

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l'utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 <u>http://www.cfcopies.com/V2/leg/leg_droi.php</u> <u>http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm</u>

2010 - 2011

Nancy-Université

MASTER FAGE Biologie et Ecologie pour la Forêt, l'Agronomie et l'Environnement

Spécialité

BIPE

SUSCEPTIBILITE DES CELLULES EPITHELIALES BRONCHIQUES A LA POLLUTION PARTICULAIRE ATMOSPHERIQUE

BRICKS THIBAULT

Mémoire de stage, soutenu à Nancy le 06/09/2011

LO-GUIDICE Jean-Marc, CR1, INSERM HEHN ALAIN, Spécialité biotechnologies, ENSAIA Faculté de médecine de Lille, Pôle Recherche, EA4483, Place de Verdun 59045 Lille

REMERCIEMENTS

Je tiens à remercier très sincèrement,

Monsieur le professeur Frank BROLY pour m'avoir accueilli au sein de l'équipe EA4483.

Monsieur le Docteur Jean-Marc LO-GUIDICE pour m'avoir dirigée dans mon travail, guidé par ses nombreux conseils et ses remarques constructives ainsi que pour sa disponibilité.

Tous les chercheurs et étudiants de la salle 31 pour leur sympathie et leurs conseils.

ABREVIATIONS

ABC :	ATP Binding Cassette
ADN:	Acide DésoxyriboNucléique
AhR :	Aryl hydrocarbon Receptor
ARNT:	Aryl-hydrocarbon Nuclear Translocator
BER :	Base Excision Repair
BPCO :	Broncho Pneumopathie Obstructive
CAR :	Constitutive Androstane Receptor
CAT :	Catalase
CC :	Chémokines
COV :	Composé Organique Volatil
CSF:	Colony Stimulating Factor
Ct:	Threshold Cycle
CYP:	Cytochrome P450
DHEA:	Déhydroépiandrostérone
DMEM:	Dulbecco/Vogt Modified Eagle's Medium
dNTP:	deoxyriboNucleotide TriPhosphate
EMX :	Enzymes du Métabolisme des Xénobiotiques
GMCSF:	Granulocyte Macrophage Colony Stimulating Factor
GPX :	Glutathions PeroXydases
GRX :	Glutathions Réductases
HAP :	Hydrocarbure Aromatique Polycyclique
HBEC:	Human Bronchial Epithelial Cells
IF :	InterFérons
IL:	InterLeukines
LPS :	LipoPolySaccharides
LT:	LeucoTriènes
MAPK:	Mitogen Activated Protein Kinase
MGB:	Minor Groove Binder
NER :	Nucleotide Excision Repair
NFkB:	Nuclear Factor-kappa B
PBS:	Phosphate Buffered Saline
PCB :	PolyChloroBiphényles
PG:	ProstaGlandines
PM:	Particulate Matter
PXR:	Pregnane X Receptor
qPCR:	Quantitative real time Polymerase Chain Reaction

ROS: Reactive Oxygen Species

- RQ: Relative Quantity
- RT: RétroTranscription
- SAECM: Small Airway Epithelial Cell Medium
- SLC : Solute Carriers
- SOD : SuperOxyde Dismutase
- TCDD: 2, 3, 7,8-TétraChloroDibenzo-p-Dioxine
- TGF: Transforming Growth Factor
- TLDA: Taq Man Low Density Array
- TNF: Tumor Necrosis Factor
- UDG : Uracyl DNA Glycosylase
- UNG: Uracil N-Glycosylase
- XRE: Xenobiotic Response Elements

TABLE DES MATIERES

IN	TRODUCTION GENERALE1
I.	ANALYSE BIBLIOGRAPHIQUE
	Les particules atmosphériques et leur impact sur la sante2
	Mécanisme de détoxication des xénobiotiques, stress oxydant et génotoxicité induite par les polluants particulaires
	Voie de détoxication des xénobiotiques3
	Stress oxydant3
	Génotoxicité4
	Réaction inflammatoire en réponse à l'inhalation de xénobiotiques4
Π	. MATERIEL ET METHODES :
	Echantillons tissulaires
	Cultures primaires de cellules épithéliales bronchiques humaines5
	Exposition des cellules épithéliales bronchiques humaines aux particules atmosphériques6
	Extraction des ARN totaux
	Synthèse des ADN complémentaires
	PCR quantitative en temps réel7
	Principe7
	Choix des gènes d'intérêt7
	Mode opératoire8
	Méthode de quantification8
II	I. ANALYSE DES RESULTATS
	Contrôle qualitatif et quantitatif des ARN extraits
	Validation du modèle cellulaire
	Exposition des cellules HBEC aux PM _{2,5} 11
	Variation d'expression des gènes impliqués dans le métabolisme et le transport des xénobiotiques12
	Variation d'expression des gènes impliqués dans la régulation de l'inflammation et du stress oxydant13
IV	7. DISCUSSION
С	ONCLUSIONS ET PERSPECTIVES
R	EFERENCES BIBLIOGRAPHIQUES
A	NNEXE 1 : Liste des gènes analysés au cours du projet
A	NNEXE 2 : Caractéristiques physico chimiques des particules polluantes
R	ESUME

INTRODUCTION GENERALE

L'organisme est constamment confronté à des agressions extérieures par des polluants chimiques aussi appelés xénobiotiques. Ces xénobiotiques sont particulièrement présents dans les produits de synthèse chimique (solvants, additifs, pesticides...etc.), la fumée de tabac ou encore dans la pollution atmosphérique. Le poumon du fait de sa localisation et de sa fonction est en contact direct avec les nombreuses substances présentes dans l'atmosphère.

De nombreuses études épidémiologiques ont permis de mettre en évidence l'impact négatif de la pollution atmosphérique sur le fonctionnement des voies respiratoires aussi bien à court terme¹(plus d'hospitalisation lors des grands épisodes de pollution) qu'à long terme^{2:3} (cancers du poumon, maladies cardiovasculaires). Cette pollution serait aussi impliquée dans l'augmentation de la prévalence de maladies inflammatoires des voies respiratoires comme l'asthme^{4,5}, les bronchopneumopathies obstructives (BPCO)^{6,7} ou encore dans l'apparition d'allergies^{6,7,2}.Chaque année, cette pollution entrainerait 280 000 décès prématurés.

Les xénobiotiques mis en cause sont la plupart du temps hydrophobes et s'accumulent dans les cellules, les structures riches en lipides comme la moelle osseuse, le système nerveux, etc. L'organisme peut pallier à une accumulation excessive et toxique de ces xénobiotiques par l'intermédiaire de systèmes enzymatiques de détoxication qui modifient la structure de ces xénobiotiques. Toutefois, même si cette détoxication est fondamentale dans la protection contre l'environnement chimique, elle peut engendrer également la production de radicaux libres et/ou de métabolites plus réactifs que les composés initiaux. Ce phénomène peut aboutir à un stress se traduisant par des lésions des macromolécules cellulaires et un état inflammatoire consécutif à l'induction de médiateurs de l'inflammation^{8,9}.

Dans ce contexte, il nous est apparu nécessaire de connaitre de façon précise et détaillée l'impact des polluants particulaires sur la capacité métabolique et la susceptibilité à l'inflammation des cellules pulmonaires. Pour cela, nous avons mis en contact des particules prélevées en milieu urbain industrialisé avec des cultures primaires de cellules épithéliales bronchiques humaines (HBEC). La mesure de l'expression génique des enzymes du métabolisme des xénobiotiques, médiateurs de l'inflammation, du stress oxydant, ou encore de l'apoptose (soit 780 gènes au total) a été effectuée avant et après plusieurs temps d'expositions.

L'objectif de cette analyse est de :

- Mieux comprendre comment l'exposition aux polluants atmosphériques peut moduler l'expression de l'ensemble des EMX, des transporteurs et des médiateurs de l'inflammation, et affecter ainsi la réponse des cellules respiratoires à leur environnement chimique.
- Définir les relations entre les réactions de biotransformation des xénobiotiques et la réponse inflammatoire pulmonaire.
- De préciser si ces processus cellulaires sont co-régulés.

Ce travail a été effectué au sein de l'équipe EA4483 de la faculté de médecine de Lille sous la direction scientifique du Dr. Jean-Marc Lo Guidice. Les activités de recherche de cette équipe sont orientées vers l'analyse de la variabilité génétique et épigénétique expliquant les différences de susceptibilité à l'environnement chimique entre les individus et les mécanismes moléculaires impliqués dans la réponse aux xénobiotiques.

I. ANALYSE BIBLIOGRAPHIQUE

Les particules atmosphériques et leur impact sur la sante

Dans la plupart des cas, la dégradation de la qualité de l'air est due aux émissions polluantes d'origine humaine : déplacements motorisés, exécution de procédés industriels, extraction de ressources naturelles, agriculture et utilisation d'appareils à combustion et de produits de consommation. Comme exemples de polluants chimiques, citons l'ozone troposphérique (O₃), l'anhydride sulfureux (SO₂), le monoxyde de carbone (CO), les oxydes d'azote (NO_x), les composés organiques volatils (COV) et les « matières particulaires » (PM). Ces PM en suspension dans l'air sont essentiellement des particules carbonées issues des processus de combustion d'énergie fossile (trafic automobile, chauffage, activités industrielles). Après leur émission dans l'atmosphère, les particules interagissent entre elles ainsi qu'avec des gaz, des composés organiques volatils (COV), des hydrocarbures polycycliques aromatiques (HAP) ou des métaux. Elles peuvent fixer des molécules biologiques comme des endotoxines ou des allergènes¹⁰. Elles peuvent également s'adsorber sur les pollens ou les spores de champignon en modifiant leurs propriétés de surface¹⁰.

Ces particules peuvent être différenciées par leurs structures: HAP, organochlorés (pesticides), amines aromatiques, organophosphorés, nitrosamines, fibres, métaux lourds, toxines, mélanges (tabac, particules fines, goudrons) ou encore par leurs modes d'action (génotoxique direct, non direct, non génotoxique)¹¹. Plus communément, on les classe selon leur diamètre aérodynamique¹² qui varie de 0.02μ m à 100 µm. Au-dessus de 10 µm, elles ne sont pas inhalables.

- Pour un diamètre inférieur à 10 microns, on parle de PM_{10} . Ces particules peuvent pénétrer dans l'organisme jusqu'aux voies aériennes supérieures (région nasopharyngée)¹³.
- Les $PM_{2.5}$ ou particules fines ont un diamètre inférieur à 2.5 microns et peuvent atteindre la région trachéobronchique¹³.
- Les PM_{0.1} ou particules ultrafines du fait de leurs tailles inférieures à 0.1 micron et à celui des structures cellulaires peuvent avoir une action intracellulaire. Elles peuvent atteindre les régions bronchiolaires et alvéolaires et y persister¹⁴.

Même si ces dernières années, l'émission de polluants d'origine industrielle a diminué dans les pays industrialisés comme la France, cette diminution a été contrebalancée par l'émission d'une plus grande quantité de particules fines (véhicules diesel), plus nocives du fait de leur pénétration accrue de l'appareil respiratoire¹⁵ et de leur durée de vie prolongée (24h dans les voies respiratoires supérieures et 1 mois dans les régions profondes)¹⁶.

De nombreuses études épidémiologiques ont mis en évidence le rôle de la pollution atmosphérique dans la morbidité et la mortalité d'origine respiratoire. Les particules sont ainsi à l'origine de l'apparition ou de l'exacerbation de troubles préexistants. Ces troubles peuvent être aussi bien aiguës et affectent alors le système respiratoire et cardiovasculaire¹(pneumonies, cardiopathies...), que chroniques comme par exemple l'asthme et les BPCO^{17,7,18,19}, deux maladies particulièrement répandues en France. Enfin sur un encore plus long terme, ces particules augmentent la prévalence des cancers du poumon¹¹.

Mécanisme de détoxication des xénobiotiques, stress oxydant et génotoxicité induite par les polluants particulaires

Nous avons vu précédemment que les PM les plus petites ($PM_{2.5}$ et $PM_{0.1}$) pouvaient se déposer jusque dans la région trachéo-bronchiques et les bronches. A ce niveau-là, l'élimination des particules par l'action du système mucociliaire (cils vibratoires et production de mucus) n'est pas toujours suffisante ce qui se traduit par (i) la sédimentation des particules restantes, (ii) leur diffusion dans les cellules

pulmonaires, en particulier les macrophages alvéolaires et les cellules épithéliales bronchiques^{16, 20}, (iii) la libération dans les cellules des xénobiotiques adsorbés à leur surface.

Pour éviter toute accumulation de ces xénobiotiques, il existe des systèmes de détoxication puissants assurés essentiellement par des enzymes agissant en synergie et regroupées sous le terme générique d'EMX (Enzyme du Métabolisme des Xénobiotiques).

Voie de détoxication des xénobiotiques

Les EMX peuvent être classées en deux catégories selon les réactions métaboliques qu'elles catalysent. Les enzymes de phase I, dites de fonctionnalisation, sont représentées principalement par la superfamille des cytochromes P450 (CYPs) et catalysent des réactions d'oxydation, de réduction ou d'hydrolyse. Ces réactions libèrent ou introduisent un groupement fonctionnel (-OH, -NH2, -SH, - COOH) permettant ainsi l'augmentation de la polarité du produit parent. Au cours de ces réactions, des radicaux libres instables peuvent être générés²¹.

Les réactions de phase II sont dites de « conjugaison ». Ces réactions catalysées par des transférases, permettent la conjugaison à une molécule endogène (acide glucuronique, glutathion, ions sulfate et acétate, groupement méthyl et glycine) des xénobiotiques ou de leur(s) métabolite(s) préalablement produit(s) par un processus de phase I. Les produits gagnent ainsi en hydrosolubilité facilitant leur élimination en phase aqueuse, et perdent généralement toute activité.

L'action de détoxication des EMX est finalement complétée par des systèmes de transport, dits de phase III, qui permettent l'expulsion des xénobiotiques ou de leurs métabolites hors de la cellule. Il s'agit de transporteurs membranaires qui peuvent se situer au niveau des différentes interfaces épithéliales et qui appartiennent essentiellement aux superfamilles des « transporteurs ABC » (ATP Binding Cassette) et des « Solute Carriers » (SLC).

La détection des xénobiotiques dans la cellule et la coordination de l'expression des gènes codant pour les EMX et les transporteurs les mieux appropriés pour désactiver et/ou éliminer ces composés sont essentiellement assurées par un certain nombre de récepteurs nucléaires que l'on désigne sous le terme de « xénosenseurs ». Les principaux sont AhR (Aryl Hydrocarbon Receptor), PXR (Pregnane X Receptor) et CAR (Constitutive Androstane Receptor)²². Au niveau pulmonaire, c'est le récepteur aux hydrocarbures aromatiques polycycliques AhR qui occupe une place prépondérante au sein de cette classe de protéines. Ce récepteur est activé par un grand nombre de polluants tels que le benzo(a)pyrène, des dioxines, des polychlorobiphényles (PCB) etc...²². A l'état basal, AhR est lié à plusieurs protéines chaperonnes qui maintiennent sa conformation et le stabilisent. La fixation des ligands sur l'AhR provoque sa libération du complexe et permet l'interaction avec son partenaire, l'ARNT (Aryl-hydrocarbon Nuclear Translocator). L'hétérodimère, localisé dans le noyau, peut reconnaître des séquences spécifiques en amont de promoteurs de gènes cibles, comme de nombreux gènes de protéines impliquées dans la biotransformation des xénobiotiques (dont des cytochromes P450)²², mais également de certains gènes de médiateurs de l'inflammation.

Si les processus de biotransformation des xénobiotiques ont un rôle de détoxication, ils peuvent néanmoins, lors des réactions de phase I, générer des radicaux libres au cours du cycle catalytiques des CYPs. De plus, lors de ces réactions, des métabolites plus réactifs que les xénobiotiques parents, peuvent être produits (époxydes, quinones, quinone-imines, radicaux acyls, etc.), c'est le phénomène de bioactivation. Si les enzymes de phase II et/ou les systèmes antioxydants de la cellule sont dépassés, tous ces composés réactifs peuvent induire un stress oxydant et conduire à des dommages cellulaires et biologiques graves consécutifs à l'altération des macromoléculaires cellulaires.

Stress oxydant

Les radicaux libres peuvent agir comme attracteurs d'électrons ou comme donneurs. Dans ce dernier cas, l'électron disponible est capté le plus souvent par des molécules d'O₂, ce qui va aboutir à la production d'espèce réactive de l'oxygène plus communément appelées ROS (Reactive Oxygen Species). Ce sont des espèces particulièrement instables, comme les ions superoxydes, le peroxyde

d'hydrogène ou encore l'hydroxyle, et peuvent induire des lésions oxydatives dans les macromolécules cellulaires comme les lipides (peroxydation), les protéines et l'ADN (mutagenèse).

Les polluants particulaires atmosphériques peuvent induire directement un stress oxydant. La plupart de ces particules adsorbent au cours de leur maturation de nombreux métaux de transition (Fe, V, Cr, Mn, Co, Cu, Ni, Zn)¹¹. Ces types de métaux sont bien connus pour leur capacité à générer des ROS¹¹ par l'intermédiaire de la réaction de Fenton génératrice d'ion hydroxyle.

Les PM peuvent aussi contenir des radicaux libres appartenant à la famille des semi-quinones générés par la combustion de molécules diesel. De même, des lipopolysaccharides (LPS) adsorbées par ces particules peuvent stimuler la production de ROS et d'espèce réactive de l'azote²³.

Les ROS sont également naturellement produites par les cellules lors du fonctionnement de la chaîne respiratoire dans les mitochondries mais aussi lors du cycle catalytique des CYPs.

Toutefois, la cytotoxicité de ces ROS est limitée par le fonctionnement de nombreux systèmes antioxydants enzymatiques et non enzymatiques²⁴. Les systèmes enzymatiques antioxydants sont composés, entre autres, de la superoxyde dismutase (SOD), de la catalase (CAT) ou encore des glutathions peroxydases (GPX) et réductases (GRX).

La plupart des systèmes antioxydants non enzymatiques ne sont pas synthétisés par l'organisme et doivent être apporté par l'alimentation. On y retrouve des oligoéléments, l'ubiquinone et les vitamines C et E.

Génotoxicité

Lorsque les ROS produites dépassent les capacités anti-oxydantes de l'organisme, comme dans le cas d'une trop grande inhalation de particules, les dégâts cellulaires sont nombreux et aboutissent entre autres à une altération de l'ADN^{25,9}. Par exemple, l'espèce la plus réactive, HO réagit avec l'ADN en ajoutant des doubles liaisons aux bases de l'ADN et en supprimant un atome d'hydrogène des groupements méthyles des thymines. Par ce processus, de nombreuses bases mutées sont produites comme la 8 oxo deoxyguanine²⁵ et induisent des erreurs de réplication.

Face à ces lésions et mutations, trois systèmes principaux de réparation de l'ADN vont se mettre en place.

