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• Šárka NEČASOVÁ
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durant cette période, et pour cela je tiens à les remercier. Cette thèse s’inscrivant dans
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pour avoir été président de mon jury. Je remercie les examinateurs de ma thèse, Samuel
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lesquelles j’ai directement travaillé. Merci pour vos conseils, vos critiques, et les réunions
et conversations enrichissantes qui nous avons eues.
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jours très constructives sur les objets sur lesquels nous travaillons, et sur les aspects
numériques. Merci Jean-François (S) pour m’avoir aidé à clarifier mes nombreux doutes
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Nicolas, pour toutes nos discussions qui m’ont permis de mettre en lumière les différentes
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J’espère sincèrement que les différents projets que j’ai commencés avec chacune et
chacun d’entre vous se poursuivront, et que nous pourrons continuer à travailler et
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Résumé

Cette thèse de mathématiques appliquées à la mécanique à pour objet la conception
optimale de matériaux. Elle porte sur l’étude d’outils théoriques et numériques qui
permettent la synthèse de nouveaux matériaux aux propriétés émergentes. Ce travail se
décompose en deux parties distinctes.

La première partie concerne la synthèse de matériaux architecturés périodiques, par
l’utilisation d’une méthode d’optimisation topologique. Le but est de concevoir des
matériaux périodiques ayant des propriétés du second gradient importantes, en optimisant
la forme et la distribution de matière de la cellule périodique constitutive de ce matériau.
Ces propriétés sont définies à partir de tenseurs homogénéisés.

La méthode que nous appliquons nécessite dans un premier temps une étude théorique
de la sensibilité de ces tenseurs homogénéisés, par rapport à une perturbation in-
finitésimale de la géométrie de la cellule périodique. Cette information s’appelle la dérivée
topologique des tenseurs homogénéisés, et son étude est l’objet du chapitre 1. En partic-
ulier, nous calculons la dérivée topologique du tenseur du second gradient.

Puis dans le chapitre 2, nous utilisons la dérivée topologique calculée précédemment
en l’incorporant dans une procédure numérique d’optimisation topologique. Ainsi, nous
obtenons des topologies nouvelles à l’échelle de la cellule périodique qui permettent la
conception de matériaux périodiques ayant des propriétés de second gradient prononcées.

La seconde partie concerne l’étude théorique de l’optimisation d’un problème
d’interaction fluide-structure. Elle est l’objet du chapitre 3. Nous cherchons à opti-
miser la forme d’un matériau élastique plongé dans un fluide visqueux et incompress-
ible, afin d’améliorer une fonctionnelle abstraite qui dépend des solutions de ce problème
d’interaction, dont nous montrons l’existence et l’unicité. Pour cela, nous calculons la
dérivée de forme de la fonctionnelle, en appliquant la méthode appelée méthode des vitesses
(ou méthode d’Hadamard).
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Summary

This thesis of mathematics applied to mechanics deals with the optimal design of
materials. It focuses on the study of theoretical and numerical tools that allow the
synthesis of new materials with emerging properties. This work is divided in two distinct
parts.

The first part concerns the synthesis of periodic materials by using a topological opti-
mization method. The goal is to design periodic materials with important second gradient
properties, by optimizing the shape and the distribution of the periodic cell constituting
this material. These properties are defined from homogenized tensors.

The method we apply requires first a theoretical study of the sensitivity of these ho-
mogenized tensors, with respect to an infinitesimal perturbation of the geometry of the
periodic cell. This information is called the topological derivative of the homogenized ten-
sors, and its study is the subject of Chapter 1. In particular, we compute the topological
derivative of the second gradient tensor.

Then in Chapter 2, we use the topological derivative computed previously by
incorporating it into a numerical procedure of topological optimization. Thus, we obtain
new topologies at the scale of the periodic cell that allow the design of periodic materials
with pronounced second gradient properties.

The second part concerns the theoretical study of the optimization of a Fluid Structure
Interaction problem. We seek to optimize the shape of an elastic material immersed in a
viscous and incompressible fluid, in order to improve an abstract shape functional which
depends on the solutions of this interaction problem, whose existence and uniqueness are
shown. For this purpose, we compute the shape derivative of the shape functional, by
applying the so-called speed method (or Hadamard’s method).
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Introduction (français)

La fabrication additive et l’optimisation topologique ont suscité un regain d’intérêt pour
l’étude des matériaux architecturés au cours des deux dernières décennies. Ces progrès
technologiques sont en partie dus à l’émergence des imprimantes 3D, permettant une pro-
duction rapide et peu onéreuse d’échantillons pour l’expérimentation, et à l’amélioration
des méthodes et de la puissance en calculs numériques. Les matériaux architecturés
sont des matériaux dont les propriétés macroscopiques sont dues à l’organisation de
leur microstructure interne, ainsi que leur structure à plus grande échelle. Ils sont
aussi appelés matériaux composites. Bien que les microstructures non périodiques ou
quasi-périodiques aient également été amplement étudiées, les matériaux architecturés
sont souvent basés sur un arrangement périodique de cellules unitaires. Dans cette thèse,
nous nous intéressons plus particulièrement aux matériaux périodiques.

Les matériaux architecturés sont largement utilisés en ingénierie en raison de leurs pro-
priétés remarquables, comme la légèreté, la résistance, l’absorption d’énergie, l’isolation
acoustique. Ils permettent de concevoir des matériaux artificiels que l’on trouve diffi-
cilement dans la nature, aussi appelés métamatériaux. On peut citer par exemple la
conception de matériaux auxétiques, dont les bénéfices en terme de capacité de résistance
au choc et à l’impact, isolation acoustique, absorption des vibrations, grande capacité de
changement d’aire ou de volume, ont été largement soulignés dans la littérature depuis
plusieurs décennies (voir par exemple, [Alm85]). Un matériau auxétique est un matériau
qui se dilate transversalement lorsqu’un étirement uniaxial est appliqué sur celui-ci.

Un autre exemple que l’on peut citer parmi les nombreux métamatériaux concerne
les réseaux tétrachiraux (voir Figure 1). Un matériau chiral est un matériau qui ne
possède pas la symétrie miroir (son image par symétrie dans un miroir ne lui est pas
superposable). Un matériau tétrachiral est un cas particulier de matériau chiral, qui reste
inchangé lorsqu’il est tourné d’un angle de 2π/4. La structure tétrachirale périodique
étudiée dans [Kar+20] et reproduite Figure 1, présente des déformations en élongation
couplées à des rotations. Sous les forces de traction, la structure se courbe vers le
haut. Cette structure est intéressante par exemple pour la conception de ponts, afin de
compenser la flexion due à leur poids (voir Figure 1).

Bien souvent la taille de la période ou des hétérogénéités est petite par rapport
à la taille de la structure macroscopique d’un matériau architecturé. Des simula-
tions numériques peuvent être réalisées afin de prédire le comportement global d’un
tel matériau. Mais, du fait de la taille de la microstructure, une analyse directe
est très coûteuse en temps de calcul. Ainsi le matériau microstructuré peut être
approché par un matériau homogène. La théorie décrivant les propriétés macro-
scopiques (appelées aussi propriétés homogénéisées ou effectives) d’un matériau à par-
tir de l’analyse de sa microstructure est appelée homogénéisation. Nous introduisons le
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Figure 1: Cellule unitaire tétrachirale (à gauche), et réponse d’une structure périodique
composée de cette cellule périodique, lorsqu’elle est soumise à des forces de traction hor-
izontales (à droite) (Figure de [Kar+20]).

concept d’homogénéisation dans la section 1.2 du chapitre 1.
L’homogénéisation permet d’obtenir un modèle macroscopique de Cauchy du premier

ordre décrivant un matériau architecturé. Nous appelons homogénéisation du premier
ordre une telle description d’un matériau architecturé. Un matériau de Cauchy du pre-
mier ordre est un matériau pour lequel seul le premier gradient du champ de déplacement
est utilisé pour mesurer les déformations, et tous les gradients de déplacement d’ordre
supérieur sont négligés. Les modèles de Cauchy du premier ordre sont valides sous
une hypothèse de séparation d’échelle : la taille des hétérogénéités doit être infini-
ment petite par rapport à la dimension caractéristique macroscopique de la structure.
Ainsi, une telle hypothèse doit être satisfaite dans le cas d’une homogénéisation du
premier ordre, à savoir dans le cas d’un matériau périodique, que la taille de la cellule
périodique doit être infiniment petite par rapport à la taille macroscopique de la structure.

En pratique, cette hypothèse n’est jamais vérifiée puisque les matériaux architecturés
ont des cellules périodiques de taille finie. Ainsi, la théorie de l’élasticité de Cauchy pour
l’homogénéisation doit être parfois enrichie afin de prédire avec précision les effets d’échelle
du matériau. Il existe deux manières d’améliorer ce modèle.

La première approche concerne les modèles dits d’ordre supérieur. Ils reposent sur
l’ajout de degrés de liberté dans le modèle. Alors qu’un matériau de Cauchy a pour seul
degré de liberté le champ de déplacement, un matériau de Cosserat par exemple, a pour
degrés de liberté le champ de déplacement et un champ de micro-rotation. Un matériau
dit micromorphe sera lui doté d’une nouvelle variable de microdéformation, un tenseur
d’ordre deux.

La seconde approche concerne les modèles dit de degré supérieur. Ces modèles incluent
comme variable un gradient d’ordre supérieur de la variable cinématique (le déplacement
ou la déformation). Par exemple, un modèle de second gradient a comme variable non
seulement le gradient du déplacement, mais aussi son second gradient. Ainsi, le sec-
ond gradient du champ de déplacement est pris en compte dans la densité d’énergie de
déformation, alors que dans un modèle de Cauchy, seul son premier gradient est pris en
compte. Nous appelons homogénéisation du second gradient la procédure qui calcule un
modèle macroscopique du second gradient pour un matériau hétérogène. On appelle aussi
modèle à gradient de déformation, un modèle qui fait intervenir le gradient du champ de
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déformation à la place du second gradient du déplacement.
Par exemple, nous avons calculé dans le chapitre 2 de cette thèse la forme d’une

cellule périodique par une procédure d’optimisation topologique, afin de maximiser des
effets macroscopiques de second gradient. Un échantillon de matériau constitué de cette
cellule périodique, présenté sur la Figure 2, a été étudié par Baptiste Durand lors de sa
thèse au laboratoire Navier (École des Ponts ParisTech, Université Gustave Eiffel, thèse
en cours), et présente des effets de second gradient.

Figure 2: Échantillon d’un matériau constitué d’une cellule périodique de type pan-
tographique. Ces images proviennent d’expériences menées par Baptiste Durand dans
le laboratoire Navier (École des Ponts ParisTech, Université Gustave Eiffel).

Les matériaux architecturés ont d’excellentes propriétés. Ceci est en partie dû à la
possibilité d’ajuster leur microstructure, soit par la distribution de matière à l’échelle
microscopique, soit par leur topologie, afin d’atteindre les propriétés souhaitées à l’échelle
macroscopique. Les techniques d’optimisation de forme et de la topologie permettent
d’obtenir des formes originales qui ne sauraient être imaginées par les concepteurs de
matériaux émergents.

L’objectif de cette thèse est d’étudier et d’appliquer des techniques d’optimisation
topologique afin de synthétiser de nouveaux matériaux architecturés dans le cadre des
matériaux continus homogénéisés en 2D.

L’analyse de la sensibilité du tenseur d’élasticité homogénéisé du second ordre par rap-
port aux changements topologiques de sa microstructure est menée. La cellule unitaire
constitutive du matériau est topologiquement perturbée par la nucléation d’une petite in-
clusion circulaire d’un matériau aux propriétés différentes du matériau sous jacent. Cette
analyse conduit au calcul de la dérivée topologique du tenseur d’élasticité homogénéisé,
qui est donnée par un champ de tenseur d’ordre 6 défini sur la cellule unitaire. Cette
dérivée topologique mesure comment le tenseur d’élasticité homogénéisé d’ordre 2 change
lorsqu’une petite inclusion circulaire est introduite dans sa cellule périodique. Cette étude
fait l’objet du chapitre 1.

Dans le chapitre 2, les dérivées topologiques des tenseurs homogénéisés précédemment
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obtenues sont utilisées dans une méthode numérique d’optimisation forme et de topologie
des microstructures. Cette optimisation a pour objet la synthèse et la conception optimale
de métamatériaux, qui présentent des effets du second gradient très prononcés en regard
de l’élasticité de Cauchy et en raison d’un effet de microstructure, ce qui n’est pas le cas
de la plupart des matériaux rencontrés en ingénierie.

Le chapitre 3 de cette thèse est consacré à une étude qui ne s’inscrit pas dans le cadre
de l’homogénéisation et des matériaux architecturés, mais qui est liée à l’optimisation
de structures. Cette étude est consacrée à l’optimisation de forme d’un problème
d’Interaction Fluide Structure. On cherche à optimiser la forme d’un matériau élastique
plongé dans un fluide, en calculant la dérivée de forme d’une fonctionnelle de forme ab-
straite, afin de trouver une direction de descente pour faire évoluer cette forme avec la
méthode dite des vitesses.

Présentation de la thèse
J’ai commencé ma thèse en octobre 2018, dans le cadre du projet ArchiMatHOS1

financé par l’Agence Nationale de la Recherche. Ce projet rassemble des chercheurs
de laboratoires de Mathématiques et de Mécanique pour explorer les comportements
élastiques non standard des matériaux architecturés, afin de trouver et de synthétiser
de tels matériaux. Jean-François Scheid (Mâıtre de conférences à l’Institut Élie Cartan
de Lorraine (IECL), Université de Lorraine, Nancy, France) et Jean-François Ganghoffer
(Professeur au Laboratoire d’Étude des Microstructures et de Mécanique des Matériaux,
Université de Lorraine, Metz- Nancy, France) ont supervisé ma thèse.

Je tiens à souligner que cette thèse est le fruit de nombreuses collaborations en-
richissantes. En plus de mes superviseurs, j’ai travaillé avec André Novotny (Laboratório
Nacional de Computação Cient́ıfica LNCC/MCT, Petrópolis, RJ, Brazil), Jan Soko loswski
(Institut Élie Cartan de Lorraine (IECL), Université de Lorraine, Nancy, France), Arthur
Lebée (Laboratoire Navier, École des Ponts, Université Gustave Eiffel, CNRS, Marne-la-
Vallée, France), Ilaria Lucardesi (Institut Élie Cartan de Lorraine (IECL), Université de
Lorraine, Nancy, France), Baptiste Durand (Laboratoire Navier, École des Ponts, Uni-
versité Gustave Eiffel, CNRS, Marne-la-Vallée, France) et Nicolas Auffray (Laboratoire
Modélisation et Simulation Multi Échelle, MSME UMR 8208 CNRS, Université Paris-Est,
5 bd Descartes, 77454 Marne-la-Vallée, France).

Détaillons le contenu du manuscrit.

Dans le chapitre 1, nous calculons les dérivées topologiques des tenseurs homogénéisés
d’ordre supérieur d’un matériau périodique, par rapport à une perturbation topologique
de la cellule périodique constituant ce matériau. La dérivée topologique donne le com-
portement d’une grandeur mécanique affectée à la cellule d’une structure périodique d’un
matériau composite, lorsque celle-ci est soumise à une perturbation infinitésimale de sa
topologie. Cette information est intéressante du point de vue de l’optimisation, car elle
indique s’il est avantageux ou non de changer la topologie de la cellule de base du com-
posite. De plus, la dérivée topologique permet l’émergence de géométries nouvelles et non

1Matériaux architecturés conçus avec une homogénéisation d’ordre supérieur, https://anr.fr/
Project-ANR-17-CE08-0039
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triviales qui répondent à des défis majeurs, sans avoir besoin d’une grande précision sur
la topologie initiale.

Nous commençons par introduire le cadre dans lequel nous travaillons :
l’homogénéisation. La théorie de l’homogénéisation est un domaine à la fois des
mathématiques et de la physique, qui aborde les modèles qui contiennent des effets de
taille. En général, ces modèles comportent différentes échelles de longueur, en la présence
d’au moins une échelle microscopique et une échelle macroscopique. Des outils pertinents
doivent être utilisés afin de prendre en compte les effets de l’interaction de ces différentes
échelles, et de prédire quelle sera l’influence de la microstructure sur le comportement
macroscopique du système étudié.

Dans la section 1.2, après une introduction à la théorie de l’homogénéisation, nous
présentons un schéma d’homogénéisation utilisé pour explorer les matériaux élastiques
périodiques pour lesquels la taille de la cellule périodique est petite. Ce schéma nous
permet de définir des tenseurs dits homogénéisés, qui incorporent des informations rela-
tives aux propriétés macroscopiques de ce matériau. Une fois ces tenseurs définis, nous
étudions leur sensibilité topologique.

Le concept de dérivée topologique est présenté dans la section 1.3, puis nous décrivons
ce qu’est une perturbation topologique du problème. Nous ajoutons une petite inclusion
de taille ε dans la cellule périodique, qui a pour effet de modifier légèrement les valeurs
des tenseurs homogénéisés. Ainsi nous calculons les dérivées topologiques de ces tenseurs,
et pour cela, nous avons besoin d’introduire des états dits adjoints. Ces états sont définis
grâce à la méthode adjointe que nous présentons dans cette section. Nous renvoyons à
l’annexe 1.5 contenant quelques lemmes utiles et les preuves des estimations des champs
topologiquement perturbés utilisés pour définir les tenseurs homogénéisés.

Dans le chapitre 2, nous abordons un problème numérique d’optimisation topologique,
basé sur les résultats obtenus au chapitre 1. Le but est d’optimiser les propriétés
macroscopiques d’un matériau périodique. Ainsi la fonction coût de notre problème
d’optimisation est une fonction qui dépend uniquement des tenseurs homogénéisés. Nous
commençons par une brève revue des différentes méthodes numériques existantes pour
l’optimisation de forme et topologique.

Ensuite, nous présentons dans la section 2.2 la méthode que nous avons adoptée, à
savoir une méthode topologique de type gradient couplée à une représentation level-set
du domaine. Nous la décrivons dans le cadre de l’homogénéisation, et nous donnons
les détails techniques de la procédure algorithmique que nous avons implémentée avec
Matlab. L’algorithme fonctionne comme suit. Pour une distribution donnée de la cellule
périodique, nous calculons les tenseurs homogénéisés, évaluons la fonctionnelle de coût,
et calculons la dérivée topologique associée. Puis nous actualisons l’architecture interne
de la cellule de base grâce à la dérivée topologique.

Dans la section 2.3, nous analysons un problème d’optimisation topologique dans le
cas où la cellule périodique est composée d’un mélange de deux matériaux, l’un rigide et
l’autre mou, c’est à dire que le module d’Young du premier et significativement plus
grand que ce lui du second. Nous appelons contraste le rapport entre ces modules
d’Young. Nous définissons dans une première étape, des fonctionnelles de coût näıves,
définies avec des longueurs intrinsèques obtenues comme rapport entre les coefficients
des tenseurs homogénéisés du second et du premier ordre, que nous optimisons. Nous
étudions également la sensibilité de l’algorithme au maillage, aussi bien pour sa com-
posante d’homogénéisation que pour sa composante d’optimisation topologique. Nous
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terminons cette section par l’étude d’une cellule de type pantographique que nous avons
obtenu en amont.

À partir de là, nous nous intéressons dans la section 2.4 au cas où le matériau mou
imite du vide, ce qui signifie que l’on fait tendre son module d’Young vers zéro. Nous ob-
servons que dans cette situation, nous améliorons certaines des longueurs caractéristiques
précédentes. En particulier, nous parvenons à rendre certaines jonctions matérielles de
plus en plus fines, améliorant du même coup les effets d’ordre supérieur.

Enfin, nous étudions un problème d’optimisation pour lequel la fonctionnelle de coût
dépend des invariants des tenseurs homogénéisés du premier et du second ordre dans la
section 2.5.

L’optimisation de la forme d’un problème d’interaction fluide-structure (FSI) est
étudiée dans le dernier chapitre. Après une introduction aux problèmes FSI, ainsi qu’aux
travaux récents concernant leur optimisation topologique et de forme, nous présentons
dans la section 3.2 le modèle qui nous intéresse, à savoir, un corps élastique incompress-
ible bidimensionnel immergé dans un fluide de Stokes incompressible. Une partie de sa
frontière est attachée à un rivet rigide et fixe, tandis que l’autre partie est en interaction
avec le fluide. Les forces surfaciques fluides s’appliquent au corps élastique, le déformant,
et les équations fluides sont posées dans le domaine défini à partir du déplacement du
corps élastique.

A partir de là, le problème posé est de connâıtre et de calculer la forme optimale du
corps élastique initial, qui permet d’optimiser une fonctionnelle de forme abstraite (par
exemple l’énergie). Pour répondre à cette question, nous commençons par donner un
résultat d’existence et d’unicité pour le système IFS dans la section 3.3, en appliquant
une procédure de point fixe.

Puis dans la section 3.4, nous calculons la dérivée de forme de la fonctionnelle de forme
au moyen de la méthode des vitesses. Nous introduisons cette méthode dans la section
3.4.1 . Nous l’appliquons au problème IFS dans les sections 3.4.2 et 3.4.3, afin de calculer
les problèmes de valeurs aux limites des dérivées matérielles de la solution IFS dans la
section 3.4.4, et la dérivée de forme de la fonctionnelle dans la section 3.4.5.

Enfin, nous simplifions la dérivée de forme de la fonctionnelle avec une méthode ad-
jointe, aussi appelée méthode de Céa.
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Introduction (English)

The additive manufacturing and topological optimization sparked a renewed interest
in the study of architectured materials over the past two decades. These technological
progress are partly due to the emergence of 3D printers, enabling fast and affordable
sample production, and the improvement of the computational methods and power.
Architectured materials are materials for which the macroscopic properties are due to the
organization of their inner microstructure, including composition and internal structure,
not only at microlevel, but also at larger length scales, up to the size of a sample or
structural member. They are also called composite material. Although non-periodic
or quasi-periodic microstructures has also been widely studied, architectured materials
are often based on periodic unit cell arrangement. In this thesis we are in particular
interested in periodic materials.

Architectured materials are extensively used in engineering in virtue of their remark-
able properties such as low weight, strength, energy absorption, acoustic insulation. They
make it possible to design artificial materials that can hardly be found in nature, also called
metamaterials. For example auxetic materials can be obtained, whose benefits in terms
of shock and impact resistance, acoustic insulation, vibration absorption, high capacity of
area or volume change, have been widely underlined in the literature for several decades
(see e.g., [Alm85]). An auxetic material is a material expanding transversely when an
uniaxial stretch load is applied on it.

Another example which can be cited among the numerous metamaterials concerns
tetrachiral lattices (see Figure 3). A chiral material has a lack of symmetry when it
is subjected to a mirror transformation (its image by symmetry in a mirror is not
superimposable with itself). A tetrachiral material is a particular case of chiral material,
which stays unchanged when it is rotating by an 2π/4 angle. The periodic tetrachiral
structure studied in [Kar+20] and presented Figure 3 has bulk deformations being
coupled to rotations. This creates a so-called normal to shear strain coupling. Under
traction forces, the structure bends upwards. This could be interesting for the design of
a bridge, in order to compensate for the bending due to the weight of the bridge (see
Figure 3).

Quite often the size of the period or the one of the inhomogeneities is small in com-
parison to the size of the macroscopic structure of an architectured material. Numerical
simulations can be performed in order to predict the overall behaviour of such a material.
But because of the size of the microstructure, a direct analysis is very costly in terms
of computation time, which is cumbersome for an application point of view. Thus the
microstructured material is approximated by a homogeneous material. The theory de-
scribing macroscopic (also called homogenized or effective) properties of a material from
the analysis of its microstructure is called homogenization. We introduce the concept of
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Figure 3: Tetrachiral unit cell (left), and response of a periodic structure composed with
this periodic unit cell, when it is subjected to horizontal traction forces (right) (Figure
from [Kar+20]).

homogenization in Section 1.2 of Chapter 1.
The homogenization allows to obtain a first-order Cauchy macroscopic model de-

scribing an architectured material. We call first order homogenization such a description
of an architectured material. A first-order Cauchy material is a material for which
the sole first gradient of the displacement field is used for measuring the deformations,
and all higher-order displacement gradients are neglected. First-order Cauchy models
are valid under an hypothesis of scale separation: the size of the inhomogeneities has
to be infinitely small in comparison to the macroscopic characteristic dimension of
the structure Thus, such an hypothesis need to be satisfied in the case of first order
homogenization, namely in the case of a periodic material, where the size of the peri-
odic cell needs to be infinitely small in comparison to the macroscopic size of the structure.

However, in practice, this hypothesis is never satisfied since the architectured materials
have finite size periodic cell. Thus, the Cauchy theory of elasticity for homogenization
needs sometimes to be enriched in order to predict accurately scale effects of the material.
The are two ways to improve this model.

The first one concerns the so-called higher order models. They rely on the addition of
degree of freedom in the model. While a Cauchy material only has the displacement field
as only degree of freedom, a Cosserat material has the displacement field and a micro
rotation field as degrees of freedom, and a micromorphic material has a new microstrain
variable, a second order tensor.

The second one concerns higher gradient models. These models include higher order
gradient of the kinematic variable (the displacement or the strain) as variable. For example
a second gradient model includes not only the gradient of the displacement, but also its
second gradient. Thus the second gradient of the displacement field goes into the strain
energy density, while in a Cauchy model, only its first gradient goes into it. We call second
gradient homogenization the procedure offering a macroscopic second gradient model for
a heterogeneous material. We also call strain gradient model, a model which involves the
gradient of the strain field, in place of the second gradient of the displacement.

For example, we have calculated in Chapter 2 of this thesis the shape of a periodic cell
through an topological optimization procedure, in order to maximize homogenized second
gradient effects. A sample of material constituted with this periodic cell, presented in
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Figure 4, has been studied by Baptiste Durand during his thesis in the laboratory Navier
(École des Ponts ParisTech, Université Gustave Eiffel), and shows up second gradient
effects.

Figure 4: Sample of a material constituted with a pantographic like periodic cell. These
pictures come from experiments conducted by Baptiste Durand in the laboratory Navier
(École des Ponts ParisTech, Université Gustave Eiffel).

The architectured materials have excellent properties. This is in part due to the
possibility to adjust their microstructure, either the distribution of matter at the
microscopic scale, or the topology, in order to reach desired properties at the macroscopic
scale. Designers of emerging materials are limited by their imagination. Shape and
topological optimization techniques can be put at the service of the imagination.

The objective of this thesis is to study and apply topological optimization techniques
in order to synthesize new architectured materials in the framework of homogenized con-
tinuous materials in 2D.

The sensitivity analysis of second order homogenized elasticity tensor to topological
microstructural changes is performed. The microstructure is topologically perturbed by
the nucleation of a small circular inclusion of weak material that allows for deriving
the sensitivity in closed form. The resulting topological derivative is given by a sixth
order tensor field over the microstructural domain, which measures how the second order
homogenized elasticity tensor changes when a small circular inclusion is introduced at the
microscopic level. This study is the object of Chapter 1.

In Chapter 2, the obtained topological derivatives of second order homogenized tensors
are used within a numerical method of shape and topology optimization of microstruc-
tures. This method aims to design optimal metamaterials having very pronounced second
gradient effects with respect to the Cauchy elasticity due to a microstructure effect, which
is not the case for most materials encountered in engineering.

This thesis ends with a study which is not in the scope of homogenization and archi-
tectured materials, but which is related to structural optimization. Chapter 3 devoted to
the shape optimization of a Fluid Structure Interaction problem. We want to optimize
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the shape of an elastic material immersed in a fluid, by calculating the shape derivative
of an abstract shape functional, in order to find a direction of descent to make this shape
evolve with the so-called velocity method.

Presentation of the thesis
I started my thesis in October 2018, in the framework of the project ArchiMatHOS2

funded by the french Agence Nationale de la Recherche. This project gathers researchers
from Mathematics and Mechanics laboratories to explore non-standard elastic behaviours
of architectured materials, in order to find and synthesize such materials. Jean-François
Scheid (Associate Professor at the Institut Élie Cartan de Lorraine (IECL), University
of Lorraine, Nancy, France) and Jean-François Ganghoffer (Professor at the Laboratoire
d’Étude des Microstructures et de Mécanique des Matériaux, University of Lorraine,
Metz-Nancy, France) supervised my thesis.

I would like to emphasise that this thesis is the result of numerous enriching col-
laborations. In addition to my supervisors, I worked with André Novotny (Laboratório
Nacional de Computação Cient́ıfica LNCC/MCT, Petrópolis, RJ, Brazil), Jan Soko loswski
(Institut Élie Cartan de Lorraine (IECL), Université de Lorraine, Nancy, France), Arthur
Lebée (Laboratoire Navier, École des Ponts, Université Gustave Eiffel, CNRS, Marne-la-
Vallée, France), Ilaria Lucardesi (Institut Élie Cartan de Lorraine (IECL), Université de
Lorraine, Nancy, France), Baptiste Durand (Laboratoire Navier, École des Ponts, Uni-
versité Gustave Eiffel, CNRS, Marne-la-Vallée, France) et Nicolas Auffray (Laboratoire
Modélisation et Simulation Multi Échelle, MSME UMR 8208 CNRS, Université Paris-Est,
5 bd Descartes, 77454 Marne-la-Vallée, France).

Let us detail the content of the present manuscript.

In Chapter 1, we calculate the topological derivatives of the higher order homogenized
tensors of a periodic material, with respect to a topological perturbation of the periodic cell
constituting this material. The topological derivative gives the behaviour of a mechanical
quantity assigned to the cell of a periodic structure of a composite material, when the
latter is subjected to an infinitesimal perturbation of its topology. This information is
interesting from the optimization point of view, because it indicates whether it is beneficial
or not to change the topology of the cell of the composite. Furthermore, the topological
derivative has been quite used throughout numerical topological optimization scheme, and
it allows the emergence of novel and non trivial geometries that meet major challenges,
without the need for great precision on the initial topology.

In Section 1.2, we start by introducing the framework of microstructure optimization,
that we associate directly with the concept of homogenization. The homogenization theory
is a field of both mathematics and physics, which tackles the models that contain large
size effects. In general this models consist of different length scales, at least a microscopic
and a macroscopic one. Relevant tools need to be used in order to take into account this
scales effect, and in some sense, to predict what will be the influence of the microstructure
on the macroscopic behaviour of the system studied.

2Architectured materials designed with higher-order homogenization, https://anr.fr/
Project-ANR-17-CE08-0039
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In Section 1.2, after an introduction to the homogenization theory, we present an
homogenization scheme used to explore periodic elastic materials for which the size of the
periodic cell is very small. This scheme allows us to define so-called homogenized tensors,
which encapsulate information about the macroscopic properties of this material. Once
these tensors are defined, we study their topological sensitivity.

The topological derivative concept is presented in Section 1.3. Then we describe
what we call a topological perturbation of the problem. Actually, we add a small
inclusion of size ε in the periodic cell, which has the effect of slightly modifying the
values of the homogenized tensors. Thus we compute the topological derivatives of
these tensors, and for that we need to introduce states called adjoints. These adjoint
states are defined thanks to the so-called adjoint method that we introduce in this
section. After this, we perform the direct calculation of the topological derivatives,
relegating to Appendix 1.5 some useful lemmas, together with the proofs of the esti-
mates of the topological counterparts of the fields used to define the homogenized tensors.

In Chapter 2, we lead a numerical topology optimization problem based on the results
obtained in Chapter 1. We start by a brief review of the different exiting numerical
methods for shape and topological optimization.

Then the method that we have adopted is presented in Section 2.2, namely a topo-
logical gradient-type method coupled with a level-set representation of the domain. We
describe it within the framework of homogenization, and we give the technical details of
the algorithmic procedure we have have implemented with Matlab. The algorithm works
as follows. For a given distribution of the periodic cell, we compute the homogenized ten-
sors, evaluate the cost functional (which we can define with a symbolic expression as any
smooth function depending on the homogenized tensors), and calculate the associated
topological derivative. Then we update the internal architecture of the unit cell using the
topological derivative.

In Section 2.3, we perform a topological optimization problem in the case where the
periodic cell is composed with a mixture of two materials, one being stiff and the other
one being soft, that is to say that the Young’s modulus of the first is significantly greater
than that of the second. We call contrast the ratio between these Young’s moduli. We
define some naive cost functionals with intrinsic lengths obtained as the ratios between
the coefficients of the second and the first order homogenized tensors. We also study the
sensitivity of the algorithm with the mesh. We end this section with the study of an
obtained pantographic like cell.

From there we are interesting in the case where the soft material mimic voids, through-
out Section 2.4. We observe that in this situation, we improve some of the previous char-
acteristic lengths. In particular, we manage to make the material connections more and
more fine, improving at the same time the higher order effects.

Finally, we investigate a optimization problem for which the cost functional depends
on invariants of the first and the second order homogenized tensors in Section 2.5.

A shape optimization of a Fluid Structure Interaction (FSI) problem is studied in the
last chapter. After an introduction to FSI problems, and to the recent works regarding
their topological and shape optimization, we present in Section 3.2 the model we are
interesting in. Namely, a two-dimensional incompressible elastic body is immersed in an
incompressible Stokes fluid. A part of its boundary is attached to rigid and fixed rivet
from , while the other part is in interaction with this fluid. Fluid surface forces apply to
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the elastic body, and the fluid equations are posed on the domain defined from the elastic
body displacement: this is a two-way coupling system. The elastic body is deformed,
because of this interaction with the fluid.

From there, we wonder what is the optimal shape of the initial elastic body, in order
to optimize an abstract volume shape functional (for example the energy). To answer
this question, we start by giving an existence and uniqueness result for the FSI system in
Section 3.3, by application of a fixed point procedure.

Then in Section 3.4 we compute the shape derivative of the shape functional by means
of the velocity method. In Section 3.4.1 we introduce this method. Then we apply it
to the FSI problem in Sections 3.4.2 and 3.4.3, in order to compute the boundary value
problems of the material derivatives of the FSI solution in Section 3.4.4, and the shape
derivative of the shape functional in Section 3.4.5.

Finally, we simplify the shape derivative of the functional with an adjoint method,
also called Céa’s method.

12



Chapter 1

Sensitivity of the second order
homogenized elasticity tensor to

topological microstructural changes

1.1 Introduction
The study of synthesis and design of materials involving multiscale effects gave rise to a
wide interest in Engineering, Mechanics, and Mathematics during the two past decades,
and it broadened the application scope, among others structural mechanics, biomechanics,
aerospace engineering, wave propagation in solids, and acoustics. The research works on
this subject have increased with the emergence of recent experimental and manufacturing
techniques, computational methods and tools, and theoretical developments. The various
length scales of this type of materials allow the elaboration of multiscale constitutive
theories, the so-called theory of homogenization, in order to explain, more accurately
than standard phenomenological approaches, their macroscopic response under loading for
example. The first developments has been made for periodic structures [BLP11; GNS83;
HS63; Hil65; MMS99; MSS99; San80; Suq87], and since then the framework has not stop
expanding to fit more general and complex models. We propose in Section 1.2 a short
introduction to homogenization theory.

In this context, the design of the microstructure is a major issue for a mixture of
different materials, and also for a material perforated with void areas. For example,
in [Alm85] and [Lak87] microstructural topologies that produce negative macroscopic
Poisson’s ratio are obtained with a relaxation-based technique. A material having
a negative Poisson’s ratio, called auxetic, is a material that unfolds in the direction
transverse to the loading direction.

Most of the works in the literature devoted to microstructures exhibiting such unusual
behaviors have been found recoursing to a rather heuristic approach, underlining the need
for a more systematic methodoloy for their design. To find out new microstructures pro-
ducing these kinds of non classical behaviours at the macroscopic scale, different methods
have been developed in the last two decades; we can cite the use of classical shape opti-
mization method (see e.g., [HP06; SZ92]), based on shape gradient of the desired criterion,
with respect to a smooth variation of the boundary. This approach depends deeply on
the initial guess for the microstructure, because it does not allow for topology changes.
More recently, the combination of shape gradient concept and level-set method (investi-
gated in [OS88]), has produced interesting results in structural optimization; the reader
can see for instance [AJ05; AJT04; Bur03; OS01; SW00; WWG03]. Relaxed formulations
based on homogenization theory have been developed in [All02; AK93; All+97a; BK88],
and provide topology variations in certain cases. In Section 2.1, the different methods of
structure optimization are presented in more details.

13



1.1. Introduction Topological sensitivity of the second order homogenized tensor

Another strategy is based on the concept of topological derivative, which was rigorously
introduced in [SŻ99]. The idea is to produce a new microstructure which is the result
of an optimization problem. For improving a selected optimization criterion yielding
such a microstructure, the strategy adopted is to compute a topological asymptotic
expansion of this criterion with respect to an infinitesimal topological perturbation of
the domain. The reader may find the use of this concept in topology optimization in
[AJT04; AA06; BHR04]. In the framework of the development of homogenized models
of elastic materials, the topological derivative of the first order homogenized elasticity
tensor has been calculated in [GNS10; Giu+09a] in the case of void and soft inclusion,
respectively, and in [Ams+10] in the case of a soft material inclusion, completed with
a numerical investigation. More recently the topological derivative of the second-order
macroscopic model associated with scalar waves in periodic media has been evaluated in
[BCG18], making use of integral equations together with the periodic Green’s function.

Our goal is to produce new microstructures which aim to optimize the macroscopic
properties of a material, with the use of a topological optimization procedure relying
on the higher order homogenized tensors of this material. In the present chapter, the
elasticity system in plane stress in two-dimensional periodic media is considered, so that
the microstructure we aim to optimize is the periodic unit cell constituting this material.
Concretely, we want to investigate the following kind of problems:

min
Y
{J (HY)} , (1.1)

where Y is the periodic unit cell of the material, and J is a functional depending of a
higher order homogenized tensor HY , itself depending on the unit cell Y . In this chapter
we give no clue concerning the nature of J , which we consider as an abstract smooth
functional. We will explicit it in Chapter 2.

For tackling this topological optimization problem, we compute the topological
derivatives of its higher order homogenized tensors. These topological derivatives mea-
sure how the homogenized tensors change when a small circular inclusion is introduced at
the microscale level. This information is crucial for the synthesis and optimal design of
microsctructures having a macroscopic behaviour depending on higher order derivatives
of the average displacement.

This chapter is organized as follows. We start, after an introduction to the theory of
homogenization, by describing in Section 1.2.1 a homogenization scheme in the framework
of periodic media (see [SC00]). We consider a material which is paved with a periodic unit
cell, itself being weighted by a size ratio τ meant to vanish. Namely we have a periodic
material for which the domain is of finite size, with a periodic unit cell of decreasing size.
We use the asymptotic expansion method in order to compute an asymptotic expansion
of the macroscopic energy of the material E h with respect to the parameter τ . For this
we need to compute in Section 1.2.2 the solutions of auxiliary problems posed on the
unit cell, called correctors. Next, different truncations in the asymptotic expansion of
the energy lead to the formal definition of so-called higher-order homogenized tensors.
These homogenized tensors are defined in Sections 1.2.3 and 1.2.4, and are constructed
with the help of so-called correctors. In order to produce microstructure improving certain
macroscopic behaviours in Chapter 2, we choose to optimize functional depending on these
homogenized tensors, through a topological optimization procedure. For this purpose we
need to compute the topological derivatives of these homogenized tensors.

14



Topological sensitivity of the second order homogenized tensor 1.2. Homogenization

We undertake in Section 1.3 a perturbation of the unit cell. After an introduction to
the topological derivative concept through Section 1.3.1, we define what is the topological
perturbation we perform in Section 1.3.2. The microstructure of the underlying material
is topologically perturbed by the nucleation of a small circular inclusion endowed with
different material properties from the background material. We give the estimations of the
perturbed correctors, that is the solutions of the auxiliary problems defined on the unit cell
we have topologically perturbed. Together with these estimations, an adjoint method is
need for the computation of the topological derivatives. We present this method in Section
1.3.3. We recall in Section 1.3.4 the formula of the topological asymptotic of the classical
first-order homogenized tensor derived in [Ams+10; GNS10; Giu+09a], and we calculate
the topological derivative associated with a simple higher-order homogenized tensor for
introducing the method. In Section 1.3.5 we finally derive in details the topological
derivative of the second-order homogenized tensor.

The chapter ends with some concluding remarks in Section 1.4. The proofs of certain
lemmas are moved to Appendix 1.5.

This work and its context was initiated by Arthur Lebée1 and Jan Soko lowski2. Then
I worked in a close collaboration with Antonio André Novotny3, with the help and the ad-
vices of my supervisors Jean-François Scheid and Jean-François Ganghoffer. This resulted
in the publication of an article in the Journal of Elasticity [Cal+21].

1.2 Homogenization
Many problems coming from the Physics, or other fields, which are modeled by partial
differential equations involving specific quantities together with boundary or limit condi-
tions, come across different intrinsic scales. For example we can imagine a medium with
a characteristic length, in which waves with far longer wave-length propagate. Another
situation is that of a plate constituted of a multitude of small unit cells. In such problems
we can see emerging scale effects, resulting directly from the multi-scale character of the
problem. We at least distinguish two different scale, the microscopic and the macroscopic
one, although we could imagine more than two length-scales being involved (see Figure
5).

Generally speaking, homogenization theory consists in the study of the macroscopic
behaviour of a system which possesses microscopic heterogeneities. Thus the idea is
somehow to average a heterogeneous medium, characterized by microscopic properties,
in order to replace it with a homogeneous medium, being in some sense a good approx-
imation of the original one, and from which derive so-called homogenized, or effective
(or even macroscopic) properties. For example we can imagine heterogeneous media for
which we calculate effective thermal or electrical conductivity. Even if this theory was
notably first developed in mechanics, the term homogenization comes most likely from
nuclear engineering and the study of neutron transport in networks, and the definition

1 Navier laboratory, École des Ponts, Université Gustave Eiffel, CNRS, Marne-la-Vallée, France. email:
arthur.lebee@enpc.fr

2 Institut Élie Cartan de Lorraine, UMR 7502, Université de Lorraine, B.P. 70239, 54506 Vandoeuvre-
lès-Nancy Cedex, France. email: jan.sokolowski@univ-lorraine.fr

3 Laboratório Nacional de Computação Cient́ıfica LNCC/MCT, Coordenação de Métodos
Matemáticos e Computacionais, Av. Getúlio Vargas 333, 25651-075 Petrópolis, RJ, Brazil. email:
novotny@lncc.br
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1.2. Homogenization Topological sensitivity of the second order homogenized tensor

of the diffusion coefficient of a network by representing it with an homogeneous medium
with the same averaged characteristics [Ben64].

