for example: “Uh”, “So”, etc.

Floor Holders occur mid-speech by a speaker who has the floor. It is usually a short

clause like “uh” or “so” and it is used to fill the pause in the utterance, when the speaker

think about the next words of the utterance. Sometimes, a floor holder is used at the

end of the speaker turn in order to leave the floor. Generally, their energy is similar to

the neighbouring speech but their duration is usually longer than the other words. Floor

holders are not common at the beginning of a speaker turn, but more likely occur in the

middle or at the end of the turn, often in the middle of an utterance. There are often

confused with floor grabbers, backchannels, ..., because of the similar vocabulary. One

example of floor holders in the middle of an utterance is: “Je pense euh c’est vrai.”

(I think uh it is right.).

2.3.7 Conventional-opening and Conventional-closing

Conventional-opening DA class contains utterances, which function is to inform about

the beginning of a dialogue, such as: “Dobré odpoledne!” (Good afternoon!) or “Madame

la conseillère, bonjour!” (Good morning, madame the adviser!).

Conventional-closing DA class contains utterances, which function is to inform about

the end of a dialogue. Examples are: “Bonne journée!” (Have a nice day!) or “Na

shledanou!” (Good bye!).

2.3.8 Politeness Mechanisms

This group contains dialogue acts that mark utterances where speaker express courte-

ousness. It is composed of several DAs, but only one occurs in our corpus, that is the

Thanks dialogue act, which is composed of the utterances where a speaker thanks an-

other speaker. Examples of thanks are: “Merci beaucoup!” (Thank you very much!) or

“Děkuji mnohokrát!” (Many thanks!).
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2.3.9 Disruption Forms

This broad class contains utterances, which are indecipherable, abandoned or interrupted.

It is possible to use one disruption form per utterance only.

Indecipherable marks indecipherable speech such as mumbled or muffled words or ut-

terances that are too difficult to hear, for instance because of breathing noise in the

microphone. There is no vocabulary for this DA, which can be determined only from the

audio stream and the context.

Interruptions correspond to utterances in which the speaker is interrupted by another

speaker and stops talking. Examples of interruptions are: “si on ... oui” (if we ... yes) or

“p̊ujdeme do ... ale ne” (We will go to ... but no)1.

Abandoned labels utterances that are abandoned by the speaker. They usually occur

when a speaker decides to reformulate the utterance. The current utterance is abandoned

and the new one is beginning. For example, abandoned utterances can be: “Když se

pod́ıvate na ...” (If you look at ...) or “Savez-vous que ...” (Do you know that ...).

The most important DA classes described previously are summarized in Table 2.1. For

other DAs, please refer to [3, 57, 36].

2.3.10 Reduction of the DA Tag-set

Complete DA tag-sets with tens of DAs are usually to large for DA recognition. Several

DA classes only have very few occurrences, which makes it difficult to model them. Fur-

thermore, several other DAs are not useful for the application. Therefore, the complete

DA tag-set is usually reduced for recognition into a few broad classes. Reduction is real-

ized by removing the DA classes that are not needed by the application, and by grouping

together DA classes that do not occur enough times.

Table 2.2 shows the 10 most frequent DAs from the SWBD-DAMSL corpus with examples

and their relative frequencies. This table can be used to group dialogue acts for DA

recognition.

An example of the DA tag-set that is often used for DA recognition is shown in Table 2.3.

This tag-set is based on SWBD-DAMSL and contains seven grouped DA classes.

2.4 Sentence Modality

Several works deals with automatic sentence modality (or sentence mode) recognition [114,

50, 38], which can be considered as a subset of automatic DA recognition.

A sentence gives a specific relationship between the speaker and the other participants of

a discussion, which is called modality. These relationships can be clustered into different

classes. The simplest classification distinguishes declaration from interrogation. A more

1“...” marks the instant of interruption of speaker A by speaker B, who starts talking.
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DA class Example

1. Statements
Statement opinion In my opinion, this is a good decision.
Statement non-opinion It is a great story.

2. Questions
Yes/No question Do you think that it is ok?
Wh-question What do you mean?

3. Action motivators
Command Continue!
Suggestion Maybe you have to standardize this thing also.
Commitment I will continue to sleep.

4. Backchannels and Acknowledgments
Backchannel Uh-huh
Acknowledgment Oh okay

5. Responses
Accept Yeah
Reject Not at all
Maybe Maybe

6. Floor mechanisms
Floor grabber Um
Floor holder Well

7. Conventional-opening and Conventional-closing
Conventional-opening Hello!
Conventional-closing Bye!

8. Politeness Mechanisms
Thanks Thank you!

9. Disruption forms
Indecipherable
Interruption I would ... Your opinion is not good.
Abandoned I’m sor ...

Table 2.1: Summary of the most important DA classes for our work, along with examples.

DA Type DA
Tag

Example Amount
in [%]

Statement non-opinion sd I live in New York. 36
Acknowledge (Backchannel) b Uh-huh 19
Statement opinion sv I hope, she is pretty. 13
Agree/Accept aa It is really sure. 5
Abandoned or Turn-Exit %- So ... 5
Appreciation ba I can understand. 2
Yes/No question qy It’s true? 2
Non-verbal x <Laughter>, <Throat clearing> 2
Yes answers ny Yes 1
Conventional-closing fc Well, it’s been nice talking to you. 1

Table 2.2: The 10 most frequent dialogue acts from the SWBD-DAMSL tag-set.



Chapter 2 15

DA Type DA Tag

Statements
Statement non-opinion sd
Statement opinion sv

Questions
Yes/No question qy
Wh-question qw
Other question all other

Backchannels b

Incomplete utterances %

Accepts aa

Appreciation ba

Other all other

Table 2.3: Grouped SWBD-DAMSL DA tag-set with seven broad DA classes.

complex classification (for example, declaration, interrogation and order) includes subtle

degrees of social relationship, of discussion and context, etc. In almost all languages,

various information (syntactic, morphologic, as well as the intonation) indicate sentence

modality.

The expected information given by prosody is for example [63]:

• A falling intonation for a statement.

• A rising F0 contour for a question.

• Continuation-rise characterizes a (prosodic) clause boundaries, which differ from the

end of sentences.

Sentence modal classes correspond to a small DA subset. A possible correspondence

between modal and DA classes is shown in Table 2.4.

Modal class Corresponding DA class from MRDA tag-set

declarative sentence statement
investigation question yes/no question
imperative sentence command

Table 2.4: Correspondence between modal classes and DA classes.

2.5 Dialogue Act Recognition Information

The most important information that is used to recognize dialogue acts is described in

this section.

The first one is lexical information. Every utterance is composed of a sequence of words.

Generally, the DA of an utterance can be partly deduced from the lists of words that form



Chapter 2 16

this utterance. For example, Wh-questions often contains one interrogative word, which

does not occur in other DA classes.

The second one is syntactic information. It is related to the order of the words in the

utterance. For instance, in French and Czech, the relative order of the subject and verb

occurrences might be used to discriminate between declarations and questions.

Another information is semantic information. The sense of the utterance is also corre-

lated to the DA. However, this information is very difficult to obtain automatically, which

is why, to the best of our knowledge, it is not used so far in the DA recognition domain.

Yet another information that is useful to recognize DAs is prosody, and in particularly

the melody of the utterance. Usually, questions have an increasing melody at the end of

utterance, while statements are usually characterised by a slightly decreasing melody.

The last information mentioned here is the context of each DA. Hence, any DA depends

on the previous (and next) DAs, the most important context being the previous one. For

example, a “Yes” or “No” answer is most likely to just follow a Yes/no question. The

sequence of pronounced DAs is also called the dialogue history.

Most of the works on DA recognition makes use of a combination of the three following

information sources [113, 110]:

1. Lexical (and syntactic) information

2. Prosodic information

3. Dialogue history

2.5.1 Lexical Information

Lexical and syntactic features can be derived from the word sequence in the dialogue. The

first broad group of DA recognition approaches that uses this type of features is based

on the assumption that different dialogue acts are generally composed of sequences of

different words.

The correspondence between DAs and words sequences is usually represented either by

Bayesian models, such as n-grams, Naive Bayes, Hidden Markov Models, Bayesian Net-

works, etc., or Non-Bayesian approaches, such as Neural Networks, Semantic Classification

and Regression Trees, etc.

2.5.2 Prosodic Information

Most researchers agree on the fact that the lexical/syntactic information can not totally

explain DAs alone. Prosodic cues [74], which are somehow independent of the words used

in the sentence, are also correlated to the actual DA.

For example, questions are usually characterized by an increasing melody at the end of

the utterance [88], and accepts have usually much more energy than backchannels and
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acknowledgments (c.f. Section 2.3.5). Prosodic features are usually modeled with the

same statistical methods as used for lexical information.

Definitions

Many different definitions of prosody exist. We quote here the three following ones, which

serve as a basis for this work:

1 - The term prosody comprises speech attributes which are not bound to phone seg-

ments [63].

2 - The prosody is a set of suprasegmental phenomena of the speech. Therefore, the

prosodic units are not related to acoustic units - phonemes, words, syllables, sentences,

etc [74].

3 - Another definition of the prosody is a study of the three following phonetic corre-

lates [74]:

• Fundamental frequency (F0)

• Energy

• Duration

Importance

While lexical information is a strong cue to recognize DAs, prosody also clearly plays

an important role. The same sentence may even have a different meaning depending on

the prosody. For example, the simple sentence: “Il pleut.” in French, “Prš́ı.” in Czech,

“It is raining.” in English can be a statement or a question in Czech or in French.

DA labeling of corpora is usually realized based on transcripts only, because of practical

reasons (mainly speed efficiency). However, the authors of [58] show that prosody should

be taken into account during the DA labeling process. In particular, they have realized

the following experiment: 44 randomly selected conversations are first labeled from text

transcripts only. Then, the same sentences are relabeled in the same conditions as before,

with the transcript and context, but also with listening to the sentences. Both labels are

compared, and a difference of about 2% is observed in the DA labels. This difference

may seem small enough to justify the use of transcripts only during the labeling process.

However, it was also noted that the same differences often occur for the same DA classes,

which increases the labeling error rate for these particular classes up to a significant level,

as shown in Table 2.5.

General Properties

Prosody is generally not considered useful to recognize all types of DAs, but seems to

play an important role for specific DA types, such as questions, accepts and incomplete
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DA from transcript only DA from listening and transcript Count %

backchannels accepts 43/114 38
opinion statements non-opinion statements 22/114 19

non-opinion statements opinion statements 17/114 15
other 32 (3 each)

Table 2.5: Modifications of some DA labels when labeling with transcripts only and with
both audio and transcript.

utterances. The following describes some general rules where prosody is involved:

• The declarative and yes/no questions are usually characterized by a rising F0 at the

end of utterance.

• Several incomplete utterances have a final F0 contour similar to that of the middle

of a normal utterance, which is often neither rising nor falling.

• The energy at the end of incomplete utterances is also usually higher than for com-

plete utterances.

• Backchannels differ from accepts by the amount of effort used when speaking.

• Usually, accepts have a higher energy, a greater F0 movement, and a higher likelihood

of accents and boundary tones than backchannels.

For more information about general prosodic properties, please refer to [110].

French Prosodic Rules

The basic prosodic rules concerning the French language can be summarized as in [42]:

• Statement: small decrease of melody.

• Order (or command): important decrease of melody.

• Questions (particularly yes/no): increase of melody.

• Grammar question (wh-question, ...): neutral intonation.

Let us consider for example the French sentence Il dort (in English “He sleeps.”) pro-

nounced in some neutral context. This sentence can belong to at least two dialogue acts:

• Statement: Il dort.

• Question: Il dort ?
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Apart from prosody, all other information types (syntactic, morphological, contextual)

have the same characteristics in both cases. This means that sometimes only prosody can

be used to distinguish a statement from a yes/no question. Indeed, in the above example,

one can observe a significant difference between the melodic contours of each DA, as illus-

trated in Figure 2.2. In this figure, the F0 contour is increasing for yes/no questions and

slightly decreasing for statements.

Figure 2.2: Fundamental frequency contour for a statement (left) and a yes/no question
(right).

In other cases, the importance of the intonation contour decreases in favor of other phono-

logical information. For yes/no questions, the inversion of the couple subject-verb or the

interrogative form est-ce que are examples of such information. The sentence thus be-

comes: Dort-il ? in the first case and Est-ce qu’il dort ? in the second one. The F0

curve is shown in Figure 2.3. One can note that the characteristic interrogative contour is

neutralized in this particular interrogative form.

We have illustrated in this section the theoretical influence of prosody on DA classification

in French through a few examples only. For more information about French prosodic rules,

please refer to [85, 84, 88, 125].

Czech Prosodic Rules

There are three basic melodic types of Czech utterances. The most common type is

the declarative melody (for statements). Another melodic type is the melody of yes/no

questions and the last one is the melody before the clause-boundary pause.

Declarative Melody

The basic melody of statements is decreasing. It is characterised by a significant melodic

decrease after the accented syllable of the utterance core. This part of the sentence is
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Figure 2.3: Fundamental frequency contour for yes/no question with the est-ce que form.

called “melodem”. If the last word is mono-syllabic, the fall is only on this syllable. In the

case of a poly-syllabic word (or a group of words), the fall is distributed over each syllable

(or word). Two examples of declarative F0 contour are shown in Figure 2.4: Měl s sebou

psa. (in English “He was with a dog.”, left) and Měl s sebou kočku. (in English “He was

with a cat.”, right).

Figure 2.4: F0 contour of two statements: Měl s sebou psa. (in English “He was with
a dog.”) with one syllable in melodem (left) and Měl s sebou kočku. (in English “He was
with a cat.”) with bi-syllable in melodem (right).

A similar type of melody can be observed in orders or in questions, which are completed

by an interrogative word. Figure 2.5 shows an example of an order: Vezmi s sebou kočičku!

(in English “Take a kitten!”, left) and an example of a wh-question (with an interrogative

word): Co se ti přihodilo? (in English “What happened to you?”, right).

Investigation Question Melody

The investigation question (or yes/no question) is a question without an interrogative word

and that has an answer: “yes” or “no”. The melody at the last accented syllable starts
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Figure 2.5: F0 contour of an order: Vezmi s sebou kočičku! (in English “Take a kitten!”)
with two syllables in melodem (left) and a wh-question: Co se ti přihodilo? (in English
“What happened to you?”) with four syllables in melodem (right).

by a low tone. If the melodem is mono-syllabic only, then the melody is increasing with

a round shape. If it is bi-syllabic, the accented syllable has a lower melody than the last

syllable. Figure 2.6 shows an example of F0 contours for two yes/no questions: Prijdeš

včas? (in English “Will you come in time?”, left) and Už jsi skončil? (in English “Have

you finished?”, right).

Figure 2.6: Fundamental frequency (melody) contours for two yes/no questions: Prijdeš
včas? (in English “Will you come in time?”, left) and Už jsi skončil? (in English “Have
you finished?”, right).

When the last accented word is composed of more that two syllables, two cases may occur:

• The accented syllable and the following one (not accented) have a low frequency (the

second syllable can have a little higher F0). The melody is increasing only at the

end of the utterance.

• The accented syllable is heavy but the next one is much higher and the other syllables

at the end have a decreasing melody.

These two cases are shown in Figure 2.7: Znáte sousedy? (in English “Do you know your

neighbours?”).
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Figure 2.7: Fundamental frequency (melody) contours for two cases of yes/no questions:
Znáte sousedy? (in English “Do you know your neighbours?”): case 1 on the left and case
2 on the right.

Melody before the Clause-Boundary Pause

The clause-boundary pause is a pause, which usually separates two simple sentences in

a complex sentence, two clause elements in a simple sentence or two enumerated elements.

There are several melodic forms. The most frequent and basic one is the increasing melody.

It is characterised usually by a low tone before an accented syllable and it is gradually

increasing towards the pause. This is not in the scope of this study (for more information,

see [95]).

For more information on Czech sentence melody, please refer to [103, 95, 33].

Prosodic features

The most important prosodic features are:

• Fundamental frequency (F0)

• Energy

• Duration

• Speaking rate

• Voice quality

• Pause

Compound prosodic features are formed by the variations of these attributes over time:

• Intonation

• Accentuation

• Rhythm

• etc.

The basic prosodic features, along with their importance in DA recognition, are described

in the next sections. The compound prosodic features are described in [63].
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Fundamental Frequency

The Fundamental Frequency (F0) or pitch, often simply referred to as the fundamental, is

the lowest frequency in the harmonic series of vibration of vocal folds.

The F0 of a periodic signal is the inverse of the pitch period length. The pitch period

is the smallest repeating unit of a speech signal. One pitch period thus describes the

periodic signal completely. The significance of defining the pitch period as the smallest

repeating unit can be appreciated by noting that two or more concatenated pitch periods

form a repeating pattern in the speech signal (multiples of F0). However, the concatenated

signal unit obviously contains redundant information.

The fundamental frequency is a characteristic of voiced sounds only. Its value depends on

the speaker, mainly in function of his age and his sex (100 - 160 Hz for a man and 150 -

300 Hz for a woman). The F0 does not allow to discriminate two vowels (“a”, “e”, etc.),

but this can be done with formants [47]. The F0 curve is called the melody.

F0 automatic extraction is a complex problem [49]. Two families of methods are usually

employed: in the first one, the computation is performed in the time domain, while the

second one operates in the spectral domain.

Time Domain Methods [97] are based on the assumption that the signal of the speech

can not vary quickly in a limited time frame. This is a consequence of the physical

properties of the vocal tract. The principle of these methods (named short term analysis

methods) consists in processing the speech signal within short time intervals. The length

of these frames is generally between 10 and 20 ms. The result of the analysis of each

frame is represented by one vector. The analysis of a complete sentence is represented by

a vector sequence. Examples of this method are: autocorrelation functions, AMDF, etc.

Spectral Methods [86, 87] are based on the fact that, most often, harmonics of F0 exist.

Therefore, the information contained in the whole speech spectrum can be exploited to

extract F0. The main advantage of these methods is that they might work well even when

the F0 is noisy or filtered out. Several harmonic frequencies and amplitudes measures can

be used. This principle is used for example in the method based on cepstrum [93] or on

the period histogram [108]. Usually, the time domain digital signal is transformed into the

power spectrum domain via the Discrete Fourier Transform (DFT) [47].

These methods are more robust than the first ones, but they also increase the computa-

tional cost. This explain why time-domain methods have often been used in the past. For

more information about F0 extraction algorithms, please refer to [99, 47].