- Le mécanisme d'excision resynthèse des bases ou BER permet l'excision de bases mésappariées par des glycosylases (Uracyl DNA glycosylase UDG, Lig 3..etc.). Chaque glycosylase prendra en charge un type de lésion comme MUTYH qui élimine les adénines incorporées en face d'une 8 oxoguanine.
- Le mécanisme d'excision resynthèse des nucléotides ou NER permet l'excision et le remplacement d'oligomère sous l'action de protéines comme RPA, XPA, XPC, TFIIH, XPG et XPF•ERCC1 ou encore ERCC2²⁶.
- Enfin, si les deux brins d'ADN sont endommagés, des systèmes de réparation des mésappariements se mettent en place sous l'influence de 2 gènes codant pour BRCA1 et BRCA2.

Il faut savoir que les PM affectent aussi le fonctionnement de ces systèmes de réparation en inhibant le fonctionnement de NER par exemple²⁷.

Réaction inflammatoire en réponse à l'inhalation de xénobiotiques

L'épithélium pulmonaire est la première barrière empêchant l'entrée des composés inhalés dans l'organisme. Cet épithélium régule activement l'inflammation pulmonaire par l'expression de nombreux gènes impliqués dans la réponse inflammatoire. Sous l'influence des stimuli (induction par AhR et le stress oxydant), ces gènes induisent le recrutement de cellules immunitaires par la sécrétion de médiateurs de l'inflammation et l'expression de molécules d'adhésion.

Cette inflammation permet à l'organisme de préserver son intégrité²⁸. Elle fait intervenir un grand nombre de types cellulaires et de substances chimiques²⁹.

Le rôle des cytokines, en particulier, a été mis en évidence dans la régulation de ces réponses inflammatoires consécutives à une exposition à des polluants particulaires de type PM. Les principales

cytokines sont : les interleukines (IL), les chémokines (CC), les interférons (IF), les médiateurs de la famille du TNF, les colony stimulating factor (CSF) et les transforming growth factor (TGF). Certaines de ces cytokines amplifient la réponse inflammatoire comme l'interleukine IL1 et le TNF α par exemple. Au contraire d'autres ont plutôt une action anti inflammatoire comme les IL2 et IL4. Enfin, certaines auront des propriétés à la fois pro et anti inflammatoires comme l'interleukine 6 (IL6). Bon nombre de ces cytokines permettent l'attraction des cellules immunitaires par chimiotactisme. On peut donner comme exemple celui du granulocyte macrophage colony stimulating factor (GMCSF) qui attire et active les macrophages.

D'autres médiateurs que les cytokines interviennent aussi dans l'attraction des cellules immunitaires. C'est le cas de certains dérivés de l'acide arachidonique : les leucotriènes et les prostaglandines.

Du fait du grand nombre de ces médiateurs et de leurs effets qui peuvent être aussi bien pro- qu'antiinflammatoire, voire mixte, il est parfois difficile de cerner le rôle conjoint de tous ces médiateurs. La plupart des revues et articles ciblent le fonctionnement de quelques-uns de ces médiateurs et mettent en évidence leur rôle dans l'induction de l'inflammation consécutive à une exposition à des xénobiotiques^{8,23,30}.

Au vue des conséquences que peut avoir l'inhalation de PM sur le tissu pulmonaire, il paraissait donc intéressant d'analyser plus globalement les gènes induits par ces PM et impliqués dans les phénomènes de métabolisme des xénobiotiques, de stress oxydant et d'inflammation

II. MATERIEL ET METHODES :

Echantillons tissulaires

Les échantillons de tissus bronchopulmonaires proviennent de pièces opératoires (lobectomie ou pneumectomie) prélevées chez 4 patients atteints de cancer du poumon non à petites cellules. Les prélèvements, effectués avec le consentement des patients, nous ont été fournis par le Professeur Jean-Jacques Lafitte (Service de Pneumologie et d'Oncologie Thoracique, Hôpital Calmette, CHRU de Lille), en collaboration avec une équipe de chirurgiens exerçant à Lille à la Clinique de la Louvière et à la Polyclinique du Bois (Docteur Michel Debaert, Docteur Sophie Jaillard et Docteur Eric Mensier). Aucun des 4 patients n'avait été traité par chimiothérapie avant la chirurgie.

Pour chaque patient, un échantillon macroscopiquement sain de bronche a été prélevé à distance de la tumeur. Après résection chirurgicale, chaque échantillon est immédiatement immergé dans 20 ml de milieu de culture DMEM contenant 1% de Pénicilline/streptomycine et 2% de fongizone (Invitrogen, Cergy Pontoise, France), puis transporté à 4 °C jusqu'au laboratoire pour y être disséqué.

Cultures primaires de cellules épithéliales bronchiques humaines

Chaque échantillon de bronche a été rincé 3 fois par du tampon PBS à pH 7,4 (Invitrogen). La muqueuse bronchique a ensuite été isolée à l'aide d'un scalpel stérile pour être utilisée comme source de cellules épithéliales, puis découpée en fragments d'environ 1 mm². Chaque fragment a été ultérieurement placé dans un puits de 9 cm² tapissé de collagène G (Biochrom AG, Berlin, Allemagne) et contenant 500 μ L de milieu Small Airway Epithelial Cell Medium ou SAECM (Promocell, Heidelberg, Allemagne) complété par 1% de pénicilline-streptomycine et 2% de fongizone. Après une période d'adhérence de 24 heures, 2 ml de ce même milieu ont été rajoutés dans chaque puits et les explants ont été cultivés dans une atmosphère humide à 37°C, contenant 5 % de CO2; le milieu de culture a été ensuite changé tous les 2 jours.

Une fois confluentes (environ 10-14 jours après la mise en culture), les cellules issues des différents explants ont été dissociées par un traitement à la trypsine, puis rassemblées, réparties dans de nouveaux puits et mises en culture jusqu'à confluence. Le phénotype épithélial des cellules a été confirmé par immunomarquage avec un anticorps anti-cytokératine 5/6/18.

Exposition des cellules épithéliales bronchiques humaines aux particules atmosphériques

Les particules utilisées pour cette étude sont de taille $\leq 2,5 \ \mu M \ (PM_{2,5})$ et ont été collectées par l'équipe du Pr. Shirali au sein de l'agglomération de Dunkerque, pendant une période de 9 mois, à l'aide d'un impacteur en cascade situé sous les vents dominants de complexes industriels. Les propriétés physico-chimiques (composition chimique, spéciation chimique, surface spécifique, etc.) et toxicologiques de ces particules ont été parfaitement caractérisées et sont décrites précisément en annexe.

La dose d'exposition des $PM_{2, 5}$ a été définie par des tests de viabilité cellulaire en évaluant la CL10 sur des cultures primaires de macrophages humains : 3,14 µg de $PM_{2,5}$ /cm² de surface de culture.

L'exposition aux particules a été réalisée 24 heures après confluence du tapis cellulaire. Elle a été réalisée en milieu liquide après suspension des particules dans le milieu de culture. Après incubation avec une dose unique de particules, les réponses métaboliques et inflammatoires des cellules ont été mesurées pour 4 cultures primaires différentes (HBEC2, HBEC3, HBEC4 et HBEC5) à des temps d'exposition de 3h, 6h, 24h et 48h.

Extraction des ARN totaux

Les ARN totaux ont été extraits à l'aide du coffret RNeasy Plus Mini Kit[™] (Qiagen, Courtaboeuf, France), selon les instructions du fournisseur. Après retrait du milieu SAECM, les cellules ont été directement lysées dans les puits de culture par addition de 600 µL du tampon de lyse RLT fourni avec le kit. En fin de protocole, les ARN ont été élués par 50 µL d'eau garantie sans RNase. Les ARN ont été conservés à -80°C jusqu'à utilisation.

Les ARN extraits ont été quantifiés par mesure de l'absorbance à 260 nm à l'aide du spectrophotomètre BiospecNano (Shimadzu, Champs sur Marne, France). La qualité de ces ARN a été évaluée par micro-électrophorèse capillaire sur l'appareil Experion® (BIORAD, Marnes-la-Coquette, France) équipé du le logiciel Experion™ software V3.0. L'analyse de l'électrophorégramme permet de visualiser les 2 pics correspondant aux ARN ribosomaux 18S et 28S. La qualité des ARN est attestée sous forme de score, sur une échelle de 1 à 10, nommé coefficient RQI (RNA Quality Indicator), basé sur l'aspect des pics des ARN ribosomaux 18S et 28S et la valeur du rapport des intensités des pics 28S/18S. Tous les ARN préparés au cours de ce projet avaient un RQI supérieur à 9.

Synthèse des ADN complémentaires

Les ADNc simples brins sont synthétisés par rétrotranscription des ARN totaux. La rétrotranscription est réalisée à partir de $2\mu g$ d'ARN totaux, à l'aide du High Capacity cDNA Reverse Transcription KitTM (Applied Biosystems, Courtaboeuf, France), selon les instructions du fabricant. Des hexamères aléatoires sont utilisés comme amorces oligonucléotidiques, afin de rétrotranscrire tous les ARN. Un inhibiteur de RNase est ajouté dans le mélange réactionnel. La réaction comporte une étape d'hybridation (10 min à 25°C) suivie d'une étape d'élongation (2h à 37°C), puis d'une étape de dénaturation (5 min à 85°C). Les ADNc obtenus sont stockés à -20°C.

PCR quantitative en temps réel

Principe

L'expression des gènes d'intérêts a été quantifiée par PCR quantitative en temps réel à haut débit, grâce à l'utilisation de TaqManTM Low Density Arrays (ou TLDA) et de l'automate 7900HT Real time PCR system (Applied Biosystems). Cette technologie est basée sur le principe des sondes TaqManTM. Ces sondes sont marquées à leur extrémité 5' par un fluorochrome reporter, le 6-FAM (6-carboxyfluorescéine), et portent à leur extrémité 3' un quencher non fluorescent ainsi qu'une molécule MGB (minor groove binder). Le quencher induit l'extinction de la fluorescence émise par le reporter ; l'hydrolyse de la sonde par l'activité 5' exonucléase de la Taq polymérase provoque la séparation du fluorochrome et du quencher entrainant ainsi l'émission d'un signal fluorescent. La molécule MGB augmente le Tm de la sonde et stabilise le duplex formé entre la sonde et la matrice d'ADNc, ce qui permet l'utilisation de sondes plus petites de spécificité et de sensibilité augmentées.

Figure 1 : <u>Principe des sondes TaqManTM</u>. Les sondes présentent à leur extrémité 5' un fluorochrome reporter, le 6-FAM (6-carboxyfluorescéine), et à leur extrémité 3' un quencher non fluorescent qui induit l'extinction de la fluorescence émise par le reporter. L'hydrolyse de la sonde par l'activité 5' exonucléase de la Taq polymérase provoque la séparation du fluorochrome et du quencher entrainant ainsi l'émission d'un signal fluorescent. (D'après Céline Loriol, Thèse d'Université, Limoges, septembre 2006).

Les TLDA permettent de déterminer simultanément le profil d'expression de plusieurs centaines de gènes dans un même échantillon d'ARN. Ce sont des plaques prêtes à l'emploi de 384 puits, chaque puits contenant sous forme lyophilisée un **TaqManTM Gene Expression Assay** composé d'un couple d'amorces et d'une sonde MGB TaqManTM spécifiques d'un gène cible. Les TaqManTM Gene Expression Assays ont été créés grâce à un processus automatisé de conception qui prend en compte les homologies de séquence entre gènes, les différents ARNm résultant d'un épissage alternatif et l'existence potentielle de pseudo-gènes transcrits. Ils sont donc spécifiques d'un gène donné, sauf dans de rares cas où l'homologie de séquence nucléotidique est trop importante (cf. annexe : *CYP4A11* et *CYP4A22*, *AKR1C1* et *AKR1C2*, *GSTT2* et *GSTT2B*, *SULT1A3* et *SULT1A4*, *MUC3A* et *MUC3B*, *NCF1*, *NCF1B* et *NCF1C*). L'efficacité d'amplification avec les assays TaqManTM est garantie comme étant comprise entre 90% et 100%.

Choix des gènes d'intérêt

Les TLDA que nous avons choisies ont été configurées pour quantifier simultanément le niveau d'expression de 380 gènes différents, 4 puits étant réservés au gène de référence. L'inclusion d'un gène de référence est indispensable pour normaliser les résultats obtenus pour les gènes cibles ; cela permet, en effet, de corriger les variations liées à des différences quantitatives ou qualitatives des

échantillons d'ADNc (variations liées au pipetage, variations de l'efficacité de la réaction de rétrotranscription, etc.). Le gène de référence doit, par définition, présenter des niveaux semblables d'ARNm dans tous les échantillons analysés. Le gène codant l'ARN ribosomal 18S (ARNr 18S) ayant été rapporté comme étant un des gènes de référence les mieux adaptés pour l'étude du profil d'expression des cellules pulmonaires, a été choisi comme gène de référence.

Deux types de plaque TLDA ont été configurés pour cette étude. Sur le premier type de plaque, nous avons sélectionné 380 gènes pour le rôle des protéines qu'ils codent dans le métabolisme des xénobiotiques, dans l'entrée ou dans l'efflux cellulaires de ces xénobiotiques et de leurs métabolites, ou dans la coordination des processus de métabolisme et de transport (cf. annexe). Le pool de gènes choisis comprend 206 gènes d'EMX (137 enzymes de phase I et 69 enzymes de phase II), 103 gènes de transporteurs (dont 31 appartenant à la superfamille des transporteurs ABC, ATP-Binding Cassette, et 62 à la superfamille des SLC, Solute Carrier), 48 gènes codant des récepteurs nucléaires et autres facteurs de transcription (ainsi que leurs coactivateurs et corépresseurs), et 23 autres gènes (incluant 9 métallothionéines). Sur le deuxième type de plaque, nous avons sélectionné 380 gènes pour le rôle des protéines qu'ils codent dans la réponse au stress oxydant, l'inflammation ou encore dans la régulation des processus apoptiques (cf. annexe). Le pool de gènes choisis comprend 223 gènes codant des protéines jouant un rôle dans les processus inflammatoires (cytokines et leurs récepteurs, enzymes impliquées dans la biosynthèse des éicosanoïdes, protéases, etc.), 43 gènes de protéines régulatrices du stress oxydant, 72 gènes de protéines impliquées dans la réparation de l'ADN ou la régulation de l'apoptose et 48 autres gènes (dont 15 gènes de mucines).

Mode opératoire

Dans chacun des 8 réservoirs de la microplaque (cf. Figure 2) ont été déposés 100 µl d'un mélange contenant 5 µl de solution d'ADNc obtenu précédemment (soit 100 ng d'ADNc), 45 µl d'eau pure et 50 µl de TaqMan[™] Gene Expression Master Mix (2X) (Applied Biosystems). Ce dernier contient tous les éléments nécessaires à la réalisation de la PCR, à l'exception des amorces et des sondes. Il comprend notamment deux enzymes, l'AmpliTaq Gold[™] ADN polymérase et l'AmpErase[™] Uracil N-glycosylase (UNG), une référence passive pour normaliser le signal de fluorescence et un mélange de dNTP.

Figure 2 : TaqManTM Low Density Arrays. <u>Mode de dépôt des échantillons dans les 8</u> <u>réservoirs.</u> La centrifugation permet aux échantillons d'être distribués dans les 48 micropuits.

Les plaques ont ensuite été centrifugées 2 fois 1 minute à 1200 rpm pour permettre au mélange de se distribuer dans les 384 cupules contenant les TaqMan[™] Gene Expression Assays sous forme lyophilisée. Les cupules ont alors été scellées et les plaques chargées dans l'automate. La réaction d'amplification est précédée d'une décontamination (2 minutes à 50°C) par l'uracile N-glycosylase. Le programme PCR se poursuit par une étape de 10 minutes à 94.5°C (dénaturation et activation de la Taq polymérase), puis par 40 cycles de dénaturation (30 secondes à 97°C) et d'hybridation-élongation (1 minute à 59.7°C).

Méthode de quantification

La RT-PCR quantitative en temps réel consiste à quantifier les produits amplifiés en « temps réel », c'est-à-dire au fur et à mesure de leur accumulation. La quantification de l'expression des gènes d'intérêt a été réalisée par la méthode comparative des cycles seuil ou Ct (threshold cycle). L'intensité de la fluorescence émise par le fluorochrome reporter augmente à chaque cycle de PCR, à mesure que la quantité d'amplicons augmente. Une valeur seuil de fluorescence (threshold) est fixée dans une zone où le signal généré par chaque échantillon est significativement différent du bruit de fond (au moins 10 fois le signal de la ligne de base) et où la réaction de PCR est en phase exponentielle pour tous les échantillons. Nous avons fixé ce seuil à 0,3 pour tous les gènes. Le Ct, ou nombre de cycles de PCR

nécessaires pour générer un signal qui atteint le seuil, est déterminé avec le logiciel RQ Manager 1.2.1 (Applied Biosystems).

Figure 3 : <u>Définition du cycle seuil (Ct).</u> L'axe des ordonnées représente le signal de fluorescence_Rn (échelle logarithmique) qui correspond à la quantité de produit amplifié et l'axe des abscisses le nombre de cycles de PCR. La ligne de base, qui reflète l'intensité du bruit de fond, est définie automatiquement au cours des 15 premiers cycles. L'intersection de la courbe cinétique PCR avec la ligne seuil, fixée à une valeur 10 fois supérieure à celle de la ligne de base, définit le Ct.

Les résultats d'expression ont été mesurés de façon relative par rapport au gène de référence. Ainsi, les valeurs de Ct des gènes d'intérêt ont été normalisées grâce à la valeur de Ct du gène de l'ARNr 18S, générant ainsi des valeurs de Δ Ct (Ct_{gène cible} - Ct_{ARNr 18S}). La méthode d'amplification choisie ne permet pas de réaliser une quantification absolue de l'expression génique et les niveaux d'expression ne peuvent pas être directement comparés entre les gènes. Cependant, il est admis que les Δ Ct faibles correspondent à des gènes fortement exprimés et les Δ Ct élevés indiquent une expression faible des gènes.

Afin de mesurer les différentiels d'expression entre différentes conditions expérimentales, les valeurs de $\Delta\Delta$ Ct ont ensuite été calculées ; elles correspondent à la différence entre le Δ Ct du gène dans une condition donnée et le Δ Ct de ce même gène dans une condition de référence dite de calibration. Pour tous les gènes cibles, une valeur moyenne des $\Delta\Delta$ Ct obtenus pour chaque culture primaire a été calculée (moy $\Delta\Delta$ Ct). La quantité relative (RQ) de transcrits entre deux conditions a été déterminée avec la formule RQ = 2^{-(moy $\Delta\Delta$ Ct)}

L'analyse statistique des données a été réalisée à l'aide du logiciel RealTime StatMinerTM 3.1.0 (IntegromicsTM, Grenade, Espagne). Ce logiciel permet notamment de réaliser une matrice de corrélation (heatmap correlation plot) représentant les valeurs des coefficients de corrélation des Ct (coefficients de corrélation de Pearson) entre les échantillons. Il permet également d'effectuer du clustering hiérarchique non supervisé (unsupervised hierarchical clustering) à partir des résultats (nous avons utilisé les Δ Ct pour cette analyse). Enfin, ce logiciel nous a permis d'identifier les gènes qui présentaient un différentiel d'expression statistiquement significatif aux différents temps d'exposition, grâce au test t pour échantillons appariés. De manière arbitraire, nous avons considéré que seuls les différentiels d'expression supérieurs à 2 avaient un intérêt biologique (RQ ≥ 2 or ≤ 0.5).

