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Résumé

Les propriétés mécaniques des géomatériaux hétérogènes sont évaluées en prenant simultanément en compte

l’anisotropie microstructurale ainsi que celle du matériau matriciel. A cet effet, l’anisotropie de la microstructure

est représentée par la complexité de forme poreuse et/ou d’inclusion qui est considérée dans le présent travail

comme concave ou convexe en portant nos attentions particulières aux pores supersphériques et supersphéroı̈daux

axisymétriques. Les tenseurs de concentration et de contribution sont calculés numériquement à l’aide de la méthode

des élément finis (FEM), qui est ensuite utilisés au niveau de la modélisation semi-analytique pour l’objectif

d’évaluer des propriétés effectives associées, telles que des réponses effectives élastiques et celles de conductivité.

Plus précisément, afin de résoudre le 2ème problème d’Eshelby (Eshelby (1961)) dans le cas d’inhomogénéités 3D et

non ellipsoı̈dales, nous utilisons conditions aux limites adaptées récemment développées par Adessina et al. (2017)

basé sur une solution en champ lointain (Sevostianov and Kachanov (2011)) pour intégrer l’anisotropie matricielle et

la correction du biais induit par le caractère borné du domaine du maillage, ce qui permet d’accélérer la convergence

du calcul sans sacrifier sa précision. En adoptant la technique d’homogénéisation numérique, les tenseurs de

contribution compliance/résistivité sont calculés pour différentes formes de pores (attention particulière des pores

supersphéroı̈daux et supersphériques) noyés dans une matrice isotrope transverse. La méthode numérique proposée

s’avère efficace et précise après un grand nombre d’estimations et leurs validations. Dans certains cas particuliers,

ces validations s’effectuent avec des comparaisons entre les résultats analytiques et numériques disponibles dans

littérature. En prenant en compte les résultats numériques obtenus pour des microstructures tridimensionnelles

(3D) considérées, les tenseurs de contribution dans les deux cas d’inclusions/pores concaves indiqués ci-dessus,

supersphère et supersphéroı̈de axisymétrique, sont développées dans les contextes des problèmes élastiques et

thermiques. Notons ici que la forme d’inclusion/pore sphérique (i.e. paramètre de concavité p = 1) ainsi que

celle de fissure circulaire (i.e. rapport d’aspect γ 7→ 0), qui peuvent être considérés comme deux cas particuliers,

sont également étudiés. Cela permet d’évaluer et de valider la méthode proposée dans le présent travail. De plus,

dans le cadre de l’homogénéisation, une application aux géomatériaux poreux à matrice isotrope transverse, tels

que les roches argileuses, est présentée pour illustrer l’impact du paramètre de concavité et celui de l’anisotropie

de la matrice sur les propriétés globales à travers plusieurs schémas d’homogénéisation micromécanique, tels

que l’approche basée sur l’approximation de non-interaction (i.e.NIA: Non-Interaction Approximation), schéma
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de Mori-Tanaka-Benveniste et celui de Maxwell. Les propriétés effectives des composites à pores réguliers sont

également estimées à l’aide de l’approche dite champ complet par simulations numériques, puis comparées à

la modélisation micromécanique. L’effet de microstructure complexes est étudié en considérant des Volumes

Elémentaires Représentatifs (VERs) périodiques contenant des arrangements aléatoires des pores noyés dans des

matrices isotropes transverses.

Mots Clés: Micromécanique, Tenseur de contribution, FEM, Élasticité, Conduction thermique, Propriétés effectives,

Multiéchelle, Homogénéisation, Pore concave, Phases transversalement isotropes, RSA, RVEs périodiques



Abstract

The mechanical properties of heterogeneous geomaterials are evaluated by simultaneously taking into account

the microstructural anisotropy as well as the one of matrix. To this end, the microstructural anisotropy is represented

by the complexity of porous shape which is considered in the present work as concave or convex by particular

attention to the superspherical and the axisymmetrical superspheroidal pores. The concentration and contribution

tensors are numerically computed using Finite Element Method (FEM), which are next approximated by analytical

expressions for the case of the concavity parameter being p < 1, to evaluate the associated effective properties,

such as effective elastic and thermal responses. Specifically, to solve the 2nd Eshelby problem (Eshelby (1961)) in

the case of 3D non-ellipsoidal inhomogeneities, we make use of a recently developed adapted boundary condition

(Adessina et al. (2017)) based on far-field solution (Sevostianov and Kachanov (2011)) to incorporate the matrix

anisotropy and to correct the bias induced by the bounded character of the mesh domain, which allows to accelerate

the computation convergence without sacrificing its accuracy. Simultaneously by complying with the numerical

homogenization technique, the compliance/resistivity contribution tensors are computed for different forms of pores

(particular attention of superspheroidal and superspherical ones) embedded in a transversely isotropic matrix. The

proposed numerical method is shown to be efficient and accurate after several appropriate assessments and validation

by comparing its predictions, in some particular cases, with analytical results and some available numerical ones.

On the basis of these 3D Finite Element Modeling, approximate relations of the property contribution tensors in

the two aforementioned reference concave cases, supersphere and axisymmetric superspheroid, are developed for

both elastic and thermal problems. Note here that the spherical pore (i.e. concavity parameter p = 1) and circular

crack (i.e. aspect ratio γ 7→ 0), which can be considered as two particular cases, are also numerically studied. This

allows to assess and validate the proposed method in the present work. Moreover, in the frame of homogenization,

application to the typical porous geomaterials with transversely isotropic matrix such as clay rocks is presented

to illustrate the impact of the concavity parameter and the matrix anisotropy on overall properties through several

micromechanical homogenization schemes such as non-interaction approximation, Mori-Tanaka-Benveniste scheme

and Maxwell scheme. The methodology of evaluation of the elastic and thermal properties of heterogeneous

material aforementioned is proposed based on micromechanical homogenization via multiscale modeling. The

overall properties of composites with regular pores are also predicted using direct finite element approaches and then
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compared against micromechanical modeling. The effect of microstructure is analysed by considering periodic RVEs

containing random arrangements of pores formed by transversely isotropic phases.

Keywords: Micromechanics, Contribution tensor, FEM, Elasticity, Thermal conduction, Effective properties,

Multiscale, Homogenization, Concave pore, Transversely isotropic phases, RSA, Periodic RVEs



Table of Contents
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Résumé de la thèse

Introduction générale
L’un des sujets les plus importants en micromécanique de géomatériaux est de décrire les comportements

macroscopiques en considérant les propriétés anisotropes dues à la fois aux évolutions des microstructures complexes

ainsi qu’aux matériaux. Il s’agit notamment des géomatériaux composites poreux liés à la propagation des

microfissures et à la croissance des micro-vides, qui affectent énormément leur processus d’endommagement, ce qui

introduit généralement la détérioration des propriétés mécaniques et induit un précurseur de ramollissement (Mura

(1987)).

Plus précisément, la contribution de la microstructure aux caractères mécanique du matériau hétérogène consiste à

trouver, en particulière dans le domaine de la modélisation micromécanique, les propriétés effectives à travers diverses

méthodes d’homogénéisation (Li and Wang (2018)). Ces modélisations pour étudier le comportement mécanique

des constituants polyphasiques commencent généralement par la considération explicite de leur hétérogénéité à une

échelle microscopique où le matériau matriciel et l’inhomogénéité sont clairement distinguables. Ceci est souvent

appelée comme la micro-échelle (Bohm et al. (2004)) notamment par rapport à celles macroscopiques et celles des

structures. En effet, cette échelle microscopique n’est généralement connectée à aucune taille de longueur fixe mais

nécessite de faire des hypothèses simplificatrices en ce qui concerne les petites échelles. A titre d’exemple, Fig.1

illustre trois échelles souvent considérées en mécanique des milieux hétérogènes, qui sont respectivement

• l’échelle de la structure notée par la dimension caractéristique D

• l’échelle du Volume Elémentaire Représentatif (VER) L

• la taille caractéristique des hétérogénéités noté par d

L’approche d’homogénéisation en micromécanique consiste donc à chercher le comportement homogène équivalent

du VER, ou encore son comportement effectif, qui permet de prendre en compte les champs microscopiques afin de

constituer un comportement global du VER. Bien que diverses tailles d’un VER soient disponibles dans la littérature

avec les estimations correspondantes peuvent varier en fonction des applications considérées, une règle classique est

xxi



souvent adoptées par les mécanicien comme la dimension typique du VER (L) devrait être beaucoup plus grande que

la dimension microscopique (d), et être beaucoup plus petite que la dimension typique du macrostructure (D), telle

que d ≪ L ≪ D.

Figure 1: Les multiples échelles (” macro-méso-micro”) d’homogénéisation Temizer and Zohdi (2007)

S’agissant de la méthode d’homogénéisation, il existe une variété des approches analytiques et numériques, y

compris des schémas de modélisation micromécanique basés sur la solution de contribution de l’inhomogénéité

individuelle ainsi que des simulations directes du VER en utilisant des différentes méthodes numériques, telles que la

Méthode des Eléments Finis (MEF), la méthode de la Transformation de Fourier Rapide (FFT), etc. Spécifiquement,

les solutions analytiques d’Eshelby sur le problème d’inhomogénéité ellipsoı̈dale dans une matrice isotrope infinie

(Eshelby (1957)) ouvrent la voie au développement d’un grand nombre de schémas d’homogénéisation. Certaines

extensions ont alors été proposées dans la littérature. Les plus importantes pourraient être la prise en compte de

différentes formes d’inhomogénéités telles que Rodin (1996) pour les polygones et les polyédriques, les fissures planes

(Sevostianov and Kachanov (2002b)) ou non (Mear et al. (2007)) et les fissures planes sécantes (Grechka et al. (2006)).

A la connaissance de l’auteur, des résultats analytiques purs ne sont disponibles que dans le cas d’inhomogénéités

ellipsoı̈dales noyées dans une matrice isotrope, ou d’inhomogénéités ellipsoı̈dales alignées selon la direction d’une

matrice transversale isotrope (Withers (1989); Sevostianov et al. (2005); Levin and Markov (2005)). Cependant,

en raison de difficultés mathématiques, le traitement de la forme non ellipsoı̈dale/non convexe de l’inhomogénéité

dans la procédure d’homogénéisation purement analytique reste limité. C’est le cas notamment pour des problèmes

tridimensionnels où la description de la forme de l’inhomogénéité irrégulière (non ellipsoı̈dale) introduit souvent des

équations intégrales non-résolubles et nécessite généralement des approches d’approximations (e.g., dans certains cas,

la solution puisse être obtenue sous la forme de séries infinies Krasnitskii et al. (2019)). Néanmoins, en basant sur

des simulations numériques, Böhm and Rasool (2016); Rasool and Böhm (2012) a analysé les effets de forme sur

les propriétés élastiques et thermiques effectives des composites contenant des particules sphériques, octaédriques,

cubiques et tétraédriques orientées et distribuées de manière aléatoire. Drach et al. (2014) a proposé d’évaluer l’effet

des pores de forme irrégulière sur les modules d’élasticité globaux en utilisant les zones projetées des pores. Cette

approche fonctionne bien pour la prédiction des modules de Young globaux dans différentes directions. Drach et al.



(2016) a comparé les deux approches pour prédire les propriétés élastiques effectives des solides avec des pores

de forme régulière et irrégulière. Les images MEB de Grgic et al. (2013) ont illustré les pores concaves existant

entre les grains de calcite dans le calcaire oolithique (Lavoux, France). Ce type de formes pourrait être décrit

mathématiquement par un superellipsoı̈de (Sevostianov et al. (2008)). L’effet du facteur de concavité des supersphères

et des pores concaves axisymétriques a été analysé dans les travaux de Sevostianov et al. (2008); Sevostianov and

Giraud (2013); Chen et al. (2018); Sevostianov et al. (2016a). Les auteurs ont complété la modélisation par éléments

finis avec des approximations analytiques pour les tenseurs de contribution de conformité des pores de telles formes.

Ces résultats ont été utilisés pour calculer les propriétés élastiques globales de matériaux à pores concaves multiples

dans une matrice isotrope : roche oolithique (Kalo et al. (2017)) et céramiques S i3N4 imprimées à 3 − D (Lurie et al.

(2018)). Leurs résultats ont également été utilisés par Sevostianov and Giraud (2012) pour dériver des expressions

analytiques approximatives pour les composantes du tenseur de contribution de conformité. Cette dérivation a été

récemment corrigée et étendue au tenseur de contribution de résistivité Chen et al. (2015); Sevostianov et al. (2016a).

Le tenseur de contribution à la résistivité a été introduit par Kachanov et al. (2001) dans le contexte de la connexion des

propriétés croisées entre les propriétés élastiques et conductrices de matériaux hétérogènes. Kushch and Sevostianov

(2014) a développé des relations explicites entre le tenseur de contribution de résistivité et les moments dipolaires.

Trofimov et al. (2017b) a comparé les prédictions des propriétés élastiques globales des composites renforcés avec des

particules de différentes formes polyédriques par des approches d’analyse directe par éléments finis et des schémas

micromécaniques. Les résultats des deux approches sont en bon accord pour des fractions volumiques jusqu’à

30% pour toutes les combinaisons de matériaux étudiées. En résumé, les travails mentionnés ci-dessus consistent

à étudier/chercher les propriétés effectives du matériau concerné:

• soit par une approche semi-analytique qui combine les simulations numériques d’une inhomogénéité isolée dans

un volume élémentaire et la méthode d’homogénéisation analytique. ( Roberts and Garboczi (2000, 2001); Arns

et al. (2002); Garboczi and Douglas (2012))

• soit directement par l’approche des champs complets visant à numériquement calculer les champs de contraintes

et de déformations ainsi que celui de déplacements d’une microstructure complexe représenté par un VER avec

des inclusions/pores inclut dans la phase matricielle. (Kushch (1997); Michel et al. (1999); Segurado and Llorca

(2002))

Cependant, leurs résultats correspondants ont eu tendance à se concentrer sur les matériaux à matrice isotrope. Un

petit nombre de résultats explicites ont été réalisés sur les propriétés élastiques de matériaux hétérogènes à matrice

anisotrope. A titre des exemples, les propriétés piézoélectriques de matériaux isotropes transverses contenant des

fibres circulaires alignées avec les axes de symétrie de la matrice ont été calculées en utilisant diverses techniques

d’homogénéisation par Dunn and Taya (1993); Chen (1993); Tungyang (1994); Sevostianov et al. (2001). Sevostianov

et al. (2005) a étudié le tenseur de contribution à la compliance pour une inhomogénéité sphéroı̈dale de rapport

d’aspect arbitraire intégré dans un matériau transversalement isotrope. Levin and Markov (2005) a calculé les



propriétés élastodynamiques effectives de roches transversalement isotropes contenant des pores sphériques alignés

et sphéroı̈daux fortement aplatis. Les propriétés porothermoélastiques effectives des roches isotropes transverses

telles que les mudstones, les argilites, les shales avec des inclusions ellipsoı̈dales arbitrairement orientées ont été

étudiées dans le cadre de la théorie des médias effectifs (EMT), par Giraud et al. (2007, 2008). Les recherches ont

montré que le comportement mécanique de tels matériaux nécessite une caractérisation quantitative non seulement

de la microstructure qui peut être complexe, mais aussi des propriétés matérielles de la matrice, qui retiennent notre

attention dans nos travaux.

Objectifs
Les matériaux ciblés dans cette thèse seront en particulier les géomatériaux anisotropes (e.g. roches argileuses

telles que marnes et argilites, etc). Ces roches sont présentées comme roches de stockage dans le cas des recherches

liées au projet de stockage profond de déchets radioactifs (e.g. Fig.2 : laboratoire ANDRA de Meuse-Haute Marne),

ou roches de couvertures de cavités de stockage. La compréhension fine du comportement mécanique , en relation

avec microstructure complexe est de manière générale cruciale dans le contexte du stockage souterrain.

Figure 2: Stockage de déchets radioactifs (http://www.cigeo.com)

Dans le cas de la roche argileuse, la microstructure a été étudiée à différentes échelles depuis les mesures en forage

et en laboratoire, de l’échelle centimétrique à celle de la microstructure Yven et al. (2007); Robinet (2008). Fig.3

présente un modèle conceptuel expérimental des passages nano-micro-macro-structurale, y compris les microcavités

et les inclusions minérales étant sous différentes formes (sphériques, sphéroı̈dales, irrégulière, etc.) et aléatoirement

noyées dans la matrice argileuse. D’un point de vue mécanique, cette microstructure complexe affecte fortement

le comportement à l’échelle macroscopique. On distingue différentes sources d’anisotropie : anisotropie initiale de

la matrice argileuse due à l’orientation préférentielle des particules argileuses (de type empilement de feuillets), et

http://www.cigeo.com/


anisotropie induite par l’orientation préférentielle d’inclusions solides minérales. Du fait de sollicitations mécanique,

une seconde source d’anisotropie par rapport à celle du matériau matriciel peut apparaı̂tre : une anisotrope induite par

l’évolution de la microstrcutre (e.g. l’évolution de forme des inclusions/pores, la propagation de fissure, etc.) sous

sollicitation mécanique, et dépendant des directions de symétrie du matériau et des directions de chargement.

Figure 3: Illustration des différentes échelles de roche argileuse Yven et al. (2007)

Après un rappel des correspondances entre les grandeurs aux différentes échelles, on se pose naturellement la

question de l’homogénéisation des propriétés effectives du matériau. Il s’agit d’une approche qui permet d’exploiter

les informations disponibles à l’échelle microscopique pour déterminer les propriétés macroscopiques en résolvant

un problème sur le Volume Élémentaire Représentatif (VER) considéré comme une microstructure. Cependant, les

modèles homogénéisés obtenus jusqu’à présent par l’approche purement analytique ne considèrent que les matériaux

simplifiés, tel que le milieu poreux composite avec une matrice isotrope et une inclusion/un pore sous forme régulière

(i.e. forme convexe). De plus, ils restent du domaine de la recherche et ne sont pas encore assez appliqués dans les

applications industrielles. Les raisons principales sont liées à des difficultés analytiques associées au passage d’une

description de la microstructure complexe au cours de l’homogénéisation théorique, pour laquelle les phénomènes de

l’endommagement et/ou du couplage hydro-thermo-mécanique peuvent être observés.

L’ensemble des études réalisées dans cette thèse pourrait être considéré comme une première étape pour surmonter

les difficultés précédemment indiquées. L’objectif principal est donc consacré à la recherche, dans le contexte

de la géomécanique, des comportements macroscopiques en relation avec l’anisotropie introduite à la fois par la

microstructure complexe et les propriétés anisotropes du matériau matriciel. A cette fin, nous nous intéresserons

aux effets de forme des inclusions/pores non ellipsoı̈daux (i.e. inclusion/pores concaves et/ou irréguliers) et ceux de

l’anisotropie de la matrice rocheuse sur ses propriétés élastiques effectives ainsi que celles thermiques effectives. Plus

spécifiquement, l’attention se porte en particulier sur leurs prédictions des matériaux poreux avec une matrice isotrope

transverse et des pores supersphériques et supersphéroı̈daux qui sont considérés comme deux candidats prometteurs



pour se conformer à la représentation de référence de la forme des pores mentionnés ci-dessus, dont les géométries

sont respectivement exprimées par Eq.(1) et Eq.(2) lorsque a = b = c:

∣∣∣ x
a

∣∣∣2p
+

∣∣∣ y
b

∣∣∣2p
+

∣∣∣ z
c

∣∣∣2p
= 1 (1)

(
x2 + y2

a2

)p

+

∣∣∣ z
c

∣∣∣2p
= 1 (2)

avec p étant le facteur de concavité ou le paramètre d’écart par rapport à la forme ellipsoı̈dale. Comme montré dans

la Fig.4, si p > 0.5, ces formes sont convexes et concaves si p < 0.5. La supersphère Fig.4a et la supersphéroı̈de

axisymétrique Fig.4b coı̈ncident avec la sphère dans le cas p = 1 mais diffèrent fortement dans le cas limite p → 0

: la supersphère tend vers trois aiguilles orthogonales le long axes de coordonnées et supersphéroı̈de tend vers une

fissure circulaire de rayon unitaire traversée par une aiguille perpendiculaire le long de l’axe de symétrie x3.

(a) (b)

Figure 4: Géométrie avec a = b = c pour différents p: (a) supersphère Trofimov et al. (2018) (b) supersphéroı̈de axisymétrique Sevostianov et al.
(2016a) shapes

Méthodologie
Cette thèse a été réalisée par une approche semi-analytique qui combine la méthode type champ moyen (e.g.

approche par tenseurs de contribution, etc.) basée sur la solution du problème de l’inclusion isolée/ du pore isolé,

et celle en champ complet. A l’aide du logiciel Abaqus (Smith (2009)), cette dernière s’effectue via les simulations

numériques en adoptant des microstructures tridimensionnelles complexes avec, soit inclusion/pore isolé, soit un

certain nombre des inclusions/pores noyés dans la phase matricielle. Ceci a été développé par des outils numériques

basés sur l’approche RSA (Random Sequential Adsorption) (Torquato, 2002; Lopez-Pamies et al., 2013; Cheng et al.,

2017; Zerhouni et al., 2021) qui permettra de générer des VERs avec des microcavités et des inclusions de formes

3D diverses en relation avec les travaux récents de l’équipe HGM du laboratoire Georessources (Kalo et al. (2017);



Grgic (2011)). La solution numérique servira de référence pour valider et/ou calibrer les approches semi-analytiques

simplifiées par champ moyen.

Méthodes d’homogénéisation
Comme nous l’avons précédemment indiqué, les solutions d’Eshelby sur le problème d’inhomogénéité ellipsoı̈dale

dans une matrice isotrope infinie (Eshelby (1957)) ont engendré un grand nombre de développements et d’applications

pour évaluer les propriétés mécaniques. Le premier problème d’Eshelby est Problème d’inclusion (transformation)

(Eshelby (1957, 1959)), qui considère une région d’inclusion dans un solide élastique linéaire homogène infini

sollicité par une déformation permanente uniforme due à la déformation non élastique comme dilatation thermique

, transformation de phase, etc. La déformation prescrite se réfère à des contraintes propres sans la contrainte de la

matrice environnante (déformations de transformation sans contrainte). Il convient de souligner que l’inclusion et

la matrice ont les mêmes constantes élastiques. Le problème d’inclusion d’Eshelby est intéressant pour résoudre

les champs élastiques à la fois dans l’inclusion et dans la matrice. Le second problème d’Eshelby est le Problème

d’Inhomogénéité (Eshelby (1961)), contrairement au Problème d’Inlcusion, qui a des modules d’élasticité différents

de ceux du matrice élastique linéaire. Les champs élastiques du milieu hétérogène soumis à un chargement à distance

et à une contrainte propre sont d’un grand intérêt. Les solutions détaillées des problèmes d’Eshelby peuvent être

trouvées dans le livre de Mura (1987).

Cependant, à la connaissance de l’auteur, la solution analytique pure du deuxième Problème d’inhomogénéité

n’est disponible que pour les matériaux contenant des inhomogénéités ellipsoı̈dales noyées dans une matrice

isotrope, ou des inhomogénéités ellipsoı̈dales parallèles alignées dans la direction d’une matrice transversalement

isotrope (Withers (1989), Sevostianov et al. (2005), Levin and Markov (2005)). Pour cette raison, des méthodes

semi-analytiques via les schémas micromécaniques seront proposées et utilisées dans le présent travail. Cela

sera une approche combinant la méthode de champs moyen (i.e. méthode d’homogénéisation analytique) et celle

de champs complet (i.e. méthode d’homogénéisation numérique). Plus précisément, les approches principales

d’homogénéisation analytique utilisées dans cette recherche sont l’approximation de non-interaction (NIA), le

schéma de Mori-Tanaka-Benveniste (MTB) et le schéma de Maxwell, pour l’objectif de caractériser la contribution

d’un pore individuel aux propriétés mécaniques effectives de matériaux hétérogènes. Le NIA est applicable en

faible fraction volumique, ce qui suppose que l’interaction entre les inhomogénéités dans le composite est ignorée

(Sevostianov and Kachanov (2013, 2012)). Pour une fraction volumique plus élevée lorsque l’interaction n’est plus

négligeable, des schémas micromécaniques plus avancés tels que le schéma MTB et Maxwell peuvent être utilisés.

Dans le schéma de Mori-Tanaka-Benveniste (MTB), toute inhomogénéité de matériau se comporte comme une

inhomogénéité isolée dans la matrice. Les interactions sont considérées en supposant que chaque inhomogénéité est

soumise à un champ extérieur constant qui coı̈ncide avec le champ de contraintes moyen dans la matrice du VER

(Mori and Tanaka (1973); Benveniste (1987)). Le schéma d’homogénéisation de Maxwell (Maxwell (1873)) est



peut-être la méthode la plus ancienne pour calculer explicitement les propriétés élastiques globales des matériaux

hétérogènes. Elle est largement étudiée dans le cas où l’influence de l’interaction pourrait être prise en compte

“collectivement” (Drach et al. (2011); Sevostianov (2014)). Dans le schéma de Maxwell, le champ lointain induit par

la présence d’inhomogénéités est assimilé au champ lointain produit par un domaine fictif d’une certaine forme avec

des propriétés effectives inconnues.

Algorithme numérique
S’agissant les simulations numériques réalisées dans cette thèse, nous nous intéresserons aux deux schémas

en modélisation micromécanique respectivement basés sur la solution de tenseurs de contribution en prenant en

compte inclusion/pore isolé et des simulations directes appliquées à des microstructures considérées (i.e. VERs

correspondants). Plus spécifiquement, au cours de calculs de tenseurs de contribution, nous adopterons une

méthode récemment développé basée sur des conditions aux limites adaptées Sevostianov and Kachanov (2011)

afin d’accélérer la convergences des calculs numériques en réduisant le biais dû au modèle borné. La correction des

conditions aux limites est donnée en fonction du tenseur de Green et de son gradient comme dépendant de l’élasticité

anisotrope du matériau de la matrice. Ceci sont rigoureusement calculés basée sur la transformée de Fourier

notamment pour régulariser les singularités sur la axe de l’isotropie transverse. Un grand nombre de simulations ont

été réalisées. Les grandeurs clés ici sont le tenseur de contribution de propriété d’une inhomogénéité qui donne le

champ élastique supplémentaire produit par l’introduction de l’inhomogénéité due au champ linéaire (i.e. champ

élastique ou thermique) appliqué à distance. Différents schémas d’homogénéisation linéaire susmentionnés ont

été proposés comme solutions semi-analytiques en adoptant des approximations appropriées. Tous les résultats

numériques décrits dans ce travail via les tenseurs de contribution sont directement liés aux propriétés effectives, mais

sont obtenus en dehors du cadre de la théorie d’Eshelby.

Concernant les simulations directes (i.e. méthode champ complet), différents outils numériques (e.g. scripts

en Matlab, Python, Fortran, Netgen, etc), comme indiqué ci-dessus, ont été développés afin de pouvoir estimer les

propriétés effectives liées aux différentes problématiques (e.g. problèmes mécaniques ou thermiques). Tout d’abord,

différentes microstructures avec des inclusions/pores sous diverse formes (concave ou non) ont été générées en

utilisant des scripts programmés en Matlab et Fortran. Le logiciel Netgen est ensuite consacré à créer le maillage avec

des éléments quadratiques de type C3D10 pour les problèmes élastiques et ceux de type DC3D10 pour les problèmes

thermiques). Les simulations ont été effectuées via des calculs parallèles en utilisant le centre de calculs de l’Université

de Lorraine - Mésocentre EXPLOR (un Ensemble de Calcul Scientifique Pour la Lorraine). L’homogénéisation

numérique et les procédures des traitement des données sont réalisées par des scripts en Python et Matlab.



Résultats et Conlusions
Les propriétés élastiques et thermiques des milieux composites poreux sont régies par les propriétés mécaniques

des constituants, la morphologie des pores, la porosité et l’interaction entre les pores. Comme indiqué ci-dessus,

la méthode de champs complet (i.e. l’approche d’homogénéisation numérique) sera adoptée dans le contexte

d’homogénéisation semi-analytique. Ceci vise à estimer numériquement les propriétés effectives de matériaux

hétérogènes concernés dans cette thèse qui comportent des inhomogénéités non ellipsoı̈dales concaves et une matrice

transversalement isotrope réagissant à diverses conditions de chargement : champs de déformations ou de température.

Nous allons spécifiquement étudier l’effet de la forme, de la porosité, de la distribution poreuse et de l’orientation des

pores sur la réponse thermomécanique à des déformations et températures finies à différentes échelles. Nous allons

également considérer des microstructures anisotropes périodiques basées sur des algorithmes RSA puis effectuer une

étude comparative avec les résultats obtenus par l’approche d’homogénéisation semi-analytique.

Nous nous concentrons dans un premier temps sur la question de la contribution des inhomogénéités aux

propriétés élastiques effectives. Afin de réaliser une telle tâche, dans le chapitre 2, en adoptant l’approche

d’homogénéisation numérique et la méthode des conditions aux limites adaptées, les tenseurs de concentration et

de contribution seront numériquement calculés avec nos attentions particulièrement portées aux formes concave

des inhomogénéités (i.e. formes supersphériques et supersphéroı̈dales). Ces conditions aux limites adaptées serons

rigoureusement reformulées, dans le cas du problème élastique linéaire, via la méthode intégrale basée sur la

transformée de Fourier notamment en résolvant le problème de singularité sur l’axe de l’isotropie transverse. La

méthode numérique proposée s’est avérée efficace et précise après plusieurs évaluations et validations appropriées

en comparant ses prédictions, dans certains cas particuliers, avec les résultats analytiques et certains numériques

disponibles. Les prédictions résultantes peuvent converger pour un domaine matriciel relativement petit et le

processus prend moins de temps en maintenant une précision suffisamment précise. Les tenseurs de déformations

et de contraintes ainsi que ceux de contribution de compliance & résistivité seront calculés par cet algorithme

numérique. Les résultats obtenus quantitativement illustrent l’effet de la concavité des pores et de l’anisotropie du

matériau matriciel. Nous allons constater que les formes concaves produisent une influence sensiblement plus grande

que les formes convexes. Ces effets serons mathématiquement exprimés en adoptant des approximations appropriées

qui pourraient être considérées comme une entrée des différents schémas micromécaniques afin de quantitativement

estimer les propriétés effectives étudiées, tels que les schémas d’homogénéisation NIA, MTB et Maxwell. Une

grande nombre de résultats seront montrés dans ce travail en portant nos attentions particulières aux application des

méthodes précédemment décrites dans le cas de géomatériaux poreux (i.e. roches poreuses, etc). Une observation

intéressante est le fait que la réponse élastique effective des matériaux anisotropes dépend fortement de la forme des

pores, de la porosité et de l’interaction des pores. L’effet de la forme du pore et celui de l’anisotropie de la matrice ne

peuvent pas être considérés indépendamment.

Par la suite, de nombreux résultats importants seront obtenus dans le cadre de la conduction thermique (voir



chapitre 3) avec des pores isolants. Une étape importante dans la simulation de tels matériaux anisotropes consiste

à une étude de convergence de l’algorithme numérique. La méthode avec des conditions aux limites adaptées sera

adopté mais nécessite des modifications par rapport au problème élastique linéaire précédemment étudié. De manière

intéressante, nous allons observer que pour la réponse thermique linéaire, ces simulations convergent plus rapidement

que la réponse élastique linéaire. Ceci pourrait être partiellement lié au fait que la solution thermique (e.g. le tenseur

de contribution de résistivité, etc) est du second ordre tandis que la solution élastique (e.g. le tenseur de contribution

de compliance, etc) est du quatrième ordre. Depuis une analyse couplée après un grand nombre d’étude du paramètre

de concavité et de l’anisotropie du matériau matriciel, leurs effets combinés sur le tenseur de contribution de propriété

des constituants concernés seront obtenus. En basant sur des nombreuses données obtenues par les simulations

numériques, nous allons adopter des approximations afin de mathématiquement exprimer ces effets aux tenseurs

de contribution associés. Contrairement au ceux du problème élastique étudié, ils devraient inclure une considération

d’un paramètre supplémentaire. Il s’agit du degré anisotrope de la matrice. Ces expressions approximées seront aussi

utilisées comme entrée dans les différents schémas micromécaniques tels que l’approximation de non interaction, les

schémas de Mori Tanaka-Benveniste et de Maxwell, pour analyser les propriétés thermiques effectives. Les deux

variables, l’une servant à la morphologie poreuse, l’autre permettant de faire varier les matériaux de la phase solide

matricielle, montrent une importance plus significative en particulière si la concavité est plus faible. D’après une

analyse paramétrique, on peut conclure que le degré d’anisotropie du matériau matriciel κ et le paramètre de concavité

p présentent un effet combiné significatif lors de l’estimation des coefficients thermiques effectifs. A ce stade, on note

une fois encore que le matériau homogénéisé étudié a une propriété transversalement isotrope ayant le même axe de

symétrie que la matrice.

Le dernier chapitre 4 de cette étude a été consacré à une discussion comparative de deux approches de modélisation

pour prédire les propriétés élastiques effectives : la méthode champs moyen (i.e. méthode d’homogénéisation semi-

analytique) et la méthode champs complet (i.e. l’homogénéisation numérique directement applique au VER).

Pour cela, les microstructures sont considérées comme périodiques ayant des pores sphériques et/ou sphéroı̈daux

aléatoirement orientés et positionnés dans la phase matricielle. Comme indiqué ci-dessus, ceci sera réalisé par

l’algorithme RSA. Les prédictions obtenues par ces deux méthodes seront comparées. Ceci nous permettra d’avoir

certaines conclusions provisoire, telles que, les deux méthode peuvent gérer les spécificités de microstructure

périodique. Plus précisément, dans le cas de petites concentrations de pores, l’approche de la NIA fournit précision

suffisamment pertinente. À mesure que la porosité augmente, les schémas micromécaniques plus avancés tels que

ceux de MTB et de Maxwell sont de plus en plus nécessaires, ce qui signifie que l’influence de l’interaction entre les

pores n’est pas négligeable.

Notons à nouveau que la méthode numérique proposée dans cette thèse est capable de traiter tous les problème

avec une anisotropie générale d’un matériau matriciel, mais une telle étude n’a pas été effectuée pour une raison de

concentration et de concision du travail. Au niveau des perspectives, une recherche continue pourrait se concentrer

sur les simulations directes appliquées aux milieux composites contenant des défauts irréguliers (tels que supersphère,



supersphéroı̈de, fissure, etc.) qui sont également noyés dans une matrice anisotrope. Un certain nombre d’effets

supplémentaires pourraient être pris en compte, tels que les interfaces entre la matrice et les pores ainsi que les

instabilités et l’endommagement matérielles (i.e. plasticité, fragilité, etc.) qui pourraient se produire.
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Chapter 1
Introduction

1.1. General Introduction
One of the most important subjects in micromechanics is to describe the macroscopic behaviours by considering

the evolution of the complex microstructures both in geometry and materials. It is especially for the porous composite

geomaterials relating to the propagation of the micro-cracks and the growth of the micro-voids, which enormously

affect their damage process, which generally introduces the deterioration of the mechanical properties and induces an

softening precursor (Mura (1987)).

In the area of applied mechanics, the key importance is to be able to determine the contribution of microstructure

to the effective/overall material properties of composite materials. A major objective of this kind of study is to find

the statistical average material properties of the heterogeneous material through various homogenization methods

(Li and Wang (2018)). The modelling to study the mechanical behaviour of multiphase constituents generally starts

with the explicit consideration of their heterogeneity at a length scale where matrix and inhomogeneity are clearly

distinguishable, which is called the microscale in the following (Bohm et al. (2004)). The aim of micromechanics is

just to relate the macroscopic behaviour of the heterogeneous media to the details of their microscopical constitution

through the basic idea of homogenization. The conventional multiscale modelling of micromechanics is a special

mathematical homogenization model that is usually not connected with any fixed length scale but require the classical

length-level assumption. In continuum mechanics, we generally consider three scales, as illustrated in Fig.1.1:

• the scale of structure or macroscale, of characteristic dimension D

• the representative volume element (RVE) scale L

• the characteristic size of the heterogeneities d (which called microscale)
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Chapter 1 1.1

The behaviour of the RVE defines Equivalent Homogeneous Behaviour, or even effective behaviour. The

homogenization step leads to the connection between the average stress/strain fields at micro and macro to constitute

an overall behaviour of the RVE. Although various choices of a RVE’s size are available in the literature, a rule is that

the typical dimension of RVE (L) should be much larger than the microscopic one (d), and be much smaller than the

typical dimension of the macrostructure (D): d ≪ L ≪ D.

Figure 1.1: The multiple scales (“macro-meso-micro”) of homogenization Temizer and Zohdi (2007)

There are a variety of methods for homogenization of porous solids, including micromechanical modelling

schemes based on the contribution solution of individual inhomogeneity, direct simulations of representative volume

elements (RVEs) of the material by using either the finite element method (FEM) or the fast Fourier transformed-

based numerical scheme (FFT) , and establishment of variational bounds of Hashin-Shtrikman type (Hashin and

Shtrikman (1962b, 1963)). The present work discusses the first two approaches by using the FEM but the former one

of micromechanical schemes is the main tool used in the present work.

