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Abstract

State estimation of dynamical systems is a central theme in control theory, whereby an observer
is designed to estimate the unmeasured system states by exploiting the knowledge of the system ma-
thematical model and input and output measurements. Even though many techniques are available
in the literature for the observer design of continuous-time linear and nonlinear systems, there are
still many major open problems that need to be investigated. Among these challenging questions,
there is the implementation of the observer in case of communication constrains between the system
plant and the observer itself, which occurs when communications take place via digital networks.
Another important largely open problem is the tuning of the observer gain to obtain good estimation
performance. The objective of this thesis is to propose solutions for these two questions by exploiting
hybrid techniques, that rely on models exhibiting both continuous-time evolution and discrete-time
jumps.

In the first part of this document, we consider the scenario where a system transmits its mea-
surements to an observer via a digital network. In this context, we design both the observer and a
communication scheme to decide when the former needs to receive the measured information. A
crucial question is when a transmission needs to occur over the communication network to obtain
accurate state estimates, while only sporadically using the communication channel. For this purpose,
we present a (hybrid) event-triggered observer design. We follow an emulation-based approach in
the sense that our starting point is an observer that satisfies a robust stability property of the esti-
mation error in absence of the network. We then take the communication channel into account and
we design a dynamic triggering rule, implemented by a smart sensor, to decide when a transmission
needs to be triggered. The proposed triggering rule does not require the sensor to have significant
computation capabilities, but only to be able to run a scalar filter, which is a distinguishing aspect
when compared to most of the works in the literature. The results are first presented for unperturbed
linear time-invariant systems and are then generalized by considering perturbed nonlinear systems

and a decentralized setting.

The second problem addressed in this thesis is the crucial question of tuning the observer. Indeed,
we aim to design the observer to obtain a fast convergence speed, which is essential to quickly
reconstruct the desired unmeasured state variables, and good accuracy in presence of measurement
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Abstract

noise, which is inevitable in practice. Unfortunately, there is almost always a trade-off between these
properties, which complicates the observer tuning. To address this arduous problem, we use hybrid
techniques to improve the estimation performance of a given robust nominal observer designed
for a general nonlinear continuous-time system. We present for this purpose a novel hybrid multi-
observer, which consists of the nominal one and additional dynamical systems that differ from the
nominal observer only in their output injection gains, that are collectively referred to as modes.
The gains of these additional modes can be freely selected, as no convergence property is required
for these modes, to (heuristically) exhibit advantageous features such as fast convergence or great
robustness with respect to measurement noise. We run all modes in parallel and we design a switching
criterion, based on monitoring variables, that selects one mode at any time instant by evaluating
their performance. Moreover, the hybrid multi-observer scheme is applied in simulation for the state
estimation of an electrochemical lithium-ion battery with standard model and parameter values, for

which good estimation performance is essential.
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Résumé

Lestimation de I'état des systemes dynamiques est un theme central de 'automatique, ol un
observateur est concu pour estimer les états non mesurés en exploitant la connaissance du modele
mathématique du systeme et les mesures d’entrée et de sortie. Bien que de nombreuses techniques
soient disponibles dans la littérature pour concevoir des observateurs pour les systémes linéaires et
non linéaires & temps continu, il reste encore de nombreux problémes ouverts. Parmi ces défis, on sou-
lignera la question de la conception de I'observateur en présence de contraintes de communication
entre le systeme et 'observateur. Un autre exemple est celui du réglage des gains des observateurs
afin d’obtenir de bonnes performances d’estimation en termes de rapidité de convergence et de ro-
bustesse. L'objectif de cette these est de proposer des solutions pour ces deux questions. Pour ce faire,
des techniques hybrides, qui sont basées sur des modeles qui présentent a la fois une évolution en

temps continu et des sauts en temps discret, sont proposées.

Dans la premiére partie de cette thése, nous considérons le scénario dans lequel un systeme
transmet ses mesures a un observateur via un réseau numérique. Dans ce contexte, nous concevons
a la fois 'observateur et un systeme de communication pour décider quand I'observateur doit recevoir
les données mesurées par les capteurs. Une question cruciale est de savoir quand une transmission
doit avoir lieu sur le réseau de communication pour obtenir des estimations d’état précises, tout en
n’utilisant le canal de communication que de maniére sporadique. A cette fin, nous présentons une
conception d’observateur événementiel (hybride). Nous suivons une approche basée sur I’émulation
dans le sens ol notre point de départ est un observateur qui satisfait une propriété de stabilité robuste
de l'erreur d’estimation en ’absence de réseau. Ensuite, nous considérons le canal de communication
et concevons une loi de transmission dynamique, mise en ceuvre par un capteur intelligent, pour
décider quand une transmission doit étre activée. Cette loi de transmission n’exige pas que le capteur
ait des capacités de calcul importantes, mais seulement qu'’il soit capable d’exécuter un filtre scalaire,
ce qui la distingue de la plupart des travaux dans la littérature. Les résultats sont d’abord présentés
pour des systémes linéaires invariants dans le temps, puis généralisés en considérant des systemes

non linéaires perturbés et un cadre décentralisé.

Le deuxiéme probléme abordé dans cette these est la question du réglage de 'observateur. Nous

souhaitons concevoir 'observateur de maniere a obtenir une vitesse de convergence rapide, ce qui
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Résumé

est essentiel pour reconstruire rapidement les variables d’état non mesurées, et une bonne précision
en présence de bruit de mesure et de perturbations sur le systéeme, ce qui est inévitable dans la pra-
tique. Malheureusement, il existe presque toujours un compromis entre ces propriétés. Pour lever ce
paradoxe nous utilisons des techniques hybrides afin d’améliorer la performance d’estimation d'un
observateur nominal robuste congu pour un systeme général non linéaire a temps continu. Nous pré-
sentons a cette fin un nouveau multi-observateur hybride, qui se compose de 'observateur nominal
et de systemes dynamiques supplémentaires qui ne different de 'observateur nominal que par leurs
gains d’injection de sortie, collectivement appelés modes. Les gains de ces modes supplémentaires
peuvent étre choisis librement, car aucune propriété de convergence n’est exigée. Nous exécutons
tous les modes en parallele et nous concevons un critere qui sélectionne un mode a tout moment en
fonction de ses performances. Par ailleurs, le schéma hybride multi-observateurs est appliqué en si-
mulation pour I'estimation de I’état d’une batterie lithium-ion a partir d'un modele électrochimique,

pour laquelle une bonne performance d’estimation est essentielle.

viii



Contents

Chapter 1
Introduction
1.1 Stateestimation . .. .. ... .. ... e 1
1.2 Hybrid dynamical systems . . . . . . . . . . .. e e e e 4
1.3 Motivation and contributions . ... ... ... ... .. . .. 6
1.3.1 Event-triggered estimation . . .. ... .. ... ..., 6
1.3.2 Improving estimation performance . . ... ... ... ............. 8
1.4 Outlineofthethesis. ... ... ... .. . . . . . . 11
1.5 Publications . . . . . . . . . e 11
1.5.1 Journal papers . . . .. ... i e 11
1.5.2 Submitted papers . . . . . . . i e e e e 11
1.5.3 Conference papers . . . . . .o vt ittt e e e 12
1.5.4 Conference extended abstracts. . . . . ... . ... ... ... .. ..., 12
1.6 Seminarsandinvitedtalks . . . . ... ... ... 12
Chapter 2
Preliminaries
2.1 Mathematical definitions . . . . .. ... .. ... .. ... 16
2.2 Observers for continuous-time SyStems . . . . . . ... ... v vt ... 19
2.2.1 Observerdefinition . . . . .. ... ... ... 19
2.2.2 Input-to-state stability property . ... ... ... ... ... ... .. .. ... 22
2.2.3 Observerexamples . . . . . . .. e 23
2.2.4 Input/output-to-state stability property . ... ......... ... ..... 34
2.3 Hybrid dynamical systems . . . . .. ... .. .. e 36
2.3.1 Hybrid systems with continuous-time inputs . ................. 37
2.3.2 SOlUtion CONCEPL . . . . v v it e e e i e et e e e e e e e e e e 37

ix



Contents

2.3.3 Existence and completeness of solutions . . . ... ............... 39

2.3.4 Zeno phenomenon and dwell-time . .. ..................... 41

2.3.5 Stability property . . . . . . oo e e e 42

2.4 ConclUuSIONS . .« ¢ v v o e e e e e 44

Part I Event-triggered estimation 45
Chapter 3

Event-triggered estimation of linear systems

3.1 Introduction . . . . .. . it it e e e e 48
3.2 Problem statement. . . . . . . .ottt e e e e e e e 50
3.3 Triggering rule and hybrid model . ... ........ ... ... ... ... .... 52
3.3.1 Relative threshold is not suitable for estimation . ............... 52
3.3.2 Dynamic triggeringrule . . . . ... ... .. e 52
3.4 Mainresult . .. .. ... e 54
3.4.1 Stability. . . . . o e e 54
3.4.2 Properties of the inter-event times . . . .. ... ... ... .......... 58
3.5 Numerical case study . . . . . . v v i vt it e e e e e e 60
3.6 ConClUSIONS . .« ¢ v v e e e e e e e 64
Chapter 4

Decentralized event-triggered estimation of nonlinear systems

4.1
4.2

4.3
4.4

4.5

4.6

Introduction . . . ... .. .. ... e 66
Problem statement. . . . . . . . . . ... e 67
4.2 1 Setting . . . . o i e e e 67
4.2.2 Assumptionontheobserver . ................. . ... ... ... 70
4.2.3 Problem formulation . . . .. ... ... . ... 71
Design of the triggering rules . . . . ... ... ... ... .. . 71
Stability guarantees . . . . . . . . ... 74
4.4.1 Lyapunov stability analysis . . ... ........ ... ... ... ... ... 75
4.4.2 Stability property of the estimationerror . ................... 80
4.4.3 Decay rate of the Lyapunov function . . . .................... 82
Properties of the solution domains . . . . ... ... ... ................ 85
4.5.1 Completeness of maximal solutions . . . .. ................... 85
4.5.2 Minimum individual inter-event time . ... .................. 86
4.5.3 A condition for transmissionsS toStop . . . . . . ..o 89
EXTenSIONS . . . . ¢ o v it e e e e 90



4.6.1 Generalized triggering conditions . . . . .. ... ... ... .. .. .. ..., 90
4.6.2 Additive measurement NOISE . . . . . . . .ttt e 91
4.6.3 Triggering the inpUt U . . . . . . . v v i vt i it et e e e e e 92
4.7 Numerical casestudy . . ... .. ... i e 98
4.8 ConcluSions . . . . . . o v .t e 102
Part II Improving estimation performance 105
Chapter 5
Hybrid multi-observer for improving estimation performance
5.1 IntroduCtion . . . . ... . ... it e 108
5.2 Problem statement. . . . . . . . ottt e e e e e 110
5.3 Hybrid estimationscheme . . ... ... ... ... ... ... .. .. 112
5.3.1 Additionalmodes . . . ... ... ... ... 113
5.3.2 Monitoring variables . . . . .. ... ... . ... 113
5.3.3 Selection criterion . . . ... ... ... 114
5.3.4 Resetrule. . ... ... . ... 115
5.3.5 Designguidelines . .. ... ... ... ... 116
5.3.6 Filteredstate estimate . . . . . . .. ... ... 118
5.3.7 Hybridmodel ... ... ... . .. . . .. 119
5.4 Stability guarantees . . . . . . . ... e e 120
5.4.1 Lyapunov properties . . . . . . . ..o v i vttt i it e 120
5.4.2 Input-to-statestability . . . ... ... .. ... .. . ... . . 127
5.5 Properties of the solutiondomains . . . . ... ... ... .. .. ... ... ... 129
5.5.1 Completeness of maximal solutions . . . . . ... ................ 129
5.5.2 Averagedwell-time. . . ... ... ... . ... 131
5.6 Performance improvement . . . . . ... . ... ... 133
5.7 Numerical casestudies . . . ... ... ... 137
5.7.1 VanderPoloscillator. . ... ...... ... ... . ... 137
5.7.2 Flexible joint roboticarm . . . .. ... ... ... .. ... 139
5.7.3 Electric circuit model of a lithium-ion battery . ................ 143
5.8 Conclusions . . . . .. . e 145
Chapter 6
Application to lithium-ion batteries
6.1 IntroduCtion . . . . . . . . . . ittt e 148
6.2 Electrochemical batterymodel . ... ... ...... .. .. .. .. .. .. ... ... 149

xi



Contents

xii

6.2.1 Model description and assumptions. . . . . . . . ...t i it 149
6.2.2 State-space representation . . . . ... ... ... ... 152
6.2.3 Stateofcharge (SOC) . . . . . . . i i it e e 154
6.3 Hybrid multi-observerdesign . . .. ... ... ... .. ... .. . ... 154
6.3.1 Nominalobserver. . ... ... ... .. . . ... . .. 155
6.3.2 Hybrid multi-observer . . . .. ... ... ... e 158
6.3.3 Hybrid model and stability guarantees . . . . ... ... ............ 159
6.4 Numericalstudy . . . ... .. ...t e 161
6.4.1 Systemmodel .. ... ... ... 161
6.4.2 INPULCUITENL . . . . . . .t ittt it e e e e et e e e e e e e e e 161
6.4.3 Electrolyte dynamics . . . . . . . . ... 164
6.4.4 Nominalobserver. ... ... ... ... . . ... . 164
6.4.5 Hybrid multi-observer . . . .. ... ... .. .. e 165
6.4.6 [Initialization and design parameters . .. .. ... ... ... ... ...... 167
6.4.7 Results . . . ... . e 167
6.5 ConcluSions . . . . . . oo it e e 170
Chapter 7
Conclusions
7.1 SUmMmMary ... e e e e 173
7.1.1 Event-triggered estimation . . .. ... ... ... ... 173
7.1.2 Improving estimation performance . . ... .. ... ... ... ........ 174
7.2 Future work perspectives . . . . . . . . . . e 175
7.2.1 Event-triggered estimation . .. ... ... .. ... ... ... ... 175
7.2.2 Improving estimation performance . . ... ... ... ... ... ....... 176
Appendix A

Technical lemma - Change of supply rates

Appendix B
On the relationship between quadratic state estimation error costs and output esti-

mation error costs

B.1
B.2
B.3

Introduction . . . . . . . . . e e 185
Problem statement. . . . . . . . . . e e 186
Mainresult . . . . . .. . 188
B.3.1 Generalcondition. . .. ... ... ... ... ... 188
B.3.2 Condition (B.9) is not always satisfied . . . ... ................ 190



B.3.3 Gains selection to guarantee (B.9) .. ... ... ... ... . ... .. 191

B.3.4 Relaxation of condition (B.9) . ... ... .. .« . 193

B.4 Discounted COSES . . . . v v v i it i e e e e e 195

B.5 Conclusions and perspectives . . . . . . v v v v vt i i e e e e 197
Appendix C

Résumé détaillé

C.1 Estimation d’état . . . . . . . . . . . i e 199

C.2 Systémes dynamiques hybrides . . . ... ... ... ... ... ... . ... 202

C.3 Motivation et contributions . ... ... .. ... ... . ... .. .. ... 204

C.3.1 Estimation événementielle . . ... ... ... ... ... ... ... ..., 204

C.3.2 Améliorer la performance de I'estimation . ................... 206
Bibliography 209

xiii



Contents

Xiv



List of Figures

1.1
1.2

1.3

3.1
3.2
3.3

4.1

4.2
4.3
4.4
4.5
4.6

5.1

5.2

5.3

5.4
5.5

Block diagram representing the state estimation problem. . . ...............
Block diagram representing the state estimation problem in presence of disturbances
and measurement NOISe. . . . . . . . . i it e
Block diagram representing the state estimation problem when the communications

between plant and observer take place via a digital network. . ..............

Block diagram representing the system architecture. .. ..................
Equivalent electrical circuit of a single batterycell. . ....................
Input ipq,, output Vjq, state estimation error &y, . and Ego¢, and inter-transmissions

time, with 0 =500,¢; =1,¢c,=50,c5=1,e=1.. . . . .. ... .. ... ......

Block diagram representing the system architecture (ETM: Event-Triggering Mecha-
NISITL). v v v e e e e e e e e e e e
Event triggering mechanism (ETM) of node i,i€{1,...,N}. .. ... ..........
State x and state estimate X. . . . . . . . v vttt e e e e
State estimation errors x; — X;, 1€ {1,...,4}. . . . ...
Norm of the state estimation error [§| =[x —X|. . ... ... ... ... ... .. ....

Inter-transmissions times (sensor 1 top, sensor 2 bottom). . ...............

Block diagram representing the system architecture with 7 := (nq,...My41), X =
(R ey RN 1) o e e e e e e e e
Van der Pol oscillator. Norm of the estimation error |e| (top figure), performance cost
J (middle figure) and o (bottom figure). Nominal (yellow), without resets (red), with
resets (BIUE). . . . . v i e e e
Flexible joint robotic arm. Norm of the estimation error |e| (top figure), performance
cost J (middle figure) and o (bottom figure). Nominal (yellow), without resets (red),
with resets (blue). . . . . . . e e
Equivalent electrical circuit of a single batterycell. ... ..................
f(SOC)(blue) with its linearization (red) and PHEV current input.. . . . . .. ... ..

XV

68
72
100
101
102



List of Figures

XVi

5.6

6.1
6.2

6.3
6.4
6.5
6.6

6.7

6.8

6.9

Battery example. Norm of the estimation error |e| (top figure), performance cost J
(middle figure) and o (bottom figure). Nominal (yellow), without resets (red), with

resets (blue). . . . . L 145
Battery model schematic. .. ... ... ... ... . .. . .. . 150
Block diagram representing the electrochemical lithium-ion battery model (orange)

and nominal observer (blue). . . . . ... ... L 154
OCV CUIVES. . . ot ittt et et e e e e e e e e e e e e e e e e e e e e e e 163
Input current profile and its biased version available to the observer. . ......... 163

Block diagram describing the different fidelity models for system and observer design. 165

surf
pos

(top figure right), state of charge (SOC) (bottom figure). Reference system (blue),

Lithium concentrations at the surface of both electrodes cfl‘érgf (top figure left) and ¢

nominal observer (red). . . . .. . ... .. e 166
No resets case. Lithium concentrations at the surface of both electrodes cfl‘;_g (top figure
left) and cg‘éls'f (top figure right), state of charge (SOC) (second figure), norm of the
state of charge estimation error (third figure) and o (bottom figure). Real system
(purple), nominal (yellow), o-estimate (blue), filtered estimate (red). . ........ 168
Resets case. Lithium concentrations at the surface of both electrodes cfl‘ég (top figure
left) and c;‘é‘;f (top figure right), state of charge (SOC) (second figure), norm of the
state of charge estimation error (third figure) and o (bottom figure). Real system
(purple), nominal (yellow), o-estimate (blue), filtered estimate (red). . ........ 169
Comparison case without reset and with reset. Norm of the state of charge estima-
tion error (first figure) and o (second figure). Nominal (yellow), o-estimate no reset
(blue), filtered estimate no reset (green), o-estimate reset (purple), filtered estimate
reset (red). . . . . o e e e e e e e 170



List of Tables

3.1

4.1

5.1
5.2
5.3
5.4

6.1
6.2
6.3

Average number of transmissions in the time interval [0, 1500 s]|, maximum absolute
value of the state estimation errors |Ey, (t, )| and [Ego¢(t, )| for t € [1000s,15005]

with different choices for o, cq, €. . . . . o o oL 63

Average number of transmissions in the time interval [0,30] and maximum absolute
value of the state estimation error |&| for t € [20, 30] with different choices for o4, 0,

€1, €9, A1, Ay, 1 and [,, both with and without disturbance input and measurement

016 ] 104
Van der Pol oscillator. Average MAEand RMSE. . .. .................... 138
Flexible joint robotic arm. Average MAEand RMSE. . . . . . ... ... .......... 141
Flexible joint robotic arm. Average MAE and RMSE for t € [70,100]. . ......... 142
Battery example. Average MAEand RMSE. . .. ... ... ... ... ... .. ..., 145
Physical parameters of the electrochemical model. . . . ... ... ............. 162
Different fidelity models for system and observer design. . . . . ... ........... 164

Average over 100 simulations with different SéCk(0,0), with k € {1,...,4}, of the
MAE and RMSE of the SOC estimation error (egoc) for t € [0,1500]s (tot), t €
[0,150]s (tran) and t € [150,1500]s (end). . ... ... .. ...t .. 171

Xvii



List of Tables

xviii



Notation

diag(xq,...,x,)

Amax(P)

set of the real numbers

set of the non-negative real numbers

set of the strictly positive real numbers

set of the non-negative integers

set of the strictly positive integers
n-dimensional Euclidean space with n € Z
belongs to

empty set

proper subset

subset

transpose of a vector x €e R" withne Z_
Euclidean norm of a vector x € R" withne Z_
identity matrix of dimension n x n with n e Z
null matrix of dimension n x m withn,me Z.
2-induced norm of a matrix Ae R™*™, with n,m e Z
transpose of a matrix Ae R™*™ withn,me Z.

Diagonal matrix of dimension R™*" with n € Z-,

whose diagonal elements are x;,...,x, € R

maximum eigenvalue of a real, symmetric matrix P

Xix



Notation

Amin (P )

Sfl

>0

Sn

>0

T (x)

U°(x;v)

IV lie 0

dom f

HL

L,J

XX

minimum eigenvalue of a real, symmetric matrix P
set of real, symmetric, positive definite matrices of dimension n
set of real, symmetric, positive semidefinite matrices of dimension n

tangent cone to the set ¢, with ¥ < R", at a point x € R".

It is the set of all vectors v € R" for which there exist x; € €, 7; > 0,

X;i—X
Ti

foranyie Z-q, with x; —» x, 7; = 0,as i — o0 and v = lim;_,,
Clarke generalized directional derivative of a Lipschitz function U at x

. o . . U(y+hv)—U
in the direction v, i.e., U°(x; V) := limsup,_,q+ M

Sy —x
essential supremum in the interval [ty, t,] of a signal v : Ry — R™
with n, € Z., and tq, t; € Ryo U {00} with t; < ty, i.e,,

HvH[tl,tz] 1= €SSSUPe(t,t,] v(¢)]

domain of a function f : ¥ — S with sets ¥, %, i.e.,

domf :={ze€ S :f(2) # T}

class of functions a : Ryo — R~ that are continuous,

a(0) = 0 and strictly increasing

class of functions a : Ry — R, that are continuous,

a(0) = 0, strictly increasing and lim,_, , , a(r) = +

class of functions f3 : Ry x Ry — R that are nondecreasing
in their first argument, nonincreasing in their second argument,

lim, o+ B(r,s) = 0 for each s € R and lim,_, , ,, B(r,s) = 0 for each r e R

set of all functions from R, to %, with % < R", n € Z., that are

Lebesgue measurable and locally essentially bounded

a function f : R.y — R is said to be a “big O" of a function g : R>q — R,
at infinity, which we write f (x) = O(g(x)) as x — o, when

there exist ¢ € R.( and x( € R such that |f (x)| < c|g(x)]| for all x > x,

0 ifi+j

Kronecker delta, i.e., given i, j € Z-, 0, j = )

ifi=j



Acronyms

GAS
ISS
I0SS
ETM
MIET
IET
LMI
EKF
KKL
VC
MAE
RMSE
SOC
PHEV
BMS
SPM
OoCcv

Global Asymptotic Stability
Input-to-State Stability
Input/Output-to-State Stability
Event-Triggering Mechanism
Minimum Inter-Event Time
Individual Inter-Event Time
Linear Matrices Inequalities
Extended Kalman Filter
Kazantzis-Kravaris-Luenberger
Viability Condition

Mean Absolute Error

Root Mean Square Error

State Of Charge

Plug-in Hybrid Electric Vehicle
Battery Management System
Single Particle Model

Open Circuit Voltage

XXi



Acronyms

xxii



Chapter

Introduction

This chapter provides an informal introduction to the state estimation problem in control engi-
neering and on hybrid dynamical systems, which are the two pillars of the thesis. A more formal
treatment is provided in Chapter 2. Then, the motivation for the accomplished work and a summary

of the proposed contributions are given together with the associated scientific outcomes.

1.1 State estimation

Dynamical system models are mathematical objects used to describe how systems evolve over
time. In particular, a dynamical system can be used to model a range of engineering or natural
systems, such as electronic circuits, mechanical structures, thermodynamic systems, biological sys-
tems and so on. These models are typically represented by a set of differential equations (in this
case we talk of continuous-time dynamical systems), or difference equations (in this case we talk of
discrete-time dynamical systems), that describe the evolution of the so-called state variables, which
often describe physical quantities. In general, these mathematical models depend on some external
signals, called system inputs, that influence the evolution of the system state. In addition, sensors can
be used to measure a (nonlinear) combination of the system states, called output measurements. The
mathematical model of the output measurement is given by a static map.

The knowledge of the internal state of a dynamical system is essential in many engineering ap-
plications. Indeed, it is very useful, for example, to build controllers, that are algorithms used to

generate input signals to control the evolution of the system states. In addition, the knowledge of

Plant y %
: Observer X
(x)

Y
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FIGURE 1.1 - Block diagram representing the state estimation problem.
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the system state may be crucial to obtain real-time information for monitoring or for decision-making,
see e.g. [1,2] and references therein. One way to obtain this information is to directly measure these
variables by placing some sensors on the physical system. Unfortunately, not all state variables can
be directly measured through sensors due to technological obstacles, like the state of charge of a
battery in e.g., [3] or ammonium, nitrate and nitrite concentrations in activated sludge processes in
e.g., [4]. Moreover, in many applications we have limits on the number and the type of sensors we
can use for cost reasons. As a result, the internal state of a dynamical system, which we denote by x,
needs to be estimated from the knowledge of the system mathematical model, called system plant,
and the available measurements, such as the system input u and output y. This is done by designing
an estimation algorithm, which takes the form of a dynamical system, called observer, whose output
is an estimate of the system state, and is denoted by %, see Figure 1.1. Note that, since this dynamical
system depends on the available measurements, it is not always possible to design an observer to esti-
mate the plant state. Indeed, such estimation algorithm is relevant only if the measurements contain
enough information to reconstruct uniquely the system state. This essential property is called detecta-
bility, see e.g., [5]. When the system is detectable, the objective is to design this dynamical system to
ensure that the estimation error, which corresponds to the difference between the unknown system
state and the state estimate generated by the observer, and thus gives an indication of the estimation
quality, converges to the origin as time grows. This implies that, the state estimate produced by the
observer coincides, after a finite or infinite amount of time, with the unknown system state and thus,
the observer correctly estimates the plant state.

As mentioned before, the design of this estimation algorithm is based on a mathematical model
of the system dynamics, which virtually always exhibits some uncertainties or is affected by unknown
disturbances. In addition, the output measurements collected through sensors are typically affected
by measurement noise. All these exogenous inputs are usually unknown, and thus cannot be used
for the observer design, which therefore needs to be robust to these perturbations in the sense that
disturbances and measurement noise do not significantly affect the observer state estimate. In parti-
cular, in this case, the observer design has the goal to guarantee that the estimation error converges
to a neighborhood of the origin, whose “size” depends on the norm of these perturbations. Indeed,
note that due to the disturbances and measurement noise, it is not possible to obtain an exact state
estimate in general, but it is desired to generate an estimate with guarantees of not being too far
from the real system state. In particular, to be an observer, an estimation algorithm needs to ensure

that the state estimation error, denoted by e := x — X, is
— stable in the sense that the estimation error trajectory remains small if the initial error is small,
— converging to (a neighborhood of) the origin as the time grows,
— robust to disturbances and measurement noise.

One property that embeds all these desired characteristics of the state estimation error behaviour is
the input-to-state stability property of the estimation error with respect to disturbances and measu-

rement noise, see e.g. [6,7] as well as Chapter 2.2.2 for more details.
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FIGURE 1.2 — Block diagram representing the state estimation problem in presence of disturbances
and measurement noise.

When considering these perturbations, denoted by v for the disturbances affecting the plant
dynamics and by w for the measurement noise, the state estimation problem can be summarized
with the block diagram in Figure 1.2. Note that, in Figure 1.2 we show the common case where the
perturbation w represents an additive measurement noise. However, we can use the notation w to

refer to any kind of perturbation affecting the system output y.

In this thesis we focus on finite-dimensional continuous-time systems of the form

x = fp(x,u,v)

y =h(x,w),

1.1)

where x € R™ is the system state, that is unknown and needs to be estimated, u € R™ is the measured
input, y € R" is the output measured by sensors, v € R™ is an unmeasured disturbance input and
w € R™ is an unknown measurement noise, with n,,n, € Z., and n,, n,, n, € Zs,. The class of

continuous-time observers for system (1.1) investigated in this thesis has the form

z=fo(zu,y,¥),
2 =1Y(2) (1.2)
¥ =h(%,0),

where z € R™ is the observer state, with n, > n,, X € R™ is the state estimate and ¥ is the output
estimate. Note that, in this thesis we consider observers whose state dimension is at least as big as
the system state, namely n, > n,.. More details and insights on systems (1.1) and (1.2) are provided
in Chapter 2.2.1.

Designing observers in the form (1.2) to estimate the state of system (1.1) with the desired sta-
bility, convergence and robustness properties is an important research topic in control engineering,
see e.g., [5, 8] for surveys on the topic. In particular, depending on the dynamical system structure,
different design techniques can be adopted. The starting point of most of the results in this thesis is
the knowledge of an input-to-state stable observer. This implies that its estimation error is stable and

converging to a neighborhood of the origin, whose size depends on the norm of the perturbations.

3
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As shown in e.g., [5, 9], many observer design techniques are available in the literature satisfying
this property for linear and nonlinear dynamical systems. However, various major methodological
problems remain open. In particular, observer (1.2) requires the knowledge of the output measure-
ments continuously. However, this is not always the case in practical applications, where the output
data may be sporadically communicated from the plant to the observer via a digital network, when
considering the setting where the system sensors and the observer are not co-located. Several works
have addressed this challenge in the literature, see e.g., [10-30], but much more needs to be done,
as we will explain later in Section 1.3.1, as well as in Chapters 3 and 4. On the other hand, even
if the observer has access to the output measurement continuously, the input-to-state stability pro-
perty guarantees a robust stability property of the estimation error, but it is not always satisfactory
regarding the performance in terms of speed of convergence and size of ultimate bound due to dis-
turbances and measurement noise. This poses the question of the tuning of nonlinear observers to
ensure robust convergence property as well as satisfactory performances. Some techniques are ob-
viously available in the literature for this purpose, but not for general nonlinear systems, as far as
we know. More details on the literature are provided in Section 1.3.2 in the following, as well as in
Chapter 5. In this thesis we focus on these two open questions and we propose solutions by exploiting

hybrid techniques, that is, systems that exhibit both continuous and discrete-time dynamics.

1.2 Hybrid dynamical systems

In classical control theory, it is common to model dynamical systems either using differential
equations (or inclusions), thus obtaining continuous-time dynamical systems, or difference equations
(or inclusions), thus obtaining discrete-time dynamical systems. However, many physical systems ex-
hibit a combination of continuous-time evolution and discrete-time updates, such as mechanical sys-
tems, which evolve in the physical continuous-time world, but are controlled by a digital computer,
or mechanical systems experiencing impacts, as for the classical bouncing ball example in [31]. Other
examples of systems presenting both continuous and discrete-time dynamics are biological systems
able to produce synchronized behaviors, that imply that their continuous-time dynamics is affected
by discrete-time resets, like the flashing fireflies example in [31, Chapter 1]. Another example is
electrical circuits with switches, where the activation of a switch can be modeled as instantaneous
resets of the variables, which are evolving continuously, as the DC/AC inverter in [32, Example 1.1]
or the power control with a thyristor in [31, Example 1.3]. To model the rich behaviour of these
systems, purely continuous-time models or discrete-time ones are not enough. As a result, to ob-
tain a more comprehensive representation of real-world phenomena, a well-known combination of
continuous-time and discrete-time behaviours are the so-called hybrid dynamical systems, or simply
hybrid systems, which are therefore described by both differential equations (or inclusions) and dif-
ference equations (or inclusions). Various modeling frameworks are available for hybrid dynamical
systems, see e.g., [31,33-36]. In this thesis we adopt the formalism presented in [31] to model hy-
brid dynamical systems. In particular, we consider the extension proposed in [37] (inspired by [38]),

which allows to include continuous-time inputs in the hybrid model. These inputs are denoted by u
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and can be used to represent known inputs, such as control inputs, but also unknown disturbances
and measurement noise. In this framework, given two sets 4,2 < R™ x R™, with n, € Z., and
n, € Z~, and two set-valued maps F : R™ x R™ 3 R™* and G : R™ x R™ =3 R, the dynamics of
the hybrid state x € R™ is described by

x € F(x,u), (x,u)e e,

I .
xT € G(x,u), (x,u)e2

(1.3)
Equation (1.3) means that the hybrid state x € R™ can evolve according to both continuous-time
and discrete-time dynamics, possibly alternating these behaviours depending on which region of the
state space the pair (x,u) lies. When the state x and the input u are in the flow set ¢, then the hybrid
state x evolves in continuous-time according to the flow map F. Similarly, when the state x and the
input u are in the jump set 2, then the system state is updated according to the jump map G. In
addition, when the state and input pair lies both in the flow and jump sets, namely (x,u) € € n 2, if
the continuous-time evolution would keep the state and input pair in the set 4, then the hybrid state
evolves according either to the differential inclusion or according to the difference inclusion in (1.3).
As a result, equation (1.3) describes a system dynamics that is richer than only either differential
equations (or inclusions) or difference equations (or inclusions).

Hybrid techniques have been proved to be very powerful to design controllers. For instance,
controllers are typically implemented by digital hardware and computers, but are used to control
physical plants, which are naturally described by continuous-time models, thereby leading to hybrid
dynamical systems. Moreover, the richer behaviour given by the mix between continuous-time and
discrete-time dynamics have been exploited in different control contexts, see e.g. [32] and references
therein, where hybrid tools have demonstrated their relevance and strength to overcome limitations
of purely continuous-time or discrete-time controllers and thus they allowed to solve problems which
are unsolvable by using only classical frameworks. Similarly, it should be possible to exploit the power
of hybrid tools in the context of state estimation, but this has been undoubtedly less explored in the
literature. In this case we talk about hybrid observer design, which therefore consists in designing
estimation algorithms described by both continuous and discrete-time dynamics. Note that we can
design an hybrid observer also to estimate the state of a continuous-time dynamical system in case the
system structure, the estimation objective or the observer design approach leads to hybrid modelling.

In particular, we can classify hybrid observers into three main groups, as summarized next.

— Hybrid system plant. As previously mentioned, many physical and engineering systems present
an hybrid behaviour and thus are well described using hybrid system models. In this case, to
estimate the hybrid state, an observer exhibiting both continuous and discrete-time dynamics,
i.e., a hybrid observer, should be designed, see e.g., [39,40].

— Hybrid connection between the plant and the observer. Even if the system plant is described
by continuous-time dynamics, and thus its state can be estimated using a continuous-time
observer, due to the setting, hybrid modelling can arise. For instance, in many applications,
the system and the observer have not the same physical location and the output measurements

5
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are transmitted from the plant to the observer via a digital network. Therefore, the observer
receives the output data only at some discrete-time instants, and thus, the overall system can

be describe as a hybrid system, see e.g., [12,41].

— Estimation performance. Hybrid techniques can be used in estimation also for performance
purposes. For example, even if the system has a continuous-time dynamics, and the setting
allows to design a continuous-time observer to estimate the plant state, discrete-time dynamics
can be introduced in the observer design to order to exploit the power of hybrid tools and the

richer hybrid dynamics to improve the estimation performance, see e.g., [42,43].

The results presented in this thesis fall into the second and third categories. In particular, we
consider continuous-time systems for which we want to estimate the plant state and hybrid tech-
niques arise because of the considered setting or for performance improvement purposes. In the

next section, we explain in more details the two case studies considered in this manuscript.

1.3 Motivation and contributions

In this thesis we aim to show the efficiency of hybrid techniques to solve two important state
estimation problems, namely the event-triggered estimation and observer performance improvement
for nonlinear continuous-time systems. In this section, we present and motivate the two research

problems we investigate in this work in more details and we explain the contributions of the thesis.
1.3.1 Event-triggered estimation
Motivation

As mentioned before, in many applications the system and the observer are not co-located and,
thus, the output measurements are transmitted from the plant to the observer through a digital net-
work. As a result, the observer does not have access to the measured output continuously, but only at
some sampling, equivalently transmission, instants, see Figure 1.3, where we denote by y and w the
sampled versions of the measured output and the measurement noise, respectively. In this setting, hy-
brid systems naturally arise since the system and the observer evolve in continuous-time, while each
output transmission over the network can be modeled as a discrete-time event. The general nonlinear
observer (1.2), for which various design techniques from the literature may be adopted to obtain a
convergence property of the estimation error, assumes the knowledge of the whole continuous-time
measured output. The policy chosen to trigger a transmission over the network has an impact on
the convergence speed, the robustness of the estimation as well as on the amount of communica-
tions. Three main approaches have been proposed in the literature to generate the transmissions
instants. The first one, called time-triggered strategy, see, e.g., [11,12,44-46], consists in trigger a
new transmission based on the amount of time elapsed since the last communication. A classical
simple example of the time-triggered strategy is periodic sampling, where the time distance between
two consecutive transmissions is constant. A potential drawback of the time-triggered paradigm is
that it may generate more transmissions than actually needed to perform the estimation, which thus

results in a waste of resources usage. Indeed, in the case the output remains approximately constant,

6



1.3. Motivation and contributions

Jv
w
u Plant y ly+w y+w y+w b
) O »  Network Observer

ut

FIGURE 1.3 — Block diagram representing the state estimation problem when the communications
between plant and observer take place via a digital network.

it is not needed to trigger a new transmission and thus send a new output measurement to the ob-
server, since it already has an output data which is almost the same. On the other hand, when the
output changes rapidly, the observer needs the measured information more frequently. Therefore,
approaches that are not based on time, but on the need for a new output transmissions have been
envisioned in the literature. In particular, by designing an observer able to predict when it needs
a new data, self-triggering strategies, see e.g., [47,48], have been proposed, where the estimation
algorithm requests a new transmission when it needs it. This communication strategy is very useful
in applications where the system output cannot be monitored continuously, since it is measured only
at some discrete-time instants. However, the self-triggering strategy often requires many transmis-
sions. Moreover, it does not monitor the system output, and thus, it is typically slower to detect fast
changes on the measurements or perturbations on the measured data due to noise. Therefore, when
the measured output is monitored continuously and the objective consists of deciding when a trans-
mission needs to be triggered over the network, the information given by output measurements can
be exploited to generate the transmission instants. In this context, an alternative powerful approach
to generate the transmission instants is the event-triggered strategy, see e.g., [15-30]. In this case, an
event-based triggering rule monitors the plant measurement and/or the observer state and decides
when an output transmission needs to be triggered in order to reduce the number of transmissions
over the network, while still ensuring good estimation performance. In this context, the majority of
the event-triggered estimation works in the literature propose a triggering rule that depends on the
observer state estimate and, therefore, requires the implementation of a local copy of the estimator
in the sensor, see e.g., [15-21]. A possible drawback of this approach is that the sensor is required to
have enough computation capabilities, which is not always the case in practice, especially for large
scale systems or highly nonlinear dynamics. To overcome this drawback, a solution consists in desi-
gning an event-based triggering rule that only relies on the sensor output measurements. Solutions
following this approach have been proposed in the literature, see e.g., [22-29], where the triggering
strategy is only based on a static condition involving the measured output and its past transmitted
value(s). However, such static triggering rules may generate a lot of transmissions. Therefore, with
the aim of reducing the amount of transmissions over the network, without requiring significant
computation capability on the sensor, in this thesis we propose a dynamic event-triggered approach

based only on the measured output and the last transmitted output value.
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Contributions

The objective of the first part of this thesis is to design a new dynamic event-triggering rule to de-
cide when an output data needs to be transmitted from the plant to the observer via a digital network,
in order to reduce the number of transmissions, while still ensuring good estimation performance.
In particular, the triggering rule we design depends only on the current output measurement and
the last transmitted output value. Therefore it does not rely on a copy of the observer, that might be
computational prohibitive for the sensor. Instead, inspired by dynamic triggering rules used in the
event-triggered control literature [49-52], we introduce an additional scalar variable that helps to
reduce the number of communications over the network and keeps the required calculation simple.

The results are first presented for unperturbed linear time-invariant systems and are then gene-
ralized by considering general perturbed nonlinear systems and a decentralized setting, where the
sensors are grouped in N nodes and each node decides when its measured data is transmitted to
the observer independently from the others. In both cases, we have modeled the overall system as
a hybrid system, where a jump corresponds to an output transmission, and we establish a stability
property for the estimation error. Moreover, we prove the existence of a minimum positive time bet-
ween any two transmissions of each sensor node, which is essential for practical implementation
since modern digital hardware cannot implement infinitely fast samplings. We also guarantee the
absence of sampling when the output remains in a small neighborhood of a constant and therefore
its information is not needed to the observer to obtain a good estimation, which is an advantage
against time-triggered strategies. In addition, we show how the presented results can be further ex-
tended to the case where the output measurement are affected by additive measurement noise and
to the case where the plant input is transmitted as well over a digital network, and thus the observer
has access also to the input only at some discrete-time instants, which may be different to the out-
put transmission instants. Finally, the effectiveness of the proposed technique is shown in numerical

examples.
1.3.2 Improving estimation performance
Motivation

The main objective when designing an observer to estimate a dynamical system state is to have
guarantees that the state estimation error converges to the origin (or its neighborhood) as the time
grows. As we previously mentioned, many techniques are available in the literature for linear and
nonlinear systems to ensure this property, see [5,8]. However, when designing an observer we would

also like to ensure good estimation performance in the sense that we desire the following properties.

— Fast speed of convergence so that the observer is able to rapidly generate a good state estimate

and thus quickly know the desired unmeasured variables.

— Robustness to disturbances and measurement noise in the sense that the estimate is accu-
rate even in presence of model uncertainties and it is not too sensitive to measurement noise,

which is inevitable in practice.
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— Global domain of attraction to guarantee the convergence property independently on the
observer initialization and thus on the initial estimation error, which is unknown since the

initial state is unknown.

Ideally we would like to design an observer that satisfies all these properties. Unfortunately, this is
very hard, if not impossible, since fundamental limitations arise, see [53] in the context of linear
systems. Indeed, there is typically a trade-off between these properties, which makes the observer
tuning very challenging. Many observer design techniques in the literature consist in designing the
observer dynamics by using a copy of the plant and then adding a correction term, often denoted
as the output injection term. It depends on a gain (linear or nonlinear) that multiplies the output
estimation error, namely, the difference between the measured output and the estimated output. The
question on how to tune this gain to obtain good estimation performance is extremely hard. Indeed,
typically, observers with “small” gains in their output injection terms produce an estimation robust
to measurement noise, but the convergence speed is very slow. On the contrary, an observer with a
“large” value usually has a fast convergence, but is more sensitive to noise.

Note that optimal estimation schemes have been presented in the literature, but only in specific
contexts, like for example the well-known Kalman filter [54] for linear systems affected by additive
Gaussian perturbations impacting the dynamics and the output measurements. In addition, optimal
and suboptimal moving horizon estimation schemes, see e.g., [55-58] were proposed for discrete-
time systems, which however is an iterative estimation approach that therefore may be computational
demanding. In particular, it consists in optimizing a finite horizon cost, over a moving interval, using
a fixed number of past measurements and the system model.

For general nonlinear systems and perturbations, designing an optimal observer is very hard, as
this requires solving challenging partial differential equations [59]. Therefore, alternatively, we can
focus on design techniques to improve the estimation performance of a given observer. To the best of
the authors’ knowledge, solutions in this direction concentrate on specific classes of systems, see e.g.
[60-62] for linear systems or e.g., [63—70] in the context of high-gain observers, or focus only on one
of the specific desired properties described above, like the robustness to measurement noise in e.g.,
[9,71]. In addition, switching, adaptive estimation or gain-scheduling strategies have been studied
in the literature for estimation, see e.g., [67,72-74]. The main limitation of these works is that they
consider specific classes of systems or observers. For general continuous-time nonlinear systems, a
solution to improve the estimation performance is presented in [43], where the authors proposed
to switch between a local and a global observer to take the best of both of them. Indeed, a local
observer typically can be tuned to have good robustness to measurement noise and disturbances,
but its domain of attraction may be very small. On the other hand, the global observer guarantees a
global domain of attraction and often a fast convergence, but it is sensitive to noise. Unfortunately,
the technique presented in [43] is not easy to implement since the knowledge of various properties
of the observers is required.

An additional difficulty in tuning the observer gain to obtain good performances with robust

stability guarantees arises from the fact that it is not easy to prove the convergence property of the
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estimation error for all possible converging gains. Indeed, in practice, there may exist some choices
of the observer gains that produce convergent estimation errors, possibly with good transient, steady
state or overall performance, but unfortunately, we cannot ensure any stability guarantee for these
choices of gains. Hence, to have a way to exploit such gains in the observer design would be very
useful to possibly improve performance of observers with guaranteed convergence.

In this context, we feel that there is the need for estimation schemes for general deterministic
nonlinear systems that ensure a robust stability property of the estimation error and guarantee good
estimation performance. In this work we propose a solution based on a multi-observer and the use
of hybrid techniques.

Contributions

Focusing on the challenging question related to the estimation performance of observers, in this
thesis, we present a new general and flexible hybrid multi-observer scheme to improve the estimation
performance of a given robust nominal observer designed for a general nonlinear continuous-time
system. In particular, the nominal observer is assumed to be such that the associated estimation
error system satisfies an input-to-state stability property with respect to measurement noise and dis-
turbances. As mentioned before, a broad range of nonlinear observers in the literature satisfy this
property, see [5,9] and references therein. The multi-observer is then constructed by adding addi-
tional dynamical systems in parallel to the nominal observer, which are collectively referred to as
modes. These additional modes have same structure as the nominal one, but with different gains,
that can be arbitrarily selected. Indeed, we do not require any stability property for these systems.
Consequently, the freedom and flexibility we introduce in the number of additional modes and in
their gains can be used to address a range of very different design trade-offs between robustness and
convergence speed. Moreover, the freedom in the choice of the gains may results in converging modes
for which we may not have any stability guarantee. Inspired by supervisory control and estimation
techniques, see e.g., [75-79], we run all the modes in parallel and we evaluate their estimation per-
formance in terms of quadratic costs using monitoring variables. Based on these variables, we design
a switching rule that selects the “best” mode at any time instant. The modes that are not selected at a
switching instant are either unchanged or their state estimates, as well as their monitoring variables,
are reset to the ones of the selected mode. Note that the overall system is an hybrid system. Indeed,
the nonlinear system, all the modes of the multi-observer and the monitoring variables evolve in
continuous-time, while the switching of the selected mode can be model as a discrete-time jump.

We prove that the proposed hybrid estimation scheme satisfies an input-to-state stability pro-
perty with respect to disturbance and measurement noise. Moreover, the performance of the hybrid
multi-observer scheme are at least as good as the performance of the nominal observer and, under
some conditions, we show that the propose technique strictly improves the estimation performance.
Finally, we illustrate the effectiveness of the proposed hybrid multi-observer approach in numerical
examples. In addition, the presented estimation technique is applied, in simulation, to improve the
estimation performance of an observer designed following a polytopic-based approach, for the state

estimation of an electrochemical lithium-ion battery with standard model and parameter values, for
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which estimation performance are extremely important.

1.4 Outline of the thesis

The remaining of the thesis is organized as follows.

— In Chapter 2 we present some preliminaries that are helpful to understand the rest of the
thesis. In particular, we first recall some mathematical concepts. After that, the class of nonli-
near continuous-time observers considered in this thesis is introduced, together with examples
and stability properties. In this chapter, we also introduce the formalism of hybrid dynamical

systems we adopt in this thesis, presenting useful definitions, concepts and properties.

— In Part I (Chapters 3 and 4) the event-triggered estimation problem is presented, where we
propose a new dynamic triggering rule, implemented by a smart sensor, to decide when an
output transmission over the digital network needs to be triggered. The proposed triggering
rule does not rely on a copy of the observer in the sensor, which is therefore not required to
have significant computation capabilities. The results are first presented for unperturbed linear
time-invariant systems in Chapter 3, and are then extended to general perturbed nonlinear

systems and a decentralized scenario in Chapter 4.

— In Part II (Chapters 5 and 6) the performance of a given robust nominal nonlinear observer
are improved by using hybrid techniques. In particular, a novel hybrid multi-observer is pre-
sented in Chapter 5. It is composed by the nominal one and additional dynamical systems, that
differs from the nominal one only in their output injection gains. The estimation performance
improvement is obtain by switching between the modes of the multi-observer. In Chapter 6 the
approach is applied, in simulations, for the state estimation of an electrochemical lithium-ion
battery.

— Chapter 7 concludes the thesis by summarizing the main results described in this document

and by presenting possible future research directions.

1.5 Publications

In this section we provide a list summarizing the publications that arose from this thesis, detailed
by categories.

1.5.1 Journal papers

1. E. Petri, R. Postoyan, D. Astolfi, D. Nesi¢, and W. P M. H. Heemels: Decentralized event-triggered

estimation of nonlinear systems, Automatica, to appear. [80]

1.5.2 Submitted papers

1. E. Petri, R. Postoyan, D. Astolfi, D. Ne$i¢, and V. Andrieu: Hybrid multi-observer for improving
estimation performance, submitted to IEEE Transaction of Automatic Control. [81]
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1.5.3 Conference papers

1.

E. Petri, T. Reynaudo, R. Postoyan, D. Astolfi, D. NeS$i¢, and S. Raél: State estimation of an
electrochemical lithium-ion battery model: improved observer performance by hybrid redesign,

European Control Conference, Bucharest, Romania, pp. 2151-2156, 2023. [82]

. E. Petri, R. Postoyan, D. Astolfi, D. Nesi¢, and V. Andrieu: Towards improving the estimation per-

formance of a given nonlinear observer: a multi-observer approach, IEEE Conference on Decision
and Control, Cancin, Mexico, pp. 583-590, 2022. [83]

. E. Petri, R. Postoyan, D. Astolfi, D. Ne$i¢, and W. P M. H. Heemels: Event-triggered observer

design for linear systems, IEEE Conference on Decision and Control, Austin, USA, pp. 546-551,
2021. [84]

1.5.4 Conference extended abstracts

1.

E. Petri, R. Postoyan, D. Astolfi, D. Nesi¢, and W. P M. H. Heemels: Event-triggered observer de-
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considered in this thesis and in Section 2.3 we present the hybrid dynamical systems framework we

will use to model the overall systems. Finally, Section 2.4 concludes the chapter.
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Chapter 2. Preliminaries

2.1 Mathematical definitions

In this section we recall some mathematical definitions that are used in the next chapters. The

material is borrowed from [31, 32, 85].
Functions regularity
A function f : X € R" - Y € R™, with n,m € Z., is said to be

— continuous at x € X if for each € > 0 there exists 6 > 0 (possibly depending on x and ¢) such
that [f (x") — f (x)| < € for all x’ € X satisfying 0 < |x” — x| < &. Equivalently f is said to be

continuous at x € X if for each sequence x; € X converging to x, lim f (x;) = f (x),
1—00
— continuous if is continuous at every point x € X,

— uniformly continuous if for each ¢ > 0 there exists 6 > 0 such that |f (x") — f(x)| < ¢ for all

x,x’ € X satisfying 0 < |x’ — x| < 6,
— Lipschitz if there exists a constant M € R_ such that |f (x) — f (2)| < M|x —z| for any x,2 € X,

— locally Lipschitz, if for every x € X there exists a neighborhood ¥ — X of x and a constant
M € R such that, for any z,2" € ¥, |f (2) — f (z')| < M|z — &/|,

— continuously differentiable if it is continuous and its derivative exists and is itself a continuous

function.

A function f : X € R" — Y < R" with n € Z., is said to be invertible if there exists a function
g2:YCSR" - X cR"'suchthat g(f(x)) = x forallx € X and f (g(y)) = y forall y € Y. The function
g is called the inverse function of the function f and is denoted f ~!. A function f : X € R* — Y < R™,
with n,m € Z. , admits a right inverse, denoted f %, if f(f R(y)) =y forall y e Y.

A function f : R — R is said to be

— piecewise continuous if for any given interval [a, b], with a < b € R, there exist a finite number
of points a < xg < X7 < Xp < -+ < Xp_7 < X, < b, with k € Z- such that f is continuous on

(x;_1,x;) forany i€ {1,...,k} and its one-sided limits exist as finite numbers,

— piecewise continuously differentiable if f is continuous and for any given interval [a, b], with

a < b € R, there exist a finite number of points a < xg < X; < X9 < -+ < X3_1 < X < b,

with k € Z~ such that f is continuously differentiable on (x;_1,x;) for anyie {1,...,k} and

the one-sided limits lims_>xi+_1f’(s) and lims_mi— f'(s) exist for any i € {1,...,k}, where f'(s)

denotes the derivative of the function f in s € R, which is defined as f'(s) := lim,_,(f (x) —

f($))/(x =s).

A function f : [a,b] c R — Y € R", with n € Z., is said to be absolutely continuous if for each

¢ > 0 there exists 6 > 0 such that for each countable collection of disjoint subintervals [a;, b;] of
[a, b] such that Y ;(b; — a;) < 6, we have that Y, |f (b;) — f (a;)| < e.
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2.1. Mathematical definitions

Towards Lyapunov functions

The stability analysis we will present in this thesis rely on the study of Lyapunov functions, see
e.g., [85, Chapter 4]. For a function to be a Lyapunov function candidate, and thus, a function that
may be used to prove stability properties of a dynamical system, it generally needs to be positive
definite and radially unbounded with respect to the considered attractor, as defined next. In addition,

we define also positive semi-definite functions. A function f : R" — R, with n € Z-, is said to be

— positive definite with respect to the set .o < R" if f(x) = 0 for any x € .« and f (x) > 0 for all
x e RN\,

— positive semi-definite with respect to the set .o/ < R" if f(x) = 0 for any x € ./ and f(x) >0
for all x e R"\.«/,

— radially unbounded (with respect to set .f) if lim,| ;o f(x) = +0o0.

Conversely, a function f : R" — R, withn e Z_, is said to be negative (semi-)definite with respect
to the set ./ when —f is positive (semi-)definite.

As previously mentioned, the stability analyses we will present in this thesis rely on Lyapunov
functions. In particular, in the setting of differential equations used to describe the dynamics of
continuous-time systems, i.e., x = f(x), where x € R" is the system state, to guarantee a stability
property using Lyapunov tools, we need to evaluate the behaviour of the Lyapunov function candi-
date V : R" — R, along the solution to the differential equation. In particular, when the Lyapunov

function V is continuously differentiable, we need to evaluate

aV(x(t)) _ aV(x(t) dx(t) _ aV(x())

ot ox ot L (x(O) =TV (x(0), f(x (), 2.1)

for a given solution x to the considered system and time t € R-,. VV (x) denotes the gradient of V,
which is defined below. From (2.1), we see that the quantity that matters is (VV(x), f (x)), which
is algebraic when x € R". Hence, we can analyze the behaviour of the Lyapunov function along
solutions only using vectors, and thus an algebraic expression, which therefore does not require the

knowledge of the solution of the dynamical system at all time t € R..

Definition 2.1. Given a continuously differentiable function V : R" — R, with n € Z., and any

vector x := (X1,...,X,) € R", where x; € R, for alli € {1,...,n}. The gradient of V at x is defined as
oV (x) oV (x)
VV(x):= ey eR", 2.2
(x) ( 0xq 0xp (2.2)
where denotes the partial derivative of the function V with respect to x; at a point x € R", for
Xi
allie{l,...,n}. i

Definition 2.1 requires that the function V is continuously differentiable. Unfortunately, not al-

ways the Lyapunov functions used to study the stability properties of a dynamical system have this
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Chapter 2. Preliminaries

property. For example, the Lyapunov functions we construct in Part II of this thesis are not conti-
nuously differentiable, but only locally Lipschitz and thus differentiable almost everywhere by Rade-
macher’s theorem [86]. In this case, to study the differential property of the function V we use the
notion of Clarke’s generalized directional derivative [86], as defined next.

Definition 2.2. Consider a locally Lipschitz function V : R" — R.q, with n € Z-. The Clarke’s
generalized directional derivative of V at a point x € R" in the direction v € R", denoted V°(x; V), is
defined as

Vv hv) -V
V°(x;v):= limsup y +hv) (y) (2.3)
h—0t,y—x h

O

Comparison functions

To characterize the stability properties of nonlinear systems and to describe the system trajectory
behaviours, comparison functions are very useful. We recall the definitions of class ¢, class %, and
class £ % functions, taken from [85, Section 4.4]. A function @ : R,y — R isa

— class ¢ function, denoted a € ¢/, if it is continuous, strictly increasing, and a(0) = 0,
— class A, function, denoted a € %, if a € # and it is unbounded, i.e., lim,_, , ,, a(r) = +o0.