III. ANALYSE DES RESULTATS

Cette étude avait pour objectif d'analyser la réponse des cellules épithéliales bronchiques humaines (HBEC) suite à l'exposition à des particules atmosphériques $PM_{2.5}$ provenant de sites urbanoindustriels, en mesurant les variations d'expression de gènes codant des protéines impliquées dans le métabolisme et le transports des xénobiotiques ou encore dans la régulation de l'inflammation et du stress oxydant.

Afin de mener à bien cette étude, nous avons développé un modèle de culture primaire de cellules épithéliales dérivant d'échantillons macroscopiquement sains de poumons prélevés chez des patients atteints d'un cancer du poumon non à petites cellules. Comme il ne peut être complètement exclu que

la maladie elle-même puisse avoir un impact sur l'expression des gènes étudiés, nous avons utilisé des échantillons tissulaires situés à la plus grande distance possible de la zone tumorale.

Contrôle qualitatif et quantitatif des ARN extraits

Des étapes pré-analytiques telles que le recueil des échantillons, l'étape d'extraction des acides nucléiques et leur stockage conditionnent la qualité des ARN totaux. Il a été de ce fait nécessaire de contrôler leur quantité ainsi que leur qualité avant de procéder à toute mesure d'expression, afin de s'affranchir de biais d'interprétation.

Pour le contrôle quantitatif, la concentration des ARNs totaux a été déterminée par mesure d'absorbance à 260 nm à l'aide du spectrophotomètre BiospecNano (Shimadzu). La concentration moyenne des échantillons issus des cellules épithéliales bronchiques humaines était de 359 ng/ μ L.

La qualité des échantillons extraits a été contrôlée par micro-électrophorèse capillaire sur le système ExperionTM (BioRad). L'analyse des électrophorégrammes a permis de calculer un score nommé coefficient RQI (RNA Quality Indicator) basé sur l'aspect des deux pics correspondant respectivement aux ARNs ribosomaux 18S et 28S et sur la valeur du rapport de l'intensité des pics 18S/28S. Une valeur de RQI supérieure à 9 (sur une échelle de 1 à 10) a été obtenue pour tous les échantillons testés, garantissant ainsi l'excellente qualité des ARNs préparés.

Figure 4 : Spectre d'absorption type d'ARN totaux extrait (Nanodrop®)

Figure 5 : Contrôle qualitatif des ARNs totaux sur experionTM:(A) Electrophorégramme d'échantillons d'ARN extraits. Le marqueur de masse moléculaire est figuré dans le canal supérieur. Les deux bandes principales correspondent aux ARNs ribosomaux 18S et 28S.

Validation du modèle cellulaire

Au cours de notre étude, 4 cultures primaires de cellules épithéliales bronchiques humaines (HBEC2, HBEC3, HBEC4 et HBEC5) ont été préparées à partir d'échantillons de muqueuse bronchique provenant de 4 patients différents. La mesure de l'expression de 760 gènes de protéines impliquées dans le métabolisme et le transport des xénobiotiques, dans le stress oxydant ou dans les processus inflammatoires a été réalisée à l'aide d'une stratégie de RT-PCR quantitative en temps réel fonctionnant à haut débit et basé sur l'utilisation de TaqMan[™] Low Density Arrays (ou TLDA). Dans les conditions standards de culture (NE), les cellules HBEC expriment, en moyenne, près de 70 % des gènes cibles impliqués dans le métabolisme et le transport des xénobiotiques, et 75 % des gènes

cibles régulateurs de l'inflammation et du stress oxydant (cf. Figure 6).

Figure 4 : Pourcentage de gènes non exprimés et exprimés dans les cellules HBEC obtenues à partir de 4 patients différents.

Exposition des cellules HBEC aux PM_{2,5}

Chacune des cultures primaires de cellules HBEC a été exposée à une dose unique de $PM_{2,5}$ pendant 3 heures (PM3), 6 heures (PM6), 12 heures (PM12), 24 heures (PM24) et 48 heures (PM48). Les niveaux d'expression (Δ Ct) des 760 gènes cibles ont été mesurés pour chaque temps d'exposition. Une classification hiérarchique non supervisée a permis d'organiser les échantillons, dont les profils d'expression sont similaires, en groupes ou clusters (cf. Figure 7). Deux groupes principaux se distinguent et se divisent chacun en 2 sous-groupes rassemblant respectivement les cellules HBEC3, HBEC2, HBEC4 et HBEC5. L'absence de regroupement d'échantillons en fonction des temps d'exposition, suggère que les variations interindividuelles d'expression des gènes cibles sont prédominantes.

Après analyse statistique, la comparaison des niveaux d'expression entre les cellules HBEC exposées et non exposées ($\Delta\Delta$ Ct) nous a permis de mettre en évidence la surexpression significative (p<0,05) de 35 gènes suite à l'exposition aux PM_{2,5}, ainsi qu'une sous expression de 26 gènes. Cependant, pour environ 75 % de ces gènes, le différentiel d'expression calculé était inférieur à 2 (2 > RQ > 0,5). Lors de cette étude, nous avons considéré que seuls les différentiels d'expression supérieur à 2 (2 < RQ < 0,5) pouvaient avoir un impact biologique significatif.

Variation d'expression des gènes impliqués dans le métabolisme et le transport des xénobiotiques.

L'analyse de l'expression de 380 gènes impliqués dans le métabolisme des xénobiotiques ont permis d'identifier 10 gènes significativement surexprimés après expositions aux $PM_{2.5}$ et 15 gènes sous exprimés. Parmi ces gènes, on retrouve des gènes codant pour des EMX de phase I et de phase II, ainsi que pour des transporteurs et des xénosenseurs.

Gènes surexprimés

Plus de 50% des gènes surexprimés codent pour des enzymes de phase I, dont trois se distinguent par leurs niveaux d'induction particulièrement élevé : il s'agit des gènes de l'aldéhyde déshydrogénase ALDH3A1, et des cytochromes P450 CYP1A1 et CYP1B1 (cf. Figure 6). Il faut noter que les gènes *CYP1A1* et *CYP1B1* sont significativement induits (p<0,05) à tous les temps d'exposition contrairement au gène *ALDH3A1*, seulement induit pour des temps d'exposition \geq 12h. En ce qui concerne les autres gènes surexprimés, seul le gène de la sulfotransférase SULT2B1, dont l'induction est tardive (après 24h d'exposition) présente un différentiel d'expression supérieur à 2.

Figure 6 : <u>Gènes du métabolisme et du transport des xénobiotiques surexprimés suite à l'exposition des HBEC à des PM_{2.5}</u>. Les cellules ont été traitées avec des PM_{2.5} (3,14 μ g de PM/cm²) pendant 3, 6, 12, 24 et 48h. L'expression des gènes a été quantifiée après une qRT-PCR. Les différentiels d'expression ont été calculés par la formule RQ = 2^{-(moyenne $\Delta\Delta$ Ct)}, en utilisant les cellules non exposées comme calibrateur. * correspond aux résultats statistiquement significatifs (p<0.05). Tous les gènes dont le nom est encadré présentent des différentiels d'expression à la fois >2 et statistiquements significatifs.</u>

Gènes sous exprimés

Sur les 15 gènes sous exprimés, un seul montre un différentiel d'expression inférieur au seuil de 0,5 (cf. figure 7). Il s'agit du gène du cytochrome P450 CYP2B6. L'expression de ce gène est inhibée après 6h et 12h d'exposition aux $PM_{2,5}$. Les gènes de l'aldo-céto-réductase AKR6A9 et du transporteur SCLO2A1 semblent aussi largement sous exprimés pour des temps d'exposition de 12h et 6h, respectivement, mais les résultats correspondants ne sont pas significatifs statistiquement.

Figure 7 : <u>Gènes du métabolisme et du transport des xénobiotiques sous exprimés suite à l'exposition des HBEC à des PM_{2.5}</u>. Les cellules ont été traitées avec des PM_{2.5} (3,14 µg de PM/cm2) pendant 3, 6, 12, 24 et 48h. L'expression des gènes a été quantifiée après une qRT-PCR. Les différentiels d'expression ont été calculés par la formule RQ = $2^{-(moyenne \Delta\Delta Ct)}$, en utilisant les cellules non exposées comme calibrateur. * correspond aux résultats statistiquement significatifs (p<0.05). Tous les gènes dont le nom est encadré présentent des différentiels d'expression à la fois <0,5 et statistiquement significatifs.</u>

Variation d'expression des gènes impliqués dans la régulation de l'inflammation et du stress oxydant.

L'exposition des cellules HBEC aux $PM_{2,5}$ a également permis de mettre en évidence des modifications statistiquement significatives pour 36 gènes de protéines impliquées dans la réponse inflammatoire, le stress oxydant ou encore la réparation de l'ADN. Parmi ces gènes, 25 sont surexprimés tandis que 11 sont sous exprimés dans les cellules exposées. Ces gènes codent, pour la plupart, pour des cytokines et leurs récepteurs.

Gènes surexprimés

Parmi les 9 gènes des cytokines significativement surexprimés (p<0,05), seuls 5 présentent un différentiel d'expression > 2 (cf. Figure 8). Ces cinq gènes codent pour des interleukines. Les gènes *IL1A*, *IL6* et *IL20* sont induits précocement par les $PM_{2,5}$, alors que les gènes *IL1B* et *IL24* sont induits significativement à tous les temps d'exposition sauf à 48h.

Figure 8 : <u>Gènes de l'inflammation surexprimés suite à l'exposition des HBEC à des PM_{2.5}</u>. Les cellules ont été traitées avec des PM_{2.5} (3,14 µg de PM/cm2) pendant 3, 6, 12, 24 et 48h. L'expression des gènes a été quantifiée après une qRT-PCR. Les différentiels d'expression ont été calculés par la formule RQ = $2^{-(moyenne \Delta\Delta Ct)}$, en utilisant les cellules non exposées comme calibrateur. * correspond aux résultats statistiquement significatifs (p<0.05). Tous les gènes dont le nom est encadré présentent des différentiels d'expression à la fois >2 et statistiquements significatifs.</u>

Neuf gènes de récepteurs de médiateurs de l'inflammation ont été induits significativement (p<0,05) par l'exposition aux $PM_{2,5}$ (cf. Figure 9). Seul le gène du récepteur des cytokines pro-inflammatoires RANTES et CCL11 (étamine), c'est à dire *CCR3*, présente un différentiel d'expression > 2

Figure 9 : <u>Gènes de l'inflammation surexprimés suite à l'exposition des HBEC à des $PM_{2.5}$. Les cellules ont été traitées avec des $PM_{2.5}$ (3,14 µg de PM/cm2) pendant 3, 6, 12, 24 et 48h. L'expression des gènes a été quantifiée après une qRT-PCR. Les différentiels d'expression ont été calculés par la formule $RQ = 2^{(moyenne \Delta \Delta Ct)}$, en utilisant les cellules non exposées comme calibrateur. * correspond aux résultats statistiquement significatifs (p<0.05). Tous les gènes dont le nom est encadré présentent des différentiels d'expression à la fois >2 et statistiquements significatifs.</u>

D'autres gènes de protéines impliquées dans la réaction inflammatoire ont été induits de manière significative (p<0,05) après expositions (cf. Figure 10). Il s'agit des gènes codant pour les facteurs de croissance HBEGF, PDGFA, TGFA et TGIF1, la métalloprotéase MMP12 ou encore les prostaglandine-synthases PTGES et PTGS2. Seulement 2 de ces gènes, *PDGFA* et *PTGS2*, sont induits d'un facteur > 2, et cela dès 3h d'exposition.

Figure 10 : <u>Gènes de l'inflammation surexprimés suite à l'exposition des HBEC à des PM_{2.5}</u>. Les cellules ont été traitées avec des PM_{2.5} (3,14 µg de PM/cm2) pendant 3, 6, 12, 24 et 48h. L'expression des gènes a été quantifiée après une qRT-PCR. Les différentiels d'expression ont été calculés par la formule $RQ = 2^{-(moyenne \Delta\Delta Ct)}$, en utilisant les cellules non exposées comme calibrateur. * correspond aux résultats statistiquement significatifs (p<0.05). Tous les gènes dont le nom est encadré présentent des différentiels d'expression à la fois >2 et statistiquements significatifs.</u>

Enfin, les derniers gènes significativement surexprimés codent pour des protéines impliquées dans la lutte contre le stress oxydant (GPX4, GPX7, SOD3, SRXN1), la réparation de l'ADN (ATM, ERCC2, MPG, NTHL1, POLB), les processus apoptotiques (BAX) ou encore la production de mucus

(MUC5AC). Seul le gène MUC5AC, qui est très précocement induit (dès 3h d'exposition aux particules), présente un différentiel d'expression > 2 (cf. Figure 11)

Figure 11 : <u>Gènes régulateurs du stress oxydant, et de l'inflammation surexprimés suite à l'exposition des HBEC à des PM_{2.5}</u>. Les cellules ont été traitées avec des PM_{2.5} (3,14 µg de PM/cm2) pendant 3, 6, 12, 24 et 48h. L'expression des gènes a été quantifiée après une qRT-PCR. Les différentiels d'expression ont été calculés par la formule RQ = $2^{-(moyenne \Delta\Delta Ct)}$, en utilisant les cellules non exposées comme calibrateur. * correspond aux résultats statistiquement significatifs (p<0.05). Tous les gènes dont le nom est encadré présentent des différentiels d'expression à la fois >2 et statistiquements significatifs.</u>

Gènes sous exprimés

Onze gènes sont apparus sous exprimés après exposition des cellules HBEC aux PM_{2,5} (cf. Figure 12). Huit gènes codent des protéines impliqués dans la réaction inflammatoire (CCR1, CXCL3, CXCL5, EGF, IL27RA, MMP7, TLR1, TNFRSF10B), 1 gène code pour une enzyme pro-apoptotique (CARD6) et 2 gènes codent des enzymes de réparation de l'ADN (NEIL1 et NEIL 2). Seul le gène *CCR1* est inhibé d'un facteur supérieur à 2 (RQ < 0.5).

Figure 12 : <u>Gènes régulateurs de l'inflammation, inducteurs de phénomènes apoptotiques et réparateurs de l'ADN sous exprimés suite à l'exposition des HBEC à des PM_{2.5}. Les cellules ont été traitées avec des PM_{2.5} (3,14 µg de PM/cm2) pendant 3, 6, 12, 24 et 48h. L'expression des gènes a été quantifiée après une qRT-PCR. Les différentiels d'expression ont été calculés par la formule RQ = 2^{-(moyenne AΔCt)}, en utilisant les cellules non exposées comme calibrateur. * correspond aux résultats statistiquement significatifs (p<0.05). Tous les gènes dont le nom est encadré présentent des différentiels d'expression à la fois <0,5 et statistiquement significatifs.</u>

IV. DISCUSSION

La pollution particulaire atmosphérique reliée aux activités humaines représente un des facteurs de risques des maladies respiratoires. L'épithélium bronchique et plus généralement les voies respiratoires sont constamment exposés à l'environnement extérieur et la pollution qui lui est associée. Longtemps, l'épithélium bronchique a été seulement considéré comme une simple barrière physique qui empêchait mécaniquement le passage des particules polluantes inhalées. Toutefois, il est à présent clairement établi que l'épithélium bronchique joue également un rôle crucial dans l'initiation et l'activation des défenses pulmonaires par l'intermédiaire, notamment, des systèmes impliqués dans le métabolisme des xénobiotiques et la sécrétion de médiateurs inflammatoires. Un dysfonctionnement au niveau de l'un ou de l'autre de ces systèmes pourrait aboutir au développement d'une inflammation bronchique chronique, voire de processus de tumorigenèse. En conséquence, l'élucidation des mécanismes de régulation et éventuellement de dysrégulation de la réponse des cellules épithéliales bronchiques à leur environnement chimique permettrait d'améliorer la compréhension de la physiopathologie des maladies respiratoires liées à l'environnement.

De nombreux systèmes de culture ont été proposés pour analyser la réponse des cellules épithéliales bronchiques à différents stimuli. Cette approche a l'avantage de mettre directement en relation le polluant et sa cible cellulaire et de permettre d'établir plus facilement qu'in vivo une relation doseeffet. Parmi les différents systèmes utilisés, la culture cellulaire bi-dimensionnelle en monocouche a été la plus employée. L'utilisation de lignées cellulaires bronchiques permet d'obtenir un grand nombre de cellules, cependant les résultats obtenus avec ce type de cellules transformées ne sont pas toujours représentatifs des cellules saines. L'utilisation de cultures primaires de cellules épithéliales établies à partir de tissus bronchiques humains permet de travailler avec des cellules non transformées dans un état de différentiation (morphologique et fonctionnel) plus proche des cellules épithéliales *in vivo*. C'est cette approche que nous avons choisie d'exploiter pour ce projet.

Ainsi, nous avons exposé les cultures primaires de cellules épithéliales bronchiques (HBEC) provenant de 4 patients à des particules atmosphériques prélevées en milieu urbain industrialisé. Les particules utilisées sont de granulométrie $\leq 2,5 \ \mu$ M (PM_{2,5}) et sont constituées d'un noyau carboné sur lequel sont adsorbés de nombreux composés toxiques comme, par exemple, des hydrocarbures aromatiques polycycliques (HAP), des composés organiques volatiles (COV), des dioxines ou des métaux lourds. Après des temps d'exposition variant de 3h à 48h, la mesure de l'expression de 780 gènes codant des protéines impliquées dans le métabolisme et le transport des xénobiotiques, dans la lutte contre le stress oxydant et dans la réaction inflammatoire a été effectuée à l'aide d'une stratégie de RT-PCR quantitative en temps réel à haut débit, basée sur l'utilisation des *TaqManTM Low Density Arrays* (TLDA).

Le choix de la stratégie analytique utilisée a été notamment conditionné par certaines caractéristiques des enzymes du métabolisme des xénobiotiques et des transporteurs. En effet, ces protéines appartiennent souvent à des familles et peuvent présenter des homologies de séquence parfois très importantes, de plus, elles ont fréquemment des spécificités de substrat larges et chevauchantes ce qui limite la mesure d'activités enzymatiques ou l'utilisation d'anticorps pour quantifier leur activité ou leur expression en terme de protéine. Les TLDA permettent de déterminer simultanément le profil d'expression de plusieurs centaines de gènes dans un même échantillon d'ARN. Cette technologie est d'une grande spécificité et d'une grande sensibilité. Elle est donc particulièrement adaptée à l'étude de gènes modérément exprimés et permet de détecter avec une bonne précision de faibles variations du niveau d'expression, à la fois pour les gènes fortement exprimés et pour ceux faiblement exprimés³¹. Les puces à oligonucléotides ou *microarrays* représentent une technique alternative pour l'étude simultanée de l'expression d'un grand nombre de gènes. Cependant, cette technique est moins sensible et moins spécifique que la RT-PCR quantitative en temps réel, en particulier pour les gènes présentant une forte homologie de séquence d'une grande nucléotidique. Elle ne permet

pas d'avoir une quantification précise du niveau de transcrits. Les puces sont plutôt destinées à la détection de différences d'expression majeures entre 2 conditions, en testant un très grand nombre de gènes, sans hypothèse de départ sur les gènes d'intérêt. De plus, les résultats de puces nécessitent souvent d'être validés par RT-PCR quantitative. Pour toutes ces raisons, la technique de RT-PCR quantitative en temps réel sur *TLDA* nous a paru être la technique la mieux adaptée à notre objectif. De plus, différentes études utilisant cette stratégie analytique ont généré des résultats convaincants³², ^{33,34,35}.