After extraction of the F0 curve, several F0 features are computed for DA recognition.

Examples of these features are the max, min, mean, standard deviation, etc., as shown in

Table 2.6.
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F0 feature Description

F0 mean mean of F0 values in the utterance
F0 mean end mean of F0 values in end segment of the

utterance
F0 mean ratio ratio of F0 mean in the utterance divided

by F0 mean in the conversation side
F0 std dev standard deviation of F0 in the utterance
F0 max maximal value of F0 in the utterance
F0 min minimal value of F0 in the utterance
F0 grad gradient of F0
F0 perc good utt ratio of number of good F0 values divided

by the number of F0 values in the utter-
ance

Table 2.6: Example of F0 features.

Energy

The energy represents the loudness of speech; the relation between them depends on the

sensitivity of the human auditory system to different frequencies. The energy is often

called the “force” of the speech. Its value is in relation to the quantity of air in the vocal

tract. An increase of energy is often related to an increase of F0.

The most common way to calculate the energy is the Root Mean Square Energy (RMSE),

which is the square root of the average of the sum of the squares of the amplitude of the

signal samples. Using a window of width W to segment the speech into frames, let sn(i)

denotes the ith windowed speech sample in frame number n, and let En be the energy of

frame n, the RMSE of En is given by the equation:

En = [
1

W

W
∑

i=1

s2
n(i)]

1

2 (2.1)

Several energy features are computed for DA recognition as for example: max, min, mean,

etc.

For more information about energy computation algorithms, please refer to [97, 46]. Other

energy features are shown in [110].

Duration (and Speaking Rate)

Duration is the timing interval of pronunciation of each acoustic unit. It can be measured

for single phones, for syllable segments or for other acoustic units and its unit can be

a millisecond. Each phone has its own mean and standard deviation for duration. The

speaking rate (enrate) is the inverse value of duration. It is still not clear how duration

and speaking rate are perceived [94], but an objective measurement of speaking rate can

be obtained by normalizing the durations with phone intrinsic values [124].
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Table 2.7 shows several duration and speaking rate features used for dialogue act recogni-

tion.

Feature Description

ling dur duration of the utterance
ling dur minus ling dur minus sum of the duration of all pauses longer at 100 ms

cont speech frames # of frames in continuous speech region
mean enr mean of speaking rate values in the utterance
min enr minimum of speaking rate values in the utterance
max enr maximum of speaking rate values in the utterance

Table 2.7: Duration and speaking rate (enrate) features.

Voice Quality

Voice quality is a way of describing and evaluating speech fidelity, intelligibility, and the

characteristics of the analog voice signal itself. It involves attributes that concern the

overall phone independent spectral structure, for example, jitter (small and apparently

random perturbations of the F0 period), shimmer (small and apparently random pertur-

bations of the F0 amplitude), or the relative energy of the higher harmonics with respect

to F0.

Pause

Pause is a timing interval between two phones or between two other acoustic units. We

can distinguish two pause types: unfilled and filled. An unfilled pause is simply a silence

or it may contain breathing or background noises. Conversely, a filled pause is a relatively

long speech segment of rather uniform spectral characteristics consisting of a short “eh” or

sometimes followed by an “ehm” [63]. This type of pauses can be called hesitation pause

or hesitation. The F0 is flat or slightly falling and it is at a comparably low level.

2.5.3 Dialogue History

The third general type of information used in classical DA recognition systems is the

dialogue history. It is defined by the sequence of previous DAs that have been recognized.

It may be used to predict the next DA. Different formalisms are employed to model

this information: statistical models such as n-grams, Hidden Markov Models (HMMs),

Bayesian Networks, etc.

2.6 Segmentation

Before DA recognition, the dialogue must be segmented into sentence-level units, or utter-

ances [90], where each utterance represents a single DA. In this work (except in chapter 5),
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we assume that the corpus has already been segmented. The issue of utterance segmenta-

tion is thus only dealt with in Chapter 5.

2.7 Bayesian Approaches

The main types of automatic DA recognition approaches proposed in the literature can be

broadly classified into Bayesian and Non-Bayesian approaches. Bayesian approaches are

presented in this section and Non-Bayesian approaches are described in Section 2.8.

2.7.1 Notations

The main mathematical symbols that are used throughout this thesis are reported and

defined in Table 2.8.

Symbol Definition Description

C set of all DA classes c (DA tag-set) c ∈ C
C sequence of DAs C = (C1, .., Cτ , .., CT )
O observation (generic)
W lexical (and syntactic) information

(sequence of words wi)
A acoustic information
F prosodic information

Table 2.8: Names and definition of symbols used in the manuscript: C,O,W,A and F are
random variables.

When there is no ambiguity possible, the subscript τ for a single dialogue act Cτ might

be dropped to simplify notations.

2.7.2 Principle

The most common formalism used in the DA recognition domain is the Bayesian frame-

work. For instance in [10], the best sequence of dialogue acts Ĉ that maximizes the

a posteriori probability P (C|O) over all possible sequences of dialogue acts C on the

observation O is obtained from the observation likelihood P (O|C) as follows:

Ĉ = arg max
C

P (C|O) = arg max
C

P (C).P (O|C)

P (O)
= arg max

C
P (C).P (O|C) (2.2)

This is the widely known derivation that is classically used in many pattern recognition

tasks and that solves the maximum a posteriori criterion by training generative models of

the observations.
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2.7.3 Lexical (and Syntactic) N-Gram DA Models

The most common methods model P (O|C) = P (W |C), where W is the word sequence in

the pronounced utterance with statistic models such as n-grams. These methods are based

on the observation that different DA classes are composed of distinctive word strings. For

example, 92.4% of the “uh-huh” occur in Backchannels and 88.4% of the trigrams “<start>

do you” occur in yes-no questions [113]. The words order and positions in the utterance

may also be considered. A theory of word frequencies, which is the basis for DA modeling

from word features, is described in [41].

DA Recognition from Exact Word Transcription

The following approach is based on the hypothesis that the words in the utterances are

known. Then, Equation 2.2 becomes:

arg max
C

P (C|W ) = arg max
C

P (C).P (W |C) (2.3)

The “Naive Bayes assumption”, which assumes independence between successive words,

can be applied and leads to:

arg max
C

P (C).P (W |C)

P (W )
= arg max

C
P (C).

T
∏

i=1

P (wi|C) (2.4)

This equation represents the unigram model, also sometimes called the Naive Bayes classi-

fier. In this case, only lexical information is used. More complex models, such as 2-grams,

3-grams, etc., further consider syntactic information about the dependencies between ad-

jacent words. These n-grams usually model local structures only. The complexity and

performances of each of these models depends on the size of the corpus. Usually, 4-grams

or more complex models are not used.

Reithinger et al. use in [100] unigram and bigram Language Models (LMs) for DA recog-

nition on the VERBMOBIL corpus. Their DA recognition rate is about 66% for German

and 74% for English with 18 dialogue acts. In [77], a naive Bayes n-gram classifier is

applied to the English and German language. The authors obtain a DA recognition rate

of 51% for English and 46% for German on the NESPOLE corpus. Grau et al. use in [44]

the naive Bayes and the uniform naive Bayes classifiers with 3-grams. Different smoothing

methods (Laplace and Witten Bell) are evaluated. The obtained recognition rate is 66%

on the SWBD-DAMSL corpus and with 42 DAs. Ivanovic also uses in [51] the naive Bayes

n-grams classifier and obtains about 80% of recognition rate in the instant messaging chat

sessions domain with 12 DAs classes derived from the 42 DAs of DAMSL.

One can further assume that all DA classes are equi-probable, and thus leave the P (C)

term out:

Ĉ = arg max
C

P (W |C) (2.5)

This approach is referred to as the uniform naive Bayes classifier in [44].
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DA Recognition from Automatic Word Transcription

In many real applications, the exact words transcription is not known. It can be approxi-

mately computed from the outputs of an automatic speech recognizer. Let A be a random

variable that represents the acoustic information of the speech stream (e.g. spectral fea-

tures).

The word sequence W is now an hidden variable, and the observation likelihood P (A|C)

can be computed as:

P (A|C) =
∑

W

P (A|W,C).P (W |C) (2.6)

=
∑

W

P (A|W ).P (W |C) (2.7)

where C is the DA class and P (A|W ) is the observation likelihood computed by the

speech recognizer for a given hypothesized word sequence W . The summation over all W

hypotheses is approximated over k best only. A dialogue act recognition approach from

recognized words is shown for example in [113].

2.7.4 Dialogue Sequence N-Gram Models

The dialogue history also contains very important information to predict the current DA

based on the previous ones. The dialogue history is usually modeled by a statistical

discourse grammar, which represents the prior probability P (C) of a DA sequence C.

Let Cτ be a random variable that represents the current dialogue act class at time τ . The

dialogue history H is defined as the previous sequence of DAs: H = (C1, .., Cτ−1). It is

usually reduced to the most recent n DAs: H = (Cτ−n+1, .., Cτ−1). The most common

values for n are 2 and 3, leading to 2-gram and 3-gram models. In order to train such

statistical models, the conditional probabilities P (Cτ |Cτ−n+1, .., Cτ−1) are computed on

a labeled training corpus. Smoothing techniques, such as standard back-off methods [11],

may also be used to train high-order n-grams. N-grams are successfully used to model

dialogue history in [113, 101].

Polygrams are mixtures of n-grams of varying order: n can be chosen arbitrarily large

and the probabilities of higher order n-grams are interpolated by lower order ones. They

usually give better recognition accuracy than standard n-grams and are shown in [89].

2.7.5 Hidden Markov Models

Hidden Markov Models [98] can be used to model sequences of dialogue acts. Let O be

a random variable that represents the observations and C the sequence of DAs classes.

n th-order HMM can be considered, which means that each dialogue act depends on the

n previous DAs (in a similar way as for n-grams). Then, each HMM state models one DA

and the observations correspond to utterance level features. The transition probabilities
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are trained on a DA-labeled training corpus.

DA recognition is carried out using some dynamic programming algorithm such as the

Viterbi algorithm, which estimates the most probable DA sequence Ĉ = arg maxC P (C|O).

HMMs with word-based and prosodic features are successfully used to model dialogue

history in [112]. Wright uses in [127] intonation events and tilt features such as: F0

(fall/rise, etc.), energy, duration, etc. She achieves 64% of accuracy on the DCIEM map

task corpus [8] with 12 DA classes. Ries combines in [102] HMMs with neural networks

(c.f. Section 2.8.1). He obtains about 76% of accuracy on the CallHome Spanish corpus.

In [37] language models and modified HMMs are applied on the Switchboard corpus [43]

with the SWBD-DAMSL tag-set.

2.7.6 Bayesian Networks

A Bayesian network is represented by a directed acyclic graph. The nodes represent

random variables and the arcs represent relations (dependencies) between nodes. The

topology of the graph models conditional independencies between the random variables.

In the following, we do not differentiate dynamic Bayesian networks (with stochastic vari-

ables) from static Bayesian networks, as most of our variables are stochastic, and when

static Bayesian networks are drawn, they represent an excerpt of a dynamic Bayesian net-

work at a given time slice. The stochastic variables are conditionally dependent of theirs

descendants and independent of theirs ascendants.

F

W

C

Figure 2.8: Example of Bayesian network for dialogue act recognition.

An example of Bayesian network for dialogue act recognition is shown in Figure 2.8. Node

C represents the current dialogue act. Utterance features are represented by nodes W

(sequence of words in the utterance) and F (prosodic features). The dialogue context is

not considered there. The conditional independence assertions of this network allows the

following factorization:

P (C,W,F ) = P (W |C).P (F |C).P (C) (2.8)

In order to build such a network, the network structure (conditional dependencies) and



Chapter 2 30

the conditional probability distributions must be defined. The conditional probabilities

are trained statistically on a training corpus. The topology of network can be created

manually or automatically.

Bayesian networks are successfully used in [59] for dialogue act recognition. In the first

experiment reported, three features are used: sentence type (declarative, yes/no question,

etc.), subject type (1st/2nd/3rd person) and punctuation (question mark, exclamation

mark, comma, etc). The Bayesian network is defined manually. They achieve 44% of ac-

curacy on the SCHISMA corpus. In the second experiment, a small corpus is derived from

the dialogue system used to interact with the navigation agent. Utterances are described

by surface level features, mainly keywords-based features. These features are computed

automatically for each utterance. Bayesian networks are further generated automatically

iteratively, starting from a small hand-labeled DA corpus. This network is used to parse

another large corpus, and a new network is generated from this corpus. This approach

gives 77% of accuracy for classification of forward-looking functions (7 classes) and 88%

of accuracy for backward-looking functions (3 classes).

Another application of Bayesian network in dialogue act recognition is shown in [53]. Two

types of features are used: utterance features (words in the utterance; wi) and context fea-

tures (previous dialogue act; Cτ−1). The authors compare two different Bayesian networks

to recognize DAs (c.f. Figure 2.9).

(a)

C1 C2 CT
. . .

W1 W2 WT. . .

(b)

C1 C2 CT
. . .

. . .W1 W2 WT

Figure 2.9: Two Bayesian networks for dialogue act recognition: Ci represents a single
DA, while Wi is a sequence of words.

These networks are built manually. In the left model of Figure 2.9, each dialogue act is

recognized from the words of the current utterance and from the previous DA. In the right

model of Figure 2.9, the authors further consider an additional dependency between each

word of the utterance and its previous dialogue act (diagonal arcs). They achieve about

64% precision on a subset of the MRDA corpus and with the reduced DA set size.
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2.8 Non-Bayesian Approaches

Non-Bayesian approaches are also successfully used in the DA recognition domain, but

they are not so popular as Bayesian approaches. Examples of such approaches are Neural

Networks (NNs), such as Multi-Layer Perceptron (MLP) or Kohonen Networks, Decision

Trees, Memory-Based Learning and Transformation-Based Learning.

2.8.1 Neural Networks

A neural network (NN) [48] is an interconnected group of artificial neurons that uses

a mathematical model or computational model for information processing based on a con-

nectionist approach to computation. It can be used to model complex relationships be-

tween inputs and outputs or to find patterns in data.

Multi-Layer Perceptron

One of the most frequently used neural network technique in the DA recognition domain

is the Multi-layer perceptron (MLP, c.f. Figure 2.10), which consists of a set of source

nodes forming the input layer, one or more hidden layers of computation nodes, and one

output layer. The input signal propagates through the network layer-by-layer. An MLP

can represent a non linear function.

Figure 2.10: Example of multi-layer perceptron.

Wright [127] describes an approach with a one-hidden-layer MLP. 54 suprasegmental and

duration prosodic features are used as inputs. She achieves 62% of accuracy on the DCIEM

map task corpus [8] with 12 DA classes. Ries successfully uses in [102] an MLP both stand-

alone, and in combination with HMMs. He obtains a similar accuracy (about 76%) on the

CallHome Spanish corpus with both setups. Sanchis et al. also use in [107] an MLP to

recognize DAs. The inputs of MLP are the words of the lexicon of the restricted-semantic

task (138 inputs=size of the lexicon). The experiments are performed on the Spanish

dialogue corpus in the train transport domain (16 DA classes). They achieve about 93%
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of accuracy on the text data and about 72% of accuracy on the recognized speech. Note

that this approach will be difficult to apply on a real (large) lexicon. Levin et al. use

in [77] a set of binary features to train an MLP. These features are computed automatically

by combining a grammar-based phrasal parsing and machine learning techniques. They

obtain a DA recognition accuracy of about 71% for English and about 69% for German

on the NESPOLE corpus.

Kohonen Networks

Another type of neural network used in the dialogue act classification domain is Kohonen

Networks. A Kohonen network [62], also known as Self-Organizing Map (SOM), defines

an ordered mapping, a kind of projection from a set of given data items onto a regular,

usually two-dimensional grid. A model is associated with each grid node (c.f. Figure 2.11).

The topology of the SOMs is a single layer feedforward network where the discrete outputs

are arranged into a low dimensional (usually 2D or 3D) grid. Each input is connected to

all output neurons. A weight vector with the same dimensionality as the input vectors is

attached to every neuron. The number of input dimensions is usually much larger than

the output grid dimension. SOMs are mainly used for dimensionality reduction rather

than expansion.

The models of the Kohonen network are estimated by the SOM algorithm [29]. A data

item is mapped onto the node which model is the most similar to the data item, i.e. has

the smallest distance to the data item, based on some metric.

(a)

G11 G12 G13
. . . G1N

G21 G22 G23
. . . G2N

G31 G32 G33
. . . G3N

. . . . . . . . . . . . . . .
. . . . .
. . . . .

GN1 GN2 GN3 . . .GNN

(b)

C1 C2 G3

C4 C5 C6

C7 C8 C9

Figure 2.11: Two Kohonen networks (from [5]) with a rectangular structure to model
dialogue acts: The inputs to the large network (on the left) are a set of binary utterance
features. Neurons representative of DA classes are grayed. The small network on the right
represents the outputs of system (DA classes). The connexions between the neighboring
nodes are not shown.

Kohonen networks for dialogue act recognition are used in [5]. The authors use seven

superficial utterance features: speaker, sentence mode, presence or absence of a wh-word,
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presence or absence a question mark, etc. Each utterance is represented by a pattern of

these features, which is encoded into a binary format for the SOM representation. Initially,

the exact number of DA classes is not known a priori, and only the large network on the

left is created and trained. The clustering process is interrupted after a given number of

clusters have been found.

To interpret the clusters, another small Kohonen network is built (right model in Fig-

ure 2.11). This network contains as many neurons as DA classes. These neurons are

initialized by the values of the weight-vectors of the representative neurons from the large

network.

The quality of classification is evaluated by the Specificity Index (SI) [4] and by the Mean

number of Conditions (MoC). They achieve about 0.1 for SI and about 2.6 for MoC on

the SCHISMA corpus, with 15 DA classes and a network with 10*10 neurons. Another ex-

periment has been performed with 16 DA classes and a larger network with 12*12 neurons

with comparable results. Generally, unsupervised methods such as Kohonen networks are

rarely used for DA recognition.

2.8.2 Decision Trees

Decision trees (or Classification and Regression Trees, CARTs) [16] are generation tools

that are successfully used in operations research and decision analysis. They are usually

represented by an oriented acyclic graph (c.f. Figure 2.12). The root of the tree represents

the starting point of the decision, each node contains a set of conditions to evaluate, and

arcs show the possible outcomes of these decisions.