Eshelby’s solutions on the ellipsoidal inhomogeneity problem in an infinite isotropic matrix (Eshelby (1957))

pave the way to the development of a vast number of continuum micromechanics based homogenization schemes

for evaluation of effective properties. Some extensions have then been proposed in literature. The most important

ones might be the consideration of different forms of the inhomogeneities such as Rodin (1996) for the polygons and

polyhedral ones, the planar cracks (Sevostianov and Kachanov (2002b)) or not (Mear et al. (2007)) and intersecting

planar cracks (Grechka et al. (2006)). To the author’s knowledge, pure analytical results are only available in the

case of ellipsoidal inhomogeneities embedded in an isotropic matrix, or aligned ellipsoidal inhomogeneities aligned

in the direction of a transversely isotropic matrix (Withers (1989), Sevostianov et al. (2005), Levin and Markov

(2005)). Due to mathematical difficulties, the application of such pure analytical homogenization to the materials

with complex microstructure is shown limited especially for the treatment of the non-ellipsoidal/non-convex shape

of the inhomogeneity in the homogenization procedure. In three-dimensional cases, the problem of irregular (non-

ellipsoidal) inhomogeneities reduces to integral equations and generally requires computational approaches (although,

in some cases, solution can be obtained in the form of infinite series, see, for example Krasnitskii et al. (2019)) . Böhm

and Rasool (2016); Rasool and Böhm (2012) analysed shape effects on the effective elastic and thermal properties of
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Chapter 1 1.1

the composites containing randomly oriented and distributed spherical, octahedral, cubical and tetrahedral particles.

Drach et al. (2014) proposed to evaluate effect of pores of irregular shape on the overall elastic moduli using pore

projected areas. This approach works well for prediction of the overall Young’s moduli in different directions. Drach

et al. (2016) compared the two approaches to predict the effective elastic properties of solids with regular and irregular

shaped pores. The SEM images of Grgic et al. (2013) illustrated the concave pores existing between calcite grains

in the oolitic limestone (Lavoux, France). This kind of shapes could be mathematically described by superellipsoid

(Sevostianov et al. (2008)). Effect of the concavity factor of superspheres and axisymmetric concave pores was

analysed in the works of Sevostianov et al. (2008); Sevostianov and Giraud (2013); Chen et al. (2018); Sevostianov

et al. (2016a). The authors supplemented finite element modelling with analytical approximations for compliance

contribution tensors of pores of such shapes. These results were used to calculate overall elastic properties of materials

with multiple concave pores in isotropic matrix: oolitic rock (Kalo et al. (2017)) and 3 − D printed S i3N4 ceramics

(Lurie et al. (2018)). Their results have also been used by Sevostianov and Giraud (2012) to derive approximate

analytical expressions for the components of the compliance contribution tensor. This derivation have recently been

corrected and extended to resistivity contribution tensor (Chen et al. (2015); Sevostianov et al. (2016a)). The resistivity

contribution tensor has been introduced by Kachanov et al. (2001) in the context of the cross property connection

between elastic and conductive properties of heterogeneous materials. Kushch and Sevostianov (2014) developed

explicit relations between resistivity contribution tensor and dipole moments. Trofimov et al. (2017b) compared

predictions of overall elastic properties of composites reinforced with particles of different polyhedral shapes by

direct finite element analysis approaches and micromechanical schemes. The results of the two approaches are in

good agreement for volume fractions up to 30% for all studied material combinations. In the aboved mentioned works,

effective properties of the concerned materials have been studied, by utilizing different approaches, for example:

• semi-analytical method that combines the theory of analytical homogenization and the technique of numerical

simulations. (Roberts and Garboczi (2000, 2001); Arns et al. (2002); Garboczi and Douglas (2012))

• numerical homogenization for estimating the stress, strain and displacement fields with the complex

microstructure by a RVE.(Kushch (1997); Michel et al. (1999); Segurado and Llorca (2002))

However, these studies have tended to focus on materials with isotropic matrix. A small number of explicit results

has been carried out on elastic properties of heterogeneous materials with anisotropic matrix. Piezoelectric properties

of transversely isotropic materials containing circular fibers aligned with the axes of symmetry of the matrix have

been calculated using various homogenization techniques by Dunn and Taya (1993); Chen (1993); Tungyang (1994);

Sevostianov et al. (2001). Sevostianov et al. (2005) calculated compliance contribution tensor for a spheroidal

inhomogeneity of arbitrary aspect ratio embedded in a transversely-isotropic material. Levin and Markov (2005)

calculated effective elastodynamics properties of transversely isotropic rocks containing aligned spherical and strongly

oblate spheroidal pores. Effective porothermoelastic properties of transversely isotropic rocks such as mudstones,

argillites, shales with arbitrarily oriented ellipsoidal inclusions have been studied in the frame of Effective Media
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Theory (EMT), by Giraud et al. (2007, 2008)). Research has consistently shown that the mechanical behaviour of

such materials require quantitative characterization not only for the microstructure which could be complex, but also

on the material properties of the matrix, which catch our attention in our work.

1.2. Objectives
The materials concerned in this thesis will particularly be the anisotropic geomaterials (e.g. clay rocks, etc.),

which are usually studied in the research areas for example, that correspond to the applications of the storage of

the radioactive wastes (e.g. Fig.1.2 Laboratory ANDRA in Meuse-Haute Marne). The effect of their complex

microstructures on the mechanical properties at macroscopic scale deals with an important subject in the framework

of underground storage.

Figure 1.2: Laboratory ANDRA in Meuse-Haute Marne (France) - storage of the radioactive waste (http://www.cigeo.com)

Concerning the clay rock, the microstructure has been studied at different scales via experimental observations

(Yven et al. (2007); Robinet (2008)). Fig.1.3 shows a conceptual model illustrating the passage between them (i.e.

nano - micro - macro - structural scales) as well as different forms of inclusions and pores (e.g. sphere, spheroidal,

irregular ones, etc) that are included and randomly distributed in its matrix phase. From the mechanical point of view,

this complex microstructure introduces some anisotropic characters in the heterogeneous rocks that strongly affect

their mechanical properties at the macroscopic scale. Moreover, the anisotropic response of the concerned rocks can

be induced by another source due to the matrix material of the rock that depends on different orientations of the clay

particles and inclusions/pores at relatively smaller scales (i.e. nano-scale, etc.).
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Chapter 1 1.2

Figure 1.3: Illustration of different scales of clay rock Yven et al. (2007)

After recalling the relationship between different scales in the context of micromechanics, we will next look

at the technique of homogenization that will be used in this thesis to study the effective properties of concerned

geomaterials. In fact, it consists of determining the macroscopic properties by taking into account the available

information of the heterogeneous material at its microscopic scale. The information is usually in relation to the

corresponding microstructure that could be represented by a Representative Volume Element (RVE). This method is

widely applied in the fields of mechanics and material science. However, the existing models in literature obtained by

the purely analytical homogenization deal only with the “simplified” materials, such as the porous composite materials

with an isotropic matrix and inclusions/pores in regular forms (i.e. convex forms). Moreover, the macroscopic models

obtained from this approach have not been sufficiently applied in industry/engineering problems. These main reasons

were due to the mathematical description of the complex microstructures during the theoretical homogenization

process, in which even some other phenomenons such as the hydro-thermo-mechanical coupling could be observed

that also depend on these complex microstructures.

This thesis can be considered as a first step to propose a homogenization model for such kind of geomaterials

by overcoming the above-mentioned difficulties. The objective is hence to study, in the context of geomechanics,

the macroscopic effective characters of geomaterial by considering the anisotropy introduced simultaneously by its

complex microstructure and the matrix material. In this light, we are interested in the effect of the non-ellipsoidal

forms of inclusions/pores (i.e. concave and/or irregular forms) as well as that of the elastic and/or thermal properties

that will be also anisotropic. It is worthy to note that during the numerical simulation, the adapted boundary

conditions, firstly proposed by (Adessina et al., 2017) for isotropic matrix, is extended in the context of anisotropic one

for both elastic and thermal solution in our work. A major contribution is found as the sufficiently exact computation

results and analysis that quantitatively illustrate the significant effects of the pore concavity and matrix anisotropy,

and derive the analytical approximate expressions of effective elastic & thermal properties. More specifically, our

attentions will be mainly paid to the porous materials with a transversely isotropic matrix as well as the superspherical
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and superspheroidal pores, which is corresponding the aforementioned concave forms. They can be mathematically

described as: ∣∣∣ x
a

∣∣∣2p
+

∣∣∣ y
b

∣∣∣2p
+

∣∣∣ z
c

∣∣∣2p
= 1 (1.1)

(
x2 + y2

a2

)p

+

∣∣∣ z
c

∣∣∣2p
= 1 (1.2)

with p being the concavity parameter. a, b and c are the radii respectively along the ex, ey and ez directions in the

Cartesian coordinates. It is worth mentioning that, as shown in Fig.4, when p > 0.5, their shapes are defined as convex

and concave if p < 0.5. The supersphere (Fig.4a) and the axisymmetric superspheroid (Fig.4b) both recover a sphere

in the case of p = 1. While their particular cases when p → 0 are totally different: the supersphere tends to be three

orthogonal needles and, the superspheroid approaches a penny crack perpendicularly crossed by a needle along the

axis of symmetry ez.

1.3. Methodology
This thesis was realized by adopting a semi-analytical approach that combines the method of mean fields (i.e.

method depending on the contribution tensors and/or theoretical homogenization etc.) and that of the full fields

(i.e. direct numerical estimations upon a whole RVE, and/or numerical homogenization). The latter one was carried

out by adopting the three dimensional complex microstructures (i.e. RVEs) with either a single inclusion/pore or a

finite number of inclusions/pores embedded in the matrix phase. The RVEs are numerically generated based on the

algorithm of Random Sequential Adsorption (RSA) ((Torquato, 2002; Lopez-Pamies et al., 2013; Cheng et al., 2017;

Zerhouni et al., 2021)) that is in relation to the recent works of the HGM team of laboratory GeoRessources (Kalo

et al. (2017); Grgic (2011)). The obtained numerical solutions are used to validate and/or calibrate the results obtained

from the semi-analytical method.

Analytical homogenization methods
As aforementioned, Eshelby’s solutions on the ellipsoidal inhomogeneity problem in an infinite isotropic

matrix (Eshelby (1957)) have been extended in a vast number of developments and applications for evaluating the

mechanical properties in the framework of the effective medium theory. The first Eshelby’s problem is Inclusion

(transformation) Problem (Eshelby (1957, 1959)), which considers an inclusion region in an infinite homogeneous

linear elastic solid that is subjected to a uniform permanent deformation due to a nonelastic deformation as thermal

expansion, phase transformation, etc. The prescribed deformation refers to eigenstrains without the constraint of

surrounding matrix (stress-free transformation strains). It is worth to emphasize that both the inclusion and the

matrix have the same elastic constants. This Eshelby’s inclusion problem is of interest to solve the elastic fields both
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in the inclusion and in the matrix. The second one is Inhomogeneity Problem (Eshelby (1961)), in contrast with

the Inclusion Problem, which has elastic modulus different from those of the infinitely surrounding linear elastic

solid. The disturbed elastic fields of heterogeneous material submitted to remotely applied loading and prescribed

eigenstrain are of great interests. The detailed solutions of Eshelby’s problems can be found in Mura (1987).

However, to the best of the author’s knowledge, the purely analytical solutions of the second Inhomogeneity

Problem are only available for materials containing ellipsoidal inhomogeneities embedded in an isotropic matrix,

or parallel ellipsoidal inhomogeneities aligned in the direction of a transversely isotropic matrix (Withers (1989),

Sevostianov et al. (2005); Levin and Markov (2005)). Hence, a semi-analytical method via the micromechanical

schemes is proposed and utilized in this thesis. In order to characterize the contribution of an individual pore to

the effective mechanical properties of heterogeneous materials, the analytical homogenization approaches used in

the present work are mainly those of the Non-interaction approximation (NIA) scheme, the Mori-Tanaka-Benveniste

(MTB) and the Maxwell ones. More specifically, the NIA scheme is applicable in the case of low volume fractions, for

which we suppose that the interaction between inhomogeneities in the composite could be ignored (Sevostianov and

Kachanov (2013, 2012)). For higher volume fractions problems, more advanced micromechanical schemes such as

MTB and Maxwell schemes can be used when the interaction is no longer negligible. Concerning the MTB scheme,

every inhomogeneity in the material is presented as isolated in the matrix, for which the interactions are considered

by assuming that every inhomogeneity is subjected to a constant external field that is coincided with the average

stress field in the matrix of the RVE (Mori and Tanaka (1973); Benveniste (1987)). Maxwell homogenization scheme

(Maxwell (1873)) consists of explicitly calculating the overall elastic properties of heterogeneous materials. It is

largely investigated in the cases when the influence of interaction could be accounted “collectively” (Drach et al.

(2011); Sevostianov (2014)). Still in the Maxwell scheme, the far field induced by the presence of inhomogeneities is

equivalent with respect to the one produced by a fictitious domain of certain shape with unknown effective properties.

Numerical algorithm
In contrast to the purely analytical modelling, the numerical method has less limit on the complexity of the

microstructure (i.e. forms of inclusions/pores, etc.) regarding its mathematical description. Two numerical methods

are adopted in this thesis, which are respectively based on the computation of the contribution given by an individual

inhomogeneity and direct predictions of the RVE subjected to different mechanical and thermal solicitations. Note

that these numerical computations are realized by using the software Abaqus (Smith (2009)) via the Finite Element

Method.

More specifically, in order to compute the contribution of an individual inhomogeneity, we make use of a recently

developed method that allows redefining some adapted boundary conditions. The main advantage lies in reducing

the bias of bounded domain of the RVE during the numerical computations, which has been proposed based on the

far-field asymptotics (Sevostianov and Kachanov, 2011) of an inclusion problem. It is important to note here that in
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the elastic cases, such a correction of boundary conditions is given as functions of the Green tensor and its gradient

as dependent on the anisotropic elasticity of matrix material, which are rigorously calculated by means of the Fourier

transform based integral method in particular for regularizing the singularities on the symmetric axis of the transverse

isotropy. A large number of simulations have been carried out in the context of numerical homogenization to estimate

the contribution tensors of the inhomogeneity, as aforementioned, by using FEM simulations in the framework of

continuum mechanics. These contribution tensors can be used to calculate the extra elastic field produced by presence

of the inhomogeneity in an elastic media subjected to a remotely applied linear elastic field. As already mentioned

above, different linear homogenization schemes will be adopted and calibrated with some appropriate approximations.

The numerical results outlined in this work via the contribution tensors are of direct relevance to the effective properties

of solids with inhomogeneities, but are obtained outside of the Eshelby’s theory framework.

In the case of full field simulations, the RVE is first numerically generated by adopting the RSA algorithm that

allows to randomly define the positions of the pores with the control of some physical information of the concerned

microstructure, such as the porosity, the orientation of the pores, etc. This microstructure is subjected to either

mechanical loadings (e.g. displacements or stresses) or thermal ones (e.g. temperature) for the study of the effective

elastic response and that of the thermal conductivity, respectively. In this light, the whole numerical procedure is

realized in this thesis by use of different softwares (e.g. MATLAB, ABAQUS, Python, Netgen and Fortran, etc.).

Specifically, the numerical generation of the RVEs is carried out by user-defined scripts of HGM team at laboratory

GeoRessources that are implemented in MATLAB and/or Fortran language. NETGEN is adopted for the meshing

process of the RVEs with appropriate type of quadratic 3D elements (e.g. C3D10 elements for elastic problem and

DC3D10 ones for thermal problem) . Thanks to Abaqus/Standard and the supercomputer EXPLOR(un Ensemble de

Calcul Scientifique Pour la Lorraine), recently developed at the University of Lorraine, the finite element simulations

are carried out via parallel computations, for which the numerical homogenization models are implemented in Python

language.

1.4. Publications
Until now, two papers have been published during this thesis:

• Du K., Cheng L., Barthélémy J.F., Sevostianov I., Giraud A., Adessina A. (2021). Effective elastic

properties of transversely isotropic materials with concave pores. Mechanics of Materials, Vol. 153, 103665.

• Du K., Cheng L., Barthélémy J.F., Sevostianov I., Giraud A., Adessina A. (2020). Numerical computation

of compliance contribution tensor of a concave pore embedded in a transversely isotropic matrix. International

Journal of Engineering Science, Vol. 152, 103306.

whose detail scientific contents are presented in section 2.3 and 2.5.
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Concerning the remaining parts of this thesis, two papers have been finished and will be submitted to journals for

potential publications:

• Du K., Cheng L., Barthélémy J.F., Sevostianov I., Giraud A., Adessina A. Numerical estimation of

resistivity contribution tensor of a concave pore embedded in a transversely isotropic matrix

• Du K., Cheng L., Barthélémy J.F., Sevostianov I., Giraud A., Adessina A. Effective thermal properties of a

composite containing transversely isotropic matrix and irregular shapes of pores

1.5. Organization of the work
This thesis is organized as follows. Chapter 1 reviews and summarizes the engineering and research background

as well as the main methodologies adopted in the present work. Chapter 2 is devoted to investigating the effect of the

concavity parameter of 3D non-ellipsoidal concave pores on the overall effective elastic properties in the framework

of micromechanics. It begins by laying out the theoretical introduction of compliance & stiffness contribution tensors.

Namely, these tensors serve as the basic building block to evaluate effective elastic properties of heterogeneous

materials. Numerical calculations with corrected boundary conditions are performed for non-ellipsoidal pores

especially superspherical and axisymmetric superspheroidal ones embedded in a transversely isotropic matrix.

Based on the obtained numerical results, the compliance contribution tensors are next mathematically expressed by

considering some appropriated approximations. It is finally taken into account for the semi-analytical homogenization

in order to study the effective elastic properties of the concerned geomaterials (i.e. clay rocks). Chapter 3 deals

with the effective thermal properties. The effects of pore shape and matrix anisotropy on the pore contribution

parameters are qualitatively and quantitatively studied. After a large number of numerical computations, the

resistivity contribution tensor was approximated and expressed as dependent on the concavity of the pore and the

matrix anisotropy. Based on this semi-analytical development, the relating micromechanical modelling is proposed

for the effective thermal conductivity prediction. Chapter 4 is devoted to the full field simulations by considering

the “complex” microstructure of geomaterial, in which the numerical homogenization is applied. The numerical

estimations of the corresponding effective responses are compared to the semi-analytical results obtained in the

previous chapters for their assessment and validation. Finally, Chapter 5 gives a brief summary of this work as well

as some potential perspectives in future research.
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Chapter 2
Effective elastic properties of anisotropic

solids with concave pores

As mentioned in the literature review, very little results was found on the study of mechanical properties of

heterogeneous materials with concave pore. For determining the macroscopic elastic properties of the porous

composite geomaterials, the first step of present part is devoted to evaluate the property contribution tensors by

particularly taking into account the microstructural complexity and/or the matrix anisotropy. And then predict

the overall elastic properties via micromechanical homogenization based on the properties contribution tensor

(H-tensor) of single pore problem. This chapter is organized as follows. The two reference shapes, supersphere and

axisymmetrical superspheroid are presented in Section 2.1. Section 2.2 begins by laying out the theory of property

contribution tensors and looks at the numerical procedure with classic Hashin-type boundary condition (uniform

strain or uniform stress, Hashin (1983)). The section 2.3 extends a recent numerical procedure of correction of

Hashin-type boundary condition, in the case of an isotropic host matrix, by Adessina et al. (2017), for the problem

of an isolated inhomogeneity embedded in an infinite matrix domain, to the case of an anisotropic host matrix. This

method allows to replace the reference problem with infinite matrix domain by an approximate problem with bounded

matrix domain and corrected boundary condition based on a far field analysis of the Eshelby problem presented in

Sevostianov and Kachanov (2011). It is then applied in Section 2.3.4 to the numerical homogenization method for

the computation of the contribution tensors. Numerical estimations respectively in the cases of isotropic matrix as

well as the transversely isotropic one are then carried out and discussed. We investigate in section 2.5 the extension to

transverse isotropy of approximation formula for the compliance contribution tensor of 3D pores of particular shapes

previously studied on the basis of numerical results in section 2.3. The effective properties of a transversely-isotropic

material containing concave pores are also discussed and illustrated on the example of porous clay matrix via different

micromechanical homogenization schemes introduced in section 2.4. All of them are based on the solution for a
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single inhomogeneity problem and can be easily formulated for ellipsoidal inhomogeneities using Eshelby results

(Eshelby (1957, 1961); Wu (1966)). Note that section 2.3 and section 2.5 are two published articles.

2.1. Microstructure
In this section, we mathematically describe the microstructure containing concave pores that are common in both

natural and man-made materials. The observations by backscattered electron images (BSE) of harzburgite in Wark

et al. (2003) (Fig. 2.1) and by scanning electron microscopy (SEM) of ironstone in Grgic (2001) (Fig. 2.2) and of

oolitic limestone in Grgic (2011) (Fig. 2.3) illustrate the typical concave pores for microstructures of geomaterials.

Figure 2.1: The outlines of melt pools exposed in BSE images of harzburgite showing typical concave pores Wark et al. (2003)

One purpose of this study set out to assess the effect of pore shape. For this goal, the superspherical and

axisymmetric superspheroidal shapes are considered as two promising candidates to comply with the benchmarking

representation of the pore concavity abovementioned, whose geometries are respectively expressed as Eq.(2.1) and

Eq.(2.2) when a = b = c. ∣∣∣ x
a

∣∣∣2p
+

∣∣∣ y
b

∣∣∣2p
+

∣∣∣ z
c

∣∣∣2p
= 1 (2.1)

(
x2 + y2

a2

)p

+

∣∣∣ z
c

∣∣∣2p
= 1 (2.2)

with p called the concavity factor or a parameter of deviation from ellipsoidal shape. As shown in Fig.2.4, if p > 0.5,

these shapes are convex and concave if p < 0.5. Supersphere 2.4a and axisymmetrical superspheroid 2.4b coincide

with sphere in the case p = 1 but strongly differ in the limiting case p → 0: supersphere tends to three orthogonal

needles along coordinates axes and superspheroid tends to a circular crack of unit radius crossed by a perpendicular

needle along symmetry axis x3.
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Figure 2.2: Low magnification SEM images of ironstone showing the concave sideritic interoolithic cement. (a) Crack surface. (b) Polished thin
section Grgic (2001)

Figure 2.3: Low- and high-magnification SEM observations on initial oolitic Lavoux limestone showing typical concave pores Grgic (2011)
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(a) (b)

Figure 2.4: Geometry with a=b=c for different p: (a) superspherical Trofimov et al. (2018) (b) axisymmetric superspheroidal Sevostianov et al.
(2016a) shapes

The different shapes of related microstructures numerically generated by applying a user-defined MATLAB scripts.

A function is defined in MATLAB to generate the area of a cube that removes the superspherical or supersphroidal

pore in the center. The 3D grid coordinates of this domain are returned by “meshgrid” function. A “stl” format file

(information of triangular mesh) is output as the input for mesh generation by extracting the “isosurface” data from

volume data.
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2.2. Property contribution tensors and classically

numerical estimations of elastic problem
In this section, we briefly recall the definition of the contribution tensors in the context of linear homogenization.

Numerical estimations respectively in the cases of isotropic matrix as well as the transversely isotropic one subjected

to classical Hashin-type boundary conditions (Hashin (1962)) are then carried out and discussed.

2.2.1. Theoretical background on contribution tensors
All numerical results outlined in this work via the contribution tensors are of direct relevance to the effective

elastic properties of solids with inhomogeneities, but are obtained outside of the Eshelby’s theory framework. The

key quantities here are fourth order compliance contribution tensor (denoted by H) of an inhomogeneity that gives the

extra strain produced by introduction of the inhomogeneity due to the remote stress field. Alternatively, one can also

derive the dual stiffness contribution tensor (denoted by N) that gives the extra stress of the porous media subjected to

the remote strain field.

(a) (b)

Figure 2.5: Diagram of infinite inclusion problem under remote strain/stress field

As shown in 2.5, let us consider a heterogeneous composite material V composed by an inhomogeneity of volume

VI in an elastic matrix. The extra strain ∆ε over the volume V due to the presence of the inhomogeneity can be

calculated from the fourth-rank tensor H when the composite is subjected to a remotely applied stress σ∞. It reads:

∆ε =
VI

V
H : σ∞ (2.3)
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Similarly, the extra stress ∆σ over the volume V due to the presence of the inhomogeneity subjected to remote strains

ε∞ boundary condition can be expressed as (Sevostianov and Kachanov (1999)):

∆σ =
VI

V
N : ε∞ (2.4)

Following Sevostianov and Kachanov (2007), H and N are interrelated as:

H = −S0 : N : S0, N = −C0 : H : C0 (2.5)

where S0 and C0 are respectively the compliance and stiffness tensors of the matrix material. Moreover, in the case of

the ellipsoidal inhomogeneity, H and N are obtained by (Sevostianov and Kachanov (2002a)):

H =
[
(SI − S0)−1 +Q

]−1

N =
[
(CI − C0)−1 + P

]−1

(2.6)

where SI and CI are the compliance and stiffness tensors of the inhomogeneity, P and Q denote the fourth order Hill’s

tensors Hill (1965) in terms of Green tensor G (see Section A.2).

2.2.2. Compliance contribution tensors in classic model
The RVE is introduced to describe the relatively complex microstructure of the composite material as the classical

concept in homogenization strategy. It is required to be the smallest sample containing representative information of

the whole composite materials. In this section, we focus on numerical procedures using FEM in a RVE to evaluate

compliance contribution tensor of individual superspherical pore with the shape parameter 0.3 ≤ p ≤ 1.

2.2.2.1. Classical FEM calculation of H-tensor in isotropic cubical solid
It is proposed by Trofimov et al. (2018) a numerical procedure to calculate the H tensor for the composite

medium with an isolated inhomogeneity. We are firstly interested in generating the related microstructures

numerically by using the MATLAB scripts developed in HGM (Hydrogéomécanique multi-échelles) team of

laboratory GeoRessources. The software NETGEN (Schöberl (1997)) is then devoted to create the 3D tetrahedral

mesh (C3D10) of the obtained RVE and all finite element calculations are complied by Abaqus. Theoretically, for

a dilute numerical simulation, one needs to use an extremely large domain compared to the size of inhomogeneity.

Hence, in this section, the scale of the cube is assumed to be twenty times bigger than the superspherical voids that

allows to represent the infinite medium. (see Fig. 2.6 as an example).
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Figure 2.6: 3D mesh of the cuboid RVE including the superspherical pore with p=0.4, left is general view of half cube cutting in plan Z, right is
local map of highlighted region

After the preliminary preparation, two simulations respectively correspondent to the uniaxial tension/compression

and simple shear loadings, are carried out. Moreover, the numerical homogenization is finally realized by adopting

the Python script (i.e. post-treatment program) via the calculation of volumetric integration (See Eq.(2.7)) for any

desired qualities (e.g. stress, strains, volumes, etc) over all 3D elements in the RVE. The script extracts the volume

data of each element such as stress, strain and volume of element from the “odb” file output byAbaqus. Note here that

the above mentioned numerical simulations and homogenization are achieved by adopting the calculation to cluster

of University of Lorraine called EXPLOR.

〈
σi j
〉

m =
1
V

N∑
l=1

(
σ(l)

i j

)
m
· V (l), (i, j = 1, 2, 3; m = 1, 2) (2.7)

where
〈
σi j
〉

m is the component of volume average stress calculated from the results of the m-th load case, V and V (l)

is the total and elemental volume,
(
σ(l)

i j

)
m

is the stress component i j at the centroid of the finite element l in m-th

load case correspondingly, and N is the total number of elements in the model. N can then be calculated based on the

results of numerical homogenization through:

〈
σi j
〉

m = Chom
i jkl :

(
ε0

kl

)
m, N = (Chom − C0)/ f0 (2.8)

where
(
ε0

kl

)
m is prescribed component of homogeneous strain and f0 is initial porosity. Note that the prescribed strains

are set to 1.0e−5 to ensure small deformations so that the volumes could be considered constant. Putting Eq.(2.8) into

(2.5), the components of compliance contribution tensor H in isotropic matrix with different shapes of pore are then

found. Its 3 independent components are presented in table 2.1 (with properties of matrix E = 1000MPa, ν = 0.3) for

superspherical pores. In order to assess the reliability of current model, some comparisons are made in table 2.1 with
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the solution of Gaussian Approximation given by Trofimov et al. (2018).

Table 2.1: Compliance contribution tensor components of the superspherical pores in isotropic matrix

p HFEM
1111 HFEM

1122 HFEM
1212 HGA

1111 HGA
1122 HGA

1212 HR.E.1
1111 HR.E.

1122 HR.E.
1212

0.3 3.710 -0.869 1.691 3.730 -0.897 1.701 0.53% 3.08% 0.60%

0.4 2.647 -0.634 1.356 2.639 -0.656 1.371 0.29% 3.29% 1.13%

0.5 2.320 -0.562 1.270 2.343 -0.565 1.274 0.99% 0.55% 0.31%

0.7 2.085 -0.505 1.231 2.093 -0.506 1.252 0.40% 0.11% 1.71%

1 2.003 -0.477 1.240 2.005 -0.477 1.241 0.10% 0.04% 0.06%

1 Relative Error

It can be observed in the table 2.1 a good agreement between current results of numerical calculations and the

predictions of G.A. in Trofimov et al. (2018). The author would like to indicate that, some other comparisons between

the present FEM results and those available in literature Trofimov et al. (2018); Chen et al. (2018) were also contrasted

and similar. Due to the limit of the page, these comparison are not illustrated here. We can conclude by those

comparisons that the numerical algorithm is assessed and validated for isotropic cases and irregular shapes.

2.2.2.2. Classical FEM calculation of H-tensor in transversely isotropic cubical

solid
In this section, we discuss the influence of the concavity parameter (the coefficient of form p) on the contribution

tensor H in transversely isotropic matrix. The properties of the matrix utilized for this part are: E1 = 20.44GPa, E3 =

11.306GPa, ν12 = 0.1027, ν31 = 0.1798,G13 = 1.5851GPa. The same process of RVE modelling and mesh as built

in Section 2.2.2.1 are adopted in the numerical homogenization. However, due to the anisotropy of the matrix, four

simulations related to two uniaxial tension/compression and two simple shearing cases are executed. The components

of the compliance contribution tensor for superspherical pores are then determined and the results are presented in the

table 2.2.
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p HFEM
1111 HFEM

1122 HFEM
1133 HFEM

3333 HFEM
1212 HFEM

1313

0.2 0.5405 -0.1383 -0.1096 0.9704 0.2065 0.5096

0.25 0.3359 -0.0884 -0.0669 0.6047 0.1284 0.3331

0.3 0.2501 -0.0675 -0.0493 0.4538 0.0981 0.2717

0.4 0.1766 -0.0496 -0.0343 0.3263 0.0780 0.2332

0.5 0.1453 -0.0409 -0.0283 0.2738 0.0733 0.2228

0.6 0.1335 -0.0369 -0.0263 0.2535 0.0727 0.2199

0.7 0.1266 -0.0340 -0.0252 0.2412 0.0727 0.2194

0.8 0.1226 -0.0319 -0.0245 0.2337 0.0730 0.2200

0.9 0.1201 -0.0303 -0.0241 0.2289 0.0734 0.2212

1 0.1184 -0.0290 -0.0238 0.2256 0.0739 0.2226

2 0.1144 -0.0236 -0.0221 0.2177 0.0781 0.2359

3 0.1146 -0.0217 -0.0213 0.2181 0.0808 0.2441

4 0.1151 -0.0208 -0.0208 0.2191 0.0826 0.2493

5 0.1156 -0.0202 -0.0205 0.2200 0.0838 0.2529

1-Analytic 0.1188 -0.0293 -0.0239 0.2265 0.0740 0.2226

1- R.E. 0.33% 0.80% 0.38% 0.40% 0.18% 0.01%

Table 2.2: Compliance contribution tensor components of the superspherical pores in transversely isotropic matrix

In the last line of table 2.2, the relative errors between analytical and numerical results for p = 1 show that the

accuracy of the results is excellent. A more strong relationship between concave shapes and property contribution

tensors has been reported in the results than the convex shapes. Due to the complexity of the void and/or inclusions,

the volume size and the mesh refinement, the numerical estimations which induce in practice always consume large

modelling and expensive time. A new reformulation of the classical boundary condition will be introduced in the next

section in order to help reduce the computation time and improve the accuracy of the solutions.
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2.3. Numerical computation of compliance contribution

tensor with corrected boundary condition Du

et al. (2020)
The main objective of this section is to estimate the compliance contribution tensor of the concave pore

inhomogeneity surrounded by a transversely isotropic matrix. In this light, we make use of a recently developed

adapted boundary conditions based Finite Elements Method to incorporate the matrix anisotropy and the correction

of the bias induced by the bounded character of the mesh domain, which allows to accelerate the computation

convergence without sacrificing its accuracy. The correction of the boundary conditions is given as functions of the

Green tensor and its gradient as dependent on the anisotropic elasticity of the matrix material, which are rigorously

calculated by means of the Fourier transform based integral method in particular for regularizing the singularities

on the symmetric axis of the transverse isotropy. Simultaneously by complying with the numerical homogenization

technique, the compliance contribution tensor is computed for different forms of pores (e.g. superspheroidal and

superspherical ones, etc.) embedded in an transversely isotropic matrix. The proposed numerical method is shown to

be efficient and accurate after several appropriate assessment and validation by comparing its predictions, in some

particular cases, with analytical results and some available numerical ones. Finally, the effect of the pore concavity

on the compliance contribution tensor is quantitatively illustrated.

2.3.1. Introduction
This section focuses on the analysis of the effect of a concave pore in a transversely-isotropic material on its

overall elastic properties. For this goal we calculate compliance contribution tensors of concave pores (superspherical

and superspheroidal) using adapted boundary conditions based Finite Elements Method and evaluate effect of the

pore concavity. The work is motivated by multiple experimental observations on irregular character of pores shape in

various natural and man-made materials. Particular attention could be payed on the SEM images of Grgic (2011)

showing the concave pores between the calcite grains in the oolitic limestone present (see also Emmanuel and

Walderhaug (2010) for sandstones and Wark et al. (2003) in the case of the harzburgites), which could be described

by introducing an concavity-convexity factor proposed by Sevostianov et al. (2008).

While the pores and inhomogeneities of irregular shape are typical for materials studied by various branches of

natural science, analytical modelling of the properties of materials with microstructures formed by inhomogeneities

of non-ellipsoidal shape has not been well developed. The inhomogeneities are typically assumed to be ellipsoids of

identical aspect ratios and analytical micromechanical approximations of effective properties are based on the classical

Eshelby solution for ellipsoidal inhomogeneities Eshelby (1957, 1961). This approximation is largely responsible for
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the huge gap between methods of micromechanics and materials science applications. The reason for this lack is quite

obvious: while for 2-D non-elliptical inhomogeneities the technique for evaluation of elastic fields associated with a

single inhomogeneity is well developed (see Kachanov et al. (1994); Tsukrov and Novak (2002, 2004); Lanzoni et al.

(2019)) only few analytical results are available for non-ellipsoidal 3-D shapes (see discussion in the book Kachanov

and Sevostianov (2018)). Argatov and Sevostianov (2011) calculated stiffness contribution tensor of an absolutely

rigid thin toroidal inhomogeneity, Kachanov and Sevostianov (2012) obtained analytical solutions for compliance

contribution tensors of a crack growing from a pore and a cracks with partial contact between the faces, Krasnitskii

et al. (2019) evaluated elastic fields associated with a rigid torus. Several results have been obtained combining

numerical and analytical techniques.Trofimov et al. (2017b) used finite element calculations to analyse the effect of

shape of several representative convex polyhedra on the overall elastic properties of particle-reinforced composites.

Trofimov et al. (2017a); Trofimov and Sevostianov (2017) quantified effect of waviness of a helical fiber and its elastic

properties on the property contribution tensors of such a fiber. In the context of inhomogeneities of concave shape,

analytical approximation of compliance contribution tensor of a superspherical pore was first obtained by Sevostianov

and Giraud (2012) using numerical results of Sevostianov et al. (2008). Their result was corrected by Chen et al. (2015)

using higher accuracy numerical estimates. Sevostianov et al. (2016a); Chen et al. (2018) considered other types of

concave pores. Trofimov et al. (2018) analysed elastic fields associated with an inhomogeneity of superspherical pore.

These results were used to calculate overall elastic properties of materials with multiple concave pores: oolitic rock

(Kalo et al. (2017); Giraud and Sevostianov (2013)) and 3 − D printed S i3N4 ceramics Lurie et al. (2018). In all of

the above mentioned works, it was assumed that the representative elementary volume is an infinite domain (similarly

to the Eshelby’s hypotheses), which induces in practice, especially for the numerical estimations, some expensive

time consuming cost due to the volume size and the mesh refinement. This can be overcame by a recently proposed

adapted boundary condition method (Adessina et al. (2017)) dedicated to the numerical resolution of the arbitrary

shaped inhomogeneity problem. Consequently, the resulting predictions can be found to converge for a relatively

small matrix domain and the process is shown to be less time consuming by holding a sufficiently accurate precision.