To illustrate this introduction, we consider a diffusion type boundary value problem
posed on a fixed domain D, with a source term f , and homogeneous Dirichlet condition.
This domain as a whole represents the macroscopic scale. And we consider a problem
characterised by the parameter τ representing the ratio of a microscopic characteristic
size of heterogeneities to a macroscopic dimension (see Figure 5). This is expressed by a
diffusion matrix Aτ depending on this parameter. For example the matrix Aτ fluctuates
rapidly from a wave length of τ . The solution of the problem is a scalar field denoted by
uτ , satisfying the following problem.{− div(Aτ∇uτ ) = f in D,

uτ = 0 on ∂D.
(1.2)

The idea of homogenization is to replace the problem (1.2) by an approximated homoge-
neous problem: {− div(A∗∇u) = f in D,

u = 0 on ∂D,
(1.3)

homogeneous in the sense that A∗ is constant or it varies slowly.

D

τ

Figure 5: The domain D constituted with a microstructure of microscopic characteristic
size τ .

There are different ways of thinking homogenization. From the physical, or mechanical
point of view, the idea is to identify a length-scale on which we compute the average of
the true microscopic fields. We deduce from these averaged quantities the definition of
the homogenized (or effective) properties. This is often called the Representative Volume
Element (RVE) method. For our example problem, it stands for the averaging of the
gradient field ∇uτ on the RVE, denoted by ξ, and the averaging of the flux Aτ∇uτ ,
denoted by σ. Then the effective diffusion matrix A∗ is deduced from the constitutive
relation σ = A∗ξ. This method is quite efficient to have the intuition of an effective model,
but is not always justified from a mathematical point of view. Anyway, we use it in the
following section for the definition of the homogenized tensors.
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From the mathematical point view, which is quite new in comparison to the physical
one, the method is different. The homogeneous model is defined as the limit of a sequence
of heterogeneous problems depending on a scale parameters (τn)n≥0 going to zero. The
homogenized or effective properties are defined as the resulting properties of this limit
problem. Those are the questions arising from this homogenization method by means of
analysis of sequences of boundary value problems:

• Does uτn converge to some limit u?

• Is actually u the solution of some limit boundary value problem?

• Is u a good approximation of uτn?

One can find the first developments towards answering these scientific questions in the
concept of G-convergence, developed in [Spa67], [Spa68]. It deals with the convergence of
symmetric matrices Aτ for a elliptic Dirichlet problem, through the convergence of Green
kernel. One can as well attribute the first developments of the theory of homogenization
for the mathematical study of periodic structures to the earlier works [Sán70], [Sán71],
and also to [Bab76], where the term homogenization was used for the first time in a math-
ematical context. Then the concept of G-convergence was generalized to H-convergence
in [Mur77; MT97], [Tar75], giving a framework for a general theory of homogenization.
Since then other theories and methods was developed. For example the two-scale conver-
gence method, introduced in [Ngu89], and developed in [All92]. We can also mention the
Γ-convergence ([De 84], [Dal93]), which constitutes a variational theory of homogeniza-
tion, used for studying minimization problems and convergence properties of functionals.
Finally, we can also cite stochastic or probabilistic theory of homogenization ([GP83;
Koz79; PV81]).

For other general references to homogenization we refer to [San80; BP89] for linearized
elasticity, [BLP11; San80] for heat equation, [BLP11] for wave equation. Introductions
to homogenization and related mathematical framework can be found in [CD99], [Tar09]
or [All02; All07; All12].

In the following, we present the formal homogenization framework introduced in
[SC00], which allows to define higher order homogenized tensors in the context of pe-
riodic homogenization. In this presentation, τ represent a size ratio between the size of
the macroscopic material, and the size of the microscopic periodic cell. In light of what
we have introduced before, the higher order tensors act as corrective terms in the approx-
imation of the flux Aτ∇uτ by A∗ξ, or equivalently of the approximation of the energy
(Aτ∇uτ ) · ∇uτ by (A∗ξ) · ξ.

The asymptotic expansion method is used to derive an asymptotic expansion of the
macroscopic energy E h of the material with respect to the parameter τ . The energy E h

is actually the average on a cell of the microscopic energy. We give an overview of this
procedure in Section 1.2.1, where the macroscopic energy is written in function of the
solutions of auxiliary problems named correctors. Then we describe in Section 1.2.2 how
the auxiliary problems are obtained. We finally show in Sections 1.2.3 and 1.2.4 how the
homogenized tensors are defined from the truncation of the asymptotic expansion of the
macroscopic energy.
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x ∈ D

tY
y = x/t ∈ Y

Figure 6: The domain D is paved with the unit cell domain Y , weighted by the length
parameter t. The unit cell is composed of two different materials, a light gray and a dark
gray.

1.2.1 Smyshlyaev and Cherednichenko homogenization scheme
This section describes the multi-scale method used in [SC00] to identify the homogenized
coefficients of an elasticity problem written for a periodic media, in order to calculate their
topological sensitivities with respect to a configurational perturbation in the periodic cell.

Let D be a connected bounded regular open subset of R2 representing an elastic
material having, as described bellow, a periodic micro-structure. Furthermore we assume
that this material is a Cauchy material, completely characterized by its elasticity tensor,
or stiffness tensor. In this manner the periodic structure of this material is in fact given
by the periodicity of this elasticity tensor. We first define what periodicity means, and
then what the elasticity tensor is. Let {e1, e2} be an orthonormal basis of R2, and

Y = (0, l1)× (0, l2) (1.4)

be an open rectangle of R2, for 0 < l1, l2. The open set Y stands for the unit cell of the
periodic material, and we define Y-periodicity for a function as follows.

Definition 1.1. Let f be a real-valued function defined a.e. on R2. We say that the
function f is Y-periodic iff for all k ∈ Z, and for all i in {1, 2},

f(x+ kliei) = f(x), for a.e. x ∈ R2. (1.5)

Before defining the elasticity tensor, we rely on the convention used in classical tensor
calculus (see also Appendix A). Let u and v be two vectors of R2, A and B be two second
order tensors of R2, and T be a fourth order tensor of R2, we write:

TA = TijklAkl ei ⊗ ej, (1.6)
AB = AikBkj ei ⊗ ej, (1.7)

A ·B = AijBij, (1.8)
Au = Aijuj ei, (1.9)
u · v = uivi, (1.10)

by using the Einstein summation convention, and where ei ⊗ ej is a matrix such that
(ei ⊗ ej)kl = δikδjl. Now we can define the elasticity tensor characterizing the material
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D. For this, we need to defined first the elasticity tensor characterizing the unit cell Y .
We consider that the elasticity tensor of the unit cell is given by a fourth order tensor
C = (Cijkl)1≤i,j,k,l≤2, such that for all indices i, j, k, l = 1, 2 we have:

(i) Cijkl ∈ L∞(R2), and is Y-periodic,

(ii) the following major and minor index symmetries hold:

Cijkl = Cjikl = Cklij, (1.11)

(iii) C is uniformly continuous, that is there exists a real numbers 0 < b such that for
any second order tensor A:

|CA| ≤ b|A|, (1.12)

where |·| denotes the following norm for second order tensors:

|A|2 = AijAij, (1.13)

and C is uniformly coercive, that is there exists a constant 0 < a such that for any
symmetric second order tensor A:

a|A|2 ≤ CA · A. (1.14)

Let 0 < t be a microscopic length parameter describing the length-scale of the microscopic
variations of the elasticity tensor and let 0 < T be a macroscopic length parameter which
can be for example defined by T = diam(D) (see Figure 6). We denote by τ the ratio

τ = t/T. (1.15)

We have assumed that the medium is macroscopically homogeneous, so that the tensor
Cτ of microscopic moduli does not depend on the macroscale position, but only on the
microscale variable. Thus we define the elasticity tensor of the periodic material D,
depending on the parameter τ as follows:

Cτ (x) := C(x/t). (1.16)

This definition can be illustrated as follows. The periodic medium we are interested in,
consists of the domain D, which is paved with the microscopic periodic cell tY (see Figure
6).

We consider for this material a pure displacement problem in plane stress: this material
is subjected to volume forces, also called loads, f ∈ L2(D), and the displacement field
uτ : D → R2, which is the unknown of the problem, is fixed on the boundary ∂D being
equal to a Dirichlet data uD ∈ H1/2(∂D). The displacement vector field uτ is then given
by the solution of the following boundary value problem of linearized elasticity{− divx(στx(uτ )) = f in D,

uτ = uD on ∂D,
(1.17)

where the second order tensor field στx(uτ ), called the total stress tensor, is specified
throughout the following constitutive law (1.18), also called the stress-strain relation in
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the linear regime. Namely στx(uτ ) depends linearly on the total linearized strain tensor
ex(uτ ), defined as the symmetrized first gradient of the displacement:

στx(uτ ) := Cτex(uτ ), (1.18)

ex(uτ ) := ∇s
xu

τ := 1
2
(
∇x(uτ ) +∇x(uτ )>

)
, (1.19)

where the right lower index of a differential operator denotes the differentiation variable.
It is well know that for all 0 < τ , the boundary value problem (1.17)-(1.18)-(1.19) has a
unique solution uτ in the Sobolev space H1(D) (see e.g., [Cia88] Section 6.3). For having
a good numerical approximation of uτ , it is usual to make use of Finite Element Method
(FEM) to solve (1.17) in discretized spaces. But when τ turns to be really small, and
this is the case we are interested in, then the size of the elements of the FEM has to be
small enough to take into account the microscopic variations of Cτ – namely we need at
least several elements inside each microscopic cells tY . Such a fine discretization could
be computationally heavy for small τ . Thus we want to find a homogenized model, or
effective model, which does not depend on the microscopic oscillations of the true model.
For this we apply the multiple-scale method (see e.g., [CD99] Chapter 7).

We define
y = x/t and Y = x/T, (1.20)

respectively the normalized micro and macro variables, for all x ∈ D (see Figure 6).
Let the vector field uτ (x) ∈ R2 be the displacement, solution of the elasticity system
(1.17)-(1.18)-(1.19) in D. We assume that uτ can be expanded as

uτ (x) = T
[
u0

(
x

T
,
x

t

)
+ τu1

(
x

T
,
x

t

)
+ · · ·+ τnun

(
x

T
,
x

t

)
+ · · ·

]
, (1.21)

where the functions ui(Y, y) are Y-periodic with respect to the y-variable for all i ≥ 0.
Using this expansion in the equilibrium (1.17) and constitutive equations (1.18)-(1.19), we
obtain a family of auxiliary problems, that we are going to explicit in the following section
1.2.2. The solutions of these auxiliary equations are a family of tensor fields (H(i)(y))i≥0
called correctors, each of these tensors being a tensor of order i+ 2. We can see in [SC00]
that uτ can be then asymptotically developed in function of terms depending on the one
hand on these correctors fields, and on the other hand on a sequence of macroscopic vector
fields (U (i)(Y ))i≥0 assumed to be constant within a cell. For 0 ≤ i and 1 ≤ j fixed, and
for a given macroscopic vector field U (i)(Y ), the corrector H(j)(y) of order j + 2 acts on
the tensor ∇j−1∇s

YU
(i)(Y ) of order j + 1 to give a vector field as follows:

(H(j)(y)∇j−1∇s
YU

(i)(Y ))p1 = (H(j)(y))p1p2···pj+2(∇j−1∇s
YU

(i)(Y ))p2···+j+2 . (1.22)

This gives the following expansion for uτ :

T−1uτ (x) = U (0)(x/T ) (1.23)
+ τ

(
U (1)(x/T ) +H(1)(x/t)∇s

YU
(0)(x/T )

)
+ τ 2

(
U (2)(x/T ) +H(1)(x/t)∇s

YU
(1)(x/T ) +H(2)(x/t)∇Y∇s

YU
(0)(x/T )

)
+ τ 3

(
U (3)(x/T ) +H(1)(x/t)∇s

YU
(2)(x/T ) +H(2)(x/t)∇Y∇s

YU
(1)(x/T )

+H(3)(x/t)∇2
Y∇s

YU
(0)(x/T )

)
+ · · · .

(1.24)
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By writing formally

U(Y ) =
∞∑
i=0

τ iU (i)(Y ), (1.25)

the above expansion suggests to seek approximations of uτ in the form of truncations with
respect to different orders of τ of the following form

T−1uτ (x) = U(x/T )+τH(1)(x/t)∇s
YU(x/T )+· · ·+τ kH(k)(x/t)∇k−1∇s

YU(x/T ), for k ≥ 0.
(1.26)

Therefore, we seek the total field uτ as the sum of a macroscopic displacement field U
and its i-th derivative weighted by τ i and a corrector field, for 1 ≤ i ≤ k.

From this, we define the macroscopic energy E h as being the average of the microscopic
elastic energy Eµ on the unit cell domain Y , where Eµ is defined by

Eµ = 1
2σx(u

τ ) · ex(uτ ), (1.27)

so that
E h = 1

V

∫
Y

1
2σx(u

τ ) · ex(uτ ) dy, (1.28)

where V = |Y| denotes the area of the unit cell, |Y| being the Lebesgue measure of
Y . Calculating the macroscopic energy induced by truncation (1.26), we obtain such a
development with respect to τ

E h = E0 + τE1 + τ 2E2 + · · ·+ τ kEk, (1.29)

where Ei does not depend on τ , for 0 ≤ i ≤ k.

In Section 1.2.3 and 1.2.4, we are going to show how to compute the successive terms of
the energy expansion (1.29) for k = 1 and k = 2, and how we can identify the homogenized
tensors from this expression. Before we recall in the next paragraph how to obtain formally
the auxiliary equations and the corrector fields in the framework of the multi-scale method
(see e.g., [CD99; SC00; For06; JS20]).

1.2.2 Auxiliary equations
Let us write the auxiliary problems in their strong formulations. We have that for any
α = 1, 2, the total derivative with respect to the x variable in the direction ei is given by
the following double scale derivative formula:

∂xα = 1
T

(
∂Yα + 1

τ
∂yα

)
. (1.30)

From now on, we set T = 1 for convenience. In view of Ansatz (1.21), we can formally
write

ex(uτ ) = τ−1∇s
yu0 +

∞∑
i=0

τ ie(i), (1.31)

where
e(i) := ∇s

Y ui +∇s
yui+1. (1.32)
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Let us define in the same way
σ(i) := Ce(i). (1.33)

Introducing expansion (1.21) of uτ in the equilibrium equation (1.17), we obtain a sequence
of equations at the successive order of τ :

∇s
yu0 = 0, (a)

divy(σ(0)) = 0, (b)
divy(σ(1)) + divY (σ(0)) + f = 0, (c)
divy(σ(i+1)) + divY (σ(i)) = 0, for i ≥ 1, (d)

(1.34)

where (a), (b) and (c) are respectively the equations of order τ−2, τ−1 and τ 0, and (d)
stands for equations of order τ i, for all i ≥ 1. Each of these equations is written on
a unit cell Y , with the Y-periodicity of ui as boundary condition. The corresponding
boundary value problems, also named auxiliary problems, can be solved by induction.
In the sequel, we just solve the three first auxiliary equations (a), (b), and (c) in (1.34),
because we only need the correctors deriving for these equations for the expression of the
truncation (1.26) for k = 1, 2.

1. The first equation (1.34(a)) determines that the displacement u0(Y, y) does not
depend on the microscopic variable y. From now on we will write

u0(Y, y) = U (0)(Y ). (1.35)

2. Let us rewrite the second equation (1.34(b)), reminding that σ(0) is given by (1.33),
and setting

E(0) := ∇s
YU

(0), (1.36)
we find

divy
(
C∇s

yu1 + C(ei ⊗s ej)E(0)
ij

)
= 0, (1.37)

where we recall that E(0) can be written as

E(0) = E
(0)
ij (ei ⊗s ej), (1.38)

with
a⊗s b := a⊗ b+ b⊗ a

2 , (1.39)

for all vectors a, b ∈ R2. By linearity of the problem (1.37) we can write

u1(Y, y) = U (1)(Y ) + ũij(y)E(0)
ij (Y ), (1.40)

where the vector field ũij, called the first order corrector, is the solution of the Y-periodic
boundary value problem posed on the unit cell Y for the first auxiliary equation:

divy
(
C∇s

yũij + C(ei ⊗s ej)
)

= 0. (1.41)

We choose this notation for the first order corrector for the sake of readability of the
calculations we are going to lead in Section 1.3. For a comparison with the generic
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notation we have introduced in the previous Section, recalling that ũij is a vector field
and H(1) is a 3 order tensor, we have

(ũij(y))k = (H(1)(y))ijk. (1.42)

3. Before solving the third auxiliary problem, let us evaluate the average on the unit
cell of equation (1.34(c)). We assume that f = T−1F (Y ). This gives us that:

divY (〈σ(0)〉) + F = 0, (1.43)

where for all tensor fields A, we define the volume averaging of A

〈A〉 := 1
V

∫
Y
A(y)dy, (1.44)

where V = |Y| denotes the area of the unit cell. From (1.32) and (1.33), we have

〈σ(0)〉 = 〈C∇s
Y u0〉+ 〈C∇s

yu1〉. (1.45)

We have that E(0) = ∇s
Y u0 where u0 = U (0) depends only on the macroscopic variable,

thus from equation (1.38) we have 〈C∇s
Y u0〉 = 〈Cei ⊗ ej〉E(0)

ij . By definition of u1 given
in (1.40), we have 〈C∇s

yu1〉 = 〈C∇s
yũij〉E(0)

ij . Finally, by defining the following the vector
field

uij(y) := (ei ⊗s ej)y + ũij(y), (1.46)
we can relate the average stress to the average strain through the relation

〈σ(0)〉 = 〈C∇s
yuij〉E(0)

ij . (1.47)

Now let us rewrite the equation (1.34(c)) setting

E(1) := ∇s
YU

(1), and K(0) := ∇YE
(0), (1.48)

and taking into account (1.43). We find

divy
(
C∇s

yu2
)

+ divy(CE(1)) + [divy(C(ũij ⊗s ek)) + (C∇s
yuij − 〈C∇s

yuij〉)ek]K(0)
ijk = 0.

(1.49)
Once again by linearity we can write the solution u2 in the following way

u2(Y, y) = U2(Y ) + ũij(y)E(1)
ij (Y ) + ˜̃uijk(y)K(0)

ijk(Y ), (1.50)

where the vector field ˜̃uijk, called the second order corrector, is the solution of the Y-
periodic boundary value problem on the unit cell Y for the second auxiliary equation:

divy
(
C∇s

y
˜̃uijk

)
+ divy (C(ũij ⊗s ek)) + (C∇s

yuij − 〈C∇s
yuij〉)ek = 0. (1.51)

As before, we notice that we have the following connexion with the previous notation

(˜̃uijk(y))l = (H(2)(y))ijkl. (1.52)

Now since we have calculated the first and second order correctors, we can compute
the macroscopic energy. We consider for this a truncation (1.26) of the displacement uτ
for k = 1. This is done in the next section.
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1.2.3 First-order truncation
We recall that Y = x/T , y = x/t and τ = t/T , with x ∈ R2, and we set T = 1. Motivated
by expansion (1.26), we introduce the macroscopic displacement field U(Y ) ∈ R2, and the
macroscopic deformation is defined as

E(Y ) = ∇sU(Y ). (1.53)

We write ũ(Y, y) = ũij(y)Eij(Y ), where

Eij(Y ) = E(Y ) · (ei ⊗s ej). (1.54)

Then introduce the expansion

uτ (Y, y) = U(Y ) + τ ũ(Y, y). (1.55)

The displacement fields ũij are solutions of the following canonical set of variational
problems

ũij ∈ V :
∫
Y
σy(ũij) · ey(η) +

∫
Y

C(ei ⊗s ej) · ey(η) = 0, ∀η ∈ W , (1.56)

where σy(ũij) = Cey(ũij) and the spaces W and V are defined as follows

W := H1
per(Y ;R2)/R, (1.57)

V :=
{
η ∈ H1

per(Y ;R2) | 〈η〉 = 0
}
, (1.58)

where H1
per(Y ;R2) is the completion in H1(Y ;R2) of the space of functions in C∞(R2,R2)

which are Y-periodic. From these elements, we have

ex(uτ ) = eY (uτ ) + 1
τ
ey(uτ ) = (ey(uij)Eij + τ(ũij ⊗s ∇YEij)) , (1.59)

where
uij := (ei ⊗s ej)y + ũij, (1.60)

with ũij solutions to the set of canonical variational problems (1.56).

Then we calculate the macroscopic energy E h, being the average of the microscopic
elastic energy 1

2σx(u
τ ) · ex(uτ ) on the unit cell domain Y , in order to identify the homog-

enized elasticity tensors. We find using (1.59) with (1.28):

E h = 1
2V

∫
Y
σx(uτ ) · ex(uτ )

= 1
2V

∫
Y
{Eklσy(ukl) · ey(uij)Eij
+ τ (Eklσy(ukl) · (ũij ⊗s ∇YEij) + Eijσy(uij) · (ũkl ⊗s ∇YEkl))
+ τ 2 (ũij ⊗s ∇YEij) ·C(ũkl ⊗s ∇YEkl)} . (1.61)

We set
K(Y ) := ∇E(Y ) (1.62)
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which can be written in the canonical basis of third order tensors K(Y ) = Kijk(Y )ei ⊗
ej ⊗ ek. Thus we obtain

E h = E h(E,K) = 1
2EijC

h
ijklEkl + τ

1
2EijE

]
ijpqrKpqr + τ 2 1

2KijkD]
ijkpqrKpqr + o(τ 2), (1.63)

which defines the three following homogenized elasticity tensors: the fourth order tensor
Ch = (Ch

ijkl)1≤i,j,k,l≤2, the fifth order tensor E] = (E]
ijpqr)1≤i,j,p,q,r≤2, and the sixth-order

tensor D] = (D]
ijkpqr)1≤i,j,k,p,q,r≤2, given by

Ch
ijkl := 1

V

∫
Y
σy(uij) · ey(ukl), (1.64)

E]
ijpqr := 2

V

∫
Y
σ(uij) · (ũpq ⊗s er), (1.65)

and
D]
ijkpqr := 1

V

∫
Y

C(ũij ⊗s ek) · (ũpq ⊗s er). (1.66)

The macroscopic energy density (1.63) corresponds well to a strain gradient model. How-
ever the terms of order τ and τ 2 in the expression (1.63) of the macroscopic energy E h

are not complete. The higher-order tensors E] and D] do not contain all contributions
from the order τ and τ 2 provided by the full asymptotic expansion of uτ (1.21). It is
shown in [SC00] and [Dur+20] that these tensors cannot be used as a correct estimate of
strain gradient effects. For encapsulating all the contributions of order τ and τ 2, we nee
to go further in the truncation of the displacement (1.26) and consider the second order
truncation, for k = 2.

1.2.4 Second-order truncation
We introduce the expansion up to the second order of the small-scale parameter:

uτ (Y, y) = U(Y ) + τ ũ(Y, y) + τ 2 ˜̃u(Y, y), (1.67)

where ˜̃u(Y, y) = ˜̃uijk(y)Kijk(Y ), with Kijk(Y ) = K(Y ) ·(ei⊗ej⊗ek) and K(Y ) = ∇E(Y ).
The displacement fields ˜̃uijk are solutions of the following canonical set of variational
problems

˜̃uijk ∈ V :
∫
Y
σy(˜̃uijk) · ey(η) +

∫
Y

C(ũij ⊗s ek) · ey(η) =∫
Y

(σy(uij)−Ch(ei ⊗s ej))ek · η, ∀η ∈ W , (1.68)

where V andW are defined in (1.58) and (1.57). Let us calculate the strain tensor induced
by uτ :

ex(uτ ) = ey(uij)Eij + τ(ũij ⊗s ek + ey(˜̃uijk))Kijk + τ 2(˜̃uijk ⊗s el)∂YlKijk. (1.69)

Same as before, we need to calculate 1
2σx(u

τ ) · ex(uτ ) in order to evaluate the average of
the elastic energy on the cell and then identify the macroscopic energy law. Performing
a formal macroscopic integration by parts on D in order to transform the coupled terms
Eij∂ykKpqr into KijkKpqr (see [SC00]), we calculate

E h = 1
2EijC

h
ijklEkl + τ

1
2EijE

h
ijpqrKpqr + τ 2 1

2KijkDh
ijkpqrKpqr + o(τ 2), (1.70)
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where Eh = (Eh)1≤i,j,p,q,r≤2 and Dh = (Dh
ijkpqr)1≤i,j,k,p,q,r≤2 are the homogenized fifth and

sixth-order tensor given in index format by

Eh
ijpqr := 2

V

∫
Y
σ(uij) · (e(˜̃upqr) + ũpq ⊗s er), (1.71)

and

Dh
ijkpqr := 1

V

∫
Y

C(ũij ⊗s ek + ey(˜̃uijk)) · (ũpq ⊗s er + ey(˜̃upqr))

− 1
V

∫
Y

(
σy(uij) · (˜̃upqr ⊗s ek) + σy(upq) · (˜̃uijk ⊗s er)

)
. (1.72)

By setting η = ˜̃upqr as test function in (1.68), we obtain the following equality∫
Y
σy(˜̃uijk) ·ey(˜̃upqr)+

∫
Y

C(ũij⊗s ek) ·ey(˜̃upqr) =
∫
Y

(σy(uij)−Ch(ei⊗s ej))ek · ˜̃upqr, (1.73)

which allows to write (1.72) as

Dh
ijkpqr = 1

V

∫
Y

C(ũij ⊗s ek + ey(˜̃uijk)) · (ũpq ⊗s er)

− 1
V

∫
Y

(
Ch(ei ⊗s ej) · (˜̃upqr ⊗s ek) + σy(upq) · (˜̃uijk ⊗s er)

)
, (1.74)

since σy(uij)ek · ˜̃upqr = σy(uij) · (˜̃upqr ⊗s ek). Finally we also define

Fh
ijkpqr = 1

V

∫
Y

C(ũij ⊗s ek + ey(˜̃uijk)) · (ũpq ⊗s er + ey(˜̃upqr)), (1.75)

which represents the second order homogenized tensor computed without the macroscopic
integration by parts. We point out that Fh is positive definite contrary to Dh.

Remark 1. In the case of a centrosymmetric unit cell, the tensor Eh turns to be equal
to zero (see e.g. [SC00]). In Chapter 2, we are going to investigate unit cell which are
centrosymmetric. Thus in a first step we are not interested in the tensor Eh. Nevertheless,
its topological derivative could be interesting for a future study, that is why we compute it
in Appendix B.

So far, we have defined the homogenized tensors Ch, E], Eh D], Fh, and Dh. As we
explained in the introduction, we are interested in the optimization of the topology of
the microstructure of a material, in our case the unit cell, in order to improve some of its
macroscopic properties. For this purpose, we choose functionals based on the homogenized
tensors as optimization criteria.

In the following section, we compute the topological derivatives of these tensors. We
start by a presentation of the concept of topological derivative, then we define what is
the perturbation of the unit cell that we undertake. Before exploring the behaviour of
the homogenized tensors regarding the size of such a perturbation, that is to say before
computing their topological derivatives, we present the adjoint method needed for these
computations.
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1.3 Topological Sensitivity

1.3.1 The topological derivative concept
We are interested in the behaviour of the homogenized tensors Ch and Dh with respect to
the size of the topological perturbation of the unit cell of a periodic material. For this pur-
pose, we will use the concept of topological derivative. It has been rigorously introduced in
[SŻ99] in the context of heat conduction and elasticity problems. Developments of the the-
ory have been led the past two decades in among others [Ams06; AN11; ANV14; BT10a;
BT10b; Bon06; Bon09; BD13; Fei+03; GGM01; GB04; Khl+09; LS03; NS06; Nov13;
NS16; SŻ03; SŻ05; Toa11]. Furthermore, the topological derivative was applied in many
fields, such as topology optimization [AA06; AN10; Nov+07], inverse problems [CLN14;
GB06; HLN12; Jac+02; MPS05], and image processing [AMB07; Bel+08; HL09]. Let us
briefly introduce the topological derivative concept, while we refer to [NS13], [NSŻ19],
and [NS20] for a complete introduction.

ŷ

O

εω ŷ

Oε,ŷ

ω ⊂ R2

Figure 7: Nucleation of hole with the shape ω, with diameter ε, centered at ŷ.

Let O be a bounded subset of Rn, and ω be a bounded simply connected open subset
of Rn, with 2 ≤ n, which contains the origin. We change the domain O by removing a
small region

ωε(ŷ) := ŷ + εω, (1.76)

for an arbitrary point ŷ ∈ O and 0 < ε small enough that ωε(ŷ) ⊂⊂ O. This gives rise to
the definition of the topologically perturbed domain (see Figure 7)

Oε,ŷ := O \ ωε(ŷ). (1.77)

Now we consider a shape functional defined on a class of admissible domains O ∈ Uad 7→
J (O) ∈ R. We are interested in the behaviour of the shape functional J (O) associated
to the topologically perturbed domain J (Oε,ŷ) in comparison with the shape functional
associated to the unperturbed domain J (O), with respect to the location of the perturba-
tion ŷ. Thus, for a given location of perturbation ŷ, we study the behaviour of the shape
functional with respect to the size of the perturbation ε and we define – when it exists –
the topological derivative field as being the first order correction term in the expansion
of J (Oε,ŷ) with respect to ε. This leads to the definition bellow.

Definition 1.2 ([NS13]). Let J be a shape functional. We assume that the following
topological asymptotic expansion holds true

J (Oε,ŷ) = J (O) + g(ε)DTJ (ŷ) + o(g(ε)), (1.78)
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where g is positive, is such that g(ε) → 0 and o(g(ε))/g(ε) → 0 with ε → 0. Then the
function

ŷ ∈ O 7−→ DTJ (ŷ) (1.79)
is called the geometric topological derivative of J at ŷ.

We notice that this definition of the topological derivative implies that we consider a
shape functional which is at least continuous with respect to the size of the perturbation:
that is limε→0 J (Oε,ŷ) = J (O). Let us give a very simple example of calculation of
topological derivative.

Example 2. (Area of a two-dimensional domain). Let J (O) be the shape functional
defined as the area of a domain O of R2:

J (O) := |O|, (1.80)

where |O| is the Lebesgue measure of O. By defining the topologically perturbed domain
Oε,ŷ as in (1.77)-(1.76), we have

J (Oε,ŷ) = J (O)− ε2|ω|, (1.81)

where |ω| is the Lebesgue measure of ω. Indeed

|ωε(ŷ)| = |ωε(0)| =
∫
ωε(0)

1 dx =
∫
ω
ε2 dx. (1.82)

By setting g(ε) = ε2 in (1.81), we obtain

DTJ (ŷ) = −|ω|, ∀ŷ ∈ O. (1.83)

In the case where the perturbation shape is the unit ball B1, we have that the topological
derivative is equal to −π12. It appears that we face an arbitrary ingredient in the definition
of the topological derivative. Indeed we have a choice regarding the positive constant
we put in the definition of g(ε). If we had chosen for example in the definition of the
topological perturbation the unit domain 2ω instead of ω, for the same g(ε) = ε2, then
the topological derivative would have been equal to −4|ω| instead of −|ω|. This underlines
that the topological derivative is not a quantitative information by its own, and that we
are mainly interested in its sign. But putting in g(ε) the area of the unit shape, we obtain
that for any perturbation shape, the topological derivative of J is −1. Thus even for more
complex cases, we will normalize the first order function g(ε) by the volume of the unit
perturbation shape ω.

Furthermore the sign of the topological derivative indicates whether it is interesting
or not regarding the considered criterion J to add a small hole into the material at
the point ŷ. As we said in introduction, we are interested in a shape optimization
problem of the microstructure of a periodic media, with the aim of improving a
criterion J depending on the homogenized tensors we have just defined. To this end,
we will calculate the topological derivative of the homogenized tensors in the next section.

Before this, we extend the definition of topological derivative to a more general frame-
work. Indeed we gave above the definition in the case where the perturbation is a geo-
metric perturbation of the domain O. We made a small hole in O and thus changed its
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topology. But we can consider a more general case in which we do not directly perturb
the domain, but we rather perturb a boundary value problem defined on O. We name it
a configurational perturbation [NS13]. This is quite interesting for the case of PDE con-
straint optimization, for which the shape function is defined by J (O) = j(O, uO), where
uO is the solution of a boundary value problem defined on O. We do not attempt to give
a general definition of what a configurational perturbation is. We prefer to make it simple
and clear, even if the following definition could be applied to other kind of problems and
perturbations. Let f be a source term and uO be the solution of{−∆uO = f in O,

uO = 0 on ∂O. (1.84)

Let ωε(ŷ) and Oε,ŷ be defined by (1.76) and (1.77) respectively, and let 0 < γ 6= 1 < +∞.
We denote by uOε,ŷ the solution of the following problem:

− div
(
(1χOε,ŷ + γχωε(ŷ))∇uOε,ŷ

)
= f in O,

uOε,ŷ = 0 on ∂O,
(1.85)

where χOε,ŷ (resp. χωε(ŷ)) is the characteristic function ofOε,ŷ (resp. ωε(ŷ)). This situation
can be interpreted as follows. We consider a diffusion equation posed on a medium O
having a diffusion coefficient being equal to 1, and we perturb this media with a small
inclusion of a new medium confined in the open set ωε(ŷ) and having a diffusion coefficient
being equal to γ. Let J (O) be the shape functional defined for all 0 ≤ ε small enough by

J (Oε,ŷ) = j(Oε,ŷ, uOε,ŷ), (1.86)

with the convention O0,ŷ = O.

Definition 1.3 ([NS13]). Let J be the shape functional defined by (1.86). We assume
that the following topological asymptotic expansion holds true

J (Oε,ŷ) = J (O) + g(ε)DTJ (ŷ) + o(f(ε)), (1.87)

where g is positive, is such that g(ε) → 0, and o(g(ε))/g(ε) → 0 with ε → 0. Then the
function

ŷ ∈ O 7−→ DTJ (ŷ) (1.88)

is called the topological derivative of J at ŷ.

For the rest of this chapter, we will work with this framework of configurational per-
turbation, by considering a small inclusion in the unit cell Y of a material having different
elastic properties from the background material. Before this, we give a simple example of
calculation of topological derivative for a configurational perturbation.

Example 3. (Diffusion in a one-dimensional bar). Let 0 < γ be a positive parameter called
contrast, and F ∈ R be a constant volume force. We consider a diffusion equation on the
rod (0, 1) ⊂ R for which the diffusion coefficient is equal to 1. Let Iε,ŷ := (ŷ−ε, ŷ+ε) be a
small interval of (0, 1) on which we multiply the diffusion coefficient by γ, where ŷ ∈ (0, 1)
and 0 < ε is a small size parameter such that Iε,ŷ ⊂⊂ (0, 1). We assume that the volume
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force does not apply to the part Iε,ŷ. We look for the solution uε of the following problem:

u′′ε(x) = F (1− χIε,ŷ(x)), in
(
(0, 1) \ Iε,ŷ

)
∪ Iε,ŷ,

uε(0) = 0,
u′ε(1) = 1,
uε(ŷ − ε)− = uε(ŷ − ε)+, uε(ŷ + ε)− = uε(ŷ + ε)+,

u′ε(ŷ − ε)− = γu′ε(ŷ − ε)+, γu′ε(ŷ + ε)− = u′ε(ŷ + ε)+.

(1.89)

We are interested in the energy shape functional J
(
(0, 1) \ Iε,ŷ

)
= j(ŷ, ε, uε) given by

j(ŷ, ε, uε) :=
∫ 1

0
γε,ŷ(x)(u′ε(x))2dx, (1.90)

where
γε,ŷ(x) := (1− χIε,ŷ(x)) + γχIε,ŷ(x). (1.91)

The limit problem as ε→ 0 is then
u′′(x) = F, in (0, 1)
u(0) = 0,
u′(1) = 1,

(1.92)

whose solution is given for all x ∈ (0, 1) by

u(x) = (1− F )x+ F

2 x
2, (1.93)

resulting in
j(ŷ, 0, u) = 1− F + F 2

3 . (1.94)

The solution of (1.89) is given by

uε(x) =



(1− F + 2Fε)x+ 1
2Fx

2, if x ≤ ŷ − ε,

uε(ŷ − ε) + (x− (ŷ − ε)) 1
γ

(1− F + F (ŷ + ε)), if ŷ − ε < x < ŷ + ε,

uε(ŷ + ε) + (1− F )(x− (ŷ + ε)) + F

2 (x2 − (ŷ + ε)2) if ŷ + ε ≤ x,

(1.95)
where

uε(ŷ − ε) = (1− F + 2Fε)(ŷ − ε) + 1
2F (ŷ − ε)2, (1.96)

uε(ŷ + ε) = uε(ŷ − ε) + 2ε1
γ

(1− F + F (ŷ + ε)) . (1.97)

This gives

j(ŷ, ε, uε) = 1− F + F 2

3 + ε

[
−2(F − 1)2 + 2

γ
(F ŷ − F + 1)2

]

+ ε2
[

4F
γ

(1− γ + F (−1 + γ + ŷ))
]
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+ ε3
[
−2F 2

3γ (4γ − 3)
]
. (1.98)

Thus the topological derivative is

DTJ (ŷ) = −2(F − 1)2 + 2
γ

(F ŷ − F + 1)2. (1.99)

For the trivial case F = 0 we obtain, by defining g(ε) = ε, a constant topological derivative
for all 0 < γ.

DTJ (ŷ) = 21− γ
γ

. (1.100)

For quite simple setting F = 1.5, and γ = 0.5 we obtain the non trivial topological
derivative given in Figure 8.

Figure 8: DTJ (ŷ) when ŷ belongs to (0, 1), for the settings F = 1.5, and γ = 0.5.

1.3.2 Perturbation of the unit cell
Now we return to the topological sensitivity analysis of the homogenized tensors obtained
in Section 1.2.4. The topological optimization framework is as follows. The original
unit cell Y defined in (1.4) is composed of two phases of isotropic materials, the first
one represented by the domain Y1, and the second represented by Yγ, such that Y =
Y1 ∪ Yγ ∪ Γγ, where Γγ = ∂Yγ ∩ Y with ∂Y and ∂Yγ being Lipschitz continuous (see
Figure 9). These two phases result in a piecewise constant elasticity tensor denoted by
C, which is defined as follows. Let

C0 = 2µI + λI⊗ I, (1.101)

where the so-called Lamé coefficients µ, λ ∈ R are chosen such that C0 satisfies the
conditions (i), (ii) and (iii) given in Section 1.2.2. The tensor I = ei ⊗ ei is the identity
second order tensor, and I the fourth order symmetric identity tensor, they are defined
by

Iij = δij, (1.102)
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Y

Y1

Yγ

Yγ

Γγ ŷ1

ŷ2

Yε,ŷ2

Y1

Yγ

Yγ

BR

Bε
ŷ2

BR

Bε ŷ1

Yε,ŷ1

Y1

Yγ

Yγ

Bε ⊂ R2

Figure 9: Introduction of an inclusion centered at ŷ1 or ŷ2 into the domains Yγ or Y1
respectively. The resulting domains are denoted by Yε,ŷ1 and Yε,ŷ2 .

Iijkl = 1
2(δikδjl + δilδjk), (1.103)

where δij is the Kronecker symbol. Thus we defined C by

C(y) :=
{

C0 if y ∈ Y1 ,
γ0C0 if y ∈ Yγ , (1.104)

where 0 < γ0 <∞ is a parameter characterizing the contrast of elastic properties between
the two different materials. We can consider that Y1 stands for a stiff material, and that
Yγ stands for a soft one in the case where γ0 < 1.

From there, Y is subjected to a perturbation confined in a small circular open set Bε(ŷ)
of radius ε and centered at an arbitrary point ŷ of Y , such that Bε(ŷ) ⊂ Y , and which
does not touch the interface Γγ (see Figure 9). Then, the region occupied by Bε(ŷ) is
filled by an inclusion with different material property from the background. The material
properties of the perturbed domain are characterized by the piecewise constant function
γε of the form

γε(x) :=
{

1 ifx ∈ Y \Bε ,
γ(x) if x ∈ Bε ,

(1.105)

where
γ(x) :=

{
γ0 ifx ∈ Y1 ,
γ−1

0 ifx ∈ Yγ . (1.106)

Namely if the perturbation Bε lies in Y1 (the right case in Figure 9), then we multiply the
elasticity tensor being equal to C0 by the contrast γ0 in Bε, so that in Bε the elasticity
tensor is now equal to γ0C0. If the perturbation lies in Yγ (the left case in Figure 9),
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then we multiply the elasticity tensor being equal to γ0C0 by γ−1
0 in Bε, so that in Bε the

elasticity tensor is now equal to C0. In other words we introduce either a small ball of
soft material into the stiff one, or a small ball of stiff material into the soft one. Finally
the elasticity tensor is given by γεC in the perturbed domain.

