

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l'utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale.

Contact: ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

Ecole doctorale RP2E

Thèse

présentée pour l'obtention du titre de

Docteur de l'Université Henri Poincaré, Nancy I en Sciences de la Terre et de l'Univers

présentée et soutenue publiquement par

Elsa PUPIER

le 30 janvier 2006

S.C.D. - U.H.P. NANCY 1 BIBLIOTHÈQUE DES SCIENCES Rue du Jardin Botanique - BP 11 54801 VILLERS-LES-NANCY Cédes

Approche expérimentale de la cristallisation dans les chambres magmatiques et étude d'intrusions litées (massif gabbroïque du Skaergaard, Groenland, et pluton granitique de Dolbel, Niger)

Composition du Jury:

Président du jury :

M. François BUSSY

Professeur, Institute of Mineralogy and Geochemistry,

Université de Lausanne

Maître de Conférences, CRPG-CNRS et UHP, Nancy

Examinateur:

Mme Stéphanie DUCHENE

Professeur, Université de Liège

Directeur de Recherche, ISTO-CNRS, Orléans

Rapporteurs:

Mme Jacqueline VANDER AUWERA

M. Michel PICHAVANT

Directeurs de thèse :

M. Pierre BARBEY

M. Mickael TOPLIS

Professeur, CRPG-CNRS et UHP, Nancy Chargé de Recherche, LDTP-CNRS,

Université Paul Sabarier, Toulouse

Centre de Recherches Pétrographiques et Géochimiques

Remerciements

Je tiens tout d'abord à remercier les membres du jury pour avoir accepté de juger ce travail, les deux rapporteurs Jacqueline Vander Auwera et Michel Pichavant ainsi que les deux examinateurs Stéphanie Duchêne et François Bussy. Plus particulièrement, je remercie Stéphanie Duchêne, pour m'avoir expliqué ces "formules bizarres d'une langue inconnue", pour ces modélisations, ainsi que pour sa patience et sa façon de me sortir des idées claires de la tête. Je remercie également François Bussy pour l'accueil qu'il m'a réservé à Lausanne ainsi que pour m'avoir initié à l'utilisation de l'ICP-MS à ablation laser.

Enfin, pour terminer ces remerciements adressés aux membres du jury, quelques mots pour ceux sans qui tout cela n'aurait pas été possible : Pierre Barbey et Mike Toplis. Tout au long de ce travail, ils ont montré un vif intérêt et un grand enthousiasme à la découverte de nouveaux résultats. Merci donc pour la rigueur que vous m'avez demandé dans l'argumentation des idées, pour m'avoir laissé une complète liberté dans mes plannings, mes analyses et mes orientations, tout en étant constamment disponibles pour recadrer, discuter, contredire et commenter.

Je remercie Bernard Marty pour m'avoir accueilli dans son laboratoire durant ces trois années. Je n'aurais pas pu mener ce travail à bien sans tout le personnel qui se consacre au bon fonctionnement des instruments. Je remercie toute l'équipe du service de micro-analyses de l'UHP, Frédéric Diot, Johann Ravaux, Alain Kohler, Jérôme Demange et Sophie Adeline qui, malgré la clim' à 12° et la semi-obscurité, ont toujours su rendre mes journées agréables ; un merci tout particulier à Jacqueline pour son accueil, le café du matin et ces discussions qui m'ont souvent changé les idées. Merci également à l'équipe de la sonde ionique, Denis Mangin, Michel Champenois et Claire Rollion-Bard pour avoir effectué mes analyses même quand je n'étais pas là. Merci à "celui du sous-sol", Laurent Tissandier, toujours là quand les expériences tournaient à la catastrophe. Je remercie également tout le personnel du labo de chimie qui, durant ces 3 années, ont su "libérer" les petits fils de platine tant espérés. Sans oublier Cédric Demeurie qui a trouvé le moyen de polir un échantillon tous les 20 µm. Un grand merci à vous tous : chacun de vos petits miracles ont été d'importance dans la réalisation de ces travaux.

Je tiens à remercier chaleureusement William Brown pour m'avoir "raconté" le Skaergaard et l'histoire des feldspaths. Mais également François Faure (qui a eu la malchance d'arriver un an trop tôt), pour nos nombreuses discussions sur la croissance et la nucléation, ses explications et ses conseils. Merci à David Jousselin pour m'avoir dévoilé, en image, l'ophiolite d'Oman, et à Christian Lecarlier, pour avoir tripatouillé dans les programmes informatiques afin d'en sortir ces modèles de cristaux en 3D. Je vous remercie aussi, Dominique Gasquet, Guy Libourel, Daniel et Maryse Ohnenstetter pour nos discussions qui ont affermies mes savoirs en pétrographie, croissance cristalline, convection compositionnelle, cathodo... Merci également à Gaston Giuliani pour sa bonne humeur et pour nos nombreuses conversations, tant sur le plan géologique que sur la vie en générale.

Je remercie également les nombreux étudiants que j'ai encadrés : Florence Bonnet, Gaëlle Maury, Marie-Anne Muller, Dany Cadiou et Emilien Oliot pour avoir su garder patience et persévérance et pour ne pas avoir flanché face à ces milliers de cristaux à dompter.

L'accueil au CRPG n'aurait pas été le même sans tout le personnel du service général, Bruno, Pierre, Manu ainsi que Jean-Marc et Caroline avec qui les discussions du rez-de-chaussée étaient beaucoup plus animées. Merci aussi aux filles du premier Valérie, Cathy, Isabelle, Aurélie Martine et Marie-Odile pour leur sympathie et leur disponibilité, ainsi que Larry pour ses nombreux conseils et dépannages informatiques. Enfin, merci à Jacques pour l'impression de ce manuscrit.

La vie au quatrième aurait été moins drôle sans Laure, Virginie, nos discussions et nos fourires, je les remercie pour leurs conseils et leur soutien. L'ambiance du bureau était dirigée de mains de maître par Yves le Franc-comtois, que je remercie pour sa bonne humeur et pour sa touche "photographique". L'arrivée d'Ewan au quatrième et de son Armelle, a amené un peu de Bretagne au labo, ce n'est pas tant pour le soleil...mais ça a donné un p'tit goût salé à l'aquarium. Je ne voudrais pas oublier les repas de midi avec le Clippertonien Mickael, Sylvain et Céline M. qui ont su donner un peu de vie (dans le sens premier du terme) à nos repas-sandwichs et plat-tests... Je remercie Reika pour tous ces voyages immobiles grâce auxquels j'ai découvert le Japon, ainsi que pour m'avoir appris la cuisine de son pays...à bientôt je l'espère. Un grand merci à Mady pour être apparue, tel le chevalier blanc, pour me sauver des vilaines griffes de la mise en page *Wordienne*. Je remercie aussi tous les autres étudiants pour leur soutien et leur perpétuel "alors, ça y est..., c'est fini?" : Maxence, plus communément appelé "spectroman", Nicolas dit "l'Alsacien", Francesca "la belle italienne",

Céline P. "ma jumelle *crpgienne*", Agnès-Sandrine (ce serait dommage de les séparer), je n'oublierais pas le reste de mes "co-bureautaires", Christophe-le-Stéphanois et Valier...le discret.

Je ne serais pas arrivée jusque là sans le soutient de Magali et d'Isabelle qui, malgré les kilomètres, ont su rester proches. Mais également Hervé, qui a été là dans les coups, durs et moins durs. Je regretterais les "coloc ' de la rue de Villers", j'espère que les filles du 37 termineront leur année en beauté. Je remercie également Naranek, Naatho't, Delenn, Kiko, Erika et Kaede de m'avoir accompagné durant ces quelques années.

Pour finir, je tiens à remercier toute ma famille qui a toujours été là, et qui ne m'a pas tenu rigueur de mes longues absences. Merci à ma mère de m'avoir apporté le soleil de La Ciotat et de m'avoir encouragée. Je remercie tout particulièrement mon père qui a su me conseiller, me soutenir et rester un point de repère...mon phare dans les tempêtes. Un grand merci à tous les Ottavi (les Faucher aussi, même s'ils viennent du Gard), pour m'avoir accueilli dans votre famille. Merci à Marilou et Jean-Mi pour les corrections, pour les repas du dimanche et pour la chambre à droite en haut de l'escalier.

Enfin je terminerais par celui qui a subi cette thèse plus que les autres : Sébastien. Il m'a aidé et soutenu, il a bravé la biblio, les kilomètres et les grèves SNCF pour être toujours là...merci.

CHAPITRE 1

Introduction 9	générale :	Processus de	e genèse du	litage dans l	les chambres	magmatiques
Inti oduction ;	gonoraic .	TIOCCOSUS UC	v zonose uu	i iiiaze uans i		mazmanuucs

I. CRISTALLISATION HUMOGENE DANS TOUTE LA CHAMBRE	0
2. MODELE DES COUCHES LIMITES (REGIME CONDUCTIF)	7
3. SEDIMENTATION GRAVITAIRE DES CRISTAUX	8
4. LA CONVECTION	10
4.1. Convection continue ou intermittente	12
4.2. Convection thermique et compositionnelle (double-diffusive)	13
5. COURANTS DE DENSITE DANS LE MAGMA ET SEGREGATION DE FLUX	14
6. RECHARGE ET MELANGE DE MAGMAS	15
7. COMPACTION ET DEFORMATION SYN-MAGMATIQUE	19
B. AUTRES PROCESSUS INVOQUES	21
8.1. Variation du taux de nucléation	21
8.2. Diffusion contrôlant nucléation et croissance	22
8.3. Fluctuation de la fugacité d'oxygène	23
8.4. Processus tardifs	23
O. OBJECTIFS DE L'ETUDE	25
CHAPITRE 2:	
Etude expérimentale de la distribution des tailles de cristaux (CSD)	
<u>le plagioclases dans les basaltes</u>	
1. INTRODUCTION	31
2. SIGNIFICATION DES CSD DANS LES ROCHES MAGMATIQUES	
2.1. CSD en système fermé (batch)	
2.2. CSD en système ouvert	
2.3. Processus de modification des CSD	
2.4. Nucléation et croissance	
2.4.1. La nucléation.	
2.4.2. La croissance	
2.5. L'agglomération de cristaux	45

3. PROTOCOLES EXPERIMENTAL ET ANALYTIQUE	47
3.1. Paramètres expérimentaux	47
3.2. Protocole expérimental	49
3.3. Analyses chimique et minéralogique	51
3.4. De l'échantillon aux CSD	53
3.5. Calcul des CSD	53
3.6. Caractérisation des CSD	56
3.7. Limites des CSD	57
3.7.1. Représentativité 2D-3D	57
3.7.2. Représentativité d'une coupe	58
3.7.3. Précision sur le calcul de la pente et de l'intercept et sur le con	nptage des cristaux
de petite taille	61
4. INFLUENCE DE L'HISTOIRE THERMIQUE SUR LES CSD	63
4.1. Evolution au cours du refroidissement	63
4.1.1. Observation des échantillons	63
4.1.2. Evolution des proportions des phases	67
4.1.3. Description des CSD	67
4.1.4. Bilan des expériences	69
4.2. Influence de l'histoire anté-liquidus	69
4.2.1. Expériences à température initiale variable	71
4.2.2. Expérience à durée de palier initial variable	
4.2.2.1. Observation des échantillons	71
4.2.2.2. Evolution des proportions des phases	75
4.2.2.3. Description des CSD	79
4.2.2.4. Bilan des expériences	86
4.3. Influence de la vitesse de refroidissement	86
4.3.1. Observation des échantillons	92
4.3.2. Evolution des proportions des phases	92
4.3.3. Description des CSD	94
4.3.4. Bilan des expériences	
4.4. Conclusion sur l'influence de l'histoire thermique	
5. ETUDE DE LA MATURATION	104
5.1. Observation des échantillons	104
5.2. Compositions chimiques et minéralogiques	108

6. REPRODUCTIBILITE DES EXPERIENCES 11 7. DISCUSSION 11 7.1. Interprétation de la forme log-linéaire des CSD 17 7.2. Interprétation des CSD pour les petites tailles 11 7.3. Aplatissement des CSD au cours du refroidissement 11 7.4. Nucléation homogène versus nucléation hétérogène 12 7.5. Comparaison avec le Lac de lave du Makaopuhi (volcan Kilauea, Hawai) 12 8. CONCLUSION 12 CHAPITRE 3: Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) 1. INTRODUCTION 12 2. CONTEXTE GEOLOGIQUE 13 2.1. Situation et caractéristiques à grande échelle 13 2.2. La minéralogie - définition des zones et sub-zones 13 2.3. Compositions des phases 13 2.4. Le litage 13 2.5. L'évolution en composition du liquide 13 3. LA DEMARCHE 13 3.1. Plagioclases, témoins de l'histoire magmatique 13 3. LA Oches Homogènes 13 4.1. Roches Homogènes 13 4.1.1. Echantillons de LZa 14 4.1.2. Roches litées 14	5.3. Description des CSD	111
7.1. Interprétation de la forme log-linéaire des CSD 11- 7.2. Interprétation des CSD pour les petites tailles 11- 7.3. Aplatissement des CSD au cours du refroidissement 11 7.4. Nucléation homogène versus nucléation hétérogène 12 7.5. Comparaison avec le Lac de lave du Makaopuhi (volcan Kilauea, Hawai) 12 8. CONCLUSION 12 CHAPITRE 3 : Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) 1. INTRODUCTION 12 2. CONTEXTE GEOLOGIQUE 13 2.1. Situation et caractéristiques à grande échelle 13 2.2. La minéralogie - définition des zones et sub-zones 13 2.3. Compositions des phases 13 2.4. Le litage 13 3. LA DEMARCHE 13 3.1. Plagioclases, témoins de l'histoire magmatique 13 3. LA Ochic d'échantillons et protocole analytique 13 4. RESULTATS 13 4.1. Roches Homogènes 13 4.1.1. Echantillons de LZa 14 4.1.2. Echantillons de LZa 14 4.1.3. Echantillons de LZc 14	6. REPRODUCTIBILITE DES EXPERIENCES	111
7.2. Interprétation des CSD pour les petites tailles 11 7.3. Aplatissement des CSD au cours du refroidissement 12 7.4. Nucléation homogène versus nucléation hétérogène 12 7.5. Comparaison avec le Lac de lave du Makaopuhi (volcan Kilauea, Hawai) 12 8. CONCLUSION 12 CHAPITRE 3 : Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) 1. INTRODUCTION 12 2. CONTEXTE GEOLOGIQUE 13 2.1. Situation et caractéristiques à grande échelle 13 2.2. La minéralogie - définition des zones et sub-zones 13 2.3. Compositions des phases 13 2.4. Le litage 13 3.5. L'évolution en composition du liquide 13 3.1. Plagioclases, témoins de l'histoire magmatique 13 3.2. Choix d'échantillons et protocole analytique 13 4.1. Roches Homogènes 13 4.1.1. Echantillons de LZa 14 4.1.2. Echantillons de LZb 14 4.1.3. Echantillons de LZc 14	7. DISCUSSION	114
7.3. Aplatissement des CSD au cours du refroidissement 11 7.4. Nucléation homogène versus nucléation hétérogène 12 7.5. Comparaison avec le Lac de lave du Makaopuhi (volcan Kilauea, Hawai) 12 8. CONCLUSION 12 CHAPITRE 3 : Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) 1. INTRODUCTION 12 2. CONTEXTE GEOLOGIQUE 13 2.1. Situation et caractéristiques à grande échelle 13 2.2. La minéralogie - définition des zones et sub-zones 13 2.3. Compositions des phases 13 2.4. Le litage 13 3.5. L'évolution en composition du liquide 13 3.1. Plagioclases, témoins de l'histoire magmatique 13 3.2. Choix d'échantillons et protocole analytique 13 4.1. RESULTATS 13 4.1. Roches Homogènes 13 4.1.1. Echantillons de LZb 14 4.1.3. Echantillons de LZb 14 4.1.3. Echantillons de LZc 14	7.1. Interprétation de la forme log-linéaire des CSD	114
7.4. Nucléation homogène versus nucléation hétérogène 12 7.5. Comparaison avec le Lac de lave du Makaopuhi (volcan Kilauea, Hawai) 12 8. CONCLUSION 12 CHAPITRE 3 : Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) 1. INTRODUCTION 12 2. CONTEXTE GEOLOGIQUE 13 2.1. Situation et caractéristiques à grande échelle 13 2.2. La minéralogie - définition des zones et sub-zones 13 2.3. Compositions des phases 13 2.4. Le litage 13 3.5. L'évolution en composition du liquide 13 3.1. Plagioclases, témoins de l'histoire magmatique 13 3.2. Choix d'échantillons et protocole analytique 13 4.1. Roches Homogènes 13 4.1.1. Echantillons de LZa 13 4.1.2. Echantillons de LZb 14 4.1.3. Echantillons de LZc 14	7.2. Interprétation des CSD pour les petites tailles	117
7.5. Comparaison avec le Lac de lave du Makaopuhi (volcan Kilauea, Hawai) 12. 8. CONCLUSION 12. CHAPITRE 3 :	7.3. Aplatissement des CSD au cours du refroidissement	117
CHAPITRE 3 : Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) 1. INTRODUCTION 12 2. CONTEXTE GEOLOGIQUE 13 2.1. Situation et caractéristiques à grande échelle 13 2.2. La minéralogie - définition des zones et sub-zones 13 2.3. Compositions des phases 13 2.4. Le litage 13 2.5. L'évolution en composition du liquide 13 3. LA DEMARCHE 13 3.1. Plagioclases, témoins de l'histoire magmatique 13 3.2. Choix d'échantillons et protocole analytique 13 4.1. Roches Homogènes 13 4.1.1. Echantillons de LZa 13 4.1.2. Echantillons de LZb 14 4.1.3. Echantillons de LZc 14	7.4. Nucléation homogène versus nucléation hétérogène	120
CHAPITRE 3 : Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) 1. INTRODUCTION	7.5. Comparaison avec le Lac de lave du Makaopuhi (volcan Kilauea, Hawai)	123
Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) 1. INTRODUCTION 12 2. CONTEXTE GEOLOGIQUE 13 2.1. Situation et caractéristiques à grande échelle 13 2.2. La minéralogie - définition des zones et sub-zones 13 2.3. Compositions des phases 13 2.4. Le litage 13 2.5. L'évolution en composition du liquide 13 3. LA DEMARCHE 13 3.1. Plagioclases, témoins de l'histoire magmatique 13 3.2. Choix d'échantillons et protocole analytique 13 4. RESULTATS 13 4.1. Roches Homogènes 13 4.1. Lechantillons de LZa 13 4.1. 2. Echantillons de LZb 14 4.1. 3. Echantillons de LZc 14	8. CONCLUSION	124
Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) 1. INTRODUCTION 12 2. CONTEXTE GEOLOGIQUE 13 2.1. Situation et caractéristiques à grande échelle 13 2.2. La minéralogie - définition des zones et sub-zones 13 2.3. Compositions des phases 13 2.4. Le litage 13 2.5. L'évolution en composition du liquide 13 3. LA DEMARCHE 13 3.1. Plagioclases, témoins de l'histoire magmatique 13 3.2. Choix d'échantillons et protocole analytique 13 4. RESULTATS 13 4.1. Roches Homogènes 13 4.1. Lechantillons de LZa 13 4.1. 2. Echantillons de LZb 14 4.1. 3. Echantillons de LZc 14		
dans la Lower Zone du massif du Skaergaard (Groenland) 1. INTRODUCTION 12 2. CONTEXTE GEOLOGIQUE 13 2.1. Situation et caractéristiques à grande échelle 13 2.2. La minéralogie - définition des zones et sub-zones 13 2.3. Compositions des phases 13 2.4. Le litage 13 2.5. L'évolution en composition du liquide 13 3. LA DEMARCHE 13 3.1. Plagioclases, témoins de l'histoire magmatique 13 3.2. Choix d'échantillons et protocole analytique 13 4. RESULTATS 13 4.1. Roches Homogènes 13 4.1. Lechantillons de LZa 13 4.1. 2. Echantillons de LZb 14 4.1. 3. Echantillons de LZc 14		
2. CONTEXTE GEOLOGIQUE 13 2.1. Situation et caractéristiques à grande échelle 13 2.2. La minéralogie - définition des zones et sub-zones 13 2.3. Compositions des phases 13 2.4. Le litage 13 2.5. L'évolution en composition du liquide 13 3. LA DEMARCHE 13 3.1. Plagioclases, témoins de l'histoire magmatique 13 3.2. Choix d'échantillons et protocole analytique 13 4. RESULTATS 13 4.1. Roches Homogènes 13 4.1. 2. Echantillons de LZa 13 4.1. 2. Echantillons de LZb 14 4.1. 3. Echantillons de LZc 14		
2.1. Situation et caractéristiques à grande échelle.132.2. La minéralogie - définition des zones et sub-zones132.3. Compositions des phases132.4. Le litage132.5. L'évolution en composition du liquide133. LA DEMARCHE.133.1. Plagioclases, témoins de l'histoire magmatique133.2. Choix d'échantillons et protocole analytique134. RESULTATS134.1. Roches Homogènes134.1.1. Echantillons de LZa134.1.2. Echantillons de LZb144.1.3. Echantillons de LZc14	1. INTRODUCTION	129
2.1. Situation et caractéristiques à grande échelle.132.2. La minéralogie - définition des zones et sub-zones132.3. Compositions des phases132.4. Le litage132.5. L'évolution en composition du liquide133. LA DEMARCHE.133.1. Plagioclases, témoins de l'histoire magmatique133.2. Choix d'échantillons et protocole analytique134. RESULTATS134.1. Roches Homogènes134.1.1. Echantillons de LZa134.1.2. Echantillons de LZb144.1.3. Echantillons de LZc14	2. CONTEXTE GEOLOGIQUE	131
2.3. Compositions des phases 13 2.4. Le litage 13 2.5. L'évolution en composition du liquide 13 3. LA DEMARCHE 13 3.1. Plagioclases, témoins de l'histoire magmatique 13 3.2. Choix d'échantillons et protocole analytique 13 4. RESULTATS 13 4.1. Roches Homogènes 13 4.1.1. Echantillons de LZa 13 4.1.2. Echantillons de LZb 14 4.1.3. Echantillons de LZc 14		
2.4. Le litage 13 2.5. L'évolution en composition du liquide 13 3. LA DEMARCHE 13 3.1. Plagioclases, témoins de l'histoire magmatique 13 3.2. Choix d'échantillons et protocole analytique 13 4. RESULTATS 13 4.1. Roches Homogènes 13 4.1.1. Echantillons de LZa 13 4.1.2. Echantillons de LZb 14 4.1.3. Echantillons de LZc 14	2.2. La minéralogie - définition des zones et sub-zones	131
2.5. L'évolution en composition du liquide 13 3. LA DEMARCHE 13 3.1. Plagioclases, témoins de l'histoire magmatique 13 3.2. Choix d'échantillons et protocole analytique 13 4. RESULTATS 13 4.1. Roches Homogènes 13 4.1.1. Echantillons de LZa 13 4.1.2. Echantillons de LZb 14 4.1.3. Echantillons de LZc 14	2.3. Compositions des phases	132
3. LA DEMARCHE 13 3.1. Plagioclases, témoins de l'histoire magmatique 13 3.2. Choix d'échantillons et protocole analytique 13 4. RESULTATS 13 4.1. Roches Homogènes 13 4.1.1. Echantillons de LZa 13 4.1.2. Echantillons de LZb 14 4.1.3. Echantillons de LZc 14	2.4. Le litage	133
3.1. Plagioclases, témoins de l'histoire magmatique 13 3.2. Choix d'échantillons et protocole analytique 13 4. RESULTATS 13 4.1. Roches Homogènes 13 4.1.1. Echantillons de LZa 13 4.1.2. Echantillons de LZb 14 4.1.3. Echantillons de LZc 14	2.5. L'évolution en composition du liquide	135
3.2. Choix d'échantillons et protocole analytique 13 4. RESULTATS 13 4.1. Roches Homogènes 13 4.1.1. Echantillons de LZa 13 4.1.2. Echantillons de LZb 14 4.1.3. Echantillons de LZc 14	3. LA DEMARCHE	136
4. RESULTATS 13 4.1. Roches Homogènes 13 4.1.1. Echantillons de LZa 13 4.1.2. Echantillons de LZb 14 4.1.3. Echantillons de LZc 14	3.1. Plagioclases, témoins de l'histoire magmatique	136
4.1. Roches Homogènes 13. 4.1.1. Echantillons de LZa 13. 4.1.2. Echantillons de LZb 14. 4.1.3. Echantillons de LZc 14.	3.2. Choix d'échantillons et protocole analytique	137
4.1.1. Echantillons de LZa 13. 4.1.2. Echantillons de LZb 14. 4.1.3. Echantillons de LZc 14.	4. RESULTATS	138
4.1.2. Echantillons de LZb	4.1. Roches Homogènes	138
4.1.3. Echantillons de LZc	4.1.1. Echantillons de LZa	138
	4.1.2. Echantillons de LZb	143
4.2. Roches litées	4.1.3. Echantillons de LZc	145
	4.2. Roches litées	148
4.2.1. Echantillons de LZa	4.2.1. Echantillons de LZa	148
4.2.2. Echantillons de LZc	4.2.2. Echantillons de LZc	152
5. DISCUSSION	5. DISCUSSION	155

5.1. Les roches homogènes	155
5.1.1. Mobilité de liquide interstitiel et les moteurs du mouvement	157
5.1.2. Conditions pour appliquer la convection compositionnelle	161
5.2. Les roches litées	165
6. CONCLUSION	166
CHAPITRE 4:	
Etude pétrologique de la genèse du litage dans	
le pluton granitique de Dolbel (Niger)	
1. LES OBJECTIFS, LES METHODES ET LA CIBLE	171
1.1. Les Objectifs	171
1.2. La démarche et les méthodes	176
1.3. La cible	177
2. CONTEXTE GEOLOGIQUE	180
3. DESCRIPTION DES SEQUENCES LITEES	183
3.1. Définition d'une séquence-type	
3.2. Les microstructures tectoniques	191
4. MICROTEXTURES ET CHIMIE DES MINERAUX FERROMAGNESIE	NS 193
4.1. Pyroxène	193
4.2. Amphibole : variabilité compositionnelle à l'échelle du cristal	195
4.3. Amphibole : variabilité compositionnelle à l'échelle de la séquence	204
5. MICROTEXTURES ET CHIMIE DES FELDSPATHS	204
5.1. Plagioclase	210
5.1.1. Structures internes et compositions	210
5.1.2. Les CSD	213
5.2. Feldspath potassique	216
6. MICROTEXTURES ET CHIMIE DES AUTRES MINERAUX	219
6.1. Quartz	219
6.2. Sphène, apatite et oxydes Fe-Ti	219
6.3. Minéraux secondaires	221
7. MICROTEXTURES DES MINERAUX DU CŒUR DU PLUTON	221
8. DISCUSSION	232

32 32 35
35
27
<i>37</i>
39
40
41
41
43
44
46
4 7
53
61

LISTE DES FIGURES

CHAPITRE 1

Introduction

FIGURE 2-1: Variations stratigraphiques de la composition des plagioclases dans diverses

-5-

-9-

FIGURE 1-1 : Séquences minéralogique du Stillwater et du Bushveld.

intrusions.

FIGURE 2-2: Variations stratigraphiques des teneurs en éléments incompatibles	dans
diverses intrusions	-9-
FIGURE 5-1 : Photographie de schlieren dans le granite de Ploumanac'h	-16-
FIGURE 6-1: Différenciation d'un magma primitif, contaminé par des roches fels	iques
crustales, dans un système SiO ₂ -Mg ₂ SiO ₄ -Cr ₂ FeO ₄ .	-18-
FIGURE 6-2: Différenciation d'un magma primitif, mélangé avec le même magma	plus
différencié, dans un système SiO ₂ -Mg ₂ SiO ₄ -Cr ₂ FeO ₄ .	-18-
FIGURE 7-1 : Photographie d'un gabbro lité de l'ophiolite d'Oman.	-20-
CHAPITRE 2	
Etude expérimentale de la distribution des tailles de cristaux (CSD)	
de plagioclases dans les basaltes	
FIGURE 2-1: Exemples de distribution de taille de cristaux de plagioclases.	-36-
FIGURE 2-2 : CSD attribuée à une augmentation exponentielle de la vitesse de nucléation	on (<i>J</i>)
avec le temps, combinée à une vitesse de croissance constante (G_{θ}) .	-36-
FIGURE 2-3: CSD attribuée à une augmentation exponentielle de la vitesse de croiss	sance
(G) avec la taille, combinée à une vitesse de nucléation constante (J_0) .	-36-
FIGURE 2-4 : CSD représentées en fonction du pourcentage de phase cristallisée.	-36-
FIGURE 2-5 : Représentation de la pente et de l'intercept d'une CSD en système ouvert.	36-
FIGURE 2-6: Dispersion théorique des CSD dans le cas d'une sédimentation de cri	staux
dans un système fermé avec J et G nulles.	-40-
FIGURE 2-7 : Trois dispersion théorique des CSD avec le temps et pour J nulle : croiss	sance
adcumulus, mûrissement textural LSW et mûrissement textural CN.	-40-

FIGURE 2-8 : Dispersion théorique des CSD avec le temps lors d'une compaction.	-40-
FIGURE 2-9: CSD mesurée suite à un processus d'agglomération.	-40-
FIGURE 2-10: Evolution de la concentration au cours de la cristallisation.	-46-
FIGURE 2-11 : Courbes de nucléation et de croissance.	-46-
FIGURE 2-12 : Enthalpie libre d'activation de la nucléation homogène (ΔG) en foncti	on du
rayon du germe.	-46-
FIGURE 2-13 : Différence d'enthalpie libre entre le liquide et le cristal.	-46-
FIGURE 2-14 : Mécanisme d'agglomération de deux particules.	-46-
FIGURE 3-1 : Parcours température vs temps des expériences réalisées.	-48-
FIGURE 3-2a: Diagramme de phases pour une composition ferro-basaltique SCI, ba	sé sur
des données expérimentales.	-50-
FIGURE 3-2b : Diagramme de phases pour une composition ferro-basaltique SCI, basé	sur le
modèle MELT.	-50-
FIGURE 3-3a: Photographie de la canne multitrempes.	-52-
FIGURE 3-3b: Photographie du four tubulaire GERO 1.	-52-
FIGURE 3-4: Photographie en microscopie optique d'une bille et images de cette	bille
traitée pour le contourage des cristaux de plagioclases	-52-
FIGURE 3-5 : Exemples d'intersection d'un parallélépipède	-55-
FIGURE 3-6 : Calcul de la pente d'une CSD en éliminant les effets dus aux petites et gr	andes
tailles.	-55-
FIGURE 3-7a : Différentes étapes de la reconstitution d'une bille en trois dimensions.	-59-
FIGURE 3-7b : Images des cristaux en trois dimensions modélisés sous © gOcad.	-59-
FIGURE 3-8 : Comparaison des CSD obtenues par les données 2D et 3D.	-60-
FIGURE 3-9a: Droites de régression linéaire des CSD pour trois polissages de la	même
bille.	-62-
FIGURE 3-9b: Comparaison entre la CSD du polissage interne et celle correspondar	nt à la
somme des différents polissages.	-62-
FIGURE 3-9c: Comparaison entre la droite de régression linéaire du polissage inte	rne et
celle correspondant à la somme des différents polissages.	-62-
FIGURE 4-1: Parcours température vs temps pour l'expérience XP15.	-65-
FIGURE 4-2 : Photographies BSE des quatre billes de l'expérience XP15.	-66-
FIGURE 4-3: Proportion de phases cristallisées en fonction de la température	dans
l'expérience XP15.	-67-
FIGURE 4-4: CSD pour l'expérience XP15.	-67-

FIGURE 4-5: Droites de regression lineaire des CSD de l'experience XP15.	-
FIGURE 4-6: Proportions des plagioclases en fonction de la température dans l'expérience	ce
XP15.	/_
FIGURE 4-7: Parcours température vs temps pour les expériences à température initia	ıle
variable (XP11, XP12 et XP14) et pour les durées de palier initial variable (XP14, XP1	15
et XP13).)-
FIGURE 4-8 : Photographies BSE des quatre billes de l'expérience XP14.	<u>}</u> _
FIGURE 4-9 : Photographies BSE des quatre billes de l'expérience XP13.	ļ -
FIGURE 4-10: Proportion de phases cristallisées en fonction de la température dans	ns
l'expérience XP14.) –
FIGURE 4-11: Proportion de phases cristallisées en fonction de la température dans	ns
l'expérience XP15.) –
FIGURE 4-12: Proportion de phases cristallisées en fonction de la température dans	ns
l'expérience XP13.) -
FIGURE 4-13 : Bilan de masse des phases en présence pour les expériences à durée de pali	.eı
initial variable (XP14, XP15 et XP13).)-
FIGURE 4-14: Proportions des plagioclases en fonction de la température dans l	es
expériences à durée de palier initial variable (XP14, XP15 et XP13)80)-
FIGURE 4-15a : CSD en fonction de la température de trempe pour XP14.	<u>!</u> -
FIGURE 4-15b : CSD en fonction de la température de trempe pour XP1582	<u>)</u> -
FIGURE 4-15c : CSD en fonction de la température de trempe pour XP13.	<u>)</u> _
FIGURE 4-16a: Droites de régression linéaire des CSD en fonction de la température	de
trempe pour XP14.	} _
FIGURE 4-16b : Droites de régression linéaire des CSD en fonction de la température	de
trempe pour XP15.	3-
FIGURE 4-16c : Droites de régression linéaire des CSD en fonction de la température	de
trempe pour XP13.	}_
FIGURE 4-17: Droites de régression linéaire des CSD en fonction des durées de palier initi	ia
pour les mêmes températures de trempe84	1-
FIGURE 4-18: Coefficients des droites de régression linéaire des CSD en fonction de	la
température de trempe, pour des durées de palier initial différentes85	5 -
FIGURE 4-19: Intercepts des droites de régression linéaire des CSD en fonction de	la
température de trempe, pour des durées de palier initial différentes85	5-

- FIGURE 4-20 : Nombre de cristaux de plagioclase, en fonction de la température de trempe, pour des durées de palier initial différentes.

 -85-
- FIGURE 4-21: Parcours température *vs* temps pour les expériences à vitesse de refroidissement variable (XP07-06, XP02-03 et XP01-04).
- FIGURE 4-22: Photographies BSE des expériences à vitesses de refroidissement variables (XP07-06, XP02-03 et XP01-04).
- FIGURE 4-23a: Proportion de phases cristallisées en fonction de la température dans l'expérience XP01-04.
- FIGURE 4-23b: Proportion de phases cristallisées en fonction de la température dans l'expérience XP02-03.
- FIGURE 4-23c: Proportion de phases cristallisées en fonction de la température dans l'expérience XP07-06.
- FIGURE 4-24: Bilan de masse des phases en présence pour les expériences à vitesses de refroidissement variables (XP07-06, XP02-03 et XP01-04).
- **FIGURE 4-25**: Proportions des plagioclases en fonction de la température dans les expériences à vitesses de refroidissement variables (XP07-06, XP02-03 et XP01-04). **96-**
- FIGURE 4-26a : CSD en fonction de la température de trempe pour XP01. -98-
- FIGURE 4-26b : CSD en fonction de la température de trempe pour XP02-03.
- FIGURE 4-26c : CSD en fonction de la température de trempe pour XP07-06.
- FIGURE 4-27a: Droites de régression linéaire des CSD en fonction de la température de trempe pour XP01.
- **FIGURE 4-27b**: Droites de régression linéaire des CSD en fonction de la température de trempe pour XP02-03.
- **FIGURE 4-27c**: Droites de régression linéaire des CSD en fonction de la température de trempe pour XP07-06.
- FIGURE 4-28: Coefficients des droites de régression linéaire des CSD en fonction de la température de trempe, pour des vitesses de refroidissement différentes.

 -101-
- FIGURE 4-29: Intercepts des droites de régression linéaire des CSD en fonction de la température de trempe, pour des vitesses de refroidissement différentes.
- FIGURE 4-30: Droites de régression linéaire des CSD en fonction des vitesses de refroidissement pour les mêmes températures de trempe.
- FIGURE 5-1 : Parcours température *vs* temps pour les expériences à durée de palier final variable (XP17 et XP19).

 -104-

FIGURE 5-3 : Photographies BSE de l'expérience XP19.	6-
FIGURE 5-4a: Proportion de phases cristallisées en fonction de la température da	ans
l'expérience XP19.	8-
FIGURE 5-4b: Proportion de phases cristallisées en fonction de la température da	ans
l'expérience XP17.	8-
FIGURE 5-5: Droites de régression linéaire des CSD en fonction de la température	de
trempe pour XP17 et XP19.	1-
FIGURE 8-1 : Vitesses de nucléation, dans les premiers stades de cristallisation pour l	les
expériences à vitesse de refroidissement variable et celles à durée de palier initia	tial
variable.	6-
FIGURE 8-2 : Evolution des CDS observée au cours du temps.	8-
FIGURE 8-3: Evolution du facteur de forme (PA/GA) au cours du refroidissement da	ans
l'expérience XP15.	1-
FIGURE 8-4: Evolution de la vitesse de croissance au cours du refroidissement dans l	les
expériences à durée de palier initiale variable et dans celles à vitesse de refroidisseme	ent
variable122	2-
CHAPITRE 3	
Etude de l'évolution de la composition chimique des plagioclases	
Etude de l'évolution de la composition chimique des plagioclases	0-
Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland)	
Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) FIGURE 2-1 : Carte et stratigraphie des différentes unités du Skaergaard. -130	4-
Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) FIGURE 2-1 : Carte et stratigraphie des différentes unités du Skaergaard. -136 FIGURE 2-2 : Photographies des différents litages du Skaergaard. -136	4- nes
Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) FIGURE 2-1 : Carte et stratigraphie des différentes unités du Skaergaard. -136 FIGURE 2-2 : Photographies des différents litages du Skaergaard. -136 FIGURE 4-1 : Photographies en microscopie optique (LPNA et LPA) des roches homogènes	4- nes 9-
Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) FIGURE 2-1 : Carte et stratigraphie des différentes unités du Skaergaard. -136 FIGURE 2-2 : Photographies des différents litages du Skaergaard. -137 FIGURE 4-1 : Photographies en microscopie optique (LPNA et LPA) des roches homogèn de la Lower Zone (LZ) du Skaergaard. -139	4- nes 9- ose
Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) FIGURE 2-1 : Carte et stratigraphie des différentes unités du Skaergaard. -136 FIGURE 2-2 : Photographies des différents litages du Skaergaard. -137 FIGURE 4-1 : Photographies en microscopie optique (LPNA et LPA) des roches homogèn de la Lower Zone (LZ) du Skaergaard. -139 FIGURE 4-2 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite, orthographies en microscopie optique (LPA) et teneurs en anorthite,	4- nes 9- ose 0-
Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) FIGURE 2-1 : Carte et stratigraphie des différentes unités du Skaergaard. FIGURE 2-2 : Photographies des différents litages du Skaergaard. -134 FIGURE 4-1 : Photographies en microscopie optique (LPNA et LPA) des roches homogèn de la Lower Zone (LZ) du Skaergaard. -139 FIGURE 4-2 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget FeO des plagioclases (SK8-p3 et SK7-p2) des roches homogènes de LZa. -140	4- nes 9- ose 0- ose
Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) FIGURE 2-1 : Carte et stratigraphie des différentes unités du Skaergaard. FIGURE 2-2 : Photographies des différents litages du Skaergaard. -134 FIGURE 4-1 : Photographies en microscopie optique (LPNA et LPA) des roches homogène de la Lower Zone (LZ) du Skaergaard. -139 FIGURE 4-2 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget FeO des plagioclases (SK8-p3 et SK7-p2) des roches homogènes de LZa. -140 FIGURE 4-3 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA) et teneurs en anorthite, orthoget for the composition optique (LPA)	4- nes 9- ose 0- ose 1-
Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) FIGURE 2-1 : Carte et stratigraphie des différentes unités du Skaergaard. FIGURE 2-2 : Photographies des différents litages du Skaergaard. -134 FIGURE 4-1 : Photographies en microscopie optique (LPNA et LPA) des roches homogèn de la Lower Zone (LZ) du Skaergaard. -139 FIGURE 4-2 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget FeO des plagioclases (SK8-p3 et SK7-p2) des roches homogènes de LZa. -140 FIGURE 4-3 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget FeO des plagioclases (SK7-p3 et SK8-p1) des roches homogènes de LZa. -141	4- nes 9- ose 0- ose 1-
Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland) FIGURE 2-1 : Carte et stratigraphie des différentes unités du Skaergaard. FIGURE 2-2 : Photographies des différents litages du Skaergaard. FIGURE 4-1 : Photographies en microscopie optique (LPNA et LPA) des roches homogène de la Lower Zone (LZ) du Skaergaard. FIGURE 4-2 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget FeO des plagioclases (SK8-p3 et SK7-p2) des roches homogènes de LZa. FIGURE 4-3 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget FeO des plagioclases (SK7-p3 et SK8-p1) des roches homogènes de LZa. FIGURE 4-4 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget FeO des plagioclases (SK7-p3 et SK8-p1) des roches homogènes de LZa. FIGURE 4-4 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget Figure 4-4 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget Figure 4-4 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget Figure 4-4 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget Figure 4-4 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget Figure 4-4 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget Figure 4-4 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget Figure 4-5 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget Figure 4-6 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget Figure 4-6 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget figure 4-6 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget figure 4-6 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget figure 4-7 : Photographies en microscopie optique (LPA) et teneurs en anorthite, orthoget figure 4-7 :	4- nes 9- ose 0- ose 1- ose 2-

-105-

FIGURE 5-2: Photographies BSE de l'expérience XP17.

FIGURE 4-6: Photographies en microscopie optique (LPA) et teneurs en anorthite, c	orthose
et FeO des plagioclases (BM30-p1 et SK16-p1) des roches homogènes de LZb.	-146-
FIGURE 4-7: Photographies en microscopie optique (LPA) et teneurs en anorthite, o	orthose
et FeO du plagioclase (SK15-p1) des roches homogènes de LZc.	-147-
FIGURE 4-8: Photographies en microscopie optique (LPNA et LPA) des roches litée	s de la
Lower Zone (LZ) du Skaergaard.	-149-
FIGURE 4-9: Photographies en microscopie optique (LPA) et teneurs en anorthite, c	orthose
et FeO du plagioclase (BM15a-p1) des roches litées de LZa.	-150-
FIGURE 4-10: Photographies en microscopie optique (LPA) et teneurs en anorthite, o	orthose
et FeO des plagioclases (BM15a-p1 et BM15b-p1) des roches litées de LZa.	-151-
FIGURE 4-11: Photographies en microscopie optique (LPA) et teneurs en anorthite, o	orthose
et FeO des plagioclases (BM67b et BM67c) des roches litées de LZc.	-153-
FIGURE 4-12: Photographies en microscopie optique (LPA) et teneurs en anorthite, o	orthose
et FeO des plagioclases (BM67a et BM67d) des roches litées de LZc.	-154-
FIGURE 5-1: Teneurs en anorthite des cœurs et des bordures des plagioclases da	ans les
roches homogènes et litées, en fonction de leur position stratigraphique dans LZ.	-156-
FIGURE 5-2 : Schéma d'une cellule de convection du liquide dans une zone de mush.	-159-
FIGURE 5-3 : Evolution de la densité du liquide en fonction de la stratigraphie.	-163-
CHAPITRE 4	
Etude pétrologique de la genèse du litage	
dans le pluton granitique de Dolbel (Niger)	
FIGURE 1-1: Description du développement d'une intrusion stratiforme basique de	
pluton granitique.	-172-
FIGURE 1-2: Photographie d'un diapir de magma et schéma de dykes en échelon.	-174-
FIGURE 1-3: Structure thermique d'une chambre magmatique.	-174-
FIGURE 1-4 : Carte générale du paléoprotérozoïque du Liptako, SW Niger.	-178-
FIGURE 1-5 : Carte structurale du batholite de Dolbel.	-179-
FIGURE 2-1a: Granites de Dolbel reportés dans le diagramme de classif	
FeO _{tot} /(FeO _{tot} + MgO) en fonction de SiO ₂ .	-184-
FIGURE 2-1b: Granites de Dolbel reportés dans le diagramme de classification (N	
K2O – CaO) en fonction de SiO ₂ .	-184-
FIGURE 2-1c: Spectres des REE des granites de Dolbel.	-184-

FIGURE 3-1 : Photographie de la partie litée du granite γ_2 de Dolbel.	-185-
FIGURE 3-2 : Photographie de l'échantillon lité étudié du granite γ_2 de Dolbel.	-186-
FIGURE 3-3: Photographie en microscopie optique (LPNA) d'une partie de l'échantil	lon lité
étudié du granite γ ₂ de Dolbel.	-187-
FIGURE 3-4a: Image BSE d'un feldspath potassique cumulus.	-189-
FIGURE 3-4b: Photographie de l'échantillon étudié montrant un feldspath potassique	
« exotique ».	-189-
FIGURE 3-5 : Structure de la partie périphérique du granite γ_2 .	-192-
FIGURE 4-1a: Image BSE d'un clinopyroxène altéré.	-194-
FIGURE 4-1b: Photographie en microscopie optique (LPNA) d'un clinopyroxène.	-194-
FIGURE 4-1c: Composition des pyroxènes.	-194-
FIGURE 4-2: Composition des amphiboles par séquence.	-197-
FIGURE 4-3: Images BSE de hornblende.	-198-
FIGURE 4-4a: Images BSE d'une frange de hornblende.	-199-
FIGURE 4-4b et c : Variation des éléments majeurs dans la frange de hornblende.	-199-
FIGURE 4-5 : Images BSE associées aux images RX (Al, Mg, Si et Fe) de hornblende	201-
FIGURE 4-6a: Variation des teneurs en Mg en fonction de Si dans des hornblendes.	-202-
FIGURE 4-6b: Variation des teneurs en Ca et Na en fonction de la distance du	ı point
d'analyse dans les cristaux de hornblendes.	-202-
FIGURE 4-6c : Variation des teneurs en Ca, Na, Mg et Fe_{tot} en fonction de Si da	ıns des
hornblendes.	-202-
FIGURE 4-7a: Teneurs en éléments en traces (Nd, La, Sm et Pr) dans des hornblendes	s. -203 -
FIGURE 4-7b: Teneurs en éléments en traces (Gd, Dy et Yb) dans des hornblendes.	-203-
FIGURE 4-7c: Teneurs en éléments en traces (V, Sr, Ba, Zr et Nb) dans des hornblend	les.
	-203-
FIGURE 4-7d : Image BSE de la hornblende analysée.	-203-
FIGURE 4-8a: Variation des teneurs en K en fonction de Si dans les hornblend	les des
différentes séquences.	-205-
FIGURE 4-8b: Variation des teneurs en Altot en fonction de Si dans les hornblend	les des
différentes séquences.	-206-
FIGURE 4-8c: Variation des teneurs en Fe ³⁺ en fonction de Si dans les hornblend	des des
différentes séquences.	-207-

FIGURE 4-8d: Variation des teneurs en Mg en fonction de Si dans les hornblend	les des	
différentes séquences.	-208-	
FIGURE 4-9 : Variation de la teneur en Fe2+ dans les hornblendes en fonction de la position		
dans les séquences.	-209-	
FIGURE 5-1: Images BSE de plagioclases.	-211-	
FIGURE 5-2a: Composition des plagioclases.	-211-	
FIGURE 5-2a: Teneur en anorthite dans les plagioclases en fonction de la position de		
l'analyse dans le cristal.	-211-	
FIGURE 5-3Aa : Image BSE du plagioclase analysé.	-212-	
FIGURE 5-3Ab: Teneur en Sr dans le plagioclase analysé.	-212-	
FIGURE 5-3Ac: Teneur en Ba dans le plagioclase analysé.	-212-	
FIGURE 5-3Ad: Teneur en anorthite dans le plagioclase analysé.	-212-	
FIGURE 5-3Ba: Teneur en Sr dans le plagioclase analysé.	-214-	
FIGURE 5-3Bb: Teneur en Ba dans le plagioclase analysé.	-214-	
FIGURE 5-3Bc: Teneur en anorthite dans le plagioclase analysé.	-214-	
FIGURE 5-4 : CSD des plagioclases en fonction de leur appartenance aux séquences.	-215-	
FIGURE 5-4 : Droites de régression linéaire des CSD des plagioclases en fonction	de leur	
appartenance aux séquences.	-215-	
FIGURE 5-6Aa : Image BSE du feldspath potassique analysé.	-217-	
FIGURE 5-6Ab: Teneur en Sr dans le feldspath potassique analysé.	-217-	
FIGURE 5-6Ac: Teneur en Ba dans le feldspath potassique analysé.	-217-	
FIGURE 5-6Ad: Teneur en anorthite dans le feldspath potassique analysé.	-217-	
FIGURE 5-6Ba: Teneur en Sr dans le feldspath potassique analysé.	-218-	
FIGURE 5-6Bb: Teneur en Ba dans le feldspath potassique analysé.	-218-	
FIGURE 5-7a: Image BSE d'un plagioclase inclus dans un feldspath potassique.	-218-	
FIGURE 5-7b: Composition des feldspaths potassiques.	-218-	
FIGURE 6-1a: Image BSE d'une inclusion d'ilménite dans un sphène.	-220-	
FIGURE 6-1b: Image BSE d'un sphène zoné.	-220-	
FIGURE 6-1c : Substitution Ti / Al^{3+} + Fe ³⁺ dans les sphènes.	-220-	
FIGURE 6-1d: Image BSE d'un sphène zoné contenant du quartz.	-220-	
FIGURE 6-2a: Image BSE du sphène analysé.	-222-	
FIGURE 6-2b: Teneur en éléments en traces dans le sphène analysé.	-222-	
FIGURE 6-2c: Teneur en éléments en traces dans le sphène analysé.	-222-	
FIGURE 6-3: Image d'apatite en cathodoluminescence.	-223-	

FIGURE 0-4a: Image BSE associee au Image RX (en Fe et 11) a une magnetite.	-223-
FIGURE 6-4b : Image BSE d'une magnétite.	-223-
FIGURE 6-5a: Image BSE d'une symplectite de quartz et d'épidote.	-224-
FIGURE 6-5b: Image BSE de calcite.	-224-
FIGURE 7-1a: Photographie du cœur du granite de Dolbel.	-226-
FIGURE 7-1b : Photographie d'enclaves mafiques dans le granite de Dolbel.	-226-
FIGURE 7-1c: Photographie d'accumulation de feldspaths potassiques du cœur du	granite
de Dolbel.	-226-
FIGURE 7-1d: Photographie d'accumulation de feldspaths potassiques du cœur du	granite
de Dolbel (zoom de 7-1c).	-226-
FIGURE 7-2a: Variation des teneurs en Ca, Mg et Fe ²⁺ en fonction de Si da	ans les
hornblendes du cœur du granite de Dolbel.	-227-
FIGURE 7-2b: Variation des teneurs en Mg en fonction de Si dans les hornblendes d	lu cœur
du granite de Dolbel par rapport à la couleur du zonage.	-227-
FIGURE 7-2c: Composition des amphiboles du cœur du granite de Dolbel.	-227-
FIGURE 7-2d : Variation des teneurs en Fe ²⁺ en fonction de Si dans les hornblendes d	lu cœur
du granite de Dolbel.	-227-
FIGURE 7-3: Variation des teneurs en Mg en fonction de Si dans les hornblendes d	lu cœur
du granite de Dolbel par rapport à la couleur du zonage.	-227-
FIGURE 7-3a : Image BSE du plagioclase analysé au cœur du granite de Dolbel.	-228-
FIGURE 7-3b: Teneur en Sr dans le plagioclase analysé au cœur du granite de Dolbel	228-
FIGURE 7-3c: Teneur en Ba dans le plagioclase analysé au cœur du granite de Dolbel	l. -228 -
FIGURE 7-4a : Image BSE du plagioclase analysé au cœur du granite de Dolbel.	-229-
FIGURE 7-4b : Teneur en Sr dans le plagioclase analysé au cœur du granite de Dolbel	229-
FIGURE 7-4c : Teneur en Ba dans le plagioclase analysé au cœur du granite de Dolbel	l. -229 -
FIGURE 7-4Ba : Image BSE du feldspath potassique analysé au cœur du granite de De	olbel.
	-231-
FIGURE 7-4Bb: Teneur en Sr dans le feldspath potassique analysé au cœur du gra	ınite de
Dolbel.	-231-
FIGURE 7-ABc : Teneur en Ba dans le feldspath potassique analysé au cœur du gra	ınite de
Dolbel.	-231-
FIGURE 8-1a : Composition des 3 séquences reportée dans le diagramme ternaire Qz	-Ab-Or
à 5 kbar.	-234-

- FIGURE 8-1b : Composition du liquide initial calculé reporté dans le diagramme ternaire Qz-Ab-Or (multi-pression).
- FIGURE 8-2a : Liquide initial calculé à partir des épaisseurs des 3 séquences et reporté dans le diagramme ternaire Qz-Ab-Or (5 kbar).
- FIGURE 8-2b: Trajet du liquide, au cours du refroidissement, reporté dans le diagramme ternaire Qz-Ab-Or (5 kbar).
- FIGURE 8-3: Courbes isobares des phases minérales dans les dacites du Pinatubo à 4 et 9,6 kbar.
- FIGURE 8-4 : Diagramme log de fO2 en fonction de la température. -238-

Page de couverture : Photographie du Skaergaard de Kurt Hollocher

LISTE DES TABLEAUX

CHAPITRE 2

Etude expérimentale de la distribution des tailles de cristaux (CSD) de plagioclases dans les basaltes

TABLEAU 3-1 : Composition de la poudre synthétique.	-50-	
TABLEAU 3-2: Récapitulatif des différentes caractéristiques des CSD en fonction de	de la	
profondeur du polissage dans la bille.	-60-	
TABLEAU 4-1: Récapitulatif des différentes caractéristiques des CSD pour les expérie	ences	
à durée de palier initial variable (XP14, XP15 et XP13).	-64-	
TABLEAU 4-2 : Récapitulatif des différentes caractéristiques des CSD pour les expérie	ences	
à température initiale variable (XP14, XP12 et XP11).	-70-	
TABLEAU 4-3: Proportions des phases cristallisées à partir des bilans de masses	des	
expériences à durée de palier initial variable (XP14, XP15 et XP13).	-77-	
TABLEAU 4-4a: Récapitulatif des différentes caractéristiques des CSD pour l'expérience à		
vitesse de refroidissement de 0,2°C/heure (XP01).	-88-	
TABLEAU 4-4b : Récapitulatif des différentes caractéristiques des CSD pour l'expérier	nce à	
vitesse de refroidissement de 1°C/heure (XP03-02).	-89-	
TABLEAU 4-4c : Récapitulatif des différentes caractéristiques des CSD pour l'expérier	nce à	
vitesse de refroidissement de 3°C/heure (XP07-06).	-90-	
TABLEAU 4-5: Proportions des phases cristallisées à partir des bilans de masses	des	
expériences vitesse de refroidissement variable (XP07-06, XP02-03 et XP01-04).	-94-	
TABLEAU 5-1: Récapitulatif des différentes caractéristiques des CSD pour l'expérien	ice à	
durée de palier final variable (XP17 et XP19).	104-	
TABLEAU 5-2: Proportions des phases cristallisées à partir des bilans de masses des		
expériences à durée de palier final variable (XP17 et XP19).	109-	

CHAPITRE 3

Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland)

TABLEAU 5-1: Récapitulatif des valeurs de densité, calculées pour différentes compositions de liquide proposées dans la littérature, en fonction de la hauteur stratigraphique. -162-

CHAPITRE 4

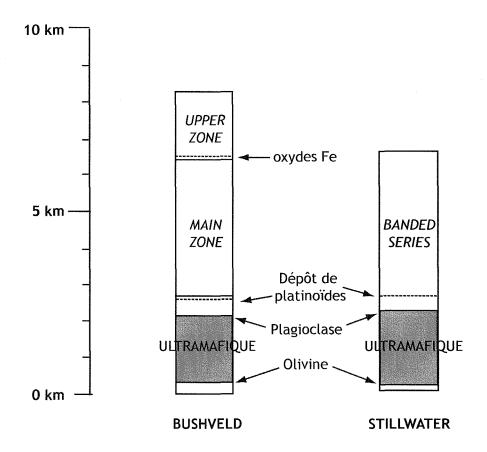
Etude pétrologique de la genèse du litage dans le pluton granitique de Dolbel (Niger)

TABLEAU 2-1 : Composition des granites de Dolbel.	-182-
TABLEAU 3-1 : Caractéristiques des séquences de l'échantillon lité.	-190-
TABLEAU 4-1: Exemples des compositions chimiques des minéraux content	nus dans
l'échantillon lité.	-196-
TABLEAU 4-2: Comparaison des éléments entre la partie interne de l'amphibe	ole et les
franges.	-209-
TABLEAU 8-1 : Caractéristiques des deux types d'échantillon (lité et homogène)	ainsi que
celles du liquide initial.	-236-

S.C.D. - U.H.P. NANCY 1 BIBLIOTHEQUE DES SCIENCES Rue du Jardin Botanique - BP 11 SECOT VILLERS LES MANCY CAMP

CHAPITRE 1

Introduction générale :
Processus de genèse du litage
dans les chambres magmatiques


Les intrusions litées font partie des structures géologiques les plus spectaculaires et ont été l'objet de très nombreuses études (Skaergaard ou Klokken au Groenland, Bushveld en Afrique du Sud, Rhum en Grande-Bretagne, Stillwater aux Etats-Unis, etc...). Elles constituent les reliques d'anciennes chambres magmatiques et permettent de remonter aux mécanismes de la différenciation magmatique. Une reconstitution géologique montre que ces réservoirs sont de très grandes dimensions, jusqu'à une dizaine de kilomètres d'épaisseur sur plusieurs centaines de kilomètres de diamètre pour les plus grandes d'entre elles.

Au fil du temps, l'étude de ces objets s'est d'abord faite via les méthodes pétrographiques, puis elles ont ensuite été affinées à l'aide de l'outil géochimique. La plupart des concepts généraux de la pétrologie trouvent leur source dans les idées de Bowen (1928), notamment quant au rôle de la cristallisation fractionnée dans la genèse des roches ignées. Le processus physique, longtemps considéré comme le mécanisme principal permettant la cristallisation fractionnée et de la séparation des cristaux, s'effectue en deux temps. Il s'agit d'abord d'une nucléation et croissance de cristaux qui se développent à l'intérieur du magma, puis d'une mise en mouvement de ces cristaux sous l'action de la gravité formant des cumulats.

Par la suite, les géologues ont pris conscience de la nécessité d'intégrer des notions de dynamique des magmas (mécanique des fluides) pour tenter d'interpréter les structures observées dans les intrusions litées et, ainsi, comprendre le fonctionnement de ces chambres. Une grande variété de phénomènes physico-chimiques est invoquée (cristallisation fractionnée, mélange, figure d'immiscibilité, etc...) et l'on en est venu à penser que les processus de refroidissement, de convection et de cristallisation dans les-dites chambres pouvaient être beaucoup plus complexes qu'on le supposait jusqu'alors. Par exemple, la durée de mise en place de ces intrusions est généralement considérée comme faible en comparaison du temps pris par leur refroidissement. Cependant certaines études sur les plutons granitiques

ont montré que le temps de mise en place pouvait être très variable. Le refroidissement d'un pluton de taille moyenne est d'environ 1 Ma alors que la construction de pluton peut aller jusqu'à 10 Ma selon certains auteurs (Glazner et al, 2004) à en moins de 1 Ma (Bartley et al, 2002). Il semblerait que les mécanismes de mise en place ainsi que leur durée soient plus variables que ce qui est généralement admis.

L'épaisseur de la chambre atteint parfois des proportions très importantes dans les systèmes basaltiques. Les intrusions magmatiques fossiles peuvent fournir des clefs pour mieux comprendre les processus fondamentaux impliqués dans la différenciation. Un aspect remarquable de ces intrusions est la reproductibilité de certaines caractéristiques sur toute l'épaisseur de la chambre et d'une chambre à l'autre (Wager et Brown, 1968; Jackson, 1970). Par exemple, la répartition des assemblages minéralogiques en fonction de la stratigraphie dans les complexes du Bushveld (9 km d'épaisseur) et du Stillwater (7 km d'épaisseur) sont assez semblables tant en composition qu'en épaisseur (Figure 1-1, Jaupart et Tait, 1995). Ceci suggère qu'un mécanisme physique reproductible, capable d'effectuer les transferts de masse et de chaleur à l'échelle de l'intrusion, est responsable de la différenciation magmatique. De plus, les chambres magmatiques sont des systèmes complexes par leur géométrie (Nielsen, 2004), leurs variations chimiques (Hildreth, 1981; Blake et Ivey, 1986) et surtout leur nature de système ouvert. En effet, selon les moments de sa vie, une chambre magmatique peut se comporter, d'un point de vue chimique, comme un système ouvert ou fermé : ouvert lorsque du magma frais entre dans la chambre ou lorsqu'elle se vidange pour engendrer une éruption, fermé s'il n'y a pas d'échange. Cependant, il n'est pas toujours aisé d'identifier quelle situation a prévalu dans la chambre à un moment donné. Dans le cas d'un système ouvert, les intrusions peuvent connaître de multiples réinjections de magma et la différenciation qui se produit en leur sein accroît encore la diversité des liquides que l'on peut y rencontrer. La variation de composition des roches à l'échelle de la chambre est souvent interprétée comme due à une cristallisation fractionnée des magmas. Les roches sont de plus en plus différenciées au fur et à mesure que l'on s'élève dans l'intrusion. Cependant, certaines intrusions ne présentent pas la lignée de différenciation dans son ensemble.

Figure 1-1. Comparaison de la séquence minéralogique à l'échelle de l'intrusion du Stillwater et du Bushveld (modifié d'après Jaupart et Tait, 1995).

Les structures litées (Wager et Deer, 1939; Brown, 1956; Hess, 1960; Jackson, 1961; Wager et Brown, 1968) sont les témoins des différents processus ayant eu lieu pendant leur refroidissement (plusieurs dizaines de milliers d'années pour une intrusion kilométrique). Ces structures correspondent à des variations minéralogiques et texturales. Elles peuvent être obliques ou parallèles au plancher ou aux murs de la chambre et ont des épaisseurs allant de quelques millimètres à plusieurs dizaines de mètre. L'extension latérale est également variable et peut s'étendre à toute la chambre (Wager et Brown, 1968). Le litage est observé dans la plupart des complexes stratiformes mafiques et dans certaines chambres granitiques et syénitiques (Barrière, 1981; Parsons et Becker, 1987). De nombreuses études ont été réalisées sur les processus régissant les structures d'une chambre magmatique basaltique et elles invoquent différents mécanismes de formation du litage dans ces intrusions. Par contre, très peu d'études ont été réalisées dans le cas des complexes granitiques et syénitiques (par ex. : Barrière, 1981; Parsons et Becker, 1987). Le fait que ce litage se retrouve d'une intrusion à une autre amène à penser qu'un modèle physique, indépendant de la composition, donne naissance à ces structures. Il n'y a pas une explication unique à leur origine et de nombreuses théories ont été proposées. La plupart font intervenir des mécanismes dynamiques de transport de cristaux et de liquides résiduels tels que la convection, la ségrégation, les injections multiples, la sédimentation gravitaire, le mûrissement textural, l'assimilation, la compaction...

Dans ce chapitre nous détaillerons les principaux processus qui ont été étudiés dans les intrusions basiques et acides. Nous verrons que les interactions entre ces différents processus mécaniques (ex: Thomas et al, 1993; Koyaguchi et al, 1993; Brandeis et Jaupart, 1986), chimiques (ex.: Tait et Jaupart, 1990) et thermiques (ex.: Huppert et Sparks, 1984; Tait et Jaupart, 1990) sont nombreuses et variées.

1. Cristallisation homogène dans toute la chambre

Le premier modèle de différenciation magmatique, qui est plus un rappel historique qu'un mécanisme encore envisagé aujourd'hui, considère une chambre magmatique uniforme dans l'espace, sans considération des gradients de température (Bowen, 1921, 1928; Hess, 1960; Jackson, 1961; Wager 1963; Wager et Brown, 1968). La cristallisation fractionnée est alors

basée sur la chimie sans aucune précision sur la géométrie de la solidification et ne tenant pas compte des gradients de température qui sont maintenant bien connus à l'intérieur d'une chambre. La question est alors de trouver un mécanisme capable de séparer les cristaux du liquide résiduel.

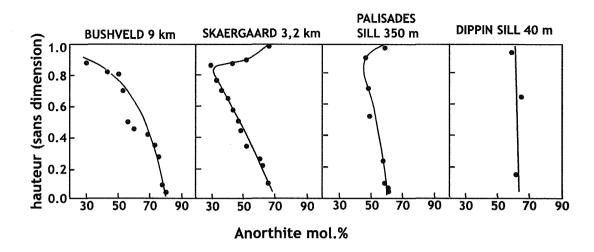
2. Modèle des couches limites (régime conductif)

Ce modèle se base sur des couches limites thermiques qui permettent les échanges de chaleur entre la chambre magmatique et l'encaissant. Ces couches limites, étant les lieux les plus froids de la chambre, sont supposées être le siège de la cristallisation principale. Ainsi un gradient de température se met en place sur toute la chambre, une couche de cristaux se forme sur le pourtour de l'intrusion (plancher, toit, murs), la cristallisation se propageant de la périphérie vers le cœur de l'intrusion. La chambre se divise alors en trois zones du cœur vers la périphérie : (i) le liquide initial plus ou moins évolué correspondant au réservoir à une température supérieure à celle du liquidus et séparé de la couche suivante par une mince couche limite diffusive ; (ii) une couche limite partiellement cristallisée ("mush") s'étendant entre liquidus et solidus et correspondant à une suspension de cristaux dans un liquide résiduel dont la composition varie avec T; et (iii) une zone totalement solide à la périphérie, séparée de la zone précédente par le front de cristallisation (Barbey et Libourel, 2003). La densité du liquide est dépendante de la température et de sa composition (donc dépendante de la cristallisation fractionnée). Par cette double dépendance, compositionnelle et thermique, il existe un gradient de densité dans les liquides. A noter que pour certains liquides basaltiques pour lesquels la teneur eau est faible (<0,5%) la différenciation peut produire dans une première étape un enrichissement en fer qui conduit à des liquides plus denses (ferrobasaltes). Cependant, d'une façon générale l'effet compositionnel, qui est dominant, conduit à des liquides moins denses.

Dans les intrusions basaltiques, le profil des teneurs en anorthite des plagioclases (**Figure 2-1**) est le témoin de l'évolution chimique du magma à partir duquel il a cristallisé. On considère que plus le pourcentage d'anorthite est faible, plus le magma est chimiquement évolué. Dans le cas du Skaergaard, où l'intrusion est considérée comme complète, on observe la

différenciation des plagioclases à partir du plancher et du toit, la séquence basale étant 6 à 7 fois plus épaisse que celle du toit (Jaupart et Tait, 1995). Les éléments incompatibles confirment cette tendance (**Figure 2-2**). Leur concentration reste constante dans la majeure partie de l'intrusion puis, en haut, les roches enregistrent l'enrichissement du liquide en éléments incompatibles, démontrant une différenciation très efficace (Cawthorn, 1983; Shirley, 1987; McBirney, 1989a).

La cristallisation fractionnée à partir de couches limites est un mécanisme qui permet d'expliquer la formation des orthocumulats par une différenciation du liquide. En revanche, elle ne permet pas d'expliquer la formation d'adcumulats qui cristallisent à partir d'un liquide de composition stable. De plus, ce mécanisme ne permet pas de former des figures sédimentaires visibles dans les lits des intrusions magmatiques.


3. Sédimentation gravitaire des cristaux

La sédimentation dans les roches ignées a constitué, dans les années 80, un mécanisme de séparation liquide/cristaux privilégié. Ce modèle de sédimentation est essentiellement fondé sur l'observation des figures de sédimentation dans les complexes stratiformes. De nombreux exemples de litage sont attribués à la sédimentation de cristaux (Brown et Farmer, 1971; Roobol, 1972; Irvine, 1974). Le fondement de ce processus réside dans le fait qu'une particule solide sphérique dont la densité est supérieure à celle du liquide peut se sédimenter, sous l'influence de la gravité, selon la loi de Stokes:

$$V=2r^2g(\rho_1-\rho_2)/9\eta$$

où V est la vitesse de la sphère de rayon r et de densité ρ_I , qui se sédimente dans un liquide newtonien de densité ρ_2 et de viscosité η , sous l'influence de la gravité g. Les magmas sont considérés comme ayant un comportement newtonien, pour une proportion de cristaux inférieures à 10%. En conséquence, pour que la sédimentation puisse avoir lieu il faut que la force qui entraîne le cristal vers le bas soit supérieure à la contrainte produite par le magma (σ_v) , telle que (McBirney et Noyes, 1979) :

$$[r.g(\rho_1-\rho_2)/3]-\sigma_v > 0$$

Figure 2-1. Variations stratigraphiques de la composition des plagioclases dans diverses intrusions. Les séquences du toit dans les intrusions du Skaergaard et du sill Palisades sont préservées et montrent une évolution similaire mais moins épaisse que celle du plancher (modifié d'après Jaupart et Tait, 1995).

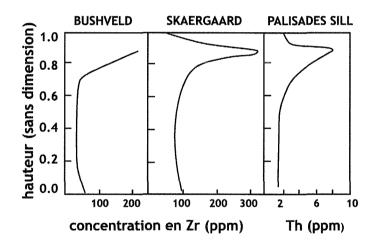


Figure 2-2. Variations stratigraphiques des teneurs en éléments incompatibles dans 3 des intrusions de la figure 2-1 (modifié d'après Jaupart et Tait, 1995).

Des données expérimentales ainsi que des études sur des coulées de lave (Murase et McBirney, 1973; McBirney et Murase, 1984) indiquent que la contrainte produite par le magma augmente avec la viscosité, donc avec le temps et la teneur en SiO₂, alors qu'elle décroît avec l'augmentation de la teneur en H₂O.

Si la variation de taille de grain, dans un lit, est produite par la sédimentation de cristaux, les grains les plus gros doivent se trouver en bas de la séquence et les plus petits en haut. Cela est loin d'être la généralité et on observe couramment une distribution inverse (cf. chapitre 4). Par ailleurs, ce modèle de sédimentation gravitaire ne rend pas compte, seul, de l'existence d'adcumulats très enrichis en éléments compatibles par rapport au liquide avec lequel il est sensé coexister. Enfin, il ne rend compte ni de l'existence de roches litées au toit des chambres ni des stratifications entrecroisées, chenaux et figures d'avalanches, etc...

La distribution de phénocristaux dans beaucoup de sill épais et d'accumulation de lave (cf. Shonkin Sag, Tasmanian Dolerite et Makoapuhi Lava Lake) montre un classement granulométrique résultant de la sédimentation de cristaux en suspension au moment de la mise en place du magma (Marsh, 1989). Les cristaux les plus gros et les plus denses de la partie supérieure de ces corps vont se sédimenter si leur vitesse de sédimentation est plus forte que celle des courants dans le magma et ils vont s'accumuler dans les parties inférieures. Ce processus produit de larges zones pauvres en phénocristaux et des zones inférieures riches en phénocristaux. Le litage formé par ce mécanisme a lieu dans des unités de grande épaisseur avec une limite supérieure graduelle et une limite inférieure bien nette et peut avoir une distribution bimodale de la taille des grains. Ce processus peut être assimilé à une sédimentation en milieu agité et ne peut expliquer la grande homogénéité stratigraphique de l'apparition des phases minéralogiques des intrusions litées (sauf s'il s'agit d'une sédimentation en masse).

4. La Convection

Un apport significatif à une meilleure compréhension de la différenciation magmatique a été l'introduction de la notion de convection qui a donné une dimension physique et dynamique aux modèles de différenciation dans les chambres.

On peut considérer deux formes de convection possibles : à partir d'une source globale ou à partir d'une source ponctuelle.

(i) La formation d'une convection à partir d'une source globale peut se produire par une différence de température dans toute la chambre. La convection est conduite par des petites différences thermiques ou compositionnelles. Les différences thermiques peuvent être engendrées par le refroidissement en bordure de la chambre. Les différences compositionnelles peuvent être produites par la cristallisation des murs, du plancher et du toit ou bien par l'effondrement, le mélange ou la dissolution du toit (Campbell, 1996).

(ii) La formation d'une convection à partir d'une source ponctuelle peut se mettre en place quand une nouvelle injection de magma entre dans la chambre par des dykes. La convection peut être due à des différences thermiques quand le pulse n'arrive pas à la même température que celle de la chambre, ou bien compositionnelle quand la composition est différente de celle de la chambre. En général, une nouvelle injection de magma entraîne une convection thermique et compositionnelle (Campbell, 1996).

La possibilité d'instauration d'une convection thermique et compositionnelle dans une couche de liquide est définie par le nombre de Rayleigh (Ra). La convection s'instaure pour une valeur critique de $Ra > 10^3$. Ce nombre sans dimension correspond au rapport entre les forces qui sont à l'origine du mouvement et celles qui tendent à stabiliser le milieu. Le nombre de Rayleigh pour la convection thermique d'une couche de liquide d'épaisseur h et dont la base et le sommet présentent une différence de température ΔT , s'écrit:

$$Ra = \frac{g\alpha_p \Delta Th^3}{\kappa v}$$

où α_p est le coefficient d'expansion thermique, κ la diffusivité thermique et v la viscosité cinématique égale au rapport de la viscosité sur la densité du liquide (η/ρ) . Bien qu'il soit difficile de connaître avec précision la valeur des paramètres (viscosité et densité sont variables sur l'ensemble de la couche), le paramètre important est ici la taille des chambres magmatiques h. Les nombres de Rayleigh pour la convection compositionnelle de la fine couche limite diffusive et de la couche partiellement cristallisée ("mush") sont respectivement:

$$Ra = \frac{g\Delta\rho h^3}{D\eta}$$

et

$$Ra = \frac{g\Delta\rho\Pi_0h}{\kappa\eta}$$

où $\Delta \rho$ est la différence de densité entre le liquide à la base et au sommet de la couche considérée, η la viscosité du liquide, D et κ les diffusivités chimique et thermique, Π_{θ} la perméabilité de la couche partiellement cristallisée et h l'épaisseur de la couche limite (Jaupart et Tait, 1995). Lorsque la valeur critique de Ra est atteinte, la convection compositionnelle s'instaure dans le réservoir magmatique (Martin et al, 1987).

La formation d'un litage rythmique due aux courants de convection a été décrite par Wager et Deer (1939) et de nombreuses études ont montré leur importance. La convection a fait l'objet de nombreuses études considérant que, dans les chambres peu profondes, la chaleur est perdue principalement au niveau du toit alors qu'elle se concentre au niveau du plancher (e.g. Huppert et Turner, 1981; Brandeis et Jaupart, 1986; Martin et al., 1987; Gibb et Henderson, 1992). Le modèle numérique de couches limites inférieures (Brandeis, 1986) dans la chambre magmatique prédit l'importance de la convection thermique ainsi que de la convection compositionnelle (liée aux différences de densité créées par des compositions et des températures différentes). Ce modèle permet des transports de liquides ou de magmas.

4.1. Convection continue ou intermittente

Le gradient de température à l'intérieur de la chambre génère des flux de faible densité pouvant entraîner une convection chaotique dans le magma (Martin et al, 1987). Lorsque les cristaux sont en suspension dans le liquide, la convection peut maintenir ces particules tant que la vitesse de sédimentation est inférieure à celle des fluides turbulents (Marsh et Maxey, 1985; Marsh, 1988a; Sparks et al, 1993). Au-delà d'une concentration critique de cristaux, ces derniers tombent sur le plancher laissant la couche de liquide surincombant sans cristaux. Dans le cas de systèmes plus complexes, contenant des minéraux avec différentes vitesses de sédimentation et différentes concentrations, on peut former un litage complexe résultant d'une convection stable avec un refroidissement constant. Le litage de certains gabbros du Skaergaard est attribué à une cristallisation issue de courants de convection continus (Wager et Brown, 1968; Irvine, 1987).

La formation d'unités cycliques dans le Stillwater est attribuée à une convection thermique intermittente où chaque cycle commence par un bref épisode de convection suivi par une période de stagnation (Engell, 1973). Il en va de même pour le litage de la *Middle Zone* du Skaergaard, où Naslund et al. (1991) ont proposé que les lits de plagioclase se forment durant une période de stagnation, alors que les lits de pyroxène se forment durant des périodes de convection. Cependant, Jang et Naslund (1994) ont fait des observations qui tendent à soutenir l'inverse. Les plagioclases proviendraient du toit de l'intrusion et donc les lits felsiques seraient plutôt formés durant une période dynamique alors que les lits ferromagnésiens seraient formés durant une période calme (Naslund et McBirney, 1996a).

4.2. Convection thermique et compositionnelle (double-diffusive)

La convection double-diffusive se produit dans un fluide lorsqu'il y a des variations de densité et quand ces variations sont provoquées par deux composants présentant des taux de diffusion différents. L'exemple le plus classique est celui de la chaleur (thermique) et du sel (compositionnel) dans l'eau de mer. Pour engendrer une convection double-diffusive, il faut donc créer un gradient de densité et de température. Ce gradient est fortement dépendant des variations de la composition et de la température du liquide (Morse, 1969; Tait et al, 1984). Une caractéristique de la convection double-diffusive est que à la limite entre deux liquides de propriétés différentes (température et composition) entraînant ainsi un gradient en densité, elle tend à produire une série de couches convectives plutôt qu'un renversement simple et à grande échelle des liquides (Campbell, 1996). Dans le cas de la cristallisation d'un magma, le fractionnement d'un liquide au niveau du plancher et proche d'un front de cristallisation va produire un gradient chimique et un gradient thermique, l'un tendant à stabiliser le liquide et l'autre à renverser le système. La raison pour laquelle le liquide se retourne ou pas dépend des effets combinés de ces facteurs (McBirney, 1985). La recharge de magma chaud dans la chambre peut être le moteur de cellule de convection au niveau de l'interface entre le nouveau liquide et l'ancien (Robins et al., 1987; Wilson et Larsen, 1985; Wilson et al., 1987).

De nombreux travaux ont proposé la convection compositionnelle comme mécanisme de formation des litages dans les intrusions (McBirney et Noyes, 1979; Chen et Turner, 1980; Kerr et Turner, 1982; Irvine et al., 1983; Huppert et Sparks, 1984; Wilson et Larsen, 1985; Wilson et al., 1987; Robins et al., 1987). Elle est également considérée comme responsable

de la formation des adcumulats (Tait et Jaupart, 1996). Elle ne peut cependant expliquer, à elle seule, la variété des structures observées dans les complexes lités.

5. Courants de densité dans le magma et ségrégation de flux

Devant l'apparente similitude entre les lits granoclassés et certaines couches sédimentaires, beaucoup d'auteurs ont attribué ces structures à des courants de turbidité sédimentaires (Irvine, 1974; Barrière, 1981; Thy, 1983). Les relations géométriques entre les lits suggèrent que des courants agissent sur des couches en partie consolidées (figures d'érosion puis de remplissage). Le litage modal de la *Lower Zone c* du Skaergaard n'est pas présent au toit ni sur les murs. Il présente un classement par densité, avec les minéraux mafiques et les oxydes en base de séquence, évoluant graduellement vers les feldspaths. Ces lits sont irréguliers et apparaissent au hasard dans la zone. La formation de ce litage est attribuée à des courants riches en cristaux, provenant des murs de la chambre. Ces courants riches en cristaux s'étalent sur le plancher, ce qui provoque une érosion des lits sous-jacents puis, un comblement. Les lits sont formés de bas en haut des minéraux les plus lourds aux plus légers (Wager et Brown, 1968; Irvine, 1987; Conrad et Naslund, 1989).

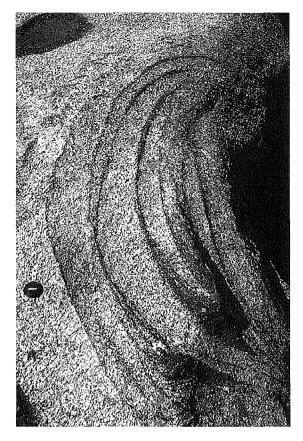
Le mouvement d'un magma riche en phénocristaux à travers les dykes peut engendrer une ségrégation de flux et une concentration locale en cristaux. Les variations minéralogiques entre le centre et l'éponte du dyke peuvent être liées à une différenciation mécanique qui accompagne la mise en place du magma, les vitesses d'écoulement augmentant de l'éponte au centre du conduit. Il revient à Bagnold (1954) d'avoir mis en évidence l'apparition d'une pression dispersive dans une suspension de minéraux dans un courant visqueux. Cette pression dispersive est fonction de la concentration des particules et du taux de cisaillement, maximal vers les épontes et faible vers le centre du conduit où il s'annule. Cela va provoquer un gradient de pression au travers des filons qui sera équilibré par une migration des cristaux vers la zone axiale (effet Bagnold). Le déplacement latéral des cristaux déjà formés dans le magma en écoulement peut être calculé ; il est indépendant de la vitesse et de la viscosité et dépend de la géométrie des filons, de la taille des cristaux et de leur concentration (Komar, 1972a et 1972b). A l'intérieur des filons, l'effet Bagnold induit : (i) une concentration des

minéraux précoces dans la partie centrale du filon ; (ii) un tri granulométrique, les gros cristaux et les enclaves concentrés vers l'axe ou le plan médian du dyke et une absence de cristaux vers la bordure qui constitue une frange (frange de Bagnold confondue avec la bordure figée). Une large variation dans l'abondance des phénocristaux, attribuée à la ségrégation de flux, est commune dans les dykes et les sills (cf. Simkin, 1967; Gibb, 1968; Blake, 1968; Komar, 1972a, 1972b; Bebien et Gaghy, 1978; Ross, 1986).

La formation des schlieren du granite de Ploumanac'h (Figure 5-1) est interprétée comme des ségrégations minérales (par taille) qui dessinent dans le granite des figures variées en fonction de la géométrie des blocs (Barrière, 1981). Souvent arquées, elles forment des faisceaux courbés, des spirales, des ellipses. Ces formes s'emboîtent telles des pelures d'oignon ou se recoupent les unes les autres. Ces rubanements, assez fréquents dans les granites porphyroïdes, ont été généralement regroupés sous le nom de schlieren. Ils sont interprétés comme témoignant de mouvements internes à la chambre magmatique (écoulement visqueux au sein du magma). L'écoulement différentiel de cristaux à l'intérieur même d'un magma cristallisant explique, ici, les figures de troncatures et éventuellement la ségrégation minérale selon la taille des grains.

6. Recharge et mélange de magmas

Certains travaux laissent à penser qu'un litage peut être le résultat de plusieurs injections distinctes. On attribue ce mécanisme de formation à beaucoup d'intrusions qui sont constituées des cycles de lit assez régulier, Stillwater, Great Dyke, Bushveld, Rhum (Jackson, 1970; Campbell, 1977; Dunham et Wadsworth, 1978). La base de chaque cycle, marquée par une proportion très importante de minéraux primitifs étant censée représenter l'afflux d'un nouveau magma dans la chambre (Huppert et Sparks, 1980). L'idée d'interrompre un cycle de cristallisation par l'injection de nouveau magma a été introduite par Irvine et Smith (1967). Plus tard, Huppert et Sparks (1980) proposent un modèle dynamique où le magma réinjecté en bas de la chambre est plus dense et plus chaud que le magma initial. Les deux magmas sont soumis séparément à des mouvements de convections thermiques.



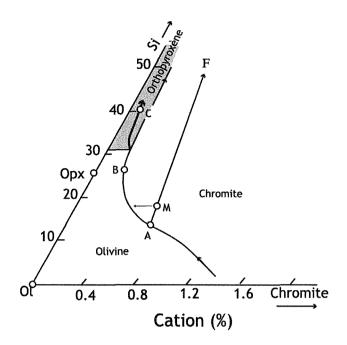
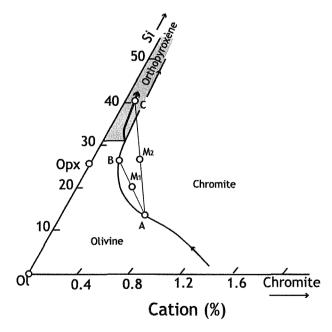


Figure 5-1. Photo de schlieren dans le granite de Ploumanac'h (clichés de Plaine, 2004).


De plus, un transfert de chaleur important se met en place à l'interface entre les deux magmas entraînant la cristallisation fractionnée de la couche inférieure dont la densité diminue. Les deux magmas se mélangent et donnent naissance à des roches hybrides.

Les bancs de chromites dans les intrusions litées sont également interprétés en terme de mélange de magma (Lipin, 1993). Dans l'intrusion du Bushveld, la formation des lits à chromite est interprétée selon deux hypothèses d'Irvine (1975, 1977). La première consiste à envisager une contamination du magma par des roches felsiques crustales, qui le forcerait à passer en dessous du cotectique et à rester dans le champ de la chromite (Figure 6-1). Cependant il est difficile de penser qu'un tel liquide visqueux puisse produire un lit de chromite sur une extension aussi importante (10 à 100 km) et une épaisseur aussi régulière que celles observées. La seconde hypothèse invoque un mélange de magma primitif arrivant dans la chambre où le magma plus différencié est déjà présent entraînant donc le « blocage » du magma dans le champ de la chromite (Figure 6-2). Des processus similaires pourraient être responsables des litages minéralogiques où apparaît un brusque changement dans l'assemblage des phases au liquidus au cours de la cristallisation. Cependant, la grande homogénéité stratigraphique de l'apparition des chromites dans les intrusions litées (Bushveld, Stillwater...) pose un problème, car l'arrivée d'un nouveau magma ne peut pas se faire toujours au même niveau stratigraphique dans toutes les intrusions. De plus, ce mécanisme n'est pas compatible avec les intrusions litées dont la formation a été attribuée à une seule injection de magma.

Un mécanisme similaire est décrit pour la formation d'intrusions litées acides-basiques (Glazner et al., 2004 ; Pons et al, accepté). Le pluton va se former par injections successives de magma dans une chambre acide. Les injections de magma plus dense s'étalent latéralement sous forme de nappe sur le fond de la chambre dans le mush granitique (Wiebe, 1993a, 1993b, 1996 ; Wiebe et Collins, 1998 ; Wiebe et al., 2002). Ce mécanisme qui semble valable dans de nombreux plutons granitiques ne peut être étendu à tous les complexes lités.

Figure 6-1. Partie du système SiO₂-Mg₂SiO₄-Cr₂FeO₄ présentant les champs de l'olivine, la chromite et l'orthopyroxène (gris). Un magma primitif de composition A, se différencie le long de A-B, précipitant une dunite avec 1,5 à 0,5 % de chromite. La différenciation de B à C entraine le magma dans le champ de l'orthopyroxène où l'olivine cesse de cristalliser puis la chromite. Le magma passe la courbe du péritectique et suit la flèche épaisse dans le champ de l'orthopyroxène. La contamination d'un magma primitif A par une croûte felsique (F) donne un magma de composition M qui cristallise uniquement de la chromite jusqu'à ce qu'il retourne au cotectique olivine-chromite (Naslund et McBirney, 1996 et Irvine, 1977).

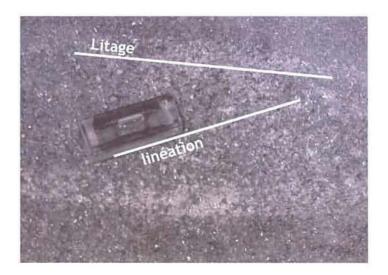


Figure 6-2. idem 6-1 mais avec un melange du magma différencié en B ou C avec un magma plus primitif en A donnant un magma hybride M₁ ou M₂ qui cristallise seulement de la chromite jusqu'à ce qu'il retrouve le cotectique olivine-chromite (Naslund et McBirney, 1996 et Irvine, 1977).

7. Compaction et déformation syn-magmatique

Coats (1936) est probablement le premier à avoir démontré que les cristaux de différentes tailles et densités tendent à se classer eux même dans un lit grossier et se consolident sous la gravité. Les cristaux se compactent, réduisant l'espace des pores et expulsant le liquide interstitiel. Les évidences texturales montrent que ces cristaux peuvent être déformés durant la compaction (McBirney et Hunter, 1995) au niveau des contacts entre les grains (Dick et Sinton, 1979). Ce mécanisme de pression-dissolution correspond à l'augmentation de l'énergie de surface du cristal avec les contraintes, les points où la contrainte est maximale tendent à se dissoudre, alors que ceux qui sont soumis à une contrainte moins importante tendent à croître (Fyfe, 1976). La présence de liquide est essentielle pour faire le transfert de masse d'un site à un autre. De plus, les liquides qui percolent ne sont pas à l'équilibre avec les cristaux des niveaux plus hauts et plus chauds, ils tendent donc à dissoudre la matrice de cristaux, absorbant la chaleur et modérant les gradients chimiques et thermiques (McBirney, 1987, 1995). Par ailleurs, le magma est expulsé durant la compaction et peut ainsi bouger au travers de la pile de cristaux (Richter et McKenzie, 1984), contribuant à la formation des litages. Les liquides expulsés sont collectés le long de zones plates, formant des lits de composition évoluée.

Certains litages peuvent résulter d'une déformation syn-magmatique. Dans une chambre en cours de consolidation, des cisaillements simples peuvent se produire et le liquide peut être ségrégé à l'intérieur de zones de contrainte minimum pour former des lentilles ou des schlieren. Ce processus est également valable pour les cristaux. Si un *mush* constitué de cristaux hétérogènes subit un cisaillement, les cristaux vont avoir tendance à se regrouper selon leur taille ou leur nature minéralogique (Vernon, 2000). Les gabbros lités de la croûte inférieure de l'ophiolite d'Oman présentent une foliation et une linéation magmatique légèrement oblique par rapport au le litage compositionnel (**Figure 7-1**). Ces fabriques sont interprétées comme dues à l'imbrication et au flux laminaire à l'intérieur de la chambre magmatique ophiolitique (Benn et Allard, 1989). La direction d'imbrication de ces fabriques peut être utilisée pour déterminer le sens du cisaillement durant le flux magmatique.

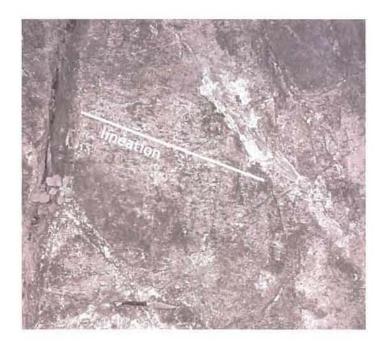


Figure 7-1. Photo du gabbro lité de l'ophiolite d'Oman. (haut) Vue perpendiculaire au litage où l'angle oblique entre la linéation et le litage est visible. (bas) Vue parallèle au litage, la linéation est également visible (com. pers. David Jousselin).

8. Autres processus invoqués

8.1. Variation du taux de nucléation

La formation des litages par ce mécanisme est attribuée aux variations du taux de nucléation dans un système sursaturé (cf. Harker, 1909). Goode (1976) suggère que la sédimentation de cristaux dans un système avec une nucléation et une croissance continues, donne une roche massive non litée. Il propose alors que, pour l'intrusion Kalka, le litage résulte de pulses répétées de nucléation discontinue, suivies de sédimentation par gravité. Dépendant de l'épaisseur de la zone de nucléation, de la hauteur de cette zone au-dessus du front d'accumulation et de l'intervalle de temps entre les pulses de nucléation, une sédimentation par différence de densité pourrait produire un lit isomodal et présenter un tri granulométrique normal ou inverse. Ce mécanisme a aussi été invoqué par Sørensen et Larsen (1987) pour l'intrusion Ilimaussauq et par Parsons et Becker (1987) pour Klokken.

Des expériences montrent que la nucléation et la croissance spontanées peuvent être déclenchées dans un liquide sursaturé par agitation. Les ondes des chocs sismiques pourraient causer des litages par une agitation intermittente d'un magma sursaturé, avec changement des taux de croissance et de nucléation ou de sédimentation (Hoffer, 1965). Alternativement, ces ondes pourraient provoquer des perturbations et un classement de cristaux dans la partie en suspension.

Les changements de la pression totale à l'intérieur d'une chambre magmatique peuvent changer l'assemblage des phases en équilibre au liquidus (Cameron, 1977; Lipin, 1993) et produire ainsi des variations du taux de nucléation. Les effets des changements de pression peuvent se ressentir simultanément dans toute la chambre, conduisant à un litage très étendu latéralement (Cameron, 1977; Lipin, 1993). Un processus possible pour engendrer des fluctuations de pression à l'intérieur de la chambre inclut l'exsolution et l'expansion de la phase vapeur (Lipin, 1993), la mise en place d'un nouveau magma dans la chambre, le retournement de la convection (Jackson, 1961), l'éruption volcanique de la chambre (Sørensen et Larsen, 1987), les contraintes tectoniques (Cameron, 1977) et les fracturations de la croûte supérieure.

Les chocs sismiques et les fluctuations de pression ne peuvent être considérés comme des mécanismes importants de formation du litage. Ils ne démontrent pas comment se forment des litages dont l'extension latérale est inférieure à celle de à la chambre. Si les variations des taux de nucléation et de croissance peuvent former un litage textural et ou compositionnel, il paraît important d'étudier ces deux paramètres afin de comprendre l'histoire thermique de l'intrusion. En effet, la croissance et la nucléation sont dépendantes de nombreux paramètres et en particulier du refroidissement. Les études sur la distribution de taille de cristaux (CSD) sont nombreuses (Marsh, 1988b; Higgins, 2000; 2002a) et leurs applications sur la formation des intrusions magmatiques ainsi que de leur litage pourraient permettre une meilleure compréhension de ces processus.

8.2. Diffusion contrôlant nucléation et croissance

Le phénomène de bandes de Liesegang (Liesegang, 1896) est un processus bien connu dans les roches sédimentaires, consistant en un fin litage minéralogique durant la diagenèse, présentant souvent un angle aiguë avec le litage sédimentaire originel. Taubeneck et Poldervaart (1960) et McBirney et Noyes (1979) proposent la formation d'un litage rythmique à partir d'un mécanisme impliquant une diffusion de la chaleur et des composants chimiques à la limite du lit au niveau de la bordure de la chambre magmatique. Dans ce modèle, la cristallisation d'un minéral va générer une zone appauvrie en composants qui le constituent, adjacente au front de cristallisation, inhibant les futures nucléations. Lorsque la nucléation requiert un degré significatif de sursaturation, la croissance initiale du cristal est rapide et la zone appauvrie avance rapidement à travers le réservoir principal. Quand le système s'approche de l'équilibre thermique, le taux de croissance devient lent et le taux d'avancement de la zone appauvrie décroît. Dans un système à plusieurs composants, la sursaturation de chaque phase est affectée par la nucléation et la croissance des autres phases. Donc la formation d'un lit riche en un seul minéral peut agir pour déclencher la formation du lit suivant, constitué d'un autre minéral. Comme le litage se forme par changement du taux de nucléation, le litage devrait montrer une corrélation négative entre les proportions modales et la taille moyenne des grains pour chaque phase. Cela n'est pas le cas dans tous les litages.

8.3. Fluctuation de la fugacité d'oxygène

Dans un système où co-précipitent des silicates et des oxydes, la fugacité d'oxygène peut contrôler les phases qui cristallisent, le chemin de différenciation du liquide et la composition des phases à l'équilibre. Les séquences litées présentant une alternance de lit riche en chromite et en silicate (comme dans la Lower zone du Stillwater et du Busveld), ou des lits riches en magnétite et en silicate (comme dans le Bushveld ou le Skaergaard), peuvent être formées à partir des variation de fO2 à l'intérieur d'un magma cristallisant (cf. Cameron, 1975; 1977). Les fluctuations de fO₂ peuvent affecter la stabilité relative des phases silicatées et produire un litage modal. Dans la subzone Norite I du Stillwater, les plagioclases dans les anorthosites ont une forte teneur en Fe et une faible teneur en Eu par rapport aux plagioclases des norites. Cette observation suggère que les lits en anorthosite peuvent s'être formés par réduction de la stabilité du pyroxène durant un intervalle de diminution de la fugacité d'oxygène (Ryder, 1984). Il n'est pas bien établi que les modèles contrôlés par la fugacité d'oxygène peuvent créer des litages sur de grandes distances, car les variations doivent se propager à travers une intrusion pour produire un lit latéralement étendu. Cependant le rôle de la cristallisation des oxydes pourrait être très important sur la densité des liquides et donc permettre la circulation de liquide sur une épaisseur importante. Mais il est difficile de savoir si c'est une variation de la fO₂ qui fait cristalliser les oxydes ou bien si c'est l'apparition des oxydes qui fait varier la fO_2

8.5. Processus tardifs

Les plus communément invoqués sont décris brièvement dans ce paragraphe : infiltration de fluide métasomatique, d'immiscibilité, formation d'une zone de raffinage et mûrissement d'Ostwald.

Le métasomatisme est un processus qui consiste à rééquilibrer les minéraux cumulus avec le liquide intercumulus par infiltration de fluides métasomatiques qui migrent vers le haut par compaction (Irvine, 1980). La formation de la *Banded Zone* dans l'intrusion du Stillwater a été attribuée à ce processus par Boudreau (1982). Certains auteurs envisagent que certaines zones du Skaergaard se seraient transformées par recristallisation due à des fluides

métasomatiques (Sonnenthal, 1992; Larsen et Brooks, 1994), ou par rééquilibration et remobilisation après sédimentation (Naslund, 1986). Cependant ce genre de mécanisme est difficilement réalisable sur la totalité du volume d'une intrusion.

La formation de litage par immiscibilité des liquides consiste en une différenciation de magmas mafiques jusqu'à un degré extrême d'enrichissement en fer permettant la séparation en deux liquides immiscibles, l'un riche en silice, aluminium et alcalins et l'autre riche en fer (McBirney, 1975; Philpotts, 1976; Roedder, 1978). Dans la *Upper Zone c* et la *Upper Border Series* γ du Skaergaard, les poches, sills et lits de melanogranophyre sont interprétés comme formés par séparation liquide-liquide pendant l'étape finale de la cristallisation de l'intrusion (McBirney et Nakamura, 1974; McBirney, 1975; Naslund, 1984a).

Le raffinage de zone qui est un processus très utilisé en métallurgie se déroule durant la migration du liquide à travers la pile de minéraux cumulus (McBirney, 1987). Certaines, caractéristiques du litage des intrusions du Bushveld et du Stillwater, sont considérées comme pouvant être dues à une migration de vapeur à l'intérieur de la pile de cumulats (Boudreau, 1988; Nicholson et Mathez, 1991).

Le mûrissement d'Ostwald consiste en une minimisation l'énergie libre de surface du système (Boudreau, 1987). Pour cela, les cristaux en dessous d'une taille critique sont dissous au profit des plus gros pour atteindre, au stade final, une taille homogène. La formation du litage, à l'échelle centimétrique, est expliquée par ce mécanisme pour le Stillwater où des lits de pyroxène alternent avec des lits sans pyroxène. Le mûrissement d'Ostwald se produit sur ces cristaux, appauvrissant le milieu environnant en pyroxène, créant ainsi des zones sans pyroxènes. La répétition de ce phénomène est supposée former un litage très fin (Boudreau, 1987). Un type de litage de l'intrusion du Skaergarrd est également attribué au mûrissement d'Ostwald (McBirney et al., 1990).

9. Objectifs de l'étude

Nous venons de présenter une liste non exhaustive de processus pouvant se dérouler dans une chambre magmatique et éventuellement déboucher sur un litage magmatique. Ceci nous permet de mettre en évidence plusieurs observations.

Cette liste met en lumière le fait qu'aucun mécanisme ne peut expliquer à lui seul la formation d'un litage, bien que certains mécanismes apparaissent comme majeurs dans la formation des structures d'une chambre et notamment du litage. Il s'agit de la cristallisation fractionnée, de la convection, de la ségrégation de flux et des variations des vitesses de croissance et la nucléation. Si ces mécanismes sont couramment admis pour les complexes lités mafiques, il n'en est pas de même pour les plutons granitiques où le litage est généralement expliqué en terme d'écoulement visqueux de magmas hétérogènes.

Le but de ce travail est d'aborder quelques aspects de ces processus de la genèse du litage magmatique, d'une part à partir d'une approche expérimentale, et d'autre part à partir de l'étude d'exemples naturels. Ce mémoire se compose ainsi de trois parties:

- (1) La première partie concerne le problème de la signification de la distribution des tailles de cristaux. Cette étude expérimentale est ciblée sur la croissance de plagioclase dans un basalte synthétique. Elle a pour but de déterminer l'influence de l'histoire thermique sur les variations de tailles des cristaux en terme de mécanisme de nucléation et de croissance et des processus mécaniques (sédimentation, accolement).
- (2) La seconde partie vise à mieux comprendre le rôle de la cristallisation fractionnée au sein d'une intrusion. L'utilisation des variations des éléments majeurs dans les plagioclases de la *Lower Zone* de l'intrusion du Skaergaard (Groenland) nous permettra d'aborder la question des mouvements du liquide au cours de la formation du litage.
- (3) La troisième partie est dédiée à l'étude du pluton granitique le Dolbel (Niger). L'étude des textures et de la zonation de la composition chimique des minéraux a pour objectif une meilleure compréhension des relations entre la cristallisation fractionnée, la déformation et les mouvements du liquide sur le développement du litage.

Une conclusion générale clôture cette étude. L'ensemble des données est présenté en annexe (voir CD).

S.C.D. - U.H.P. NANGT 8IBLIOTHÉQUE DES SCIENCES Rue du Jerdin Botanique - SP 11 64801 VILLERS-LES-NANCY CASE

CHAPITRE 2

Etude expérimentale de la distribution des tailles de cristaux (CSD) de plagioclases dans les basaltes

Récapitulatif des principaux symboles utilisés dans ce chapitre

Signification des CSD

- N(L) nombre de cristaux de taille inférieure à une taille L donnée par unité de volume de roche
- n(L) nombre de cristaux d'une taille donnée par unité de volume de roche
- L taille des cristaux ou de la classe
- J vitesse de nucléation
- G vitesse de croissance
- J_0 vitesses de nucléation constante
- G_0 vitesse de croissance constante
- t temps
- s pente des CSD
- *n0* intercept de la densité de population
- φ taux de cristallisation
- J_c vitesse de nucléation caractéristique associée à un temps de cristallisation (tc)
- G_c vitesse de croissance caractéristique associée à un temps de cristallisation (tc)
- N_c le nombre total de grain dans une roche
- *L_c* taille typique des cristaux
- temps de cristallisation au bout duquel l'ensemble du volume de liquide est cristallisé
- C_n , C_L , C_t constantes de formes
- a et b constantes intervenant dans J(t) et G(t)
- au temps de résidence des cristaux dans un magma cristallisant en système ouvert
- Q_{in} flux entrant pour un volume de magma V donné avec un temps de résidence (t = Q/V).
- Q_{out} flux sortant pour un volume de magma V donné avec un temps de résidence (t = Q/V).
- V un volume de magma donné

Calcul des CSD

- GA grand axe mesuré sur le cristal en 2D
- PA petit axe mesuré sur le cristal en 2D
- g grand axe mesuré sur le cristal en 3D
- m moyen axe mesuré sur le cristal en 3D
- p petit axe mesuré sur le cristal en 3D
- F facteur de forme correspondant à la moyenne des longueurs vraies du parallélépipède
- α facteur de forme
- β facteur de forme
- S aire totale examinée
- L_{moy} taille moyenne de la classe L
- ΔL intervalle de la classe de taille

Nucléation et Croissance

ΔT	degré de surfusion
T_i	température initiale
T_L	température du liquidus
T_C	température de début de cristallisation
T_f	température finale
C_i	composition initiale du liquide
C_f	composition finale du liquide
⊿G	enthalpie libre
ΔG_v	enthalpie libre par unité de volume
σ	énergie de surface
r	rayon d'une particule
r*	rayon critique
ΔG^*	enthalpie libre critique associé à r*
∆Ga	énergie d'activation pour attacher un atome au germe
n*	nombre d'atomes autour du germe
υ	fréquence à laquelle les atomes tentent de franchir la barrière énergétique ΔGa
N_{ν}	nombre d'atome dans le liquide par unité de volume
D	coefficient de diffusion
⊿G'	énergie d'activation pour l'attachement d'un atome
ΔG_c	différence d'enthalpie libre entre l'état de départ et d'arrivée
r _a	taux d'attachement des atomes au cristal
r_d	taux de détachement des atomes au cristal
R	constante des gaz parfaits
a_0	épaisseur de la couche atomique
f	fraction de sites disponibles à la surface d'attachement du cristal

1. INTRODUCTION

La cristallisation de liquides silicatés se déroule en deux étapes: (i) initiation de la nucléation (ii) croissance des nucléi (Kirkpatrick, 1976; Lofgren et al., 1975). Ainsi nucléation et croissance sont les deux processus qui gouvernent la cristallisation. La taille et le nombre de cristaux sont les variables représentant la distribution de taille des cristaux (CSD). La CSD est fonction des vitesses de croissance et de nucléation et du temps de cristallisation. Les vitesses de nucléation et de croissance variant en fonction de la température lors du refroidissement, les CSD enregistrent donc l'histoire thermique. La théorie de la distribution des tailles de cristaux a été développée par Randolph et Larson (1971) pour les matériaux industriels, qui sera développée par Marsh (1988b) pour les systèmes naturels.

Cependant, des processus mécaniques (sédimentation, agglomération, compaction...) affectent également les distributions de tailles de cristaux. De nombreuses études de CSD ont eu lieu sur des exemples naturels dans les roches magmatiques (Cashman et Marsh, 1988; Higgins, 2002), les météorites (Lentz et McSween, 1999) et les roches métamorphiques (Cashman et Ferry, 1988). L'interprétation de ces CSD est basée sur des modèles physiques issus de la métallurgie (Randolph et Larson, 1971) et appliqués aux sciences de la Terre par Marsh (1988b) et Higgins (2000). Cependant en sciences de la Terre, les études expérimentales se sont concentrées sur la détermination des vitesses de nucléation et de croissance en fonction du degré de surfusion (*undercooling*) (c.f. Gibb, 1974; Swanson, 1977 et Fenn, 1977) et sur la dépendance de la morphologie du cristal à la surfusion (c.f. Lofgren, 1980 et Donaldson, 1976; 1979). Nous avons réalisé une étude expérimentale de la cristallisation des basaltes en système fermé afin de déterminer les paramètres contrôlant les CSD et d'évaluer si les CSD permettent d'estimer de manière qualitative ou quantitative l'évolution thermo-mécanique des chambres magmatiques.

2. SIGNIFICATION DES CSD DANS LES ROCHES MAGMATIQUES

La théorie de la CSD a d'abord été définie par Randolf et Larson (1971) pour des applications industrielles puis a été introduite en géologie par Marsh (1988b, 1998). Cette théorie considère la variation des vitesses de nucléation J et de croissance G en fonction du temps t et ne fournit donc pas d'information directe sur la température. La distribution N(L) des tailles de cristaux est le nombre de cristaux de taille inférieure à une taille L donnée par unité de volume de roche (Randolph et Larson, 1971; Marsh, 1988b). On peut également définir la densité de population n(L) correspondant au nombre de cristaux d'une taille donnée par unité de volume de roche. On a alors:

$$N(L) = \int_{0}^{L} n(L)dL \tag{1}$$

ou

$$n(L) = \frac{dN}{dL} \tag{2}$$

Pour les roches volcaniques, la représentation graphique du logarithme de la densité de population en fonction de la taille des cristaux permet de mettre en évidence une tendance remarquablement lisse, et souvent linéaire, avec une pente négative (**Figure 2-1** d'après Marsh, 1998). Marsh (1998) considère deux types de cristallisation, le premier en système fermé ("batch") et le second en système ouvert. Cela représente des extrêmes car aucun système naturel ne présente de CSD purement en système fermé ou en système ouvert.

2.1. CSD en système fermé (batch)

Les systèmes magmatiques montrent généralement des CSD log-linéaires. La création de CSD log-linéaires en système fermé peut découler de deux processus différents (Marsh, 1998).

(i) Les CSD log-linéaires peuvent résulter d'une augmentation exponentielle de la vitesse de nucléation J, à vitesse de croissance G constante. La pente des CSD reste constante par rapport au temps t et à la taille L et la densité de nucléi augmente au cours du temps, si

bien que les CSD migrent sur l'axe ln(n) systématiquement vers le haut et de façon parallèle au cours de la cristallisation (**Figure 2-2**). La pente n'informe que sur les vitesses de nucléation et de croissance et non pas sur l'avancée du processus de cristallisation. Les changements de pente au cours du processus de cristallisation reflètent les variations de la vitesse de nucléation dans le temps.

(ii) Les CSD sont également log-linéaires si la vitesse de croissance augmente exponentiellement avec la taille alors que la vitesse de nucléation est constante (Figure 2-3).

L'intercept n_0 de la densité de population correspond au logarithme de la densité de nucléation. La pente des CSD (s) est constante et correspond à:

$$s = \frac{d\ln(n)}{dL} \tag{3}$$

Les équations établies par Marsh (1988b; 1998) permettent d'interpréter les CSD en système fermé. Elles ne sont pas établies sur des lois thermodynamiques mais se basent sur l'approche adoptée par Johnson-Mehl-Avrami (Johnson et Mehl, 1939; Avrami, 1939; 1940; 1941) pour établir l'équation de la cristallinité qui porte leur nom. Cette équation décrit l'évolution de la vitesse de cristallisation φ dans un volume fini en fonction des vitesses de nucléation J_{θ} et de croissance G_{θ} constantes :

$$\varphi = 1 - \exp\left(-\frac{\pi}{3}J_0 G_0^3 t^4\right)$$
 (4)

Dans le cas d'un système fermé, Marsh (1998) pose comme postulat que la cristallisation d'un magma dans son ensemble peut être décrite par des vitesses de nucléation (J_c) et de croissance (G_c) caractéristiques, associées à un temps de cristallisation caractéristique (t_c) correspondant à la durée de cristallisation complète. Marsh définit les relations entre le nombre de cristaux, la taille des cristaux et la durée de la cristallisation pour une cristallisation complète.

Le nombre typique de cristaux (N_c) donne le nombre total de grain dans une roche et est égal à:

$$Nc = C_N \left(\frac{Jc}{G_c}\right)^{3/4} \tag{5}$$

où C_N est une constante de forme.

La taille typique des cristaux (L_c) est définie par la relation:

$$L_c = C_L \left(\frac{G_c}{J_c}\right)^{1/4} \tag{6}$$

où $C_{\rm L}$ est également une constante de forme mais distincte de $C_{\rm N}$.

Le temps de cristallisation caractéristique (t_c), représente le temps au bout duquel l'ensemble du volume de liquide est cristallisé:

$$t_C = C_t \left(G_c^3 J_c \right)^{-1/4} \tag{7}$$

où C_t est une constante de forme distincte de C_N et C_L .

Cette échelle de temps ne dépend pas explicitement du refroidissement mais des processus de cinétiques de nucléation et de croissance. Ce temps "cinétique" peut ainsi être utilisé indépendamment d'un modèle thermique.

La densité totale des cristaux peut être calculée par rapport au pourcentage de phase cristallisée (φ) au temps t par

$$n(t) = \frac{dN}{dL} = \left[1 - \varphi(t)\right] \frac{J(t)}{G(t)} \tag{8}$$

Marsh ne considère que des vitesses de nucléation et de croissance constantes ou variant exponentiellement avec le temps t:

$$J(t) = J_0 \exp(at/t_c) \tag{9}$$

$$G(t) = G_0 \exp(bt/t_c) \tag{10}$$

avec J_0 et G_0 comme constantes (correspondant à J et G à t = 0) a et b comme constantes. En combinant les équations (8) (9) (10) on obtient:

$$\ln\left[\frac{n(t/t_c)}{n(0)}\right] = \ln\left(1 - \varphi(t/t_c)\right) + \left(a - b\right)\left(t/t_c\right) \tag{11}$$

L'observation des CSD sur les roches naturelles (Marsh, 1998) suggère que (a-b) est compris entre 6 et 10 et que b est proche de 0. Ainsi la vitesse de croissance est globalement constante et la vitesse de nucléation augmente, apparemment, exponentiellement avec le temps. La taille L d'un cristal donné peut dans ce cas être liée à sa date d'apparition t par la relation:

$$t/t_c = 1 - L/G_0 t_c \tag{12}$$

Les CSD n(L) peuvent alors être calculées à partir des équations (11) et (12).

Les caractéristiques des CSD découlant de l'équation (11) sont les suivantes (Figure 2-4):

- (i) Les CSD sont log-linéaires sur la majeure partie de la courbe tant que le taux de cristallisation φ est faible.
- (ii) La pente des CSD est constante au cours de la cristallisation et dépend de (a-b).
- (iii) Les CSD se décalent vers la droite au cours du processus de cristallisation.
- (iv) Pour les forts taux de cristallisation, la vitesse de nucléation par volume de roche finit par diminuer à cause de la diminution de la proportion de liquide, malgré l'augmentation exponentielle de J. Ceci se traduit dans les CSD par une forte diminution de la densité de population des cristaux de petite taille.

2.2. CSD en système ouvert

Marsh (1988b) et Cashman et Marsh (1988) ont appliqué la théorie de Randolf et Larson (1971) pour déterminer la relation entre la vitesse de croissance G et le temps de résidence τ des cristaux dans un magma en cours de cristallisation en système ouvert. Les CSD, dans un système ouvert (**Figure 2-5**) à l'état stationnaire où G est indépendant de la taille, sont log-linéaires avec une pente S égale à:

$$s = \frac{d\ln(n)}{dL} = -\frac{1}{G\tau} \tag{13}$$

L'intercept n_0 permet de déterminer la vitesse de nucléation J si le temps de résidence ou la vitesse de croissance est connu:

$$J = \frac{dN}{dt}\Big|_{t=0} = \frac{dN}{dL}\Big|_{t=0} = \frac{dL}{dt} = n_0 G \tag{14}$$

Avec n_0 qui correspond à la densité de population de nucléi n quand L tend vers 0. Le produit de la vitesse de croissance par le temps de résidence correspond à la taille moyenne des cristaux, que l'on appelle longueur caractéristique de la CSD.

Dans le cas d'un système ouvert avec G constant, si le système est en régime stationnaire $(\partial n / \partial t = 0)$, la vitesse de nucléation est aussi constante et n'a pas d'influence sur la pente. Si le temps de résidence est infini et avec une vitesse de nucléation constante, la CSD est horizontale.

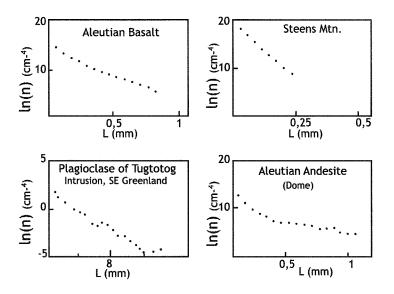
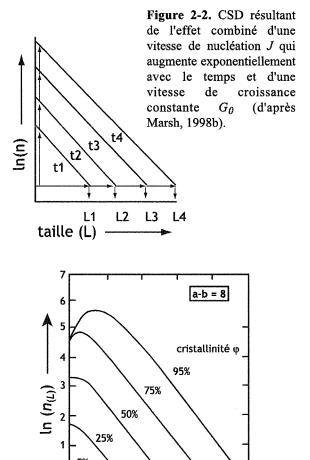
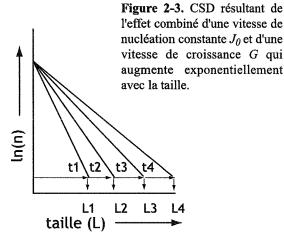




Figure 2-1. Exemples de distribution de taille de cristaux de plagioclases de roches volcaniques provenant d'Aleutian Islands Steen Mtn., Oregon et de l'intrusion de Tugtotog au SE du Groenland (d'après Marsh, 1988b).

Figure 2-4. CSD représentée en fonction du pourcentage de phase cristallisée (φ) (d'après Marsh, 1998b).

Taille des cristaux, L/G_0t_c

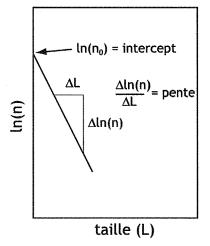


Figure 2-5. Représentation de la pente et de l'intercept d'une CSD dans un système ouvert (d'après Zieg et Marsh, 2002).

On peut, comme dans le cas du système fermé, développer le modèle de Marsh (1988b) et Cashman et Marsh (1988) qui conduit aux équations (13) et (14). Ce modèle considère que n(L,t) dépend des flux entrant (Q_{in}) et sortant (Q_{out}) , pour un volume de magma V donné avec un temps de résidence τ ($\tau = Q/V$). On peut écrire une équation de conservation :

$$\frac{\partial (Vn)}{\partial t} + \frac{\partial (GVn)}{\partial L} = Q_{in}n_{in} - Q_{out}n_{out}$$
(15)

En considérant que le magma entrant ne contient pas de cristaux, que le magma sortant a une distribution de n(L,t), que la vitesse de croissance G est constante, que le flux entrant et le flux sortant sont égaux et que le volume V est constant, l'équation devient:

$$\frac{\partial n_{(L,t)}}{\partial t} + \frac{G\partial n_{(L,t)}}{\partial L} = -\frac{n_{(L,t)}}{\tau} \tag{16}$$

Cette équation peut être intégrée dans le cas d'un état stationnaire pour donner:

$$n_{(L)} = n_0 \exp\left(-\frac{L}{G\tau}\right) \tag{17}$$

Avec n_0 comme constante d'intégration qui correspond à la densité de population de nucléi n quand L tend vers 0.

2.3. Processus de modification des CSD

Plusieurs mécanismes peuvent modifier les CSD initiales. Quelques exemples sont détaillés dans ce paragraphe, permettant ainsi de faire une interprétation des événements subis par le magma.

La sédimentation de cristaux est un processus simple de séparation des cristaux du liquide par différence de densité (on ne considère pas les interactions entre particules). La loi de Stokes permet de définir un modèle pour calculer les CSD dans la zone d'accumulation des cristaux. Mais, cette loi, étant utilisée pour des sphères, elle n'est pas totalement applicable dans le cas d'une chambre magmatique. Ainsi, Higgins (2002) décrit un modèle numérique de sédimentation dans une boite, où les cristaux sont modélisés par 1 million de sphères d'olivine et de plagioclase de distribution homogène. Les vitesses de nucléation et de croissance sont nulles. Les CSD, observées à un niveau stratigraphique donné dans la boite, évoluent en fonction de la durée. Dans un premier stade la CSD est linéaire, puis, avec le temps, elle pivote autour de l'intercept en s'horizontalisant, indiquant la sédimentation des

plus gros grains (**Figure 2-6**). Ce stade se déroule lorsque peu de plagioclases ont sédimenté. Lorsque tous les cristaux sont tombés, la CSD montre une augmentation du nombre de cristaux pour toutes les tailles hormis les plus petits car ils ont sédimenté en dernier (et se trouvent plus haut que le niveau stratigraphique où est observée la CSD). Elle forme ainsi une droite parallèle à celle du premier stade courbée vers le bas pour les plus petites tailles (**Figure 2-6**). Au stade final l'ensemble du processus de sédimentation est identique à une compaction simple (mécanisme développé plus loin).

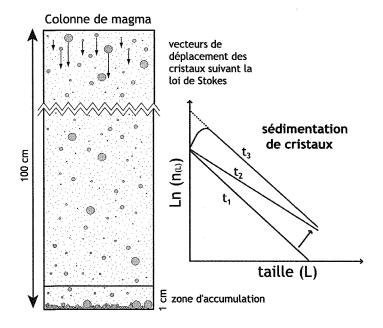
Le mûrissement textural et la croissance adcumulus sont deux processus qui sont susceptibles de se produire tardivement au cours de la cristallisation, entraînant de fait une modification importante des CSD sans nucléation J = 0 (Cashman et Ferry 1988; Marsh 1988b; Voorhees 1992; Hunter 1996; Higgins 1998; 1999).

Le processus de croissance adcumulus étudié par Morse (1986) est un processus important durant la solidification. La cristallisation intervient dans un cumulat dont le liquide interstitiel a une composition constante (tamponnée par exemple par la présence d'une grande quantité de liquide sus-jacent — Tait et Jaupart, 1996). Les cristaux y croissent donc à une vitesse identique pour tous. Différents degrés de croissance adcumulus vont par conséquent produire des CSD parallèles (Figure 2-7a).

Le mûrissement textural est le processus de dissolution des plus petits grains au profit des plus gros. Il se produit en raison de la forte énergie de surface par unité de volume des petits cristaux par rapport aux plus gros. Ainsi pour minimiser l'énergie du système, les petits grains (en dessous d'une taille critique) sont dissous, nourrissant les plus gros cristaux. Le mécanisme de mûrissement le mieux étudié est le mûrissement d'Ostwald qui se produit à composition constante sans qu'aucun changement thermodynamique extérieur ne se produise (donc isotherme). Deux modèles ont été proposés dans le cas d'un mûrissement d'Ostwald.

- (i) Tout d'abord celui de Lifshitz-Slyozov-Wager (LSW, Lifshitz et Slyozov, 1961), qui suppose que les cristaux sont en parfaite communication les uns avec les autres. Les petits grains sont fortement résorbés au-dessous d'une taille critique (Figure 2-7b). Au-delà, les cristaux croissent à une vitesse qui diminue avec la taille et qui tend vers zéro quand L tend vers l'infini. Ainsi les CSD restent confondues au cours du temps, au-delà de la taille critique, alors que l'intercept diminue (Figure 2-7b, e.g. Higgins 1998).
- (ii) Le modèle Communication Neighbours (CN, De Hoff, 1991) prend comme postulat que chaque cristal n'interagit par diffusion qu'avec ses voisins (Figure 2-7c). Ce modèle prédit que la vitesse de croissance augmente exponentiellement avec la taille des

grains (Higgins 1998). Ce qui est le cas dans certains systèmes naturels où les CSD s'aplatissent durant le mûrissement textural.


Bien que difficilement différentiables optiquement, la croissance adcumulus et le mûrissement textural produisent donc une évolution des CSD différente (comparer Figure 2-7a, b et c).

La compaction est un autre processus qui modifie les CSD (e.g. McBirney et Hunter 1995; Hunter 1996; Jerram et al., 1996). Ce mécanisme débute par une compaction mécanique avec une réorganisation des cristaux et une expulsion des liquides contenus dans les pores. Ainsi la densité de population de la CSD change en tout point, augmentant l'intercept alors que la pente reste constante (Figure 2-8). Ce mécanisme a lieu uniquement en dessous de 50% de compaction. Au-delà, différents mécanismes permettent de changer la forme du cristal (Hunter 1996), le plus important étant la dissolution au niveau des surfaces de plus haute énergie, comme les contacts entre les grains.

L'agglomération est un mécanisme correspondant à un accolement entre plusieurs cristaux pouvant aller jusqu'à une agglomération. L'étude expérimentale de Burkhart et al. (1980) sur des nucléi montre qu'ils s'agglomèrent formant des agrégats de plus grande taille. La CSD coudée de cette étude (Figure 2.9) est interprétée comme résultante d'un processus faisant disparaître les petits grains, au-dessous d'une taille critique, au profit des gros. On peut imaginer un processus identique pour les cristaux, qui formeraient des agglomérats (cela correspond à agglomération secondaire voir §2.5), reproduisant une CSD coudée similaire.

2.4. Nucléation et croissance

Les tailles des cristaux dépendent de l'évolution de J et de G en fonction du temps. Dans les modèles présentés ci-dessus, il n'a pas été mentionné de lien entre la vitesse de nucléation, la croissance et la température. Les vitesses de croissance et de nucléation dépendent de la différence entre la température imposée au système et la température d'équilibre du système (degrés de surfusion ΔT), lors du changement des conditions d'équilibre thermodynamique. Dans un système magmatique ce changement peut être la conséquence de l'augmentation ou de la diminution de la température, mais également des variations de composition chimiques.

Figure 2-6. Dispersion théorique des CSD dans le cas d'une sédimentation de cristaux dans un système fermé avec J et G nulles (d'après le modèle numérique de Higgins, 2002). Les CSD correspondent à la zone d'accumulation en base de colonne, t_1 correspond à la CSD initiale et t_3 à la CSD finale.

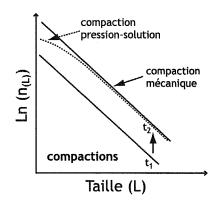


Figure 2-8. Dispersion théorique des CSD avec le temps dans le cas d'une compaction (modifié d'après Higgins, 2002)

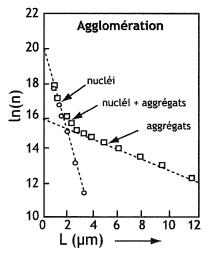


Figure 2-9. CSD mesurée à partir de données expérimentales résultantes d'un processus d'agglomération (d'après Burkhart, 1980).

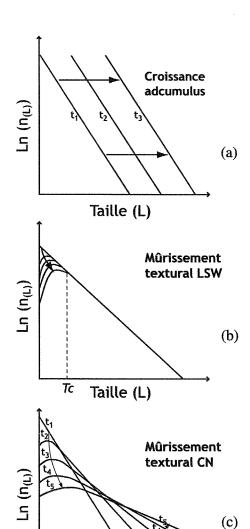


Figure 2-7. Dispersion théorique des CSD avec le temps et pour J=0 (a) Dans le cas d'une croissance adcumulus. (b) Dans le cas d'un mûrissement textural suivant l'équation LSW. (c) Dans le cas d'un mûrissement textural suivant l'équation CN (modifiés d'après Higgins, 2002).

Taille (L)

L'activation de la nucléation est un processus très étudié (Lofgren, 1974; Gibb, 1974; Walker et al., 1976). L'étude de Gibb (1974) sur les variations de la nucléation des plagioclases dans le basalte de la Colombia River a mis en évidence trois domaines de nucléation, au cours du refroidissement (Figure 2-10). La succession de ces domaines est liée à la forme de la courbe de nucléation en fonction de la surfusion, avec une période de nucléation nulle, une période de transition et une période où la nucléation augmente rapidement (Figure 2-11). Le premier domaine est celui où la nucléation est absente et correspond au domaine supra-liquidus (de T_i à T_L). Le second domaine est celui où la nucléation s'établit de manière aléatoire et correspond aux degrés de surfusion moyens où la vitesse de nucléation est encore très faible (de T_L à T_C). Enfin, le dernier domaine présente une nucléation spontanée c'est à dire toujours présente et correspond aux degrés de surfusion les plus forts caractérisés par une vitesse de nucléation rapide (de Tc à T_f). Si on suit un exemple de cristallisation avec le refroidissement, différentes étapes se succèdent (Figure 2-10). Lorsque l'on refroidit le liquide initialement caractérisé par la température Ti et la concentration Ci (point M sur la figure 2-10), on se déplace sur une horizontale et cela, aussi longtemps que les cristaux n'apparaissent pas. Après franchissement du liquidus T_L , à l'équilibre les cristaux apparaissent très brutalement, à une température Tcqui représente au pire la température de nucléation spontanée Tc (Gibb, 1974). Une différence entre température de cristallisation Tc et température de liquidus T_L de l'ordre de 10°C n'est pas rare, on définira cette différence par le retard à la nucléation. Cette apparition brutale de cristaux se fait par nucléation primaire. Une fois les cristaux nés, ils vont grossir par croissance, générer éventuellement de nouveaux germes par nucléation secondaire à la surface des cristaux ou des parois extérieures, s'agglomérer et éventuellement mûrir jusqu'à la température finale Tf.

2.4.1. La nucléation

Différents types de nucléations existent (cf. Kaschiev, 2000; Mersmann, 2001; Mullin, 2001). Lorsque les germes sont directement issus du liquide initial, on parlera de *nucléation primaire*. Cette nucléation primaire pourra être de type *homogène* si les germes se forment dans le volume du liquide ou de type *hétérogène* si les germes se forment sur les parois ou sur des particules solides en suspension. En se développant les cristaux peuvent eux-mêmes générer une *nucléation secondaire*. Cette nucléation peut se faire à partir de germes arrachés

à la surface des cristaux (nucléation secondaire surfacique) ou bien résultante de la libération de particules suite à des chocs (nucléation secondaire de contact)...

La nucléation primaire se produit par réarrangement d'atomes en petits agrégats dont l'enthalpie libre (ΔG) doit dépasser un seuil d'activation. Cette enthalpie dépend de son volume qui tend à stabiliser le système et de sa surface qui à l'effet inverse. Ce processus nanoscopique correspond à la formation de germes qui parviennent ou non à un volume suffisant pour que l'énergie de surface devienne négligeable (Volmer et Weber, 1926; Becker et Döring, 1935; Turnbull et Fisher, 1949). La différence d'enthalpie dépend de la taille de la particule de rayon r et de la température, tel que :

$$\Delta G_{tot} = \Delta G_{volume} + \Delta G_{surface} \tag{18}$$

$$=\frac{4}{3}\pi r^3 \Delta G_v + 4\pi r^2 \sigma \tag{19}$$

où ΔG_{ν} est l'enthalpie libre par unité de volume et σ est l'énergie de surface.

Tant que le rayon r est petit, le germe est instable. Son enthalpie libre globale s'accroît quand r augmente jusqu'à ce que le germe atteigne un rayon critique r^* associé à une valeur maximale de ΔG^* (**Figure 2-12**). Donc une nucléation est possible que si l'enthalpie libre globale atteint :

$$\frac{d[\Delta G_{lot}]}{dr} = 0 \tag{20}$$

et donc que si le rayon atteint :

$$r^* = \frac{-2\sigma}{\Delta G} \tag{21}$$

et

$$\Delta G^* = \frac{16\pi\sigma^3}{3\Delta G_v^2} \tag{22}$$

Le germe de rayon critique est en équilibre instable. Si on lui ajoute une molécule, il croît spontanément, mais si on lui retire une molécule, il se dissout spontanément, puisque dans les deux cas il y a diminution de l'enthalpie libre du système (**Figure 2-12**). Plus le degré de surfusion est important plus la nucléation sera facilitée. En effet, pour les faibles degrés de surfusion, la taille critique est beaucoup plus importante que lorsque le degré de surfusion est fort (la taille critique diminue).

Dans le cas de la nucléation *homogène*, la théorie repose sur l'idée que dans toutes les phases et pour chaque température, des hétérogénéités locales de composition et de structure se produisent. Les molécules diffusent au hasard et finissent par se rencontrer d'autant plus facilement que concentration et saturation sont plus élevées. Les hétérogénéités au sein de cette phase sont détruites car elles augmentent l'enthalpie libre du système. Les hétérogénéités peuvent devenir thermodynamiquement stables et former des nucléi si elles contribuent à diminuer l'enthalpie libre du système (Volmer et Weber, 1926; Becker et Döring, 1935; Turnbull et Fisher, 1949).

La vitesse de nucléation homogène s'exprime par l'équation de Turnbull et Fisher (1949)

$$J = n * \nu N_{\nu} \exp\left(\frac{-\Delta G_a}{RT}\right) \exp\left(\frac{-\Delta G^*}{RT}\right)$$
 (23)

où ΔG_a correspond à l'énergie d'activation pour attacher un atome au germe, n^* est le nombre d'atomes autour du germe, v est la fréquence à laquelle les atomes tentent de franchir la barrière énergétique ΔG_a et N_v est le nombre d'atome dans le liquide par unité de volume.

Toutefois la nucléation primaire homogène semble peu probable en milieu industriel et naturel comme une chambre magmatique (Berkebile et Dowty, 1982; Lofgren, 1983) où il est impossible d'éliminer tout solide étranger. Le mécanisme de nucléation primaire devient alors de type *hétérogène*. De nombreuses surfaces ou hétérogénéités sont susceptibles de favoriser la nucléation car l'énergie de surface du germe est moins importante lorsqu'il est généré à partir d'une interface. Le formalisme est le même que pour la nucléation homogène mais le terme ΔG_{tot} est plus faible et le rayon critique est alors plus petit.

2.4.2. La croissance

Lorsque le germe a dépassé la taille critique, il se met à croître et cette croissance durera tant que le milieu restera sursaturé et qu'il subsistera du liquide. La croissance, dans les liquides silicatés, est contrôlée par deux facteurs: les processus de transport dans le liquide (diffusion et advection) et les réactions se produisant à l'interface liquide-cristal (Kirkpatrick, 1977). Des deux processus simultanés, c'est le plus lent qui contrôle la croissance. En général, la convection est ignorée dans les petits volumes mais est considérée comme active dans des volumes tels qu'une chambre magmatique (Davaille et Jaupart, 1993). Ainsi, si la réaction à l'interface liquide-cristal a une vitesse inférieure à celle de la diffusion, il n'y aura pas de

limite compositionnelle à l'interface cristal-liquide. En revanche, lorsque la diffusion devient le processus le plus lent, la croissance va être contrôlée par la vitesse de diffusion de l'élément le plus lent.

La croissance contrôlée par la diffusion n'est pas considérée comme un mécanisme prépondérant pour les faibles degrés de surfusion et il n'a pas été beaucoup étudié dans le cas des silicates fondus. Il correspond à la croissance d'un cristal de composition différente du liquide par redistribution des éléments. Des flux d'éléments vont se créer ente le liquide et le cristal allant de l'un à l'autre formant des gradients compositionnels à l'interface liquidecristal. La vitesse de croissance est ainsi contrôlée par la vitesse de diffusion des éléments et doit diminuer avec le temps car le gradient de composition s'étend de plus en plus dans le liquide. La vitesse de croissance est proportionnelle à $(D/t)^{1/2}$ où D est le coefficient de diffusion de l'espèce la plus lente et t le temps (Christian, 1965).

Dans le cas où le mécanisme qui contrôle la croissance est celui des réactions au niveau de l'interface liquide-cristal, on peut se baser sur les théories de Volmer et Marder (1931) et Turnbull et Cohen (1960). Ces derniers considèrent la vitesse à laquelle les atomes s'attachent et se détachent du cristal. Ainsi chaque atome qui se colle au cristal, abandonne son enthalpie libre spécifique pour passer dans un état d'énergie transitoire instable de haute énergie, avant de décroître vers un état d'énergie caractéristique du solide (**Figure 2-13**). L'énergie d'activation pour l'attachement d'un atome est ΔG et la différence d'enthalpie libre entre l'état de départ et d'arrivée est de ΔG_c . Le taux d'attachement r_a des atomes au cristal peut s'écrire :

$$r_a = \upsilon \cdot \exp\left(-\frac{\Delta G'}{RT}\right) \tag{24}$$

avec υ la fréquence à laquelle les atomes tentent de franchir ΔG 'et R la constante des gaz parfaits. Le taux de détachement r_d , s'écrit :

$$r_d = \upsilon \cdot \exp\left(-\frac{\Delta G_c + \Delta G'}{RT}\right) \tag{25}$$

On peut ainsi en déduire la vitesse de croissance G, qui correspond à la différence entre les deux taux multipliée par l'épaisseur de la couche atomique a_{θ} et la fraction f de sites disponibles à la surface d'attachement du cristal :

$$G = fa_0 v. \exp\left(-\frac{\Delta G'}{RT}\right) \left[1 - \exp\left(-\frac{\Delta G_c}{RT}\right)\right]$$
 (26)

La vitesse de croissance est nulle au liquidus car la différence d'enthalpie libre entre le liquide et le cristal est nulle. Pour les faibles degrés de surfusion, la vitesse augmente en même temps que le degré de surfusion car ΔG_c augmente. Cependant, pour un degré de surfusion plus important, l'énergie d'activation d'attachement $\Delta G'$ devient plus importante en raison de la forte diminution de la mobilité des atomes (Kirkpatrick 1981).

La distribution de taille des cristaux résulte de l'évolution des courbes de nucléation et de croissance au cours de la diminution de température. Plus le ΔT est grand, plus les nucléi vont se développer (**Figure 2-11**) formant ainsi beaucoup de microlites. Lorsque la température est proche de celle du liquidus c'est la croissance qui est favorisée par rapport à la nucléation (**Figure 2-13**), formant ainsi de gros cristaux mais qui seront peu nombreux.

2.5. L'agglomération de cristaux

L'agglomération des cristaux constitue un phénomène très important dans l'acquisition des textures. Elle pourra en effet affecter significativement la distribution des tailles de cristaux. L'agglomération est l'unification de particules primaires qui sont ensuite cimentées entre elles par des ponts cristallins (David et al., 1995). La sursaturation peut en effet permettre de lier fortement entre elles les particules agrégées. On distingue deux types de mécanismes d'agglomération, classiquement désignés par primaire et secondaire.

(i) les agglomérats formés par agglomération primaire sont issus d'une croissance anormale des cristaux sous forme de dendrites, de macles ou, plus fréquemment, de polycristaux ne possédant pas de symétrie. Le processus peut être décrit en imaginant que des nucléi de la particule mère émergent et y restent collés. On connaît cependant peu de chose sur ce mécanisme.

(ii) Dans le processus d'agglomération secondaire, les agglomérats se forment à partir des particules isolées déjà formées qui se rencontrent, puis se soudent.

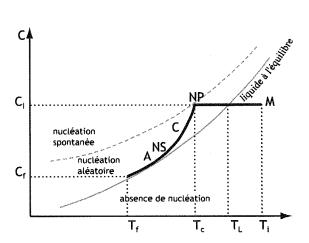


Figure 2-10. Evolution de la concentration au cours du temps d'une cristallisation. M caractérise le liquide de départ avec Ti et Ci pour sa température et sa composition initiale. T_L est la température de liquidus, T_C est la température en début de cristallisation. T_f et C_f correspondent à la température et composition du liquide. NP correspond à la nucléation primaire, puis C à la croissance, NS à la nucléation secondaire et A à l'agglomération. Les trois zones de nucléation sont définies par Gibb (1974).

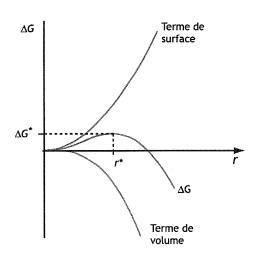


Figure 2-12. Enthalpie libre d'activation de la nucléation homogène (ΔG) en fonction du rayon du germe r. Avec r^* comme rayon critique et (ΔG^*) l'enthalpie à atteindre pour que le germe puisse nucléer.

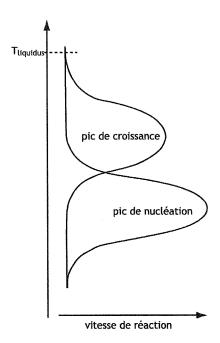


Figure 2-11. Représentation classique des courbes de nucléation et de croissance. Proche du liquidus, la croissance est dominante, les cristaux seront de grande taille et peu nombreux. A l'inverse, les cristaux seront petits et nombreux, lorsque la température s'éloigne de celle du liquidus.

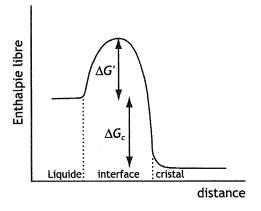


Figure 2-13. Différence d'enthalpie libre entre le liquide et le cristal (d'après Zarzycki, 1992).

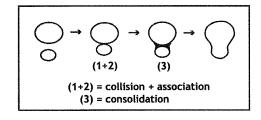


Figure 2-14. Mécanisme d'agglomération de deux particules (d'après David et al., 1995).

Dans la littérature, c'est le mécanisme de l'agglomération secondaire qui est le plus couramment décrit. Il peut se décomposer en trois étapes qui ne seront pas développées ici (Israelachvili, 1985; David et al., 1995; Tontrup et al., 2000): la collision, l'association et la consolidation (**Figure 2-14**). Si les deux particules restent suffisamment longtemps en contact l'une avec l'autre, et en présence de sursaturation, un pont cristallin va pouvoir se former entre les particules (David et al., 1995). L'arrêt du processus d'agglomération peut ainsi être dû à une saturation devenue trop faible. Du point de vue cristallographique, la formation de ce pont n'est possible qu'entre certaines faces des cristaux.

3. PROTOCOLES EXPERIMENTAL ET ANALYTIQUE

3.1. Paramètres expérimentaux

Nous avons vu que la distribution de tailles de cristaux dans une roche magmatique dépend de l'histoire du refroidissement du magma. A travers nos expériences, nous avons tenté d'évaluer l'influence de l'histoire anté- et de l'histoire post-liquidus. Nos expériences comprennent une phase d'équilibration au-dessus de la température de liquidus, une rampe de refroidissement au cours de laquelle se fait la cristallisation et éventuellement un palier isotherme final (**Figure 3-1**). Nous avons limité nos expériences aux taux de cristallisation inférieurs à 40% pour limiter les difficultés de comptage des cristaux, les interactions entre les cristaux et surtout éviter l'apparition d'une nouvelle phase en cours de cristallisation (le clinopyroxène). Nous avons fait varier les paramètres suivants:

- (i) la température de trempe qui reflète l'avancée de la cristallisation,
- (ii) la différence entre la température initiale et celle du liquidus,
- (iii) la durée du temps de palier initial,
- (iv) la vitesse de refroidissement,

De plus, afin d'évaluer l'influence de la maturation à température constante, nous avons réalisé des expériences au cours desquelles le paramètre variable était (Figure 3-1) :

(v) la durée du temps de palier final.

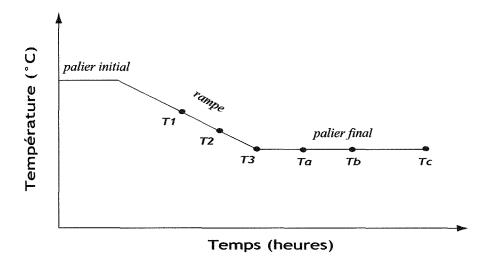
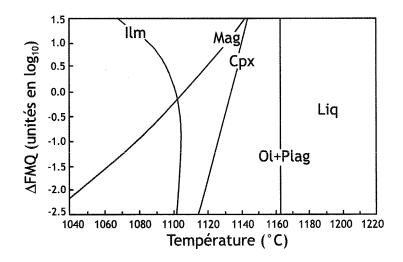


Figure 3-1. Schéma représentant le parcours température vs temps. Les variables sont la durée du palier initial, la pente de la rampe (vitesse de refroidissement) ainsi que la durée du palier final. Les trempes (T) des billes sont effectuées soit sur la rampe soit sur le palier final.

3.2. Protocole expérimental

Un protocole identique a été suivi pour toutes les expériences. Il reprend pour l'essentiel le protocole présenté par Toplis et Carroll (1995; 1996).


Les expériences ont été réalisées à partir d'une poudre synthétique dont la composition est la même que celle utilisée dans les expériences de Toplis et Carroll (1995) et correspond à la composition d'un dyke basaltique du Skaergaard (**Tableau 3-1**). Les deux séries d'expériences ont été réalisées dans les mêmes conditions. Cependant, celles de Toplis et Carroll (1995) ont été trempées après un temps de palier final isotherme très long (de 28 à 290 heures), ce qui nous permet d'avoir des données expérimentales que l'on va considérer comme étant à l'équilibre. Toplis et Carroll (1995) ont ainsi défini les températures d'apparitions des minéraux et les compositions des phases liquides et solides. Toplis et Carroll (1995) ont comparé leurs résultats aux valeurs prédites par le modèle MELT (Ghiorso et Sack, 1995 - **Figure 3-2**).

Un mélange préparé à partir de poudres d'oxydes a été placé dans un creuset en platine puis porté à température de fusion. Le verre obtenu a été réduit en poudre fine. Pour s'assurer de l'homogénéité de la poudre obtenue, le verre a été fondu puis broyé une seconde fois.

Les charges expérimentales sont des sphères d'un diamètre d'environ 1 à 3 mm, suspendues par une boucle de platine de 0,2 mm de diamètre. Ce fil de platine a été préalablement saturé en fer dans les mêmes conditions de fO_2 que dans les expériences de cristallisation de Toplis et Carroll (1995) afin d'équilibrer le Fe^{2+} et Fe^{3+} et de minimiser les interactions entre le fil de platine et les billes expérimentales. La poudre est déposée dans les boucles de platine, sous forme pâteuse, en raison de l'ajout d'un liant (alcool polyvinylique) qui s'évapore instantanément lorsque la charge est introduite dans le four. Pour permettre de garder des conditions identiques, 5 charges sont mises en même temps dans le four, grâce à une canne multi-trempes (**Figure 3-3a**). Un court-circuit produit par une impulsion électrique transmise via la canne permet de faire tomber les 5 charges une à une dans un vase de trempe aux températures voulues. Deux fours à atmosphère contrôlée ont été utilisés : un four tubulaire vertical GERO 1 (pour des vitesses de refroidissement supérieures ou égales à 1°C - **Figure 3-3b**) ou GERO 3 (pour des vitesses de refroidissement inférieures à 1°C).

Na ₂ O	2.7
SiO ₂	48.8
K ₂ O	0.3
CaO	10.9
TiO ₂	2.9
FeO	13.1
MgO	6.5
Al ₂ O ₃	14.9
Total	100.1

Tableau 3-1. Composition de la poudre synthétique (en %wt d'oxydes).

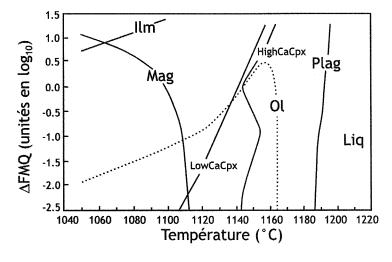


Figure 3-2. (a) Diagramme de phase réalisé à partir de données expérimentales pour une composition de ferro-basalte SCI (Toplis et Caroll, 1995) en fonction de fO_2 . (b) Diagramme de phase prédit par le modèle MELT pour la composition SCI (Ghiorso et Sack, 1995).

La charge est portée à la température initiale (Ti) prévue pour chaque expérience et laissée pour une durée minimum de 9h à cette température afin d'assurer l'équilibration avec l'atmosphère du four (Toplis et Carroll, 1995). La température à l'intérieur du tube est contrôlée par un thermocouple Pt-Pt/Rh10 situé dans la canne porte échantillon, à 1cm des échantillons. Un étalonnage est effectué fréquemment (à partir du point de fusion de l'or). La zone chaude du four est contrôlée car très petite et les gradients en amont et en aval sont de plusieurs dizaines de degrés. Il faut donc placer les échantillons dans cette zone. La température est contrôlée par thermocouple à \pm 1°C. Ces expériences sont réalisées à pression atmosphérique mais sous atmosphère contrôlée avec environ10% de CO et 90% de CO₂, afin d'atteindre le tampon FMQ (Δ FMQ = 0) à toutes températures.

Même si les expériences ont été réalisées dans des conditions similaires, on ne peut pas les considérer comme identiques car des variations de l'évolution thermique peuvent exister, notamment : emplacement dans le four et évolution de l'écart entre température de consigne et température vraie au cours du temps.

3.3. Analyses chimique et minéralogique

Toutes les phases ont été analysées à la microsonde électronique (Annexe 1). Les proportions de chaque phase sont obtenues par bilan de masse à partir des analyses chimiques par un calcul matriciel correspondant à :

$$[X][M] = [V] \tag{27}$$

où X est la matrice contenant les pourcentages des phases, M la matrice contenant les pourcentages d'oxydes de chaque phase et V, la matrice contenant la composition du liquide initial. Pour les phases homogènes, les pourcentages d'oxydes correspondent à une moyenne sur toutes les analyses de cette phase. Pour les phases hétérogènes, les compositions sont d'abord calculées pour chaque phase à partir de l'intégration des profils de composition mesurés à la microsonde électronique. Les proportions calculées par bilan de masse et à partir des CSD peuvent être comparées. On constate que, quelle que soit la méthode de calcul utilisée, les proportions sont identiques. Les pourcentages d'erreurs sur les proportions de phases sont similaires aux erreurs analytiques pour chaque oxyde ($\pm 2\%$).

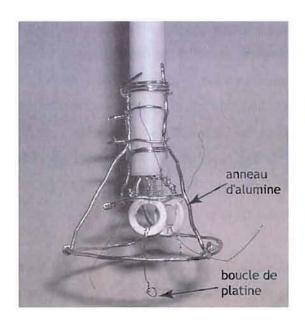


Figure 3-3a. Photo de la canne multi-trempe. La poudre de basalte est posée sur une boucle de platine (Ø 0.2 mm), qui est attachée à un anneau d'alumine. Les anneaux d'alumine sont suspendus sur un fil de platine (Ø 0.1 mm) qui va fondre (court-circuit électrique) et libérer l'anneau avec la bille de basalte, à la température voulue. Ici seulement deux anneaux sont posés, mais la canne est faite pour avoir jusqu'à 5 anneaux.

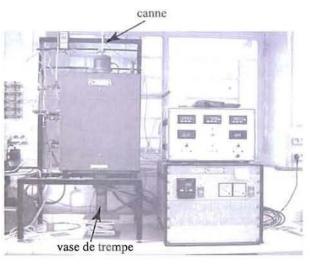


Figure 3-3b. Photo du four tubulaire GERO 1. La canne est introduite par le haut. Les échantillons tombent dans le vase de trempe, situé en bas du four.

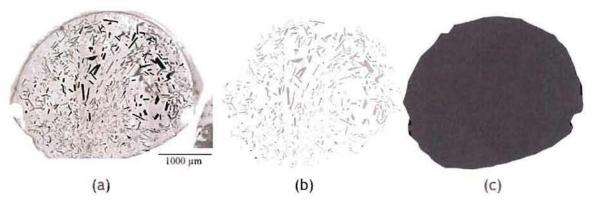


Figure 3-4. (a) Photo en microscopie optique (lumière refléchie) de la bille traitée à partir de laquelle les plagioclases sont contourés. (b) Image de tous les plagioclases contourés. (c) Image de la surface où ont été contourés les plagioclases.

3.4. De l'échantillon aux CSD

Une fois obtenues, les différentes billes sont placées dans une résine (araldite) pour être polies. Des photos sont prises au microscope optique en lumière réfléchie. Certaines phases sont difficiles à discerner, le pyroxène, par exemple, qui a une composition proche du verre. D'autres images sont prises en microscopie électronique à balayage en électrons rétrodiffusés afin de vérifier la présence du clinopyroxène et d'identifier les zonations chimiques. Enfin, les différentes phases sont analysées à la microsonde électronique.

Les CSD des plagioclases sont réalisées à partir des images numériques en lumière réfléchie et au MEB. A partir d'une image, les plagioclases vont être contourés et isolés un à un sous le logiciel © Adobe Illustrator (Figure 3-4a). La surface de la bille où les plagioclases ont été sélectionnés est également contourée. Toute la surface de la bille n'est pas utilisée, car des nucléations hétérogènes à partir des bords de la bille mais également en contact avec les fils de platine ne doivent pas être considérées dans cette étude. Après ce traitement nous obtenons une image en noir et blanc de tous les plagioclases (Figure 3-4b) mais également une image de la surface considérée (Figure 3-4c). Ces images vont être traitées par le logiciel © NIHImage qui permet d'obtenir la longueur, la largeur ainsi que l'aire de toutes les surfaces de l'image. Ceci permet d'obtenir une liste des tailles caractéristiques (longueur, largeur et aire) plagioclase par plagioclase à partir de laquelle la CSD peut être calculée.

3.5. Calcul des CSD

Mesuré à partir d'un comptage d'un nombre fini de cristaux, n(L) est le nombre de cristaux de taille comprise entre $(L-\Delta L \text{ et } L)$ divisé par la taille de la classe. La densité n peut être obtenue à partir de la distribution N de cristaux:

$$n(L) = \frac{\Delta N}{\Delta L} = \frac{dN}{dL} \tag{28}$$

La distribution N est calculée pour les deux axes mesurés sur le cristal (le plus grand axe, GA et le plus petit, PA). La première étape est de définir une taille de classe qui correspond à une bonne statistique de comptage. Un nombre de cristaux par classe variant de 10 à 100 est idéal, ce qui est difficile à atteindre avec un nombre total de cristaux inférieur à 200. Compte tenu du fait que la distribution des cristaux est décroissante, les dernières classes, contenant le plus

souvent un ou deux cristaux, échappent à ce critère. On peut ensuite passer de la distribution de taille de cristaux à la densité de population *n* par la relation (28).

Le problème principal de ce calcul est le passage des mesures réalisées sur une section, donc en deux dimensions, aux mesures volumétriques. Le fait que la distribution de taille des grains en section ne reflète pas la distribution de taille des grains en volume dépend de deux effets. Le premier est un effet d'orientation du cristal par rapport au plan de coupe (Figure 3-5a). Le second est un effet de probabilité de coupe : la probabilité que la section polie recoupe un cristal dépend de la taille des grains, les petits cristaux ayant moins de chance d'être coupés que les gros. Les plagioclases seront considérés comme des parallélépipèdes définis par p pour la plus petite longueur du parallélépipède, m la longueur moyenne et g la plus grande. Le plagioclase, ayant une forme tabulaire, la probabilité est plus grande de couper le grain parallèlement au petit axe qu'au grand ou moyen. D'après l'analyse statistique de Higgins (2000), la plus petite longueur PA mesurée en deux dimensions pour une population homogène est donc assimilable à p, et il n'y a pas de correction à appliquer à cet effet d'orientation. En revanche, pour GA la correspondance avec la valeur vraie est moins bonne, il n'existe pas de correction appropriée. Pour se rapprocher de la longueur vraie il semble plus judicieux de se baser sur la mesure de la plus petite longueur PA. Afin de corriger l'effet de taille, Higgins (2000) définit un facteur de forme F qui correspond à la moyenne des longueurs vraies des cotés du parallélépipède :

$$F = \frac{g + m + p}{3} \tag{29}$$

En introduisant les facteurs $\alpha = p/g$ et $\beta = p/m$ on peut calculer F pour chaque classe à partir des deux formules suivantes pour p et g respectivement:

$$F = \frac{1}{3} \left(\frac{1}{\alpha} + \frac{1}{\beta} + 1 \right) p \tag{30}$$

$$F = \frac{1}{3} \left(1 + \frac{\alpha}{\beta} + \alpha \right) g \tag{31}$$

Les facteurs de forme correspondant à nos échantillons ont été estimés au cours d'une étude préliminaire développée dans le paragraphe 3.5. Cette étude nous a permis d'adapter des facteurs de forme pour être plus proche de la forme des cristaux dans nos échantillons, avec $\alpha = 0.21$ et $\beta = 0.45$.

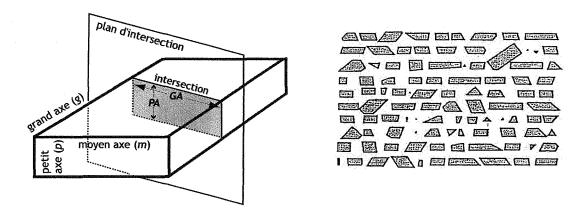


Figure 3-5. (gauche) Exemple d'une intersection d'un parallélépipède. Ici on voit que les mesures vraies (p, m et g) ne correspondent par aux valeurs mesurées (GA et PA) sur le plan d'intersection (hormis le petit axe). (droite) Exemple d'une centaine d'intersections possibles dans un parallélépipède (avec un rapport de 1:2:5).

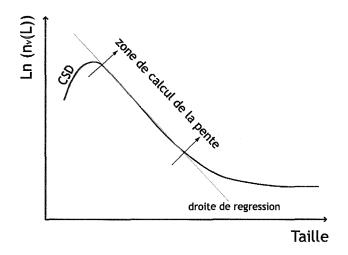


Figure 3-6. Calcul de la pente d'une CSD en éliminant les effets dus aux petites et grandes tailles.

S.C.D. - U.H.P. NANCY 1
BIBLIOTHÈQUE DES SCIENCES
Rue du Jardin Botanique - BP 11
54601 VILLERS-LES-NANCY Céde

Le facteur de forme F étant calculé, on peut trouver la densité de population pour une longueur choisie d'après la méthode d'Higgins (1994) où:

$$n(L) = \frac{N(L)}{S/(L_{mov} * F * 0.64)/\Delta L}$$
(32)

où S correspond à l'aire totale examinée, L_{moy} correspond à la taille moyenne de la classe L, ΔL est l'intervalle de la classe de taille, ainsi n(L) s'exprime en mm⁻⁴.

3.6. Caractérisation des CSD

Les CSD présentent toutes une partie linéaire. Cette partie peut être isolée et caractérisée par une pente et une ordonnée à l'origine (appelée par la suite "intercept").

Calcul des pentes et intercepts à partir des CSD. Pour le calcul des pentes, nous avons utilisé deux méthodes de calcul pour minimiser ces effets statistiques. On peut travailler à partir de la courbe cumulée et calculer la pente s en utilisant la relation ente n et N (28). Cette méthode permet de s'affranchir du faible nombre de cristaux de grande taille. En revanche la sous-représentation des petites tailles demeure, et il faut donc effectuer le calcul sans prendre en compte les premières classes.

On peut également calculer la pente directement à partir de la courbe ln(n) = f(L), les classes ayant moins de 7 cristaux n'ont pas été prises en compte pour le calcul des pentes et des intercepts des CSD. Toute la partie horizontale des CSD du coté des grandes tailles, correspond à un comptage de 1 cristal par classe et n'a donc pas de signification en terme de densité de cristal. De plus les derniers points des CSD correspondent en général à des cristaux coupés parallèlement à $\{010\}$ dans lesquels le petit axe mesuré PA correspond en réalité au moyen axe m du cristal. Les premières classes dont la valeur est inférieure au maximum de densité de cristaux sont exclues du calcul également. Elles correspondent à la fois à un rebroussement réel des CSD et une sous estimation du nombre de petits cristaux par effet statistique. On calcule donc la pente sur la partie linéaire de la courbe (**Figure 3-6**). Les deux méthodes ont des résultats comparables mais nous avons choisi de toujours reporter les résultats issus de la deuxième méthode car nous calculons pentes et intercepts à partir de la même courbe.

Calcul de la densité totale de cristaux. L'utilisation du nombre total de cristaux pour interpréter l'évolution de la taille des plagioclases au cours de la cristallisation peut comporter certains problèmes. Il y a deux moyens d'obtenir ce nombre, le premier étant d'intégrer la CSD afin d'obtenir le nombre de cristaux cumulé sous la courbe. C'est un mode de calcul indirect car il s'effectue sur les CSD corrigées en 3 dimensions. Tout comme pour le calcul des CSD, un nombre suffisant de cristaux doit être compté pour assurer une bonne précision de la mesure. De plus, le nombre total de grain est fortement sous-estimé et ce pour deux raisons. D'abord parce que les grains de petite taille ne sont pas comptés alors qu'ils sont pourtant très abondants, les CSD étant décroissantes. Ensuite, parce que les méthodes de correction appliquées ne sont pas efficaces pour les plus petites classes. Le nombre obtenu par intégration ne sera pas employé ici. La seconde manière d'obtenir le nombre de cristaux est simplement de diviser le nombre total de cristaux mesurés par la surface de la bille ce qui fournit une mesure du nombre de cristaux par unité de surface et non de volume. En procédant de la sorte, on n'effectue aucune correction de l'effet de coupe. Cependant, ce calcul est un calcul direct et simple qui rend bien compte de l'évolution de la densité de cristaux constatée d'après l'observation des images. Nous avons donc choisi de reporter l'évolution de la densité totale de cristaux en 2D.

3.7. Limites des CSD

Les CSD des plagioclases calculées dans ces expériences sont basées sur des coupes de billes de taille inférieure à 3 mm, cela peut entraîner plusieurs problèmes qui sont traités ci-dessous.

3.7.1. Représentativité 2D-3D

Une étude préliminaire a été effectuée sur un échantillon (stage 2A ENSG, F. Bonnet et G. Maury). Cette étude a consisté à recréer les cristaux à l'intérieur d'une bille en 3D grâce au logiciel © gOcad. Cette reconstitution avait pour but de comparer les mesures des CSD effectuées en 2D et en 3D, et de valider ou d'invalider la méthode proposée par Higgins (1994).

La première étape pour réaliser une image 3D de la bille a consisté à polir la bille de basalte avec un espacement connu (environ 20µm), mesuré entre chaque polissage. La bille a été

photographiée entre chaque étape. Des perforations réalisées avec une mèche de 100 μ m de diamètre ont été réalisées autour de la bille avant le polissage afin de garder un repère fixe. Les photos sont ensuite superposées sous © gOcad, en positionnant les repères les uns sur les autres et en espaçant les photos de l'épaisseur de polissage mesurée (**Figure 3-7a**). Pour créer le contour du cristal, il faut en premier lieu faire un repérage sur les différentes coupes afin de reconnaître le début et la fin du cristal (**Figure 3-7b**). Une fois ce repérage effectué, les contours des cristaux sont dessinés par interpolation entre les coupes (**Figure 3-7c** et d). Les dimensions vraies du cristal peuvent être mesurées à partir de cette reconstitution 3D. Ces mesures permettent de calculer les facteurs de forme α et β propres à nos échantillons. Les valeurs déterminées à partir des données 3D sont α = 0,21 et β = 0,45.

On peut ensuite réaliser les CSD à partir des données 2D et 3D. La comparaison des CSD montre un écart important en terme d'ordre de grandeur des densités, les données 2D (intercept à $14 \pm 0.27 \text{ mm}^{-4}$) étant supérieures aux données 3D (intercept à $10 \pm 0.94 \text{ mm}^{-4}$ - **Figure 3-8**). Cette différence pourrait être due à une mauvaise estimation de l'aire totale pour les données en 2D. Les pentes des courbes ne sont pas similaires (2D : $-71.23 \pm 5.1 \text{ mm}^{-5}$ et 3D : $-25.3 \pm 25 \text{ mm}^{-5}$), mais en raison de l'importance du pourcentage d'erreur sur les pentes, on peut considérer que les CSD réalisées à partir des données 2D sont représentatives des mesures 3D et n'influencent pas significativement la distribution de tailles de cristaux.

3.7.2. Représentativité d'une coupe

A partir des coupes à différentes profondeurs dans la bille, cette étude nous a permis de vérifier si les billes sont homogènes et si une seule coupe réalisée dans la bille est représentative de l'ensemble des cristaux dans la bille. Pour cela, la bille a été polie jusqu'à son centre. Trois polissages ont été sélectionnés, le premier vers l'extérieur de la bille (PE) le second (PM) approximativement entre PE et le centre de la bille et le dernier (PI), le plus interne qui correspond au centre de la bille. Le nombre de cristaux (**Tableau 3-2**) dans les billes est plus petit dans PE (135 cristaux) que dans PM (229 cristaux) et PI (217 cristaux). Cependant le pourcentage de cristaux par surface est assez proche, 21% pour PE, 23% pour PM et 25% pour PI. Les CSD des trois polissages ont été comparées (**Figure 3-9a**).

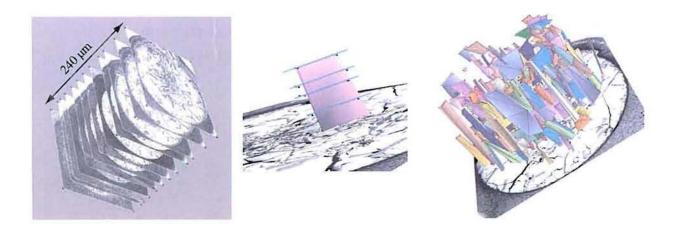


Figure 3-7. (a) Superposition sous © gOcad des photos (microscopie optique en lumière réfléchie), l'échelle verticale est dilatée 15 fois. (b) Création d'un cristal, chaque ligne correspond aux différentes images. (c) Ensemble des cristaux modélisés, l'échelle verticale est dilatée 5 fois.

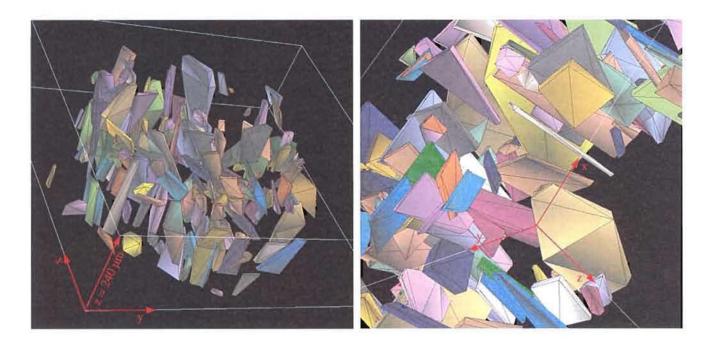


Figure 3-7. (d) Deux vue de l'ensemble des cristaux modéllisés sous © gOcad, l'échelle verticale est dilatée 3 fois.

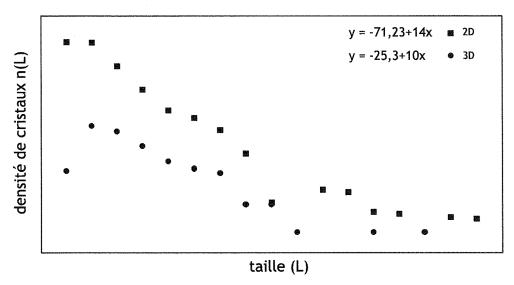


Figure 3-8. CSD calculées à partir des données 3D et 2D. Les données en 2D sont corrigées avec les facteurs de forme que nous avons déterminés en 3D soit $\alpha = 0.21$ et $\beta = 0.45$.

MULTI-POLISSAGES								
Numéro	XP01							
Température initiale	1186							
Temps de palier initial	9 heures							
Vitesse de refroidissement	0,2°C/h							
	bille 3	bille 3	bille 3	bille 3				
	1119	1119	1119	1119				
Température de trempe (°C)		89 h	eures					
Temps passé au-dessus de 1170°C	341	341	341	341				
Durée totale (heure)		au	cun					
Palier final								
	PE	PM	PI	ΣΡ				
Minéreaux présents	PI,OI	PI,OI	PI,OI	PI,OI				
Nombre de cristaux de plagioclase	135	226	247	581				
Aire surface (mm²)	0.729	2.000	4.570	7.280				
Nombre de cristaux par unité de surface	185	114	48	80				
Aire cristaux/aire surface (%)	21	23	26	24.5				
Proportion par bilan de masse (%)	24.3	24.3	24.3	24.3				
Taille moyenne (mm)	0.019	0.025	0.041	0.030				
Taille minimum (mm)	0.008	0.009	0.014	800.0				
Classe maximum (mm) sur la régression	0.04	0.056	0.08	0.072				
Taille de la classe (mm)		0.0	008					
Nombre de classe	10	14	14	14				
Classe minimum (mm)	0.008	0.016	0.024	0.016				
Classe minimum (mm)	0.008	1 0.010	0.024	0.010				
Intercept de la droite de régression	15.3	13.8	10.55	13				
Barre d'erreur	0.30	0.19	0.29	0.12				
Pente de la droite de régression	133.8	93.0	82.5	77.9				
Barre d'erreur	10.1	4.9	5.3	2.5				
Pic densité (mm ⁻⁴)	13.16	12.2	10.5	11.60				
Taille pic (mm)	0.016	0.016	0.024	0.016				

Tableau 3-2. Récapitulatif des pentes et intercepts des CSD en fonction de la profondeur de la coupe dans la bille. PE correspond au polissage externe, PM au polissage intermédiaire, PI au polissage le plus interne et ΣP à la somme des trois.

On peut remarquer que plus on va vers l'intérieur de la bille plus les CSD s'aplatissent et plus l'intercept est bas, ce qui tendrait à montrer qu'il y a plus de gros cristaux au milieu de la bille qu'à l'extérieur et que les petits cristaux sont concentrés vers l'extérieur. Ceci pourrait s'expliquer par une nucléation hétérogène au niveau des bords de la bille. Une CSD totale a été calculée ($\Sigma P = PE+PM+PI$) pour comparer cette somme à la CSD de PI. La **figure 3-9b** montre que les CSD de PI et de ΣP sont très proches, bien que la densité des petits cristaux soit plus importante dans ΣP . Les droites de régression (**Figure 3-9c**) ne sont pas très éloignées pour PI ($s = -61,2 \pm 5.3 \text{ mm}^{-5}$ et $i = 12.08 \pm 0.29 \text{ mm}^{-4}$) et pour ΣP ($s = -77.93 \pm 2.5 \text{ mm}^{-5}$ et $i = 13 \pm 0.12 \text{ mm}^{-4}$). En raison du pourcentage d'erreurs sur le calcul des pentes on peut considérer qu'une CSD réalisée à partir d'une coupe au centre de la bille, est représentative de la bille totale.

3.7.3. Précision sur le calcul de la pente et de l'intercept et sur le comptage des cristaux de petite taille

Pour avoir une CSD représentative il faut un nombre suffisamment important de cristaux. Audessus de 200 cristaux (Mock et Jerram, 2005), l'erreur sur la pente est généralement inférieure à 10%. Dans les échantillons faiblement cristallisés, en particulier ceux proche de la température du liquidus, deux coupes ont été réalisées afin de s'approcher de cette valeur. L'intervalle entre ces coupes est suffisamment important pour qu'elles soient indépendantes (intervalle de taille supérieur à la longueur du plus grand cristal). Cependant quelques CSD ont été réalisées avec moins de 200 cristaux, conduisant à des erreurs de l'ordre de 15 à 20% sur la pente. Par ailleurs, il faut trouver un bon compromis entre le nombre de classes et le nombre de cristaux par classe. S'il y a trop de classes, il risque d'y avoir trop peu de cristaux par classe. Un nombre compris entre 10 et 100 cristaux par classe est nécessaire pour assurer la valeur statique du comptage. Compte tenu du fait que la distribution de la taille des grains est décroissante, les dernières classes échappent malgré tout à ce critère.

Le nombre des petits cristaux est sous estimé, car il y a une probabilité plus importante de recouper des gros grains que des petits. Cet effet n'est probablement que partiellement corrigé pour les toutes petites tailles (voir ci-dessus).

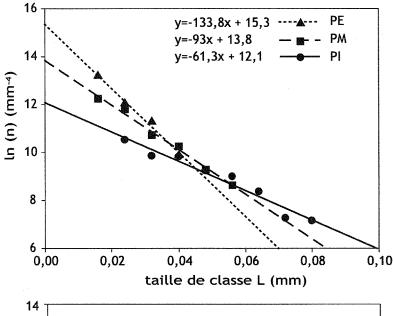


Figure 3-9a. Droites de régression linéaire des CSD pour trois polissages successifs de la même expérience (XP01 bille 3). PE correspondant au polissage externe, PI au polissage le plus interne et PM, le polissage situé entre les deux précedents.

Figure 3-9b. Comparaison des CSD de la même bille (XP01 bille 3) entre le polissage interne PI et la somme des trois polissages ($\Sigma P = PE+PM+PI$).

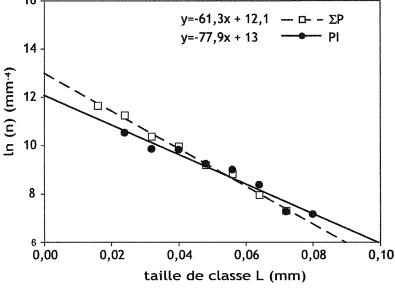


Figure 3-9c. Comparaison des droites de régression linéaire pour les CSD du polissage du centre de la bille (PI) et de la somme des trois polissages (ΣP).

De plus les cristaux de taille inférieure à quelques pixels (<5 pixels) ne sont pas mesurables. Cet effet implique que la distribution des tailles de cristaux va se voir amputée des cristaux des plus petites tailles, infléchissant la courbe dans sa partie gauche (**Figure 3-6**).

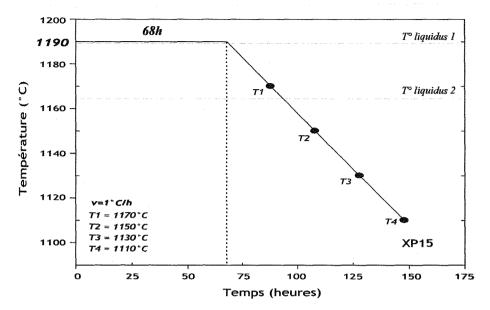
4. INFLUENCE DE L'HISTOIRE THERMIQUE SUR LES CSD

4.1. Evolution au cours du refroidissement

En premier lieu, nous allons décrire deux évolutions au cours d'une expérience à vitesse de refroidissement constante. Celle des proportions et de la composition des phases et celle des CSD des plagioclases. L'expérience XP15 servira de référence (**Tableau 4-1**). La température initiale est de 1190°C, le temps de palier initial de 68 heures et la vitesse de refroidissement de 1°C par heure. Quatre billes ont été trempées tous les 20°C (**Figure 4-1**).

4.1.1. Observation des échantillons

La figure 4-2 correspond aux photos réalisées en BSE.


A 1170°C seul le plagioclase est présent, ce qui est en accord avec les données du modèle MELTS (Ghiorso et Sack, 1995) qui prévoit l'apparition de plagioclase à 1190°C. Les cristaux sont de forme aciculaire hormis quelques rares cristaux tabulaires.

A 1150°C le plagioclase est toujours la seule phase cristallisée et leur taille semble avoir légèrement augmenté par rapport à la température précédente. Les cristaux de plagioclase commencent à se toucher et certainement à s'agglomérer.

A 1130°C l'olivine apparaît en amas autour des plagioclases (**Figure 4-2b**). Elle est généralement automorphe et présente souvent des inclusions magmatiques. Les faces des olivines présentent parfois des structures en forme de golfe. L'absence constatée sur les photos en électrons rétro-diffusés (effectuées au microscope électronique à balayage) des textures en dents de scie permet d'écarter l'hypothèse d'une corrosion. Un liseré plus clair en bordure est certainement dû à un artefact optique. La taille des plagioclases augmente nettement alors que leur nombre de cristaux par unité de surface diminue.

	Durée de palier différent											
Numéro	XP14				XP15				XP13			
Température initiale	1190°C				1190°C				1190°C			
Temps de palier initial	9 heures			68h			125h					
Vitesse de refroidissement	1°C/h				1°C/h			1°C/h				
	bille 1	bille 2	bille 3	bille 4	bille 1	bille 2	bille 3	bille 4	bille 1	bille 2	bille 3	bille 4
Température de trempe (°C)	1170	1151	1131	1110	1171	1150	1132	1110	1171	1150	1132	1111
Temps passé au-dessus de 1170°C		29 h	eures			87 heures			144 heures			
Durée totale (heure)	29	48	68	89	87	108	126	148	144	165	183	204
Palier final	aucun				au	cun		aucun				
Minéraux présents	PI	PI	PI,OI	PI,OI, Cpx	Pl	PI	PI,OI	PI,OI	Pl	PI,OI	PI,OI	PI,OI
Nombre de cristaux de plagioclase	298	321	237	400	260	232	199	156	98	78	126	148
Aire surface (mm²)	6.127	6.902	6.473	3.948	7.125	4.848	8.223	8.515	4.916	4.743	5.765	4.860
Nombre de cristaux par unité de surface	46.6	46.5	36.6	43	36.5	47.8	24.2	18.3	18.5	16.4	21.9	30.5
Aire cristaux/aire surface (%)	8	13	19	21	8	11	24	27	9	15	19	20
Proportion par bilan de masse (%)	6	10	22	31	5	11	22	29	3	14	21	26
Taille moyenne (mm)	0.0238	0.0299	0.0408	0.0403	0.023	0.0252	0.056	0.065	0.03	0.05	0.059	0.049
Taille minimum (mm)	0.0130	0.0095	0.0102	0.0096	0.0122	0.0068	0.0143	0.0123	0.0151	0.02395	0.01658	0.01728
Classe maximum (mm) sur la régression	0.04	0.06	0.065	0.08	0.036	0.044	0.065	0.08	0.064	0.088	0.064	0.072
Taille de la classe (mm)	0.005			0.004			0.008					
Nombre de classe (mm)	17	29	36	41	23 20 56 58					15		
Classe minimum (mm)	0.015	0.01	0.02	0.01	0.016	0.008	0.016	0.016	0.016	0.024	0.024	0.024
Classe minimum (mm)	0,015	0.01	0.02	1 0.01	0.016	0.008	0.016	0.010	0.016	0.024	0.024	0.024
Intercept de la droite de regression (mm-4)	14.28	13.27	11.51	12.5	14.9	13.64	10.13	9.21	12.07	11.01	11.53	10.01
Barre d'erreur	0.45	0.31	0.37	0.6	0.18	0.48	0.23	0.33	0.29	0.47	0.57	0.27
Pente de la droite de regression (-) (mm-5)	130	97.4	53.2	57.4	169.7	109.9	35.6	24.7	84	51.8	63.8	27.8
Barre d'erreur	14.5	7	7.9	3.1	6.3	13.8	3.4	4.3	6.2	7.5	10.8	5
Pic densité (mm ⁻⁴)	11.49	10.9	10.1	11.4	11.46	11.16	9.28	9.00	10.00	8.84	8.86	9.12
Taille pic (mm)	0.020	0.025	0.025	0.020	0.020	0.024	0.032	0.036	0.024	0.040	0.040	0.030

Tableau 4-1. Caractéristiques de la série expérience à durée de palier initial variables (XP14 pour 9 heures, XP15 pour 68 et XP13 pour 125 heures de palier).

Figure 4-1. Schéma représentant le parcours température vs temps suivi de l'expérience XP15. T_1 , T_2 , T_3 et T_4 sont les températures de trempe. T° liquidus 1 correspond à la température donnée par le modèle MELT (Ghiorso et Sack, 1995). T° liquidus 2 correspond à la température donnée d'après l'étude expérimentale de Toplis et Carroll (1995).

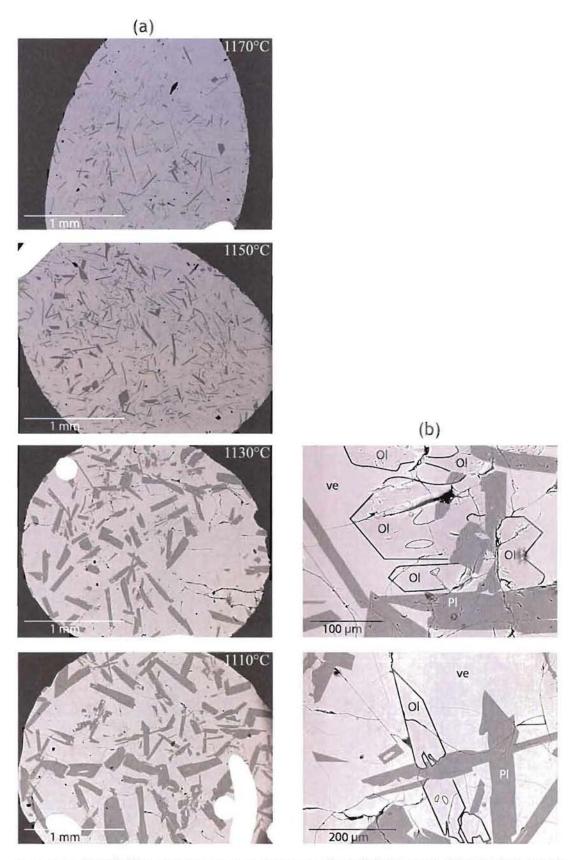


Figure 4-2. Photo BSE de l'expérience XP15 (temps de palier initial 68 heures), aux quatre températures de trempe. Les photos de gauche (b) correspondent à des agrandissements de celles de droite, les olivines ont été contourées d'un trait noir et les poches de liquide dans ces dernières sont également contourées avec trait plus fin..

Il n'y a pas de petits cristaux comme, dans la bille précédente. Les cristaux sont généralement de forme tabulaire et ils contiennent parfois des poches de liquide.

A 1110°C, la morphologie des plagioclases est similaire à celle observée à 1130°C, mais on note une augmentation de leur taille. Les poches de liquide dans les plagioclases sont de plus en plus fréquentes. L'olivine est toujours présente.

En résumé, les photos (**Figure 4-2**) mettent en évidence l'augmentation de la taille des plagioclases et un changement de morphologie des cristaux (aciculaires pour les hautes températures et tabulaires pour les basses températures) ainsi qu'une diminution du nombre de cristaux par unité de surface avec le refroidissement. On remarque souvent des accolements de cristaux de plagioclase.

4.1.2. Evolution des proportions des phases

Le bilan de masse (**Figure 4-3**) montre bien l'augmentation des proportions des phases cristallisées. Les proportions des phases sont en accord avec le bilan de masse de Toplis et Carroll (1995), hormis à la température finale, où le verre est en excès. Cet excès est dû à l'absence du clinopyroxène, alors qu'il est observé dans les expériences de Toplis et Carroll (1995).

4.1.3. Description des CSD

Les courbes de distribution de taille des cristaux (**Figure 4-4**) ont toutes une forme en cloche asymétrique. On peut distinguer deux groupes : celui des hautes températures avec un maximum en densité de cristaux à la taille 2.10^{-2} mm et, celui des basses températures avec un maximum en densité de cristaux à la taille $3.6.10^{-2}$ mm. Les CSD (**Figure 4-5**) présentent un aplatissement au cours du temps, indiquant une diminution du nombre de cristaux de petite taille et une augmentation du nombre de cristaux de grande taille. La diminution de la pente et celle de l'intercept permet de quantifier cet aplatissement (**Tableau 4-1**). Contrairement à ce qui a été décrit par Cashman et Marsh (1988) pour les basaltes du Makopuhi, les CSD ne tournent pas autour d'un même point. Le nombre de cristaux par bille passe de ~ 40 à ~ 20 cristaux par mm². La densité de cristaux de petite taille diminue nettement entre les hautes et les basses températures, passant de ln $(n_0) \sim 11$ à ln $(n_0) \sim 9$ $(n_0) \sim 11$ mm².

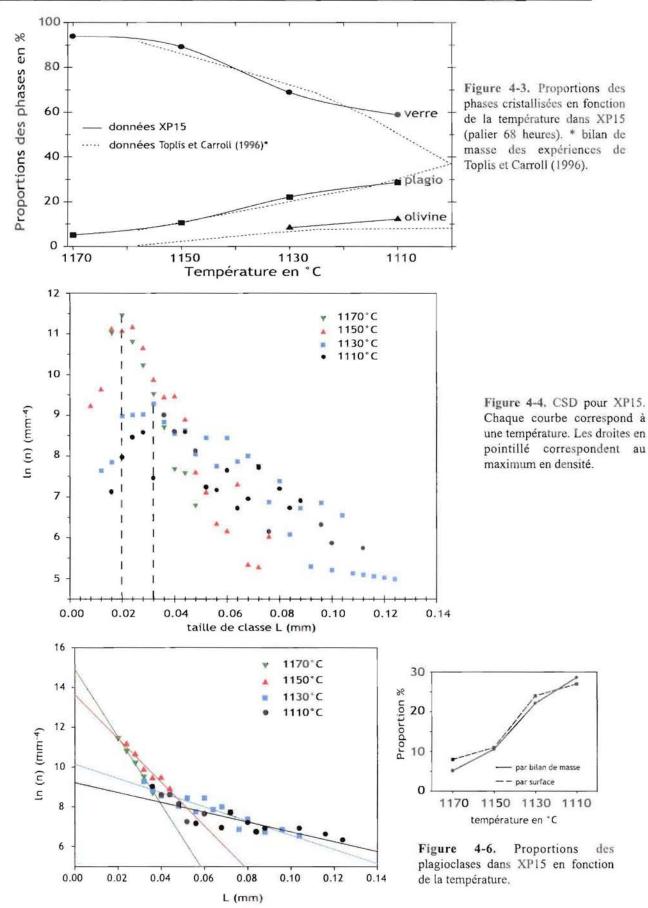


Figure 4-5. Droites de régression linéaire des CSD de XP15

La diminution du nombre de petits cristaux dans les basses températures traduit un ralentissement, voire un arrêt, de la nucléation. Les proportions de phases obtenues soit par bilan de masse soit par les CSD indiquent tous deux la même augmentation avec le refroidissement (**Figure 4-6**).

4.1.4. Bilan des expériences

Au cours du refroidissement, l'augmentation de la proportion de plagioclase est accommodée initialement (expériences 1170 à 1150°C) par une augmentation de la densité de cristaux (nucléation), puis (expériences 1130 à 1110°C) par une augmentation de leur taille (croissance). Il y a diminution du nombre de cristaux par unité de surface ce qui implique soit une agglomération des cristaux soit un mûrissement par dissolution et précipitation. Ces phénomènes se traduisent dans les CSD par une diminution de la pente et de l'intercept.

4.2. Influence de l'histoire anté-liquidus

Le but de ces séries d'expériences est de voir si l'histoire thermique anté-liquidus a une influence sur la cristallisation des plagioclases. Deux séries d'expériences ont été réalisées.

(i) La première série d'expériences a pour but de voir si le ΔT entre la température initiale et la température de liquidus du plagioclase a une influence sur la texture (**Figure 4-7a** et **Tableau 4-2**). Le seul paramètre variable est donc la température initiale anté-liquidus qui est fixée à 1190°C (XP14), 1240°C (XP12) et 1290°C (XP11). La vitesse de refroidissement est fixée à 1°C par heure, le palier initial est de 9 heures et les billes ont été trempées tous les 20°C à partir de 1170°C (**Figure 4-7a**).

(ii) La deuxième série d'expériences a pour but de voir si le temps de palier initial durant lequel l'échantillon est resté à une température constante au-dessus du liquidus a une influence sur la texture (**Tableau 4-1** et **Figure 4-7b**). Un palier minimum de 9 heures étant obligatoire pour équilibrer le Fe²⁺ avec le Fe³⁺, les autres paliers seront plus longs : 9h (XP14), 68h (XP15) et 125h (XP13). Les autres paramètres, identiques pour les trois expériences, sont une température initiale de 1190°C, une vitesse de refroidissement de 1°C par heure et des températures de trempe séparées de 20°C à partir de 1170°C.

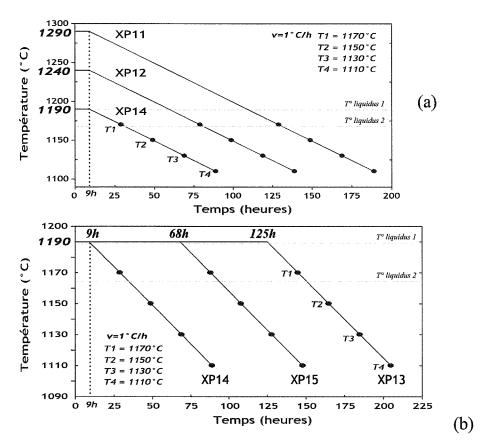


Figure 4-7. Schéma représentant le parcours température vs temps suivit (a) par les expériences à température initiale variable (XP11, XP12 et XP14) et (b) par les expériences à durée de palier initial variable (XP14, XP15 et XP13). Les températures de liquidus sont celles du plagioclase. To liquidus 1 correspond à la température donnée par le modèle MELT (Ghiorso et Sack, 1995). To liquidus 2 correspond à la température donnée d'après l'étude expérimentale de Toplis et Carroll (1995).

A STATE OF THE STA	T°initiale	variable	
Numéro	XP12	XP11	
Température initiale	1243	1290	
Temps de palier initial	9 h	9 h	
Vitesse de refroidissement	1°C/h	1°C/h	
	billes	1 à 4	
Température de trempe (°C)	id. à	XP14	
Temps passé au-dessus de 1170°C	82 heures	129 heures	
Durée totale (heure)		WHITE COLUMN TO THE COLUMN TO	
Palier final			
Minéreaux présents	aucun cristaux		

Tableau 4-2. Caractéristiques de la série d'expériences à température initiale variable (XP14 à 1190°C voir tabl. 4-1., XP12 à 1143°C et XP11 à 1290°C).

4.2.1. Expériences à température initiale variable

Cette série d'expériences, dont les caractéristiques sont reportées dans le **tableau 4-2**, présentent des cristaux uniquement à $T_i = 1190^{\circ}$ C (XP14). Il semble donc que le degré de surfusion choisi pour les deux autres expériences (XP11 à 1290°C et XP12 à 1240°C) soit trop élevé pour permettre la nucléation.

4.2.2. Expérience à durée de palier initial variable

4.2.2.1. Observation des échantillons

XP14 (palier de 9h)

La figure 4-8a présente les photos en BSE des billes correspondant aux quatre températures. On peut suivre l'apparition des phases: le plagioclase à 1170°C, l'olivine à 1130°C et le clinopyroxène à 1110°C.

Les plagioclases (**Figures 4-8a et b**), de 1170 à 1110°C, sont pour la plupart automorphes. Cependant, dans les plus basses températures, on peut y voir des poches de liquide. Les cristaux de plagioclase présentent une augmentation en taille et en proportion lorsque la température diminue. On peut remarquer, sur toutes les billes, que deux domaines semblent coexister. Ceci est particulièrement visible pour 1110°C où de petits cristaux forment une auréole externe (d'une même épaisseur sur toute la bille). Cette configuration sera retrouvée plusieurs fois dans les autres expériences, elle sera discutée plus bas. Dès 1170°C on peut remarquer des accolements de cristaux dont la fréquence augmente quand la température diminue. De nombreux plagioclases sont en contact et forment des amas (agglomération).

L'olivine se développe préférentiellement en amas entre les plagioclases à 1130°C (elle n'est pas bien visible en BSE). A 1110°C l'olivine se développe parfois en amas, mais on retrouve aussi des cristaux isolés un peu partout dans la bille. Sur la **figure 4-8b**, l'olivine présente des faces bien définies et semble être automorphe. On peut remarquer (**figure 4-8b**) des inclusions magmatiques dans l'olivine.

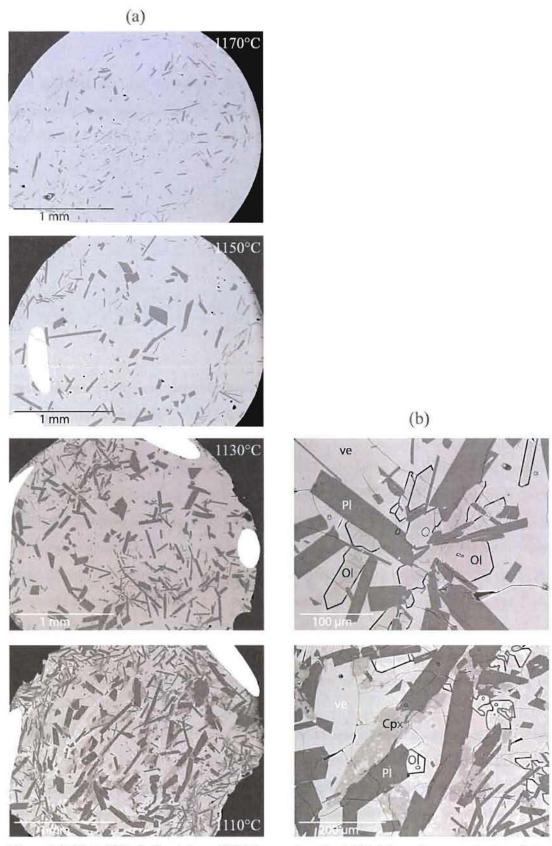


Figure 4-8. Photo BSE de l'expérience XP14 (temps de palier initial 9 heures), aux quatre températures de trempe. Les photos de gauche (b) correspondent à des agrandissements de celles de droite, les olivines ont été contourées d'un trait noir et les poches de liquide dans ces dernières sont également contourées avec trait plus fin.

Leurs faces présentent souvent des structures en forme de golfe, déjà défini dans l'expérience XP15 comme étant probablement des lacunes de croissance (Faure et Schiano, sous presse). On peut voir quelques fois un liseré plus clair sur les bords des cristaux qui n'est probablement qu'un effet de bord.

Les clinopyroxènes pseudo-automorphes apparaissent à 1110°C. Ils poussent toujours en contact avec un plagioclase et sont de taille similaire aux plagioclases.

La texture générale de la bille 1110°C étant particulière, le bord de la bille sont constitués de plagioclases de plus petite taille qu'au cœur, des analyses supplémentaires ont été effectuées. Le verre a été analysé dans les deux parties de la bille et il n'y a aucune différence de composition. Il en a été fait de même pour toutes les phases. Les plagioclases du bord de la bille ont été comparés à ceux de la périphérie sans qu'aucune différence de composition n'ait pu être mise en évidence. Ces analyses tendent à montrer que cette différence de texture n'est pas due à une hétérogénéité chimique. Une autre coupe a été effectuée dans la bille, montrant une texture homogène équivalente à celle du cœur. L'auréole externe, riche en petits cristaux est interprétée comme un effet de la nucléation hétérogène autour de l'anneau de platine contenant la bille.

XP15 (palier de 68h)

Cette expérience a été décrite dans le paragraphe 4.1. La **figure 4-2** présente les photos BSE. Les plagioclases montrent une évolution similaire à celle de XP14, en terme d'augmentation de taille des cristaux. Toutefois, on constate que cette augmentation de taille est importante entre 1150 et 1110°C et elle s'accompagne d'une diminution de la densité des cristaux. L'olivine présente la même texture que dans XP14, avec de belles faces automorphes et des zones d'inclusion magmatique. La différence principale est l'absence de clinopyroxène à la plus basse température.

XP13 (palier de 125h)

La figure 4-9 présente les photos BSE. On y voit l'apparition du plagioclase à 1170°C. Contrairement aux deux autres expériences, l'olivine apparaît dès 1150°C. Il n'y a pas de clinopyroxène. On peut voir des différences de textures par rapport aux expériences précédentes. Des plagioclases tabulaires apparaissent dès l'expérience 1170°C. Les poches de liquides en inclusion dans les plagioclases sont présentes dès 1150°C.

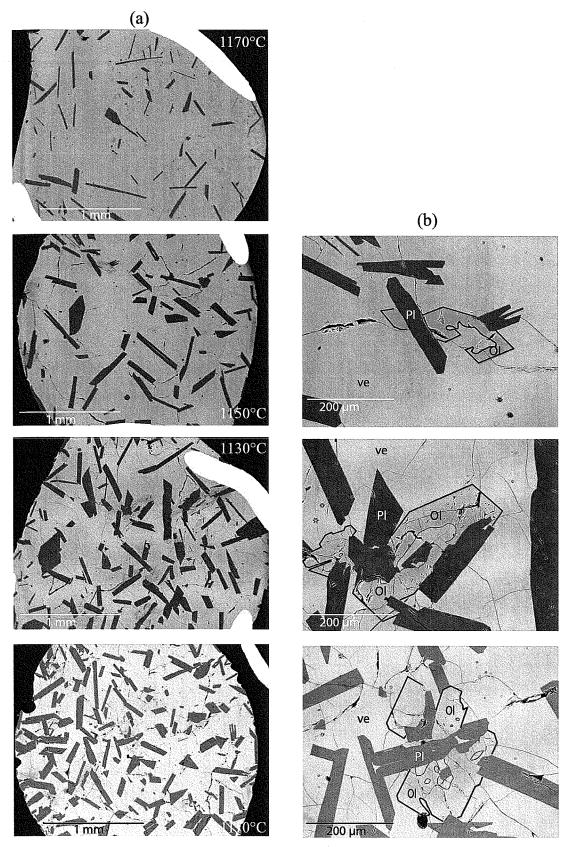
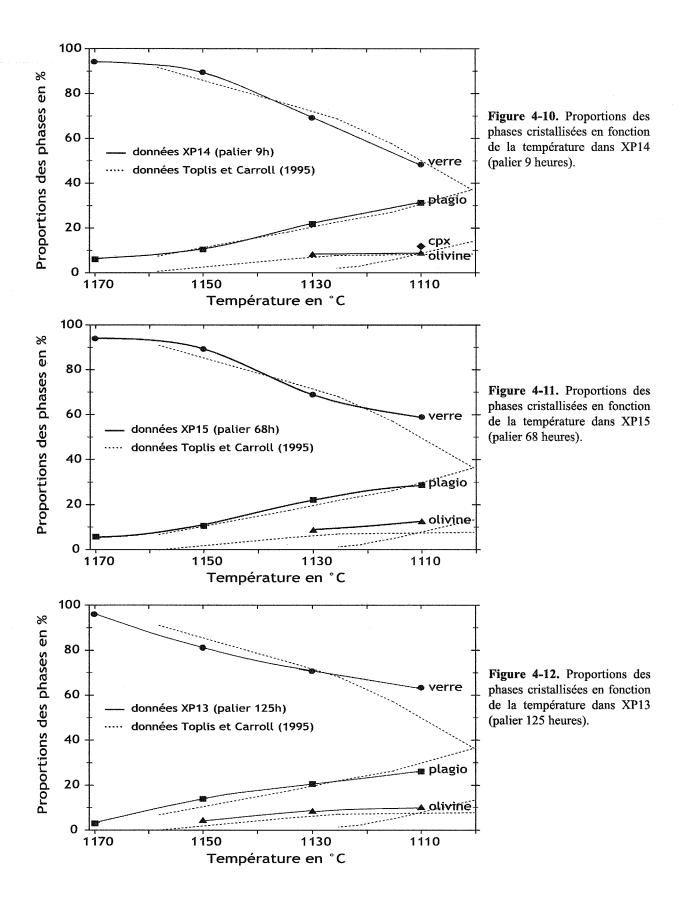


Figure 4-9. Photo BSE de l'expérience XP13 (temps de palier initial 125 heures), aux quatre températures de trempe. Les photos de gauche (b) correspondent à des agrandissements de celles de droite, les olivines ont été contourées d'un trait noir et les poches de liquide dans ces dernières sont également contourées avec trait plus fin.

La densité de cristaux à température égale est bien plus faible dans cette expérience. L'olivine apparaît plus précocement mais son évolution texturale est identique (apparition en amas autour des plagioclases puis en cristaux isolés). Les inclusions magmatiques sont également présentes dès les premiers cristaux.


La comparaison visuelle des cristaux par rapport au temps de palier montre donc que la durée du palier anté-liquidus a une influence majeure sur l'évolution de la cristallisation. L'expérience à 125 heures de palier est très différente des deux autres. On y note, en particulier, que les températures d'apparition de l'olivine et du clinopyroxène varient. La densité de cristaux de plagioclase diminue quand le temps de palier augmente alors qu'à l'inverse, la taille des cristaux augmente. Il semble donc que la nucléation soit inhibée et la croissance favorisée lorsque le temps de palier au-dessus du liquidus est long.

4.2.2.2. Evolution des proportions des phases

XP 14 (palier de 9heures)

Les analyses à la sonde électronique (Annexe 1) ne montrent pas de variation chimique significative dans le verre. Les plagioclases des plus hautes températures n'en présentent pas de zonation, alors que pour 1110° C on retrouve une zonation, avec en bordure un enrichissement en Na et Si et un appauvrissement en Ca et Al (Annexe 1); ce qui a rendu nécessaire le calcul d'une composition moyenne. Aucune variation chimique significative n'a été trouvée dans l'olivine et le clinopyroxène.

Les bilans de masse (**Figure 4-10** et **Tableau 4-3**) calculés pour cette expérience sont similaires dès 1150°C à celles réalisées par Toplis et Carroll (1996) avec un palier initial de 9 heures également mais avec un palier d'équilibration à la température finale de 200 heures. Ceci permet de considérer que l'expérience XP14 est à l'équilibre en terme de proportions de phases. Les proportions finales à 1110°C sont de 48.2% de verre, 31.3% de plagioclase, 11.8% de pyroxène et 8.6% d'olivine. On peut noter que le plagioclase apparaît dès 1170°C dans nos expériences en accord avec la température de liquidus déterminée par Toplis et Carroll (1995). On peut également constater que l'olivine apparaît après le plagioclase, entre 1150 et 1130°C. L'olivine présente un retard à la nucléation car elle devrait apparaître au liquidus à ~1170°C (Toplis et Carroll, 1995; 1996; Ghiorso et Sack, 1995).

	Température (°C)	XP14	XP15	XP13	To	Toplis et Carroll (1995)		
palier initial		9 h	68 h	125 h	Température (°C)	Proportions (%)	N° expériences	
Proportions	1170	94.13	93.90	95.91	1158	90.8	Fe45	
de verre (%)	1150	89.44	89.14	80.98	1134	74.7	Fe36	
	1130	69.20	68.81	70.56	1125	68.3	Fe37	
	1110	48.23	58.72	63.13	1115	57.5	Fe39	
					1096	31.7	Fe56	
Proportions	1170	6.07	5.14	2.97	1158	8	Fe45	
de	1150	10.36	10.59	13.89	1134	18.6	Fe36	
plagioclase	1130	21.80	22.11	20.58	1125	23	Fe37	
(%)	1110	31.28	28.64	26.13	1115	27.2	Fe39	
					1096	39.8	Fe56	
Proportions	1170	-	-	-	1158	1.3	Fe45	
d'olivine	1150	-	-	4.13	1134	6.7	Fe36	
(%)	1130	7.99	8.38	8.18	1125	8.3	Fe37	
	1110	8.55	12.27	9.86	1115	8.6	Fe39	
					1096	9.1	Fe56	
Proportions	1170	-	- '	-	1158	-	Fe45	
de pyroxène	1	-	-		1134	-	Fe36	
(%)	1130	***	-	-	1125	-	Fe37	
	1110	11.80	-	_	1115	6.7	Fe39	
					1096	16.5	Fe56	

Tableau 4-3. Proportions des phases calculées à partir des bilans de masse des expériences à durée de palier variable (XP14 palier de 9 heures, XP15 palier de 68 heures et XP13 palier de 125 heures) et proportions des phases dans les expériences de Toplis et Carroll (1995).

Le pyroxène apparaît entre 1130 et 1110°C et présente également un retard à la nucléation, son apparition étant prévue vers 1134°C d'après Toplis et Carroll (1995) et aux alentours de 1145°C par le modèle MELTS (Ghiorso et Sack, 1995). Le liseré autour des clinopyroxènes a été analysé. Il s'agit d'un mélange entre le verre et le pyroxène, laissant penser à un artefact dû un effet de bord.

XP15 (palier de 68 heures)

Les analyses chimiques des phases indiquent qu'il y a une zonation dans les plagioclases (voir **Tableau 4-3** et **Annexe 1**), ce qui a rendu nécessaire le calcul d'une composition moyenne. Le bilan de masse sur les proportions de verre est légèrement sigmoïde (**Figure 4-11**), ce qui reflète des proportions de verre plus importantes à T4 (58,7%) que dans l'expérience XP14 (48,2%). Le plagioclase et l'olivine sont pratiquement dans les proportions de l'équilibre tout au long du refroidissement. Toutefois, on peut remarquer que la proportion, à 1110°C, de plagioclase est inférieure de 3% à celle de l'expérience XP14 et aux proportions d'équilibre de Toplis et Carroll (1995). Contrairement à ce que prédit le diagramme de phases (Toplis et Carroll, 1995), le clinopyroxène est absent même à la plus basse température. L'excès de verre semble compenser l'absence de clinopyroxène. Les proportions à 1110°C sont de 58,9% de verre, 28,7% de plagioclase et 12,3% d'olivine.

XP13 (palier de 125 heures)

Les proportions à 1150 et 1130°C (**Tableau 4-3, Figure 4-12** et **Annexe 1**) respectent bien celle de l'équilibre de Toplis et Carroll (1995). L'olivine est visible dès 1130°C avec une proportion de 4%. Cette température est certainement très proche de celle de l'apparition de l'olivine. Ainsi son absence dans les images des expériences précédentes pourrait être due à un effet de coupe. Elle présente une proportion correspondant à l'équilibre à 1110°C. En revanche, la proportion de plagioclase est inférieure de 5% et celle du verre supérieure de 15% à celles de l'équilibre (Toplis et Carroll, 1995). Comme dans l'expérience précédente, le clinopyroxène est absent, mais ici l'excès de verre compense à la fois cette absence et le déficit de plagioclase. Les proportions à 1110°C sont de 63,7% pour le verre, 23,4% pour le plagioclase et 9,9% pour l'olivine.

La comparaison proportion des phases aux différents temps de palier permet de remarquer que, excepté à 1110°C, les proportions sont proches de celles déterminées comme étant à l'équilibre par Toplis et Carroll (1995; 1996). L'écart observé à 1110°C peut être expliqué par

le retard à la nucléation du clinopyroxène. Le verre se trouve alors en excès par rapport aux proportions d'équilibres. Ceci se voit très bien sur les **figures 4-10 et 4-11** à 1110°C, le déficit du clinopyroxène (12%) étant compensé presque exactement par l'excès de verre (11%). La composition du verre doit aussi dévier de la composition dite à l'équilibre, en raison de l'absence de clinopyroxène, ce qui explique probablement le déficit de plagioclase que l'on voit nettement entre les expériences XP13 et XP15 (-5% à 1110°C).

La comparaison des pourcentages des phases calculés par bilans de masse pour les différents temps de palier (**Figure 4-13**) met en évidence une influence du temps de palier au-dessus du liquidus, sur la température d'apparition des phases (pyroxène et olivine) et donc sur les proportions de celles-ci à une température donnée. Le maximum d'écart entre les proportions à l'équilibre et les proportions calculées est observé à 1110°C pour le palier de 125 heures. Ainsi, un trop long séjour au-dessus du liquidus retarde l'apparition du clinopyroxène, peut être par élimination des germes dans le cadre d'une nucléation hétérogène.

Si on s'intéresse uniquement aux plagioclases (**Figure 4-14**), les proportions des expériences oscillent autour de celles considérées comme étant à l'équilibre. Avant chaque apparition de l'olivine (1150°C pour XP13 et 1130°C pour XP14 et XP15) on constate une augmentation temporaire de la proportion de plagioclase qui excède de quelques pourcents la proportion à l'équilibre. L'écart se résorbe après l'apparition de l'olivine.

4.2.2.3. Description des CSD

XP 14 (palier 9 heures)

Sur la **figure 4-15a**, toutes les CSD forment une courbe en cloche asymétrique. Les densités maximales, pour toutes les courbes, correspondent à la taille 2.10⁻² mm. Les régressions calculées sur le domaine linéaire des CSD (**Figure 4-16a** et **Tableau 4-1**) montrent que la pente diminue lorsque la température diminue entre 1170 et 1130°C. La pente diminue brusquement de ~100 à ~50 mm⁻⁴ entre 1150 et 1130°C, ce qui coïncide avec l'apparition de l'olivine.

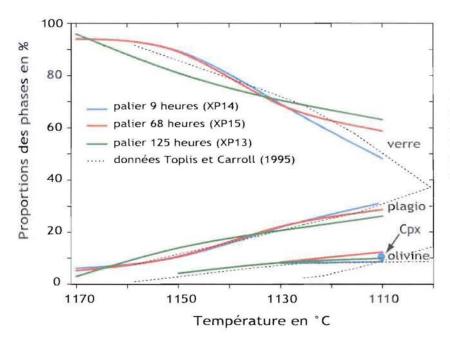


Figure 4-13. Bilan de masse des phases en présence pour les trois expériences à durée de palier initial varaible (vitesse de refroidissement de 1°C par heure).

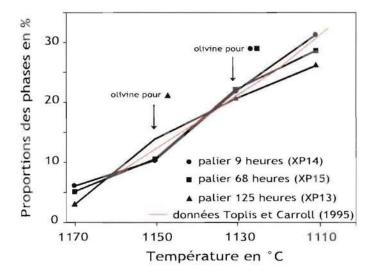


Figure 4-14. Proportions des plagioclases en fonction de la température pour les trois temps de palier, calculées à partir du bilan de masse.

La pente à 1110°C est légèrement supérieure à celle de 1130°C et l'intercept est au-dessus de celui de 1130°C. Ce changement dans l'évolution des CSD se produit au moment où le clinopyroxène apparaît.

XP15 (palier 68 heures)

Les CSD de cette expérience (**Figure 4-15b**) montrent également des courbes en cloche asymétrique avec des maximums à la taille 2.10⁻² mm pour 1170 et 1150°C et 3.6.10⁻² mm pour 1130 et 1110°C. Dans cette expérience, la pente et l'ordonnée à l'origine décroissent de 1170°C jusqu'à 1110°C, ce qui est contraire à l'expérience précédente (**Figure 4-16b** et **Tableau 4-1**) et reflète, peut-être, l'absence de cristallisation de clinopyroxène à 1110°C. Ici l'apparition de l'olivine (entre 1150 et 1130°C) coïncide à une diminution brutale de la pente (de ~110 à ~35 mm⁻⁵) plus marquée encore que dans l'expérience XP14.

XP13 (palier 125 heures)

Les CSD (**Figure 4-15c**) présentent un maximum en densité pour la taille 2,4.10⁻² mm. La pente diminue largement entre 1170 et 1150°C (de ~85 à ~50 mm⁻⁵), à l'apparition de l'olivine (**Figure 4-16c**). Les pentes à 1150 et 1130°C sont égales dans l'erreur et la pente de 1110°C est inférieure aux deux précédentes. L'ordre de grandeur des pentes est bien inférieur à ceux des expériences XP14 et XP15 et les intercepts sont plus bas.

La comparaison des CSD par rapport au temps de palier (figure 4-17 et le tableau 4-1) montrent que les pentes et les intercepts des CSD sont très différents d'une expérience à l'autre. Cependant, on ne voit pas d'évolution régulière des pentes et des intercepts des CSD en fonction de la durée du palier (Figures 4-18 et 4-19). A 1170°C, on peut voir une différence marquée entre l'expérience XP13 (temps de palier 125 heures) et les deux autres: la pente y est plus faible (Figure 4-18), l'ordonnée à l'origine est plus faible de deux ordres de grandeur (Figure 4-19) et le nombre de cristaux y est deux à trois fois plus petit (Figure 4-20). Ceci reflète une variation moins importante des pentes, intercepts et nombres totaux de cristaux, entre 1170 à 1110°C dans l'expérience XP13. Il est important de noter qu'à 1110°C dans l'expérience XP14, le nombre de cristaux est augmenté artificiellement par la nucléation hétérogène en bordure de la bille.

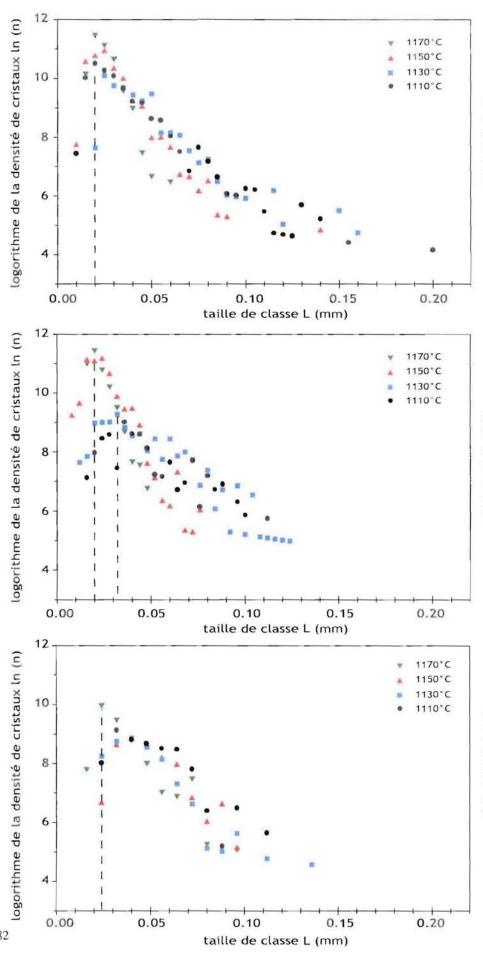


Figure 4-15a. CSD de XP14 (palier 9 heures) en fonction de la température de trempe. La droite en pointillé correspond au maximum en densité.

Figure 4-15b. CSD de XP15 (palier 68 heures) en fonction de la température de trempe. Les droites en pointillé correspondent au maximum en densité.

Figure 4-15c. CSD de XP13 (palier 125 heures) en fonction de la température de trempe. La droite en pointillé correspond au maximum en densité.

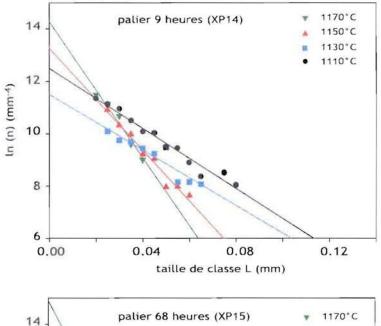


Figure 4-16a. Droites de régression linéaire des CSD de XP14 (palier 9 heures) en fonction de la température de trempe.

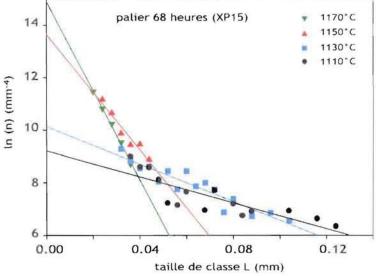
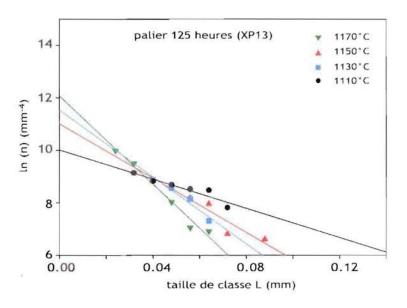
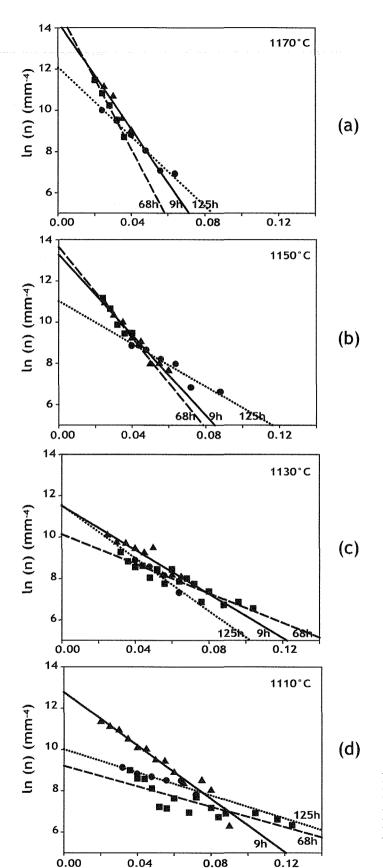
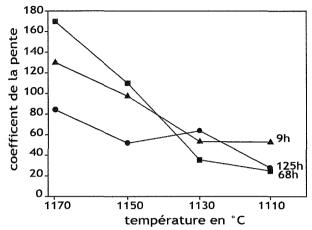


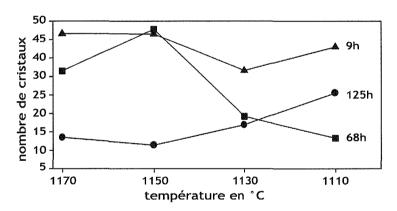
Figure 4-16b. Droites de régression linéaire des CSD de XP15 (palier 68 heures) en fonction de la température de trempe.


Figure 4-16c. Droites de régression linéaire des CSD de XP13 (palier 125 heures) en fonction de la température de trempe.

taille de classe L

- ▲ palier 9 heures (XP14)
- palier 68 heures (XP15)
- palier 125 heures (XP13)


Figure 4-17. Droites de régression linéaire des CSD pour les trois durées de palier différentes (9h: XP14, 68h: XP15 et 125h: XP13) en fonction de la température de trempe. (a) 1170°C. (b) 1150°C. (c) 1130°C. (d) 1110°C.

16 15 intercept 13 pt 12 de la pente 1170 1150 1130 1110 température en °C

Figure 4-18. Coefficients des droites de régression des CSD pour chaque palier (9h: XP14, 68h: XP15 et 125h: XP13) en fonction de la température.

Figure 4-19. Intercepts des droites de régression des CSD pour chaque palier (9h: XP14, 68h: XP15 et 125h: XP13) en fonction de la température.

- ▲ 9 heures XP14
- 68 heures XP15
- 125 heures XP13

Figure 4-20. Nombre de cristaux total de plagioclase pour chaque palier (9h: XP14, 68h: XP15 et 125h: XP13) en fonction de la température.

4.2.2.4. Bilan des expériences

La durée du temps de palier au-dessus du liquidus a une influence sur la cristallisation:

- (i) les températures d'apparition des différentes phases varient, le clinopyroxène ne cristallise pas dans les expériences à temps de palier long (XP13 et XP15);
- (ii) les proportions des phases s'éloignent des proportions à l'équilibre dans les expériences à temps de palier long (XP13 et XP15), probablement en conséquence de l'absence de clinopyroxène;
- (iii) l'évolution des textures n'est pas la même pour l'expérience à temps de palier long (XP13) : dans les expériences XP14 et XP15, le début de la croissance (1170 et 1150°C) est caractérisé par l'apparition de cristaux très nombreux et très petits, ce qui témoigne d'une nucléation dominante, alors que dans XP13 les cristaux sont peu nombreux et de grande taille dès 1170°C.

Un temps de palier anté-liquidus long semble donc défavoriser la nucléation. Afin que soit préservées les proportions à l'équilibre, la vitesse de croissance est alors forte. Des retards à la nucléation ont déjà été décrits par (Gibb, 1974; Lofgren, 1974; Donaldson, 1979). Ils sont l'effet de la destruction des germes sous l'influence de la température. Le liquide de départ de nos expériences est obtenu à partir d'une poudre de verre, aussi les germes de la nucléation hétérogène pourraient-ils être des grains non fondus ou des bulles de gaz piégées entre ces grains. Même dans les conditions expérimentales, il semble donc que la nucléation ne soit pas une nucléation homogène. Afin de s'affranchir de l'influence du temps de palier, les expériences suivantes ont été réalisées autant que possible avec un temps de palier initial de 9 heures. Seule l'expérience à une vitesse de refroidissement de 3°C/ heure a été réalisée avec un palier de légèrement plus long (13h) pour des raisons pratiques, mais cette différence est faible et ne devrait avoir qu'une très faible influence sur les CSD..

4.3. Influence de la vitesse de refroidissement

Le but de cette série d'expériences est d'estimer l'influence de la vitesse de refroidissement sur les textures des plagioclases. Les vitesses de refroidissement choisies sont 0,2°C par heure (XP04 et XP01), 1°C (XP03 et XP02) et 3°C (XP07 et XP06) (**Figure 4-21** et **Tableau 4-4**). La température initiale est soit de 1189°C, soit de 1186°C.

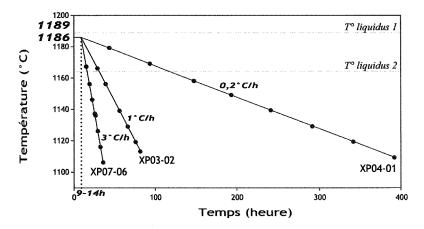


Figure 4-21. Schéma représentant le parcours température vs temps suivit par les les expériences avec trois vitesses de refroidissement différentes 0,2°C/h (XP04-01), 1°C/h (XP03-02) et 3°C/h (XP07-06). La durée du temps de palier initial (de 9h à 14h) et la température initiale varie (1189°C ou 1186°C). Les températures de liquidus sont celles du plagioclase. To liquidus 1 correspond à la température donnée par le modèle MELT (Ghiorso et Sack, 1995). To liquidus 2 correspond à la température donnée d'après l'étude expérimentale de Toplis et Carroll (1995).

	···							
XP04				XP01				
1189								
	14 he	eures			9 he	ures		
					0,2	°C/h		
bille 1	bille 2	bille 3	bille 4	bille 1	bille 2	bille 3	bille 4	
1179	1169	1158	1149	1139	1129	1119	1109	
	109 h	eures		l	89 he	eures		
64	114	1164	214	241	291	341	391	
	aud	cun	***************************************		aud	cun		
					y			
-	-	_	Pl	PI,OI	PI,OI	PI,OI	PI,OI	
			11	508	648	556	730	
				13.783	18.132	23.564	17.649	
				37	36	24	41	
				8.6	10.3	6.5	24	
			3	14.8	19.3	24.3	33.1	
***************************************				0.023	0.025	0.027	0.034	
				0.005	0.005	0.005	0.005	

					0.0	005		
				41	37	57	23	
				0.01	0.005	0.005	0.01	
	1			11 54	11.10	10.55	11.19	
							0.02	
							61.9	
							10.9	
				1			11.19	
	 						0.015	
	1179 64	11 14 he 0,2 bille 1 bille 2 1179 1169 109 h 64 114 auc	1189 14 heures 0,2°C/h bille 1 bille 2 bille 3 1179 1169 1158 109 heures 64 114 1164 aucun	1189 14 heures 0,2°C/h bille 1 bille 2 bille 3 bille 4 1179 1169 1158 1149 109 heures 64 114 1164 214 aucun Pl 1	1189 14 heures 0,2°C/h bille 1 bille 2 bille 3 bille 4 bille 1 1179 1169 1158 1149 1139 109 heures 64 114 1164 214 241 aucun Pl Pl.Ol 1 508 13.783 37 8.6 3 14.8 0.023 0.005	1189 14 heures 9 he 0,2°C/h 0,189 heures 89 he 64 114 1164 214 241 291 aucun 1 291 aucun 1 508 648 13,783 18,132 37 36 8.6 10,3 37 36 8.6 10,3 3 14.8 19.3 0.023 0.025 0.005 0.005 0.005 0.005 0.005 0.005 0.001	1189	

Tableau 4-4a. Caractéristiques de l'expérience avec une vitesse de refroidissement de 0,2°C/h (XP01).

Numéro	XF	203	XP02					
Température initiale	11	86	1189					
Temps de palier initial	9 he	ures		9 he	ures			
Vitesse de refroidissement	1°0	C/h		1°0	C/h			
	bille 1	bille 2	bille 1	bille 2	bille 3	bille 4		
Température de trempe (°C)	1166	1156	1139	1129	1119	1109		
Temps passé au-dessus de 1170°C		eures			ures			
Durée totale (heure)	29	_39	59	69	79	89		
Palier final	au-	cun		au	cun			
Minéraux présents	Pl	Pl	PI,OI	PI,OI	PI,OI	PI,OI		
Nombre de cristaux de plagioclase	1503	824	1606	754	845	1181		
Aire surface (mm²)	12.984	6.402	11.065	10.740	2.091	3.197		
Nombre de cristaux par unité de surface	116	129	145	70	404	369		
Aire cristaux/aire surface (%)	3.6	11	12	11.6	42	37		
Proportion par bilan de masse (%)	5.7	9.6	18.2	20.8	23.8	26.7		
Taille moyenne (mm)	0.009	0.016	0.014	0.018	0.015	0.014		
Taille minimum (mm)	0.004	0.007	0.004	0.003	0.003	0.005		
Classe maximum (mm) sur la régression								
Taille de la classe (mm)	0.0	001		0.005				
Nombre de classe	40	67	21	38	28	23		
Classe minimum (mm)	0.005	0.007	0.01	0.005	0.005	0.01		
Intercept de la droite de régression (mm-4)	19.13	17.93	15	13.38	15.46	15.78		
Barre d'erreur	0.65	0.36	0.24	0.26	0.34	0.29		
Pente de la droite de régression (-) (mm ⁻⁵)	520.6	307.3	159.1	112.9	126.4	148.3		
Barre d'erreur	46.8	17.4	7.5	6.6	10.7	9.1		
Pic densité (mm ⁻⁴)	14.4	13.7	13.8	12.3	14.6	14.7		
Taille pic (mm)	0.010	0.014	0.010	0.015	0.010	0.010		

Tableau 4-4b. Caractéristiques de l'expérience avec une vitesse de refroidissement de 1°C/h (XP03-02).

Numéro	XP07				XP06					
Température initiale	1186					1186				
Temps de palier initial		13 he	eures			10 he	eures			
Vitesse de refroidissement			C/h				C/h			
	bille 1	bille 2	bille 3	bille 4	bille 1	bille 2	bille 3	bille 4		
Température de trempe (°C)	1167	1156	1146	1137	1139	1129	1119	1109		
Temps passé au-dessus de 1170°C		9,6 h	eures			8,6 h	eures			
Durée totale (heure)	10.6	14.3	17.6	20.6	19	22.3	25.6	29		
Palier final		aud	cun			au	cun	······································		
Minéraux présents	Pi	PI	PI	Pl	Pl.OI	PI.OI	Pl.OI	PI.OI		
Nombre de cristaux de plagioclase	837	1097	892	916	437	1148	914	584		
Aire surface (mm²)	4.144	3.812	3.009	1.459	1.683	2.306	3.893	6.634		
Nombre de cristaux par unité de surface	202	288	296	628	259.7	497.9	234.8	88		
Aire cristaux/aire surface (%)	4.6	5.4	12	11.8	5.5	15	27.5	12.4		
Proportion par bilan de masse (%)	7.7	10.2	12.9	11.1	12.2	22.8	25.9	30.4		
Taille moyenne (mm)	0.014	0.018	0.015	0.014	0.010	0.010	0.011	0.012		
Taille minimum (mm)	0.004	0.003	0.003	0.005	0.003	0,003	0.003	0.003		
Classe maximum (mm) sur la régression										
Taille de la classe (mm)		0.0	005		0.001					
Nombre de classe	82	82	93	72	47	85	75	74		
Classe minimum (mm)	0.0035	0.003	0.0035	0.003	0.003	0.004	0.004	0.004		
Intercept de la droite de régression (mm ⁻⁴⁾	18.29	18.23	18.06	19,29	17.27	17.55	16.36	15.21		
Barre d'erreur	0.28	0.51	0.23	33.00	0.17	0.27	0.21	0.21		
Pente de la droite de régression (-) (mm ⁻⁵)	462.6	470.1	374.6	479.1	318.0	286.4	245.4	229.1		
Barre d'erreur	26.8	51.6	19.8	36.5	14.5	17.4	13	13.7		
Pic densité (mm ⁻⁴)	15.6	15.9	15.4	16.4	15.3	15.9	15.1	14.0		
Taille pic (mm)	0.007	0.007	0.007	0.007	0.006	0.008	0.007	0.007		

Tableau 4-4c. Caractéristiques de l'expérience avec une vitesse de refroidissement de 3°C/h (XP07-06).

Les billes ont été trempées tous les 10°C, pour couvrir la gamme de température qui nous intéresse (1170 à 1110°C), il a fallu réaliser deux expériences consécutives, la canne ne pouvant contenir que 5 charges expérimentales. La vitesse minimum de refroidissement (0,2°C par heure) se rapproche des vitesses de refroidissement naturelles (lac de lave du Makaopuhi, 0,02°C par heure en début d'histoire de refroidissement), tout en assurant une durée d'expérience raisonnable. Les expériences longues posent en effet des problèmes : disponibilité du matériel, variations des teneurs en gaz en cours d'expérience, risque de coupure de courant ... La vitesse maximale (3°C par heure) a été choisie pour se rapprocher des conditions expérimentales des expériences de Toplis et Carroll (1996). Les expériences à 1 et 3°C par heure ont été réalisées dans le four GERO1. Celle à 0.2°C a été réalisée dans le four GERO3 seul programmable à si petite vitesse. Cependant les deux fours ont les mêmes caractéristiques techniques.

4.3.1. Observation des échantillons

Quelle que soit la vitesse de refroidissement choisie, l'apparition de l'olivine est observée à 1139°C. Le plagioclase apparaît vers 1168°C dans les expériences à 1 et 3°C. Par contre, dans l'expérience à 0,2°C, le plagioclase n'est pas présent avant 1149°C (un seul cristal), ce qui témoigne d'un retard à la nucléation d'environ 20°C. Ce retard est vraisemblablement dû au fait que le temps passé au-dessus du liquidus est bien plus important (environ 115heures) que dans le cas des expériences à refroidissement rapide (moins de 30 heures). Comme dans la plupart des expériences décrites, le clinopyroxène n'apparaît pas à sa température de liquidus de 1134°C (Toplis et Carroll, 1995). Si on compare les billes à température équivalente pour des vitesses de refroidissement de 3, 1 et 0,2°C par heure (Figures 4-22) on constate que la taille moyenne des plagioclases augmente et que leur nombre par unité de surface diminue avec une réduction de la vitesse de refroidissement. Cela se voit surtout pour les hautes températures (Figure 4-22).

4.3.2. Evolution des proportions des phases

Dans les expériences à 0,2°C par heure (XP04 et XP01), le plagioclase et l'olivine sont absents en début de refroidissement. Cependant dès qu'ils apparaissent, ils présentent les proportions de l'équilibre.

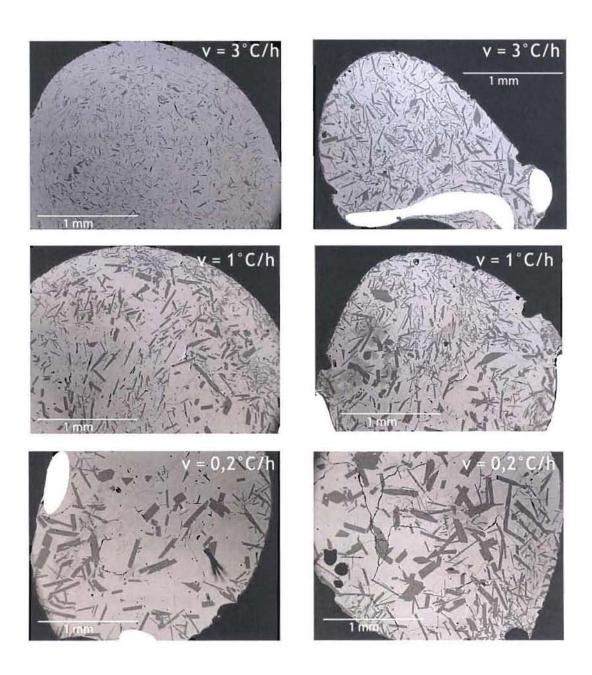


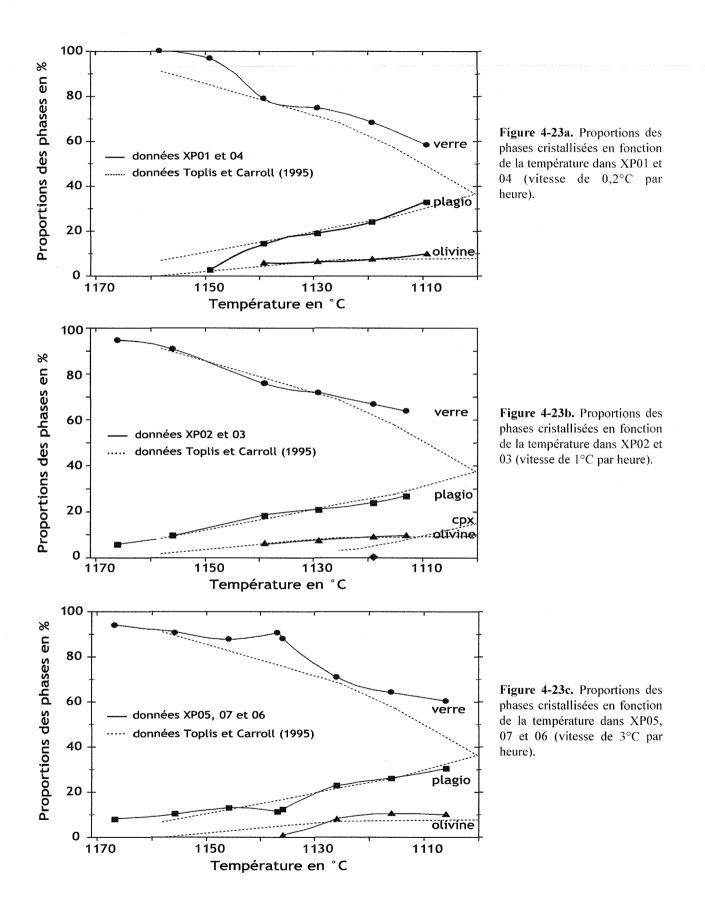
Figure 4-22. Photo BSE des expériences à vitesse différentes. (gauche) à T = 1139°C, bille 3 XP07 (3°C/h), bille 1 XP02 (1°C/h) et bille 1 XP01 (0,2°C/h). (droite) à T = 1119°C, bille 3 XP06 (3°C/h), bille 3 XP02 (1°C/h) et bille 4 XP01 (0,2°C/h).

Par exemple le plagioclase apparaît à 1149°C au lieu de 1170°C, et dès 1139°C les proportions sont celles de l'équilibre (**Tableau 4-5** et **Figure 4-23a**), c'est à dire dès leur apparition. Pour le verre, les proportions sont supérieures aux proportions à l'équilibre, en reflet à l'absence du clinopyroxène.

Dans l'expérience à 1°C par heure (XP03 et XP02), les proportions de phases (**Tableau 4-5** et **Figure 4-23b**) sont similaires aux expériences à 1°C par heure déjà décrites (§. 4.2.1. et 4.2.2.). Il correspond aux proportions à l'équilibre, hormis pour la plus basse température où l'absence de clinopyroxène induit une proportion de verre sensiblement supérieure.

Dans l'expérience à 3°C par heure (XP07 et XP06), les proportions de verre et de plagioclase ne suivent pas les proportions de l'équilibre (**Tableau 4-5** et **Figure 4-23c**). A partir de 1146°C, le verre est en excès jusqu'à atteindre un maximum à 1137°C. Le plagioclase suit une évolution inverse. Cette anomalie est présente dans les deux expériences réalisées dans les mêmes conditions (XP07 bille 4 et XP06 bille 1). L'olivine présente un retard à la nucléation et apparaît à 1136°C dans une proportion très faible (0.5%). L'anomalie observée dans les proportions de verre et de plagioclase est donc liée au retard de la nucléation de l'olivine. En dessous de 1136°C, les proportions se rapprochent de l'équilibre.

La comparaison des proportions de phase calculées par bilans de masse par rapport à la vitesse de refroidissement montre donc une évolution différente (**Figure 4-24**). Celui de l'expérience à 1°C par heure est le plus proche des proportions à l'équilibre. Pour les deux autres vitesses, on remarque des anomalies probablement dues à des retards à la nucléation. Dans le cas de l'expérience à faible vitesse, toutes les phases présentent ce retard à la nucléation, probablement lié à un trop long séjour au-dessus du liquidus. Pour l'expérience à forte vitesse, seuls l'olivine et le pyroxène présentent, par leur absence, ce retard (**Figure 4-25**).


4.3.3. Description des CSD

Expérience XP01 à 0,2°C

Les quatre CSD ne présentent pas de diminution de la densité des petites tailles (hormis à 1129°C), la densité la plus importante est à la taille 5.10⁻³ (**Figure 4-26a**).

**************************************	T (°C)	XP01	T (°C)	XP03-02	T (°C)	XP07-06			(1996)	
vitesse	1 (C)	0.2°C/h	1(0)	1°C/h	1(0)	3°C/h		T (°C)	Proportions (%)	N° expériences
Proportions	1169	100.00	1166	94.55	1167	93.89		1158	90.8	Fe45
de verre (%)		96.71	1156	90.75	1156	90.60		1134	74.7	Fe36
de vene (70)	1139	79.00	1130	75.75	1146	87.69		1125	68.3	Fe37
	1129	74.72	1129	71.67	1137	90.56		1115	57.5	Fe39
	1119	68.30	1119	66.74	1136	87.97		1096	31.7	Fe56
	1109	58.38	1113	63.70	1126	70.85		1070	31.7	1030
	1107	50.50	1115	03.70	1116	64.23				
					1106	60.25				
					1100	00.23				
Proportions	1169	-	1166	5.72	1167	7.78		1158	8	Fe45
de	1149	3.01	1156	9.63	1156	10.25		1134	18.6	Fe36
plagioclase	1139	14.77	1139	18.25	1146	12.87		1125	23	Fe37
(%)	1129	19.27	1129	20.75	1137	11.14		1115	27.2	Fe39
	1119	24.31	1119	23.82	1136	12.19		1096	39.8	Fe56
	1109	33.11	1113	26.72	1126	22.81				
					1116	25.95				
					1106	30.36				
	1160		11.00		1167			1158	1.2	Fe45
Proportions	1169	-	1166	-	1167	-		1138	1.3	Fe36
d'olivine	1149		1156		1156	-		ı	6.7	1
(%)	1139	6.02	1139	5.94	1146	-		1125	8.3	Fe37
	1129	6.55	1129	7.22	1137	0.50		1115	8.6	Fe39
	1119	7.75	1119	8.89	1136	0.50		1096	9.1	Fe56
	1109	10.03	1113	9.50	1126	7.68				
					1116	10.24 9.84				
		<u> </u>			1106	9.04				
Proportions	1169	-	1166	-	1167	_		1158	No.	Fe45
de pyroxène	1149	_	1156	_	1156	-		1134	_	Fe36
(%)	1139	_	1139	-	1146	_		1125	-	Fe37
V7	1129	11.80	1129	_	1137	_		1115	6.7	Fe39
	1119		1119	_	1136	-		1096	16.5	Fe56
	1109		1113	0.32	1126	_				
					1116	_	MACCOUNT.			
					1106	_				

Tableau 4-5. Proportions des phases calculées à partir des bilans de masse des expériences à vitesse de refroidissement variable (XP01 à 0,2°C/h, XP03-02 à 1°C/h et XP07-06 à 3°C/h) et proportions des phases dans les expériences de Toplis et Carroll (1996).

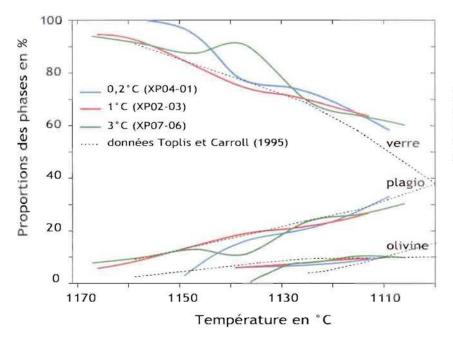


Figure 4-24. Bilan de masse des phases en présence (hormis le clinopyroxène) dans les expériences à vitesse de refroidissement variable.

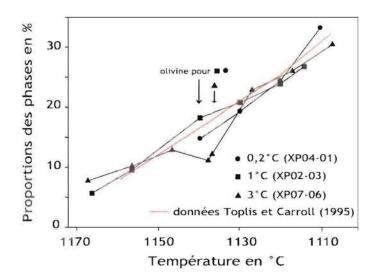


Figure 4-25. Proportions des plagioclases en fonction de la température pour pour les trois vitesses calculées à partir du bilan de masse.

Les CSD s'aplatissent au cours du refroidissement et la taille maximum augmente. Sur la **figure 4-27a**, sont représenté les droites des CSD. Les pentes sont globalement faibles allant de -92 pour 1139°C jusqu'à -62 pour 1109°C. Hormis la droite à 1139°C, les pentes et les intercepts diminuent régulièrement avec le refroidissement (**Tableau 4-4a**).

Expériences XP03-02 à 1°C

Sur la **figure 4-26b** sont représentées les courbes des hautes températures (XP03). On remarque qu'elles sont distinctes les unes des autres. Elles présentent toujours cette forme de courbe en cloche asymétrique, mais deux pics de densité sont identifiés : un pic à L=1.10 $^{-2}$ mm pour 1166 $^{\circ}$ C et un pic à L=1,4.10 $^{-2}$ mm pour 1156 $^{\circ}$ C. Les pentes sont très fortes, -520 mm $^{-5}$ pour 1166 $^{\circ}$ C et -307 mm $^{-5}$ pour 1156 $^{\circ}$ C. Pour les courbes de plus basse température (XP02), la forme est identique aux précédentes, avec un pic à la taille 1.10 $^{-2}$ mm. Les pentes sont intermédiaires (de -150 à -112 mm $^{-5}$). Sur la **figure 4-27b**, l'aplatissement des droites au cours du refroidissement est bien visible de 1166 $^{\circ}$ C à 1129 $^{\circ}$ C. De plus, il y a un grand écart entre les pentes des CSD à 1156 $^{\circ}$ C et 1139 $^{\circ}$ C, ce qui coïncide avec l'apparition de l'olivine. Les deux dernières droites, qui correspondent aux températures finales des 2 expériences autour de 1115 $^{\circ}$ C, ont une pente et un intercept plus élevés. Cette anomalie pourrait être liée à l'apparition du clinopyroxène (**Tableau 4-4b**).

Expériences XP07-06 à 3°C

Les courbes présentent toutes des formes en cloches, avec un pic de densité à $L = 6,5.10^{-3}$ mm pour les hautes températures (XP07) et un pic à $L = 7.10^{-3}$ mm pour les basses températures (XP06) (**Figure 26c**). La taille maximum croît au cours du refroidissement, et les courbes s'aplatissent. Les droites des CSD sont reportées sur la **figure 4-27c**. Les pentes sont globalement fortes (allant de -462 à -229 mm⁻⁵ avec le refroidissement). Les pentes et intercepts (**Tableau 4-4c**) diminuent régulièrement si on considère l'expérience XP 06 pour la température 1136° C.

La comparaison des CSD par rapport à la vitesse de refroidissement montre que pour chaque expérience, la diminution de la température s'accompagne d'un aplatissement des CSD et d'une diminution de l'intercept (Figures 4-28 et 4-29).

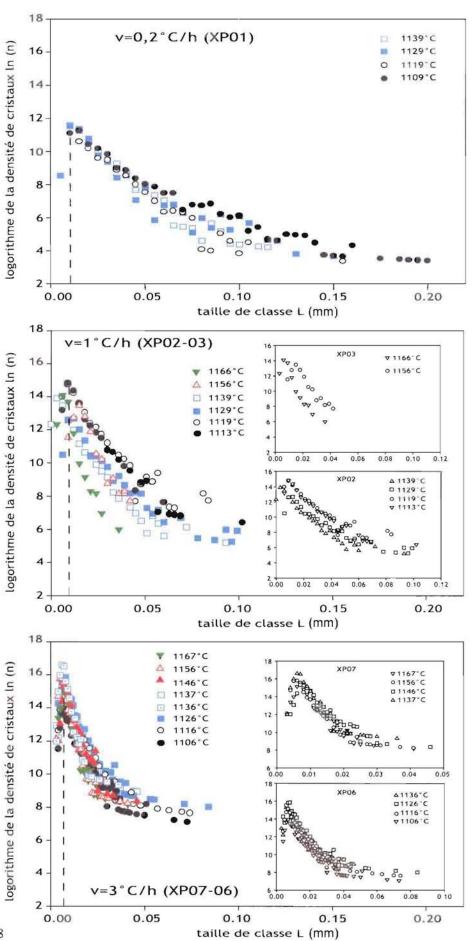


Figure 4-26a. CSD de XP01 (vitesse de 0,2°C par heure) en fonction de la température de trempe. Les droites en pointillé correspondent au maximum en densité.

Figure 4-26b. CSD de XP02-03 (vitesse de 1°C par heure) en fonction de la température de trempe. Les droites en pointillé correspondent au maximum en densité.

Figure 4-26c. CSD de XP07-06 (vitesse de 3°C par heure) en fonction de la température de trempe. Les droites en pointillé correspondent au maximum en densité.

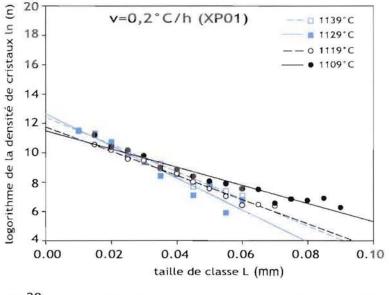


Figure 4-27a. Droites de régression linéaire des CSD dans XP01 (vitesse de 0,2°C par heure) en fonction de la température de trempe.

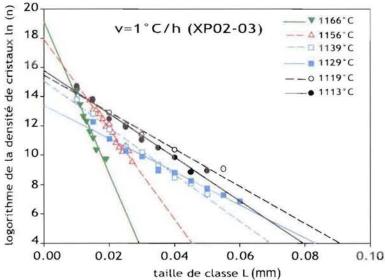


Figure 4-27b. Droites de régression linéaire des CSD dans XP03 et 02 (vitesse de 1°C par heure) en fonction de la température de trempe.

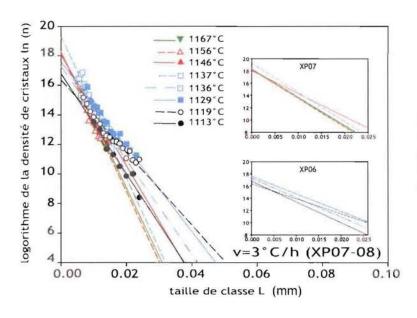
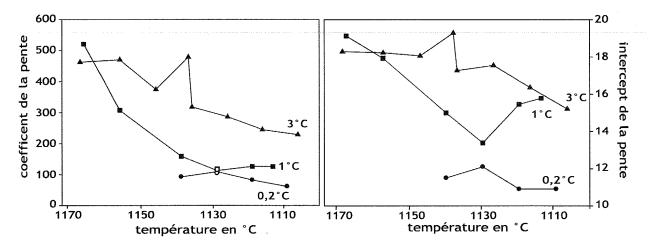


Figure 4-27c. Droites de régression linéaire des CSD dans XP07 et 06 (vitesse de 3°C par heure) en fonction de la température de trempe.


