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Nomenclature 

 

 

 
A          section, m

2
 

a            diffusivité thermique, m
2
.s
-1 

av surface spécifique, m
-1 

Afs interface entre les deux phases, m
2 

b biais 

Cp         chaleur massique, J.K
-1
kg
-1
  

d            diamètre des billes, m  

g accélération de pesanteur, m.s
-2 

h coefficient du modèle à deux températures, W.K
-1
.m
-2 

hfil coefficient d’échange thermique avec un fil, W.K
-1
.m
-2 

hp coefficient d’échange thermique à la paroi, W.K
-1
.m
-2 

H fonction de Heaviside temporelle,  

J courant électrique, A 

nfs vecteur normal à l’interface entre les deux phases 

Nu nombre de Nusselt, hpd/λf 

p variable de Laplace 

P        pression, Pa 

Pe          nombre de Péclet, ud/af   

Pr  nombre de Prandtl, ν/a 

k  perméabilité, m
2
 

R  constante des gaz parfaits, J.m
-1
.K
-1 

R  vecteur spatial, m 

Re  nombre de Reynolds, ρud/µ 

Q           puissance linéique, W.m
-1
     

s             source volumique de chaleur, W.m
-3 
  

T            température, K ou °C 

t  temps, s 

x, y, z     coordonnées spatiales 
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U tension électrique, V 

u ou uD       vitesse moyenne ou vitesse de Darcy, m.s
-1 

uf  vitesse interstitielle 

V  volume, m
3 

W puissance surfacique, W.m-2   

α, β  vecteur paramètre 

δ  impulsion de Dirac, m 

ε  porosité 

λ             conductivité thermique, W.K
-1
.m
-1
 

λ, λx, λy  tenseur ou coefficients de dispersion thermique, W.K
-1
.m
-1 

λff, λfs  tenseurs du modèle à deux températures 

λeq  conductivité thermique équivalente, W.K
-1
.m
-1 

µ  viscosité dynamique, kg.m
-1
.s
-1 

ν  viscosité cinématique, m
2
.s 

σ              écart type 

Φ  puissance électrique, W 

ρ  masse volumique, kg.m
-3
 

τ temps caractéristique, s 

 

Indices inférieurs 

eq équivalent  

f               fluide 

conv convection 

macro macroscopique 

micro microscopique 

pos          position 

s               solide 

t               total (solide et fluide) 

 

Indices supérieurs 

exp         expérimental 

nom        nominal 
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Introduction 

 

 

 
Ce travail a été réalisé dans le cadre d’une convention de recherche entre l’Institut 

Français du Pétrole et le Laboratoire d’Energétique et de Mécanique Théorique et Appliquée. 

L’objet de cette étude entre dans le cadre de la modélisation des transferts de chaleur au sein 

des réacteurs à lit fixe utilisés en génie des procédés pétroliers. Ceux-ci sont généralement 

constitués de grains poreux recouverts d’un catalyseur empilés dans une enceinte cylindrique 

pouvant avoir des dimensions importantes. Le lit est traversé par un mélange réactif de fluide 

pétrolier et il est refroidi ou réchauffé par l’extérieur. Le mécanisme du transfert de chaleur 

dans un tel lit fixe parcouru par un fluide est complexe. Ce type de transfert de chaleur est 

appelé dispersion thermique. 

  

L’estimation des profils de température dans les milieux catalytiques granulaires où 

sont mis en œuvre des réactions fortement exo- ou endothermiques est toujours difficile, 

comme le montre la dispersion des résultats fournis par les corrélations proposées pour ce type 

de problème dans la littérature. Industriellement, on contrôle le profil de température en 

alternant des zones réactionnelles adiabatiques et des zones d’échange de chaleur. Le passage 

à des réacteurs isothermes, où se déroulerait simultanément la réaction et l’échange de 

chaleur, suppose que l’on soit capable de déterminer avec précision l’évolution des 

températures dans le milieu granulaire à l’échelle locale. Les paramètres essentiels permettant 

de caractériser la dispersion thermique sont les tenseurs de dispersion thermique et la vitesse 

moyenne de l’écoulement. 

 

Le travail présenté ici doit permettre le développement d’un outil générique intégrant les 

phénomènes physiques prépondérants au sein du milieu granulaire. Le développement de cet 

outil s’appuie ici à la fois sur une démarche expérimentale et théorique. 

Deux montages expérimentaux ont été utilisés : le premier est destiné à fournir l’expression 

des deux composantes du tenseur de dispersion de la chaleur et le second doit permettre 

l’évaluation des phénomènes spécifiques relatifs au transfert thermique en proche paroi.  

 

 La thèse récente de T.Metzger au LEMTA a permis de mettre au point une méthode 

fiable pour caractériser les différents paramètres au sein d’un lit constitué de billes de verre 

parcouru par de l’eau (sans prise en compte des effets de paroi). 

En nous basant sur le même principe, nous avons caractérisé deux milieux granulaires 

différents traversés par un gaz dans la première partie de ce travail.  

Afin de modéliser complètement les transferts thermiques en cœur et en proche paroi d’un 

réacteur, un banc de caractérisation prenant en compte les effets de la paroi a été construit. 

 

 Ce rapport est divisé en cinq chapitres. Le premier dresse un état de l’art de la 

dispersion thermique à cœur et en proche paroi d’un milieu granulaire. Dans le deuxième 

chapitre, le dispositif de caractérisation des transferts au cœur du milieu granulaire est 

présenté. Puis, dans un troisième chapitre, la modélisation du problème est détaillée et nous 

étudions l’effet d’un éventuel déséquilibre thermique entre grains et fluides. Nous discutons 
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également dans cette partie des différentes formes de corrélations que l’on peut établir pour 

les coefficients de dispersion thermique. 

 Le quatrième chapitre présente les différents résultats expérimentaux obtenus pour un 

lit de billes de verre et pour un lit de supports de catalyseur traversé par de l’air ou de l’azote. 

Une comparaison avec les résultats obtenus par T.Metzger y est effectuée. 

 Enfin, dans le dernier chapitre, le banc de caractérisation et la modélisation 

correspondante du transfert en proche paroi sont présentés. Une conclusion et des perspectives 

terminent ce travail. 
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Chapitre 1 : Etat de l’art sur la dispersion 

thermique à cœur ou en proche paroi 

 

 

 
 Dans ce premier chapitre, nous essaierons de dresser un état de l’art sur la dispersion 

thermique à cœur et en proche paroi dans un milieu granulaire. Après avoir défini le milieu 
granulaire, nous donnerons les différents régimes hydrauliques existant dans les milieux 
poreux. Puis, nous évoquerons la notion de conductivité équivalente et les principaux 

résultats. Dans cette étude, nous allons travailler en cœur du milieu poreux puis en proche 

paroi : nous distinguerons les « deux zones » du milieu granulaire. Ensuite, nous présenterons 

aussi les différents modèles de dispersion thermique disponibles et donnerons quelques 

résultats expérimentaux de la littérature. Enfin, nous ferons le point sur l’étude de la 

dispersion avec prise en compte des effets en proche paroi. 

 Cet état de l’art renverra, pour certaines parties, à la thèse de Metzger [Metzger, 2002] 

qui avait déjà réalisé une bibliographie assez complète sur le sujet, notamment la modélisation 

et les résultats expérimentaux à cœur de milieu. 

 

 

1.1 - Applications et définition d’un milieu granulaire 
 

 

1.1.1 - Position de l’étude 

 

Le comportement thermique d’un milieu granulaire qui est traversé par un fluide 

intéresse principalement l’industrie chimique et le génie des procédés. 

L’application principale, qui nous intéresse, concerne les réacteurs chimiques à lit fixe où la 

phase solide joue le rôle de support de catalyseur (comme indiqué dans le chapitre 2). Ces 

réacteurs sont caractérisés par une surface réactive élevée et un mélange important dans la 

phase fluide. Lorsqu’on met en œuvre des réactions fortement endo- ou exothermiques, la 

maîtrise des transferts thermique dans le lit granulaire peut revêtir des aspects multiples dont 

certains ont une incidence directe sur le dimensionnement des réacteurs catalytiques. Une 

meilleure connaissance des transferts thermiques dans le milieu granulaire peut engendrer un 

allongement de la durée de vie des catalyseurs, une augmentation de capacité des unités ou 

une réduction des quantités de catalyseur. 

Plus généralement, la maîtrise du transfert de chaleur dans les milieux poreux intéresse 

d’autres domaines tels que le stockage des déchets radioactifs en site profond, les échangeurs 

de chaleur ou plus généralement de multiples aspects de la production ou de la transformation 

de l’énergie.  

 

La description de ce phénomène peut se faire soit à l’échelle microscopique, soit à l’échelle 

macroscopique. 
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Convection : paroi-gaz

Conduction : grains-grains

Convection : grains-gaz

fluide

Conduction  : paroi-grains

 
Figure 1.1 : Echanges dans un lit granulaire 

 
 

Nous présentons sur la Figure 1.1 la description du système étudié : un fluide traverse un lit 

constitué d’un empilement de grains sphériques. Ce lit est nécessairement limité par une paroi 

solide. En catalyse hétérogène, des réactions chimiques se produisent à l’intérieur des grains 

et les effluents des réactions sont évacués par un fluide s’écoulant entre les grains. Par 

conséquent, les trois modes de transferts de chaleur (conduction, convection et rayonnement) 

sont couplés entre eux et à l’hydrodynamique locale. La direction privilégiée de l’écoulement 

et le profil de température engendrent des transferts de chaleur entre les grains, entre les 

grains et le fluide, entre la paroi et les grains et enfin entre la paroi et le fluide. Du fait de 

l’impossibilité pratique de décrire les échanges au niveau local, les spécialistes du génie 

chimique ont très tôt utilisé des modèles hétérogènes qui consistent à écrire une équation de 

conduction dans le solide (sans terme de vitesse), une équation de conduction-convection dans 

le fluide, avec un terme de vitesse (advection), en utilisant un coefficient d’échange hgrains 

pour caractériser les échanges entre les grains et le fluide en écoulement. De la même façon 

un autre coefficient d’échange hparoi est couramment utilisé pour représenter les échanges du 

lit avec la paroi. Cette approche débouche le plus souvent sur la formulation de corrélations 

dépendant des nombres adimensionnels classiques (Nusselt, Reynolds et Prandtl) et des 

propriétés du lit granulaire (taille des grains, porosité, etc…). 

Les phénomènes qui se déroulent dans les milieux poreux dépendent de la géométrie de la 

matrice, celle-ci est donc caractérisée par un certain nombre de grandeurs moyennes, 

géométriques ou statistiques.  

 

 

Un milieu granulaire ou plus généralement un milieu poreux est un ensemble 

hétérogène constitué d’au moins une phase solide, déformable ou non, et d’une phase fluide. 

Ce milieu granulaire se caractérise par différentes grandeurs dont nous citerons ici les plus 

essentielles. 
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1.1.2 - Profil de porosité  

 

La porosité se définit comme le rapport du volume des vides au volume apparent du 

milieu poreux. On distingue la porosité totale qui tient compte des cavités occluses au sein du 

solide (pores fermés) :  

 

 

 

 

et la porosité accessible ou espace poreux connecté à travers lequel s’effectue l’écoulement 

des fluides : 

 

  

 

 

La porosité peut-être définie localement en un point P, en évaluant le rapport précédent sur un 

volume, par exemple une sphère de diamètre D centrée sur ce point. Il est alors évident que la 
porosité locale ε(P) dépend de l’échelle D qui a servi à ce filtrage spatial, ici une moyenne 
mobile. 

Ce paramètre revêt une importance primordiale en milieu granulaire. En effet, les particules 

d’un lit fixe, au voisinage de la paroi, ne s’arrangent pas de la même façon qu’au cœur du lit. 

Cela a pour conséquence une variation spatiale de la porosité. Dans ce cas, la porosité n’est 

évaluable qu’en considérant non pas une sphère, mais un disque de diamètre D parallèle à la 
paroi et en travaillant avec des rapports de sections pour évaluer cette moyenne mobile. 

 

Giese [Giese, 1997] a récapitulé les résultats expérimentaux de la littérature pour établir des 

relations pour le profil de porosité dans un lit fixe. La Figure 1.2.a correspond au cas de 

particules monodisperses qui sont parfaitement sphériques; on observe une porosité ε  = 1 à la 
paroi, et une oscillation spatiale qui s’atténue en s’éloignant de la paroi.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

masse volumique apparente de l'échantillon
1

masse volumique du matériau constitutif
tε = −

volume des pores accessible

volume de l'échantillon
ε =

  

 

Figure 1.2 : profil de porosité dans un lit fixe pour des sphères idéales (a) et pour des sphères 
imparfaites (b) ; y désigne la distance à la paroi, D la largeur du milieu et d le diamètre des 
particules [Giese, 1997] 
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Ces résultats ont été vérifiés par mesures optiques [Stephenson, 1986] et plus récemment 

confirmés expérimentalement par RMN [Götz, 2002]. 

 

Dans la pratique, on a rarement affaire à des sphères parfaites. De nombreux travaux ont 

proposé des fonctions qui peuvent décrire approximativement le profil de porosité dans ce 

cas. Nous donnons ici les deux approches les plus répandues. La première est la relation 

donnée par Giese [Giese, 1997]: 

 

( ) ( )51 1,36 y dy eε ε −
∞= +                                                  (1.1) 

 

avec ε∞  la porosité au cœur du milieu. 

Beaucoup plus tôt, Martin [Martin, 1978] avait lui aussi établi une relation empirique donnant 

le profil de porosité en proche paroi. Contrairement à Giese, il décrit ce profil par un modèle à 

deux zones (Figure 1.3). 

 

 

 
 

 

 

A partir de la paroi, où ε  = 1, la porosité décroît jusqu’à une valeur minimum ε min à une 

distance 
2

d
y = de la paroi. La porosité est ici décrite par une fonction : 

 

( ) ( ) ( )2

min min1 1 0z z zε ε ε= + − − ≤ ≤                                   (1.2) 

 

avec ( )2 1z y d= −  et ε min est la porosité minimale obtenue lors des fluctuations et y la 
distance à la paroi (Figure 1.2 b). 

 

La deuxième zone est caractérisé par des oscillations avec différents maxima et minima qui 

apparaissent à une distance supérieure à 
2

d
y = . Ces formes d’oscillations sont calculées par 

une méthode développée par Ridgway et Tarbuck [Ridgway, 1968]. Martin propose pour cette 

deuxième zone une fonction : 

 

Figure 1.3 : Modèle à deux zones de Martin 
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( ) ( ) ( )4

min cos 0zz e z z
T

πε ε ε ε −
∞ ∞

 = + − 〉 
 

 

(1.3) 

avec 2 3 0,816 pour  T D d= ≈ = ∞  et 0,876 pour  20,3T D d= = . 

 

Il constate ainsi qu’à une distance de 4 ou 5 diamètres de grains à partir de la paroi, le profil 

de porosité devient constant et que l’on peut utiliser ainsi la porosité définie au cœur du 

milieu. Sur la Figure 1.2.b ont été reportés le modèle de Giese –équation (1.1) et le modèle de 

Martin -équation (1.2) et (1.3)- intégrés sur chacune des deux zones. 

 

1.1.3 - Surface spécifique 

 

La surface spécifique se définit comme le rapport de l’aire de la surface totale des 

interfaces solide-pores sfA   au volume de l’échantillon V : 

= sf

v

A
a

V
                                                                   (1.4) 

 

Cette grandeur, homogène à l’inverse d’une longueur, joue un rôle capital dans les 

problèmes d’adsorption. Comme pour la porosité, il convient parfois de distinguer la surface 

spécifique accessible et la surface spécifique totale comprenant l’aire des parois des cavités 

occluses (cas du coke). 

 

1.1.4 - Tortuosité 

 

La tortuosité est généralement définie par une équation de la forme : 

 

eL

L
τ  =  

 
                                                                 (1.5) 

 

τ  désigne donc le rapport de la longueur moyenne réelle (Le) des lignes de courant du fluide 

traversant l’échantillon à la longueur L de ce dernier. La signification physique de cette 
grandeur, dont on voit très bien le sens dans le cas d’une modélisation de l’espace des pores 

par un réseau de capillaires, est cependant beaucoup moins nette dans le cas des milieux 

poreux réels. 

 

 

1.2 - Régime hydraulique en milieu poreux 
 

 

1.2.1 - Vitesse de Darcy 

 

 La vitesse communément utilisée en cœur du milieu granulaire est la vitesse de Darcy 

uD. Cette vitesse est définie à partir du débit entrant dans le milieu poreux. Si l’on considère 

un milieu poreux de section A alimenté par un débit Q, alors la vitesse de Darcy est 
directement proportionnelle à ce débit : 

 

D

Q
u

A
=                                                                  (1.6) 
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Elle peut également être définie localement de la même manière que la porosité, à partir d’une 

moyenne de la vitesse locale sur un volume, ou une sphère de diamètre D. Cette vitesse qu’on 
appelle alors vitesse superficielle ou vitesse de filtration est proportionnelle à la vitesse 

interstitielle uf (moyenne de la vitesse sur la seule partie occupée par la phase fluide du 

volume précédent). La relation liant les deux vitesses est : 

 

D fu uε=                                                           (1.7) 

 

 

1.2.2 - Nombres adimensionnels et lois d’écoulement 

 

Comme nous le verrons plus loin, les coefficients de dispersion sont donnés dans la 

littérature en fonction du seul nombre de Péclet. Cependant , il est judicieux de se demander si 

ces coefficients ne peuvent être donnés en fonction d’autres nombres adimensionnels. 

Les régimes d’écoulement en milieu granulaire ou dans les conduites sont caractérisés par 

différents nombres adimensionnels dont dépendent les paramètres que nous cherchons à 

caractériser. Trois nombres adimensionnels sont ici particulièrement intéressants : le nombre 

de Reynolds, le nombre de Prandtl et le nombre de Péclet. Ces trois nombres qui ne sont pas 

indépendants ont des significations physiques différentes.  

 

Le nombre de Reynolds (Re) :  
ρ

µ ν
= =D Du d u d

Re                                                                 (1.8) 

Le nombre de Prandlt (Pr) : 

( )µ ν
λ

= =
p f

f f

c
Pr

a
                                                               (1.9) 

Le nombre de Péclet (Pe) :  

( )ρ

λ
= =

p Df

f

c u d
Pe Re Pr                                                     (1.10) 

 

Dans ces trois définitions, Du  représente la vitesse de Darcy, d une dimension caractéristique 

locale du milieu poreux (diamètre des grains ou des pores), µ  et ν  sont respectivement les 

viscosités dynamique et cinématique du fluide (avec 
µν
ρ

=  et ρ  la masse volumique du 

fluide). ( )p f
c  est la chaleur massique du fluide et λ f  sa conductivité thermique. Enfin 

( )
λ

ρ
= f

f

p f

a
c

 est la diffusivité thermique du fluide. 

 

Le nombre de Reynolds peut-être considéré comme une évaluation du rapport entre les forces 

d’inertie et les forces de viscosité. Le nombre de Prandtl est le rapport de la diffusivité de 

quantité de mouvement à la diffusivité thermique : il caractérise la distribution des vitesses 

par rapport à la distribution de température. Le nombre de Péclet est le rapport du transfert de 

chaleur par advection au transfert de chaleur par conduction. Il joue dans l'équation de 

l’énergie un rôle analogue à celui joué par le nombre de Reynolds dans les équations de 

Navier-Stokes. 
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L’écoulement d’un fluide dans un milieu poreux est régi par différentes lois 

hydrodynamiques. La plus connue et la plus utilisée en milieu poreux est la loi de Darcy 

[Darcy, 1856]. Cette loi pour un fluide visqueux et incompressible en écoulement permanant, 

dans un milieu granulaire de longueur L s’écrit : 
 

D

P
u

L k

µ∆− =                                                               (1.11) 

 

où P∆  désigne la perte de pression le long de l’échantillon et k est le coefficient de 
perméabilité intrinsèque du milieu. 

 

 

La loi de Darcy est bien vérifiée pour de très faibles débits, par contre lorsque ceux-ci 

augmentent la loi n’est plus valable.  

En faisant varier le débit et donc le nombre de Reynolds, on constate pour un écoulement 

laminaire 2D dans un milieu poreux périodique constitué de cylindres en quinconce que trois 

phases d’écoulement existent. Celles-ci sont visualisées sur la Figure 1.4 : 

 

• la première pour de faibles débits, les lignes de courant sont symétriques (Figure 1.4.a 

et 1.4.b) : il s’agit du régime de Stokes ou régime de Darcy en utilisant la terminologie 

des milieux poreux 

• la deuxième pour des débits plus élevés, où il commence à y avoir des zones de 

recirculation (1.4.c) 

• puis la troisième, où il y a dissymétrie des lignes de courant (1.4.d). 

 

Nous remercions ici G. Radilla, LEMTA, pour avoir réalisé ces simulations. 

  

Si l’on revient sur cette évolution, on observe qu’aux faibles nombres de Reynolds, les 

forces d’inertie sont négligeables devant les forces de viscosité. La forme de l’écoulement est 

entièrement déterminée par la forme géométrique du milieu dans lequel s’écoule le fluide.  

Pour de plus grands nombres de Reynolds, les forces d’inertie agissent sur les lignes de 

courant en modifiant leur courbure et la relation n’est alors plus linéaire. 

 

Plusieurs auteurs ont montré expérimentalement [Scheidegger, 1960 ; Schneebeli, 

1955] et numériquement que dans un milieu granulaire, la limite d’applicabilité de la loi de 

Darcy se situe dans une plage de nombre de Reynolds comprise entre 10 et 20. Une étude 

récente [Fourar, 2004] montre, à l’aide d’une comparaison numérique 2D et 3D de 

l’écoulement et des pertes de charge dans un assemblage cubique centré de cylindres (2D) ou 

sphères (3D), que la loi de Darcy doit être corrigée par la prise en compte des effets inertiels 
pour des nombres de Reynolds supérieurs à 4 pour les sphères ou supérieurs à 20 pour les 
cylindres.  

 

Au delà de ce seuil, le régime de Darcy laisse place au régime de Forchheimer [Forchheimer, 

1901]. Ce dernier propose une relation quadratique entre la perte de pression et la vitesse 

débitante : 

 

2

D D

P
u u

L k

µ ρ
η

∆− = +                                                     (1.12) 
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Le coefficient η  est appelé passabilité intrinsèque du milieu poreux. 
Dans le cas d’un fluide compressible (tels les gaz), la loi de Forchheimer prend une forme 

différente et s’écrit alors : 

 

21

2

Z RT
P M G G

PL k

µ
η

 ∆− = + ∆  
                                              (1.13) 

 

où Z est le facteur de compressibilité, R la constante des gaz parfaits, G la vitesse débitante 
massique du fluide, M la masse molaire et P∆  la différence de pression entre l’entrée et la 

sortie. 

 

Remarquons ici que, pour que les phénomènes dynamiques puissent être correctement décrits 

à l’échelle macroscopique à partir de ce qui se passe à l’échelle des pores, il faut utiliser le 

nombre de Reynolds. Les choses vont évidemment se compliquer en présence d’une source de 

chaleur et de gradients de température dans le milieu poreux comme nous le verrons plus loin 

en section 1.3. 

 

Figure 1.4 : Ecoulement laminaire autour d’une sphère à quatre nombres de Reynolds 
différents 

a) b) 

c) d) 
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1.2.3 - Effets dynamiques en proche -paroi 

 

La vitesse de filtration va varier localement à proximité de la paroi du fait de la non-

uniformité de porosité dans un lit fixe. En effet, le fluide se déplace plus vite au voisinage de 

la paroi en raison de la porosité plus élevée : « channeling effect ». Cette relation entre vitesse 

et porosité est bien représentée sur la Figure 1.5 [Götz, 2002]. Götz a montré que le profil de 

vitesse est directement relié au profil de porosité. Tous les deux sont fonctions de la distance à 

la paroi. Ce profil correspond à un diamètre de billes égal à 3,5 mm et a été mesuré par RMN 

(Résonance Magnétique Nucléaire). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pour comprendre le profil de vitesse, nous discutons du modèle de Martin [Martin, 1978]. Ce 

dernier divise la section du lit en deux zones identiques à celles utilisées pour la porosité où 

cette dernière prend deux valeurs 1ε  (à cœur) et 2ε  (en proche paroi) (Figure 1.3). 
Son étude correspond à un milieu poreux contenu dans une enceinte cylindrique de diamètre 

D. Le rapport des sections des deux zones est donné par 
d

D d
ϕ =

−
. 

 

Martin s’est intéressé au rapport des vitesses supposées indépendantes dans les deux zones (1 

et 2). L’équation obtenue découle de la loi d’Ergun [Ergun, 1952] : 

 
22

3 2 3

(1 ) 1η ρε ε
ε ε
− −∆ = +f i f ii i

i i

u uP
A B

L d d
    (i = 1, 2)                   (1.14) 

avec A et B deux constantes. 
 

Martin calcule alors le rapport des vitesses : 

 

( ) ( ) ( )( )
( )

2

2

1

1 1 1 1 4 1

2

K K MZ Z Ku

u MZ

ϕ ϕ ϕ ϕ
ω

ϕ
+ − + + − + + − +  = =

+
          (1.15) 

 
 

Figure 1.5 :Profil de vitesse et de porosité proche 
paroi avec le rayon des billes égal à 1,25 mm et R 
le rayon du milieu 12,35 mm [Götz, 2002] 

Figure 1.6 : Dépendance du profil 
de vitesse avec le nombre de 
Reynolds [Tsotsas, Schlünder, 
1990] 
 

u1/u2 
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avec : 

2 3

1 2

2 1

1

1
K

ε ε
ε ε

   −=    −   
, 1

2

1

1
M

ε
ε

−=
−

, 
11 ε

=
−

B Re
Z

A
, A = 150 et B = 1,75 pour un lit de  

 

grains sphériques de diamètres uniformes et 
ν

= mu d
Re , où um est la vitesse moyenne de 

Darcy de l’écoulement correspondant à la section totale de l’enceinte. 

 

Il constate ainsi la dépendance du rapport des vitesses ω au nombre de Reynolds (Figure 1.6), 

au rapport des deux porosités et à la porosité moyenne 2 1

1

ϕ ε εε
ϕ
+=

+
. 

 

De même, la vitesse au cœur du milieu granulaire (vitesse moyenne) que nous utilisons 

(vitesse de Darcy), doit être corrigée du fait de ces effets de paroi : on a alors d’après Martin : 

 

( )
1 1

1m

u

u ϕ ϕ ω
=

− +
                                                               (1.16) 

 

Nous avons calculé les différentes vitesses pour de l’air (ν = 1,15.10-6 m2.s-1) mises en jeu 

dans un milieu granulaire d’après ces différentes équations, avec 50
D

d
=  et ε1 = 0,365 

(correspondant à notre lit granulaire). Pour la porosité en proche paroi, nous avons utilisé ε2 = 
0,487, valeur correspondant à un lit de diamètre infini selon Martin. La Figure 1.7 montre la 

variation de ces différentes vitesses en fonction du nombre de Reynolds moyen. La vitesse 

moyenne et la vitesse réelle au cœur du milieu sont pratiquement égales. Par contre, la 

différence de ces deux vitesses avec la vitesse en proche paroi décroît en fonction du nombre 

de Reynolds. 

 

 

 

 

 

 
Figure 1.7 : Différentes vitesses définies par Martin appliquées à de l’air et rapport des vitesses 
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1.3 - Conductivité thermique équivalente des milieux hétérogènes 
 

 

Un autre paramètre essentiel pour caractériser le milieu poreux est la conductivité 

thermique équivalente ou effective. Lorsqu’un gradient de température moyen uniforme est 

imposé à un milieu poreux dont l’espace des pores est occupé par une seule phase fluide 

immobile et non réactive, un régime thermique permanent, auquel correspond une densité de 

flux thermique uniforme φ s’établit. Il est par suite possible de définir la conductivité 
thermique effective ou équivalente eqλ  en utilisant une relation semblable à la loi de Fourier 

pour les milieux homogènes, soit : 

 

eq Tϕ λ= − ⋅∇
rr
                                                        (1.17) 

 

 Cette loi, que les techniques de changement d’échelle permettent de justifier 

formellement, peut être généralisée au cas des milieux anisotropes; eqλ est alors un tenseur eqλ  

et dépend des conductivités thermiques sλ et fλ  des phases solide et fluide constituant le 

milieu poreux, des fractions volumiques de ces phases (porosité) et de la structure de la 

matrice solide (continuité, état de surface, points de contacts...). Ses valeurs sont évidemment 

comprises entre les valeurs sλ et fλ  des conductivités thermiques des phases en présence. La 

conductivité thermique équivalente ou conductivité thermique effective d’un milieu 

granulaire désigne donc l’unique coefficient de dispersion thermique du milieu à vitesse 

nulle.  

 

Il s’agit d’un paramètre qui est accessible de différentes manières. On peut l’obtenir 

par exemple :  

 

� à partir d’un calcul sur une cellule élémentaire lorsque le milieu est périodique 

[Azizi, 1988], 

� ou encore à partir d’expériences numériques (résolution de l’équation de la 

chaleur sur un milieu compris entre deux plans parallèles à températures 

distinctes mais uniformes, suivi du calcul du flux et de la résistance thermique 

d’une telle couche), 

� ou enfin à partir de la mesure expérimentale de la conductivité du mélange.  

 

Lorsque l’une des phases est un fluide, la mesure est délicate du fait de la convection naturelle 

qui peut se développer dans l’échantillon : on a alors bien souvent recours à des modèles de 

conductivité équivalente. Ces modèles sont fondés sur l’assimilation du milieu poreux à une 

structure géométrique simple régulière. 

 

La conductivité effective eqλ , pour une porosité fε , est toujours comprise entre les 

conductivités de deux milieux formés de strates parallèles entre elles (Figure 1.8). Les strates 

sont parallèles ou perpendiculaires aux surfaces extrêmes à températures imposées T1 et T2 et 

elles sont isolées latéralement. 
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La conductivité est donc comprise entre deux bornes : la borne inférieure correspond au 

milieu où le flux de chaleur est perpendiculaire aux strates et la borne supérieure est celle où 

celui-ci est parallèle aux strates. 