Les cellules HBEC non exposées expriment, en moyenne, plus de 71 % de l'ensemble des gènes testés. Ces résultats suggèrent que les cellules épithéliales bronchiques telles que nous les avons cultivées possèdent de véritables capacités de réponse et de défense vis à vis des xénobiotiques, validant ainsi le choix de ce modèle cellulaire pour notre projet.

L'analyse statistique de la comparaison des profils d'expression entre les cellules exposées aux PM_{2,5} et les cellules non exposées a montré que 71 gènes présentaient des variations d'expression significatives après au moins un des temps d'exposition testés, ce qui représente environ 13 % des gènes initialement exprimés dans les cellules non exposées. Cependant, pour la majorité de ces gènes, les niveaux de variation restent faibles et seuls 15 gènes, soit moins de 3 % des gènes exprimés, présentent des différentiels d'expression supérieurs à 2. Ces gènes codent pour les cytochromes P450 CYP1A1, CYP1B1, CYP2B6, l'aldéhyde déshydrogénase ALDH3A1, la sulfotransférase SULT2B1, les interleukines IL1A, IL1B, IL6, IL20, IL24, les récepteurs de cytokines CCR1, CCR3, le facteur de croissance PDGFA, la prostaglandine synthase PTGS2 et les mucines MUC5AC. Pour simplifier l'interprétation des résultats et se limiter uniquement aux différentiels d'expression susceptibles d'avoir un impact biologique significatif, nous avons restreint notre discussion aux 15 gènes cités précédemment.

Plusieurs publications ont précédemment rapporté une augmentation de l'expression de certaines enzymes de phase I du métabolisme des xénobiotiques jouant un rôle crucial dans la détoxication de composés inhalés, suite à une exposition à des particules^{23,36}. Nos travaux confirment la surexpression de 3 de ces enzymes : ALDH3A1, CYP1A1 et CYP1B1.

CYP1A1 et CYP1B1 se distinguent plus particulièrement par l'importance de leur niveau d'induction après exposition aux PM_{2.5} (expression multipliée par un facteur maximal de 50 pour le CYP1A1). Ces deux enzymes ont en commun la capacité de métaboliser certains composés pneumotoxiques comme les dioxines et les HAP. Un des exemples le mieux documenté est la biotransformation du benzo[a]pyrène, HAP formé lors de la combustion incomplète de composés organiques et que l'on retrouve dans les gaz d'échappement de véhicules automobiles, la fumée de cigarettes ou dans l'atmosphère, en particulier, sous forme adsorbée à la surface de particules³⁷. La prise en charge du benzo[a]pyrène par les CYP1A1/1B1 aboutit à la production d'un composé extrêmement réactif. le benzopyrène-7,8-diol-9,10-époxyde, qui peut se lier de manière covalente aux protéines, aux lipides ou encore à l'ADN (phénomène de bioactivation)³⁸. Dans la majorité des cas, ce composé est désactivé par les systèmes enzymatiques de phase II de la cellule. Toutefois, si l'activité des CYP devient prépondérante, le débordement de ces systèmes libèrera tout le potentiel toxique radicalaire et des lésions tissulaires peuvent apparaître du fait de l'induction de phénomènes de prolifération/survie cellulaire (promotion tumorale) ou de mort cellulaire (par apoptose ou nécrose), consécutifs à l'altération des macromoléculaires cellulaires³⁸. De plus, la libération de ces métabolites réactifs peut entraîner l'initiation d'un stress oxydant et d'une réaction inflammatoire via l'activation de facteurs nucléaires tels que NF-kB (Nuclear Factor-kappa B) et AP-1 (activator protein 1)³⁸. L'activité intrinsèque des CYP1A1/1B1 peut également déclencher une réaction inflammatoire. En effet, les cytochromes P450 produisent systématiquement au cours de leur cycle catalytique des espèces réactives de l'oxygène ou ROS³⁹ pouvant aboutir, dans le cas par exemple d'une exposition intense à des xénobiotiques, à une saturation des systèmes antioxydants. Ces ROS activent deux voies majeures de régulation, la voie des MAPK (Mitogen Activated Protein Kinase) et du NFkB²², qui peuvent induire une surexpression des médiateurs pro-inflammatoires IL6 et PTGS2⁴⁰, comparable à celle que nous avons constatée dans notre étude. Sur la base de ces données, il était attendu d'observer, dans les cellules HBEC exposées, une augmentation de l'expression des systèmes antioxydants (enzyme de phase II, SOD, CAT, GPX, etc.) suite à la surexpression des CYP1A1 et CYP1B1. Nous avons bien remarqué une augmentation statistiquement significative de l'expression de gènes d'enzymes antioxydantes mais les différentiels d'expression mesurés restaient faibles (<2), tout comme cela avait déjà été récemment publiés pour certains de ces gènes²³.

Contrairement aux gènes *CYP1A1* et *CYP1B1* qui sont induits très fortement dès 3h d'exposition aux $PM_{2,5}$, le gène *ALDH3A1* est surexprimé de manière statistiquement significative seulement après 12h d'exposition. L'aldéhyde déshydrogénase que code ce gène participe à la détoxication de HAP méthylés, préalablement oxydés en esters très réactifs par d'autres enzymes de phase I⁴¹. L'activité de l'ALDH3A1 sur des métabolites produits par d'autres enzymes explique peut-être la surexpression plus tardive de son gène par rapport à ceux des CYP.

L'induction de l'expression des gènes *CYP1A1*, *CYP1B1* et *ALDH3A1* est sous l'influence majoritaire du récepteur aux hydrocarbures aromatiques AhR (Aryl Hydrocarbon Receptor)²². Ce récepteur cytosolique peut fixer les HAP et les dioxines relargués par les PM_{2.5}. Ainsi activé, il est transloqué dans le noyau et forme un complexe hétérodimère avec la protéine ARNT (AhR nuclear translocator) pour interagir avec des éléments de réponse spécifique aux xénobiotiques (XRE pour Xenobiotic Response Elements) que l'on retrouve dans la région promotrice de gènes de protéines impliquées dans la biotransformation des xénobiotiques, comme les gènes *CYP1A1*, *CYP1B1* et *ALDH3A*, mais également dans la région promotrice de certains gènes de médiateurs de l'inflammation^{42,43}. Il faut également noter que AhR peut établir des interactions fonctionnelles avec d'autres voies de signalisation telles que celles des MAPK et du NFkB⁴⁴ et permettrait ainsi le recrutement des cytokines IL6 et IL8, et de la prostaglandine synthase PTGS2.

Tout comme certains gènes de CYP sont induits par le récepteur AhR lorsque ce dernier est activé par un ligand, il existe aussi une régulation négative de ces gènes. Premièrement, plusieurs cytokines inflammatoires ont un effet répresseur sur l'expression de nombreux $CYP^{45,46}$. C'est le cas, en particulier, de l'IL6 qui est capable d'inhiber la production de certaines EMX, dont le $CYP2B6^{47}$. Il n'est ainsi pas déraisonnable de penser que l'inhibition d'expression que nous avons mesurée pour le CYP2B6 (gène non régulé par AhR) soit la conséquence de la surexpression du gène *IL6* dans les cellules exposées. Deuxièmement, le stress oxydant réprime également l'expression des gènes *CYP* par un mécanisme faisant intervenir le facteur NFI (Transcriptionnel Nuclear Factor I)⁴⁶. Un modèle d'autorégulation a d'ailleurs été proposé pour le CYP1A1 : les ROS (en l'occurrence H₂O₂) produites par l'activité enzymatique du cytochrome inhibe l'activité du facteur transcriptionnel NFI et réprime ainsi le promoteur du gène⁴⁶. Il existe ainsi un rétrocontrôle de l'expression du gène par l'activité de la protéine afin d'éviter une induction excessive du CYP et la production démesurée d'espèces réactives délétères pour la cellule. Ce phénomène pourrait justifier, en partie, pourquoi nous avons observé une nette diminution de l'induction des CYP1A1 et CYP1B1 pour les temps d'exposition les plus tardifs.

En conclusion, la surexpression des gènes des CYP1A1, CYP1B1, ou encore de l'ALDH3A1, des gènes des médiateurs IL6 et PTGS2, de même que la présence de HAPs et de dioxines sur les particules que nous avons utilisées, nous permettent de supposer le rôle central du récepteur AhR dans la réponse des cellules exposées aux agressions chimiques. Le niveau d'expression naturellement élevée de ce récepteur dans les cellules HBEC, tout comme dans les tissus bronchiques à partir desquels ces cellules dérivent, expliquerait pourquoi nous n'avons pas mis en évidence une surexpression d'AhR suite aux expositions aux PM_{2,5}. Pour confirmer le rôle central de AhR dans la défense des cellules respiratoires vis à vis de l'environnement, il serait intéressant d'inhiber la synthèse de ce récepteur (en utilisant des ARN anti-sens par exemple) avant d'exposer les cellules HBEC aux PM_{2.5} et de mesurer les réponses métaboliques et inflammatoires de ces cellules.

Toujours dans le cadre du métabolisme des xénobiotiques, nous avons observé une surexpression du gène de la sulfotransférase SULT2B1 suite aux expositions aux $PM_{2,5}$. Cette enzyme, connue pour sa capacité à sulfater le cholestérol ou des hormones stéroïdes comme le DHEA (Déhydro-

épiandrostérone) et la prégnénolone⁴⁸, permet également la sulfoconjugaison de xénobiotiques, augmentant leur hydrosolubilité et facilitant ainsi leur excrétion. Certaines cytokines comme le TNF α et l'IL1 β sont décrites pour inhiber l'expression de gène de la SULT2A1, sulfotransférase de la même famille que SULT2B1⁴⁹, dont le promoteur contient des éléments de réponse à ces cytokines. Les données concernant la régulation de l'expression du gène *SULT2B1* sont beaucoup plus restreintes et la surexpression de ce gène après exposition aux PM_{2,5} reste à expliquer.

Nous avons vu précédemment que l'activation d'AhR et la production d'espèces réactives par les enzymes de phase I suite à l'exposition aux $PM_{2,5}$ pouvaient induire la surexpression de gènes de médiateurs de l'inflammation. De nombreux médiateurs induits par ces deux voies sont décrits. Les plus étudiés sont les interleukines IL6 et IL8, et la prostaglandine synthase PTGS2³⁶.

Nos travaux ont montré une surexpression significative d'*IL6* et de *PTGS2*. Nous n'avons pas mis en évidence une augmentation de l'expression d'IL8. Toutefois, la surexpression de cette interleukine suite à une exposition à des $PM_{2.5}$ reste encore controversée. Certaines publications ne mettent pas en évidence d'augmentation conséquente d'IL8 dans des lavages bronchiques de sujets sains et asthmatiques suite à une exposition à des $PM_{2.5}^{50}$.

La PTGS2 participe à la synthèse de prostaglandines impliquées dans la vasodilatation associée aux processus inflammatoires⁵⁰. L'action pro-inflammatoire de l'IL6 a été mise en évidence à de nombreuses reprises au cours de maladies chroniques et inflammatoires des voies respiratoires. Cette interleukine joue, entre autre, un rôle dans l'activation des lymphocytes T^{51} . Paradoxalement, l'IL6 exercerait aussi une action protectrice de l'épithélium en inhibant, en particulier, la production des cytokines pro-inflammatoires TNF α et IL1B⁵². Dans notre étude, la diminution de la surexpression du gène *IL1* β à des temps d'expositions tardifs pourrait être attribuée à ce phénomène.

L'expression de l'IL6 et de la PTGS2 peut également être induite par différents agents inflammatoires, en particulier les interleukines IL1 α et IL1 β , par la voie de régulation du NFkB et des MAP-kinases³⁷. L'IL1ß serait lui-même induit par la voie des MAPK activée par AhR³⁷. La surexpression des gènes $IL1\alpha$ et $IL1\beta$ suite à une exposition à des PM_{2.5}, comme nous l'avons observée au cours de ce travail, de même que le rôle majeur des cytokines qu'ils codent dans l'induction de nombreux médiateurs inflammatoires ont déjà été rapportés^{53,54}. L'IL1 α et l'IL1 β résultent de l'expression de gènes séparés et ont des séquences peptidiques différentes ; elles partagent cependant les mêmes récepteurs et possèdent des propriétés communes. L'IL1a est généralement associée à l'activation des monocytes/macrophages et possède une fonction de facteur de croissance dans les cellules épithéliales humaines⁵⁵. L'IL1ß est une cytokine induisant le recrutement de lymphocytes polynucléaires neutrophiles et l'expression de nombreux médiateurs de l'inflammation, dont les interleukines IL20 et IL24 pour lesquelles nous avons mis en évidence une surexpression après exposition aux $PM_{2.5}$. L'IL20 et l'IL24 sont des cytokines de la famille de l'IL10 avec laquelle elles partagent des homologies structurelles et fonctionnelles. Elles seraient, en particulier, impliquées dans la prolifération des cellules épithéliales et induiraient l'expression de médiateurs de l'inflammation comme l'IL6⁵⁶.

Sur la base des résultats discutés dans les paragraphes précédents, nous avons montré les mécanismes probables par lesquels l'inflammation bronchique pouvait être initiée après à une exposition aux polluants particulaires atmosphériques. La réaction inflammatoire est également accompagnée de processus de prolifération cellulaire et de réparation de l'épithélium suite aux dommages induits, notamment, par les ROS. L'épithélium respiratoire est en effet une source potentielle de facteurs de croissance impliqués dans le remodelage bronchique qui est associé aux cycles pathologiques (i) de dommages/réparations de l'épithélium et (ii) de fibrose. Ces mécanismes pathologiques sont très fréquemment observés dans les affections inflammatoires et chroniques des voies respiratoires que sont l'asthme et la BPCO^{57,58}. Le PDGFA (Plateleted-Derived Growth factor A) est un facteur de croissance stimulant la réplication, la prolifération et la migration des fibroblastes et myofibroblastes, et plus généralement des cellules mésenchymateuses. Ce facteur est peu produit par l'épithélium bronchique⁵⁸ mais sa surexpression suite à une exposition à des dioxides de titane⁵⁹ ou encore à de

l'amiante⁶⁰ a été mise en évidence dans les voies respiratoires de rat. Nous avons également observé une telle surexpression dans les cellules épithéliales bronchiques humaines après exposition aux PM_{2.5}. L'induction de l'expression de PDGFA se ferait elle aussi par la voie du NFkB et sous l'action d'IL1B⁵².

Enfin, l'inflammation des voies respiratoires s'accompagne dans la majorité des cas d'une hypersécrétion de mucus favorisant une obstruction bronchique dans la majorité des bronchopneumopathies chroniques. Ce sont les mucines qui constituent les composants macromoléculaires les plus abondants du mucus et lui confèrent ses principales propriétés rhéologiques et adhésives. *MUC5AC* est le gène qui contribue le plus à la production de mucines au niveau de l'épithélium bronchique. De nombreux médiateurs de l'inflammation (TNF- α , IL-1 β et IL6, etc.), de même que des ROS (en particulier le peroxyde d'hydrogène) peuvent induire une augmentation de l'expression des ARNm de MUC5AC^{61,62,63}. Nous avons mis en évidence une surexpression de *MUC5AC* suite aux expositions de PM_{2.5}. Des expérimentations complémentaires seraient nécessaires (utilisation d'anti-inflammatoires, d'antioxydants, d'ARN interférents de AhR, etc.) afin de bloquer les différentes voies potentielles d'induction de ce gène et de montrer leur importance respective dans la sécrétion du mucus.

CONCLUSIONS ET PERSPECTIVES

Nous avons montré dans notre étude que l'exposition de cellules épithéliales bronchiques humaines à des $PM_{2.5}$ était à l'origine de l'activation du métabolisme des xénobiotiques et de cascades de signalisation aboutissant à l'initiation d'une inflammation. Ces résultats suggèrent l'existence d'une étroite imbrication entre ces différents mécanismes et soulignent le rôle central du récepteur AhR et du métabolisme des xénobiotiques dans l'induction de médiateurs de l'inflammation.

Des expérimentations complémentaires, consistant à utiliser des inhibiteurs des différentes voies potentielles d'activation des EMX, des médiateurs de l'inflammation et du stress oxydant, permettraient de montrer l'importance respective de ces voies dans la protection de l'épithélium respiratoire vis à vis de son environnement chimique.

Il serait également intéressant d'induire une inflammation des cellules en culture (en les stimulant avec du TNF α par exemple) avant de les exposer aux PM_{2,5} afin de mimer les capacités de réponse aux xénobiotiques des patients atteints de maladies inflammatoires chroniques des voies respiratoires (asthme, BPCO).

L'utilisation de nouveaux modèles *in vitro*, c'est à dire l'utilisation de cultures cellulaires en interface air-liquide et de co-cultures macrophages/cellules épithéliales, permettrait d'analyser les interactions entre les cellules inflammatoires et les cellules épithéliales, et de mettre en évidence des voies de régulation plus proches des conditions *in vivo*.

Au final, les résultats issus de ces analyses *in vitro* devraient apporter une meilleure connaissance des mécanismes physiopathologiques impliqués dans la toxicité des polluants atmosphériques particulaires. Des marqueurs biologiques d'exposition ou d'effet proposés par ces études expérimentales pourraient être caractérisés et ultérieurement être validés chez l'homme.

REFERENCES BIBLIOGRAPHIQUES

1. Guaita, R., Pichiule, M., Maté, T., Linares, C. & Díaz, J. Short-term impact of particulate matter (PM(2.5)) on respiratory mortality in Madrid. *Int J Environ Health Res* **21**, 260-274 (2011).

2. Kelly, F.J. & Fussell, J.C. Air pollution and airway disease. *Clin. Exp. Allergy* **41**, 1059-1071 (2011).

3. Katanoda, K. et al. An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan. *J Epidemiol* **21**, 132-143 (2011).

4. Modig, L., Torén, K., Janson, C., Jarvholm, B. & Forsberg, B. Vehicle exhaust outside the home and onset of asthma among adults. *Eur. Respir. J* **33**, 1261-1267 (2009).

5. Carbajal-Arroyo, L. et al. Impact of traffic flow on the asthma prevalence among school children in Lima, Peru. *J Asthma* **44**, 197-202 (2007).

6. Ling, S.H. & van Eeden, S.F. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease. *Int J Chron Obstruct Pulmon Dis* **4**, 233-243 (2009).

7. Robinson, C.L. et al. Effect of urbanisation on asthma, allergy and airways inflammation in a developing country setting. *Thorax* (2011).doi:10.1136/thx.2011.158956

8. Øvrevik, J., Låg, M., Holme, J.A., Schwarze, P.E. & Refsnes, M. Cytokine and chemokine expression patterns in lung epithelial cells exposed to components characteristic of particulate air pollution. *Toxicology* **259**, 46-53 (2009).