Les cristaux de petites tailles sont absents pour une vitesse de refroidissement faible (pas de cristaux de taille inférieure à 5 μ m, pour v = 0.2°C par heure), alors qu'ils sont abondants pour une vitesse forte ($n > 2.10^6$ mm⁻⁴ à L = 5 μ m pour v = 3°C par heure, **Figure 4-26** et **Tableau 4-4**). Le nombre total de cristaux par unité de volume est plus fort quand la vitesse de refroidissement est importante. On voit, avec ces expériences, que la vitesse de refroidissement a une influence très importante sur les CSD. Les tailles maximales sont plus grandes lorsque la vitesse de refroidissement est faible (200 μ m à 0,2°C par heure et 80 μ m pour 3°C par heure, **Tableau 4-4**). Si l'on compare les CSD à la même température, on peut remarquer que l'intercept et la pente diminuent fortement avec la vitesse (**Figures 4-28, 4-29 et 4-30**), alors qu'au sein d'une même expérience, les pentes et les intercepts varient beaucoup moins (**Figure 4-26** et **4-27**).

4.3.4. Bilan des expériences

L'observation des sections polies et l'examen des CSD montre que la vitesse de refroidissement influence fortement la cristallisation des plagioclases. Plus le refroidissement est lent, plus la croissance est favorisée par rapport à la nucléation (pentes des CSD et densité de cristaux faibles mais cristaux de plus grande taille - Gibb, 1974; Lofgren, 1974; Donaldson, 1979). Le bilan de masse évolue de manière totalement différente (**Figure 4-24**) selon que la vitesse est lente ou rapide et, il semble que ce soit le retard à la nucléation dû au temps passé au-dessus du liquidus qui contrôle l'écart à l'équilibre des proportions de phase. Cependant, il est difficile d'estimer l'influence que pourrait également avoir le temps passé au-dessus du liquidus sur les CSD et de dissocier cet effet de celui de la vitesse de refroidissement en cours de cristallisation.

4.4. Conclusion sur l'influence de l'histoire thermique

Nos expériences confirment que la vitesse de refroidissement est le paramètre dominant dans le contrôle des textures des plagioclases. Pour un même taux de cristallisation, plus le refroidissement est rapide plus les pentes des CSD sont fortes et l'ordonnée à l'origine élevée, ce qui est expliqué par une nucléation rapide conduisant à l'abondance de petits cristaux (**Figures 4-28** et **4-29**).

Figure 4-28. Coefficients des droites CSD pour chaque vitesse (0,2°C/h pour XP01, 1°C/h pour XP02-03 et 3°C/h pour XP07-06) en fonction de la température.

Figure 4-29. Intercepts des droites CSD pour chaque vitesse (0,2°C/h pour XP01, 1°C/h pour XP02-03 et 3°C/h pour XP07-06) en fonction de la température.

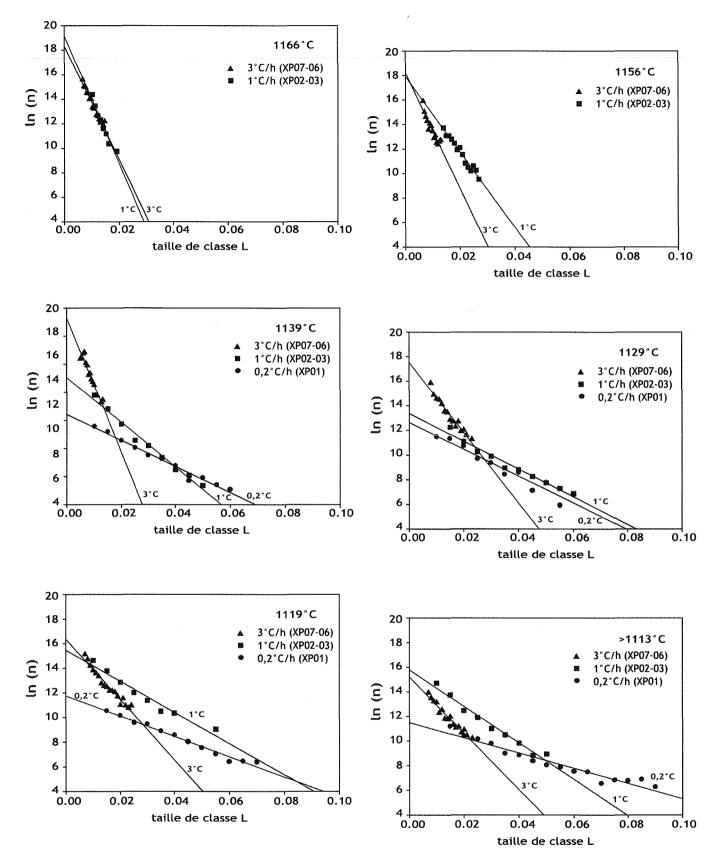
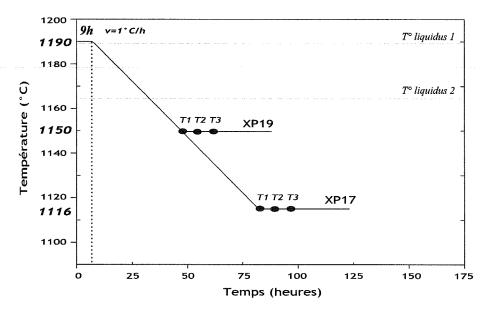


Figure 4-30. Droites de régression linéaire des CSD pour les expériences à vitesses différentes pour une même température.

La distribution des tailles de cristaux varie également en cours de cristallisation. Tout comme dans la plupart des systèmes naturels, on observe un aplatissement des CSD et une diminution de l'ordonnée à l'origine (Figure 4-30). La cristallisation à haute température est assurée par la nucléation de nouveaux cristaux, durant une période courte, correspondant à un taux de cristallisation de quelques pourcents. Ensuite la vitesse de nucléation diminue et l'augmentation du taux de cristallisation est assurée essentiellement par la croissance des phases préexistantes.


De manière plus inattendue, nous observons un contrôle de la cristallisation par l'histoire antéliquidus. Plus le temps de palier au-dessus du liquidus est long, moins les cristaux de plagioclase sont nombreux et plus ils sont de grande taille, donc plus les CSD sont plates. On remarque également des retards à la nucléation des différentes phases. Ces observations soulignent l'influence de l'histoire anté-liquidus sur la nucléation et donc sur la texture finale.

5. ETUDE DE LA MATURATION

Ces expériences ont pour but d'étudier la maturation le long d'un palier isotherme. Pour cela, nous avons comparé des billes trempées le long de la rampe de refroidissement et les billes trempées le long d'un palier final (-Figure 5-1 et Tableau 5-1). Deux expériences ont été réalisées avec comme caractéristiques communes une vitesse de refroidissement de 1°C par heure, un palier initial de 9 heures et une température initiale de 1190°C. Seuls la température de trempe et le temps de palier final varient d'une expérience à l'autre. Dans la première expérience (XP17), la température finale est de 1116°C. Les billes ont été trempées sur le palier final aux temps t = 0h, 6h35min et 15h15min. Dans la seconde expérience (XP19), la température finale est de 1150°C. Les billes ont été trempées sur le palier final aux temps t = 0h, 8h30min et 20h15min.

5.1. Observation des échantillons

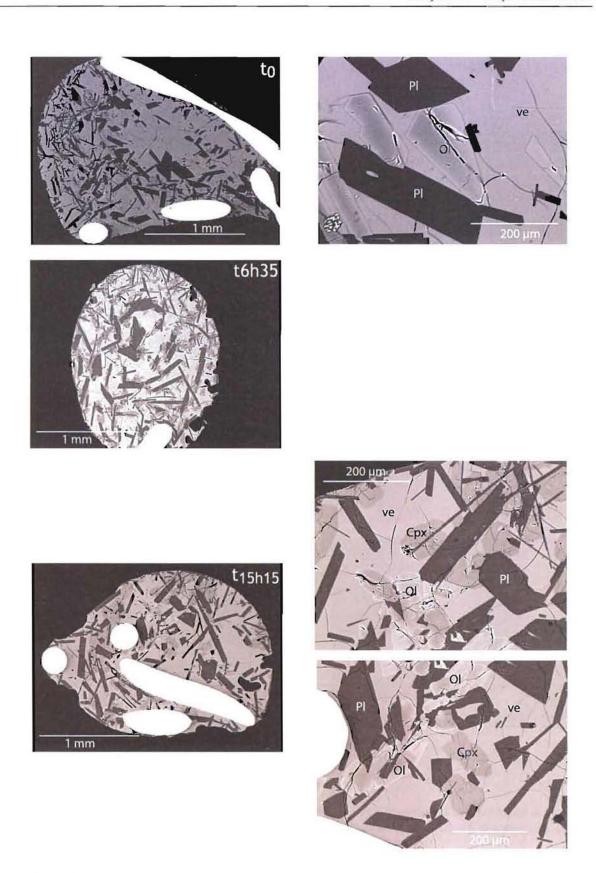

Dans les deux cas, plagioclase et olivine sont présents. Les textures des plagioclases ne sont pas homogènes à l'échelle de la bille, avec des concentrations de petits cristaux.

Figure 5-1. Schéma représentant le parcours température *vs* temps suivi par les expériences XP17 et XP19 où les trempes ont été effectuées le long d'un palier final. *T° liquidus 1* correspond à la température donnée par le modèle MELT (Ghiorso et Sack, 1995). *T° liquidus 2* correspond à la température donnée d'après l'étude expérimentale de Toplis et Caroll (1995).

Trempe sur palier final								
	XP17	-	XP19					
	1191°C		1190°C					
	9 heures		9 heures					
	1°C/h			1°C/h				
bille 1	bille 2	bille 3	bille 1	bille 2	bille 3			
1116	1116	1116	1150	1150	1150			
30 heures			29 heures					
84	90.5	101.3	50	58.5	70.3			
0	6.35	15.3	0	8.5	20.3			
Pl	Pl.Ol. Cpx	Pl,Ol, Cpx	PI,OI	Pi,Ol	PI,OI			
486	210	222	260	232	199			
5.018	4.054	1.835	7.125	4.848	8.223			
96.8	51.8	120.99	36.5	47.8	24.2			
46	45	35	8	11	24			
24.6	22.6	25.5	6.7	8.8	7.5			
0.038	0.034	0.035	0.025 0.019		0.022			
0.0107	0.0083	0.0137	0.0122 0.0097		0.0112			
0.096	0.064	0.056	0.04	0.036	0.044			
	0.008		0.004					
21	34	15	19	18	18			
0.016	0.016	0.016	0.016	0.012	0.012			
12.4	12.3	12.8	13.9	15.6	16.6			
0.19	0.25	0.62	0.44	0.32	0.31			
57.2	70	74.3	112.8	192.1	173			
2.84	5.73	15.46	13.9	11.7	9.32			
10.7	11.1	10.8	11.7	12.6	13.3			
0.032	0.016	0.024	0.020	0.016	0.020			

Tableau 5-1. Caractéristiques des expériences à trempes sur temps de palier final (XP17 = 1116°C et XP19 = 1150°C).

Figure 5-2. Photo BSE de l'expérience XP17, pour trois temps de trempe différents à 1116°C, (0h, 6h35 et 15h15min). Les photos de gauche correspondent à des agrandissements de celles de droite.

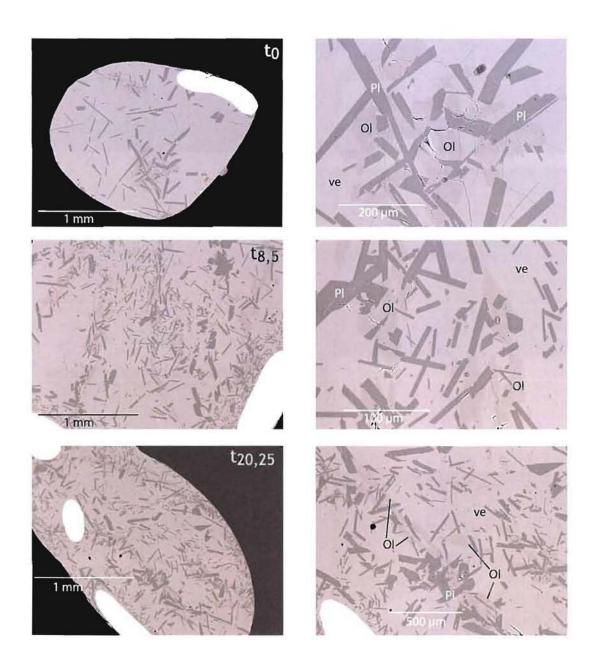
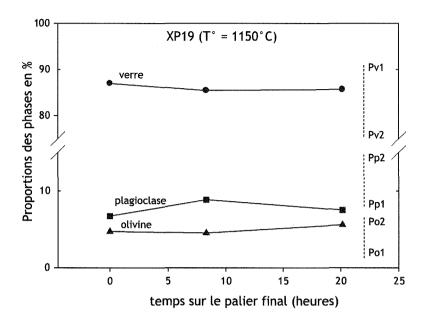
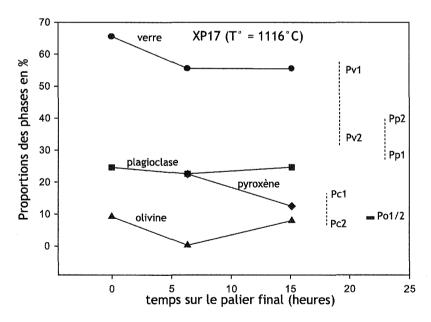


Figure 5-3. Photo BSE de l'expérience XP19, pour trois temps de trempe différents à 1150°C, (0h, 8h30 et 20h15). Les photos de gauche correspondent à des agrandissements de celles de droite.


Ces concentrations sont clairement associées à la présence de bandes d'olivine, créant des hétérogénéités texturales à l'échelle de la bille (**Figures 5-2** et **5-3**). Cette hétérogénéité domine et masque l'observation d'une possible évolution de la texture des plagioclases par maturation le long du palier. Le clinopyroxène n'est pas une phase à l'équilibre dans l'expérience à 1150° C. En revanche, il doit être présent dans l'expérience à 1116° C. Il n'est pas visible dans la bille trempée sur la rampe de refroidissement (t = 0) mais apparaît après un temps de palier à t = 6h35 alors que l'olivine semble avoir quasiment disparue. Après 15h15 de palier, les deux phases sont à nouveau présentes et les olivines sont clairement zonées. Dans les deux expériences, de nombreux cristaux de plagioclase semblent accolés ou imbriqués. On retrouve également les inclusions magmatiques décrites dans les autres expériences.

5.2. Compositions chimiques et minéralogiques


Dans l'expérience à 1150°C les minéraux sont homogènes et les proportions des phases évoluent légèrement au cours du temps pour se rapprocher des proportions à l'équilibre (Toplis et Carroll, 1995 - **Figure 5-4a** et **Tableau 5-2**).

Dans l'expérience à 1116°C (**Figure 5-4b**), tous les minéraux sont zonés, particulièrement les olivines. L'équilibre chimique n'est donc jamais atteint même après 20 heures de palier. (**Tableau 5-2**).

Les proportions calculées, en tenant compte des zonations des minéraux, évoluent le long du palier. Pour le verre, les proportions passent de 65 à 55%, les proportions du plagioclase sont stables. On retrouve les observations visuelles, avec une augmentation puis une diminution des proportions de clinopyroxène et une évolution inverse pour l'olivine. Ce qui correspond à des évènements de dissolution et cristallisation. L'évolution chimique et minéralogique complexe de l'expérience à 1116°C traduit donc probablement le retard à la nucléation du clinopyroxène.

Figure 5-4a. Proportions des phases cristallisées en fonction du temps passé sur le palier T° = 1150°C (XP19). Les proportions de Toplis et Carroll (1995) correspondent aux lignes en pointillé. Pv = proportion de verre, Pp = proportion de plagioclase et Po = proportion d'olivine. Les numéros correspondent à deux expériences, 1 = 1158°C et 2 = 1134°C.

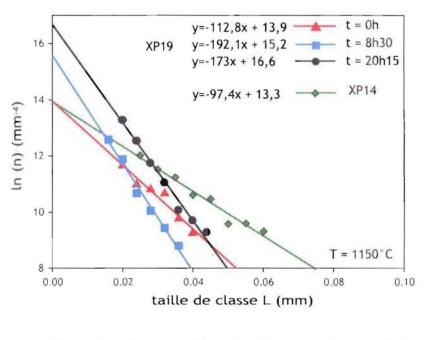
Figure 5-4b. Proportions des phases cristallisées en fonction du temps passé sur le palier $T^{\circ} = 1116^{\circ}C$ (XP17). Les proportions de Toplis et Carroll (1995) correspondent aux lignes en pointillé. Pv = proportion de verre, Pp = proportion de plagioclase, Po = proportion d'olivine et Pc = proportion de pyroxène. Les numéros correspondent à deux expériences, $1 = 1115^{\circ}C$ et $2 = 1096^{\circ}C$.

	durée palier	XP19	durée palier	XP17	Toplis et Carroll (1995)			
	final (h)	(1150°C)	final (h)	(1116°C)	T (°C)	Proportions (%)	N° expériences	
Proportions	0	86.98	0	65.60	1158	90.8	Fe45	
de verre (%)	8h3	85.45	6h35	55.58	1134	74.7	Fe36	
	20h15	85.70	15h15	55.46	1115	57.5	Fe39	
					1096	31.7	Fe56	
Duamantiana	0	672	0	24.62	1158	8	E-45	
Proportions		6.73	1	24.63	ľ	1	Fe45	
de	8h3	8.85	6h35	22.62	1134	18.6	Fe36	
plagioclase	20h15	7.51	15h15	24.72	1115	27.2	Fe39	
					1096	39.8	Fe56	
Proportions	0	4.72	0	9.23	1158	1.3	Fe45	
d'olivine	8h3	4.52	6h35	0.29	1134	6.7	Fe36	
(%)	20h15	5.59	15h15	7.99	1115	8.6	Fe39	
					1096	9.1	Fe56	
Proportions	0	-	-	-	1158	-	Fe45	
de pyroxène	8h3	-	6h35	22.529557	1134	-	Fe36	
(%)	20h15	_	15h15	12.510161	1115	6.7	Fe39	
		***************************************			1096	16.5	Fe56	

Tableau 5-2. Proportions des phases calculées à partir des bilans de masse des expériences dont les trempes sont effectuées le long du palier final (XP19 avec T = 1150°C et XP17 avec T = 1116°C) et proportions des phases dans les expériences de Toplis et Carroll (1995).

5.3. Description des CSD

Pour chacune des expériences, on dispose d'un réplicat pour la bille trempée le long de la rampe de refroidissement grâce à l'expérience XP14, réalisée dans les mêmes conditions. Les CSD des ces réplicats sont identiques aux billes à t = 0 des expérience XP17 et XP19 (**Figure 5-5** et **Tableau 5-1**).


Dans les deux expériences, les CSD à t=0 ont une pente plus faible que les suivantes réalisées le long du palier (**Figure 5-5**). Cependant cette différence est mineure dans les deux cas. Dans l'expérience à 1116° C, il y a une plus faible densité de petits cristaux (**Figure 5-6**) ce qui confirme l'observation des billes. Nous avons interprété la rareté des petits cristaux par l'absence des bandes de cristaux d'olivines. A l'inverse, il n'y a pas de petits cristaux à t=0 dans l'expérience à 1150° C, ce qui correspond également à l'absence de bandes d'olivine. Pour chaque expérience, seul le changement de pente des CSD entre la bille à t=0 et la suivante pourrait être attribué au mûrissement textural.

En conclusion, bien que les proportions des plagioclases restent constantes le long du palier, c'est à dire que la proportion à l'équilibre est atteinte immédiatement, les textures varient d'une bille à l'autre. Des concentrations de petits plagioclases sont associées à la présence de bandes d'olivine. Un changement de pente des CSD, entre la première et la deuxième bille, peut être associé à un mûrissement textural.

La présence d'un palier final permet de corriger le retard à la nucléation du clinopyroxène constaté dans toutes les expériences précédemment décrites où la bille est trempée le long de la rampe.

6. REPRODUCTIBILITE DES EXPERIENCES

Dans le but de définir une reproductibilité, nous pouvons comparer les expériences réalisées dans les mêmes conditions. L'expérience XP14 à vitesse de refroidissement de 1°C par heure avec palier initial de 9 heures peut être ainsi comparée aux expériences XP03-02 d'une part et XP17 et 19 d'autre part.

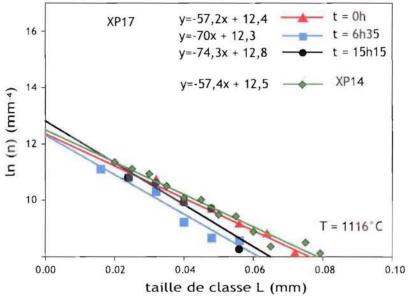


Figure 5-5. Regressions linéaires calculées à partir des CSD des expériences (haut) XP19 ($T = 1150^{\circ}$ C) le long d'un palier final et XP14 ($T = 1150^{\circ}$ C et t = 0h) et (bas) XP17 ($T = 1116^{\circ}$ C) le long d'un palier final et XP14 ($T = 1110^{\circ}$ C et t = 0h).



Figure 5-6. CSD des expériences (haut) XP19 (T = 1150°C) le long d'un palier final et (bas) XP17 (T = 1116°C) le long d'un palier final.

Comparaison XP14 et XP03-02: D'après les observations des images (**Figures 4-8** et **4-22**) et les CSD (comparer les **figures 4-15a** avec **4-26b** et **4-16a** avec **4-27b** et voir les **tableaux 4-1 et 4-4b**), ces deux expériences présentent des différences. Le clinopyroxène est absent dans l'expérience XP03-02 alors qu'il apparaît à 1110° C dans l'expérience XP14. Les pentes des CSD diminuent de -500 à ~ -100 mm⁻⁵ pour XP03-02 et de -130 à ~ -55 mm⁻⁵ pour XP14. Cependant les tailles maximums à une température donnée sont équivalentes pour les deux expériences ce qui suggère que les vitesses de croissances sont égales et donc que la différence est due à une différence de nucléation. Un seul paramètre différencie les deux expériences, il s'agit des températures initiales que l'on n'a pas pu garder identiques (pour XP14 $Ti = 1190^{\circ}$ C alors que pour XP03-02 $Ti = 1186^{\circ}$ C) et qui vont donc changer le degré de surfusion initiale. Cette différence de ΔT très faible peut-elle être considérée comme une raison suffisante pour influencer l'ordre de grandeur des CSD ?

Comparaison XP14 et XP17-19: D'après les observations des images (Figures 4-8, 5-1 et 5-2) et les CSD (Figures 5-5 et 5-6 et voir les tableaux 4-1 et 5-1), ces deux expériences présentent peu de différences. La nucléation hétérogène autour de l'anneau de platine semble être plus importante dans l'expérience XP14. Le pyroxène apparaît à 1110°C dans XP14 et apparaît à 1117°C dans XP17 après un palier de 7 heures. Les pentes des CSD sont égales à ~-100 mm⁻⁵ à 1150°C et à ~-55 mm⁻⁵ à 1110°C dans les deux cas. Les intercepts sont aussi équivalents (~ 13,5 mm⁻⁴ à 1150°C et ~ 12,5 mm⁻⁴ à 1110°C - tableau 5-1). Malgré la présence de nucléation hétérogène autour du fil de platine sur XP14, les CSD sont très reproductibles.

La comparaison de ces trois expériences montre que XP03-02 semble anormale et que la différence peut être due aux processus de nucléation. Ceci confirme que ces processus ont une influence majeure et partiellement aléatoire sur les textures dans nos expériences.

S.C.D. - U.H.P. WANCY 1

BIBLIOTHÈQUE DES SCIENCES

Rue du Jardin Botanique - BP 11

54601 VILLERS-LES-NANCY CAMP

7. DISCUSSION

Les principales observations concernant les textures, à l'issue de ces expériences sont les suivantes:

- (i) Les CSD, ont une forme en cloche très asymétrique avec une branche principale loglinéaire décroissante à droite du pic (du coté des grandes tailles) et une branche courte, croissante et raide du coté des petites tailles.
 - (ii) Au cours du refroidissement, la pente et l'intercept des CSD diminuent.
- (iii) La pente des CSD à une température donnée, est d'autant plus forte que la vitesse de refroidissement est rapide ou que le temps de palier initial est court.
- (iv) La taille maximum atteinte par les cristaux est d'autant plus grande que la vitesse de refroidissement est lente.
- (v) Dans certains cas (temps de palier long, vitesse de refroidissement lente), il n'y a pas de cristaux de petites tailles.

Ces observations permettent de mettre en évidence deux stades de cristallisation. Une phase au cours de laquelle la forme log-linéaire et décroissante des CSD est acquise et une phase au cours de laquelle les CSD s'aplatissent, en réponse à l'évolution des processus de nucléation et de croissance.

7.1. Interprétation de la forme log-linéaire des CSD

Dès le début de la cristallisation ($\varphi = 5\%$) les CSD sont globalement log-linéaires et décroissantes. Le mécanisme d'acquisition de cette forme des CSD est un mécanisme précoce. Les premiers cristaux à apparaître sont ceux situés à droite dans les diagrammes $\ln n_{(L)} = f(L)$ et ce sont, également, les moins nombreux. Les cristaux les plus jeunes sont les plus petits situés à gauche du diagramme et ce sont les plus nombreux. La forme log-linéaire décroissante des CSD témoigne donc de l'augmentation exponentielle de plusieurs ordres de grandeur de la vitesse de nucléation, en début de refroidissement. Les théories de la nucléation (Turnbull et Fisher, 1949) prédisent une augmentation de la vitesse de nucléation avec le temps, en début de cristallisation, mais elle n'est pas exponentielle (équation 23). Cependant les applications de cette théorie aux systèmes multi-composants silicatés sont délicates car l'évolution de la composition du liquide en cours de refroidissement est difficile

à prendre en compte dans l'estimation de l'évolution des ΔT et de la disponibilité des atomes autour des germes. Afin de calculer les vitesses de nucléation, nous avons fait l'hypothèse que $J=J_0\exp(a.t)$ (19) et que G est constant, fixé par $\Delta L/t$ entre 1180°C et la première température de trempe pour la plus grande classe de la régression linéaire. Ainsi les valeurs de J_0 et a sont estimées par calcul numérique afin de permettre d'expliquer la première CSD. Les résultats (Figure 8-1 - Annexe 1) de la variation exponentielle de la vitesse montrent que pour une vitesse de refroidissement faible, les vitesses de nucléation sont petites est augmentent peu au cours du temps (pour une vitesse de refroidissement de 0,2°C/heure J varie de 0,001.10⁹ à 0.303.10⁹m³s⁻¹). Alors que dans le cas d'une vitesse de refroidissement importante, les vitesse de nucléation sont plus fortes et augmentent de manière significative avec le temps (pour une vitesse de refroidissement de 3°C/heure J varie de 0,118.10⁹ à 90,10⁹m³s⁻¹). Si l'on compare les vitesses de nucléations en fonction de la durée du temps de palier initial, on remarque que les vitesses de nucléation augmentent beaucoup moins au cours du refroidissement. On peut également noter que la durée du temps de palier initial joue un rôle sur les vitesses de nucléation, diminuant la vitesse lorsque la durée augmente (Figure 8-1 - Annexe 1). On voit ici que l'influence de la vitesse de refroidissement est prépondérante par rapport à la durée du temps de palier.

La pente des CSD ainsi que la densité maximum (pic des CSD) augmentent avec la vitesse de refroidissement. Ceci témoigne du fait que le pic de nucléation est atteint plus rapidement (**Figure 2-10**), autrement dit la vitesse de nucléation augmente plus vite quand la vitesse de refroidissement est grande. Aussi bien dans les systèmes naturels que dans nos expériences, les vitesses de refroidissement sont suffisamment faibles pour que l'équilibre chimique soit maintenu en permanence pour le plagioclase au cours du refroidissement. Pour atteindre le même degré de cristallisation à une température donnée, il faut donc que les cristaux croissent moins vite ou moins longtemps (vitesse moyenne plus faible) si la vitesse de nucléation est plus forte et inversement.

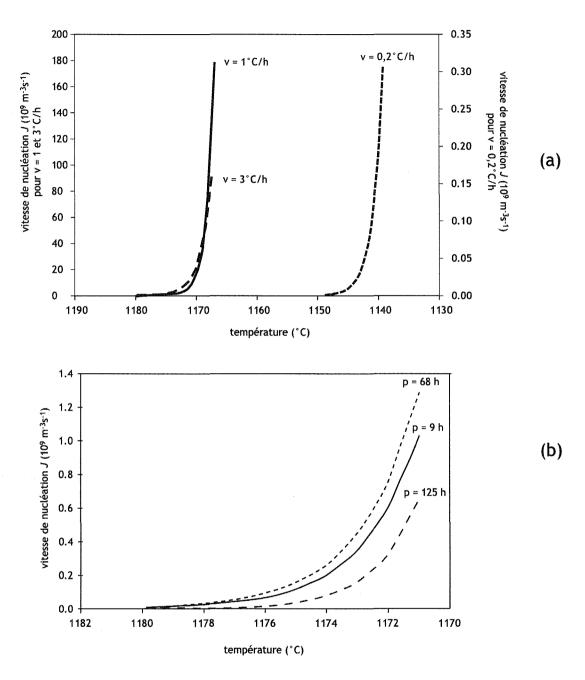


Figure 8-1. Vitesses de nucléation J, dans les premiers stades de la cristallisation. (a) pour les trois vitesses de refroidissement. Il est important de noter la différence d'échelle entre les deux axes d'ordonnées, celui de droite correspond aux vitesses de nucléation pour v = 0.2°C/h et celui de gauche correspond aux vitesses de nucléation pour v = 1 et 3 °C/h. (b) pour les trois durées de palier initial différentes.

7.2. Interprétation des CSD pour les petites tailles

L'observation des processus de nucléation est difficile car il est peu probable de recouper les petits cristaux, ce qui entraîne une mauvaise définition des CSD du coté des petites tailles. Plusieurs observations concordantes témoignent cependant d'une stagnation ou d'une baisse de la vitesse de nucléation au cours du refroidissement, passé le premier stade de cristallisation.

- (i) Au sein d'une même CSD, la densité de cristaux diminue vers les petites tailles.
- (ii) La densité maximale (pic des CSD) stagne avec le temps.
- (iii) Les dernières courbes (basses températures) ne présentent plus de petits cristaux.

La diminution de la vitesse de nucléation au cours du refroidissement s'explique par une diminution de la disponibilité des sites de nucléation (baisse de la diffusion et de la concentration des atomes ou des sites de nucléation hétérogène) ainsi que la baisse de la proportion de liquide disponible à la nucléation.

7.3. Aplatissement des CSD au cours du refroidissement

Toutes les expériences montrent une diminution de la pente des droites de régression linéaire des CSD (partie log linéaire - Figure 3-6) avec le refroidissement. Les droites de régression ne montrent pas une rotation autour d'un point comme c'est le cas du Makaopuhi (Cashman et Marsh, 1988). L'intercept baisse au cours du refroidissement. Les points d'intersections successifs se décalent vers les grandes tailles et vers le bas. De plus, l'aplatissement est de moins en moins marqué au cours du temps (Figure 8-2). En l'absence de variation de la vitesse de croissance en fonction de la taille des cristaux, les CSD ne peuvent que se décaler parallèlement au cours du temps (Figure 2-2). L'aplatissement des CSD démontre donc que la vitesse de croissance dépend de la taille des cristaux. Plus les cristaux sont grands plus ils grossissent vite. Plusieurs mécanismes peuvent expliquer une augmentation de la vitesse de croissance avec la taille.

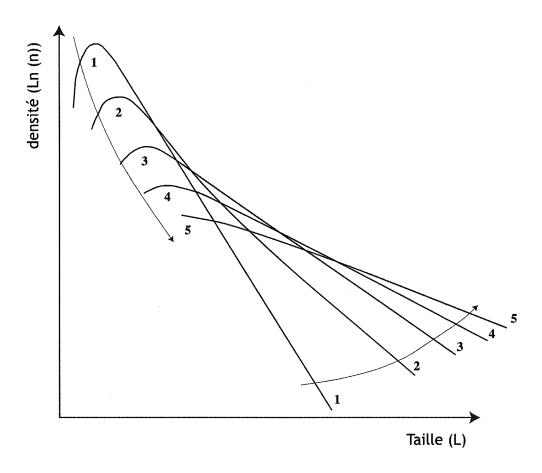
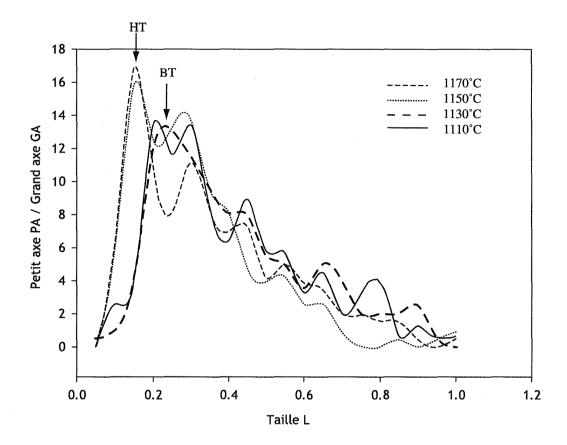


Figure 8-2. Evolution des CSD aux cours du temps, montrant une diminution des petites tailles, un décalage du point d'intersection des courbes vers les grandes tailles et un aplatissement de moins en moins marqué.

Le premier de ces mécanismes est le mûrissement d'Ostwald (**Figure 2-7**). La modélisation de ce mûrissement de type CN explique qualitativement l'évolution observé (comparer **figures 2-7 et 8-2 -** Higgins, 2000). Cependant une étude expérimentale et théorique (Cabane, 2002 ; Cabane et al., 2001 ; 2005) a montré que le mûrissement pouvait être modélisé en se basant sur le modèle LSW. Les vitesses de croissance du plagioclase sont très lentes, de l'ordre de 12 microns par million d'années. Le mûrissement crée alors un rebroussement dans les CSD limité à une dizaine de microns (**Figure 2-7**). Si le mûrissement d'Ostwald de type LSW existe, il n'est donc pas un mécanisme de premier ordre pour le plagioclase et ne permet pas d'expliquer l'évolution des pentes au cours du refroidissement sur la partie log-linéaire des CSD.

Le second mécanisme possible pour expliquer l'augmentation de la vitesse avec la taille du cristal est l'agglomération (**figure 2.9**, Burkhart et al., 1980). Ce mécanisme ne correspond pas à une croissance continue mais à un changement brutal de taille qui se traduit par un saut de classe dans la CSD. L'agglomération d'un cristal de taille L1 avec un cristal de taille L2 fait diminuer le nombre de cristaux des tailles L1 et L2 et augmenter les cristaux de taille L1+L2. Dans ce mécanisme le nombre de cristaux total diminue au cours du temps.

Les processus de mûrissement d'Ostwald et d'agglomération créent la même évolution des CSD et ne peuvent donc être différenciés avec les seules CSD. Les observations permettent cependant, dans nos expériences, de mettre en évidence l'existence du mécanisme d'agglomération (e.g. Figure 4-9b). On observe des cristaux accolés quelle que soit leur taille. L'accolement des cristaux peut résulter de la rencontre de deux cristaux immobiles au cours de leur croissance. Par capillarité, les cristaux très proches vont avoir tendance à se rapprocher pour se coller parallèlement à leur face. L'accolement se fait préférentiellement par certaines faces (Schwindinger, 1999), {010} pour le plagioclase. L'accolement augmente avec la densité de cristaux. Ainsi les sites de nucléation hétérogène (bordure, fil de platine) sont plus propices à l'accolement de cristaux. Au fur et à mesure de l'augmentation de la cristallinité la densité de cristaux augmente ce qui pourrait favoriser l'accolement, mais en contre partie, la viscosité augmente ce qui limite les effets de capillarité. Les sites de germination par nucléation hétérogène sont également favorables à l'apparition de groupes de cristaux qui rentreront facilement en coalescence. La rencontre entre deux cristaux est favorisée également dans un milieu mobile mais ce n'est probablement pas le cas dans nos expériences où la convection est absente en raison de l'absence de gradient thermique. Le


passage d'une forme aciculaire à une forme tabulaire (**Figures 4-2 et 8-3**) se traduisant par une augmentation du rapport PA/GA moyen au cours du refroidissement est compatible avec une croissance par accolement préférentiel le long de {010}.

L'agglomération est un phénomène qui, au moins pour les faibles degrés de cristallisation, est faiblement dépendant de la température. Quand la cristallinité augmente et, donc, quand la température diminue, l'augmentation de la viscosité du liquide peut cependant ralentir voire empêcher l'agglomération de cristaux. Si l'agglomération est un phénomène important dans le contrôle de la pente des CSD, l'utilisation des CSD comme marqueur de l'histoire thermique est compromise.

Les vitesses de croissances ont été calculées entre chaque taille de classe maximale (sur les régressions linéaires), elles correspondent à des valeurs allant de 9,3 10⁻¹⁰ à 1 10⁻⁹ ms⁻¹ (toutes expériences confondues) pour les premiers stades de la cristallisation. Dans toutes les expériences, les vitesses de croissance commencent par diminuer rapidement en début de refroidissement puis se stabilisent (**Figure 8-4 - Annexe 1**). Pour les expériences à durée de palier initial variable, les vitesses de croissance se rapprochent de la valeur 1,9.10⁻¹⁰ ms⁻¹. Les vitesses de croissance négatives correspondent, en générale, à une diminution de la taille maximale (entre 2 CSD) qui est minime, caractérisant ainsi la constance de la vitesse de nucléation.

7.4. Nucléation homogène versus nucléation hétérogène

Dans les différentes billes, des sites de nucléation hétérogène évidents sont les bords de la bille et le fil de platine pour le plagioclase. Pour l'olivine et le clinopyroxène, les plagioclases deviennent les sites de nucléation hétérogène. Un nombre important de cristaux apparaissent cependant au cœur de la bille, loin de tout site évident de nucléation hétérogène. Nos expériences ont cependant montré que, dans la plupart des cas, les cristaux devaient nucléer à partir d'hétérogénéités dans le liquide. En effet, nous avons vu que lorsque le temps passé à haute température est long (palier initial long ou vitesse de refroidissement faible) ou lorsque la température initiale est forte, il existe des retards à la nucléation. Nous expliquons ces retards par une destruction des germes par la chaleur.

Figure 8-3. Evolution du facteur de forme PA/GA au cours du refroidissement dans l'expérience XP15, montrant une diminution du rapport de forme et un décalage du pic vers les grandes tailles, entre les hautes (HT) et les basses (BT) températures.

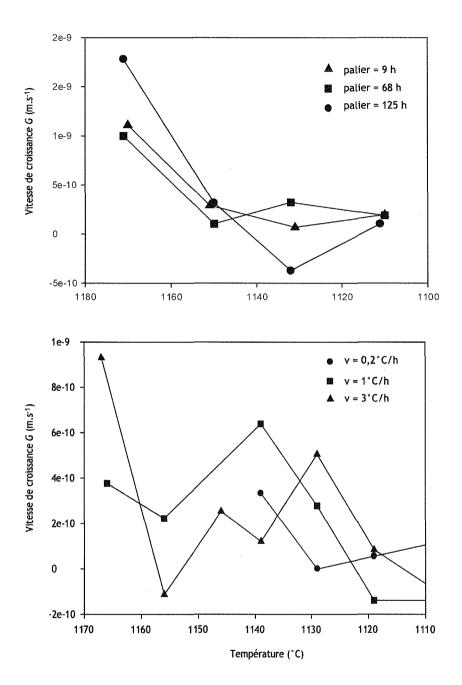


Figure 8-4. Evolution de la vitesse de croissance G au cours du refroidissement. (a) En fonction des durées de temps de palier différentes. (b) En fonction des vitesses de refroidissement différentes.

L'expérience à vitesse de refroidissement de $0,2^{\circ}$ C par heure est la seule expérience où un retard à la nucléation du plagioclase est observé et, donc, où une destruction des germes peut être suggérée. Si la nucléation hétérogène est empêchée, l'apparition du plagioclase à 1149° C pourrait correspondre au ΔT nécessaire pour activer la nucléation homogène.

7.5. Comparaison avec le Lac de lave du Makaopuhi (volcan Kilauea, Hawai)

Une étude pionnière des CSD dans les systèmes naturels a été réalisée par Cashman et Marsh (1988) dans un forage du lac de lave du Makaopuhi sur les plagioclases et les oxydes. La cristallisation du lac de lave a été suivie sur plus de 3 ans. Pour les plagioclases, les CSD sont log-linéaires avec des pentes de la régression linéaire allant de -49 mm⁻¹ pour les plus faibles taux de cristallisation à -26 mm⁻¹ pour les plus forts. Les intercepts n₀ diminuent de 3.10⁴ à 3.10³ mm⁻⁴. A l'exception de la CSD initiale, les CSD tournent autour d'un point correspondant à une taille d'environ 0.08 mm. Les CSD sont coudées, avec des pentes légèrement plus fortes du côté des petites tailles que sur la partie log-linéaire. Pour les ilménites, les pentes varient de -44 à -33 mm⁻¹ et diminuent également quand le taux de cristallisation augmente. Un rebroussement au niveau des petites tailles est visible.

Le système expérimental présente donc de grandes similarités avec le système naturel. Dans les deux cas, les CSD sont log-linéaires sur leur plus grande partie et s'aplatissent au cours du refroidissement alors que l'intercept diminue. Les ordres de grandeur des pentes des droites de régressions linéaires sont comparables, les pentes sont légèrement plus faibles dans le système naturel que dans le système expérimental, ce qui est en accord avec des vitesses de refroidissement plus faible dans un système comme le lac de lave.

Les relevés de la campagne réalisé dans le lac de lave ont permis de déterminer la vitesse de refroidissement du lac et les vitesses de déplacement des isothermes. On peut ainsi déterminer la durée de cristallisation (entre le liquidus et la température de prélèvement) pour chaque échantillon dans un forage donné. En appliquant les théories des distributions de tailles de cristaux de Marsh (1988), Cashman et Marsh (1988) ont calculé les taux de nucléation et de croissance. La vitesse de croissance est calculée à partir de la relation (13) et la vitesse de nucléation à partir de l'équation (14). Les vitesses de nucléation (de 33,9 à 1,6 10³ m⁻³s⁻¹) et de

croissance (9,9 à 5,4 10⁻¹² ms⁻¹) du plagioclase ainsi calculées décroissent avec l'augmentation du taux de cristallisation. Cashman et Marsh (1988) interprètent donc l'aplatissement des CSD par une diminution des vitesses de nucléation et de croissance moyennes entre les échantillons les moins cristallisés aux plus cristallisés. Cette diminution est compatible avec l'évolution attendue dans la phase d'aplatissement des CSD, observée dans les expériences. En revanche Cashman et Marsh (1988) ne discute pas de l'éventualité d'une augmentation de la vitesse de croissance avec la taille, ni de l'acquisition de la forme log-linéaire décroissante qui n'est pas compatible avec une diminution de la vitesse de nucléation au cours du temps. Dans nos expériences, les vitesses de nucléation J varient de 0,001.10⁹ à 0.303.10⁹ m⁻³ s⁻¹ et de croissance G varient de 3,3.10⁻¹⁰ à 1,1.10⁻¹⁰ms⁻¹ (calculées pour une vitesse de refroidissement de 0,2°C/heure) sont différentes des vitesses calculées pour l'étude naturelle par Cashman et Marsh (1988), ces différences s'expliquent par (i) un taux de cristallisation plus faible dans les expériences (<10%) que dans le lac de lave (>20%) et (ii) une vitesse de refroidissement plus forte dans les expériences (0,2°C par heure) que dans le lac de lave (0,02°C par heure). D'autre part la méthode de calcul utilisée par Cashman et Marsh (1998) fournit des vitesses de nucléation et de croissance moyennes entre le liquidus et la température de prélèvement, alors que nous avons calculé l'augmentation de la vitesse avec le temps dans les premières phases de la cristallisation.

8. CONCLUSION

Nous avons réalisé une étude expérimentale de la croissance cristalline dans des basaltes synthétiques. Quelles que soient les conditions expérimentales (température initiale, vitesse de refroidissement, temps de palier initial et final), les distributions de tailles de cristaux (CSD) ont une forme similaire. Les CSD ont une forme en cloche asymétrique avec une partie log-linéaire du côté des grandes tailles et un rebroussement du côté des petites tailles. L'acquisition de la forme log-linéaire des CSD peut s'expliquer par une augmentation exponentielle de la vitesse de nucléation dans les premières phases de cristallisation. On observe une diminution des pentes et des intercepts au cours du refroidissement. Cette évolution peut s'expliquer par une variation apparente de la vitesse de croissance avec la taille des cristaux, soit par mûrissement, soit par agglomération des cristaux.

Cette étude à permis de mettre en évidence, l'influence de divers facteurs sur l'évolution de la taille des cristaux. Le facteur qui joue le rôle principal sur l'évolution des CSD est la vitesse de refroidissement : plus elle est lente, plus les CDS sont plates, ce qui correspond à une vitesse de croissance forte et une vitesse de nucléation faible. Les autres facteurs que nous avons étudiés sont le taux de cristallisation et l'histoire anté-liquidus. Plus le taux de cristallisation est fort, plus les CSD sont plates. Autrement dit, il y a un aplatissement des CSD au cours du refroidissement. L'histoire anté-liquidus contrôle la nucléation : une température anté-liquidus trop forte ou une histoire anté-liquidus trop longue retardent ou empêchent la nucléation. Ainsi l'histoire anté-liquidus contrôle la nucléation par l'élimination des sites de germination potentiels. Les expériences suggèrent donc que les cristaux nucléent à partir d'hétérogénéités dans le liquide.

L'acquisition de la forme des CSD est fortement contrôlée par la vitesse de nucléation hétérogène dans les premiers stades de cristallisation et par l'agglomération des cristaux dans les stades suivants. Il paraît difficile de prévoir quantitativement le lien entre ces deux processus et l'histoire thermique. L'utilisation des CSD comme marqueur de l'histoire thermique semble donc difficile.

Il existe une similarité remarquable entre les formes des CSD, à la fois dans le cadre de ces expériences mais également par rapport aux CSD calculées sur des roches naturelles. Il semble donc que les expériences en système clos et statique reproduisent des conditions proches de celles de la cristallisation de roches naturelles. Les processus dynamiques tels que la sédimentation de cristaux ou la convection pourraient cependant jouer un rôle additionnel dans la détermination des CSD des systèmes naturels.

CHAPITRE 3

Etude de l'évolution de la composition chimique des plagioclases dans la Lower Zone du massif du Skaergaard (Groenland)

1. INTRODUCTION

La complexité des processus de cristallisation des magmas basaltiques peut être abordée par l'étude des intrusions mafiques. Plus spécifiquement, la chimie des minéraux peut être un moyen de remonter aux processus de cristallisation. Le cas du plagioclase, notamment, est très intéressant, car c'est un bon marqueur de l'évolution des liquides basaltiques. Dans les grandes intrusions, comme le Skaergaard, le Stillwater, le Bushveld, dont l'épaisseur verticale est de plusieurs kilomètres, la cristallisation fractionnée se produit à l'échelle de la chambre, comme le montrent les variations systématiques de composition du cœur des plagioclases depuis plancher jusqu'au toit de l'intrusion (e.g. Wager et Brown, 1968; Jaupart et Tait, 1995; Markl et White, 1999). Les conditions de cristallisation sur le plancher, les murs et le toit diffèrent selon les intrusions et font l'objet de nombreuses études (e.g. Wager, 1960; Naslund, 1984a; 1984b; McBirney, 1989a) sur les processus de formation possibles à différents stades d'évolution et différentes échelles d'observation.

Cette étude, limitée aux plagioclases de la *Lower Zone* du Skaergaard, a pour objectif de contribuer à une meilleure compréhension des processus de formation des phases cumulus et intercumulus à partir de leur composition.

S.C.D. - U.H.P. NANCY 1

BIBLIOTHÈQUE DES SCIENCES

Rue du Jardin Scientique - BP 11

34801 VILLERE LES HANCY Odden

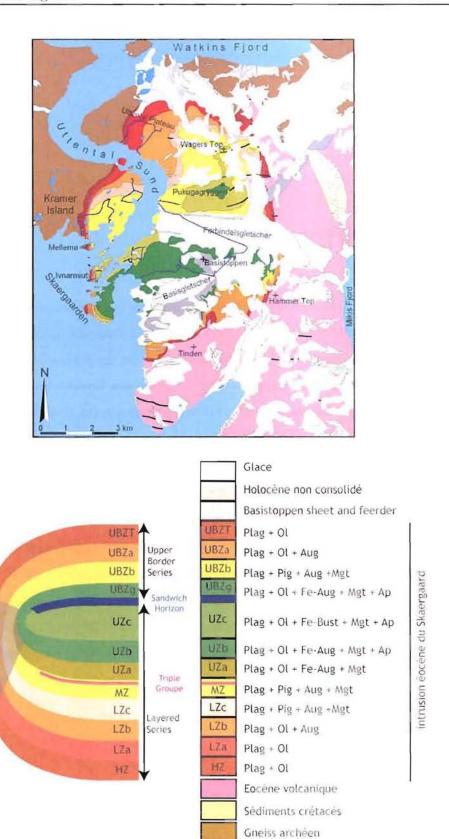


Figure 2-1, Carte et stratigraphie des différentes unités du Skaergaard (modifiées d'après McBirney, 1989b)

2. CONTEXTE GEOLOGIQUE

2.1. Situation et caractéristiques à grande échelle

L'intrusion de Skaergaard se situe sur la côte orientale du Groenland (Wager et Brown, 1968). L'intrusion (Figure 2-1) est de forme ovale (~11 par ~8 kilomètres et ~4-5 kilomètres d'épaisseur) et ses contacts avec les roches encaissantes (gneiss au sud et basaltes au nord) sont généralement très nets (Irvine et al., 1998; Nielsen, 2004). L'âge de sa mise en place est de 55 Ma (Brooks et Gleadow, 1977; Hirschmann, 1992). L'intrusion a été inclinée de 20° vers le Sud par le régime tectonique régional. Grâce à l'érosion, il existe aujourd'hui, à l'affleurement, une coupe à travers l'intrusion qui comprend le plancher, les murs et le toit. L'identification de ces trois environnements a donné lieu a une division de l'intrusion en trois séries (Wager et Deer, 1939; Wager, 1960; Wager et Brown, 1968; Naslund, 1984a; Hoover, 1989; McBirney, 1989a; 1996a; Irvine et al., 1998; Nielsen, 2004 - Figure 2-1). La série la plus externe, Marginal Border Series (MBS), a cristallisé depuis les murs vers l'intérieur de la chambre. La Layered Series (LS), épaisse d'environ 2500m, est légèrement inclinée et a cristallisé du plancher vers le toit. La Upper Border Series (UBS), épaisse d'environ 1000m, a cristallisé du toit (aujourd'hui, partiellement érodé) vers le plancher. La limite entre la LS et l'UBS se nomme Sandwich Horizon (SH) (Wager et Brown, 1968). Enfin, on suppose l'existence de roches sous les niveaux exposés de la LS, appelées Hidden Layered Series (HLS) (Wager et Deer, 1939) ou Hidden Series (HS) (Wager, 1960; Wager et Brown, 1968).

2.2. La minéralogie - définition des zones et sub-zones

Chacune des trois séries est divisée en un nombre de zones et sub-zones définies à partir de la minéralogie des roches. Les changements minéralogiques sont les mêmes dans les trois séries et seule la *Layered Series* sera décrite ici. Le lecteur est invité à se référer à Wager et Brown (1968), McBirney (1996) et Irvine et al. (1998) pour plus d'information sur les autres séries de l'intrusion. Une section stratigraphique type est illustrée dans la **figure 2-1**, basée sur les données d'épaisseurs des différentes zones reportées dans la littérature (Wager et Deer, 1939;

Wager et Brown, 1968; Maaløe, 1976; McBirney, 1989a; 1996a; Irvine et al., 1998; Nielsen, 2004).

La *Layered Series* est divisée en trois zones. En partant des niveaux stratigraphiques les plus bas, on trouve la *Lower Zone* (LZ), puis la *Middle Zone* (MZ) et la *Upper Zone* (UZ). Ce découpage est basé sur la présence de l'olivine comme phase cumulus dans la LZ et l'UZ et de son absence dans la MZ (Wager, 1960).

La *Lower Zone* est elle-même divisée en subzones LZa, LZb et LZc (Wager, 1960), toujours en fonction de la présence ou de l'absence d'une phase cumulus. Dans la LZa, l'olivine et le plagioclase sont les phases cumulus. L'augite est pœcilitique et clairement une phase intercumulus dans ces roches de texture orthocumulat. "*L'inverted pigeonite*" contient des exsolutions d'augite (Wager et Brown, 1968) et est présente en faible quantité. Le changement de la position de l'augite, passant d'intercumulus à cumulus, définit la base inférieure de **LZb**, même, si souvent, il n'existe pas de transition franche. Par exemple, on trouve occasionnellement des augites pœcilitiques à la limite des deux subzones, généralement dans des roches très riches en plagioclase (McBirney, 1989a; Irvine et al., 1998). L'apparition en masse d'oxydes ferro-titanés, comme phase cumulus, définit la base de **LZc**.

La *Middle zone* se distingue par l'absence de l'olivine en phase cumulus. On peut noter également les textures adcumulus de ces roches (absence de matériel interstitiel).

La *Upper Zone* est également divisée en trois subzones. Premièrement, la réapparition de l'olivine comme phase cumulus abondante marque la base de la **UZa**. L'apparition de l'apatite définit la limite entre **UZa** et **UZb**, mais la disparition de la pigeonite est aussi à noter. La limite entre **UZb** et **UZc** correspond à l'apparition de la ferrobustamite sous forme de mosaïque (clinopyroxène riche en fer).

2.3. Compositions des phases

La composition moyenne des phases cumulus suit une évolution graduelle et continue en fonction de la stratigraphie. Par exemple, l'olivine passe d'une composition Fo₆₆ à la base de LZa, à de la fayalite pur à la *Sandwich Horizon* (SH). Elle évolue de la même manière du toit vers la SH (McBirney, 1996a). L'évolution des plagioclases montre une cristallisation similaire à celle des olivines, avec une diminution de la teneur en composant anorthite de LZ (An₆₈) à SH (An₂₅) suivie d'une augmentation jusqu'au toit. Les pyroxènes évoluent de la même manière, en s'enrichissant en hedenbergite de la base de la LS jusqu'à la SH. Toutes ces

observations indiquent une évolution par cristallisation fractionnée d'une seule injection de magma basaltique.

2.4. Le litage

Comme son nom indique, la Layered Series du Skaergaard (LS) contient des roches litées. Cependant, toutes les roches de la LS ne sont pas litées et pour celles qui le sont, différents types de litage sont observés (Wager et Deer, 1939; Wager et Brown, 1968; McBirney, 1996a ; 1996b ; Nielsen, 2004). Le litage le plus évident est modal et est représenté par des niveaux de 5 à 30 cm d'épaisseur dans lesquels les minéraux sont classés par densité, avec les minéraux mafiques à la base et les plagioclases au sommet (modally graded beds). Ces lits peuvent apparaître successivement. Mais, le plus souvent, ils alternent avec des roches de composition uniforme (isomodal), de quelques centimètres à plusieurs mètres d'épaisseur (Figure 2-2a). Ce type de litage est concentré entre le LZc et le UZb. Les contacts supérieurs et inférieurs de ce type de lit sont nets. Ce litage est une caractéristique locale et ne peut pas être suivi au delà de ~300 m en longueur (Irvine et al., 1998). La minéralogie des lits est identique à celle de la roche homogène environnante. Les mécanismes du dépôt de ces couches ont longtemps été controversés. Mais, un dépôt par des courants de densité (en provenance des murs ou du toit) est l'interprétation la plus acceptée aujourd'hui (e.g. Irvine et al., 1998). En effet, les conditions dans la chambre pendant la formation des cumulats de la série litée (LS) ont été certainement dynamiques comme le montre l'existence de nombreux blocs (autoliths) de toutes tailles tombés du toit (Irvine et al., 1998).

En plus de ces lits caractérisés par un tri selon la densité des différents minéraux, deux autres types de litage ont été décrits au Skaergaard (Wager et Deer, 1939; Wager et Brown, 1968; Irvine, 1987; Irvine et al., 1998).

Le litage macrorythmique se caractérise par un classement diffus alternant des lits clairs et foncés (Figure 2-2b) sur une épaisseur pouvant varier de 1 à 5 m. Les deux lits sont généralement constitués des mêmes minéraux, cependant une légère variation de la composition modale les différencie. De plus, aux zones de contact, leurs limites sont diffuses. Tout ceci ne facilite donc pas leur distinction. Ce type de litage est concentré dans la partie supérieure de la *Middle Zone* et est continue sur presque toute la largeur de l'intrusion.

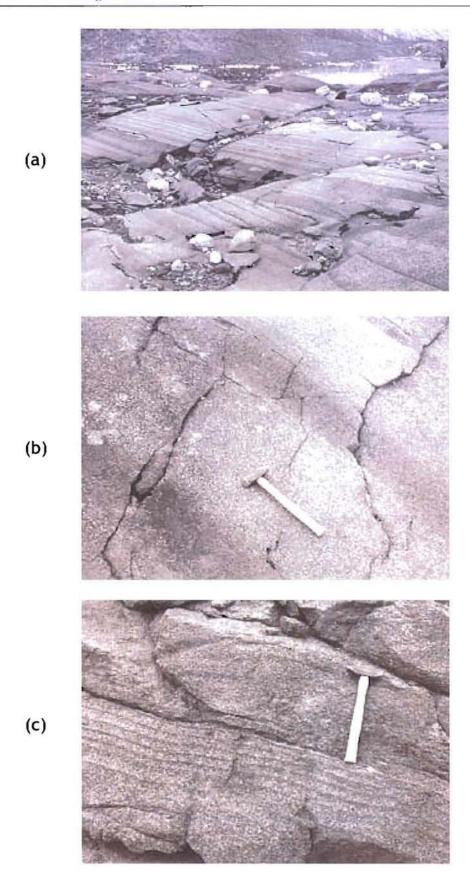


Figure 2-2. Litages dans le Skaergaard (a) litage modal. (b) litage macrorythmique. (c) litage microrythmique (clichés Irvine et al., 2001).

Boudreau et McBirney (1997) interprètent la formation du litage macrorythmique comme due aux écoulements magmatiques, même si les différences par rapport au "graded bedding" suggèrent un changement des caractéristiques de circulation des liquides ou des mécanismes de dépôt de cristaux dans l'intrusion.

Le litage microrythmique est beaucoup plus rare. Le peu d'exemple est réparti entre LZc et UZa et aucun principe ne semble régir son apparition. Il est défini par un litage ou une lamination de quelques centimètres d'épaisseur (Figure 2-2c) qui se dirige dans deux directions opposées, différent du litage unidirectionnel des "graded bedding". Boudreau et McBirney (1997) proposent une formation résultante des variations du taux de nucléation et de cristallisation ainsi que des processus de compaction.

2.5. L'évolution en composition du liquide

Malgré plus de soixante ans de recherche, l'évolution en composition du liquide (la Liquid Line of Descent, LLD) pendant la cristallisation du Skaergaard est toujours sujet à polémique. Pour les uns, le liquide a suivi un enrichissement continu en fer pendant presque tout le parcours de cristallisation (e.g. Wager et Brown, 1968; McBirney et Naslund, 1990; Tegner, 1997), alors que, pour les autres, l'apparition de la magnétite, dans le LZc, a donné lieu à un important appauvrissement du liquide en fer et un enrichissement en silice (e.g. Hunter et Sparks, 1987; 1990; Toplis et Carroll, 1995). Une méthode pour distinguer les différentes possibilités consiste à mettre en évidence l'évolution en densité du liquide au cours de la cristallisation. En effet, celle-ci sera fortement différente dans les deux cas extrêmes décrits ci-dessus. Nous cherchons, donc, des évidences géochimiques et texturales de la mobilité du liquide. En particulier, nous aimerions savoir si les liquides très évolués ont tendance à migrer vers le haut (car peu dense) ou vers le bas (car dense).

3. LA DEMARCHE

3.1. Plagioclases, témoins de l'histoire magmatique

Le plagioclase est de loin le minéral cumulus le plus abondant dans les roches du Skaergaard et, de plus, le seul à être présent dans toutes les zones et sub-zones de l'intrusion. A ce titre, il a été l'objet de nombreuses études (Wager et Deer, 1939; Gay et Muir, 1962; Wager et Brown, 1968; Maaløe, 1976; Naslund, 1984a; Hoover, 1989; McBirney, 1989a, 1996a; Brown, 1993; Tegner, 1997; Irvine et al., 1998; Jang et Naslund, 2001). L'intérêt du plagioclase, pour comprendre l'histoire magmatique de ces roches, provient aussi du fait que l'échange NaSi <=> CaAl est extrêmement lent (Morse, 1984; Smith et Brown, 1988). En effet, comme l'échelle de temps du refroidissement de l'intrusion de Skaergaard est relativement rapide (Schwarz et al., 1979), les variations de teneur en anorthite observées aujourd'hui sont celles acquises pendant l'histoire magmatique.

Cet enregistrement est particulièrement intéressant à l'échelle du grain, constituant une fenêtre sur l'évolution locale du liquide. Par exemple, même si les cœurs non zonés des plagioclases (partie cumulus) sont certainement issus de la cristallisation à partir d'un grand volume de liquide, les périphéries, souvent zonées, se seraient formées *in situ* à partir d'un volume restreint de liquide intercumulus (Wager et Brown, 1968; Maaløe, 1976). La présence ou l'absence de surcroissances et leur variabilité en composition (surtout leur teneur en anorthite) peuvent, donc, fournir des indices sur la présence de liquide interstitiel, l'étendue de sa différenciation locale, et éventuellement de sa mobilité. Par ailleurs, la composition des plagioclases, au contact avec d'autres minéraux, permet de déterminer à quelle étape ces autres phases minérales entrent dans la séquence de cristallisation. Les teneurs en éléments mineurs, en particulier le K et le Fe, peuvent aussi apporter des précisions sur l'évolution en composition du liquide à l'échelle locale.

Cependant, il existe très peu d'études détaillées de la variabilité chimique des plagioclases du Skaergaard à l'échelle du grain. Une des rares exceptions est l'étude de Maaløe (1976) qui a décrit les différents types de zonations observés en microscopie optique. Cette étude a démontré que dans la série litée, se sont surtout les plagioclases de la Lower Zone qui sont

zonés et que, ces zonations sont plus marquées et plus complexes dans les niveaux stratigraphiques les plus bas.

3.2. Choix d'échantillons et protocole analytique

A la lumière des résultats de Maaløe (1976) nous avons choisi d'étudier en détail des roches de la Lower Zone de la série litée. De plus, c'est dans cette zone que la magnétite apparaît comme phase cumulus et que la densité du liquide pourrait passer par un maximum, ou au moins, montrer une inflexion importante.

12 lames minces de 7 roches ont été étudiées. Ces roches proviennent des trois sub-zones de la Lower Zone, sur ~1000m de stratigraphie et comprennent des exemples de roches homogènes (LZa, LZb et LZc) et de roches litées (LZa et LZc seulement). Les résultats obtenus sur les roches homogènes et les roches litées seront comparés afin de mieux comprendre les différences entre les processus de formation de deux types de roches.

Premièrement, toutes les lames ont été observées au microscope optique. Dans certaines lames (voir ci-dessous), la plupart des grains montrent une zonation optique indicative d'une zonation chimique. Cependant, un effort particulier a été fait pour identifier des grains avec une orientation perpendiculaire à la face {010}, qui correspond à une face de croissance du plagioclase. De cette façon, les cristaux sont repérés au microscope optique par l'extinction symétrique des macles; ainsi les analyses sont comparables au niveau des différents cristaux et la probabilité de recoupé le cœur du cristal est plus grande que sur d'autre coupe. Ces grains ont par la suite fait l'objet d'une étude par sonde électronique SX100 (Annexe 3). Les compositions en éléments majeurs et mineurs ont été déterminées le long des profils passant d'un bord à un autre. De plus, l'emplacement des profils a été choisi afin de varier, dans la mesure du possible, la minéralogie des phases en contact avec le plagioclase. L'espacement des points varie de 8 à 100 µm en fonction de la taille du cristal.

4. RESULTATS

4.1. Les roches homogènes

4.1.1. Echantillons de LZa

Deux échantillons de LZa ont été étudiés, SK7 et SK8. Il s'agit de gabbros troctolitiques, présentant une texture d'orthocumulat. Les phases cumulus sont en majorité des plagioclases souvent zonés optiquement (taille moyenne de 5mm) et des olivines (taille moyenne 500μm). Les pyroxènes sont en position intercumulus. Ils constituent plus de 90% des phases intercumulus et se présentent, le plus souvent, sous la forme de grands cristaux peocilitiques (centimétriques - **Figure 4-1a**). On retrouve en majorité des augites et plus rarement de la pigeonite (*inverted pigeonite*). Le reste des phases intercumulus est représenté par des oxydes de Fe-Ti (ilménite et titanomagnétite) entourés quelquefois de biotite (**Figure 4-1b**).

Les profils en composition, obtenus à la microsonde électronique (par exemple de X_{An}), mettent en évidence trois zones dans un plagioclase typique: (i) un plateau de forte teneur en anorthite au cœur, (ii) une diminution de X_{An} vers la bordure et (iii) un plateau en bordure. Dans les échantillons SK7 et SK8, le plateau au cœur des plagioclases est visible sur tous les cristaux et a une composition de An_{63} ($\sigma = 2$). Cependant, tous les grains ne montrent pas les deux autres zones. Les différents cas de figures rencontrés sont:

- (1) Certains des plagioclases ne montrent pas d'évolution vers la périphérie, le plateau central étant certainement tronqué par la cristallisation d'autres minéraux (**Figure 4-2**). C'est le cas pour le bord du plagioclase SK8-p3 au contact avec une olivine et le plagioclase SK7-p2 en contact avec une biotite.
- (2) La diminution continue de la teneur en anorthite vers la périphérie (**Figure 4-3**), sans plateau en bordure, peut se trouver sur des plagioclases en contact avec un autre plagioclase (SK7-p1, SK7-p2, SK7-p3 et SK8-p3). Dans ce cas, on peut noter que la composition la plus évoluée est systématiquement An_{50} au contact des deux grains. Le même type de profil a été observé aussi en contact avec une augite bien que, dans ce cas, la teneur en anorthite en bordure soit plus élevée ($\sim An_{55}$). Elle est aussi visible au contact d'une magnétite sur le plagioclase SK7-p3.

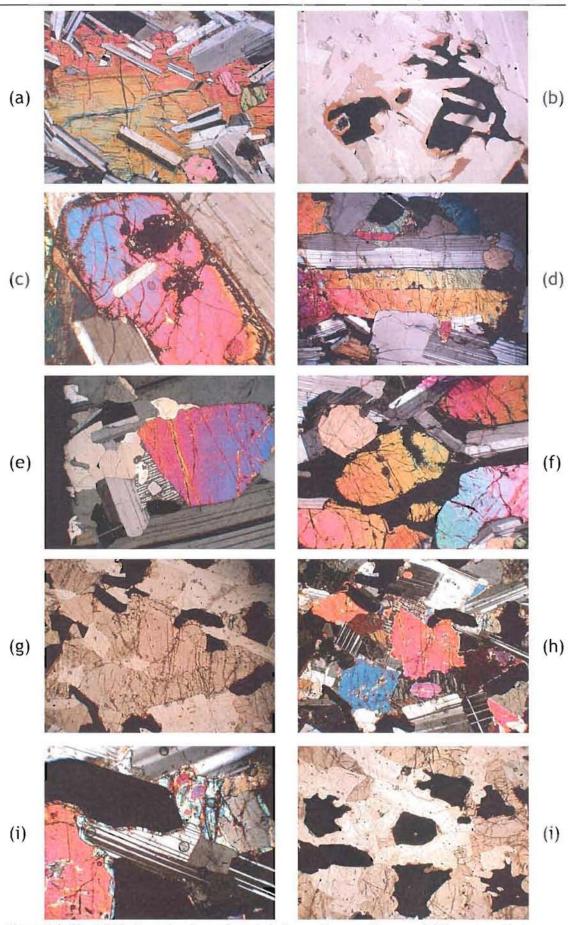


Figure 4-1. Photo LPA des roches homogènes de la Lower Zone du Skaergaard. LZa: (a) et (b) de SK7. LZb: (c), (d) et (f) de SK16; (e) de BM30. LZc: (g), (h), (i) et (j) de SK15. Le champ des photos est de 4800 x 3520 μm hormis pour la photo i (1200 x 880μm).

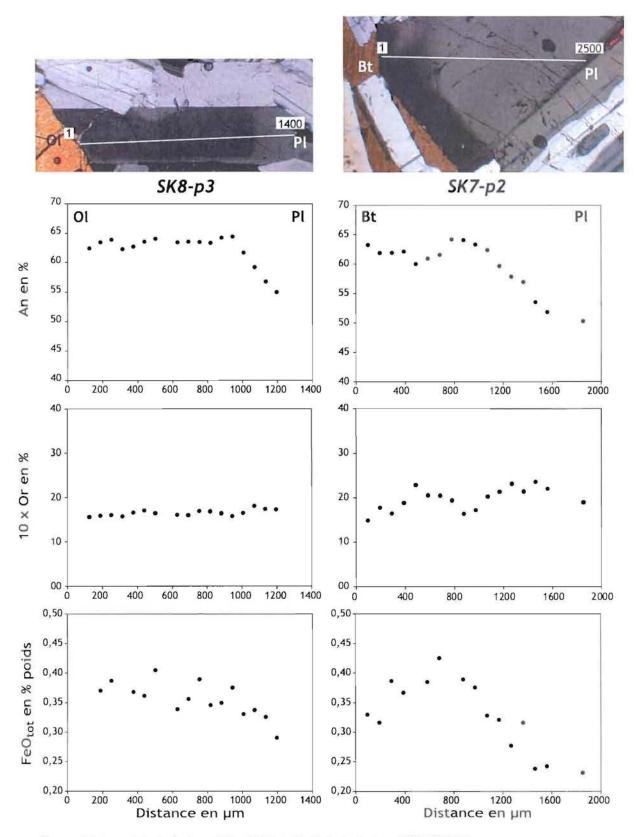


Figure 4-2. (gauche) plagioclase SK8-p3 (LZa). (droite) plagioclase SK7-p2 (LZa). De bas en haut: photo en LPA, teneurs en anorthite, en orthose (x10) et en FeO (%wt). Les minéraux qui sont en contact au niveau du profil sont indiqués sur la photo et sur le profil des teneurs en An.

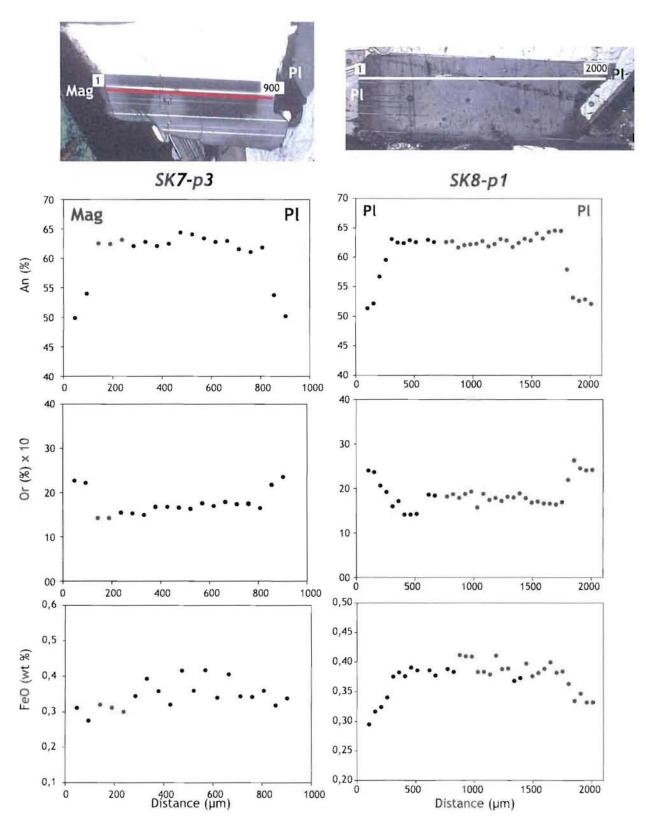


Figure 4-3. (gauche) plagioclase SK7-p3 (LZa). (droite) plagioclase SK8-p1 (LZa). De bas en haut: photo en LPA, teneurs en anorthite, en orthose (x10) et en FeO (%wt). Les minéraux qui sont en contact au niveau du profil sont indiqués sur la photo et sur le profil des teneurs en An.

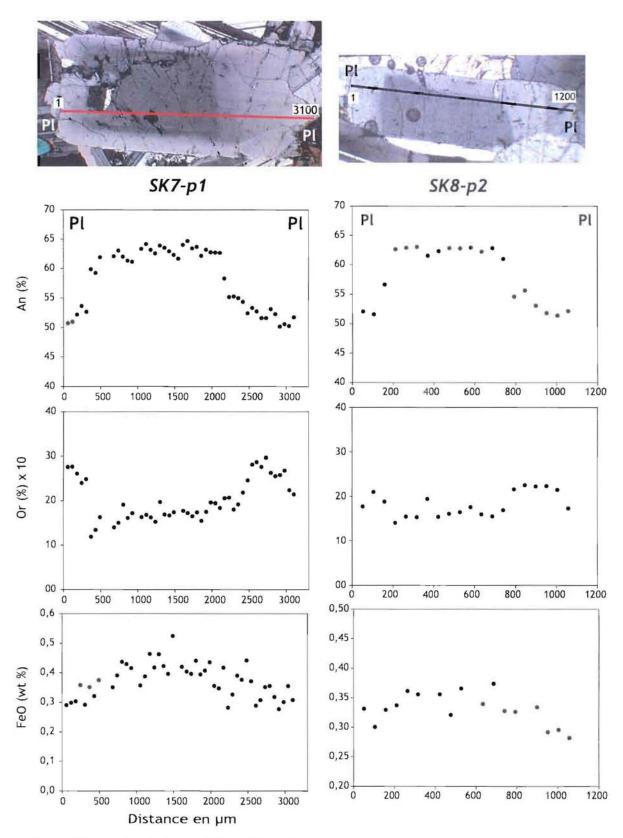


Figure 4-4. (gauche) plagioclase SK7-pl (LZa). (droite) plagioclase SK8-p2 (LZa). De bas en haut: photo en LPA, teneurs en anorthite, en orthose (x10) et en FeO (%wt). Les minéraux qui sont en contact au niveau du profil sont indiqués sur la photo et sur le profil des teneurs en An.

(3) Le cas de figure où il existe un palier en bordure (**Figure 4-4**) ne se trouve que sur des plagioclases en contact avec un autre plagioclase. De plus, la composition sur le palier est systématiquement An₅₀, comme illustrée pour le cas des plagioclases SK7-p1, SK8-p2 et SK8-p1.

En résumé, les six plagioclases analysés présentent tous un cœur montrant un plateau à une teneur moyenne de An_{63} ($\sigma = 2$). Cette teneur décroît en périphérie, descendant jusqu'à An_{50} ($\sigma = 2$). Pour certains grains de plagioclase cette valeur correspond à un plateau plus ou moins long. Le FeO (0,29 à 0,5 wt%) a un profil corrélé à celui de l'anorthite, alors que la teneur en K_2O (0.20 à 0.53 wt%) est anti-corrélé à la teneur en anorthite.

4.1.2. Echantillons de LZb

Deux échantillons ont été étudiés, SK16 et BM30. Ceux-ci sont des gabbros à olivine, avec une texture d'orthocumulat. Les phases cumulus sont le plagioclase, l'olivine et les deux pyroxènes. On retrouve parfois des plagioclases en inclusion dans l'olivine (**Figure 4-1c**). Ils sont en proportion moins importante que dans LZa mais ont une taille pouvant aller jusqu'à 2 mm. L'olivine (Fo₅₆₋₅₀, d'après Irvine et al., 1998) est également de taille plus importante (plusieurs millimètres). L'augite (Wo₄₀En₄₃Fs₁₇, d'après McBirney, 1996 – **Figure 4-1d**) et la pigeonite (Wo₀₋₄En₆₀₋₆₃Fs₃₆₋₃₇) montrent parfois une croissance intercumulus (**Figure 4-1e**) Les phases intercumulus sont les pyroxènes et les oxydes de Fe-Ti (**Figure 4-1f**), en plus grande proportion que dans LZa, et quelques très rares biotites.

Plus on monte dans la séquence plus la zonation des plagioclases est difficile à voir. Seuls trois plagioclases orientés perpendiculairement à la face {010} ont pu être identifiés et correctement analysés. On retrouve les mêmes subdivisions que pour les plagioclases de LZa mais les teneurs en anorthite ont évolué.

- (1) Le cœur du plagioclase est constitué d'un plateau caractérisé par des teneurs en anorthite de l'ordre de An_{56} ($\sigma = 2.4$). Cependant, aucun profil tronqué par la croissance d'autres minéraux n'a été observé.
- (2) La périphérie est marquée par une diminution des teneurs en anorthite. Comme observé dans le LZa, les valeurs au bord des cristaux arrivent à An₅₁ (**Figure 4-5**, BM30-p1).

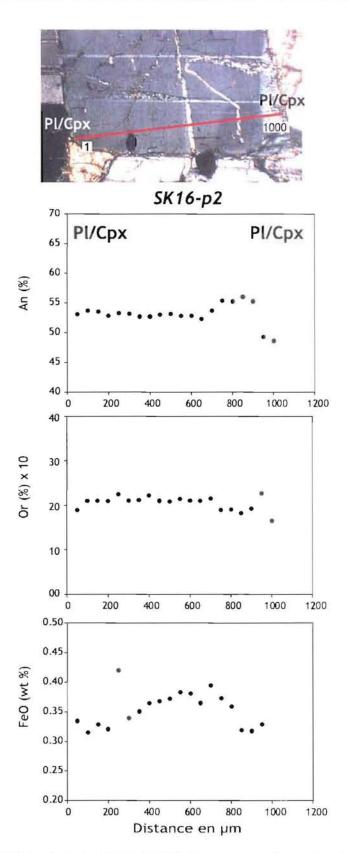


Figure 4-5. Photo LPA du plagioclase SK16-p2 (LZb). Teneurs en anorthite, orthose (x10) et en FeO (%wt). Les minéraux qui sont en contact au niveau du profil sont indiqués sur la photo et sur le profil des teneurs en An.

Ceci veut dire qu'il y a une réduction de l'écart entre les teneurs en anorthite du cœur et celle du bord du plagioclase en fonction de la stratigraphie. Le cas de figure où il existe une diminution continue de la teneur en anorthite est observé exclusivement pour les contacts plagioclase-plagioclase.

(3) Il existe, comme dans le LZa, des cristaux avec un palier externe (**Figure 4-6**). Ceci a été observé pour des contacts plagioclase-plagioclase An_{48,2} ($\sigma = 0.2$) (SK16p1) mais, aussi, plagioclase-augite An_{49,5} ($\sigma = 0.2$) (SK16p2).

Par ailleurs, les teneurs en K₂O suivent les mêmes évolutions que dans LZa avec une variation de 0,23 à 0,33 wt%. Par contre, le fer présente des variations moins importantes que celles observées dans les plagioclases de LZa (0,3 et 0,39 wt%). Le faible nombre de plagioclases analysés ne permet pas de faire un lien entre les zonations et les minéraux environnants.

4.1.3. Echantillons de LZc

Un échantillon de cette zone a été étudié (SK15). C'est un gabbro à oxydes Fe-Ti et à olivine, avec une texture variant d'orthocumulat à adcumulat. Les phases cumulus sont le plagioclase, les deux pyroxènes, l'olivine et les oxydes (**Figure 4-1g** et **h**). Le plagioclase est encore la phase cumulus majoritaire et sa taille est millimétrique. L'augite (Wo₃₄En₄₃Fs₂₃, d'après McBirney, 1996) et la pigeonite présentent couramment des surcroissances intercumulus. L'olivine (Fo₅₅₋₄₂, d'après Irvine et al., 1998) est également présente en couronne réactionnelle (**Figure 4-1i**) autour des clinopyroxènes au contact des oxydes (Pgt + Ti-Mgt = Ol + Ilm+ Aug). Les oxydes de Fe et Ti représentent 10 à 15% de la roche et montrent très fréquemment des surcroissances intercumulus (**Figure 4-1j**).

Dans cet échantillon aucun plagioclase ne semblait avoir de zonation, le seul plagioclase analysé présente une légère variation (**SK15**). Le fer ne montre pas d'évolution, FeO de 0,39 ($\sigma = 0,1$). Le profil en anorthite, analysé dans la largeur du plagioclase (**Figure 4-7**) entre deux contacts plagioclase/plagioclase, montre une légère variation. La forme du profil laisse à penser que le plagioclase ne se présente pas perpendiculairement à la face $\{010\}$, car les teneurs décroissent continuellement, n'indiquant pas de plateau central.

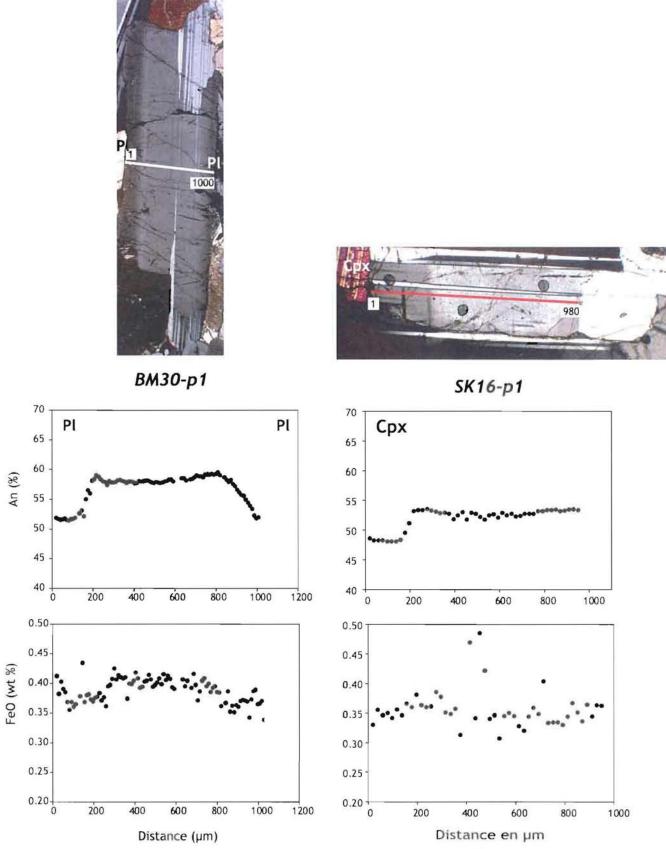


Figure 4-6. (gauche) plagioclase BM30-pl (LZb). (droite) plagioclase SK16-pl (LZb). L'analyse n'a pas été réalisée sur toute la longueur du cristal, ce qui explique qu'il n'y ait pas de minéral en contact..

De bas en haut: photo en LPA, teneurs en anorthite et en FeO (%wt). Les minéraux qui sont en contact au niveau du profil sont indiqués sur la photo et sur le profil des teneurs en An.

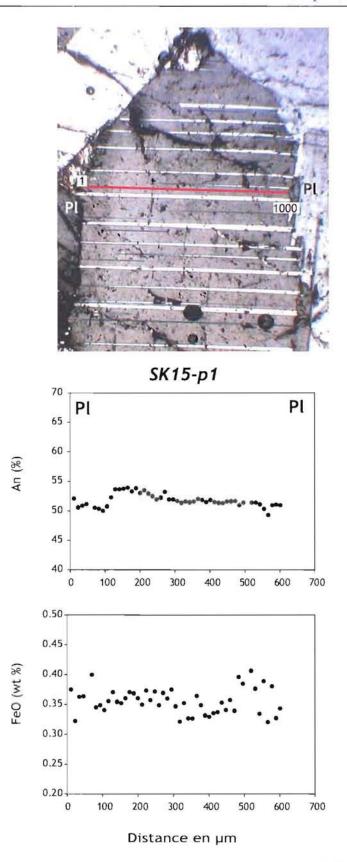


Figure 4-7. Photo LPA du plagioclase SK15-p1 (LZc). Teneurs en anorthite et en FeO (%wt). Les minéraux qui sont en contact au niveau du profil sont indiqués sur la photo et sur le profil des teneurs en An.

Les teneurs les plus hautes vont être considérées comme les plus proches de celles représentatives du cœur, avec une valeur de $An_{52,6}$ ($\sigma = 0,1$). Cependant, on peut voir, dans la partie gauche du profil, une baisse de la teneur en anorthite puis un plateau à An_{50} .

4.2. Roches litées

4.2.1. Echantillons de LZa

L'échantillon étudié (BM15) est identique, en minéralogie, à ceux des gabbros troctolitiques à texture d'orthocumulat. Les phases cumulus sont le plagioclase, souvent zoné (An₆₈ pour le cœur - **Figure 4-8a**), et l'olivine (Fo₆₅₋₅₅, d'après Irvine et al., 1998). Les phases intercumulus sont pour la grande majorité (95%) des augites et des pigeonites, le reste est représenté par de l'ilménite et de la titanomagnétite entourées quelquefois de biotite. Les deux pyroxènes sont présents sous la forme de grandes plages poecilitiques (**Figure 4-8b**). Le litage visible est dû à une variation de la proportion de clinopyroxène.

Trois plagioclases, avec une zonation suffisamment visible au microscope optique, ont été analysés. On y retrouve un plateau central marqué par une très faible variation des teneurs en anorthite, avec une moyenne de An_{68} ($\sigma=1,4$). Les plagioclases présentent les mêmes zonations caractéristiques que celles des roches homogènes. Un stade terminal supplémentaire, marqué par une augmentation très importante de la teneur en anorthite, est visible sur certains cristaux.

- (1) Aucun plagioclase ne présente de plateau central tronqué.
- (2) La diminution continue des teneurs en anorthite est visible sur un plagioclase en contact avec une augite et s'arrête à An_{55} (BM15a-p1 Figure 4-9).
- (3) Le palier externe est visible sur le plagioclase BM15b-p1 qui est en contact avec une augite (**Figure 4-9**). La teneur en anorthite sur le palier est de An_{53,8} (σ = 0,8) dans ce cas.
- (4) Une zonation inverse de la teneur en anorthite est présente dans un plagioclase en contact avec un autre (BM15b-p2 Figure 4-10). Dans cette partie externe les teneurs en anorthite montent jusqu'à An₆₁.

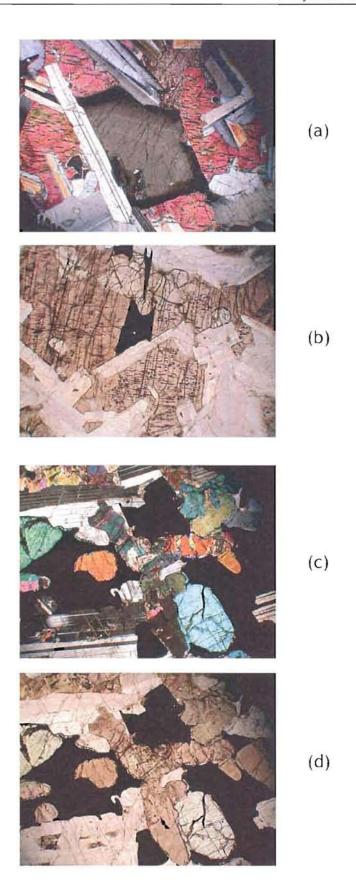


Figure 4-8. Photo LPA des roches litées de la Lower Zone du Skaergaard. LZa : (a) et (b) de BM15. LZc : (c) et (d) de BM67. Le champ des photos est de $4800 \times 3520 \, \mu m$.

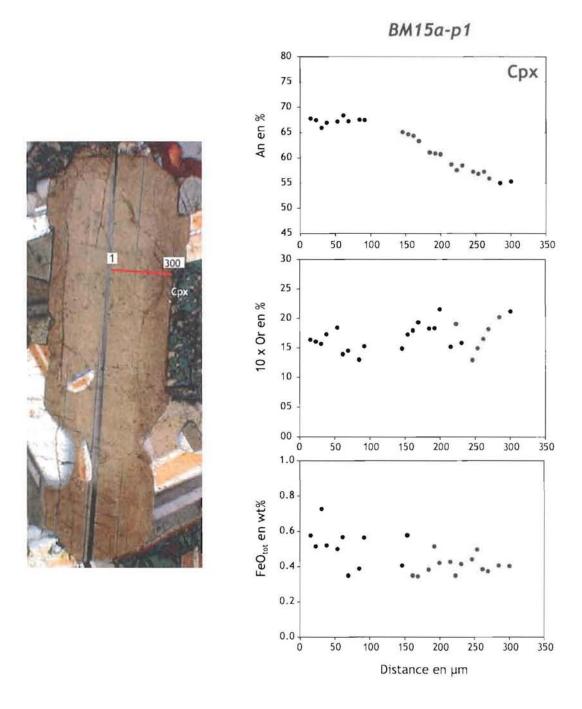


Figure 4-9. Plagioclase BM15a-p1 (LZa). (gauche) photo en LPA. (droite) Teneurs en anorthite, en orthose (x10) et en FeO (%wt). Les minéraux qui sont en contact au niveau du profil sont indiqués sur la photo et sur le profil des teneurs en An.

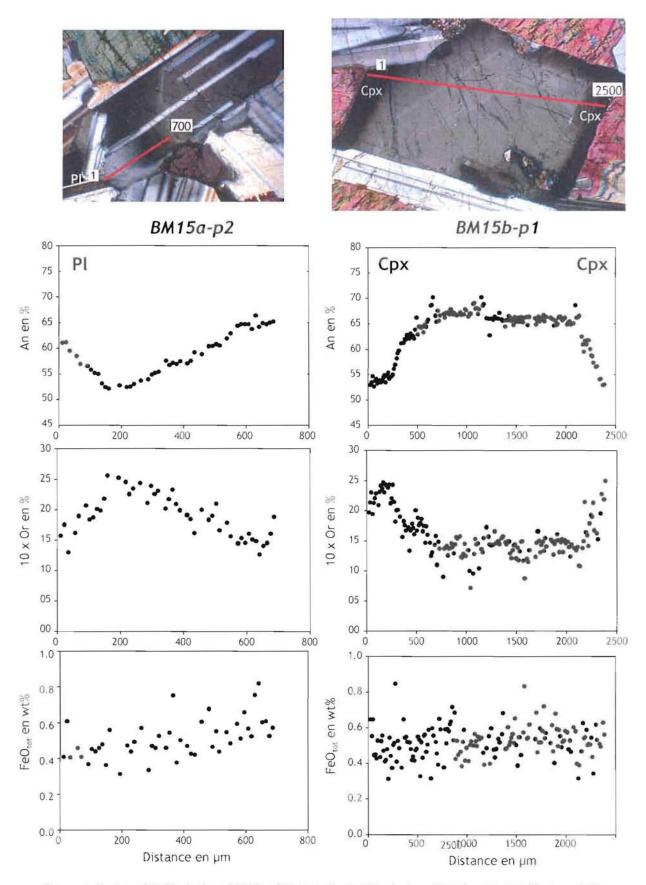


Figure 4-10. (gauche) Plagioclase BM15a-p2 (LZa). (droite) Plagioclase BM15b-p1 (LZa), Photo en LPA. Teneurs en anorthite, en orthose (x10) et en FeO (%wt). Les minéraux qui sont en contact au niveau du profil sont indiqués sur la photo et sur le profil des teneurs en An.

Par ailleurs, nous notons que le fer ne présente pas d'évolution et reste proche de la valeur de 0,45 wt%.4.2.2.

4.2.2. Echantillons de LZc

L'échantillon BM67 est un gabbro à oxydes Fe-Ti avec une texture d'orthocumulat à adcumulat. La composition minéralogique est identique à l'échantillon des roches homogènes. Les phases cumulus sont représentées par le plagioclase (An₅₃₋₅₄ au cœur), l'olivine, l'augite, la pigeonite et les oxydes Fe-Ti (**Figure 4-8c**). Le litage est marqué par l'apparition des oxydes de Fe-Ti en phase cumulus : une limite inférieure bien définie, puis la proportion diminuant graduellement vers le haut jusqu'à une nouvelle apparition massive d'oxydes.

Les cristaux ne présentent aucune zonation optique et ont des valeurs moyennes à An_{53} ($\sigma = 0.8$). Cependant les analyses à la microsonde électronique montrent la présence de zonations significatives.

- (1) Deux plagioclases ne sont pas zonés (BM67c et BM67b) et ont une teneur constante en anorthite An₅₄ ($\sigma = 1$) Ils sont tout deux en contact avec un autre plagioclase (**Figure 4-11**).
- (2) La plupart des plagioclases montrent une diminution des teneurs en anorthite, de la zone centrale (où les teneurs moyennes sont An_{53-54}) vers la bordure. De plus, tous ces grains montrent un palier avec une composition dans la gamme $An_{49,8}$ ($\sigma = 0,7$). Pour certains grains, ce palier va jusqu'aux bordures mais, pour d'autres, il existe des augmentations des teneurs en anorthite en bordure, comme observé dans les roches litées de la LZa.
- (3) Ces zonations inverses sont présentes lorsque le plagioclase est en contact avec un autre plagioclase ou une magnétite (BM67a et BM67d) (**Figure 4-12**). Ces augmentations atteignent des teneurs en anorthite dans la gamme An₅₃₋₇₅. Mais, il est important de noter que l'augmentation en calcium dans la partie périphérique des plagioclases n'est pas une caractéristique commune à tous les cristaux dans une roche donnée.

Les teneurs en K_2O se calquent sur celle du calcium et la teneur en fer reste constante à 0,36 wt%.

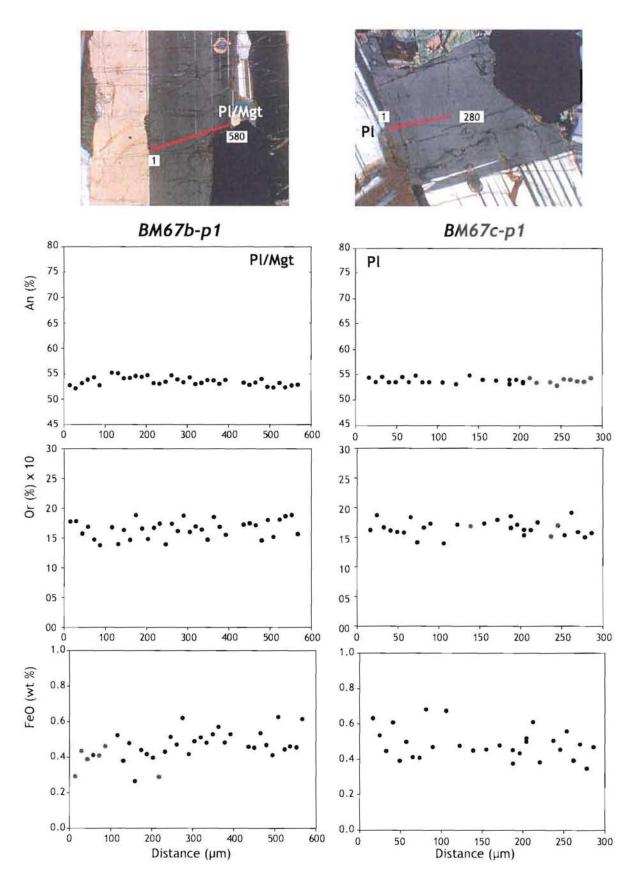


Figure 4-11. (gauche) plagioclase BM67b (LZc). (droite) plagioclase BM67c (LZc). De bas en haut: photo en LPA, teneurs en anorthite, en orthose (x10) et en FeO (%wt). Les minéraux qui sont en contact au niveau du profil sont indiqués sur la photo et sur le profil des teneurs en An.

153

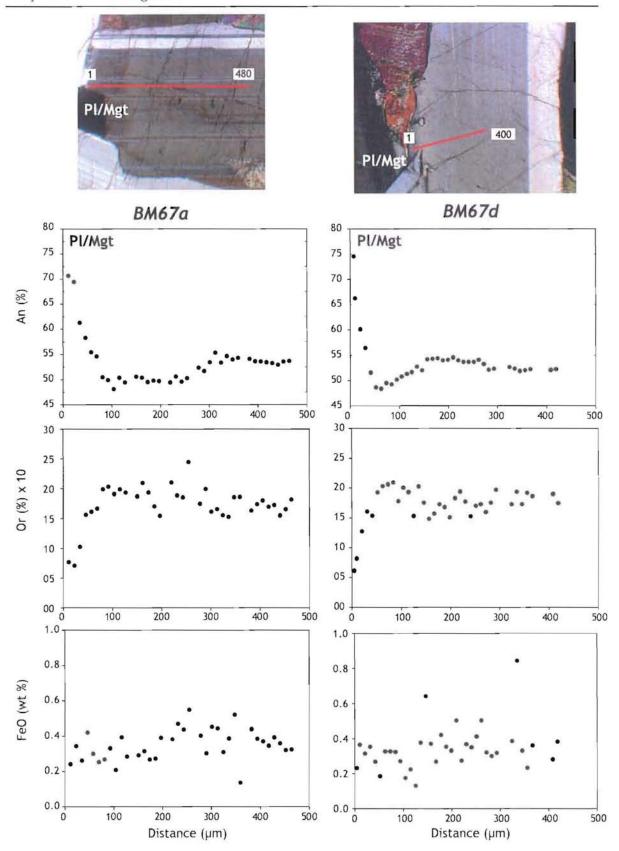
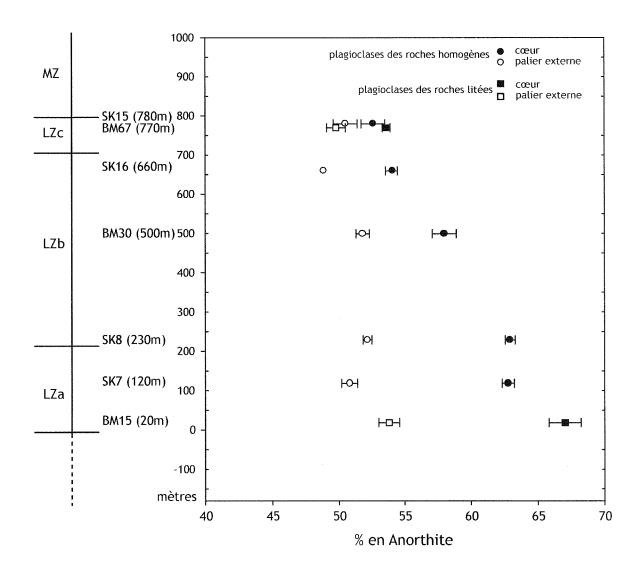


Figure 4-12. (gauche) plagioclase BM67a (LZc). (droite) plagioclase BM67d (LZc). De bas en haut: photo en LPA, teneurs en anorthite, en orthose (x10) et en FeO (%wt). Les minéraux qui sont en contact au niveau du profil sont indiqués sur la photo et sur le profil des teneurs en An.


5. DISCUSSION

La plupart des auteurs s'accordent à dire que la cristallisation des cœurs des plagioclases de LZ s'est effectuée dans un grand volume de liquide (e.g. Wager et al., 1960; Wager et Brown, 1968; Maaløe, 1976). En effet, dans la colonne stratigraphique, l'évolution de la teneur en anorthite des cœurs suit une différenciation « normale » cohérent avec cette hypothèse. Les bordures sont considérées comme le résultat de la cristallisation du liquide interstitiel après sédimentation des cristaux. L'interprétation de ces variations compositionnelles nécessite, donc, la considération de l'évolution du liquide au cours du refroidissement. Par exemple, ces variations vont être fonction des phases qui cristallisent localement, des vitesses de croissance de ces phases, des coefficients de diffusion des éléments dans le liquide, de la présence ou de l'absence de convection et des propriétés physiques du liquide (viscosité, densité...). Les observations faites sur roches homogènes et litées seront considérées séparément.

5.1. Les roches homogènes

Les principales observations des roches homogènes de la LZ sont que les plagioclases présentent une zonation optique et chimique de moins en moins visible en montant dans la stratigraphie de la *Lower Zone*. La composition des bordures est constante, vers An₅₀, alors que celle des cœurs diminue de An₆₈ à LZa à An₅₀ à LZc (**Figure 5-1**). De plus, on observe de manière récurrente un palier externe à An₅₀ quelle que soit la position stratigraphique. Ces observations confirment et complètent des mesures réalisées sur les contacts plagioclase/plagioclase de la LZ par Brown et Toplis (2003).

Dans le cas de la cristallisation *in situ* d'un liquide immobile, on peut noter que les plagioclases devraient se différencier jusqu'à des termes très riches en albite (\approx An₁₀, Brown, 1993 ; Morse, 1997). Par ailleurs, si le liquide interstitiel cristallisait toujours sur place, toutes les roches devraient être des orthocumulats. Cependant, ce n'est pas ce que l'on voit dans les plagioclases de la *Lower Zone*. Leurs analyses ne donnent que rarement des teneurs en anorthite inférieures à An₅₀, et les roches de la LZc sont plutôt des adcumulats. Ces observations nous amènent à rechercher pourquoi la composition des plagioclases semble bloquée vers An₅₀, quelque soit le niveau stratigraphique de la LZ.

Figure 5-1. Teneurs en anorthites des cœurs et de bordures des plagioclases dans les roches homogènes ou dans les roches litées, en fonction de leur position stratigraphique (la stratigraphie correspond à celle de Wager et Brown, 1968). Lorsqu'il n'y a pas de barres d'erreur c'est qu'elles sont comprises dans le symbole.

L'explication la plus simple est que toutes les périphéries des plagioclases ont précipité à partir d'un liquide de composition similaire, bien que cette cristallisation intervienne à des endroits différents et à des moments différents. De plus, la présence des paliers en bordure suggère que le liquide local était tamponné à cette composition.

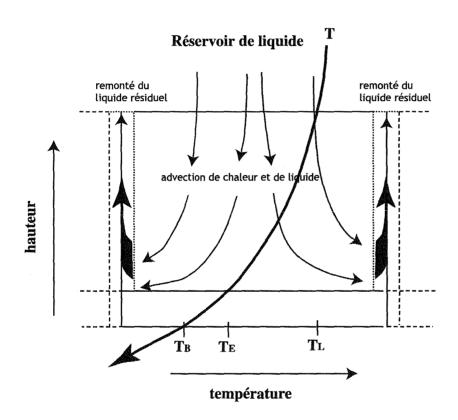
Nous considérerons ci-dessous les mécanismes physico-chimiques qui peuvent donner lieu à l'ensemble des ces caractéristiques.

5.1.1. Mobilité de liquide interstitiel et les moteurs du mouvement

Même si la diminution de la teneur en anorthite, entre le centre et le bord des grains, est cohérente avec la cristallisation *in situ* d'un liquide immobile, il faut comprendre pourquoi cette évolution ne dépasse pas An₅₀. Deux possibilités peuvent être envisagées:

- (i) On peut en premier lieu considérer qu'il ne restait qu'une faible quantité de liquide résiduel (donc une faible porosité), l'épuisement de ce liquide ayant entraîné l'arrêt de la cristallisation.
- (ii) L'autre possibilité est d'invoquer l'extraction du liquide, entraînant de fait l'arrêt de la cristallisation.

La première hypothèse peut être aisément éliminée. En effet, la présence de grandes plages d'augites pœcilitiques englobant les phases cumulus indique la présence d'une proportion significative de liquide résiduel. De plus, il est difficile dans ce cas d'expliquer des paliers de composition constante en bordure. L'hypothèse de la mobilité du liquide résiduel semble plus plausible, l'expulsion se faisant soit par compaction (Boudreau et McBirney, 1997) soit par convection compositionnelle (Tait et al., 1984; Morse, 1986; Jaupart et Tait, 1995; Tait et Jaupart, 1996). Si la compaction est le principal mécanisme d'expulsion du liquide intercumulus, des preuves texturales de ce mécanisme doivent être visibles dans ces roches; si le mécanisme de convection compositionnelle est dominant, ceci implique un certain nombre de contraintes concernant les propriétés physiques des liquides intercumulus (Tait et al., 1984).


Concernant l'idée de la compaction, la présence du palier externe la rend caduque puisqu'incompatible avec ce mécanisme. De plus, il est difficile d'expliquer pourquoi les bordures des grains ont tous la même composition quels que soient leurs niveaux

stratigraphiques. En effet, la quantité de liquide résiduel ayant pu cristalliser avant compaction montrerait une évolution de la teneur en anorthite suivant la LLD. De plus, les proportions de liquide qui augmentent de LZa à LZc, en raison d'un avancement différent de la cristallisation, doivent entraîner une évolution différente des poches de liquide résiduel dans la séquence stratigraphique. Ainsi les bordures de LZc devraient être plus évoluées que celles de LZa.

Concernant la deuxième hypothèse, la convection compositionnelle est une circulation de fluide due à une différence de densité, cette dernière étant provoquée par une différence de température ou de composition des liquides (Tait et al., 1984). Prenons le cas d'un liquide A, plus évolué et plus froid et qui se situe en dessous d'un liquide B, plus chaud et moins évolué. Si le liquide A est plus dense, il est stable par rapport au liquide B et reste sur place. Par contre, si la densité du liquide A diminue et devient inférieur à la densité du liquide B, soit par réchauffement, soit par un changement de composition (lié à la cristallisation...) le liquide A peut remonter, étant remplacé en bas par le liquide B. On peut ainsi obtenir une circulation des liquides qui permet d'avoir, à un niveau stratigraphique donné, un liquide qui n'évolue peu ou pas en composition (Figure 5-2 - Tait et al., 1984). Il est à noter également que ce mécanisme est décrit comme pouvant former des adcumulats (Tait et al., 1984 ; Morse, 1986 ; Tait et Jaupart, 1996).

Cependant, on ne peut pas écarter totalement le mécanisme de compaction car il pourrait expliquer pourquoi il n'y a que très peu de poche de liquide évolué. Car, même si la convection compositionnelle tamponne le liquide à An₅₀, la cristallisation fait diminuer la porosité et laisse des poches hermétiques de liquide résiduel qui vont se différencier. Très peu d'observations sont faites sur des poches de liquide évolué. Il faut donc que la compaction du liquide ait lieu avant que la porosité soit trop forte, bloquant donc les circulations de liquide, afin d'expulser tout liquide résiduel avant différenciation.

Dans le cas de la *Layered Series* du Skaergaard (le plancher), si la différenciation du liquide intercumulus le rend plus dense, il sera stagnant et restera sur place. Se forme ainsi un orthocumulat où toute l'évolution de la LLD doit être visible (par exemple il doit exister des surcroissances sur des plagioclases très riches en albite). Ceci n'est pas observé dans les orthocumulats de LZa et LZb. Par contre, si le liquide interstitiel devient moins dense lors de la différenciation, il peut migrer vers le haut et sera remplacé par un liquide plus dense, plus chaud et plus primitif.

Figure 5-2. Cellule de convection dans un "mush", limité par deux zones de forte perméabilité dans lesquelles remonte le liquide résiduel. Le liquide plus primitif du réservoir descend, se refroidit et cristallise. La cristallisation se fait à température constante, car la chaleur descend par advection. T_L correspond à la température de liquidus, T_E , la température eutectique et T_B la température à la limite inférieure (d'après Tait et Jaupart, 1996).

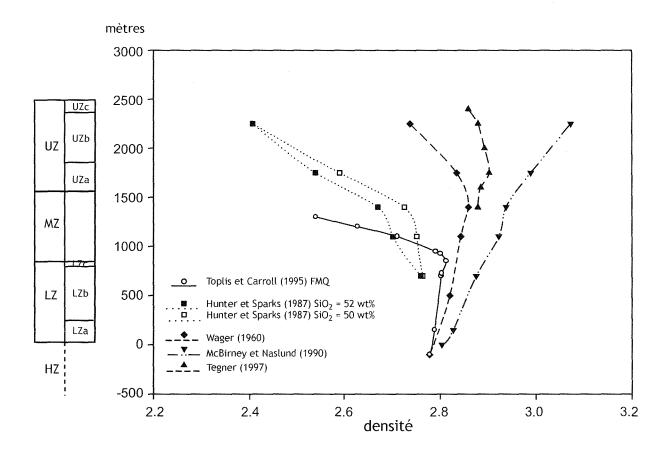
Il est à noter que, si l'évolution en densité du liquide est complexe lors de la cristallisation (si la densité du liquide passe par un maximum par exemple), on peut imaginer une situation où le liquide interstitiel est stable au début mais devient instable par la suite.

Plusieurs observations suggèrent un rôle de la convection compositionnelle dans la LZ du Skaergaard. Premièrement, la présence d'adcumulats dans LZc est un point important étayant le mécanisme de la convection compositionnelle comme responsable à la fois des adcumulats et de la formation des paliers externes de plagioclase. L'abondance de la magnétite et de l'ilménite, en cumulat dans LZc, est également une observation fondamentale car la cristallisation de ces phases peut provoquer un changement de densité du liquide (voir cidessous). En effet, on notera que l'apparition des oxydes de Fe-Ti en phase cumulus dans LZc coïncide avec la cristallisation des cœurs des plagioclases à An₅₃₋₅₄. Dans ce cas, l'apparition des oxydes dans le liquide *intercumulus* à des niveaux stratigraphiques inférieurs devrait avoir lieu lorsque celui ci est en équilibre avec An₅₃₋₅₄.

Ainsi dans LZa, avant l'apparition de la magnétite, si le liquide devient plus dense au cours de sa cristallisation il va rester sur place. Lorsque celui-ci cristallise les oxydes de Fe-Ti (et donc le plagioclase à An₅₃₋₅₄), s'il devient moins dense, il va remonter lorsque la différence de densité sera suffisamment importante et être remplacé par le liquide sus-jacent. De cette façon les paliers en bordure des grains, tamponné par un liquide qui n'évolue pas, seront formés. Il en va de même dans LZb. Enfin en LZc, où le liquide est saturé en oxydes dès le début de la cristallisation, le liquide va co-précipiter en phase cumulus le plagioclase à An₅₃₋₅₄ et les oxydes.

En principe, le mécanisme de la convection compositionnelle paraît rendre compte de toutes les observations. Le liquide résiduel homogène, tamponné à An₅₀, traverse le "*mush*" de bas en haut, permettant de garder une teneur en anorthite constante stratigraphiquement mais également sur la durée. L'absence d'évolution de la composition des plagioclases, même après le plateau à An₅₀, pourrait montrer qu'une compaction finale, expulsant le liquide interstitiel, a eu lieu après la formation de ce plateau. Ceci expliquerait aussi l'arrêt de l'évolution du liquide n'allant pas jusqu'aux stades ultimes de la cristallisation. Cependant, il est important de considérer en quelle mesure l'hypothèse de la convection compositionnelle est raisonnable en terme de propriétés physiques des liquides du Skaergaard.

5.1.4. Conditions pour appliquer la convection compositionnelle


D'après Tait et al. (1984) la convection compositionnelle ne peut s'appliquer qu'à certaines conditions. En effet, une forte viscosité ou une faible perméabilité peut empêcher le liquide de convecter (Tait et al., 1984). Il est aussi nécessaire que les liquides plus évolués soient moins denses que les liquides plus primitifs. Il est donc nécessaire de considérer ces différents paramètres.

Les orthocumulats de LZa présentent de grandes plages d'augite peocilitique (pluricentimétrique) intercumulus. Cette observation suffit à établir une perméabilité assez importante pour permettre la migration des liquides, sachant que la perméabilité doit être certainement minimum en bas de la séquence LZ car c'est ici que la proportion de liquide intercumulus va être la plus petite au moment où est atteinte la saturation en oxydes Fe-Ti dans le liquide. De plus, située en bas de la pile de cristaux, le poids de cette dernière ajoute à la diminution de l'espace intercumulus. On peut donc estimer que si la perméabilité est suffisante en LZa, elle le sera sur toute la hauteur de LZ.

Un calcul de la densité des liquides à chaque niveau stratigraphique (Tableau 5-1) a été effectué d'après l'équation de Lange et Carmichael (1987). Les compositions des liquides employés sont celles proposées dans la littérature, cependant on notera qu'il n'existe pas d'échantillon des liquides intermédiaires et que les compositions des liquides sont calculées de manière différente par chaque auteur. Pour les compositions données par Wager (1960), elles sont calculées en fixant le bilan de masse initial et final. Les compositions de McBirney (1996) correspondent à la composition des cumulats fondus de chaque zone stratigraphique. Les compositions calculées par Hunter et Sparks (1987) sont basées sur l'hypothèse que le liquide du Saergaard, au moment de la saturation en magnétite, était semblable à une roche volcanique d'Islande. Deux teneurs en silices de 50 et 52 %wt ont été testées et les compositions des liquides des niveaux supérieurs calculées en employant les compositions connues des cumulat du Saergaard. Les compositions des liquides de Tegner (1997) sont calculées en faisant une hypothèse sur la composition finale de la roche puis en soustrayant la composition du cumulat. Enfin les compositions de Toplis et Carroll (1995) sont basées sur des données expérimentales réalisées à partir d'un basalte synthétique dont la composition correspond (en éléments majeurs) à celle d'un dyke du Skaergaard. La différence avec les roches du Skaergaard, c'est que les expériences sont réalisées à P = 1 bar.

	Température (°C)	P (bars)	d	hauteurs (m)
Wager (1960)		, , , , , , , , , , , , , , , , , , , ,		
HZ	1170	1600	2.778	-100
LZ	1150-1125	1500-1100	2.820	500
MΖ	1075	1000	2.843	1100
Uza	1050	850	2.859	1400
Uzb	1000	700	2.835	1750
Uzc	950	550	2.738	2250
McBirney (1996)	•			
Lza	1150	1500	2.803	0
LZb	1135	1300	2.827	150
LZc	1125	1100	2.875	700
MZ	1075	1000	2.922	1100
Uza	1050	850	2.937	1400
Uzb	1000	700	2.989	1750
Uzc	950	550	3.073	2250
Tegner (1997)	<u> </u>			L
base Uza	1050	900	2.878	1400
Mid Uza	1025	850	2.884	1600
base Uzb	1000	800	2.902	1750
Mid Uzb	975	700	2.892	2000
base Uzc	950	600	2.879	2250
Mid Uzc	925	550	2.859	2400
Mid 02c	/23	330	2.037	2-100
Hunter et Sparks (1987)	<u> </u>	<u> </u>		
liquide paren	t SiO 2 = 50 wt%			
LZc	1170	1600	2.764	700
MZ	1075	1000	2.752	1100
Uza	1050	850	2.726	1400
Uzb	1000	700	2.591	1750
Uzc	950	550	2.406	2250
liquide paren	1	,		
LZc	1170	1600	2.760	700
MZ	1075	1000	2.702	1100
Uza	1050	850	2.670	1400
Uzb	1000	700	2.541	1750
Uzc	950	550	2.406	2250
	,,,,			
Toplis et Carroll (1995)				
à FMQ				
Fe 45	1158	1	2.7786	-100
Fe36	1134	1	2.7881	150
Fe37	1125	1	2.8021	700
Fe35	1125	1	2.8019	700
Fe44Rg	1115	1	2.8121	725
Fe42	1105	1	2.8121	850
Fe43	1096	1	2.8009	925
Fe47	1087	1	2.7908	950
Fe511	1078	1	2.7114	1100
Fe49	1068	1	2.6277	1200
Fe52t	1057	1	2.5418	1300

Tableau 5-1. Tableau récapitulatif des valeurs de densité calculées d'après l'équation de Lange et Carmichael (1987). Les températures et les pressions correspondent à celles données par Hunter et Sparks (1987) et la hauteur stratigraphique correspond à celle de Wager et Brown (1968). Les données de Toplis et Carroll (1995) sont calées sur la stratigraphie en fonction de la température des expériences.

Figure 5-3. Evolution de la densité du liquide en fonction de la stratigraphie. Les calculs de densité sont réalisés à partir de l'équation de Lange et Carmichael (1987) pour chaque calcul de composition de liquide donnée dans la littérature.

Cette différence de pression entre les roches naturelles et expérimentales est importante, cependant cela n'aura pas d'influence sur la forme de la courbe mais uniquement sur ces valeurs en densité qui seront décalées vers la droite pour des pressions supérieures.

La convection compositionnelle ne peut avoir lieu que par une différence de densité entre les liquides. Si la brusque baisse de la densité du liquide est due à la cristallisation de la magnétite, un maximum en densité devrait être visible. L'évolution de cette densité en fonction de la stratigraphie est présentée dans la **figure 5-3**, pour les différentes LLD proposées. On remarque que, suivant la LLD choisie pour faire le calcul de densité, on passe ou pas par un maximum en densité. Certaines LLD passent par un maximum en densité autour de la saturation en oxydes de Fe-Ti et sont donc cohérentes avec nos observations pétrologiques. (Wager, 1960; Hunter et Sparks, 1987; Toplis et Carroll, 1995). Par contre, d'autres LLD ne passent pas par un maximum en densité et ne peuvent pas expliquer nos observations (McBirney et Naslund, 1990; Tegner, 1997).

Puisque l'on n'observe pas de cœurs à An_{50} dans les niveaux stratigraphiques étudiés, ont peut penser que la convection compositionnelle ne s'est pas mise en place directement quand les oxydes ont cristallisé, a savoir à An_{53-54} . Pour activer la convection compositionnelle, il faut que la différence de densité entre les liquides soit suffisamment importante. D'après nos observations cette différence de densité est atteinte lorsque le plagioclase cristallise à An_{50} . Ainsi la mise en place de la convection compositionnelle ne se fait pas juste quand les oxydes cristallisent, mais un peu plus tard (à An_{50}) lorsque la différence de densité est suffisamment importante. D'après le donnes de Toplis et Brown (2003), les teneurs des cœurs et des bordures se superposent à An_{50} dans MZ, ce qui sous entendrait que la convection compositionnelle se mette en place au moment où on cristallise les plagioclases de MZ.

A la lumière de nos observations nous favorisons l'hypothèse d'un maximum en densité dans le LZc du Skaergaard. Nous suggérons que la formation d'orthocumulat de LZ se soit produite à partir d'un liquide stagnant et ensuite d'un liquide interstitiel mobile, qui correspondrait à l'arrivée au liquidus de la magnétite lorsque le plagioclase est à An₅₀. Si le liquide ne passe pas par un maximum en densité, il est très difficile d'expliquer les adcumulats de LZc.

5.2. Les roches litées

Comme décrit plus haut, les teneurs en éléments majeurs dans les plagioclases présentent la même évolution dans les roches litées que celle des roches homogènes. Cependant une zonation inverse en extrême bordure est fréquemment trouvée alors qu'elle n'est jamais observée dans les roches homogènes. Les teneurs en anorthite forment un plateau au cœur du cristal et cette valeur diminue avec la stratigraphie. Les bordures sont généralement proches de la valeur An₅₀ et des paliers externes sont visibles sur certains plagioclases. De plus, les bordures extrêmes peuvent atteindrent des valeurs de An₇₅.

La formation des roches litées semble être identique à celle des roches homogènes, avec une étape finale supplémentaire.

- (i) La cristallisation des cœurs de plagioclase se fait à partir d'un grand volume de liquide.
- (ii) Puis, la différenciation du liquide évolue jusqu'à cristalliser des plagioclases à An₅₀ (apparition de la magnétite).
- (iii) Ensuite, l'établissement de la convection compositionnelle tamponne le liquide à An_{50} et permet de cristalliser un palier.
- (iv) Enfin, la bordure des cristaux, enrichie en Ca, est cristallisée à partir d'un liquide résiduel isolé du liquide global en convection.

Ces zonations inverses ne sont pas toujours présentes, en particulier lorsque les analyses ont été effectuées dans des plagioclases qui sont en contact avec de l'augite. Cette zonation inverse n'est pas forcement assujettie au contact plagioclase/plagioclase. L'évolution finale de la teneur en anorthite dans le plagioclase indique que le système s'est fermé, la cristallisation se faisant à partir d'un liquide résiduel qui s'enrichit en calcium.

Ce type de zonation inverse a déjà été décrit dans les plagioclases de l'intrusion du Kiglapait par Morse et Nolan (1984). Ces derniers y observent des zonations inverses plus prononcées au niveau des contacts plagioclase/plagioclase. La formation de ces bordures est interprétée comme liée à la cristallisation d'un liquide résiduel dont le coefficient de partage de An entre le liquide et le cristal augmente avec l'accroissement de la concentration du composant "augite" dans le liquide.

Dans le cas des plagioclases du Skaergaard, l'hypothèse de la cristallisation de la bordure à partir d'un liquide résiduel s'enrichissant en calcium pourrait correspondre aux zonations

décrites par Morse et Nolan (1984). Mais, dans notre cas, elle est certainement un phénomène très local, car pas toujours présente.

En tout cas, il semblerait que cet enrichissement en calcium dans le plagioclase est bien lié à l'absence locale de cristallisation d'augite. Cependant, on peut se demander pourquoi cette zonation inverse n'est jamais présente dans les roches homogènes et donc l'importance du litage dans la formation de ces poches de liquide résiduel. Par exemple, l'accumulation de magnétite bloque peut-être la perméabilité du système, ou alternativement, la présence d'une forte proportion d'oxydes Fe-Ti "empoisonne" certaines poches de liquides interstitiels, empêchant la cristallisation de l'augite.

6. CONCLUSION

Cette étude chimique des plagioclases de la *Lower Zone* du Skaergaard a permis de mettre en évidence les différents mécanismes qui entrent en jeu durant la cristallisation de la base de cette chambre magmatique. Les roches présentes se sont formées en plusieurs étapes, trois pour les roches homogènes et quatre pour les roches litées. Ces étapes sont :

- (i) Cristallisation dans un grand volume de liquide indiqué par une teneur en anorthite constante et élevée, suivi d'une sédimentation des cristaux par gravité.
 - (ii) Cristallisation in situ, qui est indiquée par la diminution des teneurs en anorthite.
- (iii) Apparition des oxydes Fe-Ti comme phases au liquidus lorsque le liquide est à An₅₃54. La diminution de la densité du liquide inférieur permet de créer un gradient de densité.

 Ainsi quand la différence de densité est suffisamment importante, une convection compositionnelle se met en place entre les liquides qui ont cristallisé des oxydes (les plus bas, stratigraphiquement) et les liquides qui n'ont pas encore atteint ce stade. L'écart nécessaire en densité est atteint lorsque le cœur du plagioclase est à An50, ce qui correspond aux plagioclases de MZ. Ceci conduit à une homogénéisation du liquide, tamponné à An₅₀ sur toute la *Lower Zone* (et éventuellement de la *Middle Zone*)
- (iv) Pour les roches litées, une cristallisation des poches de liquide résiduel, fortement enrichi en calcium est observée dans les plagioclases qui ne sont pas en contact avec de l'augite.

On peut rajouter une étape supplémentaire après (iii) qui correspond à une expulsion du liquide par compaction.

Ainsi la formation de la *Lower Zone* de Skaergaard est due à l'interaction de la cristallisation fractionnée, de la sédimentation, de la convection compositionnelle ainsi qu'une compaction. Le liquide suit l'évolution suivante : enrichissement en fer avec une diminution de la silice ce qui entraîne une augmentation de la densité qui passera par un maximum, la cristallisation des oxydes appauvrit le liquide en fer alors que la silice augmente.

CHAPITRE 4

Etude pétrologique de la genèse du litage dans le pluton granitique de Dolbel (Niger)

1. LES OBJECTIFS, LES METHODES ET LA CIBLE

1.1. Les Objectifs

La différenciation des réservoirs magmatiques et les structures qui en sont issues résultent de la combinaison de nombreux mécanismes comme nous l'avons vu dans le premier chapitre. Des modèles numériques et expérimentaux (Sparks et al., 1984b; 1993; Brandeis et Jaupart, 1986; Martin et al., 1987; Tait et Jaupart, 1992; 1996; Jaupart et Tait, 1996), des études de terrain (Irvine, 1978 et Irvine et al., 1998) ainsi que des mesures *in situ* du gradient chimique dans les minéraux (Toplis et Brown, 2001) soulignent le rôle central de la convection thermique et compositionnelle dans le fonctionnement des chambres magmatiques et dans la formation du litage des complexes lités (Skaergaard, Stillwater, Bushveld, etc.). Comme nous l'avons vu, la situation est moins claire pour les plutons granitiques malgré des exemples spectaculaires (Klokken, Ploumanac'h, batholite de la Sierra Nevada, etc..). De façon synthétique on peut considérer que selon la littérature, deux processus principaux peuvent rendre compte de la présence de schlieren et de litage compositionnel dans les corps granitiques.

Le premier processus est l'écoulement visqueux lié aux mélanges de magmas hétérogènes de forte viscosité comme mis en évidence dans les systèmes volcaniques par Seaman et al. (1995). Ceci peut être illustré par deux exemples :

(i) Les intrusions litées acides-basiques (« MASLI system » de Wiebe et Collins, 1998) impliquent de multiples injections de magma mafique au travers du plancher partiellement cristallisé d'une chambre magmatique acide (Wiebe, 1993a; 1993b; 1996; Wiebe et Collins, 1998; Wiebe et al., 2002). Les injections plus denses s'étalent latéralement et forment une nappe, probablement à l'interface entre un « mush » riche

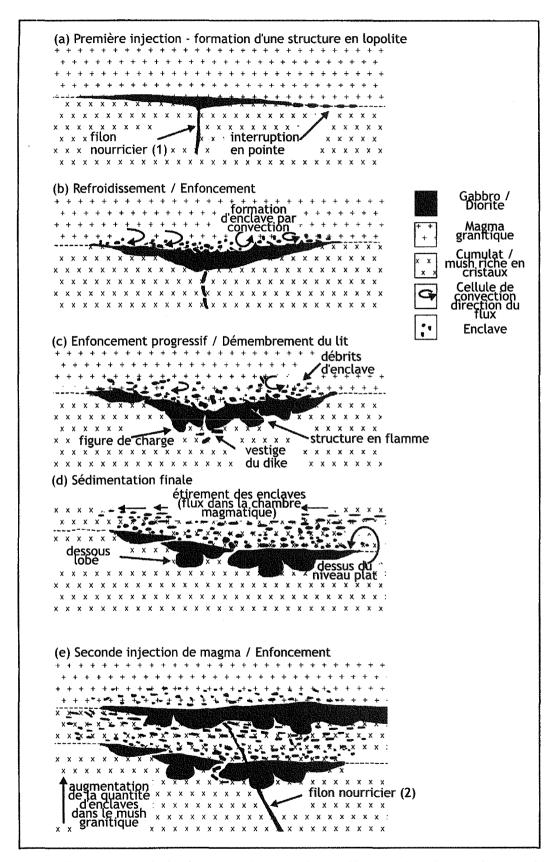


Figure 1-1. Schéma montrant le développement d'une intrusion stratiforme basique dans un pluton granitique, lié à un remplissage séquentiel de magma basique dans une chambre magmatique acide (modifié d'après Wiebe et Collins, 1998).

en cristaux et un magma surincombant pauvre en cristaux (Figure 1-1a). Le refroidissement et la cristallisation de cette nappe s'accompagnent de courants dans le magma granitique supérieur, capables d'arracher des fragments de magma basique sur la surface supérieure de la nappe (Figure 1-1b). Comme la nappe basique cristallise et s'enfonce dans le « mush » sous-jacent, structures en flamme et figures de charge se développent à la base avec une expulsion des liquides du "mush" donnant par exemple des pipes granitiques (Figure 1-1c). Par injections successives, le pluton est constitué d'une séquence de dépôts qui fournit un enregistrement « stratigraphique » des événements dans l'intrusion (Figure 1-1e).

(ii) Un autre exemple correspond aux venues monzodioritiques ou granodioritiques désagrégées mécaniquement par interaction, à différents stades rhéologiques, entre magma basique et magma acide. Ce dernier est contaminé et donne des schlieren (Reid et Hamilton, 1987; Gasquet et al., 1995; Wells et Wooldridge, in Pitcher, 1993).

Le second processus correspond aux mouvements liquides-cristaux liés à la convection thermique et compositionnelle dans un magma granitique de faible viscosité (Scaillet et al., 1996; 1998; Clemens et Petford, 1999), ainsi qu'aux processus physiques de ségrégation. Ceci englobe la compaction, la sédimentation par gravité et le tri hydrodynamique.

- (i) La compaction d'un « mush » correspond au tassement d'une suspension de cristaux sous leur propre poids (Parsons, 1987; Cawthorn, 1996). Le liquide se déplace à travers la pile et s'accumule localement, contribuant à former un litage.
- (ii) Dans un magma stagnant, la sédimentation gravitaire des cumulats, plus denses que le magma, entraîne les cristaux vers le bas, pouvant donner des lits minéralogiquement distincts en fonction de la densité relative des cristaux. Néanmoins aucune sédimentation n'est possible dans un magma dynamique. Les phases cumulus ne peuvent sédimenter dans la chambre si la vitesse de convection est supérieure à celle de la sédimentation (Barrière, 1981; Parsons et Becker, 1987; Tobisch et al., 1997; Hodson, 1998).
- (iii) Le litage peut être formé par la convection thermique liée à une injection de magma mafique formant des plumes, entraînant des poches de magma granitique moins dense et produisant un tri mécanique (effet Bagnold, Bagnold, 1954; Komar, 1976). Le tri hydrodynamique entraîne un tri des cristaux en fonction de leur taille et de leur densité (Hodson, 1998 et Weinberg et al., 2001 Figure 1-2). Le cas du pluton de Tavares étudié par Weinberg et al. (2001), montre que la formation de schlieren est due

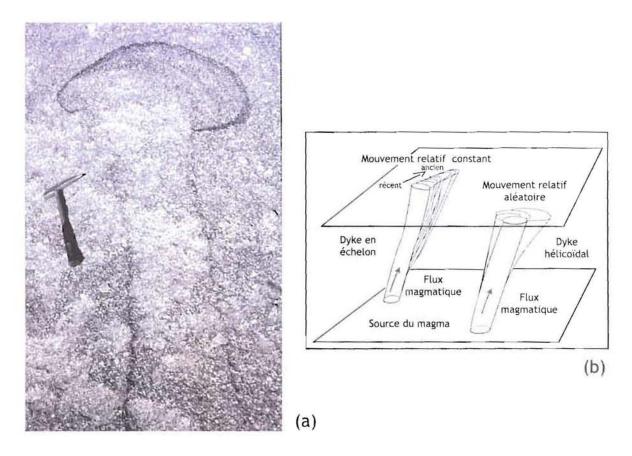


Figure 1-2. (a) Diapir de magma avec une tête délimitée par un schlieren et une queue par un granite plus clair. (b) Les dykes en échelon et les structures hélicoïdales résultent du mouvement relatif entre la source du magma et le niveau d'observation, le magma qui se déplace à chaque nouvelle injection par rapport à la précédente. Le mouvement relatif aléatoire entre la source et la section observée, donne une structure hélicoïdale, alors que le mouvement relatif constant donne des dykes en échelon (Weinberg et al., 2001).

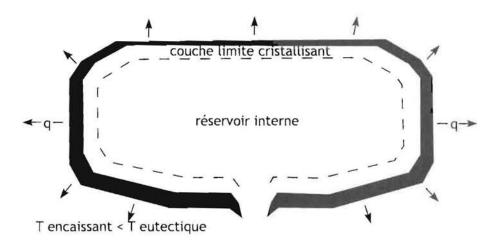


Figure 1-3. Schéma des principales parties constituant une chambre magmatique. Les flèches indiquent le flux de chaleur vers l'encaissant dont la température est inférieure à celle du solidus du magma.

à un tri mécanique associé à une injection de magma mafique provoquant une convection locale.

Ces processus ne tiennent pas compte de l'influence de la cristallisation fractionnée et la cantonnent à un processus secondaire, or nous avons vu que, dans les complexes mafiques, les études suggèrent que la cristallisation fractionnée est un processus indispensable à la formation du litage. Dans les granites, même si les auteurs comme Clarke et Clarke (1998) et Wiebe et al. (2002), considèrent que la formation du litage est à relier directement à l'alternance de venues magmatiques qui induisent une convection et une sédimentation de cristaux associées, le rôle de la cristallisation fractionnée dans une couche limite n'a jamais été vraiment démontrée dans la genèse du litage des plutons granitiques.

Parallèlement à ces processus, une déformation peut se produire pendant la mise en place du pluton. A la suite des travaux précurseurs de Ramsay (1989), il est maintenant admis que la construction d'un pluton est un processus discontinu impliquant l'injection de plusieurs venues magmatiques qui seraient liées à un système de dykes (voir synthèse de Vigneresse et Clemens, 2000; Mahan et al., 2003; Glazner et al., 2004; Pons et al. accepté). Ce processus conduit à un gonflement progressif du pluton qui entraîne la déformation des injections précoces par les plus tardives. Le temps de mise en place entre chaque injection est un paramètre très important pour la déformation. Ainsi, dans l'étude géochronologique de Glazner et al. (2004) où les pulses successifs sont très éloignés dans le temps, la déformation sera plutôt du type subsolidus. Le développement d'une déformation synchrone de la mise en place des magmas apparaît donc comme un processus intrinsèque à la genèse d'un pluton.

Tous ces modèles conduisent à s'interroger sur la part respective des différents mécanismes nécessaires à la genèse du litage magmatique observé dans les plutons granitiques. On peut, en premier lieu, s'interroger sur le rôle de la cristallisation fractionnée et des mouvements liquides-cristaux dans la genèse des litages, comme elle a été envisagée dans les complexes mafiques. On peut aussi s'interroger sur le rôle de la déformation liée au gonflement dans la mesure où elle peut entraîner l'expulsion des liquides. On peut, enfin, se demander si l'évolution magmatique supporte un mode de mise en place par dyke. Le but de ce travail sera de tenter de répondre à ces trois interrogations qui peuvent être formulées de la manière suivante :

- (i) la cristallisation fractionnée joue-t-elle un rôle dans la genèse des litages des plutons granitiques ?
- (ii) la déformation liée au gonflement du pluton a-t-elle un rôle sur la séparation liquides-cristaux lors de la cristallisation de ces liquides magmatiques ?
- (iii) l'évolution pétrologique peut-elle apporter des informations sur le mode de mise en place ?

1.2. La démarche et les méthodes

Le but de cette étude étant de comprendre la formation du litage magmatique dans les granites, nous allons étudier les interactions entre la cristallisation fractionnée, le transfert d'éléments à petite échelle (différenciation entre cristal et liquide) et les mécanismes de mise en place du pluton. La structure d'une chambre magmatique dépend principalement de l'évacuation de la chaleur vers l'encaissant. On peut donc considérer que la chambre (**Figure 1-3**) est formée du cœur vers la périphérie de trois parties principales :

- (i) le liquide initial plus ou moins modifié (réservoir), à une température supérieure ou proche de celle du liquidus, et séparé de la couche suivante par une mince couche limite diffusive ;
- (ii) une couche limite partiellement cristallisée (« mushy layer » ou « mush ») s'étendant entre liquidus et solidus et correspondant à une suspension de cristaux dans un liquide résiduel;
- (iii) une zone totalement solide en périphérie, séparée du « mushy layer » par le front de solidification.

Si l'on veut aborder la question du rôle de la cristallisation fractionnée dans la genèse du litage, il est tout d'abord nécessaire de choisir la cible avec précaution. Il est en particulier indispensable de s'affranchir, autant que faire se peut, des processus de tris hydrodynamiques et, notamment, des litages issus d'une sédimentation de cristaux au fond d'une chambre. Nous n'avons donc pris en considération que des litages verticaux qui permettent de minimiser l'accumulation mécanique. D'autre part, la déformation doit rester modérée de façon à préserver les textures ignées initiales, tout en permettant une approche de son rôle (gradient modéré de déformation).

Dans la cristallisation fractionnée, la composition chimique des minéraux est un témoin du degré de différenciation locale du liquide. Nous nous sommes donc attachés à déterminer les gradients de composition dans les cristaux (éléments majeurs et traces) pour déterminer :

- (i) si la formation des litages dans les plutons granitiques correspond à des solides stratifiés formés dans une couche limite cristallisant (gradient de température et de composition) et
- (ii) s'il existe des évidences de mouvements différentiels entre liquide et cristaux à petite échelle (c'est-à-dire celle de la séquence).

Notre approche a consisté à associer les études structurales (échelle méga-, méso- et microscopique) et texturales (échelle méso- et microscopique) aux mesures *in situ* de la composition chimique des minéraux. Plus précisément, cela correspond à :

- l'étude en microscopie optique des caractéristiques morphologiques des cristaux (notamment la taille), la détermination et l'estimation des proportions des phases cumulus et intercumulus ;
- la caractérisation texturale des cristaux en microscopie électronique à balayage en électrons rétrodiffusés (Annexe 4).
- l'étude à la microsonde électronique (Annexe 4) de la répartition des éléments majeurs et de certains éléments traces (Sr, Ba) à l'échelle du grain et de la séquence (zonations chimiques des cristaux).

Une étude complémentaire d'autres éléments traces a été entreprise par ICP-MS laser et à la sonde ionique. Les protocoles analytiques sont donnés en **Annexe 4**.

1.3. La cible

Le choix du batholite de Dolbel, dans la région du Liptako au SW Niger (**Figure 1-4**), repose sur ses caractéristiques texturales et structurales qui sont propices à l'étude du rôle de la cristallisation fractionnée (CF) dans la genèse du litage des plutons granitiques et à l'étude des interactions entre CF et déformation. Les principaux points d'intérêt de ce pluton sont les suivants.

(i) Le batholite de Dolbel (**Figure 1-5**) a fait l'objet d'une étude structurale et lithologique (Pons et al., 1995). La géométrie des différents plutons ainsi que leur organisation interne sont donc connues. Ces travaux préliminaires ont permis de sélectionner un des plutons (γ_2) pour la qualité de son litage et pour la clarté des relations entre litage et déformation.

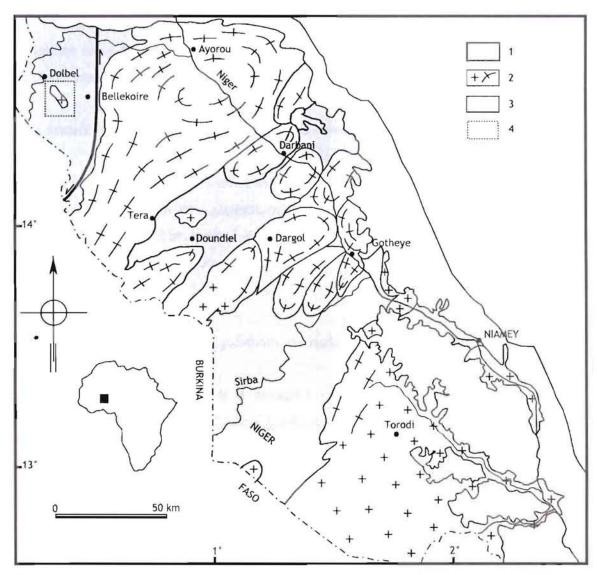


Figure 1-4. Carte générale du Paléoprotérozoïque du Liptako, SW Niger (d'après Pons et al., 1995). 1 = couverture sédimentaire infracambrienne et phanérozoïque; 2 = granites; 3 = ceintures de roches vertes; 4 = zone étudiée (figure 1-5).

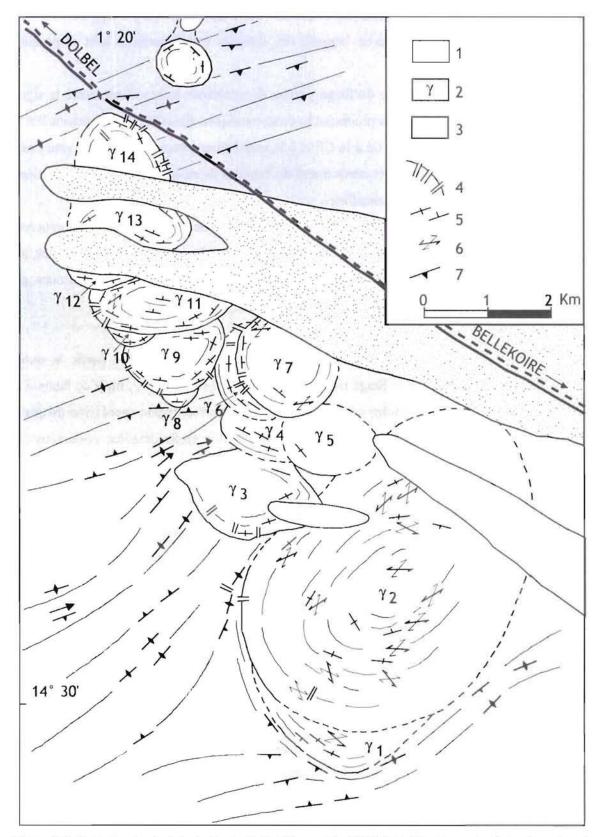


Figure 1-5. Carte structurale du batholite de Dolbel (Pons et al., 1995). Les plutons se sont mis en place du sud vers le nord. 1 = dunes ; 2 = plutons granitiques ; 3 = ceinture de roches vertes ; 4 = dykes radiaires ; 5 = structures planaires du granite ; 6 = cisaillements conjugués ; 7 = schistosité de l'encaissant.

- (ii) Le pluton choisi présente des séquences litées dont la « *liquid line of descent* » est suffisamment étendue et pour laquelle des données expérimentales sont disponibles (Johannes et Holtz, 1996).
- (iii) La position verticale du litage permet de minimiser le brouillage entre le signal lié à la CF et celui lié à des processus hydrodynamiques. En effet, il est fondamental de pouvoir séparer ce qui est lié à la CF et à la convection compositionnelle (avancement du front de cristallisation et mouvement du liquide) de ce qui peut revenir à un dépôt gravitaire (sédimentation cristalline).
- (iv) Le gradient de déformation est suffisamment progressif pour pouvoir appréhender son rôle sur les mouvements différentiels entre liquide et cristaux. Notamment, sur l'expulsion éventuelle des liquides résiduels dans les séquences les plus précoces, par suite de la compaction induite par le gonflement du pluton.

L'échantillon sélectionné (taille : 20,5 x 24,5 cm) a été prélevé dans la partie la moins déformée, de façon à ce que le litage magmatique soit très bien préservé, mais de façon à ce que la déformation soit néanmoins visible. Cet échantillon présente une succession de quatre séquences litées bien distinctes. Celles-ci font l'objet d'une étude détaillée ci-dessous (cf. §.3).

2. CONTEXTE GEOLOGIQUE

La région de Dolbel (**Figure 1-4**) est constituée d'une association de granites et de ceintures de roches vertes birimiens (2.1 Ga). Elle a fait l'objet de plusieurs publications concernant la structure, la pétrologie et l'âge des formations (Dupuis et al., 1991; Pons et al., 1995; Cheilletz et al., 1994). Le contexte géologique présenté brièvement ici est repris de ces travaux.

La structure de ce domaine résulte de l'interférence entre une déformation régionale décrochante senestre, orientée NW-SE, et l'effet de la croissance des plutons (gonflement). La schistosité régionale est orientée globalement NE-SW, mais sa direction change au voisinage des plutons qu'elle enveloppe, ce qui provoque l'apparition de points triples à leurs extrémités. La linéation est sub-horizontale dans les roches vertes, à l'exception des points triples où elle est sub-verticale. Des auréoles thermiques se développent autour des plutons.

Elles sont caractérisées par une schistosité plus pénétrative, des plis plus serrés et un métamorphisme de plus haut degré (faciès amphibolite). L'ensemble des caractéristiques structurales suggère une mise en place syntectonique de ces plutons. Ils peuvent être regroupés en deux types de batholithes supposés correspondre à des conditions de mise en place distinctes.

- (i) La très grande majorité correspond à des plutons calco-alcalins. Ils sont elliptiques et forment des batholites de grandes tailles dont l'orientation NE-SW est perpendiculaire par rapport à la direction régionale de raccourcissement.
- (ii) Quelques plutons de nature alcaline forment un petit batholite orienté parallèlement à la direction régionale de raccourcissement. Il s'agit du batholite de Dolbel dont un des plutons fait l'objet de ce présent travail.

Le batholite de Dolbel (**Figure 1-5**) est constitué de 14 plutons de taille kilométrique et de forme sub-circulaire à légèrement elliptique. Les relations d'intersection entre les plutons indiquent une mise en place progressive du sud vers le nord, γ_1 étant le plus ancien et γ_{14} le plus récent. Le plus grand pluton (γ_2), qui est aussi un des plus anciens, présente une forme elliptique avec son grand axe parallèle à la schistosité des roches encaissantes. Celle-ci est moulée autour du pluton formant un point triple visible à son extrémité sud-ouest. Par contre, les plutons γ_3 à γ_{14} sont de forme circulaire et nettement moins moulés par la schistosité régionale. Ces observations, couplées à des données géochronologiques, ont conduit les auteurs à interpréter la mise en place de ce batholite comme globalement syn- à tarditectonique. L'alignement NW-SE (c'est-à-dire parallèle à la direction régionale de raccourcissement) est considéré comme résultant du contrôle par la déformation. Cette déformation aurait produit une structure comparable à une fente de tension dans laquelle serait monté le magma granitique, avec une migration progressive vers le nord de la zone d'alimentation (Pons et al., 1995).

Le pluton étudié (γ_2) comprend un cœur constitué de granite porphyroïde massif et une périphérie présentant un litage rythmique. La nature des phases minérales est identique dans les deux parties du pluton, seules varient leurs proportions et leur répartition comme nous le verrons plus loin. Des analyses sur roche totale ont été effectuées sur des granites massifs de plusieurs plutons du batholite de Dolbel (**Tableau 2-1**). Elles présentent des teneurs élevées en alcalins (Na₂O + K₂O = 9,98 %) et pauvres en CaO (1,46 %), similaires à celle des granites de type A.

	pluton 1	pluton 4	pluton 5	pluton 6	MOYENNE	Ecart type	Lim. Det.
SiO ₂	66.6	69.02	71.32	69.17	69.03	1.93	0.5
Al ₂ O ₃	14.86	14.73	14.89	14.43	14.73	0.21	0.15
Fe ₂ O ₃	3.28	2.16	1.94	1.45	2.21	0.77	0.4
MnO	0.07	0.03	0.03	0.03	0.04	0.02	0.01
MgO	1.56	0.55	0.42	0.45	0.75	0.55	0.1
Ca0	3.1	1.63	1.46	1.67	1.97	0.76	0.2
Na ₂ O	6.06	5.91	5.73	6.12	5.96	0.17	0.7
K ₂ O	2.97	3.17	3.32	3.86	3.33	0.38	0.5
TiO ₂	0.27	0.18	0.14	0.09	0.17	0.08	0.05
P ₂ O ₅	0.21	0.1	0.1	0.12	0.13	0.05	0.02
pf	0.54	0.62	0.57	0.76	0.62	0.10	
total	99.52	98.1	99.92	98.15	98.92	0.94	
FeOt	2.89	1.90	1.71	1.28	1.94	0.68	
XMg	0.35	0.26	0.20	0.22	0.28	0.07	
Na2O+K2O+CaO	12.13	10.71	10.51	11.65	11.25	0.77	
A/(CNK)*	0.79	0.92	0.95	0.84	0.87	0.07	
Ba	1648	1920	1872	2708	2037	463	10
Be	2.1	1.7	1.2	1.2	2	0	0.5
Co	7	_	5	6	6	1	5
Cr	55	8	8	20	23	22	5
Cu	36	17		23	25	10	10
Nb	-	· -	_	_			5
Ni	25	9	14	18	17	7	8
Rb	55	85	77	51	67	17	5
Sc	7.7	4.4	3.6	2.4	4.5	2.3	2
Sr	1316	1428	1540	773	1264	340	10
٧	44	39	29	14	32	13	- 10
Υ .	8	6	4	4	6	2	1
Zn	68	61	60	51	60	7	5
Zr	81	68	71	57	69	10	5
La	7.27	2.5	3.98	1.43	3.8	2.5	0.3
Ce	20.66	8.67	12.49	6.9	12.2	6.1	0.3
Nd	7.87	3.6	4.07	1.85	4.3	2.5	0.2
Sm	1.98	1.17	1.2	0.72	1.27	0.52	0.06
Eu	0.59	0.47	0.51	0.5	0.52	0.05	0.03
Gd	1.28	0.84	0.89	0.85	0.97	0.21	0.06
Dy	1.08	0.55	0.66	0.55	0.71	0.25	0.03
Er	0.65	0.36	0.4	0.33	0.44	0.15	0.03
Yb	0.7	0.37	0.44	0.42	0.48	0.15	0.015
Lu	0.11	0.07	0.1	0.08	0.09	0.02	0.015

Tableau 2-1. Composition des granites de Dolbel analysés par ICP-AES et ICP-MS (SARM, CRPG). Les oxydes sont en % pds et les éléments en traces sont en ppm (- : inférieur à la limite de détection (Lim. Det.); Fe_2O_3 : fer total sous forme Fe^{3+}).

La nature des feldspaths ne laisse pas de doute sur le caractère alcalin. Cependant les analyses en roche totale ne se placent pas dans le champ des granites alcalins dans la diagrammatique classique (Barbarin 1999; Eby, 1989; 1992; Frost et al., 2001). On voit par exemple que sur le diagramme NKC vs. SiO₂ (**Figure 2-1a**) les points représentatifs des granites de Dolbel se positionnent en dehors du champ des granites. Par contre, à un échantillon près, le rapport FeO / (FeO + MgO) est cohérent avec celui des granites de type A (**Figure 2-1b**). Les teneurs en REE normalisées aux chondrites (**Figure 2-1c**) sont très basses de l'ordre de 10 fois les chondrites, confirmant le caractère cumulatif des échantillons (quartz + feldspaths).3. Description des séquences litées

3. DESCRIPTION DES SEQUENCES LITEES

Nous présentons brièvement les traits principaux du litage avant d'en décrire, plus en détail, les caractéristiques texturales, minéralogiques et chimiques. Le <u>litage magmatique</u> est subvertical (**Figure 3-1**) avec une légère inclinaison vers le centre du pluton (~ 80°). Il correspond à des séquences récurrentes caractérisées par des variations rythmiques de la nature, des proportions et de la taille des minéraux (litage modal). Ces séquences litées sont présentes uniquement en bordure du pluton, le cœur étant constitué d'un granite porphyroïde, massif, formé des mêmes minéraux que ceux observés dans les séquences litées (cf. §.8). Les microstructures tectoniques seront décrites plus loin (§.3.2).

3.1. Définition d'une séquence-type

L'échantillon (**Figure 3-2**) est orienté de telle façon que sa droite est dirigée vers l'intérieur du pluton, la base des séquences est donc à gauche. Globalement, l'échantillon est composé par ordre d'importance (**Figure 3-3**) : de plagioclase riche en albite, de quartz, de feldspath potassique, d'amphibole, de clinopyroxène et de minéraux accessoires (oxydes de Fe-Ti, sphène, apatite et zircon). Il présente plusieurs ensembles dont trois commencent par un mince niveau sombre riche en minéraux ferromagnésiens auquel succède un niveau clair plus épais, essentiellement quartzo-feldspathique.

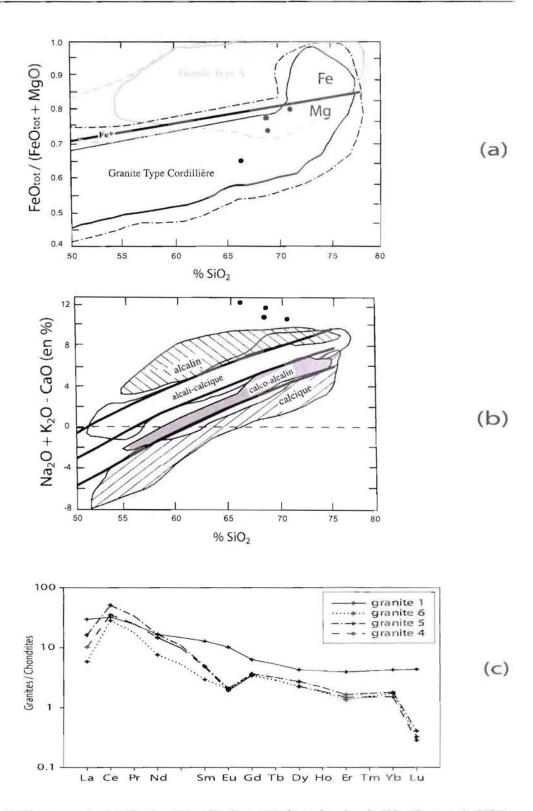


Figure 2-1. (a) Diagramme de classification FeOtot/(FeOtot + MgO) en fonction de SiO₂ (Frost et al., 2001). Les champs pleins correspondent à 95 % des analyses, les champs représentés par des lignes discontinues à 100 % (gris: champ des granites alcalins; noir: champ des granites de cordillère). (b) Diagramme (Na₂O + K₂O - CaO) en fonction de SiO₂ (ibid.), indiquant les frontières approximatives entre les roches alcalines, alcalicalciques, calco-alcalines et calciques. Les analyses des granites de Dolbel correspondant au tableau 2-1 sont représentées par les cercles pleins. (c) Spectres de REE des granites de Dolbel (Tableau 2-1) normalisés aux chondrites (Evensen et al., 1978).

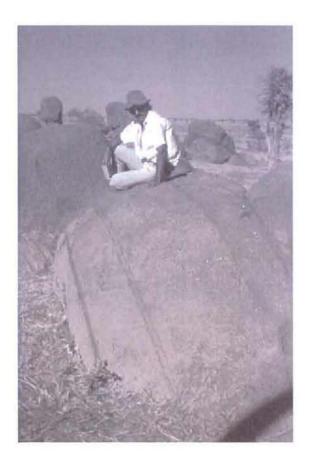


Figure 3-1. Litage dans le pluton γ^2 du batholite de Dolbel. Le centre du pluton est à droite. Les lits réguliers inégalement espacés s'observent sur des distances variables, en fonction des conditions d'affleurement. L'épaisseur des rubanements est constante longitudinalement (Pons et al., 1995).

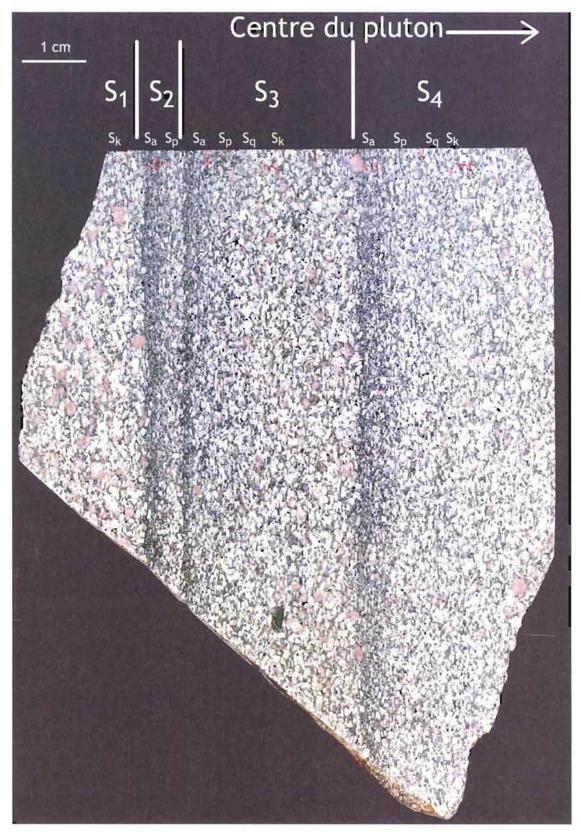


Figure 3-2. Photo de l'échantillon étudié, provenant du pluton γ^2 du batholite de Dolbel. Les séquences sont numérotées de S_1 à S_4 et chacune est subdivisée en différents lits : (a) riche en amphibole ; (p) à plagioclase ; (q) à plagioclase et quartz et (k) riche en feldspath potassique.

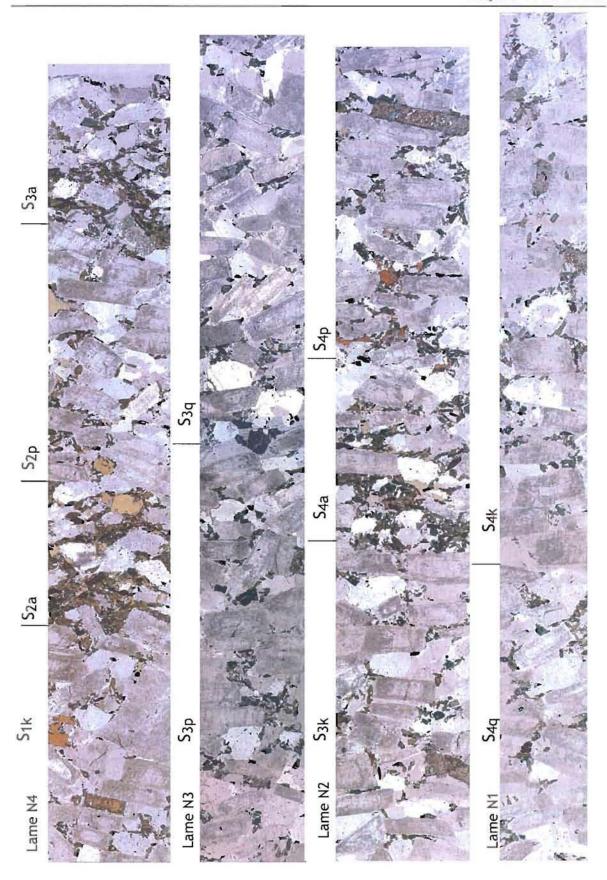


Figure 3-3. Photos au microscope optique d'une partie des quatre lames minces de l'échantillon étudié ; les séquences sont indiquées au dessus de chacune d'elles.

La base des niveaux sombres est nettement tranchée, alors que leur partie sommitale montre un passage plus diffus vers le niveau quartzo-feldspathique. Nous considérons que chaque séquence commence donc par un niveau ferromagnésien. De façon à être toujours bien repérable dans cette succession, chaque séquence est caractérisée par un chiffre indiquant sa position (de S_1 à la base, à S_4 au sommet) et par une lettre minuscule indiquant la nature du minéral caractéristique du lit (a = lit à amphibole dominante, p = lit à plagioclase sans quartz ni Kfs (feldspath potassique), q= lit à plagioclase et quartz sans Kfs, k = lit à feldspath potassique, plagioclase et quartz). Ainsi, le label S_{3k} (**Figure 3-3**) indique le lit à feldspath potassique de la troisième séquence.

L'échantillon comprend quatre séquences qui sont, de la base vers le sommet : (i) S_1 dont nous n'avons que la partie sommitale, (ii) S_2 très réduite en épaisseur et minéralogiquement incomplète, (iii) S_3 la plus complète (en termes d'assemblage minéralogique, mais pas nécessairement d'épaisseur comme nous le verrons dans le $\S.8$) qui servira de référence, et (iv) S_4 pratiquement complète mais dont il manque une partie au sommet.

En dépit de différences d'épaisseur et de mode, ces séquences possèdent des caractères communs permettant de définir une <u>séquence de référence</u> de type S_a - S_p - S_q - S_k (**Tableau 3-1**). La texture de la roche est typiquement celle d'un mésocumulat. La nature des phases cumulus varie d'un lit à l'autre au sein d'une même séquence comme suit :

- (i) S_a contient amphibole (de $50\times120~\mu m$ à $700\times800~\mu m$), sphène et oxydes ;
- (ii) S_p contient plagioclase, amphibole, sphène et oxydes;
- (iii) S_q contient plagioclase, quartz, amphibole, clinopyroxène, sphène et oxydes ; le plagioclase représente la phase cumulus majoritaire et sa taille augmente en montant dans la séquence, de 0.2×0.6 à 1.7×4.3 mm ;
- (iv) S_k contient du feldspath potassique en phénocristaux $(2,7\times3,9~\text{à}~5\times7~\text{mm})$; il est associé au plagioclase, au quartz $(500\times900\mu)$, ainsi qu'à l'amphibole, au clinopyroxène, au sphène et aux oxydes.

Il faut souligner que l'épaisseur des lits S_k est très variable (comparer les **figures 3-1** et **3-2**).

Les phases intercumulus sont le quartz ($30\times40~\mu m$ à $50\times70~\mu m$), le feldspath potassique ($60\times75~\mu m$ à $230\times250~\mu m$), localement le plagioclase et plus rarement l'amphibole.

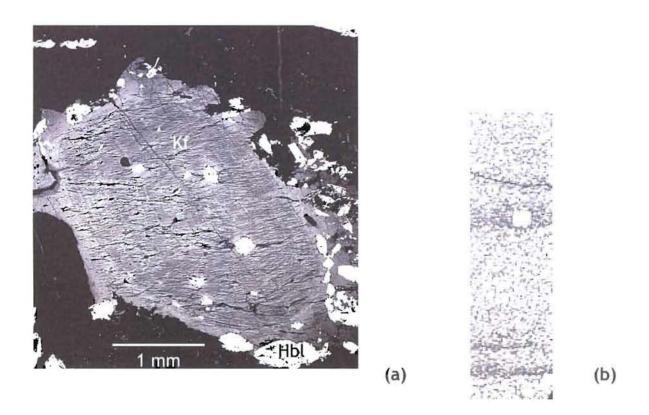


Figure 3-4. (a) Image BSE d'un feldspath potassique cumulus (S_{2k}) montrant le zonage très bien exprimé. Noter les inclusions de hornblende (en blanc) et les surcroissances en périphérie. (b) Photo de l'échantillon montrant un feldspath-K inclus dans le lit S_{3a} .

Séquence		Epaisseur mesurée sur échantillon (cm)		Phases cumulus principales	Phases cumulus subordonnées	% phases cumulus (2σ = 10%
S4	Sk	peut-être incomplète	peut-être incomplète			
		7.4	2.8	Feldspaths alcalins et quartz	Amph-Cpx-Ox-Spn- Ap	72.63
	Sq		2.6	Plagioclase et quartz	Amph-Cpx-Ox-Spn- Ap	71.50
	Sp		1.8	Plagioclase	Amph-Cpx-Ox-Spa- Ap	70.10
	Sa		0.2	Amphibole	Ox-Spn-Ap	60.36
Sk Sq Sp Sa	Sk	6.7	3.7	Feldspaths alcalins et quartz	Amph-Cpx-Ox-Spn- Ap	75.02
	Sq		1.7	Plagioclase et quartz	Amph-Cpx-Ox-Spn- Ap	73.20
	Sp		1.2	Plagioclase	Amph-Cpx-Ox-Spn- Ap	71.00
		0.1	Amphibole	Ox-Spn-Ap	73.61	
S2	Sk Sq		absentes			
	Sp	1.5	1.3	Plagioclase	Amph-Cpx-Ox-Spn- Ap	74.95
	Sa		0.2	Amphibole	Ox-Spn-Ap	75.84
S1	Sk	1200	incomplète	Feldspaths alcalins et quartz	Amph-Cpx-Ox-Spn- Ap	77.05
	Sq Sp Sa	incomplète	non présentes sur l'échantillon			

Tableau 3-1. Caractéristiques des séquences (Amph : amphibole, Ap : apatite, Cpx : clinopyroxène, Ox : oxydes de Fe et Ti, Spn : sphène).

Les cristaux peuvent présenter une périphérie dont la partie interne appartient à la partie cumulus, mais dont la partie externe est interstitielle. Nous verrons que cette texture caractéristique (**Figure 3-4a**) s'accompagne d'une variation de composition chimique systématique. La proportion d'intercumulus est constante ($\sim 25\%$) quelle que soit la séquence. Il est à noter que le feldspath potassique peut se rencontrer sporadiquement hors de la séquence S_{3k} (**Figure 3-4b**). On rencontre également de petites enclaves microgrenues mafiques (**Figure 3-2**). Ces objets sont regardés comme des xénocristaux ou des corps étrangers par rapport au lit considéré.

3.2. Les microstructures tectoniques

Les <u>microstructures de déformation</u> ont été décrites par Pons et al. (1995). Le granite présente une foliation S concentrique, sub-verticale et plongeant vers l'intérieur du pluton ainsi qu'une L (linéation) plongeant vers le bas. Ces fabriques sont définies par l'orientation préférentielle du plagioclase, du pyroxène, de l'amphibole, des oxydes et des feldspaths alcalins quand ils sont présents.

Une fabrique d'origine sub-magmatique¹ (foliation et cisaillements conjugués) se superpose au litage. Elle peut être définie comme une « pre-full crystallization fabric » (Hutton, 1988), dans la mesure où : (i) aucun minéral ne présente de déformation plastique, (ii) les plagioclases sont souvent tuilés (**Figure 3-5a**), suggérant une interaction entre les grains qui subissent une rotation durant le mouvement, et (iii) le caractère rotationel de la déformation est corroboré par la symétrie monoclinique de la fabrique (**Figure 3-5b**), elle-même due à une déformation incluant un cisaillement. Les proto-cisaillements sont faiblement marqués par un alignement discret de minéraux qui coupent à travers la fabrique planaire (**Figure 3-5d**). Contrairement aux zones de cisaillement périphériques décrites ci-dessous, il n'y a ni déformation plastique ni déviation des structures d'écoulement.

¹ Le terme « submagmatique » est ici employé dans le sens d'une déformation en présence de liquide, mais avec des proportions importantes de cristaux, sous le seuil rhéologique PLT ("particule locking thresholds", seuil de blockage des minéraux, (Vigneresse et al., 1996).

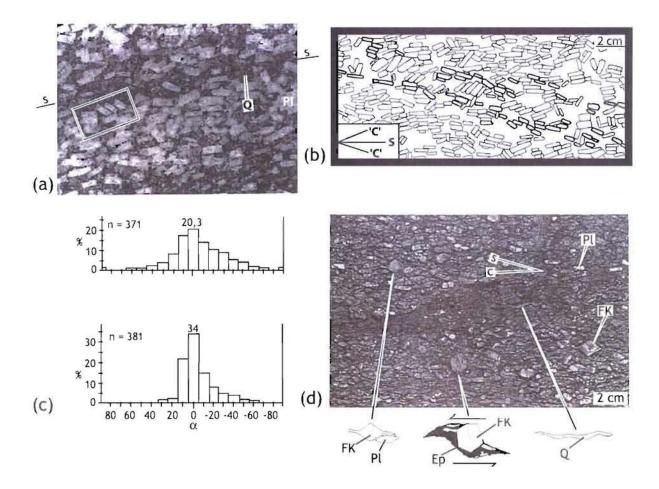


Figure 3-5. Structures de la partie périphérique du granite γ^2 de Dolbel (extrait de Pons et al., 1995). (a) Section polie montrant la foliation magmatique (S) définie par l'orientation préférentielle des cristaux de plagioclase, et l'association de plagioclases tuilés. (b) Orientation des cristaux de plagioclase dans une séquence montrant la ré-orientation le long de plans de cisaillement (S : foliation magmatique ; C : plan de cisaillement ; traits épais : cristaux de plagioclases ré-orientés ; rectangles pointillés : cristaux d'amphiboles et de pyroxènes. (c) Histogrammes de la distribution de l'orientation des plagioclases mesurée sur le plan parallèle à L et perpendiculaire à S. Les histogrammes correspondent aux fabriques des plagioclases du coeur du Dolbel (graphique du haut) et de la partie litée (graphique du bas). (d) Orthogneissification du granite en marge du pluton montrant des cristaux de quartz en ruban et des cristaux de feldspaths alcalins, ayant subi une rotation, et bordés par des ombres de pression asymétriques remplies d'épidote (Ep : épidote ; FK : feldspath potassique ; Pl : plagioclase ; Q : quartz).

Une schistosité est également présente en périphérie de la plupart des plutons et plus particulièrement sur γ_2 . L'orientation préférentielle des minéraux est forte et ces derniers montrent une déformation plastique interne suggérant que cette déformation plastique affecte un matériel à l'état solide, mais assez chaud pour permettre une réorientation des minéraux (« crystal plastic strain fabric » (Hutton, 1988). Des zones de cisaillement sont également visibles. Le sens de déplacement est signalé par une rotation des méga-cristaux automorphes de feldspath-K ou de cristaux de plagioclase. Ces derniers sont bordés par des zones d'ombres de pression cristallisées asymétriquement et remplies d'épidote (Figure 3-5c). L'orientation et le pendage de la schistosité sont presque parallèles aux parois du pluton γ_2 et apparaissent liés à son gonflement. De plus, le parallélisme de la schistosité entre les granites et les schistes environnants ainsi que la forme elliptique du pluton γ_2 suggèrent une interférence entre la déformation régionale et le gonflement du pluton. Ces données suggèrent que les zones de cisaillement se développent dans un matériel contenant une faible quantité de liquide. Les attitudes des deux types de cisaillement sont similaires : ils sont verticaux et se présentent en jeux parallèles ou conjugués avec un sens de déplacement subhorizontal. Dans ce dernier cas, les cisaillements font des angles entre 50° et 60° et la bissectrice de l'angle aigu correspond à la fabrique ou à la schistosité. Les cisaillements sont donc en position concentrique. La géométrie et l'ensemble du déplacement des jeux conjugués indiquent un aplatissement de la masse de la roche contre le bord de l'intrusion et une extension le long de la schistosité, indiquant un gonflement de l'intrusion par injection de magma en son centre.

4. MICROTEXTURES ET CHIMIE DES MINERAUX FERROMAGNESIENS

4.1. Pyroxène

Quelques pyroxènes automorphes ($200\times600~\mu m$ à $400\times2000~\mu m$) apparaissent dans les niveaux S_p , S_q et S_k , toujours en phase cumulus. Ils sont fréquemment auréolés d'une fine couronne d'amphibole (hornblende et baguettes d'actinote). Ils sont dans tous les cas très altérés, voire ne subsistent qu'à l'état de fantôme (**Figure 4-1a**, **b**) : le plus souvent un agrégat de magnétite ($20\times60~\mu m$ à $140\times400~\mu m$), épidote, feldspath potassique et quartz ($20\times40~\mu m$).

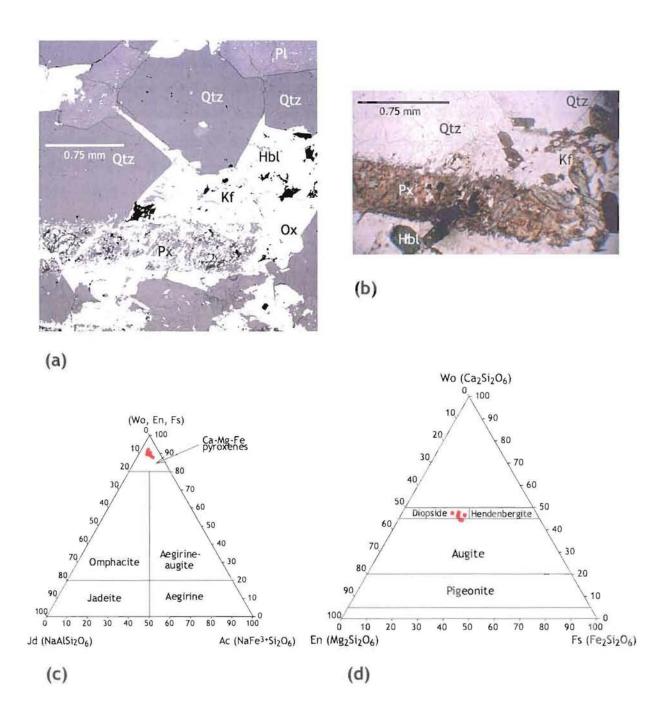


Figure 4-1. (a) Image BSE d'un clinopyroxène altéré dans lit S_{3k}, de quartz cumulus et de feldspath alcalin intercumulus. (b) Photo microscopie optique en lumière naturelle du CPX. (c) Composition des pyroxènes, d'après la classification de Morimoto (1988), exprimé en % molaire de pôles purs (Ca-Mg-Fe; Na; Fe³⁺). (d) Composition des pyroxènes, d'après la classification de Morimoto (1988), exprimée en % molaire de pôles purs (Ca; Mg; Fe).

Cette importante altération a rendu la détermination de leur composition chimique assez délicate. Il n'a, en particulier, pas été possible de voir si ces cristaux de pyroxène étaient zonés chimiquement ou non. Néanmoins, quelques analyses à la microsonde électronique ont donné des résultats utilisables (**Tableau 4-1** et **Annexe 5a**), montrant une variation de la composition chimique allant des augites aux diopsides (En_{28.7-33}, Wo_{41-45.9}, Fs_{13.6-18.3}, Jd_{4.2-6.5}, Ae_{3.4-8}; **Figure 4-1c et d**).

4.2. Amphibole : variabilité compositionnelle à l'échelle du cristal

Les amphiboles, automorphes, sont la première phase cumulus de la séquence (S_a), marquant une limite franche avec la séquence qui précède. La taille des hornblendes varie de 55×125 μm à 700×800 μm . Elles se retrouvent également en petits amas tout au long de la séquence (S_p , S_q , S_k). Ces amas se situent, le plus souvent, entre les plagioclases, pouvant laisser croire qu'il s'agit de phases intercumulus. Cependant, ils sont aussi observés en inclusion dans la périphérie des cristaux cumulus de feldspaths. Les cristaux sont formés de deux types d'amphiboles (**Figure 4-2 a et b**) qui sont d'après la classification de Leake et al. (1997) :

- (i) la hornblende au cœur, de couleur vert sombre et montrant une zonation oscillatoire systématique (Figure 4-3a et b);
- (ii) l'actinote en bordures, de teinte beaucoup plus claire, dépourvue de toute zonation (Figure 4-3c) et remplaçant la hornblende.

Les substitutions Al-Si et (Fe, Mg)-Al pour la hornblende-pargasite et Mg-Fe ainsi que l'introduction de Na(K) dans le site A pour l'actinote-édénite sont observées.

Les zonations chimiques oscillatoires des hornblendes s'arrêtent sur la limite entre les deux amphiboles. Cette absence de continuité et la position systématiquement externe de l'actinote montrent clairement la pseudomorphose de la hornblende par l'actinote et donc son caractère secondaire à basse température. Les rapports cationiques Al/Si des hornblendes varient de 0.11 à 0.34 avec une moyenne de 0.22 (± 0.05). Les X_{Fe} varient de 0.37 à 0.55 avec une moyenne de 0.46 (± 0.04).

La zonation oscillatoire de la hornblende est très contournée au cœur des cristaux (**Figure 4-3d**), mais très régulière et fine dans la périphérie où elle mime les faces du cristal (**Figure 4-3b**). La périphérie peut localement se terminer par une frange externe qui montre une variation progressive de la composition, visible par des teintes de gris différentes en électrons rétrodiffusés (**Figure 4-4a**).

	Minéral	CPX	Minéral	Hbl	Act	Minéral	Ilm	Minéral	Mag	Minéral	Ep	Minéral	Spn	
196	Séquence	S4	Séquence	S4	S4	Séquence	S4	Séquence	S4	Séquence	S4	Séquence	S4	
3	SiO ₂	49.83	SiO ₂	42.70	51.64	SiO ₂	0.17	SiO ₂	0.6	SiO ₂	36.12	SiO ₂	30.51	
ľ	TiO ₂	0.15	TiO ₂	0.88	0.04	TiO ₂	51.03	TiO ₂	0.0	TiO ₂	0.12	TiO2	28.25	
-	Al ₂ O ₃	1.32	Al_2O_3	7.81	1.74	ZrO_2	0.00	Al_2O_3	0.0	Al_2O_3	19.90	Al ₂ O ₃	6.01	
ŀ	Cr ₂ O ₃	0.00	Fe ₂ O _{3 caic}	0.35	0.00	Al ₂ O ₃	0.09	Cr ₂ O ₃	0.0	Cr_2O_3	0.02	Fe ₂ O ₃	2.62	
ŀ	Fe ₂ O _{3 calc}	5.79	FeO calc.	19.95	15.68	Cr ₂ O ₃	0.02	Fe ₂ O _{3 cale}	64.6	Fetot	15.26	MnO	0.00	
b	FeO calc.	9.02	MnO	0.53	0.45	Fe ₂ O _{3 calc}	0.00	FeO calc	30.5	MnO	0.10	MgO	0.17	
þ	MnO	0.59	MgO	9.12	13.14	FeO calc	44.07	MnO	0.0	MgO	0.02	CaO	28.07	
l	MgO	9.35	CaO	10.66	11.90	MnO	1.35	MgO	0.0	CaO	21.90	Na2O	0.02	
ŀ	CaO	21.32	Na ₂ O	1.78	0.50	MgO	0.00	ZnO	0.0	H₂O calc	1.73	K₂O	0.00	
ŀ	Na ₂ O	1.32	K_2O	1.31	0.24	CaO	0.00	NiO	0.0	Total	95.18	H ₂ O calc	1.14	
ľ	Total	98.69	H ₂ O calc	1.90	- 1	ZnO	0.00	Total	95.8			Total	96.80	
			Total	96.99	95.32	NiO	0.00		l	Si	3.04			
	Si	1.93			- 1	Total	96.73	Si	0.0	Ti	0.01	Si	4.00	
	Al _{IV}	0.06	Si	6.74	7.77			Ti	0.0	A1	1.97	Ti	2.79	
	Al _{VI}	0.00	Al_{IV}	1.26	0.23	Si	0.00	Al	0.0	Fe ³⁺	0.97	Al	0.93	
ľ	Ti	0.00	Al_{VI}	0.20	0.08	Ti	1.00	Cr	0.0	Mn	0.01	Fe ³⁺	0.26	
	Cr	0.00	Ti	0.10	0.00	Zr	0.00	Fe ³⁺	2.0	Mg	0.00	Mn	0.00	
ŀ	Fe ³⁺	0.17	Fe ³⁺	0.04	0.00	Al	0.00	Fe ²⁺	1.0	Ca	1.98	Mg	0.03	
ŀ	Fe ²⁺	0.29	Fe ²⁺	2.63	1.97	Cr	0.00	Mn	0.0	Na	0.00	Ca	3,94	
l	Mn	0.02	Mn	0.07	0.06	Fe ³⁺	0.00	Mg	0.0	к	0.00	Na	0.00	
	Mg	0.54	Mg	2.15	2.95	Fe ²⁺	0.96	Zn	0.0	Cr	0.00	К	0.00	
- 1	Ca	0.89	Ca	1.80	1.92	Mn	0.03	Ni	0.0	Ni	0.00	Total	11.95	
- 1	Na	0.10	Na	0.54	0.14	Mg	0.00	Total	3.0			Minéral	P1	Or
ľ	Total	4.00	K	0.26	0.05	Ca	0.00			% Al	0.67	Séquence	S4	S3
		Į.	Total	15.81	15.17	Zn	0.00	Fe ₂ SiO ₄	0.0	% Fe ³⁺	0.33	SiO2	65.21	64.18
ŀ	XMg	0.53	ОН	2.00	2.00	Ni	0.00	Hercynite (FeAl2O4)	0.0	% Ca	1,00	A12O3	21.08	18.82
		ı	İ			Total	2.00	Magnetite (FeFe2O4)	1.0			FeO Total	0.20	0.14
	Morimoto at al. (1988)		XMg	0.45	0.60							MgO	0.00	0.00
	Wo(Ca)	46.46	(Ca) _B	1.80	1.92	Pyrophanite	3.02					CaO	1.46	0.02
	En (Mg)	28.33	(Na) _B	0.00	0.02	Ilmenite	96.98					Na2O	10.69	0.47
ŀ	Fs(Fe ²⁺ Fe ³⁺ Mn ²⁺)	25.21	(Ca+ Na) _B	1.80	1.94							K2O	0.10	15.92
			(Na+K) _A	0.81	0.17							Total	98.74	99.54
- 1	Cawthorn et Collerson	` '												
- 1	Jd	6.02										Si	2.90	2.98
- 1	Ae Ca-Fe3+ Tsch	3.88 6.48										Al	1.10	1.03
- 1	Ca-res+ 1sch Ca-Ti Tsch	0.48										Fe ³⁺	0.01	0.00
- 1	Ca-11 1scn Ca-Tsch											Ca	0.07	0.00
- 1	Wo	0.00 40.71										Na	0.92	0.04
- 1	i	26.93										К	0.01	0.94
1	En Fs	15,54												
L		13,34										%Or	0.01	0.96
												%Ab	0.92	0.04
												%An	0.07	0.00

Tableau 4-1. Exemples de compositions chimiques des minéraux contenus dans l'échantillon étudié (pour le calcul des formules structurales ainsi que pour toutes les analyses, se référer aux annexes 2 et 4).

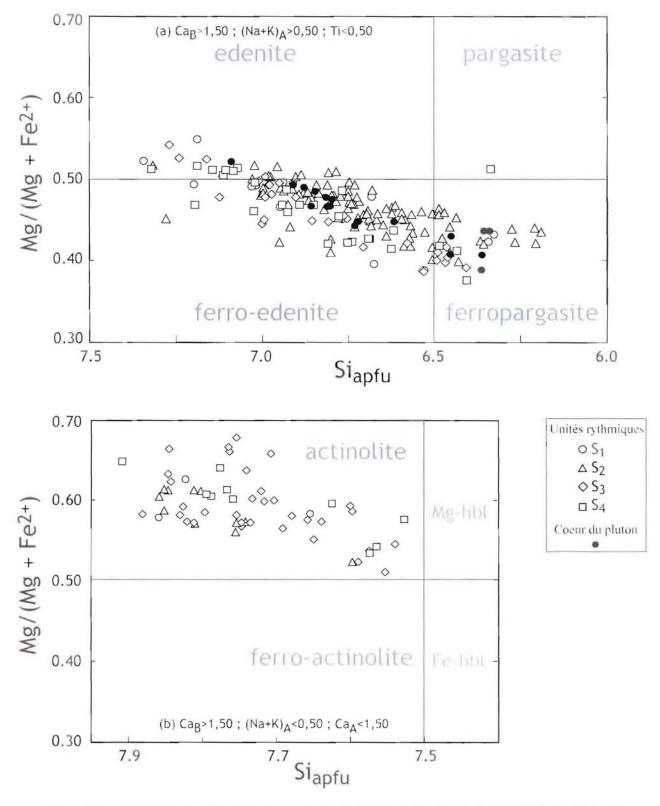


Figure 4-2. Composition des amphiboles par séquence, d'après la classification de Leake (1997), Mg (Mg+Fe) et Si en apfu sur la base de 23 oxygènes.

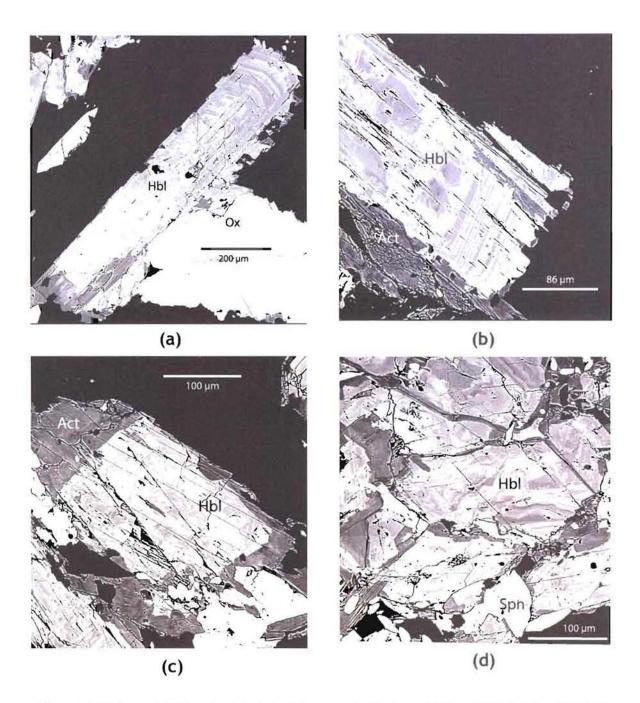


Figure 4-3. (a) Image BSE d'une hornblende du lit S_{2a} entourée d'actinote. (b) Image BSE d'une hornblende du lit S_{2a} , le cœur présente une zonation contournée et la périphérie une zonation oscillatoire. (c) Image BSE d'une hornblende d'un lit S_{2a} entourée d'actinote. (d) Image BSE de cœurs de hornblende du lit S_{2a} montrant une zonation contournée.

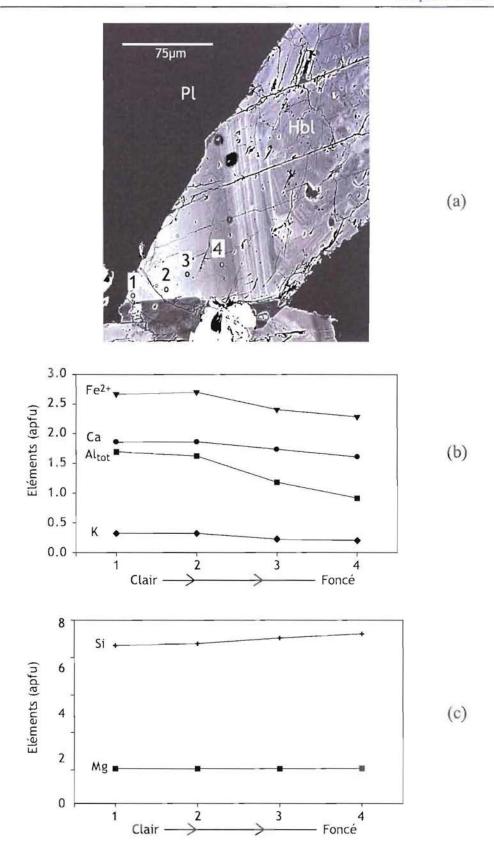


Figure 4-4. (a) Image BSE d'une frange externe de hornblende dans le lit S_{3k}, les points correspondent aux analyses. (b) et (c) Variation des éléments majeurs au travers de la frange de la hornblende de la photo (a).

Ceci suggère un changement de régime de cristallisation, avec un stade précoce représenté par les cœurs des amphiboles au zonation contournée, puis un deuxième stade correspondant au zonation régulière, oscillatoire et enfin un troisième stade correspondant aux franges externes avec une zonation continue. La zonation possède des caractéristiques chimiques constantes au sein d'un même cristal. En effet, si l'on se base sur les variations de gris des photos en électrons rétrodiffusés (BSE) (Figure 4-5), on peut différencier quatre groupes: clair, intermédiaire clair, intermédiaire foncé et foncé. Bien sûr, ces teintes de gris sont subjectives et dépendent du contraste et de la luminosité pour chaque photo. Néanmoins, il apparaît que chaque nuance de gris correspond à une composition, identique pour chaque amphibole quelle que soit sa position dans chaque séquence. Toutefois, on remarque que la séquence S₄ se différencie des trois autres (Figure 4-6a, voir § 4.3). Il ne semble pas y avoir de dérive de la composition des zones entre le cœur et le bord du minéral (Figure 4-6b). Du gris clair au gris foncé (Figure 4-6c), les teneurs augmentent pour CaO, SiO₂ et MgO et diminuent pour FeO, TiO₂, K₂O, Na₂O, très fortement pour Al₂O₃. Nous verrons que cette zonation oscillatoire est une caractéristique majeure des principales phases cumulus. L'analyse des franges externes (Figure 4-4) montre une variation progressive vers le bord avec un enrichissement en Ca, Al et un accroissement du X_{Fe}.

Les analyses par sonde ionique montrent que les teneurs en éléments traces ne sont pas fonction de la position du cristal dans la séquence mais uniquement des oscillations de la zonation : les zones les plus foncées sont plus riches en terres rares légères alors que les zones claires le sont en V, Sr, Ba, Gd et Dy (Figure 4-7). Les teneurs en Zr, Y, Nb et Lu sont très faibles et ne montrent pas de variation significative. Des analyses d'éléments en traces réalisées par ICP-MS laser n'ont pu être exploitées car la taille du cratère est plus importante que l'épaisseur des zones des amphiboles. On ne peut donc pas localiser avec précision le point d'analyse par rapport à une zone précise (Annexe 4).

Il apparaît donc, en conclusion, que la majeure partie des cristaux de hornblende ne présente pas d'évolution chimique cœur - bord au sein d'un même cristal, mais simplement une zonation oscillatoire (composition des amphiboles **Annexe 5b**). Seules les franges externes montrent une évolution vers un accroissement du rapport Fe / (Fe+Mg) (**Tableau 4-2**).

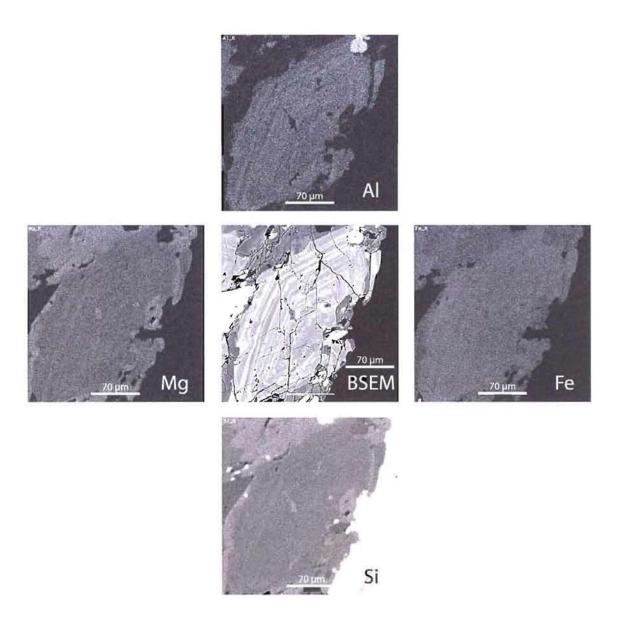


Figure 4-5. Au centre, image BSE d'une hornblende (S_{2a}) présentant une zonation caractéristique. Autour, quatre images RX de cette amphibole pour Al, Mg, Si et Fe montrant les relations entre ces éléments et le zonage oscillatoire.

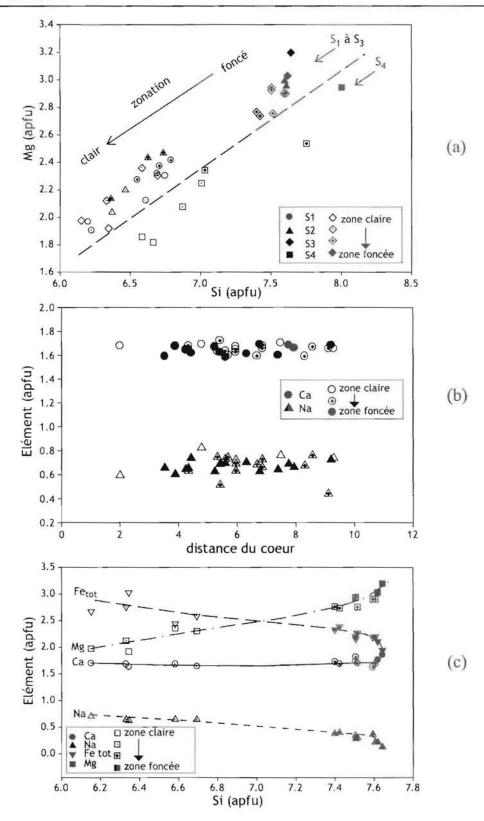


Figure 4-6. (a) Variation des teneurs en Mg en fonction de Si des hornblendes, par rapport à leur position dans l'échantillon (séquence) ainsi que par rapport à la couleur de la zonation visible sur les images BSE. La droite en pointillé sépare la séquence S_4 des autres, car elle semble se différencier par sa composition chimique (visible pour la plupart des éléments majeurs). (b) Variation des teneurs en Ca et Na dans les amphiboles en fonction de la distance du point d'analyse par rapport au cœur du cristal (cœur = 0) et par rapport à la couleur de la zone visible sur les images BSE. (c) Variation des teneurs en Ca, Na Mg et Fetot en fonction de Si dans une amphibole de S_2 , par rapport à la couleur de la zonation visible sur les images BSE.

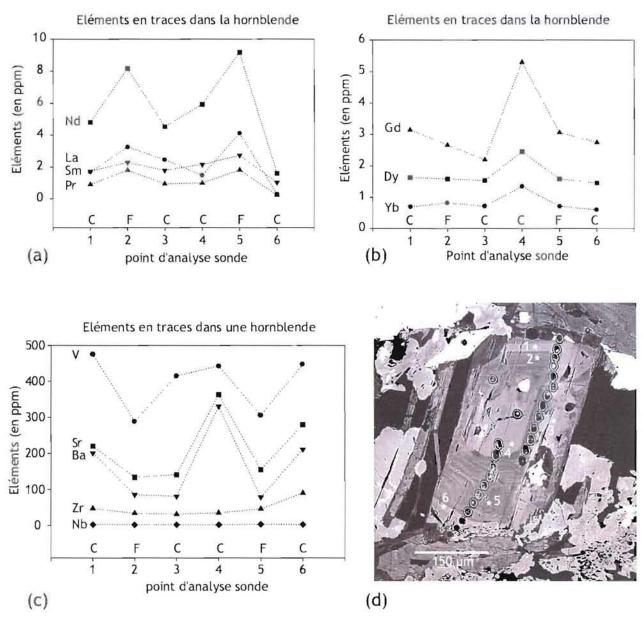


Figure 4-7. (a) Teneurs en éléments traces présentant des variations clairement dépendantes de la couleur de la zone analysée, avec un pic pour les zones foncées (C: clair; F: foncé); les points sont reportés sur la photo (d). (b) Teneurs en éléments traces qui présentent des variations moins évidentes; les points sont reportés sur la photo (d). (c) Teneurs en éléments traces qui présentent des variations clairement dépendantes de la couleur de la zone analysée, avec un pic pour les zones foncées (pour Ba, Sr et V) alors que pour Zr les pics apparaissent en bordure du cristal et pour Nb pas de variation; les points sont reportés sur la photo (d). (d) Image BSE de la homblende analysée; les étoiles blanches représentent les points analysés à la sonde ionique, les cratères sont ceux effectués par le laser lors des analyses ICP-MS.

4.3. Amphibole : variabilité compositionnelle à l'échelle de la séquence

Les amphiboles d'une même séquence sont compositionnellement identiques, quelle que soit leur position dans la séquence, sauf pour S_3 . Les amphiboles des séquences S_1 , S_2 et *pro parte* S_3 présentent les mêmes caractéristiques chimiques (**Figure 4-8**), à savoir des teneurs plus fortes en Mg, Si et Fe³⁺. Par contre, les séquences S_3 *pro parte* et S_4 montrent des teneurs plus fortes en Ca, S_4 Fe²⁺, Al, Ti, Na et K. Plus en détail, la séquence S_3 peut être subdivisée en 2 parties sur la base des variations des teneurs en S_4 (**Figure 4-9**). La partie inférieure S_3 (Fe²⁺ < 1.8 apfu) présente des hornblendes de même chimisme que celles des séquences S_4 et S_4 (au-dessus du trait pointillé), alors que la partie supérieure S_3 + S_3 + S_4 + S_4 = S_4

5. MICROTEXTURES ET CHIMIE DES FELDSPATHS

Le plagioclase cristallise vers la base des séquences en association avec la hornblende, alors que le feldspath potassique n'apparaît qu'en sommet lorsque celles-ci sont complètes. Tous deux sont en position essentiellement cumulus, bien que les surcroissances périphériques indiquent qu'ils ont aussi le statut de phases intercumulus avec le quartz. Les analyses par ICP-MS laser et sonde ionique réalisées sur les feldspaths, présentent des teneurs en éléments traces trop faibles pour être exploitables. Seuls Ba et Sr sont présents en quantité importante et ont été analysés à la microsonde électronique.

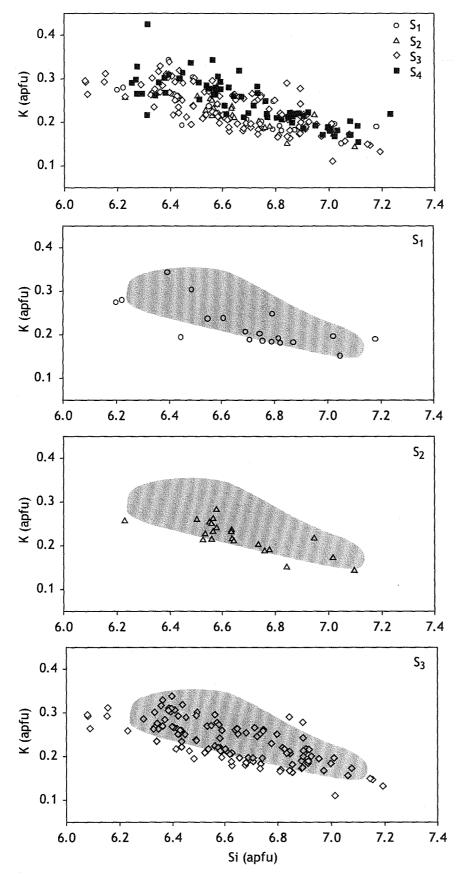


Figure 4-8A. Variation des teneurs en K, en fonction de S dans les hornblendes des différentes séquences $(S_1: rond blanc ; S_2: triangle blanc ; S_3: losange blanc et <math>S_4: carré noir)$. Le champ gris représente 95% des hornblendes de $S_4: carré noir)$.

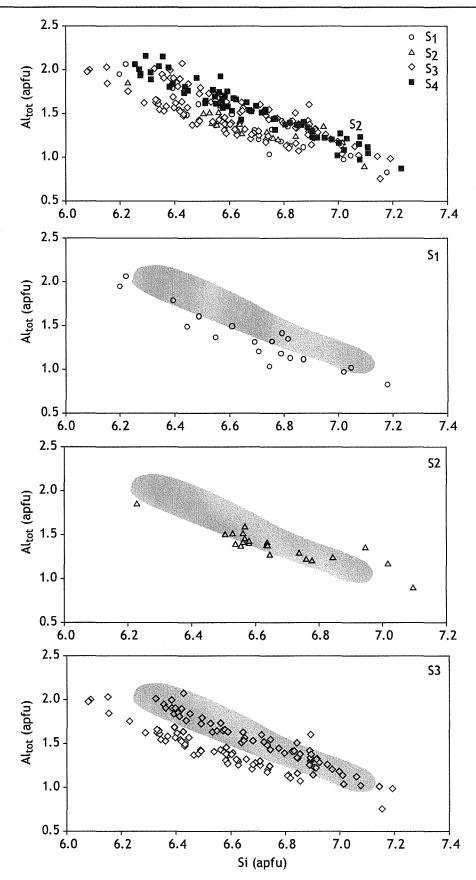


Figure 4-8B. Variation des teneurs en Al_{tot} , en fonction de Si dans les hornblendes des différentes séquences $(S_1: rond blanc; S_2: triangle blanc; S_3: losange blanc et <math>S_4: carré noir)$. Le champ gris représente 95% des hornblendes de $S_4: carré noir)$.

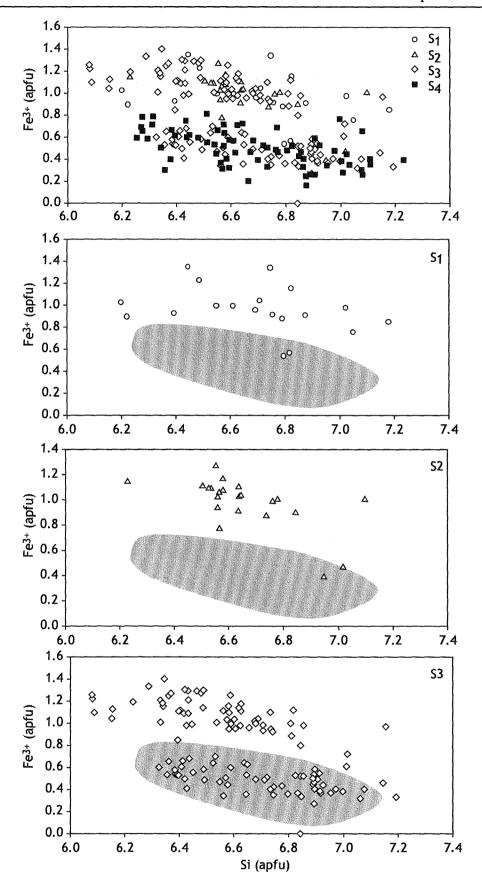


Figure 4-8C. Variation des teneurs en Fe^{3+} , en fonction de Si dans les hornblendes des différentes séquences $(S_1: rond blanc; S_2: triangle blanc; S_3: losange blanc et <math>S_4: carré noir)$. Le champ gris représente 95% des hornblendes de $S_4: carré noir)$.

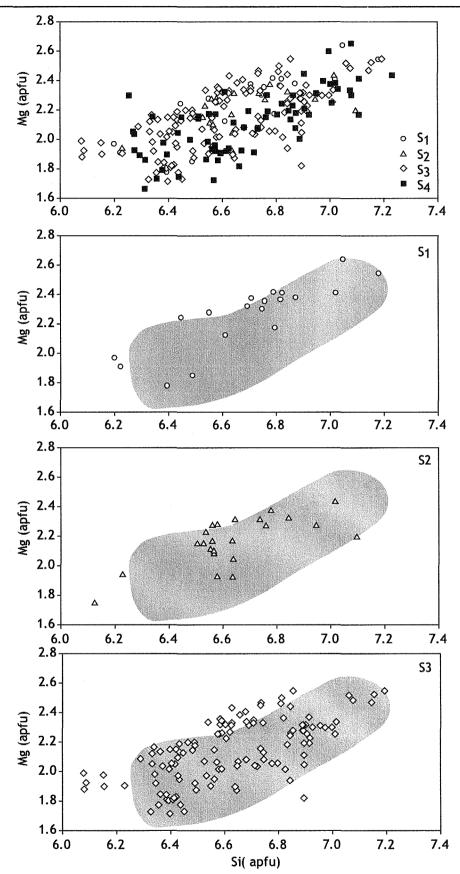


Figure 4-8D. Variation des teneurs en Mg, en fonction de Si dans les hornblendes des différentes séquences S_1 : rond blanc ; S_2 : triangle blanc ; S_3 : losange blanc et S_4 : carré noir). Le champ gris représente 95% des hornblendes de S_4 .

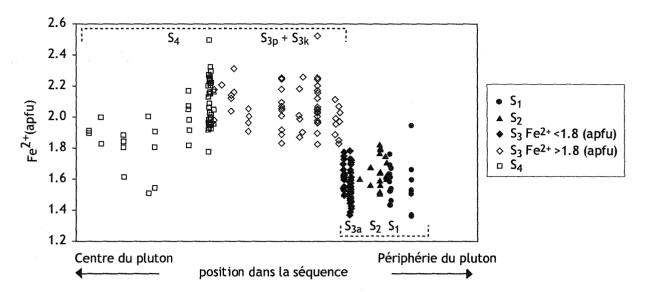


Figure 4-9. Variation de la teneur en Fe²⁺ dans les hornblendes en fonction de leur séquence.

		Franges E	xternes S _{2k}		Hornblende S _{3k}					
teinte	11	2	3	4	1	1	2	2	3	
n° d'analyse	7/1.I	6/1.II	8 / 1 . III	9/1.IV	A71-C-I-b	A71-C-I	A71-C-II	A71-C-II	A71-C-III-b	
Si	6.65	6.75	7.05	7.27	6.66	6.58	6.87	7.01	7.03	
Aliv	1.35	1.25	0.95	0.73	1.34	1.42	1.13	0.99	0.97	
Alvi	0.34	0.37	0.23	0.19	0.29	0.29	0.27	0.28	0.24	
Ti	0.02	0.02	0.04	0.03	0.13	0.13	0.11	0.09	0.09	
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Fe ³⁺	0.09	0.00	0.00	0.00	0.20	0.40	0.25	0.28	0.35	
Fe ²⁺	2.67	2.70	2.40	2.28	2.50	2.25	2.24	2.06	1.92	
Mn	0.06	0.06	0.07	0.08	0.06	0.06	0.05	0.04	0.05	
Mg	1.97	1.97	2.41	2.64	1.82	1.86	2.08	2.25	2.34	
Ca	1.86	1.86	1.74	1.61	1.77	1.74	1.74	1.75	1.71	
Na	0.57	0.56	0.64	0.62	0.73	0.68	0.69	0.58	0.60	
K	0.32	0.32	0.22	0.20	0.32	0.31	0.22	0.18	0.18	
XMg	0.42	0.42	0.50	0.54	0.40	0.41	0.46	0.49	0.51	

Tableau 4-2. Comparaison des éléments en apfu, entre la partie "interne" (coeur + bord) et les franges externes. Les teintes de gris, vues sur les images BSE, sont numérotées du plus clair au plus foncé (1 à 4).

5.1. Plagioclase

Une légère altération des plagioclases se manifeste par la présence assez systématique d'une microporosité et par leur remplacement, dans certaines zones, par des micas blancs. Les macles des plagioclases peuvent être légèrement courbes, traduisant une faible déformation qui pourrait correspondre à la compaction² du granite.

5.1.1. Structures internes et compositions

Au MEB en électrons rétrodiffusés, les cristaux de plagioclase présentent toujours la même structure quelle que soit leur position dans la séquence. Un cœur de teinte claire, caractérisé par une zonation oscillatoire, passe à des surcroissances plus sombres (Figure 5-1a). Quelques hornblendes et, parfois, des apatites sont incluses dans la périphérie des plagioclases. A de très rares endroits, les cristaux cumulus de plagioclase peuvent se poinçonner (Figure 5-1b). Dans ce cas, la surcroissance n'est pas commune aux deux cristaux suggérant qu'elle s'est formée avant le poinçonnement. D'autre part, l'absence de surcroissance, à l'endroit précis du poinçonnement, pourrait suggérer un phénomène de pression-dissolution en présence d'un liquide résiduel. On peut donc envisager que la compaction se produit dans les derniers stades de cristallisation de la séquence.

Des profils chimiques ont été réalisés afin de caractériser plus en détail les variations des éléments majeurs et traces dans les différentes parties des cristaux (**Annexe 5c et c'**). Cœurs et surcroissances correspondent à des albites (An_{0-10} , **Figure 5-2a**). Le pourcentage en An varie entre le cœur (An_{5-12}) et la surcroissance ($An_{<5}$) (**Figure 5-2b**). Les éléments en traces, Ba et Sr, nous montrent des profils compositionnels cœur-surcroissance, similaires d'un cristal à l'autre (**Figure 5-3**). Ainsi un cristal de plagioclase de S_{1k} montre les caractéristiques suivantes :

- (i) le cœur zoné oscillatoirement possède des teneurs en Sr et Ba variant de façon un peu chaotique (en raison de l'altération) mais formant un plateau, autour de 1100 et 800 ppm pour Sr et Ba, respectivement;
- (ii) la surcroisssance est marquée par une diminution continue des teneurs devenant inférieure à la limite de détection (environ 100 ppm pour Ba, et environ 190 ppm pour Sr);

² Nous entendons par compaction l'effet de la déformation liée au gonflement du pluton.

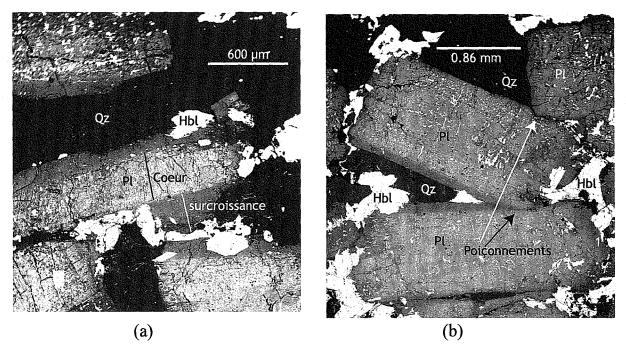


Figure 5-1. (a) Image BSE d'un cristal de plagioclase présentant des surcroissances et contenant des hornblendes. (b) Image BSE de poinçonnement entre plagioclases.

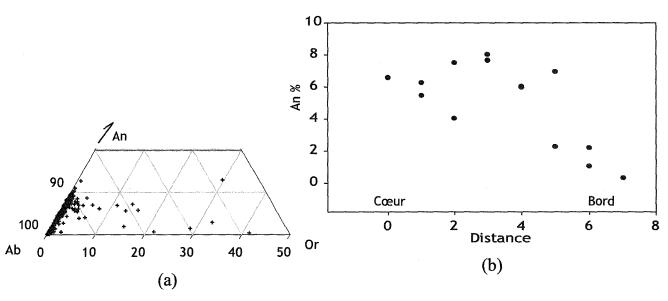



Figure 5-2 (a) Compositions des plagioclases reportées dans le système ternaire $NaAlSi_3O_8$ (Ab) - $CaAl_2Si_2O_8$ (An) - $KAlSi_3O_8$ (Or). (b) Pourcentage d'anorthite dans un plagioclase S_{3p} , en fonction de la distance cœur-bord.

points d'analyse

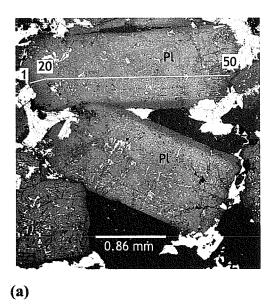


Figure 5-3A. Analyse d'un plagioclase dans S_{1k} . (a) Image BSE du plagioclase analysé, les lignes correspondant aux analyses y sont reportées. Les teneurs correspondant à 0, sont en réalité en dessous des limites de détection. (b) Variation des teneurs en Sr (en ppm), limite de détection à 179 ppm ($\sigma = 8$). (c) Variation des teneurs en Ba (en ppm), limite de détection à 86 ppm ($\sigma = 3$). (d) Variation des teneurs en An (en %). Les trois parties distinguées dans le texte sont reportées sur (a), (b) et (c), le cœur, P = la périphérie et S = les surcroissances.

Les variations en Ba et Sr pour les plagioclases de S_p ou S_q ou S_k sont similaires (Figure 5-3A et B).

5.1.2. Les CSD

Les cristaux sont de forme tabulaire. Leur taille augmente en montant dans la séquence (0,2×0,6 à 1,7×4,3 mm). Cependant les lits étant difficiles à différencier les uns des autres au sein de chaque séquence, les CSD ont été calculées pour chacune d'entre elles et ne rendront pas compte de cette évolution interne. Les surcroissances étant souvent irrégulières, les mesures sont effectuées sur les cœurs automorphes des plagioclases. L'étude des distributions des tailles des cristaux de plagioclase montre qu'elles sont en forme de cloche asymétrique avec une partie log-linéaires du côté des grandes tailles, comme celles des basaltes expérimentaux (cf chapitre 2). Les CSD montrent une grande similitude entre les séquences (Figure 5.4). En effet, les CSD ont des pentes voisines pour le petit axe (-48 à -56 mm⁻⁵) et le grand axe (-9,5 à -13,5 mm⁻⁵) depuis S₁ jusqu'à S₄. Il en va de même pour les ordonnées à l'origine allant de 14,4 à 15,8 mm⁻⁴ pour le petit axe et de 10,9 à 12,1 mm⁻⁴ pour le grand axe (Figure 5.5). Dans le chapitre 2, nous avons vu que les pentes des CSD montraient un aplatissement lors du refroidissement. L'évolution des séquences pour le Dolbel ne correspond donc pas à une diminution de température, mais les CSD de Dolbel indiquent donc, au contraire, que toutes les séquences ont suivi la même histoire thermique. Enfin, le rapport des surfaces des cristaux sur la surface totale de la séquence est assez semblable d'une séquence à une autre (pour S₁: 5,7, pour S₂: 4,4, pour S₃: 4,5 et pour S₄: 4,9), ce qui argumente en faveur d'une grande homogénéité des séquences. L'augmentation de la taille des grains au sein d'une séquence est compatible avec soit une durée de cristallisation plus faible vers le bord que vers l'intérieur du pluton soit une agglomération des cristaux en sommet de séquence. L'hypothèse d'une agglomération des cristaux en sommet de séquence n'est pas confirmée par les observations. L'hypothèse d'une durée de refroidissement plus rapide en base qu'en sommet de séquence implique une différence initiale importante de température entre l'encaissant (sommet de la séquence précédente) et le magma.

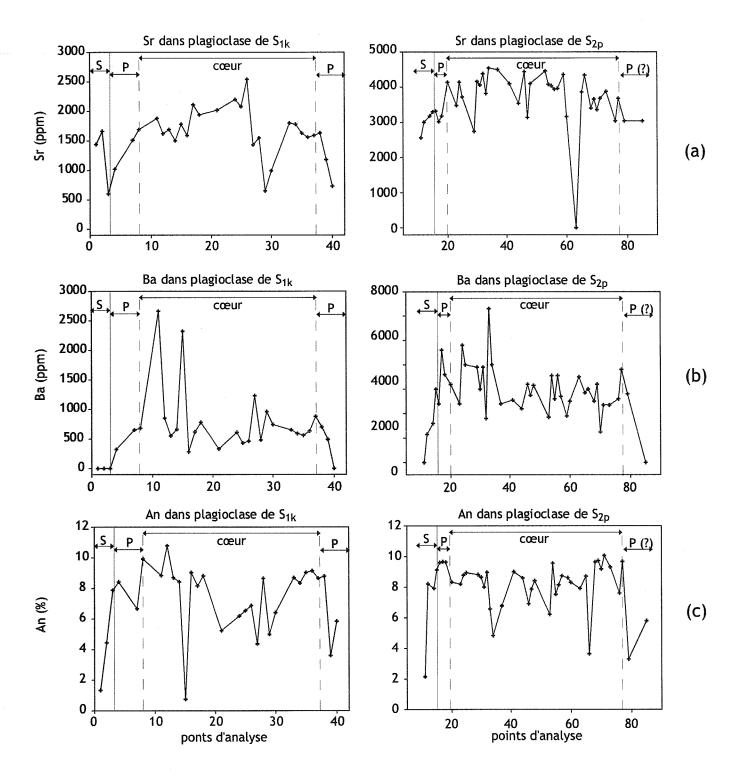


Figure 5-3B. Analyse d'un plagioclase dans S_{1k} (gauche) et S_{2p} (droite). (a) Variation des teneurs en S_{1k} (en ppm). (b) Variation des teneurs en S_{1k} (en ppm). (c) Variation des teneurs en S_{1k} (en ppm). Les trois parties distinguées dans le texte sont reportées sur (a), (b) et (c), le cœur, $P_{1k} = 1$ périphérie et $S_{1k} = 1$ les surcroissances. Les teneurs correspondantes à 0, sont en réalité en dessous de la limite de détection: $S_{1k} = 1$ ppm ($S_{1k} = 1$) et $S_{1k} = 1$ ppm ($S_{1k} = 1$).

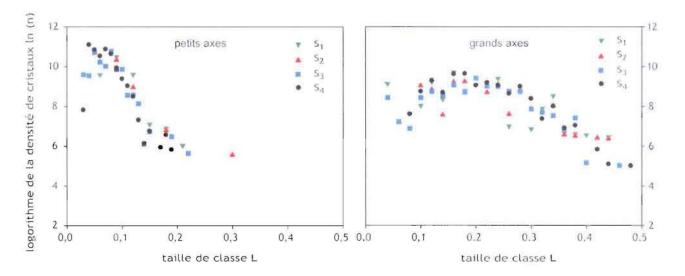


Figure 5-4. Courbes CSD des plagioclases pour chaque séquence du granite lité de Dolbel.

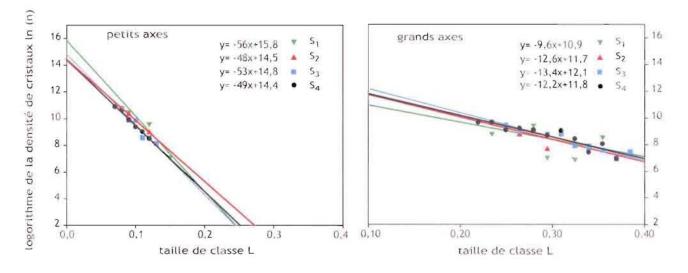


Figure 5-5. Droites CSD des plagioclases pour chaque séquence du granite lité de Dolbel, avec l'équation de la régression linéaire correspondant aux classes représentatives (voir chapitre 2 § 4.3).

5.2. Feldspath potassique

Le feldspath potassique n'apparaît qu'en sommet de séquence (S_k) , à l'exception de quelques cristaux entraînés. Bien que correspondant à la phase cumulus la plus tardive, il se présente en phénocristaux, sub-automorphes à automorphes, dont la taille augmente en montant dans la séquence (de $2,7\times3,9$ mm à 5×7 mm). Les cristaux présentent trois parties bien distinctes (**Figure 5-6Aa**) :

- (i) un cœur perthitique assez gros, présentant une zonation oscillatoire net et englobant parfois des hornblendes et des plagioclases (Figure 5-7 a),
- (ii) une périphérie avec moins d'exsolutions et d'inclusions mais présentant toujours une zonation oscillatoire,
- (iii) des surcroissances qui englobent d'autres phases cumulus tel que des hornblendes, des sphènes, des plagioclases, des zircons et d'autres feldspaths potassiques.

Le feldspath potassique est également en position intercumulus. Il est dans ce cas de plus petite taille ($60\times75~\mu m$ à $230\times250~\mu m$) et englobe la plupart des autres phases minérales.

Il n'y a pas de variation chimique marquée des principaux constituants (**Figure 5-7 b Annexe 5d et d'**). Cependant, les cœurs sont plus sodiques (Or₉₆₋₉₈Ab₂₋₄) alors que les surcroissances sont plus proches du pôle orthose (Or₉₈₋₉₉Ab₀₋₂). En revanche, Sr et Ba montrent des variations beaucoup plus importantes qui rappellent celles observées dans les plagioclases. Trois zones sont nettement visibles (**Figure 5-6Ab et c**):

- (i) un cœur montrant des variations assez chaotiques mais formant un plateau autour de 4000 ppm pour Sr et autour de 12000 ppm pour Ba;
- (ii) une périphérie caractérisée par une baisse régulière des teneurs en Sr et Ba passant de 4000 à 2500 ppm et de 12000 à 3000 ppm;
- (iii) une surcroissance appauvrie en ces deux éléments, avec des teneurs se situant autour de 2500 ppm pour Sr et autour de 200 ppm pour Ba.

Des analyses effectuées sur des feldspaths de différentes séquences sont similaires (Figure 5-6B)

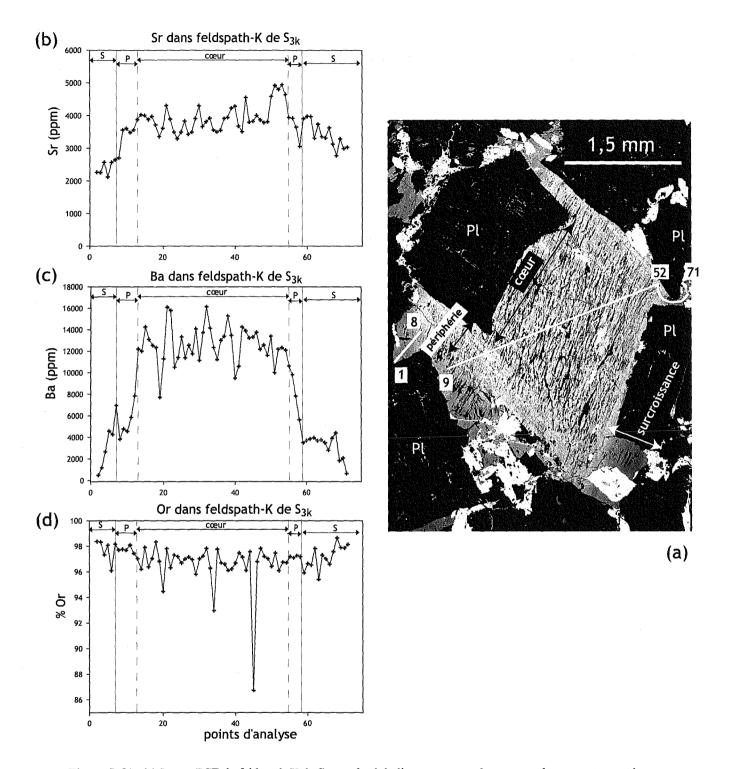
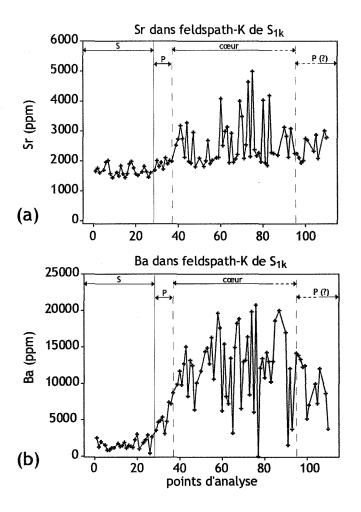



Figure 5-6A. (a) Image BSE du feldspath-K de S_{3k} analysé, la ligne correspondant aux analyses y est reportée. (b) Variation des teneurs en Sr (en ppm), limite de détection à 179 ppm ($\sigma = 8$). (c) Variation des teneurs en Ba (en ppm), limite de détection à 86 ppm ($\sigma = 3$). (d) Variation des teneurs en Or (en %). Les trois parties distinguées dans le texte sont reportées sur (a), (b) et (c), le cœur, P = la périphérie et S = les surcroissances.

Figure 5-6B. (a) Analyse d'un feldspath-K dans S_{1k} . (a) Variation des teneurs en Sr (en ppm). (b) Variation des teneurs en Ba (en ppm). Les trois parties distinguées dans le texte sont reportées sur (a) et (b) le cœur, P = la périphérie et S = les surcroissances. Les limites de détection sont Sr 152 ppm ($\sigma = 2$) et Ba 109 ppm ($\sigma = 1,5$). Les teneurs correspondantes à 0, sont en réalité en dessous de ces limites.

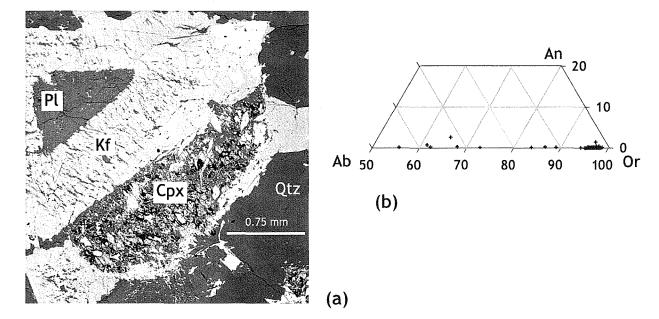


Figure 5-7. (a) Image BSE d'un plagioclase inclus dans un feldspath-K (S_{3k}). (b) Composition des feldspaths-K reportée dans le système ternaire NaAlSi₃O₈ (Ab) - CaAl₂Si₂O₈ (An) - KalSi₃O₈ (Or).

6. MICROTEXTURES ET CHIMIE DES AUTRES MINERAUX

6.1. Quartz

Il apparaît en phase cumulus au niveau des lits S_q (**Figure 4-1a**). Il s'agit de cristaux automorphes dont la taille augmente en montant dans la séquence, pouvant aller jusqu'à 1,5 mm dans les lits S_k . Le quartz présente une texture allant de l'extinction onduleuse à celle en sous-grains témoignant d'une déformation plastique probablement liée au gonflement du pluton. Il se présente également en position intercumulus dont il constitue une proportion importante. On retrouve souvent des phases cumulus, telles que l'amphibole et le sphène englobées dans différents grains de quartz intercumulus. Une étude en cathodoluminescence n'a pas permis de mettre en évidence de zonation, comme dans les feldspaths et les amphiboles.

6.2. Sphène, apatite et oxydes Fe-Ti

Ces quatre phases sont préférentiellement associées à l'amphibole (lits S_a en particulier), en tant que phases cumulus. Le sphène est automorphe, de taille variant entre 20×50 μm à 100×450 μm et contient parfois du quartz ou de l'ilménite (**Figure 6-1a et d**). Plus on monte dans la séquence, plus il est rare. Il est également observé en inclusion dans le feldspath potassique et la hornblende. Les images MEB en électrons rétrodiffusés montrent des zonations chimiques plus au moins concentriques avec des figures de résorption (**Figure 6-1b**). Les éléments majeurs ne montrent que peu de variation (**Annexe 5e**). L'enrichissement en Ti est associé à un enrichissement en Ca et une substitution (Al³⁺ + Fe³⁺) - Ti⁴⁺ est visible (**Figure 6-1c**). Les résultats des analyses à l'ICP-MS sont comme pour les amphiboles et les feldspaths à utiliser avec précaution. Toutefois, la richesse du sphène en éléments en traces fait que les limites de détection ont une influence moindre sur les résultats. La zonation étant moins fine que celle de l'amphibole, les analyses réalisées par ICP-MS peuvent être utilisées. Les zones les plus claires, situées en bordure, sont enrichies en REE, Th et Y (**Figure 6-2** et **Annexe 4 tabl. 6**).

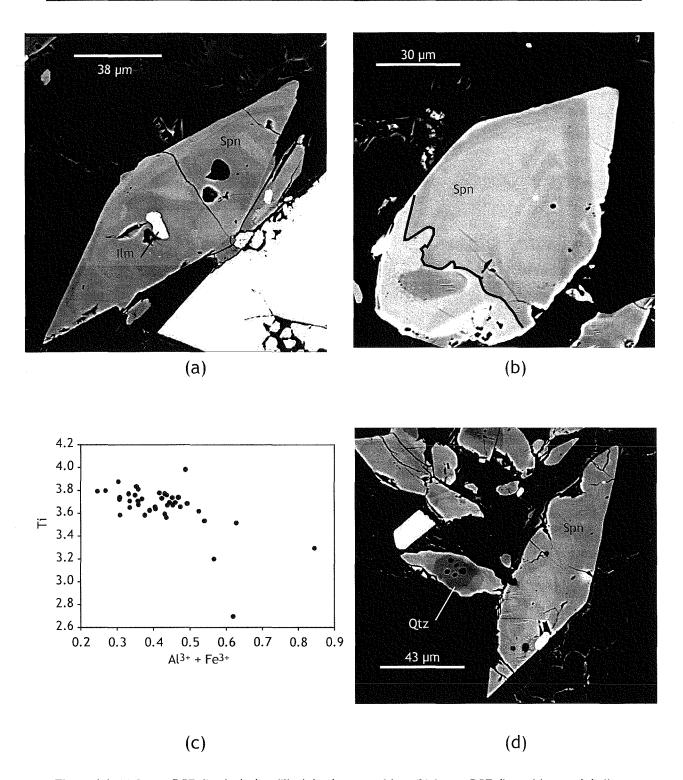
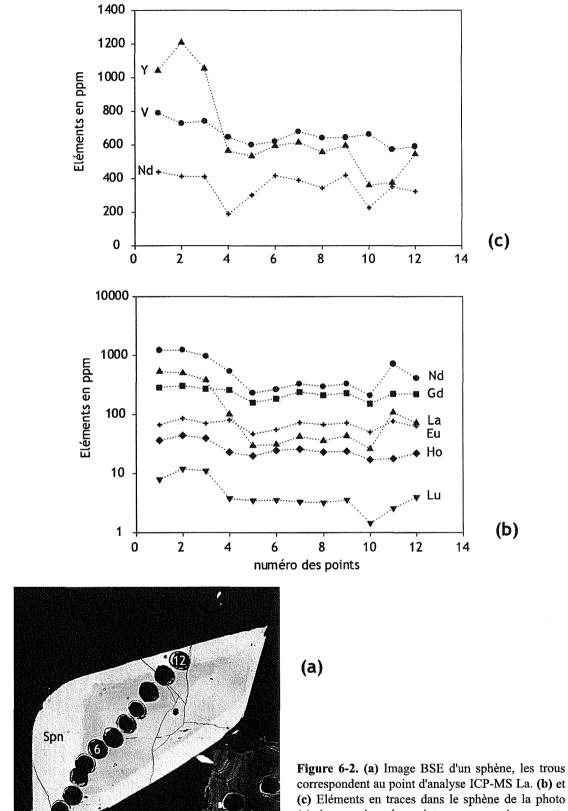
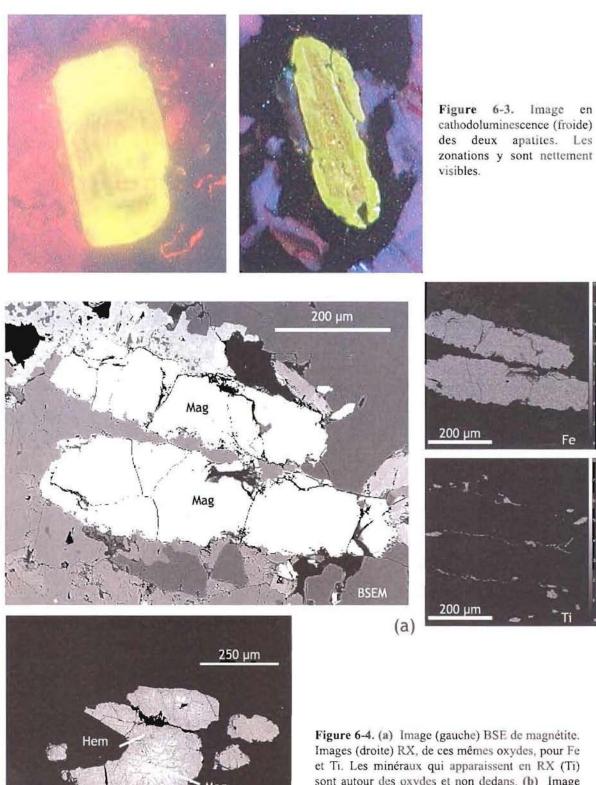


Figure 6-1. (a) Image BSE d'un inclusion d'ilménite dans un sphène. (b) Image BSE d'un sphène zoné, la ligne noire souligne les figures de résorption. (c) Substitution dans les sphènes (les éléments sont en apfu) (d) Image BSE d'un sphène zoné contenant des inclusions de quartz.

L'apatite est automorphe avec des tailles variant de 50 à 100 µm Les plus grands cristaux (220 µm en section basale) se trouvent dans les petits amas d'amphiboles englobés dans des carbonates. Elles présentent souvent une zonation, visible uniquement en cathodoluminescence (**Figure 6-3**).


Les oxydes se présentent en grains ovoïdes (**Figure 6-4a**) parallèles au litage (S_a). Les analyses chimiques (**Annexe 5f**) montrent qu'il s'agit de magnétite (0,2 par 1 mm). L'altération a partiellement transformé la magnétite en hématite (**Figure 6-4b**) et le Ti des magnétites en oxydes de Ti visibles en périphérie des magnétites (**Figure 6-4a**). On trouve aussi des ilménites en inclusion dans les sphènes (50×10 μm - **Figure 6-1d**) tout au long de la séquence.

6.3. Minéraux secondaires


L'actinote pseudomorphose les bordures des hornblendes et en efface les zonations chimiques, montrant ainsi son caractère secondaire. Elle se situe autour de la plupart des hornblendes. L'épidote (pistachite - Annexe 5g) se situe uniquement dans les lits S_a et dans les petits amas de phases cumulus englobés dans des carbonates. Elle se présente sous forme de petits agrégats de grains associés à des grains de quartz ou bien en grandes symplectites (Figure 6-5a) souvent à proximité des pyroxènes. Enfin, on trouve des carbonates secondaires qui se situent toujours dans des amas de minéraux primaires tels que la hornblende, le sphène, la magnétite, et l'apatite (Figure 6-5b).

7. MICROTEXTURES DES MINERAUX DU CŒUR DU PLUTON

Le cœur du pluton est constitué de granite porphyroïde massif dans lequel le litage est absent (**Figure 7-1a**). Ce granite peut contenir des enclaves microgrenues mafiques de taille centimétrique à décimétrique. Il est également recoupé par des proto-filons microdioritiques constitués d'enclaves baignant dans une matrice granitique claire (**Figure 7-1b**). Ce granite est constitué des mêmes phases que les granites lités (hornblende, clinopyroxène, plagioclase, quartz, feldspath potassique).

(a), les numéros des points sont reportés sur cette image.

sont autour des oxydes et non dedans. (b) Image BSE d'une magnétite altérée en hématite en bordure.

(b)

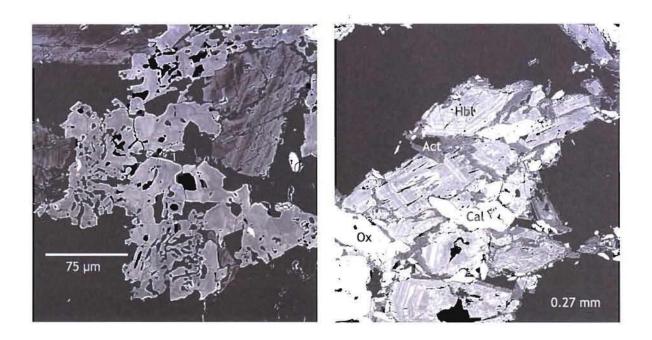


Figure 6-5. (a) Image BSE d'une symplectite de quartz (noir) et d'épidote (gris). (b) Image BSE montrant les cristaux de calcite dans un lit L_{3p} .

La distribution des cristaux peut être homogène ou irrégulière avec des accumulations locales de phénocristaux de feldspath potassique. Les caractéristiques texturales et chimiques des minéraux présentent des points communs avec les minéraux de la partie litée du pluton. On retrouve notamment la zonation oscillatoire des cristaux. Cela est particulièrement bien visible sur les cristaux de feldspath potassique (**Figure 7-1c et d**). Cependant leur histoire est plus complexe que les minéraux de la partie litée. C'est le cas par exemple des feldspaths potassiques, de grande taille, et contenant de nombreuses inclusions des minéraux présents dans le granite. De plus, les feldspaths ont beaucoup moins de surcroissances que dans la partie litée.

Tous les minéraux ont été analysés à la sonde électronique (**Annexe 6**). Les textures des amphiboles sont identiques à celles de la partie litée, avec une zonation contournée au cœur du cristal et une zonation oscillatoire en périphérie. Les analyses chimiques des amphiboles du cœur montrent les mêmes variations que celles de la partie litée. Les amphiboles se situent dans le champ de composition des hornblendes de la partie litée et aucune variation progressive entre le cœur et le bord n'apparaît (**Figure 7.2c**). Les variations de teinte de gris de la zonation oscillatoire (**Figure 7.2a et b**) reflètent les mêmes variations des teneurs en éléments majeurs que dans la partie litée (CaO, SiO₂ et MgO augmentent, FeO, TiO₂, K₂O, Na₂O, et Al₂O₃ diminuent). Le X_{Mg} est sur la limite basse des amphiboles. La teneur en Fe²⁺ varie de 2,3 à 2,8 (apfu), ce qui est nettement supérieur à la teneur des amphiboles de la partie litée de Dolbel (**Figure 7.2d**). Les clinopyroxènes présentent les mêmes compositions. La zonation chimique du Ba et Sr dans les plagioclases et les feldspaths potassiques est plus complexe que celles de la partie litée. Les variations chimiques dans un plagioclase sont représentées sur la **figure 7-3**. On peut noter que les teneurs en Sr sont particulièrement fortes par rapport à celle des feldspaths de la partie litée (x 20).

Des analyses à la sonde ionique ont été effectuées, elles confirment les teneurs en Sr et Ba de la sonde électronique (Annexe 6). Les teneurs en Ba et Sr n'ont pas un profil symétrique. Elles augmentent assez fortement de l'extérieur vers l'intérieur et diminuent très légèrement vers l'extérieur du cristal, sans montrer de relation avec les zones visibles au MEB.

D'autres plagioclase analysés présentent des variations plus complexes, avec dans la **figure** 7-4A, un syneusis de plagioclase, à gauche, analysé dans sa longueur et un autre plagioclase, à droite, analysé dans sa largeur.

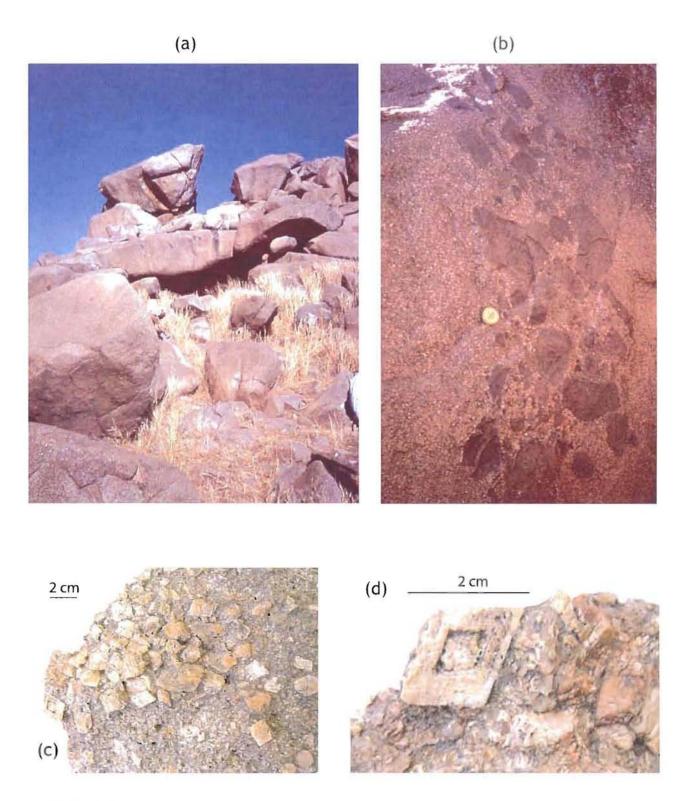


Figure 7-1. (a) Photo de la zone du coeur de Dolbel. (b) Enclaves mafiques dans le granite (proto-filon). (c) et (d) Echantillon du coeur de Dolbel, montrant les accumulations de feldspaths-K et leur zonage oscillatoire.

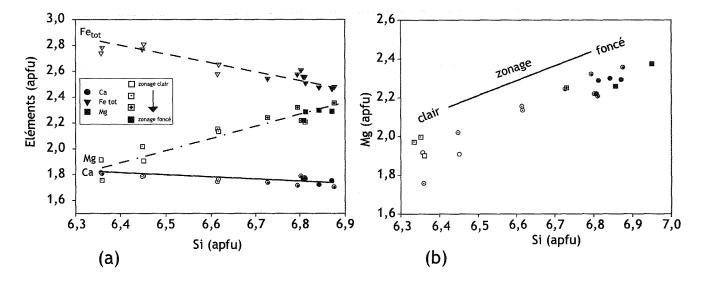
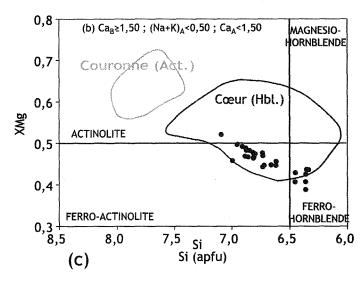
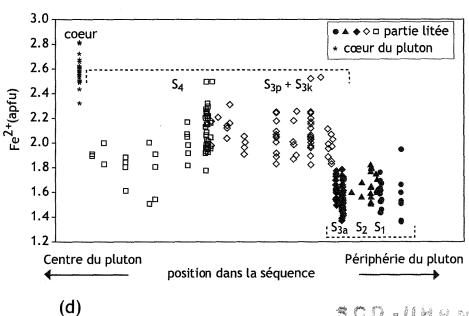
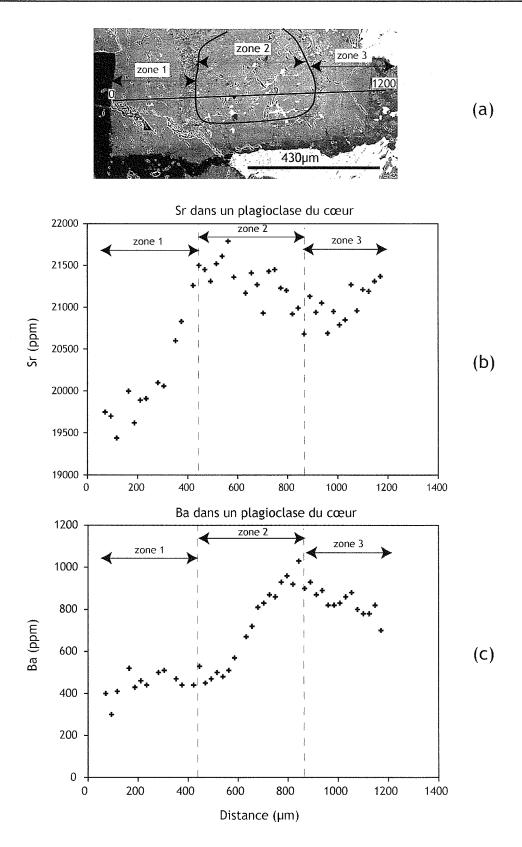





Figure 7-2. (a) Variation des teneurs en Ca, Mg et Fe²⁺ en fonction de Si dans une hornblende du cœur du granite de Dolbel. (b) Variation des teneurs en Mg en fonction de Si des hornblendes du cœur du granite de Dolbel, par rapport à la couleur du zonage visible sur les images BSE. (c) Composition des amphiboles calciques, du cœur du granite de Dolbel, d'après la classification de Leake (1997). (d) Variation de la teneur en Fe²⁺ dans les hornblendes du cœur du pluton et de la partie litée (même légende que la figure 4.9).

S.C.D. - U.H.P. NAMGY 3 227 ### 2220 A SCIENCES Aue du Jardin Botenique - BP 11 54601 VILLERS-LES-NANCY Céden

Figure 7-3. (a) Image BSE d'un plagioclase du cœur du pluton. La ligne correspond au profil analysé, la ligne en pointillé correspond à la même délimitation que sur les graphiques b et c. (b) Variation des teneurs en Sr (ppm), limite de détection à 194 ppm (s = 1). (c) Variation des teneurs en Ba (ppm), limite de détection à 107 ppm (s = 0.5).

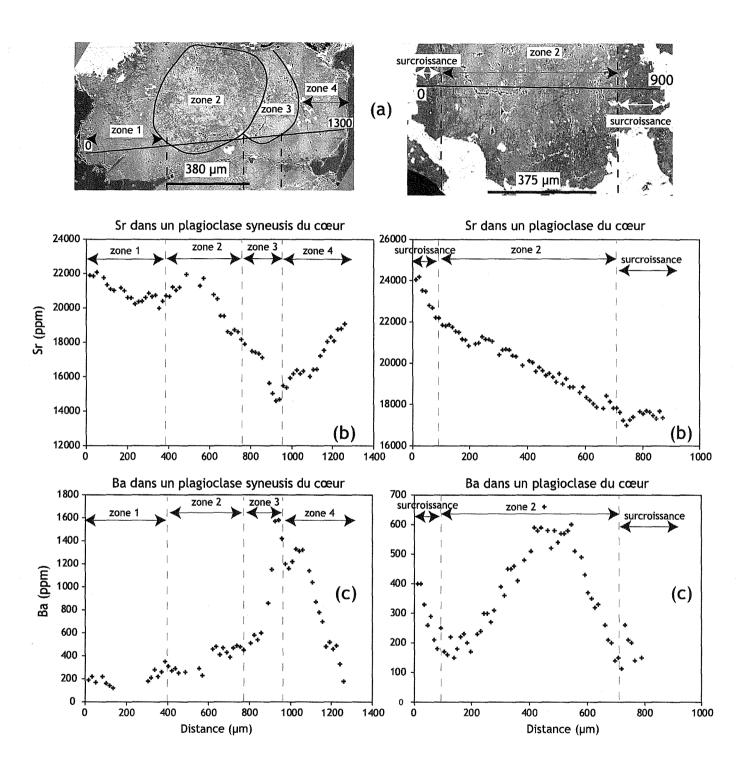
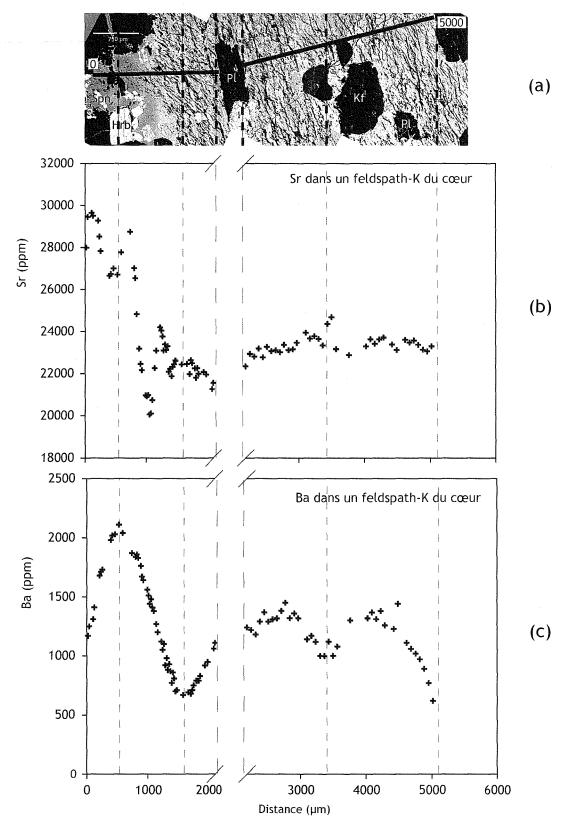



Figure 7-4A. (a) Image BSE des plagioclases analysés qui se situent dans le cœur du pluton. La ligne correspond au profil analysé , les lignes en pointillé correspondent à la même délimitation que sur les graphiques b et c. (b) Variation des teneurs en Sr (en ppm), limite de détection àSr 213 ppm (σ = 2) pour le plagioclase de gauche et à 198 ppm (σ = 1,5) pour le plagioclase de droite (c) Variation des teneurs en Ba (en ppm), limite de détection à Ba 109 ppm (σ = 2) pour le plagioclase de gauche et à 108 (σ = 2,6) pour le plagioclase de droite.

