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Nomenclature

Nomenclature

X, ), z

section, m?

diffusivité thermique, m®.s™
surface spécifique, m”

interface entre les deux phases, m’
biais

chaleur massique, J.K kg
diamétre des billes, m

accélération de pesanteur, m.s™

coefficient du modéle a deux températures, W.K™'.m"
coefficient d’échange thermique avec un fil, W.K™'.m™

coefficient d’échange thermique a la paroi, W.K™'.m™

fonction de Heaviside temporelle,

courant ¢lectrique, A

vecteur normal a I’interface entre les deux phases
nombre de Nusselt, 4,d/A,

variable de Laplace

pression, Pa

nombre de Péclet, ud/ay

nombre de Prandtl, va

perméabilité, m*

constante des gaz parfaits, J.m™ K
vecteur spatial, m

nombre de Reynolds, pud/i
puissance linéique, W.m"'

source volumique de chaleur, W.m™
température, K ou °C

temps, s

coordonnées spatiales




Nomenclature

U tension ¢électrique, V

wouup  vitesse moyenne ou vitesse de Darcy, m.s™

ur vitesse interstitielle

V volume, m’

w puissance surfacique, W.m™

a pB vecteur parametre

1) impulsion de Dirac, m

£ porosité

A conductivité thermique, W.K'.m™

A A, A, tenseur ou coefficients de dispersion thermique, W.K'm!

A Ass tenseurs du modele a deux températures

Aeq conductivité thermique équivalente, W.K'.m™
7] viscosité dynamique, kg.m™.s™

v viscosité cinématique, m*.s

o ¢écart type

@ puissance ¢lectrique, W

P masse volumique, kg.m™

r temps caractéristique, s

Indices inférieurs

eq équivalent

f fluide

conv convection

macro macroscopique

micro microscopique

pos position

s solide

t total (solide et fluide)

Indices supérieurs
exp expérimental

nom nominal
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Introduction

Introduction

Ce travail a été réalis¢ dans le cadre d’une convention de recherche entre 1’Institut
Francais du Pétrole et le Laboratoire d’Energétique et de Mécanique Théorique et Appliquée.
L’objet de cette étude entre dans le cadre de la modélisation des transferts de chaleur au sein
des réacteurs a lit fixe utilisés en génie des procédés pétroliers. Ceux-ci sont généralement
constitués de grains poreux recouverts d’un catalyseur empilés dans une enceinte cylindrique
pouvant avoir des dimensions importantes. Le lit est traversé par un mélange réactif de fluide
pétrolier et il est refroidi ou réchauffé par I’extérieur. Le mécanisme du transfert de chaleur
dans un tel lit fixe parcouru par un fluide est complexe. Ce type de transfert de chaleur est
appelé dispersion thermique.

L’estimation des profils de température dans les milieux catalytiques granulaires ou
sont mis en ceuvre des réactions fortement exo- ou endothermiques est toujours difficile,
comme le montre la dispersion des résultats fournis par les corrélations proposées pour ce type
de probléme dans la littérature. Industriellement, on contrdle le profil de température en
alternant des zones réactionnelles adiabatiques et des zones d’échange de chaleur. Le passage
a des réacteurs isothermes, ou se déroulerait simultanément la réaction et 1’échange de
chaleur, suppose que 1’on soit capable de déterminer avec précision I’évolution des
températures dans le milieu granulaire a 1’échelle locale. Les paramétres essentiels permettant
de caractériser la dispersion thermique sont les tenseurs de dispersion thermique et la vitesse
moyenne de I’écoulement.

Le travail présenté ici doit permettre le développement d’un outil générique intégrant les
phénomenes physiques prépondérants au sein du milieu granulaire. Le développement de cet
outil s’appuie ici a la fois sur une démarche expérimentale et théorique.

Deux montages expérimentaux ont été utilisés : le premier est destiné a fournir I’expression
des deux composantes du tenseur de dispersion de la chaleur et le second doit permettre
I’évaluation des phénomenes spécifiques relatifs au transfert thermique en proche paroi.

La thése récente de T.Metzger au LEMTA a permis de mettre au point une méthode
fiable pour caractériser les différents parameétres au sein d’un lit constitué de billes de verre
parcouru par de 1’eau (sans prise en compte des effets de paroi).

En nous basant sur le méme principe, nous avons caractéris¢é deux milieux granulaires
différents traversés par un gaz dans la premiére partie de ce travail.

Afin de modéliser complétement les transferts thermiques en cceur et en proche paroi d’un
réacteur, un banc de caractérisation prenant en compte les effets de la paroi a été construit.

Ce rapport est divisé en cinq chapitres. Le premier dresse un état de I’art de la
dispersion thermique a cceur et en proche paroi d’un milieu granulaire. Dans le deuxi¢me
chapitre, le dispositif de caractérisation des transferts au cceur du milieu granulaire est
présenté. Puis, dans un troisiéme chapitre, la modélisation du probléme est détaillée et nous
¢tudions P’effet d’un éventuel déséquilibre thermique entre grains et fluides. Nous discutons
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¢galement dans cette partie des différentes formes de corrélations que 1’on peut établir pour
les coefficients de dispersion thermique.

Le quatrieme chapitre présente les différents résultats expérimentaux obtenus pour un
lit de billes de verre et pour un lit de supports de catalyseur traversé par de 1’air ou de 1’azote.
Une comparaison avec les résultats obtenus par T.Metzger y est effectuée.

Enfin, dans le dernier chapitre, le banc de caractérisation et la modélisation
correspondante du transfert en proche paroi sont présentés. Une conclusion et des perspectives
terminent ce travail.

12



| Chapitre 1: Etat de I'art sur la dispersion thermique a coeur ou en proche paroi

Chapitre 1 : Etat de l'art sur la dispersion
thermique a coeur ou en proche paroi

Dans ce premier chapitre, nous essaierons de dresser un état de I’art sur la dispersion
thermique a cceur et en proche paroi dans un milieu granulaire. Aprés avoir défini le milieu
granulaire, nous donnerons les différents régimes hydrauliques existant dans les milieux
poreux. Puis, nous évoquerons la notion de conductivité équivalente et les principaux
résultats. Dans cette étude, nous allons travailler en coeur du milieu poreux puis en proche
paroi : nous distinguerons les « deux zones » du milieu granulaire. Ensuite, nous présenterons
aussi les différents modeles de dispersion thermique disponibles et donnerons quelques
résultats expérimentaux de la littérature. Enfin, nous ferons le point sur I’étude de la
dispersion avec prise en compte des effets en proche paroi.

Cet état de I’art renverra, pour certaines parties, a la thése de Metzger [Metzger, 2002]
qui avait déja réalisé une bibliographie assez compléte sur le sujet, notamment la modélisation
et les résultats expérimentaux a cceur de milieu.

1.1 - Applications et définition d’un milieu granulaire

1.1.1 - Position de I’étude

Le comportement thermique d’un milieu granulaire qui est traversé¢ par un fluide
intéresse principalement 1’industrie chimique et le génie des procédés.
L’application principale, qui nous intéresse, concerne les réacteurs chimiques a lit fixe ou la
phase solide joue le rdle de support de catalyseur (comme indiqué dans le chapitre 2). Ces
réacteurs sont caractérisés par une surface réactive élevée et un mélange important dans la
phase fluide. Lorsqu’on met en ceuvre des réactions fortement endo- ou exothermiques, la
maitrise des transferts thermique dans le lit granulaire peut revétir des aspects multiples dont
certains ont une incidence directe sur le dimensionnement des réacteurs catalytiques. Une
meilleure connaissance des transferts thermiques dans le milieu granulaire peut engendrer un
allongement de la durée de vie des catalyseurs, une augmentation de capacité des unités ou
une réduction des quantités de catalyseur.
Plus généralement, la maitrise du transfert de chaleur dans les milieux poreux intéresse
d’autres domaines tels que le stockage des déchets radioactifs en site profond, les échangeurs
de chaleur ou plus généralement de multiples aspects de la production ou de la transformation
de I’énergie.

La description de ce phénoméne peut se faire soit a 1’échelle microscopique, soit a 1’échelle
macroscopique.
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Chapitre 1: Etat de I'art sur la dispersion thermique a coeur ou en proche paroi

fluide

VYVYYY VY

Conduction :

Convection :
on :  grains-gaz

Conduction paroi-grains

Figure 1.1 : Echanges dans un lit granulaire

Nous présentons sur la Figure 1.1 la description du systéme étudié : un fluide traverse un lit
constitué d’un empilement de grains sphériques. Ce lit est nécessairement limité par une paroi
solide. En catalyse hétérogeéne, des réactions chimiques se produisent a I’intérieur des grains
et les effluents des réactions sont évacués par un fluide s’écoulant entre les grains. Par
conséquent, les trois modes de transferts de chaleur (conduction, convection et rayonnement)
sont couplés entre eux et & ’hydrodynamique locale. La direction privilégiée de 1’écoulement
et le profil de température engendrent des transferts de chaleur entre les grains, entre les
grains et le fluide, entre la paroi et les grains et enfin entre la paroi et le fluide. Du fait de
I’impossibilité pratique de décrire les échanges au niveau local, les spécialistes du génie
chimique ont tres tot utilisé des modeles hétérogénes qui consistent a écrire une équation de
conduction dans le solide (sans terme de vitesse), une équation de conduction-convection dans
le fluide, avec un terme de vitesse (advection), en utilisant un coefficient d’échange /g 4ins
pour caractériser les échanges entre les grains et le fluide en écoulement. De la méme fagon
un autre coefficient d’échange /1, est couramment utilisé pour représenter les échanges du
lit avec la paroi. Cette approche débouche le plus souvent sur la formulation de corrélations
dépendant des nombres adimensionnels classiques (Nusselt, Reynolds et Prandtl) et des
propriétés du lit granulaire (taille des grains, porosité, etc...).

Les phénoménes qui se déroulent dans les milieux poreux dépendent de la géométrie de la
matrice, celle-ci est donc caractérisée par un certain nombre de grandeurs moyennes,
géométriques ou statistiques.

Un milieu granulaire ou plus généralement un milieu poreux est un ensemble
hétérogene constitué d’au moins une phase solide, déformable ou non, et d’une phase fluide.
Ce milieu granulaire se caractérise par différentes grandeurs dont nous citerons ici les plus
essentielles.

14



Chapitre 1: Etat de I'art sur la dispersion thermique a cceur ou en proche paroi

1.1.2 - Profil de porosité

La porosité se définit comme le rapport du volume des vides au volume apparent du
milieu poreux. On distingue la porosité totale qui tient compte des cavités occluses au sein du
solide (pores fermés) :

_ masse volumique apparente de I'échantillon

£ =1 : . —
' masse volumique du matériau constitutif

et la porosité accessible ou espace poreux connecté a travers lequel s’effectue 1’écoulement
des fluides :

. volume des pores accessible

volume de I'échantillon

La porosité peut-€tre définie localement en un point P, en évaluant le rapport précédent sur un
volume, par exemple une sphére de diametre D centrée sur ce point. Il est alors évident que la
porosité locale &P) dépend de I’échelle D qui a servi a ce filtrage spatial, ici une moyenne
mobile.

Ce parametre reveét une importance primordiale en milieu granulaire. En effet, les particules
d’un lit fixe, au voisinage de la paroi, ne s’arrangent pas de la méme fagon qu’au cceur du lit.
Cela a pour conséquence une variation spatiale de la porosité. Dans ce cas, la porosité n’est
¢valuable qu’en considérant non pas une sphere, mais un disque de diamétre D paralléle a la
paroi et en travaillant avec des rapports de sections pour évaluer cette moyenne mobile.

Giese [Giese, 1997] a récapitulé les résultats expérimentaux de la littérature pour établir des
relations pour le profil de porosité dans un lit fixe. La Figure 1.2.a correspond au cas de
particules monodisperses qui sont parfaitement sphériques; on observe une porosité £ =1 a la
paroi, et une oscillation spatiale qui s’atténue en s’¢loignant de la paroi.

o Benenati/Brosilow, D/d =14,1
4  Roblee, D/d =8,8

Giese, D/d =9,3 o : :
Mller, D/d =8,0  Martin -
0.6k mod.had.uxzom) .
w Co :
o4 P
0.2F-
0.0 . L L L 0 i i
0 1 2 3 4 5 0 0.5 1 1.5 2
y/d y/d

Figure 1.2 : profil de porosité dans un lit fixe pour des spheres idéales (a) et pour des spheres
imparfaites (b); y désigne la distance a la paroi, D la largeur du milieu et d le diametre des
particules [Giese, 1997]
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Chapitre 1: Etat de I'art sur la dispersion thermique a cceur ou en proche paroi

Ces résultats ont été vérifiés par mesures optiques [Stephenson, 1986] et plus récemment
confirmés expérimentalement par RMN [Gotz, 2002].

Dans la pratique, on a rarement affaire a des spheres parfaites. De nombreux travaux ont
proposé des fonctions qui peuvent décrire approximativement le profil de porosité dans ce
cas. Nous donnons ici les deux approches les plus répandues. La premiere est la relation
donnée par Giese [Giese, 1997]:

£(y)=c,(1+136¢*") (1.1)

avec &, la porosité au cceur du milieu.

Beaucoup plus tot, Martin [Martin, 1978] avait lui aussi établi une relation empirique donnant
le profil de porosité en proche paroi. Contrairement a Giese, il décrit ce profil par un modele a
deux zones (Figure 1.3).

paroi

Ap,

(7/\(1?

D-d d_

2 2

Figure 1.3 : Modéle a deux zones de Martin

A partir de la paroi, ou £ = 1, la porosité décroit jusqu’a une valeur minimum & ,,;, a une

distance y = 5 de la paroi. La porosité est ici décrite par une fonction :

min

e(z) =€, +(1-€,.)22 (-1=z<0) (1.2)

avec z = 2( y/ d ) =1 et &€ min est la porosit¢ minimale obtenue lors des fluctuations et y la

distance a la paroi (Figure 1.2 b).

La deuxiéme zone est caractérisé par des oscillations avec différents maxima et minima qui
apparaissent a une distance supérieure a y = 7 Ces formes d’oscillations sont calculées par

une méthode développée par Ridgway et Tarbuck [Ridgway, 1968]. Martin propose pour cette
deuxieéme zone une fonction :
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Chapitre 1: Etat de I'art sur la dispersion thermique a coeur ou en proche paroi

e(z)=€,+(6m —6.) e cos(?z) (z)0)

(1.3)
avec T =4/2/3=0,816 pour D/d = et T =0,876 pour D/d =20,3.

Il constate ainsi qu’a une distance de 4 ou 5 diameétres de grains a partir de la paroi, le profil
de porosité devient constant et que I’on peut utiliser ainsi la porosité définie au coeur du
milieu. Sur la Figure 1.2.b ont été reportés le modele de Giese —€quation (1.1) et le modele de
Martin -équation (1.2) et (1.3)- intégrés sur chacune des deux zones.

1.1.3 - Surface spécifique

La surface spécifique se définit comme le rapport de ’aire de la surface totale des
interfaces solide-pores A4, au volume de I’échantillon V:
A (1.4)
a = - .
. 4

Cette grandeur, homogene a I’inverse d’une longueur, joue un rdle capital dans les
problémes d’adsorption. Comme pour la porosité, il convient parfois de distinguer la surface
spécifique accessible et la surface spécifique totale comprenant I’aire des parois des cavités
occluses (cas du coke).

1.1.4 - Tortuosite

La tortuosité est généralement définie par une équation de la forme :

—[ L
T_(L] (1.5)

T désigne donc le rapport de la longueur moyenne réelle (L.) des lignes de courant du fluide
traversant I’échantillon a la longueur L de ce dernier. La signification physique de cette
grandeur, dont on voit trés bien le sens dans le cas d’une modélisation de 1’espace des pores
par un réseau de capillaires, est cependant beaucoup moins nette dans le cas des milieux
poreux réels.

1.2 - Régime hydraulique en milieu poreux

1.2.1 - Vitesse de Darcy

La vitesse communément utilisée en cceur du milieu granulaire est la vitesse de Darcy
up. Cette vitesse est définie a partir du débit entrant dans le milieu poreux. Si I’on consideére
un milieu poreux de section 4 alimenté par un débit Q, alors la vitesse de Darcy est
directement proportionnelle a ce débit :

_9
== (1.6)

Up
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Elle peut également étre définie localement de la méme manicre que la porosité, a partir d’une
moyenne de la vitesse locale sur un volume, ou une sphére de diametre D. Cette vitesse qu’on
appelle alors vitesse superficielle ou vitesse de filtration est proportionnelle a la vitesse
interstitielle u, (moyenne de la vitesse sur la seule partie occupée par la phase fluide du
volume précédent). La relation liant les deux vitesses est :

u, =€ u, (1.7)

1.2.2 - Nombres adimensionnels et lois d’écoulement

Comme nous le verrons plus loin, les coefficients de dispersion sont donnés dans la

littérature en fonction du seul nombre de Péclet. Cependant , il est judicieux de se demander si
ces coefficients ne peuvent étre donnés en fonction d’autres nombres adimensionnels.
Les régimes d’écoulement en milieu granulaire ou dans les conduites sont caractérisés par
différents nombres adimensionnels dont dépendent les parametres que nous cherchons a
caractériser. Trois nombres adimensionnels sont ici particulierement intéressants : le nombre
de Reynolds, le nombre de Prandtl et le nombre de Péclet. Ces trois nombres qui ne sont pas
indépendants ont des significations physiques différentes.

Le nombre de Reynolds (Re) :
pu,d _u,d

Re = = (1.8)
u v
Le nombre de Prandlt (Pr) :
Ulc
Pr = ( p)f :L (19)
As ar
Le nombre de Péclet (Pe) :
pc | u,d
Pe:¢=RePr (1.10)
A

Dans ces trois définitions, u,, représente la vitesse de Darcy, d une dimension caractéristique
locale du milieu poreux (diamétre des grains ou des pores), f/ et V sont respectivement les

viscosités dynamique et cinématique du fluide (avec v =H o p la masse volumique du
p

fluide). (c p)f est la chaleur massique du fluide et A, sa conductivit¢ thermique. Enfin

/]f

(0c,),

a.=

y est la diffusivité thermique du fluide.

Le nombre de Reynolds peut-Etre considéré comme une évaluation du rapport entre les forces
d’inertie et les forces de viscosité. Le nombre de Prandtl est le rapport de la diffusivité¢ de
quantit¢ de mouvement a la diffusivité thermique : il caractérise la distribution des vitesses
par rapport a la distribution de température. Le nombre de Péclet est le rapport du transfert de
chaleur par advection au transfert de chaleur par conduction. Il joue dans I'équation de
I’énergie un réle analogue a celui joué par le nombre de Reynolds dans les équations de
Navier-Stokes.
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L’¢écoulement d’un fluide dans un milieu poreux est régi par différentes lois
hydrodynamiques. La plus connue et la plus utilisée en milieu poreux est la loi de Darcy
[Darcy, 1856]. Cette loi pour un fluide visqueux et incompressible en écoulement permanant,
dans un milieu granulaire de longueur L s’écrit :

—AP:%%) (1.11)

ou AP désigne la perte de pression le long de I’échantillon et k est le coefficient de
perméabilité intrinséque du milieu.

La loi de Darcy est bien vérifiée pour de tres faibles débits, par contre lorsque ceux-ci
augmentent la loi n’est plus valable.

En faisant varier le débit et donc le nombre de Reynolds, on constate pour un écoulement
laminaire 2D dans un milieu poreux périodique constitu¢ de cylindres en quinconce que trois
phases d’écoulement existent. Celles-ci sont visualisées sur la Figure 1.4 :

* la premiere pour de faibles débits, les lignes de courant sont symétriques (Figure 1.4.a
et 1.4.b) : il s’agit du régime de Stokes ou régime de Darcy en utilisant la terminologie
des milieux poreux

* la deuxiéme pour des débits plus élevés, ou il commence a y avoir des zones de
recirculation (1.4.c)

* puis la troisieme, ou il y a dissymétrie des lignes de courant (1.4.d).

Nous remercions ici G. Radilla, LEMTA, pour avoir réalisé ces simulations.

Si I’on revient sur cette évolution, on observe qu’aux faibles nombres de Reynolds, les
forces d’inertie sont négligeables devant les forces de viscosité. La forme de I’écoulement est
entierement déterminée par la forme géométrique du milieu dans lequel s’écoule le fluide.
Pour de plus grands nombres de Reynolds, les forces d’inertie agissent sur les lignes de
courant en modifiant leur courbure et la relation n’est alors plus linéaire.

Plusieurs auteurs ont montré expérimentalement [Scheidegger, 1960 ; Schneebeli,
1955] et numériquement que dans un milieu granulaire, la limite d’applicabilité¢ de la loi de
Darcy se situe dans une plage de nombre de Reynolds comprise entre 10 et 20. Une étude
récente [Fourar, 2004] montre, & l’aide d’une comparaison numérique 2D et 3D de
I’écoulement et des pertes de charge dans un assemblage cubique centré de cylindres (2D) ou
spheres (3D), que la loi de Darcy doit étre corrigée par la prise en compte des effets inertiels
pour des nombres de Reynolds supérieurs a 4 pour les spheres ou supérieurs a 20 pour les
cylindres.

Au dela de ce seuil, le régime de Darcy laisse place au régime de Forchheimer [Forchheimer,

1901]. Ce dernier propose une relation quadratique entre la perte de pression et la vitesse
débitante :

AP
=f:%%+§%2 (1.12)
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Le coefficient 77 est appelé passabilité intrinseque du milieu poreux.

Dans le cas d’un fluide compressible (tels les gaz), la loi de Forchheimer prend une forme
différente et s’écrit alors :

AP M [ H 2
_AP_ Feile 1.13
Y (k j (19
2

ou Z est le facteur de compressibilité, R la constante des gaz parfaits, G la vitesse débitante
massique du fluide, M la masse molaire et AP la différence de pression entre I’entrée et la
sortie.

Remarquons ici que, pour que les phénomenes dynamiques puissent €tre correctement décrits
a ’échelle macroscopique a partir de ce qui se passe a I’échelle des pores, il faut utiliser le
nombre de Reynolds. Les choses vont évidemment se compliquer en présence d’une source de
chaleur et de gradients de température dans le milieu poreux comme nous le verrons plus loin
en section 1.3.

Fe = 15.0278

M
Re = 25.0921 o) : Re = 50.8384

Figure 1.4 : Ecoulement laminaire autour d’une sphere a quatre nombres de Reynolds
différents
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0,8
0,6

0,4 4

Figure 1.5 :Profil de vitesse et de porosité proche
paroi avec le rayon des billes égal a 1,25 mm et R
le rayon du milieu 12,35 mm [Gétz, 2002]

1.2.3 - Effets dynamiques en proche -paroi

La vitesse de filtration va varier localement a proximité de la paroi du fait de la non-
uniformité de porosité dans un lit fixe. En effet, le fluide se déplace plus vite au voisinage de
la paroi en raison de la porosité plus €élevée : « channeling effect ». Cette relation entre vitesse
et porosité est bien représentée sur la Figure 1.5 [Gotz, 2002]. G6tz a montré que le profil de
vitesse est directement reli¢ au profil de porosité. Tous les deux sont fonctions de la distance a
la paroi. Ce profil correspond a un diametre de billes égal a 3,5 mm et a ét€ mesuré par RMN
(Résonance Magnétique Nucléaire).

-;aq — Velocity u1/u2
'5 —o=—Porosity
1

UW —+— Porosity *
Velocity

y/d

Figure 1.6 : Dépendance du profil
de vitesse avec le nombre de
Reynolds  [Tsotsas,  Schliinder,
1990]

Pour comprendre le profil de vitesse, nous discutons du modele de Martin [Martin, 1978]. Ce
dernier divise la section du lit en deux zones identiques a celles utilisées pour la porosité ou
cette dernicre prend deux valeurs & (a cceur) et &, (en proche paroi) (Figure 1.3).

Son étude correspond a un milieu poreux contenu dans une enceinte cylindrique de diameétre

D. Le rapport des sections des deux zones est donné par ¢ = ﬁ

Martin s’est intéressé au rapport des vitesses supposées indépendantes dans les deux zones (1
et 2). L’équation obtenue découle de la loi d’Ergun [Ergun, 1952] :

2
EZA(I—E,.)ZHM,-_'_BI—&[ Pt
L g d’ &’

1 1

(i=1,2) (1.14)
avec 4 et B deux constantes.

Martin calcule alors le rapport des vitesses :

Uy _ ¢(1+K)_1+\/[¢(1+K)—1]2 +4(p+MZ)(1-9p+2Z)K
u, 2(¢+MZ)

(1.15)
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2 3
avec: K = Ll Y ,MZI_EI,Z:E Re ,A=150 et B=1,75 pour un lit de
1-¢, ) \ & 1-¢, Al-g

m

v
Darcy de I’écoulement correspondant a la section totale de I’enceinte.

grains sphériques de diametres uniformes et Re = , OU u, est la vitesse moyenne de

I1 constate ainsi la dépendance du rapport des vitesses wau nombre de Reynolds (Figure 1.6),
o - ~_P&*E
au rapport des deux porosités et a la porosité moyenne & = W
De méme, la vitesse au cceur du milieu granulaire (vitesse moyenne) que nous utilisons
(vitesse de Darcy), doit étre corrigée du fait de ces effets de paroi : on a alors d’aprés Martin :

u, _ 1
Z_—(1—¢)+¢a) (1.16)

Nous avons calculé les différentes vitesses pour de Iair (v = 1,15.10° m%s™) mises en jeu
. : . e A D
dans un milieu granulaire d’aprés ces différentes équations, avec ;ZSO et ¢, = 0,365

(correspondant a notre lit granulaire). Pour la porosité en proche paroi, nous avons utilisé &, =
0,487, valeur correspondant a un lit de diamétre infini selon Martin. La Figure 1.7 montre la
variation de ces différentes vitesses en fonction du nombre de Reynolds moyen. La vitesse
moyenne et la vitesse réelle au cceur du milieu sont pratiquement égales. Par contre, la
différence de ces deux vitesses avec la vitesse en proche paroi décroit en fonction du nombre
de Reynolds.

Re
m

Figure 1.7 : Différentes vitesses définies par Martin appliquées a de l’air et rapport des vitesses
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1.3 - Conductivité thermique équivalente des milieux hétérogénes

Un autre paramétre essentiel pour caractériser le milieu poreux est la conductivité
thermique équivalente ou effective. Lorsqu’un gradient de température moyen uniforme est
imposé a un milieu poreux dont 1’espace des pores est occupé par une seule phase fluide
immobile et non réactive, un régime thermique permanent, auquel correspond une densité¢ de
flux thermique uniforme ¢ s’établit. Il est par suite possible de définir la conductivité
thermique effective ou équivalente A, en utilisant une relation semblable a la loi de Fourier

pour les milieux homogeénes, soit :
¢=-2,0T (1.17)

Cette loi, que les techniques de changement d’échelle permettent de justifier
formellement, peut étre généralisée au cas des milieux anisotropes; A,, est alors un tenseur A, .
et dépend des conductivités thermiques A et A, des phases solide et fluide constituant le

milieu poreux, des fractions volumiques de ces phases (porosité) et de la structure de la
matrice solide (continuité, état de surface, points de contacts...). Ses valeurs sont évidemment
comprises entre les valeurs A et A, des conductivités thermiques des phases en présence. La

conductivité thermique équivalente ou conductivité thermique effective d’un milieu
granulaire désigne donc ’unique coefficient de dispersion thermique du milieu a vitesse
nulle.

Il s’agit d’un paramétre qui est accessible de différentes maniéres. On peut 1’obtenir
par exemple :

v’ a partir d’un calcul sur une cellule élémentaire lorsque le milieu est périodique
[Azizi, 1988],

v ou encore a partir d’expériences numériques (résolution de 1’équation de la
chaleur sur un milieu compris entre deux plans paralléles a températures
distinctes mais uniformes, suivi du calcul du flux et de la résistance thermique
d’une telle couche),

v" ou enfin a partir de la mesure expérimentale de la conductivité du mélange.

Lorsque I'une des phases est un fluide, la mesure est délicate du fait de la convection naturelle
qui peut se développer dans 1’échantillon : on a alors bien souvent recours a des modeles de
conductivité équivalente. Ces modeles sont fondés sur 1’assimilation du milieu poreux a une
structure géométrique simple régulicre.

La conductivité effective A, , pour une porosité &, est toujours comprise entre les

conductivités de deux milieux formés de strates paralleles entre elles (Figure 1.8). Les strates
sont paralléles ou perpendiculaires aux surfaces extrémes a températures imposées 77 et 7> et
elles sont isolées latéralement.
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direction du flux de
Tl Chalelll"
Tl
o WS -0 Mg -0
go 0 f g go (p
A'S
T, T,

Figure 1.8 : Strates paralleles et en série

La conductivité est donc comprise entre deux bornes: la borne inférieure correspond au
milieu ou le flux de chaleur est perpendiculaire aux strates et la borne supérieure est celle ou
celui-ci est paralléle aux strates.

<A, <EA+EA, (1.18)
4

A A

Les modeles de type Maxwell ont été établis pour des empilements réguliers formés de
particules dispersées dans une matrice continue.
Maxwell [Maxwell, 1873] fait ’hypothése qu’il n’y a aucune influence mutuelle entre les
particules. La conductivité équivalente du milieu est donnée par :

3 A +2£(1— A J
/‘eq _ Af Af

= - (1.19)

A
f 3 _E(l _ As ]
Af

Le mode¢le de Robert et Tobias [Robert, 1969], modele de type Maxwell, est une amélioration
du modele de Rayleigh [Rayleigh, 1892]. Il est valable pour des empilements réguliers de
particules sphériques et prend en compte l’interaction entre les particules. La conductivité
équivalente est alors donnée par :

Ay _ A —2£+0,400 4,77 -2,133€"" 4,
A A +E+0,409 4,77 -0,906 " 4,

(1.20)
f

24A/A, _373AJA,_6+3A),

A =
YEATIIA A, T A A T A,
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D’autres modeles, que nous ne ferons que citer, existent également :

» Les modgeles utilisés dans les milieux périodiques. Avec ces modéles, il faut cependant
connaitre exactement la structure du milieu poreux, ce qui est un inconvénient. Le
calcul de la conductivité se fait sur une cellule unité. Il existe deux approches
correspondant soit a 1’utilisation de 1’analogie électrique, voir Kunii et Smith [Kunii,
1960] soit a la résolution de 1’équation de chaleur dans la cellule unité.

» Les modgeles statistiques consistent en une description statistique du milieu (nombre et
position des points de contact entre les grains). Ainsi Jinn Huie Huang [Jinn Huie
Huang, 1971] utilise le calcul probabiliste.