9. Risom, L., Møller, P. & Loft, S. Oxidative stress-induced DNA damage by particulate air pollution. *Mutat. Res* **592**, 119-137 (2005).

10. Schwarze, P.E. et al. Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. *Hum Exp Toxicol* **25**, 559-579 (2006).

11. Aust, A.E. et al. Particle characteristics responsible for effects on human lung epithelial cells. *Res Rep Health Eff Inst* 1-65; discussion 67-76 (2002).

12. Monn, C. & Becker, S. Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air. *Toxicol. Appl. Pharmacol* **155**, 245-252 (1999).

13. Donaldson, K. & Stone, V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. *Ann. Ist. Super. Sanita* **39**, 405-410 (2003).

14. MacNee, W. & Donaldson, K. Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. *Eur Respir J Suppl* **40**, 47s-51s (2003).

15. Mantecca, P. et al. Comparative acute lung inflammation induced by atmospheric PM and size-fractionated tire particles. *Toxicol. Lett* **198**, 244-254 (2010).

16. Gualtieri, M. et al. Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells. *Toxicol In Vitro* **24**, 29-39 (2010).

17. Samoli, E., Nastos, P.T., Paliatsos, A.G., Katsouyanni, K. & Priftis, K.N. Acute effects of air pollution on pediatric asthma exacerbation: evidence of association and effect modification. *Environ. Res* **111**, 418-424 (2011).

18. Grigg, J. Air pollution and children's respiratory health - gaps in the global evidence. *Clin. Exp. Allergy* **41**, 1072-1075 (2011).

19. Tramuto, F. et al. Urban air pollution and emergency room admissions for respiratory symptoms: a case-crossover study in Palermo, Italy. *Environ Health* **10**, 31-31

20. Hecht, S.S. Tobacco smoke carcinogens and lung cancer. J. Natl. Cancer Inst 91, 1194-1210 (1999).

21. Teramoto, S., Ishii, T., Yamamoto, H., Yamaguchi, Y. & Matsuse, T. Xenobiotic enzymes and genetics of COPD. *Chest* **127**, 408-409; author reply 409 (2005).

22. Zhang, J.Y., Wang, Y. & Prakash, C. Xenobiotic-metabolizing enzymes in human lung. *Curr. Drug Metab* **7**, 939-948 (2006).

23. Nakayama Wong, L.S., Aung, H.H., Lamé, M.W., Wegesser, T.C. & Wilson, D.W. Fine particulate matter from urban ambient and wildfire sources from California's San Joaquin Valley initiate differential inflammatory, oxidative stress, and xenobiotic responses in human bronchial epithelial cells. *Toxicol In Vitro* (2011).doi:10.1016/j.tiv.2011.06.001

24. Rhoden, C.R., Ghelfi, E. & González-Flecha, B. Pulmonary inflammation by ambient air particles is mediated by superoxide anion. *Inhal Toxicol* **20**, 11-15 (2008).

25. Danielsen, P.H. et al. Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines. *Chem. Res. Toxicol* **24**, 168-184 (2011).

26. Kiyohara, C. & Yoshimasu, K. Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis. *Int J Med Sci* **4**, 59-71 (2007).

27. Mehta, M., Chen, L.-C., Gordon, T., Rom, W. & Tang, M.-S. Particulate matter inhibits DNA repair and enhances mutagenesis. *Mutat. Res* **657**, 116-121 (2008).

28. Male, D.K. & Roitt, Y. *Immunologie*. (Elsevier Masson: 2007).

29. Nicolas, J.-F. & Bérard, F. *Immunologie clinique et allergologie: compte rendu du séminaire* 2003, *Faculté de médecine, CHU Lyon-Sud, 18-20 juin 2003.* (John Libbey Eurotext: 2003).

30. Watterson, T.L., Sorensen, J., Martin, R. & Coulombe, R.A., Jr Effects of PM2.5 collected from Cache Valley Utah on genes associated with the inflammatory response in human lung cells. *J. Toxicol. Environ. Health Part A* **70**, 1731-1744 (2007).

31. Goulter, A.B., Harmer, D.W. & Clark, K.L. Evaluation of low density array technology for quantitative parallel measurement of multiple genes in human tissue. *BMC Genomics* **7**, 34 (2006).

32. Langmann, T. et al. Real-time reverse transcription-PCR expression profiling of the complete human ATP-binding cassette transporter superfamily in various tissues. *Clin. Chem* **49**, 230-238 (2003).

33. Abruzzo, L.V. et al. Validation of oligonucleotide microarray data using microfluidic lowdensity arrays: a new statistical method to normalize real-time RT-PCR data. *BioTechniques* **38**, 785-792 (2005).

34. Erreni, M. et al. Expression of chemokines and chemokine receptors in human colon cancer. *Meth. Enzymol* **460**, 105-121 (2009).

35. Leclerc, J. et al. Xenobiotic metabolism and disposition in human lung: transcript profiling in non-tumoral and tumoral tissues. *Biochimie* **93**, 1012-1027 (2011).

36. Totlandsdal, A.I., Cassee, F.R., Schwarze, P., Refsnes, M. & Låg, M. Diesel exhaust particles induce CYP1A1 and pro-inflammatory responses via differential pathways in human bronchial epithelial cells. *Part Fibre Toxicol* **7**, 41 (2010).

37. Dreij, K., Rhrissorrakrai, K., Gunsalus, K.C., Geacintov, N.E. & Scicchitano, D.A. Benzo[a]pyrene diol epoxide stimulates an inflammatory response in normal human lung fibroblasts through a p53 and JNK mediated pathway. *Carcinogenesis* **31**, 1149-1157 (2010).

38. Gram, T.E. Chemically reactive intermediates and pulmonary xenobiotic toxicity. *Pharmacol. Rev* **49**, 297-341 (1997).

39. Perret, A. & Pompon, D. Electron shuttle between membrane-bound cytochrome P450 3A4 and b5 rules uncoupling mechanisms. *Biochemistry* **37**, 11412-11424 (1998).

40. Cao, D., Bromberg, P.A. & Samet, J.M. COX-2 expression induced by diesel particles involves chromatin modification and degradation of HDAC1. *Am. J. Respir. Cell Mol. Biol* **37**, 232-239 (2007).

41. Glatt, H., Rost, K., Frank, H., Seidel, A. & Kollock, R. Detoxification of promutagenic aldehydes derived from methylpyrenes by human aldehyde dehydrogenases ALDH2 and ALDH3A1. *Arch. Biochem. Biophys* **477**, 196-205 (2008).

42. Podechard, N. et al. Interleukin-8 induction by the environmental contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and leads to lung inflammation. *Toxicol. Lett* **177**, 130-137 (2008).

43. Kraemer, S.A., Arthur, K.A., Denison, M.S., Smith, W.L. & DeWitt, D.L. Regulation of prostaglandin endoperoxide H synthase-2 expression by 2,3,7,8,-tetrachlorodibenzo-p-dioxin. *Arch. Biochem. Biophys* **330**, 319-328 (1996).

44. Puga, A., Ma, C. & Marlowe, J.L. The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. *Biochem. Pharmacol* **77**, 713-722 (2009).

45. Abdel-Razzak, Z. et al. Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. *Mol. Pharmacol* **44**, 707-715 (1993).

46. Morel, Y. & Barouki, R. Down-regulation of cytochrome P450 1A1 gene promoter by oxidative stress. Critical contribution of nuclear factor 1. *J. Biol. Chem* **273**, 26969-26976 (1998).

47. Aitken, A.E. & Morgan, E.T. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. *Drug Metab. Dispos* **35**, 1687-1693 (2007).

48. He, D., Frost, A.R. & Falany, C.N. Identification and immunohistochemical localization of Sulfotransferase 2B1b (SULT2B1b) in human lung. *Biochim. Biophys. Acta* **1724**, 119-126 (2005).

49. Aitken, A.E., Richardson, T.A. & Morgan, E.T. Regulation of drug-metabolizing enzymes and transporters in inflammation. *Annu. Rev. Pharmacol. Toxicol* **46**, 123-149 (2006).

50. Scapellato, M.L. & Lotti, M. Short-term effects of particulate matter: an inflammatory mechanism? *Crit. Rev. Toxicol* **37**, 461-487 (2007).

51. Pedroza, M. et al. Interleukin-6 contributes to inflammation and remodeling in a model of adenosine mediated lung injury. *PLoS ONE* **6**, e22667 (2011).

52. House, R.V. & Descotes, J. *Cytokines in human health: immunotoxicology, pathology, and therapeutic applications.* (Humana Press: 2007).

53. Dagher, Z. et al. Pro-inflammatory effects of Dunkerque city air pollution particulate matter 2.5 in human epithelial lung cells (L132) in culture. *J Appl Toxicol* **25**, 166-175 (2005).

54. Rumelhard, M., Ramgolam, K., Hamel, R., Marano, F. & Baeza-Squiban, A. Expression and role of EGFR ligands induced in airway cells by PM2.5 and its components. *Eur. Respir. J* **30**, 1064-1073 (2007).

55. Dinarello, C.A. Blocking IL-1 in systemic inflammation. J. Exp. Med 201, 1355-1359 (2005).

56. Sahoo, A. et al. Stat6 and c-Jun mediate Th2 cell-specific IL-24 gene expression. *J. Immunol* **186**, 4098-4109 (2011).

57. Jr, M.I.S., Talmadge E. King, Schwarz & M.D, T.E.K., Jr. *Interstitial Lung Disease*. (PMPH-USA: 2009).

58. Zhang, L. et al. Vanadium stimulates human bronchial epithelial cells to produce heparinbinding epidermal growth factor-like growth factor: a mitogen for lung fibroblasts. *Am. J. Respir. Cell Mol. Biol* **24**, 123-131 (2001).

59. Churg, A., Gilks, B. & Dai, J. Induction of fibrogenic mediators by fine and ultrafine titanium dioxide in rat tracheal explants. *Am. J. Physiol* **277**, L975-982 (1999).

60. Liu, J.Y. et al. Rapid activation of PDGF-A and -B expression at sites of lung injury in asbestos-exposed rats. *Am. J. Respir. Cell Mol. Biol* **17**, 129-140 (1997).

61. Gray, T. et al. Regulation of MUC5AC mucin secretion and airway surface liquid metabolism by IL-1beta in human bronchial epithelia. *Am. J. Physiol. Lung Cell Mol. Physiol* **286**, L320-330 (2004).

62. Rose, M.C. & Voynow, J.A. Respiratory tract mucin genes and mucin glycoproteins in health and disease. *Physiol. Rev* **86**, 245-278 (2006).

63. Kim, H.J. et al. The role of Nox4 in oxidative stress-induced MUC5AC overexpression in human airway epithelial cells. *Am. J. Respir. Cell Mol. Biol* **39**, 598-609 (2008).

ANNEXE 1 : Liste des gènes analysés au cours du projet

	Stress of	oxydant				répar	ation ADN		
Gene	Assay ID	Gene	Assay ID	Gene	Assay ID	Gene	Assay ID	Gene	Assay ID
ALOX12	Hs00167524_m1	NOX5	Hs00225846_m1	BRCA1	Hs01556194_m1	APTX	Hs00544364_m1	UNG	Hs00422172_m1
ALOX15	Hs00609608_m1	SOCS1	Hs00705164_s1	BRCA2	Hs00609060_m1	EBI3	Hs00194957_m1	TDP1	Hs00217832_m1
ALOX5	Hs01095330_m1	SOCS3	Hs02330328_s1	ERCC1	Hs01012157_m1	HMGB1	Hs01037385_s1	ТОРЗВ	Hs00172728_m1
ATOX1	Hs00187841_m1	SOD1	Hs00916176_m1	ERCC2	Hs00361161_m1	MGMT	Hs00172470_m1	OGG1	Hs00213454_m1
DUOX1	Hs00213694_m1	SOD2	Hs00167309_m1	ERCC3	Hs01554450_m1	MLH1	Hs00179866_m1		
DUOX2	Hs00204187_m1	SOD3	Hs00162090_m1	ERCC4	Hs00193342_m1	MPG	Hs01012594_m1		
GPX1	Hs02516751_s1	CAT	Hs00156308_m1	ERCC5	Hs00164482_m1	NEIL1	Hs00226327_m1		
GPX2	Hs01591589_m1	DHCR24	Hs00207388_m1	ERCC6	Hs00972920_m1	NEIL2	Hs00376746_m1		
GPX3	Hs00173566_m1	GLRX2	Hs00375015_m1	ERCC8	Hs01122123_m1	NEIL3	Hs00217387_m1		
GPX4	Hs00157812_m1	OXR1	Hs00250562_m1	EXO1	Hs00243513_m1	MSH2	Hs00953523_m1		
GPX5	Hs00559733_m1	OXSR1	Hs00178247_m1	XRCC1	Hs00959834_m1	MSH3	Hs00989003_m1		
GPX6	Hs00699698_m1	PRDX1	Hs01106271_m1	XRCC2	Hs00538799_m1	MSH6	Hs00264721_m1		
GPX7	Hs00210410_m1	PRDX2	Hs00853603_s1	XRCC3	Hs00193725_m1	MSRA	Hs00737165_m1		
GPX8	Hs00380670_m1	PRDX3	Hs00428953_g1	XRCC4	Hs00243327_m1	MUTYH	Hs01014856_m1		
GSR	Hs00167317_m1	PRDX4	Hs00197394_m1	XRCC5	Hs00221707_m1	NTHL1	Hs00267385_m1		
GSS	Hs00609286_m1	PRDX5	Hs00201536_m1	XRCC6	Hs00750856_s1	POLB	Hs00160263_m1		
NOD1	Hs00196075_m1	PRDX6	Hs00705355_s1	LIG3	Hs00242692_m1	RAD23A	Hs00192541_m1		
NOD2	Hs00223394_m1	PXDN	Hs00395488_m1	ALKBH2	Hs00419572_m1	RAD23B	Hs00234102_m1		
NOS1	Hs00167223_m1	SEPP1	Hs01032845_m1	ALKBH3	Hs00286731_m1	XPC	Hs01104206_m1		
NOS 2	Hs00167257_m1	SELS	Hs01104466_m1	APEX1	Hs00172396_m1	ХРА	Hs00166045_m1		
NOS3	Hs01574659_m1	SRXN1	Hs00607800_m1	APEX2	Hs00205565_m1	XAB2	Hs00220205_m1		

ар	optose		autres		
Gene	Assay ID	Gene	Assay ID	Gene	Assay ID
APAF1	Hs00559441_m1	MUC1	Hs00159357_m1	GTF2I	Hs00263393_m1
BAD	Hs00188930_m1	MUC12	Hs00419779_m1	HBEGF	Hs00181813_m1
BAX	Hs99999001_m1	MUC13	Hs00217230_m1	HSP90B1	Hs00427665_g1
BCL2	Hs99999018_m1	MUC15	Hs00377336_m1	ICAM1	Hs99999152_m1
BCL2L1	Hs99999146_m1	MUC16	Hs01065189_m1	ITGA3	Hs00233707_m1
BID	Hs00609632_m1	MUC17	Hs00959753_s1	ITGAE	Hs00559580_m1
CARD6	Hs01123611_m1	MUC19	Hs00543315_m1	ITGB1	Hs01127543_m1
CARD8	Hs00209095_m1	MUC2	Hs03005094_m1	PDGFA	Hs00234994_m1
CASP1	Hs00354836_m1	MUC20	Hs00416321_m1	PDGFB	Hs00966522_m1
CASP10	Hs00609648_m1	MUC3B;MUC3A	Hs03649367_mH	PDGFRA	Hs00183486_m1
CASP14	Hs00201637_m1	MUC4	Hs00366414_m1	PDGFRB	Hs01019589_m1
CASP2	Hs00892481_m1	MUC5AC	Hs00873638_m1	SCARF1	Hs01092477_m1
CASP3	Hs00234387_m1	MUC5B	Hs00861588_m1	VEGFA	Hs99999070_m1
CASP4	Hs00233438_m1	MUC6	Hs00401231_m1	VEGFB	Hs00173634_m1
CASP5	Hs00237061_m1	MUC7	Hs00379529_m1	VCAM1	Hs00365485_m1
CASP6	Hs00154250_m1	ACE	Hs00174179_m1	TGFA	Hs00608187_m1
CASP7	Hs00169152_m1	AGER	Hs00153957_m1	TGFB1	Hs00998130_m1
CASP8	Hs01018151_m1	ATM	Hs01112307_m1	TGFB2	Hs00234244_m1
CASP9	Hs00154260_m1	ATR	Hs00354807_m1	TGFB3	Hs00234245_m1
NLRC4	Hs00368367_m1	CTNNB1	Hs00355049_m1	TGFBR1	Hs00610318_m1
NLRP3	Hs00918082_m1	DISP1	Hs00399179_m1	TGFBR2	Hs00559660_m1
PDCD1LG2	Hs00228839_m1	FOXM1	Hs01073586_m1	TGIF1	Hs00231483_m1
PYCARD	Hs00203118_m1	GPR156	Hs00537796_m1	TRAF6	Hs00371508_m1
SIRT2	Hs00247263_m1	GPR44	Hs00173717_m1		