 

1
eq s s f f

f s

f s

λ ε λ ε λε ε
λ λ

< < +
+

                                              (1.18) 

 

 

Les modèles de type Maxwell ont été établis pour des empilements réguliers formés de 
particules dispersées dans une matrice continue.  

Maxwell [Maxwell, 1873] fait l’hypothèse qu’il n’y a aucune influence mutuelle entre les 

particules. La conductivité équivalente du milieu est donnée par : 

 

3 2 1

3 1

s s

f feq

f s

f

λ λε
λ λλ

λ λε
λ

 
+ −  

 =
 

− −  
 

                                                (1.19) 

 

 

Le modèle de Robert et Tobias [Robert, 1969], modèle de type Maxwell, est une amélioration 

du modèle de Rayleigh [Rayleigh, 1892]. Il est valable pour des empilements réguliers de 

particules sphériques et prend en compte l’interaction entre les particules. La conductivité 

équivalente est alors donnée par : 

 
7 3 10 3

1 3 2

7 3 10 3

1 3 2

2 0,409 2,133

0,409 0,906

eq

f

A A A

A A A

λ ε ε ε
λ ε ε ε

− + −=
+ + −

                                 (1.20) 

 

avec 1 2 3

2 3 3 6 3
, ,

1 4 3 4 3

s f s f s f

s f s f s f

A A A
λ λ λ λ λ λ
λ λ λ λ λ λ

+ − +
= = =

− + +
 

Figure 1.8 : Strates parallèles et en série 
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D’autres modèles, que nous ne ferons que citer, existent également : 

 

� Les modèles utilisés dans les milieux périodiques. Avec ces modèles, il faut cependant 

connaître exactement la structure du milieu poreux, ce qui est un inconvénient. Le 

calcul de la conductivité se fait sur une cellule unité. Il existe deux approches 

correspondant soit à l’utilisation de l’analogie électrique, voir Kunii et Smith [Kunii, 

1960] soit à la résolution de l’équation de chaleur dans la cellule unité. 

 

� Les modèles statistiques consistent en une description statistique du milieu (nombre et 

position des points de contact entre les grains). Ainsi Jinn Huie Huang [Jinn Huie 

Huang, 1971] utilise le calcul probabiliste. 

 

Tous ces différents modèles sont largement détaillés et comparés dans la thèse de Azizi 

[Azizi, 1988]. 

 

Nous nous intéressons ici à un dernier modèle développé par Zehner et Schlünder [Zehner, 

1970]. Ceux-ci font l’hypothèse de lignes de flux parallèles. Ils changent ensuite la forme des 

particules pour compenser l’erreur commise par les différents modèles. La forme du grain 

modifié dépend de la forme des particules et de la porosité du lit fixe. L’avantage de ce 

modèle, selon ces auteurs, est de donner de bons résultats dans des cas asymptotiques tels que 

λs = 0 ou λf = ∞. La conductivité équivalente est alors donnée par : 
 

2

1
2 1 1 1

1 1 ln
2

1 11

f

eq s s

f ff ff

s ss

B B

B
B BB

λ
λ λ λεε λ λλ λλ

λ λλ

  
 −   − + −  = − − + − −       − −−    

         (1.21) 

 

où le paramètre B suit la loi suivante pour les sphères : 
10/9

1
1,25B

ε
ε
− =  

 
 

 

Pour appliquer ces différents modèles, il faut donc s’assurer que les hypothèses sur 

lesquelles ils reposent correspondent aux milieux que nous étudions. La conductivité 

équivalente dépend également de la température. Dans le cas où le fluide qui compose le 

milieu poreux est un gaz, eqλ  dépend également de la pression [Hahne, 1990]. Plusieurs 

facteurs sont donc à prendre en compte pour la détermination de ce coefficient. Le recours à la 

détermination expérimentale de cette grandeur est généralement plus précis et plus proche de 

la réalité. Nous avons ici utilisé la méthode flash et celle du fil chaud (cf. chapitre 2). 
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1.4 - Modélisation de la dispersion thermique au coeur du milieu granulaire 
 

 

Dans cette partie nous traitons des échanges au cœur du lit, c’est à dire des échanges grain-

grain et grain-fluide et de leur modélisation à l'échelle macroscopique. 

 

Approche microscopique 
 

Au niveau local, les équations qui gouvernent les transferts thermiques au sein des 

phases fluides (Vf) et solide (Vs) et à leur interface sont parfaitement connues. 

 

( ) ( ) ( ). .
f

p f f p f ff f

T
c T c u T

t
ρ λ ρ

∂
= ∇ ∇ − ∇

∂
            en Vf                         (1.22) 

( ) ( ).s
p s ss

T
c T

t
ρ λ∂ = ∇ ∇

∂
                         en Vs                                     (1.23) 

f sT T=                                            sur Afs                        (1.24) 

. .fs f f fs s sT Tλ λ∇ = ∇n n                       sur Afs                                    (1.25) 

 

La conservation de l’énergie de la phase fluide est décrite par l’équation (1.22). Celle-ci prend 

en compte la conduction et la convection au sein de ce fluide. L’équation (1.23) décrit la 

conduction pure au sein de la phase solide. Les deux équations sont reliées entre elles par 

deux conditions limites. A l’interface des deux phases, les températures et les flux sont égaux 

-équations (1.24) et (1.25). 

 

La résolution de ces équations locales soulève en pratique beaucoup de difficultés, du fait 

notamment de la méconnaissance de la structure locale du milieu poreux. 

 

Cependant, dans le domaine d’application qui nous intéresse, c’est l’effet macroscopique qui 

présente un intérêt. La modélisation de la dispersion consiste donc en un passage des 

équations ci-dessus à une échelle dite échelle macroscopique. 

 

Approche macroscopique 
 

La littérature fournit de nombreux modèles permettant de décrire à l'échelle 

macroscopique les échanges thermiques dans un milieu poreux. Les plus utilisés sont le 

modèle à une température macroscopique, le modèle à deux températures avec phase solide 

continue et le modèle à deux températures avec phase solide dispersée. Ce dernier est en fait 

un modèle hybride qui utilise une description microscopique pour le solide tandis que la phase 

fluide est décrite à l’échelle macroscopique. Nous renvoyons ici au livre de Tsotsas [Tsotsas, 

1990] qui a analysé ces différents modèles. Ceux-ci ont pu être établis soit par une approche 

intuitive du processus de dispersion et font alors le plus souvent apparaître des coefficients de 

transport dont la définition n'est pas rigoureusement établie, soit par l'utilisation des méthodes 

de changement d'échelle comme la méthode de prise de moyenne volumique. 
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1.4.1 - Prise de moyenne sur un volume élémentaire représentatif 

 

Nous allons ici présenter les principales caractéristiques de la technique de prise de 

moyenne, appliquée aux équations locales. La technique de prise de moyenne a été 

développée en 1967 par Whitaker [Whitaker, 1967], puis par Carbonell et Whitaker [Bear, 

1984]. Quintard, Kaviany et Whitaker [Quintard, 1997] l’ont également appliqué à la 

dispersion thermique en milieu poreux. 

 

Soit Ψσ une grandeur physique définie sur la phase σ (fluide ou solide), sa moyenne σ
Ψ  est 

définie sur un volume élémentaire représentatif V (V.E.R) et s’écrit : 
 

1
d

V

V
V

σ

= ∫σ σ
Ψ Ψ                                                          (1.26) 

 

Le V.E.R. représenté Figure 1.9 est une sphère de rayon ro. 
 

 
 

 

 

 

 

La moyenne intrinsèque à la phase (σ) est donnée par : 
 

1
d

V

V
V

σσ

= ∫σ

σ σ
Ψ Ψ                                                      (1.27) 

Elle vérifie donc 
σ

σ σψ ε ψ= . 

 

L'application de l'opérateur de prise de moyenne aux équations de conservation de l'énergie 

écrites à l'échelle microscopique suppose que l'on utilise le théorème de prise de moyenne 

[Slattery, 1967] : 

Figure 1.9 : Approche microscopique, macroscopique et Volume 
Elémentaire Représentatif (V.E.R.) 
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1
d

fs

f f

f f fs f

f A

T T T A
V

∇ = ∇ + ∫ n                                            (1.28) 

 

Les équations de conservation de l'énergie sur les phases solide et fluide permettent de 

calculer les températures locales Tf ou Ts (x, y, z, t). Le passage à l'échelle macroscopique 

donne deux équations moyennes pour les deux champs 
f

fT  et 
s

sT (x, y, z, t) moyennés sur 

une sphère de centre M(x, y, z) et de rayon ro, ce qui correspond à un filtrage spatial. 
L’application de cette technique dans un espace à une dimension correspondrait donc à une 

moyenne mobile avec une fenêtre de largeur 2r0. 
Dans le processus de prise de moyenne, la taille du V.E.R, par exemple son diamètre D = 2 r0 
doit vérifier d << D << L où L représente la distance caractéristique du milieu à l’échelle 
macroscopique et d la distance caractéristique du milieu granulaire (par exemple le diamètre 
des grains). 

Cette condition permet de considérer que les grandeurs moyennes sont indépendantes de la 

taille du V.E.R. et que les discontinuités microscopiques n’apparaissent pas dans les 

grandeurs moyennées. 

 

 

1.4.2 - Modèle à deux températures 

 

Le modèle de dispersion thermique à deux températures moyennes est celui le plus 

classiquement rencontré dans la littérature. Son établissement est présenté en détail dans les 

travaux de Levec et Carbonell [Levec, 1985]et de Carbonell et Whitaker [Carbonell, 1984]. 

Son principe est rappelé ici en quelques mots. La valeur exacte de chaque grandeur 

(températures et vitesse) est décomposée en une valeur moyenne et une fluctuation, comme 

par exemple pour Tf : 
 

f

f f fT T T= + %                                                             (1.29) 

où 
f

fT est donnée par (1.23). 

Cette décomposition est opérée dans les équations obtenues par application de l'opérateur 

prise de moyenne. On montre ensuite que les fluctuations spatiales fT
%  et sT%  qui s’expriment 

en fonction des températures moyennes et de leurs gradients : 

 

( ). .
f fs s

f f f f s f s fT T T h T T= ∇ + ∇ + −f g%                              (1.30) 

( ). .
f fs s

s s f s s s s fT T T h T T= ∇ + ∇ + −f g%                                (1.31) 

 

Les fonctions de fermeture (ff, fs, gf, hf…..) dépendent de la géométrie des pores et du champ 

de vitesse locale. En remplaçant fT
%  et sT%  par leurs expressions (1.30 et 1.31) dans les 

équations moyennes pour chaque phase, on obtient le système suivant : 
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( ) ( ) ( )
( )

. . .

f

f fs sf

p ff f fs s ff f fs sf

fs

v s f

T
c T T T T

t

ha T T

ε ρ
∂

= ∇ ∇ + − ∇ + ∇
∂

+ −

u uλ λλ λλ λλ λ
          (1.32) 

( )( ) ( ) ( )
( )

1 . . .

s
f fs ss

p sf f ss s sf f ss ss

fs

v s f

T
c T T T T

t

h a T T

ε ρ
∂

− = ∇ ∇ + − ∇ + ∇
∂

− −

u uλ λλ λλ λλ λ
         (1.33) 

 

Le modèle contient quatre tenseurs de dispersion (λλλλ), quatre vecteurs vitesse (u) et un 
coefficient h difficile à interpréter et à estimer expérimentalement. Dans le cas d’un milieu 
granulaire constitué de sphères de diamètre unique d, on peut montrer, à l’aide d’un modèle 
conductif appliqué sur une seule sphère développée aux temps longs – voir chapitre 3- que le 

coefficient h prend la valeur suivante : 
d

h sλ
10= . 

Le paramètre av désigne l’aire de l’interface solide / fluide par unité de volume du milieu 
poreux (surface spécifique). Pour un lit fixe de porosité ε, constitué de particules sphériques 
de diamètre d on a :  
 

( )6 1
va d

ε−
=                                                            (1.34) 

 

Le modèle à deux températures est assez difficile à utiliser en pratique du fait du nombre 

important de paramètres. Dans le cas d'une géométrie simplifiée monodimensionnelle, Levec 

et Carbonell [Levec, 1985] et Zanotti et Carbonell [Zanotti, 1984], ont montré qu'aux temps 
longs, le modèle à deux températures peut être approché par les équations suivantes : 

 

 

2

2

x

p t

T T T
u

t x xc

σ σ σ
σ σ σλ

ρ
∂ ∂ ∂

+ =
∂ ∂ ∂

 . (1.35) 

 

On conserve donc une équation pour chaque phase ( sf ,=σ ) avec la même vitesse moyenne 

u et le même coefficient de dispersion xλ . Cependant il a été montré par ces auteurs que les 
zones affectées thermiquement dans chaque phase sont décalées spatialement. En pratique aux 

temps longs, le décalage reste négligeable par rapport aux dimensions spatiales 

macroscopiques (Levec et Carbonell).  

 

Cette formulation beaucoup plus simple du processus de dispersion thermique peut être 

rendue plus générale par la mise en place d'un modèle utilisant une seule température 

moyenne. 



Chapitre 1 : Etat de l’art sur la dispersion thermique à cœur ou en proche paroi 

 30 

1.4.3 - Modèle à une température 

 

Pour obtenir un modèle à une seule température la méthode la plus fréquemment rencontrée 

dans la littérature consiste à supposer que les phases solide et fluide sont à l'équilibre 

thermique local, soit : 
f s

f sT T T= = .  

Cependant, comme l’ont démontré Moyne et al [Moyne, 2000], il ne s’agit pas d’une 
condition nécessaire. En effet, il suffit de définir une température moyenne <Th> comme 
moyenne enthalpique des températures des deux phases, ce qui s’écrit : 

 

( )
1

( ) dh p

Vp t

T c r T V
c V

ρ
ρ

= ∫                                        (1.36) 

 

avec ( ) ( )
( ) ( )p

h

p t

c r
T r T r

c

ρ
ρ

=  

Par abus de langage, nous noterons ici =hT T , mais la prise de moyenne (1.36) est une 

intégrale pondérée par le rapport des chaleurs volumiques. On peut alors relier la température 

moyenne enthalpique aux moyennes intrinsèques des deux phases : 

 

( ) ( ) ( ) ( )1
f s

p p f p st f s
c T c T c Tρ ε ρ ε ρ= + −               (1.37) 

 

où ( )
tpcρ  est la chaleur volumique totale du milieu qui se calcule à partir des chaleurs 

volumiques des deux phases (fluide et solide) par une loi de mélange : 

 

( ) ( ) ( ) ( )1p p pt f s
c c cρ ε ρ ε ρ= + −                              (1.38) 

 
ε désigne la porosité du milieu. Pour l'établissement du modèle à une équation, les 
températures locales sont décomposées de la façon suivante :  

 

 s sT T T= + %    et   f fT T T= + %  (1.39)  

 

On cherche pour les fluctuations des solutions sous la forme : 

 

 .sT T= ∇g%    et  .fT T= ∇g%  , (1.40) 

 

La température moyenne enthalpique est alors donnée par l'équation suivante :  

 

( ) ( ) ( ). .
f

p p ft f

T
c T c u T

t
ρ λ ε ρ

∂
= ∇ ∇ − ∇

∂
                    (1.41) 

 

avec 
f

fu  la vitesse moyenne intrinsèque de la phase fluide telle que uD =
f

fuε  est la 

vitesse de Darcy.  
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Tenseur de dispersion thermique 

 

λλλλ est le tenseur de dispersion thermique qui se décompose classiquement de la façon 
suivante [Moyne, 2000] : 

 

 ( ) ( )f sf f s s f f s s f p f
I c Dλ ε λ ε λ ε λ τ ε λ τ ε ρ= + + + −  (1.42) 

 

I  est le tenseur identité, sf ,τ  les tenseurs de tortuosité et D  le tenseur de dispersion 

hydrodynamique. 

 

 
1

df

fs

sf

f A

n f A
V

τ = ⊗∫
rr

  et  
1

ds

fs

sf

s A

n g A
V

τ = ⊗∫
r r

 (1.43) 

 
1

d

f

f

f V

D u f V
V

= ⊗∫
rr

 (1.44) 

 
f et g représentent des fonctions de fermeture [Moyne, 2000]. 
 

Les composantes du tenseur de dispersion (que nous chercherons à caractériser) sont 

constituées : 

 

� d’un terme constant  égal à la conductivité thermique du modèle parallèle  

� d’un terme de tortuosité dépendant de la vitesse moyenne 

� d’un terme résultant de la contribution hydrodynamique du tenseur de 

dispersion 

 

Généralement les composantes du tenseur de dispersion thermique λλλλ sont représentées sous la 
forme de corrélations basées sur le nombre de Péclet du type : 

 

( )
eq

f f

F Peα
α

λλ
λ λ

= +                                                (1.45) 

 

avec α = x, y ou z et Pe le nombre de Péclet calculé à partir du diamètre des particules, la 
vitesse moyenne et de la diffusivité thermique du fluide. λeq est ici la conductivité équivalente 

du milieu lorsque la vitesse du fluide est nulle car 0)0( =αF . Remarquons que ces 

corrélations ne prennent pas en compte les propriétés du solide (sauf dans λeq). 

 

 

Il est ici utile de noter que c’est le nombre de Reynolds qui permet de caractériser le 

régime de l’écoulement. Aussi, si on souhaite maintenir la dépendance des coefficients de 

dispersion à la géométrie de l’écoulement, des corrélations prenant en compte ce dernier sont 

sans doute plus appropriées. Pour que la mesure à l’échelle macroscopique puisse être une 

évaluation de ce qui se passe à l’échelle des pores, l’utilisation du nombre de Reynolds paraît 

alors une bonne solution si on compare les résultats de la dispersion obtenus pour des fluides 

différents. Si on compare des arrangements de solides différents pour un même fluide, il 

importe peu d’utiliser le nombre de Péclet ou le nombre de Reynolds.  
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1.5 - Caractérisation de la dispersion thermique : état de l’art 
 

 

La détermination du tenseur de dispersion thermique peut se faire soit théoriquement 

soit expérimentalement. Nous renvoyons ici le lecteur pour de plus amples informations à la 

thèse de Metzger [Metzger, 2002] qui a réalisé une synthèse des différentes corrélations 

donnant ce tenseur. Nous mentionnerons ici quelques travaux nous intéressant 

particulièrement. 

 

1.5.1 - Détermination théorique 

 

 Dispersion longitudinale 

 

Les deux études théoriques les plus pertinentes sont celle de Tsotsas [Tsotsas, 1990] et 

celle de Levec et Carbonell [Levec, 1985]. Nous rappellerons ici les deux corrélations qui en 

découlent ; nous y ajouterons la loi utilisée en génie des procédés donnant le coefficient de 

dispersion transversale. 

  

Tsotas s’est basé sur les moments temporels pour établir sa corrélation concernant le 

coefficient longitudinal : 

 

( ) ( ) ( )

2 2
2 2

2 2

1 1 1

2 1 1 60 1

eqx

sf f v

f

Pe Pe Pe
Nu a d

λλ κ κ
λλ λ κ κ ε
λ

= + + +
+ + −

         (1.46) 

 

avec 
( )( )

( )
1 p s

p f

c

c

ε ρ
κ

ε ρ

−
=  

 

La détermination du nombre de Nusselt s’effectue à l’aide d’une loi établie par Gnielinski 

[Gnielinski, 1978] soit : 

 

( )( )

( )

2 2

1 3 1 2

0,8

0,1 2 3

1 1,5 1

2

0,664Pr Re

0,037Pr Re

1 2,433Re Pr 1

sphère

sphère lam turb

lam

turb

Nu Nu

Nu Nu Nu

Nu

Nu

ε

−

= + −

= + +

=

=
+ −

                                           (1.47) 

 

où Re et Pr sont respectivement les nombres de Reynolds et de Prandtl. 
 

Après analyse des moments spatiaux, Levec et Carbonell [Levec, 1985] ont établi que les 

coefficients de dispersion, dépendent de trois contributions, une conductive, une causée par la 

dispersion hydrodynamique et enfin une dernière provenant de l’échange entre les deux 

phases. La relation donnant le coefficient longitudinal est : 
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3 1
2

1 1

λλ κ κ
λ λ κ κ

    ≈ + − + + + +      ′ ′+ +   

eq eqx x

f f f f v

DD C CPe
C Pe

D D Pe Nu a d Nu
            (1.48) 

 

avec 
1 1 1

10 s fNu Nu λ λ
= +

′
 et 1,2560,231 6 600

eqx

f f

DD
Pe Pe

D D

 
− = < <  

 
. 

 

 

C1, C2 et C3 sont des constantes. C2 et C3 sont des constantes provenant de la dispersion 

hydrodynamique et de la tortuosité. C1 est déterminé expérimentalement. Dans le cas du 

milieu poreux nous intéressant Ci = 0 (avec i = 1, 2 ou 3). 
 

 

 

 

 Dispersion transversale 

 

Le coefficient de dispersion transversal a aussi été déterminé par  Levec et Carbonell. 

Ses deux contributions ont été identifiées comme conductive et hydrodynamique, le terme 

hydrodynamique a été obtenu par Han [Han, 1985] pour une porosité de lit de 0,365. Ces 

auteurs obtiennent la corrélation suivante : 

 

0,6830,194 pour 6 600
y eq

f f

Pe Pe
λ λ
λ λ

= + < <                          (1.49) 

 

Cette dernière loi est en contradiction avec la corrélation largement utilisée en génie des 

procédés celle de Bauer et Schlünder [Bauer, 1978]. Cette dernière corrélation a été établie à 

partir d’une hypothèse d’écoulement entrelacé sur un réseau périodique de sphères : 

 

y eq

y

f f

A Pe
λ λ
λ λ

= +                                                       (1.50) 

Le coefficient 
1

8
yA =  provient du modèle correspondant établi pour la dispersion massique. 

Ce coefficient vaut 
1

7
yA =  dans le cas de la dispersion thermique pour Bauer et Schlünder 

[Bauer, 1978]. Cette valeur provient d’expériences effectuées pour des sphères. 

 

 

1.5.2 - Détermination expérimentale 

 

Les études expérimentales sur la dispersion en transfert de masse en milieu granulaire 

sont relativement nombreuses dans la littérature [Gunn, 1974]. 

Il n’en est pas de même pour la dispersion thermique qui n’est pas tout à fait analogue à la 

dispersion massique car elle met toujours à contribution la diffusion dans la phase solide. 

Nous mentionnerons cependant les résultats de Levec et Carbonell [Levec, 1985] et ceux de 

Dixon et al [Dixon, 1979]. Il est à noter qu’il existe une forte dispersion des résultats pour la 
caractérisation de ce phénomène. Nous citerons quelques études expérimentales nous 

intéressant directement. 
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Yagi et al [Yagi, 1960] ont été les premiers à mesurer les conductivités thermiques axiales des 
lits granulaires. Leurs mesures du coefficient de dispersion thermique axial ont été réalisées 

dans un milieu granulaire de billes de verre de 1,6 mm de diamètre confiné dans une enceinte 

adiabatique constituée de deux tubes de verre (Figure 1.10). Le milieu granulaire a été chauffé 

au-dessus par une lampe infrarouge pour permettre à la chaleur de pénétrer jusqu’en bas. 

L’écoulement d’air utilisé était dans le sens contraire au flux de chaleur. Les mesures ont été 

effectuées pour des nombres de Péclet inférieurs à 10. Les auteurs, d’après leurs résultats 

expérimentaux, ont établi un modèle linéaire pour déterminer le coefficient longitudinal de 

dispersion thermique : 

 

eqx
x

f f

A Pe
λλ

λ λ
= +            pour 0 10Pe〈 〈                   (1.51) 

avec Ax=0,8 
 

 

                   
 

 

 

 

 

Votruba et al [Votruba, 1972] ont évalué le coefficient de dispersion thermique axial à 

partir des profils axiaux de température de lits garnis en régime permanent (Figure 1.11). Des 

mesures des coefficients ont été effectuées à l'aide d'un réacteur à parois en verre semblable à 

celui de Yagi et al [Yagi, 1960] avec des particules solides de différentes tailles, formes et 
conductivités thermiques différents (Figure 1.10). Leurs résultats ont été exprimés en fonction 

du nombre de Péclet du transfert de chaleur axial (nombre de Péclet calculé à partir du 

coefficient de dispersion axial) : 

 

3

1 1 14,5

1

eq

x fPe Re Pr C

Re Pr

λ
λ

= +
 

+ 
 

                                          (1.52) 

 

Figure 1.10 : Dispositif expérimental 
utilisé par plusieurs auteurs 

Figure 1.11 : Profils de température 
[Votruba, 1972] 
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avec 
( )p Dt

x

x

c u d
Pe

ρ
λ

=  et C3 = 2,9 

 

Le problème de cette relation est l’introduction d’une constante arbitraire C3. 

Cependant, ces auteurs sont les premiers à avoir donné le coefficient de dispersion 

longitudinal en fonction du nombre de Prandtl et du nombre de Reynolds 

Dixon et Cresswell [Dixon, 1979] ont un peu plus tard utilisé le même type de relation. Ils ont 

utilisé pour cela un modèle pseudo-homogéne. Ils basent leur corrélation sur les résultats 

expérimentaux de Yagi et al [Yagi, 1960] et de Gunn et de Souza [Gunn, 1974] : 
 

1 0,73 0,5

9,7
1xPe Re Pr

Re Pr

ε
ε

= +
 

+ 
 

                                     (1.53) 

 

Gunn et De Souza [Gunn, 1974] ont, eux, effectué dans un milieu granulaire une 

excitation périodique à l'entrée avec mesure de la réponse en sortie. Le modèle utilisé est le 

modèle à deux températures avec la phase solide dispersée. Le fluide utilisé est l'air et le 

solide des billes du verre. Le problème rencontré par Gunn est la faible sensibilité du signal 

aux paramètres. Les résultats sont imprécis mais permettent cependant de sentir 

qualitativement la variation du coefficient de dispersion longitudinal avec la vitesse. 

Une étude plus récente réalisé par Elsari et Hughes [Elsari, 2002] a été conduit pour 

déterminer le coefficient de dispersion axiale dans les mêmes conditions expérimentales que 

Yagi et Votruba (Figure 1.10). Les expériences ont été réalisées pour différents gaz et 

différents matériaux solides (essentiellement des grains de catalyseur). Les expériences ont 

été réalisées pour des nombres de Reynolds inférieurs à 30. Les auteurs constatent une forte 

dépendance du coefficient de dispersion axiale avec la taille des grains mais aucune influence 

de la nature du gaz sur celui-ci. Avec ces différentes données, ils donnent non pas une 

corrélation unique mais plusieurs relations linéaires en fonction du nombre de Reynolds. Ce 

type de relation est souvent utilisé pour le coefficient de dispersion transverse. Par exemple, 

pour des sphères d’alumine, ils trouvent une relation du type : 

 

8,63 3,12x

f

Re
λ
λ

= +                                              (1.54) 

 

Une étude similaire, à celle que nous allons effectuer mais complètement différente 

des précédentes tant au niveau de la configuration que de l’exploitation des mesures, a été 

réalisée par Metzger [Metzger, 2002] au L.E.M.T.A. Nous nous baserons sur le même 

dispositif expérimental et sur la même méthode pour notre étude (cf. chapitre 2 et 3). Il a 

travaillé avec un lit de billes de verre monodisperses (diamètre d = 2 mm) traversé par un 
écoulement d’eau et a cherché à valider le modèle à une température. La géométrie de son 

dispositif expérimental est simple : un fil chauffant est installé perpendiculairement à la 

vitesse de Darcy (uniforme) au sein du milieu granulaire. Des thermocouples sont positionnés 

en aval du fil. L’augmentation de température suite à un échelon de puissance électrique 

pendant les expériences est faible (de l’ordre de 1 à 2 K). Ces faibles élévations de 

température garantissent une constance des propriétés thermophysiques des deux phases et 

évitent les effets non linéaires dus à leur thermodépendance. Compte tenu du caractère 

bidimensionnel du transfert de chaleur, le tenseur de dispersion a deux composantes 

principales (λx et λy) qu’il a cherché à estimer. 
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A partir des thermogrammes obtenus, les coefficients de dispersion thermique ont été estimés 

par une méthode des moindres carrée spécifique. La qualité de ces estimations a été validée 

par des simulations de Monte Carlo: le coefficient longitudinal λx de dispersion thermique 

ainsi que la vitesse de Darcy ont pu être estimés avec précision, cependant il a obtenu des 

valeurs moins précises pour le coefficient transverse λy. 

 

Ses résultats (Figure 1.12) lui ont permis de construire une corrélation pour le coefficient 

longitudinal: 

 

 
( ) 589,10731,0 Pe
Pe

f

eq

f

x +=
λ
λ

λ
λ

    pour  3 < Pe < 130                 (1.55) 

 

Avec Pe = ud/af  le nombre de Péclet et af est la diffusivité thermique du fluide  
 

Le coefficient transversal est beaucoup plus difficile à évaluer dans le cas eau / billes de verre 

même si la variation linéaire de ce coefficient avec le nombre de Péclet est justifiée (Figure 

1.13). T. Metzger propose la corrélation suivante : 

 

( )y eq
y

f f

Pe
A Pe

λ λ
λ λ

= +  pour 3 < Pe < 130                     (1.56) 

 

avec Ay compris entre 0,03 et 0,05. 

 

  
 

 

 

 

 

En conclusion, la mesure des coefficients de dispersion thermique en milieu granulaire 

reste assez délicate. D'une façon générale, le coefficient de dispersion longitudinal est 

largement supérieur au coefficient de dispersion transversal calculé ou mesuré. Il est possible 

de dégager dans la littérature quelques tendances quant aux variations de ces coefficients en 

fonction du nombre de Péclet : une loi de puissance avec un exposant compris entre 1 et 2 

pour le coefficient longitudinal et un exposant proche de 1 pour le coefficient transversal. 

Figure 1.12 : Résultats expérimentaux et corrélations de Metzger 
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L'étude de Metzger a montré que la fiabilité des résultats était très dépendante du modèle et de 

la méthode d'inversion de mesures.  