Tous ces différents modéles sont largement détaillés et comparés dans la thése de Azizi
[Azizi, 1988].

Nous nous intéressons ici a un dernier modele développé par Zehner et Schliinder [Zehner,
1970]. Ceux-ci font I’hypothése de lignes de flux paralléles. Ils changent ensuite la forme des
particules pour compenser I’erreur commise par les différents modeles. La forme du grain
modifié¢ dépend de la forme des particules et de la porosité du lit fixe. L’avantage de ce
modele, selon ces auteurs, est de donner de bons résultats dans des cas asymptotiques tels que
As =0 ou A= co. La conductivité équivalente est alors donnée par :

A
_Ar
p = ( /1] -
=1l £+ 2 ; £ : 2ln[;j J—Bzﬂ— BAI (1.21)
y -7/ (1_)%3} s 1-22p
A A s

10/9
. . 1-
ou le parametre B suit la loi suivante pour les sphéres : B =1, 25(—‘9]
3

Pour appliquer ces différents modeles, il faut donc s’assurer que les hypothéses sur
lesquelles ils reposent correspondent aux milieux que nous étudions. La conductivité
équivalente dépend également de la température. Dans le cas ou le fluide qui compose le
milieu poreux est un gaz, A, dépend également de la pression [Hahne, 1990]. Plusieurs

facteurs sont donc a prendre en compte pour la détermination de ce coefficient. Le recours a la
détermination expérimentale de cette grandeur est généralement plus précis et plus proche de
la réalité. Nous avons ici utilisé la méthode flash et celle du fil chaud (cf. chapitre 2).
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1.4 - Modélisation de la dispersion thermique au coeur du milieu granulaire

Dans cette partie nous traitons des échanges au cceur du lit, c’est a dire des échanges grain-
grain et grain-fluide et de leur modélisation a 1'échelle macroscopique.

Approche microscopique

Au niveau local, les équations qui gouvernent les transferts thermiques au sein des
phases fluides (V) et solide (V) et a leur interface sont parfaitement connues.

oT
(pc, )f azf =0.(A, 07,)-(pc )fuf.DTf en V; (1.22)
(pcp)s ‘Z 0.(A,0T,) en V, (1.23)
T, =T sur Aj; (1.24)
n, A 07 =n, AT, sur A (1.25)

La conservation de 1’énergie de la phase fluide est décrite par 1’équation (1.22). Celle-ci prend
en compte la conduction et la convection au sein de ce fluide. L’équation (1.23) décrit la
conduction pure au sein de la phase solide. Les deux équations sont reliées entre elles par
deux conditions limites. A I’interface des deux phases, les températures et les flux sont égaux
-équations (1.24) et (1.25).

La résolution de ces ¢équations locales souléve en pratique beaucoup de difficultés, du fait
notamment de la méconnaissance de la structure locale du milieu poreux.

Cependant, dans le domaine d’application qui nous intéresse, c’est I’effet macroscopique qui
présente un intérét. La modélisation de la dispersion consiste donc en un passage des
équations ci-dessus a une échelle dite échelle macroscopique.

Approche macroscopique

La littérature fournit de nombreux modeles permettant de décrire a 1'échelle
macroscopique les échanges thermiques dans un milieu poreux. Les plus utilisés sont le
modele a une température macroscopique, le modele a deux températures avec phase solide
continue et le modéle a deux températures avec phase solide dispersée. Ce dernier est en fait
un modele hybride qui utilise une description microscopique pour le solide tandis que la phase
fluide est décrite a 1’échelle macroscopique. Nous renvoyons ici au livre de Tsotsas [Tsotsas,
1990] qui a analysé ces différents modeles. Ceux-ci ont pu étre établis soit par une approche
intuitive du processus de dispersion et font alors le plus souvent apparaitre des coefficients de
transport dont la définition n'est pas rigoureusement établie, soit par 1'utilisation des méthodes
de changement d'échelle comme la méthode de prise de moyenne volumique.
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1.4.1 - Prise de moyenne sur un volume élémentaire représentatif

Nous allons ici présenter les principales caractéristiques de la technique de prise de
moyenne, appliquée aux équations locales. La technique de prise de moyenne a été
développée en 1967 par Whitaker [Whitaker, 1967], puis par Carbonell et Whitaker [Bear,
1984]. Quintard, Kaviany et Whitaker [Quintard, 1997] I’ont également appliqué a la
dispersion thermique en milieu poreux.

Soit %, une grandeur physique définie sur la phase o (fluide ou solide), sa moyenne <9Ua

) est
définie sur un volume élémentaire représentatif V' (V.E.R) et s’écrit :

<4’a>=%j W, dr (1.26)

o

Le V.E.R. représenté Figure 1.9 est une sphere de rayon 7,,.

Milieu poreux
(macrostructure)

V.E.R

(microstructure)

Figure 1.9 : Approche microscopique, macroscopique et Volume
Elémentaire Représentatif (V.E.R.)

La moyenne intrinseéque a la phase (0) est donnée par :

() =t j v v (1.27)

g o

Elle vérifie donc <4[/(7 >U =€ <(/IU> .

L'application de 1'opérateur de prise de moyenne aux équations de conservation de I'énergie
écrites a 1'échelle microscopique suppose que 1'on utilise le théoréme de prise de moyenne
[Slattery, 1967] :
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(7} =0(r,) s [ 7,0 (1.28)
¥ A

Les équations de conservation de l'énergie sur les phases solide et fluide permettent de
calculer les températures locales 7y ou T (x, y, z, t). Le passage a 1'échelle macroscopique

, . S s ,
donne deux équations moyennes pour les deux champs <T f> et <TS> (x, ¥, z, f) moyennés sur

une sphere de centre M(x, y, z) et de rayon r,, ce qui correspond a un filtrage spatial.
L’application de cette technique dans un espace a une dimension correspondrait donc a une
moyenne mobile avec une fenétre de largeur 2r.

Dans le processus de prise de moyenne, la taille du V.E.R, par exemple son diametre D =2 ry
doit vérifier d << D << L ou L représente la distance caractéristique du milieu a 1’échelle
macroscopique et d la distance caractéristique du milieu granulaire (par exemple le diamétre
des grains).

Cette condition permet de considérer que les grandeurs moyennes sont indépendantes de la
taille du V.E.R. et que les discontinuités microscopiques n’apparaissent pas dans les
grandeurs moyennées.

1.4.2 - Modéle a deux températures

Le modele de dispersion thermique a deux températures moyennes est celui le plus
classiquement rencontré dans la littérature. Son établissement est présenté en détail dans les
travaux de Levec et Carbonell [Levec, 1985]et de Carbonell et Whitaker [Carbonell, 1984].
Son principe est rappelé ici en quelques mots. La valeur exacte de chaque grandeur
(températures et vitesse) est décomposée en une valeur moyenne et une fluctuation, comme
par exemple pour T:

T, =(T,) +T, (1.29)
ou <Tf>f est donnée par (1.23).

Cette décomposition est opérée dans les équations obtenues par apphcatlon de l'opérateur
prise de moyenne. On montre ensuite que les fluctuations spatiales T et T qui s’expriment

en fonction des températures moyennes et de leurs gradients :
7, =0,0(1,) +e,0() +n (1) (1)) (1.30)
. =£.0(1,) +g0(T) + ( <T/>f) (1.31)

Les fonctions de fermeture (f; f;, g /.....) dépendent de la géométrie des pores et du champ
de vitesse locale. En remplagant f et fs par leurs expressions (1.30 et 1.31) dans les

€quations moyennes pour chaque phase, on obtient le systéme suivant :
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£(pe,) "’%‘V =0(4,0(1,) +A, () )~(w, 0(1,) +u,O(T) ) (132
tha, (<Ts >S _<Tf>f)
(1-€)(pc, ) a<aTt> = D.(ASfD<T,->f +A, <Ts>s)_(qu'D <Tf>f +uss'D<T;>S) (133)

~ha (1) ~(1,)')

Le modéle contient quatre tenseurs de dispersion (A), quatre vecteurs vitesse (u) et un
coefficient / difficile a interpréter et a estimer expérimentalement. Dans le cas d’un milieu
granulaire constitué¢ de spheéres de diamétre unique d, on peut montrer, a 1’aide d’un modele
conductif appliqué sur une seule sphére développée aux temps longs — voir chapitre 3- que le

N

coefficient 4 prend la valeur suivante : £ =10 7

Le paramétre a, désigne ’aire de I’interface solide / fluide par unité de volume du milieu
poreux (surface spécifique). Pour un lit fixe de porosité & constitu¢ de particules sphériques
de diametre don a :

. _6(1-¢)
v d

(1.34)

Le modele a deux températures est assez difficile a utiliser en pratique du fait du nombre
important de parametres. Dans le cas d'une géométrie simplifiée monodimensionnelle, Levec
et Carbonell [Levec, 1985] et Zanotti et Carbonell [Zanotti, 1984], ont montré qu'aux temps
longs, le modéle a deux températures peut &tre approché par les équations suivantes :

ag ag

oL,y , ALY __ A @m)
ot ox  (pc,) O

(1.35)

On conserve donc une équation pour chaque phase (0 = f,s) avec la méme vitesse moyenne
u et le méme coefficient de dispersion A . Cependant il a ét¢ montré par ces auteurs que les

zones affectées thermiquement dans chaque phase sont décalées spatialement. En pratique aux
temps longs, le décalage reste négligeable par rapport aux dimensions spatiales
macroscopiques (Levec et Carbonell).

Cette formulation beaucoup plus simple du processus de dispersion thermique peut étre

rendue plus générale par la mise en place d'un modele utilisant une seule température
moyenne.
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1.4.3 - Modéle a une température

Pour obtenir un modéle a une seule température la méthode la plus fréquemment rencontrée
dans la littérature consiste a supposer que les phases solide et fluide sont a I'équilibre

thermique local, soit : <T > = <Tf>f = <TS >S.

Cependant, comme 1’ont démontré Moyne et al [Moyne, 2000], il ne s’agit pas d’une
condition nécessaire. En effet, il suffit de définir une température moyenne <7;,> comme
moyenne enthalpique des températures des deux phases, ce qui s’écrit :

_ 1
(T,)= —(pc,,)t ; IV pc,(r)y T dV (1.36)

avec T, (r) =
(,Ocp )t
Par abus de langage, nous noterons ici (7,)=(T), mais la prise de moyenne (1.36) est une

intégrale pondérée par le rapport des chaleurs volumiques. On peut alors relier la température
moyenne enthalpique aux moyennes intrinseéques des deux phases :

(pe,), (1) =¢ (pc,), (1) + (1=¢) (pc,) (T} (37)

ou (,Ocp) est la chaleur volumique totale du milieu qui se calcule a partir des chaleurs
t

volumiques des deux phases (fluide et solide) par une loi de mélange :
('Ocp), =¢ (,ocp)f + (1-¢) (,ocp)s (1.38)

& désigne la porosité du milieu. Pour I'établissement du modéle a une équation, les
températures locales sont décomposées de la fagon suivante :

T, =(T)+T, et T,=(T)+T, (1.39)

On cherche pour les fluctuations des solutions sous la forme :
T,=g0(T) et T,=g0(T), (1.40)

La température moyenne enthalpique est alors donnée par 1'équation suivante :

(oc,), ?zm.(mm) - e(pe,), (u,) O(T) (1.41)

A . C e . A
avec <u f> la vitesse moyenne intrinséque de la phase fluide telle que up =& <uf> est la

vitesse de Darcy.
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Tenseur de dispersion thermique

A est le tenseur de dispersion thermique qui se décompose classiquement de la fagon
suivante [Moyne, 2000] :

j:(gf/]f+g?/1s)7+ngf T,+e AT, —gf(pcp)f

S

(1.42)

I est le tenseur identité, 7, les tenseurs de tortuosité et D le tenseur de dispersion
hydrodynamique.

7, :Vij i, 0F dd et T, :VLJ. i, 0g dd (1.43)
f Afs s A,»
= 1 - -
D=V—j i, 0fdV (1.44)
fYev

fet g représentent des fonctions de fermeture [Moyne, 2000].

Les composantes du tenseur de dispersion (que nous chercherons a caractériser) sont
constituées :

v d’un terme constant égal a la conductivité thermique du modéle paralléle

v d’un terme de tortuosité dépendant de la vitesse moyenne

v d’un terme résultant de la contribution hydrodynamique du tenseur de
dispersion

Généralement les composantes du tenseur de dispersion thermique A sont représentées sous la
forme de corrélations basées sur le nombre de Péclet du type :

y
A= Ly ppey (1.45)
/]f Af

avec @ = x, y ou z et Pe le nombre de Péclet calculé a partir du diametre des particules, la
vitesse moyenne et de la diffusivité thermique du fluide. A, est ici la conductivité équivalente
du milieu lorsque la vitesse du fluide est nulle car F,(0)=0. Remarquons que ces

corrélations ne prennent pas en compte les propriétés du solide (sauf dans A.).

Il est ici utile de noter que c’est le nombre de Reynolds qui permet de caractériser le
régime de 1’écoulement. Aussi, si on souhaite maintenir la dépendance des coefficients de
dispersion a la géométrie de I’écoulement, des corrélations prenant en compte ce dernier sont
sans doute plus appropriées. Pour que la mesure a 1’échelle macroscopique puisse étre une
évaluation de ce qui se passe a 1’échelle des pores, 1’utilisation du nombre de Reynolds parait
alors une bonne solution si on compare les résultats de la dispersion obtenus pour des fluides
différents. Si on compare des arrangements de solides différents pour un méme fluide, il
importe peu d’utiliser le nombre de Péclet ou le nombre de Reynolds.
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1.5 - Caractérisation de la dispersion thermique : état de ’art

La détermination du tenseur de dispersion thermique peut se faire soit théoriquement
soit expérimentalement. Nous renvoyons ici le lecteur pour de plus amples informations a la
thése de Metzger [Metzger, 2002] qui a réalis€¢ une synthése des différentes corrélations
donnant ce tenseur. Nous mentionnerons ici quelques travaux nous intéressant
particuliérement.

1.5.1 - Détermination théorique
Dispersion longitudinale

Les deux études théoriques les plus pertinentes sont celle de Tsotsas [Tsotsas, 1990] et
celle de Levec et Carbonell [Levec, 1985]. Nous rappellerons ici les deux corrélations qui en
découlent ; nous y ajouterons la loi utilisée en génie des procédés donnant le coefficient de
dispersion transversale.

Tsotas s’est basé sur les moments temporels pour établir sa corrélation concernant le
coefficient longitudinal :

/‘ 2 2
Ax:ﬁ+lpe+ K 1 P+ K 1

Pe (1.46)
I /]f 2 (1+/()2 Nu avd (1+K)2 60 (1_5)/]s

(1—5)(,0cp)s
£(pcp)f

avec K =

La détermination du nombre de Nusselt s’effectue a 1’aide d’une loi établie par Gnielinski
[Gnielinski, 1978] soit :

Nu= (1 +1,5(1 _5))N”sphére

Nusphére = 2 + \Y Nulim + Nutzurb
Nu,,, =0,664Pr" Re"? (1.47)

0,037 PrRe™®
1+2,433Re™! (Pr2/3—1)

turb

ou Re et Pr sont respectivement les nombres de Reynolds et de Prandtl.

Apres analyse des moments spatiaux, Levec et Carbonell [Levec, 1985] ont établi que les
coefficients de dispersion, dépendent de trois contributions, une conductive, une causée par la
dispersion hydrodynamique et enfin une derniére provenant de 1’échange entre les deux
phases. La relation donnant le coefficient longitudinal est :
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p) D
izﬁ+[Dx _ﬂj+(L+C2+gj( K _Pe G ]Pe (1.48)

A A D_f D, l+k Pe )\ 1+Kk Nu'a,d Nu'
D D
avec ,=L+; et | —=—-—2|=0,231Pe" 6<Pe<600.
Nu' Nu 104 /A, D, D,

C;, C, et C; sont des constantes. C, et C; sont des constantes provenant de la dispersion
hydrodynamique et de la tortuosité. C; est déterminé expérimentalement. Dans le cas du
milieu poreux nous intéressant C; = 0 (avec i = 1, 2 ou 3).

Dispersion transversale

Le coefficient de dispersion transversal a aussi été déterminé par Levec et Carbonell.
Ses deux contributions ont été identifiées comme conductive et hydrodynamique, le terme
hydrodynamique a été obtenu par Han [Han, 1985] pour une porosité de lit de 0,365. Ces
auteurs obtiennent la corrélation suivante :

A A
Y = /1_6‘1 +0,194 P pour 6 < Pe <600 (1.49)

! S

>

Cette derniere loi est en contradiction avec la corrélation largement utilisée en génie des
procédés celle de Bauer et Schliinder [Bauer, 1978]. Cette derniére corrélation a été établie a
partir d’une hypothése d’écoulement entrelacé sur un réseau périodique de sphéres :

A

p)
L =294 4 Pe (1.50)
f /]f

A

Le coefficient 4, :g provient du modele correspondant établi pour la dispersion massique.

Ce coefficient vaut 4, :% dans le cas de la dispersion thermique pour Bauer et Schliinder

[Bauer, 1978]. Cette valeur provient d’expériences effectuées pour des spheres.

1.5.2 - Détermination expérimentale

Les études expérimentales sur la dispersion en transfert de masse en milieu granulaire
sont relativement nombreuses dans la littérature [Gunn, 1974].
Il n’en est pas de méme pour la dispersion thermique qui n’est pas tout a fait analogue a la
dispersion massique car elle met toujours a contribution la diffusion dans la phase solide.
Nous mentionnerons cependant les résultats de Levec et Carbonell [Levec, 1985] et ceux de
Dixon et al [Dixon, 1979]. 1l est a noter qu’il existe une forte dispersion des résultats pour la
caractérisation de ce phénomene. Nous citerons quelques études expérimentales nous
intéressant directement.
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Yagi et al [Yagi, 1960] ont été les premiers a mesurer les conductivités thermiques axiales des
lits granulaires. Leurs mesures du coefficient de dispersion thermique axial ont été réalisées
dans un milieu granulaire de billes de verre de 1,6 mm de diamétre confiné dans une enceinte
adiabatique constituée de deux tubes de verre (Figure 1.10). Le milieu granulaire a été¢ chauffé
au-dessus par une lampe infrarouge pour permettre a la chaleur de pénétrer jusqu’en bas.
L’écoulement d’air utilisé était dans le sens contraire au flux de chaleur. Les mesures ont été
effectuées pour des nombres de Péclet inférieurs a 10. Les auteurs, d’aprés leurs résultats
expérimentaux, ont établi un modele linéaire pour déterminer le coefficient longitudinal de
dispersion thermique :

A A
L=+ 4 Pe pour 0( Pe(10 (1.51)
/]f /lf V
avec 4,=0,8
- 2009 ;
h -« lampe
infrarouge tkc]
/1IN
| thermocouple o
o
® " tube en verre 100 °
° « adiabatique » i \ 5
o e
hd 3 cf e 5 \0 \{2'8
| milieu poreux \D : \0 : o~ 105
il | e~ 358-30.5
il T il 0 1 1 1 L L
[ } 2 4 6 8
gaz X em)
Figure 1.10: Dispositif experimental Figure 1.11: Profils de température
utilisé par plusieurs auteurs [Votruba, 1972]

Votruba et al [Votruba, 1972] ont évalué le coefficient de dispersion thermique axial a
partir des profils axiaux de température de lits garnis en régime permanent (Figure 1.11). Des
mesures des coefficients ont été effectuées a I'aide d'un réacteur a parois en verre semblable a
celui de Yagi et al [Yagi, 1960] avec des particules solides de différentes tailles, formes et
conductivités thermiques différents (Figure 1.10). Leurs résultats ont été¢ exprimés en fonction
du nombre de Péclet du transfert de chaleur axial (nombre de Péclet calculé a partir du
coefficient de dispersion axial) :

A
L:ﬁ 1 + 14,5 (1.52)
Pe Af Re Pr C
X ) 1+ 3
Re Pr
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(pcp)tuDd

avec Pe = etC;=29

X

Le probléme de cette relation est I’introduction d’une constante arbitraire Cs.

Cependant, ces auteurs sont les premiers a avoir donné le coefficient de dispersion
longitudinal en fonction du nombre de Prandtl et du nombre de Reynolds

Dixon et Cresswell [Dixon, 1979] ont un peu plus tard utilisé le méme type de relation. Ils ont
utilisé pour cela un modéle pseudo-homogéne. Ils basent leur corrélation sur les résultats
expérimentaux de Yagi et al/ [Yagi, 1960] et de Gunn et de Souza [Gunn, 1974] :

1 _0,73€+ 0,5
Pe.  Re Pr [ 9,7£j
1+

(1.53)

Re Pr

Gunn et De Souza [Gunn, 1974] ont, eux, effectué dans un milieu granulaire une
excitation périodique a l'entrée avec mesure de la réponse en sortie. Le modele utilisé est le
modele a deux températures avec la phase solide dispersée. Le fluide utilisé est l'air et le
solide des billes du verre. Le probléme rencontré par Gunn est la faible sensibilité du signal
aux paramétres. Les résultats sont imprécis mais permettent cependant de sentir
qualitativement la variation du coefficient de dispersion longitudinal avec la vitesse.

Une étude plus récente réalisé par Elsari et Hughes [Elsari, 2002] a été conduit pour
déterminer le coefficient de dispersion axiale dans les mémes conditions expérimentales que
Yagi et Votruba (Figure 1.10). Les expériences ont été réalisées pour différents gaz et
différents matériaux solides (essentiellement des grains de catalyseur). Les expériences ont
¢été réalisées pour des nombres de Reynolds inférieurs a 30. Les auteurs constatent une forte
dépendance du coefficient de dispersion axiale avec la taille des grains mais aucune influence
de la nature du gaz sur celui-ci. Avec ces différentes données, ils donnent non pas une
corrélation unique mais plusieurs relations lin€aires en fonction du nombre de Reynolds. Ce
type de relation est souvent utilisé pour le coefficient de dispersion transverse. Par exemple,
pour des spheres d’alumine, ils trouvent une relation du type :

A 5634312 Re (1.54)
Af

Une étude similaire, a celle que nous allons effectuer mais complétement différente
des précédentes tant au niveau de la configuration que de ’exploitation des mesures, a été
réalisée par Metzger [Metzger, 2002] au L.E.M.T.A. Nous nous baserons sur le méme
dispositif expérimental et sur la méme méthode pour notre étude (cf. chapitre 2 et 3). Il a
travaillé avec un lit de billes de verre monodisperses (diamétre d = 2 mm) traversé par un
écoulement d’eau et a cherché a valider le modéele a une température. La géométrie de son
dispositif expérimental est simple : un fil chauffant est installé perpendiculairement a la
vitesse de Darcy (uniforme) au sein du milieu granulaire. Des thermocouples sont positionnés
en aval du fil. L’augmentation de température suite a un échelon de puissance électrique
pendant les expériences est faible (de ’ordre de 1 a 2 K). Ces faibles ¢lévations de
température garantissent une constance des propriétés thermophysiques des deux phases et
¢vitent les effets non linéaires dus a leur thermodépendance. Compte tenu du caractére
bidimensionnel du transfert de chaleur, le tenseur de dispersion a deux composantes
principales (A, et A,) qu’il a cherché a estimer.
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A partir des thermogrammes obtenus, les coefficients de dispersion thermique ont été estimés
par une méthode des moindres carrée spécifique. La qualité de ces estimations a été validée
par des simulations de Monte Carlo: le coefficient longitudinal A, de dispersion thermique
ainsi que la vitesse de Darcy ont pu étre estimés avec précision, cependant il a obtenu des
valeurs moins précises pour le coefficient transverse A,.

Ses résultats (Figure 1.12) lui ont permis de construire une corrélation pour le coefficient
longitudinal:

A

A (Pe)

y = +0,0731 P pour 3 < Pe<130 (1.55)

A

v
Avec Pe = ud/ay le nombre de Péclet et ayest la diffusivité thermique du fluide
Le coefficient transversal est beaucoup plus difficile a évaluer dans le cas eau / billes de verre

méme si la variation linéaire de ce coefficient avec le nombre de Péclet est justifiée (Figure
1.13). T. Metzger propose la corrélation suivante :

/]y (Pe) B Aﬁ
Sl = T 44, Pe pour3 < Pe <130 (1.56)
S S

avec A, compris entre 0,03 et 0,05.

200, - = - : : : - 7

160}
5
120+ 4
L::’)\
80! 3 _
+ B,(TC7)
2. . o [
. 4
40+ r.eq.fz.[ . O
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0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Pe Pe

Figure 1.12 : Résultats expérimentaux et corrélations de Metzger

En conclusion, la mesure des coefficients de dispersion thermique en milieu granulaire
reste assez délicate. D'une fagon générale, le coefficient de dispersion longitudinal est
largement supérieur au coefficient de dispersion transversal calculé ou mesuré. Il est possible
de dégager dans la littérature quelques tendances quant aux variations de ces coefficients en
fonction du nombre de Péclet : une loi de puissance avec un exposant compris entre 1 et 2
pour le coefficient longitudinal et un exposant proche de 1 pour le coefficient transversal.
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L'é¢tude de Metzger a montré que la fiabilité des résultats était trés dépendante du modeéle et de
la méthode d'inversion de mesures.

La grande faiblesse des différentes études déja menées se situe essentiellement dans la
détermination du coefficient transversal. En effet, les résultats sont approximatifs voire
inexistants. La détermination de ce coefficient est difficile du fait de la présence des
phénomenes en proche paroi qui apparaissent lorsque 1’on utilise une source étendue
(phénomenes que nous allons présenter dans la section suivante). Ces effets se font
vraisemblablement moins sentir lorsque ’on utilise une excitation pour laquelle I’aire de la
paroi est idéalement nulle.

1.6 - Modélisation de la dispersion thermique en proche paroi

La description du transfert de chaleur en proche paroi est rendue délicate par les
distorsions locales du profil de porosité (cf. section 1.1.2) et de la nature du transfert
(conduction ou convection selon la nature du contact local). Il existe deux grandes classes de
méthodes pour modéliser ces phénomenes : les modeles « standards » utilisant un coefficient
d’échange convectif et les modeles dispersifs plus cohérents avec 1’approche utilisée dans le
cceur du milieu granulaire.

1.6.1 - Modéle standard ou modéle a coefficient d’échange convectif

Certains auteurs ont longtemps utilis¢é un coefficient de dispersion transverse A,

constant - calculé par exemple a partir de la relation (1.50) - sur toute la section du milieu
granulaire couplé a un coefficient de transfert a la paroi /,. Ce modele est appelé modéle
standard [Tsotsas, Schliinder, 1990] . L’utilisation de ce coefficient /4, est cependant trés
critiquée dans la littérature méme si récemment Bauer et Adler [Bauer, 2002] ont montré
qu’avec de bonnes conditions limites ce modele était applicable.
Un des problemes de ce modéle est la détermination du coefficient de transfert a la paroi.
Lamine [Lamine, 1992] a réalis¢ des travaux pour caractériser ce transfert en paroi. En
chauffant la paroi par des résistances électriques, elle suppose que le flux de chaleur transféré
peut s’écrire :

¢,=h,(1,-T). (1.57)

A partir de la reconstruction des profils de température a I’intérieur du lit (écoulement de
plusieurs liquides), différents parametres (conductivité radiale du lit et le coefficient de
transfert de chaleur) a partir d’un modéle homogene. Le coefficient £, est déduit par
extrapolation de la différence de température, de quelques degrés, au sein du lit. Elle trouve
donc un coefficient 4 exprimé en fonction du nombre de Nusselt :

— -0,25 — hp d
Nu=3Re avec Nu = F pour 5< Re<120 (1.58)

y
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En outre, elle remarque que la résistance a la paroi est approximativement égale au rapport du
diametre de particule a la conductivité thermique du lit.

Cependant, la détermination de ce parametre est délicate. A bas nombre de Reynolds (< 200),
les corrélations de la littérature donnent une dispersion énorme de ce coefficient d’échange 4,.
La Figure 1.13 montre les résultats de différents auteurs [Tsotsas, Schliinder, 1990] lorsqu’ils
utilisent le modéle convectif. On peut voir que pour des nombres de Péclet inférieurs a 10°,
les r3ésultats sont tres dispersés. Cette dispersion cesse pour des nombres de Péclet supérieurs
alo.

3
10 —. W ) W
fogar sty o3

100 ke

Figure 1.13 : Résultats obtenus avec le modele
standard a bas nombre de Péclet [Tsotsas,
Schliinder, 1990]

On peut noter que les auteurs qui étudient les transferts transverses avec prise en
compte des parois négligent toujours la dispersion axiale. Dixon [Dixon, 1985] a justifi¢ cette
hypothese.

Dixon [Dixon, 1984] a montré qu’a nombre de Reynolds élevé le modele suivant pour le
coefficient de chaleur en paroi (modé¢le « standard ») peut étre utilisé :

hd (D j_w] 13 059
—=|1-15 | — Pr Re (1.59)
/1f ( d

avec Re = u,, d/ Vy et u,, la vitesse débitante moyenne dans la conduite de diametre D. Cette
corrélation a été établie a partir de mesures ou le fluide est de I’eau. Tsotsas [Tsotsas,
Schliinder, 1990] a montré, en s’appuyant sur le modele de dispersion transverse (1.50), que
la corrélation précédente n’était valable que pour des nombres de Péclet élevés c’est a dire

A
u, d » 8 —=L . Pour des billes de verre de 2 mm de diamétre, ceci correspond a un
! !
nombre de Péclet de 100 pour I’air et de 11 pour I’eau.

pour Pe =
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1.6.2 - Le modéle dispersif

Winterberg et Tsotsas [Winterberg, Tsotsas, 2000] ont adopté une approche différente
de celle du mode¢le standard. Ils utilisent un coefficient de dispersion transversal qui dépend
de la distance aux parois.

Loin des parois, Bauer et Schliinder [Bauer, 1978] ont établi sur la base de considérations
théoriques la corrélation linéaire (€quation (1.50) pour ce coefficient).

En proche paroi, ce coefficient dépend de la variation de la porosité, de la vitesse et de la
distance aux parois. Un nouveau modele dispersif a donc été présenté et validé par
Winterberg, Krischke, Tsotsas et Vortmeyer [Winterberg, 1999] et Winterberg et Tsotsas
[Winterberg, Tsotsas, Krischke, 2000].

En proche paroi, deux types de régimes asymptotiques sont définis :

* le régime a haut nombre de Péclet ou le modele standard est applicable. Le transfert
pariétal se fait alors par mélange hydrodynamique.