Henceforth we leave the lower indices of differential operators behind, because we
only deal with y-variable depending fields. The topologically perturbed counterparts of
problems (1.56) and (1.68) are respectively given by

ũεij ∈ V :
∫
Y
γεσ(ũεij) · e(η) = −

∫
Y
γεC(ei ⊗s ej) · e(η), ∀η ∈ W , (1.107)

and

˜̃uεijk ∈ V :
∫
Y
γεσ(˜̃uεijk) · e(η) = −

∫
Y
γεC(ũεij ⊗s ek) · e(η)

+
∫
Y

(γεσ(uεij)−Ch
ε (ei ⊗s ej))ek · η ∀η ∈ W , (1.108)

where V andW are function spaces defined in (1.58) and (1.57) respectively, and as we did
in Section 1.2, we can define the topologically perturbed counterparts of the homogenized
tensors, denoted as Ch

ε , D]
ε and Dh

ε . By setting

uεij := (ei ⊗s ej)y + ũεij, (1.109)

this gives

(Ch
ε )ijkl = 1

V

∫
Y
γεσ(uεij) · e(uεkl), (1.110)

(D]
ε)ijkpqr = 1

V

∫
Y
γεC(ũεij ⊗s ek) · (ũεpq ⊗s er), (1.111)

(Dh
ε )ijkpqr = 1

V

∫
Y
γεC(ũεij ⊗s ek + e(˜̃uεijk)) · (ũεpq ⊗s er)

− 1
V

∫
Y

(Ch
ε (ei ⊗s ej) · (˜̃uεpqr ⊗s ek) + γεσ(uεpq) · (˜̃uεijk ⊗s er)). (1.112)

Proposition 1.4. Each of the auxiliary variational problems (1.56), (1.68), (1.107) and
(1.108) admit a unique solution in the space V defined in (1.58).

Proof: Due to Korn’s inequality together with the Poincaré-Wirtinger inequality, the space
W endowed with the norm ‖ · ‖W , defined as follows

‖η‖W :=
(∫
Y
σ(η) · e(η)

) 1
2
, ∀η ∈ W , (1.113)

is an Hilbert space. In view of the properties (1.11), (1.12), and (1.14) introduced in
Section 1.2.2 and satisfied by the elasticity tensor C, the bilinear form aε of these problems,
defined for all u, v ∈ W and for all 0 ≤ ε, by

aε(u, v) =
∫
Y
γεσ(u) · e(v), (1.114)

is symmetric, and uniformly continuous and coercive on (W , ‖·‖W) with respect to ε.
Furthermore W∗, the dual space of W , can be identified with the subspace of the dual
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space (H1
per(Y ;R2))∗ whose elements F ∈ (H1

per(Y ;R2))′ are such that F (c) = 0 for
all c ∈ R2. We can see that for all the problems (1.56), (1.68), (1.107), and (1.108),
the linear forms applied to the test functions η belong indeed to W∗. Then according
to Lax-Milgram theorem, the existence and uniqueness of the solutions of variational
problems on (W , ‖·‖W) are ensured. We finally fix for each problem a solution belonging
to H1

per(Y ;R2) by choosing the representative element which has a zero mean value over
Y for problems (1.56), (1.68), (1.107), and (1.108), so that ũij and ˜̃uijk, as well as ũεij and
˜̃uεijk belong to V .

From there, we want to compute the topological derivative DTH such that the follow-
ing expansion holds

Hε = H + g(ε)DTH + o(g(ε)), (1.115)

where H represents any homogenized tensor we are interested in, such as Ch, D] and Dh.
In order to lead these calculations for Ch and D] in Section 1.3.4, and for Dh in Section
1.3.5, we need both:

• estimates of the correctors ũεij and ˜̃uεijk,

• an adjoint method, allowing us to simplify some terms that we cannot simply analyse
with the estimations of the correctors.

We will describe in the next Section 1.3.3 what the adjoint method is. Concerning the
correctors estimates, let us introduce a truncated domain of the form

YR := Y \BR(ŷ). (1.116)

We fix a positive real number R, such that BR(ŷ) is included in Y1 if ŷ ∈ Y1, or included in
Yγ if ŷ ∈ Yγ (see Figure 9). We consider the small positive parameter ε which attempts to
go to zero, with R > ε > 0. Note that BR(ŷ) contains the inclusion Bε(ŷ). The existence
of the topological derivatives for the components of homogenized tensors is ensured by
the following two lemmas. The proofs of these results are postponed to Section 1.5.

Lemma 1.5. Let ũij and ũεij be the solutions of the original problem (1.56) and the
perturbed problem (1.107) respectively. Then, the following estimates hold true

‖ũεij − ũij‖H1(Y;R2) = O(ε), (1.117)
‖ũεij − ũij‖L2(Y;R2) = o(ε), (1.118)
‖ũεij − ũij‖H1(YR;R2) = O(ε2). (1.119)

Lemma 1.6. Let ˜̃uijk and ˜̃uεijk be the solutions of the original problem (1.68) and the
perturbed problem (1.108) respectively. Then, the following estimates hold true

‖˜̃uεijk − ˜̃uijk‖H1(Y;R2) = O(ε), (1.120)
‖˜̃uεijk − ˜̃uijk‖L2(Y;R2) = o(ε), (1.121)
‖˜̃uεijk − ˜̃uijk‖H1(YR;R2) = o(ε). (1.122)
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The proof of these estimates relies on the asymptotic expansion of the solutions ũεij
and ˜̃uεijk with respect to the parameter ε, expressed with suitable classical transmission
problem solutions, for which we have an explicit representations in the case where the
singular inclusion is a disk [Bar92; NS13]. For a more general shape of the inclusion,
we should use the representation of these exterior problem solutions in terms of layer
potential [AK04; AK07]. Using the expressions of the asymptotic expansions of the
solutions, besides proving the existence of the topological derivate, we are able to write
an explicit formula. This formula depends on the gradient of the unperturbed solution,
and it is expressed by means of a so-called Polarization tensor (notion introduced in
[SS49], [PS51], for more details see e.g., [AK07]). In order to derive these expressions, we
invoke the following fundamental result.

Let ψ be a constant matrix field of R2×2. Let wε be the solution of the following
transmission problem 

div(γεσ(wε)) = 0 in R2

σ(wε) = Ce(wε) in R2

e(wε) = ∇swε in R2

wε → 0 at ∞
JwεK = 0 on ∂Bε,

Jγεσ(wε)Kn = −(1− γ)ψn on ∂Bε,

(1.123)

where γε and γ are defined in (1.105) and (1.106) respectively, n is the inward normal
vector on ∂Bε, and J·K denotes the jump across the interface of the inclusion:

J·K = (·)Y\Bε − (·)Bε on ∂Bε. (1.124)

We have the following result.

Theorem 1.7 (Eshelby’s Theorem [Esh57; Esh59]). The stress tensor field σ associated
to the solution of the transmission problem (1.123) is constant inside the inclusion Bε,
and can be written as follows (see e.g., [NS20] Section 5.1.3)

σ(wε) |Bε= T̄ψ, (1.125)

where T̄ is a fourth order constant tensor given by

T̄ = 1− γ
1 + βγ

(
βI + 1

2
α− β
1 + αγ

I⊗ I
)
, (1.126)

with the constant α and β depending on the Lamé coefficients λ and µ are given by

α = µ+ λ

µ
, β = 3µ+ λ

µ+ λ
. (1.127)

1.3.3 The adjoint method
For a more detailed and general presentation of the adjoint method, the reader may refer
to [GGM01] or [Ams06]. We present herein the method written in such a way that it
matches with the calculations led in the two next sections. Let (W , ‖·‖W) be a Hilbert

35



1.3. Topological Sensitivity Topological sensitivity of the second order homogenized tensor

space, and aε be a family of symmetric bilinear forms on W , uniformly continuous and
coercive on W , depending on ε ≥ 0. For all arbitrary multi-index i, aiming to designate
indifferently the couple or triplet of indices of the correctors ũij or ˜̃uijk , let liε be a family
of continuous linear forms on W . For all i and for all ε, we denote by X i

ε the unique
solution of the problem

Find X i
ε ∈ W such that: aε(X i

ε,Y ) = liε(Y ), ∀Y ∈ W . (1.128)

For all i, j multi-indices we define the following functionals depending on ε by:

J ij(ε) := jε(X i
ε,X

j
ε), (1.129)

where for all 0 ≤ ε, we have that jε is a smooth map from W ×W to R. We introduce
such a shape functional J ij(ε) := jε(X i

ε,X
j
ε), because if we go back to the definitions of

the coefficients of the homogenized tensor D]
ε given in (1.110) for example, we can see its

expression as a bilinear form defined on W ×W which is parametrized by ε through γε,
and which is evaluated on the functions (ũεij, ũεpq). Our goal is to investigate the behaviour
of J ij(ε) when ε goes to zero by writing an expansion of the form

J ij(ε) = J ij(0) + g(ε)DTJ ij + o(g(ε)), (1.130)

where g(ε) is a positive function going to zero when ε goes to zero. Let us develop

J ij(ε)− J ij(0) = jε(X i
ε,X

j
ε)− j0(X i

0,X
j
0)

= jε(X i
ε,X

j
ε)− j0(X i

ε,X
j
ε) + j0(X i

ε,X
j
ε)− j0(X i

0,X
j
0)

= (jε − j0)(X i
ε,X

j
ε) +D1j0(X i

0,X
j
0)(X i

ε −X i
0)

+D2j0(X i
0,X

j
0)(X j

ε −X j
0) +R(ε), (1.131)

where D1 and D2 denotes respectively the partial derivatives with respect to the first
and the second variables of j0 or jε. Furthermore we assume on the one hand that
R(ε) = o(g(ε)), and on the other hand that there exists a positive constant δjij such that

(jε − j0)(X i
ε,X

j
ε) = g(ε)δjij + o(g(ε)). (1.132)

If we consider that we have the estimate ‖X i
ε −X i

0‖W = O(g(ε)), we cannot obtain an
expansion as (1.130) because of the presence of the terms D1j0 and D2j0. To overcome
this problem, we introduce what we call adjoint states. Let the adjoint state Zα be the
solution of the following problem, for all α = 1, 2

Find Zα ∈ W such that: a0(Y ,Zα) = −Dαj0(X i
0,X

j
0)(Y ), ∀Y ∈ W . (1.133)

This allows rewriting

D1j0(X i
0,X

j
0)(X i

ε −X i
0) = −a0(X i

ε −X i
0,Z

1),
= −a0(X i

ε,Z
1) + li0(Z1),

= (aε − a0)(X i
ε,Z

1)− aε(X i
ε,Z

1) + li0(Z1),
= (aε − a0)(X i

ε,Z
1) + (li0 − liε)(Z1), (1.134)

and the similar expression for D2j0. Now if we assume that we have positive constants
δaiα and δliα such that the following estimates hold:

(aε − a0)(X i
ε,Z

α) = g(ε)δaiα + o(g(ε)),
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(li0 − liε)(Zα) = g(ε)δliα + o(g(ε)), (1.135)

then we could conclude that

J ij(ε) = J ij(0) + g(ε)
(
δjij + δai1 + δaj2 + δli1 + δlj2

)
+ o(g(ε)). (1.136)

Let us apply this technique to the calculation of the topological derivatives of the ho-
mogenized tensors, by seeking to obtain expansions of the form (1.135) for Ch, D], and
Dh.

1.3.4 First-order truncation
1.3.4.1 Tensor Ch

First, let us consider the expansion of the homogenized tensors Ch, because we will
need it in Chapter 2. To this end, we exclusively need the estimates from Lemma 1.5.
The calculations of the topological derivative of Ch is well-known, and from [Ams+10;
Giu+09a] we have the following result.

Theorem 1.8. The topological asymptotic expansion of the homogenized elasticity tensor
Ch is given by

(Ch
ε −Ch)ijkl = πε2

V
Pσ(uij)(ŷ) · e(ukl)(ŷ) + o(ε2), (1.137)

which, setting g(ε) = πε2/V , allows to identify the topological derivative of any component
of Ch, namely

(DTCh)ijkl = Pσ(uij) · e(ukl), (1.138)
where uij is given by (1.60) and the polarization tensor is defined as

P = − 1− γ
1 + γβ

(
(1 + β)I + 1

2(α− β) 1− γ
1 + γα

I⊗ I
)
, (1.139)

with the parameters α and β given by

α = λ+ µ

µ
and β = λ+ 3µ

λ+ µ
. (1.140)

We refer to [Ams+10] for the proof of this result. We underline that in this calculation
of the topological derivative of Ch, the adjoint method was not needed. Indeed we can see
that problems (1.128) and (1.133) are the same in this case. We don’t write this proof,
and directly describe the method for the tensor D], for which the introduction of adjoint
states is required.

1.3.4.2 Tensor D]

Theorem 1.9. The topological asymptotic expansion of tensor D] is given by

(D]
ε −D])ijkpqr =− πε2

V
Pσ(uij)(ŷ) · e(vrkpq )(ŷ)− πε2

V
Pσ(upq)(ŷ) · e(vkrij )(ŷ)

− πε2

V
(1− γ)C(ŷ)(ũij(ŷ)⊗s ek) · (ũpq(ŷ)⊗s er) + o(ε2), (1.141)
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where P is the polarization tensor defined in (1.139). By setting g(ε) = πε2/V , the
topological derivative of any component of tensor D] can be identified, namely

(DTD])ijkpqr = −Pσ(uij)·e(vrkpq )−Pσ(upq)·e(vkrij )−(1−γ)C(ũij⊗sek)·(ũpq⊗ser), (1.142)

where uij is given by (1.60), ũij are solutions to the set of canonical variational problems
(1.56) and the adjoint states vkrij are solutions to (1.147).

Proof: Because the original and perturbed fields ũij and ũεij are living in the same function
space V , we can perform a direct calculation. We recall that, from the definition of
the tensors D] given by (1.66) and D]

ε given by (1.111) for its topologically perturbed
counterpart, we have

(D]
ε −D])ijkpqr = 1

V

∫
Y
γεC(ũεij ⊗s ek) · (ũεpq ⊗s er)−

1
V

∫
Y

C(ũij ⊗s ek) · (ũpq ⊗s er).
(1.143)

Thus we can derive the topological asymptotic expansion of the tensor D] as follows

(D]
ε −D])ijkpqr = 1

V

∫
Y

C((ũεij − ũij)⊗s ek) · (ũpq ⊗s er)

+ 1
V

∫
Y

C(ũij ⊗s ek) · ((ũεpq − ũpq)⊗s er)

− 1− γ
V

∫
Bε

C(ũεij ⊗s ek) · (ũεpq ⊗s er) + E1(ε), (1.144)

where the remainder E1(ε) is given by

E1(ε) = 1
V

∫
Y

C((ũεij − ũij)⊗s ek) · ((ũεpq − ũpq)⊗s er), (1.145)

and can be bounded as follows

|E1(ε)| ≤ C‖ũεij − ũij‖L2(Y;R2)‖ũεpq − ũpq‖L2(Y;R2) = o(ε2), (1.146)

where we have used Lemma 1.5. The term E1(ε) corresponds to the term R(ε) in the
expression (1.131), while the first two terms of the right hand side of (1.144) corresponds
to D1j0(X i

0,X
j
0)(X i

ε − X i
0) and D2j0(X i

0,X
j
0)(Xj

ε − Xj
0) in (1.131) respectively, and

the last term of the right hand side of (1.144) correspond to (jε − j0)(X i
ε,X

j
ε ) in (1.131)

respectively. Still evoking Lemma 1.5, we notice that the third term of the right-hand
side of expression (1.144) gives rise to a ε2 order term in the asymptotic expansion of D]

ε.
But we can not use the same arguments to analyse the first two terms of the right-hand
side of (1.144).

To overcome this difficult, we make use of the adjoint method presented in Section
1.3.3 by introducing suitable adjoint state vkrij ∈ V for i, j, k, r ∈ {1, 2}, solution of the
following set of variational problems:

vkrij ∈ V :
∫
Y
σ(vkrij ) · e(η) =

∫
Y

C(ũij ⊗s ek) · (η ⊗s er)

−
∫
Y
〈C(ũij ⊗s ek)〉 · (η ⊗s er), ∀η ∈ W . (1.147)
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In comparison to the adjoint method for which the adjoint states are obtained by solving
the problem defined with the differential of the shape function, we have added the term
depending on 〈C(ũij ⊗s ek)〉 in order to be in the framework of Proposition 1.4. After
subtracting (1.56) from (1.107), we obtain∫

Y
σ(ũεpq − ũpq) · e(η) = (1− γ)

∫
Bε
σ(uεpq) · e(η), (1.148)

where uεpq := (ep ⊗s eq)y + ũεpq. By setting η = ũεpq − ũpq as test function in the adjoint
problem (1.147) for vkrij , and noting that 〈ũεpq − ũpq〉 = 0, we obtain∫

Y
σ(vkrij ) · e(ũεpq − ũpq) =

∫
Y

C(ũij ⊗s ek) · ((ũεpq − ũpq)⊗s er). (1.149)

After taking η = vkrij as test function in (1.148), we have∫
Y
σ(ũεpq − ũpq) · e(vkrij ) = (1− γ)

∫
Bε
σ(uεpq) · e(vkrij ), (1.150)

From the symmetry of the bilinear forms we conclude with (1.149) that∫
Y

C(ũij ⊗s ek) · ((ũεpq − ũpq)⊗s er) = (1− γ)
∫
Bε
σ(uεpq) · e(vkrij ). (1.151)

Similarly we have, after replacing the indexes pq by ij in (1.148) and (1.147), that∫
Y

C((ũεij − ũij)⊗s ek) · (ũpq ⊗s er) = (1− γ)
∫
Bε
σ(uεij) · e(vrkpq ). (1.152)

From (1.144), these results lead to

(D]
ε −D])ijkpqr = 1− γ

V

∫
Bε
σ(uεij) · e(vrkpq ) + 1− γ

V

∫
Bε
σ(uεpq) · e(vkrij )

− 1− γ
V

∫
Bε

C(ũεij ⊗s ek) · (ũεpq ⊗s er) + E1(ε). (1.153)

We start simplifying the term which does not depend on the gradient of the solutions:
we develop∫

Bε
C(ũεij ⊗s ek) · (ũεpq ⊗s er) =

∫
Bε

C((ũεij − ũij)⊗s ek) · ((ũεpq − ũpq)⊗s er)

+
∫
Bε

C(ũij ⊗s ek) · (ũpq ⊗s er)

+
∫
Bε

C((ũεij − ũij)⊗s ek) · (ũpq ⊗s er)

+
∫
Bε

C(ũij ⊗s ek) · ((ũεpq − ũpq)⊗s er). (1.154)

We deduce directly from the Cauchy-Schwarz inequality and from Lemma 1.5 that the
first term of the right-hand side of (1.154),∫

Bε
C((ũεij − ũij)⊗s ek) · ((ũεpq − ũpq)⊗s er) (1.155)
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is o(ε2). Since we assume that the inclusion Bε is located neither on the interface nor on
the boundary, the solutions of elliptic boundary value problems are smooth in Bε by the
elliptic regularity. Then

‖ũij‖L2(Bε) = O(ε), and ‖ũpq‖L2(Bε) = O(ε), (1.156)

so that once again from the Cauchy-Schwarz inequality and from Lemma 1.5 we find that
the two last terms in (1.154),∫

Bε
C((ũεij − ũij)⊗s ek) · (ũpq ⊗s er) +

∫
Bε

C(ũij ⊗s ek) · ((ũεpq − ũpq)⊗s er), (1.157)

are also o(ε2). Finally, from the Lebesgue differentiation theorem, we can rewrite equation
(1.154) as follows∫

Bε
C(ũεij ⊗s ek) · (ũεpq ⊗s er) = πε2C(ŷ)(ũij(ŷ)⊗s ek) · (ũpq(ŷ)⊗s er) + o(ε2). (1.158)

Now we analyse the terms depending on the gradient of the solutions in (1.153). We
will show in Section 1.5 that we can write

ũεkl = ũkl + wεkl +Rε, (1.159)

where ‖Rε‖H1(Y) = o(ε2), and wεkl is the solution of (1.123) written for ψ = σ(ũkl)(ŷ).
Thus we can calculate by taking into account the Lebesgue differentiation theorem
1− γ
V

∫
Bε
σ(uij) · e(uεkl) = 1− γ

V

∫
Bε
σ(uij) · e(ukl + wεkl +Rε)

= 1− γ
V

(
πε2e(uij)(ŷ) · σ(ukl)(ŷ) + e(uij)(ŷ) ·

∫
Bε
σ(wεkl)

)
+ o(ε2),
(1.160)

where we remind that for all 0 ≤ ε, uεij := (ei ⊗s ej)y + ũεij, in such a way that uεij −
uij = ũεij − ũij, and that in view of the properties satisfied by C given page 19, we have
σ(uij) · e(ukl) = e(uij) · σ(ukl). From Eshelby’s Theorem 1.7

1− γ
V

∫
Bε
σ(uij) · e(uεkl) = πε2

V
(1− γ)

(
e(uij)(ŷ) · σ(ukl)(ŷ) + e(uij)(ŷ) · T̄σ(ukl)(ŷ)

)
+ o(ε2)

= πε2

V
e(uij)(ŷ) · (1− γ)(I + T̄)σ(ukl)(ŷ) + o(ε2) (1.161)

From the definition of tensor T̄ (1.126) we have

(1− γ)(I + T̄) = −P, (1.162)

where P is the polarization tensor given in (1.139). We recall that P behaves like C, that
is Pijkl = Pjikl = Pklij. Consequently, for all second order tensors A and B, we have
PCA ·B = A · PCB. Then we can write (1.161)

1− γ
V

∫
Bε
σ(uij) · e(uεkl) = −πε

2

V
Pσ(uij)(ŷ) · e(ukl)(ŷ) + o(ε2). (1.163)

Finally, we have proved Theorem 1.9.
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1.3.5 Second-order truncation
Now we want to investigate the topological sensitivity of the tensors Eh and Dh involved
in the macroscopic elastic energy calculated for the second order truncation (1.70), and
of the tensor Fh defined in (1.75). We have the following theorems.

Theorem 1.10. The topological asymptotic expansion of the tensor Dh is given by

(Dh
ε −Dh)ijkpqr = −πε

2

V
Pσ(uij)(ŷ) · (e(pkpqr)(ŷ) + (˜̃upqr(ŷ)⊗s ek))

− πε2

V
Pσ(upq)(ŷ) · (e(prijk)(ŷ) + (˜̃uijk(ŷ)⊗s er))

+ πε2

V
P
(
σ(˜̃uijk)(ŷ) + C(ũij(ŷ)⊗s ek)

)
·
(
e(˜̃upqr)(ŷ) + (ũpq(ŷ)⊗s er)

)
+ o(ε2).

(1.164)

where P is the polarization tensor defined in (1.139). By setting g(ε) = πε2/V , we can
identify the topological derivative of any component of tensor Dh, namely

(DTDh)ijkpqr = −Pσ(uij) · (e(pkpqr) + (˜̃upqr ⊗s ek))− Pσ(upq) · (e(prijk) + (˜̃uijk ⊗s er))
+ P

(
σ(˜̃uijk) + C(ũij ⊗s ek)

)
·
(
e(˜̃upqr) + (ũpq ⊗s er)

)
, (1.165)

where uij is given by (1.60), ũij are solutions to the set of canonical variational problems
(1.56), ˜̃uijk are solutions to the set of canonical coupled variational problems (1.68) and
the adjoint states prijk are solutions to (1.177).

Theorem 1.11. The topological derivatives of Eh and Fh are respectively given by:

(DTEh)ijpqr = 2Pσ(upq) · e(υrij) + 2Pσ(uij) · e(υrpq)
− 2P(σ(˜̃upqr) + Cũpq ⊗s er) · e(uij), (1.166)

and

(DTFh)ijkpqr = 2
[
Pσ(uij) · (vF pqr ⊗s ek − e(qF pqrk))

]sym

− 2
[
P(σ(˜̃uijk) + C(ũij ⊗s ek)) · e(vF pqr)

]sym

+ P(σ(˜̃upqr) + C(ũpq ⊗s er)) · (e(˜̃uijk) + (ũij ⊗s ek)), (1.167)

where for a sixth order tensor F, we define the tensor Fsym by

Fsym
ijkpqr := 1

2(Fijkpqr + Fpqrijk), (1.168)

and where υrij, vF ijk, and qF ijkr are solutions to the problems (B.8), (B.16), and (B.23)
respectively.

In the following, we give a rigorous proof of Theorem 1.10. The proof of Theorem 1.11
is similar to that of Theorem 1.10, so we write it in the Appendix B.1 for the topological
derivative of Eh, and in the Appendix B.2 for the topological derivative of Fh.
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Proof of Theorem 1.10: As we did for D], we perform a direct calculation. Let f and g be
two tensor fields, and f ε and gε their topologically perturbed counterpart. We introduce
the following notation δ(·)ε = (·)ε − (·), and outline the identity∫
Y
γεf

ε · gε −
∫
Y
f · g =

∫
Y
δf ε · δgε +

∫
Y
δf ε · g +

∫
Y
f · δgε + (γ − 1)

∫
Bε
f ε · gε. (1.169)

From this we directly compute

(Dh
ε −Dh)ijkpqr = 1

V

∫
Y

(
C(δũεij ⊗s ek) + σ(δ ˜̃uεijk)

)
· (ũpq ⊗s er)−

∫
Y
σ(δuεpq) · (˜̃uijk ⊗s er)

+ 1
V

∫
Y

(
C(ũij ⊗s ek) + σ(˜̃uijk)

)
· (δũεpq ⊗s er)−

∫
Y
σ(upq) · (δ ˜̃uεijk ⊗s er)

− 1− γ
V

∫
Bε

(
C(ũεij ⊗s ek) + σ(˜̃uεijk)

)
· (ũεpq ⊗s er)

+ 1− γ
V

∫
Bε
σ(uεpq) · (˜̃uεijk ⊗s er) + E1(ε), (1.170)

where the remainder E1(ε) is defined as

E1(ε) = 1
V

∫
Y

(σ(δ ˜̃uεijk) + C(δũεij ⊗s ek)) · (δũεpq ⊗s er)−
1
V

∫
Y
σ(δũεpq) · (δ ˜̃uεijk ⊗s er),

(1.171)

since uεij := (ei⊗s ej)y+ ũεij, so that δuεij = δũεij. By taking into account Lemmas 1.5 and
1.6, the following estimate for the remainder E1(ε) from (1.171) holds true

|E1(ε)| = o(ε2). (1.172)

Let us simplify some other terms in (1.170). We have that Ch(ep ⊗s eq) is a constant
tensor and δ ˜̃uεijk is a zero-mean field, so that we can rewrite∫

Y
σ(upq) · (δ ˜̃uεijk ⊗s er) =

∫
Y

(
σ(upq)−Ch(ep ⊗s eq)

)
· (δ ˜̃uεijk ⊗s er). (1.173)

From this, and in view of the variational formulation of ˜̃upqr (1.68) written with η = δ ˜̃uεijk,
we can simplify the second term from line one and the third term of line two in (1.170)
as follows∫
Y
σ(δ ˜̃uεijk) · (ũpq ⊗s er)−

∫
Y
σ(upq) · (δ ˜̃uεijk ⊗s er) =

−
∫
Y

(
σ(upq)−Ch(ep ⊗s eq)

)
· (δ ˜̃uεijk ⊗s er) +

∫
Y
σ(δ ˜̃uεijk) · (ũpq ⊗s er)

= −
∫
Y
σ(˜̃upqr) · e(δ ˜̃uεijk). (1.174)

We now calculate for all η ∈ W the equation satisfied by δ ˜̃uεijk, subtracting the variational
formulation of ˜̃uijk (1.68) from the variational formulation of ˜̃uεijk (1.108). This gives
∫
Y
σ(δ ˜̃uεijk) · e(η) =

∫
Y

(σ(δũεij)− (Ch
ε −Ch)(ei ⊗s ej)) · (η ⊗ ek)−

∫
Y

C(δũεij ⊗s ek) · e(η)

+ (1− γ)
∫
Bε

(σ(˜̃uεijk) + C(ũεij ⊗s ek)) · e(η)− (1− γ)
∫
Bε
σ(uεij) · (η ⊗ ek). (1.175)
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We set η = ˜̃upqr in (1.175), and cancel the null terms due to the zero-mean value of ˜̃upqr,
then we inject the resulting expression in (1.174). This leads to the simplification of the
all terms depending on δ ˜̃uεijk in (1.170). Reordering the members of the equation in order
to gather the terms of the type δũεij and δũεpq, we find

V (Dh
ε −Dh)ijkpqr =

∫
Y

(
C(δũεij ⊗s ek)

)
·
(
(ũpq ⊗s er) + e(˜̃upqr)

)
−
∫
Y
σ(δũεij) · (˜̃upqr ⊗s ek)

+
∫
Y

(
C(ũij ⊗s ek) + σ(˜̃uijk)

)
· (δũεpq ⊗s er)−

∫
Y
σ(δuεpq) · (˜̃uijk ⊗s er)

+ (1− γ)
∫
Bε
σ(uεij) · (˜̃upqr ⊗s ek) + (1− γ)

∫
Bε
σ(uεpq) · (˜̃uεijk ⊗s er)

− (1− γ)
∫
Bε

(
σ(˜̃uεijk) + C(ũεij ⊗s ek)

)
·
(
e(˜̃upqr) + (ũεpq ⊗s er)

)
+ E1(ε). (1.176)

In order to simplify further analysis, the introduction of convenient adjoint states prijk ∈ V
for i, j, k, r ∈ {1, 2} is required, which are solutions of the following set of variational
problems:

pkpqr ∈ V :
∫
Y
σ(pkpqr) · e(η) =

∫
Y

(
σ(˜̃upqr) + C(ũpq ⊗s er)

)
· (η ⊗s ek)

−
∫
Y

C(˜̃upqr ⊗s ek) · e(η)

−
∫
Y

〈
σ(˜̃upqr) + C(ũpq ⊗s er)

〉
· (η ⊗s ek), ∀η ∈ W . (1.177)

Let us set η = δũεij and η = δũεpq in the adjoint equation (1.177) for pkpqr and prijk,
respectively. We remark that the last term of (1.177) is equal to zero in this case because
δũεij and δũεpq have a zero mean value, while 〈σ(˜̃upqr) + C(ũpq ⊗s er)〉 is a constant volume
average by definition (1.44). Now, we set η = prijk in the variational formulation satisfied
by δũεpq (1.148), and η = pkpqr after replacing the indexes ij by pq. By combining these
two expressions, we can simplify the two first lines of the right-hand side of (1.176), and
we obtain

(Dh
ε −Dh)ijkpqr = 1− γ

V

∫
Bε
σ(uεij) · (e(pkpqr) + (˜̃upqr ⊗s ek))

+ 1− γ
V

∫
Bε
σ(uεpq) · (e(prijk) + (˜̃uijk ⊗s er))

− 1− γ
V

∫
Bε

(
σ(˜̃uεijk) + C(ũij ⊗s ek)

)
·
(
e(˜̃upqr) + (ũpq ⊗s er)

)
+ o(ε2).

(1.178)

We start developing the third term of the right-hand side of expression (1.178). Once
again, we will show in Section 1.5 that we can write

˜̃uεijk = ˜̃uijk + wεijk +Rε, (1.179)

where ‖Rε‖H1(Y) = o(ε2), and wεijk is the solution of the following transmission problem
in elasticity 

div(γεσ(wε)) = 0 in R2,
wε → 0 at ∞,

JwεK = 0 on ∂ωε,
Jγεσ(wε)Kn = ψ on ∂ωε,

(1.180)
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where ψ = −(1−γ)
(
σ(˜̃u)(ŷ) + C(ũ(ŷ)⊗s e)

)
n. We recall that the inclusion Bε is located

neither on the interface nor on the boundary, so that the solutions of elliptic boundary
value problems are smooth in Bε by the elliptic regularity. Using the Ansatz (1.179)
combined with the Lebesgue differentiation theorem, we derive

(1− γ)
V

∫
Bε

(σ(˜̃uεijk) + C(ũij ⊗s ek)) ·
(
e(˜̃upqr) + (ũpq ⊗s er)

)
= 1− γ

V

(
πε2

(
σ(˜̃uijk)(ŷ) + C(ũij(ŷ)⊗s ek)

)
·
(
e(˜̃upqr)(ŷ) + (ũpq(ŷ)⊗s er)

)
+
[∫
Bε
σ(wε)

]
·
(
e(˜̃upqr) + (ũpq ⊗s er)

))
+ o(ε2).

From Eshelby’s Theorem 1.7, we deduce that

(1− γ)
V

∫
Bε

(σ(˜̃uεijk) + C(ũij ⊗s ek)) ·
(
e(˜̃upqr) + (ũpq ⊗s er)

)
= 1− γ

V

((
σ(˜̃uijk)(ŷ) + C(ũij(ŷ)⊗s ek)

)
·
(
e(˜̃upqr)(ŷ) + (ũpq(ŷ)⊗s er)

)
+ πε2T̄(σ(˜̃uijk)(ŷ) + C(ũij(ŷ)⊗s ek)) ·

(
e(˜̃upqr)(ŷ) + (ũpq(ŷ)⊗s er)

))
+ o(ε2),

= πε2

V
(1− γ)(I + T̄)

(
σ(˜̃uijk)(ŷ) + C(ũij(ŷ)⊗s ek)

)
·
(
e(˜̃upqr)(ŷ) + (ũpq(ŷ)⊗s er)

)
+ o(ε2)

= −πε
2

V
P
(
σ(˜̃uijk)(ŷ) + C(ũij(ŷ)⊗s ek)

)
·
(
e(˜̃upqr)(ŷ) + (ũpq(ŷ)⊗s er)

)
+ o(ε2).

(1.181)

For the first two terms of the right-hand side of equation (1.178), the calculations to be
led are exactly the same as those from the previous section, needing only the estimation
on ũεij. Then we deduce together with (1.181) the asymptotic expansion (1.164). The
main result of this section is proved.

Remark 4. We can cover as well the case of three spatial dimensions which is important
in applications. In particular, the method of asymptotic analysis performed in R2 can
be extended to R3. In three spatial dimensions, the topological expansion of homogenized
tensors is obtained by setting g(ε) = (4/3)πε3/V and replacing the polarization tensor by
[AK07]

P = −3βI− (α− β)I⊗ I, (1.182)

with the coefficients α and β redefined as follows

α = (1− ν)(1− γ)
3(1− ν)− (1 + ν)(1− γ) and β = 5(1− ν)(1− γ)

15(1− ν)− 2(4− 5ν)(1− γ) , (1.183)

where ν the Poisson ratio.

Finally, it is important to note that formula (1.165) can be used to evaluate the
topological derivative of any differentiable function of Dh through the direct application

44



Topological sensitivity of the second order homogenized tensor 1.4. Conclusion and perspectives

of the chain rule for composed functions. That is, any such function Dh 7→ J (Dh) admits
the topological derivative of the form

DTJ (Dh) =
〈
DJ (Dh), DTDh

〉
, (1.184)

with the brackets 〈·, ·〉 denoting the appropriate product between the derivative of J with
respect to Dh and the topological derivative DTDh of Dh. In order to fix these ideas,
let us consider a pair Φ1,Φ2 ∈ R2 × R2 × R2 of third order tensors. Then we obtain the
following results, which can be used in numerical methods of synthesis and/or topology
design of microstructures analogously to [Ams+10]:

Example 5. We consider a function J (Dh) of the form

J (Dh) := DhΦ1 · Φ2 . (1.185)

Therefore, according to (1.184), its topological derivative is given by

DTJ (Dh) = (DTDh)Φ1 · Φ2 . (1.186)

If we set Φ1 = ei ⊗ ej ⊗ ek and Φ2 = el ⊗ em ⊗ en, for instance, we get J (Dh) =
(Dh)ijklmn and its topological derivative is given by DTJ (Dh) = (DTDh)ijklmn. It means
that DTJ (Dh) actually represents the topological derivative of the components (Dh)ijklmn
of the tensor Dh.

1.4 Conclusion and perspectives
In [Ams+10], the topological derivative of the fourth order homogenized elasticity
tensor Ch as been calculated. In [BCG18] the topological derivative of the second-order
macroscopic model associated with scalar waves in periodic media has been evaluated.

In this chapter, we have calculated the topological derivative of the second order
homogenized elasticity tensor Dh with respect to the nucleation of circular inclusions of
weak material at the microscopic level, by adapting to the periodic case a method of
direct computation which is explained in [NS13]. The sensitivity of Dh to this topological
perturbation has been derived in closed form with the help of appropriate adjoint states.
We obtain the following formula for the topological derivative of Dh, given in index format
by

(DTDh)ijkpqr(ŷ) = −Pσ(uij)(ŷ) · (e(pkpqr)(ŷ) + (˜̃upqr(ŷ)⊗s ek))
− Pσ(upq)(ŷ) · (e(prijk)(ŷ) + (˜̃uijk(ŷ)⊗s er))
+ P

(
σ(˜̃uijk)(ŷ) + C(ũij(ŷ)⊗s ek)

)
·
(
e(˜̃upqr)(ŷ) + (ũpq(ŷ)⊗s er)

)
,

where P is the polarization tensor given by (1.139). As expected, the computed topological
derivatives lead to tensor fields over the microstructural domain, depending on the center
of the perturbation ŷ, and measuring the sensitivity of the homogenized tensors to these
topological microstructural changes, with respect to its center ŷ.

Therefore, we are going to use this information in Chapter 2, in the context of
synthesis and optimal design of metamaterials, for instance, accounting for second order
mechanical effects.
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The topological derivative of the fifth order tensor Eh appearing at order τ in
the expression (1.70) of the macroscopic energy, and the topological derivative of the
sixth-order tensor Fh defined in (1.75) have also been calculated. The method and
the computations being of the same kind as those led in Sections 1.3.4 and 1.3.5, we
relegate the topological derivatives of Eh and Fh to Appendix B. These extra topological
derivatives are written with the purpose of further use and applications.

The limit case associated with the nucleation of a very weak inclusion is interesting.
This case corresponds to a material of the same type as that described in Section 1.3.2,
for which the contrast γ0 goes to zero. It allows somehow to describe the behaviour of
a material with voids. First, the behaviour of the topological derivative is non trivial in
this case. Moreover, the computation of the topological derivative in the case where the
weak material is replaced by voids is rather complex. Secondly we will see in Section 2.4
that a vanishing contrast is interesting from a numerical topological optimization point
of view, and also from the mathematical point of view, although this is a more difficult
issue not analyzed in this thesis.

As we illustrate in Section 2.4 (see Figure 27), it is shown in [DK10] that the
displacement solution of a material containing weak inclusions converges in H1-norm to
the displacement solution of a material containing voids inclusions.

As a perspective, we are working on the study of the asymptotic behaviour of the
homogenized tensors we have presented in this chapter, by varying the size of the inclusion
ε together with the contrast γ0. This work being not accomplished, it does not take part
of this thesis manuscript.

Another study that would be very interesting to carry out, is to also take into account
the size parameter of homogenization τ . On the one hand we can directly study the
asymptotic expansion of the homogenized tensors with respect to the size ε of a void per-
turbation, and in the same time we can investigate the convergence of the homogenization
scheme. Namely we can investigate how behaves the homogenized energy E h

τ,ε when both
τ and ε vanishes. This will probably leads to kinds of behaviours which were identified
in [MC82]. Recently, this has been studied in the case of elastic materials with Dirichlet
inclusions [Jin21]. On the other hand, we can simplify the analysis of the topological
sensitivity by considering weak material characterised by a contrast γ0 instead of voids.
Thus we could analyse the behaviour of the homogenized tensors when τ , ε, and γ0 vary.

1.5 Appendix: proofs of the estimations
For the convenience of the reader we provide the proofs of the auxiliary lemmas which
are used to evaluate of the topological derivatives of homogenized tensors.

1.5.1 Preliminary lemmas
We give in this subsection some useful preliminary results for the proof of Lemmas 1.5
and 1.6. We consider Y an open bounded subset of R2, with ∂Y of class C1, and ŷ a fixed
arbitrary point of Y . We denote by Bε be the small disk of radius ε, centered at ŷ, and
take ε0 > 0, such that Bε ⊂ Y for all 0 < ε 6 ε0. We have the following results.
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Lemma 1.12. Let η ∈ H1(Y), ŷ ∈ Y . Then for all 0 < δ ≤ 1 there exists a constant
c(δ) > 0 depending on δ and Y, such that for all 0 < ε ≤ ε0∣∣∣∣∫

Bε
η(x)dx

∣∣∣∣ 6 c(δ)ε
2−δ‖η‖H1(Y). (1.187)

Proof: This result derives directly from the Sobolev Embedding Theorem, giving that
H1(Y) embeds continuously into Lp(Y) for all 2 ≤ p < +∞ (see e.g. [Bre11]), and with
the use of Hölder inequality for η ∈ Lp(Bε), 1 ∈ Lq(Bε), with q−1 = 1 − p−1 ∈ [1/2, 1),
setting δ := 2(q − 1)/q.

Lemma 1.13. Let η ∈ H1(Y ;R2) . Then we have for all δ > 0 a constant c(δ) > 0
depending on δ and Y such that for all 0 < ε ≤ ε0

‖η‖L2(∂Bε;R2) ≤ c(δ)ε
1/2−δ‖η‖H1(Y;R2). (1.188)

Proof: For simplicity we set ε0 = 1. Let 0 < ε ≤ 1 and η ∈ H1(Y ;R2). We introduce
φε : B1 → Bε the diffeomorphism defined by φε(x) = εx for all x ∈ B1. The restriction
φε : ∂B1 → ∂Bε is also a diffeomorphism, allowing us the following change of variable∫

∂Bε
| η |2 dΓε =

∫
∂B1
| η ◦ φε |2 ε dΓ1,

= ε‖η ◦ φε‖2
L2(∂B1;R2),

≤ c2
(1)ε‖η ◦ φε‖2

H1(B1;R2), (1.189)

where c(1) > 0 is the fixed constant given by the Trace theorem applied on H1(B1;R2).
Once again, a change of variable yields

‖η ◦ φε‖2
L2(B1;R2) = 1

ε2‖η‖
2
L2(Bε;R2), (1.190)

and

‖∇(η ◦ φε)‖2
L2(B1;R2) =

∫
B1
| ∇(η ◦ φε) |2 dx =

∫
B1
ε2 | ∇(η) ◦ φε |2 dx = ‖∇η‖2

L2(Bε;R2).