The corrected boundary conditions in this method depend on the elastic properties of the matrix and the method,

initially formulated for isotropic matrix only, is extended in the present paper to the case of a transversely isotropic

matrix.

This section is organized as follows. In Section 2.3.2, the classical Eshelby problem is reformulated for an

inhomogeneity embedded in a finite transversely isotropic matrix by introducing the Green tensor based correction of

boundary conditions. It is then applied in Section 2.3.4 to the numerical homogenization method for the computation

of the contribution tensors. Next, we assess and validate the proposed method in Section 2.3.5 by comparing its

predictions with the analytical and available numerical results to systematically justify its efficiency and accuracy with

respect to the material anisotropy and the pore concavity. The whole procedure leads to some numerical estimations,

as presented in Section 2.3.5, in the cases of the superspheroidal and superspherical voids planted in the transversely

isotropic matrix. Particular attention should be payed to the significant combined effect of the material anisotropy and
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the shape of pore especially when it is concave. We finally present some concluding remarks in Section 2.3.7.

2.3.2. Green tensor based correction of boundary conditions
In Eshelby’s footsteps Eshelby (1957), let us consider an infinite domain Ω comprising a matrix surrounding an

inhomogeneity E of arbitrary shape. The matrix is linear elastic of homogeneous stiffness tensor denoted by C0 and

the inhomogeneity is also linear elastic but not necessarily homogeneous. Before specifying the work to a transversely

isotropic behaviour of the matrix embedding a porous concave domain, it is worth noticing that the main results of

this section remain theoretically valid in the most general case of anisotropy of the matrix as well as arbitrary shape

and internal heterogeneity of E. The infinite domain Ω is submitted to the Hashin-type boundary condition:

ξ(x) ∼
∥x∥→∞

E.x (2.9)

where ξ is the displacement field at the position x and E denotes the remote homogeneous strain. The above mentioned

problem is described as:

(P)unbounded



div (σ(x)) = 0 (x ∈ Ω)

σ(x) = C(x) : ε(x) (x ∈ Ω)

ε = 1
2

(
gradξ + tgradξ

)
(x ∈ Ω)

ξ(x) = E · x (x ∈ ∂Ω)

(2.10)

By introducing the polarization tensor

p = (C(x) − C0) : ε(x) (2.11)

which is non-zero only in the inhomogeneity E, one has the displacement solution of Eq.(2.10) Sevostianov and

Kachanov (2011); Adessina et al. (2017); Barthélémy et al. (2019):

ξ(x) = E · x +
∫

x′∈E
gradG0(x − x′) : p(x′) dΩx′ (2.12)

where G0 is the second-order Green tensor of the infinite matrix of elasticity C0. The first term in the r.h.s. of

Eq.(2.12) represents the remote displacement field and the second one corresponds to the disturbance caused by the

inhomogeneity.

The idea then is to derive from Eq.(2.12) a Taylor expansion of the displacement for remote values of x that

could be eventually used at relatively large but finite distance (for instance at a mesh boundary in a Finite Element
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computation) where the sole higher order of the asymptotic behaviour (i.e. E · x) may lack of accuracy, as shown in

2.7.

Figure 2.7: Diagram of infinite & bounded domains

For this purpose it can first be noticed that the following approximation is relevant when ∥x∥ ≫ ∥x′∥:

G0(x − x′) ∼
∥x∥→∞

G0(x) ∀x′ ∈ E (2.13)

Consequently, Eq.(2.12) can be recast into (see also Sevostianov and Kachanov (2011)):

ξ(x) = E · x+ | E | gradG0(x) : P (2.14)

where P defines the average polarisation tensor inside the inhomogeneity which is given as:

P = ⟨σ⟩E − C0 : ⟨ε⟩E (2.15)

with

⟨ε⟩E =
1
| E |

∫
x′∈E
ε(x′) dΩx′ (2.16)

being the average strain field of the inhomogeneity.

2.3.2.1. Correction of boundary condition for a finite domain
We focus henceforward on a finite domainD with a matrix containing an inhomogeneity E. Note once again that

the following developments do not require any limitation on the material symmetry of the matrix nor on the shape or

content of the inhomogeneity By taking into account Eq.(2.14), one has the so called bounded problem expressed as
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follows:

(P)bounded



div (σ(x)) = 0 (D)

σ(x) = C(x) : ε(x) (D)

ε = 1
2

(
gradξ + tgradξ

)
(D)

ξ(x) = E · x+ | E | gradG0(x) : P (∂D)

(2.17)

It can be considered as the superposition of two elementary linear elastic problems with different boundary conditions,

which can be respectively described as:

(P)E
bounded



div (σ(x)) = 0 (D)

σ(x) = C(x) : ε(x) (D)

ε = 1
2

(
gradξ + tgradξ

)
(D)

ξ(x) = E · x (∂D)

(2.18)

and

(P)P
bounded



div (σ(x)) = 0 (D)

σ(x) = C(x) : ε(x) (D)

ε = 1
2

(
gradξ + tgradξ

)
(D)

ξ(x) =| E | gradG0(x) : P (∂D)

(2.19)

By separately solving the subproblems (P)E
bounded and (P)P

bounded, one has:

⟨ε⟩E = AE : E, ⟨σ⟩E = BE : E (2.20)

⟨ε⟩P = Ap : P, ⟨σ⟩P = Bp : P (2.21)
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where AE , BE , Ap and Bp are the strain and stress concentration tensors in the (P)E
bounded and (P)P

bounded problems,

respectively.

Due to their linearity, the solution of the initial problem (P)bounded (i.e. Eq.(2.17)) can be obtained by the following

superposition:


⟨ε⟩E = AE : E + Ap : P

⟨σ⟩E = BE : E + Bp : P

(2.22)

Next, by inserting Eq.(2.22) into (2.15), one obtains:

P = D : E (2.23)

with

D =
(
I − Bp + C0 : Ap)−1 :

(
BE
− C0 : AE) (2.24)

Consequently, Eq.(2.22) can be rewritten as:


⟨ε⟩E = AE0 : E, AE0 = AE + Ap : D

⟨σ⟩E = BE0 : E, BE0 = BE + Bp : D

(2.25)

where AE0 and BE0 are respectively the average strain and stress concentration tensors of the bounded problem (P)bounded

(see also Eq.(2.17)).

2.3.2.2. Determination of elastic compliance and stiffness contribution tensors
As recalled in Kachanov et al. (1994); Sevostianov and Kachanov (1999); Sevostianov and Giraud (2013), the

compliance and stiffness contribution tensors denoted respectively by HE0 and NE0 allow to calculate the extra strain

and stress induced by the presence of the inhomogeneity in a dilute situation such that

∆ε = f HE0 : Σ, ∆σ = f NE0 : E with f =
| E |

| Ω |
(2.26)

where Σ is the remotely applied stress and as aforementioned, E is the remotely applied strain. Moreover, by applying

the consistency laws ensuring that Σ and E are also the average stress and strain within a representative elementary

volume, it is useful to notice that the extra stress can be expressed by means of the averages of stress and strain within
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the inhomogeneity phase in the second term of the r.h.s. of the following decomposition

Σ = C0 : E + f
(
⟨σ⟩E − C0 : ⟨ε⟩E

)
(2.27)

Eq.(2.27) casts a new light on the definition of the average polarisation tensor in (2.24) and consequently on the

stiffness contribution tensor NE0 which is approximated here by no other than D introduced in Eq.(2.23) and related to

the partial concentration tensors in Eq.(2.24)

NE0 = D =
(
I − Bp + C0 : Ap)−1 :

(
BE
− C0 : AE) (2.28)

In the general case of non ellipsoidal shapes, contribution and concentration tensors related to an inhomogeneity need

to be calculated numerically as it is presented in this paper (see also in Eroshkin and Tsukrov (2005) details on such

calculations). Here whereas the average concentration tensors AE0 and BE0 are estimated by Eq.(2.25), the contribution

ones HE0 and NE0 can be interrelated as:

HE0 = −S0 : NE0 : S0, NE0 = −C0 : HE0 : C0 (2.29)

2.3.2.3. Case of an homogeneous inhomogeneity
The previous developments, leading to the construction of concentration tensors in Eq.(2.25) and contribution

tensors in Eq.(2.28) and (2.29) from the partial tensors in Eq.(2.20) and (2.21), apply to an arbitrary inhomogeneity in

terms of shape or content that is possible made of heterogeneous material. However, it may be interesting for practical

implementation to examine how these tensors write in the case of an inhomogeneity of uniform stiffness tensor CE.

First it is clear that the partial concentration tensors are related by BE = CE : AE and Bp = CE : Ap. It follows that

Eq.(2.28) becomes:

NE0 = D =
(
(CE − C0)−1

− Ap)−1
: AE (2.30)

The relationships between the compliance and stiffness contribution tensors as expressed in Eq.(2.29) still hold as well

as the concentration tensors AE0 and BE0 in Eq.(2.25) with D = NE0 given by Eq.(2.30). However they can alternatively

be written here:

AE0 = (CE − C0)−1 : NE0 , BE0 = CE : AE0 (2.31)
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2.3.2.4. Case of an ellipsoidal homogeneous inhomogeneity
The ellipsoidal homogeneous inhomogeneity is of particular interest in the present since analytical expressions

of contribution and concentration tensors are available and can then further be compared to the numerical ones to

validate the methodology in Section 2.3.5.1.In the particular case of an ellipsoidal inhomogeneity E embedded in an

infinite matrix 0 of stiffness C0 and compliance S0 tensors, compliance HE0 and stiffness NE0 contribution tensors write

(see Kachanov et al. (2001); Kachanov and Sevostianov (2018) for details) :

HE0 =
[
(SE − S0)−1 +QE0

]−1
, NE0 =

[
(CE − C0)−1 + PE0

]−1 (2.32)

where PE0 and QE0 denote the fourth order Hill’s tensors Hill (1965) of the inhomogeneity. Strain concentration tensor

of the ellipsoidal inhomogeneity writes

AE0 =
[
I + PE0 : (CE − C0)

]−1
(2.33)

2.3.3. Green tensor of a transversely isotropic matrix
The practical implementation of the reasoning presented in the previous section 2.3.2 relies on the calculation of

the Green tensor and its gradient in the problem of Eq.(2.19). The general anisotropic case of Green tensor is briefly

recalled in A.2. In the sequel a transversely isotropic matrix is particularly considered. It is worthy to point out that

the three dimensional (3D) solution of G0 as well as its gradient gradG0 in the case of transversely isotropy could be

analytically calculated by using the results published in literatures Elliott (1948); Yoo (1974); Pan and Chou (1976);

Mura (1987); Karapetian and Kachanov (1998); Pouya (2007, 2011); Kachanov and Sevostianov (2018). However,

some of them might present accuracy problems. The misprint and an apparent degenerate case, as quoted by many

authors, in Pan and Chou solution Pan and Chou (1976) were corrected by Pouya (2007, 2011). It can also be observed

that the gradient gradG0 obtained by Pan and Chou (1976); Pouya (2007) are singular on the symmetry axis e3. In

this paper, the Green functions G0
i j as well as their gradients G0

i j,k, are calculated on the one hand by using the solution

given in Pouya (2007) that is also briefly recalled in A.2.2, and on the other hand by applying a Fourier transform

based integration in order to overcome the singularity problem on the symmetry axis e3. The latter is described in

2.3.3.1 and validated by comparison with Pouya’s solution Pouya (2007)1. Note that the Gaussian integration rule is

adopted in the proposed Fourier transform integral based method that is shown to be very efficient and robust in the

corresponding numerical implementations and applications. It must be emphasized that the Fourier transform based

solution, for the Green tensor and its gradient is valid in the general anisotropic case including all others classes of

symmetry.

1This comparison is made except for the gradient G0
i j,k on the symmetry axis due to the singularity of the reference solution derived from Pouya

(2007).
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2.3.3.1. Exact results on symmetry axis in transversely isotropic case obtained by

using Fourier transform solution
In the particular case of transversely isotropic matrix stiffness tensor with symmetry axis x3, see relations (A.7-

A.8-A.9)

C0 =

6∑
i=1

ci Ei (2.34)

One considers a position vector located on symmetry axis

x = x3e3, ∥x∥ = r = |x3|, v =
x
∥x∥
= e3, uψ = cosψe1 + sinψe2 (2.35)

Inverse of acoustic tensor writes

K−1 =



c2(1−cos(2ψ))+2c5
c5(c2+c5) −

c2 sin(2ψ)
c5(c2+c5) 0

−
c2 sin(2ψ)
c5(c2+c5)

c2(1+cos(2ψ))+2c5
c5(c2+c5) 0

0 0 2
c6


(2.36)

and corresponding Green function

G0
i j (x = x3e3) =

1
8 π2 ∥x∥

∫ 2 π

0
K−1

i j (uψ) dψ (2.37)

Non zero components write

G0
11 (x = x3e3) = G0

22 (x = x3e3) =
1

4 π ∥x∥
c2 + 2c5

c5 (c2 + c5)
, G0

33 (x = x3e3) =
1

2 π ∥x∥ c6
, ∥x∥ = |x3| (2.38)

and it coincides with relations (A.44-A.45).

K−1.
(
v.C0.uψ + uψ.C0.v

)
.K−1 =

2
(√

2c3 + c6

)
(c2 + c5) c6



0 0 cos(ψ)

0 0 sin(ψ)

cos(ψ) sin(ψ) 0


(2.39)
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G0
i j,k (x = x3e3) =

1
8 π2 ∥x∥2

∫ 2 π

0

([
K−1.

(
v.C0.uψ + uψ.C0.v

)
.K−1]

i j uψk − K−1
i j vk

)
dψ, ∥x∥ = |x3| (2.40)

Non zero components write

G0
11,3 (x = x3e3) = G0

22,3 (x = x3e3) = −
1

4 π ∥x∥2
c2 + 2c5

c5 (c2 + c5)
, G0

33,3 (x = x3e3) = −
1

2 π ∥x∥2 c6
(2.41)

G0
32,2 (x = x3e3) = G0

31,1 (x = x3e3) = G0
13,1 (x = x3e3) = G0

23,2 (x = x3e3) =
1

4 π ∥x∥2

√
2c3 + c6

(c2 + c5) c6
(2.42)

or, in terms of usual components

G0
11 (x = x3e3) =

1
8 π ∥x∥

3C0
1111 −C0

1122

C0
1111

(
C0

1111 −C0
1122

) , G0
33 (x = x3e3) =

1
4 π ∥x∥ C0

2323
(2.43)

G0
11,3 (x = x3e3) = −

1
8 π ∥x∥2

3C0
1111 −C0

1122

C0
1111

(
C0

1111 −C0
1122

) , G0
33,3 (x = x3e3) = −

1
4 π ∥x∥2 C0

2323
(2.44)

G0
23,2 (x = x3e3) =

1
8 π ∥x∥2

C0
1133 +C0

2323

C0
1111C0

2323
(2.45)

2.3.4. Numerical framework of the compliance contribution tensor

estimate
This section deals with the numerical procedure for the computation of the compliance contribution tensors HE0 .

For the sake of keeping this work focused and concise, we especially consider the inhomogeneity in the case of pore

(denoted also by E) that is surrounded by a bounded domainD with a transversely isotropic matrixDM = D\E. Note

again that the matrix anisotropy is defined around the axis e3 in Cartesian system. Different shapes of the pore, in

particular the concave ones, will be considered in the present work whose 3D geometries are realized by adopting a

user-defined Matlab script. Moreover, as will be detailed in the following part of this section, the bounded domain

will be represented either by a spherical model or a cubic one. They are meshed by utilizing the Netgen software

(Schöberl, 1997) with quadratic 3D elements (C3D10) that are compatible with the Finite Elements computations via

Abaqus/Standard software (Smith, 2009). Furthermore, the boundary conditions on the external surface ∂D are given

by Eq.(2.17) that could be decoupled in Eqs.(2.18) and (2.19). As a consequence, the numerical procedure will be
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carried out simultaneously in two parts and through 8 different numerical computations. More specifically,

• for (P)E
bounded problem, different boundary strain fields are respectively defined for two simple tension loadings

in the directions of e1 (i.e. E = E0e1 ⊗ e1) and e3 (i.e. E = E0e3 ⊗ e3), and two simple shear loadings in the

planes of e1 − e2 (i.e. E = E0(e1 ⊗ e2 + e2 ⊗ e1)) and e1 − e3 (i.e. E = E0(e1 ⊗ e3 + e3 ⊗ e1)) with an arbitrary

small constant amplitude E0 = 1.0e−5. The displacement field subjected on the external boundary is calculated

by

ξE
i = Ei j x j (2.46)

• for (P)p
bounded problem, four analogical computations are realized: two simple tractions with polarization tensor

P = P0e1 ⊗ e1 and P = P0e3 ⊗ e3, and two simple shear loadings with P = P0(e1 ⊗ e2 + e2 ⊗ e1) and

P = P0(e1 ⊗ e3 + e3 ⊗ e1). A normalized value of P0 is taken as 1GPa in the numerical computations. The

displacements subjected on the external boundary are given by

ξP
i =| E |

∂Gi j

∂xk
Pk j (2.47)

It is important to emphasize that the proposed method can be applied to any form of the bounded media with

transversely isotropic matrix2. We display in Fig. 2.8a the spherical model comprising the ellipsoidal pore represented

by its 1/8 geometry, which is described as

( x1

a

)2
+
( x2

a

)2
+
( x3

c

)2
= 1 s.t. x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 (2.48)

with a and c being the major and minor radii, respectively. It can be readily obtained that the aspect ratio γ = c/a.

Moreover, the superspherical and axisymmetric superspheroidal shapes are considered as two promising

candidates to comply with the benchmarking representation of the pore concavity, whose geometries are respectively

expressed as: ∣∣∣ x1

a

∣∣∣2p
+

∣∣∣ x2

a

∣∣∣2p
+

∣∣∣ x3

a

∣∣∣2p
= 1 (2.49)

and (
x2

1 + x2
2

a2

)p

+

∣∣∣ x3

a

∣∣∣2p
= 1 (2.50)

where p is the concavity parameter, a and c are the radii of the principal axes. Note that both the superspherical and

axisymmetric superspheroidal pores are concave when p < 0.5 and convex if p > 0.5.

Note that for the sake of efficient mesh generation and convenient numerical homogenization that will be introduced

in next sections, we adopt the whole cubic model in the cases of concave pores (see Figs.2.8b-2.8c).

2Note also that the corrected boundary conditions can also be applied to any type of anisotropy. It probably requires supplementary simulations
and is not further pursued here.
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(a) (b) (c)

Figure 2.8: Geometries of different representative models: (a) the spherical model with ellipsoidal pore; (b) the cubic model comprising the
superspherical pore; (c):the cubic model embedded with superspheroidal pore.

2.3.4.1. Numerical average method
As the considered media being defined in a finite domain (i.e. porous media), the numerical homogenization

method is adopted in order to estimate the compliance contribution tensor H. Following Eq.(2.25), the strain

concentration tensor AE0 will be first computed. In the framework of homogenization, one has:

⟨ε⟩ED = E = (1 − f ) ⟨ε⟩EDM
+ f ⟨ε⟩EE

⟨ε⟩PD = (1 − f ) ⟨ε⟩PDM
+ f ⟨ε⟩PE

(2.51)

where f =| E | / | D | is the porosity, ⟨ε⟩ED and ⟨ε⟩PD denote the subjected macroscopic strain respectively for the

(P)E
bounded and (P)P

bounded problems, ⟨ε⟩EE , ⟨ε⟩PE, ⟨ε⟩EDM
and ⟨ε⟩PDM

are the corresponding average strains in the porous

phase and those in the matrix phase.

Following the Gauss theorem, ⟨ε⟩PDM
can be computed as an integral over the external boundary ∂D:

〈
εi j
〉P
D
=

1
2 | D |

M∑
m=1

(
ξP

i n j + niξ
P
j

)(m)
S (m) (2.52)

whereM is the total number of the surface elements and S (m) is the area of the m-th one.〈
εi j
〉E
DM

and
〈
εi j
〉P
DM

can be obtained, respectively for the (P)E
bounded and (P)P

bounded problems, by averaging the matrix

strains of the elements as: 〈
εi j
〉
DM
=

1
| DM |

N∑
n=1

εi jVn (2.53)
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with N being the total number of the volume elements and V (m) giving the volume of the n-th one.

Having in hand the above computed quantities, the average strain field in the porous phase can be obtained as:

⟨ε⟩EE =
E − (1 − f ) ⟨ε⟩EDM

f

⟨ε⟩PE =
⟨ε⟩PD − (1 − f ) ⟨ε⟩PDM

f

(2.54)

2.3.4.2. Strain concentration tensor and compliance contribution tensor
In this section, the strain concentration tensor AE0 and the compliance contribution one H will be calculated based

on the numerical computation as described in Section 2.3.4.1. To this end, we aim first at computing the AE and Ap

that both have 7 independent non-zero components. More specifically, for each of them, the components denoted as

A1111, A3333, A1122, A1133 and A3311 are calculated from 2 tension and traction loadings and those of A1212 and A1313

can be obtained from 2 shear ones. Note that the particular consideration of the pore inhomogeneity leads to the fact

that the stress concentration tensors BE and Bp both vanished. Consequently, the stiffness contribution tensor NE0 (see

also Eq.(2.30)) and the compliance contribution tensor HE0 can be simplified as:

NE0 = −
(
S0 + Ap)−1 : AE , HE0 = S0 :

(
S0 + Ap)−1 : AE : S0 (2.55)

2.3.5. Assessment and validation of the proposed numerical

procedure
In this section, the estimations of compliance contribution tensor H obtained from the proposed numerical

procedure will be assessed and validated by comparison with the avalaible analytical and numerical results in

literatures. In this light, we systematically consider the spheroidal pores embedded in a transversely isotropic matrix

as well as the superspherical ones surrounded by an isotropic matrix to respectively justify its accuracy on the

anisotropy of the matrix material and that on the concavity of the pores. More specifically, in the spheroid case,

comparison will be made with respect to the analytical results proposed by (Mura, 1987). Whereas in the concave

superspherical cases, due to the lack of analytical results, we compare the numerical predictions with the available

FEM simulations that were recently obtained in Chen et al. (2017); Sevostianov et al. (2016a) (see also Trofimov et al.

(2018)). The transverse isotropy of the elastic matrix material is described by the parameters as shown in Table2.3.

Properties of material
E1(GPa) E3 (GPa) ν12 ν31 G13(GPa)

20.44 11.31 0.1027 0.1798 1.585

Table 2.3: Elastic parameters for the transversely isotropic matrix
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2.3.5.1. Ellipsoid pore in the spherically bounded matrix
We consider a spherically bounded model comprising an ellipsoidal pore, due to its symmetry, whose 1/8 geometry

and mesh are illustrated in Fig.2.9. The corrected boundary conditions (2.17) and the uncorrected ones (2.18) will

be respectively subjected to the same mesh to study the efficiency and the accuracy of the proposed numerical

procedure. Note that in order to evaluate the efficiency of the numerical method with corrected boundary conditions,

the computations will be carried out by adopting different spherical models with a fixed aspect ratio γ by varying

the the scale ratio a/L between the major radius of the ellipsoid a and the the radius of the spherical model L. Each

independent components of the compliance contribution tensor Hi jkl will be numerically computed and compared with

the analytical solution Withers (1989).

Figure 2.9: Geometry and mesh of 1/8 spherical inclusion in the center of spherical matrix

Fig.2.10 illustrates the numerical estimation for each independent component of H tensor in the case of the aspect

ratio γ = 1/5. A striking observation from this figure is that in the case of transversely isotropic host matrix, the

numerical predictions obtained by switching on the correction of the boundary conditions converge more quickly than

those obtained from the classical modeling. The convergence between them can observed when a/L ≃ 8 and that with

corrections of boundary conditions is shown to be more efficient.
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Figure 2.10: Numerical estimations of Hi jkl for the ellipsoidal pore embedded in a transversely isotropic matrix with fixed aspect ratio γ = 1/5 and
different scale ratio a/L ∈ [4, 18].

Additionarilly, we show in Fig.2.11 the relative errors of the numerical estimations with respect to the analytical

solution Withers (1989) (recalled in appendix A.2). First of all, it can be readily observed that when a/L is

approximately in the range of [4, 8], the relative errors obtained from the corrected boundary conditions are shown

to be very small (as around the value of 10−4), whereas those obtained from the classical modeling is relatively
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significant. It is logical and evident that the corrections of the boundary conditions allows to accelerate the numerical

convergence without degrading the computation accuracy. It may be noticed that non monotonous evolutions of

relative errors as function of ratio a/L may be observed for small values of a/L and components (H3333, H1122, H1133),

in the case of corrected boundary condition. In the paper Adessina et al. (2017), this aspect of the curve is assumed

to be probably due to the error compensations, and is interpreted as an compensation between the effect of the

mesh refinement and that of the boundary condition correction. By contrast, when a/L ∈ [8, 18] , the relative errors

asymptotically converge and attaining a value around 10−3. This can be interpreted as the fact that when the scale

ratio a/L is sufficiently big, the representative bounded model tends to be an infinite one such that the correction of

the boundary conditions is hence neither efficient nor useful in the numerical modeling.
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Figure 2.11: Relative errors of numerical computations of Hi jkl with respect to the analytical results Withers (1989) for the ellipsoidal pore
embedded in a transversely isotropic matrix with fixed aspect ratio γ = 1/5 and different scale ratios a/L ∈ [4, 18].

For completeness, we provide in section A.4 the computation results of the strain contribution tensor A in the case

of γ = 1/5 as well as some supplementary ones of the compliance contribution tensor H for some other ellipsoidal

pores such as γ = 1 (i.e. spherical pore), γ = 1/2 and γ = 1/10. By considering all of the above mentioned

computation results, the scale ratio a/L = 8 is supposed to be fixed in the next part of this work. This is of course an

approximation but will be shown as sufficiently accurate in the following numerical estimations even in the case of

cubically bounded matrix comprising a concave pore.

2.3.5.2. Superspherical pore in the cubically bounded model
This section deals with the assessment and validation of the numerical procedure by paying particular attention

to the concavity of the pore shape. In this light, we switch off the matrix anisotropy and consider that the pore is

in a superspherical form (see also Eq.(2.49)). In the case of isotropic elasticity of the matrix material, the Young

modulus and Poisson’s ratio are respectively supposed as E = 1GPa, ν = 0.3. Note that the computation result of

the contribution tensor does not depend on the Young modulus but on the Poisson’s ratio. As aforementioned, the
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bounded domain is represented by a cubic model with the scale ratio a/L = 8 for the convenient mesh generation

and numerical homogenization. Different geometries and meshes are realized by varying the value of the concavity

p. We show in Fig.2.12 an example in the case of p = 0.4 and its mesh that is sufficiently refined in the transition

zone between the matrix and porous phases. Moreover, the bounded cubic model is subjected only to the corrected

boundary conditions. The predictions are compared with the FEM results that have been published in Trofimov et al.

(2018).

(a) (b)

Figure 2.12: Geometry and mesh for a cubic model comprising a superspherical pore with p = 0.4.

In Table.2.4, we display several numerical estimations computed with different values of the concavity p as well

as the comparisons with the available results obtained by Trofimov et al. (2018) via thevery large classical numerical

modelling without corrections of boundary conditions. A very good agreement can be found and the relative errors

are shown to be minor especially by paying attention to the cases of p ≤ 1. In turn, it justifies that the accuracy of the

proposed numerical method is unaffected by the pore concavity.

p HFEM
1111 HFEM

1122 HFEM
1212 HRe f .

1111 HRe f .
1122 HRe f .

1212 HErr.
1111 HErr.

1122 HErr.
1212

0.2 8.066 -1.868 3.426 8.098 -1.848 3.337 0.40% 1.06% 2.66%

0.25 5.099 -1.186 2.214 5.108 -1.181 2.184 0.17% 0.42% 1.38%

0.3 3.821 -0.895 1.723 3.815 -0.893 1.712 0.16% 0.20% 0.64%

0.35 3.142 -0.742 1.493 3.136 -0.741 1.487 0.20% 0.19% 0.38%

1 2.004 -0.477 1.241 2.005 -0.477 1.241 0.03% 0.05% 0.02%

3 1.980 -0.418 1.369 2.024 -0.418 1.37 2.17% 0.04% 0.06%

Table 2.4: Numerical estimations for the independent components of H tensor in the case of isotropic host matrix embedded with a superspherical
pore and the comparison with the results obtained in Trofimov et al. (2018).
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2.3.6. Numerical estimation in the case of concave pores
In this section, we propose to carry out the study of the compliance contribution tensor H in the case of transversely

isotropic matrix comprising concave pore to understand in more detail their combined effect. The superspheroidal and

superspherical shapes of the pores will be respectively considered by varying the concavity parameter p in a relatively

large interval such as [0.2, 5]. Again, we restrict the study, particularly in the superspheroidal case (i.e. shape verifying

the symmetry of revolution), to the assumption that the directions of the symmetry between the matrix anisotropy

and that of the pore are aligned on the same direction. In Figs.2.13 and 2.12 , we show the cubic geometries that

comprising the superspheroidal and superspherical pores as well as the corresponding surface meshes on internal

boundaries. Moreover, for the sake of prediction accuracy, the numerical computation will be carried out based on

the sufficiently refined meshes, for which the number of nodes and elements is detailed in A.3. Note that we keep the

material parameters fixed as previously introduced in Table.2.3.

(a) (b)

Figure 2.13: Geometry and mesh of cubic model comprising a superspheroidal pore with p = 0.4.

2.3.6.1. Superspheroidal pores
We provide in Table.2.5 the numerical estimations of each independent non-zero component of Hi jkl for the

superspheroidal pores with different values of concavity parameter p. Since the transverse isotropy of the matrix

material and that of the superspheroidal pore are both around the e3, we can theoretically conclude that the overall

response such as the compliance contribution tensor must satisfy the equality (H1111 − H1122)/2 = H1212. This property

is well verified from the computation results that indirectly demonstrate their accuracy. Fig.2.14 illustrates the Hi jkl

components as a function of the concavity parameter p. It can be observed that the evolutions, in particular those of

H3333 and H1313, are more important when p < 0.5. In other words, the concave form of the porous heterogeneity has

a significant effect on the compliance contribution tensor H. Whereas it becomes qualitatively stabled when p > 0.5

(i.e. convex forms).
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p HFEM
1111 HFEM

1122 HFEM
1133 HFEM

3333 HFEM
1212 HFEM

1313
HFEM

1111 −HFEM
1122

2 Error1212
1

0.2 0.1004 -0.0192 -0.0520 3.6670 0.0597 0.8424 0.0598 0.16%

0.25 0.1026 -0.0212 -0.0442 1.5948 0.0619 0.4132 0.0619 0.04%

0.3 0.1068 -0.0232 -0.0395 0.9354 0.0650 0.2928 0.0650 0.01%

0.35 0.1102 -0.0248 -0.0359 0.6445 0.0675 0.2495 0.0675 0.00%

0.4 0.1128 -0.0260 -0.0331 0.4929 0.0694 0.2324 0.0694 0.00%

0.45 0.1147 -0.0270 -0.0310 0.4047 0.0708 0.2248 0.0708 0.00%

0.5 0.1159 -0.0276 -0.0293 0.3492 0.0718 0.2211 0.0718 0.00%

0.6 0.1175 -0.0284 -0.0271 0.2900 0.0730 0.2187 0.0730 0.01%

0.7 0.1182 -0.0288 -0.0258 0.2604 0.0735 0.2188 0.0735 0.01%

0.8 0.1186 -0.0291 -0.0249 0.2436 0.0738 0.2197 0.0738 0.01%

0.9 0.1187 -0.0292 -0.0243 0.2333 0.0739 0.2211 0.0739 0.01%

1 0.1187 -0.0293 -0.0239 0.2265 0.0740 0.2226 0.0740 0.01%

1.5 0.1184 -0.0293 -0.0225 0.2129 0.0739 0.2292 0.0739 0.01%

2 0.1182 -0.0294 -0.0219 0.2098 0.0738 0.2343 0.0738 0.02%

2.5 0.1181 -0.0294 -0.0214 0.2091 0.0737 0.2381 0.0738 0.01%

3 0.1180 -0.0295 -0.0211 0.2092 0.0738 0.2411 0.0738 0.02%

4 0.1180 -0.0296 -0.0207 0.2099 0.0738 0.2453 0.0738 0.02%

5 0.1181 -0.0297 -0.0204 0.2108 0.0739 0.2481 0.0739 0.02%
1 Relative error of HFEM

1111 −HFEM
1122

2 with respect to HFEM
1212

Table 2.5: Numerical estimation of Hi jkl for the superspheroidal pore embedded in a transversely isotropic corrected
model with different values of concavity p ∈ [0.2, 5].

2.3.6.2. Superspherical pores
We investigate the numerical estimation of Hi jkl for the superspherical pores surrounded by a cubically bounded

matrix whose geometry and mesh is illustrated in Fig.2.12b. Detailed results for different values of concavity

p ∈ [0.2, 5] are summarized in Table.2.6. First of all, it should be emphasized that the supersphere, as described

in Eq.(2.49), is obviously not transverse isotropic. As a consequence, the aforementioned equality in the case of

superspheroidal pores is no longer satisfied.
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Figure 2.14: Evolution of components Hi jkl for the superspheroidal pore embedded in a transversely isotropic matrix on the Logarithm value of the
concavity parameter log(p) such that p ∈ [0.2, 5]

p HFEM
1111 HFEM

3333 HFEM
1122 HFEM

1133 HFEM
1212 HFEM

1313

0.2 0.5401 0.9682 -0.1386 -0.1093 0.2043 0.4972

0.25 0.3391 0.6106 -0.0895 -0.0676 0.1288 0.3327

0.3 0.2521 0.4567 -0.0682 -0.0496 0.0984 0.2715

0.35 0.2052 0.3749 -0.0567 -0.0400 0.0844 0.2454

0.4 0.1770 0.3269 -0.0497 -0.0343 0.0779 0.2330

0.45 0.1589 0.2967 -0.0450 -0.0308 0.0749 0.2265

0.5 0.1460 0.2747 -0.0413 -0.0284 0.0735 0.2229

0.6 0.1337 0.2542 -0.0371 -0.0263 0.0727 0.2199

0.7 0.1269 0.2419 -0.0342 -0.0252 0.0728 0.2194

0.8 0.1229 0.2345 -0.0321 -0.0246 0.0731 0.2200

0.9 0.1204 0.2297 -0.0305 -0.0242 0.0735 0.2212

1 0.1188 0.2266 -0.0293 -0.0239 0.0740 0.2226

1.5 0.1155 0.2202 -0.0257 -0.0228 0.0764 0.2299

2 0.1149 0.2191 -0.0239 -0.0222 0.0783 0.2359

2.5 0.1150 0.2192 -0.0228 -0.0218 0.0799 0.2406

3 0.1152 0.2196 -0.0221 -0.0214 0.0811 0.2442

4 0.1158 0.2207 -0.0211 -0.0209 0.0829 0.2495

5 0.1162 0.2215 -0.0205 -0.0206 0.0841 0.2530

Table 2.6: Numerical estimation of Hi jkl for the superspherical pore embedded in a transversely isotropic corrected model with different values of
concavity p ∈ [0.2, 5].
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Fig.2.15 shows the evolution of the Hi jkl components on the concavity parameter p. As same as the superspheroidal

cases, it can also be finally concluded that the concavity of the superspherical pore significantly affect its compliance

contribution tensor H.
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Figure 2.15: Evolution of components Hi jkl for the superspherical pore embedded in a transversely isotropic matrix on the Logarithm value of the
concavity parameter log(p) such that p ∈ [0.2, 5]

For completeness, the numerical evaluation of the strain concentration tensor A are reported in A.5.

2.3.7. Concluding remarks
In this section, we have numerically evaluated the compliance contribution tensor of the concave pore

inhomogeneity embedded in a transversely isotropic matrix. This has been realized by use of an original developed

numerical method complying with the adapted boundary conditions based method recently formulated by Adessina

et al. (2017). The proposed numerical procedure was carried out for an arbitrarily bounded representative elementary

volume and is shown to be efficient and accurate in the numerical modeling. By paying particular attentions to

the pore concavity and the matrix anisotropy, a major contribution of this work is found as the sufficiently exact

computation results and analysis that illustrate the significant effect of the pore concavity on the elastic properties of

the matrix.

Specifically, the adapted boundary conditions based method was extended in the context of the matrix anisotropy

thanks to the Green functions and their gradients applied in the correction of the boundary conditions, which have

been rigorously reformulated via the Fourier transform based integral method in particular by solving the singularity
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problem on the axis of the transverse isotropy. Moreover, the numerical homogenization method has been utilized in

the proposed numerical procedure that has been firstly assessed and validated by comparing its predictions with the

analytical and existing numerical results in particular cases. It is then used to the investigate the effect of the concave

pore on the transversely isotropic matrix from the quantitative estimates of the compliance contribution tensor, which

was found to be of critical importance especially in the case of the concavity being less than 0.5.