B/A

B A

sf < T

sf >= T

B

A

ld < T1

ld >= T1

... ...

ld < T2

ld >= T2

... ...

ldp < T12

ldp >= T12

Figure 2.12: Example of a part of the decision tree in the DA recognition domain: recog-
nition of Backchannels (B) and Accepts (A) by prosody, from [110].

In the case of DA recognition, the decisions usually concern utterance features. Each de-

cision compares the value of some feature with a threshold. For example, in Figure 2.12,
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three different prosodic features (sf, ld and ldp) are shown with their corresponding thresh-

olds (T, T1, T2 and T12). sf is the pause type feature and ld and ldp are the duration type

features. Training of the decision tree is performed automatically on the training corpus.

The output of the CART is the probability of the DA given the utterance features (lexical

and prosodic), i.e. the posterior probability P (C|W,F ). Usually, only the prosodic fea-

tures are used. The main advantage of CARTs is that they can combine different discrete

and continuous features.

Wright uses in [127] 54 suprasegmental and duration prosodic features to train the trees

on the CART algorithm [16]. She achieves 63% of accuracy on the DCIEM map task

corpus with 12 DA classes. Shriberg et al. use CARTs in [110] for DA recognition with

prosodic features. They use CARTs to recognize a few DAs only, which are very difficult

to recognize with lexical (and syntactic) features. These DAs are recognized from prosody

only. CARTs are used for example to distinguish statements from questions because

questions usually differ from statements by an increasing final F0 curve. Therefore, this

CART classifier is trained on statements and questions data only. Levin et al. compare

in [77] CARTs with other classifiers, mainly Naive Bayes and MLP classifiers. They use

binary grammatical features for this comparison. They show that CARTs outperform the

Naive Bayes classifier and that they give comparable results with an MLP. The resulting

DA recognition accuracy is about 68% for English and about 66% for German on the

NESPOLE corpus.

2.8.3 Memory-Based Learning

Memory-Based Learning (MBL) [32] is an application of memory-based reasoning theory

in the field of machine learning. This theory is based on the assumption that it is possible

to handle a new sample by matching them with stored representation of previous samples.

Hence, in MBL, all known samples are stored in memory for future reference, and any

unknown sample is classified by comparing it with all the stored samples. The main

advantage of MBL compared to other machine learning techniques is that it successfully

manages exceptions and sub-regularities in data. The main drawback of the method is its

high memory and computational requirements.

Several methods can be used to compare the stored and recognized samples. The most

popular one is the k-Nearest Neighbor (k-NN) [30]. It consists of defining a distance

measure between samples, and of finding k stored samples that have the smallest distance

to the recognized sample. These k samples are assumed to be similar to the recognized one,

and the recognized sample is classified into the dominant class amongst these “neighbors”.

Rotaru uses in [104] MBLs in an automatic dialogue acts tagging task on the Switchboard

corpus [43] of spontaneous human-human telephone speech. The utterance features are

based on word bigrams computed on the whole training corpus. These bigrams are hashed

to a given number of features, which optimal value is found experimentally. The hash

function uses the letters present in the bigrams and the number of features. The author

experiments a various number of neighbors. The best performance is about 72% of accu-

racy with three neighbors. Levin et al. exploit in [77] MBLs on the NESPOLE corpus.
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They use the same features as described in the MLP case (c.f. Section 2.8.1) on the IB1

algorithm [1] with one neighbor. They achieve about 70% of accuracy for English and

about 67% for German. MBLs are also used in [76] with the IB1 algorithm. The authors

obtain an accuracy of about 74% with prosodic, lexical and context features on a corpus

of Dutch telephone dialogues between users and the Dutch train timetable information

system.

2.8.4 Transformation-Based Learning

The main idea of Transformation-Based Learning (TBL) [17] is to start from some simple

solution to the problem, and to apply transformations to obtain the final result. Trans-

formations are composed in a supervised way. Given a labeled training corpus and a set

of possible transformation templates on this corpus, all possible transformations are gen-

erated from the templates, after what the transformations are selected iteratively. The

templates can be for example: if tag X is after tag Y and/or N previous utterances contain

word w, then change actual tag to Z. At each step the “best” transformation (bringing

the largest improvement to precision) is selected and applied to the current solution. The

algorithm stops when the selected transformation does not modify the data enough, or

when there are no more transformations left.

The total number of all possible transformations can be very high. It is thus often com-

putationally expensive to test all transformations, especially since most of them do not

improve precision. A Monte-Carlo (MC) approach [126] can be used to tackle this issue:

only a fixed number of transformations are selected randomly and used in the next steps.

Although this may exclude the best transformation from the retained set, there are usu-

ally enough transformations left so that one of them still brings a large improvement to

precision.

TBL can be applied to most classification tasks, and has been proposed for automatic

DA recognition and some related works. Samuel et al. use in [106] TBL with a Monte

Carlo strategy on the VERBMOBIL corpus. They use the following utterance features

for DA recognition: cue phrases, word n-grams, speaker identity, punctuation marks, the

preceding dialogue act, etc. The resulting DA accuracy is about 71% with 18 dialogue

acts. Van der Bosch et al. use in [120] TBLs on the corpus of Dutch telephone dialogues

between users and the Dutch train timetable information system, with a very limited

DA tag-set. Question-answer pairs are represented by the following feature vectors: six

features represent the history of questions asked by system, and the next features represent

the recognized user utterance, which is encoded as a sequence of bits, with 1 indicating

that the i-th word of the lexicon occurs at least one time in the word graph. The last

feature is used for each user utterance to indicate whether this sentence gave rise to

a communication problem or not, as requested by their application, which final objective is

to detect communication problems (incorrect system understanding) between the user and

the dialogue system. They achieve to detect about 91% of the communication problems

with the rule-induction algorithm RIPPER [24]. Authors show that TBLs outperforms

the MBLs technique on this task. Lendvai et al. also use in [76] TBLs with the RIPPER
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algorithm. They obtain an accuracy of about 60% with prosodic, lexical and context

features on the same Dutch corpus as in the previous experiments.

2.9 Combination of Classifiers

The different classifiers presented so far exploit different kinds of information (lexicon,

prosody, sentence structure), which should intuitively bring complementary cues, and

should be combined in order to improve the overall DA recognition performances.

A vast literature dealing with classifier combination exists. All these numerous combina-

tion methods can be classified into two broad classes, depending on whether they require

parameter training or not. Thus, voting strategies [9] usually do not use any parameter

training, while Bayesian based weighted product rule [60] or averaging [96] and meta-

learners, such as stacking [15] or arbitration [20] do require additional training.

A general architecture for classifier combination is shown in Figure 2.13. The base (or

individual) classifiers Di can be used on the same/different training data, feature spaces,

or models. The node D is the combination node.

feature

spaces

base classifiers

combination

DN

...

D2

D1

D

Figure 2.13: Combination of classifiers scheme.

We present next some methods of both classes that we have chosen to combine the different

sources of information presented previously.

2.9.1 Naive Bayesian Classifier Combination

A Naive Bayes classifier assumes that all input features are conditionally independent when

a value of the classification variable is given. Let O1, O2, ..., ON be a set of N input features

and C the class associated to these observations. Under the Naive Bayes assumption, the

joint probability of the observations and the class can be simplified as:
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P (O1, O2, ..., ON , C) = P (C)
N
∏

i=1

P (Oi|C) (2.9)

where P (C) is the prior probability of the classification variable C and P (Oi|C) is the

conditional likelihood of the feature Oi. Both P (C) and P (Oi|C) are estimated from the

labeled training corpus by the training process.

The recognized class Ĉ is chosen simply as:

Ĉ = arg max
C

P (C)
N
∏

i=1

P (Oi|C) (2.10)

2.9.2 Majority and Weighted Voting

The majority voting combination outputs the class that is chosen by the majority (maxi-

mum number of) base classifiers.

Let N be the number of classifiers, P (C|O,λi) the a posteriori probability of class C given

by the ith classifier, and △ki the function defined as follows:

△ki =

{

1 if P (C = k|O,λi) = maxj P (C = j|O,λi)

0 otherwise
(2.11)

the recognized class Ĉ is then given by:

Ĉ = arg max
k

N
∑

i=1

△ki (2.12)

Weighted linear voting is a variation of majority voting [9] defined as:

△ki =

{

P (C = k|O,λi) if P (C = k|O,λi) = maxj P (C = j|O,λi)

0 otherwise
(2.13)

Littlestone et al. [79] propose several majority voting algorithms to combine different clas-

sifiers. These algorithms are similar to the weighted voting method described above, apart

from the fact that the combination weights are trained on a training or development cor-

pus. Different kinds of classifiers are supported: the classifiers are viewed as different

prediction algorithms, which are not necessarily trained. The training data is only used to

compute the weights. The basic algorithm, called WM , associates each classifier with an

initial weight. Every example in the training set is then processed by the classifiers. The

final prediction for each example is generated as in weighted voting. If the final prediction

is wrong, the weights of the classifiers whose predictions are incorrect are multiplied by

a fixed discount δ, where 0 < δ < 1, that decreases their contribution to final predictions.
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2.9.3 Order Statistics

Combination based on order statistics exploits the ordering of the classes as returned by

each classifier to decide on the winning class.

Let X be a random variable with probability density function fX(.). Let (X1,X2, ...,XN )

be a random sample chosen from this distribution. This random sample is arranged in

non-decreasing order as:

X1:N ≤ X2:N ≤ ... ≤ XN :N

The ith value in this progression is the ith order statistic Xi:N .

Let us now identify these variables with the output of N classifiers. We assume next that

these outputs represent the posterior probability of each class, given the observation. For

a given input x, the outputs of the N classifiers for each class i can be ordered in the

following manner:

f1:N
i (x) ≤ f2:N

i (x) ≤ ... ≤ fN :N
i (x)

The combination of the N classifiers based on the kth order statistics outputs the kth

output value for each class (fk:N
i (x)) [117]. For example, the maximum, minimum and

median combinations are defined as:

fmax
i (x) = fN :N

i (x) (2.14)

fmin
i (x) = f1:N

i (x) (2.15)

fmed
i (x) =











f
N
2

:N

i
(x)+ f

N
2

:N

i
(x)

2 if N is even

f
N+1

2
:N

i (x) if N is odd
(2.16)

The previous three combination of classifiers represent important qualitative interpreta-

tions of the input space. The maximum combination method corresponds to the selection

of the class with the highest posterior probability. Intuitively, this can be interpreted as

choosing the output of the classifier that is the most confident about its decision. However,

the performance of this method can be degraded when a single classifier always return high

probabilities, which may happen when it does not assess correctly its confidence scores.

The minimum combination methods is based on the same principle as the maximum

method, but it focuses on classes that are not so likely to be correct. This method

eliminates the least likely classes, because its decision is based on the lowest value for

a given class. This method depends less on a single error, because it performs a min-max

operation, rather than a max-max operation such as in the previous method.

The median method is based on a “typical” representation of each class. This method
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outperforms both other ones when it is applied on very noisy data, because the final

decision is not compromised as much by a single large error.

More detailed explanations about the combination of classifiers based on order statistics

can be found in [119].

2.9.4 Weighted Linear Combination

Let N be the number of classifiers to be combined. Given an observation Oi, each classifier

i outputs a score (P (C|O, i))i∈{1,···,N} for class C.

The combination of classifiers with weighted linear combination consists in estimating

a new score for class C as follows:

P (C|O) =
N

∑

i=1

giP (C|O, i) (2.17)

where g1, g2, ..., gN are non-negatives weights (
∑N

i=1 gi = 1) assigned to the different clas-

sifiers. They are usually determined by estimating how accurate classifiers perform on

a validation set.

2.9.5 Combination with a Meta-Learner

The principle of this approach is to create a new classifier, called a meta-learner, which is

trained on a corpus composed of (or eventually derived from) the classification results of

the base classifiers. Any base classifier provides a prediction of the unknown class given an

input set of test features. In [19], two types of meta-learners are defined: an arbiter and

a combiner. Additional arbiters and combiners can also be trained on the set of predictions

of lower-level arbiters/combiners.

Arbiter

An arbiter [22] is a classifier that is trained using different types of training algorithms

to arbitrate between the classifications generated by the base classifiers. Its role is to

provide a new winning class when the base classifiers output different classifications. The

final decision is then based both on the base classifier and arbiter results, and follows the

arbitration rule, as shown in the left model of Figure 2.14.

Nodes D1, ..,DN represent N base classifiers, node A represents the arbiter and node R

the arbitration rule. An arbitration rule can be for example: the winning class is the class

chosen by the majority of base classifiers Di and the arbiter A. The output of the arbiter

is then used only when the base classifiers can not find an agreement on the winning class.

The arbiter is usually trained on a development set that is composed of the most confusing

examples, for which the output classes of most of the base classifiers differ.
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Figure 2.14: Two meta-learner techniques: an arbiter on the left and a combiner on the
right.

Combiner

The principle of the combiner [21] is to compose the classification results of the base

classifiers by learning the relation between these classes and the correct one.

For instance, when a base classifier Dk usually recognizes correctly the class ci, the meta-

learner might learn that when the base classifier Dk recognizes class ci, this answer is likely

to be correct regardless of the results of the other base classifiers.

A combiner is shown in the right model of Figure 2.14. Node R represents the combiner,

the meaning of the other nodes is the same as in the previous case.

2.9.6 Combination of Classifiers for DA Recognition

The combination of knowledge sources with the objective of improving the performance

of DA recognition is a research area that has not been deeply explored yet. To the best of

our knowledge, only a few works have been published in this area.

Several of these works, as in [113], combine lexical W and prosodic F information only.

A simple approach assumes that the lexical and prosodic features are independent:

P (F,W |C) = P (W |C).P (F |W,C) (2.18)

≈ P (W |C).P (F |C) (2.19)

The length of the utterance may be represented by a prosodic feature (utterance duration)

and also used in DA-specific language models [40].

Shriberg et al. show in [110] that it is better to use prosody for DA recognition in three
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separate tasks, namely question detection, incomplete utterance detection and accepts

detection, rather than for detecting all DAs in one task.

Questions Detection

Questions usually differ from statements because of their prosodic features, particularly

with regard to the final F0 rise. The authors of [110] build decision trees using questions

and statements data only. These trees use the F0, duration and speaking rate features to

estimate the probability P (C|F ). Their first experiment recognizes two DA classes only

(questions and statements) from these decision trees. The recognition accuracy is about

74%. In their second experiment, they classify one class of statements and three classes

of questions: yes/no questions, wh-question and declarative questions1. Their objective is

to show which type of questions is well recognized solely from prosodic features. The tree

achieves in this experiment an accuracy of 47%. The importance of each feature is shown

in Table 2.9.

Feature Importance in [%]

F0 43.2
Duration 31.8

Pause 21.3
Enrate 3.7

Table 2.9: Importance of prosodic features in classification of statements, yes/no questions,
wh-questions and declarative questions.

In conclusion, the most important feature is the F0. Furthermore, the final F0 rises are

often associated with yes/no and declarative questions, but not with wh-questions, which

confirms the initial hypothesis.

Incomplete Utterances Detection

There are three main types of incomplete utterances: turn exits, self-interruptions and

other-interruptions. Although these three cases differ, they are similar in the fact that

the utterance could have been completed but was not. The authors of [110] build a clas-

sification tree to recognize two classes only: complete and incomplete utterances, which

includes all non complete utterance types. An accuracy of about 72% is reached when

using mainly duration feature (55%), and secondly energy, speaking rate, F0 and pause

features.

1A declarative question is a question with a similar utterance structure as a statement. It is however
characterized by a final F0 rise that does not occur in statements.
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Accepts Detection

Accepts are often confused with backchannels and acknowledgments (c.f. Section 2.3.5).

The authors of [110] build a prosodic classification tree that uses duration, pause and en-

ergy features to discriminate between these classes. With this approach, accepts are dis-

criminated from backchannels with an accuracy of about 69%. The authors further show

that accepts are consistently longer in duration and have a higher energy than backchan-

nels. The pause feature is not important in this case.

2.10 Conclusions

The main studies that have been realized in the dialogue act recognition domain have

been summarized in this chapter. The concept of a dialogue act has been defined. The

most popular DA tag-sets have been described with a particular focus on the dialogue

acts that are used in our studies. The main knowledge sources that are used for DA

recognition have been mentioned. The particular case of prosodic information has been

detailed. Several DA recognition approaches have been presented with their advantages,

drawbacks and recognition accuracy. Several methods of classifier combination for dialogue

act recognition have also been described. Our contributions are based on this state of the

art and are described in the next chapters.
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Dialogue Act Recognition with

Prosody, Sentence Structure and

their Combination

3.1 Introduction

This chapter details our main contributions about dialogue act recognition. The first

section deals with three proposed lexical and syntactic approaches that model utterance

structure from words and their positions. The fourth approach, called the clustered un-

igram model, based on word clustering is described next. This method addresses the

weakness of n-grams model on small DA corpora. Section 3.4 describes our prosodic ap-

proaches. Several methods to combine the separate results of both types of approaches

(lexical and prosodic) are described in Section 3.5. Our main contributions are briefly

summarized in the last section of this chapter.

3.2 Lexical Position for Dialogue Act Recognition

Syntax information is often modeled by probabilistic n-gram models. However, these

n-grams usually model local sentence structure only. Syntax parsing could be used to

associate sentence structures to particular dialogue acts, but conceiving general grammars

is still an open issue, especially for spontaneous speech.

In our system, we propose to include some information related to the position of the

words within the sentence. This method presents the advantage of introducing valuable

information related to the global sentence structure, without increasing the complexity of

the overall system.

The general problem of automatic DA recognition is to compute the probability that

a sentence belongs to a given dialogue act class, given the lexical and syntactic information,

i.e. the words sequence.

43
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We simplify this problem by assuming that each word is independent of the other words,

but is dependent on its position in the sentence, which is modeled by a random variable

p.

We can graphically represent our approach by a very simple Bayesian network with three

variables, as shown in Figure 3.1. In this figure, C encodes the dialogue act class of the

test sentence, w represents a word and p its position in the sentence.

w

C

(a)

p

w

C

(b)

Figure 3.1: Graphical model of our approaches: grayed nodes are hidden.

In the left model of Figure 3.1, P (w|C, p) is assumed independent of the position:

P (w|C, p) ≃ P (w|C). This system only considers lexical information, and the probability

over the whole sentence is given by Equation 3.1.