Afunction 3 : Ry g xR5 g — Ry is aclass & £ function, denoted § € #' %, if it is nondecreasing
in its first argument, nonincreasing in its second argument, i.e., lim fB(r,s) = O for each s € R,
r—0+ =
and lim f(r,s) =0 for each r € R,.
s—+00 -

Signals properties

In this thesis, we consider input signals u € % < R", with n € Z. o that are Lebesgue measurable
and locally essentially bounded and with %,, we denote the set of all these functions. The definitions

are now recalled.

— Aset ¥ c Ris said to be Lebesgue measurable if it has positive Lebesgue measure u(<”), which
is defined as u(&) = > (bx — ax ), where (ay, by ) are all the disjoint open interval in . Then,
the function u : & — R" is said to be a Lebesgue measurable function if for every open set
% < R", the set {r € & :u(r) € %} is Lebesgue measurable.

— Afunctionu : 7 — % < R", with 7 € R, n € Z- is said to be locally bounded at t € 7 if
there exists a neighborhood A of t such that the set u(A n ) is bounded. The function u is
said to be locally bounded if it is locally bounded at all t € 7. Given a set 7' — 7, the function
u is said to be bounded on 7 if the set u(J") is bounded.

— Afunctionu : J — % < R", with 7 < R., n € Z- is said to be locally essentially bounded
if for any t € & there exists an open neighborhood A of t such that u is bounded almost
everywhere on A; i.e., there exists ¢ > 0 such that |u(t)| < c for almost all t € A n 7. By
almost all, we mean everywhere in the considered set except on a set of Lebesgue measure

Zero.

18



2.2. Observers for continuous-time systems

Tangent cone
We finally define next the tangent cone to a set ¥ — R", with n€ Z_ at a point x € R™.

Definition 2.3. Given a set 6 < R", with n € Z., the tangent cone to the set € at a point x € R",

denoted T, is the set of all vectors v € R" for which there exist sequences x; € 6, T; > 0, for any
Xi — X
O

i€Z=p, Withx; > x, T; >0asi—owand v = lim
- i—>00  T;

In this section we have recalled some mathematical definitions useful for this thesis. We are now

ready to present the class of nonlinear continuous-time observers we focus on in this thesis.

2.2 Observers for continuous-time systems

In this section we describe the class of observers for continuous-time dynamical systems that are
considered in this thesis. As explained in the introduction, an observer is designed to estimate the
system state based on the knowledge of the system model, the input and the measured output. First,
in Section 2.2.1, we provide the definition of an observer we adopt for a general nonlinear system
and, in Section 2.2.2, we define the input-to-state stability property of the state estimation error sys-
tem and we recall the Lyapunov conditions used to guarantee this property. The satisfaction of this
property is the starting point for most of the results we will present in this thesis. In Section 2.2.3,
some specific classes of observers we will consider in the numerical examples in the thesis are des-
cribed. Finally, in Section 2.2.4, we define a useful input/output-to-state stability property and we

provide its Lyapunov characterization.
2.2.1 Observer definition

In this thesis we focus on the following class of continuous-time nonlinear systems

x = fp(x,u,v)

Yy = h(X:W)’

2.4

where x € R™ is the system state, u € R™ is the measured input, y € R™ is the output measured
by sensors, v € R™ is an unmeasured disturbance input and w € R™ is the measurement noise, with
ny,n, € Z-o, and n,, n,, n, € Z>,. The inputs u, v and w to (2.4) are such thatu € £,,, v € £, and
w e % for some sets % < R™, ¥ < R™ and # < R". The vector field f,, : R"™ x R™ x R™ — R"™
is locally Lipschitz in its first argument and continuous in the others and h : R™ x R™ — R" is
continuously differentiable in x and continuous in w. Equation (2.4) is called system plant equation
and describes the dynamics of the state variable x. Indeed x denotes the derivative of x with respect
to the continuous-time t, i.e., x = d_x By solving the differential equation (2.4) we can therefore
obtain an expression of the trajectory of the system state at every time t € R. . Indeed, given any
initial condition x(0) = x, € R™ and any inputs u € ¥,,, v € £y, which are functions of the time ¢,

by a solution to (2.4), we mean an absolutely continuous function x satisfying

x(t) =xq+ L fp(x(s),u(s),v(s))ds. (2.5)
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The second equation in (2.4) is the output equation, which is a static map that describes the relation-
ship between the output y, which can be directly measured, and the internal state of the system x.
The objective of an observer for system (2.4) is to asymptotically reconstruct x given f, h, u and

y. The class of continuous-time observers for system (2.4) considered in this thesis has the form

2 =Y(z) (2.6)

where z € R™ is the observer state, with n, > n,, X € R™ is the state estimate, y is the output
estimate. The vector field f, : R™ x R™ x R x R — R™ is continuous, and 1) : R"™ — R"™ admits
a right inverse ¢ % of 1, i.e., x = (3 ’(x)) for any x € R™. Often z = X, but this does not
necessarily have to be the case. Note that these class of systems and observers cover many design
techniques in the literature, see e.g., [ 5] for a survey on observers designs for nonlinear systems. Even
if the class of observers considered in this thesis covers a wide range of observer design techniques
in the literature, other estimations schemes, e.g, moving horizon estimation, see e.g., [55-58] for
discrete-time systems, sliding-mode observers, see e.g., [87], finite-time converging observers, see
e.g., [88] or interval observers, see e.g., [89,90], exist and are not covered by the results in this
thesis.

The dynamics of the observer (2.6) depends on the system input u and output y of system (2.4),
which are known and on the observer state estimate z and its output estimate y. Moreover, the
observer dynamics is described by the function f,, which needs to be designed and typically is related
to the knowledge of the system model f, in (2.4). Indeed, for example, when the observer has the
same dimension as the system, i.e., n, = n,, the function f, may be designed as a copy of the
plant dynamics f, plus an output injection correction term that depends on the output estimation
error, see Section 2.2.3 for examples. As we have previously explained, observer (2.6) is a dynamical
system that is used to estimate the system state x starting from the knowledge of the system model
(2.4) and input u and output y measurements. As a consequence, such estimation scheme exists
only if the measurements contain enough information to reconstruct uniquely the system state. This
property, which is necessary to design the observer, is called detectability. In particular, for different
classes of dynamical systems, there exist different detectability/observability conditions, which lead
to different observer design techniques. An interested reader is referred to [5] for an overview of
observer designs and detectability notions for nonlinear continuous-time systems. In this thesis we
always assume that the considered system (2.4) is detectable and thus, we can design observer (2.6)
to estimate its state.

Note that, in (2.6) we consider observers whose state dimension is at least as large as the system
state, namely n, > n,. When the measured output corresponds to one or more system states, it is
possible to design an observer to estimate only the unmeasured states. In this case, the observer
may have a smaller dimension than the system, namely n, < n,., and we talk about reduced order
observers, see e.g., [91-93]. A potential drawback of this approach is that the state estimate depends
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2.2. Observers for continuous-time systems

directly on the output measurement often affected by noise, which is not filtered through the observer
dynamics.

We now described the properties that system (2.6) needs to satisfied to be considered and obser-
ver for system (2.4). System (2.6) is

— an asymptotic observer for system (2.4) if, in absence of disturbances and measurement noise,
ie., v(t) = 0and w(t) = 0, for all t € R, for any input u € £, and any initial condition
x(0) € R™ and 2(0) € R™ for systems (2.4) and (2.6) respectively, we have that the solution
z(+) is defined for all positive times and

lim |x(t) — %(t)| = 0. (2.7)

t—+400

Note that (2.7) implicitly implies that the solutions x and X to systems (2.4) and (2.6) are

defined for all positive times. This comment applies to all statements in this section.

— an uniformly asymptotically stable observer for system (2.4) if there exists 3 € ¥ such that,
in absence of disturbances and measurement noise, i.e., v(t) = 0 and w(t) = 0, for all t € R,
for any input u € £,, and any initial condition x(0) € R™ and 2(0) € R™ for systems (2.4) and

(2.6) respectively, we have

[ (t) = 2(6)] < Bl (x(0)) —=2(0)], t). (2.8)

Moreover, the observer is said to be uniformly exponentially stable if B (s, t) = cse™*t, for some
real numbers ¢ > 1 and A > 0.

Note that, in addition to the attractivity property in (2.7), (2.8) requires also the stability of
the estimation error in the sense that, for any ¢ > 0, there exists 6 > 0 such that

| R (x(0)) —2(0)| < & implies |x(t)—%(t)|<e forallteRsy. (2.9)

In other words, (2.9) implies that the estimation error remains small during transient if the
initial error is small. In addition, property (2.8), conversely to (2.7), requires also that the
stability and the attactivity properties of observer (2.6) are uniform for any possible initial
conditions x(0) € R™ and z(0) € R™ for systems (2.4) and (2.6), respectively.

— arobust observer for system (2.4) with respect to measurement noise and disturbances if there
exists p € A, such that, for any x(0) € R™x and z(0) € R™ and any input u € ¥,,, disturbance

input v € £, and measurement noise w € L,

limsup |x(t) — x(t)| < p(limsup|(v(t),w(t))|). (2.10)

t—+00 t—+00

When designing observer (2.6) to estimate the state of system (2.4) in presence of disturbances and
measurement noise, we desire both the uniform asymptotic stability property of the estimation error

in absence of measurement noise and disturbance, as in (2.8), and the robustness property with
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respect to disturbances and measurement noise, as in (2.10). These two properties together ensure
that the estimation error converges to a neighborhood of the origin, whose size depends on the norm
of the disturbances and of the measurement noise. Moreovet, it is stable, as defined in (2.9), and
uniform with respect the initial conditions x(0) € R™ and z(0) € R"™. A general stability property
that incorporates these two desired properties is the input-to-state stability property of the estimation
error with respect to disturbances and measurement noise, see e.g., [6,7,9]. This property is the
starting point for the results we will present in this thesis and is defined in the next section, together

with its Lyapunov characterization.
2.2.2 Input-to-state stability property

In this section we define the input-to-state stability property [6] for the class of nonlinear obser-

vers (2.6) considered in this thesis and the corresponding Lyapunov characterization.

Definition 2.4. Observer (2.6) is an input-to-state stable observer for system (2.4) if there exist 3 € A <L
and vy € A, such that, for any input u € ¥, any disturbance v € ¥, and any measurement noise
w € %y, for any initial condition x(0) € R™ and z(0) € R™ for systems (2.4) and (2.6), respectively,
the corresponding solutions x(t) and z(t) satisfy, for all t > 0,

[%(¢) = x(6)| < Bl (x(0)) = 2(0)], ¢) + v (IVljo,e7 + [Wljo,e))- (2.11)

O

Definition 2.4 implies that when observer (2.6) is an input-to-state stable observer for system
(2.4) then for any initial condition x(0) € R™, z(0) € R™ and for any u € ¥, any disturbance
v € ¥y and any measurement noise w € %y, the corresponding estimation error solution x(t) —
%(t) converges to a neighborhood of the origin, whose size depends on the disturbance v and the
measurement noise w as the time t goes to infinity. In addition, in absence of noise and disturbance,
namely v(t) = 0, w(t) = O for all t > 0, then observer (2.6) is a (global) asymptotic observer for
system (2.4) in the sense that, for any initial condition x(0) € R™, z(0) € R™ and any u € %y, the
corresponding solution to (2.4) and (2.6) satisfies x(t) —%(t) — 0 as t — 400, where we recall that
#(6) = (3(0).

The input-to-state stability property [6] is verified by various observer design techniques in the
literature, see e.g., [5,7,9] for more details, as well as Section 2.2.3.

To prove that observer (2.6) is an input-to-state stable observer for system (2.4) with respect to

disturbance v and measurement noise w, the next Lyapunov characterization is typically used.

Proposition 2.1. Consider system (2.4) and observer (2.6). Suppose there exist @, o, @, 7, Y € Koo,
V : R™ x R"™ — Ry continuously differentiable, such that for all x e R"™x, z e R":, ue %, ve ¥,
weW,yeRY,

a(lx =y (2))) S V(x,2) <a(lyp™(x) —z)) (2.12)

(TV(x,2), (X0, V), o (21, 7, 9))) < —al(V (x,2)) + 7, ([V]) + yu(Iw]): (2.13)
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2.2. Observers for continuous-time systems

Then, observer (2.6) is an input-to-state stable observer for system (2.4) with respect to disturbance v

and measurement noise w in the sense of Definition 2.4. O

The proof of this proposition follows similar lines as in [6] and is therefore omitted.

The starting point to the main results in this thesis is the existence of an observer that satisfies an
input-to-state stability property in the sense of Definition 2.4. This property will be therefore assumed
to hold. In the numerical examples where we will show the efficiency of the proposed approaches,
we thus first need to design an observer satisfying an input-to-state stability property, and then we
can apply the proposed techniques. In this case, we typically consider a special class of the general
class of observers in (2.6). In particular, in all the numerical examples considered in this thesis, the
observer state has the same dimension as the system state, namely n, = n, and z = X € R™~ in (2.6).
Moreover, the function f, in (2.6) we will design in all the examples consists in a copy of the system
model, i.e., f, in (2.4), and an output-injection correction term. Therefore, for design purposes in
the numerical examples in this thesis we consider the following class of nonlinear observers, which

is a subclass of the nonlinear observers in (2.6),

(2.14)

where f,, and h comes from the system model (2.4) and L € R™*"

is the observer gain.
Note that, when considering observers (2.14) to estimate the state of system (2.4), instead
of (2.6), the Lyapunov conditions in Proposition 2.1 can be simplified, as described in the next co-

rollary.

Corollary 2.1. Consider system (2.4) and observer (2.14). Suppose there exist &, @, @, Y, Y € Ko,
L:Ryy— R, V:R™ — Ry continuously differentiable, such that for all x € R™, % € R,
ue¥U,vevV,we,

a(jx —x)) <V(x—%) <a(|lx—2x|) (2.15)

<VV(X _JAC)’ (fp(x:uﬂv) _fp()%:uﬂo) - L(y _5\/>)> < —a(V(x _)%)) + Yv(|v|> +YW(’WD' (2'16)

Then, observer (2.14) is an input-to-state stable observer for system (2.4) with respect to disturbance v

and measurement noise w in the sense of Definition 2.4. m|

Examples of observer designs modelled in the form (2.14) are given in the next section. In parti-
cular, the observer design techniques described in the next section are used in the thesis to show the

efficiency of the proposed techniques in numerical examples.
2.2.3 Observer examples

This section focuses on some specific observer design techniques in the literature, which are im-
plemented in numerical examples in the thesis. In particular, we consider the Luenberger observer for
linear time-invariant systems, the high-gain observer, observer design based on a polytopic approach
and the extended Kalman filter.
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Luenberger observer

In this section we recall the Luenberger observer design for linear time-invariant systems [94].

Consider a linear time-invariant system

X =Ax+Bu+v
(2.17)
y=Cx+Du+w,

where x € R™ is the state, u € R™ is a known input, y € R is the measured output, v € R™ is
an unknown disturbance input, and w € R" is the unknown measurement noise, with n,, n, € Z.
and n, € Z-,. In this case, the detectability of system (2.17) is equivalent to the fact that there
exists L € R™*™ such that the matrix A — LC is Hurwitz, which means that all its eigenvalues have
negative real part. In addition, if the eigenvalues of A — LC can be arbitrarily assigned using the
gain L, then the pair (A, C) is observable and the gain L can be used to obtain an arbitrarily fast
speed of exponential convergence of the estimation error to the origin. Note that, if the pair (4, C)
is observable it is also detectable, but the opposite is not necessarily true. When the pair (A,C) is
detectable, to estimate the system state, we can thus design a Luenberger observer [94], described
by

X=AX+Bu+L(y—7¥) 2.18)

y =Cx + Du,
where & € R™ is the state estimate, y € R is the output estimate and L € R™*" is the output-
injection gain that is designed such that the matrix A— L C is Hurwitz, as explained above. In absence
of disturbance and measurement noise, i.e., v(t) = 0 and w(t) = 0 for all t € R, observer (2.18)
guarantees that we can exponentially reconstruct the state x of the plant, implying that tEToo(x(t) —
%(t)) = 0 for any initial condition to (2.17) and (2.18) and any input u. To see this, we define the

estimation error e := x — X and we evaluate its dynamics, from (2.17) and (2.18), which is given by
e=(A—LC)e, (2.19)

Solving the differential equation (2.19), we obtain, for any eq = e(0) € R™, for all t € R,
e(t) = eA L0z, (2.20)

which, since A— L C is Hurwitz, implies that the estimation error exponentially converges to the origin
as the time goes to infinity. In addition, in presence of disturbance v and measurement noise w, by
defining the Lyapunov function V (e) := e Pe, where P € R"*"« is a positive definite matrix given
by P(A—LC) 4 (A—LC)"P = —Q for some Q € R™*"x positive definite, the Lyapunov conditions in
Corollary 2.1 are satisfied, as stated in the next proposition.

Proposition 2.2. Consider system (2.17) and observer (2.18), where L € R™*" is designed such that
A — LC is Hurwitz. Then, there exist a,a,a,y,,Y,, > 0 such that V(e) = e Pe satisfies the following
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2.2. Observers for continuous-time systems

properties, foralle = x — X e R™, ve R™ and w e R™,

ale|* < V(e) <alel? (2.21)
(VV(e),(A—LC)e+v—Lw)y<—aV(e) +1,[v]* + ruw/ (2.22)
O

Proof. Consider system (2.17) and observer (2.18). Using the definition e = x — X, we obtain,
é=%—%=(A—LC)e+v—Lw. (2.23)

Pick any Q € R™*™ positive definite and consider the Lyapunov function V (e) := e' Pe, where
P e R™*™ is a symmetric positive definite matrix given by P(A—LC) +(A—LC)" P = —Q. Note
that since A — LC is Hurwitz, in view of e.g., [85, Theorem 4.6], matrix P exists and is unique.

Since P € R™*"x is a symmetric positive definite matrix, we have
Amin(P)le|* < V(€) < Amax(P)lel*, (2.24)

This proves (2.21) with a := A;,(P) > 0 and @ := A,4(P) > 0. We now prove (2.22). Let

x,e,v € R™ and w € R"Y. From the definition of V and (2.23), we obtain

(VV(e),(A—LC)e+v—Lw))
—e (A—LC)'Pe+v'Pe—w'L"Pe+e'P(A—LC)e+e'Pv—e'PLe (2.25)
—e ((A—LC)"P+P(A—LC))e+2v Pe—2w L Pe.

Using P(A— LC) + (A— LC)"P = —Q, we obtain
(VV(e),(A—LC)e+v—Lw)y=—e'Qe+2v'Pe—2w'L"Pe. (2.26)
Since Q € R™*™ is a symmetric positive definite matrix, we have

Amin(Q)‘elz <e'Qe< Amax(Q)‘elz- (2.27)
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Pick any c,,c, € R. such that A,;,(Q) — ¢, —¢,, > 0, then, using (2.27), and the Young’s
inequality, from (2.26), we have
(VV(e), A= LC)e+v —Lw)) < —Anin(Q)|e|* + 2|y Pe| + 2/w LT Pe]
< —Amin(Q)le[> + 2P| [v[*lef* + 2 |L TP wlle|
2
L& |2"P]
< —min(Q)lef* + ——[v[* +c,fe[* + Wi + cylel?
v w
2
|pI* o, I2"P]
< _(lmin<Q)’e|2_cv_CW>|6‘2+ ‘V|2+ |W|2
’ (2.28)
Using (2.24), we obtain
2
A el>?—c,—c P|? L'P
<VV(C),(A—LC)€+V—LW)><— mm(Q)’ | )4 WV(€>+ H “ ‘V‘Z—F H H |W|2,
A’I'I'IZIX(P) CV
(2.229)
Ami el>?—c,—c P
which concludes the proof of Proposition 2.2, with a := min(Q)le " >0,y, = |21 >
9 AmaX<P) CV
|L"P]
0Oandy,, := — > 0. |
CW

From Proposition 2.2 we have that the Lyapunov conditions in Corollary 2.1 are satisifed and
thus the estimation error system satisfies an input-to-state stability property with respect to the dis-

turbance v and the measurement noise w, as defined in Definition 2.4.

We consider this observer design technique in numerical examples in Chapters 3 and 5.

High-gain observer

In this section we describe the high-gain observer design for systems in the canonical observability

form. The material is borrowed from [63]. Consider a nonlinear system in the following form

x =Ax+Bp(x)+v
o) (2.30)
y =Cx+w,

where x € R™ is the state, y € R is the measured output v € R™ is an unknown distrurbance and
w € R is the unknown measurement noise, with n, € Z- . The nonlinear function ¢ in is a Lipschitz

function, namely there exists K > 0 such that for any x, x’ € R™,
o (x) — @ (x")| <K|x —x|. (2.31)

The matrices Ae R™*™_ B e R™*! and C € R™*! are given by

0 I 0
(n,—1)x1 n,—1 (n,—1)x1
A= ,B= ,C=11 014(n_1). 2.32

[ 0 01x(nx1)] [ 1 ] [ e 1)] *32
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2.2. Observers for continuous-time systems

Note that the pair (A, C) is observable.
For this class of nonlinear systems, to estimate the system state, we can design a high-gain ob-

server of the form )
X=AX+Bp(X)+D{)L(y —¥)
(2.33)
y=Cgx,
where X € R is the observer state estimate and y € R is the output estimate. The matrices D({) €
R™*"x and L € R"™*! are given by

D(¢) = diag(¢,...,0™), L=(l,....,L; )T, (2.34)

where [y,...,1, are chosen such that the matrix A — LC is Hurwitz and ¢ is the high-gain design
parameter, which needs to be taken sufficiently large, in the sense that £ > £*, with £* > 1. This will
be clarified in the next next proposition, where we show that observer (2.33) is input-to-state stable

observer for system (2.30) in the sense that the Lyapunov conditions in Corollary 2.1 are satisfied.

Proposition 2.3. Consider system (2.30) and observer (2.33), where L € R™*1 s designed such that
A — LC is Hurwitz. Then, there exist a,a,a,Y,,Y., € Ko, £* = 1 and a continuously differentiable
function V : R"™ — Ry such that, for any £ > {* and for alle := x — X e R"™, ve R™ and w e R,

a(le]) < V(e) < a(le]) (2.35)

(VV(e),(A=D()LC)e + B(p(x) — ¢(&)) + v — D(()Lw)) < —a(V(e)) + 1, ([v]) +rw(w]). (2.36)

O

Proof. Consider system (2.30) and observer (2.33). Pick any ¢, , c,, € R- ¢, Q € R™*"x symmetric
positive definite. Select L € R™*! such that A— LC is Hurwitz. Pick £, £* > 1 such that £ > ¢* and
a =L Anin(Q) + 20 |[PD(€*)'B| K + ¢ + ¢ > 0, where P € R"™*"x is a symmetric positive
definite matrix given solution to (A — LC)'P 4+ P(A— LC) = —Q and K comes from (2.31).
Note it is always possible to select £* big enough such that this condition is satisfied. Denote
X = (X500, ) € R™, % 1= (Xq,...,%, ) € R™, with x;,%; € R, i € {1,...,n,}. The proof

relies on following change of coordinates

g = e R™, (2.37)

fn—1
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D
which therefore implies e = zand X = x — Ee)z. Using (2.30) and (2.33), we have
z=(D({) e
=(D({) " (Ax +By(x) +v —AX —Bp(%) —D(£)L(Cx +w — CX)) (2.38)
= ED(E)_l(A— D()LC)(x —x) + KD(E)_IB(w(x) — (%)) + KD(E)_lv —{Lw.

Using X = x — z, from (2.38) we obtain

D(¢)
l

z=(D()"'(A-D(L)LC)

Dée)z +¢D(¢)"'B <Lp(x) - <x — DE”Z)) +ED(0)" 'y —LLw.

(2.39)
From the definitions of A, C and D(£) we have that D(£)"'AD(¢) = £A and CD(£) = £C. There-
fore, (2.39) becomes

z=((A—LC)z+(D({)"'B ((p(x) —¢ <x - #z)) +4D()" v —LLw. (2.40)

Let U := z | Pz, with P € R™*"x defined at the begining of the proof. Since P is positive definite
we have
Amin(P) |22 < U(2) < Amax(P)|2]?. (2.41)

From the U definition and e = e)z, we define V(e) := U({D({)"te) = (2" D({)"1PD(£) e,

and, from (2.41), we obtain
Amin(P)|€D(£) " "e[* < V() < Amax(P)|€D(£) e[, (2.42)

which corresponds to (2.35) with a(s) := Ay (P)|[€D(£)71%s% and &(s) := Amax(P)[€D(£) 71?52,
for all s € R . We now focus on the proof of (2.36). From (2.40) and the U definition we have,
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2.2. Observers for continuous-time systems

forallze R™,veR™ and w e R,

<vu(z),e(A— LC)z+¢D(¢)"'B (Lp(x) — (x — #z)) +4D(e) v — ZLW>

.
<z (A-LC)" Pz +¢ («p(x) —p (x — Dé”z)) B'D() TPz +4v' D) TPz —tw'LPz
+02"P(A—LC)z +£2"PD(¢)"'B <<p(x) — (x - #z)) +02"PD()" v — €z PLw

=0z [(A—LC)"P+P(A—LC)]z+2(z"PD(¢)"'B <Lp(x) — <x — D?z))

+20z"PD(0) v — 20z PLw

D(¢)
l

< —0z'Qz + 242" |PD(¢)7'B| ‘go(x) —¢ (x — z) ‘ +20[PD(0)7Y| [v||z| + 2¢ |PL| |w]|z].
(2.43)
Using (2.41), the Lipschitz property of the function ¢ and the Young’s inequality, from (2.43)

we obtain

D¢
<VU(2),E(A—LC)Z +¢D(¢)"'B <<p(x) - <x - é )z)> +4D(0)" 1y —ELW>
-1 2 2 2 e —1)2 .2 e 2012
< —(min(@) + 26 [PDO) B K + ¢ + c2) [z + 5 [PDO M V2 + [ PLI* w]
r , 02 Y v (2.44)
— —alz* + = [PD(O) 1 V2 + = [PLI wf?

a
Amax(P)

<

2 ﬁng—lz 2 ﬁpLz 2
5+ S [PDEO T P + 5 IPLI? wP,
v

w

where we recall that @ = *A;,(Q) + 2¢* [PD(€*)'B|K + ¢> + ¢2 > 0 and £ > (*. Using

w
D¢
e = ( z, we go back in the original coordinates, and from (2.44), we obtain (2.36), which

concludes the proof. Note that, following similar lines, we could have directly prove Propo-
sition 2.3 without the change of coordinates and using V(e) = £2e" D(£)"'PD () e, for all
e e R, |

Proposition 2.3 shows that the high-gain observer (2.33) satisfies the Lyapunov conditions in
Corollary 2.1, when the high-gain design parameter ¢ > 0 is big enough and the matrix L € R"™*! is
designed such that A — LC is Hurwitz. In this case, in view of Corollary 2.1, the high-gain observer
(2.33) is an input-to-state stable observer for system (2.30) in the sense of Definition 2.4. In addition,
as explained in [63] the estimation error e := x — X € R™, originating from (2.30) and (2.33)
exponentially converges to a neighborhood of the origin, whose size depends on the measurement

noise w, namely, for all possible initial conditions x(0) € R™, as long as x(t) € &, forall t > 0,
e (£) = £(0)] < al™ e P (0) = 2(0)] + vy [vjo,ep + Twl™ Hwlio,e» (2.45)
where a, 8,7, and v,, are positive constants. From (2.45) we note that the high-gain design pa-
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rameter £ impacts both the speed of convergence, and the ultimate-bound of the estimation error
due to the noise. Indeed, the bigger is £, the faster is the observer convergence, but the larger is
the ultimate bound due to the noise. In addition, the high-gain design parameter { has an impact
also on the transient behaviour, which presents an overshoot, whose amplitude depends on £. This

phenomenon, typical for high-gain observers, is known as peaking phenomenon.

We design a high-gain observer in a numerical example in Chapter 5.

Polytopic-based observer

In this section we describe polytopic-based observer design. This approach is useful to estimate
the system state of a nonlinear system when the system nonlinearities lie on polytopes. In particular,
for this class of nonlinear systems, the problem is solved using a collection of linear systems that can
over approximate the behaviour of the nonlinear system and the observer design results in LMI-based
conditions. In some numerical examples considered in this thesis, we design a polytopic-based ob-
server to estimate a nonlinear system state where the system nonlinearities are either in the dynamic
state equation or in the static output map. In the first case, the observer design is inspired by [95],
while in the second case follows similar lines as in [96,97]. In this section we describe the polytopic-
based observer design in a more general case, where both the state dynamics and the output map

may present nonlinearities that lie on polytopes.

Consider a nonlinear system in the following form

X =Ax+Bu+Gg(x)+v
(2.46)
y = Cx + Du+ Hh(x) +w,

where x € R™ is the state, u € R™ is a known input, y € R" is the measured output, v € ¥ < R™
is an unknown disturbance input, and w € # < R"™ is the unknown measurement noise, with n,,
n, € Z.q and n, € Zs,. The matrices A€ R"™*", B e R™*™, C e R "™, D e R ™, G e R *1
and H € R™»*! are known matrices and the nonlinear functions g : R™ — R and h : R™ — R are
continuously differentiable functions such that, for all x, x’ € R™, there exist Gl, e, Gznx € RIXR™
and Hy, ..., Hoyn, € RVR™ such that

g(x) —g(x) = G(x,x")(x —x) Vx,x e R™ (2.47)
and
h(x) —h(x) = H(x,x")(x —x') Vx,x' eR™, (2.48)
where, fori e {1,...,2"},
2Mx 2nx
G(x,x') = Z Agi(x,x")G; with A ;(x,x") €[0,1] and Z Agi(x,x") =1 (2.49)
i—1 i—1
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2.2. Observers for continuous-time systems

and for j € {1,...,2"},

an an
H(x,x"):= Z Anj(x,x")H; with Ay ;(x,x") € [0,1] and Z Apj(x,x") = 1. (2.50)
=1 =1

Equations (2.47) and (2.49) means that the function G lies in a polytope with vertices Gi, i€
{1,...,2"<}. This property is satisfied for instance when the continuously differentiable function g
08 (xx)

OXy

From this, we can define the matrices G;, i € {1,...,2"%}, as all the possible combinations of 8, g, for

Ty
can be written as g(x) = Z gi(xy), with g, < < gy for almost all x; € R, with gk,gk eR.
k=1

all the gis. Similar comments apply to the function h and the respective equations (2.48) and (2.50).
An observer to estimate the state of system (2.46), where the nonlinear functions g and h satisfy

the properties described in equations (2.47)-(2.50), has the following form

A

% =A% +Bu+Gg(®)+L(y —3)
¥y =CX +Du+ Hh(%),

(2.51)

where X € R™ is the observer state estimate, y € R is the output estimate and L € R™*" is the
observer gain, which is obtained by solving some linear matrices inequalities (LMI) as described in

the next proposition.

Proposition 2.4. Consider system (2.46) and observer (2.51) and define the estimation error e :=

X — X € R™. If there exist L € R™*", a, u, and u,, € R.y and P € R™*" symmetric positive definite

such that
Aj+aP P —PL
P —u I, 0 |<o, (2.52)
—LTP 0 Iy,

with #; ; := (A+ GG; — LC — LHH;)'P + P(A+ GG; — LC — LHH;) for all i, j € {1,...,2"}. Then,

V : e — e Pe satisfies, forany e e R™, ve ¥ and we ¥,
Amin(P)le[? <V (e) < Apax(P)lel?, (2.53)

(VV(e),(A+GG(x,%) — LC — LHH(x,%))e + v —Lw) < —aV(e) + u,|[v[]> + u,[w|>.  (2.54)
O

Proof. Let x,% € R™ and recall the definition of the estimation error e = x — X € R™. Let
Vie) = e Pe. Since P is symmetric positive definite, (2.53) follows from the definition of V.
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Letve¥,we#.From (2.46) and (2.51), and using e = x — X, we have

e=Ax+Gg(x)+v—-Ax—Gg(X)—L(y —¥)
=Ax +Gg(x)+v—A% — Gg(*) — L(Cx + Hh(x) + w— CX —Hh(®)) (2.55)
= (A—LC)e+G(g(x) —g(%)) +v —LH(h(x) —h(X)) — Lw.

Using (2.47) and (2.48), from (2.55), we obtain
é = (A+ GG(x,%)— LC — LHH(x,%))e + v — Lw. (2.56)
AsV(e) = e Pe, from (2.56), (2.49) and (2.50), we have

(VV(e),(A+ GG(x,%) —LC — LHH(x,%))e +v — Lw)
—e' (A+GG(x,%) —LC —LHH(x,%)) "Pe +v'Pe+w LT Pe
+e"P(A+GG(x,8) —LC —LHH(x,%))e+e ' Pv+e  PLw

2n 2n
—Z?Lglxx th]xx[ ((A+GG; — LC — LHH,) TP + P(A+ GG; — LC — LHH;))e

+v'Pe+e' Pv—w'L"Pe— eTPLW].
(2.57)
Defining y := (e,v,w), using #; ; := (A+ GG; — LC — LHH;)"P + P(A+ GG; — LC — LHH}) for
alli,je{1,...,2™}, (2.57) becomes

(VV(e),(A+GG(x,%) — LC — LHHA(x,%))e + v — Lw)
2Mx 2Mx ‘%z p —PL

=ZAg’i(x,>“c)Z7Lh’j(x,)%)xT P 0 0 [y
= = —-L'TP 0 0

(2.58)

2nx onx
Using Z Agi(x,%) =1, Z Apj(x,%) =1and (2.52) forallie {1,...,2™}, je {1,...,2"}, we
i=1 j=1
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obtain
(VV(e),(A+GG(x,%) — LC — LHH(x,%))e + v — Lw)
onx onx —aP 0 0
<D A0, %) Y A, 2T | 0 0o |y
i=1 j=1 0 0 +uyly,
—aP 0 0 (2.59)
=" o +wI, 0 |x
0 0 +Uwln,
— —ae ' Pe + ,uvaInvv + ‘LLWWTIHWW
= —aV(e) + py |[v[* + py |w[>.
This concludes the proof. ]

Proposition 2.4 provides conditions to design the gain L of observer (2.51) to guarantee the
existence of a Lyapunov function V that satisfies (2.53) and (2.54), and thus, from Corollary 2.1, it
guarantees an input-to-state stability property of the estimation error with respect to the disturbance
v and the measurement noise w. Note that, it is not always possible to solve linear matrices inequa-
lities. As a result, only when we have a solution to the linear matrices inequalities we obtain the
gain L that guarantees the input-to-state stability property. In addition, note that (2.52) is not linear,
indeed, two unknown matrices P € R™*™ and L € R™*" are multiplied both in the definition of
A j, foralli,je {1,...,2"} and in equation (2.52). Thus, we need to define W = PL € R™*"v and
solve a linear matrix inequality where the unknown terms are a, u, and y,, € R. and P € R™*"x
and W € R™*" and, then obtain the gain L € R™*™ by using L = P~ 'W.

Polytopic-based observers are considered in numerical examples in Chapters 4, 5 and 6.

Extended Kalman filter

The last observer we present is the extended Kalman filter, see e.g., [98-100]. Consider a nonli-

near system
x = f(x,u)
¥ =h(x),

where x € R™ is the state, u € R™ is the input and y € R™ is the measured output. The nonlinear

(2.60)

functions f (x,u) and h(x) are continuously differentiable for all x € R™x. The input u is a continuous
signal.

To estimate the state of system (2.60) we can design an extended Kalman filter (EKF), which is
described by

(2.61)
where % € R™ is the state estimate, y € R is the output estimate and L € R™*" is the extended

Kalman filter gain, which needs to be designed.
The extended Kalman filter design is based on the linearization of the system dynamics along the
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system trajectories. Therefore, we define

A of (X,u)
AR, u) = ——
ox
) Oh(%) (2.62)
C(%,u) = F

These time-varying matrices, which correspond to the linearization of the nonlinear maps along the

trajectory X (-), are used to define the following Riccati differential equation
P = (A+ agggl,, )P(A" + aggel, ) — PCTRygpCP + Quxes (2.63)

where Rpgp € 9:3, Qpkr € 9:6‘ and aggr € R are design matrices and parameter, for all t € R-.
Then, the extended Kalman filter gain L(t) in (2.61) is given by, for all t € R,
L =PC Ry (2.64)
Conditions to guarantee the local convergence of the state estimation error generated by the
extended Kalman filter can be found in e.g., [98-100]. In particular, it is proved that, under some
conditions, see e.g., [98, Assumptions 1, 2 and 3], the estimation error e = x — X exponentially
converges when the initial estimation error is small enough, i.e., there exist b,c, 0 € R., such that
observer (2.61) for system (2.60), with gain (2.64), satisfies, |x(0) — x(0)| € B, where B := {x €
R™ : |x| < b},
|x(t) — 2(t)| < ce ?|x(0) — £(0)|, (2.65)
for all t € R.q, where 6 > a. In this thesis, this design is considered in a numerical example in
Chapter 5, where we do not require any stability property of the corresponding estimation error *.
For this reason, we do not provide details on the required assumptions that need to hold to obtain the
stability property. Note that (2.65) guarantees a local convergence of the estimation error. Indeed, it
holds only if the initial error is small enough. In addition, the extended Kalman filter does not satisfy
globally the Lyapunov conditions in Proposition 2.1, and thus it is not a global input-to-state stable
observer.

2.2.4 Input/output-to-state stability property

In Section 2.2.2, we have described the important input-to-state stability property for the class
of nonlinear observers we consider in this thesis. This property guarantees that the estimation er-
ror solution converges to a neighborhood of the origin. A different stability property, namely the
input/output-to-state stability property for the nonlinear system (2.4), and its Lyapunov characteri-
zation are presented in this section. Moreover, when this property is satisfied for the state estimation
error system, we can define an input/output-to-state stable observer, together with its Lyapunov

characterization, which will play a key role in Chapter 5. The material presented in this section is

1. The reason why we consider an observer design technique without requiring a stability property of the estimation
error will be clarified in Chapter 5.
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inspired by [101,102].

Definition 2.5. System (2.4) is input /output-to-state stable if there exist § € X £ and y,, Y,y €
such that, for any input u € ¥,,, any disturbance v € ¥, and any measurement noise w € £y, for any

initial condition x(0) € R™, the corresponding solution x satisfies, for all t > 0,

Pe(0)] < B(Ix(0)],£) + vulllo,q) +vv (Vo) + 7y (1 lo,e)- (2.66)
O

Roughly speaking, when system (2.4) is input/output-to-state stable, it implies that no matter
what is the initial state, if the control input u, disturbance input v and the output y, which depends
also on the measurement noise w, are small, then the state x must eventually be small. As shown
in[101,102], to prove that system (2.4) is input/output-to-state stable, Lyapunov conditions can be

used, as stated in the next proposition.

Proposition 2.5. Consider system (2.4). Suppose there exist @, @, @, Yy, Yy, ¥y € Hop, Vi R™ > Ry
continuously differentiable, such that for all x e R™, ue %, ve ¥V, y e R,

a(lx]) < V(x) < a(|x]) (2.67)

(TV(0), ol ,0))) < ~a(V () + 7lul) + 7, (¥]) + 7, (17 ]). (2.68)

Then, system (2.4) is input /output-to-state stable with respect to input u, disturbance v and the output
y in the sense of Definition 2.5. a

The proof of Proposition 2.5 follows similar steps as in [101,102] and is therefore omitted.

In this thesis, we will use the notion of input/output-to-state stability presented in Definition 2.5
for the state estimation error system generated from system (2.4) and observer (2.6). In this case,
we talk about input/output-to-state stable observer, where the inputs are the disturbance v and the

measurement noise w, and the output is the output estimation error, as defined next.

Definition 2.6. Observer (2.6) is an input/output-to-state stable observer for system (2.4) if there
exist f € X% and vq,v, € K, such that, for any input u € %,,, any disturbance v € ¥, and any
measurement noise w € £y, for any initial condition x(0) € R™ and z(0) € R™ for systems (2.4) and

(2.6), respectively, the corresponding solutions x and g satisfy, for all t = 0,

e (t) = 2(6)| < Bl (x(0)) = 2(0)], ¢) + v1(IVlo,g + IWlo.g) +v2lly = Flpo,)- (269
O

The input/output-to-state stability property in (2.69) does not imply a convergence property of
the estimation error. Indeed, the term y5(|ly — J|lo,)) may grow as the time goes to infinity and,
in that case, the estimation error |x(t) — x(t)| is not guaranteed to converge to a neighborhood of
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the origin. As a result, the input/output-to-state stability property is weaker than the input-to-state
stability property for observer (2.6), described in Definition 2.4. However, it can be useful because
it is linked with the concept of detectability. Indeed, from Definition 2.6 we notice that, if the system
and observer output trajectories are indistinguishable, i.e., y(t) = y(t) for all t € R, then their
states (x(t) and X(t)) must converge to each other, up to an ultimate bound that depends on the
disturbance v and the measurement noise w. Note that the concept of input/output-to-state stable
observer and its link with the concept of detectability is associated to the notion of incremental
input /output-to-state stability defined in [102, Definition 20].

Similarly to the input-to-state stability property described in Section 2.2.2, in the next proposi-
tion we provide a Lyapunov characterization of the input/output-to-state stability property of the

estimation error system.

Proposition 2.6. Consider system (2.4) and observer (2.6). Suppose there exist &, @, @, Yy, Yw» Yy €
Ay V 1 R™ xR"™ — R continuously differentiable, such that forall x e R"x, 2 e R"™, ue %, ve ¥,
weW, yeRY,

a(lx =y (2))) S V(x,2) <a(lyp™(x) —z]) (2.70)

(TV(x,2), (o (35,4, V), o2, 7, §))) < —a(V (x,2)) + 1o (V]) + 7w (W) + 7, (ly = 9D @.7D)

Then, observer (2.6) is an input/output-to-state stable observer for system (2.4) with respect to distur-
bance v, measurement noise w and the output estimation error y — ¥ in the sense of Definition 2.6.
O

The proof of Proposition 2.6 follows similar lines as in [101,102] and is therefore omitted.

As previously mentioned when comparing Definitions 2.4 and 2.6, the major difference between
(2.13) and (2.71) is the term )/y(] y — ¥|) in (2.71), which may have a destabilizing effect and may
thus prevent the estimation error system to exhibit input-to-state stability property.

2.3 Hybrid dynamical systems

In the previous section, the class of continuous-time nonlinear observers we consider in this the-
sis have been introduced, together with the corresponding input-to-state stability property. Starting
from this stability property, as explained in the introduction, the purpose of this thesis is to pro-
pose solutions to two state estimation problems, namely event-triggered estimation and observer
performance improvement, by using hybrid techniques. In this section some preliminaries on the hy-
brid dynamical systems framework introduced in [31] are given. In particular, in this manuscript we
consider the class of hybrid dynamical system with continuous-time inputs presented in [37], which
is an alternative to the hybrid systems with hybrid inputs in [38], and is an extension of the hybrid
system (without inputs) framework in [31]. In Section 2.3.1, we recall the hybrid system model and
the notion of solution for this system is given in Section 2.3.2. In Section 2.3.3, we present a propo-
sition, taken from [37, Proposition 6], that is used in the thesis to prove existence and completeness
of maximal solutions of the considered hybrid systems. In the same section we also provide an addi-

tional result, which is an adaptation to [103, Lemma 5] in the context of hybrid systems with inputs.
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The Zeno phenomenon is described in Section 2.3.4, together with the definition of dwell-time and
average dwell-time for a solution to an hybrid system. Finally, a stability property for the considered

hybrid system is given in Section 2.3.5, together with its Lyapunov characterization.
2.3.1 Hybrid systems with continuous-time inputs

In this section we present the modelling framework of an hybrid system with continuous-time
inputs [31,37], namely
x = F(x,u), (x,u) e @,
J N (2.72)
x

e G(x,u), (x,u) €9,

where x € R™ is the state and u € R™ is the input, that can represent known inputs, but also unknown
disturbances and/or measurement noise. As shown in (2.72), the system state of an hybrid dynamical
system can have both continuous-time and discrete-time dynamics. In particular, when the system
state x and the input u are in the flow set ¥ < R™ x R™, then, the state x evolves according to the
ordinary differential equation in (2.72), if the continuous-time evolution keeps the state and input
pair in the flow set 6. On the other hand, when the system state x and the input u are in the jump set
2 < R x R™, then the state x exhibits jumps according to the difference inclusion in (2.72). Note
that in (2.72) only the jump map G is a set-valued map. To be more general, we could have defined
also the flow map F as a set-valued map, see [37, equation (1)], however, all the hybrid systems
in this thesis have a single-valued flow map and thus we consider only single-valued flow map in
(2.72). Moreover, the sets 6 and 2 may overlap, partially or totally. In this case, when the system
state x and the input u are in the intersection of the flow and jump sets, namely (x,u) € 6 n 92,
then, the hybrid state evolves according either to difference inclusion or according to the ordinary
differential equation in (2.72). This last option is possible only if the continuous-time flow keeps the
state and input pair in the set 4. As a result, different hybrid solutions can be generated.

In this thesis, we consider inputs u for system (2.72) such that u € ¥,,, namely, for a given set
U < R™, L, is the set of all functions from R, to % that are Lebesgue measurable and locally
essentially bounded. We also concentrate on the case where the sets ¢, 2 and % in (2.72) are
closed. This corresponds to [37, Standing Assumption], which is needed to define the solution for
system (2.72). The sets 4 and 2 we will design in this thesis do not always depend both on the state
x € R™ and the input u € %, but, in some cases, we will design ¥ < R™x and 2 < R"~. Note that
this is a special case of the general formulation in (2.72), and all the definitions and results in this
chapters apply mutatis mutandi.

Since an hybrid system exhibits both continuous-time and discrete-time dynamics, it is not straight-
forward to define a solution. In the next section we introduce the notion of solution, taken from [37],

along with the required concepts needed to define it.
2.3.2 Solution concept

In this section we define the notion of solution to system (2.72). The material is borrowed
from [31,37].

We start by introducing the concept of hybrid time domain given in [31, Definition 2.3]. Solutions
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to continuous-time systems are parameterized by the continuous-time t € R- (. On the other hand,
solutions to discrete-time systems are defined using the discrete-time j € Z-,, which represents
the number of jumps or discrete steps. As a result, since an hybrid system is a combination of a
continuous-time system and a discrete-time one, it is natural to define its solution on a domain that
depends both on the continuous-time t € R, which accounts the time elapsed, and on the discrete-
time j € Z-, which counts the number of jumps that have occurred. However, only certain subsets
of R. ¢ X Z~(, namely the hybrid time domains, are needed to characterize the evolution of an hybrid

system.

Definition 2.7. A set E — Ry X Z is a compact hybrid time domain if

U GRIRIN; (2.73)

for some finite sequence of times 0 = to < t; < --- < t;. It is a hybrid time domain if for all (T,J) € E,
En([0,T] x{0,...,J}) is a compact hybrid domain. O

Definition 2.7 means that the set E is a hybrid time domain if it is a union of a finite or infinite
sequence of intervals [t;,t;,1] x {j} with the last one, if it exists, of the form [t;, T), with T finite
or T = oo. In addition, each element (t, j) € E represents the elapsed hybrid time, which therefore
implies that there is a natural way of ordering the hybrid times, i.e., given (t, j), (t',j') € E, (¢t,]) <
(t',j") implies that either t < t' or t = ¢’ and j < j'.

Given a hybrid time domain E, we define
— sup, E :=sup{t € Ry : 3j € Z-( such that (¢, j) € E},
— sup; E :=sup{j € Z>, : 3t € Ry such that (¢, j) € E},
— supE := (sup, E,sup; E),
— length(E) :=sup, E + sup; E
We now define the concept of hybrid arc, which comes from [31, Definition 2.4].

Definition 2.8. A hybrid signal x : dom x — R™ is called a hybrid arc if x(-, j) is locally absolutely

continuous for each j. O

We can now define the concept of solution for the hybrid system with input (2.72), which is taken
from [37, Defintion 4].
Definition 2.9. A hybrid arc x is a solution to F¢ for a given input u € %, if

— (Flow condition) for all j € N such that I := {t | (t,j) € dom x} has nonempty interior
x(t,j) e F(x(t,j),u(t)) and (x(t,j),u(t,j)) € € for almost all t € I;

— (Jump condition) for all (t,j) € dom x such that (t,j + 1) € dom x, (x(t,j),u(t,j)) € 2 and
x(t,j+1) € Gx(t,f),u(t)).
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Observe that in equation (2.72) we used the notation x* to denote x(t, j + 1), for some t € R,
j € Z-¢. In the remaining of the thesis, both notations will be used to denote a jump (or discrete
update) of the hybrid state x.

In the next definition we characterize some properties of solutions to system (2.72). This defini-
tion is inspired by [37, Defintion 5] and [31, Definition 2.5].
Definition 2.10. A solution x to S for a given input u € £y, is

— nontrivial if dom x contains at least two points,

— maximal, if there does not exist another solution X to 3¢ for the same input u such that dom x is

a proper subset of dom X and x(t, j) = X(t, j) for all (¢, j) € dom x,
— complete if is maximal and dom x is unbounded, i.e., length(dom x) = oo,
— t-complete if is complete and sup, dom x = o,
— Zeno if it is complete and sup, dom x < o0,
— eventually discrete if T = sup, dom x < o0 and domx N ({T} x Z) contains at least two points,
— discrete if nontrivial and dom x < ({0} x Z~),

— eventually continuous if J = sup;domx < o0 and domx N (Rxo x {J}) contains at least two

points,

— continuous if nontrivial and dom x < (R5( x {0}).

2.3.3 Existence and completeness of solutions

In the previous section we have defined the notion of solution for the hybrid system with continuous-
time inputs (2.72). In this section we present the conditions for the existence of maximal complete
solutions to system (2.72). After that, we provide an additional result, which is an adaptation of
[103, Lemma 5] in the context of hybrid systems with continuous-time inputs.

The next proposition is copied from [37, Proposition 6], which is an extension of the results in
[31, Proposition 2.10] for systems with inputs. We will refer to this proposition in the thesis to prove

the completeness of maximal solutions of the considered hybrid systems.

Proposition 2.7. Consider system (2.72). There exists a nontrivial solution x to (2.72) for input u € £y,
with & := x(0,0) e R™ if and only if £ € 9 or

(VC): there exists ¢ > 0 and an absolutely continuous function z : [0,e] — R™ such that z(0) = &,
z(t)e F(z(t),u(t)) e € forallt € (0,¢).

If the viability condition (VC) holds for all £ € € with & ¢ 9, then, for all u € ¥, every maximal

solution x satisfies exactly one of the following properties:

(a) x is complete;
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(b) x is not complete and “ends with flows": dom x is bounded and the interval I’ := {t : (t,J) €
domx} with J = sup; domx is open to the right, and does not exist an absolutely continuous
function z : I’ — R™ satisfying 2(t) € F(z(t),u(t)) for almost all t € I’ and z(t) ¢ € for all
t e intl’, and such that z(t) = x(t,J) forall t e I’;

(¢) x is not complete and “ends with a jump": dom x is bounded with (T,J) := supdom x € dom x,
I''=T,x(T,J)¢ 2 and x(T,J) ¢ 6.

O

The first part of Proposition 2.7 presents the conditions to prove the existence of a nontrivial
solution starting from &. Therefore it provides conditions to guarantee that the domain of the solution
contains at least two points. This occurs if the initial condition & is in the jump set 9, and thus, a jump
can occur, or if the solution can flow at least for an arbitrarly small amount of time ¢. The second
part of Proposition 2.7 describes the possible behaviours of the maximal solutions, that are, solutions
whose domains cannot be further extended. In particular, this proposition is useful to prove that all
maximal solutions to a hybrid system are complete, which means that their domains are unbounded,
and thus they do not cease to exist. To this end, it is necessary to prove that items (b) and (c) cannot
occur for the specific hybrid system in consideration. In particular, item (b) considers the case where
the domain of a solution is bounded and ends with flow, in the sense that, there exists a time t € I/,
where J is the discrete-time supremum of the domain of the solution, such that the solution is in the
border of the flow set 4 and it is not in the jump set 2, and the flow map is pointing outside the
flow set. As a result, the hybrid solution can neither flow or jump, and thus it is not complete since
its domain is bounded. One the other hand, item (c) considers the case where there exists a solution
whose domain is bounded and ends with a jump. This occurs when the hybrid solution jumps outside
% U 9, and thus it can neither flow or jump.

We now provide an additional result, which is an adaptation of [103, Lemma 5] to hybrid system

with continuous-time inputs (2.72). The next Lemma is needed to prove the results in Chapter 5.

Lemma 2.1. Consider system (2.72) with 6 closed. For any solution q with input u € %, for any

(t,j) € domq with I := {t : (t, ]) € domq} non-empty, £rq(t, J) € {F(q(t,j),u(t))} n T (q(t,)))
holds for almost all t € I/.

Proof. The proof follows similar lines as [ 103, proof of Lemma 5]. Let g be solution to (2.72) for
input u € %, and let j € Z- be such that (¢, j) € domq and I J is non-empty. Then, since q is a
solution to (2.72) and the flow set ¢ is closed, for all t € int I/, q(t, j) € €. From [37, Definition

d ,
4], Eq(t,j) exists and belongs to {F(q(t,j),u(t))} for almost all t € I’. Hence, for almost all

t € I/, for any sequence {Ti}icz_, with 7, >0, 7; > 0asi—o0,and t + 1; € I,

d t+7,j)—q(t,j
—q(t,j) = lim alt+7ij) ~ 4l ]). (2.74)
dt 1—00 Ti
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From the Definition 2.3 and since q(t + 7;) € 6 for any i € Z., (as t + 7; € I'),
t+7i,7)—q(t,j .
lim a( »J) —4(t,j) € Ty (q(t,J)). (2.75)
1—00 Tl
Hence, we have proved that
d . . ;
279(67) € {F(a(t, ), u(t))} 2 Ty (a(t, ) (2.76)
for all j € Z-, and almost all t € I. [

2.3.4 Zeno phenomenon and dwell-time

As explained in Definition 2.10, a solution x to a hybrid dynamical system can be Zeno. This
occurs when it is complete and sup, domx < 400, namely, when the continuous-time part of the
hybrid time domain of the solution is finite. Note that this does not imply that the solution is discrete
or eventually discrete. Indeed, the case where a solution exhibits an infinite number of jumps and,
as j grows, the continuous-time interval between jumps is converges to zero, but it is not zero, and
thus sup, dom x = t < 40, is a Zeno solution, which is not eventually discrete. Roughly speaking, a
solution to an hybrid system is a Zeno solution when, after a certain hybrid time, either there is no
continuous-time between any two consecutive jumps (eventually discrete case), or this continuous-
time interval between two jumps is vanishing as j goes to +0c0. Zeno solutions that are not eventually
discrete can be referred as genuinely Zeno, while complete and eventually discrete solutions can be
denoted as instantaneously Zeno.

When designing a hybrid system, it is common to wish to exclude this possible Zeno behaviour,
and thus design the hybrid system in such a way that none of its solutions is a Zeno solution. Indeed,
it is often desired that the continuous-time evolution of the solutions is not bounded for physical
implementation. In the thesis we will prove that the Zeno phenomenon is excluded for the two
considered problems and we will explain why this is important for these specific estimation scenarios.

One option to rule out the Zeno phenomenon is to design an hybrid system for which any possible

solution has a dwell-time or, at least, an average dwell-time, as defined next.

Definition 2.11. A solution x to 3¢ for a given input u € ¥, has a

s
— dwell-time 7, if, for any (t,i),(s,j) e domx with t +s <i+ j, we have j —i < —— + 1.
T

— average dwell-time T* if, there exists Ny € Z~. such that for any (t',i'), (s, j') € dom x, we have
/ /
t

j—i< + Np.

o

In other words, given a solution x to 5 for a given input u € ¥,,, we can .deﬁne the jump
times as 0 = t( < t; < --- < tj4q = t satisfy domq n ([0,t] x {0,1,...,j}) = U[ti,tiH] x {i}.
Then, Definition 2.11 implies that, if a solution x to an hybrid system has a dxjv:e(il-time 7, then,

tiz1—t; =7 forallie{l1,2,...,j}. Similarly, if t; ; — t; > 7 holds only on average (not necessary
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forallie {1,2,...,j}), namely, t;, y, —t; = T*Np foralli € {1,2,...,j— Ny}, then the solution x has
an average dwell-time. Note that, the average dwell-time is a weaker property than the dwell-time,
indeed a solution to a hybrid system that has a dwell-time property, guarantees also an average
dwell-time property, where N, = 1, but the opposite is not necessary true. However, the average
dwell-time property is enough to guarantee that the Zeno phenomenon is ruled out. Indeed, if a
solution has an average dwell-time 7*, then, it cannot produce an infinite number of jumps in a

finite continuous-time interval.
2.3.5 Stability property

Stability properties are fundamental properties of dynamical systems, since they provide infor-
mation about the solution behaviours and they guarantee that the trajectories converge to a specific
attractor and do not diverge. In particular, as we have seen in Section 2.2.2, in an estimation problem,
stability guarantees are useful to prove that the estimation error, namely the difference between the
real state and the state estimate produced by the observer, is converging to the origin, or at least to
its neighborhood.