* le régime a bas nombre de Péclet ou I’écoulement est laminaire. Le mode¢le standard
ne peut s’appliquer du fait de la trop grande dispersion des valeurs du coefficient
d’échange pour ce régime (Figure 1.13). Ce régime €quivaut a des nombres de
Reynolds particulaires inférieurs a 1000.

¢ Dixon (1988), Bldp=6.9 ¢ Dixon (1988), D/d =6.9 ’
2.0 o Schuler et al. (1952), D/d,=7.0-14.0 ‘ 5 ©  Schuler et al. (1952), D/d,=7.0-14.0 _
@ DeWasch/Froment (1972), Dldp=16.6-27.6 F ®  Hal/Smith (1949), D/d =14.0 co
v Lerou/Froment (1877), D/d =10.4 . 4 ¢ DeWasch/Froment (1972), D/d =16.8-27.6
1511 a Coberly/Marshall (1951), D/d =10.6-34.9 l® v Lerou/Froment (1977), D/dp=10.4 )
: - . . y " ‘ ® Bunnellet al. (1949), D/d =14.0 .. . . .
‘ K,=0.16 o - 3 o b Y g
J— K, =0.125 1 : . — A - Coberly/Marshall (1951), D/d =10.6-34,9
1.0 ! ~(average) v : . -
4 | (spheres) R o :
S - v | ) 2re--
- w ] ‘o %
0.5 o & "Q'Qi A P = 1 1 ke R .
Al K, =0217 S ®  vee 2 o
i : A i 2505 AY M 4 B .
0.0 i (Bauer) 0 i .
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K, [-] Re, [1]

Figure 1.14 : évolution du coefficient K, en fonction du nombre de Reynolds et de la
constante K; pour un écoulement d’air [Winterberg, Tsotsas, 2000]

Cette zone en proche paroi est hétérogene, le coefficient de dispersion est donc variable. La

corrélation proposée, qui dérive de I’approche de Bauer et Schliinder (1.50), est alors
[Winterberg, 1999]:

A, (r):/]eq +A(r)/]f Pe (1.60)
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R-r
avec A(r):KIMf(R_’”) et f(R—r)= [sz
moyen 1 si R—r> K2 d

] si R-r<K,d

Ol Umoyen correspond a la vitesse superficielle moyenne et w o correspond a la vitesse
superficielle au ceeur du lit.
K; K> etn ne sont pas a priori fixés, ils dépendent du nombre de Péclet. La Figure 1.14 donne

les valeurs K; et K, pour différents nombres de Reynolds (Re=Re, =) qu’ont
14
s
utilisés différents auteurs| Winterberg, Tsotas, 2000]. Winterberg recommande la corrélation
suivante :

K =1/8;n=2cet K, :0,44+4exp(—%Rej (1.61)

Ce nouveau modele est plus riche que le modele a coefficient convectif: un meilleur
ajustement du profil de température (Figure 1.15) est obtenu, ce qui est normal compte tenu
du fait que 1’on introduit trois nouveaux parametres. On peut cependant s’interroger sur la
signification physique et la pertinence de ces nouveaux parametres et le caractere prédictif de
la modélisation associ¢e. Cette modélisation repose en effet a la fois sur la variation du
coefficient de dispersion transversal de Bauer (1.50) et sur son extrapolation & un milieu ou
les porosités et les vitesses de filtration, varient en fonction de la tranche parall¢le a la paroi
considérée. Le caractére intrinseéque de cette approche peut étre conteste.

70

A © measured values
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Figure 1.15 : Comparaison du profil de température
entre le modéle standard a,, et le nouveau modele
( /l(r) ) [Winterberg, Tsotsas, 2000]
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Nous avons présenté dans ce chapitre les principaux modeles de dispersion thermique
en coeur et en proche paroi. Nous baserons la suite de notre étude sur le modéle a une
température. Nous tenterons ensuite d’estimer les coefficients de dispersion et chercherons a
les présenter sous forme de corrélations. Puis, nous tenterons de présenter un modele différent
de celui de la littérature pour la caractérisation de la dispersion thermique proche de la paroi.
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Chapitre 2 : Dispositif de caractérisation en cceur
de milieu

Ce deuxieme chapitre a pour objet de décrire le dispositif expérimental permettant la
caractérisation de la dispersion thermique en cceur de milieu granulaire. Tout d’abord, nous
préciserons les différentes propriétés thermophysiques des deux milieux que nous utiliserons :
air / billes de verre et support de catalyseur / air. Ensuite nous détaillerons le dispositif
expérimental.

2.1 — Caractérisation statique des milieux utilisés

Les propriétés thermophysiques des différents milieux sont considérées comme
constantes. En effet, les variations de température pendant les expériences sont de 1’ordre de 1
a2K.

2.1.1 - Milieu billes de verre/air

Les billes de verre utilisées (de diamétre d = 2 ou 3 mm) sont constituées de :
S10, (66%), NaxO (15%), CaO (7%), Al,O3 (5%), B203 (3%), ZnO (2%), CdO (1%) et MgO
(1%). Cette composition nous permet d’obtenir la chaleur massique du verre qui est de 798
Jkg' K. La masse volumique déterminée par Metzger [Metzger, 2002] est de 2600 kg.m™.
La conductivité du verre, non connue, est donnée par les tables [Lide, 1998] pour du verre de
chimie, elle estde 1 W.K'.m™".
Pour la phase gazeuse, nous prenons les valeurs de la littérature [Lide, 1998] données pour de
I’air a la température de 20°C (cf. Tableau 2.1).

La conductivité équivalente du milieu air-billes de verre a été mesurée expérimentalement par
méthode « flash » par Azizi [Azizi, 1988] et vaut 0,2 W.K'.m™

air verre | verre/air

chaleur massique (C,) J.K".kg" 1007 798

masse volumique () kg.m™ 1,177 2600
(pC,) JK' ' .m? 1,2.10° | 2,08.10° | 1,32.10°

conductivité thermique (A) W.m K’ | 0,026 1 0,2
diffusivité (a) m”.s”’ 2,22.10° | 4,81.107 | 1,52.10”
porosité () 0,365
diamétre (d) mm 2et3

Tableau 2.1 : Propriétés thermophysiques du milieu verre / air a 20°C
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2.1.2 - Milieu support de catalyseur / air

La société Axens nous a fourni un support de catalyseur a matrice d’alumine. Les

propriétés du milieu granulaire support de catalyseur/air ont été mesurées expérimentalement
soit par nous méme soit par I’[.LF.P.
La Figure 2.1 (gauche) montre une coupe du grain de catalyseur réalisée au Microscope
Electronique a Balayage grossie 40 fois. On voit nettement que le support de catalyseur est
poreux a plusieurs échelles et relativement sphérique. Son rapport de circularité est de 1,13.
Le diameétre de ces grains varie de 2 a 4 mm. Une analyse granulométrique (réalisée par I’IFP)
nous fournit un diamétre moyen de 3,28 mm (il s’agit ici de la moyenne des diametres).

14mm

Figure 2.1 : Photo du grain de support de catalyseur.

Nous voyons donc que deux porosités seront présentées ici, la porosité externe qui est
occupée par 1’air en dehors des grains et la micro —voire nano- porosité qui est visible sur la
Figure 2.1 (droit, grossissement de 250).

Les propriétés du support catalyseur sont les suivantes :

La masse volumique d’un grain n’a pas été mesurée directement. La densité de grain
se calcule, dés lors que le volume des micropores est négligeable, a partir de la densité
structure (Oy.), de la densité de 1’alumine « en masse » et du Volume Poreux Total (VPT)
par:

m m 1 1
ps = s = s = = I (2])
Y yPT+

m, m Puiru

N s

14
Vgrain pore stru pore +

Les valeurs du VPT et de p, sont confidentielles.

La chaleur massique a ¢t¢ mesurée par calorimétrie, non pas sur les grains, mais sur

le méme solide obtenu a partir d’un gel (Figure 2.2) soumis & un traitement thermique
préalable. Des pastilles de ce gel ont ét¢ moulées (échantillon cylindrique de 30 mm de
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diamétre et de 10 mm d’épaisseur) puis ont subi un traitement de séchage et de solidification
dans un four a moufle :

préchauffage a 60°C pendant 3 heures
montée a 140°C (5°C/min)

chauffage a 140°C pendant 3 heures
montée a 600°C (5°C/min)
calcination a 600°C pendant 2 heures

YVVYYVY

On obtient ainsi des pastilles assez friables, n’ayant pas exactement le méme aspect que les
grains utilisés lors des expériences. Dans ces conditions, la chaleur massique mesurée (Cp;)
au LEMTA a I’aide d’un calorimétre différentiel spécifique est de 916 J .K'l.kg'l.

Figure 2.2 : Gel constituant le support de catalyseur

La diffusivité thermique et la conductivité apparente du milieu air / support de
catalyseur a été mesurée par deux méthodes : la méthode « flash » et la méthode du fil chaud.

La méthode flash

La méthode "flash", initialement développée par Parker [Parker, 1961] est une méthode
couramment employée pour la mesure de la diffusivité thermique de matériaux. Elle consiste
a exciter un échantillon plan cylindrique de petites dimensions par une bréve impulsion
thermique sur sa face avant. On mesure ensuite sa réponse en température soit du coté de la
face irradi€e, on parle ainsi de technique "face-avant", soit sur la face opposée, il s'agit alors
d'une technique de type "face-arriere". Dans notre cas, nous avons utilisé la technique "face-
arriere" et la mesure de température est réalisée a l'aide de thermocouples de type semi-
conducteurs (Bi,Tes). L'échantillon est supposé¢ homogene, isotrope et opaque. Ses propriétés
thermophysiques sont également supposées constantes au cours de I'expérience (faible
¢lévation de température).

Nous avons deux échantillons d’épaisseurs différentes pour valider les résultats. Les
grains utilisés sont placés a l’intérieur d’un godet cylindrique de 10 mm ou 15 mm
d’épaisseur dont la paroi latérale est un tube cylindrique en PVC de 1 mm d’épaisseur. Ces
deux godets sont fermés par deux clinquants en cuivre d’épaisseur 0,20 mm peints en noir

45



Chapitre 2 : Dispositif de caractérisation

pour assurer 1’absorption uniforme de I’énergie. La porosité mesurée des deux échantillons est
de 0,45. Le schéma de principe est donné figure 2.3. La mesure de la réponse en température
de I’échantillon sur la face opposée au flash (dite face arriére) permet d’identifier la
diffusivité thermique du matériau. Une procédure spécifique d’identification de la diffusivité
thermique a été mise en place pour prendre en compte I’effet du creuset et des deux clinquants
sur le thermogramme.

La diffusivité a été mesurée pour les échantillons de 10 mm et de 15 mm. Les valeurs
mesurées varient de moins de 12 %.

godet

milifi]lll o % clinquant en cuivre
granulaire

impulsion
thermique
« flash »

Figure 2.3 : Schéma de principe de la méthode « flash »

La méthode du fil chaud

Le principe de la mesure est le suivant : un fil métallique fin est placé au coeur du
milieu a caractériser (Figure 2.4). A l'instant pris pour origine, on délivre une puissance Joule
constante que 1'on mesure. Simultanément, on reléve la variation de la température du fil soit
par un thermocouple soudé¢ sur le fil (méthode dite du "croisillon"), soit directement par la
mesure de la résistance du fil. Dans sa forme traditionnelle, I'identification de la conductivité
thermique s'effectue aux temps longs (développement asymptotique), ce qui justifie
l'appellation de régime quasi-établi. La Figure 2.5 représentant les courbes expérimentales,
théoriques et les résidus montrent que ceux-ci sont de bonne qualité. La conductivité
¢quivalente obtenue par cette méthode differe de 15% de celle obtenue par la méthode flash.
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Fil chaud R

g 1) SR

1] R

%% | Milieu 1
(% granulaire

T (°C)

% 0 courbes
xpérimentales :
v R théotiquesii |

1oL S .c
10 10

g 10

t(s)
Figure 2.4 : Schéma de principe . ) , S L.
du fil chaud Figure 2.5 : Températures expérimentales et

théoriques de la méthode « fil chaud »

Nous voyons donc que deux méthodes de caractérisation différentes donnent des
conductivités équivalentes égales a 15% prés.

A partir de la conductivité apparente du milieu, on peut obtenir la conductivité effective du
solide en inversant les mod¢les théoriques de la littérature a savoir celui de Robert et Tobias
[Robert, 1969] et de Zehner et Schliinder [Zehner, 1970].

2.1.3 — Comparaison des deux systéemes étudiés

Cette partie est confidentielle.

2.2 — Banc de caractérisation de la dispersion thermique gaz / grain

Le dispositif expérimental est représenté sur la Figure 2.6. Il est décrit ci-dessous pour

le systeme billes de verre / air. Pour le systéme support catalyseur / air, on utilise le méme
dispositif.
Les billes de verre de diameétre d = 2 mm maintenues par deux plaques perforées en
polyméthacrylate de méthyle (Altuglas®) remplissent une enceinte parallélépipédique en
Altuglas® dont les dimensions sont indiquées sur la Figure 2.7. Le choix de ces dimensions
est dii a plusieurs contraintes. La boite doit étre suffisamment longue dans la direction de
I’écoulement (x) : le lit s’étend sur 12 cm en amont de la zone de mesure de manicre a
atténuer les différences locales de vitesse et de température. En aval de la zone de mesure, une
distance de 10 cm est nécessaire pour éviter que les hétérogénéités de la sortie ne perturbent la
mesure. Dans la direction y, la boite doit étre assez large pour que la zone chauffée n’atteigne
pas les parois et pour que le milieu puisse étre considéré comme infini. Un fil métallique
chauffant et 13 thermocouples sont insérés dans le lit.
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plaque perforée

connexion du fil milieu poreux

chautfant

thermocouple

plaque perforée

sortie

Figure 2.6 : Dispositif expérimental

20 cm

-—
10 cm
F Y
\ A 12 cm
ecoulement Y
zone de mesure
40 cm 18 em
v
F 3
10 cm
v

Figure 2.7 : Dimensions du dispositif expérimental

2.2.1 - Milieu poreux
Pour des raisons de simplicité de mise en ceuvre, nous avons décidé de travailler avec des

billes de verre monodisperses. Le choix de leur diameétre est soumis a deux contraintes
antagonistes :
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* la premiére est liée aux méthodes de changement d’échelle utilisées pour établir le
modele : d << L ou L est une longueur caractéristique du systeme. Nous prendrons L
de I’ordre du décimétre. Le diamétre d doit donc étre inférieur au centimetre. Il faut
éviter que la zone a ceeur soit soumise aux effets thermiques de paroi (cf. section 1.5)

* la deuxiéme est de tester le modeéle pour des nombres de Péclet élevés. Plus le
diamétre des billes est grand, plus le nombre de Péclet est élevé a débit donné.

Les billes choisies ont un diametre de 2 mm. Nous avons également réalisé des expériences,
en respectant encore la premiere contrainte, avec des billes de verre de 3 mm et des grains de
support de catalyseur de 2 a 4 mm.

2.2.1.1 - Mise en place du milieu poreux

Afin de disposer d’un milieu granulaire homogene et consolidé, il faut disposer d’une
procédure de construction du lit fixe. Nous nous sommes inspirés du systeme de chargement
utilis¢é en milieu industriel par I'IFP. Les systémes industriels utilisent des distributeurs
tournants pour provoquer une pluie réguliere de particules [Trambouze, 2002]. On peut
obtenir un résultat similaire en chargeant les billes de verre a travers un plateau perforé au
diamétre des billes (ici 2 mm). Le chargement est ainsi dense et présente les avantages
suivants :

* le tassement du lit n’évolue plus apres son chargement initial
* larépartition du fluide est plus homogene
e 1’écoulement est plus proche du type « piston » (en moyenne).

Le chargement doit, en outre, répondre a des exigences qui « garantissent » cette bonne
répartition des billes tout au long de celui-ci ; ces « conditions » nous ont été fournies par
I’IFP. La procédure que nous détaillerons ci —dessous permet de réaliser un chargement dense
et une quasi parfaite distribution des grains.

Durant le chargement aux points 1/3 (2 13,3 cm de hauteur) 2/3 (a 26,6 cm de hauteur) et au
final (2 40 cm de hauteur), la planéité de la surface de chargement doit étre vérifiée. Puis on
reléve la masse (m) et la hauteur (%) totale chargée a chaque étape. Ces deux grandeurs
doivent respecter deux criteres. Ces derniers correspondent au controle de la quasi-constance
de la masse volumique apparente de la portion construite du lit au cours du chargement :

1% critére : un écart de 5% maximum est toléré entre deux mesures consécutives, ce
qui signifie que :

¢, = |[m2/3/h2/3 _m1/3/h1/3}| (5% et c,= ||:mt0tale/htotale _mz/s/h2/3:|| (5%
‘ (m1/3/h1/3) ‘ ‘ (m2/3/h2/3) ‘

2.7)

2°™ critére : un écart de 2,5% maximum est toléré entre une mesure intermédiaire et la
moyenne du lit :
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_ | [mtotale/htotale - m1/3 /h1/3 :|| |[mtotale/htotale - 1’1’12/3 /h2/3 :||

c, = (2,5% et c, = (2,5%
L (Mu/hw) | (M) | 2.8)
totale totale totale totale
4500+
4000+
~ 3500
NS
3 3000 — billes de verre 2 mm
g ---- billes de verre 3 mm
= ~ support catalyseur
2500
2000
1500+
15 20 25 30 35 40

hauteur (cm)

Figure 2.8 : Courbes de chargement

Si ces critéres ne sont pas respectés le lit est déchargé et on recommence le chargement. La
Figure 2.8 représente les différentes courbes de chargement correspondant aux différents
milieux poreux utilisés. Ces chargements valident les critéres demandés (équations 2.7 et 2.8).

2.2.1.2 - Porosite

Une fois le milieu poreux mis en place, il nous faut calculer la porosit¢ du milieu pour
pouvoir le caractériser. Le volume total de la boite est V, =0,1x0,2x0,4 = 8.10°m’. La
masse totale de billes versées dans la boite (cf. Figure 2.8) my; est mesurée. Ces données nous

m;
Vie P,
pour les billes de verre de 2 mm, de 0,366 pour les billes de verre de 3 mm et de 0,411 pour le
support de catalyseur.

permettent de calculer la porosité du milieu: £ =1-

. On trouve une porosité de 0,365

2.2.2 - Mesure de température

Toutes les températures sont mesurées par des thermocouples de type E. Le couple
Chromel / Constantan a été choisi a cause de sa force électromotrice élevée (60 uV/K). Les
fils ont un diamétre de 127 pm et sont recouverts d’une gaine isolante en Téflon®. La soudure
des thermocouples, d’environ 0,5 mm, est faite a partir d’un alliage contenant de 1’argent et de
I’étain. Les deux fils sont dénudés torsadés et soudés au fer, les extrémités sont ensuite

coupées. On obtient ainsi une soudure trés fine qui résiste a nos sollicitations mécaniques
(Figure 2.9).
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Figure 2.9 : Soudure de la jonction du thermocouple
(grossissement = x1())

Nous avons essay¢ de souder ces mémes thermocouples par fusion acétyléne-oxygene au
chalumeau. La soudure obtenue a I’avantage de ne pas posséder de métal d’apport et d’étre
encore plus fine que précédemment mais présente I’inconvénient de ne pas étre solide
mécaniquement. La soudure a 1’étain est donc la solution retenue ici.

Ces thermocouples sont utilisés d’une facon classique (thermocouple simple) pour mesurer la
différence température entre une jonction de référence et une jonction de mesure (la soudure).
La jonction de référence est installée au centre d’une boite remplie de mousse isolante et d’un
cube de cuivre de 5 cm de coté dont la température est mesurée par une sonde a résistance de
platine de type Pt100 (Figure 2.10). La résistance de platine est de 100 Q a 7= 0°C et a une
dépendance en température normalisé (norme IEC 751). Une résistance de 100 Q est mise en
série et ce circuit est raccordé a la carte d’acquisition. Les deux chutes de tension sont alors
mesurées

/Gonnecteurs PH100
et thermocouples

Figure 2.10 : Boite avec mousse isolante
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L’erreur sur la mesure de la résistance de précision (£ 10 mQ) entraine une erreur sur
la température absolue d’environ 25 mK. La mesure des tensions introduit un bruit de mesure
d’environ 20 mK.

Les thermocouples sont ensuite étalonnés classiquement grace a un bain-marie. L’erreur
obtenue est du méme ordre de grandeur : 1%.

Le temps de réponse de ces thermocouples a été évalué par T. Metzger par simulation et par
I’expérience. Ce temps de réponse est de 15 ms, ce qui est bien inférieur au temps
caractéristique de montée en température qui est de quelques secondes.

Il y a 13 thermocouples au sein du lit, 1 thermocouple a I’entrée du milieu poreux et 1
thermocouple en sortie (dans la conduite). La Figure 2.11 montre les positions de ces
thermocouples.

2.5 mm b &
r—
9 013 b
g 13
|-Fil chauffant
= i
¥
* .
[
212 I c:;
¢+ =
A B C (TRED
5
thermocouples
1/ i
fi
o? g
/|/ ¥ix /]/ IE
B 10 cin i

Figure 2.11 : Positions des thermocouples

Les thermocouples 12 et 13 permettent de vérifier la stabilité de la température d’entrée et
servent également comme température de référence pour soustraire le bruit de mesure. Les
thermocouples 8 et 11 permettent de vérifier que le flux de chaleur n’atteint pas les parois.
Les soudures chaudes des thermocouples sont placées dans le plan de symétrie xy.
L’écoulement d’air est descendant.

Les positions des thermocouples (x;, y;) données ici sont les positions nominales. Les positions
exactes ne sont évidemment pas connues car le remplissage du lit a pu modifier ces positions.
2.2.3 - Chauffage et mesure de la puissance de chauffage

La source de chaleur est assurée par un fil de KANTHAL D®, un alliage peu
conducteur (Cr-Al-Fe) dont la résistivité électrique est o, =1,35.10° Q/m. Le fil a un
diamétre de 260 um, d’ou une résistance électrique liné¢ique de 25,1 Q/m. Il est isolé
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¢lectriquement par une couche de « polyestérimide » d’environ 5 pm d’épaisseur. Le fil de
chauffage mesure 17,9 cm et est soudé aux connexions électriques en dehors de la boite. On
utilise une alimentation stabilisée continue de 120 V de tension maximale et de 10 A de

courant maximal.

'—I
Echauffage R.;5

diviseur de tension

il
o |

LYch

U Ys
T shuntR,

s

ch

carte d ‘acquisition

Figure 2.12 : Mesure de la puissance électrique du fil chauffant

Les différentes tensions et intensités de la Figure 2.12 sont calculées d’aprés les équations

(2.9) et (2.10) :

Jch

Uch

7=
+
o, =8k g (2.9)
R,
R
- ' + ch
Jch 1 N Rch
2 R +R. (2.10)

Pendant les expériences, la puissance de chauffage @ (c’est a dire Ox/; )est

enregistrée en continu pour identifier I’instant du début et la durée du chauffage ainsi que

pour vérifier le niveau constant de celui-ci .

Elle se calcule a partir de la mesure de deux

tensions (U et U;), comme indiqué sur la Figure 2.8. Pour obtenir le courant électrique, une
carte d’acquisition (PCI-6035" de National Instrument™™, 16 bits) mesure la tension U a
travers un shunt R, = 5 mQ. La tension électrique du chauffage est mesurée a travers un
diviseur de tension, branché en parall¢le sur le fil chauffant. Les deux résistances du diviseur
R; (3,3 kQ)et R» (33 kQ) ont été choisies grandes par rapport a la résistance chauffante (R, =
5,35 Q) et petites comparées a la résistance de la carte d’acquisition (R, = 5 MQ). La carte
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d’acquisition mesure la tension partielle U; sans amplification et avec une bonne précision. La
mesure de la puissance linéique Q devrait avoir une incertitude d’environ 1%.

2.2.4 - Approvisionnement en air

Dans une premicre configuration expérimentale, 1’air est aspiré directement dans la
picce ou se situe le lit de billes de verre par un ventilateur situé en aval. La conduite d’amenée
d’air a un diamétre de 80 mm (Figure 2.13.a). Les premiers résultats (Figure 2.14.a) ne sont
pas satisfaisants, le bruit est important et les fluctuations de température sont de 1’ordre de 0,5
K. Ceci n’est pas acceptable puisque nous travaillons avec des différences de température de 1
Kelvin et le modéle ne peut pas reproduire ces fluctuations.

Nous avons donc amélioré le systéme en ajoutant un divergent au-dessus du lit et en prélevant
I’air dans une piece de volume plus important éloignée du ventilateur et du milieu poreux
(Figure 2.13.b). De plus, pour faire varier la vitesse, nous avons installé un systéme de deux
vannes (soupapes a siége oblique) dont une en court circuit en amont du ventilateur.

54



Chapitre 2 : Dispositif de caractérisation
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Figure 2.13 : Dispositif expérimental avant modification (a) et apres modification (b)

Apres la modification apportée, le signal est bien meilleur (Figure 2.14 b). Ainsi, le
signal du thermocouple d’entrée dans le lit (thermocouple 14) trés bruité avant modification
(fluctuations de I’ordre de 0,5 K) est maintenant lissé et présente des fluctuations de 1’ordre de
0,001 K. Les thermogrammes sont désormais exploitables.
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Figure 2.14.a : Températures expérimentales avant modification pour Pe =30
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Figure 2.14.b : Températures expérimentales apres modification pour Pe =30

» Premier ventilateur (1°° série)

Le ventilateur utilis€ ici est un ventilateur radial (MT 90 L2-Delta-Neu).
La vitesse maximale u que I’on peut atteindre grace a ce ventilateur est de I"ordre de 0,5 m.s™
(limitation due au rendement du ventilateur).
La vitesse, tout d’abord, mesurée a I’aide d’un tube de Pitot sur la conduite aval, dont la
mesure s’est révélée peu précise, a été par la suite mesurée grace a un manometre a flotteur
(débitmétre) pour des vitesses inférieures a 0,2 m.s™'. Nous n’avons plus utilisé par la suite ce
manométre car il générait de trop fortes pertes de charge qui limitaient la vitesse 4 0,2 m.s™'
contre 0,4 m.s™ précédemment.
Nous n’avons donc utilisé aucun systéme de mesure pour des vitesses supérieures a 0,2 m.s™
dans le milieu poreux. Pour ces mesures, nous avons décidé¢ de nous reposer sur les valeurs
estimées par I’inversion des thermogrammes car aucun des débitmetres commerciaux ne nous
permettait d’atteindre une précision équivalente dans la gamme de débits réalisables avec
notre installation.

» Deuxieme ventilateur (2°" série)

Nous avons remédi¢ a la limitation en débit du ventilateur, en faisant 1’acquisition d’un
deuxiéme ventilateur plus performant (Figure 2.15). Il s’agit d’un ventilateur radial 42-0,25
(Delta-Neu) d’une puissance de 1,5 kW soit 3000 tr/min. Ce ventilateur est muni d’un
régulateur de vitesse qui permet de supprimer le systéeme de dérivation en aval du lit.
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Sortie de I’air fil
Entrée de Iair :
raccordée a la soudure
conduite broches
Figure 2.15 : Ventilateur radial Figure 2.16 : Fil chaud simple

2.2.5 - Mesure de la vitesse

Le circuit d’air muni du deuxi¢me ventilateur a été¢ équipé d’un anémometre a fil
chaud. Celui-ci est portatif et digital (AM 4204) et installé a 2 m de la sortie du lit sur la
conduite d’évacuation en PVC (diamétre intérieur 80 mm). Le fil chaud utilisé est une sonde a
fil simple. Pour ce type de sonde, on fait en sorte que la vitesse soit proche de la normale au
fil. On suppose en général que la seule composante de vitesse moyenne est v=v» et v,=v:=0.
Le fil est soudé a 2 broches en forme de fourche. Ces deux broches sont elles-mémes fixées
dans un support (Figure 2.16). Le fil est parcouru par un courant constant élevant sa
température. L'élément de mesure est chauffé en continu.

L’anémométre utilisé est muni d’une sonde télescopique. Nous pouvons ainsi balayer la
hauteur de la conduite pour vérifier I'uniformité de la vitesse. Les profils de vitesse mesurés,
sont plats (Figure 2.18). La vitesse est donc bien uniforme dans la section.

La plage de mesure de I’anémométre est de 0,2 4 20 m.s™ et ce dernier permet d’afficher
¢galement la température du gaz (de 0 a 50°C). La résolution est de 0,1 m.s™. Le fil chaud
indique la vitesse instantanée ponctuelle, vitesse qui n’est donc pas enregistrée en continu lors
de la manipulation. Le cycle de la mesure est de 0,8 s.

Le bon fonctionnement du fil chaud a été vérifié grace a un étalonnage effectué a 1’aide d’un
autre fil chaud Velocicalc (tolérance de + 3%) lui-méme étalonné dans un de tunnel de
calibration a ’INRS. L’erreur relative sur la mesure est représentée en Figure 2.17. La
tolérance est de £ 10% de la valeur lue. On remarque cependant que le fil présente une dérive
importante pour des vitesses allant de 3 4 5 m.s™.

La vitesse obtenue est convertie en vitesse de Darcy qui est une moyenne sur toute la section

du lit :

S

conduite

u, =

(2.11)

X

N lit

L’erreur sur les cotés ou le diametre des deux sections est de I’ordre du millimetre. L’erreur
maximale possible est donc de 14% sur la vitesse de Darcy. De plus, la vitesse de Darcy dans
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le ceeur du lit est inférieure a la valeur moyenne du fait de 1’effet de paroi. Cet effet engendre
une erreur supplémentaire d’environ 2%.
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Figure2.17 : Erreur relative de [’anémometre Figure 2.18 : Profil de vitesse dans la conduite
a fil chaud

La mesure de vitesse se fait avant de déclencher le chauffage et une deuxiéme mesure est faite
en fin de manipulation.