P (w1, · · · , wT |C) =
T
∏

i=1

P (wi|C) (3.1)

Dialogue act recognition then consists in finding the dialogue act Ĉ that maximizes the

a posteriori probability:

Ĉ = arg max
C

P (C|w1, · · · , wT )

= arg max
C

P (C)
T
∏

i=1

P (wi|C) (3.2)

This system is referred to as the “unigram” or “Naive Bayes” classifier [44].

On the right part of Figure 3.1, information about the position of each word is included.

Considering this additional variable induces the following issues that have to be solved:

• Sentences have different length.

• The new variable p greatly reduces the ratio between the size of the corpus and the

number of free parameters to train.

The first issue is solved by defining a fixed number of positions Np: Np likelihoods
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P (wi|C, p) are thus computed for each sentence. Let us call T the actual number of

words in the sentence. The T words are aligned linearly with the Np positions. Two cases

may occur:

• When T ≤ Np, the same word is repeated at several positions.

• When T > Np, several words can be aligned with one position. The likelihood at

this position is the average over the Ni aligned words (wi)Ni
:

P (w|C, p) =
1

Ni

Ni
∑

i

P (wi|C, p) (3.3)

We propose and compare three methods to solve the second issue. The first multiscale

position method considers the relative positions in a multiscale tree to smooth the models

likelihoods. The second non-linear merging method models the dependency between W

and p by a non-linear function that includes p. The third best position method decouples

the positions from the lexical identities to maximize the available training corpus.

3.2.1 Multiscale Position

In this approach, p can take a different number of values depending on the scale. All these

scales can be represented on a tree, as shown in Figure 3.2. At the root of the tree (coarse

scale), p can take only one value: the model is equivalent to unigrams. Then, recursively,

sentences are split into two parts of equal size and the number of possible positions is

doubled.

P (wi|C, p = 1
1)

P (wi|C, p = 1
2) P (wi|C, p = 2

2)

P (wi|C, 1
4) P (wi|C, 2

4 ) P (wi|C, 3
4) P (wi|C, 4

4 )

Figure 3.2: Multiscale position tree.

For each word wi, a threshold is applied on its number of occurrences and P (wi|C, p)

for this word is computed at the finest scale that contains that minimum number of

occurrences. This corresponds to the standard back-off technique [11] to solve the problem

of lack of data.
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Classification is then realized based on the following equation:

Ĉ = arg max
C

P (C|w1, · · · , wT , p1, · · · , pT )

= arg max
C

P (C)
T

∏

i=1

P (wi|C, pi) (3.4)

where each likelihood is estimated at the finest scale possible.

3.2.2 Non-linear Merging

In this approach, unigram probabilities are computed for each word and passed to a Muti-

Layer Perceptron (MLP), where the position of each word is encoded by its input index:

the ith word in the sentence is filled into the ith input of the MLP. The output of the MLP

corresponds to the a posteriori probabilities P (C|w1, · · · , wT , p1, · · · , pT ) and the best class

is simply given by:

Ĉ = arg max
C

P (C|w1, · · · , wT , p1, · · · , pT ) (3.5)

3.2.3 Best Position

We now give a slightly different definition for p: for any utterance W , let p be the best po-

sition amongst every possible position, i.e. the position that minimizes the DA recognition

error rate.

Our objective is still to maximize:

P (C|W ) =
P (W |C)P (C)

P (W )
(3.6)

=
P (C)

∑

p P (W,p|C)

P (W )
(3.7)

=
P (C)

∑

p P (W |C, p)P (p|C)

P (W )
(3.8)

Now, once the best position p has been defined for a given utterance, the decision about

the winning DA class can be taken based solely on this best position:

P (W |C, p) = P (wp|C)

where wp is the word of the current sentence at the best position p. Hence,

P (C|W ) =
P (C)

∑

p P (wp|C)P (p|C)

P (W )
(3.9)
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Finally, maximization gives:

Ĉ = arg max
C

P (C)
∑

p

P (wp|C)P (p|C) (3.10)

In this equation, the lexical likelihood
∏

i P (wi|C) used so far is replaced by the weighted

sum of each word likelihood. The weights intuitively represent the importance of each

position, for a given DA class.

Compared to the previously proposed solutions that take into account the global position

of the words, this alternative presents the advantage of decoupling the position model from

the lexical model. The lexical models P (wi|C) are thus still trained on the whole corpus,

which is not divided into position-relative clusters as in the multiscale tree.

Two factors might be considered to compute these weights: they can of course be trained

on a labeled corpus, but we can also use some expert knowledge to define them. For

instance, it is well-known that the words at the beginning of a sentence are important

to recognize questions. This expert knowledge can be easily introduced as an a priori

probability.

A posteriori weights can also be obtained after training on a development corpus. In the

following experiments, the weights are trained based on the minimum DA error rate cri-

terion, using a gradient-descent algorithm. The initial values of the weights are obtained

by first evaluating on the development corpus the DA recognition accuracy when consid-

ering only the word at position p, for every possible p. The position p that gives the best

recognition accuracy represents the most important position in the sentence. The gradient

descent procedure then starts from this original position.

3.3 Word Clustering

Performance of classical approaches, such as n-gram models, depends on the size of the DA

corpus. They are working especially well with large DA corpus. However, when the corpus

size is small, the number of words per DA class is insufficient for a correct estimation of

word probabilities. Our approach, a clustered unigram model, addresses this issue.

3.3.1 Unigram Model

Assuming that the words of the sentence are independent, the probability of the sentence

is given by Equation 3.1. This case corresponds to the left model of Figure 3.3.

3.3.2 Clustered Unigram Model

The words of the application vocabulary are clustered into several groups, in order to

reduce the number of parameters to estimate in the unigram models. During recognition,

this approach can be modeled by a very simple Bayesian network with three variables, as
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Figure 3.3: Graphical model of dialogue act recognition approaches: grayed nodes are
hidden and white ones are observed.

shown in the right part of Figure 3.3. In this figure, C encodes the dialogue act class of

the test sentence, w represents a word and b its cluster. Words with a similar functional

position in the sentence are clustered into the same group. Mutual information between

two neighbor word classes is maximized as described in [83]. The loss of mutual information

between two groups bi and bj is computed by the following equation:

MI-loss(bi, bj) =
∑

bk∈B\{bi,bj}

I(bk; bi) + I(bk; bj) − I(bk; bi ∪ bj) (3.11)

where B = b1, .., bj , .., bk is the set of clusters.

Two clusters that cause the minimal loss of mutual information are merged. These clusters

are chosen at each step of the clustering bottom-up algorithm as follows:

(bn1
, bn2

) = arg min
(bi,bj)∈B×B

MI-loss(bi, bj) (3.12)

The clustering of all the words of the vocabulary is realized hierarchically, as shown in

Figure 3.4.

The root of this tree (node b in Figure 3.4) contains all the words, and each leave of the

tree (nodes w1, ..., wn) contains a single word. Nodes b11, ..., b1m illustrate word clusters

after the first step of clustering. Many levels exist between these nodes and the root of

the tree.

During training of groups unigram models, group probabilities P (bij |C) are estimated for

each group on the training corpus.

During recognition, sentences are classified into DA classes using group models. The

optimal group model in the tree is not known a priori and must be found empirically.
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b

b11 b12 b1m

w1 w2 w3 w4 wn−1 wn

Figure 3.4: Word clusters hierarchy.

3.4 Prosodic Approaches

Following the conclusions of previous studies [114], only the two most important prosodic

attributes are considered: F0 and energy. The F0 curve is computed from the autocor-

relation function. The F0 and energy values are computed on every overlapping speech

window. The F0 curve is completed by linear interpolation on the unvoiced parts of the

signal. Then, each sentence is decomposed into 20 segments and the average values of F0

and energy are computed within each segment. This number is chosen experimentally [61].

We thus obtain 20 values of F0 and 20 values of energy per sentence. Let us call F the

set of prosodic features for one sentence.

Two models are trained on these features and compared. The first one is a Muti-Layer

Perceptron that outputs P (C|F ). The best class is then:

Ĉ = arg max
C

P (C|F ) (3.13)

The second one is a Gaussian Mixture Model (GMM) that models P (F |C). The best class

is then:

Ĉ = arg max
C

P (C|F ) = arg max
C

P (F |C)P (C) (3.14)

When we assume that the prior probabilities P (C) are similar for all DAs, we can simplify

the previous equation as:

Ĉ = arg max
C

P (C|F ) = arg max
C

P (F |C) (3.15)

This assumption is further used in our experiments.
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3.5 Combination of Prosodic and Lexical Approaches

The conclusions of previous studies [110, 113] suggest that prosody brings some valuable

information that can not be captured by the lexical models alone. Therefore, in this sec-

tion we combine lexical and prosodic classifiers to recognize DAs. The main contribution

of this work concerns the use and comparison of different kinds of combination methods

for automatic DA recognition. As described previously, there are a large number of com-

bination methods, but we use and compare only a few of them, that we consider as the

most interesting ones for our application, both unsupervised and supervised.

3.5.1 Normalization into Posterior Probability

The outputs of our classifiers are P (W |C) for the lexical model and P (F |C) for the prosodic

one, where C is the dialogue act class, W is the words sequence of the utterance and F

represents the prosodic features of the utterance.

Posterior probabilities are easier to compare than raw likelihoods, which depend on the

observation probability. Hence, we first normalize the classifier likelihoods to compute the

a posteriori class probabilities:

P (C = c|W ) =
P (W |C = c).P (C = c)

∑N
i=1 P (W |C = i).P (C = i)

(3.16)

where c and i represent DAs classes, N is the number of DAs and P (C) is the prior

probability of class C. We assume that all classes are equi-probable. A similar equation

is applied to the prosodic model.

After normalization, it is guaranteed that all outputs of both classifiers are in interval

[0.0; 1.0] and the sum of all probabilities of each model is 1, i.e.
∑N

i=1 P (W |C = i) = 1 and
∑N

i=1 P (F |C = i) = 1.

3.5.2 Unsupervised Approaches

The main advantage of unsupervised combination methods is their simplicity. They do

not need any parameter training before combination, which usually gives them good gen-

eralization properties. Conversely, they are usually less efficient than the supervised ones.

It is not possible to use the simple voting (the output class is the class chosen by the ma-

jority of the individual classifiers) technique, because there are two individual classifiers

only. This is why the scores of the output classes are combined, instead of the class labels

themselves, as in majority vote.

Product Combination

The first combination (product) is chosen, because it is frequently used as a baseline ap-

proach in the DA recognition domain, as described in Section 2.9.6. When we assume
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independence of lexical and prosodic information, this combination is only the product of

their posterior probabilities:

P (C|W,F ) =
P (W,F |C)P (C)

P (W,F )
=

P (W |C)P (F |C)P (C)

P (W )P (F )

=
P (W |C)P (C)

P (W )

P (F |C)P (C)

P (F )

1

P (C)

= P (C|W ).P (C|F )
1

P (C)
(3.17)

Methods based on Order Statistics

These methods are chosen, because they combine the simplicity of averaging and the gen-

erality of meta-learners [118]. These methods are very efficient when there are important

variations between component classifiers in certain parts of the joint input-output space.

They are less efficient, when the partial training sets cannot be considered as random

samples from a common universal data set.

We chose the next three combination methods based on order statistics: maximum, mini-

mum and median. For each class, the a posteriori probabilities returned by both classifiers

are ordered, and the final score of each class is respectively the greatest, smallest, and

average a posteriori probability for that class as described in Section 2.9.3.

3.5.3 Supervised Approaches

Supervised approaches can be interpreted as training a single meta-classifier from the out-

puts of the individual classifiers. This classifier usually better models the relation between

the outputs of the base classifiers and the reference class than the previous unsupervised

simple combination techniques, even though it is often more dependent on the task and

corpus.

Weighted Linear Combination

This method is chosen because it combines the simplicity of unsupervised approaches with

the performance of supervised methods. This combination computes a weighted linear

combination of the a posteriori probabilities as:

P (C|W,F ) ≃ (g).P (C|W ) + (1 − g).P (C|F ) (3.18)

where the weight g is optimized via a grid-search on a development corpus.
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Combination by an MLP

The last algorithm combines the a posteriori probabilities with an MLP. An MLP is used

to model a non linear function between the outputs of the base classifiers and the correct

DA class as:

P (C|W,F ) ≃ f(P (C|W ), P (C|F )) (3.19)

where P (C|W ) and P (C|F ) are respectively the a posteriori class probabilities of the

lexical and prosodic models.

The function f(·) is the mapping function of the neural network. Its output can be

interpreted as a posteriori, which explains the left-hand term of the equation.

The recognized class is simply given by:

Ĉ = arg max
C

f(P (C|W ), P (C|F )) (3.20)

Note that these last two supervised approaches require a development corpus.

3.6 Main Contributions

The most important contributions of my research described in this chapter are summarized

below:

• Proposition of three new dialogue act recognition approaches based on lexical infor-

mation and word position within the utterance:

– multiscale position,

– non-linear merging and

– best position approach

• Proposition of a new dialogue act recognition model, clustered unigram model, based

on word clustering.

• Analysis and comparison of several methods of combination of classifier in order to

improve the recognition of individual classifiers.

3.7 Conclusions

In this chapter, we proposed three approaches that consider information about global word

position to improve recognition accuracy. The first one, multiscale position approach, ex-

ploits a description of the sentence at several levels to smooth the probabilities across

these levels. The second one, non-linear merging method, models the dependencies be-

tween words in the sentence W and their positions P by a non-linear function implemented
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as an MLP. The third one, best position approach, assumes that words in the sentence W

are independent of their positions P , which allows to reliably train the joint probability

of the words and positions.

We further proposed the clustered unigram model, which has also been designed to specifi-

cally address the issue of the lack of training data. The words in the sentence are clustered

into several groups based on maximization of mutual information between two neighbor

word classes. These groups replace single words during recognition. The number of free

model parameters is thus greatly reduced, which makes this method efficient for small DA

corpora.

We finally studied several methods of combination of classifiers, and compared their the-

oretical advantages and drawbacks. Our objective is to improve the quality of DA recog-

nition models by combining different knowledge sources, such as the lexical and prosodic

ones.
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Evaluation

4.1 Introduction

This chapter deals with experimental validation of the proposed approaches. The methods

that are evaluated respectively exploit lexical information (with and without sentence

structure), prosody and a combination of both approaches.

The transcription of utterances into words is computed in two different ways:

• From a manual transcription

• From a speech recognizer

The advantage of the first case is that only the DA recognition methods are evaluated,

without the influence of the speech recognizer errors. However, this only provides an

upper-bound of the performances of our system in real conditions.

The second type of evaluation aims at evaluating the system in real conditions. These ex-

periments require to set-up a functional large-vocabulary speech recognizer. The accuracy

of word recognition influences the quality of dialogue act recognition.

The difference between both cases is discussed in this chapter. This gives a second evalua-

tion of the proposed system, not in terms of DA recognition accuracy, but rather in terms

of robustness of the proposed approach to speech recognition errors.

This chapter is organized as follows: first, the speech recognizer used to estimate word

transcriptions is described. The next section deals with the LNKnet tool, which is used in

several of our experiments, and especially in the prosodic ones. In Section 4.4, we describe

our dialogue act corpus. The following section describes the experimental setup for the

evaluation of the methods based on sentence structure. The evaluation of the proposed

approaches with word clusters is realized in Section 4.6. The following sections deal with

experiments with prosody. Then, the combined approaches are tested and compared.

The last section of this chapter discuses and compares the performances of our proposed

methods. Future directions of research are also proposed here.

54
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4.2 LASER Speech Recognizer

The LASER (LICS Automatic Speech Extraction/Recognition) software is currently under

development by the Laboratory of Intelligent Communication Systems (LICS) at the Uni-

versity of West Bohemia. The goal is to develop a set of tools that would allow training of

acoustic models and recognition with task dependent grammars or more general language

models.

The architecture is based on a so called hybrid framework that combines the advantages

of the hidden Markov model approach with those of artificial neural networks. A typical

hybrid system uses HMMs with state emission probabilities computed from the output

neuron activations of a neural network (such as the multi-layer perceptron).

4.2.1 Neural Network Acoustic Model

According to many authors (see e.g. [13]) the use of a neural network for the task of acoustic

modeling has several potential advantages over the conventional Gaussian mixtures seen in

today’s state-of-the-art recognition systems. Among the most notable ones are its economy

– a neural network has been observed to require less trainable parameters to achieve the

same recognition accuracy as a Gaussian mixture model, and context sensitivity – the

ability to include features from several subsequent speech frames and thus incorporate

contextual information.

A three layer perceptron serves as an acoustic model in the latest version of the recog-

nizer. It has 117 input neurons (there are 13 MFCC coefficients per speech frame and

9 subsequent frames are used as features), 400 hidden neurons and 36 output neurons

corresponding to our choice of 36 context independent phonetic units (which roughly cor-

respond to Czech phonemes). Experiments with larger hidden layer sizes have been carried

out but the 400 hidden neurons were chosen as a good trade-off between modeling accuracy

and computational requirements.

The incremental version of the back-propagation algorithm has been found as the fastest

converging training strategy for this task. Also in order to further speed up the con-

vergence, the cross entropy error criterion is used instead of the usual summed square

error. Training this multi layer perceptron requires the precise knowledge of phoneme

boundaries. These can be obtained via forced Viterbi alignment from the transcriptions

of the training utterances. An already trained recognizer is necessary for this process. It

is also beneficial to generate a new set of phonetic labels using the newly trained hybrid

recognizer and repeat the training process once more.

Similarly to other automatic speech recognition systems, three-states HMMs phonetic units

are modeled. However, all three states share the same emission probability computed from

the activation value of one neuron in the output layer of the MLP. This can be viewed as

a minimum phoneme duration constraint which, according to our experiments, significantly

increases recognition accuracy. Because each state is tied to a neuron representing one
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phonetic class, the outputs of a well trained MLP can be interpreted as state posterior

probabilities P (Sj|O)1, which can be changed to state emission probabilities:

P (O|Sj) =
P (Sj |O) · P (O)

P (Sj)
. (4.1)

where Sj denotes the jth HMM state. The term P (O) remains constant during the whole

recognition process and hence can be ignored. The emission likelihoods are then computed

by dividing the network outputs by the class priors (relative frequencies of each class

observed in training data).

The HMM state transition probabilities are not trained since their contribution to recogni-

tion accuracy is negligible in speech recognition applications, according to our experiments.

Uniform distribution is assumed instead.

4.2.2 Language Model

Training words n-gram language models is not a good option in our case, because of

the small size of our corpus, which is composed of manual transcriptions of a railway

application (see Section 4.4). The chosen solution has been to merge words into classes

and train an n-gram model based on those classes. This should compensate for the lack

of training data for infrequent word n-grams.