Nancy-Université

					inflammation				
Gene	Assay ID	Gene	Assay ID	Gene	Assay ID	Gene	Assay ID	Gene	Assay ID
ADAM10	Hs00153853_m1	CD70	Hs00174297_m1	GATA3	Hs00231122_m1	IL1R1	Hs00168392_m1	LTA	Hs00236874_m1
ADAM12	Hs01106104_m1	CMKLR1	Hs01386064_m1	GZMH	Hs00277212_m1	IL1R2	Hs01030384_m1	LTA4H	Hs00168505_m1
ADAM17	Hs00234221_m1	CRLF2	Hs00845692_m1	GZMM	Hs00193417_m1	IL1RN	Hs00893626_m1	LTB	Hs00242739_m1
ADAM8	Hs00174246_m1	CSF1	Hs99999084_m1	IFNA1	Hs00256882_s1	IL2	Hs00174114_m1	LTB4R	Hs00609525_m1
ADAM9	Hs00177638_m1	CSF1R	Hs99999197_m1	IFNA2	Hs00265051_s1	IL20	Hs00218888_m1	LTB4R2	Hs01885851_s1
ADAMTS1	Hs00199608_m1	CSF2	Hs00929873_m1	IFNB1	Hs00277188_s1	IL20RA	Hs00205346_m1	LTBR	Hs00158922_m1
AREG	Hs00155832_m1	CSF2RA	Hs00538896_m1	IFNG	Hs99999041_m1	IL20RB	Hs00376373_m1	LTC4S	Hs00168529_m1
BPI	Hs01552756_m1	CSF2RB	Hs00166144_m1	IFNGR1	Hs00988304_m1	IL21	Hs00222327_m1	MMP1	Hs00233958_m1
CCL1	Hs00171072_m1	CSF3	Hs99999083_m1	IFNGR2	Hs00194264_m1	IL21R	Hs00222310_m1	MMP12	Hs00899662_m1
CCL11	Hs00237013_m1	CSF3R	Hs01114427_m1	IFNK	Hs00737883_m1	IL22	Hs01574154_m1	MMP13	Hs00942589_m1
CCL13	Hs00234646_m1	CX3CL1	Hs00171086_m1	IGF1	Hs01547656_m1	IL22RA1	Hs01058653_m1	MMP14	Hs00237119_m1
CCL17	Hs00171074_m1	CXCL1	Hs00236937_m1	IGF1R	Hs99999020_m1	IL22RA2	Hs00364814_m1	MMP19	Hs00275699_m1
CCL18	Hs00268113_m1	CXCL10	Hs00171042_m1	IL10	Hs00961619_m1	IL23A	Hs00413259_m1	MMP2	Hs00234422_m1
CCL19	Hs00171149_m1	CXCL11	Hs00171138_m1	IL10RA	Hs00387004_m1	IL23R	Hs00332759_m1	MMP3	Hs00968308_m1
CCL2	Hs00234140_m1	CXCL12	Hs00171022_m1	IL10RB	Hs00175123_m1	IL24	Hs01114274_m1	MMP7	Hs00159163_m1
CCL20	Hs00355476_m1	CXCL16	Hs00222859_m1	IL11	Hs01055414_m1	IL25	Hs00224471_m1	MMP9	Hs00957562_m1
CCL21	Hs99999110_m1	CXCL2	Hs00236966_m1	IL12A	Hs00168405_m1	IL26	Hs00218189_m1	МРО	Hs00165162_m1
CCL22	Hs01574247_m1	CXCL3	Hs00171061_m1	IL12B	Hs99999037_m1	IL27	Hs00377366_m1	NCF1;NCF1B;NCF1C	Hs00165362_m1
CCL24	Hs00171082_m1	CXCL5	Hs00171085_m1	IL12RB1	Hs00538165_m1	IL27RA	Hs00945029_m1	NCF2	Hs01084940_m1
CCL25	Hs00608373_m1	CXCL9	Hs00970538_m1	IL12RB2	Hs00155486_m1	IL2RA	Hs00907777_m1	NFKB1	Hs00765730_m1
CCL26	Hs00171146_m1	CXCR1	Hs00174146_m1	IL13	Hs00174379_m1	IL2RB	Hs00168402_m1	NFKB2	Hs00174517_m1
CCL28	Hs00219797_m1	CXCR2	Hs00174304_m1	IL13RA1	Hs00609817_m1	IL2RG	Hs00173950_m1	OSM	Hs00171165_m1
CCL3	Hs00234142_m1	CXCR3	Hs00171041_m1	IL13RA2	Hs00152924_m1	IL3	Hs99999081_m1	OSMR	Hs00384278_m1
CCL4	Hs99999148_m1	CXCR4	Hs00976734_m1	IL15	Hs01003716_m1	IL31	Hs01098710_m1	PIGR	Hs00160076_m1
CCL5	Hs00174575_m1	CXCR6	Hs00174843_m1	IL15RA	Hs00542604_m1	IL31RA	Hs00371172_m1	PLA2G2A	Hs00179898_m1
CCL7	Hs00171147_m1	CYSLTR1	Hs00929113_m1	IL16	Hs00189606_m1	IL32	Hs00992441_m1	PLA2G2D	Hs00173860_m1
CCL8	Hs00271615_m1	CYSLTR2	Hs00252658_s1	IL17A	Hs00174383_m1	IL3RA	Hs00608141_m1	PRF1	Hs00169473_m1
CCR1	Hs00174298_m1	EGF	Hs01099999_m1	IL17B	Hs00975262_m1	IL4	Hs00174122_m1	PRTN3	Hs01597752_m1
CCR10	Hs00706455_s1	EGFR	Hs01076092_m1	IL17C	Hs00171163_m1	IL4R	Hs00166237_m1	PTGDR	Hs00235003_m1
CCR2	Hs00356601_m1	FAS	Hs00163653_m1	IL17D	Hs00370528_m1	IL5	Hs99999031_m1	PTGDS	Hs00168748_m1
CCR3	Hs00266213_s1	FASLG	Hs00181225_m1	IL17F	Hs00369400_m1	IL5RA	Hs00602482_m1	PTGER1	Hs00168752_m1
CCR4	Hs999999919_m1	FGF1	Hs01092738_m1	IL17RA	Hs01056323_m1	IL6	Hs99999032_m1	PTGER2	Hs00168754_m1
CCR5	Hs00152917_m1	FGF2	Hs00266645_m1	IL17RB	Hs00914532_m1	IL6R	Hs01075667_m1	PTGER3	Hs00168755_m1
CCR6	Hs00171121_m1	FGF7	Hs00940253_m1	IL18	Hs01038788_m1	IL6ST	Hs00174360_m1	PTGER4	Hs00168761_m1
CCR7	Hs99999080_m1	FGFR1	Hs00241111_m1	IL18R1	Hs00977691_m1	IL7	Hs99999033_m1	PTGES	Hs00610420_m1
CCR8	Hs00174764_m1	FGFR2	Hs01552926_m1	IL19	Hs00604659_m1	IL7R	Hs00902334_m1	PTGES2	Hs00228159_m1
CCR9	Hs00258535_m1	FPR2	Hs00265954_m1	IL1A	Hs99999028_m1	IL8	Hs99999034_m1	PTGFR	Hs00168763_m1
CD27	Hs00154297_m1	FPR3	Hs01574392_m1	IL1B	Hs00174097_m1	IL9	Hs00914237_m1	PTGIR	Hs00168765_m1

		infla	ummation (suite)		
Gene	Assay ID	Gene	Assay ID	Gene	Assay ID
PTGR1	Hs00400932_m1	TLR3	Hs01551077_m1	TNFRSF10B	Hs00366278_m1
PTGS1	Hs00924803_m1	TLR4	Hs00152939_m1	TNFRSF11A	Hs00187192_m1
PTGS2	Hs01573471_m1	TLR5	Hs00152825_m1	TNFRSF12A	Hs00171993_m1
PTX3	Hs00173615_m1	TLR6	Hs00271977_s1		
SFTPD	Hs00358340_m1	TLR7	Hs00152971_m1		
SGK2	Hs00367639_m1	TLR8	Hs00152972_m1		
TBXA2R	Hs00169054_m1	TLR9	Hs00928321_m1		
TLR1	Hs00413978_m1	TNF	Hs99999043_m1		
TLR10	Hs00999403_m1	TNFAIP6	Hs01113602_m1		
TLR2	Hs00610101_m1	TNFRSF10A	Hs00269492_m1		

BRICKS THIBAULT

				En	zymes de phas	e I			
Gène	Assay ID	Gène	Assay ID	Gène	Assay ID	Gène	Assay ID	Gène	Assay ID
OXYDASE	s	ALDH16A1	Hs00292269_m1	CYP4F3	Hs00168521_m1	FMO3	Hs00199368_m1	Esterase D	
Alcohol DH	ases	ALDH18A1	Hs00913261_m1	CYP4F8	Hs01027814 m1	FMO4	Hs00157614_m1	ESD	Hs00382667_m1
ADH1A	Hs00605167_g1	Aldehyde ox	idase 1	CYP4F11	Hs01680107 ml	FMO5	Hs00356233_m1	Paraoxonase	<u>s</u>
ADH1B	Hs00605175_m1	AOX1	Hs00154079_m1	CYP4F12	Hs00430602_g1	Amine oxid	ases	PON1	Hs00166557_m1
ADH1C	Hs00817827_m1	Xanthine DE	lase	CYP4F22	Hs00403446_m1	ABP1	Hs00175631_m1	PON2	Hs00165563_m1
ADH4	Hs00923466 m1	XDH	Hs00166010_m1	CYP4V2	Hs01389878_m1	AOC2	Hs00241783_m1	PON3	Hs00412993_m1
ADH5	Hs00605185_m1	Cytochromes	: P450	CYP4X1	Hs00380077_m1	AOC3	Hs00186647_m1	a burner	
ADH6	Hs00167423_m1	CYP1A1	Hs00153120_m1	CYP4Z1	Hs00419990_m1	AOF1	Hs00400708_m1	REDUCTA	SES
ADH7	Hs00609447_m1	CYP1A2	Hs00167927_m1	CYP5A1	Hs00233423_m1	AOF2	Hs00323448_m1	Aldo-keto re	ductases
ADHFE1	Hs00329084_m1	CYP1B1	Hs00164383_m1	CYP7A1	Hs00167982_m1	Monoamine	e oxidases	AKR1A1	Hs00195992_m1
Alcohol DH	ases/reductases	CYP2A6	Hs00868409_s1	CYP7B1	Hs00191385_m1	MAOA	Hs00165140_m1	AKR1B1	Hs00739326_m1
DHRS2	Hs00195090_m1	CYP2A7	Hs00751187_gH	CYP8A1	Hs00919949_m1	MAOB	Hs00168533_m1	AKR1B10	Hs00252524_m1
DHRS4	Hs00949075_m1	CYP2A13	Hs00426372_m1	CYP8B1	Hs00244754_s1	Polyamine	oxidase	AKR1C1/2	Hs00413886_m1
DHRS9	Hs00608375_m1	CYP2B6	Hs03044634_m1	CYP11A1	Hs00167984_m1	PAOX	Hs00382210_m1	AKR1C3	Hs00366267_m1
Hydroxyster	toid DHase	CYP2C8	Hs00258314_m1	CYP11B1	Hs01596404_m1	Sulfite oxid	ase	AKR1C4	Hs00559542_m1
HSD17B10	Hs00189576_m1	CYP2C9	Hs00426397_m1	CYP11B2	Hs01597732_m1	SUOX	Hs00166578_m1	AKR1CL1	Hs01397413_m1
Aldehyde D	Hases	CYP2C18	Hs01595322_mH	CYP17A1	Hs00164375_m1	Dihydropyr	imidine DHase	AKR1CL2	Hs00230170_m1
ALDH1A1	Hs00167445_m1	CYP2C19	Hs00426380_m1	CYP19A1	Hs00903413_m1	DPYD	Hs00559279_m1	AKR1D1	Hs00818881_m1
ALDH1A2	Hs00180254_m1	CYP2D6	Hs00164385_m1	CYP20A1	Hs00221087_m1			AKR6A3	Hs00963155_m1
ALDH1A3	Hs00167476_m1	CYP2E1	Hs00559370_m1	CYP21A2	Hs00416901_g1	HYDROL	ASES	AKR6A5	Hs00186308_m1
ALDH1B1	Hs00377718_m1	CYP2F1	Hs00167949_m1	CYP24A1	Hs00167999_m1	Arylacetam	ide deacetylase	AKR6A9	Hs00190986_m1
ALDH1L1	Hs00201836_m1	CYP2J2	Hs00951113_m1	CYP26A1	Hs00175627_m1	AADAC	Hs00153677_m1	AKR7A2	Hs00761005_s1
ALDH2	Hs00355914_m1	CYP2R1	Hs01379776_m1	CYP26B1	Hs00219866_m1	Butyrylcho	linesterase	AKR7A3	Hs00792041_gH
ALDH3A1	Hs00964880_m1	CYP2S1	Hs00258076_m1	CYP26C1	Hs01595346_m1	BCHE	Hs00163746_m1	AKR7L	Hs01651386_gH
ALDH3A2	Hs00166066_m1	CYP2U1	Hs00766273_m1	CYP27A1	Hs01026016_m1	Carboxyles	terases	Carbonyl red	luctases
ALDH3B1	Hs00167488_m1	CYP2W1	Hs00214994_m1	CYP27B1	Hs00168017_m1	CES1	Hs00275607_m1	CBR1	Hs00156323_m1
ALDH3B2	Hs00167496_m1	CYP3A4	Hs00430021_m1	CYP27C1	Hs01382794_m1	CES2	Hs00187279_m1	CBR3	Hs00154295_m1
ALDH4A1	Hs00186689_m1	CYP3A5	Hs00241417_m1	CYP39A1	Hs00213201_m1	CES3	Hs00227775_m1	CBR4	Hs00379036_m1
ALDH5A1	Hs00153566_m1	CYP3A7	Hs00426361_m1	CYP46A1	Hs00198510_m1	CES4	Hs00750233_s1	Quinone DE	lases
ALDH6A1	Hs00194421_m1	CYP3A43	Hs00256159_m1	CYP51A1	Hs00426415_m1	CES7	Hs00326937_m1	NQ01	Hs00168547_m1
ALDH7A1	Hs00609622_m1	CYP4A11/22	2 Hs00167961_m1	Flavin mon	ooxygenases	Epoxide hy	drolases	NQO2	Hs00168552_m1
ALDH8A1	Hs00224021_m1	CYP4B1	Hs00167970_m1	FMO1	Hs00266654_m1	EPHX1	Hs01116807_m1	Sepiapterin 1	reductase
ALDH9A1	Hs00355924_m1	CYP4F2	Hs00426608_m1	FMO2	Hs00155158_m1	EPHX2	Hs00157403_m1	SPR	Hs00268403_m1

Enzymes de phase II

Gène	Assay ID	Gène	Assay ID	Gène	Assay ID	Gène	Assay ID	Gène	Assay ID
N-ACETYI	L-Tfases	UGT2B7	Hs00426592 m1	GSTM3	Hs00168307 m1	Glycine N-N	<u>IT</u>	SULT1C3	Hs01371045 m1
NAT1	Hs00377717 m1	UGT2B10	Hs02556282 s1	GSTM4	Hs00426432 m1	GNMT	Hs00219089 m1	SULT1C4	Hs00198159 m1
NAT2	Hs00605099 m1	UGT2B11	Hs01894900 gH	GSTM5	Hs00757076 m1	Histamine N	-MT	SULT1E1	Hs00960941 m1
NAT5	Hs00211492_m1	UGT2B15	Hs00870076_s1	GSTO1	Hs00818731_m1	HNMT	Hs00199373_m1	SULT2A1	Hs00234219_m1
Arylalkylan	nine N-acetyl-Tfase	UGT2B17	Hs00854486 sH	GSTO2	Hs00826661 m1	Indolethylan	nine N-MT	SULT2B1	Hs00190268 m1
AANAT	Hs00153690 m1	UGT2B28	Hs00852540 s1	GSTP1	Hs00168310 m1	INMT	Hs00198941 m1	SULT4A1	Hs00205005 m1
	1999 (1999) (1997) (1 997) (1997)	UGT3A1	Hs00329313 m1	GSTT1	Hs00184475 m1	Nicotinamid	e N-MT	SULT6B1	Hs01376028 m1
UDP- GLY	COSYL-Tfases	UGT3A2	Hs00697723 m1	GSTT2/2B	Hs00168315 m1	NNMT	Hs00196287 m1		<u>55</u>
UGT1A1	Hs02511055 s1	UGT8	Hs00409961 m1	GSTZ1	Hs01041668 ml	Phenylethan	olamine N-MT	AUTRES 1	fases
UGT1A4	Hs01655285 s1	States and the second second		MGST1	Hs00220393 m1	PNMT	Hs00160228 m1	Glycine N-c	holoyl-Tfase
UGT1A5	Hs01374521 s1	GLUTATH	ION-S-Tfases	MGST2	Hs00182064 ml	Thiopurine S	<u>-MT</u>	BAAT	Hs00156051 m1
UGT1A6	Hs01592477 m1	GSTA1	Hs00275575 m1	MGST3	Hs01058946 ml	TPMT	Hs00740082 mH	Gamma-glu	tamyl-Tfase 1
UGT1A7	Hs02517015 s1	GSTA2	Hs00747232 mH		_		_	GGT1	Hs00980756 m1
UGT1A8	Hs01592482 m1	GSTA3	Hs00374175 m1	METHYL-	Tfases (MT)	SULFO-Tfa	ses	Glycine-N-a	cyl-Tfase
UGT1A9	Hs02516855 sH	GSTA4	Hs00155308 m1	Arsenic MT		SULT1A1	Hs00738644 m1	GLYAT	Hs00973654 m1
UGT1A10	Hs02516990 s1	GSTA5	Hs00604085 m1	AS3MT	Hs00221125 ml	SULT1A2	Hs02340929 g1	Mercaptopy	ruvate sulfur-Tfase
UGT2A1	Hs00792016 m1	GSTK1	Hs00210861 m1	Catechol-O-	MT	SULT1A3/4	Hs00413970 m1	MPST	Hs00560401 m1
UGT2A3	Hs00226904 m1	GSTM1	Hs02341469 m1	COMT	Hs00241349 m1	SULT1B1	Hs00234899 m1	Thiosulfate	sulfur-Tfase
UGT2B4	Hs00607514_mH	GSTM2	Hs00265266_g1		-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	SULT1C2	Hs00169044_m1	TST	Hs00361812_m1