Last but not least, the proposed numerical method is able to deal with any general anisotropy of the matrix material

but such a study has not been attempted here for the sake of keeping the work focused and concise. In the perspective

point of view, effective properties such as those predicted from semi-analytical homogenization models could be

developed based on the obtained numerical computations. Alternatively, new formulations of the “adapted boundary

conditions” as well as their applications in the context of non-linear homogenization may also constitute a challenging

extension.
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2.4. Micromechanical modelling schemes based on

individual inhomogeneities
To characterize contribution of an individual pore to the effective elastic properties of heterogeneous materials, the

compliance contribution tensor H tensor is introduced (Sevostianov et al. (2014); Kachanov and Sevostianov (2018)).

The extra strain or stress induced by the presence of inhomogeneities in a RVE can be evaluated using the contribution

tensor. The effective compliance tensor of a composite with inhomogeneities is then presented as:

S = S0 +HRVE (2.56)

where S0 is the compliance tensor of the matrix material and HRVE is the entire contribution tensor of RVE. With

different assumptions, the implementation of HRVE is different.

2.4.1. Non-interaction approximation
For dilute distribution of inhomogeneities where interaction between inhomogeneities in the composite is ignored,

each inhomogeneities can be supposed to be applied by the same remotely applied stress or strain. The non-interaction

approximation (NIA) can then be used in low volume fraction due to its simplicity ((Sevostianov and Kachanov (2013,

2012))), and HRVE is found by direct summation of contributions from total inhomogeneities in the RVE:

HNIA
RVE =

∑
H(i) (2.57)

where H(i) is the compliance contribution tensor of the i-th inhomogeneities (Kachanov et al. (1994); Eroshkin and

Tsukrov (2005)).

2.4.2. Mori-Tanaka-Benveniste scheme
For higher volume fraction when the interaction is no longer negligible, more advanced micromechanical schemes

can be used. In Mori-Tanaka-Benveniste scheme (MTB), every inhomogeneity in material behaves as isolated one in

the matrix. The interactions are considered by assuming that every inhomogeneity is subjected to a constant external

field that is coincided with the average stress field in the matrix of the RVE (Mori and Tanaka (1973); Benveniste

(1987)). As shown in Eroshkin and Tsukrov (2005), the predictions for the effective elastic compliance tensor via the

MTB scheme can be easily obtained when the NIA is given:

HMT B
RVE = HNIA

RVE :
[

f (SI − S0) +HNIA
RVE

]−1 : (SI − S0) (2.58)
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where f is the volume fraction of inhomogeneities and SI is therir compliance tensor. For the limiting case when the

inhomogeneities are pores, the corresponding contribution tensor turns into:

HMT B
RVE =

HNIA
RVE

1 − f
(2.59)

2.4.3. Maxwell scheme
Maxwell homogenization scheme (Maxwell (1873)) may be the oldest method to explicitly calculate the overall

elastic properties of heterogeneous materials. It is largely investigated in the case where the influence of interaction

could be accounted “collectively” (Drach et al. (2011); Sevostianov (2014)). In Maxwell scheme, the far field induced

by the presence of inhomogeneities is equated with the far field produced by a fictitious domain of certain shape with

unknown effective properties. Sevostianov and Giraud (2013); Sevostianov et al. (2019) rewrite its expressions on the

basis of the compliance and stiffness contribution tensors:

HMaxwell
RVE =

{[
HNIA

RVE

]−1
−QΩ

}−1
(2.60)

where QΩ is Hill’s tensor (Hill (1965)) for the effective inclusion of chosen shape Ω.
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2.5. Elastic properties of transversely isotropic

materials with concave pores Du et al. (2021)
The aim of this section is to extend recent works devoted to the study of the effect of 3D pores of concave

shape embedded in isotropic matrix to the case of transversely isotropic (TI) matrix. In the first part of the section,

approximate relations for the compliance contribution tensor of pores of two reference shapes, supersphere and

axisymmetrical superspheroid, are developed on the basis of 3D Finite Element Modelling in 2.3, and known exact

solutions for the limiting cases of spherical pores and circular crack. In the second part, application to effective elastic

coefficients of transversely isotropic materials such as clay rocks, in the frame of homogenization theory is presented

to illustrate the impact of concavity parameter on overall properties.

2.5.1. Introduction
In the present section, we analyse the effect of the concavity of pores on the overall elastic properties of a

porous material with transversely-isotropic solid phase. For this goal, we use two homogenization techniques: Mori-

Tanaka-Benveniste scheme and Maxwell scheme. Both of them are based on the solution for a single inhomogeneity

problem and can be easily formulated for ellipsoidal inhomogeneities using Eshelby results Eshelby (1961). Non-

ellipsoidal shapes of the inhomogeneities are not so well studied and most of the results are obtained in 2 − D by

conformal mapping Kachanov et al. (1994). For three-dimensional case, the problem of irregular (non-ellipsoidal)

inhomogeneities reduces to integral equations and generally requires computational approaches although, in some

cases, solution can be obtained in the form of infinite series, see, for example Krasnitskii et al. (2019) . They can

be generally subdivided onto two groups: (i) direct computation of stress and strain fields for a given (deterministic)

microstructure by discretizing the domain and using the FEM, and then post-processing the averages of the stress and

strain fields (see, for example, Garboczi and Douglas (2012)) and (ii) computation of the contribution of one isolated

inhomogeneity into the effective elastic properties as a function of its shape. The latter results constitute basic building

blocks for theoretical models that cover diverse orientation distributions and concentrations of inhomogeneities.

Böhm and Rasool (2016) analysed shape effects on the effective elastic and thermal properties of the composites

containing randomly oriented and distributed spherical, octahedral, cubical and tetrahedral particles. Drach et al.

(2014) proposed to evaluate effect of pores of irregular shape on the overall elastic moduli using pore projected areas.

This approach works well for prediction of the overall Young’s moduli in different directions. Drach et al. (2016)

performed comprehensive numerical analysis of the pore shape on the overall properties of solids with porosity levels

up to 25%. Trofimov et al. (2017b) compared predictions of overall elastic properties of composites reinforced with

particles of a different polyhedral shapes by FEM and micromechanical schemes. The results of the two approaches

are in good agreement for volume fractions up to 30% for all studied material combinations. The inverse problem –
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design of material microstructure has been has been done by Zohdi Zohdi (2003), who determine optimal geometrical

and mechanical properties of inhomogeneities for prescribed overall elastic moduli.

Effect of the concavity factor of superspheres and axisymmetric concave pores was analyzed in the works of Chen

et al. (2015, 2018); Sevostianov et al. (2016a). The authors supplemented finite element modeling with analytical

approximations for compliance contribution tensors of pores of such shapes. These results were used to calculate

overall elastic properties of materials with multiple concave pores: oolitic rock Kalo et al. (2017) and 3 − D printed

S i3N4 ceramics Lurie et al. (2018). All the mentioned results have been obtained for materials with isotropic matrix.

The number of explicit results on elastic properties of heterogeneous materials with anisotropic matrix is substantially

smaller. Piezoelectric properties of transversely isotropic materials containing circular fibers aligned with the axes of

symmetry of the matrix have been calculated using various homogenization techniques by Sevostianov et al. (2001).

Sevostianov et al. (2005) calculated compliance contribution tensor for a spheroidal inhomogeneity of arbitrary aspect

ratio embedded in a transversely-isotropic material. Levin and Markov (2005) calculated effective elastodynamics

properties of transversely isotropic rocks containing aligned spherical and strongly oblate spheroidal pores. Effective

porothermoelastic properties of transversely isotropic rocks such as mudstones, argillites, shales have been studied

in the frame of Effective Media Theory (EMT), by Giraud et al. (2007). Cosenza et al. (2015) calculated overall

properties of transversely-isotropic clay containing spherical inhomogeneities. Vasylevskyi et al. (2018) calculated

overall properties of a transversely-isotropic material containing parallel circular cracks. Seyedkavoosi et al. (2018)

used approach developed by Guerrero et al. (2008) to calculate overall properties of a transversely-isotropic material

containing arbitrarily oriented cracks. This result was used by Seyedkavoosi and Sevostianov (2019) to estimate

properties of a transversely-isotropic material with multiple arbitrarily oriented oblate inhomogeneities and applied to

calculation of the overall properties of dentine. In the text to follow, we use the recent numerical results of Du et al.

(2020) where compliance contribution tensors of concave pores in a transversely-isotropic material are obtained. We

suggest an analytical approximation of the components of these tensor using approach of Trofimov et al. (2018) and

evaluate overall elastic properties of transversely-isotropic materials containing such pores. The results are illustrated

by example of shale rock containing concave pores.

2.5.2. Compliance contribution tensor of a concave pore
Refer to appendices A.1 and A.6 for background on tensors and property contribution tensors. Recently Du

et al. (2020) calculated components of the compliance contribution tensors of superspheroidal and axisymmetric

superspheroidal pores embedded in a transversely-isotropic material numerically.

• superspheroidal pore

|
x1

a
|
2p
+ |

x2

a
|
2p
+ |

x3

ςa
|
2p
= 1 (2.61)
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Figure 2.16: Superspherical pore (relation (2.61) with ς = 1)

• axisymmetrical superspheroidal pore

(
x2

1 + x2
2

a2

)p

+ |
x3

ςa
|
2p
= 1 (2.62)
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e3

p = 1
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0.2

Figure 2.17: 2D representation in diametral plane of a 3D axisymmetrical superspheroidal pore, with ς = 1 and symmetry axis x3

p, ς and a respectively denote non dimensional concavity parameter, non dimensional aspect ratio and semi-lengths

in plane Ox1x2 (dimension of length [a] = L). Theses shapes are convex in the range p > 0.5 and concave for

0 < p < 0.5. Both shapes degenerate into a spheroid is with p = 1. In what follows we will only consider ς = 1, the

first shape is then a supersphere, and the second shape obtained by a rotation about symmetry axis x3. Supersphere and

axisymmetrical superspheroid coincide with sphere in the case p = 1 but strongly differ in the limiting case p → 0:
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supersphere tends to three orthogonal needles along coordinates axes and superspheroid tends to a circular crack of

unit radius crossed by a perpendicular needle along symmetry axis x3.

Compliance contribution tensor HE0 of a superspherical pore aligned with the direction of a TI matrix, with symmetry

axis x3, respects tetragonal symmetry. With three orthogonal planes of symmetry (with normal ei) and equivalence

between x1 and x2 axes, its 6 independent elastic coefficients are HE1111, HE1122, HE1133, HE3333, HE2323, HE1212. Compliance

contribution tensor of an axisymmetric superspherspheroidal pore aligned with the TI matrix is transversely isotropic

with 5 independent elastic coefficients, HE1111, HE1122, HE1133, HE3333, HE2323. HE0 can be written in terms of the transversely

isotropic tensor basis E detailed in appendix (A.6) as

HE0 =
6∑

i=1

hi Ei (2.63)

Average compliance contribution tensors HE0 of superspherical and axisymmetrical superspheroidal pores have been

numerically calculated by using 3D Finite Element Method (FEM), see Du et al. (2020) considering TI matrix with

elastic properties of a shale (see Tables 2.7-2.8).

Table 2.7: Reference transversely isotropic elastic parameters

E0
1 (GPa) E0

3 (GPa) ν0
12 ν0

31 G0
31 (GPa)

20.44 11.306 0.1027 0.1798 1.5851

Table 2.8: Reference transversely isotropic elastic parameters: C0
i jkl components of C0 tensor and related ci components in transversely isotropic

tensor basis Ei

C0
1111 (GPa) C0

3333 (GPa) C0
1122 (GPa) C0

1133 (GPa) C0
2323 (GPa)

22.3639 12.9994 3.8275 4.7092 1.5851

c1 (GPa) c3 (GPa) c3 = c4 (GPa) c5 (GPa) c6 (GPa)

12.9994 26.1914 6.65983 18.5363 3.1702

Numerical results of Du et al. (2020) are summarized in Tables (2.6-2.5). In the particular case of an ellipsoidal

pore E embedded in an infinite matrix 0 of stiffness C0 and compliance S0 tensors, compliance HE0 and stiffness NE0
contribution tensors are analytical and write (see Kachanov and Sevostianov (2018) for details) :

HE0 =
[
(SE − S0)−1 +QE0

]−1
, NE0 =

[
(CE − C0)−1 + PE0

]−1 (2.64)
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where PE0 and QE0 denote the fourth order Hill’s tensors Hill (1965) of the inhomogeneity, related by relation

QE0 = C0 :
(
I − PE0 : C0

)
(2.65)

Strain Hill tensor PE0 of a spheroidal inhomogeneity aligned in a TI matrix may be found in Sevostianov et al. (2005);

Barthélémy (2020) and it is recalled for convenience in appendix A.6. In the next Section we approximate these

results analytically and then use them to calculate overall elastic properties of transversely isotropic matrix containing

multiple concave pores.

2.5.3. Approximation formula for compliance contribution tensor

of a superspherical or axisymmetrical superspheroidal pore

embedded in a transversely isotropic host matrix
We investigate in this section the extension to transverse isotropy of approximation formula for the compliance

contribution tensor of 3D pores of particular shapes previously presented. We restrict the study to the following

assumptions

• same directions of symmetry between matrix and pore inclusion (aligned case)

• study is focused on the concavity parameter p

• in the case of superspherical pore, compliance contribution tensor respects tetragonal symmetry (6 independent

components) but we will consider for applications random orientation distributions in the isotropic plane x1− x2

(x3 denotes the symmetry axis) on the one hand, in 3D space on the other hand. Related compliance contribution

tensors respects transversely isotropic symmetry.

2.5.3.1. Volume and surface area of superspherical and axisymmetrical

superspheroidal pores
Approximation formula may be obtained by using basic geometric information related to the considered reference

shapes, supersphere and axisymmetrical superspheroid, defined in relations (2.61-2.62), with aspect ratio ς = 1. These

informations are volume, total surface area and projected areas onto planes 0xix3 (with i = 1, 2).. and corresponding

volumes write (Γ denotes Euler Gamma function, see Chen et al. (2015); Sevostianov et al. (2016a); Trofimov et al.
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(2018) for details)

Vse(p) =
2
3

(
Γ
[

1
2p

])3

p2 Γ
[

3
2p

] , Vso(p) =
4 π
3

Γ
(

1+2p
2p

)
Γ
(

1
p

)
Γ
(

3
2p

) (2.66)

where superscripts se and so respectively refer to supersphere and axisymmetric superspheroid. In the range 0 <

p ≤ 1, supersphere and axisymmetrical superspheroid with unit semi-length a are superscribed by unit sphere of

volume V0 = 4π/3. Ratios Vse(p)/V0, Vso(p)/V0 and Vse(p)/Vso(p) are presented in figure (2.18).. Supersphere and

axisymmetrical superspheroid coincide with sphere in the case p = 1 but strongly differ in the limiting case p → 0:

supersphere tends to three orthogonal needles along coordinates axes and superspheroid tends to a circular crack of

unit radius crossed by a perpendicular needle along symmetry axis x3. . Except for some particular values of concavity

parameter (p = 1
4 ,

1
2 , 1), the total surface area needs to be calculated by numerical integration. As in Trofimov et al.

(2018), we use the surface area of the supersphere Ase(p) given by Trott (2006), and the surface area Aso(p) of the

axisymmetrical superspheroid is given by the single integral accounting for symmetry of revolution

Aso(p) =
∫ 1

0

(
1 − x2p) 1

2p

(
1 + x−2(1+2p)(1 − x2p) 1−2p

p

) 1
2

dx (2.67)

The projection area S proj(p) of both 3D shapes onto planes xix3 (i = 1, 2, x3 denotes symmetry axis of the

axisymmetrical superspheroid) writes (Beta denotes Euler Beta function)

S proj(p) =
2
p

Beta
(

1 +
1

2p
,

1
2p

)
(2.68)
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Figure 2.18: Left: ratios Vse(p)/V0 and Vso(p)/V0 functions of concavity parameter p, right: ratio Vse(p)/Vso(p)

2.5.3.2. Approximation formula for superspherical pore
We restrict this study to the range 0.2 ≤ p ≤ 1, on the basis of the non-dimensional factors proposed by Trofimov

et al. (2018), we propose approximation formula

Hi jkl(p) =


S proj(p)/(Vse(p))2/3

S octa
proj/(Vse

octa)2/3 f se-a
i jkl (p) Hocta

i jkl 0.2 ≤ p < 0.5 , no sum over i and j

Ase(p)/(Vse(p))2/3

Aocta
se /(Vse

octa)2/3 f se-b
i jkl (p) Hocta

i jkl 0.5 ≤ p ≤ 1 , no sum over i and j

(2.69)

where octa denotes octahedron (particular case of supersphere at p = 0.5 represents an octahedron). Functions

f se-a
i jkl (p) and f se-b

i jkl (p) are given in A.7. A quadratic fit has been considered for components Hii j j (no sum over i

and j) whereas a fourth degree polynomial has been necessary to fit shear components H1212, H2323 . Comparisons

between approximate relations (2.69) and finite element results are presented in figure 2.19. Maximal relative errors

of approximate relations (2.69) compared to FEM results are given in table 2.9, they are lower than 4.%.

HE1111 HE1122 HE1133 HE3333 HE1212 HE1313

0.0349 0.03677 0.0350 0.0356 0.0061 0.0060

Table 2.9: Maximal relative errors of approximate relations compared to FEM results,
∥∥∥(HApprox

i jkl − HFEM
i jkl )/HFEM

i jkl

∥∥∥
∞

for the superspherical pore
with p ∈ [0.2, 1]
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Figure 2.19: The 6 independent components Hi jkl of the tetragonal compliance contribution tensor of a superspherical pore embedded in TI matrix,
as a function of concavity parameter p. Comparison between FEM results (dashed lines) and approximate relations (plain lines).
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2.5.3.3. Approximation formula for axisymmetrical superspheroidal pore
Similar approximation formula are proposed for components H1111, H1122, H1133 but total surface area has been

used instead of projection area, in the concave range p < 0.5.

H11ii(p) =


Aso(p)/(Vso(p))2/3

Aocta
so /(Vso

octa)2/3 f so-a
11ii (p) Hocta

11ii 0.2 ≤ p < 0.5 , no sum over i, i ∈ [1, 2, 3]

Aso(p)/(Vso(p))2/3

Aocta
so /(Vso

octa)2/3 f so-b
11ii (p) Hocta

11ii 0.5 ≤ p ≤ 1 , no sum over i, i ∈ [1, 2, 3]

(2.70)

where octa corresponds to the case (p = 0.5) which is not an octahedron but a double-conical shape. Functions

f so-a
11ii (p) and f so-b

11ii (p) are given in A.7. Polynomials of degree 4 have been considered for both concave and convex

domains in the range 0.2 < p < 1. It may be noticed that semi-analytical approximations using the limiting cases of

aligned circular crack p→ 0 and sphere p→ 1 may be used for components H3333 and H2323 (with x3 symmetry axis

of axisymmetrical superspheroid and TI matrix ). Approximate solutions writes

H3333(p) =
Vsphere

Vso(p)

(
1 − p
1 − αo

Hc
3333 +

p − αo

1 − αo
Hsphere

3333

)
, αo = 0.19, 0.2 ≤ p ≤ 1 (2.71)

H2323(p) =


f2323(p) 0.2 ≤ p < 0.5

Hsphere
2323 0.5 ≤ p ≤ 1

(2.72)

f2323(p) = A + B exp (−ω(p − p0)) , p0 = 0.2 (2.73)

Constants A and B are determined by using analytical solutions for the limiting cases of circular crack and sphere,

which are imposed at p = 0.2 and p = 0.5 (difference between solutions of axisymmetrical octahedron p = 0.5 and

sphere are not significant for H2323 component).

f2323(p = 0.2) = Hc
2323

Vsphere

Vso(0.2)
, f2323(p = 0.5) = Hsphere

2323 (2.74)

and then

A + B = Hc
2323

Vsphere

Vso(0.2)
, A + B exp (−0.3ω) = Hsphere

2323 (2.75)
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Constant ω is determined by fit of finite element results (see section 2.3 and Du et al. (2020) for details on finite

element modelings). One obtains

A = 0.221795, B = 0.591786, ω = 22 (2.76)

Analytical solution for the compliance contribution tensor of a spheroidal pore aligned with the directions of a TI

matrix is recalled in appendix. It may be noticed that approximation (2.71) for H3333 component numerically coincides

with the corresponding component of a spheroidal pore with same volume than superspheroidal pore :

H3333(p) ≈ Hspheroid
3333 (γ(p)), 0.2 ≤ p ≤ 1 (2.77)

with

γ(p) =
Vso(p)
Vsphere =

Γ
(

1+2p
2p

)
Γ
(

1
p

)
Γ
(

3
2p

) (2.78)

The analytical solution for the aligned spheroidal pore Hspheroid
i jkl (it includes the particular case of the sphere,

Hsphere
i jkl with γ(p = 1) = 1) is deduced from the exact Hill tensor recalled in appendix A.6. Comparisons between

approximate relations (2.70-2.71-2.72-2.77) and finite element results are presented in figure 2.20. Compliance

contribution tensor of aligned axisymmetrical superspheroidal and spheroidal pores of same volume have quasi

the same normal component H3333. In other words, only the volume characterizes this component, not affected by

concavity (superspheroid) of convexity (spheroid). It must be emphasized that it is not the case for all the other

components Hi jkl, including the shear component H2323, for which the concavity parameter p is of major importance

(volume is not sufficient to characterize compliance contribution tensor). Shear component H1212 in the plane of

transverse isotropy has been used to check accuracy of the symmetry of revolution by comparing to H1111 −H1122)/2.

(see figure 2.21), it may be noticed that both coincide as expected.

Maximal relative errors of approximate relations (2.70-2.72-2.77) compared to FEM results are given in table

2.10, they are lower than 5.%.

HE1111 HE1122 HE1133 HE3333 HE1313

0.00133 0.00174 0.00297 0.04890 0.03425

Table 2.10: Maximal relative errors of approximate relations compared to FEM results,
∥∥∥(HApprox

i jkl − HFEM
i jkl )/HFEM

i jkl

∥∥∥
∞

for the axisymetrical
superspheroidal pore with p ∈ [0.2, 1]
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Figure 2.20: The 5 independent components Hi jkl of the T I compliance contribution tensor of an axisymmetric superspheroidal pore embedded in
TI matrix, as a function of concavity parameter p. Comparison between FEM results (dashed lines) and approximate relations (plain lines). Note
that H1212 is used to check accuracy of transverse isotropy by comparing to (H1111 − H1122)/2..
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Figure 2.21: H1212 component of the T I compliance contribution tensor of an axisymmetric superspheroidal pore embedded in TI matrix, as a
function of concavity parameter p. H1212 is used to check accuracy of transverse isotropy by comparing to (H1111 − H1122)/2..

2.5.4. Evaluation of the effective elastic properties of materials with

transversely isotropic matrices
In this section, we calculate effective elastic properties using three homogenization techniques: Non Interaction

Approximation, Mori Tanaka-Benveniste and Maxwell schemes (respectively referred with superscripts NIA, MTB

and MX), see Mori and Tanaka (1973); Benveniste (1987); Kachanov and Sevostianov (2018))

SNIA = S0 + φHE0 , SMTB = S0 +
φ

1 − φ
HE0 , SMX = S0 +

[
1
φ

[
HE0
]−1
−QΩ0

]−1

(2.79)

where φ denotes the porosity. QΩ0 denotes the second Hill tensor of the effective inclusion of the Maxwell scheme,

which is supposed of spheroidal shape (with aspect ratio γΩ) and aligned with the directions of the TI host matrix. QΩ0
is related to the strain Hill tensor PΩ0 by the relation (see appendix A.6 for details):

QΩ0 = C0 :
(
I − PΩ0 : C0

)
(2.80)

For numerical examples, we use elastic constants of shale and mudstone given in Tables 2.7 and 2.8 (Giraud et al.

(2008); Cosenza et al. (2015). In what follows, effective elastic properties of porous clay matrix at mesoscopic scale

are estimated by homogenizing micropores. We do not consider solid mineral inclusions of calcite and quartz which

would need to be added for the transition from mesoscopic to the macroscopic scale (the centimeter scale of standard
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geomechanical laboratory tests).

The porosity of clay matrix φ (denoted f I
p in Giraud et al. (2008)) is comprised in the range φ ≤ 0.30 which has been

considered for the sensitivity study. It must be emphasized that most of the existing homogenization results do not

account for anisotropy of the host matrix attributing the overall anisotropy to the microstructure of the pore space.

This assumption is invalid for shale rock, in particular.

For geomaterials, the superspherical shape of pores is more realistic than the axisymmetric one since it approximately

represents intergranular pores. We consider only a random orientation distribution of superspherical pores which does

not violate the orientation of the symmetry axes of the transversely isotropic matrix. Transverse isotropic projection

of compliance contribution tensor ΠT I
(
HE0
)

will be used instead of the compliance contribution of the superspherical

pore HE0 . See appendix for detail, only components H1111, H1122 and H1212 are modified, other components are equal,

HT I
1133 = H1133, HT I

3333 = H3333, HT I
2323 = H2323 (HT I

i jkl denotes
[
ΠT I

(
HE0
)]

i jkl)

HT I
1111 =

3 H1111 + H1122 + 2 H1212

4
, HT I

1122 =
H1111 + 3 H1122 − 2 H1212

4
(2.81)

HT I
1212 =

H1111 − H1122 + 2 H1212

4
(2.82)

Figure (2.22) illustrates the numerical difference between the tetragonal tensor HE0 and its TI projection ΠT I
(
HE0
)
.
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Figure 2.22: Left figure: comparison between H1212 component and (H1111 − H1122)/2 to illustrate tetragonal symmetry of H tensor. Right figure:
relative distance between H tensor and its TI projection as a function of concavity parameter. This relative distance is equal to zero in the case of
the spherical inclusion p = 1.

55



Chapter 2 2.5

2.5.4.1. Aligned axisymmetric superspheroidal pores
Effective elastic coefficients EMTB

1 , EMTB
3 , GMTB

31 obtained with MTB approximation are presented in figure

(2.23). Approximation formula (2.70-2.71-2.72) deduced from FEM are compared to approximation of compliance

contribution tensor of an oblate spheroidal pore of same volume (semi axis length of axisymmetrical superspheroid is

equal to the greater semi axis length of the oblate spheroid) ):

Hi jkl(p) ≈ Hspheroid
i jkl (γ(p)), 0.2 ≤ p ≤ 1 (2.83)

with aspect ratio of oblate spheroid γ(p) defined by relation (2.78)

It may be observed that:

• normal Young’s modulus EMTB
3 may be estimated by a very simple approximation using compliance

contribution of an oblate spheroidal pore of same volume than the axisymmetrical superspheroidal pore, in the

concavity range p < 0.5. Numerically it is mainly related to normal component of compliance contribution

tensor H3333. Comparison between axisymmetrical superspheroidal and oblate spheroidal pores shows that

both approximations lead to the same effective coefficient EMTB
3 . In other words, concavity or convexity has

no significant effect on this coefficient, when comparing same pores of same volume. It must be emphasized

that this result is very specific and cannot be generalised. It only holds for this particular shape and the normal

Young’s modulus..

• oppositely, transverse Young’s modulus EMTB
1 and shear coefficient GMTB

31 are strongly related to the concavity

parameter p. Comparison of estimates based on concave and convex pores of same volume (respectively

axisymmetrical superspheroid and oblate spheroid), in the range p < 0.5, see figure (2.23), shows significant

differences. This result is expected as an approximation based on an oblate spheroid of same volume is not

precise for all components H1111, H1122, H1133, H2323, particularly in the concave range 0.2 < p < 0.5. It

confirms, for a 3D shape embedded in an anisotropic matrix that the concavity parameter is of major importance

when estimating effective elastic properties.

2.5.4.2. Aligned axisymmetric superspheroidal pores compared with a random

orientation distribution of superspherical pores in the transverse plane
Comparisons of effective elastic moduli obtained with (MTB) approximation for aligned axisymmetrical

superspheroidal pores and randomly oriented superspherical pores in the transverse plane are presented in figure

(2.24). Obtained effective porous material is transversely isotropic with same symmetry axis than matrix. It may be

observed that

• effects of these two shapes on elastic effective properties are strongly different in the concave range 0.2 < p <

56



Chapter 2 2.5

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

φ

E
1/

E
0 1

axis superspheroid - MTB

p = 0.25
p = 0.35
p = 0.5
p = 1

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

φ

E
3/

E
0 3

axis superspheroid - MTB

p = 0.25
p = 0.35
p = 0.5
p = 1

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

φ

G
13
/G

0 13

axis superspheroid - MTB

p = 0.25
p = 0.35
p = 0.5
p = 1

Figure 2.23: Effective transverse EMTB
1 (top, left) and normal EMTB

3 (top, right) Young’s elastic moduli, effective axial shear modulus GMTB
31 as a

function of porosity φ, MTB approximation, aligned axisymmetrical superspheroidal pores. App 1 (plain lines): approximation formula (relations
2.70-2.71-2.72) for axisymmetrical spheroidal pores, App 2 (dashed lines) : approximation oblate spheroid with same volume (relations 2.78-2.83).
Note that the two approximations coincide only for normal Young’s modulus EMTB

3 .

0.5. It is expected as the supersphere tends to three orthogonal needles (with zero volume and zero surface)

when p tends to zero, whereas the axisymmetrical superspheroid tends to a circular crack with one central

orthogonal needle (the latter having zero volume but non zero surface).. As previously indicated, the most

relevant shape compared to microstructure of porous materials is certainly supersphere.

• a significant anisotropic degree in the case of aligned axisymmetrical superspheroidal pores, in the limit p→ 0.
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Figure 2.24: Effective transverse EMTB
1 (top, left) and normal EMTB

3 (top, right) Young’s elastic moduli , effective shear coefficient GMTB
31 as a

fonction of porosity φ, MTB approximation, superspherical (plain lines) and aligned axisymmetrical superspheroidal (dashed lines) pores.

2.5.4.3. Comparisons between NIA, MTB and Maxwell homogenization schemes
Effective elastic properties predicted by Maxwell, MTB, NIA are presented in figures (2.25-2.26) for respectively

for axisymmetrical superspheroidal and superspherical pores randomly oriented in transverse plane. The shape of

the effective inclusion of the Maxwell scheme is still an open issue when host matrix is anisotropic (see Sevostianov

(2014); Giraud et al. (2019)). The sensitivity study on the shape of the effective inclusion, and oblate spheroid of

aspect ratio γΩ = 0.5 − 1 confirms that it is a parameter of major importance.
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Figure 2.25: Effective transverse Eef
1 (top, left) and normal Eef

3 (top, right) Young’s moduli, effective shear coefficient Gef
31 (bottom) as a fonction

of porosity φ, for aligned axisymmetric superspheroidal pores randomly oriented in the isotropic transverse plane.
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Figure 2.26: Effective transverse Eef
1 (top, left) and normal Eef

3 (top, right) Young’s moduli, effective shear coefficient Gef
31 (bottom) as a fonction

of porosity φ, for aligned superspherical pores randomly oriented in the isotropic transverse plane.

2.5.5. Concluding remarks
In the present work, effective properties of a transversely-isotropic material containing concave pores are discussed

and illustrated on the example of porous clay matrix. For this goal we used NIA, MTB and Maxwell homogenization

schemes. All techniques require the explicit analytical representation of the compliance contribution tensor for

a single pore. These tensors were calculated for the set of superspherical and axisymmetrical superspheroidal

pores with concavity parameter p in the range 0.2 ≤ p ≤ 1 which covers both concave (0.2 ≤ p < 0.5) and
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convex shapes (0.5 ≤ p ≤ 1) using FEM. Based on the numerical solution for octahedron (p = 0.5) and analytical

solution for sphere we built analytical approximations of the compliance contribution tensor in terms of the pore

concavity parameter. The accuracy of this approximation is better than 5% for all the tensor components. We show

that the concavity parameter p is a parameter of major importance on the overall elastic behavior of transversely

isotropic materials containing such pore shapes. It is impossible to match effect of concave pores by oblate

spheroidal pores except in the specific case of normal Young’s modulus and axisymmetrical shape. The main novelty

of this study is the account of concavity effects related to 3D shapes embedded in an anisotropic matrix while

previous studies where done in the case of isotropic matrix. On the basis of presented results, it appears that it is

not possible to separate effect of anisotropy from the effect of concavity to extend previous results obtained in the

isotropic case. Accordingly, it is not possible to take effect of concavity from isotropic matrix and put it into TI matrix.
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“Équipe de Recherche Commune sur les Matériaux pour une Construction Durable (ERC MCD)”, within which

these research works were carried out. IS acknowledges financial support from National Aeronautics and Space

Administration (NASA) Cooperative Agreement NNX15AL51H.

61



Chapter 3
Effective thermal properties of anisotropic

solids with concave pores

Heat transfer through porous media has caught increasingly interest in diverse fields. Its widespread application in

biomedicine, chemistry, electronics, mechanic, geology and nuclear engineering has triggered a wave of research from

different disciplines. For these reasons, our work in this chapter focuses on the determination of the effective linear

thermal conductivity for anisotropic porous media. Property contribution tensors are also utilized here to compute the

effective conductivity properties of random heterogeneous materials, in the framework of micromechanical modelling.

The resistivity contribution tensor has been introduced by Sevostianov and Kachanov (2002a) in the context of the

cross-property connection between elastic and conductive properties of heterogeneous materials. They have also

reported the fact that inclusion shapes affect the elasticity and the conductivity differently. In contrast with the work

that focus on linear elasticity in chapter 2, this part derives the resistivity contribution tensor of linear conductivity

problem. In this sense, the present work can be viewed as an extension of chapter 2 for the concave pores in anisotropic

conductivity media. The thermal problem is of lower order which allows us to consider much more materials. That’s

why we conduct the thermal problem. This chapter seeks to explain the effect of pore shape and matrix anisotropy on

the conductivity properties of the anisotropic porous materials (containing irregular pores and diversely anisotropic

degree of matrix). Moreover, the superspherical and axisymmetric superspheroidal shapes are still two typical shapes

of pores which we’ll pay particular attention in this part. The corrected boundary condition, initially proposed by

Adessina et al. (2017), extended to the anisotropic case of elastic problem in section 2.3.2, are adopted to the problem

of heat conduction during the numerical procedure in this chapter. The contents of this chapter are organized into

three sections. The first section 3.1 reviews the basic and introductory knowledge of property contribution tensors in

thermal issue. Section 3.2 outlines the procedure of simulation and the subsequent finite element (FE) realization. It

then quantitatively presents the contribution of individual inhomogeneity due to its shapes and matrix anisotropy to
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the resistivity contribution tensor via the FE based numerical homogenization. Note that the content of this section

is being submitted as a separate article. Section 3.3, in the first step, is devoted to the approximate expressions of

property contribution tensor in terms of numerical results in section 3.2. The effective thermal properties of composite

materials are detailed afterwards via various implementations such as NIA, MTB and Maxwell schemes with random

or aligned microstructure.

3.1. Property contribution tensors of conductivity

problem
Contrarily to the elastic problem and related fourth order tensors, the thermal conductivity problem and the

corresponding second-order contribution tensors are considered in this chapter (which is mathematically equivalent

to the electric conductivity problem). Table 3.1 summarizes the equivalences between thermal conductivity properties

and elasticity.

linear elasticity linear thermal conduction

displacement vector ξ temperature T

strain tensor thermal gradient

ε = 1
2

(
grad(ξ) + t grad(ξ)

)
ε = gradT

εi j =
1
2

(
ξi, j + ξ j,i

)
εi = T,i

stress tensor heat flux vector

σ = C : ε σ = −λ · ε

σi j = Ci jklεlk σi = −λi jε j

elastic stiffness tensor thermal conductivity tensor

C λ

σ = C : ε σ = −λ · ε

elastic compliance tensor thermal resistivity tensor

S = C−1 r = λ−1

ε = S : σ ε = −r · σ

Table 3.1: linear elasticity and linear thermal conduction

Assuming a linear conduction law (linear relation between the temperature gradient ε and the remotely applied

heat flux vector Σ, same goes for the heat flux σ and the remotely applied thermal gradient E), we then have a linear
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relation for the change due to the inhomogeneity in a dilute situation:

∆ε = − f HE0 · Σ, ∆σ = − f NE0 · E with f =
| E |

| Ω |
(3.1)

where ∆ε and ∆σ respectively are the extra thermal gradient and heat flux vector due to the presence of inhomogeneity.

The symmetric second rank tensors HE0 and NE0 can be called the resistivity and conductivity contribution tensors.