Le syneusis se compose de quatre parties délimitées sur la photo BSE qui sont plus ou moins bien visibles sur les analyses chimiques. Les variations des teneurs en éléments en traces sont très différentes de ce que l'on a déjà vu. Tout d'abord, le Sr et le Ba n'ont plus une évolution analogue mais sont au contraire inversés.

Le plagioclase de droite (**figure 7-4A**) qui présente des surcroissances, visible au MEB, des deux cotés, montre également des variations chimiques différentes que celles décrites dans la partie litée du pluton. Ainsi, bien que des surcroissances soient présentes des deux cotés du cristal, l'évolution de la teneur en Sr diminue de la surcroissance gauche à la surcroissance droite, sans réelle correspondance avec le Ba. Ce dernier indique des variations de grande amplitude dans le cristal.

Un feldspath potassique a également été analysé (**Figure 7-4B**), celui-ci est de taille importante (1,5 cm) et comporte de nombreuses inclusions : plagioclases et quelques feldspaths potassiques dans le cœur et la périphérie, amphiboles et sphènes dans les surcroissances. Le profil a été effectué sur moins de la moitié du cristal. Sur la photo BSE, la surcroissance est bien visible et on retrouve les mêmes textures internes que dans la partie litée. En revanche, les analyses en élément en traces montrent une toute autre évolution. Tout d'abord, les teneurs en Ba et Sr se corrèlent beaucoup moins bien que dans les feldspaths potassiques des lits. Le profil des teneurs en Ba évolue en sigmoïde. Les teneurs en Ba et Sr montrent une évolution en relative diminution, du bord vers l'intérieur, ce qui n'est pas le cas dans les feldspaths potassiques de la partie litée. Les principaux changements de pente ont été répertoriés sur la photo BSE ce qui nous permet de voir que ces changements ne correspondent pas toujours à des textures visibles sur le cristal.

Figure 7-4B. (a) Image BSE du feldspath potassique analysé qui se situe dans le cœur du pluton. La ligne correspond au profil analysé, les lignes en pointillé correspondent à la même délimitation que sur les graphiques b et c. **(b)** Variation des teneurs en Sr (en ppm), limite de détection à 195 ppm (s = 5). **(c)** Variation des teneurs en Ba (en ppm), limite de détection à 112 ppm (s = 2).

8. DISCUSSION

8.1. Origine des variations minéralogique dans les séquences

8.1.1. Ordre de cristallisation

Comme nous l'avons vu, l'échantillon étudié est composé de 4 séquences, complètes ou non. Les minéraux cumulus sont automorphes qu'ils soient de petite taille (inférieure au millimètre) comme le sphène, l'amphibole, l'apatite, ou de taille plus importante (supérieure au millimètre, voire au cm) comme le plagioclase, le feldspath potassique, le clinopyroxène et le quartz. Les séquences considérées comme minéralogiquement complètes (S_3 et S_4) sont constituées de quatre lits successifs: le lit S_a dont la phase cumulus principale est l'amphibole suivi du lit S_p à plagioclase, puis S_q à plagioclase et quartz et enfin S_k à plagioclase, quartz et feldspath potassique. On peut les considérer comme caractéristiques du magma parent. La séquence S_2 est initialement incomplète et ne comporte que les lits S_a et S_p (voir Tableau 3-1). La séquence type comporte donc la succession paragénétique suivante (Tableau 3-1):

- S_a: hornblende + sphène + ilménite/magnétite + apatite
- S_p: plagioclase + hornblende + clinopyroxène + sphène + magnétite + apatite
- S_q: plagioclase + quartz + hornblende + clinopyroxène + sphène + magnétite + apatite
- S_k : plagioclase + feldspath potassique + quartz + hornblende + sphène + clinopyroxène + magnétite + apatite

ainsi que quartz, feldspath potassique (± plagioclase) pour le liquide résiduel.

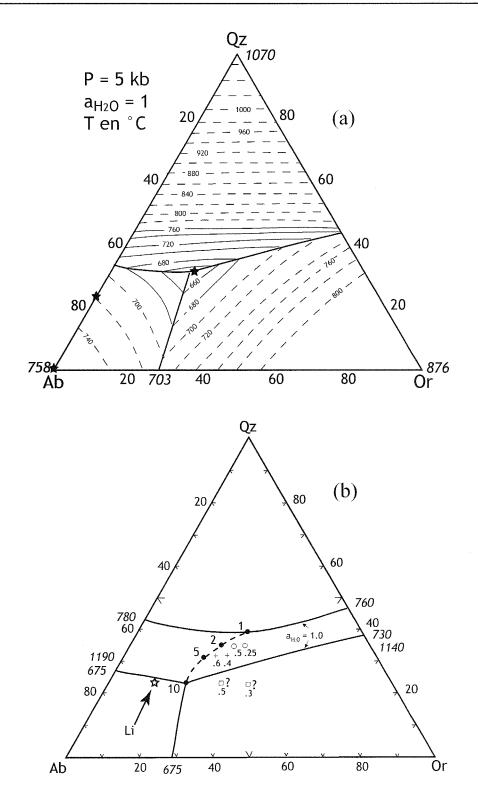
8.1.2- Séquences litées et diagramme Oz-Ab-Or

Nous avons tenté de comparer la succession reconstituée, à partir de l'observation pétrographique, aux données expérimentales. La composition chimique globale ($SiO_2 + Al_2O_3 + Na_2O + K_2O = 93$ % en moyenne) et la nature des minéraux (quartz, feldspath potassique et plagioclase An_{0-10}) montre que les granites de Dolbel peuvent être modélisés dans le système Qz-Ab-Or.

La succession paragénétique des lits S_p , S_q , S_k est cohérente avec une évolution de type liquidus, cotectique et eutectique dans le diagramme Qz-Ab-Or (Johannes et Holtz, 1996). La coexistence du feldspath potassique, de l'albite et du quartz dans la séquence supérieure S_k et en intercumulus (liquide résiduel) implique une cristallisation de type eutectique. La cristallisation s'est donc produite dans des conditions de pression ≥ 5 kbars (Johannes et Holtz, 1996; **Figure 8-1**).

La composition minéralogique et l'épaisseur des lits d'une séquence permettent d'avoir une idée de la composition du liquide initial. Le calcul des proportions des phases a été réalisé sur la séquence S_3 , sans tenir compte des minéraux ferromagnésiens et des accessoires. Pour les séquences S_{3p} et S_{3q} , les quelques cristaux de feldspath potassique n'ont pas été pris en compte car ils sont considérés comme exotiques. Les résultats sont les suivants en % massique :

 $-S_{3k}$: Plag = 46 Qz = 31 Feld-K = 23


- S_{3q} : Plag = 77 Qz = 23

- S_{3p} : Plag = 100

L'erreur sur ces estimations est de \pm 5%. Ces compositions, supposées représenter les compositions solides instantanées, sont reportées dans le diagramme Qz-Ab-Or (**Figure 8-2**). On peut constater qu'elles sont, dans la marge d'incertitude, proches des compositions instantanées cotectique et eutectique du diagramme.

La composition initiale peut être estimée, sachant qu'elle se situe dans le triangle défini par les trois compositions solides instantanées si l'on raisonne en système fermé (**Figure 8-2a**). Les épaisseurs relatives des trois lits S_p , S_q , S_k (liquidus, cotectique, eutectique) permettent de localiser la position du liquide parent. Néanmoins, l'épaisseur du lit S_k n'est qu'une valeur minimale, car on ne connaît pas son épaisseur réelle dans la mesure où il a pu être érodé par les venues suivantes (cf. §.8). Les épaisseurs données dans le **Tableau 8-1** et ramenées à 100 sont les suivantes :

mm % $- S3k : \sim 37 \qquad \sim 56$ $- S3q : \qquad 17 \qquad \sim 26$ $- S3p : \qquad 12 \qquad \sim 18$

Figure 8-1. (a) Diagramme ternaire du système Qz-Ab-Or à 5 kbar. La composition du liquide eutectique est de 31% Qz, 47% Ab et 22% Or (Johannes et Holtz, 1996). Les compositions des cumulats correspondant aux lits Sp, Sq et Sk sont représentées par des étoiles **(b)** Diagramme Qz-Ab-Or à différentes pressions en kbars (points) pour $a_{\rm H2O}=1$. Les cercles indiquent le déplacement des minima ou de l'eutectique pour $a_{\rm H2O}<1$ (chiffres en dessous des symboles, cercles pour 2 kbars, croix pour 5 kbars et carrés pour 10 kbars - Johannes et al., 1996). L'étoile représente la composition minéralogique calculée du liquide initial (Li).

La composition initiale minimale du liquide est donnée dans la **figure 8-2a** (Li). On notera que l'épaisseur très faible des lits S_p et S_q par rapport à l'épaisseur des lits S_k , souvent très développés (cf. **Figure 3-1**), suggère le caractère proche de l'eutectique du liquide initial. Cependant, le lit S_{3k} étant probablement incomplet, il est probable qu'elle se situe plus vers l'eutectique. De plus, nous verrons qu'une partie du liquide résiduel s'est échappé éloignant de l'eutectique la composition calculée du liquide parent. D'après le diagramme Qz-Ab-Or (Johannes et Holtz, 1996), la composition calculée du liquide initial ne correspond pas à l'eutectique pour une pression de 5 kbars et $a_{H2O} = 1$ (**Figure 8-1**). Le liquide initial calculé s'est formé à une pression de l'ordre de 10 kbars. Cependant, la composition du liquide initial est sans doute plus proche de l'eutectique (lit S_k incomplet) que celle qui a été calculée. La décompression, lors de la mise en place du liquide dans le pluton, a fait évoluer les conditions de pression, température, teneur en eau et fugacité d'oxygène vers celles définies par la composition du lit S_k .

8.1.3. Conditions P-T-fO2 de cristallisation

Nous venons de voir que la coexistence des trois phases, quartz, albite (An_{0-10}) et feldspath potassique implique un eutectique, d'où des conditions de pression de mise en place qui doivent être égales ou supérieures à 5 kbars (Johannes et Holtz., 1996). Ceci est cohérent avec l'existence de disthène et de staurotide dans l'auréole métamorphique des plutons calcoalcalins, impliquant des pressions de l'ordre de 6 kbars (Pons et al., 1995).

Les températures de cristallisation sont difficilement estimables, en particulier pour l'amphibole. D'après (Prouteau et Scaillet (2003) (**Figure 8-3**), la hornblende (pour des teneurs en eau supérieures à 7%) apparaît aux alentours de 900-950°C et le plagioclase un peu en dessous. Néanmoins, compte tenu du caractère très fortement sodique du plagioclase et du caractère "quasi eutectique" du liquide parent, il est vraisemblable que la séquence de cristallisation (amphibole exceptée) s'est développée dans une gamme de température très restreinte (quelques dizaines de degrés, **Figure 8.1b**). Cela suggère donc le caractère très précoce de l'amphibole par rapport à la mise en place du magma comme nous le discuterons plus loin.

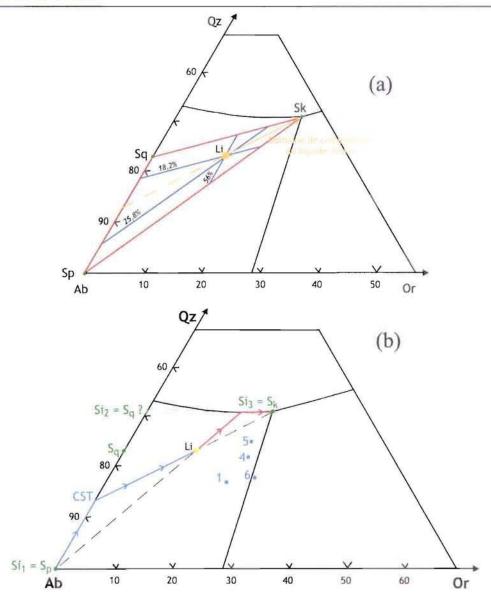


Figure 8-2. (a) Calcul du liquide initial (Li) à partir des épaisseurs de chaque séquence (pourcentages). Les solides instantanés sont indiqués par des points verts et le liquide initial (Li) par une flèche orange. (b) Trajets du liquide en rouge, du solide total (CST) en bleu. Les solides instantanés (Si) sont indiqués par des points verts et le liquide initial par un point jaune. Les points bleus représentent les compositions des granites du coeur du massif de Dolbel (Tableau 2-1).

Lit Epaisseur	Li	Périphérie Litée				Cœur massif			
		Sa subliquidus Imm - 1,5%	Sp liquidus 12mm - 17,9%	Sq cotectique 17mm - 25,4%	Sk eutectique 37mm - 55,2%	Composition normative des granites porphyroïdes			
						Qz%	23		0
Ab%	64		100	77	46	62	57	54	57
Or%	13		0	0	23	21	21	22	25

Tableau 8-1. Caractéristiques des deux types d'échantillons de Dolbel (lité et non lité). Les pourcentages Qz-Ab-Or pour la roche litée sont recalculés en % pds alors que pour le cœur du massif, les pourcentages correspondent à la norme CIPW.

Prouteau et Scaillet (2003) ont montré à partir d'une étude expérimentale sur des dacites que, pour des pressions égales ou supérieures 4 kbars et des teneurs en eau dans le liquide supérieures à 7% (sachant que la limite de saturation à 5 kbar est de 10% (Johannes et Holtz, 1996), l'amphibole apparaît au liquidus à la place du pyroxène (**Figure 8.3a**). Les relations de phases à 9 kbar montrent par ailleurs que l'amphibole peut cristalliser avant le pyroxène avec la baisse de température (**figure 8.3b**). Bien que cette situation soit celle observée dans cette étude, la différence de composition des liquides et des conditions de pression entre Dolbel et les expérimentations doit inciter à une certaine prudence dans l'extrapolation. Si on se réfère au graphique de Prouteau et Scaillet (2003) les teneurs en eau minimales pourraient être de l'ordre de 7% pour le liquide parent des granites de Dolbel. Cette valeur minimale est cohérente avec la teneur minimale en H₂O au liquidus d'un liquide eutectique haplogranitique à P = 5kb et 650<T<700°C, qui est de l'ordre de 7 à 9% d' H₂O (Holtz et Johannes, 1994).

L'assemblage sphène+magnétite+quartz stable dans les granites de Dolbel et la présence d'ilménite en inclusion dans les sphènes permettent d'estimer la fO_2 relative (Lipman, 1971). D'après Wones (1989), l'équilibre (**Figure 8.4**):

$$3CaFeSi_2O_6 + 3FeTiO_3 + O_2 = 3CaTiSiO_5 + 2Fe_3O_4 + 3SiO_2$$

hédenbergite ilménite sphène magnétite quartz

est déplacé vers la droite lorsque la fO_2 augmente ou lorsque la température diminue. Les paragenèses observées sont donc compatibles avec une oxydation au cours du refroidissement. En outre, nous avons noté que, dans la séquence S_3 , il semble y avoir une augmentation de la teneur en Fe^{3+} de l'amphibole (pour autant que le calcul de la teneur en Fe^{3+} à partir de la formule structurale soit fiable) et donc possiblement de l'état d'oxydation du magma. Si l'on se réfère au diagramme de Wones et à la composition du clinopyroxène de Dolbel, on peut estimer une fO_2 de l'ordre de NNO+1 à NNO+2.

8.2. Signification des gradients chimiques des minéraux

Les minéraux cumulus présentent différentes parties que l'on peut interpréter comme correspondantes à différents stades de croissance, en raison de leurs caractéristiques chimiques et texturales distinctes.

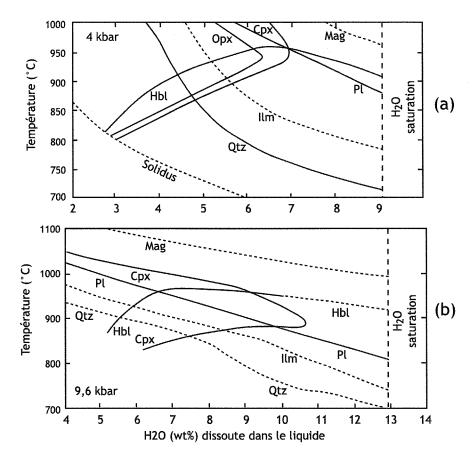


Figure 8-3. Courbes isobares des phases minérales dans les dacites du Pinatubo à 4 et 9,6 kbar (Prouteau et Scaillet, 2003).

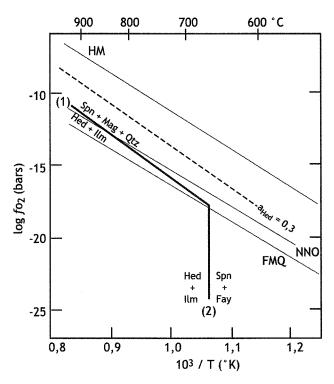


Figure 8-4. Diagramme log de fO_2 en fonction de T, montrant la stabilité de certains assemblages minéralogiques. La ligne en pointillé représente la relation (1) pour une activité de l'hédenbergite = 0.3 (le cas des clinopyroxènes de Dolbel). Modifié d'après Wones (1989).

8.2.1. Les minéraux ferromagnésiens

Les ferromagnésiens présents dans l'échantillon sont les clinopyroxènes et les hornblendes. Les premiers sont trop altérés pour avoir des analyses ; la discussion sera donc limitée aux amphiboles au sein d'une même séquence. Les cristaux de hornblendes sont pseudomorphosés en actinote (**Figure 4-3c**) sur leur bordure. Cette pseudomorphose peut être attribuée à des transformations hydrothermales tardives. Néanmoins, la faible épaisseur de la pseudomorphose permet de conserver en général une grande partie sinon la totalité des structures internes de la hornblende. Celles-ci comportent un cœur, une périphérie et une frange externe. Ces dernières sont rares mais néanmoins clairement observables :

(i) Les cœurs sont constitués d'une alternance de zones claires et sombres. Cette zonation est très contournée et complexe avec des zones d'épaisseur irrégulière se recoupant entre elles et formant des golfes **Figure 4-3d**). Le maintien d'une composition constante dans cette zonation sur l'ensemble d'un cristal suppose que le rapport liquide/cristal est très grand et que la cristallisation a eu lieu dans une couche limite autour du cristal à partir d'un liquide dont la composition globale est constante. Les golfes et structures sécantes suggèrent une dissolution partielle des cristaux et donc un milieu agité, avec des périodes impliquant la percolation d'un magma plus chaud et plus primitif.

(ii) La périphérie est constituée d'une zonation oscillatoire très régulière, mimant les faces du cristal (Figure 4-3b). L'alternance en composition des différentes bandes correspond aux même pôles de composition que celle constituant le cœur du cristal, l'un enrichi en Ca, Si et Mg (zones sombres) et l'autre en Fe, Ti, K, Na et Al (zones claires). Le passage cœur-périphérie, marqué par un changement de texture, correspond donc à un changement de régime de cristallisation. Là encore, l'absence d'évolution de la composition des amphiboles suggère que le volume de liquide a été très important par rapport au volume de cristaux et que la cristallisation a eu lieu dans une couche limite, dans un milieu calme, permettant ainsi une cristallisation régulière et automorphe de la hornblende.

(iii) Les franges présentent une zonation régulière, montrant un appauvrissement graduel en Ca, Si et Mg vers l'extérieur du cristal. Leur forme indique que les franges sont partiellement interstitielles. L'évolution chimique nous indique que la cristallisation de ces franges a eu lieu en système fermé. Une diminution du X_{Mg} vers l'extérieur est observée (0.42 < X_{Mg} < 0.54). La gamme de variation de X_{Mg} des franges est identique à celle du cœur et de la périphérie (0.37 < X_{Mg} < 0.55).

En conclusion, la hornblende est le minéral précoce comme le montre son apparition en base de séquence. Qu'elle fasse partie des lits S_a ou bien qu'elle soit disséminée dans les lits S_p, S_q et S_k, il n'y a pas d'évolution significative de sa composition chimique, ni de sa texture. Cela pose la question de l'origine de l'amphibole : apport en tant que cristaux en suspension dans un liquide ou cristallisation in situ? La texture du cœur et la constance de la composition de l'amphibole seraient plutôt en faveur d'une cristallisation ex situ à partir d'un grand volume de liquide. Par contre l'existence systématique d'un lit à amphibole en base de chaque séquence implique également une cristallisation in situ. Les deux origines sont donc très probables (cristallisation in situ à partir de cristaux en suspension dans le magma). Il n'est donc pas exclu qu'une partie des amphiboles puisse avoir été repoussée vers les bordures et collée sur les parois du pluton par effet Bagnold (Komar, 1976), contribuant ainsi à la formation d'un lit d'amphibole en base de séquence. L'évolution compositionnelle régulière des franges implique une cristallisation en système fermé à partir d'un volume de liquide restreint (en partie intercumulus). Enfin, le changement de teneur en Fe²⁺ de l'amphibole dans la séquence S₃ suggère une modification des conditions de cristallisation, mais cela reste mal compris.

8.2.2. Les feldspaths

En électrons rétrodiffusés, trois zones distinctes apparaissent (beaucoup plus visibles dans les feldspaths potassiques que dans les plagioclases - Figure 5-4A). La gamme de composition en éléments majeurs ne montre pas de variation significative au travers d'un cristal. Par contre, les analyses en Ba et Sr présentent des variations qui se calquent sur la même structure interne en trois parties. Pour la synthèse qui suit, nous allons nous baser sur l'observation des feldspaths potassiques. La zonation oscillatoire régulière du cœur est similaire à celle observée dans la périphérie des hornblendes. On n'observe pas le stade 1 du cœur des amphiboles. Cela peut suggérer que le régime de cristallisation prévalant pour la périphérie des amphiboles correspond à celui du cœur des feldspaths. Les teneurs en Ba et Sr

forment un plateau suggérant également une croissance à partir d'un volume de liquide très important, conduisant à une absence de différenciation chimique significative. Les variations en dents de scie des teneurs en Ba et Sr résultent sans doute en partie de l'altération ultérieure des cristaux. La périphérie montrant une décroissance régulière en Sr et Ba implique une croissance in situ à partir d'un volume limité de liquide qui s'appauvrit graduellement en éléments compatibles. Enfin, les surcroissances, en position intercumulus, impliquent une cristallisation en système fermé à partir d'un volume faible de liquide appauvri en Sr et Ba. En ce qui concerne les plagioclases, la délimitation entre le cœur et la périphérie n'est pas claire. Néanmoins, le profil d'évolution des éléments traces est identique.

Les feldspaths du cœur du pluton présentent des variations chimiques en Sr et Ba beaucoup plus complexes. Ces variations sont le reflet d'une histoire de cristallisation plus compliquée que celle des minéraux de la partie litée. Ainsi les minéraux peuvent enregistrer plusieurs phases de cristallisation, marquées par des variations des teneurs en éléments compatibles (**Figure 7-4**). Ces variations sont la signature d'un milieu agité où les cristaux sont mobiles, et en équilibre avec différents liquides de composition variable, suggérant une mise en place dans la chambre en relation avec des courants de convections.

8.3. Origine du litage rythmique et reconstitution de l'évolution du pluton

8.3.1. Cristallisation et seuils rhéologiques

Les caractéristiques chimiques et microtexturales des amphiboles et des feldspaths peuvent nous permettre de comprendre l'histoire de la cristallisation du liquide.

(i) Les microtextures du cœur des hornblendes suggèrent une croissance impliquant une mobilité importante du liquide, supposant un mouvement de liquides chauds et primitifs, empêchant la croissance régulière des cristaux et conduisant à leur re-dissolution partielle épisodique. La constance des compositions chimiques des amphiboles du cœur vers la périphérie et sur l'ensemble de la séquence implique un rapport liquide/cristaux très élevé (grand volume de liquide ou renouvellement important du liquide). Il est très probable que le liquidus de l'amphibole ait déjà été franchi au moment de la mise en place du magma dans la chambre.

- (ii) Le cœur des feldspaths et la périphérie des amphiboles montrent des structures de croissance régulière mimant les faces des cristaux. Les teneurs constantes en Sr et Ba dans les cœurs des feldspaths impliquent également un rapport liquide/cristaux élevé, sans évolution significative de la composition du liquide. On ne note pas non plus d'évolution significative de la composition de l'amphibole. Ceci suppose que le liquide était mobile ou que les cristaux étaient dispersés dans un grand volume de liquide.
- (iii) La périphérie des feldspaths, se formant avant la compaction comme le montrent les textures (notamment caractère automorphe des cristaux), est caractérisée par un appauvrissement en Sr et Ba vers l'extérieur des cristaux. Ceci indique un rapport liquide/cristaux faible sans renouvellement du liquide (système fermé). Cela peut être dû à une augmentation de la viscosité du liquide, inhibant son déplacement, ou, plus probablement, à un accroissement de la proportion des cristaux (\geq 50 %), réduisant la perméabilité.
- (iv) Les surcroissances des feldspaths, pauvres en Sr et Ba, sont en position intercumulus (plus rarement pour les franges des amphiboles), ce qui implique non seulement une croissance dans un milieu très riche en cristaux mais également une croissance à partir d'un liquide résiduel appauvri en Sr et Ba dans une porosité résiduelle. On peut donc considérer que cette étape a eu lieu pour des volumes de liquide inférieurs ou de l'ordre du seuil PLT de 25 % (Vigneresse et al., 1996). En première approximation, on peut considérer que le volume de liquide résiduel correspond aux volumes des phases intercumulus observées, soit une moyenne de 28% (±10%) pour l'échantillon étudié. On notera que ce volume est similaire d'une séquence à l'autre.

Il apparaît donc que les minéraux se sont formés en quatre étapes:

- (i) dans un système ouvert alternant dissolution et croissance, avec un grand rapport liquide/cristaux, pour le cœur des amphiboles ;
- (ii) dans un système avec un rapport liquide/cristaux important, en présence d'une couche limite diffusive autour des grains, pour la périphérie des amphiboles et le cœur des feldspaths;

- (iii) dans un système fermé, où le liquide s'appauvrit en éléments compatibles, pour la périphérie des feldspaths (de l'ordre de 50% de liquide ou moins) et les franges des amphiboles;
- (vi) dans un système occlu, après compaction, avec cristallisation à partir d'un liquide résiduel interstitiel, pour les surcroissances (≤ 25% de liquide).

8.3.2. Signification des structures : litage rythmique

Si l'essentiel des structures observées peut être expliqué dans le cadre d'un processus de cristallisation fractionnée, trois observations montrent que d'autres facteurs interviennent dans la formation des séquences litées :

- (i) l'épaisseur très variable des séquences, en particulier de S_k ;
- (ii) une séquence minéralogiquement complète comporte, outre le lit à amphiboles, trois lits correspondant au liquidus, cotectique et eutectique du diagramme Qz-Ab-Or, or certaines séquences sont minéralogiquement incomplètes (S₂);
- (iii) la présence de cristaux de feldspath potassique en dehors des lits S_k ainsi que la présence de petites enclaves microgrenues mafiques, supposant le transport de cristaux ou d'objets en suspension dans le liquide.

A l'opposé, la remarquable homogénéité de la répartition des cristaux dans chaque lit ainsi que la croissance très régulière de la taille des cristaux vers le haut des séquences (cf. § 3.1 et 5.1) excluent un tri hydrodynamique en liaison avec la taille des cristaux. Il est possible de rendre compte de l'ensemble de ces observations en considérant que chaque séquence correspond à une nouvelle injection de magma. Cela permet d'expliquer : (i) la séquence incomplète par érosion mécanique, (ii) la répétition rythmique des séquences en quatre termes selon la LLD du liquide, (iii) le transport de matériaux en suspension dans le liquide (cristaux et enclaves), (iv) des CSD identiques pour toutes les séquences indiquant une histoire thermique similaire et (v) l'existence d'un refroidissement rapide en base de séquence car le magma nouvellement injecté a une température bien supérieure (ca. 950 à 900°C, cf. §.8.1.3.) à celle du sommet de la séquence précédente (ca. 650°C, cf. §.8.1.3.). Cela implique, en outre, que les séquences minéralogiquement complètes, comme S₃, ne sont pas nécessairement complètes en termes d'épaisseur pour S_k.

Les données structurales montrent que l'ensemble des séquences litées a subi un écrasement au cours de la croissance du pluton. La question se pose donc de savoir à quel moment il s'est produit. Sur l'échantillon étudié, la déformation liée à la compaction se manifeste notamment par le développement d'une fabrique planaire et par le développement de protocisaillements, marqués en particulier par l'orientation préférentielle des cristaux de plagioclase. La rotation des plagioclases suppose un volume de liquide significatif, de l'ordre de 50% (cf. Vigneresse et al., 1996). Par contre, le développement des surcroissances se fait dans la porosité résiduelle sous le seuil PLT de 25%. Cette étape donne sa texture finale à la roche, qui est celle d'un mésocumulat. Cela implique l'expulsion d'une partie significative du liquide par compaction (de l'ordre de 20-25%?). La compaction se poursuit ensuite comme le montre la déformation de certains cristaux cumulus de plagioclase et la déformation subsolidus des phases intercumulus comme le quartz (apparition de sous-grains) et le plagioclase (macles tordues). Enfin, nous remarquons que la compaction s'est produite indépendamment pour chaque séquence, comme le suggère la constance du volume d'intercumulus. En effet, si la compaction se produisait au stade final après la formation de nombreuses séquences, on devrait s'attendre à ce que le pourcentage de phases intercumulus varie et montre une diminution en montant dans la séquence de la partie litée du pluton. L'observation montre que ce n'est pas le cas, le volume des phases intercumulus étant constant. Ceci nous amène à penser que chaque séquence est écrasée individuellement avec expulsion du liquide résiduel par l'injection suivante. La séquence S_n est écrasée avec expulsion du liquide, alors que les séquences précédentes (S_{n-1}, S_{n-2}, S_{n-3} etc...) subissent un incrément de déformation.

On peut donc en déduire que le caractère rythmique des séquences du granite de Dolbel n'est pas dû aux processus hydrodynamiques comme dans les complexes lités mafiques et ultramafiques (Cawthorn, 1996), mais à la périodicité des injections associée à la cristallisation fractionnée.

8.3.3. Cristallisation, différenciation et mobilité du liquide

Il apparaît que le liquide a été mobile au cours de la genèse des séquences litées et du cœur du pluton γ_2 de Dolbel comme le montrent ces trois types d'arguments.

(i) Les accumulations de cristaux de feldspath potassique zoné dans le cœur du pluton impliquent un tri hydrodynamique préférentiel des gros cristaux, soit de feldspath-K seul, soit de feldspaths-K et de plagioclase. En effet, la forte hétérogénéité de la

distribution des minéraux dans le cœur du pluton s'oppose à la grande homogénéité de cette distribution dans les séquences litées.

- (ii) La présence de cristaux de feldspaths-K et d'enclaves dans la base des séquences (lits S_a et S_p) suppose l'entraînement des cristaux ou d'enclaves et donc la mobilité du liquide dans le site de mise en place.
- (iii) L'existence de séquences à 4 termes implique une modification de la composition du liquide vers des compositions cotectique puis eutectique et son expulsion de chaque lit.

Une autre question est de savoir comment interpréter la zonation des cristaux d'amphibole et des feldspaths, l'interprétation de ces zonations ayant également une incidence sur le mouvement du liquide ?

- (i) Concernant la périphérie et les surcroissances des feldspaths ainsi que les franges externes des hornblendes, il est clair que l'existence d'une zonation régulière avec diminution des éléments majeurs et en traces implique une évolution en système fermé et donc l'immobilité du liquide.
- (ii) Concernant le cœur des feldspaths et la périphérie des hornblendes, il apparaît que l'existence d'une zonation oscillatoire ne présentant pas d'évolution chimique globale (donc pas de différenciation) implique une croissance soit à partir d'un grand volume de liquide avec une diffusion efficace, soit avec un renouvellement continu du liquide.
- (iii) Concernant le cœur des amphiboles, très contourné (figures de dissolution) et ne présentant pas non plus d'évolution de composition globale du centre vers l'extérieur, il est nécessaire d'invoquer un milieu mobile.

Des expériences sur les haplogranites (Johannes et Holtz, 1996) ont montré que la viscosité de ces derniers dépendait fortement de la température, de la teneur en H₂O du liquide, de la composition ainsi qu'en moindre proportion de la pression. Nous avons essayé d'estimer la viscosité du liquide à partir du modèle de Shaw (1972). Dans cette équation, la composition du granite 5 (cœur d'un pluton) a été utilisée car c'est la composition la plus proche du liquide initial calculée d'après le diagramme Qz-Ab-Or (§8.1.2.). Les pressions de mise en place pour le liquide parent sont de l'ordre ou supérieures à 5 kbars, en raison de la coexistence du quartz, feldspath potassique et plagioclase (§8.1.1.). Même si l'influence de la pression sur la viscosité n'est pas significative dans un liquide haplogranitique (à des pressions entre 2,5 et 10 kbars - Johannes et Holtz, 1996), elle contraint la teneur en eau du liquide, sachant que

l'amphibole est au liquidus. La teneur en eau pour le liquide parent est estimée entre 7 % teneur minimum pour l'apparition de l'amphibole avant le pyroxène (Prouteau et Scaillet, 2003), et 10% valeur de saturation. Sur la **figure 8.3**, on peut voir que le liquidus de l'amphibole correspond à une température de l'ordre de 950°C (§8.1.3.). En prenant la valeur minimale de 7% d'eau, le log de la viscosité calculée varie de 2,4 à 4,9 Pa.s¹ pour une gamme de températures entre 950 à 650°C à H₂O constante. Cela suggère que le liquide a pu avoir une viscosité suffisamment faible pour permettre sa mobilité.

9. Mise en place et croissance du pluton

Toutes les données acquises permettent de discuter de la croissance du granite γ_2 du pluton de Dolbel. L'homogénéité des séquences ainsi que leur rythmicité et la présence de cristaux exotiques montrent que chaque séquence provient d'une nouvelle venue magmatique. Le volume constant de minéraux intercumulus suggère que chaque nouvelle séquence écrase la précédente (§8.3.2.). Le calcul de la viscosité (§8.3.3) donne des valeurs faibles en accord avec une mobilité du liquide, rendant donc possible un tri hydrodynamique des gros cristaux comme observé dans le cœur du pluton ainsi que la présence d'enclaves et de cristaux de feldspaths potassiques exotiques dans la partie litée du pluton. L'évolution des séquences et des structures internes des minéraux (notamment majeurs, Sr et Ba) confirme la mobilité du liquide au début de la cristallisation mais indique son immobilité en fin de cristallisation.

De nombreuses études ont été réalisées sur la formation des plutons. Les systèmes formés par injections successives ont été décrits notamment par Ramsay (1989) pour l'aspect structural et par Glazner et al. (2004) pour l'aspect chronologique. Ramsay décrit la mise en place d'un pluton en termes de déformation visible dans les roches. Il interprète la construction du pluton par des pulses successifs de magma qui se mettent en place une fois que l'injection précédente a cristallisé, et donc consolidé. Chaque pulse provoque une déformation plastique du magma consolidé et le pluton augmente sa taille générale par un effet de gonflement, tout en diminuant l'épaisseur des anciens pulses. Glazner suggère également qu'un pluton se forme par injections successives. Cependant ses données géochronologiques montrent que les injections de magma ne sont pas régulières mais peuvent s'étaler sur plusieurs millions d'années (>10 Ma), les plus jeunes s'amalgamant aux plus anciennes. Ces deux études mettent

en évidence que la succession d'injections récurrentes et leur espacement dans le temps sont un paramètre important de la formation des plutons. Dans le cas de Dolbel, le litage rythmique implique une succession de venues magmatiques. La compaction, liée au gonflement, se fait avant que la séquence précédente ne soit totalement cristallisée. Les injections ne peuvent donc être très espacées dans le temps. Ainsi, ces données sur Dolbel comparées à celle de Glazner montrent que le processus de construction d'un pluton peut être de durée extrêmement variable. Deux cas extrêmes semblent possibles. Dans le premier, selon Glazner et al. (2004), les injections successives sont très espacées dans le temps (>10 Ma), permettant aux injections de cristalliser et refroidir avant qu'une nouvelle venue magmatique n'arrive. Dans le deuxième cas, selon notre étude sur Dolbel, la succession des injections est très rapprochée dans le temps avec une durée probablement inférieure à celle du refroidissement d'un pluton de taille moyenne (<1 Ma).

Par ailleurs, le fait que chaque injection de magma ait une évolution indépendante par cristallisation fractionnée ne peut être associé à une mise en place par diapirisme mais correspond nécessairement à un mode de mise en place par pulses qui ne peuvent être délivrés que par un système de filons.

Enfin, il apparaît que la déformation joue un rôle très important avec la cristallisation fractionnée dans la formation du litage, dans la mesure où la déformation apparaît comme le facteur essentiel de l'expulsion du liquide résiduel. Cette déformation reste néanmoins contrôlée par le processus magmatique puisqu'elle est, d'une part, intrinsèquement liée aux recharges successives qui entraînent le gonflement du pluton et que, d'autre part, elle ne peut s'exercer que si le taux de cristallisation de la venue précédente est suffisant pour permettre l'installation d'une charpente cristalline.

10. CONCLUSIONS

Les observations texturales et les données chimiques permettent de reconstituer la formation des plutons granitiques de Dolbel et de mieux comprendre les processus mis en jeu lors de la formation des corps plutoniques.

La composition du magma est proche de l'eutectique du système Qz-Ab-Or. La combinaison du gradient de température et de l'échappement du liquide a permis une évolution suivant le chemin de cristallisation d'un liquide granitique (liquidus, cotectique et eutectique) de l'extérieur vers l'intérieur du pluton : plagioclase en premier, puis quartz et plagioclase et enfin quartz plagioclase et feldspath potassique. L'amphibole est plus précoce et sans doute apportée par le magma lors de sa mise en place.

Les textures internes des minéraux nous permettent de distinguer quatre étapes de croissance (§8.2.) qui retracent le déroulement de la formation du pluton.

- (i) La première étape de cristallisation s'est produite dans une grande quantité de liquide (>90% ?) et dans un système dynamique, car la constance des compositions chimiques des amphiboles et les microtextures du cœur de ces minéraux impliquent un rapport liquide/cristaux très élevé.
- (ii) La seconde étape correspond au développement des minéraux dans un système ouvert, plus calme, jusqu'à ce que la proportion de cristaux soit suffisamment importante pour bloquer la circulation du liquide.
- (iii) La troisième étape de cristallisation s'est produite en système fermé, comme le montre l'appauvrissement en éléments compatibles en périphérie des minéraux ; ici, la proportion des cristaux a suffisamment augmenté pour réduire le volume de liquide à moins de 50%.
- (iv) La dernière étape correspond à la compaction liée à une nouvelle injection de liquide, de même composition que la première. La séquence déjà largement cristallisée va être réduite en épaisseur, sans déformation importante des grains, le liquide résiduel étant expulsé vers le réservoir central. Par ailleurs, il est vraisemblable que la partie supérieure de la séquence puisse avoir été mécaniquement érodée par la nouvelle injection, comme suggéré par l'épaisseur variable du lit à feldspath potassique et la nature incomplète de la séquence S₂. La dernière phase de cristallisation fait suite à la compaction, dans moins de 25% de liquide. La partie de liquide résiduel non expulsée va cristalliser in situ et former les franges des amphiboles ainsi que les surcroissances des feldspaths. L'échappement du liquide résiduel (de composition eutectique) vers le réservoir ne va avoir qu'une faible influence sur la composition chimique de ce dernier dont la composition est également proche de l'eutectique. Le cœur du pluton est constitué des même minéraux que ceux de la partie litée tant par la nature que par leur composition et leur texture. Cependant, la complexité texturale et chimique des feldspaths montre une histoire beaucoup plus complexe que celle des minéraux

des lits, ce qui suggère un système très dynamique au cœur du pluton, cohérent avec les évidences de tri hydrodynamique des gros cristaux de feldspaths.

CONCLUSIONS

Dans une première partie, nous avons estimé les paramètres contrôlant l'évolution de la distribution des tailles de cristaux (CSD) dans les roches magmatiques par l'étude expérimentale de la croissance des plagioclases dans des basaltes synthétiques, à différentes vitesses de refroidissement et différentes histoires au-dessus du liquidus. Nous avons montré que toutes les CSD sont qualitativement similaires, formant une courbe en cloche asymétrique avec une branche principale log-linéaire du côté des grandes tailles, et un rebroussement du côté des petites tailles. La pente de la partie log-linéaire des CSD dépend principalement de la vitesse de refroidissement, étant d'autant plus forte que la vitesse de refroidissement est importante. On constate aussi une diminution de cette pente au cours du refroidissement. La forme log-linéaire décroissante des CSD peut être expliquée par une augmentation exponentielle de la vitesse de nucléation en début de processus. L'aplatissement en cours de refroidissement indique que la vitesse de croissance dépend de la taille, les petits cristaux croissant moins vite que les grands. La croissance est donc affectée par le mûrissement et l'agglomération de cristaux. L'étude de la distribution des tailles de cristaux ne nous permet pas de différencier ces deux processus. Cependant, l'observation de nombreux accolements de cristaux permet de privilégier l'hypothèse d'une agglomération des cristaux entraînant une augmentation artificielle de la taille des grains.

L'histoire anté-liquidus a également une influence majeure sur la cristallisation. Si la température maximale est trop forte ou si le temps passé au-dessus du liquidus est trop long, nous observons des retards à la nucléation pouvant correspondre à un degré de surfusion de 30°C. Cette observation suggère que la nucléation est de type hétérogène et que les retards à la nucléation sont dus à la destruction des sites de nucléation. On peut donc penser que la nucléation homogène prend alors parfois le relais de la nucléation hétérogène. De plus le processus de nucléation semble aléatoire. Ces retards à la nucléation ont également une influence sur les CSD finales : plus ils sont importants, plus les grains sont rares et de grande

taille. Nous expliquons la rareté des grains par la destruction des sites de nucléation (germes). La vitesse de croissance est alors forte pour assurer le taux de cristallisation à l'équilibre.

Notre étude expérimentale suggère que l'utilisation des CSD pour reconstituer l'histoire thermique pourrait être compromise car les CSD sont contrôlées non seulement par la température mais aussi par des processus partiellement indépendants tels que la nucléation hétérogène et l'agglomération de cristaux. Nos expériences ont été réalisées en condition statique. Les processus tels que la convection ou la sédimentation peuvent ajouter une complexité supplémentaire aux systèmes naturels. Cependant, l'évolution des CSD observée dans nos expériences (forme des CSD, valeur des pentes et aplatissement) au cours du refroidissement est similaire à celle observée au sein des systèmes naturels, comme, par exemple, le lac de lave du Makaopuhi (Hawaï).

Afin de mieux comprendre les processus qui influencent la croissance cristalline, il serait utile de pouvoir suivre l'évolution des cristaux individuellement. Une étude *in situ* en platine chauffante sous microscope permettrait d'observer les plagioclases un à un. On pourrait alors mesurer les vitesses de croissance pour chaque cristal et ainsi savoir si cette vitesse dépend de la taille du cristal. Il serait alors possible d'observer les phénomènes d'agglomération. L'agglomération des cristaux pourrait également être mise en évidence dans des expériences similaires à celles réalisées dans cette étude mais en ajoutant du Sr dans la poudre de départ. Compte tenu du coefficient de partage élevé du Sr pour le plagioclase, les premiers plagioclases à cristalliser seraient plus enrichis en Sr que les derniers et chaque cristal présenteraient une zonation en Sr. Le traçage permettrait d'obtenir une chronologie relative de l'apparition des plagioclases. Les cristaux formés par agglomération d'individus présenteraient une zonation complexe de la teneur en Sr.

Dans une seconde partie, nous avons pu discuter des processus de cristallisation dans les chambres magmatiques par l'étude des textures et de la chimie des cristaux dans deux exemples naturels d'intrusions litées, l'une mafique, l'autre granitique.

Tout d'abord, l'étude des plagioclases des gabbros du Skaergaard nous a permis de remonter au processus de formation des orthocumulats en base de la *Lower Zone* et des adcumulats à

son sommet. L'intrusion du Skaergaard n'a pas subi de recharge et les cristaux se sont développés initialement dans toute la chambre. L'évolution du liquide, révélée par l'étude de la zonation des plagioclases, nous permet de comprendre la formation des cumulats du Skaergaard. Le liquide évolue spatialement (de bas en haut de la *Lower Zone*) et temporellement par différenciation, de la manière suivante :

- (i) le liquide s'enrichit en fer et s'appauvrit en silice jusqu'à atteindre un maximum en densité juste avant la cristallisation des oxydes ;
- (ii) une fois les oxydes cristallisés et sédimentés, le liquide, brutalement appauvri en fer, devient moins dense et remonte pour être remplacé par des liquides plus denses où les oxydes n'ont pas encore cristallisé.

La cristallisation de la *Lower Zone* peut être décrite suivant quatre étapes définies à partir de la zonation des plagioclases.

- (i) La première étape correspond à la cristallisation dans un grand volume de liquide, caractérisée par des plagioclases montrant une composition constante (cœur des cristaux). Les cristaux vont ensuite sédimenter sur le plancher de la chambre.
- (ii) La seconde étape correspond à la cristallisation in situ des phases cumulus en système fermé caractérisée par un appauvrissement des teneurs en éléments compatibles dans les plagioclases.
- (iii) La troisième étape caractérisée par des paliers (teneur constante à \sim An₅₀) en bordure des plagioclases dus à une cristallisation à partir d'un liquide tamponné à An₅₀. La constance de la composition du liquide est expliquée par une diminution de sa densité permettant la mise en place d'une convection compositionnelle entre les liquides peu denses qui ont cristallisé des oxydes (les plus bas stratigraphiquement) et les liquides denses qui n'ont pas encore atteint ce stade.
- (iv) Enfin, la quatrième étape correspond à l'expulsion du liquide résiduel par compaction. Elle est caractérisée par l'absence de zonation très évoluée en bordure des plagioclases.

Afin de valider cette hypothèse, l'étude des plagioclases de toute la Layered Series paraît nécessaire. On peut également étendre cette étude aux pyroxènes qui devraient également enregistrer l'évolution du fer dans le liquide. L'étude des zonations des plagioclases situés au toit et aux murs devrait refléter également, s'il y a lieu, le processus de convection

compositionnelle. En particulier pour les plagioclases du toit, les zonations ne devraient pas être identiques à celles du plancher (séquence est inversée et influence de la gravité).

Pour le pluton granitique de Dolbel, la formation du litage est reconstituée à partir de l'étude de la chimie et des textures des minéraux. Deux zones texturalement différentes ont été étudiées : le cœur hétérogène et la bordure litée du pluton. La composition du magma est proche de l'eutectique du système Qz-Ab-Or. La combinaison du gradient de température et de l'échappement du liquide a permis une évolution par cristallisation fractionnée suivant la séquence de cristallisation d'un liquide granitique (liquidus, cotectique et eutectique).

L'étude des textures et des zonations des minéraux nous a permis de reconstituer l'histoire de la cristallisation de ces cumulats. En effet, nous distinguons quatre étapes de croissance des minéraux qui retracent le déroulement de la formation du litage dans le pluton.

- (i) Cristallisation dans un grand volume de liquide et dans un système dynamique à l'échelle de la chambre ; cela est mis en évidence par les textures complexes des cœurs des amphiboles dont une partie significative est probablement apportée avec le liquide ;
- (ii) Développement des minéraux à partir d'un liquide toujours mobile, mais à l'échelle locale, jusqu'à ce que la proportion de cristaux soit suffisamment importante pour bloquer complètement la circulation du liquide;
- (iii) Cristallisation en système fermé lorsque le volume de liquide se restreint (inférieur à 50%);
- (iv) Compaction liée au gonflement du pluton, réduisant le volume de liquide résiduel (~25%); chaque nouvelle injection de liquide écrasant la précédente.

L'étude du litage nous indique que ce pluton s'est formé par injections répétées de magma. Ces injections suivent successivement toutes la même évolution par cristallisation fractionnée. Chaque injection va écraser la précédente par gonflement, expulser le liquide et donc arrêter mécaniquement la cristallisation. L'étude de la distribution de taille des plagioclases de la partie litée confirme que chaque séquence a subi la même histoire thermique avec un refroidissement rapide en base de séquence et un refroidissement plus lent en sommet. Les zonations complexes des minéraux du cœur du pluton, ainsi que les accumulations de feldspaths potassiques, indiquent un système plus dynamique que le mécanisme de formation de la partie litée; le cœur montre des traces de tri hydrodynamique des cristaux.

L'ensemble de notre étude montre le très grand intérêt de l'étude des textures et de la caractérisation *in situ* des gradients chimiques dans les minéraux, que ce soit dans des systèmes expérimentaux ou que ce soit dans les systèmes naturels, pour comprendre l'évolution des magmas dans leur contexte de mis en place. Une caractérisation précise des textures liées à la cristallisation est une base fondamentale pour distinguer l'effet d'autres processus tels que recharge périodique, convection, tri par écoulement visqueux, etc..., afin de comprendre comment ils interviennent dans la formation des corps plutoniques.

BIBLIOGRAPHIE

A

- Avrami, M. (1939) Kinectics of phase change, I. J. Chem. Phys., 7, 1103-1112.
- -. (1940) Kinetics of phase change, II. J. Chem. Phys., 8, 212-224.
- -. (1941) Granulation, phase change, and microstructure. J. Chem. Phys., 9, 177-184.

B

- Bagnold, R.A. (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. Roy. Soc. London, 225, 49-63.
- Barbarin, B. (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46, 605-626.
- Barbey, P., and Libourel, G. (2003) Les relations de phases et leurs applications. Des sciences de la terre aux materiaux. Editions Scientifiques GB, Paris.
- Barrière, M. (1981) On curved laminae, graded layers, convection currents and dynamic crystal sorting in the Ploumanac'h (Brittany) subalkaline granite. Contributions to Mineralogy and Petrology, 77, 214-224.
- Bartley, J.M., Glazner, A.F., Mahan, K.H., Grasse, S.W., and Taylor, R.N. (2002) Thin wall rock screens and intrusive processes in the Sierra Nevada Batholith. Geol. Soc. Am. Abst. with Prog., 34(6), 374-375.
- Bebien, J., and Gaghy, C.L. (1978) Importance of flow differentiation in magmatic evolution: an example from an ophiolitic sheeted complex. Journal of Geology, 87, 579-582.
- Becker, R., and Doring, W. (1935) Kinetische behandlung der keim buildung in ubersattigten dampfen. Annalen der Physik., ser. 5(24), 719-752.
- Benn, K., and Allard, B. (1989) Preferred mineral orientations related to magmatic flow in ophiolite layered gabbros. Journal of Petrology, 30, 925-946.
- Berkebile, C.A., and Dowty, E. (1982) Nucleation in laboratory charges of basaltic composition. American Mineralogist, 67, 886-899.
- Blake, D.H. (1968) Gravitational sorting of phenocrysts in some Icelandic intrusive sheets. Geol. Mag., 105, 140-148.
- Blake, S., and Ivey, G.N. (1986) Density and viscosity gradients in zoned magma chambers, and their influence on withdrawal dynamics. J. Volc. Geotherm. Res., 30, 201-230.

- Bottinga, Y., and Weill, D.F. (1972) The Viscosity of Magmatic Silicate Liquids: A Model for Calculation. American Journal of Science, 272, 438-475.
- Boudreau, A.E. (1982) The main platinum zone, Stillwater complex, MT evidence for bimetasomatism and a secondary origin for olivine. In D. Walker, and I.S. McCallum, Eds. Workshop on Magmatic Processes of Early Planetary Crusts: Magma Oceans and Stratiform Layered Intrusions LPI Tech. Rpt. 82-01, p. 59-61, Houston: Lunar and Planetary Institute.
- -. (1987) Pattern formation during cristallization and the formation of fine-scale layering. In I. Parsons, Ed. Origins of Igneous layering, Series C.: Mathematical and Physical Sciences Vol.196, p. 453-471. D.Reidel Publishing Company, Dordrecht-Boston.
- -. (1988) Investigations of the Stillwater Complex. IV. The role of volatiles in the petrogenesis of the J-M Reef, Mineapolis Adit Section. Can. Miner., 26, 193-208.
- Boudreau, A.E., and McBirney, A.R. (1997) The Skaergaard Layered Series. Part III. Non-Dynamic Layering. Journal of Petrology, 38(8), 1003-1020.
- Bowen, N.L. (1921) Diffusion in silicate melts. Journal of Geology, 29, 295-317.
 -. (1928) The Evolution of the Igneous Rocks. 332 p. Princeton University Press, Princeton, NJ.
- Brandeis, G. (1986) Modeles Physiques de convection et cristallisation dans les chambres magmatiques., p. 390. Paris VII, Paris.
- Brandeis, G., and Jaupart, C. (1986) On the interaction between convection and crystallization in cooling magma chamber. Earth and Planetary Science Letters, 77, 345-361.
- Brooks, C.K., and Gleadow, A.J.W. (1977) A fission-track age for the Skaergaard intrusion and the age of the East Greenland basalts. Geology, 5, 539-540.
- Brown, G.M. (1956) The layered ultrabasic rocks of Rhum, Inner Hebrides. Phil. Trans. R. Soc. Lond. B., 240, 1-53.
- Brown, P.E., and Farmer, D.G. (1971) Size-graded layering in the Imilik gabbro, East Greenland. Geol. Mag., 108, 465-476.
- Brown, W.L. (1993) Fractional crystallization and zoning in igneous feldspars: ideal water-buffered liquid fractionation lines and felspar zoning paths. Contributions to Mineralogy and Petrology, 113, 115-125.
- Brown, W.L., and Toplis, M. (2003) Magmatic processes in the layered Series of the Skaergaard intrusion inferred from core and rim compositions of plagioclase. EGU, Nice.
- Burkhart, L.E., Hoyt, R.C., and Oolman, T. (1980) Control of particle size distribution and agglomeration in continuous precipitations. In G.C. Kuczynski, Ed. Sintering Processes, p. 23-38. Plenum, New York.

- Cabane, H. (2002) Etude expérimentale et théorique du mûrissement d'Ostwald dans les systèmes magmatiques. Implications pétrologique. Ecole Doctorale des Sciences Fondamentales, p. 289. Université Blaise Pascal, Cleremont Ferrand.
- Cabane, H., Laporte, D., and Provost, A. (2001) Experimental investigation of the kinetics of Ostwald ripening of quartz in silicic melts. Contributions to Mineralogy and Petrology, 142(3), 361-373.
- -. (2005) An experimental study of Ostwald ripening of olivine and plagioclase in silicate melts: implications for the growth and size of crystals in magmas. Contributions to Mineralogy and Petrology, 150, 37-53.
- Cameron, E.N. (1975) Postcumulus and subsolidus equilibration of chromite and coexisting silicates in the Eastern Bushveld Complex. Geochimica et Cosmochimica Acta, 39, 1021-1033.
- -. (1977) Chromite in the central sector, eastern Bushveld complex, South Africa. American Mineralogist, 62, 1082-1096.
- Campbell, I.H. (1977) A study of macro-rythmic layering and cumulate processes in the Jimberlana intrusion, western Australia. Part I:The Upper Layered Series. Journal of Petrology, 18, 185-215.
- -. (1996) Fluid Dynamic Process in Basaltic Magma Chamnber. In R.G. Cawthorn, Ed. Layered Intrusions, p. 45-76. Elsevier Science, Amsterdam.
- Cashman, K.V., and Ferry, J.M. (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallisation III. Metamorphic crystallization. Contributions to Mineralogy and Petrology, 99, 292-305.
- Cashman, K.V., and Marsh, B.D. (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II: Makaopuhi lava lake. Contributions to Mineralogy and Petrology, 99, 292-305.
- Cawthorn, R.G. (1983) Magma addition and possible decoupling of major and trace element behaviour in the Bushveld complex, South Africa. Chemical Geology, 39, 335-346.
- -. (1996) Layered Intrusions. 531 p, Amsterdam.
- Cheilletz, A., Barbey, P., Lama, C., Pons, J., Zimmermann, J.L., and Dautel, D. (1994) Age de refroidissement de la croûte juvenile birimienne d'Afrique de l'Ouest. Données U-Pb, Rb-Sr et K-Ar sur les formations à 2.1 Ga du SW-Niger. Compte Rendus de l'Académie des Sciences, Paris, II-319, 435-442.
- Chen, C.F., and Turner, J.S. (1980) Crystallization in a double diffusive system. Journal of Geophysical Research, 85, 2573-2593.

- Christian, J.W. (1965) The Theory of Transformations in Metals and Alloys. Pergamon Press, Oxford.
- Clarke, D.B., and Clarke, G.K.C. (1998) Layered granodiorites at Chebucto Head, South Mountain batholith, Nova Scotia. Journal of Structural Geology, 20, 1305-1324.
- Clemens, J.D., and Petford, N. (1999) Granitic melt viscosity and silicic magma dynamics in contrasting tectonic setting. Journal of the Geological Society of London, 156, 1057-1060.
- Coats, R.R. (1936) Primary banding in basic plutonic rocks. Journal of Geology, 44, 407-419.
- Conrad, M.E., and Naslund, H.R. (1989) Modally-graded rhythmic layering in the Skaergaard intrusion. Journal of Petrology, 30, 251-269.

D

- Davaille, A., and Jaupart, C. (1993) Thermal convection in lava lakes. Geophysical Research Letters, 20(NO.17), 1827-1830.
- David, R., Marchal, P., and Marcant, B. (1995) Modelling of agglomeration in industrial crystallization from solution. Chem. Eng. Technol., 18, 1-8.
- De Hoff, R.T. (1991) A geometrically general theory of diffusion controlled coarsening. Acta Metall. Mater., 39(10), 2349-2360.
- Dick, H.J.B., and Sinton, J.M. (1979) Compositional layering in alpine peridotites: evidence for pressure solution creep in the mantle. Journal of Geology, 87, 403-416.
- Donaldson, C.H. (1976) An experimental investigation of olivine morphology. Contributions to Mineralogy and Petrology, 57, 187-213.
- -. (1979) An experimental investigation of the delay in nucleation of olivine in mafic magmas. Contributions to Mineralogy and Petrology, 69, 21-32.
- Dunham, A.C., and Wadsworth, W.J. (1978) Cryptic variation in the Rhum layered intrusion. Mineralogical Magazine, 42, 347-356.
- Dupuis, D., Pons, J., and Prost, A.E. (1991) Mise en place de plutons et caracterisation de la déformation birimienne au Niger occidental. Compte Rendus de l'Académie des Sciences, Paris, 312, 769-776.

E

- Eby, G.N. (1989) Trace element systematics of felsic alkaline rocks; petrogenetic and tectonic implications. 28th International Geological Congress, 28,1, p. 1432-1433, Washingtown D.C.
- -. (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20, 641-644.
- Engell, J. (1973) A closed system crystal-fractionation model for the agpaitic Ilimaussaq intrusion, South Greenland, with special reference to the lujavrites. Bull. Geol. Soc. Denmark, 22, 334-362.
- Evensen, N.M., Hamilton, M.J., and O'Nions, R.J. (1978) Rare-earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta, 42, 1199-1212.

F

- Faure, F., and Schiano P. (sous presse) Experimental investigation of equilibration conditions during forsterite growth and melt inclusion formation. Earth and Planetary Science Letter.
- Fenn, P.M. (1977) The nucleation and growth of alkali feldspars from hydrous melts. Canadian Mineral., 15, 135-161.
- Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D. (2001) A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11), 2033-2048.
- Fyfe, W.S. (1976) Chemical aspects of rock deformation. Roy. Soc. London Phil. Trans. Ser. A, 283, 221-228.

G

- Gasquet, D., Fernandez, A., Mahé, C., and Boullier, A.M. (1995) Origine des rubanements dans les granitoïdes: exemple du monzogranite de Brignogan-Plouescat (NW du Massif armoricain). Compte Rendus de l'Académie des Sciences, Paris, II-321, 369-376.
- Gay, P., and Muir, I.D. (1962) Investigation of the feldspars of the Skaergaard intrusion, eastern Greenland. Journal of Geology, 70(5), 565-581.

- Ghiorso, M., and Sack, R.O. (1995) Chemical mass transfer in magmatic processes. IV. A reviced and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology, 119, 197-212.
- Gibb, F.G.F. (1968) Flow differentiation in xenolithic ultrabasic dykes of the Cuillins and the Strathaird Peninsula, Isle of Skye, Scotland. Journal of Petrology, 9(411-443).
- -. (1974) Supercooling and the crystallization of plagioclase from a basaltic magma. Mineralogical Magazine, 39, 641-653.
- Gibb, F.G.F., and Henderson, C.M.B. (1992) Convection and crystal settling in sills. Contributions to Mineralogy and Petrology, 109, 538-545.
- Glazner, A.F., Bartley, J.M., Coleman, D.S., and Taylor, R.Z. (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? Geological Society of America Today, 14, 4-11.
- Goode, A.D.T. (1976) Small-scale primary cumulus igneous layering in the Kalka layered intrusion, Giles Complex, central Australia. Journal of Petrology, 17(379-397).

H

- Harker, A. (1909) Natural History of Igneous Rocks. 384 p. Macmillan Company, New York.
- Hess, H.H. (1960) Stillwater igneous complex. Mem. Geol. Soc. Am., 80, 1-230.
- Higgins, M.D. (1994) Numerical modelling of crystal shapes in thin sections: estimation of crystal habit and true size. American Mineralogist, 79, 113-119.
- -. (1998) Origin of anorthosite by textural coarsening: quantitative measurements of a natural sequence of textural development. Journal of Petrology, 39, 1307-1323.
- -. (1999) Origin of megacrysts in granitoids by textural coarsening: a crystal size distribution (CSD) study of microcline in the Cathedral Peak Granodiorite, Sierra Nevada, California. In C. Fernandez, and A. Castro, Eds. Understanding granites: integrating modern and classical techniques., 158, p. 207-219. Geol. Soc. Lond. Spec. Publ.
- -. (2000) Measurement of crystal size distributions. American Mineralogist, 85, 1105-1116.
- -. (2002) A crystal size-distribution study of the Kiglapait layered mafic intrusion, Labrador, Canada: evidence for textural coarsening. Contributions to Mineralogy and Petrology, 144, 314-330.
- Hildreth, W. (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. G. Geophys. Res., 86, 1053-1092.
- Hirschmann, M. (1992) Origin of the transgressive granophyres from the Layered Series of the Skaergaard intrusion, East Greenland. J. Volc. Geotherm. Res., 52, 185-207.

- Hodson, M.E. (1998) The origin of igneous layering in the Nunarsuit syenite, South Greenland. Mineralogical Magazine, 62, 9-27.
- Hoffer, A. (1965) Seismic control of layering in intrusions. American Mineralogist, 50(1125-1128).
- Holtz, F., and Johannes, W. (1994) Maximum and minimum water contents of granitic melts: implications of chemical and physical properties of ascending magmas. Lithos, 32, 149-159.
- Hoover, J.D. (1989) Petrology of the Marginal Border Series of the Skaergaard intrusion. Journal of Petrology, 30, 399-439.
- Hunter, R.H. (1996) Texture development in cumulate rocks. In R.G. Cawthorn, Ed. Layered intrusions, p. 77-101. Elsevier, Amsterdam.
- Hunter, R.H., and Sparks, R.S.J. (1987) The differentiation of the Skaergaard Intrusion. Contributions to Mineralogy and Petrology, 95(4), 451-461.
- Huppert, H.E., and Sparks, R.S.J. (1980) The fluid dynamics of a basaltic magma chamber resplenished by influx of hot, dense ultrabasic magma. Contributions to Mineralogy and Petrology, 75(279-289).
- -. (1984) Double diffusive convection due to crystallization in magmas. Annual Review of Earth and Planetary Sciences, 12, 11-37.
- Huppert, H.E., and Turner, J.S. (1981) Double-diffusive convection. J. Fluid Mech., 106, 299-329.
- Hutton, D.H.W. (1988) Granite emplacement mechanisms and tectonic controls: inference from deformation studies. Phil. Trans. R. Soc. Edinburg, 79, 245-255.

- Irvine, T.N. (1974) Petrology of the Duke Island ultramafic complex southwestern Alaska. 240 p. Geological Society of America, Boulder, Co.
- -. (1975) Crystallization sequences in the Muskox intrusion and other layered intrusions: II Origin of chromitite layers and similar deposits of other magmatic ores. Geochimica et Cosmochimica Acta, 39, 991-1020.
- -. (1977) Origin of chromite layers in the Muskox intrusion and other stratiform intrusions: a new interpretation. Geology, 5, 273-277.
- -. (1978) Density current structure and magmatic sedimentation. Carnegie Inst. Wash. Year Book, 77, 717-725.

- -. (1980) Magmatic infiltration metasomatism, double-diffusive fractional crystallization, and adcumulus growth in the Muskox intrusion and other layered intrusions. In R.B. Hargraves, Ed. Physics of Magmatic Processes., p. 325-384. Princeton University Press, Princeton, NJ.
- -. (1987) Layering and related structures in the Duke Island and Skaergaard intrusions: similarities, differences, and origins. In I. Parsons, Ed. Origins of Igneous Layering, p. 185-245. Reidel, Dordrecht.
- Irvine, T.N., and Smith, C.H. (1967) The ultramafic rocks of the Muskox intrusion, Northwest Territories, Canada. In P.J. Wyllie, Ed. Ultramafic and Related Rocks, p. 39-49. John Wiley and Sons, Inc, New York.
- Irvine, T.N., Keith, D.W., and Todd, S.G. (1983) The J-M platinum-palladium reef of the Stillwater complex, Montana: II Origin by double diffusive convective magma mixing and implications for the Bushweld complex. Econ. Geol., 78, 1287-1334.
- Irvine, T.N., Andersen, J.C.Ø., and Brooks, C.K. (1998) Included blocks (and blocks within blocks) in the Skaergaard intrusion: Geologic relations and the origins of rythmic modally graded layers. Geological Society of America Bulletin, 110, 1398-1447.
- Irvine, T.N., Andersen, J.C., and Brooks, C.K. (2001) Field trip to the Skaergaard intrusion, east Greenland. http://www.union.edu/PUBLIC/GEODEPT/hollocher/skaergaard/.
- Israelachvili, J.N. (1985) Intermolecular and surface forces. Academic Press. London.

J

- Jackson, E.D. (1961) Primary textures and mineral associations in the Ultramafic zone of the Stillwater complex, Montana. U.S. Geol. Sur. Prof. Paper, 358, 1-106.
- -. (1970) The cycling Unit in layered intrusions a comparison of the repetitive stratigraphy in the ultramafic parts of the Stillwater, Muskox, Great Dyke and Bushveld Complexes. Spec. Publ. Geol. Soc. S. Afr., 1, 391-424.
- Jang, Y.D., and Naslund, H.R. (1994) Compositional variations within graded layers in the Skaergaard intrusion. Geol. Soc. Am. Abst. with Prog., 26(3), 25.
- -. (2001) Major and trace element composition of Skaergaard plagioclase; geochemical evidence for changes in magma dynamics during the final stage of crystallization of the Skaergaard intrusion. Contributions to Mineralogy and Petrology, 140, 441-457.
- Jaupart, C., and Tait, S. (1995) Dynamics of differentiation in magma reservoirs. Journal of Geophysical Research, 100, 17615-17636.
- -. (1996) Dynamics of differentiation in magma reservoirs. Journal of Geophysical Research, 100, 17615-17636.

- Jerram, D.A., Cheadle, M.J., Hunter, R.H., and Elliott, M.T. (1996) The spatial distribution of grains and crystals in rocks. Contributions to Mineralogy and Petrology, 125, 60-74.
- Johannes, W., and Holtz, F. (1996) Petrogenesis and experimental petrology of granitic rocks. 335 p, Berlin, Heidelberg.
- Johnson, W.A., and Mehl, R.F. (1939) Reaction kinetics in processes of nucleation and growth. Amer. Inst. Mining Eng., Tech. Public. 1089, 1-27.

K

- Kaschiev, D. (2000) Nucleation: Basic theory with applications. Butterworth-Heinemann, Oxford.
- Kerr, R.C., and Turner, J.S. (1982) Layered convection and crystal layers in multicomponent systems. Nature, 298, 731-733.
- Kirkpatrick, R.J. (1976) Toward a kinetic model of the crystallization of magmas bodies. Journal of Geophysical Research, 81, 2565-2571.
- -. (1977) Nucleation and growth of plagioclase, Makaopuhi and Alae lava lakes, Kilauea Volcano, Hawaii. Geological Society of America Bulletin, 88, 78-84.
- -. (1981) Kinetics of crystallization of igneous rocks. In A.C. Lasaga, and R.J. Kirkpatrick, Eds. Kinetics of geochemical processes, 8, p. 321-398. Mineralogical Society of America.
- Komar, P.D. (1972a) Mechanical interactions of Phenocrysts and flow differentiation in igneous dikes and sills. Geological Society of America Bulletin, 83, 973-988.
- -. (1972b) Flow differenciation in igneous dikes and sills: profiles of velocity and phenocrysts concentration. Geological Society of America Bulletin, 83, 3443-3448.
- -. (1976) Phenocryst interactions and the velocity profile of magma flowing through dikes or sills. Geological Society of America Bulletin, 87, 1336-1342.
- Koyaguchi, T., Hallworth, M.A., and Huppert, H.E. (1993) An experimental study on the effects of phenocrysts on convection in magmas. J. Volc. Geotherm. Res., 55, 15-32.

L

Lange, R.M., and Carmichael, I.S.E. (1987) Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: new measurements and derived partial molar properties. Geochim. Cosmochim. Acta, 51, 2931-2946.

- Larsen, R.B., and Brooks, C.K. (1994) Origin and evolution of gabbroic pegmatites in the Skaergaard intrusion, East Greenland, Journal of Petrology, 35, 1651-1680
- Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., D., G.J., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., and Guo, Y. (1997) Nomenclature of amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist, 82(9-10), 1019-1037.
- Lentz, R.C.F., and McSween, H.Y. (1999) Crystal size distributions of basaltic shergottites. Thirtieth Lunar and Planetary Science Conference, 30 no 1126, Houston.
- Liesegang, R.E. (1896) Über einige Eigenschaften von Gallerten. Naturw. Wochschr., 11, 353-362.
- Lifshitz, E.M., and Slyozov, V.V. (1961) The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids, 19, 35-50.
- Lipin, B.R. (1993) Pressure increases, the formation of Chromite seams, and the development of the ultramafic series in the Stillwater Complex, Montana. Journal of Petrology, 34, 955-976.
- Lipman, P.W. (1971) Iron-titanium oxide phenocrysts in compositionally zoned ash-flow sheets from southern Nevada. Journal of Geology, 79, 438-456.
- Lofgren, G. (1974) An experimental study of plagioclase crystal morphology: isothermal crystallization. American Journal of Science, 274, 243-273.
- -. (1980) Experimental studies on the dynamic crystallization of silicate melts. In R.B. Hargraves, Ed. Physics of magmatic processes, p. 487-551. Princeton University Press.
- -. (1983) Effects of heterogeneous nucleation on basaltic textures: A dynamic crystallization study. Journal of Petrology, 24, 229-255.
- Lofgren, G.E., Donaldson, C.H., and Usselman, T.M. (1975) Geology, petrology and crystallization of Apollo 15 quartz-normative basalts. 6th Lunar Sci. Conf., p. 79-99.

M

Maaløe, S. (1976) Zoned plagioclase of the Skaergaard intrusion, East Greenland. Journal of Petrology, 17, 398-419.

- Mahan, K.H., Bartley, J.M., Coleman, D.S., Glazner, A.F., and Carl, B.S. (2003) Sheeted intrusion of the synkinematic McDoogle pluton, Sierra Nevada, California. Geological Society of America Bulletin, 115(12), 1570-1582.
- Markl, G., and White, C. (1999) Complex zoning between super-calcic pigeonite and augite from the Graveyard Point sill, Oregon: a record of the interplay between bulk and interstitial liquid fractionation. Contributions to Mineralogy and Petrology, 137, 170-183.
- Marsh, B.D. (1988a) Crystal capture, sorting, and retention in convecting magma. Geological Society of America Bulletin, 100, 1720-1737.
- -. (1988b) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization I: Theory. Contributions to Mineralogy and Petrology, 99, 277-291.
- -. (1989) On convective style and vigor in sheet-like magma chambers. Journal of Petrology, 30, 479-530.
- -. (1998) On the Interpretation of Crystal Size Distributions in Magmatic Systems. Journal of Petrology, 39, 553-599.
- Marsh, B.D., and Maxey, M.R. (1985) On the distribution and separation of crystals in convecting magma. J. Volc. Geotherm. Res., 24, 95-150.
- Martin, D., Griffiths, R.W., and Campbell, I.H. (1987) Compositional and thermal convection in magma chambers. Contributions to Mineralogy and Petrology, 96, 465-475.
- McBirney, A.R. (1975) Differentiation of the Skaergaard intrusion. Nature, 253, 691-694.
- -. (1985) Further considerations of double-diffusive stratification and layering in the Skaergaard intrusion. Journal of Petrology, 26, 993-1001.
- -. (1987) Constitutional zone refining of layered intrusion. In I. Parsons, Ed. Origins of Igneous Layering, p. 437-452. Reidel, Dordrecht.
- -. (1989a) The Skaergaard layered series, I, Structure and average compositions. Journal of Petrology, 20, 487-554.
- -. (1989b) Geological map of the Skaergaard intrusion, East Greenland. Department of Geology, University of Oregon, Eugene.
- -. (1995) Mechanisms of differentiation in the Skaergaard intrusion. Journal of the Geological Society of London, 152, 421-435.
- -. (1996a) The Skaergaard intrusion. In R.G. Cawthorn, Ed. Layered intrusions., p. 147-180. Elsevier, Amsterdam.
- -. (1996b) Geological map of the Skaergaard intrusion (revised). In R.G. Cawthorn, Ed. Layered intrusions (Development in Petrology 15). Elsevier, Amsterdam.
- McBirney, A.R., and Nakamura, Y. (1974) Immiscibility in late-stage magmas of the Skaergaard intrusion. Yrbk. Carnegie Inst. Wash., 73, 348-352.
- McBirney, A.R., and Noyes, R.M. (1979) Crystallization and layering of the Skaergaard intrusion. Journal of Petrology, 20, 487-554.
- McBirney, A.R., and Murase, T. (1984) Rheological properties of magmas. Annual Review of Earth and Planetary Sciences, 12(337-357).

- McBirney, A.R., and Naslund, H.R. (1990) The differentiation of the Skaergaard intrusion. Discussion of Hunter and Sparks (Contrib. Mineral Petrol 95: 451-461). Contributions to Mineralogy and Petrology, 104, 235-240.
- McBirney, A.R., White, C.M., and Boudreau, A.E. (1990) Spontaneous development of concentric layering in a solidified siliceous dike, East Greenland. Earth-Science Reviews, 29, 321-330.
- McBirney, A.R., and Hunter, R.H. (1995) The cumulate paradigm reconsidered. Journal of Geology, 103, 114-122.
- Mersmann, A. (2001) Crystallization Technology Handbook. 2nd edition, Marcel Dekker, New york.
- Mock, A., and Jerram, D.A. (2005) Crystal Size Distributions (CSD) in Three Dimensions: Insights from the 3D Reconstruction of a Higly Porphyritic Rhyolite. Journal of Petrology, 46, 1525-1541.
- Morse, S.A. (1969) The Kiglapait layered intrusion, Labrador. Geol. Soc. Am. Mem., 112, 146 pp.
- -. (1984) Cation diffusion in plagioclase feldspar. Science, 228, 504-505.
- -. (1986) Convection in aid of adcumulus growth. Journal of Petrology, 27(1183-1214).
- -. (1997) Binary solutions and the lever rule. Journal of Geology, 105, 471-482.
- -. (1998) Is the cumulate paradigm at risk?: An extended discussion of the cumulate paradigm reconsidered. Journal of Geology, 106, 367-370.
- Morse, S.A., and Nolan, K.M. (1984) Origin of strongly reversed rims on plagioclase in cumulates. Earth and Planetary Science Letters, 68(3), 485-498.
- Mullin, J.W. (2001) Crystallization. 4th edition, Butterworth-Heinemann, Oxford.
- Murase, T., and McBirney, A.R. (1973) Properties of some common igneous rocks and their melts at high temperatures. Geological Society of America Bulletin, 84, 3563-3592.

N

- Naslund, H.R. (1984a) The petrology of the Upper Border Series of the Skaergaard intrusion. Journal of Petrology, 25, 1-28.
- -. (1984b) Petrology of the Upper Border Series of the Skaergaard Intrusion. EOS, Trans. Am. Geophys. Union, 65(16), 294.
- -. (1986) Disequilibrium partial melting and rheomorphic layer formation in the contact aureole of the Basistoppen sill. Contributions to Mineralogy and Petrology, 93, 359-367.

- Naslund, H.R., Turner, P.A., and Keith, D.W. (1991) Crystallization and Layer Formation in the Middle Zone of the Skaergaard intrusion. Bull. Geol. Soc. Denmark, 38, 165-171.
- Naslund, H.R., and McBirney, A.R. (1996) Mechanisms of formation of igneous layering. In R.G. Cawthorn, Ed. Layered Igneous Intrusions, p. 1-44. Elsevier Science, Amsterdam.
- Nicholson, D.M., and Mathez, E.A. (1991) Petrogenesis of the Merensky Reef in the Rustenburg section of the Bushveld Complex. Contributions to Mineralogy and Petrology, 107, 293-309
- Nielsen, T.F.D. (2004) The shape and volume of the Skaergaard intrusion, East Greenland: Implications for mass balance and bulk composition. Journal of Petrology, 45, 507-530.

P

- Parsons, I. (1987) Origins of Igneous Layering. 666 p. Reidel Publ. Cie, Dordrecht.
- Parsons, I., and Becker, S. (1987) Layering, compaction and post-magmatic processes in the Klokken intrusion. Origins of Igneous Layering, p. 29-92. Reidel Publ. Cie, Dordrecht.
- Philpotts, A.R. (1976) Silicate liquid immiscibility: its probable extent and petrogenetic significance. American Journal of Science, 276, 1147-1177.
- Pitcher, W.S. (1993) The nature and origin of granite. 321 p. Blackie Academic and Professional, London.
- Plaine, J. (2004) le magmatisme composite du complexe granitique de Ploumanac'h. http://www.sgmb.univ-rennes1.fr/DOSSIERS/patrimoine/PLOUMfeuille.htm
- Pons, J., Barbey, P., Dupuis, D., and Léger, J.M. (1995) Mechanisms of pluton emplacement and structural evolution of a 2.1 Ga juvenile continental crust. The Birimian of Southwestern Niger. Precambrian Research, 70, 281-301.
- Pons, J., Barbey, P., Nachit, H., and Burg, J.-P. (accepté) Development of igneous layering during growth of pluton: The Tarçouate Laccolith (Morocco). Tectonophysics.
- Prouteau, G., and Scaillet, B. (2003) Experimental Constraints on the Origin of the 1991 Pinatubo Dacite. Journal of Petrology, 44, 2203-2241.

R

- Ramsay, J.G. (1989) Emplacement kinematics of a granite diapir: the Chindamora batholith, Zimbabwe. Journal of Structural Geology, 11, 191-209.
- Randolph, A.D., and Larson, M.A. (1971) Theory of particulate processes. 251 p. Academic Press.
- Reid, J.B.J., and Hamilton, M.A. (1987) Origin of Sierra Nevadan granite: evidence from small scale composite dikes. Contributions to Mineralogy and Petrology, 96, 441-454.
- Richter, R.M., and McKenzie, D.N. (1984) Dynamical models for melt segregation from a deformable matrix. Journal of Geology, 92, 729-740.
- Robins, B., Haukvik, L., and Jansen, S. (1987) The organization and internal structure of cycling units in the Honningsvåg intrusive suite, North Norway: Implications for intrusive mechanisms, double-diffusive convection and pore-magma infiltration. In I. Parsons, Ed. Origins of Igneous Layering, p. 287-312. Reidel, Dordrecht.
- Roedder, E. (1978) Silicate liquid immiscibility in magmas and in the system K2O-FeO-Al2O3-SiO2: an example of serendipity. Geochimica et Cosmochimica Acta, 42, 1597-1617.
- Roobol, M.J. (1972) Size-graded igneous layering in an Icelandic intrusion. Geol. Mag., 109, 393-403.
- Ross, M.E. (1986) Flow differentiation, phenocryst alignment, and compositional trends within a dolerite dike at Rockport, Massachusetts. Geological Society of America Bulletin, 97, 232-240.
- Ryder, G. (1984) Oxidation and layering in the Stillwater intrusion. Geol. Soc. Am. Abst. with Prog., 16, 642.

S

- Scaillet, B., Behrens, H., Schulze, F., and Pichavant, M. (1996) Water contents of felsic melts: application to the rheological properties of granitic magmas. Trans. R. Soc. Edinburgh: Earth Sci., 87, 57-64.
- Scaillet, B., Holtz, F., and Pichavant, M. (1998) Phase equilibrium constraints on the viscosity of silicic magmas 1. Volcanic-plutonic comparison. Journal of Geophysical Research, 103, 27,257-27,266.
- Schwartz, E.J., Coleman, L.C., and Cattroll, H.M. (1979) Paleomagnetic results from the Skaergaard Intrusion, East Greenland. Earth and Planetary Science Letters, 42, 437-44.

- Schwindinger, K.R. (1999) Particle dynamics and aggregation of crystals in a magma chamber with application to Kilauea Iki olivines. Journal of Volcanology and Geothermal Research, 88(4), 209-238.
- Seaman, S.J., Scherer, E.E., and Standish, J.J. (1995) Multistage magma mingling and the origin of flow banding in the Aliso lava dome, Tumacacori Mountains, southern Arizona. Journal of Geophysical Research, 100, 8381-8398.
- Shaw, H.R. (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. American Journal of Science, 272, 870-893.
- Shimizu, H. (1978) Analysis of the zoned plagioclase of different magmatic environments: A preliminary ion-microprobe study. Earth and Planetary Science Letters, 39, 398-406.
- Shirley, D.N. (1987) Differentiation and compaction in the Palisades sill, New Jersey. Journal of Petrology, 28, 835-866.
- Simkin, T. (1967) Flow differentiation in the picritic sills of North Skye. In P.J. Wyllie, Ed. Ultramafic and Related Rocks, p. 64-69. John Wiley and Sons, Inc, New York.
- Smith, J.V., and Brown, W.L. (1988) Feldspar minerals. 828 p, Berlin.
- Sonnenthal, E.L. (1992) Geochemistry of dendritic anorthosites and associated pegmatites in the Skaergaard intrusion, East Greenland: evidence for matasomatism by a chlorine-rich fluid. J. Volc. Geotherm. Res., 52, 209-230
- Sørensen, H., and Larsen, L.M. (1987) Layering in the Ilmaussaq Alkaline intrusion. South Greenland. In I. Parsons, Ed. Origins of Igneous Layering, p. 1-28. Reidel, Dordrecht.
- Sparks, R.S.J., Huppert, H.E., and Turner, J.S. (1984) The fluid dynamics of evolving magma chambers. Phil. Trans. R. Soc. Lond., A310, 511-534.
- Sparks, R.S.J., Huppert, H.E., Koyaguchi, T., and Hallworth, M.A. (1993) Origin of modal and rhythmic igneous layering by sedimentation in a convecting magma chamber. Nature, 361, 246-249.
- Swanson, S.E. (1977) Relation of nucleation and crystal-growth rate to the development of granitic textures. American Mineralogist, 62, 966-978.

T

Tait, S., Huppert, H.E., and Sparks, R.S.J. (1984) The role of compositional convection in the formation of adcumulate rocks. Lithos, 17, 139-146.

- Tait, S., and Jaupart, C. (1990) Physical process in the evolution of magmas. In J. Nicholls, and J.K. Russell, Eds. Modern methods of igneous petrology: Understanding magmatic processes, 24, p. 125-151. Mineralogical Society of America.
- -. (1992) Compositional convection in a reactive crystalline mush and melt differentiation. Journal of Geophysical Research, 97, 6735-6756.
- -. (1996) The production of chemically stratified and adcumulate plutonic igneous rocks. Mineralogical Magazine, 60, 99-114.
- Taubeneck, W.H., and Poldervaart, A. (1960) Geology of the Elkhorn mountains, northeastern Oregon: part II Willow Lake intrusion. Geological Society of America Bulletin, 71, 1295-1322.
- Tegner, C. (1997) Iron in plagioclase as a monitor of the differentiation of the Skaergaard intrusion. Contributions to Mineralogy and Petrology, 128, 45-51.
- Thomas, N.C., Tait, S., and Koyaguchi, T. (1993) Mixing of stratified liquids by the motion of gas bubbles: application to magma mixing. Earth and Planetary Science Letters, 115, 161-175.
- Thy, P. (1983) Cumulate chemistry and its bearing on the origin of layering: evidence from the Fongen-Hyllingen basic complex, Norway. Tschermaks Min. Petr. Mitt., 32, 1-24.
- Tobisch, O.T., McNulty, B.A., and Vernon, R.H. (1997) Microgranitoid enclave swarms in granitic plutons, central Sierra Nevada, California. Lithos, 40, 321-339.
- Tontrup, C., Gruy, F., and Cournil, M. (2000) Turbulent aggregation of titania in water. Journal of Colloid and Interface Science, 229, 511-525.
- Toplis, M.J., and Carroll, M.R. (1995) An Experimental Study of the Influence of Oxygen Fugacity on Fe-Ti Oxide Stability, Phase Relations, and Mineral-Melt Equilibria in Ferro-Basaltic Systems. Journal of Petrology, 36(5), 1137-1170.
- -. (1996) Differentiation of Ferro-Basaltic Magmas under Conditions Open and Closed to Oxygen: Implications for the Skaergaard Intrusion and Other Natural Systems. Journal of Petrology, 37(4), 837-858.
- Toplis, M., and Brown, W.L. (2001) Trace element evidence for in situ crystallization of poikilitic clinopyroxene from the Skaergaard intrusion. EUG XI, Abstract 811.
- Turnbull, D., and Fisher, J.C. (1949) Rates of nucleation in condensed systems. J. Chem. Phys., 17, 71-73.
- Turnbull, D., and Cohen, M.H. (1960) Crystallization kinetics and glass formation. In S.D. Mackenzie, Ed. Modern Aspects of the Vitreous State. Butterworths, London.

V

- Vernon, R.H. (2000) Rewiew of microstructural evidence of magmatic and solid-state flow. Electronic Geosciences, 5:2.
- Vigneresse, J.L., Barbey, P., and Cuney, M. (1996) Rheological transitions during partial melting and crystallisation with application to felsic magma segregation and transfer. Journal of Petrology, 37, 1579-1600.
- Vigneresse, J.L., and Clemens, J.D. (2000) Granitic magma acsent and emplacement: neitherdiapirism nor neutral buoyancy. In: Vendeville, B., Mart, Y., Vigneresse, J.L. (eds), Slate, Shale and Igneous Diapirs in and around Europe. Geological Society of London Special Publication, 174, 1-78.
- Volmer, M., and Weber, A. (1926) Kimbildung in ubersattigten gebilden. Zeitschrift für Physikalische Chemie, 119, 277-301.
- Volmer, M., and Marder, M. (1931) Zur theorie der linearen kristallisationsgeshhwindigkeit. Zeitschrift für Physikalische Chemie, 154, 97-112.
- Voorhees, P.W. (1992) Ostwald ripening of two-phase mixtures. Annu. Rev. Mater. Sci., 22, 197-215.

W

- Wager, L.R. (1960) The major element variation of the Layered Series in the Skaergaard intrusion and a reestimation of the average compostion of the Hidden Layered Series and of the successive residual magmas. Journal of Petrology, 1, 364-398.
- -. (1963) The mechanism of adcumulus growth in the layered series of the Skaergaard intrusion. Miner. Soc. Am. Spec. Pap., 1, 1-9.
- Wager, L.R., and Deer, W.A. (1939) Geologic investigations in East Greenland, Part III: The petrology of the Skaergaard intrusion, Kangerdlugssuaq, East Greenland. Medd. Grønland, 105, 1-352.
- Wager, L.R., Brown, G.M., and Wadsworth, W.J. (1960) Types of igneous cumulates. Journal of Petrology, 1, 73-85.
- Wager, L.R., and Brown, G.M. (1968) Layered Igneous Rocks. 587 p. W.H. Freeman & Co, San Francisco, CA.

- Walker, D., Kirkpatrick, R.J., Longhi, J., and Hays, J.F. (1976) Crystallization history of lunar picrite basalt sample 12002: phase equilibria and cooling-rate studies. Geological Society of America Bulletin, 87, 646-656.
- Weinberg, R.F., Sial, A.N., and Pessoa, R.R. (2001) Magma flow within the Tavares pluton, northeastern Brazil: compositional and thermal convection. Geological Society of America Bulletin, 113, 508-520.
- Wiebe, R.A. (1993a) Basaltic injections into floored silicic magma chambers. EOS, Trans. Am. Geophys. Union, 74, 1-3.
- -. (1993b) The Pleasant Bay layered gabbro-diorite, Coastal Maine: ponding and crystallization of basaltic injections into a silicic magma chamber. Journal of Petrology, 34, 461-489.
- -. (1996) Mafic-silicic layered intrusions: the role of basaltic injections on magmatic processes and the evolution of silicic magma chambers. Trans. R. Soc. Edinburgh: Earth Sci., 87, 233-242.
- Wiebe, R.A., and Collins, W.J. (1998) Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magmas. Journal of Structural Geology, 20, 1273-1289.
- Wiebe, R.A., Blair, K.D., Hawkins, D.P., and Sabine, C.P. (2002) Mafic injections, in situ hybridization, and crystal accumulation in the Pyramid Peak granite, California. Geological Society of America Bulletin, 114, 909-920.
- Wilson, J.R., and Larsen, S.B. (1985) Two dimensional study of a layered intrusion: the Hyllingen series, Norway. Geol. Mag., 122, 97-124.
- Wilson, J.R., Menuge, J.F., Pedersen, S., and Engell-Sørensen, O. (1987) The southern part of Fongen-Hyllingen layered mafic complex, Norway: Eplacement and crystallization of composionally stratified magma. In I. Parsons, Ed. Origins of Igneous Layering, p. 287-312. Reidel, Dordrecht.
- Wones, D.R. (1989) Significance of the assemblage titanite + magnetite + quartz in granitic rocks. American Mineralogist, 74, 744-749.

\mathbf{Z}

- Zarzycki, J. (1992) Les verres et l'etat vitreux. 391 p. Masson.
- Zieg, M.J., and Marsh, B.D. (2002) Crystal size distributions and scaling laws in the quantification of igneous textures. Journal of Petrology, 43, 85-101.

BIBLIOTHÈQUE DES SCIENCES
Rue du Jardin Botanique - BP 11
SARCY VILLERS LES NANCY CAMP

Mademoiselle PUPIER Elsa

DOCTORAT DE L'UNIVERSITE HENRI POINCARE, NANCY 1

en SCIENCES DE LA TERRE & DE L'UNIVERS

Vu, approuvé et permis d'imprimer N° 1164

Nancy, le 13 février 2006

Le Président de l'Université

ઉજ્ઞાસાસાસા

Université Henri Poincaré, Nancy I 24-30 rue Lionnois - B.P. 3069 - 54013 NANCY Cédex Tél.: 03 83 68 20 00 - Fax: 03 83 68 21 00 S.C.D. VU.H.P. NANCY 1

BIBLIOTHEQUE DES SCIENCES

Ruse dit Jerdin Botanique - BP 11

S#601 VILLERS-LES-NANCY Cédex

Approche expérimentale de la cristallisation dans les chambres magmatiques et étude d'intrusions litées (massif gabbroïque du Skaergaard, Groenland, et pluton granitique de Dolbel, Niger)

La cristallisation des liquides magmatiques est abordée par l'étude expérimentale de la distribution des tailles de cristaux (CSD) et par l'étude pétrologique de deux exemples naturels lités: un complexe mafique (Skaergaard, Groenland) et un pluton granitique (Dolbel, Niger). L'évolution des textures du plagioclase lors du refroidissement contrôlé d'un liquide basaltique, montre que les CSD peuvent difficilement être employées pour reconstituer l'histoire thermique. Les études texturales et chimiques sur les minéraux de litages naturels (plagioclases de la *Lower Zone* du Skaergaard, amphibole et feldspaths du pluton de Dolbel) montrent l'importance de l'interaction entre processus pétrologiques et mécaniques dans la genèse des intrusions litées. Pour le Skaergaard, il y a interaction entre convection, sédimentation magmatique et cristallisation. Pour le pluton de Dolbel, les différentes étapes de cristallisation résultent de l'interaction entre cristallisation fractionnée et déformation.

Crystallization of magmatic liquids in plutonic environments is considered from an experimental point of view, through the study of Crystal Size Distribution (CSD), and from the petrological study of two layered intrusions: a mafic complex (Skaergaard, Greenland) and a granitic pluton (Dolbel, Niger). The evolution of plagioclase textures during controlled cooling of a basaltic liquid shows that the CSD cannot be simply used to reconstitute the thermal history. Textural and chemical studies of minerals from layered rocks (plagioclases of the Lower Zone of Skaergaard, amphibole and feldspars of the Dolbel pluton) show the importance of interaction between petrological and mechanical process. In the Skaergaard, convection, magmatic sedimentation and crystallization are inferred to be the dominant factors. In the Dolbel pluton, the successive stages of crystallization result from the interaction between fractional crystallization and deformation.

Les annexes qui suivent ont été fournis initialement sur un CD-ROM.

Comme elles étaient sous forme de fichiers PDF, nous les avons fusionnées avec le document original.

Notice pour l'utilisation des annexes

Dans chaque dossier se trouve un fichier numéroté 00AX (X = numéro de l'annexe) qui liste tous les éléments contenus dans cette annexe.

Annexe 1: Expérimentation

Cette annexe contient les analyses des phases (réalisées à la microsonde électronique) dans chaque expérience.

Annexe 1 Compositions chimiques des phases de XP14 (palier 9 heures)

BILLE 1 T = 1170°C

Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
101	2.66	47.92	0.29	10.24	3.14	0.00	0.00	13.18	7.01	13.46	97.89	XP14 bille 1 verre	1
102	2.75	48.17	0.33	10.50	3.07	0.01	0.00	13.50	7.05	13.66	99.03	XP14 bille 1 verre	2
103	2.65	47.78	0.34	10.53	3.18	0.00	0.04	13.33	6.85	13.70	98.41	XP14 bille 1 verre	3
104	2.69	47.74	0.32	10.50	3.07	0.02	0.00	13.26	6.71	13.57	97.88	XP14 bille 1 verre	4
105	2.61	48.60	0.30	10.63	3.08	0.00	0.00	13.59	6.74	13.61	99.15	XP14 bille 1 verre	5
106	2.69	48.38	0.30	10.43	3.05	0.00	0.07	13.49	7.19	13.52	99.13	XP14 bille 1 verre	6
107	2.61	47.80	0.40	10.48	3.11	0.01	0.00	13.48	6.93	13.59	98.40	XP14 bille 1 verre	7
108	3.42	50.54	0.07	14.44	0.11	0.00	0.05	0.83	0.25	30.27	99.97	XP14 bille 1 plagio	8
109	3.27	51.17	0.05	14.46	0.10	0.00	0.00	0.76	0.09	30.54	100.43	XP14 bille 1 plagio	9
110	3.10	50.19	0.06	14.45	0.12	0.00	0.00	0.80	0.14	30.49	99.34	XP14 bille 1 plagio	10
111	3.44	50.56	0.15	13.41	0.88	0.00	0.08	3.43	1.50	24.88	98.32	XP14 bille 1 plagio	11
112	2.74	47.96	0.28	10.53	3.12	0.00	0.00	13.55	7.08	13.63	98.89	XP14 bille 1 verre	12
113	2.68	47.92	0.33	10.44	3.13	0.00	0.00	13.53	6.99	13.57	98.59	XP14 bille 1 verre	13
114	2.48	48.06	0.30	10.62	3.05	0.01	0.02	13.41	5.26	13.58	96.80	XP14 bille 1 verre	14
115	2.71	47.82	0.30	10.51	3.11	0.00	0.01	13.92	6.75	13.56	98.69	XP14 bille 1 verre	15
116	2.69	47.63	0.36	10.58	3.14	0.01	0.00	13.10	6.70	13.69	97.89	XP14 bille 1 verre	16
117	2.55	47.70	0.30	10.49	3.13	0.01	0.05	13.36	6.97	13.71	98.27	XP14 bille 1 verre	17
118	2.70	47.88	0.33	10.47	3.13	0.01	0.01	13.78	6.83	13.60	98.75	XP14 bille 1 verre	18
119	2.77	47.77	0.28	10.40	3.13	0.00	0.00	13.44	7.09	13.73	98.60	XP14 bille 1 verre	19
120	2.57	48.30	0.36	10.41	3.09	0.01	0.08	13.90	7.20	13.79	99.72	XP14 bille 1 verre	20
7	2.87	50.84	0.05	14.90	0.11	0.01	0.04	0.76	0.16	31.05	100.79	XP14 bille 1 plagio	
121	2.71	48.28	0.32	10.60	3.13	0.00	0.06	13.67	7.15	13.86	99.77	XP14 bille 1 verre	

BILLE 2 T = 1151°C

		• • •											
Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
12	2.61	48.28	0.39	10.39	3.34	0.00	0.05	14.04	6.92	13.05	99.08	XP14 bille 2 verre	1
13	2.52	48.37	0.37	10.28	3.34	0.01	0.02	13.83	7.28	12.88	98.88	XP14 bille 2 verre	2
14	2.55	48.28	0.35	10.32	3.28	0.00	0.00	13.93	6.64	12.54	97.89	XP14 bille 2 verre	3
15	2.57	47.70	0.34	10.39	3.25	0.00	0.03	14.08	7.28	12.76	98.38	XP14 bille 2 verre	4
16	3.39	51.15	0.06	14.18	0.12	0.00	0.02	0.70	0.12	29.77	99.52	XP14 bille 2 plagio	5
17	3.17	51.05	0.08	14.33	0.10	0.02	0.02	0.68	0.59	30.06	100.10	XP14 bille 2 plagio	6
18	2.56	47.89	0.40	10.45	3.31	0.00	0.00	14.03	7.54	12.77	98.93	XP14 bille 2 verre	7
19	2.75	48.19	0.35	10.38	3.31	0.02	0.00	14.13	7.22	12.92	99.29	XP14 bille 2 verre	8
20	2.57	48.48	0.35	10.20	3.26	0.02	0.00	14.09	7.33	12.76	99.06	XP14 bille 2 verre	9
21	2.53	47.78	0.34	10.47	3.23	0.00	0.00	14.34	7.39	12.67	98.75	XP14 bille 2 verre	10
222	2.65	48.19	0.37	10.45	3.30	0.02	0.00	13.74	7.23	12.97	98.92	XP14 bille 2 verre	

BILLE 3 T = 1131°C

Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
188	2.75	49.53	0.47	11.08	4.12	0.00	0.00	14.17	5.14	11.57	98.83	XP14 bille 3 verre	1
189	2.74	49.18	0.45	10.91	4.12	0.00	0.00	15.07	5.24	11.60	99.31	XP14 bille 3 verre	2
190	2.52	48.80	0.43	10.08	4.03	0.00	0.01	15.41	6.76	10.25	98.28	XP14 bille 3 verre	3
191	0.00	38.05	0.00	0.41	0.08	0.00	0.03	24.02	36.38	0.01	98.99	XP14 bille 3 olivine	4
192	0.03	38.63	0.03	0.39	0.09	0.02	0.00	23.99	38.00	0.06	101.23	XP14 bille 3 olivine	5
193	0.01	38.31	0.00	0.42	0.07	0.00	0.19	22.97	37.70	0.18	99.85	XP14 bille 3 olivine	6
194	0.00	38.38	0.01	0.42	0.04	0.00	0.02	23.88	37.57	0.08	100.39	XP14 bille 3 olivine	7
195	0.03	37.11	0.01	0.39	0.06	0.02	0.02	23.87	36.04	0.06	97.59	XP14 bille 3 olivine	8
196	3.19	48.99	0.12	10.47	0.35	0.00	0.00	5.18	5.90	24.18	98.38	XP14 bille 3 olivine	9
197	3.99	52.64	0.12	13.23	0.15	0.01	0.00	0.98	0.25	29.04	100.40	XP14 bille 3 plagio	10
198	3.97	52.90	0.12	13.05	0.15	0.00	0.00	1.10	0.00	29.24	100.52	XP14 bille 3 plagio	11
199	2.81	49.80	0.46	10.97	4.20	0.01	0.00	14.01	4.99	11.58	98.83	XP14 bille 3 verre	12
200	2.76	49.42	0.52	10.85	4.13	0.00	0.00	14.56	5.13	11.36	98.71	XP14 bille 3 verre	13
201	3.00	49.94	0.46	10.93	4.19	0.01	0.00	14.19	5.02	11.67	99.41	XP14 bille 3 verre	14
202	2.75	49.43	0.52	10.98	4.22	0.00	0.07	14.24	4.55	11.42	98.19	XP14 bille 3 verre	1
203	2.67	49.58	0.48	10.81	4.21	0.03	0.05	14.23	4.44	11.57	98.06	XP14 bille 3 verre	2
204	2.88	49.87	0.47	10.76	4.21	0.00	0.00	14.56	5.30	11.43	99.48	XP14 bille 3 verre	3
205	2.72	49.94	0.50	10.95	4.23	0.00	0.00	14.51	5.05	11.50	99.38	XP14 bille 3 verre	4
206	2.65	49.12	0.50	11.09	4.18	0.01	0.00	14.54	5.18	11.29	98.56	XP14 bille 3 verre	5
207	0.06	37.34	0.00	0.57	0.12	0.01	0.00	26.16	35.59	0.29	100.13	XP14 bille 3 olivine	6
208	0.02	38.64	0.01	0.46	0.07	0.00	0.00	24.53	36.95	0.08	100.75	XP14 bille 3 olivine	7
209	0.03	38.40	0.00	0.41	0.07	0.01	0.01	24.89	37.54	0.06	101.43	XP14 bille 3 olivine	8
210	0.02	38.48	0.02	0.43	0.08	0.00	0.00	24.63	35.92	0.02	99.60	XP14 bille 3 olivine	9
211	0.02	38.55	0.00	0.44	0.04	0.00	0.00	25.44	36.71	0.09	101.30	XP14 bille 3 olivine	10

BILLE 4 T = 1110°C

Policy P	BILLE 4	1 I = 11	100											
123 2.79	Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
124 2.99	122	3.00	47.48	0.63	9.09	5.58	0.00	0.00	17.68	3.88	10.82	98.16	XP14 bille4 verre	1
124 2.99												98 37		2
125 3.00 47.77 0.60 9.01 5.58 0.00 0.00 17.86 2.22 10.96 96.48 XP14 bille4 verre 5 127 0.04 36.96 0.03 0.38 0.09 0.00 0.00 33.09 30.80 0.06 101.44 XP14 bille4 divine 6 128 0.03 36.95 0.00 0.38 0.09 0.00 0.00 33.09 30.80 0.06 101.44 XP14 bille4 divine 7 129 2.56 46.06 0.71 7.95 4.76 0.00 0.00 18.14 7.42 10.99 98.59 XP14 bille4 verre 8 130 30.34 47.77 0.66 9.07 5.21 0.00 0.00 18.14 7.42 10.99 98.59 XP14 bille4 verre 9 131 2.82 48.29 0.46 8.84 6.14 0.00 0.02 17.29 4.00 11.50 98.48 XP14 bille4 verre 9 131 2.82 48.29 0.44 0.12 0.00 0.05 32.09 31.23 0.06 101.12 XP14 bille4 verre 11 133 0.00 37.13 0.00 0.44 0.15 0.00 0.05 32.09 31.23 0.06 101.12 XP14 bille4 verre 11 133 0.00 37.13 0.00 0.44 0.15 0.01 0.00 0.05 32.09 31.23 0.06 101.12 XP14 bille4 verre 11 133 0.00 37.30 0.06 8.84 6.53 0.00 0.00 17.81 3.65 10.84 98.18 XP14 bille4 verre 11 133 0.00 37.30 0.06 0.56 0.00 0.00 0.00 17.81 3.65 0.04 98.18 XP14 bille4 verre 11 133 0.00 37.30 0.00 0.44 0.15 0.01 0.00 0.05 32.09 31.23 0.06 101.12 XP14 bille4 verre 11 133 0.00														
126 2.80 47.75 0.59 9.10 5.56 0.02 0.00 18.01 3.92 10.88 98.63 XP14 billed verire 5 128 0.03 36.95 0.00 0.38 0.12 0.00 0.00 32.24 30.94 0.03 10.068 XP14 billed verire 8 130 3.03 47.77 0.66 9.07 5.21 0.00 0.00 32.24 30.94 0.03 10.068 XP14 billed verire 8 130 3.03 47.77 0.66 9.07 5.21 0.00 0.07 17.04 3.96 11.55 98.36 XP14 billed verre 8 131 2.82 48.34 0.66 8.71 5.14 0.00 0.07 17.04 3.96 11.55 98.36 XP14 billed verre 10 132 3.12 48.29 0.64 8.84 5.14 0.00 0.00 17.01 4.13 11.79 98.96 XP14 billed verre 10 132 3.12 48.29 0.64 8.84 5.14 0.00 0.00 3.73 3.00 0.34 0.03 0.54 0.15 0.01 0.00 30.78 27.69 1.25 94.03 XP14 billed verre 11 134 0.19 33.40 0.03 0.54 0.15 0.01 0.00 30.78 27.69 1.25 94.03 XP14 billed verre 11 135 28.34 47.61 0.62 9.19 5.61 0.02 0.00 17.77 4.14 10.91 98.03 XP14 billed verre 13 135 2.83 47.61 0.64 9.20 5.74 0.01 0.00 30.78 27.69 1.25 94.03 XP14 billed verre 14 136 2.82 47.27 0.63 8.86 5.63 0.00 0.02 17.77 4.14 10.91 98.03 XP14 billed verre 13 137 27.77 47.40 0.64 9.20 5.76 0.00 0.00 18.40 4.07 10.84 98.18 XP14 billed verre 13 2.93 47.73 0.59 9.22 5.78 0.00 0.00 18.40 3.95 10.77 98.41 XP14 billed verre 14 2.64 48.23 0.55 11.12 6.88 0.00 0.00 18.45 3.95 10.77 98.41 XP14 billed verre 3 47.45 0.26 49.05 0.00 18.99 1.45 0.00 0.00 18.45 3.95 10.77 98.41 XP14 billed verre 3 47.65 0.06 0.00														
127														
128														
129	127	0.04	36.96	0.03	0.38	0.09	0.00	0.00	33.09	30.80	0.06	101.44	XP14 bille4 olivine	
130 3.03 47.77 0.66 9.07 5.21 0.00 0.07 17.04 3.96 11.55 98.36 XP14 bille4 verre 10 132 3.12 48.24 0.66 8.71 5.14 0.00 0.02 17.29 4.00 11.50 98.48 XP14 bille4 verre 10 132 3.12 48.29 0.64 8.84 5.14 0.00 0.00 17.01 4.13 11.79 98.96 XP14 bille4 verre 10 133 0.00 0.04 0.12 0.00 0.05 32.90 31.23 0.06 101.15 17.14 11.61 11.75 11.	128	0.03	36.95	0.00	0.38	0.12	0.00	0.00	32.24	30.94	0.03	100.68	XP14 bille4 olivine	7
130 3.03 47.77 0.66 9.07 5.21 0.00 0.07 17.04 3.96 11.55 98.36 XP14 bille4 verre 10 132 3.12 48.24 0.66 8.71 5.14 0.00 0.02 17.29 4.00 11.50 98.48 XP14 bille4 verre 10 132 3.12 48.29 0.64 8.84 5.14 0.00 0.00 17.01 4.13 11.79 98.96 XP14 bille4 verre 10 133 0.00 0.04 0.12 0.00 0.05 32.90 31.23 0.06 101.15 17.14 11.61 11.75 11.	129	2.56	46.06	0.71	7.95	4.76	0.00	0.00	18.14	7.42	10.99	98.59	XP14 bille4 verre	8
131 2.82	130		47.77	0.66	9.07	5.21	0.00	0.07	17.04	3.96	11.55	98.36	XP14 bille4 verre	9
132 3.12 48.29 0.64 8.84 5.14 0.00 0.00 17.01 4.13 11.79 99.96 XP14 billed verre 11 134 0.19 33.40 0.03 0.54 0.15 0.01 0.00 30.78 27.69 1.25 94.03 XP14 billed olivine 12 134 0.19 33.40 0.03 0.54 0.15 0.01 0.00 0.05 30.78 27.69 1.25 94.03 XP14 billed olivine 12 138 2.82 47.27 0.63 8.86 5.63 0.00 0.02 17.77 4.14 10.91 98.03 XP14 billed verre 14 14 15 15 15 15 15 15														
133														
134														
136 228 47.27 0.63 8.66 5.63 0.00 0.02 0.00 17.81 3.65 10.84 98.18 NP14 billed verre 14 136 28.24 47.27 0.63 8.66 5.63 0.00 0.02 17.77 4.14 10.91 93.03 NP14 billed verre 15 137 2.77 47.40 0.64 9.20 5.74 0.01 0.00 18.49 4.22 10.65 99.10 NP14 billed verre 1 138 2.90 47.06 0.58 8.98 5.76 0.00 0.00 18.40 4.07 10.84 98.60 NP14 billed verre 2 138 2.90 47.06 0.58 8.98 5.76 0.00 0.00 18.56 3.95 10.77 98.41 NP14 billed verre 2 142 0.26 5.060 0.00 18.59 1.43 0.02 0.01 10.70 15.21 2.35 99.48 NP14 billed verre 4 141 2.64 48.23 0.55 11.12 5.15 0.00 0.00 16.20 5.11 10.15 99.18 NP14 billed verre 4 142 0.26 50.60 0.00 18.59 1.43 0.02 0.01 10.70 15.21 2.35 99.48 NP14 billed verre 4 143 0.22 50.22 50.12 0.01 17.66 1.45 0.00 0.03 10.58 15.79 3.19 99.74 NP14 billed cpx 7 145 0.26 49.05 0.00 18.94 2.05 0.03 0.00 9.07 15.49 5.24 100.13 NP14 billed cpx 9 1.43 0.22 0.01 1.70 1.70 15.23 2.53 99.48 NP14 billed cpx 9 1.43 0.22 0.01 1.70 1.70 1.52 2.53 99.48 NP14 billed cpx 9 1.44 1.45 0.26 49.05 0.00 18.94 2.05 0.03 0.00 9.07 15.49 5.24 100.13 NP14 billed cpx 11 1.48 3.04 4.50 5.08 0.00 1.85 1.67 0.00 1.70 1.54 5.24 100.13 NP14 billed cpx 11 1.48 3.04 4.74 0.28 5.87 0.01 18.10 1.52 0.01 0.00 1.03 14.86 2.40 98.99 NP14 billed cpx 11 1.48 3.04 4.74 0.28 4.746 0.70 8.85 5.68 0.00 0.01 1.867 3.89 10.83 9.89 NP14 billed cpx 11 1.48 3.04 4.745 0.05 6.58 5.68 0.00 0.00 1.797 1.46 1.05 6.98 0.80 NP14 billed cpx 11 1.51 2.93 4.725 0.66 9.07 5.70 0.00 0.00 1.797 1.46 1.05 6.98 0.80 NP14 billed cpx 1.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00														
138 2.82														
137	135	2.83	47.61	0.62	9.19	5.61	0.02	0.00	17.81	3.65	10.84	98.18		14
138	136	2.82	47.27	0.63	8.86	5.63	0.00	0.02	17.77	4.14	10.91	98.03	XP14 bille4 verre	15
138	137	2.77	47.40	0.64	9.20	5.74	0.01	0.00	18.49	4.22	10.65	99.10	XP14 bille4 verre	1
139		2.90	47.06			5.76			18.40	4.07			XP14 bille4 verre	2
140														
141														
142														
143														
145	142	0.26	50.60	0.00	18.89	1.43	0.02	0.01	10.70	15.21	2.35	99.48		
146	143	0.22	50.22	0.01	17.66	1.45	0.00	0.03	10.58	15.79	3.19	99.17	XP14 bille4 cpx	7
147	145	0.26	49.05	0.00	18.94	2.05	0.03	0.00	9.07	15.49	5.24	100.13	XP14 bille4 cpx	9
147	146	0.24	50.58	0.00	17.49	1.67	0.00	0.00	11.70	15.23	2.53	99.44	XP14 bille4 cpx	10
148													· ·	
149														
150														
151														
152 3.01														
153	151	2.93	47.25	0.66	9.07	5.70	0.00	0.00	17.69	3.89	10.87	98.06		15
154	152	3.01	47.78	0.65	8.95	5.68	0.01	0.00	18.01	4.05	10.85	98.98	XP14 bille4 verre	1
154	153	0.04	37.12	0.00	0.38	0.08	0.00	0.00	31.76	32.19	0.05	101.61	XP14 bille4 olivine	2
155												101 87		
156														
160														
161														
162														
163 2.86 47.67 0.60 8.85 5.64 0.02 0.04 17.62 4.16 10.79 98.25 XP14 bille4 verre 2 164 0.00 36.87 0.03 0.50 0.16 0.00 0.00 32.94 30.35 0.04 100.88 XP14 bille4 olivine 4 167 0.01 36.78 0.00 0.41 0.06 0.00 0.00 31.69 31.26 0.02 100.24 XP14 bille4 olivine 5 168 0.00 36.80 0.01 0.38 0.04 0.02 0.00 31.27 31.83 0.03 100.38 XP14 bille4 olivine 6 169 0.04 36.28 0.02 0.40 0.08 0.00 0.06 31.64 31.20 0.06 99.78 XP14 bille4 olivine 7 170 3.21 48.57 0.59 9.77 4.64 0.00 0.00 16.17 3.37 12.22 98.55 XP14 bille4 verre 1														
164 0.00 36.87 0.03 0.50 0.16 0.00 0.00 32.94 30.35 0.04 100.88 XP14 billed olivine 4 166 0.03 36.95 0.00 0.38 0.09 0.00 0.03 31.81 31.23 0.03 100.53 XP14 billed olivine 4 167 0.01 36.78 0.00 0.41 0.06 0.00 0.00 31.26 0.02 100.24 XP14 billed olivine 5 168 0.00 36.80 0.01 0.38 0.04 0.02 0.00 31.27 31.83 0.03 100.38 XP14 billed olivine 6 169 0.04 36.28 0.02 0.40 0.08 0.00 0.06 39.78 XP14 billed olivine 7 170 3.21 48.57 0.59 9.77 4.64 0.00 0.00 16.17 3.37 12.22 98.55 XP14 billed verre 1 171 2.83 47.41	162	2.87	47.61	0.62	8.94	5.61	0.01	0.00	17.82	4.19	10.86	98.52	XP14 bille4 verre	1
166	163	2.86	47.67	0.60	8.85	5.64	0.02	0.04	17.62	4.16	10.79	98.25	XP14 bille4 verre	2
166	164	0.00	36.87	0.03	0.50	0.16	0.00	0.00	32.94	30.35	0.04	100.88	XP14 bille4 olivine	3
167 0.01 36.78 0.00 0.41 0.06 0.00 0.00 31.69 31.26 0.02 100.24 XP14 bille4 olivine 5 168 0.00 36.80 0.01 0.38 0.04 0.02 0.00 31.27 31.83 0.03 100.38 XP14 bille4 olivine 6 169 0.04 36.28 0.02 0.40 0.08 0.00 0.06 31.64 31.20 0.06 99.78 XP14 bille4 olivine 7 170 3.21 48.57 0.59 9.77 4.64 0.00 0.00 16.17 3.37 12.22 98.55 XP14 bille4 verre 1 171 2.83 47.41 0.63 8.70 5.53 0.00 0.00 17.70 4.10 10.85 97.35 XP14 bille4 verre 2 172 2.85 46.65 0.66 9.00 5.52 0.01 0.00 17.77 4.10 10.85 97.37 XP14 bille4 verre 2 </td <td></td>														
168 0.00 36.80 0.01 0.38 0.04 0.02 0.00 31.27 31.83 0.03 100.38 XP14 bille4 olivine 6 169 0.04 36.28 0.02 0.40 0.08 0.00 0.06 31.64 31.20 0.06 99.78 XP14 bille4 olivine 7 170 3.21 48.57 0.59 9.77 4.64 0.00 0.00 16.17 3.37 12.22 98.55 XP14 bille4 verre 1 171 2.83 47.41 0.63 8.70 5.53 0.00 0.00 17.70 4.10 10.85 97.35 XP14 bille4 verre 2 172 2.85 46.65 0.66 9.00 5.52 0.01 0.00 17.77 4.10 10.85 97.37 XP14 bille4 verre 1 173 2.92 46.45 0.65 8.94 5.51 0.00 0.05 17.87 4.25 10.72 97.37 XP14 bille4 verre 2														
169 0.04 36.28 0.02 0.40 0.08 0.00 0.06 31.64 31.20 0.06 99.78 XP14 bille4 olivine 7 170 3.21 48.57 0.59 9.77 4.64 0.00 0.00 16.17 3.37 12.22 98.55 XP14 bille4 verre 1 171 2.83 47.41 0.63 8.70 5.53 0.00 0.00 18.46 4.72 10.43 98.71 XP14 bille4 verre 2 172 2.85 46.65 0.66 9.00 5.52 0.01 0.00 17.70 4.10 10.85 97.35 XP14 bille4 verre 1 173 2.92 46.45 0.65 8.94 5.51 0.00 0.05 17.87 4.25 10.72 97.37 XP14 bille4 verre 2 174 3.01 47.02 0.64 8.79 5.60 0.01 0.05 17.94 4.06 10.75 97.86 XP14 bille4 verre 3														
170 3.21 48.57 0.59 9.77 4.64 0.00 0.00 16.17 3.37 12.22 98.55 XP14 bille4 verre 1 171 2.83 47.41 0.63 8.70 5.53 0.00 0.00 18.46 4.72 10.43 98.71 XP14 bille4 verre 2 172 2.85 46.65 0.66 9.00 5.52 0.01 0.00 17.70 4.10 10.85 97.35 XP14 bille4 verre 1 173 2.92 46.45 0.65 8.94 5.51 0.00 0.05 17.87 4.25 10.72 97.37 XP14 bille4 verre 2 174 3.01 47.02 0.64 8.79 5.60 0.01 0.05 17.81 4.36 10.96 98.03 XP14 bille4 verre 3 175 2.88 46.79 0.62 9.10 5.52 0.00 0.00 17.81 4.36 10.96 98.03 XP14 bille4 verre 5														
171 2.83 47.41 0.63 8.70 5.53 0.00 0.00 18.46 4.72 10.43 98.71 XP14 bille4 verre 2 172 2.85 46.65 0.66 9.00 5.52 0.01 0.00 17.70 4.10 10.85 97.35 XP14 bille4 verre 1 173 2.92 46.45 0.65 8.94 5.51 0.00 0.05 17.87 4.25 10.72 97.37 XP14 bille4 verre 2 174 3.01 47.02 0.64 8.79 5.60 0.01 0.05 17.94 4.06 10.75 97.86 XP14 bille4 verre 3 175 2.88 46.79 0.62 9.10 5.52 0.00 0.00 17.81 4.36 10.96 98.03 XP14 bille4 verre 4 176 2.87 46.67 0.61 8.89 5.50 0.03 0.04 18.04 4.61 10.45 97.37 XP14 bille4 verre 5														
172 2.85 46.65 0.66 9.00 5.52 0.01 0.00 17.70 4.10 10.85 97.35 XP14 bille4 verre 1 173 2.92 46.45 0.65 8.94 5.51 0.00 0.05 17.87 4.25 10.72 97.37 XP14 bille4 verre 2 174 3.01 47.02 0.64 8.79 5.60 0.01 0.05 17.94 4.06 10.75 97.86 XP14 bille4 verre 3 175 2.88 46.79 0.62 9.10 5.52 0.00 0.00 17.81 4.36 10.96 98.03 XP14 bille4 verre 4 176 2.87 46.67 0.61 8.89 5.50 0.01 0.00 17.83 4.54 10.45 97.37 XP14 bille4 verre 5 177 2.87 46.67 0.61 8.89 5.53 0.01 0.00 17.70 4.19 10.89 97.49 XP14 bille4 verre 6									16.17					
173 2.92 46.45 0.65 8.94 5.51 0.00 0.05 17.87 4.25 10.72 97.37 XP14 bille4 verre 2 174 3.01 47.02 0.64 8.79 5.60 0.01 0.05 17.94 4.06 10.75 97.86 XP14 bille4 verre 3 175 2.88 46.79 0.62 9.10 5.52 0.00 0.00 17.81 4.36 10.96 98.03 XP14 bille4 verre 4 176 2.87 46.67 0.61 8.89 5.50 0.01 0.00 17.83 4.54 10.45 97.37 XP14 bille4 verre 5 177 2.87 46.93 0.59 9.09 5.45 0.03 0.04 18.04 4.61 10.78 98.42 XP14 bille4 verre 6 178 2.82 46.78 0.60 8.98 5.53 0.01 0.00 17.70 4.19 10.89 97.49 XP14 bille4 verre 7	171	2.83	47.41	0.63	8.70	5.53	0.00	0.00	18.46	4.72	10.43	98.71		2
173 2.92 46.45 0.65 8.94 5.51 0.00 0.05 17.87 4.25 10.72 97.37 XP14 bille4 verre 2 174 3.01 47.02 0.64 8.79 5.60 0.01 0.05 17.94 4.06 10.75 97.86 XP14 bille4 verre 3 175 2.88 46.79 0.62 9.10 5.52 0.00 0.00 17.81 4.36 10.96 98.03 XP14 bille4 verre 4 176 2.87 46.67 0.61 8.89 5.50 0.01 0.00 17.83 4.54 10.45 97.37 XP14 bille4 verre 5 177 2.87 46.93 0.59 9.09 5.45 0.03 0.04 18.04 4.61 10.78 98.42 XP14 bille4 verre 6 178 2.82 46.78 0.60 8.98 5.53 0.01 0.00 17.70 4.19 10.89 97.49 XP14 bille4 verre 7	172	2.85	46.65	0.66	9.00	5.52	0.01	0.00	17.70	4.10	10.85	97.35	XP14 bille4 verre	1
174 3.01 47.02 0.64 8.79 5.60 0.01 0.05 17.94 4.06 10.75 97.86 XP14 bille4 verre 3 175 2.88 46.79 0.62 9.10 5.52 0.00 0.00 17.81 4.36 10.96 98.03 XP14 bille4 verre 4 176 2.87 46.67 0.61 8.89 5.50 0.01 0.00 17.83 4.54 10.45 97.37 XP14 bille4 verre 5 177 2.87 46.93 0.59 9.09 5.45 0.03 0.04 18.04 4.61 10.78 98.42 XP14 bille4 verre 6 178 2.82 46.78 0.60 8.98 5.53 0.01 0.00 17.70 4.19 10.89 97.49 XP14 bille4 verre 7 179 2.85 46.78 0.58 8.92 5.49 0.02 0.00 17.79 4.31 10.65 97.49 XP14 bille4 verre 8 180 3.12 46.72 0.58 8.81 5.54 0.00 0.0			46.45											2
175 2.88 46.79 0.62 9.10 5.52 0.00 0.00 17.81 4.36 10.96 98.03 XP14 bille4 verre 4 176 2.87 46.67 0.61 8.89 5.50 0.01 0.00 17.83 4.54 10.45 97.37 XP14 bille4 verre 5 177 2.87 46.93 0.59 9.09 5.45 0.03 0.04 18.04 4.61 10.78 98.42 XP14 bille4 verre 6 178 2.82 46.78 0.60 8.98 5.53 0.01 0.00 17.70 4.19 10.89 97.49 XP14 bille4 verre 7 179 2.85 46.78 0.58 8.92 5.49 0.02 0.00 17.79 4.31 10.65 97.49 XP14 bille4 verre 8 180 3.12 46.72 0.58 8.81 5.54 0.00 0.00 17.63 4.29 10.79 97.48 XP14 bille4 verre 9 181 3.35 47.88 0.50 9.26 4.80 0.00 0.0														
176 2.87 46.67 0.61 8.89 5.50 0.01 0.00 17.83 4.54 10.45 97.37 XP14 bille4 verre 5 177 2.87 46.93 0.59 9.09 5.45 0.03 0.04 18.04 4.61 10.78 98.42 XP14 bille4 verre 6 178 2.82 46.78 0.60 8.98 5.53 0.01 0.00 17.70 4.19 10.89 97.49 XP14 bille4 verre 7 179 2.85 46.78 0.58 8.92 5.49 0.02 0.00 17.79 4.31 10.65 97.40 XP14 bille4 verre 8 180 3.12 46.72 0.58 8.81 5.54 0.00 0.00 17.63 4.29 10.79 97.40 XP14 bille4 verre 9 181 3.35 47.88 0.50 9.26 4.80 0.00 15.51 3.57 13.55 98.42 XP14 bille4 verre 10 182<														
177 2.87 46.93 0.59 9.09 5.45 0.03 0.04 18.04 4.61 10.78 98.42 XP14 bille4 verre 6 178 2.82 46.78 0.60 8.98 5.53 0.01 0.00 17.70 4.19 10.89 97.49 XP14 bille4 verre 7 179 2.85 46.78 0.58 8.92 5.49 0.02 0.00 17.79 4.31 10.65 97.40 XP14 bille4 verre 8 180 3.12 46.72 0.58 8.81 5.54 0.00 0.00 17.63 4.29 10.79 97.40 XP14 bille4 verre 8 181 3.35 47.88 0.50 9.26 4.80 0.00 15.51 3.57 13.55 98.42 XP14 bille4 verre 9 182 4.40 52.32 0.13 12.56 0.11 0.00 0.00 0.82 0.00 28.18 98.51 XP14 bille4 plagio 11 183														
178 2.82 46.78 0.60 8.98 5.53 0.01 0.00 17.70 4.19 10.89 97.49 XP14 bille4 verre 7 179 2.85 46.78 0.58 8.92 5.49 0.02 0.00 17.79 4.31 10.65 97.40 XP14 bille4 verre 8 180 3.12 46.72 0.58 8.81 5.54 0.00 0.00 17.63 4.29 10.79 97.48 XP14 bille4 verre 9 181 3.35 47.88 0.50 9.26 4.80 0.00 0.00 15.51 3.57 13.55 98.42 XP14 bille4 verre 10 182 4.40 52.32 0.13 12.56 0.11 0.00 0.00 0.82 0.00 28.18 98.51 XP14 bille4 plagio 11 183 3.47 50.26 0.07 13.88 0.11 0.02 0.00 0.83 0.00 29.29 97.92 XP14 bille4 plagio 12														
179 2.85 46.78 0.58 8.92 5.49 0.02 0.00 17.79 4.31 10.65 97.40 XP14 bille4 verre 8 180 3.12 46.72 0.58 8.81 5.54 0.00 0.00 17.63 4.29 10.79 97.48 XP14 bille4 verre 9 181 3.35 47.88 0.50 9.26 4.80 0.00 0.00 15.51 3.57 13.55 98.42 XP14 bille4 verre 10 182 4.40 52.32 0.13 12.56 0.11 0.00 0.00 0.82 0.00 28.18 98.51 XP14 bille4 plagio 11 183 3.47 50.26 0.07 13.88 0.11 0.02 0.00 0.83 0.00 29.29 97.92 XP14 bille4 plagio 12 184 3.38 49.28 0.03 13.98 0.11 0.02 0.00 0.69 0.09 29.74 97.29 XP14 bille4 plagio 13 185 4.35 51.99 0.19 12.21 0.29 0.01														
180 3.12 46.72 0.58 8.81 5.54 0.00 0.00 17.63 4.29 10.79 97.48 XP14 bille4 verre 9 181 3.35 47.88 0.50 9.26 4.80 0.00 0.00 15.51 3.57 13.55 98.42 XP14 bille4 verre 10 182 4.40 52.32 0.13 12.56 0.11 0.00 0.00 0.82 0.00 28.18 98.51 XP14 bille4 plagio 11 183 3.47 50.26 0.07 13.88 0.11 0.02 0.00 0.83 0.00 29.29 97.92 XP14 bille4 plagio 12 184 3.38 49.28 0.03 13.98 0.11 0.02 0.00 0.69 0.09 29.74 97.29 XP14 bille4 plagio 13 185 4.35 51.99 0.19 12.21 0.29 0.01 0.10 1.15 0.18 27.74 98.20 XP14 bille4 plagio 14										4.19				
181 3.35 47.88 0.50 9.26 4.80 0.00 0.00 15.51 3.57 13.55 98.42 XP14 bille4 verre 10 182 4.40 52.32 0.13 12.56 0.11 0.00 0.00 0.82 0.00 28.18 98.51 XP14 bille4 plagio 11 183 3.47 50.26 0.07 13.88 0.11 0.02 0.00 0.83 0.00 29.29 97.92 XP14 bille4 plagio 12 184 3.38 49.28 0.03 13.98 0.11 0.02 0.00 0.69 0.09 29.74 97.29 XP14 bille4 plagio 13 185 4.35 51.99 0.19 12.21 0.29 0.01 0.10 1.15 0.18 27.74 98.20 XP14 bille4 plagio 14	179	2.85	46.78	0.58	8.92	5.49	0.02	0.00	17.79	4.31	10.65	97.40	XP14 bille4 verre	8
181 3.35 47.88 0.50 9.26 4.80 0.00 0.00 15.51 3.57 13.55 98.42 XP14 bille4 verre 10 182 4.40 52.32 0.13 12.56 0.11 0.00 0.00 0.82 0.00 28.18 98.51 XP14 bille4 plagio 11 183 3.47 50.26 0.07 13.88 0.11 0.02 0.00 0.83 0.00 29.29 97.92 XP14 bille4 plagio 12 184 3.38 49.28 0.03 13.98 0.11 0.02 0.00 0.69 0.09 29.74 97.29 XP14 bille4 plagio 13 185 4.35 51.99 0.19 12.21 0.29 0.01 0.10 1.15 0.18 27.74 98.20 XP14 bille4 plagio 14	180	3.12	46.72	0.58	8.81	5.54	0.00	0.00	17.63	4.29	10.79	97.48	XP14 bille4 verre	9
182 4.40 52.32 0.13 12.56 0.11 0.00 0.00 0.82 0.00 28.18 98.51 XP14 bille4 plagio 11 183 3.47 50.26 0.07 13.88 0.11 0.02 0.00 0.83 0.00 29.29 97.92 XP14 bille4 plagio 12 184 3.38 49.28 0.03 13.98 0.11 0.02 0.00 0.69 0.09 29.74 97.29 XP14 bille4 plagio 13 185 4.35 51.99 0.19 12.21 0.29 0.01 0.10 1.15 0.18 27.74 98.20 XP14 bille4 plagio 14														
183 3.47 50.26 0.07 13.88 0.11 0.02 0.00 0.83 0.00 29.29 97.92 XP14 bille4 plagio 12 184 3.38 49.28 0.03 13.98 0.11 0.02 0.00 0.69 0.09 29.74 97.29 XP14 bille4 plagio 13 185 4.35 51.99 0.19 12.21 0.29 0.01 0.10 1.15 0.18 27.74 98.20 XP14 bille4 plagio 14														
184 3.38 49.28 0.03 13.98 0.11 0.02 0.00 0.69 0.09 29.74 97.29 XP14 bille4 plagio 13 185 4.35 51.99 0.19 12.21 0.29 0.01 0.10 1.15 0.18 27.74 98.20 XP14 bille4 plagio 14														
185 4.35 51.99 0.19 12.21 0.29 0.01 0.10 1.15 0.18 27.74 98.20 XP14 bille4 plagio 14													1 0	
													1 0	
186 3.00 46.69 0.57 8.91 5.52 0.00 0.00 17.81 3.47 10.63 96.59 XP14 bille4 verre 15														
	186	3.00	46.69	0.57	8.91	5.52	0.00	0.00	17.81	3.47	10.63	96.59	XP14 bille4 verre	15

Annexe 1 Compositions chimiques des phases de XP15 (palier 68 heures)

BILLE 1 T = 1170°C

Point#	Na2O	SiO2	K2O	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
10	3.01	51.41	0.07	14.82	0.13	0.00	0.00	0.89	0.10	30.96	101.38	XP15 bille 1 plagio	1
233	2.54	48.52	0.31	10.51	3.01	0.02	0.03	13.54	6.17	13.63	98.28	XP15 bille 1 verre	2

BILLE 2	2 I = 11:	50°C											
Point#	Na2O	SiO2	K2O	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
234	2.41	47.96	0.35	10.23	3.20	0.00	0.01	14.14	6.67	12.83	97.80	XP15 bille 2 verre	1
235	2.47	47.77	0.31	10.45	3.25	0.00	0.01	13.96	7.48	12.87	98.57	XP15 bille 2 verre	2
236	2.51	48.11	0.35	10.33	3.19	0.01	0.06	14.33	7.73	12.77	99.39	XP15 bille 2 verre	3
237	3.21	50.71	0.07	14.20	0.10	0.01	0.11	0.71	0.16	30.29	99.55	XP15 bille 2 plagio	4
238	2.51	48.05	0.33	10.47	3.24	0.00	0.00	14.31	7.05	12.83	98.79	XP15 bille 2 verre	5
239	2.59	48.23	0.34	10.35	3.18	0.00	0.00	14.81	5.27	12.87	97.63	XP15 bille 2 verre	6
240	2.36	48.35	0.35	10.27	3.22	0.00	0.00	14.62	7.48	12.81	99.45	XP15 bille 2 verre	7
241	2.39	48.27	0.31	10.32	3.27	0.00	0.00	14.18	7.58	12.88	99.19	XP15 bille 2 verre	8
242	2.54	48.26	0.32	10.31	3.21	0.00	0.00	14.31	7.09	12.97	99.01	XP15 bille 2 verre	9
243	2.55	48.25	0.37	10.43	3.16	0.00	0.00	14.32	7.53	12.75	99.35	XP15 bille 2 verre	10

	2.00	.0.20	0.0.	10.10	00	0.00	0.00	11.02	1.00		00.00	7(1 TO DINO E VOITO	10
BILLE 3	3 T = 11	32°C										•	
Point#	Na2O	SiO2	K2O	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
244	2.70	50.17	0.48	10.74	4.18	0.00	0.02	14.78	4.97	11.58	99.61	XP15 bille 3 verre	1
245	0.04	38.34	0.00	0.57	0.13	0.01	0.00	26.20	35.54	0.11	100.93	XP15 bille 3 olivine	2
246	0.00	38.72	0.02	0.33	0.07	0.02	0.00	23.99	37.91	0.07	101.12	XP15 bille 3 olivine	3
247	0.02	38.60	0.02	0.35	0.04	0.00	0.00	23.28	38.23	0.04	100.58	XP15 bille 3 olivine	4
248	0.00	38.65	0.00	0.33	0.08	0.00	0.00	24.28	37.74	0.04	101.12	XP15 bille 3 olivine	5
249	0.00	38.95	0.01	0.32	0.06	0.01	0.00	24.77	37.41	0.00	101.53	XP15 bille 3 olivine	6
250	0.02	39.39	0.00	0.35	0.01	0.00	0.06	25.20	37.25	0.06	102.33	XP15 bille 3 olivine	7
251	0.01	38.80	0.00	0.29	0.06	0.03	0.00	23.36	37.27	0.07	99.88	XP15 bille 3 olivine	8
252	0.00	39.17	0.00	0.31	0.02	0.01	0.03	23.66	38.13	0.08	101.41	XP15 bille 3 olivine	9
253	4.01	53.15	0.10	12.58	0.13	0.01	0.00	1.02	0.12	28.97	100.07	XP15 bille 3 verre	10
254	2.64	49.06	0.41	10.89	4.16	0.02	0.00	15.01	4.84	11.57	98.60	XP15 bille 3 verre	1
255	2.68	49.07	0.44	10.95	4.15	0.01	0.03	14.69	5.25	11.48	98.74	XP15 bille 3 verre	2
256	2.62	49.61	0.44	10.93	4.20	0.00	0.04	15.12	4.83	11.57	99.35	XP15 bille 3 verre	3
257	2.60	49.35	0.42	10.86	4.29	0.00	0.00	15.26	5.29	11.35	99.42	XP15 bille 3 verre	4
258	3.93	53.52	0.13	13.18	0.10	0.01	0.00	1.02	0.00	28.92	100.80	XP15 bille 3 plagio	5
259	3.55	51.81	0.05	14.14	0.08	0.01	0.00	0.74	0.00	30.42	100.81	XP15 bille 3 plagio	6
260	3.33	50.92	0.05	14.27	0.13	0.00	0.03	0.62	0.05	30.32	99.71	XP15 bille 3 plagio	7
261	3.34	49.19	0.11	13.63	0.10	0.01	0.00	0.56	0.00	26.53	93.46	XP15 bille 3 plagio	8
262	2.60	49.42	0.45	10.86	4.22	0.01	0.00	14.61	5.41	11.60	99.18	XP15 bille 3 verre	9
263	2.79	49.26	0.44	10.83	4.26	0.00	0.06	14.63	5.23	11.60	99.09	XP15 bille 3 verre	10
264	2.53	48.97	0.38	11.00	4.24	0.00	0.02	15.13	3.67	11.37	97.32	XP15 bille 3 verre	11
265	2.58	49.32	0.39	10.97	4.27	0.01	0.00	15.04	4.96	11.33	98.87	XP15 bille 3 verre	12

BILLE 4 T = 1110°C

RILLE 4	4 I = 11	110 6											
Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
266	2.54	48.96	0.48	11.41	4.65	0.01	0.00	15.88	4.71	10.19	98.82	XP15 bille 4 verre	1
267	2.33	47.60	0.42	11.32	4.63	0.02	0.00	15.50	4.81	10.25	96.88	XP15 bille 4 verre	2
268	2.52	48.85	0.46	11.36	4.63	0.01	0.00	16.06	3.96	10.30	98.15	XP15 bille 4 verre	3
269	0.00	38.23	0.00	0.35	0.10	0.00	0.04	27.18	34.00	0.06	99.96	XP15 bille 4 olivine	4
270	0.77	41.08	0.17	3.70	1.43	0.01	0.00	24.18	24.34	4.36	100.02	XP15 bille 4 olivine	5
271	0.36	39.84	0.14	2.77	1.04	0.00	0.02	26.14	27.73	2.26	100.29	XP15 bille 4 olivine	6
272	0.04	38.09	0.02	0.40	0.09	0.00	0.00	28.18	33.73	0.03	100.57	XP15 bille 4 olivine	7
273	0.02	37.56	0.01	0.45	0.05	0.02	0.00	28.89	33.51	0.03	100.53	XP15 bille 4 olivine	8
274	2.50	49.30	0.47	11.35	4.59	0.01	0.02	16.11	4.48	10.31	99.15	XP15 bille 4 verre	9
275	2.75	49.22	0.44	11.19	4.61	0.02	0.06	15.88	4.82	10.03	99.01	XP15 bille 4 verre	10
276	2.66	49.21	0.44	11.43	4.65	0.00	0.00	15.93	4.82	10.13	99.26	XP15 bille 4 verre	1
277	2.65	48.87	0.49	11.43	4.65	0.01	0.00	16.10	4.71	10.10	99.01	XP15 bille 4 verre	2
278	2.47	49.15	0.45	11.29	4.59	0.00	0.00	15.74	4.77	10.03	98.50	XP15 bille 4 verre	3
279	2.58	48.45	0.47	11.23	4.65	0.00	0.00	16.15	4.51	10.20	98.23	XP15 bille 4 verre	4
281	4.26	53.32	0.12	12.56	0.08	0.01	0.02	0.66	0.12	28.14	99.30	XP15 bille 4 plagio	6
282	3.93	50.58	0.16	12.89	0.11	0.01	0.00	0.68	0.00	27.81	96.16	XP15 bille 4 plagio	7
283	3.79	51.98	0.13	13.26	0.08	0.03	0.00	0.54	0.00	29.57	99.36	XP15 bille 4 plagio	8
284	3.71	51.72	0.10	13.53	0.09	0.00	0.00	0.53	0.02	29.29	99.01	XP15 bille 4 plagio	9
285	3.75	51.07	0.09	13.85	0.10	0.00	0.04	0.59	0.11	29.71	99.29	XP15 bille 4 plagio	10
286	3.63	51.61	0.06	13.96	0.11	0.00	0.01	0.50	0.06	29.62	99.54	XP15 bille 4 plagio	11
287	3.37	50.79	0.04	14.05	0.09	0.01	0.05	0.43	0.00	29.90	98.73	XP15 bille 4 plagio	12
288	3.41	50.94	0.07	14.32	0.08	0.00	0.05	0.52	0.19	29.66	99.24	XP15 bille 4 plagio	13
289	3.56	50.76	0.06	14.20	0.10	0.00	0.00	0.61	0.20	29.87	99.37	XP15 bille 4 plagio	14
290	3.44	51.41	0.07	14.19	0.09	0.00	0.02	0.54	0.00	30.07	99.84	XP15 bille 4 plagio	15
291	3.60	51.85	0.09	13.76	0.08	0.00	0.00	0.63	0.00	29.53	99.52	XP15 bille 4 plagio	16
292	3.62	52.07	0.09	13.61	0.10	0.01	0.00	0.81	0.20	28.93	99.42	XP15 bille 4 plagio	17
293	4.08	52.14	0.11	13.37	0.11	0.00	0.00	0.80	0.00	28.83	99.44	XP15 bille 4 plagio	18
294	4.39	53.51	0.12	12.67	0.11	0.00	0.08	1.03	0.06	28.76	100.73	XP15 bille 4 plagio	19
295	2.76	49.58	0.46	11.70	4.60	0.01	0.00	15.50	3.94	11.03	99.57	XP15 bille 4 verre	20
296	2.55	49.46	0.51	11.35	4.54	0.00	0.06	15.47	4.74	10.52	99.21	XP15 bille 4 verre	21
297	2.64	49.39	0.47	11.43	4.53	0.00	0.00	15.68	4.63	10.35	99.12	XP15 bille 4 verre	22
298	2.66	49.13	0.43	10.40	4.43	0.01	0.03	16.54	5.76	10.07	99.45	XP15 bille 4 verre	23
299	2.31	46.19	0.46	10.64	4.28	0.01	0.00	14.54	4.31	9.58	92.31	XP15 bille 4 verre	24
300	2.55	49.17	0.45	11.30	4.63	0.00	0.00	15.37	4.75	10.44	98.66	XP15 bille 4 verre	25
301	2.43	49.47	0.48	11.21	4.63	0.00	0.00	15.89	4.73	10.39	99.24	XP15 bille 4 verre	26
302	2.67	49.46	0.43	11.23	4.62	0.00	0.00	15.18	4.68	10.35	98.62	XP15 bille 4 verre	27
303	2.63	48.91	0.48	11.25	4.56	0.00	0.00	15.80	4.74	10.34	98.70	XP15 bille 4 verre	28
304	2.59	49.39	0.50	11.33	4.61	0.02	0.02	15.64	4.56	10.08	98.74	XP15 bille 4 verre	29
305	2.44	49.44	0.48	11.26	4.66	0.00	0.00	15.61	4.93	10.28	99.10	XP15 bille 4 verre	30
			•	•		•				•			

Annexe 1 Compositions chimiques des phases de XP14 (palier 9 heures)

BILLE 1 T = 1170°C

Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
1	3.20	51.32	0.07	14.39	0.11	0.00	0.00	0.71	0.09	30.28	100.16	XP13 bille 1 plagio	1
2	3.28	51.33	0.06	14.49	0.10	0.00	0.00	0.74	0.16	30.42	100.57	XP13 bille 1 plagio	2
3	3.33	51.61	0.07	14.44	0.10	0.00	0.00	0.65	0.05	30.37	100.62	XP13 bille 1 plagio	3
4	3.19	51.26	0.06	14.33	0.11	0.00	0.02	0.49	0.16	30.26	99.87	XP13 bille 1 plagio	4
5	3.37	51.48	0.06	14.17	0.11	0.02	0.00	0.82	0.12	30.20	100.33	XP13 bille 1 plagio	5
6	2.51	49.48	0.36	10.81	3.08	0.00	0.00	12.40	7.24	13.93	99.80	XP13 bille 1 verre	6
7	2.65	49.45	0.35	10.63	3.10	0.01	0.00	12.22	7.16	13.77	99.34	XP13 bille 1 verre	7
8	2.68	49.50	0.37	10.95	3.06	0.01	0.07	12.30	7.05	13.81	99.80	XP13 bille 1 verre	8
10	2.49	49.39	0.38	10.71	3.06	0.01	0.00	12.65	7.01	13.86	99.55	XP13 bille 1 verre	10
11	2.50	49.33	0.35	10.59	3.09	0.00	0.00	12.70	6.55	13.77	98.88	XP13 bille 1 verre	

BILLE 2 T = 1151°C

Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
12	2.60	49.18	0.40	10.90	3.54	0.00	0.00	13.94	6.30	12.66	99.51	XP13 bille 2 verre	1
13	2.72	49.28	0.44	10.80	3.55	0.00	0.00	13.65	6.09	12.50	99.03	XP13 bille 2 verre	2
14	2.68	49.29	0.41	10.85	3.58	0.00	0.00	13.66	5.59	12.48	98.54	XP13 bille 2 verre	3
15	2.55	49.56	0.45	10.64	3.62	0.01	0.11	13.59	6.08	12.57	99.17	XP13 bille 2 verre	4
16	2.68	49.16	0.35	10.71	3.51	0.01	0.01	13.53	5.68	12.67	98.30	XP13 bille 2 verre	5
17	0.00	38.74	0.01	0.35	0.08	0.00	0.00	21.43	39.34	0.07	100.01	XP13 bille 2 olivine	6
18	2.90	50.20	0.44	10.49	3.39	0.00	0.05	13.11	5.35	13.36	99.28	XP13 bille 2 verre	7
19	2.86	50.11	0.46	10.51	3.54	0.00	0.00	12.86	5.40	13.34	99.08	XP13 bille 2 verre	8
20	2.66	49.50	0.42	10.71	3.47	0.00	0.00	12.86	3.69	13.65	96.95	XP13 bille 2 verre	9
21	0.01	38.58	0.00	0.36	0.08	0.01	0.06	22.03	39.38	0.05	100.55	XP13 bille 2 olivine	10
22	2.52	48.39	0.37	10.95	3.36	0.00	0.00	13.96	6.33	12.76	98.64	XP13 bille 2 verre	
23	2.43	48.72	0.36	10.76	3.34	0.00	0.04	13.90	6.66	12.53	98.74	XP13 bille 2 verre	1
24	2.50	48.79	0.40	10.67	3.37	0.01	0.00	14.58	6.73	12.71	99.76	XP13 bille 2 verre	2
25	2.57	48.25	0.36	11.04	3.41	0.00	0.06	14.11	4.72	12.55	97.08	XP13 bille 2 verre	3
26	2.64	48.36	0.36	10.81	3.39	0.00	0.00	13.91	6.59	12.79	98.84	XP13 bille 2 verre	4
27	2.33	48.69	0.39	10.78	3.39	0.02	0.00	13.68	6.59	12.62	98.49	XP13 bille 2 verre	5
28	2.31	48.84	0.32	10.83	3.44	0.00	0.01	13.98	6.72	12.68	99.14	XP13 bille 2 verre	6
29	3.40	50.98	0.13	12.96	1.18	0.00	0.00	3.81	1.64	24.14	98.23	XP13 bille 2 plagio	7
30	3.59	51.38	0.09	13.67	0.12	0.01	0.00	0.75	0.00	29.77	99.37	XP13 bille 2 plagio	8
31	2.40	48.49	0.36	11.02	3.46	0.00	0.00	14.35	4.97	12.30	97.36	XP13 bille 2 verre	9
32	2.43	48.50	0.36	10.83	3.35	0.00	0.02	13.85	5.86	12.43	97.63	XP13 bille 2 verre	10
33	2.43	48.50	0.35	10.84	3.42	0.03	0.00	13.62	6.73	12.32	98.24	XP13 bille 2 verre	11
34	3.39	51.67	0.11	13.88	0.16	0.00	0.00	1.08	0.24	29.15	99.66	XP13 bille 2 plagio	12

BILLE 3 T = 1131°C MnO Na₂O K20 CaO TiO2 Cr2O3 FeO MgO AI2O3 Total Comment Profil 35 2.56 49.08 0.42 10.98 3.98 0.00 0.07 14.11 4.69 11.40 97.29 XP13 bille 3 verre 2.49 49.22 0.40 10.87 4.11 14.57 5.23 11.48 98.37 XP13 bille 3 verre 2.61 48.90 0.44 10.90 4.09 0.00 0.03 14.45 5.13 11.35 97.90 XP13 bille 3 verre 3 38 2.65 49.05 0.47 10.74 4.09 0.00 0.00 14.40 5.48 11.57 98.43 XP13 bille 3 verre 11.02 3.93 0.00 0.00 14.51 97.89 XP13 bille 3 verre 5 39 2.68 49.19 0.43 4.62 11.51 0.08 40 2.57 48.66 0.38 10.85 4.02 0.00 14.32 5.18 11.59 97.65 XP13 bille 3 verre 6 0.40 10.87 4.02 0.01 0.05 11.58 XP13 bille 3 verre 7 41 2 59 49 14 14.03 4.00 96 69 42 2.53 48.78 0.46 10.79 3.93 0.00 0.00 14.02 4.89 11.60 97.00 XP13 bille 3 verre 8 43 0.01 37.78 0.00 0.34 0.08 0.01 0.01 24.74 36.60 0.04 99.62 XP13 bille 3 olivine 9 44 0.01 37.66 0.01 0.34 0.03 0.00 0.01 23.35 36.86 0.00 98.27 XP13 bille 3 olivine 10 45 37.55 0.32 0.04 0.00 23.38 38.73 100.06 XP13 bille 3 olivine 0.02 0.01 0.00 0.02 11 46 0.05 38.22 0.00 0.37 0.08 0.00 0.04 22.97 38.65 0.09 100.47 XP13 bille 3 olivine 12 47 50.12 0.56 10.81 4.17 0.00 0.06 13.30 4.49 11.54 97.69 XP13 bille 3 verre 13 2.64 48 5.20 XP13 bille 3 verre 49.97 0.50 10.52 4.10 0.00 0.02 13.08 97.93 14 2.77 11.77 49 48.43 0.53 10.47 4.16 0.00 12.86 97.76 XP13 bille 3 verre 15 2.52 0.01 13.71 5.08 50 9.86 2.67 48.93 0.54 4.25 0.00 0.00 14.05 5.42 10.66 96.37 XP13 bille 3 verre 16 51 0.04 37.04 0.03 0.36 0.06 0.01 0.00 23.44 40.30 0.06 101.32 XP13 bille 3 olivine 17 52 0.00 40.39 0.00 0.39 0.04 0.01 0.02 23.58 34.47 0.00 98.91 XP13 bille 3 olivine 18 53 0.00 31.84 0.00 0.45 0.05 0.02 0.00 23.77 33.77 0.10 89.99 XP13 bille 3 olivine 19 XP13 bille 3 plagio 54 3.99 51.99 0.10 13.05 0.10 0.00 0.04 0.78 0.00 28.69 98.74 20 55 2.53 48.15 0.44 10.93 4.14 0.00 0.07 14.06 5.26 11.33 96.90 XP13 bille 3 verre 56 2.56 48.55 0.41 11.15 4.05 0.02 0.02 14.14 5.40 11.20 97.48 XP13 bille 3 verre XP13 bille 3 plagio 57 3 45 51.37 0.0913.83 0.11 0.00 0.00 0.59 0.00 29 75 99 19 2 3 58 3.12 50.14 0.04 14.64 0.08 0.00 0.00 0.62 0.00 29.93 98.57 XP13 bille 3 plagio 4 59 3.40 50.42 0.12 14.20 0.10 0.02 0.00 0.62 0.16 29.62 98.66 XP13 bille 3 plagio 60 3.99 52.49 0.12 13.04 0.15 0.00 0.00 1.02 0.00 28.06 98.87 XP13 bille 3 plagio 5 2.51 48.87 0.44 11.06 4.17 0.01 0.02 14.82 3.97 11.15 97.01 XP13 bille 3 verre 6 2.51 48.84 0.40 11.03 4.06 0.00 0.00 14.39 5.06 97.35 XP13 bille 3 verre 62 11.06 2.37 48.40 0.45 11.06 4.06 0.01 0.17 14.32 5.52 11.41 97.75 XP13 bille 3 verre 8 63 64 2.43 48.65 0.41 11.14 4.10 0.00 0.00 14.42 5.02 11.44 97.60 XP13 bille 3 verre 9 2.50 48.65 10.87 0.00 14.56 XP13 bille 3 verre 10 0.42 4.08 0.01 4.75 11.42 97.27

BILLE 4 T = 1110°C

BILLE 4	4 1 = 11	1100											
Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
66	3.26	49.89	0.08	14.37	0.09	0.00	0.00	0.69	0.00	30.07	98.45	XP13 bille 4 plagio	1
67	3.50	51.26	0.08	13.84	0.06	0.00	0.00	0.80	0.13	29.22	98.91	XP13 bille 4 plagio	2
68	4.11	52.01	0.13	12.55	0.12	0.01	0.08	0.90	0.02	27.82	97.76	XP13 bille 4 plagio	3
69	0.09	38.09	0.03	0.89	0.23	0.00	0.00	26.99	33.78	0.70	100.80	XP13 bille 4 olivine	4
70	2.42	49.98	0.53	11.06	4.65	0.00	0.00	14.49	4.41	10.50	98.03	XP13 bille 4 verre	5
71	0.00	38.34	0.00	0.36	0.03	0.02	0.01	23.27	38.17	0.03	100.22	XP13 bille 4 olivine	6
72	0.06	38.48	0.00	0.36	0.02	0.02	0.00	23.52	38.42	0.10	100.97	XP13 bille 4 olivine	7
73	0.01	38.66	0.01	0.34	0.03	0.00	0.00	25.20	36.76	0.01	101.02	XP13 bille 4 olivine	8
74	0.00	37.92	0.01	0.37	0.06	0.01	0.00	27.17	35.34	0.05	100.92	XP13 bille 4 olivine	9
75	4.03	52.66	0.10	12.74	0.15	0.00	0.00	1.04	0.29	28.29	99.30	XP13 bille 4 plagio	10
76	3.73	52.15	0.10	13.54	0.14	0.00	0.04	0.91	0.00	29.21	99.81	XP13 bille 4 plagio	11
77	3.53	51.01	0.09	13.71	0.11	0.00	0.00	0.80	0.10	29.25	98.59	XP13 bille 4 plagio	12
78	3.66	51.57	0.09	13.60	0.10	0.01	0.00	0.74	0.13	29.07	98.95	XP13 bille 4 plagio	1
79	4.00	53.14	0.10	12.75	0.11	0.01	0.00	0.86	0.06	28.26	99.28	XP13 bille 4 plagio	2
80	2.44	49.08	0.45	11.25	4.58	0.00	0.00	14.97	5.00	10.25	98.01	XP13 bille 4 verre	3
81	2.40	48.62	0.43	11.40	4.64	0.02	0.00	15.08	4.82	10.35	97.74	XP13 bille 4 verre	4
82	2.44	48.59	0.48	11.33	4.68	0.00	0.00	15.28	4.90	10.52	98.21	XP13 bille 4 verre	5
83	2.64	49.00	0.48	11.27	4.68	0.00	0.00	15.56	2.99	10.03	96.65	XP13 bille 4 verre	6
84	2.32	45.74	0.43	10.42	4.26	0.01	0.00	14.50	4.45	9.56	91.70	XP13 bille 4 verre	7
85	2.22	46.93	0.46	11.03	4.46	0.00	0.00	14.83	4.91	10.46	95.29	XP13 bille 4 verre	8
86	2.44	49.35	0.48	11.08	4.69	0.01	0.00	14.83	4.86	10.28	98.02	XP13 bille 4 verre	9
87	2.57	49.40	0.45	11.10	4.72	0.00	0.00	15.41	4.69	10.21	98.54	XP13 bille 4 verre	10
89	2.66	50.25	0.49	11.05	4.59	0.00	0.00	14.92	4.72	10.38	99.04	XP13 bille 4 verre	1
90	2.54	49.21	0.52	11.15	4.62	0.00	0.00	14.54	4.55	10.54	97.67	XP13 bille 4 verre	2
91	4.26	54.10	0.14	12.36	0.16	0.00	0.00	0.93	0.11	27.78	99.84	XP13 bille 4 plagio	3
92	3.60	51.82	0.13	13.50	0.08	0.00	0.03	0.64	0.15	29.68	99.63	XP13 bille 4 plagio	4
93	3.55	52.01	0.10	13.50	0.09	0.00	0.00	0.70	0.29	29.41	99.64	XP13 bille 4 plagio	5
94	3.72	52.09	0.11	13.72	0.12	0.01	0.06	0.61	0.19	29.48	100.10	XP13 bille 4 plagio	6
95	3.40	51.19	0.06	13.88	0.09	0.00	0.00	0.64	0.12	29.52	98.91	XP13 bille 4 plagio	7
96	3.14	49.92	0.04	14.77	0.09	0.01	0.01	0.73	0.12	30.36	99.18	XP13 bille 4 plagio	8
97	3.86	52.67	0.09	13.48	0.09	0.02	0.03	0.75	0.12	29.24	100.35	XP13 bille 4 plagio	9
98	4.33	53.04	0.15	12.67	0.13	0.02	0.01	0.89	0.13	28.39	99.76	XP13 bille 4 plagio	10
99	2.46	49.45	0.45	11.45	4.61	0.01	0.00	14.78	4.99	10.51	98.71	XP13 bille 4 verre	11
100	2.37	49.63	0.48	11.16	4.67	0.00	0.00	14.72	5.30	10.45	98.78	XP13 bille 4 verre	12

Annexe 1 Compositions chimiques des phases de XP01 (v = 0,2°C/h) BILLE 1 T = 1139°C

18 2.88 48.62 0.61 10.81 3.99 0.01 0.00 13.90 6.06 12.21 19 2.50 48.94 0.42 10.95 3.84 0.04 0.00 13.99 5.91 12.06 12.21 19 2.50 48.94 0.42 10.95 3.84 0.01 0.06 14.26 6.05 12.28 12.28 12 2.60 49.09 0.35 10.87 3.91 0.02 0.00 14.01 5.81 12.19 12 22 2.48 48.70 0.38 10.99 3.87 0.02 0.05 13.49 5.86 12.27 12 23 2.71 48.06 0.37 10.97 3.90 0.06 0.12 14.29 5.66 12.32 12 24 2.88 48.78 0.43 11.13 3.97 0.02 0.00 13.85 5.88 12.25 12.85 49.91 0.42 10.77 3.82 0.04 0.00 13.40 5.83 12.06 </th <th> Section</th> <th>Profil 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3</th>	Section	Profil 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3
19 2.50 48.94 0.42 10.95 3.84 0.04 0.00 13.99 5.91 12.06 9 20 2.77 48.69 0.37 10.59 3.84 0.01 0.06 14.26 6.05 12.28 9 21 2.60 49.09 0.35 10.87 3.91 0.02 0.00 14.01 5.81 12.19 9 22 2.48 48.70 0.38 10.99 3.87 0.02 0.05 13.49 5.86 12.27 9 23 2.71 48.06 0.37 10.97 3.90 0.06 0.12 14.29 5.66 12.32 9 24 2.88 48.78 0.43 11.13 3.97 0.02 0.00 13.85 5.88 12.25 9 25 2.85 49.19 0.42 10.77 3.82 0.04 0.00 14.40 5.83 12.06 9 26 2.81 48.70 0.42 10.82 3.76 0.00 0.00 13.58 5.88 12.03 <th>98.66 XP01 bille 1 verre 98.92 XP01 bille 1 verre 98.85 XP01 bille 1 verre 98.11 XP01 bille 1 verre 98.46 XP01 bille 1 verre 99.19 XP01 bille 1 verre 99.39 XP01 bille 1 verre 98.76 XP01 bille 1 verre 98.76 XP01 bille 1 verre 98.06 XP01 bille 1 verre 97.79 XP01 bille 1 verre 97.79 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.90 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 97.70 XP01 bille 1 verre</th> <th>2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3</th>	98.66 XP01 bille 1 verre 98.92 XP01 bille 1 verre 98.85 XP01 bille 1 verre 98.11 XP01 bille 1 verre 98.46 XP01 bille 1 verre 99.19 XP01 bille 1 verre 99.39 XP01 bille 1 verre 98.76 XP01 bille 1 verre 98.76 XP01 bille 1 verre 98.06 XP01 bille 1 verre 97.79 XP01 bille 1 verre 97.79 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.90 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 97.70 XP01 bille 1 verre	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3
20 2.77 48.69 0.37 10.59 3.84 0.01 0.06 14.26 6.05 12.28 9 21 2.60 49.09 0.35 10.87 3.91 0.02 0.00 14.01 5.81 12.19 9 22 2.48 48.70 0.38 10.99 3.87 0.02 0.05 13.49 5.86 12.27 9 23 2.71 48.06 0.37 10.97 3.90 0.06 0.12 14.29 5.66 12.32 9 24 2.88 48.78 0.43 11.13 3.97 0.02 0.00 13.85 5.88 12.25 25 2.85 49.19 0.42 10.77 3.82 0.04 0.00 14.40 5.83 12.06 9 2.81 48.70 0.42 10.82 3.76 0.00 0.00 13.58 5.77 12.24 2.52 2.52 48.98 0.34 10.82 3.89 0.00 0.00 <td>98.92 XP01 bille 1 verre 98.85 XP01 bille 1 verre 98.11 XP01 bille 1 verre 98.46 XP01 bille 1 verre 99.19 XP01 bille 1 verre 99.39 XP01 bille 1 verre 98.10 XP01 bille 1 verre 98.76 XP01 bille 1 verre 98.06 XP01 bille 1 verre 97.79 XP01 bille 1 verre 98.15 XP01 bille 1 verre 98.16 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.99 XP01 bille 1 Plagio 97.70 XP01 bille 1 verre</td> <td>3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3</td>	98.92 XP01 bille 1 verre 98.85 XP01 bille 1 verre 98.11 XP01 bille 1 verre 98.46 XP01 bille 1 verre 99.19 XP01 bille 1 verre 99.39 XP01 bille 1 verre 98.10 XP01 bille 1 verre 98.76 XP01 bille 1 verre 98.06 XP01 bille 1 verre 97.79 XP01 bille 1 verre 98.15 XP01 bille 1 verre 98.16 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.99 XP01 bille 1 Plagio 97.70 XP01 bille 1 verre	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3
21 2.60 49.09 0.35 10.87 3.91 0.02 0.00 14.01 5.81 12.19 22 22 2.48 48.70 0.38 10.99 3.87 0.02 0.05 13.49 5.86 12.27 23 23 2.71 48.06 0.37 10.97 3.90 0.06 0.12 14.29 5.66 12.32 2 24 2.88 48.78 0.43 11.13 3.97 0.02 0.00 13.85 5.88 12.25 2 25 2.85 49.19 0.42 10.77 3.82 0.04 0.00 14.40 5.83 12.05 2 2 2.81 48.70 0.42 10.77 3.82 0.04 0.00 14.40 5.83 12.05 2 2 2.81 48.70 0.42 10.82 3.89 0.00 0.00 13.58 5.77 12.24 2 2.52 48.98 0.34 10.82 3.89	98.85 XP01 bille 1 verre 98.11 XP01 bille 1 verre 98.46 XP01 bille 1 verre 99.19 XP01 bille 1 verre 99.39 XP01 bille 1 verre 98.76 XP01 bille 1 verre 98.76 XP01 bille 1 verre 98.76 XP01 bille 1 verre 98.06 XP01 bille 1 verre 97.79 XP01 bille 1 verre 98.15 XP01 bille 1 verre 97.86 XP01 bille 1 verre 97.86 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 verre 97.14 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3
22 2.48 48.70 0.38 10.99 3.87 0.02 0.05 13.49 5.86 12.27 23 23 2.71 48.06 0.37 10.97 3.90 0.06 0.12 14.29 5.66 12.32 24 24 2.88 48.78 0.43 11.13 3.97 0.02 0.00 13.85 5.88 12.25 2 25 2.85 49.19 0.42 10.77 3.82 0.04 0.00 14.40 5.83 12.06 2 26 2.81 48.70 0.42 10.82 3.76 0.00 0.00 13.58 5.77 12.24 27 2.52 48.98 0.34 10.82 3.89 0.00 0.00 14.28 5.88 12.03 2 28 2.57 48.33 0.42 10.79 3.80 0.00 0.00 14.16 6.05 11.94 2 29 2.43 48.56 0	98.11 XP01 bille 1 verre 98.46 XP01 bille 1 verre 99.19 XP01 bille 1 verre 99.39 XP01 bille 1 verre 98.76 XP01 bille 1 verre 98.76 XP01 bille 1 verre 98.76 XP01 bille 1 verre 97.79 XP01 bille 1 verre 97.815 XP01 bille 1 verre 97.82 XP01 bille 1 verre 97.83 XP01 bille 1 verre 97.84 XP01 bille 1 verre 97.86 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 verre 97.14 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3
23 2.71 48.06 0.37 10.97 3.90 0.06 0.12 14.29 5.66 12.32 24 24 2.88 48.78 0.43 11.13 3.97 0.02 0.00 13.85 5.88 12.25 25 25 2.85 49.19 0.42 10.77 3.82 0.04 0.00 14.40 5.83 12.06 9 26 2.81 48.70 0.42 10.82 3.76 0.00 0.00 13.58 5.77 12.24 27 2.52 48.98 0.34 10.82 3.76 0.00 0.00 14.28 5.88 12.03 9 28 2.57 48.93 0.34 10.82 3.89 0.00 0.00 14.16 6.05 11.94 9 29 2.43 48.56 0.35 10.46 4.06 0.04 0.00 13.83 5.94 12.13 9 30 2.64 48.51 0	98.46 XP01 bille 1 verre 99.19 XP01 bille 1 verre 99.39 XP01 bille 1 verre 98.10 XP01 bille 1 verre 98.76 XP01 bille 1 verre 98.06 XP01 bille 1 verre 97.79 XP01 bille 1 verre 98.15 XP01 bille 1 verre 98.46 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.86 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3
24 2.88 48.78 0.43 11.13 3.97 0.02 0.00 13.85 5.88 12.25 2.52 2.85 49.19 0.42 10.77 3.82 0.04 0.00 14.40 5.83 12.06 2.81 48.70 0.42 10.82 3.76 0.00 0.00 13.58 5.77 12.24 2.25 2.52 48.98 0.34 10.82 3.89 0.00 0.00 14.28 5.88 12.03 2.8 2.57 48.33 0.42 10.79 3.80 0.00 0.00 14.16 6.05 11.94 9.2 2.43 48.56 0.35 10.46 4.06 0.04 0.00 13.83 5.94 12.13 3.0 2.64 48.51 0.40 10.88 3.91 0.02 0.03 13.82 5.88 12.07 3.3 3.25 48.55 0.39 10.96 3.87 0.02 0.00 13.96 5.87 12.25 3.2 2.50 48.16 0.45	99.19 XP01 bille 1 verre 99.39 XP01 bille 1 verre 98.10 XP01 bille 1 verre 98.76 XP01 bille 1 verre 98.06 XP01 bille 1 verre 97.79 XP01 bille 1 verre 98.15 XP01 bille 1 verre 98.46 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.86 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 verre 97.14 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	7 8 9 10 11 12 13 14 15 16 17 18 1 2 3
25 2.85 49.19 0.42 10.77 3.82 0.04 0.00 14.40 5.83 12.06 9 26 2.81 48.70 0.42 10.82 3.76 0.00 0.00 13.58 5.77 12.24 9 27 2.52 48.98 0.34 10.82 3.89 0.00 0.00 14.28 5.88 12.03 9 28 2.57 48.33 0.42 10.79 3.80 0.00 0.00 14.16 6.05 11.94 9 29 2.43 48.56 0.35 10.46 4.06 0.04 0.00 13.83 5.94 12.13 9 30 2.64 48.51 0.40 10.88 3.91 0.02 0.03 13.82 5.88 12.07 31 2.59 48.55 0.39 10.96 3.87 0.02 0.00 13.86 5.87 12.25 32 2.50 48.16 0.45 10.92	99.39 XP01 bille 1 verre 98.10 XP01 bille 1 verre 98.76 XP01 bille 1 verre 98.06 XP01 bille 1 verre 97.79 XP01 bille 1 verre 98.15 XP01 bille 1 verre 98.46 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.86 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	8 9 10 11 12 13 14 15 16 17 18 1
26 2.81 48.70 0.42 10.82 3.76 0.00 0.00 13.58 5.77 12.24 9 27 2.52 48.98 0.34 10.82 3.89 0.00 0.00 14.28 5.88 12.03 9 28 2.57 48.33 0.42 10.79 3.80 0.00 0.00 14.16 6.05 11.94 9 29 2.43 48.56 0.35 10.46 4.06 0.04 0.00 13.83 5.94 12.13 9 30 2.64 48.51 0.40 10.88 3.91 0.02 0.03 13.82 5.88 12.07 9 31 2.59 48.55 0.39 10.96 3.87 0.02 0.00 13.96 5.87 12.25 32 2.50 48.16 0.45 10.92 3.98 0.07 0.00 13.80 5.81 11.99 9 33 2.38 48.24 0.4	98.10 XP01 bille 1 verre 98.76 XP01 bille 1 verre 98.06 XP01 bille 1 verre 97.79 XP01 bille 1 verre 98.15 XP01 bille 1 verre 98.46 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.86 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 verre 97.14 XP01 bille 1 verre 98.02 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	9 10 11 12 13 14 15 16 17 18 1
27 2.52 48.98 0.34 10.82 3.89 0.00 0.00 14.28 5.88 12.03 9 28 2.57 48.33 0.42 10.79 3.80 0.00 0.00 14.16 6.05 11.94 9 29 2.43 48.56 0.35 10.46 4.06 0.04 0.00 13.83 5.94 12.13 9 30 2.64 48.51 0.40 10.88 3.91 0.02 0.03 13.82 5.88 12.07 9 31 2.59 48.55 0.39 10.96 3.87 0.02 0.00 13.96 5.87 12.25 9 32 2.50 48.16 0.45 10.92 3.98 0.07 0.00 13.80 5.81 11.99 33 2.38 48.24 0.41 10.96 3.81 0.02 0.04 14.10 5.84 12.08 9 34 2.68 47.98 0.4	98.76 XP01 bille 1 verre 98.06 XP01 bille 1 verre 97.79 XP01 bille 1 verre 98.15 XP01 bille 1 verre 98.46 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.86 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.91 XP01 bille 1 verre 97.14 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	10 11 12 13 14 15 16 17 18 1 2
28 2.57 48.33 0.42 10.79 3.80 0.00 0.00 14.16 6.05 11.94 29 2.43 48.56 0.35 10.46 4.06 0.04 0.00 13.83 5.94 12.13 9 30 2.64 48.51 0.40 10.88 3.91 0.02 0.03 13.82 5.88 12.07 9 31 2.59 48.55 0.39 10.96 3.87 0.02 0.00 13.96 5.87 12.25 9 32 2.50 48.16 0.45 10.92 3.98 0.07 0.00 13.80 5.81 11.99 33 2.38 48.24 0.41 10.96 3.81 0.02 0.04 14.10 5.84 12.08 34 2.68 47.98 0.40 10.99 3.91 0.01 0.00 14.04 5.95 12.03 9 35 2.55 48.15 0.41 10.86 3.99 0.00 0.02 13.31 6.03 11.82 9 37 3.29 49.58 0.10 14.47 0.08 0.00 0.00 0.06 0.20 29.64	98.06 XP01 bille 1 verre 97.79 XP01 bille 1 verre 98.15 XP01 bille 1 verre 98.46 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.86 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 verre 98.02 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	11 12 13 14 15 16 17 18 1 2
29 2.43 48.56 0.35 10.46 4.06 0.04 0.00 13.83 5.94 12.13 9 30 2.64 48.51 0.40 10.88 3.91 0.02 0.03 13.82 5.88 12.07 9 31 2.59 48.55 0.39 10.96 3.87 0.02 0.00 13.96 5.87 12.25 9 32 2.50 48.16 0.45 10.92 3.98 0.07 0.00 13.80 5.81 11.99 9 33 2.38 48.24 0.41 10.96 3.81 0.02 0.04 14.10 5.84 12.08 34 2.68 47.98 0.40 10.99 3.91 0.01 0.00 14.04 5.95 12.03 35 2.55 48.15 0.41 10.86 3.99 0.00 0.02 13.31 6.03 11.82 37 3.29 49.58 0.10 14.47 0.08 0.00 0.00 0.06 0.20 29.64	97.79 XP01 bille 1 verre 98.15 XP01 bille 1 verre 98.46 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.86 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 verre 98.02 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	12 13 14 15 16 17 18 1 2 3
30 2.64 48.51 0.40 10.88 3.91 0.02 0.03 13.82 5.88 12.07 9 31 2.59 48.55 0.39 10.96 3.87 0.02 0.00 13.96 5.87 12.25 9 32 2.50 48.16 0.45 10.92 3.98 0.07 0.00 13.80 5.81 11.99 9 33 2.38 48.24 0.41 10.96 3.81 0.02 0.04 14.10 5.84 12.08 9 34 2.68 47.98 0.40 10.99 3.91 0.01 0.00 14.04 5.95 12.03 9 35 2.55 48.15 0.41 10.86 3.99 0.00 0.02 13.31 6.03 11.82 37 3.29 49.58 0.10 14.47 0.08 0.00 0.00 0.00 0.66 0.20 29.64	98.15 XP01 bille 1 verre 98.46 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.86 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 verre 98.02 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	13 14 15 16 17 18 1 2 3
31 2.59 48.55 0.39 10.96 3.87 0.02 0.00 13.96 5.87 12.25 9 32 2.50 48.16 0.45 10.92 3.98 0.07 0.00 13.80 5.81 11.99 9 33 2.38 48.24 0.41 10.96 3.81 0.02 0.04 14.10 5.84 12.08 9 34 2.68 47.98 0.40 10.99 3.91 0.01 0.00 14.04 5.95 12.03 9 35 2.55 48.15 0.41 10.86 3.99 0.00 0.02 13.31 6.03 11.82 9 37 3.29 49.58 0.10 14.47 0.08 0.00 0.00 0.66 0.20 29.64	98.46 XP01 bille 1 verre 97.68 XP01 bille 1 verre 97.86 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 verre 98.02 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	14 15 16 17 18 1 2
32 2.50 48.16 0.45 10.92 3.98 0.07 0.00 13.80 5.81 11.99 9 33 2.38 48.24 0.41 10.96 3.81 0.02 0.04 14.10 5.84 12.08 9 34 2.68 47.98 0.40 10.99 3.91 0.01 0.00 14.04 5.95 12.03 9 35 2.55 48.15 0.41 10.86 3.99 0.00 0.02 13.31 6.03 11.82 9 37 3.29 49.58 0.10 14.47 0.08 0.00 0.00 0.66 0.20 29.64	97.68 XP01 bille 1 verre 97.86 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 verre 98.02 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	15 16 17 18 1 2
33 2.38 48.24 0.41 10.96 3.81 0.02 0.04 14.10 5.84 12.08 9 34 2.68 47.98 0.40 10.99 3.91 0.01 0.00 14.04 5.95 12.03 9 35 2.55 48.15 0.41 10.86 3.99 0.00 0.02 13.31 6.03 11.82 9 37 3.29 49.58 0.10 14.47 0.08 0.00 0.00 0.66 0.20 29.64	97.86 XP01 bille 1 verre 97.99 XP01 bille 1 verre 97.14 XP01 bille 1 verre 98.02 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	16 17 18 1 2 3
35 2.55 48.15 0.41 10.86 3.99 0.00 0.02 13.31 6.03 11.82 9 37 3.29 49.58 0.10 14.47 0.08 0.00 0.00 0.66 0.20 29.64	97.14 XP01 bille 1 verre 98.02 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	18 1 2 3
37 3.29 49.58 0.10 14.47 0.08 0.00 0.00 0.66 0.20 29.64	98.02 XP01 bille 1 Plagio 97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	1 2 3
	97.84 XP01 bille 1 Plagio 97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	2
38 3.31 49.73 0.06 14.32 0.08 0.00 0.00 0.57 0.17 29.60	97.70 XP01 bille 1 Plagio 98.07 XP01 bille 1 verre	3
	98.07 XP01 bille 1 verre	
39 3.38 50.01 0.06 14.17 0.02 0.00 0.00 0.59 0.18 29.28		
	97.44 XP01 bille 1 verre	1
		2
	97.69 XP01 bille 1 verre	3
	98.78 XP01 bille 1 verre	4
	98.99 XP01 bille 1 verre	5
	98.58 XP01 bille 1 verre	6
	98.28 XP01 bille 1 verre	7
	98.74 XP01 bille 1 verre	8
	99.14 XP01 bille 1 verre	9
	98.02 XP01 bille 1 verre 97.69 XP01 bille 1 verre	10
	97.69 XP01 bille 1 verre 97.83 XP01 bille 1 verre	11 12
	98.38 XP01 bille 1 verre	13
	98.00 XP01 bille 1 verre	14
	98.04 XP01 bille 1 verre	15
	97.81 XP01 bille 1 verre	16
	98.61 XP01 bille 1 verre	17
	98.68 XP01 bille 1 verre	1
	98.10 XP01 bille 1 verre	2
	97.53 XP01 bille 1 verre	3
72 2.78 48.50 0.45 10.80 3.82 0.00 0.00 13.57 5.84 11.91	97.68 XP01 bille 1 verre	4
73 2.62 48.66 0.37 10.89 4.04 0.05 0.02 14.34 5.74 12.15	98.89 XP01 bille 1 verre	5
74 2.67 48.82 0.46 10.93 3.96 0.01 0.00 14.16 5.82 11.85	98.67 XP01 bille 1 verre	6
75 2.45 49.46 0.33 10.99 4.02 0.00 0.00 14.02 5.73 11.92	98.92 XP01 bille 1 verre	7
	98.12 XP01 bille 1 Olivine	1
	101.92 XP01 bille 1 Olivine	2
	100.91 XP01 bille 1 Olivine	3
	100.56 XP01 bille 1 Olivine	4
	97.64 XP01 bille 1 Plagio	1
	98.46 XP01 bille 1 Plagio	2
	98.23 XP01 bille 1 Plagio	3
	99.98 XP01 bille 1 Olivine 100.07 XP01 bille 1 Olivine	1
	100.07 XP01 bille 1 Olivine 100.73 XP01 bille 1 Olivine	2
	100.66 XP01 bille 1 Olivine	3 4
	100.40 XP01 bille 1 Olivine	5
	98.88 XP01 bille 1 verre	ວ 1
	97.97 XP01 bille 1 verre	2
	97.74 XP01 bille 1 verre	3
	97.15 XP01 bille 1 verre	4
	97.33 XP01 bille 1 verre	5
	97.20 XP01 bille 1 verre	6
	98.96 XP01 bille 1 verre	8
	97.57 XP01 bille 1 verre	9
	98.03 XP01 bille 1 verre	10
	97.50 XP01 bille 1 Plagio	1
	98.37 XP01 bille 1 Plagio	1
104 3.17 50.30 0.08 14.61 0.06 0.00 0.00 0.87 0.19 29.19	98.47 XP01 bille 1 Plagio	1
	98.53 XP01 bille 1 verre	2
	98.31 XP01 bille 1 verre	3
	97.30 XP01 bille 1 verre	4
108 2.69 48.77 0.42 11.01 3.79 0.02 0.04 14.08 6.13 11.84	98.78 XP01 bille 1 verre	5

BILLE 2 T = 1129°C

134 135 136 137	2.70 2.57 2.60 2.67	47.02 47.28 47.85	0.88 0.35	10.85	3.90	0.03	0.00	4404		44.04	07.40	\/D041!!! 0	
136 137	2.60 2.67		0.35			0.03	0.00	14.91	5.57	11.31	97.16	XP01 bille 2 verre	1
137	2.67	47.85		10.84	4.04	0.00	0.08	15.72	5.80	11.26	97.96	XP01 bille 2 verre	2
			0.37	10.85	4.16	0.02	0.00	15.14	5.66	11.37	98.02	XP01 bille 2 verre	3
		47.94	0.43	11.06	3.94	0.00	0.04	15.06	5.59	11.32	98.04	XP01 bille 2 verre	4
138	3.87	50.73	0.14	13.55	0.08	0.05	0.00	0.77	0.26	28.40	97.85	XP01 bille 2 Plagio	1
139	3.47	50.30	0.13	13.95	0.08	0.04	0.00	0.67	0.21	29.03	97.88	XP01 bille 2 Plagio	2
140	3.30	49.92	0.09	14.50	0.14	0.00	0.00	0.52	0.20	28.82	97.48	XP01 bille 2 Plagio	3
141	3.16	48.79	0.08	14.77	0.07	0.00	0.13	0.58	0.25	29.40	97.25	XP01 bille 2 Plagio	4
142	2.97	49.80	0.08	14.48	0.04	0.00	0.02	0.62	0.18	29.46	97.65	XP01 bille 2 Plagio	5
143	3.14	49.44	0.10	14.73	0.12	0.00	0.00	0.66	0.22	29.45	97.86	XP01 bille 2 Plagio	6
144	3.30	49.59	0.11	14.64	0.03	0.00	0.11	0.75	0.20	29.48	98.21	XP01 bille 2 Plagio	7
145	3.49	49.50	0.73	14.14	0.12	0.00	0.02	0.69	0.21	28.93	97.83	XP01 bille 2 Plagio	8
146	3.91	50.28	0.16	13.92	0.08	0.02	0.08	0.61	0.19	29.35	98.60	XP01 bille 2 Plagio	9
147	2.83	48.52	0.30	11.11	4.08	0.00	0.07	15.16	5.83	11.62	99.52	XP01 bille 2 verre	1
148	2.76	48.46	0.41	11.14	3.97	0.00	0.00	15.01	5.85	11.49	99.09	XP01 bille 2 verre	2
149	2.77	48.33	0.76	10.82	4.00	0.00	0.00	15.60	5.70	11.75	99.74	XP01 bille 2 verre	1
150	2.72	48.12	0.39	10.96	3.88	0.00	0.00	15.14	5.80	11.52	98.55	XP01 bille 2 verre	2
151	3.13	48.33	0.50	11.02	3.79	0.00	0.04	14.45	5.69	11.50	98.45	XP01 bille 2 verre	3
152	3.97	51.31	0.15	13.35	0.09	0.00	0.00	1.16	0.18	29.28	99.49	XP01 bille 2 Plagio	1
153	3.77	51.18	0.12	13.60	0.09	0.00	0.07	0.93	0.20	28.80	98.76	XP01 bille 2 Plagio	2
154	3.80	50.60	0.32	13.78	0.06	0.01	0.03	0.80	0.22	28.86	98.47	XP01 bille 2 Plagio	3
155	3.59	50.55	0.04	13.50	0.16	0.00	0.00	0.61	0.18	28.77	97.40	XP01 bille 2 Plagio	4
156	3.64	50.16	0.17	14.11	0.03	0.02	0.00	0.53	0.25	29.03	97.93	XP01 bille 2 Plagio	5
157	3.04	49.47	0.04	14.17	0.07	0.00	0.03	0.63	0.21	29.10	96.75	XP01 bille 2 Plagio	6
158	3.21	49.58	0.09	14.51	0.05	0.00	0.00	0.58	0.19	29.57	97.77	XP01 bille 2 Plagio	7
159	3.18	49.98	0.09	14.28	0.12	0.00	0.09	0.60	0.16	29.68	98.19	XP01 bille 2 Plagio	8
161	3.67	49.91	0.07	13.74	0.09	0.00	0.08	0.64	0.16	28.76	97.12	XP01 bille 2 Plagio	9
163	3.88	50.10	0.14	13.37	0.09	0.00	0.00	0.64	0.17	29.18	97.56	XP01 bille 2 Plagio	10
164	3.95	51.11	0.13	13.23	0.14	0.02	0.09	0.50	0.17	28.40	97.74	XP01 bille 2 Plagio	11
165	2.73	48.10	0.34	11.67	2.86	0.00	0.09	11.27	4.12	16.45	97.63	XP01 bille 2 verre	1
166	2.59	47.37	0.37	11.14	3.81	0.00	0.00	15.05	5.51	11.50	97.35	XP01 bille 2 verre	2
167	2.66	46.84	0.41	10.95	4.09	0.00	0.00	15.31	5.77	11.58	97.60	XP01 bille 2 verre	3
168	2.29	47.23	0.44	11.00	3.83	0.01	0.00	15.08	5.82	11.45	97.16	XP01 bille 2 verre	4
178	0.33	37.63	0.04	1.49	0.05	0.01	0.00	23.85	32.57	3.91	99.87	XP01 bille 2 Olivine	1
179	0.04	36.14	0.05	0.46	0.04	0.01	0.02	24.85	36.92	0.04	98.57	XP01 bille 2 Olivine	2

BILLE 3	3 T = 11	19°C											
Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
249	2.46	48.43	0.41	11.09	4.58	0.06	0.00	15.77	5.33	11.05	99.18	XP01 bille 3 verre	1
250	2.60	47.76	0.37	11.09	4.43	0.04	0.00	15.65	5.35	11.00	98.29	XP01 bille 3 verre	2
251	2.62	48.44	0.43	11.02	4.45	0.04	0.00	15.59	5.40	10.88	98.85	XP01 bille 3 verre	3
252	2.32	48.07	0.39	11.45	4.52	0.03	0.02	15.92	5.44	10.83	98.99	XP01 bille 3 verre	4
253	2.48	47.97	0.40	10.98	4.28	0.01	0.04	15.22	5.12	10.94	97.43	XP01 bille 3 verre	5
254	2.55	48.00	0.43	11.37	4.37	0.00	0.00	15.55	5.31	10.83	98.40	XP01 bille 3 verre	6
255	3.49	49.91	0.11	13.85	0.04	0.00	0.13	0.58	0.16	29.16	97.43	XP01 bille 3 Plagio	1
256	3.72	50.08	0.09	13.73	0.05	0.00	0.02	0.57	0.18	28.61	97.05	XP01 bille 3 Plagio	2
257	3.84	50.78	0.13	13.10	0.02	0.05	0.01	0.64	0.23	28.63	97.43	XP01 bille 3 Plagio	3
258	2.62	47.86	0.45	11.28	4.41	0.02	0.00	15.47	5.36	11.00	98.46	XP01 bille 3 verre	1
259	2.29	47.84	0.46	11.24	4.36	0.03	0.00	15.59	5.17	10.88	97.87	XP01 bille 3 verre	2
260	2.50	48.17	0.46	11.21	4.39	0.00	0.00	15.24	5.34	11.02	98.32	XP01 bille 3 verre	3
261	2.51	48.16	0.40	10.98	4.30	0.00	0.08	15.44	5.30	11.17	98.34	XP01 bille 3 verre	4
262	2.45	47.82	0.42	11.12	4.52	0.01	0.00	15.76	5.15	11.01	98.27	XP01 bille 3 verre	5
263	2.59	47.92	0.44	10.99	4.32	0.00	0.00	15.78	5.32	11.23	98.60	XP01 bille 3 verre	6
285	0.09	37.68	0.04	0.30	0.06	0.00	0.06	24.53	37.74	0.01	100.50	XP01 bille 3 Olivine	1
286	0.00	37.26	0.02	0.37	0.03	0.00	0.00	25.05	37.83	0.05	100.61	XP01 bille 3 Olivine	2
287	0.00	37.03	0.02	0.38	0.05	0.01	0.03	25.33	37.77	0.06	100.69	XP01 bille 3 Olivine	3
288	0.05	37.37	0.00	0.32	0.03	0.00	0.04	25.80	37.40	0.00	101.01	XP01 bille 3 Olivine	4
264	0.03	35.71	0.00	0.32	0.09	0.00	0.00	25.52	36.65	0.01	98.34	XP01 bille 3 Olivine	6
265	0.02	36.04	0.00	0.39	0.05	0.01	0.08	26.62	37.02	0.00	100.23	XP01 bille 3 Olivine	7

BILLE 4 T = 1109°C

Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
369	3.1967	49.4119	0.0734	14.2344	0.1073	0.0103	0.0874	0.7729	0.1983	27.9473	96.0399	Elsa1 B4 Plagio	1
370	3.388	49.5262	0.0835	14.1809	0.0448	0.0145	0.0002	0.7501	0.2648	28.0611	96.3141	Elsa1 B4 Plagio	2
371	3.7931	50.8541	0.1226	13.4399	0.1331	0.0021	0.0146	0.9194	0.1895	27.0707	96.5391	Elsa1 B4 Plagio	3
372	2.5318	47.659	0.5163	10.6941	4.5629	0.0002	0.0002	16.6168	5.0577	10.1068	97.7458	Elsa1 B4 verre	1
373	2.4605	47.934	0.4559	10.5798	4.5188	0.0002	0.0002	16.4793	4.9591	10.4087	97.7965	Elsa1 B4 verre	2
374	2.2768	47.6785	0.4263	10.7123	4.6016	0.0587	0.0002	17.1271	4.9344	10.0035	97.8194	Elsa1 B4 verre	3
375	2.1999	47.7584	0.4531	10.8493	4.4453	0.0805	0.0002	16.4206	4.9272	10.1677	97.3022	Elsa1 B4 verre	4
376	2.4752	47.8319	0.4113	10.6219	4.512	0.0216	0.1007	16.263	4.7525	10.1574	97.1475	Elsa1 B4 verre	5
377	2.4019	47.7304	0.4677	10.6497	4.5739	0.0314	0.0882	16.0733	4.9815	10.2444	97.2424	Elsa1 B4 verre	6
378	2.3659	47.9884	0.4074	10.8856	4.8285	0.0002	0.0002	16.3011	4.7748	10.1028	97.6549	Elsa1 B4 verre	7
379	2.5375	47.8665	0.4193	10.8884	4.6038	0.0334	0.0315	16.4909	4.9265	10.386	98.1838	Elsa1 B4 verre	8
380	2.2814	47.4225	0.4097	10.9045	4.7239	0.0177	0.0002	16.3157	4.9695	10.0895	97.1346	Elsa1 B4 verre	9
381	2.5487	48.0671	0.4287	10.5295	4.4893	0.0118	0.0002	17.1892	4.9576	10.2	98.4221	Elsa1 B4 verre	10
382	2.5518	47.9354	0.5466	10.7241	4.6214	0.0334	0.0002	16.2497	4.8817	10.2887	97.833	Elsa1 B4 verre	11
383	2.3625	48.172	0.4839	10.7282	4.4693	0.0002	0.0157	16.1917	4.9704	10.0183	97.4122	Elsa1 B4 verre	12
384	2.4137	48.1443	0.42	10.7455	4.518	0.0059	0.0002	17.1742	4.82	10.3027	98.5445	Elsa1 B4 verre	13
385	3.5649	51.0814	0.1978	11.9696	1.7923	0.0122	0.0002	5.8354	1.5806	21.4384	97.4728	Elsa1 B4 Plagio	1
386	3.7846	50.5245	0.0686	13.3142	0.4313	0.0002	0.0002	1.8687	0.5405	26.4278	96.9606	Elsa1 B4 Plagio	2
387	2.7786	49.1269	0.101	14.8889	0.1291	0.0145	0.0002	0.7354	0.2122	29.1193	97.1061	Elsa1 B4 Plagio	3
388	2.9447	48.9201	0.0908	14.0312	0.1063	0.0373	0.0324	0.8051	0.1349	29.401	96.5038	Elsa1 B4 Plagio	4
332	0.01	34.78	0.04	0.47	0.04	0.01	0.08	28.17	34.34	0.05	97.99	Elsa1 B4 Olivine	1
333	0.00	34.96	0.01	0.46	0.09	0.00	0.00	31.13	31.86	0.02	98.54	Elsa1 B4 Olivine	2

Annexe 1 Compositions chimiques des phases de XP03 (v = 1°C/h) BILLE 1 T = 1166°C

Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
31 / 1 .	2.43	47.68	0.30	10.55	3.09	0.01	0.13	13.66	7.17	13.45	98.47	XP03 bille 1 verre	
32 / 1 .	2.70	48.00	0.34	10.60	3.13	0.03	0.02	13.06	7.20	13.64	98.70	XP03 bille 1 verre	
33 / 1 .	2.56	47.39	0.33	10.61	3.17	0.00	0.00	13.42	7.18	13.34	98.00	XP03 bille 1 verre	
34 / 1 .	2.53	47.71	0.34	10.66	3.18	0.02	0.07	13.56	7.17	13.30	98.53	XP03 bille 1 verre	
35 / 1 .	2.76	49.54	0.06	15.23	0.16	0.01	0.02	1.03	0.00	30.62	99.42	XP03 bille 1 Plagio	
36 / 1 .	2.65	49.56	0.04	15.55	0.12	0.01	0.01	1.15	0.21	30.84	100.14	XP03 bille 1 Plagio	
37 / 1 .	2.63	49.83	0.03	15.27	0.13	0.00	0.00	0.78	0.00	30.82	99.48	XP03 bille 1 Plagio	
38 / 1 .	2.87	50.22	0.06	14.75	0.23	0.00	0.00	1.47	0.30	29.73	99.62	XP03 bille 1 Plagio	
39 / 1 .	2.42	47.68	0.31	10.63	3.12	0.03	0.00	13.71	6.76	13.54	98.20	XP03 bille 1 verre	1
39/2.	2.54	47.76	0.29	10.57	3.16	0.05	0.00	13.65	6.98	13.56	98.55	XP03 bille 1 verre	2
39/3.	2.57	47.54	0.35	10.49	3.11	0.02	0.00	13.43	7.27	13.65	98.42	XP03 bille 1 verre	3
39 / 4 .	2.55	47.83	0.29	10.60	3.15	0.00	0.00	13.84	7.13	13.53	98.92	XP03 bille 1 verre	4
39/5.	2.82	48.41	0.24	11.52	2.63	0.00	0.00	10.93	5.76	16.76	99.07	XP03 bille 1 verre	5
39 / 6 .	2.91	49.72	0.13	14.23	0.68	0.02	0.00	2.87	1.25	27.73	99.54	XP03 bille 1 Plagio	6
39 / 7 .	2.80	50.24	0.05	15.19	0.11	0.00	0.00	1.02	0.39	30.83	100.63	XP03 bille 1 Plagio	7
39 / 8 .	2.70	49.79	0.12	13.79	0.98	0.00	0.02	4.49	1.91	26.22	100.01	XP03 bille 1 Plagio	8
39/9.	2.61	47.87	0.29	10.89	3.00	0.00	0.00	12.77	6.31	14.60	98.35	XP03 bille 1 verre	9
39 / 10 .	2.55	47.90	0.30	10.54	3.18	0.05	0.00	13.11	7.34	13.59	98.56	XP03 bille 1 verre	10
39 / 11 .	2.52	47.94	0.29	10.63	3.10	0.00	0.00	13.18	6.92	13.48	98.05	XP03 bille 1 verre	11
39 / 12 .	2.42	48.07	0.36	10.63	3.17	0.00	0.07	13.23	7.38	13.39	98.73	XP03 bille 1 verre	12
39 / 13 .	2.62	47.71	0.34	10.62	3.17	0.00	0.00	13.56	6.61	13.47	98.09	XP03 bille 1 verre	13
39 / 14 .	2.67	47.88	0.31	10.58	3.10	0.00	0.00	13.43	6.79	13.62	98.37	XP03 bille 1 verre	14

BILLE 2 T = 1156°C

Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
40 / 1 .	2.48	47.86	0.31	10.48	3.20	0.01	0.00	13.60	7.11	13.05	98.10	XP03 bille 2 verre	
41/1.	2.46	47.79	0.32	10.40	3.23	0.00	0.00	13.23	6.99	13.05	97.46	XP03 bille 2 verre	
42/1.	2.55	47.50	0.28	10.51	3.21	0.02	0.00	13.96	6.67	13.14	97.82	XP03 bille 2 verre	
43 / 1 .	2.53	47.37	0.30	10.43	3.20	0.00	0.05	13.51	7.18	13.02	97.58	XP03 bille 2 verre	
44 / 1 .	2.87	49.58	0.05	15.04	0.13	0.00	0.00	1.00	0.18	31.13	99.99	XP03 bille 2 Plagio	
45 / 1 .	2.89	49.92	0.06	14.69	0.15	0.00	0.05	1.67	0.45	29.42	99.30	XP03 bille 2 Plagio	
46 / 1 .	3.04	50.26	0.08	14.33	0.28	0.00	0.00	1.23	0.29	29.28	98.77	XP03 bille 2 Plagio	
48 / 1 .	2.90	49.30	0.05	14.77	0.12	0.00	0.00	0.90	0.20	30.70	98.93	XP03 bille 2 Plagio	
47 / 1 .	2.48	46.98	0.32	10.52	3.22	0.02	0.07	14.02	7.17	13.01	97.80	XP03 bille 2 verre	1
47 / 2 .	2.39	46.90	0.29	10.45	3.26	0.06	0.02	14.27	7.22	12.72	97.58	XP03 bille 2 verre	2
47/3.	2.39	46.56	0.28	10.37	3.23	0.04	0.00	14.54	7.06	12.89	97.35	XP03 bille 2 verre	3
47 / 4 .	2.51	46.51	0.30	10.44	3.22	0.00	0.10	14.19	6.96	12.98	97.20	XP03 bille 2 verre	4
47 / 5 .	2.33	46.01	0.33	10.32	3.25	0.00	0.03	14.75	7.74	12.46	97.21	XP03 bille 2 verre	5
47 / 6 .	2.95	48.26	0.24	11.77	2.57	0.03	0.04	9.83	4.54	18.01	98.22	XP03 bille 2 verre	6
47 / 7 .	3.29	49.98	0.07	14.17	0.22	0.00	0.03	1.07	0.34	29.67	98.84	XP03 bille 2 Plagio	7
47 / 8 .	3.00	49.80	0.06	14.50	0.08	0.00	0.00	0.92	0.00	30.44	98.79	XP03 bille 2 Plagio	8
47 / 9 .	2.51	48.83	0.04	15.05	0.11	0.00	0.02	0.93	0.00	30.67	98.17	XP03 bille 2 Plagio	9
47 / 10 .	2.49	48.72	0.04	15.38	0.08	0.00	0.01	1.02	0.36	30.99	99.10	XP03 bille 2 Plagio	10
47 / 11 .	2.63	48.95	0.02	15.05	0.11	0.02	0.06	0.85	0.12	30.61	98.41	XP03 bille 2 Plagio	11
47 / 12 .	3.01	49.58	0.05	14.45	0.10	0.03	0.00	0.87	0.01	30.35	98.46	XP03 bille 2 Plagio	12
47 / 13 .	3.08	50.01	0.05	14.31	0.11	0.00	0.01	1.01	0.00	30.07	98.65	XP03 bille 2 Plagio	13
47 / 14 .	3.14	50.39	0.09	14.38	0.10	0.01	0.00	0.95	0.22	30.02	99.29	XP03 bille 2 Plagio	14
47 / 16 .	2.50	46.87	0.31	10.40	3.22	0.03	0.10	14.44	7.57	12.50	97.92	XP03 bille 2 verre	15
47 / 17 .	2.46	47.01	0.31	10.43	3.33	0.00	0.04	15.28	7.49	11.96	98.30	XP03 bille 2 verre	16
47 / 18 .	2.60	46.90	0.30	10.36	3.17	0.00	0.00	14.30	7.37	13.07	98.07	XP03 bille 2 verre	17
47 / 19 .	2.53	46.60	0.29	10.47	3.14	0.00	0.00	14.02	7.31	13.12	97.47	XP03 bille 2 verre	18
47 / 20 .	2.49	47.34	0.35	10.39	3.20	0.05	0.00	14.08	7.24	12.84	97.98	XP03 bille 2 verre	19

Annexe 1 Compositions chimiques des phases de XP02 (v = 1°C/h)
BILLE 1 T = 1139°C

Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
1/1.	3.17	51.68	0.07	14.66	0.14	0.00	0.03	0.55	0.19	30.52	100.99	XP02 bille1 Plagio	
3/1.	3.54	52.34	0.07	13.94	0.13	0.00	0.00	1.08	0.22	29.69	101.00	XP02 bille1 Plagio	
4/1.	3.27	51.32	0.08	14.21	0.10	0.00	0.00	0.63	0.24	29.84	99.68	XP02 bille1 Plagio	
5/1.	3.12	51.57	0.07	14.39	0.11	0.00	0.01	0.85	0.19	30.22	100.53	XP02 bille1 Plagio	
2/1.	2.47	48.64	0.38	11.10	3.90	0.00	0.00	14.86	6.09	11.94	99.36	XP02 bille1 verre	
6/1.	2.62	48.59	0.34	11.20	3.91	0.00	0.00	14.64	6.01	12.01	99.32	XP02 bille1 verre	
7/1.	2.62	49.04	0.37	11.05	4.23	0.00	0.00	14.74	5.60	11.67	99.32	XP02 bille1 verre	
8/1.	2.85	49.94	0.41	10.76	3.91	0.01	0.10	13.99	5.79	12.05	99.81	XP02 bille1 verre	
9/1.	0.00	39.04	0.00	0.37	0.05	0.01	0.00	24.32	37.67	0.00	101.46	XP02 bille1 olivine	
10/1.	0.01	38.69	0.04	0.43	0.06	0.00	0.00	24.91	36.78	0.01	100.92	XP02 bille1 olivine	
11/1.	0.00	38.53	0.00	0.51	0.12	0.00	0.02	25.26	36.20	0.04	100.68	XP02 bille1 olivine	
12/1.	0.06	39.19	0.00	0.42	0.05	0.02	0.03	23.93	37.16	0.03	100.89	XP02 bille1 olivine	
29/1.	2.59	47.88	0.41	11.07	4.10	0.00	0.01	14.32	5.89	11.92	98.20	XP02 bille1 verre	1
29 / 4 .	3.55	51.16	0.08	13.86	0.09	0.00	0.02	0.67	0.18	29.69	99.29	XP02 bille1 Plagio	2
29/5.	3.12	50.41	0.07	14.36	0.09	0.00	0.00	0.51	0.16	30.05	98.76	XP02 bille1 Plagio	3
29/6.	3.21	50.22	0.10	14.50	0.11	0.00	0.02	0.73	0.21	30.37	99.47	XP02 bille1 Plagio	4
29 / 7 .	3.65	51.38	0.11	13.37	0.22	0.00	0.00	0.99	0.35	29.11	99.18	XP02 bille1 Plagio	5
29/8.	2.65	48.52	0.39	10.51	4.07	0.06	0.02	14.54	5.98	11.94	98.68	XP02 bille1 verre	6
29 / 10 .	2.69	48.27	0.40	11.11	4.06	0.00	0.02	14.48	5.61	11.89	98.53	XP02 bille1 verre	7
30 / 1 .	2.65	48.24	0.36	10.97	4.17	0.02	0.00	14.43	5.77	11.86	98.47	XP02 bille1 verre	1
30 / 2 .	2.81	47.98	0.39	11.08	4.09	0.00	0.08	14.42	5.66	11.76	98.27	XP02 bille1 verre	2
30/3.	2.71	47.83	0.37	11.25	4.06	0.01	0.07	14.18	5.51	12.37	98.35	XP02 bille1 verre	3
30 / 4 .	3.23	50.72	0.06	14.09	0.12	0.00	0.01	0.72	0.21	30.03	99.18	XP02 bille1 Plagio	4
30/8.	3.26	50.31	0.06	13.97	0.08	0.00	0.04	0.50	0.22	30.24	98.68	XP02 bille1 Plagio	5
30/9.	3.31	50.49	0.06	14.27	0.09	0.00	0.00	0.57	0.19	30.39	99.37	XP02 bille1 Plagio	6
30 / 10 .	3.17	50.50	0.07	14.47	0.08	0.00	0.00	0.66	0.04	30.23	99.21	XP02 bille1 Plagio	7
30 / 11 .	3.20	50.22	0.07	14.45	0.11	0.00	0.02	0.59	0.31	30.38	99.33	XP02 bille1 Plagio	8
30 / 12 .	3.17	50.66	0.07	14.43	0.09	0.00	0.05	0.63	0.50	30.31	99.91	XP02 bille1 Plagio	9
30 / 13 .	3.75	52.05	0.09	13.44	0.10	0.00	0.00	0.84	0.09	29.21	99.56	XP02 bille1 Plagio	10
30 / 14 .	2.70	48.48	0.39	10.98	4.11	0.01	0.00	14.51	5.60	11.82	98.60	XP02 bille1 verre	11
30 / 15 .	2.65	48.22	0.35	11.01	4.15	0.00	0.00	14.32	5.60	11.86	98.14	XP02 bille1 verre	12

R	II I	F	2	т	= 1	11	29°	C

Point#	Na2O	SiO2	K2O	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
13/1.	3.27	52.01	0.10	14.18	0.09	0.00	0.02	0.61	0.21	29.86	100.35	XP02 bille2 Plagio	
14/1.	3.56	52.10	0.13	13.78	0.09	0.00	0.02	0.92	0.16	29.73	100.49	XP02 bille2 Plagio	
15/1.	3.20	50.76	0.09	14.07	0.10	0.02	0.01	0.46	0.17	29.96	98.83	XP02 bille2 Plagio	
16/1.	3.59	52.08	0.07	13.89	0.15	0.00	0.00	0.83	0.17	29.57	100.34	XP02 bille2 Plagio	
17/1.	2.75	49.88	0.43	10.95	3.97	0.00	0.01	14.51	5.57	11.52	99.59	XP02 bille2 verre	
18/1.	2.68	48.80	0.38	11.26	4.30	0.00	0.02	15.77	5.41	11.28	99.89	XP02 bille2 verre	
19/1.	2.79	49.30	0.42	11.16	4.09	0.00	0.02	14.77	5.36	11.48	99.39	XP02 bille2 verre	
20 / 1 .	2.76	49.70	0.47	11.11	4.25	0.01	0.02	14.12	5.37	11.42	99.22	XP02 bille2 verre	
21 / 1 .	0.02	38.62	0.01	0.43	0.05	0.00	0.06	25.85	36.02	0.07	101.12	XP02 bille2 olivine	
22 / 1 .	0.02	38.97	0.06	0.38	0.06	0.01	0.00	24.01	37.61	0.05	101.18	XP02 bille2 olivine	
24/1.	0.03	38.91	0.02	0.41	0.06	0.01	0.00	24.35	37.15	0.05	100.99	XP02 bille2 olivine	
28 / 1 .	2.57	47.94	0.42	11.26	3.98	0.04	0.00	14.58	5.20	11.11	97.09	XP02 bille2 verre	1
28/2.	2.79	48.70	0.35	11.30	3.86	0.00	0.08	14.02	5.67	11.98	98.77	XP02 bille2 verre	2
28/3.	2.76	48.34	0.41	11.35	3.97	0.00	0.00	14.71	6.11	11.49	99.14	XP02 bille2 verre	3
28/5.	3.78	51.81	0.09	13.46	0.11	0.01	0.00	0.76	0.64	29.53	100.19	XP02 bille2 Plagio	4
28/6.	3.53	51.29	0.10	13.99	0.10	0.00	0.00	0.58	0.00	29.78	99.38	XP02 bille2 Plagio	5
28 / 7 .	2.65	48.23	0.41	11.27	3.97	0.00	0.01	14.68	5.46	11.46	98.14	XP02 bille2 verre	6
28/8.	2.83	48.35	0.42	11.25	3.93	0.00	0.00	14.28	5.77	11.39	98.22	XP02 bille2 verre	7
28/9.	2.71	48.11	0.38	11.20	4.06	0.00	0.10	14.88	4.92	11.34	97.71	XP02 bille2 verre	8
28 / 10 .	3.63	51.64	0.12	13.66	0.12	0.00	0.00	0.81	0.26	29.71	99.96	XP02 bille2 Plagio	9
28 / 11 .	3.19	50.82	0.09	14.18	0.15	0.00	0.00	0.78	0.30	29.70	99.21	XP02 bille2 Plagio	10
28 / 12 .	2.55	48.65	0.41	11.23	3.98	0.00	0.00	14.17	5.38	11.39	97.76	XP02 bille2 verre	11
28 / 14 .	2.53	48.86	0.41	11.23	3.95	0.00	0.00	14.79	4.94	11.49	98.22	XP02 bille2 verre	12
28 / 15 .	2.58	48.51	0.42	11.19	3.96	0.02	0.00	14.59	5.94	11.49	98.70	XP02 bille2 verre	13

BILLE 3 T = 1119°C

DILLES	1 = 1	1100											
Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
1/1.	3.26	51.12	0.08	14.64	0.11	0.00	0.00	0.63	0.19	30.08	100.11	XP02 bille 3 Plagio	
2/1.	3.89	52.19	0.11	13.59	0.10	0.00	0.00	0.70	0.23	29.31	100.11	XP02 bille 3 Plagio	
3/1.	3.77	51.98	0.07	13.75	0.12	0.00	0.00	0.69	0.16	29.55	100.10	XP02 bille 3 Plagio	
5/1.	2.89	49.37	0.54	10.24	4.96	0.00	0.06	15.82	4.72	11.03	99.62	XP02 bille 3 verre	
6/1.	2.85	49.63	0.53	10.70	4.65	0.03	0.01	14.79	4.76	11.05	99.01	XP02 bille 3 verre	
7/1.	2.89	49.90	0.58	10.52	4.79	0.04	0.05	15.51	4.83	11.10	100.21	XP02 bille 3 verre	
8/1.	2.99	48.95	0.49	10.10	5.14	0.00	0.00	15.70	4.74	11.06	99.15	XP02 bille 3 verre	
9/1.	0.03	38.59	0.43	0.41	0.07	0.00	0.02	25.34	36.47	0.06	101.03	XP02 bille 3 olivine	
12 / 1 .	0.00	38.27	0.03	0.41	0.07	0.00	0.02	27.01	35.05	0.06	101.03	XP02 bille 3 olivine	
14/1.	0.00	38.54	0.01	0.38	0.05	0.03	0.00	24.95	37.63	0.01	101.59	XP02 bille 3 olivine	
10/1.	0.34	49.74	0.00	20.10	2.45	0.00	0.06	9.47	14.18	3.62	99.96	XP02 bille 3 olivine	
17/1.	3.47	51.54	0.10	14.15	0.07	0.03	0.04	0.55	0.19	30.04	100.17	XP02 bille 3 Plagio	
17/2.	3.32	51.18	0.11	14.33	0.11	0.02	0.01	0.55	0.21	30.44	100.28	XP02 bille 3 Plagio	
17/3.	3.35	51.60	0.08	14.18	0.16	0.00	0.00	0.78	0.22	29.67	100.04	XP02 bille 3 Plagio	
17 / 4 .	4.09	53.24	0.09	13.10	0.15	0.00	0.01	0.91	0.22	28.91	100.72	XP02 bille 3 Plagio	
17/5.	2.86	49.62	0.54	10.38	4.67	0.00	0.00	15.36	4.74	11.22	99.39	XP02 bille 3 verre	
17/6.	2.85	49.54	0.47	10.50	4.66	0.00	0.00	15.39	4.86	11.10	99.37	XP02 bille 3 verre	
17 / 7 .	2.83	49.98	0.42	10.46	4.70	0.02	0.00	15.45	4.77	11.20	99.83	XP02 bille 3 verre	
17/8.	2.88	49.53	0.53	10.44	4.69	0.00	0.00	15.04	4.90	11.00	99.02	XP02 bille 3 verre	
17/9.	2.96	49.60	0.44	10.46	4.75	0.01	0.08	15.70	4.93	11.09	100.02	XP02 bille 3 verre	
17 / 10 .	2.86	49.66	0.54	10.51	4.68	0.01	0.03	15.65	4.89	11.20	100.02	XP02 bille 3 verre	
17 / 11 .	2.68	49.53	0.49	10.41	4.68	0.05	0.00	15.62	4.85	10.96	99.28	XP02 bille 3 verre	
17 / 12 .	2.87	49.42	0.47	10.59	4.72	0.00	0.00	15.70	4.83	10.95	99.53	XP02 bille 3 verre	
17 / 13 .	3.00	49.41	0.50	10.55	4.77	0.00	0.05	15.52	4.79	11.22	99.80	XP02 bille 3 verre	
17 / 14 .	2.80	49.59	0.51	10.49	4.71	0.02	0.00	15.48	4.82	11.24	99.66	XP02 bille 3 verre	
17 / 15 .	2.90	49.43	0.49	10.45	4.77	0.00	0.00	15.28	4.83	11.13	99.27	XP02 bille 3 verre	
17 / 16 .	3.02	49.67	0.50	10.40	4.70	0.05	0.00	15.92	4.86	11.03	100.15	XP02 bille 3 verre	
17 / 17 .	2.69	49.43	0.51	10.44	4.73	0.00	0.02	15.70	4.84	11.15	99.50	XP02 bille 3 verre	
17 / 18 .	2.77	49.29	0.48	10.40	4.70	0.03	0.00	15.25	4.82	11.02	98.75	XP02 bille 3 verre	
17 / 20 .	3.96	52.84	0.08	13.29	0.11	0.00	0.12	0.80	0.24	29.44	100.88	XP02 bille 3 Plagio	
18 / 4 .	3.34	51.56	0.06	13.53	0.30	0.02	0.00	1.77	1.58	27.74	99.90	XP02 bille 3 Plagio	1
18/5.	3.43	51.85	0.05	14.05	0.10	0.02	0.00	0.57	0.22	30.01	100.29	XP02 bille 3 Plagio	2
18/6.	3.33	51.68	0.06	14.42	0.10	0.00	0.00	0.49	0.21	30.13	100.43	XP02 bille 3 Plagio	3
18/7.	3.42	52.04	0.10	14.15	0.08	0.02	0.04	0.56	0.23	29.60	100.22	XP02 bille 3 Plagio	4
18/8.	3.92	53.11	0.13	13.25	0.09	0.00	0.00	0.60	0.20	28.92	100.21	XP02 bille 3 Plagio	5
26 / 1 .	3.33	50.04	0.10	14.13	0.10	0.00	0.00	0.66	0.29	29.93	98.58	XP02 bille 3 Plagio	1
26 / 2 .	3.93	51.93	0.07	13.26	0.12	0.04	0.05	0.76	0.20	29.17	99.52	XP02 bille 3 Plagio	2
26 / 4 .	2.73	48.34	0.53	10.46	4.60	0.02	0.00	15.04	4.33	11.04	97.08	XP02 bille 3 verre	3
26/5.	2.89	48.52	0.49	10.40	4.58	0.02	0.05	15.54	5.31	11.10	98.90	XP02 bille 3 verre	4
26/6.	2.88	48.17	0.49	10.41	4.54	0.04	0.00	15.55	4.86	11.17	98.07	XP02 bille 3 verre	5
26 / 7 .	2.93	48.43	0.48	10.51	4.69	0.04	0.00	15.02	5.18	10.99	98.23	XP02 bille 3 verre	6
26 / 8 .	2.77	48.40	0.48	10.31	4.67	0.00	0.00	15.16	4.67	11.24	97.83	XP02 bille 3 verre	7
26/9.	2.73	48.48	0.49	10.41	4.51	0.02	0.00	15.10	5.19	10.94	97.76	XP02 bille 3 verre	8
26 / 11 .	2.76	48.38	0.53	10.57	4.62	0.00	0.00	15.05	4.99	11.12	98.03	XP02 bille 3 verre	9
26 / 12 .	2.88	48.46	0.52	10.42	4.57	0.00	0.01	15.07	5.06	11.10	98.09	XP02 bille 3 verre	10
26 / 13 .	2.80	48.52	0.47	10.42	4.69	0.00	0.07	14.94	4.60	11.16	97.66	XP02 bille 3 verre	11
26 / 14 .	2.71	48.62	0.47	10.42	4.64	0.00	0.00	15.06	5.05	11.26	98.23	XP02 bille 3 verre	12
26 / 15 .	2.74	48.35	0.52	10.42	4.66	0.05	0.06	15.67	4.76	11.18	98.40	XP02 bille 3 verre	13
26 / 17 .	2.76	48.43	0.54	10.20	4.67	0.00	0.00	15.43	4.78	11.20	98.00	XP02 bille 3 verre	14
26 / 20 .	3.38	50.66	0.07	13.93	0.10	0.00	0.00	0.73	0.00	29.84	98.70	XP02 bille 3 Plagio	15
27 / 1 .	0.26	51.03	0.00	11.03	1.57	0.05	0.07	11.86	20.96	3.61	100.43	XP02 bille 3 Plagio	1
27 / 3 .	0.23	51.08	0.00	9.67	1.15	0.00	0.01	11.74	21.89	3.07	98.83	XP02 bille 3 Plagio	2
27 / 4 .	3.48	50.52	0.12	13.92	0.12	0.02	0.05	0.67	0.29	29.64	98.81	XP02 bille 3 Plagio	3
27 / 5 .	3.12	49.80	0.05	14.24	0.08	0.01	0.01	0.52	0.29	30.24	98.35	XP02 bille 3 Plagio	4
27 / 6 .	3.48	50.43	0.09	13.93	0.10	0.00	0.01	0.40	0.00	29.99	98.43	XP02 bille 3 Plagio	5
27 / 7 .	3.99	51.89	0.09	13.10	0.12	0.00	0.05	0.54	0.27	28.95	98.99	XP02 bille 3 Plagio	6
27 / 8 .	4.03	52.72	0.13	12.81	0.13	0.01	0.00	0.69	0.22	28.62	99.36	XP02 bille 3 Plagio	7
27/9.	3.90	51.75	0.15	12.99	0.20	0.00	0.00	0.87	0.28	28.73	98.87	XP02 bille 3 Plagio	8

BILLE 4 T = 1113°C

BILLE 4	1 T = 11	113°C											
Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
12/1.	3.65	51.96	0.07	13.67	0.12	0.00	0.00	0.62	0.69	29.44	100.21	XP02 bille 4 Plagio	
13 / 1 .	3.06	49.89	0.11	14.57	0.10	0.00	0.03	0.69	0.00	30.28	98.73	XP02 bille 4 Plagio	
14/1.	3.18	50.10	0.07	14.36	0.11	0.00	0.01	0.50	0.22	30.20	98.75	XP02 bille 4 Plagio	
15 / 1 .	3.37	50.47	0.14	14.22	0.13	0.00	0.00	0.64	0.13	30.10	99.19	XP02 bille 4 Plagio	
17 / 1 .	2.56	48.28	0.43	11.60	4.72	0.04	0.00	14.95	4.36	10.57	97.50	XP02 bille 4 verre	
18/1.	2.60	48.34	0.39	11.47	4.47	0.00	0.03	14.58	5.24	10.53	97.64	XP02 bille 4 verre	
19/1.	2.69	47.94	0.47	11.33	4.44	0.00	0.04	15.30	4.95	10.48	97.65	XP02 bille 4 verre	
20 / 1.	0.01	36.56	0.00	0.47	0.06	0.03	0.07	26.45	35.63	0.04	99.31	XP02 bille 4 olivine	
21 / 1.	0.00	37.19	0.00	0.50	0.05	0.00	0.00	27.47	33.04	0.00	98.25	XP02 bille 4 olivine	
22 / 1 .	0.01	37.67	0.00	0.40	0.04	0.00	0.00	24.56	37.07	0.03	99.78	XP02 bille 4 olivine	
23 / 1 .	0.01	37.62	0.01	0.47	0.03	0.00	0.00	25.97	35.96	0.09	100.15	XP02 bille 4 olivine	
24 / 1 .	2.43	48.06	0.41	11.60	4.57	0.01	0.01	15.31	5.17	10.48	98.04	XP02 bille 4 verre	1
24/2.	2.48	48.05	0.44	11.75	4.61	0.00	0.00	15.67	5.06	10.33	98.41	XP02 bille 4 verre	2
24/3.	2.60	47.64	0.43	11.76	4.71	0.00	0.00	15.24	5.00	10.56	97.93	XP02 bille 4 verre	3
24 / 4 .	2.47	47.67	0.40	11.64	4.63	0.02	0.05	15.50	4.98	10.34	97.70	XP02 bille 4 verre	4
24/5.	3.63	51.79	0.14	13.65	0.13	0.00	0.03	0.84	0.23	29.47	99.91	XP02 bille 4 Plagio	5
24/6.	3.70	51.78	0.11	13.50	0.11	0.00	0.08	0.81	0.00	29.11	99.21	XP02 bille 4 Plagio	6
24 / 7 .	2.59	47.82	0.43	11.63	4.61	0.00	0.03	15.33	5.06	10.56	98.07	XP02 bille 4 verre	7
24/9.	3.66	51.60	0.16	13.14	0.67	0.03	0.00	2.48	0.64	27.24	99.62	XP02 bille 4 Plagio	8
24 / 10 .	2.56	48.12	0.37	11.71	4.69	0.00	0.00	15.65	5.11	10.44	98.65	XP02 bille 4 verre	9
24 / 11 .	2.46	48.00	0.40	11.63	4.67	0.00	0.08	15.15	4.78	10.43	97.58	XP02 bille 4 verre	10
24 / 12 .	2.59	48.07	0.47	11.72	4.61	0.02	0.03	15.42	4.93	10.45	98.30	XP02 bille 4 verre	11
24 / 13 .	2.53	48.27	0.47	11.68	4.62	0.00	0.10	15.39	5.14	10.50	98.68	XP02 bille 4 verre	12
24 / 14 .	3.78	51.59	0.11	13.73	0.16	0.00	0.00	0.85	0.00	29.64	99.86	XP02 bille 4 Plagio	13
24 / 15 .	3.39	50.97	0.04	13.96	0.11	0.02	0.00	0.56	0.20	29.80	99.05	XP02 bille 4 Plagio	14
24 / 16 .	3.74	51.49	0.10	13.57	0.12	0.00	0.06	0.63	0.57	29.56	99.84	XP02 bille 4 Plagio	15
24 / 17 .	2.60	48.43	0.43	11.61	4.65	0.01	0.00	15.32	4.95	10.37	98.38	XP02 bille 4 verre	16
24 / 18 .	2.56	48.38	0.44	11.56	4.73	0.00	0.02	15.01	4.98	10.48	98.15	XP02 bille 4 verre	17
24 / 20 .	2.53	48.06	0.47	11.60	4.70	0.00	0.00	15.41	4.85	10.38	98.01	XP02 bille 4 verre	18
25 / 1 .	2.65	48.28	0.47	11.43	4.45	0.02	0.01	15.27	4.57	10.60	97.76	XP02 bille 4 verre	1
25 / 2 .	3.82	52.27	0.15	12.03	1.09	0.00	0.00	3.97	0.62	24.31	98.26	XP02 bille 4 Plagio	2
25/3.	4.16	51.81	0.11	12.76	0.10	0.00	0.06	0.59	0.22	28.63	98.44	XP02 bille 4 Plagio	3
25 / 4 .	3.63	50.99	0.08	13.39	0.10	0.03	0.00	0.57	0.00	29.16	97.96	XP02 bille 4 Plagio	4
25 / 5 .	3.61	50.67	0.07	13.77	0.06	0.00	0.00	0.54	0.23	29.70	98.66	XP02 bille 4 Plagio	5
25/6.	3.08	49.98	0.06	14.39	0.09	0.00	0.00	0.48	0.00	29.97	98.05	XP02 bille 4 Plagio	6
25 / 7 .	3.37	49.96	0.11	14.13	0.11	0.01	0.00	0.58	0.22	29.79	98.28	XP02 bille 4 Plagio	7
25 / 8 .	3.30	50.05	0.05	14.06	0.12	0.00	0.00	0.53	0.15	29.94	98.20	XP02 bille 4 Plagio	8
25/9.	3.69	50.48	0.09	13.46	0.10	0.00	0.02	0.72	0.26	29.23	98.04	XP02 bille 4 Plagio	9
25 / 10 .	4.07	51.73	0.11	13.07	0.11	0.00	0.00	0.60	0.00	29.30	99.00	XP02 bille 4 Plagio	10
25 / 11 .	4.35	52.58	0.16	12.14	0.65	0.00	0.00	2.53	0.86	26.43	99.70	XP02 bille 4 Plagio	11
25 / 12 .	2.69	48.31	0.54	11.38	4.54	0.00	0.06	14.98	4.72	10.52	97.72	XP02 bille 4 verre	12
25 / 17 .	2.74	48.32	0.39	11.52	4.59	0.02	0.03	15.40	4.89	10.74	98.64	XP02 bille 4 verre	13
25 / 25 .	0.00	36.60	0.02	0.40	0.06	0.00	0.00	25.26	35.79	0.05	98.16	XP02 bille 4 olivine	15
25 / 26 .	0.07	37.12	0.00	0.43	0.04	0.00	0.01	26.28	35.78	0.01	99.74	XP02 bille 4 olivine	16
25 / 27 .	0.02	36.18	0.00	0.55	0.11	0.00	0.00	27.62	33.87	0.04	98.39	XP02 bille 4 olivine	17
26 / 14 .	2.71	48.62	0.47	10.42	4.64	0.00	0.00	15.06	5.05	11.26	98.23	XP02 bille 4 verre	
26 / 15 .	2.74	48.35	0.52	10.42	4.66	0.05	0.06	15.67	4.76	11.18	98.40	XP02 bille 4 verre	
26 / 17 .	2.76	48.43	0.54	10.20	4.67	0.00	0.00	15.43	4.78	11.20	98.00	XP02 bille 4 verre	
26 / 20 .	3.38	50.66	0.07	13.93	0.10	0.00	0.00	0.73	0.00	29.84	98.70	XP02 bille 4 Plagio	
27 / 4 .	3.48	50.52	0.12	13.92	0.12	0.02	0.05	0.67	0.29	29.64	98.81	XP02 bille 4 Plagio	
27 / 5 .	3.12	49.80	0.05	14.24	0.08	0.02	0.01	0.52	0.29	30.24	98.35	XP02 bille 4 Plagio	
27/6.	3.48	50.43	0.09	13.93	0.10	0.00	0.01	0.40	0.00	29.99	98.43	XP02 bille 4 Plagio	
27 / 7 .	3.99	51.89	0.09	13.10	0.12	0.00	0.05	0.54	0.27	28.95	98.99	XP02 bille 4 Plagio	
27 / 8 .	4.03	52.72	0.13	12.81	0.12	0.00	0.00	0.69	0.22	28.62	99.36	XP02 bille 4 Plagio	
27/9.	3.90	51.75	0.15	12.99	0.13	0.00	0.00	0.87	0.22	28.73	98.87	XP02 bille 4 Plagio	
21/3.	0.00	01.70	0.10	14.33	0.20	0.00	0.00	0.01	0.20	20.10	50.07	02 20 11 lagio	

Annexe 1 Compositions chimiques des phases de XP07 (v = 3°C/h) BILLE 1 T = 1167°C

Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
194	2.55	46.43	0.31	10.77	3.13	0.04	0.00	13.59	7.15	13.42	97.38	XP07 bille1 verre	2
179	2.51	45.68	0.30	10.60	3.07	0.00	0.00	14.18	7.26	13.63	97.23	XP07 bille1 verre	3
180	2.67	46.36	0.29	10.67	3.11	0.01	0.00	13.72	7.12	13.47	97.44	XP07 bille1 verre	4
182	2.45	46.09	0.34	10.88	3.16	0.04	0.09	13.65	7.10	13.33	97.13	XP07 bille1 verre	6
183	2.45	46.06	0.33	10.76	3.13	0.00	0.01	13.98	7.28	13.36	97.34	XP07 bille1 verre	7
184	3.04	48.35	0.09	15.24	0.07	0.02	0.08	0.87	0.20	30.20	98.16	XP07 bille1 Plagio	1
185	2.92	48.35	0.06	15.32	0.16	0.02	0.05	0.99	0.20	31.00	99.07	XP07 bille1 Plagio	2
186	3.02	48.87	0.05	15.07	0.08	0.00	0.04	0.97	0.17	30.58	98.86	XP07 bille1 Plagio	3
187	3.05	48.55	0.04	14.68	0.16	0.00	0.03	0.99	0.23	29.99	97.71	XP07 bille1 Plagio	4
188	3.08	47.98	0.10	13.54	1.06	0.00	0.08	3.96	2.07	25.49	97.38	XP07 bille1 Plagio	5
189	2.56	45.82	0.30	10.65	3.03	0.00	0.02	13.94	7.17	13.58	97.06	XP07 bille1 verre	
191	2.65	46.18	0.34	10.86	3.19	0.04	0.00	14.03	7.24	13.60	98.12	XP07 bille1 verre	

BILLE 2 T = 1156°C

DILLE A	2 1 = 11	30 C											
Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
195	2.64	46.44	0.34	10.76	3.16	0.06	0.02	13.73	7.33	12.88	97.36	XP07 bille2 verre	1
196	2.50	46.25	0.34	10.79	3.19	0.00	0.00	14.22	7.34	12.92	97.54	XP07 bille2 verre	2
198	2.68	46.69	0.38	10.80	3.20	0.00	0.01	13.85	7.31	13.03	97.94	XP07 bille2 verre	1
199	2.51	46.32	0.28	10.67	3.21	0.00	0.00	13.86	7.35	12.87	97.08	XP07 bille2 verre	2
200	2.55	46.85	0.34	10.49	3.24	0.00	0.03	14.33	7.24	12.98	98.05	XP07 bille2 verre	3
201	2.54	47.06	0.36	10.47	3.26	0.00	0.00	13.84	7.25	12.80	97.57	XP07 bille2 verre	4
202	2.47	46.76	0.33	10.59	3.31	0.01	0.00	14.23	7.41	12.81	97.93	XP07 bille2 verre	5
203	2.56	46.53	0.33	10.82	3.28	0.00	0.00	14.15	7.36	12.72	97.76	XP07 bille2 verre	6
204	2.59	46.60	0.34	10.65	3.16	0.02	0.06	13.85	7.30	12.78	97.36	XP07 bille2 verre	7
205	2.59	46.77	0.31	10.54	3.25	0.03	0.03	13.86	7.20	12.94	97.52	XP07 bille2 verre	8
206	2.66	46.82	0.32	10.66	3.22	0.01	0.06	14.23	7.55	12.91	98.44	XP07 bille2 verre	9
207	2.41	46.52	0.37	10.64	3.24	0.02	0.01	14.01	7.34	12.48	97.05	XP07 bille2 verre	10
208	2.62	46.45	0.38	10.47	3.18	0.03	0.05	14.39	7.34	12.79	97.69	XP07 bille2 verre	11
209	3.52	49.39	0.16	13.08	1.36	0.00	0.03	5.00	2.53	22.94	98.02	XP07 bille2 Plagio	1
210	2.86	49.47	0.05	14.99	0.12	0.04	0.02	0.92	0.20	29.67	98.35	XP07 bille2 Plagio	2
211	2.77	48.50	0.04	15.71	0.12	0.03	0.01	1.10	0.27	29.77	98.33	XP07 bille2 Plagio	3
212	2.85	48.32	0.16	13.27	1.63	0.00	0.00	6.78	3.23	23.26	99.49	XP07 bille2 Plagio	4
214	2.72	48.80	0.07	15.56	0.18	0.02	0.00	0.96	0.22	30.28	98.82	XP07 bille2 Plagio	5
215	3.21	50.04	0.15	14.60	0.10	0.00	0.08	0.94	0.20	29.40	98.70	XP07 bille2 Plagio	6
216	2.64	47.65	0.23	11.61	2.54	0.00	0.00	11.38	5.58	16.61	98.23	XP07 bille2 verre	1
217	2.54	47.07	0.39	10.50	3.10	0.00	0.03	14.05	7.30	12.72	97.68	XP07 bille2 verre	2
218	2.50	46.86	0.32	10.54	3.20	0.00	0.04	14.25	7.34	12.69	97.75	XP07 bille2 verre	3
219	2.61	47.50	0.32	10.56	3.12	0.02	0.00	14.31	7.26	12.55	98.26	XP07 bille2 verre	4
220	2.64	46.74	0.34	10.72	3.17	0.01	0.00	13.91	7.22	12.50	97.25	XP07 bille2 verre	5
221	2.48	46.75	0.33	10.57	3.21	0.02	0.01	14.15	7.28	12.37	97.18	XP07 bille2 verre	6
222	2.53	47.12	0.31	10.62	3.17	0.00	0.00	13.81	7.16	12.67	97.38	XP07 bille2 verre	7
224	2.72	46.91	0.37	10.51	3.27	0.00	0.01	14.05	7.31	12.74	97.88	XP07 bille2 verre	9

BILLE	3	Т	=	1	1	46°	C

DILLE V	<u> </u>	70 0											
Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
102	3.15	50.37	0.11	14.74	0.14	0.01	0.00	0.99	0.28	30.32	100.11	XP07 bille3 Plagio	1
226	2.54	47.11	0.36	10.66	3.53	0.00	0.03	13.67	7.81	11.98	97.69	XP07 bille3 verre	2
227	2.41	47.55	0.34	10.65	3.39	0.00	0.00	13.51	7.92	11.84	97.61	XP07 bille3 verre	3
228	2.45	46.72	0.31	10.52	3.48	0.03	0.00	13.82	7.89	12.13	97.33	XP07 bille3 verre	4
229	2.37	46.59	0.32	10.61	3.48	0.01	0.07	14.10	7.84	11.91	97.29	XP07 bille3 verre	5
230	2.45	47.27	0.37	10.60	3.55	0.02	0.00	13.93	7.82	11.99	98.00	XP07 bille3 verre	6
231	2.31	47.16	0.36	10.45	3.30	0.00	0.14	13.91	7.75	12.10	97.47	XP07 bille3 verre	1
232	2.57	46.95	0.33	10.54	3.43	0.01	0.00	13.81	8.00	11.97	97.61	XP07 bille3 verre	2
233	2.54	46.75	0.33	10.75	3.40	0.01	0.00	13.37	7.90	11.97	97.03	XP07 bille3 verre	3
235	2.39	47.15	0.35	10.67	3.53	0.00	0.00	13.67	7.71	11.72	97.19	XP07 bille3 verre	2
237	3.11	48.56	0.05	14.96	0.06	0.00	0.00	0.93	0.22	29.51	97.39	XP07 bille3 Plagio	4
238	3.18	48.88	0.07	14.46	0.17	0.00	0.00	0.86	0.22	29.58	97.40	XP07 bille3 Plagio	5
239	3.25	49.91	0.05	14.87	0.07	0.00	0.04	0.86	0.18	29.25	98.49	XP07 bille3 Plagio	6
240	3.34	49.48	0.06	14.82	0.12	0.01	0.00	0.83	0.17	29.30	98.15	XP07 bille3 Plagio	

BILLE 4 T = 1137°C

Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
565	2.44	46.35	0.37	11.00	3.46	0.00	0.00	13.98	7.85	12.65	98.09	XP07 bille4 verre	
656	3.27	49.56	0.09	14.70	0.14	0.02	0.00	0.76	0.22	30.40	99.15	XP07 bille4 Plagio	

Annexe 1 Compositions chimiques des phases de XP06 (v = 3°C/h)
BILLE 1 T = 1136°C

Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
11	2.71	47.13	0.45	10.51	3.31	0.00	0.00	14.50	7.51	12.09	98.21	XP6 bille1 Verre	1
12	2.53	47.23	0.51	10.44	3.33	0.00	0.01	14.64	7.36	12.18	98.23	XP6 bille1 Verre	2
13	2.53	46.94	0.45	10.72	3.58	0.00	0.07	14.69	7.57	12.12	98.68	XP6 bille1 Verre	3
14	2.59	47.49	0.47	10.64	3.36	0.03	0.00	14.24	7.56	12.29	98.66	XP6 bille1 Verre	4
15	2.34	47.37	0.46	10.38	3.36	0.01	0.01	14.43	7.63	12.23	98.22	XP6 bille1 Verre	5
16	2.60	47.30	0.48	10.37	3.30	0.03	0.00	14.05	7.55	12.20	97.87	XP6 bille1 Verre	6
17	2.51	46.90	0.48	10.41	3.38	0.02	0.00	14.57	7.46	12.18	97.90	XP6 bille1 Verre	7
18	2.38	46.82	0.46	10.51	3.47	0.00	0.00	14.36	7.48	12.18	97.66	XP6 bille1 Verre	8
19	2.46	46.46	0.48	10.41	3.36	0.02	0.07	14.37	7.42	12.08	97.15	XP6 bille1 Verre	9
21	3.62	50.77	0.12	13.73	0.12	0.00	0.00	0.82	0.19	29.04	98.40	XP6 bille1 Plagio	2
22	3.20	50.23	0.11	14.36	0.10	0.00	0.00	0.89	0.18	29.41	98.48	XP6 bille1 Plagio	3
23	3.19	49.78	0.13	14.68	0.10	0.00	0.00	0.91	0.25	29.69	98.74	XP6 bille1 Plagio	4
24	3.31	49.91	0.10	14.47	0.08	0.00	0.04	0.71	0.23	29.42	98.27	XP6 bille1 Plagio	5
25	3.32	50.41	0.12	14.23	0.09	0.00	0.00	0.79	0.19	29.20	98.36	XP6 bille1 Plagio	6
26	2.57	47.44	0.46	10.74	3.06	0.04	0.00	13.66	6.92	13.83	98.71	XP6 bille1 Verre	1
27	2.40	47.46	0.44	10.45	3.25	0.01	0.00	13.92	7.52	12.09	97.53	XP6 bille1 Verre	2
28	2.48	46.55	0.45	10.46	3.38	0.00	0.00	14.14	7.58	12.21	97.24	XP6 bille1 Verre	3
29	2.45	47.29	0.45	10.48	3.31	0.00	0.05	14.21	7.57	12.02	97.82	XP6 bille1 Verre	4
30	2.75	46.96	0.46	10.58	3.13	0.00	0.00	14.77	7.43	12.68	98.76	XP6 bille1 Verre	5
31	2.34	46.75	0.42	10.89	3.32	0.00	0.00	15.04	7.00	12.04	97.79	XP6 bille1 Verre	1
32	2.39	46.88	0.42	10.97	3.41	0.00	0.03	14.74	6.83	12.09	97.76	XP6 bille1 Verre	2
33	2.40	47.20	0.48	10.80	3.35	0.03	0.00	14.68	7.06	11.92	97.92	XP6 bille1 Verre	3
34	2.57	46.88	0.45	10.89	3.34	0.06	0.00	14.91	7.04	12.02	98.16	XP6 bille1 Verre	4
35	2.66	48.19	0.43	11.70	2.64	0.01	0.00	9.91	5.47	18.17	99.18	XP6 bille1 Verre	5
36	3.36	49.02	0.12	14.03	0.20	0.04	0.00	1.51	0.43	28.43	97.14	XP6 bille1 Plagio	1
37	2.43	46.72	0.46	10.75	3.37	0.00	0.01	14.82	7.01	12.28	97.85	XP6 bille1 Verre	2
38	2.67	47.21	0.44	11.20	3.13	0.00	0.01	14.24	6.43	13.47	98.81	XP6 bille1 Verre	3
39	2.55	46.89	0.46	10.67	3.34	0.00	0.01	14.72	7.07	12.15	97.87	XP6 bille1 Verre	4
40	2.52	46.46	0.43	10.82	3.31	0.02	0.00	14.97	6.94	12.10	97.57	XP6 bille1 Verre	5
41	2.50	46.85	0.42	10.81	3.46	0.00	0.00	14.42	7.13	12.07	97.66	XP6 bille1 Verre	6
42	2.29	46.85	0.42	10.84	3.33	0.00	0.06	14.43	7.00	12.10	97.33	XP6 bille1 Verre	7
43	2.46	46.88	0.46	10.75	3.37	0.05	0.00	14.89	6.98	12.25	98.09	XP6 bille1 Verre	8