Then we have

‖η‖2
L2(∂Bε;R2) ≤ c2

(1)

(
ε−1‖η‖2

L2(Bε;R2) + ε‖∇η‖2
L2(Y;R2)

)
. (1.191)

The Sobolev Embedding Theorem gives H1(Y ;R2) ↪→ Lp(Y ;R2) continuously, for all
2 ≤ p < +∞. Then from Hölder inequality with q−1 = 1− (p/2)−1, q ∈ (1,+∞] we have∫

Bε
| η |2 dx ≤ ‖ |η|2‖Lp/2(Bε;R2)‖1‖Lq(Bε;R2),

≤ ‖η‖2
Lp(Bε;R2)‖1‖Lq(Bε;R2),

≤ K2‖η‖2
Lp(Y;R2)ε

2/q,

≤ K2c(p)ε
2/q‖η‖2

H1(Y;R2). (1.192)

where c(p) is a constant depending only on p and Y given by the Sobolev Embedding
Theorem. Thus we can carry on the derivation of inequality (1.191)

‖η‖2
L2(∂Bε;R2) ≤ c2

(1)(K2c(p)ε
2/q−1 + ε)‖η‖2

H1(Y;R2),
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≤ c(δ)ε
1−2δ‖η‖2

H1(Y;R2), (1.193)

for δ > 0 as small as we want when q goes to 1. We finally conclude taking the square
root of the last inequality.

Proposition 1.14. Let Y1 and Y2 be two open bounded domains, with boundaries ∂Y1
and ∂Y2 of class C1, such that Y1 ⊂ Y2. For all ψ ∈ H1(Y2 \Y1), such that div σ(ψ) = 0,
we have a constant c > 0 such that

‖σ(ψ)n‖H−1/2(∂Y2) ≤ c|ψ|1,Y2\Y1
:= c

(∫
Y2\Y1

σ(ψ) · e(ψ)
)1/2

, (1.194)

where n is the unit normal vector to ∂Y2.

Proof: Let φ ∈ H1/2(∂Y2), we denote by φ̃ ∈ H1(Y2 \ Y1,Rn) the unique solution of
− div σ(φ̃) = 0 in Y2 \ Y1,

φ̃ = φ on ∂Y2,

φ̃ = 0 on ∂Y1.

(1.195)

This way we can write ∫
∂Y2

σ(ψ)n · φ =
∫
∂Y1∪∂Y2

σ(ψ)n · φ̃,

and apply Green formula, which simplifies by the assumption div σ(ψ) = 0, according
to Hölder inequality, and in view of elliptic regularity for the solution φ̃. This gives the
existence of a positive constant c coming from a priori estimates of the solution of the
Dirichlet problem (1.195) posed on Y2 \ Y1 such that∫

∂Y2
σ(ψ)n · φ =

∫
Y2\Y1

σ(ψ) · e(φ̃) ≤ |ψ|1,Y2\Y1
|φ̃|1,Y2\Y1

≤ c|ψ|1,Y2\Y1
‖φ‖H1/2(∂Y2).

Proposition 1.15 ([GGM01] Section 4.1). Let Y1 and Y2 be two open bounded domains,
with boundaries ∂Y1 and ∂Y2 of class C1, such that Y1 ⊂ Y2, and v ∈ H1/2(∂Y1). The
usual norm on H1/2(∂Y1) is equivalent to the following one

‖v‖H1/2(∂Y1) = inf
{
‖u‖H1(Y2\Y1); u = v on ∂Y1

}
In particular, if v ∈ H1(Y2), we have

‖v‖H1/2(∂Y1) ≤ ‖v‖H1(Y2\Y1)

We end this preliminary section presenting convenient notation used to name the
norms and seminorms of the needed function spaces. For an open set Y ⊂ R2, bounded,
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connected and with Lipschitz continuous boundary, H1(Y ,R2) is endowed with a norm
equivalent to the usual one, due to Korn’s inequality [Neč67], defined by

‖η‖2
1,Y :=

∫
Y

(σ(u) · e(u) + u · u). (1.196)

We also define in H1(Y ,R2) the seminorm

|η|21,Y :=
∫
Y
σ(u) · e(u). (1.197)

We finally denote the usual norms of L2(Y ,R2), H1/2(∂Y ,R2) and H−1/2(∂Y ,R2), respec-
tively by ‖η‖0,Y , ‖η‖1/2,∂Y , and ‖η‖−1/2,∂Y .

1.5.2 Proof of Lemma 1.5
Proof: Let us introduce an Ansatz of the form [KMM99]

ũεij(y) = ũij(y) + wεij(y) + zεij(y), (1.198)

where wεij is solution to the following transmission problem:


div(γεσ(wεij)) = 0 in R2,
wεij → 0 at ∞,

JwεijK = 0 on ∂Bε,
Jγεσ(wεij)Kn = h on ∂Bε,

(1.199)

where h = −(1− γ)σ(uij)(ŷ)n, n being the inward normal vector on ∂Bε, and J·K denotes
the jump across the interface of the inclusion:

J·K = (·)Y\Bε − (·)Bε on ∂Bε. (1.200)

The solution wεij of this classical problem is explicitly known [Bar92], and gives rise to the
following estimates:

‖wεij‖0,Y = o(ε), (1.201)
‖wεij‖1,Y = O(ε), (1.202)
‖wεij‖1,YR = O(ε2), (1.203)

where YR is defined by (1.116) as

YR := Y \BR(ŷ), (1.204)

where BR(ŷ) is the ball of radius R and center ŷ, and R is chosen such that BR(ŷ) does not
intersect an interface nor the boundary, and contains the inclusion Bε(ŷ) (see Figure 9).
We want to estimate zεij which compensates the discrepancies introduced by wεij. Defined
as in (1.198), we don’t have zεij ∈ H1

per(Y ;R2). To overcome this drawback, we slightly
modify wεij near the boundary ∂Y . We define the ring

C := {y ∈ Y | dist(y, ∂Y) < ε} , (1.205)
∂C int := {y ∈ Y | dist(y, ∂Y) = ε} , (1.206)
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with ∂C = ∂Y ∪ ∂C int, for a fixed ε > 0 small enough to have BR(ŷ) ⊂ Y \ C. Then we
set

wε,εij (y) :=

 wεij(y) if y ∈ Y \ C,
wεC,ij(y) if y ∈ C, (1.207)

where wεC,ij is solution to the following boundary value problem
div(σ(wεC,ij)) = 0 in C,

wεC,ij = 0 on ∂Y ,
wεC,ij = wεij on ∂C int.

(1.208)

Defined this way, we have that wε,εij belongs to H1(Y ,R2). Let us introduce the new Ansatz

ũεij(y) = ũij(y) + w̃εij(y) + z̃εij(y), (1.209)
with

w̃εij := wε,εij − 〈wε,εij 〉, (1.210)
where 〈·〉 denotes the mean value over Y defined as in (1.44), so that w̃εij ∈ V , and
therefore z̃εij ∈ H1

per(Y ;R2) with 〈z̃εij〉 = 0. Thus we can calculate the variational problem
satisfied by z̃εij. First we recall that ũij and ũεij satisfy the following variational equations

ũij ∈ V :
∫
Y
σ(ũij) · e(η) +

∫
Y

C(ei ⊗s ej) · e(η) = 0 ∀η ∈ V , (1.211)

and

ũεij ∈ V :
∫
Y
γεσ(ũεij) · e(η) +

∫
Y
γεC(ei ⊗s ej) · e(η) = 0 ∀η ∈ V . (1.212)

Let us apply the operator γεσ to (1.209), multiply the obtained expression by e(η) where
η is a test function in H1

per(Y ;R2), and integrate over Y . From (1.211) and (1.212), we
can directly simplify the term∫

Y
γεσ(z̃εij) · e(η) =

∫
Y
γεσ(ũεij) · e(η)−

∫
Y
γεσ(ũij) · e(η)−

∫
Y
γεσ(w̃εij) · e(η)

=
∫
Y
γεσ(ũεij) · e(η)−

∫
Y
σ(ũij) · e(η) + (1− γ)

∫
Bε
σ(ũij) · e(η)

−
∫
Y
γεσ(w̃εij) · e(η)

=(1− γ)
∫
Bε

C(ei ⊗s ej) · e(η) + (1− γ)
∫
Bε
σ(ũij) · e(η)

−
∫
Y
γεσ(w̃εij) · e(η)

=(1− γ)
∫
Bε
σ(uij) · e(η)−

∫
Y
γεσ(w̃εij) · e(η), (1.213)

where the last simplification arises from the definition (1.60) of uij. Applying the Green
formula over C∩Y , (Y \C ∪Bε), and Bε to the integral term depending on w̃εij, we obtain∫
Y
γεσ(z̃εij) · e(η) = (1− γ)

∫
Bε
σ(uij) · e(η)

+
∫
Y∩C

div(σ(wεC,ij)) · η +
∫
Bε
γ div(σ(wεij)) · η +

∫
Y\(Bε∪C)

div(σ(wεij)) · η
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−
∫
∂Y
σ(wεC,ij)n · η −

∫
∂Cint

(σ(wεC,ij)− σ(wεij))n · η

−
∫
∂Bε

σ(wεij))n · η +
∫
∂Bε

γσ(wεij))n · η, (1.214)

where n is the normal vector systematically pointing outward of ∂Y , inward on ∂Bε,
and outward from C on ∂C int. In view of (1.199) and (1.208), we can cancel the second
line of the right-hand side of (1.214), and we can simplify the last line being equal to
− ∫∂BεJγεσy(wεij)Kn · η, because of the boundary condition satisfied by wεij on ∂Bε in
(1.199), namely

−
∫
∂Bε

Jγεσy(wεij)Kn · η = −
∫
∂Bε

(−(1− γ))σ(uij)(ŷ)n · η (1.215)

We have then∫
Y
γεσ(z̃εij) · e(η) =(1− γ)

∫
Bε
σ(uij) · e(η)− (1− γ)

∫
∂Bε

σ(uij)(ŷ)(−n) · η

−
∫
∂Y
σ(wεC,ij)n · η −

∫
∂Cint

(σ(wεC,ij)− σ(wεij))n · η. (1.216)

Applying again Green’s formula to
∫
∂Bε

σ(uij)(ŷ)(−n) · η, we get

z̃εij ∈ W :
∫
Y
γεσ(z̃εij) · e(η) = (1− γ)

∫
Bε

(σ(uij)− σ(uij)(ŷ)) · e(η)

−
∫
∂Y
σ(wεC,ij)n · η −

∫
∂Cint

(σ(wεC,ij)− σ(wεij))n · η, ∀η ∈ W . (1.217)

The inclusion Bε(ŷ) being located neither on the interface nor on the boundary, the data
are C∞ at the vicinity of the center ŷ so that by interior regularity of the solutions to
elliptic boundary value problems, uij is smooth in Bε for ε small enough. Then we have
σ(y) = σ(ŷ) +∇σ(ŷ) · (y − ŷ) + o(|y − ŷ|2), where |y − ŷ| ≤ ε, and we have the following
estimate ∣∣∣∣∫

Bε
(σ(uij)− σ(uij)(ŷ)) · e(η)

∣∣∣∣ ≤ c ε2‖η‖1,Y . (1.218)

Now we estimate the following term, from the definition of the dual norm∣∣∣∣∫
∂Y
σ(wεC,ij)n · η

∣∣∣∣ ≤ ‖σ(wεC,ij)n‖−1/2,∂Y‖η‖1/2,∂Y . (1.219)

We can show that there exists a constant c > 0 such that for all η ∈ H1(C,R2) satisfying
div σ(η) = 0, we have (see Proposition 1.14)

‖σ(η)n‖−1/2,∂Y ≤ c |η|1,C . (1.220)

Thus we have ∣∣∣∣∫
∂Y
σ(wεC,ij)n · η

∣∣∣∣ ≤ c|wεC,ij|1,C‖η‖1,Y , (1.221)

where we also used the continuity of the Trace operator to estimate ‖η‖1/2,∂Y ≤ c‖η‖1,Y .
In view of the elliptic regularity of the problem (1.208), we have∣∣∣∣∫

∂Y
σ(wεC,ij)n · η

∣∣∣∣ ≤ c‖wεij‖1/2,∂Cint‖η‖1,Y . (1.222)
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Next we apply Proposition 1.15 to derive∣∣∣∣∫
∂Y
σ(wεC,ij)n · η

∣∣∣∣ ≤ c‖wεij‖1,YR\C‖η, ‖1,Y (1.223)

and finally, the estimate (1.203) allows us to conclude that∣∣∣∣∫
∂Y
σ(wεC,ij)n · η

∣∣∣∣ ≤ cε2‖η‖1,Y . (1.224)

We can use the same argumentation to show that∣∣∣∣∫
∂Cint

σy(wεC,ij)n · η
∣∣∣∣ ≤ ‖σy(wεC,ij)n‖−1/2,∂Cint‖η‖1/2,∂Cint

≤ c‖σy(wεC,ij)n‖−1/2,∂Cint‖η‖1,Y

≤ c
∣∣∣wεC,ij∣∣∣1,C ‖η‖1,Y

≤ c‖wεij‖1/2,∂Cint‖η‖1,Y

≤ c‖wεij‖1,YR\C‖η‖1,Y

≤ cε2‖η‖1,Y , (1.225)

where once again the estimate (1.203) has been used. Finally∣∣∣∣∫
∂Cint

σy(wεij)n · η
∣∣∣∣ ≤ c‖σy(wεij)n‖−1/2,∂Cint‖η‖1/2,∂Cint ≤ c‖σy(wεij)n‖−1/2,∂Cint‖η‖1,Y

≤ c
∣∣∣wεij∣∣∣1,C ‖η‖1,Y ≤ c

∣∣∣wεij∣∣∣1,YR ‖η‖1,Y

≤ cε2‖η‖1,Y , (1.226)

where c does not depend on ε. Noting that the bilinear form of the problem (1.217) is
uniformly coercive on W , and because z̃εij ∈ V , we can conclude, making use of Poincaré-
Wirtinger inequality, that

|z̃εij|1,Y = O(ε2), (1.227)
‖z̃εij‖0,Y = O(ε2). (1.228)

We can finally write the following expansion

ũεij = ũij + wεij +
(
z̃εij + w̃εij − wεij

)
, (1.229)

for which it remains to estimate the term w̃εij − wεij.

We start calculating its |·|1,Y norm.

|w̃εij − wεij|21,Y =
∫
Y
σ(w̃εij − wεij) · e(w̃εij − wεij)

=
∫
Y
σ(wε,εij − wεij) · e(wε,εij − wεij)

=
∫
C
σ(wεC,ij − wεij) · e(wεC,ij − wεij)

= |wεC,ij − wεij|21,C , (1.230)
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by definition (1.210) of w̃εij and definition (1.207) of wε,εij . Furthermore we know, from the
calculations (1.221), (1.222), and (1.223) led above, that we have

|wεC,ij|1,C ≤ ‖wεij‖1,YR\C . (1.231)

Then we deduce with (1.203) that

|w̃εij − wεij|21,Y ≤ |wεC,ij|21,C + |wεij|21,C + 2|wεC,ij|1,C |wεij|1,C
≤ O(ε4) +O(ε4) +O(ε4). (1.232)

For the ‖·‖0,Y norm we have

‖w̃εij − wεij‖2
L2(Y) =

∫
Y
|w̃εij − wεij|2 =

∫
Y
|wε,εij − 〈wε,εij 〉 − wεij|2

=
∫
C
|wεC,ij − 〈wε,εij 〉 − wεij|2 +

∫
Y\C
|〈wε,εij 〉|2, (1.233)

where

|〈wε,εij 〉| =
∣∣∣∣ 1
V

∫
Y
wε,εij

∣∣∣∣ ≤ 1
V
‖wε,εij ‖L2(Y)

(∫
Y

12
)1/2
≤ 1√

V
‖wε,εij ‖L2(Y). (1.234)

From this, by using the estimate (1.201) and ‖wεij‖2
1/2,∂Cint = O(ε4) (see calculations

(1.221), (1.222), and (1.223)), we have

‖wε,εij ‖2
L2(Y) = ‖wε,εij ‖2

L2(Y\C)) + ‖wε,εij ‖2
L2(C)

= ‖wεij‖2
L2(Y\C)) + ‖wε,εij ‖2

L2(C)

≤ o(ε2) + ‖wε,εij ‖2
1,C

≤ o(ε2) + ‖wεij‖2
1/2,∂Cint

≤ o(ε2) +O(ε4) (1.235)

We have shown that

|w̃εij − wεij|1,Y = O(ε2), (1.236)
‖w̃εij − wεij‖0,Y = o(ε). (1.237)

We finally find the estimates (1.117), (1.118) and (1.119), from the expansion (1.229)
together with the estimations (1.227), (1.228), (1.236) and (1.237).

1.5.3 Proof of Lemma 1.6
Proof: We want to introduce the same kind of Ansatz for the expansion of ˜̃uεijk as in
Lemma 1.5. For this purpose, let us set the field wεijk meant to cancel the first terms of
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the right hand sides of equations (1.253) and (1.260). So wεijk is defined as the solution
to the following transmission problem:

div(γεσ(wεijk)) = 0 in R2,
wεijk → 0 at ∞,

JwεijkK = 0 on ∂Bε,
Jγεσ(wεijk)Kn = h on ∂Bε,

(1.238)

where h = −(1 − γ)(σ(˜̃uijk)(ŷ) + C(ũij(ŷ) ⊗s ek))n. The above boundary value problem
admits an explicit solution with the same estimates as in Lemma 1.5 (see e.g., [Bar92]),
namely

‖wεijk‖0,Y = o(ε), (1.239)
‖wεijk‖1,Y = O(ε), (1.240)
‖wεijk‖1,YR = O(ε2). (1.241)

Once again let us introduce

wε,εijk(y) :=

 wεijk(y) if y ∈ Y \ C,
wεC,ijk(y) if y ∈ C, (1.242)

where C is the ring defined in (1.205), and wεC,ijk is solution to the following problem:


div(σ(wεC,ijk)) = 0 in C,
wεC,ijk = 0 on ∂Y ,
wεC,ijk = wεijk on ∂C int,

(1.243)

where ∂C int is defined in (1.206). Now we can introduce the new Ansatz :

˜̃uεijk = ˜̃uijk + wεijk +
(
z̃εijk + w̃εijk − wεijk

)
, (1.244)

where w̃εijk = wε,εijk − 〈wε,εijk〉, so that w̃εijk ∈ V . In this way, we effectively have z̃εijk ∈
H1

per(Y ;R2), with 〈z̃εijk〉 = 0. Our goal is to estimate ‖˜̃uεijk − ˜̃uijk‖1,Y by controlling the
terms of the equation (1.244), namely

‖˜̃uεijk − ˜̃uijk‖1,Y ≤ ‖wεijk‖1,Y + ‖z̃εijk‖1,Y + ‖w̃εijk − wεijk‖1,Y . (1.245)

We directly have an estimation on the term wεijk given by (1.240). Let us investigate 1)
the behaviour of w̃εijk − wεijk, and next 2) the behaviour of z̃εijk.

1) The solution wεijk of the classical problem (1.238) is explicitly known (see
e.g.,[Bar92]), gives rise to the same estimates as those written equations (1.201). The
same developments as those led in the proof of Lemma 1.5 in Section 1.5.2 give

‖w̃εijk − wεijk‖1,Y = O(ε2), (1.246)
‖w̃εijk − wεijk‖0,Y = o(ε). (1.247)
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2) We denote by aε the bilinear form on W ×W of problem (1.108), that is to say

aε(u, v) :=
∫
Y
γεσ(u) · e(v), ∀u, v ∈ W . (1.248)

As in the proof of Lemma 1.5, we write the variational problem satisfied by z̃εijk, applying
the bilinear form aε to z̃εijk and a test function η. In view of (1.244) and the notations
introduced above, the problem is expressed by

z̃εijk ∈ W : aε(z̃εijk, η) = aε(˜̃uεijk, η)− aε(˜̃uijk, η)− aε(w̃εijk, η), ∀η ∈ W . (1.249)

Let us make some preliminary calculations, for which the results directly derive from
Lemma 1.5. We want to estimate, for all η ∈ W , the expression aε(˜̃uεijk, η) − aε(˜̃uijk, η).
According to expressions (1.108) and (1.68), we find

aε(˜̃uεijk, η)− aε(˜̃uijk, η) = −
∫
Y

(γεC(ũεij ⊗s ek)−C(ũij ⊗s ek)) · e(η)

+
∫
Y

(γεσ(uεij)− σ(uij)−
∫
Y

(Ch
ε −Ch)(ei ⊗s ej))ek · η

+ (1− γ)
∫
Bε
σ(˜̃uijk) · e(η). (1.250)

Recalling the notation δ(·)ε = (·)ε − (·), we start developing the first two terms of the
right hand side of this expression.

−
∫
Y

(γεC(ũεij ⊗s ek)−C(ũij ⊗s ek)) · e(η) = −
∫
Y
γεC(δũεij ⊗s ek) · e(η)

+ (1− γ)C(ũij(ŷ)⊗s ek) ·
∫
Bε
e(η) + (1− γ)

∫
Bε

C((ũij − ũij(ŷ))⊗s ek) · e(η), (1.251)

and∫
Y

(γεσ(uεij)− σ(uij))ek · η =
∫
Y
γεσ(δũεij)ek · η − (1− γ)σ(uij)(ŷ)ek ·

∫
Bε
η

− (1− γ)
∫
Bε

(σ(uij)− σ(uij)(ŷ))ek · η. (1.252)

In view of estimates in Lemma 1.5, the regularity of uij, and the behaviour of (Ch
ε −Ch)

given by (1.137), we have for all η ∈ W

−
∫
Y

(γεC(ũεij ⊗s ek)−C(ũij ⊗s ek)) · e(η) = (1− γ)C(ũij(ŷ)⊗s ek) ·
∫
Bε
e(η) + o(ε)‖η‖1,Y ,

(1.253)
and∫

Y
(γεσ(uεij)− σ(uij)− (Ch

ε −Ch)(ei ⊗s ej))ek · η =
∫
Y
γεσ(δũεij)ek · η

− (1− γ)σ(uij)(ŷ)ek ·
∫
Bε
η + o(ε)‖η‖1,Y . (1.254)

Let us show that the second term of the right hand side of relation (1.250), written in
relations (1.253) and (1.254), is actually o(ε)‖η‖1,Y . The estimate from Lemma 1.12 gives,
for δ > 0 small enough, a constant c(δ) > 0 such that for all η ∈ H1(Y)∣∣∣∣∫

Bε
η(x)dx

∣∣∣∣ ≤ c(δ)ε
2−δ‖η‖1,Y . (1.255)
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In this manner, the second term of the right-hand side of equation (1.254) behaves as
follows

−(1− γ)σ(uij)(ŷ)ek ·
∫
Bε
η = o(ε)‖η‖1,Y . (1.256)

Let us develop the first term of the right-hand side of (1.254), i.e.
∫
Y γεσ(δũεij)ek · η. We

apply Green’s formula to this integral separated over Y1 \ Bε, Yγ \ Bε, and Bε. On each
of these subdomains, the tensor C is constant (see definition (1.104)). We recall that the
cell is such that Y = Y1 ∪ Yγ ∪ Γγ, and the ball Bε(ŷ) ⊂ Y does not cross the interface
Γγ (see Figure 9). Denoting by n the inward normal to the boundary ∂Bε, we obtain∫

Y
γεσ(δũεij)ek · η =

∫
Y1\Bε

Ce(δũεij) · (η ⊗ ek) +
∫
Yγ\Bε

Ce(δũεij) · (η ⊗ ek)

+ γ
∫
Bε

Ce(δũεij) · (η ⊗ ek),

= −
∫
Y
γεCdiv((η ⊗s ek)) · δũεij +

∫
∂Y
γεC(η ⊗s ek)n · δũεij

+ (1− γ)
∫

Γγ
C(η ⊗s ek)n · δũεij + (1− γ)

∫
∂Bε

C(η ⊗ ek)n · δũεij.
(1.257)

The first term of the right hand side of equation (1.257) is o(ε)‖η‖1,Y according to Lemma
1.5 estimate (1.118). The second one is null because C, η and δũεij are Y-periodic. The
third term is controlled by ‖C(η⊗sek)n‖−1/2,Γγ‖δũεij‖1/2,Γγ . On one hand we have ‖C(η⊗s
ek)n‖−1/2,Γγ ≤ c‖η‖1,Y , on the other ‖δũεij‖1/2,Γγ ≤ c‖δũεij‖1,YR , so that the third term is
O(ε2)‖η‖1,Y . The fourth term of the right hand side of equation (1.257) is controlled by
‖η‖L2(∂Bε;R2)‖ũεijk − ũijk‖L2(∂Bε;R2). We know from Lemma 1.13 that for all δ > 0 there
exists a constant c(δ) > 0 such that

∀η ∈ H1(Y ;R2), ‖η‖L2(∂Bε;R2) ≤ c(δ)ε
1/2−δ‖η‖1,Y . (1.258)

The fourth term of the right hand side of equation (1.257) is O(ε1−2δ)‖δũεij‖1,Y‖η‖1,Y ,
which is, regarding the estimate from Lemma 1.5, O(ε2−2δ)‖η‖1,Y . Thus∫

Y
γεσ(δũεij)ek · η = o(ε)‖η‖1,Y . (1.259)

Finally, we end the preliminary calculations by rewriting the third term of equation (1.250)
in view of the regularity of solutions. We find for all η ∈ V

(1− γ)
∫
Bε
σ(˜̃uijk) · e(η) = (1− γ)σ(˜̃uijk)(ŷ) ·

∫
Bε
e(η)

+ (1− γ)
∫
Bε

(σ(˜̃uijk)− σ(˜̃uijk)(ŷ)) · e(η),

= (1− γ)σ(˜̃uijk)(ŷ) ·
∫
Bε
e(η) + o(ε)‖η‖1,Y . (1.260)

Now we go back to the computation of aε(z̃εijk, η) in (1.249). Let us develop this
expression thanks to preliminary calculations (1.250), (1.253), (1.254) (1.256), (1.259),
and (1.260). We obtain the variational problem
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z̃εijk ∈ W :
∫
Y
γεσ(z̃εijk) · e(η) = (1− γ)C(ũij(ŷ)⊗s ek) ·

∫
Bε
e(η)

+ (1− γ)σ(˜̃uijk)(ŷ) ·
∫
Bε
e(η)−

∫
Y
γεσ(w̃εijk) · e(η) + o(ε)‖η‖1,Y , ∀η ∈ W . (1.261)

Let us apply the Green formula to − ∫Y γεσ(w̃εijk) · e(η) on domains C ∩ Y , (Y \ C ∪Bε),
and Bε. In view of the definition of w̃εijk (1.238), and denoting by n the inward normal to
the boundary ∂Bε, we finally obtain that z̃εijk follows the variational problem:

z̃εijk ∈ W :
∫
Y
γεσ(z̃εijk) · e(η) = −

∫
∂Y
σ(wεC,ijk)n · η

−
∫
∂Cint

(σ(wεC,ijk)− σ(wεijk))n · η + o(ε)‖η‖1,Y , ∀η ∈ W . (1.262)

In the same way as in Lemma 1.5, we find that the two first terms of the right-hand side
of equation (1.262) are o(ε)‖η‖1,Y , and the bilinear form of the problem (1.217) being
uniformly coercive on W , and z̃εij ∈ V , we obtain

‖z̃εijk‖1,Y = o(ε). (1.263)

Finally, the expansion (1.244) gives rise to the intended estimates (1.120), (1.121)
and (1.122).
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Chapter 2

Microstructure synthesis by
topological optimization

2.1 Introduction

Numerical shape optimization is a widely studied field, in particular in structural optimiza-
tion ([Dij+13], [Roz09]). Numerous other applications have to be mentioned, for which
we only give a small fragment of the literature, such as imagery ([Lar+09], [Amm+12],
[Lau+13]), fluid mechanics ([GI04], [Ams05]), heat conduction problems ([NS16]), acous-
tic ([FOP04], [AD08], [BBC13], [Isa+14]), electromagnetic ([AK03], [MPS05], [HLN12]
), inverse problems ([GB04; GB06]) and piezoelectric ([GMS14], [Leu+10]). Generally
speaking, a shape optimization problem can be defined as follows.

inf
χ∈Uad

{
J (χ) :=

∫
D
j(χ, uχ)

}
, (2.1)

where χ : D → {0, 1} stands for the design variable and represents the characteristic
function of a sub domain of a fixed domain D, also called hold-all domain. The functions
χ ∈ Uad belongs to a class of admissible characteristic functions for which we can imagine
some constraint to be satisfied, and uχ is the solution of a boundary value problem defined
on D and depending on χ. The function j(χ, uχ) is often a smooth function such as the
energy density, or the compliance.

We briefly introduce the main shape and topological optimization techniques for
investigating problem (2.1). Far from being exhaustive, the aim is to give an idea of
the different existing methods. For more detailed introduction to numerical shape and
topology optimization techniques, the reader may refer to [All07], [SM13], [Dij+13], fo-
cusing on level-set methods for topological and shape optimization. Even though several
other methods exist, such as evolutionary approaches (see e.g., [All07]) or phase-field
approaches (see e.g., [WRA12]), the shape optimization techniques are usually classified
into three main families: the density methods, the level-set methods and the methods
using the topological derivative.

We promptly designate by density methods, the homogenization approach to topo-
logical optimization, and also all the methods deriving from the homogenization method.
From a theoretical standpoint, the homogenization method was initiated by F. Murat and
L. Tartar [Mur85] and in the pioneering works [LC18], [KS86a; KS86b; KS86c] (see Sec-
tion 1.2). One can also cite [BK88] regarding the study of the homogenization approach,
which was then developed in the 90’s (see e.g. [All+97b], [All02]). We present the idea of
the homogenization method following Section 7 in [All07], considering the optimization
of the design of a 2-dimensional membrane made of two materials α ({χ = 0}) and β
({χ = 1}), with a constant volume ratio of materials (

∫
D χ(x) dx = V ). Let 0 < α < β,
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going back to problem (2.1) we have that uχ satisfies{− div(Aχ∇uχ) = f in D,
uχ = 0 on ∂D,

(2.2)

where Aχ := αχ+β(1−χ). The problem (2.1) is then “relaxed”, or “homogenized”, that
is we a priori include as admissible design variables all the possible limits in the sense of
homogenization (or H-convergence, see [All07] Chapter 7) of mixtures of material α and
β with a proportion V . This relaxation is made possible thanks to compactness results
regarding the H-convergence. For a sequence of characteristic functions (χn)n such that∫

D χn(x) dx = V for all n ≥ 0, there exists a sub-sequence still denoted by (χn)n, which
converges weakly to θ ∈ L∞(D), and there exists an homogenized tensor A∗ belonging
to an admissible space Gθ depending on θ, such that for all f ∈ L2(D), uχn converges in
L2(D) to the solution u∗ of the following problem.{− div(A∗∇u∗) = f in D,

u∗ = 0 on ∂D,
(2.3)

Furthermore, the weak limit θ is such that 0 ≤ θ ≤ 1 and
∫

D θ(x) dx = V .
Thus the new design variables are the density fields 0 ≤ θ(x) ≤ 1 such that

∫
D θ(x) dx =

V , and the homogenized tensors A∗ depending on θ. The relaxed problem is written as
follows

inf
θ,A∗∈Gθ

{
J (θ, A∗) :=

∫
D
j(u∗)

}
. (2.4)

The advantage is twofold. The relaxed formulation of the problem admits a solution,
and we can differentiate the shape functional J with respect to θ and A∗. Indeed some
well-known results such as Lamination formulas or Hashin-Shtrikman bounds allows for
identifying the admissible set of A∗ and simplifying calculations (see e.g., [All07] Section
7.3.5). Finally a penalization procedure is applied in order to get a two phases material
back from the density θ. A variant of the homogenization method consists in replacing
A∗ by θA, where A is fixed. That is the only design variable is θ. The Simplified Isotropic
Material with Penalization method (SIMP method [Ben89], [ZR91]) corresponds to the
case where A∗ is replaced by θpA, with p ≥ 1. But in this case, we do not have a
relaxation theorem. Nevertheless, this method allows to obtain interesting results from
an engineering point of view, but one must keep in mind that it is not mathematically
correct and does not produce exact solutions (see [Gao18]).

Another approach is the level-set methods, which were introduced in [OS88] and have
known further development to be applied to topological and shape optimization. We can
find the beginning of such applications in [SW00] for the optimization of cantilever with
an evolutionaty stress criterion, and in [DV00]. The level-set methods kept developing
for example in [Set99; Set01], especially with the use of the shape sensitivity such as
in [OF01; OF03], [WWG03], [AJT04]. We refer to [Dij+13] for a review of level-set
methods. Still taking problem (2.1) as a reference, we consider that Ω := {χ = 1} stands
for a subdomain of D, for which we look for the optimal design regarding the criteria
J (Ω) := J (χ). The level-set method consists in characterizing the domain Ω by the level
set of a scalar function ψ with Ω := {ψ < 0}, D \ Ω := {ψ > 0} and ∂Ω := {ψ = 0}.

In general, within an optimization procedure, the level-set plays the role of a de-
sign variable, and its evolution is conducted by the Hamilton-Jacobi equation, such as in
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[OF01], [WWG03], [AJT04]. We refer for example to [Lau18] Section 5 for further ex-
planation on the method. In Hamilton-Jacobi equation, a speed function acts a direction
of evolution for the hole level set ψ. This speed function is defined from the underlying
optimization problem, in order to ensure that the updated level-set allows for an improve-
ment of the shape function J . A classical manner to define this speed function is the use
of the shape derivative method (or velocity field method, see e.g. [SZ92], [HP06]). The
concept of shape derivative has first emerged in the paper [Had08], and with the pio-
neering works [Sch46], [GS53]. It experienced a resurgence of interest with the following
works [Céa71; CGM73; Céa81], [MS74; MS76], [Sim80; Sim87], [Pir84]. For more details
regarding how the shape derivative is used to update the level-set, we refer for example to
[Lau18]. Nevertheless, one drawback of this method making use of the shape derivative is
that it does not allow to change the topology of the domain. They only perform a smooth
transformation of the initial domain.

It is also efficient to couple the level-set method with an ersatz material approximation
(see e.g. [DK10]). For example in the case of a drilled material, it consists in mimicking
voids by filling the void domain with a material of weaker stiffness.

Another kind of approaches, allowing for changes of topology, are the methods based
on the topological derivative (see Section 1.3.1). First time topological derivative were
used in [Sch96], [EKS94] within the so-called bubble method. The idea is to perform
a classic shape optimization procedure transforming the boundary of the domain, and
when a minimum is reached for a fixed topology, small holes are added with respect to
the topological derivative of the shape functional. Topological derivative has also been
used in level-set approach ([AJT04], [BHR04])

For the investigation we lead regarding the design of microstructures, we use a
gradient-type method introduced in [AA06], and that we describe in the next section.
It essentially relies on

• the topological derivative of the cost functional,

• a level-set representation of the domain,

• an ersatz material, allowing us to use a single mesh, leading to an efficient optimiza-
tion numerical scheme.

The idea of the following chapter is to generate new kind of microstructures, by
performing a topological optimization of the constitutive unit cell of a periodic material,
for which we aim to improve the homogenized behaviour. For this, we choose functionals
depending on the homogenized tensors as an optimization criterion. In Section 2.2, we
introduce the gradient type algorithm from [AA06]. We start by a presentation of the
periodic homogenization context, followed by a description of the algorithm, and then
we give the details of the implementation in Matlab of the topological optimization
procedure. In Section 2.3, we investigate the maximization of some characteristic lengths
defined as ratios between coefficients of the first order elasticity tensor Ch and the second
order elasticity tensor Dh. We also analyse the behaviour of the homogenization scheme
and the behaviour of the optimization procedure. We pursue this study in Section 2.4,
in the case where the material contrast vanishes . Finally, Section 2.5 is devoted to the
definition of invariants for the homogenized tensors, and the optimization of a functional
based on these invariants.
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This work is the result of a close collaboration with Antonio André Novotny (Lab-
oratório Nacional de Computação Cient́ıfica LNCC/MCT, Petrópolis, RJ, Brazil), with
whom I have implemented the higher order homogenization procedure, the higher or-
der homogenized tensors, their topological derivatives, a symbolic procedure allowing to
compute automatically any shape functional depending on the coefficients of the homoge-
nized tensors, together with its topological derivative. Furthermore I worked significantly
with Baptiste Durand1 and Arthur Lebée on the optimization of characteristic lengths.
Finally I have collaborated with Nicolas Auffray2 and Jean-françois Ganghoffer on the
optimization of invariants.

2.2 Gradient type method for topological optimiza-
tion

We describe the gradient type method for topological optimization in Section 2.2.2, by
directly applying it to our homogenization framework presented below.

2.2.1 General setting: periodic homogenization

ΩY

Y \ Ω

(a)

(b)

Figure 10: Unit cell Y composed with two materials (a) and (b).

The problem we are concerned with is the shape and topological optimization of “ar-
chitectured materials”. Indeed the microstructural organisation of a material can bring
interesting effective properties out. Our framework is the behaviour of periodic materials.
We only work on the design of the microscopic scale. The material is constructed with a
unique cell whose pattern is repeated periodically, and our goal is to design the shape of
the cell for optimizing some resulting homogenized effects. We refer to Section 1.2 for a
detailed presentation of the homogenization framework (see also [JS20] for a well-written
presentation of the issues). Following the homogenization scheme proposed in [SC00], we
are interested in the case where the homogenized material is a second-gradient or strain-
gradient material, that is the homogenized elastic energy depends on the second gradient
of the displacement or equivalently the gradient of the strain field. We don’t meet a great
deal of examples for this kind of materials (see e.g., [PS97], [BC07], [ASD03], [AD15],
[Bou+17], [del+16], [SAI11], [AS18a], [AS18b], [ASB19]).

1 PhD student at the Navier laboratory, École des Ponts, Université Gustave Eiffel, CNRS, Marne-
la-Vallée, France. Supervisors: Karam Sab, Arthur Lebée. Co-supervisor: Pierre Seppecher. email:
baptiste.durand@enpc.fr

2 Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME UMR 8208
CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France. email: nicolas.auffray@univ-eiffel.fr
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There is a kind of paradox when using such a second gradient model. We homogenize
the material in order to ignore variations which occur at the length-scale of the cell, but
we finally take into account effects having this length-scale. Indeed we will see in Section
2.3.2 that intrinsic lengths can be defined with the square root of any component of τ 2Dh

divided by any component of Ch, so that this intrinsic lengths are of order τ .
Nevertheless, when we talk about second gradient homogenization, we make a differ-

ence between what we call the “limit” and the “correction” approaches. The first one
concerns the process of homogenization dealing with the limit model when the size of the
cell goes to zero. In this case we wish to obtain a limit model depending on the second
gradient. The second one concerns the case where the limit model is eventually a Cauchy
model (that is the macroscopic energy depends only on the macroscopic strain field), but
where the size of the microscopic periodic cell is “small but not too small”. In this situa-
tion, taking into account higher order corrective terms leads to better approximations and
description of the behaviour of the effective medium. Indeed the formulas proposed in
[SC00] seems quite efficient for the evaluation of these corrective terms. For a significant
Young modulus of order of τ−1, then τ 2Dh may become of order one. This effect is stud-
ied and well analysed in [Dur+20] for a pantographic structure yielding second-gradient
effects at the leading order. We will give more details and study this structure in Section
2.3.4.

Problem: we consider the unit cell composing a periodic macroscopic medium in a 2-
dimensional framework. The macroscopic medium does not interest us, we only deal with
the shape of the unit cell. Let {e1, e2} be the orthonormal canonical base of R2. The unit
cell, or periodicity unit cell, is defined by

Y = (0, l1)× (0, l2), (2.5)

being an open rectangle of R2 written in that base, with 0 < l1, 0 < l2. This unit cell
is made up of two different homogeneous and isotropic elastic materials: the material
(a) and the material (b). The first one is represented by an open subset Ω of Y , and
the second one is represented by Y \ Ω (see Figure 10). These two elastic phases are
characterised by the same Poisson’s coefficient ν, and by Young’s moduli having a ratio
0 < γ0 < +∞, where γ0 is called the contrast between the two materials. That is, denoting
by C0 the stiffness tensor describing the first elastic material filling the domain Ω, we can
write the stiffness tensor C(Ω) entirely defined by Ω of the unit cell associated to this
distribution of material as follows

C(Ω)(x) :=
{

C0, x ∈ Ω,
γ0C0, x ∈ Y \ Ω,

(2.6)

where denoting by E the Young’s modulus associated to the first material (material (a))
we have

C0 = E

1− ν2 ((1− ν)I + νI⊗ I) , (2.7)

where I and I are defined in (1.102) and (1.103).

As we saw in Section 1.2, such a distribution of material yield the homogenized elastic
energy

E h(Ω)(τ) = 1
2E ·C

h(Ω) · E + 1
2τE · E

h(Ω) ·K + 1
2τ

2K ·Dh(Ω) ·K + o(τ 2), (2.8)
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and allow to define homogenized tensors: Ch(Ω), Eh(Ω), and Dh(Ω). Here τ is a small
parameter representing the ratio of the “microscopic” size of the cell to the “macroscopic”
size of the medium, E = ∇sU is the macroscopic strain, and K = ∇∇sU is the macro-
scopic strain gradient, where U is the macroscopic displacement field. These homogenized
tensors encapsulate some information on the effective behaviour of periodic materials built
with the cell Ω ∪ Y \ Ω. From this, it is interesting to optimize the material distribution
within the unit cell in order to improve some criteria based on these tensors.

This question has been widely studied concerning the optimization of the underlying
microstructure with the aim of maximizing or minimizing some effective properties from
the first order homogenized elasticity tensor (see e.g, [GNS10], [Ams+10]).

But as we said previously, macroscopic models relying on the second gradient or on
the strain gradient can be used. Consequently new questions are emerging:

1. What kind of architectured materials with non classical behaviour can arise from
optimization problems taking into account higher order effective properties?