 

 La grande faiblesse des différentes études déjà menées se situe essentiellement dans la 

détermination du coefficient transversal. En effet, les résultats sont approximatifs voire 

inexistants. La détermination de ce coefficient est difficile du fait de la présence des 

phénomènes en proche paroi qui apparaissent lorsque l’on utilise une source étendue 

(phénomènes que nous allons présenter dans la section suivante). Ces effets se font 

vraisemblablement moins sentir lorsque l’on utilise une excitation pour laquelle l’aire de la 

paroi est idéalement nulle. 

 

 

1.6 - Modélisation de la dispersion thermique en proche paroi 
 

 

La description du transfert de chaleur en proche paroi est rendue délicate par les 

distorsions locales du profil de porosité (cf. section 1.1.2) et de la nature du transfert 

(conduction ou convection selon la nature du contact local). Il existe deux grandes classes de 

méthodes pour modéliser ces phénomènes : les modèles « standards » utilisant un coefficient 

d’échange convectif et les modèles dispersifs plus cohérents avec l’approche utilisée dans le 

cœur du milieu granulaire.  

 

 

1.6.1 - Modèle standard ou modèle à coefficient d’échange convectif 

 

Certains auteurs ont longtemps utilisé un coefficient de dispersion transverse λy 

constant - calculé par exemple à partir de la relation (1.50) - sur toute la section du milieu 

granulaire couplé à un coefficient de transfert à la paroi hp. Ce modèle est appelé modèle 

standard [Tsotsas, Schlünder, 1990] . L’utilisation de ce coefficient hp est cependant très 

critiquée dans la littérature même si récemment Bauer et Adler [Bauer, 2002] ont montré 

qu’avec de bonnes conditions limites ce modèle était applicable. 

Un des problèmes de ce modèle est la détermination du coefficient de transfert à la paroi. 

Lamine [Lamine, 1992] a réalisé des travaux pour caractériser ce transfert en paroi. En 

chauffant la paroi par des résistances électriques, elle suppose que le flux de chaleur transféré 

peut s’écrire : 

 

( )p p ph T Tϕ = − .                                                          (1.57) 

 

A partir de la reconstruction des profils de température à l’intérieur du lit (écoulement de 

plusieurs liquides), différents paramètres (conductivité radiale du lit et le coefficient de 

transfert de chaleur) à partir d’un modèle homogène. Le coefficient hp est déduit par 

extrapolation de la différence de température, de quelques degrés, au sein du lit. Elle trouve 

donc un coefficient h exprimé en fonction du nombre de Nusselt : 
 

0,253Nu Re−=    avec   
p

y

h d
Nu

λ
=    pour   5 120Re≤ ≤              (1.58) 
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En outre, elle remarque que la résistance à la paroi est approximativement égale au rapport du 

diamètre de particule à la conductivité thermique du lit. 

 

Cependant, la détermination de ce paramètre est délicate. A bas nombre de Reynolds (< 200), 

les corrélations de la littérature donnent une dispersion énorme de ce coefficient d’échange hp. 

La Figure 1.13 montre les résultats de différents auteurs [Tsotsas, Schlünder, 1990] lorsqu’ils 

utilisent le modèle convectif. On peut voir que pour des nombres de Péclet inférieurs à 10
3
, 

les résultats sont très dispersés. Cette dispersion cesse pour des nombres de Péclet supérieurs 

à 10
3
.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On peut noter que les auteurs qui étudient les transferts transverses avec prise en 

compte des parois négligent toujours la dispersion axiale. Dixon [Dixon, 1985] a justifié cette 

hypothèse. 

Dixon [Dixon, 1984] a montré qu’à nombre de Reynolds élevé le modèle suivant pour le 

coefficient de chaleur en paroi (modèle « standard ») peut être utilisé : 

 

 
3 2

0,591 3
1 1,5

f

hd D
RePrdλ

−  = −     
                               (1.59) 

 

 

avec Re = um d / νf  et um la vitesse débitante moyenne dans la conduite de diamètre D. Cette 
corrélation a été établie à partir de mesures où le fluide est de l’eau. Tsotsas [Tsotsas, 

Schlünder, 1990] a montré, en s’appuyant sur le modèle de dispersion transverse (1.50), que 

la corrélation précédente n’était valable que pour des nombres de Péclet élevés c’est à dire 

pour 8
eqm

f f

u d
Pe

λ
λ λ

= 〉 . Pour des billes de verre de 2 mm de diamètre, ceci correspond à un 

nombre de Péclet de 100 pour l’air et de 11 pour l’eau. 

 

Figure 1.13 : Résultats obtenus avec le modèle 
standard à bas nombre de Péclet [Tsotsas, 
Schlünder, 1990] 
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1.6.2 - Le modèle dispersif 

  

Winterberg et Tsotsas [Winterberg, Tsotsas, 2000] ont adopté une approche différente 

de celle du modèle standard. Ils utilisent un coefficient de dispersion transversal qui dépend 

de la distance aux parois. 

Loin des parois, Bauer et Schlünder [Bauer, 1978] ont établi sur la base de considérations 

théoriques la corrélation linéaire (équation (1.50) pour ce coefficient). 

 

En proche paroi, ce coefficient dépend de la variation de la porosité, de la vitesse et de la 

distance aux parois. Un nouveau modèle dispersif a donc été présenté et validé par 

Winterberg, Krischke, Tsotsas et Vortmeyer [Winterberg, 1999] et Winterberg et Tsotsas 

[Winterberg, Tsotsas, Krischke, 2000]. 

 

En proche paroi, deux types de régimes asymptotiques sont définis : 

 

• le régime à haut nombre de Péclet où le modèle standard est applicable. Le transfert 

pariétal se fait alors par mélange hydrodynamique. 

 

• le régime à bas nombre de Péclet où l’écoulement est laminaire. Le modèle standard 

ne peut s’appliquer du fait de la trop grande dispersion des valeurs du coefficient 

d’échange pour ce régime (Figure 1.13). Ce régime équivaut à des nombres de 

Reynolds particulaires inférieurs à 1000. 

 

 

 
 

 

 

 

 

Cette zone en proche paroi est hétérogène, le coefficient de dispersion est donc variable. La 

corrélation proposée, qui dérive de l’approche de Bauer et Schlünder (1.50), est alors 

[Winterberg, 1999]: 

 

( ) ( )y eq fr A r Peλ λ λ= +                                                 (1.60) 

 

Figure 1.14 : évolution du coefficient K2 en fonction du nombre de Reynolds et de la 
constante K1 pour un écoulement d’air [Winterberg, Tsotsas, 2000] 
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avec ( ) ( )1
coeur

moyen

u
A r K f R r

u
= −  et ( ) 2

2

21

n
R r

si R r K d
f R r K d

si R r K d

  −
 − < − =   
 − > 

¨ 

 

 

où umoyen correspond à la vitesse superficielle moyenne et ucoeur correspond à la vitesse 

superficielle au cœur du lit.  

K1, K2 et n  ne sont pas a priori fixés, ils dépendent du nombre de Péclet. La Figure 1.14 donne 

les valeurs K1 et K2 pour différents nombres de Reynolds (
moyen p

0

f

u d
Re Re

ν
= = ) qu’ont 

utilisés différents auteurs[Winterberg, Tsotas, 2000]. Winterberg recommande la corrélation 

suivante : 

 

1 2

1
1 8 ; 2 et 0,44 4exp

70
K n K Re

 = = = + − 
 

                           (1.61) 

 

Ce nouveau modèle est plus riche que le modèle à coefficient convectif : un meilleur 

ajustement du profil de température (Figure 1.15) est obtenu, ce qui est normal compte tenu 

du fait que l’on introduit trois nouveaux paramètres. On peut cependant s’interroger sur la 

signification physique et la pertinence de ces nouveaux paramètres et le caractère prédictif de 

la modélisation associée. Cette modélisation repose en effet à la fois sur la variation du 

coefficient de dispersion transversal de Bauer (1.50) et sur son extrapolation à un milieu où 

les porosités et les vitesses de filtration, varient en fonction de la tranche parallèle à la paroi 

considérée. Le caractère intrinsèque de cette approche peut être contesté. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15 : Comparaison du profil de température 
entre le modèle standard αw et le nouveau modèle  
( ( )rΛ ) [Winterberg, Tsotsas, 2000] 
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 Nous avons présenté dans ce chapitre les principaux modèles de dispersion thermique 

en cœur et en proche paroi. Nous baserons la suite de notre étude sur le modèle à une 

température. Nous tenterons ensuite d’estimer les coefficients de dispersion et chercherons à 

les présenter sous forme de corrélations. Puis, nous tenterons de présenter un modèle différent 

de celui de la littérature pour la caractérisation de la dispersion thermique proche de la paroi. 
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Chapitre 2 : Dispositif de caractérisation en cœur 

de milieu 

 

 

 
Ce deuxième chapitre a pour objet de décrire le dispositif expérimental permettant la 

caractérisation de la dispersion thermique en cœur de milieu granulaire. Tout d’abord, nous 

préciserons les différentes propriétés thermophysiques des deux milieux que nous utiliserons : 

air / billes de verre et support de catalyseur / air. Ensuite nous détaillerons le dispositif 

expérimental. 

 

 

2.1 – Caractérisation statique des milieux utilisés 
 

 

Les propriétés thermophysiques des différents milieux sont considérées comme 

constantes. En effet, les variations de température pendant les expériences sont de l’ordre de 1 

à 2 K. 

 

2.1.1 - Milieu billes de verre/air 

 

Les billes de verre utilisées (de diamètre d = 2 ou 3 mm) sont constituées de :         
SiO2 (66%), Na2O (15%), CaO (7%), Al2O3 (5%), B2O3 (3%), ZnO (2%), CdO (1%) et MgO 

(1%). Cette composition nous permet d’obtenir la chaleur massique du verre qui est de 798 

J.kg
-1
.K
-1
. La masse volumique déterminée par Metzger [Metzger, 2002] est de 2600 kg.m

-3
. 

La conductivité du verre, non connue, est donnée par les tables [Lide, 1998] pour du verre de 

chimie, elle est de  1 W.K
-1
.m
-1
. 

Pour la phase gazeuse, nous prenons les valeurs de la littérature [Lide, 1998] données pour de 

l’air à la température de 20°C (cf. Tableau 2.1). 

 

La conductivité équivalente du milieu air-billes de verre a été mesurée expérimentalement par 

méthode « flash » par Azizi [Azizi, 1988] et vaut 0,2 W.K
-1
.m
-1
  

 

 

 

 air verre verre/air 

chaleur massique (Cp) J.K
-1.kg-1 

 

1007 798  

masse volumique (ρ) kg.m-3
 1,177 2600  

(ρ Cp)  J.K
-1.m-3

 1,2.10
3 

2,08.10
6
 1,32.10

6 

conductivité thermique (λ) W.m-1.K-1
 0,026 1 0,2 

diffusivité (a) m2.s-1 2,22.10
-5
 4,81.10

-7 
1,52.10

-7 

porosité (ε)   0,365 

diamètre (d) mm  2 et 3  

 

Tableau 2.1 : Propriétés thermophysiques du milieu verre / air à 20°C 
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2.1.2 - Milieu support de catalyseur / air 

 

La société Axens nous a fourni un support de catalyseur à matrice d’alumine. Les 
propriétés du milieu granulaire support de catalyseur/air ont été mesurées expérimentalement 

soit par nous même soit par l’I.F.P. 

La Figure 2.1 (gauche) montre une coupe du grain de catalyseur réalisée au Microscope 

Electronique à Balayage grossie 40 fois. On voit nettement que le support de catalyseur est 

poreux à plusieurs échelles et relativement sphérique. Son rapport de circularité est de 1,13. 

Le diamètre de ces grains varie de 2 à 4 mm. Une analyse granulométrique (réalisée par l’IFP) 

nous fournit un diamètre moyen de 3,28 mm (il s’agit ici de la moyenne des diamètres). 

 

 

    
 

 

 

 

Nous voyons donc que deux porosités seront présentées ici, la porosité externe qui est 

occupée par l’air en dehors des grains et la micro –voire nano- porosité qui est visible sur la 

Figure 2.1 (droit, grossissement de 250). 

 

Les propriétés du support catalyseur sont les suivantes : 

 

La masse volumique d’un grain n’a pas été mesurée directement. La densité de grain 

se calcule, dès lors que le volume des micropores est négligeable, à partir de la densité 

structure (ρstru), de la densité de l’alumine « en masse » et du Volume Poreux Total (VPT) 

par:  

 

 

1 1

1
s s

s
pore sgrain pore stru

strus s

m m
v vv v v VPT
m m

ρ

ρ

= = = =
+ ++

                           (2.1) 

 

Les valeurs du VPT et de sρ  sont confidentielles. 
 

La chaleur massique a été mesurée par calorimétrie, non pas sur les grains, mais sur 

le même solide obtenu à partir d’un gel (Figure 2.2) soumis à un traitement thermique 

préalable. Des pastilles de ce gel ont été moulées (échantillon cylindrique de 30 mm de 

Figure 2.1 : Photo du grain de support de catalyseur. 
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diamètre et de 10 mm d’épaisseur) puis ont subi un traitement de séchage et de solidification 

dans un four à moufle : 

 

� préchauffage à 60°C pendant 3 heures  

� montée à 140°C (5°C/min) 

� chauffage à 140°C pendant 3 heures  

� montée à 600°C (5°C/min) 

� calcination à 600°C pendant 2 heures  

 

On obtient ainsi des pastilles assez friables, n’ayant pas exactement le même aspect que les 

grains utilisés lors des expériences. Dans ces conditions, la chaleur massique mesurée (Cps) 

au LEMTA à l’aide d’un calorimètre différentiel spécifique est de 916 J.K
-1
.kg

-1
. 

 

 

 

 

 

 

 

La diffusivité thermique et la conductivité apparente du milieu air / support de 

catalyseur a été mesurée par deux méthodes : la méthode « flash » et la méthode du fil chaud. 

 

 

La méthode flash 

 

La méthode "flash", initialement développée par Parker [Parker, 1961] est une méthode 
couramment employée pour la mesure de la diffusivité thermique de matériaux. Elle consiste 

à exciter un échantillon plan cylindrique de petites dimensions par une brève impulsion 

thermique sur sa face avant. On mesure ensuite sa réponse en température soit du côté de la 

face irradiée, on parle ainsi de technique "face-avant", soit sur la face opposée, il s'agit alors 
d'une technique de type "face-arrière". Dans notre cas, nous avons utilisé la technique "face-
arrière" et la mesure de température est réalisée à l'aide de thermocouples de type semi-
conducteurs (Bi2Te3). L'échantillon est supposé homogène, isotrope et opaque. Ses propriétés 

thermophysiques sont également supposées constantes au cours de l'expérience (faible 

élévation de température). 
 

Nous avons deux échantillons d’épaisseurs différentes pour valider les résultats. Les 

grains utilisés sont placés à l’intérieur d’un godet cylindrique de 10 mm ou 15 mm 

d’épaisseur dont la paroi latérale est un tube cylindrique en PVC de 1 mm d’épaisseur. Ces 

deux godets sont fermés par deux clinquants en cuivre d’épaisseur 0,20 mm peints en noir 

Figure 2.2 : Gel constituant le support de catalyseur 
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pour assurer l’absorption uniforme de l’énergie. La porosité mesurée des deux échantillons est 

de 0,45. Le schéma de principe est donné figure 2.3. La mesure de la réponse en température 

de l’échantillon sur la face opposée au flash (dite face arrière) permet d’identifier la 

diffusivité thermique du matériau. Une procédure spécifique d’identification de la diffusivité 

thermique a été mise en place pour prendre en compte l’effet du creuset et des deux clinquants 

sur le thermogramme. 

 

La diffusivité a été mesurée pour les échantillons de 10 mm et de 15 mm. Les valeurs 

mesurées varient de moins de 12 %. 

  

 

 
 

 

 

 

La méthode du fil chaud 

 

Le principe de la mesure est le suivant : un fil métallique fin est placé au cœur du 

milieu à caractériser (Figure 2.4). A l'instant pris pour origine, on délivre une puissance Joule 

constante que l'on mesure. Simultanément, on relève la variation de la température du fil soit 

par un thermocouple soudé sur le fil (méthode dite du "croisillon"), soit directement par la 
mesure de la résistance du fil. Dans sa forme traditionnelle, l'identification de la conductivité 

thermique s'effectue aux temps longs (développement asymptotique), ce qui justifie 

l'appellation de régime quasi-établi. La Figure 2.5 représentant les courbes expérimentales, 

théoriques et les résidus montrent que ceux-ci sont de bonne qualité. La conductivité 

équivalente obtenue par cette méthode diffère de 15% de celle obtenue par la méthode flash. 
 

 

 

Figure 2.3 : Schéma de principe de la méthode « flash » 
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Nous voyons donc que deux méthodes de caractérisation différentes donnent des 

conductivités équivalentes égales à 15% prés.  

 

A partir de la conductivité apparente du milieu, on peut obtenir la conductivité effective du 

solide en inversant les modèles théoriques de la littérature à savoir celui de Robert et Tobias 

[Robert, 1969] et de Zehner et Schlünder [Zehner, 1970].  

 

 

2.1.3 – Comparaison des deux systèmes étudiés 

 

Cette partie est confidentielle. 

 
 

 

2.2 – Banc de caractérisation de la dispersion thermique gaz / grain 
 

 

Le dispositif expérimental est représenté sur la Figure 2.6. Il est décrit ci-dessous pour 

le système billes de verre / air. Pour le système support catalyseur / air, on utilise le même 

dispositif. 

Les billes de verre de diamètre d = 2 mm maintenues par deux plaques perforées en 
polyméthacrylate de méthyle (Altuglas


) remplissent une enceinte parallélépipédique en 

Altuglas

 dont les dimensions sont indiquées sur la Figure 2.7. Le choix de ces dimensions 

est dû à plusieurs contraintes. La boite doit être suffisamment longue dans la direction de 

l’écoulement (x) : le lit s’étend sur 12 cm en amont de la zone de mesure de manière à 
atténuer les différences locales de vitesse et de température. En aval de la zone de mesure, une 

distance de 10 cm est nécessaire pour éviter que les hétérogénéités de la sortie ne perturbent la 

mesure. Dans la direction y, la boite doit être assez large pour que la zone chauffée n’atteigne 
pas les parois et pour que le milieu puisse être considéré comme infini. Un fil métallique 

chauffant et 13 thermocouples sont insérés dans le lit. 

Figure 2.5 : Températures expérimentales et 
théoriques de la méthode « fil chaud » 

Figure 2.4 : Schéma de principe 
du fil chaud 
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2.2.1 - Milieu poreux 

 
Pour des raisons de simplicité de mise en œuvre, nous avons décidé de travailler avec des 

billes de verre monodisperses. Le choix de leur diamètre est soumis à deux contraintes 

antagonistes : 

Figure 2.6 : Dispositif expérimental 

Figure 2.7 : Dimensions du dispositif expérimental 
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• la première est liée aux méthodes de changement d’échelle utilisées pour établir le 

modèle : d << L où L est une longueur caractéristique du système. Nous prendrons L 
de l’ordre du décimètre. Le diamètre d doit donc être inférieur au centimètre. Il faut 
éviter que la zone à cœur soit soumise aux effets thermiques de paroi (cf. section 1.5) 

• la deuxième est de tester le modèle pour des nombres de Péclet élevés. Plus le 

diamètre des billes est grand, plus le nombre de Péclet est élevé à débit donné. 

 

Les billes choisies ont un diamètre de 2 mm. Nous avons également réalisé des expériences, 

en respectant encore la première contrainte, avec des billes de verre de 3 mm et des grains de 

support de catalyseur de 2 à 4 mm. 

 

2.2.1.1 - Mise en place du milieu poreux  
 

Afin de disposer d’un milieu granulaire homogène et consolidé, il faut disposer d’une 

procédure de construction du lit fixe. Nous nous sommes inspirés du système de chargement 

utilisé en milieu industriel par l’IFP. Les systèmes industriels utilisent des distributeurs 

tournants pour provoquer une pluie régulière de particules [Trambouze, 2002]. On peut 

obtenir un résultat similaire en chargeant les billes de verre à travers un plateau perforé au 

diamètre des billes (ici 2 mm). Le chargement est ainsi dense et présente les avantages 

suivants :  

 

• le tassement du lit n’évolue plus après son chargement initial 

• la répartition du fluide est plus homogène  

• l’écoulement est plus proche du type « piston » (en moyenne).  

 

Le chargement doit, en outre, répondre à des exigences qui « garantissent » cette bonne 

répartition des billes tout au long de celui-ci ; ces « conditions » nous ont été fournies par 

l’IFP. La procédure que nous détaillerons ci –dessous permet de réaliser un chargement dense 

et une quasi parfaite distribution des grains. 

Durant le chargement aux points 1/3 (à 13,3 cm de hauteur) 2/3 (à 26,6 cm de hauteur) et au 

final (à 40 cm de hauteur), la planéité de la surface de chargement doit être vérifiée. Puis on 

relève la masse (m) et la hauteur (h) totale chargée à chaque étape. Ces deux grandeurs 
doivent respecter deux critères. Ces derniers correspondent au contrôle de la quasi-constance 

de la masse volumique apparente de la portion construite du lit au cours du chargement : 

 

1er critère : un écart de 5% maximum est toléré entre deux mesures consécutives, ce 
qui signifie que : 

 

 ( ) ( )
2 3 2 3 1 3 1 3 totale totale 2 3 2 3

1 2

1 3 1 3 2 3 2 3

m h m h m h m h
c 5% et c 5%

m h m h

   − −   = 〈 = 〈
   (2.7) 

 

 

2ème critère : un écart de 2,5% maximum est toléré entre une mesure intermédiaire et la 
moyenne du lit :  
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( ) ( )
totale totale 1 3 1 3 totale totale 2 3 2 3

3 4

totale totale totale totale

m h m h m h m h
c 2,5% et c 2,5 %

m h m h

   − −   = 〈 = 〈
 (2.8) 

 

 
 

 

 

 

 

Si ces critères ne sont pas respectés le lit est déchargé et on recommence le chargement. La 

Figure 2.8 représente les différentes courbes de chargement correspondant aux différents 

milieux poreux utilisés. Ces chargements valident les critères demandés (équations 2.7 et 2.8). 

 

2.2.1.2 - Porosité 
 

Une fois le milieu poreux mis en place, il nous faut calculer la porosité du milieu pour 

pouvoir le caractériser. Le volume total de la boite est 3 30,1 0,2 0,4 8.10 mtV
−= × × = . La 

masse totale de billes versées dans la boite (cf. Figure 2.8) mlit est mesurée. Ces données nous 

permettent de calculer la porosité du milieu : 1 lit

lit s

m

V
ε

ρ
= − . On trouve une porosité de 0,365 

pour les billes de verre de 2 mm, de 0,366 pour les billes de verre de 3 mm et de 0,411 pour le 

support de catalyseur. 

 

 
2.2.2 - Mesure de température 

 

Toutes les températures sont mesurées par des thermocouples de type E. Le couple 

Chromel / Constantan a été choisi à cause de sa force électromotrice élevée (60 µV/K). Les 

fils ont un diamètre de 127 µm et sont recouverts d’une gaine isolante en Téflon. La soudure 
des thermocouples, d’environ 0,5 mm, est faite à partir d’un alliage contenant de l’argent et de 

l’étain. Les deux fils sont dénudés torsadés et soudés au fer, les extrémités sont ensuite 

coupées. On obtient ainsi une soudure très fine qui résiste à nos sollicitations mécaniques 

(Figure 2.9).  

 

Figure 2.8 : Courbes de chargement 
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Nous avons essayé de souder ces mêmes thermocouples par fusion acétylène-oxygène au 

chalumeau. La soudure obtenue a l’avantage de ne pas posséder de métal d’apport et d’être 

encore plus fine que précédemment mais présente l’inconvénient de ne pas être solide 

mécaniquement. La soudure à l’étain est donc la solution retenue ici. 

 

Ces thermocouples sont utilisés d’une façon classique (thermocouple simple) pour mesurer la 

différence température entre une jonction de référence et une jonction de mesure (la soudure). 

La jonction de référence est installée au centre d’une boite remplie de mousse isolante et d’un 

cube de cuivre de 5 cm de coté dont la température est mesurée par une sonde à résistance de 

platine de type Pt100 (Figure 2.10). La résistance de platine est de 100 Ω à T = 0°C et a une 
dépendance en température normalisé (norme IEC 751). Une résistance de 100 Ω est mise en 

série et ce circuit est raccordé à la carte d’acquisition. Les deux chutes de tension sont alors 

mesurées 

 

 

 
 

 
Figure 2.10 : Boite avec mousse isolante 

Figure 2.9 : Soudure de la jonction du thermocouple 
(grossissement = ×10) 
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L’erreur sur la mesure de la résistance de précision (± 10 mΩ) entraîne une erreur sur 
la température absolue d’environ 25 mK. La mesure des tensions introduit un bruit de mesure 

d’environ 20 mK. 

Les thermocouples sont ensuite étalonnés classiquement grâce à un bain-marie. L’erreur 

obtenue est du même ordre de grandeur : 1%.  

Le temps de réponse de ces thermocouples a été évalué par T. Metzger par simulation et par 

l’expérience. Ce temps de réponse est de 15 ms, ce qui est bien inférieur au temps 

caractéristique de montée en température qui est de quelques secondes.  

 

Il y a 13 thermocouples au sein du lit, 1 thermocouple à l’entrée du milieu poreux et 1 

thermocouple en sortie (dans la conduite). La Figure 2.11 montre les positions de ces 

thermocouples. 

 

 
 

 

 

 

Les thermocouples 12 et 13 permettent de vérifier la stabilité de la température d’entrée et 

servent également comme température de référence pour soustraire le bruit de mesure. Les 

thermocouples 8 et 11 permettent de vérifier que le flux de chaleur n’atteint pas les parois. 

Les soudures chaudes des thermocouples sont placées dans le plan de symétrie xy. 
L’écoulement d’air est descendant. 

 

Les positions des thermocouples (xi, yi) données ici sont les positions nominales. Les positions 
exactes ne sont évidemment pas connues car le remplissage du lit a pu modifier ces positions. 

 

 

2.2.3 - Chauffage et mesure de la puissance de chauffage 

 

La source de chaleur est assurée par un fil de KANTHAL D
®
,
 
 un alliage peu 

conducteur (Cr-Al-Fe) dont la résistivité électrique est 61,35.10 meρ −= Ω . Le fil a un 

diamètre de 260 µm, d’où une résistance électrique linéique de 25,1 Ω/m. Il est isolé 

Figure 2.11 : Positions des thermocouples 
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électriquement par une couche de « polyestérimide » d’environ 5 µm d’épaisseur. Le fil de 

chauffage mesure 17,9 cm et est soudé aux connexions électriques en dehors de la boite. On 

utilise une alimentation stabilisée continue de 120 V de tension maximale et de 10 A de 

courant maximal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Les différentes tensions et intensités de la Figure 2.12 sont calculées d’après les équations 

(2.9) et (2.10) : 
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 ′= +
 + + 

 
′= +  + 

                                            (2.10) 

 

 

 

Pendant les expériences, la puissance de chauffage Φ (c’est à dire filQ l× )est 

enregistrée en continu pour identifier l’instant du début et la durée du chauffage ainsi que 

pour vérifier le niveau constant de celui-ci . Elle se calcule à partir de la mesure de deux 

tensions (Us et U1), comme indiqué sur la Figure 2.8. Pour obtenir le courant électrique, une 

carte d’acquisition (PCI-6035
E
 de National Instrument

TM
, 16 bits) mesure la tension Us à 

travers un shunt Rs = 5 mΩ. La tension électrique du chauffage est mesurée à travers un 
diviseur de tension, branché en parallèle sur le fil chauffant. Les deux résistances du diviseur 

R1 (3,3 kΩ)et R2 (33 kΩ) ont été choisies grandes par rapport à la résistance chauffante (Rch = 

5,35 Ω) et petites comparées à la résistance de la carte d’acquisition (Rc = 5 MΩ).  La carte 

 

 

Figure 2.12 : Mesure de la puissance électrique du fil chauffant 
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d’acquisition mesure la tension partielle U1 sans amplification et avec une bonne précision. La 

mesure de la puissance linéique Q devrait avoir une incertitude d’environ 1%. 
 

2.2.4 - Approvisionnement en air 

 

Dans une première configuration expérimentale, l’air est aspiré directement dans la 

pièce où se situe le lit de billes de verre par un ventilateur situé en aval. La conduite d’amenée 

d’air a un diamètre de 80 mm (Figure 2.13.a). Les premiers résultats (Figure 2.14.a) ne sont 

pas satisfaisants, le bruit est important et les fluctuations de température sont de l’ordre de 0,5 

K. Ceci n’est pas acceptable puisque nous travaillons avec des différences de température de 1 

Kelvin et le modèle ne peut pas reproduire ces fluctuations. 

 

Nous avons donc amélioré le système en ajoutant un divergent au-dessus du lit et en prélevant 

l’air dans une pièce de volume plus important éloignée du ventilateur et du milieu poreux 

(Figure 2.13.b). De plus, pour faire varier la vitesse, nous avons installé un système de deux 

vannes (soupapes à siège oblique) dont une en court circuit en amont du ventilateur. 
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Après la modification apportée, le signal est bien meilleur (Figure 2.14 b). Ainsi, le 

signal du thermocouple d’entrée dans le lit (thermocouple 14) très bruité avant modification 

(fluctuations de l’ordre de 0,5 K) est maintenant lissé et présente des fluctuations de l’ordre de 

0,001 K. Les thermogrammes sont désormais exploitables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14.a : Températures expérimentales avant modification pour Pe ≈ 30 

a) 

Figure 2.13 : Dispositif expérimental avant modification (a) et après modification (b) 

 

a) 

b) 
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� Premier ventilateur (1ère série) 
 

Le ventilateur utilisé ici est un ventilateur radial (MT 90 L2-Delta-Neu). 

La vitesse maximale u que l’on peut atteindre grâce à ce ventilateur est de l’ordre de 0,5 m.s-1 
(limitation due au rendement du ventilateur). 

La vitesse, tout d’abord, mesurée à l’aide d’un tube de Pitot sur la conduite aval, dont la 

mesure s’est révélée peu précise, a été par la suite mesurée grâce à un manomètre à flotteur 

(débitmètre) pour des vitesses inférieures à 0,2 m.s
-1
. Nous n’avons plus utilisé par la suite ce 

manomètre car il générait de trop fortes pertes de charge qui limitaient la vitesse à 0,2 m.s
-1
 

contre 0,4 m.s
-1
 précédemment. 