In this section we formalize the stability property we will ensure for the hybrid systems in this
thesis. In particular, we first define a global two-measure flow input-to-state stability property for
system (2.72) and provide a Lyapunov characterization, which is useful to prove the property. After
that, we consider a parameterized version of system (2.72) and we describe the concept of global
practical two-measure flow input-to-state stability property, together with its Lyapunov characteriza-
tion. More general stability definitions exist in the literature, but we focus only on a general enough
definition to embed the stability results we will prove in the next chapters. The material in this section
is inspired by [31,104-106].

Definition 2.12. System (2.72) is uniformly globally two-measure flow input-to-state stable 2 if there
exist B € X %L, y € X, and two continuous functions w; : R™ — Ry, i € {1,2}, such that, for any

input u € %y, any corresponding solution x to (2.72), for all (t, j) € dom x, satisfies

w1(x(t, ) <B(ea(x(0,0), ) + 7 ([ullo,)- @77

In addition, in case (2.77) is satisfied with w1 (x) = wy(x) = |x|y, for all x € R™, where . C R™ isa
given closed set and |x|  denotes the distance of x to the set ./, then, the set ./ is said to be uniformly
globally flow input-to-state stable. Moreover; if u(t) = 0 for all t € R, then the set ./ is said to be
uniformly globally flow asymptotically stable and if, in addition, 8 € & % is exponential, then the set
.o/ is uniformly globally flow exponentially stable. O

The next Lyapunov theorem can be used to establish the stability property stated in Defini-
tion 2.12.

2. To be precise, the property described in Definition 2.12 is a global two-measure flow pre-input-to-state stability
property since (2.77) only holds on the solution domain, which may be bounded. However, we will not specify this in the
stability properties we will prove in this thesis.
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Theorem 2.1. Consider system (2.72). Suppose there exists a Lyapunov function U : R™ — Ry,
continuously differentiable on an open set containing 6, and there exist a;;, ay, ay, Yy € K, and two

continuous functions w; : R™ — R, i € {1, 2} such that the following properties hold.

(i) Forany x € 6 u 9,

ay(w1(x)) <U(q) < ay(wa(x)). (2.78)

(ii) Forany x € 6 and any ue %,
(VU(x),F(x,0)) < —ay (U(x)) + 7y (Jul). 2.79)

(iii) For any x € 9 and any u € %,
U(G(x,u)) < U(x). (2.80)

Then, system (2.72) is uniformly globally two-measure flow input-to-state stable in the sense of Defi-
nition 2.12. O

The proof of Theorem 2.1 follows similar lines as in [31,104] and is therefore omitted. Note
that, Theorem 2.1 requires the existence of a continuously differentiable Lyapunov function U on an
open set containing %. However, in case the considered Lyapunov function candidate is not conti-
nuously differentiable, but only locally Lipschitz, the Clarke’s generalized derivative, presented in
Definition 2.2, can be used instead of the gradient in item (ii) and the results of Theorem 2.1 hold
mutatis mutandi.

In the event-triggered part of this thesis (Chapters 3 and 4), due to the proposed event-triggering
rule, the considered hybrid system is a parameterized hybrid system, where a design parameter ¢ €
R. ¢ influences the flow and jump sets. In general, in a parameterized hybrid system with continuous-
time inputs, not only the sets, but also the flow and jump maps may depend on the design parameter

€ € R, , as described next.
(2.81)

In this case, the notion of stability depends also on the design parameter ¢ € R.  and the stability
concept in Definition 2.12 can be generalized by a uniform global practical two-measure stability

property, which is now defined.

Definition 2.13. System (2.81) is uniformly globally practically two-measure flow input-to-state
stable if there exist f € X%, y1,72 € X, and two continuous functions w; : R™ — Ry, i € {1,2},
such that, for any v > 0 there exists € € R.  such that, for all € € [0, *) and any input u € ¥,,, any

corresponding solution x to (2.81), for all (t, j) € dom x, satisfies
wi(x(t,])) <P(wz(x(0,0)),t) + 11 (v) + vallulp,q)- (2.82)
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In addition, if (2.82) is satisfied with wq(x) = wy(x) = |x|y, for all x € R™, where .o/ < R™ is a
given closed set, then, the set ./ is said to be uniformly globally practically flow input-to-state stable.
Moreover, if u(t) = 0 for all t € R, then the set .« is said to be uniformly globally practically flow
asymptotically stable and if, in addition, 3 € X ¥ is exponential, then the set .«/ is uniformly globally
practically flow exponentially stable. O

Similar to Theorem 2.1, Lyapunov conditions can be used to prove a global practical two-measure
flow input-to-state stability property for system (2.81), as stated in the next theorem.

Theorem 2.2. Consider system (2.81). Suppose there exists a Lyapunov function U : R™ — Ry,
continuously differentiable on an open set containing 6, and there exist a;, ay, Qy, Yy € H, and
two continuous functions w; : R™ — R, i € {1,2} such that for any v > 0 there exist €* € R such

that, for all € € [0, €*) the following properties hold.

(i) Forany x € 6, L 9,,
ay(w1(x)) < U(q) < ay(wa(x)). (2.83)

(ii) For any x € 6, and any u € %,
(VU(x),F,(x,u)) < —ay(U(x)) + v+ yy(|u]). (2.84)

(iii) For any x € 9, and any u € %,
U(G,(x,u)) < U(x). (2.85)

Then, system (2.81) is uniformly globally practically two-measure flow input-to-state stable in the
sense of Definition 2.13. O

The proof of Theorem 2.2 can be obtained following similar steps as in [31,104] and thus we omit
it. Note that, similar to Theorem 2.1, if the Lyapunov function candidate U is not continuosly diffe-
rentiable in an open set containing %, we can we the Clarke’s generalized derivative (see Definition

2.2) and the result presented in this theorem still holds.

2.4 Conclusions

In this chapter we have presented some preliminaries, which are used in the remaining of the
thesis. In particular, first some mathematical definitions were given. After that, we have described
the class of systems and observers considered in this thesis, together with the input-to-state stability
property definition and Lyapunov characterization. We have also shown some examples of observer
design techniques that will be considered in this manuscript. Finally, we have presented the hybrid
system with continuous-time inputs framework we will use in this thesis, together with the needed
notions of solutions, dwell-time and stability properties.

The concepts provided in this chapter form the basis and the starting point for the results we will

present in the next chapters.
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Abstract - We present an event-triggered observer design for linear time-invariant systems, where
the measured output is sent to the observer only when a triggering condition is satisfied. We proceed
by emulation and we first construct a continuous-time Luenberger observer. We then propose a dynamic
rule to trigger transmissions, which only depends on the plant output and an auxiliary scalar state
variable. The overall system is modeled as a hybrid system, for which a jump corresponds to an output
transmission. We show that the proposed event-triggered observer guarantees global practical asymptotic
stability for the estimation error dynamics. Moreover, under mild boundedness conditions on the plant
state and its input, we prove that there exists a uniform strictly positive minimum inter-event time
between any two consecutive transmissions, guaranteeing that the system does not exhibit Zeno solutions.
Finally, the proposed approach is applied to a numerical case study of a lithium-ion battery, described

by an electrical circuit equivalent model.

The results of this chapter are based on [84], which is a preliminary version of [80], that considers a more general
setting and will be presented in the next chapter.
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Chapter 3. Event-triggered estimation of linear systems

3.1 Introduction

While digital networks exhibit a range of benefits for control applications in terms of ease of
installation, maintenance and reduced weight and volume, they also require adapted control theore-
tical tools to cope with the induced communication constraints (e.g., sampling, delays, packet drops,
scheduling, quantization), see e.g., [107,108]. In this chapter, we concentrate on the state estima-
tion of linear time-invariant systems over a digital channel and we focus on the effect of sampling.
In particular, we consider state estimation where the plant is linear and communicates its measured
output over a digital network to a remote observer, whose goal is to estimate the plant state. The
transmission policy then has an impact on the convergence speed, the robustness of the estimator,
as well as on the amount of communication resources required. An option is to generate the trans-
mission instants based on time, in which case we talk of time-triggered strategies for which various
results are available in the literature, see, e.g., [11,12,44-46]. However, this paradigm may generate
(significantly) more transmissions over the network than necessary to fulfill the estimation task, the-
reby leading to a waste of the network resources. As a potential and promising solution, one can use
event-triggered transmissions to overcome this drawback, see e.g., [109] and the references therein.
In this case, an event-based triggering rule monitors the plant measurement and/or the observer
state and decides when an output transmission is needed. In this way, it is possible to reduce the
number of transmissions over the network, while still ensuring good estimation performance.

Various event-triggered techniques are available in the literature for estimation, see, e.g., [15—
30]. Numerous papers propose to implement a copy of the observer within the sensor and then use
its information to define the transmission instants, see e.g., [15-21]. A possible drawback with this
technique is that it may require significant computation capabilities on the sensors, which may be
unavailable, especially in the case of large-scale systems, or highly nonlinear dynamics. An alter-
native is offered by self-triggering policies, see e.g., [47, 48], where the observer requests a new
output measurement when it needs it to perform the estimation. In this case, the plant output is
not continuously monitored. Moreover, self-triggering rules typically generate more transmissions
than event-triggered ones. Another solution is to follow an event-triggered strategy, which is only
based on a static condition involving the measured output and its past transmitted value(s) see, e.g.,
[22-29]. Consequently, it is not necessary to implement a copy of the observer in the sensors and
thus the sensors are not required to have significant computation capabilities. However, such static
triggering rules may generate a lot of transmissions.

In this chapter, we adopt a dynamic event-triggered approach based only on the measured output
and the last transmitted output value. This strategy keeps monitoring the plant output, and thereby
may lead to less transmissions compared to a self-triggering approach. Moreover, it does not require
a copy of the observer, which simplifies the implementation and requires less computation capability
on the sensor. In particular, we present an event-triggered observer for deterministic linear time-
invariant continuous-time systems, where the main novelty is the design of a new triggering rule,
which involves an auxiliary scalar variable, that has several benefits as explained in the sequel. Our

design consists in following an emulation-based approach in the sense that we first design a Luen-
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3.1. Introduction

berger observer for the continuous-time plant ignoring the packet based nature of communication
network. Secondly, we take into account the latter and develop a triggering rule to approximately
preserve the original properties of the observer. As already stated, we desire the triggering rule not
to rely on a copy of the observer, which might be computational prohibitive. Instead, we only require
the sensors to have enough computation resources to run a simple scalar linear filter. To be pre-
cise, the proposed policy is inspired by dynamic triggering rules used in the event-triggered control
literature [49-52] and in [48], where self-triggered interval observers are designed. In particular,
our strategy consists in filtering an absolute threshold strategy, as opposed to the relative threshold
technique as done in the context of control in [49-51]. Indeed, the latter cannot be implemented for
estimation, as we recall in Section 3.3.1, which motivates our choice. Also, we cover the absolute
threshold strategy considered in [26-28] as a special case. Compared to [22-25], we do not consider
a stochastic setting and discrete-time plants, but deterministic continuous-time systems, which raise
the issue of potential Zeno phenomena. The triggering rule presented in this work aims to reduce the
number of transmissions over the digital network, while still guaranteeing good estimation perfor-
mance. We guarantee the existence of a strictly positive bound on the inter-event times as well as the
absence of sampling when the output remains in a small neighborhood of a constant and therefore
its information is not needed to the observer to obtain a good estimation, which is an advantage
against time-triggered strategies. We show on an example that the addition of the scalar auxiliary
variable can significantly reduce the number of transmissions compared to an absolute threshold

rule, thereby providing a strong motivation for its use.

To analyze the proposed event-triggered observer, the overall plant-observer interconnection is
modeled as a hybrid system using the formalism of [31], where a jump corresponds to an output
transmission. We show that the estimation error system satisfies a global practical stability property.
The latter is not asymptotic in general mostly because we do not implement a copy of the observer
in the triggering mechanism. Moreover, the existence of a strictly positive minimum inter-event time
is ensured under mild boundedness conditions on the plant state and its input. Finally, we apply
the proposed approach in a numerical case study of a lithium-ion battery as mentioned above, for
which the number of transmissions can be significantly reduced compared to an absolute threshold
strategy, while still ensuring good estimation performance. Various event-triggered observer-based
control strategies are available in the literature, such as e.g., [50,110-112]. Nevertheless, these do
not cover event-triggered estimation as a particular case, as significant technical difficulties arise, in
particular in ruling out Zeno phenomenon, when the plant state is not required to converge towards

a given attractor.

The chapter is organized as follows. The model and the problem statement are presented in
Section 3.2. The proposed triggering rule is given in Section 3.3, where we model the system as a
hybrid system. In Section 3.4, we analyze the obtained estimation error as well as the inter-event

times. The numerical case study is reported in Section 3.5. Finally, Section 3.6 concludes the chapter.
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Chapter 3. Event-triggered estimation of linear systems

Smart sensor

Transmit y when
Plant Yy —yPP=ocn+e ) Observer
x=Ax+Bu | YV | where Y | x=A%+Bu+L(y-J) 5%,
y=Cx n=—cn+cly—yl? y=Cx
nt =csm y
S0 vt =
u y=0y "=y u
\
FIGURE 3.1 — Block diagram representing the system architecture.
3.2 Problem statement
Consider the linear system
x =Ax + Bu
(3.1
y =Cx,

where x € R™ is the state, u € R™ is a known input, and y € R" is the measured output with n,,
n, € Z.o and n, € Zs, . The input u in (3.1) is such that u € £, for some set % < R". The pair
(A, C) is assumed to be detectable. Hence, by letting L € R™*" be any matrix such that A — LC is

Hurwitz, we can design a Luenberger observer [113] of the form

AX +Bu+L(y—3J)
Cx,

x

3.2)

<
I

where x € R™ is the state estimate. Observer (3.2), when it has access to input u and measured
output y continuously, guarantees that we are able to asymptotically reconstruct the state x of the
plant, implying that tll,nglo (x(t) — %(t)) = 0O for any initial condition to (3.1) and (3.2) and any in-
put u. In this work, we investigate the scenario where the plant measurement y is transmitted to
observer (3.2) via a digital channel, see Figure 3.1, and therefore only samples of y are available
to the observer. Moreover, since the output is sent via a packet-based network, we want to spora-
dically transmit it, while still achieving good estimation properties. Therefore, our goal is to design
a triggering rule to decide when y needs to be transmitted to observer (3.2), with the mentioned
properties. We assume for this purpose that the sensor is “smart" in the sense that it can run a local

one-dimensional dynamical system. We also adopt the following assumption.
Assumption 3.1. The observer has access to the input u continuously. O

Assumption 3.1 is a reasonable assumption in many control applications, such as, for example,
when the control input is generated on the observer side. This assumption is relaxed in Section 4.6.3
in the next chapter, where a more general setting is considered.

In this setting, the observer does not know y but only its sampled version ¥, which is generated

with a zero-order-hold device between two successive transmission instants, i.e., in terms of the
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3.2. Problem statement

hybrid systems notation of Chapter 2,
y=0 (3.3)

yt=y. (3.4)

The observer equations in (3.2) are then modified to become

=A% +Bu+L(y—7
( ) (3.5)
y=Cx.
Defining the sampling-induced error e := ¥ — y, we obtain
% =A% +Bu+L(y —J +e). (3.6)

The sampling-induced error e dynamics between two successive transmission instants is, in view of
(3.1) and (3.3),
¢=y—y=—y=—Cx=—CAx —CBu, (3.7)

and, at each transmission instant we have
e+ =0, (38)

in view of (3.4). Let £ := x — X € R™ be the state estimation error. Its dynamics is, between two

successive transmission instants, in view of (3.1) and (3.6),

E=(A—LC)E —Le 3.9)

and, at each transmission instant,

gt =¢. (3.10)

Our objective is to define a triggering rule, which ensures global practical asymptotic stability
of estimation error dynamics and guarantees the existence of a positive minimum inter-event time

between two consecutive transmissions.

Remark 3.1. When the system output is of the form y = Cx + Du + d, where d is measured or is
a known constant, we can generate a new output z = Cx by using the knowledge of d, the measured
output y and the input u, which is available thanks to Assumption 3.1. The system then becomes of the
form of (3.1) again. We will exploit this observation in the example of Section 3.5. O
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Chapter 3. Event-triggered estimation of linear systems

3.3 Triggering rule and hybrid model

3.3.1 Relative threshold is not suitable for estimation

We first note that the general event-triggered control solutions for stabilization may not be (di-
rectly) used for the estimation problem at hand. We illustrate this with the relative threshold tech-
nique developed for control in [51] to define the triggering rule. To see this, note that since A— LC
is Hurwitz, we can define,

V(E):=ETPE, VEeR™, (3.11)

where P € R *"x is symmetric, positive definite and verifies (A—LC)"P+P(A—LC) = —Q for some
Q € R™*™"x symmetric and positive definite. Then, for any £ € R"™x and e € R",

(VV(£),(A-LC)E — Ley < —aV () + ylef”, (3.12)
A'min PL g
where a := &(1 —¢) >0,y := L > 0 and ¢ € (0,1) a design parameter. We might
Amax(P) Ckmin(Q)
then be tempted, in line with the design philosophy of [51], to define the triggering rule as
vle]* < cav (&), (3.13)
with ¢ € (0, 1), which implies
(VV(E),(A—LC), —Ley < —(1—¢)aV (&) (3.149)

and thus that V strictly decreases along the solutions to (3.9). However, (3.13) cannot be imple-
mented because the estimation error & is not available for the triggering rule, as it depends on the

unknown state x and on the state estimate X.

3.3.2 Dynamic triggering rule

To overcome the issue presented in Section 3.3.1, we introduce a scalar auxiliary variable 7,

whose equations during flows and jumps are

,f’ =—C"N + C2‘6’2,

. (3.15)

n o =c3n,

where ¢; > 0, ¢, > 0 and ¢5 € [0, 1] are design parameters, that will be selected later according to
Theorem 3.1.

Remark 3.2. The choice of the dynamics (3.15) is inspired by norm-estimators [101 ]. Indeed, if ¢; and
¢y are selected such that ¢; = a and ¢y = v, 1 in (3.15) is a norm-estimator, according to [101, Definition

2.4], but this particular choice of ¢, and c, is not necessary for the proposed triggering rule. O
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3.3. Triggering rule and hybrid model

By collecting all the equations, we obtain the hybrid model

x =Ax + Bu

N = —c1n + cole|?
xT=x
i j i (x,&,e,m) €2, (3.16b)
n" =csn

for which a jump corresponds to a transmission of the current value of y to the observer. The trig-

gering rule is implemented through the flow and jump sets, ¢ and 2, which are defined as
©:={qeR" ylef’ <oon +e,m >0} (3.17a)

9:={qeR™ :yle|* > oc;n +¢,m >0}, (3.17b)

where q is the overall state, defined as q := (x,§,e,n) € R"™ = R™ x R™ x R" x R, with n, :=
2n, +n, + 1. Constant y in (3.17) comes from (3.12), o > 0 is a design parameter and ¢ is a strictly
positive constant needed to avoid the Zeno phenomenon 3. Indeed, we will prove in the sequel that
there exists a minimum inter-event time between two consecutive jumps under mild extra conditions
whenever € > 0. Sets ¢ and 2 in (3.17a)-(3.17b) essentially mean that a transmission is triggered
whenever yle|? = oc;m + ¢, see Figure 3.1. The condition that > 0 in (3.17) never generates a
transmission as it is always true whenever 1 is initialized with a non-negative value. It is thus only
specified in (3.17) to emphasize that 1 only takes non-negative values. It is worth noting that, when
o = 0, the triggering rule proposed in (3.17) corresponds to an absolute threshold triggering rule,
as in, e.g., [26-28].

For the sake of convenience we write system (3.16)-(3.17) as

q=F(qu), g%

(3.18)
q"=G(q), qe2.

We are ready to proceed with the analysis of system (3.18).

3. A definition of the Zeno phenomenon is given in Section 2.3.4.
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Chapter 3. Event-triggered estimation of linear systems

3.4 Main result

3.4.1 Stability

The next theorem explains how to select the design parameters c;, c,, ¢3 and o in (3.18) in order
to guarantee that the observer (3.2) is able to globally practically estimate the state x of system (3.1)
in the configuration explained in Section 3.2, in which the measured outputs are not available at all

times but only when the triggering rule enables transmissions.

Theorem 3.1 (Global practical stability property). Consider system (3.18), for any @ € (0, |, where

a comes from (3.12), and any v > 0, select cq, ¢y, c3, 0 and ¢ as follows.

(i) ¢y €[0,c3] and o € [0,0*], where c; > 0 and o* > 0 are such that o*c} <y, where y comes
from (3.12).

* Kk
g C2>—1
Y

(i) ¢y = ¢, where ¢} > 0 is such that c] > d(l —

(iii) c5 € [0,1].

. * = * \—1 _ - * U*C; ay—!
(iv) €€ (0,&*], where ¢* = vay(y +c;d)”" withd := o (1 — - —*> > 0.
Y ¢
Then, for any input u € ¥£,,, any solution q satisfies, for all (t, j) € domg,
V(E(t, ) +dn(t,j) < e *(V(£(0,0)) +dn(0,0)) + , (3.19)
with V defined in (3.11). O

Proof. Let all conditions of Theorem 3.1 hold. We consider the Lyapunov function candidate

U(g) = V(&) +dn, (3.20)

for any g € R, where V is defined in (3.11) and d is defined in item (iv) of Theorem 3.1; note
that d > 0 in view of items (i) and (ii) of Theorem 3.1.
We first show that the function U is positive definite and radially unbounded, i.e., there exist
a, ay € A, such that
ay([(&,m)]) <U(q) < ay([(&,n))), (3.21)

for any q € R™. For this purpose, recall that V(&) = £ P& with P is symmetric and positive
definite, which implies
lmin(P)|€|2 < V(g) < AmaX(P)|€|2' (3.22)

As a result, using the definition of U and recalling that d > 0 and 1 > 0, we obtain

Amin(P)[E]* +dn < U(q) < Amax(P)[E]* + dn. (3.23)
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3.4. Main result

We first prove the upper-bound in (3.21). Since |&| < [(§,7n)| and 1 < |(&,7)|, we have

U(q) < Amax(P)|E]* +dn
< Amax(P)|(E,m)]> + d[(E,m)] (3.24)
=:ay(|(&n)l),

where @y (s) := Amax(P)s? + ds, for all s > 0. On the other hand, by applying [114, Lemma 4],
and recalling that |§| + 1 > |(&,7)|, we have

U(q) = Amin(P)IE* +dn
= ay([E[+m) (3.25)
= ay(|(E )

Amin(P)]s]?
where a;(s) := min @, % , forall s > 0.

Letge €6 and u € %, in view of (3.12) and (3.16),
(VU(q),F(q,u)) = (VV(E),(A— LC)E — Ley + d(—c1m + ¢ e*)

< —aV(&) +rlel* +d(—cin + cyle]?) (3.26)
=—aV(§) —cdn+(r + Czd)|e|2-

Since q € €, we have y|e|? < oc;n + &, which is equivalent to |e|* < ﬁn +Eas y > 0. Hence,
Y Y
the next inequalities hold
oc €
(VU(g),F(g:0) < ~aV(€) —erdn + (1 +e,d) (= + )
oc 1
= —aV(§) —adn+ (v +ed) =20+ (1 + cad)e

(3.27)
o O 1
— —aV(E) - (1———— )d = d
aV(&) —c 4 YCZ 7)+Y(Y+Cz )€
o O 1
<—min{a,c;(1-5 - Zey) JU(z) + d)e.
mm{a c1< y YCZ (z)+y(y+c2 )e
Due to the choice of parameters c;, ¢, and o, we have that (3.27) implies
_ 1
(VU(q),F(q,u)) < —aU(q) + ;()f + cyd)e. (3.28)
Indeed, when min {a, o (1 — % — gc2>} = @, then —min {a, o) <1 — % — gcz) } =—a<—a.
Y Y
Conversely, when min {a, 1 (1 — % — gc2> } = (1 — % — gc2> , which is strictly positive due
Y Y
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to the definition of d in item (iv) of Theorem 3.1, o and c,, we have

—C; (1 2 gc2> < —c{(l A gcz)
Y Y

d d
* O-* O-* *
< —C1 (1—7—7C2>
) o*c;  a\-1! )
and sinced = o~ (1 — - —*) , we obtain
Y 1
o o o* o
—(1—=——c ) <—c*<1————c*) =—q.
1( d y 2 1 d ¥ 2

Hence, (3.28) holds and since ¢ < ¢* = vay(y +c;d) ! and ¢, < c3,

(VU(q), F(g,u)) < —aU(q) + %(y T eyd)e
<-al(@)+—(r+ )"
— —aU(q) + a.

Let q in 2, in view of (3.16) and since ¢5 € [0, 1],

U(G(q)) =V (&) +degn < V(&) +dn=U(q).

(3.29)

(3.30)

(3.3D)

(3.32)

We now follow similar steps as in [31, proof of Theorem 3.18] to show that (3.19) holds.

Let u € %, and q be a solution to system (3.18). Pick any (t,j) € domq and let 0 =t < t; <

J

-+ < tj4q = t satisfy domq n ([0, t] x {0,1,...,j}) = U[ti,tiH] x {i}. For each i € {0,...,j}

i=0
and almost all s € [t;, t; 1], q(s,1) € €. Then, (3.31) implies that, for each i € {0,...,j} and for

almost all s € [t;, t; 1],

EU(q(s,i)) < —aU(q(s,i)) + av.

Applying the comparison principle [85, Lemma 3.4], we obtain, for all (s,i) € domg,

S

Ulqls 1)) < eI glep 1)+ av | e as

t

= ey (gt 1)) + Ay [1— e 0],

a

Thus,

Uq(ti1,1)) < e 20U (8, 1)) + v — ve ¥
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forallie{0,...,j}. Similarly, for each i € {1,...,j}, q(t;,i — 1) € 2. From (3.32), we obtain
U(q(t;,i)) —U(q(t;,i—1)) <0 Vie{l,...,j} (3.36)

From (3.34), (3.35) and (3.36), we can deduce that for any (¢, j) € domg,

U(q(t,j)) <e *U(q(0,0)) + v — ve %
(q(t,))) <e _ (q(0,0)) + v — ve (3.37)
<e *U(q(0,0)) + ».
On the other hand, from (3.20), we have
Ulq(t,j)) <e *U(q(0,0)) +
(q(t,j)) <e _ (q(0,0)) +» (3.38)
=e *[V(£(0,0)) + dn(0,0))] + »,
which concludes the proof as U(q(t,j)) = V(E(t,j)) + dn(t,J). [

It is important to note that, in absence of a digital network between the plant and the observer
(i.e., when e = 0), we have from (3.12) that for any solution & to £ = (A—LC)E,

V(E(t)) <e *V(&(0)) (3.39)

for all t > 0. In view of (3.19), and as d > 0, for any solution g to (3.18) with input u € £,,, since

1 takes non-negative values in view of (3.17a)-(3.17b),
V(E(t,))) < e *(V(§(0,0)) +dn(0,0)) + ». (3.40)

Hence, we guarantee a convergence rate a € (0, a] of V along the £-component of the solution to
(3.18), which can be equal to a. We also have v in (3.19), which is an ultimate bound of the esti-
mation error, that is tuneable and can thus be made arbitrarily small (by selecting & small mainly)
irrespective of the chosen convergence rate at the price of more frequent transmissions in general.
Property (3.19) also ensures that the auxiliary variable 1) is bounded and converges to a neighbo-

rhood of the origin.

In Theorem 3.1, we first fix a convergence rate @ and a guaranteed ultimate bound v for V(&) +
dn, and then we explain how to select the design parameters to accomplish this. It is worth noting
that the conditions of Theorem 3.1 can be always ensured. Indeed, we just have to select c* and c;
sufficiently small such that o*c] < y, which is always possible, and all the other parameters can be
always selected such that items (ii)-(iv) of Theorem 3.1 are verified as well. Another way to use the
result of Theorem 3.1 is to select o and ¢, such that oc, < y holds. Then, by selecting c5 € [0, 1] and
any strictly positive value for c¢; and ¢, (3.19) holds for some strictly positive a@ and v. This is how

we select parameters in the example in Section 3.5.
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3.4.2 Properties of the inter-event times

In this section we provide properties of the inter-event times. In particular, we first show the
existence of a strictly positive minimum inter-event time between two consecutive transmissions
under mild boundedness conditions on plant (3.1). This corresponds to the existence of a dwell-time
for the solutions to (3.18), as defined in [31] and recalled in Section 2.3.4, see, e.g., [115], [103].

From the definitions of ¢ and 2 in (3.17a) and (3.17b), the inter-event time is lower bounded by the

2 |2 value after a jump according to (3.16), to ¢

time that it takes for |e|” to grow from 0, that is the |e

A proof that this time is bounded from below by a positive constant can be obtained by establishing

that the time-derivative of |e|?

¢ = —CAx — CBu, we define the following set

is bounded. For this purpose, recalling that, from (3.16) we have

& ={(q,u) e R™ x % : |CAx + CBu| < p}, (3.41)

where p is an arbitrarily large positive constant. We restrict the flow and the jump sets of system

(3.18) so that

q=F(q,u), (q’u)ecgp = (chgl/)ﬂyp (3.42)
9" =6G(q), (Ques,:=(D2xU)nS,.

By doing so, we therefore only consider solutions to (3.18) such that the derivative of e is bounded.
Hence, (3.19) still applies. Note that (3.41) is verified for all hybrid times when the state x and
the input u are known to lie in a compact set for all positive times and the constant p is selected
sufficiently large for instance. It is important to notice that the constraint (3.41) does not need to be
implemented in the triggering rule: it is only used here for analysis purposes.

In the next theorem we prove that there exists a positive minimum inter-event time between any

two consecutive transmissions for solutions to system (3.42).

Theorem 3.2 (Minimum inter-event time). Consider system (3.42), then for any input u € %, any

1
solution q has a dwell-time T := 2—\/E, i.e., for any (s,i),(t,j) € domq withs +1 < t + j, we have
PNY

jmi<—+1L O
T

Proof. Let u € ¥, and q be a solution to system (3.42). Pick any (¢, j) € domgq and let 0 =

j
to < t; <--- < tj4q = t satisfy domq n ([0, t] x {0,1,...,j}) = U[ti,tiﬂ] x {i}. For eachie
i=0
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{0,...,j} and almost all s € [t;, t; 1], (q(s,1),u(s,1)) € 6,. Then, from (3.16) for alls € [t;, t; 4],

d , d, -
d5|e‘ - dS(e e)
eletele)

= (
= (—~CAx — CBu)"e + e" (—CAx — CBu) (3.43)
= —2e¢' (CAx + CBu)

< 2|e||CAx + CBul|.

Since (q(s,i),u(s,i)) € 6, = (¢ x %) n &,, in view of (3.41),

EMZ < 2le|p. (3.44)

Let t! := inf{t > t; : le(t,i)]| = \/E}, hence t! < t;,; in view of (3.17b). For almost all
Y

d
—le|? < 2\Fp. (3.45)
ds Y

Integrating this equation and applying the comparison principle [85, Lemma 3.4], we obtain,

s € [t;,t]], from (3.44), we have

for all s € [t;, ]
le(s,1)[% < |e(t;, 1) 2 +2\/§p(s —t;). (3.46)

Moreover, since e(t;,i) = 0, we obtain
le(s,1)|* < 2\/§p(s —t;) Vsel[t,t]]. (3.47)

In view of (3.47), s — 2\/§p(s — t;) upper bounds s — |e(s,i)|? on [t;, t]]. Hence, the time
Y

. € € .
it takes for s — 2\/jp(s — t;) to grow from O to — is a lower bound on t! —t; < t; 1 — t;.
Y Y

1
Therefore, the solution q with input u has a dwell-time 7 = > i. [ |
Jol

Y

From Theorem 3.2, we see that the guaranteed minimum inter-event time 7 grows when p
decreases or when ¢ increases, which corresponds to an increase of the ultimate bound v, as shown
in Theorem 3.1. Note that, because of (3.19), the 1 and the & components of the solutions to system
(3.42) cannot blow up in finite continuous time. In addition, if the constraint on the state x and the
input u in (3.41) is satisfied for all continuous time t > 0, then we can ensure the t-completeness
of maximal solutions to system (3.42), see [31, Definition 2.5]. As the conditions on x and u are
assumptions on the original system (3.1), and not part of our design, we can indeed establish that
t-completeness of maximal solutions to (3.42) is guaranteed, under appropriate assumptions on the
initial states of 1 and &, and thus a positive lower bounded on the inter-event times is guaranteed.
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Chapter 3. Event-triggered estimation of linear systems

Although this already sketches the main arguments, a complete and formal proof will be given in
Chapter 4, where a more general setting is considered.
An additional feature of the proposed triggering rule is that it stops transmitting when the

sampling-induced error |e| becomes small enough, as formalized in the next lemma.

Lemma 3.1 (Stop transmissions). Consider system (3.18), given a solution q with input u € %y, if

there exists (t, j) € domq such that |e(t’,j")| < \/Efor all (t',j') € domq with t' + j' > t + j, then
Y

sup;domq = j' < oo. O

Proof. The condition |e(t’,j")| < \/E for all (¢/,j') € domgq with t’' + j > t + j implies
Y

vle(t',j)? < yf < ocn + ¢ for all (t/,j') = (t,j). Thus, the triggering condition is ne-
ver triggered after (t,j), hence no jumps occur after (t,j) and j* = j consequently. Therefore

sup;domq = j' < oo, which concludes the proof. [

The condition on |e| in Lemma 3.1 occurs when the plant output y remains for all positive times

in a small neighborhood of a constant for instance. Indeed, when the output to plant (3.1) satisfies
ly(t) —y*| < % € forall t > T for some T > 0 and some constant y* € R™, we have for any
solution g to systenz/ (3.42) with input u € £y, for any (t}, j), (t,j) € domq with (t;,j — 1) e domgq
and t; > T, t > t; and |e(t,j)| = |y(t),)) =y (6. 0)| = [y (t;, ) =y" +y" =y (6, )] < |y(t;,]) —
YN+ —ytj)l < 2%\/§ and the condition of Lemma 3.1 holds. Moreover, it automatically
starts transmitting again if that condition is no longer verified. This is a clear advantage over time-
triggered strategies, where the measured output is always transmitted, which may be important in
practical applications. The above condition of y of Lemma 3.1 is verified, for example, when the

plant is asymptotically stable and the input u is constant, see also the example in the next section.
Note that Lemma 3.1 applies to system (3.18), and not only to system (3.42).

3.5 Numerical case study

We apply the proposed event-triggered observer to a lithium-ion battery example [116]. This can
be relevant when the battery management system is not co-located with the battery and communi-
cates with it via a digital network. The considered electrical equivalent circuit of the battery cell is

shown in Figure 3.2. From the circuit, the following system model is derived

. 1 1.
Urc = —=Urc + =lpar
T C
. 1
SOC =~ Ginur (3.48)

Viat = —Upc + afSOC + B — Rinelpg;-

The states Uy € R and SOC € R are the voltage on the RC circuit and the battery state of charge,
respectively. The input ip,, € R is the battery current and the output V;,; € R is the battery voltage.
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FIGURE 3.2 — Equivalent electrical circuit of a single battery cell.

Considering the temperature to be constant and equal to 25 °C, the following values are taken T = 7 s,
C =2.33-10*E Q = 25 Ah, Rine = 4mQ, ay = 0.6 and ﬂf = 3.4, which have been derived from
experimental data. We design observer (3.2) with L = [0.64,2.33]. As a result, (3.12) holds with
o | 157-10" 339, 103] _ [100 0
-3.39-10° 1.29-10° |’ 0 1000

From (3.48), we see that the system output has a feedthrough term, indeed, the output equation

,a=0.003 and y = 1.104 - 10°.

has the following structure y = Cx + Du + f3;. However, since the observer has access to the input
u = ipq, continuously thanks to Assumption 3.1 and f3; is known, we can rewrite the output equation

as z = Cx, as explained in Remark 3.1.

We have first simulated the event-triggered observer with 0 = 500, ¢; = 1, ¢; = 50, ¢3 = 1,
¢ = 1. With this choice of parameters, the condition oc, < v is satisfied. The input is given by a
plug-in hybrid electric vehicle (PHEV) current profile, shown in Figure 3.3, for which the solutions
to (3.48) remains in a compact set, so that |CAx + CBu| < p for p large enough along the solu-
tions like in (3.41) and Theorem 3.2 applies. Figure 3.3 also provides the plots of the corresponding
output, state estimation error and inter-transmission times obtained with the following initial condi-
tions: Upc(0,0) = 1V, SOC(0,0) = 100%, &y, (0,0) = 0V, £50¢(0,0) = 75%, €(0,0) = 0 and
1(0,0) = 10°. The minimum-inter event time seen in simulation is 0.227s. It is clear that both state
estimation errors practically converge to zero. Moreover, the proposed scheme stops the transmis-
sions whenever voltage V;, tends to a constant, like in [7205s,9005s] and [12605s, 1500s], where the
inter-transmission time keeps growing, which is again a clear advantage over time-triggered policies.
Indeed, when the input i;,, = 0, the output V;,, tends to constant and no data are transmitted, as
explained in Lemma 3.1. Moreover, the transmissions start again when the input becomes different

from O.

We have also analyzed the impact of the design parameters, in particular we focus on the effect
of o, ¢; and ¢. For this purpose, we have simulated the corresponding system (3.18) with different
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FIGURE 3.3 - Input {54, output Vp,,, state estimation error &y and Egoc, and inter-transmissions

time, with 0 =500, ¢; =1,¢, =50,¢c3 =1, ¢ =1.
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3.5. Numerical case study

TABLE 3.1 — Average number of transmissions in the time interval [0s, 1500s], maximum absolute
value of the state estimation errors |Ey, (t,j)| and [Egoc(t,j)| for t € [1000s,1500s] with different
choices for o, ¢y, €.

o) €1 € | Transmissions  |Ey. | [V] [Es0c|%
500 1 1 | 390 0.0019 0.0074
500 1 0.1 1301 0.0006 0.0025
500 1 10 102 0.0067 0.0251
500 1 100 19 0.0163 0.0754
500 0.01 1 10 0.0171 0.0653
500 0.1 1 340 0.0019 0.0069
500 10 1 681 0.0021 0.0077
1000 1 1 364 0.0021 0.0082

0 1 1 886 0.0018 0.0069

parameters configurations and 100 different initial conditions each time, which were selected ran-
domly in the interval (0, 3)V for Up¢(0,0) and &y, (0,0) and in the interval (0, 100)% for SOC(0,0)
and £goc(0,0). The scalar variable 1 and the sampling induced error were always initialized as
1(0,0) = 10° and e(0,0) = 0. For each choice of parameters, we have evaluated how many trans-
missions occur in the time interval [0s,1500s] on average as well the maximum absolute value of
the state estimation errors [y, (t,j)| and |Egoc(t, )| with t € [1000s,1500s] averaged over all
simulations. The data collected are shown in Table 3.1.

Table 3.1 shows that, in all considered configurations, the estimation error is small. Moreover, the
data suggest that there is a trade-off between the number of transmissions and the estimation accu-
racy, as already indicated in Section 3.4. In particular, when ¢ is small, we have more transmissions,
but the error is smaller. Conversely, when ¢ is large, the number of transmissions is reduced, but the
estimation error increases, even if it is still reasonably small in view of the application. Moreover,
Table 3.1 shows that the larger c;, the higher the number of transmissions required, without a big
impact on the accuracy of the estimation error, except from the case when ¢; = 0.01 which produces
only 10 transmissions, but the estimation error is higher. Furthermore, there is a trade-off also on
the choice of ¢. Indeed, the larger o, the smaller the number of transmissions, but the larger the
error. It is important to note that the last parameters choice in Table 3.1, with o = 0, corresponds to

an absolute threshold triggering rule and leads to many transmissions.
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Chapter 3. Event-triggered estimation of linear systems

3.6 Conclusions

We have presented an event-triggered observer design for linear time-invariant systems. In order
to reduce the number of transmissions over a network while still ensuring good estimation perfor-
mance, we have proposed a dynamic triggering rule, implemented by a smart sensor, which decides
when the measured output needs to be transmitted to the observer. Compared with other works in
the literature, we do not need a copy of the observer in the sensor, but only a first order filter of the
sampling-induced error, which may allow to significantly reduce the number of transmissions com-
pared to an absolute threshold policy, while being easily implementable.We have modeled the system
as a hybrid system and we have shown that the estimation error system satisfies a global practical
stability property. Moreover, under mild boundeness conditions on the plant state and its input, we
have proved that the system does not exhibit the Zeno phenomenon and even has a positive lower
bound on the inter-event times.

In the next chapter, we extend the results to general nonlinear systems assuming the estimation
error system satisfies an input-to-state stability property*. We will also consider a decentralized
scenario, with N independent sensor nodes.

4. The definition of input-to-state stability property for observers and some examples are given in Chapter 2.
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Chapter 4. Decentralized event-triggered estimation of nonlinear systems

Abstract - This chapter generalizes the results presented in Chapter 3 for unperturbed linear time-
invariant systems. In particular, we investigate the scenario where a perturbed nonlinear system trans-
mits its output measurements to a remote observer via a packet-based communication network. The
sensors are grouped into N nodes and each of these nodes decides when its measured data is transmitted
over the network independently. The objective is to design both the observer and the local transmission
policies in order to obtain accurate state estimates, while only sporadically using the communication
network. In particular, given a general nonlinear observer designed in continuous-time satisfying an
input-to-state stability property, we explain how to systematically design a dynamic event-triggering
rule for each sensor node that avoids the use of a copy of the observer, thereby keeping local calculation
simple. We prove the practical convergence property of the estimation error to the origin and we show
that there exists a uniform strictly positive minimum inter-event time for each local triggering rule under
mild conditions on the plant. The efficiency of the proposed techniques is illustrated on a numerical case

study of a flexible joint robotic arm.

4.1 Introduction

As explained in Chapter 3, when the system and the observer are not co-located, the output
measurements, obtained through a sensor, may need to be transmitted to the observer via a digital
network. In this case, the transmission policy has an impact on the convergence speed, robustness
of the estimator, as well as on the amount of communication resources required. In this chapter we
generalize the previous results, where a centralized event-triggered observer was designed for un-
perturbed linear time-invariant systems. In particular, as before, we adopt a dynamic event-triggered
approach based only on the measured output and the last transmitted output value, which does not
require a copy of the observer in the sensor and we design a triggering rule that involves an auxiliary
scalar variable. Compared to the results presented in Chapter 3, we now consider general, perturbed
nonlinear systems contrary to the vast majority of event-triggered estimation works in the literature,
which concentrates on specific classes of systems, see e.g., [16-30]. In addition, the triggering stra-
tegies are now decentralized. Indeed, we consider the scenario with N sensor nodes, where each
node decides independently when to transmit its local data to the observer via a digital network.
Consequently, each sensor node has its own triggering rule.

As in Chapter 3 we follow an emulation-based approach in the sense that in the first step the
observer is designed ignoring the effects of the communication network. In particular, we assume
that an observer has been synthesized in continuous-time in such a way that it satisfies an input-to-
state stability property, in the sense of Definition 2.4. It was also shown in Chapter 2 that numerous
observers design techniques of the literature satisfy this stability property, see e.g., [7,9] and the
references therein. In the second step, we take the network into account and propose a new hybrid
model using the formalism of [31]. We then design a dynamic triggering rule for each sensor node
to approximately preserve the original properties of the observer. In particular, we ensure that the
estimation error system satisfies a global practical stability property and we show that, in some parti-

cular cases, it is possible to recover the same decay rate for the Lyapunov function along solutions as
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4.2. Problem statement

in the absence of the communication network, similarly to the linear time-invariant case presented
in Chapter 3. Note that, we do not guarantee an asymptotic stability property, but a practical one in
general, which is a consequence of the absence of a copy of the observer in the triggering mechanism
as we explain later (see Remark 4.2). As for the linear time-invariant case, we design dynamic trig-
gering rules in the sense that they involve a local scalar auxiliary variable, which essentially filters an
absolute threshold type condition, see e.g., [26-29]. Our design of the triggering rules rely on very
mild knowledge of the observer properties; only some qualitative knowledge is needed on the gains
appearing in the input-to-state stability dissipativity property, which is assumed to hold for the state
estimation error system, as will be explained in more detail below.

The closest work is [30] where a similar triggering rule is presented, but only for polynomial
systems and for a centralized approach (one communication sensor node only). In contrary, our
results essentially only rely on an input-to-state stability assumption of the estimation error system,
which is commonly satisfied [9]. Moreover we consider the more challenging case of a decentralized
set-up, we provide in-depth characterizations of the domains of the solutions and we provide various
extensions for scenarios where the outputs are affected by additive noise, and where the plant input
is also transmitted to the observer over the network (see Section 4.6).

The remainder of the chapter is organized as follows. The problem setting, the assumption on
the observer and the problem statement are presented in Section 4.2. The proposed triggering rule
and the overall hybrid system model are given in Section 4.3. In Section 4.4 we analyze the stability
properties of the proposed event-triggered observer. In Section 4.5 we derive various properties of the
solutions domains (completeness of maximal solutions and the existence of a minimum time between
any two transmissions of each sensor node). Some generalizations and extensions are presented in
Section 4.6 and a numerical case study on a flexible joint robotic arm is reported in Section 4.7.

Finally, Section 4.8 concludes the chapter.

4.2 Problem statement

4.2.1 Setting

Consider the nonlinear system
x = fp(x,u,v)
y =h(x),

where x € R™ is the state to be estimated by the observer, u € R™ is the measured input, y € R" is

“4.1)

the output measured by sensors, and v € R™ is an unmeasured disturbance input, with n,,n, € Z.,
and n,,n, € Z~,. The inputs u and v to (4.1) are such that u € £, and v € £, for some sets % < R™
and ¥ < R™. The vector field f, : R™ x R™ x R™ — R" is locally Lipschitz in its first argument
and continuous in the others and h : R™ — R™ is continuously differentiable.

We consider the scenario where the measured output is transmitted sporadically to the observer
via a digital network, see Figure 4.1. As a result, only sampled versions of the outputs are available

to the observer. We follow an emulation-based design in the sense that a continuous-time observer
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FIGURE 4.1 - Block diagram representing the system architecture (ETM: Event-Triggering Mecha-
nism).

for system (4.1) is first designed ignoring the communication network. Afterwards, we will consider
the network and design a triggering rule to decide when the output data need to be transmitted to
the observer in order to approximately preserve its original properties. In particular, we assume the

availability of a continuous-time observer for system (4.1) of the form

X =1(z) (4.2)

where z € R™ is the observer state, with n, > n,, X € R™ is the state estimate, y is the output
estimate. The vector field f, : R™ x R™ x R™ x R"™ — R™ is continuous, and ¢ : R — R™
admits a right inverse ¢ % of v, i.e., x = ¢ (3 ’(x)) for any x € R"x. Often z = %, but this does not
necessary have to be the case, like in Kalman filters, which involve extra variables that can be stacked
in vector z. Observer (4.2) has a general structure and can be designed using several observer design
procedures, including Luenberger-like observers and Kalman filters, see e.g., [9,12], [7, Section IV]
and the references therein. The precise assumption we make on observer (4.2) is stated later in this
section. For simplicity, we do not consider in this work the case of reduced-order observers (see e.g.,
[91]), but we believe that similar derivations could be developed in this scenario. We also adopt the

following assumption.
Assumption 4.1. The plant and the observer have access to the input u at any time instant. O

Assumption 4.1 is reasonable in many control applications such as, for example, when the control
input is jointly communicated to the observer and the plant, or when the input is generated at the
observer node, which is collocated with the plant actuator node. It is worth noting that, when the

plant and/or the observer do not know the input u, meaning that Assumption 4.1 is not satisfied, the
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input u can be included in the unknown disturbance input v in (4.1) and the results presented in the
sequel apply, as long as Assumption 4.2 presented later holds. Furthermore, in the case where the
input u is transmitted from the plant to the observer via a digital network, we explain in Section 4.6.3
how to define a triggering rule for u so that the forthcoming results hold mutatis mutandis.

We investigate the scenario where the output measurements of system (4.1) are transmitted
to observer (4.2) via a digital channel, as depicted in Figure 4.1. In particular, we consider the
setup where the sensors are grouped into N nodes, where N € {1,..., ny} and we write, after re-
ordering (if necessary), y = (y1,...,¥n) = (h1(x),...,hy(x)) with y; e Rvi, n, € {1,...,n,} and
n, +...+n, = n,.Each sensor node decides when its output measurement needs to be transmitted
to the observer over the network, independently of the other sensor nodes. Hence, several nodes
are allowed to communicate at the same time instant. Note that this is not a strong assumption.
Indeed, in practice, the sensors may use different channels to communicate over the network. On the
other hand, if two or more sensors transmit their output data on the same channel at the same time
instant, there could be some interference in the communication. These interferences can be modeled
as additive measurement noise and we explain in Section 4.6.2 how the proposed approach can be

modified to account for measurement noise.

Considering a decentralized setup allows to cover the case where the sensors are spatially distri-
buted, such as, for example, in the case of large-scale systems where different sensors are not col-
located and transmit their data independently. Moreover, compared to a centralized scenario, with
the considered setup, only the sensor (or sensors) that needs to communicate transmits its data over
the network, instead of the full plant output vector. As a result, the data packet size transmitted over
the network can be reduced. Note that, the considered decentralized setup covers also the case with
only one sensor node when N = 1, for which the results presented afterwards are new as well. In
particular, the setting presented in Chapter 3 is a special case of the setup considered in this chapter,
where system (4.1) was a linear time-invariant system not affected by external disturbances (v = 0),
observer (4.2) was a linear Luenberger observer and the whole output y was communicated to the

observer when a transmission is triggered, i.e., N = 1.

In the setting where the output measurement of system (4.1) are transmitted sporadically to
observer (4.2) via a digital network, the observer does not know y, but its networked version
v = (¥1,.--,¥n) € R™. Each y; € R™i, with i € {1,...,N}, is generated with a zero-order-hold
device between two successive transmission instants, i.e., in terms of the hybrid systems notation in
Chapter 2,

¥i=0 (4.3)

and, when a transmission of node i occurs the corresponding output y; is transmitted, considering
an ideal sampler, hence

¥ =i (4.4)
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otherwise, when another node generates a transmission the last received value is kept constant, i.e.

¥ = (4.5)
It is worth noting that the zero-order-hold is just a choice we make to generate the output sampled
version y; for alli € {1,..., N} between transmission times. Other options are for example the first-
order-hold and the model-based holding function [117].

Since the output y is transmitted over the network, observer (4.2) does not have access to the
exact measurement output y, but only to its networked version y. As a result, the observer equations

in (4.2) become

x=1(z) (4.6)

We define the network-induced error for each sensor node e; := y; — y; € R™i, withi € {1,...,N},

and the concatenated vector e := (eq,...,ey) = ¥ — y € R". We obtain, in view of (4.1) and (4.6),

z=fo(z,u,y +¢,3) = fo(z,u,h(x) +¢,h(¢(2))). (4.7)

The dynamics of variable e;, for i € {1,...,N}, between two successive transmission instants is, in

view of (4.1) and (4.3) and since h; is (continuously) differentiable,

oh;(x)
ox

6=V —yi = fo(x,u,v) =: gi(x,u,v). (4.8)

Furthermore, at each transmission instant of the i-th sensor node, we have

el =0, (4.9)

el =e.. (4.10)

4.2.2 Assumption on the observer

Inspired by [9], we require observer (4.2) to satisfy the following input-to-state stability property,
as defined in Chapter 2.

Assumption 4.2. Thereexist &, @, &, Y1,...,Yn,0 € K, V : R™ x R™ — R continuously differen-
tiable, such that forall x e R™, z2e R, ue %, ve ¥, ec R, J e R™,

a(lx = (=)]) <V (x,2) <a(|y " (x) —z)) (4.11)

(VV(x,2), (fp(x,w,v), fo (2,1, y +e,9))) < —a(V(x,2)) + > rille:]) + 8(v])- (4.12)

i=1
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O

Assumption 4.2 implies that (4.2) is a global asymptotic observer when v = 0 for system (4.1)
in the sense that (4.11) and (4.12) guarantee that, in this case, for any initial condition x(0) € R"x,
z(0) € R™ and any input (u,v) € £y x {0}, the corresponding (maximal) solution x and z to (4.1)
and (4.2), if complete >, satisfies x (t) — % (t) — 0 as t — +00, where £ (t) = v(2(t)). More precisely,
Assumption 4.2 implies that the estimation error system x — X satisfies an input-to-state stability
property [6] with respect to both the network-induced errors e;, which act as additive measurement
noises in (4.12), and to the unknown disturbance input v. In other words, there exist § € £ ¥ and
Y € A, such that, for any input u € ¥,, and any disturbance v € ¥, the corresponding solutions x
and z to (4.1) and (4.2) respectively, for all t > 0 satisfy

[2(6) = x(6)] < B (x(0) = 2(0)], £) + 7( el

i=1

0,e] T Vlo,e7)- (4.13)

Hence, Assumption 4.2 is a robustness property of the observer with respect to measurement noise
and disturbance, which is independent of the network.

In view of [9, Section VI], the class of observers in (4.2) satisfying Assumption 4.2 cover various
observer designs in the literature, including Luenberger observers for linear systems, various obser-
vers for systems with globally Lipschitz vector fields, observers for input affine systems and extended
Kalman filters, see [5] and references therein. See [7] for further results on input-to-state stability
properties for observers. More details on input-to-state stability property for nonlinear observer are
given in Chapter 2. It is important to notice that for the design of the triggering rule, that will be pre-
sented in Section 4.3, a € %, and the Lyapunov function V in Assumption 4.2 are not needed to be
known. Indeed, only y; is needed and, in addition, we have a lot of freedom regarding the definition
of y;, as explained later in Remark 4.1. Note that we work, for simplicity, with global assumption
(see Assumption 4.2) but all the analysis could be done in a more local setting (i.e. semi-global, or

regional).
4.2.3 Problem formulation

Our goal is to design the local triggering rules to decide when each node i needs to transmit
its data to observer (4.2), while approximately preserving the properties of observer (4.2) in the
absence of the network as stated in Assumption 4.2. We assume for this purpose that the N sensors
are sufficiently “smart” so that they have enough computation capabilities to run a local scalar filter,
as detailed in the next section.

4.3 Design of the triggering rules

In the proposed architecture, each sensor node i € {1,...,N} has access to its local output mea-
surement y; and its last transmitted output value y;. We also introduce a set of local scalar variables

1M; € Ry, with i € {1,...,N}. The n;-dynamics is, between two successive transmissions of any node

5. Completeness of maximal solution will be ensured in Section 4.5.1
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ETM i
Transmit y; when
ri(le:]) = oy (ny) + &
where
— { n; = —a;(n;) +¢;vi(les])
1" = b;n; when node i transmits

Y. =Y; whennode i transmits

- Yi Yi
— Sensor i -

FIGURE 4.2 - Event triggering mechanism (ETM) of node i, i€ {1,...,N}.

and at each transmission of node i, respectively, given by

N = —a;(n;) + ¢;ville]) =: €i(my, e;)
’f):r = b;n; (4.14)
n; =mnj, je{l,...,N} with j #1i,

where y; € %, comes from Assumption 4.2, while a; € X, ¢; = 0, b; € [0,1] are design functions
and parameters. In particular, equation (4.14) means that when node i transmits, withi € {1,...,N},
the corresponding 7); is updated according to n:r = b;n;, while the auxiliary scalar variables 7;, with
je{1,...,N}, j # i, associated to the other sensors are not updated. The auxiliary scalar variable
7; is used to define the triggering instants for sensor node i. Indeed, sensor i, with i € {1,...,N},

transmits its output measurement only when the condition
ri(lei]) = oiai(n:) + & (4.15)

is satisfied, where o; > 0 and ¢; > 0 are additional design parameters, as summarized in Figure 4.2.

The variables 7; in (4.14), for i € {1,...,N}, and the triggering rule in (4.15) are inspired by
the dynamic event-triggered mechanism in [49] in the context of control. The proposed triggering
rule is a filtered version of the absolute threshold triggering rule in e.g., [26-29], which we recover
by letting o; = 0 for all i € {1,...,N} in (4.15). This dynamic rule is generally able to reduce the
number of transmissions over the network, as illustrated on an example in Section 4.7.

The design functions and parameters a;, ¢;, b;, o; and ¢; in (4.14) and (4.15) can be selec-
ted differently for different i € {1,...,N}. We can therefore design them to trigger more often the
transmissions of more relevant output data and less frequently the ones whose information is less
important. This is an advantage of the decentralized setup compared to the case with only one sensor
node, where the whole output is transmitted at every triggering instant.

Note that the parameter ¢; is essential to avoid the Zeno phenomena. Indeed, we will show in

Section 4.5.2, under mild extra conditions, that there exists a strictly positive minimum time between
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any two transmissions of the same sensor node, which vanishes when ¢; = 0.