2. Can we define interesting cost functional depending on higher order homogenized
tensors?

The effective mechanical properties contained in the fourth order tensor C(Ω) are known.
For example the in-plane average Poisson ratio Shom1122/Shom1111 + Shom1122/Shom2222 measures the
deformation in directions perpendicular to the specific direction of loading, the shear
modulus 4Shom1212 measures the stiffness, and the bulk modulus Shom1111 + 2Shom1122 + Shom2222
measures the resistance to compression, where Shom := (Ch)−1). However it is not
trivial to derive from the higher order tensors Eh(Ω) and Dh(Ω) some coefficients being
meaningful from a mechanical point of view. In a first step we investigate quite natural
intrinsic length, and then we will look at some invariants of tensors related to symmetries
satisfied by the material.

From this point we consider the following minimization problem:

inf
Ω∈Uad

J (Ω), (2.9)

where Uad is a class of admissible open subsets of Y , and J is a shape functional defined
by

J (Ω) := j
(
Ch(Ω),Eh(Ω),Dh(Ω)

)
, (2.10)

where j is a smooth map from ⊗4R2×⊗5R2×⊗6R2 to R. Here ⊗mRn denotes the space
of m-order tensors on Rn. Now we present the implemented method.

2.2.2 The algorithm
To solve problem (2.9), we make use to a gradient-type method based on the topological
derivative (see Section 1.3.1). In some sense, this method use the same ideas as the
methods based on the linear approximation of the cost functional in classical optimization.
We recall that in the case of a circular perturbation of a domain Ω := {χ = 1} by a ball
B(y, ε) ⊂⊂ Ω of radius ε and center y, the topological derivative DTJ (Ω)(y) of the
functional J (Ω) is a scalar field DTJ (Ω)(y) defined while assuming that the following
expansion holds true

J (Ω \B(y, ε)) = J (Ω) + g(ε)DTJ (Ω)(y) + o(g(ε)), (2.11)
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where g(ε) goes to 0 when ε goes to 0 (see Section 1.3.1 for more details). In [Céa+00],
Cea et al. proposed an algorithm of topological optimization in which the topological
derivative is used. In [AA06], Amstutz and Andrä have improved this procedure by
coupling it with a level-set representation of the domain. Their algorithm is the one we
have chosen to use for our numerical study of the higher order homogenized tensors.

2.2.2.1 The level-set procedure

ΩY

Y \ Ω
(a)(b)

Bε(ŷ)

Y \ Ω

Ωε,ŷYε,ŷ

(a)(b)

Figure 11: Initial unit cell Y (left) and perturbed unit cell Yε,ŷ (right).

In this section we detail this topology optimization algorithm. The basic idea is to
make use of the topological derivative as a steepest-descent direction, analogously to the
methods using the gradient of the cost function in classical optimization. The advantage
is that the topological derivative represents the exact first order term of the asymptotic
expansion of the shape functional with respect to a small parameter measuring the size
of a singular domain perturbations. Here we consider the case where the perturbation of
the domain is performed by either the inclusion of a small circular set of material (a) into
the material (b), or the inclusion of a small circular set of material (b) into the material
(a) (see Figure 11). When this circular perturbation is a disk B(ŷ, ε) centered at ŷ with
a small enough positive radius 0 < ε, we define the perturbed domain Ωε,ŷ as follows

Ωε,ŷ :=

Ω \B(ŷ, ε) if ŷ ∈ Ω,
Ω ∪B(ŷ, ε) if ŷ ∈ Y \ Ω.

(2.12)

Thus we want to use the following topological asymptotic expansion to implement an
optimization procedure:

J (Ωε,ŷ) = J (Ω) + g(ε)DTJ (Ω)(ŷ) + o(g(ε)), (2.13)

where g(ε) → 0 while ε → 0. This expansion delivers a necessary local minimality
condition for the minimization problem (2.9) under the class of domain perturbations
depicted above, which is (see [AA06], [Ams11])

DTJ (Ω)(ŷ) ≥ 0, ∀ŷ ∈ Ω ∪ (Y \ Ω). (2.14)

To take advantage of the optimality condition (2.14), we start representing the distribution
of material composing the cell with a level-set function ψ. Namely we have

Ω = {x ∈ Y | ψ(x) < 0} , (2.15)
Y \ Ω = {x ∈ Y | ψ(x) > 0} , (2.16)
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Γ = {x ∈ Y | ψ(x) = 0} . (2.17)

Now the idea is somehow to let the topological derivative DTJ (Ω) plays the role of a
“target level-set”. Indeed, by defining a new signed topological derivative gTΩ as follows

gTΩ(ŷ) =
{−DTJ (Ω)(ŷ) if ŷ ∈ Ω,

+DTJ (Ω)(ŷ) if ŷ ∈ Y \ Ω,
(2.18)

we can rewrite the optimality condition (2.14) as being equivalent to the collinearity
between the level-set ψ and the signed topological derivative gTΩ. Thus the optimality
condition becomes

∃c > 0, ψ = cgTΩ. (2.19)
The distribution defined by the level-set ψ remains unchanged when we multiply it by a
positive scalar. We can therefore normalize in L2 norm both ψ and gTΩ without changing
the procedure. From now we consider that ‖ψ‖L2(Y) = 1 and ‖gTΩ‖L2(Y) = 1. In order
to control and drive the collinearity between this two fields, we choose to use θ the non
orienting angle between them

θ = arccos(〈gTΩ, ψ〉L2(Y)). (2.20)

For achieving the optimality condition, we make the level-set evolve “in the direction” of
the topological derivative by rotating it of an angle κθ in the plane span{ψ, gTΩ}, where
κ ∈ [0, 1] plays the role of a step size. We denote by Cκ(ψ) the result of this rotation,
namely

Cκ(ψ) = cos(κθ)ψ + sin(κθ) Pψ⊥(gTΩ)
‖Pψ⊥(gTΩ)‖L2(Y)

, (2.21)

where
Pψ⊥(gTΩ) = gTΩ − cos(θ)ψ (2.22)

is the orthogonal projection of gTΩ onto the orthogonal hyperplane ψ⊥ of ψ (see Figure
12). The evolution of the level-set will follow the fixed point procedure ψ = Cκ(ψ), where
some calculations give (see [AA06])

Cκ(ψ) = 1
sin(θ)

(
sin((1− κ)θ)ψ + sin(κθ)gTΩ

)
. (2.23)

The procedure is summarized in the following steps:

• Choose a initial level-set ψ0 and an initial step size κ0

• While the optimality condition (2.19) is not satisfied: iterate on n ≥ 0

– calculate the associated topological derivative gTn
– update the level-set function within a line search

ψn+1 = 1
sin(θn)

(
sin((1− κn)θn)ψn + sin(κnθ)gTn

)
. (2.24)

The step size κn is adapted in order to make sure that the level-set follows a
descent direction, that is to make sure that the cost function J decreases, that
is J (Ωn+1) < J (Ωn), where Ωn+1 := {ψn+1 < 0}. We finally decrease the step
size if the criterion is not improved.
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ψθ

gTΩ

Pψ⊥(gTΩ)

κθ

Cκ(ψ)

Figure 12: Illustration of the evolution of the level-set from ψ to Cκ(ψ), as a function of
the signed topological derivative gTΩ and of the step size κ ∈ [0, 1].

We recall that our topological optimization problem depends on the homogenized
tensors. Let us denote by HΩ an arbitrary homogenized tensor depending on Ω. We have
demonstrated in Chapter 1, that we have the following rigorous topological asymptotic
expansion

HΩε,ŷ = HΩ + g(ε)DTHΩ(ŷ) + o(g(ε)),

and this expansion is valid for the tensors Ch(Ω), Eh(Ω), and Dh(Ω) we are interested in.
From now on we write these tensors more compactly Ch

Ω, Eh
Ω, and Dh

Ω. Moreover we gave
explicit formulas for DTHΩ, and we made in the previous section the assumption that j
in (2.10) is smooth. Thus we directly have the exact topological derivative of the shape
functional J in (2.10) given by the chain rule

DTJ (Ω) =
〈
D1j,DTCh

Ω

〉
+
〈
D2j,DTEh

Ω

〉
+
〈
D3j,DTDh

Ω

〉
. (2.25)

For the optimization procedure, we will only need to compute the approximated topolog-
ical derivatives DTHΩ.

2.2.2.2 Numerical computation of the topological derivatives

As we saw in Section 1, in order to, on the one hand calculate the homogenized tensors,
and on the other hand calculate the topological derivatives of the homogenized tensors
(other than Ch

Ω), we need to solve auxiliary boundary value problems defined on the cell.
Some of them will give us the first and second order correctors ũij and ˜̃uijk, while others
are needed to calculate adjoint-sates. In all cases, the problems to be solved are of the
following form:

Find u ∈ V : a(u, v) = l(v), for all v ∈ W , (2.26)
where we recall that

W := H1
per(Y ;R2)/R, (2.27)

V :=
{
η ∈ H1

per(Y ;R2)
∣∣∣ 〈η〉 = 0

}
, (2.28)

where l is a continuous linear form onW , and a is the bilinear form defined for all u, v ∈ V

a(u, v) =
∫
Y
σ(u) · e(v). (2.29)
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We solve these problems and implement the optimization procedure in a Matlab code, for
a computation of the fields by a finite element (FE) discretization. The design variable
is the level-set ψ. For the discretization, we select a mesh Mh, and we use P1 elements
for solving (2.26). The numerical level-set ψ is defined by its nodal values. From this
we define the field γ characterizing the distribution setting γ = 1 on the nodes for which
the level-set ψ < 0, and γ = γ0 on the nodes where ψ ≥ 0. At this stage, the contrast
field γ is defined by its nodal values. Then by linear interpolation from the nodes to the
centers of the triangles, we calculate a contrast field which is constant on each triangle.
From this we can construct the stiffness matrix Kψ and the mass matrix Mψ once for one
iteration of the main optimization loop. Indeed regardless of the corrector or the adjoint
state denoted by U we want to calculate, the bilinear form, and then the stiffness matrix
remains the same, so that we only adjust the associated linear form L and solve

KψU = L. (2.30)

We use the Matlab function assema to assemble the matrix Kψ, and we wrote a procedure
adapted to our problem to calculate L. The periodic boundary conditions imposed for
the vector fields is ensured by a procedure described in [Giu+09b], and was implemented
by S. Amstutz, and A.A. Novotny (some updates where added by S.M. Giusti, J-M.C.
Farias and D.E. Campeão, and myself more recently).

The solutions of approximated auxiliary problems (i.e. correctors and adjoint states)
of the form (2.30) are computed. They take their values on the nodes, while their gradients
are constant on each triangular element. The homogenized tensors and their topological
derivatives depend on the contrast field, and both on the correctors and adjoint states
and their gradients. Thus we also interpolate the correctors and adjoint states from the
nodes to the center of the triangular elements. With the correctors, we evaluate the
approximated constant homogenized tensors by computing the integrals over the unit cell
Y with the constant values of the fields on each triangular element, and hence we evaluate
the shape function j. Together with the adjoint states, we compute the approximated
topological derivatives fields of the homogenized tensors, which are thus fields given by
constant values on each triangular element. Then the application of the chain rule (2.25)
allows us to compute directly the approximated signed topological derivative gTΩ of j. This
scalar field gTΩ is also constant within each element of the mesh. Then gTΩ is interpolated
from the elements to the nodes, in order to be used through expression (2.24) for defining
a new level-set function defined on the nodes.

2.2.2.3 The optimization procedure

The optimization produces a sequence of level-set (ψn)n≥0 as follows. For a given initial
level-set ψ0, we compute the homogenized tensors and then evaluate the shape functional.
Then we calculate the signed topological derivative of the functional, which is used to
update the level-set following (2.24) throughout a line search in which the step size κ
is updated (κ = κ/2) until the shape function is improved. If the angle θ between the
level-set and the signed topological derivative defined in (2.20) is lower than a predefined
threshold θmin, we consider that the procedure has converged. In the case where the step
size is too small (κ < κmin) – that is the level-set does not progress any more – we try a
mesh refinement. The algorithm is summarized Figure 13.
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%Initialisation
1 ψ0, j, mesh, κ0 = κi, n = 0 ;
2 while θn > θmin or κn > κmin do
3 %Homogenization
4 From the level-set ψn ;
5 → compute correctors ũij, ˜̃uijk ;
6 → compute homogenized tensors Ch

n, Eh
n, Dh

n ;
7 %Evaluation of the Shape Functional and the topological

derivative
8 → jn, gTn ;
9 %Line-search

10 ψold = ψn, jold = jn, jnew = jn + 1 ;
11 while jnew > jold and κn > κmin do
12 %Update level-set
13 ψnew = Cκn(ψn);
14 %Homogenization
15 From the level-set ψnew;
16 → compute correctors (ũij), (˜̃uijk) ;
17 → compute homogenized tensors Ch, Eh, Dh ;
18 %Update Shape Functional and step size
19 → jnew ;
20 κn = κn/2 ;
21 jn+1 = jnew, κn+1 = 2κn, n = n+ 1 ;
22 if κn > κmin then
23 Eventually refine the mesh and go back to line 2 ;
24 else

Result: ψ?

Figure 13: Algorithm: Topological optimization of homogenized tensors

With this algorithm, we investigate in Section 2.3 functionals based on the defini-
tion of intrinsic characteristic lengths for a mixture of two materials . We start with a
presentation of the setting and of the convergence of the homogenization procedure.

2.3 Results for a mixture of two materials
In this section we consider topological optimization problems of the general form

inf
Ω∈Uad

J (Ω) := j
(
Ch

Ω,Eh
Ω,Dh

Ω

)
, (2.31)

where Ω is a subdomain of the unit cell Y . The sequence of domains (Ωn)n≥0 produced
by the optimization process are defined by Ωn = {ψn < 0} and Y \Ωn = {ψn > 0}, where
ψn is the level-set at the step n (see Section 2.2.2.3), and where the cell is the unit square

Y := (0, 1)× (0, 1). (2.32)
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Both domains are characterized by the same Poisson coefficient

ν := 0.3 (2.33)

and by Young’s moduli which differ from a contrast γ0 = 0.01, that is

E{ψ<0} = 1, (2.34)
E{ψ>0} = 0.01. (2.35)

The initial distribution Γ0 = {x ∈ Y | ψ0(x) = 0} is a disk (see Figure 14) given by the
initial level-set function ψ0 defined by

ψ0(x, y) = cos(π(x− 0.5))2 cos(π(y − 0.5))2 − 0.5. (2.36)

Henceforth the homogenized tensors will be written in matrix form, and we simplify the
writing by omitting the lower index Ω (indeed we remember that these tensors depend
on the distribution of material). This expressions are allowed by the different symmetries
satisfied by the tensors, namely Ch

ijkl = Ch
jikl = Ch

klij and Dh
ijkpqr = Dh

jikpqr = Dh
pqrijk.

Thus we adopt the following convention, also called Voigt notation:

Ch =

 Ch
1111 Ch

1122
√

2Ch
1112

∗ Ch
2222

√
2Ch

2212
∗ ∗ 2Ch

1212

 , (2.37)

and

Dh =



Dh
111111 Dh

111221
√

2Dh
111121 Dh

111112 Dh
111222

√
2Dh

111122
∗ Dh

221221
√

2Dh
221121 Dh

221112 Dh
221222

√
2Dh

221122
∗ ∗ 2Dh

121121
√

2Dh
121112

√
2Dh

121222 2Dh
121122

∗ ∗ ∗ Dh
112112 Dh

112222
√

2Dh
112122

∗ ∗ ∗ ∗ Dh
222222

√
2Dh

222122
∗ ∗ ∗ ∗ ∗ 2Dh

122122


, (2.38)

where ∗ stands for the symmetries of these tensors. This convention is interesting for the
following reason. Let Eijei⊗ej be a macroscopic strain tensors. Let Σ be the macroscopic
stress tensor defined by Σij = Ch

ijklEkl. Both are symmetric second order tensors. Thus
we can compactly write this tensors by defining two vectors:

[Σ] =

 Σ11
Σ22√
2Σ12

 , and [E] =

 E11
E22√
2E12

 . (2.39)

We can also define the third order tensors K = ∇E and write it compactly by defining
the vector

[K] =



K111
K221√
2K121
K112
K222√
2K122


. (2.40)
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With this definition, we have that the macroscopic energy defined by (1/2)(ChE · E +
DhK ·K) = (1/2)(EijCh

ijklEkl +KjikDh
ijkpqrKpqr) can be written with these vectors, and

is equal to

1
2(ChE · E + DhK ·K) = 1

2(Ch[E] · [E] + Dh[K] · [K]) = 1
2([E]iCh

ij[E]j + [K]iDh
ij[K]j),

(2.41)
where Ch is given by (2.37) and Dh is given by (2.38). Furthermore we have that

[Σ] = Ch[E]. (2.42)

Apart from the choice of the minimization problem we want to investigate, that is the
choice of the functional j, we still have some options to set regarding the initialization.
On the one hand we need to defined a mesh, and specify its size. As we said, the vocation
of the algorithm procedure we apply is to find local solution to problem (2.31). We have
remarked that the procedure can be sensitive to the initialization. It depends both to the
size of the mesh and the initial shape Γ0, and can converge to different local solutions.
However we will see in Section 2.3.3 that algorithm encounters a form of stability with
respect to the initial data. We start with a rather coarse mesh, so that we can reach
rapidly but not precisely a local minimum, and then we refine the mesh. The mesh we
choose is made with structured triangles (see Figure 14). We divide the cell Y with n2

i

squares crossed by their diagonals, giving 4n2
i triangles elements.

On the other hand we have to determine the initial step size κi. In most cases, and
when it won’t be specified, κi will take the value 1. This high value allows the algorithm
to initially move quickly through expression (2.24). But in some cases, the first step is
too strong and we will choose to start the algorithm with a lower value of κ.

Figure 14: Initial black and white distribution on the left, and initial mesh on the right,
both given for a number of squares ni = 40 along one side of Y .

We start in Section 2.3.1 with some properties regarding only the homogenization pro-
cedure: that is the computation of the homogenized tensors. Then we study a topological
optimization problems of some characteristic lengths and invariants.
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2.3.1 Convergence of the homogenization scheme

2.3.1.1 Behaviour with respect to the mesh

We compute the homogenized tensors for the distribution of material given by the initial
level-set (2.36), for ni in the range of 40 to 600, where 4ni represents the number of
triangular elements subdividing the square domain Y = (0, 1)× (0, 1). We call Ch

reff, and
Dh

reff the resulting homogenized matrices (2.37) and (2.38) calculated for ni = 600, and
we compute the relative differences (see Figure 15)

Ch
DIFF(ni) = ‖C

h
reff −Ch(ni)‖
‖Ch

reff‖
, Dh

DIFF(ni) = ‖D
h
reff −Dh(ni)‖
‖Dh

reff‖
, (2.43)

were for a matrix A, ‖A‖ is the 2-norm of A, that is to say

‖A‖ := sup
x6=0

‖Ax‖2

‖x‖2
, (2.44)

with ‖x‖2 =
√∑

i x
2
i . We can see that for ni = 40 the relative difference made on the

matrix Ch is about 0.6%, and becomes smaller than 0.1% for ni ≥ 100. However the
relative difference made on Dh is far greater: 20.6% for ni = 40 and 7.9% for ni = 100.
It becomes acceptable from ni = 200, for which the relative difference is 3.1% (see Table
2.1).

ni 40 60 80 100 200 300 400 500
Ch

DIFF(ni) (%) 0.556 0.489 0.163 0.086 0.065 0.012 0.013 0.007
Dh

DIFF(ni) (%) 20.643 13.406 10.269 7.298 3.061 1.426 0.724 0.234

Table 2.1

Ch
DIFF Dh

DIFF

Figure 15: Relative differences in % between Ch(ni) and Ch
reff (left), and between Dh(ni)

and Dh
reff (right).
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(a) (b) (c)

Figure 16: For each figure, the initial level-set is defined by (2.36). From left to right:
(a) ni = 100, Ya = (0, 1) × (0, 1). (b) ni = 200, Yb = (0, 2) × (0, 2). (c) ni = 100,
Yc = (0.5, 1.5)× (0, 1).

2.3.1.2 Translation of the unit cell

The definition of the homogenized tensors does depend neither on the size of the unit cell,
nor on any translation of it. We want to check numerically this property. To this end we
consider for the initial level-set (2.36) the unit cell Ya := Y (case (a)), the translated unit
cell Yc := {(0.5, 0)} + Y (case (c)), and we can choose another periodicity cell made of
four unit cells Yb (case (b)) (see Figure 16).

Thus we expect that for each of these configurations, the homogenization procedure
provides the same homogenized tensors. That is what we check, paying attention to
perform the computations with the same resolution for each cells: that is ni = 100 for (a)
and (c), and ni = 200 for (b). Here are the results for matrices Ch and Dh, calculated
for the matrix 2-norm:

‖Ch(a)−Ch(b)‖
‖Ch(a)‖ = 2.092e− 04, ‖Ch(a)−Ch(c)‖

‖Ch(a)‖ = 3.615e− 04 (2.45)

‖Dh(a)−Dh(b)‖
‖Dh(a)‖ = 1.266e− 04, ‖Dh(a)−Dh(c)‖

‖Dh(a)‖ = 8.417e− 04. (2.46)

This shows that the invariance of homogenized tensors with respect to the unit cell choice
is numerically satisfied.

2.3.2 Study based on characteristic lengths
A second-gradient model contains intrinsic lengths. Such model has a macroscopic strain
energy depending on the macroscopic strain E and the macroscopic strain-gradient K.
Equation (2.8) shows that by picking any coefficients Dh

ijklmn and Ch
ijlm, the following

ratio without index summation √√√√Dh
ijklmn

Ch
ijlm

(2.47)

is homogeneous to a length (length dimension is denoted by l). Indeed the strain field E
is dimensionless, and the strain-gradient K is of dimension l, while τ is a dimensionless
ratio.

These intrinsic lengths can provide us a first naive choice of mechanical quantity to
investigate. We could expect that, in some sense, the greater an intrinsic length is, the
more significant the second order effects are. We recall that the coefficient Ch

opqr couples
the strains Eop and Eqr in the expression of the macroscopic strain energy, for op (resp.
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qr) equal to 11, 22 or 12, and the coefficient Dh
ijklmn couples the strain-gradients Kijk

and Klmn, for ijk (resp. lmn) equal to 111, 112, 221, 222, 121 and 122 (recalling that
Kijk = ∂kEij).

A pertinent approach could be the study of lengths related to the eigenvalues
{Eλ1 , Eλ2 , Eλ3} of the stiffness matrix Ch, also called eigenstrains, defined for all i =
1, 2, 3, j = 1, 2 by

lλi,j =

√√√√(Eλi ⊗ ej) ·Dh · (Eλi ⊗ ej)
Eλi ·Ch · Eλi

, (2.48)

which can be interpreted as a measure of the sensitivity of the material to strain gradients
for each eigenstrain of Ch (see [Dur+20]). We choose a simplified approach in which we
look at the unit strains of uniaxial extension E11, and E22, and of pure shear E12. This
gives the following definition of the six different arising characteristic lengths:

l111 =

√√√√Dh
111111

Ch
1111

, l221 =

√√√√Dh
221221

Ch
2222

, l121 =

√√√√Dh
121121

Ch
1212

,

l112 =

√√√√Dh
112112

Ch
1111

, l222 =

√√√√Dh
222222

Ch
2222

, l122 =

√√√√Dh
122122

Ch
1212

.

(2.49)

From this we try first to maximize these lengths. As we said in Section 2.2.1 these
characteristic lengths are in fact of order τ . We want to obtain second gradient effects,
that means we want to observe a gradient of deformation throughout several cells. For
this, we want the unit characteristic lengths (lΩ not multiplied by τ) to be of order of
several cells, or at least one cell. With our definition of the cell in (2.32), we wish to have
lΩ greater than 1.

We start to maximize the characteristic lengths defined in (2.49). In view of the square
cell (0, 1) × (0, 1), and the isotropic initial shape (see Figure 14), we only consider the
maximization of l111, l112, and l121, because we obtain the same results rotated with a π/2
angle by respectively maximizing l222, l221, and l122. Before numerical investigation, we
give the value of the computed homogenized tensors for the initial cell defined by (2.36),
and for a mesh ni = 100.

Ch '
(

0.6657 0.1756 0
0.1756 0.6657 0

0 0 0.3676

)
, (2.50)

Dh '


−0.0889 −0.0192 0 0 0 −0.0235
−0.0192 −0.0057 0 0 0 −0.0086

0 0 −0.0032 −0.0086 −0.0235 0
0 0 −0.0086 −0.0057 −0.0192 0
0 0 −0.0236 −0.0192 −0.0889 0

−0.0235 −0.0086 0 0 0 −0.0032

 . (2.51)

That is

l111 ' i 0.3655, (2.52)
l112 ' i 0.0926, (2.53)
l121 ' i 0.0933, (2.54)

noting that in each case the lengths are imaginary, because the coefficients Dh
111111, Dh

112112,
and Dh

121121 are negative. In the following, we are going to maximize the square of these
lengths, and we will observe that for each optimized shape that we obtain, the coefficients
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of Dh will be positive, and thus the optimized lengths will be real lengths. Indeed by
maximizing these ratios, we force some coefficients of to be small, and even go to zero. In
this case we obtain some zero strain energy modes, also called floppy modes (see [Dur+20]),
corresponding to this apparition of a kernel for Ch, that allows the strain-gradient elastic
energy depending on Dh to be predominant. It is observed in [Dur+20] that in this zero
strain energy modes, the corresponding part of Dh turn to be positive.

2.3.2.1 Length: l112

In this case, we minimize the following functional:

j(Ch,Dh) := −Dh
112112

Ch
1111

. (2.55)

The mesh is initialized with ni = 100. After 18 iterations, the level-set reaches almost its
final shape, for an angle θ ' 8.15◦. Then we perform a local refinement of the mesh, and
we obtain the final distribution for a total number of iterations of 27, and a final angle
θ ' 5.33◦ (see Figure 17). Here are the values of the component of interest for the final
distribution:

Ch
1111 ' 0.0753, (2.56)

Dh
112112 ' 0.0034. (2.57)

which corresponds to
l112 ' 0.2139. (2.58)

Figure 17: Results for the cost function j(Ch,Dh) = −(Dh
112112/Ch

1111): maximization of
the characteristic length l112. From left to right: optimum unit cell ; periodic microstruc-
ture ; convergence history: angle with respect to the number of iterations.

2.3.2.2 Length: l121

In this case, we minimize the following functional:

j(Ch,Dh) := −Dh
121121

Ch
1212

. (2.59)

The mesh is initialized with ni = 100. The optimum distribution is reached after 17
iterations for an angle θ ' 0.01◦ (see Figure 18). Here are the values of the component of
interest for the final distribution:

Ch
1212 ' 0.0250, (2.60)

Dh
121121 ' 0.0522. (2.61)

that is
l121 ' 1.4442. (2.62)
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Figure 18: Results for the cost function j(Ch,Dh) = −(Dh
121121/Ch

1212): maximization of
the characteristic length l121. From left to right: optimum unit cell ; periodic microstruc-
ture ; convergence history: angle with respect to the number of iterations.

2.3.2.3 Length: l111

In this case, we minimize the functional:

j(Ch,Dh) = −Dh
111111

Ch
1111

. (2.63)

The mesh is initialized with ni = 100. We have made two local refinements of the mesh at
the iterations 20 and 26, before the level-set finally reached an optimum for a total of 29
iterations, with an angle θ ' 9.30◦ Surprisingly, in view of the simplicity of the functional
involved, we obtain a pantographic like cell (see Figure 19). Here are the value of the
component of interest for the final distribution:

Ch
1111 ' 0.1079, (2.64)

Dh
111111 ' 0.0183. (2.65)

that is
l111 ' 0.4114. (2.66)

Figure 19: Results for the cost function j(Ch,Dh) = −(Dh
111111/Ch

1111): maximization of
the characteristic length l111. From left to right: optimum unit cell ; periodic microstruc-
ture ; convergence history: angle with respect to the number of iterations.

In this section we have obtained some interesting results. Surely we have found some
microstructure improving selected characteristic lengths in comparison with the initial
distribution (Figure 14). Furthermore, the final coefficient Dh

111111 is positive and equal
to 0.0183, while it was initially negative: −0.0889 (see (2.51)). But we are quite far
from the emergence of strain gradient materials. Indeed the characteristic lengths we
obtain are quite small. However the optimization scheme has produced an interesting
result, especially with the maximization of l111 for which we have obtained a pantographic
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material. Thus we are going to investigate with more details this problem in Section
2.3.4. Before this we present some properties concerning the behaviour of the topological
optimization algorithm.

2.3.3 Behaviour of the optimization scheme
First we want to investigate the effect of the initial level-set and of the initial mesh on
the convergence of the algorithm. For this we consider the problem of minimization of
the functional defined in (2.63), for several perturbations of the initial level-set ψ0 defined
in (2.36) as follows. For all i in {−4,−3, · · · , 3, 4} we consider the new initial level-set
functions

ψ0,i := ψ0 + i ∗ 0.05. (2.67)
In the same time we also consider, for each of these initial level-set functions, different
initial meshes. Namely ni varies in {40, 60, 80, 100, 120, 140}. The final resulting distri-
butions are gathered in Figure 20 page 78.

As expected, the optimization procedure is sensitive to initial data. We can observe
in Figure 20 that both initial level-set and initial mesh influence the final result. We
remind that the algorithm produces local optimized topology. We can imagine that even
small variations in the data of the problem can lead the procedure to follow different
descent directions. Nevertheless, Figure 20 shows some characteristic patterns in the
optimized results. In fact we observe that several optimized distributions do look like
pantographic material (see Figure 19) such as results (15 − 18), (21 − 24), (27, 28), (42)
in Figure 20. The result (1) has got also a lot of similar results (sometimes translated):
(3 − 11), (13 − 14), (19), (25), (29, 30), (33, 34), (38), (40, 41), (45 − 47), and (52 − 54).
This indicates a kind of stability of the topological optimization procedure (at least for
the maximization of l111).

Furthermore, even by changing the initial shape of the distribution (but with the same
initial topology) the algorithm produces similar results. For example, still within the
maximization of l111, we consider an initial rectangular inclusion of material, determined
by the following level-set

ψ(x, y) = −max (|y − 0.5|, 2|x− 0.5|) + 0.25. (2.68)

The final level-set obtained Figure 21 is quite similar to the result (1) from Figure 20.

Now we turn to the effects of the choice of the unit cell on the optimization procedure.
In Section 2.3.1.2 we have shown that the homogenization procedure is not affected by
the choice of the unit cell. We consider the unit cells (a), (b) and (c) from Figure 16,
with meshes defined by ni = 50 for (a) and (c), and ni = 100 for (b). From this we
maximize the length l111. For all the cases (a), (b), and (c), we perform a homogeneous
refinement of the mesh at iteration 27, and the final topologies are obtained after a total
of 37 iterations, for an final angle θ ' 5.88◦ every time. The results are presented Figure
22, and show that the topological optimization procedure does not depend on the choice
of the cell.

Finally we would like to know how behaves the algorithm convergence with respect
to the mesh. We have seen in the previous paragraphs that the size of the initial mesh
can affects the final result, and leads the algorithm to reach a local optimum rather than
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Figure 20: Different final level-sets obtained when the initial level-set and the size of the
initial mesh vary. Each line from the top to the bottom is obtained for the level-sets from
ψ0,−4 to ψ0,4 defined in (2.67). Each column corresponds to different mesh sizes.
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Figure 21: Maximization of the characteristic length l111. From left to right: initial
distribution; optimized distribution.

(a) (b) (c)

Figure 22: For each figure, the optimized topology obtained by maximization of l111.
(a) ni = 50, Ya = (0, 1) × (0, 1). (b) ni = 100, Yb = (0, 2) × (0, 2). (c) ni = 50,
Yc = (0.5, 1.5)× (0, 1).

another. What happens when we get closer to a certain optimum? In order to analyse it,
we go back to the maximization of l111 for the initial level-set given by (2.36), and for an
initial mesh characterized by ni = 100. The algorithm converges to the solution that we
display once again (i) Figure 23, for a final angle θ ' 18.54◦. After the algorithm reached
the state (i), we perform a homogeneous refinement of the mesh leading to (ii) Figure 23
for a final angle θ ' 10.18◦. We repeat the refinements one more time resulting in (iii)
for an angle θ ' 9.08◦.

(i) (ii) (iii)

Figure 23: Final optimum topologies for the maximization of l111, initial level-set given
by (2.36), ni = 100. (i) no refinement of the mesh. (ii) one refinement of the mesh. (iii)
two refinements of the mesh.

We measure the widths of the junction regions surrounded by the red rectangles in
Figure 23, which are displayed with a zoom in Figure 24. We find that the width is ' 0.04
for (i), ' 0.035 for (ii), and ' 0.0325 for (iii). It seems that the width of this junction is
stable when the mesh goes to zero. The small decrease between (i) and (iii) is specific to
the resolution. When we refine the mesh, each element is subdivided into 4 elements, and
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(i) (ii) (iii)

Figure 24: Zoom on the junctions surrounded by red rectangles from Figure 23. The new
window is (0.4, 0.6)× (0.55, 0.75).

with the starting mesh, the elements are rectangle triangles of length 0.01 and 0.01
√

2,
which are of order of the uncertainty on the width of the junction of (i).

2.3.4 Pantographs
The pantographic continuous material has been introduced and studied in [Dur+20]. It
corresponds to a 2-dimensional periodic material constituted with triangles and lozenges
being connected together via fine junctions (see Figure 25). Their layout produces the
behaviour of a pantograph. This material has got two floppy modes in deformation. One in
extension E11, and another one in shear E12. When the size of the junctions goes to zero,
these floppy modes implies that the first order homogenized matrix Ch is degenerated,
so that a classical macroscopic Cauchy material – whose energy is usually described only
by Ch – is then unsuitable. This is the reason why in [Dur+20] this material has been
studied, its macroscopic behaviour is described by a strain gradient model, following the
formal homogenization scheme proposed in [SC00].

Figure 25: Pantograph (Figure from [Dur+20]).

In Section 2.3.2.3, we have obtained a microstructure being a kind of pantograph,
through the maximization of the length l111. This aroused our curiosity, and pushed
us to investigate this structure more closely. We start to mimic the framework of the
pantograph studied in [Dur+20] (Figure 25). For this we consider the rectangular unit
cell

Y = (0, 1)× (0, 2). (2.69)
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In their work [Dur+20], Baptiste Durand and Arthur Lebée have evaluated the charac-
teristic lengths of the pantograph for the unit cell Y , and have found l111 ' 2.96 and
l112 ' 6.16. We consider the following functional to be minimized

j(Ch,Dh) = −Dh
111111

Ch
1111

− Dh
112112

Ch
1111

. (2.70)

We choose an initial mesh for which the vertical direction of the rectangle is subdivided
into ni = 80 crossed squares, and the horizontal direction is subdivided into ni = 40
crossed squares. The initial step size is κi = 0.4. Finally we choose an initial level-set
function defined by

ψ0 := cos(3
√
x2 + y2)2

(1 + 8x2 + 10y2)2 +
cos(3

√
x2 + (y − 2)2)2

(1 + 8x2 + 10(y − 2)2)2 +
cos(3

√
(x− 1)2 + y2)2

(1 + 8(x− 1)2 + 10y2)2

+
cos(3

√
(x− 1)2 + (y − 2)2)2

(1 + 8(x− 1)2 + 10(y − 2)2)2 +
cos(3

√
(x− 0.5)2 + (y − 1)2)2

(1 + 8(x− 0.5)2 + 10(y − 1)2)2 − 0.15 (2.71)

resulting in to shifted strips of holes (see Figure 26). After 20 iterations, we perform a
homogeneous refinement of the mesh, followed by a local refinement of the mesh after 12
iterations. For a total of 37 iterations, the final angle is θ ' 7.19◦, and the optimized
distribution is shown Figure 26. We finally get

l111 ' 0.2348, l112 ' 0.4380. (2.72)

In comparison with the values l111 ' 2.96 and l112 ' 6.16 obtained by Arthur and Baptiste,
the microstructure we have obtained is less efficient. This difference has two possible
explanations. First, the computations led by Arthur and Baptiste are made for the case
of a cell made up of a material (blue part in Figure 25) and voids (white part). In our
case, the white part is a weak material. Secondly, the junction regions of the pantograph
in [Dur+20] are built to be small on purpose. We give more details regarding the size of
these junction regions in the next section

However, the shape we get in Figure 26 looks pretty much like the pantograph in
Figure 25.

Figure 26: Maximization of the sum l111 + l112. From left to right: initial distribution;
optimized distribution; optimized periodic microstructure

2.4 Behaviour when the contrast vanishes
In the previous section, we have obtained optimal topologies for various functionals,
which constitute an interesting result of the proposed topology optimization method.
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But the second gradient behaviour, which could be quantified by the characteristic
lengths we have introduced, is not very significant. The result we obtained regarding the
pantograph is quite new and surprising, but is not competitive with the microstructure
studied in [Dur+20]. We can outline two remarks about their home designed pantograph
(Figure 25) and the topologically optimized pantograph we obtained (Figure 26). First
the solid part of the home designed pantograph (blue part on Figure 25), is surrounded
by voids (white part), whereas we compute a microstructure which is a mixture of two
materials. Admittedly, the contrast between the stiff and the soft material is important.
We recall that the Young’s modulus of the stiff material is equal to 1, while the Young’s
modulus of the soft material is equal to 0.01. The contrast equals to 0.01 is small, but
it is non zero. Secondly, we have explained that the second gradient behaviour of the
pantograph is exacerbated when the size of the junctions goes to zero, so that these
junctions act almost like a ball joint mechanism. With this in mind, the junctions of
home designed pantograph [Dur+20] has been set with small junctions whose length is
0.02, when we recall that the length of the unit cell edge is equal to 1. Furthermore
in [Dur+20] the authors show that the second gradient model describes perfectly the
behaviour of the pantograph for a junction radius of 0.005, while the largest junction in
the topological optimized pantograph we compute is of 0.09.

To satisfy in the same time these two restrictions, we found out that we can decrease
the contrast γ0. For this, we need to change slightly the model for the higher order
correctors ˜̃uijk. Indeed we can see on equation (1.51) or (1.68) that we have a volume
force depending on Ch which is applied homogeneously on the unit cell Y . Thus we have
a volume force applied to the very weak material (b) when the contrast γ0 goes to zero.
We adopt another model for which the weak phase material (b) is meant to mimic voids.
We describe it below.

In the setting of Section 1.3.2, the topologically perturbed counterpart of the unit cell
is given by the characteristic function χε = χ−χBε , χBε being the characteristic function
of the ball Bε. Let ε0 > 0, we define a normalized characteristic function for 0 ≤ ε ≤ ε0
by

ϕε(y) := χε(y)
〈χε〉 := V∫

Ω χ
ε
χε(y) (2.73)

Thanks to this normalized characteristic function, we can avoid to apply a volume force
on the weak phase. The first auxiliary problem (1.107) remains unchanged, while the
second auxiliary problem (1.108) is replaced by

˜̃uεijk ∈ V :
∫

Ω
γεσ(˜̃uεijk) · e(η) +

∫
Ω
γεC(ũεij ⊗s ek) · e(η) =∫

Ω
(γεσ(uεij)−ϕεCh

ε (ei ⊗s ej)) · (η ⊗s ek) ∀η ∈ W , (2.74)

with the use of the characteristic function ϕε.

We check the convergence of the model when γ0 goes to zero. We consider the
square unit cell given in (2.32), with the initial level-set (2.36), for a mesh resolution
given by ni = 200. With these settings, we compute the relative differences Dh

DIFF(γ0,i)
of the matrices Dh

γ0,i
calculated when the contrasts γ0 = γ0,i are varying in the set

{0.0005, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01}, in comparison to
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Dh
reff calculated for γ0 = 0.0001.

Dh
DIFF(γ0,i) =

‖Dh
reff −Dh

γ0,i
‖

‖Dh
reff‖

. (2.75)

We can see the results in Figure 27, displaying a linear convergence of the matrix Dh

when the contrast goes to zero.

Dh
DIFF(γ0)

γ0

Figure 27: Relative difference of the matrix Dh
γ0,i

with respect to the contrast γ0,i, in
comparison with Dh

reff calculated for γ0 = 0.0001.

We go back to the problem of the maximization of l111 from Section 2.3.2.3, on the
square unit cell with an initial circular inclusion of material (b). We found an optimized
microstructure with a characteristic length l111 = 0.4114. We consider the same problem
with the above model for which the material (b) mimics voids (see Figure 11). The unit
cell is given by (2.32), the initial level-set by (2.36).

1. First we start with a initial mesh having a resolution of ni = 50, and a contrast
γ0 = 0.01. After 47 iterations, we perform a homogeneous refinement of the mesh,
and then an local refinement of the mesh at iteration 56, so that the algorithm
converges in a total of 62 iterations to the microstructure (I), for an angle θ = 7.83◦
(see Figure 28). The final characteristic length is

l
(I)
111 = 0.4092, (2.76)

and the width of the junction is of 0.035 (see Figure 29).

2. Secondly we follow the same path as the one leading to (I), but this time, together
with the local refinement of the mesh at iteration 56, we change the contrast γ0 from
0.01 to 0.005. We perform another local refinement of the mesh at iteration 64, and
then the algorithm converges in a total of 71 iterations to the microstructure (II),
for an angle θ ' 8.42◦ (see Figure 28). The final characteristic length is

l
(II)
111 = 0.5849, (2.77)

and the width of the junction is of 0.0225 (see Figure 29).
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3. Finally we follow the same path as the one leading to (II), but this time, together
with the local refinement of the mesh at iteration 64, we change the contrast γ0
from 0.005 to 0.001. Then we perform a local refinement of the mesh at iteration
73. The algorithm converges in a total of 76 iterations to the microstructure (III),
for an angle θ ' 19.00◦ (see Figure 28). The final characteristic length is

l
(III)
111 = 1.2649, (2.78)

and the width of the junction is of 0.0125 (see Figure 29).