BILLE 2 T = 1126°C

108

109

95

96

110

3.6041 51.7652 0.1373 13.9024 0.1129

4.1499 52.6303 0.1454 12.8475 0.1442

2.4038 47.4575 0.5288 11.7614 4.6045

0.546 11.7195 4.7337

0.3724

0.0153

2.6642 47.6376

 $0.0003 \quad 37.7447 \quad 0.0022$

0.035

0.002

0.0439

0.0308

0.0176

0.0002

0.0002

0.0002

0.0002

0.0237

1.0381

16.6227

25.9

1.3561

0.2111 29.2146 100.021

4.9745 9.8405 98.7409

36.5122 0.0102 100.601

28.207 99.7557

0.2443

16.3347 4.7896 10.0598 97.9814

BILLE 2	BILLE 2 T = 1126°C												
Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
44	2.37	45.73	0.47	11.11	3.92	0.00	0.02	15.81	5.28	11.18	95.89	XP06 bille 2 Verre	1
45	2.45	45.69	0.48	11.15	4.06	0.00	0.05	15.54	5.17	11.07	95.67	XP06 bille 2 Verre	2
46	2.25	45.24	0.47	11.38	3.97	0.00	0.05	15.30	5.29	11.15	95.09	XP06 bille 2 Verre	3
47	2.39	44.76	0.42	11.23	4.15	0.00	0.00	15.63	5.33	11.03	94.94	XP06 bille 2 Verre	4
48	3.97	50.31	0.15	13.38	0.16	0.00	0.03	1.00	0.19	28.41	97.60	XP06 bille 2 Plagio	1
49	3.54	49.82	0.11	13.60	0.14	0.03	0.00	1.02	0.17	28.54	96.97	XP06 bille 2 Plagio	2
50	3.46	49.43	0.06	13.89	0.10	0.00	0.00	0.73	0.24	28.74	96.64	XP06 bille 2 Plagio	3
51	3.45	49.38	0.11	13.97	0.08	0.00	0.00	0.91	0.23	29.16	97.29	XP06 bille 2 Plagio	4
52	3.35	47.74	0.09	14.13	0.08	0.00	0.00	0.70	0.21	29.06	95.37	XP06 bille 2 Plagio	5
53 54	3.53	47.89	0.08	14.29	0.04	0.00	0.00	0.73	0.16	29.59	96.30	XP06 bille 2 Plagio XP06 bille 2 Plagio	6 7
54 55	3.49 3.90	49.02 49.94	0.14 0.12	14.21 13.58	0.02 0.10	0.02	0.00	0.81 0.87	0.21 0.21	29.39 28.72	97.33 97.45	XP06 bille 2 Plagio	8
56	2.27	45.58	0.12	11.40	4.12	0.00	0.00	15.15	5.27	10.90	95.18	XP06 bille 2 Verre	9
57	2.31	45.61	0.40	11.28	4.15	0.00	0.06	15.13	5.21	10.95	95.51	XP06 bille 2 Verre	1
58	2.38	45.54	0.49	11.41	4.07	0.03	0.00	15.58	5.24	11.18	95.91	XP06 bille 2 Verre	2
59	2.43	46.40	0.46	11.51	3.94	0.03	0.02	15.93	5.57	11.43	97.69	XP06 bille 2 Verre	1
61	2.42	46.03	0.43	11.53	4.03	0.07	0.00	16.53	5.58	11.20	97.84	XP06 bille 2 Verre	3
62	2.42	46.21	0.40	11.38	3.89	0.00	0.00	16.32	5.53	11.24	97.39	XP06 bille 2 Verre	4
63	2.42	46.10	0.44	11.51	3.99	0.03	0.00	16.35	5.59	11.33	97.77	XP06 bille 2 Verre	5
64	2.32	46.05	0.43	11.37	3.82	0.03	0.00	16.31	5.65	11.29	97.29	XP06 bille 2 Verre	6
65	2.42	45.64	0.48	11.61	3.86	0.02	0.01	16.20	5.57	11.36	97.17	XP06 bille 2 Verre	7
66	2.32	45.87	0.43	11.48	3.96	0.03	0.00	16.27	5.54	11.10	97.00	XP06 bille 2 Verre	8
67	2.30	46.11	0.46	11.54	4.02	0.01	0.00	16.27	5.52	11.32	97.55	XP06 bille 2 Verre	9
68	2.73	45.72	0.43	11.33	4.00	0.00	0.08	16.68	5.44	11.32	97.74	XP06 bille 2 Verre	10
70	2.29	46.27	0.43	11.38	3.86	0.00	0.00	16.68	5.46	11.30	97.66	XP06 bille 2 Verre	1
71	2.46	46.22	0.41	11.61	3.87	0.00	0.02	16.10	5.61	11.34	97.65	XP06 bille 2 Verre	2
72	2.18	45.50	0.45	11.29	4.01	0.01	0.00	16.17	5.56	11.32	96.48	XP06 bille 2 Verre	3
73	2.32	46.10	0.44	11.49	3.96	0.03	0.05	16.17	5.51	11.19	97.24	XP06 bille 2 Verre	4
74	2.19	45.90	0.52	11.42	4.09	0.00	0.00	16.34	5.45	11.19	97.10	XP06 bille 2 Verre	5
75	2.74	45.73	0.46	11.87	3.74	0.03	0.05	16.05	5.14	13.02	98.84	XP06 bille 2 Verre	6
76	3.24	49.17	0.12	14.33	0.35	0.02	0.00	1.71	0.41	28.39	97.74	XP06 bille 2 Plagio	1
77	2.35	45.38	0.45	11.43	3.82	0.00	0.00	16.59	5.50	11.22	96.74	XP06 bille 2 Verre	2
78	2.42	45.71	0.42	11.55	3.93	0.01	0.00	16.25	5.52	11.05	96.86	XP06 bille 2 Verre	3
79	2.32	45.69	0.47	11.37	4.00	0.00	0.00	16.37	5.45	11.24	96.92	XP06 bille 2 Verre	4
80	2.27	45.97	0.44	11.65	4.02	0.03	0.00	15.91	5.64	10.97	96.89	XP06 bille 2 Verre	5
81	2.40	45.97	0.45	11.41	3.95	0.02	0.00	16.18	5.37	11.17	96.90	XP06 bille 2 Verre	6
82	2.37	46.43	0.42	11.58	4.00	0.00	0.01	16.22	5.52	11.15	97.71	XP06 bille 2 Verre	7
83	2.26	46.38	0.43	11.37	3.95	0.00	0.00	15.91	5.45	10.97	96.72	XP06 bille 2 Verre	8
84	2.37	46.51	0.43	11.37	4.02	0.00	0.00	16.10	5.47	11.13	97.40	XP06 bille 2 Verre	9
85	2.44	46.48	0.44	11.53	3.94	0.01	0.00	15.78	5.49	11.07	97.18	XP06 bille 2 Verre	10
86 87	2.34 2.48	46.65 46.36	0.47	11.56	3.92	0.02	0.00 0.02	16.17	5.36 5.52	11.09 11.22	97.58 97.69	XP06 bille 2 Verre XP06 bille 2 Verre	11
88	2.46	46.64	0.49 0.45	11.51 11.53	3.95 3.97	0.00	0.02	16.12 16.76	5.49	11.22	98.45	XP06 bille 2 Verre	12 13
9	0.00	37.76	0.43	0.41	0.07	0.00	0.00	24.01	37.21	0.03	99.62	XP06 bille 2 Olivine	13
10	3.17	50.42	0.00	14.66	0.07	0.04	0.07	1.01	0.19	29.92	99.65	XP06 bille 2 Plagio	
89	2.43	47.17	0.10	11.44	4.07	0.03	0.00	16.21	5.49	11.05	98.30	XP06 bille 2 Verre	
90	0.02	37.55	0.02	0.42	0.08	0.00	0.05	25.67	36.53	0.05	100.39	XP06 bille 2 Olivine	
91	2.50	47.02	0.54	11.17	4.00	0.01	0.02	15.51	5.10	11.28	97.15	XP06 bille 2 Verre	
92	2.48	46.51	0.48	11.27	4.33	0.02	0.04	15.44	5.24	11.11	96.92	XP06 bille 2 Verre	
	3 T = 11												l
Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
93	0.05	38.01	0.01	0.63	0.07	0.00	0.00	27.43	34.88	0.15	101.23	XP06 bille 3 Olivine	
94	3.28	51.13	0.07	13.72	0.08	0.00	0.00	0.99	0.22	29.04	98.54	XP06 bille 3 Plagio	
104	3.34	50.30	0.10	14.36	0.10	0.01	0.00	0.82	0.15	29.01	98.18	XP06 bille 3 Plagio	
105	0.23	38.88	0.10	1.65	0.61	0.00	0.05	26.38	32.51	1.18	101.58	XP06 bille 3 Olivine	
106	2.47	47.52	0.57	11.68	4.60	0.00	0.00	14.79	4.98	10.57	97.17	XP06 bille 3 verre	
107	2.46	48.34	0.61	11.50	4.54	0.00	0.00	15.35	5.02	10.84	98.66	XP06 bille 3 verre	
BILLE 4	1 T = 11	06°C											
Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
108	3 6041	51 7652	0.4272	12.0024	0.4420	0.035	0.0002	1 0381	0.0444	29 2146	100 001	XP06 bille 4 Plagio	

XP06 bille 4 Plagio

XP06 bille 4 verre

XP06 bille 4 Olivine

XP06 bille 4 Plagio

XP06 bille 4 verre

Annexe 1 Compositions chimiques des phases de XP17 (palier final 1116°

BILLE 1 t = 0h

RILLE,	1 t = Un												
Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
41	2.57	49.08	0.53	11.39	4.82	0.03	0.02	15.55	4.98	10.32	99.29	XP17 bille 1 verre	
42	2.36	49.27	0.51	11.49	4.74	0.00	0.00	15.19	4.66	10.57	98.79	XP17 bille 1 verre	
60	2.31	49.24	0.53	11.59	4.71	0.00	0.00	15.34	4.94	10.66	99.32	XP17 bille 1 verre	
44	2.47	49.37	0.54	11.53	4.81	0.00	0.00	15.07	4.78	10.30	98.87	XP17 bille 1 verre	
88	2.31	49.32	0.52	11.56	4.82	0.00	0.04	14.79	4.99	10.59	98.95	XP17 bille 1 verre	1
89	4.08	52.65	0.13	13.50	0.11	0.04	0.00	0.86	0.22	29.22	100.81	XP17 bille 1 plagio	2
90	3.40	51.02	0.09	14.52	0.11	0.00	0.00	0.82	0.16	30.56	100.69	XP17 bille 1 plagio	3
91	3.48	50.86	0.09	14.46	0.10	0.00	0.00	0.64	0.19	30.38	100.19	XP17 bille 1 plagio	4
92	3.85	51.82	0.12	13.64	0.09	0.00	0.00	0.75	0.19	29.61	100.06	XP17 bille 1 plagio	5
93	4.05	52.45	0.10	13.33	0.12	0.00	0.01	0.74	0.20	29.17	100.17	XP17 bille 1 plagio	6
94	3.87	52.52	0.13	12.88	0.11	0.02	0.06	0.81	0.22	29.29	99.91	XP17 bille 1 plagio	7
95		52.97	0.14	13.07		0.01	0.00			28.88	100.44	, ,	8
	4.10				0.08			1.05	0.13			XP17 bille 1 plagio	
96	2.30	48.92	0.49	11.38	4.72	0.00	0.00	15.79	5.25	10.02	98.86	XP17 bille 1 verre	9
97	0.03	37.45	0.00	0.45	0.02	0.02	0.00	28.33	34.71	0.02	101.02	XP17 bille 1 olivine	10
98	0.00	37.60	0.00	0.40	0.02	0.00	0.00	27.83	35.29	0.00	101.14	XP17 bille 1 olivine	11
99	0.00	37.59	0.02	0.40	0.04	0.02	0.00	28.10	35.58	0.06	101.79	XP17 bille 1 olivine	12
100	0.00	36.98	0.03	0.47	0.03	0.00	0.00	27.99	35.42	0.03	100.94	XP17 bille 1 olivine	13
102	0.00	37.73	0.00	0.46	0.03	0.00	0.00	28.25	35.36	0.02	101.85	XP17 bille 1 olivine	15
103	0.00	16.76	0.03	0.41	0.04	0.02	0.00	26.94	43.31	0.27	87.77	XP17 bille 1 olivine	16
104	0.00	39.65	0.00	0.41	0.03	0.00	0.03	29.03	32.22	0.02	101.39	XP17 bille 1 olivine	17
105	0.00	37.71	0.00	0.42	0.03	0.00	0.03	29.42	33.76	0.02	101.36	XP17 bille 1 olivine	18
106	0.00	37.35	0.01	0.51	0.06	0.00	0.02	30.09	33.70	0.01	101.75	XP17 bille 1 olivine	19
107	0.00	37.13	0.01	0.58	0.07	0.00	0.03	29.54	33.36	0.00	100.70	XP17 bille 1 olivine	20
108	2.98	49.10	0.30	11.96	2.90	0.00	0.07	9.78	2.77	18.36	98.21	XP17 bille 1 olivine	21
109	4.18	52.45	0.11	13.21	0.14	0.01	0.04	0.82	0.21	29.57	100.73	XP17 bille 1 olivine	22
110	4.12	52.37	0.12	12.97	0.12	0.00	0.02	0.85	0.17	29.00	99.74	XP17 bille 1 plagio	23
111	3.10	49.85	0.39	11.93	3.63	0.00	0.07	12.12	3.74	15.28	100.10	XP17 bille 1 verre	24
112	2.25	49.00	0.53	11.61	4.84	0.01	0.00	15.14	4.94	10.54	98.85	XP17 bille 1 verre	25
51	2.37	49.09	0.55	11.56	4.74	0.00	0.00	15.50	5.01	10.57	100.73	XP17 bille 1 verre	1
52	2.25	48.98	0.53	11.26	4.76	0.00	0.02	15.27	4.93	10.54	99.88	XP17 bille 1 verre	2
												XP17 bille 1 verre	3
53	2.40	48.93	0.55	11.70	4.79	0.00	0.03	15.00	4.84	10.45	100.02		
54	2.29	49.01	0.51	11.60	4.67	0.01	0.00	15.14	4.89	10.65	100.11	XP17 bille 1 verre	4
55	2.51	49.30	0.50	11.54	4.78	0.02	0.00	14.93	4.92	10.51	100.35	XP17 bille 1 verre	5
56	2.25	48.95	0.53	11.56	4.70	0.00	0.01	14.91	4.81	10.60	99.69	XP17 bille 1 verre	6
57	2.27	48.90	0.58	11.42	4.71	0.01	0.00	14.72	4.95	10.64	99.54	XP17 bille 1 verre	7
58	2.41	49.19	0.51	11.54	4.35	0.00	0.00	14.64	4.61	12.50	101.05	XP17 bille 1 verre	8
59	4.30	52.96	0.15	12.85	0.12	0.00	0.04	0.75	0.20	29.01	101.68	XP17 bille 1 plagio	9
60	3.97	53.29	0.18	13.22	0.12	0.01	0.00	0.70	0.19	29.17	102.14	XP17 bille 1 plagio	10
61	3.85	52.03	0.09	13.39	0.08	0.00	0.00	0.70	0.07	29.16	100.62	XP17 bille 1 plagio	11
62	3.64	51.62	0.14	13.60	0.10	0.00	0.00	0.66	0.20	30.00	101.18	XP17 bille 1 plagio	12
63	3.52	51.58	0.08	13.83	0.06	0.01	0.00	0.65	0.25	29.96	101.12	XP17 bille 1 plagio	13
64	3.48	51.36	0.10	13.93	0.13	0.00	0.05	0.53	0.20	29.93	100.87	XP17 bille 1 plagio	14
65	3.42	51.21	0.09	14.14	0.10	0.00	0.02	0.45	0.27	30.07	100.86	XP17 bille 1 plagio	15
66	3.46	51.21	0.09	14.22	0.10	0.02	0.00	0.67	0.37	30.37	101.55	XP17 bille 1 plagio	16
67	3.34	50.96	0.09	14.28	0.08	0.00	0.07	0.63	0.26	30.34	101.06	XP17 bille 1 plagio	17
68	3.27	50.94	0.08	14.49	0.11	0.03	0.00	0.52	0.19	30.44	101.04	XP17 bille 1 plagio	18
69	3.34	50.95	0.09	14.63	0.10	0.00	0.06	0.61	0.19	30.33	101.25	XP17 bille 1 plagio	19
70	3.39	51.01	0.07	14.32	0.10	0.00	0.03	0.52	0.16	30.35	100.83	XP17 bille 1 plagio	20
38	3.29	51.88	0.12	13.98	0.10	0.00	0.06	0.57	0.20	29.90	100.10	XP17 bille 1 plagio	_~
39	4.23				0.12		0.00	0 = 4		28.98	100.60		
		53.37	0.14	12.94		0.00		0.54	0.30			XP17 bille 1 plagio XP17 bille 1 plagio	
61	3.89	52.63	0.16	13.65	0.13	0.00	0.00	0.81	0.18	29.06	100.51	, ,	
43	0.01	37.90	0.00	0.43	0.06	0.00	0.06	26.01	36.04	0.06	100.56	XP17 bille 1 olivine	
40	0.00	37.78	0.00	0.50	0.07	0.00	0.00	27.83	34.05	0.02	100.24	XP17 bille 1 olivine	
45	2.24	48.57	0.49	10.36	4.50	0.00	0.00	16.04	6.62	9.31	98.12	XP17 bille 1 olivine	1
46	0.00	37.89	0.01	0.52	0.06	0.01	0.05	28.10	33.64	0.04	100.32	XP17 bille 1 olivine	2
47	0.00	37.81	0.00	0.43	0.07	0.01	0.00	27.16	34.93	0.04	100.45	XP17 bille 1 olivine	3
48	0.00	37.96	0.01	0.41	0.05	0.01	0.00	26.52	35.93	0.03	100.93	XP17 bille 1 olivine	4
49	0.00	38.02	0.02	0.40	0.04	0.01	0.01	25.70	36.31	0.04	100.54	XP17 bille 1 olivine	5
50	0.00	38.11	0.00	0.44	0.05	0.00	0.00	26.20	36.38	0.03	101.23	XP17 bille 1 olivine	6
51	0.01	37.96	0.01	0.42	0.05	0.00	0.01	26.49	36.29	0.02	101.24	XP17 bille 1 olivine	7
52 52	0.00	37.71	0.02	0.40	0.08	0.01	0.00	26.88	36.00	0.00	101.10	XP17 bille 1 olivine	8
53	0.05	37.91	0.00	0.41	0.05	0.00	0.00	27.16	35.41	0.00	100.99	XP17 bille 1 olivine	9
54	0.01	37.57	0.00	0.46	0.02	0.00	0.00	28.02	34.83	0.00	100.90	XP17 bille 1 olivine	10
55	0.08	37.37	0.00	0.59	0.10	0.01	0.00	28.46	34.26	0.24	101.11	XP17 bille 1 olivine	11
56	2.37	47.96	0.53	11.12	4.60	0.00	0.00	15.60	5.97	10.04	98.19	XP17 bille 1 verre	12
57	2.34	49.16	0.53	11.70	4.70	0.00	0.00	15.45	4.81	10.51	99.21	XP17 bille 1 verre	13
58	2.53	49.09	0.56	11.56	4.71	0.00	0.00	15.06	4.91	10.44	98.86	XP17 bille 1 verre	14
59	2.33	49.19	0.51	11.24	4.74	0.02	0.00	15.49	4.74	10.48	98.74	XP17 bille 1 verre	15
55	2.00	.0.10	0.01	4	1.17	0.02	0.00		1.17		JU.17	biilo i voito	

BILLE 2 t = 6h35

Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
77	2.84	45.49	0.64	8.70	5.19	0.00	0.00	18.61	5.41	11.57	98.45	XP17 bille 2 verre	
75	2.84	45.65	0.61	9.00	5.43	0.01	0.00	18.75	5.19	11.41	98.88	XP17 bille 2 verre	
72	2.68	45.26	0.68	8.83	5.38	0.01	0.00	19.16	5.25	11.37	98.60	XP17 bille 2 verre	
71	3.62	50.82	0.11	13.78	0.09	0.00	0.04	0.68	0.00	29.90	99.03	XP17 bille 2 palgio	
76	3.30	50.38	0.09	14.63	0.09	0.00	0.00	0.74	0.00	30.63	99.88	XP17 bille 2 palgio	
74	0.24	48.34	0.01	16.51	2.63	0.01	0.00	10.37	15.88	5.23	99.22	XP17 bille 2 cpx	
70	0.22	49.84	0.01	15.51	2.00	0.01	0.05	10.39	17.27	4.64	99.95	XP17 bille 2 cpx	
78	0.22	49.78	0.00	13.65	1.78	0.00	0.00	12.32	17.76	3.38	98.90	XP17 bille 2 cpx	
73	0.75	49.45	0.03	13.35	2.21	0.00	0.00	13.45	15.04	4.45	98.73	XP17 bille 2 cpx	
79	2.82	45.49	0.60	8.90	5.33	0.01	0.09	19.23	5.40	11.32	99.17	XP17 bille 2 verre	1
80	2.78	45.28	0.61	8.92	5.26	0.00	0.01	18.99	5.19	11.10	98.12	XP17 bille 2 verre	2
81	2.67	45.52	0.64	8.87	5.28	0.00	0.00	18.99	5.50	11.31	98.78	XP17 bille 2 verre	3
82	2.76	45.56	0.62	8.77	5.18	0.01	0.05	19.09	5.35	11.34	98.72	XP17 bille 2 verre	4
83	4.52	45.65	0.27	9.07	1.50	0.03	0.00	18.89	1.48	11.79	93.18	XP17 bille 2 verre	5
84	4.38	52.58	0.15	12.52	0.17	0.01	0.00	1.00	0.00	29.00	99.80	XP17 bille 2 palgio	6
85	4.37	52.85	0.15	12.54	0.16	0.00	0.00	0.84	0.00	28.94	99.85	XP17 bille 2 palgio	7
86	4.12	51.49	0.17	12.36	0.13	0.00	0.00	0.88	0.06	28.40	97.61	XP17 bille 2 palgio	8
87	4.19	51.90	0.18	12.56	0.15	0.00	0.02	0.90	0.03	28.74	98.67	XP17 bille 2 palgio	9
88	0.23	50.89	0.01	17.27	1.57	0.00	0.05	11.28	16.05	3.04	100.38	XP17 bille 2 cpx	10
89	0.31	50.26	0.01	17.81	1.65	0.01	0.01	10.47	15.75	3.42	99.69	XP17 bille 2 cpx	11
90	0.26	50.35	0.00	17.68	1.67	0.00	0.07	10.36	15.80	3.88	100.06	XP17 bille 2 cpx	12
91	0.23	51.46	0.02	16.22	1.35	0.01	0.00	10.45	17.52	3.17	100.44	XP17 bille 2 cpx	13
92	0.20	49.27	0.02	17.19	2.11	0.02	0.00	9.73	16.07	4.85	99.45	XP17 bille 2 cpx	14
93	0.19	49.85	0.00	15.61	2.00	0.00	0.03	10.48	16.65	4.59	99.40	XP17 bille 2 cpx	15
94	0.19	49.78	0.00	12.74	2.10	0.01	0.00	11.81	18.79	4.61	100.03	XP17 bille 2 cpx	16
95	0.08	50.43	0.03	11.99	1.99	0.00	0.00	11.82	19.49	4.35	100.17	XP17 bille 2 cpx	17
96	0.23	50.38	0.00	12.49	1.93	0.01	0.00	11.92	19.25	3.99	100.19	XP17 bille 2 cpx	18
97	0.20	50.18	0.01	12.96	2.09	0.00	0.04	11.50	18.41	4.06	99.46	XP17 bille 2 cpx	19
98	2.74	50.59	0.09	13.38	0.98	0.01	0.00	5.71	7.72	18.48	99.70	XP17 bille 2 cpx	20
99	4.18	52.58	0.15	13.02	0.14	0.00	0.00	0.90	0.10	29.21	100.28	XP17 bille 2 palgio	21
100	4.05	52.04	0.15	12.93	0.24	0.00	0.02	1.11	0.22	28.79	99.55	XP17 bille 2 palgio	22
101	3.62	52.19	0.14	13.37	0.10	0.00	0.00	0.82	0.04	29.60	99.88	XP17 bille 2 palgio	23
102	3.76	51.78	0.11	13.58	0.13	0.00	0.00	0.70	0.16	29.90	100.11	XP17 bille 2 palgio	24
103	3.68	51.44	0.10	13.79	0.11	0.00	0.00	0.80	0.00	30.13	100.06	XP17 bille 2 palgio	25

BILLE 3 t = 15h15

BILLE 3	3 t = 15	h15											
Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
60	0.00	37.75	0.00	0.41	0.08	0.00	0.00	24.96	37.28	0.03	100.52	XP17 bille 3 olivine	
61	0.04	36.52	0.00	0.44	0.08	0.01	0.00	30.97	32.18	0.03	100.25	XP17 bille 3 olivine	
6	2.38	50.02	0.68	8.93	5.57	0.00	0.00	15.82	4.41	11.28	99.08	XP17 bille 3 verre	1
7	2.61	49.82	0.72	9.18	5.47	0.00	0.00	15.75	4.10	11.25	98.89	XP17 bille 3 verre	2
8	0.00	36.94	0.02	0.40	0.07	0.00	0.07	30.40	32.14	0.02	100.06	XP17 bille 3 olivine	3
9	0.00	37.29	0.01	0.41	0.05	0.00	0.00	29.61	32.52	0.01	99.90	XP17 bille 3 olivine	4
10	0.00	37.27	0.00	0.37	0.05	0.00	0.00	29.26	33.35	0.03	100.33	XP17 bille 3 olivine	5
11	0.01	37.68	0.00	0.37	0.03	0.00	0.00	27.49	35.10	0.02	100.69	XP17 bille 3 olivine	6
12	0.00	38.22	0.01	0.40	0.05	0.01	0.01	25.77	36.35	0.02	100.83	XP17 bille 3 olivine	7
13	0.14	46.03	0.03	8.49	0.08	0.00	0.02	10.05	31.17	21.67	117.67	XP17 bille 3 plagio	8
14	0.00	38.41	0.02	0.42	0.06	0.00	0.00	24.65	37.70	0.01	101.27	XP17 bille 3 olivine	9
15	0.02	38.31	0.02	0.42	0.06	0.00	0.08	24.55	37.53	0.06	101.05	XP17 bille 3 olivine	10
16	0.00	38.44	0.00	0.40	0.08	0.00	0.01	23.65	37.27	0.03	99.87	XP17 bille 3 olivine	11
17	0.02	38.45	0.00	0.43	0.07	0.00	0.00	25.08	36.83	0.22	101.10	XP17 bille 3 olivine	12
18	3.99	52.34	0.14	13.23	0.13	0.01	0.00	0.98	0.29	29.22	100.32	XP17 bille 3 olivine	13
19	3.84	52.35	0.13	13.18	0.14	0.00	0.00	0.92	0.00	29.36	99.91	XP17 bille 3 olivine	14
20	0.01	38.05	0.00	0.38	0.05	0.00	0.00	25.74	36.00	0.02	100.25	XP17 bille 3 olivine	15
21	0.00	37.85	0.03	0.35	0.04	0.01	0.03	27.62	34.89	0.02	100.84	XP17 bille 3 olivine	16
22	2.52	46.87	0.58	8.40	4.86	0.01	0.01	16.40	7.44	9.89	96.96	XP17 bille 3 verre	17
23	0.00	37.51	0.00	0.35	0.03	0.00	0.00	28.78	33.47	0.00	100.13	XP17 bille 3 olivine	18
24	0.01	37.71	0.00	0.38	0.07	0.01	0.00	28.76	33.52	0.06	100.51	XP17 bille 3 olivine	19
25	0.00	37.91	0.00	0.41	0.08	0.00	0.00	27.26	35.13	0.06	100.84	XP17 bille 3 olivine	20
26	3.35	50.32	0.08	12.60	0.12	0.02	0.00	3.02	2.49	24.35	96.35	XP17 bille 3 plagio	21
27	2.80	50.51	0.68	9.50	4.86	0.00	0.05	14.43	2.87	13.24	98.93	XP17 bille 3 verre	22
28	2.78	50.74	0.75	9.14	5.16	0.02	0.00	15.02	3.78	12.22	99.60	XP17 bille 3 verre	23
29	3.36	51.35	0.54	9.78	4.37	0.00	0.03	12.91	3.23	14.66	100.22	XP17 bille 3 verre	24
30	3.47	49.34	0.15	12.96	0.10	0.01	0.00	0.68	0.17	30.49	97.37	XP17 bille 3 plagio	25
31	2.57	50.19	0.68	9.04	5.32	0.03	0.00	15.36	4.40	11.38	98.96	XP17 bille 3 verre	1
32	2.86	49.80	0.73	8.95	5.48	0.00	0.02	15.31	4.44	11.30	98.89	XP17 bille 3 verre	2
33	2.88	50.19	0.70	9.16	5.38	0.00	0.07	15.10	4.33	11.32	99.12	XP17 bille 3 verre	3
34	2.82	49.76	0.70	8.97	5.38	0.00	0.00	15.14	4.35	11.13	98.23	XP17 bille 3 verre	4
35	2.82	49.81	0.70	9.04	5.36	0.02	0.00	15.35	4.41	11.23	98.74	XP17 bille 3 verre	5
36	2.75	49.62	0.71	8.97	5.46	0.00	0.05	15.67	4.26	11.39	98.87	XP17 bille 3 verre	6
37	2.76	49.55	0.76	8.98	5.36	0.02	0.00	15.23	4.24	11.24	98.13	XP17 bille 3 verre	7
38	2.79	49.73	0.69	8.84	5.46	0.01	0.00	15.40	4.49	11.31	98.71	XP17 bille 3 verre	8
39	2.58	50.07	0.73	9.05	5.42	0.03	0.00	14.94	4.21	11.35	98.37	XP17 bille 3 verre	9
40	2.89	49.97	0.71	9.17	5.38	0.00	0.00	15.47	4.50	11.23	99.32	XP17 bille 3 verre	10
41	2.72	49.83	0.74	8.91	5.49	0.00	0.00	14.80	4.40	11.25	98.14	XP17 bille 3 verre	11
42	2.74	50.26	0.67	9.08	5.54	0.00	0.01	15.27	4.29	11.34	99.20	XP17 bille 3 verre	12
43	2.82	49.68	0.68	9.03	5.46	0.00	0.00	15.44	4.05	11.15	98.31	XP17 bille 3 verre	13
44	2.77	50.17	0.65	9.02	5.44	0.01	0.04	15.23	4.01	11.44	98.77	XP17 bille 3 verre	14
45	2.78	49.63	0.67	9.03	5.44	0.01	0.00	15.27	3.97	11.28	98.07	XP17 bille 3 verre	15
46	2.76	49.83	0.71	9.04	5.36	0.00	0.02	15.09	4.28	11.30	98.38	XP17 bille 3 verre	16
47	2.92	49.82	0.73	8.97	5.42	0.00	0.00	15.13	4.33	11.33	98.64	XP17 bille 3 verre	17
48	2.89	50.26	0.66	8.97	5.40	0.01	0.01	15.56	4.22	11.28	99.25	XP17 bille 3 verre	18
49	2.69	48.72	0.69	9.08	5.48	0.02	0.08	15.32	5.22	10.94	98.23	XP17 bille 3 verre	19
50	0.00	37.16	0.00	0.41	0.16	0.00	0.00	30.61	32.35	0.01	100.69	XP17 bille 3 olivine	20
51	0.27	36.70	0.11	0.50	0.09	0.00	0.04	29.07	31.78	0.19	98.73	XP17 bille 3 olivine	21
52	0.00	37.47	0.03	0.42	0.08	0.00	0.00	28.52	33.51	0.02	100.05	XP17 bille 3 olivine	22
53	0.00	37.27	0.00	0.49	0.07	0.00	0.00	28.84	34.31	0.02	100.99	XP17 bille 3 olivine	23
54	0.15	37.51	0.02	0.47	0.07	0.00	0.00	27.68	33.36	0.07	99.34	XP17 bille 3 olivine	24
55	3.85	52.18	0.09	13.13	0.10	0.02	0.03	1.00	0.19	29.22	99.81	XP17 bille 3 plagio	25
62	2.46	48.06	0.70	9.12	6.26	0.01	0.01	16.32	3.79	10.90	97.64	XP17 bille 3 verre	1
63	2.82	48.15	0.65	9.08	6.20	0.00	0.00	16.41	3.99	11.07	98.37	XP17 bille 3 verre	2
64	2.71	48.07	0.68	9.12	6.13	0.00	0.09	16.55	4.43	10.93	98.71	XP17 bille 3 verre	3
65	2.74	48.16	0.64	9.13	6.25	0.00	0.00	16.49	4.14	10.98	98.53	XP17 bille 3 verre	4
66	2.61	47.81	0.65	9.22	6.22	0.02	0.05	17.13	3.54	11.18	98.41	XP17 bille 3 verre	5
67	2.59	48.07	0.70	9.34	6.28	0.02	0.00	16.61	4.13	10.92	98.66	XP17 bille 3 verre	6
68	2.53	47.76	0.58	8.93	6.20	0.00	0.01	17.01	4.73	10.77	98.52	XP17 bille 3 verre	7
69	0.98	41.98	0.29	3.81	1.93	0.03	0.00	24.64	21.74	6.22	101.62	XP17 bille 3 olivine	8
70	0.00	36.55	0.00	0.39	0.07	0.01	0.00	31.20	32.28	0.01	100.51	XP17 bille 3 olivine	9
71	0.00	36.70	0.00	0.42	0.06	0.01	0.00	30.13	32.70	0.00	100.02	XP17 bille 3 olivine	10
72	0.04	36.64	0.00	0.41	0.05	0.02	0.00	30.58	33.17	0.10	101.00	XP17 bille 3 olivine	11
73	0.02	36.61	0.01	0.37	0.07	0.00	0.00	29.95	33.11	0.00	100.14	XP17 bille 3 olivine	12
74	0.03	36.74	0.00	0.41	0.03	0.00	0.06	29.87	33.44	0.00	100.58	XP17 bille 3 olivine	13
75	0.00	36.75	0.00	0.40	0.04	0.01	0.00	29.47	33.73	0.04	100.44	XP17 bille 3 olivine	14
76	0.01	36.33	0.01	0.45	0.04	0.00	0.00	30.39	33.64	0.04	100.90	XP17 bille 3 olivine	15
77	0.00	36.72	0.00	0.36	0.07	0.02	0.00	30.53	33.73	0.02	101.44	XP17 bille 3 olivine	16
78	0.00	36.65	0.02	0.42	0.04	0.02	0.09	29.56	33.83	0.01	100.63	XP17 bille 3 olivine	17
70 79	0.03	36.75	0.02	0.42	0.04	0.02	0.00	29.54	33.76	0.01	100.53	XP17 bille 3 olivine	18
80	0.00	36.81	0.01	0.36	0.06	0.00	0.00	29.64	33.46	0.00	100.33	XP17 bille 3 olivine	19
81	0.00	36.87	0.00	0.44	0.03	0.00	0.00	29.34	33.40	0.03	100.34	XP17 bille 3 olivine	20
82	0.02	36.93	0.00	0.35	0.05	0.00	0.00	28.93	34.62	0.03	100.14	XP17 bille 3 olivine	21
83	0.07	37.19	0.01	0.33	0.03	0.00	0.00	28.40	34.64	0.01	100.98	XP17 bille 3 olivine	22
84	0.02	36.74	0.02	0.40	0.01	0.00	0.00	28.93	35.06	0.01	100.09	XP17 bille 3 olivine	23
85	0.03	33.58	0.03	0.40	0.02	0.00	0.00	27.58	34.76	0.02	96.44	XP17 bille 3 olivine	24
86	0.03	32.98	0.00	0.35	0.04	0.00	0.00	28.22	34.72	0.03	96.35	XP17 bille 3 olivine	25
00	0.01	JZ.30	0.00	0.00	J.U 4	0.01	0.00	۷۵.۷۷	UT.12	0.00	50.55	AT 17 DING 5 OHVING	20

Annexe 1 Compositions chimiques des phases de XP19 (palier final 1150° BILLE 1 T = 0h

Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
309	1.01	42.82	0.14	2.01	0.82	0.01	0.00	17.92	32.60	2.92	100.23	XP19 bille 1 olivine	1
310	0.01	38.73	0.00	0.37	0.07	0.00	0.00	19.84	41.83	0.08	100.92	XP19 bille 1 olivine	2
311	0.16	39.08	0.01	0.82	0.20	0.02	0.02	20.23	40.61	1.00	102.15	XP19 bille 1 olivine	3
313	0.01	39.63	0.00	0.36	0.03	0.02	0.00	19.34	41.42	0.02	100.82	XP19 bille 1 olivine	5
314	0.01	39.73	0.01	0.37	0.03	0.00	0.01	19.46	41.38	0.04	101.03	XP19 bille 1 olivine	6
315	0.00	39.31	0.00	0.35	0.04	0.02	0.00	19.35	41.60	0.04	100.71	XP19 bille 1 olivine	7
316	0.01	38.74	0.01	0.40	0.07	0.00	0.00	19.79	40.70	0.06	99.77	XP19 bille 1 olivine	8
317	3.82	50.29	0.46	10.52	3.81	0.00	0.00	11.00	5.42	13.17	98.48	XP19 bille 1 verre	9
318	3.77	50.74	0.46	10.40	3.74	0.00	0.00	10.43	5.33	13.00	97.87	XP19 bille 1 verre	10
319	3.71	49.36	0.42	10.61	3.85	0.00	0.06	11.06	5.31	12.96	97.34	XP19 bille 1 verre	1
320	3.48	49.52	0.47	10.72	3.82	0.00	0.00	11.53	5.90	13.19	98.63	XP19 bille 1 verre	2
321	3.67	49.59	0.47	10.74	3.83	0.00	0.00	11.55	5.99	13.11	98.94	XP19 bille 1 verre	3
322	4.22	52.65	0.08	12.60	0.17	0.00	0.07	0.59	0.00	28.93	99.30	XP19 bille 1 plagio	4
323	3.56	51.04	0.06	14.02	0.11	0.01	0.00	0.72	0.00	30.10	99.63	XP19 bille 1 plagio	5
324	3.79	51.17	0.04	13.55	0.11	0.00	0.07	0.58	0.01	29.67	98.98	XP19 bille 1 plagio	6
325	4.23	52.64	0.09	12.56	0.20	0.01	0.00	0.67	0.00	28.47	98.86	XP19 bille 1 plagio	7
326	0.00	39.04	0.00	0.36	0.07	0.00	0.00	19.18	41.37	0.00	100.03	XP19 bille 1 olivine	8
327	0.02	40.21	0.03	0.38	0.04	0.00	0.00	19.81	40.21	0.03	100.73	XP19 bille 1 olivine	9
328	0.04	38.47	0.02	0.38	0.08	0.00	0.00	20.08	41.24	0.02	100.32	XP19 bille 1 olivine	10
329	0.04	39.22	0.00	0.47	0.08	0.00	0.01	20.31	40.82	0.04	100.99	XP19 bille 1 olivine	11
330	3.82	49.19	0.43	10.59	3.62	0.00	0.03	11.48	5.58	13.40	98.12	XP19 bille 1 verre	12
331	3.75	49.38	0.46	10.71	3.64	0.00	0.00	11.39	5.38	13.26	97.98	XP19 bille 1 verre	13
332	3.61	49.36	0.46	10.77	3.65	0.01	0.00	11.34	5.87	13.22	98.29	XP19 bille 1 verre	14
333	3.55	49.39	0.45	10.65	3.62	0.00	0.00	11.43	5.89	13.23	98.21	XP19 bille 1 verre	15

BILLE 2 t = 8h30°C

DILLE 4	2 t = 8h3	UC											
Point#	Na2O	SiO2	K2O	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
334	3.37	50.61	0.41	10.89	3.87	0.00	0.00	11.42	5.41	12.51	98.49	XP19 bille 2 verre	1
335	3.37	50.46	0.43	11.07	3.84	0.00	0.05	11.29	5.79	12.53	98.83	XP19 bille 2 verre	2
336	3.55	50.10	0.33	11.17	3.12	0.00	0.00	11.57	4.69	12.71	97.22	XP19 bille 2 verre	3
337	3.84	52.83	0.09	13.35	0.13	0.01	0.01	0.76	0.00	29.29	100.31	XP19 bille 2 plagio	4
338	3.79	52.48	0.07	13.20	0.11	0.00	0.00	0.85	0.14	29.10	99.73	XP19 bille 2 plagio	5
339	4.37	53.16	0.09	12.49	0.16	0.00	0.00	0.89	0.11	28.69	99.95	XP19 bille 2 plagio	6
340	2.54	48.88	0.30	8.82	2.64	0.00	0.07	13.40	13.54	10.19	100.38	XP19 bille 2 verre	7
341	0.03	39.31	0.00	0.61	0.11	0.00	0.00	20.60	39.20	0.23	100.08	XP19 bille 2 olivine	8
342	0.00	39.08	0.01	0.49	0.05	0.02	0.00	21.00	40.45	0.09	101.20	XP19 bille 2 olivine	9
343	4.64	53.62	0.12	11.92	0.00	0.02	0.02	0.89	0.26	28.32	99.98	XP19 bille 2 plagio	10
344	4.26	53.83		11.95		0.00	0.02	0.89	1.57	28.03	100.80	XP19 bille 2 plagio	
			0.10		0.13							XP19 bille 2 plagio XP19 bille 2 olivine	11
345	0.03	38.74	0.00	0.48	0.05	0.01	0.00	20.71	40.31	0.13	100.45		12
346	0.00	38.97	0.01	0.48	0.05	0.00	0.00	20.45	40.36	0.10	100.44	XP19 bille 2 olivine	13
347	2.72	46.29	0.34	8.03	2.75	0.00	0.00	13.85	14.33	10.04	98.35	XP19 bille 2 verre	14
348	3.30	50.43	0.42	11.14	3.79	0.01	0.00	11.89	5.54	12.89	99.41	XP19 bille 2 verre	15
349	3.24	49.81	0.42	11.19	3.77	0.00	0.00	11.60	5.18	12.66	97.86	XP19 bille 2 verre	16
350	3.38	49.93	0.43	11.00	3.85	0.00	0.00	11.77	5.81	12.69	98.87	XP19 bille 2 verre	17
351	3.32	50.35	0.40	11.06	3.77	0.00	0.00	11.88	5.99	12.73	99.49	XP19 bille 2 verre	18
352	3.57	49.98	0.45	11.23	3.85	0.00	0.00	12.13	5.88	12.68	99.76	XP19 bille 2 verre	19
353	3.33	50.43	0.43	11.11	3.81	0.00	0.00	11.71	5.38	12.58	98.78	XP19 bille 2 verre	20
354	3.37	50.28	0.38	11.59	3.57	0.01	0.00	11.48	5.60	13.80	100.08	XP19 bille 2 verre	1
355	3.48	50.35	0.36	11.39	3.41	0.00	0.00	10.50	5.06	15.10	99.64	XP19 bille 2 verre	2
356	3.40	50.22	0.42	11.07	3.82	0.02	0.01	11.90	5.36	12.65	98.87	XP19 bille 2 verre	3
357	3.29	50.20	0.40	11.46	3.83	0.01	0.00	11.42	5.43	12.70	98.73	XP19 bille 2 verre	4
358	0.52	40.03	0.07	1.60	0.56	0.00	0.00	19.94	35.92	1.95	100.59	XP19 bille 2 olivine	5
359	0.05	38.78	0.02	0.46	0.08	0.00	0.00	20.59	39.86	0.07	99.91	XP19 bille 2 olivine	6
360	0.00	39.21	0.01	0.45	0.04	0.00	0.06	20.84	39.83	0.04	100.48	XP19 bille 2 olivine	7
361	0.00	39.36	0.03	0.43	0.07	0.00	0.00	21.15	40.41	0.03	101.47	XP19 bille 2 olivine	8
362	3.64	51.15	0.10	10.77	0.13	0.00	0.02	3.50	5.68	23.36	98.33	XP19 bille 2 olivine	9
363	0.01	39.54	0.00	0.51	0.07	0.00	0.03	20.56	39.79	0.27	100.78	XP19 bille 2 olivine	10
364	0.01	39.27	0.00	0.43	0.03	0.00	0.00	21.13	40.07	0.04	100.97	XP19 bille 2 olivine	11
365	0.00	39.18	0.00	0.45	0.07	0.00	0.00	21.17	39.84	0.07	100.77	XP19 bille 2 olivine	12
366	0.00	39.13	0.01	0.36	0.06	0.01	0.04	21.07	40.20	0.04	100.77	XP19 bille 2 olivine	13
367	0.04	38.89	0.00	0.45	0.04	0.00	0.04	20.99	39.84	0.02	100.31	XP19 bille 2 olivine	14
368	0.04	39.46	0.00	0.43	0.04	0.00	0.04	21.00	40.15	0.02	100.31	XP19 bille 2 olivine	15
369	3.34	50.57		11.18	3.99	0.00	0.00	11.62	5.89	12.80	99.83	XP19 bille 2 verre	
			0.44										1
370	3.34	50.58	0.41	11.19	3.90	0.01	0.10	11.53	5.89	12.70	99.65	XP19 bille 2 verre	2
371	3.25	50.04	0.43	11.29	3.89	0.00	0.00	11.75	5.13	12.49	98.27	XP19 bille 2 verre	3
372	3.62	49.92	0.44	11.04	3.91	0.00	0.05	11.56	5.46	12.67	98.66	XP19 bille 2 verre	4
373	3.42	50.20	0.44	11.23	3.86	0.00	0.00	11.37	5.48	12.79	98.80	XP19 bille 2 verre	5
374	3.98	52.69	0.09	13.40	0.12	0.00	0.03	0.63	0.00	29.55	100.49	XP19 bille 2 plagio	6
375	3.48	51.88	0.06	13.94	0.11	0.00	0.03	0.64	0.00	30.35	100.48	XP19 bille 2 plagio	7
376	3.49	51.47	0.06	14.23	0.14	0.00	0.00	0.66	0.18	30.01	100.24	XP19 bille 2 plagio	8
377	3.58	51.37	0.10	13.76	0.32	0.00	0.00	1.26	0.00	28.82	99.21	XP19 bille 2 plagio	9
378	3.53	50.76	0.35	11.80	3.17	0.01	0.01	10.35	4.32	16.16	100.45	XP19 bille 2 verre	10
379	3.26	50.51	0.44	11.29	3.92	0.02	0.00	11.62	5.66	12.80	99.50	XP19 bille 2 verre	11
380	3.22	50.35	0.43	11.25	3.87	0.00	0.02	11.60	5.66	12.82	99.23	XP19 bille 2 verre	12
381	3.37	50.49	0.41	10.95	3.85	0.00	0.00	11.49	5.66	12.88	99.10	XP19 bille 2 verre	13
382	3.25	50.17	0.40	11.00	3.89	0.00	0.03	11.58	5.88	12.61	98.80	XP19 bille 2 verre	14
383	3.28	50.49	0.40	11.10	3.87	0.01	0.00	11.76	5.90	12.55	99.35	XP19 bille 2 verre	15
384	3.29	49.82	0.45	11.12	3.70	0.00	0.10	11.37	5.41	12.58	97.84	XP19 bille 2 verre	1
385	3.40	49.92	0.44	11.14	3.81	0.00	0.00	11.71	5.76	12.73	98.91	XP19 bille 2 verre	2
386	3.43	49.93	0.39	11.12	3.79	0.00	0.00	11.77	5.36	12.74	98.52	XP19 bille 2 verre	3
387	3.33	49.63	0.44	11.01	3.78	0.01	0.03	11.54	5.93	12.74	98.44	XP19 bille 2 verre	4
388	3.16	49.84	0.40	11.19	3.71	0.03	0.04	11.55	5.17	12.76	97.83	XP19 bille 2 verre	5
389	3.29	49.92	0.45	11.10	3.75	0.00	0.00	11.37	5.72	12.68	98.28	XP19 bille 2 verre	6
390	3.39	50.03	0.45	11.28	3.70	0.00	0.02	11.76	5.91	12.76	99.29	XP19 bille 2 verre	7
391	3.29	49.78	0.45	11.23	3.81	0.01	0.05	11.87	5.99	12.63	99.11	XP19 bille 2 verre	8
392	3.44	49.39	0.40	11.05	3.72	0.00	0.07	11.35	5.79	12.77	97.99	XP19 bille 2 verre	9
393	3.34	50.00	0.40	11.18	3.84	0.00	0.00	11.93	5.84	12.80	99.34	XP19 bille 2 verre	10
394	3.36	49.79	0.41	11.25	3.83	0.00	0.00	11.30	5.04	12.53	97.53	XP19 bille 2 verre	11
395	3.25	49.16	0.39	11.05	3.76	0.00	0.00	11.44	5.79	12.53	97.51	XP19 bille 2 verre	12
396	3.44	49.16	0.39	11.12	3.75	0.01	0.00	11.44	5.79	12.67	98.61	XP19 bille 2 verre	13
397	4.05	51.63	0.46	12.73	0.12	0.03	0.00	0.69	0.11	28.62	98.03	XP19 bille 2 verre XP19 bille 2 plagio	14
551	7.00	01.00	0.03	12.10	0.12	0.00	0.00	0.00	0.11	20.02	55.05	AT TO DITE & PlayIU	.7

BILLE 3 t = 20h15

DILLE .													
Point#	Na2O	SiO2	K20	CaO	TiO2	Cr2O3	MnO	FeO	MgO	Al2O3	Total	Comment	Profil
399	3.39	49.38	0.38	11.26	3.90	0.01	0.00	11.59	5.85	12.27	98.02	XP19 bille 3 verre	1
400	1.54	44.69	0.22	4.92	1.76	0.02	0.00	17.51	25.27	5.27	101.20	XP19 bille 3 olivine	2
401	0.02	36.90	0.01	0.50	0.06	0.00	0.00	21.49	37.82	0.06	96.86	XP19 bille 3 olivine	3
402	0.00	38.61	0.01	0.44	0.04	0.00	0.00	21.23	40.35	0.04	100.71	XP19 bille 3 olivine	4
403	0.03	38.75	0.00	0.41	0.04	0.01	0.00	21.42	38.73	0.09	99.48	XP19 bille 3 olivine	5
405	0.00	38.77	0.00	0.38	0.05	0.00	0.00	20.58	39.86	0.05	99.69	XP19 bille 3 olivine	7
406	1.53	43.93	0.21	5.17	1.67	0.01	0.00	17.05	24.76	6.99	101.33	XP19 bille 3 olivine	8
407	4.47	53.76	0.10	12.27	0.19	0.00	0.00	1.03	0.00	28.30	100.12	XP19 bille 3 plagio	9
408	4.07	52.13	0.24	11.85	1.44	0.00	0.00	5.03	1.05	22.22	98.02	XP19 bille 3 plagio	10
409	3.32	49.79	0.43	11.43	3.84	0.00	0.00	11.78	5.71	12.17	98.46	XP19 bille 3 verre	11
410	0.01	38.51	0.00	0.41	0.02	0.02	0.00	20.61	40.42	0.03	100.02	XP19 bille 3 olivine	12
411	0.02	38.23	0.02	0.40	0.05	0.00	0.00	20.53	38.46	0.45	98.15	XP19 bille 3 olivine	13
412	0.00	38.73	0.01	0.38	0.05	0.00	0.01	21.00	40.11	0.04	100.33	XP19 bille 3 olivine	14
413	0.01	38.64	0.01	0.45	0.05	0.00	0.00	21.09	39.53	0.04	99.82	XP19 bille 3 olivine	15
414	2.86	47.16	0.36	9.16	3.31	0.00	0.02	13.39	11.93	10.52	98.70	XP19 bille 3 verre	16
415	3.30	49.69	0.44	11.28	3.91	0.00	0.00	12.11	5.68	12.45	98.86	XP19 bille 3 verre	17
416	3.90	52.51	0.14	12.35	1.03	0.02	0.00	3.28	0.94	23.79	97.95	XP19 bille 3 verre	18
417	3.23	49.76	0.41	11.23	3.91	0.00	0.00	11.59	5.75	12.38	98.25	XP19 bille 3 verre	19
418	3.22	49.69	0.43	11.32	3.92	0.00	0.01	12.31	5.41	12.31	98.60	XP19 bille 3 verre	20
419	3.25	49.88	0.39	11.48	3.99	0.00	0.00	11.33	5.06	12.40	97.77	XP19 bille 3 verre	1
420	3.31	50.10	0.40	11.30	4.01	0.01	0.00	11.60	5.79	12.51	99.03	XP19 bille 3 verre	2
421	3.34	50.11	0.41	11.28	4.02	0.01	0.00	11.82	5.73	12.32	99.02	XP19 bille 3 verre	3
422	3.31	50.05	0.45	11.36	4.00	0.00	0.00	12.15	5.62	12.33	99.26	XP19 bille 3 verre	4
423	3.31	49.71	0.40	11.40	4.05	0.00	0.00	11.80	5.46	12.50	98.62	XP19 bille 3 verre	5
424	3.29	49.57	0.42	11.47	4.08	0.01	0.05	11.76	5.80	12.44	98.87	XP19 bille 3 verre	6
425	3.25	50.08	0.38	11.26	4.02	0.00	0.03	11.79	5.69	12.42	98.90	XP19 bille 3 verre	7
426	3.51	49.99	0.40	11.50	4.06	0.01	0.00	11.87	5.81	12.43	99.56	XP19 bille 3 verre	8
427	3.36	49.96	0.38	11.30	4.03	0.02	0.00	12.05	5.06	12.49	98.65	XP19 bille 3 verre	9
428	3.24	49.93	0.43	11.27	3.92	0.00	0.03	11.61	5.54	12.41	98.38	XP19 bille 3 verre	10
429	3.31	50.17	0.46	11.35	3.93	0.02	0.00	11.95	5.27	12.49	98.93	XP19 bille 3 verre	11
430	3.18	49.63	0.42	11.33	3.97	0.01	0.00	11.87	5.55	12.43	98.39	XP19 bille 3 verre	12
431	3.29	49.97	0.37	11.49	3.83	0.00	0.00	11.23	5.47	13.55	99.20	XP19 bille 3 verre	13
432	3.87	52.53	0.10	13.43	0.11	0.00	0.00	0.56	0.00	29.73	100.32	XP19 bille 3 plagio	14
433	3.31	50.83	0.09	14.42	0.12	0.00	0.00	0.57	0.11	30.24	99.69	XP19 bille 3 plagio	15
434	3.51	51.57	0.07	13.88	0.11	0.00	0.04	0.60	0.00	30.01	99.79	XP19 bille 3 plagio	16
435	3.84	52.62	0.08	13.65	0.12	0.00	0.00	0.71	0.14	29.72	100.87	XP19 bille 3 plagio	17
436	3.97	52.30	0.19	12.33	1.51	0.01	0.00	4.08	1.05	23.22	98.66	XP19 bille 3 plagio	18
437	3.45	49.86	0.41	11.48	4.05	0.00	0.09	11.85	5.40	12.41	99.00	XP19 bille 3 verre	19
438	3.31	50.02	0.44	11.29	4.02	0.00	0.00	12.15	5.92	12.58	99.72	XP19 bille 3 verre	20

Annexe 2: Expérimentation

Cette annexe contient toutes les photographies (BSE) des billes qui ne sont pas dans le manuscrit. Cela concerne plus particulièrement les expériences 07, 06, 02, 03 et 01.

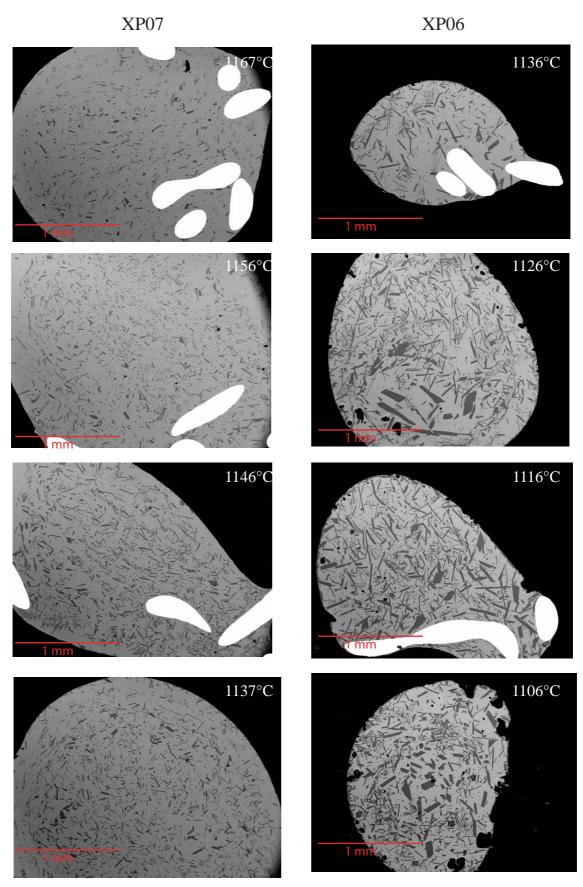


Photo BSE de l'expérience XP07-06 (3°C/h), aux quatre températures de trempe.

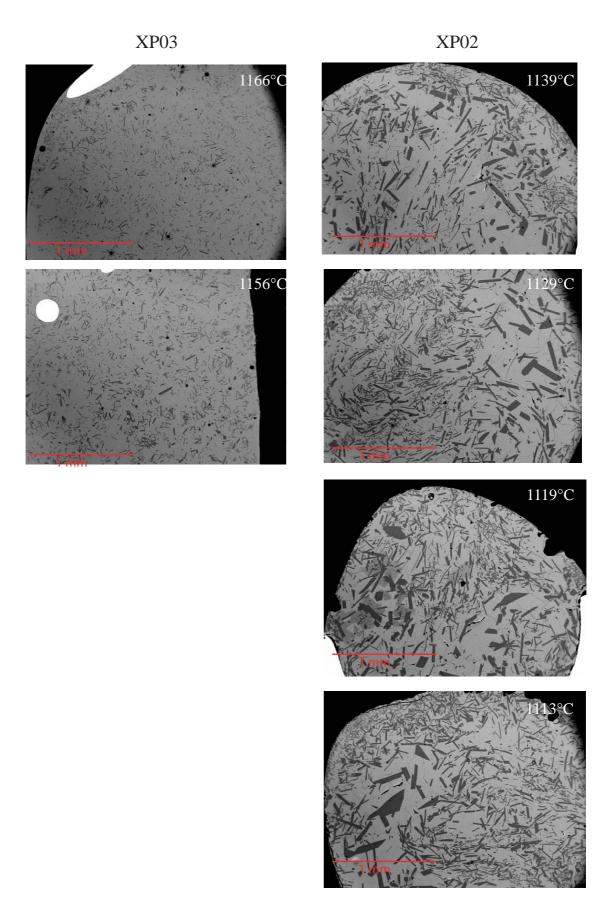


Photo BSE de l'expérience XP03-02 (1°C/h), aux quatre températures de trempe.

XP01

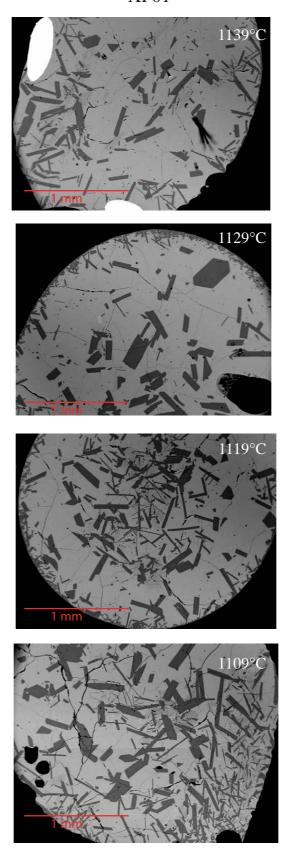


Photo BSE de l'expérience XP01 (0,2°C/h), aux quatre températures de trempe.

Annexe 3: Le Skaergaard

Cette annexe contient les analyses des plagioclases des roches de Skaergaard.

Pour les roches homogènes:

SK7 Compositions chimiques de 3 plagioclases de LZa.

SK8 Compositions chimiques de 3 plagioclases de LZa.

SK16 Compositions chimiques de 2 plagioclases de LZb (pour le plagioclase 1, un problème informatique fait que certaines données ont été effacées, je vous pris de bien vouloir m'en excuser).

BM30 Compositions chimiques de 1 plagioclase de LZb (pour le plagioclase 1, un problème informatique fait que certaines données ont été effacées, je vous pris de bien vouloir m'en excuser).

SK15 Compositions chimiques de 1 plagioclase de LZc (pour le plagioclase 1, un problème informatique fait que certaines données ont été effacées, je vous pris de bien vouloir m'en excuser).

Pour les roches litées:

BM15 Compositions chimiques de 3 plagioclases de LZa.

BM67 Compositions chimiques de 4 plagioclases de LZc.

La distance entre chaque point d'analyse est indiquée en dernière ligne dans les tableaux. Les formules structurales sont calculées de la même façon que celles de l'annexe 4.

Annexe 3 Compositions chimiques du plagioclase p1 de SK7, roche homogène de LZa

Lame	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1
SiO ₂	55.49	55.44	54.93	54.47	54.62	52.90	53.43	52.62	50.59	50.10	52.69	51.68	51.61	51.76	52.08	51.26	51.42	51.17	51.43	51.67	51.36	51.50	51.63	52.30	51.56	51.86	52.31
Al ₂ O ₃	27.27	27.87	27.91	28.44	28.36	29.52	29.01	29.90	30.55	31.18	29.91	29.72	29.54	29.70	29.79	29.13	29.96	29.65	29.72	29.81	29.49	29.43	29.52	29.66	29.64	29.50	29.61
FeO Total	0.29	0.30	0.30	0.36	0.29	0.35	0.32	0.37	0.36	0.37	0.35	0.39	0.44	0.43	0.41	0.76	0.36	0.39	0.46	0.42	0.46	0.42	0.39	0.52	0.66	0.42	0.40
CaO	10.54	10.64	11.00	11.49	11.06	12.62	12.34	13.03	14.02	14.57	12.91	13.09	13.10	13.06	12.93	12.75	13.22	13.23	13.28	13.29	13.11	13.17	13.02	12.75	13.08	12.99	13.30
Na ₂ O	5.35	5.34	5.28	5.21	5.21	4.54	4.54	4.25	3.58	3.38	4.21	4.07	4.22	4.37	4.34	3.87	4.05	3.90	4.09	4.22	3.88	3.99	4.06	4.07	4.17	3.84	3.83
K ₂ O	0.48	0.48	0.46	0.43	0.44	0.21	0.23	0.29	0.25	0.20	0.24	0.26	0.34	0.29	0.30	0.52	0.28	0.29	0.28	0.27	0.34	0.29	0.29	0.30	0.50	0.30	0.30
Total	99.43	100.08	99.88	100.39	99.99	100.13	99.87	100.46	99.35	99.81	100.31	99.21	99.25	99.61	99.85	98.29	99.29	98.62	99.26	99.67	98.64	98.81	98.92	99.59	99.60	98.91	99.74
FORMULE ST	RUCTURA	ALE (8 Ox	ygènes)																								
Si	2.52	2.50	2.48	2.46	2.47	2.40	2.42	2.38	2.32	2.29	2.38	2.37	2.37	2.37	2.37	2.37	2.36	2.36	2.36	2.36	2.37	2.37	2.37	2.38	2.36	2.38	2.38
Al	1.46	1.48	1.49	1.51	1.51	1.58	1.55	1.59	1.65	1.68	1.59	1.60	1.60	1.60	1.60	1.58	1.62	1.61	1.61	1.60	1.60	1.60	1.60	1.59	1.60	1.60	1.59
Fe ³⁺	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.03	0.01	0.01	0.02	0.01	0.02	0.01	0.01	0.02	0.02	0.01	0.01
Ca	0.51	0.51	0.53	0.56	0.54	0.61	0.60	0.63	0.69	0.71	0.62	0.64	0.64	0.64	0.63	0.63	0.65	0.65	0.65	0.65	0.65	0.65	0.64	0.62	0.64	0.64	0.65
Na	0.47	0.47	0.46	0.46	0.46	0.40	0.40	0.37	0.32	0.30	0.37	0.36	0.38	0.39	0.38	0.35	0.36	0.35	0.36	0.37	0.35	0.36	0.36	0.36	0.37	0.34	0.34
K	0.03	0.03	0.03	0.02	0.03	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02
Total	4.99	5.00	5.00	5.02	5.00	5.01	5.00	5.00	5.00	5.01	4.99	5.00	5.01	5.02	5.01	4.98	5.01	5.00	5.02	5.02	5.00	5.00	5.00	4.99	5.01	4.99	4.99
%Or	0.03	0.03	0.03	0.02	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02
%Ab	0.47	0.46	0.45	0.44	0.45	0.39	0.39	0.36	0.31	0.29	0.37	0.35	0.36	0.37	0.37	0.34	0.35	0.34	0.35	0.36	0.34	0.35	0.35	0.36	0.36	0.34	0.34
%An	0.51	0.51	0.52	0.54	0.53	0.60	0.59	0.62	0.67	0.70	0.62	0.63	0.62	0.61	0.61	0.63	0.63	0.64	0.63	0.63	0.64	0.63	0.63	0.62	0.62	0.64	0.65
	00	404	400	0.40	044	070	405	407	550	004	000	745	007	000	000	004	4050	4440	4400	4040	4004	4000	4.400	4.400	4550	1015	4077
distance en µn	62	124	186	248	311	373	435	497	559	621	683	745	807	869	932	994	1056	1118	1180	1242	1304	1366	1428	1490	1553	1615	1677

Lame	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1
SiO ₂	50.88	51.60	51.53	51.91	52.13	52.37	52.32	52.85	53.27	53.86	53.41	53.34	52.18	52.87	53.82	53.92	54.40	54.06	53.90	54.54	54.87	54.49	54.85
Al_2O_3	29.29	29.64	29.18	29.30	29.16	28.80	28.48	28.40	28.29	28.52	28.18	27.66	28.59	27.23	27.36	27.60	27.34	27.19	27.37	26.98	26.95	26.74	27.11
FeO Total	0.40	0.44	0.39	0.41	0.43	0.35	0.35	0.42	0.28	0.33	0.39	0.38	0.44	0.37	0.29	0.31	0.35	0.35	0.32	0.28	0.30	0.35	0.31
CaO	12.93	12.98	12.80	13.30	12.57	12.20	12.51	12.07	11.49	11.55	11.81	11.29	10.35	11.07	11.01	10.82	10.70	10.74	10.95	10.48	10.70	10.69	10.71
Na ₂ O	3.94	3.91	4.14	4.09	4.44	4.36	4.21	4.54	4.94	4.97	5.12	5.00	4.93	5.04	5.13	5.30	5.21	4.95	5.24	5.46	5.48	5.60	5.28
K ₂ O	0.28	0.30	0.27	0.31	0.34	0.33	0.32	0.36	0.36	0.32	0.35	0.38	0.41	0.49	0.50	0.49	0.52	0.45	0.45	0.45	0.48	0.40	0.37
Total	97.73	98.85	98.32	99.32	99.09	98.42	98.18	98.63	98.64	99.54	99.26	98.04	96.90	97.08	98.11	98.43	98.52	97.74	98.22	98.19	98.76	98.27	98.63
FORMULE ST	RUCTURA	ALE (8 Ox	(ygènes)																				
Si	2.37	2.37	2.38	2.38	2.39	2.41	2.41	2.43	2.44	2.45	2.44	2.46	2.43	2.46	2.48	2.47	2.49	2.49	2.48	2.51	2.51	2.51	2.51
Al	1.61	1.60	1.59	1.58	1.57	1.56	1.55	1.54	1.53	1.53	1.52	1.51	1.57	1.50	1.49	1.49	1.48	1.48	1.48	1.46	1.45	1.45	1.46
Fe ³⁺	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Ca	0.64	0.64	0.63	0.65	0.62	0.60	0.62	0.59	0.56	0.56	0.58	0.56	0.52	0.55	0.54	0.53	0.53	0.53	0.54	0.52	0.52	0.53	0.52
Na	0.36	0.35	0.37	0.36	0.39	0.39	0.38	0.40	0.44	0.44	0.45	0.45	0.45	0.46	0.46	0.47	0.46	0.44	0.47	0.49	0.49	0.50	0.47
K	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.02
Total	5.00	5.00	5.00	5.01	5.01	4.99	4.99	5.00	5.01	5.00	5.02	5.01	5.00	5.01	5.01	5.01	5.00	4.99	5.01	5.01	5.01	5.02	5.00
%Or	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.02
%Ab	0.35	0.35	0.36	0.35	0.38	0.39	0.37	0.40	0.43	0.43	0.43	0.44	0.45	0.44	0.44	0.46	0.45	0.44	0.45	0.47	0.47	0.48	0.46
%An	0.63	0.64	0.62	0.63	0.63	0.63	0.63	0.58	0.55	0.55	0.55	0.54	0.52	0.53	0.53	0.52	0.52	0.53	0.52	0.50	0.51	0.50	0.52
distance en µn	1739	1801	1863	1925	1987	2049	2111	2174	2236	2298	2360	2422	2484	2546	2608	2670	2732	2795	2857	2919	2981	3043	3105

Annexe 3 Compositions chimiques du plagioclase p2 de SK7, roche homogène de LZa

Lame	SK7																	
plagioclase	p2																	
SiO ₂	52.54	52.50	52.83	52.79	52.63	52.74	52.65	52.17	52.19	52.43	53.10	53.81	53.93	53.83	55.37	55.22	53.02	56.14
Al ₂ O ₃	30.31	29.60	30.10	29.74	29.32	29.73	29.87	30.10	30.37	29.99	29.74	29.52	29.24	29.30	28.71	28.17	30.29	28.21
FeO Total	0.33	0.32	0.39	0.37	0.70	0.38	0.42	0.58	0.39	0.38	0.33	0.32	0.28	0.32	0.24	0.24	0.24	0.23
CaO Na₂O	13.28 4.10	13.11 4.27	12.97 4.23	12.71 4.08	12.40 4.33	12.46 4.20	12.65 4.14	13.50 3.95	13.38 3.97	13.12 4.02	12.61 3.99	12.39 4.40	11.89 4.54	11.66 4.64	11.14 5.09	10.80 5.30	12.67 4.21	10.27 5.40
K ₂ O	0.26	0.32	0.29	0.32	0.40	0.35	0.35	0.34	0.29	0.30	0.34	0.37	0.40	0.37	0.41	0.38	0.27	0.32
Total	100.83	100.11	100.81	100.00	99.77	99.86	100.09	100.62	100.57	100.24	100.11	100.81	100.27	100.13	100.96	100.12	100.68	100.57
FORMULE STE		•																0 = 4
Si	2.37	2.38	2.38	2.39	2.39	2.39	2.39	2.36	2.36	2.37	2.40	2.42	2.43	2.43	2.47	2.49	2.39	2.51
Al	1.61	1.58	1.60	1.59	1.57	1.59	1.60	1.60	1.62	1.60	1.59	1.56	1.55	1.56	1.51	1.50	1.61	1.49
Fe ³⁺	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Ca	0.64	0.64	0.63	0.62	0.60	0.61	0.61	0.65	0.65	0.64	0.61	0.60	0.57	0.56	0.53	0.52	0.61	0.49
Na	0.36	0.38	0.37	0.36	0.38	0.37	0.36	0.35	0.35	0.35	0.35	0.38	0.40	0.41	0.44	0.46	0.37	0.47
K	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	5.01	5.01	5.00	4.99	5.00	4.99	5.00	5.00	5.00	4.99	4.98	4.99	4.99	4.98	4.99	5.00	4.99	4.98
%Or	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%Ab	0.35	0.36	0.37	0.36	0.38	0.37	0.36	0.34	0.34	0.35	0.36	0.38	0.40	0.41	0.44	0.46	0.37	0.48
%An	0.63	0.62	0.62	0.62	0.60	0.61	0.62	0.64	0.64	0.63	0.62	0.60	0.58	0.57	0.53	0.52	0.62	0.50
distance en µn	98	195	293	390	488	586	683	781	878	976	1074	1171	1269	1366	1464	1562	1757	1854

Annexe 3 Compositions chimiques du plagioclase p3 de SK7, roche homogène de LZa

Lame	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7	SK7
plagioclase	р3	р3	р3	р3	р3	рЗ	р3	р3	рЗ	р3	р3	рЗ	р3	р3	р3	рЗ	рЗ	рЗ	р3
SiO ₂	55.81	54.52	52.66	52.32	51.91	52.58	52.12	52.02	52.23	51.88	51.61	52.18	51.90	52.01	52.03	51.83	51.76	54.55	55.03
Al ₂ O ₃	28.14	28.49	30.21	30.42	30.16	30.25	29.94	30.19	30.21	29.85	29.94	30.07	29.75	29.98	29.97	30.13	29.98	28.10	27.93
FeO Total	0.31	0.27	0.32	0.31	0.30	0.34	0.39	0.36	0.32	0.42	0.36	0.42	0.34	0.40	0.34	0.34	0.36	0.32	0.34
CaO	10.54	11.33	13.21	12.94	13.30	12.78	12.99	12.81	13.19	13.33	12.97	12.79	13.13	12.87	12.79	12.86	13.13	11.17	10.55
Na₂O	5.59	5.10	4.22	4.15	4.12	4.15	4.10	4.14	4.19	3.90	3.85	3.90	4.12	3.99	4.23	4.34	4.29	5.07	5.53
K ₂ O	0.40	0.39	0.25	0.25	0.27	0.26	0.26	0.29	0.30	0.29	0.28	0.30	0.30	0.31	0.30	0.31	0.29	0.38	0.41
Total	100.80	100.10	100.88	100.39	100.07	100.38	99.80	99.80	100.43	99.66	99.00	99.66	99.53	99.57	99.65	99.82	99.82	99.59	99.79
FORMULE ST	RUCTURA	ALE (8 O	kygènes)																
Si	2.50	2.46	2.37	2.36	2.36	2.37	2.37	2.37	2.36	2.37	2.37	2.37	2.37	2.37	2.37	2.36	2.36	2.47	2.49
Al	1.48	1.52	1.60	1.62	1.61	1.61	1.61	1.62	1.61	1.60	1.62	1.61	1.60	1.61	1.61	1.62	1.61	1.50	1.49
Fe ³⁺	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Ca	0.50	0.55	0.64	0.63	0.65	0.62	0.63	0.62	0.64	0.65	0.64	0.62	0.64	0.63	0.62	0.63	0.64	0.54	0.51
Na	0.48	0.45	0.37	0.36	0.36	0.36	0.36	0.37	0.37	0.34	0.34	0.34	0.36	0.35	0.37	0.38	0.38	0.45	0.48
K	0.02	0.02	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%Or	0.02	0.02	0.01	0.01	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%Ab	0.48	0.44	0.36	0.36	0.35	0.36	0.36	0.36	0.36	0.34	0.34	0.35	0.36	0.35	0.37	0.37	0.37	0.44	0.48
%An	0.50	0.54	0.62	0.62	0.63	0.62	0.63	0.62	0.62	0.64	0.64	0.63	0.63	0.63	0.61	0.61	0.62	0.54	0.50
distance en µn	48	95	143	190	238	285	333	380	428	475	523	570	618	665	713	760	808	855	903

Annexe 3 Compositions chimiques du plagioclase p1 de SK8, roche homogène LZa

Lame	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8
plagioclase	р1	р1	р1	р1	р1	р1	р1	р1	р1	р1	р1	р1	р1	p1	р1	р1	р1	р1	р1	р1	p1	р1	р1	р1	р1	р1	p1
SiO ₂	55.17	53.67	54.16	52.95	51.63	50.67	50.90	51.62	51.73	51.49	51.23	51.47	51.78	51.90	51.40	52.08	51.12	51.65	51.14	51.70	51.76	51.68	52.00	51.65	52.06	51.90	51.53
Al_2O_3	26.82	26.84	27.59	28.41	28.40	29.23	29.09	28.87	29.05	28.86	28.78	28.97	29.04	28.85	28.75	28.81	28.47	28.73	28.35	28.78	28.81	28.98	28.83	28.85	28.86	28.97	28.86
FeO Total	0.24	0.29	0.32	0.32	0.34	0.38	0.38	0.38	0.39	0.39	0.39	0.38	0.39	0.38	0.41	0.41	0.41	0.38	0.38	0.38	0.41	0.39	0.39	0.37	0.37	0.40	0.38
CaO	9.91	10.59	10.75	11.75	12.18	13.23	12.84	12.90	13.06	12.84	12.97	12.92	12.89	12.81	12.65	12.83	12.75	12.72	12.74	12.74	12.80	12.95	12.86	12.82	12.87	12.97	12.99
Na ₂ O	5.75	5.28	5.19	4.73	4.37	4.10	4.08	4.15	4.11	4.09	4.01	4.07	4.06	4.01	4.15	4.13	4.07	4.09	3.98	4.15	4.10	4.00	4.00	4.19	4.07	3.99	4.06
K ₂ O	0.32	0.42	0.41	0.36	0.33	0.28	0.30	0.24	0.25	0.25	0.32	0.32	0.31	0.32	0.31	0.32	0.33	0.27	0.32	0.30	0.31	0.30	0.31	0.31	0.33	0.31	0.29
Total	98.21	97.10	98.41	98.51	97.25	97.89	97.58	98.16	98.58	97.92	97.69	98.11	98.46	98.27	97.67	98.58	97.16	97.83	96.91	98.05	98.18	98.30	98.40	98.19	98.57	98.53	98.11
FORMULE ST	RUCTURA	LE (8 Ox	ygènes)																								
Si	2.53	2.50	2.48	2.43	2.41	2.36	2.37	2.39	2.39	2.39	2.38	2.38	2.39	2.40	2.39	2.40	2.39	2.40	2.40	2.39	2.39	2.39	2.40	2.39	2.40	2.39	2.39
Al	1.45	1.47	1.49	1.54	1.56	1.60	1.60	1.57	1.58	1.58	1.58	1.58	1.58	1.57	1.58	1.56	1.57	1.57	1.57	1.57	1.57	1.58	1.57	1.57	1.57	1.57	1.58
Fe ³⁺	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Ca	0.49	0.53	0.53	0.58	0.61	0.66	0.64	0.64	0.65	0.64	0.65	0.64	0.64	0.63	0.63	0.63	0.64	0.63	0.64	0.63	0.63	0.64	0.64	0.64	0.64	0.64	0.64
Na	0.51	0.48	0.46	0.42	0.39	0.37	0.37	0.37	0.37	0.37	0.36	0.37	0.36	0.36	0.37	0.37	0.37	0.37	0.36	0.37	0.37	0.36	0.36	0.38	0.36	0.36	0.36
K	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	5.00	5.00	5.00	5.00	5.00	5.02	5.01	5.00	5.00	5.00	5.00	5.00	5.00	4.99	5.00	5.00	5.00	4.99	5.00	5.00	5.00	5.00	4.99	5.01	5.00	5.00	5.00
%Or	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%Ab	0.50	0.46	0.46	0.41	0.39	0.35	0.36	0.36	0.36	0.36	0.35	0.36	0.36	0.35	0.37	0.36	0.36	0.36	0.35	0.36	0.36	0.35	0.35	0.37	0.36	0.35	0.36
%An	0.48	0.51	0.52	0.57	0.59	0.63	0.62	0.62	0.63	0.63	0.63	0.63	0.63	0.63	0.62	0.62	0.62	0.62	0.63	0.62	0.62	0.63	0.63	0.62	0.62	0.63	0.63
distance en µn	52	103	155	206	258	309	361	413	464	516	619	670	774	825	877	928	980	1031	1083	1134	1186	1238	1289	1341	1392	1444	1495

Lame	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1
SiO ₂	51.61	51.56	51.11	51.64	51.06	52.66	54.45	54.86	53.98	54.23	54.09
Al_2O_3	29.08	29.05	29.04	29.19	28.94	28.14	27.14	27.51	26.84	27.34	26.20
FeO Total	0.38	0.39	0.40	0.38	0.38	0.36	0.33	0.35	0.33	0.33	1.28
CaO	13.17	13.08	13.12	13.21	13.21	11.98	10.89	10.91	10.83	10.78	10.20
Na ₂ O	3.90	4.03	3.85	3.83	3.84	4.57	5.01	5.16	5.08	5.21	5.00
K ₂ O	0.29	0.29	0.28	0.28	0.29	0.38	0.45	0.43	0.41	0.42	0.40
Total	98.43	98.39	97.80	98.53	97.73	98.09	98.28	99.22	97.48	98.30	97.16
FORMULE ST	RUCTURA	ALE (8 Ox	ygènes)								
Si	2.38	2.38	2.37	2.38	2.38	2.43	2.50	2.50	2.50	2.49	2.49
Al	1.58	1.58	1.59	1.59	1.59	1.53	1.47	1.47	1.47	1.48	1.42
Fe ³⁺	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.04
Ca	0.65	0.65	0.65	0.65	0.66	0.59	0.54	0.53	0.54	0.53	0.50
Na	0.35	0.36	0.35	0.34	0.35	0.41	0.45	0.45	0.46	0.46	0.45
K	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02
Total	4.99	5.00	5.00	4.99	5.00	5.00	4.99	4.99	4.99	5.00	4.94
%Or	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02
%Ab	0.34	0.35	0.34	0.34	0.34	0.40	0.44	0.45	0.45	0.46	0.46
%An	0.64	0.63	0.64	0.64	0.64	0.58	0.53	0.53	0.53	0.52	0.52
distance en µn	1547	1598	1650	1702	1753	1805	1856	1908	1959	2011	2063

Annexe 3 Compositions chimiques du plagioclase p2 de SK8, roche homogène LZa

plagioclase	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2
SiO ₂	54.29	54.17	53.18	51.16	51.66	51.22	48.18	51.61	51.30	51.06	50.54	51.19	51.23	51.90	53.12	51.79	53.54	53.69	54.08	53.64
Al_2O_3	27.31	27.33	28.11	29.31	29.09	29.44	25.71	28.99	29.32	28.95	28.54	29.21	29.18	28.86	27.56	26.73	27.36	27.16	27.61	26.97
FeO Total	0.33	0.30	0.33	0.34	0.36	0.36	4.50	0.36	0.32	0.37	0.54	0.34	0.37	0.33	0.33	1.19	0.33	0.29	0.30	0.28
CaO	10.53	10.59	11.64	12.75	12.79	12.93	10.14	12.82	12.74	12.76	12.55	12.72	12.82	12.42	11.15	10.85	10.99	10.62	10.56	10.59
Na₂O	5.16	5.26	4.72	4.05	4.01	4.02	3.33	4.12	3.99	4.00	3.90	4.09	4.03	4.21	4.89	4.55	5.13	5.21	5.29	5.19
K ₂ O	0.30	0.36	0.32	0.24	0.26	0.26	0.27	0.27	0.27	0.28	0.29	0.27	0.26	0.29	0.37	0.37	0.39	0.38	0.37	0.29
Total	97.92	98.01	98.31	97.84	98.18	98.24	92.13	98.15	97.95	97.43	96.36	97.83	97.91	98.00	97.41	95.47	97.74	97.36	98.21	96.97
FORMULE ST	RUCTURA	LE (8 Ox	ygènes)																	
Si	2.50	2.49	2.45	2.37	2.39	2.37	2.31	2.39	2.38	2.38	2.38	2.38	2.38	2.40	2.46	2.44	2.48	2.49	2.48	2.50
Al	1.48	1.48	1.52	1.60	1.58	1.61	1.45	1.58	1.60	1.59	1.58	1.60	1.60	1.57	1.51	1.48	1.49	1.48	1.49	1.48
Fe ³⁺	0.01	0.01	0.01	0.01	0.01	0.01	0.16	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.01
Ca	0.52	0.52	0.57	0.63	0.63	0.64	0.52	0.64	0.63	0.64	0.63	0.63	0.64	0.62	0.55	0.55	0.54	0.53	0.52	0.53
Na	0.46	0.47	0.42	0.36	0.36	0.36	0.31	0.37	0.36	0.36	0.36	0.37	0.36	0.38	0.44	0.42	0.46	0.47	0.47	0.47
K	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	4.99	5.00	5.00	5.00	4.99	5.00	4.78	5.00	5.00	5.00	4.98	5.00	5.00	4.99	5.00	4.95	5.00	5.00	5.00	5.00
%Or	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%Ab	0.46	0.46	0.42	0.36	0.36	0.35	0.37	0.36	0.36	0.36	0.35	0.36	0.36	0.37	0.43	0.42	0.45	0.46	0.46	0.46
%An	0.52	0.52	0.57	0.63	0.63	0.63	0.62	0.62	0.63	0.63	0.63	0.62	0.63	0.61	0.55	0.56	0.53	0.52	0.51	0.52
distance en µn	53	106	159	212	265	317	370	423	476	529	582	635	688	741	794	846	899	952	1005	1058

Annexe 3 Compositions chimiques du plagioclase p3 de SK8, roche homogène LZa

Lame	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8	SK8
plagioclase	p3	p3	p3	p3	p3	p3	p3	p3	p3	p3	p3	p3	p3	p3	p3	p3	p3	
SiO ₂	50.66																	p3
~		50.70	51.03	51.33	50.94	50.64	51.46	51.21	51.13	51.23	51.14	51.19	50.99	51.13	52.55	52.95	53.29	54.18
Al ₂ O ₃	28.46	29.19	29.37	29.08	29.13	29.37	29.40	29.33	29.28	29.17	29.17	29.18	29.25	29.18	28.45	28.34	28.01	27.44
FeO Total	1.28	0.37	0.39	0.54	0.37	0.36	0.40	0.34	0.36	0.39	0.35	0.35	0.37	0.33	0.34	0.33	0.29	0.24
CaO	12.27	12.92	12.86	12.73	12.71	12.97	12.88	12.93	12.91	12.92	12.90	12.97	12.88	12.74	12.00	11.73	11.29	10.70
Na ₂ O	3.92	3.94	3.85	4.09	4.00	3.93	3.82	3.94	3.92	3.92	3.94	3.82	3.76	4.20	4.38	4.75	4.93	5.18
K ₂ O	0.26	0.27	0.27	0.27	0.28	0.29	0.28	0.28	0.27	0.29	0.29	0.28	0.26	0.29	0.31	0.30	0.30	0.23
Total	96.84	97.38	97.77	98.04	97.43	97.56	98.25	98.02	97.87	97.91	97.79	97.79	97.52	97.85	98.02	98.39	98.10	97.97
FORMULE ST	RUCTURA	LE (8 Ox	ygènes)															
Si	2.37	2.37	2.37	2.38	2.37	2.36	2.38	2.37	2.37	2.38	2.38	2.38	2.37	2.37	2.43	2.43	2.45	2.49
Al	1.57	1.60	1.61	1.59	1.60	1.61	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.55	1.54	1.52	1.49
Fe ³⁺	0.05	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Ca	0.61	0.65	0.64	0.63	0.63	0.65	0.64	0.64	0.64	0.64	0.64	0.65	0.64	0.63	0.59	0.58	0.56	0.53
Na	0.36	0.36	0.35	0.37	0.36	0.35	0.34	0.35	0.35	0.35	0.35	0.34	0.34	0.38	0.39	0.42	0.44	0.46
K	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01
Total	4.96	5.00	4.99	5.00	5.00	5.01	4.98	5.00	5.00	5.00	5.00	4.99	4.99	5.01	4.99	5.00	5.00	4.99
%Or	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01
%Ab	0.36	0.35	0.35	0.36	0.36	0.35	0.34	0.35	0.35	0.35	0.35	0.34	0.34	0.37	0.39	0.42	0.43	0.46
%An	0.62	0.63	0.64	0.62	0.63	0.63	0.64	0.63	0.64	0.63	0.63	0.64	0.64	0.62	0.59	0.57	0.55	0.53
distance en µn	126	189	252	315	378	441	504	630	693	756	819	882	945	1008	1071	1134	1197	1260

Annexe 3 Compositions chimiques des plagioclases p1 et p2 de SK16, roche homogène de LZb

Lame	SK16																										
plagioclase	p1																										
FeO Total	0.33	0.36	0.35	0.35	0.34	0.36	0.35	0.37	0.36	0.38	0.36	0.36	0.36	0.39	0.38	0.35	0.35	0.36	0.31	0.52	0.47	0.34	0.49	0.42	0.34	0.35	0.31
%An	0.49	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.50	0.51	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.52	0.52	0.53	0.52	0.53	0.53	0.52	0.52
distance en µr	19.80	39.60	59.40	79.20	99.00	118.80	138.60	158.40	178.20	198.00	217.80	237.60	257.40	277.20	297.00	316.80	336.60	356.40	376.20	396.00	415.80	435.60	455.40	475.20	495.00	514.80	534.60
FeO Total	554.40	574.20	594.00	613.80	633.60	653.40	673.20	693.00	712.80	732.60	752.40	772.20	792.00	811.80	831.60	851.40	871.20	891.00	910.80	930.60	950.40						
%An	0.35	0.35	0.35	0.33	0.32	0.34	0.36	0.35	0.40	0.33	0.33	0.33	0.33	0.34	0.37	0.35	0.34	0.36	0.34	0.36	0.36						
distance en µr	0.52	0.53	0.52	0.53	0.52	0.53	0.52	0.52	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53						

Lame	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16
plagioclase	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2
SiO ₂	55.16	55.04	55.15	55.00	54.98	55.30	54.73	55.13	54.47	54.76	54.60	54.88	54.52	54.59	53.98	54.19	54.07	54.26	55.74	55.38
Al_2O_3	27.95	27.80	27.78	27.50	27.54	27.71	27.54	27.33	27.26	27.53	27.30	27.38	27.36	27.21	27.80	27.61	27.89	27.67	26.74	26.84
FeO Total	0.33	0.31	0.33	0.32	0.42	0.34	0.35	0.36	0.37	0.37	0.38	0.38	0.36	0.39	0.37	0.36	0.32	0.32	0.33	0.59
CaO	10.81	10.85	10.85	10.74	10.74	10.92	10.77	10.66	10.78	10.80	10.74	10.82	10.62	10.77	11.24	11.26	11.42	11.21	10.01	9.91
Na₂O	5.07	4.94	4.98	5.07	4.97	5.09	5.11	5.05	5.05	5.04	5.07	5.11	5.13	4.91	4.81	4.83	4.76	4.81	5.44	5.61
K ₂ O	0.32	0.36	0.36	0.36	0.38	0.36	0.36	0.38	0.36	0.35	0.37	0.36	0.36	0.36	0.32	0.33	0.31	0.33	0.39	0.28
Total	99.65	99.31	99.45	98.99	99.02	99.73	98.86	98.91	98.29	98.84	98.45	98.94	98.35	98.22	98.52	98.58	98.77	98.60	98.64	98.61
FORMULE ST	RUCTURA	ALE (8 Ox	(ygènes)																	
Si	2.49	2.50	2.50	2.50	2.50	2.50	2.49	2.51	2.50	2.50	2.50	2.50	2.50	2.50	2.47	2.48	2.47	2.48	2.54	2.53
Al	1.49	1.49	1.48	1.48	1.48	1.48	1.48	1.47	1.47	1.48	1.47	1.47	1.48	1.47	1.50	1.49	1.50	1.49	1.44	1.44
Fe ³⁺	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02
Ca	0.52	0.53	0.53	0.52	0.52	0.53	0.53	0.52	0.53	0.53	0.53	0.53	0.52	0.53	0.55	0.55	0.56	0.55	0.49	0.48
Na	0.44	0.43	0.44	0.45	0.44	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.46	0.44	0.43	0.43	0.42	0.43	0.48	0.50
K	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	4.98	4.97	4.98	4.98	4.97	4.98	4.98	4.97	4.98	4.98	4.98	4.99	4.98	4.97	4.98	4.99	4.98	4.98	4.98	4.99
%Or	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%Ab	0.45	0.44	0.44	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.46	0.44	0.43	0.43	0.42	0.43	0.48	0.50
%An	0.53	0.54	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.52	0.54	0.55	0.55	0.56	0.55	0.49	0.49
distance en µr	50	100	150	200	251	301	351	401	451	501	551	601	651	701	752	802	852	902	952	1002

Annexe 3 Compositions chimiques du plagioclase p1 de BM30, roche homogène de LZb

Lame	SK16																										
plagioclase	p1	р1	p1																								
FeO Total	0.41	0.38	0.40	0.39	0.38	0.37	0.36	0.37	0.36	0.37	0.38	0.43	0.37	0.38	0.38	0.37	0.37	0.38	0.38	0.38	0.37	0.38	0.36	0.40	0.40	0.41	0.43
%An	0.52	0.52	0.52	0.52	0.52	0.51	0.51	0.52	0.52	0.52	0.53	0.53	0.52	0.55	0.57	0.56	0.58	0.58	0.59	0.59	0.58	0.58	0.58	0.57	0.58	0.58	0.58
distance en µr	21	31	42	52	62	73	83	94	104	114	135	145	156	166	177	187	197	208	218	229	239	249	260	270	281	291	301
FeO Total	0.41	0.41	0.41	0.41	0.41	0.37	0.40	0.40	0.40	0.42	0.41	0.39	0.39	0.40	0.40	0.41	0.41	0.39	0.40	0.40	0.41	0.40	0.42	0.41	0.41	0.41	0.39
%An	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58
distance en µr	312	322	332	343	353	364	374	384	395	405	416	426	436	447	457	468	478	488	499	509	520	530	540	551	561	571	582
FeO Total	0.39	0.41	0.40	0.40	0.39	0.42	0.40	0.37	0.39	0.40	0.41	0.40	0.40	0.39	0.39	0.40	0.39	0.38	0.36	0.37	0.39	0.35	0.36	0.35	0.36	0.36	0.37
%An	0.58	0.58	0.59	0.58	0.58	0.58	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.58	0.58	0.58	0.58	0.57	0.57	0.56
distance en µr	592	634	644	655	675	686	696	707	717	727	738	748	758	769	779	790	800	810	821	842	852	862	873	883	894	904	914
FeO Total	0.37	0.37	0.37	0.34	0.37	0.39	0.39	0.37	0.37	0.37	0.34																
%An	0.56	0.56	0.55	0.54	0.54	0.53	0.52	0.52	0.52	0.53	0.54																
distance en µr	925	935	945	956	966	977	987	997	1008	1018	1029																

Annexe 3 Compositions chimiques du plagioclase p1 de SK15, roche homogène de LZb

Lame	SK16 SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16	SK16							
plagioclase	p1 p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1							
FeO Total	0.38	0.32	0.36	0.36	0.40	0.35	0.35	0.34	0.36	0.37	0.35	0.35	0.36	0.37	0.37	0.36	0.35	0.37	0.36	0.37	0.35	0.37	0.36	0.38	0.35	0.32	0.35
%An	52.09	50.54	50.87	51.16	50.52	50.36	49.98	50.73	52.30	53.58	53.62	53.68	53.85	53.26	53.79	53.00	53.39	52.87	52.41	51.88	52.22	53.13	51.88	51.92	51.62	51.33	51.56
distance en µr	12	24	35	47	71	83	94	106	118	130	142	153	165	177	189	201	212	224	236	248	260	271	283	295	307	319	330
FeO Total	0.326	0.326	0.364	0.348	0.331	0.329	0.335	0.337	0.353	0.34	0.357	0.339	0.396	0.384	0.406	0.376	0.334	0.389	0.32	0.38	0.327	0.343					
%An	51.427	51.566	52.025	51.856	51.499	51.813	51.47	51.34	51.277	51.595	51.605	51.644	50.978	51.402	51.417	51.402	51.079	50.331	49.26	50.949	51.016	50.973					
distance en µr	342.2	354	365.8	377.6	389.4	401.2	413	424.8	436.6	448.4	460.2	472	483.8	495.6	519.2	531	542.8	554.6	566.4	578.2	590	601.8					

Annexe 3 Compositions chimiques du plagioclase p1 de BM15A, roche litée de LZa

Lame	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1
SiO ₂	53.11	51.39	51.50	51.43	51.38	50.69	51.33	51.38	51.31	51.06	51.02	51.56	52.33	52.09	53.58	52.13	52.85	53.71	53.77	53.61	54.14	54.30	54.04	53.73	55.23	54.50	54.51
Al_2O_3	30.50	29.85	29.64	29.89	29.54	28.64	29.52	29.88	29.73	30.41	29.98	29.48	29.17	28.86	29.74	28.63	28.87	28.71	28.21	28.14	27.79	28.31	27.86	27.92	28.49	27.84	28.00
FeO Total	0.41	0.58	0.52	0.73	0.52	0.45	0.50	0.57	0.35	0.39	0.57	0.41	0.58	0.35	0.34	0.38	0.51	0.42	0.43	0.35	0.41	0.44	0.50	0.38	0.37	0.40	0.40
CaO	13.52	13.57	13.56	13.61	13.30	13.58	13.50	13.53	13.48	13.88	13.75	13.14	12.86	12.72	12.59	12.34	12.21	12.08	11.67	11.65	11.59	11.40	11.38	11.45	11.22	11.15	11.25
Na₂O	3.00	3.39	3.44	3.71	3.44	3.00	3.46	3.31	3.48	3.55	3.50	3.74	3.70	3.71	3.82	4.15	4.14	4.09	4.38	4.54	4.38	4.57	4.62	4.54	4.69	4.83	4.80
K ₂ O	0.25	0.28	0.27	0.27	0.29	0.23	0.31	0.23	0.24	0.22	0.26	0.25	0.29	0.30	0.32	0.31	0.31	0.36	0.25	0.32	0.26	0.22	0.25	0.28	0.31	0.34	0.36
Total	100.78	99.05	98.93	99.63	98.46	96.60	98.62	98.89	98.59	99.50	99.07	98.59	98.93	98.03	100.40	97.94	98.90	99.37	98.72	98.60	98.57	99.24	98.64	98.31	100.30	99.07	99.32
FORMULE STRUC	TURALE (8	3 Oxygène	s)																								
Si	2.38	2.36	2.37	2.35	2.37	2.38	2.36	2.36	2.36	2.34	2.34	2.37	2.40	2.41	2.41	2.41	2.42	2.44	2.46	2.45	2.48	2.47	2.47	2.46	2.48	2.48	2.47
Al	1.61	1.61	1.60	1.61	1.61	1.59	1.60	1.62	1.61	1.64	1.62	1.60	1.58	1.57	1.58	1.56	1.56	1.54	1.52	1.52	1.50	1.51	1.50	1.51	1.51	1.49	1.50
Fe ³⁺	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.02	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.01
Ca	0.65	0.67	0.67	0.67	0.66	0.68	0.67	0.67	0.67	0.68	0.68	0.65	0.63	0.63	0.61	0.61	0.60	0.59	0.57	0.57	0.57	0.55	0.56	0.56	0.54	0.54	0.55
Na	0.26	0.30	0.31	0.33	0.31	0.27	0.31	0.29	0.31	0.31	0.31	0.33	0.33	0.33	0.33	0.37	0.37	0.36	0.39	0.40	0.39	0.40	0.41	0.40	0.41	0.43	0.42
K	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.01	0.01	0.02	0.02	0.02	0.02
Total	4.93	4.97	4.98	4.99	4.97	4.96	4.98	4.97	4.98	5.00	4.99	4.99	4.97	4.97	4.96	4.99	4.97	4.96	4.96	4.98	4.96	4.96	4.97	4.97	4.96	4.98	4.98
%Or	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.02	0.02	0.02	0.02
%Ab	0.28	0.31	0.31	0.33	0.31	0.28	0.31	0.30	0.31	0.31	0.31	0.33	0.34	0.34	0.35	0.37	0.37	0.37	0.40	0.41	0.40	0.42	0.42	0.41	0.42	0.43	0.43
%An	0.70	0.68	0.67	0.66	0.67	0.70	0.67	0.68	0.67	0.67	0.67	0.65	0.65	0.64	0.63	0.61	0.61	0.61	0.59	0.58	0.58	0.57	0.57	0.57	0.56	0.55	0.55
distance en µm	7.7	15.4	23.1	30.8	38.5	46.2	53.9	61.6	69.3	84.7	92.4	146.3	154.0	161.7	169.4	184.8	192.5	200.2	215.6	223.3	231.0	246.4	254.1	261.8	269.5	284.9	300.3

Annexe 3 Compositions chimiques du plagioclase p2 de BM15A, roche litée de LZa

Lame	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A
plagioclase	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2
SiO ₂	52.95	53.09	52.85	54.62	53.34	53.01	53.96	53.95	54.31	54.15	54.65	54.91	55.23	53.93	55.12	54.94	54.48	54.69	54.24	54.90	54.54	54.54	54.45	54.26	54.04	53.91	54.14
Al_2O_3	28.69	28.61	28.76	27.35	28.48	28.37	27.92	27.90	27.26	27.75	27.20	27.09	26.96	27.84	27.22	27.39	27.30	27.44	27.52	27.37	27.51	27.73	27.39	27.73	27.80	27.52	28.11
FeO Total	0.41	0.61	0.40	0.49	0.46	0.41	0.37	0.45	0.44	0.46	0.48	0.36	0.56	2.04	0.31	0.47	0.44	0.49	0.57	0.33	0.47	0.46	0.53	0.46	0.54	0.75	0.38
CaO	12.42	12.23	12.20	10.60	11.93	11.58	11.37	11.17	11.06	11.04	10.78	10.62	10.55	10.22	10.43	10.68	10.64	10.65	10.59	10.75	10.87	11.08	11.07	11.37	11.46	11.21	11.52
Na ₂ O	4.20	4.11	4.45	5.24	4.51	4.64	4.61	4.70	4.76	4.77	5.03	5.08	5.07	4.99	4.89	5.08	5.07	4.96	4.79	4.84	4.69	4.73	4.67	4.43	4.60	4.40	4.59
K ₂ O	0.27	0.29	0.22	0.17	0.28	0.32	0.35	0.31	0.32	0.34	0.34	0.37	0.44	0.43	0.42	0.42	0.38	0.40	0.40	0.35	0.40	0.38	0.39	0.34	0.37	0.38	0.36
Total	98.93	98.93	98.89	98.47	99.00	98.32	98.57	98.48	98.15	98.51	98.48	98.44	98.80	99.44	98.39	98.98	98.30	98.63	98.12	98.55	98.47	98.92	98.49	98.57	98.80	98.17	99.10
FORMULE STRUCT	URALE (8	3 Oxygène	s)																								
Si	2.42	2.43	2.42	2.50	2.44	2.44	2.47	2.47	2.49	2.48	2.50	2.51	2.52	2.43	2.52	2.50	2.50	2.50	2.49	2.51	2.49	2.48	2.49	2.48	2.47	2.48	2.46
Al	1.55	1.54	1.55	1.47	1.53	1.54	1.51	1.51	1.48	1.50	1.47	1.46	1.45	1.48	1.47	1.47	1.47	1.48	1.49	1.47	1.48	1.49	1.48	1.49	1.50	1.49	1.51
Fe ³⁺	0.01	0.02	0.01	0.02	0.02	0.01	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.07	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.03	0.01
Ca	0.61	0.60	0.60	0.52	0.58	0.57	0.56	0.55	0.54	0.54	0.53	0.52	0.52	0.49	0.51	0.52	0.52	0.52	0.52	0.53	0.53	0.54	0.54	0.56	0.56	0.55	0.56
Na	0.37	0.36	0.40	0.46	0.40	0.41	0.41	0.42	0.42	0.42	0.45	0.45	0.45	0.44	0.43	0.45	0.45	0.44	0.43	0.43	0.42	0.42	0.41	0.39	0.41	0.39	0.40
K	0.02	0.02	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	4.98	4.97	4.99	4.98	4.98	4.99	4.98	4.97	4.97	4.97	4.98	4.98	4.97	4.94	4.96	4.98	4.98	4.98	4.97	4.96	4.96	4.97	4.97	4.96	4.97	4.96	4.97
%Or	0.02	0.02	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%Ab	0.37	0.37	0.39	0.47	0.40	0.41	0.41	0.42	0.43	0.43	0.45	0.45	0.45	0.46	0.45	0.45	0.45	0.45	0.44	0.44	0.43	0.43	0.42	0.40	0.41	0.41	0.41
%An	0.61	0.61	0.59	0.52	0.58	0.57	0.56	0.56	0.55	0.55	0.53	0.52	0.52	0.52	0.53	0.52	0.53	0.53	0.54	0.54	0.55	0.55	0.55	0.57	0.57	0.57	0.57
distance en µm	11.5	22.9	34.4	45.8	57.3	68.7	91.6	103.1	114.6	126.0	137.5	148.9	160.4	183.3	194.7	217.6	229.1	240.6	263.5	286.4	297.8	309.3	320.7	343.7	355.1	366.6	378.0

Lame	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A	BM15A
plagioclase	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2	p2
SiO ₂	53.91	53.69	53.52	53.39	53.04	53.09	52.67	53.03	52.61	53.01	52.70	51.77	52.26	51.57	51.72	52.15	51.62	52.19	51.71	51.65	51.87	51.37
Al_2O_3	27.94	28.20	28.03	28.39	28.20	28.47	28.41	28.64	28.79	29.07	28.88	29.08	29.18	29.24	29.34	29.31	29.14	29.51	29.39	29.67	29.49	28.90
FeO Total	0.50	0.47	0.43	0.42	0.60	0.68	0.47	0.55	0.44	0.55	0.48	0.59	0.51	0.66	0.57	0.52	0.76	0.82	0.60	0.61	0.53	0.57
CaO	11.67	11.61	11.76	11.93	11.93	11.95	12.04	12.19	12.43	12.61	12.65	13.03	12.88	13.04	13.10	13.10	13.07	12.95	13.13	13.17	13.10	13.21
Na ₂ O	4.56	4.62	4.59	4.36	4.39	4.14	4.16	4.12	4.30	4.09	3.95	3.83	3.72	3.78	3.78	3.95	3.51	3.87	3.78	3.82	3.72	3.69
K ₂ O	0.34	0.33	0.32	0.27	0.34	0.30	0.32	0.35	0.29	0.31	0.26	0.25	0.26	0.25	0.27	0.26	0.25	0.21	0.24	0.25	0.27	0.32
Total	98.91	98.91	98.65	98.76	98.51	98.63	98.05	98.88	98.85	99.64	98.92	98.55	98.81	98.54	98.77	99.29	98.33	99.55	98.85	99.16	98.98	98.06
FORMULE STRUCT	TURALE (B Oxygène	es)																			
Si	2.46	2.45	2.45	2.44	2.44	2.43	2.43	2.43	2.41	2.41	2.41	2.38	2.40	2.38	2.38	2.38	2.38	2.38	2.38	2.37	2.38	2.38
Al	1.50	1.52	1.51	1.53	1.53	1.54	1.54	1.54	1.55	1.56	1.56	1.58	1.58	1.59	1.59	1.58	1.58	1.59	1.59	1.60	1.59	1.58
Fe ³⁺	0.02	0.02	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.02	0.02	0.02	0.02
Ca	0.57	0.57	0.58	0.58	0.59	0.59	0.59	0.60	0.61	0.61	0.62	0.64	0.63	0.64	0.64	0.64	0.65	0.63	0.65	0.65	0.64	0.66
Na	0.40	0.41	0.41	0.39	0.39	0.37	0.37	0.36	0.38	0.36	0.35	0.34	0.33	0.34	0.34	0.35	0.31	0.34	0.34	0.34	0.33	0.33
K	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.02	0.02
Total	4.98	4.98	4.98	4.97	4.98	4.97	4.97	4.97	4.99	4.98	4.97	4.98	4.97	4.98	4.98	4.99	4.96	4.98	4.98	4.99	4.98	4.98
%Or	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.02	0.02
%Ab	0.41	0.41	0.41	0.39	0.39	0.38	0.38	0.37	0.38	0.36	0.36	0.34	0.34	0.34	0.34	0.35	0.32	0.35	0.34	0.34	0.33	0.33
%An	0.57	0.57	0.58	0.59	0.59	0.60	0.60	0.61	0.60	0.62	0.63	0.64	0.65	0.65	0.65	0.64	0.66	0.64	0.65	0.65	0.65	0.65
distance en µm	389.5	412.4	423.8	435.3	458.2	481.1	492.6	504.0	515.5	538.4	549.8	572.8	584.2	595.7	607.1	618.6	630.0	641.5	652.9	664.4	675.8	687.3

Annexe 3 Compositions chimiques du plagioclase p1 de BM15B, roche litée de LZa

Lame	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	р1
SiO ₂	49.72	54.35	54.78	55.61	54.25	54.39	54.21	54.04	54.23	54.19	54.40	54.42	54.55	53.93	53.84	54.10	54.09	54.40	54.37	54.12	53.60	53.66	53.22	52.78	52.59	52.44	52.36
Al_2O_3	15.45	27.16	27.26	26.35	27.51	26.99	27.40	27.30	27.01	27.27	26.89	27.58	27.19	27.38	27.33	27.45	27.40	27.93	27.31	27.31	27.75	27.69	28.00	28.23	28.16	28.28	28.40
FeO Total	9.68	0.65	0.55	0.65	0.45	0.45	0.43	0.53	0.44	0.52	0.55	0.47	0.41	0.42	0.48	0.31	0.54	0.44	0.37	0.50	0.51	0.85	0.41	0.53	0.49	0.37	0.65
CaO	8.29	10.90	11.00	10.19	10.86	10.85	10.95	10.95	10.88	10.89	10.81	11.12	11.15	11.07	11.10	11.15	11.13	11.22	11.18	11.41	11.45	11.56	11.79	12.06	12.22	12.43	12.48
Na₂O	3.78	5.15	5.05	4.43	5.18	4.94	4.89	5.06	4.93	5.00	4.87	4.88	4.80	5.07	4.82	4.69	4.93	4.89	4.89	4.92	4.68	4.59	4.49	4.38	4.33	4.16	4.19
K ₂ O	0.62	0.34	0.37	0.36	0.34	0.36	0.37	0.40	0.36	0.40	0.41	0.41	0.42	0.40	0.41	0.41	0.41	0.42	0.36	0.38	0.42	0.37	0.31	0.34	0.35	0.32	0.27
Total	87.54	98.54	99.02	97.58	98.58	97.97	98.24	98.27	97.83	98.26	97.93	98.87	98.52	98.27	97.98	98.11	98.50	99.30	98.48	98.63	98.40	98.71	98.21	98.31	98.13	98.01	98.34
FORMULE STRUCT	URALE (8	Oxygène	es)																								
Si	2.37	2.49	2.50	2.54	2.48	2.50	2.49	2.48	2.50	2.49	2.50	2.48	2.50	2.48	2.48	2.49	2.48	2.47	2.49	2.48	2.46	2.46	2.45	2.43	2.43	2.42	2.41
Al	0.87	1.47	1.46	1.42	1.48	1.46	1.48	1.48	1.47	1.48	1.46	1.48	1.47	1.48	1.48	1.49	1.48	1.50	1.47	1.47	1.50	1.49	1.52	1.53	1.53	1.54	1.54
Fe ³⁺	0.35	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.03	0.01	0.02	0.02	0.01	0.02
Ca	0.42	0.54	0.54	0.50	0.53	0.53	0.54	0.54	0.54	0.54	0.53	0.54	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.56	0.56	0.57	0.58	0.59	0.60	0.62	0.62
Na	0.35	0.46	0.45	0.39	0.46	0.44	0.43	0.45	0.44	0.44	0.43	0.43	0.43	0.45	0.43	0.42	0.44	0.43	0.43	0.44	0.42	0.41	0.40	0.39	0.39	0.37	0.37
К	0.04	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	4.40	4.99	4.98	4.88	4.99	4.98	4.98	4.99	4.98	4.99	4.97	4.98	4.97	5.00	4.98	4.97	4.99	4.99	4.98	4.99	4.99	4.97	4.98	4.99	4.99	4.99	4.99
%Or	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%Ab	0.43	0.45	0.44	0.43	0.45	0.44	0.44	0.44	0.44	0.44	0.44	0.43	0.43	0.44	0.43	0.42	0.43	0.43	0.43	0.43	0.41	0.41	0.40	0.39	0.38	0.37	0.37
%An	0.52	0.53	0.53	0.55	0.53	0.54	0.54	0.53	0.54	0.53	0.54	0.54	0.55	0.53	0.55	0.55	0.54	0.55	0.55	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.61
distance en µm	12.0	24.0	36.0	48.0	60.0	72.0	84.0	96.0	120.0	132.0	144.0	156.0	168.0	180.0	192.0	204.0	216.0	228.0	240.0	252.0	264.0	276.0	288.0	300.0	312.0	336.0	360.0
			00.0	.0.0	00.0		00	00.0					.00.0	.00.0	.02.0									000.0	0.2.0		
			00.0	.0.0	00.0		01.0	00.0						.00.0	102.0									000.0	0.2.0		
Lame	BM15B		BM15B	BM15B		BM15B			BM15B								BM15B		BM15B		BM15B	BM15B	BM15B	BM15B		BM15B	BM15B
plagioclase	p1	BM15B p1	BM15B p1	BM15B	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1
plagioclase SiO ₂	p1 52.16	BM15B p1 52.34	BM15B p1 53.15	BM15B p1 52.21	BM15B p1 52.18	BM15B p1 52.46	BM15B p1 51.87	BM15B p1 51.93	BM15B p1 52.16	BM15B p1 51.75	BM15B p1 51.57	BM15B p1 51.86	BM15B p1 51.81	BM15B p1 51.71	BM15B p1 51.86	BM15B p1 51.55	BM15B p1 51.11	BM15B p1 51.53	BM15B p1 51.56	BM15B p1 51.40	BM15B p1 51.01	BM15B p1 50.82	BM15B p1 50.32	BM15B p1 50.83	BM15B p1 51.44	BM15B p1 51.21	BM15B p1 51.18
plagioclase	p1	BM15B p1	BM15B p1	BM15B	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1	BM15B p1
plagioclase SiO ₂	p1 52.16	BM15B p1 52.34	BM15B p1 53.15	BM15B p1 52.21	BM15B p1 52.18	BM15B p1 52.46	BM15B p1 51.87	BM15B p1 51.93	BM15B p1 52.16	BM15B p1 51.75	BM15B p1 51.57	BM15B p1 51.86	BM15B p1 51.81	BM15B p1 51.71	BM15B p1 51.86	BM15B p1 51.55	BM15B p1 51.11	BM15B p1 51.53	BM15B p1 51.56	BM15B p1 51.40	BM15B p1 51.01	BM15B p1 50.82	BM15B p1 50.32	BM15B p1 50.83	BM15B p1 51.44	BM15B p1 51.21	BM15B p1 51.18
plagioclase SiO ₂ Al ₂ O ₃ FeO Total CaO	p1 52.16 28.68 0.54 12.77	BM15B p1 52.34 28.64 0.55 12.57	BM15B p1 53.15 28.94 0.52 12.71	BM15B p1 52.21 28.82 0.52 12.85	BM15B p1 52.18 28.75 0.48 12.80	BM15B p1 52.46 28.42 0.42 12.74	BM15B p1 51.87 28.79 0.44 12.88	BM15B p1 51.93 28.68 0.41 12.66	BM15B p1 52.16 28.73 0.47 12.82	BM15B p1 51.75 28.97 0.48 13.02	BM15B p1 51.57 28.94 0.55 13.02	BM15B p1 51.86 29.28 0.53 13.06	BM15B p1 51.81 28.79 0.33 12.87	BM15B p1 51.71 28.77 0.52 12.93	BM15B p1 51.86 29.52 0.43 13.16	BM15B p1 51.55 29.11 0.56 13.05	BM15B p1 51.11 29.23 0.56 13.17	BM15B p1 51.53 28.79 0.46 13.13	BM15B p1 51.56 29.00 0.51 13.13	BM15B p1 51.40 29.19 0.59 13.38	BM15B p1 51.01 29.40 0.31 13.79	BM15B p1 50.82 30.14 0.60 14.03	BM15B p1 50.32 29.83 0.55 14.19	BM15B p1 50.83 29.15 0.91 12.89	BM15B p1 51.44 29.39 0.52 13.46	BM15B p1 51.21 29.37 0.46 13.45	BM15B p1 51.18 29.39 0.39 13.71
plagioclase SiO ₂ Al ₂ O ₃ FeO Total	p1 52.16 28.68 0.54	BM15B p1 52.34 28.64 0.55	BM15B p1 53.15 28.94 0.52	BM15B p1 52.21 28.82 0.52	BM15B p1 52.18 28.75 0.48	BM15B p1 52.46 28.42 0.42	BM15B p1 51.87 28.79 0.44	BM15B p1 51.93 28.68 0.41	BM15B p1 52.16 28.73 0.47	BM15B p1 51.75 28.97 0.48	BM15B p1 51.57 28.94 0.55	BM15B p1 51.86 29.28 0.53	BM15B p1 51.81 28.79 0.33	BM15B p1 51.71 28.77 0.52	BM15B p1 51.86 29.52 0.43	BM15B p1 51.55 29.11 0.56	BM15B p1 51.11 29.23 0.56	BM15B p1 51.53 28.79 0.46	BM15B p1 51.56 29.00 0.51	BM15B p1 51.40 29.19 0.59	BM15B p1 51.01 29.40 0.31	BM15B p1 50.82 30.14 0.60	BM15B p1 50.32 29.83 0.55	BM15B p1 50.83 29.15 0.91	BM15B p1 51.44 29.39 0.52	BM15B p1 51.21 29.37 0.46	BM15B p1 51.18 29.39 0.39
plagioclase SiO ₂ Al ₂ O ₃ FeO Total CaO	p1 52.16 28.68 0.54 12.77	BM15B p1 52.34 28.64 0.55 12.57	BM15B p1 53.15 28.94 0.52 12.71	BM15B p1 52.21 28.82 0.52 12.85	BM15B p1 52.18 28.75 0.48 12.80	BM15B p1 52.46 28.42 0.42 12.74	BM15B p1 51.87 28.79 0.44 12.88	BM15B p1 51.93 28.68 0.41 12.66	BM15B p1 52.16 28.73 0.47 12.82	BM15B p1 51.75 28.97 0.48 13.02	BM15B p1 51.57 28.94 0.55 13.02	BM15B p1 51.86 29.28 0.53 13.06	BM15B p1 51.81 28.79 0.33 12.87	BM15B p1 51.71 28.77 0.52 12.93	BM15B p1 51.86 29.52 0.43 13.16	BM15B p1 51.55 29.11 0.56 13.05	BM15B p1 51.11 29.23 0.56 13.17	BM15B p1 51.53 28.79 0.46 13.13	BM15B p1 51.56 29.00 0.51 13.13	BM15B p1 51.40 29.19 0.59 13.38	BM15B p1 51.01 29.40 0.31 13.79	BM15B p1 50.82 30.14 0.60 14.03	BM15B p1 50.32 29.83 0.55 14.19	BM15B p1 50.83 29.15 0.91 12.89	BM15B p1 51.44 29.39 0.52 13.46	BM15B p1 51.21 29.37 0.46 13.45	BM15B p1 51.18 29.39 0.39 13.71
plagioclase SiO ₂ Al ₂ O ₃ FeO Total CaO Na ₂ O	p1 52.16 28.68 0.54 12.77 4.12	BM15B p1 52.34 28.64 0.55 12.57 4.08	BM15B p1 53.15 28.94 0.52 12.71 3.98	BM15B p1 52.21 28.82 0.52 12.85 4.15	BM15B p1 52.18 28.75 0.48 12.80 3.98	BM15B p1 52.46 28.42 0.42 12.74 4.02	BM15B p1 51.87 28.79 0.44 12.88 4.05	BM15B p1 51.93 28.68 0.41 12.66 4.08	BM15B p1 52.16 28.73 0.47 12.82 3.84	BM15B p1 51.75 28.97 0.48 13.02 3.45	BM15B p1 51.57 28.94 0.55 13.02 4.05	BM15B p1 51.86 29.28 0.53 13.06 3.77	BM15B p1 51.81 28.79 0.33 12.87 3.74	BM15B p1 51.71 28.77 0.52 12.93 3.79	BM15B p1 51.86 29.52 0.43 13.16 3.81	BM15B p1 51.55 29.11 0.56 13.05 3.99	BM15B p1 51.11 29.23 0.56 13.17 3.76	BM15B p1 51.53 28.79 0.46 13.13 3.85	BM15B p1 51.56 29.00 0.51 13.13 3.65	BM15B p1 51.40 29.19 0.59 13.38 3.67	BM15B p1 51.01 29.40 0.31 13.79 3.33	BM15B p1 50.82 30.14 0.60 14.03 3.40	BM15B p1 50.32 29.83 0.55 14.19 3.19	BM15B p1 50.83 29.15 0.91 12.89 3.54	BM15B p1 51.44 29.39 0.52 13.46 3.58	BM15B p1 51.21 29.37 0.46 13.45 3.76	BM15B p1 51.18 29.39 0.39 13.71 3.53
plagioclase SiO ₂ Al ₂ O ₃ FeO Total CaO Na ₂ O K2O	p1 52.16 28.68 0.54 12.77 4.12 0.32 98.59	BM15B p1 52.34 28.64 0.55 12.57 4.08 0.30 98.48	BM15B p1 53.15 28.94 0.52 12.71 3.98 0.28 99.58	BM15B p1 52.21 28.82 0.52 12.85 4.15 0.30	BM15B p1 52.18 28.75 0.48 12.80 3.98 0.23	BM15B p1 52.46 28.42 0.42 12.74 4.02 0.29	BM15B p1 51.87 28.79 0.44 12.88 4.05 0.31	BM15B p1 51.93 28.68 0.41 12.66 4.08 0.29	BM15B p1 52.16 28.73 0.47 12.82 3.84 0.27	BM15B p1 51.75 28.97 0.48 13.02 3.45 0.33	BM15B p1 51.57 28.94 0.55 13.02 4.05 0.29	BM15B p1 51.86 29.28 0.53 13.06 3.77 0.32	BM15B p1 51.81 28.79 0.33 12.87 3.74 0.30	BM15B p1 51.71 28.77 0.52 12.93 3.79 0.30	BM15B p1 51.86 29.52 0.43 13.16 3.81 0.32	BM15B p1 51.55 29.11 0.56 13.05 3.99 0.29	BM15B p1 51.11 29.23 0.56 13.17 3.76 0.30	BM15B p1 51.53 28.79 0.46 13.13 3.85 0.25	BM15B p1 51.56 29.00 0.51 13.13 3.65 0.29	BM15B p1 51.40 29.19 0.59 13.38 3.67 0.27	BM15B p1 51.01 29.40 0.31 13.79 3.33 0.25	BM15B p1 50.82 30.14 0.60 14.03 3.40 0.21	BM15B p1 50.32 29.83 0.55 14.19 3.19 0.22	BM15B p1 50.83 29.15 0.91 12.89 3.54 0.56	BM15B p1 51.44 29.39 0.52 13.46 3.58 0.24	BM15B p1 51.21 29.37 0.46 13.45 3.76 0.27	BM15B p1 51.18 29.39 0.39 13.71 3.53 0.19
plagioclase SiO ₂ Al ₂ O ₃ FeO Total CaO Na ₂ O K2O Total	p1 52.16 28.68 0.54 12.77 4.12 0.32 98.59	BM15B p1 52.34 28.64 0.55 12.57 4.08 0.30 98.48 6 Oxygène 2.41	BM15B p1 53.15 28.94 0.52 12.71 3.98 0.28 99.58	BM15B p1 52.21 28.82 0.52 12.85 4.15 0.30 98.85	BM15B p1 52.18 28.75 0.48 12.80 3.98 0.23	BM15B p1 52.46 28.42 0.42 12.74 4.02 0.29	BM15B p1 51.87 28.79 0.44 12.88 4.05 0.31	BM15B p1 51.93 28.68 0.41 12.66 4.08 0.29	BM15B p1 52.16 28.73 0.47 12.82 3.84 0.27	BM15B p1 51.75 28.97 0.48 13.02 3.45 0.33	BM15B p1 51.57 28.94 0.55 13.02 4.05 0.29	BM15B p1 51.86 29.28 0.53 13.06 3.77 0.32	BM15B p1 51.81 28.79 0.33 12.87 3.74 0.30	BM15B p1 51.71 28.77 0.52 12.93 3.79 0.30	BM15B p1 51.86 29.52 0.43 13.16 3.81 0.32	BM15B p1 51.55 29.11 0.56 13.05 3.99 0.29	BM15B p1 51.11 29.23 0.56 13.17 3.76 0.30	BM15B p1 51.53 28.79 0.46 13.13 3.85 0.25	BM15B p1 51.56 29.00 0.51 13.13 3.65 0.29 98.14	BM15B p1 51.40 29.19 0.59 13.38 3.67 0.27	BM15B p1 51.01 29.40 0.31 13.79 3.33 0.25	BM15B p1 50.82 30.14 0.60 14.03 3.40 0.21	BM15B p1 50.32 29.83 0.55 14.19 3.19 0.22	BM15B p1 50.83 29.15 0.91 12.89 3.54 0.56	BM15B p1 51.44 29.39 0.52 13.46 3.58 0.24	BM15B p1 51.21 29.37 0.46 13.45 3.76 0.27 98.52	BM15B p1 51.18 29.39 0.39 13.71 3.53 0.19 98.38
plagioclase SiO ₂ Al ₂ O ₃ FeO Total CaO Na ₂ O K2O Total FORMULE STRUCT Si Al	p1 52.16 28.68 0.54 12.77 4.12 0.32 98.59 TURALE (8	BM15B p1 52.34 28.64 0.55 12.57 4.08 0.30 98.48 Coxygène	BM15B p1 53.15 28.94 0.52 12.71 3.98 0.28 99.58	BM15B p1 52.21 28.82 0.52 12.85 4.15 0.30 98.85	BM15B p1 52.18 28.75 0.48 12.80 3.98 0.23 98.42	BM15B p1 52.46 28.42 0.42 12.74 4.02 0.29 98.34	BM15B p1 51.87 28.79 0.44 12.88 4.05 0.31 98.33	BM15B p1 51.93 28.68 0.41 12.66 4.08 0.29 98.05	BM15B p1 52.16 28.73 0.47 12.82 3.84 0.27 98.30	BM15B p1 51.75 28.97 0.48 13.02 3.45 0.33 98.01	BM15B p1 51.57 28.94 0.55 13.02 4.05 0.29 98.42	BM15B p1 51.86 29.28 0.53 13.06 3.77 0.32 98.82	BM15B p1 51.81 28.79 0.33 12.87 3.74 0.30 97.83	BM15B p1 51.71 28.77 0.52 12.93 3.79 0.30 98.01	BM15B p1 51.86 29.52 0.43 13.16 3.81 0.32 99.10	BM15B p1 51.55 29.11 0.56 13.05 3.99 0.29 98.54	BM15B p1 51.11 29.23 0.56 13.17 3.76 0.30 98.13	BM15B p1 51.53 28.79 0.46 13.13 3.85 0.25 98.01	BM15B p1 51.56 29.00 0.51 13.13 3.65 0.29 98.14	BM15B p1 51.40 29.19 0.59 13.38 3.67 0.27 98.50	BM15B p1 51.01 29.40 0.31 13.79 3.33 0.25 98.09	BM15B p1 50.82 30.14 0.60 14.03 3.40 0.21 99.19	BM15B p1 50.32 29.83 0.55 14.19 3.19 0.22 98.30	BM15B p1 50.83 29.15 0.91 12.89 3.54 0.56 97.87	BM15B p1 51.44 29.39 0.52 13.46 3.58 0.24 98.63	BM15B p1 51.21 29.37 0.46 13.45 3.76 0.27 98.52	BM15B p1 51.18 29.39 0.39 13.71 3.53 0.19 98.38
plagioclase SiO ₂ Al ₂ O ₃ FeO Total CaO Na ₂ O K2O Total	p1 52.16 28.68 0.54 12.77 4.12 0.32 98.59 FURALE (8	BM15B p1 52.34 28.64 0.55 12.57 4.08 0.30 98.48 6 Oxygène 2.41	BM15B p1 53.15 28.94 0.52 12.71 3.98 0.28 99.58 ss)	BM15B p1 52.21 28.82 0.52 12.85 4.15 0.30 98.85	BM15B p1 52.18 28.75 0.48 12.80 3.98 0.23 98.42	BM15B p1 52.46 28.42 0.42 12.74 4.02 0.29 98.34	BM15B p1 51.87 28.79 0.44 12.88 4.05 0.31 98.33	BM15B p1 51.93 28.68 0.41 12.66 4.08 0.29 98.05	BM15B p1 52.16 28.73 0.47 12.82 3.84 0.27 98.30	BM15B p1 51.75 28.97 0.48 13.02 3.45 0.33 98.01	BM15B p1 51.57 28.94 0.55 13.02 4.05 0.29 98.42	BM15B p1 51.86 29.28 0.53 13.06 3.77 0.32 98.82	BM15B p1 51.81 28.79 0.33 12.87 3.74 0.30 97.83	BM15B p1 51.71 28.77 0.52 12.93 3.79 0.30 98.01	BM15B p1 51.86 29.52 0.43 13.16 3.81 0.32 99.10	BM15B p1 51.55 29.11 0.56 13.05 3.99 0.29 98.54	BM15B p1 51.11 29.23 0.56 13.17 3.76 0.30 98.13	BM15B p1 51.53 28.79 0.46 13.13 3.85 0.25 98.01	BM15B p1 51.56 29.00 0.51 13.13 3.65 0.29 98.14	BM15B p1 51.40 29.19 0.59 13.38 3.67 0.27 98.50	BM15B p1 51.01 29.40 0.31 13.79 3.33 0.25 98.09	BM15B p1 50.82 30.14 0.60 14.03 3.40 0.21 99.19	BM15B p1 50.32 29.83 0.55 14.19 0.22 98.30	BM15B p1 50.83 29.15 0.91 12.89 3.54 0.56 97.87	BM15B p1 51.44 29.39 0.52 13.46 3.58 0.24 98.63	BM15B p1 51.21 29.37 0.46 13.45 3.76 0.27 98.52	BM15B p1 51.18 29.39 0.39 13.71 3.53 0.19 98.38
plagioclase SiO ₂ Al ₂ O ₃ FeO Total CaO Na ₂ O K2O Total FORMULE STRUCT Si Al	p1 52.16 28.68 0.54 12.77 4.12 0.32 98.59 TURALE (8 2.40 1.55	BM15B p1 52.34 28.64 0.55 12.57 4.08 0.30 98.48 6 Oxygène 2.41 1.55	BM15B p1 53.15 28.94 0.52 12.71 3.98 0.28 99.58 es) 2.41 1.55	BM15B p1 52.21 28.82 0.52 12.85 4.15 0.30 98.85 2.40 1.56	BM15B p1 52.18 28.75 0.48 12.80 3.98 0.23 98.42 2.40 1.56	BM15B p1 52.46 28.42 0.42 12.74 4.02 0.29 98.34 2.42 1.54	BM15B p1 51.87 28.79 0.44 12.88 4.05 0.31 98.33 2.39 1.57	BM15B p1 51.93 28.68 0.41 12.66 4.08 0.29 98.05	BM15B p1 52.16 28.73 0.47 12.82 3.84 0.27 98.30 2.40 1.56	BM15B p1 51.75 28.97 0.48 13.02 3.45 0.33 98.01 2.39 1.58	BM15B p1 51.57 28.94 0.55 13.02 4.05 0.29 98.42 2.38 1.57	BM15B p1 51.86 29.28 0.53 13.06 3.77 0.32 98.82 2.38 1.58	BM15B p1 51.81 28.79 0.33 12.87 3.74 0.30 97.83 2.40 1.57	BM15B p1 51.71 28.77 0.52 12.93 3.79 0.30 98.01 2.39 1.57	BM15B p1 51.86 29.52 0.43 13.16 3.81 0.32 99.10 2.38 1.59	BM15B p1 51.55 29.11 0.56 13.05 3.99 0.29 98.54 2.38 1.58	BM15B p1 51.11 29.23 0.56 13.17 3.76 0.30 98.13 2.37 1.60	BM15B p1 51.53 28.79 0.46 13.13 3.85 0.25 98.01 2.39 1.57	BM15B p1 51.56 29.00 0.51 13.13 3.65 0.29 98.14 2.38 1.58	BM15B p1 51.40 29.19 0.59 13.38 3.67 0.27 98.50 2.37 1.59	BM15B p1 51.01 29.40 0.31 13.79 3.33 0.25 98.09 2.36 1.60	BM15B p1 50.82 30.14 0.60 14.03 3.40 0.21 99.19 2.33 1.63	BM15B p1 50.32 29.83 0.55 14.19 0.22 98.30 2.33 1.63	BM15B p1 50.83 29.15 0.91 12.89 3.54 0.56 97.87 2.35 1.59	BM15B p1 51.44 29.39 0.52 13.46 3.58 0.24 98.63 2.37 1.60	BM15B p1 51.21 29.37 0.46 13.45 3.76 0.27 98.52 2.36 1.60	BM15B p1 51.18 29.39 0.39 13.71 3.53 0.19 98.38 2.36 1.60
plagioclase SiO ₂ Al ₂ O ₃ FeO Total CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺	p1 52.16 28.68 0.54 12.77 4.12 0.32 98.59 TURALE (8 2.40 1.55 0.02	BM15B p1 52.34 28.64 0.55 12.57 4.08 0.30 98.48 Oxygène 2.41 1.55 0.02	BM15B p1 53.15 28.94 0.52 12.71 3.98 0.28 99.58 ss) 2.41 1.55 0.02	BM15B p1 52.21 28.82 0.52 12.85 4.15 0.30 98.85 2.40 1.56 0.02	BM15B p1 52.18 28.75 0.48 12.80 3.98 0.23 98.42 2.40 1.56 0.02	BM15B p1 52.46 28.42 0.42 12.74 4.02 0.29 98.34 2.42 1.54 0.01	BM15B p1 51.87 28.79 0.44 12.88 4.05 0.31 98.33 2.39 1.57 0.02	BM15B p1 51.93 28.68 0.41 12.66 4.08 0.29 98.05 2.40 1.56 0.01	BM15B p1 52.16 28.73 0.47 12.82 3.84 0.27 98.30 2.40 1.56 0.02	BM15B p1 51.75 28.97 0.48 13.02 3.45 0.33 98.01 2.39 1.58 0.02	BM15B p1 51.57 28.94 0.55 13.02 4.05 0.29 98.42 2.38 1.57 0.02	BM15B p1 51.86 29.28 0.53 13.06 3.77 0.32 98.82 2.38 1.58 0.02	BM15B p1 51.81 28.79 0.33 12.87 3.74 0.30 97.83 2.40 1.57 0.01	BM15B p1 51.71 28.77 0.52 12.93 3.79 0.30 98.01 2.39 1.57 0.02	BM15B p1 51.86 29.52 0.43 13.16 3.81 0.32 99.10 2.38 1.59 0.01	BM15B p1 51.55 29.11 0.56 13.05 3.99 0.29 98.54 2.38 1.58 0.02	BM15B p1 51.11 29.23 0.56 13.17 3.76 0.30 98.13 2.37 1.60 0.02	BM15B p1 51.53 28.79 0.46 13.13 3.85 0.25 98.01 2.39 1.57 0.02	BM15B p1 51.56 29.00 0.51 13.13 3.65 0.29 98.14 2.38 1.58 0.02	BM15B p1 51.40 29.19 0.59 13.38 3.67 0.27 98.50 2.37 1.59 0.02	BM15B p1 51.01 29.40 0.31 13.79 3.33 0.25 98.09 2.36 1.60 0.01	BM15B p1 50.82 30.14 0.60 14.03 3.40 0.21 99.19 2.33 1.63 0.02	BM15B p1 50.32 29.83 0.55 14.19 3.19 0.22 98.30 2.33 1.63 0.02	BM15B p1 50.83 29.15 0.91 12.89 3.54 0.56 97.87 2.35 1.59 0.03	BM15B p1 51.44 29.39 0.52 13.46 3.58 0.24 98.63 2.37 1.60 0.02	BM15B p1 51.21 29.37 0.46 13.45 3.76 0.27 98.52 2.36 1.60 0.02	BM15B p1 51.18 29.39 0.39 13.71 3.53 0.19 98.38 2.36 1.60 0.01
plagioclase SiO ₂ Al ₂ O ₃ FeO Total CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca	p1 52.16 28.68 0.54 12.77 4.12 0.32 98.59 TURALE (8 2.40 1.55 0.02 0.63	BM15B p1 52.34 28.64 0.55 12.57 4.08 0.30 98.48 Oxygène 2.41 1.55 0.02 0.62	BM15B p1 53.15 28.94 0.52 12.71 3.98 0.28 99.58 ss) 2.41 1.55 0.02 0.62	BM15B p1 52.21 28.82 0.52 12.85 4.15 0.30 98.85 2.40 1.56 0.02 0.63	BM15B p1 52.18 28.75 0.48 12.80 3.98 0.23 98.42 2.40 1.56 0.02 0.63	BM15B p1 52.46 28.42 0.42 12.74 4.02 0.29 98.34 2.42 1.54 0.01 0.63	BM15B p1 51.87 28.79 0.44 12.88 4.05 0.31 98.33 2.39 1.57 0.02 0.64	BM15B p1 51.93 28.68 0.41 12.66 4.08 0.29 98.05 2.40 1.56 0.01 0.63	BM15B p1 52.16 28.73 0.47 12.82 3.84 0.27 98.30 2.40 1.56 0.02 0.63	BM15B p1 51.75 28.97 0.48 13.02 3.45 0.33 98.01 2.39 1.58 0.02 0.65	BM15B p1 51.57 28.94 0.55 13.02 4.05 0.29 98.42 2.38 1.57 0.02 0.64	BM15B p1 51.86 29.28 0.53 13.06 3.77 0.32 98.82 2.38 1.58 0.02 0.64	BM15B p1 51.81 28.79 0.33 12.87 3.74 0.30 97.83 2.40 1.57 0.01 0.64	BM15B p1 51.71 28.77 0.52 12.93 3.79 0.30 98.01 2.39 1.57 0.02 0.64	BM15B p1 51.86 29.52 0.43 13.16 3.81 0.32 99.10 2.38 1.59 0.01 0.65	BM15B p1 51.55 29.11 0.56 13.05 3.99 0.29 98.54 2.38 1.58 0.02 0.64	BM15B p1 51.11 29.23 0.56 13.17 3.76 0.30 98.13 2.37 1.60 0.02 0.65	BM15B p1 51.53 28.79 0.46 13.13 3.85 0.25 98.01 2.39 1.57 0.02 0.65	BM15B p1 51.56 29.00 0.51 13.13 3.65 0.29 98.14 2.38 1.58 0.02 0.65	BM15B p1 51.40 29.19 0.59 13.38 3.67 0.27 98.50 2.37 1.59 0.02 0.66	BM15B p1 51.01 29.40 0.31 13.79 3.33 0.25 98.09 2.36 1.60 0.01 0.68	BM15B p1 50.82 30.14 0.60 14.03 3.40 0.21 99.19 2.33 1.63 0.02 0.69	BM15B p1 50.32 29.83 0.55 14.19 3.19 0.22 98.30 2.33 1.63 0.02 0.70	BM15B p1 50.83 29.15 0.91 12.89 3.54 0.56 97.87 2.35 1.59 0.03 0.64	BM15B p1 51.44 29.39 0.52 13.46 3.58 0.24 98.63 2.37 1.60 0.02 0.66	BM15B p1 51.21 29.37 0.46 13.45 3.76 0.27 98.52 2.36 1.60 0.02 0.67	BM15B p1 51.18 29.39 0.39 13.71 3.53 0.19 98.38 2.36 1.60 0.01 0.68
plagioclase SiO ₂ Al ₂ O ₃ FeO Total CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca	p1 52.16 28.68 0.54 12.77 4.12 0.32 98.59 TURALE (8 2.40 1.55 0.02 0.63 0.37	BM15B p1 52.34 28.64 0.55 12.57 4.08 0.30 8.48 6 Oxygène 2.41 1.55 0.02 0.62 0.36	BM15B p1 53.15 28.94 0.52 12.71 3.98 0.28 99.58 ss) 2.41 1.55 0.02 0.62 0.35	BM15B p1 52.21 28.82 0.52 12.85 4.15 0.30 98.85 2.40 1.56 0.02 0.63 0.37	BM15B p1 52.18 28.75 0.48 12.80 3.98 0.23 98.42 2.40 1.56 0.02 0.63 0.36	BM15B p1 52.46 28.42 0.42 12.74 4.02 0.29 98.34 2.42 1.54 0.01 0.63 0.36	BM15B p1 51.87 28.79 0.44 12.88 4.05 0.31 98.33 2.39 1.57 0.02 0.64 0.36	BM15B p1 51.93 28.68 0.41 12.66 4.08 0.29 98.05 2.40 1.56 0.01 0.63 0.37	BM15B p1 52.16 28.73 0.47 12.82 3.84 0.27 98.30 2.40 1.56 0.02 0.63 0.34	BM15B p1 51.75 28.97 0.48 13.02 3.45 0.33 98.01 2.39 1.58 0.02 0.65 0.31	BM15B p1 51.57 28.94 0.55 13.02 4.05 0.29 98.42 2.38 1.57 0.02 0.64	BM15B p1 51.86 29.28 0.53 13.06 3.77 0.32 98.82 2.38 1.58 0.02 0.64 0.34	BM15B p1 51.81 28.79 0.33 12.87 3.74 0.30 97.83 2.40 1.57 0.01 0.64 0.34	BM15B p1 51.71 28.77 0.52 12.93 3.79 0.30 98.01 2.39 1.57 0.02 0.64 0.34	BM15B p1 51.86 29.52 0.43 13.16 3.81 0.32 99.10 2.38 1.59 0.01 0.65 0.34	BM15B p1 51.55 29.11 0.56 13.05 3.99 0.29 98.54 2.38 1.58 0.02 0.64 0.36	BM15B p1 51.11 29.23 0.56 13.17 3.76 0.30 98.13 2.37 1.60 0.02 0.65 0.34	BM15B p1 51.53 28.79 0.46 13.13 3.85 0.25 98.01 2.39 1.57 0.02 0.65 0.35	BM15B p1 51.56 29.00 0.51 13.13 3.65 0.29 98.14 2.38 1.58 0.02 0.65 0.33	BM15B p1 51.40 29.19 0.59 13.38 3.67 0.27 98.50 2.37 1.59 0.02 0.66 0.33	BM15B p1 51.01 29.40 0.31 13.79 3.33 0.25 98.09 2.36 1.60 0.01 0.68 0.30	BM15B p1 50.82 30.14 0.60 14.03 3.40 0.21 99.19 2.33 1.63 0.02 0.69 0.30	BM15B p1 50.32 29.83 0.55 14.19 3.19 0.22 98.30 2.33 1.63 0.02 0.70 0.29	BM15B p1 50.83 29.15 0.91 12.89 3.54 0.56 97.87 2.35 1.59 0.03 0.64 0.32	BM15B p1 51.44 29.39 0.52 13.46 3.58 0.24 98.63 2.37 1.60 0.02 0.66 0.32	BM15B p1 51.21 29.37 0.46 13.45 3.76 0.27 98.52 2.36 1.60 0.02 0.67 0.34	BM15B p1 51.18 29.39 0.39 13.71 3.53 0.19 98.38 2.36 1.60 0.01 0.68 0.32
plagioclase SiO ₂ Al ₂ O ₃ FeO Total CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K	p1 52.16 28.68 0.54 12.77 4.12 0.32 98.59 TURALE (8 2.40 1.55 0.02 0.63 0.37	BM15B p1 52.34 28.64 0.55 12.57 4.08 0.30 98.48 8 Oxygéne 2.41 1.55 0.02 0.62 0.36	BM15B p1 53.15 28.94 0.52 12.71 3.98 0.28 99.58 ss) 2.41 1.55 0.02 0.62 0.35 0.02	BM15B p1 52.21 28.82 0.52 12.85 4.15 0.30 98.85 2.40 1.56 0.02 0.63 0.37	BM15B p1 52.18 28.75 0.48 12.80 3.98 0.23 98.42 2.40 1.56 0.02 0.63 0.36 0.01	BM15B p1 52.46 28.42 0.42 12.74 4.02 0.29 98.34 2.42 1.54 0.01 0.63 0.36 0.02	BM15B p1 51.87 28.79 0.44 12.88 4.05 0.31 98.33 2.39 1.57 0.02 0.64 0.36	BM15B p1 51.93 28.68 0.41 12.66 4.08 0.29 98.05 2.40 1.56 0.01 0.63 0.37 0.02	BM15B p1 52.16 28.73 0.47 12.82 3.84 0.27 98.30 2.40 1.56 0.02 0.63 0.34 0.02	BM15B p1 51.75 28.97 0.48 13.02 3.45 0.33 98.01 2.39 1.58 0.02 0.65 0.31 0.02	BM15B p1 51.57 28.94 0.55 13.02 4.05 0.29 98.42 2.38 1.57 0.02 0.64 0.36	BM15B p1 51.86 29.28 0.53 13.06 3.77 0.32 98.82 2.38 1.58 0.02 0.64 0.34	BM15B p1 51.81 28.79 0.33 12.87 3.74 0.30 97.83 2.40 1.57 0.01 0.64 0.34	BM15B p1 51.71 28.777 0.52 12.93 3.79 0.30 98.01 2.39 1.57 0.02 0.64 0.34 0.02	BM15B p1 51.86 29.52 0.43 13.16 3.81 0.32 99.10 2.38 1.59 0.01 0.65 0.34 0.02	BM15B p1 51.55 29.11 0.56 13.05 3.99 0.29 98.54 2.38 1.58 0.02 0.64 0.36	BM15B p1 51.11 29.23 0.56 13.17 3.76 0.30 98.13 2.37 1.60 0.02 0.65 0.34 0.02	BM15B p1 51.53 28.79 0.46 13.13 3.85 0.25 98.01 2.39 1.57 0.02 0.65 0.35 0.01	BM15B p1 51.56 29.00 0.51 13.13 3.65 0.29 98.14 2.38 1.58 0.02 0.65 0.33 0.02	BM15B p1 51.40 29.19 0.59 13.38 3.67 0.27 98.50 2.37 1.59 0.02 0.66 0.33 0.02	BM15B p1 51.01 29.40 0.31 13.79 3.33 0.25 98.09 2.36 1.60 0.01 0.68 0.30 0.01	BM15B p1 50.82 30.14 0.60 14.03 3.40 0.21 99.19 2.33 1.63 0.02 0.69 0.30	BM15B p1 50.32 29.83 0.55 14.19 3.19 0.22 98.30 2.33 1.63 0.02 0.70 0.29	BM15B p1 50.83 29.15 0.91 12.89 3.54 0.56 97.87 2.35 1.59 0.03 0.64 0.32	BM15B p1 51.44 29.39 0.52 13.46 3.58 0.24 98.63 2.37 1.60 0.02 0.66 0.32 0.01	BM15B p1 51.21 29.37 0.46 13.45 3.76 0.27 98.52 2.36 1.60 0.02 0.67 0.34	BM15B p1 51.18 29.39 0.39 13.71 3.53 0.19 98.38 2.36 1.60 0.01 0.68 0.32 0.01
plagioclase SiO ₂ Al ₂ O ₃ FeO Total CaO Na ₂ O Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K	p1 52.16 28.68 0.54 12.77 4.12 0.32 98.59 TURALE (8 2.40 1.55 0.02 0.63 0.37	BM15B p1 52.34 28.64 0.55 12.57 4.08 0.30 98.48 8 Oxygéne 2.41 1.55 0.02 0.62 0.36	BM15B p1 53.15 28.94 0.52 12.71 3.98 0.28 99.58 ss) 2.41 1.55 0.02 0.62 0.35 0.02	BM15B p1 52.21 28.82 0.52 12.85 4.15 0.30 98.85 2.40 1.56 0.02 0.63 0.37	BM15B p1 52.18 28.75 0.48 12.80 3.98 0.23 98.42 2.40 1.56 0.02 0.63 0.36 0.01	BM15B p1 52.46 28.42 0.42 12.74 4.02 0.29 98.34 2.42 1.54 0.01 0.63 0.36 0.02	BM15B p1 51.87 28.79 0.44 12.88 4.05 0.31 98.33 2.39 1.57 0.02 0.64 0.36	BM15B p1 51.93 28.68 0.41 12.66 4.08 0.29 98.05 2.40 1.56 0.01 0.63 0.37 0.02	BM15B p1 52.16 28.73 0.47 12.82 3.84 0.27 98.30 2.40 1.56 0.02 0.63 0.34 0.02	BM15B p1 51.75 28.97 0.48 13.02 3.45 0.33 98.01 2.39 1.58 0.02 0.65 0.31 0.02	BM15B p1 51.57 28.94 0.55 13.02 4.05 0.29 98.42 2.38 1.57 0.02 0.64 0.36	BM15B p1 51.86 29.28 0.53 13.06 3.77 0.32 98.82 2.38 1.58 0.02 0.64 0.34	BM15B p1 51.81 28.79 0.33 12.87 3.74 0.30 97.83 2.40 1.57 0.01 0.64 0.34	BM15B p1 51.71 28.777 0.52 12.93 3.79 0.30 98.01 2.39 1.57 0.02 0.64 0.34 0.02	BM15B p1 51.86 29.52 0.43 13.16 3.81 0.32 99.10 2.38 1.59 0.01 0.65 0.34 0.02	BM15B p1 51.55 29.11 0.56 13.05 3.99 0.29 98.54 2.38 1.58 0.02 0.64 0.36	BM15B p1 51.11 29.23 0.56 13.17 3.76 0.30 98.13 2.37 1.60 0.02 0.65 0.34 0.02	BM15B p1 51.53 28.79 0.46 13.13 3.85 0.25 98.01 2.39 1.57 0.02 0.65 0.35 0.01	BM15B p1 51.56 29.00 0.51 13.13 3.65 0.29 98.14 2.38 1.58 0.02 0.65 0.33 0.02	BM15B p1 51.40 29.19 0.59 13.38 3.67 0.27 98.50 2.37 1.59 0.02 0.66 0.33 0.02	BM15B p1 51.01 29.40 0.31 13.79 3.33 0.25 98.09 2.36 1.60 0.01 0.68 0.30 0.01	BM15B p1 50.82 30.14 0.60 14.03 3.40 0.21 99.19 2.33 1.63 0.02 0.69 0.30	BM15B p1 50.32 29.83 0.55 14.19 3.19 0.22 98.30 2.33 1.63 0.02 0.70 0.29	BM15B p1 50.83 29.15 0.91 12.89 3.54 0.56 97.87 2.35 1.59 0.03 0.64 0.32	BM15B p1 51.44 29.39 0.52 13.46 3.58 0.24 98.63 2.37 1.60 0.02 0.66 0.32 0.01	BM15B p1 51.21 29.37 0.46 13.45 3.76 0.27 98.52 2.36 1.60 0.02 0.67 0.34	BM15B p1 51.18 29.39 0.39 13.71 3.53 0.19 98.38 2.36 1.60 0.01 0.68 0.32 0.01
plagioclase SiO ₂ Al ₂ O ₃ FeO Total CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total	p1 52.16 28.68 0.54 12.77 4.12 0.32 98.59 TURALE (8 2.40 1.55 0.02 0.63 0.37 0.02 4.99	BM15B p1 52.34 28.64 0.55 12.57 4.08 0.30 98.48 0.0xygène 2.41 1.55 0.02 0.62 0.36 0.02 4.98	BM15B p1 53.15 28.94 0.52 12.71 3.98 0.28 99.58 ss) 2.41 1.55 0.02 0.62 0.35 0.02 4.97	BM15B p1 52.21 28.82 0.52 12.85 4.15 0.30 98.85 2.40 1.56 0.02 0.63 0.37 0.02 5.00	BM15B p1 52.18 28.75 0.48 12.80 3.98 0.23 98.42 2.40 1.56 0.02 0.63 0.36 0.01 4.98	BM15B p1 52.46 28.42 0.42 12.74 4.02 0.29 98.34 2.42 1.54 0.01 0.63 0.03 6 0.02 4.98	BM15B p1 51.87 28.79 0.44 12.88 4.05 0.31 98.33 2.39 1.57 0.02 0.64 0.36 0.02 4.99	BM15B p1 51.93 28.68 0.41 12.66 4.08 0.29 98.05 2.40 1.56 0.01 0.63 0.37 0.02 4.99	BM15B p1 52.16 28.73 0.47 12.82 3.84 0.27 98.30 2.40 1.56 0.02 0.63 0.34 0.02 4.97	BM15B p1 51.75 28.97 0.48 13.02 3.45 0.33 98.01 2.39 1.58 0.02 0.65 0.31 0.02 4.96	BM15B p1 51.57 28.94 0.55 13.02 4.05 0.29 98.42 2.38 1.57 0.02 0.64 0.36 0.02 5.00	BM15B p1 51.86 29.28 0.53 13.06 3.77 0.32 98.82 2.38 1.58 0.02 0.64 0.34 0.02 4.98	BM15B p1 51.81 28.79 0.33 12.87 0.30 97.83 2.40 1.57 0.01 0.64 0.34 0.02 4.97	BM15B p1 51.71 28.77 0.52 12.93 3.79 0.30 98.01 2.39 1.57 0.02 0.64 0.34 0.02 4.98	BM15B p1 51.86 29.52 0.43 13.16 3.81 0.32 99.10 2.38 1.59 0.01 0.65 0.34 0.02 4.99	BM15B p1 51.55 29.11 0.56 13.05 3.99 0.29 98.54 2.38 1.58 0.02 0.64 0.36 0.02 5.00	BM15B p1 51.11 29.23 0.56 13.17 3.76 0.30 98.13 2.37 1.60 0.02 0.65 0.34 0.02 4.99	BM15B p1 51.53 28.79 0.46 13.13 3.85 0.25 98.01 2.39 1.57 0.02 0.65 0.035 0.01 4.99	BM15B p1 51.56 29.00 0.51 13.13 3.65 0.29 98.14 2.38 1.58 0.02 0.65 0.33 0.02 4.98	BM15B p1 51.40 29.19 0.59 13.38 3.67 0.27 98.50 2.37 1.59 0.02 0.66 0.33 0.02 4.99	BM15B p1 51.01 29.40 0.31 13.79 3.33 0.25 98.09 2.36 1.60 0.01 0.68 0.30 0.01 4.98	BM15B p1 50.82 30.14 0.60 14.03 3.40 0.21 99.19 2.33 1.63 0.02 0.69 0.30 0.01 4.99	BM15B p1 50.32 29.83 0.55 14.19 0.22 98.30 2.33 1.63 0.02 0.70 0.29 0.01 4.98	BM15B p1 50.83 29.15 0.91 12.89 3.54 0.56 97.87 2.35 1.59 0.03 0.64 0.32 0.03 4.97	BM15B p1 51.44 29.39 0.52 13.46 3.58 0.24 98.63 2.37 1.60 0.02 0.66 0.32 0.01 4.98	BM15B p1 51.21 29.37 0.46 13.45 3.76 0.27 98.52 2.36 1.60 0.02 0.67 0.34 0.02 5.00	BM15B p1 51.18 29.39 0.39 13.71 3.53 0.19 98.38 2.36 1.60 0.01 0.68 0.32 0.01 4.98
plagioclase SiO ₂ Al ₂ O ₃ FeO Total CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total	p1 52.16 28.68 0.54 12.77 4.12 0.32 98.59 TURALE (8 2.40 1.55 0.02 4.99	BM15B p1 52.34 28.64 0.55 12.57 4.08 0.30 98.48 0.xygène 2.41 1.55 0.02 0.62 0.36 0.02 4.98	BM15B p1 53.15 28.94 0.52 12.71 3.98 0.28 99.58 ss) 2.41 1.55 0.02 0.62 0.35 0.02 4.97	BM15B p1 52.21 28.82 0.52 12.85 4.15 0.30 98.85 2.40 1.56 0.02 0.63 0.37 0.02 5.00	BM15B p1 52.18 28.75 0.48 12.80 3.98 0.23 98.42 2.40 1.56 0.02 0.63 0.36 0.01 4.98	BM15B p1 52.46 28.42 0.42 12.74 4.02 0.29 98.34 2.42 1.54 0.01 0.63 0.36 0.02 4.98	BM15B p1 51.87 28.79 0.44 12.88 4.05 0.31 98.33 2.39 1.57 0.02 0.64 0.36 0.02 4.99	BM15B p1 51.93 28.68 0.41 12.66 4.08 0.29 98.05 2.40 1.56 0.01 0.63 0.37 0.02 4.99	BM15B p1 52.16 28.73 0.47 12.82 3.84 0.27 98.30 2.40 1.56 0.02 0.63 0.34 0.02 4.97	BM15B p1 51.75 28.97 0.48 13.02 3.45 0.33 98.01 2.39 1.58 0.02 0.65 0.31 0.02 4.96	BM15B p1 51.57 28.94 0.55 13.02 4.05 0.29 98.42 2.38 1.57 0.02 0.64 0.36 0.02 5.00	BM15B p1 51.86 29.28 0.53 13.06 3.77 0.32 98.82 2.38 1.58 0.02 0.64 0.34 0.02 4.98	BM15B p1 51.81 28.79 0.33 12.87 3.74 0.30 97.83 2.40 1.57 0.01 0.64 0.30 4.97	BM15B p1 51.71 28.77 0.52 12.93 3.79 0.30 98.01 2.39 1.57 0.02 0.64 0.34 0.02 4.98	BM15B p1 51.86 29.52 0.43 13.16 3.81 0.32 99.10 2.38 1.59 0.01 0.65 0.34 0.02 4.99	BM15B p1 51.55 29.11 0.56 13.05 3.99 0.29 98.54 2.38 1.58 0.02 0.64 0.36 0.02 5.00	BM15B p1 51.11 29.23 0.56 13.17 3.76 0.30 98.13 2.37 1.60 0.02 0.65 0.34 0.02 4.99	BM15B p1 51.53 28.79 0.46 13.13 3.85 0.25 98.01 2.39 1.57 0.02 0.65 0.35 0.01 4.99	BM15B p1 51.56 29.00 0.51 13.13 3.65 0.29 98.14 2.38 1.58 0.02 0.65 0.33 0.02 4.98	BM15B p1 51.40 29.19 0.59 13.38 3.67 0.27 98.50 2.37 1.59 0.02 0.66 0.33 0.02 4.99	BM15B p1 51.01 29.40 0.31 13.79 3.33 0.25 98.09 2.36 1.60 0.01 0.68 0.30 0.01 4.98	BM15B p1 50.82 30.14 0.60 14.03 3.40 0.21 99.19 2.33 1.63 0.02 0.69 0.30 0.01 4.99	BM15B p1 50.32 29.83 0.55 14.19 0.22 98.30 2.33 1.63 0.02 0.70 0.29 0.01 4.98	BM15B p1 50.83 29.15 0.91 12.89 3.54 0.56 97.87 2.35 1.59 0.03 0.64 0.32 0.03 4.97	BM15B p1 51.44 29.39 0.52 13.46 3.58 0.24 98.63 2.37 1.60 0.02 0.66 0.32 0.01 4.98	BM15B p1 51.21 29.37 0.46 13.45 3.76 0.27 98.52 2.36 1.60 0.02 0.67 0.34 0.02 5.00	BM15B p1 51.18 29.39 0.39 13.71 3.53 0.19 98.38 2.36 1.60 0.01 0.68 0.32 0.01 4.98

372.0 384.0 396.0 420.0 432.0 444.0 456.0 468.0 480.0 492.0 504.0 516.0 528.0 540.0 552.0 564.0 576.0 588.0 600.0 612.0 636.0 648.0 660.0 672.0 684.0 696.0 708.0

	,																										
Lame	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1
SiO ₂	51.50	51.46	51.22	50.79	51.21	51.18	51.26	50.97	51.20	50.82	51.41	50.88	51.26	50.87	51.30	51.34	51.04	50.87	51.10	50.73	51.24	50.96	51.28	50.72	51.32	51.07	50.24
Al_2O_3	29.33	29.11	29.47	29.43	29.31	29.75	29.33	29.52	29.61	29.34	29.61	29.43	29.23	29.53	29.49	29.53	29.59	29.37	29.65	29.55	29.49	29.14	29.37	29.50	29.37	30.00	29.78
FeO Total	0.65	0.59	0.38	0.59	0.51	0.59	0.58	0.62	0.64	0.72	0.53	0.69	0.42	0.53	0.45	0.46	0.38	0.52	0.59	0.41	0.49	1.06	0.41	0.50	0.52	0.50	0.56
CaO	13.45	13.52	13.67	13.54	13.67	13.64	13.47	13.53	13.66	13.53	13.57	13.54	13.44	13.71	13.60	13.68	13.71	13.61	13.54	13.55	13.65	13.41	13.49	13.60	13.63	14.09	14.06
Na₂O	3.74	3.59	3.64	3.67	3.56	3.54	3.49	3.56	3.43	3.48	3.57	3.52	3.53	3.63	3.58	3.51	3.65	3.60	3.57	3.39	3.48	3.54	3.63	3.59	3.64	3.42	3.34
K ₂ O	0.26	0.23	0.15	0.24	0.24	0.24	0.21	0.23	0.23	0.25	0.24	0.22	0.24	0.27	0.26	0.27	0.21	0.21	0.22	0.24	0.21	0.25	0.23	0.17	0.12	0.16	0.22
Total	98.93	98.50	98.54	98.26	98.49	98.94	98.33	98.44	98.77	98.12	98.92	98.27	98.13	98.53	98.67	98.78	98.58	98.17	98.66	97.88	98.55	98.35	98.40	98.08	98.61	99.24	98.20
FORMULE STRUC	TURALE (8	Oxygène	es)																								
Si	2.37	2.37	2.36	2.35	2.36	2.35	2.37	2.35	2.36	2.36	2.36	2.35	2.37	2.35	2.36	2.36	2.35	2.36	2.36	2.35	2.36	2.36	2.37	2.35	2.37	2.34	2.33
Al	1.59	1.58	1.60	1.61	1.60	1.61	1.60	1.61	1.61	1.60	1.60	1.60	1.59	1.61	1.60	1.60	1.61	1.60	1.61	1.62	1.60	1.59	1.60	1.61	1.60	1.62	1.63
Fe ³⁺	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.01	0.02	0.02	0.01	0.02	0.04	0.01	0.02	0.02	0.02	0.02
Ca	0.66	0.67	0.68	0.67	0.68	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.68	0.67	0.67	0.68	0.68	0.67	0.67	0.67	0.66	0.67	0.68	0.67	0.69	0.70
Na	0.33	0.32	0.32	0.33	0.32	0.32	0.31	0.32	0.31	0.31	0.32	0.32	0.32	0.32	0.32	0.31	0.33	0.32	0.32	0.30	0.31	0.32	0.32	0.32	0.33	0.30	0.30
K	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total	4.99	4.98	4.98	4.99	4.99	4.99	4.97	4.99	4.98	4.98	4.98	4.98	4.98	5.00	4.99	4.98	4.99	4.99	4.99	4.98	4.98	4.98	4.98	4.99	4.98	4.98	4.99
%Or	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
%Ab	0.33	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.31	0.31	0.32	0.32	0.32	0.32	0.32	0.31	0.32	0.32	0.32	0.31	0.31	0.32	0.32	0.32	0.32	0.30	0.30
%An	0.66	0.67	0.67	0.66	0.67	0.67	0.67	0.67	0.68	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.68	0.68	0.67	0.66	0.67	0.67	0.69	0.69
distance en µm	720	732	768	780	792	804	816	828	840	852	864	876	888	900	912	936	948	960	972	984	996	1008	1020	1032	1044	1068	1080
	1																										
Lame	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1
SiO ₂	50.65	51.01	50.83	50.73	50.00	50.56	50.47	51.37	51.37	50.99	52.34	51.47	51.08	51.18	51.08	51.42	51.24	50.62	50.99	51.58	51.34	51.65	51.42	51.07	51.04	51.26	51.41
Al ₂ O ₃	29.66	29.64	29.51	29.68	29.94	29.83	29.53	29.46	29.24	29.66	28.84	29.42	29.54	29.08	29.30	29.30	29.21	29.04	29.26	29.36	29.14	29.21	29.30	29.32	29.29	29.25	29.16
FeO Total	0.52	0.50	0.55	0.54	0.54	0.46	0.39	0.48	0.94	0.55	0.40	0.60	0.48	0.43	0.48	0.54	0.52	0.57	0.68	0.48	0.48	0.60	0.50	0.52	0.54	0.57	0.51
CaO	13.73	13.69	13.69	13.79	14.32	14.00	13.95	13.43	12.97	13.40	12.73	13.52	13.50	13.45	13.46	13.52	13.54	13.26	13.45	13.35	13.39	13.33	13.38	13.35	13.27	13.46	13.26
Na₂O	3.42	3.40	3.59	3.49	3.21	3.41	3.32	3.62	3.56	3.65	4.03	3.69	3.71	3.58	3.66	3.69	3.51	3.62	3.73	3.91	3.71	3.68	3.57	3.62	3.71	3.70	3.83
K ₂ O	0.26	0.24	0.25	0.18	0.23	0.22	0.26	0.29	0.54	0.27	0.25	0.25	0.25	0.28	0.25	0.26	0.24	0.26	0.27	0.26	0.25	0.25	0.25	0.22	0.21	0.23	0.24
Total	98.23	98.47	98.42	98.41	98.24	98.47	97.93	98.66	98.61	98.52	98.58	98.95	98.55	98.01	98.23	98.73	98.25	97.36	98.39	98.93	98.30	98.72	98.42	98.10	98.06	98.47	98.41
FORMULE STRUC	1		,																								
Si	2.34	2.35	2.35	2.35	2.32	2.34	2.35	2.37	2.36	2.35	2.41	2.37	2.36	2.37	2.36	2.37	2.37	2.36	2.36	2.37	2.37	2.38	2.37	2.37	2.36	2.37	2.37
Al	1.62	1.61	1.61	1.62	1.64	1.63	1.62	1.60	1.58	1.61	1.56	1.59	1.61	1.59	1.60	1.59	1.59	1.60	1.60	1.59	1.59	1.58	1.59	1.60	1.60	1.59	1.59
Fe ³⁺	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.03	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Ca	0.68	0.68	0.68	0.68	0.71	0.69	0.69	0.66	0.64	0.66	0.63	0.67	0.67	0.67	0.67	0.67	0.67	0.66	0.67	0.66	0.66	0.66	0.66	0.66	0.66	0.67	0.66
Na	0.31	0.30	0.32	0.31	0.29	0.31	0.30	0.32	0.32	0.33	0.36	0.33	0.33	0.32	0.33	0.33	0.31	0.33	0.33	0.35	0.33	0.33	0.32	0.32	0.33	0.33	0.34
		0.01				0.01											0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

 $0.02 \quad 0.01 \quad 0.01 \quad 0.01 \quad 0.01 \quad 0.01 \quad 0.02 \quad 0.02 \quad 0.02 \quad 0.03 \quad 0.02 \quad 0.01 \quad 0.01 \quad 0.01 \quad 0.02 \quad 0.01 \quad 0.01 \quad 0.02 \quad 0.02 \quad 0.02 \quad 0.01 \quad$

0.31 0.31 0.32 0.31 0.28 0.30 0.30 0.32 0.32 0.32 0.36 0.33 0.33 0.32 0.33 0.31 0.33 0.33 0.34 0.33 0.33 0.32 0.32 0.33 0.34

1092 1104 1116 1128 1152 1164 1176 1200 1212 1224 1236 1248 1272 1284 1296 1320 1332 1356 1368 1392 1404 1416 1428 1440 1452 1464 1476

Total

%Or

%Ab

%An

distance en µm

Lame	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	р
SiO ₂	51.56	51.32	51.29	51.07	51.65	51.99	52.81	51.27	51.81	51.11	51.33	51.10	51.01	50.95	50.93	51.43	50.97	50.96	51.29	50.80	50.99	51.20	50.41	51.81	50.97	50.99	51.1
Al_2O_3	29.44	28.98	29.03	29.09	29.24	29.44	28.79	28.98	28.97	29.14	28.94	29.14	29.48	29.35	29.26	29.42	29.38	29.28	29.40	29.18	29.18	29.14	28.93	29.64	29.55	29.15	29.1
FeO Total	0.65	0.50	0.39	0.55	0.55	0.45	0.98	0.57	0.83	0.54	0.54	0.62	0.54	0.69	0.46	0.52	0.60	0.52	0.58	0.72	0.54	0.57	1.52	0.51	0.62	0.47	0.4
CaO	13.35	13.23	13.37	13.45	13.39	13.35	12.30	13.45	13.14	13.40	13.19	13.43	13.38	13.37	13.45	13.50	13.37	13.39	13.40	13.61	13.49	13.51	13.01	13.50	13.31	13.37	13.2
Na₂O	3.60	3.72	3.75	3.66	3.77	3.59	3.38	3.83	3.61	3.64	3.85	3.62	3.66	3.84	3.69	3.61	3.76	3.64	3.67	3.60	3.76	3.63	3.77	3.65	3.63	3.68	3.8
K ₂ O	0.24	0.20	0.24	0.20	0.23	0.25	0.23	0.20	0.15	0.20	0.20	0.23	0.21	0.25	0.28	0.26	0.22	0.24	0.25	0.23	0.27	0.24	0.26	0.26	0.25	0.22	0.2
Total	98.84	97.94	98.07	98.02	98.82	99.07	98.49	98.31	98.51	98.03	98.04	98.14	98.27	98.45	98.07	98.74	98.30	98.03	98.58	98.13	98.22	98.29	97.89	99.38	98.32	97.87	97.9
FORMULE STRUCT	URALE (8	Oxygène	s)																								
Si	2.37	2.38	2.38	2.37	2.37	2.38	2.39	2.37	2.38	2.37	2.38	2.37	2.36	2.35	2.36	2.37	2.36	2.36	2.36	2.36	2.36	2.37	2.35	2.37	2.36	2.37	2.3
Al	1.59	1.58	1.59	1.59	1.58	1.59	1.54	1.58	1.57	1.59	1.58	1.59	1.61	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.59	1.59	1.59	1.60	1.61	1.59	1.5
Fe ³⁺	0.02	0.02	0.01	0.02	0.02	0.02	0.03	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.05	0.02	0.02	0.02	0.0
Ca	0.66	0.66	0.66	0.67	0.66	0.65	0.60	0.67	0.65	0.67	0.65	0.67	0.66	0.66	0.67	0.67	0.66	0.66	0.66	0.68	0.67	0.67	0.65	0.66	0.66	0.66	0.6
Na	0.32	0.33	0.34	0.33	0.34	0.32	0.30	0.34	0.32	0.33	0.35	0.32	0.33	0.34	0.33	0.32	0.34	0.33	0.33	0.32	0.34	0.33	0.34	0.32	0.33	0.33	0.3
K	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.02	0.02	0.01	0.01	0.0
Total	4.98	4.99	4.99	4.98	4.99	4.97	4.87	4.99	4.96	4.98	4.99	4.98	4.99	5.00	4.99	4.98	4.99	4.99	4.99	4.99	5.00	4.99	4.99	4.98	4.99	4.99	5.0
%Or	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.02	0.02	0.01	0.01	0.0
%Ab	0.32	0.33	0.33	0.33	0.33	0.32	0.33	0.34	0.33	0.33	0.34	0.32	0.33	0.34	0.33	0.32	0.33	0.33	0.33	0.32	0.33	0.32	0.34	0.32	0.33	0.33	0.3
%An	0.66	0.66	0.65	0.66	0.65	0.66	0.66	0.65	0.66	0.66	0.65	0.66	0.66	0.65	0.66	0.66	0.65	0.66	0.66	0.67	0.65	0.66	0.65	0.66	0.66	0.66	0.6
distance en µm	1488	1500	1512	1524	1536	1548	1560	1572	1584	1608	1620	1632	1692	1704	1716	1728	1740	1752	1764	1776	1788	1800	1812	1848	1860	1872	188
Lame	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	р
SiO ₂	51.20	51.16	51.43	51.45	51.27	51.54	51.32	51.21	51.29	50.99	50.79	51.11	51.18	51.24	50.46	50.46	50.99	51.01	51.89	52.39	52.33	53.21	52.31	52.20	52.68	52.92	53.4
Al ₂ O ₃	29.14	29.17	29.36	29.35	29.05	29.20	29.01	29.34	28.90	29.06	29.30	29.29	28.97	29.02	29.83	29.37	29.71	29.51	28.68	28.43	28.61	28.77	28.31	28.45	28.45	28.23	27.8
FeO Total	0.68	0.59	0.50	0.59	0.55	0.49	0.52	0.53	0.58	0.57	0.48	0.53	0.46	0.60	0.58	0.40	0.31	0.39	0.47	0.63	0.54	0.55	0.50	0.51	0.51	0.54	0.4
CaO	13.38	13.25	13.43	13.56	13.28	13.26	13.27	13.37	13.36	13.29	13.49	13.49	13.29	13.47	14.00	13.70	13.49	13.52	12.84	12.45	12.48	12.44	12.45	12.54	12.35	11.91	11.7
Na ₂ O	3.71	3.81	3.84	3.67	3.56	3.57	3.68	3.64	3.62	3.81	3.81	3.80	3.83	3.85	3.39	3.71	3.67	3.64	4.10	4.25	4.45	4.10	4.11	4.09	4.33	4.40	4.3
K ₂ O	0.26	0.28	0.26	0.23	0.25	0.26	0.22	0.26	0.25	0.26	0.24	0.21	0.25	0.24	0.23	0.24	0.19	0.18	0.24	0.26	0.38	0.28	0.24	0.30	0.33	0.32	0.3
Total	98.37	98.26	98.81	98.85	97.96	98.33	98.02	98.35	98.00	97.99	98.11	98.43	97.98	98.42	98.49	97.88	98.36	98.25	98.20	98.39	98.79	99.34	97.91	98.08	98.64	98.32	98.2
FORMULE STRUCT	TURALE (8	Oxygène	s)																								
	2.37	2.37	2.37	2.37	2.38	2.38	2.38	2.37	2.38	2.37	2.36	2.36	2.37	2.37	2.33	2.35	2.36	2.36	2.40	2.41	2.41	2.42	2.42	2.41	2.42	2.43	2.4
Si	2.07					1 50	1.58	1.60	1.58	1.59	1.60	1.60	1.58	1.58	1.63	1.61	1.62	1.61	1.56	1.54	1.55	1.54	1.54	1.55	1.54	1.53	1.5
Si Al	1.59	1.59	1.59	1.59	1.59	1.59	1.50	1.00	1.00		1.00																
Si Al Fe ³⁺		1.59 0.02	1.59 0.02	1.59 0.02	1.59 0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.0
Si Al Fe ³⁺ Ca	1.59														0.02 0.69	0.01 0.68	0.01 0.67	0.01 0.67	0.02 0.64	0.02 0.61	0.02 0.61	0.02 0.61	0.02 0.62			0.02 0.59	0.0 0.5
_	1.59 0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02										0.02	0.02		
Ca	1.59 0.02 0.66	0.02 0.66	0.02 0.66	0.02 0.67	0.02 0.66	0.02 0.66	0.02 0.66	0.02 0.66	0.02 0.66	0.02 0.66	0.02 0.67	0.02 0.67	0.02 0.66	0.02 0.67	0.69	0.68	0.67	0.67	0.64	0.61	0.61	0.61	0.62	0.02 0.62	0.02 0.61	0.59	0.5

 $0.01 \quad 0.02 \quad 0.02 \quad 0.01 \quad 0.01 \quad 0.02 \quad 0.01 \quad 0.02 \quad 0.01 \quad 0.02 \quad 0.01 \quad 0.02 \quad$

0.33 0.34 0.34 0.32 0.32 0.32 0.32 0.33 0.33 0.32 0.34 0.33 0.33 0.34 0.34 0.34 0.34 0.34 0.30 0.32 0.33 0.32 0.36 0.38 0.38 0.37 0.37 0.36 0.38 0.39 0.39 0.39 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.65

%Ab

Lame	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B	BM15B
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1
SiO ₂	53.50	52.51	53.23	53.42	53.88	53.88	54.70	54.43	54.10
Al_2O_3	27.84	27.61	27.89	27.72	27.48	27.33	27.17	27.30	27.33
FeO Total	0.34	3.57	0.62	0.53	0.51	0.49	0.63	0.56	0.59
CaO	11.74	11.32	11.58	11.54	11.19	11.07	10.87	10.90	10.85
Na ₂ O	4.63	4.56	4.75	4.72	5.05	4.92	5.09	5.05	4.97
K ₂ O	0.29	0.34	0.28	0.26	0.34	0.39	0.38	0.43	0.39
Total	98.33	99.90	98.35	98.19	98.45	98.08	98.83	98.66	98.23
FORMULE STRUCT	TURALE (8	3 Oxygène	es)						
Si	2.46	2.40	2.45	2.46	2.47	2.48	2.50	2.49	2.49
Al	1.51	1.49	1.51	1.50	1.49	1.48	1.46	1.47	1.48
Fe ³⁺	0.01	0.12	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Ca	0.58	0.55	0.57	0.57	0.55	0.55	0.53	0.53	0.53
Na	0.41	0.40	0.42	0.42	0.45	0.44	0.45	0.45	0.44
K	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02
Total	4.98	4.99	4.99	4.99	4.99	4.99	4.99	4.99	4.99
%Or	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%Ab	0.41	0.41	0.42	0.42	0.44	0.44	0.45	0.44	0.44
%An	0.57	0.57	0.56	0.57	0.54	0.54	0.53	0.53	0.53
distance en µm	2280	2292	2304	2316	2340	2352	2376	2388	2400

Annexe 3 Compositions chimiques du plagioclase p1 de BM67a, roche litée de LZc

																											-
Lame	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1
SiO ₂	50.78	50.63	52.83	53.72	54.16	54.46	55.95	56.21	56.22	56.17	55.44	55.66	55.97	55.82	56.20	55.67	56.06	55.56	55.85	55.35	55.36	55.57	54.95	54.43	54.82	54.25	54.87
Al_2O_3	30.58	30.59	28.94	28.84	28.19	27.99	27.33	27.35	27.06	27.04	27.33	27.37	27.13	27.13	27.16	26.97	27.23	27.29	27.38	26.94	27.30	27.64	27.56	27.44	27.99	27.85	27.65
FeO Total	0.24	0.34	0.26	0.42	0.30	0.25	0.27	0.33	0.21	0.39	0.28	0.29	0.32	0.27	0.27	0.39	0.38	0.47	0.44	0.55	0.40	0.30	0.45	0.44	0.31	0.39	0.52
CaO	14.40	14.30	12.58	12.07	11.49	11.22	10.39	10.24	10.08	10.22	10.27	10.26	10.29	10.32	10.25	10.38	10.15	10.24	10.33	10.18	10.71	10.49	10.87	11.03	10.92	11.04	11.04
Na ₂ O	3.22	3.41	4.29	4.60	4.93	4.98	5.41	5.46	5.80	5.36	5.59	5.34	5.38	5.60	5.53	5.64	5.52	5.33	5.61	5.31	5.21	5.21	5.06	4.75	5.11	4.90	5.00
K ₂ O	0.13	0.12	0.18	0.27	0.28	0.29	0.34	0.35	0.34	0.34	0.34	0.32	0.36	0.34	0.29	0.27	0.36	0.32	0.32	0.42	0.30	0.34	0.28	0.28	0.27	0.26	0.32
Total	99.36	99.39	99.08	99.93	99.35	99.18	99.70	99.93	99.71	99.52	99.26	99.24	99.44	99.48	99.71	99.32	99.71	99.21	99.93	98.75	99.28	99.56	99.17	98.37	99.41	98.69	99.40
FORMULE ST	RUCTUR	ALE (8 C	(xygènes																								
Si	2.33	2.32	2.42	2.43	2.46	2.48	2.52	2.53	2.54	2.54	2.51	2.52	2.53	2.53	2.53	2.53	2.53	2.52	2.52	2.52	2.51	2.51	2.50	2.49	2.49	2.48	2.49
Al	1.65	1.65	1.56	1.54	1.51	1.50	1.45	1.45	1.44	1.44	1.46	1.46	1.45	1.45	1.44	1.44	1.45	1.46	1.45	1.45	1.46	1.47	1.48	1.48	1.50	1.50	1.48
Fe ³⁺	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.02
Ca	0.71	0.70	0.62	0.59	0.56	0.55	0.50	0.49	0.49	0.49	0.50	0.50	0.50	0.50	0.49	0.50	0.49	0.50	0.50	0.50	0.52	0.51	0.53	0.54	0.53	0.54	0.54
Na	0.29	0.30	0.38	0.40	0.43	0.44	0.47	0.48	0.51	0.47	0.49	0.47	0.47	0.49	0.48	0.50	0.48	0.47	0.49	0.47	0.46	0.46	0.45	0.42	0.45	0.43	0.44
K	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	4.99	5.00	4.99	5.00	4.99	4.99	4.98	4.98	5.00	4.97	5.00	4.98	4.98	4.99	4.98	5.00	4.98	4.98	4.99	4.97	4.98	4.98	4.98	4.97	4.99	4.98	4.98
%Or	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%Ab	0.29	0.30	0.38	0.40	0.43	0.44	0.48	0.48	0.50	0.48	0.49	0.48	0.48	0.49	0.49	0.49	0.49	0.48	0.49	0.47	0.46	0.46	0.45	0.43	0.45	0.44	0.44
%An	0.71	0.69	0.61	0.58	0.55	0.55	0.50	0.50	0.48	0.50	0.49	0.51	0.50	0.49	0.50	0.50	0.49	0.51	0.50	0.50	0.52	0.52	0.53	0.55	0.53	0.55	0.54
distance en µr	12	23	35	46	58	70	81	93	104	116	128	151	162	174	186	197	220	232	244	255	278	290	302	313	325	336	348

Lame	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a	BM67a
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1
SiO ₂	54.61	54.68	54.62	54.93	55.08	55.04	55.04	55.18	54.83
Al ₂ O ₃	28.10	27.78	27.93	27.50	27.79	27.63	27.71	27.62	27.71
FeO Total	0.14	0.44	0.38	0.37	0.35	0.39	0.36	0.32	0.32
CaO	11.13	11.02	11.00	10.86	10.90	10.90	10.72	10.88	10.83
Na ₂ O	4.98	5.00	5.07	5.01	5.08	5.09	5.09	5.04	4.97
K ₂ O	0.32	0.28	0.30	0.31	0.29	0.30	0.26	0.28	0.31
Total	99.27	99.18	99.29	98.97	99.48	99.35	99.18	99.32	98.98
FORMULE ST	RUCTUR	ALE (8 O	xygènes)						
Si	2.48	2.48	2.48	2.50	2.49	2.50	2.50	2.50	2.49
Al	1.50	1.49	1.49	1.47	1.48	1.48	1.48	1.48	1.49
Fe ³⁺	0.00	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Ca	0.54	0.54	0.53	0.53	0.53	0.53	0.52	0.53	0.53
Na	0.44	0.44	0.45	0.44	0.45	0.45	0.45	0.44	0.44
K	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	4.98	4.98	4.99	4.98	4.98	4.98	4.98	4.98	4.97
%Or	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%Ab	0.44	0.44	0.45	0.45	0.45	0.45	0.46	0.45	0.45
%An	0.54	0.54	0.54	0.54	0.53	0.53	0.53	0.53	0.54
distance en µr	360	383	394	406	418	429	441	452	464

Annexe 3 Compositions chimiques du plagioclase p1 de BM67b, roche litée de LZc

		_				_																					
Lame	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1
SiO ₂	54.87	55.30	54.56	54.78	54.53	54.29	54.69	54.78	54.05	54.39	54.70	54.34	54.70	54.49	54.24	54.68	54.65	54.52	55.24	54.95	54.64	55.16	54.86	54.50	54.40	54.42	54.38
Al_2O_3	27.19	27.61	28.06	27.68	27.72	27.87	27.75	27.90	27.62	27.55	27.76	27.83	27.74	27.68	27.58	27.54	27.73	27.68	27.44	27.60	27.43	27.80	27.51	27.34	27.31	27.45	27.41
FeO Total	0.29	0.44	0.39	0.41	0.41	0.46	0.52	0.38	0.48	0.26	0.44	0.42	0.40	0.29	0.43	0.52	0.47	0.62	0.42	0.49	0.51	0.48	0.53	0.57	0.48	0.53	0.46
CaO	10.71	10.81	10.99	10.95	11.08	10.96	11.14	11.13	11.17	11.27	11.09	11.12	11.20	11.04	10.91	11.05	11.06	10.94	10.81	10.94	11.04	10.91	10.94	10.93	10.85	10.96	10.89
Na ₂ O	5.12	5.30	5.18	5.01	5.00	5.28	4.82	4.87	5.08	5.10	4.91	4.98	4.96	5.19	5.15	5.18	4.88	5.01	5.03	4.93	5.24	5.12	5.05	5.01	5.13	5.04	5.10
K ₂ O	0.30	0.31	0.27	0.29	0.25	0.24	0.28	0.24	0.28	0.26	0.32	0.28	0.26	0.29	0.30	0.24	0.30	0.28	0.32	0.27	0.30	0.28	0.25	0.32	0.29	0.27	0.30
Total	98.49	99.76	99.45	99.12	98.98	99.10	99.21	99.30	98.68	98.83	99.23	98.97	99.25	98.97	98.60	99.21	99.08	99.05	99.25	99.18	99.16	99.75	99.14	98.67	98.46	98.65	98.53
FORMULE ST	RUCTUR	ALE (8 O	xygènes)																								
Si	2.51	2.50	2.48	2.49	2.48	2.47	2.48	2.48	2.47	2.48	2.49	2.48	2.49	2.48	2.48	2.49	2.49	2.48	2.50	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49
Al	1.47	1.47	1.50	1.48	1.49	1.50	1.49	1.49	1.49	1.48	1.49	1.49	1.49	1.49	1.49	1.48	1.49	1.49	1.47	1.48	1.47	1.48	1.47	1.47	1.47	1.48	1.48
Fe ³⁺	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.02	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Ca	0.52	0.52	0.53	0.53	0.54	0.53	0.54	0.54	0.55	0.55	0.54	0.54	0.55	0.54	0.53	0.54	0.54	0.53	0.53	0.53	0.54	0.53	0.53	0.54	0.53	0.54	0.53
Na	0.45	0.46	0.46	0.44	0.44	0.47	0.42	0.43	0.45	0.45	0.43	0.44	0.44	0.46	0.46	0.46	0.43	0.44	0.44	0.43	0.46	0.45	0.44	0.44	0.45	0.45	0.45
K	0.02	0.02	0.02	0.02	0.01	0.01	0.02	0.01	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02
Total	4.98	4.99	4.99	4.98	4.98	5.00	4.97	4.97	4.99	4.99	4.98	4.99	4.98	5.00	4.99	4.99	4.97	4.98	4.97	4.97	5.00	4.98	4.98	4.98	4.99	4.98	4.99
%Or	0.02	0.02	0.02	0.02	0.01	0.01	0.02	0.01	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02
	0.02					0.01				0.01																	
%Ab	0.46	0.46	0.45	0.45	0.44	0.46	0.43	0.44	0.44	0.44	0.44	0.44	0.44	0.45	0.45	0.45	0.44	0.45	0.45	0.44	0.45	0.45	0.45	0.45	0.45	0.45	0.45
%An	0.53	0.52	0.53	0.54	0.54	0.53	0.55	0.55	0.54	0.54	0.54	0.54	0.55	0.53	0.53	0.53	0.55	0.54	0.53	0.54	0.53	0.53	0.54	0.54	0.53	0.54	0.53
distance en µr	15	29	44	58	73	87	116	131	146	160	175	189	204	218	233	247	262	276	291	306	320	335	349	364	378	393	437

Lame	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b	BM67b
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1
SiO ₂	54.61	54.41	54.79	54.78	54.75	54.84	54.61	54.96	54.72
Al ₂ O ₃	27.57	27.75	27.62	27.57	27.53	27.55	27.12	27.27	27.14
FeO Total	0.45	0.53	0.47	0.41	0.63	0.45	0.46	0.46	0.62
CaO	10.94	10.99	10.98	10.88	10.79	10.89	10.69	10.80	10.82
Na₂O	5.20	5.15	5.01	5.26	5.27	5.10	5.17	5.15	5.16
K ₂ O	0.30	0.30	0.25	0.31	0.26	0.31	0.32	0.32	0.27
Total	99.08	99.12	99.11	99.21	99.22	99.13	98.37	98.96	98.72
FORMULE ST	RUCTUR	ALE (8 O	(xygènes)					
Si	2.49	2.48	2.49	2.49	2.49	2.49	2.50	2.50	2.50
Al	1.48	1.49	1.48	1.48	1.47	1.48	1.46	1.46	1.46
Fe ³⁺	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02
Ca	0.53	0.54	0.53	0.53	0.53	0.53	0.52	0.53	0.53
Na	0.46	0.45	0.44	0.46	0.46	0.45	0.46	0.45	0.46
K	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02
Total	4.99	4.99	4.98	4.99	4.99	4.98	4.98	4.98	4.98
%Or	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02
%Ab	0.45	0.45	0.45	0.46	0.46	0.45	0.46	0.45	0.46
%An	0.53	0.53	0.54	0.52	0.52	0.53	0.52	0.53	0.53
distance en µr	451	466	480	495	509	524	538	553	567

Annexe 3 Compositions chimiques du plagioclase p1 de BM67c, roche litée de LZc

Lame	BM67c																										
plagioclase	p1	p1	n1	n1	p1	n1	p1	n1	p1	n1	p1	p1	p1	p1	n1	p1	n1	n1	n1	p1	p1	n1	p1	n1	p1	p1	n1
SiO ₂	54.95	55.14	54.94	55.06	54.92	54.71	54.50	55.22	54.96	55.01	54.60	54.89	55.09	55.07	54.85	55.15	54.72	55.17	55.38	54.16	54.74	54.86	54.79	55.06	55.38	55.67	54.92
Al_2O_3	27.66	27.30	27.69	27.54	27.50	27.68	27.59	27.49	27.61	27.74	26.83	27.67	27.74	27.63	27.49	27.56	27.59	27.56	27.49	27.44	27.46	27.64	27.73	27.50	27.99	28.00	27.56
FeO Total	0.63	0.54	0.45	0.61	0.39	0.50	0.41	0.41	0.68	0.47	0.67	0.48	0.45	0.46	0.48	0.38	0.50	0.45	0.43	0.52	0.61	0.38	0.51	0.46	0.56	0.39	0.49
CaO Na₂O	11.07 4.94	10.88 5.02	11.17 4.95	11.01 5.10	10.91 5.06	11.03 4.90	11.03 5.09	10.96 4.82	10.87 5.04	10.98 5.07	10.94 5.10	11.09 5.21	11.22 4.92	11.09 5.01	11.03 5.02	11.03 5.16	11.08 5.19	11.05 5.01	11.06 5.00	10.94 5.06	10.93 4.90	10.95 5.08	11.05 5.13	10.99 5.22	11.03 5.00	11.01 4.96	11.05 5.09
K ₂ O	0.28	0.32	0.29	0.28	0.27	0.27	0.32	0.24	0.28	0.30	0.24	0.30	0.29	0.30	0.31	0.32	0.27	0.29	0.29	0.28	0.27	0.30	0.26	0.30	0.26	0.33	0.27
Total	99.53	99.19	99.48	99.60	99.05	99.09	98.94	99.14	99.44	99.57	98.39	99.63	99.70	99.56	99.19	99.59	99.34	99.54	99.66	98.39	98.91	99.22	99.48	99.52	100.21	100.36	99.38
FORMULE ST	RUCTURA	ALE (8 O	xygènes)																								l
Si	2.49	2.50	2.49	2.49	2.50	2.49	2.48	2.50	2.49	2.49	2.50	2.49	2.49	2.49	2.49	2.50	2.48	2.50	2.50	2.48	2.49	2.49	2.48	2.50	2.49	2.50	2.49
Al	1.48	1.46	1.48	1.47	1.47	1.48	1.48	1.47	1.47	1.48	1.45	1.48	1.48	1.47	1.47	1.47	1.48	1.47	1.46	1.48	1.47	1.48	1.48	1.47	1.48	1.48	1.47
Fe ³⁺	0.02	0.02	0.02	0.02	0.01	0.02	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.02	0.01	0.02
Ca	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Na	0.54	0.53	0.54	0.53	0.53	0.54	0.54	0.53	0.53	0.53	0.54	0.54	0.54	0.54	0.54	0.53	0.54	0.54	0.54	0.54	0.53	0.53	0.54	0.53	0.53	0.53	0.54
K	0.43	0.44	0.43	0.45	0.45	0.43	0.45	0.42	0.44	0.44	0.45	0.46	0.43	0.44	0.44	0.45	0.46	0.44	0.44	0.45	0.43	0.45	0.45	0.46	0.44	0.43	0.45
Total	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%Or	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%Ab	0.44	0.45	0.44	0.45	0.45	0.44	0.45	0.44	0.45	0.45	0.45	0.45	0.43	0.44	0.44	0.45	0.45	0.44	0.44	0.45	0.44	0.45	0.45	0.45	0.44	0.44	0.45
%An	0.54	0.53	0.55	0.54	0.53	0.55	0.54	0.55	0.53	0.54	0.53	0.53	0.55	0.54	0.54	0.53	0.53	0.54	0.54	0.54	0.54	0.53	0.54	0.53	0.54	0.54	0.54
distance en µr	16	25	33	41	49	57	65	74	82	90	106	115	123	131	139	147	155	188	196	205	213	221	237	245	254	262	270

Lame	BM67c	BM67c	
plagioclase	p1	p1	
SiO ₂	55.01	55.13	
Al_2O_3	27.46	27.57	
FeO Total	0.35	0.47	
CaO	11.01	11.10	
Na₂O	5.10	4.98	
K ₂ O	0.26	0.27	
Total	99.19	99.52	
FORMULE ST	RUCTUR	ALE (8 Oxygène	s
Si	2.50	2.50	
AI	1.47	1.47	
Fe ³⁺	0.01	0.02	
Ca	0.00	0.00	
Na	0.54	0.54	
K	0.45	0.44	
Total	0.02	0.02	
%Or	0.02	0.02	
%Ab	0.45	0.44	
%An	0.54	0.54	
distance en µr	278	286	

Annexe 3 Compositions chimiques du plagioclase p1 de BM67d, roche litée de LZc

	DMOZI	DMOZII	DMOZI	DM07.1	DMOZII	DMOZ	DM07.1	DMOZ	DMOZ	DMOZI	DMOZI	DMOZI	DM07.1	DMOTI	DMOZII	DMOZII	DMOZI	DMOZI	DMOTI	D1407.1	DMOZI	DMOZI	DM07.1	DMOZI	DMOZII	DMOZII	D1407.1
Lame		BM67d	BM67d	BM67d	BM67d	BM67d		BM67d	BM67d	BM67d			BM67d	BM67d	BM67d		BM67d	BM67d	BM67d			BM67d	BM67d	BM67d			BM67d
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1	p1
SiO ₂	49.51	51.97	54.00	54.24	55.60	56.70	56.54	56.59	56.19	55.93	55.19	55.71	55.57	55.15	55.12	54.43	54.65	54.86	55.06	55.18	54.88	54.88	54.91	55.04	55.13	54.89	55.19
Al_2O_3	31.60	29.88	28.96	28.26	27.63	27.23	27.21	27.42	27.42	27.42	27.42	27.42	27.57	27.53	27.74	27.67	27.86	28.24	28.02	28.17	27.97	27.87	27.79	28.00	27.91	27.90	27.68
FeO Total	0.23	0.37	0.31	0.35	0.27	0.19	0.33	0.33	0.32	0.27	0.17	0.22	0.13	0.38	0.64	0.37	0.27	0.42	0.35	0.33	0.50	0.27	0.37	0.35	0.41	0.50	0.32
CaO	15.18	13.44	12.26	11.60	10.62	9.98	9.86	9.99	10.17	10.34	10.55	10.55	10.69	10.76	10.81	10.97	11.25	11.29	11.17	11.22	11.18	11.18	11.09	11.08	11.11	11.15	11.00
Na₂O	2.80	3.71	4.36	4.77	5.35	5.62	5.60	5.41	5.56	5.49	5.43	5.33	5.37	5.11	5.32	4.97	5.06	5.05	5.09	5.11	4.95	5.06	5.10	5.12	5.11	5.05	5.16
K ₂ O	0.10	0.14	0.22	0.28	0.27	0.33	0.35	0.35	0.36	0.31	0.35	0.33	0.27	0.35	0.31	0.25	0.27	0.30	0.29	0.26	0.32	0.34	0.31	0.26	0.30	0.30	0.28
Total	99.43	99.51	100.11	99.49	99.74	100.04	99.88	100.08	100.04	99.75	99.12	99.56	99.59	99.27	99.93	98.66	99.36	100.15	99.99	100.26	99.80	99.60	99.57	99.86	99.96	99.79	99.63
FORMULE ST	RUCTURA	ALE (8 O	xygènes)																								
Si	2.27	2.37	2.44	2.46	2.51	2.54	2.54	2.54	2.53	2.52	2.51	2.52	2.51	2.50	2.49	2.49	2.48	2.47	2.48	2.48	2.48	2.49	2.49	2.49	2.49	2.48	2.50
AI	1.71	1.61	1.54	1.51	1.47	1.44	1.44	1.45	1.45	1.46	1.47	1.46	1.47	1.47	1.48	1.49	1.49	1.50	1.49	1.49	1.49	1.49	1.48	1.49	1.48	1.49	1.48
Fe ³⁺	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.01
Ca	0.75	0.66	0.59	0.56	0.51	0.48	0.47	0.48	0.49	0.50	0.51	0.51	0.52	0.52	0.52	0.54	0.55	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.53
Na	0.25	0.33	0.38	0.42	0.47	0.49	0.49	0.47	0.48	0.48	0.48	0.47	0.47	0.45	0.47	0.44	0.45	0.44	0.44	0.45	0.43	0.44	0.45	0.45	0.45	0.44	0.45
K	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	4.99	4.98	4.98	4.99	4.98	4.98	4.98	4.97	4.99	4.98	4.99	4.98	4.98	4.98	4.99	4.98	4.99	4.99	4.99	4.99	4.98	4.99	4.99	4.99	4.99	4.99	4.99
%Or	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%Ab	0.25	0.33	0.39	0.42	0.47	0.50	0.50	0.48	0.49	0.48	0.47	0.47	0.47	0.45	0.46	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.45	0.45	0.45	0.44	0.45
%An	0.75	0.66	0.60	0.56	0.52	0.49	0.48	0.49	0.49	0.50	0.51	0.51	0.52	0.53	0.52	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.53
distance en µr	10	21	31	42	52	63	73	84	94	105	115	126	136	147	157	168	178	189	199	210	220	231	241	252	262	272	283

Lame	BM67d	BM67d	BM67d	BM67d	BM67d	BM67d	BM67d	BM67d	BM67d
plagioclase	p1	p1	p1	p1	p1	p1	p1	p1	p1
SiO ₂	55.21	55.23	55.13	55.08	55.30	55.09	55.52	55.12	56.24
Al_2O_3	27.68	27.68	27.64	27.65	27.54	27.46	27.40	27.62	27.82
FeO Total	0.30	0.32	0.39	0.84	0.33	0.23	0.36	0.28	0.38
CaO	10.71	10.71	10.90	10.71	10.70	10.72	10.79	10.71	10.71
Na ₂ O	5.24	5.17	5.24	5.18	5.30	5.27	5.24	5.24	5.22
K ₂ O	0.30	0.34	0.30	0.33	0.30	0.33	0.32	0.33	0.30
Total	99.45	99.45	99.60	99.80	99.47	99.10	99.64	99.30	100.68
FORMULE ST	RUCTUR	ALE (8 O	xygènes))					
Si	2.50	2.50	2.50	2.49	2.50	2.50	2.51	2.50	2.51
Al	1.48	1.48	1.48	1.47	1.47	1.47	1.46	1.48	1.47
Fe ³⁺	0.01	0.01	0.01	0.03	0.01	0.01	0.01	0.01	0.01
Ca	0.52	0.52	0.53	0.52	0.52	0.52	0.52	0.52	0.51
Na	0.46	0.45	0.46	0.45	0.47	0.46	0.46	0.46	0.45
K	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	4.99	4.98	4.99	4.98	4.99	4.98	4.98	4.99	4.97
%Or	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%Ab	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
%An	0.52	0.52	0.53	0.52	0.52	0.52	0.52	0.52	0.52
distance en µr	293	304	325	356	367	377	388	409	419

Annexe 4: Méthodes analytiques

I Méthode analytique pour l'ICP-MS à ablation laser (Département des Sciences de la Terre, Université de Lausanne)

Les mesures sont acquissent grâce au couplage d'un laser 193 nm Lambda Physics© Excimer (système Geolas 200M) à un ICP-MS Laser Perkin-Elmer 6100 DRC fonctionnant à 27 kV et à une fréquence de répétition de 10Hz, produisant une intensité de 12 J/cm² sur le site d'ablation, la profondeur de l'ablation est d'environ 60 µm et le diamètre peut être choisi (pour cette étude des ablations de 40 ou 20 µm ont été effectué). L'hélium est utilisé comme gaz porteur (1.1 L/mn). Nous avons choisi le verre 612 (Tableau 1) comme standard externe, Ca (pour le sphène et l'amphibole) et Al (pour les feldspaths) comme standards internes (les mesures sont obtenues à la microsonde à coté de l'ablation faite par le laser). Le verre basaltique BCR2 est régulièrement utilisé comme moyen de contrôle de la reproductibilité et la précision du système. Les résultats sont toujours situés à ± 10% des valeurs reportées par Witt-Eickschen et al (2003), alors que pour Rb, Cs, Y et surtout Cr sont en dehors des ±10% des valeurs recommandées par l'USGS pour BCR2 (Tableau 2). Les points ont été analysés dans toutes les phases pour montrer la variabilité des éléments en traces à l'intérieur d'un même cristal ou entre des cristaux de même nature dans une lame mince. Les données sont extraire avec le logiciel standard de Perkin Elmer ou avec LAMTRACE, un tableur développé par S.E. Jackson (Macquarie University, Sydney).

Norman M. D., Griffin W. L., Pearson N. J., Garcia M. O. et O'Reilly S. Y.,1998. Quantitavtive analysis of trace element abundances in glasses and minerals: a comparaison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. *Journal of analytical atomic spectrometry* 13, pp. 477-482.

Witt-Eickschen G., Seck H. A., Mezger K., Eggins S. M. and Altherr R. (2003). Lithospheric mantle evolution beneath the Eifel (Germany): contraints from Sr-Nd-Pb isotopes and trace element abundances in spinel peridotite and pyroxenite xenoliths. *Journal of Petrology*, vol. 44, pp. 1077-1095.

II Méthode analytique pour la microsonde électronique (Service commun de microanalyse, Université Henri Poincaré, Nancy)

Les analyses des minéraux en lames-minces ont été réalisées avec les microsondes SX50 et SX100 (Service commun de microanalyse, Université Henri Poincaré, Nancy). Les conditions d'analyses des éléments majeurs sont une tension de 15 kV et un courant de 10 nA, avec un temps de comptage de 20 secondes sur les pics et 10 secondes sur le bruit de fond sauf pour Na, qui à un temps de comptage de 10 et 5 secondes. Pour Ba et Sr, les conditions sont de 25 kV et 100 nA avec un temps de comptage de 60 secondes sur les pics et 10 secondes sur le bruit de fond. Les limites de détections sont indiquées dans le **tableau 3**. Des standards naturels et synthétiques ont été utilisés pour calibrer la microsonde électronique, le programme PhiRhoZ (Merlet, 1994) a été utilisé pour les corrections des analyses.

Merlet C.,1994. An Accurate Computer Correction Program for Quantitative Electron Probe Microanalysis. *Mikrochim. Acta* vol. 114/115, pp. 363-376.

		limites de Sr (ppm)
N2-F41; N2-P58; N4-P17	269 (± 9)	292 (± 53)
N3-F24	282 (± 26)	233 (± 40)
N4-R1; N4-R2; N4-R3; N2-R1	113 (± 2)	167 (± 30)

Tableau 3: Moyennes des limites de détections pour les éléments en traces, des analyses effectuées à la microsonde électronique.

III Méthode analytique pour l'imagerie (Université Henri Poincaré, Nancy)

Les lames minces ont été observées sous microscope optique et microscope électronique Hitachi 2500 (Service commun de microanalyse, Université Henri Poincaré, Nancy). Des photos ont également été prises en "cathodoluminescences froide" au laboratoire G2R de Nancy. Toutes les photos BSE ont toutes été réalisée au MEB.

IV Méthode analytique pour la sonde ionique IMS 3f (CRPG-CNRS, Nancy)

Les concentrations de Sr et Ba ont été mesurées au CRPG-CNRS (Nancy) avec une microsonde ionique CAMECA IMS 3f en utilisant la technique classique du filtrage en énergie. Les échantillons sont bombardés avec un faisceau primaire d'ions O- avec une intensité de 15 nA et les ions positifs secondaires 30Si^+ , 86Sr^+ , 88Sr^+ , 137Ba^+ , et 138Ba^+ ont été analysés à une résolution de masse M/DM de 800 et un filtrage en énergie de -80 eV. Chaque masse est comptée pendant 4s. Chaque intensité des ions a été mesurée par rapport à celle de 30Si^+ et les rapports isotopiques (par exemple $86\text{Sr}^+/30\text{Si}^+$) ont été corrigés pour : (1) les abondances isotopiques et (2) les rendements ioniques de chaque élément par rapport à Si (Hinton, 1990). Les valeurs utilisées pour les rendements ioniques ont été déterminées en utilisant 2 standards de verres (USGS-NBS) : BHVO-2 (SiO₂ 49.9 %, Sr 389 ± 23 ppm et Ba 130 ± 13 ppm) et BCR-2 (SiO₂ 54.1 %, Sr 346 ± 14 ppm, Ba 683 ± 28 ppm). Les rendements déterminés sur ces standards étaient $2,46 \pm 0,08$ (erreur de 3,1 %) pour le strontium et $1,74 \pm 0,02$ (erreur de 1,4 %) pour le baryum.

Hinton RW (1990). Ion microprobe trace-element analysis of silicates: Measurement of multi-element glasses. Chem. Geol, 83, 11-25.

V Reproductibilité des trois méthodes d'analyses

Les trois méthodes d'analyses, microsonde électronique, sonde ionique et ICP-MS La peuvent être comparées. Mais la meilleure comparaison est celle entre la sonde ionique et l'ICP-MS La car elles ont un plus grand nombre d'éléments en commun.

Tout d'abord, les trois méthodes présentent chacune des inconvenants et des avantages:

Pour *l'ICP-Ms La*, étant donné que les points réalisés avec le laser sont profonds de 60 µm et large de 20 à 40 µm et que les minéraux sont zonés, on ne peut pas déterminer dans quelle partie du minéral ont se trouve. Pour aider à visualiser la zone qui est analysée durant l'ablation, le logiciel Lamtrace, permet de décomposer, dans le temps, le signal (d'éléments sélectionnés) donné par l'ICP-MS et donc de se rendre compte si on est bine toujours dans le même minéral, mais pour le zonage interne, c'est impossible de savoir avec exactitude. La calibration est également un autre problème car les standards n'étaient pas appropriés aux minéraux de cette roche, en particulier pour les feldspaths,

car ceux-ci ne contiennent pas de calcium (élément qui est utilisé de préférence pour calibrer) et pour les amphiboles les teneurs en calcium sont assez loin de celle du standard BCR2, utilisé. La largeur du spot d'analyses entre 40 et 20 µm peut parfois être assez handicapant. On ne peut pas réaliser ces analyses sur des lames minces, il faut en fabriquer spécialement à cet effet, de plus c'est une méthode destructive. Enfin, il faut réaliser une calibration à partir d'analyses effectuées à la sonde électronique (Al₂O₃ pour le feldspath et CaO pour la hornblende et le sphène). Les avantages de cette méthode, sont tout d'abord, un grand nombre d'analyses réalisées en peut de temps et sur un nombre très important d'éléments en traces. Il y a également une bonne visualisation en surface, de la zone de l'ablation.

La sonde ionique quand à elle, permet des analyses extrêmement fiables aux niveaux des résultats mais également au niveau du positionnement du spot sur le minéral, l'ablation se fait uniquement en surface et la taille du spot (~25 μm). En revanche le temps d'analyses est beaucoup plus long et le nombre d'éléments analysés est moins important. Et il faut comme pour l'ICP-MS faire une calibration interne à partir d'analyses effectuées à la sonde électronique, ici nous avons pris SiO₂.

Enfin *la microsonde électronique* est aussi fiable que la sonde ionique, malheureusement les analyses en éléments en traces restent limitées à des teneurs élevées et tous les éléments ne sont pas analysables.

Il apparaît donc, que les résultats de la sonde ionique sont certainement plus précis que ceux de l'ICP-MS La. Ainsi la référence pour les analyses sera la sonde ionique, toutefois, les teneurs en certains éléments en traces sont tellement faibles que quelque soit la méthode, ils sont inutilisables.

<u>La comparaison entre ICP-MS et sonde ionique</u> donne des résultats intéressants. En effet vu les problèmes dus à l'ICP-MS (profondeur des trous, problème de standards), on aurait pu s'attendre à des résultats différents de ceux de la sonde ionique.

Les analyses effectuées dans une amphibole sont reportées dans le tableau 4.

Les teneurs en SiO2 (en incluant les erreurs) correspondent pour les deux méthodes et les éléments en traces se corrèlent plutôt bien (**tableau 4**).

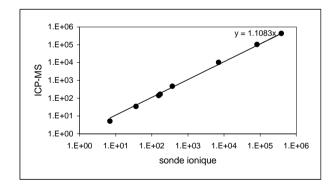
Les analyses pour les feldspaths sont plus difficiles à interpréter (**tableau 5**), les teneurs en silice sont du même ordre. En revanche, dans les feldspaths potassiques le Ba et Sr

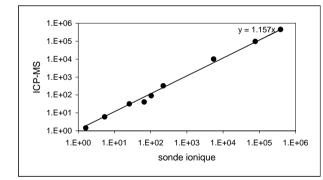
sont souvent sous estimés avec l'ICP-MS et pour les plagioclases aucune tendance n'est visible.

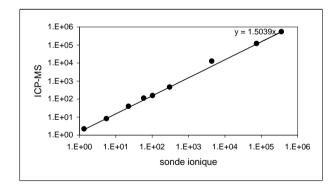
La comparaison entre les deux sondes est intéressante pour calibrer le Sr et Ba dans les feldspaths. Les points effectués avec la sonde électronique ne sont pas situés aux même endroits, mais dans des minéraux identiques, donnant ainsi un ordre de grandeur. Les teneurs en Sr dans les FK sont peut-être un peut sur estimées à la sonde électronique, alors que dans les plagioclases, les teneurs sont sensiblement identiques. Il en va de même pour le Ba dans les deux feldspaths.

En conclusion, l'utilisation de l'ICP-MS La n'est pas très conseillée pour les minéraux du Dolbel, ces derniers étant trop finement zonés. Toutefois, les résultats sont très satisfaisants lorsque si on ne considère pas le zonage. C'est une méthode qui paraît très utile en minéralogie. La sonde ionique reste la méthode la plus fiable bien que plus coûteuse et plus lente. Enfin pour des analyses simples la sonde électronique donne des résultats très satisfaisants.

Verre 6	12	Na	Mg	Al	Si	Р	K	Ca	Ti	٧	Cr	Fe	Ni	Rb	Sr	Υ	Zr	Nb	Cs	Ва
		23	24	27	29	31	39	42	49	51	53	57	60	85	88	89	90	93	133	137
		wt%	wt%	wt%	wt%		wt%	wt%	wt%	ppm	ppm	wt%	ppm							
Average	(wt% or ppm)	13.30	0.01	1.99	72.43	-	0.01	11.86	0.01	39.09	41.49	0.01	37.68	32.08	76.38	39.01	36.58	37.99	41.79	37.51
		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Hf	Та	Pb	Th	U
		139	140	141	146	147	153	157	159	163	165	166	169	173	175	178	181	208	232	238
		ppm																		
Average	(wt% or ppm)	35.90	38.29	37.26	34.94	37.12	34.80	36.20	35.86	36.49	38.22	36.71	38.00	41.81	38.03	35.05	39.76	38.47	37.49	37.56

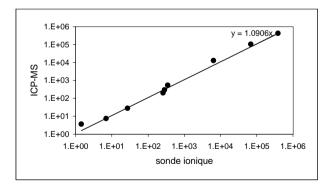

Tableau 1. Données sur le standard externe 612

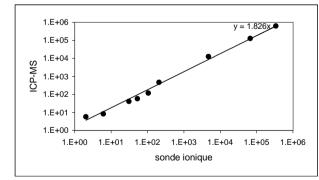

verre BCR2 Na	O MgO	K ₂ O	CaO	Sc	Cr	MnO	FeO	Ni	Rb	Sr	Υ	Zr	Nb	Cs	Ва	La	Ce	Pr
	23 24	39	42	45	53	55	57	60	85	88	89	90	93	133	137	139	140	141
W	:% wt%	wt%	wt%	ppm	ppm	wt%	wt%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Average (wt% or ppm) 3.	42 3.70	1.71	7.12	36.28	22.76	0.21	13.49	12.84	53.92	331.66	32.93	169.98	12.80	1.26	671.93	24.60	53.23	6.47
Standard dev (wt% or ppm) 0.	0.09	0.04		1.45	2.80	0.00	0.57	0.92	1.01	4.86	1.55	6.77	0.26	0.05	10.61	0.49	0.93	0.16
RSD (%) 1.	67 2.37	2.57		3.99	12.32	1.84	4.23	7.18	1.88	1.47	4.71	3.98	2.00	3.63	1.58	2.00	1.74	2.45
					M	InO ppm	Fe ₂ O ₃											
USGS Valeurs certifiées 3.	16 3.59	1.79	7.12	33	18	1520	13.8		48	346	37	188		1.1	683	25	53	6.8
en italique: valeurs informatives 0.		0.05	0.11	2	2	60	0.2		2	14	2	16		0.1	28	1	2	0.3
Valeurs ANU laboratory (Witt-Eic	kschen et a	, 2003)							54	336	35	183	13.1		681	24.5	52.3	
Valeurs Norman et al. (1998)		,							49	342	35	194	12.8		660	24.5	50.5	
verre BCR2	No	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu	Hf	Ta	W	TI	Pb	Th	U
verre BCR2	No 146	Sm 147	Eu 153	Gd 157	Tb 159	Dy 163	Ho 165	Er 166	Tm 169	Yb 173	Lu 175	Hf 178	Ta 181	W 182	TI 205	Pb 208	Th 232	U 238
verre BCR2		-										178						
verre BCR2 Average (wt% or ppm)	146	147	153	157	159	163	165	166	169	173	175		181	182	205	208	232	238 ppm 1.81
	146 ppm	147 ppm	153 ppm	157 ppm	159 ppm	163 ppm	165 ppm	166 ppm	169 ppm	173 ppm	175 ppm	178 ppm	181 ppm	182 ppm	205 ppm	208 ppm	232 ppm	ppm
Average (wt% or ppm)	146 ppm 28.20	147 ppm 6.30	153 ppm 1.91	157 ppm 6.18	159 ppm 0.97	163 ppm 6.23	165 ppm 1.23	166 ppm 3.44	169 ppm 0.50	173 ppm 3.39	175 ppm 0.49	178 ppm 4.50	181 ppm 0.83	182 ppm 0.55	205 ppm 0.28	208 ppm 11.78	232 ppm 5.89	ppm 1.81
Average (wt% or ppm) Standard dev (wt% or ppm) RSD (%)	146 ppm 28.20 0.74 2.63	147 ppm 6.30 0.39 6.14	153 ppm 1.91 0.10 5.34	157 ppm 6.18 0.41 6.69	159 ppm 0.97 0.07 6.77	163 ppm 6.23 0.40	165 ppm 1.23 0.08 6.16	166 ppm 3.44 0.22	169 ppm 0.50 0.04 8.13	173 ppm 3.39 0.33 9.61	175 ppm 0.49 0.05 9.51	178 ppm 4.50 0.31 6.82	181 ppm 0.83 0.06	182 ppm 0.55 0.11	205 ppm 0.28 0.10	208 ppm 11.78 0.27 2.27	232 ppm 5.89 0.27 4.51	ppm 1.81 0.09 4.74
Average (wt% or ppm) Standard dev (wt% or ppm) RSD (%) USGS Valeurs certifiées	28.20 0.74 2.63	147 ppm 6.30 0.39 6.14	153 ppm 1.91 0.10 5.34	157 ppm 6.18 0.41 6.69	159 ppm 0.97 0.07 6.77	163 ppm 6.23 0.40	165 ppm 1.23 0.08 6.16	166 ppm 3.44 0.22	169 ppm 0.50 0.04	173 ppm 3.39 0.33 9.61	175 ppm 0.49 0.05 9.51	178 ppm 4.50 0.31 6.82	181 ppm 0.83 0.06	182 ppm 0.55 0.11	205 ppm 0.28 0.10	208 ppm 11.78 0.27 2.27	232 ppm 5.89 0.27 4.51	ppm 1.81 0.09 4.74
Average (wt% or ppm) Standard dev (wt% or ppm) RSD (%)	146 ppm 28.20 0.74 2.63	147 ppm 6.30 0.39 6.14	153 ppm 1.91 0.10 5.34	157 ppm 6.18 0.41 6.69	159 ppm 0.97 0.07 6.77	163 ppm 6.23 0.40	165 ppm 1.23 0.08 6.16	166 ppm 3.44 0.22	169 ppm 0.50 0.04 8.13	173 ppm 3.39 0.33 9.61	175 ppm 0.49 0.05 9.51	178 ppm 4.50 0.31 6.82	181 ppm 0.83 0.06	182 ppm 0.55 0.11	205 ppm 0.28 0.10	208 ppm 11.78 0.27 2.27	232 ppm 5.89 0.27 4.51	1.81 0.09 4.74
Average (wt% or ppm) Standard dev (wt% or ppm) RSD (%) USGS Valeurs certifiées	28.20 0.74 2.63	147 ppm 6.30 0.39 6.14	153 ppm 1.91 0.10 5.34	157 ppm 6.18 0.41 6.69	159 ppm 0.97 0.07 6.77	163 ppm 6.23 0.40	165 ppm 1.23 0.08 6.16	166 ppm 3.44 0.22	169 ppm 0.50 0.04 8.13	173 ppm 3.39 0.33 9.61	175 ppm 0.49 0.05 9.51	178 ppm 4.50 0.31 6.82	181 ppm 0.83 0.06	182 ppm 0.55 0.11	205 ppm 0.28 0.10	208 ppm 11.78 0.27 2.27	232 ppm 5.89 0.27 4.51	1.81 0.09 4.74

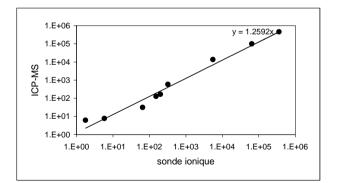

Tableau 2. Données sur le verre basaltique BCR2

Annexe 4 tableau 4 comparaison des 3 méthodes d'analyses dans une amphibole du granite lité de Dolbel

	Sonde I.				ICP-MS	Sonde E.	Sonde I.				ICP-MS	Sonde E.	Sonde I.				ICP-MS	Sonde E.
ref.	149				RUN 26	149-N4-04G8	151				RUN 26	151-N4-06G10	moy 149-156				RUN 26	156-N4-04/12G15
ana.	amp1				04g	15	amp2				06G	17	amp3				04G-12G	15-22
		%erreur - erreur + erreur						%erreur	- erreur	+ erreur			%erreur - erreur + erreur			erreur		
Si	390000	14	335841	444160	430001	39.28	390000) 10	350331	429669	450001	39.04	360001	14	308863	411138	540000	36.57
Ca	83209	15	70352	96067	102600	10.26	77506	3 13	67758	87253	95500	9.55	74408	15	62929	85887	118400	11.84
Sc		16	0	0			42	2 12	2 37	47			41	16	35	47		
Ti	7144	14	6160	8128	10039	1.03	5551	15	4718	6383	10027	0.98	4391	15	3717	5066	12539	1.19
V	374	18	307	441	457		225	5 33			318		304	15	257	350	456	
Sr	173	40	104	241	165		104	1 25	78	3 131	88		103	32	69	136	153	
Υ	7	55	3	11	5			5 45	5 3	8	6		6	40	3	8	8	
Zr	37	15	31	42	34		26	33	3 17	' 35	31		22	62	8	37	39	
Nb		43	0	0			2	2 32	2 1	2	1		1	31	1	2	2	
Ва	157	15	134	181	137		67	7 25	5 50	83	40		59	15	50	68	110	
Hf	0	591	0	2	1		•	222	? () 2	1		0	468	-1	2	1	
La	1	41	1	2	0		3	3 28	3 2	2 3	3		2	25	1	2	2	
Ce	4	42	2	5	3		9) 14	1 7	' 10	9		5	9	4	5	7	
Pr	1	37	0	1	0		•	l 14	1	2	1		1	32	0	1	1	
Nd	4	14	3	4	6		6	3 10) (5 7	3		3	14	3	4	10	
Sm	1	26	1	2	5		2	2 22	2 1	2	0		1	32	1	2	2	
Eu	1	223	0	2	0		•	102	2 () 2	0		1	95	0	1	1	
Gd	2	56	1	4	4		2	2 49) 1	3	2		2	57	1	3	5	
Dy	1	29	1	2	0		,	l 24	1	2	3		1	20	1	1	1	
Er	1	28	1	1	0		•	19)	1	4		1	24	0	1	1	
Yb	1	30	0	1	1		•	1 29) () 1	2		1	28	0	1	0	
Lu	0	-85	0	0	0		() -88	3 (0	0		0	87	0	0	0	

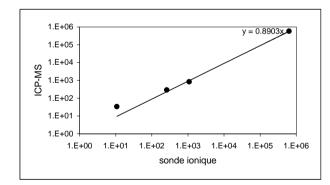


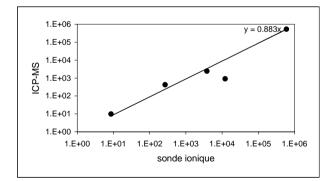


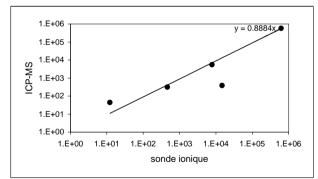

Les analyses reportées dans les graphiques sont celles en caractères épais

Annexe 4 tableau 4 comparaison des 3 méthodes d'analyses dans une amphibole du granite lité de Dolbel (suite)

	Sonde I.				ICP-MS	Sonde E.	Sonde I.				ICP-MS	Sonde E. Sonde I.						Sonde E.
ref.	161				RUN 26	161-N4-17G20	167				RUN 26	167-N4-07H26	169				RUN 26	169-N4-09H28
ana.	amp4				17G	27	amp5				07H	33	amp6				09H	35
		%erreur	- erreur	+ erreur				%erreur	- erreur	+ erreur				%erreur	- erreur -	+ erreur		
Si	390000	9	353145	426856	420000	39.50	340000) 9	309321	370679	620000	34.28	360000	5	340757	379243	450000	36.27
Ca	68726	40	41261	96191	104800	10.48	67217	7 10	60298	74135	126800	12.70	64466	10	57971	70961	99100	9.91
Sc	52	8	48	56			38	3 14	33	43			32	3	31	34		
Ti	6427	35	4178	8676	12601	1.15	4778	3 12	4222	5335	12491	1.04	5553	13	4820	6286	13369	1.03
V	349	34	231	468	528		209) 12	! 184	234	463		324	17	269	379	576	
Sr	286	10	256	316	292		106	5 11	94	118	119		202	14	175	230	164	
Υ	7	37	4	10	7		(31	4	8	8		6	12	5	7	8	
Zr	27	13	24	31	27		31	11	28	35	41		65	13	57	74	31	
Nb	1	22	1	2	4		2	2 13	2	2	6		2	24	1	2	6	
Ba	261	30	182	340	198		53	15	45	62	58		153	14	132	174	126	
Hf	1	243	-1	3	0		1	73	0	2	3		1	145	0	2	0	
La	1	28	1	1	1		3	3 13	2	3	5		0	31	0	0	1	
Ce	4	14	4	5	3		9) 10	8	10	10		1	16	1	1	2	
Pr	1	13	1	1	1		1	32	! 1	2	3		0	25	0	0	0	
Nd	5	8	4	5	6		6	3 6	6	7	14		1	15	1	1	5	
Sm	2	27	1	2	7		2	2 21	1	2	-1		1	25	1	1	0	
Eu	1	235	-1	3	1		1	83	0	1	1		0	374	0	1	1	
Gd	4	31	3	5	0		2	2 52	! 1	3	10		2	25	1	2	3	
Dy	2	17	2	2	1		1	23	1	1	4		1	15	1	1	6	
Er	1	16	1	1	0		1	24	0	1	2		1	14	1	1	2	
Yb	1	20	1	1	0		() 20	0	1	0		0	24	0	1	3	
Lu	0		0	0	0			-353	0	0	0		0	43	0	0	0	

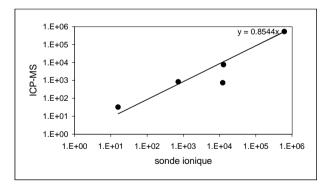


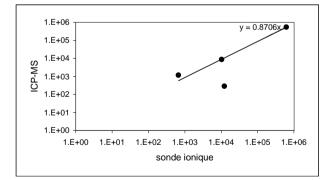


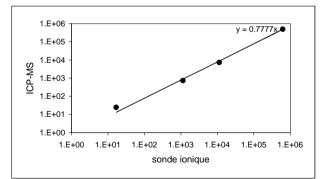

Les analyses reportées dans les graphiques sont celles en caractères épais

Annexe 4 tableau 5 comparaison des 3 méthodes d'analyses dans le feldspath-K 1 du granite lité de Dolbel

	Sonde I.				ICP-MS	Sonde E.	Sonde I.				ICP-MS	Sonde E.	Sonde I.				ICP-MS	Sonde E.
ref.	32				RUN 25	N2-07b	39-40				RUN 25	N2-15 et16b	45				RUN 25	N2-06c
ana.	N2R4-FK1				07B	32	N2R4-FK2				15B-16B	39-40	N2R4-FK3				07C	45
	0	%erreur -	erreur +	erreur				%erreur	- erreur	+ erreur			•	%erreur	- erreur	+ erreur		
Si	640000	6	599899	680102	570001	64.15	600001	42	348728	851274	530000	60.99	630000	13	547754	712247	560000	63.25
Ca	11866	19	9590	14143	0	0.01	12192	49	6182	18203	887	0.00	14881	25	11090	18673	378	0.05
Sc		32	0	0				48	0	0				44	0	0		
Ti	11	10	10	12	33	0.00	9	39	5	12	10	0.01	12	17	10	14	43	0.00
V		44	0	0				41	0	0				19	0	0		
Sr	260	19	211	309	284		269	64	97	441	416		466	25	350	583	307	
Υ		53	0	0				73	0	0				46	0	0		
Zr		63	0	0				55	0	0				58	0	0		
Nb		196	0	0				216	0	0				125	0	0		
Ba	1089	12	962	1216	814		3836	37	2428	5243	2404		7898	16	6659	9136	5405	
Hf	0	157	0	1	0		0	0	0	0	0		1	87	0	2	0	
La	0	34	0	0	0		0	33	0	0	0		0	28	0	0	0	
Ce	0	40	0	0	0		0	72	0	0	0		0	43	0	0	0	
Pr	0	182	0	0	0		0	258	0	0	0		0	600	0	0	0	
Nd	0	132	0	0	0		0	154	0	0	0		0	0	0	0	0	
Sm	0	206	0	1	0		0	226	0	1	0		0	218	0	0	0	
Eu	0	2345	0	4	0		8	235	0	28	0		2	686	0	19	0	
Gd	0	0	0	0	1		0	51	0	0	0		0	32	0	0	0	
Dy	0	81	0	0	0		0	58	0	0	0		0	16	0	0	0	
Er	0	0	0	0	0		0	83	0	0	0		0	57	0	0	0	
Yb	0	35	0	1	0		0	328	0	0	0		0	183	0	0	0	
Lu	0	0	0	0	0		0	128	0	0	0		0	60	0	0	0	



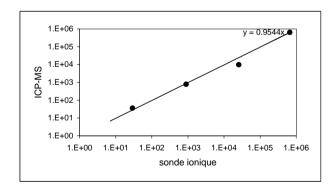


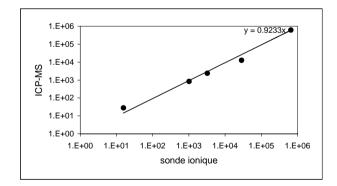


Annexe 4 tableau 5 comparaison des 3 méthodes d'analyses dans le feldspath-K 1 du granite lité de Dolbel (suite)

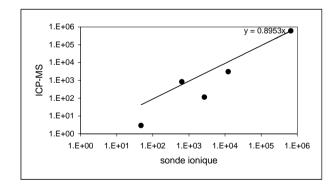
	Sonde I.				ICP-MS	Sonde E.	Sonde I.				ICP-MS	Sonde E.	Sonde I.				ICP-MS	Sonde E.
ref.	47-48				RUN 25	N2-12 et 13c	50				RUN 25	N2-17c	50				RUN 25	N2-03e
ana.	N2R4-FK4				12C	47-48	N2R4-FK5				17C	50	N2R4-FK5				03E	51
		%erreur -	erreur	+ erreur				%erreur	- erreur	+ erreur			•	%erreur -	erreur +	erreur		
Si	620001	21	487867	752134	530001	62.67	620001	73	169343	1070658	540001	62.70	630000	19	510338	749663	490000	63.31
Ca	12402	48	6461	18343	724	0.01	12321	105	-577	25218	284	0.03	2318	27	1702	2933	0	0.00
Sc		38	0	0				107	' 0	0				20	0	0		
Ti	16	12	14	18	32	0.02		69	0	0		0.00	17	46	9	25	24	0.00
V		37	0	0				76		0				123	0	0		
Sr	730	16	610	851	823		671	81	128	1214	1174		1141	21	898	1385	719	
Υ		54	0	0				80	0	0				142	0	0		
Zr		57	0	0				70	0	0				119	0	0		
Nb		152	0	0				157	' 0					212	0	0		
Ва	12918	15	11006	14831	7372		10349	75	2571	18127	8726		11352	15	9647	13056	7110	
Hf	2	61	1	3	0		1	201	-1	4	0		1	2266	-16	17	0	
La	0	44	0	1	0		C	67	' 0	1	0		1	55	0	1	0	
Ce	0	48	0	0	0		C	71	0	0	0		1	119	0	1	0	
Pr	0	185	0	0	0		C	150) 0	0	0		1	148	0	1	0	
Nd	0	700	0	0	1		C	154	. 0	0	0		2	110	0	3	0	
Sm	0	182	0	0	0		C	127	' 0	0	0		2	214	-3	7	0	
Eu	4	943	0	46	0		18	671	-105	142	0		2	683	-12	16	0	
Gd	0	31	0	0	0		1	86	0	1	3		14	66	5	23	0	
Dy	0	21	0	1	0		1	57	0	1	0		4	64	1	6	0	
Er	0	38	0	1	0		C	83	3 0	1	0		6	40	4	9	0	
Yb	0	74	0	0	0		C	63	3 0	0	0		1	261	-1	3	0	
Lu	0	44	0	0	0		C	95	0	0	0		0	283	-1	1	0	

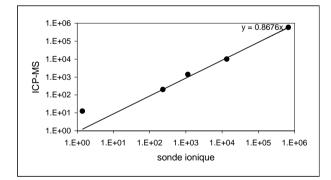
Les analyses reportées dans les graphiques sont celles en caractères épais

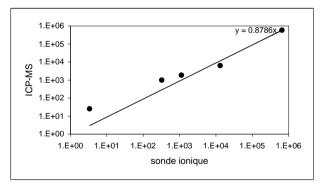

Annexe 4 tableau 5 comparaison des 3 méthodes d'analyses dans le feldspath-K 1 du granite lité de Dolbel (suite 2)


	Sonde I.				ICP-MS	Sonde E.
ref.	52				RUN 25	N2-05e
ana.	N2R4-FK7				05E-06E	52
		%erreur	- erreur	+ erreur		
Si	620001	35	400919	839082	520001	62.68
Ca	2326	59	949	3704	929	0.01
Sc		77	0	0		
Ti	11	53	5	17	0	0.00
V		188	0	0		
Sr	849	38	524	1174	581	
Υ		114	0	0		
Zr		220	0	0		
Nb		172	0	0		
Ва	9434	47	5031	13837	5584	
Hf	0	-1222	0	0	0	
La	1	58	0	1	0	
Ce	1	247	-1	2	0	
Pr	1	213	-1	2	0	
Nd	4	104	0	7	1	
Sm	3	256	-4	10	0	
Eu	0	-2808	0	0	0	
Gd	6	139	-2	14	0	
Dy	3	168	-2	7	0	
Er	5	58	2	9	1	
Yb	4	113	0	7	0	
Lu	1	275	-1	3	0	

Annexe 4 tableau 5 comparaison des 3 méthodes d'analyses dans le feldspath-K 2 du granite lité de Dolbel

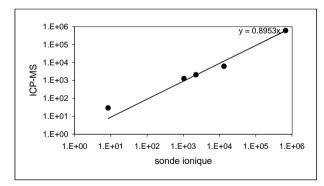

	Sonde I.				ICP-MS	Sonde E.	Sonde I.				ICP-MS	Sonde E.
ref.	moy 5-6				RUN 24	N1-06 et 07	12				RUN 24	N1-15
ana.	N1R1FK1				06A-07A	05-06	N1R1FK2				15A	12
		%erreur -	erreur	+ erreur				%erreur	- erreur	+ erreur		
Si	670000	5	636588	703412	640001	67.22	660000	6	622751	697249	610001	66.02
Ca	25830	13	22572	29087	9640	1.29	28788	5	27306	30269	12516	1.82
Sc	16	17	13	19			15	6	15	16		
Ti	10	12	9	11		0.00	16	14	14	18	28	0.00
V	7	18	6	8				8	0	0		
Sr	896	5	850	943	775		3248	9	2953	3543	2367	
Υ		38	0	0				39	0	0		
Zr		62	0	0				73	0	0		
Nb		0	0	0				206	0	0		
Ва	29	6	28	31	35		1020	10	914	1126	814	
Hf	0	0	0	0	0		0	203	0	0	0	
La	0	15	0	0	0		0	24	0	0	0	
Ce	0	33	0	0	0		0	31	0	0	0	
Pr	0	0	0	0	0		0	111	0	0	0	
Nd	0	262	0	0	0		0	443	0	0	0	
Sm	0	829	0	0	0		0	155	0	0	0	
Eu	0	647	0	0	0		1	332	0	3	0	
Gd	0	1433	0	0	0		0	108	0	0	0	
Dy	0	217	0	0	0		0	29	0	0	0	
Er	0	383	0	0	0		0	780	0	0	0	
Yb	0	234	0	0	0		0	185	0	0	0	
Lu	0	671	0	0	0		0	0	0	0	0	





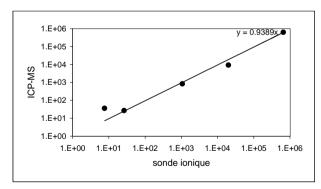
Annexe 4 tableau 5 comparaison des 3 méthodes d'analyses dans le plagioclase 1 du granite lité de Dolbel

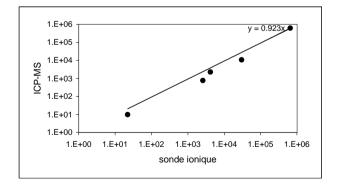
	Sonde I.				ICP-MS	Sonde E.	Sonde I.				ICP-MS	Sonde E.	Sonde I.				ICP-MS	Sonde E.
ref.	120				RUN 26	N4-16C35	119-120				RUN 26	N4-17C36	118				RUN 26	N4-15C34
ana.	N4-PI 1				17C	119	N4-PI 2				16C-17C	120	N4-PI 3				04G-12G	118
		%erreur	- erreur	+ erreur				%erreur	- erreur	+ erreur				%erreur -	erreur +	- erreur		
Si	67000	1 9	607273	732729	600001	68.36	68000	0 8	624767	735234	590000	67.91	660001	15	561549	758452	580001	66.53
Ca	1241	5 2 ⁻	9765	15065	3037	0.30	1358	3 19	11002	16164	9970	0.37	13241	31	9073	17409	6255	1.03
Sc		2	1 0	0				34	1 0	0				33	0	0		
Ti	4	8 6	5 17	79	3	0.00		1 3	5 1	2	12	0.00	3	28	2	4	25	0.04
V		1	5 (0				38	3 0	0				45	0	0		
Sr	63	9 2	488	790	825		113	9 30	3 767	1512	1368		1140	42	666	1613	1837	
Υ		40	3 0	0				66	3 0	0				56	0	0		
Zr		2	5 0	0				9	0	0				73	0	0		
Nb		92	2 (0				238	3 0	0				204	0	0		
Ba	269	B 40	1612	3785	112		23	3 43	3 133	334	197		326	23	250	401	975	
Hf		0 () (0	0			0 840) 0	1	0		1	224	0	2	0	
La		0 34	4 C	1	0			0 67	' 0	0	1		0	35	0	0	0	
Ce		0 6	1 (0	0			0 12	2 0	0	1		0	102	0	0	0	
Pr		0 20) (0	0			0 300) 0	0	0		0	196	0	0	0	
Nd		0 14	1 C	0	0			0 () 0	0	0		0	194	0	0	0	
Sm		0 16	1 C	1	0			0 400) 0	0	0		0	216	0	1	1	
Eu		3 46	5 0	16	0			0 479	9 0	3	0		0	0	0	0	0	
Gd		1 29	9 (1	0			0 3400) 0	0	0		0	0	0	0	1	
Dy		0 38	3 (0	0			0 () 0	0	1		0	0	0	0	1	
Er		0 140) (0	0			0 72	2 0	0	0		0	71	0	0	0	
Yb		0 170	3 (0	0			0 458	3 0	0	0		1	22	1	1	1	
Lu		0 14	7 (0	0			0 () 0	0	0		0	0	0	0	0	



Annexe 4 tableau 5 comparaison des 3 méthodes d'analyses dans le plagioclase 1 du granite lité de Dolbel (suite)

	Sonde I.				ICP-MS	Sonde E.	Sonde I.				ICP-MS	Sonde E.	Sonde I.				ICP-MS	Sonde E.
ref.	117				RUN 26	N4-14C33	115				RUN 26	N4-12C31	114-115				RUN 26	N4-11C30
ana.	N4-PI 4				14C	117	N4-PI 5				07H	115	N4-PI 6				11C-12C	114
		%erreur	- erreur	+ erreur				%erreur	- erreur	+ erreur				%erreur	erreur -	erreur		
Si	67000	1 77	154461	1185541	600000	67.69	67000	1 22	2 521351	818650	600000	67.51	67000	0 25	502646	837354	720001	66.51
Ca	1341	3 106	-866	27691	6004	0.94	978	7 30	6871	12704	6680	0.87	11774	4 33	7943	15605	12523	1.34
Sc		143	0	0				58	3 0	0				53	0	0		
Ti		8 76	2	15	29	0.00	1	0 46	5 5	14	56	0.01	10	0 40	6	14	61	0.01
V		143	0	0				63	3 0	0				54	0	0		
Sr	225	7 85	335	4180	2055		204	8 37	7 1296	2799	1989		244	5 30	1700	3190	2803	
Υ		98	0	0				74	4 0	0				89	0	0		
Zr		86	0	0				8′	1 0	0				72	0	0		
Nb		162	2 0	0				169	5 0	0				195	0	0		
Ba	104	8 83	181	1915	1240		51	3 25	385	641	915		468	B 28	337	599	998	3
Hf		1 242	2 0	3	0			1 1189	9 0	13	0			1 831	0	10	C	
La		0 74	0	0	0			0 62	2 0	0	0		(0 65	0	1	C	
Ce		0 88	0	0	0			0 9	1 0	0	0		(155	0	1	C	
Pr		0 225	0	0	0			0 236	3 0	1	0		(195	0	1	C	
Nd		0 117	0	1	1			1 97	7 0	3	0			1 108	0	2	1	
Sm		0 219	0	1	0			1 18	1 0	2	1			1 221	0	2	C	
Eu		0 608′	0	16	0			1 318	3 0	2	0		(2314	0	2	C	
Gd		0 32′	0	1	0			1 240) 0	5	1			1 429	0	4	1	
Dy		0 557	0	0	0			1 148	3 0	3	0			1 151	0	2	C	
Er		0 107	0	1	0			1 12	0	2	0			1 145	0	2	C	
Yb		0 116	0	1	0			2 9	5 0	3	0			1 104	0	2	C	
Lu		0 214	0	0	0			1 169	9 0	2	0		(259	0	1	0	





Les analyses reportées dans les graphiques sont celles en caractères épais

Annexe 4 tableau 5 comparaison des 3 méthodes d'analyses dans le plagioclase 2 du granite lité de Dolbel

	Sonde I.				ICP-MS	Sonde E.	Sonde I.				ICP-MS	Sonde E.
ref.	20				RUN 24	N1-14b	22-23				RUN 24	167-N4-07H26
ana.	N1R4-1				13B	20	N1R4-2				16B-17B	33
		%erreur -	erreur	+ erreur				%erreur	- erreur	+ erreur		
Si	660001	18	541593	778408	620000	66.63	660	000 2	504707	815294	610001	66.30
Ca	20111	37	12646	27576	9166	1.73	30	323	27630	33015	10608	1.38
Sc		32	0	0				1:	2 0	0		
Ti	8	19	6	9	35	0.00		22 1	3 18	26	10	0.01
V		37	0	0				1:	2 0	0		
Sr	1069	15	910	1229	822		4	215 1:	5 3570	4861	2266	
Υ		41	0	0				3:	3 0	0		
Zr		84	0	0				7:	5 0	0		
Nb		211	0	0				37	5 0	0		
Ва	26	12	23	30	26		2	604 1	3 2192	3015	758	
Hf	0	1884	0	1	0			0 20	7 0	1	0	
La	0	32	0	0	0			0 2	4 0	0	0	
Ce	0	36	0	0	0			0 3	6 0	0	0	
Pr	0	180	0	0	0			0 15	0 0	0	0	
Nd	0	141	0	0	1			0 -80	0 0	0	0	
Sm	0	0	0	0	1			0 51	7 0	0	0	
Eu	0	391	0	0	0			0 -250	1 0	0	0	
Gd	0	0	0	0	0			0 12	4 0	0	0	
Dy	0	168	0	0	0			0 2	6 0	0	0	
Er	0	127	0	0	0			0 1	6 0	0	0	
Yb	0	100	0	0	1			0 -6	0 0	0	0	
Lu	0	454	0	0	0			0 -2	3 0	0	0	

Annexe 4 tableau 6 Données ICP-MS et sonde électronique dans un sphène du granite lité de Dolbel

S.E.	Run 26-1	Run 26-2	Run 26-3	Run 26-4	Run 26-5	Run 26-6	Run 26-7	Run 26-8	Run 26-9	Run 26-10	Run 26-11	Run 26-12
SiO ₂	29.67	29.69	29.92	29.87	29.96	29.76	30.00	29.56	29.91	29.74	28.94	29.91
TiO ₂	36.49	36.56	36.88	36.86	36.77	36.65	36.27	36.28	35.94	36.92	36.62	36.76
Al_2O_3	1.35	1.31	1.28	1.16	1.28	2.34	2.50	2.38	2.70		2.38	
FeO	1.79	2.06	1.76	1.85	2.14	1.08	0.87	0.91	1.05		0.93	1.90
MnO	0.23	0.16	0.18	0.05	0.15	0.05	0.00	0.91	0.02		0.93	0.12
MgO	0.23	0.10	0.00	0.03	0.13	0.00	0.03	0.03	0.02		0.00	0.00
CaO	27.81	27.87	27.80	28.36	28.20	28.33	28.51	28.06	28.31	28.21	28.26	27.92
Na₂O	0.06	0.02	0.06	0.04	0.02	0.00	0.01	0.07	0.00		0.01	0.00
K ₂ O	0.00	0.02	0.00	0.04	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Total	97.41	97.69	97.88	98.21	98.55	98.23	98.21	97.31	97.95		97.14	97.95
ICPMS												
SiO ₂	28.16	29.13	30.71	33.51	30.87	33.12	33.91	32.58	33.25	28.78	35.80	32.08
TiO ₂	43.54	43.74	44.22	44.24	44.41	44.29	44.26	43.38	44.00		42.94	42.87
Al ₂ O ₃	1.85	1.57	1.73	2.81	2.91	3.45	3.42	3.26	3.41	3.34	3.53	
MgO	0.06	0.03	0.03	0.04	0.03	0.03	0.04	0.03	0.04		0.03	0.03
CaO	27.80	27.86	27.78	28.36	28.20	28.33	28.51	28.06	28.31	28.21	28.26	27.91
Na₂O	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.03	0.04		0.09	0.03
K ₂ O	0.06	0.04	0.03	0.05	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00
V	788	730	741	646	599	623	680	642	644	662	573	590
Cr	34	54	34	14		5		32			49	25.94
FeO	1.73	1.65	1.68	1.08	0.84	0.97	0.95	0.96	0.94		1.15	
Ni Dh	0.82	1.36	0.60	4.07		1.59	4.95	4.20		1.66	1.65	
Rb Sr	2.83 139	1.03 160	0.63 176	1.27 248	325	0.10 359	364	0.04 347	370	0.00 352	0.92 448	0.02 308
Y	1042	1208	1055	565	534	595	615	557	596		374	545
zr	508	8395	684	330	270	639	440	386	581	250	1209	559
Nb	440	413	411	189	302	418	390	344	419		350	323
Cs	0.34	0.07	0.08	0.02	0.03		0.01	0.06	0.03		-0.12	0.03
Ва	7.50	3.28	1.23	4.79	1.25	1.28	1.84		1.32		1.91	0.56
La	534	501	382	100	30	31	42	36	43	26	108	
Ce	1502	1455	1073	360	123	134	172	154	174	109	424	273
Pr	243	245	181	80	32	33	43	40	45	28	100	63
Nd	1223	1226	976	530	231	268	331	295	331	210	712	
Sm	307	352	286	279	135	170	222	200	203		297	206
Eu	67	85	70	80	47	55	73	67	72		76	63
Gd	286	304	272	258	159	185	240	212	229		220	221
Tb Dv	36 219	41 229	37	30	22 121	27	33	28 152	31	18 98	24 104	26 138
Dy Ho	219 36	229 44	196 40	140 23		138 25	169	23	151 24		104	138
Er	96	112	100	23 51	20 48	25 55	26 57	23 50	57		36	51
Tm	11	17	14	6	7	7	7	6	7		4	6
Yb	72	99	85	33	28	30	33	34	36		18	30
Lu	7.93	11.96	11.08	3.77	3.49	3.56	3.33	3.21	3.57		2.55	3.96
Hf	44	245	76	27	18	49	28	29	45		84	
Та	21	26	28	22	29	42	35	34	44		38	37
Pb	8.93	8.98	6.87	4.15	2.64	4.15	3.79	3.58	4.63		6.01	3.13
Th	35	30	20	10	4	8	14	10	13		16	9
U	23	36	18	20	26	38	47	38	44	19	24	

Annexes 5: Roche litée

- 5a Compositions chimiques des clinopyroxènes du granite de Dolbel
- **5b** Compositions chimiques des **actinotes** et des **hornblendes** du granite de Dolbel
- **5c** Compositions chimiques des **plagioclases** du granite de Dolbel
- **5c'** Compositions chimiques des **plagioclases** du granite de Dolbel, profils Sr et Ba profil 1 (17 points sur 994 μm) sur la largeur, de bord à bord profil 2 (75 points sur 2060 μm) sur la longueur, de bord à bord, cristal du profil 1 profil 3 (50 points sur 1210 μm) sur la longueur, de bord à bord profil 4 (40 points sur 679 μm) sur la longueur, de bord à bord profil 5 (75 points sur 1628 μm) sur la longueur, de bord à bord profil 6 (48 points sur 482 μm) sur la longueur, de bord à bord
- 5d Compositions chimiques des feldspaths potassiques du granite de Dolbel
- **5d'** Compositions chimiques des **feldspaths potassiques** du granite de Dolbel, profils Sr et Ba

profil 1 (30 points sur 1816 µm) sur la longueur, de bord à bord

profil 2 (43 points effectués manuellement avec en moyenne un espacement de 60 µm) sur la longueur, de bord à cœur

profil 3 (75 points effectués manuellement avec en moyenne un espacement de 60 µm) sur la longueur, de bord à bord, cristal du profil 2

profil 4 (94 points sur 3493 µm) sur la longueur, de bord à bord

- 5e Compositions chimiques des sphènes du granite de Dolbel
- 5f Compositions chimiques des oxydes de fer et de titane du granite de Dolbel
- **5g** Compositions chimiques des **épidotes** du granite de Dolbel

Légende:

Les cristaux sont indiqués par une lettre et un numéro:

A: amphibole ; E: épidote ; F: feldspath potassique ; P: plagioclase ; Px: pyroxène ; Q: quartz et S: sphène.