The method tries to automatically cluster words into classes according to their functional

position in sentences. The Maximization of Mutual Information (MMI) algorithm (as

described in Section 3.3.2) is used for this purpose. It begins by assigning each word to

a separate class and then starts merging two classes at a time. The process is stopped

when the desired number of classes is reached. In the following experiments, the number

of classes has been empirically set to 100 classes, and a trigram language model has been

trained on these classes.

4.3 LNKnet Tool

LNKnet [72] is a pattern classification software developed at the MIT Lincoln Labora-

tory. It contains more than 22 neural network, statistical, machine learning classification,

clustering, and feature selection algorithms. Several interesting algorithms proposed from

LNKnet are shown in Table 4.1.

LNKnet is originally developed under Sun Microsystem’s Solaris 2.5.1 UNIX operating

system, but is currently being ported to Red Hat Linux and to Cygwin to run under the

Windows operating system. The source code of LNKnet is also distributed. The three

following principal interaction possibilities of LNKnet are used in the experiments: the

LNKnet graphical user interface, the call to LNKnet commands from shell scripts, and

1
O represents the observation, i.e. in this case the feature vector
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Training Type
Algorithm Supervised Semi-supervised Unsupervised

NNs Back-Propagation (BP) Radial Basis Function (RBF)
Adaptive Stepsize BP Incremental RBF (IRBF) Leader Clustering
Cross-Entropy BP Learning Vector Quantizer
Hypersphere Classifier Nearest-Cluster Classifier

Pattern
Classif.

Gaussian Linear Dis-
criminant
Quadratic Gaussian Gaussian Mixture Model (GMM)
K-Nearest Neighbor Diagonal/Full Covariance GMM K-Means Clustering
Binary Tree Tied/Per-Class Centers GMM E&M Clustering
Naive Bayes Classifier
Support Vector Ma-
chine

Feature
Selection

Canonical Linear Dis-
criminant Analysis

Principal Compo-
nents Analysis

Forward and Backward
Search, using N-fold
Cross Validation

Table 4.1: LNKnet algorithms summary.

the control of LNKnet from C programs. In our experiments, we use LNKnet from shell

scripts to model a Back-Propagation MLP and a Gaussian Mixture Model (GMM).

4.4 Dialogue Acts Corpus

The Czech Railways corpus, which contains human-human dialogues, is used to validate the

proposed methods. It was created at the University of West Bohemia mainly by members

of the Department of Computer Science and Engineering in the context of a train ticket

reservation application. For the next experiments, it has been labeled manually with the

following set of dialogue acts: statements (s), orders1 (o), yes/no questions (qy) and other

questions (q). This DA tag set is based on the reduced tag-set considered in Section 2.3.10,

which have been further simplified with regard to the specificities of this corpus.

The number of utterances of this corpus is shown in Table 4.2 with examples.

The LASER recognizer is trained on 6234 sentences (c.f. first part of Table 4.2), while

2173 sentences pronounced by different speakers (c.f. second part of Table 4.2) are used

for testing. The word transcriptions given by the LASER recognizer are used to compare

the performances of DA recognition with and without manual word transcription.

All experiments of DA recognition are realized using a cross-validation procedure, where

10% of the corpus is reserved for the test, and another 10% for the development set. The

following accuracy results have thus a confidence interval of about ± 1%.

1Class order is based on the action motivators class as described in Section 2.3. It contains the utter-
ances, which impose to anybody perform anything. Function of orders are similar as commands, but orders
contains only the utterances in imperative form.



Chapter 4 58

DA No. Example English translation

1. Training part

Utter. 6234

2. Testing part (labeled by DAs)

s 566 Chtěl bych jet do Ṕısku. I would like to go to
Ṕısek.

o 125 Najdi daľśı vlak do
Plzně!

Look at for the next
train to Plzeň!

qy 282 Řekl byste nám daľśı
spojeńı?

Do you say next connec-
tion?

q 1200 Jak se dostanu do
Šumperka?

How can I go to
Šumperk?

Utter. 2173

Table 4.2: Composition of the Czech Railways corpus.

4.5 Sentence Structure

We describe in this section our experiments that exploit lexical information and word

position in the utterance to recognize DAs.

4.5.1 Multiscale Position

The multiscale position approach (as described in Section 3.2.1) trains a conditional uni-

gram model of P (wi|C, p) at different scales, as shown in Figure 3.2. Recognition is then

performed based on Equation 3.4.

Figure 4.1 shows the recognition accuracy of this method in function of the minimum

number of word occurrences at each scale: this number defines the threshold used in the

multiscale tree to select the finest possible scale to estimate the observation likelihood.

The maximum depth of the tree used in this experiment is 3, which defines 8 segments.

We do not expect better results with a larger number of leaves in the tree because of the

small size of our corpus. The unigram model recognition accuracy is also reported on

Figure 4.1 for comparison.

The recognition accuracy of each class is shown in the second section of Table 4.3.

These experimental results confirm that taking into account the global position of each

word improves the recognition accuracy. Furthermore, the proposed multiscale tree seems

to be a reasonable solution to the lack of training data issue.

Non-Linear Merging

The Non-Linear model merges lexical and position information with a Multi-Layer Percep-

tron (MLP). The chosen MLP topology is composed of three layers: 4 (for each DA class)

times 8 (equal-size segments of the sentence) input neurons, 12 neurons in the hidden layer
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Figure 4.1: Dialogue act recognition accuracy of the multiscale position tree system. The
X-axis represents the minimum number of words in the tree, and the Y-axis plots the DA
recognition accuracy.

and 4 output neurons, which encode the a posteriori class probability. The dialogue act

class is given by Equation 3.5.

The recognition results of this method is also shown in the second part of Table 4.3,

along with the results obtained with the baseline unigram model. The global recognition

accuracy of this model is 94.7%.

Best Position Approach

The third position-based proposed approach is the Best Position method, which recognizes

dialogue acts based on Equation 3.10. In this method, the number of positions allowed is

not limited by the size of the training corpus. Hence, twenty positions (instead of eight

positions for the two previous approaches) are considered.

In order to compute the initial values of the weights P (p|C), recognition is first performed

on the development corpus using only one position at a time:

P (p = i|C) = 1 and P (p 6= i|C) = 0 for all C

where i is one of the twenty possible positions. This experiment is repeated for every

possible i, and the recognition accuracies obtained with each i are shown in Figure 4.2.

Based on this experiment, the initial values chosen for the gradient descent algorithm are:

P (p = 1|C) = 1 and P (p > 1|C) = 0 for all C
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Figure 4.2: DA recognition accuracy on the development corpus when only a single position
is considered.

After the gradient descent algorithm, the resulting weights are shown in Figure 4.3.
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Figure 4.3: Weights obtained after the gradient-descent algorithm.

In this figure, it is clear that the most important positions for all DA classes are close to

the beginning of the utterance. The last words of the utterance also have some importance,

especially for the “order” class. The very first position is the most important for questions.

These results confirm our intuition.

Then, using the weights shown in Figure 4.3, recognition is performed on the test corpus.

The results are given in the last line of Table 4.3.

When considering lexical information only, the best performance is obtained with the best

position approach.
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accuracy in [%]

Approach/ Classifier s o qy q Global

1. Lexical information

1 Unigram 93.5 77.6 96.5 89.9 91.0

2. Sentence structure

2.1 Multiscale 94.7 70.4 96.1 95.3 93.8

2.2 Non-linear 90.3 83.2 91.1 98.8 94.7

2.3 Best position 93.6 95.2 97.2 94.3 95.8

Table 4.3: Dialogue act recognition accuracy for different sentence structure approaches
and different classifiers with manual word transcription.

4.6 Clustered Unigram Model

In the following experiments, classes of words are used instead of words to train the lexical

models. Two different types of clustering are tested. In the first one, words are clustered

independently of their DA class. Hence, word clusters are the same for all DA classes.

The main advantage of this option is that the number of word occurrences within every

word cluster is larger. A drawback is that word clusters do not take into account the

specificities of each DA class. In the second implementation, a word cluster is created for

each DA class. The unigram statistics are not estimated as robustly as in the previous

solution, but they should be more accurate.

The optimal number of word clusters depends on the corpus characteristics. In our ex-

periments, it is found empirically using a cross validation procedure on the development

corpus. Table 4.4 shows the recognition accuracy of both variants of clustered unigram

model. The baseline unigram model recognition accuracy is reported in the first row of this

table. The global recognition accuracy of the DA-independent clustered unigram model

is 91.1%, which is comparable with the unigram model. The DA-dependent clustered

unigram model gives 92.1% recognition accuracy, which slightly outperforms the unigram

model, our baseline approach. The DA error rate is thus reduced by 12%.

accuracy in [%]

Approach/ Classifier s o qy q Global

1. Lexical information

1 Unigram 93.5 77.6 96.5 89.9 91.0

2. Word clusters

2.1 Common clusters 94 65.6 93.6 91.8 91.1

2.2 Clusters per DA 92.5 76 92.5 93.8 92.1

Table 4.4: Dialogue act recognition accuracy for different clustered unigram model in %.
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4.7 Prosody

In the following experiments, we investigate the possibility to recognize dialogue acts

(statements and questions) in Czech from prosodic features only. The objective of these

experiments is to study the importance of prosody (namely F0 and energy) to automat-

ically recognize three DA classes: statements, yes/no questions and other questions (wh-

question, etc.).

The DA tag-set of these experiment is a subset of our DA tag-set with four DAs which

can be (as presented in Section 2.5.2) characterized solely by prosody as:

• Statements are usually characterizes by a falling intonation.

• Questions (particularly declarative and yes/no) are often characterized by a rising

F0 contour.

The class questions has been divided into two classes: yes/no and other questions, which

differ with regard to their prosodic characteristics. These experiments shall complement

the study realized by [110] about the importance of prosody in DA recognition.

4.7.1 Analysis of Fundamental Frequency

We first compare the F0 curves for every DA. The mean and variance of the F0 values are

computed for each of the twenty F0 features per utterance. The mean values of F0 are

shown in Figure 4.4. The variances are very small (in the interval [0; 0.02]) and are not

plotted to make the curves as visible as possible.

In the first part of the segment the F0 curves are very similar for all DAs. The last third

of the segment is the most discriminating. The F0 slope of yes/no questions (qy) is clearly

increasing, decreasing for statements (s) and almost horizontal for other questions (q).

This corresponds to the prosodic characteristics described previously. Note that these are

the average curves, and that individual exceptions might occur in the corpus.

This first visual analysis is completed next by a more detailed analysis of the mean and

variance of the F0 slope at the end of the utterance. Four values of F0 are computed on

the last 1.5 seconds of the utterance by an autocorrelation function. A linear regression

is then performed on these four values to approximate the final slope. Table 4.5 shows

the number of utterances in function of this slope. The ”/” and ”\” symbols respectively

represent an increasing and decreasing final F0 slope. Most of the yes/no questions are

actually characterized by a positive F0 slope. Conversely, the number of “other questions”

with a positive and negative F0 slope is well-balanced.

In the second part of Table 4.5, the slope values are splitted into 3 segments, depending

on whether the slope is strictly less than -0.03, between -0.03 and 0.03, and above 0.03.

The lower range should be characteristic of statements, and the higher range of yes/no

questions. This analysis shows that most of the DAs (about 80%) have a flat F0 slope and
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Figure 4.4: F0 curves for three types of DAs: s curve for statements, q curve for other
questions, qy curve for yes/no questions.

thus are not discriminating. Only about 30% of yes/no questions have a clear increasing

F0 slope, which can be useful information to recognize these DAs.

Class \ / < -0.03 [-0.03; 0.03] 0.03 <

s 69.7 30.3 9.1 84.9 6.0

q 46.9 53.1 4.2 85.4 10.4

qy 26.8 73.2 3.5 66.9 29.6

Table 4.5: Analysis of the F0 slope at the end of sentences for the three DA classes.

4.7.2 DA Recognition with F0

We use in this experiment only the fundamental frequency features that are computed

on the final segments of each DA. A GMM classifier with 5 Gaussian mixtures is trained

on these features. This number of Gaussians is reasonable with respect to the size of the

training corpus. This classifier models P (F |C). Table 4.6 shows the confusion matrix ob-

tained by this model. The global accuracy is 42%, which is significantly above the random

guessing accuracy (33%).

4.7.3 Analysis of Energy

We analyze next the energy curve in function of the DA. As previously, the mean and

variance are computed for all of the twenty energy features. The mean energy curves per
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Recognized class in [%]

Pronounced class s q qy

s 41.5 38.9 19.6

q 40.0 36.2 23.8

qy 26.1 28.8 45.1

Table 4.6: GMM confusion matrix for recognition of three DA classes solely by fundamental
frequency in %.

DA are shown in Figure 4.5. One can observe on this figure that the statement (s) curve

is less variable, i.e. closer from a straight line than both question curves. This difference

is the largest near the end of sentences. However, the variances of the energy features

are globally very high (up to 0.13), with an important overlap between all DA classes.

Therefore, in our experimental setup, we can conclude that energy features are not very

discriminant between DAs.

Figure 4.5: Energy curves for three types of DAs: s curve for statements, q curve for other
questions, qy curve for yes/no questions.

4.7.4 DA Recognition with Energy

We use 20 energy features to train a GMM classifier (as in the previous case). Table 4.7

shows the confusion matrix obtained in this experiment. The best recognition accuracy

40% is obtained with 3 Gaussian mixtures. Increasing the number of Gaussians decreases

the accuracy, because of the lack of training data.
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Recognized class in [%]

Pronounced class s q qy

s 41.1 26.1 32.8

q 28.9 33.8 37.3

qy 25.7 28.8 45.5

Table 4.7: GMM’s confusion matrix for recognition of three DA classes from the energy
only in %.

4.7.5 Discussion

A remarkable conclusion that can be drawn from the previous experiments is that prosodic

features, such as the F0 and energy, are less discriminant at the beginning of utterances

than at their end. This confirms the results of several previous studies [115, 127, 128].

Furthermore, the energy is less discriminant than the F0, probably because of its high

variance. This is confirmed by a slightly higher DA recognition score of F0, which may

be explained by the relatively different F0 slopes of the three chosen DAs, as shown in

Table 4.5. Yes/no questions are quite different from the two other DAs, which is probably

related to the fact that this class obtains the best recognition accuracy (45%). F0 slopes

of statements and other questions are similar, which causes some confusion between these

DA classes during recognition.

The global recognition scores of both DA recognition experiments are significant higher

than random guessing (about 10% in absolute). Hence, prosody brings some relevant clues

for DA recognition, although it can not be used alone.

4.7.6 DA recognition with F0 and energy

Other studies [110] as well as our own previous prosodic experiments suggest that prosodic

features are not sufficient to recognize all DAs with a good accuracy. Therefore, we combine

them next with lexis (and syntax). In this experiment, four DAs (statements (s), orders

(o), yes/no questions (qy) and other questions(q)) are recognized. Both basic prosodic

features, F0 and energy, are used.

Table 4.8 shows the recognition accuracy with two different classifiers that use only

prosody: a GMM and an MLP. The best MLP topology uses three layers: 40 inputs,

18 neurons in hidden layer and 4 outputs. The best recognition accuracy is obtained with

the 3-mixtures GMM. It is difficult to use more Gaussians, because of the lack of training

data, mainly for class o.

These recognition scores are still much lower than the ones obtained with lexical informa-

tion, but we will show next that prosody may nevertheless bring some relevant clues that

might not be extracted from words sequence.
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accuracy in [%]

Approach/
Classifier

s o qy q Global

1. Lexical information

1 Unigram 93.5 77.6 96.5 89.9 91.0

2. Prosodic information

2.1 GMM 47.7 43.2 40.8 44.3 44.7

2.2 MLP 38.7 49.6 52.6 34.0 43.5

Table 4.8: Dialogue act recognition accuracy in % for prosodic classifiers compared to our
baseline, an unigram model.

4.8 Combination of Prosodic and Sentence Structure Ap-

proaches

We first study the correlation matrix of both lexical and prosodic GMM classifiers in Table

4.9: this matrix shows the proportion of examples that are classified correctly and incor-

rectly by both classifiers. For example, 40.04% of the examples are classified correctly by

both classifiers while 5.57% of the examples are not recognized by any classifier. An inter-

esting remark from this table is that 2.12% of the examples are recognized by the prosodic

classifier, but not by the lexical one. This suggests that there is a small but significant

potential improvement that can be obtained by considering prosodic information as well.

lexical correct lexical incorrect

prosodic correct 40.04 2.12

prosodic incorrect 52.28 5.57

Table 4.9: Correlation of classification error rate of both classifiers in %.

4.8.1 Evaluation of Combination Methods

In these experiments, we evaluate several combination approaches described in Sections 2.9

and 3.5. We use here our baseline lexical unigram model for its simplicity and the prosodic

GMM for its performance in DA recognition task.

Table 4.10 compares the recognition accuracies of both independent lexical unigram and

prosodic GMM models with their combination, which is realized using several combination

methods.

We can note that, amongst order statistics combiners, the minimum and median ones

are better than the maximum one. But we can also observe that every unsupervised

combination gives a lower accuracy than the lexical classifier alone. This can be explained

by the fact that we combine only two classifiers, and most importantly because of the big

difference between each individual classifier recognition accuracy. Indeed, this is confirmed
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by the weighted linear combination, which optimal weight is 0.97 in favor of the lexical

approach.

The best recognition accuracy is obtained with the MLP combination, which reduces

the lexical word error rate by an absolute 2%. This figure can be compared with the

2.12% shown in Table 4.9. Therefore, this combination method is chosen for the following

experiments.

accuracy in [%]

Approach/ Classifier s o qy q Global

1. Lexical information

1 Unigram 93.5 77.6 96.5 89.9 91.0

2. Prosodic information

2 GMM 47.7 43.2 40.8 44.3 44.7

3. Unsupervised Combination

3.1 Product 81.1 76.8 86.2 64.4 72.3

3.2 Maximum 81.8 81.6 88.3 57.9 69.4

3.3 Minimum 80.0 73.6 84.8 64.6 71.7

3.4. Median 81.3 81.6 88.3 63.2 72.2

4. Supervised Combination

4.1 Weighted Linear 88.5 90.4 92.9 94.2 92.3

4.2 MLP 90.3 88.0 92.9 97.3 94.3

Table 4.10: Dialogue act recognition accuracy for individual lexical and prosodic classifiers
and their combination in %.