(I) (II) (III)

Figure 28: Maximization of the characteristic length l111 for different contrasts γ0. (I)
γ0 = 0.01. (II) γ0 = 0.005. (III) γ0 = 0.001.

(I) (II) (III)

Figure 29: Zoom on the junctions surrounded by red rectangles from Figure 28. The new
window is (0.4, 0.6)× (0.75, 0.95).

In conclusion we have improved the second gradient properties by diminishing the
contrast. We find that in this case, the width of the junctions goes to zero. We retrieve
this property imposed for the home designed pantograph of [Dur+20] in Figure 25: the
small junctions are supposed to act like a ball joint mechanism.

We finally study the problem treated in Section 2.3.4 in the case of vanishing contrast.
We recall that the functional to be minimized is

j(Ch,Dh) = −Dh
111111

Ch
1111

− Dh
112112

Ch
1111

. (2.79)

The initial distribution is given by the level-set defined by (2.71) (see Figure 26) on the
rectangular unit cell Y = (0, 1)× (0, 2).

1. First we start with a initial mesh having a resolution of ni = 50, and a contrast
γ0 = 0.01. After 32 iterations, we perform a homogeneous refinement of the mesh,
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and then an local refinement of the mesh at iteration 41, so that the algorithm
converges in a total of 48 iterations to the microstructure (P1), for an angle θ ' 9.19◦
(see Figure 30). The final characteristic lengths are

l
(P1)
111 = 0.3045, (2.80)
l
(P1)
112 = 0.5128. (2.81)

2. Secondly we follow the same path as the one leading to (P1), but this time, together
with the homogeneous refinement of the mesh at iteration 32, we change the contrast
γ0 from 0.01 to 0.008. We perform another change of the contrast from 0.008 to
0.006 at iteration 39, and from 0.006 to 0.005 plus a local refinement of the mesh
one iteration latter. The algorithm converges in a total of 47 iterations to the
microstructure (P2), for an angle θ ' 11.76◦ (see Figure 30). The final characteristic
lengths are

l
(P2)
111 = 0.4117, (2.82)
l
(P2)
112 = 0.7476. (2.83)

3. Finally we follow the same path as the one leading to (P1), but this time, together
with the homogeneous refinement of the mesh at iteration 32, we change the contrast
γ0 from 0.01 to 0.005. Then we change the contrast from 0.005 to 0.001 together
with a local refinement of the mesh at iteration 40. We perform two additional local
refinements of the mesh at iterations 51 and 57. The algorithm converges in a total
of 60 iterations to the microstructure (P3), for an angle θ ' 13.80◦ (see Figure 30).
The final characteristic lengths are

l
(P3)
111 = 0.8855, (2.84)
l
(P3)
112 = 1.7838. (2.85)

The shapes we get in Figure 30 bear an impressive resemblance to the pantograph in
Figure 25.

(P1) (P2) (P3)

Figure 30: Maximization of the sum of the characteristic lengths l111 + l112 for different
contrasts γ0. (P1) γ0 = 0.01. (P2) γ0 = 0.005. (P3) γ0 = 0.001.
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2.5 Study based on invariants
In the previous study, we have defined some basic functionals depending on the homoge-
nized tensors, in order to bring out new microstructures. In this first approach we have
optimized characteristic lengths expressed in the orthonormal canonical basis {e1, e2} we
have fixed. As we said, the mechanical information contained in the second order tensor
Dh is not completely understood. In collaboration with Jean-François Ganghoffer and
Nicolas Auffray, we have investigated properties which, even if they are complicated to
described from a mechanical point of view, are independent of the spatial orientation
of the material. To perform such an optimization problem independently of the spatial
orientation of the material, the shape functional needs to be written with respect to some
invariants of the tensors. For this, we are going to describe concisely how to define these
invariants in the framework of the invariant theory, following what has been done in
[OKA13], [AR16], [AKO17], [Auf17], [AAD21]. For the sake of simplicity, we confine this
short presentation to the case of 4th-order tensors, even though the recent works [AAD21]
and [ADA21] allows us to define invariants for tensors of order 5 and 6.

2.5.1 Orientation of a material
The properties of an homogenized elastic material are encapsulated in its homogenized
tensors. Let T(ij) (kl) denotes the space of the 4th-order tensors T satisfying the following
index symmetries: Tijkl = Tjikl and Tijkl = Tklij. Let T = Tijklei ⊗ ej ⊗ ek ⊗ el be an
arbitrary tensor belonging to T(ij) (kl). We also name it the space of fourth order elasticity
tensors. We would like to study properties of T whatever the orientation of the material
is. Indeed the nature of a material is the same when it is subjected to a rotation or a
mirror isometry through a line. Let O(2) be the orthogonal group, that is the group of
the 2 dimensional isometric transformations. We consider the action of O(2) on T(ij) (kl)
given by

∀Q ∈ O(2), (Q ? T )ijkl = QipQjqQkrQlsTpqrs. (2.86)

Then with the perspective of a study independent of the orientation, we should not focus
on the tensor T , but on its orbit OrbT through the action of O(2), also called O(2)-orbit,
defined by

OrbT = {T̃ ∈ T(ij) (kl) | ∃Q ∈ O(2), T̃ = Q ? T}. (2.87)

In that respect, the idea is to reveal functions depending on the tensor variable T , that
will remains constant on these orbits. That is the case for what we call O(2)-invariant
polynomial on T(ij) (kl).

2.5.2 Definition of polynomial invariants
Let V be a finite dimensional real vector space on which acts the group O(2). The action
is still denoted by ?. A polynomial p on V is said to be an O(2)-invariant polynomial if

∀x ∈ V, ∀Q ∈ O(2), p(x) = p(Q ? x). (2.88)

A classical result of the invariant theory stipulates that for the action of O(2) (the result
is valid for compact group in general), there exists a finite set of polynomials {p1, · · · , pk}
called integrity basis, which generates the algebra of the O(2)-invariant polynomials (see
e.g., [OKA13], [Auf17]). That is any O(2)-invariant polynomial on V is a polynomial in
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the elements of the integrity basis. Furthermore, such an integrity basis is actually a
functional basis, that is

pi(x1) = pi(x2), ∀i ∈ {1, · · · , k} ⇔ ∃Q ∈ O(2), x1 = Q ? x2. (2.89)

Thus we can characterize the orbits OrbT with such an integrity basis for the action of
O(2) on T(ij) (kl). But before that, we need to decompose the tensor into elementary
tensors irreducible under O(2) action. This is called the harmonic decomposition.

2.5.3 Harmonic decomposition
Let V be a real vector space such that we have an action of O(2) on V. A subspace U of
V is said to be O(2)-irreducible if it is stable under the action of O(2), that is

∀Q ∈ O(2), ∀T ∈ U, Q ? T ∈ U, (2.90)

and if the only stable subspaces of U are the null space {0V} and U itself. As a classical
result of group theory (valid in general for any action of a compact group on a finite dimen-
sional vector space), we know that V can be written as a direct sum of O(2)-irreducible
subspaces. Another result shows that for any finite dimensional O(2)-irreducible space U,
we have an isomorphism φ : U → Kn, for some n, where Kn is the space of totally sym-
metric and traceless n order tensors, and this isomorphism φ is O(2)-equivariant, namely

∀T ∈ U, ∀Q ∈ O(2), φ(Q ? T ) = Q ? φ(T ). (2.91)

Here we consider the natural action of O(2) on Kn (see [AKO17] or [AAD21]). Finally,
this results show that we can find a linear isomorphism O(2)-equivariant φ between a
direct sum of harmonic tensor spaces and V,

φ :
⊕
k

αkKk → V, with αkKk :=
αk⊕
l=1

Kk, (2.92)

where a finite number of αk are non zero. This is what we call the isotypic harmonic
decomposition of V. We can write more compactly

V '
⊕
k

αkKk. (2.93)

Let us apply this harmonic decomposition to T(ij) (kl) following what is done in
[AAD21]. We recall that the tensors of T(ij) (kl) appear in the constitutive law. The
constitutive law in linear elasticity is a linear relation between the Cauchy stress tensor
σ ∈ S2(R2), and the strain tensor e ∈ S2(R2), where S2(R2) is the space of bi-dimensional
symmetric second-order tensors, also called state space. This law is given for an elasticity
tensor T ∈ T(ij) (kl) by

σij = Tijklekl. (2.94)

That is to say we consider a tensor T ∈ T(ij) (kl) as being a linear map between the stress
and the strain state spaces: T ∈ L(S2(R2), S2(R2)) ' S2(R2)⊗S2(R2). Thus, rather than
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directly decompose the space of fourth order elasticity tensors T(ij) (kl), we decompose in
a first time the state space S2(R2). The harmonic structure of S2(R2) is

S2(R2) ' K2 ⊕K0. (2.95)

In a second step, this decomposition of S2(R2) induces a block decomposition of the space
L(S2(R2), S2(R2)), but the blocks of this decomposition are not necessary irreducible.
Thus in a third time, the harmonic decomposition of the blocks is performed. We do
not present the details of the harmonic decomposition which can be found in [AAD21].
Finally the harmonic structure is of T(ij) (kl) is the following

T(ij) (kl) ' K4 ⊕K2 ⊕ 2K0. (2.96)

For the case of the 6th order elasticity tensors D, we can consider that D drives the
linear constitutive law between the hyperstress tensor τ (defined by this law as follows)
and the strain gradient tensor ∇e = (∂keij)ei ⊗ ej ⊗ ek,

τijk = Dijkpqr(∇e)pqr. (2.97)

The state space of the hyperstress and the strain gradient tensors, denoted by T(ij)k, is the
space of the third order tensors τ satisfying the following symmetry relation τijk = τjik.
So that we consider that the space of sixth order elasticity tensors, denoted by T(ij)k (pq)r,
is the space of tensors D satisfying Dijkpqr = Djikpqr and Dijkpqr = Dpqrijk. We have the
following harmonic structures ([AAD21])

T(ij)k ' K3 ⊕ 2K1, (2.98)
T(ij)k (pq)r ' K6 ⊕ 2K4 ⊕ 5K2 ⊕ 4K0 ⊕K−1, (2.99)

where we recall that Kn for n ≥ 1 is the space of totally symmetric and traceless n order
tensors, K0 is the space of scalar tensors, and K−1 is the space of pseudo-scalar tensors,
which is the space of scalars whose sign changes under a mirror transformation.

2.5.4 A deviatoric/spheric coupling invariant β
As we said in the previous section, before decomposing the tensor space T(ij)k (pq)r, we
decompose the state space T(ij)k, in order to obtain a block structure for T(ij)k (pq)r, and
finally we decompose these blocks. It is shown in [AAD21] that

T(ij)k ' K3 ⊕ 2K1. (2.100)

Because of the multiplicity of K1 in the harmonic structure (2.100), its explicit harmonic
decomposition is not uniquely defined. Thus we have a choice to make in its decomposi-
tion, and it is preferable make it in such a way that this decomposition is mechanically
meaningful. For this, we remember that a tensor in T(ij)k is the gradient of a tensor in
S2(R2), whose harmonic structure is given by (2.95). We decompose a tensor T ∈ S2(R2)
into a deviatoric tensor T d ∈ K2 and into a spheric tensor T s ∈ K0:

T = T d + T s, (2.101)
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where T s = 1/2 tr(T )I and T d = T − T s. Then we introduce a decomposition of T(ij)k
based on the derivation of the harmonic decomposition (2.101), namely the differentiation
of the deviatoric and the spherical parts. This gives for a tensor K ∈ T(ij)k the following
decomposition

K = K3d +K1d +K1s, (2.102)
where

(K3d, K1d) ∈ K3 ×K1 (2.103)
stand for the gradient of deviatoric part, and

K1s ∈ K1 (2.104)

stands for the gradient of the spherical part. This leads to the following per block decom-
position for a tensor D ∈ T(ij)k (pq)r:

D =

 D3d,3d D3d,1d D3d,1s

D1d,3d D1d,1d D1d,1s

D1s,3d D1s,1d D1s,1s

 , (2.105)

which corresponds to the harmonic structure (see [AAD21]): K3 ⊗s K3 K3 ⊗K1 K3 ⊗K1

K3 ⊗K1 K1 ⊗s K1 K1 ⊗K1

K3 ⊗K1 K1 ⊗K1 K1 ⊗s K1

 . (2.106)

We choose to investigate a particular invariant related to the coupling of the deviatoric
part K1d and the spherical part K1s, that is to say an invariant concerning the harmonic
block K1⊗K1. It is shown in [AAD21] that this harmonic block is decomposed as follows:

K1 ⊗K1 ' K2 ⊕K0 + K−1. (2.107)
For such an harmonic structure, we have two kinds of invariants. The specific invariants,
concerning a single harmonic component, and the joint invariants, concerning more than
one harmonic components. We are interesting in the specific invariant β related to the
harmonic component K−1. This invariant β is actually invariant under the action of
SO(2), which is the subgroup of elements of O(2) which preserve the orientation. We
recall that K−1 is the space of pseudo-scalar tensors, which is the space of scalars whose
sign changes under a mirror transformation (also called reflection). Thus the invariant β
changes its sign under a mirror transformation. Let D ∈ T(ij)k (pq)r, the invariant βD is
defined as follows (see [ADA21]):

βD = D111112 −
√

2D111121 +
√

2D122112 +
√

2D122222 −
√

2D221121 −D221222. (2.108)

We investigate two shape functionals j+ and j− depending on the homogenized tensors
Ch and Dh. The purpose regarding Ch is to maximize the bulk modulus, and regarding
Dh to minimize +βDh or −βDh . This gives the following problems:

min j±(Ch,Dh), (2.109)
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where

j±(Ch,Dh) =± (Dh
111112 −

√
2Dh

111121 +
√

2Dh
122112 +

√
2Dh

122222 −
√

2Dh
221121 −Dh

221222)
+ (Shom1111 + 2Shom1122 + Shom2222). (2.110)

The initial level-set is given by (2.36), and the initial mesh is given by ni = 40.
For both functionals, the algorithm converges in 14 iterations, and the final angle is

θ ' 8.84◦. It is interesting to observe that we obtain two tetrachiral microstructures (see
Figure 31), which are the same under a mirror transform, knowing that in one case we
minimize βDh , and in the other case we minimize −βDh , where βDh is a pseudo-scalar,
that is where the sign of βDh changes under a mirror transformation.

It is inspiring to observe that the convergence of the algorithm is uniform, fast when
we optimize invariants, and in particular to observe for real some theoretical properties
coming from the invariant theory. This gives confidence in a more generalized study of
topological optimization problems relying on functionals which depend on the invariants
of the homogenized tensors.

Figure 31: Final shape for the minimization of j+ (left), and for the minimization of j−
(right).

θ (◦) θ (◦)

Iterations Iterations

Figure 32: Evolution of θ angle with respect to the number of iterations for the minimiza-
tion of j+ (left), and for the minimization of j− (right).

2.6 Conclusion
In this chapter we have presented a gradient-type method introduced in [AA06]. We have
implemented this procedure in order to solve topological optimization problems of a unit
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cell composing a periodic material. The optimization relies on the distribution of a stiff
and a weak material composing this unit cell. The cost functionals we have optimized
depend on the first and second order homogenized elasticity tensors we have defined in
Chapter 1.

The purpose is to use the topological derivatives (1.138) of the homogenized tensor
Ch calculated in [Ams+10], and the expression (1.165) of the homogenized tensor Dh

calculated in Chapter 1. We have adopted the established topological differentiation
method, within the topological derivative procedure, in order to obtained periodic
microstructures having significant second gradient effects.

We have obtained non trivial, preliminary, and encouraging microstructures for func-
tionals based on intrinsic characteristic lengths. The latter are defined as a ratio of the
coefficients of these two tensors. In particular, we have obtained a pantographic unit cell,
similar the one studied in [Dur+20] (see Figure 26).

We have also shown that these characteristic lengths can be improved when we dimin-
ish the contrast. Another consequence when we decrease the contrast of moduli between
the two materials is the refinement of the junction regions of the optimal unit cells (see
Figures 28 and 29).

Finally, we have optimized a functional based on invariants of the homogenized
tensors. We have seen that we can control the orientation of the chiral unit cell we have
obtained in Figure 31, by changing the sign of the invariant β of tensor Dh.

The topological optimization of the unit cell of a periodic material based on the second
order homogenized tensor gave us two kinds of results.

On the one hand, we can improve the second gradient effects in the macroscopic
response of the material. This is the case for a pantographic material. Such a material,
as the one presented in figure 30, allow an extension in the direction e1 for almost no first
order gradient energy: we call it a floppy mode. Through this extension, the material is
subjected to a gradient of deformation: the deformation of the material changes from cell
to cell.

On the other hand, we can optimize first gradient effects, while we control properties
which are not encapsulated in the first gradient tensor. This is the case for the functional
treated in Section 2.5.

There exists a very large number of invariants for sixth order tensors, and their me-
chanical understanding is still a subject of study. Thus we are still investigating their
topological optimization with the procedure presented and tested in this chapter.

We also planed to consider functionals depending of the fifth order tensor Eh of cou-
pling moduli between first and second gradient effects. Its topological derivative is already
computed (see Appendix B) and implemented in the topological procedure. At first we
were not interested in this tensor because it cancels in the case of a centro-symmetric unit
cell. But we could explore new microstructure by taking it into account.
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Chapter 3

Shape optimization of a
Fluid-Structure Interaction problem

3.1 Introduction
Fluid structure interaction (FSI) problems are challenging from a mathematical point of
view, and also from the point of view of its numerous applications. We can generally
define FSI problem as the coupling between a structure which is deformable (although
rigid structure studies can be mentioned, such as the motion of a solid body in a fluid)
with a surrounding fluid flow, or sometimes an internal fluid flow. We will be interested
in particular in problems of interaction of a viscous fluid and an elastic medium. For
the several examples of application in engineering one can mention the problem of
airfoils [DH01] or engines [SL04]. But we can also mention medical applications such
as the study of the blood flow in vessels [GVF05], of the aortic valve [CL20], or studies
concerning the human lung system [Tez+08].

As a early study of the FSI problem we can cite [Lio69] in which the existence of
weak solutions for the Navier-Stokes equations in a fixed domain coupled with linearized
elasticity. We can also refer to [Ser87] investigating the tailspin of a rigid body into
a viscous incompressible fluid. But, the first important contributions can be found
in [AL93; LA91; LA92] in which the authors study steady flows in nonlinear elastic
shells and nonlinear elastic tubes and shells under external flow for which the velocity
is prescribed. In the early 2000 mathematicians started to investigate more intensely
the interaction of a viscous liquid with elastic bodies in steady and unsteady regime.
For the steady-state problems one can cite [Rum98], [Gra98; Gra02], [Bay+04], [Sur07],
[GK09], and for the unsteady case, we refer for example to [GM00; GM03], [Des+01],
[Bei04], [Cha+05], [CS05; CS06], [BST12; BGT19], [MC13]. One of the difficulty of the
study of a steady FSI problem is that the fluid, described in Eulerian coordinates, turn
to be defined on a domain depending on the structure displacement which is in contrast
described in Lagragian coordinates. For existence result with other type of boundary
conditions one can cite [DT19].

We can ask several interesting questions regarding the shape optimization of a Fluid
Structure Interaction problem. For example can we have for a well chosen class of domain,
the existence of an optimal solution, or even do we have uniqueness of such a solution? We
already meet many examples of application for structural optimization problems, as we
could see in the introduction of Chapter 2. But there are also numerous works concerning
shape and topological optimization problems applied to fluid mechanics only. For example
the minimization of the drag in airplane optimization (see e.g., [AP89], [MP01], [GM08],
[GMZ09]), the shape minimization of the dissipated energy in a pipe (see e.g., [HP10],
[BP13]), the optimization of fluidic flow with or without body forces (see e.g. [DLW13])

93



3.2. A two-dimensional Fluid-Structure Interaction model Shape optimization of a FSI problem

These problems are not concerning FSI.
The optimization of FSI problems is more recent. One can cite [Yoo10; Yoo14],

[Kre+10], [AS13], [JM15; JM16] where a level-set method is used to characterize the
fluid and the structure domains, [PVP15; Pic+20], [Lun+18] in which the FSI problem is
relaxed by a density design variable. In [SS18] the shape differentiability of a simplified
free-boundary one-dimensional problem is studied, for which it is proved that the shape
optimization problem is well-posed. In the recent paper [Fep+19; Fep+20; Fep+21], the
shape and topology optimization of a multiphysics thermal-fluid-structure interaction
problem is studied with a velocity and adjoint method, for which the structure domain
is assumed to be fixed.

We are interested in a FSI problem for which an elastic body in plane strain is immersed
in a viscous fluid, and clamped to a rigid support from a part of its boundary. We
consider that the system is infinite in the anti-plane dimension. Our goal is to study
the shape optimization of this two-dimensional elastic body. For this purpose, we start
with a presentation of the Fluid-Structure Interaction problem we work on in Section 3.2.
We present in particular what the unknowns of the problem are, how the fluid and the
structure problems are coupled, and we finish with the definition of a simplified model
for which the elastic structure is incompressible. The Section 3.3 is dedicated to the
resolution of the FSI problem, through the resolution of the fluid equations in a first
time, followed with the resolution of the structure problem, and completed with a fixed
point procedure. Then, after an introduction to the calculus of shape derivatives by the
velocity method, we apply this method to the FSI problem, we give the boundary value
problems satisfied by the material derivatives of the solutions of the FSI problem in the
Section 3.4.4, and we compute in Section 3.4.5 the shape derivative of an abstract shape
functional. After this, we introduce in Section 3.5.1 the adjoint method used in order to
simplify the expression of the shape derivative computed before. We apply this method
to the FSI problem in Sections 3.5.2, 3.5.3, and 3.5.4.

This chapter is the result of a work I carried out with Ilaria Lucardesi1 and with
Jean-François Scheid.

3.2 A two-dimensional Fluid-Structure Interaction
model

We are interested in the optimization of a Fluid-Structure Interaction (FSI) problem. We
want to investigate some optimality result regarding the shape of a given two-dimensional
elastic body (the structure) in plane strain immersed in an incompressible Stokes fluid,
and clamped from a part of its boundary, while applying volume forces to both fluid and
elastic phases (see Figure 33). We consider that this system is infinite in the anti-plane
direction. This results in the deformation of the free boundary of the elastic body, which
is the interface where the interaction between the elastic body and the fluid takes place.
We start by presenting a Fluid-Structure Interaction model following what is done in
[Gra02] and [SS18], then we introduce a simplified model, and finally we present a general
shape optimization protocol.

1 Institut Élie Cartan de Lorraine, UMR 7502, Université de Lorraine, B.P. 70239, 54506 Vandoeuvre-
lès-Nancy Cedex, France. email: ilaria.lucardesi@univ-lorraine.fr

94



Shape optimization of a FSI problem 3.2. A two-dimensional Fluid-Structure Interaction model

First we define the geometry for the FSI problem (see Figure 33). Let ω, Ω′0, and D be
three simply connected bounded open sets in R2, such that ω ⊂⊂ Ω′0 ⊂⊂ D. We denote
by Γ0 and ∂ω the boundaries of Ω′0 and ω, respectively. The domain

Ω0 := Ω′0 \ ω (3.1)

stands for an elastic body attached to a rigid support ω, namely Ω0 has an fixed boundary
∂ω and a deformable one Γ0. The domain Ω0 is the configuration at rest of this elastic
medium. The domain

Ωc
0 := D \ (Ω0 ∪ ω) (3.2)

is occupied by an incompressible fluid interacting with the elastic body trough the interface
Γ0.

ω

D Ωc
0

Ω0

Γ0

ω

D ΩF

ΩS

ΓFS

Figure 33: The geometry of the Fluid Structure Interaction system, before (left) and after
(right) deformation.

Now we apply volume forces f and g to the fluid and the elastic body respectively, and
we assume that this interaction through Γ0 together with the applied forces deform the
elastic body and lead to an equilibrium state in the fluid and the structure parts. Each
point of the initial elastic body X ∈ Ω0 is deformed into a new point x = T (X), where

T (X) = (id + w)(X) ∈ ΩS, (3.3)

where w : ΩS → R2 is called the displacement field, and

ΩS := T (Ω0) = (id + w)(Ω0) (3.4)

is the domain representing the deformed elastic body. We also define the deformed fluid-
structure interface

ΓFS := T (Γ0) = (id + w)(Γ0). (3.5)
From this, we describe the elastic body by the Lagrangian coordinate X ∈ Ω0. This elastic
body is completely determined by the knowledge of the displacement field w. Moreover,
the fluid fills the remaining domain

ΩF := D \ ΩS ∪ ω, (3.6)

and it is described in Eulerian coordinates by a velocity field u : ΩF → R2, and by a
pressure field p : ΩF → R. What remains to be done is to specify what equations govern
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the two phases of this system, and what is the nature of the interaction. On the one hand,
the fluid is considered as being viscous and incompressible. It is described by the Stokes
or the Navier-Stokes equations, and a non-slip boundary condition is imposed (i.e., the
velocity is set to zero on the boundaries). This gives

− div ς(u, p) + ε(u · ∇)u = f in ΩF ,
div u = 0 in ΩF ,

u = 0 on ∂ΩF ,
(3.7)

where ε = 0 for Stokes equations and ε = 1 for Navier-Stokes equations. Denoting by
ν > 0 the viscosity of the fluid, we define the Cauchy stress tensor :

ς(u, p) := 2ν∇su− pI, (3.8)

where I is the identity matrix and

∇su := 1
2
(
∇u +∇u>

)
. (3.9)

The force f in (3.7) is given in D. On the other hand, the elastic body satisfies the
equations of equilibrium in the reference configuration for a St Venant-Kirchhoff material,
that is

div Σ(w) = g in Ω0, (3.10)
where Σ(w) is the Piola-Kirchhoff stress tensor defined by

Σ(w) := (I +∇w)C(E(w)), (3.11)
C(E(w)) := 2µE(w) + λ tr(E(w))I, (3.12)

E(w) := 1
2
(
∇w +∇w> +∇w>∇w

)
, (3.13)

where C is the stiffness tensor and λ ≥ 0 and µ ≥ 0 are the Lamé coefficients. We suppose
that the elastic body is attached to the rigid support via the boundary ∂ω, that is we
have the following boundary condition

w = 0 on ∂ω. (3.14)

The force g in (3.10) is given in Ω0. Furthermore we have the equilibrium of the surface
forces on the free boundary Γ0, which reads∫

Γ0
Σ(w)n0 · (v ◦ (id + w))dΓ0 =

∫
ΓFS

ς(u, p)nFS · v dΓFS, (3.15)

for all function v defined on ΩF , where ΓFS := (id+w)(Γ0) defined in (3.5) is the boundary
between the fluid and the deformed elastic body, and where dΓ0 and dΓFS are the length
elements of the surfaces Γ0 and ΓFS respectively, and n0 and nFS are the outer unit normal
vectors to Γ0 and ΓFS respectively. We have the following identity (see e.g. [Cia88]):

nFSdΓFS = [det(∇(T (w)))∇T (w)−Tn0]dΓ0. (3.16)

Thus a change of variable in (3.15) with the use of (3.16) gives the following boundary
condition

Σ(w)n0 = (ς(u, p) ◦ T ) cof(∇T )n0 on Γ0, (3.17)
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where T is defined in (3.3) and

cof(∇T ) = det(∇T )(∇T )−T , (3.18)

is the cofactor matrix of the jacobian matrix of T . Finally we must add a constraint on
the displacement field, in order to make the deformation it creates compatible with the
incompressibility of fluid. That is we have the following condition

|ΩS| = |Ω0|, (3.19)

where |·| denotes the Lebesgue measure. This condition is actually a condition on w:

|ΩS| =
∫

Ω0
det(I +∇w) dx = |Ω0|, (3.20)

At this stage we have written boundary value problems for each phase, fluid and
structure, needing to be completed by a constraint (3.20), and which are strongly coupled
in the following way

− div ς(u, p) + ε(u · ∇)u = f in ΩF ,
div u = 0 in ΩF ,

u = 0 on ∂ΩF ,
div Σ(w) = g in Ω0,

w = 0 on ∂ω,
Σ(w)n0 = (ς(u, p + c) ◦ T ) cof(∇T )n0 on Γ0,∫

Ω0
det(I +∇w) dx = |Ω0|,

(3.21)

where c is a Lagrange multiplier introduced to take into account the non-local area con-
straint |ΩS| = |Ω0|. We can observe that his coupling is twofold:

• the structure displacement w affects and defines the domain on which the fluid
equations are posed and the velocity u and the pressure p are calculated,

• the velocity u and the pressure p of the fluid give rise to a surface force which
influences the calculation of the displacement w.

Two difficulties arise in this system of equation. Firstly, we have to deal with a non-local
constraint area. Secondly, we have two kinds of variables: Eulerian variables (the fluid
velocity u and pressure p, and Lagrangian variables (the displacement w). Moreover, the
domain ΩF on which the fluid equations are written is unknown.

To overcome these difficulties, we first simplify the structure equations in Section 3.2.1,
and then we transport the fluid equations into a reference domain in Section 3.2.2.

3.2.1 A simplified model: incompressible material
In seek of simplification, we define a simplified model. First, we consider the case of linear
elasticity. That is we define the linearized stress tensor or simply stress tensor :

σ(w) := C(e(w)), (3.22)
e(w) := ∇sw, (3.23)
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where e(w) stands for the linearized strain tensor or simply strain tensor, and C is the
elasticity tensor defined in Chapter 1 equation (1.101), which gives, in view of tr(e(w)) =
div w,

σ(w) := 2µe(w) + λ div(w)I, (3.24)

where λ and µ are the Lamé coefficients.
In this case, we neglect the quadratic terms in (3.11), (3.12), and (3.13). Thus σ(w)

replaces Σ(w) in (3.10) and (3.17), and equation (3.10) turns linear with respect to w. The
constraint (3.20) is non linear. We also want to perform a linearization for this constraint.
For a matrix A of size 2× 2, we recall that

det (I + A) = 1 + tr(A) + det(A). (3.25)

Hence, we get

det (I +∇w) = 1 + div(w) + det(∇w) = 1 + div(w) +O
(
‖∇w‖2

∞

)
. (3.26)

If we assume that
div w = 0, (3.27)

and if we neglect the second order terms, we obtain that the area constraint (3.20) is
verified. A simplified model is then obtained by replacing the (non-local) area constraint
(3.20) by the (local) incompressibility condition (3.27). A Lagrange multiplier function
s is associated to the incompressibility condition (3.27). The simplified model now deals
with the elastic tensor

σ(w, s) := σ(w)− sI, (3.28)

which can be written as follows in view of the incompressibility condition (3.27)

σ = 2µ∇s(w)− sI, (3.29)

and which replaces the Piola-Kirchhoff tensor Σ(w) given by (3.11).
The simplified model stands for the couple (w, s) which satisfied:

−2µ div∇s(w) +∇s = g in Ω0 (i)
div w = 0 in Ω0 (ii)

w = 0 on ∂ω (iii)
(2µ∇s(w)− sI)n0 = (ς(u, p) ◦ T ) cof(∇T )n0 on Γ0. (iv)

(3.30)

The surface forces continuity relation (3.30)(iv) differs from (3.17) by involving the La-
grange multiplier function s.

3.2.2 Fixed domain formulation of the simplified FSI problem
In order to solve the simplified FSI problem, we write the fluid equations onto the fixed
domain Ω0. Until now, we have defined the fluid domain as being the complementary in
D of the system composed by the deformed elastic body and the rigid support (see (3.6)).
But in order to transport the boundary value problem (3.7) from ΩF to the initial domain
Ωc

0, we need a bijective map from Ωc
0 to ΩF which is a C1-diffeomorphism. We introduce

the following map:
T (w) = id + P (w), (3.31)
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where w is a displacement field defined in the initial elastic body domain Ω0, and P is an
extension operator from Ω0 to D, such that P (w) is defined in D and T (w) is one to one
in D. The map T defined above in (3.31) extends the definition of the map we introduced
in (3.3). This allows us to define the fluid domain ΩF in which the velocity and pressure
fields are defined:

ΩF := T (w)(Ωc
0), (3.32)

where Ωc
0 is defined Figure 33. We will return to this extension procedure later, to give a

rigorous definition.

Now we can write the variational formulation of the Navier-Stokes system written on
ΩF , and then we transport it onto the reference domain Ωc

0, in the same way as in [Gra02].
We recall that ς(u, p) := 2ν∇su− ptI, and because of the incompressibility condition, we
have

div(∇u>) = ∇(div u) = 0, (3.33)

so that
div ς(u, p) = div(ν∇u− pI). (3.34)

Thus the variational formulation of the Navier-Stokes system is written as follows.

Find (u, p) ∈ H1
0 (ΩF )× L2(ΩF ), such that ∀(z̃, β̃) ∈ H1

0 (ΩF )× L2(ΩF ):

ν
∫

ΩF
∇u · ∇z̃ −

∫
ΩF

p div(z̃) +
∫

ΩF
ε(u · ∇)u · z̃ = 〈f, z̃〉H−1,H1

0
,∫

ΩF
β̃ div(u) = 0.

(3.35)

We can define the transported velocity and pressure fields

v = u ◦ T (w), (3.36)
q = p ◦ T (w), (3.37)

and we set z̃ = z ◦ T (w)−1 and β̃ = β ◦ T (w)−1 in equation (3.35), where z ∈ H1
0 (Ωc

0) and
β ∈ L2

0(Ωc
0). We obtain with a change of variable T (w) that (v, q) satisfies the following

problem:

Find (v, q) ∈ H1
0 (Ωc

0)2 × L2
0(Ωc

0) such that for all (z, β) ∈ H1
0 (Ωc

0)2 × L2
0(Ωc

0):

ν
∫

Ω0
∇(v)F (T (w)) · ∇z −

∫
Ω0

q(G(T (w)) · ∇z)

+
∫

Ω0
ε(v ·G(T (w))∇)v · z = 〈J(T (w))f ◦ T (w), z〉H−1,H1

0
,∫

Ω0
β(G(T (w)) · ∇v) = 0,

(3.38)

where

F (T (w)) = (∇T (w))−1 cof(∇T (w)), (3.39)
G(T (w)) = cof(∇T (w)), (3.40)
J(T (w)) = det(∇T (w)). (3.41)
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Problem (3.38) is related to the following boundary value problem:
−ν div((∇v)F (T (w))) +G(T (w))∇q + ε(vt ·G(T (w))∇)v = (f ◦ T (w))J(T (w)) in Ωc

0,

div(G(T (w))>v) = 0 in Ωc
0,

v = 0 on Γ0.
(3.42)

We recall that the surface force applied on the structure is given in (3.17) by (ς(u, p)◦
T ) cof(∇T )n0. With the definitions of v and q given in (3.36) and (3.37), we can compute
the surface force applied on the structure and depending on these new variables. This
gives

(ς(u, p) ◦ T ) cof(∇T )n0 = (ν(∇v)F (T )− qtG(Tt))n0. (3.43)

Thus we can write the complete Fluid Structure Interaction problem, with the fluid equa-
tions transported onto the reference domains Ωc

0.
The fixed domain formulation of the simplified FSI problem reads as

−ν div((∇v)F (T (w))) +G(T (w))∇q
+ε(v ·G(T (w))∇)v = (f ◦ T (w))J(T (w)) in Ωc

0,
div(G(T (w))>v) = 0 in Ωc

0,
v = 0 on ∂Ωc

0,
− div σ(w) +∇s = g in Ω0,

div w = 0 in Ω0,
w = 0 on ∂ω,

(σ(w)− sI)n0 = ν(∇v)F (T (w))n0
−qG(T (w))n0 on Γ0,

(3.44)

where ε = 0 or ε = 1 for dealing with Stokes or Navier-Stokes equations.

We have to keep in mind that this simplified model is an hybrid model. Indeed we
have linearized the equilibrium equation of the structure (that is to say the Pila-Kirchhoff
stress tensor) and the area constraint, in order to simplify the mathematical analysis that
will follow in this chapter. We will see in Section 3.3 that we obtain an existence and
uniqueness result in Theorem 3.9 for our simplified model, while for the three-dimensional
Navier-Stokes/St Venant-Kirchhoff FSI problem C. Grandmont obtain an existence result
in [Gra02]. For us, the uniqueness is quite important to be able to tackle an optimization
problem. But we do not have linearized the fluid equations change of variables, that is to
say J(T (w)), G(T (w)), and F (T (w)), because we want to compute shape derivatives in
Section 3.4 by keeping as much information as possible, for possible further application and
calculation purposes for the complete system. Nevertheless, even by linearizing J(T (w)),
G(T (w)), and F (T (w)) in the following, the results we obtain are not trivial, because it
keeps a trace of the deformation of the domain.

3.2.3 Objective: optimization of the FSI problem
Our objective is the study of a shape optimization problem of the following form:

min
Ω0∈Uad

J (Ω0), (3.45)
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where J (Ω0) is an abstract shape functional depending on the initial elastic domain
defined by

J (Ω0) =
∫

Ω0
jS(Y,w(Y ),∇w(Y )) dY +

∫
ΩF
jF (x, u(x),∇u(x)) dx, (3.46)

where jF and jS are smooth functions depending respectively on u = v ◦ T (w)−1 and w.
The fields v and w are the velocity and the displacement solutions of the FSI problem
(3.44) posed on Ω0. The domain Ω0 ∈ Uad belongs to a class Uad of admissible domains.

To this end, we start in Section 3.3 to present an existence and uniqueness result for
the simplified FSI problem (3.44). Then in Section 3.4 we compute shape derivatives of
the functional J (Ω0) with the use of the velocity method. In Section 3.5 we finally simplify
the shape derivative obtained previously by applying an adjoint method.

3.3 Existence and uniqueness result for the FSI prob-
lem

ω

D Ωc
0

Ω0

Figure 34: Initial Fluid-Structure configuration.

In this section, we establish an existence and uniqueness result written in Theorem
3.9 for the FSI problem (3.44) with ε = 0. In [Gra02], an existence result is obtained for
the Navier-Stokes equations coupled with a St Venant-Kirchhoff material (whose stress
tensor is given by the Piola-Kirchhoff tensor Σ(w) defined in (3.13)) in 3D. For volume
forces regular and small enough, C. Grandmont finds a non necessary unique solution to
the FSI problem, by applying a fixed point procedure. In our case, we wish to optimize
the initial distribution of elastic material, and the uniqueness of the solution seems to be
essential. Thus we will obtain an existence and uniqueness result by adapting what is
done in [Gra02] to our simplified model.

We start with a sketch of the approach. Let b be a vector field belonging to (H3(Ω0))2.
We define the following extension map:

T : (H3(Ω0))2 −→ (H3(Ωc
0))2

b 7−→ id +R(γ(b)), (3.47)

where γ is the trace operator on Γ0:

γ : H3(Ω0)→ H3−1/2(Γ0), (3.48)
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and R is a lifting operator from Γ0 to Ωc
0:

R : H3−1/2(Γ0)→ H3(Ωc
0). (3.49)

We introduce two problems.

1. Let f ∈ (H2(D))2, and (v(b), q(b)) be the solution of the first problem
−ν div((∇v(b))F (b)) +G(b)∇q(b) = J(b)(f ◦ T (b)) in Ωc

0,
div(G(b)Tv(b)) = 0 in Ωc

0,
v(b) = 0 on ∂Ωc

0,
(3.50)

where the maps J , G and F are defined by

J(b) = det(∇T (b)), (3.51)
G(b) = cof(∇T (b)), (3.52)
F (b) = (∇T (b))−1 cof(∇T (b)). (3.53)

We will justify the definition of (3.53) in Section 3.3.1.

2. Let g ∈ (H1(D))2, and (w(b), s(b)) be the solution of the second problem
−2µ div(∇w(b)) +∇s(b) = g in Ω0,

div w(b) = 0 in Ω0,
w(b) = 0 on ∂ω,

(2µ div(∇w(b))− s(b)I)n0 = (ν∇v(b)F (b)− q(b)G(b))n0 on Γ0.

(3.54)

For a fixed b small enough, we will show that the problem (3.50) admits a unique
solution (v(b), q(b)), and then that the problem (3.54) depending on (v(b), q(b)) admits
also a unique solution denoted by (w(b), s(b)):

b 7→ (v(b), q(b)) 7→ (w(b), s(b)). (3.55)

In particular we will see that w(b) belongs to H3(Ω0). Thus we will be able to define a
map

S : (H3(Ω0))2 −→ (H3(Ω0))2

b 7−→ w(b) , (3.56)

and we will show in Section 3.3.4 that this map is actually a contraction, so that we can
apply the Banach Fixed Point Theorem, and deduce that the solution we search for the
FSI problem is unique and is given by the fixed point of S.

In the following section, with start by presenting useful results for the resolution of
problems (3.50) and (3.54), investigated in Sections 3.3.2 and 3.3.3. Then in Section 3.3.4
we show that S is a contraction.

3.3.1 Notations and preliminary results
In a first time we give the notations used in the rest of this chapter. Let {e1, · · · , en} be
the canonical orthogonal basis of Rn. Let u and v be two vectors of Rn, A and B be two
second order tensors of Rn. We write (see also Appendix A)

AB = AikBkj ei ⊗ ej, (3.57)

102



Shape optimization of a FSI problem 3.3. Existence and uniqueness result for the FSI problem

A ·B = AijBij, (3.58)
Au = Aijuj ei, (3.59)
u · v = uivi, (3.60)

by using the Einstein summation convention, and where the elements ei ⊗ ej are the
element of the canonical basis of the second order tensors on Rn. We define the trace
tr(A) of a matrix A by

tr(A) = I · A, (3.61)
its symmetric part by

As := 1
2
(
A+ A>

)
, (3.62)

and its norm |A| by
|A| = (A · A)1/2. (3.63)

Let Ω be a open subset of Rn. The fields involved in the equations we study belongs
to Sobolev Spaces Wm,p(Ω), for m ≥ 0 a positive integer, and p > 1 a real number. With
this convention, W 0,p(Ω) stands for the Lebesgue space of Lp(Ω). Let u ∈ Wm,p(Ω), we
denote by

‖u‖m,p,Ω (3.64)
the standard Wm,p-norm of u. When there is no ambiguity on the open set of definition
Ω, we simply write this norm

‖u‖m,p. (3.65)

In a second step, we give premilinary results that we are going to use to solve problems
(3.50) and (3.54).