La position du point d'analyse dans le cristal est indiquée par:

-c pour le cœur; -b pour le bord et -s pour les surcroissances. Lorsqu'il n'y a rien, c'est que la position est indéterminée.

Lorsqu'il s'agit d'une inclusion, elle est indiquée par **iX**, avec X correspondant au cristal qui englobe celui analysé.

Les numéros d'analyses peuvent comprendre également un numéro de séance d'analyse sX.

Les analyses sur les amphiboles sont classées suivant les teintes de gris visibles au MEB, celle-ci sont indiqué par des chiffres romains, allant de I à V (clair à foncé).

Pour les profils, la lettre l ou L indique si le profil à été réalisé dans la largeur ou la longueur du cristal.

Enfin lorsque les résultats sont en dessous de la limite de détection (voir annexe 1), la case contient un tiret (-).

La position verticale correspond à la position du minéral dans la séquence: le zéro correspondant à la base de la lame N1 donc à la fin de la séquence S_4 .

Calcul des formules structurales:

Les formules structurales **des amphiboles** sont calculées à partir de 23 oxygènes (22 oxygènes + H_2O calculée). La somme des cations correspond à celle donnée par Leake (1978) qui doit contenir tous les cations sauf Ca, Na et K et doit être égale à 13. La somme de tous les cations égale à 15.

Le partage du fer se fait d'après le calcul suivant (Daniel Ohnenstetter).

La somme des cations (sauf alcalins) est calculée en prenant tout le fer en Fe²⁺ (Σ Fe²⁺) puis tout le fer en Fe³⁺ (Σ Fe³⁺).

Le partage du fer ne se fait que si [15- $(\Sigma \ Fe3^+)$ / $((\Sigma \ Fe2^+)$ - $(\Sigma \ Fe3^+))$] est inférieur à 1, sinon le fer est considéré comme Fe^{2^+} . Le pourcentage de Fe^{2^+} correspond à [15- $(\Sigma \ Fe3^+)$ / $((\Sigma \ Fe2^+)$ - $(\Sigma \ Fe3^+))$] et celui de Fe^{3^+} correspond à 1- % Fe^{2^+} .

Pour **les pyroxènes**, c'est le même calcul sauf que la somme des cations (égale à 4) inclus les alcalins, la formule structurale est basée sur 6 oxygènes.

Pour les oxydes, c'est le même calcul que pour les pyroxènes, la formule structurale est basée sur 4 oxygènes pour les spinelles et 3 pour les ilménites.

Pour **les feldspaths**, il n'y a pas de partage de fer, tout est en Fe³⁺ et le calcul est basé sur 8 oxygènes.

Les sphènes sont calculés avec 4 siliciums et tout le fer est en Fe³⁺.

Les épidotes sont calculées sur 12,5 oxygènes est le fer est entièrement en Fe³⁺.

Annexe 5a Compositions chimiques des clinopyroxènes du granite lité de Dolbel

Lame	N1	N1	N2	N3	N4	N4	N4
Séquence	S4	S4	S4	S3	S1	S1	S1
N° du cristal	Px11	Px11	Px4	Px3	Px2	Px1	Px1
N° de l'analyse	76 s5	73 s5	58 s3	325 s4	10 s3	216 s1	217 s1
SiO ₂	49.83	50.40	51.61	51.69	51.97	51.38	52.38
TiO ₂	0.15	0.04	0.09	0.07	0.09	0.06	0.04
Al_2O_3	1.32	0.95	1.18	0.93	1.05	1.12	0.92
Cr_2O_3	0.00	0.00	0.02	0.01	0.01	0.00	0.01
Fe ₂ O ₃ calc.	5.79	4.23	4.14	2.91	3.43	3.94	5.17
FeO calc.	9.02	7.54	9.04	10.08	9.65	10.44	10.03
MnO	0.59	0.48	0.56	0.41	0.50	0.55	0.44
MgO	9.35	10.90	10.14	9.86	10.16	10.43	10.25
CaO	21.32	21.95	21.53	21.77	20.85	20.71	20.60
Na ₂ O	1.32	1.02	1.41	1.27	1.56	1.15	1.62
Total	98.69	97.53	99.72	99.01	99.29	99.78	101.47
FORMULE STRUC	TURALE (énvv0 a	nes)	I	ı		
Si	1.93	1.95	1.96	1.98	1.98	1.96	1.96
Al _{iv}	0.06	0.04	0.04	0.02	0.02	0.04	0.04
Al _{vi}	0.00	0.00	0.02	0.02	0.03	0.01	0.01
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe ³⁺	0.17	0.12	0.12	0.08	0.10	0.11	0.15
Fe ²⁺	0.29	0.24	0.29	0.32	0.31	0.33	0.31
Mn	0.02	0.02	0.02	0.01	0.02	0.02	0.01
Mg	0.54	0.63	0.58	0.56	0.58	0.59	0.57
Ca	0.89	0.91	0.88	0.89	0.85	0.85	0.83
Na	0.10	0.08	0.10	0.09	0.12	0.09	0.12
Total	4.00	4.00	4.00	4.00	4.00	4.00	4.00
XMg	0.65	0.72	0.67	0.64	0.65	0.64	0.65
Wo(Ca)	51.54	51.05	50.42	50.22	49.03	47.75	48.25
En(Mg)	31.43	35.27	33.06	31.64	33.25	33.46	33.41
Fs(Fe ²⁺)	17.02	13.68	16.52	18.14	17.72	18.79	18.34
CLASSIFICATION	MORIMOT	O ET AL	1988				
Wo(Ca)	46.46	47.35	46.75	47.61	46.00	44.46	44.14
En (Mg)	28.33	32.72	30.65	30.00	31.19	31.16	30.56
Fs(Fe ²⁺ Fe ³⁺ Mn ²⁺)	25.21	19.93	22.60	22.39	22.81	24.37	25.30
END MEMBER CA	WTHORN	& COLL	ERSON 1	974			
Jd	6.02	4.34	5.28	4.21	4.73	5.02	4.08
Ae	3.88	3.30	5.10	5.25	6.78	3.51	7.71
Ca-Fe ³⁺ Tsch	6.48	4.52	3.40	1.59	1.54	3.89	3.45
Ca-Ti Tsch	0.43	0.12	0.26	0.19	0.27	0.17	0.13
Ca-Tsch	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Wo	40.71	43.24	41.98	43.79	41.64	40.25	39.57
En	26.93	31.48	28.73	28.15	28.85	29.63	28.64
Fs	15.54	13.00	15.25	16.81	16.19	17.53	16.42
Position verticale*	18011	18834	32163	87025	129677	133574	133851

Annexe 5b Compositions chimiques des actinotes du granite lité de Dolbel

Lame	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2
séquence	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4
N° du cristal	A88-II-b	A88-II	A88-II-b	A88-III-b	A98-iPx9	A97-iPx8	A89-III-b	A90-IV-b	A99	A95-II-b	A64-b	A64	A65-b	A63-b	A68-b	A69-IV	A70-IV-b	A70-IV-b	A71-IV-b	A71-III-b	A76-III	A76-IV-b	A76-III	A78-IV	A78-IV	A78-III-b	A78-III	A78-III
N° d'analyse	12 s5	8 s5	2 s5	1 s5	67 s5	66 s5	15 s5	22 s5	77 s5	39 s5	9 s4	8 s4	11 s4	5 s4	23 s4	27 s4	39 s4	35 s4	45 s4	46 s4	90 s4	89 s4	96 s4	102 s4	104 s4	101 s4	99 s4	100 s4
SiO ₂	51.64	51.55	49.53	52.17	51.85	52.36	49.36	50.22	53.09	49.43	53.02	53.77	53.74	53.46	53.04	53.34	52.93	53.85	54.66	51.54	53.68	54.80	52.60	54.67	53.03	54.32	52.96	54.03
TiO ₂	0.04	0.10	0.29	0.02	0.05	0.00	0.01	0.04	0.00	0.00	0.00	0.00	0.01	0.02	0.04	0.02	0.02	0.02	0.02	0.00	-0.01	0.00	0.04	0.02	0.03	0.02	0.03	0.02
Al_2O_3	1.74	1.66	3.15	1.61	1.36	1.25	2.86	2.65	0.62	3.36	6.75	6.68	5.84	6.39	6.48	4.75	7.73	8.54	10.34	8.47	11.10	6.85	7.12	7.02	6.99	7.02	8.85	7.99
FeO	15.68	15.03	16.47	14.37	15.73	15.85	18.20	15.66	14.10	17.61	20.06	20.19	22.27	20.22	20.37	19.16	23.04	21.46	22.23	20.65	22.18	20.42	20.35	20.10	20.11	20.10	21.50	21.35
MnO	0.45	0.53	0.70	0.46	0.59	0.49	0.54	0.45	0.43	0.50	0.35	0.38	0.47	0.53	0.39	0.47	0.47	0.39	0.53	0.36	0.29	0.38	0.43	0.45	0.39	0.45	0.46	0.58
MgO	13.14	13.21	12.40	14.13	13.36	13.57	11.53	12.78	14.41	11.55	10.92	10.44	10.28	10.79	10.94	11.63	9.46	9.64	8.58	9.61	8.83	10.77	10.45	10.42	10.36	10.42	9.58	9.50
CaO	11.90	12.12	11.56	11.77	11.44	11.71	10.97	11.98	11.81	10.98	10.62	10.61	9.94	10.44	9.99	9.77	10.60	10.34	10.31	10.19	10.30	10.80	10.46	10.67	10.48	10.67	10.46	10.23
Na ₂ O	0.50	0.42	0.89	0.62	0.73	0.72	1.20	0.72	0.38	1.06	2.25	1.74	2.10	2.12	2.05	2.23	1.90	2.26	2.53	2.28	2.56	1.97	2.16	1.96	2.01	1.96	2.22	2.14
K ₂ O	0.24	0.18	0.41	0.26	0.25	0.27	0.57	0.31	0.11	0.51	0.97	0.97	1.06	0.97	0.96	1.01	1.33	1.11	1.33	1.30	1.53	0.94	0.97	0.98	1.02	0.98	1.40	1.16
Total	95.32	94.82	95.44	95.41	95.35	96.22	95.25	94.82	94.93	95.09	98.46	95.77	97.39	98.60	98.00	98.31	98.57	98.18	97.93	97.24	98.05	97.49	97.40	96.75	96.85	96.75	98.02	96.88
Fe ₂ O ₃ calc.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO calc.	15.68	15.03	16.46	14.37	15.73	15.84	18.19	15.65	14.09	17.61	20.06	20.19	22.26	20.22	20.37	19.16	23.04	21.46	22.23	20.65	22.17	20.42	20.35	20.09	20.11	20.09	21.49	21.35
H ₂ O calc.	1.99	1.99	1.97	2.01	1.99	2.01	1.95	1.97	2.01	1.96	2.16	2.16	2.16	2.16	2.14	2.11	2.18	2.21	2.27	2.14	2.26	2.21	2.15	2.20	2.15	2.19	2.20	2.20
FORMULE STRUCT	TURALE (2	23 Oxygè	nes)																									
Si	7.77	7.78	7.52	7.79	7.80	7.81	7.57	7.63	7.93	7.56	7.37	7.46	7.47	7.43	7.41	7.56	7.27	7.31	7.23	7.23	7.12	7.45	7.34	7.46	7.40	7.45	7.23	7.37
Al iv	0.23	0.22	0.48	0.21	0.20	0.19	0.43	0.37	0.07	0.44	0.63	0.54	0.53	0.57	0.59	0.44	0.73	0.69	0.77	0.77	0.88	0.55	0.66	0.54	0.60	0.55	0.77	0.63
Al vi	0.08	0.07	0.09	0.07	0.04	0.03	0.09	0.10	0.04	0.17	0.47	0.55	0.42	0.47	0.48	0.36	0.53	0.67	0.85	0.63	0.85	0.54	0.51	0.59	0.54	0.58	0.65	0.66
Ti	0.00	0.01	0.03	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe ³⁺	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe ²⁺	1.97	1.90	2.09	1.79	1.98	1.98	2.33	1.99	1.76	2.25	2.33	2.34	2.59	2.35	2.38	2.27	2.65	2.44	2.46	2.42	2.46	2.32	2.38	2.29	2.35	2.30	2.45	2.44
Mn	0.06	0.07	0.09	0.06	0.08	0.06	0.07	0.06	0.05	0.06	0.04	0.05	0.05	0.06	0.05	0.06	0.05	0.04	0.06	0.04	0.03	0.04	0.05	0.05	0.05	0.05	0.05	0.07
Mg	2.95	2.97	2.81	3.14	3.00	3.02	2.64	2.89	3.21	2.63	2.26	2.16	2.13	2.24	2.28	2.46	1.94	1.95	1.69	2.01	1.75	2.18	2.17	2.12	2.15	2.13	1.95	1.93
Ca	1.92	1.96	1.88	1.88	1.84	1.87	1.80	1.95	1.89	1.80	1.58	1.58	1.48	1.55	1.50	1.48	1.56	1.50	1.46	1.53	1.46	1.57	1.56	1.56	1.57	1.57	1.53	1.50
Na	0.14	0.12	0.26	0.18	0.21	0.21	0.36	0.21	0.11	0.32	0.61	0.47	0.56	0.57	0.55	0.61	0.50	0.59	0.65	0.62	0.66	0.52	0.59	0.52	0.54	0.52	0.59	0.57
K	0.05	0.04	0.08	0.05	0.05	0.05	0.11	0.06	0.02	0.10	0.17	0.17	0.19	0.17	0.17	0.18	0.23	0.19	0.22	0.23	0.26	0.16	0.17	0.17	0.18	0.17	0.24	0.20
Total	15.17	15.14	15.33	15.18	15.20	15.21	15.40	15.27	15.08	15.33	15.46	15.31	15.43	15.42	15.41	15.43	15.47	15.40	15.39	15.49	15.47	15.35	15.44	15.31	15.38	15.33	15.47	15.36
ОН	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
XMg	0.60	0.61	0.57	0.64	0.60	0.60	0.53	0.59	0.65	0.54	0.49	0.48	0.45	0.49	0.49	0.52	0.42	0.44	0.41	0.45	0.42	0.48	0.48	0.48	0.48	0.48	0.44	0.44
(Ca) _B	1.92	1.96	1.88	1.88	1.84	1.87	1.80	1.95	1.89	1.80	1.58	1.58	1.48	1.55	1.50	1.48	1.56	1.50	1.46	1.53	1.46	1.57	1.56	1.56	1.57	1.57	1.53	1.50
(Na) _B	0.02	0.02	0.01	0.05	0.06	0.05	0.07	0.01	0.05	0.08	0.31	0.33	0.32	0.32	0.31	0.37	0.27	0.39	0.48	0.36	0.44	0.34	0.32	0.38	0.34	0.36	0.36	0.40
(Ca+Na) _B	1.94	1.98	1.89	1.93	1.90	1.92	1.87	1.96	1.94	1.88	1.89	1.90	1.80	1.88	1.81	1.85	1.83	1.89	1.94	1.89	1.91	1.91	1.88	1.94	1.91	1.93	1.89	1.90
(Na+K) _A	0.17	0.14	0.33	0.18	0.20	0.21	0.40	0.27	0.08	0.33	0.47	0.31	0.43	0.42	0.41	0.43	0.47	0.40	0.39	0.49	0.47	0.35	0.44	0.31	0.38	0.33	0.47	0.36
Position verticale*	5068	5124	5202	5206	9469	9469	9910	18853	24668	31486	36474	36525	36540	36696	42821	45165	52733	53086	53174	53186	53190	53192	53274	53482	53488	53574	53528	53557

Annexe 5b Actinotes suite 1

Lame	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N3	N3	N3	N3	N3	N3	N3
séquence	S4	S4	S4	S4	S4	S4	S4	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3
N° du cristal	A77-iA76	A73-V-b	A73-IV-b	A74-V-b	A74-II	A74-V-b	A72-IV-b	A86-III-b	A79-III	A79-IV-b	A79-IV	A55-iE12	A80-IV	A81-III-b	A81-III	A82	A83	A84-III-b	A84-III	A85-III	A85-IV-b	A43-III	A43-II-b	A43-III-s	A43-III-s	A43-III-s	A42	A42-b
N° d'analyse	97 s4	61 s4	63 s4	65 s4	66 s4	69 s4	58 s4	141 s4	108 s4	106 s4	107 s4	38 s3	113 s4	117 s4	116 s4	119 s4	121 s4	129 s4	125 s4	133 s4	132 s4	292 s4	286 s4	282 s4	283 s4	284 s4	280 s4	279 s4
SiO ₂	51.80	53.31	48.52	53.12	52.80	52.60	54.00	52.43	54.26	53.78	53.56	40.18	53.89	52.73	52.53	51.75	52.64	54.96	53.65	49.21	53.59	49.08	48.73	53.82	53.82	52.67	52.20	53.85
TiO ₂	0.66	0.03	0.25	0.01	0.02	0.02	0.00	0.04	0.00	0.02	0.00	0.82	0.01	0.00	0.02	0.03	0.02	0.01	0.01	0.23	0.04	0.23	0.31	0.00	0.00	0.02	0.02	0.02
Al_2O_3	7.99	7.77	6.25	9.30	8.17	8.38	8.59	8.07	9.04	8.57	11.34	6.88	11.07	8.84	7.81	8.16	11.15	7.63	9.83	10.19	5.88	4.46	5.57	0.64	1.83	2.03	2.48	0.85
FeO	21.43	20.33	20.66	21.24	19.32	21.52	21.80	18.22	21.60	23.65	21.04	20.74	22.69	21.35	20.93	23.42	22.14	18.54	23.06	22.64	19.87	17.74	18.57	15.63	15.21	16.43	16.66	15.49
MnO	0.49	0.35	0.50	0.47	0.45	0.40	0.25	0.38	0.39	0.40	0.34	0.43	0.31	0.42	0.29	0.56	0.40	0.41	0.52	0.48	0.61	0.49	0.51	0.61	0.61	0.54	0.61	0.64
MgO	9.74	10.33	10.56	9.67	10.46	9.73	9.57	10.24	9.06	8.41	8.73	10.14	8.30	9.46	9.86	8.52	8.48	10.42	8.43	8.29	10.44	11.56	10.08	13.27	13.47	12.51	11.88	13.01
CaO	10.31	10.21	10.17	10.32	10.38	10.13	9.96	10.75	10.09	9.96	10.40	10.08	10.36	10.50	10.51	10.08	10.62	10.62	10.42	10.45	11.39	10.80	10.18	12.29	12.24	11.42	12.12	12.31
Na ₂ O	2.24	2.15	1.91	2.42	2.21	2.34	2.12	1.96	2.27	2.11	2.39	2.25	2.42	2.36	2.21	2.21	2.59	2.09	2.41	2.39	1.24	1.66	2.14	0.33	0.36	0.82	0.56	0.37
K ₂ O	1.23	1.11	1.15	1.23	1.14	1.22	1.30	0.91	1.37	1.35	1.51	0.98	1.51	1.30	1.10	1.33	1.36	0.92	1.34	1.59	0.58	0.81	0.96	0.11	0.13	0.28	0.19	0.11
Total	97.15	96.94	97.05	97.91	96.53	97.39	97.20	97.45	96.92	96.84	97.29	97.40	97.83	97.98	97.13	96.84	97.73	97.68	98.21	97.18	97.02	96.84	97.00	96.70	97.63	96.64	96.74	96.71
Fe ₂ O ₃ calc.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO calc.	21.43	20.33	20.65	21.24	19.32	21.52	21.79	18.22	21.60	23.65	21.04	16.70	22.69	21.34	20.93	23.42	22.14	18.53	23.06	22.64	19.87	17.74	18.56	15.62	15.21	16.43	16.65	15.49
H ₂ O calc.	2.16	2.17	2.03	2.21	2.17	2.17	2.21	2.14	2.22	2.20	2.25	1.85	2.26	2.19	2.16	2.14	2.23	2.20	2.23	2.12	2.14	1.99	1.99	2.03	2.06	2.02	2.02	2.03
FORMULE STRUCT	TURALE (23 Oxygè	nes)																									
Si	7.20	7.35	7.18	7.21	7.31	7.25	7.33	7.35	7.33	7.32	7.14	6.51	7.15	7.23	7.30	7.23	7.07	7.49	7.20	6.94	7.51	7.40	7.36	7.95	7.85	7.82	7.76	7.95
Al iv	0.80	0.65	0.82	0.79	0.69	0.75	0.67	0.65	0.67	0.68	0.86	1.31	0.85	0.77	0.70	0.77	0.93	0.51	0.80	1.06	0.49	0.60	0.64	0.05	0.15	0.18	0.24	0.05
Al vi	0.50	0.61	0.27	0.70	0.64	0.61	0.70	0.68	0.77	0.69	0.92	0.00	0.88	0.65	0.58	0.58	0.83	0.71	0.76	0.64	0.48	0.19	0.35	0.06	0.16	0.17	0.20	0.10
Ti	0.07	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.03	0.04	0.00	0.00	0.00	0.00	0.00
Fe ³⁺	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe ²⁺	2.49	2.34	2.56	2.41	2.24	2.48	2.47	2.14	2.44	2.69	2.35	2.26	2.52	2.45	2.43	2.74	2.49	2.11	2.59	2.67	2.33	2.24	2.34	1.93	1.86	2.04	2.07	1.91
Mn	0.06	0.04	0.06	0.05	0.05	0.05	0.03	0.04	0.04	0.05	0.04	0.06	0.03	0.05	0.03	0.07	0.05	0.05	0.06	0.06	0.07	0.06	0.06	0.08	0.08	0.07	80.0	0.08
Mg	2.02	2.12	2.33	1.96	2.16	2.00	1.94	2.14	1.82	1.71	1.73	2.45	1.64	1.93	2.04	1.78	1.70	2.12	1.69	1.74	2.18	2.60	2.27	2.92	2.93	2.77	2.63	2.86
Ca	1.53	1.51	1.61	1.50	1.54	1.50	1.45	1.62	1.46	1.45	1.49	1.75	1.47	1.54	1.56	1.51	1.53	1.55	1.50	1.58	1.71	1.74	1.65	1.94	1.91	1.82	1.93	1.95
Na	0.60	0.58	0.55	0.64	0.59	0.63	0.56	0.53	0.60	0.56	0.62	0.71	0.62	0.63	0.60	0.60	0.67	0.55	0.63	0.65	0.34	0.49	0.63	0.09	0.10	0.24	0.16	0.10
K	0.22	0.19	0.22	0.21	0.20	0.21	0.23	0.16	0.24	0.23	0.26	0.20	0.26	0.23	0.19	0.24	0.23	0.16	0.23	0.29	0.10	0.16	0.19	0.02	0.02	0.05	0.04	0.02
Total	15.49	15.40	15.62	15.47	15.42	15.48	15.37	15.32	15.37	15.38	15.40	15.91	15.42	15.48	15.45	15.51	15.50	15.25	15.45	15.65	15.22	15.50	15.52	15.05	15.06	15.16	15.11	15.03
ОН	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
XMg	0.45	0.48	0.48	0.45	0.49	0.45	0.44	0.50	0.43	0.39	0.43	0.52	0.39	0.44	0.46	0.39	0.41	0.50	0.39	0.39	0.48	0.54	0.49	0.60	0.61	0.58	0.56	0.60
(Ca) _B	1.53	1.51	1.61	1.50	1.54	1.50	1.45	1.62	1.46	1.45	1.49	1.58	1.47	1.54	1.56	1.51	1.53	1.55	1.50	1.58	1.71	1.74	1.65	1.94	1.91	1.82	1.93	1.95
(Na) _B	0.33	0.37	0.14	0.38	0.37	0.36	0.41	0.37	0.47	0.41	0.47	0.00	0.46	0.37	0.34	0.33	0.41	0.45	0.41	0.29	0.22	0.14	0.29	0.06	0.06	0.13	0.07	0.05
(Ca+Na) _B	1.86	1.88	1.75	1.88	1.91	1.85	1.86	1.99	1.93	1.86	1.96	1.58	1.93	1.91	1.90	1.84	1.94	2.00	1.91	1.86	1.93	1.89	1.94	2.00	1.98	1.95	2.00	2.00
(Na+K) _A	0.49	0.40	0.62	0.47	0.42	0.48	0.37	0.32	0.37	0.38	0.40	0.91	0.42	0.48	0.45	0.51	0.50	0.26	0.45	0.65	0.22	0.50	0.52	0.06	0.06	0.16	0.13	0.07
Position verticale*	53289	53563	53629	53866	53878	53936	53883	54795	55165	55180	55180	56224	57996	58103	58105	58167	58329	61784	61877	62891	62910	82088	82113	82117	82128	82128	82210	82220

Annexe 5b Actinotes suite 2

Lame	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4
séquence	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3
N° du cristal	A44-III-s	A46-II	A47-b	A47	A50-II	A50-I	A50-II	A49-II	A49-II	A51	A52-II-b	A10-V-b	A10-IV-b	A4-IV	A4-III	A8-V	A8-V	A8-V	A2-IV-b	A2-III-b	A2-III	A2-III-b	A2-IV	A2-III-b	A1/2-III-b	A1/2-III-b	A1-III	A7-IV-b
N° d'analyse	309 s4	317 s4	329 s4	330 s4	363 s4	362 s4	361 s4	360 s4	359 s4	366 s4	368 s4	47 s1	50 s1	20 s1	19 s1	44 s1	40 s1	43 s1	7 s1	8 s1	6 s1	23 s1	5 s1	15 s1	13 s1	11 s1	4 s1	35 s1
SiO ₂	53.18	53.13	53.25	52.25	54.53	49.92	53.29	52.88	52.81	53.61	53.50	52.97	50.95	52.79	51.50	50.48	54.12	53.44	52.24	50.90	50.42	51.70	52.47	52.33	50.94	51.14	49.48	53.42
TiO ₂	0.03	0.04	0.01	0.02	0.00	0.00	0.01	0.01	0.00	0.02	0.02	0.01	0.00	0.00	0.03	0.06	0.00	0.02	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.01	0.06	0.01
Al_2O_3	1.32	1.41	0.91	1.81	0.57	3.36	1.55	0.85	1.67	1.32	1.91	0.69	1.70	0.83	1.50	2.43	0.29	0.75	0.89	1.84	2.27	1.29	0.96	1.32	2.11	1.71	2.40	0.88
FeO	15.82	16.15	16.22	16.85	14.88	18.93	14.82	16.45	16.81	14.54	17.06	14.84	17.56	14.97	16.51	19.71	15.04	15.36	15.88	17.49	19.38	17.85	17.34	18.05	18.39	17.96	18.62	16.84
MnO	0.53	0.51	0.62	0.50	0.62	0.75	0.62	0.66	0.54	0.66	0.47	0.60	0.62	0.62	0.54	0.57	0.58	0.44	0.51	0.57	0.41	0.51	0.63	0.69	0.73	0.48	0.57	0.67
MgO	13.04	12.68	13.16	12.13	13.46	10.93	13.63	12.76	12.51	13.92	12.63	15.03	12.69	14.76	13.62	11.97	14.97	15.01	14.66	13.39	12.47	13.23	14.00	13.42	12.53	13.37	12.41	13.56
CaO	12.25	12.10	12.20	11.60	12.07	11.11	11.94	11.47	11.31	12.34	11.33	12.32	11.17	12.15	11.32	10.66	12.52	12.24	11.85	11.48	10.67	10.72	11.32	10.46	10.72	10.98	10.76	11.66
Na ₂ O	0.48	0.46	0.49	0.76	0.42	1.18	0.47	0.83	0.99	0.44	1.00	0.32	1.01	0.45	0.73	1.10	0.19	0.26	0.44	1.01	1.39	0.77	0.77	1.30	1.07	1.21	1.32	0.78
K ₂ O	0.17	0.14	0.15	0.28	0.11	0.64	0.17	0.30	0.30	0.13	0.35	0.08	0.36	0.10	0.27	0.55	0.04	0.11	0.09	0.34	0.43	0.30	0.22	0.37	0.39	0.35	0.49	0.21
Total	96.83	96.65	97.11	96.28	96.63	96.91	96.49	96.26	96.90	96.98	98.26	96.87	96.06	96.68	96.04	97.51	97.74	97.69	96.58	97.03	97.52	96.45	97.75	97.96	96.90	97.30	96.15	98.02
Fe ₂ O ₃ calc.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.19	0.00	1.42	0.11	0.00	1.52	1.98	2.42	1.05	0.00	0.00	0.77	0.00	0.00	0.00	0.00	0.00
FeO calc.	15.82	16.15	16.22	16.84	14.88	18.92	14.82	16.44	16.80	14.54	17.06	12.87	17.56	13.70	16.41	19.70	13.67	13.58	13.70	16.54	19.38	17.85	16.64	18.05	18.38	17.96	18.62	16.84
H ₂ O calc.	2.03	2.02	2.03	2.00	2.04	1.98	2.03	2.01	2.02	2.04	2.05	2.04	1.98	2.04	2.00	1.99	2.06	2.06	2.03	2.01	2.00	2.00	2.03	2.03	2.00	2.01	1.97	2.04
FORMULE STRUCT	TURALE (2	23 Oxygè	enes)																									
Si	7.86	7.88	7.87	7.82	8.02	7.55	7.86	7.90	7.84	7.86	7.83	7.76	7.70	7.78	7.72	7.59	7.86	7.78	7.72	7.60	7.57	7.76	7.74	7.75	7.65	7.64	7.54	7.84
Al iv	0.14	0.12	0.13	0.18	0.00	0.45	0.14	0.10	0.16	0.14	0.17	0.12	0.30	0.14	0.27	0.41	0.05	0.13	0.15	0.32	0.40	0.23	0.17	0.23	0.35	0.30	0.43	0.15
Al vi	0.09	0.12	0.03	0.14	0.10	0.15	0.13	0.05	0.13	0.09	0.16	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Fe ³⁺	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.24	0.00	0.16	0.01	0.00	0.17	0.22	0.27	0.12	0.00	0.00	0.09	0.00	0.00	0.00	0.00	0.00
Fe ²⁺	1.96	2.00	2.01	2.11	1.83	2.39	1.83	2.05	2.09	1.78	2.09	1.58	2.22	1.69	2.06	2.48	1.66	1.65	1.69	2.07	2.44	2.24	2.05	2.23	2.31	2.24	2.37	2.07
Mn	0.07	0.06	0.08	0.06	0.08	0.10	0.08	0.08	0.07	0.08	0.06	0.07	0.08	0.08	0.07	0.07	0.07	0.05	0.06	0.07	0.05	0.06	0.08	0.09	0.09	0.06	0.07	0.08
Mg	2.87	2.80	2.90	2.71	2.95	2.46	3.00	2.84	2.77	3.04	2.75	3.29	2.86	3.24	3.05	2.68	3.24	3.26	3.23	2.98	2.79	2.96	3.08	2.96	2.81	2.98	2.82	2.97
Ca	1.94	1.92	1.93	1.86	1.90	1.80	1.89	1.84	1.80	1.94	1.78	1.93	1.81	1.92	1.82	1.72	1.95	1.91	1.88	1.84	1.72	1.72	1.79	1.66	1.72	1.76	1.76	1.83
Na	0.14	0.13	0.14	0.22	0.12	0.35	0.14	0.24	0.28	0.13	0.28	0.09	0.30	0.13	0.21	0.32	0.05	0.07	0.13	0.29	0.41	0.22	0.22	0.37	0.31	0.35	0.39	0.22
K	0.03	0.03	0.03	0.05	0.02	0.12	0.03	0.06	0.06	0.02	0.07	0.02	0.07	0.02	0.05	0.10	0.01	0.02	0.02	0.06	0.08	0.06	0.04	0.07	0.08	0.07	0.10	0.04
Total	15.10	15.07	15.12	15.15	15.01	15.37	15.08	15.17	15.19	15.09	15.18	15.11	15.33	15.15	15.26	15.40	15.06	15.09	15.14	15.35	15.46	15.26	15.26	15.36	15.35	15.40	15.48	15.21
ОН	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
XMg	0.59	0.58	0.59	0.56	0.62	0.51	0.62	0.58	0.57	0.63	0.57	0.68	0.56	0.66	0.60	0.52	0.66	0.66	0.66	0.59	0.53	0.57	0.60	0.57	0.55	0.57	0.54	0.59
(Ca) _B	1.94	1.92	1.93	1.86	1.90	1.80	1.89	1.84	1.80	1.94	1.78	1.82	1.81	1.84	1.81	1.72	1.86	1.82	1.75	1.76	1.72	1.72	1.70	1.66	1.72	1.71	1.73	1.83
(Na) _B	0.06	0.08	0.05	0.12	0.10	0.09	0.08	0.13	0.15	0.06	0.17	0.00	0.03	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.06	0.04	0.00	0.00	0.05
(Ca+Na) _B	2.00	2.00	1.98	1.98	2.00	1.89	1.97	1.97	1.95	2.00	1.94	1.82	1.84	1.84	1.81	1.74	1.86	1.82	1.75	1.76	1.72	1.73	1.70	1.72	1.76	1.71	1.73	1.88
, ,=																												
(Na+K) _A	0.11	0.08	0.12	0.15	0.04	0.38	0.09	0.17	0.19	0.09	0.18	0.11	0.33	0.15	0.27	0.40	0.06	0.10	0.14	0.36	0.49	0.27	0.26	0.38	0.35	0.42	0.48	0.22
Position verticale*	89064	90404	91770	91794	103563	103678	103767	103789	103608	103853	105269	106436	106464	106646	106646	106676	106822	106891	106726	106745	106747	106764	106771	106842	106746	106785	106891	106897

Annexe 5b Actinotes suite 3

Lame	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4
séquence	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S1	S1	S1	S1
N° du cristal	A6-III-b	A6-IV	A38 -iQ4	A11-IV-b	A11-IV-b	A22-V-b	A12-IV-b	A12-IV-b	A14-IV	A15-IV-b	A21-Vi	A19-V	A20-V-b	A33-III-b	A34-IV-b	A36-III	A36-III	A36-III	A36-IV	A36-IV-b	A35-IV	A29-IV	A29-V-b	A27-IV-b	A25-IV-b	A24-IV	A41-II-b	A40
N° d'analyse	28 s1	27 s1	13 s2	60 s1	58 s1	136 s1	64 s1	73 s1	82 s1	95 s1	130 s1	119 s1	123 s1	192 s1	195 s1	200 s1	201 s1	204 s1	205 s1	206 s1	198 s1	171 s1	172 s1	162 s1	154 s1	149 s1	223 s1	413 s3
SiO ₂	51.95	52.14	53.23	52.08	52.14	50.85	52.64	52.06	52.82	51.51	51.39	52.51	50.59	52.63	54.08	53.65	53.88	53.80	53.60	53.14	52.41	50.86	53.80	53.90	51.98	50.74	53.50	52.97
TiO ₂	0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.06	0.04	0.06	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.02	0.01	0.07	0.02	0.00	0.08	0.00	0.00
Al_2O_3	1.38	1.39	1.70	1.35	1.22	1.95	0.93	1.50	1.10	1.75	2.00	0.88	1.90	1.74	0.96	1.39	1.03	1.23	1.53	1.69	1.78	2.72	1.00	0.80	1.20	1.85	0.83	1.76
FeO	17.96	16.28	16.45	17.16	17.60	17.75	17.77	17.40	17.36	17.75	17.16	16.24	17.85	18.05	16.73	16.85	16.11	16.12	17.86	17.84	17.39	19.42	16.13	16.06	16.57	17.28	17.26	14.62
MnO	0.52	0.44	0.63	0.63	0.62	0.50	0.77	0.56	0.48	0.47	0.55	0.48	0.59	0.58	0.53	0.56	0.55	0.54	0.55	0.72	0.58	0.61	0.55	0.52	0.56	0.44	0.59	0.68
MgO	13.09	14.12	12.68	13.75	13.57	12.65	13.76	13.78	13.57	13.36	13.13	14.29	12.99	12.75	14.22	13.27	14.12	13.67	13.20	13.26	12.92	11.84	14.20	14.16	13.31	13.06	13.10	13.53
CaO	10.56	11.47	11.75	11.39	10.47	10.76	11.58	11.91	10.82	11.18	11.19	11.94	11.39	10.73	12.06	10.77	11.32	11.07	10.56	11.19	10.89	10.56	11.95	11.88	11.02	11.31	11.90	11.94
Na ₂ O	1.18	0.81	0.70	0.74	1.14	1.12	0.55	0.67	1.01	0.97	0.89	0.44	0.81	1.22	0.45	0.95	0.75	0.93	1.09	0.89	1.01	1.35	0.55	0.45	0.75	0.76	0.45	0.53
K ₂ O	0.35	0.24	0.27	0.29	0.31	0.37	0.17	0.27	0.22	0.36	0.34	0.14	0.33	0.39	0.12	0.31	0.21	0.29	0.29	0.33	0.37	0.55	0.12	0.13	0.24	0.31	0.11	0.22
Total	97.01	96.99	97.31	97.44	97.08	95.99	98.19	98.35	97.43	97.51	96.67	96.91	96.50	98.11	99.16	97.79	97.97	97.72	98.68	99.08	97.42	97.94	98.46	97.98	95.64	95.83	97.78	96.19
Fe ₂ O ₃ calc.	0.00	0.14	0.00	0.68	0.00	0.00	1.76	2.02	0.00	0.00	0.00	1.74	1.46	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00	0.00
FeO calc.	17.96	16.16	16.45	16.55	17.60	17.75	16.19	15.58	17.35	17.75	17.15	14.67	16.54	18.05	16.27	16.85	16.10	16.12	17.86	17.84	17.39	19.42	16.13	16.06	16.57	16.83	17.25	14.62
H₂O calc.	2.01	2.02	2.03	2.02	2.01	1.98	2.04	2.04	2.03	2.02	2.00	2.03	2.00	2.03	2.07	2.04	2.05	2.05	2.05	2.05	2.02	2.01	2.06	2.05	1.99	1.99	2.04	2.03
FORMULE STRUCT	1																											
Si	7.76	7.73	7.85	7.71	7.76	7.69	7.73	7.63	7.81	7.66	7.68	7.75	7.60	7.77	7.82	7.87	7.86	7.88	7.83	7.75	7.77	7.60	7.83	7.87	7.82	7.66	7.88	7.84
Al iv	0.24	0.24	0.15	0.24	0.21	0.31	0.16	0.26	0.19	0.31	0.32	0.15	0.34	0.23	0.16	0.13	0.14	0.12	0.17	0.25	0.23	0.40	0.17	0.13	0.18	0.33	0.12	0.16
Al vi	0.00	0.00	0.14	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.07	0.00	0.11	0.04	0.09	0.09	0.04	0.08	0.08	0.00	0.01	0.03	0.00	0.02	0.15
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00
Fe ³⁺	0.00	0.02	0.00	0.08	0.00	0.00	0.19	0.22	0.00	0.00	0.00	0.19	0.17	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00
Fe ²⁺	2.24	2.00	2.03	2.05	2.19	2.24	1.99	1.91	2.15	2.21	2.15	1.81	2.08	2.23	1.97	2.07	1.97	1.97	2.18	2.18	2.16	2.43	1.96	1.96	2.08	2.12	2.12	1.81
Mn	0.07	0.05	0.08	0.08	0.08	0.06	0.10	0.07	0.06	0.06	0.07	0.06	0.08	0.07	0.06	0.07	0.07	0.07	0.07	0.09	0.07	0.08	0.07	0.06	0.07	0.06	0.07	0.08
Mg	2.91	3.12	2.79	3.04	3.01	2.85	3.01	3.01	2.99	2.96	2.93	3.14	2.91	2.81	3.06	2.90	3.07	2.98	2.87	2.88	2.85	2.64	3.08	3.08	2.98	2.94	2.87	2.98
Ca	1.69	1.82	1.86	1.81	1.67	1.74	1.82	1.87	1.72	1.78	1.79	1.89	1.83	1.70	1.87	1.69	1.77	1.74	1.65	1.75	1.73	1.69	1.86	1.86	1.77	1.83	1.88	1.89
Na	0.34	0.23	0.20	0.21	0.33	0.33	0.16	0.19	0.29	0.28	0.26	0.12	0.24	0.35	0.13	0.27	0.21	0.27	0.31	0.25	0.29	0.39	0.16	0.13	0.22	0.22	0.13	0.15
K	0.07	0.05	0.05	0.05	0.06	0.07	0.03	0.05	0.04	0.07	0.07	0.03	0.06	0.07	0.02	0.06	0.04	0.05	0.05	0.06	0.07	0.10	0.02	0.03	0.05	0.06	0.02	0.04
Total	15.32	15.27	15.14	15.26	15.32	15.34	15.19	15.22	15.25	15.34	15.30	15.15	15.29	15.29	15.15	15.17	15.17	15.17	15.22	15.25	15.25	15.41	15.16	15.13	15.21	15.28	15.12	15.11
ОН	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
XMg	0.57	0.61	0.58	0.60	0.58	0.56	0.60	0.61	0.58	0.57	0.58	0.63	0.58	0.56	0.61	0.58	0.61	0.60	0.57	0.57	0.57	0.52	0.61	0.61	0.59	0.58	0.57	0.62
(Ca) _B	1.69	1.80	1.86	1.76	1.67	1.74	1.71	1.78	1.72	1.76	1.79	1.79	1.77	1.70	1.85	1.69	1.77	1.74	1.65	1.75	1.73	1.69	1.86	1.86	1.77	1.82	1.88	1.89
(Na) _B	0.09	0.00	0.11	0.00	0.05	0.06	0.00	0.00	0.08	0.00	0.02	0.00	0.00	0.13	0.00	0.16	0.08	0.15	0.14	0.06	0.11	0.09	0.02	0.02	0.06	0.00	0.03	0.08
(Ca+Na) _B	1.78	1.80	1.96	1.76	1.72	1.80	1.71	1.78	1.79	1.76	1.82	1.79	1.77	1.83	1.85	1.85	1.85	1.88	1.79	1.80	1.84	1.78	1.88	1.88	1.83	1.82	1.91	1.97
(Na+K) _A	0.32	0.28	0.14	0.27	0.34	0.34	0.19	0.24	0.25	0.35	0.30	0.15	0.30	0.29	0.15	0.17	0.17	0.17	0.22	0.26	0.25	0.41	0.16	0.13	0.21	0.28	0.12	0.11
	0.02	5.20	0.17	0.27	0.04	0.01	00	J	5.20	0.00	0.00	50	5.50	3.20	30	0	0	· · · ·	0.22	5.20	0.20	V	00	30	٠ ١	0.20	٠ــ	• • •
Position verticale*	106913	106913	106920	108921	108983	109121	109143	109213	109358	109453	109456	109671	109690	120969	120992	121174	121174	121242	121286	121286	121196	123389	123403	124990	125506	125670	133882	135702

Annexe 5c Compositions chimiques des plagioclases du granite lité de Dolbel

	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NI4	NI4	NIA	MA	NIA	NIA	NIA	NIA	NIA	NIA	NI4	NI4	NIA	N14	NIA	NIA	NIA	NIA
Lame	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1
Séquence	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4
N° du cristal	P85-c	P84-c	P84-b	P83	P83-b	P83-c	P82-iF60	P81-b	P80-b	P79-b	P79-c	P79-b	P75-c	P75-b	P75-c-iF	P75-b	P76-c	P76-b	P76-b	P78-c	P77-b	P77-c	P77-b	P74-b	P74-c	P74-b	P73-b
N° analyse	77 s5	72 s5	71 s5	66 s5	65 s5	67 s5	62 s5	60 s5	58 s5	56 s5	55 s5	54 s5	41 s5	42 s5	40 s5	39 s5	45 s5	46 s5	44 s5	53 s5	51 s5	50 s5	49 s5	38 s5	37 s5	38 s5	34 s5
SiO ₂	65.21	67.75	66.68	67.02	67.82	65.54	66.99	67.38	66.07	67.22	65.89	66.13	66.07	67.63	65.31	68.05	66.24	66.84	67.57	66.43	67.13	66.18	66.90	67.37	65.68	66.23	67.29
Al ₂ O ₃	21.08	20.13	20.24	20.86	19.54	21.25	19.79	19.77	20.74	20.54	19.15	20.44	21.17	19.78	20.60	20.09	21.31	20.70	20.68	20.34	20.36	20.85	20.66	19.88	20.63	20.22	20.77
FeO Total	0.20	0.00	0.10	0.03	0.09	0.17	0.10	0.19	0.06	0.09	0.00	0.18	0.17	0.00	0.08	0.01	0.21	0.03	0.05	0.15	0.08	0.10	0.16	0.11	0.16	0.03	0.11
MgO	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.30	0.00	0.00	0.00	0.02	0.00	0.02	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.03	0.00	0.02	0.03	0.01	0.02
CaO	1.46	0.32	0.93	1.21	0.02	1.90	0.43	0.44	1.33	0.85	0.25	1.30	1.49	0.11	1.40	0.30	1.71	1.23	0.91	1.11	0.77	1.55	1.22	0.47	1.45	1.18	1.14
Na ₂ O	10.69	11.48	11.19	10.95	11.54	10.31	11.34	10.93	10.49	11.16	10.97	10.76	10.17	11.18	8.49	11.35	10.52	10.76	10.64	10.89	10.92	10.24	10.63	11.21	10.65	10.79	10.65
K ₂ O	0.10	0.08	0.07	0.07	0.01	0.13	0.08	0.10	0.07	0.06	0.05	0.06	0.09	0.09	2.28	0.06	0.07	0.08	0.02	0.04	0.02	0.07	0.04	0.03	0.10	0.07	0.08
Total	98.74	99.78	99.22	100.13	99.02	99.30	98.74	99.11	98.76	99.93	96.32	98.89	99.16	98.80	98.18	99.84	100.06	99.64	99.88	98.97	99.27	99.01	99.61	99.09	98.69	98.54	100.07
FORMULE STRUCT	URALE (8	Oxygène	s)																								
Si	2.90	2.97	2.94	2.93	2.99	2.90	2.97	2.97	2.93	2.94	2.98	2.93	2.91	2.98	2.93	2.97	2.90	2.94	2.95	2.94	2.95	2.92	2.94	2.97	2.92	2.94	2.94
Al	1.10	1.04	1.05	1.07	1.01	1.11	1.03	1.03	1.08	1.06	1.02	1.07	1.10	1.03	1.09	1.03	1.10	1.07	1.06	1.06	1.06	1.09	1.07	1.03	1.08	1.06	1.07
Fe ³⁺	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.00
Ca	0.07	0.02	0.04	0.06	0.00	0.09	0.02	0.02	0.06	0.04	0.01	0.06	0.07	0.01	0.07	0.01	0.08	0.06	0.04	0.05	0.04	0.07	0.06	0.02	0.07	0.06	0.05
Na	0.92	0.97	0.96	0.93	0.99	0.88	0.97	0.93	0.90	0.95	0.96	0.92	0.87	0.96	0.74	0.96	0.89	0.92	0.90	0.93	0.93	0.88	0.90	0.96	0.92	0.93	0.90
К	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
Total	5.01	5.00	5.01	5.00	4.99	4.99	5.00	4.96	4.98	5.00	4.99	4.99	4.97	4.98	4.96	4.99	4.99	4.99	4.96	5.00	4.98	4.97	4.98	4.99	5.00	4.99	4.97
%Or	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
%Ab	0.92	0.98	0.95	0.94	1.00	0.90	0.97	0.97	0.93	0.96	0.98	0.93	0.92	0.99	0.79	0.98	0.91	0.94	0.95	0.94	0.96	0.92	0.94	0.98	0.93	0.94	0.94
%An	0.07	0.02	0.04	0.06	0.00	0.09	0.02	0.02	0.07	0.04	0.01	0.06	0.07	0.01	0.07	0.01	0.08	0.06	0.04	0.05	0.04	0.08	0.06	0.02	0.07	0.06	0.06
707 111	0.01	0.02	0.0.	0.00	0.00	0.00	0.02	0.02	0.07	0.0.	0.01	0.00	0.01	0.01	0.07	0.01	0.00	0.00	0.0 .	0.00	0.01	0.00	0.00	0.02	0.07	0.00	0.00
Position verticale*	E770																	0.4000								05000	00477
r osition verticale	5773	6973	7983	10245	10319	10332	12560	12724	13087	15695	16008	16374	17186	23351	24127	24561	19050	21699	22648	19154	19254	19790	20348	25046	25047	25263	26177
r usition verticale	5//3	6973	7983	10245	10319	10332	12560	12724	13087	15695	16008	16374	17186	23351	24127	24561	19050	21699	22648	19154	19254	19790	20348	25046	25047	25263	26177
Lame	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1
Lame Séquence	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4	N1 S4
Lame Séquence N° du cristal	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1	N1
Lame Séquence N° du cristal N° analyse	N1 S4 P73-c 33 s5	N1 S4 P73-b 32 s5	N1 S4 P72-c 29 s5	N1 S4 P72-b 27 s5	N1 S4 P72-b 26 s5	N1 S4 P71-c 25 s5	N1 S4 P71-b 24 s5	N1 S4 P70-b 23 s5	N1 S4 P70-b 22 s5	N1 S4 P70-b 21 s5	N1 S4 P70-b 20 s5	N1 S4 P69-b 19 s5	N1 S4 P68-b 18 s5	N1 S4 P68-b	N1 S4 P68-c	N1 S4 P68-b	N1 S4 P67-b 14 s5	N1 S4 P67-c	N1 S4 P67-b	N1 S4 P66-c	N1 S4 P66-b	N1 S4 P64-c 7 s5	N1 S4 P64-b 6 s5	N1 S4 P65-iA87 12 s5	N1 S4 P63 4 s5	N1 S4 P63-c 5 s5	N1 S4 P63-b 3 s5
Lame Séquence N° du cristal N° analyse SiO ₂	N1 S4 P73-c 33 s5 65.94	N1 S4 P73-b 32 s5 65.79	N1 S4 P72-c 29 s5 65.01	N1 S4 P72-b 27 s5 68.35	N1 S4 P72-b 26 s5 67.51	N1 S4 P71-c 25 s5 66.23	N1 S4 P71-b 24 s5 67.47	N1 S4 P70-b 23 s5 65.79	N1 S4 P70-b 22 s5 67.32	N1 S4 P70-b 21 s5 65.96	N1 S4 P70-b 20 s5 66.48	N1 S4 P69-b 19 s5 66.60	N1 S4 P68-b 18 s5 67.00	N1 S4 P68-b 17 s5 66.76	N1 S4 P68-c 16 s5 65.33	N1 S4 P68-b 15 s5 67.65	N1 S4 P67-b 14 s5 66.91	N1 S4 P67-c 13 s5 65.30	N1 S4 P67-b 12 s5 68.49	N1 S4 P66-c 11 s5 65.46	N1 S4 P66-b 10 s5 66.21	N1 S4 P64-c 7 s5 65.96	N1 S4 P64-b 6 s5 66.37	N1 S4 P65-iA87 12 s5 67.18	N1 S4 P63 4 s5 67.24	N1 S4 P63-c 5 s5 66.75	N1 S4 P63-b 3 s5 66.75
Lame Séquence N° du cristal N° analyse	N1 S4 P73-c 33 s5	N1 S4 P73-b 32 s5	N1 S4 P72-c 29 s5	N1 S4 P72-b 27 s5	N1 S4 P72-b 26 s5	N1 S4 P71-c 25 s5	N1 S4 P71-b 24 s5	N1 S4 P70-b 23 s5	N1 S4 P70-b 22 s5	N1 S4 P70-b 21 s5	N1 S4 P70-b 20 s5	N1 S4 P69-b 19 s5	N1 S4 P68-b 18 s5	N1 S4 P68-b	N1 S4 P68-c	N1 S4 P68-b	N1 S4 P67-b 14 s5	N1 S4 P67-c	N1 S4 P67-b	N1 S4 P66-c	N1 S4 P66-b	N1 S4 P64-c 7 s5	N1 S4 P64-b 6 s5	N1 S4 P65-iA87 12 s5	N1 S4 P63 4 s5	N1 S4 P63-c 5 s5	N1 S4 P63-b 3 s5
Lame Séquence N° du cristal N° analyse SiO ₂	N1 S4 P73-c 33 s5 65.94	N1 S4 P73-b 32 s5 65.79	N1 S4 P72-c 29 s5 65.01	N1 S4 P72-b 27 s5 68.35	N1 S4 P72-b 26 s5 67.51	N1 S4 P71-c 25 s5 66.23	N1 S4 P71-b 24 s5 67.47	N1 S4 P70-b 23 s5 65.79	N1 S4 P70-b 22 s5 67.32	N1 S4 P70-b 21 s5 65.96	N1 S4 P70-b 20 s5 66.48	N1 S4 P69-b 19 s5 66.60	N1 S4 P68-b 18 s5 67.00	N1 S4 P68-b 17 s5 66.76	N1 S4 P68-c 16 s5 65.33	N1 S4 P68-b 15 s5 67.65	N1 S4 P67-b 14 s5 66.91	N1 S4 P67-c 13 s5 65.30	N1 S4 P67-b 12 s5 68.49	N1 S4 P66-c 11 s5 65.46	N1 S4 P66-b 10 s5 66.21	N1 S4 P64-c 7 s5 65.96	N1 S4 P64-b 6 s5 66.37	N1 S4 P65-iA87 12 s5 67.18	N1 S4 P63 4 s5 67.24	N1 S4 P63-c 5 s5 66.75	N1 S4 P63-b 3 s5 66.75 20.48 0.10
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃	N1 S4 P73-c 33 s5 65.94 21.03	N1 S4 P73-b 32 s5 65.79 20.77	N1 S4 P72-c 29 s5 65.01 20.79	N1 S4 P72-b 27 s5 68.35 19.55	N1 S4 P72-b 26 s5 67.51 19.25	N1 S4 P71-c 25 s5 66.23 21.05	N1 S4 P71-b 24 s5 67.47 20.07	N1 S4 P70-b 23 s5 65.79 20.14	N1 S4 P70-b 22 s5 67.32 20.35	N1 S4 P70-b 21 s5 65.96 20.97	N1 S4 P70-b 20 s5 66.48 20.85	N1 S4 P69-b 19 s5 66.60 20.69	N1 S4 P68-b 18 s5 67.00 19.94	N1 S4 P68-b 17 s5 66.76 20.32	N1 S4 P68-c 16 s5 65.33 20.69	N1 S4 P68-b 15 s5 67.65 19.98	N1 S4 P67-b 14 s5 66.91 19.49	N1 S4 P67-c 13 s5 65.30 21.07	N1 S4 P67-b 12 s5 68.49 19.74	N1 S4 P66-c 11 s5 65.46 20.99	N1 S4 P66-b 10 s5 66.21 20.76	N1 S4 P64-c 7 s5 65.96 20.80	N1 S4 P64-b 6 s5 66.37 20.54	N1 S4 P65-iA87 12 s5 67.18 19.71	N1 S4 P63 4 s5 67.24 20.10	N1 S4 P63-c 5 s5 66.75 20.68	N1 S4 P63-b 3 s5 66.75 20.48
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO	N1 S4 P73-c 33 s5 65.94 21.03 0.07	N1 S4 P73-b 32 s5 65.79 20.77 0.06	N1 S4 P72-c 29 s5 65.01 20.79 0.13	N1 S4 P72-b 27 s5 68.35 19.55 0.09	N1 S4 P72-b 26 s5 67.51 19.25 0.06	N1 S4 P71-c 25 s5 66.23 21.05 0.19	N1 S4 P71-b 24 s5 67.47 20.07 0.00	N1 S4 P70-b 23 s5 65.79 20.14 0.10	N1 S4 P70-b 22 s5 67.32 20.35 0.00	N1 S4 P70-b 21 s5 65.96 20.97 0.11	N1 S4 P70-b 20 s5 66.48 20.85 0.14	N1 S4 P69-b 19 s5 66.60 20.69 0.01	N1 S4 P68-b 18 s5 67.00 19.94 0.01	N1 S4 P68-b 17 s5 66.76 20.32 0.08	N1 S4 P68-c 16 s5 65.33 20.69 0.02	N1 S4 P68-b 15 s5 67.65 19.98 0.06	N1 S4 P67-b 14 s5 66.91 19.49 0.04	N1 S4 P67-c 13 s5 65.30 21.07 0.10	N1 S4 P67-b 12 s5 68.49 19.74 0.18	N1 S4 P66-c 11 s5 65.46 20.99	N1 S4 P66-b 10 s5 66.21 20.76 0.14	N1 S4 P64-c 7 s5 65.96 20.80 0.20	N1 S4 P64-b 6 s5 66.37 20.54 0.12	N1 S4 P65-iA87 12 s5 67.18 19.71 0.05	N1 S4 P63 4 s5 67.24 20.10 0.00	N1 S4 P63-c 5 s5 66.75 20.68 0.14	N1 S4 P63-b 3 s5 66.75 20.48 0.10 0.00 1.22
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO	N1 S4 P73-c 33 s5 65.94 21.03 0.07 0.00	N1 S4 P73-b 32 s5 65.79 20.77 0.06 0.00	N1 S4 P72-c 29 s5 65.01 20.79 0.13 0.00	N1 S4 P72-b 27 s5 68.35 19.55 0.09 0.00	N1 S4 P72-b 26 s5 67.51 19.25 0.06 0.00	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.00	N1 S4 P71-b 24 s5 67.47 20.07 0.00 0.01	N1 S4 P70-b 23 s5 65.79 20.14 0.10 0.02	N1 S4 P70-b 22 s5 67.32 20.35 0.00 0.00	N1 S4 P70-b 21 s5 65.96 20.97 0.11 0.02	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00	N1 S4 P69-b 19 s5 66.60 20.69 0.01 0.00	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.01	N1 S4 P68-b 17 s5 66.76 20.32 0.08 0.00	N1 S4 P68-c 16 s5 65.33 20.69 0.02 0.00	N1 S4 P68-b 15 s5 67.65 19.98 0.06 0.02	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01	N1 S4 P67-c 13 s5 65.30 21.07 0.10 0.00	N1 S4 P67-b 12 s5 68.49 19.74 0.18 0.00	N1 S4 P66-c 11 s5 65.46 20.99 0.21 0.02	N1 S4 P66-b 10 s5 66.21 20.76 0.14 0.02	N1 S4 P64-c 7 s5 65.96 20.80 0.20 0.02	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00	N1 S4 P65-iA87 12 s5 67.18 19.71 0.05 0.00	N1 S4 P63 4 s5 67.24 20.10 0.00 0.00	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00	N1 S4 P63-b 3 s5 66.75 20.48 0.10 0.00
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO	N1 S4 P73-c 33 s5 65.94 21.03 0.07 0.00 1.29	N1 S4 P73-b 32 s5 65.79 20.77 0.06 0.00 1.30	N1 S4 P72-c 29 s5 65.01 20.79 0.13 0.00 1.47	N1 S4 P72-b 27 s5 68.35 19.55 0.09 0.00 0.05	N1 S4 P72-b 26 s5 67.51 19.25 0.06 0.00 0.06	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.00 1.77	N1 S4 P71-b 24 s5 67.47 20.07 0.00 0.01 0.38	N1 S4 P70-b 23 s5 65.79 20.14 0.10 0.02 1.07	N1 S4 P70-b 22 s5 67.32 20.35 0.00 0.00 0.55	N1 S4 P70-b 21 s5 65.96 20.97 0.11 0.02 1.45	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00 1.21	N1 S4 P69-b 19 s5 66.60 20.69 0.01 0.00 1.12	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.01 0.60	N1 S4 P68-b 17 s5 66.76 20.32 0.08 0.00 0.97	N1 S4 P68-c 16 s5 65.33 20.69 0.02 0.00 1.88	N1 S4 P68-b 15 s5 67.65 19.98 0.06 0.02 0.34	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01 0.34	N1 S4 P67-c 13 s5 65.30 21.07 0.10 0.00 1.65	N1 S4 P67-b 12 s5 68.49 19.74 0.18 0.00 0.07	N1 S4 P66-c 11 s5 65.46 20.99 0.21 0.02 1.45	N1 S4 P66-b 10 s5 66.21 20.76 0.14 0.02 1.19	N1 S4 P64-c 7 s5 65.96 20.80 0.20 0.02 1.34	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00 1.19	N1 S4 P65-iA87 12 s5 67.18 19.71 0.05 0.00 0.24	N1 S4 P63 4 s5 67.24 20.10 0.00 0.00 0.58	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00 1.09	N1 S4 P63-b 3 s5 66.75 20.48 0.10 0.00 1.22
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O	N1 S4 P73-c 33 s5 65.94 21.03 0.07 0.00 1.29 10.33	N1 S4 P73-b 32 s5 65.79 20.77 0.06 0.00 1.30 10.61	N1 S4 P72-c 29 s5 65.01 20.79 0.13 0.00 1.47 10.27	N1 S4 P72-b 27 s5 68.35 19.55 0.09 0.00 0.05 11.59	N1 S4 P72-b 26 s5 67.51 19.25 0.06 0.00 0.06 11.55	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.00 1.77 10.49	N1 S4 P71-b 24 s5 67.47 20.07 0.00 0.01 0.38 11.24	N1 S4 P70-b 23 s5 65.79 20.14 0.10 0.02 1.07 10.86	N1 S4 P70-b 22 s5 67.32 20.35 0.00 0.55 11.37	N1 S4 P70-b 21 s5 65.96 20.97 0.11 0.02 1.45 10.55	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00 1.21 10.59	N1 S4 P69-b 19 s5 66.60 20.69 0.01 0.00 1.12 10.93	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.01 0.60 11.22	N1 S4 P68-b 17 s5 66.76 20.32 0.08 0.00 0.97 10.77	N1 S4 P68-c 16 s5 65.33 20.69 0.02 0.00 1.88 10.42	N1 S4 P68-b 15 s5 67.65 19.98 0.06 0.02 0.34 11.47	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01 0.34 11.32	N1 S4 P67-c 13 s5 65.30 21.07 0.10 0.00 1.65 10.50	N1 S4 P67-b 12 s5 68.49 19.74 0.18 0.00 0.07 11.81	N1 S4 P66-c 11 s5 65.46 20.99 0.21 0.02 1.45 10.73	N1 S4 P66-b 10 s5 66.21 20.76 0.14 0.02 1.19 10.99	N1 S4 P64-c 7 s5 65.96 20.80 0.20 0.02 1.34 10.74	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00 1.19 10.90	N1 S4 P65-iA87 12 s5 67.18 19.71 0.05 0.00 0.24 11.90	N1 S4 P63 4 s5 67.24 20.10 0.00 0.00 0.58 11.17	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00 1.09 10.78	N1 S4 P63-b 3 s5 66.75 20.48 0.10 0.00 1.22 10.73
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O	N1 S4 P73-c 33 s5 65.94 21.03 0.07 0.00 1.29 10.33 0.17 98.83	N1 S4 P73-b 32 s5 65.79 20.77 0.06 0.00 1.30 10.61 0.04	N1 S4 P72-c 29 s5 65.01 20.79 0.13 0.00 1.47 10.27 0.37	N1 S4 P72-b 27 s5 68.35 19.55 0.09 0.00 0.05 11.59 0.09	N1 S4 P72-b 26 s5 67.51 19.25 0.06 0.00 0.06 11.55 0.01	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.00 1.77 10.49 0.07	N1 S4 P71-b 24 s5 67.47 20.07 0.00 0.01 0.38 11.24 0.06	N1 S4 P70-b 23 s5 65.79 20.14 0.10 0.02 1.07 10.86 0.06	N1 S4 P70-b 22 s5 67.32 20.35 0.00 0.00 0.55 11.37 0.06	N1 S4 P70-b 21 s5 65.96 20.97 0.11 0.02 1.45 10.55	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00 1.21 10.59 0.04	N1 S4 P69-b 19 s5 66.60 20.69 0.01 0.00 1.12 10.93 0.01	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.01 0.60 11.22 0.04	N1 S4 P68-b 17 s5 66.76 20.32 0.08 0.00 0.97 10.77 0.05	N1 S4 P68-c 16 s5 65.33 20.69 0.02 0.00 1.88 10.42 0.10	N1 S4 P68-b 15 s5 67.65 19.98 0.06 0.02 0.34 11.47 0.05	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01 0.34 11.32	N1 S4 P67-c 13 s5 65.30 21.07 0.10 0.00 1.65 10.50 0.10	N1 S4 P67-b 12 s5 68.49 19.74 0.18 0.00 0.07 11.81 0.09	N1 S4 P66-c 11 s5 65.46 20.99 0.21 0.02 1.45 10.73 0.11	N1 S4 P66-b 10 s5 66.21 20.76 0.14 0.02 1.19 10.99 0.08	N1 S4 P64-c 7 s5 65.96 20.80 0.20 0.02 1.34 10.74 0.08	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00 1.19 10.90 0.07	N1 S4 P65-iA87 12 s5 67.18 19.71 0.05 0.00 0.24 11.90 0.07	N1 S4 P63 4 s5 67.24 20.10 0.00 0.00 0.58 11.17	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00 1.09 10.78 0.07	N1 S4 P63-b 3 s5 66.75 20.48 0.10 0.00 1.22 10.73 0.08
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total	N1 S4 P73-c 33 s5 65.94 21.03 0.07 0.00 1.29 10.33 0.17 98.83	N1 S4 P73-b 32 s5 65.79 20.77 0.06 0.00 1.30 10.61 0.04 98.57	N1 S4 P72-c 29 s5 65.01 20.79 0.13 0.00 1.47 10.27 0.37	N1 S4 P72-b 27 s5 68.35 19.55 0.09 0.00 0.05 11.59 0.09	N1 S4 P72-b 26 s5 67.51 19.25 0.06 0.00 0.06 11.55 0.01	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.00 1.77 10.49 0.07	N1 S4 P71-b 24 s5 67.47 20.07 0.00 0.01 0.38 11.24 0.06	N1 S4 P70-b 23 s5 65.79 20.14 0.10 0.02 1.07 10.86 0.06	N1 S4 P70-b 22 s5 67.32 20.35 0.00 0.00 0.55 11.37 0.06	N1 S4 P70-b 21 s5 65.96 20.97 0.11 0.02 1.45 10.55	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00 1.21 10.59 0.04	N1 S4 P69-b 19 s5 66.60 20.69 0.01 0.00 1.12 10.93 0.01	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.01 0.60 11.22 0.04	N1 S4 P68-b 17 s5 66.76 20.32 0.08 0.00 0.97 10.77 0.05	N1 S4 P68-c 16 s5 65.33 20.69 0.02 0.00 1.88 10.42 0.10	N1 S4 P68-b 15 s5 67.65 19.98 0.06 0.02 0.34 11.47 0.05	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01 0.34 11.32	N1 S4 P67-c 13 s5 65.30 21.07 0.10 0.00 1.65 10.50 0.10	N1 S4 P67-b 12 s5 68.49 19.74 0.18 0.00 0.07 11.81 0.09	N1 S4 P66-c 11 s5 65.46 20.99 0.21 0.02 1.45 10.73 0.11	N1 S4 P66-b 10 s5 66.21 20.76 0.14 0.02 1.19 10.99 0.08	N1 S4 P64-c 7 s5 65.96 20.80 0.20 0.02 1.34 10.74 0.08	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00 1.19 10.90 0.07	N1 S4 P65-iA87 12 s5 67.18 19.71 0.05 0.00 0.24 11.90 0.07	N1 S4 P63 4 s5 67.24 20.10 0.00 0.00 0.58 11.17	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00 1.09 10.78 0.07	N1 S4 P63-b 3 s5 66.75 20.48 0.10 0.00 1.22 10.73 0.08
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total	N1 S4 P73-c 33 s5 65.94 21.03 0.07 0.00 1.29 10.33 0.17 98.83	N1 S4 P73-b 32 s5 65.79 20.77 0.06 0.00 1.30 10.61 0.04 98.57 Oxygène	N1 S4 P72-c 29 s5 65.01 20.79 0.13 0.00 1.47 10.27 0.37 98.04	N1 S4 P72-b 27 s5 68.35 19.55 0.09 0.00 0.05 11.59 0.09 99.72	N1 S4 P72-b 26 s5 67.51 19.25 0.06 0.00 0.06 11.55 0.01 98.43	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.00 1.77 10.49 0.07 99.80	N1 S4 P71-b 24 s5 67.47 20.07 0.00 0.01 0.38 11.24 0.06 99.22	N1 S4 P70-b 23 s5 65.79 20.14 0.10 0.02 1.07 10.86 0.06 98.04	N1 S4 P70-b 22 s5 67.32 20.35 0.00 0.00 0.55 11.37 0.06 99.66	N1 S4 P70-b 21 s5 65.96 20.97 0.11 0.02 1.45 10.55 0.05 99.12	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00 1.21 10.59 0.04 99.32	N1 S4 P69-b 19 s5 66.60 20.69 0.01 0.00 1.12 10.93 0.01 99.36	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.60 11.22 0.04 98.81	N1 S4 P68-b 17 s5 66.76 20.32 0.08 0.00 0.97 10.77 0.05 98.94	N1 S4 P68-c 16 s5 65.33 20.69 0.02 0.00 1.88 10.42 0.10 98.44	N1 S4 P68-b 15 s5 67.65 19.98 0.06 0.02 0.34 11.47 0.05 99.56	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01 0.34 11.32 0.07 98.17	N1 S4 P67-c 13 s5 65.30 21.07 0.10 0.00 1.65 10.50 0.10 98.71	N1 S4 P67-b 12 s5 68.49 19.74 0.18 0.00 0.07 11.81 0.09 100.38	N1 S4 P66-c 11 s5 65.46 20.99 0.21 0.02 1.45 10.73 0.11 98.96	N1 S4 P66-b 10 s5 66.21 20.76 0.14 0.02 1.19 10.99 0.08 99.39	N1 S4 P64-c 7 s5 65.96 20.80 0.20 0.02 1.34 10.74 0.08 99.15	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00 1.19 10.90 0.07 99.19	N1 S4 P65-iA87 12 s5 67.18 19.71 0.05 0.00 0.24 11.90 0.07 99.15	N1 S4 P63 4 s5 67.24 20.10 0.00 0.58 11.17 0.05 99.14	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00 1.09 10.78 0.07 99.51	N1 S4 P63-b 3 s5 66.75 20.48 0.10 0.00 1.22 10.73 0.08 99.37
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total	N1 S4 P73-c 33 s5 65.94 21.03 0.07 0.00 1.29 10.33 0.17 98.83	N1 S4 P73-b 32 s5 65.79 20.77 0.06 0.00 1.30 10.61 0.04 98.57 Oxygène 2.92	N1 S4 P72-c 29 s5 65.01 20.79 0.13 0.00 1.47 10.27 0.37 98.04 s)	N1 S4 P72-b 27 s5 68.35 19.55 0.09 0.00 0.05 11.59 0.09 99.72 2.99	N1 S4 P72-b 26 s5 67.51 19.25 0.06 0.00 0.06 11.55 0.01 98.43	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.00 1.77 10.49 0.07 99.80	N1 S4 P71-b 24 s5 67.47 20.07 0.00 0.01 0.38 11.24 0.06 99.22	N1 S4 P70-b 23 s5 65.79 20.14 0.10 0.02 1.07 10.86 0.06 98.04	N1 S4 P70-b 22 s5 67.32 20.35 0.00 0.55 11.37 0.06 99.66	N1 S4 P70-b 21 s5 65.96 20.97 0.11 0.02 1.45 10.55 0.05 99.12	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00 1.21 10.59 0.04 99.32	N1 S4 P69-b 19 s5 66.60 20.69 0.01 0.00 1.12 10.93 0.01 99.36	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.60 11.22 0.04 98.81	N1 S4 P68-b 17 s5 66.76 20.32 0.08 0.00 0.97 10.77 0.05 98.94	N1 S4 P68-c 16 s5 65.33 20.69 0.02 0.00 1.88 10.42 0.10 98.44 2.91	N1 S4 P68-b 15 s5 67.65 19.98 0.06 0.02 0.34 11.47 0.05 99.56	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01 0.34 11.32 0.07 98.17	N1 S4 P67-c 13 s5 65.30 21.07 0.10 0.00 1.65 10.50 0.10 98.71	N1 S4 P67-b 12 s5 68.49 19.74 0.18 0.00 0.07 11.81 0.09 100.38	N1 S4 P66-c 11 s5 65.46 20.99 0.21 0.02 1.45 10.73 0.11 98.96	N1 S4 P66-b 10 s5 66.21 20.76 0.14 0.02 1.19 10.99 0.08 99.39	N1 S4 P64-c 7 s5 65.96 20.80 0.20 0.02 1.34 10.74 0.08 99.15	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00 1.19 10.90 0.07 99.19	N1 S4 P65-iA87 12 s5 67.18 19.71 0.05 0.00 0.24 11.90 0.07 99.15	N1 S4 P63 4 \$5 67.24 20.10 0.00 0.00 0.58 11.17 0.05 99.14	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00 1.09 10.78 0.07 99.51	N1 S4 P63-b 3 s5 66.75 20.48 0.10 0.00 1.22 10.73 0.08 99.37
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al	N1 S4 P73-c 33 s5 65.94 21.03 0.07 0.00 1.29 10.33 0.17 98.83 **URALE (8 2.92 1.10	N1 S4 P73-b 32 s5 65.79 20.77 0.06 0.00 1.30 10.61 0.04 98.57 Oxygène 2.92 1.09	N1 S4 P72-c 29 s5 65.01 20.79 0.13 0.00 1.47 10.27 0.37 98.04 s) 2.91 1.10	N1 S4 P72-b 27 s5 68.35 19.55 0.09 0.00 0.05 11.59 0.09 99.72 2.99 1.01	N1 S4 P72-b 26 s5 67.51 19.25 0.06 0.06 611.55 0.01 98.43 2.99 1.01	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.07 1.77 10.49 0.07 99.80	N1 S4 P71-b 24 s5 67.47 20.07 0.01 0.38 11.24 0.06 99.22 2.97 1.04	N1 S4 P70-b 23 s5 65.79 20.14 0.10 1.07 10.86 0.06 98.04	N1 S4 P70-b 22 s5 67.32 20.35 0.00 0.00 0.55 11.37 0.06 99.66	N1 S4 P70-b 21 s5 65.96 20.97 0.11 0.02 1.45 10.55 0.05 99.12 2.92 1.09	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00 1.21 10.59 0.04 99.32 2.93 1.08	N1 S4 P69-b 19 s5 66.60 20.69 0.01 0.00 1.12 10.93 0.01 99.36 2.93 1.07	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.60 11.22 0.04 98.81 2.96 1.04	N1 S4 P68-b 17 s5 66.76 20.32 0.08 0.00 0.97 10.77 0.05 98.94 2.95 1.06	N1 S4 P68-c 16 s5 65.33 20.69 0.02 0.00 1.88 10.42 0.10 98.44 2.91 1.09	N1 S4 P68-b 15 s5 67.65 19.98 0.06 0.02 0.34 11.47 0.05 99.56 2.97 1.03	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01 0.34 11.32 0.07 98.17	N1 S4 P67-c 13 s5 65.30 21.07 0.10 0.00 1.65 10.50 0.10 98.71 2.90 1.10	N1 S4 P67-b 12:s5 68:49 19:74 0.18 0.00 0.07 11:81 0.09 100.38 2.98 1.01	N1 S4 P66-c 11 s5 65.46 20.99 0.21 0.02 1.45 10.73 0.11 98.96	N1 S4 P66-b 10 s5 66.21 20.76 0.14 0.02 1.19 10.99 0.08 99.39 2.92 1.08	N1 S4 P64-c 7 s5 65.96 20.80 0.20 0.02 1.34 10.74 0.08 99.15	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00 1.19 10.90 0.07 99.19 2.93 1.07	N1 S4 P65-iA87 12 s5 67.18 19.71 0.05 0.00 0.24 11.90 0.07 99.15	N1 S4 P63 4 s5 67.24 20.10 0.00 0.58 11.17 0.05 99.14	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00 1.09 10.78 0.07 99.51 2.94 1.07	N1 S4 P63-b 3 s5 66.75 20.48 0.10 0.00 1.22 10.73 0.08 99.37 2.94 1.06
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³+	N1 S4 P73-c 33 s5 65.94 21.03 0.07 0.00 1.29 10.33 0.17 98.83 URALE (8 2.92 1.10 0.00	N1 S4 P73-b 32 s5 65.79 20.77 0.06 0.00 1.30 10.61 0.04 98.57 Oxygène 2.92 1.09 0.00	N1 S4 P72-c 29 s5 65.01 20.79 0.13 0.00 1.47 10.27 0.37 98.04 s) 2.91 1.10 0.00	N1 S4 P72-b 27 s5 68.35 19.55 0.09 0.00 11.59 0.09 99.72 2.99 1.01 0.00	N1 S4 P72-b 26 s5 67.51 19.25 0.06 0.06 11.55 0.01 98.43 2.99 1.01 0.00	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.00 1.77 10.49 0.07 99.80 2.91 1.09 0.01	N1 S4 P71-b 24 s5 67.47 20.07 0.00 0.01 0.38 11.24 0.06 99.22 2.97 1.04 0.00	N1 S4 P70-b 23 s5 65.79 20.14 0.10 0.02 1.07 10.86 0.06 98.04 2.94 1.06 0.00	N1 S4 P70-b 22 s5 67.32 20.35 0.00 0.05 511.37 0.06 99.66 2.95 1.05 0.00	N1 S4 P70-b 21 s5 65.96 20.97 0.11 0.02 1.45 10.55 0.05 99.12 2.92 1.09 0.00	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00 1.21 10.59 0.04 99.32 2.93 1.08 0.00	N1 S4 P69-b 19 s5 66.60 20.69 0.01 0.00 1.12 10.93 0.01 99.36 2.93 1.07 0.00	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.60 11.22 0.04 98.81 2.96 1.04 0.00	N1 S4 P68-b 17:s5 66.76 20.32 0.08 0.00 0.97 10.77 0.05 98.94 2.95 1.06 0.00	N1 S4 P68-c 16 s5 65.33 20.69 0.02 0.00 1.88 10.42 0.10 98.44 2.91 1.09 0.00	N1 S4 P68-b 15 s5 67.65 19.98 0.06 0.02 0.34 11.47 0.05 99.56 2.97 1.03 0.00	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01 0.34 11.32 0.07 98.17 2.98 1.02 0.00	N1 S4 P67-c 13 s5 65.30 21.07 0.10 0.00 1.65 10.50 0.10 98.71 2.90 1.10 0.00	N1 S4 P67-b 12:s5 68:49 19:74 0.18 0.00 0.07 11:81 0.09 100.38 2.98 1.01 0.01	N1 S4 P66-c 11 s5 65.46 20.99 0.21 0.02 1.45 10.73 0.11 98.96 2.90 1.10 0.01	N1 S4 P66-b 10 s5 66.21 20.76 0.14 0.02 1.19 10.99 0.08 99.39 2.92 1.08 0.00	N1 S4 P64-c 7 s5 65.96 20.80 0.20 1.34 10.74 0.08 99.15 2.92 1.08 0.01	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00 1.19 10.90 0.07 99.19 2.93 1.07 0.00	N1 S4 P65-iA87 12 s5 67.18 19.71 0.05 0.00 0.24 11.90 0.07 99.15 2.97 1.03 0.00	N1 S4 P63 4 s5 67.24 20.10 0.00 0.58 11.17 0.05 99.14 2.96 1.04 0.00	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00 1.09 10.78 0.07 99.51	N1 S4 P63-b 3 s5 66.75 20.48 0.10 0.00 1.22 10.73 0.08 99.37 2.94 1.06 0.00
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O Total FORMULE STRUCT Si Al Fe ³⁺ Ca	N1 S4 P73-c 33 s5 65.94 21.03 0.07 0.00 1.29 10.33 0.17 98.83 TURALE (8 2.92 1.10 0.00 0.06	N1 S4 P73-b 32:5 65.79 20.77 0.06 0.00 1.30 10.61 0.04 98.57 Oxygène 2.92 1.09 0.00 0.06	N1 S4 P72-c 29 s5 65.01 20.79 0.13 0.00 1.47 10.27 0.37 98.04 s) 2.91 1.10 0.00 0.07	N1 S4 P72-b 27 s5 68.35 19.55 0.09 0.00 0.05 11.59 0.09 99.72 2.99 1.01 0.00 0.00	N1 S4 P72-b 26 s5 67.51 19.25 0.06 0.00 0.06 11.55 0.01 98.43 2.99 1.01 0.00	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.00 1.77 10.49 0.07 99.80 2.91 1.09 0.01	N1 \$4 P71-b 24 s5 67.47 20.07 0.00 0.01 0.38 11.24 0.06 99.22 2.97 1.04 0.00 0.02	N1 S4 P70-b 23:s5 65.79 20.14 0.10 0.02 1.07 10.86 0.06 98.04 2.94 1.06 0.00 0.05	N1 S4 P70-b 22:85 67:32 0.00 0.00 0.55 11:37 0.06 99:66 2.95 1.05 0.00 0.03	N1 S4 P70-b 21:s5 65:96 20:97 0.11 0.02 1.45 10.55 0.05 99:12 2.92 1.09 0.00 0.07	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00 1.21 10.59 0.04 99.32 2.93 1.08 0.00 0.06	N1 S4 P69-b 19 s5 66.60 20.69 0.01 0.00 1.12 10.93 0.01 99.36 2.93 1.07 0.00 0.05	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.60 11.22 0.04 98.81 2.96 1.04 0.00 0.03	N1 S4 P68-b 17 s5 66.76 20.32 0.08 0.00 0.97 10.77 0.05 98.94 2.95 1.06 0.00 0.05	N1 S4 P68-c 16 s5 65.33 20.69 0.02 0.00 1.88 10.42 0.10 98.44 2.91 1.09 0.00 0.09	N1 S4 P68-b 15.s5 67.65 67.65 19.98 0.06 0.02 0.34 11.47 0.05 99.56 2.97 1.03 0.00 0.02	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01 0.34 11.32 0.07 98.17 2.98 1.02 0.00 0.02	N1 S4 P67-c 13.85 65.30 21.07 0.10 0.00 1.65 10.50 0.10 98.71 2.90 1.10 0.00	N1 S4 P67-b 12:s5 68:49 19:74 0.18 0.00 0.07 11:81 0.09 100.38 2.98 1.01 0.01 0.00	N1 S4 P66-c 11 s5 65.46 62.99 0.21 0.02 1.45 10.73 0.11 98.96 2.90 1.10 0.01 0.07	N1 S4 P66-b 10.85 66.21 20.76 0.14 0.02 1.19 10.99 0.08 99.39 2.92 1.08 0.00	N1 S4 P64-c 7 s5 65.96 20.80 0.20 0.02 1.34 10.74 0.08 99.15 2.92 1.08 0.01	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00 1.19 10.90 0.07 99.19 2.93 1.07 0.00 0.06	N1 \$4 P65-iA87 12 s5 67.18 19.71 0.05 0.00 0.24 11.90 0.07 99.15 2.97 1.03 0.00 0.01	N1 S4 P63 4 s5 67.24 20.10 0.00 0.08 11.17 0.05 99.14 2.96 1.04 0.00 0.03	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00 1.09 10.78 0.07 99.51 2.94 1.07 0.00	N1 S44 P63-b 3.85 66.748 0.10 0.00 1.22 10.73 0.08 99.37 2.94 1.06 0.00 0.00
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³+ Ca Na K	N1 S4 P73-c 33 s5 65.94 21.03 0.07 0.00 1.29 10.33 0.17 98.83 **URALE (8 2.92 1.10 0.00 0.06 0.89 0.01	N1 S4 P73-b 32 s5 65.79 20.77 0.06 0.00 1.30 10.61 0.04 98.57 Oxygène 2.92 1.09 0.00 0.06 0.91 0.00	N1 S4 P72-c 29 s5 65.01 20.79 0.13 0.00 1.47 10.27 0.37 98.04 s) 2.91 1.10 0.00 0.07 0.89 0.02	N1 S4 P72-b 27 s5 68.35 19.55 19.55 0.09 0.00 0.05 11.59 0.09 99.72 2.99 1.01 0.00 0.00 0.98 0.00	N1 S4 P72-b 26 s5 67.51 19.25 0.06 0.00 0.06 11.55 0.01 98.43 2.99 1.01 0.00 0.09 0.00	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.00 1.77 10.49 0.07 99.80 2.91 1.09 0.01 0.08 0.89 0.00	N1 S4 P71-b 24 s5 67.47 20.00 0.01 0.38 11.24 0.06 99.22 2.97 1.04 0.00 0.02 0.96 0.00	N1 S4 P70-b 23:s5 65.79 20.14 0.10 0.02 1.07 10.86 0.06 98.04 2.94 1.06 0.00 0.05 0.94 0.00	N1 S4 P70-b 22 s5 67.32 20.35 0.00 0.00 0.55 11.37 0.06 99.66 2.95 1.05 0.00 0.03 0.97	N1 S4 P70-b 21 s5 65.96 20.97 0.11 0.02 1.45 10.55 0.05 99.12 2.92 1.09 0.00 0.07 0.90 0.00	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00 1.21 10.59 0.04 99.32 2.93 1.08 0.00 0.06 0.90 0.00	N1 S4 P69-b 19 s5 66.60 20.69 0.01 0.00 1.12 10.93 0.01 99.36 2.93 1.07 0.00 0.05 0.93 0.00	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.60 11.22 0.04 98.81 2.96 1.04 0.00 0.03 0.96 0.00	N1 S4 P68-b 17 s5 66.76 20.32 0.08 0.00 0.97 10.77 0.05 98.94 2.95 1.06 0.00 0.05 0.92 0.00	N1 S4 P68-c 16 s5 65.33 20.69 0.02 0.00 1.88 10.42 0.10 98.44 2.91 1.09 0.00 0.09 0.90 0.01	N1 S4 P68-b 15 s5 67.65 19.98 0.06 0.02 0.34 11.47 0.05 99.56 2.97 1.03 0.00 0.02 0.98 0.00	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01 0.34 11.32 0.07 98.17 2.98 1.02 0.00 0.02 0.98 0.00	N1 S4 P67-c 13 s5 65.30 21.07 0.10 0.00 1.65 10.50 0.10 98.71 2.90 1.10 0.00 0.08 0.91 0.01	N1 S4 P67-b 12 s5 68.49 19.74 0.18 0.00 0.07 11.81 0.09 100.38 1.01 0.01 0.01 0.00 1.00 0.00	N1 S4 P66-c 11 s5 65.46 20.99 0.21 0.02 1.45 10.73 0.11 98.96 2.90 1.10 0.01 0.07 0.92 0.01	N1 S4 P66-b 10.95 66.21 20.76 0.14 0.02 1.19 10.99 0.08 99.39 2.92 1.08 0.00 0.06 0.94 0.00	N1 S4 P64-c 7 s5 65.96 20.80 0.20 0.02 1.34 10.74 0.08 99.15 2.92 1.08 0.01 0.06 0.92 0.00	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00 1.19 10.90 0.07 99.19 2.93 1.07 0.00 0.06 0.93 0.00	N1 S4 P65-iA87 12 s5 67.18 19.71 0.05 0.00 0.24 11.90 0.07 99.15 2.97 1.03 0.00 0.01 1.02	N1 S4 P63 4 s5 67.24 20.10 0.00 0.58 11.17 0.05 99.14 2.96 1.04 0.00 0.03 0.95 0.00	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00 1.09 10.78 0.07 99.51 2.94 1.07 0.00 0.05 0.92 0.00	N1 S4 P63-b 3 s5 66.75 20.48 0.10 0.00 1.22 10.73 0.08 99.37 2.94 1.06 0.00 0.06 0.09 0.092
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca	N1 S4 P73-c 33 s5 65.94 21.03 0.07 0.00 1.29 10.33 0.17 98.83 TURALE (8 2.92 1.10 0.00 0.06 0.89	N1 S4 P73-b 32 s5 65.79 20.77 0.06 0.00 1.30 10.61 0.04 98.57 Oxygène 2.92 1.09 0.00 0.06 0.91	N1 S4 P72-c 29	N1 S4 P72-b 27 s5 68.35 19.55 0.09 0.00 0.05 11.59 0.09 99.72 2.99 1.01 0.00 0.00 0.98	N1 S4 P72-b 26 s5 67.51 19.25 0.06 0.00 0.06 11.55 0.01 98.43 2.99 1.01 0.00 0.00 0.09	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.00 1.77 10.49 0.07 99.80 2.91 1.09 0.01 0.08 0.89	N1 \$4 P71-b 24 s5 67.47 20.07 0.00 0.01 0.38 11.24 0.06 99.22 2.97 1.04 0.00 0.02 0.96	N1 S4 P70-b 23:s5 65.79 20.14 0.10 0.02 1.07 10.86 0.06 98.04 2.94 1.06 0.00 0.05 0.94	N1 S4 P70-b 22:85 67:32 20:35 0.00 0.00 0.55 11:37 0.06 99:66 2.95 1.05 0.00 0.03 0.97	N1 S4 P70-b 21:s5 65:96 20:97 0.11 0.02 1.45 10:55 0.05 99:12 2.92 1.09 0.00 0.07 0.90	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00 1.21 10.59 0.04 99.32 2.93 1.08 0.00 0.06 0.90	N1 S4 P69-b 19 s5 66.60 20.69 0.01 0.00 1.12 10.93 0.01 99.36 2.93 1.07 0.00 0.05 0.93	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.60 11.22 0.04 98.81 2.96 1.04 0.00 0.03 0.96	N1 S4 P68-b 17 s5 66.76 20.32 0.08 0.00 0.97 10.77 0.05 98.94 2.95 1.06 0.00 0.05 0.92	N1 S4 P68-c 16 s5 65.33 20.69 0.02 0.00 1.88 10.42 0.10 98.44 2.91 1.09 0.00 0.09 0.90	N1 S4 P68-b 15 s5 67.65 19.98 0.06 0.02 0.34 11.47 0.05 99.56 2.97 1.03 0.00 0.02 0.98	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01 0.34 11.32 0.07 98.17 2.98 1.02 0.00 0.02 0.98	N1 S4 P67-c 13.85 65.30 21.07 0.10 0.00 1.65 10.50 0.10 98.71 2.90 1.10 0.00 0.08 0.91	N1 S4 P67-b 12:s5 68:49 19:74 0.18 0.00 0.07 11:81 0.09 100:38 2.98 1.01 0.01 0.00 1.00	N1 S4 P66-c 11.85 65.46 20.99 0.21 0.02 1.45 10.73 0.11 98.96 2.90 1.10 0.01 0.07 0.92	N1 S4 P66-b 10.95 66.21 20.76 0.14 0.02 1.19 10.99 0.08 99.39 2.92 1.08 0.00 0.06 0.94	N1 S4 P64-c 7 s5 65.96 20.80 0.20 0.02 1.34 10.74 0.08 99.15 2.92 1.08 0.01 0.06 0.92	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00 1.19 10.90 0.07 99.19 2.93 1.07 0.00 0.06 0.93	N1 S4 P65-iA87 12 s5 67.18 19.71 0.05 0.00 0.24 11.90 0.07 99.15 2.97 1.03 0.00 0.01 1.02	N1 S4 P63 4 s5 67.24 20.10 0.00 0.58 11.17 0.05 99.14 2.96 1.04 0.00 0.03 0.95	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00 1.09 10.78 0.07 99.51 2.94 1.07 0.00 0.05	N1 S4 P63-b 3 s5 66.75 20.48 0.10 0.00 1.22 10.73 0.08 99.37 2.94 1.06 0.00 0.06
Lame Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO Total MgO CaO Na₂O K2O Total FORMULE STRUCT Si Al Fe³+ Ca Na K Total	N1 S4 P73-c 33 s5 65.94 21.03 0.07 0.00 1.29 10.33 0.17 98.83 **URALE (8 2.92 1.10 0.00 0.06 0.89 0.01 4.97	N1 S4 P73-b 32 s5 65.79 20.77 0.06 0.00 1.30 10.61 0.04 98.57 Oxygène 2.92 1.09 0.00 0.06 0.91 0.00 4.99	N1 S4 P72-c 29 s5 65.01 20.79 0.13 0.00 1.47 10.27 0.37 98.04 s) 2.91 1.10 0.00 0.07 0.89 0.02 4.99	N1 S4 P72-b 27 s5 68.35 19.55 0.09 0.00 0.05 11.59 0.09 99.72 2.99 1.01 0.00 0.00 0.98 0.00 5.00	N1 S4 P72-b 26 s5 67.51 19.25 0.06 0.00 0.06 11.55 0.01 98.43 2.99 1.01 0.00 0.00 0.09 0.00	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.00 1.77 10.49 0.07 99.80 2.91 1.09 0.01 0.08 0.89 0.00 4.99	N1 S4 P71-b 24 s5 67.47 20.07 0.00 1.038 11.24 0.06 99.22 2.97 1.04 0.00 0.02 0.96 0.00 4.99	N1 S4 P70-b 23 s5 65.79 20.14 0.10 0.02 1.07 10.86 0.06 98.04 2.94 1.06 0.00 0.05 0.94 0.00 5.00	N1 S4 P70-b 22 s5 67.32 20.35 0.00 0.00 0.55 11.37 0.06 99.66 2.95 1.05 0.00 0.03 0.97 0.00 5.00	N1 S4 P70-b 21 s5 65.96 20.97 0.11 0.02 1.45 10.55 0.05 99.12 2.92 1.09 0.00 0.07 0.90 0.00 4.99	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00 1.21 10.59 0.04 99.32 2.93 1.08 0.00 0.06 0.90 0.00 4.98	N1 S4 P69-b 19 s5 66.60 20.69 0.00 1.12 10.93 0.01 99.36 2.93 1.07 0.00 0.05 0.93 0.00 4.99	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.60 11.22 0.04 98.81 2.96 1.04 0.00 0.03 0.96 0.00 5.00	N1 S4 P68-b 17 s5 66.76 20.32 0.08 0.00 0.97 10.77 0.05 98.94 2.95 1.06 0.00 0.05 0.92 0.00 4.98	N1 S4 P68-c 16 s5 65.33 20.69 0.02 0.00 1.88 10.42 0.10 98.44 2.91 1.09 0.00 0.09 0.00 0.01 5.00	N1 S4 P68-b 15 s5 67.65 19.98 0.06 0.02 0.34 11.47 0.05 99.56 2.97 1.03 0.00 0.02 0.98 0.00 5.00	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01 0.34 11.32 0.07 98.17 2.98 1.02 0.00 0.02 0.98 0.00 5.00	N1 S4 P67-c 13 s5 65.30 21.07 0.10 0.00 1.65 10.50 0.10 98.71 2.90 1.10 0.00 0.08 0.91 0.01 5.00	N1 S4 P67-b 12 s5 68.49 19.74 0.18 0.00 0.07 11.81 0.09 100.38 2.98 1.01 0.01 0.00 1.00 0.00 5.01	N1 S4 P66-c 11 s5 65.46 20.99 0.21 0.02 1.45 10.73 0.11 98.96 2.90 1.10 0.01 0.07 0.92 0.01 5.00	N1 S4 P66-b 10 s5 66.21 20.76 0.14 0.02 1.19 10.99 0.08 99.39 2.92 1.08 0.00 0.06 0.94 0.00 5.01	N1 S4 P64-c 7 s5 65.96 20.80 0.20 0.02 1.34 10.74 0.08 99.15 2.92 1.08 0.01 0.06 0.92 0.00 5.00	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00 1.19 10.90 0.07 99.19 2.93 1.07 0.00 0.06 0.93 0.00 5.00	N1 \$4 P65-iA87 12 s5 67.18 19.71 0.05 0.00 0.24 11.90 0.07 99.15 2.97 1.03 0.00 0.01 1.02 0.00 5.03	N1 S4 P63 4 s5 67.24 20.10 0.00 0.58 11.17 0.05 99.14 2.96 1.04 0.00 0.03 0.95 0.00 4.99	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00 1.09 10.78 0.07 99.51 2.94 1.07 0.00 0.05 0.92 0.00 4.99	N1 S4 P63-b 3 s5 66.75 20.48 0.10 0.00 1.22 10.73 0.08 99.37 2.94 1.06 0.00 0.06 0.09 2
Lame Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO Total MgO CaO Na₂O K2O Total FORMULE STRUCT Si Al Fe³+ Ca Na K Total %Or	N1 S4 P73-c 33 s5 65.94 21.03 0.07 1.29 10.33 0.17 98.83 **CURALE (8 2.92 1.10 0.00 0.06 0.89 0.01 4.97	N1 S4 P73-b 32 s5 65.79 20.77 0.06 0.00 1.30 10.61 0.04 98.57 Oxygène 2.92 1.09 0.00 0.06 0.91 0.00 4.99	N1 S4 P72-c 29 s5 65.01 20.79 0.13 0.00 1.47 10.27 0.37 98.04 s) 2.91 1.10 0.00 0.07 0.89 0.02 4.99	N1 S4 P72-b 27 s5 68.35 19.55 0.09 0.00 0.05 11.59 0.09 99.72 2.99 1.01 0.00 0.08 0.00 5.00	N1 S4 P72-b 26-s5 67.51 19.25 0.06 0.00 0.06 11.55 0.01 98.43 2.99 1.01 0.00 0.00 0.09 0.00 5.00	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.00 1.77 10.49 0.07 99.80 2.91 1.09 0.01 0.08 0.89 0.00 4.99	N1 S4 P71-b 24 s5 67.47 20.07 0.00 1.038 11.24 0.06 99.22 2.97 1.04 0.00 0.02 0.96 0.00 4.99	N1 S4 P70-b 23 s5 65.79 20.14 0.10 0.02 1.07 10.86 0.06 98.04 2.94 1.06 0.00 0.05 0.94 0.00 5.00	N1 S4 P70-b 22 s5 67.32 20.35 0.00 0.05 11.37 0.06 99.66 2.95 1.05 0.00 0.03 0.97 0.00 5.00	N1 S4 P70-b 21 s5 65.96 20.97 0.11 0.02 1.45 10.55 0.05 99.12 2.92 1.09 0.00 0.07 0.90 0.00 4.99	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00 1.21 10.59 0.04 99.32 2.93 1.08 0.00 0.06 0.90 0.00 4.98	N1 S4 P69-b 19 s5 66.60 20.69 0.01 1.12 10.93 0.01 99.36 2.93 1.07 0.00 0.59 0.93 0.00 4.99	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.60 11.22 0.04 98.81 2.96 1.04 0.00 0.03 0.96 0.00 5.00	N1 S4 P68-b 17 s5 66.76 20.32 0.08 0.00 0.97 10.77 0.05 98.94 2.95 1.06 0.00 0.05 0.92 0.00 4.98	N1 S4 P68-c 16:s5 65:33 20:69 0.02 0.00 1.88 10.42 0.10 98.44 2.91 1.09 0.00 0.09 0.09 0.01 5.00	N1 S4 P68-b 15 s5 67.65 19.98 0.06 0.02 0.34 11.47 0.05 99.56 2.97 1.03 0.00 0.02 0.98 0.00 5.00	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01 0.34 11.32 0.07 98.17 2.98 1.02 0.00 0.02 0.98 0.00 5.00	N1 S4 P67-c 13 s5 65.30 21.07 0.10 0.00 1.65 10.50 0.10 98.71 2.90 1.10 0.00 0.08 0.91 0.01 5.00	N1 S4 P67-b 12 s5 68.49 19.74 0.18 0.00 0.07 11.81 0.09 100.38 2.98 1.01 0.01 0.00 1.00 0.00 5.01	N1 S4 P66-c 11 s5 65.46 20.99 0.21 0.02 1.45 10.73 0.11 98.96 2.90 1.10 0.01 0.07 0.92 0.01 5.00	N1 S4 P66-b 10 s5 66.21 20.76 0.14 0.02 1.19 10.99 0.08 99.39 2.92 1.08 0.00 0.06 0.94 0.00 5.01	N1 S4 P64-c 7 s5 65.96 20.80 0.20 0.02 1.34 10.74 0.08 99.15 2.92 1.08 0.01 0.06 0.92 0.00 5.00	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00 1.19 10.90 0.07 99.19 2.93 1.07 0.00 0.06 0.93 0.00 5.00	N1 S4 P65-iA87 12 s5 67.18 19.71 0.05 0.00 0.24 11.90 0.07 99.15 2.97 1.03 0.00 0.01 1.02 0.00 5.03	N1 S4 P63 4 s5 67.24 20.10 0.00 0.58 11.17 0.05 99.14 2.96 1.04 0.00 0.03 0.95 0.00 4.99	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00 1.09 10.78 0.07 99.51 2.94 1.07 0.00 0.92 0.00 4.99	N1 S4 P63-b 3 s5 66.75 20.48 0.10 0.00 1.22 10.73 0.08 99.37 2.94 1.06 0.00 0.00 4.99 0.00
Lame Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO Total MgO CaO Na₂O K2O Total FORMULE STRUCT Si Al Fe³+ Ca Na K Total %Or %Ab	N1 S4 P73-c 33 s5 65.94 21.03 0.07 0.00 1.29 10.33 0.17 98.83 **CURALE (8 2.92 1.10 0.00 0.08 0.01 4.97 0.01 0.93	N1 S4 P73-b 32 s5 65.79 20.77 0.06 0.00 1.30 10.61 0.04 98.57 Oxygène 2.92 1.09 0.00 0.09 0.09 0.00 0.99	N1 S4 P72-c 29 s5 65.01 20.79 0.13 0.00 1.47 10.27 0.37 98.04 s) 2.91 1.10 0.00 0.07 0.89 0.02 4.99	N1 S4 P72-b 27 s5 68.35 19.55 0.09 0.00 0.05 11.59 0.09 99.72 2.99 1.01 0.00 0.00 0.09 5.00 0.00	N1 S4 P72-b 26 s5 67.51 19.25 0.06 0.00 0.06 11.55 0.01 98.43 2.99 1.01 0.00 0.09 0.00 5.00	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.00 1.77 10.49 0.07 99.80 2.91 1.09 0.01 0.08 0.89 0.00 4.99	N1 S4 P71-b 24 s5 67.47 20.07 0.00 1.038 11.24 0.06 99.22 2.97 1.04 0.00 0.92 0.96 0.00 4.99 0.00 0.98	N1 S4 P70-b 23 s5 65.79 20.14 0.10 0.02 1.07 10.86 0.06 98.04 2.94 1.06 0.00 0.05 0.94 0.00 5.00 0.095	N1 S4 P70-b 22 s5 67.32 20.35 0.00 0.55 11.37 0.06 99.66 2.95 1.05 0.00 0.37 0.00 5.00	N1 S4 P70-b 21 s5 65.96 20.97 0.11 0.02 1.45 10.55 0.05 99.12 2.92 1.09 0.00 0.7 0.90 0.00 4.99 0.00 0.93	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00 1.21 10.59 0.04 99.32 2.93 1.08 0.00 0.00 4.98	N1 S4 P69-b 19-s5 66.60 20.69 0.00 1.12 10.93 0.01 99.36 2.93 1.07 0.00 0.95 0.93	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.60 11.22 0.04 98.81 2.96 1.04 0.00 0.03 0.96 0.00 5.00	N1 S4 P68-b 17 s5 66.76 20.32 0.08 0.00 0.97 10.77 0.05 98.94 2.95 1.06 0.00 0.05 0.92 0.00 4.98 0.00 0.95	N1 S4 P68-c 16.95 65.33 20.69 0.02 0.00 1.88 10.42 0.10 98.44 2.91 1.09 0.00 0.09 0.00 0.01 5.00	N1 S4 P68-b 15 s5 67.65 19.98 0.06 0.02 0.34 11.47 0.05 99.56 2.97 1.03 0.00 0.02 0.98	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01 0.34 11.32 0.07 98.17 2.98 1.02 0.00 0.02 0.98	N1 S4 P67-c 13 s5 65.30 21.07 0.10 0.00 1.65 10.50 0.10 98.71 2.90 1.10 0.00 0.08 0.91 0.01 5.00	N1 S4 P67-b 12 s5 68.49 19.74 0.18 0.00 0.07 11.81 0.09 100.38 2.98 1.01 0.01 0.00 0.00 5.01	N1 S4 P66-c 11 s5 65.46 20.99 0.21 1.45 10.73 0.11 98.96 2.90 1.10 0.01 0.07 0.92 0.01 5.00	N1 S4 P66-b 10.95 66.21 20.76 0.14 0.02 1.19 10.99 0.08 99.39 2.92 1.08 0.00 0.06 0.94 0.00 5.01	N1 S4 P64-c 7 s5 65.96 20.80 0.20 1.34 10.74 0.08 99.15 2.92 1.08 0.01 0.06 0.92 0.00 5.00	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00 1.19 10.90 0.07 99.19 2.93 1.07 0.00 0.06 0.93 0.00 5.00	N1 S4 P65-iA87 12 s5 67.18 19.71 0.05 0.00 0.24 11.90 0.07 99.15 2.97 1.03 0.00 0.10 1.02 0.00 5.03	N1 S4 P63 4 s5 67.24 20.10 0.00 0.58 11.17 0.05 99.14 2.96 1.04 0.00 0.03 0.95 0.00 4.99	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00 1.09 10.78 0.07 99.51 2.94 1.07 0.00 0.95 0.00 4.99 0.00 0.94	N1 S4 P63-b 3 s5 66.75 20.48 0.100 1.22 10.73 0.08 99.37 2.94 1.06 0.00 0.09 0.09 0.09 0.09 0.09 0.09
Lame Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO Total MgO CaO Na₂O K2O Total FORMULE STRUCT Si Al Fe³+ Ca Na K Total %Or	N1 S4 P73-c 33 s5 65.94 21.03 0.07 1.29 10.33 0.17 98.83 **CURALE (8 2.92 1.10 0.00 0.06 0.89 0.01 4.97	N1 S4 P73-b 32 s5 65.79 20.77 0.06 0.00 1.30 10.61 0.04 98.57 Oxygène 2.92 1.09 0.00 0.06 0.91 0.00 4.99	N1 S4 P72-c 29 s5 65.01 20.79 0.13 0.00 1.47 10.27 0.37 98.04 s) 2.91 1.10 0.00 0.07 0.89 0.02 4.99	N1 S4 P72-b 27 s5 68.35 19.55 0.09 0.00 0.05 11.59 0.09 99.72 2.99 1.01 0.00 0.08 0.00 5.00	N1 S4 P72-b 26-s5 67.51 19.25 0.06 0.00 0.06 11.55 0.01 98.43 2.99 1.01 0.00 0.00 0.09 0.00 5.00	N1 S4 P71-c 25 s5 66.23 21.05 0.19 0.00 1.77 10.49 0.07 99.80 2.91 1.09 0.01 0.08 0.89 0.00 4.99	N1 S4 P71-b 24 s5 67.47 20.07 0.00 1.038 11.24 0.06 99.22 2.97 1.04 0.00 0.02 0.96 0.00 4.99	N1 S4 P70-b 23 s5 65.79 20.14 0.10 0.02 1.07 10.86 0.06 98.04 2.94 1.06 0.00 0.05 0.94 0.00 5.00	N1 S4 P70-b 22 s5 67.32 20.35 0.00 0.05 11.37 0.06 99.66 2.95 1.05 0.00 0.03 0.97 0.00 5.00	N1 S4 P70-b 21 s5 65.96 20.97 0.11 0.02 1.45 10.55 0.05 99.12 2.92 1.09 0.00 0.07 0.90 0.00 4.99	N1 S4 P70-b 20 s5 66.48 20.85 0.14 0.00 1.21 10.59 0.04 99.32 2.93 1.08 0.00 0.06 0.90 0.00 4.98	N1 S4 P69-b 19 s5 66.60 20.69 0.01 1.12 10.93 0.01 99.36 2.93 1.07 0.00 0.59 0.93 0.00 4.99	N1 S4 P68-b 18 s5 67.00 19.94 0.01 0.60 11.22 0.04 98.81 2.96 1.04 0.00 0.03 0.96 0.00 5.00	N1 S4 P68-b 17 s5 66.76 20.32 0.08 0.00 0.97 10.77 0.05 98.94 2.95 1.06 0.00 0.05 0.92 0.00 4.98	N1 S4 P68-c 16:s5 65:33 20:69 0.02 0.00 1.88 10.42 0.10 98.44 2.91 1.09 0.00 0.09 0.09 0.01 5.00	N1 S4 P68-b 15 s5 67.65 19.98 0.06 0.02 0.34 11.47 0.05 99.56 2.97 1.03 0.00 0.02 0.98 0.00 5.00	N1 S4 P67-b 14 s5 66.91 19.49 0.04 0.01 0.34 11.32 0.07 98.17 2.98 1.02 0.00 0.02 0.98 0.00 5.00	N1 S4 P67-c 13 s5 65.30 21.07 0.10 0.00 1.65 10.50 0.10 98.71 2.90 1.10 0.00 0.08 0.91 0.01 5.00	N1 S4 P67-b 12 s5 68.49 19.74 0.18 0.00 0.07 11.81 0.09 100.38 2.98 1.01 0.01 0.00 1.00 0.00 5.01	N1 S4 P66-c 11 s5 65.46 20.99 0.21 0.02 1.45 10.73 0.11 98.96 2.90 1.10 0.01 0.07 0.92 0.01 5.00	N1 S4 P66-b 10 s5 66.21 20.76 0.14 0.02 1.19 10.99 0.08 99.39 2.92 1.08 0.00 0.06 0.94 0.00 5.01	N1 S4 P64-c 7 s5 65.96 20.80 0.20 0.02 1.34 10.74 0.08 99.15 2.92 1.08 0.01 0.06 0.92 0.00 5.00	N1 S4 P64-b 6 s5 66.37 20.54 0.12 0.00 1.19 10.90 0.07 99.19 2.93 1.07 0.00 0.06 0.93 0.00 5.00	N1 S4 P65-iA87 12 s5 67.18 19.71 0.05 0.00 0.24 11.90 0.07 99.15 2.97 1.03 0.00 0.01 1.02 0.00 5.03	N1 S4 P63 4 s5 67.24 20.10 0.00 0.58 11.17 0.05 99.14 2.96 1.04 0.00 0.03 0.95 0.00 4.99	N1 S4 P63-c 5 s5 66.75 20.68 0.14 0.00 1.09 10.78 0.07 99.51 2.94 1.07 0.00 0.92 0.00 4.99	N1 S4 P63-b 3 s5 66.75 20.48 0.10 0.00 1.22 10.73 0.08 99.37 2.94 1.06 0.00 0.00 4.99 0.00

1	NIA	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Lame	N1	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2
Séquence	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4
N° du cristal	P62-b	P43-c	P43-c	P43	P43-c	P43-c	P43	P43	P43-c		P44-iF38	P44-b	P44-c	P45	P45	P45-c	P45		P49-iF42	P46-b	P46	P46-c	P46	P47	P47	P48	P48
N° analyse	2 s5	10-1 s3	10-2 s3	10-3 s3	10-5 s3	10-6 s3	10-7 s3	10-8 s3	10-9 s3	10-10 s3	12 s3	15 s3	14 s3	19-2 s3	19-3 s3	19-4 s3	19-5 s3	19-6 s3	28 s3	21-1 s3	21-2 s3	21-3 s3	21-4 s3	21-5 s3	21-6 s3	21-8 s3	21-9 s3
SiO ₂	66.95	68.03	67.30	66.62	67.06	66.41	66.64	66.97	66.41	66.21	68.25	68.54	63.75	65.70	65.90	66.15	67.12	67.28	68.50	68.11	66.52	66.72	66.90	66.79	66.60	66.72	67.62
Al ₂ O ₃	20.03	20.72	20.37	21.19	21.11	21.23	21.53	21.15	20.84	22.22	20.24	19.90	20.11	21.47	21.62	21.09	20.75	20.78	20.13	20.84	21.31	21.17	21.71	21.17	20.93	21.22	20.67
FeO Total	0.08	0.22	0.00	0.07	0.07	0.12	0.08	0.15	0.14	0.15	0.12	0.01	0.28	0.10	0.09	0.06	0.08	0.27	0.08	0.22	0.13	0.20	0.10	0.01	0.09	0.07	0.10
MgO	0.02	0.00	0.37	0.00	0.00	0.03	0.02	0.03	0.04	0.01	0.29	0.07	0.19	0.00	0.00	0.00	0.11	0.00	0.15	0.03	0.10	0.01	0.00	0.03	0.08	0.04	0.18
CaO	0.83	0.91	0.63	1.69	1.26	1.47	1.47	1.42	1.57	1.39	0.46	0.16	2.61	1.91	1.99	1.71	1.04	1.25	0.79	1.16	1.86	1.74	1.82	1.44	1.49	1.66	1.06
Na₂O	10.93	10.85	10.88	10.49	10.38	10.59	10.16	10.46	10.38	9.93	11.01	11.42	6.39	10.24	10.25	10.38	10.83	10.78	10.50	10.74	10.18	9.70	10.25	10.60	10.14	10.34	10.79
K ₂ O	0.08	0.00	0.10	0.08	0.39	0.11	0.07	0.10	0.11	0.69	0.08	0.10	5.02	0.12	0.07	0.08	0.04	0.05	0.13	0.04	0.08	0.68	0.10	0.03	0.10	0.16	0.05
Total	98.93	100.73	99.64	100.15	100.27	99.96	99.98	100.28	99.50	100.61	100.45	100.20	98.34	99.54	99.79	99.46	99.98	100.41	100.26	101.14	100.18	100.22	100.87	100.07	99.42	100.22	100.47
FORMULE STRUCT	TURALE (8	3 Oxygène	es)																								
Si	2.96	2.95	2.95	2.92	2.93	2.91	2.91	2.92	2.92	2.89	2.97	2.99	2.90	2.90	2.90	2.92	2.94	2.93	2.98	2.95	2.91	2.92	2.90	2.92	2.93	2.92	2.95
Al	1.04	1.06	1.05	1.09	1.09	1.10	1.11	1.09	1.08	1.14	1.04	1.02	1.08	1.12	1.12	1.10	1.07	1.07	1.03	1.06	1.10	1.09	1.11	1.09	1.09	1.09	1.06
Fe ³⁺	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Ca	0.04	0.04	0.03	0.08	0.06	0.07	0.07	0.07	0.07	0.07	0.02	0.01	0.13	0.09	0.09	0.08	0.05	0.06	0.04	0.05	0.09	0.08	0.08	0.07	0.07	0.08	0.05
Na	0.94	0.91	0.93	0.89	0.88	0.90	0.86	0.88	0.89	0.84	0.93	0.96	0.56	0.88	0.87	0.89	0.92	0.91	0.88	0.90	0.86	0.82	0.86	0.90	0.86	0.88	0.91
К	0.00	0.00	0.01	0.00	0.02	0.01	0.00	0.01	0.01	0.04	0.00	0.01	0.29	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.04	0.01	0.00	0.01	0.01	0.00
Total	4.99	4.98	4.96	4.99	4.98	4.99	4.96	4.97	4.98	4.98	4.96	4.98	4.97	4.99	4.99	4.99	4.98	4.98	4.94	4.97	4.97	4.96	4.97	4.98	4.96	4.97	4.98
%Or	0.00	0.00	0.01	0.00	0.02	0.01	0.00	0.01	0.01	0.04	0.00	0.01	0.30	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.04	0.01	0.00	0.01	0.01	0.00
%Ab	0.96	0.96	0.96	0.91	0.92	0.92	0.92	0.92	0.92	0.89	0.97	0.99	0.57	0.90	0.90	0.91	0.95	0.94	0.95	0.94	0.90	0.87	0.91	0.93	0.92	0.91	0.95
%An	0.04	0.04	0.03	0.08	0.06	0.07	0.07	0.07	0.08	0.07	0.02	0.01	0.13	0.09	0.10	0.08	0.05	0.06	0.04	0.06	0.09	0.09	0.09	0.07	0.07	0.08	0.05
707 111	0.0.	0.0 .	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.07	0.02	0.01	00	0.00	00	0.00	0.00	0.00	0.0.	0.00	0.00	0.00	0.00	0.07	0.01	0.00	0.00
Position verticale*	40257	37255	37361	37572	37678	37784	37890	37995	38101	38207	38365	39419	39638	41775	41650	41525	41400	41275	43672	46476	46663	46849	47035	47222	47408	47781	47968
Position verticale*	40257	37255	37361	37572	37678	37784	37890	37995	38101	38207	38365	39419	39638	41775	41650	41525	41400	41275	43672	46476	46663	46849	47035	47222	47408	47781	47968
Lame	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2
Lame Séquence	N2 S4	N2 S4	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3	N2 S3
Lame Séquence N° du cristal	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2 S3	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2
Lame Séquence N° du cristal N° analyse	N2 S4 P48-b 21-10 s3	N2 S4 P49-iF43 35 s3	N2 S3 P50 40 s3	N2 S3 P51-iF45 65 s3	N2 S3 P52-b-iF 67 s3	N2 S3 P52-c-iF 68 s3	N2 S3 P53-s 69 s3	N2 S3 P53 70 s3	N2 S3 P53-c 71 s3	N2 S3 P54-b 74 s3	N2 S3 P54 75 s3	N2 S3 P54-c 76 s3	N2 S3 P54-cf 77 s3	N2 S3 P54-c 78 s3	N2 S3 P56-b 82 s3	N2 S3 P56-c 83 s3	N2 S3 P55-iF46 81 s3	N2 S3 P61-b 96 s3	N2 S3 P61 98 s3	N2 S3 P61-if 97 s3	N2 S3 P61-c 99 s3	N2 S3 P60-iF49 95 s3	N2 S3 P59-iF50 93 s3	N2 S3 P58-b 91 s3	N2 S3 P58-c 90 s3	N2 S3 P58-c 89 s3	N2 S3 P58-b 88 s3
Lame Séquence N° du cristal N° analyse SiO ₂	N2 S4 P48-b 21-10 s3 66.45	N2 S4 P49-iF43 35 s3 67.24	N2 S3 P50 40 s3 67.24	N2 S3 P51-iF45 65 s3 68.06	N2 S3 P52-b-iF 67 s3 67.32	N2 S3 P52-c-iF 68 s3 65.84	N2 S3 P53-s 69 s3 68.59	N2 S3 P53 70 s3 66.70	N2 S3 P53-c 71 s3 68.15	N2 S3 P54-b 74 s3 67.09	N2 S3 P54 75 s3 66.27	N2 S3 P54-c 76 s3 66.05	N2 S3 P54-cf 77 s3 66.63	N2 S3 P54-c 78 s3 66.80	N2 S3 P56-b 82 s3 68.54	N2 S3 P56-c 83 s3 66.13	N2 S3 P55-iF46 81 s3 67.45	N2 S3 P61-b 96 s3 68.35	N2 S3 P61 98 s3 66.65	N2 S3 P61-if 97 s3 69.81	N2 S3 P61-c 99 s3 66.58	N2 S3 P60-iF49 95 s3 67.11	N2 S3 P59-iF50 93 s3 68.49	N2 S3 P58-b 91 s3 66.58	N2 S3 P58-c 90 s3 69.08	N2 S3 P58-c 89 s3 68.52	N2 S3 P58-b 88 s3 69.29
Lame Séquence N° du cristal N° analyse	N2 S4 P48-b 21-10 s3	N2 S4 P49-iF43 35 s3	N2 S3 P50 40 s3	N2 S3 P51-iF45 65 s3	N2 S3 P52-b-iF 67 s3	N2 S3 P52-c-iF 68 s3	N2 S3 P53-s 69 s3	N2 S3 P53 70 s3	N2 S3 P53-c 71 s3	N2 S3 P54-b 74 s3	N2 S3 P54 75 s3	N2 S3 P54-c 76 s3	N2 S3 P54-cf 77 s3	N2 S3 P54-c 78 s3	N2 S3 P56-b 82 s3	N2 S3 P56-c 83 s3	N2 S3 P55-iF46 81 s3	N2 S3 P61-b 96 s3	N2 S3 P61 98 s3	N2 S3 P61-if 97 s3	N2 S3 P61-c 99 s3	N2 S3 P60-iF49 95 s3	N2 S3 P59-iF50 93 s3	N2 S3 P58-b 91 s3	N2 S3 P58-c 90 s3	N2 S3 P58-c 89 s3	N2 S3 P58-b 88 s3
Lame Séquence N° du cristal N° analyse SiO ₂	N2 S4 P48-b 21-10 s3 66.45	N2 S4 P49-iF43 35 s3 67.24	N2 S3 P50 40 s3 67.24	N2 S3 P51-iF45 65 s3 68.06	N2 S3 P52-b-iF 67 s3 67.32	N2 S3 P52-c-iF 68 s3 65.84	N2 S3 P53-s 69 s3 68.59	N2 S3 P53 70 s3 66.70	N2 S3 P53-c 71 s3 68.15	N2 S3 P54-b 74 s3 67.09	N2 S3 P54 75 s3 66.27	N2 S3 P54-c 76 s3 66.05	N2 S3 P54-cf 77 s3 66.63	N2 S3 P54-c 78 s3 66.80	N2 S3 P56-b 82 s3 68.54	N2 S3 P56-c 83 s3 66.13	N2 S3 P55-iF46 81 s3 67.45	N2 S3 P61-b 96 s3 68.35	N2 S3 P61 98 s3 66.65	N2 S3 P61-if 97 s3 69.81	N2 S3 P61-c 99 s3 66.58	N2 S3 P60-iF49 95 s3 67.11	N2 S3 P59-iF50 93 s3 68.49	N2 S3 P58-b 91 s3 66.58	N2 S3 P58-c 90 s3 69.08	N2 S3 P58-c 89 s3 68.52	N2 S3 P58-b 88 s3 69.29
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃	N2 S4 P48-b 21-10 s3 66.45 20.82	N2 S4 P49-iF43 35 s3 67.24 20.64	N2 S3 P50 40 s3 67.24 20.78	N2 S3 P51-iF45 65 s3 68.06 20.24	N2 S3 P52-b-iF 67 s3 67.32 20.75	N2 S3 P52-c-iF 68 s3 65.84 21.53	N2 S3 P53-s 69 s3 68.59 19.95	N2 S3 P53 70 s3 66.70 21.24	N2 S3 P53-c 71 s3 68.15 20.09	N2 S3 P54-b 74 s3 67.09 20.86	N2 S3 P54 75 s3 66.27 21.08	N2 S3 P54-c 76 s3 66.05 21.41	N2 S3 P54-cf 77 s3 66.63 20.71	N2 S3 P54-c 78 s3 66.80 20.86	N2 S3 P56-b 82 s3 68.54 20.14	N2 S3 P56-c 83 s3 66.13 21.26	N2 S3 P55-iF46 81 s3 67.45 20.46	N2 S3 P61-b 96 s3 68.35 20.81	N2 S3 P61 98 s3 66.65 21.36	N2 S3 P61-if 97 s3 69.81 20.11	N2 S3 P61-c 99 s3 66.58 21.39	N2 S3 P60-iF49 95 s3 67.11 20.43	N2 S3 P59-iF50 93 s3 68.49 19.81	N2 S3 P58-b 91 s3 66.58 21.22	N2 S3 P58-c 90 s3 69.08 20.08	N2 S3 P58-c 89 s3 68.52 20.12	N2 S3 P58-b 88 s3 69.29 19.75
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23	N2 S3 P51-iF45 65 s3 68.06 20.24 0.12 0.08 0.70	N2 S3 P52-b-iF 67 s3 67.32 20.75 0.04 0.09 0.99	N2 S3 P52-c-iF 68 s3 65.84 21.53 0.15 0.02 1.81	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06 1.62	N2 S3 P53-c 71 s3 68.15 20.09 0.00 0.05 0.51	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00 1.25	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60	N2 S3 P55-iF46 81 s3 67.45 20.46 0.04 0.00 1.03	N2 S3 P61-b 96 s3 68.35 20.81 0.31 0.02 1.09	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 0.07	N2 S3 P61-c 99 s3 66.58 21.39 0.22 0.01 1.79	N2 S3 P60-iF49 95 s3 67.11 20.43 0.12 0.00 0.95	N2 S3 P59-iF50 93 s3 68.49 19.81 0.00 0.00 0.00	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.00	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.00 0.37	N2 S3 P58-b 88 s3 69.29 19.75 0.00 0.04 0.11
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00	N2 S3 P51-iF45 65 s3 68.06 20.24 0.12 0.08	N2 S3 P52-b-iF 67 s3 67.32 20.75 0.04 0.09	N2 S3 P52-c-iF 68 s3 65.84 21.53 0.15 0.02	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06	N2 S3 P53-c 71 s3 68.15 20.09 0.00 0.05	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00	N2 S3 P55-iF46 81 s3 67.45 20.46 0.04 0.00	N2 S3 P61-b 96 s3 68.35 20.81 0.31 0.02	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01	N2 S3 P61-c 99 s3 66.58 21.39 0.22 0.01	N2 S3 P60-iF49 95 s3 67.11 20.43 0.12 0.00	N2 S3 P59-iF50 93 s3 68.49 19.81 0.00 0.00	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03	N2 S3 P58-c 90 s3 69.08 20.08 0.00	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.00	N2 S3 P58-b 88 s3 69.29 19.75 0.00 0.04
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23	N2 S3 P51-iF45 65 s3 68.06 20.24 0.12 0.08 0.70	N2 S3 P52-b-iF 67 s3 67.32 20.75 0.04 0.09 0.99	N2 S3 P52-c-iF 68 s3 65.84 21.53 0.15 0.02 1.81	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06 1.62	N2 S3 P53-c 71 s3 68.15 20.09 0.00 0.05 0.51	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00 1.25	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60	N2 S3 P55-iF46 81 s3 67.45 20.46 0.04 0.00 1.03	N2 S3 P61-b 96 s3 68.35 20.81 0.31 0.02 1.09	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 0.07	N2 S3 P61-c 99 s3 66.58 21.39 0.22 0.01 1.79	N2 S3 P60-iF49 95 s3 67.11 20.43 0.12 0.00 0.95	N2 S3 P59-iF50 93 s3 68.49 19.81 0.00 0.00 0.00	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.00	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.00 0.37	N2 S3 P58-b 88 s3 69.29 19.75 0.00 0.04 0.11
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42 10.44	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16 10.81	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23 10.60	N2 S3 P51-iF45 65 s3 68.06 20.24 0.12 0.08 0.70 11.05	N2 S3 P52-b-iF 67 s3 67.32 20.75 0.04 0.09 0.99 10.67	N2 S3 P52-c-iF 68 s3 65.84 21.53 0.15 0.02 1.81 10.19	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04 0.04 11.17	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06 1.62 10.34	N2 S3 P53-c 71 s3 68.15 20.09 0.00 0.05 0.51	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39 10.52	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75 10.15	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75 10.26	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34 10.49	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00 1.25 10.62	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34 11.20	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60 10.41	N2 S3 P55-iF46 81 s3 67.45 20.46 0.04 0.00 1.03 10.80	N2 S3 P61-b 96 s3 68.35 20.81 0.31 0.02 1.09	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76 10.29	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 0.07 11.47	N2 S3 P61-c 99 s3 66.58 21.39 0.22 0.01 1.79 10.24	N2 S3 P60-iF49 95 s3 67.11 20.43 0.12 0.00 0.95 10.84	N2 S3 P59-iF50 93 s3 68.49 19.81 0.00 0.00 0.09 11.21	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58 10.28	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.00 0.18 11.16	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.00 0.37 11.17	N2 S3 P58-b 88 s3 69.29 19.75 0.00 0.04 0.11 11.44
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42 10.44 0.07 99.38	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16 10.81 0.16	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23 10.60 0.06	N2 S3 P51-IF45 65 s3 68.06 20.24 0.12 0.08 0.70 11.05 0.10	N2 S3 P52-b-iF 67.33 67.32 20.75 0.04 0.09 0.99 10.67 0.07	N2 S3 P52-c-iF 68 s3 65.84 21.53 0.15 0.02 1.81 10.19 0.13	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04 11.17	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06 1.62 10.34 0.08	N2 S3 P53-c 71 s3 68.15 20.09 0.00 0.05 0.51 11.11 0.07	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39 10.52 0.06	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75 10.15	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75 10.26	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34 10.49	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00 1.25 10.62 0.07	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34 11.20	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60 10.41 0.16	N2 S3 P55-iF46 81 s3 67.45 20.46 0.04 0.00 1.03 10.80 0.07	N2 S3 P61-b 96 s3 68.35 20.81 0.31 0.02 1.09 10.70 0.09	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76 10.29 0.08	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 0.07 11.47	N2 S3 P61-c 99 s3 66.58 21.39 0.22 0.01 1.79 10.24 0.05	N2 S3 P60-iF49 95 s3 67.11 20.43 0.12 0.00 0.95 10.84 0.04	N2 S3 P59-iF50 93 s3 68.49 19.81 0.00 0.00 0.09 11.21 0.09	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58 10.28 0.09	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.18 11.16 0.07	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.00 0.37 11.17 0.08	N2 S3 P58-b 88 s3 69.29 19.75 0.00 0.04 0.11 11.44 0.08
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42 10.44 0.07 99.38	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16 10.81 0.16 100.10	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23 10.60 0.06	N2 S3 P51-IF45 65 s3 68.06 20.24 0.12 0.08 0.70 11.05 0.10	N2 S3 P52-b-iF 67.33 67.32 20.75 0.04 0.09 0.99 10.67 0.07	N2 S3 P52-c-iF 68 s3 65.84 21.53 0.15 0.02 1.81 10.19 0.13	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04 11.17	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06 1.62 10.34 0.08	N2 S3 P53-c 71 s3 68.15 20.09 0.00 0.05 0.51 11.11 0.07	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39 10.52 0.06	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75 10.15	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75 10.26	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34 10.49	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00 1.25 10.62 0.07	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34 11.20	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60 10.41 0.16	N2 S3 P55-iF46 81 s3 67.45 20.46 0.04 0.00 1.03 10.80 0.07	N2 S3 P61-b 96 s3 68.35 20.81 0.31 0.02 1.09 10.70 0.09	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76 10.29 0.08	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 0.07 11.47	N2 S3 P61-c 99 s3 66.58 21.39 0.22 0.01 1.79 10.24 0.05	N2 S3 P60-iF49 95 s3 67.11 20.43 0.12 0.00 0.95 10.84 0.04	N2 S3 P59-iF50 93 s3 68.49 19.81 0.00 0.00 0.09 11.21 0.09	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58 10.28 0.09	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.18 11.16 0.07	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.00 0.37 11.17 0.08	N2 S3 P58-b 88 s3 69.29 19.75 0.00 0.04 0.11 11.44 0.08
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42 10.44 0.07 99.38	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16 10.81 0.16 100.10 3 Oxygène	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23 10.60 0.06 100.06 is)	N2 S3 P51-iF45 65 s3 68.06 20.24 0.12 0.08 0.70 11.05 0.10	N2 S3 P52-b-iF 67 s3 67.32 20.75 0.04 0.09 0.99 10.67 0.07	N2 S3 P52-c-iF 68 s3 65.84 21.53 0.15 0.02 1.81 10.19 0.13 99.68	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04 11.17 0.04 99.87	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06 1.62 10.34 0.08	N2 S3 P53-c 71 s3 68.15 20.09 0.00 0.05 0.51 11.11 0.07 99.97	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39 10.52 0.06 100.18	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75 10.15 0.12 99.49	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75 10.26 0.09 99.83	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34 10.49 0.07 99.37	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00 1.25 10.62 0.07 99.73	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34 11.20 0.02	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60 10.41 0.16 99.75	N2 S3 P55-iF46 81 s3 67.45 20.46 0.04 0.00 1.03 10.80 0.07 99.85	N2 S3 P61-b 96 s3 68.35 20.81 0.31 0.02 1.09 10.70 0.09 101.38	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76 10.29 0.08 100.27	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 0.07 11.47 0.03 101.49	N2 S3 P61-c 99 s3 66.58 21.39 0.22 0.01 1.79 10.24 0.05 100.29	N2 S3 P60-iF49 95 s3 67.11 20.43 0.12 0.00 0.95 10.84 0.04 99.49	N2 S3 P59-iF50 93 s3 68.49 19.81 0.00 0.00 0.09 11.21 0.09 99.70	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58 10.28 0.09 99.87	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.00 0.18 11.16 0.07 100.57	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.37 11.17 0.08 100.25	N2 S3 P58-b 88 s3 69.29 19.75 0.00 0.04 0.11 11.44 0.08 100.71
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42 10.44 0.07 99.38 FURALE (8	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16 10.81 0.16 100.10 8 Oxygène 2.94	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23 10.60 0.06 100.06 is)	N2 S3 P51-IF45 65 s3 68.06 20.24 0.12 0.08 0.70 11.05 0.10 100.34	N2 S3 P52-b-IF 67 s3 67.32 20.75 0.04 0.09 10.67 0.07 99.93	N2 S3 P52-c-iF 68 s3 65.84 21.53 0.15 0.02 1.81 10.19 0.13 99.68	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04 11.17 0.04 99.87	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06 1.62 10.34 0.08 100.14	N2 S3 P53-c 71 s3 68.15 20.09 0.00 0.05 0.51 11.11 0.07 99.97	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39 10.52 0.06 100.18	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75 10.15 0.12 99.49	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75 10.26 0.09 99.83	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34 10.49 0.07 99.37	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00 1.25 10.62 0.07 99.73	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34 11.20 0.02 100.35	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60 10.41 0.16 99.75	N2 S3 P55-iF46 81 s3 67.45 20.46 0.04 0.00 1.03 10.80 0.07 99.85	N2 S3 P61-b 96 s3 68.35 20.81 0.31 0.02 1.09 10.70 0.09 101.38	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76 10.29 0.08 100.27	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 0.07 11.47 0.03 101.49	N2 S3 P61-c 99 s3 66.58 21.39 0.22 0.01 1.79 10.24 0.05 100.29	N2 S3 P60-iF49 95 s3 67.11 20.43 0.12 0.00 0.95 10.84 0.04 99.49	N2 S3 P59-iF50 93 s3 68.49 19.81 0.00 0.00 0.09 11.21 0.09 99.70	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58 10.28 0.09 99.87	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.00 0.18 11.16 0.07 100.57	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.00 0.37 11.17 0.08 100.25	N2 S3 P58-b 88 s3 69.29 19.75 0.00 0.04 0.11 11.44 0.08 100.71
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42 10.44 0.07 99.38 FURALE (8	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16 10.81 0.16 100.10 8 Oxygène 2.94 1.06	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23 10.60 0.06 100.06 100.06	N2 S3 P51-IF45 65 s3 68.06 20.24 0.12 0.08 0.70 11.05 0.10 100.34	N2 S3 P52-b-IF 67 s3 67.32 20.75 0.04 0.09 10.67 0.07 99.93	N2 S3 P52-c-IF 68 s3 65.84 21.53 0.15 0.02 1.81 10.19 0.13 99.68 2.90 1.12	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04 11.17 0.04 99.87	N2 S3 P53 70 s3 66.70 21.24 0.09 1.62 10.34 0.08 100.14	N2 S3 P53-c 71 s3 68.15 20.09 0.05 0.51 11.11 0.07 99.97 2.98 1.03	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39 10.52 0.06 100.18	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75 10.15 0.12 99.49 2.92 1.09	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75 10.26 0.09 99.83	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34 10.49 0.07 99.37	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00 1.25 10.62 0.07 99.73 2.93 1.08	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34 11.20 0.02 100.35	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60 10.41 0.16 99.75	N2 S3 P55-iF46 81 s3 67.45 20.46 0.04 0.00 1.03 10.80 0.07 99.85 2.95 1.06	N2 S3 P61-b 96 s3 68.35 20.81 0.31 0.02 1.09 10.70 0.09 101.38	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76 10.29 0.08 100.27	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 0.07 11.47 0.03 101.49	N2 S3 P61-c 99 s3 66.58 21.39 0.22 0.01 1.79 10.24 0.05 100.29	N2 S3 P60-iF49 95 s3 67.11 20.43 0.12 0.00 0.95 10.84 0.04 99.49	N2 S3 P59-iF50 93 s3 68.49 19.81 0.00 0.09 11.21 0.09 99.70	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58 10.28 0.09 99.87	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.18 11.16 0.07 100.57	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.03 711.17 0.08 100.25	N2 S3 P58-b 88 s3 69.29 19.75 0.00 0.04 0.11 11.44 0.08 100.71 3.00 1.01
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³+	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42 10.44 0.07 99.38 FURALE (8 2.93 1.08 0.01	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16 108.11 0.16 100.10 8 Oxygène 2.94 1.06 0.00	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23 10.60 0.06 100.06 100.06 100.06 100.06 100.06	N2 S3 P51-IF45 65 s3 68.06 20.24 0.12 0.08 0.70 11.05 0.10 100.34 2.96 1.04 0.00	N2 S3 P52-b-IF 67 s3 67.32 20.75 0.04 0.09 10.67 0.07 99.93 2.94 1.07 0.00	N2 S3 P52-c-IF 68 s3 65.84 21.53 0.15 0.02 1.81 10.19 0.13 99.68 2.90 1.12 0.01	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04 11.17 0.04 99.87 2.99 1.02 0.00	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06 1.62 10.34 0.08 100.14 2.92 1.09	N2 S3 P53-c 71 s3 68.15 20.09 0.05 0.51 11.11 0.07 99.97 2.98 1.03 0.00	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39 10.52 0.06 100.18	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75 10.15 0.12 99.49 2.92 1.09 0.00	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75 10.26 0.09 99.83 2.90 1.11	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34 10.49 0.07 99.37 2.93 1.07 0.00	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00 1.25 10.62 0.07 99.73 2.93 1.08 0.00	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34 11.20 0.02 100.35	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60 10.41 0.16 99.75 2.91 1.10	N2 S3 P55-iF46 81 s3 67.45 20.46 0.04 0.00 1.03 10.80 0.07 99.85 2.95 1.06 0.00	N2 S3 P61-b 96 s3 68.35 20.81 0.31 0.02 1.09 10.70 0.09 101.38 2.95 1.06 0.01	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76 10.29 0.08 100.27 2.91 1.10	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 11.47 0.03 101.49	N2 S3 P61-c 99 s3 66.58 21.39 0.22 0.01 1.79 10.24 0.05 100.29 2.91 1.10 0.01	N2 S3 P60-iF49 95 s3 67.11 20.43 0.12 0.09 10.84 0.04 99.49 2.95 1.06 0.00	N2 S3 P59-iF50 93 s3 68.49 19.81 0.00 0.09 11.21 0.09 99.70 3.00 1.02 0.00	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58 10.28 0.09 99.87 2.92 1.10	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.18 11.16 0.07 100.57	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.37 11.17 0.08 100.25 2.98 1.03 0.00	N2 S3 P58-b 88 s3 69.29 19.75 0.00 0.04 0.11 11.44 0.08 100.71 3.00 1.01 0.00
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42 10.44 0.07 99.38 FURALE (8 2.93 1.08 0.01	N2 \$4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16 10.81 0.16 100.10 8 Oxygène 2.94 1.06 0.00 0.00	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23 10.60 0.06 100.06 is) 2.94 1.07 0.00	N2 \$3 P51-iF45 65.93 68.06 20.24 0.12 0.08 0.70 11.05 0.10 100.34 2.96 1.04 0.00 0.03	N2 S3 P52-b-iF 67.32 67.32 20.75 0.04 0.09 0.99 10.67 0.07 99.93 2.94 1.07 0.00	N2 S3 P52-c-iF 68 s3 65.84 21.53 0.15 0.02 1.81 10.19 0.13 99.68 2.90 1.12 0.01	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04 11.17 0.04 99.87 2.99 1.02 0.00	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06 1.62 10.34 0.08 100.14 2.92 1.09 0.00	N2 S3 P53-c 71 s3 68.15 20.09 0.05 0.51 11.11 0.07 99.97 2.98 1.03 0.00 0.02	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39 10.52 0.06 100.18 2.93 1.07 0.01	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75 10.15 0.12 99.49 2.92 1.09 0.00 0.08	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75 10.26 0.09 99.83 2.90 1.11 0.01	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34 10.49 0.07 99.37 2.93 1.07 0.00	N2 S3 P54-c 78 s3 66.80 0.13 0.00 1.25 10.62 0.07 99.73 2.93 1.08 0.00 0.06	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34 11.20 0.02 100.35 2.98 1.03 0.00	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60 10.41 0.16 99.75 2.91 1.10 0.01	N2 S3 P55-IF46 81 s3 67.45 20.46 0.04 0.00 1.03 10.80 0.07 99.85 2.95 1.06 0.00 0.05	N2 S3 P61-b 96 s3 68.35 20.81 0.02 1.09 10.70 0.09 101.38 2.95 1.06 0.01	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76 10.29 0.08 100.27 2.91 1.10 0.00 0.08	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 0.07 11.47 0.03 101.49 3.00 1.02 0.00	N2 S3 P61-c 99 s3 66.58 21.39 0.22 0.01 1.79 10.24 0.05 100.29 2.91 1.10 0.01	N2 \$3 \$60- F49 95 s3 67.11 20.43 0.12 0.00 0.95 10.84 0.04 99.49 2.95 1.06 0.00 0.04	N2 S3 P59-IF50 93 s3 68.49 19.81 0.00 0.00 11.21 0.09 99.70 3.00 1.02 0.00 0.00	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58 10.28 0.09 99.87 2.92 1.10 0.00	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.00 0.18 11.16 0.07 100.57 3.00 1.03 0.00	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.37 11.17 0.08 100.25	N2 S3 P58-b 88 s3 69.29 19.75 0.00 0.04 0.11 11.44 0.08 100.71 3.00 1.01 0.00
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³+ Ca Na K	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42 10.44 0.07 99.38 rURALE (8 2.93 1.08 0.01 0.07 0.89	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16 10.81 0.16 100.10 8 Oxygènes 2.94 1.06 0.00 0.05 0.92	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23 10.60 0.06 100.06 100.06 100.06 0.90 0.00	N2 S3 P51-iF45 65 s3 68.06 20.24 0.12 0.08 0.70 11.05 0.10 100.34 2.96 1.04 0.00 0.03 0.93 0.01	N2 S3 P52-b-iF 67-s3 67-32 20.75 0.04 0.09 0.99 10.67 0.07 99.93 2.94 1.07 0.00 0.05 0.90	N2 S3 P52-c-iF 68 s3 65.84 21.53 0.15 0.02 1.81 10.19 0.13 99.68 2.90 1.12 0.01 0.09 0.87 0.01	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04 0.04 11.17 0.04 99.87 2.99 1.02 0.00 0.00 0.94 0.00	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06 1.62 10.34 0.08 100.14 2.92 1.09 0.00 0.08	N2 S3 P53-c 71 s3 68.15 20.09 0.05 0.51 11.11 0.07 99.97 2.98 1.03 0.00 0.02 0.94	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39 10.52 0.06 100.18 2.93 1.07 0.01 0.07 0.89 0.00	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75 10.15 0.12 99.49 2.92 1.09 0.00 0.08 0.87 0.01	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75 10.26 0.09 99.83 2.90 1.11 0.01 0.08 0.87 0.01	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34 10.49 0.07 99.37 2.93 1.07 0.00 0.06 0.90	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00 1.25 10.62 0.07 99.73 2.93 1.08 0.00 0.06 0.90	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34 11.20 0.02 100.35 2.98 1.03 0.00 0.02 0.94 0.00	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60 10.41 0.16 99.75 2.91 1.10 0.01 0.08 0.89 0.01	N2 S3 P55-iF46 81 s3 67.45 20.46 0.04 0.00 1.03 10.80 0.07 99.85 1.06 0.00 0.05 0.92	N2 S3 P61-b 96-s3 68.35 20.81 0.02 1.09 10.70 0.09 101.38 2.95 1.06 0.01 0.05 0.89 0.01	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76 10.29 0.08 100.27 2.91 1.10 0.00 0.08 0.87 0.00	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 0.07 11.47 0.03 101.49 3.00 1.02 0.00 0.00 0.95	N2 S3 P61-c 99 s3 66.58 21.39 0.22 0.01 1.79 10.24 0.05 100.29 2.91 1.10 0.01 0.08 0.87 0.00	N2 S3 P60-iF49 95 s3 67.11 20.43 0.12 0.00 0.95 10.84 0.04 99.49 2.95 1.06 0.00 0.04 0.92	N2 S3 P59-iF50 93 s3 68.49 19.81 0.00 0.09 11.21 0.09 99.70 3.00 1.02 0.00 0.05 0.00	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58 10.28 0.09 99.87 2.92 1.10 0.00 0.07 0.87 0.01	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.18 11.16 0.07 100.57 3.00 1.03 0.00 0.01	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.37 11.17 0.08 100.25 2.98 1.03 0.00 0.02 0.94 0.00	N2 S3 P58-b 88 s3 69.29 19.75 0.00 0.04 0.11 11.44 0.08 100.71 3.00 1.01 0.00 0.01 0.01
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42 10.44 0.07 99.38 FURALE (8 2.93 1.08 0.01 0.07 0.89	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16 10.81 0.16 100.10 8 Oxygène 2.94 1.06 0.00 0.05 0.92	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23 10.60 0.06 100.06 100.06 100.06 100.06 100.06	N2 S3 P51-IF45 65 s3 68.06 20.24 0.12 0.08 0.70 11.05 0.10 100.34 2.96 1.04 0.00 0.03 0.93	N2 S3 P52-b-iF 67 s3 67 .32 20.75 0.04 0.09 0.99 10.67 0.07 99.93 2.94 1.07 0.00 0.05 0.90	N2 S3 P52-c-iF 68 s3 65.84 21.53 0.15 0.02 1.81 10.19 0.13 99.68 2.90 1.12 0.01 0.09 0.87	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04 0.04 11.17 0.04 99.87 2.99 1.02 0.00 0.00 0.94	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06 1.62 10.34 0.08 100.14 2.92 1.09 0.00 0.08 0.88	N2 S3 P53-c 71 s3 68.15 20.09 0.05 0.51 11.11 0.07 99.97 2.98 1.03 0.00 0.02	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39 10.52 0.06 100.18 2.93 1.07 0.01 0.07	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75 10.15 0.12 99.49 2.92 1.09 0.00 0.08 0.87	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75 10.26 0.09 99.83 2.90 1.11 0.01 0.08 0.87	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34 10.49 0.07 99.37 2.93 1.07 0.00 0.06 0.90	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00 1.25 10.62 0.07 99.73 2.93 1.08 0.00 0.06 0.90	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34 11.20 0.02 100.35 2.98 1.03 0.00 0.02	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60 10.41 0.16 99.75 2.91 1.10 0.01 0.08 0.89	N2 S3 P55-iF46 81 s3 67.45 20.46 0.04 0.00 1.03 10.80 0.07 99.85 2.95 1.06 0.00 0.05 0.92	N2 S3 P61-b 96 s3 68.35 20.81 0.02 1.09 10.70 0.09 101.38 2.95 1.06 0.01 0.05 0.89	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76 10.29 0.08 100.27 2.91 1.10 0.00 0.08 0.87	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 0.07 11.47 0.03 101.49 3.00 1.02 0.00 0.00 0.95	N2 S3 P61-c 99-s3 66.58 21.39 0.22 0.01 1.79 10.24 0.05 100.29 2.91 1.10 0.01 0.08 0.87	N2 S3 P60-IF49 95 s3 67.11 20.43 0.12 0.00 0.95 10.84 0.04 99.49 2.95 1.06 0.00 0.04	N2 S3 P59-iF50 93 s3 68.49 19.81 0.00 0.00 11.21 0.09 99.70 3.00 1.02 0.00 0.00	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58 10.28 0.09 99.87 2.92 1.10 0.00 0.07 0.87	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.00 0.18 11.16 0.07 100.57 3.00 1.03 0.00 0.01	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.37 11.17 0.08 100.25 2.98 1.03 0.00 0.02	N2 S3 P58-b 88 s3 69.29 19.75 0.00 0.04 0.11 11.44 0.08 100.71 3.00 1.01 0.00 0.01
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³+ Ca Na K Total	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42 10.44 0.07 99.38 FURALE (8 2.93 1.08 0.01 0.07 0.89 0.00 4.98	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16 10.81 0.16 100.10 8 Oxygène 2.94 1.06 0.00 0.05 0.92 0.01 4.99	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23 10.60 0.06 100.06 100.06 0.90 0.06 0.90 0.00 4.98	N2 S3 P51-iF45 65 s3 68.06 20.24 0.12 0.08 0.70 11.05 0.10 100.34 2.96 1.04 0.00 0.03 0.93 0.01 4.98	N2 S3 P52-b-iF 67:s3 67:32 20:75 0.04 0.09 0.99 10:67 0.07 99:93 2.94 1.07 0.00 0.05 0.90 0.00 4.97	N2 S3 P52-c-iF 68 s3 65.84 21.53 0.15 0.02 1.81 10.19 0.13 99.68 2.90 1.12 0.01 0.09 0.87 0.01	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04 11.17 0.04 99.87 2.99 1.02 0.00 0.00 0.94 0.00 4.96	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06 1.62 10.34 0.08 100.14 2.92 1.09 0.00 0.08 0.88 0.00 4.97	N2 S3 P53-c 71 s3 68.15 20.09 0.00 0.05 0.51 11.11 0.07 99.97 2.98 1.03 0.00 0.02 0.94 0.00 4.98	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39 10.52 0.06 100.18 2.93 1.07 0.01 0.07 0.89 0.00 4.97	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75 10.15 0.12 99.49 2.92 1.09 0.00 0.08 0.87 0.01 4.97	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75 10.26 0.09 99.83 2.90 1.11 0.01 0.08 0.87 0.01 4.97	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34 10.49 0.07 99.37 2.93 1.07 0.00 0.06 0.90 0.00 4.98	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00 1.25 10.62 0.07 99.73 2.93 1.08 0.00 0.06 0.90 0.00 4.98	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34 11.20 0.02 100.35 2.98 1.03 0.00 0.02 0.94 0.00 4.97	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60 10.41 0.16 99.75 2.91 1.10 0.01 0.08 0.89 0.01 4.99	N2 S3 P55-iF46 81 s3 67.45 20.46 0.00 1.03 10.80 0.07 99.85 2.95 1.06 0.00 0.05 0.05 0.92 0.00	N2 S3 P61-b 96-s3 68.35 20.81 0.31 0.02 1.09 10.70 0.09 101.38 2.95 1.06 0.01 0.05 0.89 0.01 4.97	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76 10.29 0.08 100.27 2.91 1.10 0.00 0.87 0.00 4.98	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 0.07 11.47 0.03 101.49 3.00 1.02 0.00 0.05 0.00 4.97	N2 S3 P61-c 99 s3 66.58 21.39 0.22 0.01 1.79 10.24 0.05 100.29 2.91 1.10 0.01 0.08 0.87 0.00 4.97	N2 S3 P60-iF49 95 s3 67.11 20.43 0.12 0.00 0.95 10.84 0.04 99.49 2.95 1.06 0.00 0.04 0.92 0.00 4.99	N2 S3 P59-iF50 93 s3 68.49 19.81 0.00 0.09 11.21 0.09 99.70 3.00 1.02 0.00 0.09 0.09 1.02	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58 10.28 0.09 99.87 2.92 1.10 0.00 0.07 0.87 0.01 4.97	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.18 11.16 0.07 100.57 3.00 1.03 0.00 0.01 0.00 4.97	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.37 11.17 0.08 100.25 2.98 1.03 0.00 0.02 0.94 0.00 4.98	N2 S3 P58-b 88 s3 69.29 19.70 0.04 0.11 11.44 0.08 100.71 3.00 1.01 0.00 0.01 0.00 4.98
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³+ Ca Na K Total	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42 10.44 0.07 99.38 TURALE (8 2.93 1.08 0.01 0.07 0.89 0.00 4.98	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16 10.81 0.16 100.10 8 Oxygène 2.94 1.06 0.00 0.05 0.92 0.01 4.99	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23 10.60 0.06 100.06 100.06 ss) 2.94 1.07 0.00 0.06 0.90 0.00 4.98	N2 S3 P51-iF45 65 s3 68.06 20.24 0.12 0.08 0.70 11.05 0.10 100.34 2.96 1.04 0.00 0.03 0.93 0.01 4.98	N2 S3 P52-b-iF 67 s3 67.32 20.75 0.04 0.09 0.99 10.67 0.07 99.93 2.94 1.07 0.00 0.05 0.90 0.00 4.97	N2 S3 P52-c-iF 68 s3 65.84 21.53 0.15 0.02 1.81 10.19 0.13 99.68 2.90 1.12 0.01 0.09 0.87 0.01 4.98	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04 11.17 0.04 99.87 2.99 1.02 0.00 0.00 0.94 0.00 4.96	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06 1.62 10.34 0.08 100.14 2.92 1.09 0.00 0.88 0.88 0.00 4.97	N2 S3 P53-c 71 s3 68.15 20.09 0.00 0.05 0.51 11.11 0.07 99.97 2.98 1.03 0.00 0.02 0.94 0.00 4.98	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39 10.52 0.06 100.18 2.93 1.07 0.01 0.07 0.89 0.00 4.97	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75 10.15 0.12 99.49 2.92 1.09 0.00 0.88 0.87 0.01 4.97	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75 10.26 0.09 99.83 2.90 1.11 0.01 0.08 0.87 0.01 4.97	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34 10.49 0.07 99.37 2.93 1.07 0.00 0.06 0.90 0.00 4.98	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00 1.25 10.62 0.07 99.73 2.93 1.08 0.00 0.06 0.90 0.00 4.98	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34 11.20 0.02 100.35 2.98 1.03 0.00 0.02 0.94 0.00 4.97	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60 10.41 0.16 99.75 2.91 1.10 0.01 0.08 0.89 0.01 4.99	N2 \$3 P55-iF46 81 s3 67.45 20.46 0.04 1.03 10.80 0.07 99.85 2.95 1.06 0.00 0.05 0.09 2.95 1.06 0.00 0.05 0.09 1.03 1.04 0.07 1.05 1.06 0.00 0	N2 S3 P61-b 96-s3 68.35 20.81 0.31 0.02 1.09 10.70 0.09 101.38 2.95 1.06 0.01 0.05 0.89 0.01 4.97	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76 10.29 0.08 100.27 2.91 1.10 0.00 0.88 0.87 0.00 4.98	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 0.07 11.47 0.03 101.49 3.00 1.02 0.00 0.095 0.00 4.97	N2 S3 P61-c 99-s3 66.58 21.39 0.22 0.01 1.79 10.24 0.05 100.29 2.91 1.10 0.01 0.08 0.87 0.00 4.97	N2 \$3 P60-iF49 95 s3 67.11 20.43 0.12 0.00 0.95 10.84 0.04 99.49 2.95 1.06 0.00 0.04 0.00 0.04 0.00 0	N2 S3 P59-iF50 93 s3 68.49 19.81 0.00 0.09 11.21 0.09 99.70 3.00 1.02 0.00 0.09 0.00 1.02	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58 10.28 0.09 99.87 2.92 1.10 0.00 0.07 0.87 0.01 4.97	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.18 11.16 0.07 100.57 3.00 1.03 0.00 0.01 4.97	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.37 11.17 0.08 100.25 2.98 1.03 0.00 0.02 0.94 0.00 4.98	N2 S3 P58-b 88 s3 69.29 19.75 0.04 0.11 11.44 0.08 100.71 3.00 1.01 0.00 0.01 0.00 4.98
Lame Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO Total MgO CaO Na₂O K2O Total FORMULE STRUCT Si Al Fe³+ Ca Na K Total %Or %Ab	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42 10.44 0.07 99.38 FURALE (8 2.93 1.08 0.01 0.07 0.89 0.00 4.98	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16 10.81 0.16 100.10 8 Oxygène 2.94 1.06 0.00 0.05 0.092 0.01 4.99	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23 10.60 0.06 100.06 is) 2.94 1.07 0.00 0.09 0.00 4.98	N2 S3 P51-iF45 65 s3 68.06 20.24 0.12 0.08 0.70 11.05 0.10 100.34 2.96 1.04 0.00 0.03 0.03 0.01 4.98	N2 S3 P52-b-iF 67 s3 67.32 20.75 0.04 0.09 10.67 0.07 99.93 2.94 1.07 0.00 0.05 0.90 4.97	N2 S3 P52-c-iF 68 s3 65.84 21.53 0.15 0.02 1.81 10.19 0.13 99.68 2.90 1.12 0.01 0.09 0.87 0.01 4.98 0.01 0.90	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04 11.17 0.04 99.87 2.99 1.02 0.00 0.00 4.96	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06 1.62 10.34 0.08 100.14 2.92 1.09 0.00 0.88 0.88 0.00 4.97	N2 S3 P53-c 71 s3 68.15 20.09 0.00 0.05 0.51 11.11 0.07 99.97 2.98 1.03 0.00 0.02 0.94 0.00 4.98	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39 10.52 0.06 100.18 2.93 1.07 0.01 0.07 0.89 0.00 4.97	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75 10.15 0.12 99.49 2.92 1.09 0.00 0.87 0.01 4.97	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75 10.26 0.09 99.83 2.90 1.11 0.01 0.08 0.87 0.01 4.97	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34 10.49 0.07 99.37 2.93 1.07 0.00 0.00 4.98	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00 1.25 10.62 0.07 99.73 2.93 1.08 0.00 0.00 4.98	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34 11.20 0.02 100.35 2.98 1.03 0.00 0.02 0.94 0.00 4.97	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60 10.41 0.16 99.75 2.91 1.10 0.01 0.08 0.89 0.01 4.99	N2 S3 P55-iF46 81 s3 67.45 20.46 0.04 0.00 1.03 10.80 0.07 99.85 2.95 1.06 0.00 0.05 0.95 0.00 4.98	N2 S3 P61-b 96 s3 68.35 20.81 0.31 0.02 1.09 10.70 0.09 101.38 2.95 1.06 0.01 0.05 0.89 0.01 4.97	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76 10.29 0.08 100.27 2.91 1.10 0.00 0.87 0.00 4.98	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 10.07 11.47 0.03 101.49 3.00 1.02 0.00 0.00 0.95 0.00 4.97	N2 S3 P61-c 99 s3 66.58 21.39 0.22 0.01 1.79 10.24 0.05 100.29 2.91 1.10 0.01 0.08 0.87 0.00 4.97	N2 S3 P60-iF49 95 s3 67.11 20.43 0.12 0.00 0.95 10.84 0.04 99.49 2.95 1.06 0.00 0.04 0.02 0.00 0.04 0.00 0	N2 S3 P59-IF50 93 s3 68.49 19.81 0.00 0.09 11.21 0.09 99.70 3.00 1.02 0.00 0.05 0.01 4.97	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58 10.28 0.09 99.87 2.92 1.10 0.00 0.07 0.87 0.01 4.97	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.00 0.18 11.16 0.07 100.57 3.00 1.03 0.00 0.01 0.91	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.37 11.17 0.08 100.25 2.98 1.03 0.00 0.02 0.94 0.00 4.98	N2 S3 P58-b 88 s3 69.29 19.75 0.00 0.11 11.44 0.08 100.71 3.00 1.01 0.00 0.01 0.01 0.00 4.98
Lame Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO Total MgO CaO Na₂O K2O Total FORMULE STRUCT Si Al Fe³+ Ca Na K Total %Or	N2 S4 P48-b 21-10 s3 66.45 20.82 0.16 0.02 1.42 10.44 0.07 99.38 TURALE (8 2.93 1.08 0.01 0.07 0.89 0.00 4.98	N2 S4 P49-iF43 35 s3 67.24 20.64 0.10 0.00 1.16 10.81 0.16 100.10 8 Oxygène 2.94 1.06 0.00 0.05 0.92 0.01 4.99	N2 S3 P50 40 s3 67.24 20.78 0.15 0.00 1.23 10.60 0.06 100.06 100.06 ss) 2.94 1.07 0.00 0.06 0.90 0.00 4.98	N2 S3 P51-iF45 65 s3 68.06 20.24 0.12 0.08 0.70 11.05 0.10 100.34 2.96 1.04 0.00 0.03 0.93 0.01 4.98	N2 S3 P52-b-iF 67 s3 67.32 20.75 0.04 0.09 0.99 10.67 0.07 99.93 2.94 1.07 0.00 0.05 0.90 0.00 4.97	N2 S3 P52-c-iF 68 s3 65.84 21.53 0.15 0.02 1.81 10.19 0.13 99.68 2.90 1.12 0.01 0.09 0.87 0.01 4.98	N2 S3 P53-s 69 s3 68.59 19.95 0.04 0.04 11.17 0.04 99.87 2.99 1.02 0.00 0.00 0.94 0.00 4.96	N2 S3 P53 70 s3 66.70 21.24 0.09 0.06 1.62 10.34 0.08 100.14 2.92 1.09 0.00 0.88 0.88 0.00 4.97	N2 S3 P53-c 71 s3 68.15 20.09 0.00 0.05 0.51 11.11 0.07 99.97 2.98 1.03 0.00 0.02 0.94 0.00 4.98	N2 S3 P54-b 74 s3 67.09 20.86 0.20 0.06 1.39 10.52 0.06 100.18 2.93 1.07 0.01 0.07 0.89 0.00 4.97	N2 S3 P54 75 s3 66.27 21.08 0.11 0.02 1.75 10.15 0.12 99.49 2.92 1.09 0.00 0.88 0.87 0.01 4.97	N2 S3 P54-c 76 s3 66.05 21.41 0.17 0.10 1.75 10.26 0.09 99.83 2.90 1.11 0.01 0.08 0.87 0.01 4.97	N2 S3 P54-cf 77 s3 66.63 20.71 0.14 0.00 1.34 10.49 0.07 99.37 2.93 1.07 0.00 0.06 0.90 0.00 4.98	N2 S3 P54-c 78 s3 66.80 20.86 0.13 0.00 1.25 10.62 0.07 99.73 2.93 1.08 0.00 0.06 0.90 0.00 4.98	N2 S3 P56-b 82 s3 68.54 20.14 0.09 0.03 0.34 11.20 0.02 100.35 2.98 1.03 0.00 0.02 0.94 0.00 4.97	N2 S3 P56-c 83 s3 66.13 21.26 0.19 0.00 1.60 10.41 0.16 99.75 2.91 1.10 0.01 0.08 0.89 0.01 4.99	N2 \$3 P55-iF46 81 s3 67.45 20.46 0.04 1.03 10.80 0.07 99.85 2.95 1.06 0.00 0.05 0.09 2.95 1.06 0.00 0.05 0.09 1.03 1.04 0.07 1.05 1.06 0.00 0	N2 S3 P61-b 96-s3 68.35 20.81 0.31 0.02 1.09 10.70 0.09 101.38 2.95 1.06 0.01 0.05 0.89 0.01 4.97	N2 S3 P61 98 s3 66.65 21.36 0.12 0.01 1.76 10.29 0.08 100.27 2.91 1.10 0.00 0.88 0.87 0.00 4.98	N2 S3 P61-if 97 s3 69.81 20.11 0.00 0.01 0.07 11.47 0.03 101.49 3.00 1.02 0.00 0.095 0.00 4.97	N2 S3 P61-c 99-s3 66.58 21.39 0.22 0.01 1.79 10.24 0.05 100.29 2.91 1.10 0.01 0.08 0.87 0.00 4.97	N2 \$3 P60-iF49 95 s3 67.11 20.43 0.12 0.00 0.95 10.84 0.04 99.49 2.95 1.06 0.00 0.04 0.00 0.04 0.00 0	N2 S3 P59-iF50 93 s3 68.49 19.81 0.00 0.09 11.21 0.09 99.70 3.00 1.02 0.00 0.09 0.00 1.02	N2 S3 P58-b 91 s3 66.58 21.22 0.10 0.03 1.58 10.28 0.09 99.87 2.92 1.10 0.00 0.07 0.87 0.01 4.97	N2 S3 P58-c 90 s3 69.08 20.08 0.00 0.18 11.16 0.07 100.57 3.00 1.03 0.00 0.01 4.97	N2 S3 P58-c 89 s3 68.52 20.12 0.00 0.37 11.17 0.08 100.25 2.98 1.03 0.00 0.02 0.94 0.00 4.98	N2 S3 P58-b 88 s3 69.29 19.75 0.00 0.04 0.11 11.44 0.08 100.71 3.00 1.01 0.00 0.01 4.98

Lame	N2	N3	N3 I	N3	N3	N3 I	V3	N3	N3	N3	N3	N3	N3 I	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3 I	N3	N3 I	N3	N3
	1																		S3					S3			S3
N° du cristal	P57-c			P18-s								P21-c				P22			23-c	P24-iF19				P26		P26-s	P25-b
N° analyse	85 s3			153 s3			159 s3		163 s3			168 s3				173 s3			178 s3	181 s3				189 s3		191 s3	185 s3
SiO ₂	66.82	66.96	67.62	69.34	68.59	66.67	67.54	67.84	67.00	67.88	66.90	66.88	67.55	67.68	66.26	65.94	68.31	68.15	66.70	66.68	67.51	66.28	67.12	66.34	66.98	68.38	68.09
Al_2O_3	20.40	20.98	21.05	19.55	19.75	21.02	20.27	20.26	21.15	20.71	21.16	21.23	20.59	19.82	20.56	21.05	19.93	19.66	21.07	21.42	19.92	21.06	20.77	21.22		19.54	20.19
FeO Total	0.00	0.09	0.20	0.07	0.07	0.15	0.01	0.17	0.20	0.30	0.05	0.15	0.05	0.00	0.17	0.15	0.10	0.07	0.16	0.12	0.61	0.15	0.03	0.10	0.01	0.00	0.14
MgO	0.00	0.00	0.05	0.09	0.03	0.02	0.03	0.00	0.01	0.00	0.00	0.02	0.03	0.00	0.00	0.01	0.00	0.01	0.02	0.00	0.27	0.01	0.03	0.03	0.03	0.02	0.03
CaO	1.05	1.46	1.23	0.04	0.08	1.54	0.65	0.55	1.65	0.95	1.53	1.58	0.65	0.12	1.26	1.59	0.10	0.10	1.29	1.54	0.85	1.63	1.39	1.48	1.37	0.10	0.57
Na ₂ O	10.63	10.50	10.52	11.52	11.33	10.54	11.01	10.97	10.17	11.05	10.56	10.27	10.89	11.24	10.73	10.36	11.20	11.09	10.54	10.43	10.16	10.33	10.76	10.56	10.60	11.17	11.18
K ₂ O	0.10	0.07	0.08	0.06	0.06	0.04	0.08	0.05	0.09	0.03	0.10	0.06	0.07	0.09	0.10	0.11	0.13	0.08	0.10	0.12	0.34	0.09	0.03	0.07	0.04	0.06	0.05
Total	99.01	100.06	100.74	100.65	99.91	99.97	99.59	99.84	100.27	100.92	100.30	100.17	99.82	98.96	99.08	99.22	99.76	99.15	99.88	100.30	99.67	99.55		99.80		99.27	100.24
FORMULE STRUCT		8 Oxygène		.00.00	00.01	00.07	00.00	00.0.	.00.21	.00.02	.00.00		00.02	00.00	00.00	00.22	000	000	00.00	100.00	00.01	00.00		00.00		00.27	.00.2
Si	2.95	2.93	2.94	3.00	2.99	2.92	2.96	2.97	2.92	2.94	2.92	2.92	2.95	2.99	2.93	2.91	2.99	3.00	2.92	2.91	2.96	2.92	2.94	2.91	2.93	3.00	2.97
Al	1.06	1.08	1.08	1.00	1.02	1.09	1.05	1.04	1.09	1.06	1.09	1.09	1.06	1.03	1.07	1.10	1.03	1.02	1.09	1.10	1.03	1.09	1.07	1.10	1.09	1.01	1.04
Fe ³⁺	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00
Ca	0.05	0.07	0.06	0.00	0.00	0.07	0.03	0.03	0.08	0.04	0.07	0.07	0.03	0.01	0.06	0.08	0.00	0.00	0.06	0.07	0.04	0.08	0.07	0.07	0.06	0.00	0.03
Na	0.03	0.89	0.89	0.97	0.96	0.90	0.94	0.03	0.86	0.93	0.89	0.87	0.92	0.96	0.92	0.89	0.95	0.00	0.89	0.88	0.86	0.88	0.07	0.90	0.90	0.95	0.03
K	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.01	0.02	0.01	0.00	0.00	0.00	0.00	0.00
Total	4.98	4.98	4.97	4.98	4.98	4.98	4.98	4.98	4.96	4.99	4.98	4.96	4.98	4.99	4.99	4.98	4.98	4.97	4.98	4.98	4.94	4.98	4.98	4.99	4.98	4.97	4.98
T Olds																											
%Or	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.01	0.02	0.01	0.00	0.00	0.00	0.00	0.00
%Ab	0.94	0.92	0.94	1.00	0.99	0.92	0.96	0.97	0.91	0.95	0.92	0.92	0.96	0.99	0.93	0.92	0.99	0.99	0.93	0.92	0.94	0.91	0.93	0.92	0.93	0.99	0.97
%An	0.05	0.07	0.06	0.00	0.00	0.07	0.03	0.03	0.08	0.05	0.07	0.08	0.03	0.01	0.06	0.08	0.00	0.00	0.06	0.07	0.04	0.08	0.07	0.07	0.07	0.00	0.03
707 111	0.00	0.07	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.04	0.00	0.07	0.07	0.07	0.00	0.00
Position verticale*	71417	73925	74080	74497	75035	75133	75587	76169	76383	76693	76970	76970	78295	78309	78321	78321	78965	79084	79094	79776	80297	80608	80932	80936	80937	80962	80344
				•			•									•										•	
Lame	N3		N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3
Séquence	S3	S3																									
N° du cristal			S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3		S3	S3	S3	S3	S3	S3	S3
N. 10	P27-b	P27-c	P28-b	P28	P28-c	P28-b	P29-b	P29-c	P29-b	P30-iF22	P31-b	P31-c	P31-b	P32-b	P32	P32-c	P32-b	P41-iPx3	P34	P34-b	P34-c	P35-b	P36-c	P37-c	P38-b	P38-b	P38-c
N° analyse	192 s3	P27-c 196 s3	P28-b 197 s3	P28 198 s3	P28-c 199 s3	P28-b 200 s3	P29-b 201 s3	P29-c 203 s3	P29-b 205 s3	P30-iF22 207 s3	P31-b 210 s3	P31-c 211 s3	P31-b 212 s3	P32-b 213 s3	P32 214 s3	P32-c 215 s3	P32-b 216 s3	P41-iPx3 323 s4	P34 238 s4	P34-b 240 s4	P34-c 239 s4	P35-b 245 s4	P36-c 249 s4	P37-c 255 s4	P38-b 256 s4	P38-b 259 s4	P38-c 258 s4
SiO ₂	192 s3 67.64	P27-c 196 s3 67.46	P28-b 197 s3 67.17	P28 198 s3 66.42	P28-c 199 s3 67.05	P28-b 200 s3 67.73	P29-b 201 s3 65.88	P29-c 203 s3 65.74	P29-b 205 s3 69.03	P30-iF22 207 s3 68.72	P31-b 210 s3 66.99	P31-c 211 s3 67.01	P31-b 212 s3 67.17	P32-b 213 s3 68.24	P32 214 s3 67.31	P32-c 215 s3 66.41	P32-b 216 s3 67.77	P41-iPx3 323 s4 68.28	P34 238 s4 69.48	P34-b 240 s4 75.09	P34-c 239 s4 70.64	P35-b 245 s4 69.59	P36-c 249 s4 67.12	P37-c 255 s4 67.57	P38-b 256 s4 67.65	P38-b 259 s4 67.89	P38-c 258 s4 66.74
SiO ₂ Al ₂ O ₃	192 s3 67.64 20.74	P27-c 196 s3 67.46 20.85	P28-b 197 s3 67.17 20.82	P28 198 s3 66.42 21.12	P28-c 199 s3 67.05 20.93	P28-b 200 s3 67.73 20.20	P29-b 201 s3 65.88 21.28	P29-c 203 s3 65.74 20.83	P29-b 205 s3 69.03 19.84	P30-iF22 207 s3 68.72 19.88	P31-b 210 s3 66.99 20.75	P31-c 211 s3 67.01 21.17	P31-b 212 s3 67.17 20.77	P32-b 213 s3 68.24 20.30	P32 214 s3 67.31 20.60	P32-c 215 s3 66.41 21.29	P32-b 216 s3 67.77 20.75	P41-iPx3 323 s4 68.28 19.03	P34 238 s4 69.48 19.26	P34-b 240 s4 75.09 16.60	P34-c 239 s4 70.64 18.80	P35-b 245 s4 69.59 19.94	P36-c 249 s4 67.12 18.82	P37-c 255 s4 67.57 18.63	P38-b 256 s4 67.65 18.61	P38-b 259 s4 67.89 18.70	P38-c 258 s4 66.74 19.44
SiO ₂ Al ₂ O ₃ FeO Total	192 s3 67.64 20.74 0.07	P27-c 196 s3 67.46 20.85 0.07	P28-b 197 s3 67.17 20.82 0.15	P28 198 s3 66.42 21.12 0.06	P28-c 199 s3 67.05 20.93 0.16	P28-b 200 s3 67.73 20.20 0.00	P29-b 201 s3 65.88 21.28 0.22	P29-c 203 s3 65.74 20.83 0.14	P29-b 205 s3 69.03 19.84 0.00	P30-iF22 207 s3 68.72 19.88 0.02	P31-b 210 s3 66.99 20.75 0.21	P31-c 211 s3 67.01 21.17 0.12	P31-b 212 s3 67.17 20.77 0.08	P32-b 213 s3 68.24 20.30 0.00	P32 214 s3 67.31 20.60 0.11	P32-c 215 s3 66.41 21.29 0.15	P32-b 216 s3 67.77 20.75 0.08	P41-iPx3 323 s4 68.28 19.03 0.46	P34 238 s4 69.48 19.26 0.14	P34-b 240 s4 75.09 16.60 0.00	P34-c 239 s4 70.64 18.80 0.10	P35-b 245 s4 69.59 19.94 0.06	P36-c 249 s4 67.12 18.82 0.15	P37-c 255 s4 67.57 18.63 0.18	P38-b 256 s4 67.65 18.61 0.15	P38-b 259 s4 67.89 18.70 0.00	P38-c 258 s4 66.74 19.44 0.17
SiO ₂ Al ₂ O ₃ FeO Total MgO	192 s3 67.64 20.74 0.07 0.07	P27-c 196 s3 67.46 20.85 0.07 0.02	P28-b 197 s3 67.17 20.82 0.15 0.01	P28 198 s3 66.42 21.12 0.06 0.03	P28-c 199 s3 67.05 20.93 0.16 0.03	P28-b 200 s3 67.73 20.20 0.00 0.06	P29-b 201 s3 65.88 21.28 0.22 0.03	P29-c 203 s3 65.74 20.83 0.14 0.02	P29-b 205 s3 69.03 19.84 0.00 0.00	207 s3 68.72 19.88 0.02 0.02	P31-b 210 s3 66.99 20.75 0.21 0.00	P31-c 211 s3 67.01 21.17 0.12 0.02	P31-b 212 s3 67.17 20.77 0.08 0.00	P32-b 213 s3 68.24 20.30 0.00 0.01	P32 214 s3 67.31 20.60 0.11 0.02	P32-c 215 s3 66.41 21.29 0.15 0.01	P32-b 216 s3 67.77 20.75 0.08 0.04	P41-iPx3 323 s4 68.28 19.03 0.46 0.03	P34 238 s4 69.48 19.26 0.14 0.00	P34-b 240 s4 75.09 16.60 0.00 0.00	P34-c 239 s4 70.64 18.80 0.10 0.00	P35-b 245 s4 69.59 19.94 0.06 0.00	P36-c 249 s4 67.12 18.82 0.15 0.00	P37-c 255 s4 67.57 18.63 0.18 0.00	P38-b 256 s4 67.65 18.61 0.15 0.00	P38-b 259 s4 67.89 18.70 0.00 0.00	P38-c 258 s4 66.74 19.44 0.17 0.00
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO	192 s3 67.64 20.74 0.07 0.07 1.20	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17	P28 198 s3 66.42 21.12 0.06 0.03 1.45	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48	P29-b 205 s3 69.03 19.84 0.00 0.00 0.09	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42	P31-b 212 s3 67.17 20.77 0.08 0.00 1.18	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38	P32 214 s3 67.31 20.60 0.11 0.02 1.26	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83	P41-iPx3 323 s4 68.28 19.03 0.46 0.03 0.22	P34 238 s4 69.48 19.26 0.14 0.00 1.56	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14	P38-b 259 s4 67.89 18.70 0.00 0.00 0.73	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O	192 s3 67.64 20.74 0.07 0.07 1.20 10.69	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68	P28 198 s3 66.42 21.12 0.06 0.03 1.45 10.46	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39	P29-b 205 s3 69.03 19.84 0.00 0.00 0.09 11.18	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15 11.36	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41	P31-b 212 s3 67.17 20.77 0.08 0.00 1.18 10.92	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89	P41-iPx3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.82	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95	P38-b 259 s4 67.89 18.70 0.00 0.00 0.73 11.18	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O	192 s3 67.64 20.74 0.07 0.07 1.20 10.69 0.08	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59 0.05	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68 0.04	P28 198 s3 66.42 21.12 0.06 0.03 1.45 10.46 0.11	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40 0.10	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86 0.06	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33 0.03	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39 0.07	P29-b 205 s3 69.03 19.84 0.00 0.00 0.09 11.18 0.09	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15 11.36 0.12	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55 0.08	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41 0.03	P31-b 212 s3 67.17 20.77 0.08 0.00 1.18 10.92 0.17	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05 0.05	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56 0.08	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44 0.10	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89 0.02	P41-iPx3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39 0.03	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70 0.04	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.82 0.05	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62 0.01	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77 0.06	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41 0.09	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10 10.42 0.20	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95 0.10	P38-b 259 s4 67.89 18.70 0.00 0.00 0.73 11.18 0.08	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78 0.16
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total	192 s3 67.64 20.74 0.07 0.07 1.20 10.69 0.08 100.49	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59 0.05 100.35	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68 0.04 100.03	P28 198 s3 66.42 21.12 0.06 0.03 1.45 10.46	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39	P29-b 205 s3 69.03 19.84 0.00 0.00 0.09 11.18	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15 11.36	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41	P31-b 212 s3 67.17 20.77 0.08 0.00 1.18 10.92	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89	P41-iPx3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.82 0.05	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95	P38-b 259 s4 67.89 18.70 0.00 0.00 0.73 11.18	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O	192 s3 67.64 20.74 0.07 0.07 1.20 10.69 0.08 100.49	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59 0.05 100.35 8 Oxygène	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68 0.04 100.03	P28 s3 66.42 21.12 0.06 0.03 1.45 10.46 0.11 99.65	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40 0.10 99.93	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86 0.06 99.42	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33 0.03 99.71	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39 0.07 98.66	P29-b 205 s3 69.03 19.84 0.00 0.00 0.09 11.18 0.09 100.24	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15 11.36 0.12 100.27	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55 0.08 99.85	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41 0.03 100.17	P31-b 212 s3 67.17 20.77 0.08 0.00 1.18 10.92 0.17 100.30	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05 0.05 100.04	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56 0.08 99.94	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44 0.10 99.93	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89 0.02 100.38	P41-iPx3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39 0.03 99.44	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70 0.04 99.19	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.82 0.05 100.16	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62 0.01 97.06	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77 0.06 98.92	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41 0.09 97.95	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10 10.42 0.20 98.09	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95 0.10 98.60	P38-b 259 s4 67.89 18.70 0.00 0.00 0.73 11.18 0.08 98.58	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78 0.16 98.59
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total	192 s3 67.64 20.74 0.07 0.07 1.20 10.69 0.08 100.49 TURALE (8	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59 0.05 100.35 8 Oxygène 2.94	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68 0.04 100.03 as) 2.94	P28 s3 66.42 21.12 0.06 0.03 1.45 10.46 0.11 99.65 2.92	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40 0.10 99.93	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86 0.06 99.42 2.97	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33 0.03 99.71 2.90	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39 0.07 98.66	P29-b 205 s3 69.03 19.84 0.00 0.00 0.09 11.18 0.09 100.24 3.00	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15 11.36 0.12 100.27	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55 0.08 99.85	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41 0.03 100.17	P31-b 212-s3 67.17 20.77 0.08 0.00 1.18 10.92 0.17 100.30	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05 0.05 100.04	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56 0.08 99.94	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44 0.10 99.93	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89 0.02 100.38	P41-iPx3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39 0.03 99.44 3.00	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70 0.04 99.19	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.82 0.05 100.16	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62 0.01 97.06	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77 0.06 98.92	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41 0.09 97.95	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10 10.42 0.20 98.09	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95 0.10 98.60	259 s4 67.89 18.70 0.00 0.73 11.18 0.08 98.58	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78 0.16 98.59
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al	192 s3 67.64 20.74 0.07 1.20 10.69 0.08 100.49 TURALE ((12.94 1.06	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59 0.05 100.35 8 Oxygène 2.94 1.07	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68 0.04 100.03 as) 2.94 1.07	P28 s3 66.42 21.12 0.06 0.03 1.45 10.46 0.11 99.65 2.92 1.09	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40 0.10 99.93 2.93 1.08	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86 0.06 99.42 2.97 1.04	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33 0.03 99.71 2.90 1.10	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39 0.07 98.66	P29-b 205 s3 69.03 19.84 0.00 0.00 0.09 11.18 0.09 100.24 3.00 1.02	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15 11.36 0.12 100.27	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55 0.08 99.85	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41 0.03 100.17	P31-b 212-s3 67-17 20.77 0.08 0.00 1.18 10.92 0.17 100.30 2.93 1.07	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05 0.05 100.04	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56 0.08 99.94 2.94 1.06	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44 0.10 99.93 2.91 1.10	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89 0.02 100.38 2.95 1.06	P41-iPx3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39 0.03 99.44 3.00 0.98	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70 0.04 99.19 3.04 0.99	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.82 0.05 100.16 3.20 0.83	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62 0.01 97.06 3.11 0.97	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77 0.06 98.92 3.03 1.02	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41 0.09 97.95 2.99 0.99	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10 10.42 0.20 98.09 3.01 0.98	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95 0.10 98.60 3.00 0.97	259 s4 67.89 18.70 0.00 0.73 11.18 0.08 98.58	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78 0.16 98.59 2.97 1.02
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al	192 s3 67.64 20.74 0.07 0.07 1.20 10.69 0.08 100.49 TURALE (8 2.94 1.06	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59 0.05 100.35 8 Oxygène 2.94 1.07 0.00	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68 0.04 100.03 es) 2.94 1.07 0.00	P28 198 s3 66.42 21.12 0.06 0.03 1.45 10.46 0.11 99.65 2.92 1.09 0.00	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40 0.10 99.93 2.93 1.08 0.01	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86 0.06 99.42 2.97 1.04 0.00	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33 0.03 99.71 2.90 1.10 0.01	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39 0.07 98.66 2.92 1.09 0.00	P29-b 205 s3 69.03 19.84 0.00 0.00 0.09 11.18 0.09 100.24 3.00 1.02 0.00	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15 11.36 0.12 100.27 2.99 1.02 0.00	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55 0.08 99.85 2.94 1.07 0.01	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41 0.03 100.17 2.93 1.09 0.00	P31-b 212 s3 67.17 20.77 0.08 0.00 1.18 10.92 0.17 100.30 2.93 1.07 0.00	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05 0.05 100.04 2.98 1.04 0.00	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56 0.08 99.94 2.94 1.06 0.00	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44 0.10 99.93 2.91 1.10 0.01	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89 0.02 100.38 2.95 1.06 0.00	P41-IPx3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39 0.03 99.44 3.00 0.98 0.02	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70 0.04 99.19 3.04 0.99 0.00	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.82 0.05 100.16 3.20 0.83 0.00	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62 0.01 97.06 3.11 0.97 0.00	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77 0.06 98.92 3.03 1.02 0.00	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41 0.09 97.95 2.99 0.01	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10 10.42 0.20 98.09 3.01 0.98 0.01	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95 0.10 98.60 3.00 0.97 0.00	P38-b 259 s4 67.89 18.70 0.00 0.73 11.18 0.08 98.58 3.01 0.98 0.00	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78 0.16 98.59 2.97 1.02 0.01
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca	192 s3 67.64 20.74 0.07 0.07 1.20 10.69 0.08 100.49 TURALE (6 2.94 1.06 0.00	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59 0.05 100.35 8 Oxygène 2.94 1.07 0.00 0.06	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68 0.04 100.03 es) 2.94 1.07 0.00 0.05	P28 198 s3 66.42 21.12 0.06 0.03 1.45 10.46 0.11 99.65 2.92 1.09 0.00 0.07	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40 0.10 99.93 2.93 1.08 0.01 0.06	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86 0.06 99.42 2.97 1.04 0.00 0.02	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33 0.03 99.71 2.90 1.10 0.01 0.09	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39 0.07 98.66 2.92 1.09 0.00 0.07	P29-b 205 s3 69.03 19.84 0.00 0.09 11.18 0.09 100.24 3.00 1.02 0.00 0.00	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15 11.36 0.12 100.27 2.99 1.02 0.00 0.01	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55 0.08 99.85 2.94 1.07 0.01 0.06	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41 0.03 100.17 2.93 1.09 0.00 0.07	P31-b 212 s3 67.17 20.77 0.08 0.00 1.18 10.92 0.17 100.30 2.93 1.07 0.00 0.06	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05 0.05 100.04 2.98 1.04 0.00 0.02	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56 0.08 99.94 2.94 1.06 0.00 0.06	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44 0.10 99.93 2.91 1.10 0.01 0.07	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89 0.02 100.38 2.95 1.06 0.00 0.04	P41-IPx3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39 0.03 99.44 3.00 0.98 0.02 0.01	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70 0.04 99.19 3.04 0.99 0.00 0.07	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.82 0.05 100.16 3.20 0.83 0.00 0.03	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62 0.01 97.06 3.11 0.97 0.00 0.04	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77 0.06 98.92 3.03 1.02 0.00 0.07	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41 0.09 97.95 2.99 0.01 0.07	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10 10.42 0.20 98.09 3.01 0.98 0.01 0.05	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95 0.10 98.60 3.00 0.97 0.00 0.05	P38-b 259 s4 67.89 18.70 0.00 0.73 11.18 0.08 98.58 3.01 0.98 0.00 0.03	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78 0.16 98.59 2.97 1.02 0.01 0.06
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al	192 s3 67.64 20.74 0.07 1.20 10.69 0.08 100.49 TURALE (4 2.94 1.06 0.00 0.06 0.90	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59 0.05 100.35 8 Oxygène 2.94 1.07 0.00 0.06 0.89	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68 10.04 100.03 es) 2.94 1.07 0.00 0.05 0.91	P28 198 s3 66.42 21.12 0.06 0.03 1.45 10.46 0.11 99.65 2.92 1.09 0.00 0.07 0.89	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40 0.10 99.93 2.93 1.08 0.01 0.06 0.88	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86 0.06 99.42 2.97 1.04 0.00 0.02 0.92	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33 0.03 99.71 2.90 1.10 0.01 0.09 0.88	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39 0.07 98.66 2.92 1.09 0.00 0.07 0.89	P29-b 205 s3 69.03 19.84 0.00 0.09 11.18 0.09 100.24 3.00 1.02 0.00 0.00 0.94	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15 11.36 0.12 100.27 2.99 1.02 0.00 0.01 0.96	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55 0.08 99.85 2.94 1.07 0.01 0.06 0.90	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41 0.03 100.17 2.93 1.09 0.00 0.07 0.88	P31-b 212 s3 67.17 20.77 0.08 0.00 1.18 10.92 0.17 100.30 2.93 1.07 0.00 0.06 0.92	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05 0.05 100.04 2.98 1.04 0.00 0.02 0.93	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56 0.08 99.94 2.94 1.06 0.00 0.06 0.90	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44 0.10 99.93 2.91 1.10 0.01 0.07 0.89	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89 0.02 100.38 2.95 1.06 0.00 0.04 0.92	P41-IPx3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39 0.03 99.44 3.00 0.98 0.02 0.01 0.97	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70 0.04 99.19 3.04 0.99 0.00 0.07	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.82 0.05 100.16 3.20 0.83 0.00 0.03 0.65	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62 0.01 97.06 3.11 0.97 0.00 0.04 0.56	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77 0.06 98.92 3.03 1.02 0.00 0.07 0.66	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41 0.09 97.95 2.99 0.01 0.07 0.90	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10 10.42 0.20 98.09 3.01 0.98 0.01 0.05 0.90	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95 0.10 98.60 3.00 0.97 0.00 0.05 0.94	P38-b 259 s4 67.89 18.70 0.00 0.73 11.18 0.08 98.58 3.01 0.98 0.00 0.03 0.96	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78 0.16 98.59 2.97 1.02 0.01 0.06 0.93
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K	192 s3 67.64 20.74 0.07 1.20 10.69 0.08 100.49 TURALE (8 2.94 1.06 0.00 0.06 0.90	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59 0.035 8 Oxygène 2.94 1.07 0.00 0.06 0.89 0.00	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68 100.04 100.03 29.94 1.07 0.00 0.05 0.91 0.00	P28 198 s3 66.42 21.12 0.06 0.03 1.45 10.46 0.11 99.65 2.92 1.09 0.00 0.07 0.89 0.01	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40 0.10 99.93 2.93 1.08 0.01 0.06 0.88	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86 0.06 99.42 2.97 1.04 0.00 0.02 0.92 0.00	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33 0.03 99.71 2.90 1.10 0.01 0.09 0.88 0.00	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39 0.07 98.66 2.92 1.09 0.00 0.07 0.89 0.00	P29-b 205 s3 69.03 19.84 0.00 0.09 11.18 0.09 100.24 3.00 0.00 0.00 0.00 0.00	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15 11.36 0.12 100.27 2.99 1.02 0.00 0.01 0.96 0.01	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55 0.08 99.85 2.94 1.07 0.01 0.06 0.90 0.00	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41 0.03 100.17 2.93 1.09 0.00 0.07 0.88 0.00	P31-b 212 s3 67.17 20.77 0.08 0.00 1.18 10.92 0.17 100.30 2.93 1.07 0.00 0.06 0.92 0.01	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05 0.05 100.04 2.98 1.04 0.00 0.02 0.93 0.00	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56 0.08 99.94 2.94 1.06 0.00 0.06 0.90 0.00	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44 0.10 99.93 2.91 1.10 0.01 0.07 0.89 0.01	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89 0.02 100.38 2.95 1.06 0.00 0.04 0.92 0.00	P41-IPx3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39 0.03 99.44 3.00 0.98 0.02 0.01 0.97 0.00	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70 0.04 99.19 3.04 0.99 0.00 0.07 0.74	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.82 0.05 100.16 3.20 0.83 0.00 0.03 0.65 0.00	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62 0.01 97.06 3.11 0.97 0.00 0.04 0.56 0.00	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77 0.06 98.92 3.03 1.02 0.00 0.07 0.66 0.00	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41 0.09 97.95 2.99 0.01 0.07 0.90 0.00	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10 10.42 0.20 98.09 3.01 0.98 0.01 0.05 0.90 0.01	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95 0.10 98.60 3.00 0.97 0.00 0.05 0.94 0.01	P38-b 259 s4 67.89 18.70 0.00 0.73 11.18 0.08 98.58 3.01 0.98 0.00 0.03 0.96 0.00	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78 0.16 98.59 2.97 1.02 0.01 0.06 0.93 0.01
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca	192 s3 67.64 20.74 0.07 1.20 10.69 0.08 100.49 TURALE (4 2.94 1.06 0.00 0.06 0.90	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59 0.05 100.35 8 Oxygène 2.94 1.07 0.00 0.06 0.89	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68 10.04 100.03 es) 2.94 1.07 0.00 0.05 0.91	P28 198 s3 66.42 21.12 0.06 0.03 1.45 10.46 0.11 99.65 2.92 1.09 0.00 0.07 0.89	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40 0.10 99.93 2.93 1.08 0.01 0.06 0.88	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86 0.06 99.42 2.97 1.04 0.00 0.02 0.92	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33 0.03 99.71 2.90 1.10 0.01 0.09 0.88	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39 0.07 98.66 2.92 1.09 0.00 0.07 0.89	P29-b 205 s3 69.03 19.84 0.00 0.09 11.18 0.09 100.24 3.00 1.02 0.00 0.00 0.94	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15 11.36 0.12 100.27 2.99 1.02 0.00 0.01 0.96	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55 0.08 99.85 2.94 1.07 0.01 0.06 0.90	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41 0.03 100.17 2.93 1.09 0.00 0.07 0.88	P31-b 212 s3 67.17 20.77 0.08 0.00 1.18 10.92 0.17 100.30 2.93 1.07 0.00 0.06 0.92	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05 0.05 100.04 2.98 1.04 0.00 0.02 0.93	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56 0.08 99.94 2.94 1.06 0.00 0.06 0.90	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44 0.10 99.93 2.91 1.10 0.01 0.07 0.89	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89 0.02 100.38 2.95 1.06 0.00 0.04 0.92	P41-IPx3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39 0.03 99.44 3.00 0.98 0.02 0.01 0.97	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70 0.04 99.19 3.04 0.99 0.00 0.07	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.82 0.05 100.16 3.20 0.83 0.00 0.03 0.65 0.00	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62 0.01 97.06 3.11 0.97 0.00 0.04 0.56	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77 0.06 98.92 3.03 1.02 0.00 0.07 0.66	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41 0.09 97.95 2.99 0.01 0.07 0.90	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10 10.42 0.20 98.09 3.01 0.98 0.01 0.05 0.90	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95 0.10 98.60 3.00 0.97 0.00 0.05 0.94	P38-b 259 s4 67.89 18.70 0.00 0.73 11.18 0.08 98.58 3.01 0.98 0.00 0.03 0.96	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78 0.16 98.59 2.97 1.02 0.01 0.06 0.93
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total	192 s3 67.64 20.74 0.07 1.20 10.69 0.08 100.49 TURALE (6 2.94 1.06 0.00 0.06 0.90 0.00 4.97	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59 0.05 100.35 8 Oxygène 2.94 1.07 0.00 0.06 0.89 0.00 4.97	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68 0.04 100.03 es) 2.94 1.07 0.00 0.05 0.91 0.00 4.98	P28 198 s3 66.42 21.12 0.06 0.03 1.45 10.46 0.11 99.65 2.92 1.09 0.00 0.07 0.89 0.01 4.98	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40 0.10 99.93 2.93 1.08 0.01 0.06 0.88 0.01 4.97	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86 0.06 99.42 2.97 1.04 0.00 0.02 0.92 0.00 4.97	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33 0.03 99.71 2.90 1.10 0.01 0.09 0.88 0.00 4.99	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39 0.07 98.66 2.92 1.09 0.00 0.07 0.89 0.00 4.98	P29-b 205 s3 69.03 19.84 0.00 0.09 11.18 0.09 100.24 3.00 1.02 0.00 0.00 0.094 0.00 4.97	P30-iF22 207 s3 68.72 19.88 0.02 0.05 0.15 11.36 0.12 100.27 2.99 1.02 0.00 0.01 0.96 0.01 4.98	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55 0.08 99.85 2.94 1.07 0.01 0.06 0.90 0.00 4.97	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41 0.03 100.17 2.93 1.09 0.00 0.07 0.88 0.00 4.97	P31-b 212 s3 67.17 20.77 0.08 0.00 1.18 10.92 0.17 100.30 2.93 1.07 0.00 0.06 0.92 0.01 5.00	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05 100.04 2.98 1.04 0.00 0.02 0.93 0.00 4.97	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56 0.08 99.94 2.94 1.06 0.00 0.00 4.97	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44 0.10 99.93 2.91 1.10 0.01 0.07 0.89 0.01 4.98	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89 0.02 100.38 2.95 1.06 0.00 0.04 0.92 0.00 4.98	P41-IPX3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39 0.03 99.44 3.00 0.98 0.02 0.01 0.97 0.00 4.98	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70 0.04 99.19 3.04 0.99 0.00 0.07 0.74 0.00 4.85	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.82 0.05 100.16 3.20 0.83 0.00 0.03 0.65 0.00 4.71	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62 0.01 97.06 3.11 0.97 0.00 0.04 0.56 0.00 4.69	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77 0.06 98.92 3.03 1.02 0.00 0.07 0.66 0.00 4.79	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41 0.09 97.95 2.99 0.99 0.01 0.07 0.90 0.00 4.96	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10 10.42 0.20 98.09 3.01 0.98 0.01 0.05 0.90 0.01 4.96	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95 0.10 98.60 3.00 0.97 0.00 0.05 0.94 0.01 4.98	P38-b 259 s4 67.89 18.70 0.00 0.00 0.73 11.18 0.08 98.58 3.01 0.98 0.00 0.03 0.96 0.00 4.99	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78 0.16 98.59 2.97 1.02 0.01 0.06 0.93 0.01 4.99
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total	192 s3 67.64 20.74 0.07 1.20 10.69 100.49 TURALE (8 2.94 1.06 0.00 0.06 0.90 4.97	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59 0.05 100.35 8 Oxygène 2.94 1.07 0.00 0.06 0.89 0.00 4.97	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68 0.04 100.03 es) 2.94 1.07 0.00 0.05 0.91 0.00 4.98	P28 198 s3 66.42 21.12 0.06 0.03 1.45 10.46 0.11 99.65 2.92 1.09 0.00 0.07 0.89 0.01 4.98	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40 0.10 99.93 2.93 1.08 0.01 0.06 0.88 0.01 4.97	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86 0.06 99.42 2.97 1.04 0.00 0.02 0.92 0.00 4.97	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33 0.03 99.71 2.90 1.10 0.01 0.09 0.88 0.00 4.99	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39 0.07 98.66 2.92 1.09 0.00 0.07 0.89 0.00 4.98	P29-b 205 s3 69.03 19.84 0.00 0.09 11.18 0.09 100.24 3.00 0.00 0.09 4.97	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15 11.36 0.12 100.27 2.99 1.02 0.00 0.01 0.96 0.01 4.98	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55 0.08 99.85 2.94 1.07 0.01 0.06 0.90 4.97	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41 0.03 100.17 2.93 1.09 0.00 0.07 0.88 0.00 4.97	P31-b 212 s3 67.17 20.77 0.08 0.00 1.18 10.92 0.17 100.30 2.93 1.07 0.00 0.06 0.92 0.01 5.00	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05 100.04 2.98 1.04 0.00 0.02 0.93 0.00 4.97	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56 0.08 99.94 2.94 1.06 0.00 0.09 0.00 4.97	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44 0.10 99.93 2.91 1.10 0.01 0.07 0.89 0.01	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89 0.02 100.38 2.95 1.06 0.00 0.04 0.92 0.00 4.98	P41-IPX3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39 0.03 99.44 3.00 0.98 0.02 0.01 0.97 0.00 4.98	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70 0.04 99.19 3.04 0.99 0.00 0.07 0.74 0.00 4.85	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.82 0.05 100.16 3.20 0.83 0.00 0.03 0.65 0.00 4.71	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62 0.01 97.06 3.11 0.97 0.00 0.04 0.56 0.00 4.69	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77 0.06 98.92 3.03 1.02 0.00 0.07 0.66 0.00 4.79	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41 0.09 97.95 2.99 0.01 0.07 0.90 0.00 4.96	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10 10.42 0.20 98.09 3.01 0.98 0.01 0.05 0.00 4.96	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95 0.10 98.60 3.00 0.97 0.00 0.05 0.94 1.4.98	P38-b 259 s4 67.89 18.70 0.00 0.07 0.73 11.18 0.08 98.58 3.01 0.98 0.00 0.03 0.96 0.00 4.99	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78 0.16 98.59 2.97 1.02 0.01 0.06 0.93 0.01 4.99
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total K Total	192 s3 67.64 20.74 0.07 1.20 10.69 100.49 TURALE (8 1.06 0.00 0.06 0.90 0.00 4.97 0.00 0.94	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59 100.35 8 Oxygène 2.94 1.07 0.00 0.06 0.89 0.00 4.97	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68 100.04 100.03 es) 2.94 1.07 0.00 0.05 0.91 0.00 4.98	P28 198 s3 66.42 21.12 0.06 0.03 1.45 10.46 0.11 99.65 2.92 1.09 0.00 0.07 0.89 0.01 4.98	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40 99.93 2.93 1.08 0.01 0.06 0.88 0.01 4.97	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86 0.06 99.42 2.97 1.04 0.00 0.02 0.92 0.00 4.97	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33 99.71 2.90 1.10 0.01 0.09 0.88 0.00 4.99	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39 98.66 2.92 1.09 0.00 0.07 0.89 0.00 4.98	P29-b 205 s3 69.03 19.84 0.00 0.00 0.09 11.18 0.09 100.24 3.00 1.02 0.00 0.00 0.94 0.00 4.97	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15 11.36 0.12 100.27 2.99 1.02 0.00 0.01 4.98 0.01 0.99	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55 0.08 99.85 2.94 1.07 0.01 0.06 0.90 0.00 4.97	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41 0.03 100.17 2.93 1.09 0.00 0.07 0.88 0.00 4.97 0.00 0.93	P31-b 212 s3 67.17 20.77 0.08 0.00 1.18 10.92 0.17 100.30 2.93 1.07 0.00 0.06 0.92 0.01 5.00 0.01 0.93	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05 100.04 2.98 1.04 0.00 0.02 0.93 0.00 4.97 0.00 0.98	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56 99.94 2.94 1.06 0.00 0.06 0.90 0.00 4.97	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44 0.40 99.93 2.91 1.10 0.07 0.89 0.01 4.98	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89 0.02 100.38 2.95 1.06 0.00 0.04 0.92 0.00 4.98 0.00 0.96	P41-IPX3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39 0.03 99.44 3.00 0.98 0.02 0.01 0.97 0.00 4.98	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70 0.04 99.19 3.04 0.99 0.00 0.07 0.74 0.00 4.85	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.822 0.05 100.16 3.20 0.83 0.00 0.03 0.65 0.00 4.71 0.00 0.95	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62 0.01 97.06 3.11 0.97 0.00 0.04 0.56 0.00 4.69 0.00 0.93	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77 0.06 98.92 3.03 1.02 0.00 0.07 0.66 0.00 4.79 0.00 0.90	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41 0.09 97.95 2.99 0.01 0.07 0.90 0.00 4.96 0.00 0.93	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10 10.42 0.20 98.09 3.01 0.98 0.01 0.05 0.90 0.01 4.96	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95 0.10 98.60 3.00 0.97 0.00 0.05 0.94 0.01 4.98 0.01 0.94	P38-b 259 s4 67.89 18.70 0.00 0.00 0.73 11.18 0.08 98.58 3.01 0.98 0.00 0.03 0.96 0.00 4.99 0.00 0.96	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78 0.16 98.59 2.97 1.02 0.01 0.06 0.93 0.01 4.99 0.01 0.93
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total	192 s3 67.64 20.74 0.07 1.20 10.69 100.49 TURALE (8 2.94 1.06 0.00 0.06 0.90 4.97	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59 0.05 100.35 8 Oxygène 2.94 1.07 0.00 0.06 0.89 0.00 4.97	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68 0.04 100.03 es) 2.94 1.07 0.00 0.05 0.91 0.00 4.98	P28 198 s3 66.42 21.12 0.06 0.03 1.45 10.46 0.11 99.65 2.92 1.09 0.00 0.07 0.89 0.01 4.98	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40 0.10 99.93 2.93 1.08 0.01 0.06 0.88 0.01 4.97	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86 0.06 99.42 2.97 1.04 0.00 0.02 0.92 0.00 4.97	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33 0.03 99.71 2.90 1.10 0.01 0.09 0.88 0.00 4.99	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39 0.07 98.66 2.92 1.09 0.00 0.07 0.89 0.00 4.98	P29-b 205 s3 69.03 19.84 0.00 0.09 11.18 0.09 100.24 3.00 0.00 0.09 4.97	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15 11.36 0.12 100.27 2.99 1.02 0.00 0.01 0.96 0.01 4.98	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55 0.08 99.85 2.94 1.07 0.01 0.06 0.90 4.97	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41 0.03 100.17 2.93 1.09 0.00 0.07 0.88 0.00 4.97	P31-b 212 s3 67.17 20.77 0.08 0.00 1.18 10.92 0.17 100.30 2.93 1.07 0.00 0.06 0.92 0.01 5.00	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05 100.04 2.98 1.04 0.00 0.02 0.93 0.00 4.97	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56 0.08 99.94 2.94 1.06 0.00 0.00 4.97	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44 0.10 99.93 2.91 1.10 0.01 0.07 0.89 0.01	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89 0.02 100.38 2.95 1.06 0.00 0.04 0.92 0.00 4.98	P41-IPX3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39 0.03 99.44 3.00 0.98 0.02 0.01 0.97 0.00 4.98	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70 0.04 99.19 3.04 0.99 0.00 0.07 0.74 0.00 4.85	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.822 0.05 100.16 3.20 0.83 0.00 0.03 0.65 0.00 4.71 0.00 0.95	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62 0.01 97.06 3.11 0.97 0.00 0.04 0.56 0.00 4.69	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77 0.06 98.92 3.03 1.02 0.00 0.07 0.66 0.00 4.79	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41 0.09 97.95 2.99 0.01 0.07 0.90 0.00 4.96	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10 10.42 0.20 98.09 3.01 0.98 0.01 0.05 0.00 4.96	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95 0.10 98.60 3.00 0.97 0.00 0.05 0.94 1.4.98	P38-b 259 s4 67.89 18.70 0.00 0.07 0.73 11.18 0.08 98.58 3.01 0.98 0.00 0.03 0.96 0.00 4.99	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78 0.16 98.59 2.97 1.02 0.01 0.06 0.93 0.01 4.99
SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total K Total	192 s3 67.64 20.74 0.07 1.20 10.69 100.49 TURALE (8 1.06 0.00 0.06 0.90 0.00 4.97 0.00 0.94	P27-c 196 s3 67.46 20.85 0.07 0.02 1.31 10.59 100.35 8 Oxygène 2.94 1.07 0.00 0.06 0.89 0.00 4.97	P28-b 197 s3 67.17 20.82 0.15 0.01 1.17 10.68 100.04 100.03 es) 2.94 1.07 0.00 0.05 0.91 0.00 4.98	P28 198 s3 66.42 21.12 0.06 0.03 1.45 10.46 0.11 99.65 2.92 1.09 0.00 0.07 0.89 0.01 4.98	P28-c 199 s3 67.05 20.93 0.16 0.03 1.26 10.40 99.93 2.93 1.08 0.01 0.06 0.88 0.01 4.97	P28-b 200 s3 67.73 20.20 0.00 0.06 0.50 10.86 0.06 99.42 2.97 1.04 0.00 0.02 0.92 0.00 4.97	P29-b 201 s3 65.88 21.28 0.22 0.03 1.93 10.33 99.71 2.90 1.10 0.01 0.09 0.88 0.00 4.99	P29-c 203 s3 65.74 20.83 0.14 0.02 1.48 10.39 98.66 2.92 1.09 0.00 0.07 0.89 0.00 4.98	P29-b 205 s3 69.03 19.84 0.00 0.00 0.09 11.18 0.09 100.24 3.00 1.02 0.00 0.00 0.94 0.00 4.97	P30-iF22 207 s3 68.72 19.88 0.02 0.02 0.15 11.36 0.12 100.27 2.99 1.02 0.00 0.01 4.98 0.01 0.99	P31-b 210 s3 66.99 20.75 0.21 0.00 1.28 10.55 0.08 99.85 2.94 1.07 0.01 0.06 0.90 0.00 4.97	P31-c 211 s3 67.01 21.17 0.12 0.02 1.42 10.41 0.03 100.17 2.93 1.09 0.00 0.07 0.88 0.00 4.97 0.00 0.93	P31-b 212 s3 67.17 20.77 0.08 0.00 1.18 10.92 0.17 100.30 2.93 1.07 0.00 0.06 0.92 0.01 5.00 0.01 0.93	P32-b 213 s3 68.24 20.30 0.00 0.01 0.38 11.05 100.04 2.98 1.04 0.00 0.02 0.93 0.00 4.97 0.00 0.98	P32 214 s3 67.31 20.60 0.11 0.02 1.26 10.56 99.94 2.94 1.06 0.00 0.06 0.90 0.00 4.97	P32-c 215 s3 66.41 21.29 0.15 0.01 1.53 10.44 0.40 99.93 2.91 1.10 0.07 0.89 0.01 4.98	P32-b 216 s3 67.77 20.75 0.08 0.04 0.83 10.89 0.02 100.38 2.95 1.06 0.00 0.04 0.92 0.00 4.98 0.00 0.96	P41-IPX3 323 s4 68.28 19.03 0.46 0.03 0.22 11.39 0.03 99.44 3.00 0.98 0.02 0.01 0.97 0.00 4.98	P34 238 s4 69.48 19.26 0.14 0.00 1.56 8.70 0.04 99.19 3.04 0.99 0.00 0.07 0.74 0.00 4.85	P34-b 240 s4 75.09 16.60 0.00 0.00 0.61 7.82 0.05 100.16 3.20 0.83 0.00 0.03 0.65 0.00 4.71 0.00 0.95 0.04	P34-c 239 s4 70.64 18.80 0.10 0.00 0.89 6.62 0.01 97.06 3.11 0.97 0.00 0.04 0.56 0.00 4.69 0.00 0.93	P35-b 245 s4 69.59 19.94 0.06 0.00 1.51 7.77 0.06 98.92 3.03 1.02 0.00 0.07 0.66 0.00 4.79 0.00 0.90	P36-c 249 s4 67.12 18.82 0.15 0.00 1.37 10.41 0.09 97.95 2.99 0.01 0.07 0.90 0.00 4.96 0.00 0.93	P37-c 255 s4 67.57 18.63 0.18 0.00 1.10 10.42 0.20 98.09 3.01 0.98 0.01 0.05 0.90 0.01 4.96	P38-b 256 s4 67.65 18.61 0.15 0.00 1.14 10.95 0.10 98.60 3.00 0.97 0.00 0.05 0.94 0.01 4.98 0.01 0.94	P38-b 259 s4 67.89 18.70 0.00 0.00 0.73 11.18 0.08 98.58 3.01 0.98 0.00 0.03 0.96 0.00 4.99 0.00 0.96	P38-c 258 s4 66.74 19.44 0.17 0.00 1.29 10.78 0.16 98.59 2.97 1.02 0.01 0.06 0.93 0.01 4.99 0.01 0.93