2.2.6 - Protocole de mesure

L’obtention de thermogrammes exploitables (réponses en température a une excitation
en échelon temporel du chauffage) nécessite une procédure expérimentale spécifique.
Le logiciel LABVIEW® a ét¢ programmé pour gérer I’acquisition des données. Les
températures des 15 thermocouples et la puissance de chauffage sont enregistrées en continu.
Cette acquisition se fait a une fréquence de 8 points par seconde.
Pour chaque expérience, une phase préparatoire est nécessaire. Le niveau de la puissance de
chauffage est réglé pour que les thermocouples mesurent une augmentation de température de
1 a 2 K. Les mesures sont faites tot le matin pour éviter toute variation importante de
température de 1’air ambiant. Avant toute acquisition de données, il est indispensable de
mettre en marche le ventilateur au moins une heure a 1’avance, afin d’obtenir un équilibre
thermique satisfaisant (I’air ambiant est ainsi brassé). Lorsque toutes les températures sont
stationnaires et égales, nous commengons 1’acquisition pendant environ 30 secondes avant de
déclencher le chauffage.
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Chapitre 3 : Modélisation et conception

d'expérience

Ce troisieme chapitre a pour objet de modéliser la dispersion thermique dans notre
banc et de mettre en place les outils permettent de caractériser le milieu. Tout d’abord, nous
allons expliciter la modélisation utilisée au cceur du milieu granulaire et une étude des
sensibilités des paramétres sera ensuite effectuée. Puis nous détaillerons la méthode
d’estimation utilisée et montrerons des simulations d’inversion sur des mesures simulées.
Enfin, nous étudierons I’effet d’un éventuel déséquilibre thermique et ferons une analyse
dimensionnelle du probléme pour présenter les résultats des estimations sous la forme de
corrélations baties sur des groupements adimensionnels pertinents.

3.1 - Modélisation a coeeur et sensibilités

3.1.1 - Equation de dispersion thermique

L’application du modele a une température nécessite I’introduction de la définition de
la température moyenne enthalpique<T > du milieu granulaire :

(oc,) (1) = £(pc,) (1,)+1=€) pc,) (7.) (3.1)

avec <T f> et <TS> les températures moyennes du fluide et du solide sur leurs volumes
respectifs et (,0 c, )l la chaleur volumique totale calculée par une loi de mélange :

loc,) =¢loc,) + (=€) (pc,) (3.2)

ou £est la porosité, c’est a dire la fraction volumique de la phase fluide.

Cette température moyenne évolue selon 1’équation de dispersion :

(,Ocp)t ? = D.(/l D<T>)—(,0cp)f u, .D<T> + s(r,t) (3.3)

avec r = (x,y,z).
s (r,t) est une source volumique ( puissance thermique par unité de volume) dissipée dans le

milieu granulaire homogénéisé. Dans le cas général, c’est une fonction de I’espace r et du
temps z. A est ici le tenseur de dispersion thermique et up la vitesse de Darcy.
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Dans le cas d’un milieu granulaire isotrope et homogene, de porosité externe &, traversé par
un écoulement de vitesse up selon 1’axe Ox et contenant une source, le modele a une
température s’écrit :

or _(, 0°’T 0°T o°T or
(0o, G =(A5F G T ASE] - loa) w Grrs 09

ou 7 est la température moyenne enthalpique définie par 1’équation (3.1) pour laquelle nous
avons enlevé les crochets pour simplifier la notation.

Une transformation exponentielle telle que (avec r = (x, v, z)) :

T(r,t) = F(r.t) f(r.t) 3.5)
avec f(r,t) =e*" (3.6)
2 A, 4 (,Ocp)t A,

permet d’obtenir I’équation suivante :

0F | 0°F °F ., 0°F
('Ocp)tg =4 o> +/1y P +A, 922 + S (3.7)

s , . o .
avec le terme source S =—. Dans I’équation (3.11) le terme convectif n’apparait plus.

Cette fonction F peut étre ici considérée comme une fonctionnelle c’est a dire qu’elle dépend

de I’excitation s(r,t) . Nous écrirons donc dorénavant F (r,t;s(r, t)) )
Pour un milieu infini avec une condition limite F (r - oo) =0, une condition initiale

F (r, tZO)— 0, et une source, qui est une impulsion de Dirac spatiale et temporelle

§5=0 (r - r') o (t - t') , la fonction de Green du probléme est donnée par :

A A, iy
. _ ro,r\ 1 N 4B(t—t')
Flrt;s;)=G(r,t/r,t) = e 3.8
(rt50) =61 ) 8 JAAATB (t-1)° 9
avec B:#
(pcp)t
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La fonction de Green G permet de calculer la solution de 1’équation (3.3) pour n’importe
quelle source par I’intégration suivante :

T(r,t)=f(r,) F(r, t;s(r,t)) = e”x_b’J‘ J G(r, t/¥, ") %(r', t') &' dr’
(3.9)

3.1.2 - Réponse a une source linéique perpendiculaire a I’écoulement

Une source linéique perpendiculaire a I’écoulement moyen, parallele a 1’axe Oz
(Figure 3.1) est décrite par la fonction :

s =0 H(1)o(x'-0) o(y'-0) (3.10)

ot O (W.m™) est la densité linéique de puissance et J (m™) I’impulsion de Dirac spatiale et
H (t) la fonction de Heaviside temporelle (échelon).

Z
Source de ’Sens de
chaleur I’ écoulement
/\
X

y “p

Figure 3.1 : position de la source de chaleur

Compte tenu de la forme du terme source, les variations de la température selon I’axe Oz
seront nulles. Nous supposons le milieu en équilibre thermique initial 7 (r,t =0) =T1,. La

variation de température (réponse en température) AT =7- T, est donnée par 1’équation
(3.11) c’est a dire :

2
(’0 cl’)f up * M x2 yZ (p Cp)zf uDz 1
24 4(pe,) A {/T TJ 6r e ¢ d@

AT(x,y,t)ZLe 2 j e\ — (3.11)

4 1 \JAA, 0 0

Il est possible d’obtenir cette solution dans 1’espace de Laplace et de procéder ensuite a une
inversion numérique de la transformée de Laplace [Gradshteyn, 1980] :
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_ 0 e(pcpz)f/l:‘l)" 2 % 12 (pcp)j uDz

AT (x,y,p) = K o r TR

(erer) = o0 AL » 0 {(pcp)t ( ) AH P ) A
(3.12)

ou K est la fonction de Bessel modifiée de deuxiéme espece d’ordre 0 et T La transformée
de Laplace de la température.

Ce sont ces expressions analytiques (équation 3.11 ou 3.12) qui vont étre utilisées comme
modele pour estimer les différents paramétres A,, A,, up, ...du modele, a partir des mesures de
température.

Nous allons examiner les réponses théoriques en température du systéme air / billes de
verre pour différentes vitesses (u =u,, ) et les comparer au systeme eau / billes de verre étudié

par T. Metzger. Les propriétés thermophysiques des fluides, du verre et des milieux
équivalents a 20°C sont rappelées dans le Tableau 3.1.

AW.m' K | (oc) JK'm?) | a(@m’s™)

air 0,026 1200 2.10”
eau 0,604 4170.10° 1,45.107
verre 1 2,08 .10° 4,81.107

air / billes de verre | eau / billes de verre
(pcy): (J.K .m?) 1,32.10° 2,84.10°
E 0,365 0,365

Tableaux 3.1 : Propriétés thermophysiques des difféerentes phases a 20°C et parameétres
nominaux des milieux granulaires

Le nombre de Péclet utilisé est donné par : Pe=ud / a, avec d =2 mm, le diamétre des billes

monodisperses et a,=A, /(,Ocp)/,, la diffusivité. Le Tableau 3.2 donne les différents

parametres qui vont étre utilises pour les simulations. Les valeurs numériques des coefficients
de dispersion thermique ont été calculées a partir des corrélations de Metzger [Metzger, 2002]
établies pour le couple eau / billes de verre. Les valeurs de la puissance linéique Q ont été
choisies pour obtenir des échauffements de I’ordre de 1 a 2 K.
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air eau
u (m.s™) 9,7.10~ 9.7.10" 0,655.107 6,55.107
Pe 9,06 90,6 9,06 90,6
A (W.m K" 0,26 2,6 2,4 60
A, (W.m K™ 0,19 0,28 1 3
0 (W.m") 7.5 21,45 70 300

Tableau 3.2 : Vitesses et parametres correspondant aux cas tests

Pour simuler au mieux 1’acquisition des données expérimentales avec des sondes de
température, on représente sur les Figures 3.2 et 3.3, I’évolution temporelle de la température
AT, a trois distances x de la source linéique pour Iair (thermocouples 2, 4 et 6 de la Figure
2.11) pour des mesures sur axe (y = 0) et hors axe (y = 2,5 mm). Nous expliquerons plus loin
dans la méme section la raison de cet encadrement.

Naturellement, le signal arrive le plus tot a I’endroit le plus proche de la source. Lorsqu’on
s’¢loigne de la source, la montée devient de moins en moins abrupte a cause de la dispersion
longitudinale et le niveau final de température décroit a cause de la dispersion transversale.

Les puissances linéiques dissipées Q ont ét¢ calculées de telle maniére que les niveaux de
température finaux sur 1’axe soient pratiquement les mémes pour les deux fluides.
Remarquons que les échelles des temps différent d’un facteur 10 pour les deux fluides sur ces
figures réalisées pour un méme nombre de Péclet.

Le temps de montée en température est dix fois plus important dans le cas de 1’air, ce
qui impliquera un temps de manipulation dix fois plus long. Ceci correspond certainement a
un moins bon couplage fluide / solide dans le cas de 1’air par rapport a celui de I’eau. Ce
facteur 10 est facilement explicable.
En effet, on peut a partir des équations (3.3) ou (3.4) faire apparaitre une vitesse de
déplacement convective. Il suffit de diviser ces deux équations par la chaleur massique totale

( oc p) . On trouve ainsi une équation de convection diffusion dans un fluide pur anisotrope :
t

or _( 0T 0°T 0°’T oT s
—=|la— ta,—S ta—|-v, — + (3.13)
ot Ox Y oy 0z Ox ( pcp)
t
On y voit apparaitre une nouvelle vitesse « enthalpique » uniforme v, définit par :
0c
v, =( ”)f u, (3.14)
(pcp )t
et une diffusivité équivalente :
A
evous ST (3.15)
(pcp )t
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Le rapport de ces vitesses, évalué pour les systémes eau / verre et air/verre, pour un méme
nombre de Péclet, vaut alors :

P )
( t air/verre
( P Tt eaulverre

Vh (eau)

A
= t10 3.16
Aair ( )

vh (air)

On retrouve donc bien le facteur 10 existant entre les temps de réponse des deux systémes
pour un nombre de Péclet donné.

Sur I’axe (y = 0), lorsqu’on s’¢loigne de la source, la montée est plus abrupte dans le
cas de I’eau pour un niveau final identique.

Hors axe (y = 2,5 mm), on s’apergoit que les niveaux finaux ne sont pas identiques,
I’¢lévation de température de 1’air est plus importante que celle de ’eau.

La Figure 3.3 montre la variation transverse de température pour deux nombres de
Péclet différents a un temps infini. On constate que 1’étalement latéral est plus faible pour le
nombre de Péclet le plus grand. Par ailleurs, cet effet est plus important pour I’eau que pour
I’air. Ceci laisse présager que la détermination du coefficient de dispersion transverse, qui
était trés difficile dans le cas de I’eau, sera probablement plus aisée dans le cas de I’air.

Toutes ces différences de comportement entre les deux systémes proviennent du fait
qu’a Péclet égal les coefficients de dispersion sont nettement plus importants dans le cas de
I’eau que de celui de I’air. Ceci est valable si les corrélations de T. Metzger établies pour I’eau
sont bien transposables a un écoulement d’air. Remarquons que les valeurs des coefficients de
dispersion obtenues a partir des corrélations (équations (4.6) et (4.12) au chapitre 4) que nous
avons établies expérimentalement pour le systéme air / billes de verre sont A, = 0,33 et A, =
0,2 pour Pe = 9,06 et A, = 3,9 et A, = 0,42 pour Pe = 90,6, ce qui ne change pas
fondamentalement les observations précédentes.

¥ T < | Jjeaun S N aemmmem—e— =i |
eau 7 1 : 1+ , - B
/" < il‘ //
K 1 sl VAN 1
i/ / eau
i/ ;
y I3 4 |- -
air jl / — x=4.cm (eau) 08 -
\/_/ /. Pe=9.06 -—- x=8cm (eau) — x= 481 cm (eau)
\ y=0 ~—-x=12cm (eau) |- 0.4 Pe=19.06 ”&;1535‘?2?@ 1
; eau —— x=4com (ai y=25mm | _ - 4em (air)
;o === x=8cm (air) | -—- x=8 om (aif)
K4 J === x=12cm (air) 02r / b
K ; === x=12cm (air)
/\/ 1 L 1 L L 0 . - 1 1
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10*t (s) pour l'air 10*t (s) pour l'air

Figure 3.2 : Evolution temporelle de la température sur axe et hors axe a Pe =9,06

64

250



AT (K

Chapitre 3 : Modélisation et conception d'expérience

eau | —— x=4cm (eau) 4
--- x=8cm (eau)
— x=12cm (eau)
— x=4.cm (ain air
=== x=8cm (air
=== x=12cm (air)

=== x=12c¢m
==== 3= 8 cm
— X=4cm{;

{air)
air)
air)

air Pe = 9.06 T

t=w t=ow

051

""""

......

Pe=9086

. L L a
-0.04 -003 -002 -0.01 0 001 002 003 004 005 003 - o
y(m) Y(m)

003

Figure 3.3 : Champs de température en aval d’une source linéaire en échelon temporel pour différents
Pe a des distances différentes.

3.1.3 - Etude de sensibilité

Un des objectifs de ce travail est de déterminer les coefficients de dispersion
thermique par estimation de parameétres a partir de thermogrammes expérimentaux. L’outil
fondamental permettant de savoir si, a partir des mesures a priori bruitées et d’un modele, il

est possible d’accéder a une estimation des parameétres de ce modele, est 1’étude des
coefficients de sensibilité. Le coefficient de sensibilité, de la température 7 du modeéle, a un

\ . o oT
parametre [ de celui-ci est défini par @ X, = w .

j
En pratique si I’on veut accéder aux valeurs de ces parametres, il faut que les coefficients de
sensibilité aient une valeur suffisante et ne soient pas linéairement dépendants dans le temps
(sensibilités décorrélées).
Pour pouvoir comparer des coefficients de sensibilité qui n’ont pas la méme unité, on utilise

ot or ., L . .
des sensibilités réduites 3, 35 qui évaluent une variation absolue du signal de température
j

oB.
OT causée par une variation relative du parameétre —= .
J

Remarquons ici qu’il nous est absolument nécessaire d’estimer non seulement A, et A,
mais aussi la vitesse de Darcy up (en ceeur de lit, loin des parois) et également les positions en
x et en y des thermocouples. Ceux-ci vont nécessairement différer de leurs valeurs nominales
lors de la mise en place du lit granulaire. Nous allons donc travailler avec 5 coefficients de
sensibilités.

On peut montrer facilement que la sensibilit¢ a I’ordonnée y est nulle sur I’axe : 1’équation
(3.11) fait intervenir y°. Il est donc mathématiquement impossible d’estimer ces 5 paramétres
sur ’axe. C’est pour cette raison que nous effectuons cette étude de sensibilité avec un
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décalage y = 2,5 mm. Cette valeur de 2,5 mm correspond a un compromis entre sensibilité
non nulle et signal de niveau suffisant (Figure 3.3). Les évolutions temporelles des différentes
sensibilités sont représentées sur la Figure 3.4.a.

La sensibilité a A, est la plus faible. Elle est cependant suffisante en valeur absolue
(extrema supérieur a 0,1°C). Pour les temps plus longs cette sensibilité devient presque nulle.
La sensibilit¢ a A, est un peu plus grande et reste, contrairement a A, élevée en régime
stationnaire. La sensibilité la plus grande est celle liée a la vitesse autant en zone transitoire
qu’en régime stationnaire.

Pour représenter les sensibilités aux positions x et y, il a fallu choisir une grandeur
caractéristique : L = 1 cm. La position en x a une plus grande influence que la position en y
sur la réponse en température aux temps courts.

On peut enfin remarquer que les sensibilités a A, et a y sont pratiquement proportionnelles. Il
en est de méme pour les sensibilités a u et a x, mais seulement pour les temps courts. Ceci
souligne 1’évidente nécessité d’introduire une information complémentaire sur les positions
des thermocouples si I’on veut estimer proprement les paramétres qui nous intéressent (A, A,
et u)

Si I’on compare (Figure 3.4.a et b) les sensibilités de I’eau et de I’air dans les mémes
conditions (méme nombre de Péclet, mémes positions x et y), on constate qu’elles varient de
manicre analogue. Il est intéressant de remarquer que la sensibilité a A, est supérieure a celle a
y dans le cas de I’air alors que c’est I’inverse dans le cas de I’eau. Ceci laisse présager une
estimation plus facile de A, dans le cas de I’air, I’incertitude sur la position en y étant moins
pénalisante dans ce cas.

3 . ; 3 Y
x=4cm — A *aT/on x=4cm o, — A *oT/on,
y=025e¢m e rroTIon, y=0.25cm A A roTIon
L=1cm TTTu*aT/ou L=1cm ,!' LU B u*aT/ou

2} N - LraT/ox || 2 / | == L*9T/ax

: * — L*aT/ay / ' — L*aT/ay

VO S

Y \, & 1

1’ K 3 T ) 1’ i 1
2
S
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@
,,,,,,,,, »

At " At
a) bh)

2‘ L L L L y

0 200 400 600 800 1000 _20 20 40 60 80 100

t(s)

Figure 3.4 : Sensibilités relatives hors axe a Pe = 9,06, a) dans le cas de I’air (Q = 7,5 W.m™') et b) dans le
cas de l’eau (Q =70 W.m™)
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3.2 — Estimation des parameétres

Nous utiliserons ici les deux modes d’estimation déja utilisés par T. Metzger : le mode 04 et
qas.

3.2.1 - Le mode a;

La méthode classique pour déterminer des paramétres consiste a minimiser la somme des
écarts entre un modele et les mesures expérimentales :

S(B)=(ro0 -1 (B)) (T -T(B)) avee B=[A, A, u] (3.17)

avec [le vecteur parameétre, 77 et T étant les vecteurs colonnes des mesures (thermocouples)
et des sorties du modele (3.11) aux différents instants.

Le mode 04, qui permet de prendre en compte une incertitude sur I’implantation en x des
thermocouples, utilise la somme des carrés ou les signaux sont normés par leurs écarts types
respectifs. On ajoute a la somme des moindres carrés classique un terme prenant en compte
I’incertitude sur la position en x des thermocouples. La somme a minimiser devient donc :

§'(a) =O_LZZ(T -7, (o)) + O_l 3 () (3.18)

pos i

avec a, =[A, A ux ]

Le mode 04 qui correspond a un estimateur Gauss Markov sur un signal groupant
températures expérimentales et positions nominales permet donc d’estimer quatre types de
parametres simultanément : la vitesse, les deux coefficients de dispersion thermique et la
position des thermocouples en x;.

Cette méthode ne permet pas de prendre en compte 1’incertitude sur les positions y:;.

Le mode a4 est utilisé avec des mesures sur axe c’est a dire en y = 0 pour lesquelles la
sensibilité a y est nulle.

Il a I’inconvénient de ne pas prendre en compte les incertitudes en deux dimensions sur les
positions x et y, ce qui engendre des résidus généralement signés.

3.2.2 - Le mode a;

Le mode a5 nous permet d’estimer cing types de parametres : la vitesse, les coefficients de
dispersion thermique transversal et longitudinal, les positions x; et y;.

Le principe de ce mode d’estimation est de placer les sondes hors axe pour que le signal soit
sensible & y. Nous choisissons de prendre un décalage nominal par rapport a I’axe de y = 2,5
mm. Par souci de cohérence, nous prendrons dans notre cas la méme distance nominale.

Ce mode repose sur le méme principe que le mode 04 : il rajoute a la somme a minimiser
I’incertitude sur la position en y des thermocouples. La somme a minimiser devient :

S'(as): 12 ZZ,{:(ZEXP —T; ((15))2 + ! 2 Z(xinom _xi)2 + 1 2 Z(yinom _yi)z (3.19)
T

g
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avec a; =[ A, A ux y 1

0, est I'écart type sur les positions et o, est I’écart-type du bruit de mesure des

températures.

Nous connaissons ’écart type (0r= 0,02°C) du bruit sur les températures et nous avons pris
un écart type égal a un rayon de bille (.= 1 mm) pour les positions. On peut montrer que la
minimisation de cette somme (ici effectuée a I’aide de 1’algorithme de Gauss-Newton),
conduit a un estimateur de Gauss-Markov, de variance minimale, pour le vecteur parameétre.
Metzger et al [Metzger, 2003 ; Metzger, 2004 ; Maillet, 2003] ont montré que les valeurs
estimées des différents paramétres dépendent assez peu de 0, des que cet hyperparametre
dépasse une fraction de millimétre. Une valeur faible de g, (inférieure au micrometre)
conduit a de mauvais résidus en température avec des estimations en position proches des

nom , A~ nom

valeurs nominales (x, = x;”"; p, =y/""); des valeurs de ¢, comprises entre le micrométre

et quelques dixiémes de millimétres conduisent a une baisse des résidus et a une évolution des
valeurs estimées des parametres. A partir de J,,; = 1 mm, les résidus sont bons et n’évoluent
plus, tout comme les valeurs estimées des parameétres. Enfin pour g,,> 1 m, on se retrouve en
pratique dans le cas des moindres carrés ordinaires sur les seules températures et 1’algorithme
d’inversion ne converge plus.

3.3 - Inversion sur des mesures synthétiques

Il est possible de réaliser des simulations de Monte Carlo [Beck, 1977]. On calcule ici
les réponses théoriques de 6 thermocouples (thermocouples 2 a 7) qui sont bruitées 400 fois
avec des séquences de bruit gaussien non corrélés (écart-type or = 0,02 K) et ’on bruite
également les positions nominales des thermocouples (écart-type 0. = 1 mm). Ces mesures
simulées sont inversées et la minimisation de la somme S’(as) permet d’obtenir 400
estimations de chacun des parameétres.

Ces deux modes sont testés ici dans le cas de I’air. Les valeurs exactes des parameétres sont
issues des résultats expérimentaux.
Si 400 simulations de ce type sont réalisées avec ce type d’inversion, 400 estimations 4"

sont réalisées pour le /" paramétre. Il est ainsi possible de réaliser une distribution statistique
de chacun des parameétres (histogramme) et de calculer la dispersion (s;) de chaque estimation
ainsi que le biais (b)) correspondant:

= 1 il ~m\2 (= \? . = _ ~(n
b,=a,-a, and S’:m Zﬂ (a';)) -(aj) with aj—m ZIa;)

On montrera ici les simulations effectuées en mode 04 et en mode 05 Puis nous

comparerons les résultats obtenus en mode 05 dans le cas air / billes de verre et eau / billes de
verre.

Sur les Figures 3.5.a et 3.5.b, les histogrammes sur des simulations d’estimation pour
un nombre de Péclet égal a 35 sont présentés. Les histogrammes portent sur les deux
coefficients de dispersion thermique, la vitesse et six positions des thermocouples 2 a 7
(numérotés ici 1 a 6). Des simulations a nombre de Péclet beaucoup plus faible ont été
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également réalisées. Elles traduisent les mémes tendances méme si 1’écart est plus élevé pour

le mode 0.

Nous avons fait figurer sur le Tableau 3.4 les biais et les écarts-types des coefficients estimés
rapportés a leur valeur exacte.

30
25;
20}
15

10;

Qo2

Valeur Valeur Valeur
exacte a; estiméeg'j (a4) estiméeg'j (as)
A (WK'mh| 0962 1,008 + 0,009 | 0,984 + 0,008
air | A, (WK'mh| 0,256 0,251+ 0,003 | 0,246 + 0,003
u (m.s’) 0,353 0,360 £ 0,004 | 0,355 40,004

Tableau 3.4 : Résultats de 400 simulations de Monte Carlo dans le cas billes de verre / air
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Figure 3.5.a : Histogrammes des simulations d’inversion de Monte Carlo en mode ay et a's pour Pe
= 35 dans le cas billes de verre / air. Les effectifs (nombres d’estimations simulées) sont portés en
ordonnées
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100 T 400
TC 1 — a, TC1
50f — %} 200} 1
x*tx H y?St'yi
0 L i L ] ] O L 1
4 2 0 2 4 -1 05 0 05 1
100 \ ‘ 200 \ :
TC2 — a, TC?2
501 — % 100 ]
est
0 ‘ k XleSt'Xl 0 Yi Y
-4 2 0 2 4 1 05 0 0.5 1
100 : ‘ 400
TC3 — q, TC3
50t — Y% 200t 1
ol Xtx . vy,
1 > 0 5 4 -1 05 0 05 1
100
TC 4 — % 200 TC4 1
—
50f =
1001 1
xStx. y?St Yi
0 L L 1 1 0 L L
-4 -2 0 2 4 -1 -0.5 0 05 1
100 w w 200 \ ‘
TC5 —_—Q TC5
50t 8 1001 1
t
0 ‘ )l"\ ‘ X?S % 0 ‘ ‘ V?St'yi
-4 -2 0 2 4 -1 -0.5 0 0.5 1
100 \ : : ;
TC6 — 200 TC®6 1
—_—
50| .
1001 1
xSty yeSty.
1 [} 0 1 1
-4 -2 0 2 4 -1 -0.5 0 0.5 1

Figure 3.5.b : Histogrammes des simulations d’inversion de Monte Carlo en mode ay, et as pour Pe = 35
dans le cas billes de verre / air. Les effectifs (nombres d’estimations simulées) sont portés en ordonnées

Les résultats du tableau ci-dessus montrent que le mode Os a des avantages sur le
mode Oy,

En effet :

v Pour A,: La dispersion des valeurs est identique pour les deux modes. La
surestimation du coefficient est moindre pour le mode 0.

v" Pour A, : La dispersion des mesures est un peu plus forte en mode 0. Le coefficient
est sous-estimé pour les deux modes.
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v" Pour u : La dispersion des estimations est quasi identique dans les deux cas. Mais le
mode 05 permet une surestimation plus faible de la vitesse.

v Pour les positions : Le mode 05 permet une trés bonne estimation des positions avec
une légere surestimation de y, la dispersion des mesures est trés faible. Le mode 04
sous-estime légeérement les positions. Les positions des points de mesure sont estimées
avec une erreur qui ne dépend pas en moyenne de la valeur de la vitesse.

Des résultats similaires ont été trouvés pour I’eau entre les deux modes d’estimation. Nous
allons donc ici nous concentrer uniquement sur l’estimation en mode 0Os. Ce mode
d’estimation était de bonne qualité dans le cas de 1’eau (sauf pour I’estimation du coefficient
de dispersion transverse). Nous avons donc réalis¢ une comparaison des simulations
d’inversion entre les deux fluides (Pe = 35 pour ’air et Pe = 86 pour 1’eau).

Valeur | Valeur . biais'
. exacte | estimee biais dispersion /dispersion Erreur relative
@y (b+s)1a,
J J ‘bj‘/sj
A, (WK'm") | 0962 | 0984 | +0.022 0.008 275 % 3%
air | A, (WK'm™") | 0256 | 0246 | -0.010 0.003 336 % 5.2 %
u (m.s™) 0353 | 0355 [ +0.002 0.004 50 % 1.7 %
A, (WK 'm™ 60 60.321 | +0.321 1.009 32 % 2.2 %
eau | A, (WK'm" 3 2.681 -0.329 0.310 106 % 21 %
u(mms’) | 6288 | 6306 | +0.018 0.033 55 % 0.8 %

Tableau 3.5 : Résultats d’estimation en mode Qs pour [’air et pour [’eau

L’estimation de A, est de la méme qualité dans le cas de I’air et dans le cas de 1’eau avec
une erreur relative inférieur a 3 % dans les deux cas: le biais est plus grand pour 1’air mais il
est compensé par une faible dispersion. De méme I’estimation de la vitesse de Darcy est quasi
identique dans les deux cas (I’erreur relative est en dessous de 2 %), la vitesse est bien
identifiée. L’estimation de A, est biaisée avec des sous estimations des valeurs exactes dans
les deux cas. L’erreur d’estimation est acceptable pour 1’air (5 %) mais est tres grande pour
I’eau (21 %). Cette comparaison confirme la possibilit¢ d’estimer certains parameétres du
modele a une température avec une bonne précision comme Metzger [Metzger, 2004] I’a
montré. Elle a, en plus, ’avantage de montrer qu’avec de 1’air nous estimerons également le
coefficient de dispersion transverse.

Une autre configuration d’excitation a deux sources (Annexe 1) a été étudiée pour voir si une
amélioration des estimations du coefficient de dispersion transversal était possible pour 1’air.
Mais cette autre configuration s’est avérée étre de méme qualité que celle étudiée, nous
I’avons donc abandonnée.
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3.4 - Effet du déséquilibre thermique

Le mod¢le a une température semble pouvoir étre utilisé¢ dans le cas de 1’air. Nous nous
sommes demandés lors des expérimentations s’il y avait une réelle différence entre la
température du solide et la température du fluide. La température mesurée lors des
expériences n’est pas la température moyenne du modele a une température mais bien la
température du fluide qui échange avec le solide car les soudures des thermocouples sont
immergées dans D’air.

Dans le cas d’un écoulement d’air, le temps de diffusion en phase fluide est trés court et c’est
donc le temps de diffusion dans la phase solide qui peut poser probléme pour 1’équilibre
thermique.

Pour essayer de quantifier un écart éventuel entre les températures des deux phases, on peut

grace a un modele analytique conductif reconstituer les réponses en température moyenne et
en température de chacune des deux phases (solide et fluide).

Utilisation du modeéle analytique :

Le mode¢le analytique utilisé prend en compte la conduction transitoire a 1’intérieur
d’un élément de géométrie sphérique, ici le grain. Nous construisons ce modele a 1’aide de la
méthode des quadrip6les thermiques [Maillet et col., 2000, p. 104].

La température moyenne a I’intérieur d’un grain sphérique de rayon R, de conductivité A, de

. o e A .
chaleur volumique ( ,Ocp) et de diffusivité a, :ﬁ, chauffé uniformément dans son

pe,

volume (source uniforme), est alors donnée par la relation matricielle exacte (quadripdle) :

[Ts} {A' B} {Tf} (3.20)
0, cC'" D' d?f

N

avec Ts,(t)=V3 J.Sphére4 T(r.t)mr*dr et T,(t)=T(r,1),
sphére
’ r _i 3 " - Sz n _ p' r:
avec 4’ =1, C'=(pc,) Vpore P Viioe =3 R, D' = (oo (3)-1) AD -B'C' =1 et
s = v R
a

ou Qs représente la transformée de Laplace de la puissance générée uniformément dans le
solide et ¢ la transformée de Laplace du flux sortant du grain.

Dans notre cas le grain est uniquement chauffé grace au flux transmis par le fluide donc Qs =
0 (Figure 3.6).
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fluide a Ty
uniforme

solide T(r. t)

Figure 3.6 : grain chauffé par le fluide
et modélisé

On a supposé ici que la diffusion de la chaleur était unidimensionnelle (radiale) et que la
surface du grain était a la température moyenne 7y du fluide (modéle a deux températures).