Problem (3.50) is a slightly perturbed incompressible Stokes problem with non-slip
boundary condition, giving rise to a velocity and a pressure weak solutions (v, q) ∈
H1

0 (Ωc
0)× L2

0(Ωc
0) (see e.g., [BF13]), with the space

L2
0(Ωc

0) =
{
q ∈ L2(Ωc

0)
∣∣∣∣∣
∫

Ωc0
q dx = 0

}
. (3.66)

In general, for 1 ≤ p ≤ +∞, we denote by Lp0(Ωc
0) the following space

Lp0(Ωc
0) =

{
q ∈ Lp(Ωc

0)
∣∣∣∣∣
∫

Ωc0
q dx = 0

}
. (3.67)

Furthermore we recall a useful result called the Piola identity (see e.g., [Cia88]). Let
n < p, and Ψ ∈ (W 2,p)n, we have

div (cof∇Ψ) = 0. (3.68)

Problem (3.54), even though it describes the behaviour of an incompressible elastic
material, can be identified with an incompressible Stokes problem with mixed Dirich-
let and Stress boundary conditions, for which we also obtain weak solution (w, s) ∈
(H1(Ω0))2 × L2(Ω0)In view of the shape optimization related problem, we need higher
regularity results for the solutions of problems (3.50) and (3.54). Indeed
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• we need the transformation map T (w) to be a C1-diffeomorphism, which requires
some regularity results on the displacement field w (see Lemma 3.2),

• the change of variable in the Stokes problem for the fluid shows up some terms
such as (∇v)F (T (w))) or G(T (w))∇q. If we want them to be well-defined and
integrable, we still need higher regularity for w, and we need an algebra structure
allowing products of functions (see Lemma 3.2).

As in [Gra02], we give a Lemma offering an algebra structure for Sobolev spaces. A
proof can be found in [AF03] (Theorem 4.39, p. 106).

Lemma 3.1. Let n ≥ 2, 1 < p <∞, and let Ω be a bounded domain of Rn Let m ≥ 1 be
an integer. If mp > n, then there exists a constant Ca > 0 such that for all u ∈ Wm,p(Ω),
and for all v ∈ Wm,p(Ω), we have the product uv ∈ Wm,p(Ω), and

‖uv‖Wm,p(Ω) ≤ Ca ‖u‖Wm,p(Ω) ‖v‖Wm,p(Ω) . (3.69)

Thus Wm,p(Ω) endowed with the norm Ca‖·‖Wm,p(Ω) is a commutative Banach algebra.

Now we exhibit a threshold below which, for a function b ∈ (H3(Ω0))2, the map T (b)
defined in (3.47) can be used for a change of variable. A proof can be found in [Gra02].

Lemma 3.2. There exists a constant 0 <M such that for all b ∈ (H3(Ω0))2 satisfying

‖b‖H3(Ω0) ≤M, (3.70)

Then we have

(i) ∇(id +R(γ(b))) = I +∇R(γ(b)) is an invertible matrix in (H2(Ωc
0))2×2,

(ii) T (b) = id +R(γ(b)) is one to one on Ωc
0,

(iii) T (b) is a C1-diffeomorphism from Ωc
0 onto T (b)(Ωc

0).

Actually, the constant M depends only on Ca, CR, Cγ, and CΩ, where Ca is the
constant from Lemma 3.1, CR is the continuity constant of the Lifting operator from
(3.49), Cγ is the continuity constant of the Trace operator from (3.48), and CΩ is a
constant such that

∀θ ∈ C1(Ω) ‖∇θ‖C0(Ω) < CΩ =⇒
{det(I +∇θ)(x) > 0, ∀x ∈ Ω,

id + θ is injective on Ω,
(3.71)

(see e.g. [Cia88], Theorem 5.5.1).

From the two preceding Lemmas, we define the set

Bp := {b ∈ (H3(Ω0))2 | ‖b‖2,p ≤M1}, (3.72)

and the maps J : (H3(Ω0))2 → H2(Ωc
0) defined by

J(b) = det(∇T (b)), (3.73)
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G : (H3(Ω0))2 → (H2(Ωc
0))2×2 defined by

G(b) = cof(∇T (b)), (3.74)

and F : Bp → (H2(Ωc
0))2×2 defined by

F (b) = (∇T (b))−1 cof(∇T (b)). (3.75)

In addition we have (see [Gra02])

Lemma 3.3. The mappings G and J are of class C∞. The mapping F is infinitely
differentiable everywhere in Bp defined in (3.72). Moreover, F satisfies a condition of
“uniform ellipticity” over Bp, i.e. there exists a constant β > 0 such that:

β|x|2 ≤ F (b)x · x, ∀b ∈ Bp, ∀x ∈ R2. (3.76)

3.3.2 Resolution of the fluid problem
In this subsection we give an existence and uniqueness result for the fluid problem (3.50).
This extends the standard Stokes well known existence result.

To begin with, we recall the standard result of existence, uniqueness and Lq-estimates
for the solution of Stokes problem in Proposition 3.4. The regularity result is a conse-
quence of what is established in [ADN59] and [ADN64] (see [BF13]). For a complete proof
of existence and regularity, we may refer to [Cat61] for the 3-dimensional case, and to
[Tem84] (Proposition 2.3 p. 35) for the 2-dimensional case. A complete development on
these questions is carried out in [Gal11].

Proposition 3.4. Let Ω be a bounded domain of Rn, n ≥ 2. Suppose Ω of class
Cmax{2,m+2}, m ≥ −1. Then for any

f ∈ (Wm,q(Ω))n, hF ∈ Wm+1,q(Ω), vb ∈ (Wm+2−1/q,q(∂Ω))n, 1 < q < +∞, (3.77)

with the compatibility condition ∫
Ω
hF dx =

∫
∂Ω
vb · n ds, (3.78)

where n is the outer unit normal to ∂Ω, there exists a unique pair (v, p) ∈ (Wm+2,q(Ω))n×
Wm+1,q(Ω) ∩ Lq0(Ω) solution of the Stokes system

−ν∆v +∇p = f in Ω,
div v = hF in Ω,

v = vb on ∂Ω,
(3.79)

and which satisfies the following estimate

‖v‖m+2,q,Ω + ‖p‖m+1,q,Ω ≤ CLq(‖f‖m,q,Ω + ‖hF‖m+1,q,Ω + ‖vb‖m+2−1/q,q,∂Ω). (3.80)

where CLq = CLq(n,m, q,Ω).

We notice that problem (3.50) differs from problem (3.79) due to the presence of
matrices G and F . Then we follow below what is done in [Gra02] to be able to apply
Proposition 3.4.
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Theorem 3.5. Let Ω be a bounded domain of Rn, n ≥ 2, having a Cm+2 boundary ∂Ω,
m ≥ 0. Let 1 < q < +∞ such that (m+ 1)q > n, f ∈ (Wm,q(Ω))n, hF ∈ Wm+1,q(Ω) such
that ∫

Ω
hF dx = 0, (3.81)

and A,B ∈ (Wm+1,q(Ω))n×n two matrices. We assume that B is invertible in
Wm+1,q(Ω)n×n, and there exists ψ ∈ (Wm+2,q(Ω))n such that

B = cof∇ψ. (3.82)

There exists a positive constant 0 < Cpert, such that if

‖I−A‖(Wm+1,q(Ω))n×n ≤ Cpert, and ‖I−B‖(Wm+1,q(Ω))n×n ≤ Cpert, (3.83)

then there exists a unique solution (v, p) ∈ (Wm+2,q(Ω))n × Wm+1,q(Ω) ∩ Lq0(Ω) of the
perturbed Stokes system:

−ν div((∇v)A) + B∇p = f in Ω,
div(B>v) = hF in Ω,

v = 0 on ∂Ω,
(3.84)

and there exists a positive constant CLq,2 > 0 such that

‖v‖m+2,q,Ω + ‖p‖m+1,q,Ω ≤ CLq,2(‖f‖m,q,Ω + ‖hF‖m+1,q,Ω). (3.85)

We could have just refered to [Gra02] where the proof of the following result is
entirely given, but we rewrite the second step to highlight the behaviour of the constant
arising in estimate (3.85), in view of a shape optimization investigation.

Proof: Let (v0, p0) ∈ (Wm+2,q(Ω))n ×Wm+1,q(Ω) be the unique solution of
−ν∆v0 +∇p0 = f in Ω,

div v0 = hF in Ω,
v0 = 0 on ∂Ω,

(3.86)

obtained applying Proposition 3.4. We define by induction for all N ≥ 0 the following
problem for (vN+1, pN+1)

−ν div((∇vN+1)) +∇pN+1 = f − ν div((∇vN)(I−A)) + (I−B)∇pN in Ω,
div(vN+1) = hF + div((I−B>)vN) in Ω,

vN+1 = 0 on ∂Ω.
(3.87)

This problem is well-posed for (vN+1, pN+1) with (vN , pN) ∈ Wm+2,q(Ω)n ×Wm+1,q(Ω).
Indeed, from Lemma 3.1 and in view of the regularity of vN and pN , we have that
div((∇vN)(I − A)) ∈ (Wm,q(Ω))n and div(pN(I − B)) ∈ Wm,q(Ω). Yet we can write

(I−B)∇pN = div(pN(I−B)) (3.88)
using the Piola identity (3.68), so that (I − B)∇pN ∈ Wm,q(Ω), and then also B∇pN ∈
(Wm,q(Ω))n. Still using the Piola identity (3.68) we have

div((I−B>)vN) = (I−B) · ∇vN = (I−B)ij(∇vN)ij, (3.89)
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and consequently div((I − B>)vN) ∈ (Wm,q(Ω))n. Finally the compatibility condition
(3.78) is satisfied because vN = 0 on ∂Ω, and∫

Ω
div((I−B>)vN) dx =

∫
∂Ω

(I−B>)vN · n ds = 0. (3.90)

By subtracting problem (3.87) written for (vN+1, pN+1) by problem (3.87) written for
(vN , pN), we find

−ν div(∇(vN+1 − vN)) +∇(pN+1 − pN) = −ν div(∇(vN − vN−1)(I−A))
+ (I−B)∇(pN − pN−1) in Ω,

div(vN+1 − vN) = div((I−B>)(vN − vN−1)) in Ω,
vN+1 − vN = 0 on ∂Ω.

(3.91)
According to Lemma 3.1, we have the following estimates for any (v, p) ∈ (Wm+2,q(Ω))n×
Wm+1,q(Ω), v = 0 on ∂Ω:

‖div((I−B>)v)‖Wm+1,q(Ω) = ‖(I−B) · ∇v‖Wm+1,q(Ω)

≤ n2Ca‖(I−B)‖(Wm+1,q(Ω))n×n‖v‖(W 2,q(Ω))n , (3.92)
‖div((∇v)(I−A))‖(Wm,q(Ω))n ≤ nCa‖(I−A)‖(Wm+1,q(Ω))n×n‖v‖(Wm+2,q(Ω))n (3.93)

where Ca is the constant appearing in Lemma 3.1, and

‖div(p(I−B))‖(Wm,q(Ω))n = ‖(I−B)∇p‖(Wm,q(Ω))n

≤ nCa‖(I−B)‖(Wm+1,q(Ω))n×n‖p‖(Wm+1,q(Ω))n , (3.94)

where we used Piola identity (3.68) Thus by applying Theorem 3.4, there exists a unique
solution (vN+1, pN+1) ∈ Wm+2,q(Ω)×Wm+1,q(Ω) to problem (3.91). Moreover in view of
assumption (3.83) we find that

‖vN+1 − vN‖m+2,q + ‖pN+1 − pN‖m+1,q ≤ C(n, ν)CLqCaCpert(‖vN − vN−1‖m+2,q

+ ‖pN − pN−1‖m+1,q),
≤ (C(n, ν)CLqCaCpert)N(‖v0‖m+2,q + ‖p0‖m+1,q),

(3.95)

where C(n, ν) is a constant depending only on n and ν, where Ca is the constant appearing
in Lemma 3.1, CLq is the constant appearing in estimation (3.80), and Cpert the constant
appearing in assumption (3.83). For a constant Cpert small enough such that

γ = C(n, ν)CLqCaCpert < 1 (3.96)

the sequence (vN , pN)N≥0 converges strongly in (Wm+2,q(Ω))n × Wm+1,q(Ω). We call
(v, p) ∈ Wm+2,q(Ω) × Wm+1,q(Ω) its strong limit. We pass to the limit in the system
(3.87), which is possible thanks to the strong convergence. Hence we find that (v, p) is
actually a solution of problem (3.84). Finally, by applying Proposition 3.4 to the system
(3.87), we obtain the following estimation

‖vN+1‖m+2,q + ‖pN+1‖m+1,q ≤ (C(n, ν)CLqCaCpert)(‖vN‖m+2,q + ‖pN‖m+1,q)
+ CLq(‖f‖m,q + ‖hF‖m+1,q). (3.97)
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which yields to

‖vN+1‖m+2,q + ‖pN+1‖m+1,q ≤ γN+1(‖v0‖m+2,q + ‖p0‖m+1,q)
+ (γN + · · ·+ 1)CLq(‖f‖m,q + ‖hF‖m+1,q),
≤ (γN+1 + γN + · · ·+ 1)CLq(‖f‖m,q + ‖hF‖m+1,q). (3.98)

Passing to the limit in estimation (3.98) yields to the following inequality

‖v‖m+2,q + ‖p‖m+1,q ≤
CLq

1− γ (‖f‖m,q,Ω + ‖hF‖m+1,q,Ω). (3.99)

The uniqueness of the solution is straightforward due to the estimate (3.99)
and the linearity of problem (3.84). We have obtained a unique solution
(v, p) ∈ (Wm+2,q(Ω))n × Wm+1,q(Ω) ∩ Lq0(Ω) for the problem (3.84), satisfying the
estimation (3.85).

3.3.3 Resolution of the structure problem
Now we solve the structure problem (3.54). It is actually a Stokes like problem. The
field w stands for the structure displacement. The structure being clamped at ∂ω, we
have at this boundary a homogeneous Dirichlet condition. But for the boundary Γ0, the
equilibrium of the surface forces leads to a stress boundary condition.

Usually, the Dirichlet condition for the Stokes problem implies that we have a solution
for which the pressure field is defined up to a constant (which is often chosen such that
the pressure has a zero mean), whereas pure Neumann or pure stress condition brings to
a solution for which the velocity field is defined up to a constant. In the case of mixed
boundary condition, i.e with Dirichlet condition on a part of the boundary and stress
condition on the rest of the boundary, we will note that the velocity together with the
pressure are completely determined, and no zero mean value has to be imposed.

We first recall a classical result, that we are going to use to show the existence of the
“pressure” field for the structure problem. We refer for example to [BF13] for a proof.
Proposition 3.6 (de Rham’s Theorem). Let Ω be a connected, bounded, Lipschitz
domain of Rn, n ≥ 2. Let f be an element in (H−1(Ω))n, such that for any function
ϕ ∈ (D(Ω))n satisfying divϕ = 0, we have 〈f, ϕ〉H−1,H1

0
= 0. Then, there exists a unique

function p in L2
0(Ω) such that f = ∇p.

Let O be a bounded domain of R2, we denote by Γ its boundary. Let ω be a subset
of O such that ω ⊂⊂ O. Thus we define the domain Ω by

Ω := O \ ω, (3.100)

so that the boundary of Ω is
∂Ω = Γ ∪ ∂ω. (3.101)

Let us introduce the space

H1
0,∂ω(Ω) := {u ∈ H1(Ω) | u = 0 on ∂ω}. (3.102)

We state the main result of this section, providing the existence, the uniqueness and the
regularity of solutions to the structure problem when the stress boundary conditions on
Γ are given.
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Theorem 3.7. Let (g, hS, fb) ∈ (L2(Ω))2 ×H1(Ω)× (H1/2(∂Ω))2. There exists a unique
pair (w, s) in (H1

0,∂ω(Ω))2 × L2(Ω) solution of the problem:

− div σ(w) +∇s = g in Ω
divw = hS in Ω

w = 0 on ∂ω

(σ(w)− sI)n = fb on Γ,

(3.103)

where n is the outward normal vector to Γ, and σ(w) = 2µ∇s(w).
Moreover, if the domain Ω is of class Ck+2,1 for k ≥ 0, and if (g, hS, fb) belongs to

(Hk(Ω))2×Hk+1(Ω)×(Hk+1/2(∂Ω))2, then the pair (w, s) belongs to (Hk+2(Ω))2×Hk+1(Ω)
and there exists a constant 0 < Cs depending only on Ω such that

‖w‖Hk+2 + ‖s‖Hk+1 ≤ Cs(‖g‖Hk + ‖hS‖Hk+1 + ‖fb‖Hk+1/2). (3.104)

Since problem (3.103) involves non standard boundary conditions of different types,
we give a proof of the first part of Theorem 3.7 for the existence of a unique weak solution.
The regularity result can be obtained following [BF13]. We follow the approach presented
in [BF13] in the case where the stress boundary condition lies on the whole boundary ∂Ω.
First we show the following useful Lemma, enabling us to deal with free-divergence field.

Lemma 3.8. Let Ω be a regular open bounded subset of R2. There exists a right inverse
for the divergence operator, that is there exists a continuous linear operator π from L2(Ω)
to (H1

0,∂ω(Ω))2, such that for any q in L2(Ω):

div(πq) = q. (3.105)

Proof: Let q be in L2(Ω). Because Ω is of class C1,1, we have a unique solution ψ in H2(Ω)
solution of ([Eva10]) 

−∆ψ = q in Ω
ψ = 0 on Γ

∂nψ = 0 on ∂ω,

(3.106)

where ∂n stands for the normal derivative along ∂ω, and ψ satisfies

‖ψ‖H2(Ω) ≤ C‖q‖L2(Ω). (3.107)

We set
v = −∇ψ, (3.108)

such that v belongs to (H1(Ω))2, v · n = 0 on ∂ω, and div v = q. We would like to have
also v · τ = 0, where τ is a tangent vector that we can define by τ = (n2,−n1)>, where
the normal vector is written in a canonical base of R2: n = (n1, n2)>. So we have v · τ .
Let

g = v · τ, (3.109)

and let ϕ be the (H2(Ω))2 lifting of (0, g) ∈ H3/2(∂ω)×H1/2(∂ω) ([BF13]), satisfying

ϕ = 0 on ∂ω, (3.110)
∂nϕ = g on ∂ω, (3.111)

109



3.3. Existence and uniqueness result for the FSI problem Shape optimization of a FSI problem

and
‖ϕ‖H2 ≤ C‖q‖L2 . (3.112)

Thus we have ∇ϕ · τ = 0. We set

w = rotϕ =
(
− ∂ϕ
∂x2

,
∂ϕ

∂x1

)>
, (3.113)

in such a way that

w · n = ∇ϕ · τ = 0 on ∂ω,

w · τ = −∇ϕ · n = −g on ∂ω,

divw = 0 in Ω.

We conclude by defining
πq = v + w, (3.114)

and easily check that πq ∈ (H1
0,∂ω(Ω))2 satisfies div πq = q.

Proof of Theorem 3.7: First, we can only consider the case where hS = 0 in (3.103).
Indeed, from Lemma 3.8 there exists a linear operator

π : L2(Ω)→ (H1
0,∂ω(Ω))2 (3.115)

such that for all q in L2(Ω)
div(πq) = q in Ω. (3.116)

We introduce w̃ := w − πhS. From (3.103), w̃ satisfies

− div σ(w̃) +∇s = g + div σ(πhS) in Ω
div w̃ = 0 in Ω

w̃ = 0 on ∂ω

(σ(w̃)− sI)n = fb − σ(πhS)n on Γ,

(3.117)

which corresponds to the homogeneous data hS = 0 in problem (3.103). Thus we are now
only interested in the problem of the following form:

− div σ(w) +∇s = g in Ω
divw = 0 in Ω

w = 0 on ∂ω

(σ(w)− sI)n = fb on Γ.

(3.118)

We define the Hilbert space

W := {v ∈ (H1(Ω))2 | v = 0 on ∂ω, div v = 0}, (3.119)

and the bilinear form
a(u, v) =

∫
Ω
σ(u) · e(v) (3.120)

is obviously continuous on W . Furthermore, a is coercive on W because of the homoge-
neous Dirichlet condition on ∂ω allowing the validity of a Poincaré type inequality and of
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Korn inequality (see [OSY92] Theorem 2.5). Namely there exists a constant C such that
for all u ∈ W , ‖u‖H1 ≤ Ca(u, u)1/2. Thus, by applying Lax-Milgram theorem, we obtain
that there exists a unique w in W such that for any z in W

a(w, z) =
∫

Ω
g · z + 〈fb, z〉−1/2,1/2,Γ. (3.121)

Thus for all z ∈ (D(Ω))2, we have that

〈− div σ(w)− g, z〉D′,D = 0, (3.122)

where we recall that D(Ω) is the space of C∞(Ω) functions having a compact support, and
D′ is the space of the distributions on Ω. In particular (3.122) holds for all z in (D(Ω))2

satisfying div z = 0. We deduce from de Rham’s theorem 3.6 that there exists a unique s
in L2

0(Ω) such that
− div σ(w) +∇s = g (3.123)

in (H−1(Ω))n. From the regularity of g, we have then − div(σ(w) − sI) = g ∈ L2(Ω).
Hence, Stokes formula leads to∫

Ω
(σ(w)− sI) · ∇ϕ− 〈(σ(w)− sI)n, ϕ〉−1/2,1/2,Γ =

∫
Ω
g · ϕ, ∀ϕ ∈ (H1(Ω))2. (3.124)

Now choosing ϕ ∈ (H1(Ω))2 such that divϕ = 0, that is to say ϕ ∈ W , we have that

sI · ∇ϕ = s divϕ = 0. (3.125)

Then by comparing (3.121) and (3.124), we obtain

〈(σ(w)− sI)n, ϕ〉−1/2,1/2,Γ = 〈fb, ϕ〉−1/2,1/2,Γ, ∀ϕ ∈ W. (3.126)

We want that (3.126) holds for all ϕ ∈ (H1(Ω))2. Let ϕ be in (H1/2(Γ))2, we choose
a free divergence extension of ϕ to (H1(Ω))2, for example by taking the solution ϕ̃ ∈
(H1

0,∂ω(Ω))2 to the problem 

−∆ϕ̃+∇r = 0 in Ω
div ϕ̃ = 0 in Ω

ϕ̃ = 0 on ∂ω

ϕ̃ = ϕ on Γ,

(3.127)

where r is a pressure field in L2
0(Ω). This solution ϕ̃ exists as long as the additional

condition holds (see e.g. [BF13] Theorem IV.5.2)∫
Γ
ϕ · n ds = 0. (3.128)

Thus we have shown in view of (3.126) that for all ϕ ∈ (H1/2(Γ))2 satisfying (3.128),

〈(σ(w)− sI)n− fb, ϕ〉−1/2,1/2,Γ = 〈(σ(w)− sI)n− fb, ϕ̃〉−1/2,1/2,Γ = 0, (3.129)

since ϕ̃ ∈ W . Let ψ in H1/2(Γ), we write

ψ = ψ −
(

1
|Γ|

∫
Γ
ψ · n

)
n+

(
1
|Γ|

∫
Γ
ψ · n

)
n,
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= ψ1 +
(

1
|Γ|

∫
Γ
ψ · n

)
n, (3.130)

where by definition
∫
Γ ψ1 · n = 0. Thus we can write for all ψ in H1/2(Γ):

〈(σ(w)− sI)n− fb, ψ〉−1/2,1/2,Γ = 〈c0n, ψ〉−1/2,1/2,Γ, (3.131)

where c0 is the constant defined by

c0 = 1
|Γ| 〈(σ(w)− sI)n− fb, n〉−1/2,1/2,Γ . (3.132)

We can conclude that

(σ(w)− (s+ c0)I)n = fb in (H−1/2(Γ))2. (3.133)

Hence (w, s+ c0) ∈ (H1(Ω))2 × L2(Ω) is a weak solution of (3.118).

3.3.4 A fixed point procedure
In this section, we show the main result of Section 3.3: an existence and uniqueness result
for the Fluid Structure Interaction problem.

Theorem 3.9. Let f ∈ (H2(D))2, and g ∈ (H1(D))2. Let S : (H3(Ω0))2 → (H3(Ω0))2 be
the map defined in (3.56) by consecutively solving problem (3.50) posed for f and problem
(3.54) posed for g.

There exists a constant CS such that if ‖f‖2,2 ≤ CS and ‖g‖1,2 ≤ CS, then there exists
a unique solution (v, q) ∈ (H3(Ωc

0))2 ×H2(Ωc
0) ∩ L2

0(Ωc
0), (w, s) ∈ (H3(Ω0))2 ×H2(Ω0) to

the Fluid Structure Interaction problem (3.44). Furthermore, there exists a constant CFS
such that

‖v‖3,2,Ωc0 + ‖q‖2,2,Ωc0 + ‖w‖3,2,Ω0 + ‖s‖2,2,Ω0 ≤ CFS(‖f‖2,2,D + ‖g‖1,2,D). (3.134)

Proof: In a first step we look at the continuity of the fluid problem. Let (v(b1), q(b1)
and (v(b2), q(b2) be the solutions of problem (3.50) for respectively b1 and b2 in Bp,
where

Bp := {b ∈ (H3(Ω0))2 | ‖b‖3,2 ≤M}, (3.135)
forM a given constant. We set δv := v(b1)− v(b2) and δq := q(b1)− v(b2). In view of
(3.50) we can write

− div(∇(δv)F (b1)) +G(b1)∇δq = J(b1)f ◦ T (b1)− J(b2)f ◦ T (b2)
+ div(∇(v(b2))(F (b1)− F (b2)))
− (G(b1)−G(b2))∇q(b2) in Ωc

0,

div(G(b1)>δv) = − div((G(b1)−G(b2))>v(b2)) in Ωc
0,

δv = 0 on ∂Ωc
0.

(3.136)
The compatibility condition (3.81) is valid because of the homogeneous Dirichlet condition
satisfied by v(b2). In view of the regularity of v(b2) and q(b2), we can apply Theorem 3.5
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for m = 1 and q = 2, giving that for all b1, b2 in Bp, if M is small enough, the solution
(δv, δq) of (3.136) belongs to (H3(Ωc

0))2 ×H2(Ωc
0) ∩ L2

0(Ωc
0), and satisfies

‖δv‖3,2,Ωc0 + ‖δq‖2,2,Ωc0 ≤ CLp(‖fF‖1,2,Ωc0 + ‖hF‖2,2,Ωc0), (3.137)

where fF and hF are defined by

fF = J(b1)f ◦ T (b1)− J(b2)f ◦ T (b2) + div(∇(v(b2))(F (b1)− F (b2)))
− (G(b1)−G(b2))∇q(b2), (3.138)

hF = − div((G(b1)−G(b2))>v(b2)). (3.139)

We first estimate the term fF , and then we estimate hF .

From Lemmas 3.1 and 3.3 we have that J defined from Bp into H2(Ωc
0) and G and F

defined from Bp into (H2(Ωc
0))2×2 are of class C∞, and the norms of their derivatives are

bounded on Bp. We set

‖DJ‖M := sup
b∈Bp
‖DJ(b)‖L(H3(Ω0),H2(Ωc0)), (3.140)

‖DG‖M := sup
b∈Bp
‖DG(b)‖L(H3(Ω0),(H2(Ωc0))2×2), (3.141)

‖DF‖M := sup
b∈Bp
‖DF (b)‖L(H3(Ω0),(H2(Ωc0))2×2). (3.142)

From Theorem 3.5 for m = 1 and q = 2 applied to problem (3.50) written for b2, we
have the estimation

‖∇v(b2)‖3,2,Ωc0, ≤ CLp,2‖J(b2)(f ◦ T (b2))‖1,2,Ωc0 . (3.143)

In view of Lemma 3.2, T (b2) is a C1-diffeomorphism, and from the definition of the map
J in (3.73), a change of variable gives

‖J(b2)(f ◦ T (b2))‖1,2,Ωc0 = ‖f‖1,2,T (b2)(Ωc0) ≤ ‖f‖1,2,D. (3.144)

From Lemma 3.1, we deduce:

‖∇v(b2)(F (b1)− F (b2))‖2,2,Ωc0 ≤ Ca‖∇v(b2)‖2,2,Ωc0‖(F (b1)− F (b2))‖1,p,Ωc0

≤ CaCLp,2‖f‖1,2,D‖DF‖M‖b1 − b2‖3,2,Ω0 . (3.145)

Similarly we find

‖(G(b1)−G(b2))∇q(b2)‖1,2,Ωc0 ≤ CaCLp,2‖f‖1,2,D‖DG‖M‖b1 − b2‖3,2,Ω0 . (3.146)

Now we want to estimate

‖J(b1)f ◦ T (b1)− J(b2)f ◦ T (b2)‖1,2,Ωc0 ≤ ‖(J(b1)− J(b2))f ◦ T (b1)‖1,2,Ωc0

+ ‖J(b2)(f ◦ T (b1)− f ◦ T (b2)‖1,2,Ωc0 . (3.147)

We have that H2(Ωc
0) is embeded continuously into L∞(Ωc

0). Thus J(b2) belongs to
L∞(Ωc

0), and there exists a constant C∞ > 0 such that

‖J(b2)‖∞,p,Ωc0 ≤ C∞‖J(b2)‖2,2,Ωc0 . (3.148)
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We can write point-wise

J(b)(x) = detT (b)(x) = 1 + tr(∇R(γ(b))(x)) + o(|∇R(γ(b))(x)|), for a.e. x ∈ Ωc
0,

(3.149)
and by taking M small enough, we can obtain both

1/2 ≤ ‖J(b)‖0,∞, ‖J(b)−1‖0,∞ ≤ 2 (3.150)

for all b ∈ Bp. With these elements we calculate:

‖(J(b1)− J(b2))f ◦ T (b1)‖1,2,Ωc0 ≤ 2‖f‖1,2,D‖DJ‖M‖b1 − b2‖3,2,Ω0 . (3.151)

From [HP06] Lemma 5.3.3, we consider η ∈ W 1,p(R2) for 1 ≤ p < +∞, and the map

b ∈ (W 1,∞(R2))2 7→ η ◦ T (b) ∈ Lp(R2) (3.152)

is of class C1 in the vicinity of 0. Thus for f ∈ (H2(D))2 we have

‖f ◦ T (b1)− f ◦ T (b2)‖1,2 ≤ ‖D(f ◦ T (b2))‖1,2‖b1 − b2‖2,∞ + o(‖b1 − b2‖2,∞). (3.153)

Once again we have
‖b1 − b2‖2,∞ ≤ C∞‖b1 − b2‖3,2. (3.154)

Moreover, Lemma 5.3.3 in [HP06] gives the following expression for the derivative

‖D(f ◦ T (b2))‖1,2 = ‖∇f ◦ T (b2)‖1,2 ≤ 2‖f‖2,2,D, (3.155)

where we have obtained the inequality with a change a variable and in view of the uniform
bound we have for J(b) over Bp.

We recall that fF is given by (3.138). We have completely estimated ‖fF‖1,2 by
combining (3.145), (3.146), (3.146), (3.146), (3.146), and (3.146). We obtain

‖fF‖1,2,Ωc0 ≤ ‖f‖1,2,D
(
CaCLp,2(‖DF‖M + ‖DG‖M) + 2‖DJ‖M

)
‖b1 − b2‖3,2,Ω0

+ 2‖f‖2,2,D‖b1 − b2‖3,2,Ω0 , (3.156)

and finally

‖fF‖1,2,Ωc0 ≤ ‖f‖2,2,D
(
2 + CaCLp,2(‖DF‖M + ‖DG‖M) + 2‖DJ‖M

)
‖b1 − b2‖3,2,Ω0 .

(3.157)

For the estimation of ‖hF‖2,2, we recall that we can write

hF = − div((G(b1)−G(b2))>v(b2)) = −(G(b1)−G(b2)) · ∇v(b2), (3.158)

so that

‖hF‖2,2,Ωc0 ≤ n2Ca‖G(b1)−G(b2)‖2,2,Ωc0‖∇v(b2)‖2,2,Ωc0

≤ n2CaCLp,2‖f‖1,2,D‖DG‖M‖b1 − b2‖3,2,Ω0 . (3.159)

Finally from (3.137) we get

‖δv‖3,2,Ωc0 + ‖δq‖2,2,Ωc0 ≤ C(M, Ca, CRγ, CLp,2)‖f‖2,2,D‖b1 − b2‖3,2,Ω0 . (3.160)
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In a second step we look at the continuity of the structure problem. Let
(w(b1), s(b1)) and (w(b2), s(b2)) be the solutions of problem (3.54) for respectively b1
and b2 in Bp. We set δw := w(b1)−w(b2) and δs := s(b1)− s(b2). In view of (3.54) we
can write

2µ div(∇δw) +∇δs = 0 in Ω0,
div δw = 0 in Ω0,
δw = 0 on ∂ω,

(2µ div(∇δw)− δsI)n0 = (∇v(b1))F (b1)− (∇v(b2))F (b2))n0
−(q(b1)G(b1)− q(b2)G(b2))n0 on Γ0.

(3.161)

Let us denote by fb the surface force

fb = (∇v(b1))F (b1)− (∇v(b2))F (b2))n0 − (q(b1)G(b1)− q(b2)G(b2))n0. (3.162)

In order to apply Theorem 3.7 for k = 1, we need that fb belongs to (H3/2(Γ0))2. In view
of the regularity of the fields involved in the expression (3.162), and from Lemma 3.1, we
have that

(∇v(b1))F (b1)− (∇v(b2))F (b2)) ∈ H2(Ωc
0), (3.163)

(q(b1)G(b1)− q(b2)G(b2)) ∈ H2(Ωc
0). (3.164)

Thus fb belongs to (H3/2(Γ0))2. We first estimate:

‖(∇v(b1))F (b1)− (∇v(b2))F (b2))n‖3/2,2,Γ0 ≤ ‖(∇v(b1)−∇v(b2))F (b1)‖2,2,Ωc0

+ ‖(∇v(b2)(F (b1)− F (b2))‖2,2,Ωc0 (3.165)

Thus from (3.145) and (3.160) we have a constant C > 0 such that

‖(∇v(b1))F (b1)− (∇v(b2))F (b2))n‖3/2,2,Γ0 ≤ C‖f‖2,2,D‖b1 − b2‖3,2. (3.166)

In a same manner we have a constant C ′ > 0 such that

‖(q(b1)G(b1)− q(b2)G(b2))n‖3/2,2,Γ0 ≤ C ′‖f‖2,2,D‖b1 − b2‖3,2. (3.167)

Finally we have obtained by applying Theorem 3.7 for fb defined as in (3.162), we obtain
a constant CM = CM(M, Ca, CRγ, CLp,2) > 0 such that:

‖w(b1)− w(b2)‖3,2 + ‖s(b1)− s(b2)‖2,2 ≤ CsCM‖f‖2,2,D‖b1 − b2‖3,2. (3.168)

In a third step, we show that the map S : b 7→ w(b) defined in (3.56) is a
contraction. For a fixed M, we have from (3.168) that there exists a constant C1 such
that if ‖f‖2,2,D < C1, then S is a contraction.

By applying Theorem (3.7) to the problem (3.54) satisfied by w(b), for a b ∈ Bp, we
obtain that

‖w(b)‖3,2 + ‖s(b)‖2,2 ≤ Cs(CM‖f‖1,p,D + ‖g‖1,2,Ω0). (3.169)
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Hence, there exists a constant C2 such that if ‖f‖2,2,D < C2 and ‖g‖1,2,Ω0 < C2, then

‖w(b)‖3,2 + ‖s(b)‖2,2 ≤M. (3.170)

By defining
CS = min(C1, C2), (3.171)

we have that if ‖f‖2,2,D < CS and ‖g‖1,2,Ω0 < CS, then the map S is a contraction which
maps Bp onto Bp. Thus, form the Banach fixed-point theorem, S admits a unique fixed
point in Bp denoted by w. It results that the solution (v(w), q(w),w, s(w)) is the unique
solution to the Fluid Structure Interaction problem (3.44).

3.4 Shape derivatives by the velocity method
In this section, we start by a introduction to the velocity method for the computation
of shape derivatives. In Section 3.4.2, we present how we apply this method to the FSI
problem. Then in Section 3.4.5 we calculate the shape derivative of an abstract shape
functional expressed with the material derivatives of the solutions of the FSI problem.
We give finally the boundary value problems satisfied by this material derivatives in
Section 3.4.4.

3.4.1 General introduction
We are interested in the study of the variations of a shape functional J (Ω) with respect
to the variation of the domain Ω. In classical optimization, the information offered
by the derivative of the cost function is helpful. It gives information on optimality
conditions, and can be used for numerical optimization, and it allows us under certain
conditions to find its extrema. But in the case of shape optimization, the variable is
a geometrical domain, and thus does not belong to a vector space. We therefore need
to give an adequate definition of the derivative of a shape functional As we mentioned
it in the introduction of Chapter 2, the concept of shape derivative was introduced
in the pioneering paper [Had08]. For further references, the reader may consult
for example [SZ92] Chapter 2, [HP06] Section 5.1 or [All07] Chapter 6. We introduce
below the concept of shape derivative following what is done in [SZ92], [HP06], and [All07].

We recall that the shape functional we study is defined on a collection of open subset
of Rn. Let Ω be such a set. In some sense, we want to explore how behaves the functional
J around the value J (Ω), when we slightly “perturb” Ω. For this, we first have to
make a choice on the definition of what a perturbation is for Ω, in order to then define a
derivative related to this perturbation. To define a perturbation allowing us to calculate
derivatives, we generally choose a normed vector space of parameter Θ, and a continuous
map Φ from Θ to an affine space E of map from Rn into itself (we can say that E is a
set of transformation of Rn), such that Φ(0) = idRn and Φ is differentiable at 0 (see e.g.,
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[MS76]). Thus we can say that J is shape differentiable at Ω (keeping in mind that this
definition of shape differentiability depends on Θ, E, and Φ), if we have a neighbourhood
V of 0, and a continuous linear map denoted by DJ (Ω) (or J ′(Ω)) called the “shape
derivative” of J at Ω, such that for all θ ∈ V :

J (Φ(θ)(Ω)) = J (Ω) +DJ (Ω)(θ) + o(‖θ‖Θ). (3.172)

There exists different ways to define such maps driving to the deformation of the
domain. To go further than the fuzzy definition we gave above, we are going to present a
classical framework for differentiation with respect to domains (see e.g., [SZ92], [HP06]).
First we give the rigorous definition of an appropriate space of transformation of Rn.

Definition 3.10. We denote by W 1,∞(Rn,Rn) the set of bounded, Lipschitz continuous
map from Rn into itself, endowed with the norm defined for all θ ∈ W 1,∞(Rn,Rn) by

‖θ‖1,∞ = sup
x,y∈Rn,x 6=y

{
|θ(x)|+ |θ(x)− θ(y)|

|x− y|

}
. (3.173)

The space W 1,∞(Rn,Rn) can be identified with the space of (L∞(Rn))n functions hav-
ing their gradient in (L∞(Rn))n×n. It will be simply denoted by W 1,∞ when there is no
ambiguity.

In a general manner, the transformation map is defined as a perturbation of the
identity

Φ(θ) := idRn + θ, (3.174)
for all θ ∈ W 1,∞(Rn,Rn), such that

‖θ‖1,∞ < 1. (3.175)

Such a transformation is then bijective (it is even a Lipschitz homeomorphism from Rn

into itself, with Lipschitz inverse), so that we can define a perturbed domain

Ωθ := Φ(θ)(Ω). (3.176)

Definition 3.11. A shape function J is said to be shape differentiable at Ω if the map
defined by θ ∈ W 1,∞ 7→ J (Ωθ), where Ωθ is given by (3.176), is Fréchet differentiable at
0. In this case we denote by DJ (Ω) (or simply J ′(Ω)) the differential of J at Ω, and we
have:

J (Ωθ) = J (Ω) +DJ (Ω)(θ) + o(θ). (3.177)

In this manner we have defined a sensitivity of the domain with respect to a vector
variable. In practice, it is more simple to make calculation with a real variable. In view
of this, for a fixed θ ∈ W 1,∞, we can define a family of transformations Φ(t) for t ∈ [0, T )
small enough as follows2

Φ(t) = idRn + tθ. (3.178)
For a study of the above transformations we refer to, [MS76], or [Pir84]. An equivalent
approach consists in defining Φ as the flux associated to a vector field V ∈ C([0, T );W 1,∞),
being the solution of the Cauchy problem ∂tΦ(t) = V (t) for all t ∈ [0, T ), Φ(0) = idRn . For

2 Or more generally we can give a map Φ : t ∈ [0, T [ 7→ Φ(t) ∈ idRn + W 1,∞, differentiable at 0 and
such that Φ(0) = idRn .