Lame	N3	N3	N3	N3	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4
Séquence	S3	S3	S3	S3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2 P3	S2
N° du cristal	P38-b	P39-b	P40-c	P40-b																							
N° analyse SiO₂	260 s4 67.47	263 s4 68.36	267 s4 67.23	268 s4 67.26	2-1 s2 l 69.54	2-2 s2 l 68.99	2-3 s2 l 68.89	2-4 s2 l 69.54	2-5 s2 l 68.55	2-6 s2 l 69.50	2-7 s2 l 69.49	2-8 s2 l 65.81	2-9 s2 l 68.55	2-10 s2 l 69.54	1-3 s2 L 73.42	1-7 s2 L 70.48	1-8 s2 L 71.34	1-9 s2 L 70.73	1-12 s2 L 68.21	1-13 s2 L 69.20	1-15 s2 L 69.17	1-16 s2 L 69.66	1-17 s2 L 69.35	1-18 s2 L 64.11	1-19 s2 L 69.01	1-20 s2 L 69.49	1-21 s2 L 69.12
Al ₂ O ₃	19.09	18.08	18.84	19.32	20.04	19.89	19.88	19.85	19.73	20.05	20.06	19.06	20.29	19.81	20.88	20.18	20.95	20.73	20.05	19.78	19.94	20.11	19.91	18.68	18.94	19.98	20.22
FeO Total	0.00	0.03	0.18	0.16	0.25	0.07	0.00	0.00	0.06	0.05	0.00	0.09	0.28	0.20	0.04	0.29	0.00	0.03	0.04	0.00	0.00	0.05	0.00	0.12	0.00	0.10	0.02
MgO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.02
CaO	0.98	0.26	1.48	1.67	0.16	0.13	0.25	0.21	0.19	0.25	0.19	0.05	0.13	0.07	0.28	0.93	0.16	0.12	0.14	0.09	0.20	0.05	0.20	0.02	0.16	0.22	0.16
Na₂O	10.75	11.41	10.28	10.47	11.24	11.33	11.19	11.26	11.08	11.14	11.29	4.15	10.61	11.34	4.71	7.08	6.39	10.17	11.23	11.31	11.15	11.47	11.19	0.33	11.10	11.00	11.23
K ₂ O	0.05	0.07	0.05	0.04	0.09	0.04	0.13	0.07	0.04	0.07	0.08	10.46	0.44	0.08	0.07	0.04	0.11	0.11	0.10	0.10	0.11	0.06	0.10	16.10	0.02	0.08	0.13
Total	98.34	98.21	98.06	98.91	101.32	100.46	100.34	100.92	99.64	101.06	101.11	99.62	100.30	101.05	99.40	98.99	98.96	101.90	99.78	100.48	100.57	101.43	100.75	99.36	99.23	100.89	100.90
FORMULE STRUCT	TURALE (8	3 Oxygène	es)																								
Si	3.00	3.04	3.00	2.98	2.99	3.00	2.99	3.00	3.00	3.00	3.00	2.99	2.98	3.00	3.11	3.05	3.07	3.01	2.98	3.00	3.00	2.99	3.00	2.98	3.03	3.00	2.99
Al	1.00	0.95	0.99	1.01	1.02	1.02	1.02	1.01	1.02	1.02	1.02	1.02	1.04	1.01	1.04	1.03	1.06	1.04	1.03	1.01	1.02	1.02	1.01	1.02	0.98	1.02	1.03
Fe ³⁺	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ca	0.05	0.01	0.07	0.08	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.04	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.01	0.01
Na	0.93	0.98	0.89	0.90	0.94	0.95	0.94	0.94	0.94	0.93	0.94	0.37	0.89	0.95	0.39	0.59	0.53	0.84	0.95	0.95	0.94	0.96	0.94	0.03	0.94	0.92	0.94
K	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.61	0.02	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.96	0.00	0.00	0.01
Total	4.97	4.98	4.95	4.97	4.97	4.98	4.97	4.97	4.97	4.96	4.97	4.99	4.96	4.97	4.56	4.73	4.67	4.90	4.98	4.97	4.97	4.97	4.97	4.99	4.96	4.95	4.97
%Or	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.62	0.03	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.97	0.00	0.00	0.01
%Ab	0.95	0.98	0.92	0.92	0.99	0.99	0.98	0.99	0.99	0.98	0.99	0.38	0.97	0.99	0.96	0.93	0.97	0.99	0.99	0.99	0.98	0.99	0.98	0.03	0.99	0.98	0.98
%An	0.05	0.01	0.07	0.08	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.00	0.03	0.07	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.01	0.01
7.07 11.1	0.00	0.01	0.07	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.00	0.00	0.07	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.01	0.0.
Position verticale*	101244	101785	103669	104069	107438	107373	107308	107244	107179	107114	107049	106985	106920	106855	107307	107290	107285	107281	107268	107264	107256	107251	107247	107243	107239	107234	107230
														100000	.0.00.	101200											
Lame	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4
Lame Séquence	N4 S2	N4 S2		1														N4 S2	N4 S2		N4 S2	N4 S2				N4 S2	N4 S2
			N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4			N4			N4	N4	N4		
Séquence N° du cristal N° analyse	S2 P3 1-22 s2 L	S2 P3 1-23 s2 L	N4 S2 P3 1-24 s2 L	N4 S2 P3 1-25 s2 L	N4 S2 P4 9-1 s2 L	N4 S2 P4 9-2 s2 L	N4 S2 P4 9-4 s2 L	N4 S2 P4 9-6 s2 L	N4 S2 P4 9-7 s2 L	N4 S2 P4 9-8 s2 L	N4 S2 P4 9-9 s2 L	N4 S2 P4 9-10 s2 L	N4 S2 P4 9-11 s2 L	N4 S2 P4 9-12 s2 L	N4 S2 P4 9-13 s2 L	N4 S2 P4 9-14 s2 L	N4 S2 P4 9-15 s2 L	S2 P4 9-17 s2 L	S2 P4 9-18 s2 L	N4 S2 P4 9-19 s2 L	S2 P4 9-20 s2 L	S2 P4 9-22 s2 L	N4 S2 P4 9-23 s2 L	N4 S2 P4 9-24 s2 L	N4 S2 P4 9-25 s2 L	S2 P4 10-1 s2 l	S2 P4 10-2 s2 l
Séquence N° du cristal N° analyse SiO ₂	S2 P3	S2 P3	N4 S2 P3	N4 S2 P3	N4 S2 P4	N4 S2 P4	N4 S2 P4	N4 S2 P4	N4 S2 P4	N4 S2 P4	N4 S2 P4	N4 S2 P4	N4 S2 P4	N4 S2 P4	N4 S2 P4	N4 S2 P4	N4 S2 P4	S2 P4	S2 P4	N4 S2 P4 9-19 s2 L 66.81	S2 P4	S2 P4	N4 S2 P4	N4 S2 P4	N4 S2 P4	S2 P4	S2 P4
Séquence N° du cristal N° analyse	S2 P3 1-22 s2 L	S2 P3 1-23 s2 L	N4 S2 P3 1-24 s2 L	N4 S2 P3 1-25 s2 L	N4 S2 P4 9-1 s2 L	N4 S2 P4 9-2 s2 L	N4 S2 P4 9-4 s2 L	N4 S2 P4 9-6 s2 L	N4 S2 P4 9-7 s2 L	N4 S2 P4 9-8 s2 L	N4 S2 P4 9-9 s2 L	N4 S2 P4 9-10 s2 L	N4 S2 P4 9-11 s2 L	N4 S2 P4 9-12 s2 L	N4 S2 P4 9-13 s2 L	N4 S2 P4 9-14 s2 L	N4 S2 P4 9-15 s2 L	S2 P4 9-17 s2 L	S2 P4 9-18 s2 L	N4 S2 P4 9-19 s2 L	S2 P4 9-20 s2 L	S2 P4 9-22 s2 L	N4 S2 P4 9-23 s2 L	N4 S2 P4 9-24 s2 L	N4 S2 P4 9-25 s2 L	S2 P4 10-1 s2 l	S2 P4 10-2 s2 l
Séquence N° du cristal N° analyse SiO ₂	S2 P3 1-22 s2 L 69.23	S2 P3 1-23 s2 L 69.47	N4 S2 P3 1-24 s2 L 69.33	N4 S2 P3 1-25 s2 L 69.89	N4 S2 P4 9-1 s2 L 69.13	N4 S2 P4 9-2 s2 L 69.18	N4 S2 P4 9-4 s2 L 69.08	N4 S2 P4 9-6 s2 L 67.02	N4 S2 P4 9-7 s2 L 67.48	N4 S2 P4 9-8 s2 L 67.00	N4 S2 P4 9-9 s2 L 66.64	N4 S2 P4 9-10 s2 L 66.81	N4 S2 P4 9-11 s2 L 67.19	N4 S2 P4 9-12 s2 L 65.72	N4 S2 P4 9-13 s2 L 68.06	N4 S2 P4 9-14 s2 L 67.98	N4 S2 P4 9-15 s2 L 66.96	S2 P4 9-17 s2 L 67.05	S2 P4 9-18 s2 L 66.71	N4 S2 P4 9-19 s2 L 66.81	S2 P4 9-20 s2 L 67.83	S2 P4 9-22 s2 L 67.99	N4 S2 P4 9-23 s2 L 67.81	N4 S2 P4 9-24 s2 L 68.52	N4 S2 P4 9-25 s2 L 68.10	S2 P4 10-1 s2 l 69.31	S2 P4 10-2 s2 l 67.99
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃	P3 1-22 s2 L 69.23 19.86	S2 P3 1-23 s2 L 69.47 20.04	N4 S2 P3 1-24 s2 L 69.33 19.93	N4 S2 P3 1-25 s2 L 69.89 19.79	N4 S2 P4 9-1 s2 L 69.13 19.87	N4 S2 P4 9-2 s2 L 69.18 19.99	N4 S2 P4 9-4 s2 L 69.08 20.11	N4 S2 P4 9-6 s2 L 67.02 21.14	N4 S2 P4 9-7 s2 L 67.48 20.55	N4 S2 P4 9-8 s2 L 67.00 20.69	N4 S2 P4 9-9 s2 L 66.64 20.79	N4 S2 P4 9-10 s2 L 66.81 21.07	N4 S2 P4 9-11 s2 L 67.19 20.61	N4 S2 P4 9-12 s2 L 65.72 21.64	N4 S2 P4 9-13 s2 L 68.06 20.19	N4 S2 P4 9-14 s2 L 67.98 19.59	N4 S2 P4 9-15 s2 L 66.96 19.97	9-17 s2 L 67.05 20.79	S2 P4 9-18 s2 L 66.71 20.34	N4 S2 P4 9-19 s2 L 66.81 20.89	9-20 s2 L 67.83 19.85	S2 P4 9-22 s2 L 67.99 20.06	N4 S2 P4 9-23 s2 L 67.81 20.18	N4 S2 P4 9-24 s2 L 68.52 20.10	N4 S2 P4 9-25 s2 L 68.10 19.93	S2 P4 10-1 s2 l 69.31 19.73	S2 P4 10-2 s2 l 67.99 19.82
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total	S2 P3 1-22 s2 L 69.23 19.86 0.03	S2 P3 1-23 s2 L 69.47 20.04 0.03	N4 S2 P3 1-24 s2 L 69.33 19.93 0.03	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04	N4 S2 P4 9-6 s2 L 67.02 21.14 0.17	N4 S2 P4 9-7 s2 L 67.48 20.55 0.14	N4 S2 P4 9-8 s2 L 67.00 20.69 0.11	N4 S2 P4 9-9 s2 L 66.64 20.79 0.06	N4 S2 P4 9-10 s2 L 66.81 21.07 0.10	N4 S2 P4 9-11 s2 L 67.19 20.61 0.05	N4 S2 P4 9-12 s2 L 65.72 21.64 0.01	N4 S2 P4 9-13 s2 L 68.06 20.19 0.06	N4 S2 P4 9-14 s2 L 67.98 19.59 0.13	N4 S2 P4 9-15 s2 L 66.96 19.97 0.10	S2 P4 9-17 s2 L 67.05 20.79 0.11	S2 P4 9-18 s2 L 66.71 20.34 0.00	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12	9-20 s2 L 67.83 19.85 0.03	\$2 P4 9-22 s2 L 67.99 20.06 0.00	N4 S2 P4 9-23 s2 L 67.81 20.18 0.05	N4 S2 P4 9-24 s2 L 68.52 20.10 0.03	N4 S2 P4 9-25 s2 L 68.10 19.93 0.02	S2 P4 10-1 s2 I 69.31 19.73 0.28	S2 P4 10-2 s2 l 67.99 19.82 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00	S2 P3 1-23 s2 L 69.47 20.04 0.03 0.00	N4 S2 P3 1-24 s2 L 69.33 19.93 0.03 0.00	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.00	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04 0.01	N4 S2 P4 9-6 s2 L 67.02 21.14 0.17 0.03	N4 S2 P4 9-7 s2 L 67.48 20.55 0.14 0.00	N4 S2 P4 9-8 s2 L 67.00 20.69 0.11 0.00	N4 S2 P4 9-9 s2 L 66.64 20.79 0.06 0.00	N4 S2 P4 9-10 s2 L 66.81 21.07 0.10 0.00	N4 S2 P4 9-11 s2 L 67.19 20.61 0.05 0.00	N4 S2 P4 9-12 s2 L 65.72 21.64 0.01 0.02	N4 S2 P4 9-13 s2 L 68.06 20.19 0.06 0.00	N4 S2 P4 9-14 s2 L 67.98 19.59 0.13 0.00	N4 S2 P4 9-15 s2 L 66.96 19.97 0.10 0.00	S2 P4 9-17 s2 L 67.05 20.79 0.11 0.00	S2 P4 9-18 s2 L 66.71 20.34 0.00 0.07	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00	S2 P4 9-20 s2 L 67.83 19.85 0.03 0.00	S2 P4 9-22 s2 L 67.99 20.06 0.00 0.00	N4 S2 P4 9-23 s2 L 67.81 20.18 0.05 0.00	N4 S2 P4 9-24 s2 L 68.52 20.10 0.03 0.00	N4 S2 P4 9-25 s2 L 68.10 19.93 0.02 0.00	S2 P4 10-1 s2 l 69.31 19.73 0.28 0.00	S2 P4 10-2 s2 l 67.99 19.82 0.00 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00 0.14	S2 P3 1-23 s2 L 69.47 20.04 0.03 0.00 0.25	N4 S2 P3 1-24 s2 L 69.33 19.93 0.03 0.00 0.11	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 0.00	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.00 0.22	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04 0.01 0.30	N4 S2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58	N4 S2 P4 9-7 s2 L 67.48 20.55 0.14 0.00 1.34	N4 S2 P4 9-8 s2 L 67.00 20.69 0.11 0.00 1.24	N4 S2 P4 9-9 s2 L 66.64 20.79 0.06 0.00 1.66	N4 S2 P4 9-10 s2 L 66.81 21.07 0.10 0.00 1.53	N4 S2 P4 9-11 s2 L 67.19 20.61 0.05 0.00 1.29	N4 S2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16	N4 S2 P4 9-13 s2 L 68.06 20.19 0.06 0.00 0.76	N4 S2 P4 9-14 s2 L 67.98 19.59 0.13 0.00 0.98	N4 S2 P4 9-15 s2 L 66.96 19.97 0.10 0.00 1.28	S2 P4 9-17 s2 L 67.05 20.79 0.11 0.00 1.55	S2 P4 9-18 s2 L 66.71 20.34 0.00 0.07 0.56	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00 1.44	S2 P4 9-20 s2 L 67.83 19.85 0.03 0.00 0.36	S2 P4 9-22 s2 L 67.99 20.06 0.00 0.00 0.34	N4 S2 P4 9-23 s2 L 67.81 20.18 0.05 0.00 0.70	N4 S2 P4 9-24 s2 L 68.52 20.10 0.03 0.00 0.36	N4 S2 P4 9-25 s2 L 68.10 19.93 0.02 0.00 0.63	S2 P4 10-1 s2 l 69.31 19.73 0.28 0.00 0.06	S2 P4 10-2 s2 l 67.99 19.82 0.00 0.00 0.46
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00 0.14 11.12	S2 P3 1-23 s2 L 69.47 20.04 0.03 0.00 0.25 11.10	N4 S2 P3 1-24 s2 L 69.33 19.93 0.03 0.00 0.11 11.45	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 0.00	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.00 0.22 11.28	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25 11.14	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04 0.01 0.30 11.06	N4 S2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58 10.31	N4 S2 P4 9-7 s2 L 67.48 20.55 0.14 0.00 1.34 10.46	N4 S2 P4 9-8 s2 L 67.00 20.69 0.11 0.00 1.24 10.31	N4 S2 P4 9-9 s2 L 66.64 20.79 0.06 0.00 1.66 10.30	N4 S2 P4 9-10 s2 L 66.81 21.07 0.10 0.00 1.53 10.27	N4 S2 P4 9-11 s2 L 67.19 20.61 0.05 0.00 1.29 10.39	N4 S2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16 9.99	N4 S2 P4 9-13 s2 L 68.06 20.19 0.06 0.00 0.76 10.12	N4 S2 P4 9-14 s2 L 67.98 19.59 0.13 0.00 0.98 10.56	N4 S2 P4 9-15 s2 L 66.96 19.97 0.10 0.00 1.28 10.41	S2 P4 9-17 s2 L 67.05 20.79 0.11 0.00 1.55 10.43	S2 P4 9-18 s2 L 66.71 20.34 0.00 0.07 0.56 6.97	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00 1.44 10.29	S2 P4 9-20 s2 L 67.83 19.85 0.03 0.00 0.36 8.97 2.43	S2 P4 9-22 s2 L 67.99 20.06 0.00 0.00 0.34 10.61	N4 S2 P4 9-23 s2 L 67.81 20.18 0.05 0.00 0.70 10.77	N4 S2 P4 9-24 s2 L 68.52 20.10 0.03 0.00 0.36 11.24	N4 S2 P4 9-25 s2 L 68.10 19.93 0.02 0.00 0.63 11.19	S2 P4 10-1 s2 l 69.31 19.73 0.28 0.00 0.06 11.33	S2 P4 10-2 s2 l 67.99 19.82 0.00 0.00 0.46 11.36
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00 0.14 11.12 0.05 100.43	\$2 P3 1-23 s2 L 69.47 20.04 0.03 0.00 0.25 11.10 0.04 100.94	N4 S2 P3 1-24 s2 L 69.33 19.93 0.03 0.00 0.11 11.45 0.03 100.88	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 0.00 11.29 0.06	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.00 0.22 11.28 0.05	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25 11.14 0.08	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04 0.01 0.30 11.06 0.08	N4 \$2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58 10.31 0.10	N4 S2 P4 9-7 s2 L 67.48 20.55 0.14 0.00 1.34 10.46 0.25	N4 S2 P4 9-8 s2 L 67.00 20.69 0.11 0.00 1.24 10.31 0.48	N4 S2 P4 9-9 s2 L 66.64 20.79 0.06 0.00 1.66 10.30 0.06	N4 S2 P4 9-10 s2 L 66.81 21.07 0.10 0.00 1.53 10.27 0.46	N4 S2 P4 9-11 s2 L 67.19 20.61 0.05 0.00 1.29 10.39 0.07	N4 S2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16 9.99 0.08	N4 S2 P4 9-13 s2 L 68.06 20.19 0.06 0.00 0.76 10.12 0.80	N4 S2 P4 9-14 s2 L 67.98 19.59 0.13 0.00 0.98 10.56 0.18	N4 S2 P4 9-15 s2 L 66.96 19.97 0.10 0.00 1.28 10.41 0.10	S2 P4 9-17 s2 L 67.05 20.79 0.11 0.00 1.55 10.43 0.10	S2 P4 9-18 s2 L 66.71 20.34 0.00 0.07 0.56 6.97 5.35	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00 1.44 10.29 0.10	S2 P4 9-20 s2 L 67.83 19.85 0.03 0.00 0.36 8.97 2.43	S2 P4 9-22 s2 L 67.99 20.06 0.00 0.00 0.34 10.61 0.08	N4 S2 P4 9-23 s2 L 67.81 20.18 0.05 0.00 0.70 10.77 0.00	N4 S2 P4 9-24 s2 L 68.52 20.10 0.03 0.00 0.36 11.24 0.03	N4 \$2 P4 9-25 \$2 L 68.10 19.93 0.02 0.00 0.63 11.19 0.05	S2 P4 10-1 s2 l 69.31 19.73 0.28 0.00 0.06 11.33 0.06	S2 P4 10-2 s2 l 67.99 19.82 0.00 0.46 11.36 0.03
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00 0.14 11.12 0.05 100.43	\$2 P3 1-23 s2 L 69.47 20.04 0.03 0.00 0.25 11.10 0.04 100.94	N4 S2 P3 1-24 s2 L 69.33 19.93 0.03 0.00 0.11 11.45 0.03 100.88	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 0.00 11.29 0.06	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.00 0.22 11.28 0.05	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25 11.14 0.08	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04 0.01 0.30 11.06 0.08	N4 \$2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58 10.31 0.10	N4 S2 P4 9-7 s2 L 67.48 20.55 0.14 0.00 1.34 10.46 0.25	N4 S2 P4 9-8 s2 L 67.00 20.69 0.11 0.00 1.24 10.31 0.48	N4 S2 P4 9-9 s2 L 66.64 20.79 0.06 0.00 1.66 10.30 0.06	N4 S2 P4 9-10 s2 L 66.81 21.07 0.10 0.00 1.53 10.27 0.46	N4 S2 P4 9-11 s2 L 67.19 20.61 0.05 0.00 1.29 10.39 0.07	N4 S2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16 9.99 0.08	N4 S2 P4 9-13 s2 L 68.06 20.19 0.06 0.00 0.76 10.12 0.80	N4 S2 P4 9-14 s2 L 67.98 19.59 0.13 0.00 0.98 10.56 0.18	N4 S2 P4 9-15 s2 L 66.96 19.97 0.10 0.00 1.28 10.41 0.10	S2 P4 9-17 s2 L 67.05 20.79 0.11 0.00 1.55 10.43 0.10	S2 P4 9-18 s2 L 66.71 20.34 0.00 0.07 0.56 6.97 5.35	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00 1.44 10.29 0.10	S2 P4 9-20 s2 L 67.83 19.85 0.03 0.00 0.36 8.97 2.43	S2 P4 9-22 s2 L 67.99 20.06 0.00 0.00 0.34 10.61 0.08	N4 S2 P4 9-23 s2 L 67.81 20.18 0.05 0.00 0.70 10.77 0.00	N4 S2 P4 9-24 s2 L 68.52 20.10 0.03 0.00 0.36 11.24 0.03	N4 \$2 P4 9-25 \$2 L 68.10 19.93 0.02 0.00 0.63 11.19 0.05	S2 P4 10-1 s2 l 69.31 19.73 0.28 0.00 0.06 11.33 0.06	\$2 P4 10-2 \$21 67.99 19.82 0.00 0.00 0.46 11.36 0.03 99.67
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00 0.14 11.12 0.05 100.43 TURALE (E 3.00	S2 P3 1-23 s2 L 69.47 20.04 0.03 0.00 0.25 11.10 0.04 100.94 3 Oxygène 3.00	N4 S2 P3 1-24 s2 L 69.33 19.93 0.00 0.11 11.45 0.03 100.88 es) 3.00	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 0.00 11.29 0.06 101.23	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.02 11.28 0.05 100.56	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25 11.14 0.08 100.73	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04 0.01 0.30 11.06 0.08 100.67	N4 S2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58 10.31 0.10 100.35	N4 S2 P4 9-7 s2 L 67.48 20.55 0.14 0.00 1.34 10.46 0.25 100.23	N4 S2 P4 9-8 s2 L 67.00 20.69 0.11 0.00 1.24 10.31 0.48 99.84	N4 S2 P4 9-9 s2 L 66.64 20.79 0.06 0.00 1.66 10.30 0.06 99.51	N4 S2 P4 9-10 s2 L 66.81 21.07 0.10 0.00 1.53 10.27 0.46 100.24	N4 S2 P4 9-11 s2 L 67.19 20.61 0.05 0.00 1.29 10.39 0.07 99.61	N4 S2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16 9.99 0.08 98.63	N4 S2 P4 9-13 s2 L 68.06 20.19 0.06 0.06 0.076 10.12 0.80 99.98	N4 S2 P4 9-14 s2 L 67.98 19.59 0.13 0.00 0.98 10.56 0.18 99.42	N4 S2 P4 9-15 s2 L 66.96 19.97 0.10 0.00 1.28 10.41 0.10 98.82	\$2 P4 9-17 s2 L 67.05 20.79 0.11 0.00 1.55 10.43 0.10 100.02	\$2 P4 9-18 s2 L 66.71 20.34 0.00 0.07 0.56 6.97 5.35 100.00	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00 1.44 10.29 0.10 99.65	\$2 P4 9-20 s2 L 67.83 19.85 0.03 0.00 0.36 8.97 2.43 99.46 \$	\$2 P4 9-22 \$2 L 67.99 20.06 0.00 0.00 0.34 10.61 0.08 99.0812-1	N4 S2 P4 9-23 s2 L 67.81 20.18 0.05 0.00 0.70 10.77 0.00 99.51	N4 S2 P4 9-24 s2 L 68.52 20.10 0.03 0.00 0.36 11.24 0.03 100.28	N4 S2 P4 9-25 s2 L 68.10 19.93 0.02 0.00 0.63 11.19 0.05 99.93	\$2 P4 10-1 s21 69.31 19.73 0.28 0.00 0.06 11.33 0.06 100.78	\$2 P4 10-2 \$21 67.99 19.82 0.00 0.00 0.46 11.36 0.03 99.67
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00 0.14 11.12 0.05 100.43 TURALE (8 3.00 1.01	\$2 P3 1-23 s2 L 69.47 20.04 0.03 0.00 0.25 11.10 0.04 100.94 8 Oxygène 3.00 1.02	N4 S2 P3 1-24 s2 L 69.33 19.93 0.03 0.01 11.45 0.03 100.88 es) 3.00 1.01	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 11.29 0.06 101.23	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.02 11.28 0.05 100.56	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25 11.14 0.08 100.73	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04 0.01 0.30 11.06 0.08 100.67	N4 S2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58 10.31 0.10 100.35	N4 S2 P4 9-7 s2 L 67.48 20.55 0.14 0.00 1.34 10.46 0.25 100.23	N4 S2 P4 9-8-8-2-L 67.00 20.69 0.11 0.00 1.24 10.31 0.48 99.84 2.94 1.07	N4 S2 P4 9-9 s2 L 66.64 20.79 0.06 0.00 1.66 10.30 0.06 99.51	N4 S2 P4 9-10 s2 L 66.81 21.07 0.10 0.00 1.53 10.27 0.46 100.24 2.92 1.09	N4 S2 P4 9-11 s2 L 67.19 20.61 0.05 0.00 1.29 10.39 0.07 99.61 2.95 1.07	N4 S2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16 9.99 0.08 98.63	N4 S2 P4 9-13 s2 L 68.06 20.19 0.06 0.07 610.12 0.80 99.98 2.98 1.04	N4 S2 P4 9-14 s2 L 67.98 19.59 0.13 0.00 0.98 10.56 0.18 99.42 2.99 1.01	N4 S2 P4 9-15 s2 L 66.96 19.97 0.10 0.00 1.28 10.41 0.10 98.82 2.96 1.04	\$2 P4 9-17 \$2 L 67.05 20.79 0.11 0.00 1.55 10.43 0.10 100.02 2.93 1.07	\$2 P4 9-18 \$2 L 66.71 20.34 0.00 0.07 0.56 6.97 5.35 100.00 2.96 1.06	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00 1.44 10.29 0.10 99.65	\$2 P4 9-20 s2 L 67.83 19.85 0.03 0.00 0.36 8.97 2.43 99.46 \$ 2.99 1.03	\$2 P4 9-22 \$2 L 67.99 20.06 0.00 0.34 10.61 0.08 99.0812-1	N4 S2 P4 9-23 s2 L 67.81 20.18 0.05 0.70 10.77 0.00 99.51	N4 S2 P4 9-24 s2 L 68.52 20.10 0.03 0.03 11.24 0.03 100.28	N4 S2 P4 9-25 s2 L 68.10 19.93 0.02 0.00 0.63 11.19 0.05 99.93 2.98 1.03	S2 P4 10-1 s2 l 69.31 19.73 0.28 0.00 0.06 11.33 0.06 100.78 3.00 1.01	\$2 P4 10-2 \$21 67.99 19.82 0.00 0.46 11.36 0.03 99.67 2.98 1.02
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³*	\$2 P3 1-22 \$2 L 69.23 19.86 0.03 0.00 0.14 11.12 0.05 100.43 TURALE (8 3.00 1.01 0.00	\$2 P3 1-23 s2 L 69.47 20.04 0.03 0.00 0.25 11.10 0.04 100.94 8 Oxygène 3.00 1.02 0.00	N4 S2 P3 1-24 s2 L 69.33 19.93 0.03 0.01 111.45 0.03 100.88 es) 3.00 1.01	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 0.00 11.29 0.06 101.23 3.01 1.00 0.01	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.02 11.28 0.05 100.56 3.00 1.01 0.00	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25 11.14 0.08 100.73 2.99 1.02 0.00	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04 0.01 0.30 0.08 100.67 2.99 1.03 0.00	N4 S2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58 10.31 0.10 100.35	N4 S2 P4 9-7 s2 L 67.48 20.55 0.14 0.00 1.34 10.46 0.25 100.23 2.95 1.06 0.00	N4 S2 P4 9-8-s2-L 67.00 20.69 0.11 0.00 1.24 10.31 0.48 99.84 2.94 1.07 0.00	N4 S2 P4 9-9-82 L 66.64 20.79 0.06 0.00 1.66 10.30 0.06 99.51 2.93 1.08 0.00	N4 S2 P4 9-10 s2 L 66.81 21.07 0.10 0.00 1.53 10.27 0.46 100.24 2.92 1.09 0.00	N4 S2 P4 9-11 s2 L 67.19 20.61 0.05 0.00 1.29 10.39 0.07 99.61 2.95 1.07 0.00	N4 S2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16 9.99 0.08 98.63 2.91 1.13	N4 S2 P4 9-13 s2 L 68.06 20.19 0.06 0.076 10.12 0.80 99.98 2.98 1.04	N4 S2 P4 9-14 s2 L 67.98 19.59 0.13 0.00 0.98 10.56 0.18 99.42 2.99 1.01 0.00	N4 S2 P4 9-15 s2 L 66.96 19.97 0.10 0.00 1.28 10.41 0.10 98.82 2.96 1.04 0.00	\$2 P4 9-17 \$2 L 67.05 20.79 0.11 0.00 1.55 10.43 0.10 100.02 2.93 1.07 0.00	\$2 P4 9-18 \$2 L 66.71 20.34 0.00 0.07 0.56 6.97 5.35 100.00 2.96 1.06 0.00	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00 1.44 10.29 0.10 99.65 2.93 1.08 0.00	\$2 P4 9-20 s2 L 67.83 19.85 0.03 0.00 0.36 8.97 2.43 99.46 \$ 2.99 1.03 0.00	\$2 P4 9-22 \$2 L 67.99 20.06 0.00 0.34 10.61 0.08 99.0812-1 2.99 1.04 0.00	N4 S2 P4 9-23 s2 L 67.81 20.18 0.05 0.70 0.70 0.77 0.00 99.51 2.97 1.04	N4 S2 P4 9-24 s2 L 68.52 20.10 0.03 0.00 0.36 11.24 0.03 100.28 2.98 1.03 0.00	N4 S2 P4 9-25 s2 L 68.10 19.93 0.02 0.00 0.63 11.19 0.05 99.93 2.98 1.03 0.00	\$2 P4 10-1 s2 l 69.31 19.73 0.28 0.00 0.06 11.33 0.06 100.78 3.00 1.01 0.01	\$2 P4 10-2 s2 l 67.99 19.82 0.00 0.46 11.36 0.03 99.67 2.98 1.02 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00 0.14 11.12 0.05 100.43 TURALE (6 3.00 0.00 0.01	\$2 P3 1-23 s2 L 69.47 20.04 0.03 0.00 0.25 11.10 0.04 100.94 3 Oxygène 3.00 1.02 0.00 0.01	N4 \$2 P3 1-24 s2 L 69.33 19.93 0.00 0.11 11.45 0.03 10.08 ess) 3.00 1.01 0.00 0.00	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 0.00 11.29 0.06 101.23 3.01 1.00 0.01	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.00 0.22 11.28 0.05 100.56 3.00 1.01 0.00 0.01	N4 \$2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25 11.14 0.08 100.73 2.99 1.02 0.00 0.01	N4 \$2 P4 9-4 \$2 L 69.08 20.11 0.04 0.01 0.30 11.06 0.08 100.67 2.99 1.03 0.00 0.01	N4 \$2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58 10.31 0.10 100.35 2.92 1.09 0.01 0.07	N4 \$2 P4 9-7 \$2 L 67.48 20.55 0.14 0.00 1.34 10.46 0.25 100.23 2.95 1.06 0.00 0.06	N4 \$2 P4 9-8 \$2 L 67.00 20.69 0.11 0.00 1.24 10.31 0.48 99.84 2.94 1.07 0.00 0.06	N4 \$2 P4 9-9 s2 L 66.64 20.79 0.06 0.00 1.66 10.30 0.06 99.51 2.93 1.08 0.00 0.08	N4 S2 P4 9-10 s2 L 66.81 21.07 0.10 0.00 1.53 10.27 0.46 100.24 2.92 1.09 0.00 0.07	N4 \$2 P4 9-11 \$2 L 67.19 20.61 0.05 0.00 1.29 10.39 0.07 99.61 2.95 1.07 0.00 0.06	N4 \$2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16 9.99 0.08 98.63 2.91 1.13 0.00 0.06	N4 \$2 P4 9-13 \$2 L 68.06 20.19 0.06 0.00 0.76 10.12 0.80 99.98 2.98 1.04 0.00 0.04	N4 \$2 P4 9-14 \$2 L 67.98 19.59 0.13 0.00 0.98 10.56 0.18 99.42 2.99 1.01 0.00 0.00	N4 \$2 P4 9-15 \$2 L 66.96 19.97 0.10 0.00 1.28 10.41 0.10 98.82 2.96 1.04 0.00 0.00	\$2 P4 9-17 s2 L 67.05 20.79 0.11 0.00 1.55 10.43 0.10 100.02 2.93 1.07 0.00 0.07	\$2 P4 9-18 s2 L 66.71 20.34 0.00 0.07 0.56 6.97 5.35 100.00 2.96 1.06 0.00 0.03	N4 \$2 9-19 \$2 L 66.81 20.89 0.12 0.00 1.44 10.29 0.10 99.65 2.93 1.08 0.00 0.07	\$2 P4 9-20 s2 L 67.83 19.85 0.03 0.00 0.36 8.97 2.43 99.46 \$ 2.99 1.03 0.00 0.02	\$2 P4 9-22 \$2 L 67.99 20.06 0.00 0.34 10.61 0.08 99.0812-1 2.99 1.04 0.00 0.02	N4 \$2 P4 9-23 s2 L 67.81 20.18 0.05 0.00 0.70 10.77 0.00 99.51 2.97 1.04 0.00 0.03	N4 \$2 P4 9-24 s2 L 68.52 20.10 0.03 0.00 0.36 11.24 0.03 100.28 2.98 1.03 0.00 0.00	N4 \$2 P4 9-25 s 2 L 68.10 19.93 0.02 0.00 0.63 11.19 0.05 99.93 2.98 1.03 0.00 0.03	\$2 P4 10-1 s21 69.31 19.73 0.28 0.00 0.06 11.33 0.06 100.78 3.00 1.01 0.01 0.00	\$2 P4 10-2 s2 l 67.99 19.82 0.00 0.46 11.36 0.03 99.67 2.98 1.02 0.00 0.02
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³+	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00 0.14 11.12 0.05 100.43 TURALE (6 3.00 1.01 0.00 0.01 0.93	\$2 P3 1-23 s2 L 69.47 20.04 0.03 0.00 0.25 11.10 0.04 100.94 3 Oxygène 3.00 1.02 0.00 0.01 0.93	N4 \$2 P3 1-24 \$2 L 69.33 19.93 0.03 0.00 0.11 11.45 0.03 100.88 ess) 3.00 1.01 0.00 0.00 0.00	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 0.00 11.29 0.06 101.23 3.01 1.00 0.01 0.00	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.00 0.22 11.28 0.05 100.56 3.00 1.01 0.00 0.01 0.95	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25 11.14 0.08 100.73 2.99 1.02 0.00 0.01 0.93	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04 0.01 0.30 11.06 0.08 100.67 2.99 1.03 0.00 0.01 0.93	N4 S2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58 10.31 0.10 100.35 2.92 1.09 0.01 0.07 0.87	N4 \$2 P4 9-7 s2 L 67.48 20.55 0.14 0.00 1.34 10.46 0.25 100.23 2.95 1.06 0.00 0.06 0.89	N4 S2 P4 9-8 s2 L 67.00 20.69 0.11 0.00 1.24 10.31 0.48 99.84 2.94 1.07 0.00 0.06 0.88	N4 S2 P4 9-9 s2 L 66.64 20.79 0.06 0.00 1.66 10.30 0.06 99.51 2.93 1.08 0.00 0.08	N4 \$2 P4 9-10 s2 L 66.81 21.07 0.10 0.00 1.53 10.27 0.46 100.24 2.92 1.09 0.00 0.07 0.87	N4 \$2 P4 9-11 s2 L 67.19 20.61 0.05 0.00 1.29 10.39 0.07 99.61 2.95 1.07 0.00 0.06	N4 \$2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16 9.99 0.08 98.63 2.91 1.13 0.00 0.06 0.86	N4 \$2 P4 9-13 s2 L 68.06 20.19 0.06 0.00 0.76 10.12 0.80 99.98 2.98 1.04 0.00 0.04	N4 \$2 P4 9-14 \$2 L 67.98 19.59 0.13 0.00 0.98 10.56 0.18 99.42 2.99 1.01 0.00 0.05 0.90	N4 \$2 P4 9-15 \$2 L 66.96 19.97 0.10 0.00 1.28 10.41 0.10 98.82 2.96 1.04 0.00 0.00 0.00	\$2 P4 9-17 s2 L 67.05 20.79 0.11 0.00 1.55 10.43 0.10 100.02 2.93 1.07 0.00 0.07	\$2 P4 9-18 s2 L 66.71 20.34 0.00 0.07 0.56 6.97 5.35 100.00 2.96 1.06 0.00 0.03	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00 1.44 10.29 0.10 99.65 2.93 1.08 0.00 0.07 0.88	\$2 P4 9-20 s2 L 67.83 19.85 0.03 0.00 0.36 8.97 2.43 99.46 \$ 2.99 1.03 0.00 0.02 0.77	\$2 P4 9-22 \$2 L 67.99 20.06 0.00 0.34 10.61 0.08 99.0812-1 2.99 1.04 0.00 0.02	N4 \$2 P4 9-23 s2 L 67.81 20.18 0.05 0.00 0.70 10.77 0.00 99.51 2.97 1.04 0.00 0.03 0.92	N4 \$2 P4 9-24 \$2 L 68.52 20.10 0.03 0.00 0.36 11.24 0.03 100.28 2.98 1.03 0.00 0.00	N4 \$2 P4 9-25 s 2 L 68.10 19.93 0.02 0.00 0.63 11.19 0.05 99.93 2.98 1.03 0.00 0.03 0.03	\$2 P4 10-1 s21 69.31 19.73 0.28 0.00 0.06 11.33 0.06 100.78 3.00 1.01 0.01 0.00 0.95	\$2 P4 10-2 s2 l 67.99 19.82 0.00 0.46 11.36 0.03 99.67 2.98 1.02 0.00 0.02 0.97
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³* Ca Na K	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00 0.14 11.12 0.05 100.43 TURALE (8 3.00 0.01 0.00 0.01 0.03	\$2 P3 1-23 s2 L 69.47 20.04 0.03 0.00 0.25 11.10 0.04 100.94 3 Oxygène 3.00 1.02 0.00 0.01 0.93 0.00	N4 \$2 P3 1-24 \$2 L 69.33 19.93 0.00 0.11 11.45 0.03 100.88 ess) 3.00 1.01 0.00 0.00 0.00	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 0.00 11.29 0.06 101.23 3.01 1.00 0.01 0.00 0.00	N4 S2 P4 9-1 s2 L 69-13 2 L 69-13 2 L 69-13 19-87 0.00 0.00 0.22 11.28 0.05 100.56 3.00 1.01 0.00 0.01 0.95 0.00	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25 11.14 0.08 100.73 2.99 1.02 0.00 0.01 0.93 0.00	N4 \$2 P4 9-4 \$2 L 69.08 20.11 0.04 0.01 0.30 11.06 0.08 100.67 2.99 1.03 0.00 0.01 0.93 0.00	N4 S2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58 10.31 0.10 100.35 2.92 1.09 0.01 0.07 0.87 0.01	N4 S2 P4 9-7 s2 L 67.48 20.55 0.14 0.00 1.34 10.46 0.25 100.23 2.95 1.06 0.00 0.06 0.89 0.01	N4 S2 P4 9-8 s2 L 67.00 20.69 0.11 0.00 1.24 10.31 0.48 99.84 2.94 1.07 0.00 0.06 0.88 0.03	N4 S2 P4 9-9-9-2-L 66.64 20.79 0.06 0.00 1.66 10.30 0.06 99.51 2.93 1.08 0.00 0.08 0.88 0.00	N4 S2 P4 9-10 s2 L 66.81 21.07 0.10 0.00 1.53 10.27 0.46 100.24 2.92 1.09 0.00 0.07 0.87 0.03	N4 \$2 P4 9-11 \$2 L 67.19 20.61 0.05 0.00 1.29 10.39 0.07 99.61 2.95 1.07 0.00 0.06 0.08 0.00	N4 \$2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16 9.99 0.08 98.63 2.91 1.13 0.00 0.06 0.86 0.00	N4 \$2 P4 9-13 s2 L 68.06 20.19 0.06 0.00 0.76 10.12 0.80 99.98 1.04 0.00 0.04 0.86 0.04	N4 S2 P4 9-14 s2 L 67.98 19.59 0.13 0.00 0.98 10.56 0.18 99.42 2.99 1.01 0.00 0.05 0.90 0.01	N4 S2 P4 9-15 s2 L 66.96 19.97 0.10 0.00 1.28 10.41 0.10 98.82 2.96 1.04 0.00 0.06 0.89 0.01	\$2 P4 9-17 s2 L 67.05 20.79 0.11 0.00 1.55 10.43 0.10 100.02 2.93 1.07 0.00 0.07 0.88 0.01	\$2 P4 9-18 s2 L 66.71 20.34 0.00 0.07 5.35 100.00 2.96 1.06 0.00 0.03 0.60 0.30	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00 1.44 10.29 0.10 99.65 2.93 1.08 0.00 0.07 0.88 0.01	\$2 P4 9-20 \$2 L 67.83 19.85 0.03 0.00 0.36 8.97 2.43 99.46 \$ 2.99 1.03 0.00 0.02 0.77 0.14	\$2 P4 9-22 \$2 L 67.99 20.06 0.00 0.34 10.61 0.08 99.0812-1 2.99 1.04 0.00 0.02 0.90	N4 S2 P4 9-23 s2 L 67.81 20.18 0.05 0.00 0.70 10.77 0.00 99.51 2.97 1.04 0.00 0.03 0.92 0.00	N4 \$2 P4 9-24 \$2 L 68.52 20.10 0.03 0.00 0.36 11.24 0.03 100.28 2.98 1.03 0.00 0.02 0.00	N4 S2 P4 9-25 s2 L 68.10 19.93 0.02 0.00 0.63 11.19 0.05 99.93 2.98 1.03 0.00 0.0	\$2 P4 10-1 s2 l 69.31 19.73 0.28 0.00 0.06 11.33 0.06 100.78 3.00 1.01 0.01 0.00 0.95 0.00	\$2 P4 10-2 \$2.1 67.99 19.82 0.00 0.00 0.46 11.36 0.03 99.67 2.98 1.02 0.00 0.02
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00 0.14 11.12 0.05 100.43 TURALE (6 3.00 1.01 0.00 0.01 0.93	\$2 P3 1-23 s2 L 69.47 20.04 0.03 0.00 0.25 11.10 0.04 100.94 3 Oxygène 3.00 1.02 0.00 0.01 0.93	N4 \$2 P3 1-24 \$2 L 69.33 19.93 0.03 0.00 0.11 11.45 0.03 100.88 ess) 3.00 1.01 0.00 0.00 0.00	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 0.00 11.29 0.06 101.23 3.01 1.00 0.01 0.00	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.00 0.22 11.28 0.05 100.56 3.00 1.01 0.00 0.01 0.95	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25 11.14 0.08 100.73 2.99 1.02 0.00 0.01 0.93	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04 0.01 0.30 11.06 0.08 100.67 2.99 1.03 0.00 0.01 0.93	N4 S2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58 10.31 0.10 100.35 2.92 1.09 0.01 0.07 0.87	N4 \$2 P4 9-7 s2 L 67.48 20.55 0.14 0.00 1.34 10.46 0.25 100.23 2.95 1.06 0.00 0.06 0.89	N4 S2 P4 9-8 s2 L 67.00 20.69 0.11 0.00 1.24 10.31 0.48 99.84 2.94 1.07 0.00 0.06 0.88	N4 S2 P4 9-9 s2 L 66.64 20.79 0.06 0.00 1.66 10.30 0.06 99.51 2.93 1.08 0.00 0.08	N4 \$2 P4 9-10 s2 L 66.81 21.07 0.10 0.00 1.53 10.27 0.46 100.24 2.92 1.09 0.00 0.07 0.87	N4 \$2 P4 9-11 s2 L 67.19 20.61 0.05 0.00 1.29 10.39 0.07 99.61 2.95 1.07 0.00 0.06	N4 \$2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16 9.99 0.08 98.63 2.91 1.13 0.00 0.06 0.86	N4 \$2 P4 9-13 s2 L 68.06 20.19 0.06 0.00 0.76 10.12 0.80 99.98 2.98 1.04 0.00 0.04	N4 \$2 P4 9-14 \$2 L 67.98 19.59 0.13 0.00 0.98 10.56 0.18 99.42 2.99 1.01 0.00 0.05 0.90	N4 \$2 P4 9-15 \$2 L 66.96 19.97 0.10 0.00 1.28 10.41 0.10 98.82 2.96 1.04 0.00 0.00 0.00	\$2 P4 9-17 s2 L 67.05 20.79 0.11 0.00 1.55 10.43 0.10 100.02 2.93 1.07 0.00 0.07	\$2 P4 9-18 s2 L 66.71 20.34 0.00 0.07 0.56 6.97 5.35 100.00 2.96 1.06 0.00 0.03	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00 1.44 10.29 0.10 99.65 2.93 1.08 0.00 0.07 0.88	\$2 P4 9-20 s2 L 67.83 19.85 0.03 0.00 0.36 8.97 2.43 99.46 \$ 2.99 1.03 0.00 0.02 0.77	\$2 P4 9-22 \$2 L 67.99 20.06 0.00 0.34 10.61 0.08 99.0812-1 2.99 1.04 0.00 0.02	N4 \$2 P4 9-23 s2 L 67.81 20.18 0.05 0.00 0.70 10.77 0.00 99.51 2.97 1.04 0.00 0.03 0.92	N4 \$2 P4 9-24 \$2 L 68.52 20.10 0.03 0.00 0.36 11.24 0.03 100.28 2.98 1.03 0.00 0.00	N4 \$2 P4 9-25 s 2 L 68.10 19.93 0.02 0.00 0.63 11.19 0.05 99.93 2.98 1.03 0.00 0.03 0.03	\$2 P4 10-1 s21 69.31 19.73 0.28 0.00 0.06 11.33 0.06 100.78 3.00 1.01 0.01 0.00 0.95	\$2 P4 10-2 s2 l 67.99 19.82 0.00 0.46 11.36 0.03 99.67 2.98 1.02 0.00 0.02 0.97
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³* Ca Na K Total	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00 0.14 11.12 0.05 100.43 TURALE (8 3.00 1.01 0.00 0.01 0.93 0.00 4.96	S2 P3 1-23 s2 L 69.47 20.04 0.03 0.00 0.25 11.10 0.04 100.94 3 Oxygène 3.00 1.02 0.00 0.01 0.93 0.00 4.96	N4 S2 P3 1-24 s2 L 69.33 19.93 0.03 0.00 0.11 11.45 0.03 100.88 ess) 3.00 1.01 0.00 0.00 0.00 4.98	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 11.29 0.06 101.23 3.01 1.00 0.01 10.00 0.04 4.96	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.00 0.22 11.28 0.05 100.56 3.00 1.01 0.00 0.01 0.95 0.00 4.97	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25 11.14 0.08 100.73 2.99 1.02 0.00 0.01 0.93 0.00 4.97	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04 0.01 0.30 11.06 0.08 100.67 2.99 1.03 0.00 0.01 0.93 0.00 4.96	N4 S2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58 10.31 0.10 100.35 2.92 1.09 0.01 0.07 0.87 0.01 4.97	N4 S2 P4 9-7 s2 L 67.48 20.55 0.14 0.00 1.34 10.46 0.25 100.23 2.95 1.06 0.00 0.06 0.89 0.01 4.97	N4 S2 P4 9-8 s2 L 67.00 20.69 0.11 0.00 1.24 10.31 0.48 99.84 2.94 1.07 0.00 0.06 0.88 0.03 4.98	N4 S2 P4 9-9 s2 L 66.64 20.79 0.06 0.00 1.66 10.30 0.06 99.51 2.93 1.08 0.00 0.08 0.08 0.08 0.00 4.97	N4 S2 P4 9-10 s2 L 66.81 21.07 0.10 0.00 1.53 10.27 0.46 100.24 2.92 1.09 0.00 0.00 0.07 0.03 4.98	N4 S2 P4 9-11 s2 L 67.19 20.61 0.05 0.00 1.29 10.39 0.07 99.61 2.95 1.07 0.00 0.06 0.88 0.00 4.96	N4 S2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16 9.99 0.08 98.63 2.91 1.13 0.00 0.06 0.06 0.06 0.00 4.96	N4 S2 P4 9-13 s2 L 68.06 20.19 0.00 0.76 10.12 0.80 99.98 2.98 1.04 0.00 0.04 4.96	N4 S2 P4 9-14 s2 L 67.98 19.59 0.13 0.00 0.98 10.56 0.18 99.42 2.99 1.01 0.00 0.05 0.90 0.01 4.96	N4 S2 P4 9-15 s2 L 66.96 19.97 0.10 0.00 1.28 10.41 0.10 98.82 2.96 1.04 0.00 0.06 0.89 0.01 4.96	\$2 P4 9-17 s2 L 67.05 20.79 0.11 0.00 1.55 10.43 0.10 100.02 2.93 1.07 0.00 0.07 0.88 0.01 4.97	\$2 P4 9-18 s2 L 66.71 20.34 0.00 0.07 5.35 100.00 2.96 1.06 0.03 0.60 0.30 4.96	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00 1.44 10.29 0.10 99.65 2.93 1.08 0.00 0.07 0.88 0.01 4.97	\$2 P4 9-20 s2 L 67.83 19.85 0.03 0.00 0.36 8.97 2.43 99.46 \$ 2.99 1.03 0.00 0.02 0.77 0.14 4.95	\$2 P4 9-22 s2 L 67.99 20.06 0.00 0.00 0.34 10.61 0.08 19.0812-1 2.99 1.04 0.00 0.0	N4 S2 P4 9-23 s2 L 67.81 20.18 0.05 0.00 0.70 10.77 0.00 99.51 2.97 1.04 0.00 0.03 0.92 0.00 4.97	N4 S2 P4 9-24 s2 L 68.52 20.10 0.03 0.00 0.36 11.24 0.03 100.28 2.98 1.03 0.00 0.02 0.95 0.00 4.99	N4 S2 P4 9-25 s2 L 68.10 19.93 0.00 0.63 11.19 0.05 99.93 2.98 1.03 0.00 0.03 0.00 4.99	\$2 P4 10-1 s21 69.31 19.73 0.28 0.00 0.06 11.33 0.06 100.78 3.00 1.01 0.00 0.95 0.00 4.97	\$2 P4 10-2 \$2 I 67.99 19.82 0.00 0.00 0.46 11.36 0.03 99.67 2.98 1.02 0.00 0.00 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³* Ca Na K Total %Or	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00 0.14 11.12 0.05 100.43 TURALE (8 3.00 1.01 0.00 0.01 4.96	\$2 P3 1-23 s2 L 69.47 20.04 0.03 0.00 0.25 11.10 0.04 100.94 3 Oxygène 3.00 1.02 0.00 0.01 0.93 0.00 0.01 0.93 0.00 0.01 0.03 0.00 0.04 0.04 0.04 0.05 0	N4 S2 P3 1-24 s2 L 69.33 19.93 0.03 0.00 0.11 11.45 0.03 100.88 ess) 3.00 1.01 0.00 0.96 0.00 4.98	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 11.29 0.06 101.23 3.01 1.00 0.01 0.00 0.94 0.00 4.96	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.02 11.28 0.05 100.56 3.00 1.01 0.00 0.00 4.97	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25 11.14 0.08 100.73 2.99 1.02 0.00 0.01 0.93 0.00 4.97	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04 0.01 0.30 11.06 0.08 100.67 2.99 1.03 0.00 0.01 0.93 0.00 4.96	N4 S2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58 10.31 0.10 100.35 2.92 1.09 0.01 0.07 0.07 0.01	N4 S2 P4 9-7 s2 L 67.48 20.55 0.14 0.00 1.34 10.46 0.25 100.23 2.95 1.06 0.00 0.08 0.01 4.97	N4 S2 P4 9-8 s2 L 67.00 20.69 0.11 0.00 1.24 10.31 0.48 99.84 2.94 1.07 0.00 0.66 0.88 0.03 4.98	N4 S2 P4 9-9 s2 L 66.64 20.79 0.06 10.30 0.06 99.51 2.93 1.08 0.00 0.08 0.08 0.08 0.00 4.97	N4 S2 P4 9-10 s2 L 66.81 21.07 0.10 0.00 1.53 10.27 0.46 100.24 2.92 1.09 0.00 0.07 0.03 4.98	N4 S2 P4 9-11 s2 L 67.19 20.61 0.05 0.00 1.29 10.39 0.07 99.61 2.95 1.07 0.00 0.08 0.08 0.00 4.96	N4 S2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16 9.99 0.08 98.63 2.91 1.13 0.00 0.06 0.06 0.00 4.96	N4 S2 P4 9-13 s2 L 68.06 20.19 0.06 10.12 0.80 99.98 2.98 1.04 0.00 0.04 4.96	N4 S2 P4 9-14 s2 L 67-98 19.59 0.13 0.00 0.98 10.56 0.18 99.42 2.99 1.01 0.00 0.05 0.90 0.01 4.96	N4 S2 P4 9-15 s2 L 66.96 19.97 0.10 0.00 1.28 10.41 0.10 98.82 2.96 1.04 0.00 0.08 0.01 4.96	\$2 P4 9-17 s2 L 67.05 20.79 0.11 0.00 1.55 10.43 0.10 100.02 2.93 1.07 0.00 0.07 0.88 0.01 4.97	\$2 P4 9-18 s2 L 66.71 20.34 0.00 0.07 5.35 100.00 2.96 1.06 0.00 0.03 0.60 0.30 4.96	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00 1.44 10.29 0.10 99.65 2.93 1.08 0.00 0.07 0.88 0.01 4.97	\$2 P4 9-20 s2 L 67.83 19.85 0.03 0.00 0.36 8.97 2.43 99.46 \$ 2.99 1.03 0.00 0.02 0.77 0.14 4.95	\$2 \$4 9-22 \$2 L 67.99 20.06 0.00 0.00 0.34 10.61 0.08 29.0812-1 2.99 1.04 0.00 0.0	N4 S2 P4 9-23 s2 L 67.81 20.18 0.05 0.00 0.70 10.77 0.00 99.51 2.97 1.04 0.00 0.03 0.92 0.00 4.97	N4 S2 P4 9-24 s2 L 68.52 20.10 0.03 0.00 0.36 11.24 0.03 100.28 2.98 1.03 0.00 0.02 0.95 0.00 4.99	N4 S2 P4 9-25 s2 L 68.10 19.93 0.02 0.00 0.63 11.19 0.05 99.93 2.98 1.03 0.00 0.03 0.95 0.00 4.99	\$2 P4 10-1 s21 69.31 19.73 0.28 0.00 0.06 11.33 0.06 100.78 3.00 1.01 0.01 0.00 0.95 0.00 4.97	\$2 P4 10-2 s2 l 67.99 19.82 0.00 0.46 11.36 0.03 99.67 2.98 1.02 0.00 0.02 0.97 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe³* Ca Na K Total %Or %Ab	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00 0.14 11.12 0.05 100.43 TURALE (8 3.00 1.01 0.00 0.01 4.96 0.00 0.99	S2 P3 1-23 s2 L 69.47 20.04 0.03 0.05 11.10 0.04 100.94 3 Oxygène 3.00 0.01 0.93 0.00 4.96	N4 S2 P3 1-24 s2 L 69.33 19.93 0.00 0.11 11.45 0.03 100.88 es) 3.00 1.01 0.00 0.90 4.98	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 11.29 0.06 101.23 3.01 1.00 0.01 0.00 4.96	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.02 11.28 0.05 100.56 3.00 1.01 0.00 0.91 0.91	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25 11.14 0.08 100.73 2.99 1.02 0.00 0.01 0.93 0.00 4.97	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04 0.01 0.30 11.06 0.08 100.67 2.99 1.03 0.00 0.91 0.93 0.00 4.96	N4 S2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58 10.31 0.10 100.35 2.92 1.09 0.01 0.07 0.07 0.01 4.97	N4 S2 P4 9-7 s2 L 67.48 20.55 0.14 0.00 1.34 10.46 0.25 100.23 2.95 1.06 0.00 0.08 0.01 4.97 0.01 0.92	N4 S2 P4 9-8 s2 L 67.00 20.69 0.11 0.00 1.24 10.31 0.48 99.84 2.94 1.07 0.00 0.68 0.03 4.98	N4 S2 P4 9-9 s2 L 66.64 20.79 0.06 10.30 0.06 99.51 2.93 1.08 0.00 0.08 0.08 0.08 0.00 4.97	N4 S2 P4 9-10 s2 L 66.81 21.07 0.00 0.00 1.53 10.27 0.46 100.24 2.92 1.09 0.00 0.07 0.03 4.98	N4 S2 P4 9-11 s2 L 67.19 20.61 0.05 1.29 10.39 0.07 99.61 2.95 1.07 0.00 0.88 0.00 4.96	N4 S2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16 9.99 0.08 98.63 2.91 1.13 0.00 0.06 0.06 0.00 4.96	N4 S2 P4 9-13 s2 L 68.06 20.19 0.06 0.00 0.76 10.12 0.80 99.98 2.98 1.04 0.00 0.04 4.96	N4 S2 P4 9-14 s2 L 67-98 19.59 0.13 0.00 0.98 10.56 0.18 99.42 2.99 1.01 0.00 0.05 0.90 0.01 4.96	N4 S2 P4 9-15 s2 L 66.96 19.97 0.10 0.00 1.28 10.41 0.10 98.82 2.96 1.04 0.00 0.08 0.01 4.96	\$2 P4 9-17 s2 L 67.05 20.79 0.11 0.00 1.55 10.43 0.10 100.02 2.93 1.07 0.00 0.07 0.88 0.01 4.97	\$2 P4 9-18 s2 L 66.71 20.34 0.00 0.07 5.35 100.00 2.96 1.06 0.00 0.03 0.60 0.33 0.65	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00 1.44 10.29 0.10 99.65 2.93 1.08 0.00 0.7 0.88 0.01 4.97	\$2 \$2 \$74 \$67.83 19.85 0.03 0.00 0.36 8.97 2.43 \$99.46 \$2.99 1.03 0.00 0.02 0.77 0.14 4.95 0.15 0.83	\$2 \$4 9-22 \$2 L 67.99 20.06 0.00 0.03 10.61 0.08 09.0812-1 2.99 1.04 0.00 0.02 0.90 0.0	N4 S2 P4 9-23 s2-L 67.81 20.18 0.05 0.00 0.70 10.77 0.00 99.51 2.97 1.04 0.00 0.03 0.92 0.00 4.97	N4 S2 P4 9-24 s2 L 68.52 20.10 0.03 0.00 0.36 11.24 0.03 100.28 2.98 1.03 0.00 0.95 0.00 4.99	N4 S2 P4 9-25 s2 L 68.10 19.93 0.02 0.00 0.63 11.19 0.05 99.93 2.98 1.03 0.00 0.03 0.95 0.00 4.99	\$2 P4 10-1 s21 69.31 19.73 0.28 0.00 0.06 11.33 0.06 100.78 3.00 1.01 0.01 0.00 0.95 0.00 4.97	\$2 P4 10-2 s2 l 67.99 19.82 0.00 0.46 11.36 0.03 99.67 2.98 1.02 0.00 0.02 0.97 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³* Ca Na K Total %Or	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00 0.14 11.12 0.05 100.43 TURALE (8 3.00 1.01 0.00 0.01 4.96	\$2 P3 1-23 s2 L 69.47 20.04 0.03 0.00 0.25 11.10 0.04 100.94 3 Oxygène 3.00 1.02 0.00 0.01 0.93 0.00 0.01 0.93 0.00 0.01 0.03 0.00 0.04 0.04 0.04 0.05 0	N4 S2 P3 1-24 s2 L 69.33 19.93 0.03 0.00 0.11 11.45 0.03 100.88 ess) 3.00 1.01 0.00 0.96 0.00 4.98	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 11.29 0.06 101.23 3.01 1.00 0.01 0.00 0.94 0.00 4.96	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.02 11.28 0.05 100.56 3.00 1.01 0.00 0.00 4.97	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25 11.14 0.08 100.73 2.99 1.02 0.00 0.01 0.93 0.00 4.97	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04 0.01 0.30 11.06 0.08 100.67 2.99 1.03 0.00 0.01 0.93 0.00 4.96	N4 S2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58 10.31 0.10 100.35 2.92 1.09 0.01 0.07 0.07 0.01	N4 S2 P4 9-7 s2 L 67.48 20.55 0.14 0.00 1.34 10.46 0.25 100.23 2.95 1.06 0.00 0.08 0.01 4.97	N4 S2 P4 9-8 s2 L 67.00 20.69 0.11 0.00 1.24 10.31 0.48 99.84 2.94 1.07 0.00 0.66 0.88 0.03 4.98	N4 S2 P4 9-9 s2 L 66.64 20.79 0.06 10.30 0.06 99.51 2.93 1.08 0.00 0.08 0.08 0.08 0.00 4.97	N4 S2 P4 9-10 s2 L 66.81 21.07 0.10 0.00 1.53 10.27 0.46 100.24 2.92 1.09 0.00 0.07 0.03 4.98	N4 S2 P4 9-11 s2 L 67.19 20.61 0.05 0.00 1.29 10.39 0.07 99.61 2.95 1.07 0.00 0.08 0.08 0.00 4.96	N4 S2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16 9.99 0.08 98.63 2.91 1.13 0.00 0.06 0.06 0.00 4.96	N4 S2 P4 9-13 s2 L 68.06 20.19 0.06 10.12 0.80 99.98 2.98 1.04 0.00 0.04 4.96	N4 S2 P4 9-14 s2 L 67-98 19.59 0.13 0.00 0.98 10.56 0.18 99.42 2.99 1.01 0.00 0.05 0.90 0.01 4.96	N4 S2 P4 9-15 s2 L 66.96 19.97 0.10 0.00 1.28 10.41 0.10 98.82 2.96 1.04 0.00 0.08 0.01 4.96	\$2 P4 9-17 s2 L 67.05 20.79 0.11 0.00 1.55 10.43 0.10 100.02 2.93 1.07 0.00 0.07 0.88 0.01 4.97	\$2 P4 9-18 s2 L 66.71 20.34 0.00 0.07 5.35 100.00 2.96 1.06 0.00 0.03 0.60 0.30 4.96	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00 1.44 10.29 0.10 99.65 2.93 1.08 0.00 0.07 0.88 0.01 4.97	\$2 P4 9-20 s2 L 67.83 19.85 0.03 0.00 0.36 8.97 2.43 99.46 \$ 2.99 1.03 0.00 0.02 0.77 0.14 4.95	\$2 \$4 9-22 \$2 L 67.99 20.06 0.00 0.00 0.34 10.61 0.08 29.0812-1 2.99 1.04 0.00 0.0	N4 S2 P4 9-23 s2 L 67.81 20.18 0.05 0.00 0.70 10.77 0.00 99.51 2.97 1.04 0.00 0.03 0.92 0.00 4.97	N4 S2 P4 9-24 s2 L 68.52 20.10 0.03 0.00 0.36 11.24 0.03 100.28 2.98 1.03 0.00 0.02 0.95 0.00 4.99	N4 S2 P4 9-25 s2 L 68.10 19.93 0.02 0.00 0.63 11.19 0.05 99.93 2.98 1.03 0.00 0.03 0.95 0.00 4.99	\$2 P4 10-1 s21 69.31 19.73 0.28 0.00 0.06 11.33 0.06 100.78 3.00 1.01 0.01 0.00 0.95 0.00 4.97	\$2 P4 10-2 s2 l 67.99 19.82 0.00 0.46 11.36 0.03 99.67 2.98 1.02 0.00 0.02 0.97 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe³* Ca Na K Total %Or %Ab	S2 P3 1-22 s2 L 69.23 19.86 0.03 0.00 0.14 11.12 0.05 100.43 TURALE (8 3.00 1.01 0.00 0.01 4.96 0.00 0.99	\$2 P3 1-23 s2 L 69.47 20.04 0.03 0.00 0.25 11.10 0.04 100.94 3.00 1.02 0.00 0.01 0.93 0.00 4.96 0.00 0.99 0.01	N4 S2 P3 1-24 s2 L 69.33 19.93 0.00 0.11 11.45 0.03 100.88 ess) 3.00 1.01 0.00 0.96 0.00 4.98	N4 S2 P3 1-25 s2 L 69.89 19.79 0.16 0.00 0.00 11.29 0.06 101.23 3.01 1.00 0.01 0.00 0.94 0.00 4.96	N4 S2 P4 9-1 s2 L 69.13 19.87 0.00 0.02 11.28 0.05 100.56 3.00 1.01 0.00 0.95 0.00 4.97	N4 S2 P4 9-2 s2 L 69.18 19.99 0.08 0.00 0.25 11.14 0.08 100.73 2.99 1.02 0.00 0.01 0.93 0.00 4.97 0.00 0.98 0.01	N4 S2 P4 9-4 s2 L 69.08 20.11 0.04 0.01 0.30 11.06 0.08 100.67 2.99 1.03 0.00 0.01 0.93 0.00 4.96 0.00 0.98 0.01	N4 S2 P4 9-6 s2 L 67.02 21.14 0.17 0.03 1.58 10.31 0.10 100.35 2.92 1.09 0.01 0.07 0.87 0.01 4.97	N4 S2 P4 9-7 s2 L 67.48 20.55 0.14 0.00 1.34 10.46 0.25 100.23 2.95 1.06 0.00 0.06 0.89 0.01 4.97 0.01 0.92 0.07	N4 S2 P4 9-8 s2 L 67.00 20.69 0.11 0.00 1.24 10.31 0.48 99.84 2.94 1.07 0.00 0.06 0.88 0.03 4.98 0.03 0.91 0.06	N4 S2 P4 9-9 s2 L 66.64 20.79 0.06 0.00 1.66 10.30 0.06 99.51 2.93 1.08 0.00 0.08 0.88 0.00 4.97 0.00	N4 S2 P4 9-10 s2 L 66.81 21.07 0.00 0.00 1.53 10.27 0.46 100.24 2.92 1.09 0.00 0.07 0.03 4.98	N4 S2 P4 9-11 s2 L 67.19 20.61 0.05 0.00 1.29 10.39 0.07 99.61 2.95 1.07 0.00 0.06 0.88 0.00 4.96 0.00 0.93 0.06	N4 S2 P4 9-12 s2 L 65.72 21.64 0.01 0.02 1.16 9.99 0.08 98.63 2.91 1.13 0.00 0.06 0.06 0.00 4.96	N4 S2 P4 9-13 s2 L 68.06 20.19 0.06 0.00 0.76 10.12 0.80 99.98 2.98 1.04 0.00 0.04 4.96 0.04 4.96	N4 S2 P4 9-14 \$2 L 67.98 19.59 0.13 0.00 0.98 10.56 0.18 99.42 2.99 1.01 0.00 0.05 0.90 0.01 4.96 0.01 0.94 0.05	N4 S2 P4 9-15 s2 L 66.96 19.97 0.10 0.00 1.28 10.41 0.10 98.82 2.96 1.04 0.00 0.06 0.89 0.01 4.96 0.01 0.93 0.06	\$2 P4 9-17 s2 L 67.05 20.79 0.11 0.00 1.55 10.43 0.10 100.02 2.93 1.07 0.00 0.07 0.88 0.01 4.97 0.01 0.92 0.08	\$2 P4 9-18 s2 L 66.71 20.34 0.00 0.07 5.35 100.00 2.96 1.06 0.00 0.03 0.60 0.33 0.65	N4 S2 P4 9-19 s2 L 66.81 20.89 0.12 0.00 1.44 10.29 0.10 99.65 2.93 1.08 0.00 0.07 0.88 0.01 4.97 0.01 0.92 0.07	\$2 P4 9-20 \$2 L 67.83 19.85 0.03 0.06 8.97 2.43 99.46 \$2 2.99 1.03 0.00 0.02 0.77 0.14 4.95 0.15 0.83 0.02	\$2 \$2 \$9-22 \$2 L 67.99 20.06 0.00 0.34 10.61 0.08 99.0812-1 2.99 1.04 0.00 0.02 0.90 0.00 4.95 0.00 0.98 0.00	N4 S2 P4 9-23 s2-L 67.81 20.18 0.05 0.00 0.70 10.77 0.00 99.51 2.97 1.04 0.00 0.03 0.92 0.00 4.97	N4 S2 P4 9-24 s2 L 68.52 20.10 0.03 0.00 0.36 11.24 0.03 100.28 2.98 1.03 0.00 0.95 0.00 4.99	N4 S2 P4 9-25 s2 L 68.10 19.93 0.02 0.00 0.63 11.19 0.05 99.93 2.98 1.03 0.00 0.03 0.95 0.00 4.99	\$2 P4 10-1 s21 69.31 19.73 0.28 0.00 0.06 11.33 0.06 100.78 3.00 1.01 0.01 0.00 0.95 0.00 4.97	\$2 P4 10-2 s2 l 67.99 19.82 0.00 0.46 11.36 0.03 99.67 2.98 1.02 0.00 0.02 0.97 0.00

	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4
Lame	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	S2
Séquence												52 P4															52 P6
N° du cristal	P4	P4	P4	P4	P4	P4	P4	P4	P4	P4	P4		P6	P6	P6	P6	P6	P6	P6	P6	P6	P6	P6	P6	P6	P6	10
N° analyse SiO ₂	10-4 s2 l 66.80	10-5 s2 l 66.70	10-6 s2 l 66.18	10-7 s2 l 66.62	10-8 s2 l 67.33	10-9 s2 l 67.64	10-10 s2 l 66.60	10-11 s2 l 66.99	10-12 s2 l 66.96	10-13 s2 l 67.47	10-14 s2 l 68.43	10-15 s2 l 68.69	21-1 s2 L 67.54	21-2 s2 L 68.91	21-3 s2 L 67.73	21-5 s2 L 66.85	21-6 s2 L 67.70	21-7 s2 L 2 68.47	68.44	69.13	21-12 s2 L 2 68.78	68.58	21-14 s2 L : 69.41	21-15 s2 L 67.88	17-1 s2 l 68.26	17-2 s2 l 67.77	17-3 s2 l 67.38
Al ₂ O ₃																											
	20.86	20.07	21.16	21.07	20.89	21.10	20.60	20.90	20.93	20.79	20.11	19.82	20.67	19.61	20.37	19.51	20.85	20.82	20.84	20.22	20.17	19.67	19.64	20.21	20.27	20.60	21.14
FeO Total	0.10	0.20	0.18	0.72	0.00	0.18	0.13	0.16	0.18	0.20	0.05	0.14	0.12	0.00	0.13	0.12	0.12	0.10	0.06	0.02	0.03	0.02	0.00	0.16	0.18	0.09	0.03
MgO	0.00	0.04	0.00	0.12	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.02
CaO	1.40	1.22	1.66	0.77	1.10	1.33	1.27	1.53	1.56	1.20	0.46	0.22	1.32	0.34	1.17	1.41	1.34	1.25	0.99	0.56	0.58	0.32	0.30	0.92	1.00	1.14	1.30
Na ₂ O	9.71	10.08	10.43	9.56	10.16	10.42	10.48	10.33	10.37	10.41	11.03	11.33	10.60	11.07	10.45	10.28	10.28	10.42	10.70	11.05	10.94	11.11	11.20	10.67	10.82	10.49	10.46
K ₂ O	1.02	0.60	0.09	0.95	0.62	0.07	0.06	0.13	0.07	0.06	0.03	0.03	0.06	0.02	0.10	0.09	0.10	0.13	0.04	0.08	0.07	0.07	0.08	0.04	0.08	0.08	0.12
Total	99.88	98.90	99.69	99.82	100.11	100.74	99.14	100.04	100.07	100.12	100.11	100.22	100.31	99.95	99.95	98.26	100.38	101.18	101.08	101.10	100.58	99.76	100.64	99.89	100.61	100.18	100.45
FORMULE STRUCT	TURALE (8	Oxygène	,																								
Si	2.94	2.95	2.91	2.93	2.95	2.94	2.94	2.93	2.93	2.94	2.98	2.99	2.94	3.01	2.96	2.97	2.95	2.96	2.95	2.98	2.98	3.00	3.01	2.97	2.97	2.96	2.93
Al	1.08	1.05	1.10	1.09	1.08	1.08	1.07	1.08	1.08	1.07	1.03	1.02	1.06	1.01	1.05	1.02	1.07	1.06	1.06	1.03	1.03	1.01	1.00	1.04	1.04	1.06	1.08
Fe ³⁺	0.00	0.01	0.01	0.02	0.00	0.01	0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00
Ca	0.07	0.06	0.08	0.04	0.05	0.06	0.06	0.07	0.07	0.06	0.02	0.01	0.06	0.02	0.05	0.07	0.06	0.06	0.05	0.03	0.03	0.01	0.01	0.04	0.05	0.05	0.06
Na	0.83	0.86	0.89	0.81	0.86	0.88	0.90	0.88	0.88	0.88	0.93	0.96	0.90	0.94	0.89	0.89	0.87	0.87	0.90	0.92	0.92	0.94	0.94	0.90	0.91	0.89	0.88
К	0.06	0.03	0.00	0.05	0.03	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Total	4.97	4.96	4.99	4.94	4.97	4.97	4.97	4.97	4.97	4.96	4.97	4.99	4.97	4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.97	4.97	4.97	4.97	4.97	4.96	4.97
%Or	0.06	0.04	0.01	0.06	0.04	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
%Ab	0.87	0.90	0.91	0.90	0.91	0.93	0.93	0.92	0.92	0.94	0.98	0.99	0.93	0.98	0.94	0.92	0.93	0.93	0.95	0.97	0.97	0.98	0.98	0.95	0.95	0.94	0.93
%An	0.07	0.06	0.08	0.04	0.05	0.07	0.06	0.07	0.08	0.06	0.02	0.01	0.06	0.02	0.06	0.07	0.07	0.06	0.05	0.03	0.03	0.02	0.01	0.05	0.05	0.06	0.06
Description of the first																											
Position verticale*	110024	109962	109901	109840	109779	109718	109657	109596	109534	109473	109412	109351	111481	111481	111481	111481	111481	111481	111481	111481	111481	111481	111481	111481	111869	111719	111569
Lame	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4
Lame Séquence	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2
Lame Séquence N° du cristal	N4 S2 P6	N4 S2 P6	N4 S2 P6	N4 S2 P6	N4 S2 P6	N4 S2 P6	N4 S2 P6	N4 S2 P6	N4 S2 P6	N4 S2 P7	N4 S2 P7	N4 S2 P7	N4 S2 P7	N4 S2 P7	N4 S2 P7	N4 S2 P7	N4 S2 P7	N4 S2 P7	N4 S2 P7	N4 S2 P7	N4 S2 P7	N4 S2 P7	N4 S2 P7	N4 S2 P7	N4 S2 P7	N4 S2 P7	N4 S2 P7
Lame Séquence N° du cristal N° analyse	N4 S2 P6 17-4 s2 l	N4 S2 P6 17-5 s2 l	N4 S2 P6 17-6 s2 I	N4 S2 P6 22-1 s2 s :	N4 S2 P6 22-2 s2 s	N4 S2 P6 22-3 s2 s	N4 S2 P6 22-4 s2 s	N4 S2 P6 22-5 s2 s	N4 S2 P6 22-6 s2 s	N4 S2 P7 23-1 s2 l	N4 S2 P7 23-2 s2 I	N4 S2 P7 23-3 s2 l	N4 S2 P7 23-5 s2 l	N4 S2 P7 23-6 s2 l	N4 S2 P7 23-7 s2 l	N4 S2 P7 23-8 s2 l	N4 S2 P7 23-9 s2 l :	N4 S2 P7 23-10 s2 l 2	N4 S2 P7 23-11 s2 l 2	N4 S2 P7	N4 S2 P7 23-13 s2 l 2	N4 S2 P7 23-14 s2 l 2	N4 S2 P7 23-15 s2 l 2	N4 S2 P7 23-16 s2 l :	N4 S2 P7 23-17 s2 l 2	N4 S2 P7	N4 S2 P7 23-19 s2 l
Lame Séquence N° du cristal N° analyse SiO ₂	N4 S2 P6 17-4 s2 I 67.63	N4 S2 P6 17-5 s2 l 67.07	N4 S2 P6 17-6 s2 I 69.49	N4 S2 P6 22-1 s2 s : 68.40	N4 S2 P6 22-2 s2 s 67.62	N4 S2 P6 22-3 s2 s : 68.40	N4 S2 P6 22-4 s2 s 69.32	N4 S2 P6 22-5 s2 s 68.76	N4 S2 P6 22-6 s2 s 68.72	N4 S2 P7 23-1 s2 l 68.73	N4 S2 P7 23-2 s21 68.83	N4 S2 P7 23-3 s2 l 69.61	N4 S2 P7 23-5 s2 I 67.69	N4 S2 P7 23-6 s2 l 67.86	N4 S2 P7 23-7 s2 l 68.26	N4 S2 P7 23-8 s2 l 67.76	N4 S2 P7 23-9 s2 1 :	N4 S2 P7 23-10 s2 l 2 66.95	N4 S2 P7 23-11 s2 l 2 66.64	N4 S2 P7 3-12 s2 1 2 66.70	N4 S2 P7 23-13 s2 2 67.39	N4 S2 P7 23-14 s2 1 2 67.28	N4 S2 P7 23-15 s2 1 2 67.20	N4 S2 P7 23-16 s2 1 : 68.98	N4 S2 P7 23-17 s2 l 2 69.03	N4 S2 P7 3-18 s2 1 2 69.12	N4 S2 P7 23-19 s2 I 68.99
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃	N4 S2 P6 17-4 s2 l 67.63 20.63	N4 S2 P6 17-5 s2 l 67.07 21.00	N4 S2 P6 17-6 s2 I 69.49 19.56	N4 S2 P6 22-1 s2 s : 68.40 20.12	N4 S2 P6 22-2 s2 s 67.62 20.55	N4 S2 P6 22-3 s2 s : 68.40 19.36	N4 S2 P6 22-4 s2 s 69.32 19.74	N4 S2 P6 22-5 s2 s 68.76 19.74	N4 S2 P6 22-6 s2 s 68.72 19.66	N4 S2 P7 23-1 s2 l 68.73 19.60	N4 S2 P7 23-2 s2 l 68.83 20.06	N4 S2 P7 23-3 s2 l 69.61 19.87	N4 S2 P7 23-5 s2 I 67.69 20.64	N4 S2 P7 23-6 s2 l 67.86 20.53	N4 S2 P7 23-7 s2 l 68.26 20.30	N4 S2 P7 23-8 s2 l 67.76 20.68	N4 S2 P7 23-9 s2 l : 67.87 20.86	N4 S2 P7 23-10 s2 L2 66.95 20.32	N4 S2 P7 23-11 s2 l 2 66.64 20.90	N4 S2 P7 3-12 s2 1 2 66.70 20.82	N4 S2 P7 23-13 s2 1 2 67.39 20.94	N4 S2 P7 23-14 s2 1 2 67.28 20.94	N4 S2 P7 23-15 s2 1 2 67.20 20.81	N4 S2 P7 23-16 s2 1 : 68.98 20.00	N4 S2 P7 23-17 s2 l 2 69.03 19.97	N4 S2 P7 3-18 s2 1 2 69.12 20.32	N4 S2 P7 23-19 s2 l 68.99 20.65
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total	N4 S2 P6 17-4 s2 l 67.63 20.63 0.00	N4 S2 P6 17-5 s2 l 67.07 21.00 0.05	N4 S2 P6 17-6 s2 I 69.49 19.56 0.05	N4 S2 P6 22-1 s2 s : 68.40 20.12 0.09	N4 S2 P6 22-2 s2 s 67.62 20.55 0.25	N4 S2 P6 22-3 s2 s : 68.40 19.36 0.10	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08	N4 S2 P6 22-5 s2 s 68.76 19.74 0.04	N4 S2 P6 22-6 s2 s 68.72 19.66 0.07	N4 S2 P7 23-1 s2 l 68.73 19.60 0.12	N4 S2 P7 23-2 s21 68.83 20.06 0.06	N4 S2 P7 23-3 s2 l 69.61 19.87 0.03	N4 S2 P7 23-5 s2 l 67.69 20.64 0.15	N4 S2 P7 23-6 s2 l 67.86 20.53 0.07	N4 S2 P7 23-7 s2 l 68.26 20.30 0.11	N4 S2 P7 23-8 s2 l 67.76 20.68 0.14	N4 S2 P7 23-9 s2 1 : 67.87 20.86 0.06	N4 S2 P7 23-10 s2 l 2 66.95 20.32 0.12	N4 S2 P7 23-11 s2 2 66.64 20.90 0.16	N4 S2 P7 3-12 s2 l 2 66.70 20.82 0.17	N4 S2 P7 23-13 s2 2 67.39 20.94 0.17	N4 S2 P7 23-14 s2 l 2 67.28 20.94 0.17	N4 S2 P7 23-15 s2 l 2 67.20 20.81 0.17	N4 S2 P7 23-16 s2 l : 68.98 20.00 0.05	N4 S2 P7 23-17 s2 2 69.03 19.97 0.02	N4 S2 P7 3-18 s2 2 69.12 20.32 0.00	N4 S2 P7 23-19 s2 l 68.99 20.65 0.07
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO	N4 S2 P6 17-4 s2 l 67.63 20.63 0.00 0.00	N4 S2 P6 17-5 s2 l 67.07 21.00 0.05 0.04	N4 S2 P6 17-6 s2 I 69.49 19.56 0.05 0.01	N4 S2 P6 22-1 s2 s : 68.40 20.12 0.09 0.00	N4 S2 P6 22-2 s2 s 67.62 20.55 0.25 0.00	N4 S2 P6 22-3 s2 s 68.40 19.36 0.10 0.00	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00	N4 S2 P6 22-5 s2 s 68.76 19.74 0.04 0.00	N4 S2 P6 22-6 s2 s 68.72 19.66 0.07 0.00	N4 S2 P7 23-1 s2 l 68.73 19.60 0.12 0.00	N4 S2 P7 23-2 s2 l 68.83 20.06 0.06 0.01	N4 S2 P7 23-3 s2 l 69.61 19.87 0.03 0.02	N4 S2 P7 23-5 s2 l 67.69 20.64 0.15 0.00	N4 S2 P7 23-6 s2 l 67.86 20.53 0.07 0.00	N4 S2 P7 23-7 s2 l 68.26 20.30 0.11 0.01	N4 S2 P7 23-8 s2 l 67.76 20.68 0.14 0.00	N4 S2 P7 23-9 s2 l : 67.87 20.86 0.06 0.00	N4 S2 P7 23-10 s2 l 2 66.95 20.32 0.12 0.00	N4 S2 P7 23-11 s2 2 66.64 20.90 0.16 0.00	N4 S2 P7 3-12 s2 l 2 66.70 20.82 0.17 0.00	N4 S2 P7 23-13 s2 1 2 67.39 20.94 0.17 0.00	N4 S2 P7 23-14 s2 l 2 67.28 20.94 0.17 0.01	N4 S2 P7 23-15 s2 l 2 67.20 20.81 0.17 0.05	N4 S2 P7 23-16 s2 1 68.98 20.00 0.05 0.00	N4 S2 P7 23-17 s2 l 2 69.03 19.97 0.02 0.00	N4 S2 P7 3-18 s2 2 69.12 20.32 0.00 0.00	N4 S2 P7 23-19 s2 l 68.99 20.65 0.07 0.00
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO	N4 S2 P6 17-4 s2 l 67.63 20.63 0.00 0.00 1.34	N4 S2 P6 17-5 s2 l 67.07 21.00 0.05 0.04 1.62	N4 S2 P6 17-6 s2 l 69.49 19.56 0.05 0.01 0.00	N4 S2 P6 22-1 s2 s : 68.40 20.12 0.09 0.00 0.72	N4 S2 P6 22-2 s2 s 67.62 20.55 0.25 0.00 1.17	N4 S2 P6 22-3 s2 s : 68.40 19.36 0.10 0.00 0.92	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02	N4 S2 P6 22-5 s2 s 68.76 19.74 0.04 0.00 0.01	N4 S2 P6 22-6 s2 s 68.72 19.66 0.07 0.00 0.01	N4 S2 P7 23-1 s2 l 68.73 19.60 0.12 0.00 0.12	N4 S2 P7 23-2 s21 68.83 20.06 0.06 0.01 0.38	N4 S2 P7 23-3 s2 l 69.61 19.87 0.03 0.02 0.22	N4 S2 P7 23-5 s2 l 67.69 20.64 0.15 0.00 1.11	N4 S2 P7 23-6 s2 l 67.86 20.53 0.07 0.00 1.07	N4 S2 P7 23-7 s2 l 68.26 20.30 0.11 0.01 1.00	N4 S2 P7 23-8 s2 l 67.76 20.68 0.14 0.00 1.20	N4 S2 P7 23-9 s2 1 : 67.87 20.86 0.06 0.00 1.24	N4 S2 P7 23-10 s2 L2 66.95 20.32 0.12 0.00 1.17	N4 S2 P7 23-11 s2 1 2 66.64 20.90 0.16 0.00 1.67	N4 S2 P7 3-12 s2 1 2 66.70 20.82 0.17 0.00 1.74	N4 S2 P7 23-13 s2 1 2 67.39 20.94 0.17 0.00 1.70	N4 S2 P7 23-14 s2 1 2 67.28 20.94 0.17 0.01 1.57	N4 S2 P7 23-15 s2 1 2 67.20 20.81 0.17 0.05 1.55	N4 S2 P7 23-16 s2 1 : 68.98 20.00 0.05 0.00 0.53	N4 S2 P7 23-17 s2 l 2 69.03 19.97 0.02 0.00 0.41	N4 S2 P7 (3-18 s2 2 69.12 20.32 0.00 0.00 0.68	N4 S2 P7 23-19 s2 I 68.99 20.65 0.07 0.00 1.12
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O	N4 S2 P6 17-4 s2 l 67.63 20.63 0.00 0.00 1.34 10.37	N4 S2 P6 17-5 s2 l 67.07 21.00 0.05 0.04 1.62 10.47	N4 S2 P6 17-6 s2 l 69.49 19.56 0.05 0.01 0.00 11.36	N4 S2 P6 22-1 s2 s : 68.40 20.12 0.09 0.00 0.72 11.01	N4 S2 P6 22-2 s2 s 67.62 20.55 0.25 0.00 1.17 10.65	N4 S2 P6 22-3 s2 s : 68.40 19.36 0.10 0.00 0.92 11.20	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27	N4 S2 P6 22-5 s2 s 68.76 19.74 0.04 0.00 0.01 11.26	N4 S2 P6 22-6 s2 s 68.72 19.66 0.07 0.00 0.01 11.51	N4 S2 P7 23-1 s2 l 68.73 19.60 0.12 0.00 0.12 8.73	N4 S2 P7 23-2 s2 l 68.83 20.06 0.06 0.01 0.38 11.10	N4 S2 P7 23-3 s2 l 69.61 19.87 0.03 0.02 0.22 11.13	N4 S2 P7 23-5 s2 l 67.69 20.64 0.15 0.00 1.11 10.73	N4 S2 P7 23-6 s2 l 67.86 20.53 0.07 0.00 1.07 10.67	N4 S2 P7 23-7 s2 l 68.26 20.30 0.11 0.01 1.00 10.71	N4 S2 P7 23-8 s2 I 67.76 20.68 0.14 0.00 1.20 10.71	N4 S2 P7 23-9 s2 1 : 67.87 20.86 0.06 0.00 1.24 10.55	N4 S2 P7 23-10 s2 l 2 66.95 20.32 0.12 0.00 1.17 8.89	N4 S2 P7 33-11 s2 L2 66.64 20.90 0.16 0.00 1.67 10.27	N4 S2 P7 3-12 s2 1 2 66.70 20.82 0.17 0.00 1.74 10.30	N4 S2 P7 23-13 s2 L2 67.39 20.94 0.17 0.00 1.70 10.11	N4 S2 P7 23-14 s2 2 67.28 20.94 0.17 0.01 1.57 10.03	N4 S2 P7 23-15 s2 2 67.20 20.81 0.17 0.05 1.55 9.85	N4 S2 P7 23-16 s2 l : 68.98 20.00 0.05 0.00 0.53 11.08	N4 S2 P7 23-17 s2 2 69.03 19.97 0.02 0.00 0.41 11.00	N4 S2 P7 3-18 s2 1 2 69.12 20.32 0.00 0.00 0.68 10.96	N4 S2 P7 23-19 s2 l 68.99 20.65 0.07 0.00 1.12 10.55
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O	N4 S2 P6 17-4 s2 l 67.63 20.63 0.00 0.00 1.34 10.37 0.07	N4 S2 P6 17-5 s2 l 67.07 21.00 0.05 0.04 1.62 10.47 0.04	N4 S2 P6 17-6 s2 69.49 19.56 0.05 0.01 0.00 11.36 0.06	N4 S2 P6 22-1 s2 s : 68.40 20.12 0.09 0.00 0.72 11.01 0.07	N4 S2 P6 22-2 s2 s 67.62 20.55 0.25 0.00 1.17 10.65 0.12	N4 S2 P6 22-3 s2 s : 68.40 19.36 0.10 0.00 0.92 11.20 0.03	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27 0.09	N4 S2 P6 22-5 s2 s 68.76 19.74 0.04 0.00 0.01 11.26 0.09	N4 S2 P6 22-6 s2 s 68.72 19.66 0.07 0.00 0.01 11.51 0.04	N4 S2 P7 23-1 s2 l 68.73 19.60 0.12 0.00 0.12 8.73 3.67	N4 S2 P7 23-2 \$21 68.83 20.06 0.06 0.01 0.38 11.10	N4 S2 P7 23-3 s2 l 69.61 19.87 0.03 0.02 0.22 11.13 0.07	N4 S2 P7 23-5 s2 l 67.69 20.64 0.15 0.00 1.11 10.73 0.09	N4 S2 P7 23-6 s2 l 67.86 20.53 0.07 0.00 1.07 10.67 0.20	N4 S2 P7 23-7 s2 l 68.26 20.30 0.11 0.01 1.00 10.71 0.13	N4 S2 P7 23-8 s2 l 67.76 20.68 0.14 0.00 1.20 10.71 0.05	N4 S2 P7 23-9 s21 : 67.87 20.86 0.06 0.00 1.24 10.55 0.08	N4 S2 P7 23-10 s2 l 2 66.95 20.32 0.12 0.00 1.17 8.89 2.73	N4 S2 P7 23-11 s2 l 2 66.64 20.90 0.16 0.00 1.67 10.27 0.06	N4 S2 P7 3-12 s2 1 2 66.70 20.82 0.17 0.00 1.74 10.30 0.09	N4 S2 P7 23-13 \$2 2 67.39 20.94 0.17 0.00 1.70 10.11	N4 S2 P7 23-14 \$2 2 67.28 20.94 0.17 0.01 1.57 10.03 0.42	N4 S2 P7 23-15 s2 2 67.20 20.81 0.17 0.05 1.55 9.85 0.34	N4 S2 P7 23-16 s2 l 68.98 20.00 0.05 0.00 0.53 11.08 0.23	N4 S2 P7 23-17 s2 l 2 69.03 19.97 0.02 0.00 0.41 11.00 0.06	N4 S2 P7 (3-18 s2 2 69.12 20.32 0.00 0.00 0.68 10.96 0.05	N4 S2 P7 23-19 s2 l 68.99 20.65 0.07 0.00 1.12 10.55 0.04
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total	N4 S2 P6 17-4 s2 l 67.63 20.63 0.00 0.00 1.34 10.37 0.07	N4 S2 P6 17-5 s2 l 67.07 21.00 0.05 0.04 1.62 10.47 0.04 100.28	N4 \$2 P6 17-6 \$2 69.49 19.56 0.05 0.01 0.00 11.36 0.06 100.53	N4 S2 P6 22-1 s2 s : 68.40 20.12 0.09 0.00 0.72 11.01	N4 S2 P6 22-2 s2 s 67.62 20.55 0.25 0.00 1.17 10.65	N4 S2 P6 22-3 s2 s : 68.40 19.36 0.10 0.00 0.92 11.20	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27	N4 S2 P6 22-5 s2 s 68.76 19.74 0.04 0.00 0.01 11.26	N4 S2 P6 22-6 s2 s 68.72 19.66 0.07 0.00 0.01 11.51	N4 S2 P7 23-1 s2 l 68.73 19.60 0.12 0.00 0.12 8.73	N4 S2 P7 23-2 s2 l 68.83 20.06 0.06 0.01 0.38 11.10	N4 S2 P7 23-3 s2 l 69.61 19.87 0.03 0.02 0.22 11.13	N4 S2 P7 23-5 s2 l 67.69 20.64 0.15 0.00 1.11 10.73	N4 S2 P7 23-6 s2 l 67.86 20.53 0.07 0.00 1.07 10.67	N4 S2 P7 23-7 s2 l 68.26 20.30 0.11 0.01 1.00 10.71	N4 S2 P7 23-8 s2 I 67.76 20.68 0.14 0.00 1.20 10.71	N4 S2 P7 23-9 s2 1 : 67.87 20.86 0.06 0.00 1.24 10.55	N4 S2 P7 23-10 s2 l 2 66.95 20.32 0.12 0.00 1.17 8.89	N4 S2 P7 33-11 s2 L2 66.64 20.90 0.16 0.00 1.67 10.27	N4 S2 P7 3-12 s2 1 2 66.70 20.82 0.17 0.00 1.74 10.30	N4 S2 P7 23-13 s2 L2 67.39 20.94 0.17 0.00 1.70 10.11	N4 S2 P7 23-14 s2 2 67.28 20.94 0.17 0.01 1.57 10.03	N4 S2 P7 23-15 s2 2 67.20 20.81 0.17 0.05 1.55 9.85	N4 S2 P7 23-16 s2 l : 68.98 20.00 0.05 0.00 0.53 11.08	N4 S2 P7 23-17 s2 2 69.03 19.97 0.02 0.00 0.41 11.00	N4 S2 P7 3-18 s2 1 2 69.12 20.32 0.00 0.00 0.68 10.96	N4 S2 P7 23-19 s2 l 68.99 20.65 0.07 0.00 1.12 10.55
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT	N4 S2 P6 17-4 s2 l 67.63 20.63 0.00 1.34 10.37 0.07 100.04 TURALE (8	N4 S2 P6 17-5 s2 l 67.07 21.00 0.05 0.04 1.62 10.47 0.04 100.28 Oxygène	N4 S2 P6 17-6 s2 l 69.49 19.56 0.05 0.01 0.00 11.36 0.06 100.53	N4 S2 P6 22-1 s2 s : 68.40 20.12 0.09 0.00 0.72 11.01 0.07 100.40	N4 S2 P6 22-2 s2 s 67.62 20.55 0.25 0.00 1.17 10.65 0.12 100.35	N4 S2 P6 22-3 s2 s : 68.40 19.36 0.10 0.00 0.92 11.20 0.03 100.01	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27 0.09 0.51	N4 S2 P6 22-5 s2 s 68.76 19.74 0.04 0.00 0.01 11.26 0.09 99.90	N4 S2 P6 22-6 s2 s 68.72 19.66 0.07 0.00 0.01 11.51 0.04 100.00	N4 S2 P7 23-1 s2 l 68.73 19.60 0.12 0.00 0.12 8.73 3.67 100.97	N4 S2 P7 23-2 s21 68.83 20.06 0.01 0.38 11.10 0.06 100.51	N4 S2 P7 23-3 s2 l 69.61 19.87 0.03 0.02 0.22 11.13 0.07 100.94	N4 S2 P7 23-5 s2 l 67.69 20.64 0.15 0.00 1.11 10.73 0.09 100.40	N4 S2 P7 23-6 s2 l 67.86 20.53 0.07 0.00 1.07 10.67 0.20 100.40	N4 S2 P7 23-7 s2 l 68.26 20.30 0.11 0.01 1.00 10.71 0.13 100.51	N4 S2 P7 23-8 s2 l 67.76 20.68 0.14 0.00 1.20 10.71 0.05 100.51	N4 S2 P7 23-9 s2 1 : 67.87 20.86 0.06 0.00 1.24 10.55 0.08 100.66	N4 S2 P7 23-10 s2 2 66.95 20.32 0.12 0.00 1.17 8.89 2.73 100.18	N4 S2 P7 23-11 s2 l 2 66.64 20.90 0.16 0.00 1.67 10.27 0.06 99.69	N4 S2 P7 (3-12 s2 l 2 66.70 20.82 0.17 0.00 1.74 10.30 0.09 99.80	N4 S2 P7 23-13 s2 2 67.39 20.94 0.17 0.00 1.70 10.11 0.10 100.41	N4 S2 P7 23-14 s2 2 67.28 20.94 0.17 0.01 1.57 10.03 0.42 100.42	N4 S2 P7 23-15 s2 l 2 67.20 20.81 0.17 0.05 1.55 9.85 0.34 99.97	N4 S2 P7 23-16 s21 s68.98 20.00 0.05 0.00 0.53 11.08 0.23	N4 S2 P7 23-17 s2 l 2 69.03 19.97 0.02 0.00 0.41 11.00 0.06 100.49	N4 S2 P7 (3-18 s2 2 69.12 20.32 0.00 0.00 0.68 10.96 0.05 100.97	N4 S2 P7 23-19 s21 68.99 20.65 0.07 0.00 1.12 10.55 0.04 101.43
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total	N4 S2 P6 17-4 s21 67.63 20.63 0.00 0.00 1.34 10.37 0.07 100.04 TURALE (8 2.95	N4 S2 P6 17-5 s21 67.07 21.00 0.05 0.04 1.62 10.47 0.04 100.28 Oxygène 2.93	N4 S2 P6 17-6 s2 69.49 19.56 0.05 0.01 0.00 11.36 0.06 100.53 es) 3.01	N4 S2 P6 22-1 s2 s : 68.40 20.12 0.09 0.00 0.72 11.01 0.07 100.40	N4 S2 P6 22-2 s2 s 67.62 20.55 0.25 0.00 1.17 10.65 0.12 100.35	N4 S2 P6 22-3 s2 s : 68.40 19.36 0.10 0.00 0.92 11.20 0.03 100.01	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27 0.09 0.51	N4 S2 P6 22-5 s2 s 68.76 19.74 0.04 0.00 111.26 0.09 99.90	N4 S2 P6 22-6 s2 s 68.72 19.66 0.07 0.00 0.01 11.51 0.04 100.00	N4 S2 P7 23-1 s2 l 68.73 19.60 0.12 0.00 0.12 8.73 3.67 100.97	N4 S2 P7 23-2 s21 68.83 20.06 0.01 0.38 11.10 0.06 100.51	N4 S2 P7 23-3 s21 69.61 19.87 0.03 0.02 0.22 11.13 0.07 100.94	N4 S2 P7 23-5 s21 67.69 20.64 0.15 0.00 1.11 10.73 0.09 100.40	N4 S2 P7 23-6 s2 l 67.86 20.53 0.07 0.00 1.07 10.67 0.20 100.40	N4 S2 P7 23-7 s2 l 68.26 20.30 0.11 0.01 1.00 10.71 0.13 100.51	N4 S2 P7 23-8 s2 l 67.76 20.68 0.14 0.00 1.20 10.71 0.05 100.51	N4 S2 P7 23-9 s21: 67.87 20.86 0.06 0.00 1.24 10.55 0.08 100.66	N4 S2 P7 23-10 s2 l 2 66.95 20.32 0.12 0.00 1.17 8.89 2.73 100.18	N4 S2 P7 83-11 s2 l 2 66.64 20.90 0.16 0.00 1.67 10.27 0.06 99.69	N4 S2 P7 (3-12 s2 l 2 66.70 20.82 0.17 0.00 1.74 10.30 0.09 99.80	N4 S2 P7 23-13 s2 l 2 67.39 20.94 0.17 0.00 1.70 10.11 0.10 100.41	N4 S2 P7 83-14 s2 2 67.28 20.94 0.17 0.01 1.57 10.03 0.42 100.42	N4 S2 P7 23-15 s2 l 2 67.20 20.81 0.17 0.05 1.55 9.85 0.34 99.97	N4 S2 P7 23-16 s21 s21 s68.98 20.00 0.05 0.00 0.53 11.08 0.23 100.86	N4 S2 P7 23-17 s2 l 2 69.03 19.97 0.02 0.00 0.41 11.00 0.06 100.49	N4 S2 P7 (3-18 s2 2 69.12 20.32 0.00 0.00 0.68 10.96 0.05 100.97	N4 S2 P7 23-19 s21 68.99 20.65 0.07 0.00 1.12 10.55 0.04 101.43
Lame Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO Total MgO CaO Na₂O K₂O Total FORMULE STRUCT Si Al	N4 S2 P6 17-4 s21 67.63 20.63 0.00 0.00 1.34 10.37 0.07 100.04 TURALE (8 2.95 1.06	N4 S2 P6 17-5 s2 l 67.07 21.00 0.05 0.04 1.62 10.47 0.04 100.28 Oxygène 2.93 1.08	N4 S2 P6 17-6 s2 l 69.49 19.56 0.05 0.01 0.00 11.36 0.06 100.53 es) 3.01	N4 S2 P6 22-1 s2 s : 68.40 20.12 0.09 0.00 0.72 11.01 0.07 100.40	N4 S2 P6 22-2 s2 s 67.62 20.55 0.25 0.00 1.17 10.65 0.12 100.35	N4 S2 P6 22-3 s2 s : 68.40 19.36 0.10 0.00 0.92 11.20 0.03 100.01	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27 0.09 0.51	N4 S2 P6 22-5 s2 s 68.76 19.74 0.04 0.00 1.11.26 0.09 99.90	N4 S2 P6 22-6 s2 s 68.72 19.66 0.07 0.00 1.11.51 0.04 100.00 3.00 1.01	N4 S2 P7 23-1 s2 68.73 19.60 0.12 0.00 0.12 8.73 3.67 100.97	N4 S2 P7 23-2 s2 l 68.83 20.06 0.01 0.38 11.10 0.06 100.51	N4 S2 P7 23-3 s21 69.61 19.87 0.03 0.02 0.22 11.13 0.07 100.94	N4 S2 P7 23-5 s21 67.69 20.64 0.15 0.00 1.11 10.73 0.09 100.40	N4 S2 P7 23-6 s2 l 67.86 20.53 0.07 0.00 1.07 10.67 0.20 100.40	N4 S2 P7 23-7 s2 I 68.26 20.30 0.11 0.01 1.00 10.71 0.13 100.51	N4 S2 P7 23-8 s2 l 67.76 20.68 0.14 0.00 1.20 10.71 0.05 100.51	N4 S2 P7 23-9 s2 l i 67.87 20.86 0.06 0.00 1.24 10.55 0.08 100.66	N4 S2 P7 23-10 s2 2 66.95 20.32 0.12 0.00 1.17 8.89 2.73 100.18 2.95 1.06	N4 S2 P7 33-11 s2 l 2 66.64 20.90 0.16 0.00 1.67 10.27 0.06 99.69	N4 S2 P7 3-12 s2 l 2 66.70 20.82 0.17 0.00 1.74 10.30 0.09 99.80 2.93 1.08	N4 S2 P7 23-13 s2 2 67.39 20.94 0.17 0.00 1.70 10.11 0.10 100.41 2.94 1.08	N4 S2 P7 23-14 s2 l 2 67.28 20.94 0.17 0.01 1.57 10.03 0.42 100.42 2.93 1.08	N4 S2 P7 23-15 s21 2 67.20 20.81 0.17 0.05 1.55 9.85 0.34 99.97 2.94 1.07	N4 S2 P7 23-16 s2 l . 68.98 20.00 0.05 0.00 0.53 11.08 0.23 100.86	N4 S2 P7 23-17 s2 l 2 69.03 19.97 0.02 0.00 0.41 11.00 0.06 100.49 2.99 1.02	N4 S2 P7 3-18 s2 l 2 69.12 20.32 0.00 0.00 0.68 10.96 0.05 100.97	N4 S2 P7 23-19 s21 68.99 20.65 0.07 0.00 1.12 10.55 0.04 101.43 2.97 1.05
Lame Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO Total MgO CaO Na₂O K2O Total FORMULE STRUCT Si Al Fe³+	N4 S2 P6 17-4 s21 67.63 20.63 0.00 0.00 1.34 10.37 0.07 100.04 TURALE (8 2.95 1.06 0.00	N4 S2 P6 17-5 s21 67.07 21.00 0.05 0.04 1.62 10.47 0.04 100.28 Oxygène 2.93 1.08	N4 S2 P6 17-6 s2 l 69.49 19.56 0.05 0.01 0.00 11.36 0.06 100.53 es) 3.01 1.00	N4 S2 P6 22-1 s2 s : 68.40 20.12 0.09 0.00 0.72 11.01 0.07 100.40 2.97 1.03 0.00	N4 S2 P6 22-2 s2 s 67.62 20.55 0.25 0.01 1.17 10.65 0.12 100.35 2.95 1.06 0.01	N4 S2 P6 22-3 s2 s : 68.40 19.36 0.10 0.09 11.20 0.03 100.01 2.98 0.99 0.00	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27 0.09 0.51	N4 S2 P6 22-5 s2 s 68.76 19.74 0.04 0.00 111.26 0.09 99.90 3.00 1.01 0.00	N4 S2 P6 22-6 s2 s 68.72 19.66 0.07 0.00 1.11.51 0.04 100.00 3.00 1.01 0.00	N4 S2 P7 23-1 s2 l 68.73 19.60 0.12 0.00 0.12 8.73 3.67 100.97	N4 S2 P7 23-2 s21 68.83 20.06 0.06 0.01 0.38 11.10 0.06 100.51 2.99 1.03 0.00	N4 S2 P7 23-3 s2 l 69.61 19.87 0.03 0.02 0.22 11.13 0.07 100.94 3.00 1.01	N4 S2 P7 23-5 s21 67.69 20.64 0.15 0.00 1.11 10.73 0.09 100.40 2.95 1.06 0.00	N4 S2 P7 23-6 s2 l 67.86 20.53 0.07 0.00 1.07 0.20 100.40 2.96 1.05 0.00	N4 S2 P7 23-7 s2 I 68.26 20.30 0.11 0.01 1.00 10.71 0.13 100.51 2.97 1.04 0.00	N4 S2 P7 23-8 s2 l 67.76 20.68 0.14 0.00 1.20 10.71 0.05 100.51 2.95 1.06 0.00	N4 S2 P7 23-9 s2 l : 67.87 20.86 0.06 0.00 1.24 10.55 0.08 100.66 2.95 1.07	N4 S2 P7 23-10 s2 2 66.95 20.32 0.12 0.00 1.17 8.89 2.73 100.18 2.95 1.06 0.00	N4 S2 P7 33-11 s2 l 2 66.64 20.90 0.16 0.00 1.67 10.27 0.06 99.69 2.93 1.08 0.01	N4 S2 P7 3-12 s2 l 2 66.70 20.82 0.17 0.00 1.74 10.30 0.09 99.80 2.93 1.08 0.01	N4 S2 P7 23-13 s2 2 67.39 20.94 0.17 0.00 1.70 10.11 0.10 100.41 2.94 1.08 0.01	N4 S2 P7 33-14 s2 l 2 67.28 20.94 0.17 0.01 1.57 10.03 0.42 100.42 2.93 1.08 0.01	N4 S2 P7 23-15 s2 l 2 67.20 20.81 0.17 0.05 1.55 9.85 0.34 99.97 2.94 1.07	N4 S2 P7 23-16 s2 l . 68.98 20.00 0.05 0.00 0.53 11.08 0.23 100.86	N4 S2 P7 23-17 s2 l 2 69.03 19.97 0.02 0.00 0.41 11.00 0.06 100.49 2.99 1.02 0.00	N4 S2 P7 3-18 s2 l 2 69.12 20.32 0.00 0.68 10.96 0.05 100.97 2.98 1.03 0.00	N4 S2 P7 23-19 s21 68.99 20.65 0.07 0.00 1.12 10.55 0.04 101.43 2.97 1.05 0.00
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe³* Ca	N4 \$2 P6 17-4 s21 67.63 20.63 20.00 0.00 1.34 10.37 0.07 100.04 URALE (8 2.95 1.06 0.00 0.00	N4 \$2 P6 17-5 \$21 67.07 21.00 0.05 0.04 1.62 10.47 0.04 100.28 Oxygène 2.93 1.08 0.00 0.08	N4 \$2 P6 17-6 s2 69.49 19.56 0.05 0.01 0.00 11.36 0.06 100.53 es) 3.01 1.00 0.00 0.00	N4 S2 P6 22-1 \$2 \$ \$: 68.40 20.12 0.09 0.00 0.72 11.01 0.07 100.40 2.97 1.03 0.00 0.03	N4 S2 P6 22-2 s2 s 67.62 20.55 0.00 1.17 10.65 0.12 100.35 2.95 1.06 0.01 0.05	N4 S2 P6 22-3 s2 s 68.40 19.36 0.10 0.00 0.92 11.20 0.03 100.01 2.98 0.99 0.00 0.04	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27 0.09 0.51 3.01 1.01 0.00	N4 \$2 P6 22-5 \$2 \$ 68.76 19.74 0.04 0.00 0.01 11.26 0.09 99.90 3.00 1.01 0.00 0.00	N4 \$2 P6 22-6 \$2 \$ 68.72 19.66 0.07 0.00 0.01 11.51 0.04 100.00 3.00 1.01 0.00 0.00	N4 \$2 P7 23-1 s21 68.73 19.60 0.12 0.00 0.12 8.73 3.67 100.97 3.00 1.01 0.00 0.01	N4 S2 P7 23-2 s21 68.83 20.06 0.01 0.38 11.10 0.06 100.51 2.99 1.03 0.00 0.02	N4 S2 P7 23-3 s2 l 69.61 19.87 0.03 0.02 0.22 11.13 0.07 100.94 3.00 1.01 0.00 0.01	N4 \$2 P7 23-5 \$21 67.69 20.64 0.15 0.00 1.11 10.73 0.09 100.40 2.95 1.06 0.00 0.05	N4 S2 P7 23-6 s21 67.86 20.53 0.07 0.00 1.07 10.67 0.20 100.40 2.96 1.05 0.00 0.05	N4 \$2 P7 23-7 \$21 68.26 20.30 0.11 0.01 1.00 10.71 0.13 100.51 2.97 1.04 0.00 0.05	N4 S2 P7 23-8 s21 67.76 20.68 0.14 0.00 1.20 10.71 0.05 100.51 2.95 1.06 0.00 0.06	N4 \$2 P7 23-9 s21 : 67.87 20.86 0.06 0.00 1.24 10.55 0.08 100.66 2.95 1.07 0.00 0.00	N4 S2 P7 23-10 s2 2 66.95 20.32 0.12 0.00 1.17 8.89 2.73 100.18 2.95 1.06 0.00 0.06	N4 \$2 P7 23-11 \$2 2 66.64 20.90 0.16 0.00 1.67 10.27 0.06 99.69 2.93 1.08 0.01 0.08	N4 \$2 P7 66.70 20.82 0.17 0.00 1.74 10.30 0.09 99.80 2.93 1.08 0.01 0.08	N4 S2 P7 23-13 s2 2 67.39 20.94 0.17 0.00 1.70 10.11 0.10 100.41 2.94 1.08 0.01 0.08	N4 \$2 P7 67.28 67.28 20.94 0.17 0.01 1.57 10.03 0.42 100.42 2.93 1.08 0.01 0.07	N4 \$2 P7 23-15 \$2 1 67.20 20.81 0.17 0.05 1.55 9.85 0.34 99.97 2.94 1.07 0.01 0.07	N4 \$2 P7 23-16 \$21 68.98 20.00 0.05 0.00 0.53 11.08 0.23 100.86 2.99 1.02 0.00 0.00	N4 \$2 P7 23-17 \$2 2 69.03 19.97 0.02 0.00 0.41 11.00 0.06 100.49 2.99 1.02 0.00 0.02	N4 \$2 P7 (3-18 \$2 2 69.12 20.32 0.00 0.00 0.68 10.96 0.05 100.97 2.98 1.03 0.00 0.03	N4 \$2 P7 23-19 \$21 68.99 20.65 0.07 0.00 1.12 10.55 0.04 101.43 2.97 1.05 0.00 0.05
Lame Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO Total MgO CaO Na₂O K2O Total FORMULE STRUCT Si Al Fe³+	N4 S2 P6 17-4 s21 67.63 20.63 0.00 0.00 1.34 10.37 0.07 100.04 TURALE (8 2.95 1.06 0.00	N4 S2 P6 17-5 s21 67.07 21.00 0.05 0.04 1.62 10.47 0.04 100.28 Oxygène 2.93 1.08	N4 S2 P6 17-6 s2 l 69.49 19.56 0.05 0.01 0.00 11.36 0.06 100.53 es) 3.01 1.00	N4 S2 P6 22-1 s2 s : 68.40 20.12 0.09 0.00 0.72 11.01 0.07 100.40 2.97 1.03 0.00	N4 S2 P6 22-2 s2 s 67.62 20.55 0.25 0.01 1.17 10.65 0.12 100.35 2.95 1.06 0.01	N4 S2 P6 22-3 s2 s : 68.40 19.36 0.10 0.09 11.20 0.03 100.01 2.98 0.99 0.00	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27 0.09 0.51	N4 S2 P6 22-5 s2 s 68.76 19.74 0.04 0.00 111.26 0.09 99.90 3.00 1.01 0.00	N4 S2 P6 22-6 s2 s 68.72 19.66 0.07 0.00 1.11.51 0.04 100.00 3.00 1.01 0.00	N4 S2 P7 23-1 s2 l 68.73 19.60 0.12 0.00 0.12 8.73 3.67 100.97	N4 S2 P7 23-2 s21 68.83 20.06 0.06 0.01 0.38 11.10 0.06 100.51 2.99 1.03 0.00	N4 S2 P7 23-3 s2 l 69.61 19.87 0.03 0.02 0.22 11.13 0.07 100.94 3.00 1.01 0.00	N4 S2 P7 23-5 s21 67.69 20.64 0.15 0.00 1.11 10.73 0.09 100.40 2.95 1.06 0.00	N4 S2 P7 23-6 s2 l 67.86 20.53 0.07 0.00 1.07 0.20 100.40 2.96 1.05 0.00	N4 S2 P7 23-7 s2 I 68.26 20.30 0.11 0.01 1.00 10.71 0.13 100.51 2.97 1.04 0.00	N4 S2 P7 23-8 s2 l 67.76 20.68 0.14 0.00 1.20 10.71 0.05 100.51 2.95 1.06 0.00	N4 S2 P7 23-9 s2 l : 67.87 20.86 0.06 0.00 1.24 10.55 0.08 100.66 2.95 1.07	N4 S2 P7 23-10 s2 2 66.95 20.32 0.12 0.00 1.17 8.89 2.73 100.18 2.95 1.06 0.00	N4 S2 P7 33-11 s2 l 2 66.64 20.90 0.16 0.00 1.67 10.27 0.06 99.69 2.93 1.08 0.01	N4 S2 P7 3-12 s2 l 2 66.70 20.82 0.17 0.00 1.74 10.30 0.09 99.80 2.93 1.08 0.01	N4 S2 P7 23-13 s2 2 67.39 20.94 0.17 0.00 1.70 10.11 0.10 100.41 2.94 1.08 0.01	N4 S2 P7 33-14 s2 l 2 67.28 20.94 0.17 0.01 1.57 10.03 0.42 100.42 2.93 1.08 0.01	N4 S2 P7 23-15 s2 l 2 67.20 20.81 0.17 0.05 1.55 9.85 0.34 99.97 2.94 1.07	N4 S2 P7 23-16 s2 l . 68.98 20.00 0.05 0.00 0.53 11.08 0.23 100.86	N4 S2 P7 23-17 s2 l 2 69.03 19.97 0.02 0.00 0.41 11.00 0.06 100.49 2.99 1.02 0.00	N4 S2 P7 3-18 s2 l 2 69.12 20.32 0.00 0.68 10.96 0.05 100.97 2.98 1.03 0.00	N4 \$2 P7 23-19 \$21 68.99 20.65 0.07 0.00 1.12 10.55 0.04 101.43 2.97 1.05 0.00 0.05 0.08
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe³* Ca	N4 \$2 P6 17-4 s21 67.63 20.63 20.00 0.00 1.34 10.37 0.07 100.04 URALE (8 2.95 1.06 0.00 0.00	N4 \$2 P6 17-5 \$21 67.07 21.00 0.05 0.04 1.62 10.47 0.04 100.28 Oxygène 2.93 1.08 0.00 0.08	N4 \$2 P6 17-6 s2 69.49 19.56 0.05 0.01 0.00 11.36 0.06 100.53 es) 3.01 1.00 0.00 0.00	N4 S2 P6 22-1 \$2 \$ \$: 68.40 20.12 0.09 0.00 0.72 11.01 0.07 100.40 2.97 1.03 0.00 0.03	N4 S2 P6 22-2 s2 s 67.62 20.55 0.00 1.17 10.65 0.12 100.35 2.95 1.06 0.01 0.05	N4 S2 P6 22-3 s2 s 68.40 19.36 0.10 0.00 0.92 11.20 0.03 100.01 2.98 0.99 0.00 0.04	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27 0.09 0.51 3.01 1.01 0.00	N4 \$2 P6 22-5 \$2 \$ 68.76 19.74 0.04 0.00 0.01 11.26 0.09 99.90 3.00 1.01 0.00 0.00	N4 \$2 P6 22-6 \$2 \$ 68.72 19.66 0.07 0.00 0.01 11.51 0.04 100.00 3.00 1.01 0.00 0.00	N4 \$2 P7 23-1 s21 68.73 19.60 0.12 0.00 0.12 8.73 3.67 100.97 3.00 1.01 0.00 0.01	N4 S2 P7 23-2 s21 68.83 20.06 0.01 0.38 11.10 0.06 100.51 2.99 1.03 0.00 0.02	N4 S2 P7 23-3 s2 l 69.61 19.87 0.03 0.02 0.22 11.13 0.07 100.94 3.00 1.01 0.00 0.01	N4 \$2 P7 23-5 \$21 67.69 20.64 0.15 0.00 1.11 10.73 0.09 100.40 2.95 1.06 0.00 0.05	N4 S2 P7 23-6 s21 67.86 20.53 0.07 0.00 1.07 10.67 0.20 100.40 2.96 1.05 0.00 0.05	N4 \$2 P7 23-7 \$21 68.26 20.30 0.11 0.01 1.00 10.71 0.13 100.51 2.97 1.04 0.00 0.05	N4 S2 P7 23-8 s21 67.76 20.68 0.14 0.00 1.20 10.71 0.05 100.51 2.95 1.06 0.00 0.06	N4 \$2 P7 23-9 s21 : 67.87 20.86 0.06 0.00 1.24 10.55 0.08 100.66 2.95 1.07 0.00 0.00	N4 S2 P7 23-10 s2 2 66.95 20.32 0.12 0.00 1.17 8.89 2.73 100.18 2.95 1.06 0.00 0.06	N4 \$2 P7 23-11 \$2 2 66.64 20.90 0.16 0.00 1.67 10.27 0.06 99.69 2.93 1.08 0.01 0.08	N4 \$2 P7 66.70 20.82 0.17 0.00 1.74 10.30 0.09 99.80 2.93 1.08 0.01 0.08	N4 S2 P7 23-13 s2 2 67.39 20.94 0.17 0.00 1.70 10.11 0.10 100.41 2.94 1.08 0.01 0.08	N4 \$2 P7 67.28 67.28 20.94 0.17 0.01 1.57 10.03 0.42 100.42 2.93 1.08 0.01 0.07	N4 \$2 P7 23-15 \$2 1 67.20 20.81 0.17 0.05 1.55 9.85 0.34 99.97 2.94 1.07 0.01 0.07	N4 \$2 P7 23-16 \$21 68.98 20.00 0.05 0.00 0.53 11.08 0.23 100.86 2.99 1.02 0.00 0.00	N4 \$2 P7 23-17 \$2 2 69.03 19.97 0.02 0.00 0.41 11.00 0.06 100.49 2.99 1.02 0.00 0.02	N4 \$2 P7 (3-18 \$2 2 69.12 20.32 0.00 0.00 0.68 10.96 0.05 100.97 2.98 1.03 0.00 0.03	N4 \$2 P7 23-19 s21 68.99 20.65 0.07 0.00 1.12 10.55 0.04 101.43 2.97 1.05 0.00 0.05
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe³* Ca	N4 S2 P6 17-4 s21 67.63 20.63 20.63 0.00 0.00 1.34 10.37 0.07 100.04 7URALE (8 2.95 1.06 0.00 0.06 0.88	N4 \$2 P6 17-5 \$21 67.07 21.00 0.05 0.04 1.62 10.47 0.04 100.28 Oxygène 2.93 1.08 0.00 0.08	N4 \$2 P6 17-6 s2 69.49 19.56 0.05 0.01 0.00 11.36 0.06 100.53 es) 3.01 1.00 0.00 0.00 0.00	N4 S2 P6 22-1s2 s: 68.40 20.12 0.09 0.00 0.72 11.01 0.07 100.40 2.97 1.03 0.00 0.03 0.93	N4	N4 S2 P6 22-3 s 2 s : 68.40 19.36 0.10 0.00 0.92 11.20 0.03 100.01 2.98 0.99 0.00 0.04 0.95	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27 0.09 0.51 3.01 1.01 0.00 0.00 0.95	N4	N4 S2 P6 22-6 s2 s 68.72 19.66 0.07 0.00 0.01 11.51 0.04 100.00 3.00 1.01 0.00 0.00 0.97	N4 \$2 P7 23-1 s21 68.73 19.60 0.12 0.00 0.12 8.73 3.67 100.97 3.00 1.01 0.00 0.01 0.00	N4 S2 P7 23-2 s21 68.83 20.06 0.01 0.38 11.10 0.06 100.51 2.99 1.03 0.00 0.02 0.93	N4 \$2 P7 23-3 \$21 69.61 19.87 0.03 0.02 0.22 11.13 0.07 100.94 3.00 1.01 0.00 0.01 0.93	N4 \$2 P7 23-5 \$21 67.69 20.64 0.15 0.00 1.11 10.73 0.09 100.40 2.95 1.06 0.00 0.05 0.91	N4 S2 P7 23-6 s21 67.86 20.53 0.07 0.00 1.07 10.67 0.20 100.40 2.96 1.05 0.00 0.05	N4 \$2 P7 23-7 \$21 68.26 20.30 0.11 0.01 1.00 10.71 0.13 100.51 2.97 1.04 0.00 0.05 0.90	N4 \$2 P7 23-8 s21 67.76 20.68 0.14 0.00 1.20 10.71 0.05 100.51 2.95 1.06 0.00 0.06 0.90	N4 \$2 P7 23-9 s21: 67.87 20.86 0.06 0.00 1.24 10.55 0.08 100.66 2.95 1.07 0.00 0.06 0.00	N4 S2 P7 23-10 s2 2 66.95 20.32 0.12 0.00 1.17 8.89 2.73 100.18 2.95 1.06 0.00 0.06 0.76	N4 S2 P7 23-11 s2 2 66.64 20.90 0.16 0.00 1.67 10.27 0.06 99.69 2.93 1.08 0.01 0.08 0.87	N4 S2 P7 33-12 s2 l 2 66.70 20.82 0.17 0.00 1.74 10.30 0.09 99.80 2.93 1.08 0.01 0.08 0.88	N4 S2 P7 23-13 s2 2 67.39 20.94 0.17 0.00 1.70 10.11 0.10 100.41 2.94 1.08 0.01 0.08 0.85	N4 \$2 P7 67.28 20.94 0.17 0.01 1.57 10.03 0.42 100.42 2.93 1.08 0.01 0.07 0.85	N4 \$2 P7 23-15 \$2 1 67.20 20.81 0.17 0.05 1.55 9.85 0.34 99.97 2.94 1.07 0.01 0.07	N4 \$2 P7 23-16 \$21 \cdot 68.98 20.000 0.05 0.00 0.53 11.08 0.23 100.86 2.99 1.02 0.00 0.02 0.00	N4 \$2 P7 23-17 \$2 2 69.03 19.97 0.02 0.00 0.41 11.00 0.06 100.49 2.99 1.02 0.00 0.02 0.00	N4 \$2 P7 (3-18 \$2 2 69.12 20.32 0.00 0.00 0.68 10.96 0.05 100.97 2.98 1.03 0.00 0.03 0.03	N4 \$2 P7 23-19 \$21 68.99 20.65 0.07 0.00 1.12 10.55 0.04 101.43 2.97 1.05 0.00 0.05 0.08
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe³* Ca Na K	N4 S2 P6 17-4 s21 67.63 20.63 20.63 0.00 0.00 1.34 10.37 0.07 100.04 TURALE (8 2.95 1.06 0.00 0.06 0.88 0.00	N4 S2 P6 17-5 s21 67.07 21.00 0.05 0.04 1.62 10.47 0.04 100.28 Oxygène 2.93 1.08 0.00 0.08 0.89 0.00	N4 \$2 P6 17-6 \$2 69.49 19.56 0.05 0.01 0.00 11.36 100.53 es) 3.01 1.00 0.00 0.00 0.00 0.00	N4 S2 P6 22-1s2 s: 68.40 20.12 0.09 0.00 0.72 11.01 0.07 100.40 2.97 1.03 0.00 0.03 0.93 0.00	N4 S2 P6 22-2 s2 s 67.62 20.55 0.25 0.00 1.17 10.65 0.12 100.35 2.95 1.06 0.01 0.05 0.90 0.01	N4 S2 P6 22-3 s 2 s : 68.40 19.36 0.10 0.00 0.92 11.20 0.03 100.01 2.98 0.99 0.00 0.04 0.95 0.00	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27 0.09 0.51 3.01 1.01 0.00 0.00 0.95 0.00	N4 S2 P6 22-5 s2 s 68.76 19.74 0.04 0.00 0.01 11.26 0.09 99.90 3.00 1.01 0.00 0.00 0.95 0.01	N4	N4 S2 P7 23-1 s21 68.73 19.60 0.12 0.00 0.12 8.73 3.67 100.97 3.00 1.01 0.00 0.01 0.74 0.20	N4 S2 P7 23-2 s21 68.83 20.06 0.01 0.38 11.10 0.06 100.51 2.99 1.03 0.00 0.02 0.93 0.00	N4 \$2 P7 23-3 \$21 69.61 19.87 0.03 0.02 0.22 11.13 0.07 100.94 3.00 1.01 0.00 0.01 0.93 0.00	N4 \$2 P7 23-5 \$21 67.69 20.64 0.15 0.00 1.11 10.73 0.09 100.40 2.95 1.06 0.00 0.05 0.91 0.01	N4 S2 P7 23-6 s21 67.86 20.53 0.07 0.00 1.07 10.67 0.20 100.40 2.96 1.05 0.00 0.05 0.90 0.01	N4 S2 P7 23-7 s21 68.26 20.30 0.11 0.01 1.00 10.71 0.13 100.51 2.97 1.04 0.00 0.05 0.90 0.01	N4 S2 P7 23-8 s21 67.76 20.68 0.14 0.00 1.20 10.71 0.05 100.51 2.95 1.06 0.00 0.06 0.90 0.00	N4 \$2 P7 23-9 \$21 : 67.87 20.86 0.06 0.00 1.24 10.55 0.08 100.66 2.95 1.07 0.00 0.06 0.00 0.08 0.08	N4 S2 P7 23-10 s2 2 66.95 20.32 0.12 0.00 1.17 8.89 2.73 100.18 2.95 1.06 0.00 0.06 0.76 0.15	N4 S2 P7 66.64 20.90 0.16 0.00 1.67 10.27 0.06 99.69 2.93 1.08 0.01 0.08 0.87 0.00	N4 S2 P7 66.70 20.82 0.17 0.00 1.74 10.30 0.09 99.80 2.93 1.08 0.01 0.08 0.88 0.01	N4 S2 P7 23-13 s2 2 67.39 20.94 0.17 0.00 1.70 10.11 0.10 100.41 2.94 1.08 0.01 0.08 0.85 0.01	N4 \$2 P7 67.28 20.94 0.17 0.01 1.57 10.03 0.42 100.42 2.93 1.08 0.01 0.07 0.85 0.02	N4 \$2 P7 23-15 \$2 1 67.20 20.81 0.17 0.05 1.55 9.85 0.34 99.97 2.94 1.07 0.01 0.07 0.084 0.02	N4 \$2 P7 23-16 \$2 1 68.98 20.00 0.05 0.00 0.53 11.08 0.23 100.86 2.99 1.02 0.00 0.02 0.00 0.03 0.03 0.03 100.86	N4 S2 P7 23-17 s2 2 69.03 19.97 0.02 0.00 0.41 11.00 0.06 100.49 2.99 1.02 0.00 0.02 0.00	N4 S2 P7 69.12 20.32 0.00 0.00 0.68 10.96 0.05 100.97 2.98 1.03 0.00 0.03 0.92 0.00	N4 \$2 P7 23-19 \$21 68.99 20.65 0.07 0.00 1.12 10.55 0.04 101.43 2.97 1.05 0.00 0.05 0.00 0.05 0.08
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe³* Ca Na K	N4 S2 P6 17-4 s21 67.63 20.63 20.63 0.00 0.00 1.34 10.37 0.07 100.04 TURALE (8 2.95 1.06 0.00 0.06 0.88 0.00	N4 S2 P6 17-5 s21 67.07 21.00 0.05 0.04 1.62 10.47 0.04 100.28 Oxygène 2.93 1.08 0.00 0.08	N4 \$2 P6 17-6 \$2 69.49 19.56 0.05 0.01 0.00 11.36 100.53 es) 3.01 1.00 0.00 0.00 0.00 0.00	N4 S2 P6 22-1s2 s: 68.40 20.12 0.09 0.00 0.72 11.01 0.07 100.40 2.97 1.03 0.00 0.03 0.93 0.00	N4 S2 P6 22-2 s2 s 67.62 20.55 0.25 0.00 1.17 10.65 0.12 100.35 2.95 1.06 0.01 0.05 0.90 0.01	N4 S2 P6 22-3 s 2 s : 68.40 19.36 0.10 0.00 0.92 11.20 0.03 100.01 2.98 0.99 0.00 0.04 0.95 0.00	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27 0.09 0.51 3.01 1.01 0.00 0.00 0.95 0.00	N4 S2 P6 22-5 s2 s 68.76 19.74 0.04 0.00 0.01 11.26 0.09 99.90 3.00 1.01 0.00 0.00 0.95 0.01	N4	N4 S2 P7 23-1 s21 68.73 19.60 0.12 0.00 0.12 8.73 3.67 100.97 3.00 1.01 0.00 0.01 0.74 0.20	N4 S2 P7 23-2 s21 68.83 20.06 0.01 0.38 11.10 0.06 100.51 2.99 1.03 0.00 0.02 0.93 0.00	N4 \$2 P7 23-3 \$21 69.61 19.87 0.03 0.02 0.22 11.13 0.07 100.94 3.00 1.01 0.00 0.01 0.93 0.00	N4 S2 P7 23-5 s21 67.69 20.64 0.15 0.00 1.11 10.73 0.09 100.40 2.95 1.06 0.00 0.05 0.91	N4 S2 P7 23-6 s21 67.86 20.53 0.07 0.00 1.07 10.67 0.20 100.40 2.96 1.05 0.00 0.05 0.90 0.01	N4 S2 P7 23-7 s21 68.26 20.30 0.11 0.01 1.00 10.71 0.13 100.51 2.97 1.04 0.00 0.05 0.90 0.01	N4 S2 P7 23-8 s21 67.76 20.68 0.14 0.00 1.20 10.71 0.05 100.51 2.95 1.06 0.00 0.06 0.90 0.00	N4 \$2 P7 23-9 \$21 : 67.87 20.86 0.06 0.00 1.24 10.55 0.08 100.66 2.95 1.07 0.00 0.06 0.00 0.08 0.08	N4 S2 P7 23-10 s2 2 66.95 20.32 0.12 0.00 1.17 8.89 2.73 100.18 2.95 1.06 0.00 0.06 0.76 0.15	N4 S2 P7 66.64 20.90 0.16 0.00 1.67 10.27 0.06 99.69 2.93 1.08 0.01 0.08 0.87 0.00	N4 S2 P7 66.70 20.82 0.17 0.00 1.74 10.30 0.09 99.80 2.93 1.08 0.01 0.08 0.88 0.01	N4 S2 P7 23-13 s2 2 67.39 20.94 0.17 0.00 1.70 10.11 0.10 100.41 2.94 1.08 0.01 0.08 0.85 0.01	N4 S2 P7 67.28 20.94 0.17 0.01 1.57 10.03 0.42 100.42 2.93 1.08 0.01 0.07 0.85	N4 \$2 P7 23-15 \$2 1 67.20 20.81 0.17 0.05 1.55 9.85 0.34 99.97 2.94 1.07 0.01 0.07 0.084 0.02	N4 \$2 P7 23-16 \$2 1 68.98 20.00 0.05 0.00 0.53 11.08 0.23 100.86 2.99 1.02 0.00 0.02 0.00 0.03 0.03 0.03 100.86	N4 S2 P7 23-17 s2 2 69.03 19.97 0.02 0.00 0.41 11.00 0.06 100.49 2.99 1.02 0.00 0.02 0.00	N4 S2 P7 69.12 20.32 0.00 0.00 0.68 10.96 0.05 100.97 2.98 1.03 0.00 0.03 0.92 0.00	N4 \$2 P7 23-19 \$21 68.99 20.65 0.07 0.00 1.12 10.55 0.04 101.43 2.97 1.05 0.00 0.05 0.00 0.05 0.08 0.00
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³* Ca Na K Total	N4 S2 P6 17-4 s21 67.63 20.63 20.63 0.00 1.34 10.37 0.07 100.04 FURALE (8 2.95 1.06 0.00 0.06 0.88 0.00 4.96	N4 S2 P6 17-5 s21 67.07 21.00 0.05 0.04 1.62 10.47 0.04 100.28 Oxygène 2.93 1.08 0.00 0.08 0.09 0.00 4.97	N4 S2 P6 17-6 s2 69.49 19.56 0.05 0.01 0.00 11.36 0.06 100.53 ps) 3.01 1.00 0.00 0.00 0.00 4.96	N4 S2 P6 22-1 s2 s: 68.40 20.12 0.09 0.00 0.72 11.01 0.07 100.40 2.97 1.03 0.00 0.03 0.03 0.93 0.00 4.97	N4 S2 P6 22-2 s2 s 67.62 20.55 0.25 0.00 1.17 10.65 0.12 100.35 2.95 1.06 0.01 0.05 0.90 0.01 4.97	N4 S2 P6 22-3 s2 s: 68.40 19.36 0.10 0.00 0.92 11.20 0.03 100.01 2.98 0.99 0.00 0.04 0.95 0.00 4.96	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27 0.09 0.51 3.01 1.01 0.00 0.00 0.95 0.00 4.97	N4 S2 P6 22-5 \$2 \$ 68.76 19.74 0.00 0.01 11.26 0.09 99.90 3.00 1.01 0.00 0.00 0.05 0.01 4.97	N4 S2 P6 22-6 s2 s 68.72 19.66 0.07 0.00 0.01 11.51 0.04 100.00 3.00 1.01 0.00 0.00 0.00 4.98	N4 S2 P7 23-1 s21 68.73 19.60 0.12 8.73 3.67 100.97 3.00 1.01 0.00 0.01 0.74 0.20 4.97	N4 S2 P7 23-2 s21 68.83 20.06 0.01 0.38 11.10 0.06 100.51 2.99 1.03 0.00 0.02 0.93 0.00 4.97	N4 S2 P7 23-3 s2 l 69.61 19.87 0.02 0.22 11.13 0.07 100.94 3.00 1.01 0.00 0.01 0.93 0.00 4.96	N4 S2 P7 23-5 s21 67.69 20.64 0.15 0.00 1.11 10.73 0.09 100.40 2.95 1.06 0.00 0.05 0.91 0.01 4.98	N4 S2 P7 23-6 s21 67.86 20.57 0.00 1.07 10.67 0.20 100.40 2.96 1.05 0.00 0.05 0.90 0.01 4.97	N4 S2 P7 23-7 s21 68.26 20.30 0.11 1.00 10.71 0.13 100.51 2.97 1.04 0.00 0.05 0.90 0.01 4.97	N4 S2 P7 23-8 s21 67.76 20.68 0.14 0.00 1.20 10.71 0.05 100.51 2.95 1.06 0.00 0.06 0.90 0.00 4.98	N4 S2 P7 23-9 s21 2 67.87 20.86 0.06 1.24 10.55 0.08 100.66 2.95 1.07 0.00 0.06 0.89 0.00	N4 S2 P7 23-10 s2 l 2 66.95 20.32 0.12 0.00 1.17 8.89 2.73 100.18 2.95 1.06 0.00 0.06 0.76 0.15 4.98	N4 S2 P7 23-11 s21 2 66.64 20.90 0.16 0.00 1.67 10.27 0.06 99.69 2.93 1.08 0.01 0.08 0.87 0.00 4.97	N4 S2 P7 3-12 s21 2 66.70 20.82 0.17 0.00 1.74 10.30 0.09 99.80 2.93 1.08 0.01 0.08 0.08 0.01 4.98	N4 S2 P7 23-13 s21 2 67.39 20.94 0.17 0.00 1.70 10.11 0.10 100.41 2.94 1.08 0.01 0.08 0.08 0.01 4.96	N4 S2 P7 23-14 s2 12 67.28 20.94 0.17 10.03 0.42 100.42 2.93 1.08 0.01 0.07 0.85 0.02 4.96	N4 S2 P7 23-15 s2 l 2 67.20 20.81 0.17 0.05 1.55 9.85 0.34 99.97 2.94 1.07 0.01 0.07 0.07	N4 S2 P7 23-16 s2 l l 68.98 20.00 0.05 0.00 0.53 11.08 0.23 100.86 2.99 1.02 0.00 0.02 0.00	N4 S2 P7 23-17 s2 1 2 69.03 19.97 0.02 0.00 0.41 11.00 0.06 100.49 2.99 1.02 0.00 0.02 0.00 0.41 4.96	N4 S2 P7 (3-18 s21 2 69.12 20.32 0.00 0.68 10.96 0.05 100.97 2.98 1.03 0.00 0.03 0.03 0.92 0.00 4.96	N4 S2 P7 23-19 s21 68.99 20.65 0.00 1.12 10.55 0.04 101.43 2.97 1.05 0.00 0.05 0.00 4.95
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³* Ca Na K Total %Or	N4 S2 P6 17-4 s21 67.63 20.63 0.00 1.34 10.37 0.07 100.04 FURALE (8 2.95 1.06 0.00 0.08 0.00 4.96	N4 S2 P6 17-5 s21 67.07 21.00 0.05 0.04 1.62 10.47 0.04 100.28 Oxygène 2.93 1.08 0.00 0.08 0.89 0.00 4.97	N4 S2 P6 17-6 s2 69.49 19.56 0.05 0.01 0.00 11.36 0.06 100.53 ss) 3.01 1.00 0.00 0.00 0.95 0.00 4.96	N4 S2 P6 22-1 s2 s: 68.40 20.12 0.09 0.00 0.72 11.01 0.07 100.40 2.97 1.03 0.00 0.03 0.03 0.93 0.00 4.97	N4 S2 P6 22-2 s2 s 67.62 20.55 0.25 0.00 1.17 10.65 0.12 100.35 2.95 1.06 0.01 0.05 0.90 0.01 4.97	N4 S2 P6 22-3 s2 s: 68.40 19.36 0.10 0.00 0.92 11.20 0.03 100.01 2.98 0.99 0.00 4.96	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27 0.09 0.51 3.01 1.01 0.00 0.09 0.09 4.97	N4 S2 P6 22-5 \$2 \$ 68.76 19.74 0.00 0.01 11.26 0.09 99.90 3.00 1.01 0.00 0.95 0.01 4.97	N4 S2 P6 22-6 s2 s 68.72 19.66 0.07 0.00 0.01 11.51 0.04 100.00 3.00 1.01 0.00 0.09 0.00 4.98	N4 S2 P7 23-1 s2 l 68.73 19.60 0.12 8.73 3.67 100.97 3.00 1.01 0.00 0.17 4.97	N4 S2 P7 23-2 s21 68.83 20.06 0.06 0.01 0.38 11.10 0.06 100.51 2.99 1.03 0.00 0.02 0.93 0.00 4.97	N4 S2 P7 23-3 s2 l 69.61 19.87 0.02 0.22 11.13 0.07 100.94 3.00 1.01 0.00 0.01 0.93 0.00 4.96	N4 S2 P7 23-5 s21 67.69 20.64 0.15 0.00 1.11 10.73 0.09 100.40 2.95 1.06 0.00 0.05 0.91 4.98	N4 S2 P7 23-6 s21 67.86 20.53 0.07 10.67 0.20 100.40 2.96 1.05 0.00 0.01 4.97	N4 S2 P7 23-7 s21 68.26 20.30 0.11 1.00 10.71 0.13 100.51 2.97 1.04 0.00 0.05 0.90 0.01 4.97	N4 S2 P7 23-8 s21 67.76 20.68 0.14 0.00 1.20 10.71 0.05 100.51 2.95 1.06 0.00 0.00 4.98	N4 S2 P7 23-9 s21 2 67.87 20.86 0.00 1.24 10.55 0.08 100.66 2.95 1.07 0.00 0.06 0.89 0.00 4.96	N4 S2 P7 23-10 s2 l 2 66.95 20.32 0.12 0.00 1.17 8.89 2.73 100.18 2.95 1.06 0.00 0.76 0.15 4.98	N4 S2 P7 23-11 s21 2 66.64 20.90 0.16 0.00 1.67 10.27 0.06 99.69 2.93 1.08 0.01 0.08 0.01 0.08 0.01 0.08 0.01 0.08 0.00 0.00	N4 S2 P7 3-12 s21 2 66.70 20.82 0.17 0.00 1.74 10.30 0.09 99.80 2.93 1.08 0.01 0.08 0.08 0.01 4.98	N4 S2 P7 23-13 s2 l 2 67.39 20.94 0.17 0.00 1.70 10.11 0.10 100.41 2.94 1.08 0.01 0.08 0.08 0.01 4.96	N4 S2 P7 23-14 s2 2 67.28 20.94 0.17 0.01 1.57 10.03 0.42 100.42 2.93 1.08 0.01 0.07 0.85 0.02 4.96	N4 S2 P7 23-15 s2 2 67.20 20.81 0.17 0.05 1.55 9.85 0.34 99.97 2.94 1.07 0.01 0.07 0.84 0.02 4.95	N4 S2 P7 23-16 s2 l 68.98 20.00 0.05 0.00 0.53 11.08 0.23 100.86 2.99 1.02 0.00 0.02 0.00 0.00	N4 S2 P7 23-17 s2 l 2 69.03 19.97 0.02 0.00 0.41 11.00 0.06 100.49 2.99 1.02 0.00 0.02 0.02 0.00 4.96	N4 S2 P7 (3-18 s21 2 69.12 20.32 0.00 0.68 10.96 0.05 100.97 2.98 1.03 0.00 0.03 0.03 0.92 0.00 4.96	N4 S2 P7 23-19 s21 68.99 20.65 0.07 1.12 10.55 0.04 101.43 2.97 1.05 0.00 0.05 0.00 4.95
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³* Ca Na K Total %Or %Ab	N4 S2 P6 17-4 s21 67.63 20.63 0.00 0.00 1.34 10.37 0.07 100.04 TURALE (8 2.95 1.06 0.00 0.08 0.00 4.96	N4 S2 P6 17-5 s21 67.07 21.00 0.05 0.04 1.62 10.47 0.04 100.28 Oxygène 2.93 1.08 0.00 0.08 0.89 0.00 4.97 0.00 0.92 0.08	N4 S2 P6 17-6 s2 69.49 19.56 0.05 0.01 0.00 11.36 0.06 100.53 es) 3.01 1.00 0.00 0.95 0.00 4.96	N4 S2 P6 22-1s2 s: 68.40 20.12 0.09 0.00 0.72 11.01 0.07 100.40 2.97 1.03 0.00 0.03 0.93 0.00 4.97 0.00 0.96 0.03	N4 S2 P6 22-2 s2 s 67.62 20.55 0.00 1.17 10.65 0.12 100.35 2.95 1.06 0.01 0.05 0.90 0.01 4.97 0.01 0.94 0.06	N4 S2 P6 22-3 s2 s 68.40 19.36 0.10 0.00 0.92 11.20 0.03 100.01 2.98 0.99 0.00 0.04 0.95 0.00 4.96 0.00	N4 S2 P6 22-4 s2 s 69.32 19.74 0.08 0.00 0.02 11.27 0.09 0.51 3.01 1.01 0.00 0.95 0.00 4.97 0.01	N4 S2 P6 22-5 s2 s 68.76 19.74 0.04 0.00 11.26 0.09 99.90 3.00 1.01 0.00 0.95 0.01 4.97	N4	N4 S2 P7 23-1 s21 68.73 19.60 0.12 0.00 0.12 8.73 3.67 100.97 3.00 1.01 0.00 0.01 0.74 0.20 4.97 0.22 0.78 0.01	N4 S2 P7 23-2 s21 68.83 20.06 0.01 0.38 11.10 0.06 100.51 2.99 1.03 0.00 0.02 0.93 0.00 4.97 0.00 0.98 0.02	N4 \$2 P7 23-3 \$21 69.61 19.87 0.03 0.02 0.22 11.13 0.07 100.94 3.00 1.01 0.00 0.01 0.93 0.00 4.96 0.00 0.99 0.01	N4 S2 P7 23-5 s21 67.69 20.64 0.15 0.00 1.11 10.73 0.09 100.40 2.95 1.06 0.00 0.91 0.01 4.98	N4 S2 P7 23-6 s21 67.86 20.53 0.07 0.00 1.07 10.67 0.20 100.40 2.96 1.05 0.00 0.05 0.90 0.01 4.97 0.01 0.94 0.05	N4 S2 P7 23-7 s21 68.26 20.30 0.11 0.01 1.00 10.71 0.13 100.51 2.97 1.04 0.00 0.05 0.90 0.01 4.97 0.01 0.94 0.05	N4 S2 P7 23-8 s21 67.76 20.68 0.14 0.00 1.20 10.71 0.05 100.51 2.95 1.06 0.00 0.06 0.90 0.00 4.98 0.00 0.94 0.06	N4 \$2 P7 23-9 s21: 67.87 20.86 0.06 0.00 1.24 10.55 0.08 100.66 2.95 1.07 0.00 0.06 0.89 0.00 4.96	N4 S2 P7 23-10 s2 2 66.95 20.32 0.10 0.117 8.89 2.73 100.18 2.95 1.06 0.00 0.06 0.76 0.15 4.98	N4 S2 P7 23-11 s2 2 66.64 20.90 0.16 0.00 1.67 10.27 0.06 99.69 2.93 1.08 0.01 0.08 0.87 0.00 4.97 0.00	N4 S2 P7 20.82 66.70 20.82 0.17 0.00 1.74 10.30 0.09 99.80 2.93 1.08 0.01 0.08 0.88 0.01 4.98 0.01 0.08	N4 S2 P7 23-13 s2 l 2 67.39 20.94 0.17 0.00 1.70 10.11 0.10 100.41 2.94 1.08 0.01 0.08 0.05 0.01 4.96	N4 S2 P7 67.28 67.28 20.94 0.17 0.01 1.57 10.03 0.42 100.42 2.93 1.08 0.01 0.07 0.85 0.02 4.96 0.02 0.08	N4	N4 \$2 P7 23-16 \$21 \cdot \text{68.98} \text{20.00} \text{0.05} \text{0.05} \text{0.00} \text{0.53} \text{11.08} \text{0.23} \text{100.86} \text{2.99} \text{1.02} \text{0.00} \text{0.02} \text{0.93} \text{0.01} \text{4.98} \text{0.01} \text{0.03} \text{0.01} \text{0.06} \text{0.03}	N4 S2 P7 23-17 s2 2 69.03 19.97 0.02 0.00 0.41 11.00 0.06 100.49 2.99 1.02 0.00 0.02 0.92 0.00 4.96 0.00 0.98 0.02	N4 S2 P7 (3-18 s2 2 69.12 20.32 0.00 0.00 0.68 10.96 0.05 100.97 2.98 1.03 0.00 0.03 0.92 0.00 4.96 0.03	N4 S2 P7 23-19 s21 68.99 20.65 0.07 0.00 1.12 10.55 0.04 101.43 2.97 1.05 0.00 0.08 0.08 0.00 4.95

Lame	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4
	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2
Séquence N° du cristal	97 P7	92 P7	92 P7	92 P7	97 P7	92 P7	92 P7	92 P7	92 P7	92 P7	92 P7	92 P7	92 P7	92 P7	92 P7	92 P7	92 P7	92 P7	92 P7	92 P7	92 P7	92 P7	92 P7	95 P5	92 P5	92 P5	95 P5
N° analyse	23-20 s2 l	24-2 s2 L											24-14 s2 L 2											15-1 s2 l	15-2 s2 l	15-3 s2 l	15-4 s2 l
SiO ₂	68.43	68.30	67.41	67.79	24-5 s2 L 67.21	68.77	24-7 s2 L 67.77	67.86	67.86	67.70	69.70	67.11	68.32	67.53	67.84	67.70	67.07	66.96	66.97	66.95	66.92	70.17	69.42	67.85	68.36	67.64	67.72
Al ₂ O ₃	20.58	20.75	21.18	20.76	20.82	20.23	20.91	20.87	20.84	20.89	20.45	19.91	21.08	20.66	20.47	20.79	20.78	21.01	20.91	20.92	21.22	19.33	19.76	20.77	20.82	20.93	20.74
																				0.27							
FeO Total	0.30	0.19	0.15	0.14	0.16	0.09	0.10	0.13	0.12	0.12	0.04	0.07	0.06	0.03	0.11	0.21	0.09	0.06	0.05		0.15	0.06	0.00	0.14	0.16	0.17	0.05
MgO	0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.02	0.00	0.00	0.01	0.00
CaO No. O	0.97	1.22	1.53	1.46	1.40	0.88	1.46	1.52	1.44	1.47	0.63	0.88	1.42	1.34	0.97	1.41	1.63	1.54	1.72	1.72	1.83	0.58	0.06	1.45	1.28	1.26	1.13
Na ₂ O	10.59	10.63	10.38	10.29	10.02	10.43	10.54	10.23	9.92	10.22	10.83	10.42	10.50	10.47	10.70	10.31	10.25	10.15	10.17	10.13	10.23	11.47	11.05	10.56	10.32	10.45	9.05
K ₂ O	0.05	0.09	0.11	0.16	0.54	0.18	0.09	0.12	0.23	0.06	0.10	0.12	0.12	0.12	0.11	0.08	0.07	0.13	0.13	0.19	0.10	0.10	0.12	0.14	0.08	0.07	2.27
Total	100.93	101.18	100.77	100.60	100.15	100.59	100.87	100.72	100.42	100.46	101.76	98.52	101.51	100.18	100.21	100.50	9.88	99.85	99.95	100.16	100.45	101.77	100.43	100.92	101.02	100.51	100.96
FORMULE STRUCT	TURALE (8	3 Oxygène	,																								
Si	2.96	2.95	2.93	2.95	2.94	2.98	2.94	2.94	2.95	2.94	2.98	2.97	2.94	2.95	2.96	2.94	2.94	2.93	2.93	2.93	2.92	3.01	3.01	2.94	2.96	2.94	2.95
Al	1.05	1.06	1.08	1.06	1.07	1.03	1.07	1.07	1.07	1.07	1.03	1.04	1.07	1.06	1.05	1.07	1.07	1.09	1.08	1.08	1.09	0.98	1.01	1.06	1.06	1.07	1.06
Fe ³⁺	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.00
Ca	0.04	0.06	0.07	0.07	0.07	0.04	0.07	0.07	0.07	0.07	0.03	0.04	0.07	0.06	0.05	0.07	0.08	0.07	0.08	0.08	0.09	0.03	0.00	0.07	0.06	0.06	0.05
Na	0.89	0.89	0.87	0.87	0.85	0.88	0.89	0.86	0.84	0.86	0.90	0.90	0.88	0.89	0.90	0.87	0.87	0.86	0.86	0.86	0.86	0.95	0.93	0.89	0.86	0.88	0.76
K	0.00	0.01	0.01	0.01	0.03	0.01	0.00	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.13
Total	4.95	4.97	4.96	4.96	4.96	4.94	4.97	4.95	4.94	4.95	4.95	4.96	4.97	4.96	4.97	4.96	4.96	4.96	4.96	4.97	4.97	4.97	4.95	4.97	4.95	4.96	4.96
%Or	0.00	0.01	0.01	0.01	0.03	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.13
%Ab	0.95	0.94	0.92	0.92	0.90	0.95	0.92	0.92	0.91	0.92	0.96	0.95	0.92	0.93	0.95	0.93	0.92	0.92	0.91	0.90	0.90	0.97	0.99	0.92	0.93	0.93	0.81
%An	0.05	0.06	0.07	0.07	0.07	0.04	0.07	0.08	0.07	0.07	0.03	0.04	0.07	0.07	0.05	0.07	0.08	0.08	0.08	0.08	0.09	0.03	0.00	0.07	0.06	0.06	0.06
Position verticale*	112225	112345	112367	112389	112411	112433	112455	112476	112520	112542	112564	112586	112608	112630	112652	112674	112696	112739	112761	112783	112805	112827	112849	113769	113679	113590	113500
Lame																											
	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4
Séquence	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2
Séquence N° du cristal	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5	S2 P5
Séquence N° du cristal N° analyse	S2 P5 15-5 s2 I	S2 P5 15-6 s2 I	S2 P5 15-7 s2 I	S2 P5 15-8 s2 I	S2 P5 14-1 s2 L	S2 P5 14-2 s2 L	S2 P5 14-3 s2 L	S2 P5 14-4 s2 L	S2 P5 14-5 s2 L	S2 P5 14-6 s2 L	S2 P5 14-7 s2 L	S2 P5 14-8 s2 L	S2 P5 14-9 s2 L 1	S2 P5 14-10 s2 L	S2 P5 14-11 s2 L	S2 P5 14-12 s2 L	S2 P5 I4-13 s2 L	S2 P5 14-14 s2 L	S2 P5 14-15 s2 L	S2 P5 14-16 s2 L	S2 P5 14-17 s2 L 1	S2 P5 I4-18 s2 L	S2 P5 14-19 s2 L	S2 P5 14-20 s2 L	S2 P5 14-21 s2 L 1	S2 P5 I4-22 s2 L	S2 P5 14-23 s2 L
Séquence N° du cristal N° analyse SiO ₂	S2 P5 15-5 s2 l 67.56	S2 P5 15-6 s2 l 66.75	S2 P5 15-7 s2 l 69.10	S2 P5 15-8 s2 I 67.92	S2 P5 14-1 s2 L 68.15	S2 P5 14-2 s2 L 67.39	S2 P5 14-3 s2 L 66.65	S2 P5 14-4 s2 L 67.18	S2 P5 14-5 s2 L 66.91	S2 P5 14-6 s2 L 67.10	S2 P5 14-7 s2 L 67.92	S2 P5 14-8 s2 L 68.81	S2 P5 14-9 s2 L 1 68.33	S2 P5 14-10 s2 L 67.90	S2 P5 14-11 s2 L 67.94	S2 P5 14-12 s2 L 7 67.00	S2 P5 14-13 s2 L 67.56	S2 P5 14-14 s2 L 68.47	S2 P5 14-15 s2 L 66.88	S2 P5 14-16 s2 L 67.34	S2 P5 14-17 s2 L 1 67.62	S2 P5 14-18 s2 L 66.35	S2 P5 14-19 s2 L 67.07	S2 P5 14-20 s2 L 66.80	S2 P5 14-21 s2 L 1 66.79	S2 P5 14-22 s2 L 66.76	S2 P5 14-23 s2 L 67.47
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃	S2 P5 15-5 s2 l 67.56 20.23	S2 P5 15-6 s2 l 66.75 21.48	S2 P5 15-7 s2 l 69.10 20.20	S2 P5 15-8 s2 I 67.92 20.77	S2 P5 14-1 s2 L 68.15 19.84	S2 P5 14-2 s2 L 67.39 20.94	S2 P5 14-3 s2 L 66.65 21.20	S2 P5 14-4 s2 L 67.18 21.19	S2 P5 14-5 s2 L 66.91 21.13	S2 P5 14-6 s2 L 67.10 21.02	S2 P5 14-7 s2 L 67.92 20.62	S2 P5 14-8 s2 L 68.81 20.55	S2 P5 14-9 s2 L 1 68.33 20.67	S2 P5 14-10 s2 L 67.90 21.05	S2 P5 14-11 s2 L 67.94 20.83	S2 P5 14-12 s2 L 7 67.00 21.11	S2 P5 14-13 s2 L 67.56 20.72	S2 P5 14-14 s2 L 68.47 20.22	S2 P5 14-15 s2 L 66.88 21.07	S2 P5 14-16 s2 L 67.34 20.98	S2 P5 14-17 s2 L 1 67.62 20.89	S2 P5 14-18 s2 L 66.35 21.56	S2 P5 14-19 s2 L 67.07 20.86	S2 P5 14-20 s2 L 66.80 21.07	S2 P5 14-21 s2 L 1 66.79 21.34	S2 P5 14-22 s2 L 66.76 21.19	S2 P5 14-23 s2 L 67.47 21.08
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total	S2 P5 15-5 s2 l 67.56 20.23 0.05	S2 P5 15-6 s2 l 66.75 21.48 0.16	S2 P5 15-7 s2 l 69.10 20.20 0.03	S2 P5 15-8 s2 l 67.92 20.77 0.00	S2 P5 14-1 s2 L 68.15 19.84 0.38	S2 P5 14-2 s2 L 67.39 20.94 0.24	S2 P5 14-3 s2 L 66.65 21.20 0.16	S2 P5 14-4 s2 L 67.18 21.19 0.18	S2 P5 14-5 s2 L 66.91 21.13 0.16	S2 P5 14-6 s2 L 67.10 21.02 0.15	S2 P5 14-7 s2 L 67.92 20.62 0.09	S2 P5 14-8 s2 L 68.81 20.55 0.13	S2 P5 14-9 s2 L 1 68.33 20.67 0.15	S2 P5 14-10 s2 L 67.90 21.05 0.20	S2 P5 14-11 s2 L 67.94 20.83 0.04	S2 P5 14-12 s2 L 7 67.00 21.11 0.19	S2 P5 14-13 s2 L 67.56 20.72 0.09	S2 P5 14-14 s2 L 7 68.47 20.22 0.06	S2 P5 14-15 s2 L 66.88 21.07 0.17	S2 P5 14-16 s2 L 67.34 20.98 0.14	S2 P5 14-17 s2 L 1 67.62 20.89 0.07	S2 P5 14-18 s2 L 66.35 21.56 0.20	S2 P5 14-19 s2 L 67.07 20.86 0.14	S2 P5 14-20 s2 L 66.80 21.07 0.20	S2 P5 14-21 s2 L 1 66.79 21.34 0.07	S2 P5 14-22 s2 L 66.76 21.19 0.03	S2 P5 14-23 s2 L 67.47 21.08 0.07
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO	S2 P5 15-5 s2 l 67.56 20.23	S2 P5 15-6 s2 l 66.75 21.48 0.16 0.00	S2 P5 15-7 s2 l 69.10 20.20 0.03 0.00	S2 P5 15-8 s2 l 67.92 20.77 0.00 0.00	S2 P5 14-1 s2 L 68.15 19.84 0.38 0.00	S2 P5 14-2 s2 L 67.39 20.94 0.24 0.02	S2 P5 14-3 s2 L 66.65 21.20 0.16 0.00	S2 P5 14-4 s2 L 67.18 21.19 0.18 0.00	S2 P5 14-5 s2 L 66.91 21.13 0.16 0.00	S2 P5 14-6 s2 L 67.10 21.02 0.15 0.00	S2 P5 14-7 s2 L 67.92 20.62 0.09 0.00	S2 P5 14-8 s2 L 68.81 20.55 0.13 0.00	S2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01	S2 P5 14-10 s2 L 67.90 21.05 0.20 0.03	S2 P5 14-11 s2 L 67.94 20.83 0.04 0.00	S2 P5 14-12 s2 L 67.00 21.11 0.19 0.00	S2 P5 14-13 s2 L 67.56 20.72 0.09 0.00	S2 P5 14-14 s2 L 68.47 20.22 0.06 0.02	S2 P5 14-15 s2 L 66.88 21.07 0.17 0.00	S2 P5 14-16 s2 L 67.34 20.98 0.14 0.00	S2 P5 14-17 s2 L 1 67.62 20.89 0.07 0.00	S2 P5 14-18 s2 L 66.35 21.56 0.20 0.02	S2 P5 14-19 s2 L 67.07 20.86 0.14 0.00	S2 P5 14-20 s2 L 66.80 21.07 0.20 0.00	S2 P5 14-21 s2 L 1 66.79 21.34 0.07 0.00	S2 P5 4-22 s2 L 66.76 21.19 0.03 0.00	S2 P5 14-23 s2 L 67.47 21.08 0.07 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO	S2 P5 15-5 s2 l 67.56 20.23 0.05 0.00 1.10	S2 P5 15-6 s2 l 66.75 21.48 0.16 0.00 1.70	S2 P5 15-7 s2 l 69.10 20.20 0.03 0.00 0.36	S2 P5 15-8 s2 l 67.92 20.77 0.00 0.00 1.02	S2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24	S2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50	S2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86	S2 P5 14-4 s2 L 67.18 21.19 0.18 0.00 1.73	S2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75	S2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68	S2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15	S2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92	S2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01 1.21	S2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18	S2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28	S2 P5 14-12 s2 L 67.00 21.11 0.19 0.00 1.66	S2 P5 14-13 s2 L 67.56 20.72 0.09 0.00 1.31	S2 P5 14-14 s2 L 68.47 20.22 0.06 0.02 0.72	S2 P5 14-15 s2 L 66.88 21.07 0.17 0.00 1.75	S2 P5 14-16 s2 L 67.34 20.98 0.14 0.00 1.69	S2 P5 14-17 s2 L 1 67.62 20.89 0.07 0.00 1.57	S2 P5 14-18 s2 L 66.35 21.56 0.20 0.02 1.67	S2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87	S2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68	S2 P5 14-21 s2 L 1 66.79 21.34 0.07 0.00 1.92	S2 P5 14-22 s2 L 66.76 21.19 0.03 0.00 1.81	S2 P5 14-23 s2 L 67.47 21.08 0.07 0.00 1.67
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO	S2 P5 15-5 s21 67.56 20.23 0.05 0.00	S2 P5 15-6 s2 l 66.75 21.48 0.16 0.00	S2 P5 15-7 s2 l 69.10 20.20 0.03 0.00	S2 P5 15-8 s2 l 67.92 20.77 0.00 0.00	S2 P5 14-1 s2 L 68.15 19.84 0.38 0.00	S2 P5 14-2 s2 L 67.39 20.94 0.24 0.02	S2 P5 14-3 s2 L 66.65 21.20 0.16 0.00	S2 P5 14-4 s2 L 67.18 21.19 0.18 0.00	S2 P5 14-5 s2 L 66.91 21.13 0.16 0.00	S2 P5 14-6 s2 L 67.10 21.02 0.15 0.00	S2 P5 14-7 s2 L 67.92 20.62 0.09 0.00	S2 P5 14-8 s2 L 68.81 20.55 0.13 0.00	S2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01	S2 P5 14-10 s2 L 67.90 21.05 0.20 0.03	S2 P5 14-11 s2 L 67.94 20.83 0.04 0.00	S2 P5 14-12 s2 L 67.00 21.11 0.19 0.00	S2 P5 14-13 s2 L 67.56 20.72 0.09 0.00	S2 P5 14-14 s2 L 68.47 20.22 0.06 0.02	S2 P5 14-15 s2 L 66.88 21.07 0.17 0.00	S2 P5 14-16 s2 L 67.34 20.98 0.14 0.00	S2 P5 14-17 s2 L 1 67.62 20.89 0.07 0.00	S2 P5 14-18 s2 L 66.35 21.56 0.20 0.02	S2 P5 14-19 s2 L 67.07 20.86 0.14 0.00	S2 P5 14-20 s2 L 66.80 21.07 0.20 0.00	S2 P5 14-21 s2 L 1 66.79 21.34 0.07 0.00	S2 P5 4-22 s2 L 66.76 21.19 0.03 0.00	S2 P5 14-23 s2 L 67.47 21.08 0.07 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO	S2 P5 15-5 s2 l 67.56 20.23 0.05 0.00 1.10	S2 P5 15-6 s2 l 66.75 21.48 0.16 0.00 1.70	S2 P5 15-7 s2 l 69.10 20.20 0.03 0.00 0.36	S2 P5 15-8 s2 l 67.92 20.77 0.00 0.00 1.02	S2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24	S2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50	S2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86	S2 P5 14-4 s2 L 67.18 21.19 0.18 0.00 1.73	S2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75	S2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68	S2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15	S2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92	S2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01 1.21	S2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18	S2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28	S2 P5 14-12 s2 L 67.00 21.11 0.19 0.00 1.66	S2 P5 14-13 s2 L 67.56 20.72 0.09 0.00 1.31	S2 P5 14-14 s2 L 68.47 20.22 0.06 0.02 0.72	S2 P5 14-15 s2 L 66.88 21.07 0.17 0.00 1.75	S2 P5 14-16 s2 L 67.34 20.98 0.14 0.00 1.69	S2 P5 14-17 s2 L 1 67.62 20.89 0.07 0.00 1.57	S2 P5 14-18 s2 L 66.35 21.56 0.20 0.02 1.67	S2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87	S2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68	S2 P5 14-21 s2 L 1 66.79 21.34 0.07 0.00 1.92	S2 P5 14-22 s2 L 66.76 21.19 0.03 0.00 1.81	S2 P5 14-23 s2 L 67.47 21.08 0.07 0.00 1.67
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O	S2 P5 15-5 s2 l 67.56 20.23 0.05 0.00 1.10 10.23	S2 P5 15-6 s2 l 66.75 21.48 0.16 0.00 1.70 10.30	S2 P5 15-7 s2 l 69.10 20.20 0.03 0.00 0.36 11.11	S2 P5 15-8 s2 l 67.92 20.77 0.00 0.00 1.02 10.70	S2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24 10.63	S2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50 10.32	S2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86 9.99	S2 P5 14-4 s2 L 67.18 21.19 0.18 0.00 1.73 10.18	S2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75 10.21	S2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68 9.98	S2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15 10.58	S2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92 10.67	S2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01 1.21 10.74	S2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18 10.36	S2 P5 14-11 s2 L : 67.94 20.83 0.04 0.00 1.28 10.63	S2 P5 14-12 s2 L 67.00 21.11 0.19 0.00 1.66 10.11	S2 P5 14-13 s2 L 67.56 20.72 0.09 0.00 1.31 10.33	S2 P5 14-14 s2 L 68.47 20.22 0.06 0.02 0.72 10.90	S2 P5 14-15 s2 L · · 66.88 21.07 0.17 0.00 1.75 10.22	S2 P5 14-16 s2 L 67.34 20.98 0.14 0.00 1.69 10.24	S2 P5 14-17 s2 L 1 67.62 20.89 0.07 0.00 1.57 10.13	S2 P5 14-18 s2 L 66.35 21.56 0.20 0.02 1.67 9.81	S2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87 10.10	S2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68 10.28	S2 P5 14-21 s2 L 1 66.79 21.34 0.07 0.00 1.92 10.07	S2 P5 4-22 s2 L 7 66.76 21.19 0.03 0.00 1.81 10.23	S2 P5 14-23 s2 L 67.47 21.08 0.07 0.00 1.67 10.33
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O	S2 P5 15-5 s21 67.56 20.23 0.05 0.00 1.10 10.23 0.19 99.36	S2 P5 15-6 s2 l 66.75 21.48 0.16 0.00 1.70 10.30 0.09 100.49	\$2 P5 15-7 s21 69.10 20.20 0.03 0.00 0.36 11.11 0.04 100.84	S2 P5 15-8 s2 l 67.92 20.77 0.00 0.00 1.02 10.70 0.08	S2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24 10.63 0.06	S2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50 10.32 0.08	S2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86 9.99 0.17	S2 P5 14-4 s2 L 67.18 21.19 0.18 0.00 1.73 10.18 0.14	S2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75 10.21 0.09	S2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68 9.98 0.10	S2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15 10.58 0.06	S2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92 10.67 0.09	S2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01 1.21 10.74 0.10	S2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18 10.36 0.13	S2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28 10.63 0.05	S2 P5 14-12 s2 L 7 67.00 21.11 0.19 0.00 1.66 10.11 0.11	S2 P5 14-13 s2 L 67.56 20.72 0.09 0.00 1.31 10.33 0.06	S2 P5 14-14 s2 L 68.47 20.22 0.06 0.02 0.72 10.90 0.06	S2 P5 14-15 s2 L 66.88 21.07 0.17 0.00 1.75 10.22 0.11	S2 P5 14-16 s2 L 67.34 20.98 0.14 0.00 1.69 10.24 0.10	S2 P5 14-17 s2 L 1 67.62 20.89 0.07 0.00 1.57 10.13 0.09	S2 P5 14-18 s2 L 66.35 21.56 0.20 0.02 1.67 9.81 0.09	S2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87 10.10 0.11	S2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68 10.28 0.10	S2 P5 14-21 s2 L 1 66.79 21.34 0.07 0.00 1.92 10.07 0.04	S2 P5 14-22 s2 L 66.76 21.19 0.03 0.00 1.81 10.23 0.10	S2 P5 14-23 s2 L 67.47 21.08 0.07 0.00 1.67 10.33 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total	S2 P5 15-5 s21 67.56 20.23 0.05 0.00 1.10 10.23 0.19 99.36	S2 P5 15-6 s2 l 66.75 21.48 0.16 0.00 1.70 10.30 0.09 100.49	\$2 P5 15-7 s21 69.10 20.20 0.03 0.00 0.36 11.11 0.04 100.84	S2 P5 15-8 s2 l 67.92 20.77 0.00 0.00 1.02 10.70 0.08	S2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24 10.63 0.06	S2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50 10.32 0.08	S2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86 9.99 0.17	S2 P5 14-4 s2 L 67.18 21.19 0.18 0.00 1.73 10.18 0.14	S2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75 10.21 0.09	S2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68 9.98 0.10	S2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15 10.58 0.06	S2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92 10.67 0.09	S2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01 1.21 10.74 0.10	S2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18 10.36 0.13	S2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28 10.63 0.05	S2 P5 14-12 s2 L 7 67.00 21.11 0.19 0.00 1.66 10.11 0.11	S2 P5 14-13 s2 L 67.56 20.72 0.09 0.00 1.31 10.33 0.06	S2 P5 14-14 s2 L 68.47 20.22 0.06 0.02 0.72 10.90 0.06	S2 P5 14-15 s2 L 66.88 21.07 0.17 0.00 1.75 10.22 0.11	S2 P5 14-16 s2 L 67.34 20.98 0.14 0.00 1.69 10.24 0.10	S2 P5 14-17 s2 L 1 67.62 20.89 0.07 0.00 1.57 10.13 0.09	S2 P5 14-18 s2 L 66.35 21.56 0.20 0.02 1.67 9.81 0.09	S2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87 10.10 0.11	S2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68 10.28 0.10	S2 P5 14-21 s2 L 1 66.79 21.34 0.07 0.00 1.92 10.07 0.04	S2 P5 14-22 s2 L 66.76 21.19 0.03 0.00 1.81 10.23 0.10	S2 P5 14-23 s2 L 67.47 21.08 0.07 0.00 1.67 10.33 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total	S2 P5 15-5 s2 I 67.56 20.23 0.05 0.00 1.10 10.23 0.19 99.36	S2 P5 15-6 s21 66.75 21.48 0.16 0.00 1.70 10.30 0.09 100.49 8 Oxygène	S2 P5 15-7 s2 I 69.10 20.20 0.03 0.00 0.36 11.11 0.04 100.84 es)	\$2 P5 15-8 \$21 67.92 20.77 0.00 0.00 1.02 10.70 0.08 100.49	S2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24 10.63 0.06 100.29	S2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50 10.32 0.08 100.49	S2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86 9.99 0.17 100.03	S2 P5 14-4 s2 L 67.18 21.19 0.18 0.00 1.73 10.18 0.14 100.60	S2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75 10.21 0.09	S2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68 9.98 0.10 100.04	S2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15 10.58 0.06 100.43	S2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92 10.67 0.09 101.17	S2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01 1.21 10.74 0.10 101.20	S2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18 10.36 0.13 100.85	S2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28 10.63 0.05 100.77	S2 P5 14-12 s2 L 7 67.00 21.11 0.19 0.00 1.66 10.11 0.11 100.19	S2 P5 14-13 s2 L 67.56 20.72 0.09 0.00 1.31 10.33 0.06 100.08	S2 P5 14-14 s2 L - 68.47 20.22 0.06 0.02 0.72 10.90 0.06 100.45	S2 P5 14-15 s2 L 66.88 21.07 0.17 0.00 1.75 10.22 0.11 100.21	S2 P5 14-16 s2 L 67.34 20.98 0.14 0.00 1.69 10.24 0.10	S2 P5 14-17 s2 L 1 67.62 20.89 0.07 0.00 1.57 10.13 0.09 100.38	S2 P5 14-18 s2 L 66.35 21.56 0.20 0.02 1.67 9.81 0.09 99.70	\$2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87 10.10 0.11 100.15	S2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68 10.28 0.10 100.12	S2 P5 14-21 s2 L 1 66.79 21.34 0.07 0.00 1.92 10.07 0.04 100.24	S2 P5 4-22 s2 L 66.76 21.19 0.03 0.00 1.81 10.23 0.10 100.12	\$2 P5 14-23 s2 L 67.47 21.08 0.07 0.00 1.67 10.33 0.00 100.62
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total	\$2 P5 15-5 s21 67.56 20.23 0.05 0.00 1.10 10.23 0.19 99.36 FURALE (E	S2 P5 15-6 s21 66.75 21.48 0.16 0.00 1.70 10.30 0.09 100.49 8 Oxygène 2.91	S2 P5 15-7 s2 l 69.10 20.20 0.03 0.00 0.36 11.11 0.04 100.84 es) 2.99	\$2 P5 15-8 s2 l 67.92 20.77 0.00 0.00 1.02 10.70 0.08 100.49	S2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24 10.63 0.06 100.29	S2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50 10.32 0.08 100.49	S2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86 9.99 0.17 100.03	\$2 P5 14-4 \$2 L 67.18 21.19 0.18 0.00 1.73 10.18 0.14 100.60	S2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75 10.21 0.09 100.25	\$2 P5 14-6 \$2 L 67.10 21.02 0.15 0.00 1.68 9.98 0.10 100.04	S2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15 10.58 0.06 100.43	S2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92 10.67 0.09 101.17	S2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01 1.21 10.74 0.10 101.20	S2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18 10.36 0.13 100.85	S2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28 10.63 0.05 100.77	S2 P5 14-12 s2 L 2 67.00 21.11 0.19 0.00 1.66 10.11 0.11 100.19	S2 P5 14-13 s2 L 67.56 20.72 0.09 0.00 1.31 10.33 0.06 100.08	\$2 P5 14-14 \$2 L 68.47 20.22 0.06 0.02 0.72 10.90 0.06 100.45	\$2 P5 14-15 s2 L 66.88 21.07 0.17 0.00 1.75 10.22 0.11 100.21	S2 P5 14-16 s2 L 67.34 20.98 0.14 0.00 1.69 10.24 0.10 100.51	S2 P5 14-17 s2 L 1 67.62 20.89 0.07 0.00 1.57 10.13 0.09 100.38	S2 P5 14-18 s2 L 66.35 21.56 0.20 0.02 1.67 9.81 0.09 99.70	\$2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87 10.10 0.11 100.15	\$2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68 10.28 0.10 100.12	\$2 P5 14-21 s2 L 1 66.79 21.34 0.07 0.00 1.92 10.07 0.04 100.24	S2 P5 4-22 s2 L 66.76 21.19 0.03 0.00 1.81 10.23 0.10 100.12	\$2 P5 14-23 s2 L 67.47 21.08 0.07 0.00 1.67 10.33 0.00 100.62
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al	\$2 P5 15-5 s21 67.56 20.23 0.05 0.00 1.10 10.23 0.19 99.36 TURALE (E	S2 P5 15-6 s21 66.75 21.48 0.16 0.00 1.70 10.30 0.09 100.49 8 Oxygène 2.91 1.10	S2 P5 15-7 s21 69.10 20.20 0.03 0.00 0.36 11.11 0.04 100.84 es) 2.99 1.03	\$2 P5 15-8 s2 67.92 20.77 0.00 0.00 1.02 10.70 0.08 100.49 2.95 1.06	S2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24 10.63 0.06 100.29 2.97 1.02	S2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50 10.32 0.08 100.49	S2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86 9.99 0.17 100.03 2.92 1.09	S2 P5 14-4 s2 L 67.18 21.19 0.18 0.00 1.73 10.18 0.14 100.60 2.92 1.09	S2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75 10.21 0.09 100.25 2.92 1.09	S2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68 9.98 0.10 100.04 2.93 1.08	S2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15 10.58 0.06 100.43 2.96 1.06	S2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92 10.67 0.09 101.17 2.97 1.04	\$2 P5 14-9 \$2 L 1 68.33 20.67 0.15 0.01 1.21 10.74 0.10 101.20 2.95 1.05	S2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18 10.36 0.13 100.85 2.94 1.07	S2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28 10.63 0.05 100.77 2.95 1.06	S2 P5 14-12 s2 L 67.00 21.11 0.19 0.00 1.66 10.11 0.11 100.19 2.93 1.09	S2 P5 I4-13 s2 L 67.56 20.72 0.09 0.00 1.31 10.33 0.06 100.08 2.95 1.07	\$2 P5 14-14 \$2 L 68.47 20.22 0.06 0.02 0.72 10.90 0.06 100.45 2.97 1.04	S2 P5 14-15 s2 L 66.88 21.07 0.17 0.00 1.75 10.22 0.11 100.21 2.93 1.09	S2 P5 14-16 s2 L 67.34 20.98 0.14 0.00 1.69 10.24 0.10 100.51 2.93 1.08	\$2 P5 14-17 \$2 L 1 67.62 20.89 0.07 0.00 1.57 10.13 0.09 100.38 2.94 1.07	\$2 P5 14-18 \$2 L 66.35 21.56 0.20 0.02 1.67 9.81 0.09 99.70 2.91 1.11	\$2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87 10.10 0.11 100.15 2.93 1.07	\$2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68 10.28 0.10 100.12	\$2 P5 14-21 \$2 L 1 66.79 21.34 0.07 0.00 1.92 10.07 0.04 100.24 2.92 1.10	S2 P5 14-22 s2 L 66.76 21.19 0.03 0.00 1.81 10.23 0.10 100.12 2.92 1.09	S2 P5 14-23 s2 L 67.47 21.08 0.07 0.00 1.67 10.33 0.00 100.62 2.93 1.08
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe ³⁺	\$2 P5 15-5 \$21 67.56 20.23 0.05 0.00 1.10 10.23 0.19 99.36 FURALE (8 2.97 1.05 0.00	\$2 P5 15-6 s21 66.75 21.48 0.16 0.00 1.70 10.30 0.09 100.49 3 Oxygène 2.91 1.10 0.01	\$2 P5 15-7 s21 69.10 20.20 0.03 0.00 0.36 11.11 0.04 100.84 es) 2.99 1.03 0.00	\$2 P5 15-8 s21 67.92 20.77 0.00 0.00 1.02 10.70 0.08 100.49 2.95 1.06 0.00	S2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24 10.63 0.06 100.29 2.97 1.02 0.01	S2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50 10.32 0.08 100.49 2.93 1.07 0.01	S2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86 9.99 0.17 100.03 2.92 1.09 0.01	S2 P5 14-4 s2 L 67.18 21.19 0.18 0.00 1.73 10.18 0.14 100.60 2.92 1.09 0.01	S2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75 10.21 0.09 100.25 2.92 1.09 0.01	S2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68 9.98 0.10 100.04 2.93 1.08 0.00	S2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15 10.58 0.06 100.43 2.96 1.06 0.00	S2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92 10.67 0.09 101.17 2.97 1.04 0.00	S2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01 1.21 10.74 0.10 101.20 2.95 1.05 0.00	\$2 P5 14-10 \$2 L 67.90 21.05 0.20 0.03 1.18 10.36 0.13 100.85 2.94 1.07 0.01	S2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28 10.63 0.05 100.77 2.95 1.06 0.00	\$2 P5 14-12 s2 L · · · 67.00 21.11 0.19 0.00 1.66 10.11 0.11 100.19 2.93 1.09 0.01	\$2 P5 14-13 \$2 L 67.56 20.72 0.09 0.00 1.31 10.33 0.06 100.08 2.95 1.07 0.00	\$2 P5 14-14 \$2 L 68.47 20.22 0.06 0.02 0.72 10.90 0.06 100.45 2.97 1.04 0.00	\$2 P5 14-15 \$2 L 66.88 21.07 0.17 0.00 1.75 10.22 0.11 100.21 2.93 1.09 0.01	S2 P5 14-16 s2 L 67.34 20.98 0.14 0.00 1.69 10.24 0.10 100.51 2.93 1.08 0.00	\$2 P5 14-17 \$2 L 1 67.62 20.89 0.07 0.00 1.57 10.13 0.09 100.38 2.94 1.07 0.00	\$2 P5 14-18 \$2 L 66.35 21.56 0.20 0.02 1.67 9.81 0.09 99.70 2.91 1.11 0.01	\$2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87 10.10 0.11 100.15 2.93 1.07 0.00	\$2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68 10.28 0.10 100.12 2.92 1.09 0.01	\$2 P5 14-21 \$2 L 1 66.79 21.34 0.07 0.00 1.92 10.07 0.04 100.24 2.92 1.10	\$2 P5 66.76 21.19 0.03 0.00 1.81 10.23 0.10 100.12 2.92 1.09 0.00	S2 P5 14-23 s2 L 67.47 21.08 0.07 0.00 1.67 10.33 0.00 100.62 2.93 1.08 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca	\$2 P5 15-5 \$21 67.56 20.23 0.05 0.00 1.10 10.23 0.19 99.36 FURALE (6 2.97 1.05 0.00 0.05	\$2 P5 15-6 s21 66.75 21.48 0.16 0.00 1.70 10.30 0.09 100.49 3 Oxygène 2.91 1.10 0.01 0.08	\$2 P5 15-7 s21 69.10 20.20 0.03 0.00 0.36 11.11 0.04 100.84 es) 2.99 1.03 0.00 0.00	\$2 P5 15-8 s2 67.92 20.77 0.00 0.00 1.02 10.70 0.08 100.49 2.95 1.06 0.00 0.05	\$2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24 10.63 0.06 100.29 2.97 1.02 0.01 0.06	\$2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50 10.32 0.08 100.49 2.93 1.07 0.01	\$2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86 9.99 0.17 100.03 2.92 1.09 0.01 0.09	\$2 P5 14-4 s2 L 67.18 21.19 0.18 0.00 1.73 10.18 0.14 100.60 2.92 1.09 0.01 0.08	S2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75 10.21 0.09 100.25 2.92 1.09 0.01 0.08	\$2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68 9.98 0.10 100.04 2.93 1.08 0.00 0.08	S2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15 10.58 0.06 100.43 2.96 1.06 0.00 0.05	S2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92 10.67 0.09 101.17 2.97 1.04 0.00 0.04	S2 P5 14-9 s2 L d 68.33 20.67 0.15 0.01 1.27 0.10 101.20 2.95 1.05 0.00 0.06	\$2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18 10.36 0.13 100.85 2.94 1.07 0.01 0.05	\$2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28 10.63 0.05 100.77 2.95 1.06 0.00 0.00	\$2 P5 14-12 s2 L · 67.00 21.11 0.19 0.00 1.66 10.11 0.11 0.11 0.19 2.93 1.09 0.01 0.08	\$2 P5 14-13 s2 L 67.56 20.72 0.09 0.00 1.31 10.33 0.06 100.08 2.95 1.07 0.00 0.06	\$2 P5 14-14 \$2 L 68.47 20.22 0.06 0.02 0.72 10.90 0.06 100.45 2.97 1.04 0.00 0.03	\$2 P5 14-15 s2 L 66.88 21.07 0.17 0.00 1.75 10.22 0.11 100.21 2.93 1.09 0.01 0.08	S2 P5 14-16 s2 L 67.34 20.98 0.14 0.00 1.69 10.24 0.10 100.51 2.93 1.08 0.00 0.08	\$2 P5 14-17 \$2 L 1 67.62 20.89 0.07 0.00 1.57 10.13 0.09 100.38 2.94 1.07 0.00 0.07	\$2 P5 14-18 s2 L 66.35 21.56 0.20 0.02 1.67 9.81 0.09 99.70 2.91 1.11 0.01 0.08	\$2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87 10.10 0.11 100.15 2.93 1.07 0.00 0.09	\$2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68 10.28 0.10 100.12 2.92 1.09 0.01 0.08	\$2 P5 14-21 \$2 L 0 66.79 21.34 0.07 0.00 1.92 10.07 0.04 100.24 2.92 1.10 0.00 0.09	S2 P5 14-22 s2 L 66.76 21.19 0.03 0.00 1.81 10.23 0.10 100.12 2.92 1.09 0.00 0.08	\$2 P5 14-23 \$2 L 67.47 21.08 0.07 0.00 1.67 10.33 0.00 100.62 2.93 1.08 0.00 0.08
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe ³⁺ Ca	S2 P5 15-5 s21 67.56 20.23 0.05 0.00 1.10 10.23 0.19 99.36 TURALE (6 2.97 1.05 0.00 0.05 0.87	\$2 P5 15-6 s21 66.75 21.48 0.16 0.00 1.70 10.30 0.09 100.49 3 Oxygène 2.91 1.10 0.01 0.08 0.87	\$2 P5 15-7 s21 69.10 20.20 0.03 0.00 0.36 11.11 0.04 100.84 ss) 2.99 1.03 0.00 0.02 0.93	\$2 P5 15-8 s2 67.92 20.77 0.00 0.00 1.02 10.70 0.08 100.49 2.95 1.06 0.00 0.05 0.90	\$2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24 10.63 0.06 100.29 2.97 1.02 0.01 0.06 0.90	\$2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50 10.32 0.08 100.49 2.93 1.07 0.01 0.07	\$2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86 9.99 0.17 100.03 2.92 1.09 0.01 0.09 0.85	S2 P5 14-4 s2 L 67.18 21.19 0.18 0.00 1.73 10.18 0.14 100.60 2.92 1.09 0.01 0.08 0.86	S2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75 10.21 0.09 100.25 2.92 1.09 0.01 0.08 0.87	\$2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68 9.98 0.10 100.04 2.93 1.08 0.00 0.08 0.85	\$2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15 10.58 0.06 100.43 2.96 1.06 0.00 0.05 0.89	\$2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92 10.67 0.09 101.17 2.97 1.04 0.00 0.04 0.89	S2 P5 14-9 s2 L d 68.33 20.67 0.15 0.01 1.21 10.74 0.10 101.20 2.95 1.05 0.00 0.06 0.90	\$2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18 10.36 0.13 100.85 2.94 1.07 0.01 0.05 0.87	\$2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28 10.63 0.05 100.77 2.95 1.06 0.00 0.06 0.89	\$2 P5 67.00 21.11 0.19 0.00 1.66 10.11 0.11 0.019 2.93 1.09 0.01 0.08	\$2 P5 14-13 s2 L 67.56 20.72 0.09 0.00 1.31 10.33 0.06 100.08 2.95 1.07 0.00 0.06 0.87	\$2 P5 14-14 \$2 L 68.47 20.22 0.06 0.02 0.72 10.90 0.06 100.45 2.97 1.04 0.00 0.03	S2 P5 14-15 s2 L 66.88 21.07 0.17 0.00 1.75 10.22 0.11 100.21 2.93 1.09 0.01 0.08 0.87	S2 P5 14-16 s2 L 67.34 20.98 0.14 0.00 1.69 10.24 0.10 100.51 2.93 1.08 0.00 0.08	\$2 P5 14-17 \$2 L 1 67.62 20.89 0.07 0.00 1.57 10.13 0.09 100.38 2.94 1.07 0.00 0.07 0.85	\$2 P5 14-18 s2 L 66.35 21.56 0.20 0.02 1.67 9.81 0.09 99.70 2.91 1.11 0.01 0.08 0.83	\$2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87 10.10 0.11 100.15 2.93 1.07 0.00 0.09 0.86	\$2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68 10.28 0.10 100.12 2.92 1.09 0.01 0.08 0.87	\$2 P5 14-21 \$2 L 1 66.79 21.34 0.07 0.00 1.92 10.07 0.04 100.24 2.92 1.10 0.00 0.09 0.85	S2 P5 66.76 21.19 0.03 0.00 1.81 10.23 0.10 100.12 2.92 1.09 0.00 0.08 0.87	\$2 P5 14-23 \$2 L 67.47 21.08 0.07 0.00 1.67 10.33 0.00 100.62 2.93 1.08 0.00 0.08 0.08
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³* Ca Na K	\$2 P5 15-5 s21 67.56 20.23 0.05 0.00 1.10 10.23 0.19 99.36 TURALE (E 2.97 1.05 0.00 0.05 0.00 0.05	\$2 P5 15-6 s21 66.75 21.48 0.16 0.00 1.70 10.30 0.09 100.49 8 Oxygène 2.91 1.10 0.01 0.08 0.87 0.01	\$2 P5 15-7 s21 69.10 20.20 0.03 0.00 0.36 11.11 0.04 100.84 es) 2.99 1.03 0.00 0.00 0.00	\$2 P5 15-8 s2 l 67.92 20.77 0.00 1.02 10.70 0.08 100.49 2.95 1.06 0.00 0.05 0.90	\$2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24 10.63 0.06 100.29 2.97 1.02 0.01 0.06 0.90 0.00	\$2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50 10.32 0.08 100.49 2.93 1.07 0.01 0.07 0.87	\$2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86 9.99 0.17 100.03 2.92 1.09 0.01 0.09 0.85 0.01	\$2 P5 14-4 s2 L 67.18 21.19 0.18 0.00 1.73 10.18 0.14 100.60 2.92 1.09 0.01 0.08 0.86 0.01	\$2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75 10.21 0.09 100.25 2.92 1.09 0.01 0.08 0.87 0.00	\$2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68 9.98 0.10 100.04 2.93 1.08 0.00 0.08 0.85 0.01	S2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15 10.58 0.06 100.43 2.96 1.06 0.00 0.05 0.89	\$2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92 10.67 0.09 101.17 2.97 1.04 0.00 0.04 0.89 0.01	\$2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01 1.21 10.74 0.10 101.20 2.95 1.05 0.00 0.06 0.90	\$2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18 10.36 0.13 100.85 2.94 1.07 0.01 0.05 0.87 0.01	\$2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28 10.63 0.05 100.77 2.95 1.06 0.00 0.06 0.89 0.00	\$2 P5 14-12 s2 L · · · 67.00 21.11 0.19 0.00 1.66 10.11 0.11 100.19 2.93 1.09 0.01 0.08 0.86 0.01	\$2 P5 14-13 s2 L 67.56 20.72 0.09 0.00 1.31 10.33 0.06 100.08 2.95 1.07 0.00 0.06 0.87	\$2 P5 14-14 s2 L · · 68.47 20.22 0.06 0.02 0.72 10.90 0.06 100.45 2.97 1.04 0.00 0.03 0.92 0.00	\$2 P5 14-15 s2 L · · · 66.88 21.07 0.17 0.00 1.75 10.22 0.11 100.21 2.93 1.09 0.01 0.08 0.87 0.01	\$2 P5 14-16 s2 L · · 67.34 20.98 0.14 0.00 1.69 10.24 0.10 100.51 2.93 1.08 0.00 0.08 0.86 0.01	\$2 P5 14-17 s2 L 1 67.62 20.89 0.07 10.13 0.09 100.38 2.94 1.07 0.00 0.07 0.85 0.01	\$2 P5 14-18 s2 L 66.35 21.56 0.20 0.02 1.67 9.81 0.09 99.70 2.91 1.11 0.01 0.08 0.83 0.01	\$2 P5 14-19 \$2 L 67.07 20.86 0.14 0.00 0.187 10.10 0.11 100.15 2.93 1.07 0.00 0.09 0.86 0.01	\$2 P5 14-20 \$2 L 66.80 21.07 0.20 0.00 1.68 10.28 0.10 100.12 2.92 1.09 0.01 0.08 0.87 0.01	\$2 P5 14-21 s2 L 1 66.79 21.34 0.07 0.00 1.92 10.07 0.04 100.24 2.92 1.10 0.00 0.09 0.85 0.00	\$2 P5 (4-22 \$2 L · · · 66.76 21.19 0.03 0.00 1.81 10.23 0.10 100.12 2.92 1.09 0.00 0.08 0.87 0.01	\$2 P5 14-23 s2 L 67.47 21.08 0.07 0.00 1.67 10.33 0.00 100.62 2.93 1.08 0.00 0.08 0.08 0.07
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³ Ca Na K Total	S2 P5 15-5 s21 67.56 20.23 0.05 0.00 1.10 10.23 0.19 99.36 TURALE (8 2.97 1.05 0.00 0.05 0.87 0.01 4.95	\$2 P5 15-6 s21 66.75 21.48 0.16 0.00 1.70 10.30 0.09 100.49 8 Oxygène 2.91 1.10 0.01 0.08 0.07 0.01 4.98	\$2 P5 15-7 s21 69.10 20.20 0.03 0.00 0.36 11.11 0.04 100.84 98) 2.99 1.03 0.00 0.	\$2 P5 15-8 s2 l 67.92 20.77 0.00 0.00 1.02 10.70 0.08 100.49 2.95 1.06 0.00 0.05 0.00 0.00 4.97	\$2 P5 14-1 s2 L 68.15 19.84 0.30 1.24 10.63 0.06 100.29 2.97 1.02 0.01 0.06 0.90 0.00 4.96	\$2 P5 14-2 s2 L 67.39 20.94 0.02 1.50 10.32 0.08 100.49 2.93 1.07 0.01 0.07 0.07 0.87	\$2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86 9.99 0.17 100.03 2.92 1.09 0.01 0.09 0.01 0.09	S2 P5 14-4 s2 L 67.18 21.19 0.18 0.00 1.73 10.18 0.14 100.60 2.92 1.09 0.01 0.08 0.01 4.96	\$2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75 10.21 0.09 100.25 2.92 1.09 0.01 0.08 0.07 0.00 4.97	\$2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68 9.98 0.10 100.04 2.93 1.08 0.00 0.08 0.00 1.08 0.00 1.09 1	\$2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15 10.58 0.06 100.43 2.96 1.06 0.00 0.05 0.89 0.00 4.97	\$2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92 10.67 0.09 101.17 2.97 1.04 0.00 0.04 0.08 0.01 4.96	\$2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01 1.21 10.74 0.10 101.20 2.95 1.05 0.06 0.90 0.01 4.97	\$2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18 10.36 0.13 100.85 2.94 1.07 0.01 0.05 0.87 0.01 4.96	\$2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28 10.63 0.05 100.77 2.95 1.06 0.00 0.00 0.08 0.00 4.97	\$2 P5 14-12 s2 L · · · 67.00 21.11 0.19 0.00 1.66 10.11 0.11 100.19 2.93 1.09 0.01 0.08 0.01 4.96	\$2 P5 14-13 s2 L 67.56 20.72 0.09 0.00 1.31 10.33 0.06 100.08 2.95 1.07 0.00 0.00 0.00 4.96	\$2 P5 14-14 s2 L · · · 68.47 20.22 0.06 0.02 10.90 0.06 100.45 2.97 1.04 0.00 0.03 0.02 0.02 0.00 4.97	\$2 P5 14-15 s2 L · · 66.88 21.07 0.17 0.00 1.75 10.22 0.11 100.21 2.93 1.09 0.01 0.08 0.87 0.01 4.97	S2 P5 14-16 s2 L · · · 67.34 20.98 0.14 0.00 1.69 10.24 0.10 100.51 2.93 1.08 0.00 0.08 0.06 0.01 4.96	\$2 P5 14-17 s2 L 1 67.62 20.89 0.07 10.13 0.09 100.38 2.94 1.07 0.00 0.07 0.00 1.57 10.13 0.09 100.38	\$2 P5 14-18 s2 L 66.35 21.56 0.20 0.02 1.67 9.81 0.09 99.70 2.91 1.11 0.08 0.83 0.01 4.95	\$2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87 10.10 0.11 100.15 2.93 1.07 0.00 0.09 0.86 0.01 4.96	\$2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68 10.28 0.10 100.12 2.92 1.09 0.01 0.08 0.87 0.01 4.97	\$2 P5 14-21 s2 L 1 66.79 21.34 0.07 0.00 1.92 10.07 0.04 100.24 2.92 1.10 0.00 0.09 0.85 0.00 4.97	\$2 P5 14-22 s2 L · · · 66.76 21.19 0.03 0.00 1.81 10.23 0.10 100.12 2.92 1.09 0.00 0.08 0.07 0.01 4.97	\$2 P5 14-23 s2 L 67.47 21.08 0.07 0.00 1.67 10.33 0.00 100.62 2.93 1.08 0.00 0.08 0.87 0.00 4.96
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³* Ca Na K Total K Total	S2 P5 15-5 s2 I 67.56 20.23 0.05 0.00 1.10 10.23 0.19 99.36 TURALE (8 2.97 1.05 0.00 0.05 0.87 0.01	\$2 P5 15-6 s21 66.75 21.48 0.16 0.00 1.70 10.30 0.09 100.49 8 Oxygène 2.91 1.10 0.01 0.08 0.87 0.01 4.98	\$2 P5 15-7 s21 69.10 20.20 0.03 0.00 0.36 11.11 0.04 100.84 es) 2.99 1.03 0.00 0.02 0.93 0.00 0.00	\$2 P5 15-8 s2 l 67.92 20.77 0.00 1.02 10.70 0.08 100.49 2.95 1.06 0.00 0.05 0.90 0.00 4.97	\$2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24 10.63 0.06 100.29 2.97 1.02 0.01 0.06 0.90 0.90 4.96	\$2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50 10.32 0.08 100.49 2.93 1.07 0.01 0.07 0.87 0.00 4.96	\$2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86 9.99 0.17 100.03 2.92 1.09 0.01 0.09 0.85 0.01 4.96	\$2 P5 14-4 s2 L 67.18 21.19 0.18 0.01 1.73 10.18 0.14 100.60 2.92 1.09 0.01 0.08 0.86 0.01 4.96	\$2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75 10.21 0.09 100.25 2.92 1.09 0.01 0.08 0.87 0.00 4.97	\$2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68 9.98 0.10 100.04 2.93 1.08 0.00 0.08 0.85 0.01 4.95	\$2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15 10.58 0.06 100.43 2.96 1.06 0.00 0.05 0.89 0.00 4.97	\$2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92 10.67 0.09 101.17 2.97 1.04 0.00 0.04 0.89 0.01 4.96	\$2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01 1.21 10.74 0.10 101.20 2.95 1.05 0.00 0.06 0.90 0.01 4.97	\$2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18 10.36 0.13 100.85 2.94 1.07 0.01 0.05 0.87 0.01 4.96	\$2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28 10.63 0.05 100.77 2.95 1.06 0.00 0.06 0.89 0.00 4.97	\$2 P5 67.00 21.11 0.19 0.00 1.66 10.11 0.11 100.19 2.93 1.09 0.01 0.86 0.01 4.96	\$2 P5 14-13 s2 L 67.56 20.72 0.09 0.00 1.31 10.33 0.06 100.08 2.95 1.07 0.00 0.06 0.87 0.00 4.96	\$2 P5 14-14 s2 L · · 68.47 20.22 0.06 0.02 0.72 10.90 0.06 100.45 2.97 1.04 0.00 0.03 0.92 0.00 4.97	\$2 P5 14-15 s2 L 66.88 21.07 0.07 0.00 1.75 10.22 0.11 100.21 2.93 1.09 0.01 0.08 0.87 0.01 4.97	S2 P5 14-16 s2 L 67.34 20.98 0.14 0.00 1.69 10.24 0.10 100.51 2.93 1.08 0.00 0.08 0.86 0.01 4.96	\$2 P5 14-17 s2 L 1 67.62 20.89 0.07 10.13 0.09 100.38 2.94 1.07 0.00 0.07 0.85 0.01 4.95	\$2 P5 14-18 s2 L 66.35 21.56 0.20 0.02 1.67 9.81 0.09 99.70 2.91 1.11 0.01 0.08 0.83 0.01 4.95	\$2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87 10.10 0.11 100.15 2.93 1.07 0.00 0.09 0.86 0.01 4.96	\$2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68 10.28 0.10 100.12 2.92 1.09 0.01 0.88 0.87 0.01	\$2 P5 14-21 s2 L 1 66.79 21.34 0.07 0.00 1.92 10.07 0.04 100.24 2.92 1.10 0.00 0.09 0.85 0.00 4.97	\$2 P5 14-22 \$2 L · · · · · · · · · · · · · · · · · ·	\$2 P5 14-23 s2 L 67.47 21.08 0.07 0.00 1.67 10.33 0.00 100.62 2.93 1.08 0.00 0.08 0.87 0.00 4.96
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³* Ca Na K Total %Or %Ab	S2 P5 15-5 s2 I 67.56 20.23 0.05 0.00 1.10 10.23 0.19 99.36 FURALE (& 2.97 1.05 0.00 0.05 0.87 0.01 4.95	\$2 P5 15-6 s21 66.75 21.48 0.16 0.00 1.70 10.30 0.09 100.49 8 Oxygène 2.91 1.10 0.01 0.08 0.87 0.01 4.98	\$2 P5 15-7 s21 69.10 20.20 0.03 0.00 0.36 11.11 0.04 100.84 es) 2.99 1.03 0.00 0.02 0.93 0.00 0.02	\$2 P5 15-8 s2 67.92 20.77 0.00 1.02 10.70 0.08 100.49 2.95 1.06 0.00 0.05 0.90 0.09	\$2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24 10.63 0.06 100.29 2.97 1.02 0.01 0.06 0.90 0.90 4.96	\$2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50 10.32 0.08 100.49 2.93 1.07 0.01 0.07 0.87 0.09 4.96	\$2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86 9.99 0.17 100.03 2.92 1.09 0.01 0.09 0.85 0.01 4.96	\$2 P5 14-4 s2 L 67.18 21.19 0.18 0.00 1.73 10.18 0.14 100.60 2.92 1.09 0.01 0.08 0.86 0.01 4.96	\$2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75 10.21 0.09 100.25 2.92 1.09 0.01 0.08 0.87 0.00 4.97	\$2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68 9.98 0.10 100.04 2.93 1.08 0.00 0.08 0.85 0.01 4.95	\$2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15 10.58 0.06 100.43 2.96 1.06 0.00 0.05 0.89 0.00 4.97	\$2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92 10.67 0.09 101.17 2.97 1.04 0.00 0.04 0.89 0.01 0.95	\$2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01 1.21 10.74 0.10 101.20 2.95 1.05 0.00 0.06 0.90 0.01 4.97	\$2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18 10.36 0.13 100.85 2.94 1.07 0.01 0.05 0.87 0.01 4.96 0.01 0.93	\$2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28 10.63 0.05 100.77 2.95 1.06 0.00 0.06 0.89 0.00 4.97 0.00 0.93	\$2 P5 67.00 21.11 0.19 0.00 1.66 10.11 100.19 2.93 1.09 0.01 0.08 0.86 0.01 4.96	\$2 P5 14-13 s2 L 67.56 20.72 0.09 0.00 1.31 10.33 0.06 100.08 2.95 1.07 0.00 0.06 0.87 0.00 4.96 0.00 0.93	\$2 P5 14-14 s2 L · · 68.47 20.22 0.06 0.02 0.72 10.90 0.06 100.45 2.97 1.04 0.00 0.03 0.92 0.70 0.92	\$2 P5 14-15 s2 L 66.88 21.07 0.17 0.00 1.75 10.22 0.11 100.21 2.93 1.09 0.01 0.08 0.87 0.01 4.97	\$2 P5 14-16 s2 L · · · 67.34 20.98 0.14 0.00 1.69 10.24 0.10 100.51 2.93 1.08 0.00 0.08 0.86 0.01 4.96	\$2 P5 14-17 s2 L 1 67.62 20.89 0.07 0.00 1.57 10.13 0.09 100.38 2.94 1.07 0.00 0.07 0.00 1.57 10.13 0.09 100.38	\$2 P5 14-18 s2 L 66.35 21.56 0.20 0.02 1.67 9.81 0.09 99.70 2.91 1.11 0.01 0.08 0.83 0.01 4.95	\$2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87 10.10 0.11 100.15 2.93 1.07 0.00 0.09 0.86 0.01 4.96	\$2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68 10.28 0.10 100.12 2.92 1.09 0.01 0.08 0.87 0.01 4.97	\$2 P5 14-21 s2 L 1 66.79 21.34 0.07 0.00 1.92 10.07 0.04 100.24 2.92 1.10 0.00 0.09 0.85 0.00 4.97	\$2 P5 14-22 \$2 L · · · · · · · · · · · · · · · · · ·	\$2 P5 14-23 s2 L 67.47 21.08 0.07 0.00 1.67 10.33 0.00 100.62 2.93 1.08 0.00 0.08 0.87 0.00 4.96 0.00 0.92
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³* Ca Na K Total K Total	S2 P5 15-5 s2 I 67.56 20.23 0.05 0.00 1.10 10.23 0.19 99.36 TURALE (8 2.97 1.05 0.00 0.05 0.87 0.01	\$2 P5 15-6 s21 66.75 21.48 0.16 0.00 1.70 10.30 0.09 100.49 8 Oxygène 2.91 1.10 0.01 0.08 0.87 0.01 4.98	\$2 P5 15-7 s21 69.10 20.20 0.03 0.00 0.36 11.11 0.04 100.84 es) 2.99 1.03 0.00 0.02 0.93 0.00 0.00	\$2 P5 15-8 s2 l 67.92 20.77 0.00 1.02 10.70 0.08 100.49 2.95 1.06 0.00 0.05 0.90 0.00 4.97	\$2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24 10.63 0.06 100.29 2.97 1.02 0.01 0.06 0.90 0.90 4.96	\$2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50 10.32 0.08 100.49 2.93 1.07 0.01 0.07 0.87 0.00 4.96	\$2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86 9.99 0.17 100.03 2.92 1.09 0.01 0.09 0.85 0.01 4.96	\$2 P5 14-4 s2 L 67.18 21.19 0.18 0.01 1.73 10.18 0.14 100.60 2.92 1.09 0.01 0.08 0.86 0.01 4.96	\$2 P5 14-5 s2 L 66.91 21.13 0.16 0.00 1.75 10.21 0.09 100.25 2.92 1.09 0.01 0.08 0.87 0.00 4.97	\$2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68 9.98 0.10 100.04 2.93 1.08 0.00 0.08 0.85 0.01 4.95	\$2 P5 14-7 s2 L 67.92 20.62 0.09 0.00 1.15 10.58 0.06 100.43 2.96 1.06 0.00 0.05 0.89 0.00 4.97	\$2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92 10.67 0.09 101.17 2.97 1.04 0.00 0.04 0.89 0.01 4.96	\$2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01 1.21 10.74 0.10 101.20 2.95 1.05 0.00 0.06 0.90 0.01 4.97	\$2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18 10.36 0.13 100.85 2.94 1.07 0.01 0.05 0.87 0.01 4.96	\$2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28 10.63 0.05 100.77 2.95 1.06 0.00 0.06 0.89 0.00 4.97	\$2 P5 67.00 21.11 0.19 0.00 1.66 10.11 0.11 100.19 2.93 1.09 0.01 0.86 0.01 4.96	\$2 P5 14-13 s2 L 67.56 20.72 0.09 0.00 1.31 10.33 0.06 100.08 2.95 1.07 0.00 0.06 0.87 0.00 4.96	\$2 P5 14-14 s2 L · · 68.47 20.22 0.06 0.02 0.72 10.90 0.06 100.45 2.97 1.04 0.00 0.03 0.92 0.00 4.97	\$2 P5 14-15 s2 L 66.88 21.07 0.07 0.00 1.75 10.22 0.11 100.21 2.93 1.09 0.01 0.08 0.87 0.01 4.97	S2 P5 14-16 s2 L 67.34 20.98 0.14 0.00 1.69 10.24 0.10 100.51 2.93 1.08 0.00 0.08 0.86 0.01 4.96	\$2 P5 14-17 s2 L 1 67.62 20.89 0.07 10.13 0.09 100.38 2.94 1.07 0.00 0.07 0.85 0.01 4.95	\$2 P5 14-18 s2 L 66.35 21.56 0.20 0.02 1.67 9.81 0.09 99.70 2.91 1.11 0.01 0.08 0.83 0.01 4.95	\$2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87 10.10 0.11 100.15 2.93 1.07 0.00 0.09 0.86 0.01 4.96	\$2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68 10.28 0.10 100.12 2.92 1.09 0.01 0.88 0.87 0.01	\$2 P5 14-21 s2 L 1 66.79 21.34 0.07 0.00 1.92 10.07 0.04 100.24 2.92 1.10 0.00 0.09 0.85 0.00 4.97	\$2 P5 14-22 \$2 L · · · · · · · · · · · · · · · · · ·	\$2 P5 14-23 s2 L 67.47 21.08 0.07 0.00 1.67 10.33 0.00 100.62 2.93 1.08 0.00 0.08 0.87 0.00 4.96
équence ° du cristal ° analyse iO₂ I₂O₃ eO Total IgO aa₂O cotal ORMULE STRUCT i I e³³³ a a cotal	S2 P5 15-5 s2 I 67.56 20.23 0.05 0.00 1.10 10.23 0.19 99.36 FURALE (& 2.97 1.05 0.00 0.05 0.87 0.01 4.95	\$2 P5 15-6 s21 66.75 21.48 0.16 0.00 1.70 0.09 100.49 3 Oxygène 2.91 1.10 0.01 0.08 0.87 0.01 4.98 0.01 0.091 0.08	\$2 P5 15-7 s2 l 69.10 20.20 0.03 0.00 0.36 11.11 0.04 100.84 es) 2.99 1.03 0.00 0.02 0.93 0.00 4.97 0.00	\$2 P5 15-8 s2 67.92 20.77 0.00 0.00 1.02 10.70 0.08 100.49 2.95 1.06 0.00 0.05 0.90 0.00 4.97 0.00	\$2 P5 14-1 s2 L 68.15 19.84 0.38 0.00 1.24 10.63 0.06 100.29 2.97 1.02 0.01 0.06 0.90 0.00 4.96 0.00 0.94 0.06	\$2 P5 14-2 s2 L 67.39 20.94 0.24 0.02 1.50 10.32 0.08 100.49 2.93 1.07 0.01 0.07 0.87 0.00 4.96 0.00 0.92 0.07	\$2 P5 14-3 s2 L 66.65 21.20 0.16 0.00 1.86 9.99 0.17 100.03 2.92 1.09 0.01 0.09 0.85 0.01 4.96 0.01 0.90 0.09	\$2 P5 14-4 s2 L 67.18 21.19 0.18 0.00 1.73 10.18 0.14 100.60 2.92 1.09 0.01 0.08 0.86 0.01 4.96 0.01 0.91 0.08	\$2 P5 14-5 \$2 L 66.91 21.13 0.16 0.00 1.75 10.21 0.09 100.25 2.92 1.09 0.01 0.08 0.87 0.00 4.97 0.01 0.91 0.09	\$2 P5 14-6 s2 L 67.10 21.02 0.15 0.00 1.68 9.98 0.10 100.04 2.93 1.08 0.00 0.08 0.85 0.01 4.95 0.01 0.91 0.08	\$2 P5 14-7 \$2 L 67.92 20.62 0.09 0.00 1.15 10.58 0.06 100.43 2.96 1.06 0.00 0.05 0.89 0.00 4.97	\$2 P5 14-8 s2 L 68.81 20.55 0.13 0.00 0.92 10.67 0.09 101.17 2.97 1.04 0.00 0.04 0.89 0.01 4.96 0.01 0.95 0.05	\$2 P5 14-9 s2 L 1 68.33 20.67 0.15 0.01 1.21 10.74 0.10 101.20 2.95 1.05 0.00 0.06 0.90 0.01 4.97	\$2 P5 14-10 s2 L 67.90 21.05 0.20 0.03 1.18 10.36 0.13 100.85 2.94 1.07 0.01 0.05 0.87 0.01 4.96 0.01 0.93 0.06	\$2 P5 14-11 s2 L 67.94 20.83 0.04 0.00 1.28 10.63 100.77 2.95 1.06 0.00 0.06 0.89 0.00 4.97 0.00 0.06	\$2 P5 14-12 s2 L · · · · · · · · · · · · · · · · · ·	\$2 P5 14-13 s2 L 67.56 20.72 0.09 0.00 1.31 10.33 0.06 100.08 2.95 1.07 0.00 0.87 0.00 4.96 0.00 0.93 0.07	\$2 P5 14-14 \$2 L 68.47 20.22 0.06 0.02 0.72 10.90 0.06 100.45 2.97 1.04 0.00 0.03 0.92 0.00 4.97	\$2 P5 14-15 \$2 L · · · · · · · · · · · · · · · · · ·	\$2 P5 14-16 s2 L · · · 67.34 20.98 0.14 0.00 1.69 10.24 0.10 100.51 2.93 1.08 0.00 0.08 0.86 0.01 4.96	\$2 P5 14-17 \$2 L 1 67.62 20.89 0.07 0.00 1.57 10.13 0.09 100.38 2.94 1.07 0.00 0.07 0.85 0.01 4.95 0.01 0.92 0.08	\$2 P5 14-18 s2 L 66.35 21.56 0.20 0.02 1.67 9.81 0.09 99.70 2.91 1.11 0.01 0.08 0.83 0.01 4.95	\$2 P5 14-19 s2 L 67.07 20.86 0.14 0.00 1.87 10.10 0.11 100.15 2.93 1.07 0.00 0.09 0.86 0.01 4.96 0.01 0.90 0.09	\$2 P5 14-20 s2 L 66.80 21.07 0.20 0.00 1.68 10.28 0.10 100.12 2.92 1.09 0.01 0.08 0.87 0.01 4.97 0.01 0.91 0.08	\$2 P5 14-21 s2 L 1 66.79 21.34 0.07 0.00 1.92 10.07 0.04 100.24 2.92 1.10 0.00 0.09 0.85 0.00 4.97 0.00 0.90 0.09	\$2 P5 14-22 \$2 L · · · · · · · · · · · · · · · · · ·	\$2 P5 14-23 \$2 L 67.47 21.08 0.07 0.00 1.67 10.33 0.00 100.62 2.93 1.08 0.00 0.08 0.87 0.00 4.96 0.00 0.92

Lame	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4
	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	N4 S2	S2
Séquence N° du cristal	52 P5	52 P9-iF9	P9-iF9	52 P9-iF9	99-iF9	52 P9-iF9	P9-iF9	P9-iF9	52 P8	52 P8	- 52 P8	52 P8	52 P8	52 P8	52 P8	52 P8	52 P8	52 P8	52 P8	52 P8	52 P8	52 P8	52 P8	52 P8	52 P8	52 P8	52 P8
N° analyse	14-25 s2 L		31-4 s2 L		31-6 s2 L		31-8 s2 L	31-9 s2 L	27-1 s2 l	27-2 s2 l	27-3 s2 l	27-4 s2 l	27-5 s2 l	27-6 s2 l	26-1 s2 L		26-3 s2 L				26-7 s2 L				26-12 s2 L 2		. 0
SiO ₂	68.71	68.98	66.36	68.00	67.37	66.11	66.99	69.16	67.06	66.89	66.08	65.81	65.09	67.25	68.51	68.26	67.05	67.27	67.31	67.45	67.12	66.88	67.00	67.21	67.16	67.31	67.00
Al ₂ O ₃	20.62	20.41	21.76	20.38	21.18	21.00	20.60	20.09	21.33	21.04	21.23	21.29	21.15	20.61	20.04	20.63	21.04	21.21	20.47	21.08	21.20	20.98	21.03	20.98	21.12	20.80	20.80
FeO Total			0.28	0.11	0.16				0.12			0.21							0.08	0.24	0.10		0.20		0.24		
	0.16	0.28				0.24	0.14	0.25		0.05	0.15		0.20	0.00	0.03	0.12	0.12	0.13				0.16		0.12		0.20	0.11
MgO	0.00	0.04	0.00	0.00	0.02	0.00	0.02	0.09	0.00	0.00	0.00	0.00	0.02	0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.00
CaO Na₂O	1.23 10.43	0.60 10.66	2.22 9.86	1.17 10.34	1.57 10.70	2.05	1.40 10.24	0.38 11.05	1.74 10.30	1.57 10.22	1.61 10.20	1.77 10.39	1.76 10.06	0.57 11.17	0.55	1.08 10.70	1.57 10.32	1.73 10.07	1.38 9.07	1.69 10.27	1.84 10.15	1.46 10.40	1.60 10.22	1.42 10.38	1.77 10.13	1.66 10.23	1.42 10.44
						9.98									10.96												
K2O	0.08	0.11	0.06	0.51	0.11	0.07	0.10	0.10	0.02	0.12	0.08	0.06	0.13	0.38	0.02	0.08	0.11	0.36	1.84	0.10	0.15	0.17	0.03	0.10	0.13	0.09	0.10
Total	101.22	101.07	100.54	100.49	101.10	99.46	99.49	101.11	100.57	99.90	99.34	99.52	98.42	99.99	100.11	100.90	100.21	100.78	100.15	100.82	100.56	100.04	100.07	100.27	100.55	100.29	99.86
FORMULE STRUCT	ì	3 Oxygène	,																								
Si	2.96	2.98	2.89	2.96	2.92	2.91	2.94	2.98	2.92	2.93	2.91	2.90	2.90	2.95	2.99	2.96	2.93	2.93	2.95	2.93	2.92	2.93	2.93	2.93	2.92	2.94	2.94
Al	1.05	1.04	1.12	1.05	1.08	1.09	1.07	1.02	1.09	1.09	1.10	1.11	1.11	1.06	1.03	1.05	1.08	1.09	1.06	1.08	1.09	1.08	1.08	1.08	1.08	1.07	1.07
Fe ³⁺	0.01	0.01	0.01	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.01	0.01	0.00
Ca	0.06	0.03	0.10	0.05	0.07	0.10	0.07	0.02	0.08	0.07	0.08	0.08	0.08	0.03	0.03	0.05	0.07	0.08	0.07	0.08	0.09	0.07	0.07	0.07	0.08	0.08	0.07
Na	0.87	0.89	0.83	0.87	0.90	0.85	0.87	0.92	0.87	0.87	0.87	0.89	0.87	0.95	0.93	0.90	0.87	0.85	0.77	0.86	0.86	0.88	0.87	0.88	0.86	0.87	0.89
K	0.00	0.01	0.00	0.03	0.01	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.01	0.02	0.00	0.00	0.01	0.02	0.10	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01
Total	4.95	4.95	4.96	4.97	4.99	4.97	4.96	4.96	4.97	4.97	4.97	4.99	4.98	5.00	4.97	4.97	4.97	4.97	4.95	4.96	4.97	4.97	4.96	4.96	4.96	4.96	4.97
%Or	0.00	0.01	0.00	0.03	0.01	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.01	0.02	0.00	0.00	0.01	0.02	0.11	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01
%Ab	0.93	0.96	0.89	0.91	0.92	0.89	0.92	0.98	0.91	0.92	0.92	0.91	0.90	0.95	0.97	0.94	0.92	0.89	0.82	0.91	0.90	0.92	0.92	0.92	0.91	0.91	0.92
%An	0.06	0.03	0.11	0.06	0.07	0.10	0.07	0.02	0.09	0.08	0.08	0.09	0.09	0.03	0.03	0.05	0.08	0.08	0.07	0.08	0.09	0.07	0.08	0.07	0.09	0.08	0.07
Position verticale*	113687	114408	114408	114408	114408	114408	114408	114408	115268	115103	114937	114772	114607	114441	114629	114629	114629	114629	114629	114629	114629	114629	114629	114629	114629	114629	114629
	NA	NIA	NA	NIA	NIA	NA	NIA	NIA	NIA	NIA	NIA	NA	NIA	NA	NA	NA	NIA	NIA	NIA	NA	NIA	NA	NA	NA	NA	NIA	NA
Lame	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4
Séquence	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2
Séquence N° du cristal	S2 P8	S2 P8	S2 P8	S2 P8	S2 P8	S2 P8	S2 P12	S2 P12	S2 P12	S2 P12	S2 P12	S2 P13	S2 P13	S2 P13	S2 P13	S2 P13	S2 P10	S2 P10	S2 P10	S2 P10	S2 P10	S2 P14	S2 P14-b	S2 P14-c	S2 P14	S2 P14-b	S2 P11
Séquence N° du cristal N° analyse	S2 P8 26-15 s2 L	S2 P8 26-16 s2 L 2	S2 P8 26-17 s2 L 2	S2 P8 26-18 s2 L 2	S2 P8 26-19 s2 L 2	S2 P8 26-20 s2 L	S2 P12 401-2 s3	S2 P12 401-3 s3	S2 P12 401-4 s3	S2 P12 401-5 s3	S2 P12 401-6 s3	S2 P13 404-1 s3 I	S2 P13 404-2 s3 I	S2 P13 404-3 s3 I	S2 P13 404-4 s3 I	S2 P13 404-5 s3 I	S2 P10 33-1 s3 I	S2 P10 33-2 s3 I	S2 P10 33-3 s3 I	S2 P10 33-4 s3 I	S2 P10 33-5 s3 I	S2 P14 412 s3	S2 P14-b 405 s3	S2 P14-c 401 s3	S2 P14 408 s3	S2 P14-b 406 s3	S2 P11 34-1 s2 L
Séquence N° du cristal N° analyse SiO ₂	S2 P8 26-15 s2 L 67.61	S2 P8 26-16 s2 L 2 67.14	S2 P8 26-17 s2 L 2 66.91	S2 P8 26-18 s2 L 2 67.99	S2 P8 26-19 s2 L 2 66.90	S2 P8 26-20 s2 L 67.63	S2 P12 401-2 s3 69.58	S2 P12 401-3 s3 68.97	S2 P12 401-4 s3 69.18	S2 P12 401-5 s3 69.09	S2 P12 401-6 s3 68.66	S2 P13 404-1 s3 I 67.23	S2 P13 404-2 s3 I 67.25	S2 P13 404-3 s3 I 63.71	S2 P13 404-4 s3 I 66.57	S2 P13 404-5 s3 I 66.15	S2 P10 33-1 s3 I 68.88	S2 P10 33-2 s3 I 69.21	S2 P10 33-3 s3 I 69.24	S2 P10 33-4 s3 I 69.24	S2 P10 33-5 s3 I 69.38	S2 P14 412 s3 69.01	S2 P14-b 405 s3 69.03	S2 P14-c 401 s3 68.38	S2 P14 408 s3 68.66	S2 P14-b 406 s3 68.93	S2 P11 34-1 s2 L 69.94
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃	S2 P8 26-15 s2 L 67.61 20.80	S2 P8 26-16 s2 L 2 67.14 21.17	S2 P8 26-17 s2 L 2 66.91 21.43	S2 P8 26-18 s2 L 2 67.99 21.11	S2 P8 26-19 s2 L 2 66.90 20.99	S2 P8 26-20 s2 L 67.63 21.04	S2 P12 401-2 s3 69.58 21.67	S2 P12 401-3 s3 68.97 20.45	S2 P12 401-4 s3 69.18 20.48	S2 P12 401-5 s3 69.09 22.41	S2 P12 401-6 s3 68.66 22.26	S2 P13 404-1 s3 I 67.23 20.73	S2 P13 404-2 s3 I 67.25 20.28	S2 P13 404-3 s3 I 63.71 19.96	S2 P13 404-4 s3 I 66.57 21.23	S2 P13 404-5 s3 I 66.15 21.45	S2 P10 33-1 s3 I 68.88 19.80	S2 P10 33-2 s3 I 69.21 19.89	S2 P10 33-3 s3 I 69.24 20.02	S2 P10 33-4 s3 I 69.24 19.73	S2 P10 33-5 s3 I 69.38 19.64	S2 P14 412 s3 69.01 19.87	S2 P14-b 405 s3 69.03 19.82	S2 P14-c 401 s3 68.38 19.94	S2 P14 408 s3 68.66 19.92	S2 P14-b 406 s3 68.93 19.87	S2 P11 34-1 s2 L 69.94 19.79
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total	S2 P8 26-15 s2 L 67.61 20.80 0.11	S2 P8 26-16 s2 L 2 67.14 21.17 0.16	S2 P8 26-17 s2 L 2 66.91 21.43 0.09	S2 P8 26-18 s2 L 2 67.99 21.11 0.13	S2 P8 26-19 s2 L 2 66.90 20.99 0.17	S2 P8 26-20 s2 L 67.63 21.04 0.10	S2 P12 401-2 s3 69.58 21.67 0.12	S2 P12 401-3 s3 68.97 20.45 0.04	S2 P12 401-4 s3 69.18 20.48 0.07	S2 P12 401-5 s3 69.09 22.41 0.12	S2 P12 401-6 s3 68.66 22.26 0.25	S2 P13 404-1 s3 I 67.23 20.73 0.26	S2 P13 404-2 s3 I 67.25 20.28 0.09	S2 P13 404-3 s3 I 63.71 19.96 0.08	S2 P13 404-4 s31 66.57 21.23 0.12	S2 P13 404-5 s3 I 66.15 21.45 0.17	S2 P10 33-1 s3 l 68.88 19.80 0.03	S2 P10 33-2 s3 I 69.21 19.89 0.05	S2 P10 33-3 s3 I 69.24 20.02 0.00	S2 P10 33-4 s3 I 69.24 19.73 0.00	S2 P10 33-5 s3 I 69.38 19.64 0.03	S2 P14 412 s3 69.01 19.87 0.00	S2 P14-b 405 s3 69.03 19.82 0.06	S2 P14-c 401 s3 68.38 19.94 0.00	S2 P14 408 s3 68.66 19.92 0.00	S2 P14-b 406 s3 68.93 19.87 0.05	S2 P11 34-1 s2 L 69.94 19.79 0.11
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO	S2 P8 26-15 s2 L 67.61 20.80 0.11 0.00	S2 P8 26-16 s2 L 2 67.14 21.17 0.16 0.02	S2 P8 26-17 s2 L 2 66.91 21.43 0.09 0.01	S2 P8 26-18 s2 L 2 67.99 21.11 0.13 0.01	S2 P8 26-19 s2 L : 66.90 20.99 0.17 0.01	S2 P8 26-20 s2 L 67.63 21.04 0.10 0.00	S2 P12 401-2 s3 69.58 21.67 0.12 0.00	S2 P12 401-3 s3 68.97 20.45 0.04 0.00	S2 P12 401-4 s3 69.18 20.48 0.07 0.00	S2 P12 401-5 s3 69.09 22.41 0.12 0.00	S2 P12 401-6 s3 68.66 22.26 0.25 0.00	S2 P13 404-1 s3 I 67.23 20.73 0.26 0.01	S2 P13 404-2 s3 I 67.25 20.28 0.09 0.00	S2 P13 404-3 s3 I 63.71 19.96 0.08 0.02	S2 P13 404-4 s3 I 66.57 21.23 0.12 0.01	S2 P13 404-5 s31 66.15 21.45 0.17 0.02	S2 P10 33-1 s3 l 68.88 19.80 0.03 0.00	S2 P10 33-2 s31 69.21 19.89 0.05 0.00	S2 P10 33-3 s3 I 69.24 20.02 0.00 0.00	S2 P10 33-4 s3 I 69.24 19.73 0.00 0.00	S2 P10 33-5 s3 l 69.38 19.64 0.03 0.00	S2 P14 412 s3 69.01 19.87 0.00 0.00	S2 P14-b 405 s3 69.03 19.82 0.06 0.00	S2 P14-c 401 s3 68.38 19.94 0.00 0.00	S2 P14 408 s3 68.66 19.92 0.00 0.00	S2 P14-b 406 s3 68.93 19.87 0.05 0.00	S2 P11 34-1 s2 L 69.94 19.79 0.11 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO	S2 P8 26-15 s2 L 67.61 20.80 0.11 0.00 1.46	S2 P8 26-16 s2 L 2 67.14 21.17 0.16 0.02 1.49	S2 P8 26-17 s2 L 2 66.91 21.43 0.09 0.01 1.75	S2 P8 26-18 s2 L 2 67.99 21.11 0.13 0.01 1.55	S2 P8 26-19 s2 L 2 66.90 20.99 0.17 0.01 1.67	S2 P8 26-20 s2 L 67.63 21.04 0.10 0.00 1.69	S2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35	S2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45	S2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51	S2 P12 401-5 s3 69.09 22.41 0.12 0.00 1.97	S2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82	S2 P13 404-1 s3 I 67.23 20.73 0.26 0.01 1.16	S2 P13 404-2 s3 I 67.25 20.28 0.09 0.00 1.17	S2 P13 404-3 s3 I 63.71 19.96 0.08 0.02 0.55	S2 P13 404-4 s31 66.57 21.23 0.12 0.01 1.59	S2 P13 404-5 s31 66.15 21.45 0.17 0.02 1.76	S2 P10 33-1 s3 l 68.88 19.80 0.03 0.00 0.10	S2 P10 33-2 s3 l 69.21 19.89 0.05 0.00 0.20	\$2 P10 33-3 s3 I 69.24 20.02 0.00 0.00 0.31	S2 P10 33-4 s3 l 69.24 19.73 0.00 0.00 0.21	S2 P10 33-5 s3 l 69.38 19.64 0.03 0.00 0.24	S2 P14 412 s3 69.01 19.87 0.00 0.00 0.08	S2 P14-b 405 s3 69.03 19.82 0.06 0.00 0.04	\$2 P14-c 401 s3 68.38 19.94 0.00 0.00 0.28	S2 P14 408 s3 68.66 19.92 0.00 0.00 0.13	S2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08	S2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O	S2 P8 26-15 s2 L 67.61 20.80 0.11 0.00 1.46 10.38	S2 P8 26-16 s2 L 2 67.14 21.17 0.16 0.02 1.49 10.37	S2 P8 26-17 s2 L 2 66.91 21.43 0.09 0.01 1.75 10.21	S2 P8 26-18 s2 L 2 67.99 21.11 0.13 0.01 1.55 10.40	S2 P8 26-19 s2 L 2 66.90 20.99 0.17 0.01 1.67 10.33	S2 P8 26-20 s2 L 67.63 21.04 0.10 0.00 1.69 10.07	S2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35 9.05	\$2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87	S2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38	S2 P12 401-5 s3 69.09 22.41 0.12 0.00 1.97 7.45	S2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66	S2 P13 404-1 s31 67.23 20.73 0.26 0.01 1.16 10.76	S2 P13 404-2 s3 I 67.25 20.28 0.09 0.00 1.17 11.10	S2 P13 404-3 s31 63.71 19.96 0.08 0.02 0.55 3.68	S2 P13 404-4 s31 66.57 21.23 0.12 0.01 1.59 10.25	P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30	S2 P10 33-1 s3 l 68.88 19.80 0.03 0.00 0.10 11.31	\$2 P10 33-2 s31 69.21 19.89 0.05 0.00 0.20 11.31	S2 P10 33-3 s31 69.24 20.02 0.00 0.00 0.31 11.21	\$2 P10 33-4 s3 I 69.24 19.73 0.00 0.00 0.21 11.24	S2 P10 33-5 s3 1 69.38 19.64 0.03 0.00 0.24 11.05	S2 P14 412 s3 69.01 19.87 0.00 0.00 0.08 11.30	\$2 P14-b 405 s3 69.03 19.82 0.06 0.00 0.04 11.51	S2 P14-c 401 s3 68.38 19.94 0.00 0.00 0.28 11.08	\$2 P14 408 s3 68.66 19.92 0.00 0.13 11.40	S2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08 11.38	S2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O	S2 P8 26-15 s2 L 67.61 20.80 0.11 0.00 1.46 10.38 0.08	S2 P8 26-16 s2 L 2 67.14 21.17 0.16 0.02 1.49 10.37 0.07	S2 P8 26-17 s2 L 2 66.91 21.43 0.09 0.01 1.75 10.21 0.10	S2 P8 26-18 s2 L 2 67.99 21.11 0.13 0.01 1.55 10.40 0.16	S2 P8 26-19 s2 L 2 66.90 20.99 0.17 0.01 1.67 10.33 0.08	S2 P8 26-20 s2 L 67.63 21.04 0.10 0.00 1.69 10.07 0.13	S2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35 9.05 0.10	S2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87 0.08	S2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38 0.05	S2 P12 401-5 s3 69.09 22.41 0.12 0.00 1.97 7.45 0.10	S2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66 0.08	S2 P13 404-1 s3 I 67.23 20.73 0.26 0.01 1.16 10.76 0.06	S2 P13 404-2 s3 I 67.25 20.28 0.09 0.00 1.17 11.10 0.06	S2 P13 404-3 s3 I 63.71 19.96 0.08 0.02 0.55 3.68 11.41	S2 P13 404-4 s31 66.57 21.23 0.12 0.01 1.59 10.25 0.19	S2 P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30 0.07	S2 P10 33-1 s3 l 68.88 19.80 0.03 0.00 0.10 11.31 0.08	S2 P10 33-2 s3 I 69.21 19.89 0.05 0.00 0.20 11.31 0.09	\$2 P10 33-3 s3 I 69.24 20.02 0.00 0.00 0.31 11.21 0.06	S2 P10 33-4 s3 I 69.24 19.73 0.00 0.00 0.21 11.24 0.10	S2 P10 33-5 s3 l 69.38 19.64 0.03 0.00 0.24 11.05 0.03	\$2 P14 412 s3 69.01 19.87 0.00 0.00 0.08 11.30 0.07	S2 P14-b 405 s3 69.03 19.82 0.06 0.00 0.04 11.51 0.03	S2 P14-c 401 s3 68.38 19.94 0.00 0.00 0.28 11.08 0.07	\$2 P14 408 s3 68.66 19.92 0.00 0.00 0.13 11.40 0.09	S2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08 11.38 0.05	S2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20 0.08
Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO Total MgO CaO Na₂O K2O Total	S2 P8 26-15 s2 L 67.61 20.80 0.11 0.00 1.46 10.38 0.08 100.44	S2 P8 26-16 s2 L 2 67.14 21.17 0.16 0.02 1.49 10.37 0.07	S2 P8 26-17 s2 L : 66.91 21.43 0.09 0.01 1.75 10.21 0.10 100.51	S2 P8 26-18 s2 L 2 67.99 21.11 0.13 0.01 1.55 10.40	S2 P8 26-19 s2 L 2 66.90 20.99 0.17 0.01 1.67 10.33	S2 P8 26-20 s2 L 67.63 21.04 0.10 0.00 1.69 10.07	S2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35 9.05	\$2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87	S2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38	S2 P12 401-5 s3 69.09 22.41 0.12 0.00 1.97 7.45	S2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66	S2 P13 404-1 s31 67.23 20.73 0.26 0.01 1.16 10.76	S2 P13 404-2 s3 I 67.25 20.28 0.09 0.00 1.17 11.10	S2 P13 404-3 s31 63.71 19.96 0.08 0.02 0.55 3.68	S2 P13 404-4 s31 66.57 21.23 0.12 0.01 1.59 10.25	P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30	S2 P10 33-1 s3 l 68.88 19.80 0.03 0.00 0.10 11.31	\$2 P10 33-2 s31 69.21 19.89 0.05 0.00 0.20 11.31	S2 P10 33-3 s31 69.24 20.02 0.00 0.00 0.31 11.21	\$2 P10 33-4 s3 I 69.24 19.73 0.00 0.00 0.21 11.24	S2 P10 33-5 s3 1 69.38 19.64 0.03 0.00 0.24 11.05	S2 P14 412 s3 69.01 19.87 0.00 0.00 0.08 11.30	\$2 P14-b 405 s3 69.03 19.82 0.06 0.00 0.04 11.51	S2 P14-c 401 s3 68.38 19.94 0.00 0.00 0.28 11.08	\$2 P14 408 s3 68.66 19.92 0.00 0.13 11.40	S2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08 11.38	S2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O	S2 P8 26-15 s2 L 67.61 20.80 0.11 0.00 1.46 10.38 0.08 100.44 **URALE (E	\$2 P8 26-16 s2 L 2 67.14 21.17 0.16 0.02 1.49 10.37 0.07 100.42 8 Oxygène	S2 P8 26-17 s2 L 2 66.91 21.43 0.09 0.01 1.75 10.21 0.10 100.51	S2 P8 26-18 s2 L 2 67.99 21.11 0.13 0.01 1.555 10.40 0.16 101.35	S2 P8 26-19 s2 L 2 66.90 20.99 0.17 0.01 1.67 10.33 0.08 100.14	S2 P8 26-20 s2 L 67.63 21.04 0.10 0.00 1.69 10.07 0.13 100.66	\$2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35 9.05 0.10 101.87	\$2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87 0.08 100.86	\$2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38 0.05 100.67	\$2 P12 401-5 s3 69.09 22.41 0.12 0.00 1.97 7.45 0.10 101.14	\$2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66 0.08 101.73	S2 P13 404-1 s31 67.23 20.73 0.26 0.01 1.16 10.76 0.06 100.21	\$2 P13 404-2 s31 67.25 20.28 0.09 0.00 1.17 11.10 0.06 99.95	\$2 P13 404-3 s31 63.71 19.96 0.08 0.02 0.55 3.68 11.41 99.41	\$2 P13 404-4 s31 66.57 21.23 0.12 0.01 1.59 10.25 0.19 99.97	\$2 P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30 0.07 99.93	\$2 P10 33-1 s31 68.88 19.80 0.03 0.00 0.10 11.31 0.08 100.20	\$2 P10 33-2 s31 69.21 19.89 0.05 0.00 0.20 11.31 0.09 100.75	\$2 P10 33-3 s31 69.24 20.02 0.00 0.00 0.31 11.21 0.06 100.84	\$2 P10 33-4 s31 69.24 19.73 0.00 0.00 0.21 11.24 0.10 100.52	\$2 P10 33-5 s3 l 69.38 19.64 0.03 0.00 0.24 11.05 0.03 100.37	\$2 P14 412 s3 69.01 19.87 0.00 0.00 0.08 11.30 0.07	\$2 P14-b 405 s3 69.03 19.82 0.06 0.00 0.04 11.51 0.03 100.48	\$2 P14-c 401 s3 68.38 19.94 0.00 0.00 0.28 11.08 0.07 99.76	\$2 P14 408 s3 68.66 19.92 0.00 0.00 0.13 11.40 0.09	\$2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08 11.38 0.05 100.34	\$2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20 0.08 101.18
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total	\$2 P8 26-15 \$2 L 67.61 20.80 0.11 0.00 1.46 10.38 0.08 100.44 **URALE (E	S2 P8 26-16 s2 L 2 67.14 21.17 0.16 0.02 1.49 10.37 0.07 100.42 8 Oxygène 2.92	S2 P8 26-17 s2 L 2 66.91 21.43 0.09 0.01 1.75 10.21 0.10 100.51 is) 2.92	S2 P8 26-18 s2 L 2 67-99 21.11 0.13 0.01 1.55 10.40 0.16 101.35	S2 P8 26-19 s2 L 2 66.90 20.99 0.17 0.01 1.67 10.33 0.08 100.14 2.93	S2 P8 26-20 s2 L 67.63 21.04 0.10 0.00 1.69 10.07 0.13 100.66 2.94	\$2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35 9.05 0.10 101.87	\$2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87 0.08 100.86	\$2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38 0.05 100.67	\$2 P12 401-5 s3 69.09 22.41 0.12 0.00 1.97 7.45 0.10 101.14	\$2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66 0.08 101.73	\$2 P13 404-1 s31 67.23 20.73 0.26 0.01 1.16 10.76 0.06 100.21	\$2 P13 404-2 s31 67.25 20.28 0.09 0.00 1.17 11.10 0.06 99.95	\$2 P13 404-3 s31 63.71 19.96 0.08 0.02 0.55 3.68 11.41 99.41	\$2 P13 404-4 s31 66.57 21.23 0.12 0.01 1.59 10.25 0.19 99.97	\$2 P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30 0.07 99.93	\$2 P10 33-1 s3 I 68.88 19.80 0.03 0.00 0.10 11.31 0.08 100.20	\$2 P10 33-2 s31 69.21 19.89 0.05 0.00 0.20 11.31 0.09 100.75	\$2 P10 33-3 s31 69.24 20.02 0.00 0.00 0.31 11.21 0.06 100.84	\$2 P10 33-4 s31 69.24 19.73 0.00 0.00 0.21 11.24 0.10 100.52	\$2 P10 33-5 s3 l 69.38 19.64 0.03 0.00 0.24 11.05 0.03 100.37	\$2 P14 412 s3 69.01 19.87 0.00 0.00 0.08 11.30 0.07 100.33	\$2 P14-b 405 s3 69.03 19.82 0.06 0.00 0.04 11.51 0.03 100.48	\$2 P14-c 401 s3 68.38 19.94 0.00 0.28 11.08 0.07 99.76	\$2 P14 408 \$3 68.66 19.92 0.00 0.13 11.40 0.09 100.20	\$2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08 11.38 0.05 100.34	\$2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20 0.08 101.18
Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO Total MgO CaO Na₂O K2O Total FORMULE STRUCT Si Al	S2 P8 26-15 s2 L 67.61 20.80 0.11 0.00 1.46 10.38 0.08 100.44 **URALE (E	\$2 P8 26-16 s2 L 2 67.14 21.17 0.16 0.02 1.49 10.37 0.07 100.42 8 Oxygène	S2 P8 26-17 s2 L 2 66.91 21.43 0.09 0.01 1.75 10.21 0.10 100.51	S2 P8 26-18 s2 L 2 67.99 21.11 0.13 0.01 1.555 10.40 0.16 101.35	S2 P8 26-19 s2 L 2 66.90 20.99 0.17 0.01 1.67 10.33 0.08 100.14	S2 P8 26-20 s2 L 67.63 21.04 0.10 0.00 1.69 10.07 0.13 100.66	\$2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35 9.05 0.10 101.87	\$2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87 0.08 100.86	\$2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38 0.05 100.67	\$2 P12 401-5 s3 69.09 22.41 0.12 0.00 1.97 7.45 0.10 101.14	\$2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66 0.08 101.73	S2 P13 404-1 s31 67.23 20.73 0.26 0.01 1.16 10.76 0.06 100.21	\$2 P13 404-2 s31 67.25 20.28 0.09 0.00 1.17 11.10 0.06 99.95	\$2 P13 404-3 s31 63.71 19.96 0.08 0.02 0.55 3.68 11.41 99.41	\$2 P13 404-4 s31 66.57 21.23 0.12 0.01 1.59 10.25 0.19 99.97	\$2 P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30 0.07 99.93	\$2 P10 33-1 s31 68.88 19.80 0.03 0.00 0.10 11.31 0.08 100.20	\$2 P10 33-2 s31 69.21 19.89 0.05 0.00 0.20 11.31 0.09 100.75	\$2 P10 33-3 s31 69.24 20.02 0.00 0.00 0.31 11.21 0.06 100.84	\$2 P10 33-4 s31 69.24 19.73 0.00 0.00 0.21 11.24 0.10 100.52	\$2 P10 33-5 s3 l 69.38 19.64 0.03 0.00 0.24 11.05 0.03 100.37	\$2 P14 412 s3 69.01 19.87 0.00 0.00 0.08 11.30 0.07	\$2 P14-b 405 s3 69.03 19.82 0.06 0.00 0.04 11.51 0.03 100.48	\$2 P14-c 401 s3 68.38 19.94 0.00 0.00 0.28 11.08 0.07 99.76	\$2 P14 408 s3 68.66 19.92 0.00 0.00 0.13 11.40 0.09	\$2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08 11.38 0.05 100.34	\$2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20 0.08 101.18
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total	\$2 P8 26-15 \$2 L 67.61 20.80 0.11 0.00 1.46 10.38 0.08 100.44 **URALE (E	S2 P8 26-16 s2 L 2 67.14 21.17 0.16 0.02 1.49 10.37 0.07 100.42 8 Oxygène 2.92	S2 P8 26-17 s2 L 2 66.91 21.43 0.09 0.01 1.75 10.21 0.10 100.51 is) 2.92	S2 P8 26-18 s2 L 2 67-99 21.11 0.13 0.01 1.55 10.40 0.16 101.35	S2 P8 26-19 s2 L 2 66.90 20.99 0.17 0.01 1.67 10.33 0.08 100.14 2.93	S2 P8 26-20 s2 L 67.63 21.04 0.10 0.00 1.69 10.07 0.13 100.66 2.94	\$2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35 9.05 0.10 101.87	\$2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87 0.08 100.86	\$2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38 0.05 100.67	\$2 P12 401-5 s3 69.09 22.41 0.12 0.00 1.97 7.45 0.10 101.14	\$2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66 0.08 101.73	\$2 P13 404-1 s31 67.23 20.73 0.26 0.01 1.16 10.76 0.06 100.21	\$2 P13 404-2 s31 67.25 20.28 0.09 0.00 1.17 11.10 0.06 99.95	\$2 P13 404-3 s31 63.71 19.96 0.08 0.02 0.55 3.68 11.41 99.41	\$2 P13 404-4 s31 66.57 21.23 0.12 0.01 1.59 10.25 0.19 99.97	\$2 P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30 0.07 99.93	\$2 P10 33-1 s3 I 68.88 19.80 0.03 0.00 0.10 11.31 0.08 100.20	\$2 P10 33-2 s31 69.21 19.89 0.05 0.00 0.20 11.31 0.09 100.75	\$2 P10 33-3 s31 69.24 20.02 0.00 0.00 0.31 11.21 0.06 100.84	\$2 P10 33-4 s31 69.24 19.73 0.00 0.00 0.21 11.24 0.10 100.52	\$2 P10 33-5 s3 l 69.38 19.64 0.03 0.00 0.24 11.05 0.03 100.37	\$2 P14 412 s3 69.01 19.87 0.00 0.00 0.08 11.30 0.07 100.33	\$2 P14-b 405 s3 69.03 19.82 0.06 0.00 0.04 11.51 0.03 100.48	\$2 P14-c 401 s3 68.38 19.94 0.00 0.28 11.08 0.07 99.76	\$2 P14 408 \$3 68.66 19.92 0.00 0.13 11.40 0.09 100.20	\$2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08 11.38 0.05 100.34	\$2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20 0.08 101.18
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al	\$2 P8 26-15 \$2 L 67.61 20.80 0.11 0.00 1.46 10.38 0.08 100.44 **URALE (E 2.94 1.07	S2 P8 26-16 s2 L 2 67.14 21.17 0.16 0.02 1.49 10.37 0.07 100.42 8 Oxygène 2.92 1.09	S2 P8 26-17 s2 L 2 66.91 21.43 0.09 0.01 1.75 10.21 0.10 100.51 is) 2.92 1.10	S2 P8 26-18 s2 L 2 67-99 21.11 0.13 0.01 1.55 10.40 0.16 101.35 2.94 1.07	S2 P8 26-19 s2 L : 66.90 20.99 0.17 0.01 1.67 10.33 0.08 100.14 2.93 1.08	S2 P8 26-20 s2 L 67.63 21.04 0.10 0.00 1.69 10.07 0.13 100.66 2.94 1.08	\$2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35 9.05 0.10 101.87 2.96 1.09	S2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87 0.08 100.86	\$2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38 0.05 100.67 2.99 1.04	\$2 P12 401-5 s3 69.09 22.41 0.12 0.00 1.97 7.45 0.10 101.14 2.95 1.13	\$2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66 0.08 101.73 2.93 1.12	\$2 P13 404-1 s31 67.23 20.73 0.26 0.01 1.16 10.76 0.06 100.21 2.94 1.07	\$2 P13 404-2 s3 1 67.25 20.28 0.09 0.00 1.17 11.10 0.06 99.95 2.95 1.05	\$2 P13 404-3 s31 63.71 19.96 0.08 0.02 0.55 3.68 11.41 99.41 2.93 1.08	S2 P13 404-4 s31 66.57 21.23 0.12 0.01 1.59 10.25 0.19 99.97 2.92 1.10	\$2 P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30 0.07 99.93 2.90 1.11	\$2 P10 33-1 s31 68.88 19.80 0.03 0.00 0.10 11.31 0.08 100.20	\$2 P10 33-2 s31 69.21 19.89 0.05 0.00 0.20 11.31 0.09 100.75	\$2 P10 33-3 s31 69.24 20.02 0.00 0.31 11.21 0.06 100.84 2.99 1.02	\$2 P10 33-4 s31 69.24 19.73 0.00 0.00 0.21 11.24 0.10 100.52	\$2 P10 33-5 s31 69.38 19.64 0.03 0.00 0.24 11.05 0.03 100.37	\$2 P14 412 s3 69.01 19.87 0.00 0.00 0.08 11.30 0.07 100.33	\$2 P14-b 405 s3 69.03 19.82 0.06 0.00 0.04 11.51 0.03 100.48 3.00 1.01	\$2 P14-c 401 s3 68.38 19.94 0.00 0.28 11.08 0.07 99.76	\$2 P14 408 \$3 68.66 19.92 0.00 0.13 11.40 0.09 100.20 2.99 1.02	\$2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08 11.38 0.05 100.34 2.99 1.02	\$2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20 0.08 101.18
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe ³⁺	\$2 P8 26-15 s2 L 67.61 20.80 0.11 0.00 1.46 10.38 0.08 100.44 CURALE (E 2.94 1.07 0.00	S2 P8 26-16 s2 L 2 67.14 21.17 0.16 0.02 1.49 10.37 0.07 100.42 3 Oxygène 2.92 1.09 0.01	\$2 P8 26-17 \$2 L 2 66.91 21.43 0.09 0.01 1.75 10.21 0.10 100.51 is) 2.92 1.10 0.00	S2 P8 26-18 s2 L 2 67.99 21.11 0.13 0.01 1.55 10.40 0.16 101.35 2.94 1.07 0.00	\$2 P8 66.90 20.99 0.17 0.01 1.67 10.33 0.08 100.14 2.93 1.08 0.01	S2 P8 26-20 s2 L 67.63 21.04 0.10 0.00 1.69 10.07 0.13 100.66 2.94 1.08 0.00	\$2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35 9.05 0.10 101.87 2.96 1.09 0.00	\$2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87 0.08 100.86 2.98 1.04	\$2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38 0.05 100.67 2.99 1.04 0.00	\$2 P12 401-5 s3 69.09 22.41 0.12 0.00 1.97 7.45 0.10 101.14 2.95 1.13 0.00	\$2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66 0.08 101.73 2.93 1.12 0.01	\$2 P13 404-1 s31 67.23 20.73 0.26 0.01 1.16 10.76 0.06 100.21 2.94 1.07 0.01	\$2 P13 404-2 s3 1 67.25 20.28 0.09 0.00 1.17 11.10 0.06 99.95 2.95 1.05 0.00	\$2 P13 404-3 s31 63.71 19.96 0.08 0.02 0.55 3.68 11.41 99.41 2.93 1.08 0.00	S2 P13 404-4 s31 66.57 21.23 0.12 0.01 1.59 10.25 0.19 99.97 2.92 1.10 0.00	\$2 P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30 0.07 99.93 2.90 1.11 0.01	\$2 P10 33-1 s31 68.88 19.80 0.03 0.00 0.10 11.31 0.08 100.20 3.00 1.02 0.00	\$2 P10 33-2 s31 69.21 19.89 0.05 0.00 0.20 11.31 0.09 100.75 3.00 1.01	\$2 P10 33-3 s31 69.24 20.02 0.00 0.31 11.21 0.06 100.84 2.99 1.02 0.00	\$2 P10 33-4 s31 69.24 19.73 0.00 0.00 0.21 11.24 0.10 100.52 3.01 1.01 0.00	\$2 P10 33-5 s31 69.38 19.64 0.03 0.00 0.24 11.05 0.03 100.37 3.01 1.00 0.00	\$2 P14 412 s3 69.01 19.87 0.00 0.00 0.08 11.30 0.07 100.33 3.00 1.02 0.00	\$2 P14-b 405 s3 69.03 19.82 0.06 0.00 0.04 11.51 0.03 100.48 3.00 1.01	\$2 P14-c 401 s3 68.38 19.94 0.00 0.28 11.08 0.07 99.76 2.99 1.03 0.00	\$2 P14 408 s3 68.66 19.92 0.00 0.13 11.40 0.09 100.20 2.99 1.02 0.00	\$2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08 11.38 0.05 100.34 2.99 1.02 0.00	S2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20 0.08 101.18 3.01 1.00 0.00
Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO Total MgO CaO Na₂O K₂O Total FORMULE STRUCT Si Al Fe³+ Ca	\$2 P8 26-15 s2 L 67.61 20.80 0.11 0.00 1.46 10.38 0.08 100.44 **URALE (6 2.94 1.07 0.00 0.07	S2 P8 26-16 s2 L : 67.14 21.17 0.16 0.02 1.49 10.37 0.07 100.42 3 Oxygène 2.92 1.09 0.01 0.07	S2 P8 26-17 s2 L : 66.91 21.43 0.09 0.01 1.75 10.21 0.10 100.51 is) 2.92 1.10 0.00 0.08	S2 P8 26-18 s2 L 2 67.99 21.11 0.13 0.01 1.555 10.40 0.16 101.35 2.94 1.07 0.00 0.07	S2 P8 26-19 s2 L : 66.90 20.99 0.17 0.01 1.67 10.33 0.08 100.14 2.93 1.08 0.01 0.08	S2 P8 26-20 s2 L 67.63 21.04 0.10 0.00 1.69 10.07 0.13 100.66 2.94 1.08 0.00 0.08	\$2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35 9.05 0.10 101.87 2.96 1.09 0.00 0.06	\$2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87 0.08 100.86 2.98 1.04 0.00 0.02	\$2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38 0.05 100.67 2.99 1.04 0.00 0.02	\$2 P12 401-5 s3 69.09 22.41 0.12 0.00 1.97 7.45 0.10 101.14 2.95 1.13 0.00 0.09	S2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66 0.08 101.73 2.93 1.12 0.01 0.08	\$2 P13 404-1 s31 67.23 20.73 0.26 0.01 1.16 10.76 0.06 100.21 2.94 1.07 0.01	\$2 P13 404-2 s3 I 67.25 20.28 0.09 0.00 1.17 11.10 0.06 99.95 2.95 1.05 0.00	\$2 P13 404-3 s31 63.71 19.96 0.08 0.02 0.55 3.68 11.41 99.41 2.93 1.08 0.00	\$2 P13 404-4 s31 66.57 21.23 0.12 0.01 1.59 10.25 0.19 99.97 2.92 1.10 0.00 0.07	\$2 P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30 0.07 99.93 2.90 1.11 0.01	\$2 P10 33-1 s3 l 68.88 19.80 0.03 0.00 0.10 11.31 0.08 100.20 3.00 1.02 0.00	\$2 P10 33-2 s3 I 69.21 19.89 0.05 0.00 0.20 11.31 0.09 100.75 3.00 1.01 0.00 0.01	\$2 P10 33-3 s3 I 69.24 20.02 0.00 0.01 11.21 0.06 100.84 2.99 1.02 0.00 0.01	\$2 P10 33-4 s3 l 69.24 19.73 0.00 0.21 11.24 0.10 100.52 3.01 1.01 0.00 0.01	\$2 P10 33-5 s31 69.38 19.64 0.03 0.00 0.24 11.05 0.03 100.37 3.01 1.00 0.00 0.01	\$2 P14 412 s3 69.01 19.87 0.00 0.08 11.30 0.07 100.33 3.00 1.02 0.00 0.00	\$2 P14-b 405 s3 69.03 19.82 0.06 0.00 0.04 11.51 0.03 100.48 3.00 1.01 0.00	\$2 P14-c 401 s3 68.38 19.94 0.00 0.28 11.08 0.07 99.76 2.99 1.03 0.00 0.01	\$2 P14 408 s3 68.66 19.92 0.00 0.13 11.40 0.09 100.20 2.99 1.02 0.00 0.01	\$2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08 11.38 0.05 100.34 2.99 1.02 0.00	\$2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20 0.08 101.18 3.01 1.00 0.00
Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO Total MgO CaO Na₂O K₂O Total FORMULE STRUCT Si Al Fe³+ Ca	\$2 P8 26-15 s2 L 67.61 20.80 0.11 0.00 1.46 10.38 0.08 100.44 **URALE (6 2.94 1.07 0.00 0.07 0.88	S2 P8 26-16 s2 L : 67.14 21.17 0.16 0.02 1.49 10.37 0.07 100.42 3 Oxygène 2.92 1.09 0.01 0.07 0.88	S2 P8 26-17 s2 L : 66.91 21.43 0.09 0.01 1.75 10.21 0.10 100.51 is) 2.92 1.10 0.00 0.08 0.86	S2 P8 26-18 s2 L 2 67.99 21.11 0.13 0.01 1.55 10.40 0.16 101.35 2.94 1.07 0.00 0.07 0.87	S2 P8 26-19 s2 L : 66.90 20.99 0.17 0.01 1.67 10.33 0.08 100.14 2.93 1.08 0.01 0.08 0.88	S2 P8 26-20 s2 L 67.63 21.04 0.10 0.00 1.69 10.07 0.13 100.66 2.94 1.08 0.00 0.08 0.85	\$2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35 9.05 0.10 101.87 2.96 1.09 0.00 0.06 0.75	\$2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87 0.08 100.86 2.98 1.04 0.00 0.02 0.91	\$2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38 0.05 100.67 2.99 1.04 0.00 0.02 0.87	\$2 P12 401-5 s3 69.09 22.41 0.12 0.00 1.97 7.45 0.10 101.14 2.95 1.13 0.00 0.09 0.62	S2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66 0.08 101.73 2.93 1.12 0.01 0.08 0.72	\$2 P13 404-1 s31 67.23 20.73 0.26 0.01 1.16 10.76 0.06 100.21 2.94 1.07 0.01 0.05	\$2 P13 404-2 s3 I 67.25 20.28 0.09 0.00 1.17 11.10 0.06 99.95 2.95 1.05 0.00 0.06	\$2 P13 404-3 s31 63.71 19.96 0.08 0.02 0.55 3.68 11.41 99.41 2.93 1.08 0.00 0.03	\$2 P13 404-4 s31 66.57 21.23 0.12 0.01 1.59 10.25 0.19 99.97 2.92 1.10 0.00 0.07 0.87	\$2 P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30 0.07 99.93 2.90 1.11 0.01 0.08 0.88	\$2 P10 33-1 s3 l 68.88 19.80 0.03 0.00 0.10 11.31 0.08 100.20 3.00 1.02 0.00 0.00	\$2 P10 33-2 s3 I 69.21 19.89 0.05 0.00 0.20 11.31 0.09 100.75 3.00 1.01 0.00 0.01	\$2 P10 33-3 s3 I 69.24 20.02 0.00 0.31 11.21 0.06 100.84 2.99 1.02 0.00 0.01	\$2 P10 33-4 s3 l 69.24 19.73 0.00 0.21 11.24 0.10 100.52 3.01 1.01 0.00 0.01	\$2 P10 33-5 s31 69.38 19.64 0.03 0.00 0.24 11.05 0.03 100.37 3.01 1.00 0.00 0.01	\$2 P14 412 s3 69.01 19.87 0.00 0.08 11.30 0.07 100.33 3.00 1.02 0.00 0.00 0.09	\$2 P14-b 405 s3 69.03 19.82 0.06 0.00 0.04 11.51 0.03 100.48 3.00 1.01 0.00 0.00	\$2 P14-c 401 s3 68.38 19.94 0.00 0.28 11.08 0.07 99.76 2.99 1.03 0.00 0.01	\$2 P14 408 s3 68.66 19.92 0.00 0.13 11.40 0.09 100.20 2.99 1.02 0.00 0.01	\$2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08 11.38 0.05 100.34 2.99 1.02 0.00 0.00	\$2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20 0.08 101.18 3.01 1.00 0.00 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³* Ca Na K	\$2 P8 26-15 s2 L 67.61 20.80 0.11 0.00 1.46 10.38 0.08 100.44 URALE (E 2.94 1.07 0.00 0.07 0.88 0.00	\$2 P8 26-16-s2 L 2 67.14 21.17 0.16 0.02 1.49 10.37 0.07 100.42 3 Oxygène 2.92 1.09 0.01 0.07 0.88 0.00	S2 P8 26-17 s2 L : 66.91 21.43 0.09 0.01 1.75 10.21 0.10 100.51 is) 2.92 1.10 0.00 0.08 0.86 0.01	\$2 P8 26-18 s2 L 2 67.99 21.11 0.13 0.01 1.55 10.40 0.16 101.35 2.94 1.07 0.00 0.07 0.87 0.01	\$2 P8 66.90 20.99 0.17 0.01 1.67 10.33 0.08 100.14 2.93 1.08 0.01 0.08 0.01	\$2 P8 26-20 \$2 L 67.63 21.04 0.10 0.00 1.69 10.07 0.13 100.66 2.94 1.08 0.00 0.00 0.08 0.05 0.01	\$2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35 9.05 0.10 101.87 2.96 1.09 0.00 0.06 0.75	\$2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87 0.08 100.86 2.98 1.04 0.00 0.02 0.91 0.00	\$2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38 0.05 100.67 2.99 1.04 0.00 0.02 0.87	\$2 P12 401-5 s3 69.09 22.41 0.00 1.97 7.45 0.10 101.14 2.95 1.13 0.00 0.09 0.62 0.01	S2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66 0.08 101.73 2.93 1.12 0.01 0.08 0.72 0.00	\$2 P13 404-1 s31 67.23 20.73 0.26 0.01 1.16 10.76 0.06 100.21 2.94 1.07 0.01 0.05 0.91	\$2 P13 404-2 s3 1 67.25 20.28 0.09 1.17 11.10 0.06 99.95 2.95 1.05 0.00 0.06 0.94	\$2 P13 404-3 s3 I 63.71 19.96 0.08 0.02 0.55 3.68 11.41 99.41 2.93 1.08 0.00 0.03 0.03	\$2 P13 404-4 s31 66.57 21.23 0.01 1.59 10.25 0.19 99.97 2.92 1.10 0.00 0.07 0.87	\$2 P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30 0.07 99.93 2.90 1.11 0.01 0.08 0.88 0.00	\$2 P10 33-1 s3 I 68.88 19.80 0.03 0.00 0.10 11.31 0.08 100.20 3.00 1.02 0.00 0.00 0.95	\$2 P10 33-2 s31 69.21 19.89 0.05 0.00 0.20 11.31 0.09 100.75 3.00 1.01 0.00 0.01 0.95	\$2 P10 33-3 s31 69.24 20.02 0.00 0.31 11.21 0.06 100.84 2.99 1.02 0.00 0.01 0.94	\$2 P10 33-4 s31 69.24 19.73 0.00 0.21 11.24 0.10 100.52 3.01 1.01 0.00 0.01 0.95	\$2 P10 33-5 s31 69.38 19.64 0.03 0.00 0.24 11.05 0.03 100.37 3.01 1.00 0.00 0.01 0.93 0.00	\$2 P14 412 s3 69.01 19.87 0.00 0.08 11.30 0.07 100.33 3.00 1.02 0.00 0.00 0.95	\$2 P14-b 405 s3 69.03 19.82 0.06 0.00 1.01 0.03 100.48 3.00 1.01 0.00 0.97 0.00	\$2 P14-c 401 s3 68.38 19.94 0.00 0.28 11.08 0.07 99.76 2.99 1.03 0.00 0.01 0.01	\$2 P14 408 s3 68.66 19.92 0.00 0.13 11.40 0.09 100.20 2.99 1.02 0.00 0.01 0.00	\$2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08 11.38 0.05 100.34 2.99 1.02 0.00 0.00 0.96	\$2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20 0.08 101.18 3.01 1.00 0.00 0.00 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³* Ca Na K	\$2 P8 26-15 s2 L 67.61 20.80 0.11 0.00 1.46 10.38 0.08 100.44 URALE (E 2.94 1.07 0.00 0.07 0.88 0.00	\$2 P8 26-16-s2 L 2 67.14 21.17 0.16 0.02 1.49 10.37 0.07 100.42 3 Oxygène 2.92 1.09 0.01 0.07 0.88 0.00	S2 P8 26-17 s2 L : 66.91 21.43 0.09 0.01 1.75 10.21 0.10 100.51 is) 2.92 1.10 0.00 0.08 0.86 0.01	\$2 P8 26-18 s2 L 2 67.99 21.11 0.13 0.01 1.55 10.40 0.16 101.35 2.94 1.07 0.00 0.07 0.87 0.01	\$2 P8 66.90 20.99 0.17 0.01 1.67 10.33 0.08 100.14 2.93 1.08 0.01 0.08 0.01	\$2 P8 26-20 \$2 L 67.63 21.04 0.10 0.00 1.69 10.07 0.13 100.66 2.94 1.08 0.00 0.00 0.08 0.05 0.01	\$2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35 9.05 0.10 101.87 2.96 1.09 0.00 0.06 0.75	\$2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87 0.08 100.86 2.98 1.04 0.00 0.02 0.91 0.00	\$2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38 0.05 100.67 2.99 1.04 0.00 0.02 0.87	\$2 P12 401-5 s3 69.09 22.41 0.00 1.97 7.45 0.10 101.14 2.95 1.13 0.00 0.09 0.62 0.01	S2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66 0.08 101.73 2.93 1.12 0.01 0.08 0.72 0.00	\$2 P13 404-1 s31 67.23 20.73 0.26 0.01 1.16 10.76 0.06 100.21 2.94 1.07 0.01 0.05 0.91	\$2 P13 404-2 s3 1 67.25 20.28 0.09 1.17 11.10 0.06 99.95 2.95 1.05 0.00 0.06 0.94	\$2 P13 404-3 s3 I 63.71 19.96 0.08 0.02 0.55 3.68 11.41 99.41 2.93 1.08 0.00 0.03 0.03	\$2 P13 404-4 s31 66.57 21.23 0.01 1.59 10.25 0.19 99.97 2.92 1.10 0.00 0.07 0.87	\$2 P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30 0.07 99.93 2.90 1.11 0.01 0.08 0.88 0.00	\$2 P10 33-1 s3 I 68.88 19.80 0.03 0.00 0.10 11.31 0.08 100.20 3.00 1.02 0.00 0.00 0.95	\$2 P10 33-2 s31 69.21 19.89 0.05 0.00 0.20 11.31 0.09 100.75 3.00 1.01 0.00 0.01 0.95	\$2 P10 33-3 s31 69.24 20.02 0.00 0.31 11.21 0.06 100.84 2.99 1.02 0.00 0.01 0.94	\$2 P10 33-4 s31 69.24 19.73 0.00 0.21 11.24 0.10 100.52 3.01 1.01 0.00 0.01 0.95	\$2 P10 33-5 s31 69.38 19.64 0.03 0.00 0.24 11.05 0.03 100.37 3.01 1.00 0.00 0.01 0.93 0.00	\$2 P14 412 s3 69.01 19.87 0.00 0.08 11.30 0.07 100.33 3.00 1.02 0.00 0.00 0.95	\$2 P14-b 405 s3 69.03 19.82 0.06 0.00 1.01 0.03 100.48 3.00 1.01 0.00 0.97 0.00	\$2 P14-c 401 s3 68.38 19.94 0.00 0.28 11.08 0.07 99.76 2.99 1.03 0.00 0.01 0.01	\$2 P14 408 s3 68.66 19.92 0.00 0.13 11.40 0.09 100.20 2.99 1.02 0.00 0.01 0.00	\$2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08 11.38 0.05 100.34 2.99 1.02 0.00 0.00 0.96	\$2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20 0.08 101.18 3.01 1.00 0.00 0.00 0.00
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³ Ca Na K Total	S2 P8 26-15 s2 L 67.61 20.80 0.11 0.00 1.46 10.38 0.08 100.44 **URALE (8 2.94 1.07 0.00 0.07 0.88 0.00 4.96	S2 P8 26-16 s2 L 2 67.14 21.17 0.16 0.02 1.49 10.37 0.07 100.42 8 Oxygène 2.92 1.09 0.01 0.07 0.88 0.00 4.97	\$2 P8 26-17 s2 L 2 66.91 21.43 0.09 0.01 1.75 10.21 0.10 100.51 is) 2.92 1.10 0.00 0.00 0.01 4.97	\$2 P8 26-18 s2 L 2 67.99 21.11 0.13 0.01 1.55 10.40 0.16 101.35 2.94 1.07 0.00 0.07 0.07 0.01 4.97	\$2 P8 26-19 s2 L 2 66.90 20.99 0.17 0.01 1.67 10.33 0.08 100.14 2.93 1.08 0.01 0.08 0.08	S2 P8 26-20 s2 L 67.63 21.04 0.10 0.00 1.69 10.07 0.13 100.66 2.94 1.08 0.00 0.08 0.85 0.01 4.95	\$2 P12 401-2 s3 69.58 21.67 0.00 1.35 9.05 0.10 101.87 2.96 1.09 0.06 0.75 0.01 4.87	\$2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87 0.08 100.86 2.98 1.04 0.00 0.02 0.91 0.00 4.96	\$2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38 0.05 100.67 2.99 1.04 0.00 0.00 0.87 0.00 4.93	\$2 P12 401-5 s3 69.09 22.41 0.12 0.00 1.97 7.45 0.10 101.14 2.95 1.13 0.00 0.09 0.62 0.01 4.80	S2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66 0.08 101.73 2.93 1.12 0.01 0.08 0.72 0.00 4.87	\$2 P13 404-1 s31 67.23 20.73 0.26 0.01 1.16 10.76 0.06 100.21 2.94 1.07 0.05 0.91 0.00 4.98	\$2 P13 404-2 s31 67.25 20.28 0.09 0.00 1.17 11.10 0.06 99.95 2.95 1.05 0.00 0.00 0.00 0.00	\$2 P13 404-3 s31 63.71 19.96 0.08 0.02 0.55 3.68 11.41 99.41 2.93 1.08 0.00 0.03 0.03 0.03	\$2 P13 404-4 s31 66.57 21.23 0.01 1.59 10.25 0.19 99.97 2.92 1.10 0.00 0.07 0.87 0.01 4.97	\$2 P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30 0.07 99.93 2.90 1.11 0.08 0.88 0.00 4.98	\$2 P10 33-1 s3 I 68.88 19.80 0.03 0.00 0.10 11.31 0.08 100.20 3.00 1.02 0.00 0.00 0.95 0.00 4.98	\$2 P10 33-2 s31 69.21 19.89 0.05 0.00 0.20 11.31 0.09 100.75 3.00 1.01 0.00 0.01 4.98	\$2 P10 33-3 s31 69.24 20.02 0.00 0.00 11.21 0.06 100.84 2.99 1.02 0.00 0.01 0.94	\$2 P10 33-4 s31 69.24 19.73 0.00 0.20 11.24 0.10 100.52 3.01 1.01 0.00 0.01 4.97	\$2 P10 33-5 s31 69.38 19.64 0.03 0.00 0.24 11.05 0.03 100.37 3.01 1.00 0.00 0.01 0.00 0.01 4.95	\$2 P14 412 s3 69.01 19.87 0.00 0.00 0.08 11.30 0.07 100.33 3.00 1.02 0.00 0.00 0.00 0.00 4.97	\$2 P14-b 405 s3 69.03 19.82 0.06 0.00 0.04 11.51 0.03 100.48 3.00 1.01 0.00 0.00 0.97 0.00 4.98	\$2 P14-c 401 s3 68.38 19.94 0.00 0.00 0.28 11.08 0.07 99.76 2.99 1.03 0.00 0.01 0.00 4.97	\$2 P14 408 s3 68.66 19.92 0.00 0.00 0.13 11.40 0.09 100.20 2.99 1.02 0.00 0.01 0.00 4.99	\$2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08 11.38 0.05 100.34 2.99 1.02 0.00 0.00 0.96 0.00 4.98	\$2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20 0.08 101.18 3.01 1.00 0.00 0.00 0.93 0.00 4.96
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K2O Total FORMULE STRUCT Si Al Fe³* Ca Na K Total K Total	\$2 P8 26-15 s2 L 67.61 20.80 0.11 0.00 1.46 10.38 0.08 100.44 **URALE (E 2.94 1.07 0.00 0.07 0.88 0.00 4.96	\$2 P8 26-16 s2 L 2 67.14 21.17 0.16 0.02 1.49 10.37 0.07 100.42 3 Oxygène 2.92 1.09 0.01 0.07 0.88 0.00 4.97	\$2 P8 26-17 s2 L 2 66.91 21.43 0.09 0.01 1.75 10.21 0.10 100.51 is) 2.92 1.10 0.00 0.08 0.01 4.97	\$2 P8 26-18 s2 L 2 67.99 21.11 0.13 0.01 1.55 10.40 0.16 101.35 2.94 1.07 0.00 0.07 0.01 4.97	\$2 P8 66.90 20.99 0.17 0.01 1.67 10.33 0.08 100.14 2.93 1.08 0.01 0.08 0.88 0.04 4.97	\$2 P8 26-20 s2 L 67.63 21.04 0.10 0.00 1.69 10.07 0.13 100.66 2.94 1.08 0.00 0.08 0.05 0.01 4.95	\$2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35 9.05 0.10 101.87 2.96 1.09 0.00 0.06 0.75 0.01 4.87	\$2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87 0.08 100.86 2.98 1.04 0.00 0.02 0.91 0.00 4.96	\$2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38 0.05 100.67 2.99 1.04 0.00 0.02 0.87 0.00 4.93	\$2 P12 401-5 s3 69.09 22.41 0.12 0.00 1.97 7.45 0.10 101.14 2.95 1.13 0.00 0.09 0.62 0.01 4.80	S2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66 0.08 101.73 2.93 1.12 0.01 0.08 0.72 0.00 4.87	\$2 P13 404-1 s31 67.23 20.73 0.26 0.01 1.16 10.76 0.06 100.21 2.94 1.07 0.01 0.05 0.91	\$2 P13 404-2 s31 67.25 20.28 0.09 0.00 1.17 11.10 0.06 99.95 2.95 1.05 0.00 0.00 0.00	\$2 P13 404-3 s31 63.71 19.96 0.08 0.02 0.55 3.68 11.41 99.41 2.93 1.08 0.00 0.03 0.33 0.67 5.04	\$2 P13 404-4 s31 66.57 21.23 0.12 0.01 1.59 10.25 0.19 99.97 2.92 1.10 0.00 0.07 0.87 0.01 4.97	\$2 P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30 0.07 99.93 2.90 1.11 0.01 0.88 0.88 0.00 4.98	\$2 P10 33-1 s3 I 68.88 19.80 0.03 0.00 0.10 11.31 0.08 100.20 3.00 1.02 0.00 0.00 0.95 0.00 4.98	\$2 P10 33-2 s31 69.21 19.89 0.05 0.00 0.20 11.31 0.09 100.75 3.00 1.01 0.00 0.01 4.98	\$2 P10 33-3 s31 69.24 20.02 0.00 0.00 11.21 0.06 100.84 2.99 1.02 0.00 0.01 0.00 4.97	\$2 P10 33-4 s31 69.24 19.73 0.00 0.00 0.21 11.24 0.10 100.52 3.01 1.01 0.00 0.01 4.97	\$2 P10 33-5 s31 69.38 19.64 0.03 0.00 0.24 11.05 0.03 100.37 3.01 1.00 0.00 0.01 0.93 0.00 4.95	\$2 P14 412 s3 69.01 19.87 0.00 0.08 11.30 0.07 100.33 3.00 1.02 0.00 0.09 5.00 4.97	\$2 P14-b 405 s3 69.03 19.82 0.06 0.00 0.04 11.51 0.03 100.48 3.00 1.01 0.00 0.97 0.00 4.98	\$2 P14-c 401 s3 68.38 19.94 0.00 0.28 11.08 0.07 99.76 2.99 1.03 0.00 0.01 0.94 4.97	\$2 P14 408 s3 68.66 19.92 0.00 0.00 0.13 11.40 0.09 100.20 2.99 1.02 0.00 0.00 0.4.99	\$2 P14-b 406 s3 68.93 19.87 0.05 0.00 11.38 0.05 100.34 2.99 1.02 0.00 0.00 0.96 0.00 4.98	\$2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20 0.08 101.18 3.01 1.00 0.00 0.00 0.93 0.00 4.96
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO Total MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe³* Ca Na K Total %Or %Ab	\$2 P8 26-15 s2 L 67-61 20.80 0.11 0.00 1.46 10.38 0.08 100.44 **URALE (&** 2.94 1.07 0.00 0.07 0.88 0.00 4.96 0.00 0.92	S2 P8 26-16 s2 L 2 67.14 21.17 0.16 0.02 1.49 10.37 0.07 100.42 3 Oxygène 2.92 1.09 0.01 0.07 0.88 0.00 4.97	\$2 P8 26-17 s2 L 2 66.91 21.43 0.09 0.01 1.75 10.21 0.10 100.51 is) 2.92 1.10 0.00 0.08 0.08 0.01 4.97	\$2 P8 26-18 s2 L 2 67.99 21.11 0.13 0.01 1.55 10.40 0.16 101.35 2.94 1.07 0.00 0.07 0.87 0.01 4.97	\$2 P8 66.90 20.99 0.17 0.01 1.67 10.33 0.08 100.14 2.93 1.08 0.01 0.08 0.88 0.00 4.97	\$2 P8 26-20 s2 L 67.63 21.04 0.10 0.00 1.69 10.07 0.13 100.66 2.94 1.08 0.00 0.08 0.85 0.01 4.95	\$2 P12 401-2 s3 69.58 21.67 0.12 0.00 1.35 9.05 0.10 101.87 2.96 1.09 0.00 0.06 0.75 0.01 4.87	\$2 P12 401-3 s3 68.97 20.45 0.04 0.00 0.45 10.87 0.08 100.86 2.98 1.04 0.00 0.02 0.91 0.00 4.96 0.00 0.97	\$2 P12 401-4 s3 69.18 20.48 0.07 0.00 0.51 10.38 0.05 100.67 2.99 1.04 0.00 0.02 0.87 0.00 4.93 0.00 0.97	\$2 P12 401-5 s3 69.09 22.41 0.12 0.00 1.97 7.45 0.10 101.14 2.95 1.13 0.00 0.09 0.62 0.01 4.80	S2 P12 401-6 s3 68.66 22.26 0.25 0.00 1.82 8.66 0.08 101.73 2.93 1.12 0.01 0.08 0.72 0.00 4.87 0.01 0.89	\$2 P13 404-1 s31 67.23 20.73 0.26 0.01 1.16 0.06 100.21 2.94 1.07 0.01 0.05 0.91 0.00 4.98	\$2 P13 404-2 s3 I 67.25 20.28 0.09 0.00 1.17 11.10 0.06 99.95 2.95 1.05 0.00 0.06 0.94	\$2 P13 404-3 s31 63.71 19.96 0.08 0.02 0.55 3.68 11.41 99.41 2.93 1.08 0.00 0.03 0.33 0.67 5.04	\$2 P13 404-4 s31 66.57 21.23 0.12 0.01 1.59 10.25 0.19 99.97 2.92 1.10 0.00 0.07 0.87 0.01 4.97	\$2 P13 404-5 s31 66.15 21.45 0.17 0.02 1.76 10.30 0.07 99.93 2.90 1.11 0.01 0.08 0.88 0.00 4.98	\$2 P10 33-1 s3 I 68.88 19.80 0.03 0.00 0.10 11.31 0.08 100.20 3.00 1.02 0.00 0.00 0.95 0.00 4.98	\$2 P10 33-2 s31 69.21 19.89 0.05 0.20 0.20 0.11.31 0.09 100.75 3.00 1.01 0.00 0.01 0.95 0.01 4.98	\$2 P10 33-3 s31 69.24 20.02 0.00 0.31 11.21 0.06 100.84 2.99 1.02 0.00 0.01 0.94 0.00	\$2 P10 33-4 s31 69.24 19.73 0.00 0.21 11.24 0.10 100.52 3.01 1.01 0.00 0.01 0.95 0.01 4.97	\$2 P10 33-5 s31 69.38 19.64 0.03 0.00 0.24 11.05 0.03 100.37 3.01 1.00 0.00 0.01 0.93 0.00 4.95	\$2 P14 412 s3 69.01 19.87 0.00 0.08 11.30 0.07 100.33 3.00 1.02 0.00 0.00 0.95 0.00 4.97	\$2 P14-b 405 s3 69.03 19.82 0.06 0.00 11.51 0.03 100.48 3.00 1.01 0.00 0.00 4.98	\$2 P14-c 401 s3 68.38 19.94 0.00 0.08 11.08 0.07 99.76 2.99 1.03 0.00 0.01 0.94 0.00 4.97 0.00 0.98	\$2 P14 408 s3 68.66 19.92 0.00 0.03 11.40 0.09 100.20 2.99 1.02 0.00 0.01 0.96 0.00 4.99	\$2 P14-b 406 s3 68.93 19.87 0.05 0.00 0.08 11.38 0.05 100.34 2.99 1.02 0.00 0.00 0.96 0.00 4.98	\$2 P11 34-1 s2 L 69.94 19.79 0.11 0.00 0.07 11.20 0.08 101.18 3.01 1.00 0.00 0.93 0.00 4.96