The first segment of formulas Eqs.(3.1) can be interpreted as the change in temperature gradient that is required to

maintain the same heat flux after the inhomogeneity has been introduced. The property contribution tensors then turn

into conductivity N and resistivity H contribution tensors in contrast with the elasticity. The contribution tensors HE0
and NE0 of a given inhomogeneity of any shape are interrelated as follows (Sevostianov et al. (2008)):

HE0 = −r0 · NE0 · r0, NE0 = −λ0 ·HE0 · λ0 (3.2)

where r0, λ0 are resistivity and conductivity tensor of host matrix respectively.
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3.2. Computational resistivity contribution tensor of

heterogeneous materials with concave pores and

transversely isotropic matrix
In this section, we focus on the effect of non-ellipsoidal concave pore on thermal conduction properties of porous

media with an infinite transversely isotropic matrix. This effect is described by the resistivity contribution tensors that

will be computed via the Finite Elements (FE) based numerical homogenization. The FE computations will be carried

out with some adapted and bounded boundary conditions that are formulated as the gradient of the Green function for

the three dimensional Poisson’s equation in infinite anisotropic medium. It allows to incorporate the matrix anisotropy

and the correction of the bias induced by the bounded character of the mesh domain. The boundary conditions are

constructed and applied in such a way that they accelerate the convergence of numerical computations, and therefore

preserve the accuracy of estimations. This is proved after several appropriate assessment and validation by comparing

its predictions, in some particular cases, with analytical results and some available numerical ones. Finally, the effect

of the pore concavity as well as that of the matrix anisotropy on the resistivity contribution tensor are quantitatively

illustrated.

This section is organized as follows. In Section 3.2.1, the classical concerned problem with an infinite transversely

isotropic matrix is reformulated for an inhomogeneity embedded in a finite one by introducing the Green tensor based

correction of boundary conditions. It is then applied in Section 3.2.2 to the reformulation of the contribution tensors.

Next, in section 3.2.3, a numerical framework based on the adapted boundary conditions is proposed by adopting

the numerical homogenization method, which is also assessed and validated by comparing its predictions with some

analytical and available numerical results to systematically justify its efficiency and accuracy with respect to the pore

concavity and the material anisotropy. The whole procedure leads to some numerical estimations, as presented in

Section 3.2.5, in the cases of the superspheroidal and superspherical voids planted in the transversely isotropic matrix.

Particular attention should be payed to the significant combined effect of the material anisotropy and the shape of pore

especially when it is concave. We finally present some concluding remarks in Section 3.2.6.

3.2.1. Green function based correction of boundary conditions
We consider an infinite domain Ω comprising an inhomogeneity E of arbitrary shape surrounded by a matrix. The

matrix is thermally conductive obeying the Fourier law:

σ = −λ · ε (3.3)
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where σ, λ and ε respectively denote the heat flux vector, the thermal conductivity tensor and thermal gradient with

T being the temperature field. Assuming that the infinite domain Ω is submitted to remote Hashin-type boundary

condition:

T (x) ∼
∥x∥→∞

E · x (3.4)

with T (x) being the temperature field at the position x and E denoting the remote homogeneous thermal gradient, the

above mentioned problem is described as:

(P)unbounded



div (σ(x)) = 0 (x ∈ Ω)

σ(x) = −λ · ε(x) (x ∈ Ω)

ε = gradT (x ∈ Ω)

T (x) = E.x (x ∈ ∂Ω)

(3.5)

Borrowing ideas from Adessina et al. (2017, 2020) (see also Du et al. (2020) or section 2.3), the temperature solution

of Eq.(3.5) can be calculated as:

T (x) = E · x +
∫

x′∈E
gradG0(x − x′) · p(x′) dΩx′ (3.6)

with the polarization vector (Ammari and Kang (2007)):

p(x) = −
[
λ(x) − λ0

]
· ε(x) (3.7)

which is non-zero only in the inhomogeneity E, and the Green function G0 for the three dimensional Poisson equation

of the infinite medium with thermal conductivity λ0. The expression of G0 as well as its gradient gradG0 are briefly

recalled in A.8. Note that the first term in the r.h.s. of Eq.(3.6) represents the remote temperature field and the second

one corresponds to the disturbance caused by the inhomogeneity.

We perform an approximation by assuming that:

G0(x − x′) ∼
∥x∥→∞

G0(x) ∀x′ ∈ E (3.8)

Eq.(3.6) can then be rewritten as:

T (x) = E · x+ | E | gradG0(x) · P (3.9)
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in which P is the average polarisation vector inside the inhomogeneity, reading as:

P =
〈

p
〉E
=

1
| E |

∫
x′∈E

p(x′) dΩx′ =
1
| E |

∫
x′∈E
−λ(x′) · ε(x′) dΩx′︸                                  ︷︷                                  ︸
⟨σ⟩

E

+λ0 ·

[
1
| E |

∫
x′∈E

ε(x′) dΩx′

]
︸                          ︷︷                          ︸

⟨ε⟩
E

(3.10)

with ⟨σ⟩E and ⟨ε⟩E being the averages heat flux and thermal gradient vector of the inhomogeneity, respectively.

In this context, it is crucial to remark that a careful attention should be paid on the approximation given by Eq.(3.8)

which is theoretically true when || x ||≫|| x′ ||. In fact, by developing the Taylor expansion of the remote temperature

at x, the higher order of the asymptotic behavior (i.e. E · x) may lack of accuracy. Nevertheless, in the perspective of

the FE computations, it is convenient to define an appropriate finite mesh scale that we will show in the next sections

this approximation delivers very accurate results and thus is used here as well.

Based on Eq.(3.9), the approach of the corrected boundary conditions consist in reformulating the Eshelby like

problem Eq.(3.5) into the one on a finite domainD, which can be expediently written as:

(P)bounded



div (σ(x)) = 0 (D)

σ(x) = −λ(x) · ε(x) (D)

ε = gradT (D)

T (x) = E · x + |E| gradG0(x) · P (∂D)

(3.11)

At this point, it is emphasized that the following developments do not require any limitation on the material symmetry

of the matrix nor on the shape or content of the inhomogeneity. See for instance section 2.3 in the context of linear

anisotropic elasticity.

Due to the linearity of Eq.(3.11), it can be considered as the superposition of two elementary linear thermal

problems with different boundary conditions: one is composed by the remote Hashin-type boundary condition T (x) =

E · x, denoted as the (P)E
bounded problem:

(P)E
bounded



div (σ(x)) = 0 (D)

σ(x) = −λ(x) · ε(x) (D)

ε = gradT (D)

T (x) = E · x (∂D)

(3.12)
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and according to the polarization field, another one depends on the gradient of the Green function gradG0, named as

the (P)P
bounded problem

(P)P
bounded



div (σ(x)) = 0 (D)

σ(x) = −λ(x) · ε(x) (D)

ε = gradT (D)

T (x) = |E| gradG0(x) · P (∂D)

(3.13)

A direct consequence from the resolution of Eqs.(3.12) and (3.13) is that

⟨ε⟩E = AE · E, ⟨σ⟩E = −BE · E (3.14)

⟨ε⟩P = Ap · P, ⟨σ⟩P = −Bp · P (3.15)

where ⟨ε⟩E , ⟨ε⟩P, ⟨σ⟩E and ⟨σ⟩P respectively denote the average thermal gradient and heat flux vectors over the

inhomogeneity, and AE ,AP,BE and BP are the second order concentration tensors.

By taking into account the linearity of Eqs.(3.11) - (3.13) and combining Eqs.(3.14) and (3.15), one has:


⟨ε⟩E = AE · E + Ap · P

⟨σ⟩E = −BE · E − Bp · P

(3.16)

Next, Substituting expression (3.16) in (3.10) renders:

P = D · E (3.17)

where

D = (i + Bp − λ0 · Ap)−1 :
(
λ0 · AE − BE) (3.18)

with i being the second order identity tensor. At this stage, it is a simple matter to combine Eqs.(3.16) - (3.18) to
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finally establish the main result of this section:


⟨ε⟩E = AE0 · E, AE0 = AE + Ap · D

⟨σ⟩E = −BE0 · E, BE0 = BE + Bp · D

(3.19)

where AE0 and BE0 denote respectively the average thermal gradient and heat flux concentration tensors of the bounded

problem Eq.(3.11).

3.2.2. Conductivity and resistivity contribution tensors
Still in the context of linear conduction law, the extra thermal gradient (denoted by ∆ε) and heat flux vector

(denoted by ∆σ) induced by the presence of inhomogeneity can be calculated in the dilute scheme as:

∆ε = − f HE0 · Σ, ∆σ = − f NE0 · E with f =
| E |

| Ω |
(3.20)

where f denotes the volume fraction of the inhomogeneity and, HE0 and NE0 are both symmetric second rank tensors

called the resistivity and conductivity contribution tensors, respectively 1. Moreover, the consistency laws ensuring

that Σ and E are also the average heat flux and thermal gradient vectors within a Representative Volume Element

(RVE):

Σ = (1 − f )⟨σ⟩matrix + f ⟨σ⟩E (3.21)

E = (1 − f )⟨ε⟩matrix + f ⟨ε⟩E (3.22)

As matrix being homogeneous, by applying the Fourier Law, the average heat flux of the matrix can be written as:

⟨σ⟩matrix = −λ0 · ⟨ε⟩
matrix =

1
1 − f

(
−λ0 · E + fλ0 · ⟨ε⟩

E
)

(3.23)

Combining Eqs.(3.21) and (3.23), one has:

Σ = (1 − f )⟨σ⟩matrix + f ⟨σ⟩E = −λ0 · E + fλ0 · ⟨ε⟩
E + f ⟨σ⟩E (3.24)

and then

Σ = −λ0 · E + f
(
⟨σ⟩E + λ0 · ⟨ε⟩

E
)︸                      ︷︷                      ︸

∆σ

(3.25)

1The property contribution tensors then turn into conductivity N and resistivity H contribution tensors in contrast with the elasticity, the reader
is referred for instance to Du et al. (2020) or or section 2.3
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By taking into account the polarisation vector P inside the inhomogeneity E given in relation Eq.(3.10), consistency

equation rewrites:

Σ = −λ0 · E + f P︸︷︷︸
∆σ

(3.26)

Comparison with relation Eq.(3.20) and Eq.(3.17) allows to obtain a new expression of the conductivity contribution

tensor NE0 which is approximated here by D uniquely:

NE0 = −D = −(i + Bp − λ0 · Ap)−1
·
(
λ0 · AE − BE) (3.27)

The contribution tensors HE0 and NE0 of a given inhomogeneity of any shape are interrelated as follows (Sevostianov

et al. (2008)):

HE0 = −r0 · NE0 · r0, NE0 = −λ0 ·HE0 · λ0 (3.28)

3.2.2.1. Case of homogeneous inhomogeneity
In the case of a homogeneous material with thermal conductivity tensor λ(x) = λE in the inhomogeneity x ∈ E,

by applying the Fourier Law on average heat flux and thermal gradient ⟨σ⟩E = −λE · ⟨ε⟩E, the partial concentration

tensors have the following relations:

BE = λE · AE , BP = λE · AP (3.29)

It follows that Eq.(3.27) becomes:

NE0 = −D =
[
(λE − λ0)−1 + AP]−1

· AE (3.30)

By using relations (3.20-3.25), one has:

∆σ = f
(
⟨σ⟩E + λ0 · ⟨ε⟩

E
)
= − f NE0 · E (3.31)

and consequently

⟨σ⟩E + λ0 · ⟨ε⟩
E = −NE0 · E (3.32)

and then combining with the Fourier law, the average thermal gradient is derived in the form:

⟨ε⟩E = (λE − λ0)−1
· NE0 · E (3.33)
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Finally, we get the following connection between the concentration and contribution tensors by comparing to relation

(3.19):

AE0 = (λE − λ0)−1
· NE0 , BE0 = λE · A

E
0 (3.34)

So that the concentration and contribution tensors can be calculated from each other.

Note that the particular consideration of the perfectly insulating inhomogeneity λE → 0 leads to the fact that the

heat flux concentration tensors BE and BP both vanish. In practical applications, pore inhomogeneities fully saturated

by dry air can be approximated, in a first approach, by the limiting case of the perfectly insulating inhomogeneity, due

to the low thermal conductivity of dry air compared to most of solids constituting geomaterials. Consequently, the

conductivity contribution tensor NE0 (see Eq.(3.30) and the resistivity contribution tensor HE0 can be simplified as:

NE0 =
(
−r0 + AP)−1

· AE , HE0 = r0 ·
(

r0 − AP)−1
· AE · r0 (3.35)

And average thermal gradient concentration tensor AE0 may be deduced from relation Eq.(3.34)

AE0 = −r0 · NE0 = r0 ·
(

r0 − AP)−1
· AE (3.36)

In the case of an infinity conductivity inhomogeneity λE → ∞, the thermal gradient concentration tensors AE and AP

both vanish. Eq.(3.27) becomes:

NE0 = −D = (i + Bp)−1
· BE (3.37)

and the dual resistivity contribution tensor becomes:

HE0 = −r0 · (i + Bp)−1
· BE · r0 (3.38)

and the thermal gradient concentration tensor AE0 vanishes.

3.2.2.2. Case of ellipsoidal inhomogeneity
For a general isolated ellipsoidal inclusion, the conductivity NE0 and resistivity HE0 contribution tensors have

explicit forms in terms of Hill polarization tensors:

NE0 =
[
PE0 + (λE − λ0)−1]−1

, HE0 =
[
QE0 + (rE − r0)−1]−1

(3.39)
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where QE0 and PE0 are Hill polarization tensors. Their analytical expressions are available for inclusion in spheroidal

shape (ellipsoid of revolution) embedded in a transversely isotropic matrix (see A.9).

The thermal gradient concentration tensor AE0 is then derived:

AE0 =
[
i + PE0 · (λE − λ0)

]−1
(3.40)

And analytical contribution tensors can be obtained by Eq.(3.34) which will be further compared to the numerical

results to validate the methodology.

3.2.3. Numerical framework of the resistivity contribution tensor

estimate
In this section, the focus is on the numerical procedure for the computation of the resistivity contribution

tensors HE0 . In order to simplify the notation, we drop the subscript 0 and the superscript E with the understanding

that Hi j represents the components of HE0 . Moreover, for the sake of keeping this work focused and concise, we

especially consider here the inhomogeneity in the case of individual and perfectly insulating pore (denoted also by E)

implemented in the center of a cubically bounded RVED with a transversely isotropic matrix2 DM = D\E. Different

shapes of the pore, in particular the non-ellipsoidal concave ones, will be considered whose 3D geometries, as shown

in Fig.3.1, are realized by adopting a user-defined Matlab script. Note that directions of the symmetry between the

matrix anisotropy and that of the pore are both aligned on the axis e3.

(a) (b) (c) (d)

Figure 3.1: Geometries of different representative models: (a) superspherical pore p = 0.4; (b) superspheroidal pore p = 0.4; (c) spherical pore
p = 1.0; (d) aligned penny shaped crack with thickness 0.002mm.

Moreover, the RVE is meshed by use of the software Netgen (Schöberl, 1997) with quadratic 3D thermal elements

(DC3D10) that are compatible with the Finite Elements computations via Abaqus/Standard software (Smith, 2009).

An example in the case of superspherical pore with p = 0.4 is shown in Fig.3.2.

2It is important to emphasize that the proposed approach can be applied to any form of the bounded media and any type of matrix anisotropy.
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Figure 3.2: Mesh of the superspherical pore with the concavity p = 0.4 in the center of cuboid matrix

As discussed in Section 3.2.2, such a (P)bounded problem (e.g. Eq.(3.11)) can be decoupled into (P)E
bounded and

(P)P
bounded (e.g. Eqs.(3.12) and (3.13)). Hence, the simulation procedure will be simultaneously carried out in two

groups and due to the transversely anisotropy, each of them requires two computations. More specifically,

• for (P)E
bounded problem, temperature loading T E with boundary thermal gradient respectively along e1 and e3:

T E = Ei xi, E = E0 e1 or E = E0 e3 (3.41)

• for (P)p
bounded problem, temperature loading T P with boundary polarization vector respectively along e1 and e3:

T P = |E|
∂G
∂xi

Pi, P = P0 e1 or P = P0 e3 (3.42)

As the considered media being defined in a finite domain (i.e. porous media), the numerical average method is

adopted for the estimation of the resistivity contribution tensor HE0 . Following Eq.(3.35), the resistivity concentration

tensors AE and AP will be firstly computed. The consistency laws ensure that the subjected macroscopic thermal

gradients are also the average ones, one has:

⟨ε⟩ED = E = (1 − f ) ⟨ε⟩EDM
+ f ⟨ε⟩EE

⟨ε⟩PD = (1 − f ) ⟨ε⟩PDM
+ f ⟨ε⟩PE

(3.43)

where ⟨ε⟩ED and ⟨ε⟩PD denote the subjected macroscopic thermal gradient respectively for the (P)E
bounded and (P)P

bounded
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problems, ⟨ε⟩EE , ⟨ε⟩PE, ⟨ε⟩EDM
and ⟨ε⟩PDM

are the corresponding average thermal gradient in the porous phase and those

in the matrix one.

Note that in Eq.(3.43), the macroscopic thermal gradient ⟨ε⟩ED of the (P)E
bounded problem is known as predefined,

while ⟨ε⟩PD of the (P)P
bounded problem should be calculated. Following the Gauss theorem, the latter one can be obtained

as an integral over the external boundary ∂D :

⟨εi⟩
P
D =

1
| D |

M∑
m=1

(
T Pni

)(m)
S (m) (3.44)

whereM is the total number of the surface elements, T P denotes the nodal temperature of integration points, S (m) is

the area of the m-th one and ni defines the unit normal of the outer surfaces.

Since the pore is insulated, the heat flux in the porous phase vanishes (i.e. ⟨σ⟩EE = ⟨σ⟩
P
E = 0), it follows that:

⟨σi⟩DM
= ⟨σi⟩D =

1
| DM |

N∑
n=1

(σi)(n) Vn (3.45)

with N being the total number of the volume elements and V (n) giving the volume of the n-th one.

Following Fourier’s Laws, ⟨εi⟩
E
DM

and ⟨εi⟩
P
DM

can then be calculated through:

⟨εi⟩DM
= −ri j · ⟨σi⟩DM

Having in hand the above computed quantities, the average thermal gradient fields in the porous phase are

expressed as:

⟨ε⟩EE =
E − (1 − f ) ⟨ε⟩EDM

f

⟨ε⟩PE =
⟨ε⟩PD − (1 − f ) ⟨ε⟩PDM

f

(3.46)

The concentration and contribution tensors can then be computed by Eqs.(3.19) and (3.35). Due to the transversely

isotropy, both of them have 3 non-zero components which are A11 = A22, A33, H11 = H22, H33 in the present study.

3.2.4. Assessment and validation of the proposed numerical

procedure
In this section, the proposed numerical procedure will be assessed and validated by comparing its predictions of the

resistivity contribution tensor HE0 with some analytical and numerical results in literature. To this end, a preliminary

step aiming at defining an appropriate scale of the bounded RVE will be first carried out. It will be accomplished by

studying the accuracy and the efficiency of the proposed numerical procedure in the case of a spherical pore planted in
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an isotropic matrix. Next, we will systematically consider the superspherical pores embedded in an isotropic matrix

as well as the spheroidal ones surrounded by a transversely isotropic matrix to respectively justify its accuracy on the

concavity of the pores and that on the anisotropy of the matrix material.

3.2.4.1. Spherical pore in isotropic matrix
Let us consider a spherical pore of radius a embedded in the center of a cubic RVE with side length 2L. By

varying the so-called scale ratio a/L, the same mesh of each geometry with fixed a/L will be separately subjected to

the corrected boundary conditions and the uncorrected ones (i.e. classical Hashin type boundary conditions). Due to

the symmetry of the problem, only one independent component of resistivity contribution tensor H11 is numerically

computed that will be next compared to the corresponding analytical solution Eq.(A.81). The relative errors are

displayed in Fig.3.3. It can be observed that the computation convergence with the corrected boundary conditions

occurs and stabilizes even when a/L ≃ 3 with an excellent accuracy that the relative errors are around the value

of 10−4. Whereas it seems like that those obtained from the classical modeling just begin stabilize when the scale

ratio a/L is much bigger (e.g. a/L ≥ 10) and present important relative errors with respect to the former ones.

This can be interpreted as, on one hand the corrections of the boundary conditions allow to accelerate the numerical

convergence without degrading the computation accuracy, on the other hand when the scale ratio a/L is sufficiently

big, the representative bounded model tends to be an infinite one such that the correction of the boundary conditions

is hence less efficient or might be useless in the numerical modeling. By considering the computation results as

illustrated in Fig.3.3, we adopt in an ad-hoc manner the scale ratio a/L = 8 in the next part of this work. This is of

course an approximation but will be shown as sufficiently accurate in the following numerical estimations.
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Figure 3.3: Relative errors of H11 with respect to the analytical results for the spherical pore embedded in an isotropic matrix for different scale
ratios a/L ∈ [3, 10].
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3.2.4.2. Superspheroidal pore in isotropic matrix
Table.3.2 displays the numerical results of the resistivity contribution tensor for the superspheroidal pores

surrounded by an isotropic matrix as well as their comparisons with the numerical results obtained by Sevostianov

et al. (2016a). Different geometries and meshes are realized by varying the value of the concavity parameter

p ∈ [0.2, 1]. We pay our first attention to the particular case with p = 1 (i.e. spherical pore). It can be observed that,

by comparing with the computations of Sevostianov et al. (2016a), the FEM results obtained in this work present

much smaller relative errors with respect to the analytical ones (i.e. H11 = H33 = 1.5). Moreover, the relative error

of the FEM results with respect to those of Sevostianov et al. (2016a) is shown to be increased as we decrease the

concavity parameter p toward the limit value of 0. This difference becomes much significant and cannot be ignored

especially for the estimation of H11 in the case of the concave pores (i.e. p < 0.5). In addition to the corrected

boundary conditions that accelerate the computation convergence and preserve the accuracy of estimations, this

might also be due to the fact that, as shown in Fig.3.2, the meshes realized in this work are sufficiently refined in the

transition zone between the matrix and porous phases that allows to reduce the effect of the geometric singularity as

mush as possible3. In return, it reveals that the numerical estimations obtained in the present work from the proposed

numerical procedure and the refined meshes can be considered as accurate and precise in the case of isotropic matrix.

Table 3.2: Numerical estimations of Hi j for the superspheroidal pore embedded in isotropic host matrix with respect to Sevostianov et al. (2016a)

p HFEM
11 HFEM

33 H(2016)
11

1 H(2016)
33

1 R.E.(H11)2 R.E.(H33)2

0.2 1.4027 14.8636 2.0247 15.1972 44.345% 2.244%

0.25 1.3486 6.4986 1.7156 6.6319 27.212% 2.052%

0.3 1.3655 3.8970 1.6400 3.9392 20.102% 1.083%

0.35 1.3900 2.8087 1.5486 2.8234 11.412% 0.522%

0.4 1.4108 2.2794 1.5290 2.2896 8.377% 0.450%

0.5 1.4410 1.8303 1.5063 1.8322 4.528% 0.106%

0.7 1.4750 1.5828 1.5091 1.5880 2.310% 0.330%

1 1.4998 1.4998 1.5012 1.4963 0.095% 0.238%

p = 1theory 1.5 1.5 1.5 1.5

R.E.3 0.012% 0.012% 0.083% 0.250%

1 Numerical results obtained in Sevostianov et al. (2016a)
2 Relative error of FEM results with respect to those of Sevostianov et al. (2016a)
3 Relative error of FEM results with respect to the analytical one for p = 1.

Table 3.3 shows the numerical estimation of the resistivity contribution tensor for the superspherical pores

3For more details on the mesh information, readers are referred to A.3 and the Table B.2 of Sevostianov et al. (2016a).
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surrounded by an isotropic matrix as well as its comparison with respect to that obtained by Chen (2016). It is worthy

to mention that, unlike the superspheroid pores that present the axisymmetry, the superspherical ones are symmetric

in all of the three principal directions. Consequently, only H11 is displayed in Table 3.3 since its three principal

components are identical (i.e. H11 = H22 = H33) and, according to the boundary conditions, the deviatoric ones are

all null (i.e. Hi j = 0 if i , j). Once again, it can be observed that the FE computation realized in the present work is

much more rigorous especially when the pore is concave (i.e. p < 0.5).

Table 3.3: Numerical estimations of H11 for the superspherical pore embedded in isotropic host matrix with respect to Chen (2016)

p HFEM
11 HChen1

11 HR.E.2
11

0.2 3.9379 2.8465 27.715%

0.25 2.6193 2.1166 19.191%

0.3 2.0892 1.7603 15.743%

0.35 1.8385 1.6689 9.226%

0.4 1.7065 1.6421 3.776%

0.5 1.5856 1.5719 0.860%

1 1.4999 1.5111 0.749%

3 1.5531 1.5588 0.369%

1theory 1.5000 1.5000

R.E.3 0.008% 0.740%

1 Chen (2016)
2 Relative error of numerical H11 with

respect to Chen (2016)
3 Relative error of numerical H11 with

respect to analytical one for p = 1

In order to understand better the aforementioned conclusion, as the superspheroidal pore tends to be a penny crack

crossed by a perpendicular needle along the symmetry axis x3 when the concavity p → 0, we show in Table 3.4 the

comparison between the FEM computations in a limiting case with p = 0.2, the associated results of Sevostianov

et al. (2016a) and the analytical ones of an aligned penny crack embedded in the isotropic host matrix. The geometry

of the latter one is approximated by considering a very small thickness e such that e/L = 0.001 (see Fig:3.1d) and

the corresponding analytical solution can be calculated from Eq.(A.82) with the anisotropy parameter ν = 1. It is

convenient to note here that the obtained resistivity contribution tensor is normalized by the volume fraction Vcrack

V sphere

to avoid the volume effect.. According to the comparison, although a good agreement can be observed among all of

the three numerical results and the analytical one, the FE computation obtained from the proposed numerical model

presents a very small relative error than the one calculated by Sevostianov et al. (2016a).
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Table 3.4: Numerical estimations of Hi j for the crack embedded in isotropic host matrix with respect to the analytical results

Models Theory FE crack Fig: 3.1d FE superspheroid p = 0.2 Ref. superspheroid 1

H11 0 0.0015 0.0598 0.0863

H33 0.6366 0.6403 0.6336 0.6478

Relative Error H33 NA 0.582% 0.483% 1.751%

1 Normalised results of Superspheroidal case with p = 0.2 in Sevostianov et al. (2016a)

3.2.4.3. Spherical pore in transversely isotropic matrix
This section deals with the assessment and validation of the numerical procedure by paying particular attention to

the matrix anisotropy. The thermal problem is of lower order. This allows us to involve an additional parameter: matrix

anisotropy of conductivity κ. In this light, we switch off the effect of the concavity parameter p by considering that

the pore is in a spherical form and the matrix is transversely isotropic. Note once again that the proposed numerical

procedure can also be applied to any type of anisotropy, which probably requires supplementary simulations and is

not further pursued here. Table 3.5 shows the FE computation by varying the anisotropy parameter of the matrix

κ = λ1
0/λ

3
0 in the interval κ ∈ [0.1, 10] as well as its comparison with repsect to the analytical results (see for instance

Section 3.2.2.2 and A.9). A very good agreement can be found and the relative errors are shown to be minor. it

justifies that the accuracy of the proposed numerical method is unaffected by the matrix anisotropy.

Table 3.5: Numerical estimations of Hi j for the spherical pore embedded in transversely isotropic host matrix (κ ∈ [0.1, 10]) with respect to the
analytical results.

κ HFEM
11 HFEM

33 Htheory
11 Htheory

33 HR.E.1
11 HR.E.

33

0.1 12.1317 2.8453 12.1322 2.8450 0.004% 0.013%

0.2 6.4179 2.2625 6.4184 2.2626 0.007% 0.005%

0.5 2.7985 1.7518 2.7988 1.7519 0.008% 0.008%

0.8 1.8333 1.5710 1.8335 1.5712 0.008% 0.008%

1 1.4999 1.4999 1.5000 1.5000 0.008% 0.008%

2 0.8022 1.3269 0.8023 1.3271 0.008% 0.008%

5 0.3467 1.1813 0.3468 1.1813 0.008% 0.008%

8 0.2238 1.1321 0.2239 1.1322 0.008% 0.008%

10 0.1815 1.1133 0.1815 1.1134 0.008% 0.008%

1 Relative error of numerical H11 with respect to analytical one
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3.2.5. Numerical estimation in the case of concave pore embedded

in transversely isotropic matrix
In this section, we propose to carry out the study of the resistivity contribution tensor HE0 in the case of transversely

isotropic matrix comprising concave/convex pore to understand in more detail their combined effect. This will be

carried out by separately varying the anisotropy parameter of the matrix, denoted by κ, and the concavity one p of

the concave/convex pores (i.e. superspheroidal and superspherical pores) that will both be defined in relatively large

intervals such as κ ∈ [0.1, 10] and p ∈ [0.2, 5]. Again, we restrict the study, particularly in the superspheroidal cases

which verify the symmetry of revolution, to the assumption that the directions of the symmetry between the matrix

anisotropy and that of the pore are aligned on the same direction e3 (see for instance Figs.3.1a and 3.1b).

In return, for the FE computations, two non-zero and independent components of HE0 (i.e. H11 and H33) will be

computed. This is achieved by the proposed numerical procedure that was described in Section 3.2.3 by fixing the

scale ratio of the RVE a/L = 8 and only subjected to the corrected boundary conditions (with remark “with correction”

in numerical results). For the sake of prediction accuracy, the numerical computation will be carried out based on the

sufficiently refined meshes, for which the numbers of nodes and elements are detailed in A.3.

Specifically, Section 3.2.5.1 investigates firstly the predictions in the case of superspherical pores. As expected,

the combined effect of the matrix anisotropy and that of the pore concavity is quantitatively obtained. This effect on

the response of the resistivity contribution tensor is also clearly illustrated in the p − κ − Hi j spaces. In the remaining

Section 3.2.5.2, similar study is realized for the superspheroidal pore embedded in the transversely isotropic matrix.

3.2.5.1. Superspherical pore in transversely isotropic matrix
Tables 3.6 and 3.7 respectively summarize the numerical estimations of H11 and H33 for the superspherical pores.

First of all, it can be found that, by fixing the concavity parameter p, their predictions decrease with the increase

of the anisotropy parameter κ. A second very interesting result, observed in any case of a fixed value κ, is that the

influence of the concavity parameter p is not monotone. More specifically, the predictions of H11 and those of H33

both increase with the decrease of the concavity when p is small, in which this dependence becomes more obvious

especially when the pore is concave (i.e. p < 0.5). While this effect becomes opposite when the pore is severely

convex (i.e. p → 5). Similar observations were done in the numerical study of Chen (2016), albeit for an isotropic

matrix. The turning points of monotonicity are marked with yellow box in the tables and not all of them fall on the

spherical shape (i.e.p = 1), which indicate a certain correlation with the anisotropy degree of matrix κ. Moreover,

we present in Tables 3.6 and 3.7 the comparison between the numerical estimations of spherical pores p = 1 with the

corresponding theoretical results. An excellent agreement can be found with the relative error being around 10−5 that

could indirectly justify the accuracy of the proposed numerical model for convex shapes.
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Table 3.6: Numerical estimation of H11 for the superspherical pore embedded in transversely isotropic corrected model with different concavity
parameters p ∈ [0.2, 5] and anisotropic degrees of matrix κ ∈ [0.1, 10]

H11 κ

p 0.1 0.2 0.5 0.8 1 2 5 8 10

0.2 22.9617 13.5471 6.7398 4.6880 3.9382 2.2709 1.0697 0.7186 0.5932

0.25 16.3178 9.3695 4.5467 3.1314 2.6193 1.4907 0.6896 0.4586 0.3767

0.3 13.9588 7.8041 3.6846 2.5097 2.0892 1.1727 0.5332 0.3514 0.2875

0.35 13.0014 7.1289 3.2891 2.2181 1.8385 1.0192 0.4564 0.2987 0.2435

0.4 12.5620 6.8031 3.0872 2.0660 1.7066 0.9369 0.4148 0.2700 0.2196

0.45 12.3382 6.6320 2.9761 1.9807 1.6320 0.8897 0.3908 0.2535 0.2059

0.5 12.2135 6.5328 2.9086 1.9278 1.5856 0.8600 0.3758 0.2432 0.1974

0.6 12.1030 6.4402 2.8420 1.8749 1.5388 0.8301 0.3610 0.2333 0.1892

0.7 12.0720 6.4059 2.8122 1.8499 1.5163 0.8152 0.3536 0.2284 0.1852

0.8 12.0769 6.3984 2.7999 1.8383 1.5055 0.8076 0.3498 0.2259 0.1831

0.9 12.0997 6.4046 2.7967 1.8339 1.5010 0.8038 0.3478 0.2245 0.1820

1 12.1317 6.4179 2.7985 1.8333 1.4999 0.8022 0.3467 0.2238 0.1815

1.5 12.3122 6.5087 2.8297 1.8496 1.5115 0.8057 0.3472 0.2240 0.1816

2 12.4641 6.5907 2.8633 1.8702 1.5276 0.8131 0.3498 0.2255 0.1828

2.5 12.5826 6.6559 2.8912 1.8877 1.5416 0.8199 0.3523 0.2271 0.1841

3 12.6751 6.7071 2.9136 1.9020 1.5531 0.8256 0.3545 0.2284 0.1851

4 12.8083 6.7815 2.9465 1.9232 1.5702 0.8342 0.3579 0.2305 0.1868

5 12.8961 6.8316 2.9690 1.9378 1.5820 0.8402 0.3603 0.2320 0.1879

1theory 12.1322 6.4184 2.7988 1.8335 1.5000 0.8023 0.3468 0.2239 0.1815

R.E.1 0.004% 0.007% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008%

1 Relative error of numerical H11 with respect to analytical one for p = 1
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Table 3.7: Numerical estimation of H33 for the superspherical pore embedded in transversely isotropic corrected model with different concavity
parameters p ∈ [0.2, 5] and anisotropic degrees of matrix κ ∈ [0.1, 10]

H33 κ

p 0.1 0.2 0.5 0.8 1 2 5 8 10

0.2 11.5639 8.2715 5.3713 4.3437 3.9396 2.9602 2.1411 1.8668 1.7623

0.25 7.3694 5.3032 3.4967 2.8651 2.6193 2.0332 1.5619 1.4109 1.3545

0.3 5.5813 4.0483 2.7219 2.2652 2.0893 1.6765 1.3552 1.2551 1.2182

0.35 4.6424 3.4034 2.3392 1.9770 1.8386 1.5170 1.2699 1.1933 1.1650

0.4 4.0904 3.0316 2.1281 1.8229 1.7066 1.4368 1.2290 1.1639 1.1398

0.45 3.7383 2.8009 2.0038 1.7347 1.6321 1.3930 1.2069 1.1480 1.1261

0.5 3.4728 2.6374 1.9223 1.6789 1.5855 1.3664 1.1937 1.1386 1.1181

0.6 3.2161 2.4739 1.8399 1.6227 1.5388 1.3403 1.1811 1.1297 1.1104

0.7 3.0550 2.3784 1.7962 1.5946 1.5163 1.3292 1.1768 1.1270 1.1083

0.8 2.9553 2.3215 1.7723 1.5805 1.5055 1.3253 1.1766 1.1274 1.1087

0.9 2.8900 2.2857 1.7590 1.5737 1.5010 1.3251 1.1784 1.1293 1.1107

1 2.8453 2.2625 1.7518 1.5710 1.4999 1.3269 1.1813 1.1321 1.1133

1.5 2.7528 2.2223 1.7498 1.5793 1.5115 1.3442 1.1989 1.1483 1.1287

2 2.7321 2.2212 1.7619 1.5945 1.5276 1.3612 1.2143 1.1623 1.1418

2.5 2.7304 2.2283 1.7746 1.6083 1.5416 1.3750 1.2264 1.1733 1.1522

3 2.7342 2.2368 1.7857 1.6198 1.5531 1.3859 1.2360 1.1819 1.1604

4 2.7459 2.2523 1.8031 1.6371 1.5702 1.4019 1.2497 1.1943 1.1723

5 2.7548 2.2640 1.8154 1.6492 1.5820 1.4127 1.2590 1.2027 1.1801

1theory 2.8450 2.2626 1.7519 1.5712 1.5000 1.3271 1.1813 1.1322 1.1134

R.E.1 0.013% 0.005% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008%

1 Relative error of numerical H33 with respect to analytical one for p = 1

For completeness, Figs.3.4 and 3.5 illustrate clearly the combined effect of the matrix anisotropy κ and the

concavity parameter p. Each of their influences is also projected in the planes κ − Hi j and p − Hi j, respectively. As

discussed before, these effects are found to be much significant when the pore is concave with an important anisotropy

of the matrix4. Specifically, in Fig.3.4, we observe that the prediction of H11 presents a more important evolution and a

slower subsequent saturation in the plane κ−H11 than that in the plane p−H11, which quantitatively and qualitatively

4It is worthy to emphasize that the so-called important anisotropy is defined in the present work with a small value of κ and in the direction of
e3, which is aligned with the symmetry of the concave pore
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reveals that the effect of the matrix anisotropy κ seems to be more important than that of the pore concavity p on

the component H11. However, unlike the previous observation, Fig.3.5 illustrates that the matrix anisotropy plays an

important role in the estimation of the component H33, which is, as expected, logical due to the collinearity between

the geometrical symmetry and the one of the matrix anisotropy.