Remark 4.1. To design the triggering mechanism it is not necessary to know a € #, and the Lyapunov
function V in Assumption 4.2 in view of (4.14)-(4.15): only y; is needed, and, as a result, there is a lot of
freedom regarding the definition of y;. Indeed, if Assumption 4.2 is satisfied with some v1,...,Yn € Ho,
then Assumption 4.2 holds with any ¥1,...,7nx € K, verifying v;(r) = O(¥;(r)) as r — 40 with a
different V and a different a in view of Lemma A.1 in the appendix. This implies for instance that, when
Assumption 4.2 holds with y; quadratic for all i € {1,...,N}, the y;’s can be replaced by any quadratic
function in (4.14)-(4.15). We will exploit this property in the example in Section 4.7. Note that, in
this case, the proposed technique will not necessary approximately preserve the input-to-state stability

property of observer (4.2), but it still ensures a desirable input-to-state stability property. a

We write 1) := (1)q,...,My) € RZO and we define the overall state as q := (x,2,e,1) € & :=
R™ x R"™ x R™ X Rgo and the overall input w := (u,v) € # := % x ¥. We obtain the hybrid model

q=F(qw), qe€€
{ " (4.16)
q" €G(q), qe9.
where the flow map F is defined as, for any g € ¥ and anywe #/,
F(q,w):=(f, (x,w), fo (2,1, h(x), k(3 (2))), g (x,w), £(n, €)), 4.17)

where g(x,w) := (g1(x,w),..., gy (x,w)) with g; in (4.8) and £(n, ) := (£1(n1,€1), ..., En (NN, ex))
with £; in (4.14). The flow set ¥ is defined as

N
=) (4.18a)
i=1
with
6 :={qe 2 :v,(le;]) < o0;(n;) + &}, (4.18b)

forany i € {1,...,N}. On the other hand, the jump set 2 is defined as

N
2:= ]2 (4.19a)
i=1
with
92;:=1{qe 2 :v,(lei|) = oya;(n;) + &}, (4.19b)

foranyie {1,...,N}. Sets ¢ and 2 in (4.18)-(4.19) are such that a transmission is triggered whene-
ver one of the conditions y;(|e;|) = 0;a;(n;) +¢; is satisfied by at least one sensor node, as illustrated
in Figure 4.2. These conditions may be verified simultaneously by different sensor nodes. In this case,
several jumps may occur immediately one after the other, with no flow in between.
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The set-valued jump map G in (4.16) is defined as, for any q € 2,

N
G(q) :=JGig), (4.202)
i=1
with )
X
Z
q€2;
Gi(q) := Aje (4.20D)
(bl<IN - Fl) + Fi)n
@ q ¢ @ia

where A, is the block diagonal matrix of dimension n,, with N blocks, where the i-th block is Onyi xny, s
while all the other blocks are Inyj, forallie{1,...,N}, je{1,...,N}, with j # i. Moreover, [ is the
diagonal matrix of dimension N with all elements on the diagonal being equal to 1 except for the i-th
element, which is 0, fori € {1,...,N}. The set 9; corresponds to the region of the state space where a
triggering of node i is allowed. Indeed, a jump in (4.16) corresponds to a transmission of one current

output y; to the observer. In this case x™ +

=X,z =2;,ei+ =0,e;r =ej,7)l.+ = b;n; andn? =n;
for je {1,...,N} with j # i. The empty set in (4.20b) essentially means that we consider the jump
map G; only when its argument is in the jump set Z;. Indeed, in our setting, each sensor performs its
output transmission, according to G;, independently of the other sensors and the transmission does
not affect the other sensor nodes. However, this notation is useful because we also have to define
G;(q) when q ¢ 2; in view of the definition of the jump set 2 in (4.19a)-(4.19b). Note also that
the empty set in (4.20b) guarantees that the jump map G in (4.20a) is outer semicontinuous and
locally bounded relative to the jump set 2, which is necessary to satisfy the hybrid basic conditions
[31, Assumption 6.5].

We are ready to proceed with the design of a;, o, ¢;, &;, b; in (4.14)-(4.15) and the stability

analysis of system (4.16).

4.4 Stability guarantees

The objective of this section is to prove that the proposed event-triggered observer satisfies a
uniform global practical stability property, as defined below.

Definition 4.1. Observer (4.6) is uniform globally practically stable for system (4.1), if there exist
p* e XL and yv* € K, such that, for any v > 0 there exist non-empty sets of values for parameters
o}, ¢;, € and b; such that for any input w € £, any corresponding solution q to (4.16)-(4.20), for all
(t,j) € domgq, satisfies

x(t, ) — £(6,3)] <B*(| (@ (x(0,0)) = 2(0,0),7(0,0))], £) +7* (v + B(Wlj0,)s  (42D)

where 0 € A, comes from Assumption 4.2. O

For this purpose, we first present Lyapunov properties in Sections 4.4.1, then we derive stability
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guarantees in Section 4.4.2. Finally, in Section 4.4.3 we show how to tune the design parameters, in
the special case where Assumption 4.2 holds with a linear a € %, to obtain the same decay rate of

the Lyapunov function along solutions in absence of network.
4.4.1 Lyapunov stability analysis

In the next theorem we prove a Lyapunov stability property for the overall system (4.16). In
particular, we define a Lyapunov function, which depends on the additional scalar variables 7);,
i€ {l,...,N} and on the Lyapunov function V from Assumption 4.2, which guarantees the input-
to-state stability property of the observer in absence of network. Moreover, we show how to tune
the design parameters to guarantee that this new Lyapunov function is positive definite and radially
unbounded, decreases along solutions during flows (up to a ultimate bound) and does not increase
at jumps, which implies that a uniform practical stability property of the estimation error is satisfied.
In addition, the choice of the design parameters impacts the size of the ultimate bound of the conver-
gence. In particular, we can tune the parameters to have v, which is the adjustable parameter of the
uniform practical stability property, arbitrarily small. However, typically, the smaller we choose v,

the higher is the number of transmissions triggered over the network.

Theorem 4.1 (Lyapunov stability property). Suppose Assumptions 4.1-4.2 hold and consider the hy-

brid model (4.16)-(4.20). For any v > 0, select o} > 0, ¢! > 0 such that o}c} < 1 and d; > d} where
* N

o’
d:= ﬁ > 0 and select &7 > 0 such that 2(1 +d;cf)el <w, forallie{1,...,N}. Define
il i=1

N
U(q) :=V(x,2) + . diny, (4.22)
i=1

for any q € &. Then, there exist a;;, ay € A, such that for any a; € A, in (4.14), o; € [0,07],
ci€[0,c7], & €(0,¢/] and b; € [0,1], for all i € {1,...,N}, the following properties hold.

(i) Foranyqe 2,
ay(|(x =(=),m)]) < U(Q) < ay(|(p " (x) —2,n)]). (4.23)

(ii) Forany qe 6 andany we ¥,

=z

(VU(q).F(qw)) < =a(V(x.2)) = 2, diai(n:) +v + O(|v]), (4.24)

1

where a, 0 € A, come from Assumption 4.2, and 6; := d; — o} (1 +d;c}) > 0.

(iii) For any q € 9, for any g€ G(q),
U(g) <U(q)- (4.25)
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Proof. Let all conditions of Theorem 4.1 hold. We prove the three items of Theorem 4.1 sepa-
rately.
Proof of item (i). Let g € £. From (4.11) and (4.22), we have

Q(Ix—w(Z)\)+Zdini< U(q) < a(lyp"(x —21+2dm (4.26)

We first show the upper-bound in (4.23). Since N)*R(x) —z] < ’<¢—R(X) — 2z, and n; <
|(R(x) —z,7m))|, we have

( ) (W’ *Z| +Zd17h

4.2
<a(|(Rx) —z1) +2d\ %) —zm)] 427

=:ay(|(PR(x) —z,7)),

N
where ay(s) = a(s) + Y, d;s for any s > 0. On the other hand, we have
i=1

U(g) > a(lx 9 (z))) + 3 dims. (4.28)

We obtain, by applying [114, Lemma 4],

N
Ulq) = gy (!x—w(Z)\ +Zm>, (4.29)
i=1
, s s s , N
where a;;(s) := min {g <N n 1> ,le 1 ..,dNN | } Moreover, since ]x—1/;(z)|+§1ni >
|(x =1 (2),m)l;
U(q) = ay([(x = (2),n)]). (4.30)

This completes the proof of item (i) of Theorem 4.1.
Proof of item (ii). Let g € ¥ and w € # . In view of (4.12), (4.14) and (4.22),

(VU(q),F(g,w)) < —a(V(x,z)) + > vi(leil) + O([v]) + D di(—a;(m;) + civile])
=1 =1 (4.31)

N N
= —a(V(x,2)) = ), diai(n;) Z L+ dici)yi(lei]) + 8([v))-

Since g € 6, we have from (4.18b) that y;(|e;|) < 0;a;(n;) +¢; forallie {1,...,N}. Hence, the
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next inequality holds

(VU(q),F(q,w)) < —a(V(x,2)) -

VB

Il
—_

dia;(n;) + 2(1 +dic;)(oai(n;) + &) + 0(|v])
iz1

1

= —a(V(x,2)) -

(di — oy (1 + dic;))a;i(n;) + ) (1 +dic;)e; + O(|v]).

(4.32)

=
1=

Il
-

i i=1

Due to the conditions o; € [0,07],¢; € [0,¢] and ¢; € (0,¢}] in Theorem 4.1,

(VU(q),F(gq,w)) < Z F(14d;c; ))ai(T)i)+2(1+dic;)£;+9(|v|). (4.33)
i—1

i=1

2

Using the definitions of §; in item (ii) of Theorem 4.1 and the fact that v > Z 1+dc))e], we

. i=1
obtain

N
(VU(q),F(q,w)) < —a(V(x,z)) — . &;a;(n;) +v + 6(v]), (4.34)
i=1
where 6; is strictly positive for any i € {1,...,N} as d; > d* and oc} < 1. The proof of item (ii)
is complete.
Proof of item (iii). Let ¢ € 2, in view of (4.14) and (4.20b) and since b; € [0,1] for all i €
{1,...,N}, for any g € G(q), there exists k € {1,...,N} such that g € G(q), hence

N
U(g) =V(x,z) + Z d;n; + dibmy
i=1

i#k
(4.35)
<V(x,z)+ Z d;n;
i=1
=U(q),
which concludes the proof of item (iii). [ |

Theorem 4.1 shows the existence of a Lyapunov function U for system (4.16)-(4.20), which
guarantees a uniform practical stability property, where the adjustable parameter is v. The conditions
of Theorem 4.1 can always be ensured. Indeed, we just need to select o and ¢ such that o7c} <1,
for all i € {1,...,N}, which is always possible and then all the other parameters can be selected
such that conditions in Theorem 4.1 hold. Moreover, as already mentioned v in (4.24) can be taken
arbitrary small. However, typically the smaller v is selected, the higher the number of transmissions
required. In Theorem 4.1, we first fix v and then we present how to select the design parameters
in order to obtain the Lyapunov properties in (4.23)-(4.25). An alternative approach is to select o;
and ¢; such that o;¢c; < 1 for alli € {1,...,N}, and then, by simply selecting b; € [0, 1], and any
positive value for ¢;, any a; € 4, foralli € {1,...,N}, (4.23)-(4.25) hold for some strictly positive
v. The selection of the design parameters in the example in Section 4.7 is done exploiting this second
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strategy.

Item (ii) of Theorem 4.1 guarantees that the Lyapunov function U decreases along solutions to
system (4.16)-(4.20) during flows with a decay rate that depends on the functions a € £, and
a; € Ay, 1€ {l,...,N}, and that, in general, is different from the decay rate a € £, of the Lyapu-
nov function V along the solutions to (4.1) and (4.2) in absence of network, as detailed in Assump-
tion 4.2. We can ensure any decay rate a; € 4, such that a; < a on flows for the Lyapunov function
U along the solutions to (4.16)-(4.20) on any given compact set by suitably selecting a; in (4.14),
forallie {1,...,N}. The result is global in some special cases, like when a € ., is subadditive, i.e.
a(sy) + a(sy) = a(s; +s,), for all s,s5 = 0, or when a € %, is uniformly continuous. We formalize

this in the next proposition.

Proposition 4.1 (Decay rate of the Lyapunov function). Consider system (4.16)-(4.20) and suppose
Assumptions 4.1-4.2 hold. For any ay; € X, such that a;; < a, any compact set # < £ and any v > 0,
select o, ¢;, €;, d;, b; and &; as in Theorem 4.1 for alli € {1,...,N} and define d:= max{dy,...,dy}.
Select a; € A, such that min{é'lal (;) e, ONON <_i> } =Y _,(s) foralls =0, wherep_, €
Ay, 1s the modulus of continuity of the%\[nction ay in thedcgmpact set M. Then, forany q € 6 n M

and any we ¥,
(VU(q),F(g,w)) < —ay(U(q)) + v + 6(|v]), (4.36)

with U defined in (4.22) and 6 € &, comes from Assumption 4.2. Moreover; (4.36) holds globally, i.e.,
forany q € € and w € W, when a € X, is uniformly continuous or when a € A, is subadditive, i.e.
a(sy) + a(sy) = a(sy +sy), for all s,s9 = 0 and a; € A, with i € {1,...,N} are selected such that

s a(s)
ai|=—)=—=foralls >0. O
dN i
Proof. We first show that we can ensure any decay rate a; on flows for U along solutions to
(4.16)-(4.20) with ay; € &, and ay < a on any given compact set by suitably selecting a; in
(4.14), forallie {1,...,N}.
Let # — 2 beacompactset,qe 6 n.# and w € #, from (4.24) and by using [ 114, Lemma

4] we obtain

N

(VU(q),Fla,w)) < —~a(V(x,2)) — ap( Y dimi) +v +6(Iv)), (4.37)
i=1

s s -
where a,(s) := min{51a1 (ﬁ) ,ee, ONQAN (ﬁ) } € A, with d := max{d,,...,dy}. Take
any ay € A, such that ay < a on .. From the Heine-Canton theorem, we have that ay is

uniformly continuous on .. Applying [118, Proposition A.2.1] we have that, for all g € .#,

ay (V(X:Z) + i dﬂh‘) —ay (V(x,z)) <Yy (i dmi), (4.38)
iz

i=1
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where 1_, € X, is the modulus of continuity of a;;. Selecting a; € #,, i € {1,...,N} such that,
for all s > 0, a, (s) = min {51(11 <EL> ,ee, ONQY (EL) } > _,(s), we obtain from (4.37),
N N

(VU(g),F(g,w)) < —a(V(x,2)) — ay( Y din;) +v+6(1v])
= . (4.39)
< —a(V(x,2)) —ag (V(x,2) + Y din; ) +ay(V(x,5) + v + 0 (),

i=1

and since oy < a

N
(VU(@)Fla.w) < ~ay (Vixz) + 2 dmy) +v+ () 10)

= —ay(U(q)) + v +6(v)).

Moreover, when a € %, is uniformly continuous the result is global for all a; € £, such that
ay < a and ay uniformly continuous. This comes directly from the first part of this proof.
We now prove the last part of the proposition, in particular we prove that (4.36) holds

globally when a € £, is subadditive, i.e. a(s;) + a(sy) = a(s; + s3), for all s;,s, = 0 and

a(s
a; € A, withie {1,...,N} are selected such that a; (ds > for all s > 0. From (4.37)

i
we have

N
N
(VU(9),F(g,w)) < ~a(V/( (2 n:) + v+ 6(1v))
N= (4.41)
<—a(V (Z din;) + v+ 0(|v]),

where the last inequality comes from a,(s) = min{élal (%) yeees Oy <EL)} > af(s), for
N N
all s > 0. Since a is subadditive, we obtain

(VU(q),F(q,w)) < —a(V(x,z) + i;di’fli> +v+6(|v]) (4.42)

=—a(U(q)) +v+0(v])

and since aj < a,
(VU(q),F(g,w)) < —ay(U(q)) + v+ 6(|v]). (4.43)

Proposition 4.1 shows that, in some cases, it is possible to recover the same decay rate a of the
Lyapunov function in absence of network. We will further explore the special case when Assump-
tion 4.2 holds with a linear a € %, in Theorem 4.2 in Section 4.4.3.

79



Chapter 4. Decentralized event-triggered estimation of nonlinear systems

4.4.2 Stability property of the estimation error

Based on Theorem 4.1, we prove that the event-triggered observer satisfies a global practical
stability property of the estimation error |x — %|. In particular, starting from the Lyapunov properties
proved in the previous section, in the next proposition we characterize the behaviour of the system
trajectories and we show that the estimation error and the variables 1);, i € {1,...,N}, converge to a

neighborhood of the origin, whose size depends on the adjustable parameter v and the disturbance v.

Proposition 4.2 (Global practical stability property). Consider system (4.16)-(4.20) and suppose
Assumptions 4.1-4.2 hold. For any v > 0, select a;, 0}, c;, €, d; and b; as in Theorem 4.1 for all
i€ {l,...,N}. Then there exist B* € X ¥ and y* € X, all independent of v, such that, for any input
w € &y, any solution q satisfies for all (¢, j) € domg,

|(x(t, ) = 2 (6, 3), (6, )) < B (|(p ™ (x(0,0)) —2(0,0),1(0,0)], £) +v* (v + O([Vl0,)), (4.44)
with 0 € X, from Assumption 4.2. O

Proof. Consider the Lyapunov function U defined in (4.22). From item (ii) of Theorem 4.1 and
[114, Lemma 4], we derive that for any g€ € and we ¥/,

(VU(q),F(q,w)) < —ay(U(q)) + v+ 6(|v]), (4.45)
where ay(s) := min{a (%) , 0y (%)} and a,(s) := min{51a1 (c_l > ., ONaN ( ;)},
with d := max{d;,...,dy}. Hence, given { € (0,1), when v + 8(|v|) < ( ay(U(q)),

(VU(q),F(q,w)) < —Cay(U(q))- (4.46)

We then follow similar steps as in [31, proof of Theorem 3.18]. Let w € ¥, and q be a solution
to system (4.16)-(4.20). Pick any (t,j) € domq and let 0 = t; < t; < --- < tj;1 = t satisfy

domg n ([0,t] x {0,1,...,j}) = {{ oltis tks1] x {k}. For each k € {0,...,j} and almost all

€ [tr, trs1l)s q(s, k) € €. In view of (4.46), applying [119, pages 19-21], there exists ff; €
H L, vy € Xy such that

U(q(s, k) < Pu(U(q(t,k)),s = tie) + vu (v + 0 (Vi 5)) (4.47)
for all s € [ty, ty 1], for all k € {0, ..., j}. Consequently, we have, for any k € {0,...,j},
U(q(tir1,k)) < Bu((U(q(ti, k), tiesn = tie) +vu (v + 0 (Vi) (4.48)
On the other hand, from item (iii) of Theorem 4.1, for each k € {1, ..., j},

U(q(t, k) — U(q(tk—1)) <0 Vke{l,...,j}. (4.49)
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From (4.48) and (4.49), we deduce that for any (t, j) € domg,

U(q(t,))) < By(U((0,0)), ) + (v + 8(| o) (4.50)

Using the U definition in (4.22), we obtain
N N
V(x(t,7),2(t,5)) + Y. dmi(t,7) <By(V(x(0,0),2(0,0)) + > d;n;(0,0), ) 51
i=1 i=1 .

+ru(v+0([vlp,q)-

Using (4.23), from (4.51) we have, for all (t, j) € domg,

N
gy ((x(6.1) = #(6. ), 1(E, ) <PulV (x(0,0,2(0,0) + Ddm(0,000)

+ru(+0(vipn)),

recalling that X = 1(z) from (3). Consequently,

N
i=1 .
+ g (ru(v +0(IVl0.)),
for all (¢, j) € domgq. Moreover, from (4.23), we have
N
U(q(0,0)) = V(x(0,0),5(0,0)) + > di;(0,0)
i (4.54)

<ay(|((x(0,0)) —2(0,0),71(0,0)))).
Thus, from (4.53) and (4.54) we obtain
|(x (£, ) = 2(t, 1), (6, )| < a5 (Bu(@u (|( R (x(0,0)) —2(0,0),7(0,0))]), )

+ g (ru(v +0(Ivlo,)
= B (I(p " (x(0,0)) = 2(0,0),1(0,0)]), £)) +1* (v + O([Vl0,1)),

(4.55)
where *(s,t) := gal(/jU(EU(s),t) € XY and y*(s) := gal(yu(s)) for all s,t > 0. This
concludes the proof. ]

Proposition 4.2 guarantees that the estimation error x — X satisfies a uniform global practical
stability property. Moreover, (4.44) also ensures that the n; components, with i € {1,...,N}, are
bounded and converge to a neighborhood of the origin. Note that for general nonlinear systems it
is difficult to analyze the impact of the parameters on * and y* in (4.44). However, this can be

done in some specific cases, as we will show in Theorem 4.2 in the case when Assumption 4.2 is
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satisfied with a linear a € £, as well as in the context of linear time-invariant systems in absence of

disturbance, presented in Chapter 3.

Remark 4.2. To ensure an asymptotic stability property for the estimation error system, in the sense that
(4.21) holds with v = 0, as opposed to a practical one as in Proposition 4.2, we argue that a different
set-up would be needed, which would require to implement a copy of the observer at each node. Indeed,
a typical way to ensure an asymptotic stability property for the estimation error system when emulating
an observer of the form of (4.2) is not to only hold the plant output y as we do in (4.7) but the output
estimation error y — y see e.g., [12,41,120]. In this case, the network-induced error associated to node
i becomes (¥; — ¥;) — (y; — J;). Hence, for the local triggering rule i to evaluate this network-induced
error, it would need to know ¥;, which can only be done by implementing a local copy of the observer at
node i to generate ¥;. Because our goal is precisely not to rely on a copy of the observer at each node, as
explained in the introduction, the triggering rules we present do not rely on y;, but only on y; (and 7)),

which leads to a practical stability property. O

As mentioned before, we do not need to know a € £, and V to design the triggering conditions
such that the results in Theorem 4.1 and in Proposition 4.2 hold. However, the knowledge of a € 4,
is useful when we want to recover the decay rate a € £, of the Lyapunov function along solutions
in absence of network, as formalized in the next section for the case where Assumption 4.2 holds

with «a linear.
4.4.3 Decay rate of the Lyapunov function

In the next theorem we show that, when Assumption 4.2 holds with a linear a € %, it is possible
to recover the same decay rate a of the Lyapunov function along solutions in absence of network.
In particular, following similar lines as in Theorem 4.1 and in Proposition 4.2 we first prove the
Lyapunov properties, and then we evaluate the behaviour of the Lyapunov function along solutions.
We also show how to tune the design parameters in order to recover the decay rate of the Lyapunov
function along the system trajectories that we would have in absence of communication network.

Theorem 4.2 (Global practical stability property with the recovering of the decay rate of the Lyapu-
nov function). Consider system (4.16)-(4.20) and suppose Assumption 4.1 holds and Assumption 4.2
is satisfied with a(s) = as, for any s = 0 with a > 0. For any ay € (0,a] and u > 0 select a;, c;, 0}, €;
and b; as follows for alli€ {1,...,N}.
(D) c; € [0,c]] and o; € [0,07], where ¢ > 0 and o} > 0 are such that ofc} <1, forall i €
{1,...,N}.

.. . a
(ii) a;(s) = a;s for any s = 0 with a; > a’ and a’ > O such that a’ > y
1 1 y 1 i 1 1

* x7
i1

forallie
{1,...,N}.

(iii) b; €[0,1], forallie{1,...,N}.

(iv) € € (0,ef] forallie {1,...,N} and €5 + ... + &5 < fi‘ug

with ¢ := max{d;c],...,dyc}},
-1
a
where d; := o} (1 —olc — —U> >0, forallie{l,...,N}.
a

*
i
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Then, for U defined in (4.22) with d; selected as in item (iv), which satisfies the condition stated in
Theorem 4.1, for all i € {1,...,N}, for any solution q with input w € %y and any (t,j) € domg,
N
V(x(t,§),%(t,5)) + Y dimi(t,]) < e~ (V(x(0,0),2(0,0)) + Z di1;(0,0)) + p + —9(HVH 0,)- O
i=1 i=1
Theorem 4.2 guarantees that it is always possible to recover the same decay rate of the Lyapunov
function along solutions in absence of network when the observer satisfies Assumption 4.2 with o

linear. In particular, with Theorem 4.2 we guarantee, in presence of network, a convergence rate

ay € (0,a] for U(q) = V(x,2) + Z d;m; along solutions to (4.16)-(4.20), which can therefore be
i=1
equal to the decay rate a of V in absence of network.

It is important to notice that many observers in the literature satisfy Assumption 4.2 with a

linear a, see [9]. Moreover, it is always possible to ensure the conditions in Theorem 4.2, like in
Theorem 4.1. Indeed, selecting o7 and ¢ such that o7c <1 for alli € {1,...,N}, which is always
possible, we have that all the other parameters can be always chosen such that items (ii)-(iv) of
Theorem 4.2 are satisfied.
Proof. Let all conditions of Theorem 4.2 hold and consider the Lyapunov function U defined in
(4.22) with d; satisfying item (iv) of Theorem 4.2. Note that d; satisfies the condition d; > d" in
Theorem 4.1. As a(s) = as and a;(s) = a;s for any s > 0, for all i € {1,...N}, by following the
steps of the proof of Theorem 4.1, we derive that for any g€ ¢ and we #/,

N N
(VU(q),F(q,w)) < —aV(x,2) — > §a;n; + (1 +dic})el + 0(|v]). (4.56)
i=1 i=1

0144 onay
4 seees 4y

Defining a,, := min{ } > 0, we obtain

(VU(q),F(q,w)) < —aV(x,2) —ay Y, dim; + ), (1 +dic))ef +6(|v])
i=1 i=1

N N
<—min{a,an}(V(x,z)+del Z 1+dic))el +6(]v])
= = (4.57)

N
= —min{a,a,}U(q) Z 1+dcl)el +0(|v|)
. =
—ayU(q 2 1+d;c))el +6(|]v]),

where the last inequality comes from the choice of parameters. Indeed, when min{a,a,} = qa,
614, Syay
dl EA | dN 5

then —min{a,q,} = —a < —ay. Conversely, when min{a,a,} = a, = mm{
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we have from the definition of §; in item (ii) of Theorem 4.1, for alli e {1,...,N},

5,a; * N
L —(d; — o7 (1 + di¢] ))d_i
a
< —(d;—of(1+ dic;))d— (4.58)

i

* 1 * *

=—|(1-0; d_ +c; a;

1

*

B 5.a;
andsince d; = o} (1—oc/ — a—U) 1, we derive that — (lial < —ay. Therefore (4.57) holds and
Cli i

N

. a .

since Z el < uHt , with ¢ = max{d;c],...,dycy}, we have
= 1+¢

(VU(@),F(g.w)) < ~ayU(@) + (1+) 3t +0(v)

< —ayU(q) +ayu + 6(|v]).

(4.59)

Similarly to the proof of Proposition 4.2, we now follow similar steps as in [31, Proof of
Theorem 3.18]. Let w € £, and q be a solution to hybrid system (4.16). Pick any (t, j) € domgq
J
andlet 0 = to <ty <--- < tj;q = t satisfy domq n ([0,t] x {0,1,...,j}) = U[tk,tk+1] x {k}.
k=0
For each k € {0,...,j} and almost all s € [ty, t;y1], q(s,k) € 6. Then, (4.59) implies that, for

each k € {0,...,j} and for almost all s € [t, ty, 1],

%U(Q(S: k)) < —ayU(q(s,k)) + agu+ 6(|v(s)]). (4.60)

Applying the comparison principle [85, Lemma 3.4], we obtain, for all (s, k) € domg,

Ulqls.)) < e U(q(te,k) + | (agh + 8(1v(m)))e

< e e[t k) + (app+ OVl ) [ e
« (4.61)

—ay(s— 1 —ay (s—
= e b tk)U(q(tk,k))+(aUnu’+Q(HVH[tk,s]))a_(l_e =)
U

—ay(s— 1 —ay(s—
< el tk)U(q(tk:k))+(aU.u+9(HV“[O,t]))a_(1_e v(s=t)),
U
Thus,

e_aU(tlH»l_tk)

(vl o(lv|
U(a(t1,80) < 2000 (g1y, )+ -+ o) _ (20

ay ay

(4.62)
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for all k € {0,...,j}. Similarly, for each k € {1,...,j}, q(tx, k — 1) € 2. From (4.25) in item (iii)

of Theorem 4.1, we obtain

U(q(tr,k)) —U(q(tr,k—1)) <0 Vke{l,...,j}. (4.63)
From (4.61), (4.62) and (4.63), we deduce that for any (t, j) € domg,

U(q(t,) < e U(@(0,0) + -+ -6(1vljo) (4.64)

Finally, using (4.22), we obtain

N N
1
V(x(t,j),2(t, 7))+ > dimi(t, §) < e 0 (V(x(0,0),2(0,0)) + > din;(0,0)) +u+ a@(l\vl\[o,tp,
i=1 i=1
(4.65)

which concludes the proof. |

4.5 Properties of the solution domains

We present in this section the properties of the domain of the solutions to system (4.16)-(4.20).
In Section 4.5.1, we show that maximal solutions are complete, while in Section 4.5.2 we prove
that the time between any two consecutive transmissions of each sensor node is lower-bounded by
a uniform strictly positive constant. Finally, we show in Section 4.5.3 that the triggering condition
associated to node i stops transmitting whenever the corresponding output y; remains in a small

neighborhood of a constant for all future times, with i € {1,...,N}.
4.5.1 Completeness of maximal solutions

The results in Theorem 4.1, Proposition 4.2 and Theorem 4.2 are valid on the domain of the
solutions, but we did not say anything yet about completeness of maximal solutions. Extra properties
on the system plant and the observer are needed for this purpose. In particular, we assume that
system (4.1) is forward complete and observer (4.7) has the unboundeness observability property

with respect to output X [121], as formalized in the next assumption.

Assumption 4.3. The following hold.
(i) For any initial condition x, in R™ and any input u € ¥,,, v € ¥y, the maximal solution to (4.1)
is complete.
(ii) For any input u € %4, and y,y,e € %gny, any maximal solution z to system (4.7) defined on
[0, t*) with t* := sup, domq < o0 satisfies limsup,_, . |X(t)| = oo. O
Note that Assumption 4.3 is needed to prove completeness of maximal solutions, but it is not
needed for the stability results in Section 4.4 to hold. We are now ready to prove the completeness

of maximal solutions of system (4.16)-(4.20).

Theorem 4.3 (Completeness of maximal solutions). Under Assumptions 4.1, 4.2 and 4.3, any maxi-

mal solution to system (4.16)-(4.20) is complete. O
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Proof. We exploit [37, Proposition 6], which is recalled in Proposition 2.7 in Chapter 2. Let
w e %4 and q be a maximal solution to (4.16)-(4.20) with w as input. We denote, for the
sake of convenience, £ := q(0,0) € . By definition of ¢ and 2 in (4.18a)-(4.19b), £ € € U 2.
Suppose £ € 6\ 2, we want to prove that g is not trivial. Since F is continuous and w € Z.,, from
[122, Proposition S1] there exist € > 0 and an absolutely continuous function 3 : [0, €] — £ such
that 3(0) = &, 3(t) = F(3(t), w(t)) for almost all t € [0, €]. We now write 3 = (3,325 3¢, ) Where
3¢ = (3e,5+-+>3ey) and 3 = (3p,5---,3y,)- By the definition of F, 3,(t) > 0 for any t € [0, €].
Moreover, since & € 6\, 3(0) = £ and ; is (absolutely) continuous, there exists €’ € (0, €] such
that, foranyi e {1,...,N}, v;i([3, (t)]) < o;a; (3,
3(t) € 6 for almost all ¢ € [0, €']. We have proved that the viability condition in Proposition 2.7

(t))+e¢; for almost all ¢ € [0, €’]. Consequently,

holds, which implies that g is non-trivial.

To prove that q is complete, we need to exclude items (b) and (c¢) in Proposition 2.7. Item
(c) cannot occur because G(2) c ¢ U 2 and the jump set imposes no condition on w. On the
other hand, to exclude item (b), ¢ must not blow up in finite time. Hence, each component
of ¢ must not blow up in finite time. Let ¢ = (x,2,e,7n). By Assumption 4.3, we have that x
cannot blow up in finite time. Moreover, z cannot do so as well in view of Proposition 4.2 and
item (ii) of Assumption 4.3. In addition, e cannot blow up in finite time by its definition and
7; cannot in view of its dynamics (4.14) and because e; does not, for all i € {1,...,N}. Hence,
item (b) in Proposition 2.7 cannot occur. Consequently, we conclude that any maximal solution
to (4.16)-(4.20) is complete. [ |

4.5.2 Minimum individual inter-event time

To exclude the Zeno phenomena, in this section we guarantee the existence of a strictly positive
minimum time between any two transmissions of each sensor node, which is an important require-
ment that is needed in practical applications. Indeed, modern digital hardware cannot implement
infinitely fast sampling. For this purpose, we adopt a mild boundedness condition on plant (4.1).
As this property is satisfied for each sensor node, and not for the overall system, it is an individual
inter-event time property, as in [123, Definition 3]. Indeed, simultaneous or arbitrarily close in time
transmissions performed by different sensor nodes are allowed, which cannot be avoided due to the
decentralized nature of the setting, see Figure 4.1.

We define, like in [123], the set of hybrid times at which a jump occurs due to a transmission of

sensor i forie {1,...,N}, as
91(‘1) = {(t’]) € domq : q(t:]) € @i and q(t,j + 1) € Gl(q(t3.]>)} (466)

From the definition of ¥; and 2; in (4.18b) and (4.19b), we see that the time between two
consecutive transmissions of a specific sensor i is lower-bounded by the time it takes for |e;| to grow
from 0, which is the value after a jump due to sensor i, according to (4.20b), to at least yi_l(si).
To prove that this time is lower-bounded by a strictly positive constant, we want to exploit the fact
that the time derivative of e; is bounded. For this purpose, recalling that from (4.8) we have ¢; =
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oh;
gi(x,u,v) = g;i(x,w) = — al(x)fp (x,w), we define the following set, for any given p > 0,
x
oh;
Sy = {(q,w) EDXW: ‘ (%(Cx)fp(x,w)’ <p,Vie {1,...,N}}, (4.67)

Note that, we can take the same p for alli € {1,...,N}. Indeed, if this is not the case and the set )
in (4.67) is defined with arbitrarily (large) constants p;, which can be different for i € {1,...,N},

.....

in (4.18a)-(4.19b) to obtain the following hybrid system

qu(q,W), (q,W)E((o”p = ((g XW>myp

(4.68)
qt €G(q), QW) EDy:=(DXHW)NS,.

With the sets 6, and 2,,, we essentially only consider solutions to system (4.16) such that the norm
of the derivative of e; is bounded. Hence, Theorem 4.1, Proposition 4.2 and Theorem 4.2 apply to
system (4.68). It is important to notice that the constraint (4.67) does not need to be implemented
in the triggering rule: it is only used here for analysis purposes. Moreover, this constraint is always
verified as long as the solution to plant (4.1) evolves in a compact set, which is usually the case in
practical applications.

In the next theorem we prove the existence of a strictly positive individual minimum inter-event
time [123, Definition 3] between any two consecutive transmissions of any sensor node for sys-
tem (4.68).

Theorem 4.4 (Minimum individual inter-event time). Consider system (4.68) with p > 0 under
Assumptions 4.1-4.2. Then, for any input w € £.,, any solution q has an individual minimum inter-

event time, in the sense that for any i € {1,...,N} and any (¢, ), (t',j") € Fi(q),
t+j<t'+j =t —t=1 (4.69)

Yfl(fi)

with 7; := , forallie {1,...,N}. As a consequence, for any input w € ¥y, any solution q to

(4.68) has an average dwell-time, in the sense that, for any (t,j), (t’,j') e domqwith t +j < t' + j,

Al

j—j'<=(t—-t)+N (4.70)

1
holds with T := Nmin{rl,...,TN}. i

Proof. Let w € ¥, and q be a solution to system (4.68). Pick any (t,j) € domgq and let 0 =
to < t; < -+ < tj;q = t satisfy domgq n ([0,¢] x {0,1,...,j}) = Ur_o[th> trs1] x {k}. For
each k € {0,...,j} and almost all s € [ty, t;11], (q(s,k),w(s,k)) € 6,. Then, for almost all

s € [ty, tg41), from (4.8) and (4.68), (q(s,k),w(s,k)) € 6, = (6 x #) n &, and, in view of
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(4.67),

d Oh;(x)
—lei| =

ds 0x

forallie {1,...,N}. Leti e {1,...,N}, from (4.20b), when (ty,k) ¢ Z:(q), e;(txs1,k+ 1) =
e;(ty, k). Conversely, when (ty, k) € 7:(q), e;(tx 1,k +1) = 0.

Let (ty, k) € Z:(q) and t}, :=inf{t > t; : |e;(t,k')| = y; ' (e;) with k' > k such that (t,k’)

domq}. Note that t;, is not necessary the next time after t; at which sensor node i generates a

fp(x,W)‘ <p, (4.71)

transmission, and that, between t; and tf{, only jumps, which are not due to sensor node i, may
occur. Consider that there are n € Z of these jumps. Note that n is finite because of (4.71) and
because the sampled induced errors e; are reset to O after a jump, according to (4.20b). From

(4.71), we have that for all m € [0,n — 1] and almost all s € [t) > tkpm1ls

d
E|ei(5:')‘ <p. (4.72)

Integrating this equation and applying the comparison principle [85, Lemma 3.4], we obtain,
for all m € [0,n — 1] and almost all s € [ti 4 m> tigma1ls

le;(s,k+m)| < |e;(tyym- k+m)| + p(s — trprm)- (4.73)
Similarly, for all s € [t)p, t7],
le;(s, k +n)| < lej(tryn, k+n)|+p(s— trpn)- (4.74)

Moreover, recalling that when (t, k) ¢ Z:(q), e;(tx,1,k + 1) = e;(ty, k), we obtain that, for all
s € [ty tr]
lei(s, k)| < lei(tr, k)| + p (s — ty), (4.75)

for k’ € [k, k + n], such that (s,k’) € domq. Moreover, since (t,k) € Z(q), e;(tx,k) = 0 and
(4.75) becomes

le;(s,k")| < p(s—tx), Vse [ty t;]. (4.76)
As a consequence, the time it takes for s — p(s — t;) to grow from 0 to yl._l(si) is T; =
~1
. E:
i (&) > 0, and it lower-bounds t;{ — t; in view of (4.76).
P

Let w € £y and q be a solution to system (4.68). Pick any (t, j), (t,j') € domgq such that
t+j <t +j.Foranyie {1,...,N}, denote with n;(t,t’) the number of transmission of
node i that occur between (t,j) and (t’,;’). In view of the above developments, we have that
"—t N t'—t

N
+ 1. Noting that >, n;(t,t’) = j' — j, we have j' — j < Z(
T; i=1 i=1

t
n;(t,t') < + 1). Using

1

1 1
T=y min{t,..., Ty} and we obtain j' — j < =(t — t) + N, which concludes the proof. ~®
T

The event-triggered observer presented in this chapter guarantees a strictly positive individual
minimum inter-event time between transmissions according to Theorem 4.4. Therefore, the time
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between any two consecutive transmissions of sensor i is always greater or equal than the strictly
positive constant 7;, which can be arbitrarily tuned using the design parameter ¢;. However, the lar-
ger T; is desired or needed for a practical application, the larger ¢; has to be chosen and consequently,
v in Theorem 4.1 increases. Note that to guarantee the individual minimum inter-transmissions time

we do not need Assumption 4.3.
4.5.3 A condition for transmissions to stop

The proposed triggering rules stop the transmissions of sensor i when the sampling-induced error
e; becomes and remains small enough, with i € {1,...,N}. Moreover, if the sampling-induced errors
of all sensors become and remain small enough, no transmissions occurs anymore. This is formalized

in the next lemma.

Lemma 4.1 (Stop transmissions). Under Assumptions 4.1-4.2, consider system (4.16), given a solution

q with input w € £y, if there exists (t, j) € domq such that
lei(¢, )] < v (ed) 4.77)

for all (t',j") e domq with t' +j' > t +j, i € {1,...,N}, then sup; Z;(q) < 0. In addition, if (4.77)
holds for all i € {1,...,N}, then sup;domq < . O

Proof. Let g be a solution to system (4.16) with input w € £,,. The condition |e;(t’, ;)| <
y; (&) for all (¢/,j') e domq with t' + j' > t + j in (4.77) implies that

rille(t, 7)) < 1ily; (&) = & < oya:(m;) + ¢ (4.78)

forall (t',j") > (t,j) with (t’,j’) € domgq. Therefore, no jumps due to sensor i occurs after (¢, j).
Hence,

sup Z:(q) < oo. (4.79)
J

Moreover, if the condition |e;(t’, j')| < y;l(si) is satisfied for all i € {1,...,N}, then, from the
first part of this proof we have sup; 7;(q) < o for alli € {1,...,N}. Thus,

T < 0. 4.80
ie{rﬁf’,‘m{s‘}p i(q)} (4.80)
From (4.19a), (4.19b), a jump can occur only when one or more sensors need to transmit,
therefore, from (4.66),

supdomq = max {supZi(q)} < oo. (4.81)
j ie{l,..,.N}

Condition (4.77) occurs when the output y;, i € {1,...,N}, remains in a small neighborhood of

a constant for all positive times for instance. Indeed, when, for some constant y; € R™:, the output
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1
Y; satisfies |y;(t) — y/| < 5')’1-_1(81-> for all t > T for some T > 0, then for any solution q to (4.16)

=
=

and any (t;, j;), (t,j) € domq, with (t;,j; —1)€ Zi(q) and t;, > T, t > t;, j > j; and

le; (¢, 1) = 1yi(t5, Ji) — yi(t, J)]
= yi(t;,Ji) —yi +y§ = yi(t,])]
. . . . (4.82)
< |yi(t;,J0) = ¥+ |yi = yi(t, )]
1 _
<2£Yi 1(81')

and (4.77) holds. Moreover, sensor i automatically starts transmitting again if condition (4.77) is no
longer satisfied. This is a clear advantage over time-triggered strategies, where output y; is always
transmitted, even if its information is not needed to perform the estimation; see Figure 3.3 in Chap-
ter 3 for an illustration. It is worth noting that Lemma 4.1 applies to system (4.16), and not only to
system (4.68). Therefore, it is not necessary restrict the flow and jump sets with the ), set in (4.67).
Moreover, as for Theorem 4.4, Assumption 4.3 is not needed for this result.

4.6 Extensions

In this section, we discuss generalizations and extensions of the results presented so far. In Sec-
tion 4.6.1, we explain how the triggering condition can be generalized, while in Section 4.6.2 we
discuss the modifications needed in presence of measurement noise. In Section 4.6.3 we consider
the case when the input u is sampled and transmitted to the observer via a digital network and we

propose a triggering condition for u, which is compatible with the previous results.

4.6.1 Generalized triggering conditions

The 7;-system and the triggering rule in (4.14) and (4.15) are special cases of a more general 7);-
system and a more general triggering rule that guarantee the stability results. Indeed, we can design
the auxiliary scalar variable n; with the following dynamics instead of (4.14), for alli € {1,...,N},

n; i= —a;(n;) + ¥i(lei]), (4.83)

with any @; € 2, and any y; € #,,. Regarding the triggering rule, let 9; be any non-decreasing
continuous function from R, to R-, which can be equal to 0 only at 0. The triggering rule in
(4.15) can then be replaced by

od;(m;) .

od.(n;
an; Ti(lei]) < aiﬂ

on;

Tille:]) + a;(ny) + &, (4.84)
where d; € %, is defined as d;(s) := §9;(7)dt for all s > 0 and o; € (0,1) forall i € {1,...,N}.
We can then follow the same lines as in Sections 4.4.1-4.4.2 to obtain similar Lyapunov and stability

results.

In particular, note that, generalizing the triggering rule in (4.84) implies the definition of new
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flow and jump sets, denoted % and 9. Similarly, the new dynamics for the monitoring variables

implies the definition of a new flow map F.Asa consequence, a new hybrid system is defined, for

which, similar Lyapunov and stability properties can be established. Indeed, considering the Lya-
N

punov function [vI(q) = V(x,2) + Z d;(n;), for g € 2, following similar steps as in the proof of
i=1

Theorem 4.1 we have that there exist &, ay € J#, such that, For any q € £,

~

ay(|(x = (z),m))) <U(g) <ay(|(¥R(x) —2,n))). (4.85)
In addition, for any q € 9, for any g€ G(q),
U(g) < U(q). (4.86)

Finally, for any g € % from (4.12), (4.83) and (4.84) we obtain

~ = J - odi(mi) , ~
(V@) Fg.w)) < —a(V(x.2) + Y rale) + 00D + 3“2 (~ine) +Fae)
i=1 i=1 t
N Ni) - < od;(n;)
< —a (e (lei]) ) — a;(n;) +6(v
(v +;<Y () + i) ) = 33 S5 M) + o(bv)
N od;(n od;(n;) «
S - i ni) &) — i(n:) +0(|v
() + 3 (7 >+e) >, i g+ ()
N ) ) N
< —alV(x2) - Z<1oi>ad(;f,’7l)&l<nl>+zei+9<|v|>

1

(4.87)

Thus, we can prove Lyapunov properties similar to the ones in Theorem 4.1 and, following si-
milar lines as in the proof of Proposition 4.2, we can obtain stability results similar to the ones in
Section 4.4.2. Although this sketches the main arguments, we do not provide all the details to avoid
repetitions with the previous proofs. Note that, we do not consider this more general setup in the

whole chapter to not over-complicate the result and to not blur the main message of the work.

4.6.2 Additive measurement noise

In the case where the system output is affected by additive measurement noise, system (4.1)
becomes
x = fp(x,u,v)
y=h(x)+m
withme &£ ,, where A4 := M1 x -+ x My € R™ x --- x R, The output measured by sensor i,
withie{l,...,N}is

(4.88)

5/1' =Y + m; (489)
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where m; € £, is the measurement noise of sensor i. We assume that we know a bound on the
“%.,-norm of the measurement noise. Therefore, the set .#; is defined as

M = {7 € R™ : iy | < my) (4.90)

for some m; € R (. Consequently, the observer does not know the real output y;, but its sampled noisy
version, due to the network, y; := j; + m;, where m; is the networked version of the measurement
noise m;, with i € {1,...,N}. Due to the measurement noise, sensor i does not know the network-
induced error e;, but only é;, which is the network-induced error of sensor i in presence of noise,
which is defined following [123],

& =Yi—JYi
:}_/i +ﬁli —Yi—m; (4.91)
:ei+ﬁ1i—mi

forallie {1,...,N}. As a consequence, the triggering rule cannot rely on e;, and sensor i needs to
decide when the measured output y; has to be transmitted to the observer based on ;. We therefore
replace the dynamic of 7, in (4.14) by #; = —a;(1;) + ¢;vi(|é;]) and the triggering rule in (4.15)
by yi(|&]) = o;a;(7;) + &, for all i € {1,...,N}. We can then follow similar lines as in [123] to
guarantee a practical input-to-state stability property for the estimation error system and a semi-
global individual minimum inter-event time. We just need to select €; > v;(2m;), foralli e {1,...,N}
and then all the previous results hold. Note that, since, in presence of measurement noise we have
a lower-bound on ¢;, for all i € {1,..., N}, we cannot select v arbitrary small, as in Theorem 4.1.
The measurement noise can be used to model possible interference in the communication channel
due to the simultaneous transmission of two or more sensor nodes. In addition, the impact of possible
delays in the received measurements packets can be modeled as addictive measurement noise when
the transmission delays smaller than the inter-transmission time. Indeed, denote with ti ke R0,
the transmission instants of sensor i, withi € {1,...,N} and with T;; € R, the transmission delay at
time t]i(. Under the small delay assumption, see e.g., [124], we have that the delay T;{ is smaller than

the inter-event time t. — t]i{, forallie {1,...,N}, k e R_,. Due to the delay, for all t € [t;{, tli{ + T;{)

k+1

the observer uses y;(t,_,) instead of y;(t; ). When the transmission is triggered (at time t,), from

(4.4) and (4.15), we have

(el ) =yt = 7:(th_ ) — 7:(th)| = Y:l(aiai(ni(tyi{)) +g)=AL eR_,. (4.92)

Thus, for all t € [t;'{, t,i( + T;{) the observer uses j/i(t,i{) with the error due to the delay, equal to
j/l-(t,i(_l) — yi(t]’;), whose norm is smaller than A};. As a consequence, \yi(t]i_l) — yl-(t,i()] can be
modeled as measurement noise with bounded norm.

4.6.3 Triggering the input u

When the input u to (4.1) is communicated to the observer over a digital network, Assumption 4.1

does not hold. Assuming that the input u is continuously differentiable, we explain how to define a
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triggering rule for u in this case so that the previous results apply mutatis mutandis.

Let & be the networked version of u available to the observer. Between two successive transmis-

sion instants, using zero-order-hold device we have

i=0, (4.93)
and when the input is sent,
it =u. (4.94)
We define the input network-induced error e, as
e, :=u—u, (4.95)

whose dynamics between two successive input transmissions is, assuming u is continuously differen-
tiable,
e,=—-u=:veRM (4.96)

and when an input transmission occurs
el =0. (4.97)

u

Consequently, the observer equations in (4.6) becomes

z :fo(z,a,)_/,_)’\/) :fo(zau+eu:y +e).)’\/)’
2 =y(2) (4.98)
y=h(%)

In this new setting, where also the input is sampled, Assumption 4.2 needs to be modified so that an

input-to-state stability property holds also with respect to the input sampled-induced error e,,.

Assumption 4.4. There exist &, , &, Y1,...,Yn, 0, Yy € K, V 1 R x R — Ry continuously
differentiable, such that for all x € R™, z e R™, ue R™, e e R, y e R, v e R, ¢, € R™, (4.11)
holds and

alx = (z)]) <V(x,2) <a(|yp(x) —2|) (4.99)

<VV(X,Z), (fp(x’uﬁv)’fo(z)u +e,y+ e:.)A'))> < —a(V(x,z)) + %1 Yi(|ei|) + 9(|V|) + Yu(|eu‘)'
- (4.100)
O

For many classes of observers in the literature, if the observer is input-to-state stable with respect

to v, then it is also input-to-state stable with respect to e,, see [9] for more details.

Based on Assumption 4.4, we can design the triggering rule for the input similarly to the trigge-
ring rule designed in (4.15) for the output y;, withi € {1,...,N}. In particular, let 1), be an auxiliary
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scalar variable, whose equations during flows and jumps are, respectively,

'f)u = au(nu) + CuYu(|eu|) =: eu(nu’eu)

N (4.101)
n, = bunu

where y, comes from Assumption 4.4 and a, € 4, ¢, = 0 and b, € [0, 1] are design function and

parameters. An input data is transmitted to the observer when the condition
Yulleul) = oyay(ny) + &4 (4.102)

is satisfied, where o, > 0 and ¢, > O are design parameters. As for the output triggering rule,
parameter ¢, is needed to avoid the Zeno phenomena. In this new setting, all previous stability results
apply similarly. Moreover, to have an individual minimum inter-event time a sufficient condition is
that the input u is continuously differentiable and |u| < p,, where p,, is any positive constant. For
completeness, we now present how the hybrid model is modified and we show how the statement
of the main results need to be adapted when also the input is sampled and transmitted over a digital
network. The proofs follow similar lines as the ones provided in the previous sections and are thus
omitted.

In the setting where also the input is communicated via a digital network, following similar
lines as before, we can model the overall system as a new hybrid system, whose state is defined as
q:=(x,2,6,1m,my,€¢,) € 2 =R™ x R™ xR x RY x Ry x R™. We define a new overall input for
the new hybrid system as w := (u, v,v) € W =Y x U xV .The hybrid model (4.16) is modified
and become o )

~q =F(G,w), Je% 4.103)
q

+
m
(&)

—
Qi
N—
Qi
m
N

where the flow map F is defined as, for any § € € and any w e #,

fplx,u,v)

folz,u+ ey, h(x) +e,h((2)))

co g(x,u,v)

F(q,w) := 1 tn.e) (4.104)
zu(nu,eu)

14

where f,(x,u,v),g(x,u,v) and £(n,e) are defined in (4.1) and (4.17), while f,(z,u + e, h(x) +
e,h(v(z))), £,(My,e,) and v are defined in (4.98), (4.101) and (4.96), respectively.
The flow set % in (4.103) is defined as

N
G = (ﬂ <gi> . (4.1052)
i=1
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with %, defined as
6; = {q € 2 :vi(lej) < oyai(my) + Ei},

forallie {1,...,N} and 6, defined as

(gu = {q €2: Yu(|eu|) < Ouau(nu) + Eu}'

The jump set 9 in (4.103) is defined as

with

forallie{1,...,N} and

9= {1 2 vullen]) = 0uau(n) + 2}

The set-valued jump map G in (4.103) is defined as, for any § € 9,

m®:<Ué@>U®@,
i=1
with

X
b4
Al-e

{
Gi(q):=< | (bily —T;) +Ti)n and G,(§) := <

Q1
S~—

€y

1)

Q1

RS

&
~

where A; and I} are defined in (4.20b).

My b,y

(4.105b)

(4.105¢)

(4.106a)

(4.106b)

(4.106¢)

(4.107a)

3

Q2
m
S

(4.107b)

i

Q
RS
g

Following similar lines as before, in the next theorem and proposition we adapt the stability

results of Theorem 4.1 and Proposition 4.2 to the case where also the input is transmitted from the

plant to the observer via a digital network.

Theorem 4.5 (Lyapunov stability property). Suppose Assumption 4.4 holds and consider system (4.103)

- (4.107). For any © > 0, select o7 > 0, ¢/ > 0, o, > 0, ¢, = 0 such that o7c} <1, o;c; <1 and
*

o’ *

d; > d* where d := —~— >0, d, > d* where d* := —*—
! t t 1—o*ct “ u u 1—o*c*
i u-u

> 0, and select €f > 0, g/ > 0
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N
such that Z(l +dicf)el + (1 +d,c))e, <9, forallie{1,...,N}. Define
i=1
N
0(q) :=V(x,2) + Y, din; + dyny, (4.108)
i=1

for any § € 9. Then, there exist a,, éU € A, such that the following properties hold for any a; € A, in
(4.14), a, € A, in (4.101), 0, € [0,07], 0, €[0,07], ¢; € [0,c7], ¢, € [0,c)], &, € (0,€7], &, € (0,€],
b;€[0,1] and b, € [0,1], forallie {1,...,N}.

(i) Forany e &,

ay (|0 = (2),m,m,))) < U@) < @y (IR (x) = 2,m,m4)])- (4.109)

(ii) Forany g e % and any we W,

N
(VU(@),F(@w)) < —a(V(x,z) = )] 8ia:(n;) — 8, (ny) + T+ 0(v]), (4.110)
i=1

where a, 6 € A, come from Assumption 4.2, §; :=d; — o7 (1+d;c}) >0and 6, :=d, — o (1 +
d,c;) > 0.
(iii) For any g € 9, for any §e G(§),
U(3) < U@ (4.111)

O

Proposition 4.3 (Global practical stability property). Consider system (4.103) - (4.107) and suppose
Assumption 4.4 holds. For any ¥ > 0, select a;, a,, O;, Oy C;, Cy €, €, d;, dy, b; and b, as in
Theorem 4.5 for alli € {1,...,N}. Then there exist /3{] € A % and 77, all independent of 0, such that,

for any input input w € £.;, any solution q satisfies, for all (t, j) € domg,

|(X(t,j) _)%(t)j)an(tzj)’nu(t’j)’

X (4.112)
< By (| (= (x(0,0)) —2(0,0),7(0,0),m,(0,0)], ) + 75, (0 + O ([v[0,¢))

with 0 € X, from Assumption 4.4. O

The proofs Theorem 4.5 and Proposition 4.3 follow similar lines as the proofs of Theorem 4.1
and Proposition 4.2, respectively. Therefore, they are omitted to avoid repetitions with the previous
proofs. In the case where also the input is sampled and transmitted via a digital network, following si-
milar steps as before, we can state and prove stability properties similar to the ones in Proposition 4.1
and Theorem 4.2. We do not write them explicitly to not be repetitive. In addition, the properties of
the solution domain presented in Section 4.5 need to be modified when also the input is transmitted
via a digital network. In particular, we now state the adaptation of Theorem 4.3, where the only
difference is the considered input-to-state stability assumption.
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Theorem 4.6 (Completeness of maximal solutions). Under Assumptions 4.3 and 4.4, any maximal
solution to system (4.103)-(4.107) is complete. O

The proof of Theorem 4.6 is omitted since it follows similar lines as the proof of Theorem 4.3.
In the case of triggered input, also the inter-event time properties in Section 4.5.2 need to be
modified. The set J;, defined in (4.66), of hybrid times at which a jump occurs due to a transmission

of sensor i for i € {1,...,N} is now redefined as
7:(@) :={(t,j) e domq : §(t,j) € J; and (¢, j + 1) € G;((t, )} (4.1132)

Moreover, we need to define the set of hybrid times at which a jump corresponds to an input trans-
mission

F,(@) :={(t,j) edom@q: 4(t,j) € 9, and 4(t,j + 1) € G,(G(t,))}. (4.113Db)

To guarantee an individual minimum inter-transmission time, in (4.67) we have defined a set where
the time derivative of the sampling induced-error for all sensor nodes is bounded. Then, we used
this set to define new flow and jump sets for the hybrid system in (4.68). In case when also the
input is transmitted via a digital network, we need not only that the time derivative of the sampling
induced-error for all sensor nodes is bounded but also that the time derivative of the input is bounded.
Therefore, we define the following set, for any given p > 0 and p, > O,
B P Oy () |
=143, w)ex# :|v|<p,and a—xfp(x,u,v) <p, Vie{l,...,N},, (4.114)
Similarly to Section 4.5.2, we now restrict the flow and jump sets in (4.105a) - (4.106¢) and we

obtain the following hybrid system

=2

G=F(g,w), (Gw)e$ :=(€xH)n,
teG(q), GW)eD :=(DxW)nF,.

el

3

(4.115)

We can now adapt the results presented in Theorem 4.4 and Lemma 4.1 for the case where also the

input is triggered and transmitted via a digital network.