4.8.2 Combination of Sentence Structure Model and Prosody

The Non-linear merging scheme is evaluated in this experiment. In this approach, an MLP

encodes both lexical and position information, as described in Section 3.2.2, while prosody

is modeled by a GMM.

The combination of both models is realized with another MLP, which takes as input the

best results presented in the previous section.

The winning dialogue act class is given by Equation 3.20. The MLP is composed of three

layers as follows: 4 (for each DA class) times 2 (two classifiers to combine) input neurons,

9 neurons in the hidden layer and 4 output neurons, which encode the a posteriori class

probability.

Table 4.11 shows the recognition accuracy of this experiment.

One can conclude without loss of generality that the combination of models gives better

recognition accuracy than both the lexical and prosodic models taken individually, which

confirms that different sources of information bring different important clues to classify

DAs.
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accuracy in [%]

Approach/ Classifier s o qy q Global

1. Sentence structure

1 Non-linear 90.3 83.2 91.1 98.8 94.7

2. Prosodic information

2 GMM 47.7 43.2 40.8 44.3 44.7

3. Combination with a MLP

3 MLP 91.5 85.6 94.0 98.7 95.7

Table 4.11: Dialogue act recognition accuracy of combination of Non-linear merging and
prosodic GMM models in %.

4.9 Recognition with LASER Recognizer

Table 4.12 shows the same DA recognition scores as before, but with an automatic word

transcription obtained by the LASER recognizer instead of a manual transcription. The

results are obtained with word class based trigram language model (see Section 4.2).

Sentence recognition accuracy is 39.78% and word recognition accuracy is 83.36%.

The first section of Table 4.12 shows the DA recognition accuracy of an unigram model, our

baseline. The second section shows the accuracy of our proposed approaches based on the

word position within the utterance. The third section shows the recognition accuracy of

our main prosodic experiments. The recognition accuracy of the combination of prosodic

and Non-linear merging approaches are shown in the last part of this table. The topology

of all classifiers are the same as in the previous case, when the word transcription was

labeled manually.

accuracy in [%]

Approach/ Classifier s o qy q Global

1. Lexical information

1 Unigram 93.1 68.8 94.7 86.3 88.2

2. Sentence structure

2.1 Multiscale 93.8 63.2 92.9 92.9 91.4

2.2 Non-linear 85.5 72.0 86.8 98.0 91.8

2.3 Best position 92.1 86.4 95.3 92.2 93.6

3. Prosodic information

3.1 GMM 47.7 43.2 40.8 44.3 44.7

3.2 MLP 38.7 49.6 52.6 34.0 43.5

4. Combination of 2.2 and 3.1

4 MLP 88.5 77.6 90.4 97.3 93.0

Table 4.12: Dialogue act recognition accuracy for different approaches/classifiers and their
combination with word transcriptions obtained from the LASER recognizer.

The errors in transcriptions induced by the automatic speech recognizer do not have
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a strong impact on the results presented so far: the final accuracy only decreases from

95.7% down to 93%, and the ordering of the methods’ accuracy is preserved. This vali-

dates the use of the proposed approaches in human-computer speech-based applications

that use such a speech recognizer.

4.10 Conclusions

In this chapter, we have evaluated several new methods for automatic DA recognition.

First, we have studied the influence of word positions in a dialogue act recognition task.

Three proposed approaches have been described and compared, both in terms of their

respective theoretical advantages and drawbacks, and also experimentally on a Czech

corpus for a train ticket reservation. It has thus been demonstrated that the global position

of the words in sentences is an important information that improves automatic dialogue

act recognition accuracy, at least when the size of the training corpus is too limited to

train lexical n-gram models with a large n, which is the common situation in dialogue act

recognition.

Next, we have presented two variants of a new method for automatic dialogue act recogni-

tion based on word clusters. Words in the utterance have been replaced by word clusters.

In the first method, words are clustered independently of their DA class. In the second

implementation, a word cluster is created for each DA class. The recognition accuracy of

the best method, a DA-dependent clustered unigram model, is 92.1%. Compared to the

baseline system, the dialogue acts error rate is reduced by 12%. We show that it is possible

to replace words in the utterance by word clusters and handle thus the issue of the small

corpus size, where the number of words per DA class would not be large enough to reliably

estimate word probabilities.

We have shown in the prosodic experiments that is is not possible to recognize all DAs

with a good accuracy only by prosodic features, but that prosody can help to recognize

several particular DAs. We have thus proposed to combine sentence structure and prosodic

methods.

In Section 4.8, we have studied and compared different methods to combine lexical and

prosodic information in the context of automatic dialogue act recognition. We have shown

that it is possible to improve our baseline result by combining two lexical and prosodic clas-

sifiers with a MLP. A statistically significant 2% absolute improvement is then obtained,

which is actually very close to the potential improvement derived from the correlation

matrix between both classifiers. This confirms that prosodic clues are complementary to

the lexical ones, as it has been already suggested in other studies such as [110, 127]. All

the other combination schemes, and in particular the unsupervised ones, do not reach the

level of the lexical classifier alone. This shows the importance to fine-tune the combiner

on a development corpus in our experimental set-up. This might result from the large dif-

ference in the performances of both classifiers, and also from the small number of experts

that are combined.
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One of the systems that used both lexical and position information has then been enhanced

by further considering prosodic information. The supervised combination with an MLP

still improves the results over the position and lexicon approach alone.

Finally, the manual transcription has been replaced by an automatic transcription obtained

from a Czech LASER speech recognizer, in order to validate the use of the proposed dia-

logue act recognition approach in realistic applications that are often based on automatic

speech recognition. The resulting decrease in performances is very small, which confirms

the validity of the proposed approaches.

One focus of this work has been on modeling global words position, but local statistical

grammars have not been largely exploited, mainly because of the lack of training data.

However, these grammars shall also bring relevant information, and it would be quite

advantageous to further combine the proposed global model with such local grammars.

Another important information that has not been taken into account in this work is a di-

alogue act grammar, which models the most probable sequences of dialogue acts. It is

straightforward to use such a statistical grammar with our system, but we have not yet

done so because it somehow masks the influence of the contribution of the statistical and

prosodic features, and also in order to keep the approach as general as possible. Indeed,

such a grammar certainly improves the recognition results but is also often dependent on

the target application.
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Semi-automatic Labeling

5.1 Introduction

Automatic dialogue act recognition is mainly used in dialogue systems. Generally, differ-

ent dialogue systems use a different set of DAs, depending on their application domain.

A specific dialogue act corpus may thus be required for each application.

One of the main issue in the domain of automatic dialogue act recognition concerns the

design of a fast and cheap method to label new corpora. Manually labeling corpus is

very time consuming. This represents an important part of the project costs. Conversely,

completely unsupervised methods are less efficient. We study in this chapter the use of

a semi-automatic approach for DA corpus creation.

The resulting corpus will be further used to validate our previous recognition approaches

described in Chapter 3 and presented in [64, 65, 71, 70, 68, 67]. These methods were tested

on a Czech corpus with four DAs only, and will next be evaluated on another language

(French) and with a larger set of DAs.

The following section presents a state of the art of semi-automatic learning approaches.

A general view in this domain is given in the first subsection. The second subsection con-

cerns the application of these methods in dialogue act annotation. Section 5.4 describes

the process of corpus preparation, which is composed of the following main steps: defini-

tion of our DA tag-set, development of the software tool that is used for manual labeling,

and creation of the initial corpus. The proposed approaches, which are based on the Ex-

pectation Maximization (EM) [35] algorithm and confidence measures, are described in

Section 5.5. Section 5.6 evaluates our methods and compares them with the baseline EM

procedure. In the last section, we discuss the research results and propose some future

research directions.

71
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5.2 General Methods for Semi-supervised Training

Semi-supervised learning is a special case of training where the classifier or model is trained

on labeled and unlabeled data. Manually labeled data are usually difficult and expensive

to obtain, while row data are relatively easy to get. Semi-supervised training starts from

an existing classifier, usually trained on a small corpus of manually labeled data, and

iteratively trains new versions of this classifier on both the small labeled corpus and a large

amount of unlabeled data. The main semi-supervised approaches are described next.

5.2.1 Expectation Maximization

The Expectation Maximization (EM) algorithm is the most popular method used in semi-

supervised training. It is used to train models in the maximum likelihood sense with

hidden variables. The EM algorithm is composed of two main steps:

1. Expectation: computes the observation likelihood, with given evidence for hidden

variables equal to their expected value;

2. Maximization: computes the maximum likelihood estimates of the parameters by

maximizing the likelihood computed in step (1).

The “new” parameters estimated in step (2) are used in the next iteration at step (1).

This process iterates until convergence.

When the hidden variable represents the labels of a part of the training corpus, the EM

algorithm can then be used to achieve semi-supervised training. This method is closely

related to the self-training principle described in [129].

This basic EM algorithm is very successful when data conform to the generative assumption

of the model. But when this assumption is not satisfied, the performance of the algorithm

might degrade.

The EM algorithm is used in several domains. Nigam et al. exploit in [92] the EM

algorithm with a naive Bayes classifier. They use a small number of labeled and a large

amount of unlabeled data for text classification. Two improvements of the EM algorithm

are also presented: the use of a factor to weight the importance of the unlabeled data, and

the use of a many-to-one correspondence between GMMs and classes (unlike the usual one-

to-one correspondence). Their algorithm is evaluated on three different corpora: UseNet

news articles (20 Newsgroups [55]), web pages (WebKB [31]), and newswire articles from

Reuters. The authors show that the use of unlabeled data reduces the classification error

by up to 30%.

Lamel et al. use EM in [73] for semi-supervised training of acoustic models. The basic idea

is to use a speech recognizer trained on a very small corpus to automatically transcribe

unlabeled audio data on the DARPA DTD-2 corpus [23]. They show that the annotated

audio data is not very important to train the acoustic models. The acoustics models are

thus initialized only with 10 minutes of manually annotated data. The recognition results
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of supervised and semi-supervised training are very closed: the Word Error Rate (WER) for

supervised training on 50h of training data is about 21%, which is to compare with about

24% for semi-supervised training. The authors also show that it is possible to estimate

the models on automatically annotated data without filtering potentially incorrect words

in automatic transcription.

Lauritzen describes in [75] how to apply EM to Bayesian networks. The EM algorithm is

used to found maximum likelihood estimates or penalized maximum likelihood estimates

with hierarchical log-linear models and recursive models for contingency tables with miss-

ing data. Several experiments show that the likelihood function has a number of local

maxima, and a direct maximization of likelihood might give erroneous results with miss-

ing data. The authors mention that the use of penalized likelihoods, where penalty may

be computed for example from a prior density as explained in [45], give better results.

5.2.2 Transductive Support Vector Machines

Standard Support Vector Machines (SVMs) [28] approaches are trained only on labeled

data. Their main goal is to find a maximum margin linear boundary in the Reproducing

Kernel Hilbert Space [82]. Transductive Support Vector Machines (TSVMs) [91] is an

extension of standard SVMs on unlabeled data. The goal is to find a labeling for the

unlabeled data that maximizes the margin on the labeled and unlabeled data.

Figure 5.1 compares the linear separators of the SVMs and transductive SVMs on an

example. Symbols “+” and “#” mark two types of labeled data. Unlabeled data are

represented by symbol “o”. The inductive SVMs solution is represented by the full line

and the transductive ones by the dashed line.
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Figure 5.1: SVMs and TSVMs on labeled and unlabeled data.

The advantages and drawbacks of transductive SVMs are respectively described in [56]

and [130].
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5.2.3 Other Semi-supervised Approaches

Several semi-supervised approaches iteratively increases the size of the initial labeled data

set. The large labeled corpus obtained at the end of these iterations is used to train

the final classifier. A common method to increase the size of that data set is to exploit

the EM algorithm at each iteration to estimate the labels of a new part of the unlabeled

corpus. A confidence measure is often used to filter out the recognized examples that are

likely to be wrong (co-training, self-training, etc.). In the case of active learning, those

probably erroneous examples may be shown to the user, who can correct their labels. The

process described above is iteratively repeated until there is no unlabeled data left, or until

a predefined number of iteration is reached.

Co-training

Co-training (as described by Blum et al. in [12]) assumes that the features that describe

the data are redundant. The feature space X is divided into two subspaces X = X1 ×X2,

where X1 and X2 correspond to two different “views” of an example. It is assumed that

each view is sufficient for correct classification. Two classifiers are respectively trained

on these partitions. Both classifiers are then used to classify the unlabeled examples in

the corpus. The most confident predictions of each classifier are selected, labeled and

included into the training pool. The authors show in the best experiment that co-training

outperforms the experiment with only labeled data by up to 6% in absolute accuracy.

These experiments are performed on a corpus composed of 1051 web pages collected by

four universities.

Active Learning

Active learning [25] is also an iterative algorithm that starts from an initial labeled training

set and expands it at each iteration. Unlabeled samples are automatically labeled, and

some of these examples are also presented to the user who can correct their labels. The

core of active learning is to design an effective strategy to choose the examples that shall

be presented to the user. Several solutions have been proposed in the literature.

A common method proposed by several researchers and described in [80] is selective sam-

pling. This method is based on the observation that the distribution of the training data is

not uniform and some examples are more representative than others. By manually labeling

only a small number of these representative examples, the performances obtained by the

final classifier are comparable to the case where many unlabeled examples are randomly

chosen.

Another selection strategy, partition sampling, is presented by Souvannavong et al. in

[111]. Their selection sequence is given by a greedy maximization of the error reduction,

when the ground-truth of the corpus is known. They compute the improvement of the

accuracy obtained after adding each sample into the labeled data set (all labels are known)

at each iteration. The sample that maximizes the decrease of the classification error is
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then selected. The authors compare the performances of this approach with those of

random sampling on the TRECVID database [78]. Partition sampling outperforms random

sampling and almost reaches its optimal learning sequence, i.e. the sequence of examples

that maximizes the recognition accuracy.

For more information about active learning, please refer for example to [7] or [116].

5.3 Semi-Automatic Training Methods for Dialogue Act La-

beling

The semi-automatic training methods that have been used in the particular task of DA

labeling are described next.

5.3.1 Lexical Information and the EM Algorithm

Venkataraman et al. use in [122] semi-supervised training for segmentation and classifica-

tion of DAs on the Speech in Noisy Environments (SPINE) corpus [39]. They use a small

hand-labeled training set and a larger unlabeled data. DAs are modeled by HMMs where

states represent DAs. The utterances correspond to the observations generated by the

states. This system can be described by the following equation:

P (C,W ) =
N
∏

i=1

P (Ci|Cih)P (Wi|Ci) (5.1)

where C = C1, .., CN is a random variable that represents the DA sequence. The ob-

servations are the N utterances W = W1, ..,WN in the dialogue. Each utterance Wi is

composed of a words sequence (w1, .., wn). Cih is the dialogue history of the ith DA. In

the paper, the Markov assumption is used.

The EM algorithm is used to maximize the likelihood of the system on the training data.

Only the most probable DAs are used during the maximization step. Several size of

bootstrap data, several number of iterations and two language models, unigram (without

DA context) and 3-gram (context of two previous DAs), are tested. The experiments show

that this method works very well when the local context of DAs is considered (3-gram),

and when only a small initial labeled data set is used.

5.3.2 Prosody and EM

The system previously described is improved in [121] by further considering prosodic infor-

mation. HMMs now integrate lexical, prosodic and contextual information. Equation 5.1

now becomes:
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P (C,W,F ) =
N
∏

i=1

P (Ci|Cih)P (Wi, Fi|Ci) (5.2)

where F = F1, .., FN is a sequence of observed prosodic features.

The reported experiments show that the combination of these information sources signif-

icantly improves the recognition accuracy compared to when lexical information is used

alone. The DA recognition error rate thus decreases relatively of about 15%.

5.3.3 Active Learning

Active learning is successfully used in [123] to increase the amount of training data. The

authors use the same methods as in the first case, i.e. HMMs with n-gram models, but in

this case the EM algorithm is enhanced by active learning.

Furthermore, they propose an alternative model based on maximum entropy. The role of

the entropy is to represent the correlation between features, such as the identity of the

first two and the last two words, a bigram of the first two words, etc.

The maximum entropy model is then used to discriminate between the data that is likely

to be classified correctly (with large entropy values) and the data that should be labeled

manually (with small values of entropy). The experiments show that the maximum en-

tropy approach improves the classification accuracy from one iteration to another, which

is not the case for the baseline HMM classifier.

More details about semi-automatic training in the domain of dialogue acts are also given

in [54].

5.4 Initial Corpus Preparation

Every semi-automatic labeling approach that has been described previously needs a small

labeled corpus to initialize the models. In this section, the chosen corpus and dialogue act

tag-set are described and discussed. Then, we describe the process and tools designed to

build our initial small training and testing corpora. The composition of both corpora is

also detailed in this section.

5.4.1 Choice of the Source Corpus

The French broadcast news corpus ESTER [34] has been chosen, because:

1. It is in French language.

2. It is available in the Parole team.

3. An important part of the corpus (80h) is transcribed into words.
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4. It contains natural human-human speech, which makes it suitable for real-world

applications.

The transcription files are in xml format [14]. The speech files are in wave format [27].

5.4.2 Baseline DA Tag-set

The set of DAs must be defined before realizing manual labeling. Our initial tag-set is

based on the SWBD-DAMSL and MRDA systems. SWBD-DAMSL contains 42 clustered

DA classes and MRDA 11 general DA tags and 39 specific DA tags. The DAs from

SWBD-DAMSL and MRDA are described in Section 2.2. For ESTER, we have chosen

a subset of DAs from these baseline tag-sets that has been completed with additional

specific radio-oriented DAs. All the chosen DAs are described next.

5.4.3 Specific Dialogue Acts in ESTER

First, we describe the DAs that are neither contained in the DAMSL nor MRDA tag-set.

Radio Info

The DA “Radio Info” corresponds to a special statement in broadcast news, which provides

information about the radio the user is currently listening to, and/or about the actual time.

The examples are: “France Inter, il est 5 heures” (France Inter, it’s 5 o’clock) or “France

Info à Marseille” (France Info in Marseille). The Radio Info DA usually occurs at the

beginning or at the end of every news section. Thus, an additional information that can

be used to recognize this DA is the current position in the news stream. This information

is not used yet, but we suppose to use it later.

Person Speaking

The function of this DA is to give information about the current speaker of the news.

Its position in the news is usually close (it often immediately precedes or follows) to the

Radio Info DA. Examples of Person speaking are: “Joël Collado” or “Présenté par Hervé

Guillemot” (Presented by Hervé Guillemot).