Nous n’avons donc utilisé aucun système de mesure pour des vitesses supérieures à 0,2 m.s
-1
 

dans le milieu poreux. Pour ces mesures, nous avons décidé de nous reposer sur les valeurs 

estimées par l’inversion des thermogrammes car aucun des débitmètres commerciaux ne nous 

permettait d’atteindre une précision équivalente dans la gamme de débits réalisables avec 

notre installation. 

 

� Deuxième ventilateur (2ème série) 
 
Nous avons remédié à la limitation en débit du ventilateur, en faisant l’acquisition d’un 

deuxième ventilateur plus performant (Figure 2.15). Il s’agit d’un ventilateur radial 42-0,25 

(Delta-Neu) d’une puissance de 1,5 kW soit 3000 tr/min. Ce ventilateur est muni d’un 

régulateur de vitesse qui permet de supprimer le système de dérivation en aval du lit. 

 

 

b) 

Figure 2.14.b : Températures expérimentales après modification pour Pe ≈ 30 
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2.2.5 - Mesure de la vitesse 

 

Le circuit d’air muni du deuxième ventilateur a été équipé d’un anémomètre à fil 

chaud. Celui-ci est portatif et digital (AM 4204) et installé à 2 m de la sortie du lit sur la 

conduite d’évacuation en PVC (diamètre intérieur 80 mm). Le fil chaud utilisé est une sonde à 

fil simple. Pour ce type de sonde, on fait en sorte que la vitesse soit proche de la normale au 

fil. On suppose en général que la seule composante de vitesse moyenne est xvv=  et 0== zy vv . 

Le fil est soudé à 2 broches en forme de fourche. Ces deux broches sont elles-mêmes fixées 

dans un support (Figure 2.16). Le fil est parcouru par un courant constant élevant sa 

température. L'élément de mesure est chauffé en continu. 
 
L’anémomètre utilisé est muni d’une sonde télescopique. Nous pouvons ainsi balayer la 

hauteur de la conduite pour vérifier l’uniformité de la vitesse. Les profils de vitesse mesurés, 

sont plats (Figure 2.18). La vitesse est donc bien uniforme dans la section.  

 

La plage de mesure de l’anémomètre est de 0,2 à 20 m.s
-1
 et ce dernier permet d’afficher 

également la température du gaz (de 0 à 50°C). La résolution est de 0,1 m.s
-1
. Le fil chaud 

indique la vitesse instantanée ponctuelle, vitesse qui n’est donc pas enregistrée en continu lors 

de la manipulation. Le cycle de la mesure est de 0,8 s.  

 

Le bon fonctionnement du fil chaud a été vérifié grâce à un étalonnage effectué à l’aide d’un 

autre fil chaud Velocicalc (tolérance de ± 3%) lui-même étalonné dans un de tunnel de 

calibration à l’INRS. L’erreur relative sur la mesure est représentée en Figure 2.17. La 

tolérance est de ± 10% de la valeur lue. On remarque cependant que le fil présente une dérive 

importante pour des vitesses allant de 3 à 5 m.s
-1
. 

La vitesse obtenue est convertie en vitesse de Darcy qui est une moyenne sur toute la section 

du lit : 

 

conduite

D

lit

x

s
u v

s
=                                                             (2.11)  

 

L’erreur sur les cotés ou le diamètre des deux sections est de l’ordre du millimètre. L’erreur 

maximale possible est donc de 14% sur la vitesse de Darcy. De plus, la vitesse de Darcy dans 

Figure 2.15 : Ventilateur radial Figure 2.16 : Fil chaud simple 

Sortie de l’air 

Entrée de l’air : 

raccordée à la 

conduite 
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le cœur du lit est inférieure à la valeur moyenne du fait de l’effet de paroi. Cet effet engendre 

une erreur supplémentaire d’environ 2%. 

 

 

  

 

 

 

 

La mesure de vitesse se fait avant de déclencher le chauffage et une deuxième mesure est faite 

en fin de manipulation. 

 

 

2.2.6 - Protocole de mesure  

 

L’obtention de thermogrammes exploitables (réponses en température à une excitation 

en échelon temporel du chauffage) nécessite une procédure expérimentale spécifique.  

Le logiciel LABVIEW
®
 a été programmé pour gérer l’acquisition des données. Les 

températures des 15 thermocouples et la puissance de chauffage sont enregistrées en continu. 

Cette acquisition se fait à une fréquence de 8 points par seconde.  

Pour chaque expérience, une phase préparatoire est nécessaire. Le niveau de la puissance de 

chauffage est réglé pour  que les thermocouples mesurent une augmentation de température de 

1 à 2 K. Les mesures sont faites tôt le matin pour éviter toute variation importante de 

température de l’air ambiant. Avant toute acquisition de données, il est indispensable de 

mettre en marche le ventilateur au moins une heure à l’avance, afin d’obtenir un équilibre 

thermique satisfaisant (l’air ambiant est ainsi brassé). Lorsque toutes les températures sont 

stationnaires et égales, nous commençons l’acquisition pendant environ 30 secondes avant de 

déclencher le chauffage. 

 

 

Figure2.17 : Erreur relative de l’anémomètre 
à fil chaud 

Figure 2.18 : Profil de vitesse dans la conduite 
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Chapitre 3 : Modélisation et conception  

d’expérience 

 

 
Ce troisième chapitre a pour objet de modéliser la dispersion thermique dans notre 

banc et de mettre en place les outils permettent de caractériser le milieu. Tout d’abord, nous 

allons expliciter la modélisation utilisée au cœur du milieu granulaire et une étude des 

sensibilités des paramètres sera ensuite effectuée. Puis nous détaillerons la méthode 

d’estimation utilisée et montrerons des simulations d’inversion sur des mesures simulées. 

Enfin, nous étudierons l’effet d’un éventuel déséquilibre thermique et ferons une analyse 

dimensionnelle du problème pour présenter les résultats des estimations sous la forme de 

corrélations bâties sur des groupements adimensionnels pertinents. 

 

3.1 - Modélisation à cœur et sensibilités 
 

 

3.1.1 - Equation de dispersion thermique 
 

L’application du modèle à une température nécessite l’introduction de la définition de 

la température moyenne enthalpique T  du milieu granulaire : 

 

( ) ( ) ( )( ) sspffptp TcTcTc ρερερ −+= 1                              (3.1) 

 

avec fT  et sT  les températures moyennes du fluide et du solide sur leurs volumes 

respectifs et ( )
tpcρ  la chaleur volumique totale calculée par une loi de mélange :  

 

( ) ( ) ( ) ( )
spfptp ccc ρερερ −+= 1                                     (3.2) 

 

où ε est la porosité, c’est à dire la fraction volumique de la phase fluide. 
 

Cette température moyenne évolue selon l’équation de dispersion : 

 

( ) ( ) ( ) ( ). . ,p pt f

T
c T c T s t

t
ρ ρ

∂
= ∇ ∇ − ∇ +

∂
λλλλ D

u r                       (3.3) 

avec ( ), ,x y z=r . 

( ),s tr  est une source volumique ( puissance thermique par unité de volume) dissipée dans le 

milieu granulaire homogénéisé. Dans le cas général, c’est une fonction de l’espace r et du 

temps t. λλλλ est ici le tenseur de dispersion thermique et uD la vitesse de Darcy. 
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Dans le cas d’un milieu granulaire isotrope et homogène, de porosité externe ε, traversé par 
un écoulement  de vitesse uD selon l’axe Ox et contenant une source, le modèle à une 
température s’écrit : 

 

( ) ( )
2 2 2

2 2 2p x y z p Dt f

T T T T T
c c u s

t x y z x
ρ λ λ λ ρ ∂ ∂ ∂ ∂ ∂= + + − + ∂ ∂ ∂ ∂ ∂ 

           (3.4) 

 

où T est la température moyenne enthalpique définie par l’équation (3.1) pour laquelle nous 
avons enlevé les crochets pour simplifier la notation. 

 

Une transformation exponentielle telle que (avec ( ), ,x y z=r ) : 

 

( ) ( ) ( ), , ,T t F t f t=r r r                                                        (3.5) 

 

 

avec ( ), ax btf t e −=r                                                        (3.6) 

 

où 
( )
2

p Df

x

c u
a

ρ

λ
=  et 

( )
( )

2
2

4

p Df

p xt

c u
b

c

ρ

ρ λ
= . 

 

permet d’obtenir l’équation suivante : 

 

( )
2 2 2

2 2 2p x y zt

F F F F
c S

t x y z
ρ λ λ λ∂ ∂ ∂ ∂= + + +

∂ ∂ ∂ ∂
                              (3.7) 

 

avec le terme source 
f

s
S = . Dans l’équation (3.11) le terme convectif n’apparaît plus. 

 

Cette fonction F peut être ici considérée comme une fonctionnelle c’est à dire qu’elle dépend 
de l’excitation ( ),s tr . Nous écrirons donc dorénavant ( )( ), ; ,F t s tr r . 

Pour un milieu infini avec une condition limite ( ) 0F → ∞ =r , une condition initiale 

( ), 0 0F t = =r , et une source, qui est une impulsion de Dirac spatiale et temporelle 

( ) ( )' 's t tδ δ δ= − −r r , la fonction de Green du problème est donnée par :  

 

 

( ) ( )
( )

( ) ( ) ( )

( )

2 2 2

4

3 3 3

1
, ; , / ,

8

x y z

x x y y z z

B t t

x y z

F r t s G t t e
B t t

λ λ λ

δ
λ λ λ π

′ ′ ′− − −
+ +

−
′−′ ′= =

′−
r r   (3.8)  

 

avec ( )
1

p t

B
cρ

=  
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La fonction de Green G permet de calculer la solution de l’équation (3.3) pour n’importe 
quelle source par l’intégration suivante : 

 

( ) ( ) ( )( ) ( ) ( )
3

3

0

, , , ; , , / , , d d

t

ax bt B s
T t f t F t s t e G t t t t

f
−

ℜ

′ ′ ′ ′ ′ ′= = ∫ ∫r r r r r r r r         

(3.9) 

 

 

3.1.2 - Réponse à une source linéique perpendiculaire à l’écoulement 

 

Une source linéique perpendiculaire à l’écoulement moyen, parallèle à l’axe Oz 
(Figure 3.1) est décrite par la fonction : 

 

( ) ( ) ( )0 0s Q t x yΗ δ δ′ ′= − −                                    (3.10) 

 

où Q (W.m-1) est la densité linéique de puissance et δ (m-1) l’impulsion de Dirac spatiale et 
( )tΗ  la fonction de Heaviside temporelle (échelon). 

 

 
 

 

 

 

Compte tenu de la forme du terme source, les variations de la température selon l’axe Oz 

seront nulles. Nous supposons le milieu en équilibre thermique initial ( ) 0, 0T t T= =r . La 

variation de température (réponse en température) 0T T T∆ = −  est donnée par l’équation 

(3.11) c’est à dire :  

 

( )
( ) ( )( )

( )

2 2 2 2
2 2 1

4 162

0

d
, ,

4

p Df p Dp D ff

p x x y xtx

c u t c uc u x x y
c

x y

Q
T x y t e e

ρ ρρ
θρ λ λ λ λ θλ θ

θπ λ λ

 
− +  −
 
 ∆ = ∫         (3.11) 

 

Il est possible d’obtenir cette solution dans l’espace de Laplace et de procéder ensuite à une 

inversion numérique de la transformée de Laplace [Gradshteyn, 1980] : 

Figure 3.1 : position de la source de chaleur 

uD 
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( )

( )

( ) ( )
( )
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 
   ∆ = + +        
 

%  

(3.12) 

 

où K0 est la fonction de Bessel modifiée de deuxième espèce d’ordre 0 et T%  La transformée 
de Laplace de la température. 

 

Ce sont ces expressions analytiques (équation 3.11 ou 3.12) qui vont être utilisées comme 

modèle pour estimer les différents paramètres λx, λy, uD, …du modèle, à partir des mesures de 
température. 

 

 

Nous allons examiner les réponses théoriques en température du système air / billes de 

verre pour différentes vitesses ( Du u= ) et les comparer au système eau / billes de verre étudié 

par T. Metzger. Les propriétés thermophysiques des fluides, du verre et des milieux 

équivalents à 20°C sont rappelées dans le Tableau 3.1. 

 

 

 λλλλ (W.m-1
.K

-1
) (ρρρρcp) (J.K-1

.m
-3
) a (m

2
.s
-1
) 

air 0,026 1200 2.10
-5 

eau 0,604 4170.10
3 

1,45. 10
-7
 

verre 1 2,08 .10
6
 4,81.10

-7 

 

 air / billes de verre eau / billes de verre 

(ρρρρcp)t (J.K-1.m-3) 1,32.10
6 

2,84.10
6 

εεεε 0,365 0,365 

 

Tableaux 3.1 : Propriétés thermophysiques des différentes phases a 20°C  et paramètres 
nominaux des milieux granulaires 

 

Le nombre de Péclet utilisé est donné par : faduPe=  avec d = 2 mm, le diamètre des billes 

monodisperses et ( )
fpff ca ρλ= , la diffusivité. Le Tableau 3.2 donne les différents 

paramètres qui vont être utilises pour les simulations. Les valeurs numériques des coefficients 

de dispersion thermique ont été calculées à partir des corrélations de Metzger [Metzger, 2002] 

établies pour le couple eau / billes de verre. Les valeurs de la puissance linéique Q ont été 
choisies pour obtenir des échauffements de l’ordre de 1 à 2 K. 



Chapitre 3 : Modélisation et conception d’expérience 

 

 63 

 

 air eau 

u (m.s
-1
) 9,7 .10

-2
 9,7 .10

-1
 0,655.10

-3 
6,55.10

-3 

Pe 9,06 90,6 9,06 90,6 

λλλλx (W.m-1
.K

-1
) 0,26 2,6 2,4 60 

λλλλy (W.m-1
.K

-1
) 0,19 0,28 1 3 

Q (W.m
-1
) 7,5 21,45 70 300 

 

 
 

 

Pour simuler au mieux l’acquisition des données expérimentales avec des sondes de 

température, on représente sur les Figures 3.2 et 3.3, l’évolution temporelle de la température 

∆T, à trois distances x de la source linéique pour l’air (thermocouples 2, 4 et 6 de la Figure 
2.11) pour des mesures sur axe (y = 0) et hors axe (y = 2,5 mm). Nous expliquerons plus loin 
dans la même section la raison de cet encadrement. 

 

Naturellement, le signal arrive le plus tôt à l’endroit le plus proche de la source. Lorsqu’on 

s’éloigne de la source, la montée devient de moins en moins abrupte à cause de la dispersion 

longitudinale et le niveau final de température décroît à cause de la dispersion transversale. 

 

Les puissances linéiques dissipées Q ont été calculées de telle manière que les niveaux de 
température finaux sur l’axe soient pratiquement les mêmes pour les deux fluides. 

Remarquons que les échelles des temps diffèrent d’un facteur 10 pour les deux fluides sur ces 

figures réalisées pour un même nombre de Péclet.  

 

Le temps de montée en température est dix fois plus important dans le cas de l’air, ce 

qui impliquera un temps de manipulation dix fois plus long. Ceci correspond certainement à 

un moins bon couplage fluide / solide dans le cas de l’air par rapport à celui de l’eau. Ce 

facteur 10 est facilement explicable.  

En effet, on peut à partir des équations (3.3) ou (3.4) faire apparaître une vitesse de 

déplacement convective. Il suffit de diviser ces deux équations par la chaleur massique totale 

( )p t
cρ . On trouve ainsi une équation de convection diffusion dans un fluide pur anisotrope : 

 

( )
2 2 2

2 2 2x y z h

p t

T T T T T s
a a a v

t x y z x cρ
 ∂ ∂ ∂ ∂ ∂= + + − + ∂ ∂ ∂ ∂ ∂ 

             (3.13) 

 

On y voit apparaître une nouvelle vitesse « enthalpique » uniforme hv définit par : 

 

( )
( )

p f

h D

p t

c
v u

c

ρ

ρ
=                                                          (3.14) 

et une diffusivité équivalente : 

 

( )
,

,

x you z

x you z

p t

a
c

λ
ρ

=                                                        (3.15) 

Tableau 3.2 : Vitesses et paramètres correspondant aux cas tests 
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Le rapport de ces vitesses, évalué pour les systèmes eau / verre et air/verre, pour un même 

nombre de Péclet, vaut alors : 

 

( )

( )

( )
( )

/

/

10
ph eau t air verreeau

airh air p t eau verre

cv

v c

ρλ
λ ρ

= ≅                                        (3.16) 

 

On retrouve donc bien le facteur 10 existant entre les temps de réponse des deux systèmes 

pour un nombre de Péclet donné. 

 

 

Sur l’axe (y = 0), lorsqu’on s’éloigne de la source, la montée est plus abrupte dans le 
cas de l’eau pour un niveau final identique. 

 

Hors axe (y = 2,5 mm), on s’aperçoit que les niveaux finaux ne sont pas identiques, 
l’élévation de température de l’air est plus importante que celle de l’eau. 

 

La Figure 3.3 montre la variation transverse de température pour deux nombres de 

Péclet différents à un temps infini. On constate que l’étalement latéral est plus faible pour le 

nombre de Péclet le plus grand. Par ailleurs, cet effet est plus important pour l’eau que pour 

l’air. Ceci laisse présager que la détermination du coefficient de dispersion transverse, qui 

était très difficile dans le cas de l’eau, sera probablement plus aisée dans le cas de l’air. 

 

Toutes ces différences de comportement entre les deux systèmes proviennent du fait 

qu’à Péclet égal les coefficients de dispersion sont nettement plus importants dans le cas de 

l’eau que de celui de l’air. Ceci est valable si les corrélations de T. Metzger établies pour l’eau 

sont bien transposables à un écoulement d’air. Remarquons que les valeurs des coefficients de 

dispersion obtenues à partir des corrélations (équations (4.6) et (4.12) au chapitre 4) que nous 

avons établies expérimentalement pour le système air / billes de verre sont λx = 0,33 et λy = 

0,2 pour Pe = 9,06 et λx = 3,9 et λy = 0,42 pour Pe = 90,6, ce qui ne change pas 
fondamentalement les observations précédentes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 : Evolution temporelle de la température sur axe et hors axe à Pe =9,06 
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3.1.3 - Etude de sensibilité 

 

Un des objectifs de ce travail est de déterminer les coefficients de dispersion 

thermique par estimation de paramètres à partir de thermogrammes expérimentaux. L’outil 

fondamental permettant de savoir si, à partir des mesures a priori bruitées et d’un modèle, il 
est possible d’accéder à une estimation des paramètres de ce modèle, est l’étude des 

coefficients de sensibilité. Le coefficient de sensibilité, de la température T du modèle, à un 

paramètre βj de celui-ci est défini par : j

j

T
X

β
∂=
∂

. 

En pratique si l’on veut accéder aux valeurs de ces paramètres, il faut que les coefficients de 

sensibilité aient une valeur suffisante et ne soient pas linéairement dépendants dans le temps 

(sensibilités décorrélées).  

Pour pouvoir comparer des coefficients de sensibilité qui n’ont pas la même unité, on utilise 

des sensibilités réduites j

j

Tβ
β

∂
∂

 qui évaluent une variation absolue du signal de température 

Tδ  causée par une variation relative du paramètre 
j

j

δβ
β
. 

 

Remarquons ici qu’il nous est absolument nécessaire d’estimer non seulement λx et λy 

mais aussi la vitesse de Darcy uD (en cœur de lit, loin des parois) et également les positions en 

x et en y des thermocouples. Ceux-ci vont nécessairement différer de leurs valeurs nominales 
lors de la mise en place du lit granulaire. Nous allons donc travailler avec 5 coefficients de 

sensibilités. 

On peut montrer facilement que la sensibilité à l’ordonnée y est nulle sur l’axe : l’équation 
(3.11) fait intervenir y2. Il est donc mathématiquement impossible d’estimer ces 5 paramètres 
sur l’axe. C’est pour cette raison que nous effectuons cette étude de sensibilité avec un 

 

Figure 3.3 : Champs de température en aval d’une source linéaire en échelon temporel pour différents 
Pe à des distances différentes. 
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décalage y = 2,5 mm. Cette valeur de 2,5 mm correspond à un compromis entre sensibilité 
non nulle et signal de niveau suffisant (Figure 3.3). Les évolutions temporelles des différentes 

sensibilités sont représentées sur la Figure 3.4.a. 

 

La sensibilité à λx est la plus faible. Elle est cependant suffisante en valeur absolue 

(extrema supérieur à 0,1°C). Pour les temps plus longs cette sensibilité devient presque nulle.  

La sensibilité à λy est un peu plus grande et reste, contrairement à λx, élevée en régime 

stationnaire. La sensibilité la plus grande est celle liée à la vitesse autant en zone transitoire 

qu’en régime stationnaire. 

Pour représenter les sensibilités aux positions x et y, il a fallu choisir une grandeur 
caractéristique : L = 1 cm. La position en x a une plus grande influence que la position en y 
sur la réponse en température aux temps courts.  

On peut enfin remarquer que les sensibilités à λy et à y sont pratiquement proportionnelles. Il 
en est de même pour les sensibilités à u et à x, mais seulement pour les temps courts. Ceci 
souligne l’évidente nécessité d’introduire une information complémentaire sur les positions 

des thermocouples si l’on veut estimer proprement les paramètres qui nous intéressent (λx, λy 
et u) 
 

Si l’on compare (Figure 3.4.a et b) les sensibilités de l’eau et de l’air dans les mêmes 

conditions (même nombre de Péclet, mêmes positions x et y), on constate qu’elles varient de 
manière analogue. Il est intéressant de remarquer que la sensibilité à λy est supérieure à celle à 

y dans le cas de l’air alors que c’est l’inverse dans le cas de l’eau. Ceci laisse présager une 
estimation plus facile de λy dans le cas de l’air, l’incertitude sur la position en y étant moins 
pénalisante dans ce cas. 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3.4 : Sensibilités relatives hors axe à Pe = 9,06, a) dans le cas de l’air (Q = 7,5 W.m-1) et b) dans le 
cas de l’eau (Q = 70 W.m-1) 

a) b) 
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3.2 – Estimation des paramètres 
 

 

 Nous utiliserons ici les deux modes d’estimation déjà utilisés par T. Metzger : le mode α4 et 
α5.  
 

3.2.1 - Le mode αααα4 
 

La méthode classique pour déterminer des paramètres consiste à minimiser la somme des 

écarts entre un modèle et les mesures expérimentales : 

 

( ) ( )( ) ( )( )exp exp
T

S T T T Tβ β β= − −  avec 
T

x y uβ λ λ =                       (3.17) 

 

avec β le vecteur paramètre, Texp
 et T étant les vecteurs colonnes des mesures (thermocouples) 

et des sorties du modèle (3.11) aux différents instants. 

Le mode α4, qui permet de prendre en compte une incertitude sur l’implantation en x des 
thermocouples, utilise la somme des carrés où les signaux sont normés par leurs écarts types 

respectifs. On ajoute à la somme des moindres carrés classique un terme prenant en compte 

l’incertitude sur la position en x des thermocouples. La somme à minimiser devient donc : 
 

( ) ( )( ) ( )2 2
exp

4 42 2

1 1
α nom

ik ik i i
i k iT pos

S T T x xα
σ σ

′ = − + −∑∑ ∑                        (3.18) 

 

avec 4 x y = [       ]Tiu xα λ λ  

Le mode α4, qui correspond à un estimateur Gauss Markov sur un signal groupant 
températures expérimentales et positions nominales permet donc d’estimer quatre types de 

paramètres simultanément : la vitesse, les deux coefficients de dispersion thermique et la 

position des thermocouples en xi. 
Cette méthode ne permet pas de prendre en compte l’incertitude sur les positions yi. 
 

Le mode α4 est utilisé avec des mesures sur axe c’est à dire en y = 0 pour lesquelles la 
sensibilité à y est nulle.  
Il a l’inconvénient de ne pas prendre en compte les incertitudes en deux dimensions sur les 

positions x et y, ce qui engendre des résidus généralement signés. 
 

 

3.2.2 - Le mode αααα5 
 

Le mode α5 nous permet d’estimer cinq types de paramètres : la vitesse, les coefficients de 

dispersion thermique transversal et longitudinal, les positions xi et yi. 
Le principe de ce mode d’estimation est de placer les sondes hors axe pour que le signal soit 

sensible à y. Nous choisissons de prendre un décalage nominal par rapport à l’axe de y = 2,5 
mm. Par souci de cohérence, nous prendrons dans notre cas la même distance nominale. 

Ce mode repose sur le même principe que le mode α4 : il rajoute à la somme à minimiser 
l’incertitude sur la position en y des thermocouples. La somme à minimiser devient : 
 

( ) ( )( ) ( ) ( )2 2 2
exp

5 52 2 2

1 1 1
α nom nom

ik ik i i i i
i k i iT pos pos

S T T x x y yα
σ σ σ

′ = − + − + −∑∑ ∑ ∑       (3.19) 
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avec 5 x y = [        ]Ti iu x yα λ λ  

 

posσ  est l’écart type sur les positions et Tσ  est l’écart-type du bruit de mesure des 

températures. 

Nous connaissons l’écart type (σT = 0,02°C) du bruit sur les températures et nous avons pris 

un écart type égal à un rayon de bille (σpos = 1 mm) pour les positions. On peut montrer que la 

minimisation de cette somme (ici effectuée à l’aide de l’algorithme de Gauss-Newton), 

conduit à un estimateur de Gauss-Markov, de variance minimale, pour le vecteur paramètre. 

Metzger et al [Metzger, 2003 ; Metzger, 2004 ; Maillet, 2003] ont montré que les valeurs 
estimées des différents paramètres dépendent assez peu de σpos, dès que cet hyperparamètre 

dépasse une fraction de millimètre. Une valeur faible de σpos (inférieure au micromètre) 
conduit à de mauvais résidus en température avec des estimations en position proches des 

valeurs nominales ( nom
ii

nom
ii yyxx ≈≈ ˆ;ˆ ) ; des valeurs de σpos comprises entre le micromètre 

et quelques dixièmes de millimètres conduisent à une baisse des résidus et à une évolution des 

valeurs estimées des paramètres. A partir de σpos = 1 mm, les résidus sont bons et n’évoluent 
plus, tout comme les valeurs estimées des paramètres. Enfin pour σpos> 1 m, on se retrouve en 

pratique dans le cas des moindres carrés ordinaires sur les seules températures et l’algorithme 

d’inversion ne converge plus. 

 

 

3.3 - Inversion sur des mesures synthétiques 
 

 

Il est possible de réaliser des simulations de Monte Carlo [Beck, 1977]. On calcule ici 

les réponses théoriques de 6 thermocouples (thermocouples 2 à 7) qui sont bruitées 400 fois 

avec des séquences de bruit gaussien non corrélés (écart-type σT = 0,02 K) et l’on bruite 

également les positions nominales des thermocouples (écart-type σc = 1 mm). Ces mesures 

simulées sont inversées et la minimisation de la somme S’(α5) permet d’obtenir 400 
estimations de chacun des paramètres.  

Ces deux modes sont testés ici dans le cas de l’air. Les valeurs exactes des paramètres sont 

issues des résultats expérimentaux.  

Si 400 simulations de ce type sont réalisées avec ce type d’inversion, 400 estimations ( )ˆ n
jα  

sont réalisées pour le jème
 paramètre. Il est ainsi possible de réaliser une distribution statistique 

de chacun des paramètres (histogramme) et de calculer la dispersion (sj) de chaque estimation 
ainsi que le biais (bj) correspondant: 

 

( ) ( )
400 40022

( ) ( )

1 1

1 1
ˆ ˆ ˆ ˆ ˆand - with

400 400

n n
j j j j j j j j

n n

b sα α α α α α
= =

= − = =∑ ∑  

 

On montrera ici les simulations effectuées en mode α4 et en mode α5 Puis nous 
comparerons les résultats obtenus en mode α5 dans le cas air / billes de verre et eau / billes de 
verre. 

 

Sur les Figures 3.5.a et 3.5.b, les histogrammes sur des simulations d’estimation pour 

un nombre de Péclet égal à 35 sont présentés. Les histogrammes portent sur les deux 

coefficients de dispersion thermique, la vitesse et six positions des thermocouples 2 à 7 

(numérotés ici 1 à 6). Des simulations à nombre de Péclet beaucoup plus faible ont été 
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également réalisées. Elles traduisent les mêmes tendances même si l’écart est plus élevé pour 

le mode α4. 
Nous avons fait figurer sur le Tableau 3.4 les biais et les écarts-types des coefficients estimés 

rapportés à leur valeur exacte.  

 

 

  Valeur 

exacte jα  

Valeur 

estimée jα̂  (αααα4) 
Valeur 

estimée jα̂  (αααα5) 
 λx (W.K-1.m-1) 0,962 1,008 ± 0,009 0,984 ± 0,008 

air λy (W.K-1.m-1) 0,256 0,251± 0,003 0,246 ± 0,003 

 u (m.s
-1
) 0,353 0,360 ± 0,004 0,355 ± 0,004 

 

 

 

Tableau 3.4 : Résultats de 400 simulations de Monte Carlo dans le cas billes de verre / air 

 

 

 

 

Figure 3.5.a : Histogrammes des simulations d’inversion de Monte Carlo en mode α4 et α5 pour Pe 
= 35  dans le cas billes de verre / air. Les effectifs (nombres d’estimations simulées) sont portés en 
ordonnées 
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Les résultats du tableau ci-dessus montrent que le mode α5 a des avantages sur le 
mode α4.  
 

 En effet : 

 

� Pour λx : La dispersion des valeurs est identique pour les deux modes. La 

surestimation du coefficient est moindre pour le mode α5.  
 

� Pour λy : La dispersion des mesures est un peu plus forte en mode α5. Le coefficient 
est sous-estimé pour les deux modes. 

 

Figure 3.5.b : Histogrammes des simulations d’inversion de Monte Carlo en mode α4 et α5 pour Pe = 35  
dans le cas billes de verre / air. Les effectifs (nombres d’estimations simulées) sont portés en ordonnées 
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� Pour u : La dispersion des estimations est quasi identique dans les deux cas. Mais le 
mode α5 permet une surestimation plus faible de la vitesse. 