Theorem 4.7 (Minimum individual inter-event time). Consider system (4.115) with p > Oand p,, > 0
under Assumption 4.4. Then, for any input w € £.;, any solution 4 has an individual minimum inter-
event time, in the sense that for any i € {1,...,N} and any (t, ), (t',j') € F:(3),

t+j<t'+j =t —t=1 (4.116)

-1
with T; 1= vi (&)

P
(£,1),(t",j") € 7,(q)

> 0, foralli € {1,...,N} and for any solution q with input w € %.,; and any

t+j<t'+j = t'—-t>n1, (4.117)
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o (€4)

with 7, := > 0. As a consequence, for any input w € £.;, any solution g to (4.115) has an

Pu
average dwell-time, in the sense that, for any (t,j), (t,j’) edomgqwith t +j <t + 7/,

j—i<=(t—th+N+1 (4.118)

AN =

1
holds with T := —— min{ty,..., Ty, Ty} O
N +1 { 1 N u}

Lemma 4.2 (Stop transmissions). Consider system (4.103) under Assumption 4.4. Given a solution §
with input w € £.;, if there exists (t, j) € domg, such that

le:(t', 1) <7 () (4.119)

for all (t',j') € domg with t' +j' = t +j, i € {1,...,N}, then sup; 7;(§, W) < oo. Moreover, if there
exists (t,j) € domgq, such that
leu(t”, 7] <1, () (4.120)

for all (t",j") € domq with t" + j" > t + j, then sup; Z,(q, W) < co. In addition, if (4.119) holds for
allie{1,...,N} and (4.120) holds, then sup;domd < 0. O

The proofs of Theorem 4.7 and Lemma 4.2 follow similar steps as the proofs of Theorem 4.4 and
Lemma 4.1, respectively. Thus they are omitted to avoid repetitions with the previous proofs.

In this section we have generalized the previous results considering the case where the input u is
communicated to the observer over a digital network. The setup can be further generalized conside-
ring multiple actuator nodes, similarly to the decentralized setting considered for the output sensor
nodes. In particular, we can consider the scenario where there are N, actuator nodes and each of
them communicates its own control input u, k € {1,...,N,}, where N, € {1,...,n,}, independently
from the others. We do not do it explicitly since it follows similar lines as the decentralized scenario
we have considered for the output sensor nodes. Moreover, providing details on this generalization

would complicate the result and thus risk hiding the main contribution of the work.

4.7 Numerical case study

We design the event-triggered observer presented in this chapter to a flexible joint robotic arm [125].
Note that, we assume that the observer has access to the input continuously in this example. Howe-
ver, it would have been possible to consider the setting where also the input is transmitted via a
digital network, as described in Section 4.6.3. For this application, our framework is relevant in sce-
narios where the observer is not co-located with the robotic arm and communicates with it through
a digital network. In this case study, we consider two sensor nodes, but the results would also be
relevant if we would have only one node. The system model is described by

X =Ax +Bu+ Go(Hx)+v
(4.121a)
y=Cx+m,
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where the system state that need to be estimated is x := (x1, X5, X3, X4), while the measured output

y is defined as y := (¥, y2) = (x;, x5). The system matrices are

0 1 0 0 0 0 0 10
—48.6 —1.25 486 0 21.6 ol + o] + |o1
_ ,B= , G = JHT= ||, cT = ,
0 0 0o 1 0 1 00
195 0 195 0 0 -1 0 00
(4.121b)

and o(Hx) = 3.3sin(x3) for any x € R*. As in [125], we assume that the input is u(t) = sin(t)
for all t € R-. Moreover, we consider the disturbance input v(t) = 0.02[0 1 0 1] sin(0.4t) for
all t € Ro and the measurement noise m(t) = 0.01[0 1] sin(0.3t) for all ¢ € R-o. We design a

continuous-time observer )
X=AX+Bu+Go(Hx)+L(y—J
(H2) ( ) (4.122)
y=Cgx,
where L € R**2 is the observer gain that is designed following a polytopic approach [95], as described
in Section 2.2.3. To do so, we solve the linear matrix inequalities PA— WC + PG; + Gl.T P+A"P—

C'WT < —Q, i€ {1,2}, with P € R*** symmetric positive definite and W := PL € R**2, where

00 0 O 00 0 O 0.58 —42.96

00 0 O 00 0 0 . —4.67 2.83
Gy := ,Gy 1= and Q = I;. We obtain L =

00 0 O 00 0 0 3.16 49.25

0 0 33 0 0 0 =33 0 16.34 88.46

Note that, observer (4.122) is in the form of (4.2) with z = x. Defining the Lyapunov function

V(&) := ETPE for any £ € R, where £ := x — % is the state estimation error, Assumption 4.2 is

Amin(Q) —¢, —¢; —¢ 1 1
mnl =% "0 g(s) = - 1P 5P, 1a(s) = — [PL? [ and yafs) =
Amax(P) Cy @

|PL,|?|s|?, where ¢,,¢;, ¢, are parameters chosen such that ¢, > 0,¢; > 0,¢, > 0 and A, (Q) —

satisfied with a(s) =
1
— |
¢, —¢; —¢y > 0, while L, and L, are the first and the second column of the matrix gain L, respectively.

We have first simulated the event-triggered observer (4.16)-(4.20) with o; = 600, o, = 800,
¢ = 0.001, ¢, = 0.001, by = 1, by = 1, a;(s) = as, with a; = 2, ay(s) = ays, with a, = 3,
g; = 10 and &, = 10. With this choice of parameters the conditions o;¢; < 1 and o,c, < 1 are

oh,
0 e w)

for i € {1,2}, for p large enough and Theorem 4.4 applies. Thanks to the freedom on the choice

satisfied and Theorems 4.1 and 4.2 apply. Moreover, the condition < p is satisfied

of y; in Remark 4.1, we do not need to use y;, Y, coming from Assumption 4.2, as explained in
Section 4.3, but we can select any y;, 15 such that y;(s) = [;52 and y,(s) = l,s?, with [; > 0 and

[, > 0, which are thus additional design parameters. We select v (s) = 5s2 and y,(s) = 5s°.

We have considered the following initial conditions x(0,0) = (3,2,3,—-2), £(0,0) = (0,0,0,0),
e(0,0) = (0,0) and 7n(0,0) = (10,10). In Figure 4.3, we provide the plots obtained for the plant
states and its estimates, in Figure 4.4 the plots of the state estimation errors, whose norm is shown
in Figure 4.5. In Figure 4.6 the inter-transmissions time is reported. From these figures, it is clear that
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FIGURE 4.3 — State x and state estimate X.
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FIGURE 4.4 — State estimation errors x; — X;, i € {1,...,4}.
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FIGURE 4.5 — Norm of the state estimation error |£| := |x — %|.

all state estimation error practically converge. Moreover, the minimum inter-event time measured is
0.201 s for sensor 1 and 0.112s for sensor 2.

We have also analyzed the impact of the design parameters, in particular we focus on the effect
of 01, 04, €1, €9, a1, Ay, I; and [,. We have run for this purpose simulations with different parame-
ters configurations and 100 different initial conditions for each chosen parameters configuration. In
particular, x;(0,0) and x3(0,0) were selected randomly in the interval [0, 20], while x,(0,0) and
x4(0,0) were chosen randomly in the interval [0, 10]. The initial conditions of the observer states
%1(0,0),%5(0,0),%3(0,0),%4(0,0) and of the network-induced errors e;(0,0), e,(0,0) were always
selected equal to 0, while 11 (0,0) = 115(0,0) = 10 in all simulations. For all the choice of parameters,
we have evaluated the number of transmissions in the (continuous) time interval [0, 30] on average
and the maximum ultimate bound on the state estimation error in the time interval [20, 30] averaged
over all simulations. The data collected are shown in Table 4.1. The same analysis was repeated also
in the case where the system is not affected by the disturbance input v and the measurement noise
m. In Table 4.1 the data collected in this configuration are also reported.

Table 4.1 shows that choice of the design parameters impacts the average number of transmis-
sions both when the system is affected by the additional disturbance input v and measurement noise
m and when it is not. Moreover, data shows that the ultimate bound of the estimation error is small
in all the chosen configurations and that the obtained values are not significantly affected by the
choice of the parameters in presence of noise m and disturbance v, but this is no longer true when
those are absent.

4.8 Conclusions

We have presented a decentralized event-triggered observer design for perturbed nonlinear sys-
tems. We have designed for this purpose new dynamic triggering rules for each sensor node to define
the transmissions over the digital network. We have formally established a uniform global practical

stability property for the estimation error and we guarantee the existence of a uniform, strictly posi-
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FIGURE 4.6 — Inter-transmissions times (sensor 1 top, sensor 2 bottom).
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tive time between any two transmissions of each sensor node. Moreover, the proposed triggering rule

does not require significant computation capability on the smart sensor, as it only needs to run a local

scalar filter. We have also shown how the triggering rule can be generalized and how to cope with

measurement noise and/or sampled input. Possible future research directions are discussed in Chap-

ter 7. This chapter concludes Part I of the thesis. In the next part we present a hybrid multi-observer

to improve the estimation performance.
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TABLE 4.1 — Average number of transmissions in the time interval [0,30] and maximum absolute
value of the state estimation error |&| for t € [20, 30] with different choices for 01, 05, €1, €3, a1, as,
[; and I,, both with and without disturbance input and measurement noise.

o1 oy £ €9 a;  ay I I Transmissions |E] Transmissions €]
withvandm  withvand m | withoutvandm  withoutv and m
600 800 10 0 2 3 5 5 | 163 0.0236 | 167 6.32-107°
600 800 1 1 2 3 5 5 497 0.0235 515 2.13-107°
600 800 100 100 2 3 5 5 47 0.0236 49 2.34-10~*%
600 800 1000 1000 2 3 5 5 10 0.0234 7 2.63-107%
0 0 10 10 2 3 5 5 452 0.0238 474 4.02-107°
300 400 10 10 2 3 5 5 221 0.0235 214 4.98.107°
950 950 10 10 2 3 5 5 148 0.0236 156 7.43.107°
600 800 10 10 1 1.5 5 5 126 0.0238 125 1.14-107*
600 800 10 10 4 6 5 5 223 0.0235 228 6.08-107°
600 800 10 10 10 10 5 5 267 0.0234 238 4.01-107°
600 800 10 10 2 3 1 1 55 0.0236 52 2.01-107*%
600 800 10 10 2 3 10 10 256 0.0236 256 2.54.107°
600 800 10 10 2 3 100 100 922 0.0236 923 9.88-1077
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5.8 ConClUSIONS . . . . . i ittt it i e e e e e e e e e 145

Abstract - Various methods are nowadays available to design observers for broad classes of sys-
tems, where the primary focus is on establishing the convergence of the estimated states. Nevertheless,
the question of the tuning of the observer to achieve satisfactory estimation performance remains largely
open. In this context, we present a general design framework for the online tuning of the observer gains.
Our starting point is a robust nominal observer designed for a general nonlinear system, for which an
input-to-state stability property can be established. Our goal is then to improve the performance of this
nominal observer. We present for this purpose a new hybrid multi-observer scheme, whose great flexibi-
lity can be exploited to enforce various desirable properties, e.g., fast convergence and good sensitivity
to measurement noise. We prove that an input-to-state stability property also holds for the proposed
scheme and, importantly, we ensure, under some conditions, that the estimation performance in terms
of a quadratic cost is (strictly) improved. We illustrate the efficiency of the approach in improving the

performance of given nominal observers in three numerical examples.

5.1 Introduction

State estimation of dynamical systems is a central theme in control theory, whereby an observer
is designed to estimate the unmeasured system states exploiting the knowledge of the system model
and input and output measurements. Many techniques are available in the literature for the observer
design of linear and nonlinear systems, see [5] and the references therein. The vast majority of these
works focuses on designing the observer so that the origin of the associated estimation error system
is (robustly) asymptotically stable. A critical and largely open question is how to tune the observer
to obtain desirable performance (e.g. convergence speed and overshoot in the transient response) in
the presence of model uncertainties, measurement noise and disturbances.

One of the challenges in observer tuning is that there exist different trade-offs between these
properties. Indeed, a standard approach to observer design consists in using a copy of the plant
(in some coordinates that may be different from the original ones) and then adding a correction
term, often denoted as the output injection term. This term is designed by multiplying the diffe-
rence between the measured output and the estimated one by a (possibly nonlinear) gain, whose
tuning produces different estimation performance. Typically, the output injection term with small
gains produces an observer robust to measurement noise, but its convergence is very slow. On the
contrary, an observer with a large gain usually has a fast convergence, but is more sensitive to noise.
An answer to the question on how to tune the observer gain in the special context of linear systems
affected by additive Gaussian noise impacting the dynamics and the output is the celebrated Kalman
filter [54]. However, for general nonlinear systems and noise/disturbances, optimal observer design
is notoriously hard. For instance, in the context of nonlinear systems, optimal state estimation re-
quires solving challenging partial differential equations [59]. In this context, an alternative consists
in aiming at improving the estimation performance of a given observer. To the best of the authors’
knowledge, existing works in this direction either concentrate on specific classes of systems (see e.g.,

[60-62] for linear systems or e.g., [63-70] in the context of high-gain observers) or on specific pro-
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perties like robustness to measurement noise (see, e.g., [9,71]) or the reduction of the undesired
effect of the peaking phenomenon (see e.g., [126] for a general approach and [64, 66, 68, 69] for
specific solutions in the context of high-gain observer). An exception is [43], where two observers
designed for a general nonlinear system are “united” to exploit the good properties of each. However,
the design in [43] is not always easy to implement as it requires knowledge of various properties
of the observers (basin of attraction, ultimate bound), which may be difficult to obtain. In addition,
in [58,127] a suboptimal moving horizon estimation scheme is proposed for general discrete-time

nonlinear systems, where the performance of a given auxiliary observer is improved.

In this context, we present a flexible and general observer design methodology based on su-
pervisory multi-observer ideas that can be used to address various trade-offs between robustness
to modeling errors and measurement noise, and convergence speed. A multi-observer consists of
a bank of observers that run in parallel. It has been used in the literature in a range of different
contexts, including improvement of the sensitivity to measurement noise and/or reduction of the
undesired overshoot during the transient (e.g., [65, 66, 128] for high-gain observer and [129] for
KKL observer), joint state-parameter estimation (e.g., [75,130-132]) or distributed observers (e.g.,
[133-135]). In this chapter, we propose a new problem formulation that we believe has not yet been
addressed in the literature. Our starting point is the knowledge of a nominal observer, which ensures
that the associated state estimation error system satisfies an input-to-state stability property with
respect to measurement noise and disturbances. Various methods from the literature can be used
to design the nominal observer, see [7,9] and the references therein. Then, we construct a multi-
observer, composed of the nominal observer and additional dynamical systems, all together called
modes, that have the same structure as the nominal observer, but different gains. It is important to
emphasize that the number of modes and the associated gains can be freely assigned (no specific
stability/convergence property is required). Because the gains are different, each mode exhibits dif-
ferent properties in terms of speed of convergence and robustness to measurement noise. We run all
modes in parallel and we evaluate their estimation performance in terms of a quadratic cost using
monitoring variables, inspired by supervisory control and estimation techniques, see e.g., [75-79].
Based on these running costs (i.e., monitoring variables), we design a switching rule that selects, at
any time instant, the mode which is providing the best performance. When a new mode is selected,

the other ones may reset or not their current state estimate (and their monitoring variable) to it.

We model the overall system as a hybrid system using the formalism of [31]. We prove that the
proposed hybrid estimation scheme satisfies an input-to-state stability property with respect to deter-
ministic disturbance and measurement noise. Note that such a property is not straightforward as we
do not require any convergence guarantee on the additional modes, but only for the nominal one. We
also guarantee the existence of a (semiglobal uniform) average dwell-time thereby ruling out Zeno
phenomenon. The performance of the proposed hybrid multi-observer in terms of the cost associa-
ted to the designed monitoring variables is guaranteed to be, at least, as good as the performance of
the nominal observer by design. Moreover, we provide extra conditions under which the proposed

hybrid multi-observer produces a strict performance improvement compared to the nominal one in
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terms of an integral cost. The efficiency of the proposed technique is illustrated on three numerical
examples. In the first one, the proposed approach is used to improve the estimation performance of
a high-gain observer used to estimate the state of a Van der Pol oscillator. In the second example,
the proposed hybrid multi-observer improves the estimation performance of an observer designed
using a polytopic approach and used for the state estimation of a flexible joint robotic arm. In the
third example, we consider an equivalent circuit model for an Li-Ion battery, whose state is estima-
ted with an observer designed using a polytopic approach and we implement the hybrid estimation
scheme to improve its performance. Another example is given in Chapter 6, where the hybrid esti-
mation scheme is applied for the state estimation of a more advanced Li-Ion battery model, namely
a single-particle electrochemical model.

The chapter is organized as follows. The problem statement is given in Section 5.2. Section 5.3
presents the hybrid estimation scheme and its stability is analyzed in Section 5.4. Section 5.5 is
dedicated to the analysis of the solutions time domains. The performance improvement brought by
the hybrid scheme compared to the nominal observer is established in Section 5.6. Three numerical

case studies are reported in Section 5.7. Finally, Section 5.8 concludes the chapter.

5.2 Problem statement

The aim of this work is to improve the estimation performance of a given nonlinear nominal
observer by exploiting a novel hybrid estimation scheme that is presented in the next section. We
consider the plant model

x = fp(x,u,v)

Yy = h(X’W)’

(5.1)

where x € R™ is the state to be estimated, u € R™ is the measured input, y € R" is the measured
output, v € R™ is an unknown disturbance input and w € R™ is an unknown measurement noise,
with n,,n, € Z. and ny,n,,n, € Zz,. The input signal u : R, — R™, the unknown disturbance
input v : R,y — R™ and the measurement noise w : Ryq — R are such that u € %, v € £, and
we %y for closed sets % < R™, ¥ € R™ and # < R"™.

We consider a so-called nominal observer for system (5.1) of the form

(5.2)

Xfly

where %; € R™ is the state estimate, j; € R™ is the output estimate and L; € R"1*" is the observer

output injection gain with n; € Z.,. We define the estimation error as e; := x — X; € R™ and

introduce a perturbed version of the error dynamics, following from (5.1) and (5.2), as
él = fp(xJ U,V) _fo()%lau;Ll(_y - .)A/l) + d) = f(el)x:u: V)W)d) (53)

where d € R"1 represents an additive perturbation on the output injection term L,(y — ¥;). We

assume that observer (5.2) is designed such that system (5.3) is input-to-state stable with respect to
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v, w and d, uniformly in u and x, as formalized next.

Assumption 5.1. There exist o, a,v 1,5 € K, a € Ro, ¥ € Ryg and V : R™ — R continuously
differentiable, such that for all x e R™, e; e R™, d e R"™M, ue %, veV,we ¥,

alles]) < V(er) <@l(ley]) (5.4)
(VV(er), fler,x,u,v,w,d)) < —aV (eg) + by (Iv]) + b (Iwl) + v1d[. (5.5)
O

A large number of observers in the literature have the form of (5.2) and satisfy Assumption 5.1,
possibly after a change of coordinates, see [7,9,126] and the references therein. More details on
observers satisfying an input-to-state stability property are provided in Chapter 2. Assumption 5.1
implies that there exist § € £ ¥ and p € X, such that, foranyue ¥,,ve %y, we £y andd €

g, , any corresponding solution (x,e;) to systems (5.1) and (5.3) verifies, for all t € dom (x, e;),

lex(t)] < B(lex(0)],0) + p(Ivlo,e) + [Wlio,e) + I dlo,e))- (5.6)

Inequality (5.6) provides a desirable robust stability property of the estimation error associated to
observer (5.2). However, this property may not be satisfactory in terms of performance, like conver-
gence speed and noise/disturbance rejection. To tune L; to obtain desirable performance properties
is highly challenging in general and even impossible in some cases when the desired properties are
conflicting like high convergence speed and efficient noise rejection, see e.g., [53]. To address this
challenge, we propose a hybrid redesign of observer (5.2), which aims at improving its performance,
in a sense made precise in the following, while preserving an input-to-state stability property for the

obtained estimation error system.

Remark 5.1. The results of the chapter apply mutatis mutandis to the case where Assumption 5.1 holds
semiglobally or when the Lyapunov function V depends on both x and ey, which allow to cover an even
broader class of observers [5, Section V]. We do not consider these to keep the result as easy as possible

and to avoid obscuring the main message of the work. a
In the following we also need the next technical assumption on the output map h in (5.1).

Assumption 5.2. There exist 61,65 € R such that for all x,x" € R™, w,w' € ¥,
|h(x,w) —h(x’, W) > <8,V (x — x) + Sylw —w'|?, (5.7)

where V comes from Assumption 5.1. O

Assumption 5.2 holds in the common case where V in Assumption 5.1 is quadratic and h is
globally Lipschitz. Indeed, in this case, V (x —x’) := (x —x’) " P(x — x"), with P € R™*"x symmetric,

positive definite, and |h(x,w) — h(x’,w')| < K|(x — x’,w —w')| for any x,x’ € R™, w,w’ € # and
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Nominal Observer .l s
— A q o
Mode 1 —1 5 Monitoring M~
M variable 1 Selection Criterion
— %, Ui oe argmin n;| "o
N . ke{1,..N+1} ’
lv, w ——> Mode 2 Y2 ..
i Monitoring 12
u Plant y = B variable 2
X R 7y N
( ) Xo H No L X
M A .
— YN+1
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* > variable N + 1
o ry B

FIGURE 5.1 - Block diagram representing the system architecture with 1 := (91,...My41), X =
(.)/(\.'1, e J')%N-‘rl)'

2

K
Amin(P )
covers the common case where h(x,w) = Cx + Dw with C € R ™™ and D € R ™,

some K € R, then (5.7) holds with §; = and &, = K2. Note that h globally Lispchitz

5.3 Hybrid estimation scheme
The hybrid estimation scheme we propose consists of the following elements, see Figure 5.1:
— nominal observer given in (5.2);

— N additional dynamical systems of the form (5.2) but with a different output injection gain,
where N € Z. (. Each of these systems, as well as the nominal observer, is called mode for

the sake of convenience;

— N+1 monitoring variables used to evaluate the performance of each mode of the multi-
observer;

— a selection criterion, that switches between the state estimates produced by the different

modes exploiting the performance knowledge given by the monitoring variables;

— a reset rule, that defines how the estimation scheme may be updated when the selected

mode switches.

All these elements together form the hybrid multi-observer. We describe each component in the
sequel.
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5.3.1 Additional modes

We consider N additional dynamical systems, where the integer N € Z. is arbitrarily selected
by the user. These N extra systems are of the form of (5.2) but with a different output injection gain,

i.e, forany k € {2,...,N + 1}, the k™ mode of the multi-observer is given by

2= foRio W L (y — $1))
e = h(X,0),

(5.8)

where £, € R™ is the k™ mode state estimate, ;, € R™ is the k™ mode output and L, € R"™1*™ is
its gain. It is important to emphasize that we make no assumptions on the convergence properties
of the solution to system (5.8) contrary to observer (5.2). There is thus full freedom for selecting
the gains L, € R"1 ™" with k € {2,...,N + 1}. We will elaborate more on the choice of the L;’s in
Section 5.3.5.

Remark 5.2. There is also full freedom in the choice of the initial conditions of all modes in (5.2)
and (5.8). We can therefore select all of them equal, but this is not necessary for the stability results in
Section 5.4 to hold. See Remark 5.4 in the sequel for more details. a

Remark 5.3. The nominal observer (5.2) and the additional modes (5.8) have constant gains Ly, but it
is also possible to consider time-varying gains Ly (t). In this case, if all the gains are uniformly bounded,
i.e. there exists .# > O such that |Li(t)| < # forallt >0and all k€ {1,...,N + 1}, then the results
in this chapter hold mutatis mutandis. In the numerical example in Section 5.7.3 one of the modes is
an extended Kalman filter; which thus has a time-varying gain. O

5.3.2 Monitoring variables

Given the N + 1 modes, our goal is now to find a way to select the “best" between them, na-
mely the one providing a better estimate, possibly improving the estimation given by the nominal
observer (5.2). Ideally, the criterion used to evaluate the performance of each mode would depend
on the estimation errors e, = x — X3, with k € {1,...,N + 1}. However, since the state x is unk-
nown, ¢; is unknown and any performance criterion involving e, would not be implementable. As a
consequence, as done in other contexts, see e.g., [136,137], we rely on the knowledge of the output
y and the estimated outputs J; for k € {1,...,N + 1}. In particular, inspired by [136], in order to
evaluate the performance of each mode, we introduce the N + 1 monitoring variables 7, € R for

any k€ {1,...,N + 1}, with dynamics given by

N ==y + (¥ — 9%) T (A1 + L ALy (v — )
=:8(Mi> Lis ¥> Ik)>

(5.9

with A; € S;yo and A, € S;Xo with at least one of them positive definite and v € (0,a] a design
parameter, where a comes from Assumption 5.1. The term (y — J) " A1 (y — Ji) in (5.9) is related to

the output estimation error, while (y — j/k)TL,;rAsz( ¥ — i) takes into account the correction effort
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of the observer, also called latency in [136]. Note that the monitoring variable 1 in (5.9) for all
ke {l,...,N+1}isimplementable since we have access to the output y and all the estimated outputs
Vi at all time instants. The monitoring variables 71, with k € {1,...,N + 1}, provide evaluations of
the performance of all the modes of the multi-observer. Indeed, by integrating (5.9) between time 0
and t € R, we obtain that for any k € {1,...,N + 1}, for any initial condition 1, (0) € R, for any
Y,k € Lrwy,and any t = 0,

t

Me(t) = i (0) +f0 e ((y(7) = Je(T) T (A1 + L] ALi) (¥(7) = (7)) d7.  (5.10)

Equation (5.10) is a finite-horizon discounted cost, which depends on the output estimation error.

5.3.3 Selection criterion

Based on the monitoring variables 7, with k € {1,...,N + 1}, we define a criterion to select the
state estimate to look at. We use asignal o : Ry — {1,...,N +1} for this purpose, and we denote the
selected state estimate mode X, and the associated monitoring variable 7). The criterion consists in
selecting the mode with the minimal monitoring variable, which implies minimizing the cost (5.10)
over the modes k € {1,...,N + 1}. When several modes produce the same minimum monitoring
variable at a given time, we select the mode, between the ones with the minimum monitoring va-
riables, with the smaller derivative of 1, (which is given by g(ny, Lx, ¥, i) from (5.9)). Moreover, if
two or more modes have the same minimum monitoring variable and the same minimum derivative
of the monitoring variable, then the proposed technique selects randomly one of them and this is not
an issue to obtain the results in Sections 5.4, 5.5 and 5.6. Thus, we switch the selected mode only

when there exists k € {1,...,N + 1}\{o} such that n; < n,. In that way, at the initial time t, = 0,

we take
o(0) e argmin (&(mk(0), L, ¥(0), 31(0))), (5.11)
eIl
wheren :={n1,...,My,1}andII(n) ;==  argmin )y, forallne Rg:{l. Then, o is kept constant,

ke{1,...N+1}\{o}
ie,o(t)=0forall t e (0,t;), with

t;:=inf{t >0:3ke{1,...,N + 1}\{o(t)} such that ni(t) < N () (t)}- (5.12)
At time t,, we switch the selected mode according to

U(ff) € argrﬁin(g(nk(tl)aLk:)’(ﬁ):yk(tl)))' (5.13)

We repeat these steps iteratively and we denote with t; e R.q, 1 € Z- ( the i™ time when the selected

mode changes (if it exists), i.e.,
ti:=inf{t > t;_; : 3k e {1,...,N + 1}\{o(¢t)} such that n;(t) < g (t)}- (5.149)
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Consequently, forallie Z.,, o(t) =0 forall t € (t;_4,t;) and

o(t)e argmin (g (n(t), Lo y (t2), Ji(t2))). (5.15)
€
where we recall that n = {n,...,My, 1} and [I(n) =  argmin 7y, for all n € ]Rggl. We also

ke{l,..N+1}\{o}
argue that, implementing (5.15) online, which requires the knowledge of the derivative of the mo-

nitoring variables, is not an issue.

Remark 5.4. The proposed scheme works for any initial condition 1, (0) € Rs, forall ke {1,...,N +
1}, which corresponds to the initial cost of each mode of the multi-observer. Consequently, the choice
of N (0) is an extra degree of freedom that can be used to initially penalize the modes when there is a
prior knowledge of which mode should be initially selected, as done in Chapter 6 in the context of Li-Ion
batteries. Conversely, in the case where there is no prior knowledge on which mode should be chosen at
the beginning, all n, with k € {1,...,N + 1}, can be initialized at the same value such that the term
e "' (0) in (5.10) is irrelevant for the minimization. O
Remark 5.5. The results in Sections 5.4 and 5.5 also apply with a(t;r) € argmin  n; instead of

ke{l,..N+1}\{o}
(5.15). To select the mode with the minimum derivative of the monitoring variable, among those with

the minimum 7, allows us to prove a strict performance improvement in Section 5.6. |

5.3.4 Reset rule

When a switching occurs, i.e., when a different mode is selected, we propose two different options
to update the hybrid estimation scheme. The first one, called without resets, consists in only updating
o, and consequently, we only switch the state estimate we are looking at. Conversely, the second
option, called with resets, consists in not only switching the mode that is considered, but also resetting
the state estimates and the monitoring variables of all the modes k € {2,...,N +1} to the updated X,
and 7, respectively. The state estimate and the monitoring variable of the nominal observer (5.2),
corresponding to mode 1, are never reset.

To avoid infinitely fast switching, we introduce a regularization parameter ¢ € R. . In particular,
when a switch of the selected mode occurs, the value of monitoring variables 1, with k € {2,...,N +
1}\{o}, is increased by ¢, both in the case without and with resets. The idea is to penalize the
unselected modes and to allow the selected one to run for some amount of time before a new switch
occurs. The analysis of the properties of the hybrid time domains of the overall solutions and the
existence of a uniform semiglobal average dwell-time are presented Section 5.5.

We use the parameter r € {0,1} to determine which option is selected, where r = 0 corresponds
to the case without resets, while r = 1 corresponds to the case where the resets are implemented.
When a switch of the considered mode occurs, the state estimate of the nominal observer %, is defined
as, at a switching time t; € R-,

®1(t7) 1= 21(;) (5.16a)

1

and, the state estimate %, of the k' additional mode is defined as, at a switching time t; € R, for
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allke{2,...,N +1},

Ri(t) € {(1 = 1) (t;) + 1R (1) - k* € argmin (g (n;(;), Ly, ¥ (t:), §;(6:)))}
Je (5.16b)

=: @k(ﬁ'(ti)) n(ti):L’y(ti))y(ti)))

where X := (.)%1, .. 'J')%N-‘r].)’ n= (7)1, .. 'JT)N+1)J L:= (L]_, .. "LN-‘r].) and _)A/ = (_)A/]_, .. ._)A/N_;’_l). Simi-
larly, at a switching time t; € R-, the monitoring variables are defined as,

n1(t;) :==m(ty), (5.17a)
Ne(t;7) =14 (t;) (5.17b)

and, forall ke {2,...,N + 1}\{o},
ne(t) =1 —r)ng+ e +¢ (5.17¢)

where € € R,y and 1« = n;. Note that, if the monitoring variables of more than

one mode have the same value and it is the minimum between all the 7n;, with k € {1,...,N + 1},
then, from (5.16b), the modes may be reset with different state estimates. Merging (5.17b) and
(5.17¢) and using the Kronecker delta definition, we obtain, at a switching time t; € R, for all
ke{2,...,N+1},
Ne(t;") = konk + (1= 80) (1 — 1) + e + €)
=: pe(n(ty)),

(5.17d)

where e e R. g and nyx =

We can already note that, with the proposed technique, n,(;)(t) < 1, (t) for all t > 0, both in the
case without and with resets. Therefore, the estimation performance of the proposed hybrid multi-
observer is always not worse than the performance of the nominal one according to the monitoring
variables that we consider. We will study the performance of the estimation scheme in more depth
in Section 5.6.

5.3.5 Design guidelines

We summarize the procedure to follow to design the hybrid estimation scheme.
Design the nominal observer (5.2) such that Assumption 5.1 holds.
Select N gains L,,..., Ly, for the N additional modes in (5.8).
Implement in parallel the N 4+ 1 modes of the multi-observer.
Generate the monitoring variables 1y, with k€ {1,...,N + 1}.
Evaluate the signal o.

Select € € R. o and run the hybrid scheme without or with resets.

N o vk w b=

X is the state estimate to be considered for estimation purpose.
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There is a lot of flexibility in the number of additional modes N and the selection of the gains
Ly, with k € {2,...,N + 1}. This allows to address the different trade-offs of the state estimation of
nonlinear systems. Note that, all the results we will show in Sections 5.4, 5.5 and 5.6 apply with any
choice of the number of the additional modes and their gains. We believe that the gains selection
has to be done on a case-by-case basis since it is related to the structure of the nominal observer
and it depends on the available computational capabilities. For example, when the nominal observer
(5.2) is a high-gain observer, see e.g., [63, 138] or, more generally, an infinite gain margin observer
[5, Section 3.4], we typically need to select a very large gain based on a conservative bound to ensure
Assumption 5.1, which would result in fast convergence of the estimation error, but, unfortunately,
it will be very sensitive to measurement noise. In this case, to overcome the conservatism of the
theory, an option is to select the L, gains (much) smaller than the nominal one, even though there
is no convergence proof for these choices, in order to obtain a state estimate which is more robust to
measurement noise. This is the approach followed in Section 5.7.1 on an example. Another possible
approach is to select the additional gains L;’s considering the behavior of the nominal observer in
simulation and choose them based on the properties we want to improve. For instance, similarly to
the case where the nominal observer is an high-gain observer, when the convergence speed of the no-
minal observer is satisfactory, but its estimation error is very sensitive to noises, the gains L;’s should
be selected smaller than the nominal one L;. On the other hand, if the convergence speed of the
estimation error of the nominal observer is too slow, the additional gains may be chosen bigger than
L. This approach to select the additional gains is used Chapter 6, where the hybrid multi-observer
is implemented to improve the estimation performance of a electrochemical Li-lon battery model.
In general, possible options to select the additional gains are to pick them in a neighborhood of the
nominal one, or to scale the nominal gain by some factors. This gain selection will produce systems
with different behaviors and switching between them should allow an improvement of the estima-
tion performance, as illustrated on numerical examples in Section 5.7. The question of the selection
of the gains goes beyond this work, as various approaches can be envisioned. For instance, one could
select gains based on off-line learning techniques inspired by modern optimization/machine learning
algorithms. This will be further investigated in future work. However, three possible methods for the

selection of the additional gains are illustrated in Section 5.7 in numerical examples.

The results we will show in this chapter apply for any A; € S;yo and A, € S;"O with at least one
of them positive definite. However, their tuning impacts when a switch of the selected mode occurs
and which mode is chosen. Indeed, A; and A, are the weights of the two terms in (5.9) and thus
their values reflect how much we take into account the output estimation error and the correction
effort of the observer in the monitoring variables. In particular, selecting A; bigger than A, implies
that we weight more the term related to the output estimation error compared to the term related
to the correction effort of the observer in the design of the monitoring variables. Conversely, if A;
is smaller than A,, then the correction effort of the observer weight is bigger than the one of the
output estimation error in the considered monitoring variables. In addition, note that, A, multiplies

the mode gains L; and thus it implicitly considers also the effect of the measurement noise in the
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ultimate bound of the estimation error.

5.3.6 Filtered state estimate

The state estimate X, of the hybrid multi-observer is subject to jumps and can therefore be
discontinuous, which may not be suitable in some applications. For this reason, as we will do in
Chapter 6 for the state estimation of lithium-ion batteries, it is possible to add a filtered version of

X5, denoted X, whose dynamics between two successive switching instants is
X =—CXf + (%, (5.18)

where ¢ > 0 is an additional design parameter and, Xy does not change at switching times t; € R,
i1€Z+y,ie.,
2 (67) =2 (1). (5.19)

1

Note that, in the following we will prove the stability results for the state estimate of the hybrid
multi-observer %, and we do not consider the filtered version X;. However, we can define a filtered
version of the hybrid multi-observer estimation error as

ef ZZXf—)%f, (520)

where x; is the filtered version of the system state x;, whose dynamics between two transmission
instants is
Xp = —{xp +{x, (5.21)

where ¢ > 0 comes from (5.18), and at switching times t; € R, i € Z+,
xp(67) = xp (1) (5.22)

From (5.18), (5.20) and (5.21) we have that, the filtered estimation error dynamics between swit-
ching is given by
¢ = —Ces + ey, (5.23)

where { > 0 comes from (5.18), and at switching times t; € R-, i € Z~(, from (5.19), (5.20) and
(5.22) we have

er(t) =es(t;). (5.24)

As a results, the filtered estimation error ey does not change at jumps and is an input-to-state stable
system in cascade with the system describing the dynamics of e, see [6, Section 4]. In the following
we will consider the hybrid multi-observer state estimate X, and, in Section 5.4, we will prove the
stability results for the corresponding estimation error e,. For the reason written above, similar
stability results hold mutatis mutandis for the filtered estimation error e;. More details on this will
be given in Theorem 6.2 in Chapter 6 on a specific example of a lithium-ion battery. Note that the
parameter { in (6.30) impacts the frequency of the filter and thus its speed. In particular, a big
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¢ produces a fast filter and, as a consequence, X, follows X, faster, however, since %, may have
discontinuities due to the switching, typically, the faster the filter is designed, the less smoother X
will be.

5.3.7 Hybrid model

To proceed with the analysis of the hybrid estimation scheme presented so far, we model the
overall system as a hybrid system of the form of [31], where a jump corresponds to a switch of the

selected mode and a possible reset as explained in Section 5.3.4.

We define the overall state as q := (X, RX1,..., XN11>M1»---> My41,0) € 2 1= R x RN+ 5
Rliarl x {1,...,N + 1}, and, by collecting all the equations, we obtain the hybrid model

x = fp(x,u,v)

5’2‘1 == fo(-)%l;u;Ll(y _.yl))

Xn+1 = fo(Xns1 WLy 1 (Y — YNs1))

) T T . r JE G,
n=-v+(—31) (Ar+Ly ALy)(y — 31)
v =—Vns1 + (Y = Inve1) (A + Ly AsLy 1) (v — Ins)
c=0
xt =x )
=% (5.25)
25 e{(1—r)ky+ 1Ry k"€ arg_rgin (&M, Ly, ¥)}
je
Xy 41 €{(1=1)Ry41 + 1y 1 k" € argmin (g(ny, Ly, ¥, §7)}
jen qe 9,
n =m
77; =035M2+ (1 =0825)((1—1)N2 +1Nx +€)
N1 = On+1,0MN+1 + (1= 8ni10) (1= T)Nys1 + e + €)
ot = argmin g(ny, Lk, ¥, i)
kell J
withII(q) = argmin 1 and g(ny, Lk, ¥, ¥ ) defined in (5.9). In view of Section 5.3.3, the flow

ke{l,...N+1}\{o}
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and jump sets ¢ and 2 in (5.25) are defined as

€ :={qe2:Vke{l,...,.N+1} i =1}, (5.26)
9:={qe2:3ke{l,...,N+1}\{o} nr < n,} (5.27)

For the sake of convenience we write system (5.25) - (5.27) in the compact form

7 =F(q,u,v,w), €EC
{q (q ) q (5.28)

q" €G(q), qe 2,

where flow map is defined as, forany g € €, ue %,v e ¥ and w € ¥, from (5.1), (5.2), (5.8),
(5.9),

F:= (fp’fo,lf . "’fo,NJrl’ 81>+ -:gNJrl’O)’ (5.29)

with the short notation f, , = f, (X, U, L (¥ — ¥x)), & = &(Mk> Lk, ¥> Yi)- The jump map G in (5.28)
is defined as, for any q € 9, from (5.15)-(5.17d),

G:= (x’)%l’€2 cee :£N+1) N1,P25--->PN+1> argn&in gk)’ (530)
€
with the short notation @k = 2,(()“(,7), L, ¥, i) and py = px(n), where II(q) =  argmin 7 for

ke{1,...N+1}\{o}
allge 2,ke{1,...,N + 1}.

5.4 Stability guarantees

The goal of this section is to prove that the proposed hybrid estimation scheme satisfies an input-
to-state stability property. Even though the nominal observer satisfies an input-to-state stability pro-
perty by Assumption 5.1, it is not obvious that so does system (5.26)-(5.28), as the extra modes are
designed with no convergence guarantees. We first present the Lyapunov properties in Section 5.4.1,
which are used in Section 5.4.2 to prove the desired stability property.

5.4.1 Lyapunov properties

In this section we state the Lyapunov properties, which are employed to prove the stability result
in Theorem 5.1 in the next section. Based on Assumption 5.1, we first prove an input/output-to-state
stability property [6], whose definition was recalled in Chapter 2, for the generic estimation error

system e := x — X € R™ associated to (5.1) and (5.8), whose dynamics is defined as

é:fp(x,u,v)—fo(fc,u,L(y—jl)) (5.31)

with L e R™1 %",

Lemma 5.1 (Input/Output-to-State Stability property). Suppose Assumption 5.1 holds. Then, for any

120



5.4. Stability guarantees

xeER™, ue¥U,ve¥,weW,XeR"™ and any L € R"1*"™,

(VV(e), fyp(x,uv) = fo&,u, L(y = §))) < —aV(e) + 91 ([v]) +va(w]) + 7L — Ly [* |y — 312,
(5.32)

with § = h(%,0) e R and a,vY,Y,y,V come from Assumption 5.1. O

Proof. Let x e R™, uc %, ve¥,we#, X cR"™ and L € R"1*" we have that

(VV(e) fp(x u,v) — f (%, Ly —3)))
= {VV(e), fy(x,u,v) — ( Ll(y—ﬁ) —Li(y=9)+L(y—3))) (5.33)
= {(VV(e), f,(x,u,v) —

Applying Assumption 5.1 with d = (L — L;)(y — ) we obtain

<VV(e),fp(x,u,v)—fo(fc,u,L(y—j/))>
< —aV(e) + 1 (|v]) +a(lw]) +v[(L — L) (y — ) (5.34)
< —av(e) + (V) + o (jw)) +r|I(L — L)IP|y — 3/

We have obtained the desired result. [ ]

Lemma 5.1 implies that, for e, := x — X} for any k € {2,...,N + 1}, the e;-system, which follows
from (5.1) and (5.8), satisfies an input/output-to-state property [6], as defined in Definition 2.6, with
the same Lyapunov function as in Assumption 5.1 for any choice for the observer gain L; € R™1 ™",
The major difference between (5.5) and (5.32) is the term y||(L — L;)||?|y — ¥/|* in (5.32), which
may have a destabilizing effect and may thus prevent the e;-system to exhibit input-to-state stability
properties similar to (5.6).

In the next proposition, we state Lyapunov properties for system (5.26)-(5.28).

Proposition 5.1 (Lyapunov stability property). Suppose Assumptions 5.1-5.2 hold. Given any sets of
gains L € R™1 ™" with k € {2,...,N + 1}, any v € (0,a], any ¢ > 0 and any A, € S>o’ Ay € S;"O
with at least one of them positive definite, there exist U : 2 — Ry locally Lipschitz, and a;, ay € A,
ag€R. g, ¢1,¢5 € K, such that the following properties hold.

(i) Foranyge 2,
ay(|(e1,n1,60,m0)]) <U(Q) < ay(l(e,n)l), (5.35)

with e := (e1,...,ey11) and ) := (M1,...,Mn41)-

(i) Foranyqe€ 6,uc %,ve ¥V andwe ¥, such that F(q,u,v,w) € T¢(q),
U*(q;F(q,u,v,w)) < —aoU(q) + ¢1([v]) + Pa(|w]). (5.36)

(iii) For any q € 2 and any g€ G(q),
U(g) <U(q)- (5.37)
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Proof. The Lyapunov function of Proposition 5.1 is defined as
Ulq) =er(aV(e) +m) e max  {bV(e) 10} +eamax{ng —m1,0},  (5.38)

for any q € £, where c¢1,cy,¢53,a,b € R are selected such that ¢, < ¢35 < ¢y, a > @ where

81 (Amax (A1) + Amax (LT AgL . — Amin(A
o D1 () ¥ Ama(By b)) o (0,5) with i —m‘“e( 1)

, with

a
0:=y - max } |(Li — L)|* € R=g, where y comes from Assumption 5.1. Note that U is locally
e{1,.,N+1

Lipschitz as V is continuously differentiable.
We prove the three items of Proposition 5.1 separately.

Proof of item (i). We first show the upper-bound. Let g € £, using (5.4) we have

Ulg) < cr(@aller]) +m)+e, max  {ba(le|) —ny, 0} +cymax{ng —ny,0}

ke{l,..,N+1}
N+1

< ci(aa(ler]) +m1) + ¢z Z (ba(lex|) +nx) +c3(ng +m1) (5.39)
k=1

= aU<|(er 7’))’),

for some ay € A,.

We now prove the lower-bound of item (i) of Proposition 5.1. We have that el max }{ bV (ex)—
e{L,..N+1
Nk, 0} = bV(e,) — My as o € {1,...,N + 1}. Hence, since max(n, — 11,0) = 1, — 14, in view
of (5.4),
U(q) = ci(aa(ler]) +m) + ca(balles|) —ng) + c3(ne — 1)

(5.40)
= craa(le;|) + (c1 — c3)n1 + c2ba(les[) + (c3 — c2)n,-
Since ¢; —c3 > 0 and ¢3 — ¢, > 0, there exists a;; € %, such that
U(q) = ay(l(e1;n1, €05 M0)1)- (5.41)

Proof of item (ii). For the sake of convenience we write U(q) = U;(q) + Uy(q) + Us(q), for any
q € €, where Uy (q) = ci(aV(er) +m), Ua(q) = ¢z _ max  {bV(ex) — 1,0} and Us(q) =
c3max{n, — n;,0}. We introduce here the compact notation F = F(q,u,v,w) for the sake of

convenience. Let g€ ¥, ue %,ve ¥ and we ¥, in view of (5.5) and (5.9),

UL (q; F)
< —caaV(ey) + ciay1([v)) + craya(lw]) —cyvmy + 1 (y — J1) T (A1 + LT ApLy) (v — 31)

< —craaV(ey) +crayy([v]) +crayy([w]) —cvng + c1 (Amax(Aq) + lmax(LlTAle))ly -l
(5.42)

Then, using Assumption 5.2 we have |y — 7;|? = |h(x,w) —h(%1,0)|? < 5,V (e;) + 65|w|?. Thus,
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in view of (5.42),

UJ(q;F) < —cr(ao — Apax(Aq)87 — A’max(LlTAZLl)Sl)V(el) — ¢y + cray (|v]) + crayy((w))

+ ¢ ()Lmax(A1> + Amax(LIA2L1>)52|W|2'
(5.43)

51 (Amax(A1) + Amax (L7 AgL
Sincea >a = A max(A1) max(Ly Azl1)) > 0 and defining
a

a; :=min

{ aa — 5lxmaX(A1) (5 44)

- 517Lmax(L1TA2L1) }
,vpr >0
a

we obtain

U (¢; F) < —ayUs (q) + crapy ([v]) + crapa ([w]) + ¢ (Amax (A1) + Amax(Ly AaL1))82|w/>.
(5.45)
We now consider U,. We need to distinguish four cases.
Case a). Suppose there exists a unique j € {1,...,N + 1} such that ke{f??§+1}{bv(ek) -

Mk, 0} = bV(e;) —m; and bV (e;) —n; > 0. Then, by applying Lemma 5.1 to the j-th dynamics,
and by recalling the definition of 6 given at the beginning of the proof, we obtain
U, (q; F)
2 (B{TV (), £o(3,1,9) = fo(&3,10, Li(y = 97))) +vm; = (v = 9) T (Ay + L] ALy (y = 97))
< —cybaV(ej) + cobyq([v]) + cabipy(lw]) + b0y —JA’jfz + v —co(y — }’j) A(y —J;5)
—c(y —f’j)TLjTAzLj(J’ - ;)
< —cp(baV(ej) — vn;) + b1 (|v]) + cabo(|w]) — co(Amin(Aq) — bO)|y — .)A'j|2-

(5.46)
- - Amin (A
Since v € (0,a] and b € (0,b) with b = %, Amin(A1) — b6 > 0 and thus, defining
a, := cya, we have
U, (q; F) < —apUs(q) + cabp ([v]) + cabipa(|wl). (5.47)

Case b). If for all k € {1,...,N + 1}, bV (ex) — M <O, then U,(q) = 0 and

U, (q;F) = 0= —ayU(q). (5.48)

Case c). If there exists a subset & < {1,...,N + 1} such that, forallie &, bV(e;) —m; =0
and forall j e {1,...,N + 1}\#, bV(e;) —n; < 0, then U, (q) = 0. Following similar steps as in
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case a), we obtain

U (;F) = max { — ax(bV(er) = ;) + cabtpa () + cabapa(wi), 0}
< &by (|v]) + cabipa(wl) (5.49)
= —ayUs(q) + cob1 (|v]) + cabpy(|w]).

Case d). If there exists a subset & < {1,...,N+1} such that, foralli,j € &, - max }{bV(ek)—
{1, N+1

M, 0} = bV(e;) —m; = bV(e;) —m; > 0. Following similar steps as in case a), we obtain

Us(q;F) <m ;x{ —ay(bV(e;) —m;) + by (|v]) + c2b¢2(|w|)}. Then, for any i € &, by the
1€

definition of %, we have

Uy (@ F) < —ap(bV(e;) — ;) + cobpq([v]) + cabypa(lw])
= —a,Us(q) + cobp1([v]) + cabipy(|w]).

(5.50)

Merging (5.47), (5.48), (5.49) and (5.50), we have that, for anyq € ¢, u € %, v € ¥ and
weW,
Uy (@3 F) < —apUs(q) + cobyp(|v]) + cabapo([wl). (5.51)

We now consider Us. Since g € €, from (5.26) we have thatn, < n forallke {1,...,N+1}.
Therefore, 1, < ;. When 1, < 1n; we have that U3(q) = 0 and

Us(; F) = 0 = —a3Us(q), (5.52)
for any a; € R.y. When 1, = 14, since F(q,u,v,w) € T¢(q) and T¢(q) :={q€ 2 : 11 = 1, },
where we use 1)y = — vy + (¥ — 1) T (A + L] AyLy)(y = 1) and 0y = =1y + (¥ = J5) T (Ar +
LI AyL,)(y — 9,) for the sake of convenience, we have

U:(;(qﬁF) < max{";’o - 7;)1)0} =0= _a3U3(q)) (553)
for any a5 € R. . Consequently, from (5.52) and (5.53), we obtain that,

Us(q;F) <0 = —a3Us(q), (5.54)

for all a5 € R .
From (5.45), (5.51) and (5.54) we have that, foranyqe ¢, ue %, v e ¥ and w e #, such
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that F(q,u,v,w) € T (q),

U°(q;F) =U;(q,F) + Uy (¢; F) + U (q; F)
< —a Uy (q) + crayp1(|v]) + crapo([w]) + 1 (Amax(Aq) + Amax(LlTAZLl))52|W|2
—ayUs(q) + cobp1([v]) + cabypa(|w|) — asUs(q).
(5.55)
Defining @, := min{a;, ay,as} € R, we obtain

U°(q;F) < —aoU(q) + ¢1(|v]) + da(Iwl), (5.56)

where ¢ (s) := (cra+cob)y(s), Pa(s) := (cra+cab) s (s)+(c1 (Amax (A1) +Amax (L AgLy))52)s2,
for any s > 0.
Proof of item (iii). As in the proof of item (ii), for the sake of convenience we write U(q) = U, (q)+

Us(g) + Uala), for any g € 9, where U (g) = cy(aV (ex) + 1), Up() = _ max {bV(ex) —

Mk, 0} and Us(q) = c3max{n, — 11,0}. In addition, we use o™ to denote the selected mode
after a jump, in view of the hybrid system notation in Chapter 2.
Let g € 2 and g € G(q). Then, from (5.16a) and (5.17a) we have

Ui(g) = c1(aV(eq) +m1) = Us(q). (5.57)

We now consider U,. We need to distinguish the case without resets and the case with resets.

We first consider the case without resets. From (5.16a)-(5.17d), we obtain

Ualg) =cz , max . {bV(er) =1, bV (eo+) =g+, bV (e) =i — &, 0}
< bV (e1) — 01, bV (eg+) — Mo+, bV (e) — M, 0
2 M (BV(e) =01, BV (egs) = Mo, BV (e) =1k, 0} 5.58)
=c,  max  {bV(er) =m0}
= Us(q)-

On the other hand, when the resets are implemented, we need to distinguish the case where
o' =1 and the case when 0" € {2,...,N + 1}. Suppose first that c* = 1. Then, from (5.16a)-
(5.17d), we have

Uy(g) = comax{bV(e;) — 11, bV (ex+) — M. — €,0}
< cpymax{bV(e;) — 11, bV (ex+) — M3, 0}

(5.59)

with k* € argmin (—vn + (y — 1) T (A4 +L;A2Lk)(y—j/k))),where [I(q) = argmin 7,
kell ke{1,...N+1}\{o}

for allq € 2 and 1. = min Nk. Note that, if different observers generate the same
T ke, N+ o)

minimum 7, with the same minimum derivative, then k* may be different from o ™. However,
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Ng+ = Nix = Mi+. Consequently, from (5.59) and since k* € {1,...,N + 1},
Us(g) < comax{bV(e;) —n1, bV (ex) — Miex, 0}
< bv — 1,0
¢ ma;VcH}{ (ex) — Mk, 0} (5.60)
= Uy(q)-

On the contrary, when o € {2,...,N + 1}, from (5.16a)-(5.17d), we have

Uy (g) = comax{bV (e;) — N1, bV (ex+) — N+, bV (egs) — Ny — €,0}
< cymax{bV(e;) —ny, bV (exs) — g+, bV (exs) — Mjs, 0},

(5.61)

with k* € argmin (— v + (y — 75) | (A4 +L2A2Lk)(y—j/k))),where [I(q) = argmin 1y,
kell ke{1,...N+1}\{o}
for all g € 2 and 1. = 7. Note that, if different observers generate the same

minimum 7, with the same minimum derivative, then k* may be different from o ™. However,

Ng+ = Nix = Ni+. Consequently, from (5.61) and since k* € {1,...,N + 1},
Uy (g) < comax{bV(e;) — 11, bV (ex+) — M+, 0}

<cy ke{lrf}f1§+1}{bv(ek) — Nk, 0} (5.62)

As a result, from (5.58), (5.60) and (5.62) we have, for any g € 2 and any g € G(q),
Us(g) < U2(q)- (5.63)
We now consider Us. From (5.17a) and (5.17b) we have

Us(g) = cgmax{ng+ — 11,0}
= cymax{n, — 11,0} (5.64)

= Us(q).

Merging (5.57), (5.63) and (5.64) we obtain, for any q € 2 and any g € G(q),

U(g) < Ul(q), (5.65)

which concludes the proof of item (iii) of Proposition 5.1. This complete the proof.

Proposition 5.1 shows the existence of a Lyapunov function U for system (5.26)-(5.28), which is
used to prove the input-to-state stability property in the next section.
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5.4.2 Input-to-state stability

In the next theorem we prove that system (5.26)-(5.28) satisfies an input-to-state stability pro-
perty.