T . et T représentent alors les transformées de Laplace des températures moyennes

intrinséques des deux phases, p étant la variable de Laplace.

Grace au quadripdle (équation 3.20), nous pouvons relier les températures moyennes du
solide et du fluide :

T =— T, (3.21)

La température moyenne du modeéle a une température s’écrit dans 1’espace de Laplace :
Yy

_ (pcp)f € Fos (,Ocp)s (1_‘9) 7

o (ee) (0c,), ©

(3.22)

Nous avons ici simplifié la notation en enlevant les symboles de prise de moyenne (< >) dans
I’équation (3.22).

La combinaison des équations (3.21) et (3.22) nous permet d’exprimer les températures
moyennes des deux phases en fonction de la température moyenne 7':

(3.23)
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T(r,p) (,Ocp)t
D'g(pcp)f +(,0cp)s (1-¢)

T =

(3.24)

I1 est donc possible de simuler les trois réponses (7, Ts 1) a partir de la température
moyenne calculée a partir de 1’équation (3.12), c’est a dire a partir de la réponse en
température en un point (x , y) a I’échelon d’excitation linéique d’intensité Q.

Les trois évolutions de ces températures sont représentées dans le cas billes de verre / air pour
un nombre de Péclet de 35 sur la Figure 3.7 (seuls sont représentés pour plus de lisibilité les
thermogrammes a x = 4 cm et a x = 12 cm). Les paramétres utilisés - coefficients de
dispersion et qlllantité de chaleur - correspondent aux valeurs expérimentales (cf. chapitre 4) et
ag=10W.m".

Les trois courbes se superposent. La température du fluide est quasiment égale a la
température du solide et a la température moyenne utilisée dans le modele. La Figure 3.8
montre la différence de température entre la température du fluide et la température du solide.
Pour un échauffement d’approximativement 1 K, la différence maximum est de 2.10° K a x =
4 cm, ce qui est tres faible. La différence maximale de température se situe au temps de demi-
montée en température (approximativement 50 s pour x =4 cm, 110 s pour x =8 cm et 170 s
pour x = 12 cm). Cette différence diminue ensuite et devient nulle en régime permanent.

Des simulations ont ét¢ également effectuées pour voir dans quelles conditions cet
écart serait significatif et nécessiterait I’utilisation d’un autre modele. Nous avons ainsi fait
diminuer la conductivité du solide.

Il faudrait une conductivité de solide quasi-identique a celle de I’air pour atteindre des
différences de température de 1’ordre du dixiéme de Kelvin pour un méme niveau Q
d’excitation. La Figure 3.9 montre le cas ou la conductivité du solide égale a celle de 1’air (4
=0,026 W.m" K ™). Les températures du solide et du fluide sont différentes lors du chauffage
pour ensuite se confondre lorsqu’on atteint le régime permanent. Le matériau qui pourrait se
rapprocher le plus de cette valeur de conductivité de 0,026 W.m™ K™ est la laine de verre (4, =
0,034 W.m' K") ou plutdt les aérogels de silice dont la porosité nanoscropique donne
naissance a un effet Knudsen (conduction dans un gaz raréfié).
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On peut retrouver ces résultats en utilisant le modéle de Coats-Smith [Coats-Smith, 1964 ]
(modele a « deux températures). Ce modele utilise deux équations, une équation pour la phase
fluide :

o7, 0°’T, 0°’T, a7,
£(pcp)f 6tf =A, 6fo +A, 6fo —u/v(pcp)fa—;—h a (Tf—TS)+S(x,y,t) (3.25)

et une équation pour la phase solide qui est ici discontinue :
o7, _
(1—8)(pcp)sa—t‘—haﬁ (r,-1) (3.26)

h est le coefficient d’échange entre phases et a, désigne la surface spécifique par unité de

o 6(1)
volume du lit et est égale a a; = 7

Le coefficient d’échange / entre phases, qui n’est absolument pas un coefficient de transfert
convectif, peut étre calculé a partir de I’équation (3.20) pour Qs =0 :

¢ =H(T,-T)) (3.27)

13

avec H = c = ('Ocp)s Vs;;he‘reP(SCOths—l)
1-D 3(scoths—1)~-s’

On cherche un équivalent de H pour les faibles valeurs de p (régime quasi-permanent), en
utilisant le développement limité :

st st
scoths =1+—+—+0(s° uand s - 0 3.28
o) =
LI — /13 2 — 2
d’ot H=15 7, (1+0(s ))—H0(1+0(S )) (3.29)
Si I'on considére la transformée de la densit¢ de flux a la paroi ¢, = é avec
sphere

Sopnere =4 TR’ , le coefficient d’échange entre phases / apparait directement :

h= H, :5i:10i (3.30)
S R d

sphére

La réponse en température de la phase fluide pour une impulsion de Dirac est alors égale a :
(pey) upx V2

2
_ 24y (,OC ) uDz 2 2 \V2
F=fe T lpllp 0 {x +2 ] (3.31)

s o P
2 A, A, P 4, A, A

xf b/
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a

h
avee 1= p| £(pe, ) +(1-¢)(pe,), (1—5)(/?:) pragh
rPlg IS

De méme la réponse en température pour la phase fluide s’écrit :

h )
T, (3.32)

~ a

— fs
Tv =

(1-¢)(oc,), pra

En utilisant les expressions (3.25) et (3.26), nous retrouvons les résultats obtenus avec les
équations (3.23) et (3.24) pour A, =A et A =A .

Dans le cas de nos expériences, on peut considérer que les phases solide et fluide sont donc a
I’équilibre thermique et que 1’utilisation du mod¢le a une température est tout a fait 1égitime
ici.

3.5 - Analyse dimensionnelle de la dispersion thermique et formes
pertinentes des corrélations

Les valeurs des coefficients de dispersion qui entrent dans le modele a une
température (équation 3.4) dérivent des équations de fermeture du probléme dont la solution
peut étre trouvée numériquement seulement si le milieu et son écoulement interne sont
parfaitement connus. Il est donc nécessaire de connaitre la structure du milieu, les propriétés
thermophysiques des deux phases ainsi que la structure du champ de vitesse local.

Pour un nombre tres limité de cas une expression analytique peut étre trouvée: tel est
le cas pour le coefficient de dispersion longitudinal 4, dans un milieu poreux périodique ou la
cellule unité correspond a un écoulement entierement développé entre deux plaques paralléles
[Moyne, 2000]. La structure interne des milieux poreux est généralement inconnue a 1’échelle
locale, ce qui rend la résolution des problémes de fermeture difficile. Il faut dans ce cas
considérer le milieu poreux comme un milieu stochastique dont la structure est connue
seulement en termes de moments et de longueurs caractéristiques.

C'est une autre approche qui sera suivie ici pour la construction des corrélations du
transfert thermique. Ces corrélations ne porteront pas sur un coefficient #, comme pour
I'écoulement dans les couches limites ou dans 1'écoulement interne en conduite, mais sur les
coefficients de dispersion thermique eux-mémes. Afin de définir les paramétres
adimensionnels qui expliquent la variation de ces coefficients, nous écrirons d'abord les deux
équations du probléme local de conduction-convection et du modéle a une température
correspondant. Dans une deuxiéme étape, celles-ci seront écrites sous une forme sans
dimension en utilisant des adimensionnements adaptés pour toutes les grandeurs, afin de faire
apparaitre de mani¢re naturelle la structure des corrélations pour les coefficients de
dispersion.
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On fait I’hypothése d’un fluide incompressible en écoulement laminaire traversant un
milieu granulaire infini. Les propriétés thermophysiques des deux phases solide et fluide sont
considérées comme constantes. On se place en convection forcée avec les dissipations
visqueuses négligées et avec une source interne de chaleur s (W.m™). On écrit les équations
de conservation, de Navier Stokes et de I’énergie. On cherche une solution formelle du champ
local de température suite a une excitation transitoire en partant de 1’équilibre initial (on
suppose que I’excitation n’affecte pas les limites du systeéme). Les équations sont données
pour la phase fluide Q , et la phase solide Q, :

Ov=0 sur Q, (3.33a)
dv_ impw 0%y sur Q, (3.33b)
dr P
dr,
(oc, ) d—«=/\ 00T, +s, sur Q, (3.33¢)
o7,
(pc,) —t = AD0T +s, sur Q. (3.33d)

ou v désigne le vecteur local de vitesse, p la pression motrice, gret Vr la masse volumique et

la viscosité cinématique du fluide et s, et s, les sources volumiques de chaleur dans chacune
des deux phases. Les conditions d’interface et les conditions initiales et limites sont :

T,=T, et -AOT.n =A 0T, n_ sur0Q (3.33e)
T; _Tf -0 et ]—; — T;’ef — 00 (333f)
I,=7T,=T, a t=0 pour Q =Q UQ, (3.33g)

ou r est le vecteur position, n, est le vecteur local unité a l'interface solide / fluide (dirigé vers
l'extérieur du solide), T, est la température de référence qui est égale a la température
(uniforme) initiale et a la température aux frontiéres du milieu infini. Naturellement, afin de
fermer complétement le probléme, il est nécessaire d'ajouter les conditions limites et initiales
sur la pression et/ou la vitesse. La réduction des équations suivantes peut étre faite en utilisant
une échelle locale de longueur, ici le diamétre moyen d des pores ou des grains, une vitesse
moyenne de référence v,,, et une différence de température de référence AT, . Les nouvelles

quantités sans dimension sont alors:

* A

ri=rld; vi=vivg t =veld; p=plpv,

T* :(T rej)/AT;ef’ Ssouf _dSsouf/((

2

v AT@) (3.34)

Les équations (3.33) deviennent:

Ov' =0 sur Q) (3.35a)
& gyl gy s o (3.35b)
dr’ P Re ! '
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£

a7, 3%, AT =L OO+ Q] (3.35¢)
—t =7 +v. = . S, Sur . .20C
de ot /" RePr s /
) 'Oc * pc T *
or __1 ( ”)f Ao DT;Q% sur Q (3.35d)
0t  RePr (pcp)Y A, (,Ocp)s
A * *
T =T, et /]V 07, .n, =0T, n, sur Q) (3.35¢)
S
I'-T, -0 et T -0 | = e (3.35f)
T'=T,=0 a =0 avec Q'=R%= Q,UQ] (3.35¢)

avec Req (= v,d/V,) et Pr (2 ( ,Ocp)f v,/ Af.) les nombres de Reynolds et de Prandtl. La

solution des équations (3.35) peut s’écrire alors sous la forme :

()= J. J. loc et Rey, Pry /]x/)lf,(pcp)/(pcp)/v)s;c(r'*,t'*)dV*(r'*)dt'*
=0 : ’
(3.36)
ou T"=T, et s,=s, si r30Q
et T"=T et s, =s si r(Q0Q

Le volume réduit élémentaire est ici dV° =dV /d?

L'équation (3.36) montre que la température réduite peut étre calculée a I’aide d’une
intégration sur l'espace et le temps du produit de la source de chaleur réduite et de la fonction
locale, qui est la fonction de Green correspondante du systéme. Ceci provient du fait que le
probléme de mécanique des fluides(3.35 a-b avec ses conditions limites et initiales), non
linéaire, peut étre résolu en terme de champ réduit de vitesse, qui peut étre considéré comme
un coefficient non-uniforme dans le systéme linéaire d'équation de la chaleur (3.35ca g).

Dans notre cas, tous les coefficients thermophysiques sont constants, ce qui signifie
que l'intégrale sur le temps peut devenir un produit de convolution (systéme invariable en
temps). La définition de la température enthalpique moyenne du modele a une température
peut alors étre écrite:

(T)(r.t)=T, +AT,, (T") =T, + ATy 4 pe,(r T (") dV" (")
l", rej rej rej TN ) c,\r r s r

o " () VoD dyrn)

(3.37)
ou en utilisant I’équation (3.36) :
AT, d° - C ol e
(T)(r0) =T+ pcp(r")j j I Gy
(Pcp)t V(r,D)J »*oy*(.p) =04 +*0Q"

st YAy e dy ()
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(3.38)

ou = (Red,Pr,/L 1A, (pc,), [(pc,) f) est un vecteur regroupant les quatre parametres qui

sont des arguments de fj,.. En changeant 1’ordre d’intégration dans (3.38), on obtient :

® d3 ok * ok ok
T)(r0) =T, +AT,E-I j j pe,(r) i (r o |72 B
< > f 8 NI (,OCI, )T () V(D) 1*ay*(r.p) P I ( ‘ )

sf ("t dre (@"YdrT (") de”
(3.39)

Nous introduisons maintenant une nouvelle réduction du modéle (3.3) dont la solution
est <T > Nous utilisons une longueur caractéristique D du probléme macroscopique, la méme

vitesse de référence v, et la méme différence de température de référence. Les nouveaux
parameétres adimensionnés sont :

r=r/D=(d/D)r’; u,=u,/v,; t =vt/D=(d/D)¢t
(1) =((1)-7,)/8T,s 5 =Dyf[(pc,) v8T, |=@ra) 5 (3.40)

\ X \ A . . * * *
ous correspond a la méme normalisation que s, , s, et s .

Avec cet nouvel adimensionnement, il est possible d’écrire I’équation (3.3) sous la forme :

Nous exprimons la solution de cette équation sous la forme :

<T>(r,t)=]j,ef+ATrefj‘ o J‘okmoy(f,z"\r'°,z'°;u;,a) Sy dY () de”
t"'=0d Q

(3.42)

1
avec : GI[W/L (pcp)f/(,Ocp)t] (3.43)

avec comme volume élémentaire dV = dV/D® |, kmoy €tant alors la fonction de Green
associée.

11 est alors possible d’utiliser les mémes arguments que dans 1’équation (3.39):
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—r'*,%t'*;u;,aj S*(l"*,t'*) dV (r‘*)dt‘*

* * d
T)(r,t)=T_ , +AT r,t
< >( ) ref ref j‘t _Oj % D3 moy ( D

ou

(3.44)

(T)(r,1) = T,ef+AT,efJ- I My (1P y) ST AV ) de”
"=0d Q"

—7 " _t'*' uoD a 6t y _ a
D ’ D ’ ’ V D

La comparaison des équations (3.45) et (3.39), qui donnent la méme température moyenne, si
I’on suppose le modele a une température applicable permet d’écrire :

3
avec: m :d—k (ir*,t*

moy D3 moy

( * *‘ ) d3
m, \r,t r'*,t'*;y s*(r'*,t'*):
’ (oc,) )V (r.D)
(3.406)
_[ e, i) (P B) S e A )
" av-(r,D)
On peut également écrire cette équation sous la forme dimensionnelle :
j e, (r") S (r”*,t* r t'*;ﬁ) dv (r")
"av(r
s(r'yt"y _ V(r,D) (3.47)

5 (r) (pe,) () V(D) m, (¢ )

Le membre de gauche de cette équation doit étre €gal a 1'unité puisque les intégrales sur
n'importe quel volume et sur n'importe quel intervalle de s et de s;,. doivent étre égale, si le
mode¢le a une-température est applicable. Par conséquent, on peut écrire 1'identité suivante:

C ol e ) pc,(r") e
mmoy(r,t ‘r ! ,y) J‘V'DV(V,D)(pCp)t(r) floc(r ’

dv(r")
V(r,D)

YT ,3) (3.48)

Il est intéressant d’étudier cette expression dans le cas d'un écoulement piston (dans la
direction x) dans un milieu poreux homogeéne. Dans cette configuration, la vitesse de filtration

up est uniforme et égale a la vitesse de référence v (u,= u, /v, =x dans }). Par conséquent la

vitesse de filtration réduite u, peut étre remplacée dans I’expression (3.48). En outre nous

supposons ici que le milieu poreux est homogene, ce qui signifie que les fractions volumiques
locales (et la porosité &), les trois capacités volumétriques de I’équation (3.1), ainsi que les
conductivités du solide et du fluide, ne changent pas dans l'espace. En conséquence, les
différentes composantes du vecteur paramétre ) dans le membre de gauche de (3.48)
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dépendent des différentes composantes du vecteur paramétre B présent dans son membre de
droite :

1

W/‘ =k(Re,, Pr. A,/ A, (pc,), /(pc,),) (3.49)
pl; e

ou k est une fonction vectorielle, qui représente la variation des trois coefficients principaux
du tenseur de dispersion. Cette fonction dépend de la forme de l'interface entre phases fluide
et solide. Ceci signifie que cette fonction dépend de la structure particuliere du milieu poreux
et de la valeur particuliere du rapport entre les différentes échelles caractéristiques d/D.

Nous nous intéressons plus particulierement ici au cas ou la structure du milieu
granulaire est isotrope (cas d'un lit de grains sphériques ou de grains ellipsoides de directions
principales aléatoires). Dans ce cas, si x est la direction privilégiée de I'écoulement, le
coefficient de dispersion est enticrement caractérisé par la dispersion longitudinale A et un

unique composant transversal A = A, .

Afin de faire apparaitre ces deux coefficients de dispersion, on multiplie 1’équation (3.49) par

r (pcP)/' v°°d
le nombre de Péclet Pe, = Re,Pr = ———— :
}
ii(pcp)s,l =k(Re,, Pr, A,/ A, (pc,), /(pc,),) (3.50)
/]fD(pcp)t d> 5 o s T p/s p’f .
ou encore
Arois 1Ay = 8o, (Reys ProA 1 A (pe,), Hpe,),.d 1 D) (3.51)

Nous considérons que le rapport d/D (idéalement égal a zéro) est suffisamment petit pour
disparaitre dans I’expression du rapport A /A, . L’équation (3.51) devient alors :

X ouy

Aoy 1Ay = Gy (Reys Pr, A1 A, (pc,), f(pe,),) (3.52)

La fonction g représente alors la corrélation qui doit étre cherchée pour corréler les
coefficients de dispersion thermique. Ses arguments dépendent de la vitesse de filtration, de la
viscosité du fluide et des propriétés thermiques de la phase fluide et solide. Cependant, a
priori, cette fonction doit étre changée si la structure du milieu granulaire est changée
(changement de granulométrie ou changement de la forme des grains).

On peut bien évidemment mettre en évidence ces mémes nombres caractéristiques dans
I’équation (3.11) de la réponse a la source liné¢ique :

. (p Cp)f Pe,
Q1 ’Pex Pe Pe, x ¢ 4 - Pe’% x? +Pe, Pe, 32 L P
AT(x,y,t) = 4 e 2 (oc), e ( ) 166 d_@
0

4 7T(,0 cp)f u, d g

(3.53)
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_ u,d
avec Pe, =2 7 et Pe, =
' A A

Cet adimensionnement nous permet de constater que nous devons trouver des
corrélations incluant ces différents parameétres. Le nombre adimensionnel choisi dépend
surtout des régimes dans lesquels nous travaillons ; pour un régime de Darcy, le nombre de
Péclet est le plus approprié. Par contre pour le régime inertiel et pour une comparaison de
différents fluides, le nombre de Reynolds est le plus adéquate.

Evidemment, nous devons avoir, si notre corrélation est prolongeable jusqu’a une vitesse
nulle A, =A =4, pour Re;= 0.

Les corrélations seront donc en fonction du nombre de Reynolds et de la conductivité
équivalente du milieu qui dépend de la porosité et des rapports de conductivité des deux
phases solide et fluide.

Nous choisissons donc la forme suivante pour les corrélations donnant les coefficients de
dispersion :

A
A

Lo =74 4 4 Re” (3.54)
/]f /1f

Enfin, afin de trouver une corrélation unique entre différents fluides et différents solides, on
pourra pondérer le coefficient de dispersion, non pas par la conductivité du fluide (qui est
spécifique a chaque fluide) mais par la conductivité équivalente du milieu qui dépend de la
porosité et des rapports de conductivité des deux phases solide et fluide.

A
A o142y Re (3.55)
A A
eq

eq
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Chapitre 4 : Résultats expérimentaux et
interprétation

Nous allons présenter et discuter les résultats expérimentaux. Nous détaillerons
d’abord le pré-traitement des signaux. Nous montrerons ensuite les résultats obtenus avec le
systeme air / billes de verre puis ceux obtenus dans le cas air / support de catalyseur.
Finalement, nous présenterons les résultats obtenus dans le cas d’un milieu granulaire
constitu¢ de billes de verre polydisperses.

4.1 - Pré-traitement des signaux

Afin de disposer d’un signal exploitable pour une inversion ultérieure, il est nécessaire
d’effectuer au préalable un prétraitement des thermogrammes bruts obtenus. La Figure 4.1
montre un exemple de thermogrammes bruts pour le couple air / billes de verre. Le
thermocouple 14 a été ajouté dans la conduite cylindrique d’air en amont du lit. Ces
thermogrammes doivent étre traités pour que toutes les températures soient égales a 1’instant
initial.

21.4 ! | | ‘
: : : — TC1
_ : Y — TC2
| | | — TC3
: 5 — TC5
. : : TC6
5 : e — TC7 |
21 Lo s e : s
— TC9
— TC10
L e TN T — TC11 U
r-\20'8 — TC 12
O TC 13
— — TC 14
— 206 .............................................................................. |
..':.0 AR 7 ] "*rh,qﬂ"llwuw’--h.--n.‘.-n-...ﬂ_ b
20.4 -
o K P .
w “*hm 14 \“uw y "ﬂm“ﬂ“'\"**"‘l’”"""“'"“”*“’W“"'W'M‘WTWW
| .' "- N, AR WIS o ““MI"N' l' ud “ Hy w i i
202 i -mmu s, " ‘ e . W™ it
~t=0 | |
20 i i i |
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t, (s)

Figure 4.1 : Températures brutes
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Nous avons donc effectué des corrections de dérive et d’offset adaptées, corrections qui sont

détaillées en Annexe 2. Les thermogrammes ainsi traités sont présentés sur la Figure 4.2.
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Figure 4.2 : Températures corrigées (données de la Figure 4.1)

4.2 - Systeme air / bille de verre

4.2.1 - Résultats en mode a, pour les thermocouples sur ’axe (y"*"=0)

800

Nous montrons les résultats obtenus avec ce mode (mesures sur I’axe) en Figure 4.3.a.
Les thermogrammes théoriques (thermocouples 2 a 7) s’ajustent bien aux thermogrammes
expérimentaux mesurés avec I’écoulement d’air. Un léger décalage entre courbes théoriques
et expérimentales est cependant visible. Il est mis en évidence sur les résidus (Teyp - Ttn). Le
probléme de la signature des résidus est dii a la non-estimation de la position y;. Les résultats

confirment I’observation de T.Metzger : il est nécessaire d’estimer les positions en x et en y.

L’affichage dense des résidus est dii a I’acquisition qui se fait a une fréquence de 8 points par

seconde.
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4.2.2 - Résultats expérimentaux en mode as pour les thermocouples hors axe (""" = 2,5
mm)

Les mémes types de thermogrammes sont représentés en mode 05 (Figure 4.3.b). Les
résidus sont tres faibles. Ils sont proches du bruit de mesure et ne contiennent pas de structure
visible a I’exception d’une petite perturbation qui correspond a un biais de 1’ordre de 0,02 K,
maximum au début de la phase de montée de chaque thermogramme. Cette perturbation est
trop forte pour étre imputée au déséquilibre entre phases (cf. section 3.5). Il pourrait s’agir
d’un effet d’inertie thermique du fil métallique chauffant.

Nous calculons donc le temps de réponse du fil. Pour le calcul, nous avons besoin d’un
coefficient de transfert thermique /4. Nous utilisons des corrélations de la littérature [Kreith,
1973] basées sur le nombre de Nusselt dans le cas de la convection forcée:

h,d
Nu=-L" =0,90 Re"** Pr**"  pour 4( Re (70 4.1)
A,

Le nombre de Prandlt de I’air est égal a 0,7. La vitesse de Darcy utilisée est celle
correspondant a un nombre de Péclet de 30 soit un nombre de Reynolds de 43. On obtient
donc un coefficient : h, =342,85 W.m2K". Le temps de réponse du fil de longueur w se

calcule alors grace a I’équation d’un petit corps :

”R;l(pcp)ﬁ Wdzﬂ =27Ry, hﬁlW(Tﬂl _Tw) (42)

1

D’ou le temps caractéristique :

pc R,
Ty :—( ”)ﬁ' " (4.3)
2h,

avec (pcp)m 03.10°J.K ' .m™ et Rp = 130 pm, on trouve un « temps d’inertie thermique »

égal a 0,57 s. Ce temps est trés faible et ne peut visiblement pas expliquer la petite
perturbation visible sur les Figures 4.3. La signature des résidus provient donc d’autre chose ;

celle-ci n’est pas due a une variation de gy et donc de ( pc, )/' avec la température ambiante

du jour de mesure (de 1’ordre de 0,3 % par degré Celsius) car ce parameétre est complétement
corrélé avec la vitesse de Darcy qui est estimé par ailleurs.

Une autre explication peut étre recherchée dans un éventuel effet résiduel de paroi, le fil
chauffant de surface rigoureusement non nulle peut générer de tres légeres survitesses dans
I’écoulement aval.

Le modele arrive donc a bien décrire la mesure, ce qui n’exclut pas pour autant le biais
sur les parametres estimés. Les thermogrammes sont ici présentés pour les billes de 2 mm, les
profils sont identiques pour des billes de 3 mm.

La Figure 4.4 montre les positions estimées en deux dimensions pour des vitesses

différentes. La position nominale est indiquée pour chaque thermocouple. Une bille a été
dessinée pour donner ’échelle. Sur les six positions des sondes, une seule s’¢loigne de sa
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position nominale (la derniere). Les résultats d’estimation des positions sont distribués quasi-
uniformément dans les 4 cadrans. Cela semble indiquer que la variation estimée de la position
des soudures par rapport a leurs positions nominales est isotrope, ce qui est normal et
correspond bien aux simulations de la section 3.3. On constate que la position estimée d’un
thermocouple varie au maximum d’un diametre de billes (2 mm). Par contre, cette position
peut-&tre tres proche de la position nominale, ce qui est le cas du thermocouple 6.

Les estimations des coefficients de dispersion longitudinal et transversal sont tracées
en fonction du nombre de Péclet estimé pour les billes de 2 et de 3 mm sur la Figure 4.6. On
constate que les points correspondant aux diamétres de 2 mm et de 3 mm s’intercalent
parfaitement. Les coefficients de dispersion thermique ne semblent pas dépendre de la taille
des billes, ce qui correspond a la théorie.

De plus, la composante aléatoire de ’erreur d’estimation, évaluable grossiérement a
partir d’un lissage visuel, est supérieure a celle calculée par la méthode de Monte-Carlo

(UJ./A =1% et O; i, =1% dans le Tableau 3.5 pour Pe = 35). Ceci peut provenir des

fluctuations de température ambiante qui n’ont pas été prises en compte dans le tracé de la
Figure 4.6 : la conductivité de I’air varie en effet de I’ordre de 0,3 % par degré Celsius .

Cette technique permet ici d’estimer précisément la vitesse de Darcy de 1’écoulement
(1) qui est mesurée également par un fil chaud ().

Dans le cas des billes de verre de 3 mm, le rapport moyen (u*" / 1) est de 90%
tandis que pour les billes de verre de 2 mm, on constate un rapport moyen de 80% ce qui
correspond a un écart important. Une explication possible est une 1égére variation du débit
pendant la durée de I’expérience. En effet, nous ne controlons que « grossi¢rement » le débit
d’air. L air est aspiré dans une pi¢ce voisine au dispositif expérimental et cette aspiration peut
étre 1égerement fluctuante (thermique, rendement). Une autre cause d’erreur est I’imprécision
sur les aires de la section rectangulaire du lit de la section cylindrique de la conduite avale (cf.
chapitre 2). Les différentes simulations (Monte Carlo) ont démontré que nous estimions avec
une trés grande précision la vitesse de Darcy, nous faisons donc ici confiance a I’estimation
qui est plus précise et moins biaisée que la mesure au fil chaud (cf. section 2.2.5).
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4.2.3 - Représentation des résultats
4.2.3.1 - Coefficient de dispersion longitudinal

Nous allons essayer de chercher des corrélations, non pas en fonction du nombre de
Péclet, mais en fonction du nombre de Reynolds ( Pe = Pr.Re avec Pr = 0,7) afin de comparer
les résultats avec ceux de I’eau (Pr=7,02) .

Nous cherchons une relation 4, (Re) et adoptons une loi de puissance :

M:ﬁ-{-A ReBx
A X

; ; (4.4)
Dans cette fonction, il y a 2 inconnues : 4, et B,. Les deux termes sont estimés par la méthode
des moindres carrés ordinaires.

Les deux parameétres A4, et B, estimés sont fortement corrélés. Nous effectuons le calcul pour
les résultats obtenus avec les billes de verre 2 et 3 mm. La relation trouvée est :

A

A (Re)
A

=24 40,1259Re" " (4.5)
f Af

avec A, la conductivité équivalente du milieu égale a 0,2 W.m 'K
L’équation est représentée sur la Figure 4.7. Dans le Tableau 4.1 sont donnés les écarts

types des deux paramétres A, et B,. Ils correspondent a une dispersion apparente
g, 00,04 W.m" K"

Billes de verre
A, | 0,1259 £ 0,0002
B, 1,4512 +0,0006

Tableau 4.1 : Ecarts-types sur les parametres d’estimation

Nous voyons que ceux-ci sont extrément faibles et sont probablement masqués par les causes
de «bruit » sur A, qui peuvent provenir notamment des variations de température ambiante
(effet sur la conductivité de 1’air par exemple). Celles-ci constituent une cause de dispersion
probablement plus forte. Nous proposons donc la corrélation suivante pour le systeme air /
billes de verre (Pr=0,7) :

A
A

Ae 1,45 /]e 1,45
=1 40,126 Re"* =—2+0,211 Pe"*| pour 12<Re<130 (4.6)
;A A

La corrélation est valable pour des nombres de Reynolds de 12 a 130. Au-dela de cette limite
seuls deux points expérimentaux correspondant aux billes de verre de 3 mm sont présents et la
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corrélation reste a confirmer par d’autres mesures. Comme nous voyons que les résidus ne
sont pas signés notamment aux faibles nombres de Reynolds, nous pensons qu’il est possible
d’étendre cette corrélation a tout ’intervalle [0 130].

180

2mm

A 3mm
1600 = Jrgg/ly + 0,1259 Re'!4512 ]

140
120

> 100
\><

< 80
60
40

0 50 100 150
Reest

Figure 4.7 : Résultats d’estimation pour A

Nous disposons de la corrélation établie par T.Metzger pour le méme lit traversé par de ’eau :

A
A

/]e 1,59 /]e 1.59
x =24 40,0731 Pe"* ==L +1,61 Re" pour 0,5<Re<18  (4.7)
S /]f /]f

La conductivité équivalente est prise égale a 0,860 W.m™ K. Le nombre de Prandtl de I’eau
a20°C est pris égal a 7,02.