Dialogue Subject

The Dialogue Subject DA is a particular statement that is specific to broadcast news. It

usually gives information about the topic of the following news: “Météo France” (France,

weather forecast), “Sport football” (sport, football) or “La politique ce matin” (Politics,

this morning). This DA may bring relevant cues concerning the place of the reportage

“À Londres la contre-offensive des avocats de Pinochet” (In London, the contra-offensive
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of the Pinochet’s advocates). The position of a Dialogue Subject DA is usually closed to

both Radio Info and Person Speaking DAs.

5.4.4 Dialogue Acts from SWBD-DAMSL and MRDA Tag-sets

We review next the DAs that have been used in our work, which come from the SWBD-

DAMSL and MRDA tag-sets. We describe some special properties of the French language

and the simplifying assumptions considered in the following work.

Yes/No Question

Three groups of French yes/no questions can be derived: the DAs in the first group have

syntactically the same structure as statements and can be recognized from prosody only.

For instance, the French sentence “Tu peux ouvrir la fenêtre?” (You can open the window?)

could be classified without prosody as a statement or as a yes/no question.

The second group of yes/no questions is characterised in French by the inversion of the

couple subject-verb, such as: “Peux-tu ouvrir la fenêtre?” (Can you open the window?).

The third group of French yes/no question is identified by the interrogative form “Est-ce

que” at the beginning of the utterance, such as: “Est-ce que tu peux ouvrir la fenêtre?”.

Prosodic information is not included in the first version of our system. Hence, for this

first version, the “prosodic” yes/no questions are added into the statement class. Also, the

inversion of subject-verb can not be detected with a unigram model, because the position

of each word is not considered. Therefore, yes/no questions with an inversion of subject-

verb are removed from the corpus. Our yes/no question class thus contains the third group

of yes/no question only.

Order

This DA class is based on action motivators class as described in Section 2.3. It contains

utterances that imply for the listener to perform an action. The function of orders is similar

to that of commands, but the form may differ. We consider that only utterances with an

imperative form can be considered as orders. Incitative questions are thus excluded from

this DA class. The written form finish usually by the “!” mark. Examples are: “Udělej

to rychle!” (Do it quickly!) or “N’oublis pas ce livre demain!” (Don’t forgot this book

tomorrow!).

Interruptions

This DA class, described in Section 2.3.9, is divided into two sub-classes in our application:

interruption-begin and interruption-end.

The reason for this division is that the respective lexical structures of both sub-classes are

different and it may be possible to model them with two different models. This property
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is not used in this work, but we hope to investigate it in a future work.

The Interruption-begin tag marks the first part of interrupted utterances. When an

interrupted speaker continues his speech, then the last part of his utterance, after the

interruption, is marked as Interruption-end.

The interrupted utterance “Je voudrais ... hum ... rester anonyme.” (I would like ... huh

... stay anonymous.) is thus labeled as: interruption-begin, backchannel, interruption-end.

The instants of interruptions are market by a “...” symbol.

Indecipherables

We divided this DA class, which is described in Section 2.3.9, into two sub-classes: indeci-

pherable and indecipherable without prosody. This is mainly due to technical and historical

reasons. The first version of our system did not include prosody and could not thus classify

correctly the DAs in this class (e.g. questions and statements with a similar grammat-

ical form). We then removed this DA class from the corpus for the first version of our

semi-automatic labeling system, and added it back in the last version.

5.4.5 Initial DA Tag-set

Table 5.1 summarizes our initial tag-set for the ESTER corpus. This DA tag-set is com-

posed of 21 dialogue acts.

5.4.6 Reduction of the Initial Tag-set

Several DA classes of this initial DA tag-set occur only very rarely, which makes them diffi-

cult to model. Furthermore, several other DAs are not very important for our application.

Therefore, the initial DA tag-set is reduced into a few broad classes. This is realized by

removing the DA classes that are not needed by our application, and by grouping together

DA classes that do not occur enough times.

The final grouped DA tag-set used for semi-automatic labeling is shown in the first part

of Table 5.2. It is based on the reduced SWBD-DAMSL tag-set shown in Table 2.3.

5.4.7 DA Label Tool

Two corpus need to be manually labeled: a first small corpus is needed to initialize the

semi-supervised training algorithm, and another one is required to test our approaches.

To achieve this task, we have developed the DA Label software, which is a tool dedicated to

manual corpus labeling with DAs. DA Label is a system independent software developed

in the java programming language. This tool contains a graphical user interface, which is

controlled by a combination of keyboard and mouse. The mouse is used to select a dialogue

1There are actually several types of other questions. For instance, the Or question is used when there
is at least two possible answers or options to choose from.
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DA Type Tag Example Translation

Statement non-opinion sd J’ai quatorze ans. I am fourteen.
Statement opinion sv Je pense que c’est bien. I think it is right.
Yes/No question qy Est-ce que tu aimes Eve? Do you love Eve?
Wh-question qw Quelle heure est-il? What time is it?
Others questions1 qo Pensez-vous ça ou pas? Are you think that or not?
Order e Fermez la porte! Close the door!
Conventional-opening o Bonjour! Hello!
Conventional-closing c Au revoir. Good bye.
Accept aa Oui, volontiers! Yes, with pleasure!
Reject n Non, pas du tout! No, not at all!
Backchannel b Eh-hum Uh-huh
Floor holder (hesita-
tion)

h Euh-euh Uh-uh

Thanks t Merci beaucoup! Many thanks!
Interuption-begin ib Je pense que ... I think that ...
Interuption-end ie ... sont satisfaisant. ... are satisfactory.
Radio Info g France Inter France Inter
Person speaking p Pascal Dervieux Pascal Dervieux
Dialogue subject d sport football sport football
Indecipherable z <mumbled, muffled, ...>
Indecipherable with-
out prosody

zz On peut commencer(./?) We can start(./?)

Other v <examples that do not belong to the previous classes>

Table 5.1: 21 dialogue acts from the French ESTER corpus with corresponding examples.

act to label, while predefined shortcut keys are used to add the corresponding DA label

marks (one mark at the beginning, one mark at the end) into the trs files.

DA Label operates in two view modes. The default mode shows dialogues without XML

tags and the advanced mode shows also the XML tags of the trs file. The screen of the

DA Label in the advanced mode is shown in Figure 5.2.

The user manual is available at http://home.zcu.cz/∼pkral/manual.doc and the free

version of the DA Label software (limited functionality) in the zip archive at the

http://home.zcu.cz/∼pkral/dalabel.zip.

A dedicated window of the graphical interface displays the current line of the transcription

file, the eventual error messages and the application help. The help contains the list of

DAs along with the corresponding shortcut keys and DA labels, and all the other functions

of the tool, such as the “Undo” and “Change display” functions. Figure 5.3 lists a section

of the transcription file labeled with some DAs.
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No. Clustered DA Type Tag DA Types Tag

Dialogue acts used for semi-automatic labeling
1. Statement gs Statement non-opinion sd

Statement opinion sv
2. Yes/No question qy Yes/No question qy
3. Other question gq Wh-question qw

Other question qo
4. Dialogue delimitation goc Conventional-opening o

Conventional-closing c
5. Accept ga Accept aa

Backchannel b
6. Floor holder h Floor holder h

Radio Info g
7. Radio specific DA gg Person speaking p

Dialogue subject, domain d

Remaining dialogue acts
8. Order e Order e
9. Reject n Reject n
10. Thanks t Thanks t
11. Interuption gi Interuption-begin ib

Interuption-end ie
12. Other v Other v
13. Indecipherable gz Indecipherable without

prosody
zz

Indecipherable z

Table 5.2: 13 clustered dialogue acts used in the French ESTER corpus: the first 7 DAs
are used for semi-automatic labeling, the other DAs are not used.

5.4.8 Initial Corpus Creation Process

Two disjoint subsets, composed of 12 radio programs each, are first selected randomly from

all radio sessions. The first subset is the small initial training corpus, while the second

one is used for testing.

The ESTER corpus contains both dialogues and monologues. Monologues are not very

interesting, because they are mainly composed of statements, and they contain very few

other DAs. Dialogues are more important, because they contain a greater variety of DAs.

In order to balance the number of different DAs, we have first to remove most of the

monologue sections so that mostly dialogues are manually labeled. We have developed

a fully automatic algorithm to select these sections only. This algorithm is based on the

two following constraints: (1) the speaker identity must change enough time during the

session, (2) any segment with only one speaker must be shorter than some predefined time

threshold. This value is set experimentally to 12 seconds.

This algorithm is used to select speech segments that are likely to contain dialogues from

the speech training subset. These segments are labeled manually using the DA Label tool.

The remaining segments are discarded. The testing corpus is created fully manually.
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Figure 5.2: Example of DA Label tool screen.

Table 5.3 shows the numbers of DAs in the initial training and testing corpora after the

manual labeling task. Note that the prefix “g” in the DA class names is removed to

simplify notations.

No. Clustered DA Type Tag Training Testing

1. Statements s 251 609

2. Yes/No questions qy 24 27

3. Other questions q 39 72

4. Dialog delimitations oc 55 23

5. Accepts a 44 34

6. Floor holders h 46 71

7. Radio specific DAs g 130 93

Tot. All DAs 589 929

Table 5.3: Structure of the manually created corpora for semi-automatic labeling.

This initial manual corpus can not be used to train statistical models, because it is not

large enough to reliably estimate the model parameters, apart from the Statements and

Radio specific DAs.

Several solutions exist. We describe and discuss next the three most interesting ones:

• Randomly select more radio programs and label them manually.
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<Turn speaker=”spk26” startTime=”1036.08” endTime=”1039.359” fidelity=”high”
channel=”studio”>
<Sync time=”1036.08”/>
{o} bonjour Patricia ! {/o} {sd} je vous parlais la semaine dernière, Patricia, d’un
spectacle d’Alfredo Arriaz {/sd}
</Turn>
<Turn speaker=”spk2 spk26” startTime=”1039.359” endTime=”1042.022” fi-
delity=”high” channel=”studio”>
<Sync time=”1039.359”/>
<Who nb=”1”/>
{aa} oui ... {/aa}
<Who nb=”2”/>
{qy} vous vous souvenez, à Bobigny qui s’appelait Aimer sa mère ?{/qy}
</Turn>
<Turn speaker=”spk26 spk2” startTime=”1042.022” endTime=”1046.446” fi-
delity=”high” channel=”studio”>
<Sync time=”1042.022”/>
<Who nb=”1”/>
{qy} vous vous souvenez pas du tout ?{/qy} {sd} c’est dramatique {/sd}
<Event desc=”rire” type=”noise” extent=”instantaneous”/>
<Who nb=”2”/>
{sd} Gérard Zenoni ! {/sd}
<Who nb=”1”/>
{t} merci ...{/t}
</Turn>

Figure 5.3: Example of dialogue with corresponding DA labels and XML tags in the trs
file (Transcriber format): the XML tags are identified by the ”<” and by the “/ >” signs,
DA labels are represented by the sign “{}” at the beginning of the DA and by the sign
“{/}” at its end.

• Use another corpus (or part of it) that is already annotated with DAs.

• Define and use rules, based on the general characteristics of the French language, to

automatically label some DAs from the ESTER corpus.

Manual Labeling

The first solution provides the best labeling quality amongst the three options proposed.

But it requires a lot of work and a lot of time, and it can not be the only option, because

of its cost in terms of human efforts.



Chapter 5 84

Use of Another Corpora

We have at our disposal two other small dialogue corpora:

MEDIA contains textual transcripts of phone dialogues in the reservation domain. One

part of this corpus is labeled with seven DAs: statement, query1, accept, reject, open

dialogue and close dialogue. It contains about one thousand of labeled DAs.

ECOLE MASSY is a corpus of the VALORIA laboratory of South-Brittany University.

It contains 31 simulated human-human oral dialogues (audio files with transcription) in

the tourist information domain. There are 20 speakers: 19 children and 1 teacher. The

corpus contains 5300 words, which represents 45 min of audio recording. It is labeled with

two DA tags only: statements and questions.

The main advantage of this method is its low cost and efficiency. However, it has some

limitations because of the incompatibility of the DA tag-sets used in both cases. Another

problem is that after a small manual analysis of the labeled DAs, some mistakes in the DA

classes have been found. Moreover, the dialogue domains are different, and the sentence

structure and the words used are thus different. For instance, reservation sentences are

usually much shorter than in the radio domain. Also, the vocabulary used in the reserva-

tion domain is much more constrained, which is not the case for broadcast news. The last

issue is that the corresponding speech files for the MEDIA corpus are sometimes missing.

Lexical Rules

A small set of lexical rules is defined manually, based on general properties of the French

language. The rules are defined by keywords and their corresponding position in the

utterance. Examples of rules are:

• Every utterance starting with “est-ce que” is a yes/no question.

• Every utterance starting with a wh-word (such as “comment”, “combien”, ..) is

a wh-question.

The complete list of rules is available at http://home.zcu.cz/∼pkral/rules.txt.

The main advantage of this method is its quickness. Another positive aspect is that the

rules are defined with respect to the chosen DA tag-set, and the resulting labeling is thus

totally compliant with the original labeling.

On the other hand, these rules do encode only a very small portion of possible utterances

of each DA, and can not capture the whole variety of the DAs extension. Furthermore,

spontaneous speech may sometimes break these rules, which then produce erroneous labels.

This is the main drawback of this fully automatic method. This issue may be partly tackled

by manually verifying some of the automatically generated DAs, which is not as much time

consuming as it is to label utterances by hand from scratch.

1This DA tag corresponds to the tag question from DAMSL.
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Labeling using Rules

We have chosen the third proposed solution in our case, i.e. to automatically label the

remaining training corpus with lexical rules.

Table 5.4 shows the composition of our initial corpora. The 1652 dialogue acts in the initial

training corpus are thus composed of 589 DAs labeled manually plus 1063 DAs labeled

automatically using rules.

No. Clustered DA Type Tag Training Testing

Man. Rules Init. Manual

1. Statements s 251 0 251 609

2. Yes/No questions qy 24 0 24 27

3. Other questions q 39 488 527 72

4. Dialog delimitations oc 55 411 446 23

5. Accepts a 44 21 65 34

6. Floor holders h 46 102 148 71

7. Radio specific DAs g 130 61 191 93

Tot. All DAs 589 1063 1652 929

Table 5.4: Structure of the initial corpus for semi-automatic labeling created both manually
and with rules.

We did not found any rule for the statement class, because its structure and content are

too much variable. Another surprising fact is that, in our training corpus, no question with

the interrogative form “est-ce que” at the beginning of the utterance has been found. This

may be due to the fact that this form of yes/no question is more likely used in spontaneous

speech than in more structured speech like broadcast news. Other questions characterized

by the subject-verb inversion are removed from the corpus, and those characterized solely

by prosody are considered as statements (c.f. Section 5.4.4).

The unlabeled part of corpus is composed of 5230 utterances.

5.5 Semi-automatic Labeling of Dialogue Acts with Confi-

dence Measure

We respectively describe next the dialogue act models, the semi-supervised training algo-

rithm and the proposed confidence measures, which role is to filter out erroneous training

examples.

5.5.1 Dialogue Act Modeling

Each dialogue act is represented by a unique state in the ergodic HMM shown in Fig-

ure 5.4. Each state computes the observation log-likelihood P (wi|C) in the unigram model
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described in Equation 5.3.

P (w1, · · · , wT |C) =
T
∏

i=1

P (wi|C) (5.3)

where C encodes the dialogue act class and wi represents the ith word of the current

utterance.

Transitions between states encode transition probabilities between subsequent dialogue

acts. In the following experiments, these transition probabilities are not trained, but are

rather set manually, with the same values for every state: the loop probability models the

average duration of any DA of the training corpus, while the out-going transitions are set

equiprobable for all destination states.

DA3

DA1

DAN DA2

Figure 5.4: Dialogue act model: each node of the ergodic HMM represents one DA class.

Unlike our previous works in automatic DA recognition, prosodic information is not in-

cluded in the feature vector: DA models exploit lexical features only. This choice has been

made to first test our semi-supervised training procedure with a low-dimensional feature

space, and because our previous experiments have shown that the contribution of prosody

is anyway quite limited compared to lexical information. But prosody shall be considered

in a future work. Furthermore, because of the small size of the initial corpus, only unigram

statistics are computed. Our expectation is that once a larger part of the corpus has been

semi-automatically labeled, this simplified framework could be advantageously replaced

by more complex models, with prosodic features and longer temporal dependencies for

example. But we investigate next the most critical part of the corpus creation process,

which is likely to be just after initialization.

5.5.2 Semi-supervised Training

The structure of our initial corpus is summarized in Table 5.4: it is composed of a small

part labeled manually, another part labeled automatically with rules, and a third part

without any labels, which contains 5230 utterances. On this unlabeled part of the corpus,
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we assume that the labels (the DA classes) are instances of an hidden random variable

C. This variable is estimated by the classical Expectation Maximization algorithm, as

follows:

1. Initialization: let Ω be the whole training corpus, and D ⊂ Ω the small labeled

training corpus; Initially, at t = 0, a classifier C0 is trained on D.

2. The DAs of the unlabeled corpus Ω−D are inferred (and segmented) by the current

classifier Ct.

3. The classifier Ct+1 is re-trained on Ω.

4. The procedure is iterated from step 2 until a given number of iterations is reached.

In this algorithm, all DAs are classified and are further used to train a new classifier at the

next iteration of the EM algorithm. However, the classifier is not perfect and make errors

that impair the next training phase. This algorithm is also highly sensitive to the quality

of the initial training corpus, especially with regard to its coverage property. There are

two principal problems to solve:

1. How to select the “correct” labels for the next training iteration?

2. How to eventually select the few ambiguous examples that can be labeled manually?

The solution of the first challenge is the use of confidence measures, which give the proba-

bility that a recognized DA is correct or not. Any example is included in the next training

corpus if and only if this probability is greater than a given threshold. The proposed

algorithm based on the EM procedure is summarized next:

1. Initialization: let Ω be the whole training corpus, and D0 ⊂ Ω the small labeled

training corpus; let t = 0.

2. The classifier Ct is trained on Dt.

3. The DAs of the unlabeled corpus Ω−Dt are inferred (and segmented) by the current

classifier Ct.

4. For each recognized DA, a confidence measure is computed to assess its reliability;

let Mt be the most reliable DAs.

5. The most reliable examples are included into the training corpus: Dt+1 = Dt ∪Mt.

6. t is incremented, and the procedure is iterated from step 2 until a given number of

iterations is reached.