Transporteurs

Gène Assay ID TRANSPORTEURS ABC ABCA1 Hs01059122 m1 ABCC8 ABCC6 Hs0109361 m1 SLC7A6 SLC7A6 Hs0093056 m1 SLC2A12 SLC2A12 Hs00375985 m1 SLC04C1 SLC04A1 Hs00249583 m1 SLC04C1 SLC04A1 Hs00249583 m1 SLC04C1 SLC04A1 Hs00249587 m1 SLC05A1 SLC04A1 Hs0024958 m1 SLC28A1 SLC04A1 Hs0024958 m1 SLC05A1 SLC06A1 Hs00348407 m1 SLC28A2 SLC06A1 Hs00357359 m1 SLC28A1 SLC06A1 Hs00357359 m1 AUTRES TRANSPORTEURS ABCA8 Hs00992371 m1 ABCG4 Hs00245340 m1 SLC15A1 SLC18A1 Hs00161826 m1 SLC18A1 SLC29A1 Hs01085706 m1 AQP1 AQP1 Hs0106067 m1 AQP1 AQP1 Hs0016607 m1 AQP1 AQP1 Hs0016607 m1 AQP1 Hs0016607 m1 AQP1 <td< th=""><th></th><th><i>N</i></th><th>10 m</th><th>5.6</th><th>100 C</th><th></th><th>1</th><th>(</th><th>10</th><th>x</th></td<>		<i>N</i>	10 m	5.6	100 C		1	(10	x
TRANSPORTEURS ABC ABCC6 Hs00184566 ml SLC7A6 Hs00938056 ml SLC22A12 Hs00375985 ml SLC04A1 Hs0024953 ml ABCA1 Hs0024232 ml ABCC9 Hs0024383 ml SLC7A7 Hs0099952 ml SLC2A16 Hs00263925 ml SLC04A1 Hs00263925 ml ABCA3 Hs00975530 ml ABCC9 Hs00245832 ml SLC7A1 Hs00794796 ml SLC2A14 Hs00185185 ml SLC0A1 Hs00229597 ml ABCA4 Hs00184367 ml ABCC10 Hs00375716 ml SLC7A11 Hs00161820 ml SLC28A1 Hs00185187 ml SLC0A1 Hs0024928 ml ABCA4 Hs00184367 ml ABCC12 Hs0024534 ml SLC10A1 Hs00166561 ml SLC28A1 Hs00185760 ml AUTRES TRANSPORTEURS ABCB1 Hs00184491 ml ABCG8 Hs0024534 ml SLC15A1 Hs00161826 ml SLC29A1 Hs00185742 ml AQP1 Hs00166067 ml ABCB3 Hs0024056 ml SLC16A1 Hs00161826 ml SLC29A3 Hs0093219 ml AQP7 Hs00357359 ml AQP7 Hs00357359 ml AQP7 Hs00357359	Gène	Assay ID	Gène	Assay ID	Gène	Assay ID	Gène	Assay ID	Gène	Assay ID
ABCA1 Hs01059122_m1 ABCC8 Hs01093761_m1 SLC7A7 Hs00909952_m1 SLC2A16 Hs00263925_m1 SLC04C1 Hs00698884_m1 ABCA2 Hs0024232_m1 ABCC9 Hs00245832_m1 SLC7A7 Hs00909952_m1 SLC2A16 Hs00263925_m1 SLC04C1 Hs0029997_m1 ABCA3 Hs00975530_m1 ABCC10 Hs00375716_m1 SLC7A11 Hs00204928_m1 SLC2SA1 Hs001818407_m1 SLC06A1 Hs00542846_m1 ABCA4 Hs00184367_m1 ABCC12 Hs00264354_m1 SLC10A2 Hs0016820_m1 SLC28A2 Hs00188407_m1 AUTRES TRANSPORTEURS ABCA8 Hs0092371_m1 ABCC4 Hs00245340_m1 SLC16A2 Hs0016826_m1 SLC29A1 Hs00185706_m1 AQP1 Hs00166067_m1 ABCB1 Hs0018491_m1 ABCG2 Hs001537m1 SLC16A1 Hs00161826 m1 SLC29A3 Hs00158706_m1 AQP7 Hs00375739 m1 ABCB3 Hs0024056_m1 TRANSPORTEURS SLC SLC19A1 Hs00161826 m1 SLC3A3 Hs00983219 m1 AQP7 Hs00375398.sH ABCB4	TRANSPO	RTEURS ABC	ABCC6	Hs00184566 m1	SLC7A6	Hs00938056 m1	SLC22A12	Hs00375985 m1	SLCO4A1	Hs00249583 m1
ABCA2 Hs00242232_m1 ABCC9 Hs00245832_m1 SLC7A8 Hs00794796_m1 SLC25A13 Hs00185185_m1 SLC0A1 Hs0024928 m1 ABCA3 Hs00184367_m1 ABCC10 Hs0017716_m1 SLC7A11 Hs00161820_m1 SLC28A1 Hs00084403_m1 SLC0A1 Hs0018407_m1 ABCA4 Hs01183167_m1 ABCC11 Hs01090768_m1 SLC10A2 Hs00161820_m1 SLC28A3 Hs00222020_m1 AUTRES TRANSPORTEURS ABCA8 Hs00992371_m1 ABCC2 Hs01051787_m1 SLC15A1 Hs00192639_m1 SLC29A1 Hs01085706_m1 AQP1 Hs00166067_m1 ABCB1 Hs00184491_m1 ABCG2 Hs01053787_m1 SLC15A2 Hs0018188_m1 SLC29A2 Hs00155426_m1 AQP1 Hs00166067_m1 ABCB2 Hs00241060_m1 SLC1A1 Hs00181872_m1 SLC18A2 Hs00161836_m1 SLC29A4 Hs00542001_m1 AQP7 Hs0037573_m1 ABCB4 Hs00240956_m1 TRANSPORTEURS SLC SLC19A1 Hs00953345_m1 SLC38A1 Hs00189716_m1 APP9 Hs0017573_m1 ABCB5	ABCA1	Hs01059122 m1	ABCC8	Hs01093761 m1	SLC7A7	Hs00909952 m1	SLC22A16	Hs00263925 m1	SLCO4C1	Hs00698884 m1
ABCA3 Hs00975530_m1 ABCC10 Hs00375716_m1 SLC7A11 Hs00204928_m1 SLC28A1 Hs00984403_m1 SLC06A1 Hs00542846_m1 ABCA4 Hs00184367_m1 ABCC11 Hs01090768_m1 SLC10A1 Hs00161820_m1 SLC28A2 Hs00188407_m1 ABCA7 Hs0105117_m1 ABCC12 Hs0024354_m1 SLC10A1 Hs0016561_m1 SLC28A3 Hs0023220_m1 AUTRES TRANSPORTEURS ABCA8 Hs00184491_m1 ABCG2 Hs01053787_m1 SLC15A1 Hs00161826_m1 SLC29A3 Hs00295706_m1 AQP1 Hs00166067_m1 ABCB3 Hs0024056 Hs0028035_m1 SLC16A1 Hs00161826_m1 SLC29A4 Hs0097268_g1 AQP7 Hs00357359_m1 ABCB4 Hs0024056 Hs0028056 SLC18A1 Hs00161836_m1 SLC29A4 Hs0097268_g1 ATPase_H+transporting_V0c ABCB4 Hs00180568_m1 SLC1A1 Hs00188172_m1 SLC19A1 Hs00953345_m1 SLC38A1 Hs016268_m1 ATPase_K-U+transporting_V0c ABCB5 Hs00188776_m1 SLC1A1 Hs00188172_m1 SLC2A1	ABCA2	Hs00242232 m1	ABCC9	Hs00245832 m1	SLC7A8	Hs00794796 m1	SLC25A13	Hs00185185 m1	SLCO5A1	Hs00229597 m1
ABCA4 Hs00184367_m1 ABCC11 Hs01090768_m1 SLC10A1 Hs00161820_m1 SLC28A2 Hs00188407_m1 AUTRES TRANSPORTEURS ABCA7 Hs01105117_m1 ABCC12 Hs0024534_m1 SLC10A2 Hs00166561_m1 SLC28A3 Hs00223220_m1 AUTRES TRANSPORTEURS ABCA8 Hs00992371_m1 ABCD4 Hs00245340_m1 SLC15A1 Hs0019269_m1 SLC29A1 Hs0185706_m1 Aquaporins ABCB1 Hs00184491_m1 ABCG2 Hs01053787_m1 SLC15A1 Hs00161826_m1 SLC29A3 Hs0015426_m1 AQP1 Hs00357359_m1 ABCB3 Hs00241060_m1 ABCG8 Hs02880035_m1 SLC18A2 Hs00161826_m1 SLC29A4 Hs00542001_m1 AQP7 Hs00375573_m1 ABCB4 Hs00240956_m1 TRANSPORTEURS SLC SLC19A1 Hs00953345_m1 SLC38A1 Hs01562168_m1 ATPase_H+ transporting.V0c ABCB5 Hs00180568 SLC1A4 Hs00188192_m1 SLC2A4 Hs00427556_m1 SLC38A2 Hs01082864_m1 ATPase_L++ transporting.V0c ABCB6 Hs0018576m1 SLC1A4 <td< td=""><td>ABCA3</td><td>Hs00975530 m1</td><td>ABCC10</td><td>Hs00375716 m1</td><td>SLC7A11</td><td>Hs00204928 m1</td><td>SLC28A1</td><td>Hs00984403 m1</td><td>SLCO6A1</td><td>Hs00542846 m1</td></td<>	ABCA3	Hs00975530 m1	ABCC10	Hs00375716 m1	SLC7A11	Hs00204928 m1	SLC28A1	Hs00984403 m1	SLCO6A1	Hs00542846 m1
ABCA7 Hs01105117_m1 ABCC12 Hs00264354_m1 SLC10A2 Hs0016561_m1 SLC28A3 Hs0023220_m1 AUTRES TRANSPORTEURS ABCA8 Hs0092371_m1 ABCD4 Hs00243340_m1 SLC15A1 Hs0012639_m1 SLC29A1 Hs01085706_m1 Aquaporins ABCB1 Hs00184491_m1 ABCG2 Hs01053787_m1 SLC15A2 Hs0012139_m1 SLC29A1 Hs001955426_m1 AQP1 Hs00166067_m1 ABCB2 Hs00241060_m1 ABCG8 Hs0288035_m1 SLC16A1 Hs00161858_m1 SLC29A3 Hs00542001_m1 AQP7 Hs00175573 m1 ABCB4 Hs00240956_m1 TRANSPORTEURS SLC SLC18A2 Hs00953345_m1 SLC3A1 Hs00977268_g1 ATPase, H+ transporting, V0c ABCB5 Hs00188776_m1 SLC1A1 Hs00188172_m1 SLC19A1 Hs0037596_m1 SLC38A1 Hs01562168_m1 ATP6V0C Hs00798308_sH ABCB6 Hs00188776_m1 SLC1A1 Hs00188197_m1 SLC22A1 Hs0037596_m1 SLC38A2 Hs01089954_m1 ATPase, Cu++ transporting ABCB7 Hs00188776_m1 SLC	ABCA4	Hs00184367 m1	ABCC11	Hs01090768 m1	SLC10A1	Hs00161820 m1	SLC28A2	Hs00188407 m1	Second Sciences and an arr	
ABCA8 Hs00992371_m1 ABCD4 Hs00245340_m1 SLC15A1 Hs00192639_m1 SLC29A1 Hs01085706_m1 Aquaporins ABCB1 Hs00184491_m1 ABCG2 Hs01053787_m1 SLC15A2 Hs00221539_m1 SLC29A2 Hs00155426_m1 AQP1 Hs00166067_m1 ABCB2 Hs00241060_m1 SLC16A1 Hs00161826_m1 SLC29A3 Hs00983219_m1 AQP7 Hs00357359_m1 ABCB3 Hs00240956_m1 TRANSPORTFURS SLC SLC16A1 Hs00161838_m1 SLC29A4 Hs00542001_m1 AQP9 Hs00175573_m1 ABCB4 Hs00240956_m1 TRANSPORTFURS SLC SLC19A1 Hs00953345_m1 SLC31A1 Hs00542001_m1 AQP9 Hs00175573_m1 ABCB5 Hs00480568_m1 SLC1A1 Hs00188172_m1 SLC19A2 Hs00957566_m1 SLC38A1 Hs016208954_m1 ATPase_C++ transporting_VCc ABCB6 Hs00185159_m1 SLC1A6 Hs00192604_m1 SLC22A2 Hs00353907_m1 SLC47A1 Hs00217320_m1 ATP7A Hs00163739_m1 ABCB6 Hs00185159_m1 SLC1A6 Hs00195656_m1	ABCA7	Hs01105117 m1	ABCC12	Hs00264354 m1	SLC10A2	Hs00166561 m1	SLC28A3	Hs00223220 m1	AUTRES T	RANSPORTEURS
ABCB1 Hs00184491_m1 ABCG2 Hs01053787_m1 SLC15A2 Hs0021539_m1 SLC29A2 Hs00155426_m1 AQP1 Hs00166067_m1 ABCB2 Hs00388682_m1 ABCG8 Hs02880035_m1 SLC16A1 Hs00161826_m1 SLC29A3 Hs00983219_m1 AQP7 Hs00357359_m1 ABCB3 Hs00241060_m1 SLC1A1 Hs00181872_m1 SLC18A2 Hs00161858_m1 SLC29A4 Hs00542001_m1 AQP9 Hs00175573_m1 ABCB5 Hs00240956_m1 TRANSPORTEURS SLC SLC19A1 Hs0093345_m1 SLC31A1 Hs00977268_g1 ATPase.H+transporting.V0c ABCB6 Hs00180568_m1 SLC1A2 Hs00188172_m1 SLC19A3 Hs009375596_m1 SLC38A1 Hs01621688_m1 ATPase.H+transporting.V0c ABCB6 Hs00185156_m1 SLC1A3 Hs00188189_m1 SLC22A1 Hs00427554_m1 SLC38A5 Hs01019208_m1 ATPase.Cu++transporting ABCB7 Hs00185159_m1 SLC1A6 Hs00192604_m1 SLC22A2 Hs0033907_m1 SLC47A1 Hs00217320_m1 ATP7A Hs00163707_m1 ABCB8 Hs00185159_m1 SLC2A1 Hs0022691_m1 SLC47A1 Hs00217320_m1 <td< td=""><td>ABCA8</td><td>Hs00992371 m1</td><td>ABCD4</td><td>Hs00245340 m1</td><td>SLC15A1</td><td>Hs00192639 m1</td><td>SLC29A1</td><td>Hs01085706 m1</td><td>Aquaporins</td><td></td></td<>	ABCA8	Hs00992371 m1	ABCD4	Hs00245340 m1	SLC15A1	Hs00192639 m1	SLC29A1	Hs01085706 m1	Aquaporins	
ABCB2 Hs00388682_m1 ABCG8 Hs02880035_m1 SLC16A1 Hs00161826_m1 SLC29A3 Hs00983219_m1 AQP7 Hs00357359_m1 ABCB3 Hs00241060_m1 ITRANSPORTEURS SLC SLC18A2 Hs00161826_m1 SLC29A4 Hs00542001_m1 AQP9 Hs00175573_m1 ABCB4 Hs00240956_m1 TRANSPORTEURS SLC SLC19A1 Hs00993345_m1 SLC38A1 Hs00542001_m1 AQP9 Hs00175573_m1 ABCB5 Hs00698751_m1 SLC1A1 Hs00188172_m1 SLC19A1 Hs009949693_m1 SLC38A1 Hs01562168_m1 ATPase_H+transporting_V0c ABCB6 Hs0018576_m1 SLC1A2 Hs00188189_m1 SLC19A1 Hs00375596_m1 SLC38A1 Hs01681089_m1 ATPase_Cu++transporting_V0c ABCB6 Hs0018576_m1 SLC1A3 Hs00188189_m1 SLC22A1 Hs00375596_m1 SLC38A2 Hs0108905028_m1 ATPase_Cu++transporting_V0c ABCB7 Hs00185159_m1 SLC1A6 Hs00192604_m1 SLC22A1 Hs00217320_m1 ATP7A Hs00163707_m1 ABCB8 Hs00185159_m1 SLC1A7 Hs00192604_m1<	ABCB1	Hs00184491 m1	ABCG2	Hs01053787 m1	SLC15A2	Hs00221539 m1	SLC29A2	Hs00155426 ml	AQP1	Hs00166067 m1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ABCB2	Hs00388682 m1	ABCG8	Hs02880035 m1	SLC16A1	Hs00161826 m1	SLC29A3	Hs00983219 m1	AQP7	Hs00357359 m1
ABCB4Hs00240956TRANSPORTEURS SLCSLC19A1Hs00953345M1SLC31A1Hs00977268ATPase. H+ transporting. $\bar{V}0c$ ABCB5Hs00698751M1SLC1A1Hs00188172M1SLC19A2Hs00949693SLC38A1Hs01562168M1ATP6V0CHs00798308SHABCB6Hs00180568M1SLC1A2Hs00188189M1SLC19A3Hs00375596SLC38A2Hs01089954M1ATPase. $L+$ transportingABCB7Hs00188776M1SLC1A3Hs00188193M1SLC22A1Hs00427554SLC38A5Hs01012028M1ATP7AHs00163707M1ABCB8Hs00185159M1SLC1A7Hs00192604M1SLC22A2Hs00533907SLC47A1Hs00217320M1ATP7AHs00163739M1ABCB9Hs00608640M1SLC1A7Hs00197884SLC22A3Hs0022691M1SLC47A2Hs00945650M1Potasium channel, K9ABCB10Hs01085315SLC2A1Hs00165789SLC22A4Hs0028200M1SLC01A2Hs00366488M1NKN9Hs0036153M1ABCE11Hs00184824SLC3A1Hs0016789SLC22A5Hs0092869SLC01B1Hs00272734M1Major vallt proteinABCC2Hs00166123M1SLC5A4Hs00429527M1SLC22A6Hs00198527M1MVPHs00245438M1ABCC3Hs00358656M1SLC6A3Hs00997364SLC22A8Hs01056647M1SLC02A1Hs00194554M1<	ABCB3	Hs00241060 m1	Sol Charles	141.2010.002.000.00 7. 08290	SLC18A2	Hs00161858 m1	SLC29A4	Hs00542001 m1	AQP9	Hs00175573 m1
ABCB5 Hs00698751_m1 SLC1A1 Hs00188172_m1 SLC19A2 Hs00949693_m1 SLC38A1 Hs01562168_m1 ATP6V0C Hs00798308_sH ABCB6 Hs00180568_m1 SLC1A2 Hs00188189_m1 SLC19A3 Hs00375596_m1 SLC38A2 Hs01089954_m1 ATP6V0C Hs00798308_sH ABCB7 Hs00188776_m1 SLC1A3 Hs00188193_m1 SLC22A1 Hs00427554_m1 SLC38A5 Hs01012028_m1 ATP7A Hs00163707_m1 ABCB8 Hs00185159_m1 SLC1A6 Hs00192604_m1 SLC22A2 Hs00533907_m1 SLC47A1 Hs00217320_m1 ATP7A Hs00163739_m1 ABCB9 Hs0068640_m1 SLC2A1 Hs0022691_m1 SLC47A2 Hs00945650_m1 Potassium channel, K9 ABCB10 Hs018515_m1 SLC2A4 Hs00268200_m1 SLC01A2 Hs00366488_m1 KCNK9 Hs00363153_m1 ABCE11 Hs00184824_m1 SLC3A1 Hs0016789_m1 SLC22A5 Hs00929869_m1 SLC01B1 Hs00217374_m1 Major vault protein ABCC1 Hs00168123_m1 SLC3A2 Hs0017243_m1	ABCB4	Hs00240956 m1	TRANSPO	RTEURS SLC	SLC19A1	Hs00953345 m1	SLC31A1	Hs00977268 g1	ATPase, H+	transporting, V0c
ABCB6 Hs00180568_m1 SLC1A2 Hs00188189_m1 SLC19A3 Hs00375596_m1 SLC38A2 Hs01089954_m1 ATPases, Cu++ transporting ABCB7 Hs00188776_m1 SLC1A3 Hs00188193_m1 SLC2A1 Hs00427554_m1 SLC38A5 Hs01012028_m1 ATP7A Hs00163707_m1 ABCB8 Hs00185159_m1 SLC1A6 Hs00192604_m1 SLC2A2 Hs00533907_m1 SLC47A1 Hs00217320_m1 ATP7A Hs00163739_m1 ABCB9 Hs00608640_m1 SLC1A7 Hs00198515_m1 SLC2A3 Hs00222691_m1 SLC47A1 Hs00945650_m1 Potassium channel, K9 ABCB10 Hs01085315_m1 SLC2A1 Hs00197884_m1 SLC2A4 Hs00222691_m1 SLC01A2 Hs00366488_m1 KCNK9 Hs00363153_m1 ABCB11 Hs00184824_m1 SLC3A1 Hs0016789_m1 SLC2A5 Hs00929869_m1 SLC01B1 Hs00272374_m1 Major vault protein ABCC1 Hs00166123_m1 SLC5A4 Hs001429527_m1 SLC2A7 Hs00198527_m1 SLC01B1 Hs00219714_m1 MVP Hs00245438_m1 ABCC3	ABCB5	Hs00698751 m1	SLC1A1	Hs00188172 m1	SLC19A2	Hs00949693 m1	SLC38A1	Hs01562168 ml	ATP6V0C	Hs00798308 sH
ABCB7 Hs00188776_m1 SLC1A3 Hs00188193_m1 SLC2A1 Hs00427554_m1 SLC38A5 Hs00102028_m1 ATP7A Hs0013707_m1 ABCB8 Hs00185159_m1 SLC1A6 Hs00192604_m1 SLC2A2 Hs00533907_m1 SLC47A1 Hs00217320_m1 ATP7A Hs00163739_m1 ABCB9 Hs00608640_m1 SLC1A7 Hs00198515_m1 SLC2A3 Hs00222691_m1 SLC47A1 Hs00945650_m1 Potassium channel, K9 ABCB10 Hs01085315_m1 SLC2A1 Hs00197884_m1 SLC2A4 Hs00222691_m1 SLC01A2 Hs00366488_m1 KCNK9 Hs00363153_m1 ABCB11 Hs00184824_m1 SLC3A1 Hs00165789_m1 SLC2A5 Hs00929866_m1 SLC01B1 Hs00272374_m1 Major vault protein ABCC1 Hs00166123_m1 SLC5A4 Hs00374243_m1 SLC22A6 Hs00198527_m1 SLC01B1 Hs00251986n1 MVP Hs00245438_m1 ABCC3 Hs003585656_m1 SLC6A3 Hs00429527_m1 SLC22A8 Hs01056647_m1 SLC02A1 Hs00194554_m1 Voltage-dependent anion ABCC4	ABCB6	Hs00180568 m1	SLC1A2	Hs00188189 m1	SLC19A3	Hs00375596 m1	SLC38A2	Hs01089954 m1	ATPases, C	u++ transporting
ABCB8 Hs00185159_m1 SLC1A6 Hs00192604_m1 SLC2A2 Hs00533907_m1 SLC47A1 Hs00217320_m1 ATP7B Hs00163739_m1 ABCB9 Hs00608640_m1 SLC1A7 Hs00192604_m1 SLC2A2 Hs00533907_m1 SLC47A1 Hs00217320_m1 ATP7B Hs00163739_m1 ABCB9 Hs00608640_m1 SLC1A7 Hs00198515_m1 SLC2A3 Hs00222691_m1 SLC47A2 Hs00945650_m1 Potassium channel, K9 ABCB10 Hs00184824_m1 SLC2A1 Hs0016789_m1 SLC2A4 Hs00288200_m1 SLC01A2 Hs00366488_m1 McNK9 Hs00363153_m1 ABCB1 Hs00184824_m1 SLC3A1 Hs0016789_m1 SLC22A5 Hs0029869_m1 SLC01B1 Hs00272374_m1 Major vault protein ABCC1 Hs00166123_m1 SLC5A4 Hs00429527_m1 SLC22A6 Hs00198527_m1 SLC01B1 Hs00251986_m1 MVP Hs00245438_m1 ABCC3 Hs003585656_m1 SLC6A3 Hs00429527_m1 SLC22A8 Hs01056647_m1 SLC02B1 Hs00194554_m1 Voltage-dependent anion ABCC4	ABCB7	Hs00188776 m1	SLC1A3	Hs00188193 m1	SLC22A1	Hs00427554 m1	SLC38A5	Hs01012028 m1	ATP7A	Hs00163707 m1
ABCB9 Hs00608640_m1 SLC1A7 Hs00198515_m1 SLC2A3 Hs0022691_m1 SLC47A2 Hs00945650_m1 Potassium channel, K9 ABCB10 Hs01085315_m1 SLC2A1 Hs00197884_m1 SLC2A4 Hs00268200_m1 SLC01A2 Hs00366488_m1 KCNK9 Hs00363153_m1 ABCB11 Hs00184824_m1 SLC3A1 Hs00167789_m1 SLC2A5 Hs0029869_m1 SLC01B1 Hs00272374_m1 Major vault protein ABCC1 Hs00156123_m1 SLC3A2 Hs0037243_m1 SLC2A6 Hs0057914_m1 SLC01B1 Hs00219865_m1 MVP Ms00245438_m1 ABCC2 Hs0016123_m1 SLC5A4 Hs0042927_m1 SLC22A7 Hs00195527_m1 SLC01C1 Hs0013714_m1 Voltage-dependent anion ABCC3 Hs00358656_m1 SLC6A3 Hs00169010_m1 SLC22A9 Hs00375768_m1 SLC02B1 Hs0020670_m1 VDAC2 Hs00748551_s1	ABCB8	Hs00185159 m1	SLC1A6	Hs00192604 m1	SLC22A2	Hs00533907 m1	SLC47A1	Hs00217320 m1	ATP7B	Hs00163739 m1
ABCB10 Hs01085315_m1 SLC2A1 Hs00197884_m1 SLC2A4 Hs00268200_m1 SLC01A2 Hs00366488_m1 KCNK9 Hs00363153_m1 ABCB11 Hs00184824_m1 SLC3A1 Hs00165789_m1 SLC2A5 Hs00929869_m1 SLC01B1 Hs00272374_m1 Major vault protein ABCC1 Hs00166123_m1 SLC3A2 Hs00374243_m1 SLC2A6 Hs00198527_m1 SLC01B3 Hs00251986_m1 MVP Hs00245438_m1 ABCC2 Hs00166123_m1 SLC5A4 Hs00429527_m1 SLC22A7 Hs00198527_m1 SLC01C1 Hs00194554_m1 Voltage-dependent anion ABCC3 Hs00195260_m1 SLC6A4 Hs00169010_m1 SLC22A9 Hs00375768_m1 SLC02B1 Hs0020670_m1 VDAC2 Hs00748551_s1	ABCB9	Hs00608640 m1	SLC1A7	Hs00198515 m1	SLC22A3	Hs00222691 m1	SLC47A2	Hs00945650 m1	Potassium c	hannel, K9
ABCB11 Hs00184824_m1 SLC3A1 Hs00165789_m1 SLC2A5 Hs00929869_m1 SLC01B1 Hs00272374_m1 Major vault protein ABCC1 Hs00219905_m1 SLC3A2 Hs00374243_m1 SLC2A6 Hs00537914_m1 SLC01B3 Hs00251986_m1 MVP Hs00245438_m1 ABCC2 Hs00166123_m1 SLC5A4 Hs00429527_m1 SLC22A7 Hs00198527_m1 SLC01C1 Hs00213714_m1 Voltage-dependent anion ABCC3 Hs00358656_m1 SLC6A3 Hs00997364_m1 SLC22A8 Hs01056647_m1 SLC02B1 Hs00194554_m1 Voltage-dependent anion ABCC4 Hs00195260_m1 SLC6A4 Hs00169010_m1 SLC22A9 Hs00375768_m1 SLC02B1 Hs00200670_m1 VDAC2 Hs00748551_s1	ABCB10	Hs01085315 m1	SLC2A1	Hs00197884 m1	SLC22A4	Hs00268200 m1	SLCO1A2	Hs00366488 m1	KCNK9	Hs00363153 m1
ABCC1 Hs00219905_m1 SLC3A2 Hs00374243_m1 SLC2A6 Hs00537914_m1 SLC01B3 Hs00251986_m1 MVP Hs00245438_m1 ABCC2 Hs00166123_m1 SLC5A4 Hs00429527_m1 SLC22A7 Hs00198527_m1 SLC01C1 Hs00213714_m1 Voltage-dependent amion ABCC3 Hs00358656_m1 SLC6A3 Hs00997364_m1 SLC22A8 Hs01056647_m1 SLC02A1 Hs00194554_m1 Voltage-dependent amion ABCC4 Hs00195260_m1 SLC6A4 Hs00169010_m1 SLC22A9 Hs00375768_m1 SLC02B1 Hs0020670_m1 VDAC2 Hs00748551_s1	ABCB11	Hs00184824 m1	SLC3A1	Hs00165789 m1	SLC22A5	Hs00929869 m1	SLCO1B1	Hs00272374 m1	Major vault	protein
ABCC2 Hs00166123_m1 SLC5A4 Hs00429527_m1 SLC2A7 Hs00198527_m1 SLC01C1 Hs00213714_m1 Voltage-dependent anion ABCC3 Hs00358656_m1 SLC6A3 Hs00997364_m1 SLC22A8 Hs01056647_m1 SLC02A1 Hs00194554_m1 Chamels ABCC4 Hs00195260_m1 SLC6A4 Hs00169010_m1 SLC22A9 Hs00375768_m1 SLC02B1 Hs0020670_m1 VDAC2 Hs00748551_s1	ABCC1	Hs00219905 m1	SLC3A2	Hs00374243 m1	SLC22A6	Hs00537914 m1	SLCO1B3	Hs00251986 m1	MVP	Hs00245438 m1
ABCC3 Hs00358656_m1 SLC6A3 Hs00997364_m1 SLC22A8 Hs01056647_m1 SLC02A1 Hs00194554_m1 channels ABCC4 Hs00195260_m1 SLC6A4 Hs00169010_m1 SLC22A9 Hs00375768_m1 SLC02B1 Hs00200670_m1 VDAC2 Hs00748551_s1	ABCC2	Hs00166123 m1	SLC5A4	Hs00429527 m1	SLC22A7	Hs00198527 m1	SLCO1C1	Hs00213714 m1	Voltage-dep	endent anion
ABCC4 Hs00195260_m1 SLC6A4 Hs00169010_m1 SLC2A9 Hs00375768_m1 SLC02B1 Hs00200670_m1 VDAC2 Hs00748551_s1	ABCC3	Hs00358656 m1	SLC6A3	Hs00997364 m1	SLC22A8	Hs01056647 m1	SLCO2A1	Hs00194554 ml	channels	
	ABCC4	Hs00195260 m1	SLC6A4	Hs00169010 m1	SLC22A9	Hs00375768 m1	SLCO2B1	Hs00200670 m1	VDAC2	Hs00748551 s1
ABCC5 Hs00981089_m1 SLC7A5 Hs00185826_m1 SLC22A11 Hs00218486_m1 SLC03A1 Hs00203184_m1 VDAC3 Hs00366592_m1	ABCC5	Hs00981089_m1	SLC7A5	Hs00185826_m1	SLC22A11	Hs00218486_m1	SLCO3A1	Hs00203184_m1	VDAC3	Hs00366592_m1