Nous avons représenté sur la Figure 4.8 les résultats pour le méme solide : les billes de
verre. Les résultats pour I’air et pour I’eau sont dans des gammes de Reynolds complétement
différentes. Les expériences pour 1’eau ont été réalisées pour des nombres de Reynolds de 0,5
a 18 ce qui correspond au régime de Darcy ou régime de Stokes. Les expériences de ’air ont
été effectuées pour des nombres de Reynolds de 12 a 130, ce qui correspond au régime
inertiel. Les phénomenes hydrodynamiques sont différents dans les deux cas (cf. chapitrel),
les deux corrélations trouvées sont valables dans leur gamme de nombre de Reynolds ; on ne
peut donc pas les comparer et les généraliser a I’ensemble des nombres de Reynolds. Il
faudrait des résultats expérimentaux pour 1’eau a des nombres de Reynolds supérieurs a 18
afin de comparer les deux fluides.

93



Chapitre 4 : Résultats expérimentaux et interprétation

140 . .

120

100

ro
X

60

® == 5 5.+ 16098 Re' 5%
eq T

40 Y eau
air (2 mm)
20 H
— D+ 0.1259 Re'412
A air 3 mm)
0 20 40 60 80 100

R eest

Figure 4.8 : Résultats d’estimation et corrélation pour [’air et [’eau

X

Cependant, on constate que pour un méme nombre de Reynolds (Re = 15), le rapport pour
A

I’eau est beaucoup plus important (10 fois plus important) que ce méme rapport pour 1’air.

Ceci signifie que pour la méme géométrie, la dispersion longitudinale est plus importante

dans le cas de I’eau que dans le cas de I’air (facteur supérieur a 200 sur les A ). Cet écart

peut-étre observé sur les équations de fermeture du modele a une température (Annexe 3).
Ainsi, a nombre de Reynolds fixé, le coefficient de dispersion dans 1’air est plus faible que
celui de I’eau parce que la chaleur volumique (pc,) de ’air est faible.

Possédant des résultats pour deux fluides différents, nous avons tenté d’établir une
corrélation générale pour tous les résultats obtenus par Metzger et par nous méme. Les
coefficients de dispersion longitudinale ont toujours été représentés en les normant par la
conductivité du fluide. Or cette représentation n’est peut-étre pas judicieuse lorsque 1’on a
deux fluides différents en présence. Dans le chapitre 3, nous avons montré la dépendance de
ce coefficient a plusieurs paramétres dont le nombre de Reynolds, le nombre de Prandtl, la
porosité et la conductivité équivalente. Nous avons donc essayé d’intégrer tous ces parametres
pour réaliser une corrélation unique. Nous allons désormais normer le coefficient de
dispersion non plus par la conductivit¢ du fluide mais par la conductivité équivalente du
milieu poreux.

Nous cherchons donc ici une loi de la forme :

o1l 1m ) pee | 2P

Aeq( Af) /]eq (Preau _Prair)

)-F.(Pr-Pr,,)

eau

(4.8)
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La difficulté ici est de déterminer trois paramétres. C’est pourquoi nous fixons C, = 1,5,
exposant intermédiaire entre la corrélation de I’air (1,45) et de 1’eau (1,59). Nous utilisons
donc, pour les deux autres paramétres, une régression a partir de tous les points
expérimentaux (air et eau). Nous obtenons la corrélation suivante :

eau

1.5 1'387(Pr_Pr”f")_0'543(Pr_Pr ) (4.9)

: =1+/1—'£(1—£)Re

/]eq ( Af ] Aeq (Preau - Prair)

Remarquons que cette forme permet de retrouver les conductivités monophasiques du fluide
et du solide (¢ =1 et £ = 0). Evidemment, cette corrélation ne correspond rigoureusement
qu’au cas de sphéres monodisperses.

Cette équation est représentée sur la Figure 4.9. La corrélation unique trouvée est valable pour
les deux fluides et permet de décrire correctement le comportement des coefficients de
dispersion longitudinaux.

80 : | ‘ ‘
4 cau-billes de verre 2 mm (Metzger)
® air-billes de verre 2 mm
70F- A air-billes de verre 3 mm M
— Eq.9
60+ 9
50+ 2
o
(<cu
= 40 i
>
<
30+ 8
20r ‘ ~ A
10 a
L L

0 20 40 60 80 100 120
Reest

Figure 4.9 : Coefficient de dispersion longitudinal
et corrélation unique pour les différents couples

Un dernier mode de représentation des résultats, qui fait abstraction du régime
(A -4,)
s
du nombre de Péclet. Cette représentation est pertinente car elle permet de traduire les effets

de vitesse. La Figure 4.10 traduit cet effet sur le coefficient de dispersion longitudinal, effet
qui est ici plus important pour 1’air que pour 1’eau.

hydraulique de 1’écoulement, est intéressant. Il est possible de tracer en fonction
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Figure 4.10 : Représentation de A=A en fonction du nombre de Péclet

A

La Figure 4.11 montre nos résultats expérimentaux billes de verre / air (pour les billes
de 2 mm) en fonction du nombre de Péclet comparés avec le modele de Tsotas [Tsotas, 1990],
celui de Levec et Carbonnell [Levec, 1985] et les résultats expérimentaux, pour des systémes
billes de verre / air, de Gunn [Gunn, 1974] et de Yagi et a/ [Yagi, 1960]. Nous constatons une
bonne concordance de nos résultats avec les deux modéeles jusqu’a un Péclet de 50. Au-dela,
le modele de Levec et Carbonnell décrit mieux nos résultats. La comparaison avec les résultas
expérimentaux de Yagi, se résume en un seul point qui est cohérent mais pas significatif pour
le comparer. Les résultats obtenus par Gunn ne sont pas du tout en accord avec nos résultats
mais ne le sont pas non plus avec les deux autres mode¢les.
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Figure 4.11 : Comparaison de nos résultats avec la littérature
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4.2.3.2 - Coefficient de dispersion transversal

La Figure 4.12.a présente les résultats d’estimation du coefficient de dispersion
transversal ainsi que le coefficient 2 nombre de Reynolds nul (conductivité équivalente du
milieu). Les résultats d’estimation montrent clairement que nous pouvons établir une relation
linéaire. Cependant cette relation ne sera valable que pour des nombres de Reynolds compris
entre 12 et 130. Le comportement du coefficient transversal ne peut étre décrit pour des
nombres de Reynolds sur ]0-12[. Cet intervalle correspond au régime de Darcy. On peut
imaginer qu’a I’intérieur de cet intervalle le coefficient est quasi-constant. Cette hypothése est
justifiée par 1’observation des lignes de courant en régime de Stokes qui sont insensibles a une
variation de débit (cf. section 1.2.2). Il n’existe pas ou peu de dispersion hydrodynamique
dans ce régime et la conductivité moléculaire est seule responsable de la dispersion. Nous
avons donc établi une relation donnant le coefficient de dispersion transversal du type :

/ly (Re)
A

=4 +B R
P (4.10)

Donc pour obtenir une corrélation linéaire, il n’est pas possible de prendre 4, =2 La
A,
corrélation est la suivante :

A, (Re)
/A =6,398+0,0788 Re pour 12 < Re <130 4.11)
,
et A, (Re):/]eq pour 0 S Re< 12
. e R P ()
A vitesse nulle (Re = 0 ), on retrouve la conductivité équivalente — = — = a7,7.
, A, 0,026

Le Tableau 4.2 donne I’incertitude obtenue sur les parameétres estimés.

Billes de verre
A, 6,398 + 0,001
B, | 0,0788 +0,0002

Tableau 4.2 : Ecarts-types sur les paramétres d’estimation

Pour la méme raison que précédemment (A,), nous présentons notre corrélation air / billes de
verre sous la forme :

A
A—y=6,4+0,079Re=6,4+0,11Pe pour 16<Re<130 (4.12)
S

et A =4, pour 0 < Re <16
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Nous avons pris ici un critére de nombre de Reynolds égal & 16 et non a 12 comme
précédemment pour qu’il y ait continuité sur les deux expressions de A, et pour que A,
constitue bien un plancher.

20 ‘
2 mm
A 3mm A
— 6,398 + 0,0788 Re
15+
(<.._
~ 10
>
<
®
5, 4
0 i i 1 i 1 i
0 20 40 60 80 100 120

R eest

Figure 4.12.a : Coefficient de dispersion transversal

Nous avons placé sur la Figure 4.12.b la corrélation de Metzger obtenue pour des billes de
verre avec les valeurs extrémes et médianes de 4', = 0,03 ; 0.04 ; 0,05 :

A A .
r ="+ 4 PrRe (4.13)
/]f Af ’

Nous avons représenté sur la méme figure, les modeles de Schliinder et Bauer et de Levec et
Carbonell.

I1 est manifeste que le modéle de Schliinder et Bauer surestime nos valeurs tandis que celui de
Levec et Carbonell est plus proche mais avec une non-linéarité qui I’en fait s’en éloigner pour
les grandes valeurs du nombre de Reynolds.
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Figure 4.12.b Comparaison du coefficient de
dispersion transversal avec la littérature
r r r r (/‘y - Aeq) .
Nous avons également présenté nos résultats sous la forme du rapport —————— en fonction
,

du nombre de Péclet ainsi que ceux de T. Metzger pour 1’eau sur la Figure 4.13. On constate
encore que comme pour la dispersion longitudinale, I’effet de vitesse est plus important pour
I’air que pour I’eau dans ce mode de représentation en fonction du nombre de Péclet.

14 . w

eau
air (2 mm)
air (3 mm)

ponm

£ 60 80
Pe

100 120

A

Figure 4.13 : Représentation de A~ en fonction du nombre

S

de Péclet
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4.2.3.3 - Anisotropie

Nos résultats nous permettent d’évaluer expérimentalement 1’évolution de I’anisotropie du
tenseur des coefficients de dispersion thermique avec le nombre de Reynolds ou celui de

. . . . A . .
Péclet. Ceci est fait sur la Figure 4.14 ou le rapport /]_x est tracé en fonction du nombre de
y
Reynolds. Il semble que ce rapport évolue linéairement aux faibles nombres de Reynolds. Par
contre, il est difficile de se prononcer aux nombres de Reynolds plus ¢élevés, du fait d’un
nombre de mesures insuffisant dans cette gamme.

1L ®  2mm (série 1) ||
® 2 mm (série 2)
A 3mm

0] 50 100 150
Re

Figure 4.14 : Anisotropie des résultats
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4.3 - Systeme air /support de catalyseur ou azote / support de catalyseur

4.3.1 - Problémes rencontrés et solutions apportées

La méme procédure expérimentale a ét¢ adoptée que pour le systeme air/billes de
verre.
Les premiers résultats expérimentaux obtenus a deux dates différentes sont montrés sur les
Figures 4.15.a et 4.15.b pour la totalit¢ des thermocouples pour ce support de catalyseur
traversé par de I’air.
Contrairement aux thermogrammes des billes de verre, la montée en température se fait en
deux temps :

* Entret=0et?=50a 80 s (selon la position du thermocouple), la montée en température
est rapide (quasi linéaire).

* Pour les thermocouples situés le plus en aval (thermocouples 4 et supérieurs) de la source
thermique, la température se stabilise sur 200 s, puis augmente a nouveau et il n’y pas de
stabilisation de la température aux temps longs.

Ces formes différentes ne permettent pas d’effectuer d’inversion avec le modéle a une
température. La Figure 4.16 montre I’inversion que nous avons tentée d’effectuer. On constate
clairement que les températures recalculées et les températures expérimentales ne se
superposent pas, le modéle a une température n’arrive pas a décrire convenablement ce qui se
passe.

i

M TC 1
) 4
| TC2 |
< osf TC3 |

- TC4
“o4 o TC5 |
TC6 |

TC7
0.2 J
oM |
05 100 200 300 400 500 600 700 800 -0.2! : ' ' - ; s |

t(s) 0 100 200 300 400 500 600 700 800

t(s)

Figure 4.15 : Températures expérimentales dans le cas air / support catalyseur : reproductibilité des
mesures effectuées a des dates différentes.
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TC 2

0 100 200 300 400 500 600 700 800
t(s)

Figure 4.16: Thermogrammes expérimentaux et
recalculés dans le cas air / support de catalyseur

Plusieurs explications et hypotheses ont été envisagées pour expliquer ce phénomene :

» La premiére explication est liée aux propriétés thermophysiques du solide. En
effet, la température mesurée par les thermocouples est plutot celle du fluide et non la
température moyenne enthalpique de notre modele. Un éventuel écart de température
entre phases solide et fluide pourrait expliquer nos réponses. Cette hypothese
provenant du calcul des temps caractéristiques effectué au chapitre 2 et qui montre que
le temps caractéristique de la phase solide peut-étre limitant. La mise en ceuvre d’un
modele analytique a deux températures (cf. chapitre 3) pour différencier les deux
températures et calculer exactement les temps de réponse dans chacune des phases est
trés instructive. La différence n’est visible que pour un solide ayant une conductivité
thermique tres faible. Cette explication n’est donc pas envisageable ici.

Nous avons également réalisé une expérience pour comparer les températures des
deux phases. Nous avons inséré¢ dans un grain de catalyseur un thermocouple de 50
Hm de diamétre et avons positionné un second thermocouple a 1 mm de la surface du
grain. L’expérience s’est faite a I’air ambiant et nous avons excité 1’ensemble a 1’aide
d’un séche-cheveux. L’excitation n’est certes pas identique a celle que 1’on utilise
dans notre modele mais cela nous a permis de comparer les deux thermogrammes. Les
Figures 4.17 a et 4.17.b montrent les deux températures. Le signal est évidemment
plus bruité pour le thermocouple se trouvant a I’extérieur qui est soumis a la
turbulence générée par le débit d’air. On constate que les signaux sont identiques en
régime permanent si 1’on ne considére que les échauffements depuis le début du
chauffage. Un écart de 1’ordre du degré Celcius apparait entre 50 et 100 s (aux temps
courts). Ce décalage peut-étre 1i¢ au fait que le thermocouple extérieur ne touche pas
la surface du grain.
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I1 aurait été intéressant d’insérer I’ensemble du dispositif (en collant le thermocouple
« extérieur » sur la surface du grain) dans le lit mais nous aurions été confrontés a
I’incertitude sur la position relative des deux soudures.

34 ‘ ‘ 10
----- TC dans le grain
— TC al'extérieur .
32 1 _ 8 //
30 ; 1 6 //
228 / Y
— i >
f..- -
26 : 2
24 1 0 promeend
S—— — TC dans le grain
Mg 5 — TCa I'ex‘térieur
220 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
t(s) t(s)
Figure 4.17 a : Thermogrammes expérimentaux Figure 4.17 b : Thermogrammes expérimentaux

» La deuxiéme explication est une augmentation des pertes de charges durant les
expériences qui pourrait induire une variation de la vitesse de Darcy. Nous avons donc
mesuré les pertes de charges lors des expériences. Nous avons percé deux orifices a
I’entrée et a la sortie du milieu granulaire reliés a un capteur de pression a membrane.
Les pertes de charge sont représentées sur la Figure 4.18. La chute de pression est de
I’ordre de 15 Pa sur environ 1 heure. Un glissement identique a été observé pour le cas
d’un lit de billes de verre. Cette variation est trés petite et ne peut pas expliquer un
changement de vitesse significatif qui expliquerait la forme des thermogrammes.
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Figure 4.18 : Perte de charge au sein du milieu granulaire

» La troisiéme hypothése correspond a I’apparition d’un phénomeéne de désorption
d’humidité au sein des micropores internes aux grains. Les courbes 4.15 ressemblent
fortement a des courbes de séchage. En effet, quand la température du milieu varie,
I’enthalpie a fournir ne correspond plus alors seulement a I’échauffement du produit
(grains) mais également a la mise en équilibre massique de son humidité qui, sur le
plan thermique, s’accompagne de la condensation ou de I’évaporation de 1’eau mettant
ainsi en jeu la chaleur latente de vaporisation.

Sur la Figure 4.19.a, on remarque que les thermogrammes atteignent un niveau constant
aux temps longs. Une nouvelle expérience a été effectuée avec une puissance de chauffage
trois fois plus importante. Les thermogrammes ont la méme forme mais leur montée en
température se fait différemment (Figure 4.19.b). Les thermocouples 3 et 4 arrivent au méme
palier que le thermocouple 2 pour une variation de température de 3K. Or leur comportement
est différent lors d’une montée en température de 1K : le thermocouple 2 n’arrive pas ici au
méme niveau que les deux autres (Figure 4.19.a). La montée en température ne dépend donc
pas linéairement de la puissance injectée. La méme expérience effectuée dans le cas billes de
verre / air a montré que le signal des différents thermocouples était toujours proportionnel a la
puissance de chauffe. Il y a donc bien un nouvel effet qui est mis en évidence dans ces
expériences. En chauffant, nous réalisons un séchage des grains.
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Figure 4.19 : Effet non linéaire de la puissance de chauffage

L’air utilisé pour réaliser les expériences est 1’air ambiant chargé d’humidité. Il faut donc
sécher les grains, pour retirer toute humidité, avant toute expérience avec un gaz sec. Le gaz
choisi est de I’azote (gaz sec dont les caractéristiques sont proches de I’air). Le temps
nécessaire pour sécher les grains, dans un process dit de « stripage », est calculé grace a une
formule empirique fournie par I’IFP.

Nous avons dii effectuer des modifications sur le dispositif expérimental initial (Figure
4.20). Le dispositif est désormais alimenté grace a des bouteilles d’azote destinées a sécher les
grains. L’azote utilisé est d’une pureté de 99 %. Ces bouteilles sont stockées a I’extérieur du
local et sont raccordées au dispositif par I’intermédiaire d’un détendeur et d’un tuyau souple
(P.V.C. tressé) de 13 mm de diamétre et de 50 m de longueur (pour permettre une meilleure
détente du gaz). Ce tuyau est raccordé a la conduite en P.V.C. rigide au-dessus du lit
granulaire. Un tuyau souple est également raccordé en sortie du lit afin de rejeter 1’azote a
I’extérieur.
La température de 1’azote mesurée au sein du milieu granulaire est de I’ordre de 20 ° C. Nous
travaillons donc dans les mémes conditions qu’avec de I’air. L’air étant formé de 79%
d’azote, ses propriétés sont quasi-identiques a celle de I’air. Nous avons donc utilisé les
propriétés thermophysiques de 1’air.
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Figure 4.20 : Dispositif expérimental de I’azote

Mode opératoire :

A TD’instant initial, on fait passer un débit d’azote que 1’on ajuste par un réglage de la
pression de sortie du détendeur. L’écoulement est maintenu pendant environ 5000 s (stripage)
pour la plus grande vitesse. La Figure 4.21 représente 1’évolution de la température en
fonction du temps du thermocouple situé¢ a 1’entrée du lit granulaire (ce thermocouple n’est
pas dans le milieu, Figure 4.20). Il mesure donc la température de 1’azote seul. Le
refroidissement initial (Figure 4.21) est probablement di a I’effet de détente. La remontée
ensuite observée est due a un réchauffement des bouteilles d’azote qui sont a I’extérieur et qui
ont été exposées au gel la nuit précédente (effet « météo »).

La Figure 4.22 montre 1’évolution de la température au sein du milieu granulaire lorsque
I’azote débite au travers du lit (données brutes). Le chauffage par le fil s’effectue aux
alentours du temps ¢ = 5000 s. Les niveaux initiaux de température sont différents pour les
différents thermocouples. On constate que le milieu n’est pas en équilibre thermique initial et
que la température dans le milieu granulaire dérive au fil du temps.
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Le thermogramme de la Figure 4.21 va permettre de corriger les autres thermogrammes, il est
en fait le thermogramme de réference 7, (t) .

On effectue a partir des différents thermogrammes les traitements suivants :

1) Afin de filtrer ce thermogramme, on effectue une moyenne glissante sur trois points de

T (t) (acquisition a quatre points par seconde), d’ou une courbe résultante :
_ 1
Ty@)=5 2 T +m A (4.14)
m = -1

2) On soustrait I_Tre/ (t) de chacun des thermogrammes afin de corriger [’offset

« dynamique » correspondant a la variation de température du gaz a 1’injection dans le
lit

(1) =T(t,)~ Tref ) (4.15)

Les courbes obtenues (Figure. 4.23) comprennent encore une dérive visible (entre 4900 et
5000 s) avant I’excitation et ne partent pas d’une température nulle.

3) On effectue donc une derniére correction de dérive et d’offset « statique » calculée sur
les 30 secondes avant chauffage (¢ = 74 au démarrage du chauffage) :

L") = T'@)—a @, — 1)~ T (1) (4.16)

1 .
a, :W <Z(fk ~t,4) T (1)
k déb v

U gy

L’offset correspond donc ici au niveau ponctuel a I’instant initial tandis que la pente est
calculée par simple régression linéaire.

La Figure 4.24 représente les mesures 7, (¢) aprés ce dernier traitement. Une légére dérive de

la température aux temps longs subsiste encore mais n’a pas été corrigée. Ces thermogrammes
vont nous permettre d’effectuer les inversions et d’estimer les parameétres.

On effectue I’inversion des 6 thermocouples habituels (cas 1). La Figure 4.25.a représente les
six courbes expérimentales et recalculées ainsi que les résidus correspondants. On constate
que les températures recalculées et expérimentales du dernier thermocouple (thermocouple 7)
différent fortement. Son résidu est de I’ordre de 6 fois le bruit de mesure. L’inversion est alors
faite sur 5 thermocouples (thermocouple 2 a 6) (cas 2). Les résidus des deux premiers
thermocouples sont de moins bonne qualité au temps court (jusqu’a 40 s) puis ils se
rapprochent du bruit de mesure (Figure 4.25.b). Ceci est probablement dii aux corrections qui
ne sont ici que linéaires. Il aurait été possible d’effectuer une correction prenant en compte la
variation de température d’alimentation du lit en azote en construisant une fonction de Green
1 D sur ce type d’excitation. Par contre le champ thermique initial dans le lit, avant injection
d’azote, n’est probablement pas uniforme, ce qui rend quasiment impossible toute correction
plus sophistiquée basée sur 1’équation de I’énergie du modele a une température.
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Figure 4.25.a : Températures experimentales et recalculées et résidus dans le cas azote / support de catalyseur (cas 1)
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Figure 4.25.b : Températures expérimentales et recalculées et résidus dans le cas azote / support de catalyseur (cas 2)
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Les températures expérimentales et recalculées se superposent de maniére satisfaisante pour
ce cas « pathologique » pour les 5 thermogrammes pris en compte. Les résidus sont
satisfaisants au vu des corrections faites (I’échauffement est maintenant de 1’ordre de 3 K au
lieu de 1 K pour le cas air / billes de verre). Le rapport signal sur bruit est sensiblement le
méme que pour les expériences air/billes de verre.

Ces expériences ont été réalisées avec le plus grand des débits. Une autre série de mesure avec
un autre cadre de bouteilles d’azote a été faite. Pour cette série, il n’a pas fallu faire un tel
traitement, le traitement classique réalisé sur le systéme air/billes de verre est suffisant.
L’équilibre thermique était atteint lors du démarrage du chauffage. Les résidus sont du méme
type que le systéme air / billes de verre (Figure 4.26).
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Figure 4.26 : Températures expérimentales et recalculées et résidus pour le systeme azote / support de
catalyseur a Re = 40

4.3.2 - résultats d’estimation

Cette partie est confidentielle.
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4.4 - Cas des billes de verre polydisperses

Cette partie est confidentielle.
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Chapitre 5 : Dispositif de caractérisation -
chauffage en paroi

Dans ce chapitre, nous allons aborder le probléme du transfert en proche paroi. Tout
d’abord une configuration permettant de caractériser la dispersion thermique en proche paroi
sera modélisée, le dispositif expérimental correspondant sera ensuite présenté et enfin les
premiers résultats expérimentaux seront discutés.

5.1 - Modélisation du chauffage en proche-paroi

Nous avons vu au chapitre 1 qu’au niveau des parois de notre lit, les billes de verre sont en
contact ponctuel avec celles-ci. Dans cette zone, la porosité du lit est globalement supérieure a
celle qui régne a ceeur. L’écoulement va donc étre logiquement modifié. D’un point de vue
macroscopique, nous n’avons acces qu’au débit de 1’écoulement. Ce débit nous renseigne
seulement sur la vitesse superficielle moyenne de 1’écoulement (vitesse de Darcy) et non sur
la vitesse locale.

Si nous voulons caractériser thermiquement les effets de ces survitesses, il est nécessaire
de chauffer le lit par une paroi a 1’aide par exemple d’une source surfacique. En fait, il s’agit
de tenter d’exploiter une configuration inverse de ce qui se passe souvent dans les réacteurs a
lit fixe ou la source est plutot localisée a cceur et ou les parois sont refroidies.

La premiére idée est donc de construire un nouveau modeéle permettant de prendre en
compte une vitesse, une porosité et des coefficients de dispersion en proche paroi différents
des valeurs de ces grandeurs en cceur du milieu poreux. Le nouveau modeéle qui va en résulter
sera appelé modele bicouche. Il correspondra a une séparation de 1’écoulement en deux
zones : une zone proche des parois ou il existe une survitesse et une zone au cceur de
I’écoulement ou la vitesse est 1égérement moins grande (Figure 5.1).
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Figure 5.1 : Représentation des phénomenes proche de la paroi

Pour modéliser cette configuration bicouche, I’équation de 1’énergie du modéle a une
température va €tre écrite dans deux domaines avec des propriétés différentes. Pour résoudre
le probléme direct analytiquement, une résolution par la méthode de Green n’est plus
possible. On utilisera une variante de la méthode des quadripdles [Maillet et col., 2000] qui
repose sur une transformation spatiale de Fourier dans la direction parallele aux parois.

Mais avant de développer cette méthode de résolution du modele bicouche, on va tout
d’abord s’assurer que 1’on est capable de résoudre numériquement le modéle a une seule
couche par cette méthode de Fourier. On va donc tenter de valider cette méthode de résolution
par une comparaison avec une solution obtenue par convolution de 1’excitation avec une
fonction de Green.

5.1.1 - Modéle de Green

La modélisation se fera ici en supposant uniforme les différents parametres du milieu
(vitesse, porosité, coefficients de dispersion...). Nous utilisons une résolution par la méthode
des fonctions de Green. On va donc résoudre I’équation de la dispersion thermique (équation
3.1) de la méme fagon que dans le chapitre 3 (cf. Annexe 4). La source s est ici constituée de
deux résistances ¢électriques pelliculaires dissipant une puissance surfacique totale 2 W, c’est a
dire créant un flux uniforme pariétal de densité W ¢égale dans chaque demi-espace, la paroi
étant parallele a I’écoulement (Figure 5.2). La largeur / de la zone de chauffage est dans la
direction de celui-ci et son extension est infinie dans 1’autre direction.
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Figure 5.2 : Emplacement de la source de chaleur

s(rt)=w o(y)[H (x)-H (x=1)]H (1) (5.1)

ol W (W.m™) est la densité de flux, d(m™) I’impulsion de Dirac spatiale et H (t) la fonction

de Heaviside temporelle (échelon). Il s’agit donc ici d’un probléme transitoire bidimensionnel
enxeteny.

La réponse en température est alors donnée par convolution (cf. équation (3.9) au chapitre 3) :

cp)f2 u?t

(o
AT = W A ek exp —i—((pcp)f u)z y_2
2(pc,) uvm YA, ], 16 A A 6 (5.2)

(pcp)fux (pcp)fu(l—x) 1
[erf (%—@— \/EJ +erf( ) N + \/EJ] ﬁ dé@

Nous prenons ici une longueur de chauffe / = 10 cm. Le point de coordonnées (0,0,0)
représente le début de la plaque (Figure 5.2) c’est a dire une sorte de « bord d’attaque
thermique ». L’équation 5.2 est résolue par quadrature numérique du terme intégral, de la
méme facon que pour I’excitation linéique (cf. chapitre 3). Les coefficients de dispersion
thermique utilisés sont ceux issus des corrélations trouvées précédemment (chapitre 4).

Les Figures 5.3 représentent les réponses en température. La forme de la montée en
température dépend beaucoup de la distance au « bord d’attaque » du chauffage (Figure
5.3.a). Le niveau de température aux temps longs augmente selon x pour atteindre son
maximum aux 4/5 de la plaque (x = 8 cm). Il se stabilise ensuite a une abscisse de 12 cm pour
redescendre (x =14 cm) pour y fixé.
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Si ’on trace les thermogrammes en fixant x (Figure 5.3.b), on constate que les niveaux de
température diminuent en fonction de la distance a la paroi (plus la distance est grande moins
le niveau est éleve).

Sur la Figure 5.4.a sont représentés les profils longitudinaux de température (selon x) pour
différentes distances y a la paroi en faisant tendre le temps vers 1’infini (régime permanent).
On représente en rouge la zone chauffée expérimentalement. Comme sur la Figure 5.3.b, le
niveau de température décroit en fonction de la distance a la paroi chauffante.

La Figure 5.4.b. représente également les différents profils longitudinaux de température a y
fixé pour différents nombres de Péclet (différentes vitesses de Darcy). Pour un méme niveau
W de chauffage, le niveau de température décroit en fonction de la vitesse. Le retour a zéro
s’effectue en 2,5 longueurs de la source pour un nombre de Péclet de 10. Pour des nombres de
Péclet importants, la baisse de température s’étend sur des distances supérieures en aval.

La Figure 5.4.c représente les profils de température transverses aux temps longs (a x fixé).
Les profils ont des formes similaires pour les positions de thermocouple se trouvant en face de
la résistance chauffante. Le profil de température correspondant a la position x = 120 mm (en
aval de la zone chauffée) est différent. Le niveau de température initial est le méme qu’en x =
50 mm mais la baisse de température est moins importante avec une concavité différente.

Nous avons donc été capables de simuler les réponses en température du modele

monocouche de Green. Le probleme de ce modele est qu’il n’est pas utilisable en bicouche.
En effet, nous ne disposons pas des fonctions de Green dans cette configuration.

Nous avons donc recours ici a la méthode des transformées de Fourier, méthode que
nous allons maintenant expliciter.
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Figure 5.4.c : Profil spatial de température, W = 197 W.m™, Pe = 21

5.1.2 - Modéle en Fourier

Pour utiliser ce mode¢le, il faut écrire de nouvelles conditions limites pour résoudre
I’équation de la dispersion thermique (3.4) avec s = 0 (la source est reportée en condition
limite).