The second issue, which concerns the selection of some DAs to be labeled manually, can

also be solved with a confidence measure. The idea is to select only the DAs that bring

the maximum information into the labeled corpus, which may correspond for instance to

the most ambiguous DAs. This approach is known as active learning, and it is one of the

perspectives of my work.
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5.5.3 Dialogue Act Recognition

The performance of the classifier is evaluated at each iteration on the test corpus, which has

been manually segmented and labeled. Recognition is realized with the ergodic HMM of

Figure 5.4 and the Viterbi algorithm, which outputs both the DA labels and their temporal

limits. The recognition rate is computed for each word by comparing the recognized and

correct labels.

5.5.4 Confidence Measure

Like many confidence measures used in speech recognition [81], our first confidence measure

for DA recognition is an estimate of the a posteriori class probability. The output of our

lexical classifier is P (W |C), where C is the dialogue act class and W is the words sequence

in the DA. The likelihoods P (W |C) are normalized to compute the a posteriori class

probabilities:

P (C|W ) =
P (W |C).P (C)

∑

D∈DA P (W |D).P (D)
(5.4)

DA is the set of all DAs and P (C) is the prior probability of the DA class C.

In the first version of our training algorithm, called maximum a posteriori probability

method, only the DAs Ĉ so that

Ĉ = arg max
C

(P (C|W ))

and

P (Ĉ|W ) > T

are included into the training corpus.

In the second version, called a posteriori probability difference method, the difference

between the best hypothesis and the second best one is computed by the following equation:

∆P = P (Ĉ|W ) − max
C 6=Ĉ

(P (C|W )) (5.5)

Only the DAs with ∆P > T are included into the training corpus. This second approach

aims at identifying the DAs that “dominate” all the other candidates, which is not always

well captured by the first measure.

T is in both cases an acceptation threshold and its optimal value is found experimentally.

5.6 Experiments

In the following experiments, the unigram probabilities P (wi|C) with less than 6 examples

in the training corpus are smoothed to the class-independent backoff prior P (wi). Further-

more, all DA priors are set equiprobable, because the training corpus is partly generated
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from hand-crafted rules that bias the estimates of these priors.

5.6.1 Maximum a Posteriori Probability

Figure 5.5 plots the DA recognition rate on the manually labeled test corpus, with the

Maximum a posteriori probability method, in function of the number of EM iterations and

for different values of T . The results obtained without any confidence measure (or equiv-

alently for T = 0) are also shown with the label “EM”. We can note that the performance

of this EM-only curve degrades, which justifies the use of confidence measures to filter out

incorrectly recognized DAs.
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Figure 5.5: Performance of the maximum a posteriori probability method: the X-axis
represents the number of EM iterations and the Y-axis plots the DA recognition rate.

After three iterations, the recognition rate tends to stabilize, with a maximum of 80% for

threshold 0.999 and at the third iteration. The improvement due to our semi-supervised

training algorithm represents a decrease of 30% of the recognition errors. The evolution

of the size of the training corpus is shown in Figure 5.6.

Table 5.5 shows the recognition rate per DA at different iterations with T = 0.999. One

can observe that most of the individual DA rates increase. Only the score of yes/no ques-

tions is decreasing, which is probably due to the lack of training data for this class in the

initial manual corpus.

The confusions between the DA classes at the best recognition rate (third iteration with

T = 0.999) are shown in Table 5.6. Most of these errors occur with the statement class.

This can be explained by the lexical characteristics of each class. Every DA class except

statements contains at least one word that is strongly correlated to the DA class. Moreover,

their vocabularies are usually less variable and more discriminant than for the statement

class. For example, a wh-word is characteristic of wh-questions and rarely occurs in other

DA classes, the word “Bonjour” (Good-day) contains conventional-opening DA class only,
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Figure 5.6: Performance of the maximum a posteriori probability method: the X-axis
represents the number of EM iterations and the Y-axis plots the DA corpus size.

Recognition rate in [%]

Iter. s qy q oc a h g glob.

0 72.4 70.3 62.9 66.1 51.4 100 41.6 70.6

1 76.4 58.6 62.9 66.1 51.4 100 42.7 73.7

2 81.8 58.0 62.5 66.1 65.3 100 45.7 78.6

3 83.8 52.3 65.5 66.1 65.3 100 41.0 80.0

4 82.6 51.1 66.5 66.1 62.5 100 43.1 79.1

5 81.9 47.1 68.2 66.1 62.5 100 43.1 78.4

6 81.8 51.1 68.2 66.1 62.5 100 43.1 78.5

7 81.8 46.8 68.2 66.1 62.5 100 43.1 78.4

8 82.2 46.8 68.8 66.1 62.5 100 43.1 78.7

9 81.9 46.8 68.8 66.1 62.5 100 43.1 78.5

Table 5.5: Performance of the maximum a posteriori probability method: dialogue act
recognition rate in % at different iterations with probability threshold 0.999.

etc. The radio specific DAs class is the class that has the worst accuracy, which is probably

due to its lexical characteristics that are largely common with the statement class.

5.6.2 A posteriori Probability Difference

Figure 5.7 shows the DA recognition rate in function of the number of EM iterations. The

corresponding corpus sizes are shown in Figure 5.8.

Table 5.7 shows the recognition rate per DA at different iterations with T = 0.9995. Like

in the previous experiment, most of the DA recognition rates increase. Only the score of

yes/no questions does not increase, which is probably due to the lack of training data for
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Recognized DA class (in [%])

DA s qy q oc a h g

s 83.8 2.7 10.6 0.2 0.7 0.0 2.0

qy 39.9 52.3 4.2 0.0 0.6 0.0 3.0

q 31.8 2.7 65.5 0.0 0.0 0.0 0.0

oc 33.9 0.0 0.0 66.1 0.0 0.0 0.0

a 20.8 0.0 9.7 4.2 65.3 0.0 0.0

h 0.0 0.0 0.0 0.0 0.0 100 0.0

g 52.9 3.0 1.9 1.3 0.0 0.0 41.0

Table 5.6: Confusion matrix of the maximum a posteriori probability method for the best
DA recognition rate (third iteration and probability threshold 0.999).
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Figure 5.7: Performance of the a posteriori probability difference method: the X-axis
represents the number of EM iterations and the Y-axis plots the DA recognition rate.

this class in the initial manual corpus. The results stabilize after the seventh iteration,

with a maximum of 78% for threshold 0.9995: this represents a decrease of 27% of the

recognition errors.

The confusions between the DA classes at the best recognition rate (seventh iteration with

T = 0.9995) are shown in Table 5.8. The confusion matrix is almost the same as in the

previous experiment (see Table 5.6).

The difference between the Maximum a posteriori probability and the A posteriori prob-

ability difference methods is quite small.
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Figure 5.8: Performance of the maximum a posteriori probability method: the X-axis
represents the number of EM iterations and the Y-axis plots the DA corpus size.

Recognition rate in [%]

Iter. s qy q oc a h g glob.

0 72.4 70.3 62.9 66.1 51.4 100.0 41.6 70.6

1 72.8 64.3 61.4 66.1 51.4 100.0 43.8 70.8

2 74.4 64.3 62.9 66.1 51.4 100.0 47.6 72.4

3 75.5 64.3 64.3 66.1 65.3 100.0 46.7 73.5

4 75.9 65.8 60.0 66.1 65.3 100.0 46.7 73.6

5 75.9 69.1 61.0 66.1 65.3 100.0 46.7 73.8

6 80.1 59.2 60.0 66.1 65.3 100.0 45.9 77.0

7 80.8 57.1 62.0 66.1 65.3 100.0 45.0 77.7

8 80.8 57.1 62.0 66.1 65.3 100.0 45.0 77.7

9 80.8 57.1 62.0 66.1 65.3 100.0 45.0 77.7

Table 5.7: Performance of the a posteriori probability difference method: dialogue act
recognition rate in % at different iterations with probability threshold 0.9995.

5.7 Main Contributions

The most important contributions of my research described in this chapter are summarized

below:

• Proposition of a new DA tag-set for the ESTER radio corpus based on DAMSL and

MRDA projects.

• Proposition and implementation of two confidence measures methods: Maximum a

posteriori probability and A posteriori probability difference.

• Use of these confidence measures to improve the performance of the EM-based semi-

supervised training in the dialogue act recognition domain.
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Recognized DA class (in [%])

DA s qy q oc a h g

s 80.8 7.2 9.5 0.2 0.6 0.0 1.7

qy 33.3 57.1 6.0 0.0 0.6 0.0 3.0

q 29.4 7.3 62.0 0.0 1.4 0.0 0.0

oc 29.0 4.8 0.0 66.1 0.0 0.0 0.0

a 20.8 0.0 9.7 4.2 65.3 0.0 0.0

h 0.0 0.0 0.0 0.0 0.0 100 0.0

g 46.7 4.7 2.3 1.3 0.0 0.0 45.0

Table 5.8: Confusion matrix of the a posteriori probability difference method for the best
DA recognition rate (seventh iteration and probability threshold 0.9995).

• Semi-automatic creation of a new French DA corpus based on the ESTER corpus.

Some other contributions of my work described next are summarized as follows:

• Design and implementation of the DA Label, a user friendly tool for manual DA

labeling of corpora.

• Proposition and implementation of an automatic method for DA labeling of corpora

based on pre-defined rules.

• Implementation of the EM algorithm for semi-automatic labeling in the dialogue act

domain.

5.8 Conclusions

In this chapter we have proposed a new DA tag-set that is based on the DAMSL and

MRDA systems and that is adapted to the broadcast news domain. This tag-set is used

to label the French ESTER corpus.

The main contribution of the work described in this chapter is to instantiate the general

EM procedure to the task of creating semi-supervised corpora labeled with different sets of

dialogue acts and in different languages at a low cost. We show that confidence measures

are required to filter out incorrect examples, and we evaluate two such measures on this

task.

The recognition score as well as the size of our DA corpus is increasing during this iterative

process. However, the corpus size does not increase very much (see for example Figure 5.6)

and a large part of the training data is never considered as correctly recognized by the

confidence measure, and is thus never included into our labeled corpus. This is probably

due to the large variety of the vocabulary used in broadcast news: the initial manually

labeled corpus is too small and most of the words that are in the unlabeled corpus have

never been seen and are not accurately modeled.
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The solution might be to use the Active learning approach, which selects a few examples

in the unlabeled part at each iteration, and asks the user to manually label them. These

examples are chosen at each step in order to increase the models coverage and accuracy.

We have also described how our dialogue act recognition system, which was previously

developed for a Czech reservation application, can be retrained and successfully adapted

to a new language (French), a new type of corpus (broadcast news) and a different set of

dialogue acts.

The principal contribution described in this chapter was presented at the 32nd IEEE In-

ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP’2007) [66].
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Conclusions and Perspectives

This thesis deals with automatic dialogue act recognition in Czech and in French.

The information given by the sequence of dialogue acts is an important clue to understand

spontaneous dialogues, and numerous applications may benefit from this knowledge. Dur-

ing the development of the DA recognition system, we had two particular applications in

mind: the first one is a dialogue system that detects the communicative intention of the

speaker, e.g. whether the user gives a command that the system must process immedi-

ately, or whether the user is rather talking to his friend and does not expect any clear

reaction from the system. The second target application is to augment the visual feedback

of a talking head by animating it with respect to the current dialogue act (for instance,

raising eyebrows when asking questions).

State-of-the-art DA recognition approaches are usually based on n-gram models, which

only model the local structure of utterances. An important aspect of our work is the dif-

ferent solutions that we have proposed and studied to further model the global sentence

structure. This has been realized by considering additional information about the words

position in the sentence. We have thus proposed three approaches to model this informa-

tion: the first one, the multiscale position approach, exploits a description of the sentence

at several levels and smoothes the probabilities across these levels. The second one, the

non-linear merging method, models the dependency between the words in the sentence

and their position with an MLP. The third one, the best position approach, exploits the

Bayesian framework and assumes conditional independence between the words and their

position to infer the probability of the dialogue act.

All the proposed approaches have been described and compared in terms of their respective

theoretical advantages and drawbacks, and also experimentally on the Czech corpus. It has

been demonstrated that the global position of the words in the sentences is an important

information that improves the dialogue act recognition accuracy, at least when the size of

the training corpus is too limited to train lexical n-gram models with a large n, which is

the most common situation in dialogue act recognition.

Another common issue in DA recognition systems concerns the lack of training data, which

limits the complexity of the model. We have also studied this problem and proposed some

95
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solutions. In the first one, a clustered unigram model is developed, which clusters the

words in the sentences into several groups by maximizing the mutual information between

two neighbor word classes. We have shown that this method is especially efficient when

the DA corpus is small.

We have also analyzed the importance of prosody, represented by the fundamental fre-

quency and the energy in the DA recognition task. We have shown that prosody alone is

not sufficient to perform DA recognition, but that it nevertheless brings useful information

that may solve ambiguous cases with the lexicon alone. In particular, we have shown that

prosody is especially useful for yes/no questions detection.

All lexical, prosodic and sentence structure features are finally combined. We have thus

studied several classifier combination methods and compared all of them theoretically and

experimentally. We have shown that the combination of these different knowledge sources

improves the recognition score over each individual method.

The proposed approaches have been evaluated in two cases: when the manual word tran-

scription is used and when these word sequences are unknown and estimated by a speech

recognizer, which is the most common case in a real application. We have shown that the

recognition accuracies of both manual and automatic systems are comparable, and that

the use of an ASR system only slightly degrades the performances for our corpus and task.

Another main contribution of this work is the development and evaluation of a semi-

automatic DA labeling method. This kind of approach is especially important in the DA

recognition domain, where the DA tag-set often changes from one target application to

another, which would otherwise require a lot of efforts to manually label many different

corpora with a variety of different tags. In this context, we have proposed a new DA

tag-set based on the DAMSL and MRDA systems for the French broadcast news ESTER

corpus. We have also proposed a semi-supervised labeling approach based on the EM

algorithm and confidence measures to label this corpus at a low cost. Two confidence

measures, namely the maximum a posteriori probability and the a posteriori probability

difference, have been developed and tested in order to improve the performance of the EM

algorithm. We have shown that, in the proposed experimental setup, the use of confidence

measures to filter out incorrectly recognized DAs is required to obtain satisfactory results.

The study of dialogue act recognition approaches in two different languages (Czech and

French) and two applications (reservation system and broadcast news) is also an interesting

and original contribution over the state-of-the-art.

This work can be improved in several aspects. First, although global words positions

have been modeled, local statistical grammars have not been largely exploited, mainly

because of the lack of training data. However, these grammars are known to bring relevant

information, and it would be quite advantageous to further combine the proposed global

models with such local grammars. Another important information that has not been taken

into account in this work is a dialogue act grammar, which models the most probable

sequences of dialogue acts. It is straightforward to use such a statistical grammar in

our system, but we have not yet done so because it somehow masks the influence of the

statistical and prosodic features we focus on in this work, and also in order to keep the
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approach as general as possible. Indeed, such a grammar certainly improves the recognition

results but it is also often dependent on the target application.

Regarding the combination of DA recognition methods, we have shown that several such

combinations improve the recognition accuracy, but we have not tested all of them. This

comparison could be completed in a future work, but we do not expect a large difference

with the results that have been reported in this thesis. Finally, other promising perspec-

tives of this work concern semi-supervised corpus creation. This approach has still to be

tested on the outputs of a real automatic speech recognizer system before it can be used

to produce complete new corpora for DA recognition. Furthermore, an Active Learning

approach should certainly be used in order to bypass the limits of the models trained on

a limited initial corpus. More complex dialogue act models can also be used, for instance

with prosody and dialogue grammars, as well as the development of better confidence

measures and initial dialogue act rules.



List of Acronyms

ASR Automatic Speech Recognition

CART Classification and Regression Tree

DA Dialogue Act

DAMSL Dialogue Act Markup in Several Layers

DFT Discrete Fourier Transform

EM Expectation Maximization

F0 Fundamental Frequency

GMM Gaussian Mixture Model

HMM Hidden Markov Model

k-NN k-Nearest Neighbor

LM Language Model

MMI Maximization of Mutual Information

MBL Memory-Based Learning

MC Monte-Carlo

MLP Multi-Layer Perceptron

MoC Mean number of Conditions

MRDA Meeting Recorder DA

NN Neural Network

RMSE Root Mean Square Energy

SI Specificity Index

SWBD-DAMSL Switchboard DAMSL

SOM Self-Organizing Map
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SVM Support Vector Machine

TBL Transformation-Based Learning

TSVM Transductive Support Vector Machine

WER Word Error Rate
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[67] P. Král, C. Cerisara, and J. Klečková. Importance of Prosody for Dialogue Acts

Recognition. In SPECOM’07, Moscow, Russia, October 2007.
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[87] P. Martin. Comparison of Pitch Detection by Cepstrum and Spectral Comb Analysis.

In Int. Conf. Acoust., Speech, Signal Processing, pages 180–183, 1982.

[88] P. Martin. Prosodic and Rhythmic Structures in French. In Linguistics, volume II,

pages 925–949, 1987.

[89] M. Mast et al. Automatic Classification of Dialog Acts with Semantic Classification

Trees and Polygrams. In Connectionist, Statistical and Symbolic Approaches to

Learning for Natural Language Processing, pages 217–229, 1996.

[90] M. Meteer, A. Taylor, R. MacIntyre, and R. Iyer. Dysfluency Annotation Stylebook

for the Switchboard Corpus. Technical report, Linguistic Data Consortium, Ferbru-

ary 1995. ftp://ftp.cis.upenn.edu/pub/treebank/swbd/doc/DFL-book.ps, Revised

June 1995 by A. Taylor.

[91] Kasabov N. and S. Pang. Transductive Support Vector Machines and Applications

in Bioinformatics for Promoter Recognition. Neural Information Processing - Letters

and Reviews, 3(2):31–38, May 2004.

[92] Kamal Nigam, Andrew K. McCallum, Sebastian Thrun, and Tom M. Mitchell. Text

Classification from Labeled and Unlabeled Documents using EM. Machine Learning,

39(2/3):103–134, 2000.

[93] A. M. Noll. Cepstrum Pitch Determination. J. Acoust. Soc. Am., 2(41):293–309,

1967.

[94] D. O’Shaughnessy. Timing Patterns in Fluent and Disfluent Spontaneous Speech.

In Int. Conf. on Acoustics, Speech and Signal Processing, volume 1, pages 600–603,

Detroit, 1995.
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