Theorem 5.1 (Two-measure flow input-to-state stability property). Consider system (5.26)-(5.28)
and suppose Assumptions 5.1-5.2 hold. Then there exist By € X% and yy € A, such that for any

input u € %y, disturbance input v € £, and measurement noise w € %.,, any solution q satisfies

[(ex(£,7),m(t, ), e5(t, ), M0 (1)) < Bu(|(e(0,0),n(0,0))],t) + vy ([vio,q + [Wllo,)  (5.66)
forall (t,j) edomgq, withe = (eq,...,ex41) and n = (N1,...,My41)- O

Proof. This proofrelies on Proposition 5.1. Consider the Lyapunov function U in Proposition 5.1.
From item (ii) of Proposition 5.1, we have that for any g € ¥, ue %, v € ¥ and w € # such
that F(q,u,v,w) € T (q),

U%(q; F(q,u,v,w)) < — aoU(q) + ¢ (|v]) + p2(jwl). (5.67)

We follow similar steps as in [31, proof of Theorem 3.18]. Letu € ¥y, ve %y, we ¥y and q be

a solution to system (5.26)-(5.28). Pick any (t,j) e domqg andlet 0 = to < t; <--- <tjq =t

satisfy domgq n ([0, ¢] x {0,1,...,j}) = U/_,[t:, ti11] x {i}. For each i € {0,...,j} and almost
d

all s € [t;, ti11], q(s,i) € € and d—q(s,i) e F(q(s,i),u(s,i),v(s,i),w(s,i)) n T (q(s,i)), in view
s

of Lemma 2.1 in Chapter 2. Hence, (5.67) implies that, for all i € {0,...,j} and almost all

s €[t tiv],
. d ) .
0" (4620 (6,0 ) < ~a00(g(6.0) + 11V lgo) + B2l (5.68)

In view of [139], we have that, for almost all s € [t;, t; 1],

%U(q(s,i)) <U° (q(s,i); %q(s,i)) . (5.69)

We introduce the compact notation U(t,j) = U(q(t,j)). From (5.68) and (5.69), for each i €
{0,...,j} and for almost all s € [t;, t; 1],

d . .
7V 0 < —aoU(s,1) + d1([vios) + P2(Iwlpos)- (5.70)
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Using [140, Theorem I11.16.2], from (5.70) we obtain that for almost all s € [t;,t;, ], for all
ie{0,...,j},

S

U(s,i) < e U (t;,1) + f e~ (g1 (Iljo,0)) + 2(IWljo,o))d

ti

(st . 1 (st
< e fl>U<ri,l>+a—O<1—e “06=) by ([v]0s)) + $2(IWljo7)) .71

< e CTIU (L, 1) + (1 — e )Ty ()0, + IWlos),

where 7y (s) = —(¢1(s) + ¢a(s)) € #,. Thus,

1
Qo
Ultini) < e =00 (e, 1) + (1 - e =) 7y (Wi, + W, ). 6.72)
On the other hand, from item (iii) of Proposition 5.1, for each i € {1,..., ]},
U(t;,i)—U(t;,i—1)<0. (5.73)

From (5.72) and (5.73), we deduce that for any (t, j) € domg,

U(t,j) <e “'U(0,0) + (1 —e )y (vl + IWlo,)

L ) (5.74)
< e ®U(0,0) + Fu(lvlo + IWlo,)-

Using item (i) of Proposition 5.1, we obtain, for any (t, j) € domg,

[(ex(t,7),m1 (1, 7). €6 (€,7), M0 (6, 1)) < " (67 (| (e(0,0),1(0,0)) ) +Fy (¥ 0, + [Wlo,))-
(5.75)

Since for any a € ., we have a(s; +s5) < a(2s;) + a(2s,) for all s; > 0,s, > 0, we obtain

|(€1(t,j), nl(t’j)’eo‘(t:j): na(tﬁj)” < ﬁU(|(e(0’ O)> T)(O’ 0))|: t) + YU(HVH[O,t] + HWH[O,t])
(5.76)
where f(r,s) 1= gal(Ze_“OsaU(r)) eX Y and yy(r) = gl_]l(Z?U(r)) e X forallr,s > 0.
|

Theorem 5.1 guarantees a two-measure flow input-to-state stability property [ 104], see Definition 2.13.
In particular, (5.66) ensures that e, 17, e, and 7, converge to a neighborhood of the origin, whose
“size” depend on the %, norm of v and w. Note that we do not guarantee any stability property
for the modes k # o, but this is not needed for the convergence of the hybrid observer estimation
error e,. Hence, the convergence of the estimated state vector of the selected mode is guaranteed
by Theorem 5.1. Equation (5.66) guarantees a two-measure flow input-to-state stability property
because we prove a convergence property “only” for the nominal observer estimation error e; and
monitoring variable 1; and for the proposed hybrid multi observer estimation error e, and mo-

nitoring variable 1. On the other hand, the function 8;; depends on the initial condition of the
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estimation errors and monitoring variables of all modes of the multi-observer. This is a consequence
of equation (5.35), where the ¢, functions a;, and a; do not depend on the same arguments,
conversely to the “sandwich-bound" in the “classical" Lyapunov characterization of the input-to-state
stability property, see e.g., [38, Equation (3)].

5.5 Properties of the solution domains

In this section we concentrate on the completeness and more generally on the properties of the
solutions time domains. In Section 5.5.1, we show that maximal solutions are complete, while in
Section 5.5.2 we ensure the existence of a uniform semiglobal average dwell-time, as defined in

Section 2.3.4, thereby ruling out the Zeno phenomenon.
5.5.1 Completeness of maximal solutions

The goal of this section is to show that maximal solutions to system (5.26)-(5.28) are complete.

For this purpose, we need that the system plant (5.1) is complete, as stated in the next assumption.
Assumption 5.3. Any maximal solution to (5.1) with u € %y, v € £y and w € Ly, is complete. O

Before proving the main result of this section, we show in the next lemma that maximal solutions

to the additional modes (5.8) are complete.

Lemma 5.2 (Additional modes completeness of solutions). Consider systems (5.1) and (5.8). Suppose
Assumptions 5.1, 5.2 and 5.3 hold. Then, for any inputs u € Ly, v € Ly, we Ly and y € Lgny, any

corresponding maximal solution to (5.8) is complete. O

Proof. Letke {2,...N+1}andletx e R™,ue %,ve ¥,we #, %, € R™ and any L; € R"1 "™,
From Lemma 5.1, we have, forall ke {2,...,N + 1},

<VV(ek),fp(x,u,v) _fo (J%kau;Lk(y _.)A/k))>
—aV(e) + 1 (V) + Pa((w]) +7 Lk — La|* |y — 5nel? (5.77)
< —aV(e) +Pr(v]) +a(lw)) + 0y — 3%,

A

with 6 = Y {max }HLk —L,|*€ R (. Using Assumption 5.2 we have |y — J;|* = |h(x,w) —
e{1,...N+1

h(%,0)2 < 6,V (ex) + 85|w|?, for all k € {2,...,N + 1}. Thus, from (5.77) we obtain,

<VV(ek),fp(x,u,v) _fo (ﬁk:u’Lk(y_yk))>
< —aV(e) + 1 (V]) + a(Iw]) + 05,V (ex) + 655 w2 (5.78)

= aV(ex) + Y1 (v]) + ¥5(Iwl),
with a:= 6068, —aeRand Y} :s — YPy(|s|) + 05,]s|* € A,

Letue %y, ve Ly, we %y and x and X; be solutions to systems (5.1) and (5.8) respecti-
vely, for k € {2,...,N +1}. We have, by definition, e, (t) = x(t) —X(t), forall ke {2,...,N + 1}
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and all t € dom (x, Xy ). Pick any k € {2,...,N + 1}, for all t € [0, +0), we have from (5.78),

d

77 (e(0) < aV(e(t)) + ¥ ([v(e)]) + Y5 (jw(e)D). (5.79)

Applying the comparison principle [85, Lemma 3.4], we obtain, for all t € [0, o0),

V(ex(t)) <e"V(ex(0)) + L eI (Y (v(Is]) + 5 (Iw(s)]))ds. (5.80)

From (5.4) and the last inequality, e, cannot blow up in finite time as V is positive definite and
the right hand side is finite for any t > 0. Moreover, from Assumption 5.3, x cannot blow up
in finite time. Consequently, since X; = x — ¢; and both x and e; cannot explode in finite time,

%) cannot as well. Thus, for any k € {2,...,N + 1}, any maximal solution to system (5.8) is

complete. [ |
We are now ready to prove the completeness of maximal solution of system (5.26)-(5.28).

Proposition 5.2 (Completeness of maximal solutions). Under Assumptions 5.1-5.3, for any inputs

Ue %Ly, veLy, we Ly, any maximal solution to system (5.26)-(5.28) is complete. O

Proof. We use [37, Proposition 6], which is recalled in Proposition 2.7, to prove Proposition 5.2.
Letu € %y, v e %y, we %y and q be a maximal solution to (5.26)-(5.28). In view of the
definition of the flow and jump sets, ¢ and 2, in (5.26)-(5.27), we have that q(0,0) € € U 2.
Suppose q(0,0) € €\2, we want to prove that g is not trivial, i.e., its domain contains at least
two points. For this purpose we need to show that the viability condition in Proposition 2.7 is
satisfied. Since the flow map F is continuous and u € ¥4, v € ¥y and w € %, from [122,
Proposition S1] there exists € > 0 and an absolutely continuous function z : [0,e] — £ such
that z(0) = q(0,0) and 2(t) = F(z(t),u(t),v(t),w(t)) for almost all t € [0, e]|. We write z =
(zx,zfl,...,z;(NH,zm,...,anH,za). Since ¢(0,0) € 6¥\2, with €\2 open, and g is absolutely
continuous, there exists €’ € (0, €] such that, forall k € {1,...,N +1}, 2, (t) >z, (t) for almost
all t € [0,€']. Thus, 2(t) € €6 for almostall ¢ € [0, €'] and the viability condition in Proposition 2.7
holds, which implies that q is a non-trivial solution.

To prove that q is complete we need to exclude items (b) and (c) in Proposition 2.7. Item (b)
in Proposition 2.7 occurs when at least one component of g blows up in finite time, and conse-
quently g blows up in finite time. Hence, to exclude (b) in Proposition 2.7 we need to show that
each component of ¢ must not explode in finite time. Let ¢ = (x,X1,...Xn41,M15--- IN+1,0)-
From Assumption 5.3, x cannot blow up in finite time. Moreover, X; cannot do so as well in view
of Theorem 5.1 and since x cannot. In addition, X;, for all k € {2,...,N + 1} cannot blow up in
finite time in view of Lemma 5.2 and )y, with k € {1,...,N + 1} cannot as well in view of its
dynamics (5.9) and because y — ¥; does not since both x and X do not, forall k € {1,...,N+1}.
Finally, o is constant in %4, consequently, it does not blow up in finite time. Thus, item (b) in

Proposition 2.7 cannot occur. On the other hand, since G(2) € 4 U 2 and the jump set does
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not impose conditions on u, v and w, item (c¢) in Proposition 2.7 cannot occur. Consequently,
any maximal solution to system (5.26)-(5.28) is complete. This concludes the proof. [ |

5.5.2 Average dwell-time

Proposition 5.2 ensures the completeness of maximal solutions under Assumptions 5.1-5.3, still,
Zeno phenomenon has not been ruled out yet. In the next proposition, we prove the existence of a
uniform semiglobal average dwell-time for the solution to system (5.26)-(5.28), which thus excludes

the Zeno phenomenon.

Proposition 5.3 (Average dwell-time). Suppose Assumptions 5.1, 5.2 hold and the sets ¥V and #
are compact. Then, system (5.26)-(5.28) has a uniform semiglobal average dwell-time, i.e., for any

M € R there exists ¢ > 0 such that any corresponding solution q with |q(0,0)| < M and u € %y,
1
v e %Ly andw € Ly, is such that for any (t, j), (t',j') edomqwith t+j < t'+j’, j'—j < (t’—t)—|—2

C

1
with T := ——ln< *
2y £

), where v comes from (5.9) and ¢ is the design parameter in (5.17c). O
v

Proof. Letue ¥, andve %y, we %, with ¥ and # compact set. Let M > M such that such
that ||v]., < M and ||w|,, < M. Let q be a solution to system (5.28) with |q(0,0)| < M < M. Pick
any (t,j) e domq and let 0 = t( < t; < --- < tj;1 = t satisfy domq n ([0, t] x {0,1,...,j}) =

{ olti> tix1] x {i}. For each i € {0, ...,]} and almost all s € [t;, t; 1], q(s,i) € €. Then, from

(5.9), forall ke {1,...,N + 1}, for all s € (t;, t; 1), (We omit the dependency on (s, i) below),
T)k _T.’a
= =¥ =No) + (¥ = J) T (A + L{ A L) (v = i) — (¥ = J0) (A1 + Ly AoLo ) (¥ — F0)
(k= 15) = (¥ = o) T (A1 + LI As L) (¥ = I5)

—V(T)k - no) - ( max(Al) + Amax(LTAZ ))|_)’ yo‘z'
(5.81)

Then, using Assumption 5.2 we have |y — y,|? = |h(x,w) — h(%5,0)|> < 5,V (ey) + 55|w|>.
Thus, from (5.81) we obtain, for all s € (¢t;,t; + 1),

'r.)k - T)U = —V(le - no) - ()'max( ) + }'max<LTA2 ))(5 V( ) + 52’W‘2) (582)

Using (5.66), from Theorem 5.1, we obtain, for all (¢, j) € domg,

leo (£, 1) < Bu(1(0,0)[,6) +vu (Ve + IWlles), (5.83)

with By € # % and vy € . Then, using |q(0,0)| < M, |v||,, <M and ||w|,, < M we obtain,
for all (t,j) € domg,

(5.84)
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From Assumption 5.1, for all e, € R™, V(e,) < a(|e,|), where a € 4, comes from Assump-
tion 5.1. From (5.84) and the last inequality we have, for all (¢, j) € domg,

(5.85)

where /3U ==0aofye X and yy := aoyy € . Combining (5.82) with (5.85) we obtain,
forallke {1,...,N + 1}, foralls € [t;, t; 1],

hk - 7)0 = —V(le - no) - (Amax(Al) + Amax(L;—AZLG))(Sl(ﬁU(M:O) + }\;U(zl\_/[)) + 52]\_/[2)
= —v(Mk— o) — ¢,
(5.86)
with ¢ := (Apax(A1) + ke{f}?ﬁ_’_l}Amax(LZAsz))(5l(/§U(A_4s0) + fu(2M)) + 6,M?) € Ry,
Integrating (5.86) and applying the comparison principle [85, Lemma 3.4] we obtain, for all

€[ty tip1], forallke{1,...,N + 1},
} . (s—t . . c p(s—t
T’k(s’l) - T)a(szl) =e i’ tl)(nk(ti:l) - na(tiil)) - ;(1 —€ il tl))' (5-87)
On the other hand, from (5.27), we have

ti q:=inf{t >t;: i t,i) =ng(t,i)}. 5.88
aminf(ez g omin m(60) =7, (60) (5.88)

We define k* := o (t;,1,i+1) € argmin (— v (tig1,i+1)+ (¥ (i, i+1) =i (tiv1,i+1)) T (A7 +
keIl
L;A2Lk)(y(ti+1,i +1) — J(tit1,i+1)))), where II(q) =  argmin ;. Evaluating (5.87)
ke{1,...N+1}\{o}
fors = t; 1 and k = k*, from (5.88), we have

0 = N (tiv1,1) — Mo (tig1,1)

(5.89)
> &0 (g (63, 1) — g (6,1) — S (1 — (1),

We first consider the case where k* # 1. Note that o (s,i) # k* by the definition of k*, for
all s € [t;,t;,1]. We now consider the cases without and with resets separately. From (5.17b),
(5.17¢) and (5.27) we have in the case without resets, for all i € Z ¢, N+ (t;,1) = MNix (t;,1 —
1) + & = n,(t;,1) + &, while in the case with resets, M« (t;,1) = N, (t;,1) + €. As a result,

M (3,1) = Mo (8, 1) + &, (5.90)
both in the case without and with resets. Thus, 1+ (t;,1) — 14 (t;,i) = € and from (5.89),

0= e—"(ti+1—fi)g _ 2(1 _ e_v(ti+1_ti))’ (5.91)
y
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. . ot —t; c c . .
which can be rewritten as e~ ”(fi+17%) (8 + —) < —, that implies
y Y

1 5
ti+1 —t; = ——In < ) € R>0' (5.92)
v o \e+3

On the other hand, when k* =1 =0(s,i + 1), for all s € [t;, 1, t;; 5], we have that

O (tiyo,i+2)= argmin n(t; 1,1)) # 1. (5.93)
ke{2,..,.N+1}

Therefore, from (5.92), we obtain

1 <
tivg—tii;=>——1In v eR_,. 5.94
it2 — tig1 " <8+%> >0 ( )

Consequently, for all switching times (t;,i) € domq, we have

1 5
ti+2 - ti > __ln ( > € R>0. (5.95)
y e+ 5

1 <
Pick any (t, j), (t/,j') € domq such that t+j < t'+j', from (5.95) and using 7 = 5 In ( _: ; )
v ) >

we obtain

j'-i<

Al

(t'—t)+2, (5.96)

which concludes the proof. |

We see the importance of the parameter ¢ € R, used in the jump map for the monitoring
variables (5.17c), in the expression of 7. Indeed, if we would allow ¢ to be equal to 0 (which we do
not), T would have been equal to 0. In addition, Proposition 5.3 shows that any solution g to (5.26)-
(5.28) can exhibit at most two consecutive jumps. Note that to obtain the results of Proposition 5.3
we do not need Assumption 5.3. However, in view of Propositions 5.2 and 5.3 we have that under
Assumptions 5.1-5.3, for any inputs u € %y, v € ¥y, w € £, any maximal solution g to system
(5.26)-(5.28) is t-complete, namely sup, domq = +co0.

Now that we have established robust stability properties and the properties of the hybrid time
domain of the solutions for the hybrid estimation scheme, we focus on its performance in the next
section.

5.6 Performance improvement

The goal of this section is to establish the estimation performance improvement given by the
proposed hybrid multi-observer. We recall that with the proposed technique we have 0 j)(t, j) <
N1(t,j) for all (t,j) € domg, for any solution q to (5.26)-(5.28) with inputs u € £y, v € £y
and w € %y, both in the case without and with resets. Therefore, the estimation performance of
the proposed hybrid multi-observer are always not worse than the performance of the nominal one
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according to the monitoring variables we consider.

Variable 1, defined in Section 5.3.2 is a performance variable that considers the “best" mode
among the N + 1 at any time instant: this is an instantaneous performance, which ignores the past
behavior in terms of the monitoring variable. For this reason, to evaluate the performance of the
proposed hybrid multi-observer, we also propose the following cost, for any solution q to (5.26)-
(5.28) with inputs u € £y, ve &, and w e £, for all (t,j) € domg,

Jote(6:9) = io (L

tiy1
na(s,i) (5’ i) d5> 5 (5.97)

with 0 = t5 < t7 < --- < tj;q = t satisfying domq n ([0, t] x {0,1,...,]j}) = {zo[ti, ti1] x{i}.
Similarly, we define the performance cost of the nominal observer, for all (t, j) € domg, as

J tiy1
Ji(t,5) =) <f nl(s,i)ds> , (5.98)
t

i=0 \Yii
with 0 = t5 <ty < --- < tj;q = t satisfying domq n ([0,t] x {0,1,...,]j}) = {zo[ti, ti1] x{i}.
In the next theorem we prove, that the hybrid scheme in Section 5.3 strictly improves the per-

formance J; in (5.98), under some conditions.

Theorem 5.2 (Performance improvement). Consider system (5.26)-(5.28) under Assumptions 5.1-
5.3. Let q be a maximal solution with inputs u € ¥4, v € ¥y and w € %, and for which the initial
conditions of the monitoring variables are all the same, namely 1 (0,0) = ng forall k€ {1,...,N + 1}
for some 1 € R. Then, for any (t, j) € domg,

Jo(e,j)(t, 1) < J1(t, 1), (5.99)

with J, and J; defined in (5.97) and (5.98), respectively. Moreover, if there exists (t*, j*) € domq such
that

No (e (E777) <M (t™,J7), (5.100)

then there exists j* > j* such that
Jo(e)(6:7) <1(t,]) (5.101)
fordll (t,j) = (t*,j*), with (t,j) € domg. i

Proof. Consider system (5.26)-(5.28) and let g be a maximal solution to system (5.26)-(5.28)
with inputs u € %y, v € £y and w € Z,.. From (5.9), (5.17a), (5.17b), (5.26), (5.27) and
Nt(0,0) =ngeRforall ke {1,...,N + 1}, we have, for all (t, j) € domg,

No(e,j)(t:J) <M1 (L, ])- (5.102)
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We then derive from (5.97) and (5.98) that J (. jy(t,j) < J1(t,j), for all (t, j) € domg, which
concludes the first part of the proof.
In the second part of the theorem, we have that there exists (t*, j*) € domgq such that

No(ex,j0) (5 77) <M1 (E5, 7). (5.103)

We now consider two cases. If t* € int Ij*, using (5.97), (5.98), (5.102), (5.103), since no jump
occurs at (t*,j*) and n, and 7, are not affected by jumps, by continuity of 1, and n; on I/,
(5.101) is obtained by integration of (5.102) for all (¢, j) > (t*, j*), with (¢, j) € domgq. On the
other hand, if I’" is empty, since ¢ is maximal, it is t-complete by Propositions 5.2 and 5.3 as
explained in Section 5.5.2 and thus we have that there exists j Y j* such that (t*,j */) € domg

and

No(en,j#) < No(ex,j) < M) (5.104)

with I/ : non empty. Following similar step as before we have that (5.101) holds for all (t, j) >
(t*,7*), with (t, j) € domq. This concludes the proof. [

Theorem 5.2 shows that, if the condition in (5.100) holds, then the cost of the proposed hybrid
multi-observer J,, is strictly smaller than the one of the nominal observer J; and thus, the estimation
performance in terms of costs J, and J; is strictly improved.

In the next proposition, we give the conditions to guarantee that (5.100) is satisfied and conse-
quently, from Theorem 5.2, that the estimation performance is strictly improved with the hybrid
multi-observer (5.26)-(5.28).

Proposition 5.4 (Conditions for performance improvement). Consider system (5.26)-(5.28) with
Ay € SZ"O and suppose Assumptions 5.1-5.3 hold. Select the gains Ly, with k € {2,...,N + 1}, in (5.8)
such that there exists k* € {2,...,N + 1} satisfying L; AyLis < LlTAle. Let g be a maximal solution
with inputs u € %, v € £y and w € ., and initial condition q(0, 0) satisfying the following properties.

(1) %(0,0) = X forall ke {1,...,N + 1} for some Xy € R™.
(i) M(0,0) =mnq forall ke {1,...,N + 1} for some 1, € R.
(iii) 7:(0,0) # y(0,0) forall ke {1,...,N +1}.

Then, there exists (t*, j*) € domq such that

na(t*,j*)(t*,j*) <’f)1(f*,j*)- (5.105)

O

Proof. Let g be a maximal solution to system (5.26)-(5.28) with inputs u € ¥,,, v € £y and
w € ¥, satisfying items (i)-(iii). We define Ay := y — y;, € R for all k € {1,...,N + 1} for
the sake of convenience. Note that, thanks to item (i), A;(0,0) = y(0,0) — ¥;(0,0) = y(0,0) —
h(x,(0,0),0) = y(0,0)—h(%(0,0),0) = y(0,0)—¥1(0,0) = A,(0,0), forany k € {1,...,N+1}.
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On the other hand, from (5.9) we have, for all ke {1,...,N + 1},

N =—vMk+ (¥ — 9) (AL + LA L) (y — 3x)

- - (5.106)
==Y+ Ak (Al + Lk Asz)Ak.

We evaluate (5.106) for k = 1 at (t,j) = (0,0). As A;(0,0) = A.(0,0), from item (ii) of
Proposition 5.4 and since A, is positive definite, we obtain

11(0,0) = —v11(0,0) + A1(0,0) " (A + L A3L1)A(0,0)
= —Nx(0,0) + A (0,0) T (Ay + L] AyL1) A (0,0)
> —vNe (0,0) + A (0,0) T (Ag + L, AgLyr ) A (0,0)
= 1+(0,0)

(5.107)

for any k* € {2,...,N + 1} such that LkT*Asz* < LlTAZLl. The strict inequality in (5.107)
comes from the condition L;AZL;{* < L1TA2L1 on the observer gain selection, with A, € Sr;xo,
and A (0,0) # 0 by item (iii) of Proposition 5.4. Since q is maximal it is t-complete by Pro-
positions 5.2 and 5.3. Moreover, q can exhibit at most two consecutive jumps as explained in

Section 5.5.2 and thus there exists j* € {0,1} such that (0, j*) = k with k € argmin 7, (0, j*),
keIl

with IT = argmin 7;(0,j*) and (0, j* + 1) ¢ domgq. Note that L;AZL;( < LlTAle and
ke{1,..,.N+1}

q(0,7*) € Ty (q) == {q € & : 1 = 1y, ¥k € {1,...,N + 1}, (5.108)
where 0y = —vni + (¥ — J1) T(Ay + LI AL ) (y — $x) and 1y = =y + (¥ — J5) T (Ag +

L;AZL(,)( ¥y — ), for all (¢, j) € domgq with some abuse of notation, in view of Lemma 2.1 in
Chapter 2. From (5.17d) and (5.107), we obtain

No(0,+)(0,J%) = 1(0,57) <11(0, 7). (5.109)

Moreover, since q is t-complete, we have that there exists € > 0 such that q(t, j*) € ¢ for all
t € [0, €]. Consequently, (t*,j*) € domq* for all t* € [0, €]. In addition, we have

No(0,+)(0,7*) = 11(0,j*) = no (5.110)

both when j* = 0 and j* = 1 from (5.17a) and (5.17b). From (5.109) and (5.110) we obtain

No (e, (75 77) <M (™, 7). (5.111)

This concludes the proof. ]

Note that, the conditions in items (i) and (if) of Proposition 5.4 can always be ensured by desi-
gning the same initial condition for the state estimate and monitoring variables for all the modes.
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Moreover, condition in item (iii) is verified almost everywhere (it is a set of measure zero). We also
acknowledge that we state the performance improvement with respect to costs J; and J,;, and that it
would be interesting to state properties for a cost, which involves the state estimation errors e; and
e.- This is a challenging question, which goes beyond the scope of this chapter. Some preliminary

results in this direction are presented in Appendix B.

5.7 Numerical case studies

5.7.1 Van der Pol oscillator

We consider
X =Ax +By(x)
(5.112a)
y=Cx+w
where x = (x1,x,) € R? is the system state to be estimated, y € R is the measured output and w € R
is the measurement noise. The system matrices are

a= % g |° c—[1 o] (5.112b)
oo’ |0 T '

and ¢(x) = sat(—x; + 0.5(1 — x})x,) for any x € R?, where the saturation level is symmetric
and equal to 10. We consider the measurement noise w(t) = 0.1 cos(w(t)) with w(t) = 10 when
t € [0,20], w(t) = 100 when t € (20,40], w(t) = 200 when t € (40,70] and w(t) = 20 when
t € (70,100].

We design a nominal high-gain observer ® for system (5.112a)

%1 =A% +Bo(%)) + Li(y — 1) (5.113)

where %, is the state estimate, ; is the estimated output and L; € R?*! is the output injection
gain, which is defined as L, := H;D, where D € R**!, H; = diag(h;,h?) € R**?, with h; € R,
the high-gain design parameter. To satisfy Assumption 5.1, D € R?>*! is selected such that the matrix
A— DC is Hurwitz and the parameter h; is taken sufficiently large, i.e., h; > hj, where h] is equal to
2Amax(P)K, where P € R2*2 is the solution of the Lyapunov equation P(A—DC) +(A—DC)'P = —I,
and K = 58.25 is the Lipschitz constant of the function ¢. We select D such that the eigenvalues of
A—DC are equal to —1 and —2 and we obtain D = [3, 2], while the parameter h; is selected equal
to 200 > h} = 152.50. With this choice of h;, Assumption 5.1 is satisfied with a quadratic Lyapunov
function and a = 53.28. Furthermore, since the output is linear, also Assumption 5.2 is satisfied.
We consider N = 4 additional modes, with the same structure as the nominal one in (5.113).
The only difference is the output injection gain L, € R?*!, which is defined as L, := H;D, with
H, = diag(hk,hi) e R?*2 with k € {2,...,5}. We select h, = 20, hy = 1, hy = 0 and hs = —1.

6. High gain observer design is described in Section 2.2.3.
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FIGURE 5.2 — Van der Pol oscillator. Norm of the estimation error |e| (top figure), performance cost J
(middle figure) and o (bottom figure). Nominal (yellow), without resets (red), with resets (blue).

TABLE 5.1 — Van der Pol oscillator. Average MAE and RMSE.

no reset reset

‘ e s % improv.

e s % improv.
MAE | 4.405 0.025 99.44 | 4.397 0.034 99.23
RMSE | 4.421 0.026 99.40 | 4.413 0.035 99.20
Note that h; < hJ, for all k € {2,...,5}. Therefore, we have no guarantees that these modes satisfy

Assumption 5.1, and consequently, that they converge. Simulations suggest that the modes with L,
and L, converge, while the ones with L, and L5 do not. Note that, the gain L, = 0, is the best
choice to annihilate the effects of the measurement noise.

We simulate the proposed estimation technique considering the initial conditions x(0,0) = (1, 1),
%,(0,0) = (0,0), 1¢(0,0) = 10 for all k € {1,...,5} and 0(0,0) = 1. Both cases, without and with
resets, are simulated with v=5,A; =1, Ay =0.1-I,and ¢ = 10~*. Note that the condition v € (0,a]
is satisfied.

The norm of the nominal estimation error, namely |e; |, as well as |e, |, obtained with or without
resets, are shown in Figure 5.2, together with the nominal performance cost J; and the costs J,
obtained both in the case without and with resets. Figure 5.2 shows that both solutions (without
resets and with resets) improve the estimation performance compared to the nominal one. The last
plot in Figure 5.2 represents o and indicates which mode is selected at every time instant both in the
case without and with resets. Interestingly, when the resets are considered, the fourth mode (with
Ly =[0,0]7), that is not converging, is selected.

To further evaluate the performance improvement given by the hybrid multi-observer, we run
100 simulations with different initial conditions for the state estimate of all the modes of the multi-

observer, both in the case without and with resets. In particular, both components of %(0,0) € R?,
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for all k € {1,...,5}, were selected randomly in the interval [—2,2] and, in each simulation, all
modes of the multi-observer were initialized with the same state estimate. The system state, the
monitoring variables and the signal o were always initialized at x(0,0) = (1,1), 14(0,0) = 10, for
all k € {1,...,5}, and 0(0,0) = 1. We considered the same choice of design parameters as before.
To quantify the performance improvement, we evaluate the mean absolute error (MAE) and the root
mean square error (RMSE), averaged over all the simulations, of the state estimation error obtained
with the nominal observer and the hybrid multi-observer both in the case without and with resets.
The obtained data are given in Table 5.1. Note that the data for e; without and with resets are slightly
different because the 100 initial conditions were randomly selected and thus they may be different in
the simulations without and with resets. Table 5.1 shows that the proposed technique, both without
and with resets, highly improves the estimation performance compared to the nominal one. Indeed,
both the MAE and the RMSE are improved by more than 99% both in the case without and with
resets. Moreover, in this example, the performance of the hybrid multi-observer without and with
resets are very similar, with the case without resets that slightly outperforms the case where the
resets are implemented, both in term of MAE and RMSE.

5.7.2 Flexible joint robotic arm

In this second example we consider a flexible joint robotic arm [125]. The system model is des-
cribed by’
X =Ax +Bu+ Go(Hx) +v
(5.114a)
y=Cx+w,
where the system state that need to be estimated is x := (x1, x5, X3, X4), while the measured output

y is defined as y := (¥, y2) = (x;, x5). The system matrices are

0 1 0 o0 [ 0o
| -486 —125 486 0 5 21.6
0 0 o 1|’ o |’
19.5 0 -195 0 0
L (5.114b)
0 0 10
0 0 0 1
G = , H'= , Ccl= ,
0 1 0 0
1 0 0 0]

and o (Hx) = 3.3sin(x;) for any x € R*. As in [125], we assume that the input is u(t) = sin(t) for all
t € R(. Moreover, we consider the disturbance input v(t) = 0.01(0,1,0,1)sin(30¢t) for all t € R

7. In Chapter 4 we considered the same example (model and observer) and we implemented the event-triggered
observer in the setting where the output measurement are transmitted to the observer via a digital network. In this chapter,
we apply the proposed hybrid multi-observer to improve the estimation performance of the observer. Note that, in this
case there is no network between the system and the observer. We recall model and nominal observer for completeness.
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and the measurement noise w(t) = 0.1(1, 1) sin(100t) for all t € R- 4. We design a nominal observer

%, =A%y +Bu+Go(HRy) + Li(y — $1) (5.115)
J1=0Cxy,

where L; € R**? is the observer gain that is designed following a polytopic approach & [95]. To do so,
we solve the linear matrix inequalities PA— W C + PG; + Gl.TP +ATP-CTWT < —Q, ie{1,2}, with

0 0 0 O
P € R*™™" symmetric positive definite and W := PL € R"*“, where G; := 00 0 o ,Gqy 1=
0 0 33 O
0 0 0 0 0.58 —42.96
00 0 O . —4.67 2.83 . )
and Q = I,. We obtain L = . Defining the Lyapunov function
0 0 0 0 3.16 49.25
0 0 -33 0 16.34 88.46

V(&) := e] Pe; for any e; € R*, where e; := x — %, is the state estimation error, Assumption 5.1 is
satisfied with a = 0.076. In addition, since the output is linear, also Assumption 5.2 is satisifed.

We consider N = 10 additional modes, with the same structure as the nominal one in (5.115). The
only difference is the output injection gain L, € R**2. To select the additional gain we consider three
possible linearizations of the system dynamics. In particular, we consider G;x instead of Go(Hx) in
(5.114a), with i € {1,2,3} and G; and G, defined above and G5 := 04,4 and thus, we obtain the

linear system
X=Ax+Bu+Gx+v=Ax+B,+V
(5.116)
y=Cx+w,
with i € {1,2,3} and the matrices A;, A, and A; given by A; := A+ G, Ay := A+ Gy, Ay := A.
We then design three Luenberger observers for all the three liner system obtained. In particular, the
additional gains L,, L3 and L, were designed placing the eigenvalues of the matrices (A; —L;;C) in
—1, -2, —3 and —4, with i = {1, 2,3}, the gains Ls, Lg and L, were designed placing the eigenvalues
of the matrices (A; — L;,4C) in —10, —20, —30 and —40, while the additional gains Lg, Ly and L1q
were designed placing the eigenvalues of the matrices (A; — L;,,C) in —0.1, —0.2, —0.3 and —0.4.
Finally, we chose L{; = 04,4. Note that, the additional gains Ly, k € {2,...,10}, where designed
considering the linearization of system (5.114a) and the additional gain L;; produces an open-loop
mode. Therefore, we have no guarantees that these modes satisfy Assumption 5.1 for the nonlinear
system (5.114a), and consequently, that their estimation errors converge. Note that, the gain L,; =
04 is the best choice to annihilate the measurement noise.
We simulate the proposed estimation technique considering the initial conditions x(0,0) = (3,2, 3,
—2), 2,(0,0) = (0,0,0,0), N, (0,0) =10 for all k € {1,...,11} and 0 (0,0) = 1. Both cases, without
and with resets, are simulated with » = 0.05, A; = 1-1I,, A, = 0.01-I, and ¢ = 10~*. Note that the

8. Observer design following a polytopic approach is described in Section 2.2.3.
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FIGURE 5.3 — Flexible joint robotic arm. Norm of the estimation error |e| (top figure), performance
cost J (middle figure) and o (bottom figure). Nominal (yellow), without resets (red), with resets
(blue).

condition v € (0, a] is satisfied.

The norm of the nominal estimation error, namely |e; |, as well as |e, |, obtained with or without
resets, are shown in Figure 5.3, together with the nominal performance cost J; and the costs J,, ob-
tained both in the case without and with resets. Figure 5.3 shows that both solutions (without resets
and with resets) improve the estimation performance compared to the nominal one, in particular the
improvement is relevant after the transients. In addition, the second plot in Figure 5.3 shows that
the cost in the case with resets is better than the one obtain in the case without resets and are both
smaller than the nominal one. The last plot in Figure 5.3 represents o and indicates which mode is
selected at every time instant both in the case without and with resets. Interestingly, both when the

TABLE 5.2 — Flexible joint robotic arm. Average MAE and RMSE.

no reset reset

‘ e (3 % improv.

e (3 % improv.
MAE | 0.991 0.718 27.55 | 1.702 1.350 20.66
RMSE | 3.055 3.027 0.90 | 3.916 4.912 -25.45
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TABLE 5.3 — Flexible joint robotic arm. Average MAE and RMSE for t € [70, 100].
no reset reset
e (o3 % improv.

MAE | 0.167 0.012 92.55 | 0.167 0.001 99.34
RMSE | 0.167 0.013 91.81 | 0.167 0.025 98.49

e (o3 % improv.

resets are considered and when not, the eleventh mode, which is in open-loop since Li; = 04y, is

selected.

To further evaluate the performance improvement given by the hybrid multi-observer, we run
100 simulations with different initial conditions for the state estimate of all the modes of the multi-
observer, both in the case without and with resets. In particular, the first and third components of
%:(0,0) e R, forall k € {1,...,11}, were selected randomly in the interval [0, 20], while the second
and fourth components of X;(0,0) € R*, for all k € {1,...,11}, were selected randomly in the inter-
val [0,10] and, in each simulation, all modes of the multi-observer were initialized with the same
state estimate. The system state, the monitoring variables and the signal o were always initialized
at x(0,0) = (3,2,3,—2), 1(0,0) = 10, for all k € {1,...,11}, and 0(0,0) = 1. We considered
the same choice of design parameters as before. To quantify the performance improvement, we eva-
luate the mean absolute error (MAE) and the root mean square error (RMSE), averaged over all the
simulations, of the state estimation error obtained with the nominal observer and the hybrid multi-
observer both in the case without and with resets. The obtained data are given in Table 5.2. Note that
the data for e; without and with resets are slightly different because the 100 initial conditions were
randomly selected (in large intervals) and thus they may be different in the simulations without and
with resets. Table 5.2 shows that the proposed technique, both without and with resets, improves the
estimation performance compared to the nominal one in almost all the considered MAE and RMSE.
However, in the case with resets the RMSE performance are worse. This data does not contradict the
theory, since in Section 5.6 we proved the performance improvement in terms of the costs J; and J,

while Table 5.2 evaluates the improvement in terms of the state estimation error.

We also evaluate the mean absolute error (MAE) and the root mean square error (RMSE), avera-
ged over all the simulations, of the state estimation error obtained with the nominal observer and the
hybrid multi-observer both in the case without and with resets only in the time interval [70, 100],
in order to evaluate the steady-state performance improvement. The obtained data are given in
Table 5.3, which shows that the proposed technique, both without and with resets, highly improves
the estimation performance compared to the nominal one when the transient is neglected. Indeed,
both the MAE and the RMSE are improved by more than 90% both in the case without and with
resets, with the case with resets that slightly outperforms the case without resets, both in term of
MAE and RMSE. Thus, from Tables 5.2 and 5.3 we can conclude that, for this example, the proposed
hybrid multi-observer techniques is more efficient in improving the estimation performance of the
given nominal observer in steady-state, while, during the transient, the performance are similar, or

can be even worse, especially in the case with resets. An option to overcome this behaviour and force
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FIGURE 5.4 — Equivalent electrical circuit of a single battery cell.
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FIGURE 5.5 - f (SOC)(blue) with its linearization (red) and PHEV current input.

the selection of the nominal observer for some amount of time at the beginning of the simulation
consists in choosing the initial condition of the monitoring variable of the nominal observer, namely,
11(0,0) smaller than the initial condition of the monitoring variables of the other modes, namely,
11(0,0), for all k € {2,...,11}. This technique is not implemented in this example, but we will use
it in Chapter 6 where the hybrid multi-observer approach is applied for the state estimation of an
electrochemical model of a lithium-ion battery with standard model and parameters.

5.7.3 Electric circuit model of a lithium-ion battery

We consider an electric circuit model of 1-cell lithium-ion battery shown in Figure 5.4, with a
nonlinear output map. Compared to the battery model we considered in the numerical example in
Chapter 3, here we do not linearize the function f (SOC) in the output equation. As a result, we are
now considering a nonlinear system, compared to the linear time-invariant one used to model the

lithium-ion battery in Chapter 3.
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From the circuit the following system model is derived

x =Ax +Bu
(5.117a)
y =Cx+ f(Hx) + Du+w.

The state is x := (Ugc, SOC) € R?, where Ug is the voltage of the RC circuit and SOC is the state of
charge of the battery. The output y is the battery output voltage, the input u is the current and w is

the measurement noise. The system matrices are

1
A= _0? Z ,B= —% cc=[-1 o, H=]0 1|, D=|Ry. (5.117b)

Considering the temperature to be constant and equal to 25°C, the parameters values are T = 7 s,
R=05-1072Q,¢c = }% F, Q = 25 Ah and Ry, = 1 mQ. The function f and its linearization are
shown in Figure 5.5 on the interval [0,100]% and we consider a first order approximation outside
the interval [0, 100] %. The function f satisfies Assumption 5.2 since it has bounded derivatives. The
input u is given by a plug-in hybrid electric vehicle (PHEV) current profile, see Figure 5.5, and the
measurement noise is given by w(t) = 0.01sin(10t), for all t > 0.
We design the nominal observer
Xy =A%) +Bu+Li(y — )

(5.118)
1 =Cx + f(HX;) + Du,

where %, is the state estimate, ¥, is the output estimate and L; = [—2.07,2.48]" € R?>*! is the ob-
server gain that is designed following a polytopic approach like in [96] as described in Section 2.2.3.
Observer (5.118) satisfies Assumption 5.1 with a = 0.1.

To improve the estimation performance, we design the hybrid multi-observer considering N = 3
additional modes. To select L,, we linearize the output map and we design a Luenberger observer
with eigenvalues in [—0.2, —0.3] and we obtain L, = [0.06,61.25] . Note that, since this observer is
designed for the linearized system, we have no guarantees that it satisfies an input-to-state stability
property for the nonlinear system. Moreover, we chose Ly = [0,0]" and we designed an extended
Kalman filter [98], described in Section 2.2.3, with Rggr = 1, Qpgr = 0.1 - I, and aggr = 0.01, to
obtain L,, which is thus a time-varying gain. Note that, in view of Remark 5.3, the results presented
in this chapter hold also in this case.

We simulate the proposed hybrid multi-observer, both without and with resets, considering the
initial conditions x(0,0) = (1,100), %,(0,0) = (0.5,50), n,(0,0) = O for all k € {1,...,4} and

1 0

0(0,0) = 1. The design parameters are selected v = 0.05, A; =1, Ay = o 10-4

] and ¢ = 1072,

Note that the condition v € (0, ] is satisfied.

Figure 5.6 shows the norm of the nominal estimation error, namely |e; |, as well as |e,, |, obtained
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FIGURE 5.6 — Battery example. Norm of the estimation error |e| (top figure), performance cost J
(middle figure) and o (bottom figure). Nominal (yellow), without resets (red), with resets (blue).

TABLE 5.4 — Battery example. Average MAE and RMSE.

no reset reset
‘ e, s % improv. eq s % improv.
MAE |28.10 3.37 87.99 |27.30 1.65 93.94
RMSE | 30.87 8.66 71.95 ‘ 2990 5.99 79.98

with or without resets. Moreover, the nominal performance cost J; and the costs J, obtained both in
the case without and with resets are shown in Figure 5.6, together with the signal o, which indicates
the selected mode at every time instant. Figure 5.6 shows that both solutions (without resets and
with resets) significantly improve the estimation performance compared to the nominal one.

As in the examples in Sections 5.7.1 and 5.7.2, we run 100 simulations with different initial
conditions for the state estimate of all modes of the multi-observer. In particular the first component
of ,(0,0) was selected randomly in the interval [0, 3] [V], while the second component of %, (0, 0)
was selected randomly in the interval [1,100] [%], for all k € {1,...,4}. All the other initial conditions
and the design parameters were selected as before. We evaluate the MAE and the RMSE as in the
examples in Sections 5.7.1 and 5.7.2 and the obtained results, given in Table 5.4, show the estimation
performance improvement. In this example, the case with resets outperforms the case without resets,
both in term of MAE and RMSE.

5.8 Conclusions

We have presented a novel hybrid multi-observer that improves the state estimation performance

of a given nominal nonlinear observer. Each additional mode of the multi-observer differs from the
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nominal one only in its output injection gain, that can be freely selected as no convergence property is
required for these modes. Inspired by supervisory control/observer approaches, we have designed a
switching criterion, based on monitoring variables, that selects one mode at any time instant by eva-
luating their performance. We have proved an input-to-state stability property of the estimation error
and the estimation performance improvement. Finally, numerical examples confirm the efficiency of
the proposed approach.

We believe that the flexibility of the presented framework leads to a range of fascinating research
questions, which are discussed in Chapter 7. In the next chapter, the proposed hybrid multi-observer

is applied for the state estimation of an electrochemical model of a lithium-ion battery.
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Abstract - Effective management and just-in-time maintenance of lithium-ion batteries require the
knowledge of unmeasured (internal) variables that need to be estimated. Observers are thus designed

for this purpose using a mathematical model of the battery internal dynamics. It appears that it is often

The results of this chapter are based on [82]. Note that in [82] we consider an earlier version, presented in [83], of
the hybrid multi-observer, while results in this chapter consider the final version of the hybrid multi-observer, presented

in Chapter 5 and based on [81].
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difficult to tune the observers to obtain good estimation performances both in terms of convergence speed
and accuracy, while these are essential in practice. In this context, we demonstrate how the hybrid multi-
observer presented in Chapter 5 can be used to improve the performance of a given observer designed for
an electrochemical model of a lithium-ion battery. Simulation results, obtained with standard parameters

values, show the estimation performance improvement using the proposed method.

6.1 Introduction

Lithium-ion batteries are widely used for the many advantages they exhibit in terms of volume
capacity, weight, power density and the absence of memory effect, compared to other energy storage
technologies. On the other hand, the so-called battery management system (BMS) is required for a
safe and efficient usage of the battery. The BMS impacts the battery performance and lifespan and
it depends on the actual state of charge (SOC) of the battery, which is directly related to the lithium
concentrations in the battery electrodes. An accurate knowledge of the SOC is therefore essential for
proper battery management. Unfortunately, the SOC cannot be measured directly and thus needs
to be estimated from the measured variables, typically the current and the voltage. To address this
challenge, a common approach is to design observers, based on a mathematical model of the internal
dynamics, to estimate the unmeasured internal states, see e.g., [116, 141]. This task is non-trivial
because of the nonlinear relationships between the internal variables and the measured ones. Several
approaches are available in the literature depending on the type of battery model (equivalent circuit
model, infinite/finite-dimensional electrochemical models) and the type of observers, see, e.g., [3,
97,142-148].

In this work, we focus on the finite-dimensional electrochemical model considered in [3,97,149],
which is derived from the infinite-dimensional models in [ 145, 146], as it offers a good compromise
between accuracy and computational complexity. The model takes the form of an affine system with
a nonlinear output map, where the system states are the lithium concentrations in the electrodes,
the input is the current and the measured output is the voltage. A globally convergent observer was
designed for this model in [97] based on a polytopic approach. The issue is that to tune this observer
to obtain both fast convergence and good robustness properties with respect to measurement noise
and model uncertainties is highly non-trivial. The objective of this work is to address this challenge
by systematically improving the estimation performance of an observer designed as in [97] using
a multi-observer approach (see, e.g., [5, Section 8.3]). In particular, we follow the hybrid metho-
dology presented in Chapter 5. We recall that the proposed technique consists in first designing a
nominal observer using [97] that satisfies an input-to-state stability property. Then, a bank of additio-
nal observer-like systems, that differ from the nominal one only on their gains, are added in parallel
to the nominal observer. The gains of these additional dynamical systems can be arbitrary selected
and do not need to be tuned to guarantee a convergence property of their estimation errors. These
gains can thus be selected using any analytical or heuristic method to improve the convergence speed
or the robustness of the nominal observer. Each of these systems, as well as the nominal observer,

is called mode for the sake of convenience. To evaluate the performance of each mode, monitoring
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variables are introduced. Based on these monitoring variables, the “best mode” is then selected at
any time instant and its state estimate is considered for the battery internal state estimation. The-
refore, the state estimate of the hybrid multi-observer switches between the states estimates of the
modes and thus it is called hybrid. The observer is modeled as an hybrid system using the formalism
of [31]. Note that, due to these switching, the state estimate exhibits discontinuities, which can be
a problem for batteries, as this means the SOC estimate would experience jumps. For this reason,
in this chapter, we add the filtered version of the hybrid multi-observer state estimate presented in
Section 5.3.6. We provide an input-to-state stability property with respect to measurement noise,
perturbation and disturbance for the hybrid system representing the lithium-ion battery and the
multi-observer implemented for its state estimation. To illustrate the efficiency of the hybrid scheme,
we present simulation results where a higher fidelity model of the battery is used to generate the
output voltage compared to the one used to design the observers. Using the technique in [97], we
first design the nominal observer, which shows good transient performance in terms of speed and
small overshoot, but whose accuracy in steady-state may not be satisfactory. To address this issue, we
select the gains of the additional modes of the hybrid multi-observer smaller than the nominal one,
with the aim of improving the robustness to noises and perturbations. Simulation results show that
the estimation performance are significantly improved with the hybrid multi-observer presented in

Chapter 5, thereby illustrating the potential of this approach.

6.2 Electrochemical battery model
We recall in this section the single particle electrochemical model of lithium-ion battery in [3].
6.2.1 Model description and assumptions

The lithium-ion battery cell, whose schematic is shown in Figure 6.1, is composed of four ele-
ments: two electrodes, one positive and one negative, that are separated by the separator and those
three components are immersed in a ionic solution, called electrolyte, which can exchange lithium
with the electrodes and provides electrical insulation. Therefore, the electrons cannot be exchan-
ged from one electrode to the other. Due to the electrodes structure, which consists in very small,
almost-spherical particles made of porous materials, the electrolyte can penetrate inside the elec-
trode, creating a large contact surface between each electrode and the electrolyte, which produces
an electrochemical coupling between the electrode material and the lithium dissolved in the electro-
lyte. Thus, each electrode has a certain potential and this produces a potential difference between
the positive and negative electrode. Since the electrons cannot be exchanged from one electrode to
the other within the battery, they will go through an external electrical circuit, if it exists, producing
a flow of electrons, that from a macroscopic point of view, corresponds to the current. Note that the
charges equilibrium in the electrodes and in the electrolyte is preserved at any time because when
lithium is removed from its source electrode, another is inserted in its electrode of destination. The

model in [3] relies on the next assumption.
Assumption 6.1. The following hold.
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Separator

Negative electrode Positive electrode

[ ] Electrolyte

FIGURE 6.1 — Battery model schematic.

(1) Each electrode in the model is composed of a single sphere particle of the average size of the
particles that compose the actual electrode.

(ii) The electrolyte dynamics is neglected.

(iii) The temperature is constant. O

Item (i) implies that each electrode can be reduced to a single sphere particle of the average
size of the particles that compose the actual electrode, which is the single particle model (SPM)
as in [3,97,147,150, 151]. In view of item (ii) of Assumption 6.1, the electrolyte contribution to
the output voltage will be represented by a resistive term. However, we will relax this item in the
simulation section to evaluate the estimation scheme robustness, see Section 6.4. On the other hand,
it is possible to relax the constant temperature assumption in item (iii) of Assumption 6.1 in view of
[3, Sections II.A and III.B], this is left for future work.

As explained in [3], in view of item (i) of Assumption 6.1, the main physical phenomenon is
the lithium diffusion in the electrodes, which can be described using partial differential equations
[145, 146]. To simplify the model and obtain a set of ordinary differential equations, each sphere
is spatially discretized in N, samples of uniform volume, corresponding to N, crowns, where the
subscript s € {neg, pos} denotes the negative or the positive electrode, see Figure 6.1. We assume for
this purpose that the lithium concentration in each crown of the sphere is constant. We denote by c?,
with i € {1,...,N,} and s € {neg, pos}, the lithium concentration in the i crown of the electrode,
where i = 1 corresponds to the one at the center of the electrode, while i = N; corresponds to the
one at the surface of the electrode. As in [3], we obtain the following set of ordinary differential

equations for the battery model. Fori € {2,...,N, — 1},

dc; Si1 Dy, Sia S; Ds Si D
L= s - + ¢+ ——— ¢, (6.1a)
dt  ri—ri,V} ri—Tio1 Tig1— 1) V; rign— 1 V;
fori=1,
dcs S D
1 _ 1 _5(_Ci +c5) (6.1b)

dt ro —1rq Vls
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and for i = Nj,
dcy S3
N, N~1 D _
- = : —(cy 1+ ) TKL (6.1¢)
dt N, —Tn—1Vy " s

where S? is the surface of the i sample of the electrode s, D; is the lithium diffusion coefficient, V:is

the volume of the sample i of the electrode and r; is the radius of the i sample of the electrode, with
SS

tot

ie{l,...,N,} and s € {neg,pos}. In addition, I in (6.1c) is the current and K} := ————>——,
’ I VlsasF 'dcellds

S

3¢
where a, := R_s’ SS

is the total surface of the electrode, ¢; is the volume fraction, R, is the radius,

S
F is the Faraday’s constant, .o/ is the cell area, d, is thickness of the electrode and s € {neg, pos}.

The quantity of lithium in solid phase is defined as

Nneg Npos
X neg. ,neg poS ,POs
Qui = neg ) GV + s 3 7V, (6.2)
i=0 i=0
F e, qd ) .
where a; 1= —— =S 4nd VS s the total volume of the electrode and s € {neg, pos}. This

© 3600 VS, tot
equation derives from the mass conservation of the lithium in the solid-phase, which holds since the

battery does not acquire or leak lithium materials over short time horizons.

Note that, from (6.2), we can express the concentration of lithium at the center of the negative

electrode c?eg as a linear combination of all other sampled concentration in solid phase,

Nneg Npos
neg neg neg pos _pos
¢ =K+ Z B e+ Z Bi e (6.3)
i=2 i=1
Q neg a pos
L . ; . os Vi .
with K := %, BiE = ——gg forany i€ {1,..., Ny} and Br” = — P g forany i €
V1 aneg V neg 1

1
{1,..., Npos}- Equation (6.3) allows to reduce the dimension of the system state, which corresponds

to the vector of the lithium concentrations in each sample of both electrodes and is defined as

. neg neg _pos pos n
x = (c, s Oy s € ""’CNpos) e R™ (6.4)

with n, 1= Npeg — 1 4 Nps.

We now derive the output voltage equation of the lithium-ion battery model. Its main components
are the open circuit voltages (OCVs), which are the potential differences between the electrodes
and the electrolyte without current and vary with the lithium concentration at the surface of the
electrodes. An example of the OCVs is shown in Figure 6.3.

As in [3], the output voltage is
Y 1= OCVpyo5(HposX) — OCVyeq(HpegX) + g(u) € R (6.5)
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where u corresponds to the input current I,

1
Hneg = (01>< (Nneg—2)> Cmq’ 0, XNPOS) e R
e (6.6)
Hpos:: (01><(N—1)a max)eRlxnx
pos
and g(u) := g1(u) + &2(u) + g3(u), with
RT _Rpos
g1 (u) = 2?Argsh( o5 u),
6€pos]0 “‘Z{celldpos
RT Rpeg
g (u) = —2—Argsh( - u), (6.7)
F 6€neg](r)1eg°‘2{celldneg
1 dneg dpos
g3(u) := —( ( + ) + Qadd) u,
2""Z{cell O-neg Opos

where R is the gas constant, T is the temperature, j; is the exchange current density, o is the elec-

tronic conductivity, with s € {neg, pos} and 2,44 is the additional resistivity. Moreover, Argsh(&) =

In(§ ++/&2+1) for any £ € R.

6.2.2 State-space representation

We consider the state-space model of the lithium-ion battery presented in [3], where we recall

that the system state corresponds to the vector of the lithium concentrations in each sample of both

g neg _pos pos
s Oy €Y e Oy

the current I and the system output y is the output voltage. The model is of the form

electrodes x = (clzle ) € R", with n, = Npeg + Npos — 1. The system input u is

x=Ax+Bu+K+Ev

y = h(x) + g(w) + w, ©8

where v € R™ is an unknown disturbance input, w € R is an unknown exogenous input affecting the
output map and E € R™*™, The matrices Ae R™*" B e R™*! K e R™*! are given by

A
A= T2 (6.9a)
A dlag(Aneg,Apos)7

“neg
A= 22, (6.9b)
0(nx—2) x1

and Ay e, € RV™ in (6.9a) is defined as

with

. ( ~neg =neg  negneg neg,neg neg,pos neg,pos
A neg = (vz Vo Vara ot Vo INn, Y211 ...vz’l,Npos), (6.9¢)
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while A € RMNies=2"Mnes—2 resp. Ao € RNwos*Noos | as

neg

Aneg = diag(.u'i)ifﬁ + diag(ﬂineg) + diag(‘ur}?g)

Apos 1= diag(ufy” ) + diag(1;>**) + diag(ul7")

forie {3,...,Npeg}, resp., forie {1,...,N,o}, where diag denotes the lower diagonal, diag denotes

the upper diagonal,

i)neg__ negneg  neg neg

2 T Va1 Mo1 —Hyos
sneg ., _negneg neg
o = Vo3 THyo
S
D S3
s . S J
P S B (6.9d)
I VA PR
i 1+l

j
MS . S S
Mi = =M — My
s,s’

’
PR S
Vije = My

where ﬁl.neg and fa’ipos are defined in (6.3), a, is defined in (6.2) and i, j,z € {1, ....,N,},s,s’ € {neg, pos}.
The matrix B is defined as

B = (0N, 1 — K7 O, )1 K7)T, (6.10)
where K’IS, s € {neg, pos} defined in (6.1c). The matrix K is defined as
K:= (_Mlzl,elgk O(N—l)xl)T: (6.11)

where K is defined in (6.3).