Récepteurs nucléaires et facteurs de transcription

Gène	Assay ID	Gène	Assay ID	Gène	Assay ID	Gène	Assay ID	Gène	Assay ID
Aryl hydro	carbon receptor	ESR2	Hs00230957 m1	NCOA2	Hs00896106 m1	NR3C1(GR)	Hs00353740 m1	Retinoic ac	id receptors
AHR	Hs00169233 m1	Forkhead b	oxes	NCOA3	Hs00180722 m1	NR3C2(MR)	Hs01031809 m1	RARA	Hs00940446 m1
AHR repres	ssor	FOXA2	Hs00232764 m1	Nuclear rec	eptor co-repressors	NR5A2(FTF)	Hs00187067 m1	RARB	Hs00233407 m1
AHRR	Hs00324967 m1	FOXO1	Hs01054576 m1	NCOR1	Hs00196920 m1	Peroxisome	proliferator-	RARG	Hs01559234 m1
AHR intera	icting protein	Hypoxia-in	ducible factors	NCOR2	Hs00196955 m1	activated rec	eptors	Retinoid X	receptors
AIP	Hs00610222 m1	HIF1A	Hs00153153 m1	Nuclear fac	tor erythroid-derived	PPARA	Hs00231882 m1	RXRA	Hs01067640 m1
AHR nucle	ar translocators	HIF3A	Hs00541709_m1	2-like 2	-	PPARD	Hs00602622_m1	RXRB	Hs00232774 m1
ARNT	Hs01121918 m1	Hepatocyte	nuclear factor 4α	NFE2L2	Hs00232352 m1	PPARG	Hs01115513 m1	RXRG	Hs00199455 m1
ARNT2	Hs00208298 m1	HNF4A	Hs00604435 m1	Nuclear rec	eptors	PPARG coad	tivators	Thyroid ho	rmone receptors
CREB bind	ling protein	Heat shock	protein 90a, Al	NR0B2(SH	P) Hs00222677 m1	PPARGC1A	Hs00173304 m1	THRA	Hs00268470 m1
CREBBP	Hs00231733 m1	HSP90AA1	Hs00743767 sH	NR1H2(LX	Rb)Hs00173195 m1	PPARGC1B	Hs00370186 m1	THRB	Hs00230861 m1
E1A bindin	g protein p300	Kelch-like	ech-associated protein	NR1H3(LX	Ra)Hs00172885 m1	PPARG coad	tivator-related 1	THR intera	ctor 11
EP300	Hs00230938 m1	KEAP1	Hs00202227 m1	NR1H4(FX	R) Hs00231968 m1	PPRC1	Hs00209379 m1	TRIP11	Hs00188542 m1
Estrogen re	ceptors	Nuclear rec	eptor coactivators	NR112(PXR) Hs00243666 ml	Prostaglandi	n E synthase 3	Vitamin D	receptor
ESR1	Hs01046818_m1	NCOA1	Hs00186661_m1	NR1B(CAR) Hs00901571_m1	PTGES3	Hs00832847_gH	VDR	Hs01045840_m1

Autres gènes

Gène	Assay ID	Gène	Assay ID	Gène	Assay ID	Gène	Assay ID	Gène	Assay ID
METALL	OTHIONEINES	MT3	Hs00359394_g1	Cellular ret	noic acid binding	GZMB	Hs00188051_m1	RBP2	Hs00188160_m1
MT1A	Hs00831826_s1	MT4	Hs00262914_m1	proteins		Methylenet	etrahydrofolate	Syntaxin 2	
MT1B	Hs00538861 m1	1719 402 402 402 402		CRABP1	Hs00171635 ml	reductase		STX2	Hs00181827 m1
MT1F	Hs00744661 sH	GENES D	IVERS	CRABP2	Hs00275636 m1	MTHFR	Hs00293639 s1	tumor prote	ein p53
MT1H	Hs00823168 g1	Bleomycin	hydrolase	Cytochrome	e b5 type A	P450 oxido	reductase	TP53	Hs00153349 m1
MT1M	Hs00828387 g1	BLMH	Hs00166071 m1	CYB5A	Hs00157217 m1	POR	Hs00287016 m1	Thioredoxi	ns –
MT1X	Hs00745167 sH	ALMONDOLUM S.		Granzymes		Retinol bin	ding proteins	TXN	Hs00828652 m1
MT2A	Hs02379661_g1			GZMA	Hs00196206_m1	RBP1	Hs00161252_m1	TXN2	Hs00429399_g1

Gène de référence

Gène	Assay ID
18S rRNA	Hs99999901_s1

ANNEXE 2 : Caractéristiques physico chimiques des particules polluantes

Figure a. Distribution de la taille des polluants particulaires collectés à Dunkerque à l'aide d'un impacteur en cascade. Les résultats sont exprimés en fréquences cumulées et relatives.

Composé	mg/g PM	Composé	µg/g PM
Fe	78,4	Ba	660,6
Al	58,3	Cu	365,1
Ca	49,5	Sr	342,8
Na	18,8	Cr	321,2
K	9,7	V	295,1
Mg	8,1	Ni	293,5
Pb	8	Li	109
Ti	5,1	Мо	42,7
Mn	3,5	Cd	6,7
Zn	1,8	Be	<0,6
		Со	<0,6

Tableau a. Composition de la fraction inorganique

Tableau b. Composition de la fraction ionique

Ion	Poids %
SO ₄ ² ·	8.12
NO ₃ ⁻	5.15
CI.	1.80
NH4 ⁺	0.68
F [.]	0.062

Tableaux c et d. Composition de la fraction organique, COV et HAP

HAP	C(ppm)
Méthylnaphtalène	141,9
Diméthylnaphtalène	90,2
Anthracène	47,1
Naphtalène	38,1
Phénanthrène	28,3
Acénaphtène	11,1
Benzopyrène	7,9
Fluorène	6,3
Benzoanthracène	4,9
Pyrène	4,7
Fluoranthène	4,7

COV	C (ppm)
Diéthylbenzène	170,3
Benzène	106,5
Tétraméthylbenzène	89,5
Xylène	65,4
Décane	64,9
Toluène	42,2
Ethényltriméthylbenzène	15,4
Styrène	13,5

Tableau e : Composition en dioxines

	Dioxines	
Congénère	Concentration (pg/g)	I-TEQ (pg I-TEQ/g)
2,3,7,8 TCDD	<5	5
1,2,3,7,8 PeCDD	115,28	57,64
1,2,3,4,7,8 HxCDD	139,51	13,95
1,2,3,6,7,8 HxCDD	378,39	37,84
1,2,3,7,8,9 HxCDD	384,43	38,44
1,2,3,4,6,7,8 HpCDD	2644,62	26,45
OCDD	10918,02	10,92
Total dioxines	14580,27	190,24

Tableau f : Composition en furane

	Furane	
Congénère	Concentration (pg/g)	I-TEQ (pg I-TEQ/g)
2,3,7,8 TCDF	69,94	6,99
1,2,3,7,8 PeCDF	153,32	7,67
2,3,4,7,8 PeCDF	329,33	164,67
1,2,3,4,7,8 HxCDF	367,05	36,71
1,2,3,6,7,8 HxCDF	395,15	39,52
2,3,4,6,7,8 HxCDF	556,23	55,62
1,2,3,7,8,9 HxCDF	70,11	7,01
1,2,3,4,6,7,8 HpCDF	1654,36	16,45
1,2,3,4,7,8,9 HpCDF	269,62	2,7
OCDF	1058,59	1,06
Total furane	4914,74	338,39

Tableau g et h : Composition en PCB

DLPCB	
Congénère	Concentration (pg/g)
PCB 81	<100
PCB 77	1 447,00
PCB 123	<50
PCB 118	16 277,00
PCB 114	<50
PCB 105	9 937,00
PCB 126	<50
PCB 167	2 624,00
PCB 156	5 015,00
PCB 157	1 544,00
PCB169	<50
PCB 189	912,00
Somme (DLPCB)	37 757,00

	PCB marqueur
Congénère	Concentration (pg/g)
PCB 28	51 907,00
PCB 52	50 616,00
PCB 101	16 576,00
PCB 138	32 815,00
PCB 153	23 628,00
PCB 180	21 645,00
Somme (PCB)	197 187,00

RESUME

L'exposition aux polluants particulaires atmosphériques (PM) a été corrélée à l'apparition et à l'exacerbation de nombreuses maladies inflammatoires chroniques des voies respiratoires. La prise en charge pulmonaire des composés adsorbés sur les particules se fait par l'intermédiaire des enzymes du métabolisme des xénobiotiques (EMX). Ce métabolisme s'accompagne toutefois d'un stress oxydant et de l'initiation d'une réaction inflammatoire. A l'aide d'une technique de RT-PCR quantitative à haut débit, nous avons mesuré, dans des cellules épithéliales bronchiques humaines exposées à des PM, l'expression de 760 gènes impliqués dans le métabolisme des xénobiotiques, l'inflammation et la réponse au stress oxydant. Sur les 71 gènes dont l'expression a été modifiée suite à l'exposition des cellules aux PM, seuls 15 présentaient un différentiel d'expression significatif supérieur à deux : en particulier, les gènes codant pour les cytochromes P450 CYP1A1 et CYP1B1 qui ont été fortement induits, et, dans une moindre mesure, les gènes codant des médiateurs pro-inflammatoires comme les interleukines IL1 β , IL6 et IL24, et la prostaglandine PTGS2. Les cascades de signalisation à l'origine de cette co-régulation entre le métabolisme des xénobiotiques et l'initiation d'une inflammatoir reste toutefois à explorer