Figure 3.4: Numerical estimation of H11 for the superspherical pore embedded in transversely isotropic corrected model with different concavity
parameters p ∈ [0.2, 5] and anisotropic degrees of matrix κ ∈ [0.1, 10]
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Figure 3.5: Numerical estimation of H33 for the superspherical pore embedded in transversely isotropic corrected model with different concavity
parameters p ∈ [0.2, 5] and anisotropic degrees of matrix κ ∈ [0.1, 10]

3.2.5.2. Superspheroidal pore in transversely isotropic matrix
In this section, we investigate the combined effect of the concavity of the superspheroidal pore and the matrix

anisotropy on the resistivity contribution tensor HE0 , whose non-zero and independent components H11 and H33 are

computed and summarized in Tables 3.8 and 3.9, respectively. Similar to the previous superspherical case discussed

in Section 3.2.5.1, the estimations of both H11 and H33 components decrease with the increase of the anisotropy

parameter κ, and present a non-monotone evolution due to the effect of the concavity parameter p. The turning points

are also marked with yellow box in the tables and indicate a certain correlation with the anisotropy degree of matrix κ.

Even this non-monotonicity is slight, it is worthy to note here that, unlike the superspherical pores discussed before,

it occurs when the pore is “extremely concave” (e.g. p ≃ 0.25) for the component H11 and when the pore is “severely

convex” for H33 (e.g. p ≥ 1). A possible interpretation is that, unlike the superspherical cases, the superspheroidal

pores present a symmetry of revolution that is colinear with the direction of the matrix anisotropy, which induces an

augmentation of the macroscopic anisotropic response of the RVE in the direction of e3.
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Table 3.8: Numerical estimation of H11 for the superspheroidal pore embedded in transversely isotropic corrected model with different concavity
parameters p ∈ [0.2, 5] and anisotropic degrees of matrix κ ∈ [0.1, 10]

H11 κ

p 0.1 0.2 0.5 0.8 1 2 5 8 10

0.2 12.3240 6.3573 2.6783 1.7264 1.4027 0.7377 0.3163 0.2048 0.1665

0.25 11.4445 5.9539 2.5443 1.6534 1.3486 0.7174 0.3112 0.2022 0.1646

0.3 11.3603 5.9383 2.5587 1.6705 1.3655 0.7308 0.3184 0.2069 0.1684

0.35 11.4181 5.9869 2.5934 1.6982 1.3900 0.7463 0.3257 0.2115 0.1720

0.4 11.4928 6.0393 2.6253 1.7222 1.4108 0.7590 0.3313 0.2150 0.1747

0.45 11.5676 6.0882 2.6526 1.7420 1.4276 0.7687 0.3354 0.2175 0.1767

0.5 11.6357 6.1325 2.6758 1.7581 1.4410 0.7761 0.3384 0.2193 0.1781

0.6 11.7629 6.2106 2.7132 1.7827 1.4610 0.7862 0.3423 0.2216 0.1798

0.7 11.8747 6.2762 2.7420 1.8005 1.4750 0.7926 0.3444 0.2228 0.1807

0.8 11.9718 6.3311 2.7647 1.8140 1.4854 0.7968 0.3456 0.2234 0.1812

0.9 12.0565 6.3777 2.7832 1.8247 1.4934 0.7999 0.3463 0.2237 0.1814

1 12.1309 6.4176 2.7984 1.8333 1.4998 0.8022 0.3467 0.2238 0.1815

1.5 12.3902 6.5533 2.8482 1.8605 1.5197 0.8086 0.3473 0.2237 0.1812

2 12.5480 6.6335 2.8767 1.8758 1.5308 0.8121 0.3475 0.2235 0.1810

2.5 12.6529 6.6863 2.8953 1.8859 1.5382 0.8144 0.3477 0.2234 0.1808

3 12.7291 6.7246 2.9090 1.8934 1.5437 0.8162 0.3479 0.2234 0.1807

4 12.8302 6.7753 2.9272 1.9035 1.5511 0.8188 0.3483 0.2234 0.1807

5 12.8947 6.8078 2.9390 1.9101 1.5560 0.8206 0.3486 0.2235 0.1807

1theory 12.1322 6.4184 2.7988 1.8335 1.5000 0.8023 0.3468 0.2239 0.1815

R.E.1 0.011% 0.012% 0.012% 0.012% 0.012% 0.012% 0.013% 0.014% 0.014%

1 Relative error of numerical H11 with respect to analytical one for p = 1
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Table 3.9: Numerical estimation of H33 for the superspheroidal pore embedded in transversely isotropic corrected model with different parameters
p ∈ [0.2, 5] and anisotropic degrees of matrix κ ∈ [0.1, 10]

H33 κ

p 0.1 0.2 0.5 0.8 1 2 5 8 10

0.2 46.6772 33.0741 20.9710 16.6040 14.8636 10.5488 6.7387 5.3793 4.8420

0.25 20.0777 14.2620 9.0958 7.2373 6.4986 4.6769 3.0961 2.5473 2.3345

0.3 11.6980 8.3431 5.3758 4.3159 3.8970 2.8752 2.0155 1.7295 1.6214

0.35 8.0643 5.7939 3.7938 3.0862 2.8087 2.1410 1.5982 1.4244 1.3598

0.4 6.1965 4.4925 3.0029 2.4820 2.2794 1.7979 1.4158 1.2955 1.2510

0.45 5.1157 3.7483 2.5636 2.1535 1.9949 1.6207 1.3258 1.2326 1.1980

0.5 4.4280 3.2872 2.3012 1.9614 1.8303 1.5207 1.2753 1.1970 1.1677

0.6 3.6805 2.7923 2.0280 1.7644 1.6623 1.4199 1.2245 1.1611 1.1373

0.7 3.2956 2.5447 1.8958 1.6704 1.5827 1.3728 1.2011 1.1448 1.1235

0.8 3.0741 2.4047 1.8229 1.6194 1.5398 1.3481 1.1895 1.1369 1.1169

0.9 2.9359 2.3185 1.7793 1.5894 1.5148 1.3345 1.1838 1.1333 1.1141

1 2.8450 2.2623 1.7517 1.5710 1.4998 1.3269 1.1812 1.1321 1.1133

1.5 2.6565 2.1541 1.7061 1.5446 1.4805 1.3224 1.1854 1.1379 1.1194

2 2.6107 2.1336 1.7047 1.5487 1.4864 1.3317 1.1958 1.1478 1.1290

2.5 2.5980 2.1326 1.7115 1.5574 1.4957 1.3418 1.2052 1.1565 1.1373

3 2.5978 2.1373 1.7197 1.5664 1.5048 1.3509 1.2133 1.1639 1.1443

4 2.6048 2.1495 1.7343 1.5812 1.5196 1.3648 1.2255 1.1749 1.1548

5 2.6141 2.1604 1.7457 1.5923 1.5304 1.3748 1.2340 1.1827 1.1622

1theory 2.8450 2.2626 1.7519 1.5712 1.5000 1.3271 1.1813 1.1322 1.1134

R.E.1 0.001% 0.011% 0.012% 0.012% 0.012% 0.012% 0.012% 0.012% 0.013%

1 Relative error of numerical H33 with respect to analytical one for p = 1

Figs. 3.6 and 3.7 show the evolution of the Hi j components on the concavity parameter p and the one of the matrix

anisotropy κ, As same as the superspherical cases, it can also be finally concluded that both of them significantly affect

the resistivity contribution tensor HE0 .
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Figure 3.6: Numerical estimation of H11 for the superspheroidal pore embedded in transversely isotropic corrected model with different concavity
parameters p ∈ [0.2, 5] and anisotropic degrees of matrix κ ∈ [0.1, 10]

Figure 3.7: Numerical estimation of H33 for the superspheroidal pore embedded in transversely isotropic corrected model with different concavity
parameters p ∈ [0.2, 5] and anisotropic degrees of matrix κ ∈ [0.1, 10]
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3.2.6. Concluding remarks
In the present work, we have numerically evaluated the resistivity contribution tensor of the concave pore

inhomogeneity embedded in a transversely isotropic matrix. This has been realized by use of an original developed

nu- merical homogenization method complying with the adapted boundary conditions based method recently

formulated by Adessina et al. (2017) (see also Du et al. (2020)). The proposed numerical procedure was carried out

for a bounded representative elementary volume and is shown to be efficient and accurate in the numerical modeling.

By paying particular attentions to the pore concavity and the matrix anisotropy, a major contribution of this work is

found as the sufficiently exact computation results and analysis that illustrate their significant effect on the thermal

conductivity properties. Specifically, the adapted boundary conditions based method was extended in the context

of the matrix anisotropy thanks to the Green function and its gradients applied in the correction of the boundary

conditions. The numerical homogenization method has been utilized in the proposed numerical procedure that

has been firstly assessed and validated by comparing its predictions with the analytical and existing analytical and

numerical results in particular cases. It is then used to the investigate the effect of the pore concavity on different

transversely isotropic matrix from the quantitative estimates of the resistivity contribution tensor, which was found to

be of critical importance especially in the case of concave pores.

Finally, the proposed numerical method is able to deal with any general anisotropy of the matrix material but such

a study has not been attempted here for the sake of keeping the work focused and concise. In the perspective point of

view, it is clear from the previous simulations that the effective properties such as those predicted from semi-analytical

homogenization models could be further developed.
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3.3. Effective thermal properties of a composite

containing transversely isotropic matrix and

irregular shapes of pores
The effective thermal properties of an anisotropic solid containing randomly or aligned oriented pores depend

on the conductivity of the minerals, on porosity as well as pore shape. In the text to follow, the previous numerical

results in section 3.2, where resistivity contribution tensors of concave pores in a transversely-isotropic material are

obtained, are firstly approximated to analytical expressions. Hereafter, the effect of the concavity parameters and the

anisotropic degree of matrix on the overall thermal properties of a porous material with transversely-isotropic solid

phase are discussed. For this goal, various micromechanical schemes: Non-interaction approximation, Mori-Tanaka-

Benveniste and Maxwell schemes are carried out to predict the effective thermal properties, using the approximated

formulas of resistivity contribution tensors.

3.3.1. Resistivity contribution tensor of a concave pore
The prediction of the macroscopic mechanical response of porous materials is established based on semi-analytical

approximations via mean-field homogenization schemes. One of the approaches to characterize contribution of

microstructure (irregularly shaped pores, anisotropic matrix and son on) to the effective thermal properties of

heterogeous materials is based on the evaluation of their conductivity and resistivity contribution tensors. The

property contribution tensors of linear thermal problem are recalled in 3.1. Resistivity contribution tensor H of an

individual pore of superspherical and axisymmetric superspheroidal shapes embedded in a transversely-isotropic

material was computed numerically via finite element method (FEM) in a companion paper. For linear thermal

problem, the resistivity contribution tensors HE0 have two independent thermal coefficients: HE11 and HE33 for porous

materials containing transeversly isotropic matrix. We present in next section a method that obtain the explicit

approximate expressions of the two contribution coefficients by considering a variable concavity parameter and

anisotropic degree of matrix.

The two reference shapes are mathematically described as:

• superspheroidal pore

|x1|
2p + |x2|

2p + |
x3

ς
|
2p
= a2p (3.47)
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• axisymmetrical superspheroidal pore

(
x2

1 + x2
2

)p
+ |

x3

ς
|
2p
= a2p (3.48)

p, ς and a respectively denote non dimensional concavity parameter, aspect ratio and semi-lengths in plane 0x1x2.

Theses shapes are convex in the range p > 0.5 and concave for p < 0.5. Both shapes degenerate into a spheroid when

p = 1. In what follows we will only consider ς = 1 and a = 1, the first shape is then a supersphere of unit semi lengths

on xi axis, and the second shape obtained by a rotation about symmetry axis x3. Supersphere and axisymmetrical

superspheroid coincide with sphere in the case p = 1 but strongly differ in the limiting case p→ 0.

3.3.2. Approximation formula for resistivity contribution tensor of

a superspherical or axisymmetrical superspheroidal pore

embedded in a transversely isotropic host matrix
In this investigation, thermal analytical approximation formulas for the resistivity contribution tensor of porous

materials, containing 3D pores of particular shapes and transversely isotropic matrix are presented. Two type of

microstructures are considered: supersphere and axisymmetrical superspheroid. We restrict the study to the following

assumptions:

• same directions of symmetry between matrix and pore inclusion (aligned case)

• study is focused on the concavity parameter p and anisotropic degree of the host matrix κ =
λ0

1
λ0

3
with λ0

3 =

1W · K−1 · m−1

Using these expressions would considerably simplify the process of calculating the property contribution tensor to

obtain the distributions of pore shape and the host matrix.

3.3.2.1. Volume and surface area of superspherical and axisymmetrical

superspheroidal pores
Approximation formula may be obtained by using basic geometric information related to the considered reference

shapes, supersphere and axisymmetrical superspheroid, defined in relations (3.47-3.48), with aspect ratio ς = 1 and

a = 1. These informations are volume, total surface area and corresponding volumes write (Γ denotes Euler Gamma
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function, see Chen et al. (2015); Sevostianov et al. (2016a); Trofimov et al. (2018); Du et al. (2021) for details)

Vse(p) =
2
3

(
Γ
[

1
2p

])3

p2 Γ
[

3
2p

] , Vso(p) =
4 π
3

Γ
(

1+2p
2p

)
Γ
(

1
p

)
Γ
(

3
2p

) (3.49)

where superscripts se and so respectively refer to supersphere and superspheroid, p denotes the concavity parameter.

Except for some particular values of concavity parameter (p = 1
4 ,

1
2 , 1), the total surface area needs to be calculated

by numerical integration. As in Trofimov et al. (2018); Du et al. (2021), the surface area Aso(p) of the axisymmetrical

superspheroid is given by the single integral accounting symmetry of revolution:

Aso(p) =
∫ 1

0

(
1 − x2p) 1

2p

(
1 + x−2(1+2p)(1 − x2p) 1−2p

p

) 1
2

dx (3.50)

The projection area S proj(p) of both 3D shapes onto planes xix3 (i = 1, 2, x3 denotes symmetry axis of the

axisymmetrical superspheroid) writes (Beta denotes Euler Beta function):

S proj(p) =
2
p

Beta
(

1 +
1

2p
,

1
2p

)
(3.51)

3.3.2.2. Approximation formula for superspherical pore
In this section, we consider a possibility to involve the geometric parameters presented in section 3.3.2.1 to yield

the analytical formula of the resistivity contribution tensor H for superspherical inhomogeneities of different shapes

and matrix of different contrast degree in thermal conductivities. We restrict this study to the range 0.2 ≤ p ≤ 1.0 and

0.1 ≤ κ ≤ 10. After analysing different approximate results interrelated the geometric parameters, we conclude the

most accurate representations for superspherical case, which is summarized as follows:

Hse
ii (κ, p) =

S se
proj(p)/(Vse(p))2/3

S sphere
proj /

(
Vsphere

)2/3 f se
ii (κ, p) Hsphere

ii , no sum over i, i ∈ [1, 3] (3.52)

where sphere denotes spherical case (particular case when p = 1). The non-dimensional factors are based on those

proposed by Trofimov et al. (2018). The analytical representation of limiting case of sphere (p = 1) are used for

components H11 and H33 (with x3 symmetry axis of TI matrix ). The analytical solution for the aligned spheroidal

pore which includes the particular case of the sphere, is deduced from the exact Hill tensor recalled in appendix

A.9. Functions f se
ii (κ, p) are given in Eq.(3.53) by fitting the numerical results obtained in section 3.2.5.1. They

are piecewise functions in polynomial forms related to both variables κ and p considering both concave and convex
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domains.

f se
ii (κ, p) = L00 + L10 κ + L01 p + L20 κ

2 + L11 κp + L02 p2

+L30 κ
3 + L21 κ

2 p + L12 κp2 + L03 p3

+L40 κ
4 + L31 κ

3 p + L22 κ
2 p2 + L13 κp3 + L04 p4

(3.53)

The polynomial coefficients Lmn(m, n ∈ [0, 4]) of f se
11 and f se

33 up to degree 4 are presented in Table.3.10 with different

piecewise ranges of κ and p.

Table 3.10: Coefficients of piecewise functions f se
11 and f se

33 of superspherical pore

coef f se
11 f se

33

κ ∈ [0.1, 1.0] [1.0, 10] [0.1, 1.0] [1.0, 10] [0.1, 1.0] [1.0, 10] [0.1, 1.0] [1.0, 10]

p ∈ [0.2, 0.5] [0.2, 0.5] [0.5, 1.0] [0.5, 1.0] [0.2, 0.5] [0.2, 0.5] [0.5, 1.0] [0.5, 1.0]

L00 1.07427 1.45602 0.24384 0.37308 2.39465 1.85791 0.65934 0.16292

L10 1.35187 0.12840 0.08821 0.00591 -1.96658 -0.30303 -0.75780 -0.03036

L01 -8.46522 -9.53368 1.22295 0.99061 -12.17791 -11.15540 0.81355 1.87068

L20 -1.34853 -0.01234 -0.01261 -0.00018 1.93006 0.04303 0.33645 0.00144

L11 -4.07483 -0.40572 -0.07860 -0.00414 3.96823 0.85177 1.05374 0.04605

L02 36.03311 36.13293 -0.46815 -0.36658 39.31755 39.88421 -0.73064 -1.51874

L30 0.50130 0.00049 0 0 -0.81052 -0.00325 0 0

L21 3.48496 0.02659 0 0 -2.54793 -0.06165 -0.34665 -0.00151

L12 3.10502 0.43796 0 0 -3.40873 -0.95001 -0.28565 -0.01501

L03 -57.47065 -55.48038 0 0 -57.16757 -61.00594 0.25638 0.48429

L40 0 0 0 0 0 0 0 0

L31 -1.01925 -0.00083 0 0 1.04211 0.00189 0 0

L22 -1.66488 -0.01069 0 0 0.01614 0.02762 0 0

L13 -0.13651 -0.17788 0 0 2.37955 0.38600 0 0

L04 33.03312 31.62765 0 0 31.21625 35.19119 0 0

Comparisons between approximate relation Eq.(3.52) and finite element results are presented in figure 3.8.
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Figure 3.8: The two independent components Hse
11 and Hse

33 of a superspherical pore embedded in TI matrix, as a function of concavity parameter p
and anisotropic degree of host matrix κ. Comparison between FEM results (star points) and approximate relations (plain surface).

Maximal relative errors of approximate results compared to FEM results of superspherical pore are given in

Table.3.11. The small errors less than 0.96% are negligible. Satisfactory agreement between proposed approximate

formula and numerical results are observed for different superspherical shapes and thermal conductivities.
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Hse
11 Hse

33 Hso
11 Hso

33

0.951% 0.871% 0.500% 1.489%

Table 3.11: Maximal relative errors of approximate results compared to FEM results, ∥(HApprox
ii − HFEM

ii )/HFEM
ii ∥

3.3.2.3. Approximation formula for axisymmetrical supersheroidal pore
Similar approximation formula Eq.(3.54) is proposed for components H11 (H22 = H11) and H33 of axisymmetrical

superspheroidal pore but with another set of geometric parameters.

Hso
ii (κ, p) =

Aso(p)/(Vso(p))2/3

Asphere/
(
Vsphere

)2/3 f so
ii (κ, p) Hsphere

ii , no sum over i, i ∈ [1, 3] (3.54)

where sphere corresponds to the spherical case (particular case when p = 1).

Functions f so
ii (κ, p) are the same formula as Eq.(3.53). The polynomial coefficients of f so

11 and f so
33 are presented

in Table.3.12 with different piecewise ranges of κ and p. Comparisons between the results of approximate relation

Eq.(3.54) and FE results (in Table.3.8 & 3.9) are presented in Fig.3.9. The corresponding maximal relative errors of

approximate results compared to FEM results for axisymmetrical superspheroidal pore are given in Table.3.11 which

are lower than 1.5%.

So far, based on the FE results obtained in section 3.2 and analytical solution for sphere (when p = 1), we built the

approximate analytical formulas to predict thermal contribution from all possible superspherical and axisymmetrical

superspheroidal pores embedded in all possible transversely isotropic matrix in the parameters frame, with high

accuracy.

93



Chapter 3 3.3

Table 3.12: Coefficients of piecewise functions f so
11 and f so

33 of axisymmetrical superspheroidal pore

coef f so
11 f so

33

κ ∈ [0.1, 1.0] [1.0, 10] [0.1, 1.0] [1.0, 10] [0.1, 1.0] [1.0, 10] [0.1, 1.0] [1.0, 10]

p ∈ [0.2, 0.5] [0.2, 0.5] [0.5, 1.0] [0.5, 1.0] [0.2, 0.5] [0.2, 0.5] [0.5, 1.0] [0.5, 1.0]

L00 0.26483 0.31506 -0.25095 -0.33687 19.08281 11.76301 4.33631 1.29115

L10 -0.00238 -0.01251 -0.05148 0.00924 -12.97547 -1.45203 -4.57413 -0.31561

L01 -4.87821 -5.68135 3.96451 4.28190 -141.94940 -84.24440 -10.88093 0.41270

L20 0.01106 0.00069 0.02711 -0.00055 12.82125 0.17599 3.30432 0.02697

L11 -0.47228 0.06239 0.11204 -0.00771 49.14392 5.02357 10.33640 0.71128

L02 36.00467 39.01536 -4.30156 -4.67035 463.93148 268.14315 14.16878 -2.63909

L30 0 0 0 0 -8.36487 -0.01212 -1.08391 -0.00095

L21 0.11231 -0.00302 -0.02921 0.00054 -22.09062 -0.30483 -4.87185 -0.03998

L12 1.47851 -0.05392 -0.05868 -0.00141 -80.78645 -6.96489 -7.98576 -0.54316

L03 -70.65161 -74.94268 1.58820 1.72562 -704.18395 -394.21125 -8.68698 3.02476

L40 0 0 0 0 2.32501 0.00034 0 0

L31 0 0 0 0 5.51144 0.00850 1.14473 0.00102

L22 -0.21038 0.00223 0 0 12.74062 0.16059 1.47231 0.01196

L13 -1.15256 -0.00330 0 0 51.70313 3.68239 2.26321 0.15184

L04 45.74778 47.86995 0 0 407.85909 221.70354 2.05902 -1.09374
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Figure 3.9: The two independent components Hso
11 and HHso

33 of a superspheroidal pore embedded in TI matrix, as a function of concavity parameter
p and anisotropic degree of host matrix κ. Comparison between FEM results (star points) and approximate relations (plain surface).
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3.3.3. Evaluation of the effective thermal properties of materials

with transversely isotropic matrix
The approximate expressions for the pore property contribution tensors H derived in the section 3.3.2 have

been used as input in the different homogenization schemes such as Non Interaction Approximation, Mori-Tanaka-

Benveniste and Maxwell schemes (respectively referred with superscripts NIA, MTB and MX), see Mori and Tanaka

(1973); Benveniste (1987); Kachanov and Sevostianov (2018)), to obtain approximate analytical solution for the

effective thermal properties. The equations (3.55) yielded by the approximate expressions (3.52) & (3.54) hold for a

wide range of concavity parameter p ∈ [0.2, 1], anisotropic degree of matrix κ ∈ [0.1, 10]) and porosity φ.

rNIA = r0 + φHE0 , rMTB = r0 +
φ

1 − φ
HE0 , rMX = r0 +

[
1
φ

[
HE0
]−1
− QΩ0

]−1

(3.55)

where φ denotes the porosity. QΩ0 denotes the Hill tensor of the effective inclusion of the Maxwell scheme, which is

supposed of spheroidal shape (with aspect ratio γe) and aligned with the directions of the TI host matrix. QΩ0 is related

to the Hill tensor PΩ0 (see A.9) by the relation:

QΩ0 = r0 ·
(

I − PΩ0 · r0
)

(3.56)

where r0 is conductivity tensor of matrix.

In this section, the sensitivity analysis of effective thermal conductivity with respect to the shape of pore p and

contrast in matrix properties κ is discussed. The porosity of clay matrix φ (denoted f I
p in Giraud et al. (2008)) is

approximately comprised in the range φ ≤ 0.30 for the sensitivity analysis.

3.3.3.1. Effective thermal conductivity of superspherical pores with MTB scheme
This section attempts to quantitatively investigate the performance of the solutions obtained from MTB

approximation in the estimation of effective thermal properties. Effective thermal coefficients λMTB
1 and λMTB

3

obtained with MTB approximation of a random orientation distribution of superspherical pores in the transverse plane

embedded in transversely isotropic matrix are presented in figures 3.10. Approximation formula Eq.3.52 deduced

from FEM are compared to approximation of resistivity contribution tensor of an aligned oblate spheroidal pore

of same volume (the semi axis length of supersphere is equal to the maximum axis radius of the oblate spheroid)

Eq.(3.57):

Hi j(p) ≈ Hspheroid
i j (γ(p)), 0.2 ≤ p ≤ 1 (3.57)

96



Chapter 3 3.3

with

γ(p) =
Vse(p)
Vsphere =

1
2 π

(
Γ
[

1
2p

])3

p2 Γ
[

3
2p

] (3.58)
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Figure 3.10: Effective conductivity λMTB
1 and λMTB

3 as a function of porosity φ, MTB approximation, superspherical pore, with constant anisotropic
degree of host matrix κ = 0.2 or concavity parameter p = 0.35. Comparison between approximation formula Eq.(3.52) (plain lines) and oblate
spheroid with same volume Eq.(3.57) (dashed lines).

It may be observed that:

• Comparisons of estimates based on concave and convex pores of same volume (respectively supersphere and

aligned oblate spheroid), in the range p ≤ 1.0, and based on different anisotropic degrees of host matrix κ,

see figure (3.10), show significant differences. These difference indicate that superspherical pores randomly

oriented in the transverse plane can not be simply considered in the framework of continuum mechanics as the

aligned oblate spheroidal pores.
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• Both the anisotropic degree of host matrix κ and concavity parameter p have significant importance when

estimating effective thermal coefficients. It’s not possible to separate effect of anisotropy from the effect of

concavity. Changes in variables κ and p have a greater impact on effective λMTB
3 than λMTB

1 which mean that the

effect in axial conductivity aligned with the symmetry axis of matrix is larger than the transversal ones.

• As porosity φ increases, effective conductivity gradually decreases. This is completely logical because the

thermal conductivity of insulating inhomogeneities tends to be zero. The increase in volume proportion of

inhomogeneities will increase its impact.

3.3.3.2. Effective thermal properties of aligned axisymmetric superspheroidal

pores with MTB scheme
Effective thermal coefficients λMTB

1 and λMTB
3 obtained with MTB approximation of aligned axisymmetric

superspheroidal pores are presented in Fig. 3.11. Approximation formula Eq.3.54 deduced from FEM are compared

to approximation of resistivity contribution tensor of an oblate spheroidal pore of same volume (the semi axis length

of superspheroid is equal to the maximum axis radius of the oblate spheroid) Eq.(3.57) and Eq.(3.59).

γ(p) =
Vso(p)
Vsphere =

Γ
(

1+2p
2p

)
Γ
(

1
p

)
Γ
(

3
2p

) (3.59)
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Figure 3.11: Effective conductivity λMTB
1 and λMTB

3 as a function of porosity φ, MTB approximation, superspheroidal pore, with constant anisotropic
degree of host matrix κ = 0.2 or concavity parameter p = 0.35. Comparison between approximation formula Eq.(3.54) (plain lines) and oblate
spheroid with same volume Eq.(3.57) and Eq.(3.59) (dashed lines).

It is interesting that the data of superspheroidal pores are close to the analytical estimations obtained by the

aligned oblate spheroidal ones (see figures 3.11). It’s possible to match effect of this kind of concave pores by oblate

spheroidal pores.

3.3.3.3. A random orientation distribution of superspherical pores in the

transverse plane compared with aligned axisymmetric superspheroidal

pores with NIA scheme
The comparative analysis of effective thermal conductivity for composites with aligned axisymmetrical

superspheroidal pores and randomly oriented superspherical pores in the transverse plane are presented in figure 3.12

in the framework of NIA assumption.
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Figure 3.12: Effective conductivity λNIA
1 and λNIA

3 as a function of porosity φ, NIA approximation, with constant anisotropic degree of host matrix
κ = 0.2 or concavity parameter p = 0.35. Comparison between superspherical pores (plain lines) and axisymmetric superspheroidal pores (dashed
lines).

It may be observed that

• the contribution of these two shapes to thermal effective properties are pronouncedly different in the different

concave range and contrast degree range of matrix. It is expected that the supersphere tends to three orthogonal

needles (with zero volume and zero surface) when p tends to zero, whereas the axisymmetrical superspheroid

tends to a circular crack with one central orthogonal needle (the latter has zero volume but non zero surface).

Note that, the most relevant shape compared to microstructure of porous materials is certainly supersphere.

• obtained effective porous material is transversely isotropic with same symmetry axis than matrix. The two

shapes bring the opposite effects in different directions of thermal coefficients. In the transverse plane (for λ1),

superspherical pore has more obvious affect than axisymmetrical superspheroidal pore, while inverse for the

conductivity along symmetry axis (λ3).
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3.3.3.4. Comparisons between NIA, MTB and Maxwell homogenization schemes
Effective thermal properties predicted by NIA, MTB and Maxwell are presented in Fig. 3.13 respectively for

superspherical pores randomly oriented in transverse plane and aligned axisymmetrical superspheroidal.
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Figure 3.13: Effective conductivity λse
i (supersphere) and λso

i (superspheroid) as a function of porosity φ, with different approximations, with
constant anisotropic degree of host matrix κ = 0.2 and concavity parameter p = 0.35.

Predictions of effective conductivity are close at low porosity φ and lay gradually away at higher porosity. The

Maxwell estimate with effective spheroid inclusion of aspect ratio γe = 0.5 follows the MTB results and drops

increasingly beneath the NIA at higher porosity. The shape of the effective inclusion of the Maxwell scheme is

still an open issue when host matrix is anisotropic (see Sevostianov (2014); Giraud et al. (2019); Sevostianov et al.

(2019)).
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3.3.4. Concluding remarks
The main novelty of present work is the prediction of effective thermal properties of heterogeneous materials

containing 3D irregular pore embedded in an anisotropic matrix by consideration of a wide range of concavity

parameter and matrix anisotropy. The thermal analytical approximation formulas for the resistivity contribution tensor

of the reference shapes, supersphere and axisymmetrical superspheroid are provided based on the FEM data, which

are then used as input in the different micromechanical schemes such as NIA, MTB and Maxwell schemes, to analyse

the effective thermal properties. The current approach takes into account both the anisotropy of microstructural shape

and the contrast conductivity of host matrix. The advantage of the proposed method is that it allows us to consider

composites with any number of concavity parameter, contrast degree and porosity in the range of 0.2 ≤ p ≤ 1.0,

0.1 ≤ κ ≤ 10 and ϕ ≤ 0.3 with the explicit expressions. On the basis of parametric analysis, one can conclude that

both the anisotropic degree of host matrix κ and concavity parameter p have significant importance when estimating

the effective thermal coefficients. The different shapes and anisotropic degrees of matrix have different impact on the

effective conductivity in transverse and perpendicular plane. The obtained effective porous material is transversely

isotropic with same symmetry axis than matrix.
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Chapter 4
Numerical homogenization applied to

periodic RVEs

This chapter deals with the numerical estimations of the overall elastic properties of the porous geomaterials by

adopting the Finite Element Method (FEM) based numerical homogenization directly applied to its microstructure,

which is represented by a periodic Representative Volume Element (RVE) being able to characterize all of its necessary

information. After an introduction in Section 4.1, the Random Sequential Adsorption (RSA) based approach is briefly

recalled in Section 4.2 for the numerical generation of the periodic RVEs with a finite number of randomly positioned

and oriented pores. It is then followed in Section 4.3 with some numerical results as well as their comparison to some

analytical ones available in the literature and the semi-analytical predictions obtained from the previously proposed

micromechanical modeling (see section 2.4). Section 4.4 presents some novel numerical results of composites

containing random arrangement of spherical or spheroidal pores embedded in transversely isotropic medium. We

finally present some concluding remarks in Section 4.5.
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4.1. Introduction
In the past decades, the mechanics of composite porous solids was developed to predict the effective properties

both in theoretical and computational approaches. In the context of theoretical modelling, some pioneering

contributions (Hashin and Shtrikman (1962a, 1963); Hill (1963)) was realized, by adopting variational approach, for

the prediction of the bounds for the effective elastic moduli of multi-phases materials with an isotropic matrix. Due

to some mathematical difficulties, the method of pure analytical homogenization is limited especially for anisotropic

medium and complex 3D microstructures. Then these problems generally require computational approaches.

Simplified “model composites” were studied by adopting appropriate numerical engineering methods, for which

the microstructure is considered as periodic described via a Representative Volume Element (RVE). For instance,

Michel et al. (1999) considered two different families of numerical methods to deal with the composites with periodic

microstructure respectively based on the Finite Element Method and that of Fast Fourier Transforms. They gave their

comparison results for spherical impenetrable particles placed randomly in a cubic unit cell with volume fraction

up to 26.78%. Segurado and Llorca (2002) then developed a modified random sequential adsorption algorithm

(originally proposed by Widom (1966)) to generate 3D cubic unit cells containing non-overlapping identical spheres,

embedded in a continuous and isotropic elastic matrix, in which different materials with specific microstructures

were studied, such as those containing rigid spherical inclusions and voids in an elastic matrix as well as typical

composite made up of glass spheres in an epoxy resin. Kachanov et al. (2003) studied the contribution tensors of an

inhomogeneity embedded in an isotropic solid that are of direct relevance to the effective elastic properties without

the consideration of the Eshelby theory. In the context of Effective Media Theory (EMT), this contribution tensor

approach was extended to the case of non ellipsoidal inhomogeneities for the estimation of the effective elastic

properties and thermal conductivity. Bohm et al. (2004) developed three-dimensional unit cell models that contain

randomly positioned spherical inclusions and/or fibers for investigating the thermomechanical behavior of ductile

matrix composites. Eroshkin and Tsukrov (2005) proposed a methodology to analytically or numerically predict

the effective moduli of the two-phases composites by taking into account the compliance contribution tensor H of

single inclusion problem. David and Zimmerman (2011) derived the explicit expressions of the elastic compliance

of a spheroidal pore in an isotropic solid via Eshelby’s theory that lead some asymptotic expressions with respect

to the pore compressibility as well as the shear compliance (see Wu (1966)) of “crack-like” and “needle-like” pores

in a finite aspect ratio. Drach et al. (2016) compared two approaches to predict the effective elastic properties of

solids with regular and irregular shaped pores, by utilizing the numerical homogenization applied to periodic RVEs

containing multiple arrangements of pores and the Mori-Tanaka and Maxwell micromechanical models based on

the compliance contribution tensor (H-tensor). Contributions of convex polyhedral particles to the overall elastic

properties of composite materials are studied in Trofimov et al. (2017b) by adopting the theoretical and numerical

homogenization methods. Recently, Trofimov et al. (2018) analyzed the overall elastic properties for the composite

materials containing multiple superspherical and superspherical rigid inhomogeneities based on the H tensor. The
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obtained results were compared with the direct FEM simulations performed on periodic RVEs containing parallel

oriented pores as well as rigid particles.

However, all of the above-mentioned numerical results were obtained in the case of isotropic matrix. To the

author’s knowledge, pure analytical results are only available in some particular cases, such as those of ellipsoidal

inhomogeneities embedded in isotropic matrix, ellipsoidal inhomogeneities aligned in transversely isotropic matrix

with the same direction of symmetry, etc. This work aims to predict the effective elastic properties with different

shapes of pores randomly embedded in an anisotropic solid by adopting the numerical homogenization method (i.e.

full field simulations). The obtained results are devoted to the assessment of the semi-analytical models obtained in

the previous chapters (see Chapter 2).

4.2. Microstructure description and algorithm of

direct FEA simulations
The microstructures studied in this work are numerically obtained based on the random sequential addition (RSA)

algorithm as described in Torquato et al. (2006); Anoukou et al. (2018). As shown in Fig.4.1, the general idea of RSA

algorithm is that, during the process of the microstructure generation, the current candidate pore will be accepted

if it does not overlap any previously defined pores. Otherwise, it will be rejected and a new candidate pore will be

randomly generated until attaining the desired porosity.

Figure 4.1: General iteration of microstructure generation based on RSA

Moreover, the 3D unit cell (UC) studied in this chapter is considered periodic with a finite number of randomly

positioned and oriented convex pores, specifically, the randomly oriented spherical and spheroidal pores1. The

microstructure is composed by a cubic RVE with side length L and consisted of Np phases with matrix phase r = 1.

The volumes of the phases are V (r) (r = 1, · · · ,Np), with
∑Np

r=1 V (r) = V , and with volume fraction φ = V (r)/V .