The function h : R™ — R in (6.8) is defined, from (6.5), as, for any x € R"x,
h(x) := OCV}pos(HposX ) — OCVyeq (HpegX ), (6.12)

with H, and Hp,, defined in (6.6). We assume thatu : Ry — R™, v : Ry > R™andw:Ryy —» R
are such that u € %,,, v € ¥y and w € ¥, for closed sets % < R™, ¥ < R™ and # < R, which is

very reasonable for lithium-ion batteries.

A block diagram representing the system model is shown in Figure 6.2.2. In particular, sys-
tem (6.8) describes the relation between the current input, the voltage output and the lithium
concentrations in the electrodes, which are represented with the system state. As explained in the
introduction, for a safe and efficient usage of the battery, the battery management system (BMS)
requires the knowledge of the actual state of charge of the battery, which is related to the lithium

concentrations, i.e., the system state, as we describe in the next section.
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(—:p0575POS
. S0C := 100 o2 S0C
" —pos . 1 Npos _posy ,pos
i g i &V
v ‘W
U=l Ax+ButK+E X Y ) gl v w y=r
X = u v > >
h(x) = OCVpos(CII\)I:jS) - OCVneg(CJI\II:i)
ut
. — 2pos _ opos —
2, S0C, = 10053 SoC,
2pos . 1 Npos ApOS+ ,POS
i g NGV,
y R N
u | AL , . r1
gt :AX1+BU+K+L1(y_y1) > J1 =h(x1)+g(u) o
!

FIGURE 6.2 — Block diagram representing the electrochemical lithium-ion battery model (orange)
and nominal observer (blue).

6.2.3 State of charge (SOC)

The lithium concentrations in the electrodes are related to the state of charge (SOC) of the battery
(see Figure 6.2.2), which is an essential information. Indeed, the SOC is defined as, for all t > 0,

ePos(t) — 2

SOC(t) = 100W (613)
€100 ~ %o
with
1 Npos
PO (t) = P (e)vEe, (6.14)
Voo i1
where ¢g and ¢}, are the lithium concentrations in the positive electrode at SOC = 0 % and at

SOC = 100 %, respectively, V" is the total volume of the positive electrode and VipOS is the volume
of the i sample of the positive electrode. The concentrations in the positive electrode are considered
in (6.13); the same value for the SOC would be obtained by considering the concentrations in the
negative electrode. Hence by estimating the concentrations in the electrodes, we will be able to also

estimate the SOC. We now design an estimation scheme for this purpose.

6.3 Hybrid multi-observer design

In this section we recall the hybrid multi-observer presented in Chapter 5. The hybrid multi-

observer consists of the following elements:
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— nominal observer, here we consider the one proposed in [97], which satisfies an input-to-state

stability property, as required by Assumption 5.1;

— N additional dynamical systems with the same structure as the nominal observer, but with a
different output injection gain, that can be arbitrarily selected. Each of these systems, as well

as the nominal observer, is called mode for the sake of convenience;
— monitoring variables used to evaluate the performance of each mode of the multi-observer;

— selection criterion, that selects one mode of the multi-observer at any time instant, based on

the performance knowledge given by the monitoring variables;

— reset rule, that defines how the estimation scheme may be updated when a switching of the

selected mode occurs;

— filtered version of the hybrid multi-observer state estimate to produce a continuous state esti-

mate, which is important for the considered application.
6.3.1 Nominal observer

Inspired by [97], we design a nominal observer that satisfies the input-to-state stability property

in Assumption 5.1. We make the next assumption for this purpose.
Assumption 6.2. The parameters of the model are known. O

The nominal observer has the form

.);%1 :A),(\f]_ +BU+K+L1(}/—§/1)

o A (6.15)
1 =h(x1) + g(u),

where %; € R™ is the state estimate, y; € R is the estimated output and L; € R™*! is the output
injection gain, that needs to be designed; we use the subscript 1 because the nominal observer in
(6.15) is the first element of the multi-observer that we will design in Section 6.3.2. The nominal
observer (6.15) estimates the lithium concentrations in the electrodes, represented by X, from which
it is possible to obtain an estimate of the state of charge (SOC) of the battery using equation 6.13, see
Figure 6.2.2. While (6.15) involves the plant input u, possible mismatches on the input current known
by the plant and the observer, which often occur in practice, can be modeled using the disturbance
input v and the exogenous input w in (6.8), as we will do in Section 6.4.

We define the state estimation error as
e; =X — X;. (6.16)

As in Assumption 5.1, we define a perturbed version of the e;-dynamics, which is given by, in view
of (6.8) and (6.15),
él :Ael +EV—L1(h(X>—h(J%1))—L1W—d, (617)

where d € R™ represents an additional artificial perturbation on the output injection term Ly (y — 31 ).
We recall that to consider the perturbed dynamics in (6.17) with extra input d is required to check
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one of the key assumptions of the hybrid multi-observer presented in Chapter 5, which is needed to
establish the main result of the work.

We design the observer gain L; to guarantee a convergence property of the estimation error e;.
In particular, L, has to be designed such that the origin of (6.17) satisfies an input-to-state stability
property with respect to v, w and d. To design the observer gain L, we make the next assumption
on the OCVs, which is taken from [97, Assumption 5].

Assumption 6.3. There exist constant matrices Cy,...,C4 € RY*" such that, for any x, x' € R™,

h(x) —h(x") = C(x,x")(x — x'), (6.18)

4 4
where C(x,x'):zZAi(x,x)C with A; € [0,1] Z (x,x"y=1andie{1,...,4}. O
i—1 i=1

Assumption 6.3 means that the output map h lies in a polytope defined by the vertices C;, with
i€ {1,...,4}. This condition is often verified in practice. Indeed, the OCVs are generally defined on
the interval [0, 1] by experimental data and they are well-approximated by a piecewise continuously
differentiable function. Moreover, the OCVs only depend on the surface lithium concentration of the
negative and positive electrode. Consequently, the output map h only depends on two states of the
system and the set of C; has only 22 elements, which are obtained from the maximum and minimum

slopes of the OCVs. Using Assumption 6.3, (6.17) becomes
e1 =(A—L,C(x,%1))e+Ev—Lw—d. (6.19)

To design the observer output injection gain L; we follow a polytopic approach as described Sec-

tion 2.2.3 and we propose a modified version of [97, Theorem 1] below.

Theorem 6.1 (Input-to-state stability property of the nominal observer). Consider system (6.19). If
there exist L, € R™*1, a, u,, U, and ug € R-q and P € R™*™ symmetric positive definite such that

# +aP  PE —PL, -p
ETP —u,I 0 0
L <o, (6.20)
~L]P 0 I, 0
—P 0 0 _»udlnx

with # := (A— L,C;)'P + P(A— L,C;) foralli € {1,...,4}. Then V : e; — elTPel satisfies, for any
eteR™, ve¥,we# andd e R™,

Amin(P)]e1* < V(e1) < Amax(P)le1 %, (6.21)

(VV(ey),(A—LiC(x,%1))ey + Ev —Lyw —d) < —aV(ey) + u,|v|® + u[w|? + ugld|?>.  (6.22)

O
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Proof. The proof of Theorem 6.1 follows similar steps as [97, proof of Theorem 1].

Lete; e R™ and V(e ) = elTPel. Since P is symmetric positive definite, (6.21) is obtain from
the definition of V.

Letve ¥,we ¥ and d € R™, using (6.19) and C(x,%;) = Z?:l Ai(x,%;)C;, we have

(VV(ey),(A—L;C(x,%;))e; + Ev—Liw—d)

[(A— L C(x,%1))e; + Ev — Liw —d] " Pe; + e P[(A— L C(x,%1))e; + Ev — Liw — d]
4

Ai(x, %) [elT ((A—L,C;))"P+P(A—L,C;))ey + v E Pe; +e] PEv—w'L] Pe;
1

1
— ¢/ PL,Dw—d Pe, —e] Pd|.

(6.23)
Defining y := (ey,v,w,d), using #, = (A— L1C;) P + P(A— L,C;) for all i € {1,...,4},
(6.23) becomes

(VV(e1),(A—L1C(x,%1))e; + Ev—Liw—d)
# PE —PL, —P

4 T 6.24
“Soatei"| S 0 o o
= —L/Pp 0 0 O
—P 0 0 0
4

Using Z Ai(x,%;) =1 and (6.20) for alli € {1,...,4}, we obtain
i=1

(VV(ey),(A—LiC(x,%;))e; + Ev—Liw—d)

—aP 0 0 0
) 0 +ul 0 0
< Al x) " 0 o X
= tily, O
0 0 0 +ugly,
—aP 0 0 0 (6.25)
S I S 0
= x
0 0 +uyl, O
0 0 0 +ugl,,

= —aelTPel + uvalnvv + ,uWWTInww + MddTInxd
= —aV(eq) + ty|v[* + thy|w]* + pald]*.

This concludes the proof.

Theorem 6.1 guarantees that the nominal observer (6.15) satisfies an input-to-state stability property

with respect to the disturbance v, the exogenous perturbation w and the additional perturbation d.
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This implies that the estimation error e; exponentially converges to a neighborhood of the origin,
whose “size” depends on the £., norm of v, w and d. As a result, Assumption 5.1 is satisfied. The
possible drawback of observer (6.15) with L, designed as in Theorem 6.1 is that to tune the observer
gain L, to obtain good estimation performance both in speed of convergence and robustness to
measurement noise, exogenous perturbation and disturbance is very difficult in general. For this
reason, we apply the hybrid multi-observer presented in Chapter 5 with the aim of improving the
estimation performance of (6.15).

6.3.2 Hybrid multi-observer

In this section we recall the hybrid multi-observer we presented in Chapter 5, which is then used
to improve the estimation performance of the nominal observer (6.15). For this purpose, we consider
N additional dynamical systems with the form of (6.15), where the number N € Z_ , is freely selected
by the user, but with a different output injection gain, i.e., for any k € {2,...,N + 1}, the k™ mode
of the multi-observer is given by

% =A%, +Bu+K+ Li(y — 33

N N (6.26)
i = h(Xe) + g(u),

where X; € R is the mode k state estimate, j; € R is the mode k estimated output and L; €
R™*! s its output injection gain. Since there is full freedom on the selection of the gains L, with
ke {2,...,N + 1}, there are no convergence guarantees on the estimation errors e; := x — X;, with
ke{2,...,N+1}. Arecommended approach to select the gains L;’s is to consider the behaviour of the
nominal observer in (6.15) in simulation and, based on that, to select the additional gains depending
on the property we want to improve. For instance, if the convergence speed of the estimation error e;
is too slow, we may define the L; by increasing the values of L. On the opposite, if the convergence
speed of e; is satisfactory but its accuracy for large time is not satisfactory, we may select the gains
L; with small values, as we will do in Section 6.4. As explained in Chapter 5, there are many other
approaches that can be followed to select the additional gains. For example, we may pick them in a
neighborhood of the nominal one or design one additional gain for each vertex of the polytope. Note
that these gain selection criteria may result in diverging estimation errors for some of the modes, still
the overall hybrid scheme we present does ensure the (approximate) convergence of the obtained
state estimation error to the origin.

To select which state estimate X, k € {1,...N + 1}, we need to consider, we evaluate which
mode has the best performance. To define performance, we introduce monitoring variables, denoted
Nk € Ry, with ke {1,...,N + 1}, whose dynamics are

Me ==V + (¥ = Ji) T (A1 + LA L) (y — i) (6.27)

with A} € S and A, € S;"O with at least one of them positive definite and v € (0,a] a design
parameter, with a from Theorem 6.1. As explained in Chapter 5, the monitoring variables represent
the cost of the modes. Consequently, the idea is to select the mode that produces the minimum
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monitoring variable, and thus the minimum cost, at any time instant. Note that, we can freely choose
the initial conditions of these monitoring variables, 1, (0) € R-(, with k € {1,...,N + 1}. This extra
degree of freedom can be used to initially select or penalize one or more modes of the multi-observer,
as we do in simulation in Section 6.4. The signal o : Ry — {1,...,N + 1} is used to indicate the
selected mode at any time instant. The corresponding state estimate, monitoring variable and state
estimation error are denoted X, 1, and e, respectively. We denote with t; = 0 the initial time and

with t; e Ry, i € Z- the times when a switch of the selected mode occurs, i.e.,

ty:=inf{t > t;_; : 3k e {1,...,N + 1}\{o(¢t)} such that n;(t) < g (L)} (6.28)

Consequently, for alli€ Z_,, o(t) =0 for all t € (t;_;,t;) and

o(t)e affnrl[in(—v”f)k(fi) +(r(t) = Ir(t)) T (Ag + L ML) (v (8) = Fie(87))), (6.29)
€
where I1(n) :=  argmin  n with :={n,...,ny41}, forallne R];arl.

ke{1,...N+1}\{o}

Finally, when switching occur, two possible reset rules are considered. In the first one, called
without resets, only the signal o is updated. Conversely, the second option, called with resets consists
in not only switch the selected mode, but also resetting the state estimates and the monitoring va-
riables of the additional modes to the updated values X, and 7. Note that the state estimate and
monitoring variable of the nominal observer is never reset. In addition, a regularization parameter
€ € R, is introduced to avoid infinitely fast switching, which guarantees the existence of a semi-
global average dwell-time. The detailed equations of the state estimates and monitoring variables

updates are given in Section 5.3.4. We do not rewrite them here to avoid repetitions.

The state estimate X, produced by the hybrid multi-observer may be discontinuous, which can
be problematic for batteries. For this reason, as explained in Section 5.3.6, we add a filtered version
of X, denoted X, whose dynamics between switching is given by

Xp = —(Rf + (ko (6.30)
where ¢ > 0 is an additional design parameter and, at switching times t; € R.(, with i € Z_,

Rp(67) = 2 (1y). (6.31)

6.3.3 Hybrid model and stability guarantees

Including X, we obtain a new hybrid model for the hybrid multi-observer compared to the one
presented in Section 5.3.7, whose state is defined as

q = (x,)%]_,...,)%N_;'_l,nl,...,T’N_;'_]_,O',)%f) EQ, (632)

159



Chapter 6. Application to lithium-ion batteries

with
2 =R x RVFUm S RS {1, N +1} x R™. (6.33)

The hybrid system is given by

q:Fq,u,V,W, qe(g
{ ( ) (6.34)

q" €G(q), qe 2,

where the flow map F is obtained from (6.8), (6.15), (6.26), (6.27) and (6.30), the jump map G
follows from the above developments, (6.31) and is similar to the jump map in (5.28). The flow and
jump sets, € and 2, are defined, similarly to (5.26) and (5.27), as

€ :={qeQ:Vke{l,...,N+1} n=n,}, (6.35)
92:={qe:3ke{l,...,N+1}\{o} N <Ny} (6.36)

Similarly to Theorem 5.1, the next theorem ensures that system (6.34) satisfies a two-measure
input-to-state stability property with respect to the disturbance v and the perturbation w [104], see
Definition 2.13.

Theorem 6.2 (Two-measure flow input-to-state stability property). Consider system (6.34) and sup-
pose Assumptions 6.1-6.3 hold and L is selected such that condition (6.20) in Theorem 6.1 is satisfied.
Then, there exist By € X ¥ and yy € K, such that for any input u € %y, disturbance input v € £y,

and exogenous perturbation w € %, any solution q satisfies

[(ex (£, 1), m(t, 1), €6 (8, ), no (8,1), €5 (£, 1) < Bu (| (€(0,0),m(0,0))], ) + vy (Vi + IWlo,)

(6.37)
for all (t,j) € domgq, with e := (ey,...,en41), M := (N1,-->MN+1)s €0 1= X — X, and ep 1= xp — Xy,
where x¢ is the filtered system state as defined in (5.21)-(5.22). O

Sketch of proof. We first note that all the conditions of Theorem 5.1 are satisfied. Indeed, thanks
to Theorem 6.1, Assumption 5.1 holds with a(|e;|) = AninPle1|? @(le1]) = AmaxP|e1|* for all
e; € R™ and v, (|v]) = uy |[v[%, ¥ (Iw]) = wy,|w|?> and y = uy, forallv € ¥ and w € #. Moreover,
Assumption 5.2 is satisfied thanks to Assumption 6.3 and because the Lyapunov function V in
Theorem 6.1 is quadratic. We can then follow similar steps as in the proof of Proposition 5.1
and Theorem 5.1 to obtain the desired result. Note that, having X as part of the hybrid state is
not a problem. Indeed, as explained in Section 5.3.6, the filtered estimation error system is an
input-to-state stable system in cascade with the hybrid system considered in Theorem 5.1, see
[6, Section 41]. [ |

Theorem 6.2 ensures that the estimation errors and the monitoring variables of the nominal
observer e; and 71, converge to a neighborhood of the origin, whose “size" depends on the £, norm

of v and w, which is not surprising in view of Theorem 6.1. However, Theorem 6.2 also guarantees
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that the state estimation error and the monitoring variable of the hybrid multi-observer e, and 7,
and also the filtered version of the estimation error, namely e, converge to the same neighborhood
of the origin. Hence, the convergence of the (filtered) state estimate produced by the hybrid scheme
is guaranteed despite the fact that the gains L; in (6.26) were freely selected.

6.4 Numerical study

In this section, we compare the estimates generated by a nominal observer (6.15) and the asso-

ciated hybrid multi-observer (6.34) with standard parameter values.

6.4.1 System model

We assume that each electrode is composed of 6 samples with identical volumes. Consequently,
Npeg = Npos = 6 and n, = Nyeg — 1 + Npos = 11. We consider the parameters in Table 6.1. We take
a measurement noise equal to 0.05sin(30t) V, which has a reasonable frequency and signal versus

noise ratio for embedded battery voltage measurements. The input w in (6.8) is given by
w = 0.05sin(30t) + wy(t) (6.38)

where w, is an additional term due to the input mismatch between the battery and its observer as
clarified in the sequel. The considered OCV curves for the positive and the negative electrodes are

shown in Figure 6.3, which satisfy Assumptions 5.2 and 6.3.

6.4.2 Input current

The input u is given by a Plug-in Hybrid Electrical Vehicles (PHEV) current profile [152]. In
practical applications, the observer usually only knows a biased version of the battery current. This
bias is due to the precision of the sensor and its conditioning. We therefore introduce Iy;,..q to denote

the input u known by the observer, which is given by, for all t > 0,

0 I(t)=0
Tjased (£) = I(t)+0.01 tfg[%ﬁ] [I(t*)] I(t)>0 (6.39)
I(t)—0.01 max |I(t*)] I(t)<O
t*€[0,t]

We consider a precision of 1% on the full scale for the current bias, which corresponds to a standard
sensor. The PHEV current input I and its biased version Iy;,5.q are shown in Figure 6.4. This mismatch
in the current input of system and observer can be modeled using the disturbance input v and the

exogenous perturbation w in (6.8). Indeed, the plant input
u=1I1-= Ibiased +v, (640)

where v is defined as
vi=1I-— Ibiased' (641)
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TABLE 6.1 — Physical parameters of the electrochemical model.

"‘chell

]
@

AR Z N D

SRS
g a2

neg
CO,pos
CO,neg
ClOO,pos
C1()0,neg
Cmax,pos
Cmax,neg
O pos
(02

neg

Cell area [m?]

Faraday’s constant [C/mol ]

Gas constant [J /K /mol]

Temperature [K]

Order of the model [-]

Thickness of the positive electrode [um]
Thickness of the negative electrode [um]
Lithium diffusion coefficient [m?/s]
Lithium diffusion coefficient e [m?/s]

Lithium concentration at SOC = 0% [mol.L}]
Lithium concentration at SOC = 0% [mol.L™}]
Lithium concentration at SOC = 100% [mol.L™!]
Lithium concentration at SOC = 100% [mol.L™!]

Maximum concentration [mol.L ']
Maximum concentration [mol.L ']
Electronic conductivity [S/m]

Electronic conductivity [S/m]

Particle radius [um]

Particle radius [um]

Exchange current density [A/m?]
Exchange current density [A/m?]
Volume fraction of the material

within the positive electrode [-]

Volume fraction of the material

within the negative electrode [-]
Lithium quantity in cell solid phases [Ah]
Cell capacity [Ah]

Additional resistivity [Q2]

Ionic diffusion time constant [s]

Ionic diffusion time constant [s]

Ionic diffusion time constant of separator|s]
Ionic diffusion resistance [uf2]

Ionic diffusion resistance [uf2]

Ionic diffusion resistance of separator [uf2]

1.0452
96485
8.3145
298.15

7

36

50

3.723 x 10710
2x 10716
23.01
3.167
9.182
11.75
23.9

16.1

10

100

1

1

0.5417
0.75

0.5

0.58
14.8318
6.9725
0

13.0
17.3
12.3
153.9
209.5
115.1




6.4. Numerical study

1 5
— . 0.75
-,
iy
s 05
o~
O
Q 0.25¢
0 : : : : 2.5 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
surf surf
o o
FIGURE 6.3 — OCV curves.
80 T T
—1
60 - Ibiased i
of I I 0| . :
_20F 15 |
=
0 10 —
220 5 N
-40 850 875 900 |
-60 | |
0 500 1000 1500

Time [s]

FIGURE 6.4 — Input current profile and its biased version available to the observer.

With the matrix E equal to the matrix B, we obtain
X = AX + Blyjaseq + K + Bv. (6.42)
Moreover, to model the input mismatch in the output map, we define
wy = &(Ibiased) — &(I), (6.43)

so that win (6.8) is
w = 0.05sin(30t) + g(Ipjased) — &(I)- (6.44)
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High fidelity model for battery Low fidelity model for observer
Nipos, sys = Nneg, sys = 6 Nipos, obs = Nneg, obs = 4
Electrolyte dynamics No electrolyte dynamics
System dimension Ngys = 14 Observer dimension Ny, = 7
PHEV current input Biased PHEV current input
No measurement noise Measurement noise w = 0.05sin(30¢t)

TABLE 6.2 — Different fidelity models for system and observer design.

6.4.3 Electrolyte dynamics

To test the robustness of the estimation scheme, we consider a model of the electrolyte dynamics,
as in [148, Section IVB], thereby relaxing item (ii) in Assumption 6.1. Consequently, the battery

output voltage becomes

y = ons - Qneg - Qsep: (6~45)

where y is the battery output from (6.8) and p,, with r € {pos, neg or sep}, is the electrolyte diffu-
sional overvoltage in the positive electrode, negative electrode or separator, which dynamics is given
by

Or = —0r/S1,x T US21/S1p5 (6.46)

where ¢, , and ¢, are the ionic diffusion time constant and ionic diffusion resistance in r. Howe-
ver, these electrolyte dynamics are ignored below when designing the nominal observer and the

additional modes.

6.4.4 Nominal observer

We now design the nominal observer in (6.15). To test its efficiency, we design it with a smaller
number of samples compared to the system model in (6.8). In this way, a higher fidelity model is
used to generate the output voltage. We thus select Nyeg obs = Npos, obs = 4 and 1y ghs = Npeg obs —
1+ Npos, obs = 7, while the battery model is 11 + 3, where the 3 additional dimensions are due to the
electrolyte dynamics in Section 6.4.3. All the differences between the system used for the observer
design (both nominal observer and hybrid multi-observer) and the one considered in the simulations

for the battery system are summarized in Table 6.2 and Figure 6.5.

We then solve (6.20) and we obtain
L, = (28.03,27.78,28.77,—45.54,—45.72, —44.78, —46.28). (6.47)
The system is initialized with a state of charge of 100%, which corresponds to

x(0,0) =(11.75,11.75,11.75,11.75,11.75,9.182,9.182,9.182,9.182,9.182,9.182), (6.48)
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FIGURE 6.5 — Block diagram describing the different fidelity models for system and observer design.

while the nominal observer is initialized with a state of charge of 0%, which corresponds to
%1(0,0) = (3.069, 3.069, 3.069, 23.01,23.01,23.01, 23.01). (6.49)

Therefore, the state of charge estimation error is initialized at 100 %, which is the largest possible
initial estimation error. The electrolytes diffusional overvoltages are initialized at p,(0, 0) = 0 for any
r € {pos, neg, sep}. The lithium surface concentrations, and their estimations, of both the negative

and positive electrodes are shown in Figure 6.6, together with the state of charge and its estimate.

The nominal observer has good performance in terms of speed of convergence, see Figure 6.6.
Indeed, despite the large initial error for the SOC, the nominal observer estimate converges fast
to the actual SOC. However, the observer estimates is very sensitive to measurement noise, model
mismatch and input bias, which impact the estimation performance especially when the estimation
error reaches a neighborhood of the origin. Consequently, the hybrid multi-observer is designed in
the next section with the aim of improving the estimation performance in terms of robustness to
measurement noise, model mismatch and input bias, while preserving the fast convergence of the

nominal observer.

6.4.5 Hybrid multi-observer

We design the multi-observer adding N = 3 additional modes (6.26) in parallel to the nominal
observer. Since small gains typically help with respect to noise, we chose the additional gains smaller
than the nominal one, even though they may not result in converging estimation errors. In particular,
we select L, = L;/10, L3 = L;/100 and L, = 0. The gain L, = 0,1 does not lead to a “converging
mode” but it is the best choice to annihilate the measurement noise. Simulations suggest that the
SOC estimation error of the modes with L, and L3 converge, while the one with L, does not. Note
that, in the choice of the additional gains we exploited the complete freedom given in Section 6.3.
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6.4.6 Initialization and design parameters

The state estimate of the additional modes, X, with k € {2,...,4} are initialized at the same
value as X in Section 6.4.4. We select 1(0,0) = 1 and 1;(0,0) = 10 for all k € {2, 3,4}, 0(0,0) = 1
and %7(0,0) = %5(0,0)(0,0) = %1(0,0). This choice of initializing the nominal monitoring variable
1, smaller than the monitoring variables of all the additional modes is because the transitory per-
formance of the nominal observer is good and this choice, together with the initialization of o at
the nominal observer, allows to select the nominal observer for some amount of time at the begin-
ning of the simulation. We simulate the proposed hybrid multi-observer with v = 0.005, A; = 1,
Ay =0.005-1,, ¢ = 10~* and { = 3. Note that, the condition v € (0, a] in Proposition 5.1 is satisfied.
Indeed, for the considered lithium-ion battery, we have a = 0.01 in Theorem 6.1.

6.4.7 Results

surf
neg

together with their estimates using the nominal observer, the hybrid multi-observer and

The lithium surface concentrations of both the negative and positive electrodes, namely ¢

surf

and Chos >

its filtered version are shown in Figure 6.7 for the case without resets and in Figure 6.8 when the
case with resets is considered. We recall that the lithium surface concentrations are elements of the
system state and therefore Figures 6.7 and 6.8 show that the hybrid multi-observer improve the state
estimation performance compared to the nominal observer both in the case wihtout and with resets.
Moreover, using (6.13), we obtain the state of charge (SOC) and its estimates with the nominal
observer and the hybrid multi-observer (filtered and not) and, from these, we evaluate the norm of
the state of charge estimation errors. The results are shown in Figures 6.7 and 6.8, where we see
that the state of charge estimate is improved, both on the averaged value and on the oscillations,
using the hybrid multi-observer both when the resets are implemented and when they are not. The
obtained performance improvement is commonly considered to be significant for this application.
The last plot in Figures 6.7 and and 6.8 represents the signal o which indicates the mode that is
selected at every time instant. In Figure 6.9 we compare the results obtained in the case without
resets with the ones from the case with resets. In particular, the first plot of Figure 6.9 shows the
norm of the state of charge estimation errors (filtered and not) both in case without resets and with

resets and the second plot of Figure 6.9 represents the signal o in both cases.

To further evaluate the effectiveness of the proposed hybrid multi-observer, we have run 100 si-
mulations with different initial conditions, both in the case without and with resets. In particular, the
initial state of charge estimate of all the modes of the multi-observer SOC, (0, 0), with k € {1,...,4},
were selected randomly in the interval [0, 100]%, while the battery state of charge was always ini-
tialized at SOC(0,0) = 100%. We considered the same choice as before for all the design para-
meters and initial conditions of the monitoring variables 7;, with k € {1,...,4}, o and p,, with
r € {pos, neg, sep}. To quantify the improvement brought by the hybrid multi-observer, we eva-
luate the mean absolute error (MAE) and the root mean square error (RMSE), averaged over all
the simulations, on the SOC estimation error obtained with the nominal observer and the proposed

hybrid multi-observer, filtered and not, both in the case without and with resets. The data collec-
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estimate no reset (green), o-estimate reset (purple), filtered estimate reset (red).

ted are shown in Table 6.3 for the whole simulation time t € [0,1500]s, during the transitory for
t € [0,150] s and after the transitory for t € [150, 1500]s. Note that the data for e; without and with
resets are slightly different because the 100 initial conditions were randomly selected and thus they
may be different in the simulations without and with resets.

Table 6.3 shows that the hybrid multi-observer unfiltered improves the estimation performance,
especially at large times as desired both in the case without and with resets. Indeed, both the MAE
and the RMSE are almost always smaller compared to the ones of the nominal observer, except for
the transient data in the reset case, where the performance are a bit worse. Moreover, the filtered
version, even if during transient has worse performance compared to the nominal observer, after the
transient the improvement is clear and, the performance can be also better than the corresponding

unfiltered version.

6.5 Conclusions

We have applied the hybrid multi-observer presented in Chapter 5 to improve the estimation
performance of the observer based on a polytopic approach designed in [97] to estimate the lithium
concentration of the electrodes of an electrochemical battery, which is directly related to the state of
charge. Simulations based on standard model parameter values have illustrated the potential of this
approach to improve the state of charge estimation performance. Possible future research perspective

are given in Chapter 7.
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TABLE 6.3 — Average over 100 simulations with different SOC, (0, 0), with k € {1,...,4}, of the MAE
and RMSE of the SOC estimation error (egoc) for t € [0,1500]s (tot), t € [0,150]s (tran) and
t € [150,1500]s (end).

no reset reset
€soc,1  €soc,o  €soc,s %improv.o | €soc,1  €soco  €soc,f % improv. o
MAE,[%] | 083 078 078 6.16 | 0.84 0.80 0.79  4.13
MAE,,,[%] | 087 085 090 266 | 083 088 093 -6.53
MAEq[%] 0.83 0.77 0.76 6.61 084 0.79 0.78 5.47
RMSE, [ %] 1.73 1.58 1.77 8.75 1.67 147 1.64 12.14
RMSE,,,[%] | 3.41 3.41 4.17 0 3.06 3.07 3.74 0
RMSE 4[%] | 1.30 1.09 1.08 15.91 1.31 1.02 1.01 22.07

This chapter concludes the second part of the thesis where we have presented a hybrid multi-
observer to improved the estimation performance and we have applied the proposed technique to a
electrochemical model of a lithium-ion battery. In the next chapter we will conclude the thesis and
we will discuss possible future research directions.
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Chapter

Conclusions

This thesis focuses on the use of hybrid techniques to solve two important state estimation pro-
blems, namely the event-triggered observer design and how to improve the state estimation perfor-
mance of a given nonlinear continuous-time observer. In Chapter 1 we have introduced the thesis
and some preliminaries on observers and hybrid systems were given in Chapter 2. The first part of
the thesis focuses on event-triggered estimation. In particular, in Chapter 3 we have presented results
for linear time-invariant systems, which were extended in Chapter 4 to general perturbed nonlinear
systems in a decentralized scenario. The second part of the thesis focuses on a hybrid multi-observer
that aims at improving the state estimation performance. The proposed technique has been descri-
bed in Chapter 5 and it has been applied for the state estimation of a electrochemical lithium-ion
battery model in Chapter 6. Below we summarize the contributions of Chapters 3-6. We then present

possible future work directions.

7.1 Summary

7.1.1 Event-triggered estimation

In Chapters 3 and 4, we considered the setting where the output measurements are transmitted
from the plant to the observer via a packet-based communication network and we have presented
an event-triggered observer design in order to sporadically transmit over the digital network while
still obtaining accurate state estimates. In particular, we have proposed a dynamic triggering rule,
inspired by [49], implemented by a smart sensor, which decides when the measured output needs
to be transmitted to the observer through the digital network. We recall that the proposed triggering
rule does not require a copy of the observer in the sensor and thus the sensors are not required to
have significant computation capabilities, as they only need to run a local scalar filter. The results
are first presented in Chapter 3 for unperturbed linear time-invariant systems and are generalized
in Chapter 4 to perturbed nonlinear systems and to a decentralized setting, where the sensors are
grouped in N nodes and each node decides when its measured data is transmitted to the obser-

ver independently from the others. Both in Chapter 3 and 4 we have modelled the overall system
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as a hybrid system using the formalism of [31], where a jump corresponds to an output transmis-
sion, and we have established a uniform global practical stability property for the estimation error
(Theorems 3.1, 4.1, 4.2 and Proposition 4.2). In addition, we have shown that maximal solutions
are complete (Theorem 4.3) and we have guaranteed the existence of a uniform, strictly positive
time between any two transmissions of each sensor node under mild conditions on the plant (Theo-
rems 3.2 and 4.4). Moreover, we have shown that the proposed technique stops transmitting when
a new output data is not needed to perform a good estimation, which is an advantage against time-
triggered strategies (Lemmas 3.1 and 4.1). Finally, in Section 4.6 of Chapter 4 we have also shown
how the triggering rule can be generalized and how to cope with measurement noise and/or sam-
pled input. Numerical case studies on a linear lithium-ion battery model (Chapter 3) and on a flexible

joint robotic arm (Chapter 4) illustrate the efficiency of the proposed approach.
7.1.2 Improving estimation performance

In the second part of the thesis we focused on the use of hybrid techniques for improving the state
estimation performance of a given nominal nonlinear observer. In particular, a novel, flexible and ge-
neral hybrid multi-observer has been presented in Chapter 5, which can be used to address various
trade-offs between speed of convergence and robustness to measurement noise, modelling errors
and disturbances. The starting point is a robust nominal nonlinear observer, which ensures that the
corresponding state estimation error system satisfies an input-to-state stability property with respect
to measurement noise and disturbances. To improve the performance of this nominal observer, we
added N additional dynamical systems and we have obtained a multi-observer, where each element
is called mode. Each additional mode of the multi-observer differs from the nominal one only in its
output injection gain, that can be freely selected as no convergence property is required for these
modes. Because the gains are different, each mode exhibits different properties in terms of speed of
convergence and robustness to measurement noise. We run all modes in parallel and, inspired by su-
pervisory control/observer approaches, we have designed a switching criterion, based on monitoring
variables, that selects one mode at any time instant by evaluating their performance. We have pro-
ved a two-measure flow input-to-state stability property of the estimation error (Proposition 5.1 and
Theorem 5.1), we have shown that maximal solutions are complete (Proposition 5.2) and we have
guaranteed the existence of a uniform semiglobal average dwell-time (Proposition 5.3). Moreover,
we have shown that the estimation performance of the proposed hybrid multi-observer are always at
least as good as the performance of the nominal observer. Furthermore, under some condition on the
choice of the additional gains and the initial conditions of modes and monitoring variables, we have
proved that the estimation performance in terms of a quadratic output error cost is strictly impro-
ved (Theorem 5.2 and Proposition 5.4). To illustrate the efficiency of the proposed technique, three
numerical example were presented in Chapter 5. In addition, the proposed technique has been ap-
plied for the state estimation of an advanced electrochemical lithium-ion battery model in Chapter 6.
There, the estimation performance of the nominal observer based on a polytopic approach designed
in [97] to estimate the lithium concentrations of the electrodes of an electrochemical battery model,
which are directly related to the state of charge of the battery, has been improved with the proposed
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technique.

7.2 Future work perspectives

The results presented in the thesis open the doors to many research directions, some of which

are presented next.
7.2.1 Event-triggered estimation

In the first part of the thesis, in Chapters 3 and 4, we considered an the event-triggered observer
design for linear time-invariant systems and for general nonlinear systems. In this section we discuss

associated possible future research directions.

— Tailored results for given observers. It would be interesting in future work to tailor the
results of Chapter 4 to other specific classes of systems and observers. Indeed, similarly to
Section 4.4.3, where we considered only the observers satisfying an input-to-state stability
property with a linear decay rate of the Lyapunov function, and this allowed us to prove an
extra property (namely, Theorem 4.2), it may be possible to obtain additional or less restrictive
results by considering a specific class of system and observer, such as polytopic based observers,
e.g., [95-97] or circle criterion observers, e.g., [3,153,154].

— Generalization to other classes of observers. Even if many observers designs in the litera-
ture can be modeled in the general form (4.1) and satisfy the input-to-state stability property
in Assumption 4.2, there are some estimation techniques that escape our theory, see e.g., the
Kazantis-Kravaris-Luenberger (KKL) observers in e.g. [155] and the Takagi-Sugeno (TS) obser-
versine.g., [156,157]. It would be therefore interesting to adjust the event-triggered observer

design presented in this thesis for these classes of nonlinear observers.

— Tuning of the design parameters. For the general nonlinear systems considered in Chapter 4
it is challenging to analyze how the design parameters impact the number of transmissions
triggered, the speed of convergence of the estimation error and its ultimate bound. However,
this can be done in some specific cases, as we did in Chapter 3 for linear time-invariant systems
and in Theorem 4.2 where we assumed that the input-to-state stability property in Assump-
tion 4.2 holds with a linear a € J#,. Note that these results give some indication on how to
tune the designs parameters to obtained the desired properties, but no optimization criteria is
presented. In future work it would be interesting optimizing the tuning of the design parame-
ters using a cost that considers the trade-off between the number of transmissions triggered
and the ultimate bound of the estimation error. In the linear time-invariant case presented in
Chapter 3 this may result in solving linear matrix inequalities. Note that, optimization problems
are exploited in the event-triggered estimation literature to learn the optimal communication

policy for discrete-time linear-time invariant systems in the recent work [158].

— Periodic event-triggered and/or self-triggered estimation. In this thesis we focused on an
event-triggered technique to decide when an output measurement needs to be transmitted to
the plant to the observer. Alternatives techniques to trigger transmissions over the network
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are present in the literature. For example, in the periodic event-triggered approach, see e.g.,
[26, 114, 159] the triggering condition is only checked at some specific time instants and, if
the triggering rule is satisfied, the data is communicated through the digital network. Another
possible option to generate the transmission instants is the self-triggered approach, see e.g.,
[47,48,160,161]. In this case, the observer decides when to request new information from the
sensor based on the last received value only. As a future work perspective, we could adapt the
dynamic triggering rule presented in this thesis for an event-triggered observer design to the

contexts of periodic event-triggered estimation and/or self-triggered estimation.

— Analysis of the inter-event times. In this thesis we proved that the proposed event-triggered
observer design can stop the transmissions when the output remains in a small neighborhood of
a constant and it guarantees the existence of a minimum time between two consecutive output
transmissions of each sensor node over the digital network. This implies that the time between
any two transmissions of the same sensor node is lower-bounded by a positive constant. Ho-
wever, the actual inter-event times can be larger than this constant. In this work we have not
characterized the actual behaviour of the inter-event time because this technically challenging
problem as the work in [162] shows in the context of event-triggered control. A precise ana-
lysis of the inter-transmission times and of the number of communications over the network

can be an useful and interesting future work direction, which can be inspired by [162,163].

— Additional network effects. In this thesis we did not consider network effects such as quanti-
zation and packet losses. Taking into account these network effects is another relevant research
direction, that can be inspired by e.g., [111,164]. In addition, we could also characterize our

work for different transmission protocols.

— Event-triggered multi-observer. The combination of the results presented in the two parts of
the thesis is also a possible and interesting research direction. Indeed, the hybrid multi-observer
presented in Chapter 5 requires the knowledge of the whole output both for the modes and
for the monitoring variables used to evaluate the performance of the different modes. As a
result, an open question is to understand how and if the estimation performance of the hybrid
multi-observer is improved in the case the measured output is transmitted from the plant to
the multi-observer via a digital network following an event-triggered approach, as the one

presented in this thesis.

7.2.2 Improving estimation performance

We believe that the flexibility of the framework presented in Chapter 5 leads to a range of fasci-

nating research questions, some of which are listed below.
Design guidelines and modes gains tuning

The freedom in the design of the additional modes of the hybrid multi-observer described in
Chapter 5 can be exploited to further improve the estimation performance. This opens the door to
different future work directions, as detailed next.
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— Off-line tuning of the additional modes gains. We currently do not have a systematic me-
thodology to tune the gains of the additional modes, only some guidelines are given in Sec-
tion 5.3.5. One possible option for the off-line tuning of the additional mode gains would be
to design them using learning based techniques, similarly to [129] in the context of discrete-
time KKL observers and thus obtain the “best" possible gains for different classes of inputs or
disturbances off-line in simulations. Dynamic programming techniques could be exploited for
this purpose, see e.g., [165]. Note that, typically, learning the observer gain produces the best
mode for a specific class of input or disturbance, but it often does not provide stability guaran-
tees. Therefore, with the proposed hybrid multi-observer approach we can have both stability
properties, thanks to the nominal observer, and good performance, thanks to the additional

modes whose gains are designed using learning techniques, for different scenarios.

— On-line tuning of the number of additional modes and their gains. In the current frame-
work, N additional observer-like systems are added in parallel to the nominal observer. The
number of these modes N and their gains are designed off-line. A possible interesting research
perspective would be to adjust the number of additional modes and/or their gains on-line,
based on the actual behaviour of the multi-observer. Indeed, to further improve the estima-
tion performance, it may be useful to add additional modes, with new gains. For example, if
the multi-observer switches often between two modes, an option can be adding an additio-
nal mode with a gain that is the average of the two. Another example is the case where the
multi-observer selection ends to only one mode. In this case, we may want to add an extra
additional mode taken in a set centered at the selected one. Note that, adding extra modes
on-line should not be a problem for the results of Chapter 5 to hold. However, increasing the
number of additional modes, increases the required computation capabilities, which may be
problematic in some applications. On the other hand, one may be tempted to remove modes
that have never been selected, which may for instance be diverging. This may be a good stra-
tegy, but care must be taken because a mode not yet selected might be relevant in the future.
This can happen, for instance, in the case the mode is a local observer robust to measurement
noise and disturbance, which has not yet been selected because its domain of attraction has not
yet been reached. Following similar ideas of adding/removing modes, one can also keep the
number of additional modes constant, but replace a mode gain that has never been selected
with a gain that, looking at the behaviour and the performance of the multi-observer, could be
good. This approach, may help to further improve the performance, thanks to the new gain,
without requiring additional computational capability compared to the original off-line gain
tuning. However, since one or more modes are replaced, there is always the risk of removing
a mode with a gain that may be the best in the future and thus worsen the performance of
the orginanl multi-observer due to the on-line tuning. As a result, we believe that to design a
systematic approach to tune on-line the number of additional modes and the corresponding
gains is challenging, but may lead to better estimation performance requiring less computa-

tion capabilities. Therefore, we believe this is a future work direction that is worth trying to
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explore.
Relationship between a state estimation error cost and an output estimation error cost

The question of the link between the considered cost function, which involves the output esti-
mation error (see (5.10)), and a cost based on the state estimation error is also a relevant challenge
to unravel. To start investigating this difficult question, which, to the best of the author knowledge,
does not have an answer even in the unperturbed linear time-invariant system case, an approach
based on the Lyapunov equation for observability and detectability properties can be envisioned.

Some preliminary results in this direction are presented in Appendix B.

Observer-based controller

In the current setting only the estimation problem is considered. It would be also interesting
to exploit the proposed scheme to improve the performance of a given observer-based controller.
Indeed, an open question is to understand if, providing the controller with a better state estimate,

thanks to the hybrid multi-observer, we also obtain better performance for the closed-loop system.
Generalizations

The hybrid multi-observer presented in Chapter 5 can be generalized following different paths,

which are detailed below.

— Generalization to other classes of observers. The proposed framework considers general
nonlinear observers, however, some observer design techniques, like the Kazantis-Kravaris-
Luenberger (KKL) observers, see e.g. [155] and the Takagi-Sugeno (TS) observers, see e.g.,
[156, 157], escape our theory at the moment, just like for part I. Thus, a possible research
direction consists in adapting the proposed hybrid multi-observer technique to these classes
of nonlinear observers. Moreover, we currently require that the nominal observer state has
the same dimension as the system state. Some nonlinear observers in the literature have a
state dimension that is bigger than the corresponding system state, see e.g., [5] for a review of
nonlinear continuous-time observers. Therefore, it would be interesting to extend the current

result enlarging the class of nonlinear observers that can be considered.

— Discrete-time multi-observer. The starting point of the proposed hybrid multi-observer design
is a nominal continuous-time observer satisfying and input-to-state stability property. It would
be interesting to exploit similar multi-observer ideas to improve the estimation performance of
a discrete-time nonlinear nominal observer that satisfies a discrete-time input-to-state stability
property, see e.g., [166]. In this case we will obtain a discrete-time multi-observer, where a
jump can represent both the discrete-time evolution and a switch of the selected mode. A
discrete version of the hybrid scheme would be relevant for implementation purposes and

could thus be very useful in applications.
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— Multi-observer for hybrid observers. Going one step further compared to the previous item,
we could envision developing a hybrid multi-observer to improve the performance of a nominal
hybrid observer, see, e.g, [39, 40], which is used to estimate the state of a possibly hybrid

dynamical system.

— Modes with different structures. Following similar hybrid multi-observer ideas, a possible
relevant future research direction would be to propose a design framework, which allows to
consider observers with different structures to further improve the estimation performance. For
example, in [43], the authors unite a local and a global observer with different structures (e.g.,
an extended Kalman filter and a high-gain observer), and thus different behaviours, and switch
between them to take the best out of each. We believe that allowing the additional modes of
the hybrid multi-observer to have a structure different from the nominal observer, and not
only a different gain, may help to further improve the estimation performance. However, to
prove stability properties in this case seems challenging. Indeed, even if the additional modes
are not required to satisfy a stability property, in Chapter 5 we exploited the structure for the
additional mode and the input-to-state stability property of the nominal observer to prove an
input/output-to-state stability for the additional modes (Lemma 5.1), which was essential to
prove the stability guarantees of the hybrid multi-observer. As a result, allowing the modes to
have a different structure than the nominal observer may imply that the additional modes need
to guarantee an input-to-state stability property to be able to prove an input-to-state stability
property for the multi-observer. Indeed, we believe that, if all the modes of the multi-observer
(with the same or different structures) satisfy an input-to-state stability property globally, then,
following similar lines as the ones presented in Chapter 5, it should be possible to prove an
input-to-state stability property for the hybrid multi-observer state estimate. On the other hand,
asking that all modes satisfy an input-to-state stability property might be restrictive, as we saw
in the numerical examples, that the performance can be improved thanks to modes that are
not converging a priori (see e.g. when the null gain was selected). Therefore, asking all modes
to satisfy an input-to-state stability property is a strong assumption compared to the current

result, where we have full freedom on the gain selection.

— Several nominal observers. Another possible interesting research perspective consists in fol-
lowing similar ideas as in Chapter 5, but with two or more nominal observers, with different
structures, satisfying Assumption 5.1 and then add additional modes with the same structure
as one of the nominal observers, but with different gains. This should allow to prove an input-
to-state stability property for the hybrid multi-observer, which will have modes with different
structures and different gains and thus is more general than the one presented in this thesis.
However, if we follow the same steps we used for the setting presented in this thesis in this
new scenario, the corresponding hybrid system can generate Zeno solutions. As a result, to ge-
neralize the hybrid multi-observer presented in Chapter 5 by allowing more than one nominal

observer, the hybrid estimation scheme needs to be modified.
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Application to lithium-ion battery

Some future work direction for the lithium-ion battery application presented in Chapter 6 are

given next.

— Experimental data and parameters uncertainties. In Chapter 6 the hybrid multi-observer has
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been applied in simulations for the state estimation of an electrochemical lithium-ion battery.

The next step we plan to pursue is to test the hybrid multi-observer on experimental data.

Different system models and thus nominal observers for the specific application. As des-
cribed in Chapter 6, lithium-ion batteries can be described using electrochemical models (as
the one presented in Chapter 6) or equivalent circuit models (as the ones used in the numerical
examples in Chapter 3 and 5). Each model has pros and cons and there is typically a trade-
off between accuracy and complexity of model and observer. Using different models for the
same physical systems leads to different observer designs. Therefore, we could design a hybrid
multi-observer where each mode is represented by an observer designed for one possible sys-
tem model and satisfying an input-to-state stability property as in Assumption 5.1. Moreover,
we could also add additional modes, which are not required to satisfy a stability property, with
the same structure as one of the observers designed for one of the possible available models,
but with different gains.



Appendix

Technical lemma - Change of supply rates

The next lemma is invoked in Chapter 4.

Lemma A.1. Let f : R™ x R"™1 x - x R"~ — R", with n, € Z and n_,...,n,, € Zzq. Suppose
there exist V : R™ — R, continuously differentiable, a,, ay, @, y1,...,Yn € H, such that for all
x € R™, u; € R™,
ay (Ix]) < V(x) <ay(|x])
N (A.1)
(VV (), (f (,ug, )y < —a(lx]) + D vi(lu)-
i=1

Then, for alli € {1,...,N} and any given §; € X, verifying v;(r) = O(¥;(r)) as r — +o0, there exist
Qy, Ay, @ and W : R™ — R continuously differentiable such that for all x € R™, u; € R™,

ay, (|x]) S W(x) < ay(|x]) (A.2)

(VW (x), f (3 g, . oup)) < —a(lx]) + Y 7i(ui])- (A.3)
i=1

O

Proof. The proof follows similar steps as the proof of [167, Theorem 1]. Let W := p oV, where
p is a A -function defined as

p(s):= qu(t)dt (A.4)

where q is a suitably chosen smooth non-decreasing function from [0, +0) to [0, +o0), which
satisfies q(t) > O for t > 0. Hence, the function W is smooth and positive definite by properties
of p and V. As a consequence, there exist a,, € #,, and ay, € X, such that (A.2) is satisfied.
Let x € R™, u; € R™i for any i € {1,...,N} and §; € 4, such that y;(r) = O(y;(r)) as
r — 4w, foralli e {1,...,N}. Let x € R™ and u; € R%. From the definition of W, (A.1) and

181



Appendix A. Technical lemma - Change of supply rates

(A.4), we have
<VW(X)) (f(x3u1: . 'uN))> = p/(V(X)) <VW(X)) (f(x’ulf . "uN))>
N
q(V(x)) [—a(IXI) + ZYi(Iui)]
i=1

_ i {q(v(x)) <—]%a(|x]) +n~(\ui!)>] :

N

We will show that we can upper-bound this last inequality and obtain

(TW (), (F (.. ><Z[ (i) — gga(veax)

to prove that, for any i € {1,...,N},

alv (<)) (—pa(xD + il ) < a(@u(uarad) - 5V (a(ix):

—~alx]) + il <~ =a(lx]) + 5 a(lx)

a(|x]) < 2N7;(Ju;]), we have

B (Jw]) =@y oa” (2N (|w))

-1

>ayoa ~oa(|x])

As a consequence, we have

alv () (—gpa(x) + il ) = ~yalv (x)alxl) +a(v )i
(V()allx]) + a8 ()i (]

< —=
N

N
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— 5 AV (x))allx]) + q(@; (|ui ) yi(ful),

(A.5)

(A.6)

with §; := @y ca"(2Ny,) € #,,, foranyi e {1,...,N}. To show that (A.6) is satisfied, we have

(A.7)

1
To show (A.7) we consider two cases. Let i € {1,...,N}, when v;(|y;]) < Ea(|x|), we have

(A.8)

1
therefore (A.7) is satisfied. Conversely, when ﬁaﬂx\) < 7;(|u;]), which can be rewritten as

(A.9)

(A.10)



thus (A.7) is satisfied. Consequently (A.6) holds. From (A.6), using V(x) > a,(|x|), which

comes from (A.1), we obtain

N

(YW (x), (f (X, up, - uy))) < ) [q(ﬂi(uil))n(luil) -

i=1

it (ae)|. @

Since y;(Ju;|) = O(¥;(Ju;])) as |u;| — +oo, for alli € {1,...,N}, we can apply [167, Lemma 1]

with
B;:=y;,09 1,
A ' (A12)
Bi:=Tio® .
Then, there exist ¢; smooth non-decreasing functions such that g;(0) = 0 and
q:(r)Bi(r) < Bi(r) (A.13)

forallr € [0,400),i € {1,...,N}. Note that, in [167, Lemma 1] it is not specified that g;(0) = 0.
However, the proof applies by adding this extra condition. From (A.12) and (A.13) we have

qi(r)r; Oﬂi_l(r) <Fiod,H(r) (A.14)

i
for all r € [0, +00). As a consequence
qi (B (Jwi]))vi (i) < 7 (Jui])- (A.15)

We define ¢ := min{qy,...,qy}. Note that g is a positive definite, non-decreasing function. Using
[168, Lemma 1] we have that there exists a function q € ¢, smooth on R, so that

q(s) <4(s) < qi(s) (A.16)

foralls >0, forallie {1,...,N}. Define & € %, as

a(s) i %q(gv(s))a(s) e A, (A17)
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From (A.11), (A.15), (A.16) and (A.17), we obtain

A11) 1
w0 7o) 3 a0 i) patay (e
i=1
816 N 1
2 @@ (wiD) i () - o 4@y (xD)a(lx)
i=1
(A.18)
(A15)(A17 1.
Z[ ()~ ) |
i=1
N
a(lx|) + Z (fez ),
which concludes the proof. ]
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On the relationship between quadratic state
estimation error costs and output

estimation error costs
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B.1 Introduction

The objective of this appendix is to unravel relationships between quadratic output estimation
costs and state estimation costs. To evaluate online the estimation performance, costs depending
on the output estimation error are used in Chapters 5 and 6 and also in e.g., [136,137]. While the
output error can be computed on-line, the state estimation error, which is of primary importance, is
unknown since the real state of a dynamical system is unknown in an estimation problem. It would
thus be interesting to investigate relationships between a state estimation error cost and an output
estimation error one. In particular, given two observers with the same structure but different gains,
we would like to know how to design an output error cost, so that if one observer has a smaller output
estimation error cost, then it means that an associated state estimation error cost is also smaller.

In this appendix, we consider linear time-invariant systems and we present some preliminary
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results on how to compare observer performance online, starting from a quadratic output estimation
error cost, which can be evaluated online, to a state estimation error cost, which is the one directly
related to the observer performance and thus the cost we are interested on. Contrary to the other
contents presented in this thesis, the results of this appendix are preliminary and have not been
submitted for pubblication.

B.2 Problem statement

Consider the unperturbed linear time-invariant system

x =Ax +Bu
(B.1)
y =Cx,

where x € R™ is the state, u € R™ is a known input, and y € R" is the measured output with n,,
n, € Z-q and n, € Z, . The pair (A, C) is assumed to be detectable. Hence, by letting L; € R™ "

be any matrix such that A— L, C is Hurwitz, we can design a Luenberger observer [113] of the form

A A

Xy =A%, +Bu+L(y —31)
(B.2)
1 =Cxy,
where X; € R™ is the state estimate. We name this observer nominal observer and it is the one for
which we compare the estimation performance. We define the state estimation error of the nominal

observer as e; := x — X;. In view of (B.1) and (B.2), the dynamics of the state estimation error e; is
él = (A—L1C)el. (BB)

Since A — L,C is Hurwitz, e; globally exponentially converges to the origin. As a consequence, for
any Q € R"™*"x symmetric positive definite matrix, there exist A} € R"»*"r and a symmetric positive
definite matrix P € R™ *"x such that

(A—L;C)"P+P(A-L,C) = —Q+C'A}C. (B.4)

Note that there may be more than one possible options for A} and P that satisfy (B.4) for the
same Q. In particular, since A — L;C is Hurwitz, from e.g., [85, Theorem 4.6] we have guarantees
that if AT = On, xn, > there exists a unique P € R™*"x symmetric positive definite that satisfies (B.4).
In addition, for any A} € R™ *"v that produces Q — CTA’{C € R™*" symmetric positive definite,
we know that there exists a unique P € R™*" symmetric positive definite that satisfies (B.4). As a
result, a possible option for the design is to chose Q € R™*"~ and A] € R™ *"y such that Q — CTA;C
is symmetric positive definite and then solve the Lyapunov equation (B.4) to find P. However, there
are also other possible combinations of AY, Q and P that satisfy (B.4).