 

� Pour les positions : Le mode α5  permet une très bonne estimation des positions avec 
une légère surestimation de y, la dispersion des mesures est très faible. Le mode α4 
sous-estime légèrement les positions. Les positions des points de mesure sont estimées 

avec une erreur qui ne dépend pas en moyenne de la valeur de la vitesse. 

 

Des résultats similaires ont été trouvés pour l’eau entre les deux modes d’estimation. Nous 

allons donc ici nous concentrer uniquement sur l’estimation en mode α5. Ce mode 
d’estimation était de bonne qualité dans le cas de l’eau (sauf pour l’estimation du coefficient 

de dispersion transverse). Nous avons donc réalisé une comparaison des simulations 

d’inversion entre les deux fluides (Pe = 35 pour l’air et Pe = 86 pour l’eau). 
 

 

 paramètre (j) 

Valeur 

exacte 

 

jα  

Valeur 

estimée 

 

jα̂  

biais 

 

bj 

dispersion 
sj 

biais 

/dispersion 

 

 

jj sb /  

Erreur relative 

jjj sb α/)( +  

xλ  (W.K-1.m-1) 0.962 0.984 +0.022 0.008 275  % 3 % 

yλ  (W.K-1.m-1) 0.256 0.246 -0.010 0.003 336  % 5.2 % air 

u (m.s-1) 0.353 0.355 +0.002 0.004 50 % 1.7 % 

xλ  (W.K-1.m-1) 60 60.321 +0.321 1.009 32 % 2.2 % 

yλ  (W.K-1.m-1) 3 2.681 -0.329 0.310 106 % 21 % eau 

u (mm.s-1) 6.288 6.306 +0.018 0.033 55 % 0.8 % 

 

 

 

 

 L’estimation de λx  est de la même qualité dans le cas de l’air et dans le cas de l’eau avec 

une erreur relative inférieur à 3 % dans les deux cas: le biais est plus grand pour l’air mais il 

est compensé par une faible dispersion. De même l’estimation de la vitesse de Darcy est quasi 

identique dans les deux cas (l’erreur relative est en dessous de 2 %), la vitesse est bien 

identifiée. L’estimation de λy est biaisée avec des sous estimations des valeurs exactes dans 

les deux cas. L’erreur d’estimation est acceptable pour l’air (5 %) mais est très grande pour 

l’eau (21 %). Cette comparaison confirme la possibilité d’estimer certains paramètres du 

modèle à une température avec une bonne précision comme Metzger [Metzger, 2004] l’a 

montré. Elle a, en plus, l’avantage de montrer qu’avec de l’air nous estimerons également le 

coefficient de dispersion transverse. 

 

Une autre configuration d’excitation à deux sources (Annexe 1) a été étudiée pour voir si une 

amélioration des estimations du coefficient de dispersion transversal était possible pour l’air. 

Mais cette autre configuration s’est avérée être de même qualité que celle étudiée, nous 

l’avons donc abandonnée. 

 

 

Tableau 3.5 : Résultats d’estimation en mode α5 pour l’air et pour l’eau 
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3.4 - Effet du déséquilibre thermique 
 

 

 Le modèle à une température semble pouvoir être utilisé dans le cas de l’air. Nous nous 

sommes demandés lors des expérimentations s’il y avait une réelle différence entre la 

température du solide et la température du fluide. La température mesurée lors des 

expériences n’est pas la température moyenne du modèle à une température mais bien la 

température du fluide qui échange avec le solide car les soudures des thermocouples sont 

immergées dans l’air. 

Dans le cas d’un écoulement d’air, le temps de diffusion en phase fluide est très court et c’est 

donc le temps de diffusion dans la phase solide qui peut poser problème pour l’équilibre 

thermique. 

 
Pour essayer de quantifier un écart éventuel entre les températures des deux phases, on peut 

grâce à un modèle analytique conductif reconstituer les réponses en température moyenne et 

en température de chacune des deux phases (solide et fluide). 

 

 

Utilisation du modèle analytique : 
 

Le modèle analytique utilisé prend en compte la conduction transitoire à l’intérieur 

d’un élément de géométrie sphérique, ici le grain. Nous construisons ce modèle à l’aide de la 

méthode des quadripôles thermiques [Maillet et col., 2000, p. 104]. 

La température moyenne à l’intérieur d’un grain sphérique de rayon R, de conductivité λs, de 

chaleur volumique ( )p s
cρ  et de diffusivité ( )

s
s

p s

a
c

λ
ρ

= , chauffé uniformément dans son 

volume (source uniforme), est alors donnée par la relation matricielle exacte (quadripôle) :  

 

' '

' '

fS

fs

TA BT

C DQ Φ
    

=     
     

%%
                                                       (3.20) 

 

avec ( ) ( ) 21
4 , ds sphère

sphère

T t T t r r
V

π= ∫ r    et   ( ) ( ),fT t T t= r , 

avec A’ = 1, ( )p sphères
C c V pρ′ = , 34

3
sphèreV Rπ= , 

( )( )
2

'
3 coth 1

s
D

s s
=

−
, 1A D B C′ ′ ′ ′− =  et 

s

p
s R

a
=  

 

où Qs  représente la transformée de Laplace de la puissance générée uniformément dans le 

solide et φf  la transformée de Laplace du flux sortant du grain.  

 

Dans notre cas le grain est uniquement chauffé grâce au flux transmis par le fluide donc Qs = 
0 (Figure 3.6). 
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On a supposé ici que la diffusion de la chaleur était unidimensionnelle (radiale) et que la 

surface du grain était à la température moyenne Tf  du fluide (modèle à deux températures). 

fT
%  et sT%  représentent alors les transformées de Laplace des températures moyennes 

intrinsèques des deux phases, p étant la variable de Laplace. 
 
Grâce au quadripôle (équation 3.20), nous pouvons relier les températures moyennes du 

solide et du fluide : 

 

1

'
s fT T

D
=% %                                                                      (3.21) 

 

La température moyenne du modèle à une température s’écrit dans l’espace de Laplace : 

 

( )
( )

( ) ( )
( )

1p pf s
f s

p pt t

c c
T T T

c c

ρ ε ρ ε

ρ ρ

−
= +% % %                                         (3.22) 

 

Nous avons ici simplifié la notation en enlevant les symboles de prise de moyenne (< >) dans 
l’équation (3.22). 

 

La combinaison des équations (3.21) et (3.22) nous permet d’exprimer les températures 

moyennes des deux phases en fonction de la température moyenne T : 
 

 

 

( ) ( )
( ) ( ) ( )
, '

' 1

p t
f

p pf s

T p c D
T

D c c

ρ

ε ρ ρ ε
=

+ −

%
%

r
                                          (3.23) 

 

 

Figure 3.6 : grain chauffé par le fluide 
et modélisé 
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( ) ( )
( ) ( ) ( )

,

1

p t
s

p pf s

T p c
T

D c c

ρ

ε ρ ρ ε
=

′ + −

%
%

r
                                        (3.24) 

 

 

Il est donc possible de simuler les trois réponses (T, TS, Tf) à partir de la température 

moyenne calculée à partir de l’équation (3.12), c’est à dire à partir de la réponse en 

température en un point (x , y) à l’échelon d’excitation linéique d’intensité Q. 
 

Les trois évolutions de ces températures sont représentées dans le cas billes de verre / air pour 

un nombre de Péclet de 35 sur la Figure 3.7 (seuls sont représentés pour plus de lisibilité les 

thermogrammes à x = 4 cm et à x = 12 cm). Les paramètres utilisés - coefficients de 
dispersion et quantité de chaleur - correspondent aux valeurs expérimentales (cf. chapitre 4) et 

à Q = 10 W.m-1. 
 

 

Les trois courbes se superposent. La température du fluide est quasiment égale à la 

température du solide et à la température moyenne utilisée dans le modèle. La Figure 3.8 

montre la différence de température entre la température du fluide et la température du solide. 

Pour un échauffement d’approximativement 1 K, la différence maximum est de 2.10
-3
 K à x = 

4 cm, ce qui est très faible. La différence maximale de température se situe au temps de demi-

montée en température (approximativement 50 s pour x = 4 cm, 110 s pour x = 8 cm et 170 s 
pour x = 12 cm). Cette différence diminue ensuite et devient nulle en régime permanent.  

 

 

Des simulations ont été également effectuées pour voir dans quelles conditions cet 

écart serait significatif et nécessiterait l’utilisation d’un autre modèle. Nous avons ainsi fait 

diminuer la conductivité du solide. 

Il faudrait une conductivité de solide quasi-identique à celle de l’air pour atteindre des 

différences de température de l’ordre du dixième de Kelvin pour un même niveau Q 
d’excitation. La Figure 3.9 montre le cas où la conductivité du solide égale à celle de l’air (λs 
= 0,026 W.m

-1
.K
-1
). Les températures du solide et du fluide sont différentes lors du chauffage 

pour ensuite se confondre lorsqu’on atteint le régime permanent. Le matériau qui pourrait se 

rapprocher le plus de cette valeur de conductivité de 0,026 W.m
-1
.K
-1 
est la laine de verre (λs = 

0,034 W.m
-1
.K
-1
) ou plutôt les aérogels de silice dont la porosité nanoscropique donne 

naissance à un effet Knudsen (conduction dans un gaz raréfié). 
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Figure 3.7 : Températures théoriques du 
solide, du fluide et moyenne 

Figure 3.8 : Ecart de température entre la 
température du solide et la température du 
fluide 

 

Figure 3.9 : Températures du solide et du 
fluide pour λs = 0,026 W.m-1.k-1 
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On peut retrouver ces résultats en utilisant le modèle de Coats-Smith [Coats-Smith, 1964] 

(modèle à « deux températures). Ce modèle utilise deux équations, une équation pour la phase 

fluide : 

( ) ( ) ( ) ( )
2 2

2 2
, ,

f f f f

p xf yf f p fs f sf f

T T T T
c u c h a T T s x y t

t x x x
ε ρ λ λ ρ

∂ ∂ ∂ ∂
= + − − − +

∂ ∂ ∂ ∂
  (3.25) 

 

et une équation pour la phase solide qui est ici discontinue : 

 

( )( ) ( )1 s
p fs f ss

T
c ha T T

t
ε ρ ∂− = −

∂
                                       (3.26) 

 
h est le coefficient d’échange entre phases et fsa  désigne la surface spécifique par unité de 

volume du lit et est égale à 
( )6 1

fsa
d

ε−
= . 

 

Le coefficient d’échange h entre phases, qui n’est absolument pas un coefficient de transfert 
convectif, peut être calculé à partir de l’équation (3.20) pour Qs = 0 : 
 

( )f f sH T Tφ = −% % %                                                        (3.27) 

 

avec 
( ) ( )

( ) 2

coth 1

1 3 coth 1

p sphères
c V p s sC

H
D s s s

ρ −′
= =

′− − −
. 

 

On cherche un équivalent de H pour les faibles valeurs de p (régime quasi-permanent), en 
utilisant le développement limité : 

 

( )
2 4

6coth 1 quand 0
3 45

s s
s s O s s= + + + →                      (3.28) 

 

d’où    ( )( ) ( )( )2 2

02
15 1 1sH O s H O s

R

λ= + = +                               (3.29) 

 

Si l’on considère la transformée de la densité de flux à la paroi 
f

f

sphèreS

φ
ϕ =  avec 

24sphèreS Rπ= , le coefficient d’échange entre phases h apparaît directement : 

 

 

0 5 10s s

sphère

H
h

S R d

λ λ= = =                                                    (3.30) 

 

La réponse en température de la phase fluide pour une impulsion de Dirac est alors égale à : 
( )

( )
1 2

2
2 1 2

2 2 2
2

0

1

42

p Df

xf

f

c u x

p D

f

xf xf yfxf yf

c uQe x y
T K l

p

ρ

λ ρ

λ λ λπ λ λ

  
   = + +     

   
   

%                  (3.31) 
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avec ( ) ( )( ) ( )( )
2 1

1

fs
p pf s

p fss

a h
l p c c

c p a h
ε ρ ε ρ

ε ρ

 
 = + −

− +  
 

 

De même la réponse en température pour la phase fluide s’écrit : 

 

( )( )1

fs
s f

p fss

a h
T T

c p a hε ρ

 
 =

− +  

% %                                                  (3.32) 

 

 

En utilisant les expressions (3.25) et (3.26), nous retrouvons les résultats obtenus avec les 

équations (3.23) et (3.24) pour xf xλ λ=  et yf yλ λ= .  

 

Dans le cas de nos expériences, on peut considérer que les phases solide et fluide sont donc à 

l’équilibre thermique et que l’utilisation du modèle à une température est tout à fait légitime 

ici. 

 

 

3.5 - Analyse dimensionnelle de la dispersion thermique et formes 

pertinentes des corrélations  

 

 
Les valeurs des coefficients de dispersion qui entrent dans le modèle à une 

température (équation 3.4) dérivent des équations de fermeture du problème dont la solution 

peut être trouvée numériquement seulement si le milieu et son écoulement interne sont 

parfaitement connus. Il est donc nécessaire de connaître la structure du milieu, les propriétés 

thermophysiques des deux phases ainsi que la structure du champ de vitesse local.  

 

Pour un nombre très limité de cas une expression analytique peut être trouvée: tel est 

le cas pour le coefficient de dispersion longitudinal λx dans un milieu poreux périodique où la 
cellule unité correspond à un écoulement entièrement développé entre deux plaques parallèles 

[Moyne, 2000]. La structure interne des milieux poreux est généralement inconnue à l’échelle 

locale, ce qui rend la résolution des problèmes de fermeture difficile. Il faut dans ce cas 

considérer le milieu poreux comme un milieu stochastique dont la structure est connue 

seulement en termes de moments et de longueurs caractéristiques. 

C'est une autre approche qui sera suivie ici pour la construction des corrélations du 

transfert thermique. Ces corrélations ne porteront pas sur un coefficient h, comme pour 
l'écoulement dans les couches limites ou dans l'écoulement interne en conduite, mais sur les 

coefficients de dispersion thermique eux-mêmes. Afin de définir les paramètres 

adimensionnels qui expliquent la variation de ces coefficients, nous écrirons d'abord les deux 

équations du problème local de conduction-convection et du modèle à une température 

correspondant. Dans une deuxième étape, celles-ci seront écrites sous une forme sans 

dimension en utilisant des adimensionnements adaptés pour toutes les grandeurs, afin de faire 

apparaître de manière naturelle la structure des corrélations pour les coefficients de 

dispersion. 
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On fait l’hypothèse d’un fluide incompressible en écoulement laminaire traversant un 

milieu granulaire infini. Les propriétés thermophysiques des deux phases solide et fluide sont 

considérées comme constantes. On se place en convection forcée avec les dissipations 

visqueuses négligées et avec une source interne de chaleur s (W.m-3). On écrit les équations 
de conservation, de Navier Stokes et de l’énergie. On cherche une solution formelle du champ 

local de température suite à une excitation transitoire en partant de l’équilibre initial (on 

suppose que l’excitation n’affecte pas les limites du système). Les équations sont données 

pour la phase fluide fΩ  et la phase solide sΩ  : 

 

. 0v∇ =                       sur  fΩ                               (3.33a) 

2d 1
ˆ

d
f

f

v
p v

t
ν

ρ
= − ∇ + ∇               sur  fΩ                               (3.33b) 

( ) d
.

d

f

p f f ff

T
c T s

t
ρ λ= ∇ ∇ +          sur  fΩ                              (3.33c) 

( ) .
f

p s s ss

T
c T s

t
ρ λ

∂
= ∇ ∇ +

∂
            sur  sΩ                              (3.33d)  

 

où v désigne le vecteur local de vitesse, p̂  la pression motrice, ρf et νf  la masse volumique et 

la viscosité cinématique du fluide et sf et ss les sources volumiques de chaleur dans chacune 
des deux phases. Les conditions d’interface et les conditions initiales et limites sont : 

 

 

et - . .s f s s s f f sT T T n T nλ λ= ∇ = ∇  sur sf∂Ω    (3.33e) 

0 ets f s refT T T T− → →  quand → ∞r   (3.33f) 

à 0s f refT T T t= = =  pour Ω = fΩ U sΩ     (3.33g) 

 

où r est le vecteur position, ns est le vecteur local unité à l'interface solide / fluide (dirigé vers 

l'extérieur du solide), Tref est la température de référence qui est égale à la température 

(uniforme) initiale et à la température aux frontières du milieu infini. Naturellement, afin de 

fermer complètement le problème, il est nécessaire d'ajouter les conditions limites et initiales 

sur la pression et/ou la vitesse. La réduction des équations suivantes peut être faite en utilisant 

une échelle locale de longueur, ici le diamètre moyen d des pores ou des grains, une vitesse 
moyenne de référence v∞ , et une différence de température de référence refT∆ . Les nouvelles 

quantités sans dimension sont alors:  

 

 
* * * * 2ˆ ˆ/ ; / ; / ; / fr r d v v v t v t d p p vρ∞ ∞ ∞= = = =  

( )( )* *( ) / ;ref ref sou f sou f p reff
T T T T s d s c v Tρ ∞= − ∆ = ∆                       (3.34) 

 

Les équations (3.33) deviennent: 
 

* *. 0v∇ =       sur  *

fΩ                                                            (3.35a) 

*
* * *2 *

*

d 1
ˆ

d

v
p v

t Re
= −∇ + ∇   sur   *

fΩ                                                    (3.35b) 
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* *

* * * * * *
d 1

. .
d

f f
f f f

T T
v T T s

t t Re Pr

∂
= + ∆ = ∇ ∇ +

∂
  sur  *

fΩ                                    (3.35c) 

( )
( )

( )
( )

*
* * *

*

1
.

p pf fs s
s s

fp ps s

c cT
T s

t Re Pr c c

ρ ρλ
λρ ρ

∂ = ∇ ∇ +
∂

  sur *

sΩ                               (3.35d)  

* * * * *et - . .s
s f s s f s

f

T T T n T n
λ
λ

= ∇ = ∇   sur  *

sfΩ∂∂∂∂                                    (3.35e) 

* * *0 et 0s f sT T T− → →           *r → ∞                                           (3.35f) 
* * *0 à 0s fT T t= = =  avec *Ω = R3

= *

fΩ U *

sΩ    (3.35g) 

 

 

avec Red (= fdv ν/∞∞∞∞ ) et Pr ( )( )/p f ff
cρ ν λ=  les nombres de Reynolds et de Prandtl. La 

solution des équations (3.35) peut s’écrire alors sous la forme : 

 

( ) ( )( )* * * * * * * * * * * * *

* * *' 0 '

( , ) , ' , ' ; , , / , ( ' , ' ) d ( ' ) d 'loc d s f p p locs f
t r

T r t f r t r t Re Pr c c s r t V r tλ λ ρ ρ
∞

= ∈Ω
= ∫ ∫  

(3.36) 
 

où   * * * * * *et sif loc f fT T s s r= = ∈Ω  

et  * * * * * *sis loc s sT T et s s r= = ∈Ω  

 

Le volume réduit élémentaire est ici * 3d d /V V d= . 

 

L'équation (3.36) montre que la température réduite peut être calculée à l’aide d’une 

intégration sur l'espace et le temps du produit de la source de chaleur réduite et de la fonction 

locale, qui est la fonction de Green correspondante du système. Ceci provient du fait que le 

problème de mécanique des fluides(3.35 a-b avec ses conditions limites et initiales), non 

linéaire, peut être résolu en terme de champ réduit de vitesse, qui peut être considéré comme 

un coefficient non-uniforme dans le système linéaire d'équation de la chaleur (3.35 c à g).  

 

Dans notre cas, tous les coefficients thermophysiques sont constants, ce qui signifie 

que l'intégrale sur le temps peut devenir un produit de convolution (système invariable en 

temps). La définition de la température enthalpique moyenne du modèle à une température 

peut alors être écrite: 

 

( ) ( )

3

* * * * * *

* ,

( , ) ( ") ( " , ) d ( " )
( , )

ref
ref ref ref p

p t V r D

T d
T r  t T T T T c r T r t V r

c V r D
ρ

ρ
∆

= + ∆ = + ∫  

  (3.37) 

 

ou en utilisant l’équation (3.36) : 

( ) ( )
( )

3

* * * *

* * * * * * * *

* * * * *" , ' 0 '

( , ) ( ") " , ' , ' ;
( , )

( ' , ' ) d ( ' ) d ' d ( " )
loc

ref

ref p loc

p t r V r D t r

T d
T r t T c r f r t r t

c V r D

s r t V r t V r

ρ
ρ

∞

∈ = ∈ Ω

∆
= + ∫ ∫ ∫ ββββ
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(3.38) 

 

où ( ), , / , ( ) /( )d s f p s p fRe Pr c cλ λ ρ ρ=ββββ  est un vecteur regroupant les quatre paramètres qui 

sont des arguments de floc. En changeant l’ordre d’intégration dans (3.38), on obtient : 
 

( ) ( )
( )

3
* * * *

* * * * * * * *

* * * * *' 0 ' " ,

( , ) ( ") " , ' , ' ;
( ) ( , )

( ' , ' ) d ( " ) d ( ' ) d '
loc

ref ref p loc

p tt r r V r D

d
T r t T T c r f r t r t

c r V r D

s r t V r V r t

ρ β
ρ

∞

= ∈ Ω ∈
= + ∆ ∫ ∫ ∫  

(3.39) 

 

 

Nous introduisons maintenant une nouvelle réduction du modèle (3.3) dont la solution 

est T . Nous utilisons une longueur caractéristique D du problème macroscopique, la même 

vitesse de référence ∞∞∞∞v , et la même différence de température de référence. Les nouveaux 

paramètres adimensionnés sont : 

 
* */ ( / ) ; / ; / ( / )D Dr r D d D r u u v t v t D d D t° ° °

∞ ∞= = = = =  

( ) ( ) */ ; ( / )ref ref p reff
T T T T s Ds c v T D d sρ° °

∞
 = − ∆ = ∆ =
 

           (3.40) 

 

où s* correspond à la même normalisation que *

locs , *

fs  et 
*

ss . 

Avec cet nouvel adimensionnement, il est possible d’écrire l’équation (3.3) sous la forme : 

 

 

( )
( )
( )

1 p f

p pt t

cT
T T s

t c v D c

ρ

ρ ρ

°
° °° ° ° °

°
∞

 ∂
 = ∇ ∇ − ∇ +
 ∂
 

λλλλ °

Du   (3.41) 

 

Nous exprimons la solution de cette équation sous la forme : 

 

( )
' 0

( , ) , ' , ' ; , ( ' , ' ) d ( ' ) d 'ref ref moy D

t

T r t T T k r t r t u s r t V r tα° ° ° ° ° ° ° ° ° ° °
∞

° °= Ω
= + ∆ ∫ ∫

 (3.42) 

 

avec :                       ( ) ( ) ( )1
, p pf t

p t

c c
c v D

ρ ρ
ρ ∞

 
 =
 
 

α λα λα λα λ                                                  (3.43) 

 

avec comme volume élémentaire 3d d /V V D° = , kmoy étant alors la fonction de Green 

associée. 

 

Il est alors possible d’utiliser les mêmes arguments que dans l’équation (3.39): 
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3
* * * * * * * * *

3
* *' 0

( , ) , ' , ' ; , ( ' , ' ) d ( ' ) d 'ref ref moy D

t

d d d d
T r t T T k r t r t u s r t V r t

D D D D
°

∞

= Ω

 = + ∆  
 ∫ ∫ αααα

 (3.44) 

ou 

 

( )
* *

* * * * * * * * *

' 0

( , ) , ' , ' ; ( ' , ' ) d ( ' ) d 'ref ref moy

t

T r t T T m r t r t s r t V r t
∞

= Ω

= + ∆ ∫ ∫ γγγγ  

 (3.45) 

 

avec:  
3

* * * *

3
, ' , ' ; ,moy moy D

d d d d
m k r t r t u

D D D D
° =  

 
αααα  et , ,Du d

v D∞

 
=  
 

γ αγ αγ αγ α . 

 

La comparaison des équations (3.45) et (3.39), qui donnent la même température moyenne, si 

l’on suppose le modèle à une température applicable permet d’écrire : 

 

( ) ( )

( )
( )

3
* * * * * * *

* * * * * * * * *

* *" ,

, ' , ' ; ( ' , ' )
( ) ( , )

( ") " , ' , ' ; ( ' , ' ) d ( " )
loc

moy

p t

p loc

r V r D

d
m r t r t s r t

c r V r D

c r f r t r t s r t V r

ρ

ρ
∈

=

∫

γγγγ

ββββ
(3.46) 

 

On peut également écrire cette équation sous la forme dimensionnelle : 

 

( )
( )

( ) ( )

* * * *

* * * *

" ,

( ") " , ' , ' ; d ( ")
( ', ')

( ', ') ( ) ( , ) , ' , ' ;

p loc

loc p moyt

r V r D

c r f r t r t V r
s r t

s r t c r V r D m r t r t

ρ

ρ
∈

=
∫ ββββ

γγγγ
  (3.47) 

 

Le membre de gauche de cette équation doit être égal à l'unité puisque les intégrales sur 

n'importe quel volume et sur n'importe quel intervalle de s et de sloc doivent être égale, si le 
modèle à une-température est applicable. Par conséquent, on peut écrire l'identité suivante:  

 

( ) ( )( )
( )* * * * * * * *

" ,

( ") d ( ")
, ' , ' ; " , ' , ' ;

( , )( )

p

moy loc

p tr V r D

c r V r
m r t r t f r t r t

V r Dc r

ρ
ρ∈

= ∫γ βγ βγ βγ β       (3.48) 

 

 

Il est intéressant d’étudier cette expression dans le cas d'un écoulement piston (dans la 

direction x) dans un milieu poreux homogène. Dans cette configuration, la vitesse de filtration 

uD est uniforme et égale à la vitesse de référence v∞ ( Du
° = Du /v∞ = x dans γγγγ). Par conséquent la 

vitesse de filtration réduite Du
°  peut être remplacée dans l’expression (3.48). En outre nous 

supposons ici que le milieu poreux est homogène, ce qui signifie que les fractions volumiques 

locales (et la porosité ε), les trois capacités volumétriques de l’équation (3.1), ainsi que les 
conductivités du solide et du fluide, ne changent pas dans l'espace. En conséquence, les 

différentes composantes du vecteur paramètre γγγγ dans le membre de gauche de (3.48) 
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dépendent des différentes composantes du vecteur paramètre ββββ présent dans son membre de 
droite : 

 

( ) ( )1
, , / , ( ) /( )d s f p s p f

p t

Re Pr c c
c v D

λ λ ρ ρ
ρ ∞

=λλλλ k                                      (3.49) 

 

où k est une fonction vectorielle, qui représente la variation des trois coefficients principaux 

du tenseur de dispersion. Cette fonction dépend de la forme de l'interface entre phases fluide 

et solide. Ceci signifie que cette fonction dépend de la structure particulière du milieu poreux 

et de la valeur particulière du rapport entre les différentes échelles caractéristiques d/D. 
 

Nous nous intéressons plus particulièrement ici au cas où la structure du milieu 

granulaire est isotrope (cas d'un lit de grains sphériques ou de grains ellipsoïdes de directions 

principales aléatoires). Dans ce cas, si x est la direction privilégiée de l'écoulement, le 
coefficient de dispersion est entièrement caractérisé par la dispersion longitudinale xλ et un 
unique composant transversal y zλ λ= . 

 

Afin de faire apparaître ces deux coefficients de dispersion, on multiplie l’équation (3.49) par 

le nombre de Péclet 
( )p f

d d

f

c v d
Pe Re Pr

ρ

λ
∞

= =  : 

 

( )( )1
, , / , ( ) /( )

( )

p s

d s f p s p f

f p t

cd
Re Pr c c

D c

ρ
λ λ ρ ρ

λ ρ
=λλλλ k   (3.50) 

ou encore 

( )/ , , / , ( ) /( ) , /x ou y f x ou y d s f p s p fg Re Pr c c d Dλ λ λ λ ρ ρ=   (3.51) 

 

 

Nous considérons que le rapport d/D (idéalement égal à zéro) est suffisamment petit pour 
disparaître dans l’expression du rapport ou /x y fλ λ . L’équation (3.51) devient alors : 

 

( )/ , , / , ( ) /( )xou y f xou y d s f p s p fg Re Pr c cλ λ λ λ ρ ρ=   (3.52) 

 

La fonction g représente alors la corrélation qui doit être cherchée pour corréler les 
coefficients de dispersion thermique. Ses arguments dépendent de la vitesse de filtration, de la 

viscosité du fluide et des propriétés thermiques de la phase fluide et solide. Cependant, a 

priori, cette fonction doit être changée si la structure du milieu granulaire est changée 

(changement de granulométrie ou changement de la forme des grains).  
 

On peut bien évidemment mettre en évidence ces mêmes nombres caractéristiques dans 

l’équation (3.11) de la réponse à la source linéique : 

 

( )
( )

( )
( )
( ) 2 2 2 1

4
2 16

0

d
, ,

4

p f x
x

x y xp t

c Pe t
Pe x

Pe x Pe Pe ycx y

p Df

Q Pe Pe
T x y t e e

c u d

ρ

θρ θ θ
θπ ρ

°
°

° °− + −
∆ = ∫   

(3.53) 
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avec 
( )p Df

x

x

c u d
Pe

ρ

λ
=  et 

( )p Df
y

y

c u d
Pe

ρ

λ
=  

 

 

Cet adimensionnement nous permet de constater que nous devons trouver des 

corrélations incluant ces différents paramètres. Le nombre adimensionnel choisi dépend 

surtout des régimes dans lesquels nous travaillons ; pour un régime de Darcy, le nombre de 

Péclet est le plus approprié. Par contre pour le régime inertiel et pour une comparaison de 

différents fluides, le nombre de Reynolds est le plus adéquate.  

Evidemment, nous devons avoir, si notre corrélation est prolongeable jusqu’à une vitesse 

nulle x y eqλ λ λ= =  pour Red = 0. 

 

Les corrélations seront donc en fonction du nombre de Reynolds et de la conductivité 

équivalente du milieu qui dépend de la porosité et des rapports de conductivité des deux 

phases solide et fluide. 