Les conditions limites fixées sont :

-Ayg_i=w[H(x)-H(x—z)]H(t) eny=0
T=0 ar=0
T - 0 quand x - +o et x — —00
T - 0 quand y — +oo (5.3)

En pratique 7=0enx=-L etx =L avec L >> [ (/ correspond a la longueur du plan chauffant)

On effectue une transformation de Laplace sur 7'
T(x,y,p) :j e T(x, y,t) dt (5.4)
0

On effectue une transformation de Fourier sur ’intervalle [-L L] :
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L

8,(v.p)=T(a,.».p) =j e T (x,y,p) dx avec a, =%T (5.4.2)

-L

Ces deux transformations successives appliquées a I’équation (3.4), nous permettent d’écrire:

46, :{a A (ee,),

pc,).
dy* A * A p+ia,,—( cp)’u

y y y

] 6 =k’6 (5.5)

L’équation (5.5) intégrée sur [0 y] donne naissance a une relation quadripolaire entre les
vecteurs température-flux (dans I’espace transformé) aux bornes de cet intervalle :

{6’” (0,19)} :{A,, (v.p) B, (y,p)“:gn (Y’P)} (5.6)

2.(0.p)] |C.(».p) D,(y.p)] ®(r.p)

avec 4 =D, =cosh(kn y), B = F !

y n

sinh (kn y), C, =4k, sinh(kn y) et en considérant la

4 (l_e-mnz)

ipa,

transformée de 1’excitation pariétale ¢, (0, p) =

L’¢équation (5.6) s’écrit (en omettant I’argument p) et en reliant les conditions limites en y = 0
et +oo :

6.0z (=a(=) o ()
2(0)=,(=)p (=) %O (0 D
L

On peut donc écrire grace aux différentes relations précédentes :

0,(v.p) === 4.(0.p)=F,(r.r) 2.(0.p) (5.8)
Yy 'n
On revient dans I’espace temporel :
T,(v.1)=T(a,,y.0)=L"[6,(5.p)] :j f,(n.1) 8, (v=0,1-1)dr (5.9)
0
| WH() ( ia
avec f, (y,t)=L |:Fn (y,p)] et @ (0,t)= . (1—e " )

a

n
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12
Onaici F, (y,p): ( ) 11/2 exp _[(pjﬁ);] (P"‘Kn)l/zy
pe )
Av( p t\] (p+Kn)1/2
A
avec K, = Aa, +(p0p)f ia,u
(pcp)t ('OCP ;

On peut écrire cette équation sous la forme : G, ( p+ Kn) =F ( Vv, p) ce qui permet d’utiliser

la propriété suivante de la transformation de Laplace :

L_l[G(p+K)] =X L_l[G(p)]

Do) = [ )5 -
0 n

On peut donc écrire :

w Ly [(A)( . )]
T;r(yat): (l—e_i”nl)j 49, T e pey ), pe,), dr

ia,“/n/h, (pcp)t o ﬁe

Le retour dans le domaine spatial s’écrit alors :

N

1 ia, x
() =5 D ()¢

n=—N+l

(5.10)

(5.11)

(5.12)

(5.13)

Nous obtenons alors les mémes thermogrammes représentés sur la Figure 5.3.b. Les
résidus (différence entre la température du modéle de Green et du modeéle de Fourier) sont
représentés sur la Figure 5.4.d pour le thermogramme de la Figure 5.3.b a y = 3 mm. On
constate que ceux-ci sont nuls. Le temps de calcul de ce dernier mod¢le est plus long que pour
le modéele de Green. De plus, pour obtenir une convergence compléte du modele (5.13), il faut
choisir les bons parameétres N et L. Pour obtenir une convergence compléte, nous avons pris

ictL=50cmet N = 200.
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Figure 5.4.d : Résidus entre le modeéle de Green et de Fourier

5.2 - Conception du banc expérimental

5.2.1 - Dispositif expérimental

Nous avons utilis¢ une conception similaire a celle utilisée pour le dispositif
expérimental précédent (cf. chapitre 2). Le milieu poreux (lit consolidé de billes de verre) est
contenu dans une boite (60 X 15 x 20 cm®) en Altuglas® coulé (et non plus extrudé), ce qui
permet de disposer d’un matériau plus résistant (Figure 5.5). Les billes sont tenues en place
par deux grilles en acier inoxydable et deux plaques perforées en Altuglas® dans un volume
de 40 x 15 x 20 cm’. Le choix de ces dimensions est justifié de la méme fagon que dans le
dispositif expérimental précédent. La différence réside dans la largeur de la boite. La boite
sera séparée en deux par une paroi amovible. Chacune des deux zones de mesures a pour
dimensions environ 40 X 7.5 x 20 cm’. On aura donc une compléte symétrie. Cette symétrie
permettra de contréler complétement le flux de chaleur.

Un bouchon de vidange a été ajouté pour permettre de vider rapidement la boite.

L’air est aspiré grace au ventilateur décrit précédemment (cf. chapitre 2). La boite étant plus
volumineuse que la précédente, la vitesse risque d’étre moins importante (d’ou des nombres
de Reynolds plus faibles). Pour essayer de limiter cet effet, nous avons augmenté la section de
passage de I’air. Les tuyaux en PVC utilisés ont désormais un diamétre intérieur de 150 mm.
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Figure 5.5 : Dispositif expérimental

La paroi interne est réalisée a 1’aide d’une plaque de carbone-epoxy de 2 mm
d’épaisseur. Ses dimensions sont de 40 x 20,4 cm”. Celle-ci est insérée dans une glissiére
usinée dans les parois de la boite en Altuglas. Les contraintes liées au choix du matériau
constituant cette paroi concernent sa rigidité et son caractére isolant (un matériau souple
aurait, au contact du poids des billes, fléchi au centre). La plaque est donc constituée d’un
composite de carbone-epoxy tressé. Les tresses de carbone permettent d’obtenir une grande
résistance mécanique ; le matériau est ainsi homogene et isotrope dans son plan (méme
propriétés mécaniques dans toutes les directions). Le module de Young dans les deux
directions du plan est de 70 Gpa, la conductivité thermique dans la direction normale au plan
serait comprise entre 7,7 et 13,3 W.m.K™' selon le constructeur et la chaleur massique est
comprise entre 863 et 929 J kg K.

5.2.2 - Chauffage électrique

Pour assurer un chauffage en paroi, nous avons fait coller de chaque coté de la plaque
deux fines résistances ¢€lectriques chauffantes (Figure 5.6) déposées sur un film polyamide (le
collage se fait sous vide pour qu’il y ait une meilleure adhérence). Ce matériau est un
matériau fin, semi-transparent dans I’infrarouge et bénéficiant d’une excellente rigidité
diélectrique. L’épaisseur de chacune de ces deux résistances est de 250 um. Les deux
résistances de 30 Q chacune ont une dimension de 10 x 20 cm®. La valeur de la résistance est
indépendante de la température et la résistance chauffante a une bonne tenue jusque 250°C.
Comme pour le banc expérimental précédent, la puissance de chauffage est enregistrée en
continu. Le dispositif électrique est le méme, nous avons juste connecté les deux résistances
en parallele au circuit afin d’obtenir une seule résistance équivalente de 15 Q. La puissance
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mesurée grace a notre systéme d’acquisition est alors divisée par 2 pour obtenir, la puissance
surfacique fournie () de chaque coté de la plaque.

La résistance chauffante est recouverte sur ses deux faces par un film polyimide
KAPTON® (épaisseur de I’ordre de 50 um). Le KAPTON® peut étre utilisé tant aux hautes
qu’aux basses températures. Il s’agit d’un bon isolant électrique. Sa conductivité thermique
est de 0,12 W.m™ K" et sa chaleur spécifique est de 1,09 J.g™' K.
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Figure 5.6 : Résistance chauffante et emplacement de la résistance sur la plaque (paroi)

5.2.3 - Thermocouples

Les températures sont toujours mesurées par des thermocouples de type E de 127 pum
de diametre.
Les thermocouples sont étalonnés de la méme fagon que précédemment.
Le but du dispositif expérimental est de quantifier les phénomeénes qui se passent pres de la
paroi, il faut donc que les thermocouples soient trés proches de la paroi. Les survitesses en
paroi surviennent a une distance de 1’ordre d’un rayon de billes et donc a 1 mm de la paroi
(pour les billes de 2 mm). Le premier thermocouple sera placé a 1 mm de la paroi puis les
thermocouples suivants seront espacés de 1 mm jusqu’a atteindre 4 mm. Pour mesurer la
température de la résistance chauffante, 3 thermocouples ont été collés sur le film de
KAPTON®. 5 thermocouples sont placés a une distance de 3,5 cm de la paroi. Enfin, un
thermocouple (numéroté 32) est placé a I’entrée du lit sur son axe de symétrie (dans
I’écoulement du fluide d’alimentation). Le placement de ces différents thermocouples est
indiqué sur la Figure 5.7.
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Figure 5.7 : Positions des thermocouples dans le
milieu poreux, les dimensions sont données en mm

Nous avons placé au total 34 thermocouples au sein du milieu poreux et 1 en dehors.
Une des difficultés dans la réalisation du banc concerne le positionnement des thermocouples.
Les thermocouples sont séparés de 1 mm : la fixation par vis utilisée pour le dispositif
expérimental précédent n’est plus envisageable.
La traversée de la paroi se fait par des trous trés fins de 130 um de diamétre, pour des
thermocouples de 127 um. Les thermocouples sont enfilés au travers d’un joint de caoutchouc
assurant I’étanchéité et puis enfilés ensuite au travers d’une bride (il y a une bride par série de
thermocouples) (Figure 5.8). Les thermocouples sont regroupés par séries de 6 ou 5 et sont
tout d’abord 1égérement tendus. Apres le remplissage de la boite par les billes de verre, les fils
sont tendus et on vient fixer les brides par des vis de fixation.
Les thermocouples placés a y = 35 mm et les thermocouples 25 et 26 sont fixés griace au
systeme de vis utilisé dans le dispositif expérimental précédent.
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Figure 5.8 : Systeme de fixation des thermocouples

Le dispositif expérimental complet est montré en Figure 5.9. La procédure expérimentale pour
réaliser les expériences est alors la méme que celle décrite au chapitre 2.

paroi en

\ connection de

la résistance
chauffante

résistance
chauffante

Figure 5.9 : Dispositif expérimental complet
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5.3 - Résultats expérimentaux

La Figure 5.10 présente les premiers résultats expérimentaux. Les thermogrammes ont
une forme similaire a ceux mesurés précédemment au cceur du milieu.
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Figure 5.10 : Températures expérimentales « proche paroi », u = 0,71(+0,11) m.s” et
W=126,5W.m”

Afin de mettre en évidence un « effet de paroi », les courbes théoriques de 1’équation (5.2) et
expérimentales sont superposées sur la Figure 5.11. Les positions des thermocouples utilisés
dans le modéle (5.2) sont les positions nominales, les coefficients de dispersion sont ceux
calculés précédemment (chapitre 4) et la vitesse est la vitesse de Darcy qui est mesurée avec
le fil chaud. Les courbes ne se superposent pas. Il y a une réelle différence entre les deux
séries de courbes méme si la vitesse mesurée est trés imprécise, I’écart de température entre
mesure et modele est positif ou négatif selon les thermocouples. Sur la Figure 5.12, est
représenté le signal d’un méme thermocouple (TC 2) a différentes vitesses (le lit n’a pas subi
de reconstruction entre ces différentes expériences). Pour les nombres de Reynolds égaux a 60
et 90, la puissance est de 126 W.m™ et pour des nombres de Reynolds de 30 et 75, la
puissance est de 197 W.m™. La Figure 5.12 représente les thermogrammes recalculés et
expérimentaux, les courbes ne se superposent pas.

Les Figures 5.13 et 5.14 montrent les résidus pour différents nombres de Reynolds pour les
thermocouples 2 et 13. On constate que le signe (négatif ou positif) des résidus n’est corrélé ni
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a la vitesse ni a la position du thermocouple. Ceci est certainement une signature des effets de
survitesse en paroi.

Le mode¢le a une température ne permet pas de décrire les phénoménes observés pour le
chauffage en paroi, il est donc nécessaire d’utiliser un modele plus complet.
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Figure 5.11: Températures expérimentales Figure 5.12: Températures expérimentales et
(traits pleins) et recalculées (traits en pointillés) recalculées pour le thermocouple 2
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Figure 5.13 : Résidus a différents nombres de Figure 5.14: Résidus a différents nombres de
Reynolds pour le thermocouple 2 (x = 20 mm et Reynolds pour le thermocouple 13 (x = 80 mm et

y =3 mm) y=I1mm

127



| Chapitre 5 : Expérimentation et modélisation en proche paroi

5.4 - Perspectives

Le dispositif expérimental avec chauffage en paroi permet de produire des
thermogrammes de bonne qualité. Les mesures que nous avons réalisées, permettent de mettre
clairement en évidence les effets thermiques en proche paroi. Le modéle de Green mis en
place donne une idée générale du profil de température que nous observons mais ne permet
pas de décrire complétement le phénomeéne. Le modele de Fourier « une couche » a été validé.
Il ne prend pas en compte les différents phénoménes se produisant prés de la paroi décrits
dans la littérature (cf. chapitre 1). Il est donc nécessaire a partir du modéle simple
« monocouche » de réaliser un modele « bicouche » qui permettrait de coupler la zone a cceur,
dont les propriétés ont été identifiées (cf. chapitre 4) et la zone en proche paroi (Figure 5.15).

Ce nouveau modele fera apparaitre de nouveaux parametres qu’il faudra estimer avec
la méme technique que nous avons utilisé au ceeur du milieu. Ces nouveaux parametres sont :

v' lalargeur de la « pseudo-couche limite » dde 1’ordre du rayon des grains
v’ la vitesse en proche paroi : u’

v" la porosité en proche paroi : &

v les coefficients de dispersion en proche paroi : A.” et A’

v’ les positions des thermocouples

Ce modele bicouche est déja écrit (cf. Annexe 5) ; une étude de sensibilité serait nécessaire
afin de savoir quels parametres peuvent étre estimés correctement.

parol

Figure 5.15 : Modélisation avec le modéle « bicouche »
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Conclusion et perspectives

Dans ce travail, nous avons adapté le banc de caractérisation de la dispersion en cceur
du milieu granulaire du laboratoire a un écoulement gazeux. Un lit fixe constitué soit de billes
de verre de 2 ou de 3 mm soit d’un grain poreux (support de catalyseur) est parcouru par un
écoulement d’air ou d’azote. Ce lit est soumis a un chauffage linéique qui permet d’éviter les
effets thermiques en proche paroi lorsque 1’on mesure des températures a cceur. Ces différents
lits granulaires ont été caractérisés. Nous avons estimé avec une bonne précision les différents
parametres du probléme: coefficients de dispersion longitudinal et transversal, la vitesse de
Darcy et les positions des thermocouples. La qualité de ces estimations a pu étre validée par
des simulations de Monte Carlo. Cette étude a également permis de valider le modele a une
température pour des grains non poreux (billes de verre) et aussi pour des grains poreux
(support de catalyseur) parcourus par un écoulement gazeux.

Nos résultats ont été comparés avec ceux effectués, dans la méme configuration, pour
un écoulement d’eau au travers d’un lit de billes de verre. Cela nous a permis de proposer une
corré¢lation unique donnant le coefficient de dispersion longitudinal pour trois systémes
différents en fonction du nombre de Reynolds. Nos résultats sont ici en adéquation avec ceux
de la littérature. Il serait intéressant de procéder a des caractérisations plus larges en utilisant
différents fluides et différents solides afin de valider ou d’améliorer cette corrélation.

Le coefficient de dispersion transversal a pu étre estimé avec une trés bonne précision
(contrairement au cas eau / billes de verre). Nos résultats nous ont permis d’établir une
corrélation linéaire pour des nombres de Reynolds de 15 a 100. Cet intervalle correspond au
régime inertiel. Il semble que pour le régime de Darcy (nombre de Reynolds de 0 a 15), le
coefficient de dispersion transversal soit constant. Il est & noter que nos résultats ne sont pas
en accord avec la littérature ou ce coefficient est mal estimé. Pour confirmer la constance de
ce parametre en régime de Darcy, il serait possible de réaliser les mémes expériences a de tres
faibles débits avec non plus un systéme d’alimentation par aspiration d’air mais en utilisant
des bouteilles d’air comprimé. Ceci permettrait peut-étre d’atteindre un régime impossible a
avoir avec notre type d’installation et ceci pour des nombres de Reynolds de 5 a 15, niveaux
pour lesquels la convection naturelle ne doit pas encore trop se faire sentir.

La maitrise du coefficient transverse est cruciale en situation industrielle car c’est
celui-ci qui assure le refroidissement vers la paroi du lit lorsque ce dernier est le siege d’une
réaction exothermique. Il serait intéressant de réaliser des expériences avec des mélanges de
billes de diametres différents.

Enfin dans cette partie sur la caractérisation thermique en cceur du milieu granulaire, il
serait certainement intéressant d’effectuer de mesures sur un réacteur permettant de mieux
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s’approcher du process industriel. Il serait alors possible de valider plus complétement notre
approche.

Nous avons également mis au point un banc de caractérisation des effets thermiques en
proche paroi en excitant le lit par un chauffage en paroi. Les premiers résultats expérimentaux
sont de bonne qualité et indiquent que le modéle a une température tel que nous 1’utilisions ne
permet pas encore de décrire les phénomeénes causés par la paroi (survitesses créées par des
variations locales de porosité). Un nouveau modele analytique basé sur une transformation de
Fourier spatiale doit pouvoir permettre de prendre en compte les effets proches paroi en
utilisant une description « bicouche » du milieu (couche semi-infinie a coeur et couche en
proche paroi). Il serait intéressant de le tester et de le I’appliquer sur nos premicres mesures. 11
faudrait, en paralléle, étudier I’identifiabilité de tous les paramétres de ce modele bicouche et
tenter de dégrader la couche en proche paroi en une condition limite couplant thermiquement
couche a cceur et paroi du lit.
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Annexe 1 : nouvelle configuration de chauffage

Nous avons étudi¢ une autre configuration d’excitation (Figure 2.1) pour voir si une
amélioration des estimations était possible pour I’air.

L’abscisse des thermocouples (y) a été optimisée. Plusieurs profils de sensibilité et de
simulations de Monte Carlo ont été effectués, il est apparu qu’a y = 5 mm, nous avions les
meilleurs résultats.

Nous avons superposé deux fils chauffant. Les deux sources sont perpendiculaires a
I’écoulement (Figure 2.1) et sont décrites par :

50 =03(x' =0)3(y" - 0)
s =00l -x;)a(y - )

Nous utilisons la méme méthode que celle utilisée dans le paragraphe 1.1 et 1.2 et nous
obtenons la réponse en température :

(pcl' )2, utt

- 2, . A
AT(x,y,xl,yl,t) - L J.4(pc,,)L A | € e - ﬁ
AL | odtemn) - fomalt sl |

[t (2, el

L’évolution temporelle de la température a la méme allure que celle de la Figure 2.2 de la
Partie 1. Par contre, les profils des sensibilités changent Iégérement (figure 2.2).

Nous avons fait figurer ici 2 nouveaux paramétres x; et y; (position du thermocouple de la
source ;) qui sont estimés et qui sont également a associer a une contrainte sur leur valeur
nominale (comme les thermocouples) en mode .
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Figure 2.1 : nouvelle configuration Figure 2.2 : sensibilités a Pe = 32 pour deux sources
d’excitation avec deux fils chauffants et paralléles

positions des thermocouples

On constate que la sensibilité¢ au coefficient A, est désormais positive et que la sensibilité a la
vitesse est négative. De plus, on constate que le signal est plus sensible a A, et que les
sensibilités a A, et a y ne semblent plus étre corrélées.

Simulations de Monte Carlo

Des simulations d’inversion par la méthode de Monte Carlo ont ét¢ effectuées.

On constate, par rapport aux simulations de Monte Carlo effectuées sur une seule source, que
les trois paramétres A,, A, et u sont moins biaisés. Par contre A, est plus dispersé, la dispersion
est deux fois plus importante et le biais est 5 fois moins important.

L’estimation du coefficient transversal étant satisfaisante dans le cas d’une seule source, nous

ne pensons pas que la réalisation expérimentale de la configuration a deux sources soient
nécessaire.

Biais (%) | Ecart type (%)
Ax 1 1
Ay 1 4
u 0.3 0.3

Ecart - type et biais de 400 simulations de Monte Carlo
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En conclusion, ce type d’excitation permet d’améliorer 1’estimation sur A, (biais diminué) et
sur la vitesse (biais diminu¢). Par contre il y a une dégradation de I’estimation pour le

coefficient transverse A, (dispersion augmentée).
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Annexe 2 : prétraitement du signal

(extrait de la thése de Thomas Metzger)

Chapitre 3

Résultats pour trois dispositions
expérimentales

Dans ce chapitre, les résultats expérimentaux seront présentés et discutés. D’abord
nous allons discuter le prétraitement du signal expérimental. Ensuite, les différents modes
d’estimation — classiques (3, et B;) ou de Gauss-Markov (cy) — seront utilisés afin d’ob-
tenir des résultats pour des coefficients de dispersion thermique. La discussion de ces
résultats mettra en évidence une insuffisance de la méthode actuelle. Ce probléme sera
résolu par une modification Iégére mais cruciale de la géométrie du dispositif. Nous présen-
terons enfin les résultats d’estimation obtenus par cette nouvelle méthode ; ceux-ci seront
validés par des mesures avec un chauffage plan.

3.1 De la mesure aux signaux utiles :
prétraitement du signal

Avant d’appliquer la méthode d’estimation de paramétres aux données expérimentales,
les signaux bruts en température doivent étre mis dans le bon référentiel et le bruit
qui est d’origine électrique doit &tre corrigé. Afin d’illustrer la démarche nous montrons
une mesure représentative avant tout traitement sur la figure 3.1. On comprend tout
de suite que ces signaux ne peuvent pas directement servir pour le calcul d’estimation
de paramétres, car ni le temps ni la température ne sont ceux du modéle théorique :
le chauffage a été allumé & linstant ¢’ & 37 s et les températures mesurées a D’équilibre
thermique autour de 7 = 23,3°C ne sont pas rigoureusement les mémes pour chaque
thermocouple, alors que dans le modéle la température est uniforme partout avant la
mise en marche du chauffage & l'instant ¢ = 0.

3.1.1 Puissance de chauffage et instant d’allumage

Comme il a été déja précisé, la puissance électrique de chauffage ® est mesurée et enre-
gistrée en continu pendant chaque expérience. Ceci permet d’un coté d’identifier I'instant
et la durée de la mise en marche et d’un autre c6té de mesurer la puissance linéique Q et
de vérifier sa constance. La figure 3.3 montre I'évolution de la puissance électrique ®(¢')
en fonction du temps pour I’expérience de la figure 3.1 pendant I’allumage.
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F1G. 3.3 — Puissance électrique dégagée pour l'expérience de la figure 3.1. (Les grandeurs ca-
ractéristiques de la mise en marche et leur définition sont représentées.)

L’instant de la mise en marche est déterminé de la maniére suivante : on prend comme
seuil la moitié du niveau final ®;, ; puis, on fait passer une droite reliant le dernier point
en dessous de ce seuil au premier au-dessus; l'intersection de cette droite avec le seuil
donne le temps d’allumage t,, qui définit alors le nouveau repére de temps t =t' —t,. La
durée de la mise en marche At, est définie par le temps entre le dernier point de mesure
en dessous de 5% de ®;, et le premier point au-dessus de 95% de ce niveau final. Cette

durée est d'environ 0,5 s pour toutes les mesures effectuées.
Pour toutes les mesures effectuées, la puissance électrique ® était constante aprés la

mise en marche; I’écart-type maximal d'un point de mesure ®(¢;) autour de la moyenne
®(t, > 0) étant 1%c. La puissance linéique @ est calculée a partir de cette moyenne et de

la longueur du fil ;.

3.1.2 Températures : ’équilibre thermique
et correction du bruit électrique et de la dérive

Apreés avoir trouvé la bonne origine de temps, nous cherchons maintenant & déterminer
la température d’équilibre thermique afin de définir la bonne origine des températures :
chaque thermocouple doit étre & AT = 0 avant le chauffage.

Les températures affichées sur la figure 3.1 ont été obtenues a partir des tensions U;
mesurées aux bornes des thermocouples et la température de la sonde Pt100 par I’équa-
tion (2.34). On constate d’abord que les niveaux initiaux de température sont différents
pour les différents thermocouples. Le milieu étant en équilibre thermique, il s’agit de
légéres variations de I'offset des différentes voies de la carte d’acquisition.
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Pour corriger cet effet, nous calculons pour chaque thermocouple la moyenne de Ny ~
300 mesures avant la mise en marche du chauffage (a l'instant ¢t = 0) :

1
To:= 5 D Tilte) (3.1)
i\lru tp<0
Cette température est affectée a 'instant t = -—%ﬁ (afin de tenir compte de la dérive qui

sera discutée tout de suite).

Deuxiémement, on voit un changement rapide et de courte durée sur toutes les tem-
pératures & l'instant de la mise en marche du chauffage. Il ne peut étre que d’origine
électrique car tout effet thermique serait beaucoup plus long et non simultané pour tous
les thermocouples. Pendant que le chauffage est allumé (¢ > 0), ce bruit synchrone se
répéte de temps en temps — surtout pour des mesures & grande puissance de chauffe (voir
aussi page 81).

Une troisiéme observation concerne la légére dérive des températures mesurées (malgré
toutes les précautions qui ont été prises). Celle-ci touche tous les thermocouples et provient
trés probablement d'une dérive de la température de référence (voir figure 2.18c). Une
autre raison possible serait une dérive de la température d’entrée du milieu poreux. Dans
les deux cas, on a le droit de la corriger, car elle n’est pas liée a I'excitation du fil chaud.
(Nous rappelons que la linéarité du modéle (2.4) permet de soustraire une dérive de la
température ambiante.)

Afin d’éliminer ces perturbations du signal qui n’ont aucun lien avec le phénoméne
physique en cause, on peut se servir du thermocouple 13 (voir figure 2.17). Celui-ci ne
ressent pas d'échauffement, méme pour des trés faibles vitesses. Dans le seul cas de I'eau
stagnante, il mesure une augmentation de température. Pour la plus petite vitesse utilisée
(Pe = 1), augmentation de température en amont du chauffage atteint seulement le
thermocouple 12. Dong, le thermocouple 13 n’est sensible qu'aux seuls effets perturbateurs
d’origine non thermique. La figure 3.4 montre le signal du thermocouple 13 extrait de la
figure 3.1.

Afin de sélectionner les points bruités électriquement, nous nous servons du bruit de
mesure avant la mise en marche du chauffage :

_ 1
N I\-g -1

Z(Tm.o — Tha(t))® (3.2)

te<0

ag :

Un point de mesure & I'instant ¢ est éliminé si le critére suivant n’est pas satisfait :

|T13(tk) = T13.o| < 409 pour O g <18 (33)
2
1
‘Tlg(tk) - EZTls(t*”) <40y pour tp>1s (3.4)
I==2
1#0

La perturbation (d’une plus grande durée) pendant la mise en marche du chauffage peut
étre identifiée en absolu par rapport 4 la température initiale (3.3), car I'effet de la dérive
est encore petit & t = 0. Pour les perturbations suivantes, qui sont d’une trés courte durée,
chaque point est comparé 4 la moyenne (glissante) de ses 4 voisins (3.4). Dans les deux
cas, nous avons considéré comme significatif un écart de 40¢. Naturellement, les points
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23.4
®
®
[
: b 2 @  derive _
23.3 .’ ® s \ 1
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[
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e
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FIG. 3.4 — Signal agrandi du thermocouple 13 et correction des effets perturbateurs (mesure de
la figure 3.1).

0 10 20 30 0 10 20
t' (s) t' (s)

FiG. 3.5 — Correlation du bruit de basse fréquence entre les thermocouples.

qui sont identifiés de cette maniére grace au thermocouple 13 sont ensuite éliminés pour
tous les thermocouples.

La pente de la dérive est déterminée & partir du signal nettoyé du thermocouple 13
par une droite des moindres carrés classiques. Pour chaque thermocouple, on soustrait du
signal la droite qui passe par le point (—%,Ti) avec la pente de la deérive. La figure 3.4
tente d’illustrer toutes ces corrections.

La derniére correction concerne les variations de basse fréquence que subissent tous
les thermocouples. La figure 3.5 tente de les montrer : les signaux avant chauffage (a)
sont d’abord transformés par une moyenne glissante (sur 4 s ou 32 points de mesure),
puis on soustrait les températures T;o pour afficher les variations corrélées AT} moy des
thermocouples (b).
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L’origine de ce bruit n’est pas expliqué. La correlation nécessite une raison commune
pour tous les thermocouples. Du coté thermique, nous ne trouvons pas d’explication :
des variations de température du bloc du cuivre seraient beaucoup plus lentes; et une
variation de la température au niveau de la connection des fls des thermocouples aux
bornes de la carte produirait une tension thermoélectrique qui serait symétrique sur les
deux bornes (voisines) de chaque voie et qui s’annulerait. Reste une raison électrique, car
tous les signaux passent par le méme circuit électronique (derriére le multiplexeur). Ou il se
pourrait aussi que la fréquence d’acquisition en cours de mesure soit légérement différente
de sa valeur nominale, impliquant que les données seraient moyennées sur des cvcles non-
entiers de la fréquence du réseau (voir page 80) provoquant alors des battements.

['effet étant petit et I'effort nécessaire pour identifier sa vraie cause étant grand. nous
nous contentons de constater que le bruit touche tous les thermocauple simultanément ; il
peut alors étre corrigé par soustraction du signal du thermocouple 13 des signaux de tous
les autres thermocouples. L’augmentation du bruit a plus haute fréquence d'un facteur v/2
(propagation d’erreur dans la difference T: — Ti3) est accepte. car ’élimination du bruit
4 basse fréquence est plus importante pour une bonne interprétation des résidus (voir
figure 3.7 ou 3.9).

[Pe<h 6 mK
5< Pe< 50| 9mK
Pe > 50 |13mKJ

TAB. 3.1 — Bruit du signal de température o7 (apres corrections) .

(o

Pour notre exemple de mesure. des températures ainsi corrigées sont affichées sur la
figure 3.2. Le bruit typique de ces signaux (nettoyés) est donné sur le tableau 3.1 il varie
en fonction de la vitesse, car le nombre de points dont on prend la moyenne pendant
I’acquisition est plus grand pour des petites vitesses (voir page 80).