We now consider an additional observer-like system, which has the same structure as (B.2) but
with a different output injection gain L, € R™ ",

186



B.2. Problem statement

.);2'2 :A)%2 +Bu + Lz(y - 5/2)
(B.5)
Yo = C.Xz,
where X, is its state estimate. Note that this observer-like system can be an observer or not, asA—L,C
is not necessarily Hurwitz. We denote the corresponding state estimation error e, := x — X5, whose

dynamics is, in view of (B.1) and (B.5),

éz = (A— L2C)€2. (B6)

The additional observer-like system (B.5), together with the nominal observer (B.2) are called
modes for the sake of convenience. We define the output estimation errors for both modes as e, :=
Y — Vi =C(x — i) = Cey, ke {1,2}, from (B.1), (B.2), and (B.5).

To evaluate the performance of each mode we should consider a quadratic cost that depends
on the state estimation error. Indeed, the smaller is such a cost, the smaller is the estimation error
and thus, the better is the performance of the mode. However, in an estimation problem, the system
state x is unknown. As a consequence, the state estimation error e, is unknown and thus it is not
possible to evaluate the estimation performance of the modes using a cost that depends on ¢;. As a
result, in the literature, see e.g. [136,137], as well as the results in Chapters 5 and 6, the estimation
performance is often evaluated using a cost that depends on the output estimation error e,, , which is
accessible since it relies on the knowledge of the measured output y and the estimated output y; of
mode k. The quadratic output estimation error cost we can evaluate on-line has the following form,

for any e, € ZLgny, for any t € Rog, k € {1,2},

t

Ji(t,ey, ) = L eyk(s)TAZeyk(s)ds, (B.7)
with AZ € R™*y, While cost (B.7) can be evaluated on-line, it does not provide direct information on
the performance concerning the state estimation error. A natural question that rises is to understand
how and if the output estimation cost (B.7) relates to a cost that considers the state estimation error.
In particular, if the two modes are initialized at the same value e, € R™, k € {1,2}, we want to
understand the relationship between the output estimation error cost (B.7), which can be evaluated
online, and a quadratic state estimation error cost in the following form, for any e, € Zg», initialized
at e, (0) = eg, for any t € Ry, k € {1,2},

Wi (t,ex) := ek(t)TPek(t) +L ek(s)TQek(s)ds, (B.8)

where P and Q come from (B.4).

Note that evaluating the estimation performance based on an cost that depends on the output
estimation error does not automatically give information on the estimation performance evaluated

using a cost that depends on the whole system state. In particular, it is not guaranteed that if, at time
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t € Ry, the additional observer-like system (B.5) has better (worse) performance compared to the
nominal observer (B.2) in terms of an output estimation cost, i.e., Wy(t) < W (t) (Wy(t) = Wy(t)),
which is the one we can evaluate on-line, then it has better (worse) performance also in terms of a
state estimation error cost, i.e., J5(t) < J;(t) (Jo(t) = J1(t)).

The objective of this work is to identify conditions under which better/worse estimation per-
formance with respect to the output estimation error cost (B.7), implies better/worse estimation

performance also with respect to the state estimation error cost (B.8).

B.3 Main result

The goal of this section is to give the conditions under which better performance in terms of the
output estimation cost (B.7) implies better performance in terms of a state estimation cost (B.8).
In particular, in Section B.3.1 we present a general condition for this purpose and in Section B.3.2
we show, through a counterexample, that this condition is not verified for any choice of the gain
Ly € R™*™ of the additional observer-like system. In Section B.3.3 we provide an extra condition
on the gain selection, which guarantees the satisfaction of the condition given in Section B.3.1.
Finally, in Section B.3.4, we relax the condition, thereby increasing the applicability of the proposed

result.
B.3.1 General condition

In the next theorem, we provide a condition that, if satisfied, allows to compare the observer per-
formance on-line. In particular, by the use of an output estimation error cost, which can be evaluated
on-line, when the condition is satisfied, we have information about the estimation performance in

terms of a state estimation error cost.

Theorem B.1. Consider system (B.1), the nominal observer (B.2) and the additional observer-like sys-
tem (B.5) with e, (0) = ey € R™, for all k € {1,2}. Given L, € R™*" for the additional mode, if there

exists A5 € R"*" such that
(A—LyC)"P+P(A—LyC) = —Q+CTASC (B.9)
is satisfied with P and Q from (B.4). Then, for any t € Ry, J1(t) —Jo(t) = Wy (t) — Wy(t). i

Proof. Let V(ey) := ekTPek, for all e, € R™, k € {1,2}, where P comes from (B.4). Then, from
(B.3) and (B.6), we have

(VV(er), (A= LiClery =€) ((A—LiC)TP +P(A—LiC)) ey (B.10)
Using (B.4), we have

(VV(ey),(A—LC)eyy=e] (A—L1C)TP+P(A—L,C))e

(B.11)
= —elTQel + elTCTA’{Ce].
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Let e, be a solution to system (B.3), then (B.11) implies, for any t € R,

%V(el(t)) = —e1(t)"Qey(t) +e1(t) CTAICe (). (B.12)

Integrating (B.12), we obtain, for all t € R,

t t
V(ei(t)) —V(e1(0)) + J e1(s)TQeq(s)ds = J e1(s) " CTAYCe(s)ds, (B.13)
0 0
which implies, from the definitions of V and ey
t t
e1(t) " Pey(t) —e1(0) T Pey(0) + J e1(s) " Qey(s)ds = J ey, (s)TAIe},1 (s)ds. (B.14)
0 0
Using (B.8) and (B.7), (B.14) is equivalent to
W (t) —e1(0) " Peq(0) = J; (t). (B.15)

Pick L, € R™ ™" and Aj € R"*" such that (B.9) is satisfied with P and Q from (B.4). Then,
following similar steps as for the nominal observer, from (B.10) we obtain, for all t € R-,

Wy (t) — e5(0) " Pey(0) = Jy(t). (B.16)

Since e1(0) = e5(0) = eg € R™, from (B.15) and (B.16) we have W;(t) —J;(t) = Wy(t) —J,(t),

for all t € R, which is equivalent to
Jl(t)—Jz(t) :Wl(t)—Wz(t), (B17)

for all t € R . This concludes the proof. |

Theorem B.1 gives a condition that, if satisfied, provides a relation between a quadratic output
estimation error cost and a quadratic state estimation error cost. In particular, it shows that if the
output estimation cost related to the observer-like system J,(t) is smaller than the output estimation
cost of the nominal observer J; (t) at some time t € R, then, the corresponding state estimation cost
Wy (t) is smaller than the state estimation cost of the nominal observer Wy (t), at the same time t. As a
consequence, if the estimation performance are evaluated in terms of output costs and the observer-
like system (B.5) has better performance compared to the nominal observer, then, if the condition
in Theorem B.1 is satisfied, this mode has better performance also in terms of a state cost. Moreover,
also the opposite is true. Indeed, if the observer-like system (B.5) has worse performance compared
to the nominal observer (B.2) in terms of an output estimation cost, i.e., Jo(t) > J;(t) with t € Ry,

then it has worse performance also with respect to a state estimation cost, i.e., Wy (t) = Wy (t).

Thus, in Theorem B.1 it is shown, under some conditions, that it is possible to evaluate the

performance of a mode using an output cost, which can be evaluated since y and y;, k € {1,2}
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are known, and have guarantees also on the performance of the mode in terms of a state estimation
cost, which is the most interesting one. Unfortunately, even if condition (B.9) may look easy to satisfy
thanks to the freedom introduced by A}, we will show in the next section that it is not possible to find
A to satisfy condition (B.9) for any choice of the gain L, of the additional observer-like system (B.5).

B.3.2 Condition (B.9) is not always satisfied

In this section we show that it is not always possible to guarantee that, for any choice of gain

Ly € R™*" there exists A] € R™*" such that
(A—LyC)'P+P(A—Ly,C) =—Q+CTALC (B.18)

is satisfied with P and Q from (B.4). In particular, the freedom we introduce with A} is not always
enough to allow us to choose any gain L, for the additional observer-like system. We now provide
an example for which there exists A7 € R" *My such that (B.18) is satisfied only for some choices of

the output injection gain L,, while it is not satisfied for some other choices.
Consider system (B.1) with 9

A:[g (1)] c:[1 o]. (B.19)

Note that the pair (A,C) in (B.19) is observable. We design the nominal observer (B.2) with L; =

2 0
[32]". As a result, the matrix A— L, C is Hurwitz with eigenvalues —1 and —2. We pick Q = [O 1]

. _ 0.5 —0.5
and A] = 1in (B.4) so that Q — C' AJC = I,. As a consequence, P = o5 )

We consider the additional observer-like system (B.5) and our objective is to check if, for any
choice of the additional gain L, € R2*1, there exists AE € R such that (B.18) is satisfied. For this
]T

reason we define L, := [l; [,]' and we have

—, 1
A—L,C = (B.20)
—l, 0

Using the matrices P and Q from the nominal observer, we write (B.18) for this additional mode and

we obtain
-1, -L,|| 05 -05 05 —05||-1; 1 —2 0 AL 0O
n - + , (2D
1 0 —-0.5 1 —0.5 1 -1, 0 0o -1 0O O

9. We do not need to provide information for the matrix B in (B.1). Indeed, all the developments in this section are
related to the estimation errors e; and e,, which do not depend on the system input, see equations (B.3) and (B.6).
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which is equivalent to

(B.22)

— 41, 05l —1,+0.5| |-2+A; 0
0.51; —1,+0.5 -1 B 0 —1|°

For (B.22) to hold, we must have —[; +1, = —2+AJ and 0.5]; — [, + 0.5 = 0. The first condition can
be always satisfied by selecting A] = —I; + [, + 2. However, A} has no impact on the off-diagonal
terms in (B.22) and, as a result, some choices of the gain L, = [I; I,] do not verify this condition.
For example, with the gain L, = [2 2], for any choice of Aj € R, [; # 2l —1 and thus (B.18) cannot
be satisfied.

It is interesting to notice also that, in this example, the necessary condition on the gain L, se-
lection to satisfy (B.18) for some A] € R has no links with the stability of the mode. Indeed, there
are gain choices that satisfy l; = 2I, — 1 that are stable (see e.g., L, = [0 0.5]", L, = [1 1],
Ly=[21.5]", L, =[53]", L, = [10 5.5]") and other that are unstable (see e.g., L, = [~1 0],
Ly=[-2 —05]", L, = [-5 —2]', L, = [-0.5 0.25] 7). On the other hand, selecting the mode
gain L, such that A— L,C is Hurwitz does not guarantee that there exists A; € R such that (B.18) is
satisfied. Indeed, L, = [2 2]" produces a converging mode, however, [; # 2I, — 1 and thus (B.18)
cannot be satisfied.

This example shows that it is not always possible to satisfy condition (B.9) for any choice of the
additional gain L, € R™*"™ and apply the result of Theorem B.1.

In the next section we prove that, under some conditions on the choice of the additional gain
Ly, € R™*™ it is possible to satisfy (B.9) and consequently, from Theorem B.1, show that if the
additional observer-like system performs better/worse than the nominal observer in terms of an
output estimation error cost, it implies that it is performing better/worse also in terms of a state

estimation error cost.
B.3.3 Gains selection to guarantee (B.9)

In the next proposition we prove that if the gain of the additional observer-like system, as well
as the one of the nominal observer, are designed as the gains of infinite gain margin observers, then
there always exists A} € R XMy such that condition (B.9) in Theorem B.1 is satisfied and thus better
performance with respect to an output error cost implies better performance also with respect to a
state estimation error cost.

Proposition B.1. Consider system (B.1) and the nominal observer (B.2) with L, := P_ICTAl, with P
from (B.4) and A; € R™*™ such that A— L,C = A—P~1C"A,C is Hurwitz. Consider the additional
observer-like system (B.5). Then, for any A, € R™*%, by defining L, := P~'CT A,, where P comes
from (B.4), there always exists A5 € R"™ *"r such that

(A—LyC)"P+P(A—Ly,C) = —Q+ CTA5C (B.23)

is satisfied with P and Q from (B.4). O
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Proof. Consider system (B.1) and the nominal observer (B.2). Since the pair (A, C) is detectable
and the gain L, is designed such that the matrix A — L;C is Hurwitz, from (B.4) we have that

for any Q € R™*"x there exist A} € R"»*" and a symmetric positive definite matrix P € R"*"x

and such that
(A—L,C)"P+P(A—L,C) = —Q+ CTALC. (B.24)

Select A, € R™*" and design L, = P~'CT A,. Then, (B.24) can be rewritten as
(A= L1C + LyC —LyC)'P+ P(A—L1C + L,C — L,C) = —Q + CTAIC, (B.25)
which implies
(A—LyC)"P+P(A—LyC)+C' (L, — L )P +P(Ly — L;)C = —Q + CTA}C. (B.26)
Using L, = P~1CT Ay, k € {1,2}, from (B.26) we have
(A—LyC)"P+P(A—LyC) +CT(A] —A])C+CT(Ay +A))C=-Q+CTAJC, (B.27)
which implies

(A= LyC)"P+P(A—LyC) = —Q+ CT(AT+ AL +A] —Ay—AJ)C

. (B.28)
=-Q+CTA3C,

with A} := A} + Ay + A] — Ay —AJ € R™>™_ This concludes the proof. [ |

Proposition B.1 shows that when the modes are designed as infinite gain margin observers, condi-
tion (B.9) is satisfied and the results of Theorem B.1 hold. However, this is not the only possible
choice of gains that satisfy condition (B.9). We will now see this on the same example we considered
in Section B.3.2. In particular, note that the gain L; in the example in Section B.3.2 is not in the
form L, := P~'CTA;. Indeed, L, was selected to place the eigenvalues of A— L;C in —1 and —2
and we had obtained L; = [3 2] . Solving the Lyapunov equation (B.4) for Q = I, and Al =1lasin

0.5 —-05 4 2
Section B.3.2, we obtained P = , which implies P! = and
—0.5 1 2 2
4 211 4
PICcTA, = Ap=|_|A #L; VYA ER. B.29

We recall that A; can be chosen different from A‘l* in (B.4). However, in this example, there is no
A € R that satisfies L; = P"'CTA;.

In addition, for the P obtained from the choices of L;, Q and A}, in the example in Section B.3.2
we have showed that condition (B.9) is satisfied if the additional gain L, is chosen such that L, =
[l 1,]" with I; = 21, — 1, which, from (B.29), is not in the from P~1C T A,.
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As a consequence, if the gains are chosen such that L, = P"1CT A, k € {1, 2}, with P from (B.4)
and A € R, from Proposition B.1 we have guarantees that condition (B.9) is satisfied and thus, from
Theorem B.1 we can relate a state estimation error cost to an output estimation error cost. However,
the example in Section B.3.2 shows that there are other possible choices for the nominal gain L,
and the observer-like system gain L,, which are not in the form L, = P~'C T Ay, k € {1,2}, but still
satisfy condition (B.9). In particular, with the condition L; = P~1CTA,, we are only considering the

matrix P satisfying

(A—L,C)"P+P(A—L,C)=-Q+C'AIC
(A—=P7'CTAC)TP+P(A-PICTAC)=—Q+CTAJC (B.30)
ATP+PA=—-Q+C"(AJ+ A +A])C.

B.3.4 Relaxation of condition (B.9)

In this section we relax the condition on the nominal observer (B.4) and the one for the additional
observer-like system (B.9) and we show that, even with less stringent conditions, we can prove that
better performance in terms of an output estimation error cost implies better performance with
respect to a state estimation error cost.

As explained in Section B.2, since the nominal observer gain L, is designed such that A— L, C is

Hurwitz, we have that for any Q € R™*"x symmetric positive definite there exist A} € R"»*" and a
symmetric positive definite matrix P € R™*"x such that

(A—L,C)'P+P(A—L,C) =—Q+CAIC. (B.31)
As a consequence,

(A—L,C)'P+P(A—L,C) = —Q+CTA}C. (B.32)

Theorem B.2. Consider system (B.1), the nominal observer (B.2) and the additional observer-like sys-
tem (B.5) with e, (0) = eq € R™, for all k € {1,2}. Given L, € R™*" for the additional mode, if, there
exists A; € R"™*™ such that

(A= LyC)"P+P(A—Ly,C) < —Q+CTALC (B.33)
is satisfied with P and Q from (B.4). Then, for any t € Ry, Jo(t) < J;(t) implies W, (t) < Wy(t). O

Proof. Let V(ey) := e];rPek, for all e, € R™, k € {1,2}, where P comes from (B.4) as in the proof
of Theorem B.1. Similarly to the proof of Theorem B.1 and using condition (B.32) instead of
(B.4), from (B.3) we obtain

(VV(e),(A—LiCleyy=¢e] (A—LiC)"P+P(A—LiC))e;

(B.34)
> —e] Qe; +e] CTA}Ce;.
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On the other hand, from (B.6), and using (B.33) we have

(VV(er),(A—LiClexy =] ((A—LiC)TP +P(A—LiC)) e (.35
< —e. Qep +e) CTA;Cey.
Following similar steps an in the proof of Theorem B.1, from (B.34) we obtain, for all t € R,
Wy (t) —e1(0) " Peq (0) = J;(t). (B.36)
for the nominal observer, and, from (B.35), for all t € R,

W, (t) — e5(0) " Pey(0) < Jy(t). (B.37)

Since ex(0) = ey € R™, for all k € {1,2}, from (B.36) and (B.37) we have that for all t € R
such that Jy.(t) < Jy(t), Wi (t) < Ji(t) + e Peg < J1(t) + ey Peg < W;(t), which concludes the
proof. ]

Theorem B.2 provides a relaxed condition compared to the one in Theorem B.1 to guarantee that,
if the output estimation error cost of the additional observer-like system (B.5), J,, is smaller that
the output estimation error cost of the nominal observer (B.2), J;, which means that the observer-
like system has better performance in terms of a output estimation error cost, then, it has better
performance also in terms of a state estimation error cost. Conversely to Theorem B.1, where we
proved also that if the additional mode has worse performance compared to the nominal observer
in terms of an output estimation error cost, than it has worse performance also in terms of a state
estimation error cost, with the relaxed condition (B.33), we cannot conclude anything in the case
the output estimation error cost of the additional mode shows worse performance than the one of

the nominal observer.

Even if condition (B.33) in Theorem B.2 is less restrictive than condition (B.9) in Theorem B.1,

Xy In

also in this case it is not always possible to satisfy it for any choice of the gain L, € R"
particular, the freedom we introduce with A7 is not always enough to guarantee that (B.33) holds
for any choice of the additional gains. An example to show this is given in the following. We consider

system (B.1) with the matrices A and C given in (B.19) and we design the nominal observer with

2 0
the gain L; = [3 2]" as in Section B.3.2. As before, we chose Q = 0 1] and A} = 1, which

0.5 -05
impliesQ — C TA;C = I,, and, from (B.4), we obtain P = 0.5 1| We consider the additional

observer-like system (B.5) and our objective is to check if, for any choice of the additional gain
L, e R**!, there exists A} € R such that (B.33) is satisfied. We define L, := [I; I,]" and we have

—1, 1
A—L,C = (B.38)
—l, 0
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Following similar steps as in Section B.3.2, for this example (B.33) results

=l +1 0.51; —1 0.5 —24+A5 O
1+ 1— b+ < + A, , (B.39)
0.50; — I, + 0.5 1 o -1

which is equivalent to
-l +1,+2—A; 05],-1,+0.5
[ the 2 ro ] <O0. (B.40)

0.5, — I, + 0.5 0

The matrix in (B.40) is negative semi-definite if and only if all its eigenvalues are non-positive. From
(B.40), we see that this is possible only if [, = 0.5(1 + [;) and all different choices of the gain L, do
not satisfy condition (B.40) no matter the value of AJ € R. Thus, in this example, condition (B.33)

cannot be satisfied for any choice of the additional mode gain L, € R**1.

B.4 Discounted costs

In this section we generalize the results presented in Section B.3 considering discounted costs.
For this reason, we generalize the state estimation error cost (B.8), which is now defined as, for any
ex € Zgn, initialized at e, (0) = ey € R™, for any t € Ry, k € {1,2},

t
Wi (t) := e (t) " Pey(t) +J e (e, (s)T(Q — vP)ey(s)ds, (B.41)
0
where P, Q come from (B.4) and v € R is a design parameter selected such that Q — VP is positive
definite. Note that, when v = 0, we recover the state estimation error cost in (B.8).
Similarly, we define the discounted output estimation error cost as for any e, € %, for any
teR-g, ke {1,2},

t

J(t) := L e "e, (s)TAfe,, (s)ds, (B.42)

with A7 e R ke {1,...,N + 1} and v € R, from (B.41).

In the next theorem we generalize the result of Theorem B.1 by considering the discounted costs.

Theorem B.3. Consider system (B.1), the nominal observer (B.2) and the observer-like system (B.5)
with e, (0) = ey € R™, for all k € {1,2}. Given L, € R™*"™ for the additional mode, if there exists
A; € R ™™ such that

(A—Ly,C)'P+P(A—L,C) =—Q+C'ALC (B.43)

is satisfied with P and Q from (B.4). Then, for any t € Rsq, J1(t) —Jo(t) = Wy (t) — Wy(t). |

Proof. Let U(ey,t) := e”'e/ Pey, for all e, € R™, k € {1,2}, where P comes from (B.4) and
ve Ry, from (B.41). Then, from (B.3) and (B.6), we have

(VU (er, t), (A= LiC)ex, 1)) = ve” e/ Pey + el ((A—LiC)'P+P(A—LiC))er. (B.44)
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Using (B.4), we have

(VU(e1,t), ((A—L1C)e;, 1)) = ve’'e] Pe; +e”e] (A—L,C)"P+P(A—L,C))e;

(B.45)
= ve”e] Pe; —e”e] Qe; +e”e] CTA}Ce;.
Let e, be a solution to system (B.3), then (B.45) implies, for any t € R-,
d
EU(el(t), t) = ve"e(t) Pei(t) —e” ey (t) ' Qer(t) + e ey (t) T CTAICe (¢). (B.46)
Integrating (B.46), we obtain, for all t € R,
t t
Ue,(t),t) —U(e,(0),0) + J e”eq(s) Qe (s)ds — f ve¥e(s) Peq(s)ds
¢ 0 0 (B.47)
- J e”e; (s)TCTA;Cel(s)ds,
0
which implies, using the definition of U and e, ,
t t
e”eq(t) Pey(t) —e1(0) Peq(0) + f e”eq(s) Qeq(s)ds — J ve¥ey(s)! Peq(s)ds
0 0 (B.48)

t
= L e”ey, (s)TA’{ey1 (s)ds.

Multiplying (B.48) by e~ "', we have

e1(t) Pe;(t) — e "e;(0)" Pe;(0) +fo

—J e "%e, (s)TATe,, (s)ds,

0
(B.49)

which is equivalent to

t
e1(t)"Pey(t) — e " e;(0) Pey(0) + f e "¢ (5)T(Q — vP)ey (s)ds
. 0 (B.50)
= L e "e, (s)TAle,, (s)ds.
Using (B.41) and (B.42), (B.50) is equivalent to

Wl(t) —e_Vtel(O)Tpel(O) :jl(t) (BS].)

Pick L, € R™*" and Aj € R"™*" such that (B.43) is satisfied with P and Q from (B.4).

Then, following similar steps as for the nominal observer, from (B.44) we obtain, for all t € R-,

Wy (t) — e ey (0) T Pey(0) = Jy(t). (B.52)
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Since e1(0) = e5(0) = eg € R™, from (B.51) and (B.52) we have W, (t) —J;(t) = Wy(t) — J5(t),

for all t € R, which is equivalent to

for all t € R-. This concludes the proof. ]

Theorem B.3 shows that, even when considering discounted estimation error costs (B.41) and
(B.42), when condition (B.43) is satisfied, than, better (worse) performance with respect to the
discounted output estimation error cost (B.42) implies better (worse) performance also in terms
of the discounted state estimation error cost (B.41). Moreover, since conditions (B.43) and (B.9)
are equivalent, in view of the developments presented in Section B.3.2, the freedom introduced
by A5 € R™ " is not always enough to satisfy condition (B.43) for any choice of the gain L, €
R *™ for the observer-like system (B.5). However, by applying the results in Proposition B.1, we
have that, when both the nominal observer (B.2) and the observer-like system (B.5) are infinite
gain margin observers, i.e., L, = P~1CT A, for k € {1,2}, then, there always exists A} € RW*My
such that condition (B.43) is satisfied and thus we can relate the estimation performance given by
the discounted output estimation costs with the estimation performance expressed in terms of the
discounted state estimation error costs. Finally, similarly to Section B.3.4, condition (B.43) can be
relaxed to enlarge the class of gains satisfying it. However, in this case, if the observer-like system
(B.5) has better performance in terms of the output estimation error cost with respect to the nominal
observer (B.2), then, it has better performance also in terms of a state estimation error cost, but the

opposite is not necessarily true.

B.5 Conclusions and perspectives

In this appendix, we have presented some preliminary results on the relationship between a qua-
dratic output estimation error cost, which can be evaluated on-line, and a quadratic state estimation
error cost, which is the one we are interested on when considering the estimation performance of
an observer. In particular, we provide a condition that, if satisfied, guarantees that better (worse)
performance with respect to a (discounted) output estimation error cost implies better (worse) per-
formance also with respect to a (discounted) state estimation error cost. Moreover, we have shown
via a counterexample that this condition is not always satisfied, but it is possible to guarantee it in
the case of infinite gain margin observers, which, however, are not the only possible cases satisfying
the condition. In addition, for a larger class of observers gains, weaker results, but still insightful,
have been proven by relaxing the condition.

We believe that the results presented in this appendix are only the starting point to understand
the relationship between output estimation error costs and state estimation error costs. Indeed, in
this notes we have considered unperturbed linear time-invariant systems, and it will be interesting
including also external unknown disturbances and measurement noise. Moreover, extending the cur-
rent thoughts to nonlinear systems is definitely a non-trivial interesting future work direction. Finally,

to compare the output and the state estimation performance other approaches can be envisioned,
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which may depend on the detectability gramian or other detectability properties.
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Appendix

Résumé détaillé

C.1 Estimation d’état

Les systemes dynamiques sont des objets mathématiques utilisés pour décrire I'évolution de va-
riables dans le temps. En particulier, un systeme dynamique peut étre utilisé pour modéliser une
série de systemes artificiels ou naturels, tels que les circuits électroniques, les structures mécaniques,
les systémes thermodynamiques, les systémes biologiques, etc. Ces modeéles sont généralement re-
présentés par un ensemble d’équations différentielles (on parle alors de systémes dynamiques a temps
continu), ou d’équations aux différences (on parle alors de systémes dynamiques a temps discret), qui
décrivent I’évolution de ce que I'on appelle les variables d’état, représentant le plus souvent des quan-
tités physiques. En général, ces modeles mathématiques dépendent de certains signaux externes,
appelés entrées du systéme, qui influencent I'évolution de I’état du systeme. En outre, des capteurs
peuvent étre utilisés pour mesurer une combinaison (non linéaire) des états du systéme, appelée
mesures de sortie. Le modele mathématique de la mesure de la sortie est donné par une fonction

statique.

La connaissance de 'état interne d’un systéme dynamique est essentielle dans de nombreuses
applications techniques. En effet, elle est tres utile, par exemple, pour construire des contrdleurs,
qui sont des algorithmes utilisés pour générer des signaux d’entrée afin de contréler I'évolution des
états du systéme. En outre, la connaissance de I’état du systéme peut étre cruciale pour obtenir des
informations en temps réel a des fins de surveillance ou de prise de décision, voir par exemple [1,2]
et les références qui y figurent. Une facon d’obtenir ces informations est de mesurer directement
ces variables en placant des capteurs sur le systéme physique. Malheureusement, dans de nombreux
cas, toutes les variables d’état ne peuvent pas étre mesurées directement par des capteurs en raison
d’obstacles technologiques, comme I'état de charge d’'une batterie dans [3] ou les concentrations
d’ammonium, de nitrate et de nitrite dans les processus de boues activées dans [4]. En outre, dans de
nombreuses applications, le nombre et le type de capteurs que nous pouvons utiliser sont limités pour
des raisons de cofit. Par conséquent, I'état interne d’'un systeme dynamique, que nous désignons par

x, doit étre estimé a partir de la connaissance du modele mathématique du systéme et des mesures
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disponibles telles que I'entrée u et la sortie y du systéme. Pour ce faire, nous concevons un algorithme
d’estimation, qui prend la forme d’un systeme dynamique, appelé observateur, dont la sortie est une
estimation de I’état du systeme et est désignée par Xx. Notez que, puisque ce systéme dynamique
dépend des mesures disponibles, il n’est pas toujours possible de concevoir un observateur pour
estimer I’état du systeme. En effet, un tel algorithme d’estimation n’est pertinent que si les mesures
contiennent suffisamment d’informations pour reconstruire de maniere unique I'état du systeme.
Cette propriété essentielle est appelée détectabilité, voir par exemple [5]. Lorsque le systéme est
détectable, 'objectif est de concevoir ce systeme dynamique de maniere a ce que 'erreur d’estimation,
qui correspond a la différence entre I'état inconnu du systéme et I'estimation de I'état générée par
I'observateur, et qui donne donc une indication de la qualité de 1’estimation, converge vers 'origine
lorsque le temps tends vers I'infini. Cela implique que I'estimation de ’état produite par I'observateur
coincide, apres un temps fini ou infini, avec I’état inconnu du systeme et que I'observateur estime
donc correctement I'état du systéme.

Comme indiqué précédemment, la conception de cet algorithme d’estimation est basée sur un
modele mathématique de la dynamique du systéme, qui présente pratiquement toujours des incer-
titudes ou est affecté par des perturbations inconnues. En outre, les mesures de sortie collectées par
les capteurs sont généralement affectées par un bruit de mesure. Toutes ces entrées exogeénes sont
généralement inconnues et ne peuvent donc pas étre utilisées pour la conception de 'observateur,
qui doit en conséquence étre robuste a ces perturbations dans le sens ot les perturbations et le bruit
de mesure n’affectent pas de maniére significative 'estimation de I'état de 'observateur. En particu-
lier, dans ce cas, la conception de I'observateur a pour objectif de garantir que I'erreur d’estimation
converge vers un voisinage de l'origine, dont la « taille » dépend de la norme de ces perturbations.
En effet, notons qu’en raison des perturbations et du bruit de mesure, il n’est pas possible d’obtenir
une estimation (asymptotique) exacte de I'état en général, mais il est souhaitable de générer une
estimation avec des garanties de ne pas étre trop éloigné de I’état réel du systéme. En particulier,
pour étre un observateur, un algorithme d’estimation doit garantir que l'erreur d’estimation de I'état,

désignée par e := x — X, est

— stable dans le sens ot la trajectoire de 'erreur d’estimation reste « petite » si I'erreur initiale

est « petite »,
— convergeant vers (un voisinage de) I’origine quand le temps augmente,
— robuste aux perturbations et au bruit de mesure.

Une propriété qui englobe toutes ces caractéristiques souhaitées du comportement de I'erreur d’es-
timation de I’état est la propriété de stabilité entrée-état de I'erreur d’estimation par rapport aux per-
turbations et au bruit chapitre 2.2.2 pour plus de détails.
Dans cette thése, nous nous concentrons sur les systémes a temps continu de dimension finie de
la forme
x = fp(x,u,v)

Yy = h(X,W),

(C.1)
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ol x € R™ est I'état du systéme, qui est inconnu et doit étre estimé, u € R™ est 'entrée mesurée, y €
R™ est la sortie mesurée par les capteurs, v € R™ est une entrée de perturbation non mesurée et w €
R™ est un bruit de mesure inconnu avec n,,n, € Z., et n,, n,,n,, € Zx. La classe d’observateurs

a temps continu pour le systeme (C.1) étudiée dans cette thése prend la forme suivante

z :fo(zzu’yay))
% =(2) (C.2)
.)A/ = h(ff»o),

ol z € R™ est ’état de 'observateur, avec n, > n,,, X € R™ est 'estimation de I’état et ¥ est ’estima-
tion de la sortie. Notons que, dans cette thése, nous considérons des observateurs dont la dimension
de T’état est au moins aussi grande que I'état du systeme, a savoir n, > n,. Plus de détails et d’infor-

mations sur les systémes (C.1) et (C.2) sont fournis dans le chapitre 2.2.1.

La conception d’observateurs de la forme (C.2) pour estimer I’état du systéme (C.1) avec les pro-
priétés de stabilité, de convergence et de robustesse souhaitées est un sujet de recherche important
en automatique, cf. [5, 8] pour des études sur le sujet. En particulier, selon la structure du systéme
dynamique, différentes techniques de conception peuvent étre adoptées. Le point de départ de la
plupart des résultats de cette these est la connaissance d’un observateur entrée-état stable. Cela im-
plique que son erreur d’estimation est stable et converge vers un voisinage de l'origine, dont la taille
dépend de la norme des perturbations. Comme le montre par exemple [5,9], il existe dans la litté-
rature de nombreuses techniques de conception d’observateurs satisfaisant cette propriété pour les
systemes dynamiques linéaires et non linéaires. Cependant, plusieurs problemes méthodologiques
majeurs restent ouverts. En particulier, 'observateur (C.2) nécessite la connaissance des mesures de
sortie en flux continu. Cependant, ce n’est pas toujours le cas dans les applications pratiques, ol les
données de sortie peuvent étre communiquées sporadiquement du systéme a I'observateur via un ré-
seau numérique, dans le cas ol les capteurs du systéme et ’observateur ne sont pas situés au méme
endroit. Plusieurs travaux ont abordé ce sujet dans la littérature, voir par exemple, [ 10-30], mais il
reste encore beaucoup a faire, comme nous I'expliquerons plus loin dans ce chapitre, ainsi que dans
les chapitres 3 et 4. D’autre part, méme si 'observateur a accés a la mesure de sortie en continu, la
propriété de stabilité entrée-état garantit une propriété de stabilité robuste de I'erreur d’estimation,
mais elle n’est pas toujours satisfaisante en ce qui concerne les performances en termes de vitesse de
convergence et de taille de la borne ultime due aux perturbations et au bruit de mesure. Cela pose
la question du réglage des observateurs non linéaires afin de garantir une propriété de convergence
robuste ainsi que des performances satisfaisantes. Certaines techniques sont évidemment disponibles
dans la littérature a cette fin, mais pas pour les systemes non linéaires généraux, pour autant que
nous le sachions. Dans le chapitre 5, ainsi que plus loin dans ce chapitre, nous donnons plus de
détails sur la littérature. Dans cette these, nous nous concentrons sur ces deux questions ouvertes
et nous proposons des solutions en exploitant des techniques hybrides, c’est-a-dire des systémes qui

présentent des dynamiques a la fois a temps continu et a temps discret.
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C.2 Systemes dynamiques hybrides

Dans la théorie classique du controle, il est commun de modéliser les systémes dynamiques soit
a l'aide d’équations (ou d’inclusions) différentielles, ce qui permet d’obtenir des « systémes dyna-
miques a temps continu », soit a 'aide d’équations (ou d’inclusions) aux différences, ce qui permet
d’obtenir des « systémes dynamiques a temps discret ». Cependant, de nombreux systémes physiques
présentent une combinaison d’évolution en temps continu et de mises a jour en temps discret, tels
que les systémes mécaniques, qui évoluent dans le monde physique en temps continu, mais sont
contr6lés par un ordinateur numérique, ou les systémes mécaniques subissant des impacts, comme
pour 'exemple classique de la balle rebondissante [31]. D’autres exemples de systémes présentant
des dynamiques a la fois continues et discretes sont les systémes biologiques capables de produire
des comportements synchronisés, ce qui implique que leur dynamique en temps continu est affectée
par des réinitialisations en temps discret, comme I'exemple des lucioles dans [31, Chapitre 1]. Un
autre exemple est celui des circuits électriques avec interrupteurs, ou I'activation d’'un interrupteur
peut étre modélisée par des réinitialisations instantanées des variables, qui évoluent continuelle-
ment, comme 'onduleur DC/AC [32, Exemple 1.1] ou le contréle de puissance avec un thyristor
[31, Exemple 1.3]. Pour modéliser le comportement riche de ces systémes, les modéles purement a
temps continu ou a temps discret ne sont pas suffisants. Par conséquent, pour obtenir une représenta-
tion plus compléte des phénoméenes du monde réel, une combinaison bien connue de comportements
a temps continu et a temps discret est ce que 'on appelle les systémes dynamiques hybrides, ou simple-
ment les systémes hybrides. Plusieurs formalismes de modélisation sont disponibles pour les systemes
dynamiques hybrides, voir par exemple [31,33-36]. Dans cette these, nous adoptons le formalisme
présenté dans [31]. En particulier, nous considérons I'extension proposée dans [37] (inspirée par
[38]), qui permet d’inclure des entrées a temps continu dans le modele hybride. Ces entrées sont
désignées par u et peuvent étre utilisées pour représenter des entrées connues, telles que les entrées
de contrdle, mais aussi des perturbations inconnues et des bruits de mesure. Dans ce cadre, étant
donné deux ensembles ¢,2 < R™~ x R™, avec n, € Z. et n, € Z-,, et deux fonctions a valeur
d’ensemble F : R™ x R™ 3 R™ et G : R™* x R™ 3 R™, la dynamique de I'état hybride x € R~ est
décrite par
x € F(x,u), (x,u)e @,

H
xt € G(x,u), (x,u)e9.

(C.3)
L’équation (C.3) signifie que I’état hybride x € R™* peut évoluer selon une dynamique a la fois a temps
continu et a temps discret, alternant éventuellement ces comportements en fonction de la région de
'espace d’état ou se trouve la paire (x,u). Lorsque I'état x et I'entrée u se trouvent dans 'ensemble
de flux €, I'état hybride x évolue en temps continu selon la fonction F. De méme, lorsque I’état x et
I'entrée u se trouvent dans 'ensemble de sauts 2, I'état du systéme est mis a jour conformément a la
fonction G. En outre, lorsque la paire d’état et d’entré se trouve a la fois dans les ensembles de flux et
de sauts, a savoir (x,u) € € N 9, si I'’évolution en temps continu maintient la paire d’état et d’entré
dans I'ensemble ¥, alors I’état hybride évolue soit selon I'inclusion différentielle, soit selon I'inclusion
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différentielle dans (C.3). Par conséquent, I'’équation (C.3) décrit une dynamique de systéme plus riche

que les équations (ou inclusions) différentielles ou les équations (ou inclusions) aux différences.

Les techniques hybrides se sont avérées tres efficaces pour concevoir des contréleurs. Par exemple,
les contréleurs sont généralement mis en ceuvre par du matériel numérique et des ordinateurs, mais
ils sont utilisés pour contréler des installations physiques, qui sont naturellement décrites par des
modeles a temps continu, ce qui conduit a des systémes dynamiques hybrides. En outre, le compor-
tement plus riche donné par le mélange de dynamiques a temps continu et a temps discret a été
exploité dans différents contextes de contrdle, voir par exemple [32] et les références qui y sont
citées, ou les outils hybrides ont démontré leur pertinence et leur force pour surmonter les limita-
tions des contréleurs purement a temps continu ou a temps discret et ont ainsi permis de résoudre
des problémes insolubles a I'aide des techniques classiques de 'automatique. De méme, il devrait
étre possible d’exploiter la puissance des outils hybrides dans le contexte de I'estimation d’état, mais
cela a été moins exploré dans la littérature. Dans ce cas, nous parlons de la synthése d’observateurs
hybrides, qui consiste donc a concevoir des algorithmes d’estimation décrits par des dynamiques
a la fois continues et a temps discret. Notons que nous pouvons également concevoir un observa-
teur hybride pour estimer I'état d’un systéme dynamique a temps continu si la structure du systéme,
'objectif d’estimation ou 'approche de conception de 'observateur conduisent a une modélisation
hybride. En particulier, nous pouvons classer les observateurs hybrides en trois groupes principaux,
comme résumé ci-dessous.

— Modéle de systéme hybride. Comme indiqué précédemment, de nombreux systémes phy-
siques et techniques présentent un comportement hybride et sont donc bien décrits a 'aide de
modeles de systémes hybrides. Dans ce cas, pour estimer I'état hybride, il convient de concevoir
un observateur présentant une dynamique a la fois continue et a temps discret, c’est-a-dire un
observateur hybride, voir par exemple [39,40].

— Connexion hybride entre le systeme et ’observateur. Dans de nombreuses applications,
le systeme et 'observateur ne sont pas situés au méme endroit et les mesures de sortie sont
transmises de l'usine a l'observateur par l'intermédiaire d’un réseau numérique. Par consé-
quent, I'observateur ne recoit les données de sortie qu’a certains moments a temps discret, et

le systeme global peut donc étre décrit comme un systeme hybride, cf. [12,41].

— Performance de I’estimation. Les techniques hybrides peuvent étre utilisées pour I'estimation
également a des fins de performance. Par exemple, méme si le systeme a une dynamique a
temps continu et que le cadre permet de concevoir un observateur a temps continu pour estimer
I'état du systéme, des dynamiques a temps discret peuvent étre introduites dans la conception
de I'observateur afin d’exploiter la puissance des outils hybrides et la dynamique hybride plus

riche pour améliorer les performances de 'estimation, voir par exemple [42,43].

Les résultats présentés dans cette thése appartiennent aux deuxiéme et troisieme catégories. Nous
expliquons plus en détail dans la suite les deux études de cas considérées dans ce manuscrit.
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C.3 Motivation et contributions

Dans cette these, nous visons a montrer I'efficacité des techniques hybrides pour résoudre deux

problémes importants d’estimation d’état.
C.3.1 Estimation événementielle
Motivation

Comme indiqué précédemment, dans de nombreuses applications, le systéme et 'observateur ne
sont pas situés au méme endroit et, par conséquent, les mesures de sortie sont transmises du systeme
a l'observateur par I'intermédiaire d’'un réseau numérique. L'observateur n’a alors pas acces a la sor-
tie mesurée en permanence, mais seulement a certains moments d’échantillonnage. Dans ce cadre,
des systémes hybrides apparaissent naturellement puisque le systéme et 'observateur évoluent en
temps continu, alors que chaque transmission de sortie sur le réseau peut étre modélisée comme
un événement a temps discret. Lobservateur non linéaire général (C.2), pour lequel diverses tech-
niques de conception issues de la littérature peuvent étre adoptées afin d’obtenir une propriété de
convergence de l'erreur d’estimation, suppose la connaissance de 'ensemble de la sortie mesurée en
temps continu. La politique choisie pour déclencher une transmission sur le réseau a un impact sur
la vitesse de convergence, la robustesse de I'estimation ainsi que sur la quantité de communications.

Trois approches principales ont été proposées dans la littérature pour générer les instants de
transmission. La premiére, appelée stratégie a déclenchement temporel, voir, par exemple, [11, 12,
44-46], consiste a déclencher une nouvelle transmission en fonction du temps écoulé depuis la der-
niére communication. Un exemple classique simple de la stratégie a déclenchement temporel est
I'échantillonnage périodique, ol la distance temporelle entre deux transmissions consécutives est
constante. L'un des inconvénients potentiels du paradigme du déclenchement en fonction du temps
est qu’il peut générer plus de transmissions qu’il n’en faut pour effectuer ’estimation, ce qui entraine
un gaspillage des ressources utilisées. En effet, si la sortie reste a peu prés constante, il n’est pas
nécessaire de déclencher une nouvelle transmission et donc d’envoyer une nouvelle mesure de sortie
a l'observateur, puisqu’il dispose déja de données de sortie pratiquement identiques. En contrepartie,
lorsque la sortie change rapidement, I’observateur a besoin des informations mesurées plus fréquem-
ment. Par conséquent, des approches qui ne sont pas basées sur le temps, mais sur la nécessité d’'une
nouvelle transmission de données de sortie ont été envisagées dans la littérature. En particulier,
en concevant un observateur capable de prédire quand il a besoin de nouvelles données, stratégies
d’auto-déclenchement, voir par exemple [47,48], ont été proposées, ol I'algorithme d’estimation de-
mande une nouvelle transmission quand il en a besoin. Cette stratégie de communication est tres
utile dans les applications ot la sortie du systeme ne peut pas étre surveillée en continu, puisqu’elle
n’est mesurée qu’a certains instants a temps discret. Cependant, la stratégie d’auto-déclenchement
nécessite souvent de nombreuses transmissions. En outre, elle ne surveille pas la sortie du systeme
et, par conséquent, elle est généralement plus lente pour détecter les changements rapides sur les
mesures ou les perturbations sur les données mesurées dues au bruit. Par conséquent, lorsque la sor-
tie mesurée est surveillée en permanence et que I'objectif consiste a décider quand une transmission
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doit étre déclenchée sur le réseau, les informations fournies par les mesures de sortie peuvent étre
exploitées pour générer les instants de transmission. Dans ce contexte, une autre approche puissante
pour générer les instants de transmission est la stratégie événementielle, voir par exemple, [15-30].
Dans ce cas, une régle de déclenchement basée sur les événements surveille la mesure du systeme
et/ou I'état de 'observateur et décide quand une transmission de sortie doit étre déclenchée afin de
réduire le nombre de transmissions sur le réseau, tout en garantissant une bonne performance d’esti-
mation. Dans ce contexte, la majorité des travaux sur I'estimation événementielle dans la littérature
proposent une regle de déclenchement qui dépend de I'estimation de I'état de I'observateur et, par
conséquent, nécessite la mise en ceuvre d’une copie locale de I'estimateur dans le capteur, voir par
exemple [15-21]. Un inconvénient possible de cette approche est que le capteur doit disposer de
capacités de calcul suffisantes, ce qui n’est pas toujours le cas dans la pratique, en particulier pour
les systémes a grande échelle ou les dynamiques hautement non linéaires. Pour pallier cet inconvé-
nient, une solution consiste a concevoir une regle de déclenchement basée sur les événements qui
s’appuie uniquement sur les mesures de sortie du capteur. Des solutions suivant cette approche ont
été proposées dans la littérature, voir par exemple [22-29], ou la stratégie de déclenchement est
uniquement basée sur une condition statique impliquant la sortie mesurée et sa (ses) valeur(s) an-
térieure(s) transmise(s). Toutefois, de telles régles de déclenchement statiques peuvent générer un
grand nombre de transmissions. Par conséquent, dans le but de réduire la quantité de transmissions
sur le réseau, sans nécessiter une capacité de calcul importante sur le capteur, nous proposons dans
cette these une approche dynamique déclenchée par un événement, basée uniquement sur la sortie

mesurée et la derniére valeur de sortie transmise.
Contributions

Lobjectif de la premiere partie de cette thése est de concevoir une nouvelle regle dynamique
de déclenchement d’événement pour décider quand une donnée de sortie doit étre transmise du
systéeme a I'observateur via un réseau numeérique, afin de réduire le nombre de transmissions, tout en
continuant a assurer une bonne performance d’estimation. En particulier, la regle de déclenchement
que nous concevons dépend uniquement de la mesure de sortie actuelle et de la derniére valeur
de sortie transmise. Elle ne repose donc pas sur une copie de 'observateur, ce qui pourrait s’avérer
prohibitif en termes de calcul pour le capteur. Au lieu de cela, inspiré par les regles de déclenchement
dynamique utilisées dans la littérature de contrble événementiel [49-52], nous introduisons une
variable scalaire supplémentaire qui aide a réduire le nombre de communications sur le réseau et a
garder le calcul requis simple.

Les résultats sont d’abord présentés pour des systemes linéaires non perturbés invariants dans
le temps et sont ensuite généralisés en considérant des systémes non linéaires perturbés généraux
et un cadre décentralisé, ol les capteurs sont regroupés en N nceuds et ou chaque noeud décide
quand ses données mesurées sont transmises a 'observateur indépendamment des autres. Le scénario
considéré est donc trés général. Dans les deux cas, nous avons modélisé le systéme global comme
un systeme hybride, ot un saut correspond a une transmission de sortie, et nous établissons une

propriété de stabilité pour 'erreur d’estimation. Par ailleurs, nous prouvons I'existence d’'un temps
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positif minimum entre deux transmissions de chaque noeud de capteur, ce qui est essentiel pour la
mise en ceuvre pratique étant donné que le matériel numérique moderne ne peut pas mettre en ceuvre
des échantillonnages infiniment rapides. Nous garantissons également 'absence d’échantillonnage
lorsque la sortie reste dans un petit voisinage d'une constante et que, par conséquent, I’observateur
n’a pas besoin de cette information pour obtenir une bonne estimation, ce qui constitue un avantage
par rapport aux stratégies a déclenchement temporel. De plus, nous montrons comment les résultats
présentés peuvent étre étendus au cas ot les mesures de sortie sont affectées par un bruit de mesure
additif et au cas ol 'entrée du systeme est également transmise sur un réseau numérique, et donc
I'observateur n’a acces a l'entrée qu’a certains instants a temps discret, qui peuvent étre différents
des instants de transmission de la sortie. Enfin, I'efficacité de la technique proposée est démontrée

par des exemples numériques.
C.3.2 Améliorer la performance de I’estimation
Motivation

L'objectif principal lors de la conception d’un observateur pour estimer I'état d'un systeme dy-
namique est d’avoir des garanties que I'erreur d’estimation de I'état converge vers l'origine (ou son
voisinage) lorsque le temps tend vers l'infini. Comme nous I'avons mentionné précédemment, de
nombreuses techniques sont disponibles dans la littérature pour les systémes linéaires et non linéaires
afin de garantir cette propriété, voir [5,8]. Cependant, lors de la conception d’'un observateur, nous
aimerions également assurer une bonne performance d’estimation dans le sens ot nous souhaitons

les propriétés suivantes.

— Vitesse de convergence rapide afin que 'observateur soit en mesure de générer rapidement
une bonne estimation de I'état et donc de connaitre rapidement les variables non mesurées

souhaitées.

— Robustesse aux perturbations et au bruit de mesure en ce sens que l'estimation est précise
méme en présence d’incertitudes du modele et qu’elle n’est pas trop sensible au bruit de mesure,

qui est inévitable dans la pratique.

— Domaine d’attraction global pour garantir la propriété de convergence indépendamment de
I'initialisation de I'observateur et donc de I'erreur d’estimation initiale, qui est inconnue puisque

Pétat initial est inconnu.

Idéalement, nous aimerions concevoir un observateur qui satisfasse toutes ces propriétés. Malheu-
reusement, cela est trés difficile, voire impossible, car des limitations fondamentales apparaissent,
voir [53] dans le contexte des systémes linéaires. En effet, il existe généralement un compromis
entre ces propriétés, ce qui rend le réglage de 'observateur tres difficile. De nombreuses techniques
de conception d’observateurs dans la littérature consistent a concevoir la dynamique de 'observateur
en utilisant une copie du systéme, puis en ajoutant un terme de correction, souvent appelé terme
d’injection de sortie. Ce terme dépend d’un gain (linéaire ou non linéaire) qui multiplie I'erreur d’es-
timation de la sortie, a savoir la différence entre la sortie mesurée et la sortie estimée. La question

du réglage de ce gain pour obtenir de bonnes performances d’estimation est extrémement difficile.
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En effet, typiquement, les observateurs avec de « petits » gains dans leurs termes d’injection de sortie
produisent une estimation robuste au bruit de mesure, mais la vitesse de convergence est trés lente.
Au contraire, un observateur avec une « grande » valeur a généralement une convergence rapide,
mais est plus sensible au bruit. Il est a noter que des schémas d’estimation optimaux ont été présen-
tés dans la littérature, mais uniquement dans des contextes spécifiques, comme par exemple le filtre
de Kalman bien connu [54] pour les systémes linéaires affectés par des perturbations gaussiennes

additives ayant un impact sur la dynamique et les mesures de sortie.

Pour les systémes non linéaires et perturbations générales, la conception d’un observateur opti-
mal est trés difficile, car elle nécessite la résolution d’équations différentielles partielles complexes.
Par conséquent, nous pouvons nous concentrer sur les techniques de conception pour améliorer la
performance d’estimation d’un observateur donné. A notre connaissance, les solutions dans cette
direction se concentrent sur des classes spécifiques de systemes, voir par exemple [60-62] pour les
systémes linéaires ou par exemple, [63-70] dans le contexte des observateurs a grand gain, ou se
concentrent uniquement sur I'une des propriétés spécifiques souhaitées décrites ci-dessus, comme la
robustesse au bruit de mesure dans, par exemple, [9,71]. En outre, des stratégies de commutation,
d’estimation adaptative ou de planification des gains ont été étudiées dans la littérature pour 'esti-
mation, voir par exemple [67,72-74]. La principale limite de ces travaux est qu’ils considerent des
classes spécifiques de systémes ou d’observateurs. Pour les systémes non linéaires généraux a temps
continu, une solution pour améliorer la performance de I'estimation est présentée dans [43], ol les
auteurs ont proposé de passer d’'un observateur local a un observateur global pour prendre le meilleur
des deux. En effet, un observateur local peut typiquement étre réglé pour avoir une bonne robustesse
au bruit de mesure et aux perturbations, mais son domaine d’attraction peut étre trés petit. D’autre
part, 'observateur global garantit un domaine d’attraction global et souvent une convergence rapide,
mais il est sensible au bruit. Malheureusement, la technique présentée dans [43] n’est pas aisée a

mettre en ceuvre car la connaissance de diverses propriétés des observateurs est nécessaire.

Une difficulté supplémentaire dans le réglage du gain de I'observateur pour obtenir de bonnes
performances avec des garanties de stabilité robustes provient du fait qu’il n’est pas facile de prou-
ver la propriété de convergence de l'erreur d’estimation pour tous les gains convergents possibles.
En effet, dans la pratique, il peut exister certains choix de gains de I'observateur qui produisent des
erreurs d’estimation convergentes, éventuellement avec de bonnes performances transitoires, en ré-
gime permanent ou globales, mais malheureusement, nous ne pouvons assurer aucune garantie de
stabilité pour ces choix de gains. Par conséquent, il serait tres utile de disposer d'un moyen d’exploiter
ces gains dans la conception de 'observateur afin d’améliorer éventuellement les performances des
observateurs a convergence garantie. Dans ce contexte, nous pensons qu’il y a un véritable besoin
de schémas d’estimation pour les systemes déterministes non linéaires généraux qui assurent une
propriété de stabilité robuste de I'erreur d’estimation et garantissent une bonne performance d’esti-
mation. Dans ce travail, nous proposons une solution basée sur un multi-observateur et I'utilisation

de techniques hybrides.
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Contributions

En se concentrant sur la question difficile liée a la performance d’estimation des observateurs,
nous présentons dans cette these un nouveau schéma multi-observateurs hybride général et flexible
pour améliorer la performance d’estimation d’un observateur nominal robuste donné concu pour un
systéme non-linéaire général a temps continu. En particulier, 'observateur nominal est supposé étre
tel que le systeme d’erreur d’estimation associé satisfait une propriété de stabilité entrée-état vis-a-
vis du bruit de mesure et des perturbations. Comme mentionné précédemment, un large éventail
d’observateurs non linéaires dans la littérature satisfait cette propriété, voir [5, 9] et les références
qui y figurent. Le multi-observateur est alors construit en ajoutant des systémes dynamiques supplé-
mentaires en paralléle & 'observateur nominal, qui sont collectivement appelés modes. Ces modes
supplémentaires ont la méme structure que 'observateur nominal, mais avec des gains différents, qui
peuvent étre arbitrairement choisis. En effet, nous n’exigeons aucune propriété de stabilité pour ces
systéemes. Par conséquent, la liberté et la flexibilité que nous introduisons dans le nombre de modes
supplémentaires et dans leurs gains peuvent étre utilisées pour répondre a une série de compromis
de conception tres différents entre la robustesse et la vitesse de convergence. En outre, la liberté
dans le choix des gains peut donner lieu a des modes de convergence pour lesquels nous n’avons
pas de garantie de stabilité. Inspiré par le « supervisory control » et les techniques d’estimation, voir
par exemple [ 75-79], nous exécutons tous les modes en parallele et nous évaluons leur performance
d’estimation en termes de cofits quadratiques a I'aide de variables dites de surveillance. Sur la base
de ces variables, nous concevons une régle de commutation qui sélectionne le "meilleur" mode a
chaque instant. Les modes qui ne sont pas sélectionnés a un instant donné restent inchangés ou
leurs estimations d’état, ainsi que leurs variables de surveillance, sont réinitialisées a celles du mode
sélectionné. Il convient de noter que le systeme global est un systéme hybride. En effet, le systéme
non linéaire, tous les modes du multi-observateur et les variables de surveillance évoluent en temps
continu, tandis que la commutation du mode sélectionné peut étre modélisée comme un saut en
temps discret.

Nous prouvons que le schéma d’estimation hybride proposé satisfait a une propriété de stabilité
entrée-état vis-a-vis des perturbations et du bruit de mesure. De plus, les performances du schéma hy-
bride multi-observateurs sont au moins aussi bonnes que celles de 'observateur nominal et, sous cer-
taines conditions, nous montrons que la technique proposée améliore strictement les performances
d’estimation. Enfin, nous illustrons I'efficacité de I'approche hybride multi-observateurs proposée a
l'aide d’exemples numériques. La technique d’estimation présentée est appliquée, en simulation, pour
améliorer la performance d’estimation d’un observateur con¢u selon une approche polytopique, pour
I'estimation de I'état d’une batterie électrochimique au lithium-ion avec un modéle et des valeurs de
parameétres standard, pour lesquels la performance d’estimation est extrémement importante.
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