 

Nous choisissons donc la forme suivante pour les corrélations donnant les coefficients de 

dispersion : 

 

Re
eq B

f f

A αα
α

λλ
λ λ

= +                                                         (3.54) 

 

Enfin, afin de trouver une corrélation unique entre différents fluides et différents solides, on 

pourra pondérer le coefficient de dispersion, non pas par la conductivité du fluide (qui est 

spécifique à chaque fluide) mais par la conductivité équivalente du milieu qui dépend de la 

porosité et des rapports de conductivité des deux phases solide et fluide. 

 

1 Re
f B

eq eq

A αα
α

λλ
λ λ

= +                                                        (3.55) 
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Chapitre 4 : Résultats expérimentaux et 

interprétation 

 

 

 
Nous allons présenter et discuter les résultats expérimentaux. Nous détaillerons 

d’abord le pré-traitement des signaux. Nous montrerons ensuite les résultats obtenus avec le 

système air / billes de verre puis ceux obtenus dans le cas air / support de catalyseur. 

Finalement, nous présenterons les résultats obtenus dans le cas d’un milieu granulaire 

constitué de billes de verre polydisperses. 

 

 

4.1 - Pré-traitement des signaux 
 

 

Afin de disposer d’un signal exploitable pour une inversion ultérieure, il est nécessaire 

d’effectuer au préalable un prétraitement des thermogrammes bruts obtenus. La Figure 4.1 

montre un exemple de thermogrammes bruts pour le couple air / billes de verre. Le 

thermocouple 14 a été ajouté dans la conduite cylindrique d’air en amont du lit. Ces 

thermogrammes doivent être traités pour que toutes les températures soient égales à l’instant 

initial.  

 

Figure 4.1 : Températures brutes 
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Nous avons donc effectué des corrections de dérive et d’offset adaptées, corrections qui sont 

détaillées en Annexe 2. Les thermogrammes ainsi traités sont présentés sur la Figure 4.2. 

 
 

 

 

 

 

4.2 - Système air / bille de verre 
 

 

4.2.1 - Résultats en mode αααα4 pour les thermocouples sur l’axe (ynom=0) 
 

Nous montrons les résultats obtenus avec ce mode (mesures sur l’axe) en Figure 4.3.a. 

Les thermogrammes théoriques (thermocouples 2 à 7) s’ajustent bien aux thermogrammes 

expérimentaux mesurés avec l’écoulement d’air. Un léger décalage entre courbes théoriques 

et expérimentales est cependant visible. Il est mis en évidence sur les résidus (Texp - Tth). Le 
problème de la signature des résidus est dû à la non-estimation de la position yi. Les résultats 
confirment l’observation de T.Metzger : il est nécessaire d’estimer les positions en x et en y.  
L’affichage dense des résidus est dû à l’acquisition qui se fait à une fréquence de 8 points par 

seconde. 

Figure 4.2 : Températures corrigées (données de la Figure 4.1) 
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4.2.2 - Résultats expérimentaux en mode αααα5 pour les thermocouples hors axe (ynom = 2,5 
mm) 

 

Les mêmes types de thermogrammes sont représentés en mode α5 (Figure 4.3.b). Les 
résidus sont très faibles. Ils sont proches du bruit de mesure et ne contiennent pas de structure 

visible à l’exception d’une petite perturbation qui correspond à un biais de l’ordre de 0,02 K, 

maximum au début de la phase de montée de chaque thermogramme. Cette perturbation est 

trop forte pour être imputée au déséquilibre entre phases (cf. section 3.5). Il pourrait s’agir 

d’un effet d’inertie thermique du fil métallique chauffant. 

 

Nous calculons donc le temps de réponse du fil. Pour le calcul, nous avons besoin d’un 

coefficient de transfert thermique h. Nous utilisons des corrélations de la littérature [Kreith, 
1973] basées sur le nombre de Nusselt dans le cas de la convection forcée: 

 

0,3850,90 pour 4 70
fil fil 0,31

f

h d
Nu Re Pr Re

λ
= = 〈 〈                                (4.1) 

 

Le nombre de Prandlt de l’air est égal à 0,7. La vitesse de Darcy utilisée est celle 

correspondant à un nombre de Péclet de 30 soit un nombre de Reynolds de 43. On obtient 

donc un coefficient : filh =342,85 W.m-2.K-1. Le temps de réponse du fil de longueur w se 
calcule alors grâce à l’équation d’un petit corps : 

 

( ) ( )2
d

2
fil

fil p fil fil filfil

T
R c w R h w T T

dt
π ρ π ∞= − −                                (4.2) 

 

D’où le temps caractéristique :  

 

( )
2

p filfil

fil

fil

c R

h

ρ
τ =                                                          (4.3) 

 

avec ( ) 63.10p fil
cρ ≅ J.K

-1
.m
-3
 et Rfil = 130 µm, on trouve un « temps d’inertie thermique » 

égal à 0,57 s. Ce temps est très faible et ne peut visiblement pas expliquer la petite 
perturbation visible sur les Figures 4.3. La signature des résidus provient donc d’autre chose ; 

celle-ci n’est pas due à une variation de ρf et donc de ( )p f
cρ  avec la température ambiante 

du jour de mesure (de l’ordre de 0,3 % par degré Celsius) car ce paramètre est complètement 

corrélé avec la vitesse de Darcy qui est estimé par ailleurs. 

Une autre explication peut être recherchée dans un éventuel effet résiduel de paroi, le fil 

chauffant de surface rigoureusement non nulle peut générer de très légères survitesses dans 

l’écoulement aval. 

 

Le modèle arrive donc à bien décrire la mesure, ce qui n’exclut pas pour autant le biais 

sur les paramètres estimés. Les thermogrammes sont ici présentés pour les billes de 2 mm, les 

profils sont identiques pour des billes de 3 mm. 

 

La Figure 4.4 montre les positions estimées en deux dimensions pour des vitesses 

différentes. La position nominale est indiquée pour chaque thermocouple. Une bille a été 

dessinée pour donner l’échelle. Sur les six positions des sondes, une seule s’éloigne de sa 



Chapitre 4 : Résultats expérimentaux et interprétation 

 

 88 

position nominale (la dernière). Les résultats d’estimation des positions sont distribués quasi-

uniformément dans les 4 cadrans. Cela semble indiquer que la variation estimée de la position 

des soudures par rapport à leurs positions nominales est isotrope, ce qui est normal et 

correspond bien aux simulations de la section 3.3. On constate que la position estimée d’un 

thermocouple varie au maximum d’un diamètre de billes (2 mm). Par contre, cette position 

peut-être très proche de la position nominale, ce qui est le cas du thermocouple 6.  

 

Les estimations des coefficients de dispersion longitudinal et transversal sont tracées 

en fonction du nombre de Péclet estimé pour les billes de 2 et de 3 mm sur la Figure 4.6. On 

constate que les points correspondant aux diamètres de 2 mm et de 3 mm s’intercalent 

parfaitement. Les coefficients de dispersion thermique ne semblent pas dépendre de la taille 

des billes, ce qui correspond à la théorie. 

De plus, la composante aléatoire de l’erreur d’estimation, évaluable grossièrement à 

partir d’un lissage visuel, est supérieure à celle calculée par la méthode de Monte-Carlo 

( 1%
x xλ λσ =)  et 1%

y yλ λσ =)  dans le Tableau 3.5 pour Pe ≈ 35). Ceci peut provenir des 

fluctuations de température ambiante qui n’ont pas été prises en compte dans le tracé de la 

Figure 4.6 : la conductivité de l’air varie en effet de l’ordre de 0,3 % par degré Celsius . 

 

Cette technique permet ici d’estimer précisément la vitesse de Darcy de l’écoulement 

(uest) qui est mesurée également par un fil chaud (umes). 
 

Dans le cas des billes de verre de 3 mm, le rapport moyen (uest
 / umes

) est de 90% 

tandis que pour les billes de verre de 2 mm, on constate un rapport moyen de 80% ce qui 

correspond à un écart important. Une explication possible est une légère variation du débit 

pendant la durée de l’expérience. En effet, nous ne contrôlons que « grossièrement » le débit 

d’air. L’air est aspiré dans une pièce voisine au dispositif expérimental et cette aspiration peut 

être légèrement fluctuante (thermique, rendement). Une autre cause d’erreur est l’imprécision 

sur les aires de la section rectangulaire du lit de la section cylindrique de la conduite avale (cf. 

chapitre 2). Les différentes simulations (Monte Carlo) ont démontré que nous estimions avec 

une très grande précision la vitesse de Darcy, nous faisons donc ici confiance à l’estimation 

qui est plus précise et moins biaisée que la mesure au fil chaud (cf. section 2.2.5). 
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Figure 4.3 : Températures expérimentales ∆Texp et recalculées ∆T ainsi que les résidus pour le mode d’estimation α4 (a) et α5 (b)  pour 
le système billes de verre / air (2 mm) 

a) b) 
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Figure 4.4 : Positions estimées des thermocouples en mode α5 et représentation d’une bille à l’échelle (une position est estimée par 
vitesse), les points bleus représentent la série 1 et les points rouges représentent la série 2 
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Figure 4.6 : Résultats d’estimation des coefficients longitudinaux et transversaux de dispersion thermique 

Figure 4.5 : Estimation de la vitesse de Darcy pour des billes de verre 
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4.2.3 - Représentation des résultats  

 
4.2.3.1 - Coefficient de dispersion longitudinal 
 

Nous allons essayer de chercher des corrélations, non pas en fonction du nombre de 

Péclet, mais en fonction du nombre de Reynolds (Pe Pr.Re=  avec Pr = 0,7) afin de comparer 
les résultats avec ceux de l’eau (Pr = 7,02) . 
Nous cherchons une relation λx (Re) et adoptons une loi de puissance : 
 

( )
xeq Bx

x

f f

Re
A Re

λλ
λ λ

= +
                                                (4.4) 

Dans cette fonction, il y a 2 inconnues : Ax et Bx. Les deux termes sont estimés par la méthode  

des moindres carrés ordinaires. 

 

Les deux paramètres Ax et Bx estimés sont fortement corrélés. Nous effectuons le calcul pour 

les résultats obtenus avec les billes de verre 2 et 3 mm. La relation trouvée est : 

 

( ) 1,45120,1259
eqx

f f

Re
Re

λλ
λ λ

= +                                           (4.5) 

 

avec λeq la conductivité équivalente du milieu égale à 0,2 W.m
-1
.K
-1
. 

 

 L’équation est représentée sur la Figure 4.7. Dans le Tableau 4.1 sont donnés les écarts 

types des deux paramètres Ax et Bx. Ils correspondent à une dispersion apparente 

0,04
xλσ ≅ W.m

-1
.K
-1 

 

 Billes de verre 

Ax 0,1259 ± 0,0002 

Bx 1,4512 ± 0,0006 

 

 

 

 

Nous voyons que ceux-ci sont extrêment faibles et sont probablement masqués par les causes 

de « bruit » sur λx qui peuvent provenir notamment des variations de température ambiante 

(effet sur la conductivité de l’air par exemple). Celles-ci constituent une cause de dispersion 

probablement plus forte. Nous proposons donc la corrélation suivante pour le système air / 

billes de verre (Pr = 0,7) : 
 

 

1,45 1,450,126 0,211
eq eqx

f f f

Re Pe
λ λλ

λ λ λ
= + = +      pour 12 < Re < 130      (4.6) 

 

 

La corrélation est valable pour des nombres de Reynolds de 12 à 130. Au-delà de cette limite 

seuls deux points expérimentaux correspondant aux billes de verre de 3 mm sont présents et la 

Tableau 4.1 : Ecarts-types sur les paramètres d’estimation 
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corrélation reste à confirmer par d’autres mesures. Comme nous voyons que les résidus ne 

sont pas signés notamment aux faibles nombres de Reynolds, nous pensons qu’il est possible 

d’étendre cette corrélation à tout l’intervalle [0 130]. 

 

 
 

 

 

 

 

Nous disposons de la corrélation établie par T.Metzger pour le même lit traversé par de l’eau : 

 

1,59 1.590,0731 1,61
eq eqx

f f f

Pe Re
λ λλ

λ λ λ
= + = +          pour   0,5 < Re < 18         (4.7) 

 

La conductivité équivalente est prise égale à 0,860 W.m
-1
.K
-1
. Le nombre de Prandtl de l’eau 

à 20°C est pris égal à 7,02. 

 

Nous avons représenté sur la Figure 4.8 les résultats pour le même solide : les billes de 

verre. Les résultats pour l’air et pour l’eau sont dans des gammes de Reynolds complètement 

différentes. Les expériences pour l’eau ont été réalisées pour des nombres de Reynolds de 0,5 

à 18 ce qui correspond au régime de Darcy ou régime de Stokes. Les expériences de l’air ont 

été effectuées pour des nombres de Reynolds de 12 à 130, ce qui correspond au régime 

inertiel. Les phénomènes hydrodynamiques sont différents dans les deux cas (cf. chapitre1), 

les deux corrélations trouvées sont valables dans leur gamme de nombre de Reynolds ; on ne 

peut donc pas les comparer et les généraliser à l’ensemble des nombres de Reynolds. Il 

faudrait des résultats expérimentaux pour l’eau à des nombres de Reynolds supérieurs à 18 

afin de comparer les deux fluides. 

 

Figure 4.7 : Résultats d’estimation pour λx  
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Cependant, on constate que pour un même nombre de Reynolds (Re ≈ 15), le rapport x

f

λ
λ
 pour 

l’eau est beaucoup plus important (10 fois plus important) que ce même rapport pour l’air. 

Ceci signifie que pour la même géométrie, la dispersion longitudinale est plus importante 

dans le cas de l’eau que dans le cas de l’air (facteur supérieur à 200 sur les xλ ). Cet écart 
peut-être observé sur les équations de fermeture du modèle à une température (Annexe 3).  

Ainsi, à nombre de Reynolds fixé, le coefficient de dispersion dans l’air est plus faible que 

celui de l’eau parce que la chaleur volumique (ρcp) de l’air est faible. 
 

Possédant des résultats pour deux fluides différents, nous avons tenté d’établir une 

corrélation générale pour tous les résultats obtenus par Metzger et par nous même. Les 

coefficients de dispersion longitudinale ont toujours été représentés en les normant par la 

conductivité du fluide. Or cette représentation n’est peut-être pas judicieuse lorsque l’on a 

deux fluides différents en présence. Dans le chapitre 3, nous avons montré la dépendance de 

ce coefficient à plusieurs paramètres dont le nombre de Reynolds, le nombre de Prandtl, la 

porosité et la conductivité équivalente. Nous avons donc essayé d’intégrer tous ces paramètres 

pour réaliser une corrélation unique. Nous allons désormais normer le coefficient de 

dispersion non plus par la conductivité du fluide mais par la conductivité équivalente du 

milieu poreux. 

Nous cherchons donc ici une loi de la forme : 

 

( ) ( ) ( )
( )

1 1

,

Xf x air x eauCx

f eq eau air
eq

s

D Pr Pr F Pr Pr
Re

Pr Pr

λλ ε ε
λ λ

λ ε
λ

 − − −
= + −  −   

 
 

          (4.8) 

 

 

Figure 4.8 : Résultats d’estimation et corrélation pour l’air et l’eau 
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La difficulté ici est de déterminer trois paramètres. C’est pourquoi nous fixons Cx = 1,5, 

exposant intermédiaire entre la corrélation de l’air (1,45) et de l’eau (1,59). Nous utilisons 

donc, pour les deux autres paramètres, une régression à partir de tous les points 

expérimentaux (air et eau). Nous obtenons la corrélation suivante : 

 
 

( ) ( ) ( )
( )

1.5
1.387 0.543

1 1

,

f air eaux

f eq eau air
eq

s

Pr Pr Pr Pr
Re

Pr Pr

λλ ε ε
λ λ

λ ε
λ

 − − −
= + −  −   

 
 

   (4.9) 

 

 

Remarquons que cette forme permet de retrouver les conductivités monophasiques du fluide 

et du solide (ε = 1 et ε = 0). Evidemment, cette corrélation ne correspond rigoureusement 
qu’au cas de sphères monodisperses. 

Cette équation est représentée sur la Figure 4.9. La corrélation unique trouvée est valable pour 

les deux fluides et permet de décrire correctement le comportement des coefficients de 

dispersion longitudinaux. 

 

 
 

 

 

 

 

Un dernier mode de représentation des résultats, qui fait abstraction du régime 

hydraulique de l’écoulement, est intéressant. Il est possible de tracer 
( )x eq

f

λ λ
λ
−

 en fonction 

du nombre de Péclet. Cette représentation est pertinente car elle permet de traduire les effets 

de vitesse. La Figure 4.10 traduit cet effet sur le coefficient de dispersion longitudinal, effet 

qui est ici plus important pour l’air que pour l’eau.  

 

Figure 4.9 : Coefficient de dispersion longitudinal 
et corrélation unique pour les différents couples 

(eau et air) 
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La Figure 4.11 montre nos résultats expérimentaux billes de verre / air (pour les billes 

de 2 mm) en fonction du nombre de Péclet comparés avec le modèle de Tsotas [Tsotas, 1990], 

celui de Levec et Carbonnell [Levec, 1985] et les résultats expérimentaux, pour des systèmes 

billes de verre / air, de Gunn [Gunn, 1974] et de Yagi et al [Yagi, 1960]. Nous constatons une 
bonne concordance de nos résultats avec les deux modèles jusqu’à un Péclet de 50. Au-delà, 

le modèle de Levec et Carbonnell décrit mieux nos résultats. La comparaison avec les résultas 

expérimentaux de Yagi, se résume en un seul point qui est cohérent mais pas significatif pour 

le comparer. Les résultats obtenus par Gunn ne sont pas du tout en accord avec nos résultats 

mais ne le sont pas non plus avec les deux autres modèles. 

 

 
 

 
Figure 4.11 : Comparaison de nos résultats avec la littérature 

Figure 4.10 : Représentation de x eq

f

λ λ
λ
−  en fonction du nombre de Péclet 
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4.2.3.2 - Coefficient de dispersion transversal 
 

La Figure 4.12.a présente les résultats d’estimation du coefficient de dispersion 

transversal ainsi que le coefficient à nombre de Reynolds nul (conductivité équivalente du 

milieu). Les résultats d’estimation montrent clairement que nous pouvons établir une relation 

linéaire. Cependant cette relation ne sera valable que pour des nombres de Reynolds compris 

entre 12 et 130. Le comportement du coefficient transversal ne peut être décrit pour des 

nombres de Reynolds sur ]0-12[. Cet intervalle correspond au régime de Darcy. On peut 

imaginer qu’à l’intérieur de cet intervalle le coefficient est quasi-constant. Cette hypothèse est 

justifiée par l’observation des lignes de courant en régime de Stokes qui sont insensibles à une 

variation de débit (cf. section 1.2.2). Il n’existe pas ou peu de dispersion hydrodynamique 

dans ce régime et la conductivité moléculaire est seule responsable de la dispersion. Nous 

avons donc établi une relation donnant le coefficient de dispersion transversal du type : 

 

( )y

y y

f

Re
A B Re

λ
λ

= +
                                                  (4.10) 

Donc pour obtenir une corrélation linéaire, il n’est pas possible de prendre 
eq

y

f

A
λ
λ

= . La 

corrélation est la suivante : 

 

( )
6,398 0,0788

y

f

Re
Re

λ
λ

= +          pour 12 < Re < 130           (4.11) 

et   ( )y eqReλ λ=                    pour 0 ≤ Re ≤ 12   

 

A vitesse nulle (Re = 0 ), on retrouve la conductivité équivalente 
0,2

7,7
0,026

y eq

f f

λ λ
λ λ

= = ≅ .  

Le Tableau 4.2 donne l’incertitude obtenue sur les paramètres estimés. 

 

 

 

 Billes de verre 

Ay 6,398 ± 0,001 

By 0,0788 ± 0,0002 

 

 

 

Pour la même raison que précédemment (λx), nous présentons notre corrélation air / billes de 

verre sous la forme : 

 

6,4 0,079 6,4 0,11
y

f

Re Pe
λ
λ

= + = +        pour 16<Re<130           (4.12) 

 

et   y eqλ λ=                    pour 0 ≤ Re ≤ 16   

 

Tableau 4.2 : Ecarts-types sur les paramètres d’estimation 
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Nous avons pris ici un critère de nombre de Reynolds égal à 16 et non à 12 comme 

précédemment pour qu’il y ait continuité sur les deux expressions de λy et pour que λeq 

constitue bien un plancher. 

 

 

 
 

 

 

 

 

Nous avons placé sur la Figure 4.12.b la corrélation de Metzger obtenue pour des billes de 

verre avec les valeurs extrêmes et médianes de A'y = 0,03 ; 0.04 ; 0,05 : 
 

'y eq

y

f f

A Pr Re
λ λ
λ λ

= +                                                  (4.13) 

 

Nous avons représenté sur la même figure, les modèles de Schlünder et Bauer et de Levec et 

Carbonell. 

Il est manifeste que le modèle de Schlünder et Bauer surestime nos valeurs tandis que celui de 

Levec et Carbonell est plus proche mais avec une non-linéarité qui l’en fait s’en éloigner pour 

les grandes valeurs du nombre de Reynolds. 

 

Figure 4.12.a : Coefficient de dispersion transversal  
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Nous avons également présenté nos résultats sous la forme du rapport 
( )y eq

f

λ λ
λ
−

 en fonction 

du nombre de Péclet ainsi que ceux de T. Metzger pour l’eau sur la Figure 4.13. On constate 

encore que comme pour la dispersion longitudinale, l’effet de vitesse est plus important pour 

l’air que pour l’eau dans ce mode de représentation en fonction du nombre de Péclet. 

 

 

 
 

 

Figure 4.12.b : Comparaison du coefficient de 
dispersion transversal avec la littérature 

Figure 4.13 : Représentation de y eq

f

λ λ
λ
−  en fonction du nombre 

de Péclet 
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4.2.3.3 - Anisotropie 
 

Nos résultats nous permettent d’évaluer expérimentalement l’évolution de l’anisotropie du 

tenseur des coefficients de dispersion thermique avec le nombre de Reynolds ou celui de 

Péclet. Ceci est fait sur la Figure 4.14 où le rapport x

y

λ
λ
 est tracé en fonction du nombre de 

Reynolds. Il semble que ce rapport évolue linéairement aux faibles nombres de Reynolds. Par 

contre, il est difficile de se prononcer aux nombres de Reynolds plus élevés, du fait d’un 

nombre de mesures insuffisant dans cette gamme. 

 

 
 

 

 
Figure 4.14 : Anisotropie des résultats 



Chapitre 4 : Résultats expérimentaux et interprétation 

 

 101 

4.3 - Système air /support de catalyseur ou azote / support de catalyseur 
 

 

4.3.1 - Problèmes rencontrés et solutions apportées 

 

La même procédure expérimentale a été adoptée que pour le système air/billes de 

verre. 

Les premiers résultats expérimentaux obtenus à deux dates différentes sont montrés sur les 

Figures 4.15.a et 4.15.b pour la totalité des thermocouples pour ce support de catalyseur 

traversé par de l’air.  

Contrairement aux thermogrammes des billes de verre, la montée en température se fait en 

deux temps : 

 

• Entre t = 0 et t = 50 à 80 s (selon la position du thermocouple), la montée en température 
est rapide (quasi linéaire). 

 

• Pour les thermocouples situés le plus en aval (thermocouples 4 et supérieurs) de la source 

thermique, la température se stabilise sur 200 s, puis augmente à nouveau et il n’y pas de 

stabilisation de la température aux temps longs. 

 

 

Ces formes différentes ne permettent pas d’effectuer d’inversion avec le modèle à une 

température. La Figure 4.16 montre l’inversion que nous avons tentée d’effectuer. On constate 

clairement que les températures recalculées et les températures expérimentales ne se 

superposent pas, le modèle à une température n’arrive pas à décrire convenablement ce qui se 

passe. 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 : Températures expérimentales dans le cas air / support catalyseur :  reproductibilité des 
mesures effectuées à des dates différentes. 

  

a) b) 
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Plusieurs explications et hypothèses ont été envisagées pour expliquer ce phénomène : 

 

� La première explication est liée aux propriétés thermophysiques du solide. En 

effet, la température mesurée par les thermocouples est plutôt celle du fluide et non la 

température moyenne enthalpique de notre modèle. Un éventuel écart de température 

entre phases solide et fluide pourrait expliquer nos réponses. Cette hypothèse 

provenant du calcul des temps caractéristiques effectué au chapitre 2 et qui montre que 

le temps caractéristique de la phase solide peut-être limitant. La mise en œuvre d’un 

modèle analytique à deux températures (cf. chapitre 3) pour différencier les deux 

températures et calculer exactement les temps de réponse dans chacune des phases est 

très instructive. La différence n’est visible que pour un solide ayant une conductivité 

thermique très faible. Cette explication n’est donc pas envisageable ici. 

 

 Nous avons également réalisé une expérience pour comparer les températures des 

deux phases. Nous avons inséré dans un grain de catalyseur un thermocouple de 50 

µm de diamètre et avons positionné un second thermocouple à 1 mm de la surface du 
grain. L’expérience s’est faite à l’air ambiant et nous avons excité l’ensemble à l’aide 

d’un sèche-cheveux. L’excitation n’est certes pas identique à celle que l’on utilise 

dans notre modèle mais cela nous a permis de comparer les deux thermogrammes. Les 

Figures 4.17 a et 4.17.b montrent les deux températures. Le signal est évidemment 

plus bruité pour le thermocouple se trouvant à l’extérieur qui est soumis à la 

turbulence générée par le débit d’air. On constate que les signaux sont identiques en 

régime permanent si l’on ne considère que les échauffements depuis le début du 

chauffage. Un écart de l’ordre du degré Celcius apparaît entre 50 et 100 s (aux temps 

courts). Ce décalage peut-être lié au fait que le thermocouple extérieur ne touche pas 

la surface du grain.  

Figure 4.16 : Thermogrammes expérimentaux et 
recalculés dans le cas air / support de catalyseur 
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Il aurait été intéressant d’insérer l’ensemble du dispositif (en collant le thermocouple 

« extérieur » sur la surface du grain) dans le lit mais nous aurions été confrontés à 

l’incertitude sur la position relative des deux soudures. 

 

 

 

 

 

 

 

 

� La deuxième explication est une augmentation des pertes de charges durant les 

expériences qui pourrait induire une variation de la vitesse de Darcy. Nous avons donc 

mesuré les pertes de charges lors des expériences. Nous avons percé deux orifices à 

l’entrée et à la sortie du milieu granulaire reliés à un capteur de pression à membrane. 

Les pertes de charge sont représentées sur la Figure 4.18. La chute de pression est de 

l’ordre de 15 Pa sur environ 1 heure. Un glissement identique a été observé pour le cas 

d’un lit de billes de verre. Cette variation est très petite et ne peut pas expliquer un 

changement de vitesse significatif qui expliquerait la forme des thermogrammes.  

 

 

Figure 4.17 a : Thermogrammes expérimentaux Figure 4.17 b : Thermogrammes expérimentaux 
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� La troisième hypothèse correspond à l’apparition d’un phénomène de désorption 

d’humidité au sein des micropores internes aux grains. Les courbes 4.15 ressemblent 

fortement à des courbes de séchage. En effet, quand la température du milieu varie, 

l’enthalpie à fournir ne correspond plus alors seulement à l’échauffement du produit 

(grains) mais également à la mise en équilibre massique de son humidité qui, sur le 

plan thermique, s’accompagne de la condensation ou de l’évaporation de l’eau mettant 

ainsi en jeu la chaleur latente de vaporisation. 

 

 

 

Sur la Figure 4.19.a, on remarque que les thermogrammes atteignent un niveau constant 

aux temps longs. Une nouvelle expérience a été effectuée avec une puissance de chauffage 

trois fois plus importante. Les thermogrammes ont la même forme mais leur montée en 

température se fait différemment (Figure 4.19.b). Les thermocouples 3 et 4 arrivent au même 

palier que le thermocouple 2 pour une variation de température de 3K. Or leur comportement 

est différent lors d’une montée en température de 1K : le thermocouple 2 n’arrive pas ici au 

même niveau que les deux autres (Figure 4.19.a). La montée en température ne dépend donc 

pas linéairement de la puissance injectée. La même expérience effectuée dans le cas billes de 

verre / air a montré que le signal des différents thermocouples était toujours proportionnel à la 

puissance de chauffe. Il y a donc bien un nouvel effet qui est mis en évidence dans ces 

expériences. En chauffant, nous réalisons un séchage des grains. 

 

 

Figure 4.18 : Perte de charge au sein du milieu granulaire 
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L’air utilisé pour réaliser les expériences est l’air ambiant chargé d’humidité. Il faut donc 

sécher les grains, pour retirer toute humidité, avant toute expérience avec un gaz sec. Le gaz 

choisi est de l’azote (gaz sec dont les caractéristiques sont proches de l’air). Le temps 

nécessaire pour sécher les grains, dans un process dit de « stripage », est calculé grâce à une 

formule empirique fournie par l’IFP.  

 

 

Nous avons dû effectuer des modifications sur le dispositif expérimental initial (Figure 

4.20). Le dispositif est désormais alimenté grâce à des bouteilles d’azote destinées à sécher les 

grains. L’azote utilisé est d’une pureté de 99 %. Ces bouteilles sont stockées à l’extérieur du 

local et sont raccordées au dispositif par l’intermédiaire d’un détendeur et d’un tuyau souple 

(P.V.C. tressé) de 13 mm de diamètre et de 50 m de longueur (pour permettre une meilleure 

détente du gaz). Ce tuyau est raccordé à la conduite en P.V.C. rigide au-dessus du lit 

granulaire. Un tuyau souple est également raccordé en sortie du lit afin de rejeter l’azote à 

l’extérieur. 

La température de l’azote mesurée au sein du milieu granulaire est de l’ordre de 20 ° C. Nous 

travaillons donc dans les mêmes conditions qu’avec de l’air. L’air étant formé de 79% 

d’azote, ses propriétés sont quasi-identiques à celle de l’air. Nous avons donc utilisé les 

propriétés thermophysiques de l’air. 