Il est arrivé deux fois que, pendant la mesure, le signal du thermocouple 13 subisse un
effet tel que celui montré sur la figure 2.21b; dans ces cas, le signal du thermocouple 12
a pu étre utilisé a la place pour la correction. (Les vitesses étalent assez élevées pour que
ce signal ne contienne pas d'effet de chauffe.)
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Annexe 3 : équations de fermeture I

Les équations de fermeture et les conditions limites associées ainsi que l'expression
correspondante du tenseur de dispersion sont rappelées ci-dessous :

Les fonctions ]7 et g, sont les solutions de :

('Ocp)ﬂaﬁ'mDf_/]ﬁmzf:‘(pcp)ﬁ{%_[2(T>)ﬁ<vﬂ>ﬂ]° (A)
gﬂ(pc ) B
_/] DZ—» - TBVTplp , 5
o g (pcp)g <,0Cp> <V/3'> ( )
avee sur Ay, : [ = et g A 00 ] =iig, 4,008 +iig, (1 =4, ). (©)

A =(£52, +gg/10)7+eﬁ/15V1 [ OF da+e A, — jj,ﬁ g dd-¢,(pC, ) Vijvﬁ 0f dv
V

ﬁ Aﬁo J Aﬂa

(D)

On procede ensuite a une analyse des ordres de grandeur pour comparer les cas eau-verre et
air-verre.

* On suppose la vitesse moyenne fixée ainsi que les propriétés thermophysiques de la
phase solide.

D'apres 1'équation (B), on a :

(A
_AJDZg = O(Egj

Dans le cas de I'eau : (pCp )g %@ﬁy = 0((,0Cp )J<17ﬂ>ﬂ) puisque % =1.47
Dans le cas de l'air : (,OCP )a %@ﬁy << O((,OCP )a <\7’8>5) puisque % =107,

A linterface solide-fluide, /=g soit O( f ) = O(g) (en accord avec l'analyse des ordres de
grandeur opérée au paragraphe II.1. du chapitre I eq.(19)).
On en déduit facilementque : g, <<g, etque f,  <<f

air eau *

En reportant dans la relation (D), on obtient, pour v fixée : )Ie/j,air << }eﬁ',eau (avec en plus

A <A

eau

¢ On fixe le nombre de Péclet
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B

eau

Avec a,, =100 a,, alors <Vﬁ>fir =100 <vﬁ>

Dans ce cas, les ordres de grandeur des fonctions f et g calculées pour I'eau et pour 'air sont
pratiquement les mémes.
* Sion fixe la valeur du nombre de Reynolds

B B \ \ . \
Avec v, =15v,,, <vﬁ>air =15 <Vﬁ>eau’ on retrouve a peu pres le cas de comparaison a

vitesse fixée.
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Annexe 4 : solution de I'équation proche-paroi
utilisant les fonctions de Green

La température moyenne évolue selon 1’équation de dispersion :

('OCP); ? = D.(A D<T>)—(,Ocp)f u, .D<T> + s(r,t) (1)

avec r = (x,y,z).

S(r,t) est une source volumique ( puissance thermique par unité de volume) dissipée dans le
milieu granulaire homogénéisé. Dans le cas général, c’est une fonction de I’espace r et du
temps ¢. A est ici le tenseur de dispersion thermique et up la vitesse de Darcy (notée ici u).
Dans le cas d’un milieu granulaire isotrope et homogéne, de porosité externe &, traversé par

un écoulement de vitesse up selon ’axe Ox et contenant une source, le modéle a une
température s’écrit :

oT 0°T 0°T 0°T oT
(pcp)t o :(/‘x o2 +4, 9 + A azzj B (pcP)f Up O ts (2)

ou 7T est la température moyenne enthalpique définie par 1’équation (1) pour laquelle nous
avons enlevé les crochets pour simplifier la notation.

Une transformation exponentielle telle que (avec r = (x, v, z)) :

T(r,t) = F(r,t) f(r,t) 3)
avec f(r,t) = ™M 4)
2 A, 4 (pe,) A

permet d’obtenir I’équation suivante :

2 2 2
(pe,) G = A 5+ A, G+ A S
PIe ot Ox Y dy 0z

S (5)

N
avec le terme source S =—.

Cette fonction F peut étre ici considérée comme une fonctionnelle c’est a dire qu’elle dépend
de I’excitation s (r,t). Nous écrirons donc dorénavant F (r,t;s (r, t)) .
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T T o)) 1 1 (pC,), K3 (r, ) (62)
reo=| ] 1 870 A, (1=1)" eXp( At-1") j

o —_N\2 oo g
! Iexp[_mcp)t(z )jd SEY) g

x'=0 y'=0¢'=0

JA 4, 42 (t—1") (pC,),e(x',y', 1)

IZ
Pour un milieu infini avec une condition limite F (r - 00) =0, une condition initiale

F (r, t=0)= 0, et une source, qui est une impulsion de Dirac spatiale et temporelle

S5=0 (r - r') ) (t - t') , la fonction de Green du probléme est donnée par :

(=) L) L (=2)

A A, A
. — ror\ — 1 B . 4B(;—t') }
Flr,t;s.)=Gl(r,t/r,t) = e (6b)
(ri55) = 6 ) 8 JAAATE (t-r)°
avec B = !
(pcp)t

La fonction de Green G permet de calculer la solution de I’équation (2) pour n’importe quelle
source par I’intégration suivante :

T(r,t)=f(re) F(r, t;5(r,t)) = ew“b’j J G(r, t/¥, ") %(r’, ) &' dr (7

La source de chaleur est ici égale a :
s(r,t) =W(y)[H(x)~ H(x )| H(?)

avec H la fonction de Heaviside,
o la distribution de Dirac.

On introduit le terme source dans 1’équation 7 et on obtient :

w j exp(—b(t —-t")

T(r,t)=
AT A A, J (11"

) ,m \ _(pe,) (v-y)) |
H(z)Jé(y)exp ryyrerall

(8)

00

j exp(a(x —x"))exp (—

x'=0

(pc,),(x=x')’
4A (t—1t")

][H(x') ~H(x'-1)]dx"dt'
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On integre 1’équation (8) sur y " :

W ( exp(~b(t—1") _(pc,),y’
T(r’t)_477\//‘/|y j -1 eXp( —4Ay(z—t')]

“ e 9)
j exp(a(x—x'))exp(— (PC,) (= x) ]dx'dt'

4A (t—t")

x'=0

I (x,t"

On rappelle ici que :

w

erf(w) = \/_ exp(—z°) dz

et on pose :
- (Iocp )t I=x
4A (-t = I = '[ exp (—(kv* +av)) dv
v=x'—-x X'=-x

On obtient donc :

2 2 (10)
o +av=k( + Sy =k v+ -2 =722 -2 a ecZ=«/k( +—aj
av=k(* v) |:(V ) 4k2} P v v Y

et ’on peut désormais calculer I’intégrale 7 :
Zy

[x \/_ exp(— Zz+—) dz
I =7 A=) wp| P -y [erf(Z)+erf(Z )] (11)
(pcp)t ('Ocp)f

Les termes Z; et Z, sont définis par les équations suivantes :
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Zz=\/;(l—x+§J
7<) 1 [ (pe,), {H(pcp)fu(t_t,)}
2\A@=t)] (pcy),

Zzzl (locp)t {l—x+@u(l_f')}
2\ A -1 (pc,),

On obtient ici

(pc,) y” [ A=t . '
T /1/1 ) (1= z') ( 47, (1 - t')}( (Pcp)tj [erf (Z) +erf (Z,)]dr" (12)

Ou encore :

W 1 (pc,) y’
T=—"F—An exp| ———2""—
4m A A, f:@JU_t') [ 42, (t—t")

1oy [, e, [eep, [, w0, .
{”f[z Axa—r)[ (e, " ”D f[z 2~ t){ o, " ”md’

p/t

(13)

2 2
(pe)
I1 est enfin possible de faire le changement de variable : 8 = ad t', ce qui conduit a
CP le
I’expression suivante :

(pcp);uzt
I U VA LR G N XA
2(oc,), uvm A, |, 16 A A 6

(pcp)f_ux (pcp)fu(l—x) 1
[erf [M—\@_ \/EJ +erf{ ) 7o + \/EJ] ﬁ dé

(14)
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Annexe 4 : solution de I'équation proche-paroi
utilisant les fonctions de Green

La température moyenne évolue selon 1’équation de dispersion :

('OCP); @ = D.(A D<T>)—(,Ocp)f u, .D<T> + s(r,t) (1)

avec r = (x,y,z).

S(r,t) est une source volumique ( puissance thermique par unité de volume) dissipée dans le
milieu granulaire homogénéisé. Dans le cas général, c’est une fonction de 1’espace r et du
temps 7. A est ici le tenseur de dispersion thermique et up la vitesse de Darcy (notée ici u).
Dans le cas d’un milieu granulaire isotrope et homogéne, de porosité externe & traversé par

un écoulement de vitesse up selon I’axe Ox et contenant une source, le modéle a une
température s’écrit :

oT 0°T 0°T 0°T oT
(pcp)t ot :(Ax o2 +4, P + A azzj B (pcp)f Up O ts (2)

ou T est la température moyenne enthalpique définie par 1’équation (1) pour laquelle nous
avons enlevé les crochets pour simplifier la notation.

Une transformation exponentielle telle que (avec r = (x, v, z)) :

T(r,t) = F(r,t) f(r,t) 3)
avec f(r,t) =™ 4)
2 A, 4 (pe,), A

permet d’obtenir I’équation suivante :

2 2 2
(pe,) G = 2. 5+ A, G+ A S
PIe ot Ox " dy 0z

S (5)

N
avec le terme source S =—.

Cette fonction F peut étre ici considérée comme une fonctionnelle c’est a dire qu’elle dépend
de I’excitation s (r,t). Nous écrirons donc dorénavant F (r,t;s (r, t)) .
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T T o)) 1 1 (pC,), K3 (r,r") (62)
F(r,t)= xr[o};[of'[o Q772 \//L/‘y (t —t')3/2 exp( Ai-1) j

LT oo PCGE=2 ) s@)
x\/Izr[Oexp[ A1) Jd x(pCp),e(x',y',t')dXdydt

IZ
Pour un milieu infini avec une condition limite F (r - 00) =0, une condition initiale

F (r, t=0)= 0, et une source, qui est une impulsion de Dirac spatiale et temporelle

S5=0 (r - r') ) (t - t') , la fonction de Green du probléme est donnée par :

(=) L) (=)

A A, A
. — ror\ — 1 h . 4B(;—t') }
Flr,t;s;)=Gl(r,t/r,t) = e (6b)
(ri55) = 6 ) 8 JAAATE (t-1)°
avec B = !
(pcp)t

La fonction de Green G permet de calculer la solution de 1’équation (2) pour n’importe quelle
source par I’intégration suivante :

T(r,t)=f(rt) F(r, t;5(r,t)) = ew“b’j J G(r, t/¥, ") %(r’, ) &' dr (7

La source de chaleur est ici égale a :
s(r,t) =W(y)[H(x)~H(x =) H(?)

avec H la fonction de Heaviside,
0 la distribution de Dirac.

On introduit le terme source dans 1’équation 7 et on obtient :

w j exp(—b(t —-t")

T(r,t)=
AT A A, J (11"

) ,m \ _(pe) (v-y)) |
H(z)Jé(y)exp ryyrerall

(8)

00

j exp(a(x —x"))exp (—

x'=0

(pc,),(x—x')’
4A (t—1t")

][H(x') ~H(x'-1)]dx"dt'
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On intégre 1’équation (8) sur y’:

W ( exp(~b(t—1") _(pc,),y
T(r’t)_477\//1/|y j -1 eXp( —4Ay(z—t')]

“ o 9)
j exp(a(x—x'))exp(— (PC)) = x) ]dx'dt'

4A (t—1t")

x'=0

I (x,t"

On rappelle ici que :

w

erf(w) = \/_ exp(-z°) dz

et on pose :
- (Iocp )t I=x
4A (-t = I = '[ exp (—(kv* +av)) dv
v=x'—-x X'=-x

On obtient donc :

2 2 (10)
o +av=k( + Sy =k v+ - =722 -2 a ecZ=«/k( + L j
av=k(* v) |:(V ) 4k2} P v v Y

et ’on peut désormais calculer I’intégrale 7 :
Zy

Ix \/_ exp(— Zz+—) dzZ
P~ NG} RO (V- E T lerf (Z) +erf (2,)] an
(pcp)t ('OCP)’

Les termes Z; et Z, sont définis par les équations suivantes :
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— i_
Zl_ﬁ(zk xj
gaﬁ@ﬁ+§J
Z__\/W[x CATP. t,)}
2\ A (z-1t")

(pe,),

(pcp)t l—x+Mu (=1
A=t (oc,),

N
I

[\J|>—a

On obtient ici

ey A=) |
T /1/1 ) (1= z') ( 4,1y(t_t.)j( (Pcp)tj [erf (Z)) +erf (Z,)]dr" (12)

Ou encore :

r= "’ j ! exp(— (pc,), " J
afripe,) A, J Ja=0)

42, (11"

1| (pe,), | _(pc,), (pc,) |,
Mim[" (o), """ ’)D f[z\/;{

+Ml/l(l‘—t'):| dt'
(pe,),

(13)
(pc,)/u®
Il est enfin possible de faire le changement de variable : @ = ——2~L— (r=¢'), ce qui
4 (pcp)t /1)6
conduit a I’expression suivante :
t ) )2“21
T(r.1) = 1641, 6
(1) = quT/] J-
('Ocp)fux ('Ocp) u 1
erf | —L— -6 |+er L (1-x)+/8 | |—=d6
{fi 42,6 } f{mx\/?( ) Jo
(14)
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Annexe 5 : solution du modeéle « bicouche »

On considere le probléme bidimensionnel représenté en Figure 1 : une paroi (y = 0) limite un

TF
e}
paroi

Fig. 1 Géométrie du probléme : zone a cceur et zone en proche paroi

milieu granulaire semi-infini (y > 0).Loin de la paroi (y > ) le milieu granulaire homogene,
traversé par un écoulement fluide de vitesse superficielle uniforme u parallele a 1’axe des x,
peut &tre modélisé par le modéle a une température 7, avec des coefficients de dispersion A, et
A, et une porosité & On appelle pcret ocg les chaleurs volumiques respectives du fluide et du
solide et pc; (=€pcy + (1 - €) pcs ) la chaleur volumique totale. En régime thermique
transitoire, 1’équation de convection-diffusion du mod¢le a deux températures dans ce milieu
(y =0 )s’écrit:

o°T 0°T or or
x ax2 + Ay ayZ = (’Ocp)t E-F(’ocp)f u a (1)

A proximité de la paroi, du fait des variations locales de porosité, la vitesse ne peut plus étre
considérée comme uniforme et elle varie avec y. Il en est probablement de méme avec les
deux coefficients de dispersion. Néanmoins nous modélisons la zone en proche paroi par une
couche homogéne de porosité £ et de vitesse 1’ uniformes et de coefficients de dispersion A,
et A, constants. On appelle oc, (=€ pcy + (1 - € ) pey ) la chaleur volumique totale de cette
couche. Il s’agit 1a d’une couche homogene équivalente, d’épaisseur O, dont les porosités et
vitesse superficielle équivalentes, pour un lit de sphéres monodisperses de diamétre d,
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peuvent étre calculées d’apres les travaux de Holger Martin [Martin, 1978], qui a supposé 0=
d/2 et qui a alors intégré le profil de porosité¢ sur la couche hétérogene pour lui affecter une
porosité équivalente:

& = 0,487 (lit d’extension infinie en y) (2)
En écrivant les pertes de pression sur chacune des deux couches a I’aide d’une loi d’Ergun,

Holger Martin a pu calculer le rapport des vitesses superficielles, qui s’écrit de la maniére
suivante, lorsque la couche homogene est d’épaisseur infinie :

u' 1 1/2
= (-1+(1+4Mz 1+ 2K 3
“ = e (ranzar 2)x)”) ()
avec :
2 '2 _
K:I_g £ M:I_‘g Z:Lﬂ 4 =150 B =175
1-¢) e —¢ A(-¢) v,

L’équation de convection dispersion a laquelle obéit la température 7 > dans la couche
homogene équivalente en proche paroi s’écrit alors (pour 0 <y < 0):

0T °T" oT' oT'
' +A ' — ' 7 = L 4
ot g POt e TR ¥

On excite la paroi a I’aide d’un flux imposé sur une hauteur ¢ de la paroi, ce qui correspond a
la condition limite suivante :

' N 0<sx</
—/]v'a—T = ¢,(60) pott * en y=0 (5)
- 0Oy 0 pour x<O0etx>/

On suppose que @, est nul a I’instant initial et on se donne également une condition initiale

uniforme :

Tr=T"=0 a t=0 (6)
On se donne une condition limite de milieu semi-infini :

T 50 quand y —» t oo (7)

Les conditions limites en x pour les deux couches s’écrivent rigoureusement de la fagon
suivante :

T -0 quand X > +/—00

(8)

T -0 quand X > +/— o0
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La condition en x = + o correspond au fait que le chauffage pariétal s’effectue sur une

hauteur limitée, ce qui signifie que, pour un milieu infiniment épais en y, les températures des
deux couches vont revenir a un niveau zéro loin en aval de la zone chauffée.

Afin de permettre une résolution numérique de ce probléme, nous allons remplacer les
conditions limites précédentes par :

T=0 en x=0 et x=1L

. ©)

T'=0 en x=0 et X

avec : L >> /. Ceci signifie que la vitesse u est suffisamment grande pour que 1’échauffement
ne diffuse pas en amont de la zone de chauffe. La longueur L devra en outre étre prise
suffisamment grande pour que I’échauffement du fluide en un point de la zone a cceur, ou I’on
va observer la température 7, ne soit pas affecté par son éventuelle augmentation. Ceci
signifie qu’il faudra que L dépasse un certain seuil qui sera déterminé par simulation
numérique.

Les conditions d’interface entre la couche a cceur et la couche en proche paroi sont les
suivantes (€galités des températures et des flux dispersifs transverses) :

=T en y=0

2 000 o Vs 10)

2. Résolution semi-analytique du probléme

On va chercher a résoudre le systéme couplé des deux champs de température vérifiant les
équations (1)-(4) et les conditions aux limites et aux interfaces (5, 7, 9, 10) et la condition
initiale (6).

2.1 Traitement de la zone a coeur

On fait tout d’abord le changement de fonction inconnue suivant (transformation dite
« exponentielle ») :

T =T explax—bt) avec a= gcf ot b =4—3}(% (10)
Ceci permet de supprimer le terme convectif dans 1’équation (1) qui devient :
2t y— .
Al aaxTz £ A aayz; :pctaait (1N
avec les conditions initiale et limites suivantes :
T" (x, y,t=0)=0 T (x,y=+0,1)=0 T (x=0o0ul,y,t)=0 (12)
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On effectue ensuite une transformation de Laplace :
T* (6,3,p) = |, T"(x,3.0) exp(=pt) dt (12)

qui transforme 1’équation (11) en :

azf* azf* ok
A, P™ +A, 5 -pe,pT =0 (13)

avec les conditions initiale et limites suivantes :
T'(x,y=+w, p)=0 (14a)
T"(x=0oulL,y,p)=0 (14b)
Les fonctions propres en x du probléme (13)-(14b) sont les fonctions :
sin(a, x) avec a,=nn/L et n=1,2,3,...0

On effectue donc une transformation intégrale a I’aide de ces fonctions, avec la température
transformée :

' (v.p) = [ T (x.y.p)sin(@, x) dx (15)

Cette nouvelle température vérifie 1’équation (13) qui ,une fois transformée, s’écrit, en tenant
compte des conditions aux limites (14b):

2':* ~
or —("x az+pc’pjf*=0 (20)

dy’ A" A

y y

Si I’on introduit la triple transformée 5 " de la densité de flux dispersif transverse :

5: (v, p) = j-: j: @ (x, y,t) exp(—ax + bt) exp(-pt) sin(a, x) dt dx (21)

avec: ¢ (x, y,t) =-— Ayz—T
v

il est possible d’écrire une relation quadripolaire entre les vecteurs température-densité de
flux transformés correspondant a une couche d’épaisseur e = (y - J) dans la zone a ceeur :

155



Annexe 5

HIREEM @)
e e
ﬁn 5 n n ﬁn y
avece .
A, (e) =D, (e)= cosh (ey,) ; B, (e) = Ay sinh (ey,) ; C,(e)= A, y,sinh (ey,)
o 1/2

Si I’on écrit 1’équation (22) pour y tendant vers I’infini, en transformant la condition (14a) qui
devient YN": (y =+00) =0, on obtient un systtme de deux équations qui s’écrit, apres
¢limination de ?ﬁ’: (y = +00), en omettant dorénavant 1I’argument p pour les transformées:
1
- (23)

7o) =2 & avec Z = lLim (B, (e)/D,(e))=
quand e - co Ay yn

Z, est donc ici une impédance de couche semi-infinie. On peut réécrire cette équation sous la

forme suivante (en omettant I’argument p pour les transformées):

ol 1 2z [ o
{ﬁ:@HO 1“@32@} .

ce qui permet, par inversion matricielle de I’équation (22), de calculer les vecteurs
température-flux en tout point y > J de la zone a cceur a partir du flux a I’interface @ (J) :

] { D,(6=y) -B,@ —y)} F (5)] 25)

-C,(0-y) A,(5-y) ||3 ()

7 ()
7,

2.1 Raccordement avec la zone en proche paroi

On peut utiliser exactement la méme démarche pour relier les vecteurs température-flux en
paroi (y = 0) aux mémes vecteurs a la limite (y = J) de la zone en proche paroi. Il suffit cette
fois-ci de partir sur une transformation exponentielle de la température 7" :
' ' 2
1 \pc,u
avec a'= et b = ( ! ) (26)
27" 47" pc

T'=T"exp(a'x—b't)

L’équation (4) s’écrit alors :
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c'— (27)

On utilise ensuite exactement les mémes transformées (Laplace et Fourier sinus) de la
température 7, ce qui conduit a I’équation suivante, en utilisant les conditions (6) et (9) :

2 0¥ ' I~
| 2w+ £%p T =0 (28)
A A

y

Les transformées de la température et du flux sont alors définies par :
T80 p) = [, [T T8 (x y.0) exp(=a'x + b't) exp(= pi) sin(@, x) dr dx

ce qui permet d’introduire le quadripdle de la couche en proche paroi :

F'Z] _[An'(ff) Bn'@} [f";} (29)
A “1c,'d) D, 5
ﬁnyzo ,'(0) D,'(9) @“,,yzd
avee .
A,'(8) = D,"()= cosh (3y,") . B ()= y 'ly sinh (G ),") ; C,(e)= A,'y,'sinh (3y,")
/1 1/2
1 pcl
t: = g+ B 30
e Y, [Ay' ” A PJ (30)

Il reste a raccorder les équations (25) et (29) par les conditions d’interface (10). La condition
d’égalité des températures s’€crit, aprés une transformation exponentielle différente de chaque
coté de I’interface :

T (x,3,0)=T" (x, 0, 1) exp((a'—a)x) exp((b-b")1) (31)
Apres transformation de Laplace, on obtient :

T"(x,8,p)=T" (x, 8, p+b'~b) exp((a'~a)x) (32)

On effectue alors la transformation de Fourier sinus en x :

T (3. p) = j:f " (x, 8, p+b'-b) sin(a,x) exp((a'-a)x) dx (33)

et on exprime alors 7" par son spectre en Fourier-sinus | 7, ' a I’aide de la relation
k 5
k=1 00

,,,,,

d’inversion :
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T (x, 0, p+b'—b>=% > .7 (8, p+b'=b) sin(a, x) (34)

k=1

La substitution de (34) dans le terme a intégrer de 1’équation (33) conduit a :

I, 0. p) =) E,, 1," (3, p+b'=b) (35)
k=1
2L, .
avec: E , = Z.fo sin (a,x)sin (Q, x) exp ((a'—a)x) dx (36)
On trouve, apres intégration :
_a'-a 4a, a0,

[0 exp(a-ay0) 1] (37)

"L @-a)?+(a,-a,) a-a)+ (@, +a,)?)

sik#n et:

4 a?
Enn = ] s 2 2
L(d'-a)|(@'-a)* + 4a’

] (exp((a'~a) L)~ 1) si k=n (38)

Dans le cas particulier ou les deux couches ont les mémes propriétés, on a a = a’ et ’on
retrouve bien : £, =0sisik#net E,, =1 (en passant a la limite).

Pour exploiter la relation (35), il faut tout d’abord tronquer la longueur des spectres utilisés,
c’est a dire remplacer I’infini par un nombre fini N d’harmoniques dans la somme (34) et
introduire ensuite des vecteurs spectres des doubles transformées (exponentielles et de
Laplace) des températures et des densités de flux dans les deux couches :

=~ ST SN =" S 2 | 1

Fe[i & R P
39)

N

7
'*=[f'* Fro ]eN,*}’ 5,*:[51,* R (EN'*]Z

Ici I’exposant ¢ désigne I’opération de transposition d’une matrice. Pour simplifier I’écriture
des transformées, on va poser maintenant :

~ ~ 4

0=T o= 0'=T" @=§' @0

La relation (33) de couplage des modes de part et d’autre de I’interface peut alors s’écrire
matriciellement :

{0 (5,p)} _ {E 0} {0' (5,p+b'—b)} _p {0' (J,p+b'—b)}

(41)
@©O.p)| [0 E]||@ (0,p+b'-b) @ (0,p+b'-b)

ou E est une matrice carrée, dite « matrice de conversion de spectre » et 0 la matrice nulle, ces
deux matrices ayant la taille (N x N).
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On peut alors réécrire les équations (24), (25) et (29) en transformant tous les coefficients
apparaissant dans les matrices quadripolaires (2 x 2) par des matrices diagonales F ( = Z, A,
B, C, D, A’, B’, C’ ou D’), de tailles (N x N) et de coefficients F, y = &, x Fi, O, €tant le
symbole de Kronecker. L’équation (24) devient ainsi :

ram) Lo 1) lp@n) = lpan)
= =H_ (42)
@©,p)| [0 I| @, p) @ (9, p)

L’équation (25) s’écrit de méme :

{0 (y,p)} { D(-y.p) -B (5-y,p)} {0 (5,19)} _ {0 (5,19)} @3)
@(.p)] [~C (O-y,p) A(-y,p) || @(.p) @ (9,p)
L’¢équation (29) devient :

{0' (0,p+b'—b)} _ {A'(J, p+b'-b) B'(J, p+b'—b)“0' (3, p +b'—b)} o {0' (5,p+b'—b)}

@ (0,ptb-b)| |[C'(S, ptb'=b)) D'(0, pt+b'=b)| @ (O,p+tb'~Db) @' (0,ptb'-b)
(44)
Les équations (41) et (43) permettent d’écrire :
0 (O. 0'(0,p+d'-b
{ ( ,p)}:PM._{ (O.prb )} 45)
@ (3, p) @' (0,p+b'-b)

En exprimant de deux facons différentes les vecteurs spectres a 1’interface, coté coeur, les
équations (42) et (45) conduisent a :

(46)

_p |0 O +E D)
@ (0.p+b'-b)

L)
@, p)

Cette équation permet d’exprimer, en termes de spectres, la température de paroi et le flux a
I’interface, coté cceur, en fonction du flux de chauffage en paroi :

0'(0,p+b'-b)=(EA+ZEC)" (EB'+ZEA) @ (0,p+b'-b)=Z;¢ (0,p+b'-b)
(47)

0G.p) = (EA-EC (Ea+ ZECY (EB'+ZE4))¢ O.p+H-5)=R ¢ 0.p+H-b)
(48)

Physiquement la matrice Z; représente I’impédance du milieu poreux vue de la paroi et la

matrice R, qui n’est pas égale a priori a I’identité I (sauf si I’épaisseur d de la zone en proche
paroi est nulle avec des transformées exponentielles identiques : a = a’ et b = b’), représente
la non conservation entre le flux de chaleur injecté en paroi et le flux effectivement regu par la
zone a cceur : il n’y a donc pas conservation du flux en proche paroi dans la direction
transverse.
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Les équations (42) et (43) permettent alors de calculer le spectre de la température en tout

point du ceeur :
{0 (y,p)} _MH. { 0 } 49)
@ (v, p) @ (,p)

On a donc, en utilisant (48) :

0 (y,p) =(AZ-B)¢g (0,p) = (AZ-B) R ¢' (0,p+b'-b) =S8(p) ¢'(0,p+b'-b)
(50)

ou S (p) est une matrice dépendant de p par I’intermédiaire des définitions des différentes
matrices Z (p), A (y -, p) ,B(y -3 p), C(y— 9 p).D(y—34p),A (0, ptb-b),
B’(d, p+b'-b),C(0, p+b'—b)etD(O, p+b'-b).

2.2 Exemple de résolution pour une excitation particuliaire
Si le flux pariétal @, voir I’équation (5), est un échelon temporel uniforme en espace, on a :

¢, (x,0) =g, H(1) = ¢ (x,y=0,1) :‘ ﬁoH(t) exp(-a'x+b't)  pour 0<x</

pour x<O0etx>/(

(51)
ou H () est la fonction de Heaviside. On en déduit, suite a la transformation de Laplace :
. @, exp(—a'x)/(p—b") pour 0<x</
§ (x,y=0,p) ="’ (52)
0 pour x<O0etx>/

et ’on effectue ensuite la transformation de Fourier sinus :

“exp(=a'x)sin (a,x) dv

00.9=8, 0[] 9 =0, painan ax= o |
53)

9,

T —b')(af e ) (an (1 —exp(a'l)cos(a, K)) +a'exp(a'l) sin(a, Z)) (54)

%' (0,p) =

Cette derniere expression permet de calculer les composantes du spectre ¢'présent dans le
dernier terme de 1’équation (50) :

9,

(p-b)(@’ +a”) (@, (1-exp(a't)cos(a, £)) +a'exp(a'l) sin(a, 1)) (55)

@'(0,p+b'-b) =

Une fois calculées les différentes composantes du spectre de température 6 = T =T  donné
par (50) et (55), on effectue d’abord une transformée numérique inverse de Laplace sur
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chacune de ses harmoniques. Si I’on utilise I’inversion de Gaver-Stehfest, le vecteur spectre
de la transformée exponentielle de la température, a un instant donné, s’écrit :

e 1“(2)2 1“()2 V.8 (p)@O.p, +b=b)  (56)
In(2)

avec p;=j—— , lesv; étant les coefficients de I'inversion de Gaver Stehfest a 10 termes,
t

voir [2]. On effectue ensuite I’inversion de Fourier sinus et 1’on repasse a la vraie température
T (sans transformée exponentielle) :

T(x,y,n=exp<ax>%2sin(anx) f;*(y,t)=% exp(ax) g(x) T (1) (57)

ou g (x) est le vecteur ligne des fonctions propres :

g(x)=[sin(a,x) sin(@,x) - sin(a, x)] (58)
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