1It is worthy to mentioned here that due to the meshing difficulties in the case of concave pores, the superspherical and superspheroidal form
will not be concerned at present. This could be overcome by using parametric equations or the FFT based numerical homogenization but such a
study is not our pursue here.
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The aspect ratios of different families of ellipsoidal pores are γr
1 = cr/ar and γr

2 = cr/br (r = 2, · · · ,Np). In our

work, we consider pores of mono-disperse but same shape which means the parameters are equal to the reference one:

γ
re f
1 = γ(r)

1 andγre f
2 = γ(r)

2 (r = 2, · · · ,Np). Hence, the lengths of the semi-axes of the reference pore are obtained by

the following equations:

are f =
cre f

γ
re f
1

, bre f =
cre f

γ
re f
2

, cre f =

(
3Vφγre f

1 γ
re f
2

4πNre f

)1/3

(4.1)

Table.4.1 gives some examples of the lengths of the semi-axes of the reference pores for different shapes:

case γr
1 γr

2 Nre f φ cre f /L are f /L bre f /L

sphere 1 1 100 0.25 0.0842 0.0842 0.0842

spheroid 2 2 100 0.25 0.1337 0.0668 0.0668

Table 4.1: Elastic parameters for the transversely isotropic matrix

Following Michel et al. (1999), periodic boundary conditions are employed in the analysis. The displacement field

u in such a unit cell (i.e. RVE) can be expressed by Eq.4.2

u(x) = E · x + u∗(x), u∗periodic (4.2)

where x denote the microscopic position of a point in the unit cell. E gives the overall strain field which would be the

actual applied homogeneous strain and u∗ is the periodic displacement field which accounts for the fluctuation due to

the presence of heterogeneities. All components of periodic u∗ takes the identical values at the point on the boundary

of the unit cell. Since the local strain field ε(u(x)) derives from u(x), it can be split as shown in Eq.4.3.

ε(u(x)) = E + ε∗(u∗(x)) (4.3)

Note that the periodicity of u∗ decides the naught of the average of ε∗ on the unit cell and therefore the average strain

field is equal to the overall applied strain field:

⟨ε∗⟩ = ⟨∇su∗⟩ = 0, ⟨ε⟩ = E (4.4)

with ⟨.⟩ representing the average of a field in a domain Ω of volume V , such that:

⟨ε⟩ =
1
| V |

∫
x∈Ω
ε(x) dV (4.5)

Moreover, the Finite Element Method is adopted to resolve the microscopic stress and strain fields that will be used in
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the numerical homogenization process. Note here that the microstructure (RVE) will be subjected to uniaxial tensile

and shearing loadings for respectively studying the corresponding macroscopic elastic responses of the concerned

porous geomaterials. Ten-nodes quadratic tetrahedral elements (i.e. C3D10 in ABAQUS notation) are used in this

thesis for the meshing of the RVE that are realized via NETGEN (Schöberl (1997)) as shown in Fig.4.2.

Figure 4.2: RVE meshed with 3D elements in NETGEN, number of spherical pores = 50, porosity = 0.2

The RVE is subjected to periodic boundary conditions (PBC) which requires that the mesh of periodic surfaces

should be congruent. The displacements of the paired nodes in the opposite facet should satisfy the following relation

(4.6):

uk
(

xi + L j
)
− uk (xi) = Ek jL j (4.6)

where L is the length of the cubic RVE, k = (1, 2, 3) denotes the degree of freedom and Ek j represents the applied

displacement. These PBCs could be automatically generated by NETGEN with several necessary declaration in the

corresponding input file of the RVE geometry that are compatible with the parameter setting of the ABAQUS/Standard

software (see Wu et al. (2014); Omairey et al. (2019)). As shown in Table.4.2, six sets of kinematically admissible

fields (i.e. the displacement and strain fields) are applied to the RVE for the computations in the cases of uniaxial

tension and three shear loads along different directions. Note that the prescribed macroscopic strains are set to be

enough small (e.g. 1.0e−5) that the volumes could be considered constant.

Once the numerical computations are performed, the result files are processed by using a user-defined Matlab
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Table 4.2: Prescribed overall strain field corresponding to the six load cases

Components of prescribed strain
load case

1 2 3 4 5 6

E11 1.0e−5 0 0 0 0 0

E22 0 1.0e−5 0 0 0 0

E33 0 0 1.0e−5 0 0 0

E12 0 0 0 1.0e−5 0 0

E13 0 0 0 0 1.0e−5 0

E23 0 0 0 0 0 1.0e−5

script to calculate effective elastic properties through Eq.(4.7):

Ce f f
i jkl =

〈
σi j
〉

m(
ε0

kl

)
m

(4.7)

where
〈
σi j
〉

m are the macroscopic stress field (i.e. average volume stress field) and
(
ε0

kl

)
m denotes the macroscopic

strains in the mth load case (i.e. applied strain components). Effective engineering constants can then be obtained

from the effective compliance tensor.

4.3. Assessment of the numerical algorithm
Note here that matrix Poisson’s ratio ν0 = 0.3 was assumed in all isotropic cases unless otherwise specified.

4.3.1. Convergence in terms of realizations
The convergence analysis in terms of the number of realizations is conducted for materials containing isotropic

matrix and randomly distributed spherical pores with porosity φ = 0.25 and aspect ratio a = b, c/a = 1.0, at fixed

number of pores (n = 100) and discretization, as shown in 4.3.
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Figure 4.3: Effective elastic constants for five different realizations of monodisperse microstructures with 100 spherical pores (γ = 1) and isotropic
matrix, porosity φ = 0.25

Then the convergence analysis in terms of the number of realizations is conducted for materials containing

isotropic matrix and randomly distributed spheroidal pores with porosity φ = 0.25 and aspect ratio a = b, c/a = 2.0,

at fixed number of pores (n = 100) and discretization, as illustated in 4.4.
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Figure 4.4: Effective elastic constants for five different realizations of monodisperse microstructures with 100 spheroidal pores (γ = 2) and isotropic
matrix, porosity φ = 0.25

It can be observed that the normalized effective modulus do not significantly change for different realizations. All

following reported results have been averaged over five realizations.

4.3.2. Isotropic matrix with randomly spherical pores
In the context of the assessment of the proposed numerical homogenization procedure, the accuracy of some

homogenization models is then studied for the composites made of an isotropic matrix embedded by isotropic

spherical pores. The convergence of the RVE is studied as similar as that described in Section 4.2 with respect

to the number of spherical pores of the microstructure (i.e. RVE), which is defined as the number of pores from

which its increase does not clearly affects the macroscopic elastic character. Normalized effective Young’s modulus

(E1, E2, E3), Poisson’s ratio (ν12, ν13, ν23) and shear moduli (G12,G13,G23) of materials containing different number

of spherical pores (n = [1, 5, 10, 20, 50, 100, 200, 300]) are estimated via direct FEA simulations in the case of the
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porosity being equal to φ = 0.25. As shown in Fig.4.5, the results were compared to the predictions of single pore

solutions by referring MTB and Maxwell homogenization schemes for which H-tensors analytically computed in

Section 2 (see also Du et al. (2020, 2021)) are taken into account. Note that some classical schemes, such as the

Hashin Shtrikman Bounds (HSB) (Hashin and Shtrikman (1962b, 1963)), Ponte Castaneda and Willis (PCW) (Ponte

Castañeda and Willis (1995)) one, MTB and Maxwell ones make the same predictions in the considered porous

media with isotropic matrix and spherical pores (e.g. E1 ≃ E2 ≃ E3).
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Figure 4.5: Effective elastic properties of a material containing various number of spherical pores and isotropic matrix, porosity φ = 0.25

Fig.4.5 shows that the normalized effective moduli (effective Young’s Moduli, Poisson’s ratio and Shear Moduli)

converges when the number of pores exceeds 100. The composite material containing randomly spherical pores

remains quasi-isotropy when comparing the effective engineering constants in different principal axis, which is logical

because that a completely random distribution of spherical pores theoretically leads to an isotropic effective response.
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In practice, for each realization, Ce f f is not strictly isotropic due to the finite number of pores during the numerical

modeling. Consequently, the effective bulk and shear modulus for each realization are obtained by the isotropic

projection C̃ as follows:

C̃iso = 3K̃J + 2G̃K with K̃ =
1
3
C̃ :: J =

1
9

C̃ii j j and G̃ =
1
10

C̃ :: K =
1

10

(
C̃i ji j − 9K̃

)
(4.8)

Here, K̃ and G̃ are the isotropized effective bulk and shear moduli. The isotropic projectors are defined by

J =
1
3

i ⊗ i and K = I − J (4.9)

with J, K and I being the fourth-order hydrostatic, deviatoric projection tensors and identity tensor respectively.

In the light of convergence analysis, the number of pores 100 is chosen in the following calculations. Direct

FEA simulations with porosity φ = 0.05, 0.10, 0.15, 0.20, 0.25 are applied to the microstructures with spherical pores

in the case of monodispersion, as presented in Fig.4.6. The direct FEA results of effective bulk and shear modulus

are compared to those obtained from several analytical results (Eshelby (1957, 1959); Kachanov and Sevostianov

(2005)) based on the NIA, MTB and Maxwell homogenization schemes by adopting the analytical H-tensors in the

porosity range φ ∈ [0, 0.3] (see section 2.5), and also compared to those reported in Drach et al. (2016) which was

also computed via the direct FEA simulations.
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Figure 4.6: Effective bulk and shear modulus of a material containing spherical pores and isotropic matrix, with different porosity
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Fig.4.6 illustrates that the estimations obtained from the proposed numerical homogenization have an excellent

agreement with those obtained from the analytical micromechanical models (i.e. MTB and Maxwell ones) and the

numerical results computed by Drach et al. (2016). As expected, the interactions between the phases are significant

and the accuracy of NIA gradually decreases with the increase of the porosity. It can also be observed that the

effective bulk and shear moduli estimated from the proposed numerical model (i.e. numerical homogenization and the

generated microstructure) allow to qualitatively and quantitatively recover the analytical results of MTB and Maxwell

schemes, whereas the MTB and/or Maxwell model slightly overestimates the stiffness modulus.

4.3.3. Isotropic matrix with randomly spheroidal pores
We study in this section the convergence of the proposed numerical procedure in the case of porous media with an

isotropic matrix and randomly distributed spheroidal pores with the porosity φ = 0.25 and aspect ratio a = b, c/a =

2.0.
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Figure 4.7: Effective elastic properties of a material containing various number of spheroid pores and isotropic matrix, aspect ratio a = b, c/a = 2.0,
porosity φ = 0.25

Fig.4.7 clearly shows that the morphology of pores significantly affects the isotropy of material.It should be noted

here that in the present study, we can observe that the totally random dispersion of the pores still brings the some

transverse isotropy (higher stiffness in the normal direction E3 > E1 and quasi-same in the other two directions

E1 = E2) while an isotropic response should theoretically be homogenized. The analysis of deviation from isotropy

is presented in A.12. This implies that this isotropic overall response is very difficult to obtain by the adopted RSA

method even with a large number of pores due to the finite number of the pores (maximal value 300 in our study),

whereas the difference in different axes is not very important.

Unlike the spherical case, the macroscopic effective elastic properties depends on the dispersion of the spheroidal

pores. The orientation and the distribution of the pores should be therefore considered in the analytical and/or

semi-analytical homogenization procedure especially for the complex microstructures with some manner of pores
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dispersion. Hence, in the following part of this section, we will adopt the H tensor to estimate effective modulus of

materials containing randomly oriented spheroidal pores as a comparison. In the framework of the NIA, such a study

can be realized by referring the following relationships (Wu (1966)):

K
K0
= 1

1+φK̃ ,
G
G0
= 1

1+φG̃

K̃ = Tii j j

3 , G̃ = 3Ti ji j−Tii j j

15 ( summation over i, j = 1, 2, 3)

(4.10)

where T denotes the Wu’s strain concentration tensor (Wu (1966)). The relationship among T, H and the compliance

tensor of the matrix material S0 is written as H = T : S0 (Sevostianov and Kachanov (2007)). K̃ and G̃ are respectively

the pore compressibility and the pore shear compliance (two invariants related to the shape rather than the orientation).

Note here that the explicit expressions for the parameters K̃ and G̃ in the cases of spherical and randomly oriented

spheroidal pores are given in David and Zimmerman (2011).

Following the Mori–Tanaka scheme, one has:

K
K0
=

1
1 + φ

1−φ K̃
,

G
G0
=

1
1 + φ

1−φG̃
(4.11)

Note also that Sevostianov and Giraud (2013) re-writes Maxwell’s schemes with property contribution tensors

H and N. Sevostianov (2014) gives some advice on the choice of the aspect ratios of the effective inclusion. One

can conclude that in the limiting cases of totally randomly oriented inhomogeneities(resp. perfectly parallel identical

inhomogeneities), the effective inclusion in Maxwell can be taken as a sphere (resp.a representative inhomogeneity).

Hence,in the case of a microstructure (i.e. RVE) with randomly oriented spheroidal pores, the effective inclusion

could be considered spherical.

The number of pores 100 is chosen in following numerical computations according to the convergence analysis

as shown in Fig.4.7. Direct FEA simulation is applied to the microstructures with different porosities (e.g.

φ = 0.05, 0.10, 0.15, 0.20, 0.25) and monodispersed spheroidal pores (with aspect ratio defined as 2). As illustrated

in Fig.4.8, the estimations of the effective bulk and the shear modulus are compared to those obtained from the

micromechanical homogenization methods. The comparison is also made by taking into account the direct FEA

results reported in Drach et al. (2016).
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Figure 4.8: Effective bulk and shear modulus of a material containing spheroidal pores and isotropic matrix, with different porosity

An excellent agreement is observed between direct FEA simulations of periodic RVEs as well as those of Drach

et al. (2016). Maxwell and MTB schemes could not produce the same prediction in the cases of spheroidal pores. The

obtained FEA values are shown to be close to both estimation. Moreover, the results predicted by the NIA scheme

still present a relatively clear difference with respect to those of MTB and/or Maxwell models especially when the

porosity is important (e.g. φ > 0.1). Furthermore, the numerical algorithm and procedure are well validated.

4.4. Numerical estimation in the case of transversely

isotropic host matrix
Different realizations of RVEs characterized by the same isotropic host matrix have been generated in order to

assess the numerical algorithm in section 4.3. The matrix anisotropy, especially the transversely isotropic one, is

considered in this section to study the corresponding macroscopic response of the porous material. As shown in

Table.4.3, the transverse isotropy of the matrix is described by the following parameters:

Properties of material
E1(GPa) E3 (GPa) ν12 ν31 G13(GPa)

20.44 11.31 0.1027 0.1798 1.585

Table 4.3: Elastic parameters for the transversely isotropic matrix
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4.4.1. Transversely isotropic matrix with randomly spherical pores
Firstly, the convergence analysis of transversely isotropic matrix in terms of the number of pores is conducted for

the microstructures containing randomly distributed spherical pores with the porosity φ = 0.20. As shown in Figs 4.9,
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Figure 4.9: Effective elastic properties of a material containing various number of spherical pores and transversely isotropic matrix, porosity φ = 0.2

the anisotropy of matrix presents an important influence on the macroscopic effective response, which qualitatively

follows the same one of the matrix material (higher stiffness in the normal direction E3 than that of the E1 = E2 ones).

It also illustrates that, in the simulation point of view, a number of pores n ∈ [50, 100] is found to be sufficient for the

related microstructure representation. In order to avoid repeating mesh generation, we chose n = 100 in the following

part of this subsection.

Fig.4.10 shows the numerical estimation for the effective elastic properties of the concerned porous material as

dependence of the porosity, which are also compared with the semi-analytical results obtained from some available
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homogenization schemes as shown in section 2.5. It can be observed that the obtained numerical estimations present
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Figure 4.10: Effective elastic properties of a material containing spherical pores and transversely isotropic matrix, with different porosity

a good agreement with respect to the analytical/semi-analytical results specifically at relatively lower porosities. The

effective inclusion is chosen as spherical shape for Maxwell scheme due to the random distribution of spherical pores

in modeling, where its results mathematically coincide with those of MTB. Through comparative studies, it also shows

that MTB and Maxwell homogenization models stand better than NIA as being more accurate in the porosity range

of less than 0.25, but still lost some accuracy of Poisson ratio and shear moduli at higher volume fractions.

Fig.4.11 shows the distribution of Von Mises stress of one realization in the case of the porosity φ = 0.25 and

different prescribed macroscopic strains loads. It shows that the localization of the stress generally occurs in the

interaction area of the neighbor pores. The maximal Von Mises stress in the case of the the X/Y loads is higher than

that of the Z one, which is also consistent with the transversely isotropic characteristics of the matrix material.
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(a) E11 = 1.0e−5 (b) E12 = 1.0e−5

(c) E22 = 1.0e−5 (d) E13 = 1.0e−5

(e) E33 = 1.0e−5 (f) E23 = 1.0e−5

Figure 4.11: Von Mises Stress field corresponding to different loadcases of a material containing spherical pores and transversely isotropic matrix,
porosity φ = 0.25

4.4.2. Transversely isotropic matrix with randomly spheroidal pores
This section deals with the numerical estimation of the macroscopic effective response of the porous material with

a transversely isotropic matrix embedded by a finite number of randomly distributed and orientated spheroidal pores.
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The transversely isotropic elasticity of the matrix is described by the parameters of Table 4.3. The aspect ratio is taken

as γ = c/a = 2. Fig.4.12 shows the effective Young and shear modulii as well as the Poisson ratios as dependence

of the porosity as well as the comparison of their estimations with those in the case of spherical pores (i.e. γ = 1 in

section 4.4.1).
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Figure 4.12: Effective elastic properties of a material containing spheroidal pores γ = 2 and transversely isotropic matrix, with different porosity,
compared with spherical case

It can be first observed that the effective elastic moduli decrease with the increase of the porosity, except for the

Poisson ratio ν12. The comparisons also qualitatively reveals that the different morphology of the pores (i.e. only for

spherical form and/or spheroidal one considered here) may have no significant affect on the effective elastic properties

of porous materials in the case of the randomly distributed and oriented pores which theoretically leading to the

transversely isotropic response as the one of the matrix material. It is also interesting to note that following Fig.4.12,

this fact is more obvious at small porosities.
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(a) E11 = 1.0e−5 (b) E12 = 1.0e−5

(c) E22 = 1.0e−5 (d) E13 = 1.0e−5

(e) E33 = 1.0e−5 (f) E23 = 1.0e−5

Figure 4.13: Von Mises Stress field corresponding to different loadcases of a material containing spheroidal pores (γ = 2) and transversely isotropic
matrix, porosity φ = 0.25
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Fig.4.13 shows the corresponding distribution of Von Mises stress in the unit cell of one realization containing

randomly spheroidal pores and transversely isotropic matrix with porosity φ = 0.25 under different prescribed strain

fields. It can be also observed that the stress concentration generally occurs at the interface between matrix and pore

and the interaction area of the nearby pores. The stress field near the interface perpendicular to loading path is usually

higher than other domain. The maximum Von Mises stress under the load in the X/Y direction is higher than that in

the Z direction, which is also consistent with the characteristics of the material.

4.5. Conclusion
In this section, the effective elastic properties of the porous material were studied by adopting the numerical

homogenization method that was applied to a RVE containing a finite number of randomly distributed and oriented

pores. The RVE is represented by a cubic unit cell which is numerically generated by use of a Random Sequential

Adsorption (RSA) algorithm. The matrix was respectively considered as isotropic and transversely isotropic

embedded ether by spherical pores or the spheroidal ones. The numerical computation was compared to the analytical

predictions obtained by some available micromechanical models, such as Non Interaction Approximation (NIA),

Mori-Tanaka-Benveniste (MTB), Maxwell schemes as well as some available numerical results in the literature,

except for the one of transversely isotropic matrix with spheroidal pores. It was found that the pore morphology

and the matrix anisotropy significantly affect the effective properties of the porous material. The MTB and Maxwell

schemes does not introduce a significant influence on the corresponding estimations in the case of spherical pores

planted in either isotropic or transversely isotropic matrix, and the one of spheroidal pores in isotropic matrix. Finally,

this numerical procedure has not been applied to the complex microstructure with the finite number of concave pores

due to their so strongly geometrical concavity that leads to an irresolvable difficulty for the meshing of the RVE. Such

a study is now underway and would be realized and reported elsewhere.
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Conclusions and perspectives

This work was devoted to studying the effective elastic and thermal properties of porous composite geomaterial by

taking into account the anisotropy simultaneously introduced by its complex microstructure and the matrix material.

In order to keep the work focused and concise, porous media has been specifically studied by paying our particular

attention to the effect of the pore morphology and that of the transversely isotropic character of the matrix phase.

Superspherical and axisymmetric superspheroidal concave pores were taken to be two candidates representing the

microstructural complexity.

We first focused on the issue of the extra contribution by inhomogeneities to the effective elastic properties.

In order to achieve such a task, in Chapter 2, the concentration and contribution tensors have been numerically

estimated that are of direct relevance with the effective elastic properties of a transversely isotropic solid embedded

by a non-ellipsoidal inhomogeneity, as mentioned above, by considering the superspherical and superspheroidal

forms, respectively. These two concave shapes are in direct relation with the tomographic observation of the

concerned geomaterials microstructures. In contrast to the infinite media that is usually considered in the classical and

theoretical framework, the numerical computations were carried out by adopting the Finite Element Method based

homogenization in a so-called bounded domain thanks to the adapted boundary conditions based method, initially

proposed by (Adessina et al., 2017) in the case of isotropic matrix. By considering the corresponding Green functions

and their gradients, such kind of boundary conditions have been rigorously reformulated in this thesis via the Fourier

transform based integral method in particular by solving the singularity problem on the axis of the transverse isotropy.

This allows to accelerate the computation convergence without sacrificing its accuracy by incorporating the matrix

anisotropy and the correction of the bias induced by the bounded character of the mesh domain. By adopting this

method, the strain & stress concentration tensors and the compliance & stiffness contribution tensors have then

been computed using a much smaller matrix domain. The results have quantitatively illustrated the effect of pore

concavity and matrix anisotropy and showed that the concave shapes produce substantially larger influence than the

convex ones. Moreover, the resulting predictions can be found to converge for a relatively small matrix domain and
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the process has been shown to be less time consuming by holding a sufficiently accurate precision. This was also

proved after several appropriate assessments and validation by comparing its predictions, in some particular cases,

with analytical results and some available numerical ones. Subsequently, based on the obtained numerical results, the

contribution tensors were approximated in terms of the pore concavity parameter p in the range 0.2 ≤ p ≤ 1 for the

two reference shapes: supersphere and axisymmetrical superspheroid. The accuracy is found to be less than 5% for all

of their components. These semi-analytical formulas were next adopted as the input of the different micromechanical

schemes for the predictions of the corresponding effective elastic properties, such as Non Interaction Approximation

(NIA), Mori-Tanaka-Benveniste (MTB) and Maxwell ones. It was qualitatively and quantitatively found that the

effective elastic response of anisotropic materials is highly dependent on the pore shape, porosity and the interaction

of pores, whose combined effect was also shown to be as significant.

Secondly, effective thermal properties of porous media with anisotropic matrix and a concave insulating pore were

studied in Chapter 3. As similar as in the elastic problem, the aforementioned method of adapted boundary conditions

was reformulated and applied in order to first estimate the resistivity contribution tensor of the concerned geomaterial.

A first interesting observation is that the computations converge much quicker than those of the previously studied

elastic problem, which should be due to the fact that the resistivity contribution tensor is in second order while the

compliance contribution tensor is in fourth order. Coming to the consideration of the complex microstructure and

the matrix anisotropy, a large number of computations have been realized leading to the conclusion that both of them

significantly affect the thermal conductivity of the solid, which was found to be of critical importance when the pore is

concave and the matrix is relatively much anisotropic. Next, based on these numerical estimations, some appropriated

approximations were applied to the development of semi-analytical functions of the resistivity contribution tensor, by

simultaneously considering the above-mentioned two parameters, the concavity of pore and the matrix anisotropy.

They were then adopted in the semi-analytical homogenization modelling, for which different micromechanical

schemes such as NIA, MTB and Maxwell ones have been taken into account to study the corresponding effective

thermal properties. It revealed that both the pore concavity and the matrix anisotropy have significant importance on

the effective thermal coefficients especially at their lower values and, perform different influences on the transverse and

perpendicular planes. The obtained effective homogenized material is transversely isotropic with the same symmetry

axis as that of the matrix material.

Additionally, Chapter 4 was devoted to the application of the full field simulations based on the direct numerical

homogenization on the periodic microstructure. Note that only spherical and spheroidal pores are taken into account

due to the meshing difficulties of the RVE in the case of finite number of concave pores. The periodic RVE was

generated by using the algorithm based on the Random Sequential Adsorption (RSA) method (Torquato, 2002; Lopez-

Pamies et al., 2013; Cheng et al., 2017; Zerhouni et al., 2021) that allows to control some physical parameters during

the numerical modelling, such as the porosity, the orientation (random or not) of the pores, the number of the pores,

etc. By referring to the concerned geomaterials (e.g. clay rocks), the porosity is approximately defined as less

or equal to 30%. The resulting predictions were then compared with those obtained by the method of the semi-
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analytical homogenization for their assessment and validation. More specifically, at small pore concentrations, the

Non-Interaction Approximation provides sufficiently good accuracy. However, when the porosity increases, other

more “advanced” micromechanical schemes, such as MTB and Maxwell, become necessary, which reflects that the

influence of interaction between pores cannot be neglected.

Note again that all of the numerical methods proposed in this thesis are able to deal with any general anisotropy

of a multiphased material but such a study has not been attempted here for the sake of keeping the work focused

and concise. Application to other material systems (e.g. composites, fibrous materials, etc.) within elastic domain

will bring a huge expansion. Continuous research could focus on the numerical homogenization modelling with

composite porous geomaterials containing irregular forms (such as supersphere, superspheroid, penny crack, etc.) of

defects embedded in an anisotropic matrix. It could be worth mentioning that the thermal conductivity problem is

somehow equivalent to the magnetic and electric problem. With the current development of electro- and magneto-

active polymeric materials via 3D printing such inclusion shapes might be interesting from the point of view of

enhanced magnetization for instance. Direct extension to coupling problems in material science such as thermo-

elastic, magnetic-elastic and piezo-electric composites could also be envisaged in the long term in a straightforward

manner. It is also relevant to mention in this connection that due to the meshing difficulties encountered in this thesis,

some meshfree methods, such as the one of Fast Fourier Transform (FFT) could be adopted. Last but not least, the

consideration of the interfaces between matrix and pores, different phenomena (e.g. initiation and propagation of

cracks, plasticity, etc) may also constitute a challenging extension.

125



Appendix A
Appendix

A.1. Background on tensors
Notations : Barred letters A, C, D, Q refer to fourth order tensors, bold letters ε, σ, i refer to second order

tensors, underlined letters x, x refer to first order tensors. Einstein’s summation convention over repeated indices is

used unless otherwise indicated. ⊗, : and :: respectively represent tensor product, (dot product), contracted products

on two and four indices. i, I, J and K = I − J respectively represent the second-rank identity tensor, the fourth-rank

symmetric identity tensor, and fourth-rank spherical and deviatoric isotropic projectors (δi j denotes Kronecker delta

symbol, δi j = 1 if i = j, δi j = 0 otherwise).

a ⊗ b = ai b j ei ⊗ e j, a
s
⊗ b =

1
2
(
ai b j + a j bi

)
ei ⊗ e j, a ⊗ b = ai j bkl ei ⊗ e j ⊗ ek ⊗ el (A.1)

a : b = ai j b ji, A : B = Ai jop Bpoklei ⊗ e j ⊗ ek ⊗ el, A :: B = Ai jkl Blk ji (A.2)

a⊗b =
1
2
(
aik b jl + ail b jk

)
ei ⊗ e j ⊗ ek ⊗ el (A.3)

J =
1
3

i ⊗ i, I = i⊗i, i = δi jei ⊗ e j, Ji jkl =
1
3
δi j δkl, Ii jkl =

1
2
(
δik δ jl + δil δ jk

)
(A.4)

It may be interesting to introduce standard notation and the corresponding simplified algebra for fourth-

order transversely isotropic tensor (see Walpole (1984)). See also post of Sébastien Brisard on github,

http://sbrisard.github.io/, intitled Decomposition of transverse isotropic, fourth-rank tensors. By denoting n the

126



unit vector of symmetry axis of the material, let us introduce the second-order tensors

iN = n ⊗ n = ni n j ei ⊗ e j , iT = i − iN (A.5)

In the particular case of n = e3, (A.5) writes

iN = e3 ⊗ e3 , iT = e1 ⊗ e1 + e2 ⊗ e2 (A.6)

One introduces fourth-order tensors

E1 = iN ⊗ iN , E2 =
1
2

iT ⊗ iT , E3 =
1
√

2
iN ⊗ iT , E4 =

1
√

2
iT ⊗ iN (A.7)

E5 = iT⊗iT −
1
2

iT ⊗ iT , E6 = iT⊗iN + iN⊗iT (A.8)

It may be shown that any transversely isotropic fourth-order tensor can be decomposed as

L =
6∑

i=1

li Ei = li Ei (A.9)

Considering symmetry axis equal to n = e3, Walpole matrix representation of tensor H = hiEi writes

H =



h2+h5
2

h2−h5
2

h4√
2

0 0 0

h2−h5
2

h2+h5
2

h4√
2

0 0 0

h3√
2

h3√
2

h1 0 0 0

0 0 0 h6 0 0

0 0 0 0 h6 0

0 0 0 0 0 h5



(A.10)

Relations with usual Hi jkl components write

h1 = H3333, h2 = H1111 + H1122, h3 =
√

2H3311, h4 =
√

2H1133, h5 = H1111 − H1122, h6 = 2H2323 (A.11)

We detail herefafter calculation of compliance contribution HE0 of a spheroidal pore E in TI basis, in terms of
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components ci and pi of matrix stiffness tensor C0 and strain Hill polarisation tensor PE0

HE0 =
(
QE0
)−1

, QE0 =
6∑

i=1

qi Ei, PE0 =
6∑

i=1

pi Ei, C0 =

6∑
i=1

ci Ei, q4 = q3, p4 = p3, c4 = c3 (A.12)

q1 = c1 − c2
1 p1 − c2

3 p2 − 2 c1 c3 p3, q2 = c2 − c2
3 p1 − c2

2 p2 − 2 c2 c3 p3 (A.13)

q4 = q3 = c3 − c1 c3 p1 − c2 c3 p2 −
(
c1 c2 + c2

3

)
p3 (A.14)

q5 = c5 (1 − c5 p5) , q6 = c6 (1 − c6 p6) (A.15)

and components hi of compliance contribution tensor are deduced from calculation rules in transversely isotropic basis

(with q4 = q3)

 h1 h3

h4 h2

 =
 q1 q3

q3 q2


−1

=
1

q1 q2 − q2
3

 q2 −q3

−q3 q1

 , hi =
1
qi
=

1
ci (1 − ci pi)

(i = 5, 6) (A.16)

See similar derivations in Sevostianov et al. (2005) which considers different TI basis (see formula 2.56).

A fourth order tensor T may be transversely isotropised by projection onto a transversely isotropic basis to obtain

ΠT I (T)

ΠT I (T) =
2∑

i=1

(Ei :: T)Ei + (E4 :: T)E3 + (E3 :: T)E4 +
1
2

6∑
i=5

(Ei :: T)Ei (A.17)

In case of a symmetry axis is x3, we apply the transformation Qα representing a rotation of angle φ about x3 axis

to fourth order tensor T

Tα
i jkl = Qα

ipQα
jqQα

krQα
lsTpqrs (A.18)

with

eα1 = cos(φ)e1 + sin(φ) e2, eα2 = − sin(φ)e1 + cos(φ) e2, eα3 = e3 (A.19)
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and non zero components of matrix Qα write

Qα
11 = Qα

22 = cos(φ), Qα
12 = −Qα

21 = sin(φ), Qα
33 = 1 (A.20)

Transverse isotropic projectionΠT I (T) (A.17) corresponds to the following average over orientations, in the transverse

plane x1 − x2

[
ΠT I (T)

]
i jkl =

1
2 π

∫ 2π

0
Tα

i jkl(φ) dφ =
1

2 π

∫ 2π

0
Qα

ip(φ) Qα
jq(φ) Qα

kr(φ) Qα
ls(φ) Tpqrs dφ (A.21)

Compliance contribution tensor of a superspherical pore aligned with the directions of symmetry of a transversely

isotropic matrix (with x3 symmetry axis of matrix) is tetragonal, with 6 independent components H1111, H1122, H1133,

H3333, H1212, and H2323. Average compliance contribution tensor related to an isotropic orientation distribution of

superspherical pores in the transverse isotropic plane x1 − x2 is transversely isotropic and obtained by transverse

isotropic projection

hT I
1 = H3333, hT I

2 = H1111 + H1122, hT I
3 = hT I

4 =
√

2 H1133

hT I
5 =

H1111 − H1122 + 2H1212

2
, hT I

6 = 2H2323

(A.22)

HT I
1111 =

3 H1111 + H1122 + 2 H1212

4
, HT I

1122 =
H1111 + 3 H1122 − 2 H1212

4

HT I
1133 = H1133, HT I

3333 = H3333, HT I
2323 = H2323, HT I

1212 =
H1111 − H1122 + 2 H1212

4

(A.23)
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A.2. Three dimensional static elastic Green function

in infinite medium

A.2.1. Green tensor of the infinite medium and its gradient in the

general anisotropic case

A.2.1.1. Green tensor
The general expression of the Green tensor derived from a reasoning based on the Fourier transform Mura (1987)

or plane-wave expansion Willis (1977) writes

G(x) =
1

8π2

∫
∥∥∥ξ∥∥∥=1

δ(ξ · x) K−1(ξ) dS ξ (A.24)

where δ is the scalar Dirac distribution and K(ξ) is the acoustic tensor defined from the fourth order elastic tensor C

by

K(ξ) = ξ · C · ξ (A.25)

The expression (A.24) can be further simplified by using the spherical coordinates associated to the pole x , 0 in

which the integration variable ξ writes with the variable change z = cos θ

ξ = cos θ e + sin θ uφ = z e +
√

1 − z2 uφ (A.26)

where e = x/ ∥x∥ and uφ is the unit vector parametrized by φ describing the unit circle centered on 0 and orthogonal

to x.

Recalling that δ(λ z) = δ(z)/λ for all λ > 0, it finally comes that Bonnet (2009)

G(x) =
1

8π2 ∥x∥

∫ 2π

φ=0

∫ 1

z=−1
δ(z) K−1(ze +

√
1 − z2uφ) dz dφ =

1
8π2 ∥x∥

∫ 2π

φ=0
K−1(uφ) dφ (A.27)

A.2.1.2. Gradient of the Green tensor
Taking the gradient of (A.24) provides the following third order tensor

grad G(x) =
1

8π2

∫
∥∥∥ξ∥∥∥=1

δ′(ξ · x) K−1(ξ) ⊗ ξ dS ξ (A.28)
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Observing now that δ′(λ z) = δ′(z)/λ2 for all λ > 0, using the definition of the derivative in the sense of distributions

(Schwartz (1966); Gel’fand and Shilov (1964)) and still adopting the spherical coordinates associated to the pole x , 0

yield the following expression

grad G(x) =
−1

8π2 ∥x∥2

∫ 2π

φ=0

∫ 1

z=−1
δ(z)

(
K−1(ξ) ⊗

∂ξ

∂z
+
∂K−1(ξ)
∂z

⊗ ξ

)
dz dφ (A.29)

and finally using (A.25), (A.26) and the derivative of the inverse ( ∂K−1

∂z = −K−1 · ∂K
∂z ·K

−1)

grad G(x) =
1

8π2 ∥x∥2

∫ 2π

φ=0

[
K−1(uφ) ·

(
uφ · C · e + e · C · uφ

)
·K−1(uφ) ⊗ uφ −K−1(uφ) ⊗ e

]
dφ (A.30)

It may be noticed that A.30 corresponds to relation 5.58 given in Mura (1987), p. 33. Fourier transform based

derivation and change of variable on the unit sphere used in this paper are similar to the ones detailed in Mura (1987).

A.2.2. Exact 3D elastic Green function in the transversely isotropic

case
We briefly recall exact Green function given in Pouya (2007). We only consider non degenerate case c̃− c3√

2
−c6 , 0

with n = e3 (n denotes unit vector on symmetry axis of transversely isotropic material). See Pouya (2007) for

discussion on more general and non degenerate cases.

c̃ =

√
c1 (c2 + c5)

2
(A.31)

υ1 =


(

c̃ − c3√
2

)(
c̃ + c3√

2
+ c6

)
2c1c6

1/2

+


(

c̃ + c3√
2

)(
c̃ − c3√

2
− c6

)
2c1c6

1/2

(A.32)

υ2 =


(

c̃ − c3√
2

)(
c̃ + c3√

2
+ c6

)
2c1c6

1/2

−


(

c̃ + c3√
2

)(
c̃ − c3√

2
− c6

)
2c1c6

1/2

(A.33)

υ3 =

[
c5

c6

]1/2

, υ4 =

[
c2 + c5
√

2c3 + 2c6

]1/2

(A.34)

131



In the particular case investigated

ζ = x.n = x3, ρ =
√

x.x − ζ2 =

√
x2

1 + x2
2 (A.35)

One defines 6 functions Rα and R∗α (α = 1, 2, 3)

Rα =

√
ρ2 + υ2

αζ
2, R∗α = Rα + υαζ (A.36)

In the non degenerate case c̃ − c3√
2
− c6 , 0

w1 =

2∑
α=1

Aα

R∗α
, w2 =

2∑
α=1

−
Aα

RαR∗2α
, w3 =

2∑
α=1

−
υ2
αA

′

α

ρ2Rα
, w4 =

2∑
α=1

c2 + c5 − c6υ
2
α

√
2c3 + c6

A
′

α

Rα
(A.37)

Aα = (−1)α
c6 −

√
2c3υ

2
α

2c1
(
υ2

1 − υ
2
2

)
υα
, A

′

α = (−1)α
√

2c3 + c6

2c1
(
υ2

1 − υ
2
2

)
υα
, α = 1, 2 (A.38)

As indicated in Pouya (2007), the singularity on x3 axis (ρ = 0) may be removed by using the following expression

for w3

w3 = −

√
2c3 + c6

2c1R1R2 (υ2R1 + υ1R2)
(A.39)

Green function’s for the infinite transversely isotropic medium writes

G0
i j (x) =

1
2 π c6

[
g1δi j + g2xix j + g3

(
xiδ3 j + x jδ3i

)
+ g4δ3iδ3 j

]
(A.40)

with

g1 = w1 +
ζ

R3R∗3
, g2 = w2 +

1
υ3R3R∗23

, g3 = (w3 − g2) ζ, g4 = w4 − g1 − g2ζ
2 − 2g3ζ (A.41)

Calculation of gradient G0
i j,k (x) is straightforward by using formal calculation tools.