 

 

Figure 4.19 : Effet non linéaire de la puissance de chauffage 

a 
b 
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Mode opératoire : 
 

A l’instant initial, on fait passer un débit d’azote que l’on ajuste par un réglage de la 

pression de sortie du détendeur. L’écoulement est maintenu pendant environ 5000 s (stripage) 

pour la plus grande vitesse. La Figure 4.21 représente l’évolution de la température en 

fonction du temps du thermocouple situé à l’entrée du lit granulaire (ce thermocouple n’est 

pas dans le milieu, Figure 4.20). Il mesure donc la température de l’azote seul. Le 

refroidissement initial (Figure 4.21) est probablement dû à l’effet de détente. La remontée 

ensuite observée est due à un réchauffement des bouteilles d’azote qui sont à l’extérieur et qui 

ont été exposées au gel la nuit précédente (effet « météo »). 

 

La Figure 4.22 montre l’évolution de la température au sein du milieu granulaire lorsque 

l’azote débite au travers du lit (données brutes). Le chauffage par le fil s’effectue aux 

alentours du temps t = 5000 s. Les niveaux initiaux de température sont différents pour les 
différents thermocouples. On constate que le milieu n’est pas en équilibre thermique initial et 

que la température dans le milieu granulaire dérive au fil du temps. 

 

 

 

 

 

Figure 4.20 : Dispositif expérimental de l’azote 
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iT t  

  
Figure 4.21 : Thermogramme brut du thermocouple à 
l’entrée du milieu granulaire 

Figure 4.22 : Thermogrammes bruts (azote / support de 
catalyseur) 

Figure 4.24 : Thermogrammes traités : ( )''

iT t  
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Le thermogramme de la Figure 4.21 va permettre de corriger les autres thermogrammes, il est 

en fait le thermogramme de référence ( )réfT t .  

On effectue à partir des différents thermogrammes les traitements suivants :  

 

1) Afin de filtrer ce thermogramme, on effectue une moyenne glissante sur trois points de 

( )réfT t  (acquisition à quatre points par seconde), d’où une courbe résultante : 

 
1

1

1
( ) ( ∆ )

3
ref k ref k

m

T t T t m t
= −

= +∑                                  (4.14) 

 

2) On soustrait ( )réfT t  de chacun des thermogrammes afin de corriger l’offset 

« dynamique » correspondant à la variation de température du gaz à l’injection dans le 

lit : 

 

'( ) ( ) ( )i k i k ref kT t T t T t= −                                              (4.15) 

 

Les courbes obtenues (Figure. 4.23) comprennent encore une dérive visible (entre 4900 et 

5000 s) avant l’excitation et ne partent pas d’une température nulle.  

 

3) On effectue donc une dernière correction de dérive et d’offset « statique » calculée sur 

les 30 secondes avant chauffage (t = tdéb au démarrage du chauffage) : 
 

"( ) '( ) ( ) '( )i k i k i k déb i débT t T t a t t T t= − − −                                 (4.16) 

 

( )
( ) ( )'

2

1

k

k déb

i k déb i k
t tk déb

t t

a t t T t
t t 〈

〈

= −
−

∑
∑

 

 

L’offset correspond donc ici au niveau ponctuel à l’instant initial tandis que la pente est 

calculée par simple régression linéaire. 

La Figure 4.24 représente les mesures ( )''

iT t  après ce dernier traitement. Une légère dérive de 

la température aux temps longs subsiste encore mais n’a pas été corrigée. Ces thermogrammes 

vont nous permettre d’effectuer les inversions et d’estimer les paramètres. 

 

On effectue l’inversion des 6 thermocouples habituels (cas 1). La Figure 4.25.a représente les 

six courbes expérimentales et recalculées ainsi que les résidus correspondants. On constate 

que les températures recalculées et expérimentales du dernier thermocouple (thermocouple 7) 

différent fortement. Son résidu est de l’ordre de 6 fois le bruit de mesure. L’inversion est alors 

faite sur 5 thermocouples (thermocouple 2 à 6) (cas 2). Les résidus des deux premiers 

thermocouples sont de moins bonne qualité au temps court (jusqu’à 40 s) puis ils se 

rapprochent du bruit de mesure (Figure 4.25.b). Ceci est probablement dû aux corrections qui 

ne sont ici que linéaires. Il aurait été possible d’effectuer une correction prenant en compte la 

variation de température d’alimentation du lit en azote en construisant une fonction de Green 

1 D sur ce type d’excitation. Par contre le champ thermique initial dans le lit, avant injection 

d’azote, n’est probablement pas uniforme, ce qui rend quasiment impossible toute correction 

plus sophistiquée basée sur l’équation de l’énergie du modèle à une température. 
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Figure 4.25.b : Températures expérimentales et recalculées et résidus dans le cas azote / support de catalyseur (cas 2) 

Figure 4.25.a : Températures expérimentales et recalculées et résidus dans le cas azote / support de catalyseur (cas 1) 
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Les températures expérimentales et recalculées se superposent de manière satisfaisante pour 

ce cas « pathologique » pour les 5 thermogrammes pris en compte. Les résidus sont 

satisfaisants au vu des corrections faites (l’échauffement est maintenant de l’ordre de 3 K au 

lieu de 1 K pour le cas air / billes de verre). Le rapport signal sur bruit est sensiblement le 

même que pour les expériences air/billes de verre. 

 

Ces expériences ont été réalisées avec le plus grand des débits. Une autre série de mesure avec 

un autre cadre de bouteilles d’azote a été faite. Pour cette série, il n’a pas fallu faire un tel 

traitement, le traitement classique réalisé sur le système air/billes de verre est suffisant. 

L’équilibre thermique était atteint lors du démarrage du chauffage. Les résidus sont du même 

type que le système air / billes de verre (Figure 4.26). 

 

 

 

 

 

 

 

4.3.2 - résultats d’estimation 

 

Cette partie est confidentielle.  

 

 

Figure 4.26 : Températures expérimentales et recalculées et résidus pour le système azote / support de 
catalyseur à Re = 40 
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4.4 - Cas des billes de verre polydisperses 
 

 

Cette partie est confidentielle. 
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Chapitre 5 : Dispositif de caractérisation – 

chauffage en paroi 

 

 

 
Dans ce chapitre, nous allons aborder le problème du transfert en proche paroi. Tout 

d’abord une configuration permettant de caractériser la dispersion thermique en proche paroi 

sera modélisée, le dispositif expérimental correspondant sera ensuite présenté et enfin les 

premiers résultats expérimentaux seront discutés. 

 

 

5.1 - Modélisation du chauffage en proche-paroi 
 
Nous avons vu au chapitre 1 qu’au niveau des parois de notre lit, les billes de verre sont en 

contact ponctuel avec celles-ci. Dans cette zone, la porosité du lit est globalement supérieure à 

celle qui règne à cœur. L’écoulement va donc être logiquement modifié. D’un point de vue 

macroscopique, nous n’avons accès qu’au débit de l’écoulement. Ce débit nous renseigne 

seulement sur la vitesse superficielle moyenne de l’écoulement (vitesse de Darcy) et non sur 

la vitesse locale. 

 

Si nous voulons caractériser thermiquement les effets de ces survitesses, il est nécessaire 

de chauffer le lit par une paroi à l’aide par exemple d’une source surfacique. En fait, il s’agit 

de tenter d’exploiter une configuration inverse de ce qui se passe souvent dans les réacteurs à 

lit fixe où la source est plutôt localisée à cœur et où les parois sont refroidies.  

 

La première idée est donc de construire un nouveau modèle permettant de prendre en 

compte une vitesse, une porosité et des coefficients de dispersion en proche paroi différents 

des valeurs de ces grandeurs en cœur du milieu poreux. Le nouveau modèle qui va en résulter 

sera appelé modèle bicouche. Il correspondra à une séparation de l’écoulement en deux 

zones : une zone proche des parois où il existe une survitesse et une zone au cœur de 

l’écoulement où la vitesse est légèrement moins grande (Figure 5.1). 
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Pour modéliser cette configuration bicouche, l’équation de l’énergie du modèle à une 

température va être écrite dans deux domaines avec des propriétés différentes. Pour résoudre 

le problème direct analytiquement, une résolution par la méthode de Green n’est plus 

possible. On utilisera une variante de la méthode des quadripôles [Maillet et col., 2000] qui 

repose sur une transformation spatiale de Fourier dans la direction parallèle aux parois. 

 

Mais avant de développer cette méthode de résolution du modèle bicouche, on va tout 

d’abord s’assurer que l’on est capable de résoudre numériquement le modèle à une seule 

couche par cette méthode de Fourier. On va donc tenter de valider cette méthode de résolution 

par une comparaison avec une solution obtenue par convolution de l’excitation avec une 

fonction de Green. 

 

5.1.1 - Modèle de Green 

 

La modélisation se fera ici en supposant uniforme les différents paramètres du milieu 

(vitesse, porosité, coefficients de dispersion…). Nous utilisons une résolution par la méthode 

des fonctions de Green. On va donc résoudre l’équation de la dispersion thermique (équation 

3.1) de la même façon que dans le chapitre 3 (cf. Annexe 4). La source s est ici constituée de 
deux résistances électriques pelliculaires dissipant une puissance surfacique totale 2 W, c’est à 
dire créant un flux uniforme pariétal de densité W égale dans chaque demi-espace, la paroi 
étant parallèle à l’écoulement (Figure 5.2). La largeur l de la zone de chauffage est dans la 
direction de celui-ci et son extension est infinie dans l’autre direction. 

 

Figure 5.1 : Représentation des phénomènes proche de la paroi 
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( ) ( ) ( ) ( ) ( ),s t W y x x l tδ Η Η Η= − −  r                                              (5.1) 

 

où W (W.m-2) est la densité de flux, δ (m-1) l’impulsion de Dirac spatiale et ( )tΗ  la fonction 

de Heaviside temporelle (échelon). Il s’agit donc ici d’un problème transitoire bidimensionnel 

en x et en y. 
 

La réponse en température est alors donnée par convolution (cf. équation (3.9) au chapitre 3) : 
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Nous prenons ici une longueur de chauffe l = 10 cm. Le point de coordonnées (0,0,0) 
représente le début de la plaque (Figure 5.2) c’est à dire une sorte de « bord d’attaque 

thermique ». L’équation 5.2 est résolue par quadrature numérique du terme intégral, de la 

même façon que pour l’excitation linéique (cf. chapitre 3). Les coefficients de dispersion 

thermique utilisés sont ceux issus des corrélations trouvées précédemment (chapitre 4). 

 

Les Figures 5.3 représentent les réponses en température. La forme de la montée en 

température dépend beaucoup de la distance au « bord d’attaque » du chauffage (Figure 

5.3.a). Le niveau de température aux temps longs augmente selon x pour atteindre son 
maximum aux 4/5 de la plaque (x = 8 cm). Il se stabilise ensuite à une abscisse de 12 cm pour 
redescendre (x =14 cm) pour y fixé. 

Figure 5.2 : Emplacement de la source de chaleur 
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Si l’on trace les thermogrammes en fixant x (Figure 5.3.b), on constate que les niveaux de 
température diminuent en fonction de la distance à la paroi (plus la distance est grande moins 

le niveau est élevé). 

 

Sur la Figure 5.4.a sont représentés les profils longitudinaux de température (selon x) pour 
différentes distances y à la paroi en faisant tendre le temps vers l’infini (régime permanent). 
On représente en rouge la zone chauffée expérimentalement. Comme sur la Figure 5.3.b, le 

niveau de température décroît en fonction de la distance à la paroi chauffante. 

 

La Figure 5.4.b. représente également les différents profils longitudinaux de température à y 
fixé pour différents nombres de Péclet (différentes vitesses de Darcy). Pour un même niveau 

W de chauffage, le niveau de température décroît en fonction de la vitesse. Le retour à zéro 
s’effectue en 2,5 longueurs de la source pour un nombre de Péclet de 10. Pour des nombres de 

Péclet importants, la baisse de température s’étend sur des distances supérieures en aval.  

 

La Figure 5.4.c représente les profils de température transverses aux temps longs (à x fixé). 
Les profils ont des formes similaires pour les positions de thermocouple se trouvant en face de 

la résistance chauffante. Le profil de température correspondant à la position x = 120 mm (en 
aval de la zone chauffée) est différent. Le niveau de température initial est le même qu’en x = 
50 mm mais la baisse de température est moins importante avec une concavité différente.  

 

Nous avons donc été capables de simuler les réponses en température du  modèle 

monocouche de Green. Le problème de ce modèle est qu’il n’est pas utilisable en bicouche. 

En effet, nous ne disposons pas des fonctions de Green dans cette configuration. 

 

Nous avons donc recours ici à la méthode des transformées de Fourier, méthode que 

nous allons maintenant expliciter. 
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Figure 5.3 a,b : Thermogrammes du modèle de Green, W = 1000 W.m-2 (5.2) 

Figure 5.4 a,b : Profil spatial du modèle de Green, W = 1000 W.m-2 (5.2) 

a) b) 

b) a) 
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5.1.2 - Modèle en Fourier 

  

Pour utiliser ce modèle, il faut écrire de nouvelles conditions limites pour résoudre 

l’équation de la dispersion thermique (3.4) avec s = 0 (la source est reportée en condition 
limite). 

 

Les conditions limites fixées sont : 

 

( ) ( ) ( )y

T
W x x l t

y
λ Η Η Η∂− = − −  ∂

 en y = 0 

0T =  à 0t =  

 

0T →  quand x → +∞  et x → −∞  
 

0T →  quand y → +∞                                                         (5.3) 
 

En pratique T = 0 en x = -L et x = L  avec L >> l (l correspond à la longueur du plan chauffant) 
 

On effectue une transformation de Laplace sur T 
 

( ) ( )
0

, , , ,ptT x y p e T x y t dt

+∞

−=∫                                     (5.4) 

 

On effectue une transformation de Fourier sur l’intervalle [-L L] : 
 

Figure 5.4.c : Profil spatial de température, W = 197 W.m-2, Pe = 21 

c) 



Chapitre 5 : Expérimentation et modélisation en proche paroi 

 

 119 

( ) ( ) ( ), , , , ,n

L

i x
n n

L

y p T y p e T x y p dxαθ α −

−

= =∫%
 avec n

n

L

πα =                   (5.4.a) 

 

Ces deux transformations successives appliquées à l’équation (3.4), nous permettent d’écrire: 

 

( ) ( )2
2 2

2

pp fn x t
n n n n n

y y y

c ucd
p i k

dy

ρρθ λα α θ θ
λ λ λ

 
 = + + =
 
 

                         (5.5) 

 

L’équation (5.5) intégrée sur [0 y] donne naissance à une relation quadripolaire entre les 
vecteurs température-flux (dans l’espace transformé) aux bornes de cet intervalle : 

 

( )
( )

( ) ( )
( ) ( )

( )
( )

0, , , ,

0, , , ,

n n n n

n n n n

p A y p B y p y p

p C y p D y p y p

θ θ
φ φ
     

=     
     

                              (5.6) 

 

avec ( )coshn n nA D k y= = , ( )1
sinhn n

y n

B k y
kλ

= , ( )sinhn y n nC k k yλ=  et en considérant la 

transformée de l’excitation pariétale ( ) ( )0, 1 ni l
n

n

W
p e

i p
αφ

α
−= −  

 

L’équation (5.6) s’écrit (en omettant l’argument p) et en reliant les conditions limites en y = 0 
et +∞ : 

 

( ) ( ) ( )
( ) ( ) ( )
0

0

n n n

n n n

B

D

θ φ
φ φ

= ∞ ∞
= ∞ ∞

    d’où ( ) ( )
( ) ( )0 0

n
n n

n

B

D
θ φ

∞
=

∞
                        (5.7) 

 

 

( )
( ) ( )1 1

lim tanh
n

n
y

n y n y n

B
k y

D k kλ λ→∞

∞
= =

∞
 

 

 

On peut donc écrire grâce aux différentes relations précédentes : 

 

( ) ( ) ( ) ( )1
, 0, , 0,nk y

n n n n

y n

y p e p F y p p
k

θ φ φ
λ

−= =                           (5.8) 

 

On revient dans l’espace temporel : 

 

( ) ( ) ( ) ( ) ( )1

0

, , , , , 0, d

t

n n n n nT y t T y t L y p f y y tα θ τ ϕ τ τ−= = = = −   ∫%                  (5.9) 

 

avec ( ) ( )1, ,n nf y t L F y p−=     et ( ) ( ) ( )H
0, 1 ni l

n

n

W t
t e

i
αϕ

α
−= −  
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On a ici ( )
( ) ( )

( ) ( )
1 2

1 2

1 2

1 2

1
, exp

p t
n n

y
p t

y n

y

c
F y p p K y

c
p K

ρ
λρ

λ
λ

  
  = − +
         +

 
 

 

 

avec ( )
( )
( )

2
p fx n

n n

p pt t

c
K i u

c c

ρλ α α
ρ ρ

= + . 

 

On peut écrire cette équation sous la forme : ( ) ( ),yn n nG p K F y p+ =  ce qui permet d’utiliser 

la propriété suivante de la transformation de Laplace : 

 

( ) ( )1 1K tL G p K e L G p− − −+ =                                                     (5.10) 

 

D’où : ( ) ( ) ( ) ( )
0

H
, 1 dn n

t

K t i l
n yn

n

W t
T y t e g e

i
ατ

τ τ
α

− −−
= −∫                            (5.11) 

 

avec 

( )( )
2

1

1 2

1 1
exp

4
yn yn

y p t

X
g L G

ttc πλ ρ
−  
 = = −  

 
   et     

( ) 1 2

p t

y

c
X y

ρ
λ

 
 =
 
 

 

 

On peut donc écrire : 

 

( )
( )

( )
( )

( )
( )
( )

2 2

4

0

1
, 1 d

p fxp t n n
p pt tyn

c
ct y i u

c c
i l

n

n y p t

W
T y t e e e

i c

ρλρ α α τ
ρ ρλ τα τ

τα π λ ρ

 
 − + −  −  = − ∫         (5.12) 

 

Le retour dans le domaine spatial s’écrit alors : 

 

( ) ( )
1

1
, , ,

2
n

N

i x
n

n N

T x y t T y t e
L

α

=− +

= ∑                                              (5.13) 

 

Nous obtenons alors les mêmes thermogrammes représentés sur la Figure 5.3.b. Les 

résidus (différence entre la température du modèle de Green et du modèle de Fourier) sont 

représentés sur la Figure 5.4.d pour le thermogramme de la Figure 5.3.b à y = 3 mm. On 
constate que ceux-ci sont nuls. Le temps de calcul de ce dernier modèle est plus long que pour 

le modèle de Green. De plus, pour obtenir une convergence complète du modèle (5.13), il faut 

choisir les bons paramètres N et L. Pour obtenir une convergence complète, nous avons pris 
ici L = 50 cm et N = 200. 
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5.2 - Conception du banc expérimental 
 

 

5.2.1 - Dispositif expérimental 

 

Nous avons utilisé une conception similaire à celle utilisée pour le dispositif 

expérimental précédent (cf. chapitre 2). Le milieu poreux (lit consolidé de billes de verre) est 

contenu dans une boite (60 × 15 × 20 cm3) en Altuglas coulé (et non plus extrudé), ce qui 
permet de disposer d’un matériau plus résistant (Figure 5.5). Les billes sont tenues en place 

par deux grilles en acier inoxydable et deux plaques perforées en Altuglas

 dans un volume 

de 40 × 15 × 20 cm3. Le choix de ces dimensions est justifié de la même façon que dans le 
dispositif expérimental précédent. La différence réside dans la largeur de la boite. La boite 

sera séparée en deux par une paroi amovible. Chacune des deux zones de mesures a pour 

dimensions environ 40 × 7,5 × 20 cm3. On aura donc une complète symétrie. Cette symétrie 
permettra de contrôler complètement le flux de chaleur. 

Un bouchon de vidange a été ajouté pour permettre de vider rapidement la boite. 

L’air est aspiré grâce au ventilateur décrit précédemment (cf. chapitre 2). La boite étant plus 

volumineuse que la précédente, la vitesse risque d’être moins importante (d’où des nombres 

de Reynolds plus faibles). Pour essayer de limiter cet effet, nous avons augmenté la section de 

passage de l’air. Les tuyaux en PVC utilisés ont désormais un diamètre intérieur de 150 mm. 

 

 

Figure 5.4.d : Résidus entre le modèle de Green et de Fourier 
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La paroi interne est réalisée à l’aide d’une plaque de carbone-epoxy de 2 mm 

d’épaisseur. Ses dimensions sont de 40 × 20,4 cm2. Celle-ci est insérée dans une glissière 
usinée dans les parois de la boite en Altuglas. Les contraintes liées au choix du matériau 

constituant cette paroi concernent sa rigidité et son caractère isolant (un matériau souple 

aurait, au contact du poids des billes, fléchi au centre). La plaque est donc constituée d’un 

composite de carbone-epoxy tressé. Les tresses de carbone permettent d’obtenir une grande 

résistance mécanique ; le matériau est ainsi homogène et isotrope dans son plan (même 

propriétés mécaniques dans toutes les directions). Le module de Young dans les deux 

directions du plan est de 70 Gpa, la conductivité thermique dans la direction normale au plan 

serait comprise entre 7,7 et 13,3 W.m
-1
.K
-1
 selon le constructeur et la chaleur massique est 

comprise entre 863 et 929 J.kg
-1
.K
-1
. 

 

 

5.2.2 - Chauffage électrique 

 

Pour assurer un chauffage en paroi, nous avons fait coller  de chaque coté de la plaque 

deux fines résistances électriques chauffantes (Figure 5.6) déposées sur un film polyamide (le 

collage se fait sous vide pour qu’il y ait une meilleure adhérence). Ce matériau est un 

matériau fin, semi-transparent dans l’infrarouge et bénéficiant d’une excellente rigidité 

diélectrique. L’épaisseur de chacune de ces deux résistances est de 250 µm. Les deux 

résistances de 30 Ω chacune ont une dimension de 10 × 20 cm2. La valeur de la résistance est 
indépendante de la température et la résistance chauffante a une bonne tenue jusque 250°C. 

Comme pour le banc expérimental précédent, la puissance de chauffage est enregistrée en 

continu. Le dispositif électrique est le même, nous avons juste connecté les deux résistances 

en parallèle au circuit afin d’obtenir une seule résistance équivalente de 15 Ω. La puissance 

Figure 5.5 : Dispositif expérimental 
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mesurée grâce à notre système d’acquisition est alors divisée par 2 pour obtenir, la puissance 

surfacique fournie (W) de chaque coté de la plaque. 
 

La résistance chauffante est recouverte sur ses deux faces par un film polyimide 

KAPTON

 (épaisseur de l’ordre de 50 µm). Le KAPTON


 peut être utilisé tant aux hautes 

qu’aux basses températures. Il s’agit d’un bon isolant électrique. Sa conductivité thermique 

est de 0,12 W.m
-1
.K
-1
 et sa chaleur spécifique est de 1,09 J.g

-1
.K
-1
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.3 - Thermocouples 

 

Les températures sont toujours mesurées par des thermocouples de type E de 127 µm 

de diamètre. 

Les thermocouples sont étalonnés de la même façon que précédemment. 

Le but du dispositif expérimental est de quantifier les phénomènes qui se passent près de la 

paroi, il faut donc que les thermocouples soient très proches de la paroi. Les survitesses en 

paroi surviennent à une distance de l’ordre d’un rayon de billes et donc à 1 mm de la paroi 

(pour les billes de 2 mm). Le premier thermocouple sera placé à 1 mm de la paroi puis les 

thermocouples suivants seront espacés de 1 mm jusqu’à atteindre 4 mm. Pour mesurer la 

température de la résistance chauffante, 3 thermocouples ont été collés sur le film de 

KAPTON

. 5 thermocouples sont placés à une distance de 3,5 cm de la paroi. Enfin, un 

thermocouple (numéroté 32) est placé à l’entrée du lit sur son axe de symétrie (dans 

l’écoulement du fluide d’alimentation). Le placement de ces différents thermocouples est 

indiqué sur la Figure 5.7. 

 

 

 

 

Figure 5.6 : Résistance chauffante et emplacement de la résistance sur la plaque (paroi) 
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Nous avons placé au total 34 thermocouples au sein du milieu poreux et 1 en dehors. 

Une des difficultés dans la réalisation du banc concerne le positionnement des thermocouples. 

Les thermocouples sont séparés de 1 mm : la fixation par vis utilisée pour le dispositif 

expérimental précédent n’est plus envisageable. 

La traversée de la paroi se fait par des trous très fins de 130 µm de diamètre, pour des 

thermocouples de 127 µm. Les thermocouples sont enfilés au travers d’un joint de caoutchouc 

assurant l’étanchéité et puis enfilés ensuite au travers d’une bride (il y a une bride par série de 

thermocouples) (Figure 5.8). Les thermocouples sont regroupés par séries de 6 ou 5 et sont 

tout d’abord légèrement tendus. Après le remplissage de la boite par les billes de verre, les fils 

sont tendus et on vient fixer les brides par des vis de fixation. 

Les thermocouples placés à y = 35 mm et les thermocouples 25 et 26 sont fixés grâce au 
système de vis utilisé dans le dispositif expérimental précédent. 

 

 

Figure 5.7 : Positions des thermocouples dans le                     
milieu poreux, les dimensions sont données en mm 
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Le dispositif expérimental complet est montré en Figure 5.9. La procédure expérimentale pour 

réaliser les expériences est alors la même que celle décrite au chapitre 2. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 : Système de fixation des thermocouples 

Figure 5.9 : Dispositif expérimental complet 
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5.3 - Résultats expérimentaux 
 

 La Figure 5.10 présente les premiers résultats expérimentaux. Les thermogrammes ont 

une forme similaire à ceux mesurés précédemment au cœur du milieu. 

 

 
 

  

 

 

Afin de mettre en évidence un « effet de paroi », les courbes théoriques de l’équation (5.2) et 

expérimentales sont superposées sur la Figure 5.11. Les positions des thermocouples utilisés 

dans le modèle (5.2) sont les positions nominales, les coefficients de dispersion sont ceux 

calculés précédemment (chapitre 4) et la vitesse est la vitesse de Darcy qui est mesurée avec 

le fil chaud. Les courbes ne se superposent pas. Il y a une réelle différence entre les deux 

séries de courbes même si la vitesse mesurée est très imprécise, l’écart de température entre 

mesure et modèle est positif ou négatif selon les thermocouples. Sur la Figure 5.12, est 

représenté le signal d’un même thermocouple (TC 2) à différentes vitesses (le lit n’a pas subi 

de reconstruction entre ces différentes expériences). Pour les nombres de Reynolds égaux à 60 

et 90, la puissance est de 126 W.m
-2
 et pour des nombres de Reynolds de 30 et 75, la 

puissance est de 197 W.m
-2
. La Figure 5.12 représente les thermogrammes recalculés et 

expérimentaux, les courbes ne se superposent pas. 

 

Les Figures 5.13 et 5.14 montrent les résidus pour différents nombres de Reynolds pour les 

thermocouples 2 et 13. On constate que le signe (négatif ou positif) des résidus n’est corrélé ni 

Figure 5.10 : Températures expérimentales « proche paroi », u = 0,71(± 0,11) m.s-1 et 
W = 126,5 W.m-2 
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à la vitesse ni à la position du thermocouple. Ceci est certainement une signature des effets de 

survitesse en paroi. 

 

Le modèle à une température ne permet pas de décrire les phénomènes observés pour le 

chauffage en paroi, il est donc nécessaire d’utiliser un modèle plus complet. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 : Températures expérimentales 
(traits pleins) et recalculées (traits en pointillés) 

Figure 5.12 : Températures expérimentales et 
recalculées pour le thermocouple 2 

Figure 5.13 : Résidus à différents nombres de 
Reynolds pour le thermocouple 2 (x = 20 mm et     
y = 3 mm) 

Figure 5.14 : Résidus à différents nombres de 
Reynolds pour le thermocouple 13 (x = 80 mm et 
 y = 1mm 
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5.4 - Perspectives 
 

 

 Le dispositif expérimental avec chauffage en paroi permet de produire des 

thermogrammes de bonne qualité. Les mesures que nous avons réalisées, permettent de mettre 

clairement en évidence les effets thermiques en proche paroi. Le modèle de Green mis en 

place donne une idée générale du profil de température que nous observons mais ne permet 

pas de décrire complètement le phénomène. Le modèle de Fourier « une couche » a été validé. 

Il ne prend pas en compte les différents phénomènes se produisant près de la paroi décrits 

dans la littérature (cf. chapitre 1). Il est donc nécessaire à partir du modèle simple 

« monocouche » de réaliser un modèle « bicouche » qui permettrait de coupler la zone à cœur, 

dont les propriétés ont été identifiées (cf. chapitre 4) et la zone en proche paroi (Figure 5.15). 

 Ce nouveau modèle fera apparaître de nouveaux paramètres qu’il faudra estimer avec 

la même technique que nous avons utilisé au cœur du milieu. Ces nouveaux paramètres sont : 

 

�  la largeur de la « pseudo-couche limite » δδδδ de l’ordre du rayon des grains  
� la vitesse en proche paroi : u’ 

� la porosité en proche paroi : εεεε’ 
� les coefficients de dispersion en proche paroi : λλλλx’  et λλλλy’  
� les positions des thermocouples 

 

 

Ce modèle bicouche est déjà écrit (cf. Annexe 5) ; une étude de sensibilité serait nécessaire 

afin de savoir quels paramètres peuvent être estimés correctement. 

 

 

 
Figure 5.15 : Modélisation avec le modèle « bicouche » 

εεεε 
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Conclusion et perspectives 

 

 

 
Dans ce travail, nous avons adapté le banc de caractérisation de la dispersion en cœur 

du milieu granulaire du laboratoire à un écoulement gazeux. Un lit fixe constitué soit de billes 

de verre de 2 ou de 3 mm soit d’un grain poreux (support de catalyseur) est parcouru par un 

écoulement d’air ou d’azote. Ce lit est soumis à un chauffage linéique qui permet d’éviter les 

effets thermiques en proche paroi lorsque l’on mesure des températures à cœur. Ces différents 

lits granulaires ont été caractérisés. Nous avons estimé avec une bonne précision les différents 

paramètres du problème: coefficients de dispersion longitudinal et transversal, la vitesse de 

Darcy et les positions des thermocouples. La qualité de ces estimations a pu être validée par 

des simulations de Monte Carlo. Cette étude a également permis de valider le modèle à une 

température pour des grains non poreux (billes de verre) et aussi pour des grains poreux 

(support de catalyseur) parcourus par un écoulement gazeux. 