Lame	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4
Séquence	S2	S2	S2	S2	S2	S1	S1	S1	S1	S1	S1	S1
N° du cristal	P11	P11	P11	P11	P2-iA30	P15-iA40	P17-c	P17	P17-b	P17	P16	P16
N° analyse	34-3 s2 L	34-4 s2 L	34-5 s2 L	34-6 s2 L	173 s1	417 s3	451 s3	449 s3	447 s3	448 s3	445 s3	446 s3
SiO ₂	69.39	69.41	69.96	69.55	68.26	68.77	67.09	66.43	66.88	65.84	67.00	67.20
Al ₂ O ₃	19.98	19.81	19.89	19.51	19.58	19.74	20.81	20.86	20.83	21.48	20.83	20.84
FeO Total	0.00	0.04	0.00	0.13	0.28	0.12	0.05	0.22	0.10	0.05	0.24	0.16
MgO	0.00	0.00	0.03	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.02	0.07
CaO	0.48	0.07	0.17	0.14	0.36	0.13	1.07	1.49	1.39	1.97	1.18	1.33
Na₂O	11.11	11.37	11.04	11.19	12.05	11.37	10.91	10.49	10.67	10.18	10.59	10.70
K ₂ O	0.07	0.07	0.12	0.20	0.07	0.06	0.01	0.10	0.06	0.07	0.06	0.07
Total	101.03	100.76	101.20	100.73	100.61	100.19	99.95	99.59	99.93	99.60	99.91	100.37
FORMULE STRUCT	TURALE (8	3 Oxygène	es)									
Si	3.00	3.00	3.01	3.01	2.97	2.99	2.94	2.92	2.93	2.90	2.93	2.93
Al	1.02	1.01	1.01	0.99	1.01	1.01	1.07	1.08	1.08	1.12	1.07	1.07
Fe ³⁺	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.01	0.01
Ca	0.02	0.00	0.01	0.01	0.02	0.01	0.05	0.07	0.07	0.09	0.06	0.06
Na	0.93	0.95	0.92	0.94	1.02	0.96	0.93	0.90	0.91	0.87	0.90	0.91
K	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Total	4.97	4.97	4.95	4.96	5.03	4.98	4.99	4.98	4.98	4.98	4.97	4.98
%Or	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
%Ab	0.97	0.99	0.98	0.98	0.98	0.99	0.95	0.92	0.93	0.90	0.94	0.93
%An	0.02	0.00	0.01	0.01	0.02	0.01	0.05	0.07	0.07	0.10	0.06	0.06
Position verticale*	122530	122714	122899	123084	123318	134191	139885	140004	140029	140038	140014	140014

Annexe 5c' Compositions chimiques des plagioclases du granite lité de Dolbel (profil 1)

Lame	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4						
Séquence	S_{1k}	S_{1k}	S_{1k}	S_{1k}	S_{1k}	S_{1k}	S _{1k}	S_{1k}	S_{1k}	S _{1k}	S_{1k}	S_{1k}	S_{1k}	S _{1k}	S _{1k}	S _{1k}	S _{1k}
N° du cristal	P17	P17	P17	P17	P17	P17	P17	P17	P17	P17	P17						
N° analyse	61I-1	61I-2	61I-3	611-4	61I-5	61I-6	61I-7	611-8	61I-9	61I-10	61I-11	61I-12	61I-13	61I-14	61I-15	61l-16	61I-17
SiO ₂	67.29	65.89	66.17	67.41	67.48	67.25	66.70	66.72	67.60	67.21	66.31	66.55	66.13	66.33	66.89	67.19	66.71
Al ₂ O ₃	19.76	20.40	20.71	20.73	20.49	20.11	20.50	20.30	19.96	20.34	20.41	20.36	20.90	20.42	20.47	20.13	20.16
Fe ₂ O ₃	0.17	0.23	0.20	0.21	0.01	0.03	0.23	0.20	0.13	0.18	0.25	0.19	0.16	0.16	0.10	0.24	0.07
CaO	0.85	1.82	1.96	1.27	1.16	1.20	1.29	1.54	0.94	1.09	1.50	1.78	1.81	1.71	1.48	1.17	1.21
Na ₂ O	10.68	9.74	9.99	10.23	9.59	10.24	10.20	9.88	10.77	10.64	10.08	9.83	9.79	10.00	10.04	10.66	10.37
K2O	0.08	0.10	0.05	0.10	0.60	0.09	0.11	0.12	0.04	0.06	0.04	0.09	0.11	0.05	0.00	0.06	0.05
Sr	0.00	0.00	0.10	0.13	0.05	0.10	0.20	0.06	0.00	0.13	0.09	0.07	0.05	0.05	0.00	0.00	0.07
Ва	0.00	0.08	0.28	0.12	0.11	0.08	0.20	0.07	0.05	0.08	0.17	0.19	0.05	0.13	0.00	0.00	0.00
Total	98.83	98.26	99.46	100.18	99.50	99.10	99.43	98.91	99.49	99.72	98.86	99.06	98.98	98.85	98.98	99.45	98.64
FORMULE STRUCT	,	, 0															
Si	2.97	2.94	2.92	2.95	2.96	2.97	2.94	2.95	2.97	2.95	2.94	2.94	2.92	2.94	2.95	2.96	2.96
Al	1.03	1.07	1.08	1.07	1.06	1.05	1.07	1.06	1.03	1.05	1.07	1.06	1.09	1.07	1.06	1.04	1.05
Fe ³⁺	0.01	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.00
Ca	0.04	0.09	0.09	0.06	0.05	0.06	0.06	0.07	0.04	0.05	0.07	0.08	0.09	0.08	0.07	0.06	0.06
Na	0.92	0.84	0.86	0.87	0.82	0.88	0.87	0.85	0.92	0.91	0.87	0.84	0.84	0.86	0.86	0.91	0.89
K	0.00	0.01	0.00	0.01	0.03	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Total	4.97	4.95	4.96	4.95	4.93	4.95	4.96	4.94	4.97	4.97	4.96	4.95	4.95	4.96	4.95	4.97	4.96
%Or	0.00	0.01	0.00	0.01	0.04	0.01	0.01	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00
%Ab	0.95	0.90	0.90	0.93	0.90	0.93	0.93	0.91	0.95	0.94	0.92	0.90	0.90	0.91	0.92	0.94	0.94
%An	0.04	0.09	0.10	0.06	0.06	0.06	0.07	0.08	0.05	0.05	0.08	0.09	0.09	0.09	0.08	0.06	0.06
				400=	450		4000	=00		4400		=0.4		400			=00
Sr (ppm)	-	-	881	1087	452	876	1683	509	-	1139	744	584	381	426	-	-	583
Ba (ppm)	-	726	2482	1064	974	681	1748	663	461	679	1565	1744	420	1126	-	-	-
Distance (µm)	0	62	124	186	248	311	373	435	497	559	621	683	745	807	870	932	994
Position verticale*	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029

Annexe 5c' Compositions chimiques des plagioclases du granite lité de Dolbel (profil 2)

Lame	N4																										
Séquence	S _{1k}																										
N° du cristal	P17																										
N° analyse	61L-18	61L-19	61L-20	61L-21	61L-22	61L-23	61L-24	61L-25	61L-26	61L-27	61L-28	61L-29	61L-30	61L-31	61L-32	61L-33	61L-34	61L-35	61L-36	61L-37	61L-38	61L-39	61L-40	61L-41	61L-42	61L-43	61L-44
SiO ₂	66.57	66.65	67.08	66.52	66.39	65.51	66.85	66.37	66.37	66.08	65.98	65.73	64.95	66.18	66.05	66.03	67.89	65.57	65.75	65.55	66.18	65.51	66.60	65.35	67.00	66.66	66.40
Al_2O_3	19.57	20.17	20.13	20.18	20.36	20.69	20.48	20.59	20.90	21.00	20.85	20.11	19.55	20.67	21.02	19.73	19.54	20.65	20.94	20.18	20.61	20.53	20.32	20.12	20.51	20.09	20.44
Fe ₂ O ₃	0.35	0.18	0.20	0.22	0.18	0.13	0.00	0.36	0.21	0.08	0.28	0.18	0.16	0.19	0.12	0.13	0.07	0.02	0.23	0.21	0.11	0.11	0.09	0.23	0.12	0.13	0.23
CaO	1.16	1.34	1.29	1.43	1.73	1.94	1.66	1.76	1.81	1.71	2.04	1.83	1.18	1.91	2.02	1.51	0.59	2.16	1.96	1.67	1.86	1.84	1.36	1.67	1.37	1.48	1.61
Na ₂ O	10.22	10.42	10.53	10.51	10.34	10.36	10.19	10.61	10.30	10.30	10.13	10.26	9.23	9.91	9.57	10.20	10.73	10.01	10.06	9.80	10.24	10.13	10.15	9.49	10.26	10.29	10.09
K2O	0.10	0.09	0.06	0.07	0.02	0.08	0.08	0.09	0.10	0.04	0.01	0.09	0.62	0.10	0.07	0.09	0.06	0.09	0.11	0.16	0.06	0.09	0.12	0.13	0.02	0.04	0.05
Sr	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.01	0.00	0.00	0.00	0.03	0.00	0.01	0.04	0.15	0.02	0.00	0.04	0.00	0.03	0.10	0.09	0.05	0.08	0.10
Ва	0.00	0.00	0.00	0.00	0.04	0.03	0.19	0.07	0.06	0.07	0.05	0.07	0.20	0.06	0.04	0.04	0.03	0.09	0.04	0.12	0.06	0.07	0.03	0.03	0.06	0.08	0.05
Total	97.96	98.85	99.29	98.93	99.07	98.73	99.48	99.86	99.76	99.27	99.33	98.26	95.91	99.03	98.89	97.76	99.06	98.60	99.08	97.73	99.13	98.31	98.76	97.11	99.39	98.85	98.97
FORMULE STRUCT	URALE (8		es)																								
Si	2.97	2.95	2.96	2.94	2.94	2.91	2.94	2.92	2.92	2.92	2.91	2.93	2.97	2.93	2.92	2.96	2.99	2.92	2.91	2.94	2.93	2.92	2.95	2.94	2.95	2.95	2.94
Al	1.03	1.05	1.05	1.05	1.06	1.08	1.06	1.07	1.08	1.09	1.09	1.06	1.05	1.08	1.10	1.04	1.01	1.08	1.09	1.07	1.07	1.08	1.06	1.07	1.06	1.05	1.07
Fe ³⁺	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.01
Ca	0.06	0.06	0.06	0.07	0.08	0.09	0.08	0.08	0.09	0.08	0.10	0.09	0.06	0.09	0.10	0.07	0.03	0.10	0.09	0.08	0.09	0.09	0.06	0.08	0.06	0.07	0.08
Na	0.88	0.89	0.90	0.90	0.89	0.89	0.87	0.91	0.88	0.88	0.87	0.89	0.82	0.85	0.82	0.89	0.92	0.86	0.86	0.85	0.88	0.88	0.87	0.83	0.88	0.88	0.87
K	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.04	0.01	0.00	0.01	0.00	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.00	0.00	0.00
Total	4.95	4.97	4.97	4.98	4.97	4.99	4.96	4.99	4.98	4.98	4.97	4.98	4.93	4.96	4.94	4.97	4.96	4.97	4.97	4.95	4.97	4.98	4.96	4.94	4.96	4.96	4.96
%Or	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.04	0.01	0.00	0.01	0.00	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.00	0.00	0.00
%Ab	0.94	0.93	0.93	0.93	0.91	0.90	0.91	0.91	0.91	0.91	0.90	0.91	0.90	0.90	0.89	0.92	0.97	0.89	0.90	0.90	0.91	0.90	0.92	0.90	0.93	0.92	0.92
%An	0.06	0.07	0.06	0.07	0.08	0.09	0.08	0.08	0.09	0.08	0.10	0.09	0.06	0.10	0.10	0.08	0.03	0.11	0.10	0.09	0.09	0.09	0.07	0.09	0.07	0.07	0.08
Cr (nnm)																	1305			379			854	739	381	678	875
Sr (ppm)	_	-	-	-	387	268	1662	629	514	589	429	585	1752	532	337	354	265	835	357	1107	548	667	004	278	557	743	438
Ba (ppm)	· -	-	-	-	301				314														-				
Distance (µm)	0	20	41	61	82	102	122	160	198	236	274	312	350	388	426	464	502	540	578	616	654	692	730	768	806	844	882
Position verticale*	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029

Annexe 5c' Compositions chimiques des plagioclases du granite lité de Dolbel (profil 2 suite)

Lame	N4	N4																									
Séquence	S_{1k}	S _{1k}	S _{1k}																								
N° du cristal	P17	P17																									
N° analyse	61L-45	61L-46	61L-47	61L-48	61L-49	61L-50	61L-51	61L-52	61L-53	61L-54	61L-55	61L-56	61L-57	61L-58	61L-59	61L-60	61L-61	61L-62	61L-63	61L-64	61L-65	61L-66	61L-67	61L-68	61L-69	61L-70	61L-71
SiO ₂	66.59	65.27	66.15	65.27	66.35	66.30	49.78	67.10	66.26	66.39	66.36	66.56	66.08	66.63	66.37	66.14	66.30	65.53	63.43	66.06	66.28	66.30	66.56	62.58	67.74	67.35	66.69
Al_2O_3	20.49	20.53	20.36	19.60	20.07	20.35	13.73	19.99	19.86	20.22	20.03	20.48	19.65	20.53	20.42	19.94	20.13	20.33	17.96	20.53	20.20	19.83	20.40	19.24	19.46	19.55	20.99
Fe ₂ O ₃	0.13	0.27	0.29	0.00	0.21	0.09	1.11	0.08	0.05	0.13	0.25	0.08	0.15	0.08	0.18	0.18	0.11	0.23	0.21	0.31	0.13	0.21	0.21	0.19	0.04	0.03	0.17
CaO	1.48	1.74	1.67	1.31	1.39	1.35	1.19	0.85	1.16	1.30	1.44	1.42	0.97	1.45	1.61	1.45	1.50	1.67	0.10	1.62	1.43	1.32	1.59	1.72	0.49	0.28	1.62
Na₂O	10.23	9.97	10.42	8.78	10.20	10.32	5.74	10.67	10.08	10.14	10.26	10.36	8.79	10.10	10.25	10.21	10.23	9.92	0.77	10.16	10.28	10.14	10.19	9.05	10.85	10.52	10.04
K2O	0.15	0.12	0.12	1.95	0.08	0.07	0.53	0.17	0.45	0.04	0.08	0.06	3.37	0.11	0.04	0.11	0.16	0.08	15.56	0.17	0.16	0.11	0.09	0.16	0.09	0.04	0.14
Sr	0.13	0.01	0.03	0.03	0.14	0.11	0.10	0.15	0.13	0.14	0.14	0.15	0.14	0.10	0.07	0.07	0.07	0.04	0.24	0.05	0.00	0.00	0.00	0.06	0.15	0.00	0.10
Ва	0.07	0.14	0.08	0.19	0.08	0.07	0.04	0.10	0.07	0.15	0.06	0.10	0.11	0.06	0.08	0.10	0.12	0.09	0.26	0.12	0.10	0.06	0.06	0.04	0.04	0.08	0.06
Total	99.26	98.05	99.12	97.13	98.53	98.66	72.23	99.11	98.06	98.50	98.63	99.20	99.26	99.06	99.02	98.19	98.62	97.88	98.53	99.03	98.59	97.96	99.09	93.05	98.84	97.85	99.82
FORMULE STRUCT																											
Si	2.94	2.92	2.93	2.96	2.95	2.94	3.01	2.97	2.96	2.95	2.95	2.94	2.96	2.94	2.94	2.95	2.95	2.93	2.99	2.93	2.95	2.96	2.94	2.94	2.99	3.00	2.93
Al	1.07	1.08	1.06	1.05	1.05	1.06	0.98	1.04	1.05	1.06	1.05	1.07	1.04	1.07	1.07	1.05	1.05	1.07	1.00	1.07	1.06	1.04	1.06	1.07	1.01	1.03	1.09
Fe st	0.00	0.01	0.01	0.00	0.01	0.00	0.05	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.00	0.00	0.01
Ca	0.07	0.08	0.08	0.06	0.07	0.06	0.08	0.04	0.06	0.06	0.07	0.07	0.05	0.07	0.08	0.07	0.07	0.08	0.01	0.08	0.07	0.06	0.08	0.09	0.02	0.01	0.08
Na	0.88	0.86	0.90	0.77	0.88	0.89	0.67	0.91	0.87	0.87	0.88	0.89	0.76	0.86	0.88	0.88	0.88	0.86	0.07	0.87	0.89	0.88	0.87	0.82	0.93	0.91	0.85
K -	0.01	0.01	0.01	0.11	0.00	0.00	0.04	0.01	0.03	0.00	0.00	0.00	0.19	0.01	0.00	0.01	0.01	0.00	0.94	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.01
Total	4.97	4.97	4.98	4.96	4.96	4.97	4.83	4.97	4.96	4.95	4.97	4.97	5.00	4.96	4.97	4.97	4.97	4.96	5.01	4.97	4.97	4.96	4.96	4.94	4.97	4.95	4.96
%Or	0.01	0.01	0.01	0.12	0.01	0.00	0.05	0.01	0.03	0.00	0.01	0.00	0.19	0.01	0.00	0.01	0.01	0.01	0.93	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01
%Ab	0.92	0.91	0.91	0.81	0.93	0.93	0.85	0.95	0.91	0.93	0.92	0.93	0.76	0.92	0.92	0.92	0.92	0.91	0.07	0.91	0.92	0.93	0.92	0.90	0.97	0.98	0.91
%An	0.07	0.09	0.08	0.07	0.07	0.07	0.10	0.04	0.06	0.07	0.07	0.07	0.05	0.07	0.08	0.07	0.07	0.08	0.01	0.08	0.07	0.07	0.08	0.09	0.02	0.01	0.08
Sr (ppm)	1061				1190	948	864	1271	1078	1189	1210	1287	1182	882	579	608	629	358	2002	457				496	1275		852
Ba (ppm)	623	1244	692	1737	756	594	402	885	609	1314	536	854	1010	549	743	867	1032	798	2339	1091	915	557	510	353	321	716	571
υα (ρριτι)	023	1244	032	1131	130	334	402	000	009	1314	550	054	1010	549	143	007	1032	1 30	2339	1091	910	331	310	333	341	110	3/1
Distance (µm)	920	958	996	1034	1072	1110	1148	1186	1224	1262	1300	1338	1376	1414	1452	1490	1528	1566	1604	1642	1680	1718	1756	1794	1832	1870	1908
Position verticale*	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029	140029

Lame	N4	N4	N4	N4
Séquence	S _{1k}	S _{1k}	S _{1k}	S _{1k}
N° du cristal	P17	P17	P17	P17
N° analyse	61L-72	61L-73	61L-74	61L-75
SiO ₂	67.90	65.97	67.89	67.52
Al_2O_3	19.83	20.13	19.74	20.37
Fe ₂ O ₃	0.05	0.18	0.04	0.07
CaO	0.71	1.30	0.47	1.02
Na ₂ O	10.42	10.29	10.92	10.31
K2O	0.07	0.07	0.00	0.09
Sr	0.19	0.19	0.18	0.06
Ва	0.01	0.01	0.00	0.00
Total	99.19	98.13	99.24	99.43
FORMULE STRUCT	TURALE (8	Oxygène	es)	
Si	2.99	2.95	2.99	2.96
Al	1.03	1.06	1.02	1.05
Fe ³⁺	0.00	0.01	0.00	0.00
Ca	0.03	0.06	0.02	0.05
Na	0.89	0.89	0.93	0.88
K	0.00	0.00	0.00	0.00
Total	4.94	4.97	4.97	4.95
%Or	0.00	0.00	0.00	0.01
%Ab	0.96	0.93	0.98	0.94
%An	0.04	0.06	0.02	0.05
Sr (ppm)	1604	1638	1488	471
Ba (ppm)	-	-	-	-
Distance (µm)	1946	1984	2022	2060
Position verticale*	140029	140029	140029	140029

Annexe 5c' Compositions chimiques des plagioclases du granite lité de Dolbel (profil 3)

Lame	N2	N2	N2	N2																							
Séquence	S _{3k}	S _{3k}	S _{3k}	S_{3k}	S _{3k}	S _{3k}	S _{3k}	S_{3k}	S _{3k}	S_{3k}	S _{3k}	S _{3k}	S _{3k}	S _{3k}	S_{3k}	S _{3k}	S _{3k}	S_{3k}	S _{3k}	S_{3k}	S _{3k}	S _{3k}	S _{3k}	S _{3k}	S_{3k}	S _{3k}	S ₃
N° du cristal	P58	P58	P58	P58																							
N° analyse	74L-1	74L-2	74L-3	74L-4	74L-5	74L-6	74L-7	74L-8	74L-9	74L-10	74L-11	74L-12	74L-13	74L-14	74L-15	74L-16	74L-17	74L-18	74L-19	74L-20	74L-21	74L-22	74L-23	74L-24	74L-25	74L-26	74L-27
SiO ₂	61.02	67.36	67.23	66.89	65.88	66.29	67.59	67.96	67.64	68.14	50.57	67.89	67.74	65.49	67.32	68.30	45.78	65.96	57.97	45.98	67.77	66.72	66.99	68.71	58.84	66.86	66.69
Al_2O_3	17.22	20.19	20.24	20.86	20.21	20.44	19.72	19.46	19.59	19.23	31.24	20.09	20.71	20.56	20.18	19.79	34.14	19.76	26.67	34.53	19.66	20.50	20.19	19.44	16.30	19.11	20.61
Fe ₂ O ₃	4.33	0.21	0.19	0.45	0.17	0.07	0.05	0.11	0.08	2.21	2.10	0.08	0.23	0.21	0.09	0.02	2.43	0.45	1.65	2.30	0.06	0.17	0.13	0.03	1.84	1.07	0.14
CaO	5.90	0.78	1.22	0.85	1.53	1.65	0.24	0.31	0.59	0.52	0.05	0.59	0.34	2.83	1.08	0.68	0.04	0.47	0.22	0.04	0.49	0.65	1.21	0.37	1.00	0.48	1.46
Na ₂ O	8.55	10.70	10.77	10.03	10.07	10.02	10.51	10.62	10.75	10.36	2.65	10.60	10.29	9.57	10.57	10.83	0.20	9.58	5.36	0.30	10.39	9.88	9.89	10.82	7.13	9.72	10.00
K2O	0.06	0.05	0.04	0.44	0.04	0.04	0.16	0.08	0.00	0.25	9.00	0.11	0.73	0.04	0.08	0.09	10.88	0.31	5.82	10.76	0.12	0.57	0.10	0.02	0.13	0.17	0.08
Sr	0.04	0.03	0.00	0.03	0.00	0.00	0.16	0.08	0.00	0.16	0.19	0.19	0.15	0.10	0.00	0.14	0.10	0.12	0.19	0.18	0.07	0.05	0.00	0.07	0.15	0.19	0.12
Ba	0.01	0.00	0.00	0.02	0.00	0.06	0.18	0.00	0.00	0.00	0.15	0.00	0.00	0.00	0.00	0.03	0.27	0.01	0.21	0.45	0.00	0.12	0.03	0.02	0.03	0.01	0.05
Total	97.13	99.33	99.70	99.56	97.90	98.57	98.59	98.62	98.66	100.86	95.96	99.54	100.18	98.81	99.33	99.89	93.85	96.67	98.08	94.55	98.56	98.67	98.55	99.49	85.42	97.61	99.15
FORMULE STRUCT	TURALE (8	Oxygène	s)																								
Si	2.84	2.96	2.95	2.94	2.94	2.94	2.99	3.00	2.99	2.97	2.42	2.98	2.96	2.91	2.96	2.99	2.26	2.98	2.66	2.26	2.99	2.96	2.96	3.01	3.01	2.99	2.94
Al	0.94	1.05	1.05	1.08	1.06	1.07	1.03	1.01	1.02	0.99	1.76	1.04	1.07	1.08	1.05	1.02	1.99	1.05	1.44	2.00	1.02	1.07	1.05	1.00	0.98	1.01	1.07
Fe ³⁺	0.15	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.07	0.08	0.00	0.01	0.01	0.00	0.00	0.09	0.02	0.06	0.08	0.00	0.01	0.00	0.00	0.07	0.04	0.00
Ca	0.29	0.04	0.06	0.04	0.07	0.08	0.01	0.01	0.03	0.02	0.00	0.03	0.02	0.13	0.05	0.03	0.00	0.02	0.01	0.00	0.02	0.03	0.06	0.02	0.05	0.02	0.07
Na	0.77	0.91	0.92	0.85	0.87	0.86	0.90	0.91	0.92	0.88	0.25	0.90	0.87	0.82	0.90	0.92	0.02	0.84	0.48	0.03	0.89	0.85	0.85	0.92	0.71	0.84	0.86
K	0.00	0.00	0.00	0.02	0.00	0.00	0.01	0.00	0.00	0.01	0.55	0.01	0.04	0.00	0.00	0.01	0.69	0.02	0.34	0.67	0.01	0.03	0.01	0.00	0.01	0.01	0.00
Total	5.00	4.97	4.98	4.95	4.96	4.96	4.95	4.95	4.96	4.94	5.06	4.95	4.96	4.96	4.97	4.96	5.05	4.92	4.99	5.05	4.94	4.95	4.93	4.95	4.83	4.91	4.95
%Or	0.00	0.00	0.00	0.03	0.00	0.00	0.01	0.00	0.00	0.02	0.69	0.01	0.04	0.00	0.00	0.01	0.97	0.02	0.41	0.96	0.01	0.04	0.01	0.00	0.01	0.01	0.00
%Ab	0.72	0.96	0.94	0.93	0.92	0.91	0.98	0.98	0.97	0.96	0.31	0.96	0.94	0.86	0.94	0.96	0.03	0.95	0.58	0.04	0.97	0.93	0.93	0.98	0.92	0.96	0.92
%An	0.27	0.04	0.06	0.04	0.08	0.08	0.01	0.02	0.03	0.03	0.00	0.03	0.02	0.14	0.05	0.03	0.00	0.03	0.01	0.00	0.03	0.03	0.06	0.02	0.07	0.03	0.07
Sr (ppm)	367	288	_	_	_	_	1330	634	_	1316	1567	1572	1228	835	_	1150	856	975	1612	1550	627	411	_	631	1287	1618	1054
Ba (ppm)	-	-	-	-	-	515	1592	-	-	-	1374	-	-	-	-	280	2458	-	1880	4049	-	1032	-	-	-	-	420
Distance (µm)	0	25	49	74	99	124	148	173	198	222	247	272	296	321	346	371	395	420	445	469	494	519	543	568	593	618	642
Position verticale*	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891
1 COMOTI VETUCALE	10001	10001	70001	10001	10001	, 0031	, 0031	, 0001	, 0031	70001	, 0031	70031	70001	10001	70001	70031	10001	70001	10001	, 0001	, 0031	70031	10001	70001	70001	1 000 1	10031
Lame	N2																										
Séquence	S _{3k}																										
Nº du cristal	P58																										

Lame	N2																						
Séquence	S _{3k}																						
N° du cristal	P58																						
N° analyse	74L-28	74L-29	74L-30	74L-31	74L-32	74L-33	74L-34	74L-35	74L-36	74L-37	74L-38	74L-39	74L-40	74L-41	74L-42	74L-43	74L-44	74L-45	74L-46	74L-47	74L-48	74L-49	74L-50
SiO ₂	68.77	66.04	68.64	68.42	67.96	65.15	66.35	67.91	67.37	67.63	63.02	66.93	67.65	66.36	68.72	64.73	69.11	68.02	68.53	68.54	68.36	69.09	69.17
Al_2O_3	19.59	20.39	19.24	19.74	19.69	17.88	19.74	19.67	20.84	19.52	22.21	19.16	19.91	20.36	19.36	17.27	19.82	19.85	19.64	19.49	19.58	19.17	19.15
Fe ₂ O ₃	0.35	0.94	0.54	0.17	0.06	0.40	0.91	80.0	0.09	0.14	0.76	0.32	0.12	0.16	0.00	0.89	0.06	0.09	0.04	0.07	0.08	0.01	0.00
CaO	0.42	0.29	0.39	0.42	0.31	0.25	0.84	0.62	0.04	0.43	0.06	0.89	1.00	1.52	0.34	0.09	0.48	0.89	0.35	0.41	0.32	0.10	0.09
Na ₂ O	10.35	9.87	10.55	10.75	10.51	9.14	10.21	10.81	10.42	10.67	8.07	9.93	10.50	10.16	11.07	9.93	11.35	10.86	11.15	11.15	10.99	11.38	11.14
K2O	0.10	1.03	0.14	0.08	0.11	0.13	0.08	0.06	1.15	0.10	2.54	0.10	0.09	0.09	0.06	0.46	0.08	0.09	0.06	0.16	0.06	0.12	0.10
Sr	0.12	0.11	0.17	0.14	0.18	0.16	0.12	0.24	0.17	0.11	0.17	0.14	0.08	0.00	0.14	0.26	0.11	0.11	0.15	0.16	0.18	0.17	0.20
Ва	0.02	0.00	0.00	0.16	0.05	0.04	0.01	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	99.71	98.67	99.68	99.88	98.88	93.14	98.27	99.40	100.09	98.61	96.83	97.47	99.37	98.65	99.68	93.67	101.01	99.90	99.92	99.98	99.58	100.04	99.87
FORMULE STRUCT	URALE (8	Oxygène	s)																				
Si	3.00	2.94	3.01	2.99	3.00	3.04	2.96	2.99	2.95	2.99	2.87	3.00	2.97	2.94	3.01	3.03	2.99	2.98	3.00	3.00	3.00	3.02	3.02
Al	1.01	1.07	0.99	1.02	1.02	0.98	1.04	1.02	1.08	1.02	1.19	1.01	1.03	1.06	1.00	0.95	1.01	1.02	1.01	1.00	1.01	0.99	0.99
Fe ³⁺	0.01	0.03	0.02	0.01	0.00	0.01	0.03	0.00	0.00	0.00	0.03	0.01	0.00	0.01	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ca	0.02	0.01	0.02	0.02	0.01	0.01	0.04	0.03	0.00	0.02	0.00	0.04	0.05	0.07	0.02	0.00	0.02	0.04	0.02	0.02	0.02	0.00	0.00
Na	0.88	0.85	0.90	0.91	0.90	0.83	0.88	0.92	0.89	0.92	0.71	0.86	0.90	0.87	0.94	0.90	0.95	0.92	0.94	0.95	0.93	0.96	0.94
K	0.01	0.06	0.01	0.00	0.01	0.01	0.00	0.00	0.06	0.01	0.15	0.01	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.01	0.00	0.01	0.01
Total	4.93	4.96	4.94	4.95	4.94	4.88	4.95	4.96	4.98	4.96	4.95	4.93	4.96	4.96	4.96	4.94	4.98	4.97	4.97	4.98	4.96	4.98	4.96
%Or	0.01	0.06	0.01	0.00	0.01	0.01	0.01	0.00	0.07	0.01	0.17	0.01	0.01	0.01	0.00	0.03	0.00	0.01	0.00	0.01	0.00	0.01	0.01
%Ab	0.97	0.92	0.97	0.97	0.98	0.98	0.95	0.97	0.93	0.97	0.83	0.95	0.95	0.92	0.98	0.97	0.97	0.95	0.98	0.97	0.98	0.99	0.99
%An	0.02	0.01	0.02	0.02	0.02	0.01	0.04	0.03	0.00	0.02	0.00	0.05	0.05	0.08	0.02	0.00	0.02	0.04	0.02	0.02	0.02	0.00	0.00
	075			4045	450:	4075	075		4.405			404-	=				0=-		400-	400:			475-
Sr (ppm)	973	937	1414	1213	1561	1372	973	2053	1433	898	1477	1217	706	-	1149	2206	950	915	1307	1391	1515	1450	1732
Ba (ppm)	-	-	-	1433	475	378	-	-	-	-	-	-	-	-	-	406	-	-	-	-	-	-	-
Distance (µm)	667	692	716	741	766	790	815	840	865	889	914	939	963	988	1013	1037	1062	1087	1112	1136	1161	1186	1210
Position verticale*	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891	70891

Annexe 5c' Compositions chimiques des plagioclases du granite lité de Dolbel (profil 4)

Lame	N4																										
Séquence	S _{1k}																										
distance point*	1	18.45	35.9	53.35	105.7	123.15	175.5	192.95	210.4	227.85	245.3	262.75	280.2	297.65	350	402.35	419.8	437.25	454.7	472.15	489.6	507.05	559.4	576.85	594.3	611.75	629.2
N° analyse	R2-1 .	R2-2 .	R2-3.	R2-4 .	R2-7 .	R2-8 .	R2-11.	R2-12.	R2-13 .	R2-14 .	R2-15 .	R2-16.	R2-17.	R2-18.	R2-21 .	R2-24.	R2-25.	R2-26 .	R2-27 .	R2-28 .	R2-29.	R2-30 .	R2-33.	R2-34 .	R2-35 .	R2-36 .	R2-37.
SiO ₂	69.97	68.19	68.54	67.96	66.20	67.60	67.69	66.93	66.35	66.74	64.46	67.67	68.19	68.08	69.24	68.37	68.41	68.59	68.02	67.28	58.43	68.15	67.69	68.01	66.42	67.57	66.72
Al ₂ O ₃	20.22	20.03	21.15	21.11	21.52	21.38	21.11	21.55	21.18	21.21	18.64	21.33	21.11	21.51	20.49	20.84	20.60	21.33	23.34	21.28	17.54	20.95	21.31	21.03	21.04	21.22	21.36
Fe ₂ O ₃	0.10	0.21	0.20	0.01	0.22	0.22	0.14	0.20	0.17	0.10	0.03	0.09	0.01	0.07	0.05	0.16	0.20	0.05	0.96	0.20	2.64	0.10	0.09	0.07	0.11	0.31	0.17
CaO	0.26	0.82	1.52	1.61	1.31	1.89	1.65	2.11	1.70	1.72	0.14	1.72	1.51	1.71	0.93	1.22	1.25	1.22	0.50	1.76	0.85	1.23	1.76	1.62	1.80	1.75	1.70
Na ₂ O	10.50	9.68	9.77	9.63	9.75	9.45	9.36	9.58	9.82	10.33	1.06	9.54	9.38	9.71	9.25	10.16	9.84	9.11	4.99	10.20	8.05	9.84	10.13	9.80	9.96	9.57	9.90
K ₂ O	0.07	0.07	0.07	0.08	0.61	0.06	0.07	0.09	0.06	0.06	14.64	0.10	0.06	0.09	0.04	0.09	0.06	0.08	1.61	0.12	1.30	0.06	0.11	0.08	0.09	0.08	0.06
Sr	0.17	0.20	0.07	0.12	0.18	0.20	0.22	0.19	0.20	0.18	0.21	0.19	0.25	0.23	0.24	0.26	0.25	0.30	0.17	0.18	0.08	0.12	0.21	0.21	0.19	0.19	0.19
Ba	0.00	0.00	0.00	0.04	0.07	80.0	0.30	0.10	0.06	0.07	0.26	0.03	0.07	0.09	0.04	0.07	0.05	0.05	0.14	0.05	0.11	0.08	0.07	0.07	0.06	0.07	0.10
Total	101.28	99.19	101.31	100.56	99.86	100.87	100.54	100.73	99.53	100.41	99.44	100.67	100.58	101.49	100.27	101.16	100.66	100.74	99.73	101.08	88.98	100.52	101.38	100.89	99.68	100.76	100.20
FORMULE STRUCTU	,	, 0	,	0.04	0.04	0.00	0.04	0.04	0.00	0.04	0.00	0.04	0.00	0.00	0.00	0.00	0.07	0.00	0.04	0.00	0.00	0.05	0.00	0.05	0.00	0.00	0.04
S1	3.00	2.99 1.04	2.95 1.07	2.94 1.08	2.91 1.11	2.93 1.09	2.94 1.08	2.91 1.10	2.92 1.10	2.91 1.09	2.98 1.02	2.94 1.09	2.96 1.08	2.93 1.09	2.99 1.04	2.96 1.06	2.97 1.05	2.96 1.08	2.94 1.19	2.92 1.09	2.89 1.02	2.95 1.07	2.92 1.08	2.95 1.07	2.92 1.09	2.93 1.08	2.91 1.10
Eo3+	0.00	0.01	0.01	0.00	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.03	0.01	0.10	0.00	0.00	0.00	0.00	0.01	0.01
Ca	0.00	0.01	0.07	0.00	0.06	0.01	0.00	0.01	0.01	0.08	0.00	0.00	0.00	0.00	0.00	0.06	0.01	0.06	0.03	0.01	0.10	0.06	0.08	0.08	0.08	0.01	0.01
Na	0.87	0.82	0.81	0.81	0.83	0.79	0.79	0.81	0.84	0.87	0.09	0.80	0.79	0.81	0.78	0.85	0.83	0.76	0.42	0.86	0.77	0.83	0.85	0.82	0.85	0.81	0.84
K	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.86	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.09	0.01	0.08	0.00	0.01	0.00	0.01	0.00	0.00
Total	1.91	1.91	1.97	1.97	2.05	1.98	1.96	2.02	2.02	2.05	1.98	1.98	1.94	1.99	1.87	1.98	1.95	1.91	1.75	2.04	2.02	1.96	2.02	1.98	2.03	1.99	2.02
%Or	0.00	0.00	0.00	0.01	0.04	0.00	0.00	0.01	0.00	0.00	0.89	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.17	0.01	0.09	0.00	0.01	0.01	0.01	0.01	0.00
%Ab	0.98	0.95	0.92	0.91	0.90	0.90	0.91	0.89	0.91	0.91	0.10	0.90	0.91	0.91	0.94	0.93	0.93	0.93	0.79	0.91	0.86	0.93	0.91	0.91	0.90	0.90	0.91
%An	0.01	0.04	0.08	0.08	0.07	0.10	0.09	0.11	0.09	0.08	0.01	0.09	0.08	0.09	0.05	0.06	0.07	0.07	0.04	0.09	0.05	0.06	0.09	0.08	0.09	0.09	0.09
Sr (ppm)	1440	1660	600	1020	1510	1690	1880	1620	1690	1500	1780	1590	2110	1940	2020	2200	2080	2540	1430	1550	650	990	1800	1780	1630	1560	1590
Ba (ppm)	-	-	-	320	650	680	2660	850	550	660	2320	280	620	780	330	610	430	460	1230	480	960	740	650	590	560	630	880
Distance (µm)	0	17	35	52	104	122	174	191	209	226	244	261	278	296	348	400	418	435	452	470	487	505	557	574	592	609	626

Lame	N4	N4	N4
Séquence	S _{1k}	S _{1k}	S _{1k}
distance point*	646.65	664.1	681.55
N° analyse	R2-38 .	R2-39 .	R2-40 .
SiO ₂	67.00	69.18	68.87
Al ₂ O ₃	20.94	20.54	20.89
Fe ₂ O ₃	0.05	0.00	0.14
CaO	1.71	0.72	1.09
Na ₂ O	9.76	10.63	9.71
K ₂ O	0.06	0.03	0.07
Sr	0.19	0.14	0.09
Ва	0.08	0.06	0.00
Total	99.79	101.30	100.85
FORMULE STRU	CTURALE (8	3 Oxygène	es)
Si	2.93	2.97	2.97
Al	1.08	1.04	1.06
Fe ³⁺	0.00	0.00	0.00
Ca	0.08	0.03	0.05
Na	0.83	0.89	0.81
K	0.00	0.00	0.00
Total	1.99	1.96	1.93
%Or	0.00	0.00	0.00
%Ab	0.91	0.96	0.94
%An	0.09	0.04	0.06
Sr (ppm)	1630	1180	730
Ba (ppm)	700	490	-
Distance (µm)	644	661	679

Annexe 5c' Compositions chimiques des plagioclases du granite lité de Dolbel (profil 5)

Lame	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4
Séquence	S _{2p}	S _{2p}	S _{2p}	S _{2p}	S_{2p}	S _{2p}																					
distance point*	1	23	66	88	110	131	153	197	262	283	305	392	414	436	457	479	501	566	653	718	740	762	783	805	914	935	957
N° analyse	R3-1.	R3-2.	R3-4 .	R3-5.	R3-6.	R3-7 .	R3-8.	R3-10.	R3-13.	R3-14.	R3-15 .	R3-19.	R3-20.	R3-21.	R3-22.	R3-23.	R3-24.	R3-27.	R3-31.	R3-34 .	R3-35.	R3-36.	R3-37.	R3-38.	R3-43.	R3-44 .	R3-45.
SiO ₂	69.33	67.89	66.62	67.05	67.38	66.87	66.81	66.90	66.98	67.21	67.10	66.41	66.45	67.05	67.36	66.11	65.50	67.56	67.31	66.82	63.71	65.03	67.81	66.32	68.64	64.84	67.54
Al_2O_3	20.18	21.09	20.98	21.75	21.59	21.56	21.75	21.45	21.34	21.14	21.28	21.26	21.19	21.11	21.40	20.86	20.41	21.13	21.02	21.33	19.57	20.46	21.01	21.30	20.86	19.76	21.26
Fe ₂ O ₃	0.00	0.20	0.00	0.10	0.13	0.10	0.10	0.00	0.08	0.19	0.13	0.21	0.18	0.15	0.06	0.08	0.11	0.13	0.10	0.12	0.09	0.02	0.11	0.10	0.27	0.14	0.20
CaO	0.42	1.60	1.67	1.82	1.89	1.96	1.93	1.68	1.66	1.70	1.81	1.73	1.71	1.65	1.76	1.30	0.99	1.37	1.53	1.74	0.28	1.49	1.59	1.75	1.09	1.81	1.50
Na ₂ O	10.56	9.84	10.68	10.00	9.79	10.09	9.96	10.17	9.36	9.69	10.13	9.74	9.94	10.37	9.67	6.93	6.87	10.20	8.47	10.10	2.68	10.98	10.04	10.46	9.04	9.40	10.12
K ₂ O	0.08	0.09	0.06	0.07	0.08	0.08	0.09	0.07	1.35	0.12	0.11	0.20	0.09	0.13	0.32	5.01	5.98	0.32	0.11	0.14	12.50	0.21	0.37	0.09	0.12	0.12	0.08
Sr	0.15	0.18	0.19	0.20	0.20	0.18	0.19	0.25	0.21	0.25	0.22	0.16	0.25	0.24	0.26	0.23		0.27	0.24	0.21	0.56	0.26	0.19	0.24	0.26	0.24	0.24
Ва	0.00	0.03	0.04	0.07	0.05	0.10	0.08	0.07	0.05	0.11	0.09	0.09	0.07	0.09	0.04	0.14	0.09	0.05	0.06	0.05	0.85	0.07	0.06	0.07	0.04	0.08	0.06
Total	100.73	100.92	100.24	101.05	101.11	100.94	100.91	100.59	101.02	100.40	100.87	99.79	99.87	100.77	100.87	100.64	100.21	101.03	98.83	100.51	100.25	98.52	101.16	100.33	100.32	96.39	101.00
FORMULE STRUCT	URALE (8	Oxygène:	s)																								
Si	2.99	2.94	2.92	2.91	2.91	2.90	2.90	2.91	2.92	2.92	2.91	2.89	2.91	2.92	2.92	2.92		2.93	2.96	2.91	2.94	2.91	2.93	2.90	2.97	2.95	2.93
Al	1.03	1.08	1.08	1.11	1.10	1.10	1.11	1.10	1.10	1.08	1.09	1.09	1.09	1.08	1.09	1.09	1.08	1.08	1.09	1.09	1.07	1.08	1.07	1.10	1.06	1.06	1.09
Fe ³⁺	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01
Ca	0.02	0.07	0.08	0.08	0.09	0.09	0.09	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.06	0.05	0.06	0.07	0.08	0.01	0.07	0.07	0.08	0.05	0.09	0.07
Na	0.88	0.83	0.91	0.84	0.82	0.85	0.84	0.86	0.79	0.82	0.85	0.82	0.84	0.88	0.81	0.59		0.86	0.72	0.85	0.24	0.95	0.84	0.89	0.76	0.83	0.85
K	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.08	0.01	0.01	0.01	0.01	0.01	0.02	0.28		0.02	0.01	0.01	0.74	0.01	0.02	0.01	0.01	0.01	0.00
Total	1.93	1.99	2.07	2.04	2.02	2.05	2.05	2.04	2.04	1.99	2.04	2.01	2.03	2.05	2.01	2.03	2.06	2.03	1.89	2.04	2.06	2.11	2.01	2.07	1.89	1.99	2.02
%Or	0.01	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.08	0.01	0.01	0.01	0.01	0.01	0.02	0.30	0.35	0.02	0.01	0.01	0.74	0.01	0.02	0.01	0.01	0.01	0.00
%Ab	0.97	0.91	0.92	0.90	0.90	0.90	0.90	0.91	0.84	0.91	0.90	0.90	0.91	0.91	0.89	0.63	0.61	0.91	0.90	0.91	0.24	0.92	0.90	0.91	0.93	0.90	0.92
%An	0.02	0.08	0.08	0.09	0.10	0.10	0.10	0.08	0.08	0.09	0.09	0.09	0.09	0.08	0.09	0.07	0.05	0.07	0.09	0.09	0.01	0.07	0.08	0.08	0.06	0.10	0.08
0- ()	4000	4500	4500	4050	4000	4540	4500	0070	4740	0070	4000	4070	0000	0000	0400	4040	0070	0050	0050	4770	4700	0000	4570	0050	0000	0040	0000
Sr (ppm)	1280	1500	1590	1650	1660	1510	1590	2070	1740	2070	1860	1370	2080	2030	2190	1910		2250	2050	1770	4730	2220	1570	2050	2230	2040	2020
Ba (ppm)	-	230	320	600	480	920	720	640	480	960	800	780	600	780	360	1260	800	480	510	440	7610	640	550	630	370	710	520
Distance (µm)	0	22	66	88	110	132	154	198	264	286	308	330	418	440	462	484	506	572	660	726	748	770	792	814	924	946	968

Lame	N4																	
Séquence	S _{2p}																	
distance point*	979	1001	1044	1066	1131	1174	1196	1240	1261	1283	1305	1348	1413	1435	1479	1500	1566	1609
N° analyse	R3-46.	R3-47.	R3-49 .	R3-50.	R3-53.	R3-55.	R3-56.	R3-58.	R3-59.	R3-60 .	R3-61.	R3-63.	R3-66.	R3-67.	R3-69.	R3-70.	R3-73.	R3-75 .
SiO ₂	67.98	67.70	67.82	67.07	66.61	67.63	68.86	66.60	66.78	66.75	66.90	67.12	67.62	67.70	68.79	63.66	64.80	69.92
Al ₂ O ₃	21.50	21.68	21.46	20.77	21.16	21.48	20.44	21.67	21.57	21.54	21.52	21.40	21.12	21.50	20.78	18.13	19.24	20.64
Fe ₂ O ₃	0.09	0.10	0.18	0.11	0.18	0.14	0.02	0.22	0.16	0.07	0.09	0.11	0.03	0.14	0.05	0.00	0.17	0.00
CaO	1.58	1.73	1.66	1.57	1.58	1.72	0.73	2.01	1.98	1.88	2.02	1.90	1.57	1.90	0.65	0.09	0.22	0.97
Na ₂ O	9.74	9.96	9.68	9.50	10.12	9.86	10.66	10.35	10.12	10.20	9.92	10.12	10.45	9.68	10.41	1.16	3.65	8.57
K ₂ O	0.10	0.07	0.08	0.10	0.09	0.14	0.11	0.11	0.06	0.08	0.06	0.13	0.09	0.20	0.16	14.83	11.24	0.14
Sr	0.23	0.23	0.26	0.19	0.00	0.23	0.26	0.20	0.22	0.20	0.22	0.23	0.18	0.22	0.18	0.23	0.24	0.18
Ва	0.08	0.06	0.04	0.06	0.08	0.06	0.07	0.06	0.07	0.03	0.05	0.05	0.06	0.08	0.06	0.50	0.50	0.00
Total	101.29	101.53	101.18	99.36	99.82	101.26	101.15	101.22	100.96	100.74	100.77	101.06	101.10	101.41	101.08	98.59	100.06	100.41
FORMULE STRUCT																		l
Si	2.93	2.92	2.92	2.95	2.92	2.92	2.98	2.89	2.91	2.90	2.91	2.91	2.93	2.92	2.97	2.98	2.96	
Al	1.09	1.10	1.09	1.08	1.09	1.09	1.04	1.11	1.11	1.10	1.10	1.10	1.08	1.09	1.06	1.00	1.04	
Fe ³⁺	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Ca	0.07	0.08	0.08	0.07	0.07	0.08	0.03	0.09	0.09	0.09	0.09	0.09	0.07	0.09	0.03	0.00	0.01	0.04
Na	0.81	0.83	0.81	0.81	0.86	0.82	0.89	0.87	0.85	0.86	0.84	0.85	0.88	0.81	0.87	0.10	0.32	-
K	0.01	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.89	0.66	
Total	1.99	2.02	1.99	1.97	2.04	2.01	1.97	2.09	2.06	2.06	2.04	2.05	2.04	2.01	1.97	1.99	2.03	1.81
%Or	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.89	0.66	0.01
%Ab	0.91	0.91	0.91	0.91	0.92	0.90	0.96	0.90	0.90	0.90	0.90	0.90	0.92	0.89	0.96	0.11	0.33	0.93
%An	0.08	0.09	0.09	0.08	0.08	0.09	0.04	0.10	0.10	0.09	0.10	0.09	0.08	0.10	0.03	0.00	0.01	0.06
Sr (ppm)	1970	1980	2180	1580	_	1930	2170	1700	1830	1680	1840	1940	1520	1840	1520	1900	2060	1520
Ba (ppm)	710	540	380	500	700	570	600	500	640	250	470	470	520	760	560	4510	4480	
Distance (µm)	990	1012	1056	1078	1144	1188	1210	1254	1276	1298	1320	1364	1430	1452	1496	1518	1584	1628

Annexe 5c' Compositions chimiques des plagioclases du granite lité de Dolbel (profil 6)

Lame	N2	N2	N2	N2	N2	N2	N2	N2	N2																		
Séquence	S_{4p}	S _{4p}	S_{4p}	S_{4p}	S _{4p}	S_{4p}	S_{4p}	S_{4p}	S_{4p}	S _{4p}																	
distance point*	1	19	37	55	73	91	109	127	145	163	181	199	217	235	253	271	289	307	325	343	361	379	397	415	433	451	469
N° analyse	R1-1 .	R1-2.	R1-3.	R1-4 .	R1-5.	R1-6.	R1-7 .	R1-8 .	R1-9 .	R1-10.	R1-11 .	R1-12.	R1-13.	R1-14 .	R1-15.	R1-16.	R1-17 .	R1-18.	R1-19.	R1-20 .	R1-22 .	R1-23.	R1-24 .	R1-27.	R1-28 .	R1-29 .	R1-30.
SiO ₂	68.12	69.76	70.00	67.62	67.38	67.05	65.97	65.61	66.33	66.77	66.65	66.33	66.58	66.22	66.15	65.93	66.56	65.92	67.17	67.47	67.91	69.37	68.05	67.35	66.65	66.81	66.90
Al_2O_3	20.88	21.35	20.45	20.88	21.34	21.10	19.82	20.82	21.56	21.29	21.41	20.89	21.41	21.35	21.40	21.12	21.63	21.47	20.98	20.86	20.97	20.22	20.63	20.94	20.84	20.87	21.25
Fe ₂ O ₃	0.20	0.11	0.16	0.21	0.21	0.12	0.17	0.14	0.10	0.17	0.12	0.19	0.15	0.18	0.19	0.17	0.22	0.13	0.00	0.02	0.21	0.00	0.02	0.12	0.09	0.08	0.15
CaO	1.20	1.13	1.17	1.23	1.52	1.59	1.36	1.89	1.84	1.71	1.66	1.78	1.75	1.90	1.93	1.55	1.93	2.06	1.38	1.34	0.69	0.66	0.88	1.37	1.40	1.58	1.60
Na ₂ O	10.63	8.60	7.69	10.58	10.51	10.43	11.20	9.90	10.44	10.01	10.40	10.54	10.49	10.44	10.05	10.59	10.34	10.39	10.52	10.50	10.38	10.95	11.08	10.56	10.71	10.66	10.41
K ₂ O	0.04	0.10	0.06	0.08	0.05	0.09	0.10	0.13	0.04	0.06	0.10	0.08	0.14	0.06	0.08	0.07	0.11	0.26	0.04	0.21	0.10	0.06	0.08	0.06	0.10	0.15	0.10
Sr	0.07	0.06	0.07	0.06	0.08	0.13	0.15	0.17	0.21	0.22	0.23	0.22	0.23	0.19	0.21	0.00	0.20	0.11	0.14	0.23	0.24	0.25	0.13	0.19	0.18	0.16	0.17
Ва	0.00	0.00	0.00	0.00	0.00	0.09	0.07	0.11	0.10	0.08	0.07	0.11	0.12	0.07	0.03	0.00		0.08	0.08	0.02	0.00	0.00	0.08	0.08	0.08	0.08	0.09
Total	101.15	101.12	99.59	100.66	101.09	100.61	98.82	98.76	100.62	100.31	100.62	100.13	100.86	100.42	100.03	99.42	101.08	100.41	100.32	100.64	100.50	101.52	100.95	100.66	100.04	100.38	100.65
FORMULE STRUCTU	,	, 0	,																								
Si	2.94	2.98	3.02	2.94	2.92	2.92	2.94	2.92	2.90	2.92	2.91	2.91	2.91	2.90	2.90	2.91	2.90	2.89	2.93	2.94	2.94	2.98	2.95	2.93	2.92	2.92	2.92
Al	1.06	1.08	1.04	1.07	1.09	1.08	1.04	1.09	1.11	1.10	1.10	1.08	1.10	1.10	1.11	1.10		1.11	1.08	1.07	1.07	1.03	1.05	1.07	1.08	1.08	1.09
Fe ³⁺	0.01	0.00	0.01	0.01	0.01	0.00	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Ca	0.06	0.05	0.05	0.06	0.07	0.07	0.06	0.09	0.09	0.08	0.08	0.08	0.08	0.09	0.09	0.07	0.09	0.10	0.06	0.06	0.03	0.03	0.04	0.06	0.07	0.07	0.07
Na	0.89	0.71	0.64	0.89	0.88	0.88	0.97	0.85	0.88	0.85	0.88	0.90	0.89	0.89	0.86	0.90	0.87	0.88	0.89	0.89	0.87	0.91	0.93	0.89	0.91	0.90	0.88
K -	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.01	0.01
Total	2.02	1.85	1.75	2.03	2.05	2.05	2.08	2.05	2.09	2.03	2.07	2.07	2.08	2.09	2.06	2.08	2.08	2.10	2.04	2.03	1.98	1.97	2.03	2.03	2.06	2.07	2.06
%Or	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.01	0.01
%Ab	0.94	0.93	0.92	0.94	0.92	0.92	0.93	0.90	0.91	0.91	0.91	0.91	0.91	0.91	0.90	0.92	0.90	0.89	0.93	0.92	0.96	0.96	0.95	0.93	0.93	0.92	0.92
%An	0.06	0.07	0.08	0.06	0.07	0.08	0.06	0.09	0.09	0.09	0.08	0.08	0.08	0.09	0.10	0.07	0.09	0.10	0.07	0.07	0.03	0.03	0.04	0.07	0.07	0.07	0.08
0()	500	500	040	500	740	4400	4000	4.450	4750	4070	4000	4050	4000	4000	4700		4700	000	4400	4000	0000	0400	4400	4500	4540	4070	4440
Sr (ppm)	580	530	610	520	710	1130	1220	1450	1750	1870	1900	1850	1980	1600	1730	-	1700	930	1180	1920	2030	2120	1120	1580	1510	1370	1410
Ba (ppm)	-	-	-	-	-	810	640	980	880	710	580	970	1080	640	250	-	840	670	740	200	-	-	690	690	680	680	790
Distance (µm)	0	10	21	31	41	51	62	72	82	92	103	113	123	133	144	154	164	174	185	195	215	226	236	267	277	287	298

Lame	N2													
Séquence	S _{4p}													
distance point*	469	487.0	505.0	523.0	541.0	559.0	577.0	595.0	613.0	631.0	649.0	667.0	685.0	703.0
N° analyse	R1-31 .	R1-32 .	R1-33 .	R1-35 .	R1-36 .	R1-38 .	R1-39 .	R1-40 .	R1-42 .	R1-44 .	R1-45 .	R1-46 .	R1-47 .	R1-48 .
SiO ₂	66.78	67.26	67.35	67.33	67.38	67.03	66.63	66.44	66.56	66.72	65.97	66.52	67.37	66.96
Al ₂ O ₃	21.45	21.23	20.20	21.22	21.38	21.13	21.07	21.20	21.46	21.31	21.56	21.03	21.36	21.38
Fe ₂ O ₃	0.08	0.14	0.29	0.15	0.15	0.10	0.12	0.17	0.06	0.00	0.21	0.08	0.07	0.12
CaO	1.66	1.68	1.29	1.43	1.66	1.55	1.59	1.78	1.78	1.75	1.92	1.72	1.69	1.66
Na₂O	10.58	10.08	11.03	10.54	10.35	10.48	10.93	10.32	10.48	10.48	10.50	10.50	10.37	10.24
K ₂ O	0.07	0.06	0.09	0.08	0.10	0.07	0.09	0.14	0.12	0.08	0.08	0.06	0.07	0.05
Sr	0.16	0.19	0.19	0.20	0.22	0.24	0.23	0.23	0.19	0.19	0.17	0.19	0.21	0.22
Ва	0.09	0.11	0.11	0.11	0.08	0.13	0.09	0.14	0.11	0.09	0.09	0.18	0.10	0.13
Total	100.86	100.76	100.54	101.06	101.32	100.72	100.74	100.43	100.77	100.62	100.51	100.27	101.25	100.76
FORMULE STRUCT														
Si	2.91	2.93	2.94	2.92	2.92	2.92	2.91	2.90	2.90	2.91	2.89	2.92	2.92	2.91
Al	1.10	1.09	1.04	1.09	1.09	1.09	1.08	1.09	1.10	1.10	1.11	1.09	1.09	1.10
Fe ³⁺	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00
Ca	0.08	0.08	0.06	0.07	0.08	0.07	0.07	0.08	0.08	0.08	0.09	0.08	0.08	0.08
Na	0.89	0.85	0.93	0.89	0.87	0.89	0.93	0.87	0.89	0.89	0.89	0.89	0.87	0.86
K	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00
Total	2.08	2.03	2.05	2.05	2.05	2.05	2.09	2.06	2.08	2.07	2.10	2.07	2.05	2.05
%Or	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00
%Ab	0.92	0.91	0.93	0.93	0.91	0.92	0.92	0.91	0.91	0.91	0.90	0.91	0.91	0.92
%An	0.08	0.08	0.06	0.07	0.08	0.08	0.07	0.09	0.09	0.08	0.09	0.08	0.08	0.08
Sr (ppm)	1370	1600	1580	1710	1890	2010	1930	1910	1630	1610	1470	1560	1790	1880
Ba (ppm)	820	1020	950	950	680	1190	830	1280	1000	800	850	1580	930	1140
Distance (µm)	308	318	328	349	359	380	390	400	421	441	451	462	472	482

Annexe 5d' Compositions chimiques des feldspaths potassiques du granite lité de Dolbel (profil 1)

Lame	N2																										
Séquence	S _{4p}																										
N° du cristal	F41																										
N° analyse	22L-1	22L-2	22L-3	22L-4	22L-5	22L-6	22L-7	22L-8	22L-9	22L-10	22L-11	22L-12	22L-13	22L-14	22L-15	22L-16	22L-17	22L-18	22L-19	22L-20	22L-21	22L-22	22L-23	22L-24	22L-25	22L-26	22L-27
SiO ₂	94.54	63.98	63.77	63.49	62.98	63.38	63.36	63.26	62.47	62.87	55.89	62.91	51.71	63.08	62.11	62.47	62.33	62.44	62.85	62.66	62.90	63.05	62.67	62.51	62.55	62.47	62.66
Al_2O_3	1.24	18.19	18.10	18.06	17.86	17.83	17.91	17.94	18.07	17.78	15.06	17.97	13.56	18.19	18.23	18.23	18.10	17.94	18.07	17.98	17.89	18.21	17.95	17.99	17.73	18.24	18.12
Fe ₂ O ₃	0.04	0.04	0.11	0.10	0.01	0.19	0.00	0.00	0.02	0.00	0.66	0.07	1.57	0.09	0.00	0.12	0.13	0.14	0.12	0.10	0.20	0.08	0.20	0.02	0.19	0.24	0.17
CaO	0.05	0.00	0.00	0.00	0.03	0.05	0.00	0.00	0.00	0.00	0.46	0.00	0.28	0.04	0.00	0.00	0.02	0.00	0.01	0.00	0.00	0.03	0.00	0.00	0.04	0.00	0.03
Na ₂ O	0.04	0.25	0.32	0.20	0.23	0.31	0.19	0.43	0.21	0.15	0.30	0.36	0.19	0.32	0.39	0.38	0.40	0.36	0.40	0.26	0.22	0.36	0.37	0.14	0.37	0.38	0.23
K2O	0.79	16.53	16.66	16.34	16.64	16.22	16.49	16.05	16.00	16.23	14.02	15.90	12.83	15.75	15.56	15.94	15.33	15.50	15.74	16.32	16.06	15.88	15.38	16.05	15.95	15.94	16.15
Sr	0.31	0.41	0.42	0.44	0.48	0.45	0.45	0.50	0.46	0.41	0.57	0.58	0.56	0.55	0.61	0.55	0.52	0.55	0.56	0.45	0.44	0.50	0.50	0.48	0.46	0.50	0.41
Ва	0.03	0.10	0.19	0.25	0.39	0.39	0.58	0.80	1.24	1.02	1.23	1.33	1.62	1.58	1.58	1.67	1.76	1.31	1.35	1.52	1.23	1.43	1.43	1.14	0.94	1.22	1.00
Total	97.04	99.49	99.57	98.88	98.62	98.83	98.97	98.98	98.47	98.46	88.17	99.12	82.31	99.59	98.49	99.36	98.60	98.25	99.10	99.31	98.93	99.53	98.51	98.34	98.22	98.98	98.76
FORMULE STRUCT	URALE (8	Oxygènes																									
Si	3.94	2.99	2.99	2.99	2.99	3.00	3.00	3.00	2.99	3.00	3.00	2.99	3.00	2.99	2.98	2.98	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.98	2.98
Al	0.06	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.02	1.00	0.95	1.01	0.93	1.02	1.03	1.02	1.02	1.01	1.01	1.01	1.00	1.02	1.01	1.01	1.00	1.02	1.02
Fe ³⁺	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.03	0.00	0.07	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.01	0.01
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.00	0.02	0.03	0.02	0.02	0.03	0.02	0.04	0.02	0.01	0.03	0.03	0.02	0.03	0.04	0.04	0.04	0.03	0.04	0.02	0.02	0.03	0.03	0.01	0.03	0.03	0.02
K	0.04	0.99	1.00	0.98	1.01	0.98	1.00	0.97	0.98	0.99	0.96	0.96	0.95	0.95	0.95	0.97	0.94	0.95	0.95	0.99	0.97	0.96	0.94	0.98	0.97	0.97	0.98
Total	4.05	5.01	5.02	5.00	5.02	5.01	5.01	5.01	5.00	5.00	5.00	5.00	4.99	4.99	5.00	5.01	4.99	4.99	5.00	5.02	5.00	5.00	4.98	5.00	5.01	5.01	5.01
%Or	0.89	0.98	0.97	0.98	0.98	0.97	0.98	0.96	0.98	0.99	0.94	0.97	0.96	0.97	0.96	0.97	0.96	0.97	0.96	0.98	0.98	0.97	0.96	0.99	0.96	0.97	0.98
%Ab	0.06	0.02	0.03	0.02	0.02	0.03	0.02	0.04	0.02	0.01	0.03	0.03	0.02	0.03	0.04	0.03	0.04	0.03	0.04	0.02	0.02	0.03	0.04	0.01	0.03	0.03	0.02
%An	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sr (ppm)	2660	3467	3573	3721	4081	3801	3766	4242	3892	3427	4781	4925	4695	4629	5166	4618	4427	4656	4724	3810	3699	4221	4211	4077	3886	4190	3441
Ba (ppm)	-	866	1709	2247	3497	3490	5210	7143	11131	9151	10986	11926	14549	14158	14161	14961	15766	11766	12071	13641	11029	12811	12765	10228	8396	10933	8950
Distance (µm)	0	63	125	188	251	313	376	439	501	564	627	689	752	815	877	940	1003	1065	1128	1191	1253	1316	1379	1441	1504	1567	1629
Position verticale*	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163	46163

Lame	N2	N2	N2
Séquence	S _{4p}	S _{4p}	S _{4p}
N° du cristal	F41	F41	F41
N° analyse	22L-28	22L-29	22L-30
SiO ₂	62.27	62.97	62.23
Al ₂ O ₃	18.05	17.83	17.95
Fe ₂ O ₃	0.08	0.13	0.13
CaO	0.01	0.00	0.00
Na ₂ O	0.21	0.34	0.21
K2O	16.36	16.17	16.60
Sr	0.48	0.40	0.42
Ва	0.97	0.64	0.62
Total	98.43	98.47	98.14
FORMULE STRUC	TURALE (8	Oxygène	es)
Si	2.98	2.99	2.98
Al	1.02	1.00	1.01
Fe ³⁺	0.00	0.00	0.00
Ca	0.00	0.00	0.00
Na	0.02	0.03	0.02
K	1.00	0.98	1.01
Total	5.02	5.01	5.03
%Or	0.98	0.97	0.98
%Ab	0.02	0.03	0.02
%An	0.00	0.00	0.00
Sr (ppm)	4048	3342	3516
Ba (ppm)	8658	5775	5521
Distance (µm)	1691	1754	1816
Position verticale*	46163	46163	46163

Annexe 5d' Compositions chimiques des feldspaths potassiques du granite lité de Dolbel (profil 2)

Lame	N3																										
Séquence	S _{3k}																										
N° du cristal	K24																										
N° analyse	s à c-1	sàc-2	s à c-3	sàc-4	s à c-5	sàc-6	s à c-7	s à c-8	sàc-9	sàc-10 :	s à c-11	s à c-12	s à c-13	s à c-14	s à c-15	s à c-16	s à c-17	s à c-18	s à c-19	s à c-20	s à c-21	s à c-22	s à c-23	s à c-24	s à c-25	s à c-26	s à c-27
SiO ₂	63.28	62.48	62.92	62.87	63.25	62.96	62.87	63.92	63.14	61.87	61.80	62.36	63.14	62.29	62.81	62.39	63.25	61.40	62.82	68.15	62.27	62.27	62.47	62.00	62.56	62.68	62.98
Al_2O_3	18.58	18.07	18.24	17.80	18.64	18.55	18.47	18.69	18.39	18.31	18.88	18.20	18.76	18.37	18.80	18.52	18.55	18.12	18.48	19.50	18.89	18.37	18.27	18.42	18.67	18.56	18.36
Fe ₂ O ₃	0.17	0.03	0.13	0.22	0.16	0.21	0.27	0.20	0.10	0.47	0.00	0.47	0.19	0.11	0.15	0.18	0.22	0.15	0.10	0.08	0.16	0.06	0.15	0.26	0.20	0.26	0.22
CaO	0.04	0.00	0.06	0.02	0.00	0.00	0.00	0.00	0.02	0.03	0.08	0.03	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.14	0.03	0.00	0.00	0.03	0.01	0.02	0.00
Na ₂ O	0.26	0.36	0.30	0.27	0.36	0.27	0.23	0.21	0.36	0.20	0.18	0.31	0.51	0.24	0.27	0.28	0.26	0.26	0.32	11.12	0.30	0.36	0.42	0.39	0.35	0.40	0.28
K2O	16.13	16.04	16.45	15.85	16.02	16.27	16.16	16.76	16.10	15.94	16.14	15.59	15.72	16.06	16.00	15.90	16.22	15.68	15.78	0.07	16.00	15.79	16.13	15.70	15.78	15.64	15.73
Sr	0.00	0.00	0.28	0.36	0.37	0.34	0.32	0.00	0.37	0.31	0.00	0.28	0.33	0.33	0.17	0.38	0.36	0.29	0.32	0.62	0.43	0.42	0.33	0.37	0.33	0.35	0.30
Ba	0.72	0.79	0.67	0.85	0.72	0.86	0.75	0.17	1.19	1.33	1.34	1.24	1.19	1.39	1.31	1.41	1.40	1.26	1.34	0.30	1.60	1.86	1.10	1.92	1.80	1.57	1.22
Total	99.18	97.77	99.05	98.25	99.52	99.46	99.05	99.95	99.67	98.46	98.42	98.48	99.84	98.79	99.52	99.06	100.27	97.18	99.15	99.99	99.68	99.13	98.88	99.08	99.70	99.47	99.09
FORMULE STRUCTI	,	, 0	,																								
Si	2.97	2.98	2.98 1.02	3.00	2.97 1.03	2.97	2.97 1.03	2.97 1.02	2.98 1.02	2.96 1.03	2.95 1.06	2.97	2.97 1.04	2.97	2.96 1.05	2.97 1.04	2.97 1.03	2.97 1.03	2.97 1.03	3.00	2.95 1.06	2.97	2.97 1.02	2.97 1.04	2.96 1.04	2.97	2.98 1.02
A1 3+	1.03	1.02		1.00 0.01		1.03						1.02		1.03						1.01		1.03	0.01			1.04	
re c-	0.01 0.00	0.00	0.00	0.00	0.01 0.00	0.01 0.00	0.01 0.00	0.01 0.00	0.00	0.02	0.00	0.02	0.01 0.00	0.00	0.01 0.00	0.01 0.00	0.01	0.01	0.00	0.00 0.01	0.01 0.00	0.00	0.00	0.01 0.00	0.01 0.00	0.01 0.00	0.01
Na	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na K	0.02	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.03	0.02	0.02	0.03	0.03	0.02	0.02	0.03	0.02	0.02	0.05	0.00	0.03	0.03	0.04	0.04	0.05	0.04	0.03
Total	5.00	5.01	5.02	4.99	5.00	5.01	5.00	5.01	5.01	5.01	5.02	4.99	5.00	5.01	5.00	5.00	5.00	5.00	4.99	4.97	5.01	5.00	5.02	5.01	5.00	5.00	4.99
%Or	0.97	0.97	0.97	0.97	0.97	0.98	0.98	0.98	0.97	0.98	0.98	0.97	0.95	0.98	0.97	0.97	0.98	0.98	0.97	0.00	0.97	0.97	0.96	0.96	0.97	0.96	0.97
%Ab	0.02	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.03	0.02	0.02	0.03	0.05	0.02	0.02	0.03	0.02	0.02	0.03	0.99	0.03	0.03	0.04	0.04	0.03	0.04	0.03
%An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sr (nom)			2327	3082	3116	2895	2675		3103	2655		2358	2793	2826	1438	3187	3036	2459	2689	5226	3605	3513	2802	3127	2778	2936	2533
Sr (ppm) Ba (ppm)	6415	7080	6032	7593	6405	7676	6683	1503	10659	11900	12000	11066	10620	12416	11748	12643	12495	11315	11967	2645	14374	16686	9823	17222	16095	14074	10934
υα (ρριτι)	0+13	1000	0032	1393	0403	1010	0000	1303	10009	11300	12000	11000	10020	12410	11740	12043	12433	11313	11901	2040	173/4	10000	3023	11222	10093	17074	10934
Position verticale*	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938

Lame	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3
Séquence	S _{3k}	S_{3k}	S _{3k}	S_{3k}	S_{3k}	S_{3k}	S _{3k}	S_{3k}	S _{3k}							
N° du cristal	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24
N° analyse	s à c-28	s à c-29	s à c-30	s à c-31	s à c-32	s à c-33	s à c-34	s à c-35	s à c-36	s à c-37	s à c-38	s à c-39	s à c-40	s à c-41	s à c-42	s à c-43
SiO ₂	62.60	62.50	62.57	62.23	62.47	62.45	62.70	61.92	61.44	62.16	61.79	62.62	61.87	61.57	61.97	61.89
Al ₂ O ₃	18.43	18.45	18.14	18.48	18.24	18.27	18.48	18.30	18.29	18.59	18.42	18.47	18.06	18.39	18.21	18.65
Fe ₂ O ₃	0.10	0.11	0.11	0.11	0.26	0.19	0.16	0.06	0.14	0.13	0.15	0.10	0.14	0.10	0.18	0.00
CaO	0.04	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.00	0.00	0.00
Na ₂ O	0.42	0.30	0.31	0.44	0.31	0.25	0.32	0.40	0.48	0.32	0.41	0.35	0.31	0.30	0.36	0.24
K2O	15.80	16.12	15.52	15.83	15.97	16.00	16.06	15.92	15.40	16.09	15.66	15.90	16.23	16.22	15.95	15.87
Sr	0.40	0.29	0.30	0.41	0.31	0.29	0.33	0.32	0.41	0.37	0.38	0.28	0.31	0.30	0.40	0.31
Ва	1.33	1.59	1.46	1.68	1.32	1.39	1.49	1.40	1.70	1.60	1.22	1.31	1.57	1.55	1.32	1.44
Total	99.13	99.36	98.40	99.17	98.88	98.86	99.53	98.32	97.86	99.27	98.04	99.05	98.49	98.43	98.38	98.39
FORMULE STRUCT	URALE (8	Oxygène														
Si	2.97	2.97	2.99	2.97	2.98	2.97	2.97	2.97	2.97	2.96	2.97	2.97	2.97	2.96	2.97	2.96
Al	1.03	1.03	1.02	1.04	1.02	1.03	1.03	1.03	1.04	1.04	1.04	1.03	1.02	1.04	1.03	1.05
Fe ³⁺	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.04	0.03	0.03	0.04	0.03	0.02	0.03	0.04	0.05	0.03	0.04	0.03	0.03	0.03	0.03	0.02
K	0.96	0.98	0.94	0.96	0.97	0.97	0.97	0.97	0.95	0.98	0.96	0.96	0.99	0.99	0.98	0.97
Total	5.00	5.01	4.98	5.01	5.01	5.00	5.01	5.02	5.01	5.02	5.01	5.00	5.02	5.03	5.01	5.01
%Or	0.96	0.97	0.97	0.96	0.97	0.98	0.97	0.96	0.95	0.97	0.96	0.97	0.97	0.97	0.97	0.98
%Ab	0.04	0.03	0.03	0.04	0.03	0.02	0.03	0.04	0.05	0.03	0.04	0.03	0.03	0.03	0.03	0.02
%An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sr (ppm)	3380	2420	2527	3440	2579	2420	2823	2669	3484	3169	3232	2395	2609	2577	3351	2616
Ba (ppm)	11873	14227	13052	15011	11815	12439	13333	12555	15232	14329	10907	11777	14065	13906	11799	12866
υα (ρριτι)	11073	17221	13032	13011	11013	12433	13333	12333	13232	1+323	10907	11///	14003	13300	11799	12000
Position verticale*	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938

Annexe 5d' Compositions chimiques des feldspaths potassiques du granite lité de Dolbel (profil 3)

	110		110	110	110	110	110		110	110	110	110		110	110	110	- 17	110	, 110	110	110	110	110	110	110	110	110
Lame	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3						
Séquence	S _{3k}	S_{3k}	S _{3k}	S_{3k}	S _{3k}	S _{3k}	S _{3k}	S_{3k}	S _{3k}	S _{3k}	S _{3k}	S_{3k}	S _{3k}	S _{3k}	S_{3k}												
N° du cristal	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24						
N° analyse	s à s-1	s à s-2	s à s-3	s à s-4	s à s-5	s à s-6	s à s-7	s à s-8	s à s-9	sàs-10 :	s à s-11	s à s-12	s à s-13	s à s-14	sàs-15 s	s à s-16	s à s-17	s à s-18	s à s-19	s à s-20	s à s-21	s à s-22	s à s-23	s à s-24	s à s-25	s à s-26	
SiO ₂	61.83	62.28	62.49	62.10	62.68	62.58	62.71	61.43	62.48	61.89	61.88	62.00	62.30	61.89	60.53	61.71	63.02	63.11	63.86	63.09	62.78	62.04	62.07	62.56	61.86	61.58	62.49
Al_2O_3	18.44	18.60	18.34	18.17	18.38	17.72	17.59	18.21	18.51	18.51	18.66	18.76	18.50	18.72	18.61	18.42	18.24	17.88	18.15	17.98	17.86	18.03	18.40	18.18	18.24	18.28	18.19
Fe ₂ O ₃	0.08	0.10	0.07	0.13	0.11	0.17	0.11	0.11	0.08	0.00	0.20	0.18	0.14	0.12	0.14	0.18	0.01	0.18	0.02	0.08	0.09	0.20	0.11	0.08	0.20	0.17	0.26
CaO	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.04	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.02	0.01	0.00
Na₂O	0.38	0.35	0.16	0.22	0.18	0.18	0.30	0.21	0.43	0.20	0.37	0.39	0.27	0.33	0.35	0.34	0.25	0.25	0.26	0.20	0.27	0.32	0.42	0.22	0.37	0.32	0.18
K2O	15.80	15.73	16.72	16.56	16.76	16.42	16.51	16.58	16.16	16.05	15.79	15.98	16.11	15.84	15.77	15.80	16.30	16.60	16.51	16.12	15.91	15.80	16.05	15.50	15.43	16.08	15.86
Sr	0.31	0.43	0.19	0.25	0.27	0.27	0.30	0.25	0.30	0.31	0.43	0.40	0.44	0.49	0.53	0.46	0.32	0.42	0.43	0.41	0.42	0.46	0.48	0.47	0.46	0.47	0.44
Ва	1.28	1.33	0.13	0.08	0.06	0.13	0.30	0.51	0.47	0.78	1.17	1.38	1.18	1.54	1.62	1.37	0.43	0.53	0.51	0.65	0.88	1.36	1.34	1.59	1.46	1.40	1.38
Total	98.12	98.82	98.14	97.51	98.43	97.48	97.81	97.31	98.45	97.74	98.50	99.10	98.93	98.93	97.55	98.33	98.58	98.97	99.74	98.54	98.21	98.21	98.87	98.61	98.04	98.31	98.79
FORMULE STRUCT	URALE (8	Oxygène	s)																								
Si	2.97	2.96	2.97	2.97	2.97	2.99	2.99	2.96	2.97	2.96	2.96	2.95	2.97	2.96	2.94	2.96	2.98	2.99	2.99	2.99	2.99	2.98	2.96	2.99	2.97	2.96	2.98
Al	1.04	1.04	1.03	1.02	1.03	1.00	0.99	1.03	1.04	1.04	1.05	1.05	1.04	1.05	1.07	1.04	1.02	1.00	1.00	1.00	1.00	1.02	1.04	1.02	1.03	1.04	1.02
Fe ³⁺	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.01
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.04	0.03	0.01	0.02	0.02	0.02	0.03	0.02	0.04	0.02	0.03	0.04	0.02	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.03	0.03	0.04	0.02	0.03	0.03	0.02
K	0.97	0.96	1.01	1.01	1.01	1.00	1.01	1.02	0.98	0.98	0.96	0.97	0.98	0.97	0.98	0.97	0.98	1.00	0.99	0.98	0.97	0.97	0.98	0.94	0.95	0.99	0.96
Total	5.01	5.00	5.03	5.03	5.03	5.01	5.02	5.04	5.02	5.01	5.01	5.02	5.01	5.01	5.02	5.01	5.01	5.02	5.01	4.99	4.99	5.00	5.02	4.98	4.99	5.02	4.99
%Or	0.96	0.97	0.98	0.98	0.98	0.98	0.97	0.98	0.96	0.98	0.97	0.96	0.98	0.97	0.97	0.97	0.98	0.98	0.98	0.98	0.97	0.97	0.96	0.98	0.96	0.97	0.98
%Ab	0.04	0.03	0.01	0.02	0.02	0.02	0.03	0.02	0.04	0.02	0.03	0.04	0.02	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.03	0.03	0.04	0.02	0.04	0.03	0.02
%An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			4005	0.40-			050-	0.40-		0045				440-			.=						400-	4005		0075	074
Sr (ppm)	2660	3628	1635	2137	2266	2255	2568	2122	2561	2648	3660	3415	3680	4126	4490	3929	2707	3556	3605	3481	3561	3876	4030	4002	3877	3979	3716
Ba (ppm)	11453	11907	1164	702	495	1176	2667	4578	4251	6966	10482	12336	10561	13829	14480	12236	3843	4782	4562	5865	7847	12220	12025	14265	13096	12547	12341
Position verticale*	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938

Lame	N3																										
Séquence	S _{3k}																										
N° du cristal	K24																										
N° analyse	s à s-28 s	à s-29	s à s-30	s à s-31	s à s-32	s à s-33	s à s-34	s à s-35	s à s-36	s à s-37	s à s-38	s à s-39	s à s-40	s à s-41	s à s-42	s à s-43	s à s-44	s à s-45	s à s-46	s à s-47	s à s-48	s à s-49	s à s-50	s à s-51	s à s-52	s à s-53	s à s-54
SiO ₂	62.22	61.81	62.04	61.29	61.55	62.27	61.65	62.25	62.27	62.28	62.14	62.13	61.99	62.38	61.99	62.57	62.38	62.52	62.25	62.11	61.72	62.13	61.95	61.53	61.41	60.87	61.38
Al_2O_3	18.34	18.15	18.41	18.12	18.19	18.21	17.90	18.14	18.07	18.12	18.27	18.00	18.24	17.98	17.87	18.11	17.75	17.89	17.99	18.06	18.04	17.94	18.14	17.93	17.93	18.09	18.43
Fe ₂ O ₃	0.08	0.04	0.15	0.15	0.11	0.06	0.08	0.05	0.17	0.16	0.20	0.10	0.20	0.16	0.22	0.12	0.24	0.13	0.10	0.06	0.15	0.10	0.20	0.00	0.18	0.11	0.27
CaO	0.00	0.00	0.02	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.01	0.00	0.00	0.02	0.00	0.02	0.00	0.00	0.00	0.03	0.00	0.04	0.00	0.00	0.05
Na ₂ O	0.34	0.61	0.22	0.37	0.28	0.30	0.36	0.32	0.30	0.33	0.44	0.32	0.29	0.23	0.39	0.76	0.24	0.34	0.37	0.40	0.40	0.34	0.27	0.28	0.42	0.26	1.38
K2O	15.81	15.82	15.47	15.47	15.52	15.97	15.78	15.91	15.70	15.83	15.82	16.05	15.83	15.93	15.53	15.57	15.78	15.52	15.92	14.91	15.54	15.86	15.87	15.61	15.65	15.96	13.99
Sr	0.40	0.43	0.51	0.46	0.41	0.39	0.41	0.45	0.41	0.41	0.46	0.51	0.43	0.45	0.46	0.42	0.41	0.42	0.46	0.47	0.50	0.51	0.44	0.41	0.54	0.45	0.45
Ва	0.86	1.26	1.80	1.76	1.17	1.27	1.49	1.27	1.40	1.31	1.57	1.25	1.53	1.80	1.58	1.38	1.25	1.45	1.50	1.70	1.51	1.06	1.18	1.59	1.55	1.48	1.49
Total	98.05	98.12	98.62	97.66	97.23	98.47	97.67	98.40	98.32	98.44	98.93	98.36	98.53	98.94	98.06	98.95	98.06	98.28	98.60	97.72	97.84	97.97	98.06	97.39	97.67	97.21	97.44
FORMULE STRUCT	- (-	, , ,	-,																								
Si	2.97	2.97	2.97	2.97	2.97	2.98	2.98	2.98	2.98	2.98	2.97	2.98	2.97	2.98	2.98	2.98	2.99	2.99	2.98	2.99	2.98	2.98	2.97	2.98	2.98	2.96	2.96
Al	1.03	1.03	1.04	1.04	1.04	1.03	1.02	1.02	1.02	1.02	1.03	1.02	1.03	1.01	1.01	1.02	1.00	1.01	1.02	1.02	1.03	1.01	1.03	1.02	1.02	1.04	1.05
Fe ³⁺	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.03	0.06	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.03	0.03	0.02	0.04	0.07	0.02	0.03	0.03	0.04	0.04	0.03	0.03	0.03	0.04	0.02	0.13
K	0.96	0.97	0.95	0.96	0.96	0.97	0.97	0.97	0.96	0.96	0.96	0.98	0.97	0.97	0.95	0.95	0.97	0.95	0.97	0.91	0.96	0.97	0.97	0.97	0.97	0.99	0.86
Total	5.01	5.03	4.99	5.00	5.00	5.01	5.01	5.01	5.00	5.01	5.01	5.01	5.01	5.00	5.00	5.02	5.00	4.99	5.01	4.97	5.00	5.01	5.01	5.00	5.01	5.02	5.01
%Or	0.97	0.94	0.98	0.96	0.97	0.97	0.97	0.97	0.97	0.97	0.96	0.97	0.97	0.98	0.96	0.93	0.98	0.97	0.97	0.96	0.96	0.97	0.97	0.97	0.96	0.98	0.87
%Ab	0.03	0.06	0.02	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.03	0.03	0.02	0.04	0.07	0.02	0.03	0.03	0.04	0.04	0.03	0.03	0.03	0.04	0.02	0.13
%An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sr (ppm)	3356	3614	4307	3890	3495	3295	3493	3829	3432	3490	3909	4305	3664	3810	3924	3561	3497	3549	3914	3940	4228	4289	3680	3505	4557	3799	3825
Ba (ppm)	7710	11317	16119	15786	10523	11417	13324	11398	12564	11750	14095	11168	13741	16132	14157	12359	11233	13011	13403	15267	13483	9519	10597	14248	13906	13233	13306
υα (ρριτι)	7710	11317	10119	13700	10020	11717	10024	11000	12304	11750	17000	11100	10171	10152	17131	12000	11233	13011	10403	13201	10703	3313	10001	17270	10000	10200	13300
Position verticale*	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938

Annexe 5d' Compositions chimiques des feldspaths potassiques du granite lité de Dolbel (profil 3 suite)

													<u> </u>				- 1/1									
Lame	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3
Séquence	S_{3k}	S_{3k}	S _{3k}	S _{3k}	S_{3k}	S_{3k}	S _{3k}	S_{3k}	S _{3k}	S _{3k}	S_{3k}	S_{3k}	S_{3k}	S _{3k}	S _{3k}	S_{3k}	S _{3k}	S _{3k}	S _{3k}	S_{3k}	S _{3k}	S_{3k}	S _{3k}	S_{3k}	S_{3k}	S _{3k}
N° du cristal	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24	K24
N° analyse	s à s-55 s	à s-56	s à s-57	s à s-58	s à s-59	s à s-60	s à s-61	s à s-62	s à s-63	s à s-64	s à s-65	s à s-66	s à s-67	s à s-68	s à s-69	s à s-70	s à s-71	s à s-72	s à s-73	s à s-74	s à s-75	s à s-76	s à s-77	s à s-78	s à s-79	s à s-80
SiO ₂	61.98	61.58	61.65	62.03	61.90	62.12	61.28	61.50	61.14	60.82	60.70	61.42	61.35	56.57	61.49	61.88	63.62	63.28	64.38	63.20	64.62	64.60	64.36	64.56	64.23	64.91
Al_2O_3	18.00	18.06	18.24	18.04	17.88	18.03	18.05	18.18	18.18	17.78	18.41	18.05	17.59	17.62	18.13	18.01	17.92	17.51	18.08	17.64	18.05	17.95	17.99	18.07	17.89	18.03
Fe ₂ O ₃	0.22	0.18	0.11	0.06	0.15	0.01	0.05	0.11	0.10	0.18	0.08	0.15	0.10	0.16	0.22	0.02	0.05	0.10	0.29	0.25	0.18	0.21	0.12	0.28	0.27	0.32
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.02	0.00	0.00	0.01	0.00	0.00	0.02	0.01	0.12	0.00	0.08	0.00	0.00	0.00	0.00	0.02	0.00
Na ₂ O	0.35	0.24	0.30	0.32	0.38	0.27	0.40	0.35	0.35	0.29	0.31	0.29	0.30	0.46	0.37	0.38	0.24	0.44	0.30	0.27	0.38	0.26	0.15	0.24	0.23	0.21
K2O	16.10	16.25	15.64	15.71	15.59	15.58	15.67	15.90	15.61	15.82	15.93	15.74	15.82	16.34	16.09	16.38	16.76	15.93	16.58	15.63	16.48	16.13	16.68	16.90	16.79	16.59
Sr	0.47	0.46	0.45	0.45	0.54	0.58	0.57	0.59	0.55	0.47	0.46	0.43	0.36	0.46	0.47	0.47	0.39	0.44	0.40	0.39	0.43	0.37	0.33	0.39	0.35	0.36
Ва	1.54	1.36	1.40	1.30	1.50	1.12	1.36	1.38	1.35	1.19	1.10	0.88	0.63	0.39	0.42	0.43	0.44	0.41	0.42	0.39	0.31	0.43	0.49	0.21	0.23	0.07
Total	98.66	98.12	97.78	97.90	97.94	97.71	97.41	98.00	97.28	96.56	97.00	96.96	96.16	92.00	97.18	97.59	99.42	98.24	100.45	97.86	100.45	99.96	100.13	100.65	100.01	100.47
FORMULE STRUCT	,	Oxygène	-,																							
Si	2.98	2.97	2.97	2.98	2.98	2.99	2.97	2.97	2.97	2.97	2.95	2.97	2.99	2.91	2.96	2.97	3.00	3.00	3.00	3.00	3.00	3.01	3.00	2.99	2.99	3.00
Al	1.02	1.03	1.04	1.02	1.02	1.02	1.03	1.03	1.04	1.02	1.05	1.03	1.01	1.07	1.03	1.02	0.99	0.98	0.99	0.99	0.99	0.99	0.99	0.99	0.98	0.98
Fe ³⁺	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.03	0.02	0.03	0.03	0.04	0.02	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.05	0.03	0.04	0.02	0.04	0.03	0.03	0.03	0.02	0.01	0.02	0.02	0.02
K	0.99	1.00	0.96	0.96	0.96	0.96	0.97	0.98	0.97	0.99	0.99	0.97	0.98	1.07	0.99	1.00	1.01	0.96	0.98	0.95	0.98	0.96	0.99	1.00	1.00	0.98
Total	5.02	5.02	5.00	5.00	5.00	4.99	5.01	5.02	5.01	5.01	5.03	5.01	5.01	5.11	5.02	5.03	5.02	5.00	5.01	4.98	5.00	4.98	5.00	5.01	5.01	4.99
%Or	0.97	0.98	0.97	0.97	0.96	0.97	0.96	0.97	0.97	0.97	0.97	0.97	0.97	0.96	0.97	0.97	0.98	0.95	0.97	0.97	0.97	0.98	0.99	0.98	0.98	0.98
%Ab	0.03	0.02	0.03	0.03	0.04	0.03	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.03	0.03	0.02	0.04	0.03	0.03	0.03	0.02	0.01	0.02	0.02	0.02
%An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4005	0075	070-		450-	4045	470-	40.4-	40.4-			004-	005-					070-				040-				000-
Sr (ppm)	4006	3872	3782	3813	4588	4915	4799	4948	4645	3941	3922	3649	3056	3907	3978	3967	3308	3739	3353	3316	3629	3126	2773	3291	2994	3033
Ba (ppm)	13773	12189	12571	11628	13406	9995	12177	12341	12091	10623	9834	7854	5630	3502	3721	3845	3966	3707	3766	3508	2815	3895	4414	1852	2074	636
Position verticale*	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938	86938

Annexe 5d' Compositions chimiques des feldspaths potassiques du granite lité de Dolbel (profil 4)

Lame- N° analyse	I4-R1-s1 N4	I-R1-s1 V	4-R1-s1 \	4-R1-s1 V	4-R1-s1 N	4-R1-s1 N	4-R1-s1 V	4-R1-s1 \	4-R1-s1 \	I4-R1-s1 V	4-R1-s1 V	I4-R1-s1	N4-R1-s1	I4-R1-s1 \	I4-R1-s1 \	N4-R1-s1	N4-R1-s1	N4-R1-s1 N	4-R1-s2 V	4-R1-s2 V	I4-R1-s2\	I4-R1-s2 \	I4-R1-s2 \	14-R1-s2 V	4-R1-s2	N4-R1-s2 N	14-R1-s2
Séquence	S _{1k}																										
distance point*	1	23.5	46	91	113.5	136	158.5	181	226	248.5	271	293.5	316	338.5	361	383.5	406	428.5	451	527	565	603	641	679	755	793	831
N° analyse	2/1.	2/2.	2/3.	2/5.	2/6.	2/7.	2/8.	2/9.	2/11.	2/12.	2/13.	2/14.	2/15.	2/16.	2/17.	2/18.	2/19.	2/20.	3/1.	3/3.	3/4.	3/5.	3/6.	3/7.	3/9.	3/10.	3/11.
SiO ₂	64.55	64.61	64.32	64.18	64.04	64.01	64.13	64.55	64.13	63.88	67.08	64.09	63.84	63.70	64.15	64.15	64.01	63.53	67.92	64.43	63.60	68.12	64.91	63.68	64.38	64.06	64.29
Al_2O_3	17.93	18.07	18.17	18.09	18.22	18.07	18.25	18.36	18.33	18.14	18.67	18.14	18.11	18.09	18.27	18.28	18.37	18.17	19.14	18.14	18.07	19.60	18.60	18.17	18.09	18.18	18.44
Fe ₂ O ₃	0.02	0.00	0.06	0.05	0.05	0.09	0.12	0.00	0.03	0.03	0.11	0.04	0.15	0.05	0.08	0.15	0.08	0.03	0.03	0.07	0.02	0.04	0.04	0.00	0.06	0.00	0.02
CaO	0.00	0.02	0.00	0.00	0.00	0.03	0.01	0.00	0.00	0.00	0.04	0.01	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.00	0.00	0.26	0.02	0.00	0.00	0.03	0.00
Na ₂ O	0.24	0.34	0.29	0.27	0.28	0.45	0.22	0.22	0.22	0.09	4.96	0.20	0.42	0.22	0.18	0.31	0.25	0.20	0.53	0.30	0.25	6.94	1.36	0.23	0.27	0.30	0.16
K2O	16.38	16.05	16.08	16.17	16.43	16.06	16.49	16.30	16.19	16.25	7.34	15.99	16.07	16.44	16.51	16.13	15.87	16.03	11.41	16.29	16.32	5.20	14.29	16.09	16.02	15.71	15.35
Sr	0.20	0.21	0.19	0.20	0.23	0.24	0.19	0.17	0.19	0.18	0.22	0.19	0.17	0.19	0.22	0.24	0.21	0.19	0.18	0.19	0.22	0.20	0.17	0.19	0.20	0.24	0.22
Ва	0.28	0.15	0.23	0.17	0.10	0.10	0.13	0.13	0.20	0.15	0.16	0.21	0.13	0.17	0.15	0.14	0.25	0.34	0.12	0.21	0.25	0.33	0.05	0.30	0.40	0.52	0.55
Total	99.60	99.44	99.33	99.14	99.35	99.04	99.53	99.73	99.29	98.72	98.58	98.88	98.89	98.85	99.57	99.39	99.05	98.50	99.34	99.64	98.73	100.67	99.44	98.65	99.41	99.04	99.02
FORMULE STRUCT																											
Si	3.01	3.00	2.99	3.00	2.99	2.98	2.99	3.00	3.00	2.99	3.03	3.00	2.99	2.99	2.98	2.99	2.99	2.99	3.06	3.00	2.99	3.00	2.99	2.98	3.01	3.00	3.00
Al	0.98	0.99	1.00	1.00	1.00	0.99	1.00	1.00	1.01	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.01	1.01	1.02	0.99	1.00	1.02	1.01	1.00	1.00	1.00	1.01
Fe ³⁺	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Na	0.02	0.03	0.03	0.02	0.03	0.04	0.02	0.02	0.02	0.01	0.43	0.02	0.04	0.02	0.02	0.03	0.02	0.02	0.05	0.03	0.02	0.59	0.12	0.02	0.02	0.03	0.01
K	0.97	0.95	0.95	0.96	0.98	0.95	0.98	0.97	0.96	0.97	0.42	0.96	0.96	0.99	0.98	0.96	0.94	0.96	0.66	0.97	0.98	0.29	0.84	0.96	0.95	0.94	0.91
Total	1.98	1.97	1.98	1.99	2.01	1.99	2.01	1.99	2.00	1.98	1.86	1.98	2.00	2.01	2.00	2.00	1.98	1.99	1.72	1.99	2.01	1.92	1.97	1.98	1.98	1.97	1.94
%Or	0.98	0.97	0.97	0.98	0.98	0.96	0.98	0.98	0.98	0.99	0.49	0.98	0.96	0.98	0.98	0.97	0.98	0.98	0.93	0.97	0.98	0.33	0.87	0.98	0.98	0.97	0.98
%Ab	0.02	0.03	0.03	0.02	0.02	0.04	0.02	0.02	0.02	0.01	0.51	0.02	0.04	0.02	0.02	0.03	0.02	0.02	0.07	0.03	0.02	0.66	0.13	0.02	0.02	0.03	0.02
%An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
C+ (++++)	4000	1760	4040	4700	4000	2020	4500	1110	1000	4500	4040	4570	1150	4500	4000	1000	4770	4570	4500	4040	4000	4050	4.400	1010	4700	2020	4000
Sr (ppm)	1660 2540	1300	1610 2010	1700 1550	1960 850	2020 880	1580 1180	1440 1180	1620 1770	1500 1370	1840 1470	1570 1910	1450 1140	1580 1490	1900 1380	1990 1230	1770 2270	1570 3040	1520 1030	1640 1890	1820 2280	1650 2930	1460 420	1610 2680	1700 3580	2020 4670	1820 4910
Ba (ppm)	∠540	1300	2010	1550	850	880	1180	1180	1770	1370	1470	1910	1140	1490	1380	1230	2270	3040	1030	1890	2280	∠930	420	∠680	3580	4670	4910
Distance (µm)	0	23	45	68	90	113	135	158	180	203	225	248	270	293	315	338	360	398	421	443	466	488	511	533	556	578	601

Annexe 5d' Compositions chimiques des feldspaths potassiques du granite lité de Dolbel (profil 4 suite)

Lame- N° analyse	N4-R1-s2 N	1-R1-s2 V	4-R1-s2 \	4-R1-s2	N4-R1																						
Séquence	S _{1k}																										
distance point*	869	907	945	983	1021	1064.5	1151.5	1195	1238.5	1282	1325.5	1369	1412.5	1456	1499.5	1543	1630	1717	1760.5	1804	1847.5	1891	1978	2021.5	2065	2108.5	2152
N° analyse	3/12.	3 / 13 .	3/14.	3/15.	4/1.	4/2.	4/4.	4/5.	4/6.	4/7.	4/8.	4/9.	4/10.	4/11.	4/12.	4/13.	4/15.	4/17.	4/18.	4/19.	4/20.	4/21.	4/23.	4/24.	4/25.	4/26.	4/27.
SiO ₂	63.97	64.21	63.70	64.41	66.46	63.93	64.20	63.96	62.95	63.22	63.78	64.47	63.00	62.99	66.44	63.57	63.96	63.02	63.18	63.18	63.43	63.91	62.59	63.26	66.93	62.82	63.69
Al_2O_3	18.34	18.10	18.38	18.53	19.60	18.44	18.45	18.38	18.52	18.53	18.75	18.74	18.55	18.48	19.44	18.40	18.49	18.41	18.27	18.53	18.43	18.44	18.41	18.42	19.54	18.59	18.44
Fe ₂ O ₃	0.00	0.55	0.00	0.00	0.03	0.00	0.05	0.16	0.05	0.10	0.08	0.13	0.00	0.02	0.00	0.10	0.04	0.12	0.00	0.06	0.04	0.00	0.03	0.02	0.03	0.14	0.07
CaO	0.00	0.00	0.00	0.00	0.12	0.01	0.04	0.00	0.00	0.03	0.00	0.10	0.00	0.04	0.15	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.12	0.00	0.00
Na₂O	0.26	0.18	0.22	0.25	5.81	0.98	2.04	1.40	0.41	1.06	1.50	0.76	0.49	1.11	5.78	0.67	0.48	0.34	0.34	0.42	0.31	1.44	0.53	0.51	5.34	0.44	0.31
K ₂ O	16.10	15.58	16.11	15.62	7.80	15.18	13.37	14.61	15.68	14.29	13.76	15.00	15.58	14.48	7.06	15.30	15.45	15.61	15.66	15.60	15.65	14.65	15.04	15.44	8.13	15.43	15.66
Sr	0.23	0.21	0.25	0.23	0.24	0.24	0.30	0.32	0.38	0.33	0.25	0.39	0.24	0.23	0.35	0.22	0.25	0.22	0.24	0.32	0.23	0.24	0.25	0.25	0.48	0.30	0.35
Ва	0.60	0.35	0.53	0.83	0.81	0.97	1.10	1.31	1.09	1.42	1.68	0.92	1.47	1.39	0.71	1.12	1.31	1.60	1.66	1.42	1.82	1.18	2.19	1.97	0.69	1.72	0.92
Total	99.50	99.19	99.19	99.86	100.86	99.75	99.55	100.14	99.07	98.98	99.79	100.50	99.32	98.74	99.94	99.38	99.98	99.32	99.34	99.52	99.91	99.86	99.03	99.88	101.25	99.43	99.44
FORMULE STRUCT	,	, 0	,																								
Si	2.99	2.99	2.97	2.99	2.98	2.99	2.98	2.99	2.98	2.98	2.97	2.98	2.98	2.97	2.99	2.99	2.99	2.98	2.99	2.98	2.99	2.99	2.97	2.98	2.99	2.97	2.98
A1 - 3+	1.01	0.99	1.01	1.02	1.04	1.02	1.01	1.01	1.03	1.03	1.03	1.02	1.03	1.03	1.03	1.02	1.02	1.03	1.02	1.03	1.02	1.02	1.03	1.02	1.03	1.04	1.02
Fe	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Ca	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
Na 	0.02	0.02	0.02	0.02	0.50	0.09	0.18	0.13	0.04	0.10	0.14	0.07	0.05	0.10	0.50	0.06	0.04 0.92	0.03	0.03 0.95	0.04	0.03	0.13	0.05	0.05	0.46 0.46	0.04	0.03
K.	0.96	0.93 1.96	0.96	0.93	0.45	0.90	0.79	0.87 2.01	0.95 2.02	0.86	0.82	0.88 1.98	0.94 2.02	0.87	0.40 1.95	0.92 2.00	1.99	0.94	2.00	0.94	0.94 1.99	0.87	0.91 1.99	0.93 2.00	1.96	0.93	0.93 1.98
Total	1.99	1.96	1.99	1.96	1.99	2.01	1.99	2.01	2.02	1.99	1.99	1.98	2.02	2.00	1.95	2.00	1.99	2.00	2.00	2.01	1.99	2.02	1.99	2.00	1.96	2.01	1.98
%Or	0.98	0.98	0.98	0.98	0.47	0.91	0.81	0.87	0.96	0.90	0.86	0.92	0.95	0.89	0.44	0.94	0.95	0.97	0.97	0.96	0.97	0.87	0.95	0.95	0.50	0.96	0.97
%Ab	0.02	0.02	0.02	0.02	0.53	0.09	0.19	0.13	0.04	0.10	0.14	0.07	0.05	0.10	0.55	0.06	0.05	0.03	0.03	0.04	0.03	0.13	0.05	0.05	0.50	0.04	0.03
%An	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
Sr (nnm)	1960	1730	2110	1910	2020	1990	2530	2740	3190	2750	2130	3280	1990	1930	2960	1810	2100	1820	2010	2690	1920	2030	2110	2120	4080	2520	2990
Sr (ppm)	5360	3120	4760	7410	7210	8710	9880	11690	9800	12680	15010	8230	13150	12450	6390	10050	11690	14360	14860	12690	16290	10600	19600	17610	6220	15380	8200
Ba (ppm)	5560	3120	4/60	7410	1210	0/10	9000	11090	9000	12000	13010	0230	13130	12450	0390	10050	11090	14300	14000	12090	10290	10000	19000	17610	0220	15560	0200
Distance (µm)	639	677	715	753	796	840	883	927	970	1014	1057	1101	1144	1188	1231	1275	1318	1362	1405	1449	1492	1536	1579	1623	1666	1710	1753

Lame- N° analyse	N4-R1																										
Séquence	S _{1k}																										
distance point*	2195.5	2239	2282.5	2326	2369.5	2413	2456.5	2500	2543.5	2587	2630.5	2674	2717.5	2761	2804.5	2848	2891.5	2935	2978.5	3022	3065.5	3109	3152.5	3239.5	3370	3413.5	3457
N° analyse	4 / 28 .	4/29.	4/30.	4/31.	4/32.	4/33.	4/34.	4/35.	4/36.	4/37.	4/38.	4/39.	4 / 40 .	4/41.	4 / 42 .	4 / 43 .	4 / 44 .	4 / 45 .	4/46.	4 / 47 .	4 / 48 .	4/49.	4/50.	4/52.	4/55.	4/56.	4/57.
SiO ₂	64.07	63.48	63.82	63.29	63.10	64.83	62.96	62.44	63.59	63.59	63.00	65.09	62.77	62.81	98.62	65.47	63.05	63.23	63.28	63.56	62.05	65.75	63.42	62.88	62.82	64.03	65.67
Al_2O_3	18.70	18.53	18.46	18.51	18.53	19.27	18.54	18.59	18.53	18.77	18.41	19.37	18.71	18.28	0.29	19.39	18.51	18.65	18.54	18.72	18.31	19.24	18.51	18.70	18.71	18.33	19.08
Fe ₂ O ₃	0.08	0.14	0.00	0.05	0.15	0.09	0.15	0.18	0.14	0.11	0.05	0.12	0.13	0.16	0.00	0.06	0.14	0.05	0.16	0.10	0.09	0.13	0.10	0.10	0.08	0.07	0.04
CaO	0.02	0.00	0.00	0.04	0.00	0.07	0.00	0.00	0.05	0.02	0.00	0.14	0.04	0.00	0.01	0.16	0.00	0.00	0.00	0.00	0.00	0.09	0.00	0.00	0.00	0.06	0.11
Na ₂ O	1.53	0.42	1.85	0.37	0.46	3.85	0.48	0.39	0.93	1.41	0.74	3.92	0.53	0.55	0.00	4.43	0.49	0.91	0.53	0.47	0.60	6.59	0.41	0.43	0.52	1.13	4.70
K ₂ O	14.45	15.78	13.89	15.36	15.40	9.83	15.38	15.25	14.98	14.09	15.17	9.44	15.26	15.36	0.13	8.84	15.56	14.65	15.55	15.46	14.90	6.38	15.46	15.38	15.38	14.74	9.79
Sr	0.37	0.23	0.35	0.23	0.25	0.26	0.47	0.41	0.25	0.30	0.55	0.25	0.59	0.28	0.26	0.27	0.23	0.48	0.23	0.22	0.50	0.27	0.27	0.26	0.37	0.34	0.25
Ва	0.81	1.50	0.36	1.67	2.03	2.11	0.73	1.45	1.47	1.83	0.94	2.21	0.67	2.31	0.00	1.35	1.50	1.21	1.59	1.45	1.14	1.45	2.08	2.23	1.89	0.17	1.34
Total	100.02	100.07	98.72	99.51	99.92	100.31	98.72	98.71	99.93	100.11	98.86	100.55	98.70	99.75	99.31	99.96	99.49	99.17	99.88	99.98	97.59	99.89	100.24	99.98	99.77	98.87	100.99
FORMULE STRUCT	TURALE (8	Oxygène	es)																								
Si	2.97	2.98	2.98	2.98	2.98	2.98	2.95	2.97	2.98	2.98	2.98	2.98	2.95	2.98	3.98	2.98	2.97	2.97	2.97	2.97	2.95	2.98	2.98	2.96	2.97	2.99	2.98
Al	1.02	1.02	1.02	1.03	1.03	1.04	1.02	1.04	1.02	1.04	1.03	1.04	1.04	1.02	0.01	1.04	1.03	1.03	1.03	1.03	1.02	1.03	1.02	1.04	1.04	1.01	1.02
Fe ³⁺	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Na	0.14	0.04	0.17	0.03	0.04	0.34	0.04	0.04	0.08	0.13	0.07	0.35	0.05	0.05	0.00	0.39	0.04	0.08	0.05	0.04	0.06	0.58	0.04	0.04	0.05	0.10	0.41
K	0.86	0.94	0.83	0.92	0.93	0.58	0.92	0.92	0.89	0.84	0.92	0.55	0.91	0.93	0.01	0.51	0.93	0.88	0.93	0.92	0.90	0.37	0.93	0.92	0.93	0.88	0.57
Total	2.02	2.01	2.01	1.99	2.01	1.97	1.99	2.01	2.01	2.01	2.01	1.96	2.01	2.01	0.02	1.95	2.01	2.00	2.01	2.00	1.99	1.98	1.99	2.00	2.02	2.00	2.01
%Or	0.86	0.96	0.83	0.96	0.96	0.62	0.95	0.96	0.91	0.87	0.93	0.61	0.95	0.95	0.94	0.56	0.95	0.91	0.95	0.96	0.94	0.39	0.96	0.96	0.95	0.89	0.57
%Ab	0.14	0.04	0.17	0.04	0.04	0.37	0.05	0.04	0.09	0.13	0.07	0.38	0.05	0.05	0.02	0.43	0.05	0.09	0.05	0.04	0.06	0.61	0.04	0.04	0.05	0.10	0.42
%An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.04	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Sr (ppm)	3140	1950	2930	1960	2070	2220	4000	3490	2090	2540	4640	2150	4990	2380	2170	2270	1980	4040	1950	1860	4190	2290	2260	2200	3130	2830	2130
Ba (ppm)	7230	13450	3180	14930	18220	18860	6550	12970	13170	16370	8440	19820	6030	20730	2170	12100	13420	10800	14250	13000	10230	13020	18600	20010	16960	1550	12030
οα (ρριτή	, 200	10400	3100	1-7330	10220	13000	0000	12370	10170	10070	0440	13020	3030	20700	_	12100	10420	10000	1-72-00	10000	10200	10020	10000	20010	10300	1550	12000
Distance (µm)	1796.5	1840	1883.5	1927	1970.5	2014	2057.5	2101	2144.5	2188	2231.5	2275	2318.5	2362	2405.5	2449	2492.5	2536	2579.5	2623	2666.5	2710	2753.5	2797	2840.5	2884	2927.5

Annexe 5d' Compositions chimiques des feldspaths potassiques du granite lité de Dolbel (profil 4 suite2)

Lame- N° analyse	N4-R1												
Séquence	S _{1k}												
distance point*	3500.5	3587.5	3631	3674.5	3718	3761.5	3805	3848.5	3979	4022.5	4066	4196.5	4240
N° analyse	4/58.	4/60.	4/61.	4/62.	4/63.	4/64.	4/65.	4/66.	4/69.	4/70.	4/71.	4/74.	4/75.
SiO ₂	63.01	63.28	63.36	63.20	63.91	63.64	64.93	63.04	64.15	63.57	63.86	64.17	64.78
Al ₂ O ₃	18.67	18.47	18.64	18.90	18.54	18.52	18.81	18.42	18.92	18.46	18.41	18.57	18.21
Fe ₂ O ₃	0.08	0.02	0.15	0.09	0.09	0.03	0.00	0.02	0.01	0.11	0.14	0.07	0.20
CaO	0.01	0.00	0.02	0.00	0.00	0.00	0.04	0.00	0.00	0.04	0.00	0.03	0.00
Na ₂ O	0.45	0.67	0.45	0.41	0.46	0.65	3.28	0.42	2.09	0.69	0.81	0.43	0.32
K ₂ O	15.49	15.24	15.24	15.16	15.60	15.42	10.97	15.61	13.67	15.44	14.75	15.59	16.03
Sr	0.36	0.27	0.27	0.25	0.23	0.24	0.33	0.32	0.28	0.34	0.25	0.36	0.33
Ва	0.42	1.58	1.55	1.48	1.37	1.39	0.57	0.78	1.11	0.81	1.34	0.96	0.42
Total	98.50	99.52	99.68	99.49	100.20	99.87	98.93	98.60	100.21	99.45	99.55	100.17	100.29
FORMULE STRUCT	URALE (8	Oxygène	s)										
Si	2.96	2.98	2.98	2.96	2.99	2.98	2.99	2.98	2.97	2.97	2.99	2.99	3.00
Al	1.03	1.02	1.03	1.04	1.02	1.02	1.02	1.02	1.03	1.02	1.02	1.02	0.99
Fe ³⁺	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.04	0.06	0.04	0.04	0.04	0.06	0.29	0.04	0.19	0.06	0.07	0.04	0.03
K	0.93	0.91	0.91	0.91	0.93	0.92	0.65	0.94	0.81	0.92	0.88	0.93	0.95
Total	2.01	2.00	2.00	1.99	2.00	2.00	1.96	2.00	2.03	2.00	1.98	1.99	1.97
%Or	0.96	0.94	0.96	0.96	0.96	0.94	0.69	0.96	0.81	0.93	0.92	0.96	0.97
%Ab	0.04	0.06	0.04	0.04	0.04	0.06	0.31	0.04	0.19	0.06	0.08	0.04	0.03
%An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
o ()							.==.						
Sr (ppm)	3080	2260	2250	2110	1940	2020	2750	2700	2330	2870	2090	3010	2780
Ba (ppm)	3730	14130	13850	13270	12230	12410	5130	7020	9920	7230	12010	8610	3750
Distance (µm)	2971	3014.5	3058	3101.5	3145	3188.5	3232	3275.5	3319	3362.5	3406	3449.5	3493

Annexe 5d Compositions chimiques des feldspaths potassiques du granite lité de Dolbel

Lame	N1	N1	N1	N1	N1	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2
Séquence	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4
N° du cristal	F63-b	F60-b	F59-b	F58-c	F58-b	F34-b	F34-b	F34	F34	F34-c	F34-c	F34	F34	F34-b	F34-b	F35	F36-c	F37-b	F37-b	F37	F37	F37	F37	F37	F37	F37-c	F37-c
N° analyse	73 s5	57 s5	52 s5	48 s5	47 s5	1-1 s3	1-2 s3	1-3 s3	1-4 s3	1-5 s3	1-6 s3	1-7 s3	1-8 s3	1-9 s3	1-10 s3	2 s3	7 s3	9-1 s3	9-2 s3	9-3 s3	9-5 s3	9-6 s3	9-7 s3	9-8 s3	9-9 s3	9-10 s3	9-11 s3
SiO ₂	63.28	63.29	63.24	62.98	63.30	64.21	64.38	64.43	64.71	64.31	64.51	64.47	64.13	64.65	64.52	64.31	64.63	63.97	64.30	64.31	63.78	63.71	63.82	64.48	63.80	64.25	63.79
Al ₂ O ₃	18.09	17.83	17.95	18.22	17.94	18.26	18.40	18.39	18.60	18.53	18.44	18.39	18.36	18.44	18.34	18.44	18.54	18.52	18.53	18.36	18.40	18.68	18.58	18.54	18.55	18.24	18.53
FeO tot	0.07	0.15	0.08	0.10	0.12	0.12	0.17	0.23	0.00	0.03	0.07	0.12	0.07	0.09	0.13	0.19	0.07	0.13	0.15	0.07	0.10	0.08	0.16	0.16	0.15	0.09	0.16
MgO	0.00	0.00	0.00	0.01	0.00	0.02	0.00	0.00	0.11	0.00	0.00	0.02	0.00	0.03	0.01	0.05	0.00	0.02	0.00	0.21	0.02	0.16	0.00	0.01	0.13	0.24	0.17
CaO	0.00	0.01	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.03	0.00	0.04	0.00	0.01	0.05	0.00	0.00	0.00	0.00	0.00	0.01
Na ₂ O	0.18	0.25	0.19	0.34	0.36	0.16	0.21	0.32	0.21	0.36	0.24	0.26	0.31	0.30	0.16	0.13	0.19	0.38	0.43	0.45	0.47	0.34	1.18	0.89	0.31	0.35	0.33
K ₂ O	16.63	16.50	16.30	16.42	16.24	16.89	16.81	16.55	16.77	16.58	16.65	16.44	16.61	16.62	17.01	16.78	16.66	16.42	16.35	16.47	16.33	16.46	15.24	15.84	16.50	16.41	16.47
Total	98.26	98.04	97.76	98.07	98.00	99.66	99.97	99.92	100.40	99.83	99.92	99.70	99.48	100.12	100.17	99.93	100.09	99.48	99.78	99.88	99.15	99.43	98.97	99.91	99.46	99.59	99.46
FORMULE STRUCT	TURALE (8	Oxygène	es)																								
Si	2.99	3.00	3.00	2.98	2.99	2.99	2.99	2.99	2.99	2.99	3.00	2.99	2.99	2.99	2.99	2.99	2.99	2.98	2.98	2.98	2.98	2.97	2.98	2.98	2.97	2.99	2.98
AI	1.01	0.99	1.00	1.02	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.00	1.01	1.01	1.02	1.01	1.00	1.01	1.03	1.02	1.01	1.02	1.00	1.02
Fe ³⁺	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.02	0.02	0.02	0.03	0.03	0.01	0.02	0.03	0.02	0.03	0.02	0.02	0.03	0.03	0.01	0.01	0.02	0.03	0.04	0.04	0.04	0.03	0.11	0.08	0.03	0.03	0.03
К	1.00	1.00	0.98	0.99	0.98	1.00	1.00	0.98	0.99	0.98	0.99	0.97	0.99	0.98	1.01	0.99	0.98	0.98	0.97	0.98	0.97	0.98	0.91	0.93	0.98	0.97	0.98
Total	5.01	5.01	5.00	5.02	5.01	5.01	5.01	5.01	5.00	5.02	5.01	5.00	5.01	5.01	5.02	5.01	5.01	5.02	5.01	5.01	5.02	5.01	5.02	5.01	5.01	5.00	5.01
%Or	0.98	0.98	0.98	0.97	0.97	0.99	0.98	0.97	0.98	0.97	0.98	0.98	0.97	0.97	0.99	0.99	0.98	0.96	0.96	0.96	0.96	0.97	0.90	0.92	0.97	0.97	0.97
%Ab	0.02	0.02	0.02	0.03	0.03	0.01	0.02	0.03	0.02	0.03	0.02	0.02	0.03	0.03	0.01	0.01	0.02	0.03	0.04	0.04	0.04	0.03	0.11	0.08	0.03	0.03	0.03
%An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Position verticale*	6156																										
i osition verticale	0130	13204	19210	21408	21693	35823	35883	35942	36002	36061	36121	36180	36240	36299	36359	36575	36136	37089	37072	37054	37019	37002	36984	36967	36949	36932	36914
																											-
Lame Séquence	N2 S4	13204 N2 S4	19210 N2 S4	21408 N2 S4	21693 N2 S4	35823 N2 S4	35883 N2 S4	35942 N2 S4	36002 N2 S4	36061 N2 S4	36121 N2 S4	36180 N2 S4	36240 N2 S4	36299 N2 S4	36359 N2 S4	36575 N2 S4	36136 N2 S4	37089 N2 S4	37072 N2 S4	37054 N2 S4	37019 N2 S4	37002 N2 S4	36984 N2 S4	36967 N2 S4	36949 N2 S4	36932 N2 S4	36914 N2 S4
Lame	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2
Lame Séquence	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4	N2 S4 F42-s	N2 S4	N2 S4	N2 S4	N2 S4
Lame Séquence N° du cristal	N2 S4 F37	N2 S4 F37	N2 S4 F37	N2 S4 F37	N2 S4 F37	N2 S4 F37	N2 S4 F37	N2 S4 F37-b	N2 S4 F37-b	N2 S4 F38b	N2 S4 F38-b	N2 S4 F40	N2 S4 F39	N2 S4 F42-s	N2 S4 F42-b	N2 S4 F42	N2 S4 F42	N2 S4 F42	N2 S4 F42-c	N2 S4 F42	N2 S4 F42	N2 S4 F42-b	N2 S4 F42-s	N2 S4 F42-s	N2 S4 F42-b	N2 S4 F42	N2 S4 F42-s
Lame Séquence N° du cristal N° analyse	N2 S4 F37 9-12 s3	N2 S4 F37 9-13 s3	N2 S4 F37 9-14 s3	N2 S4 F37 9-15 s3	N2 S4 F37 9-16 s3	N2 S4 F37 9-17 s3	N2 S4 F37 9-18 s3	N2 S4 F37-b 9-19 s3	N2 S4 F37-b 9-20 s3	N2 S4 F38b 11 s3	N2 S4 F38-b	N2 S4 F40 18 s3	N2 S4 F39 17 s3	N2 S4 F42-s 30-1 s3	N2 S4 F42-b 30-2 s3	N2 S4 F42 30-3 s3	N2 S4 F42 30-4 s3	N2 S4 F42 30-6 s3	N2 S4 F42-c 30-8 s3	N2 S4 F42 30-10 s3	N2 S4 F42 30-12 s3	N2 S4 F42-b 30-13 s3	N2 S4 F42-s 30-14 s3	N2 S4 F42-s 30-15 s3	N2 S4 F42-b 31 s3	N2 S4 F42 27 s3	N2 S4 F42-s 24 s3
Lame Séquence N° du cristal N° analyse SiO ₂	N2 S4 F37 9-12 s3 63.95	N2 S4 F37 9-13 s3 63.98	N2 S4 F37 9-14 s3 64.18	N2 S4 F37 9-15 s3 63.81	N2 S4 F37 9-16 s3 64.16	N2 S4 F37 9-17 s3 63.86	N2 S4 F37 9-18 s3 64.23	N2 S4 F37-b 9-19 s3 64.37	N2 S4 F37-b 9-20 s3 64.42	N2 S4 F38b 11 s3 64.27	N2 S4 F38-b 13 s3 64.09	N2 S4 F40 18 s3 63.48	N2 S4 F39 17 s3 65.17	N2 S4 F42-s 30-1 s3 63.68	N2 S4 F42-b 30-2 s3 64.72	N2 S4 F42 30-3 s3 63.43	N2 S4 F42 30-4 s3 64.49	N2 S4 F42 30-6 s3 63.18	N2 S4 F42-c 30-8 s3 63.44	N2 S4 F42 30-10 s3 63.93	N2 S4 F42 30-12 s3 63.61	N2 S4 F42-b 30-13 s3 63.14	N2 S4 F42-s 30-14 s3 64.06	N2 S4 F42-s 30-15 s3 63.14	N2 S4 F42-b 31 s3 64.26	N2 S4 F42 27 s3 63.73	N2 S4 F42-s 24 s3 64.38
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃	N2 S4 F37 9-12 s3 63.95 18.46	N2 S4 F37 9-13 s3 63.98 18.40	N2 S4 F37 9-14 s3 64.18 18.45	N2 S4 F37 9-15 s3 63.81 18.43	N2 S4 F37 9-16 s3 64.16 18.38	N2 S4 F37 9-17 s3 63.86 18.21	N2 S4 F37 9-18 s3 64.23 18.17	N2 S4 F37-b 9-19 s3 64.37 18.47	N2 S4 F37-b 9-20 s3 64.42 18.53	N2 S4 F38b 11 s3 64.27 18.81	N2 S4 F38-b 13 s3 64.09 18.86	N2 S4 F40 18 s3 63.48 18.13	N2 S4 F39 17 s3 65.17 18.65	N2 S4 F42-s 30-1 s3 63.68 18.31	N2 S4 F42-b 30-2 s3 64.72 19.03	N2 S4 F42 30-3 s3 63.43 18.61	N2 S4 F42 30-4 s3 64.49 19.38	N2 S4 F42 30-6 s3 63.18 18.71	N2 S4 F42-c 30-8 s3 63.44 19.23	N2 S4 F42 30-10 s3 63.93 18.91	N2 S4 F42 30-12 s3 63.61 18.70	N2 S4 F42-b 30-13 s3 63.14 18.79	N2 S4 F42-s 30-14 s3 64.06 18.76	N2 S4 F42-s 30-15 s3 63.14 18.49	N2 S4 F42-b 31 s3 64.26 18.15	N2 S4 F42 27 s3 63.73 18.71	N2 S4 F42-s 24 s3 64.38 18.46
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO	N2 S4 F37 9-12 s3 63.95 18.46 0.12	N2 S4 F37 9-13 s3 63.98 18.40 0.09	N2 S4 F37 9-14 s3 64.18 18.45 0.11	N2 S4 F37 9-15 s3 63.81 18.43 0.09	N2 S4 F37 9-16 s3 64.16 18.38 0.06	N2 S4 F37 9-17 s3 63.86 18.21 0.11	N2 S4 F37 9-18 s3 64.23 18.17 0.11	N2 S4 F37-b 9-19 s3 64.37 18.47 0.20	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26	N2 S4 F38b 11 s3 64.27 18.81 0.12	N2 S4 F38-b 13 s3 64.09 18.86 0.11	N2 S4 F40 18 s3 63.48 18.13 0.12	N2 S4 F39 17 s3 65.17 18.65 0.32	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14	N2 S4 F42 30-3 s3 63.43 18.61 0.08	N2 S4 F42 30-4 s3 64.49 19.38 0.05	N2 S4 F42 30-6 s3 63.18 18.71 0.09	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08	N2 S4 F42 30-10 s3 63.93 18.91 0.02	N2 S4 F42 30-12 s3 63.61 18.70 0.08	N2 S4 F42-b 30-13 s3 63.14 18.79 0.00	N2 S4 F42-s 30-14 s3 64.06 18.76 0.10	N2 S4 F42-s 30-15 s3 63.14 18.49 0.04	N2 S4 F42-b 31 s3 64.26 18.15 0.05	N2 S4 F42 27 s3 63.73 18.71 0.01	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.02 0.00
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O	N2 S4 F37 9-12 s3 63.95 18.46 0.12 0.02 0.00 0.27	N2 S4 F37 9-13 s3 63.98 18.40 0.09 0.00 0.00	N2 S4 F37 9-14 s3 64.18 18.45 0.11 0.00 0.00 0.40	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00 0.17	N2 S4 F37 9-16 s3 64.16 18.38 0.06 0.01 0.00 0.18	N2 S4 F37 9-17 s3 63.86 18.21 0.11 0.02 0.00 0.21	N2 S4 F37 9-18 s3 64.23 18.17 0.11 0.00	N2 S4 F37-b 9-19 s3 64.37 18.47 0.20 0.03 0.00 0.19	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26 0.15 0.00 0.28	N2 S4 F38b 11 s3 64.27 18.81 0.12 0.17 0.00 0.29	N2 S4 F38-b 13 s3 64.09 18.86 0.11 0.00	N2 S4 F40 18 s3 63.48 18.13 0.12 0.05 0.03 0.20	N2 S4 F39 17 s3 65.17 18.65 0.32 0.00	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.00 0.16	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.00 0.52	N2 S4 F42 30-4 s3 64.49 19.38 0.05 0.00 0.06 3.59	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03 0.41	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01	N2 S4 F42 30-10 s3 63.93 18.91 0.02 0.00 0.02 1.81	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.00 0.36	N2 S4 F42-b 30-13 s3 63.14 18.79 0.00 0.00 0.00 0.39	N2 S4 F42-s 30-14 s3 64.06 18.76 0.10 0.04 0.00 0.33	N2 S4 F42-s 30-15 s3 63.14 18.49 0.04 0.05 0.00 0.20	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00 0.00 0.16	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03 1.21	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.02 0.02 0.00
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO	N2 S4 F37 9-12 s3 63.95 18.46 0.12 0.02 0.00	N2 S4 F37 9-13 s3 63.98 18.40 0.09 0.00	N2 S4 F37 9-14 s3 64.18 18.45 0.11 0.00 0.00	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00	N2 S4 F37 9-16 s3 64.16 18.38 0.06 0.01 0.00	N2 S4 F37 9-17 s3 63.86 18.21 0.11 0.02 0.00	N2 S4 F37 9-18 s3 64.23 18.17 0.11 0.00 0.00	N2 S4 F37-b 9-19 s3 64.37 18.47 0.20 0.03 0.00	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26 0.15 0.00	N2 S4 F38b 11 s3 64.27 18.81 0.12 0.17 0.00	N2 S4 F38-b 13 s3 64.09 18.86 0.11 0.00 0.00	N2 S4 F40 18 s3 63.48 18.13 0.12 0.05 0.03	N2 S4 F39 17 s3 65.17 18.65 0.32 0.00 0.02	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.00	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02 0.16	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.00	N2 S4 F42 30-4 s3 64.49 19.38 0.05 0.00 0.06	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01 0.00	N2 S4 F42 30-10 s3 63.93 18.91 0.02 0.00 0.02	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.00	N2 S4 F42-b 30-13 s3 63.14 18.79 0.00 0.00 0.00	N2 S4 F42-s 30-14 s3 64.06 18.76 0.10 0.04 0.00	N2 S4 F42-s 30-15 s3 63.14 18.49 0.04 0.05 0.00	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.02 0.00 0.36 16.58
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total	N2 S4 F37 9-12 s3 63.95 18.46 0.12 0.02 0.00 0.27 16.56 99.38	N2 S4 F37 9-13 s3 63.98 18.40 0.09 0.00 0.20 16.54 99.21	N2 S4 F37 9-14 s3 64.18 18.45 0.11 0.00 0.00 0.40	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00 0.17	N2 S4 F37 9-16 s3 64.16 18.38 0.06 0.01 0.00 0.18	N2 S4 F37 9-17 s3 63.86 18.21 0.11 0.02 0.00 0.21	N2 S4 F37 9-18 s3 64.23 18.17 0.11 0.00 0.00 0.16	N2 S4 F37-b 9-19 s3 64.37 18.47 0.20 0.03 0.00 0.19	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26 0.15 0.00 0.28	N2 S4 F38b 11 s3 64.27 18.81 0.12 0.17 0.00 0.29	N2 S4 F38-b 13 s3 64.09 18.86 0.11 0.00 0.00 0.48	N2 S4 F40 18 s3 63.48 18.13 0.12 0.05 0.03 0.20	N2 S4 F39 17 s3 65.17 18.65 0.32 0.00 0.02 3.10	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.00 0.16	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02 0.16 4.25	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.00 0.52	N2 S4 F42 30-4 s3 64.49 19.38 0.05 0.00 0.06 3.59	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03 0.41	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01 0.00 1.84	N2 S4 F42 30-10 s3 63.93 18.91 0.02 0.00 0.02 1.81	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.00 0.36	N2 S4 F42-b 30-13 s3 63.14 18.79 0.00 0.00 0.00 0.39	N2 S4 F42-s 30-14 s3 64.06 18.76 0.10 0.04 0.00 0.33	N2 S4 F42-s 30-15 s3 63.14 18.49 0.04 0.05 0.00 0.20	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00 0.00 0.16	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03 1.21	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.02 0.02 0.00
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O	N2 S4 F37 9-12 s3 63.95 18.46 0.12 0.02 0.00 0.27 16.56 99.38	N2 S4 F37 9-13 s3 63.98 18.40 0.09 0.00 0.20 16.54 99.21	N2 S4 F37 9-14 s3 64.18 18.45 0.11 0.00 0.00 0.40 16.52 99.65	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00 0.17 17.01	N2 S4 F37 9-16 s3 64.16 18.38 0.06 0.01 0.00 0.18 16.79	N2 S4 F37 9-17 s3 63.86 18.21 0.11 0.02 0.00 0.21 16.53	N2 S4 F37 9-18 s3 64.23 18.17 0.11 0.00 0.00 0.16 16.29	N2 S4 F37-b 9-19 s3 64.37 18.47 0.20 0.03 0.00 0.19 16.76	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26 0.15 0.00 0.28 16.62	N2 S4 F38b 11 s3 64.27 18.81 0.12 0.17 0.00 0.29 16.45	N2 S4 F38-b 13 s3 64.09 18.86 0.11 0.00 0.00 0.48 15.88	N2 S4 F40 18 s3 63.48 18.13 0.12 0.05 0.03 0.20 16.79	N2 S4 F39 17 s3 65.17 18.65 0.32 0.00 0.02 3.10 12.65	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.00 0.16 16.71	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02 0.16 4.25 10.41	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.52 15.89	N2 S4 F42 30-4 s3 64.49 19.38 0.05 0.00 0.06 3.59	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03 0.41 15.76	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01 0.00 1.84 14.15	N2 S4 F42 30-10 s3 63.93 18.91 0.02 0.00 0.02 1.81 14.26	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.00 0.36 15.81	N2 S4 F42-b 30-13 s3 63.14 18.79 0.00 0.00 0.00 0.39 16.00	N2 S4 F42-s 30-14 s3 64.06 18.76 0.10 0.04 0.00 0.33 16.18	N2 S4 F42-s 30-15 s3 63.14 18.49 0.04 0.05 0.00 0.20	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00 0.00 0.16 16.60	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03 1.21	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.02 0.00 0.36 16.58
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total	N2 S4 F37 9-12 s3 63.95 18.46 0.12 0.02 0.00 0.27 16.56 99.38	N2 S4 F37 9-13 s3 63.98 18.40 0.09 0.00 0.21 16.54 99.21 8 Oxygènes 2.99	N2 S4 F37 9-14 s3 64.18 18.45 0.11 0.00 0.40 16.52 99.65 es) 2.99	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00 0.17 17.01 99.61	N2 S4 F37 9-16 s3 64.16 18.38 0.06 0.01 0.00 0.18 16.79 99.59	N2 S4 F37 9-17 s3 63.86 18.21 0.11 0.02 0.00 0.21 16.53 98.94	N2 S4 F37 9-18 s3 64.23 18.17 0.11 0.00 0.00 0.16 16.29 98.95	N2 S4 F37-b 9-19 s3 64.37 18.47 0.20 0.03 0.00 0.19 16.76 100.02	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26 0.15 0.00 0.28 16.62 100.27	N2 S4 F38b 11 s3 64.27 18.81 0.12 0.17 0.00 0.29 16.45 100.13	N2 S4 F38-b 13 s3 64.09 18.86 0.11 0.00 0.00 0.48 15.88 99.41 2.98	N2 S4 F40 18 s3 63.48 18.13 0.12 0.05 0.03 0.20 16.79 98.80 2.98	N2 S4 F39 17 s3 65.17 18.65 0.32 0.00 0.02 3.10 12.65	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.16 16.71 98.92	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02 0.16 4.25 10.41 98.73	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.00 0.52 15.89 98.53	N2 S4 F42 30-4 s3 64.49 19.38 0.05 0.00 0.06 3.59 11.61 99.17	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03 0.41 15.76 98.18	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01 0.00 1.84 14.15 98.75	N2 S4 F42 30-10 s3 63.93 18.91 0.02 0.00 0.02 1.81 14.26 98.95	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.00 0.36 15.81 98.55	N2 S4 F42-b 30-13 s3 63.14 18.79 0.00 0.00 0.00 0.39 16.00 98.31	N2 S4 F42-s 30-14 s3 64.06 18.76 0.10 0.04 0.00 0.33 16.18 99.47	N2 S4 F42-s 30-15 s3 63.14 18.49 0.04 0.05 0.00 0.20 16.24 98.17	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00 0.16 16.60 99.22	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03 1.21 14.92 98.62	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.02 0.00 0.36 16.58 99.82
Lame Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO₁₀t MgO CaO Na₂O K₂O Total FORMULE STRUCT Si Al	N2 S4 F37 9-12 s3 63.95 18.46 0.12 0.02 0.00 0.27 16.56 99.38 FURALE (8	N2 S4 F37 9-13 s3 63.98 18.40 0.09 0.00 0.21 16.54 99.21 8 Oxygènes	N2 S4 F37 9-14 s3 64.18 18.45 0.11 0.00 0.40 0.40 16.52 99.65	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00 0.17 17.01 99.61	N2 S4 F37 9-16 s3 64.16 18.38 0.06 0.01 0.00 0.18 16.79 99.59	N2 S4 F37 9-17 s3 63.86 18.21 0.11 0.02 0.00 0.21 16.53 98.94	N2 S4 F37 9-18 s3 64.23 18.17 0.11 0.00 0.00 0.16 16.29 98.95	N2 S4 F37-b 9-19 s3 64.37 18.47 0.20 0.03 0.00 0.19 16.76 100.02	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26 0.15 0.00 0.28 16.62 100.27	N2 S4 F38b 11 s3 64.27 18.81 0.12 0.17 0.00 0.29 16.45 100.13	N2 S4 F38-b 13 s3 64.09 18.86 0.11 0.00 0.00 0.48 15.88 99.41	N2 S4 F40 18 s3 63.48 18.13 0.12 0.05 0.03 0.20 16.79 98.80	N2 S4 F39 17 s3 65.17 18.65 0.32 0.00 0.02 3.10 12.65 99.92	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.00 0.16 16.71 98.92	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02 0.16 4.25 10.41 98.73	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.52 15.89 98.53	N2 S4 F42 30-4 s3 64.49 19.38 0.05 0.00 0.06 3.59 11.61 99.17	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03 0.41 15.76 98.18	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01 0.00 1.84 14.15 98.75	N2 S4 F42 30-10 s3 63.93 18.91 0.02 0.00 0.02 1.81 14.26 98.95	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.00 0.36 15.81 98.55	N2 S4 F42-b 30-13 s3 63.14 18.79 0.00 0.00 0.00 0.39 16.00 98.31	N2 S4 F42-s 30-14 s3 64.06 18.76 0.10 0.04 0.00 0.33 16.18 99.47	N2 S4 F42-s 30-15 s3 63.14 18.49 0.04 0.05 0.00 0.20 16.24 98.17	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00 0.16 16.60 99.22	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03 1.21 14.92 98.62	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.00 0.36 16.58 99.82 2.99 1.01
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total	N2 S4 F37 9-12 s3 63.95 18.46 0.12 0.02 0.00 0.27 16.56 99.38 TURALE (8	N2 S4 F37 9-13 s3 63.98 18.40 0.09 0.00 0.21 16.54 99.21 8 Oxygènes 2.99	N2 S4 F37 9-14 s3 64.18 18.45 0.11 0.00 0.40 16.52 99.65 es) 2.99	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00 0.17 17.01 99.61	N2 S4 F37 9-16 s3 64.16 18.38 0.06 0.01 0.00 0.18 16.79 99.59	N2 S4 F37 9-17 s3 63.86 18.21 0.11 0.02 0.00 0.21 16.53 98.94	N2 S4 F37 9-18 s3 64.23 18.17 0.11 0.00 0.00 0.16 16.29 98.95	N2 S4 F37-b 9-19 s3 64.37 18.47 0.20 0.03 0.00 0.19 16.76 100.02	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26 0.15 0.00 0.28 16.62 100.27	N2 S4 F38b 11 s3 64.27 18.81 0.12 0.17 0.00 0.29 16.45 100.13	N2 S4 F38-b 13 s3 64.09 18.86 0.11 0.00 0.00 0.48 15.88 99.41 2.98	N2 S4 F40 18 s3 63.48 18.13 0.12 0.05 0.03 0.20 16.79 98.80 2.98	N2 S4 F39 17 s3 65.17 18.65 0.32 0.00 0.02 3.10 12.65 99.92	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.16 16.71 98.92	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02 0.16 4.25 10.41 98.73	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.00 0.52 15.89 98.53	N2 S4 F42 30-4 s3 64.49 19.38 0.05 0.00 0.06 3.59 11.61 99.17	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03 0.41 15.76 98.18	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01 0.00 1.84 14.15 98.75	N2 S4 F42 30-10 s3 63.93 18.91 0.02 0.00 0.02 1.81 14.26 98.95	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.00 0.36 15.81 98.55	N2 S4 F42-b 30-13 s3 63.14 18.79 0.00 0.00 0.00 0.39 16.00 98.31	N2 S4 F42-s 30-14 s3 64.06 18.76 0.10 0.04 0.00 0.33 16.18 99.47	N2 S4 F42-s 30-15 s3 63.14 18.49 0.04 0.05 0.00 0.20 16.24 98.17	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00 0.16 16.60 99.22	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03 1.21 14.92 98.62	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.00 0.36 16.58 99.82 2.99 1.01 0.00
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe³* Ca	N2 S4 F37 9-12s3 63.95 18.46 0.12 0.02 0.00 0.27 16.56 99.38 TURALE (8 2.98 1.01 0.00	N2 S4 F37 9-13 s3 63.98 18.40 0.09 0.00 0.21 16.54 99.21 0.0xygène 2.99 1.01 0.00 0.00	N2 S4 F37 9-14 s3 64.18 18.45 0.11 0.00 0.40 16.52 99.65 ss) 2.99 1.01 0.00 0.00	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00 0.17 17.01 99.61 2.98 1.01 0.00 0.00	N2 S4 F37 9-16 s3 64.16 18.38 0.06 0.01 0.00 0.18 16.79 99.59 2.99 1.01 0.00 0.00	N2 S4 F37 9-17 s3 63.86 18.21 0.11 0.02 0.00 0.21 16.53 98.94 2.99 1.01 0.00 0.00	N2 S4 F37 9-18 s3 64.23 18.17 0.11 0.00 0.00 0.16 16.29 98.95 3.00 1.00 0.00 0.00	N2 S4 F37-b 9-19-s3 64.37 18.47 0.20 0.03 0.00 0.19 16.76 100.02 2.99 1.01 0.01	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26 0.15 0.00 0.28 16.62 100.27 2.98 1.01 0.01	N2 S4 F38b 11:83 64.27 18.81 0.12 0.17 0.00 0.29 16.45 100.13 2.97 1.03 0.00 0.00	N2 S4 F38-b 13 s3 64.09 18.86 0.11 0.00 0.00 0.48 15.88 99.41 2.98 1.03	N2 S4 F40 18.83 63.48 18.13 0.12 0.05 0.03 0.20 16.79 98.80 2.98 1.00 0.00 0.00	N2 S4 F39 17:s3 65.17 18.65 0.32 0.00 0.02 3.10 12.65 99.92 2.99 1.01 0.01 0.00	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.00 0.16 16.71 98.92 2.99 1.01 0.00 0.00	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02 0.16 4.25 10.41 98.73 2.97 1.03 0.00 0.01	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.52 15.89 98.53 2.98 1.03 0.00	N2 S4 F42 30-4 s3 64.49 19.38 0.05 0.00 0.06 3.59 11.61 99.17 2.96 1.05 0.00	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03 0.41 15.76 98.18 2.97 1.04 0.00 0.00	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01 0.00 1.84 14.15 98.75 2.95 1.06 0.00 0.00	N2 S4 F42 30-10 s3 63.93 18.91 0.02 0.00 0.02 1.81 14.26 98.95 2.97 1.04 0.00 0.00	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.00 0.36 15.81 98.55 2.98 1.03 0.00 0.00	N2 S4 F42-b 30-13 s3 63.14 18.79 0.00 0.00 0.39 16.00 98.31 2.97 1.04 0.00 0.00	N2 S4 F42-s 30-14s3 64.06 18.76 0.10 0.04 0.00 0.33 16.18 99.47 2.98 1.03 0.00	N2 S4 F42-s 30-15-s3 63.14 18.49 0.04 0.05 0.00 0.20 16.24 98.17 2.98 1.03 0.00 0.00	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00 0.16 16.60 99.22 3.00 1.00 0.00	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03 1.21 14.92 98.62 2.98 1.03 0.00 0.00	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.02 0.00 0.36 16.58 99.82 2.99 1.01 0.00 0.00
Lame Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO tot MgO CaO Na₂O K₂O Total FORMULE STRUCT Si Al Fe³+	N2 S4 F37 9-12 s3 63.95 18.46 0.12 0.02 0.00 0.27 16.56 99.38 FURALE (8 2.98 1.01 0.00 0.00	N2 S4 F37 9-13 s3 63.98 18.40 0.09 0.00 0.21 16.54 99.21 9.21,91 0.00 0.00 0.00 0.00	N2 S4 F37 9-14 s3 64.18 18.45 0.11 0.00 0.00 0.40 16.52 99.65 es) 2.99 1.01 0.00 0.00 0.00	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00 0.17 17.01 99.61 2.98 1.01 0.00 0.00 0.00	N2 S4 F37 9-16 s3 64.16 18.38 0.06 0.01 0.00 0.18 16.79 99.59 2.99 1.01 0.00 0.00 0.00	N2 S4 F37 9-17 s3 63.86 18.21 0.11 0.02 0.00 0.21 16.53 98.94 2.99 1.01 0.00 0.00 0.00	N2 S4 F37 9-18 s3 64.23 18.17 0.00 0.00 0.16 16.29 98.95 3.00 1.00 0.00 0.00 0.00	N2 S4 F37-b 9-19-s3 64.37 18.47 0.20 0.03 0.00 0.19 16.76 100.02 2.99 1.01 0.01 0.00 0.02	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26 0.15 0.00 0.28 16.62 100.27 2.98 1.01 0.01 0.00 0.03	N2 S4 F38b 11:s3 64:27 18:81 0.12 0.17 0.00 0.29 16.45 100.13 2.97 1.03 0.00 0.00 0.03	N2 S4 F38-b 13.83 64.09 18.86 0.11 0.00 0.00 0.48 15.88 99.41 2.98 1.03 0.00 0.00 0.04	N2 S4 F40 18.93 63.48 18.13 0.12 0.05 0.03 0.20 16.79 98.80 2.98 1.00 0.00 0.00 0.00	N2 S4 F39 17 s3 65.17 18.65 0.32 0.00 0.02 3.10 12.65 99.92 2.99 1.01 0.01 0.00 0.28	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.00 0.16 16.71 98.92 2.99 1.01 0.00 0.00 0.00	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02 0.16 4.25 10.41 98.73 2.97 1.03 0.00 0.01 0.38	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.52 15.89 98.53 2.98 1.03 0.00 0.00	N2 S4 F42 30-4 s3 64.49 19.38 0.05 0.00 0.06 3.59 11.61 99.17 2.96 1.05 0.00 0.00	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03 0.41 15.76 98.18 2.97 1.04 0.00 0.00 0.04	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01 0.00 1.84 14.15 98.75 2.95 1.06 0.00 0.00 0.17	N2 S4 F42 30-10 s3 63.93 18.91 0.02 0.00 0.02 1.81 14.26 98.95 2.97 1.04 0.00 0.00 0.16	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.36 15.81 98.55 2.98 1.03 0.00 0.00 0.00	N2 S4 F42-b 30-13 s3 63.14 18.79 0.00 0.00 0.39 16.00 98.31 2.97 1.04 0.00 0.00 0.00	N2 S4 F42-s 30-14+s3 64.06 18.76 0.10 0.04 0.00 0.33 16.18 99.47 2.98 1.03 0.00 0.00 0.03	N2 S4 F42-s 30-15-s3 63.14 18.49 0.04 0.05 0.00 0.20 16.24 98.17 2.98 1.03 0.00 0.00 0.00	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00 0.16 16.60 99.22 3.00 1.00 0.00 0.00 0.00	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03 1.21 14.92 98.62 2.98 1.03 0.00 0.00 0.11	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.02 0.00 0.36 16.58 99.82 2.99 1.01 0.00 0.00
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe³* Ca	N2 S4 F37 9-12 s3 63.95 18.46 0.12 0.02 0.00 0.27 16.56 99.38 TURALE (8 2.98 1.01 0.00 0.00 0.00 0.00 0.00	N2 S4 F37 9-13 s3 63.98 18.40 0.09 0.00 0.21 16.54 99.21 c Oxygène 2.99 1.01 0.00 0.00 0.00 0.00	N2 S4 F37 9-14 s3 64.18 18.45 0.11 0.00 0.00 0.40 16.52 99.65 es) 2.99 1.01 0.00 0.00 0.04 0.98	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00 0.17 17.01 99.61 2.98 1.01 0.00 0.00 0.00 1.01	N2 S4 F37 9-16 s3 64.16 18.38 0.06 0.01 0.00 0.18 16.79 99.59 2.99 1.01 0.00 0.00 0.00 1.00 0.00 1.00 0.00	N2 S4 F37 9-17 s3 63.86 18.21 0.11 0.02 0.00 0.21 16.53 98.94 2.99 1.01 0.00 0.00 0.00 0.00 0.00	N2 S4 F37 9-18 s3 64.23 18.17 0.11 0.00 0.00 0.16 16.29 98.95 3.00 1.00 0.00 0.00 0.01 0.97	N2 S4 F37-b 9-19-s3 64.37 18.47 0.20 0.03 0.00 0.19 16.76 100.02 2.99 1.01 0.01 0.00 0.02 0.99	N2 S4 F37-b 9-20-s3 64.42 18.53 0.26 0.15 0.00 0.28 16.62 100.27 2.98 1.01 0.01 0.00 0.03 0.98	N2 S4 F38b 11.s3 64.27 18.81 0.12 0.17 0.00 0.29 16.45 100.13 2.97 1.03 0.00 0.00 0.03 0.97	N2 S4 F38-b 13.83 64.09 18.86 0.11 0.00 0.00 0.48 15.88 99.41 2.98 1.03 0.00 0.00 0.04 0.94	N2 S4 F40 18 s3 63.48 18.13 0.12 0.05 0.03 0.20 16.79 98.80 2.98 1.00 0.00 0.00 0.02 1.01	N2 S4 F39 17 s3 65.17 18.65 0.32 0.00 0.02 3.10 12.65 99.92 2.99 1.01 0.01 0.00 0.28 0.74	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.00 0.16 16.71 98.92 2.99 1.01 0.00 0.00 0.01 1.00	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02 0.16 4.25 10.41 98.73 2.97 1.03 0.00 0.01 0.38 0.61	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.05 0.52 15.89 98.53 2.98 1.03 0.00 0.00 0.05 0.95	N2 S4 F42 30-4 s3 64.49 19.38 0.05 0.00 0.06 3.59 11.61 99.17 2.96 1.05 0.00 0.00 0.32 0.68	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03 0.41 15.76 98.18 2.97 1.04 0.00 0.00 0.04 0.95	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01 0.00 1.84 14.15 98.75 2.95 1.06 0.00 0.17 0.84	N2 S4 F42 30-10 s3 63.93 18.91 0.02 0.00 0.02 1.81 14.26 98.95 2.97 1.04 0.00 0.00 0.16 0.85	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.36 15.81 98.55 2.98 1.03 0.00 0.00 0.00 0.00 0.00 0.00	N2 S4 F42-b 30-13 s3 63.14 18.79 0.00 0.00 0.39 16.00 98.31 2.97 1.04 0.00 0.00 0.00	N2 S4 F42-s 30-14-s3 64.06 18.76 0.10 0.04 0.00 0.33 16.18 99.47 2.98 1.03 0.00 0.00 0.03 0.96	N2 S4 F42-s 30-15-s3 63.14 18.49 0.04 0.05 0.00 0.20 16.24 98.17 2.98 1.03 0.00 0.00 0.00 0.00 0.00	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00 0.00 0.16 16.60 99.22 3.00 1.00 0.00 0.00 0.00 0.00 0.00	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03 1.21 14.92 98.62 2.98 1.03 0.00 0.00 0.11 0.89	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.02 0.00 0.36 16.58 99.82 2.99 1.01 0.00 0.00 0.03
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe³* Ca	N2 S4 F37 9-12 s3 63.95 18.46 0.12 0.02 0.00 0.27 16.56 99.38 FURALE (8 2.98 1.01 0.00 0.00	N2 S4 F37 9-13 s3 63.98 18.40 0.09 0.00 0.21 16.54 99.21 9.21,91 0.00 0.00 0.00 0.00	N2 S4 F37 9-14 s3 64.18 18.45 0.11 0.00 0.00 0.40 16.52 99.65 es) 2.99 1.01 0.00 0.00 0.00	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00 0.17 17.01 99.61 2.98 1.01 0.00 0.00 0.00	N2 S4 F37 9-16 s3 64.16 18.38 0.06 0.01 0.00 0.18 16.79 99.59 2.99 1.01 0.00 0.00 0.00	N2 S4 F37 9-17 s3 63.86 18.21 0.11 0.02 0.00 0.21 16.53 98.94 2.99 1.01 0.00 0.00 0.00	N2 S4 F37 9-18 s3 64.23 18.17 0.00 0.00 0.16 16.29 98.95 3.00 1.00 0.00 0.00 0.00	N2 S4 F37-b 9-19-s3 64.37 18.47 0.20 0.03 0.00 0.19 16.76 100.02 2.99 1.01 0.01 0.00 0.02	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26 0.15 0.00 0.28 16.62 100.27 2.98 1.01 0.01 0.00 0.03	N2 S4 F38b 11:s3 64:27 18:81 0.12 0.17 0.00 0.29 16.45 100.13 2.97 1.03 0.00 0.00 0.03	N2 S4 F38-b 13.83 64.09 18.86 0.11 0.00 0.00 0.48 15.88 99.41 2.98 1.03 0.00 0.00 0.04	N2 S4 F40 18.93 63.48 18.13 0.12 0.05 0.03 0.20 16.79 98.80 2.98 1.00 0.00 0.00 0.00	N2 S4 F39 17 s3 65.17 18.65 0.32 0.00 0.02 3.10 12.65 99.92 2.99 1.01 0.01 0.00 0.28	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.00 0.16 16.71 98.92 2.99 1.01 0.00 0.00 0.00	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02 0.16 4.25 10.41 98.73 2.97 1.03 0.00 0.01 0.38	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.52 15.89 98.53 2.98 1.03 0.00 0.00	N2 S4 F42 30-4 s3 64.49 19.38 0.05 0.00 0.06 3.59 11.61 99.17 2.96 1.05 0.00 0.00	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03 0.41 15.76 98.18 2.97 1.04 0.00 0.00 0.04	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01 0.00 1.84 14.15 98.75 2.95 1.06 0.00 0.00 0.17	N2 S4 F42 30-10 s3 63.93 18.91 0.02 0.00 0.02 1.81 14.26 98.95 2.97 1.04 0.00 0.00 0.16	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.36 15.81 98.55 2.98 1.03 0.00 0.00 0.00	N2 S4 F42-b 30-13 s3 63.14 18.79 0.00 0.00 0.39 16.00 98.31 2.97 1.04 0.00 0.00 0.00	N2 S4 F42-s 30-14+s3 64.06 18.76 0.10 0.04 0.00 0.33 16.18 99.47 2.98 1.03 0.00 0.00 0.03	N2 S4 F42-s 30-15-s3 63.14 18.49 0.04 0.05 0.00 0.20 16.24 98.17 2.98 1.03 0.00 0.00 0.00	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00 0.16 16.60 99.22 3.00 1.00 0.00 0.00 0.00	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03 1.21 14.92 98.62 2.98 1.03 0.00 0.00 0.11	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.02 0.00 0.36 16.58 99.82 2.99 1.01 0.00 0.00
Lame Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO tot MgO CaO Na₂O K₂O Total FORMULE STRUCT Si Al Fe³+ Ca Na K Total	N2 S4 F37 9-12 s3 63.95 18.46 0.12 0.02 0.00 0.27 16.56 99.38 FURALE (8 2.98 1.01 0.00 0.00 0.02 0.99 5.01	N2 S4 F37 9-13 s3 63.98 18.40 0.09 0.00 0.21 16.54 99.21 6 Oxygène 2.99 1.01 0.00 0.00 0.02 0.99 5.01	N2 S4 F37 9-14 s3 64.18 18.45 0.11 0.00 0.40 16.52 99.65 es) 2.99 1.01 0.00 0.00 0.04 0.98 5.02	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00 0.17 17.01 99.61 2.98 1.01 0.00 0.00 0.02 1.01 5.02	N2 S4 F37 9-16 s3 64.16 18.38 0.06 0.01 0.00 0.18 16.79 99.59 1.01 0.00 0.00 0.00 1.00 0.00 0.00 0.0	N2 S4 F37 9-17 s3 63.86 18.21 0.11 0.02 0.00 0.21 16.53 98.94 2.99 1.01 0.00 0.02 0.99 5.01	N2 S4 F37 9-18 s3 64.23 18.17 0.11 0.00 0.00 0.16 16.29 98.95 3.00 0.00 0.00 0.00 0.01 0.97 4.99	N2 S4 F37-b 9-19-s3 64.37 18.47 0.20 0.03 0.00 0.19 16.76 100.02 2.99 1.01 0.01 0.00 0.02 0.99 5.01	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26 0.15 0.00 0.28 16.62 100.27 2.98 1.01 0.01 0.00 0.03 0.98 5.00	N2 S4 F38b 11 s3 64.27 18.81 0.12 0.17 0.00 0.29 16.45 100.13 2.97 1.03 0.00 0.00 0.03 0.97 5.00	N2 S4 F38-b 13 s3 64.09 18.86 0.11 0.00 0.00 0.48 15.88 99.41 2.98 1.03 0.00 0.00 0.04 0.94 5.00	N2 S4 F40 18 s3 63.48 18.13 0.12 0.05 0.03 0.20 16.79 98.80 2.98 1.00 0.00 0.00 0.02 1.01 5.02	N2 S4 F39 17 s3 65.17 18.65 0.32 0.00 0.02 3.10 12.65 99.92 2.99 1.01 0.01 0.00 0.28 0.74 5.02	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.00 0.16 16.71 98.92 2.99 1.01 0.00 0.00 0.01 1.00 5.02	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02 0.16 4.25 10.41 98.73 2.97 1.03 0.00 0.01 0.38 0.61 5.00	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.52 15.89 98.53 2.98 1.03 0.00 0.00 0.05 5.01	N2 S4 F42 30-4 s3 64-49 19-38 0.05 0.00 0.06 3.59 11.61 99.17 2.96 1.05 0.00 0.00 0.00 0.06 3.59	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03 0.41 15.76 98.18 2.97 1.04 0.00 0.00 0.04 0.95 5.00	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01 0.00 1.84 14.15 98.75 2.95 1.06 0.00 0.17 0.84 5.02	N2 S4 F42 30-10 s3 63.93 18.91 0.02 0.00 0.02 1.81 14.26 98.95 2.97 1.04 0.00 0.16 0.85 5.02	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.36 15.81 98.55 2.98 1.03 0.00 0.00 0.03 0.94 4.99	N2 S4 F42-b 30-13 s3 63.14 18.79 0.00 0.00 0.00 0.39 16.00 98.31 2.97 1.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N2 S4 F42-s 30-14-s3 64-06 18.76 0.10 0.04 0.00 0.33 16.18 99.47 2.98 1.03 0.00 0.03 0.96 5.00	N2 S4 F42-s 30-15-s3 63.14 18.49 0.04 0.05 0.00 0.20 16.24 98.17 2.98 1.03 0.00 0.00 0.00 0.00 0.00 0.02 0.98 5.00	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00 0.16 16.60 99.22 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03 1.21 14.92 98.62 2.98 1.03 0.00 0.01 0.00 0.11 0.89 5.01	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.02 0.00 0.36 16.58 99.82 2.99 1.01 0.00 0.00 0.03 5.01
Lame Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO tot MgO CaO Na₂O K₂O Total FORMULE STRUCT Si Al Fe³+ Ca Na K Total %Or	N2 S4 F37 9-12 s3 63.95 18.46 0.12 0.02 0.00 0.27 16.56 99.38 TURALE (8 2.98 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	N2 S4 F37 9-13 s3 63.98 18.40 0.09 0.00 0.21 16.54 99.21 6 Oxygène 2.99 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0	N2 S4 F37 9-14 s3 64.18 18.45 0.00 0.00 0.40 16.52 99.65 ss) 2.99 1.01 0.00 0.00 0.04 0.98 5.02	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00 0.17 17.01 99.61 2.98 1.01 0.00 0.00 0.00 1.01 0.00 0.00 0.0	N2 S4 F37 9-16-s3 64-16 18-38 0.06 0.01 0.00 0.18 16.79 99.59 2.99 1.01 0.00 0.00 0.02 1.00 5.01	N2 S4 F37 9-17 s3 63.86 18.21 0.11 0.02 0.00 0.21 16.53 98.94 2.99 1.01 0.00 0.00 0.02 0.99 5.01	N2 S4 F37 9-18 s3 64.23 18.17 0.11 0.00 0.00 0.16 16.29 98.95 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	N2 S4 F37-b 9-19-s3 64.37 18.47 0.20 0.03 0.00 0.19 16.76 100.02 2.99 1.01 0.01 0.00 0.02 0.99 5.01	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26 0.15 0.00 0.28 16.62 100.27 2.98 1.01 0.00 0.03 0.98 5.00	N2 S4 F38b 11 s3 64.27 18.81 0.12 0.17 0.00 0.29 16.45 100.13 2.97 1.03 0.00 0.00 0.03 0.97 5.00	N2 S4 F38-b 13 s3 64.09 18.86 0.11 0.00 0.08 15.88 99.41 2.98 1.03 0.00 0.00 0.04 0.94 5.00	N2 S4 F40 18.83 63.48 18.13 0.12 0.05 0.03 0.20 16.79 98.80 2.98 1.00 0.00 0.00 1.01 5.02 0.98	N2 S4 F39 17 s3 65.17 18.65 0.32 0.00 0.02 3.10 12.65 99.92 2.99 1.01 0.00 0.02 8 0.74 5.02	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.00 0.16 16.71 98.92 2.99 1.01 0.00 0.00 0.00 1.00 0.00 0.00 0	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02 0.16 4.25 10.41 98.73 2.97 1.03 0.00 0.01 0.38 0.61 5.00	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.52 15.89 98.53 2.98 1.03 0.00 0.00 0.05 5.01	N2 S4 F42 30-4 s3 64.49 19.38 0.05 0.00 0.06 3.59 11.61 99.17 2.96 1.05 0.00 0.03 2.068 5.01	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03 0.41 15.76 98.18 2.97 1.04 0.00 0.00 0.04 0.95 5.00	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01 0.00 1.84 14.15 98.75 2.95 1.06 0.00 0.01 0.00 0.17 0.84 5.02	N2 S4 F42 30-10 s3 63.93 18.91 0.02 0.00 0.02 1.81 14.26 98.95 2.97 1.04 0.00 0.01 0.85 5.02	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.36 15.81 98.55 2.98 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N2 S4 F42-b 30-13-s3 63.14 18.79 0.00 0.00 0.39 16.00 98.31 2.97 1.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N2 S4 F42-s 30-14-s3 64-06 18.76 0.10 0.04 0.00 0.33 16.18 99.47 2.98 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N2 S4 F42-s 30-15 s3 63.14 18.49 0.04 0.05 0.00 0.20 16.24 98.17 2.98 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00 0.16 16.60 99.22 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03 1.21 14.92 98.62 2.98 1.03 0.00 0.00 0.01 0.89	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.02 0.00 0.36 16.58 99.82 2.99 1.01 0.00 0.03 0.03 5.01
Lame Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO tot MgO CaO Na₂O K₂O Total FORMULE STRUCT Si Al Fe³* Ca Na K Total %Or %Ab	N2 S4 F37 9-12 s3 63.95 18.46 0.12 0.02 0.00 0.27 16.56 99.38 TURALE (8 2.98 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	N2 S4 F37 9-13 s3 63.98 18.40 0.00 0.00 0.21 16.54 99.21 6 Oxygène 2.99 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0	N2 S4 F37 9-14 s3 64.18 18.45 0.11 0.00 0.00 0.40 16.52 99.65 99.65 98) 2.99 1.01 0.00 0.00 0.04 0.98 5.02	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00 0.17 17.01 99.61 2.98 1.01 0.00 0.00 1.01 0.00 0.00 0.00 0.0	N2 S4 F37 9-16-s3 64-16 18-38 0.06 0.01 0.00 0.18 16.79 99.59 2.99 1.01 0.00 0.00 2.100 0.00 5.01	N2 S4 F37 9-17-s3 63.86 18.21 0.11 0.02 0.00 0.21 16.53 98.94 2.99 1.01 0.00 0.00 0.02 0.99 5.01	N2 S4 F37 9-18 s3 64.23 18.17 0.11 0.00 0.16 16.29 98.95 3.00 1.00 0.00 0.00 0.01 0.97 4.99 0.01	N2 S4 F37-b 9-19-s3 64.37 18.47 0.20 0.03 0.00 0.19 16.76 100.02 2.99 1.01 0.01 0.00 0.02 0.99 5.01	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26 0.15 0.00 0.28 16.62 100.27 2.98 1.01 0.01 0.00 0.03 0.98 5.00	N2 S4 F38b 11 s3 64.27 18.81 0.12 0.17 0.00 0.29 16.45 100.13 2.97 1.03 0.00 0.00 0.03 0.97 5.00	N2 S4 F38-b 13 s3 64.09 18.86 0.11 0.00 0.48 15.88 99.41 2.98 1.03 0.00 0.00 0.04 0.94 5.00	N2 S4 F40 18 s3 63.48 18.13 0.12 0.05 0.03 0.20 16.79 98.80 2.98 1.00 0.00 0.00 1.01 5.02 0.98 0.02	N2 S4 F39 17 s3 65.17 18.65 0.32 0.00 0.02 3.10 12.65 99.92 2.99 1.01 0.01 0.00 0.28 0.74 5.02	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.16 16.71 98.92 2.99 1.01 0.00 0.00 0.01 1.00 5.02	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02 0.16 4.25 10.41 98.73 2.97 1.03 0.00 0.01 0.38 0.61 5.00	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.52 15.89 98.53 2.98 1.03 0.00 0.05 0.95 5.01	N2 S4 F42 30-4 s3 64.49 19.38 0.05 0.00 0.06 3.59 11.61 99.17 2.96 1.05 0.00 0.32 0.68 5.01	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03 0.41 15.76 98.18 2.97 1.04 0.00 0.00 0.04 0.95 5.00	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01 0.00 1.84 14.15 98.75 2.95 1.06 0.00 0.01 0.00 0.17 0.84 5.02	N2 S4 F42 30-10 s3 63.93 18.91 0.02 1.81 14.26 98.95 2.97 1.04 0.00 0.01 0.05 5.02	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.36 15.81 98.55 2.98 1.03 0.00 0.00 0.03 4.99	N2 S4 F42-b 30-13-s3 63.14 18.79 0.00 0.00 0.39 16.00 98.31 2.97 1.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N2 S4 F42-s 30-14-s3 64-06 18.76 0.10 0.04 0.00 0.33 16.18 99.47 2.98 1.03 0.00 0.00 0.03 0.96 5.00	N2 S4 F42-s 30-15 s3 63.14 18.49 0.04 0.05 0.00 0.20 16.24 98.17 2.98 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00 0.16 16.60 99.22 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03 1.21 14.92 98.62 2.98 1.03 0.00 0.01 0.89 5.01	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.00 0.36 16.58 99.82 2.99 1.01 0.00 0.03
Lame Séquence N° du cristal N° analyse SiO₂ Al₂O₃ FeO tot MgO CaO Na₂O K₂O Total FORMULE STRUCT Si Al Fe³+ Ca Na K Total %Or	N2 S4 F37 9-12 s3 63.95 18.46 0.12 0.02 0.00 0.27 16.56 99.38 TURALE (8 2.98 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	N2 S4 F37 9-13 s3 63.98 18.40 0.09 0.00 0.21 16.54 99.21 6 Oxygène 2.99 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0	N2 S4 F37 9-14 s3 64.18 18.45 0.00 0.00 0.40 16.52 99.65 ss) 2.99 1.01 0.00 0.00 0.04 0.98 5.02	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00 0.17 17.01 99.61 2.98 1.01 0.00 0.00 0.00 1.01 0.00 0.00 0.0	N2 S4 F37 9-16-s3 64-16 18-38 0.06 0.01 0.00 0.18 16.79 99.59 2.99 1.01 0.00 0.00 0.02 1.00 5.01	N2 S4 F37 9-17 s3 63.86 18.21 0.11 0.02 0.00 0.21 16.53 98.94 2.99 1.01 0.00 0.00 0.02 0.99 5.01	N2 S4 F37 9-18 s3 64.23 18.17 0.11 0.00 0.00 0.16 16.29 98.95 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	N2 S4 F37-b 9-19-s3 64.37 18.47 0.20 0.03 0.00 0.19 16.76 100.02 2.99 1.01 0.01 0.00 0.02 0.99 5.01	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26 0.15 0.00 0.28 16.62 100.27 2.98 1.01 0.00 0.03 0.98 5.00	N2 S4 F38b 11 s3 64.27 18.81 0.12 0.17 0.00 0.29 16.45 100.13 2.97 1.03 0.00 0.00 0.03 0.97 5.00	N2 S4 F38-b 13 s3 64.09 18.86 0.11 0.00 0.08 15.88 99.41 2.98 1.03 0.00 0.00 0.04 0.94 5.00	N2 S4 F40 18.83 63.48 18.13 0.12 0.05 0.03 0.20 16.79 98.80 2.98 1.00 0.00 0.00 1.01 5.02 0.98	N2 S4 F39 17 s3 65.17 18.65 0.32 0.00 0.02 3.10 12.65 99.92 2.99 1.01 0.00 0.02 8 0.74 5.02	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.00 0.16 16.71 98.92 2.99 1.01 0.00 0.00 0.00 1.00 0.00 0.00 0	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02 0.16 4.25 10.41 98.73 2.97 1.03 0.00 0.01 0.38 0.61 5.00	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.52 15.89 98.53 2.98 1.03 0.00 0.00 0.05 5.01	N2 S4 F42 30-4 s3 64.49 19.38 0.05 0.00 0.06 3.59 11.61 99.17 2.96 1.05 0.00 0.03 2.068 5.01	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03 0.41 15.76 98.18 2.97 1.04 0.00 0.00 0.04 0.95 5.00	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01 0.00 1.84 14.15 98.75 2.95 1.06 0.00 0.01 0.00 0.17 0.84 5.02	N2 S4 F42 30-10 s3 63.93 18.91 0.02 0.00 0.02 1.81 14.26 98.95 2.97 1.04 0.00 0.01 0.85 5.02	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.36 15.81 98.55 2.98 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N2 S4 F42-b 30-13-s3 63.14 18.79 0.00 0.00 0.39 16.00 98.31 2.97 1.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N2 S4 F42-s 30-14-s3 64-06 18.76 0.10 0.04 0.00 0.33 16.18 99.47 2.98 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N2 S4 F42-s 30-15 s3 63.14 18.49 0.04 0.05 0.00 0.20 16.24 98.17 2.98 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00 0.16 16.60 99.22 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03 1.21 14.92 98.62 2.98 1.03 0.00 0.00 0.01 0.89	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.02 0.00 0.36 16.58 99.82 2.99 1.01 0.00 0.03 0.03 5.01
Lame Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO _{1ot} MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Ka Ca Na K Total %Or %Ab	N2 S4 F37 9-12 s3 63.95 18.46 0.12 0.02 0.00 0.27 16.56 99.38 TURALE (8 2.98 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	N2 S4 F37 9-13 s3 63.98 18.40 0.00 0.00 0.21 16.54 99.21 6 Oxygène 2.99 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0	N2 S4 F37 9-14 s3 64.18 18.45 0.11 0.00 0.00 0.40 16.52 99.65 99.65 98) 2.99 1.01 0.00 0.00 0.04 0.98 5.02	N2 S4 F37 9-15 s3 63.81 18.43 0.09 0.10 0.00 0.17 17.01 99.61 2.98 1.01 0.00 0.00 1.01 0.00 0.00 0.00 0.0	N2 S4 F37 9-16-s3 64-16 18-38 0.06 0.01 0.00 0.18 16.79 99.59 2.99 1.01 0.00 0.00 2.100 0.00 5.01	N2 S4 F37 9-17-s3 63.86 18.21 0.11 0.02 0.00 0.21 16.53 98.94 2.99 1.01 0.00 0.00 0.02 0.99 5.01	N2 S4 F37 9-18 s3 64.23 18.17 0.11 0.00 0.16 16.29 98.95 3.00 1.00 0.00 0.00 0.01 0.97 4.99 0.01	N2 S4 F37-b 9-19-s3 64.37 18.47 0.20 0.03 0.00 0.19 16.76 100.02 2.99 1.01 0.01 0.00 0.02 0.99 5.01	N2 S4 F37-b 9-20 s3 64.42 18.53 0.26 0.15 0.00 0.28 16.62 100.27 2.98 1.01 0.01 0.00 0.03 0.98 5.00	N2 S4 F38b 11 s3 64.27 18.81 0.12 0.17 0.00 0.29 16.45 100.13 2.97 1.03 0.00 0.00 0.03 0.97 5.00	N2 S4 F38-b 13 s3 64.09 18.86 0.11 0.00 0.48 15.88 99.41 2.98 1.03 0.00 0.00 0.04 0.94 5.00	N2 S4 F40 18 s3 63.48 18.13 0.12 0.05 0.03 0.20 16.79 98.80 2.98 1.00 0.00 0.00 1.01 5.02 0.98 0.02	N2 S4 F39 17 s3 65.17 18.65 0.32 0.00 0.02 3.10 12.65 99.92 2.99 1.01 0.01 0.00 0.28 0.74 5.02	N2 S4 F42-s 30-1 s3 63.68 18.31 0.07 0.00 0.16 16.71 98.92 2.99 1.01 0.00 0.00 0.01 1.00 5.02	N2 S4 F42-b 30-2 s3 64.72 19.03 0.14 0.02 0.16 4.25 10.41 98.73 2.97 1.03 0.00 0.01 0.38 0.61 5.00	N2 S4 F42 30-3 s3 63.43 18.61 0.08 0.00 0.52 15.89 98.53 2.98 1.03 0.00 0.05 0.95 5.01	N2 S4 F42 30-4 s3 64.49 19.38 0.05 0.00 0.06 3.59 11.61 99.17 2.96 1.05 0.00 0.32 0.68 5.01	N2 S4 F42 30-6 s3 63.18 18.71 0.09 0.00 0.03 0.41 15.76 98.18 2.97 1.04 0.00 0.00 0.04 0.95 5.00	N2 S4 F42-c 30-8 s3 63.44 19.23 0.08 0.01 0.00 1.84 14.15 98.75 2.95 1.06 0.00 0.01 0.00 0.17 0.84 5.02	N2 S4 F42 30-10 s3 63.93 18.91 0.02 1.81 14.26 98.95 2.97 1.04 0.00 0.01 0.05 5.02	N2 S4 F42 30-12 s3 63.61 18.70 0.08 0.00 0.36 15.81 98.55 2.98 1.03 0.00 0.00 0.03 4.99	N2 S4 F42-b 30-13-s3 63.14 18.79 0.00 0.00 0.39 16.00 98.31 2.97 1.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N2 S4 F42-s 30-14-s3 64-06 18.76 0.10 0.04 0.00 0.33 16.18 99.47 2.98 1.03 0.00 0.00 0.03 0.96 5.00	N2 S4 F42-s 30-15 s3 63.14 18.49 0.04 0.05 0.00 0.20 16.24 98.17 2.98 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00	N2 S4 F42-b 31 s3 64.26 18.15 0.05 0.00 0.16 16.60 99.22 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0	N2 S4 F42 27 s3 63.73 18.71 0.01 0.00 0.03 1.21 14.92 98.62 2.98 1.03 0.00 0.01 0.89 5.01	N2 S4 F42-s 24 s3 64.38 18.46 0.02 0.00 0.36 16.58 99.82 2.99 1.01 0.00 0.03

Annexe 5d Feldspaths potassiques suite 1

Lame	No	NO	110		110		110			110	110				110	110	110	110	110	110	110	110	NO	110		110	110
	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2		N2	N2	N2	N2
Séquence	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3
N° du cristal	F42-s	F42-s	F42-s	F52-c	F41-b	F41	F41-c	F41-c	F41	F41-b	F43	F43	F53-iA86	F45-s	F45-s	F45	F45	F45	F45	F45	F45	F44-b	F46	F47-c	F51-iP61	F49	F49
N° analyse SiO ₂	25 s3 63.90	22 s3 64.51	23 s3 64.70	22 s3 64.10	20-1 s3 64.12	20-2 s3 63.42	20-3 s3 63.46	20-4 s3 63.54	20-5 s3 63.62	20-6 s3 63.64	33 s3 63.74	34 s3 63.58	145 s3 64.59	56 s3 64.28	57 s3 64.20	60 s3 63.28	61 s3 63.59	62 s3 63.90	63 s3 63.11	64 s3 63.37	65 s3 63.75	55 s3 64.06	79 s3 64.47	84 s3 64.54	100 s3 64.09	92 s3 63.83	87 s3 64.51
Al ₂ O ₃	18.64	18.31	18.56	17.46	18.42	18.89	18.93	18.68	18.65	18.88	18.56	18.70	17.64	18.74	18.65	18.85	19.09	18.74	18.47	18.86	18.91	18.68	18.36	18.27	18.59	18.54	18.65
FeO _{tot}	0.01	0.14	0.17	0.17	0.33	0.11	0.02	0.22	0.14	0.10	0.00	0.11	0.54	0.00	0.12	0.15	0.20	0.10	0.21	0.09	0.14	0.17	0.13	0.12	0.10	0.02	0.01
MgO	0.00	0.00	0.22	0.00	0.05	0.00	0.04	0.06	0.00	0.00	0.03	0.00	0.00	0.02	0.05	0.19	0.14	0.11	0.04	0.02	0.00	0.04	0.00	0.05	0.01	0.03	0.00
CaO	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.03	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.02	0.00
Na ₂ O	0.24	0.37	0.38	0.17	0.23	0.31	0.38	0.49	0.93	0.40	0.22	0.35	0.32	0.28	0.26	0.45	0.34	0.48	0.24	0.46	0.44	0.31	0.25	0.26	0.51	0.25	0.20
K₂O	16.39	16.24	16.43	16.60	16.91	15.99	15.95	15.76	15.16	16.16	16.45	16.15	16.53	16.76	16.39	15.77	15.89	15.99	16.20	15.72	16.02	16.63	16.50	16.84	15.88	16.87	16.72
Total	99.18	99.57	100.46	98.50	100.09	98.72	98.79	98.75	98.50	99.18	98.99	98.89	99.62	100.08	99.69	98.72	99.24	99.32	98.27	98.53	99.25	99.88	99.71	100.07	99.18	99.55	100.08
FORMULE STRUCT																											
Si	2.98	3.00	2.98	3.02	2.98	2.97	2.97	2.98	2.98	2.97	2.98	2.98	3.01	2.98	2.98	2.96	2.96	2.98	2.98	2.97	2.97	2.98	3.00	2.99	2.98	2.98	2.99
Al	1.02	1.00	1.01	0.97	1.01	1.04	1.04	1.03	1.03	1.04	1.02	1.03	0.97	1.02	1.02	1.04	1.05	1.03	1.03	1.04	1.04	1.02	1.01	1.00	1.02	1.02	1.02
Fe ³⁺	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.02	0.03	0.03	0.02	0.02	0.03	0.03	0.04	0.08	0.04	0.02	0.03	0.03	0.03	0.02	0.04	0.03	0.04	0.02	0.04	0.04	0.03	0.02	0.02	0.05	0.02	0.02
K	0.98	0.96	0.97	1.00	1.00	0.96	0.95	0.94	0.91	0.96	0.98	0.97	0.98	0.99	0.97	0.94	0.94	0.95	0.97	0.94	0.95	0.99	0.98	1.00	0.94	1.00	0.99
Total	5.00	5.00	5.00	5.01	5.02	5.00	5.00	5.00	5.00	5.01	5.00	5.01	5.00	5.02	5.00	4.99	4.99	5.00	5.00	5.00	5.01	5.02	5.00	5.01	5.00	5.02	5.01
%Or	0.98	0.97	0.97	0.99	0.98	0.97	0.97	0.96	0.92	0.96	0.98	0.97	0.97	0.98	0.98	0.96	0.97	0.96	0.98	0.96	0.96	0.97	0.98	0.98	0.95	0.98	0.99
%Ab	0.02	0.03	0.03	0.01	0.02	0.03	0.04	0.05	0.09	0.04	0.02	0.03	0.03	0.02	0.02	0.04	0.03	0.04	0.02	0.04	0.04	0.03	0.02	0.02	0.05	0.02	0.02
%An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Position verticale*	43851	43897	43897	42796	46244	46163	46081	46000	45918	45837	54090	54138	54978	58300	58419	58597	58651	58668	58709	58830	59023	58925	63155	63592	70227	70673	71281
Lame	N2	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	
Lame Séquence	N2 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	N3 S3	
Séquence	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	
Séquence N° du cristal	S3 F48-iP57	S3 F13-b	S3 F13-c	S3 F14-iP20	S3 F15-iP21	S3 F16-b	S3 F16	S3 F16	S3 F16	S3 F16-c	S3 F16-c	S3 F16	S3 F16	S3 F16	S3 F16-b	S3 F17	S3 F18	S3 F19-b	S3 F19-c	S3 F19-c	S3 F19-b	S3 F20-iP26	S3 F21-c	S3 F23-iP29	S3 F22-b	S3 F22-c	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃	S3 F48-iP57 86 s3	S3 F13-b 160 s3	S3 F13-c 161 s3	S3 F14-iP20 164 s3	S3 F15-iP21 167 s3	S3 F16-b 169-1 s3	S3 F16 169-2 s3	S3 F16 169-3 s3	S3 F16 169-4 s3	S3 F16-c 169-5 s3	S3 F16-c 169-6 s3	S3 F16 169-7 s3	S3 F16 169-8 s3	S3 F16 169-9 s3	S3 F16-b 169-10 s3	S3 F17 170 s3	S3 F18 175 s3	S3 F19-b 179 s3	S3 F19-c 182 s3	S3 F19-c 183 s3	S3 F19-b 184 s3	S3 F20-iP26 194 s3	S3 F21-c 195 s3	S3 F23-iP29 204 s3	S3 F22-b 206 s3	S3 F22-c 209 s3	
Séquence N° du cristal N° analyse SiO ₂	S3 F48-iP57 86 s3 63.40	S3 F13-b 160 s3 64.24	S3 F13-c 161 s3 64.16	S3 F14-iP20 164 s3 63.60	S3 F15-iP21 167 s3 64.53	S3 F16-b 169-1 s3 64.33	S3 F16 169-2 s3 63.95	S3 F16 169-3 s3 64.23	S3 F16 169-4 s3 63.83	S3 F16-c 169-5 s3 64.14	S3 F16-c 169-6 s3 64.18	S3 F16 169-7 s3 64.29	S3 F16 169-8 s3 64.20	S3 F16 169-9 s3 63.89 18.30	S3 F16-b 169-10 s3 64.18	S3 F17 170 s3 63.49	S3 F18 175 s3 63.21	S3 F19-b 179 s3 63.64	S3 F19-c 182 s3 63.36	S3 F19-c 183 s3 63.41	S3 F19-b 184 s3 63.81	S3 F20-iP26 194 s3 64.07	S3 F21-c 195 s3 64.18	S3 F23-iP29 204 s3 63.68	S3 F22-b 206 s3 64.22	S3 F22-c 209 s3 64.48	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃	S3 F48-iP57 86 s3 63.40 18.88	S3 F13-b 160 s3 64.24 18.50	S3 F13-c 161 s3 64.16 18.48	S3 F14-iP20 164 s3 63.60 18.76	S3 F15-iP21 167 s3 64.53 18.64	S3 F16-b 169-1 s3 64.33 18.63	S3 F16 169-2 s3 63.95 18.50	S3 F16 169-3 s3 64.23 18.48	S3 F16 169-4 s3 63.83 18.42	S3 F16-c 169-5 s3 64.14 18.42	S3 F16-c 169-6 s3 64.18 18.36	S3 F16 169-7 s3 64.29 18.48	S3 F16 169-8 s3 64.20 18.44	S3 F16 169-9 s3 63.89 18.30	S3 F16-b 169-10 s3 64.18 18.34	S3 F17 170 s3 63.49 18.31	S3 F18 175 s3 63.21 18.32	S3 F19-b 179 s3 63.64 19.02	S3 F19-c 182 s3 63.36 18.98	S3 F19-c 183 s3 63.41 18.94	S3 F19-b 184 s3 63.81 18.63	S3 F20-iP26 194 s3 64.07 18.70	S3 F21-c 195 s3 64.18 18.57	S3 F23-iP29 204 s3 63.68 18.98	S3 F22-b 206 s3 64.22 18.45	S3 F22-c 209 s3 64.48 18.52	
Séquence № du cristal № analyse SiO ₂ Al ₂ O ₃ FeO _{tot} MgO CaO	\$3 F48-iP57 86 s3 63.40 18.88 0.09 0.00 0.03	S3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00	S3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.02	S3 F14-iP20 164 s3 63.60 18.76 0.00 0.00 0.01	S3 F15-iP21 167 s3 64.53 18.64 0.07 0.00 0.01	S3 F16-b 169-1 s3 64.33 18.63 0.03 0.01 0.00	S3 F16 169-2 s3 63.95 18.50 0.01 0.01	S3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00	S3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.00	S3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.00	S3 F16-c 169-6 s3 64.18 18.36 0.10 0.02 0.00	\$3 F16 169-7 s3 64.29 18.48 0.07 0.01 0.00	\$3 F16 169-8 s3 64.20 18.44 0.12 0.04 0.00	S3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.00	S3 F16-b 169-10 s3 64.18 18.34 0.10 0.00 0.02	S3 F17 170 s3 63.49 18.31 0.01 0.02 0.01	\$3 F18 175 s3 63.21 18.32 0.14 0.00 0.00	S3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.00	S3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00	S3 F19-c 183 s3 63.41 18.94 0.14 0.04 0.00	S3 F19-b 184 s3 63.81 18.63 0.01 0.00 0.00	S3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.00	\$3 F21-c 195 s3 64.18 18.57 0.05 0.03 0.02	S3 F23-iP29 204 s3 63.68 18.98 0.02 0.02 0.00	S3 F22-b 206 s3 64.22 18.45 0.24 0.05 0.09	S3 F22-c 209 s3 64.48 18.52 0.08 0.02 0.00	
Séquence № du cristal № analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O	\$3 F48-iP57 86 s3 63.40 18.88 0.09 0.00 0.03 0.44	S3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00 0.23	S3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.02 0.19	\$3 F14-iP20 164 s3 63.60 18.76 0.00 0.00 0.01 0.34	\$3 F15-iP21 167 s3 64.53 18.64 0.07 0.00 0.01 0.43	S3 F16-b 169-1 s3 64.33 18.63 0.03 0.01 0.00 0.23	\$3 F16 169-2 s3 63.95 18.50 0.01 0.01 0.01 0.21	S3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00 0.30	S3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.00 0.32	S3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.00 0.22	\$3 F16-c 169-6 \$3 64.18 18.36 0.10 0.02 0.00 0.30	S3 F16 169-7 s3 64.29 18.48 0.07 0.01 0.00 0.16	S3 F16 169-8 s3 64.20 18.44 0.12 0.04 0.00 0.19	\$3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.00 0.21	S3 F16-b 169-10 s3 64.18 18.34 0.10 0.00 0.02 0.19	S3 F17 170 s3 63.49 18.31 0.01 0.02 0.01 0.30	S3 F18 175 s3 63.21 18.32 0.14 0.00 0.00 0.19	S3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.00 0.55	\$3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00 0.42	S3 F19-c 183 s3 63.41 18.94 0.14 0.04 0.00 0.47	S3 F19-b 184 s3 63.81 18.63 0.01 0.00 0.00 0.32	\$3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.00 0.29	\$3 F21-c 195 s3 64.18 18.57 0.05 0.03 0.02 0.25	\$3 F23-iP29 204 s3 63.68 18.98 0.02 0.02 0.00 0.32	S3 F22-b 206 s3 64.22 18.45 0.24 0.05 0.09 0.19	\$3 F22-c 209 s3 64.48 18.52 0.08 0.02 0.00 0.16	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO _{tot} MgO CaO	S3 F48-iP57 86 s3 63.40 18.88 0.09 0.00 0.03 0.44 15.88	S3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00 0.23 16.71	\$3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.02 0.19 16.68	\$3 F14-iP20 164 s3 63.60 18.76 0.00 0.01 0.34 16.27	S3 F15-iP21 167 s3 64.53 18.64 0.07 0.00 0.01 0.43 16.40	S3 F16-b 169-1 s3 64.33 18.63 0.03 0.01 0.00 0.23 16.61	S3 F16 169-2 s3 63.95 18.50 0.01 0.01 0.01 0.21 16.76	S3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00 0.30 16.47	S3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.00 0.32 16.68	S3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.00 0.22 16.73	S3 F16-c 169-6 s3 64.18 18.36 0.10 0.02 0.00 0.30 16.67	S3 F16 169-7 s3 64.29 18.48 0.07 0.01 0.00 0.16 16.71	S3 F16 169-8 s3 64.20 18.44 0.12 0.04 0.00 0.19 16.87	\$3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.00 0.21 16.66	S3 F16-b 169-10 s3 64.18 18.34 0.10 0.00 0.02 0.19 16.59	S3 F17 170 s3 63.49 18.31 0.01 0.02 0.01 0.30 16.68	S3 F18 175 s3 63.21 18.32 0.14 0.00 0.00 0.19 16.68	S3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.00 0.55 15.89	S3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00 0.42 15.69	S3 F19-c 183 s3 63.41 18.94 0.14 0.04 0.00 0.47 15.93	\$3 F19-b 184 s3 63.81 18.63 0.01 0.00 0.00 0.32 16.04	\$3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.00 0.29 16.42	\$3 F21-c 195 s3 64.18 18.57 0.05 0.03 0.02 0.25 16.50	\$3 F23-iP29 204 s3 63.68 18.98 0.02 0.02 0.00 0.32 16.38	S3 F22-b 206 s3 64.22 18.45 0.24 0.05 0.09 0.19 16.67	S3 F22-c 209 s3 64.48 18.52 0.08 0.02 0.00 0.16 16.70	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total	S3 F48-iP57 86 s3 63.40 18.88 0.09 0.00 0.03 0.44 15.88 98.71	S3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00 0.23 16.71 99.77	S3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.02 0.19 16.68 99.67	\$3 F14-iP20 164 s3 63.60 18.76 0.00 0.00 0.01 0.34	\$3 F15-iP21 167 s3 64.53 18.64 0.07 0.00 0.01 0.43	S3 F16-b 169-1 s3 64.33 18.63 0.03 0.01 0.00 0.23	\$3 F16 169-2 s3 63.95 18.50 0.01 0.01 0.01 0.21	S3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00 0.30	S3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.00 0.32	S3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.00 0.22	\$3 F16-c 169-6 \$3 64.18 18.36 0.10 0.02 0.00 0.30	S3 F16 169-7 s3 64.29 18.48 0.07 0.01 0.00 0.16	S3 F16 169-8 s3 64.20 18.44 0.12 0.04 0.00 0.19	\$3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.00 0.21	S3 F16-b 169-10 s3 64.18 18.34 0.10 0.00 0.02 0.19	S3 F17 170 s3 63.49 18.31 0.01 0.02 0.01 0.30	S3 F18 175 s3 63.21 18.32 0.14 0.00 0.00 0.19	S3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.00 0.55	\$3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00 0.42	S3 F19-c 183 s3 63.41 18.94 0.14 0.04 0.00 0.47	S3 F19-b 184 s3 63.81 18.63 0.01 0.00 0.00 0.32	\$3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.00 0.29	\$3 F21-c 195 s3 64.18 18.57 0.05 0.03 0.02 0.25	\$3 F23-iP29 204 s3 63.68 18.98 0.02 0.02 0.00 0.32	S3 F22-b 206 s3 64.22 18.45 0.24 0.05 0.09 0.19	\$3 F22-c 209 s3 64.48 18.52 0.08 0.02 0.00 0.16	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO _{tot} MgO CaO Na ₂ O K ₂ O	S3 F48-iP57 86 s3 63.40 18.88 0.09 0.00 0.03 0.44 15.88 98.71 TURALE (8	\$3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00 0.23 16.71 99.77 Oxygènes	\$3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.02 0.19 16.68 99.67	\$3 F14-iP20 164 s3 63.60 18.76 0.00 0.00 0.01 0.34 16.27 98.98	\$3 F15-iP21 167 s3 64.53 18.64 0.07 0.00 0.01 0.43 16.40 100.07	S3 F16-b 169-1 s3 64.33 18.63 0.03 0.01 0.00 0.23 16.61 99.84	S3 F16 169-2 s3 63.95 18.50 0.01 0.01 0.01 0.21 16.76 99.45	\$3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00 0.30 16.47 99.51	\$3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.00 0.32 16.68 99.26	\$3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.00 0.22 16.73 99.62	\$3 F16-c 169-6 s3 64.18 18.36 0.10 0.02 0.00 0.30 16.67 99.63	\$3 F16 169-7 \$3 64.29 18.48 0.07 0.01 0.00 0.16 16.71 99.72	\$3 F16 169-8 \$3 64.20 18.44 0.12 0.04 0.00 0.19 16.87 99.86	\$3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.00 0.21 16.66 99.23	\$3 F16-b 169-10 s3 64.18 18.34 0.10 0.00 0.02 0.19 16.59 99.42	\$3 F17 170 s3 63.49 18.31 0.01 0.02 0.01 0.30 16.68 98.83	\$3 F18 175 s3 63.21 18.32 0.14 0.00 0.00 0.19 16.68 98.53	\$3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.55 15.89 99.21	\$3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00 0.42 15.69 98.59	\$3 F19-c 183 s3 63.41 18.94 0.14 0.04 0.00 0.47 15.93 98.94	\$3 F19-b 184 s3 63.81 18.63 0.01 0.00 0.00 0.32 16.04 98.81	\$3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.00 0.29 16.42 99.62	S3 F21-c 195 s3 64.18 18.57 0.05 0.03 0.02 0.25 16.50 99.59	\$3 F23-iP29 204 s3 63.68 18.98 0.02 0.02 0.00 0.32 16.38 99.40	\$3 F22-b 206 s3 64.22 18.45 0.24 0.05 0.09 0.19 16.67 99.91	\$3 F22-c 209 s3 64.48 18.52 0.08 0.02 0.00 0.16 16.70 99.96	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total	\$3 F48-IP57 86 s3 63.40 18.88 0.09 0.00 0.03 0.44 15.88 98.71 TURALE (8	S3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00 0.23 16.71 99.77 Oxygène 2.98	S3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.02 0.19 16.68 99.67 98)	\$3 F14-iP20 164 s3 63.60 18.76 0.00 0.00 0.01 0.34 16.27 98.98	\$3 F15-iP21 167 s3 64.53 18.64 0.07 0.00 0.01 0.43 16.40 100.07	\$3 F16-b 169-1 s3 64.33 18.63 0.03 0.01 0.00 0.23 16.61 99.84	\$3 F16 169-2 s3 63.95 18.50 0.01 0.01 0.01 0.21 16.76 99.45	\$3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00 0.30 16.47 99.51	\$3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.02 16.68 99.26	\$3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.00 0.22 16.73 99.62	\$3 F16-c 169-6 s3 64.18 18.36 0.10 0.02 0.00 0.30 16.67 99.63	\$3 F16 169-7 s3 64.29 18.48 0.07 0.01 0.00 0.16 16.71 99.72	\$3 F16 169-8 s3 64.20 18.44 0.12 0.04 0.00 0.19 16.87 99.86	\$3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.00 0.21 16.66 99.23	\$3 F16-b 169-10 s3 64.18 18.34 0.10 0.00 0.02 0.19 16.59 99.42	\$3 F17 170 s3 63.49 18.31 0.01 0.02 0.01 0.30 16.68 98.83	\$3 F18 175 s3 63.21 18.32 0.14 0.00 0.00 0.19 16.68 98.53	\$3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.55 15.89 99.21	\$3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00 0.42 15.69 98.59	\$3 F19-c 183 s3 63.41 18.94 0.14 0.04 0.00 0.47 15.93 98.94	\$3 F19-b 184 s3 63.81 18.63 0.01 0.00 0.00 0.32 16.04 98.81 2.98	\$3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.00 0.29 16.42 99.62	S3 F21-c 195 s3 64.18 18.57 0.05 0.03 0.02 0.25 16.50 99.59	\$3 F23-iP29 204 s3 63.68 18.98 0.02 0.02 0.00 0.32 16.38 99.40	\$3 F22-b 206 s3 64.22 18.45 0.24 0.05 0.09 0.19 16.67 99.91	\$3 F22-c 209 s3 64.48 18.52 0.08 0.02 0.00 0.16 16.70 99.96	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al	\$3 F48-IP57 86 s3 63.40 18.88 0.09 0.00 0.03 0.44 15.88 98.71 TURALE (8	S3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00 0.23 16.71 99.77 Oxygène 2.98 1.01	S3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.02 0.19 16.68 99.67 es) 2.98 1.01	\$3 F14-iP20 164 s3 63.60 18.76 0.00 0.01 0.34 16.27 98.98 2.98 1.03	\$3 F15-iP21 167 s3 64.53 18.64 0.07 0.00 0.01 0.43 16.40 100.07 2.99 1.02	\$3 F16-b 169-1 s3 64.33 18.63 0.03 0.01 0.00 0.23 16.61 99.84 2.98 1.02	\$3 F16 169-2 s3 63.95 18.50 0.01 0.01 0.01 0.21 16.76 99.45 2.98 1.02	\$3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00 0.30 16.47 99.51 2.99 1.01	\$3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.00 0.32 16.68 99.26	\$3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.00 0.22 16.73 99.62 2.99 1.01	\$3 F16-c 169-6 s3 64.18 18.36 0.10 0.02 0.00 0.30 16.67 99.63 2.99 1.01	\$3 F16 169-7 s3 64.29 18.48 0.07 0.01 0.00 0.16 16.71 99.72 2.99 1.01	\$3 F16 169-8 s3 64.20 18.44 0.12 0.04 0.00 0.19 16.87 99.86 2.99 1.01	\$3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.00 0.21 16.66 99.23	\$3 F16-b 169-10 s3 64.18 18.34 0.10 0.00 0.02 0.19 16.59 99.42 2.99 1.01	\$3 F17 170 s3 63.49 18.31 0.01 0.02 0.01 0.30 16.68 98.83 2.98 1.01	\$3 F18 175 s3 63.21 18.32 0.14 0.00 0.00 0.19 16.68 98.53	\$3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.05 15.89 99.21 2.97 1.05	\$3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00 0.42 15.69 98.59 2.97 1.05	\$3 F19-c 183 s3 63.41 18.94 0.14 0.04 0.00 0.47 15.93 98.94 2.97 1.04	\$3 F19-b 184 s3 63.81 18.63 0.01 0.00 0.00 0.32 16.04 98.81 2.98 1.03	\$3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.00 0.29 16.42 99.62 2.98 1.02	\$3 F21-c 195 s3 64.18 18.57 0.05 0.03 0.02 0.25 16.50 99.59 2.98 1.02	\$3 \$723-IP29 204 \$3 63.68 18.98 0.02 0.02 0.00 0.32 16.38 99.40 2.97 1.04	\$3 F22-b 206 s3 64.22 18.45 0.24 0.05 0.09 0.19 16.67 99.91 2.98 1.01	\$3 F22-c 209 s3 64.48 18.52 0.08 0.02 0.00 0.16 16.70 99.96 2.99 1.01	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe³+	\$3 F48-IP57 86 s3 63.40 18.88 0.09 0.00 0.03 0.44 15.88 98.71 TURALE (8 2.97 1.04 0.00	\$3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00 0.23 16.71 99.77 Oxygène 2.98 1.01 0.00	S3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.02 0.19 16.68 99.67 es) 2.98 1.01 0.00	\$3 F14-iP20 164 s3 63.60 18.76 0.00 0.01 0.34 16.27 98.98 2.98 1.03 0.00	\$3 F15-iP21 167 s3 64.53 18.64 0.07 0.00 0.01 0.43 16.40 100.07 2.99 1.02 0.00	\$3 F16-b 169-1 s3 64.33 18.63 0.03 0.01 0.00 0.23 16.61 99.84 2.98 1.02 0.00	\$3 F16 169-2 s3 63.95 18.50 0.01 0.01 0.21 16.76 99.45 2.98 1.02 0.00	\$3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00 0.30 16.47 99.51 2.99 1.01 0.00	\$3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.00 0.32 16.68 99.26 2.99 1.02 0.00	\$3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.02 16.73 99.62 2.99 1.01 0.00	\$3 F16-c 169-6 s3 64.18 18.36 0.10 0.02 0.00 0.30 16.67 99.63 2.99 1.01 0.00	\$3 F16 169-7 s3 64.29 18.48 0.07 0.01 0.00 0.16 16.71 99.72 2.99 1.01 0.00	\$3 F16 169-8 s3 64.20 18.44 0.12 0.04 0.09 16.87 99.86 2.99 1.01 0.00	\$3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.00 0.21 16.66 99.23 2.99 1.01 0.01	\$3 F16-b 169-10 s3 64.18 18.34 0.10 0.00 0.02 0.19 16.59 99.42 2.99 1.01 0.00	\$3 F17 170 s3 63.49 18.31 0.01 0.02 0.01 0.30 16.68 98.83 2.98 1.01 0.00	\$3 F18 175 s3 63.21 18.32 0.14 0.00 0.19 16.68 98.53 2.98 1.02 0.00	\$3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.55 15.89 99.21 2.97 1.05 0.00	\$3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00 0.42 15.69 98.59 2.97 1.05 0.00	\$3 F19-c 183 s3 63.41 18.94 0.14 0.04 0.00 0.47 15.93 98.94 2.97 1.04 0.01	\$3 F19-b 184 s3 63.81 18.63 0.01 0.00 0.32 16.04 98.81 2.98 1.03 0.00	\$3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.09 16.42 99.62 2.98 1.02 0.00	\$3 F21-c 195 s3 64.18 18.57 0.05 0.03 0.02 0.25 16.50 99.59 2.98 1.02 0.00	\$3 F23-iP29 204 s3 63.68 18.98 0.02 0.00 0.32 16.38 99.40 2.97 1.04 0.00	\$3 F22-b 206 s3 64.22 18.45 0.24 0.05 0.09 0.19 16.67 99.91 2.98 1.01	\$3 \$22-c 209 s3 64.48 18.52 0.08 0.02 0.00 0.16 16.70 99.96 2.99 1.01 0.00	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total FORMULE STRUC' Si Al Fe ³⁺ Ca	\$3 F48-IP57 86 s3 63.40 18.88 0.09 0.00 0.03 0.44 15.88 98.71 FURALE (8 2.97 1.04 0.00 0.00	\$3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00 0.23 16.71 99.77 Oxygène 2.98 1.01 0.00 0.00	\$3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.02 0.19 16.68 99.67 2.98 1.01 0.00 0.00	\$3 F14-iP20 164 s3 63.60 18.76 0.00 0.01 0.34 16.27 98.98 2.98 1.03 0.00 0.00	\$3 F15-iP21 167 s3 64.53 18.64 0.07 0.00 0.01 0.43 16.40 100.07 2.99 1.02 0.00 0.00	\$3 F16-b 169-1 s3 64.33 18.63 0.03 0.01 0.00 0.23 16.61 99.84 2.98 1.02 0.00 0.00	\$3 F16 169-2 s3 63.95 18.50 0.01 0.01 0.21 16.76 99.45 2.98 1.02 0.00	\$3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00 0.30 16.47 99.51 2.99 1.01 0.00	\$3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.00 0.32 16.68 99.26 2.99 1.02 0.00 0.00	\$3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.02 16.73 99.62 2.99 1.01 0.00 0.00	\$3 F16-c 169-6 s3 64.18 18.36 0.10 0.02 0.00 0.30 16.67 99.63 2.99 1.01 0.00 0.00	\$3 F16 169-7 s3 64.29 18.48 0.07 0.01 0.00 0.16 16.71 99.72 2.99 1.01 0.00 0.00	\$3 F16 169-8 s3 64.20 18.44 0.12 0.04 0.00 0.19 16.87 99.86 2.99 1.01 0.00 0.00	\$3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.02 116.66 99.23 2.99 1.01 0.01	\$3 F16-b 169-10 s3 64.18 18.34 0.10 0.00 0.02 0.19 16.59 99.42 2.99 1.01 0.00 0.00	\$3 F17 170 s3 63.49 18.31 0.01 0.02 0.01 0.30 16.68 98.83 2.98 1.01 0.00	\$3 F18 175 s3 63.21 18.32 0.14 0.00 0.19 16.68 98.53 2.98 1.02 0.00 0.00	\$3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.05 15.89 99.21 2.97 1.05 0.00	\$3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00 0.42 15.69 98.59 2.97 1.05 0.00 0.00	\$3 F19-c 183 s3 63.41 18.94 0.14 0.00 0.47 15.93 98.94 2.97 1.04 0.01 0.00	\$3 F19-b 184 s3 63.81 18.63 0.01 0.00 0.32 16.04 98.81 2.98 1.03 0.00 0.00	\$3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.09 16.42 99.62 2.98 1.02 0.00 0.00	\$3 \$21-c 195 s3 64.18 18.57 0.05 0.03 0.02 0.25 16.50 99.59 2.98 1.02 0.00 0.00	\$3 F23-IP29 204 s3 63.68 18.98 0.02 0.02 0.00 0.32 16.38 99.40 2.97 1.04 0.00 0.00	\$3 \$22-b 206 s3 64.22 18.45 0.24 0.05 0.09 0.19 16.67 99.91 2.98 1.01 0.01 0.00	\$3 \$22-c 209 s3 64.48 18.52 0.08 0.02 0.00 0.16 16.70 99.96 2.99 1.01 0.00 0.00	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe³+	\$3 F48-IP57 86 \$3 63.40 18.88 0.09 0.00 0.03 0.44 15.88 98.71 TURALE (8 2.97 1.04 0.00 0.00 0.00	\$3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00 0.23 16.71 99.77 Oxygène 2.98 1.01 0.00 0.00 0.00	\$3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.19 16.68 99.67 2.98 1.01 0.00 0.00 0.00	\$3 F14-IP20 164 s3 63.60 18.76 0.00 0.01 0.34 16.27 98.98 2.98 1.03 0.00 0.00 0.00	\$3 F15-iP21 167 s3 64.53 18.64 0.07 0.00 0.01 0.43 16.40 100.07 2.99 1.02 0.00 0.00 0.00	\$3 F16-b 169-1 s3 64.33 18.63 0.03 0.01 0.00 0.23 16.61 99.84 2.98 1.02 0.00 0.00 0.00	\$3 F16 169-2 s3 63.95 18.50 0.01 0.01 0.21 16.76 99.45 2.98 1.02 0.00 0.00	\$3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00 0.30 16.47 99.51 2.99 1.01 0.00 0.00	\$3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.00 0.32 16.68 99.26 2.99 1.02 0.00 0.00 0.00	\$3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.22 16.73 99.62 2.99 1.01 0.00 0.00 0.00	\$3 F16-c 169-6 s3 64.18 18.36 0.10 0.02 0.00 0.30 16.67 99.63 2.99 1.01 0.00 0.00 0.00	\$3 F16 169-7 s3 64.29 18.48 0.07 0.01 0.00 0.16 16.71 99.72 2.99 1.01 0.00 0.00 0.00	\$3 F16 169-8 s3 64.20 18.44 0.12 0.04 0.00 0.19 16.87 99.86 2.99 1.01 0.00 0.00 0.00	\$3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.00 0.21 16.66 99.23 2.99 1.01 0.01 0.00	\$3 F16-b 169-10 s3 64.18 18.34 0.10 0.00 0.02 0.19 16.59 99.42 2.99 1.01 0.00 0.00 0.00 0.00 0.00	\$3 F17 170 s3 63.49 18.31 0.01 0.02 0.01 0.30 16.68 98.83 2.98 1.01 0.00 0.00	\$3 F18 175 s3 63.21 18.32 0.14 0.00 0.19 16.68 98.53 2.98 1.02 0.00 0.00 0.00	\$3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.55 15.89 99.21 2.97 1.05 0.00 0.00	\$3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00 0.42 15.69 98.59 2.97 1.05 0.00 0.00 0.00	\$3 F19-c 183 s3 63.41 18.94 0.14 0.00 0.47 15.93 98.94 2.97 1.04 0.01 0.00 0.01	\$3 \$19-b 184 s3 63.81 18.63 0.01 0.00 0.32 16.04 98.81 2.98 1.03 0.00 0.00 0.00	\$3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.00 0.29 16.42 99.62 2.98 1.02 0.00 0.00 0.00 0.00	\$3 \$21-c 195 s3 64.18 18.57 0.05 0.03 0.02 0.25 16.50 99.59 2.98 1.02 0.00 0.00 0.00	\$3 F23-IP29 204 s3 63.68 18.98 0.02 0.02 0.03 16.38 99.40 2.97 1.04 0.00 0.03	\$3 \$22-b 206 s3 64.22 18.45 0.24 0.05 0.09 0.19 16.67 99.91 2.98 1.01 0.01 0.00 0.02	\$3 \$22-c 209 s3 64.48 18.52 0.08 0.02 0.00 0.16 16.70 99.96 2.99 1.01 0.00 0.00 0.00	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K	\$3 F48-IP57 86 s3 63.40 18.88 0.09 0.00 0.03 0.44 15.88 98.71 TURALE (8 2.97 1.04 0.00 0.00 0.00 0.00	\$3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00 0.23 16.71 99.77 Oxygène 2.98 1.01 0.00	\$3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.19 16.68 99.67 98) 2.98 1.01 0.00 0.00 0.02 0.99	\$3 F14-IP20 164 s3 63.60 18.76 0.00 0.01 0.34 16.27 98.98 2.98 1.03 0.00 0.00 0.01	\$3 F15-iP21 167 s3 64.53 18.64 0.07 0.00 0.01 0.43 16.40 100.07 2.99 1.02 0.00 0.00 0.04 0.00	\$3 F16-b 169-1 s3 64.33 18.63 0.03 0.01 0.00 0.23 16.61 99.84 2.98 1.02 0.00 0.00 0.00	\$3 F16 169-2 s3 63.95 18.50 0.01 0.01 0.21 16.76 99.45 2.98 1.02 0.00 0.00 0.02	\$3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00 0.30 16.47 99.51 2.99 1.01 0.00 0.00 0.03	\$3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.02 16.68 99.26 2.99 1.02 0.00 0.03 0.00	\$3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.22 16.73 99.62 2.99 1.01 0.00 0.00 0.00 0.00	\$3 F16-c 169-6 s3 64.18 18.36 0.10 0.02 0.00 0.30 16.67 99.63 2.99 1.01 0.00	\$3 F16 169-7 s3 64.29 18.48 0.07 0.01 0.00 0.16 16.71 99.72 2.99 1.01 0.00 0	\$3 F16 169-8 s3 64.20 18.44 0.12 0.04 0.00 0.19 16.87 99.86 2.99 1.01 0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 1	\$3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.00 0.21 16.66 99.23 2.99 1.01 0.01 0.00 0.02 0.09	\$3 F16-b 169-10 s3 64.18 18.34 0.10 0.00 0.02 0.19 16.59 99.42 2.99 1.01 0.00 0.00 0.02 0.99	\$3 F17 170 s3 63.49 18.31 0.01 0.02 0.01 0.30 16.68 98.83 2.98 1.01 0.00 0.00 0.03 1.00	\$3 F18 175 s3 63.21 18.32 0.14 0.00 0.09 16.68 98.53 2.98 1.02 0.00 0.00 0.00 1.00 0.00 1.0	\$3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.55 15.89 99.21 2.97 1.05 0.00 0.00 0.05 0.00	\$3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00 0.42 15.69 98.59 2.97 1.05 0.00 0.00 0.04 0.00 0	\$3 F19-c 183 s3 63.41 18.94 0.14 0.00 0.47 15.93 98.94 2.97 1.04 0.01 0.00 0.04 0.01	\$3 F19-b 184 s3 63.81 18.63 0.01 0.00 0.32 16.04 98.81 2.98 1.03 0.00 0.00 0.00 0.00 0.00	\$3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.29 16.42 99.62 2.98 1.02 0.00 0.00 0.00 0.00	\$3 F21-c 195 s3 64.18 18.57 0.05 0.03 0.02 0.25 16.50 99.59 2.98 1.02 0.00 0.00 0.02 0.98	\$3 F23-IP29 204 s3 63.68 18.98 0.02 0.02 0.00 0.32 16.38 99.40 2.97 1.04 0.00 0.00 0.03 0.03 0.97	\$3 \$22-b 206 s3 64.22 18.45 0.24 0.05 0.09 0.19 16.67 99.91 2.98 1.01 0.01 0.00 0.02 0.99	\$3 \$22-6 209 \$3 64.48 18.52 0.08 0.02 0.00 0.16 16.70 99.96 2.99 1.01 0.00 0.00 0.01	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total FORMULE STRUC' Si Al Fe ³⁺ Ca	\$3 F48-IP57 86 \$3 63.40 18.88 0.09 0.00 0.03 0.44 15.88 98.71 TURALE (8 2.97 1.04 0.00 0.00 0.00	\$3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00 0.23 16.71 99.77 Oxygène 2.98 1.01 0.00 0.00 0.00	\$3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.19 16.68 99.67 2.98 1.01 0.00 0.00 0.00	\$3 F14-IP20 164 s3 63.60 18.76 0.00 0.01 0.34 16.27 98.98 2.98 1.03 0.00 0.00 0.00	\$3 F15-iP21 167 s3 64.53 18.64 0.07 0.00 0.01 0.43 16.40 100.07 2.99 1.02 0.00 0.00 0.00	\$3 F16-b 169-1 s3 64.33 18.63 0.03 0.01 0.00 0.23 16.61 99.84 2.98 1.02 0.00 0.00 0.00	\$3 F16 169-2 s3 63.95 18.50 0.01 0.01 0.21 16.76 99.45 2.98 1.02 0.00 0.00	\$3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00 0.30 16.47 99.51 2.99 1.01 0.00 0.00	\$3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.00 0.32 16.68 99.26 2.99 1.02 0.00 0.00 0.00	\$3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.22 16.73 99.62 2.99 1.01 0.00 0.00 0.00	\$3 F16-c 169-6 s3 64.18 18.36 0.10 0.02 0.00 0.30 16.67 99.63 2.99 1.01 0.00 0.00 0.00	\$3 F16 169-7 s3 64.29 18.48 0.07 0.01 0.00 0.16 16.71 99.72 2.99 1.01 0.00 0.00 0.00	\$3 F16 169-8 s3 64.20 18.44 0.12 0.04 0.00 0.19 16.87 99.86 2.99 1.01 0.00 0.00 0.00	\$3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.00 0.21 16.66 99.23 2.99 1.01 0.01 0.00	\$3 F16-b 169-10 s3 64.18 18.34 0.10 0.00 0.02 0.19 16.59 99.42 2.99 1.01 0.00 0.00 0.00 0.00 0.00	\$3 F17 170 s3 63.49 18.31 0.01 0.02 0.01 0.30 16.68 98.83 2.98 1.01 0.00 0.00	\$3 F18 175 s3 63.21 18.32 0.14 0.00 0.19 16.68 98.53 2.98 1.02 0.00 0.00 0.00	\$3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.55 15.89 99.21 2.97 1.05 0.00 0.00	\$3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00 0.42 15.69 98.59 2.97 1.05 0.00 0.00 0.00	\$3 F19-c 183 s3 63.41 18.94 0.14 0.00 0.47 15.93 98.94 2.97 1.04 0.01 0.00 0.01	\$3 \$19-b 184 s3 63.81 18.63 0.01 0.00 0.32 16.04 98.81 2.98 1.03 0.00 0.00 0.00	\$3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.00 0.29 16.42 99.62 2.98 1.02 0.00 0.00 0.00 0.00	\$3 \$21-c 195 s3 64.18 18.57 0.05 0.03 0.02 0.25 16.50 99.59 2.98 1.02 0.00 0.00 0.00	\$3 F23-IP29 204 s3 63.68 18.98 0.02 0.02 0.03 16.38 99.40 2.97 1.04 0.00 0.03	\$3 \$22-b 206 s3 64.22 18.45 0.24 0.05 0.09 0.19 16.67 99.91 2.98 1.01 0.01 0.00 0.02	\$3 \$22-c 209 s3 64.48 18.52 0.08 0.02 0.00 0.16 16.70 99.96 2.99 1.01 0.00 0.00 0.00	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe³+ Ca Na K Total	\$3 F48-IP57 86 s3 63.40 18.88 0.09 0.00 0.03 0.44 15.88 98.71 TURALE (8 2.97 1.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04	\$3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00 0.23 16.71 99.77 Oxygène 2.98 1.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00	S3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.19 16.68 99.67 38) 2.98 1.01 0.00 0.00 0.02 0.99 5.01	\$3 F14-iP20 164 s3 63.60 18.76 0.00 0.01 0.34 16.27 98.98 2.98 1.03 0.00 0.00 0.01 5.01	\$3 F15-iP21 167 s3 64.53 18.64 0.07 0.00 0.01 0.43 16.40 100.07 2.99 1.02 0.00 0.00 0.01 1.02 0.00 0.00 1.02 0.00 0.00 1.02 0.00 0.00 0.01 1.02 0.00 0.00 0.00 0.01 1.02 0.00 0.00 0.00 0.00 1.03 1.04 0.05 0.00 0.00 1.04 1.05 0.05 0.00 0.00 1.05 0.00 0.00 1.05 0.00 0.00 1.05 0.00 0.00 1.05 0.00 0.00 1.05 0.00 0.00 1.05 0.00 0.00 1.05 0.00 0.00 1.05 0.00 0.00 1.05 0.00 0.00 0.00 0.00 1.00 0.0	\$3 F16-b 169-1 s3 64.33 18.63 0.03 0.01 0.00 0.23 16.61 99.84 2.98 1.02 0.00	\$3 F16 169-2 s3 63.95 18.50 0.01 0.01 0.21 16.76 99.45 2.98 1.02 0.00 0.00 0.00 1	\$3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00 0.30 16.47 99.51 2.99 1.01 0.00 0.00 0.03 0.00	\$3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.00 0.32 16.68 99.26 2.99 1.02 0.00 0.00 0.03 0.99 5.02	\$3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.02 16.73 99.62 2.99 1.01 0.00 0.00 0.00 0.02 0.09 5.01	\$3 F16-c 169-6 s3 64.18 18.36 0.10 0.02 0.00 0.30 16.67 99.63 2.99 1.01 0.00 0.00 0.00 0.30 16.67	\$3 F16 169-7 s3 64.29 18.48 0.07 0.01 0.00 0.16 16.71 99.72 2.99 1.01 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 1.00 0	\$3 F16 169-8 s3 64-20 18.44 0.12 0.04 0.00 0.19 16.87 99.86 2.99 1.01 0.00 0.00 0.00 1.00 0.02 1.00 5.02	\$3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.00 0.21 16.66 99.23 2.99 1.01 0.01 0.00 0.02 0.99 5.01	\$3 F16-b 169-10 s3 64.18 18.34 0.10 0.00 0.02 0.19 16.59 99.42 2.99 1.01 0.00 0.00 0.00 0.00 2.99 5.01	\$3 F17 170 s3 63.49 18.31 0.01 0.02 0.01 16.68 98.83 2.98 1.01 0.00 0.00 0.03 1.00 5.03	\$3 F18 175 s3 63.21 18.32 0.14 0.00 0.09 16.68 98.53 2.98 1.02 0.00 0.00 0.00 0.00 0.00 1.00 5.02	\$3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.05 15.89 99.21 2.97 1.05 0.00 0.00 0.00 0.00 0.00 0.05 1.05 0.00 0	\$3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00 0.42 15.69 98.59 2.97 1.05 0.00 0.00 0.04 4.99	\$3 F19-c 183 s3 63.41 18.94 0.14 0.00 0.47 15.93 98.94 2.97 1.04 0.01 0.00 0.04 0.01	\$3 F19-b 184 s3 63.81 18.63 0.01 0.00 0.32 16.04 98.81 2.98 1.03 0.00 0.00 0.00 5.00	\$3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.00 0.29 16.42 99.62 2.98 1.02 0.00 0.00 0.00 0.00 5.00	\$3 F21-c 195 s3 64.18 18.57 0.05 0.03 0.02 0.25 16.50 99.59 2.98 1.02 0.00 0.00 0.00 0.02 0.98 5.00	\$3 F23-iP29 204 s3 63.68 18.98 0.02 0.00 0.32 16.38 99.40 2.97 1.04 0.00 0.00 0.00 0.00 0.00 0.003 0.97 5.02	\$3 F22-b 206 s3 64.22 18.45 0.24 0.05 0.09 16.67 99.91 2.98 1.01 0.00 0.02 0.99 5.01	\$3 \$22-6 209 s3 64.48 18.52 0.08 0.02 0.00 0.16 16.70 99.96 2.99 1.01 0.00 0.00 0.00 0.01 0.00 0.01	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total	\$3 F48-IP57 86 s3 63.40 18.88 0.09 0.00 0.03 0.44 15.88 98.71 TURALE (8 2.97 1.04 0.00 0.00 0.04 0.55 5.00	\$3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00 0.23 16.71 99.77 Oxygène 2.98 1.01 0.00 0.00 0.00 0.00 0.00 0.03 16.71 99.77 Oxygène 2.98 1.01 0.00	S3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.02 0.19 16.68 99.67 98) 2.98 1.01 0.00 0.00 0.02 0.99 5.01	\$3 F14-IP20 164 s3 63.60 18.76 0.00 0.01 0.34 16.27 98.98 2.98 1.03 0.00 0.00 0.01 1.03	\$3 F15-iP21 167 s3 64.53 18.64 0.07 0.01 0.43 16.40 100.07 2.99 1.02 0.00 0.00 0.01 1.02 0.00 0.00 0.01 1.02 0.00 0.00 0.01 1.02 0.00 0.00 0.01 1.02 0.00 0.00 0.01 1.02 0.00 0.00 0.00 0.01 1.02 0.00 0.00 0.00 0.00 1.02 0.00 0.00 0.00 0.00 0.00 1.02 0.00 0.0	\$3 F16-b 169-1 s3 64.33 18.63 0.03 0.01 0.00 0.23 16.61 99.84 2.98 1.02 0.00	\$3 F16 169-2 s3 63.95 18.50 0.01 0.01 0.21 16.76 99.45 2.98 1.02 0.00 0.00 0.02 1.00 5.02	\$3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00 0.30 16.47 99.51 2.99 1.01 0.00 0.00 0.03 5.01	\$3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.00 0.32 16.68 99.26 2.99 1.02 0.00 0.00 0.03 0.99 5.02	\$3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.02 16.73 99.62 2.99 1.01 0.00 0.00 0.02 0.09 5.01	\$3 F16-c 169-6 s3 64.18 18.36 0.10 0.02 0.00 16.67 99.63 2.99 1.01 0.00	\$3 F16 169-7 s3 64.29 18.48 0.07 0.01 0.00 0.16 16.71 99.72 2.99 1.01 0.00 0.00 0.00 1.09 5.01	\$3 F16 169-8 s3 64-20 18.44 0.12 0.04 0.00 0.19 16.87 99.86 2.99 1.01 0.00 0.00 0.02 1.00 5.02	\$3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.00 0.21 16.66 99.23 2.99 1.01 0.01 0.00 0.02 0.99 5.01	\$3 F16-b 169-10 s3 64.18 18.34 0.10 0.00 0.02 0.19 16.59 99.42 2.99 1.01 0.00 0.00 0.02 2.99 5.01	\$3 F17 170 s3 63.49 18.31 0.01 0.30 16.68 98.83 2.98 1.01 0.00 0.03 1.00 5.03	\$3 F18 175 s3 63.21 18.32 0.14 0.00 0.00 0.19 16.68 98.53 2.98 1.02 0.00 0.0	\$3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.05 15.89 99.21 2.97 1.05 0.00 0.00 0.05 5.01	\$3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00 0.42 15.69 98.59 2.97 1.05 0.00 0.00 0.04 4.99 0.96	\$3 F19-c 183 s3 63.41 18.94 0.14 0.00 0.47 15.93 98.94 2.97 1.04 0.01 0.00 0.04 0.01 0.01 0.01 0.00 0.04 0.01 0.02 0.03 0.04 0.04 0.05 0	\$3 F19-b 184 s3 63.81 18.63 0.01 0.00 0.32 16.04 98.81 2.98 1.03 0.00	\$3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.29 16.42 99.62 2.98 1.02 0.00	\$3 F21-c 195 s3 64.18 18.57 0.05 0.03 0.025 16.50 99.59 2.98 1.02 0.00 0.00 0.02 0.98 5.00	\$3 F23-iP29 204 s3 63.68 18.98 0.02 0.00 0.32 16.38 99.40 2.97 1.04 0.00 0.00 0.03 0.07 5.02	\$3 F22-b 206 s3 64.22 18.45 0.24 0.05 0.09 16.67 99.91 2.98 1.01 0.01 0.00 0.02 0.99 5.01	\$3 \$22-6 209 s3 64.48 18.52 0.08 0.02 0.00 0.16 16.70 99.96 2.99 1.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO ₁₀₀ MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Re Na K Total %Or %Ab	\$3 F48-IP57 86 s3 63.40 18.88 0.09 0.00 0.03 0.44 15.88 98.71 TURALE (8 2.97 1.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.95 5.000 0.96 0.04	\$3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00 0.23 16.71 99.77 Oxygène 2.98 1.01 0.00 0.02 0.99 5.01 0.98 0.02	S3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.09 16.68 99.67 es) 2.98 1.01 0.00 0.00 0.02 0.99 5.01	\$3 F14-IP20 164 s3 63.60 18.76 0.00 0.01 0.34 16.27 98.98 2.98 1.03 0.00 0.00 0.01 5.01	\$3 F15-IP21 167 s3 64.53 18.64 0.07 0.00 0.01 0.43 16.40 100.07 2.99 1.02 0.00 0.00 0.04 0.97 5.01	\$3 F16-b 169-1 s3 64.33 18.63 0.01 0.00 0.23 16.61 99.84 2.98 1.02 0.00 0.00 0.02 0.98 5.00 0.98 0.02	\$3 F16 169-2 s3 63.95 18.50 0.01 0.01 0.21 16.76 99.45 2.98 1.02 0.00 0	\$3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00 0.30 16.47 99.51 2.99 1.01 0.00 0.00 0.03 0.98 5.01	\$3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.00 0.32 16.68 99.26 2.99 1.02 0.00 0.03 0.99 5.02	\$3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.02 16.73 99.62 2.99 1.01 0.00 0.00 0.02 0.95 1.01 0.00 0.00 0.02 0.99 5.01	\$3 F16-c 169-6 s3 64.18 18.36 0.10 0.02 0.00 16.67 99.63 2.99 1.01 0.00 0.03 0.99 5.02 0.97 0.03	\$3 F16 169-7 s3 64.29 18.48 0.07 0.01 0.00 0.16 16.71 99.72 2.99 1.01 0.00 0.00 0.01 0.99 5.01 0.99 0.01	\$3 F16 169-8 s3 64.20 18.44 0.12 0.04 0.00 0.19 16.87 99.86 2.99 1.01 0.00 0.00 0.02 1.00 5.02 0.98 0.02	\$3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.00 0.21 16.66 99.23 2.99 1.01 0.00 0.02 0.99 5.01	\$3 F16-b 169-10 s3 64.18 18.34 0.10 0.02 0.19 16.59 99.42 2.99 1.01 0.00 0.02 0.99 5.01 0.98 0.02	\$3 F17 170 s3 63.49 18.31 0.01 0.30 16.68 98.83 2.98 1.01 0.00 0.03 1.00 5.03	\$3 F18 175 s3 63.21 18.32 0.14 0.00 0.00 0.19 16.68 98.53 2.98 1.02 0.00 0.0	\$3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.05 15.89 99.21 2.97 1.05 0.00 0.00 0.05 5.01 0.95 5.01	\$3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00 0.42 15.69 98.59 2.97 1.05 0.00 0.00 0.04 4.99 0.96 0.04	\$3 F19-c 183 s3 63.41 18.94 0.14 0.00 0.47 15.93 98.94 2.97 1.04 0.01 0.00 0.04 0.05 5.01	\$3 F19-b 184 s3 63.81 18.63 0.01 0.00 0.32 16.04 98.81 2.98 1.03 0.00	\$3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.00 0.29 16.42 99.62 2.98 1.02 0.00 0.00 0.03 0.97 5.00 0.98 0.03	\$3 F21-c 195 s3 64.18 18.57 0.05 0.03 0.02 0.25 16.50 99.59 2.98 1.02 0.00 0.00 0.02 0.98 5.00 0.98 0.02	\$3 F23-iP29 204 s3 63.68 18.98 0.02 0.00 0.32 16.38 99.40 2.97 1.04 0.00 0.03 0.97 5.02	\$3 F22-b 206 s3 64.22 18.45 0.24 0.05 0.09 0.19 16.67 99.91 2.98 1.01 0.00 0.02 0.99 5.01 0.98 0.02	\$3 \$22-6 209 s3 64.48 18.52 0.08 0.02 0.00 0.16 16.70 99.96 2.99 1.01 0.00 0.00 0.01 0.99 5.00	
Séquence N° du cristal N° analyse SiO ₂ Al ₂ O ₃ FeO tot MgO CaO Na ₂ O K ₂ O Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total	\$3 F48-IP57 86 s3 63.40 18.88 0.09 0.00 0.03 0.44 15.88 98.71 TURALE (8 2.97 1.04 0.00 0.00 0.04 0.55 5.00	\$3 F13-b 160 s3 64.24 18.50 0.08 0.01 0.00 0.23 16.71 99.77 Oxygène 2.98 1.01 0.00 0.00 0.00 0.00 0.00 0.03 16.71 99.77 Oxygène 2.98 1.01 0.00	S3 F13-c 161 s3 64.16 18.48 0.12 0.02 0.02 0.19 16.68 99.67 98) 2.98 1.01 0.00 0.00 0.02 0.99 5.01	\$3 F14-IP20 164 s3 63.60 18.76 0.00 0.01 0.34 16.27 98.98 2.98 1.03 0.00 0.00 0.01 1.03	\$3 F15-iP21 167 s3 64.53 18.64 0.07 0.01 0.43 16.40 100.07 2.99 1.02 0.00 0.00 0.01 1.02 0.00 0.00 0.01 1.02 0.00 0.00 0.01 1.02 0.00 0.00 0.01 1.02 0.00 0.00 0.01 1.02 0.00 0.00 0.00 0.01 1.02 0.00 0.00 0.00 0.00 1.02 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.0	\$3 F16-b 169-1 s3 64.33 18.63 0.03 0.01 0.00 0.23 16.61 99.84 2.98 1.02 0.00	\$3 F16 169-2 s3 63.95 18.50 0.01 0.01 0.21 16.76 99.45 2.98 1.02 0.00 0.00 0.02 1.00 5.02	\$3 F16 169-3 s3 64.23 18.48 0.01 0.03 0.00 0.30 16.47 99.51 2.99 1.01 0.00 0.00 0.03 5.01	\$3 F16 169-4 s3 63.83 18.42 0.00 0.01 0.00 0.32 16.68 99.26 2.99 1.02 0.00 0.00 0.03 0.99 5.02	\$3 F16-c 169-5 s3 64.14 18.42 0.11 0.00 0.02 16.73 99.62 2.99 1.01 0.00 0.00 0.02 0.09 5.01	\$3 F16-c 169-6 s3 64.18 18.36 0.10 0.02 0.00 16.67 99.63 2.99 1.01 0.00	\$3 F16 169-7 s3 64.29 18.48 0.07 0.01 0.00 0.16 16.71 99.72 2.99 1.01 0.00 0.00 0.00 1.09 5.01	\$3 F16 169-8 s3 64-20 18.44 0.12 0.04 0.00 0.19 16.87 99.86 2.99 1.01 0.00 0.00 0.02 1.00 5.02	\$3 F16 169-9 s3 63.89 18.30 0.15 0.02 0.00 0.21 16.66 99.23 2.99 1.01 0.01 0.00 0.02 0.99 5.01	\$3 F16-b 169-10 s3 64.18 18.34 0.10 0.00 0.02 0.19 16.59 99.42 2.99 1.01 0.00 0.00 0.02 2.99 5.01	\$3 F17 170 s3 63.49 18.31 0.01 0.30 16.68 98.83 2.98 1.01 0.00 0.03 1.00 5.03	\$3 F18 175 s3 63.21 18.32 0.14 0.00 0.00 0.19 16.68 98.53 2.98 1.02 0.00 0.0	\$3 F19-b 179 s3 63.64 19.02 0.12 0.00 0.05 15.89 99.21 2.97 1.05 0.00 0.00 0.00 0.00 0.00 0.00	\$3 F19-c 182 s3 63.36 18.98 0.10 0.04 0.00 0.42 15.69 98.59 2.97 1.05 0.00 0.00 0.04 4.99 0.96	\$3 F19-c 183 s3 63.41 18.94 0.14 0.00 0.47 15.93 98.94 2.97 1.04 0.01 0.00 0.04 0.01 0.01 0.01 0.00 0.04 0.01 0.02 0.03 0.04 0.04 0.05 0	\$3 F19-b 184 s3 63.81 18.63 0.01 0.00 0.32 16.04 98.81 2.98 1.03 0.00	\$3 F20-iP26 194 s3 64.07 18.70 0.13 0.00 0.29 16.42 99.62 2.98 1.02 0.00	\$3 F21-c 195 s3 64.18 18.57 0.05 0.03 0.025 16.50 99.59 2.98 1.02 0.00 0.00 0.02 0.98 5.00	\$3 F23-iP29 204 s3 63.68 18.98 0.02 0.00 0.32 16.38 99.40 2.97 1.04 0.00 0.00 0.03 0.07 5.02	\$3 F22-b 206 s3 64.22 18.45 0.24 0.05 0.09 16.67 99.91 2.98 1.01 0.01 0.00 0.02 0.99 5.01	\$3 \$22-6 209 s3 64.48 18.52 0.08 0.02 0.00 0.16 16.70 99.96 2.99 1.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0	

Annexe 5d Feldspaths potassiques suite 2

%Or

%Ab

%An

0.96

0.04

0.00

0.96

0.04

0.00

0.03

0.00

0.98

0.02

0.00

0.87

0.13

0.00

0.95

0.05

0.00

0.97

0.03

0.00

0.98

0.02

0.00

0.98

0.02

0.00

Lame	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2
Séquence	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3
N° du cristal	F24-s	F24-s	F24-s	F24-s	F24-s	F24-b	F24-b	F24-b	F24-b	F24-s	F24-s	F24-s	F30	F29-iA44	F31	F25-c	F25-b	F32-iA48	F33-iA49	F28-c	F28-b	F10	F10	F10	F10	F10	F10
N° analyse	217-1 s3	217-2 s3	217-3 s3	217-4 s3	217-5 s3		217-7 s3	217-8 s3		217-10 s3	218 s3	219 s4	312 s4	311 s4	328 s4	232 s4	233 s4	349 s4	356 s4	273 s4	274 s4	37-2 s2 T		37-7 s2 T		37-9 s2 T 3	
SiO ₂	64.26	64.57	64.17	64.37	63.74	64.27	63.34	63.45	63.55	64.58	66.00	65.54	64.00	63.41	64.08	66.88	65.25	63.58	63.24	64.50	62.85	65.18	64.61	66.50	64.98	65.06	66.20
Al_2O_3	18.38	18.50	18.49	18.62	18.62	18.87	18.81	18.85	18.85	18.92	16.29	16.09	18.25	17.83	17.94	18.22	17.62	17.93	18.18	16.74	17.03	18.15	18.58	19.53	18.45	18.49	18.78
FeO _{tot}	0.10	0.09	0.14	0.03	0.00	0.08	0.13	0.08	0.08	0.12	0.08	0.14	0.23	0.41	0.18	0.19	0.09	0.42	0.32	0.00	0.06	0.03	0.12	0.11	0.12	0.33	0.22
MgO	0.03	0.00	0.03	0.03	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CaO	0.04	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.01	0.08	0.00	0.00	0.00
Na ₂ O	0.21	0.23	0.21	0.23	0.35	0.23	0.31	0.27	0.40	0.20	0.27	0.19	0.20	0.40	0.44	0.19	0.15	0.25	0.32	0.29	0.42	0.16	0.47	6.98	0.21	0.35	6.44
K₂O	16.88	16.61	16.56	16.33	16.31	16.23	15.89	16.32	15.73	16.62	15.53	16.59	16.59	15.97	15.97	13.71	15.88	16.34	15.80	16.58	15.93	16.48	16.18	7.52	16.58	16.31	8.56
Total	99.89	100.02	99.59	99.60	99.03	99.67	98.48	98.97	98.63	100.45	98.18	98.55	99.26	98.01	98.60	99.20	98.99	98.62	97.87	98.11	96.30	99.99	99.98	100.72	100.34	100.54	100.20
FORMULE STRUC	TURALE (8	Oxygène	s)																								
Si	2.99	2.99	2.98	2.99	2.98	2.98	2.97	2.97	2.97	2.98	3.09	3.08	2.99	2.99	3.00	3.06	3.04	2.99	2.99	3.05	3.02	3.01	2.99	2.97	3.00	2.99	2.98
Al	1.01	1.01	1.01	1.02	1.03	1.03	1.04	1.04	1.04	1.03	0.90	0.89	1.00	0.99	0.99	0.98	0.97	0.99	1.01	0.93	0.97	0.99	1.01	1.03	1.00	1.00	1.00
Fe ³⁺	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.02	0.02	0.02	0.02	0.03	0.02	0.03	0.02	0.04	0.02	0.02	0.02	0.02	0.04	0.04	0.02	0.01	0.02	0.03	0.03	0.04	0.01	0.04	0.60	0.02	0.03	0.56
K	1.00	0.98	0.98	0.97	0.97	0.96	0.95	0.97	0.94	0.98	0.93	0.99	0.99	0.96	0.96	0.80	0.94	0.98	0.95	1.00	0.98	0.97	0.95	0.43	0.98	0.96	0.49
Total	5.02	5.01	5.00	5.00	5.01	4.99	5.00	5.01	4.99	5.01	4.94	4.98	5.01	5.00	4.99	4.87	4.97	5.01	4.99	5.00	5.01	4.99	5.00	5.04	5.00	5.00	5.04
%Or	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
%Ab	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
%An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Position verticale*	86488	86544	86600	86657	86713	86769	86825	86938	86994	90050	91090	91113	88895	88925	92025	92319	92382	96229	103320	105634	106095	107403	108684	108724	108763	108803	108842
Lame	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4S2	N4 S1	N4 S1				
Séquence	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S2	S2				
N° du cristal	F10	F10	F10	F10	F10	F10	F10	F10	F10	F10	F10	F10	F8	F8	F8	F8	F8	F8	F9	F9	F9	F3-c-iA17	F6-c-iA37				
N° analyse	36-2 s2 L	36-3 s2 L	36-4 s2 L	36-5 s2 L	36-8 s2 L	36-9 s2 L 3	6-10 s2 L 3	36-11 s2 L 3	36-12 s2 L 3	86-13 s2 L 3	6-14 s2 L 3	6-15 s2 L	4-1 s2 T	4-2 s2 T	4-3 s2 T	4-4 s2 T	4-5 s2 T	4-6 s2 T	31-1 s2	31-2 s2	31-10 s2	111 s1	213 s1				
SiO ₂	64.18	64.18	64.34	63.96	65.33	64.43	64.67	64.37	64.93	64.30	64.21	64.37	64.51	64.97	64.49	65.10	64.62	64.65	65.27	63.61	64.48	63.56	64.64				
Al ₂ O ₃	18.82	18.81	18.62	18.36	18.50	18.70	18.71	18.75	18.62	18.99	18.66	18.54	17.44	18.26	18.57	17.70	18.54	18.46	18.41	18.59	18.45	17.95	17.86				
FeO tot	0.14	0.03	0.01	0.00	0.17	0.04	0.16	0.05	0.21	0.07	0.17	0.35	0.51	0.18	0.06	0.13	0.18	0.18	0.12	0.13	0.02	0.52	0.47				
MgO	-0.01	0.00	0.00	0.01	0.04	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.39	0.02	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02				
CaO	0.02	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.01	0.00	0.01	0.05	0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05				
Na ₂ O	0.47	0.40	0.36	0.19	1.47	0.54	0.31	0.23	0.27	0.46	0.63	0.33	0.21	0.19	0.28	0.20	0.22	0.14	0.35	0.26	0.41	0.27	0.24				
K ₂ O	15.92	15.94	16.10	16.45	14.64	15.92	16.32	16.20	16.77	15.85	15.67	16.14	16.57	16.84	16.70	16.46	16.82	16.50	16.38	16.15	16.69	16.24	15.57				
Total	99.52	99.37	99.43	98.98	100.20	99.63	100.18	99.61	100.81	99.69	99.35	99.78	99.94	100.45	100.11	99.59	100.38	99.93	100.53	98.75	100.05	98.54	98.86				
FORMULE STRUC	TURALE (8	Oxygène	s)																								
Si	2.98	2.98	2.99	2.99	3.00	2.99	2.98	2.99	2.99	2.98	2.98	2.98	3.00	3.00	2.99	3.02	2.99	3.00	3.00	2.98	2.99	2.99	3.01				
AI	1.03	1.03	1.02	1.01	1.00	1.02	1.02	1.03	1.01	1.04	1.02	1.01	0.96	0.99	1.01	0.97	1.01	1.01	1.00	1.03	1.01	0.99	0.98				
Fe ³⁺	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.01	0.02	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.02	0.02				
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Ca																											
	0.04	0.04	0.03	0.02	0.13	0.05	0.03	0.02	0.02	0.04	0.06	0.03	0.02	0.02	0.03	0.02	0.02	0.01	0.03	0.02	0.04	0.02	0.02				
Ca Na K			0.03 0.95	0.02 0.98	0.13 0.86	0.05 0.94	0.03 0.96	0.02 0.96	0.02 0.98	0.04 0.94	0.06 0.93	0.03 0.95	0.02 0.98	0.02 0.99	0.03 0.99	0.02 0.98	0.02 0.99	0.01 0.98	0.03 0.96	0.02 0.97	0.04 0.99	0.02 0.97	0.02 0.93				