G0
i j,k (x) =

1
2 π c6

[
g1,kδi j + g2,k xix j + g3,k

(
xiδ3 j + x jδ3i

)
+ g4,kδ3iδ3 j + g2

(
δik x j + δ jk xi

)
+ g3

(
δikδ3 j + δ jkδ3i

)]
(A.42)
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Table A.1: G0
i jk: numerical results at (x1 = −1, x2 = 0.8, x3 = 1.5)

k = 1 k = 2 k = 3

107 g11k 871.471 -2504.54 -24616.9

107 g22k 2910.25 -520.84 -24044.6

107 g33k 68988.8 -55191. -14305.5

107 g23k 5133.61 2897.27 -1858.36

107 g31k 587.147 5133.61 2322.95

107 g12k 413.858 -737.743 1271.82

Considering the data given in table (2.3) and position vector (x1 = −1, x2 = 0.8, x3 = 1.5) one obtains

107 G0 =



39800.47 −903.6818 −7004.161

−903.6818 39393.815 5603.329

−7004.161 5603.329S 134599.77


(A.43)

We recall that Green function is not singular on the axis x3, except at the origin x3 = 0. In the case ρ → 0 and

x3 , 0, it writes

G0
i j

(
x3e3

)
=

1
2 π c6 ∥x∥

[
g(ρ=0)

11

(
δ1iδ1 j + δ2iδ2 j

)
+ g(ρ=0)

33 δ3iδ3 j

]
(A.44)

g(ρ=0)
11 =

1
2

(
A1

υ1
+

A2

υ2
+

1
υ2

3

)
, g(ρ=0)

33 =
A
′

1

υ1

c2 + c5 − c6υ
2
1√

2c3 + c6
+

A
′

2

υ2

c2 + c5 − c6υ
2
2√

2c3 + c6
(A.45)

A.2.3. Strain Hill polarization tensor of a spheroidal inclusion

aligned in a transversely isotropic host matrix
We only recall in this section the solution of strain Hill polarization tensor of a spheroidal inclusion aligned in

a transversely isotropic host matrix, in the non degenerate case (c̃ − c3√
2
− c6 , 0) with n = e3. We use constants

c̃, υi defined in section (A.2.2) and we present Withers solution Withers (1989) as in Parnell (2016). See also Laws

(1985); Sevostianov et al. (2005) for exact solutions derived from Fourier transfom integral. The function S(x) (with
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Table A.2: G0
i j and G0

i jk: numerical results at (x1 = 0, x2 = 0, x3 = 1.)

k = 1 k = 2 k = 3

107 gkk (no summation) 60722.101 60722.101 502034.39

107 g11k 0. 0. -60722.101

107 g22k 0. 0. -60722.101

107 g33k 0. 0. -502034.39

107 g23k 0. 70648.848 0.

107 g31k 70648.848 0. 0.

107 g12k 0. 0. 0.

limx→1 S(x) = 1
3 ) characterizes the influence of the shape of the spheroid)

S(x) =
1

1 − x2 −
x

1 − x2


1√

1−x2 arccos (x) , x < 1

1√
x2−1

arcosh (x) , x > 1

(A.46)

Functions I1, I3 (a misprint in relation 5.124 Parnell (2016) has been fixed) write:

I3 (υi) =
4π
υi
S(υiγ), I1 (υi) =

2π
υi
−

I3 (υi)
2
=

2π
υi

(1 − S(υiγ)) (A.47)

D =
1

2 πc6υ3
, Li =

(c2 + c5) /υ2
i − c6

√
2c3 + c6

, Mi = (−1)i c6 − 2c1υ
2
i

8 π c1c6
(
υ2

1 − υ
2
2

)
υ2

i
(A.48)

Components pi of strain Hill tensor PE0 in TI tensor basis write

p1 = −2
2∑

i=1

L2
i Miυ

5
i I3(υi), p2 = 2

2∑
i=1

MiυiI1(υi), p3 =
√

2
2∑

i=1

LiMiυ
3
i I3(υi), p4 = p3 (A.49)

p5 =

2∑
i=1

MiυiI1(υi) +
D I1(υ3)

2
, p6 =

1
2

2∑
i=1

(1 + Li)Miυ
3
i (I3(υi) − 2LiI1(υi)) +

Dυ2
3I3(υ3)
4

(A.50)
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Table A.3: Reference transversely isotropic elastic parameters: C0
i components in TI tensor basis and components of Hill tensor related to an oblate

spheroid of aspect ratio γ = 0.5

c0
1111 (GPa) C0

3333 (GPa) C0
1122 (GPa) C0

1133 (GPa) C0
2323 (GPa)

22.3639 12.9994 3.8275 4.7092 1.5851

c1 (GPa) c2 (GPa) c3 = c4 (GPa) c5 (GPa) c6 (GPa)

12.9994 26.1914 6.65983 18.5363 3.1702

p1 (GPa−1) p2 (GPa−1) p3 = p4 (GPa−1) p5 (GPa−1) p6 (GPa−1)

0.0656356 0.0199043 −0.0100943 0.0292588 0.106492

p1111 (GPa−1) p3333 (GPa−1) p1122 (GPa−1) p1133 (GPa−1) p2323 (GPa−1)

0.0245816 0.0656356 −0.00467723 −0.00713773 0.0532462

and then

P1111 =
p2 + p5

2
, P1122 =

p2 − p5

2
, P3333 = p1 (A.51)

P1133 =
p4
√

2
, P3311 =

p3
√

2
, P2323 =

p6

2
(A.52)

Numerical results are given in table (A.3).

A.3. Information of meshes for the FEM computations

in the case of cubic model containing concave

pore
We show in Fig.A.1 the analysis of mesh convergence in terms of the number of nodes for one example, the

compliance contribution tensor for superspherical pore embedded in isotropic matrix with p = 0.4. It can be observed

that the numerical results converge when the number exceeds 1.5 million.
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(a) (b)

(c)

Figure A.1: Compliance contribution tensor for superspherical pore embedded in isotropic matrix with p = 0.4, as dependence of number of nodes.

We provide in Tables A.4 and A.5 the mesh information during the FEM computation for cubically bounded

representative elementary volume containing respectively the superspheroidal and the superspherical pore. The

displayed numbers of nodes and those of 3D quadratic elements shows that each mesh is well refined for the

corresponding computations to obtain a precision of computation as accurate as possible.

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.6 0.7

Num. N.1 5580080 5062346 4246894 3412606 3777016 1965376 1272710 2049212 2125594

Num. E.2 3949744 3243744 2958504 2289744 2575736 1377480 843280 1361640 1419840

p 0.8 0.9 1 1.5 2 2.5 3 4 5

Num. N. 1047473 1716790 798157 2284278 2724190 2072024 2233528 2422684 2668330

Num. E. 1177376 1146672 545358 1531896 1823384 1395296 1501464 1629936 1801512
1 Number of nodes
2 Number of elements

Table A.4: Number of nodes and elements in the meshes of the cubic models comprising different superspheroid pores
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p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.6 0.7

Num. N. 4829072 2859018 3539342 3025846 3087712 2166076 1029954 1893940 2447226

Num. E. 3260176 1924360 2473320 2020488 2049608 1437104 762880 1309424 1716608

p 0.8 0.9 1 1.5 2 2.5 3 4 5

Num. N 2487370 2288388 682512 1079731 2769712 2789860 3094708 1281679 749678

Num. E. 1716568 1579872 481944 739903 1866728 1883248 2091464 889557 505988

Table A.5: Number of nodes and elements in the meshes of the cubic models comprising different superspherical pores

A.4. Complementary results concerning the strain

concentration tensor in the case of γ = 1/5

and the compliance contribution tensor for the

ellipsoidal pores with γ = 1, 1/2, and 1/10
We aim at display some complementary results respectively in A.4.1 for the strain concentration tensor A in the

case of γ = 1/5 and in A.4.2 concerning some other shapes of the ellipsoidal pore, such as γ = 1 (i.e. spherical pore),

γ = 1/2 and 1/10.

A.4.1. Strain concentration tensors in the spherical case and

spheroidal one with γ = 1/5
Fig.A.2 displays the numerical estimations of each independent component of the strain concentration tensor A

for the ellipsoidal pore with the aspect ratio γ = 1/5. As can be found in the computation results of H, similar

evolution trends in function of the scale ratio a/L, can be observed. It should be note here that, unlike the compliance

contribution tensor H, the strain concentration tensor A does not present the major symmetry between the components

A1133 and A3311. As a consequence, it has 7 non-zero independent components.

Additionally, we show in Fig.A.3 the relative errors of their numerical estimations with respect to the analytcial

solutions proposed by Mualem (1976) as well as those obtained from the classical numerical computations without

the correction of the boundary conditions. A very good precision can be found for the proposed numerical procedure

in the case of smaller scale ratios a/L ∈ [4, 8], whereas the correction of the boundary conditions is shown to be

useless when a/L is sufficiently important.
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Figure A.2: Numerical estimations of Ai jkl for the ellipsoidal pore embedded in a transversely isotropic matrix with fixed aspect ratio γ = 1/5 and
different scale ratio a/L ∈ [4, 18].

138



4 6 8 10 12 14 16 18
10

-5

10
-4

10
-3

10
-2

10
-1

R
e

la
ti
v
e

 e
rr

o
r

(a)

4 6 8 10 12 14 16 18
10

-6

10
-4

10
-2

10
0

R
e

la
ti
v
e

 e
rr

o
r

(b)

Figure A.3: Relative errors of numerical computations of Ai jkl with respect to the analytical results Withers (1989) for the ellipsoidal pore embedded
in a transversely isotropic matrix with fixed aspect ratio γ = 1/5 and different scale ratios a/L ∈ [4, 18].

A.4.2. Complementary results of the compliance contribution tensor

H for the spheroidal pores with γ = 1, γ = 1/2 and γ = 1/10
In Figs.A.4 - A.9, we show some supplementary results of the compliance contribution tensor H for the ellipsoidal

pores respectively with the aspect ratio γ = 1, 1/2 and 1/10. By simultaneously considering those of γ = 1/5 (see

Section 2.3.5.1), we focus on the value of a/L at the starting point of the convergence between the related evolution

respectively obtained from the proposed numerical procedure and the classical one. Finally, we fix a/L = 8 for the

numerical computations in the cases of the concave pores.

• Spherical pore: γ = 1
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Figure A.4: Numerical estimations of Hi jkl for the spherical pore γ = 1 embedded in a transversely isotropic matrix with different scale ratio
a/L ∈ [4, 18].
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Figure A.5: Relative errors of numerical computations of Hi jkl with respect to the analytical results Withers (1989) for the spherical pore γ = 1
embedded in a transversely isotropic matrix with different scale ratios a/L ∈ [4, 18].

• Oblate pore: γ = 1/2
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Figure A.6: Numerical estimations of Hi jkl for the ellipsoidal pore embedded in a transversely isotropic matrix with fixed aspect ratio γ = 1/2 and
different scale ratio a/L ∈ [4, 18].
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Figure A.7: Relative errors of numerical computations of Hi jkl with respect to the analytical results Withers (1989) for the ellipsoidal pore embedded
in a transversely isotropic matrix with fixed aspect ratio γ = 1/2 and different scale ratios a/L ∈ [4, 18].

• Oblate pore: γ = 1/10
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Figure A.8: Numerical estimations of Hi jkl for the ellipsoidal pore embedded in a transversely isotropic matrix with fixed aspect ratio γ = 1/10
and different scale ratio a/L ∈ [4, 18].
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Figure A.9: Relative errors of numerical computations of Hi jkl with respect to the analytical results Withers (1989) for the ellipsoidal pore embedded
in a transversely isotropic matrix with fixed aspect ratio γ = 1/10 and different scale ratios a/L ∈ [4, 18].

A.5. Complementary results of the strain concentration

tensor A for the superspheroidal and superspherical

pores
In this section, we report respectively in A.6 and A.7 the numerical computation of the strain concentration tensor

of the superspheroidal and superspherical pores as described in Section 2.3.6. The corresponding evolution of their

components in function of the concavity parameter p ∈ [0.2, 5] are also illustrated in Figs.

• Superspheroidal pores
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p AFEM
1111 AFEM

1122 AFEM
1133 AFEM

3311 AFEM
3333 AFEM

1212 AFEM
1313

0.2 1.9275 -0.2891 -0.2936 15.9062 47.1787 2.2130 5.3414

0.25 2.0047 -0.2903 -0.1911 6.3536 20.3159 2.2940 2.6196

0.3 2.1128 -0.2966 -0.1204 3.3695 11.7872 2.4092 1.8562

0.35 2.2013 -0.3019 -0.0646 2.0944 8.0402 2.5032 1.5821

0.4 2.2674 -0.3064 -0.0218 1.4539 6.0956 2.5737 1.4733

0.45 2.3159 -0.3101 0.0106 1.0948 4.9690 2.6259 1.4255

0.5 2.3494 -0.3117 0.0355 0.8777 4.2632 2.6610 1.4019

0.6 2.3910 -0.3139 0.0670 0.6557 3.5146 2.7046 1.3865

0.7 2.4121 -0.3140 0.0856 0.5505 3.1416 2.7258 1.3870

0.8 2.4228 -0.3134 0.0974 0.4942 2.9321 2.7358 1.3933

0.9 2.4281 -0.3126 0.1054 0.4616 2.8035 2.7403 1.4018

1 2.4312 -0.3122 0.1112 0.4417 2.7200 2.7431 1.4112

1.5 2.4300 -0.3090 0.1265 0.4123 2.5554 2.7386 1.4534

2 2.4281 -0.3081 0.1340 0.4152 2.5211 2.7356 1.4858

2.5 2.4267 -0.3074 0.1388 0.4234 2.5159 2.7338 1.5098

3 2.4272 -0.3075 0.1425 0.4321 2.5203 2.7342 1.5285

4 2.4290 -0.3075 0.1476 0.4470 2.5342 2.7361 1.5551

5 2.4314 -0.3078 0.1512 0.4584 2.5478 2.7385 1.5731

Table A.6: Evolution of components Ai jkl for the superspheroidal pore embedded in a transversely isotropic matrix on the Logarithm value of the
concavity parameter log(p) such that p ∈ [0.2, 5]
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Figure A.10: Evolution of components Ai jkl for the superspheroidal pore embedded in a transversely isotropic matrix on the concavity parameter p
such that p ∈ [0.2, 5]

• Superspherical pores
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p AFEM
1111 AFEM

1122 AFEM
1133 AFEM

3311 AFEM
3333 AFEM

1212 AFEM
1313

0.2 11.0342 -1.5470 0.4701 1.6971 11.5571 7.5756 3.1521

0.25 6.9234 -1.0207 0.2974 1.1060 7.3017 4.7760 2.1095

0.3 5.1440 -0.7928 0.2216 0.8517 5.4701 3.6464 1.7214

0.35 4.1841 -0.6706 0.1799 0.7189 4.4972 3.1302 1.5559

0.4 3.6067 -0.5955 0.1537 0.6410 3.9260 2.8884 1.4771

0.45 3.2362 -0.5423 0.1364 0.5910 3.5668 2.7761 1.4360

0.5 2.9741 -0.4975 0.1243 0.5499 3.3036 2.7236 1.4132

0.6 2.7249 -0.4420 0.1130 0.5078 3.0561 2.6957 1.3944

0.7 2.5883 -0.3976 0.1086 0.4781 2.9065 2.6973 1.3912

0.8 2.5102 -0.3629 0.1078 0.4595 2.8163 2.7094 1.3951

0.9 2.4623 -0.3351 0.1089 0.4482 2.7586 2.7256 1.4024

1 2.4314 -0.3123 0.1111 0.4417 2.7202 2.7435 1.4113

1.5 2.3776 -0.2394 0.1262 0.4389 2.6479 2.8318 1.4578

2 2.3733 -0.1983 0.1402 0.4500 2.6375 2.9019 1.4953

2.5 2.3816 -0.1723 0.1513 0.4623 2.6441 2.9613 1.5252

3 2.3911 -0.1535 0.1602 0.4734 2.6531 3.0068 1.5483

4 2.4095 -0.1283 0.1735 0.4912 2.6718 3.0745 1.5817

5 2.4230 -0.1114 0.1829 0.5042 2.6860 3.1190 1.6040

Table A.7: Numerical estimation of Ai jkl for the superspherical pore embedded in a transversely isotropic corrected model with different values of
concavity p ∈ [0.2, 5].
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Figure A.11: Evolution of components Ai jkl for the superspherical pore embedded in a transversely isotropic matrix on the Logarithm value of the
concavity parameter log(p) such that p ∈ [0.2, 5]

A.6. Background on property contribution tensors
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Property contribution tensors are used in micromechanics to describe the contribution of a single inhomogeneity

to the property of interest (Kachanov and Sevostianov (2018)). Compliance contribution tensors have been first

introduced in the context of pores and cracks by Hori and Nemat-Nasser (1983) as the extra average strain produced

by a pore. The average strain, over representative volume | Ω |, can be represented as a sum

ε = S0 : Σ + ∆ε (A.53)

where S0 where is the compliance tensor of the matrix and Σ is uniform remotely applied stress. The material is

assumed to be a linear elastic; hence, the extra strain ∆ε due to presence of an inhomogeneity E is a linear function of

the applied stress:

∆ε = f HE0 : Σ, with f =
| E |

| Ω |
(A.54)

where | E | is the pore volume and HE0 is fourth-rank compliance contribution tensor of the pore. The HE0 tensor is

determined by the shape and size of the inhomogeneity, as well as properties of the matrix and of the inhomogeneity

material. This tensor is also affected by elastic interactions. In the non-interaction approximation, it is taken by

treating the inhomogeneities as isolated ones. In the case of multiple inhomogeneities, the extra strain produced by

m-th inhomogeneity is ∆ε(m) = f (m) HE(m)
0 : Σ so that the extra compliance due to all the inhomogeneities is given by

∆ε =
[∑

f (m) HE(m)
0

]
: Σ (A.55)

Formula (A.55) highlights the fundamental importance of the compliance contribution tensors: these tensors have to

be summed up and averaged in the context of the effective elastic properties. The sum

∑
f (m) HE(m)

0 (A.56)

properly reflects compliance contributions of individual inhomogeneities and constitutes the general microstructural

parameters in whose terms the effective compliance should be expressed. Components of this tensor were calculated

for 2 − D pores of various shape and 3 − D ellipsoidal pores in isotropic material by Kachanov et al. (1994). For

the general case of elastic inhomogeneities, these tensors were introduced and calculated (for ellipsoidal shapes) by

Sevostianov and Kachanov (Sevostianov and Kachanov (2002a)). Components of the compliance contribution tensor

for various concave pores in isotropic matrix have been calculated by Chen et al. (2015) (supersphere), Sevostianov

et al. (2016b) (axisymmetric pore obtained by rotation of a supersphere around one of its principal diagonals), Chen

et al. (2018) (combined effect of concavity and aspect ratio), and Markov et al. (2019) (tetrahedron-like pores).

Sevostianov et al. (2005); Barthélémy (2020) calculated components of this tensor for a spheroidal inhomogeneity

embedded in a transversely-isotropic material.
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We recall the compact solution of strain Hill polarization tensor of a spheroidal inclusion aligned in a transversely

isotropic host matrix recently presented in Barthélémy (2020) (reader may refer to this reference for the detailed

derivation and python script of the complete solution). The corresponding compliance contribution tensor may be

deduced from relations presented in section (A.1). In what follows, the aspect ratio of the spheroidal inclusion is

denoted ω, and the symmetry axis n of the host matrix and the spheroidal inclusion is taken as n = e3. The particular

case of the spherical pore is then deduced by setting ω = 1. The solution writes in Walpole TI tensor basis

P = p1 E1 + p2 E2 + p3 (E3 + E4) + p5 E5 + p6 E6 (A.57)

with 

p1 =
(C2323 − ω

2 C1111)J4 + ω
2 C1111J2

2 C2323 C3333

p2 =ω
2 (ω2 C2323 −C3333)J4 + (C3333 − 2ω2 C2323)J2 + ω

2 C2323J0

4 C2323 C3333

p3 =p4 =
ω2 (C2323 +C1133) (J4 − J2)

2
√

2 C2323 C3333

p5 =
p2

2
+
ω2 (I0 − I2)

8 C2323

p6 =
(ω4 C1111 +C3333 + 2ω2 C1133)J4 − 2ω2 (ω2 C1111 +C1133)J2 + ω

4 C1111J0

8 C2323 C3333
+
I2

8 C2323

(A.58a)

(A.58b)

(A.58c)

(A.58d)

(A.58e)

with

Jk = Jk(ωγ1, ω γ2) (k ∈ {0, 2, 4}) and Ik = Ik(ωγ3) (k ∈ {0, 2}) (A.59)

γ3 =

√
C1111 −C1122

2 C2323
(A.60)

γ1 and γ2 denote the square roots of the roots of the polynomial

Z2 C2323 C3333 + Z (C2
1133 + 2 C1133 C2323 − C1111 C3333) +C1111 C2323 = 0 (A.61)

γ1 =

√
C1111 C3333 −C2

1133 − 2 C1133 C2323 +
√
∆

2 C2323 C3333
; γ2 =

√
C1111 C3333 −C2

1133 − 2 C1133 C2323 −
√
∆

2 C2323 C3333
(A.62)

with

∆ = (C1111 C3333 −C2
1133) (C1111 C3333 −C2

1133 − 4 C1133 C2323 − 4 C2
2323) (A.63)

The square root of a complex argument is defined with a positive real part and it is consistent with the cmath library of

Python. The inverse hyperbolic cosine of a complex argument, denoted by arcosh , has one branch cut, extending left

from 1 along the real axis to −∞, continuous from above. Note that arcosh Z = ln (Z +
√

Z2 − 1) where the principal
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value of the logarithm is chosen such that the imaginary part has the smallest value and belongs to ] − π
2 ,

π
2 ] with the

same branch cut as the square root.

Ik(η) =
∫ 1

z=−1

zk

z2 + η2 (1 − z2)
dz and Jk(η1, η2) =

∫ 1

z=−1

zk(
z2 + η2

1 (1 − z2)
)(

z2 + η2
2 (1 − z2)

) dz (A.64)

I0(η) I2(η) I4(η)

if η = 1 2 2
3

2
5

if η , 1 2 arcosh η

η
√
η2−1

2 η arcosh η−
√
η2−1

(η2−1)
3
2

2
3

3 η3 arcosh η+(1−4 η2)
√
η2−1

(η2−1)
5
2

Table A.8: Calculation of integrals Ik(η)

J0(η1, η2) J2(η1, η2) J4(η1, η2)

if η1 = η2 = 1 2 2
3

2
5

if η1 = η2 , 1 arcosh η1+η1

√
η2

1−1

η3
1

√
η2

1−1

η1

√
η2

1−1−arcosh η1

η1 (η2
1−1)

3
2

(2+η2
1)
√
η2

1−1−3 η1 arcosh η1

(η2
1−1)

5
2

if η1 , η2
(η2

1−1)I0(η1)−(η2
2−1)I0(η2)

η2
2−η

2
1

(η2
1−1)I2(η1)−(η2

2−1)I2(η2)
η2

2−η
2
1

(η2
1−1)I4(η1)−(η2

2−1)I4(η2)
η2

2−η
2
1

Table A.9: Calculation of integrals Jk(η)

Related compliance contribution of the spheroidal pore is then deduced from relations (A.12-A.16).

The exact solution of compliance contribution tensor of the penny shaped crack, H = limω→0 ω (Q0)−1, is detailed

in Barthélémy (2020). We only recall final results. One uses



p1
1 =

π

2 (γ1 + γ2)
C1111 − (γ2

1 + γ1 γ2 + γ
2
2) C2323

C2323 C3333

p1
2 =

π

4 (γ1 + γ2)

(
1

γ1 γ2 C3333
+

1
C2323

)
p1

3 = −

√
2 π

4 (γ1 + γ2)
C1133 +C2323

C2323 C3333

p1
5 =

π

8

(
1

γ1 γ2 (γ1 + γ2) C3333
+

(
1

γ1 + γ2
+

1
γ3

)
1

C2323

)
p1

6 =
π

8

(
C1111 − 2 γ1 γ2 C1133 − γ1 γ2 (γ2

1 + γ1 γ2 + γ
2
2) C3333

γ1 γ2 (γ1 + γ2) C2323 C3333
−

γ3

C2323

)

(A.65a)

(A.65b)

(A.65c)

(A.65d)

(A.65e)

γ1, γ2, γ3 have been previously defined. Compliance contribution tensor of a penny shaped crack aligned in a

transversely isotropic host matrix writes

H = lim
ω→0

ω (Q0)−1 = −
1

C2
3333 p1

1 + 2 C2
1133 p1

2 + 2
√

2 C3333 C1133 p1
3

E1 −
1

4 C2
2323 p1

6
E6 (A.66)
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where p1
1, p1

2, p1
3 and p1

6 are given in (A.65a), (A.65b), (A.65c) and (A.65e). One deduces the components denoted hc
1,

hc
6 and used in approximate relations of compliance contribution tensor of an aligned axisymmetric superspheroidal

pore:

hc
1 = −

1
C2

3333 p1
1 + 2 C2

1133 p1
2 + 2

√
2 C3333 C1133 p1

3

, hc
6 = −

1
4 C2

2323 p1
6

(A.67)

A.7. Coefficients for approximation formula of

compliance contribution tensors
Finite element results of a superspherical pore embedded in a TI matrix, are given in table 4 of paper Du et al.

(2020). Approximate relations for the concavity parameter range 0.2 < p < 1 write

f se-a
1111(p) = 2.72394p2 − 2.6248p + 1.63141

f se-a
1122(p) = 1.23332p2 − 1.20253p + 1.29293

f se-a
1133(p) = 3.75077p2 − 3.50795p + 1.81628

f se-a
3333(p) = 2.77572p2 − 2.46747p + 1.5398

f se-a
1212(p) = 17.1508p4 − 43.7713p3 + 38.3878p2 − 13.1282p + 2.36576

f se-a
2323(p) = 50.3296p4 − 90.0984p3 + 59.3072p2 − 15.8086p + 2.1938

(A.68)

f se-b
1111(p) = −0.197702p2 + 0.220097p + 0.939377

f se-b
1122(p) = −0.24264p2 + 0.0415192p + 1.0399

f se-b
1133(p) = −0.357454p2 + 0.52452p + 0.827103

f se-b
3333(p) = −0.326089p2 + 0.439731p + 0.861657

f se-b
1212(p) = −2.04372p4 + 7.78585p3 − 11.3964p2 + 7.68465p − 0.839061

f se-b
2323(p) = −2.65601p4 + 9.6441p3 − 13.4224p2 + 8.59804p − 0.982841

(A.69)

Finite element results of an axisymmetrical superspheroidal pore embedded in a TI matrix are given in table 3 of
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paper Du et al. (2020). Approximate relations for the concavity parameter range 0.2 < p < 1 write

f so-a
1111(p) = 54.285p4 − 85.8182p3 + 44.7893p2 − 6.31294p + 0.294191

f so-a
1122(p) = 50.5731p4 − 84.3085p3 + 46.7634p2 − 7.38197p + 0.378348

f so-a
1133(p) = 39.0659p4 − 42.9843p3 + 7.43095p2 + 5.44332p − 0.646506

(A.70)

f so-b
1111(p) = −3.74036p4 + 13.3244p3 − 18.0592p2 + 11.0818p − 1.45743

f so-b
1122(p) = −4.07865p4 + 14.7289p3 − 20.227p2 + 12.5889p − 1.82352

f sp-b
1133(p) = −1.92702p4 + 6.39843p3 − 7.8095p2 + 3.95979p + 0.293327

(A.71)

A.8. Three dimensional Green function for Poisson’s

equation in infinite anisotropic medium
As shown previously, the corrected boundary condition Eq.(3.11) relies on the gradient of Green function. It is

worthy to recall that the three dimensional Green function G0 (x) for Poisson’s equation in infinite anisotropic medium

could be analytically calculated by:

G0 (x) = −
1

4 π
√

det(λ0)
1√

x · (λ0)−1
· x

(A.72)

and its gradient vector is:

gradG0 (x) =
(λ0)−1

· x

4 π
√

det(λ0)
[
x · (λ0)−1

· x
]3/2 (A.73)

The expanded formula for gradGi
0 component writes:

gradGi
0 =

1

4 π
√
λ1

0λ
2
0λ

3
0

xi

λi
0

1(
x2

1
λ1

0
+

x2
2
λ2

0
+

x2
3
λ3

0

)3/2 (A.74)

where λ1
0, λ2

0 and λ3
0 are the three conductivity parameters of anisotropic matrix.
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In particular isotropic case which means λi
0 = λ0 (i = 1, 3), the equations Eqs.(A.72) - (A.73) reduce to

G0 (x) = −
1

4 π λ0

1
∥x∥

, gradG
0

(x) =
1

4 π λ0

x
∥x∥2

(A.75)

A.9. Hill polarization tensor and resistivity contribution

tensor of a spheroidal inclusion aligned in a

transversely isotropic host matrix
One considers a transversely isotropic matrix of conductivity tensor λ0 (n denotes unit vector on the symmetry

axis, in this paper n = e3):

λ0 = λ0
(
ν2 iT + iN

)
, iN = n ⊗ n, iT = i − iN (A.76)

The Hill polarisation tensor PE0 of an spheroidal inclusion aligned in the directions of a transversely isotropic matrix

(i.e. spheroid and matrix have the same symmetry axis) writes:

PE0 =
g(νγ)
ν2λ0

iT +
1 − 2g(νγ)

λ0
iN (A.77)

where γ is the aspect ratio of radius and with shape function g(ξ) (see Barthélémy (2008); Giraud et al. (2019))

g(ξ) =



1
2

(
1 +

1
ξ2 − 1

(
1 −

ξ√
1 − ξ2

arctan

( √
1 − ξ2

ξ

)))
if ξ < 1

1
3

if ξ = 1

1
2

(
1 +

1
ξ2 − 1

(
1 −

ξ

2
√
ξ2 − 1

ln

(
ξ +

√
ξ2 − 1

ξ −
√
ξ2 − 1

)))
if ξ > 1

(A.78)

By inserting (A.77) into (3.2) and with the relationship (3.2), resistivity contribution tensor HE0 of an insulating λE = 0

aligned spheroidal pore writes:

HE0 =
1

ν2λ0 (1 − g(νγ))
iT +

1
2 λ0 g(νγ)

iN (A.79)
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and the particular case of the spherical pore γ = 1 embedded in transversely isotropic matrix is derived

HE0 =
1

ν2λ0 (1 − g(ν))
iT +

1
2 λ0 g(ν)

iN (A.80)

and the particular case of the spherical pore γ = 1 embedded in an isotropic matrix ν = 1 is recovered

HE0 =
3

2λ0
i (A.81)

For the limiting case of an aligned penny shaped crack embedded in a TI matrix, the resistivity contribution tensor

writes

HE0 =
2

π λ0 ν
iN (A.82)

A.10. RSA algorithm
Anoukou et al. (2018) propose an extension of the RSA algorithm to obtain random periodic (or not) distributions

of mono- and polydisperse non-overlapping ellipsoidal inclusions of arbitrary shape and orientation. Here we briefly

recall the algorithm and please refer to Anoukou et al. (2018) for detail. The inputs of the algorithm are: the

dimensions of the cuboidal cell L1, L2 and L3, the volume fraction f , the number of phases Np, the number Nre f of

reference inclusions, the microstructural parameters ω(r)
1 , ω

(r)
2 , χ

(r), f r, and two offsets distance ξ1 and ξ2 used in the

calculation of the minimum distance parameters s1 and s2, respectively. The outputs of the algorithm are: the position

vector of the center of the ellipsoid vr
i , the semi-axes lengths

(
a(r)

i , b
(r)
i , c

(r)
i

)
and the Euler angles

(
ϕ(r)

i , θ
(r)
i , ψ(r)

i

)
of

the ellipsoidal inclusion i belonging to the phase r. Specifically, for each phase r = 2, ...,Np, the RSA algorithm can

be decomposed into four steps:

• Step 1: Compute the semi-axis lengths of inclusion (i).

• Step 2: In the sequential addition, generate a random center position vector v(r)
i for inclusion i in phase r.

Compute the minimum distance ∆1 between a new inclusion i and any previously accepted inclusion j = 1, ..., i−

1 including its 26 periodic images, and compare this distance to the minimum value s1.

• Step3: Use the algorithm for finding the minimum distance between ellipsoid and plane to determine ∆2 and

∆̄2. Compare the distance ∆2 with the minimum value s2. If ∆2 ≤ s2, then generate a new center position of

inclusion i, otherwise accept the inclusion i.

• Step4: Ensure periodicity of the cuboidal cell by considering periodic images of the inclusion.
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A.11. Complementary assessment of the numerical

results for full field modelling
The convergence analysis in terms of the number of realizations is conducted for transversely isotropic materials

containing isotropic matrix and randomly distributed spheroidal pores with porosity φ = 0.25 and aspect ratio a =

b, c/a = 2.0, at fixed number of pores (100) and discretization, as illustated in A.12.
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Figure A.12: Effective elastic constants for five different realizations of monodisperse microstructures with 100 spheroidal pores (γ = 2) and
transversely isotropic matrix, porosity φ = 0.25

Normalized effective Young’s modulus (E1, E2, E3), Poisson’s ratio (ν12, ν13, ν23) and shear moduli (G12,G13,G23)

of materials containing different number of spherical pores (n = [1, 5, 10, 20, 50, 100, 200, 300]) are estimated via

direct FEA simulations with porosity φ = 0.2 as shown in Fig.A.13. The results were compared to the predictions

of several single pore solutions using Mori-Tanaka-Benveniste (MTB) and Maxwell homogenization schemes based

on analytically calculated H-tensors (see section 2.3.2.4). Note that the Hashin Shtrikman Bound (HSB) (Hashin

and Shtrikman (1962b, 1963)), Ponte Castaneda and Willis (PCW) (Ponte Castañeda and Willis (1995)), MTB and

Maxwell numerically coincide for spherical pores randomly oriented in isotropic matrix.
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Figure A.13: Effective elastic properties of a material containing various number of spherical pores and isotropic matrix, porosity φ = 0.2

The convergence and isotropic analysis in terms of the number of pores are conducted for materials containing
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isotropic matrix and randomly distributed spheroidal pores with porosity φ = 0.20 and aspect ratio a = b, c/a = 2.0,

as shown in Fig. A.14.
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Figure A.14: Effective elastic properties of a material containing various number of spheroid pores and isotropic matrix, aspect ratio a = b, c/a =
2.0, porosity φ = 0.2

A.12. Deviation from isotropy
The deviation from isotropy δiso of the effective stiffness tensor C̃ is evaluated with the normalized common

Euclidean distance:

δiso =

∥∥∥C̃ − C̃iso
∥∥∥

F

∥C̃∥F
(A.83)

where Frobenius norm of the tensor C: ∥C∥F =
√

tr
(
C : CT

)
Table A.10 presents the values of the deviation for different concerned shapes of pores embedded in isotropic

matrix. The spherical pores lead to the quasi-isotropic effective response with δiso < 0.32% for monodisperse

distributions. As one increases the aspect ratios, the deviation from isotropy increases. Even for a high number of

pore n = 300 in our work, the transversely isotropic shape of the pore affects the evaluation of the elastic properties.

The deviation is δiso < 1.9% for prolate pores with aspect ratios γ = 2.0. This implies that even if theoretically one

can consider very large number of orientations, in practice, with our present RSA method, a significant effect of the

pore shapes remains and lead to an anisotropic response but acceptable.
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Table A.10: Deviation from isotropy δiso monodisperse spherical & spheroidal pores embedded in isotropic matrix.

Porosity Random spherical pores
+ ISO matrix

Random spheroidal pores
+ ISO matrix

0.05 0.07% 0.54%

0.1 0.16% 1.24%

0.15 0.32% 1.75%

0.2 0.17% 1.60%

0.25 0.13% 1.82%
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