 

 

Nos résultats ont été comparés avec ceux effectués, dans la même configuration, pour 

un écoulement d’eau au travers d’un lit de billes de verre. Cela nous a permis de proposer une 

corrélation unique donnant le coefficient de dispersion longitudinal pour trois systèmes 

différents en fonction du nombre de Reynolds. Nos résultats sont ici en adéquation avec ceux 

de la littérature. Il serait intéressant de procéder à des caractérisations plus larges en utilisant 

différents fluides et différents solides afin de valider ou d’améliorer cette corrélation.  

 

 

Le coefficient de dispersion transversal a pu être estimé avec une très bonne précision 

(contrairement au cas eau / billes de verre). Nos résultats nous ont permis d’établir une 

corrélation linéaire pour des nombres de Reynolds de 15 à 100. Cet intervalle correspond au 

régime inertiel. Il semble que pour le régime de Darcy (nombre de Reynolds de 0 à 15), le 

coefficient de dispersion transversal soit constant. Il est à noter que nos résultats ne sont pas 

en accord avec la littérature où ce coefficient est mal estimé. Pour confirmer la constance de 

ce paramètre en régime de Darcy, il serait possible de réaliser les mêmes expériences à de très 

faibles débits avec non plus un système d’alimentation par aspiration d’air mais en utilisant 

des bouteilles d’air comprimé. Ceci permettrait peut-être d’atteindre un régime impossible à 

avoir avec notre type d’installation et ceci pour des nombres de Reynolds de 5 à 15, niveaux 

pour lesquels la convection naturelle ne doit pas encore trop se faire sentir. 

 

La maîtrise du coefficient transverse est cruciale en situation industrielle car c’est 

celui-ci qui assure le refroidissement vers la paroi du lit lorsque ce dernier est le siège d’une 

réaction exothermique. Il serait intéressant de réaliser des expériences avec des mélanges de 

billes de diamètres différents.  

Enfin dans cette partie sur la caractérisation thermique en cœur du milieu granulaire, il 

serait certainement intéressant d’effectuer de mesures sur un réacteur permettant de mieux 
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s’approcher du process industriel. Il serait alors possible de valider plus complètement notre 

approche. 

 

 Nous avons également mis au point un banc de caractérisation des effets thermiques en 

proche paroi en excitant le lit par un chauffage en paroi. Les premiers résultats expérimentaux 

sont de bonne qualité et indiquent que le modèle à une température tel que nous l’utilisions ne 

permet pas encore de décrire les phénomènes causés par la paroi (survitesses créées par des 

variations locales de porosité). Un nouveau modèle analytique basé sur une transformation de 

Fourier spatiale doit pouvoir permettre de prendre en compte les effets proches paroi en 

utilisant une description « bicouche » du milieu (couche semi-infinie à cœur et couche en 

proche paroi). Il serait intéressant de le tester et de le l’appliquer sur nos premières mesures. Il 

faudrait, en parallèle, étudier l’identifiabilité de tous les paramètres de ce modèle bicouche et 

tenter de dégrader la couche en proche paroi en une condition limite couplant thermiquement 

couche à cœur et paroi du lit. 
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Annexe 1 : nouvelle configuration de chauffage  

 

 

 
Nous avons étudié une autre configuration d’excitation (Figure 2.1) pour voir si une 

amélioration des estimations était possible pour l’air.  

 

L’abscisse des thermocouples (y) a été optimisée. Plusieurs profils de sensibilité et de 
simulations de Monte Carlo ont été effectués, il est apparu qu’à y = 5 mm, nous avions les 
meilleurs résultats. 

Nous avons superposé deux fils chauffant. Les deux sources sont perpendiculaires à 

l’écoulement (Figure 2.1) et sont décrites par : 

( ) ( )000 −′−′= yxQs δδ  

( ) ( )'1'

11 yyxxQs −′−′= δδ  

 

Nous utilisons la même méthode que celle utilisée dans le paragraphe 1.1 et 1.2 et nous 

obtenons la réponse en température : 
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  +  

∫                                                                 

 

 

 

L’évolution temporelle de la température a la même allure que celle de la Figure 2.2 de la 

Partie 1. Par contre, les profils des sensibilités changent légèrement (figure 2.2).  

Nous avons fait figurer ici 2 nouveaux paramètres x1 et y1 (position du thermocouple de la 
source S1) qui sont estimés et qui sont également à associer à une contrainte sur leur valeur 

nominale (comme les thermocouples) en mode α5.  
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On constate que la sensibilité au coefficient λy est désormais positive et que la sensibilité à la 

vitesse est négative. De plus, on constate que le signal est plus sensible à λx et que les 

sensibilités à λy et à y ne semblent plus être corrélées. 
 

 Simulations de Monte Carlo 

 

Des simulations d’inversion par la méthode de Monte Carlo ont été effectuées. 

On constate, par rapport aux simulations de Monte Carlo effectuées sur une seule source, que 

les trois paramètres λx, λy et u sont moins biaisés. Par contre λy est plus dispersé, la dispersion 

est deux fois plus importante et le biais est 5 fois moins important. 

 

L’estimation du coefficient transversal étant satisfaisante dans le cas d’une seule source, nous 

ne pensons pas que la réalisation expérimentale de la configuration à deux sources soient 

nécessaire. 

 

 

 

 Biais (%) Ecart type (%) 

λx 1 1 

λy 1 4 

u 0.3 0.3 

 

 

 

 

Figure 2.1 : nouvelle configuration 
d’excitation avec deux fils chauffants et 
positions des thermocouples 

Figure 2.2 : sensibilités à Pe = 32 pour deux sources 
parallèles 

Ecart - type et biais de 400 simulations de Monte Carlo 
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En conclusion, ce type d’excitation permet d’améliorer l’estimation sur λx (biais diminué) et 

sur la vitesse (biais diminué). Par contre il y a une dégradation de l’estimation pour le 

coefficient transverse λy (dispersion augmentée). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Résultats de 400 simulations de Monte Carlo en mode α5 
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Annexe 2 : prétraitement du signal 
(extrait de la thèse de Thomas Metzger) 
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Annexe 3 : équations de fermeture 

 

 

Les équations de fermeture et les conditions limites associées ainsi que l'expression 

correspondante du tenseur de dispersion sont rappelées ci-dessous : 

Les fonctions f
r
 et g

r
, sont les solutions de : 

 ( ) ( ) ( )











−−=∇−⊗∇

β
β

ββ
βββββ ρ

ρε
ρλρ v

C

C
vCffvC

p

p

pp

rrrrrr 2. , (A) 

  

 ( ) ( ) β
β

ββ

σσ ρ

ρε
ρλ v

C

C
Cg

p

p

p

rr =∇− 2 , (B) 

 

avec sur βσA  :  gf
rr

=  et  ( )σββσσβσββσ λλλλ −+⊗∇=⊗∇ ngnfn
rrrrrrr

.. . (C) 

 

( ) ( ) dVfv
V

CdAgn
V

dAfn
V

I
V

p

AA

eff

rrrrrr
∫∫∫ ⊗−⊗+⊗++=
ββσβσ

β
β

ββσβ
σ

σσβσ
β

ββσσββ ρελελελελελ 111

  (D) 

 

On procède ensuite à une analyse des ordres de grandeur pour comparer les cas eau-verre et 

air-verre. 

• On suppose la vitesse moyenne fixée ainsi que les propriétés thermophysiques de la 

phase solide.  

 

D'après l'équation (B), on a : 

 








=∇− g
d

Og
2

2 σ
σ

λλ r
 

Dans le cas de l'eau : ( ) ( ) ( )( )β
βσ

β
β

ββ

σ
ρ

ρ

ρε
ρ vCOv

C

C
C p

p

p

p

rr =  puisque 
( )

=
eaup

eaup

C

C

ρ
ρ

1.47 

 

Dans le cas de l'air : ( ) ( ) ( )( )β
βσ

β
β

ββ

σ
ρ

ρ

ρε
ρ vCOv

C

C
C p

p

p

p

rr <<  puisque 
( )

≈
airp

airp

C

C

ρ
ρ

10
-3
. 

 

A l'interface solide-fluide, gf
rr

=  soit ( ) ( )gOfO =  (en accord avec l'analyse des ordres de 

grandeur opérée au paragraphe II.1. du chapitre I eq.(19)). 

On en déduit facilement que : eauair gg <<  et que eauair ff << . 

En reportant dans la relation (D), on obtient, pour βv
r
fixée : eaueffaireff ,, λλ << (avec en plus 

eauair λλ < ). 

• On fixe le nombre de Péclet  
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Avec eauair aa 100≈  alors 
β

β
β

β eauair
vv 100≈  

Dans ce cas, les ordres de grandeur des fonctions f et g calculées pour l'eau et pour l'air sont 
pratiquement les mêmes.  

• Si on fixe la valeur du nombre de Reynolds  

Avec eauair νν 15≈ , 
β

β
β

β eauair
vv 15≈ , on retrouve à peu près le cas de comparaison à 

vitesse fixée. 

 



Annexe 4 

 143 

Annexe 4 : solution de l’équation proche-paroi 

utilisant les fonctions de Green 

 

La température moyenne évolue selon l’équation de dispersion : 

 

( ) ( ) ( ) ( ). . ,p pt f

T
c T c T s t

t
ρ ρ

∂
= ∇ ∇ − ∇ +

∂
λλλλ D

u r                       (1) 

avec ( ), ,x y z=r . 

( ),s tr  est une source volumique ( puissance thermique par unité de volume) dissipée dans le 

milieu granulaire homogénéisé. Dans le cas général, c’est une fonction de l’espace r et du 

temps t. λλλλ est ici le tenseur de dispersion thermique et uD la vitesse de Darcy (notée ici u). 
Dans le cas d’un milieu granulaire isotrope et homogène, de porosité externe ε, traversé par 
un écoulement  de vitesse uD selon l’axe Ox et contenant une source, le modèle à une 
température s’écrit : 

 

( ) ( )
2 2 2

2 2 2p x y z p Dt f

T T T T T
c c u s

t x y z x
ρ λ λ λ ρ ∂ ∂ ∂ ∂ ∂= + + − + ∂ ∂ ∂ ∂ ∂ 

           (2) 

 

où T est la température moyenne enthalpique définie par l’équation (1) pour laquelle nous 
avons enlevé les crochets pour simplifier la notation. 

 

Une transformation exponentielle telle que (avec ( ), ,x y z=r ) : 

 

( ) ( ) ( ), , ,T t F t f t=r r r                                                        (3) 

 

 

avec ( ), ax btf t e −=r                                                        (4) 

 

où 
( )
2

p Df

x

c u
a

ρ

λ
=  et 

( )
( )

2
2

4

p Df

p xt

c u
b

c

ρ

ρ λ
= . 

 

permet d’obtenir l’équation suivante : 

 

( )
2 2 2

2 2 2p x y zt

F F F F
c S

t x y z
ρ λ λ λ∂ ∂ ∂ ∂= + + +

∂ ∂ ∂ ∂
                              (5) 

 

avec le terme source 
f

s
S = .  

 

Cette fonction F peut être ici considérée comme une fonctionnelle c’est à dire qu’elle dépend 
de l’excitation ( ),s tr . Nous écrirons donc dorénavant ( )( ), ; ,F t s tr r . 
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Pour un milieu infini avec une condition limite ( ) 0F → ∞ =r , une condition initiale 

( ), 0 0F t = =r , et une source, qui est une impulsion de Dirac spatiale et temporelle 

( ) ( )' 's t tδ δ δ= − −r r , la fonction de Green du problème est donnée par :  

 

 

( ) ( )
( )

( ) ( ) ( )

( )

2 2 2

4

3 3 3

1
, ; , / ,

8

x y z

x x y y z z

B t t

x y z

F r t s G t t e
B t t

λ λ λ

δ
λ λ λ π

′ ′ ′− − −
+ +

−
′−′ ′= =

′−
r r   (6b)  

 

avec ( )
1

p t

B
cρ

=  

 

La fonction de Green G permet de calculer la solution de l’équation (2) pour n’importe quelle 
source par l’intégration suivante : 

 

( ) ( ) ( )( ) ( ) ( )
3

3

0

, , , ; , , / , , d d

t

ax bt B s
T t f t F t s t e G t t t t

f
−

ℜ

′ ′ ′ ′ ′ ′= = ∫ ∫r r r r r r r r      (7) 

  

 

 

La source de chaleur est ici égale à : 

 

[ ]( , ) ( ) ( ) ( ) ( )s t W y H x H x l H tδ= − −r  

 

avec H la fonction de Heaviside, 

 δ  la distribution de Dirac. 

 

On introduit le terme source dans l’équation 7 et on obtient : 
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On intègre l’équation (8) sur y’ : 

( ) 2

' 0
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( )exp ( ')
( , ) exp

( ') 4 ( ')4

( ) ( ')
exp( ( ')) exp ' '
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∫

∫
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                       (9) 

 

On rappelle ici que : 

 

2

0

2
( ) exp ( )

w

erf w z dz
π
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et on pose : 
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On obtient donc : 
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et l’on peut désormais calculer l’intégrale xI  : 
2

1

2
2

2

1
exp ( )

4

Z

x

Z

a
I Z dZ

kk
= − +∫  

[ ]
1/ 2 2

1 2

( )( ')
exp ( ') ( ) ( )

( ) ( )

p fx
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p t p t
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ρ ρ
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              (11) 

 

 

Les termes Z1 et Z2 sont définis par les équations suivantes : 
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On obtient ici 
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Il est enfin possible de faire le changement de variable : 
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Annexe 4 : solution de l’équation proche-paroi 

utilisant les fonctions de Green 

 

La température moyenne évolue selon l’équation de dispersion : 

 

( ) ( ) ( ) ( ). . ,p pt f

T
c T c T s t

t
ρ ρ

∂
= ∇ ∇ − ∇ +

∂
λλλλ D

u r                       (1) 

avec ( ), ,x y z=r . 

( ),s tr  est une source volumique ( puissance thermique par unité de volume) dissipée dans le 

milieu granulaire homogénéisé. Dans le cas général, c’est une fonction de l’espace r et du 

temps t. λλλλ est ici le tenseur de dispersion thermique et uD la vitesse de Darcy (notée ici u). 
Dans le cas d’un milieu granulaire isotrope et homogène, de porosité externe ε, traversé par 
un écoulement  de vitesse uD selon l’axe Ox et contenant une source, le modèle à une 
température s’écrit : 

 

( ) ( )
2 2 2

2 2 2p x y z p Dt f

T T T T T
c c u s

t x y z x
ρ λ λ λ ρ ∂ ∂ ∂ ∂ ∂= + + − + ∂ ∂ ∂ ∂ ∂ 

           (2) 

 

où T est la température moyenne enthalpique définie par l’équation (1) pour laquelle nous 
avons enlevé les crochets pour simplifier la notation. 

 

Une transformation exponentielle telle que (avec ( ), ,x y z=r ) : 

 

( ) ( ) ( ), , ,T t F t f t=r r r                                                        (3) 

 

 

avec ( ), ax btf t e −=r                                                        (4) 

 

où 
( )
2

p Df

x

c u
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ρ

λ
=  et 

( )
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2
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4

p Df

p xt

c u
b
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ρ

ρ λ
= . 

 

permet d’obtenir l’équation suivante : 

 

( )
2 2 2

2 2 2p x y zt

F F F F
c S

t x y z
ρ λ λ λ∂ ∂ ∂ ∂= + + +

∂ ∂ ∂ ∂
                              (5) 

 

avec le terme source 
f

s
S = .  

 

Cette fonction F peut être ici considérée comme une fonctionnelle c’est à dire qu’elle dépend 
de l’excitation ( ),s tr . Nous écrirons donc dorénavant ( )( ), ; ,F t s tr r . 
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Pour un milieu infini avec une condition limite ( ) 0F → ∞ =r , une condition initiale 

( ), 0 0F t = =r , et une source, qui est une impulsion de Dirac spatiale et temporelle 

( ) ( )' 's t tδ δ δ= − −r r , la fonction de Green du problème est donnée par :  
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avec ( )
1

p t

B
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=  

 

La fonction de Green G permet de calculer la solution de l’équation (2) pour n’importe quelle 
source par l’intégration suivante : 
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La source de chaleur est ici égale à : 

 

[ ]( , ) ( ) ( ) ( ) ( )s t W y H x H x l H tδ= − −r  

 

avec H la fonction de Heaviside, 

 δ  la distribution de Dirac. 

 

On introduit le terme source dans l’équation 7 et on obtient : 
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On intègre l’équation (8) sur y’ : 
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On rappelle ici que : 
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On obtient donc : 
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et l’on peut désormais calculer l’intégrale xI  : 
2

1

2
2

2

1
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a
I Z dZ

kk
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[ ]
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              (11) 

 

 

Les termes Z1 et Z2 sont définis par les équations suivantes : 
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On obtient ici 
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Ou encore : 
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Il est enfin possible de faire le changement de variable : )'(
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, ce qui 

conduit à l’expression suivante : 
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Annexe 5 : solution du modèle « bicouche » 

 

 
 

On considère le problème bidimensionnel représenté en Figure 1 : une paroi (y = 0) limite un  

 

Fig. 1   Géométrie du problème : zone à cœur et zone en proche paroi 

 

 

milieu granulaire semi-infini (y > 0).Loin de la paroi (y  > δ) le milieu granulaire homogène, 
traversé par un écoulement fluide de vitesse superficielle uniforme u parallèle à l’axe des x, 
peut être modélisé par le modèle à une température T, avec des coefficients de dispersion λx et 

λy et une porosité ε. On appelle ρcf et ρcs les chaleurs volumiques respectives du fluide et du 
solide et ρct (=ε ρcf  + (1 - ε ) ρcs ) la chaleur volumique totale. En régime thermique 
transitoire, l’équation de convection-diffusion du modèle à deux températures dans ce milieu 

( δ≥y  ) s’écrit : 

 

( ) ( )
2 2

2 2x y p pt f

T T T T
c c u

x y t x
λ λ ρ ρ∂ ∂ ∂ ∂+ = +

∂ ∂ ∂ ∂
   (1) 

 

A proximité de la paroi, du fait des variations locales de porosité, la vitesse ne peut plus être 

considérée comme uniforme et elle varie avec y. Il en est probablement de même avec les 
deux coefficients de dispersion. Néanmoins nous modélisons la zone en proche paroi par une 

couche homogène de porosité ε’ et de vitesse u’ uniformes et de coefficients de dispersion λx
’
 

et λy’ constants. On appelle ρct’(=ε’ ρcf  + (1 - ε’ ) ρcs ) la chaleur volumique totale de cette 
couche. Il s’agit là d’une couche homogène équivalente, d’épaisseur δ,  dont les porosités et  
vitesse superficielle équivalentes, pour un lit de sphères monodisperses de diamètre d, 
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peuvent être calculées d’après les travaux de Holger Martin [Martin, 1978], qui a supposé  δ = 
d/2 et qui a alors intégré le profil de porosité  sur la couche hétérogène pour lui affecter une 
porosité équivalente: 

 

ε’ = 0,487 (lit d’extension infinie en y)   (2) 

 

En écrivant les pertes de pression sur chacune des deux couches à l’aide d’une loi d’Ergun, 

Holger Martin a pu calculer le rapport des vitesses superficielles, qui s’écrit de la manière 

suivante,  lorsque la couche homogène est d’épaisseur infinie : 
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L’équation de convection dispersion à laquelle obéit la température T ’ dans la couche 
homogène équivalente en proche paroi s’écrit alors (pour δ≤≤ y0 ) : 

 

t

T
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2
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ρρλλ    (4) 

 

On excite la paroi à l’aide d’un flux imposé sur une hauteur l  de la paroi, ce qui correspond à 

la condition limite suivante : 

 

0en
 et  0 pour0

0pour),('
' =

><
≤≤

=
∂
∂− y

xx

xtx

y

T p
y

l

lϕ
λ  (5) 

 

On suppose que pϕ  est nul à l’instant initial et on se donne également une condition initiale 

uniforme : 

 

T  =  T ’  = 0   à  t = 0     (6) 

 

On se donne une condition limite de milieu semi-infini : 

 

∞+→→ yT quand0    (7) 

 

Les conditions limites en x pour les deux couches s’écrivent rigoureusement de la façon 
suivante :  

 

∞−+→→
∞−+→→

/quand0'

/quand0

xT

xT
   (8) 
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La condition en x = + ∞  correspond au fait que le chauffage pariétal s’effectue sur une 
hauteur limitée, ce qui signifie que, pour un milieu infiniment épais en y, les  températures des 
deux couches vont revenir à un niveau zéro loin en aval de la zone chauffée.  

 

Afin de permettre une résolution numérique de ce problème, nous allons remplacer les 

conditions limites précédentes par : 

 

LxxT

LxxT

===
===

et0en0'

et0en0
  (9)  

 

avec : l>>L . Ceci signifie que la vitesse u est suffisamment grande pour que l’échauffement 

ne diffuse pas en amont de la zone de chauffe. La longueur L devra en outre être prise 
suffisamment grande pour que l’échauffement du fluide en un point de la zone à cœur, où l’on 

va observer la température T, ne soit pas affecté par son éventuelle augmentation. Ceci 
signifie qu’il faudra que L dépasse un certain seuil qui sera déterminé par simulation 
numérique. 

 

Les conditions d’interface entre la couche à cœur et la couche en proche paroi sont les 

suivantes (égalités des températures et des flux dispersifs transverses) : 

 

δλλ
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  (10) 

 

 

2. Résolution semi-analytique du problème 

 

On va chercher à résoudre le système couplé des deux champs de température vérifiant les 

équations (1)-(4) et les conditions aux limites et aux interfaces  (5, 7, 9, 10) et la condition 

initiale (6). 

 

2.1 Traitement de la zone à coeur 

 

On fait tout d’abord le changement de fonction inconnue suivant (transformation dite 

« exponentielle ») : 
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avec)(exp ==−=   (10)  

 

Ceci permet de supprimer le terme convectif dans l’équation (1) qui devient : 
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avec les conditions initiale et limites suivantes : 

 

0),,ou0(0),,(0)0,,( *** ===∞+=== tyLxTtyxTtyxT  (12) 
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On effectue ensuite une transformation de Laplace : 

 

ttptyxTpyxT d)(exp),,(),,(
~

0

** −= ∫
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   (12) 

 

qui transforme l’équation (11) en : 
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avec les conditions initiale et limites suivantes : 

 

0),,(
~* =∞+= pyxT      (14a) 

 

0),,ou0(
~* == pyLxT      (14b) 

 

Les fonctions propres en x du problème (13)-(14b) sont les fonctions : 
 

∞== ...3,2,1,et/avec)(sin nLnx nn παα    

 

On effectue donc une transformation intégrale à l’aide de ces fonctions, avec la température 

transformée : 
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   (15) 

 

Cette nouvelle température vérifie l’équation (13) qui ,une fois transformée, s’écrit, en tenant 

compte des conditions aux limites (14b):  
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Si l’on introduit la triple transformée *~
nϕ

)
 de la densité de flux dispersif transverse :  

 

xtxtptbxatyxpy n

L

n dd)(sin)(exp)(exp),,(),(~
0 0

* αϕϕ −+−= ∫ ∫
∞)

 (21) 

 

y

T
tyx y ∂

∂−= λϕ ),,(:avec  

 

il est possible d’écrire une relation quadripôlaire entre les vecteurs température-densité de 

flux transformés correspondant à une couche d’épaisseur e = (y  - δ) dans la zone à cœur :
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avec : 
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Si l’on écrit l’équation (22) pour y tendant vers l’infini, en transformant la condition (14a) qui 

devient 0)(
~* =+∞=yTn

)
, on obtient un système de deux équations qui s’écrit, après 

élimination de )(~* +∞=ynϕ
)

, en omettant dorénavant l’argument p pour les transformées: 
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Zn est donc ici une impédance de couche semi-infinie. On peut réécrire cette équation sous la 

forme suivante (en omettant l’argument p pour les transformées): 
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ce qui permet, par inversion matricielle de l’équation (22), de calculer les vecteurs 

température-flux en tout point y > δ  de la zone à cœur à partir du flux à l’interface )(~* δϕ n

)
 : 
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2.1 Raccordement avec la zone en proche paroi 

 

On peut utiliser exactement la même démarche pour relier les vecteurs température-flux en 

paroi (y = 0) aux mêmes vecteurs à la limite (y = δ) de la zone en proche paroi. Il suffit cette 
fois-ci de partir sur une transformation exponentielle de la température T ’ : 
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L’équation (4) s’écrit alors : 
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On utilise ensuite exactement les mêmes transformées (Laplace et Fourier sinus) de la 

température T ’*, ce  qui conduit à l’équation suivante, en utilisant les conditions (6) et (9) : 
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Les transformées de la température et du flux sont alors définies par : 
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ce qui permet d’introduire le quadripôle de la couche en proche paroi : 
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avec : 
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Il reste à raccorder les équations (25) et (29) par les conditions d’interface (10). La condition 

d’égalité des températures s’écrit, après une transformation exponentielle différente de chaque 

côté de l’interface : 
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Après transformation de Laplace, on obtient : 
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On effectue alors la transformation de Fourier sinus en x : 
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et on exprime alors *'
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T  par son spectre en Fourier-sinus 
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 , à l’aide de la relation 

d’inversion : 
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La substitution de (34) dans le terme à intégrer de l’équation (33) conduit à : 
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On trouve, après intégration : 
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si k ≠ n   et : 
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Dans le cas particulier où les deux couches ont les mêmes propriétés, on a a = a’ et l’on 
retrouve bien : Enk = 0 si si k ≠ n et Enn = 1 (en passant à la limite). 

 

Pour exploiter la relation (35), il faut tout d’abord tronquer la longueur des spectres utilisés, 

c’est à dire remplacer l’infini par un nombre fini N d’harmoniques dans la somme (34) et 
introduire ensuite des vecteurs spectres des doubles transformées (exponentielles et de 

Laplace) des températures et des densités de flux dans les deux couches : 
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Ici l’exposant t désigne l’opération de transposition d’une matrice. Pour simplifier l’écriture 
des transformées, on va poser maintenant : 
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La relation (33) de couplage des modes de part et d’autre de l’interface peut alors s’écrire 

matriciellement : 
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où E est une matrice carrée, dite « matrice de conversion de spectre » et 0 la matrice nulle, ces 

deux matrices ayant la taille (N x N). 
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On peut alors réécrire les équations (24), (25) et (29) en transformant tous les coefficients 

apparaissant dans les matrices quadripôlaires (2 x 2) par des matrices diagonales F ( = Z, A, 

B, C, D, A’, B’, C’ ou D’), de tailles (N x N) et de coefficients Fn k = δn k Fk, δn k étant le 

symbole de Kronecker. L’équation (24) devient ainsi : 
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L’équation (25) s’écrit de même : 
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L’équation (29) devient : 
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(44) 

 

Les équations (41) et (43) permettent d’écrire : 
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    (45) 

 

En exprimant de deux façons différentes les vecteurs spectres à l’interface, côté cœur, les 

équations (42) et (45) conduisent à : 
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Cette équation permet d’exprimer, en termes de spectres, la température de paroi et le flux à 

l’interface, côté cœur, en fonction du flux de chauffage en paroi :  

 

( ) ( ) )',0(')',0(''''')',0('
1 bbpbbpbbp −+=−+++=−+ − φφφφφφφφ δZAEZEBCEZAEθ  

(47) 

 

( ) ( )( ) )',0(')',0('''''''),(
1 bbpbbpp −+=−+++−= − φφφφφφφφφφφφ RAEZEBCEZAECEAEδ  

(48) 

 

Physiquement la matrice δZ  représente l’impédance du milieu poreux vue de la paroi et la 

matrice R, qui n’est pas égale à priori à l’identité I (sauf si l’épaisseur d de la zone en proche 

paroi est nulle avec des transformées exponentielles identiques : a = a’ et b = b’), représente 
la non conservation entre le flux de chaleur injecté en paroi et le flux effectivement reçu par la 

zone à cœur : il n’y a donc pas conservation du flux en proche paroi dans la direction 

transverse. 
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Les équations (42) et  (43) permettent alors de calculer le spectre de la température en tout 

point du cœur : 

 









=








∞

),(),(

),(
1-

ppy

py

δφφφφφφφφ
0

HM
θ

    (49) 

 

On a donc, en utilisant (48) : 

 

)',0(')()',0(')(),()(),( bbppbbpppy −+=−+−=−= φφφφφφφφφφφφ SRBZABZAθ δ  

 (50) 

 

où S (p) est une matrice dépendant de p par l’intermédiaire des définitions des différentes 
matrices Z (p), A (y – δ, p) , B (y – δ, p), C (y – δ, p), D (y – δ, p), A’ ( −+ ', bpδ b), 

B’( −+ ', bpδ b), C’( −+ ', bpδ b) et D’( −+ ', bpδ b). 

 

 

2.2 Exemple de résolution pour une excitation particuliaire 

 

Si le flux pariétal ϕp, voir l’équation (5), est un échelon temporel uniforme en espace, on a : 
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où H (t) est la fonction de Heaviside. On en déduit, suite à la transformation de Laplace : 
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et l’on effectue ensuite la transformation de Fourier sinus : 
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Cette dernière expression permet de calculer les composantes du spectre 'φφφφ présent dans le 

dernier terme de l’équation (50) : 
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Une fois calculées les différentes composantes du spectre de température **
~~
TTθ
))

==  donné 

par (50) et (55), on effectue d’abord une transformée numérique inverse de Laplace sur 
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chacune de ses harmoniques. Si l’on utilise l’inversion de Gaver-Stehfest, le vecteur spectre 

de la transformée exponentielle de la température, à un instant donné, s’écrit : 
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avec 
t

jp j

)2(ln=  ,  les vj étant les coefficients de l’inversion de Gaver Stehfest à 10 termes, 

voir [2]. On effectue ensuite l’inversion de Fourier sinus et l’on repasse à la vraie température 

T (sans transformée exponentielle) : 
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où  g (x) est le vecteur ligne des fonctions propres : 
 

[ ])(sin)(sin)(sin)( 21 xxxx Nααα L=g    (58) 
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