0.96

0.04

0.00

0.94

0.06

0.00

106962 106318 106274 106231 106100 107304 107309 107314 107319 107324 107329 107613 106855 106760 106782 106805 106827 106850 106872 106895 106872 106895 106917

0.97

0.03

0.00

0.97

0.02

0.01

0.98

0.02

0.00

0.98

0.03

0.00

0.98

0.02

0.00

0.98

0.02

0.00

0.99

0.01

0.00

0.97

0.03

0.00

0.98

0.02

0.00

0.97

0.04

0.00

0.98

0.02

0.00

0.97

0.02

0.00

Annexe 5d Feldspaths potassiques suite 3

Lame	N4 S1	N4S3	N4S3	N4S3	N4S3	N4S3	N4S3	N4S3	N4S3	N4S3	N4S3	N4S3	N4S3	N4S3	N4S3
Séquence	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1	S1
N° du cristal	F7-cPx1	F11-c	F11-s	F11-s	F11-s	F11-s	F11-s	F11-s	F11-b	F11	F11	F11	F11	F11	F11
N° analyse	218 s1	432 s1	418-1 s1	418-2 s1	418-3 s1	419-4 s1	418-5 s1	418-6 s1	419 s1	420 s1	421 s1	422 s1	423 s1	425 s1	429 s1
SiO ₂	64.38	63.55	64.34	64.40	64.27	63.93	64.33	63.37	64.20	64.12	64.07	64.01	63.58	63.96	64.00
Al ₂ O ₃	17.73	18.76	18.39	18.30	18.32	18.16	18.56	18.22	18.52	18.37	18.47	18.35	18.61	18.49	18.63
FeO tot	0.27	0.09	0.00	0.08	0.02	0.04	0.09	0.07	0.13	0.15	0.01	0.04	0.05	0.03	0.16
MgO	0.02	0.04	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.05
CaO	0.00	0.00	0.00	0.00	0.02	0.00	0.01	0.02	0.01	0.00	0.00	0.03	0.00	0.00	0.01
Na ₂ O	0.55	0.27	0.26	0.19	0.26	0.23	0.44	0.24	0.19	0.38	0.28	0.34	0.24	0.31	0.39
K₂O	15.88	15.99	16.52	16.73	16.69	16.83	16.34	16.49	16.87	16.53	16.59	16.32	16.76	16.25	16.42
Total	98.83	98.70	99.50	99.70	99.56	99.19	99.78	98.42	99.92	99.55	99.41	99.12	99.23	99.04	99.67
FORMULE STRUCT	TURALE (8	3 Oxygène	es)												
Si	3.01	2.97	3.00	3.00	2.99	2.99	2.99	2.99	2.98	2.99	2.99	2.99	2.97	2.99	2.98
Al	0.98	1.03	1.01	1.00	1.01	1.00	1.02	1.01	1.01	1.01	1.01	1.01	1.03	1.02	1.02
Fe ³⁺	0.01	0.00	-0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.05	0.02	0.02	0.02	0.02	0.02	0.04	0.02	0.02	0.03	0.02	0.03	0.02	0.03	0.04
K	0.95	0.95	0.98	0.99	0.99	1.00	0.97	0.99	1.00	0.98	0.99	0.97	1.00	0.97	0.97
Total	4.99	4.99	5.01	5.01	5.02	5.02	5.01	5.02	5.02	5.01	5.01	5.00	5.02	5.00	5.01
%Or	0.95	0.98	0.98	0.98	0.98	0.98	0.96	0.98	0.98	0.97	0.98	0.97	0.98	0.97	0.96
%Ab	0.05	0.03	0.02	0.02	0.02	0.02	0.04	0.02	0.02	0.03	0.02	0.03	0.02	0.03	0.04
%An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Position verticale*	133730	133732	134193	134195	134198	134200	134202	134148	134224	134268	134452	134522	134700	134910	135193

Annexe 5e Compositions chimiques des sphènes du granite lité de Dolbel

Lame	N1	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N3	N3	N4	N4	N4	N4	N4	N4
Séquence	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3
N° du cristal	S34-iA88	S31-II-b	S31-III	S31-II	S31-I	S31-b	S31-c	S31-III	S29-I-b	S30-iS29	S29-II	S29-III-c	S33-iA86	S32-III-b	S32-I	S32-I	S32-II-c	S32-III-c	S28-IF45	S26-c	S27-iA47	S4-c-iA9	S1-c	S3-b	S3-c	S2	S5-c-iA11
N° d'analyse	9 s5	84 s4	85 s4	86 s4	87 s4	131 s4	130 s4	88 s4	71 s4	74 s4	72 s4	73 s4	144 s4	140 s4	139 s4	138 s4	137 s4	136 s4	59 s4	295 s4	332 s4	48 s1	29 s1	42 s1	41 s1	31 s1	53 s1
SiO ₂	30.51	30.15	30.35	30.10	30.19	30.79	30.66	29.93	30.58	30.41	30.46	30.22	30.39	30.28	30.13	30.03	30.31	30.50	30.28	30.18	29.83	29.45	29.47	28.96	29.34	30.06	29.56
TiO ₂	28.25	36.23	36.69	37.09	37.81	36.65	37.20	37.90	36.44	37.32	36.03	38.06	36.60	32.91	36.79	37.07	37.32	36.39	38.19	35.44	36.87	36.75	36.58	36.76	35.80	32.90	37.11
Al_2O_3	6.01	1.68	1.55	1.30	1.31	1.72	1.38	1.66	0.83	2.25	1.90	1.10	1.30	2.79	1.13	0.55	1.44	2.14	1.23	1.90	0.73	1.83	1.23	1.69	1.30	2.87	1.70
Fe ₂ O ₃ calc.	2.62	2.63	1.67	1.55	1.29	1.16	1.27	0.97	1.85	0.98	1.43	0.76	1.92	2.56	1.83	1.67	1.13	1.02	0.79	2.44	1.90	1.42	2.51	1.08	2.25	3.94	1.42
MnO	0.00	0.00	0.06	0.12	0.06	0.05	0.07	0.00	0.06	0.03	0.10	0.00	0.14	0.00	0.12	0.00	0.00	0.16	0.08	0.06	0.12	0.09	0.11	0.02	0.07	0.09	0.06
MgO	0.17	0.03	0.00	0.00	0.00	0.00	0.01	0.00	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.01	0.02	0.00	0.02	0.01	0.00	0.02	0.00	0.04	0.01
CaO	28.07	27.73	27.92	27.88	27.66	27.87	28.27	27.99	27.27	28.32	28.08	28.51	27.62	28.01	27.64	27.63	28.02	28.38	28.03	28.04	27.77	27.63	27.24	27.33	27.29	27.99	27.62
Na ₂ O	0.02	0.03	0.03	0.03	0.04	0.02	0.08	0.00	0.00	0.00	0.03	0.01	0.06	0.01	0.00	0.00	0.02	0.02	0.02	0.02	0.04	0.00	0.07	0.00	0.08	0.06	0.03
K ₂ O	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.09	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.01	0.01	0.00	0.01	0.00	0.02	0.00
H ₂ O calc.	1.14	1.13	1.14	1.13	1.13	1.15	1.15	1.12	1.15	1.14	1.14	1.13	1.14	1.13	1.13	1.13	1.14	1.14	1.13	1.13	1.12	1.10	1.10	1.09	1.10	1.13	1.11
Total	96.80	99.60	99.41	99.21	99.49	99.41	100.08	99.57	98.28	100.45	99.17	99.79	99.20	97.70	98.77	98.10	99.36	99.76	99.83	99.22	98.41	98.29	98.32	96.95	97.23	99.10	98.62
FORMULE STRUCT	TURALE (4	4 silicium)																									
Si	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Ti	2.79	3.61	3.64	3.71	3.77	3.58	3.65	3.81	3.58	3.69	3.56	3.79	3.62	3.27	3.67	3.71	3.70	3.59	3.79	3.53	3.72	3.75	3.73	3.82	3.67	3.29	3.78
Al	0.93	0.26	0.24	0.20	0.20	0.26	0.21	0.26	0.13	0.35	0.29	0.17	0.20	0.43	0.18	0.09	0.22	0.33	0.19	0.30	0.12	0.29	0.20	0.27	0.21	0.45	0.27
Fe ³⁺	0.26	0.26	0.17	0.15	0.13	0.11	0.12	0.10	0.18	0.10	0.14	0.08	0.19	0.25	0.18	0.17	0.11	0.10	0.08	0.24	0.19	0.15	0.26	0.11	0.23	0.39	0.15
Mn	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.02	0.00	0.01	0.00	0.00	0.02	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01
Mg	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Ca	3.94	3.94	3.94	3.97	3.93	3.88	3.95	4.01	3.82	3.99	3.95	4.04	3.89	3.96	3.93	3.94	3.96	3.99	3.97	3.98	3.99	4.02	3.96	4.04	3.99	3.99	4.00
Na	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.02	0.00	0.02	0.01	0.01
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	11.95	12.09	12.00	12.06	12.04	11.84	11.96	12.17	11.74	12.13	11.96	12.08	11.94	11.92	11.98	11.91	12.00	12.03	12.06	12.06	12.04	12.23	12.18	12.26	12.13	12.16	12.21
Position verticale*	38287	53372	53372	53380	53380	62925	62947	53394	53426	53447	53432	53460	54924	55136	55142	55156	55171	55201	58612	82154	91746	106495	106831	106839	106844	108638	108988

Annexe 5e Sphènes suite 1

Lame	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4
Séquence	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2	S2
N° du cristal	S6-c-iE4	S15-b	S15-c	S7-c	S8-c	S10-iA14	S9-c	S9-b	S14-b	S14-c	S13-c	S13-b	S11-III	S11-II	S11-III	S12-V-c	S12-IV	S12-III-b	S11-II-c	S11-IV-b	S16-iO4	S23-IV-b	S24-II-c	S22-IV	S22-III-c	S22-II-b	S22-IV
N° d'analyse	62 s1	138 s1	137 s1	72 s1	79 s1	83 s1	80 s1	81 s1	129 s1	128 s1	124 s1	125 s1	104 s1	102 s1	103 s1	105 s1	106 s1	107 s1	100 s1	101 s1	142 s1	190 s1	214 s1	184 s1	183 s1	185 s1	186 s1
SiO ₂	29.06	29.39	29.25	28.55	29.55	31.66	29.50	29.88	29.34	29.42	29.34	28.99	29.74	29.62	29.67	42.16	29.57	34.96	29.77	29.53	29.79	30.36	29.83	29.81	29.61	30.15	30.39
TiO ₂	35.98	36.06	36.42	37.77	38.07	33.63	36.95	34.90	36.43	37.46	36.18	36.74	36.13	36.23	36.79	28.76	36.49	31.29	36.31	36.30	36.85	36.88	36.88	36.77	37.70	36.00	37.73
Al_2O_3	1.30	1.20	1.20	1.49	1.12	1.42	1.82	2.73	1.23	1.51	1.20	1.04	1.21	1.28	1.17	1.19	1.92	2.89	1.25	1.18	1.65	1.24	0.84	1.62	1.53	1.28	1.36
Fe ₂ O ₃ calc.	2.63	1.86	2.28	2.29	1.24	3.74	1.37	1.97	2.64	1.10	2.55	2.36	2.79	2.84	2.34	0.46	1.19	2.67	2.53	2.42	1.28	2.16	2.21	0.99	2.97	3.65	1.48
MnO	0.09	0.07	0.04	0.20	0.06	0.11	0.09	0.08	0.06	0.05	0.11	0.10	0.09	0.06	0.09	0.04	0.08	0.07	0.10	0.19	0.01	0.10	0.13	0.10	0.00	0.01	0.10
MgO	0.01	0.00	0.00	0.03	0.03	0.76	0.00	0.01	0.00	0.00	0.01	0.00	0.02	0.02	0.04	0.02	0.02	0.04	0.00	0.02	0.00	0.02	0.02	0.01	0.00	0.01	0.02
CaO	26.86	27.11	27.14	26.61	27.32	25.76	27.85	27.87	27.31	28.19	27.03	26.97	27.21	27.35	26.85	20.96	27.19	26.65	27.16	26.78	27.10	27.08	26.91	26.99	27.79	27.76	27.08
Na ₂ O	0.07	0.02	0.01	0.03	0.00	0.02	0.05	0.08	0.00	0.02	0.06	0.08	0.08	0.10	0.02	0.00	0.05	0.03	0.05	0.00	0.03	0.03	0.03	0.00	0.00	0.01	0.03
K ₂ O	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00
H ₂ O calc.	1.09	1.08	1.10	1.07	1.11	1.19	1.11	1.12	1.10	1.10	1.10	1.09	1.11	1.11	1.11	1.58	1.11	1.31	1.12	1.11	1.12	1.14	1.12	1.13	1.14	1.14	1.14
Total	97.08	96.80	97.43	98.03	98.51	98.29	98.73	98.64	98.12	98.86	97.57	97.36	98.38	98.62	98.10	95.18	97.62	99.92	98.30	97.52	97.84	99.00	97.98	97.42	100.74	100.00	99.32
FORMULE STRUCT	TURALE (4 silicium)																									
Si	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Ti	3.72	3.69	3.75	3.98	3.88	3.20	3.77	3.51	3.74	3.83	3.71	3.81	3.65	3.68	3.73	2.05	3.71	2.69	3.67	3.70	3.72	3.65	3.72	3.71	3.83	3.59	3.74
Al	0.21	0.19	0.19	0.25	0.18	0.21	0.29	0.43	0.20	0.24	0.19	0.17	0.19	0.20	0.19	0.13	0.31	0.39	0.20	0.19	0.26	0.19	0.13	0.26	0.24	0.20	0.21
Fe ³⁺	0.27	0.28	0.23	0.24	0.13	0.36	0.14	0.20	0.27	0.11	0.26	0.25	0.28	0.29	0.24	0.03	0.12	0.23	0.26	0.25	0.13	0.21	0.22	0.09	0.13	0.30	0.10
Mn	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.00	0.00	0.01	0.00
Mg	0.00	0.01	0.00	0.01	0.01	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ca	3.96	3.94	3.98	3.99	3.96	3.49	4.05	4.00	3.99	4.11	3.95	3.99	3.92	3.96	3.88	2.13	3.94	3.27	3.91	3.89	3.94	3.82	3.87	3.95	3.95	3.87	3.92
Na	0.02	0.01	0.00	0.01	0.00	0.01	0.01	0.02	0.00	0.00	0.02	0.02	0.02	0.03	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	12.20	12.13	12.16	12.50	12.16	11.41	12.27	12.17	12.20	12.30	12.14	12.25	12.09	12.17	12.06	8.36	12.11	10.60	12.06	12.05	12.07	11.91	11.97	12.02	12.16	11.98	11.96
Position verticale*	109114	109156	109160	109207	109262	109370	109399	109411	109502	109524	109785	109785	109860	109877	109890	109904	109909	109909	109924	109937	117125	121032	121103	123649	123658	123710	123723

Annexe 5e Sphènes suite 2

Lame	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4	N4
Séquence	S2	S2	S2	S2	S2	S2	S2	S2	S2	S1	S1	S1	S1
N° du cristal	S22-I	S21-c	S21-b	S23-V	S19-b	S19-c	S18-c	S20-c	S20-b	S17-b	S17-c	S24-IV-c	S25 iA40
N° d'analyse	187 s1	182 s1	181 s1	189 s1	164 s1	163 s1	160 s1	168 s1	169 s1	152 s1	151 s1	215 s1	415 s1
SiO ₂	30.24	29.80	29.86	30.49	29.80	29.90	29.88	29.80	30.09	28.95	29.41	29.77	35.22
TiO ₂	33.91	36.65	36.19	37.85	36.89	37.33	36.68	36.57	36.68	36.29	34.66	36.41	20.95
Al ₂ O ₃	1.99	1.03	1.14	1.48	1.50	1.37	1.24	1.25	1.30	1.84	2.25	1.60	6.24
Fe ₂ O ₃ calc.	2.16	0.92	1.26	2.21	2.35	2.61	1.31	2.69	2.08	1.33	2.69	1.65	8.11
MnO	0.13	0.06	0.02	0.00	0.02	0.10	0.10	0.16	0.02	0.00	0.10	0.00	0.13
MgO	0.02	0.02	0.01	0.00	0.01	0.02	0.00	0.00	0.02	0.00	0.00	0.00	2.74
CaO	26.91	27.19	27.45	27.02	26.86	27.41	27.51	27.03	27.28	27.18	27.46	27.02	22.72
Na₂O	0.03	0.05	0.05	0.03	0.00	0.00	0.00	0.03	0.00	0.01	0.00	0.03	0.74
K ₂ O	0.01	0.00	0.00	0.00	0.04	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.31
H₂O calc.	1.12	1.13	1.12	1.12	1.12	1.13	1.12	1.12	1.11	1.12	1.12	1.12	1.32
Total	96.52	96.84	97.08	100.20	98.59	99.88	97.84	98.64	98.58	96.71	97.68	97.60	98.48
FORMULE STRUC	TURALE	(4 silicium)											
Si	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Ti	3.37	3.70	3.65	3.73	3.72	3.76	3.69	3.69	3.67	3.77	3.55	3.68	1.79
Al	0.31	0.16	0.18	0.23	0.24	0.22	0.20	0.20	0.20	0.30	0.36	0.25	0.84
Fe ³⁺	0.36	0.21	0.27	0.15	0.13	0.13	0.27	0.26	0.24	0.13	0.19	0.17	0.69
Mn	0.01	0.02	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.00	0.01
Mg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.46
Ca	3.83	3.89	3.85	3.90	3.91	3.94	3.89	3.96	3.90	4.01	3.87	3.89	2.77
Na	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.01	0.16
K	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.04
Total	11.88	11.99	11.96	12.01	12.00	12.05	12.05	12.12	12.03	12.23	11.99	12.00	10.77
Position verticale*	123868	123680	123767	123855	124883	124893	125051	125232	125248	125578	125602	133574	135826

Annexe5f Compositions chimiques des oxydes de fer du granite lité de Dolbel

Lame	N1	N1	N1	N1	N1	N1 I	N1	N1	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N2	N3	N3 1	13 6	N3
Séquence	S4	S4	S4	S4	S4	S4 :	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S4	S3	S3	S3	S3	S3	S3	S3	S3 S	33 5	S3
N° du cristal	Ox38	Ox37	Ox36	Ox36	O16-iPx6	O14-iF61 (O14-iF61	O15	Ox30	O10-bf	O9-f	О9-с	O10-cc	O11-iPx5	O12-cc	O12-bf	O12-bc	Ox33	Ox34	Ox35	Ox35	Ox32	Ox31	Ox29	Ox27 ()x27 (Ox27
N° d'analyse	34 / 1 .	33 / 1 .	31 / 1 .	32 / 1 .	50 s5	35 s5	36 s5	38 s5	21 / 1 .	15 / 1 .	13/1.	12/1.	14/1.	19/1.	42/1.	44 / 1 .	43 / 1 .	26/1.	28 / 1 .	30 / 1 .	29 / 1 .	23 / 1 .	22 / 1 .	20 / 1 .	18/1. 1	8/2.	18/3.
SiO ₂	0	0.99	0.39	0	0.03	0.59	0.23	0	0.02	0.14	0.12	0.15	0.36	0.18	0.09	0.11	0.13	0	0	0	0.08	0.11	0	0	0	0.13	0
TiO ₂	0	0.02	0	0.01	0	0.01	0	0	0	0.02	0.00	0	0	0.05	0	0.07	0.09	0	0.03	0	0	0	0.02	0	0.03	0	0
Al_2O_3	0	0	0	0	0	0.03	0.02	0	0	0	0.00	0	0	0.34	0	0.04	0	0	0	0	0	0	0	0	0	0	0
Cr_2O_3	0	0.03	0.01	0.01	0.01	0.01	0.05	0.02	0.04	0.03	0.04	0.04	0.06	0.02	0.06	0.01	0.06	0	0.02	0.03	0	0	0	0	0.02	0	0.02
Fe ₂ O ₃ calc.	66.96	65.43	65.11	70.97	66.63	64.60	64.71	66.06	67.55	65.26	66.33	67.49	67.79	66.76	68.93	66.51	67.18	67.68	67.99	71.3	64.7	65.05	61.78	67.6	64.83	68.12	68.44
FeO calc.	30.12	31.81	30.11	29.61	30.02	30.51	29.67	29.71	30.38	29.74	30.09	30.69	31.28	30.78	31.25	30.27	30.65	30.42	30.62	32.09	29.28	29.51	27.77	30.41	29.12	30.92	30.78
MnO	0	0.04	0.11	0.01	0.03	0.00	0.04	0.02	0.07	0	0.05	0.05	0.04	0.02	0	0.04	0.08	0	0.03	0	0.01	0.02	0.05	0	0.05	0.04	0.01
MgO	0	0	0	0	0	0.00	0	0	0	0	0.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ZnO	0	0	0	0	0	0.00	0	0	0	0	0.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NiO	0	0	0	0	0.01	0.01	0	0	0	0	0.00	0	0.08	0	0	0.02	0	0.03	0	0	0	0	0.01	0	0.05	0	0.01
Total	97.08	98.32	95.73	100.61	96.73	95.76	94.72	95.81	98.06	95.19	96.63	98.42	99.61	98.15	100.33	97.07	98.19	98.13	98.69	103.42	94.07	94.69	89.63	98.01	94.1	99.21	99.26
FORMULE STRUCT	TURALE (4 oxygène	es)																								
Si	0.00	0.04	0.02	0.00	0.00	0.02	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe ³⁺	2.00	1.92	1.97	2.08	2.00	1.95	1.98	2.00	2.00	1.99	1.99	1.99	1.97	1.97	1.99	1.99	1.98	2.00	2.00	2.00	1.99	1.99	2.00	2.00	2.00	1.99	2.00
Fe ²⁺	1.00	1.04	1.01	0.96	1.00	1.02	1.01	1.00	1.00	1.01	1.00	1.00	1.01	1.01	1.00	1.00	1.01	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.01	1.00
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
Zn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
Ni	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
END MEMBERS																											
Trevorite	0	0	0	0	0	0	0	0	0	0	0	0	0.002	0	0	0.001	0	0	0	0	0	١ ,	0	0	0	0	0
Ulvöspinel	0	0	0	0	0	0	0	0	0	0.001	0	0	0.002	0.002	0	0.001	0.003	0	0	0	0	١	0	0	0	0	0
Fe ₂ SiO ₄	0	0	0	0	0.001	0.024	0.01	0	0	0.001	0.005	0.006	0.014	0.002	0.003	0.002	0.005	0.001	0	0	0	0	0	0	0.002	0	0
Manganochromite	0	0	0	0	0.001	0.024	0.001	0	0	0.000	0.001	0.001	0.001	0.007	0.000	0.004	0.001	0.001	0.001	0	0	_	0.001	0	0.001	0	0
Galaxite	0	0	0	0	0	0	0.001	0	0.001	0	0.001	0.001	0.001	0.001	0	0	0.001	0	0.001	0	0.003	ľ	0.001	0	0.001	0.005	0
Jacobsite	n	0	0	0	0.001	0	0.002	0.001	0.001	0	0.003	0.003	0.002	0.001	0	0.001	0.004	0	0	0	0.000	0.004	n	0	0	0.003	0
Chromite	n	0.039	0.016	0	0.001	0	0.002	0.001	0.001	0	0.000	0.000	0.002	0	0.001	0.001	0.004	0	0	0	0	ا ا	n	0	0	0.001	0
Hercynite	n	0.001	0.004	0	0	0.001	0.001	0	0.003	0	0	0	n	0.007	0.001	0.001	0	0	0.001	0	0	0.001	0.002	0	0.002	0.001	0
Magnetite	1	0.96	0.98	0.962	0.998	0.975	0.987	0.999	0.996	0.992	0.992	0.991	0.981	0.983	0.996	0.991	0.987	0.999	0.998	1	0.997	0.994	0.996	1	0.995	0.996	0.999
	i i	5.50	3.30	0.002	3.330	0.0.0	0.001	0.000	3.550	0.002	0.002	0.001	0.001	3.330	0.000	0.001	0.007	0.000	0.000		0.007	0.004	3.550	1	0.000	0.000	0.000
Total	1	1	1	0.924	1	1	1.001	1	1.001	0.999	1.001	1.001	1	1	1	1	1	1	1	1	1	0.999	0.999	1	1	1	0.999
position verticale*	5003	14789	14991	15002	17700	18667	18667	19695	31704	32261	32303	32312	32320	36577	46703	49590	49786	55282	56183	56428	56450	59868	59906	68576	78077	78079	78082

Lame	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3
Séquence	S3	S3	S3	S3	S3	S3	S3 :	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3 :	S3	S3								
N° du cristal	Ox27	Ox27	Ox27	Ox27	Ox27	Ox27	Ox28	07-с	Ox25	Ox25	Ox25	Ox25	Ox25	Ox24	Ox24	Ox24	Ox24	Ox24									
N° d'analyse	18/4.	18/5.	18/6.	18/7.	18/8.	18/9.	19/1.	19/2.	19/3.	19/4.	19/5.	19/6.	19/7.	19/8.	19/9.	19/10.	N3-281	16 / 10 .	16/9.	16/8.	16/7.	16/6.	15 / 1 .	15/2.	15/3.	15 / 4 .	15/5.
SiO ₂	0.11	0	0.18	0	0.02	0	2.19	1.25	0	0.35	0	0.06	0	0.05	0	0.22	0.09	2.1	0	0.22	(0.36	0	0.83	0	0.76	0
TiO ₂	0	0.04	0	0	0	0	0.12	0.05	0.04	0	0	0.02	0	0.01	0.08	0	0.01	0	0.01	0.03	() (0.07	0.1	0	0	0
Al_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.25	0	0	0	() (0	0	0	0	0
Cr ₂ O ₃	0	0	0.02	0	0	0.01	0.02	0.01	0	0.02	0	0	0.02	0	0.04	0	0.03	0.06	0	0.04	() (0.04	0.06	0	0.04	0.06
Fe ₂ O ₃ calc.	69.1	68.47	67.63	69.54	68.74	68.93	58.12	63.05	66.62	66.21	66.13	68.27	66.06	69.1	64.35	66.57	67.89	58.66	65.92	65.59	65.34	4 65.99	65.02	64.02	64.61	64.27	65.65
FeO calc.	31.3	30.85	30.77	31.22	30.89	30.97	31.58	31.44	30.04	30.52	29.69	30.8	29.63	31.2	29.04	30.51	30.85	31.42	29.63	30.11	29.38	30.49	29.35	30.9	29.07	30.68	29.48
MnO	0.03	0.02	0.07	0	0.02	0.02	0.02	0	0	0	0.05	0.05	0.02	0.04	0.07	0	0.11	0.01	0	0	(0.02	0.04	0.04	0	0.05	0.05
MgO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	() (0	0	0	0	0
ZnO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C) 0	0	0	0	0	0
NiO	0.01	0	0.03	0.07	0.07	0.02	0	0	0	0.12	0	0.04	0	0	0	0	0.01	0	0.05	0	0.01	0.05	0	0.04	0	0.02	0.04
Total	100.55	99.38	98.7	100.83	99.74	99.95	92.05	95.8	96.7	97.22	95.87	99.24	95.73	100.4	93.58	97.3	99.24	92.25	95.61	95.99	94.73	96.91	94.52	95.99	93.68	95.82	95.28
FORMULE STRUCT	URALE (4	4 oxygène	es)																								
Si	0.00	0.00	0.01	0.00	0.00	0.00	0.09	0.05	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.09	0.00	0.01	0.00	0.01	0.00	0.03	0.00	0.03	0.00
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe ³⁺	1.99	2.00	1.99	2.00	2.00	2.00	1.81	1.90	2.00	1.97	2.00	1.99	2.00	2.00	1.99	1.98	1.98	1.83	2.00	1.98	2.00	1.97	2.00	1.93	2.00	1.94	2.00
Fe ²⁺	1.00	1.00	1.00	1.00	1.00	1.00	1.09	1.05	1.00	1.01	1.00	1.00	1.00	1.00	1.00	1.01	1.00	1.09	1.00	1.01	1.00	1.01	1.00	1.03	1.00	1.03	1.00
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Zn	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00				0.00	0.00	0.00	0.00
Ni	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
END MEMBERS																											
Ulvöspinel	0	0	0 001	0	0.002	0.001	0	0	0	0	0	0	0	0	0	-	0.004	0					0 0	0 004	0	0.001	0.001
Fe ₂ SiO ₄	Ū	·	0.001	0.002		0.001	ľ	·	ŭ	0.004		0.001		_	-	-	0.004	_	-	0.001			1 0	0.001	0	0	0
Manganochromite	0	0.001	0	0	0	0	0.004	0.002	0.001	0	0	0	0	0	0.002		0	0.087		0.009			0.002	0.003	0	0.03	0
Galaxite	0.004	0	0.007	0	0.001	0	0.091	0.05	0	0.014	0	0.002	0	0.002	0	0.009	0.004	0		0	-		0	0.033	0	0	0
Jacobsite	0	0	0	0	0	0	0	0	0	0	0.001	0	0	0	0	0	0	0	-	0	-	, .	0.001	0.001	0	0.001	0.001
Chromite	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.001	0	0	0	0	0	•			0.002	0	0.003	0.003
Hercynite	0.001	0.001	0.002	0	0.001	0.001	0.001	0	0	0	0.002	0.002	0.001	0.001	0.003		0.002	0.001	0	0.001			0	0	0	0	0
Magnetite	0.995	0.998	0.99	0.998	0.996	0.998	0.903	0.947	0.999	0.982	0.997	0.994	1	0.997	0.994	0.991	0.99	0.911	0.998	0.989	1	0.983	0.995	0.96	1	0.965	0.995
T-1-1	_						0.000	0.000				0.000		_				0.000									
Total	1	1	1	1	1	1	0.999	0.999	1	1	1	0.999	1	1	1	1	1	0.999	1	1	1	1 1	1	1	1	1	1
position verticale*	78084	78087	78089	78092	78094	78097	78414	78414	78414	78414	78414	78414	78414	78414	78414	78414	78871	88073	88081	88090	88098	88107	88111	88111	88111	88111	88111

Lame	N3 I	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N3	N4	N4	N4
Séquence	S3 S	S3	S3	S3	S3	S3	S3 :	S3	S3 :	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3	S3						
N° du cristal	Ox24 (Ox24	Ox24	Ox24	Ox24	Ox25	Ox25 (Ox25	Ox25	Ox25	Ox26	O8-c	O8-b	Ox22	Ox23	Ox20	OXx17	Ox18									
N° d'analyse	15/6.	15/7.	15/8.	15/9.	15 / 10 .	16/5.	16/4.	16/3.	16/2.	16/1.	17/1.	17/2.	17/3.	17/4.	17/5.	17/6.	17/7.	17/8.	17/9.	17/10.	N3-354	N3-355	13/1.	14/1.	4/1.	2/1.	3/1.
SiO ₂	0	0	0.43	0	0.44	0	0.27	0	0.74	0	0	0.64	0	0.8	0	0.71	0	0.54	0	1.31	0.12	0.71	0	0.5	0	0	0.01
TiO ₂	0	0	0.08	0	0.03	0	0.02	0.02	0.1	0.05	0.19	0.03	0.02	0.01	0.07	0.05	0	0.02	0.01	0.07	0	0.00	0	0	0	0	0.04
Al_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0	0	0	0	0
Cr ₂ O ₃	0	0.02	0.01	0.01	0	0.04	0.02	0.02	0.03	0.02	0	0	0.04	0.03	0	0	0.01	0.02	0.03	0.04	0.04	0.03	0.04	0.02	0.03	0	0
Fe ₂ O ₃ calc.	67.31	66.05	64.84	66.78	65.08	66.53	65.8	66.28	63.31	63.37	61.85	63.73	64.63	63.42	63.98	63.04	65.21	64.98	65.89	58.48	68.2	64.89	63.05	62.56	69.56	70.59	64.57
FeO calc.	30.24	29.62	30.34	29.95	30.34	29.88	30.25	29.83	30.37	28.52	28.11	30.26	28.98	30.38	28.88	30.1	29.24	30.51	29.66	29.58	30.93	30.73	28.33	29.31	31.27	31.69	29.07
MnO	0.05	0.07	0.01	0.03	0.06	0.02	0.02	0	0.06	0.02	0.09	0	0.1	0.04	0.03	0.05	0.02	0.01	0.02	0	0.06	0.11	0.06	0	0.04	0.01	0
MgO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0	0	0	0	0
ZnO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0	0	0	0	0
NiO	0	0.04	0	0.08	0	0.04	0.03	0.03	0	0.07	-0.05	0	0.05	0.06	0	0	0.08	0.05	0	0	0	0.07	0	0.04	0	0.05	0.06
Total	97.6	95.8	95.71	96.85	95.95	96.51	96.41	96.18	94.61	92.05	90.15	94.66	93.82	94.74	92.96	93.95	94.56	96.13	95.61	89.48	99.35	96.54	91.48	92.43	100.9	102.34	93.75
FORMULE STRUCT	TURALE (4	oxygène	s)																								i I
Si	0.00	0.00	0.02	0.00	0.02	0.00	0.01	0.00	0.03	0.00	0.00	0.03	0.00	0.03	0.00	0.03	0.00	0.02	0.00	0.06	0.01	0.03	0.00	0.02	0.00	0.00	0.00
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe ³⁺	2.00	2.00	1.96	2.00	1.96	2.00	1.98	2.00	1.93	2.00	1.99	1.95	2.00	1.93	2.00	1.94	2.00	1.96	2.00	1.88	1.99	1.94	2.00	1.96	2.00	2.00	2.00
Fe ²⁺	1.00	1.00	1.02	1.00	1.02	1.00	1.01	1.00	1.03	1.00	1.01	1.03	1.00	1.03	1.00	1.03	1.00	1.02	1.00	1.06	1.00	1.02	1.00	1.02	1.00	1.00	1.00
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Zn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
																											ł
END MEMBERS																											l
Trevorite	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0		0	0	0	0.002	0.002
Ulvöspinel	0	0.001	0	0.002	0	0.001	0.001	0.001	0	0.002	0	0	0.002	0.002	0	0	0.003	0.002		0	0	-	0	0	0	0	0.001
Fe ₂ SiO ₄	0	0	0.003	0	0.001	0	0.001	0.001	0.003	0.002	0.006	0.001	0.001	0	0.002	0.002	0	0	0	0.002	0.005	0.028	0	0.001	0	0	0
Manganochromite	0	0	0.017	0	0.018	0	0.011	0	0.03	0	0	0.026	0	0.033	0	0.029	0	0.022	0	0.056	0.001	0.001	0	0	0	0	0
Galaxite	0	0	0	0	0	0	0	0	0	0	0.002	0	0	0	0	0	0	0	-	0	0		0	0.021	0	0	0
Jacobsite	0	0	0	0	0	0.001	0	0	0.001	0	0	0	0.001	0	0	0	0	0	0.001	0	0.003	0.005	0.001	0	0.001	0	0
Chromite	0.002	0.002	0	0.001	0.002	0.002	0.001	0	0.003	0.001	0.003	0	0.004	0.001	0.001	0.002	0.001	0	0.002	0	0	0	0.003	0	0	0	0
Hercynite	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0.001	0	-	0	0	0	0	0
Magnetite	0.998	0.996	0.979	0.997	0.979	0.996	0.986	0.998	0.964	0.995	0.992	0.973	0.993	0.964	0.997	0.967	0.996	0.976	0.997	0.941	0.992	0.964	0.996	0.977	0.999	0.998	0.997
																											i I
Total	1	0.999	0.999	1	1	1	1	1	1.001	1	1.001	1	1.001	1	1	1	1	1	1	1	1.001	1	1	0.999	1	1	1
position verticale*	88111	88111	88111	88111	88111	88115	88124	88132	88141	88149	88201	88203	88205	88207	88209	88211	88213	88215	88217	88219	96650	96751	96820	96909	104203	104234	104202

Lame	N3 N	٧4	N4	N4	N4 N	N4 1	N4 I	N4	N4 I	N4	N4	N4	N4	N4	N4	N4											
Séquence	S3 S	S3	S3	S3	S3 S	S3 S	33	S3	S3 \$	S3	S2	S2	S2	S2	S2	S2	S2										
N° du cristal	Ox1 C	Ox1	Ox1 (Ox1	Ox1 C	Ox1 (Ox1 (Ox1	Ox1 (Ox1	Ox2	Ox21	Ox21	Ox21	Ox21	Ox21	Ox21	Ox21									
N° d'analyse	5/10. 5	5/9.	5/8.	5/7.	5/6. 5	5/5. 5	5/4.	5/3.	5/2.	5/1.	6/10.	6/9.	6/8.	6/7.	6/6.	6/5.	6/4.	6/3.	6/2.	6/1.	7 / 10 .	7/9.	7/8.	7/7.	7/6.	7/5.	7/4.
SiO ₂	0	0.03	0	0.19	0	0.1	0	0.02	0	0	0	0.16	0	0.24	0	0.25	0	0	0	0.17	0	0.09	0	0	0.07	0.24	0
TiO ₂	0	0.01	0	0	0.02	0	0	0	0	0	0.1	0	0	0	0	0	0	0	0.02	0.09	0.01	0	0	0.06	0.02	0.01	0.01
Al_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr ₂ O ₃	0	0	0	0.02	0	0	0.02	0	0	0	0.04	0	0	0	0.04	0.04	0	0.03	0.06	0	0.01	0	0.05	0.05	0.03	0.01	0.07
Fe ₂ O ₃ calc.	64.45	67.76	67.38	67.9	68.23	67.42	67.56	67.71	66.75	63.56	67.7	67.22	67.92	68.05	67.98	67.52	68.79	68.9	68.37	63.9	68.06	67.16	67.85	68.24	67.61	68.68	68.12
FeO calc.	28.92	30.48	30.18	30.95	30.71	30.56	30.39	30.45	29.99	28.58	30.61	30.63	30.4	31.18	30.55	30.88	30.88	30.91	30.81	29.28	30.59	30.37	30.51	30.73	30.62	31.41	30.69
MnO	0.02	0.02	0.03	0.05	0.02	0	0.01	0.02	0.04	-0.01	0.01	0	0.01	0	0.05	0.06	0.07	0.03	0.01	0.03	0	0.06	0.04	0.03	0	0.05	0.01
MgO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ZnO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NiO	0.05	0.07	0.11	0	0.01	0	0	0.05	0	0.03	0.02	0	0.15	0.03	0	0.06	0	0.08	0	0	0.04	0	0	0.07	0.03	0.02	0
Total	93.44	98.37	97.7	99.11	98.99	98.08	97.98	98.25	96.78	92.16	98.48	98.01	98.48	99.46	98.62	98.81	99.74	99.95	99.27	93.47	98.71	97.68	98.45	99.18	98.38	100.42	98.9
FORMULE STRUCT	URALE (4	oxygène	s)																								
Si	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe ³⁺	2.00	2.00	2.00	1.99	2.00	1.99	2.00	2.00	2.00	2.00	1.99	1.99	2.00	1.98	2.00	1.98	2.00	2.00	2.00	1.98	2.00	1.99	2.00	2.00	1.99	1.98	2.00
Fe ²⁺	1.00	1.00	1.00	1.01	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.01	1.00	1.01	1.00	1.01	1.00	1.00	1.00	1.01	1.00	1.00	1.00	1.00	1.00	1.01	1.00
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Zn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
END MEMBERS																											
Trevorite	0	0.002	0.003	0	0	0	0	0.001	0	0.001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ulvöspinel	0	0	0	0	0.001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fe ₂ SiO ₄	0.002	0.001	0	0.007	0	0.004	0	0.001	0	0	0.001	0	0.005	0.001	0	0.002	0	0.002	0	0	0.001	0	0	0.002	0.001	0.001	0
Manganochromite	0	0	0	0	0	0	0	0	0	0	0.003	0	0	0	0	0	0	0	0	0.003	0	0	0	0.002	0.001	0	0
Galaxite	0	0	0	0	0	0	0	0	0	0	0	0.006	0	0.009	0	0.01	0	0	0	0.007	0	0.004	0	0	0.003	0.009	0
Jacobsite	0	0.001	0.001	0.002	0.001	0	0	0.001	0.001	0	0	0	0	0	0.001	0.001	0	0.001	0	0	0	0	0.001	0.001	0	0	0
Chromite	0.001	0	0	0	0	0	0	0	0	0	0	0	0	0	0.002	0.003	0.002	0.002	0	0.001	0	0.002	0.002	0.002	0	0.002	0
Hercynite	0	0	0	0	0	0	0	0	0	0	0.001	0	0	0	0	0	0	0	0.001	0	0	0	0	0	0	0	0.001
Magnetite	0.997	0.996	0.996	0.99	0.998	0.996	1	0.997	0.999	0.999	0.995	0.994	0.995	0.99	0.997	0.985	0.998	0.995	0.999	0.989	0.999	0.994	0.997	0.994	0.995	0.988	0.999
Total	1	1	1	0.999	1	1	1	1	1	1	1	1	1	1	1	1.001	1	1	1	1	1	1	1	1.001	1	1	1
position verticale*	104184	104195	104205	104216	104226	104237	104247	104258	104268	104279	106041	106061	106080	106100	106120	106139	106159	106179	106198	106218	106906	106912	106917	106923	106929	106934	106940

Lame	N4	N4	N4	N4
Séquence	S2	S2	S2	S1
N° du cristal	Ox21	Ox21	Ox21	Ox35
N° d'analyse	7/3.	7/2.	7/1.	8/1.
SiO ₂	0.05	0	0.22	0.17
TiO ₂	0	0.05	0.05	0.48
Al_2O_3	0	0	0	0
Cr ₂ O ₃	0	0.01	0	0.02
Fe ₂ O ₃ calc.	68.3	65.31	64.18	63.61
FeO calc.	30.84	29.47	29.38	29.87
MnO	0	0	0.06	0.03
MgO	0	0	0	0
ZnO	0	0	0	0
NiO	0.01	0	0.06	0
Total	99.2	94.84	93.95	94.18
FORMULE STRUCT	TURALE (3 oxygène	es)	
Si	0.00	0.00	0.01	0.01
Ti	0.00	0.00	0.00	0.02
Al	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00
Fe ³⁺	2.00	2.00	1.98	1.96
Fe ²⁺	1.00	1.00	1.01	1.02
Mn	0.00	0.00	0.00	0.00
Mg	0.00	0.00	0.00	0.00
Zn	0.00	0.00	0.00	0.00
Ni	0.00	0.00	0.00	0.00
Total	3.00	3.00	3.00	3.00
END MEMBERS Fe ₂ SiO ₄	0	0	0.000	0
		0	0.002	0
Manganochromite	0	0.001	0.002	0.015
Galaxite	0.002	0	0.009	0.007
Jacobsite	0	0	0	0
Chromite	0	0	0.002	0.001
Hercynite	0	0	0	0
Magnetite	0.998	0.998	0.985	0.977
Total	1	0.999	1	1
position verticale*	106946	106951	106957	137375

/ ₂ O ₄ V ₂ O ₄
e ₂ O ₄
r ₂ O ₄
TiO₄
TiO₄
SiO₄
SiO₄
Al ₂ O ₄
₂ O₄ Cr ₂ O₄
Fe ₂ O₄
Cr ₂ O ₄
Al_2O_4
Fe ₂ O ₄
Cr ₂ O ₄
Cr ₂ O ₄
Al ₂ O ₄
Al ₂ O ₄
Fe ₂ O ₄
e2O4

Annexe 2f Oxydes de fer et Ti suite 5

-		
Lame	N2	N4
Séquence	S4	S1
N° du cristal	O13-iS29	Ox42-i Ep
N° d'analyse	75 / 1 .	10/1.
SiO ₂	0.17	0.19
TiO ₂	51.03	47.07
ZrO ₂	0.00	0.00
Al_2O_3	0.09	0.00
Cr_2O_3	0.02	0.00
Fe ₂ O ₃ calc.	0.00	3.96
FeO calc.	44.07	41.35
MnO	1.35	1.19
Total	96.73	93.75
FORMULE STRUCT	TURALE	
Si	0.004	0.005
Ti	0.999	0.955
Zr	0.000	0.000
Al	0.003	0.000
Cr	0.000	0.000
Fe ³⁺	0.000	0.080
Fe ²⁺	0.959	0.933
Mn	0.030	0.027
Total	1.995	2.000
END MEMBERS		
	3.02	2.72
Pyrophanite	96.98	93.27
Ilmenite		
Hematite	0.00	4.01
position verticale*	46703	137365

Annexe 5g Compositions chimiques des épidotes du granite lité de Dolbel

Lame	N1	N1	N1	N2	N2	N2	N2	N2	N4	N4	N4											
Séquence	S4	S4	S4	S4	S3	S3	S3	S3	S3	S3	S3	S3	S3	S2	S2	S1						
N° du cristal	E16-ass Q1	8-ass Q22	E17	E11-ass Q	13-ass Q20	E12	E14-c	E15-c	E3-b	E3-c	E2-c	E2-b	E1-c	E4-c	E6-c	E5-b	E7-i	E9-i	E10-b	E19 iP14	E10-c	E8-b
N° de l'analyse	3 s5	6s5	4s5	3 s3	111 s4	36 s3	114 s4	118 s4	51 s4	52 s4	22 s4	21 s4	16 s4	61 s4	114 s4	112 s4	145 s4	196 s4	202 s4	411 s4	203 s4	155 s4
SiO ₂	36.12	35.71	35.96	37.91	37.05	37.82	36.71	36.48	36.03	35.89	35.47	35.71	35.79	35.99	36.03	36.13	36.42	37.03	36.90	37.59	36.81	35.09
TiO ₂	0.12	0.02	0.00	0.01	0.00	0.02	0.02	0.02	0.00	0.03	0.07	0.02	0.02	0.05	0.06	0.00	0.00	0.05	0.01	0.01	0.03	0.00
Al_2O_3	19.90	19.79	20.05	22.45	18.58	19.88	19.48	18.83	19.96	19.61	19.67	19.94	19.86	20.04	20.09	20.06	19.90	19.80	19.83	24.87	20.03	19.31
Cr_2O_3	0.02	0.00	0.03	0.00	0.01	0.02	0.00	0.04	0.00	0.01	0.00	0.01	0.03	0.02	0.03	0.01	0.00	0.05	0.00	0.00	0.02	0.00
FeO	15.26	14.76	15.12	13.52	16.03	15.45	15.57	16.11	17.22	17.91	17.11	17.01	16.52	16.29	16.09	16.65	16.73	17.15	17.57	9.57	16.90	18.02
MnO	0.10	0.06	0.21	0.13	0.04	0.08	0.00	0.05	0.14	0.14	0.07	0.27	0.16	0.08	0.18	0.14	0.14	0.11	0.10	0.00	0.10	0.25
MgO	0.02	0.03	0.00	0.03	0.01	0.00	0.04	0.00	0.03	0.00	0.01	0.02	0.02	0.00	0.02	0.00	0.00	0.03	0.00	0.00	0.00	0.02
CaO	21.90	21.21	22.13	22.61	22.16	21.21	21.83	22.06	21.77	21.28	21.58	21.10	21.70	20.84	21.90	21.83	21.53	21.83	21.08	21.81	21.67	21.06
H2O calc.	1.73	1.70	1.73	1.81	1.73	1.76	1.73	1.72	1.74	1.73	1.72	1.72	1.73	1.72	1.74	1.74	1.74	1.76	1.75	1.80	1.76	1.70
Total	95.18	93.27	95.22	98.48	95.59	96.24	95.37	95.31	96.90	96.59	95.70	95.82	95.83	95.03	96.12	96.56	96.46	97.82	97.24	95.65	97.32	95.44
FORMULE STRUC	CTURALE	(12.5 Oxy	/gènes)																			
Si	3.04	3.06	3.03	3.06	3.11	3.13	3.08	3.08	3.00	3.00	2.99	3.00	3.00	3.03	3.01	3.01	3.03	3.04	3.05	3.06	3.04	2.97
Ti	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	1.97	2.00	1.99	2.13	1.84	1.94	1.93	1.87	1.96	1.93	1.95	1.97	1.97	1.99	1.98	1.97	1.95	1.92	1.93	2.39	1.95	1.93
Fe ³⁺	0.97	0.95	0.96	0.82	1.01	0.96	0.98	1.02	1.08	1.13	1.08	1.08	1.04	1.03	1.01	1.04	1.05	1.06	1.09	0.59	1.05	1.15
Mn	0.01	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.02
Mg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ca	1.98	1.95	2.00	1.95	1.99	1.88	1.96	1.99	1.94	1.90	1.95	1.90	1.95	1.88	1.96	1.95	1.92	1.92	1.86	1.90	1.92	1.91
Na	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	7.98	7.96	7.99	7.97	7.96	7.93	7.96	7.98	7.99	7.97	7.99	7.98	7.99	7.95	7.99	7.99	7.97	7.96	7.94	7.95	7.97	7.99
% AI	0.67	0.68	0.67	0.72	0.64	0.67	0.66	0.65	0.64	0.63	0.64	0.64	0.65	0.66	0.66	0.65	0.65	0.64	0.64	0.80	0.65	0.62
% Fe ³⁺	0.33	0.32	0.32	0.28	0.35	0.33	0.34	0.35	0.35	0.37	0.36	0.35	0.35	0.34	0.34	0.35	0.35	0.36	0.36	0.20	0.35	0.37
% Ca	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Position verticale*	35761	35761	35861	35942	55157	56172	58043	58135	106515	106517	106629	106683	106819	109084	109679	113064	117363	121196	121200	121231	121242	125506

Annexes 6: Cœur du pluton

6a Compositions chimiques des hornblendes du granite de Dolbel

6b Compositions chimiques des **plagioclases** du granite de Dolbel

profil 1 (50 points sur 1147 µ) du bord au bord

profil 2 (75 points sur 1242 µ) du bord au bord

profil 3 (74 points sur 856 µ) du bord au bord

6c Compositions chimiques des feldspaths potassiques du granite de Dolbel

profil 1 (50 points sur 729 µ) du bord au bord

profil 2 (100 points sur 2089 μ) du bord vers le cœur

profil 3 (50 points sur 3174 μ) il s'agit de la suite du profil 2, mais après une grosse inclusion dans le cristal

6d Compositions chimiques des **clinopyroxènes**, **sphènes et oxydes de fer** du granite de Dolbel

Légende:

cpx: pyroxène ; ox: oxydes et sph: sphène.

Les analyses sur les amphiboles sont classées suivant les teintes de gris visibles au MEB, celle-ci sont indiqué par des chiffres romains, allant de $\bf I$ à $\bf V$ (clair à foncé).

Enfin lorsque les résultats sont en dessous de la limite de détection (voir annexe 1), la case contient un tiret (-).

Annexe 6a Compositions chimiques des hornblendes du cœur du granite de Dolbel

	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	- DO F	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
Lame	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5_	DO 5
N° du cristal	18 c II		18 c III		24 b IV	24 III	24 II		24 b IV			29 b III	29 III	29 c II		29 c l		29 b IV			29 b I	29 IV	29 IV		29' c II		29' III	29' IV
N° analyse			16/1.	5/1.	6/1.	7/1.	8/1.		10/1.			20 / 1 .		22/1.				26 / 1 .					31/1.				35 / 1 .	
SiO ₂	43.46	43.38	45.13	40.49	44.25	43.51	40.79	40.65	44.32	45.02	44.32	44.15	44.68	41.29	42.38	40.40	44.86	44.14	42.45	43.30	40.90	44.34	44.12	42.77	40.35	43.82	43.81	46.77
TiO ₂	0.65	0.89	0.78	1.13	0.78	0.84	0.98	0.88	0.33	0.78	0.83	0.71	0.87	0.96	0.87	0.97	0.39	0.74	0.80	0.78	0.90	0.78	0.78	0.94	0.93	0.24	0.65	0.63
Al ₂ O ₃	8.43	8.52	7.45	10.44	7.44	8.61	11.35	11.73	7.60	7.12	7.78	7.76	7.28	9.85	9.33	10.71	6.96	7.88	9.00	8.44	10.06	7.61	7.88	9.16	11.15	7.99	8.00	6.34
Fe ₂ O ₃ calc.	0.58	0.00	0.00	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.62	0.00	1.18	0.00	0.00	0.00	0.00	0.15	0.00	0.00	0.00	0.00	0.67	0.00	0.00
FeO calc.	20.05	20.30	18.77	21.19	19.41	19.19	19.87	19.66	20.02	18.68	19.16	20.00	19.26	20.66	19.75	19.76	19.85	19.83	20.34	19.57	21.16	19.02	19.42	19.68	21.12	19.48	19.66	18.14
MnO	0.60	0.43	0.61	0.50	0.58	0.37	0.44	0.28	0.64	0.48	0.41	0.47	0.50	0.40	0.49	0.51	0.67	0.55	0.50	0.57	0.48	0.49	0.60	0.45	0.49	0.69	0.44	0.48
MgO	9.05	9.01	10.16	8.12	9.56	9.76	8.60	8.49	9.79	10.32	9.98	10.11	10.27	8.67	9.26	8.17	9.38	9.65	9.18	9.68	8.11	9.92	9.93	8.92	7.48	9.59	9.52	11.02
CaO	11.16	10.47	10.54	10.66	10.60	10.47	10.57	10.67	10.69	10.45	10.40	10.39	10.33	10.66	10.41	10.77	10.68	10.66	10.55	10.44	10.58	10.56	10.69	10.74	10.71	10.74	10.65	10.75
Na ₂ O	1.85	2.40	2.37	2.32	2.08	2.25	2.61	2.65	2.01	1.99	2.30	2.29	2.32	2.37	2.11	1.94	1.71	2.28	2.22	2.06	2.20	2.04	1.92	2.13	2.55	1.70	2.06	2.06
K ₂ O	1.30	1.18	1.19	1.71	1.12	1.27	1.40	1.43	1.27	1.02	1.13	1.22	1.16	1.38	1.35	1.67	1.06	1.15	1.47	1.37	1.59	1.08	1.09	1.40	1.47	1.42	1.18	0.86
H₂O calc.	1.94	1.93	1.96	1.91	1.93	1.94	1.92	1.92	1.94	1.94	1.94	1.95	1.95	1.92	1.92	1.90	1.92	1.94	1.92	1.93	1.90	1.93	1.94	1.93	1.90	1.93	1.93	1.98
Total	97.06	96.60	97.00	96.77	95.84	96.32	96.61	96.44	96.67	95.85	96.30	97.13	96.68	96.79	95.94	95.98	95.58	96.87	96.53	96.21	96.14	95.86	96.45	96.20	96.27	96.30	96.00	97.06
Si	6.72	6.73	6.91	6.36	6.88	6.73	6.35	6.33	6.86	6.95	6.84	6.79	6.88	6.45	6.61	6.36	6.99	6.81	6.62	6.73	6.45	6.87	6.81	6.66	6.36	6.80	6.81	7.09
Al _{IV}	1.28	1.27	1.09	1.64	1.12	1.27	1.65	1.67	1.14	1.05	1.16	1.21	1.12	1.55	1.39	1.64	1.01	1.19	1.38	1.27	1.55	1.13	1.19	1.34	1.64	1.20	1.19	0.91
Al _{VI}	0.25	0.29	0.25	0.29	0.24	0.30	0.44	0.49	0.24	0.25	0.26	0.20	0.20	0.26	0.33	0.34	0.27	0.24	0.27	0.27	0.32	0.26	0.25	0.34	0.43	0.27	0.28	0.22
Ti	0.07	0.10	0.09	0.13	0.09	0.10	0.11	0.10	0.04	0.09	0.10	0.08	0.10	0.11	0.10	0.11	0.05	0.09	0.09	0.09	0.11	0.09	0.09	0.11	0.11	0.03	0.08	0.07
Fe ³⁺	0.07	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.14	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.08	0.00	0.00
Fe ²⁺	2.59	2.63	2.40	2.78	2.52	2.48	2.59	2.56	2.59	2.41	2.47	2.57	2.48	2.70	2.58	2.60	2.59	2.56	2.65	2.54	2.79	2.46	2.51	2.56	2.78	2.53	2.56	2.30
Mn	0.08	0.06	0.08	0.07	0.08	0.05	0.06	0.04	0.08	0.06	0.05	0.06	0.07	0.05	0.07	0.07	0.09	0.07	0.07	0.07	0.06	0.06	0.08	0.06	0.07	0.09	0.06	0.06
Mg	2.09	2.08	2.32	1.90	2.22	2.25	2.00	1.97	2.26	2.37	2.30	2.32	2.36	2.02	2.15	1.92	2.18	2.22	2.13	2.24	1.91	2.29	2.29	2.07	1.76	2.22	2.21	2.49
Ca	1.85	1.74	1.73	1.79	1.77	1.74	1.76	1.78	1.77	1.73	1.72	1.71	1.70	1.78	1.74	1.82	1.78	1.76	1.76	1.74	1.79	1.75	1.77	1.79	1.81	1.79	1.77	1.74
Na	0.55	0.72	0.70	0.71	0.63	0.68	0.79	0.80	0.60	0.60	0.69	0.68	0.69	0.72	0.64	0.59	0.52	0.68	0.67	0.62	0.67	0.61	0.57	0.64	0.78	0.51	0.62	0.61
K	0.26	0.23	0.23	0.34	0.22	0.25	0.28	0.28	0.25	0.20	0.22	0.24	0.23	0.27	0.27	0.33	0.21	0.23	0.29	0.27	0.32	0.21	0.22	0.28	0.30	0.28	0.23	0.17
Total	15.81	15.86	15.80	16.05	15.77	15.84	16.02	16.03	15.84	15.71	15.81	15.88	15.82	15.99	15.88	15.92	15.69	15.84	15.94	15.85	15.99	15.75	15.77	15.85	16.03	15.79	15.80	15.66
ОН	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
XMg	0.45	0.44	0.49	0.41	0.47	0.48	0.44	0.43	0.47	0.50	0.48	0.47	0.49	0.43	0.46	0.42	0.46	0.46	0.45	0.47	0.41	0.48	0.48	0.45	0.39	0.47	0.46	0.52
(Ca) _B	1.85	1.74	1.73	1.79	1.77	1.74	1.76	1.78	1.77	1.73	1.72	1.71	1.70	1.78	1.74	1.82	1.78	1.76	1.76	1.74	1.79	1.75	1.77	1.79	1.81	1.79	1.77	1.74
(Na) _B	0.00	0.09	0.13	0.00	0.08	0.08	0.04	0.06	0.01	0.09	0.10	0.04	0.10	0.00	0.03	0.00	0.04	0.06	0.02	0.04	0.00	0.07	0.02	0.07	0.04	0.00	0.05	0.11
(Ca+Na) _B	1.85	1.83	1.86	1.79	1.85	1.81	1.81	1.84	1.79	1.82	1.82	1.76	1.80	1.78	1.77	1.82	1.83	1.82	1.78	1.77	1.79	1.82	1.79	1.86	1.85	1.79	1.82	1.86
(Na+K) _A	0.81	0.86	0.80	1.05	0.77	0.85	1.02	1.03	0.84	0.71	0.81	0.88	0.82	0.99	0.88	0.93	0.69	0.84	0.94	0.85	0.99	0.75	0.77	0.85	1.03	0.79	0.81	0.66

Annexe 6b Compositions chimiques des plagioclases du cœur du granite de Dolbel (profil 1)

Lame	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
N° du cristal	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
N° analyse	1/3.	1/4.	1/5.	1/7.	1/8.	1/9.	1/10.	1/12.	1 / 13 .	1 / 15 .	1/16.	1/18.	1/19.	1/20.	1/21.	1/22.	1/23.	1/24.	1 / 25 .	1/27.	1 / 28 .	1/29.	1/30.	1/31.	1/32.	1/33.
SiO ₂	64.00	63.88	62.93	63.14	63.55	64.33	63.54	63.40	63.16	63.35	62.73	63.53	63.23	63.10	62.76	63.09	63.31	62.90	63.23	62.42	62.58	63.62	63.78	63.56	63.52	64.56
Al_2O_3	20.42	20.26	20.54	20.88	20.46	19.69	20.78	20.72	21.17	21.07	20.44	20.33	20.66	20.31	20.74	20.60	20.79	20.88	21.03	19.98	20.73	20.53	20.46	20.23	20.92	19.98
Fe ₂ O ₃	0.14	0.03	0.07	0.11	0.16	0.17	0.09	0.13	0.15	0.14	0.10	0.13	0.08	0.36	0.06	0.08	0.15	0.08	0.08	0.16	0.16	0.10	0.15	0.11	0.06	0.18
CaO	1.33	1.48	1.64	1.60	1.34	1.45	1.59	1.75	1.56	1.27	1.64	1.42	1.76	1.58	1.83	1.61	1.82	1.81	1.98	1.38	1.84	1.90	1.69	1.49	1.71	1.51
Na ₂ O	10.77	10.59	10.48	10.53	10.72	9.91	10.47	10.01	9.88	9.73	10.29	10.61	10.17	10.28	10.18	10.08	10.21	10.10	10.13	8.39	10.04	10.05	10.42	10.36	10.36	9.83
K ₂ O	0.07	0.07	0.07	0.07	0.05	0.05	0.07	0.06	0.36	0.16	0.09	0.05	0.04	0.15	0.06	0.32	0.04	0.06	0.07	3.77	0.06	0.08	0.07	0.06	0.07	0.11
Sr	2.34	2.33	2.30	2.37	2.32	2.35	2.35	2.38	2.37	2.44	2.46	2.52	2.54	2.54	2.52	2.55	2.56	2.58	2.53	2.50	2.53	2.52	2.48	2.54	2.54	2.51
Ва	0.05	0.03	0.05	0.06	0.05	0.05	0.05	0.06	0.06	0.05	0.05	0.05	0.06	0.05	0.05	0.06	0.05	0.06	0.06	0.08	0.08	0.09	0.09	0.10	0.10	0.10
Total	99.10	98.67	98.08	98.76	98.64	98.00	98.94	98.51	98.69	98.21	97.82	98.63	98.54	98.36	98.20	98.37	98.93	98.46	99.10	98.67	98.01	98.88	99.13	98.46	99.28	98.78
FORMULE STRUCT	URALE (8	Oxygènes	s)																							
Si	2.91	2.91	2.89	2.88	2.90	2.94	2.89	2.89	2.88	2.90	2.89	2.90	2.89	2.89	2.88	2.89	2.89	2.88	2.88	2.90	2.88	2.90	2.90	2.91	2.89	2.94
Al	1.09	1.09	1.11	1.12	1.10	1.06	1.11	1.11	1.14	1.14	1.11	1.09	1.11	1.10	1.12	1.11	1.12	1.13	1.13	1.09	1.12	1.10	1.10	1.09	1.12	1.07
Fe ³⁺	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.01
Ca	0.06	0.07	0.08	0.08	0.07	0.07	0.08	0.09	0.08	0.06	0.08	0.07	0.09	0.08	0.09	0.08	0.09	0.09	0.10	0.07	0.09	0.09	0.08	0.07	0.08	0.07
Na	0.95	0.94	0.93	0.93	0.95	0.88	0.92	0.89	0.87	0.86	0.92	0.94	0.90	0.91	0.91	0.90	0.90	0.90	0.89	0.75	0.90	0.89	0.92	0.92	0.91	0.87
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.01	0.00	0.00	0.01	0.00	0.02	0.00	0.00	0.00	0.22	0.00	0.00	0.00	0.00	0.00	0.01
Total	5.02	5.01	5.02	5.02	5.02	4.96	5.01	4.99	5.00	4.97	5.01	5.02	5.00	5.01	5.01	5.01	5.00	5.00	5.00	5.04	5.00	4.99	5.01	5.00	5.01	4.96
%Or	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.01	0.00	0.00	0.01	0.00	0.02	0.00	0.00	0.00	0.21	0.00	0.00	0.00	0.00	0.00	0.01
%Ab	0.93	0.92	0.92	0.92	0.93	0.92	0.92	0.91	0.90	0.92	0.91	0.93	0.91	0.91	0.91	0.90	0.91	0.91	0.90	0.72	0.90	0.90	0.91	0.92	0.91	0.92
%An	0.06	0.07	0.08	0.08	0.06	0.07	0.08	0.09	0.08	0.07	0.08	0.07	0.09	0.08	0.09	0.08	0.09	0.09	0.10	0.07	0.09	0.09	0.08	0.07	0.08	0.08
Sr (ppm)	19750	19700	19440	20000	19620	19890	19910	20100	20060	20600	20830	21260	21500	21450	21310	21520	21610	21790	21360	21170	21410	21270	20930	21430	21450	21230
Ba (ppm)	400	300	410	520	430	460	440	500	510	470	440	440	530	450	470	500	480	510	570	670	720	810	830	870	860	930
Distance (µm)	69	92	115	161	184	206	229	275	298	344	367	413	436	459	482	505	528	551	574	619	642	665	688	711	734	757

Lame	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
N° du cristal	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
N° analyse	1/35.	1/36.	1/37.	1/38.	1/39.	1 / 40 .	1/41.	1/42.	1 / 43 .	1 / 44 .	1 / 45 .	1 / 46 .	1 / 47 .	1 / 48 .	1/49.	1/50.
SiO ₂	63.26	63.17	63.83	63.74	63.62	63.39	63.79	64.24	64.35	64.80	64.72	64.41	66.41	65.96	64.88	65.62
Al ₂ O ₃	20.49	20.96	20.60	20.67	20.57	20.45	20.30	19.92	20.27	19.63	20.20	19.80	18.99	18.75	19.81	19.49
Fe ₂ O ₃	0.14	0.06	0.01	0.19	0.18	0.19	0.16	0.83	0.09	0.12	0.08	0.02	0.21	0.06	0.03	0.00
CaO	1.65	1.80	1.62	1.52	1.47	1.61	1.56	1.25	1.30	0.65	1.10	0.84	0.24	0.25	0.67	0.15
Na ₂ O	10.28	10.22	10.28	10.64	10.59	10.31	10.58	9.72	10.80	10.84	10.59	10.75	10.61	10.95	10.91	11.39
K ₂ O	0.09	0.07	0.05	0.09	0.07	0.07	0.08	0.19	0.07	0.06	0.10	0.06	0.09	0.15	0.08	0.06
Sr	2.47	2.48	2.45	2.50	2.48	2.49	2.45	2.48	2.46	2.47	2.52	2.48	2.51	2.51	2.52	2.53
Ва	0.10	0.12	0.10	0.10	0.10	0.10	0.09	0.09	0.09	0.10	0.10	0.09	0.09	0.09	0.09	0.08
Total	0.03	0.00	0.01	0.01	0.04	0.09	0.00	0.08	0.00	0.01	0.00	0.01	0.00	0.03	0.00	0.00
FORMULE STRUCT	URALE (8	Oxygènes	s)													
Si	2.90	2.88	2.90	2.89	2.90	2.90	2.91	2.93	2.92	2.95	2.93	2.94	3.00	3.00	2.95	2.97
Al	1.11	1.13	1.10	1.11	1.10	1.10	1.09	1.07	1.08	1.05	1.08	1.07	1.01	1.00	1.06	1.04
Fe ³⁺	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.03	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
Ca	0.08	0.09	0.08	0.07	0.07	0.08	0.08	0.06	0.06	0.03	0.05	0.04	0.01	0.01	0.03	0.01
Na	0.91	0.90	0.91	0.94	0.93	0.91	0.93	0.86	0.95	0.96	0.93	0.95	0.93	0.96	0.96	1.00
K	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.00
Total	5.01	5.01	5.00	5.02	5.02	5.00	5.02	4.95	5.02	5.00	5.00	5.00	4.96	4.99	5.00	5.01
%Or	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.00
%Ab	0.91	0.91	0.92	0.92	0.92	0.92	0.92	0.92	0.93	0.96	0.94	0.96	0.98	0.98	0.96	0.99
%An	0.08	0.09	0.08	0.07	0.07	0.08	0.08	0.07	0.06	0.03	0.05	0.04	0.01	0.01	0.03	0.01
Sr (ppm)	20920	20990	20680	21130	20940	21050	20690	20950	20790	20850	21270	20960	21210	21190	21310	21370
Ba (ppm)	920	1030	900	930	870	890	820	820	830	860	880	800	780	780	820	700
Distance	803	826	849	872	895	918	941	964	986	1009	1032	1055	1078	1101	1124	1147

Annexe 6b Compositions chimiques des plagioclases du cœur du granite de Dolbel (profil 2)

Lame		,			•		, ,	9				- · · · · · · · · · · · · · · · · · · ·				11-	,									
	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
N° du cristal	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
N° analyse	2/1.	2/2.	2/3.	2/5.	2/6.	2/7.	2/8.	2/9.	2/10.	2/11.	2/12.	2/13.	2/14.	2/15.	2/16.	2/17.	2/18.	2/19.	2/20.	2/21.	2/22.	2/23.	2/24.	2/25.	2/26.	2/27.
SiO ₂	65.02	65.57	65.07	65.08	65.08	65.43	65.16	73.85	64.95	65.25	65.14	65.01	65.15	65.12	64.48	65.39	64.96	64.88	65.16	65.08	65.59	65.09	64.71	64.13	64.46	64.54
Al_2O_3	20.40	20.34	20.47	20.52	20.52	20.44	20.37	13.75	20.32	20.73	20.40	20.61	20.74	20.92	20.68	20.31	20.32	20.42	20.49	20.41	20.48	20.65	20.35	20.92	20.78	20.87
Fe ₂ O ₃	0.14	0.16	0.00	0.22	0.13	0.10	0.17	0.06	0.15	0.11	0.18	0.06	0.13	0.12	0.16	0.08	0.07	0.01	0.12	0.19	0.10	0.16	0.05	0.08	0.19	0.06
CaO	1.21	1.42	1.35	1.53	1.40	1.41	1.51	1.00	1.55	1.54	1.50	1.57	1.56	1.59	1.69	1.35	1.48	1.34	1.24	1.39	1.38	1.47	1.27	1.67	1.69	1.97
Na ₂ O	10.17	10.61	10.49	10.32	10.43	10.57	10.33	6.79	10.65	10.36	10.17	10.51	10.26	10.32	10.39	10.17	10.64	10.52	10.67	10.29	10.40	10.34	10.53	10.01	10.53	10.06
K ₂ O	0.08	0.10	0.10	0.15	0.11	0.11	0.12	0.20	0.15	0.13	0.12	0.10	0.06	0.08	0.12	0.05	0.10	0.07	0.07	0.07	0.21	0.07	0.08	0.40	0.12	0.09
Sr	2.59	2.59	2.61	2.58	2.52	2.50	2.49	2.37	2.51	2.48	2.44	2.44	2.39	2.41	2.41	2.44	2.47	2.44	2.45	2.36	2.41	2.45	2.45	2.51	2.49	2.51
Ва	0.02	0.02	0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.03	0.02	0.03	0.04	0.04	0.03	0.03	0.03
Total	99.64	100.81	100.11	100.41	100.20	100.56	100.15	98.03	100.29	100.60	99.94	100.29	100.31	100.57	99.93	99.79	100.05	99.71	100.23	99.80	100.60	100.26	99.47	99.75	100.28	100.12
FORMULE STRUCT		Oxygènes		100.41	100.20	100.00	100.10	50.00	100.20	100.00	00.04	100.20	100.01	100.01	00.00	00.70	100.00	55.7 1	100.20	55.55	100.00	100.20	00.41	55.76	100.20	100.12
ei	2.93	2.93	2.92	2.92	2.92	2.93	2.92	3.28	2.92	2.92	2.92	2.91	2.91	2.91	2.90	2.94	2.92	2.92	2.92	2.93	2.93	2.92	2.92	2.90	2.90	2.90
۸۱	1.08	1.07	1.08	1.08	1.09	1.08	1.08	0.72	1.08	1.09	1.08	1.09	1.09	1.10	1.10	1.08	1.08	1.08	1.08	1.08	1.08	1.09	1.08		1.10	1.11
Fe ³⁺																								1.11		
	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.00
Ca	0.06	0.07	0.06	0.07	0.07	0.07	0.07	0.05	0.07	0.07	0.07	0.08	0.07	0.08	0.08	0.07	0.07	0.06	0.06	0.07	0.07	0.07	0.06	0.08	0.08	0.09
Na	0.89	0.92	0.91	0.90	0.91	0.92	0.90	0.59	0.93	0.90	0.89	0.91	0.89	0.89	0.91	0.89	0.93	0.92	0.93	0.90	0.90	0.90	0.92	0.88	0.92	0.88
K	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.02	0.01	0.00
Total	4.97	5.00	4.99	4.99	4.99	5.00	4.99	4.65	5.01	4.99	4.98	5.00	4.98	4.99	5.00	4.97	5.00	5.00	5.00	4.98	4.98	4.99	5.00	4.99	5.01	4.99
%Or	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.02	0.01	0.01
%Ab	0.93	0.93	0.93	0.92	0.93	0.93	0.92	0.91	0.92	0.92	0.92	0.92	0.92	0.92	0.91	0.93	0.92	0.93	0.94	0.93	0.92	0.92	0.93	0.89	0.91	0.90
%An	0.06	0.07	0.07	0.08	0.07	0.07	0.07	0.07	0.07	0.08	0.07	0.08	0.08	0.08	0.08	0.07	0.07	0.07	0.06	0.07	0.07	0.07	0.06	0.08	0.08	0.10
	05000																		0.45.40							
Sr (ppm)	25900	25850	26110	25750	25240	24960	24860	23680	25050	24840	24380	24360	23940	24090	24120	24370	24690	24440	24540	23640	24110	24490	24450	25090	24870	25070
Ba (ppm)	210	240	190	250	170	150	130	60	80	-	-	-	-	-	-	20	200	240	310	240	290	390	350	300	320	280
Distance (µm)	0	17	33	66	83	99	116	132	149	166	182	199	215	232	248	265	282	298	315	331	348	364	381	397	414	431
1	D0.5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
Lame N° du cristal	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22	DO 5 22
iv uu ciistai					~~	~~	22	~~	~~	22			2/44.	2/45.		2/48.	2/49.	2/50.	2/51.	2/53.	2/54.					
N° analyse					2 / 36	2/37	2 / 38	2/39	2 / 40	2 / 41	2 / 42	2 / 43			2/46							2 / 55	2 / 56	2 / 57	2 / 58	2 / 59
N° analyse SiO ₂	2/29.	2/32.	2/33.	2/34.	2 / 36 . 60.44	2 / 37 . 65.48	2 / 38 . 65.41	2 / 39 . 64.60	2 / 40 . 65.88	2 / 41 . 65.90	2 / 42 . 65.17	2 / 43 . 65.54			2 / 46 . 64.69							2 / 55 . 64.43	2 / 56 . 64.26	2 / 57 . 64.50	2 / 58 . 64.25	2 / 59 . 65.47
SiO ₂	2 / 29 . 65.24	2 / 32 . 58.52	2 / 33 . 65.48	2 / 34 . 66.30	60.44	65.48	65.41	64.60	65.88	65.90	65.17	65.54	64.74	65.58	64.69	65.18	65.24	65.63	65.71	64.77	64.28	64.43	64.26	64.50	64.25	65.47
SiO ₂ Al ₂ O ₃	2 / 29 . 65.24 20.22	2 / 32 . 58.52 25.87	2 / 33 . 65.48 20.34	2 / 34 . 66.30 19.94	60.44 24.55	65.48 20.43	65.41 20.25	64.60 20.23	65.88 19.90	65.90 20.40	65.17 20.19	65.54 21.03	64.74 20.77	65.58 20.00	64.69 20.63	65.18 20.72	65.24 20.97	65.63 19.62	65.71 20.59	64.77 20.73	64.28 20.85	64.43 21.05	64.26 21.03	64.50 20.85	64.25 20.94	65.47 21.06
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃	2 / 29 . 65.24 20.22 0.06	2 / 32 . 58.52 25.87 0.49	2 / 33 . 65.48 20.34 0.00	2 / 34 . 66.30 19.94 0.10	60.44 24.55 0.25	65.48 20.43 0.10	65.41 20.25 0.04	64.60 20.23 0.00	65.88 19.90 0.00	65.90 20.40 0.11	65.17 20.19 0.07	65.54 21.03 0.06	64.74 20.77 0.14	65.58 20.00 0.30	64.69 20.63 0.09	65.18 20.72 0.04	65.24 20.97 0.01	65.63 19.62 0.03	65.71 20.59 0.06	64.77 20.73 0.07	64.28 20.85 0.13	64.43 21.05 0.08	64.26 21.03 0.11	64.50 20.85 0.07	64.25 20.94 0.13	65.47 21.06 0.12
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO	2 / 29 . 65.24 20.22 0.06 1.22	2 / 32 . 58.52 25.87 0.49 0.42	2/33. 65.48 20.34 0.00 0.68	2/34. 66.30 19.94 0.10 0.60	60.44 24.55 0.25 0.35	65.48 20.43 0.10 1.48	65.41 20.25 0.04 0.69	64.60 20.23 0.00 0.99	65.88 19.90 0.00 0.79	65.90 20.40 0.11 1.15	65.17 20.19 0.07 1.18	65.54 21.03 0.06 1.19	64.74 20.77 0.14 1.77	65.58 20.00 0.30 0.84	64.69 20.63 0.09 1.32	65.18 20.72 0.04 1.69	65.24 20.97 0.01 1.34	65.63 19.62 0.03 0.63	65.71 20.59 0.06 1.23	64.77 20.73 0.07 1.81	64.28 20.85 0.13 1.84	64.43 21.05 0.08 1.87	64.26 21.03 0.11 1.81	64.50 20.85 0.07 1.81	64.25 20.94 0.13 1.83	65.47 21.06 0.12 1.76
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O	2 / 29 . 65.24 20.22 0.06 1.22 10.66	2 / 32 . 58.52 25.87 0.49 0.42 6.95	2/33. 65.48 20.34 0.00 0.68 10.63	2/34. 66.30 19.94 0.10 0.60 10.98	60.44 24.55 0.25 0.35 8.27	65.48 20.43 0.10 1.48 10.89	65.41 20.25 0.04 0.69 10.79	64.60 20.23 0.00 0.99 10.67	65.88 19.90 0.00 0.79 10.84	65.90 20.40 0.11 1.15 10.39	65.17 20.19 0.07 1.18 10.37	65.54 21.03 0.06 1.19 10.48	64.74 20.77 0.14 1.77 10.17	65.58 20.00 0.30 0.84 10.63	64.69 20.63 0.09 1.32 10.11	65.18 20.72 0.04 1.69 10.41	65.24 20.97 0.01 1.34 10.03	65.63 19.62 0.03 0.63 10.80	65.71 20.59 0.06 1.23 10.68	64.77 20.73 0.07 1.81 10.36	64.28 20.85 0.13 1.84 10.29	64.43 21.05 0.08 1.87 10.32	64.26 21.03 0.11 1.81 10.15	64.50 20.85 0.07 1.81 10.23	64.25 20.94 0.13 1.83 10.33	65.47 21.06 0.12 1.76 10.44
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO	2 / 29 . 65.24 20.22 0.06 1.22 10.66 0.06	2 / 32 . 58.52 25.87 0.49 0.42 6.95 4.27	2/33. 65.48 20.34 0.00 0.68 10.63 0.31	2 / 34 . 66.30 19.94 0.10 0.60 10.98 0.20	60.44 24.55 0.25 0.35 8.27 3.27	65.48 20.43 0.10 1.48 10.89 0.04	65.41 20.25 0.04 0.69 10.79 0.32	64.60 20.23 0.00 0.99 10.67 0.41	65.88 19.90 0.00 0.79 10.84 0.10	65.90 20.40 0.11 1.15 10.39 0.08	65.17 20.19 0.07 1.18 10.37 0.06	65.54 21.03 0.06 1.19 10.48 0.25	64.74 20.77 0.14 1.77 10.17 0.08	65.58 20.00 0.30 0.84 10.63 0.20	64.69 20.63 0.09 1.32 10.11 0.12	65.18 20.72 0.04 1.69 10.41 0.11	65.24 20.97 0.01 1.34 10.03 0.36	65.63 19.62 0.03 0.63 10.80 0.10	65.71 20.59 0.06 1.23 10.68 0.07	64.77 20.73 0.07 1.81 10.36 0.07	64.28 20.85 0.13 1.84 10.29 0.10	64.43 21.05 0.08 1.87 10.32 0.08	64.26 21.03 0.11 1.81 10.15 0.10	64.50 20.85 0.07 1.81 10.23 0.10	64.25 20.94 0.13 1.83 10.33 0.08	65.47 21.06 0.12 1.76 10.44 0.07
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O	2 / 29 . 65.24 20.22 0.06 1.22 10.66	2 / 32 . 58.52 25.87 0.49 0.42 6.95	2/33. 65.48 20.34 0.00 0.68 10.63	2/34. 66.30 19.94 0.10 0.60 10.98	60.44 24.55 0.25 0.35 8.27	65.48 20.43 0.10 1.48 10.89	65.41 20.25 0.04 0.69 10.79	64.60 20.23 0.00 0.99 10.67	65.88 19.90 0.00 0.79 10.84	65.90 20.40 0.11 1.15 10.39	65.17 20.19 0.07 1.18 10.37	65.54 21.03 0.06 1.19 10.48	64.74 20.77 0.14 1.77 10.17	65.58 20.00 0.30 0.84 10.63	64.69 20.63 0.09 1.32 10.11	65.18 20.72 0.04 1.69 10.41	65.24 20.97 0.01 1.34 10.03	65.63 19.62 0.03 0.63 10.80	65.71 20.59 0.06 1.23 10.68	64.77 20.73 0.07 1.81 10.36	64.28 20.85 0.13 1.84 10.29	64.43 21.05 0.08 1.87 10.32	64.26 21.03 0.11 1.81 10.15	64.50 20.85 0.07 1.81 10.23	64.25 20.94 0.13 1.83 10.33	65.47 21.06 0.12 1.76 10.44
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K ₂ O Sr Ba Total	2 / 29 . 65.24 20.22 0.06 1.22 10.66 0.06 2.60 0.03 100.08	2 / 32 . 58.52 25.87 0.49 0.42 6.95 4.27 2.61	2/33. 65.48 20.34 0.00 0.68 10.63 0.31 2.52	2 / 34 . 66.30 19.94 0.10 0.60 10.98 0.20 2.57	60.44 24.55 0.25 0.35 8.27 3.27 2.47	65.48 20.43 0.10 1.48 10.89 0.04 2.46	65.41 20.25 0.04 0.69 10.79 0.32 2.43	64.60 20.23 0.00 0.99 10.67 0.41 2.31	65.88 19.90 0.00 0.79 10.84 0.10 2.31	65.90 20.40 0.11 1.15 10.39 0.08 2.20	65.17 20.19 0.07 1.18 10.37 0.06 2.19	65.54 21.03 0.06 1.19 10.48 0.25 2.22	64.74 20.77 0.14 1.77 10.17 0.08 2.20	65.58 20.00 0.30 0.84 10.63 0.20 2.15	64.69 20.63 0.09 1.32 10.11 0.12 2.12	65.18 20.72 0.04 1.69 10.41 0.11 2.07	65.24 20.97 0.01 1.34 10.03 0.36 2.06	65.63 19.62 0.03 0.63 10.80 0.10 2.05	65.71 20.59 0.06 1.23 10.68 0.07 2.03	64.77 20.73 0.07 1.81 10.36 0.07 1.85	64.28 20.85 0.13 1.84 10.29 0.10 1.78	64.43 21.05 0.08 1.87 10.32 0.08 1.73	64.26 21.03 0.11 1.81 10.15 0.10 1.74	64.50 20.85 0.07 1.81 10.23 0.10 1.83	64.25 20.94 0.13 1.83 10.33 0.08 1.82	65.47 21.06 0.12 1.76 10.44 0.07 1.89
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba	2 / 29 . 65.24 20.22 0.06 1.22 10.66 0.06 2.60 0.03 100.08 TURALE (8	2 / 32 . 58.52 25.87 0.49 0.42 6.95 4.27 2.61 0.02	2/33. 65.48 20.34 0.00 0.68 10.63 0.31 2.52 0.03 99.99	2/34. 66.30 19.94 0.10 0.60 10.98 0.20 2.57 0.03 100.71	60.44 24.55 0.25 0.35 8.27 3.27 2.47 0.04	65.48 20.43 0.10 1.48 10.89 0.04 2.46 0.05 100.93	65.41 20.25 0.04 0.69 10.79 0.32 2.43 0.05 99.98	64.60 20.23 0.00 0.99 10.67 0.41 2.31 0.05 99.25	65.88 19.90 0.00 0.79 10.84 0.10 2.31 0.05 99.87	65.90 20.40 0.11 1.15 10.39 0.08 2.20 0.05 100.27	65.17 20.19 0.07 1.18 10.37 0.06 2.19 0.04 99.28	65.54 21.03 0.06 1.19 10.48 0.25 2.22 0.05 100.83	64.74 20.77 0.14 1.77 10.17 0.08 2.20 0.06 99.92	65.58 20.00 0.30 0.84 10.63 0.20 2.15 0.05 99.75	64.69 20.63 0.09 1.32 10.11 0.12 2.12 0.05 99.12	65.18 20.72 0.04 1.69 10.41 0.11 2.07 0.06 100.28	65.24 20.97 0.01 1.34 10.03 0.36 2.06 0.07 100.07	65.63 19.62 0.03 0.63 10.80 0.10 2.05 0.06 98.92	65.71 20.59 0.06 1.23 10.68 0.07 2.03 0.07 100.43	64.77 20.73 0.07 1.81 10.36 0.07 1.85 0.10 99.76	64.28 20.85 0.13 1.84 10.29 0.10 1.78 0.13 99.41	64.43 21.05 0.08 1.87 10.32 0.08 1.73 0.18 99.73	64.26 21.03 0.11 1.81 10.15 0.10 1.74 0.18 99.38	64.50 20.85 0.07 1.81 10.23 0.10 1.83 0.16 99.54	64.25 20.94 0.13 1.83 10.33 0.08 1.82 0.13 99.50	65.47 21.06 0.12 1.76 10.44 0.07 1.89 0.13 100.93
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K ₂ O Sr Ba Total	2 / 29 . 65.24 20.22 0.06 1.22 10.66 0.06 2.60 0.03 100.08 URALE (8	2 / 32 . 58.52 25.87 0.49 0.42 6.95 4.27 2.61 0.02 99.14 Oxygènes 2.70	2 / 33 . 65.48 20.34 0.00 0.68 10.63 0.31 2.52 0.03 99.99 s)	2/34. 66.30 19.94 0.10 0.60 10.98 0.20 2.57 0.03 100.71 2.96	60.44 24.55 0.25 0.35 8.27 3.27 2.47 0.04 99.64 2.76	65.48 20.43 0.10 1.48 10.89 0.04 2.46 0.05 100.93	65.41 20.25 0.04 0.69 10.79 0.32 2.43 0.05 99.98	64.60 20.23 0.00 0.99 10.67 0.41 2.31 0.05 99.25	65.88 19.90 0.00 0.79 10.84 0.10 2.31 0.05 99.87	65.90 20.40 0.11 1.15 10.39 0.08 2.20 0.05 100.27	65.17 20.19 0.07 1.18 10.37 0.06 2.19 0.04 99.28	65.54 21.03 0.06 1.19 10.48 0.25 2.22 0.05 100.83	64.74 20.77 0.14 1.77 10.17 0.08 2.20 0.06 99.92	65.58 20.00 0.30 0.84 10.63 0.20 2.15 0.05 99.75	64.69 20.63 0.09 1.32 10.11 0.12 2.12 0.05 99.12	65.18 20.72 0.04 1.69 10.41 0.11 2.07 0.06 100.28	65.24 20.97 0.01 1.34 10.03 0.36 2.06 0.07 100.07	65.63 19.62 0.03 0.63 10.80 0.10 2.05 0.06 98.92	65.71 20.59 0.06 1.23 10.68 0.07 2.03 0.07 100.43	64.77 20.73 0.07 1.81 10.36 0.07 1.85 0.10 99.76	64.28 20.85 0.13 1.84 10.29 0.10 1.78 0.13 99.41 2.90	64.43 21.05 0.08 1.87 10.32 0.08 1.73 0.18 99.73	64.26 21.03 0.11 1.81 10.15 0.10 1.74 0.18 99.38 2.89	64.50 20.85 0.07 1.81 10.23 0.10 1.83 0.16 99.54	64.25 20.94 0.13 1.83 10.33 0.08 1.82 0.13 99.50 2.89	65.47 21.06 0.12 1.76 10.44 0.07 1.89 0.13 100.93
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K ₂ O Sr Ba Total FORMULE STRUCT Si Al	2 / 29 . 65.24 20.22 0.06 1.22 10.66 0.06 2.60 0.03 100.08 URALE (8 2.93 1.07	2 / 32 . 58.52 25.87 0.49 0.42 6.95 4.27 2.61 0.02 99.14 Oxygènes 2.70 1.41	2/33. 65.48 20.34 0.00 0.68 10.63 0.31 2.52 0.03 99.99 s) 2.94 1.08	2/34. 66.30 19.94 0.10 0.60 10.98 0.20 2.57 0.03 100.71 2.96 1.05	60.44 24.55 0.25 0.35 8.27 3.27 2.47 0.04 99.64 2.76 1.32	65.48 20.43 0.10 1.48 10.89 0.04 2.46 0.05 100.93 2.92 1.07	65.41 20.25 0.04 0.69 10.79 0.32 2.43 0.05 99.98 2.94 1.07	64.60 20.23 0.00 0.99 10.67 0.41 2.31 0.05 99.25 2.93 1.08	65.88 19.90 0.00 0.79 10.84 0.10 2.31 0.05 99.87 2.95 1.05	65.90 20.40 0.11 1.15 10.39 0.08 2.20 0.05 100.27 2.94 1.07	65.17 20.19 0.07 1.18 10.37 0.06 2.19 0.04 99.28 2.94 1.07	65.54 21.03 0.06 1.19 10.48 0.25 2.22 0.05 100.83	64.74 20.77 0.14 1.77 10.17 0.08 2.20 0.06 99.92 2.91 1.10	65.58 20.00 0.30 0.84 10.63 0.20 2.15 0.05 99.75 2.94 1.06	64.69 20.63 0.09 1.32 10.11 0.12 2.12 0.05 99.12 2.92 1.10	65.18 20.72 0.04 1.69 10.41 0.11 2.07 0.06 100.28 2.91 1.09	65.24 20.97 0.01 1.34 10.03 0.36 2.06 0.07 100.07	65.63 19.62 0.03 0.63 10.80 0.10 2.05 0.06 98.92 2.96 1.04	65.71 20.59 0.06 1.23 10.68 0.07 2.03 0.07 100.43 2.92 1.08	64.77 20.73 0.07 1.81 10.36 0.07 1.85 0.10 99.76 2.90 1.10	64.28 20.85 0.13 1.84 10.29 0.10 1.78 0.13 99.41 2.90 1.11	64.43 21.05 0.08 1.87 10.32 0.08 1.73 0.18 99.73 2.89 1.11	64.26 21.03 0.11 1.81 10.15 0.10 1.74 0.18 99.38 2.89 1.12	64.50 20.85 0.07 1.81 10.23 0.10 1.83 0.16 99.54 2.90 1.10	64.25 20.94 0.13 1.83 10.33 0.08 1.82 0.13 99.50 2.89 1.11	65.47 21.06 0.12 1.76 10.44 0.07 1.89 0.13 100.93 2.90 1.10
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺	2/29. 65.24 20.22 0.06 1.22 10.66 0.06 2.60 0.03 100.08 TURALE (8 2.93 1.07 0.00	2 / 32 . 58.52 25.87 0.49 0.42 6.95 4.27 2.61 0.02 99.14 Oxygènes 2.70 1.41 0.02	2/33. 65.48 20.34 0.00 0.68 10.63 0.31 2.52 0.03 99.99 s) 2.94 1.08 0.00	2/34. 66.30 19.94 0.10 0.60 10.98 0.20 2.57 0.03 100.71 2.96 1.05 0.00	60.44 24.55 0.25 0.35 8.27 3.27 2.47 0.04 99.64 2.76 1.32 0.01	65.48 20.43 0.10 1.48 10.89 0.04 2.46 0.05 100.93 2.92 1.07 0.00	65.41 20.25 0.04 0.69 10.79 0.32 2.43 0.05 99.98 2.94 1.07 0.00	64.60 20.23 0.00 0.99 10.67 0.41 2.31 0.05 99.25 2.93 1.08 0.00	65.88 19.90 0.00 0.79 10.84 0.10 2.31 0.05 99.87 2.95 1.05 0.00	65.90 20.40 0.11 1.15 10.39 0.08 2.20 0.05 100.27 2.94 1.07	65.17 20.19 0.07 1.18 10.37 0.06 2.19 0.04 99.28 2.94 1.07	65.54 21.03 0.06 1.19 10.48 0.25 2.22 0.05 100.83 2.91 1.10	64.74 20.77 0.14 1.77 10.17 0.08 2.20 0.06 99.92 2.91 1.10 0.00	65.58 20.00 0.30 0.84 10.63 0.20 2.15 0.05 99.75 2.94 1.06 0.01	64.69 20.63 0.09 1.32 10.11 0.12 2.12 0.05 99.12 2.92 1.10 0.00	65.18 20.72 0.04 1.69 10.41 0.11 2.07 0.06 100.28 2.91 1.09 0.00	65.24 20.97 0.01 1.34 10.03 0.36 2.06 0.07 100.07	65.63 19.62 0.03 0.63 10.80 0.10 2.05 0.06 98.92 2.96 1.04 0.00	65.71 20.59 0.06 1.23 10.68 0.07 2.03 0.07 100.43 2.92 1.08	64.77 20.73 0.07 1.81 10.36 0.07 1.85 0.10 99.76 2.90 1.10	64.28 20.85 0.13 1.84 10.29 0.10 1.78 0.13 99.41 2.90 1.11 0.00	64.43 21.05 0.08 1.87 10.32 0.08 1.73 0.18 99.73 2.89 1.11 0.00	64.26 21.03 0.11 1.81 10.15 0.10 1.74 0.18 99.38 2.89 1.12 0.00	64.50 20.85 0.07 1.81 10.23 0.10 1.83 0.16 99.54 2.90 1.10 0.00	64.25 20.94 0.13 1.83 10.33 0.08 1.82 0.13 99.50 2.89 1.11	65.47 21.06 0.12 1.76 10.44 0.07 1.89 0.13 100.93 2.90 1.10 0.00
$\begin{array}{l} \text{SiO}_2\\ \text{Al}_2\text{O}_3\\ \text{Fe}_2\text{O}_3\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{K2O}\\ \text{Sr}\\ \text{Ba}\\ \text{Total}\\ \text{FORMULE STRUCT}\\ \text{Si}\\ \text{Al}\\ \text{Fe}^{\text{sh}^{\text{+}}}\\ \text{Ca}\\ \end{array}$	2 / 29 . 65.24 20.22 0.06 1.22 10.66 0.03 100.08 TURALE (8 2.93 1.07 0.00 0.06	2 / 32 . 58.52 25.87 0.49 0.42 6.95 4.27 2.61 0.02 99.14 Oxygènes 2.70 1.41 0.02 0.02	2/33. 65.48 20.34 0.00 0.68 10.63 0.31 2.52 0.03 99.99 s) 2.94 1.08 0.00 0.03	2/34. 66.30 19.94 0.10 0.60 10.98 0.20 2.57 0.03 100.71 2.96 1.05 0.00 0.03	60.44 24.55 0.25 0.35 8.27 3.27 2.47 0.04 99.64 2.76 1.32 0.01 0.02	65.48 20.43 0.10 1.48 10.89 0.04 2.46 0.05 100.93 2.92 1.07 0.00 0.07	65.41 20.25 0.04 0.69 10.79 0.32 2.43 0.05 99.98 2.94 1.07 0.00 0.03	64.60 20.23 0.00 0.99 10.67 0.41 2.31 0.05 99.25 2.93 1.08 0.00 0.05	65.88 19.90 0.00 0.79 10.84 0.10 2.31 0.05 99.87 2.95 1.05 0.00	65.90 20.40 0.11 1.15 10.39 0.08 2.20 0.05 100.27 2.94 1.07 0.00 0.05	65.17 20.19 0.07 1.18 10.37 0.06 2.19 0.04 99.28 2.94 1.07 0.00 0.06	65.54 21.03 0.06 1.19 10.48 0.25 2.22 0.05 100.83 2.91 1.10 0.00 0.06	64.74 20.77 0.14 1.77 10.17 0.08 2.20 0.06 99.92 2.91 1.10 0.00 0.09	65.58 20.00 0.30 0.84 10.63 0.20 2.15 0.05 99.75 2.94 1.06 0.01 0.04	64.69 20.63 0.09 1.32 10.11 0.12 2.12 0.05 99.12 2.92 1.10 0.00 0.06	65.18 20.72 0.04 1.69 10.41 0.11 2.07 0.06 100.28 2.91 1.09 0.00 0.08	65.24 20.97 0.01 1.34 10.03 0.36 2.06 0.07 100.07 2.92 1.10 0.00 0.06	65.63 19.62 0.03 0.63 10.80 0.10 2.05 0.06 98.92 2.96 1.04 0.00 0.03	65.71 20.59 0.06 1.23 10.68 0.07 2.03 0.07 100.43 2.92 1.08 0.00	0.07 1.81 10.36 0.07 1.85 0.10 99.76 2.90 1.10 0.00	04.28 20.85 0.13 1.84 10.29 0.10 1.78 0.13 99.41 2.90 1.11 0.00 0.09	64.43 21.05 0.08 1.87 10.32 0.08 1.73 0.18 99.73 2.89 1.11 0.00 0.09	04.26 21.03 0.11 1.81 10.15 0.10 1.74 0.18 99.38 2.89 1.12 0.00 0.09	04.50 20.85 0.07 1.81 10.23 0.10 1.83 0.16 99.54 2.90 1.10 0.00	64.25 20.94 0.13 1.83 10.33 0.08 1.82 0.13 99.50 2.89 1.11 0.00 0.09	65.47 21.06 0.12 1.76 10.44 0.07 1.89 0.13 100.93 2.90 1.10 0.00 0.08
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺	2/29. 65.24 20.22 0.06 1.22 10.66 0.06 2.60 0.03 100.08 VRALE (8 2.93 1.07 0.00 0.06 0.09	2 / 32 . 58.52 25.87 0.49 0.42 6.95 4.27 2.61 0.02 99.14 Oxygènes 2.70 1.41 0.02 0.02 0.02 0.02	2/33. 65.48 20.34 0.00 0.68 10.63 0.31 2.52 0.03 99.99 s) 2.94 1.08 0.00 0.03 0.93	2/34. 66.30 19.94 0.10 0.60 10.98 0.20 2.57 0.03 100.71 2.96 1.05 0.00 0.03 0.95	60.44 24.55 0.25 0.35 8.27 3.27 2.47 0.04 99.64 2.76 1.32 0.01 0.02 0.73	65.48 20.43 0.10 1.48 10.89 0.04 2.46 0.05 100.93 2.92 1.07 0.00 0.07	65.41 20.25 0.04 0.69 10.79 0.32 2.43 0.05 99.98 2.94 1.07 0.00 0.03 0.94	64.60 20.23 0.00 0.99 10.67 0.41 2.31 0.05 99.25 2.93 1.08 0.00 0.05 0.94	65.88 19.90 0.00 0.79 10.84 0.10 2.31 0.05 99.87 2.95 1.05 0.00 0.04	65.90 20.40 0.11 1.15 10.39 0.08 2.20 0.05 100.27 2.94 1.07 0.00 0.05 0.90	65.17 20.19 0.07 1.18 10.37 0.06 2.19 0.04 99.28 2.94 1.07 0.00 0.06 0.91	65.54 21.03 0.06 1.19 10.48 0.25 2.22 0.05 100.83 2.91 1.10 0.06 0.90	64.74 20.77 0.14 1.77 10.17 0.08 2.20 0.06 99.92 2.91 1.10 0.00 0.09 0.88	65.58 20.00 0.30 0.84 10.63 0.20 2.15 0.05 99.75 2.94 1.06 0.01 0.04 0.92	64.69 20.63 0.09 1.32 10.11 0.12 2.12 0.05 99.12 2.92 1.10 0.00 0.06 0.89	65.18 20.72 0.04 1.69 10.41 0.11 2.07 0.06 100.28 2.91 1.09 0.00 0.08 0.90	65.24 20.97 0.01 1.34 10.03 0.36 2.06 0.07 100.07 2.92 1.10 0.00 0.06 0.87	65.63 19.62 0.03 0.63 10.80 0.10 2.05 0.06 98.92 2.96 1.04 0.00 0.03 0.95	65.71 20.59 0.06 1.23 10.68 0.07 2.03 0.07 100.43 2.92 1.08 0.00 0.06 0.92	0.07 1.81 10.36 0.07 1.85 0.07 1.85 0.10 99.76 2.90 1.10 0.09 0.99	04.28 20.85 0.13 1.84 10.29 0.10 1.78 0.13 99.41 2.90 1.11 0.00 0.09	64.43 21.05 0.08 1.87 10.32 0.08 1.73 0.18 99.73 2.89 1.11 0.00 0.09	04.26 21.03 0.11 1.81 10.15 0.10 1.74 0.18 99.38 2.89 1.12 0.00 0.09	04.50 20.85 0.07 1.81 10.23 0.10 1.83 0.16 99.54 2.90 1.10 0.09 0.89	04.25 20.94 0.13 1.83 10.33 0.08 1.82 0.13 99.50 2.89 1.11 0.00 0.09	65.47 21.06 0.12 1.76 10.44 0.07 1.89 0.13 100.93 2.90 1.10 0.00 0.08 0.90
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K	2/29. 65.24 20.22 0.06 1.22 10.66 0.03 100.08 URALE (8 2.93 1.07 0.00 0.06 0.03	2 / 32 . 58.52 25.87 0.49 0.42 6.95 4.27 2.61 0.02 99.14 Oxygènes 2.70 1.41 0.02 0.02 0.02	2/33. 65.48 20.34 0.00 0.68 10.63 0.31 2.52 0.03 99.99 s) 2.94 1.08 0.00 0.03 0.93	2/34. 66.30 19.94 0.10 0.60 10.98 0.20 2.57 0.03 100.71 2.96 1.05 0.00 0.03 0.95 0.01	60.44 24.55 0.25 0.35 8.27 3.27 2.47 0.04 99.64 2.76 1.32 0.01 0.02 0.73 0.19	65.48 20.43 0.10 1.48 10.89 0.04 2.46 0.05 100.93 2.92 1.07 0.00 0.07	65.41 20.25 0.04 0.69 10.79 0.32 2.43 0.05 99.98 2.94 1.07 0.00 0.03 0.94 0.02	64.60 20.23 0.00 0.99 10.67 0.41 2.31 0.05 99.25 2.93 1.08 0.00 0.05 0.94	65.88 19.90 0.00 0.79 10.84 0.10 2.31 0.05 99.87 2.95 1.05 0.00 0.04 0.94	65.90 20.40 0.11 1.15 10.39 0.08 2.20 0.05 100.27 2.94 1.07 0.00 0.05	65.17 20.19 0.07 1.18 10.37 0.06 2.19 0.04 99.28 2.94 1.07 0.00 0.06	65.54 21.03 0.06 1.19 10.48 0.25 2.22 0.05 100.83 2.91 1.10 0.00 0.00 0.90	64.74 20.77 0.14 1.77 10.17 0.08 2.20 0.06 99.92 2.91 1.10 0.00 0.09 0.08 0.00	65.58 20.00 0.30 0.84 10.63 0.20 2.15 0.05 99.75 2.94 1.06 0.01 0.04 0.92 0.01	64.69 20.63 0.09 1.32 10.11 0.12 2.12 0.05 99.12 2.92 1.10 0.00 0.06 0.89 0.01	65.18 20.72 0.04 1.69 10.41 0.11 2.07 0.06 100.28 2.91 1.09 0.00 0.08	65.24 20.97 0.01 1.34 10.03 0.36 2.06 0.07 100.07 2.92 1.10 0.00 0.087 0.02	65.63 19.62 0.03 0.63 10.80 0.10 2.05 0.06 98.92 2.96 1.04 0.00 0.03	65.71 20.59 0.06 1.23 10.68 0.07 2.03 0.07 100.43 2.92 1.08 0.00 0.06	0.07 1.81 10.36 0.07 1.85 0.10 99.76 2.90 1.10 0.00 0.09	04.28 20.85 0.13 1.84 10.29 0.10 1.78 0.13 99.41 2.90 1.11 0.00 0.09 0.00	64.43 21.05 0.08 1.87 10.32 0.08 1.73 0.18 99.73 2.89 1.11 0.00 0.90 0.90	04.26 21.03 0.11 1.81 10.15 0.10 1.74 0.18 99.38 2.89 1.12 0.00 0.09 0.89	04.50 20.85 0.07 1.81 10.23 0.10 1.83 0.16 99.54 2.90 1.10 0.00 0.09 0.89 0.01	04.25 20.94 0.13 1.83 10.33 0.08 1.82 0.13 99.50 2.89 1.11 0.00 0.09 0.00	65.47 21.06 0.12 1.76 10.44 0.07 1.89 0.13 100.93 2.90 1.10 0.00 0.08 0.90
$\begin{array}{l} \text{SiO}_2\\ \text{Al}_2\text{O}_3\\ \text{Fe}_2\text{O}_3\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{K2O}\\ \text{Sr}\\ \text{Ba}\\ \text{Total}\\ \text{FORMULE STRUCT}\\ \text{Si}\\ \text{Al}\\ \text{Fe}^{\text{sh}^{\text{+}}}\\ \text{Ca}\\ \end{array}$	2/29. 65.24 20.22 0.06 1.22 10.66 0.06 2.60 0.03 100.08 VRALE (8 2.93 1.07 0.00 0.06 0.09	2 / 32 . 58.52 25.87 0.49 0.42 6.95 4.27 2.61 0.02 99.14 Oxygènes 2.70 1.41 0.02 0.02 0.02 0.02	2/33. 65.48 20.34 0.00 0.68 10.63 0.31 2.52 0.03 99.99 s) 2.94 1.08 0.00 0.03 0.93	2/34. 66.30 19.94 0.10 0.60 10.98 0.20 2.57 0.03 100.71 2.96 1.05 0.00 0.03 0.95	60.44 24.55 0.25 0.35 8.27 3.27 2.47 0.04 99.64 2.76 1.32 0.01 0.02 0.73	65.48 20.43 0.10 1.48 10.89 0.04 2.46 0.05 100.93 2.92 1.07 0.00 0.07	65.41 20.25 0.04 0.69 10.79 0.32 2.43 0.05 99.98 2.94 1.07 0.00 0.03 0.94	64.60 20.23 0.00 0.99 10.67 0.41 2.31 0.05 99.25 2.93 1.08 0.00 0.05 0.94	65.88 19.90 0.00 0.79 10.84 0.10 2.31 0.05 99.87 2.95 1.05 0.00 0.04	65.90 20.40 0.11 1.15 10.39 0.08 2.20 0.05 100.27 2.94 1.07 0.00 0.05 0.90	65.17 20.19 0.07 1.18 10.37 0.06 2.19 0.04 99.28 2.94 1.07 0.00 0.06 0.91	65.54 21.03 0.06 1.19 10.48 0.25 2.22 0.05 100.83 2.91 1.10 0.06 0.90	64.74 20.77 0.14 1.77 10.17 0.08 2.20 0.06 99.92 2.91 1.10 0.00 0.09 0.88	65.58 20.00 0.30 0.84 10.63 0.20 2.15 0.05 99.75 2.94 1.06 0.01 0.04 0.92	64.69 20.63 0.09 1.32 10.11 0.12 2.12 0.05 99.12 2.92 1.10 0.00 0.06 0.89	65.18 20.72 0.04 1.69 10.41 0.11 2.07 0.06 100.28 2.91 1.09 0.00 0.08 0.90	65.24 20.97 0.01 1.34 10.03 0.36 2.06 0.07 100.07 2.92 1.10 0.00 0.06 0.87	65.63 19.62 0.03 0.63 10.80 0.10 2.05 0.06 98.92 2.96 1.04 0.00 0.03 0.95	65.71 20.59 0.06 1.23 10.68 0.07 2.03 0.07 100.43 2.92 1.08 0.00 0.06 0.92	0.07 1.81 10.36 0.07 1.85 0.07 1.85 0.10 99.76 2.90 1.10 0.09 0.99	04.28 20.85 0.13 1.84 10.29 0.10 1.78 0.13 99.41 2.90 1.11 0.00 0.09	64.43 21.05 0.08 1.87 10.32 0.08 1.73 0.18 99.73 2.89 1.11 0.00 0.09	04.26 21.03 0.11 1.81 10.15 0.10 1.74 0.18 99.38 2.89 1.12 0.00 0.09	04.50 20.85 0.07 1.81 10.23 0.10 1.83 0.16 99.54 2.90 1.10 0.09 0.89	04.25 20.94 0.13 1.83 10.33 0.08 1.82 0.13 99.50 2.89 1.11 0.00 0.09	65.47 21.06 0.12 1.76 10.44 0.07 1.89 0.13 100.93 2.90 1.10 0.00 0.08 0.90
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K	2/29. 65.24 20.22 0.06 1.22 10.66 0.03 100.08 URALE (8 2.93 1.07 0.00 0.06 0.03	2 / 32 . 58.52 25.87 0.49 0.42 6.95 4.27 2.61 0.02 99.14 Oxygènes 2.70 1.41 0.02 0.02 0.02	2/33. 65.48 20.34 0.00 0.68 10.63 0.31 2.52 0.03 99.99 s) 2.94 1.08 0.00 0.03 0.93	2/34. 66.30 19.94 0.10 0.60 10.98 0.20 2.57 0.03 100.71 2.96 1.05 0.00 0.03 0.95 0.01	60.44 24.55 0.25 0.35 8.27 3.27 2.47 0.04 99.64 2.76 1.32 0.01 0.02 0.73 0.19	65.48 20.43 0.10 1.48 10.89 0.04 2.46 0.05 100.93 2.92 1.07 0.00 0.07	65.41 20.25 0.04 0.69 10.79 0.32 2.43 0.05 99.98 2.94 1.07 0.00 0.03 0.94 0.02	64.60 20.23 0.00 0.99 10.67 0.41 2.31 0.05 99.25 2.93 1.08 0.00 0.05 0.94	65.88 19.90 0.00 0.79 10.84 0.10 2.31 0.05 99.87 2.95 1.05 0.00 0.04 0.94	65.90 20.40 0.11 1.15 10.39 0.08 2.20 0.05 100.27 2.94 1.07 0.00 0.05	65.17 20.19 0.07 1.18 10.37 0.06 2.19 0.04 99.28 2.94 1.07 0.00 0.06	65.54 21.03 0.06 1.19 10.48 0.25 2.22 0.05 100.83 2.91 1.10 0.00 0.00 0.90	64.74 20.77 0.14 1.77 10.17 0.08 2.20 0.06 99.92 2.91 1.10 0.00 0.09 0.08 0.00	65.58 20.00 0.30 0.84 10.63 0.20 2.15 0.05 99.75 2.94 1.06 0.01 0.04 0.92 0.01	64.69 20.63 0.09 1.32 10.11 0.12 2.12 0.05 99.12 2.92 1.10 0.00 0.06 0.89 0.01	65.18 20.72 0.04 1.69 10.41 0.11 2.07 0.06 100.28 2.91 1.09 0.00 0.08	65.24 20.97 0.01 1.34 10.03 0.36 2.06 0.07 100.07 2.92 1.10 0.00 0.087 0.02	65.63 19.62 0.03 0.63 10.80 0.10 2.05 0.06 98.92 2.96 1.04 0.00 0.03	65.71 20.59 0.06 1.23 10.68 0.07 2.03 0.07 100.43 2.92 1.08 0.00 0.06	0.07 1.81 10.36 0.07 1.85 0.10 99.76 2.90 1.10 0.00 0.09	04.28 20.85 0.13 1.84 10.29 0.10 1.78 0.13 99.41 2.90 1.11 0.00 0.09 0.00	64.43 21.05 0.08 1.87 10.32 0.08 1.73 0.18 99.73 2.89 1.11 0.00 0.90 0.90	04.26 21.03 0.11 1.81 10.15 0.10 1.74 0.18 99.38 2.89 1.12 0.00 0.09 0.89	04.50 20.85 0.07 1.81 10.23 0.10 1.83 0.16 99.54 2.90 1.10 0.00 0.09 0.89 0.01	04.25 20.94 0.13 1.83 10.33 0.08 1.82 0.13 99.50 2.89 1.11 0.00 0.09 0.00	65.47 21.06 0.12 1.76 10.44 0.07 1.89 0.13 100.93 2.90 1.10 0.00 0.08 0.90
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total	2/29. 65.24 20.22 0.06 1.22 10.66 0.06 2.60 0.03 100.08 URALE (8 2.93 1.07 0.00 0.06 0.93 0.00 0.00 0.00	2/32. 58.52 25.87 0.49 0.42 6.95 4.27 2.61 0.02 99.14 Oxygènes 2.70 1.41 0.02 0.62 0.25 5.02	2/33. 65.48 20.34 0.00 0.68 10.63 0.31 2.52 90.99 1.08 0.00 0.03 0.93 0.02 4.99 0.02 0.95	2/34. 66.30 19.94 0.10 0.60 10.98 0.20 2.57 100.71 2.96 1.05 0.00 0.03 0.95 0.01 5.00	60.44 24.55 0.25 0.35 8.27 2.47 0.04 99.64 2.76 1.32 0.01 0.02 0.73 0.19 5.03	65.48 20.43 0.10 1.48 10.89 0.04 2.46 0.05 100.93 2.92 1.07 0.00 0.07 0.94 0.00 5.01	65.41 20.25 0.04 0.69 10.79 0.32 2.43 0.05 99.98 2.94 1.07 0.00 0.03 0.94 0.02 5.00	64.60 20.23 0.00 0.99 10.67 0.41 2.31 0.05 99.25 2.93 1.08 0.00 0.05 0.94 0.02 5.01	65.88 19.90 0.00 0.79 10.84 0.10 2.31 0.05 99.87 2.95 1.05 0.00 0.04 0.94 4.99	65.90 20.40 0.11 1.15 10.39 0.08 2.20 0.05 100.27 2.94 1.07 0.00 0.05 0.90 0.00 4.97	65.17 20.19 0.07 1.18 10.37 0.06 2.19 0.04 99.28 2.94 1.07 0.00 0.06 0.91 0.00 4.98	65.54 21.03 0.06 1.19 10.48 0.25 2.22 0.05 100.83 2.91 1.10 0.00 0.06 0.90 0.01 4.99	64.74 20.77 0.14 1.77 10.17 0.08 2.20 0.06 99.92 2.91 1.10 0.00 0.09 0.88 0.00 0.91	65.58 20.00 0.30 0.84 10.63 0.20 2.15 0.05 99.75 2.94 1.06 0.01 0.04 0.92 0.01 4.98	64.69 20.63 0.09 1.32 10.11 0.12 2.12 0.05 99.12 2.92 1.10 0.00 0.06 0.89 0.01 4.98	65.18 20.72 0.04 1.69 10.41 0.11 2.07 0.06 100.28 2.91 1.09 0.00 0.08 0.90 0.01 4.99	65.24 20.97 0.01 1.34 10.03 0.36 2.06 0.07 100.07 2.92 1.10 0.06 0.87 0.02 4.97	65.63 19.62 0.03 0.63 10.80 0.10 2.05 0.06 98.92 2.96 1.04 0.00 0.03 0.95 0.01 4.99	65.71 20.59 0.06 1.23 10.68 0.07 2.03 0.07 100.43 2.92 1.08 0.00 0.06 0.92 0.00 0.94	64.77 20.73 0.07 1.81 10.36 0.07 1.85 0.10 99.76 2.90 1.10 0.00 0.09 0.90 0.90 0.90	04.28 20.85 0.13 1.84 10.29 0.10 1.78 0.13 99.41 2.90 1.11 0.00 0.09 0.90 0.01 5.00	64.43 21.05 0.08 1.87 10.32 0.08 1.73 0.18 99.73 2.89 1.11 0.00 0.09 0.90 0.00 5.00	64.26 21.03 0.11 1.81 10.15 0.10 1.74 0.18 99.38 2.89 1.12 0.00 0.09 0.89 0.01 4.99	64.50 20.85 0.07 1.81 10.23 0.10 1.83 0.16 99.54 2.90 1.10 0.09 0.89 0.01 4.99	64.25 20.94 0.13 1.83 10.33 99.50 2.89 1.11 0.00 0.09 0.90 0.00 0.00 0.00	65.47 21.06 0.12 1.76 10.44 0.07 1.89 0.13 100.93 2.90 1.10 0.00 0.08 0.90 0.00 4.99
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total	2/29. 65.24 20.22 0.06 1.22 10.66 0.03 100.08 URALE (8 2.93 1.07 0.00 0.06 0.93 3.00 0.00	2/32. 58.52 25.87 0.49 0.42 6.95 4.27 2.61 0.02 99.14 Oxygènes 2.70 1.41 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.05	2/33. 65.48 20.34 0.00 0.68 10.63 0.31 2.52 0.03 99.99 s) 2.94 1.08 0.00 0.03 0.03 0.00 0.0	2/34. 66.30 19.94 0.10 0.60 10.98 0.20 2.57 0.03 100.71 2.96 1.05 0.00 0.03 0.95 0.01 5.00	60.44 24.55 0.25 0.35 8.27 2.47 0.04 99.64 2.76 1.32 0.01 0.02 0.73 0.19 5.03	65.48 20.43 0.10 1.48 10.89 0.04 2.46 0.05 100.93 2.92 1.07 0.00 0.07 0.94 0.00 5.01	65.41 20.25 0.04 0.69 10.79 0.32 2.43 0.05 99.98 2.94 1.07 0.00 0.03 0.94 0.02 5.00	64.60 20.23 0.00 0.99 10.67 0.41 2.31 0.05 99.25 2.93 1.08 0.00 0.05 0.94 0.02 5.01	65.88 19.90 0.00 0.79 10.84 0.10 2.31 0.05 99.87 2.95 1.05 0.00 0.04 0.94 0.01	65.90 20.40 0.11 1.15 10.39 0.05 100.27 2.94 1.07 0.00 0.05 0.90 0.00 4.97	65.17 20.19 0.07 1.18 10.37 0.06 2.19 0.04 99.28 2.94 1.07 0.00 0.06 0.91 0.00 4.98	65.54 21.03 0.06 1.19 10.48 0.25 2.22 0.05 100.83 2.91 1.10 0.00 0.00 0.90 0.01 4.99	64.74 20.77 0.14 1.77 10.17 0.08 2.20 0.06 99.92 2.91 1.10 0.09 0.09 0.88 0.00 4.98	65.58 20.00 0.30 0.84 10.63 0.20 2.15 0.05 99.75 2.94 1.06 0.01 0.04 0.92 0.01	64.69 20.63 0.09 1.32 10.11 0.12 2.12 0.05 99.12 2.92 1.10 0.00 0.06 0.89 0.01	65.18 20.72 0.04 1.69 10.41 2.07 0.06 100.28 2.91 1.09 0.00 0.08 0.90 0.01 4.99	65.24 20.97 0.01 1.34 10.03 0.36 0.07 100.07 2.92 1.10 0.00 0.06 0.87 0.02 4.97	65.63 19.62 0.03 0.63 10.80 0.10 2.05 0.06 98.92 2.96 1.04 0.03 0.95 0.01 4.99	65.71 20.59 0.06 1.23 10.68 0.07 2.03 0.07 100.43 2.92 1.08 0.00 0.06 0.92 0.00 4.99	64.77 20.73 0.07 1.81 10.36 0.07 1.85 0.10 99.76 2.90 1.10 0.00 0.09 0.90 0.00 4.99	04.28 20.85 0.13 1.84 10.29 0.10 1.78 0.13 99.41 2.90 1.11 0.09 0.90 0.01 5.00	64.43 21.05 0.08 1.87 10.32 0.08 1.73 0.18 99.73 2.89 1.11 0.00 0.09 0.00 5.00	04.26 21.03 0.11 1.81 10.15 0.10 1.74 0.18 99.38 2.89 1.12 0.00 0.09 0.01 4.99	04.50 20.85 0.07 1.81 10.23 0.10 99.54 2.90 1.10 0.00 0.09 0.01 4.99	04.25 20.94 0.13 1.83 10.33 0.08 1.82 0.13 99.50 2.89 1.11 0.00 0.09 0.00 5.00	65.47 21.06 0.12 1.76 10.44 0.07 1.89 0.13 100.93 2.90 1.10 0.00 0.08 0.90 0.00 4.99
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total ** **Total ** ** ** ** ** ** ** ** ** ** ** ** **	2/29. 65.24 20.22 0.06 1.22 10.66 0.06 2.60 0.03 100.08 URALE (8 2.93 1.07 0.00 0.06 0.93 0.00 5.00 0.94 0.06	2/32. 58.52 25.87 0.49 0.42 6.95 4.27 2.61 0.02 99.14 Oxygehess 2.70 1.41 0.02 0.02 0.25 5.02 0.28 0.70 0.02	2/33. 65.48 20.34 0.00 0.68 10.63 0.31 2.52 0.03 99.99 3) 2.94 1.08 0.00 0.03 0.93 0.02 4.99 0.02 0.95 0.03	2/34. 66.30 19.94 0.10 0.60 10.98 0.20 2.57 0.03 100.71 2.96 1.05 0.00 0.03 0.95 0.01 5.00 0.03	60.44 24.55 0.25 0.35 8.27 2.47 0.04 99.64 2.76 1.32 0.01 0.02 0.73 0.19 5.03	65.48 20.43 0.10 1.48 10.89 0.04 2.46 0.05 100.93 2.92 1.07 0.00 0.07 0.94 0.00 5.01	65.41 20.25 0.04 0.69 10.79 0.32 2.43 0.05 99.98 2.94 1.07 0.03 0.94 0.02 5.00	64.60 20.23 0.00 0.99 10.67 0.41 2.31 0.05 99.25 2.93 1.08 0.00 0.05 0.94 0.02 5.01	65.88 19.90 0.00 0.79 10.84 0.10 2.31 0.05 99.87 2.95 1.05 0.00 0.04 0.94 0.01 4.99	65.90 20.40 0.11 1.15 10.39 0.08 2.20 0.05 100.27 2.94 1.07 0.00 0.05 0.90 0.00 4.97	65.17 20.19 0.07 1.18 10.37 0.06 2.19 0.04 99.28 2.94 1.07 0.00 0.91 0.00 4.98 0.00	65.54 21.03 0.06 1.19 10.48 0.25 2.22 0.05 100.83 2.91 1.10 0.00 0.90 0.01 4.99 0.01 0.93 0.06	64.74 20.77 0.14 1.77 10.17 0.08 2.20 0.06 99.92 2.91 1.10 0.00 0.09 0.88 0.00 4.98	65.58 20.00 0.30 0.84 10.63 0.20 2.15 0.05 99.75 2.94 1.06 0.01 0.04 0.92 0.01 4.98	64.69 20.63 0.09 1.32 10.11 0.12 2.12 0.05 99.12 2.92 1.10 0.00 0.06 0.89 0.01 4.98 0.01 0.93 0.07	65.18 20.72 0.04 1.69 10.41 2.07 0.06 100.28 2.91 1.09 0.00 0.08 0.90 0.01 4.99 0.01 0.91	65.24 20.97 0.01 1.34 10.03 0.36 0.07 100.07 2.92 1.10 0.06 0.87 0.02 4.97 0.02	65.63 19.62 0.03 0.63 10.80 0.10 2.05 0.06 98.92 2.96 1.04 0.03 0.95 0.01 4.99 0.03	65.71 20.59 0.06 1.23 10.68 0.07 2.03 0.07 100.43 2.92 1.08 0.00 0.06 0.92 0.00 4.99 0.00	64.77 20.73 0.07 1.81 10.36 0.07 1.85 0.10 99.76 2.90 1.10 0.09 0.90 0.00 4.99	04.28 20.85 0.13 1.84 10.29 0.10 1.78 0.13 99.41 2.90 1.11 0.09 0.90 0.01 5.00	64.43 21.05 0.08 1.87 10.32 0.08 1.73 0.18 99.73 2.89 1.11 0.00 0.09 0.90 0.00 5.00	64.26 21.03 0.11 1.81 10.15 0.10 1.74 0.18 99.38 2.89 1.12 0.00 0.09 0.89 0.01 4.99	64.50 20.85 0.07 1.81 10.23 0.16 99.54 2.90 1.10 0.09 0.89 0.01 4.99	64.25 20.94 0.13 1.83 10.38 1.82 0.13 99.50 2.89 1.11 0.09 0.99 0.00 5.00	65.47 21.06 0.12 1.76 10.44 0.07 1.89 0.13 100.93 2.90 1.10 0.00 0.08 0.90 0.00 4.99
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total %Or %Ab %An Sr (ppm)	2/29. 65.24 20.22 0.06 1.22 10.66 0.03 100.08 URALE (8 2.93 1.07 0.00 0.06 0.93 0.00 5.00 0.00 0.94 0.06	2/32. 58.52 25.87 0.49 0.42 6.95 4.27 2.61 0.02 99.14 Oxygènes 2.70 1.41 0.02 0.02 0.62 0.25 5.02 0.28 0.70 0.02 26120	2/33. 65.48 20.34 0.00 0.68 10.63 0.31 2.52 0.03 99.99 i) 2.94 1.08 0.00 0.03 0.0	2/34. 66.30 19.94 0.10 0.60 10.98 0.20 2.57 0.03 100.71 2.96 1.05 0.00 0.03 0.93 0.01 5.00 0.01 0.96 0.03 2.5700	60.44 24.55 0.25 0.35 8.27 2.47 0.04 99.64 2.76 1.32 0.01 0.02 0.73 0.19 5.03 0.20 0.78 0.02	65.48 20.43 0.10 1.48 10.89 0.04 2.46 0.05 100.93 2.92 1.07 0.00 0.07 0.90 5.01 0.00 0.93 0.07	65.41 20.25 0.04 0.69 10.79 0.32 2.43 0.05 99.98 2.94 1.07 0.00 0.03 0.94 0.02 5.00 0.02 0.95 0.03	64.60 20.23 0.00 0.99 10.67 0.41 2.31 0.05 99.25 2.93 1.08 0.00 0.05 0.94 0.02 5.01 0.02 0.93 0.05	65.88 19.90 0.00 0.79 10.84 0.10 2.31 0.05 99.87 2.95 1.05 0.00 0.04 0.94 0.91 0.96 0.04	65.90 20.40 0.11 1.15 10.39 0.08 2.20 0.05 100.27 2.94 1.07 0.00 0.05 0.90 0.90 4.97	65.17 20.19 0.07 1.18 10.37 0.06 2.19 0.04 99.28 2.94 1.07 0.00 0.06 0.91 0.00 4.98 0.00 0.94 0.06	65.54 21.03 0.06 1.19 10.48 0.25 2.22 0.05 100.83 2.91 1.10 0.00 0.06 0.90 0.01 4.99 0.01 0.93 0.06	64.74 20.77 0.14 1.77 10.17 0.08 2.20 0.06 99.92 2.91 1.10 0.00 0.09 0.88 0.00 0.91 0.09	65.58 20.00 0.30 0.84 10.63 0.20 2.15 0.05 99.75 2.94 1.06 0.01 0.04 0.92 0.01 4.98	64.69 20.63 0.09 1.32 10.11 0.12 2.12 0.05 99.12 2.92 1.10 0.00 0.06 0.89 0.01 4.98	65.18 20.72 0.04 1.69 10.41 2.07 0.06 100.28 2.91 1.09 0.00 0.08 0.90 0.01 4.99 0.01 0.91	65.24 20.97 0.01 1.34 10.03 0.36 2.06 0.07 100.07 2.92 1.10 0.00 0.06 0.87 0.02 4.97 0.02 0.91 0.07	65.63 19.62 0.03 0.63 10.80 0.10 2.05 0.06 98.92 2.96 1.04 0.00 0.03 0.95 0.01 4.99 0.01	65.71 20.59 0.06 1.23 10.68 0.07 2.03 0.04 100.43 2.92 1.08 0.00 0.06 0.92 0.00 4.99 0.00 0.94 0.06	64.77 20.73 0.07 1.81 10.36 0.07 1.85 0.10 99.76 2.90 1.10 0.00 0.09 0.90 0.90 0.90 0.91 0.09	64.28 20.85 0.13 1.84 10.29 0.10 1.78 0.13 99.41 2.90 1.11 0.00 0.09 0.01 5.00	64.43 21.05 0.08 1.87 10.32 0.08 1.73 0.18 99.73 2.89 1.11 0.00 0.09 0.90 0.90 0.90 0.90	64.26 21.03 0.11 1.81 10.15 0.10 1.74 0.18 99.38 2.89 1.12 0.00 0.09 0.09 0.01 4.99	64.50 20.85 0.07 1.81 10.23 0.10 1.83 0.16 99.54 2.90 1.10 0.00 0.09 0.89 0.01 4.99	64.25 20.94 0.13 1.83 10.33 9.50 2.89 1.11 0.00 0.09 0.90 0.90 0.90 0.90 0.9	65.47 21.06 0.12 1.76 10.44 0.07 1.89 0.13 100.93 2.90 1.10 0.00 0.08 0.90 0.00 4.99 0.00 0.91 0.08
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total ** **Total ** ** ** ** ** ** ** ** ** ** ** ** **	2/29. 65.24 20.22 0.06 1.22 10.66 0.06 2.60 0.03 100.08 URALE (8 2.93 1.07 0.00 0.06 0.93 0.00 5.00 0.94 0.06	2/32. 58.52 25.87 0.49 0.42 6.95 4.27 2.61 0.02 99.14 Oxygehess 2.70 1.41 0.02 0.02 0.25 5.02 0.28 0.70 0.02	2/33. 65.48 20.34 0.00 0.68 10.63 0.31 2.52 0.03 99.99 3) 2.94 1.08 0.00 0.03 0.93 0.02 4.99 0.02 0.95 0.03	2/34. 66.30 19.94 0.10 0.60 10.98 0.20 2.57 0.03 100.71 2.96 1.05 0.00 0.03 0.95 0.01 5.00 0.03	60.44 24.55 0.25 0.35 8.27 2.47 0.04 99.64 2.76 1.32 0.01 0.02 0.73 0.19 5.03	65.48 20.43 0.10 1.48 10.89 0.04 2.46 0.05 100.93 2.92 1.07 0.00 0.07 0.94 0.00 5.01	65.41 20.25 0.04 0.69 10.79 0.32 2.43 0.05 99.98 2.94 1.07 0.03 0.94 0.02 5.00	64.60 20.23 0.00 0.99 10.67 0.41 2.31 0.05 99.25 2.93 1.08 0.00 0.05 0.94 0.02 5.01	65.88 19.90 0.00 0.79 10.84 0.10 2.31 0.05 99.87 2.95 1.05 0.00 0.04 0.94 0.01 4.99	65.90 20.40 0.11 1.15 10.39 0.08 2.20 0.05 100.27 2.94 1.07 0.00 0.05 0.90 0.00 4.97	65.17 20.19 0.07 1.18 10.37 0.06 2.19 0.04 99.28 2.94 1.07 0.00 0.91 0.00 4.98 0.00	65.54 21.03 0.06 1.19 10.48 0.25 2.22 0.05 100.83 2.91 1.10 0.00 0.90 0.01 4.99 0.01 0.93 0.06	64.74 20.77 0.14 1.77 10.17 0.08 2.20 0.06 99.92 2.91 1.10 0.00 0.09 0.88 0.00 4.98	65.58 20.00 0.30 0.84 10.63 0.20 2.15 0.05 99.75 2.94 1.06 0.01 0.04 0.92 0.01 4.98	64.69 20.63 0.09 1.32 10.11 0.12 2.12 0.05 99.12 2.92 1.10 0.00 0.06 0.89 0.01 4.98 0.01 0.93 0.07	65.18 20.72 0.04 1.69 10.41 2.07 0.06 100.28 2.91 1.09 0.00 0.08 0.90 0.01 4.99 0.01 0.91	65.24 20.97 0.01 1.34 10.03 0.36 0.07 100.07 2.92 1.10 0.06 0.87 0.02 4.97 0.02	65.63 19.62 0.03 0.63 10.80 0.10 2.05 0.06 98.92 2.96 1.04 0.03 0.95 0.01 4.99 0.03	65.71 20.59 0.06 1.23 10.68 0.07 2.03 0.07 100.43 2.92 1.08 0.00 0.06 0.92 0.00 4.99 0.00	64.77 20.73 0.07 1.81 10.36 0.07 1.85 0.10 99.76 2.90 1.10 0.09 0.90 0.00 4.99	04.28 20.85 0.13 1.84 10.29 0.10 1.78 0.13 99.41 2.90 1.11 0.09 0.90 0.01 5.00	64.43 21.05 0.08 1.87 10.32 0.08 1.73 0.18 99.73 2.89 1.11 0.00 0.09 0.90 0.00 5.00	64.26 21.03 0.11 1.81 10.15 0.10 1.74 0.18 99.38 2.89 1.12 0.00 0.09 0.89 0.01 4.99	64.50 20.85 0.07 1.81 10.23 0.10 1.83 0.16 99.54 2.90 1.10 0.09 0.89 0.01 4.99	64.25 20.94 0.13 1.83 10.38 1.82 0.13 99.50 2.89 1.11 0.09 0.99 0.00 5.00	65.47 21.06 0.12 1.76 10.44 0.07 1.89 0.13 100.93 2.90 1.10 0.00 0.08 0.90 0.00 4.99 0.00 0.91 0.08

Annexe 6b Compositions chimiques des plagioclases du cœur du granite de Dolbel (profil 2 suite)

Lame	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
N° du cristal	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
N° analyse	2/60.	2/61.	2/62.	2/63.	2/64.	2/65.	2/66.	2/67.	2/68.	2/69.	2/70.	2/71.	2/72.	2/73.	2/74.	2/75.
SiO ₂	64.92	64.71	64.98	65.95	62.21	66.08	65.12	65.24	64.58	64.77	66.31	64.72	65.33	64.61	65.21	65.76
Al_2O_3	20.94	20.28	20.82	20.48	18.39	19.97	20.65	20.43	20.62	20.67	20.05	20.68	20.68	20.67	20.43	20.29
Fe ₂ O ₃	0.14	0.21	0.12	0.04	0.13	0.14	0.12	0.05	0.16	0.08	0.06	0.22	0.14	0.16	0.16	0.04
CaO	1.62	1.40	1.33	1.16	0.00	1.00	1.61	1.26	1.77	1.69	0.78	1.60	1.61	1.68	0.79	1.13
Na ₂ O	10.48	10.35	10.59	10.64	0.42	10.34	10.22	10.57	10.46	10.34	10.95	10.43	10.48	10.10	10.93	10.60
K ₂ O	0.09	0.11	0.13	0.10	15.91	0.83	0.12	0.43	0.12	0.11	0.03	0.12	0.11	0.14	0.16	0.10
Sr	1.91	1.94	1.91	1.93	1.86	1.89	1.94	1.95	2.04	2.07	2.13	2.17	2.14	2.22	2.22	2.26
Ва	0.14	0.15	0.15	0.15	0.14	0.13	0.12	0.10	0.09	0.08	0.05	0.06	0.05	0.06	0.04	0.02
Total	100.24	99.15	100.03	100.45	99.06	100.38	99.89	100.01	99.83	99.82	100.36	99.98	100.54	99.63	99.93	100.21
FORMULE STRUCT	URALE (8	Oxygènes	s)													
Si	2.90	2.92	2.91	2.93	2.97	2.95	2.92	2.92	2.90	2.91	2.95	2.91	2.91	2.91	2.93	2.94
Al	1.10	1.08	1.10	1.07	1.03	1.05	1.09	1.08	1.09	1.09	1.05	1.09	1.09	1.10	1.08	1.07
Fe ³⁺	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.01	0.01	0.00
Ca	0.08	0.07	0.06	0.06	0.00	0.05	0.08	0.06	0.09	0.08	0.04	0.08	0.08	0.08	0.04	0.05
Na	0.91	0.91	0.92	0.92	0.04	0.89	0.89	0.92	0.91	0.90	0.94	0.91	0.91	0.88	0.95	0.92
K	0.01	0.01	0.01	0.01	0.97	0.05	0.01	0.02	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01
Total	5.00	4.99	5.00	4.99	5.01	4.99	4.98	5.01	5.01	5.00	4.99	5.00	4.99	4.98	5.01	4.99
%Or	0.01	0.01	0.01	0.01	0.96	0.05	0.01	0.02	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01
%Ab	0.92	0.92	0.93	0.94	0.04	0.90	0.91	0.92	0.91	0.91	0.96	0.92	0.92	0.91	0.95	0.94
%An	0.08	0.07	0.06	0.06	0.00	0.05	0.08	0.06	0.08	0.08	0.04	0.08	0.08	0.08	0.04	0.06
Sr (ppm)	19140	19370	19130	19310	18560	18940	19420	19450	20370	20740	21340	21650	21400	22180	22240	22580
Ba (ppm)	1370	1480	1460	1470	1440	1270	1160	970	870	780	530	580	510	550	370	200
Distance (µm)	994	1010	1027	1043	1060	1076	1093	1110	1126	1143	1159	1176	1192	1209	1225	1242

Annexe 6b Compositions chimiques des plagioclases du cœur du granite de Dolbel (profil 3)

Lame	DO 5	OO 5 I	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
N° du cristal	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
,	4/1. 4	1/2. 4	4/3. 4	4/4.	4/5.	4/6.	4/7.	4/8.	4/9.	4/10.	4/11.	4 / 12 .	4/13.	4/14.	4/15.	4/16.	4 / 17 .	4/19.	4 / 20 .	4/21.	4/22.	4 / 23 .	4/24.	4/26.	4/27.	4/28.
SiO ₂	66.52	66.33	66.52	64.59	66.03	63.88	64.57	65.61	65.11	66.22	64.71	64.15	64.78	64.97	64.36	64.72	63.26	64.49	65.08	64.76	64.48	61.11	64.87	63.32	65.03	65.42
Al_2O_3	19.20	19.29	19.31	20.61	20.09	19.15	19.91	20.30	20.46	19.72	20.62	19.87	20.59	20.36	20.56	20.45	19.98	20.97	19.71	20.04	20.41	20.94	20.04	19.71	20.54	20.44
Fe ₂ O ₃	0.18	0.00	0.12	0.11	0.16	2.37	0.81	0.14	0.07	0.06	0.07	0.06	0.13	0.16	0.20	0.14	1.22	0.20	0.09	0.11	0.22	0.89	0.29	0.37	0.22	0.10
CaO	0.11	0.12	0.06	1.06	0.89	0.68	1.35	1.25	1.44	0.45	1.48	1.07	1.21	1.28	1.47	1.44	1.63	1.71	0.73	1.20	1.65	1.34	0.84	0.95	1.50	1.35
Na ₂ O	11.48	11.00	11.01	10.20	10.90	10.10	10.42	10.73	10.49	10.73	10.39	10.40	10.45	10.53	10.36	10.53	9.36	10.35	10.64	10.41	9.97	8.59	9.95	6.43	10.54	10.26
K ₂ O	0.16	0.07	0.06	0.62	0.08	0.22	0.11	0.10	0.14	0.23	0.07	0.11	0.29	0.08	0.08	0.10	0.20	0.08	0.16	0.11	0.08	0.65	0.12	5.77	0.11	0.10
Sr	2.84	2.86	2.78	2.78	2.70	2.68	2.63	2.63	2.58	2.58	2.59	2.57	2.55	2.54	2.50	2.50	2.46	2.48	2.48	2.52	2.50	2.50	2.49	2.41	2.44	2.45
Ва	0.04	0.04	0.04	0.03	0.03	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.05
Total	100.63	99.72	99.89	100.01	100.89	99.20	99.82	100.79	100.29	100.07	99.95	98.27	100.05	99.94	99.55	99.90	98.28	100.30	98.94	99.18	99.35	96.27	98.74	99.00	100.42	100.16
FORMULE STRUCT	2.98	Oxygenes 2.99	2.99	2.92	2.95	2.92	2.92	2.93	2.92	2.97	2.91	2.94	2.92	2.92	2.91	2.92	2.90	2.90	2.95	2.93	2.92	2.86	2.94	2.93	2.91	2.93
ΔΙ	1.01	1.02	1.02	1.10	1.06	1.03	1.06	1.07	1.08	1.04	1.09	1.07	1.09	1.08	1.10	1.09	1.08	1.11	1.05	1.07	1.09	1.16	1.07	1.08	1.08	1.08
Fe ³⁺	0.01	0.00	0.00	0.00	0.01	0.08	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.04	0.01	0.00	0.00	0.01	0.03	0.01	0.01	0.01	0.00
Ca	0.01	0.01	0.00	0.05	0.04	0.03	0.07	0.06	0.07	0.02	0.07	0.05	0.06	0.06	0.07	0.07	0.08	0.08	0.04	0.06	0.08	0.07	0.04	0.05	0.07	0.06
Na	1.00	0.96	0.96	0.89	0.94	0.89	0.91	0.93	0.91	0.93	0.91	0.92	0.91	0.92	0.91	0.92	0.83	0.90	0.94	0.91	0.87	0.78	0.88	0.58	0.92	0.89
K	0.01	0.00	0.00	0.04	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.02	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.00	0.04	0.01	0.34	0.01	0.01
Total	5.01	4.98	4.98	5.00	5.00	4.97	4.99	5.00	5.00	4.98	4.99	4.99	5.00	4.99	5.00	5.00	4.95	5.00	4.99	4.99	4.97	4.94	4.95	4.98	5.00	4.98
%Or	0.01	0.00	0.00	0.04	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.02	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.00	0.04	0.01	0.35	0.01	0.01
%Ab %An	0.99 0.01	0.99 0.01	0.99	0.91 0.05	0.95 0.04	0.95 0.04	0.93 0.07	0.93 0.06	0.92 0.07	0.96 0.02	0.92 0.07	0.94 0.05	0.92	0.93 0.06	0.92 0.07	0.92	0.90 0.09	0.91 0.08	0.95 0.04	0.93	0.91 0.08	0.88 0.08	0.95 0.04	0.60 0.05	0.92 0.07	0.93 0.07
70AH	0.01	0.01	0.00	0.05	0.04	0.04	0.07	0.06	0.07	0.02	0.07	0.03	0.06	0.06	0.07	0.07	0.09	0.06	0.04	0.06	0.06	0.06	0.04	0.03	0.07	0.07
Sr (ppm)	24050	24190	23530	23490	22810	22690	22210	22190	21840	21810	21870	21750	21550	21510	21160	21120	20840	20940	20990	21290	21150	21140	21060	20410	20650	20680
Ba (ppm)	400	400	330	260	290	210	180	250	170	160	220	150	180	220	230	200	170	230	240	300	300	270	310	390	360	450
Distance (µm)	0	12	23	35	46	58	69	81	93	104	116	127	139	150	162	174	185	208	220	231	243	255	266	289	301	312

Lame	DO 5	DO 5	DO 5	DO 5 I	00 5	DO 5	OO 5	00 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
N° du cristal	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
N° analyse	4/29.	4/30.	4/31.	4/33. 4	4 / 35 .	4/36.	4/37. 4	4 / 38 .	4/39.	4 / 40 .	4/41.	4/42.	4 / 43 .	4 / 44 .	4 / 45 .	4/46.	4 / 47 .	4 / 48 .	4/50.	4/51.	4/52.	4/53.	4/54.	4 / 55 .	4 / 57 .	4/58.
SiO ₂	65.25	64.42	64.73	65.44	65.32	65.57	64.96	66.08	64.86	64.89	65.16	66.64	65.02	64.73	64.67	65.14	64.68	65.41	65.78	65.11	64.96	65.53	65.43	65.39	65.28	65.57
Al_2O_3	20.44	19.70	20.31	20.49	20.21	20.33	20.59	20.34	20.66	20.59	19.99	19.76	19.44	20.57	20.63	20.38	20.43	20.31	20.51	20.65	20.42	20.25	20.52	20.81	20.54	20.55
Fe ₂ O ₃	0.15	0.09	0.08	0.11	0.06	0.13	0.07	0.05	0.05	0.02	0.60	0.01	0.62	0.40	0.20	0.12	0.17	0.08	0.01	0.12	0.05	0.05	0.22	0.00	0.19	0.07
CaO	1.31	1.10	1.43	1.55	0.99	1.17	1.46	1.04	1.47	1.49	0.88	0.56	0.49	1.02	0.99	1.40	1.26	1.26	1.42	1.50		1.51	1.43	1.49	1.31	1.32
Na ₂ O	10.80	9.06	10.36	10.37	10.87	10.73	10.44	10.67	10.62	10.61	10.44	11.19	10.53	9.97	9.72	10.68	10.40	10.51	10.47	10.44	10.47	10.26	10.39	10.65	10.54	10.75
K ₂ O	0.09	1.59	0.09	0.06	0.16	0.18	0.08	0.08	0.06	0.08	0.38	0.08	0.41	0.49	0.72	0.05	0.18	0.05	0.06	0.10		0.14	0.07	0.08	0.03	0.10
Sr	2.44	2.41	2.41	2.35	2.38	2.37	2.32	2.34	2.32	2.30	2.31	2.29	2.26	2.31	2.25	2.28	2.23	2.23	2.20	2.23		2.15	2.13	2.11	2.11	2.18
Ba Total	0.05 100.53	0.05 98.43	0.05 99.48	0.05 100.52	0.06 100.05	0.07 100.62	0.07 99.99	0.07 100.68	0.07 100.14	0.07 100.05	0.06 99.94	0.07 100.59	0.06 99.01	0.06 99.60	0.06 99.34	0.07 100.14	0.07 99.43	0.06 100.00	0.06 100.51	0.05 100.22		0.04 99.93	0.04 100.23	0.04 100.66	0.03 100.08	0.02 100.58
FORMULE STRUCT	JRALE (8	Oxygène	s)																							
Si	2.92	2.95	2.92	2.92	2.93	2.93	2.92	2.94	2.91	2.91	2.93	2.97	2.95	2.92	2.92	2.92	2.92	2.93	2.93	2.92		2.94	2.92	2.91	2.92	2.92
Al	1.08	1.06	1.08	1.08	1.07	1.07	1.09	1.07	1.09	1.09	1.06	1.04	1.04	1.09	1.10	1.08	1.09	1.07	1.08	1.09		1.07	1.08	1.09	1.08	1.08
Fe ³⁺	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.02	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00
Ca	0.06	0.05	0.07	0.07	0.05	0.06	0.07	0.05	0.07	0.07	0.04	0.03	0.02	0.05	0.05	0.07	0.06	0.06	0.07	0.07	0.07	0.07	0.07	0.07	0.06	0.06
Na	0.94	0.80	0.91	0.90	0.95	0.93	0.91	0.92	0.92	0.92	0.91	0.97	0.93	0.87	0.85	0.93	0.91	0.91	0.90	0.91	0.91	0.89	0.90	0.92	0.91	0.93
K Total	0.00	0.09	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.02 4.99	0.00	0.02	0.03 4.97	0.04	0.00	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01 5.00
Total	5.01	4.97	4.99	4.98	5.01	5.00	4.99	4.99	5.00	5.00	4.99	5.00	4.98	4.97	4.97	5.00	4.99	4.99	4.98	4.99	4.99	4.98	4.98	5.00	4.99	5.00
%Or	0.00	0.10	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.02	0.00	0.02	0.03	0.04	0.00	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01
%Ab	0.93	0.85	0.92	0.92	0.94	0.93	0.92	0.94	0.93	0.92	0.93	0.97	0.95	0.92	0.91	0.93	0.93	0.93	0.93	0.92	0.92	0.92	0.93	0.92	0.93	0.93
%An	0.06	0.06	0.07	0.08	0.05	0.06	0.07	0.05	0.07	0.07	0.04	0.03	0.02	0.05	0.05	0.07	0.06	0.06	0.07	0.07	0.07	0.07	0.07	0.07	0.06	0.06
Sr (ppm)	20650	20370	20340	19900	20120	20040	19610	19810	19640	19410	19510	19330	19090	19500	19000	19260	18840	18840	18580	18850	18350	18210	18040	17880	17810	18420
Ba (ppm)	450	460	410	480	510	590	580	590	660	580	520	580	540	570	570	580	600	510	490	430	370	350	320	330	260	210
Distance (µm)	324	336	347	370	393	405	417	428	440	451	463	474	486	498	509	521	532	544	567	579	590	602	613	625	648	659

Annexe 6b Compositions chimiques des plagioclases du cœur du granite de Dolbel (profil 3 suite)

Lame	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
N° du cristal	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
	4/59.	4/60.	4/61.	4/62.	4/63.	4/64.	4/65.	4/66.	4/68.	4/69.	4/70.	4/71.	4/72.	4/73.	4/74.
SiO ₂	64.93	64.71	65.90	65.76	66.39	66.28	66.30	66.03	66.02	66.55	66.59	66.97	66.26	65.89	66.89
Al_2O_3	20.48	20.66	19.77	20.21	19.99	19.60	19.74	19.84	19.75	19.35	19.71	19.84	19.74	19.83	19.61
Fe ₂ O ₃	0.15	0.14	0.00	0.05	0.00	0.11	0.04	0.03	0.04	0.00	0.08	0.00	0.09	0.00	0.06
CaO	1.54	1.52	0.77	0.97	0.69	0.74	0.57	0.69	0.62	0.60	0.40	0.43	0.46	0.54	0.45
Na ₂ O	10.60	10.23	11.03	10.84	11.11	10.78	10.81	10.93	11.01	10.78	11.28	11.31	10.94	11.11	11.35
K ₂ O	0.09	0.15	0.07	0.08	0.07	0.08	0.04	0.04	0.07	0.10	0.08	0.05	0.18	0.32	0.08
Sr	2.15	2.11	2.11	2.09	2.04	2.01	2.04	2.06	2.09	2.08	2.09	2.09	2.07	2.05	2.09
Ва	0.02	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Total	100.03	99.63	99.72	100.00	100.34	99.65	99.57	99.64	99.64	99.48	100.23	100.76	99.76	99.76	100.60
FORMULE STRUCT	URALE (8	3 Oxygène	es)												
Si	2.91	2.91	2.96	2.94	2.96	2.97	2.97	2.96	2.96	2.98	2.97	2.97	2.97	2.95	2.97
Al	1.08	1.10	1.04	1.06	1.05	1.03	1.04	1.05	1.04	1.02	1.03	1.04	1.04	1.05	1.03
Fe ³⁺	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ca	0.07	0.07	0.04	0.05	0.03	0.04	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.03	0.02
Na	0.92	0.89	0.96	0.94	0.96	0.94	0.94	0.95	0.96	0.94	0.97	0.97	0.95	0.97	0.98
K	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.02	0.00
Total	5.00	4.99	5.00	5.00	5.00	4.98	4.98	4.99	5.00	4.98	5.00	5.00	4.99	5.01	5.00
%Or	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.02	0.00
%Ab	0.92		0.96	0.95	0.96			0.96	0.97		0.98				0.97
%An	0.07	0.08	0.04	0.05	0.03	0.04		0.03	0.03		0.02				0.02
Sr (nnm)	18140	17830	17840	17630	17240	16990	17260	17400	17660	17560	17700	17640	17470	17320	17680
Sr (ppm) Ba (ppm)	200	17630	17040		17240	10990	1/200	17400	17000	17360	17700	17640	1/4/0	17320	17000
Ба (ррпі)	200	140	130	-	-	-	-	-	-	-	-	-	-	-	-
Distance (µm)	671	683	694	706	717	729	740	752	775	787	798	810	821	833	856

Annexe 6c Compositions chimiques des feldspaths potassiques du cœur du granite de Dolbel (profil 1)

Lame	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
N° du cristal	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
N° analyse	3/1.	3/2.	3/3.	3/4.	3/5.	3/6.	3/7.	3/8.	3/9.	3/10.	3/11.	3/12.	3/13.	3/14.	3/15.	3/16.	3/17.	3/18.	3/19.	3/20.	3/21.	3/22.	3/23.	3/24.	3/25.	3/26.
SiO ₂	64.44	61.88	62.08	62.29	61.44	62.33	62.20	62.09	61.70	61.90	62.63	62.20	62.36	62.42	62.17	62.64	61.94	62.58	62.30	62.93	62.36	62.47	62.59	62.60	62.58	62.54
Al_2O_3	19.03	18.33	18.24	18.32	18.11	18.03	18.14	18.35	17.88	18.16	18.25	18.03	18.15	17.98	17.99	18.06	17.75	18.01	18.05	18.00	18.02	18.08	17.82	18.03	17.99	18.07
Fe ₂ O ₃	0.05	0.03	0.10	0.05	0.04	0.06	0.14	0.09	0.10	0.05	0.15	0.12	0.06	0.01	0.09	0.11	0.04	0.05	0.08	0.07	0.09	0.09	0.08	0.02	0.06	0.04
CaO	0.44	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.03	0.01	0.00	0.02	0.00	0.00	0.02
Na ₂ O	6.37	0.57	0.38	1.10	0.26	0.43	0.50	0.38	0.22	0.44	0.43	0.43	0.80	0.30	0.37	0.28	0.27	0.38	0.34	0.27	0.20	0.26	0.30	0.16	0.25	0.46
K ₂ O	6.38	15.70	15.72	14.81	16.01	15.78	15.69	15.79	15.94	16.14	16.13	16.37	15.51	16.19	16.02	16.39	16.22	16.33	15.95	16.38	16.47	16.54	16.40	16.63	16.27	15.79
Sr	2.51	2.40	2.46	2.45	2.39	2.44	2.44	2.42	2.38	2.41	2.41	2.41	2.41	2.41	2.39	2.40	2.42	2.44	2.38	2.36	2.45	2.42	2.41	2.43	2.45	2.47
Ва	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.03	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.03	0.02	0.02	0.03	0.02	0.02
Total	99.30	98.95	99.02	99.05	98.30	99.09	99.13	99.19	98.26	99.15	100.05	99.61	99.32	99.33	99.09	99.91	98.72	99.83	99.14	100.05	99.63	100.00	99.67	99.92	99.62	99.40
FORMULE STRUCT	URALE (8 (Oxygènes	i)																							
Si	2.97	2.97	2.98	2.97	2.97	2.98	2.98	2.97	2.98	2.97	2.98	2.97	2.98	2.99	2.98	2.98	2.99	2.98	2.98	2.99	2.98	2.98	2.99	2.98	2.99	2.99
Al	1.04	1.04	1.03	1.03	1.03	1.02	1.02	1.03	1.02	1.03	1.02	1.02	1.02	1.01	1.02	1.01	1.01	1.01	1.02	1.01	1.01	1.02	1.00	1.01	1.01	1.02
Fe ³⁺	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ca	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.57	0.05	0.04	0.10	0.02	0.04	0.05	0.04	0.02	0.04	0.04	0.04	0.07	0.03	0.03	0.03	0.03	0.04	0.03	0.02	0.02	0.02	0.03	0.01	0.02	0.04
K	0.38	0.96	0.96	0.90	0.99	0.96	0.96	0.96	0.98	0.99	0.98	1.00	0.94	0.99	0.98	0.99	1.00	0.99	0.97	0.99	1.00	1.01	1.00	1.01	0.99	0.96
Total	4.98	5.02	5.01	5.01	5.02	5.01	5.01	5.01	5.01	5.03	5.02	5.03	5.02	5.01	5.01	5.02	5.02	5.02	5.01	5.02	5.02	5.02	5.02	5.02	5.01	5.01
%Or	0.39	0.95	0.96	0.90	0.98	0.96	0.95	0.96	0.98	0.96	0.96	0.96	0.93	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.98	0.98	0.97	0.99	0.98	0.96
%Ab	0.59	0.05	0.04	0.10	0.02	0.04	0.05	0.04	0.02	0.04	0.04	0.04	0.07	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.03	0.01	0.02	0.04
%An	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sr (ppm)	21240	20310	20810	20740	20250	20660	20620	20430	20100	20360	20390	20390	20400	20400	20190	20320	20450	20640	20140	19990	20720	20430	20410	20510	20700	20850
Ba (ppm)	280	250	290	270	260	250	330	310	280	320	240	290	260	250	270	270	250	260	270	180	220	200	180	260	200	160
Distance (µm)	0	15	30	45	59	74	89	104	119	134	149	163	178	193	208	223	238	253	267	282	297	312	327	342	357	372

Lame	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
N° du cristal	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
N° analyse	3 / 28 .	3/29.	3/30.	3/31.	3/32.	3/33.	3/34.	3/35.	3/36.	3/37.	3/38.	3/39.	3 / 40 .	3/41.	3/42.	3 / 43 .	3 / 44 .	3 / 45 .	3 / 46 .	3 / 47 .	3/48.	3/50.
SiO ₂	62.56	62.55	62.36	62.57	62.59	62.46	62.57	62.83	62.84	62.69	62.59	63.79	62.08	62.62	62.25	62.45	63.04	62.74	63.16	62.86	62.80	62.75
Al_2O_3	18.05	18.39	18.03	18.07	18.09	18.09	17.97	18.11	17.81	18.24	17.98	17.73	17.92	18.06	18.00	17.97	18.07	18.06	17.88	18.04	17.97	18.14
Fe ₂ O ₃	0.14	0.02	0.08	0.05	0.00	0.06	0.03	0.07	0.11	0.13	0.10	0.06	0.32	0.07	0.08	0.11	0.08	0.13	0.04	0.07	0.09	0.16
CaO	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.04	0.03	0.04	0.00	0.01	0.01	0.07	0.01	0.03	0.00	0.02
Na₂O	0.27	0.37	0.24	0.21	0.38	0.23	0.40	0.34	0.40	0.45	0.41	0.37	0.39	0.47	0.57	0.54	0.44	0.54	0.49	0.41	0.54	0.45
K ₂ O	16.20	16.07	16.49	16.45	16.25	16.42	16.15	16.50	15.96	15.89	16.15	15.82	16.03	16.06	16.22	16.00	16.13	15.98	15.87	15.88	16.13	15.96
Sr	2.46	2.42	2.46	2.42	2.44	2.44	2.45	2.42	2.43	2.47	2.49	2.44	2.46	2.47	2.42	2.45	2.46	2.45	2.41	2.40	2.38	2.43
Ва	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total	99.70	99.85	99.71	99.78	99.79	99.75	99.59	100.29	99.60	99.86	99.79	100.32	99.29	99.87	99.55	99.53	100.24	100.09	99.89	99.70	99.91	99.92
FORMULE STRUCT	URALE (8	Oxygènes	s)																			
Si	2.98	2.97	2.98	2.98	2.98	2.98	2.99	2.98	2.99	2.98	2.98	3.01	2.98	2.98	2.98	2.98	2.99	2.98	3.00	2.99	2.99	2.98
Al	1.01	1.03	1.01	1.02	1.02	1.02	1.01	1.01	1.00	1.02	1.01	0.99	1.01	1.01	1.01	1.01	1.01	1.01	1.00	1.01	1.01	1.02
Fe ³⁺	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.03	0.03	0.02	0.02	0.04	0.02	0.04	0.03	0.04	0.04	0.04	0.03	0.04	0.04	0.05	0.05	0.04	0.05	0.05	0.04	0.05	0.04
K	0.99	0.97	1.00	1.00	0.99	1.00	0.98	1.00	0.97	0.96	0.98	0.95	0.98	0.98	0.99	0.97	0.97	0.97	0.96	0.96	0.98	0.97
Total	5.01	5.01	5.02	5.02	5.02	5.02	5.02	5.03	5.01	5.01	5.02	4.99	5.02	5.02	5.04	5.02	5.01	5.02	5.00	5.00	5.02	5.01
%Or	0.98	0.97	0.98	0.98	0.96	0.98	0.96	0.97	0.96	0.96	0.96	0.96	0.96	0.96	0.95	0.95	0.96	0.95	0.95	0.96	0.95	0.96
%Ab	0.02	0.03	0.02	0.02	0.03	0.02	0.04	0.03	0.04	0.04	0.04	0.03	0.04	0.04	0.05	0.05	0.04	0.05	0.04	0.04	0.05	0.04
%An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sr (ppm)	20830	20430	20820	20470	20630	20600	20720	20480	20570	20860	21040	20640	20820	20900	20420	20680	20800	20730	20380	20300	20130	20580
Ba (ppm)	-	150	-	110	120	130	-	110	-	-	-	-	-	-	-	-	-	120	110	110	120	-
Distance (µm)	401	416	431	446	461	476	490	505	520	535	550	565	580	594	609	624	639	654	669	684	698	728

Annexe 6c Compositions chimiques des feldspaths potassiques du cœur du granite de Dolbel (profil 2)

Lame	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
N° du cristal	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
N° analyse	5/1.	5/2.	5/5.	5/6.		5/11.	5/12.	5/15.	5/16.	5/17.	5/18.	5/19.	5/20.	5/22.	5/24.	5 / 25 .	5/28.	5/35.	5/38.	5/39.	5 / 40 .	5/42.	5/43.	5 / 44 .	5/45.	5 / 46 .
SiO ₂	62.67	62.61	62.14	62.68	62.58	62.84	62.80	66.19	64.92	65.09	66.26	62.80	62.66	62.91	64.01	62.66	62.44	62.65	62.51	62.67	62.98	62.86	62.52	68.17	66.81	64.48
Al_2O_3	17.88	17.97	17.81	17.91	17.94	17.89	17.87	19.59	20.26	20.08	19.52	18.27	18.03	17.99	18.10	18.02	17.96	17.99	18.08	18.18	17.97	18.31	18.04	15.15	19.57	19.07
Fe ₂ O ₃	0.14	0.14	0.14	0.13	0.14	0.10	0.12	0.06	0.08	0.07	0.00	0.03	0.07	0.06	0.12	0.08	0.11	0.12	0.08	0.06	0.15	0.00	0.08	0.00	0.08	0.06
CaO	0.02	0.00	0.00	0.00	0.00	0.01	0.01	0.40	1.32	1.04	0.30	0.02	0.00	0.00	0.04	0.00	0.00	0.02	0.20	0.00	0.00	0.00	0.00	0.02	0.32	0.15
Na ₂ O	0.44	0.30	0.26	0.29	0.25	0.23	0.25	10.96	10.69	10.73	11.05	0.20	0.40	0.39	3.34	0.37	0.20	0.45	0.33	0.41	0.46	0.28	0.72	0.33	11.12	7.18
K ₂ O	16.07	16.28	16.48	15.99	16.29	16.29	16.41	0.06	0.14	0.13	0.08	16.18	16.20	16.10	11.11	16.31	16.30	16.12	16.15	16.03	15.86	16.18	15.82	13.14	0.07	6.55
Sr	3.31	3.48	3.51	3.49	3.46	3.37	3.29	3.37	3.30	3.22	3.28	3.15	3.16	3.20	3.18	3.16	3.28	3.40	3.20	3.14	2.94	2.74	2.66	2.62	2.66	2.64
Ва	0.13	0.14	0.15	0.16	0.19	0.19	0.19	0.20	0.22	0.22	0.22	0.22	0.23	0.23	0.23	0.24	0.23	0.21	0.21	0.21	0.20	0.20	0.19	0.18	0.19	0.19
Total	100.72	100.92	100.49	100.69	100.93	100.98	100.94	100.83	100.93	100.63	100.70	100.93	100.75	100.88	100.14	100.83	100.52	100.96	100.75	100.74	100.56	100.59	100.11	99.60	100.84	100.32
FORMULE STRUCT	URALE (8	Oxygènes)																							
Si	2.99	2.98	2.98	2.99	2.98	2.99	2.99	2.97	2.92	2.94	2.98	2.98	2.98	2.99	3.00	2.98	2.98	2.98	2.98	2.98	2.99	2.98	2.98	3.17	2.98	2.96
Al	1.00	1.01	1.01	1.01	1.01	1.00	1.00	1.04	1.08	1.07	1.03	1.02	1.01	1.01	1.00	1.01	1.01	1.01	1.02	1.02	1.01	1.02	1.01	0.83	1.03	1.03
Fe ³⁺	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.06	0.05	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.02	0.01
Na	0.04	0.03	0.02	0.03	0.02	0.02	0.02	0.95	0.93	0.94	0.96	0.02	0.04	0.04	0.30	0.03	0.02	0.04	0.03	0.04	0.04	0.03	0.07	0.03	0.96	0.64
K	0.98	0.99	1.01	0.97	0.99	0.99	1.00	0.00	0.01	0.01	0.00	0.98	0.98	0.98	0.66	0.99	0.99	0.98	0.98	0.97	0.96	0.98	0.96	0.78	0.00	0.38
Total	5.02	5.02	5.03	5.00	5.02	5.01	5.02	4.99	5.01	5.00	4.99	5.01	5.02	5.01	4.98	5.02	5.01	5.02	5.02	5.01	5.01	5.01	5.03	4.82	4.99	5.03
1																										
%Or	0.96	0.97	0.98	0.97	0.98	0.98	0.98	0.00	0.01	0.01	0.00	0.98	0.96	0.96	0.68	0.97	0.98	0.96	0.96	0.96	0.96	0.97	0.94	0.96	0.00	0.37
%Ab	0.04	0.03	0.02	0.03	0.02	0.02	0.02	0.98	0.93	0.94	0.98	0.02	0.04	0.04	0.31	0.03	0.02	0.04	0.03	0.04	0.04	0.03	0.06	0.04	0.98	0.62
%An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.06	0.05	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.02	0.01
Sr (ppm)	28000	29460	29650	29510	29280	28520	27830	28520	27910	27240	27700	26650	26740	27010	26930	26700	27770	28750	27020	26540	24830	23180	22460	22160	22510	22290
Ba (ppm)	1170	1250	1310	1410	1680	1710	1730	1820	1960	2000	1940	1980	2020	2030	2060	2110	2040	1870	1840	1860	1830	1760	1670	1640	1670	1660
Distance (µm)	0	21	84	104	188	209	230	292	313	334	355	376	397	439	480	501	564	710	773	794	815	856	877	898	919	940
Lame	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
N° du cristal	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
N° du cristal N° analyse	22 5 / 47 .	22 5 / 48 .	22 5 / 49 .	22 5 / 50 .	22 5 / 51 .	22 5 / 52 .	22 5 / 53 .	22 5/54.	22 5 / 55 .	22 5 / 56 .	22 5 / 58 .	22 5 / 59 .	22 5/60.	22 5 / 61 .	22 5 / 62 .	22 5 / 63 .	22 5 / 64 .	22 5 / 65 .	22 5 / 66 .	22 5 / 67 .	22 5 / 68 .	22 5 / 69 .	22 5/70.	22 5 / 71 .	22 5/74.	22 5 / 75 .
N° du cristal	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
N° du cristal N° analyse	22 5 / 47 .	22 5 / 48 .	22 5 / 49 .	22 5 / 50 .	22 5 / 51 .	22 5 / 52 .	22 5 / 53 .	22 5/54.	22 5 / 55 .	22 5 / 56 .	22 5 / 58 .	22 5 / 59 .	22 5/60.	22 5 / 61 .	22 5 / 62 .	22 5 / 63 .	22 5 / 64 .	22 5 / 65 .	22 5 / 66 .	22 5 / 67 .	22 5 / 68 .	22 5 / 69 .	22 5/70.	22 5 / 71 .	22 5/74.	22 5 / 75 .
N° du cristal N° analyse SiO ₂ Al ₂ O ₃	22 5 / 47 . 62.31	22 5 / 48 . 61.93	22 5 / 49 . 61.95	22 5 / 50 . 62.69	22 5 / 51 . 62.20	22 5 / 52 . 62.38	22 5 / 53 . 65.52	22 5 / 54 . 61.61	22 5 / 55 . 61.92	22 5 / 56 . 65.29	22 5 / 58 . 62.68	22 5 / 59 . 61.74	22 5 / 60 . 62.45	22 5 / 61 . 62.57 18.02	22 5 / 62 . 62.36	22 5 / 63 . 62.12	22 5 / 64 . 62.68	22 5 / 65 . 62.44	22 5 / 66 . 63.77	22 5 / 67 . 62.26	22 5 / 68 . 61.73	22 5 / 69 . 62.27	22 5 / 70 . 62.38	22 5 / 71 . 65.70 20.10	22 5 / 74 . 62.23 18.25	22 5 / 75 . 61.82 18.29
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ Fe ₂ O ₃	22 5 / 47 . 62.31 18.39 0.16	22 5 / 48 . 61.93 18.16 0.11	22 5 / 49 . 61.95 18.15 0.11	22 5 / 50 . 62.69 18.27 0.15	22 5 / 51 . 62.20 18.33 0.12	22 5 / 52 . 62.38 18.05 0.05	22 5 / 53 . 65.52 19.36 0.09	22 5 / 54 . 61.61 18.35 0.13	22 5 / 55 . 61.92 18.16 0.08	22 5 / 56 . 65.29 18.66 0.08	22 5/58. 62.68 18.36 0.17	22 5/59. 61.74 18.42 0.12	22 5 / 60 . 62.45 18.15 0.10	22 5/61. 62.57 18.02 0.03	22 5 / 62 . 62.36 18.29 0.13	22 5/63. 62.12 17.97 0.10	22 5 / 64 . 62.68 18.36 0.10	22 5/65. 62.44 18.29 0.04	22 5 / 66 . 63.77 17.51 0.06	22 5 / 67 . 62.26 18.06 0.09	22 5/68. 61.73 18.35 0.06	22 5 / 69 . 62.27 18.13 0.14	22 5 / 70 . 62.38 18.29 0.14	22 5/71. 65.70 20.10 0.13	22 5 / 74 . 62.23 18.25 2.97	22 5 / 75 . 61.82 18.29 0.09
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO	22 5 / 47 . 62.31 18.39 0.16 0.00	22 5 / 48 . 61.93 18.16 0.11 0.00	22 5 / 49 . 61.95 18.15 0.11 0.00	22 5 / 50 . 62.69 18.27 0.15 0.00	22 5 / 51 . 62.20 18.33 0.12 0.00	22 5/52. 62.38 18.05 0.05 0.00	22 5/53. 65.52 19.36 0.09 0.27	22 5/54. 61.61 18.35 0.13 0.01	22 5/55. 61.92 18.16 0.08 0.00	22 5 / 56 . 65.29 18.66 0.08 0.16	22 5/58. 62.68 18.36 0.17 0.05	22 5/59. 61.74 18.42 0.12 0.04	22 5 / 60 . 62.45 18.15 0.10 0.01	22 5/61. 62.57 18.02 0.03 0.00	22 5 / 62 . 62.36 18.29 0.13 0.00	22 5/63. 62.12 17.97 0.10 0.00	22 5 / 64 . 62.68 18.36 0.10 0.00	22 5/65. 62.44 18.29 0.04 0.01	22 5 / 66 . 63.77 17.51 0.06 0.07	22 5/67. 62.26 18.06 0.09 0.04	22 5/68. 61.73 18.35 0.06 0.00	22 5 / 69 . 62.27 18.13 0.14 0.02	22 5/70. 62.38 18.29 0.14 0.00	22 5/71. 65.70 20.10 0.13 1.24	22 5/74. 62.23 18.25 2.97 0.38	22 5 / 75 . 61.82 18.29 0.09 0.00
N° du cristal N° analyse SiO₂ Al₂O₃ Fe₂O₃ CaO Na₂O	22 5 / 47 . 62.31 18.39 0.16 0.00 0.34	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26	22 5/50. 62.69 18.27 0.15 0.00 0.48	22 5/51. 62.20 18.33 0.12 0.00 0.36	22 5/52. 62.38 18.05 0.05 0.00 0.47	22 5/53. 65.52 19.36 0.09 0.27 8.10	22 5/54. 61.61 18.35 0.13 0.01 0.43	22 5/55. 61.92 18.16 0.08 0.00 0.41	22 5 / 56 . 65.29 18.66 0.08 0.16 6.74	22 5/58. 62.68 18.36 0.17 0.05 1.32	22 5/59. 61.74 18.42 0.12 0.04 1.03	22 5 / 60 . 62.45 18.15 0.10 0.01 0.26	22 5/61. 62.57 18.02 0.03 0.00 0.35	22 5/62. 62.36 18.29 0.13 0.00 0.37	22 5/63. 62.12 17.97 0.10 0.00 0.49	22 5 / 64 . 62.68 18.36 0.10 0.00 2.02	22 5/65. 62.44 18.29 0.04 0.01 0.48	22 5 / 66 . 63.77 17.51 0.06 0.07 0.62	22 5 / 67 . 62.26 18.06 0.09 0.04 0.56	22 5 / 68 . 61.73 18.35 0.06 0.00 0.56	22 5 / 69 . 62.27 18.13 0.14 0.02 0.84	22 5/70. 62.38 18.29 0.14 0.00 0.49	22 5 / 71 . 65.70 20.10 0.13 1.24 10.54	22 5/74. 62.23 18.25 2.97 0.38 5.25	22 5 / 75 . 61.82 18.29 0.09 0.00 0.25
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO	22 5 / 47 . 62.31 18.39 0.16 0.00 0.34 15.84	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07	22 5/50. 62.69 18.27 0.15 0.00 0.48 15.88	22 5/51. 62.20 18.33 0.12 0.00 0.36 15.81	22 5/52. 62.38 18.05 0.05 0.00 0.47 15.68	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70	22 5 / 56 . 65.29 18.66 0.08 0.16 6.74 6.67	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04	22 5/59. 61.74 18.42 0.12 0.04 1.03 14.53	22 5/60. 62.45 18.15 0.10 0.01 0.26 15.91	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93	22 5 / 62 . 62.36 18.29 0.13 0.00 0.37 15.79	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63	22 5 / 64 . 62.68 18.36 0.10 0.00 2.02 13.63	22 5 / 65 . 62.44 18.29 0.04 0.01 0.48 15.83	22 5 / 66 . 63.77 17.51 0.06 0.07 0.62 15.33	22 5 / 67 . 62.26 18.06 0.09 0.04 0.56 15.42	22 5 / 68 . 61.73 18.35 0.06 0.00 0.56 15.52	22 5 / 69 . 62.27 18.13 0.14 0.02 0.84 15.20	22 5/70. 62.38 18.29 0.14 0.00 0.49 15.59	22 5 / 71 . 65.70 20.10 0.13 1.24 10.54 0.23	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27	22 5 / 75 . 61.82 18.29 0.09 0.00 0.25 15.77
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr	22 5/47. 62.31 18.39 0.16 0.00 0.34 15.84 2.48	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07 2.48	22 5/50. 62.69 18.27 0.15 0.00 0.48 15.88 2.37	22 5/51. 62.20 18.33 0.12 0.00 0.36 15.81 2.38	22 5/52. 62.38 18.05 0.05 0.00 0.47 15.68 2.45	22 5 / 53 . 65.52 19.36 0.09 0.27 8.10 4.38 2.62	22 5 / 54 . 61.61 18.35 0.13 0.01 0.43 15.58 2.63	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70 2.73	22 5 / 56 . 65.29 18.66 0.08 0.16 6.74 6.67 2.79	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86	22 5 / 59 . 61.74 18.42 0.12 0.04 1.03 14.53 2.84	22 5 / 60 . 62.45 18.15 0.10 0.01 0.26 15.91 2.81	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 2.73	22 5 / 62 . 62.36 18.29 0.13 0.00 0.37 15.79 2.77	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74	22 5 / 64 . 62.68 18.36 0.10 0.00 2.02 13.63 2.76	22 5 / 65 . 62.44 18.29 0.04 0.01 0.48 15.83 2.61	22 5 / 66 . 63.77 17.51 0.06 0.07 0.62 15.33 2.63	22 5 / 67 . 62.26 18.06 0.09 0.04 0.56 15.42 2.59	22 5 / 68 . 61.73 18.35 0.06 0.00 0.56 15.52 2.64	22 5 / 69 . 62.27 18.13 0.14 0.02 0.84 15.20 2.65	22 5/70. 62.38 18.29 0.14 0.00 0.49 15.59 2.68	22 5 / 71 . 65.70 20.10 0.13 1.24 10.54 0.23 2.79	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70	22 5 / 75 . 61.82 18.29 0.09 0.00 0.25 15.77 2.65
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba	22 5/47. 62.31 18.39 0.16 0.00 0.34 15.84 2.48 0.17	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 0.17	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16	22 5/50. 62.69 18.27 0.15 0.00 0.48 15.88 2.37 0.17	22 5 / 51 . 62.20 18.33 0.12 0.00 0.36 15.81 2.38 0.16	22 5/52. 62.38 18.05 0.05 0.00 0.47 15.68 2.45 0.15	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70 2.73 0.13	22 5 / 56 . 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14	22 5 / 58 . 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13	22 5 / 59 . 61.74 18.42 0.12 0.04 1.03 14.53 2.84 0.12	22 5/60. 62.45 18.15 0.10 0.01 0.26 15.91 2.81 0.12	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 2.73 0.10	22 5 / 62 . 62.36 18.29 0.13 0.00 0.37 15.79 2.77 0.11	22 5 / 63 . 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10	22 5 / 64 . 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10	22 5 / 65 . 62.44 18.29 0.04 0.01 0.48 15.83 2.61 0.10	22 5 / 66 . 63.77 17.51 0.06 0.07 0.62 15.33 2.63 0.09	22 5 / 67 . 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10	22 5 / 68 . 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09	22 5 / 69 . 62.27 18.13 0.14 0.02 0.84 15.20 2.65 0.08	22 5/70. 62.38 18.29 0.14 0.00 0.49 15.59 2.68 0.08	22 5 / 71 . 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08	22 5 / 75 . 61.82 18.29 0.09 0.00 0.25 15.77 2.65 0.08
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total	22 5/47. 62.31 18.39 0.16 0.00 0.34 15.84 2.48 0.17 99.69	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 0.17 99.18	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18	22 5/50. 62.69 18.27 0.15 0.00 0.48 15.88 2.37	22 5/51. 62.20 18.33 0.12 0.00 0.36 15.81 2.38	22 5/52. 62.38 18.05 0.05 0.00 0.47 15.68 2.45	22 5 / 53 . 65.52 19.36 0.09 0.27 8.10 4.38 2.62	22 5 / 54 . 61.61 18.35 0.13 0.01 0.43 15.58 2.63	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70 2.73	22 5 / 56 . 65.29 18.66 0.08 0.16 6.74 6.67 2.79	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86	22 5 / 59 . 61.74 18.42 0.12 0.04 1.03 14.53 2.84	22 5 / 60 . 62.45 18.15 0.10 0.01 0.26 15.91 2.81	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 2.73	22 5 / 62 . 62.36 18.29 0.13 0.00 0.37 15.79 2.77	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74	22 5 / 64 . 62.68 18.36 0.10 0.00 2.02 13.63 2.76	22 5 / 65 . 62.44 18.29 0.04 0.01 0.48 15.83 2.61	22 5 / 66 . 63.77 17.51 0.06 0.07 0.62 15.33 2.63	22 5 / 67 . 62.26 18.06 0.09 0.04 0.56 15.42 2.59	22 5 / 68 . 61.73 18.35 0.06 0.00 0.56 15.52 2.64	22 5 / 69 . 62.27 18.13 0.14 0.02 0.84 15.20 2.65	22 5/70. 62.38 18.29 0.14 0.00 0.49 15.59 2.68	22 5 / 71 . 65.70 20.10 0.13 1.24 10.54 0.23 2.79	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70	22 5 / 75 . 61.82 18.29 0.09 0.00 0.25 15.77 2.65
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba	22 5 / 47 . 62.31 18.39 0.16 0.00 0.34 15.84 2.48 0.17 99.69 URALE (8	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 0.17 99.18 Oxygènes	22 5/49. 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18	22 5/50. 62.69 18.27 0.15 0.00 0.48 15.88 2.37 0.17 100.10	22 5 / 51 . 62.20 18.33 0.12 0.00 0.36 15.81 2.38 0.16 99.41	22 5/52. 62.38 18.05 0.05 0.00 0.47 15.68 2.45 0.15 99.23	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15 100.48	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14 98.89	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70 2.73 0.13 99.14	22 5 / 56 . 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14 100.53	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13 99.61	22 5 / 59 . 61.74 18.42 0.12 0.04 1.03 14.53 2.84 0.12 98.84	22 5 / 60 . 62.45 18.15 0.10 0.01 0.26 15.91 2.81 0.12 99.80	22 5 / 61 . 62.57 18.02 0.03 0.00 0.35 15.93 2.73 0.10 99.72	22 5 / 62 . 62.36 18.29 0.13 0.00 0.37 15.79 2.77 0.11 99.82	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10 99.25	22 5 / 64 . 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10 99.65	22 5 / 65 . 62.44 18.29 0.04 0.01 0.48 15.83 2.61 0.10 99.85	22 5/66. 63.77 17.51 0.06 0.07 0.62 15.33 2.63 0.09 100.12	22 5/67. 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10 99.10	22 5 / 68 . 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09 98.96	22 5 / 69 . 62.27 18.13 0.14 0.02 0.84 15.20 2.65 0.08 99.37	22 5 / 70 . 62.38 18.29 0.14 0.00 0.49 15.59 2.68 0.08 99.65	22 5 / 71 . 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08 100.82	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08 99.27	22 5 / 75 . 61.82 18.29 0.09 0.00 0.25 15.77 2.65 0.08 99.02
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total	22 5 / 47 . 62.31 18.39 0.16 0.00 0.34 15.84 2.48 0.17 99.69 URALE (8	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 0.17 99.18 Oxygènes 2.97	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18	22 5/50. 62.69 18.27 0.15 0.00 0.48 15.88 2.37 0.17 100.10 2.98	22 5 / 51 . 62.20 18.33 0.12 0.00 0.36 15.81 2.38 0.16 99.41 2.97	22 5/52. 62.38 18.05 0.05 0.00 0.47 15.68 2.45 0.15 99.23	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15 100.48	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14 98.89	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70 2.73 0.13 99.14 2.98	22 5/56. 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14 100.53	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13 99.61 2.98	22 5/59. 61.74 18.42 0.12 0.04 1.03 14.53 2.84 0.12 98.84	22 5/60. 62.45 18.15 0.10 0.01 0.26 15.91 2.81 0.12 99.80 2.98	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 2.73 0.10 99.72	22 5/62. 62.36 18.29 0.13 0.00 0.37 15.79 2.77 0.11 99.82 2.98	22 5 / 63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10 99.25	22 5 / 64 . 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10 99.65	22 5/65. 62.44 18.29 0.04 0.01 0.48 15.83 2.61 0.10 99.85	22 5/66. 63.77 17.51 0.06 0.07 0.62 15.33 2.63 0.09 100.12	22 5/67. 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10 99.10	22 5 / 68. 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09 98.96	22 5/69. 62.27 18.13 0.14 0.02 0.84 15.20 2.65 0.08 99.37	22 5/70. 62.38 18.29 0.14 0.00 0.49 15.59 2.68 0.08 99.65	22 5 / 71. 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08 100.82	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08 99.27	22 5 / 75 . 61.82 18.29 0.09 0.00 0.25 15.77 2.65 0.08 99.02
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al	22 5 / 47 . 62.31 18.39 0.16 0.00 0.34 15.84 2.48 0.17 99.69 URALE (8 2.97 1.03	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 0.17 99.18 Oxygènes 2.97 1.03	22 5/49. 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18 9)	22 5/50. 62.69 18.27 0.15 0.00 0.48 15.88 2.37 0.17 100.10	22 5/51. 62.20 18.33 0.12 0.00 0.36 15.81 2.38 0.16 99.41 2.97	22 5/52. 62.38 18.05 0.05 0.00 0.47 15.68 2.45 0.15 99.23 2.99 1.02	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15 100.48 2.97	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14 98.89 2.97 1.04	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70 2.73 0.13 99.14 2.98 1.03	22 5/56. 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14 100.53	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13 99.61 2.98 1.03	22 5/59. 61.74 18.42 0.12 0.04 1.03 14.53 2.84 0.12 98.84 2.97 1.04	22 5/60. 62.45 18.15 0.10 0.01 0.26 15.91 2.81 0.12 99.80 2.98 1.02	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 2.73 0.10 99.72 2.99 1.01	22 5/62. 62.36 18.29 0.13 0.00 0.37 15.79 2.77 0.11 99.82 2.98 1.03	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10 99.25 2.98 1.02	22 5 / 64 . 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10 99.65 2.97 1.03	22 5/65. 62.44 18.29 0.04 0.01 0.48 15.83 2.61 0.10 99.85 2.98 1.03	22 5 / 66 . 63.77 17.51 0.06 0.07 0.62 15.33 2.63 0.09 100.12 3.02 0.98	22 5 / 67 . 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10 99.10 2.98 1.02	22 5 / 68 . 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09 98.96	22 5/69. 62.27 18.13 0.14 0.02 0.84 15.20 2.65 0.08 99.37 2.98 1.02	22 5/70. 62.38 18.29 0.14 0.00 0.49 15.59 2.68 0.08 99.65 2.98 1.03	22 5/71. 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08 100.82 2.94 1.06	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08 99.27 2.92 1.01	22 5 / 75 . 61.82 18.29 0.09 0.00 0.25 15.77 2.65 0.08 99.02 2.97 1.04
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺	22 5/47. 62.31 18.39 0.16 0.00 0.34 15.84 2.48 0.17 99.69 URALE (8 2.97 1.03	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 0.17 99.18 Oxygènes 2.97 1.03 0.00	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18)) 2.97 1.03 0.00	22 5/50. 62.69 18.27 0.15 0.00 0.48 15.88 2.37 0.17 100.10 2.98 1.02	22 5/51. 62.20 18.33 0.12 0.00 0.36 15.81 2.38 0.16 99.41 2.97 1.03	22 5/52. 62.38 18.05 0.05 0.00 0.47 15.68 2.45 0.15 99.23 2.99 1.02 0.00	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15 100.48 2.97 1.04	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14 98.89 2.97 1.04 0.00	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70 2.73 0.13 99.14 2.98 1.03 0.00	22 5/56. 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14 100.53 2.99 1.01 0.00	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13 99.61 2.98 1.03 0.01	22 5/59. 61.74 18.42 0.12 0.04 1.03 14.53 2.84 0.12 98.84 2.97 1.04 0.00	22 5/60. 62.45 18.15 0.10 0.26 15.91 2.81 0.12 99.80 2.98 1.02	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 2.73 0.10 99.72 2.99 1.01 0.00	22 5/62. 62.36 18.29 0.13 0.00 0.37 15.79 2.77 0.11 99.82 2.98 1.03 0.00	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10 99.25 2.98 1.02 0.00	22 5/64. 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10 99.65 2.97 1.03 0.00	22 5/65. 62.44 18.29 0.04 0.01 0.48 15.83 2.61 0.10 99.85 2.98 1.03 0.00	22 5/66. 63.77 17.51 0.06 0.07 0.62 15.33 2.63 0.09 100.12 3.02 0.98 0.00	22 5 / 67 . 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10 99.10 2.98 1.02 0.00	22 5/68. 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09 98.96 2.97 1.04	22 5/69. 62.27 18.13 0.14 0.02 0.84 15.20 2.65 0.08 99.37 2.98 1.02 0.01	22 5/70. 62.38 18.29 0.14 0.00 0.49 15.59 2.68 0.08 99.65 2.98 1.03 0.00	22 5/71. 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08 100.82 2.94 1.06 0.00	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08 99.27 2.92 1.01 0.11	22 5/75. 61.82 18.29 0.09 0.00 0.25 15.77 2.65 0.08 99.02 2.97 1.04 0.00
N° du cristal N° analyse SiO_2 Al_2O_3 Fe_2O_3 CaO Na_2O $K2O$ Sr Ba $Total$ $FORMULE STRUCT$ Si Al	22 5 / 47 . 62.31 18.39 0.16 0.00 0.34 15.84 2.48 0.17 99.69 URALE (8 2.97 1.03 0.01	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 0.17 99.18 Oxygènes 2.97 1.03 0.00 0.00	22 5/49. 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18)) 2.97 1.03 0.00 0.00	22 5/50. 62.69 18.27 0.15 0.00 0.48 15.88 2.37 0.17 100.10 2.98 1.02 0.01 0.00	22 5/51. 62.20 18.33 0.12 0.00 0.36 15.81 2.38 0.16 99.41 2.97 1.03 0.00 0.00	22 5/52. 62.38 18.05 0.05 0.00 0.47 15.68 2.45 0.15 99.23 2.99 1.02 0.00 0.00	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15 100.48 2.97 1.04 0.00 0.01	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14 98.89 2.97 1.04 0.00 0.00	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70 2.73 0.13 99.14 2.98 1.03 0.00 0.00	22 5/56. 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14 100.53 2.99 1.01 0.00 0.01	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13 99.61 2.98 1.03 0.01 0.00	22 5/59. 61.74 18.42 0.12 0.04 1.03 14.53 2.84 0.12 98.84 2.97 1.04 0.00 0.00	22 5/60. 62.45 18.15 0.10 0.01 0.26 15.91 2.81 0.12 99.80 2.98 1.02 0.00 0.00	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 0.10 99.72 2.99 1.01 0.00 0.00	22 5/62. 62.36 18.29 0.13 0.00 0.37 15.79 0.11 99.82 2.98 1.03 0.00 0.00	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10 99.25 2.98 1.02 0.00 0.00	22 5 / 64 . 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10 99.65 2.97 1.03 0.00 0.00	22 5/65. 62.44 18.29 0.04 0.01 0.48 15.83 2.61 0.10 99.85 2.98 1.03 0.00 0.00	22 5 / 66 . 63.77 17.51 0.06 0.07 0.62 15.33 0.09 100.12 3.02 0.98 0.00	22 5 / 67 . 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10 99.10 2.98 1.02 0.00 0.00	22 5 / 68 . 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09 98.96 2.97 1.04 0.00 0.00	22 5/69. 62.27 18.13 0.14 0.02 0.84 15.20 2.65 0.08 99.37 2.98 1.02 0.01 0.00	22 5/70. 62.38 18.29 0.14 0.00 0.49 15.59 2.68 0.08 99.65 2.98 1.03 0.00 0.00	22 5/71. 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08 100.82 2.94 1.06 0.00 0.06	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08 99.27 2.92 1.01 0.11 0.02	22 5 / 75 . 61.82 18.29 0.09 0.00 0.25 15.77 2.65 0.08 99.02 2.97 1.04 0.00 0.00
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺	22 5 / 47 . 62.31 18.39 0.16 0.00 0.34 15.84 2.48 0.17 99.69 URALE (8 2.97 1.03 0.01 0.00	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 0.17 99.18 Oxygènes 2.97 1.03 0.00 0.00	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18)) 2.97 1.03 0.00 0.00	22 5/50. 62.69 18.27 0.15 0.00 0.48 15.88 2.37 0.17 100.10 2.98 1.02 0.01 0.00 0.04	22 5/51. 62.20 18.33 0.12 0.00 0.36 15.81 2.38 0.16 99.41 2.97 1.03 0.00 0.00 0.03	22 5/52. 62.38 18.05 0.05 0.07 15.68 2.45 0.15 99.23 2.99 1.02 0.00 0.00	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15 100.48 2.97 1.04 0.00 0.01	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14 98.89 2.97 1.04 0.00 0.00	22 5/55. 61.92 18.16 0.00 0.41 15.70 2.73 0.13 99.14 2.98 1.03 0.00 0.00	22 5/56. 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14 100.53 2.99 1.01 0.00 0.01	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13 99.61 2.98 1.03 0.01 0.00 0.00	22 5/59. 61.74 18.42 0.04 1.03 14.53 2.84 0.12 98.84 2.97 1.04 0.00 0.00 0.10	22 5/60. 62.45 18.15 0.10 0.01 0.26 15.91 2.81 0.12 99.80 2.98 1.02 0.00 0.00	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 2.73 0.10 99.72 2.99 1.01 0.00 0.03	22 5/62. 62.36 18.29 0.13 0.00 0.37 15.79 2.77 0.11 99.82 2.98 1.03 0.00 0.00 0.03	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10 99.25 2.98 1.02 0.00 0.00 0.05	22 5/64. 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10 99.65 2.97 1.03 0.00 0.00 0.00	22 5/65. 62.44 18.29 0.04 0.01 15.83 2.61 0.10 99.85 2.98 1.03 0.00 0.00	22 5 / 66 . 63.77 17.51 0.06 0.07 0.62 15.33 2.63 0.09 100.12 3.02 0.98 0.00 0.00	22 5/67. 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10 99.10 2.98 1.02 0.00 0.00	22 5/68. 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09 98.96 2.97 1.04 0.00 0.00	22 5 / 69 . 62.27 18.13 0.14 0.02 0.84 15.20 2.65 0.08 99.37 2.98 1.02 0.01 0.00 0.08	22 5/70. 62.38 18.29 0.14 0.00 0.49 15.59 2.68 0.08 99.65 2.98 1.03 0.00 0.00	22 5/71. 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08 100.82 2.94 1.06 0.00 0.06 0.91	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08 99.27 2.92 1.01 0.11 0.02 0.48	22 5 / 75 . 61.82 18.29 0.09 0.00 0.25 15.77 2.65 0.08 99.02 2.97 1.04 0.00 0.00
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K	22 5 / 47 . 62.31 18.39 0.16 0.00 0.34 15.84 2.47 99.69 URALE (8 2.97 1.03 0.01 0.00 0.00	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 99.18 Oxygénes 2.97 1.03 0.00 0.00	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18)) 2.97 1.03 0.00 0.00 0.00	22 5/50. 62.69 18.27 0.15 0.00 0.48 15.88 2.37 0.17 100.10 2.98 1.02 0.01 0.00 0.04 0.96	22 5 / 51 . 62.20 18.33 0.12 0.00 0.36 15.81 2.38 0.16 99.41 2.97 1.03 0.00 0.00 0.00	22 5/52. 62.38 18.05 0.05 0.07 15.68 2.45 0.15 99.23 2.99 1.02 0.00 0.00	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15 100.48 2.97 1.04 0.00 0.01 0.71	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14 98.89 2.97 1.04 0.00 0.00	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70 2.73 0.13 99.14 2.98 1.03 0.00 0.00	22 5/56. 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14 100.53 2.99 1.01 0.00 0.01 0.60 0.39	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13 99.61 2.98 1.03 0.01 0.00 0.12	22 5/59. 61.74 18.42 0.12 0.04 1.03 14.53 2.84 0.12 98.84 2.97 1.04 0.00 0.00 0.10 0.89	22 5/60. 62.45 18.15 0.10 0.01 2.81 0.12 99.80 2.98 1.02 0.00 0.00 0.02 0.02	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 2.73 0.10 99.72 2.99 1.01 0.00 0.03 0.00	22 5/62. 62.36 18.29 0.13 0.00 0.37 15.79 2.77 0.11 99.82 2.98 1.03 0.00 0.00 0.03 0.03	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10 99.25 2.98 1.02 0.00 0.05 0.05	22 5/64. 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10 99.65 2.97 1.03 0.00 0.00 0.19 0.82	22 5/65. 62.44 18.29 0.04 0.01 0.48 15.83 2.61 0.10 99.85 2.98 1.03 0.00 0.00 0.00	22 5/66. 63.77 17.51 0.06 0.07 0.62 15.33 2.63 0.09 100.12 3.02 0.98 0.00 0.00 0.00	22 5 / 67 . 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10 99.10 2.98 1.02 0.00 0.00 0.05	22 5/68. 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09 98.96 2.97 1.04 0.00 0.05 0.05	22 5/69. 62.27 18.13 0.14 0.02 2.65 0.08 99.37 2.98 1.02 0.01 0.00 0.08 0.93	22 5/70. 62.38 18.29 0.14 0.00 0.49 15.59 2.68 0.08 99.65 2.98 1.03 0.00 0.00 0.05 0.95	22 5/71. 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08 100.82 2.94 1.06 0.00 0.06 0.91	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08 99.27 2.92 1.01 0.11 0.04 0.48	22 5 / 75 . 61.829 0.09 0.00 0.25 15.77 2.65 0.08 99.02 2.97 1.04 0.00 0.00 0.00
N° du cristal N° analyse SiO_2 Al_2O_3 Fe_2O_3 CaO Na_2O $K2O$ Sr Ba $Total$ $FORMULE STRUCT$ Si Al	22 5 / 47 . 62.31 18.39 0.16 0.00 0.34 15.84 2.48 0.17 99.69 URALE (8 2.97 1.03 0.01 0.00	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 0.17 99.18 Oxygènes 2.97 1.03 0.00 0.00	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18)) 2.97 1.03 0.00 0.00	22 5/50. 62.69 18.27 0.15 0.00 0.48 15.88 2.37 0.17 100.10 2.98 1.02 0.01 0.00 0.04	22 5/51. 62.20 18.33 0.12 0.00 0.36 15.81 2.38 0.16 99.41 2.97 1.03 0.00 0.00 0.03	22 5/52. 62.38 18.05 0.05 0.07 15.68 2.45 0.15 99.23 2.99 1.02 0.00 0.00	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15 100.48 2.97 1.04 0.00 0.01	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14 98.89 2.97 1.04 0.00 0.00	22 5/55. 61.92 18.16 0.00 0.41 15.70 2.73 0.13 99.14 2.98 1.03 0.00 0.00	22 5/56. 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14 100.53 2.99 1.01 0.00 0.01	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13 99.61 2.98 1.03 0.01 0.00 0.00	22 5/59. 61.74 18.42 0.04 1.03 14.53 2.84 0.12 98.84 2.97 1.04 0.00 0.00 0.10	22 5/60. 62.45 18.15 0.10 0.01 0.26 15.91 2.81 0.12 99.80 2.98 1.02 0.00 0.00	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 2.73 0.10 99.72 2.99 1.01 0.00 0.00	22 5/62. 62.36 18.29 0.13 0.00 0.37 15.79 2.77 0.11 99.82 2.98 1.03 0.00 0.00 0.03	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10 99.25 2.98 1.02 0.00 0.00 0.05	22 5/64. 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10 99.65 2.97 1.03 0.00 0.00 0.00	22 5/65. 62.44 18.29 0.04 0.01 15.83 2.61 0.10 99.85 2.98 1.03 0.00 0.00	22 5 / 66 . 63.77 17.51 0.06 0.07 0.62 15.33 2.63 0.09 100.12 3.02 0.98 0.00 0.00	22 5/67. 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10 99.10 2.98 1.02 0.00 0.00	22 5/68. 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09 98.96 2.97 1.04 0.00 0.00	22 5 / 69 . 62.27 18.13 0.14 0.02 0.84 15.20 2.65 0.08 99.37 2.98 1.02 0.01 0.00 0.08	22 5/70. 62.38 18.29 0.14 0.00 0.49 15.59 2.68 0.08 99.65 2.98 1.03 0.00 0.00	22 5/71. 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08 100.82 2.94 1.06 0.00 0.06 0.91	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08 99.27 2.92 1.01 0.11 0.02 0.48	22 5 / 75 . 61.82 18.29 0.09 0.00 0.25 15.77 2.65 0.08 99.02 2.97 1.04 0.00 0.00
N° du cristal N° analyse SiO₂ Al₂O₃ CaO Na₂O K2O Sr Ba Total FORMULE STRUCT Si Al Fe³+ Ca Na K Total	22 5/47. 62.31 18.39 0.16 0.00 0.34 15.84 0.17 99.69 URALE (8 2.97 1.03 0.01 0.00 0.03 0.96 5.01	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 0.17 99.18 0.xygènes 2.97 1.03 0.00 0.02 0.99 5.01	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18)) 2.97 1.03 0.00 0.02 0.98 5.01	22 5 / 50 . 62.69 18.27 0.15 0.00 0.48 15.88 2.37 0.17 100.10 2.98 1.02 0.01 0.00 0.04 0.96 5.01	25 / 51 . 62.20 18.33 0.12 0.00 0.36 15.81 2.38 0.16 99.41 2.97 1.03 0.00 0.03 0.96 5.01	22 5 / 52 . 62.38 18.05 0.05 0.00 0.47 15.68 2.45 0.15 99.23 2.99 1.02 0.00 0.00 0.04 0.96 5.01	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15 100.48 2.97 1.04 0.00 0.01 0.71 0.25 4.99	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14 98.89 2.97 1.04 0.00 0.00 0.04 0.96 5.01	22 5 / 55 . 61.92 18.16 0.08 0.00 0.41 15.70 0.13 99.14 2.98 1.03 0.00 0.04 0.96 5.01	22 5 / 56 . 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14 100.53 2.99 1.01 0.00 0.01 0.60 0.39 5.00	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13 99.61 2.98 1.03 0.01 0.00 0.12 0.85 4.99	22 5/59. 61.74 18.42 0.12 0.04 1.03 14.53 2.84 0.12 98.84 2.97 1.04 0.00 0.00 0.10 0.89 5.00	22 5 / 60 . 62.45 18.15 0.10 0.01 0.26 15.91 0.12 99.80 2.98 1.02 0.00 0.00 0.02 0.97 5.00	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 0.10 99.72 2.99 1.01 0.00 0.03 0.97 5.01	22 5 / 62 . 62.36 18.29 0.13 0.00 0.37 15.79 0.11 99.82 2.98 1.03 0.00 0.00 0.03 0.96 5.00	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10 99.25 2.98 1.02 0.00 0.00 0.05 0.96 5.01	22 5/64. 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10 99.65 2.97 1.03 0.00 0.00 0.00 0.19 0.82 5.02	22 5/65. 62.44 18.29 0.04 0.01 0.48 15.83 2.61 0.10 99.85 2.98 1.03 0.00 0.00 0.04 0.96 5.01	22 5/66. 63.77 17.51 0.06 0.07 0.62 15.33 2.63 0.09 100.12 3.02 0.98 0.00 0.00 0.00 0.93 4.98	22 5/67. 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10 99.10 2.98 1.02 0.00 0.00 0.05 0.94 5.00	22 5/68. 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09 98.96 2.97 1.04 0.00 0.00 0.05 0.95 5.01	22 5 / 69 . 62.27 18.13 0.14 0.02 0.84 15.20 2.65 0.08 99.37 2.98 1.02 0.01 0.00 0.08 0.93 5.01	22 5 / 70 . 62.38 18.29 0.14 0.00 0.49 15.59 2.68 0.08 99.65 2.98 1.03 0.00 0.05 0.95 5.00	22 5/71. 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08 100.82 2.94 1.06 0.00 0.06 0.91 0.01 4.99	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08 99.27 2.92 1.01 0.11 0.02 0.48 0.44 4.98	22 5/75. 61.829 0.09 0.00 0.25 15.77 2.65 0.08 99.02 2.97 1.04 0.00 0.00 0.02 0.97 5.00
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total	22 5/47. 62.31 18.39 0.16 0.00 0.34 15.84 2.48 0.17 99.69 URALE (8 2.97 1.03 0.01 0.03 0.03 0.01 0.03 0.03 0.01 0.03 0.01 0.00 0.03	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 0.17 99.18 Oxygehes 2.997 1.03 0.00 0.00 0.02 0.99 5.01	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18) 2.97 1.03 0.00 0.00 0.02 0.98 5.01	25/50. 62.69 18.27 0.15 0.00 0.48 15.88 2.37 100.10 2.98 1.02 0.01 0.00 0.04 0.96 5.01	25 / 51 . 62.20 18.33 0.12 0.00 0.36 15.81 2.38 0.16 99.41 2.97 1.03 0.00 0.03 0.96 5.01 0.97	22 5/52. 62.38 18.05 0.05 0.00 0.47 15.68 2.45 0.15 99.23 2.99 1.02 0.00 0.04 0.96 5.01	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15 100.48 2.97 1.04 0.00 0.01 0.71 0.25 4.99	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14 98.89 2.97 1.04 0.00 0.00 0.04 0.96 5.01	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70 2.73 0.13 99.14 2.98 1.03 0.00 0.00 0.04 0.96 5.01	22 5/56. 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14 100.53 2.99 1.01 0.00 0.01 0.60 0.39 5.00	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13 99.61 2.98 1.03 0.01 0.02 0.02 4.99 0.85	22 5/59. 61.74 18.42 0.12 0.04 1.03 14.53 2.84 0.12 98.84 2.97 1.04 0.00 0.00 0.10 0.89 5.00	22 5 / 60 . 62.45 18.15 0.10 0.01 0.26 15.91 2.81 0.12 99.80 2.98 1.02 0.00 0.00 0.02 0.97 5.00	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 2.73 0.10 99.72 2.99 1.01 0.00 0.03 0.97 5.01	22 5 / 62 . 62 .36 18 .29 0 .13 0 .00 0 .37 15 .79 2 .77 0 .11 99 .82 2 .98 1 .03 0 .00 0 .03 0 .00 0 .03 0 .00	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10 99.25 2.98 1.02 0.00 0.05 0.96 5.01	22 5/64. 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10 99.65 2.97 1.03 0.00 0.09 0.19 0.82 5.02	22 5/65. 62.44 18.29 0.04 0.01 0.48 15.83 2.61 0.10 99.85 2.98 1.03 0.00 0.00 0.04 0.96 5.01	22 5/66. 63.77 17.51 0.06 0.07 0.62 15.33 2.63 0.09 100.12 3.02 0.98 0.00 0.00 0.06 0.93 4.98	22 5/67. 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10 99.10 2.98 1.02 0.00 0.05 0.05 0.94 5.00	22 5/68. 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09 98.96 2.97 1.04 0.00 0.05 0.95 5.01	22 5 / 69 . 62.27 18.13 0.14 0.02 0.84 15.20 2.65 0.08 99.37 2.98 1.02 0.01 0.00 0.08 0.93 5.01	22 5/70. 62.38 18.29 0.14 0.00 0.49 15.59 2.68 0.08 99.65 2.98 1.03 0.00 0.05 0.95 5.00	22 5/71. 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08 100.82 2.94 1.06 0.00 0.06 0.01 4.99	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08 99.27 2.92 1.01 0.11 0.04 4.98	22 5/75. 61.829 0.09 0.00 0.25 15.77 2.65 0.08 99.02 2.97 1.04 0.00 0.00 0.02 0.97 5.00
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total %Or %Ab	22 5 / 47 . 62.31 18.39 0.16 0.00 0.34 15.84 2.48 0.17 99.69 URALE (8 2.97 1.03 0.01 0.00 0.03 0.96 5.01	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 99.18 Oxygènes 2.97 1.03 0.00 0.00 0.02 0.99 5.01	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18) 2.97 1.03 0.00 0.00 0.00 0.09 5.01	22 5 / 50 . 62.69 18.27 0.15 0.00 0.48 15.88 2.37 100.10 2.98 1.02 0.01 0.00 0.04 0.96 5.01	22 5/51. 62.20 18.33 0.12 0.00 0.36 15.81 2.38 0.16 99.41 2.97 1.03 0.00 0.00 0.00 0.03 0.00 0.00	22 5/52. 62.38 18.05 0.05 0.00 0.47 15.68 2.45 0.15 99.23 2.99 1.02 0.00 0.00 0.00 0.04 0.96 5.01	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15 100.48 2.97 1.04 0.00 0.01 0.71 4.99	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14 98.89 2.97 1.04 0.00 0.00 0.00 0.04	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70 2.73 0.13 99.14 2.98 1.03 0.00 0.00 0.00 0.04 0.96 5.01	22 5/56. 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14 100.53 2.99 1.01 0.00 0.01 0.60 0.39 0.60	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13 99.61 2.98 1.03 0.01 0.00 0.12 0.85 4.99	22 5/59. 61.74 18.42 0.12 0.04 1.03 14.53 2.84 0.12 98.84 2.97 1.04 0.00 0.00 0.10	22 5/60. 62.45 18.15 0.10 0.01 0.26 15.91 2.81 0.12 99.80 2.98 1.02 0.00 0.00 0.00 0.02	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 2.73 0.10 99.72 2.99 1.01 0.00 0.00 0.03 0.09 7.501	22 5/62. 62.36 18.29 0.13 0.00 0.37 15.79 2.77 0.11 99.82 2.98 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10 99.25 2.98 1.02 0.00 0.00 0.05 5.01	22 5/64. 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10 99.65 2.97 1.03 0.00 0.00 0.00 0.18	22 5/65. 62.44 18.29 0.04 0.01 0.48 15.83 2.61 0.10 99.85 2.98 1.03 0.00 0.00 0.00 0.04 0.96 5.01	22 5/66. 63.77 17.51 0.06 0.07 0.62 15.33 2.63 0.09 100.12 3.02 0.98 0.00 0.00 0.03 4.98	22 5/67. 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10 99.10 2.98 1.02 0.00 0.00 0.05 0.94 5.00	22 5/68. 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09 98.96 2.97 1.04 0.00 0.05 5.01	22 5 / 69 . 62.27 18.13 0.14 0.02 0.84 15.20 2.65 0.08 99.37 2.98 1.02 0.01 0.00 0.08 0.93 5.01	22 5/70. 62.38 18.29 0.14 0.00 0.49 15.59 2.68 99.65 2.98 1.03 0.00 0.00 0.05 5.00	22 5/71. 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08 100.82 2.94 1.06 0.00 0.06 0.91 4.99	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08 99.27 2.92 1.01 0.11 0.02 0.48 4.98	22 5 / 75 . 61.829 0.09 0.00 0.25 15.77 2.65 0.08 99.02 2.97 1.04 0.00 0.00 0.02 0.97 5.00
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total	22 5/47. 62.31 18.39 0.16 0.00 0.34 15.84 2.48 0.17 99.69 URALE (8 2.97 1.03 0.01 0.03 0.03 0.01 0.03 0.03 0.01 0.03 0.01 0.00 0.03	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 0.17 99.18 Oxygehes 2.997 1.03 0.00 0.00 0.02 0.99 5.01	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18) 2.97 1.03 0.00 0.00 0.02 0.98 5.01	25/50. 62.69 18.27 0.15 0.00 0.48 15.88 2.37 100.10 2.98 1.02 0.01 0.00 0.04 0.96 5.01	25 / 51 . 62.20 18.33 0.12 0.00 0.36 15.81 2.38 0.16 99.41 2.97 1.03 0.00 0.03 0.96 5.01 0.97	22 5/52. 62.38 18.05 0.05 0.00 0.47 15.68 2.45 0.15 99.23 2.99 1.02 0.00 0.04 0.96 5.01	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15 100.48 2.97 1.04 0.00 0.01 0.71 0.25 4.99	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14 98.89 2.97 1.04 0.00 0.00 0.04 0.96 5.01	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70 2.73 0.13 99.14 2.98 1.03 0.00 0.00 0.04 0.96 5.01	22 5/56. 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14 100.53 2.99 1.01 0.00 0.01 0.60 0.39 5.00	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13 99.61 2.98 1.03 0.01 0.02 0.02 4.99 0.85	22 5/59. 61.74 18.42 0.12 0.04 1.03 14.53 2.84 0.12 98.84 2.97 1.04 0.00 0.00 0.10 0.89 5.00	22 5 / 60 . 62.45 18.15 0.10 0.01 0.26 15.91 2.81 0.12 99.80 2.98 1.02 0.00 0.00 0.02 0.97 5.00	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 2.73 0.10 99.72 2.99 1.01 0.00 0.03 0.97 5.01	22 5 / 62 . 62 .36 18 .29 0 .13 0 .00 0 .37 15 .79 2 .77 0 .11 99 .82 2 .98 1 .03 0 .00 0 .03 0 .00 0 .03	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10 99.25 2.98 1.02 0.00 0.05 0.96 5.01	22 5/64. 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10 99.65 2.97 1.03 0.00 0.09 0.19 0.82 5.02	22 5/65. 62.44 18.29 0.04 0.01 0.48 15.83 2.61 0.10 99.85 2.98 1.03 0.00 0.00 0.04 0.96 5.01	22 5/66. 63.77 17.51 0.06 0.07 0.62 15.33 2.63 0.09 100.12 3.02 0.98 0.00 0.00 0.06 0.93 4.98	22 5/67. 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10 99.10 2.98 1.02 0.00 0.05 0.05 0.94 5.00	22 5/68. 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09 98.96 2.97 1.04 0.00 0.05 0.95 5.01	22 5 / 69 . 62.27 18.13 0.14 0.02 0.84 15.20 2.65 0.08 99.37 2.98 1.02 0.01 0.00 0.08 0.93 5.01	22 5/70. 62.38 18.29 0.14 0.00 0.49 15.59 2.68 0.08 99.65 2.98 1.03 0.00 0.05 0.95 5.00	22 5/71. 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08 100.82 2.94 1.06 0.00 0.06 0.01 4.99	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08 99.27 2.92 1.01 0.11 0.04 4.98	22 5 / 75 . 61.829 0.09 0.00 0.25 15.77 2.65 0.08 99.02 2.97 1.04 0.00 0.00 0.02 0.97 5.00
N° du cristal N° analyse SiO₂ Al₂O₃ CaO Na₂O K2O Sr Ba Total FORMULE STRUCT Si Al Fe³+ Ca Na K Total Fo³+ Ca Na K Total %Or %Ab	22 5/47. 62.31 18.39 0.16 0.00 0.34 15.84 0.17 99.69 URALE (97 1.03 0.01 0.03 0.96 5.01	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 0.17 99.18 Oxygènes 2.97 1.03 0.00 0.02 0.99 5.01	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18) 2.97 1.03 0.00 0.00 0.02 0.98 5.01	25/50. 62.69 18.27 0.15 0.00 0.48 15.88 2.37 100.10 2.98 1.02 0.01 0.00 0.04 0.96 5.01 0.96 0.04 0.00	25 5 / 51 . 62.20 18.33 0.12 0.00 0.36 15.81 0.16 99.41 2.97 1.03 0.00 0.03 0.96 5.01 0.97 0.03 0.00	22 5/52. 62.38 18.05 0.05 0.00 0.47 15.68 2.45 0.15 99.23 2.99 1.02 0.00 0.00 0.04 0.96 5.01	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15 100.48 2.97 1.04 0.00 0.01 0.71 0.25 4.99 0.26 0.73 0.01	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14 98.89 2.97 1.04 0.00 0.00 0.04 0.96 5.01	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70 0.13 99.14 2.98 1.03 0.00 0.00 0.04 0.96 5.01	22 5/56. 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14 100.53 2.99 1.01 0.00 0.01 0.60 0.39 5.00	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13 99.61 2.98 1.03 0.01 0.02 0.85 4.99 0.87 0.12	22 5/59. 61.74 18.42 0.12 0.04 1.03 14.53 2.84 0.12 98.84 2.97 1.04 0.00 0.00 0.10 0.89 5.00	22 5 / 60 . 62.45 18.15 0.10 0.01 0.26 15.91 0.12 99.80 2.98 1.02 0.00 0.00 0.02 0.97 5.00	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 2.73 0.10 99.72 2.99 1.01 0.00 0.03 0.97 5.01	22 5 / 62 . 62.36 18.29 0.13 0.00 0.37 15.79 2.77 0.11 99.82 2.98 1.03 0.00 0.03 0.03 0.96 5.00	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10 99.25 2.98 1.02 0.00 0.05 0.96 5.01	22 5/64. 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10 99.65 2.97 1.03 0.00 0.09 0.82 5.02	22 5/65. 62.44 18.29 0.04 0.01 0.48 15.83 2.61 0.10 99.85 2.98 1.03 0.00 0.00 0.04 0.96 5.01	22 5/66. 63.77 17.51 0.06 0.07 0.62 15.33 2.63 0.09 100.12 3.02 0.98 0.00 0.00 0.06 0.93 4.98	22 5/67. 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10 99.10 2.98 1.02 0.00 0.05 0.05 0.94 5.00	22 5/68. 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09 98.96 2.97 1.04 0.00 0.05 0.95 5.01	22 5 / 69 . 62.27 18.13 0.14 0.02 0.84 15.20 0.08 99.37 2.98 1.02 0.01 0.00 0.08 0.93 5.01	22 5 / 70 . 62.38 18.29 0.14 0.00 0.49 15.59 2.68 0.08 99.65 2.98 1.03 0.00 0.05 0.95 5.00	22 5/71. 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08 100.82 2.94 1.06 0.00 0.06 0.91 0.01 4.99	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08 99.27 2.92 1.01 0.11 0.048 0.44 4.98 0.47 0.51	22 5 / 75 . 61.829 18.29 0.09 0.00 0.25 15.77 2.65 0.08 99.02 2.97 1.04 0.00 0.00 0.02 0.97 5.00
N° du cristal N° analyse SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO Na ₂ O K2O Sr Ba Total FORMULE STRUCT Si Al Fe ³⁺ Ca Na K Total %Or %Ab %An Sr (ppm)	22 5 / 47 . 62.31 18.39 0.16 0.00 0.34 15.84 2.47 99.69 URALE (8 2.97 1.03 0.01 0.00 0.03 0.96 5.01	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 0.17 99.18 Oxygehers 2.99 1.03 0.00 0.00 0.02 0.99 5.01 0.98 0.02 0.00	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18) 2.97 1.03 0.00 0.00 0.02 0.98 5.01 0.98 0.02 0.00	22 5 / 50 . 62.69 18.27 0.15 0.00 0.48 15.88 2.37 100.10 2.98 1.02 0.01 0.00 0.04 0.96 5.01 0.96 0.04 0.00	22 5 / 51 . 62.20 18.33 0.12 0.00 0.36 15.81 2.38 0.16 99.41 2.97 1.03 0.00 0.00 0.03 0.96 5.01 0.97 0.03 0.00	22 5/52. 62.38 18.05 0.05 0.00 0.47 15.68 2.45 0.15 99.23 2.99 1.02 0.00 0.00 0.04 0.96 5.01	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15 100.48 2.97 1.04 0.00 0.01 0.71 0.25 4.99 0.26 0.73 0.01	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14 98.89 2.97 1.04 0.00 0.00 0.00 0.04 0.96 5.01	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70 2.73 99.14 2.98 1.03 0.00 0.00 0.00 0.04 0.96 5.01 0.96 0.04 0.00	22 5/56. 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14 100.53 2.99 1.01 0.00 0.01 0.60 0.39 5.00 0.39 0.60 0.01	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13 99.61 2.98 1.03 0.01 0.00 0.12 0.85 4.99 0.87 0.12 0.00	22 5/59. 61.74 18.42 0.12 0.04 1.03 14.53 2.84 0.12 98.84 2.97 1.04 0.00 0.00 0.10 0.89 5.00 0.10 0.00	22 5/60. 62.45 18.15 0.10 0.01 0.26 15.91 2.81 0.12 99.80 2.98 1.02 0.00 0.00 0.02 0.97 5.00 0.98 0.02 0.00	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 2.73 0.10 99.72 2.99 1.01 0.00 0.03 0.97 5.01 0.97	22 5/62. 62.36 18.29 0.13 0.00 0.37 15.79 2.77 0.11 99.82 2.98 1.03 0.00 0.03 0.03 0.96 5.00	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10 99.25 2.98 1.02 0.00 0.05 0.96 5.01 0.95 0.05	22 5/64. 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10 99.65 2.97 1.03 0.00 0.09 0.19 0.82 5.02 0.82 0.18 0.00	22 5/65. 62.44 18.29 0.04 0.01 0.48 15.83 2.61 0.10 99.85 2.98 1.03 0.00 0.00 0.00 0.04 0.96 5.01 0.95 0.04 0.00	22 5/66. 63.77 17.51 0.06 0.07 0.62 15.33 2.63 0.09 100.12 3.02 0.98 0.00 0.00 0.06 0.93 4.98 0.94 0.06 0.00	22 5/67. 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10 99.10 2.98 1.02 0.00 0.05 0.94 5.00	22 5/68. 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09 98.96 2.97 1.04 0.00 0.05 0.95 5.01 0.95 0.05	22 5 / 69 . 62.27 18.13 0.14 0.02 0.84 15.20 2.65 0.08 99.37 2.98 1.02 0.01 0.00 0.08 0.93 5.01 0.92 0.08	22 5/70. 62.38 18.29 0.14 0.00 0.49 15.59 2.68 99.65 2.98 1.03 0.00 0.00 0.05 0.95 5.00 0.95 0.05	22 5/71. 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08 100.82 2.94 1.06 0.00 0.06 0.91 4.99 0.01 0.93 0.06	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08 99.27 2.92 1.01 0.11 0.02 0.48 0.44 4.98 0.47 0.51 0.02	22 5/75. 61.829 0.09 0.00 0.25 15.77 2.65 0.08 99.02 2.97 1.04 0.00 0.00 0.02 0.97 5.00
N° du cristal N° analyse SiO₂ Al₂O₃ CaO Na₂O K2O Sr Ba Total FORMULE STRUCT Si Al Fe³+ Ca Na K Total Fo³+ Ca Na K Total %Or %Ab	22 5/47. 62.31 18.39 0.16 0.00 0.34 15.84 0.17 99.69 URALE (97 1.03 0.01 0.03 0.96 5.01	22 5 / 48 . 61.93 18.16 0.11 0.00 0.23 16.10 2.47 0.17 99.18 Oxygènes 2.97 1.03 0.00 0.02 0.99 5.01	22 5 / 49 . 61.95 18.15 0.11 0.00 0.26 16.07 2.48 0.16 99.18) 2.97 1.03 0.00 0.00 0.02 0.98 5.01	25/50. 62.69 18.27 0.15 0.00 0.48 15.88 2.37 100.10 2.98 1.02 0.01 0.00 0.04 0.96 5.01 0.96 0.04 0.00	25 5 / 51 . 62.20 18.33 0.12 0.00 0.36 15.81 0.16 99.41 2.97 1.03 0.00 0.03 0.96 5.01 0.97 0.03 0.00	22 5/52. 62.38 18.05 0.05 0.00 0.47 15.68 2.45 0.15 99.23 2.99 1.02 0.00 0.04 0.96 5.01	22 5/53. 65.52 19.36 0.09 0.27 8.10 4.38 2.62 0.15 100.48 2.97 1.04 0.00 0.01 0.71 0.25 4.99 0.26 0.73 0.01	22 5/54. 61.61 18.35 0.13 0.01 0.43 15.58 2.63 0.14 98.89 2.97 1.04 0.00 0.00 0.04 0.96 5.01	22 5/55. 61.92 18.16 0.08 0.00 0.41 15.70 0.13 99.14 2.98 1.03 0.00 0.00 0.04 0.96 5.01	22 5/56. 65.29 18.66 0.08 0.16 6.74 6.67 2.79 0.14 100.53 2.99 1.01 0.00 0.01 0.60 0.39 5.00	22 5/58. 62.68 18.36 0.17 0.05 1.32 14.04 2.86 0.13 99.61 2.98 1.03 0.01 0.02 0.85 4.99 0.87 0.12	22 5/59. 61.74 18.42 0.12 0.04 1.03 14.53 2.84 0.12 98.84 2.97 1.04 0.00 0.00 0.10 0.89 5.00	22 5 / 60 . 62.45 18.15 0.10 0.01 0.26 15.91 0.12 99.80 2.98 1.02 0.00 0.00 0.02 0.97 5.00	22 5/61. 62.57 18.02 0.03 0.00 0.35 15.93 2.73 0.10 99.72 2.99 1.01 0.00 0.03 0.97 5.01	22 5 / 62 . 62.36 18.29 0.13 0.00 0.37 15.79 2.77 0.11 99.82 2.98 1.03 0.00 0.03 0.03 0.96 5.00	22 5/63. 62.12 17.97 0.10 0.00 0.49 15.63 2.74 0.10 99.25 2.98 1.02 0.00 0.05 0.96 5.01	22 5/64. 62.68 18.36 0.10 0.00 2.02 13.63 2.76 0.10 99.65 2.97 1.03 0.00 0.09 0.82 5.02	22 5/65. 62.44 18.29 0.04 0.01 0.48 15.83 2.61 0.10 99.85 2.98 1.03 0.00 0.00 0.04 0.96 5.01	22 5/66. 63.77 17.51 0.06 0.07 0.62 15.33 2.63 0.09 100.12 3.02 0.98 0.00 0.00 0.06 0.93 4.98	22 5/67. 62.26 18.06 0.09 0.04 0.56 15.42 2.59 0.10 99.10 2.98 1.02 0.00 0.05 0.05 0.94 5.00	22 5/68. 61.73 18.35 0.06 0.00 0.56 15.52 2.64 0.09 98.96 2.97 1.04 0.00 0.05 0.95 5.01	22 5 / 69 . 62.27 18.13 0.14 0.02 0.84 15.20 0.08 99.37 2.98 1.02 0.01 0.00 0.08 0.93 5.01	22 5 / 70 . 62.38 18.29 0.14 0.00 0.49 15.59 2.68 0.08 99.65 2.98 1.03 0.00 0.05 0.95 5.00	22 5/71. 65.70 20.10 0.13 1.24 10.54 0.23 2.79 0.08 100.82 2.94 1.06 0.00 0.06 0.91 0.01 4.99	22 5/74. 62.23 18.25 2.97 0.38 5.25 7.27 2.70 0.08 99.27 2.92 1.01 0.11 0.048 0.44 4.98 0.47 0.51	22 5 / 75 . 61.829 18.29 0.09 0.00 0.25 15.77 2.65 0.08 99.02 2.97 1.04 0.00 0.00 0.02 0.97 5.00

Annexe 6c Compositions chimiques des feldspaths potassiques du cœur du granite de Dolbel (profil 2 suite)

		•			•			•	•		•			_				**
Lame	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
N° du cristal	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
N° analyse	5/76.	5/78.	5/79.	5/80.	5/81.	5/82.	5/83.	5/85.	5/86.	5/87.	5/88.	5/90.	5/92.	5/93.	5/94.	5/95.	5/99.	5/100.
SiO ₂	65.05	64.05	62.05	63.91	61.66	61.53	61.93	62.25	61.79	62.85	61.44	63.38	62.25	66.49	62.34	90.39	62.14	61.81
Al_2O_3	19.08	18.82	18.12	18.47	18.34	18.16	18.16	17.94	18.13	18.41	18.03	18.54	18.12	19.33	18.11	4.13	18.28	18.25
Fe ₂ O ₃	0.15	0.25	0.06	0.03	0.13	0.17	0.04	0.01	0.02	0.03	0.17	0.11	0.10	0.07	0.10	1.01	0.12	0.17
CaO	0.11	0.18	0.00	0.09	0.00	0.01	0.00	0.01	0.00	0.05	0.00	0.07	0.00	0.24	0.00	0.08	0.02	0.00
Na ₂ O	7.49	5.79	0.38	3.41	0.30	0.35	0.33	0.47	0.29	2.36	0.34	3.18	0.41	8.73	0.30	1.91	0.30	0.29
K ₂ O	5.80	8.10	15.66	10.99	15.83	15.69	15.78	15.52	15.72	12.31	15.41	10.05	15.48	3.10	15.96	0.25	15.78	15.75
Sr	2.77	2.74	2.66	2.70	2.60	2.68	2.66	2.63	2.58	2.63	2.60	2.65	2.61	2.67	2.60	2.45	2.51	2.55
Ва	0.07	0.08	0.08	0.07	0.08	0.08	0.08	0.09	0.09	0.09	0.09	0.10	0.10	0.10	0.11	0.11	0.12	0.12
Total	100.51	100.05	98.99	99.67	98.94	98.67	99.00	98.90	98.63	98.74	98.15	98.08	99.13	100.72	99.51	100.44	99.33	98.94
FORMULE STRUCT	URALE (8	Oxygène	s)															
Si	2.97	2.97	2.98	2.99	2.97	2.97	2.98	2.99	2.98	2.98	2.98	3.00	2.98	2.99	2.98	3.78	2.97	2.97
Al	1.03	1.03	1.03	1.02	1.04	1.03	1.03	1.02	1.03	1.03	1.03	1.03	1.02	1.02	1.02	0.20	1.03	1.03
Fe ³⁺	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.03	0.00	0.01
Ca	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Na	0.66	0.52	0.04	0.31	0.03	0.03	0.03	0.04	0.03	0.22	0.03	0.29	0.04	0.76	0.03	0.15	0.03	0.03
K	0.34	0.48	0.96	0.66	0.97	0.97	0.97	0.95	0.97	0.75	0.95	0.61	0.95	0.18	0.97	0.01	0.96	0.97
Total	5.01	5.01	5.00	4.98	5.01	5.01	5.01	5.00	5.00	4.98	5.00	4.93	5.00	4.97	5.01	4.19	5.00	5.00
%Or	0.34	0.48	0.96	0.68	0.97	0.97	0.97	0.96	0.97	0.77	0.97	0.67	0.96	0.19	0.97	0.08	0.97	0.97
%Ab	0.66	0.52	0.04	0.32	0.03	0.03	0.03	0.04	0.03	0.22	0.03	0.32	0.04	0.80	0.03	0.90	0.03	0.03
%An	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02	0.00	
0- ()	00440	00440	00450	00700	04070	00000	00.400	00050	04000	00000	04000	00000	00000	00000	04000	00700	04000	04500
Sr (ppm)	23440	23140	22450	22790	21970	22630	22490	22250	21800	22260	21990	22380	22080	22600	21960	20730	21260	
Ba (ppm)	630	730	690	660	680	710	750	790	790	790	830	880	920	850	950	1020	1060	1110
Distance (µm)	1567	1609	1629	1650	1671	1692	1713	1755	1776	1797	1817	1859	1901	1922	1943	1964	2068	2089

Annexe 6c Compositions chimiques des feldspaths potassiques du cœur du granite de Dolbel (profil 3)

1.	50.5		50.5	50.5	50.5	50.5	50.5	50.5	50.5	50.5	, , , ,	50.5	50.5	20.5	50.5	50.5	50.5	50.5	50 =	50.5	50.5	50.5	50.5	50.5	50.5
Lame	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
N° du cristal	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis
N° analyse	1/1.	1/2.	1/3.	1/4.	1/5.	1/6.	1/7.	1/8.	1/9.	1/10.	1/11.	1/12.	1 / 13 .	1/14.	1 / 15 .	1/16.	1/17.	1/18.	1/19.	1/20.	1/21.	1/22.	1 / 25 .	1 / 27 .	1 / 28 .
SiO ₂	61.98	63.16	61.55	62.35	62.18	61.75	62.25	61.77	62.10	61.86	63.09	61.51	61.84	63.63	62.08	62.11	62.19	62.64	61.91	62.06	61.71	61.91	61.62	64.18	68.28
Al_2O_3	18.30	19.00	18.30	18.26	18.46	18.26	18.11	18.26	18.55	18.53	18.62	18.36	18.34	18.84	18.34	17.83	18.65	18.18	18.35	18.53	18.22	18.29	18.46	19.34	20.12
Fe ₂ O ₃	0.52	80.0	0.11	0.09	0.11	0.13	0.05	0.15	0.10	0.09	0.00	0.09	0.05	0.12	0.12	0.13	0.10	0.03	0.01	0.11	0.07	0.19	0.07	0.11	0.08
CaO	0.05	0.10	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.03	0.04	0.02	0.00	0.00	0.00	0.00	0.06	0.25	0.24
Na ₂ O	0.24	1.30	0.27	0.31	0.47	0.21	0.43	0.30	0.40	0.42	2.22	0.22	0.49	2.50	0.44	0.32	1.04	0.30	0.33	0.29	0.34	0.29	0.41	4.03	5.93
K ₂ O	15.20	12.64	15.40	15.81	15.27	15.57	15.56	15.73	15.43	15.45	12.28	15.61	15.52	10.33	15.12	14.65	14.34	15.36	15.83	15.46	15.74	15.48	14.97	9.67	2.76
Sr	2.64	2.71	2.70	2.74	2.69	2.75	2.73	2.73	2.72	2.76	2.73	2.74	2.78	2.77	2.83	2.80	2.81	2.80	2.76	2.88	2.92	2.74	2.71	2.83	2.84
Ва	0.14	0.14	0.13	0.14	0.15	0.14	0.15	0.15	0.15	0.16	0.15	0.15	0.15	0.14	0.13	0.13	0.13	0.11	0.11	0.13	0.11	0.12	0.15	0.16	0.15
Total	99.18	99.19	98.45	99.92	99.34	98.85	99.31	99.27	99.52	99.54	99.31	98.71	99.18	98.49	99.06	98.25	99.48	99.49	99.30	99.60	99.13	99.00	98.44	100.57	100.40
FORMULE STRUCT	URALE (8	Oxygènes)																						
Si	2.97	2.98	2.97	2.97	2.97	2.97	2.98	2.97	2.97	2.96	2.98	2.97	2.97	3.00	2.98	2.99	2.96	2.99	2.97	2.97	2.97	2.97	2.97	2.97	3.03
Al	1.03	1.06	1.04	1.03	1.04	1.04	1.02	1.03	1.04	1.04	1.04	1.04	1.04	1.05	1.04	1.01	1.05	1.02	1.04	1.04	1.03	1.04	1.05	1.05	1.05
Fe ³⁺	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
Ca	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01
Na	0.02	0.12	0.02	0.03	0.04	0.02	0.04	0.03	0.04	0.04	0.20	0.02	0.05	0.23	0.04	0.03	0.10	0.03	0.03	0.03	0.03	0.03	0.04	0.36	0.51
K	0.93	0.76	0.95	0.96	0.93	0.96	0.95	0.96	0.94	0.94	0.74	0.96	0.95	0.62	0.93	0.90	0.87	0.94	0.97	0.94	0.97	0.95	0.92	0.57	0.16
Total	4.98	4.93	4.99	5.01	4.99	4.99	5.00	5.01	5.00	5.01	4.97	5.00	5.01	4.90	4.99	4.96	5.00	4.98	5.01	4.99	5.01	4.99	4.98	4.97	4.77
0/ 0-	0.07	0.00	0.07	0.07	0.00	0.00	0.00	0.07	0.00	0.00	0.70	0.00	0.95	0.73	0.00	0.07	0.00	0.07	0.07	0.07	0.07	0.07	0.00	0.00	0.00
%Or	0.97 0.02	0.86 0.13	0.97 0.03	0.97	0.96 0.04	0.98 0.02	0.96	0.97 0.03	0.96	0.96	0.78 0.22	0.98		0.73	0.96	0.97	0.90	0.97	0.97	0.97 0.03	0.97 0.03	0.97	0.96	0.60 0.38	0.23
%Ab				0.03			0.04	0.03	0.04	0.04			0.05		0.04	0.03	0.10	0.03	0.03			0.03	0.04		0.75
%An	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02
Sr (ppm)	22350	22940	22820	23190	22770	23270	23070	23110	23030	23370	23110	23160	23470	23450	23940	23670	23780	23650	23340	24360	24680	23170	22890	23910	24020
Ba (ppm)	1240	1220	1180	1290	1370	1290	1310	1320	1380	1450	1320	1360	1320	1270	1140	1170	1120	1000	1000	1120	1000	1080	1300	1420	1310
Diotonoo (um)	0	G.F.	120	104	250	224	200	450	E10	E00	640	710	777	0.40	007	070	1020	1101	1160	1224	1200	1260	1555	1604	1740
Distance (µm)	0	65	130	194	259	324	389	453	518	583	648	713	777	842	907	972	1036	1101	1166	1231	1296	1360	1555	1684	1749

Lame	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5	DO 5
N° du cristal	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis	22 bis
N° analyse	1/29.	1/30.	1/31.	1/32.	1/33.	1/35.	1/36.	1/38.	1/39.	1 / 40 .	1 / 41 .	1 / 42 .	1/43.	1 / 44 .	1 / 46 .	1 / 47 .	1 / 48 .	1 / 49 .	1/50.
SiO ₂	62.05	62.37	61.60	62.44	63.03	61.63	61.88	61.89	62.13	62.35	62.11	61.45	62.10	61.79	65.18	62.09	62.16	62.13	61.94
Al_2O_3	18.28	18.49	18.26	18.41	18.44	18.42	18.44	18.12	18.14	18.54	18.14	18.43	18.05	18.21	19.12	18.19	18.43	18.40	18.11
Fe ₂ O ₃	0.12	0.04	0.00	0.10	0.09	0.07	0.14	0.13	0.02	0.00	0.10	0.05	0.16	0.09	0.06	0.16	0.06	0.10	0.07
CaO	0.00	0.02	0.00	0.00	0.02	0.00	0.01	0.01	0.00	0.02	0.00	0.04	0.01	0.00	0.18	0.00	0.00	0.03	0.02
Na ₂ O	0.31	0.39	0.39	0.44	1.35	0.47	0.49	0.37	0.56	2.39	0.19	0.40	0.34	0.40	7.11	0.27	0.51	0.45	0.50
K ₂ O	15.71	15.74	15.43	15.57	13.62	15.40	15.37	15.68	15.58	12.73	15.96	15.25	15.63	15.69	5.92	15.87	15.24	15.86	15.37
Sr	2.76	2.80	2.77	2.79	2.81	2.77	2.73	2.79	2.78	2.79	2.77	2.74	2.73	2.76	2.83	2.71	2.71	2.76	2.75
Ва	0.15	0.15	0.15	0.15	0.14	0.14	0.16	0.12	0.12	0.11	0.11	0.10	0.09	0.07	0.05	0.04	0.02	0.03	0.02
Total	99.38	100.14	98.60	100.02	99.51	98.94	99.22	99.16	99.32	98.99	99.38	98.45	99.12	99.01	100.46	99.37	99.21	99.75	98.83
FORMULE STRUCT	URALE (8	Oxygènes	s)																
Si	2.97	2.97	2.97	2.97	2.99	2.97	2.97	2.98	2.98	2.97	2.98	2.97	2.98	2.97	2.98	2.98	2.97	2.97	2.98
Al	1.03	1.04	1.04	1.03	1.03	1.04	1.04	1.03	1.03	1.04	1.03	1.05	1.02	1.03	1.03	1.03	1.04	1.04	1.03
Fe ³⁺	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Na	0.03	0.04	0.04	0.04	0.12	0.04	0.05	0.03	0.05	0.22	0.02	0.04	0.03	0.04	0.63	0.03	0.05	0.04	0.05
K	0.96	0.96	0.95	0.95	0.82	0.95	0.94	0.96	0.95	0.77	0.98	0.94	0.96	0.96	0.35	0.97	0.93	0.97	0.94
Total	5.00	5.01	5.00	5.00	4.97	5.00	5.00	5.01	5.01	5.01	5.00	5.00	5.00	5.01	4.99	5.01	5.00	5.02	5.00
%Or	0.97	0.96	0.96	0.96	0.87	0.96	0.95	0.97	0.95	0.78	0.98	0.96	0.97	0.96	0.35	0.97	0.95	0.96	0.95
%Ab	0.03	0.04	0.04	0.04	0.13	0.04	0.05	0.03	0.05	0.22	0.02	0.04	0.03	0.04	0.64	0.03	0.05	0.04	0.05
%An	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Cr. (nnm)	22202	00040	00400	22022	22722	22202	22422	00040	00.400	22502	22202	00400	22000	22202	22042	22002	22022	22222	22252
Sr (ppm)	23300	23640	23420	23630	23720	23390	23120	23610	23480	23580	23380	23130	23060	23300	23910	22900	22920	23360	23250
Ba (ppm)	1320	1370	1310	1380	1260	1230	1440	1110	1060	1020	970	890	770	620	440	330	200	250	190
Distance (µm)	1814	1879	1943	2008	2073	2203	2267	2397	2462	2526	2591	2656	2721	2786	2915	2980	3045	3109	3174

Annexe 6d Compositions chimiques des clinopyroxènes, sphènes et oxydes de Fer du cœur du granite de Dolbel (profil 4)

Lame	DO 5	DO 5
N° du cristal	cpx 14	срх 14
N° de l'analyse	1/1.	3/1.
SiO ₂	50.55	51.61
TiO ₂	0.12	0.05
Al_2O_3	1.50	1.01
Cr ₂ O ₃	0.01	0.00
Fe ₂ O ₃ calc.	5.95	5.05
FeO calc.	9.20	8.43
MnO	0.51	0.57
MgO	9.31	10.45
CaO	20.52	21.20
Na₂O	1.72	1.50
INa ₂ O	1.72	1.50
L		
Total	99.38	99.87
FORMULE STRUCTU	, , ,	
Si	1.94	1.96
Al _{iv}	0.06	0.04
Al _{vi}	0.01	0.00
Ti	0.00	0.00
Cr	0.00	0.00
Fe ³⁺	0.17	0.14
Fe ²⁺	0.30	0.27
Mn	0.02	0.02
Mg	0.53	0.59
Ca	0.84	0.86
Na	0.13	0.11
Total	4.00	4.00
Total	4.00	4.00
XMg	0.64	0.69
79	0.01	0.00
Wo(Ca)	50.47	50.09
	31.87	34.37
En(Mg) Fs(Fe ²⁺)		
13(16)	17.66	15.54
CLASSIFICATION MO	i	
Wo(Ca)	45.36	45.77
En (Mg)	28.64	31.40
Fs(Fe ²⁺ Fe ³⁺ Mn ²⁺)	26.00	22.83
END MEMBER CAWT	HORN & COLLEG	2SON 1974
Jd	6.77	4.51
Ae	5.98	6.53
Ca-Fe ³⁺ Tsch	5.60	3.94
Ca-Ti Tsch	0.34	0.15
Ca-Tsch	0.00	0.00
Wo En	39.15	41.03
En Fs	26.60 15.56	29.56 14.28
	13.30	17.20

100 000	omiopy	i uxeries,	Spire
Lame	DO 5	DO 5	DO 5
N° du cristal	sph 18	sph 31 b	sph 31c
N° d'analyse	13 / 1 .	17 / 1 .	18/1.
SiO ₂	30.05	29.37	29.43
TiO ₂	37.26	36.74	37.79
Al_2O_3	1.01	1.17	1.05
Fe ₂ O ₃ calc.	2.12	2.25	1.92
MnO	0.07	0.07	0.06
MgO	0.00	0.00	0.00
CaO	27.61	27.05	27.59
Na ₂ O	0.02	0.04	0.05
K ₂ O	0.03	0.07	0.04
H₂O calc.	1.13	3.30	5.51
Total	99.30	100.08	103.46
FORMULE ST	RUCTURALE	(4 silicium)	
Si	4.00	4.00	4.00
Ti	3.73	3.76	3.86
Al	0.16	0.19	0.17
Fe ³⁺	0.21	0.23	0.20
Mn	0.01	0.01	0.01
Mg	0.00	0.00	0.00
Ca	3.94	3.95	4.02
Na	0.01	0.01	0.01
K	0.00	0.01	0.01
Total	12.06	12.16	12.27

Lame	DO 5	DO 5			
N° du cristal	ox 12	ox 37			
N° d'analyse	12/1.	37 / 1 .			
SiO ₂	0.06	0.11			
TiO ₂	0.04	0.00			
Al_2O_3	0.03	0.00			
Cr ₂ O ₃	0.03	0.05			
Fe ₂ O ₃ calc.	64.55	81.25			
FeO calc.	29.22	15.44			
MnO	0.06	0.03			
MgO	0.00	11.99			
ZnO	0.00	0.00			
NiO	0.00	0.00			
Total	93.97	108.87			
FORMULE STRUCTUR	ALE (4 oxygène	es)			
Si	0.00	0.00			
Ti	0.00	0.00			
Al	0.00	0.00			
Cr	0.00	0.00			
Fe ³⁺	1.99	1.99			
Fe ²⁺	1.00	0.42			
Mn	0.00	0.00			
Mg	0.00	0.58			
Zn	0.00	0.00			
Ni	0.00	0.00			
Total	3.00	3.00			
END MEMBERS					
Fe ₂ SiO ₄	0.001	0.000			
Manganochromite	0.001	0.000			
Galaxite	0.002	0.004			
Jacobsite	0.002	0.001			
Chromite	0.002	0.002			
Hercynite	0.001	0.582			
Magnetite	0.000	0.362			
iviagnetite	0.993	0.412			
Total	1.000	1.000			

MnCr ₂ O ₄
$MnAl_2O_4$
MnFe ₂ O ₄
FeCr ₂ O ₄
FeAl ₂ O ₄
FeFe ₂ O ₄

Annexe 7: Erreurs sur analyses réalisées à la microsonde électronique

Ce tableau donne une idée de l'intervalle des limites de détection (en ppm) de la microsonde électronique, pour la plupart des analyses.

	Min	Max
Na	450	950
Mg	240	390
Al	330	400
Si	370	450
Ti	210	480
Cr	260	280
Mn	1000	1500
Fe	1200	1300
Ni	300	1600
K	400	520
Ca	150	500
Ва	115	300
Sr	160	520