117



3.4. Shape derivatives by the velocity method Shape optimization of a FSI problem

more details on the general definitions, one can follow the construction given in chapters
8 to 11 of [SZ92]. In definition (3.178), we can call θ the velocity field, giving its name
to the procedure used to define suitable shape derivative: the speed method (also called
velocity method, or method of Hadamard). In some sense, θ plays here the same role as a
vector v in the Gateaux differential of a classical vector function f : Rd −→ R given by:

∂f

∂v
(x) = lim

t→0

f(x+ tv)− f(x)
t

. (3.179)

By applying such transformations Φ(θ) to our Fluid-Structure interaction problem,
we can not ensure that the perturbation Φ(θ)(Ω0) of Ω0 will either remain contained in
the hold-all domain D, or remain attached to the rigid support ω. We recall that D is a
bounded connected open subset of Rn, and ω is an open subset of D such that ω ⊂⊂ D (see
Figure 34). Hence we need to restrict the velocity fields θ to a limited class of admissible
velocity fields in W 1,∞. Let us define the domain

Dω = D \ ω, (3.180)
such that ∂Dω = ∂D ∪ ∂ω is piecewise Ck, k ≥ 1, and we denote by Ξ the set of the
singular points of ∂Dω. We define a set of admissible vector fields:

Θk(Dω) :=
{
θ ∈ Ck

0 (R2,R2) | θ · n = 0 on ∂Dω, θ = 0 on Ξ
}
. (3.181)

Finally, fixing a field θ ∈ Θk(Dω) we can define the admissible transformations for t ≥ 0:
Φ(t) = idRn + tθ (3.182)

With this definition, we can view t as the differentiation parameter. For a domain Ω0
which stands for a reference domain, we define

Ω0,t := Φ(t)(Ω0) (3.183)
as being the transformed domain (3.183) (see Figure 35). Thus the shape derivative of the
functional J (Ω) with respect to the parameter t through the family of transformations
Φ(t) is simply defined by

J (Ω0,t) = J (Ω0) + tJ ′(Ω0) + o(t). (3.184)

We end this introduction section with the definition of the material derivative of a field,
with respect to such a perturbation of a domain. Let (ut)t≥0 be a family of fields defined
on the family of transformed domain (Ω0,t)t≥0. We want to define what a derivative is
with respect to the parameter t for such a family. In order to do this, we first transport ut
on the fixed reference domain Ω0,t, by composing it with the transformation Φ(t). Thus
ut ◦ Φ(t) is defined on Ω0. Provided that the following expansion exists, we define the
material derivative of ut at 0, denoted by u̇, as being the field defined on Ω0 satisfying

ut ◦ Φ(t) = u0 + tu̇+ o(t), (3.185)
where u0 and u̇ do not depend on t. For a more general class of transformation, we
should have defined the material derivative of a family of fields (uθ)θ defined on Φ(θ)(Ω0),
denoted by u̇(θ), as being the linear form on θ satisfying

uθ ◦ Φ(θ) = u0 + u̇(θ) + o(θ). (3.186)
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Ω Ωt

Φ(t)

Figure 35: Shape transformation of a domain Ω by the transformation Φ(t) for t > 0.
The resulting domain is denoted by Ωt.

3.4.2 Shape transformation of the FSI problem
First we define for 0 ≤ t small enough the transformation

Φt := idRn + tV, (3.187)

for a fixed V ∈ Θk(Dω), k ≥ 1, with Dω defined in (3.180), and Θk in (3.181). Let us
name with the lower index t the new fields and variables induced by the problem written
for the domains

Ω0,t := Φt(Ω0) and Ωc
0,t := Φt(Ωc

0), and Γ0,t = Φt(Γ0), (3.188)

where Ω0, defined in Section 3.2, represents the initial shape of the elastic body attached
to the rigid support ω, and Ωc

0 is its open complementary in Dω (see Figure 36). Let
(ut, pt,wt, st) be the unique solution of the coupled Fluid Structure problem posed for the
perturbed elastic body Ω0,t as follows

− div ς(ut, pt) + ε(ut · ∇)ut = f in ΩF,t,
div ut = 0 in ΩF,t,

ut = 0 on ∂ΩF,t,
− div Σ(wt) +∇st = g in Ω0,t,

div wt = 0 in Ω0,t,
wt = 0 on ∂ω,

(Σ(wt)− stId)n0,t = (ς(ut, pt) ◦ Tt) cof(∇Tt)n0,t on Γ0,t,

(3.189)

where the map Tt is defined by Tt := id + wt, and is one to one from Ω0,t to ΩS,t for a wt

small enough, and where

ΩS,t := Tt(Ω0,t), (3.190)
ΩF,t := Dω \ ΩS,t. (3.191)

Thus ΩS,t and ΩF,t represent respectively the shape of the elastic body and the incom-
pressible fluid after resolution of the coupled problem.

Before calculating material derivatives with the velocity method in Section 3.4.4, in
which we will need to transport the fields onto fixed domain, we have to tackle a first dif-
ficulty. The families of fluid velocity and pressure fields (ut, pt)t≥0 are defined on domains
ΩF,t depending on t, which are furthermore unknown because they depend on the family
of displacement wt. Therefore we want to transport fluid equations onto the reference
configurations Ωc

0,t. For this, we apply what we have done at the end of Section 3.2.1. Let
us consider a linear lifting Rt:

Rt : H3−1/2(Γ0,t) −→ H3(Ωc
0,t), (3.192)
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ω

D
Ωc

0

Ω0 ω

D
Ωc

0,t

Ω0,t

ω

D
ΩF

ΩS ω

D
ΩF,t

ΩS,t

Y ∈ Ω0, X ∈ Ωc
0 Yt ∈ Ω0,t, Xt ∈ Ωc

0,t

y ∈ ΩS, x ∈ ΩF yt ∈ ΩS,t, xt ∈ ΩF,t

T Tt

Φt

Figure 36: The geometries of the fluid-elasticity system submitted to transformation Φt

and the resolution of the coupled problems, characterised by Tt.

and the Trace map
γt : H3(Ω0,t) −→ H3−1/2(Γ0,t), (3.193)

in such a way that we can introduce the following map defined on Ωc
0,t:

Tt := id +Rt(γt(wt)), (3.194)

which is one to one from Ωc
0,t to ΩF,t for a wt small enough. Thus we have defined a

bijective map Tt : Ω0,t × Ωc
0,t → ΩS,t × ΩF,t. For t = 0 (i.e. the coupled problem posed

on the initial elastic domain Ω0), all the fields and domains are written without the lower
index t. The names of spatial variables depend on the domains they are related with, and
are defined Figure 36. By defining Tt this way, the difficulty we meet is the following.
The operator Rt and γt we deal with depend on t. To overcome this, we favor another
definition of Tt.

New definition of T . We recall that for all 0 ≤ t, wt is the solution displacement of the
fluid-structure problem, belonging to H3(Ω0,t). Tt was defined by Tt = id − Rt(γt(wt)),
which can be represented this way:

H3(Ω0,t)
γt //

Tt−Id &&

H3−1/2(Γ0,t)

Rt
��

H3(Ωc
0,t)

(3.195)
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Now wet set a new definition for Tt

Tt = id +R(γ(wt ◦ Φt)) ◦ Φ−1
t , (3.196)

where Φt is defined in (3.187), and R and γ are respectively the lifting and trace operators
which do not depend on t any more, and are defined by

R : H3−1/2(Γ0) −→ H3(Ωc
0), (3.197)

and
γ : H3(Ω0) −→ H3−1/2(Γ0). (3.198)

We can represent Tt as follows

H3(Ω0,t)
◦Φt //

Tt−id %%

H3(Ω0) γ // H3−1/2(Γ0)

R
��

H3(Ωc
0,t) H3(Ωc

0)
◦Φ−1

too

. (3.199)

3.4.3 Formulation in a fixed domain
Now we can write the variational formulation of the Navier-Stokes system written on
ΩF,t defined in (3.191), and then we transport it onto the reference domain Ωc

0,t, in the
same way as in [Gra02]. Let (ut, pt,wt, st) be the solution of (3.189). We recall that
ς(ut, pt) := 2ν∇sut − ptI, and because of the incompressibility condition (if ut is regular
enough), we have div(∇u>t ) = ∇(div ut) = 0, so that div ς(ut, pt) = div(ν∇ut − ptI). We
have that ut ∈ (H1

0 (ΩF,t))2 and pt ∈ L2(ΩF,t) satisfies for all z̃ ∈ (H1
0 (ΩF,t))2 and for all

β̃ ∈ L2(ΩF,t):
ν
∫

ΩF,t
∇ut · ∇z̃ −

∫
ΩF,t

pt div(z̃) +
∫

ΩF,t
ε(ut · ∇)ut · z̃ =

∫
ΩF,t

f · z̃,∫
ΩF,t

β̃ div(ut) = 0.
(3.200)

We define

vt := ut ◦ Tt, (3.201)
qt := pt ◦ Tt, (3.202)

where Tt is defined in (3.196). We set z̃ = z ◦ T−1
t and β̃ = β ◦ T−1

t in equation (3.200),
where z ∈ (H1

0 (Ωc
0,t))2 and β ∈ L2(Ωc

0,t). We obtain with a change of variable Tt that
(vt, qt) satisfies the following problem:

Find (vt, qt) ∈ (H1
0 (Ωc

0,t))2 × L2(Ωc
0,t) such that for all (z, β) ∈ (H1

0 (Ωc
0,t))2 × L2(Ωc

0,t):

ν
∫

Ωc0,t
∇(vt)F (Tt) · ∇z −

∫
Ωc0,t

qt(G(Tt) · ∇z) +
∫

Ωc0,t
ε(vt ·G(Tt)∇)vt · z =

∫
Ωc0,t

ftJ(Tt) · z,∫
Ωc0,t

β(G(Tt) · ∇vt) = 0,

(3.203)
where ft := f ◦ Tt and

F (Tt) = (∇Tt)−1 cof(∇Tt), (3.204)
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G(Tt) = cof(∇Tt), (3.205)
J(Tt) = det(∇Tt). (3.206)

Problem (3.203) is related to the following boundary value problem:
−ν div((∇vt)F (Tt)) +G(Tt)∇qt + ε(vt ·G(Tt)∇)vt = (f ◦ Tt)J(Tt) in Ωc

0,t,

div(G(Tt)>vt) = 0 in Ωc
0,t,

vt = 0 on Γ0,t.

(3.207)

With these definitions of vt and qt given in (3.201) and (3.202), we can compute as we did
in Section 3.2.2 the surface force applied on the structure and depending on these new
variables. This gives

(ς(ut, pt) ◦ Tt) cof(∇Tt)n0,t = (ν(∇vt)F (Tt)− qtG(Tt))n0,t on Γ0,t. (3.208)

Thus we find the complete Fluid Structure Interaction problem for (vt, qt,wt, st),

−ν div((∇vt)F (Tt)) +G(Tt)∇qt = (f ◦ Tt)J(Tt) in Ωc
0,t,

div(G(Tt)>vt) = 0 in Ωc
0,t,

vt = 0 on ∂Ωc
0,t,

− div σ(wt) +∇st = g in Ω0,t,
div wt = 0 in Ω0,t,

wt = 0 on ∂ω,
(σ(wt)− stI)n0,t = ν(∇vt)F (Tt)n0,t

−qtG(Tt)n0,t on Γ0,t.

(3.209)

In the next section, we calculate formally the problems satisfied by the material deriva-
tives of (vt, qt,wt, st).

3.4.4 Material derivatives of solutions
In this section we investigate the form of the boundary value problems that must be
satisfied by the material derivatives of the family of solutions (vt, qt,wt, st). As we have
seen in the introduction of Section 3.4, we need to transport the fields which are defined
on the transformed domains Ω0,t and Ωc

0,t onto the reference domains Ω0 and Ωc
0.

3.4.4.1 Fluid equations

In Section 3.4.3, we have written the Navier-Stokes equation transported onto the refer-
ence domain Ωc

0,t, by setting new variables vt = ut ◦ Tt and pt = qt ◦ Tt (see (3.201) and
(3.202)). We obtained the following problem: find (vt, qt) ∈ (H1

0 (Ωc
0,t))2 × L2

0(Ωc
0,t) such

that for all test functions (v, q) ∈ (H1
0 (Ωc

0,t))2 × L2
0(Ωc

0,t)
ν
∫

Ωc0,t
∇(vt)F (Tt) · ∇v−

∫
Ωc0,t

qt(G(Tt) · ∇v) +
∫

Ωc0,t
ε(vt ·G(Tt)∇)vt · v = 〈ftJ(Tt), v〉H−1,H1

0
,∫

Ωc0,t
q(G(Tt) · ∇vt) = 0,

(3.210)
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where we recall that F (Tt) = (∇Tt)−1 cof(∇Tt), G(Tt) = cof(∇Tt), and J(Tt) = det(∇Tt)
(see (3.204), (3.205), and (3.206)), with Tt defined equation (3.196) for wt being the
displacement solution of the structure part of problem (3.209). We define for all v, v in
(H1

0 (Ωc
0,t))2 and for all q in L2

0(Ωc
0,t):

aF,t(wt; v, v) := ν
∫

Ωc0,t
∇(v)F (Tt) · ∇v +

∫
Ω0,t
ε(v ·G(Tt)∇)v · v, (3.211)

bF,t(wt; v, q) := −
∫

Ωc0,t
q(G(Tt) · ∇v), (3.212)

fF,t(wt; v) :=
∫

Ωc0,t
J(Tt)f ◦ Tt · v, (3.213)

so that (3.210) can be written
Find (vt, qt) in (H1

0 (Ωc
0,t))2 × L2

0(Ωc
0,t) such that:

aF,t(wt; vt, v) + bF,t(wt; v, qt) = fF,t(wt; v), ∀v ∈ (H1
0 (Ωc

0,t))2,

bF,t(wt; vt, q) = 0, ∀q ∈ L2
0(Ωc

0,t).
(3.214)

Let us define
gt := det(∇Φt), (3.215)

and
Jt := ∇Φt, (3.216)

where Φt is defined in (3.187). Let (v, q) ∈ (H1
0 (Ωc

0))2 × L2
0(Ωc

0). We rewrite the problem
(3.210) with the test functions (v ◦Φ−1

t , (g−1
t q) ◦Φ−1

t ), where Φt is defined by (3.187) and
is such that Φt(Ωc

0) = Ωc
0,t. We have the following relations

J−1
t (F (Tt) ◦ Φt)J−>t gt = F (Tt ◦ Φt) (3.217)

G(Tt) ◦ ΦtJ
−>
t gt = G(Tt ◦ Φt) (3.218)

J(Tt) ◦ Φtgt = J(Tt ◦ Φt), (3.219)

where gt and Jt are defined in (3.215) and (3.216). Then we transport the integrals from
(3.210) onto Ωc

0 by means of the change of variable Xt = Φt(X). After a simplification
using (3.217), (3.218), and (3.219), we obtain

ν
∫

Ωc0
∇(vt ◦ Φt)F (Tt ◦ Φt) · ∇v−

∫
Ωc0

(qt ◦ Φt)(G(Tt ◦ Φt) · ∇v)

+
∫

Ωc0
ε(vt ◦ Φt ·G(Tt ◦ Φt)∇)vt ◦ Φt · v =

∫
Ωc0
J(Tt ◦ Φt)f ◦ Tt ◦ Φt · v,∫

Ωc0
(G(Tt ◦ Φt) · ∇vt)q g−1

t = 0.

(3.220)
We define for all v, v in H1

0 (Ωc
0) and for all q in L2

0(Ωc
0):

atF (wt; v, v) := ν
∫

Ωc0
∇(v)F (Tt ◦ Φt) · ∇v +

∫
Ω0
ε(v ·G(Tt ◦ Φt)∇)v · v, (3.221)

btF (wt; v, q) := −
∫

Ωc0
q(G(Tt ◦ Φt) · ∇v)g−1

t , (3.222)

f tF (wt; v) :=
∫

Ωc0
J(Tt ◦ Φt)f ◦ Tt ◦ Φt · v, (3.223)
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and we introduce

vt := vt ◦ Φ−1
t , (3.224)

qt := g−1
t qt ◦ Φ−1

t , (3.225)

Then (3.220) can be written for vt and qt as follows
Find (vt, qt) in (H1

0 (Ωc
0))2 × L2

0(Ωc
0) such that:

atF (wt; vt, v) + btF (wt; v, qt) = f tF (wt; v), ∀v ∈ (H1
0 (Ωc

0))2,

btF (wt; vt, q) = 0, ∀q ∈ L2
0(Ωc

0).
(3.226)

We denote by Ṫ the the material derivative of Tt defined by

Ṫ (X) = d

dt

∣∣∣∣
t=0

(Tt ◦ Φt(X)) ∀X ∈ D, (3.227)

and by V the velocity field of the transformation given by, according to (3.187),

V (X) = d

dt

∣∣∣∣
t=0

(Φt(X)) , ∀X ∈ D. (3.228)

We have that

d

dt

∣∣∣∣
t=0

det(∇Φt) = div V and d

dt

∣∣∣∣
t=0

det(∇(Φ−1
t ) = − div V, (3.229)

from the definition of Φt in (3.187), and differentiation formula given in Appendix 3.7
equation (3.360). Now we can derivate this problem with respect to the variable t, and
evaluate at t = 0. We introduce the following bilinear et linear forms (the map a′F (v, v)
is not linear with respect to v in the case ε = 1, i.e. with the Navier-Stokes equations)

a′F (v, v) = ν
∫

Ωc0
(∇v)DF (Ṫ ) · ∇v +

∫
Ω0,t
ε(v ·DG(Ṫ )∇)v · v, (3.230)

b′F (q, v) = −
∫

Ωc0
q((DG(Ṫ )− (div V )G(T )) · ∇v), (3.231)

l′F (v) =
∫

Ωc0

(
J(T )(∇(f)◦T )Ṫ +DJ(Ṫ )f◦T

)
· v, (3.232)

where
T = T0, i.e. at t = 0, (3.233)

and where DF (Ṫ ), DG(Ṫ ), and DJ(Ṫ ) are computed in Appendix 3.7 Section 3.7.1, and
given by expressions (3.371), (3.372), and (3.373). Namely

DF (Ṫ ) = d

dt

∣∣∣∣
t=0

(F (Tt)) = cof(∇T )>
[
tr
(
(∇T )−1∇Ṫ

)
I− 2[∇Ṫ (∇T )−1]s

]
(∇T )−>,

(3.234)

DG(Ṫ ) = d

dt

∣∣∣∣
t=0

(G(Tt)) = cof(∇T )
[
tr
(
(∇T )−1∇Ṫ

)
I− [(∇T )−1∇Ṫ ]>

]
, (3.235)

DJ(Ṫ ) = d

dt

∣∣∣∣
t=0

(J(Tt)) = tr(cof(∇T )>∇Ṫ ). (3.236)
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By defining the material derivates v̇ and q̇ by

v̇ := d

dt

∣∣∣∣
t=0

(vt) = d

dt

∣∣∣∣
t=0

(vt ◦ Φt), (3.237)

q̇ := d

dt

∣∣∣∣
t=0

(qt) = d

dt

∣∣∣∣
t=0

(gt qt ◦ Φt), (3.238)

we have that the material derivatives v̇ and q̇ satisfy the following problem

Find (v̇, q̇) ∈ (H1
0 (Ωc

0))2 × L2
0(Ωc

0) such that for all (v, q) ∈ (H1
0 (Ωc

0))2 × L2
0(Ωc

0):

ν
∫

Ωc0
(∇v̇)F (T ) · ∇v−

∫
Ωc0

q̇(G(T ) · ∇v) +
∫

Ωc0
ε[(v̇ ·G(T )∇)v + (v ·G(T )∇)v̇] · v

= l′F (v)− a′F (v, v)− b′F (q, v),∫
Ωc0

[(DG(Ṫ )− (div V )G(T )) · ∇v +G(T ) · ∇v̇]q = 0,

(3.239)
where a′F , b′F , l′F are given in (3.230), (3.231), and (3.232), and depend on T and Ṫ .

3.4.4.2 Incompressible Elasticity

With the notations introduced right above, the surface force applied by the fluid on
the structure can be expressed with respect to vt and qt by (ν(∇vt)F (Tt) − qtG(Tt))n0,t
according to expression (3.208). Let us then write the variational formulation of the
structure problem.

Find (wt, st) ∈ (H1(Ω0,t))2 × L2
0(Ω0,t) with wt = 0 on ∂ω such that:∫

Ω0,t
σ(wt) · ∇sw−

∫
Ω0,t

st divw =
∫

Ω0,t
g ·w +

∫
Γ0,t

w · (ν(∇vt)F (Tt)− qtG(Tt))n0,tdΓ0,t

∀w ∈ (H1(Ω0,t))2 with w = 0 on ∂ω,∫
Ω0,t

s div wt = 0, ∀s ∈ L2
0(Ω0,t).

(3.240)
By defining

aS,t(wt,w) =
∫

Ω0,t
σ(wt) · ∇sw, (3.241)

bS,t(w, st) =
∫

Ω0,t
st divw, (3.242)

fS,t(wt; vt; qt;w) =
∫

Ω0,t
g ·w +

∫
Γ0,t

w · (ν(∇vt)F (Tt)− qtG(Tt))n0,tdΓ0,t, (3.243)

we can rewrite problem (3.240) as follows
Find (wt, st) ∈ (H1(Ω0,t))2 × L2

0(Ω0,t) with wt = 0 on ∂ω such that:
aS,t(wt,w) + bS,t(w, st) = fS,t(wt; vt; qt;w), ∀w ∈ (H1(Ω0,t))2 with w = 0 on ∂ω,

bS,t(wt, s) = 0, ∀s ∈ L2
0(Ω0,t).

(3.244)
We want to derivate this problem with respect to t. For this purpose, let (w, s) be

in (H1(Ω0))2 × L2
0(Ω0). We insert (w ◦ Φ−1

t , (g−1
t s) ◦ Φ−1

t ) as test functions into (3.240),
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where gtis defined in (3.215), and then we transport the integrals onto Ω0 or Γ0 by means
of the change of variable Yt = Φt(Y ). We recall that we have (see e.g. [Cia88]):

n0,tdΓ0,t = [det(∇Φt)∇Φ−T
t n0]dΓ0, (3.245)

where dΓ0 and dΓ0,t are the length elements of the surfaces Γ0 and Γ0,t respectively, and n0
and n0,t are the normal vectors to Γ0 and Γ0,t respectively. We also recall that vt = vt◦Φ−1

t

(see expression (3.224)), and consequently we have

∇vt = (∇vt)J−1, (3.246)

where Jt is defined in (3.216). Thus the surface term in (3.240) is transported as follows∫
Γ0,t

w ◦ Φ−1
t · (ν(∇vt)F (Tt)− qtG(Tt))n0,tdΓ0,t =∫

Γ0
w · (ν(∇vt)J−1(F (Tt) ◦ Φt)J−>gt − g−1

t qt(G(Tt) ◦ Φt)gtJ−>t )n0dΓ0,

(3.247)

where we recall that (see (3.202))

qt ◦ Φt = g−1
t qt. (3.248)

In view of (3.217) and (3.218) we have that J−1
t (F (Tt) ◦ Φt)J−>t gt = F (Tt ◦ Φt) and

G(Tt) ◦ ΦtJ
−>
t gt = G(Tt ◦ Φt). Hence from (3.247) we have∫

Γ0,t
w ◦ Φ−1

t · (ν(∇vt)F (Tt)− qtG(Tt))n0,tdΓ0,t =∫
Γ0
w · (ν(∇vt)F (Tt ◦ Φt)− g−1

t qtG(Tt ◦ Φt))n0dΓ0. (3.249)

This brings us to define, for all w,w in (H1
0,∂ω(Ω0))2, where H1

0,∂ω(Ω0) is defined by

H1
0,∂ω(Ω0) := {u ∈ H1(Ω0) | u = 0 on ∂ω}, (3.250)

and for all s in L2
0(Ω0):

atS(w,w) =
∫

Ω0
C[(∇w)J−1

t ]s · [(∇w)J−1
t ]sgt, (3.251)

btS(w, s) = −
∫

Ω0
s(I · (∇w)J−1

t ), (3.252)

f tS(w; v; q;w) =
∫

Ω0
g ◦ Φt ·w +

∫
Γ0
w · (ν(∇v)F (Tt ◦ Φt)− qG(Tt ◦ Φt)g−1

t )n0, (3.253)

where for a matrix A, its symmetric part As is defined in (3.62). We write (3.240) with

wt := wt ◦ Φ−1
t , (3.254)

st := g−1
t st ◦ Φ−1

t , (3.255)

where wt and st are solutions of
Find (wt, st) in (H1

0,∂ω(Ω0))2 × L2
0(Ω0) such that:

atS(wt,w) + btS(w, st) = f tS(wt; vt; qt;w), ∀w ∈ (H1
0,∂ω(Ω0))2,

btS(wt, s) = 0, ∀s ∈ L2
0(Ω0),

(3.256)
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with vt and qt solutions of (3.226).

Afterwards we can differentiate this problem with respect to t. Recalling that σ(w) =
C∇sw (see (3.22)-(3.23)), we define the useful bilinear and linear forms:

a′S(w,w) =
∫

Ω0
(σ(w) · ∇sw) div V −C(∇w∇V )s · ∇sw− σ(w) · (∇w∇V )s dY, (3.257)

l′S(w) =
∫

Ω0
(g div V +∇gV ) ·w dY, (3.258)

b′S(s,w) = −
∫

Ω0
s [−(I · ∇w∇V )] dY, (3.259)

where V is defined in (3.228). We define the material derivatives ẇ and ṡ as follows:

ẇ := d

dt

∣∣∣∣
t=0

(wt) = d

dt

∣∣∣∣
t=0

(wt ◦ Φt), (3.260)

ṡ := d

dt

∣∣∣∣
t=0

(st) = d

dt

∣∣∣∣
t=0

(gt st ◦ Φt). (3.261)

From the definitions of Tt in (3.196) and of Ṫ in (3.227), we have

Ṫ = V +Rγ(ẇ). (3.262)

It remains to derivate with respect to t the term in (3.249)∫
Γ0
w · (ν(∇vt)F (Tt ◦ Φt)− g−1

t qtG(Tt ◦ Φt))n0dΓ0. (3.263)

of problem (3.256). This gives rise to a term which is non linear with respect to w and
linear with respect to ẇ:

N ′i (w, ẇ,w) =
∫

Γ0
w ·

(
ν(∇v)DF (Ṫ )− qDG(Ṫ ) + ν(∇v̇)F (T )

− q̇G(T )− qG(T )(− div V )
)
, (3.264)

where DF (Ṫ ) and DG(Ṫ ) are defined in (3.234) and (3.235) respectively. Thus we obtain
that the material derivatives ẇ defined in (3.260) and ṡ defined in (3.261) are solutions of
the problem:

Find (ẇ, ṡ) ∈ (H1(Ω0))2 × L2
0(Ω0) with ẇ = 0 on ∂ω such that:∫

Ω0
σ(ẇ) · ∇sw dx−

∫
Ω0

ṡ divw = l′S(w)− a′S(w,w)− b′S(s,w) +N ′i (w, ẇ,w),

∀w ∈ (H1(Ω0))2 with w = 0 on ∂ω,∫
Ω0

s (I · (∇ẇ−∇w∇V )) = 0, ∀s ∈ L2
0(Ω0).

(3.265)

3.4.5 Shape derivative of the cost functional
In this section, we compute the shape derivative of functionals depending on the FSI
problem. In Section 3.4.5.1, we start with the example of an energy type functional, and
then we present the calculations for a general volumic shape functional in Section 3.4.5.2.
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3.4.5.1 An energy type functional

Let u and w be the velocity and displacement solutions of problem (3.189) for t = 0. Let
us consider the following energy shape functional

J (Ω0) =
∫

ΩF
|∇s

x(u)|2dx+
∫

Ω0
|∇s

Y (w)|2dY, (3.266)

where ∇s(·) is defined in (3.9), and the norm of a matrix is defined in (3.63). Thus the
shape functional evaluated on the domain Ω0,t is given by

J (Ω0,t) =
∫

ΩF,t
|∇s

xt(ut)|2dxt +
∫

Ω0,t
|∇s

Yt(wt)|2dYt. (3.267)

We first develop the part of the functional depending on the displacement wt:

JS(Ω0,t) =
∫

Ω0,t
|∇s

Yt(wt)|2dYt,

=
∫

Ω0
|∇s

Yt(wt)|2 ◦ Φt det(∇Φt)dY,

=
∫

Ω0

∣∣∣[∇Y (wt ◦ Φt)∇(Φt)−1
]s∣∣∣2 det(∇Φt)dY, (3.268)

where Φt is defined in (3.187).
Then, we can calculate the derivative of JS at 0 in the direction V , which is the velocity

fields of the transformation Φt (see (3.187) and (3.228)). We recall that the matrix scalar
product is A ·B = AijBij. Thus

J ′S(Ω0) = 2
∫

Ω0
∇sw · (∇ẇ−∇w∇V ) dY +

∫
Ω0
|∇sw|2 div(V )dY, (3.269)

where ẇ is the material derivative of w defined in (3.260), and where the derivative of
det(∇Φt) at 0 is given in (3.229) and is equal to div(V ).

Now we develop the part of the functional depending on the fluid velocity. As we did
in the previous sections, we introduce the field

vt := ut ◦ Tt (3.270)

defined on Ωc
0,t, and then we transport the integrals from ΩF,t to Ωc

0,t:

JF (Ω0,t) =
∫

ΩF,t
|∇s

xt(ut)|2dxt

=
∫

Ωc0
|∇s

xt(ut)|2 ◦ (Tt ◦ Φt) det(∇(Tt ◦ Φt))dX

=
∫

Ωc0

∣∣∣[∇Xt(ut ◦ Tt)(∇XtTt)−1
]s∣∣∣2 ◦ Φt det(∇(Tt ◦ Φt))dX

=
∫

Ωc0

∣∣∣[∇X(vt ◦ Φt)∇X(Tt ◦ Φt)−1
]s∣∣∣2 det(∇(Tt ◦ Φt))dX. (3.271)

We can calculate the derivative of JF at 0 with respect to t.

J ′F (Ω0) =
∫

Ωc0

∣∣∣[∇v(∇T )−1
]s∣∣∣2 tr(cof(∇T )>∇Ṫ )dX
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+ 2
∫

Ωc0

[
∇v(∇T )−1

]s · (∇v̇−∇v(∇T )−1∇Ṫ
)

cof(∇T )>dX, (3.272)

where v̇ and Ṫ are the material derivatives of v and T defined in (3.237) and (3.227),
with T = Tt=0. The term tr(cof(∇T )>∇Ṫ ) in (3.272) occurs from the differentiation
of the term det(∇(Tt ◦ Φt)) in (3.271). The term

(
∇v̇−∇v(∇T )−1∇Ṫ

)
cof(∇T )>

in (3.272) comes from the differentiation of |[∇X(vt ◦ Φt)∇X(Tt ◦ Φt)−1]s|2 in (3.271),
which is thereafter multiplied by det(∇T ). We recall in Appendix 3.7 the formulas for
the derivatives of the determinant and inverse maps for matrices (see (3.360) and (3.361)).

Finally the shape derivative of the energy type functional is written as:

J ′(Ω0) = 2
∫

Ω0
∇sw · (∇ẇ−∇w∇V ) dY +

∫
Ω0
|∇sw|2 div(V )dY

+ 2
∫

Ωc0

[
∇v(∇T )−1

]s · (∇v̇−∇v(∇T )−1∇Ṫ
)

cof(∇T )>dX

+
∣∣∣[∇v(∇T )−1

]s∣∣∣2 tr(cof(∇T )>∇Ṫ )dX. (3.273)

Now we give the shape derivative of a general abstract shape functional.

3.4.5.2 General shape functional

We consider a functional of the form

J (Ω0) = JS(Ω0) + JF (Ω0) =
∫

Ω0
jS(Y,w(Y ),∇w(Y )) dY +

∫
ΩF
jF (x, u(x),∇u(x)) dx,

(3.274)
where jS = jS(Y,w,∇w) and jF = jF (x, u,∇u) are differentiable functions. Thus the
shape functional evaluated on the domain Ω0,t is given by

J (Ω0,t) = JS(Ω0,t) + JF (Ω0,t) =
∫

Ω0,t
jS(Yt,wt(Yt),∇wt(Y )) dYt

+
∫

ΩF,t
jF (xt, ut(xt),∇ut(x)) dxt. (3.275)

First we consider the shape derivative of JS with respect to t. After transporting the
integral from Ω0,t to Ω0, we obtain

JS(Ω0,t) =
∫

Ω0
jS (Φt(Y ),wt ◦ Φt(Y ), (∇wt) ◦ Φt(Y )) det(∇Φt) dY. (3.276)

Thus the shape derivative of JS is given by

J ′S(Ω0) =
∫

Ω0
jS(Y,w(Y ),∇w(Y )) div V dY

+
∫

Ω0
D1jS(Y,w(Y ),∇w(Y ))V dY

+
∫

Ω0
D2jS(Y,w(Y ),∇w(Y ))ẇv
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+
∫

Ω0
D3jS(Y,w(Y ),∇w(Y ))(∇ẇ−∇w∇V ) dY, (3.277)

where ẇ is the material derivative of wt at t = 0 given in (3.260), and V the velocity field
of the transformation defined in (3.228), and where D1, D2, and D3 stand for differential
on each argument of jS.

Secondly we consider the shape derivative of JF with respect to t. We perform a
change of variable Xt = Tt ◦Φt(X), in order to rewrite the integrals from ΩF,t to Ωc

0. This
gives

JF (Ω0,t) =
∫

Ωc0
jF (Tt ◦ Φt(X), ut ◦ Tt ◦ Φt(X), (∇ut) ◦ Tt ◦ Φt(X)) det(∇(Tt ◦ Φt(X))) dX.

(3.278)

We calculate the shape derivative of JF , setting

v = u ◦ T. (3.279)

This gives

J ′F (Ω0) =
∫

Ωc0
jF (T, v,∇v(∇T )−1) tr(cof(∇T )>∇Ṫ ) dX

+
∫

Ωc0
D1jF (T, v,∇v(∇T )−1)Ṫ det(∇T ) dX

+
∫

Ωc0
D2jF (T, v,∇v(∇T )−1)v̇ det(∇T ) dX

+
∫

Ωc0
D3jF (T, v,∇v(∇T )−1)(∇v̇−∇v(∇T )−1∇Ṫ ) cof(∇T )> dX. (3.280)

The term tr(cof(∇T )>∇Ṫ ) in (3.280) comes from the differentiation of det(∇(Tt◦Φt(X)))
in (3.278). The terms Ṫ and v̇ in (3.280) are respectively the results of the differentiation
through the chain rule of the terms Tt ◦ Φt(X) and ut ◦ Tt ◦ Φt(X) in (3.278). For the
last term (∇v̇−∇v(∇T )−1∇Ṫ ) cof(∇T )> in (3.280) deriving from (∇ut) ◦ Tt ◦ Φt(X) in
(3.278), we can write

(∇ut) ◦ Tt ◦ Φt(X) = (∇(ut ◦ Tt ◦ Φt))(X)(∇(Tt ◦ Φt))−1(X),
= (∇(vt ◦ Φt))(X)(∇(Tt ◦ Φt))−1(X), (3.281)

with vt = ut ◦ Tt (see (3.270)), and from the definitions of v̇ and Ṫ given in (3.237) and
(3.227), we find by the differentiation with respect to t of (3.281), the last term of (3.280).
From there, we can write in the following proposition the formula of the shape derivative
of the abstract shape functional J (Ω0) defined by (3.274), which is denoted by J ′(Ω0).

Proposition 3.12. Let J (Ω0) be the shape functional defined by (3.274), where jS and
jF are differentiable functions. Then, the shape derivative of J (Ω0), with respect to t by
the velocity method computed for the transformation Φt defined in (3.187), and evaluated
at t = 0, is given by

J ′(Ω0) =
∫

Ω0
jS(Y,w,∇w) div V dY

+
∫

Ω0
D1jS(Y,w,∇w)V dY
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+
∫

Ω0
D2jS(Y,w,∇w)ẇ dY

+
∫

Ω0
D3jS(Y,w,∇w)(∇ẇ−∇w∇V ) dY

+
∫

Ωc0
jF (T, v,∇v(∇T )−1) tr(cof(∇T )>∇Ṫ ) dX

+
∫

Ωc0
D1jF (T, v,∇v(∇T )−1)Ṫ det(∇T ) dX

+
∫

Ωc0
D2jF (T, v,∇v(∇T )−1)v̇ det(∇T ) dX

+
∫

Ωc0
D3jF (T, v,∇v(∇T )−1)(∇v̇−∇v(∇T )−1∇Ṫ ) cof(∇T )> dX. (3.282)

In the next section, we propose a method allowing us to simplify expression (3.282).

3.5 Adjoint method, or Céa’s method
In this Section, we present the adjoint method, or Céa’s method introduced in [Céa86],
used for a formal and useful calculation of the shape derivative of a shape functional.
This method allows to guess straightforwardly the adjoint states we need to introduce
in order to simplify the expression of the shape derivative. Notably it enables to write
this derivative in such a way that it does not depend on the material derivatives of the
solutions anymore. After the introduction to this method, we apply it to the FSI problem.
We refer to [All07] Section 6.4.3 for a more detailed presentation of Céa’s method, also
called Lagrangian method.

3.5.1 Presentation of the method
Let Ω0 be an admissible domain of the fluid-structure problem, standing for the elastic
material (see Figure 33). We denote by Ω any perturbation of Ω0 which can be char-
acterised by vector field, or equivalently a transformation field. For example we can
consider Ω = (idR2 + tV )(Ω0), for V ∈ Θk(Dω) and for t > 0. First we define the following
functional space:

V := (H1
0 (Ωc

0))2 × L2
0(Ωc

0)× (H1
0,∂ω(Ω0))2 × L2

0(Ω0). (3.283)

We will denote by X0 the quadruplet (v, q,w, s) solution of the fluid-structure problem
with initial data Ω0, and by Y a test quadruplet (v, q,w, s). Let’s rewrite the fluid-
structure optimization problem with these notations. We denote by M2 the space of
squared matrices of Rn. Let A : Uad ×M2 × V × V → R be a differentiable map, bilinear
on V × V , and L : Uad ×M2 × V → R be a differentiable map, linear on V . Finally let
F : V →M2 be a non linear differentiable map. We write XΩ the solution of the following
problem:

Find XΩ ∈ V such that: A
(
Ω;F(XΩ);XΩ,Y

)
= L

(
Ω;F(XΩ);Y

)
, ∀Y ∈ V . (3.284)

Now we define a shape functional:

J (Ω) = j(Ω,XΩ). (3.285)
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This suggests the definition of the following Lagrangian for all Ω and for all X ,Y ∈ V :

L
(
Ω,X ,Y

)
= j(Ω,X ) + A

(
Ω;F(X );X ,Y

)
− L

(
Ω;F(X );Y

)
. (3.286)

By definition we have for all Y ∈ V :

L
(
Ω,XΩ,Y

)
= j(Ω,XΩ) (3.287)

Thus the shape derivative of j is

j′(Ω0,X0) = ∂L
∂Ω

(
Ω0,X0,Y

)
+
〈
∂L
∂X

(
Ω0,X0,Y

)
, Ẋ0

〉
, (3.288)

where Ẋ0 = ∂ΩX0 is the material derivative of X0. Let Y0 be the solution of the following
problem:

Find Y0 ∈ V such that:
〈
∂L
∂X

(
Ω0,X0,Y0

)
,Z
〉

= 0 ∀Z ∈ V , (3.289)

we called Y0 the adjoint solution, or adjoint state, and we finally have

J ′(Ω0) = j′(Ω0,X0) = ∂L
∂Ω

(
Ω0,X0,Y0

)
. (3.290)

We can see that the shape derivative J ′(Ω0) in expression (3.290) does not depend on
the material derivative Ẋ0, unlike expression (3.288). Let us give a slightly more detailed
expression of J ′(Ω0). We develop problem (3.289):
〈
∂L
∂X

(
Ω0,X0,Y

)
,Z
〉

=
〈
∂j

∂X
(
Ω0,X0

)
,Z
〉

+ A
(
Ω;F(X0);Z,Y

)
+
〈
∂A

∂F

(
Ω;F(X0);X0,Y

)
F′(X0),Z

〉
−
〈
∂L

∂F

(
Ω;F(X0);Y

)
F′(X0),Z

〉
, (3.291)

where we have used the fact that A is linear with respect to Z, and we develop the shape
derivative

∂L
∂Ω

(
Ω0,X0,Y0

)
= ∂j

∂Ω(Ω0,X0) + ∂A

∂Ω
(
Ω;F(X0);X0,Y0

)
− ∂L

∂Ω
(
Ω;F(X0);Y0

)
. (3.292)

Finally we can write the shape derivative as follows:

j′(Ω0) = ∂j

∂Ω(Ω0,X0) + ∂A

∂Ω
(
Ω;F(X0);X0,Y0

)
− ∂L

∂Ω
(
Ω;F(X0);Y0

)
. (3.293)

Let us apply this method to the FSI problem. That is we need to define what are the
parametrized bilinear and linear forms A and L, the map F, and the Lagrangian L.
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3.5.2 Application to the fluid-structure problem
We first present in a compact and formal way how to apply the adjoint method to the
FSI problem. We postponed detailed calculations to Sections 3.5.3 and 3.5.4.

Let vt, qt, wt, and st be the solutions of the following problem written in the trans-
formed configuration:

Find (vt, qt) in (H1
0 (Ωc

0,t))2 × L2
0(Ωc

0,t) and (wt, st) in (H1
0,∂ω(Ω0,t))2 × L2

0(Ω0,t) such that:
aF,t(wt; vt, v) + bF,t(wt; v, qt) = fF,t(wt; v), ∀v ∈ (H1

0 (Ωc
0,t))2,

bF,t(wt; vt, q) = 0, ∀q ∈ L2
0(Ωc

0,t),
aS,t(wt,w) + bS,t(w, st) = fS,t(wt; vt; qt;w), ∀w ∈ (H1

0,∂ω(Ω0,t))2,

bS,t(wt, s) = 0, ∀q ∈ L2
0(Ωc

0,t),
(3.294)

where aF,t, bF,t, and fF,t are defined in (3.211), (3.212), and (3.213), and aS,t, bS,t, and fS,t
are defined in (3.241), (3.242), and (3.243). By setting

vt := vt ◦ Φt, (3.295)
wt := wt ◦ Φt, (3.296)
qt := gtqt ◦ Φt, (3.297)
st := gtst ◦ Φt, (3.298)

where we recall that gt is defined in (3.215), we have that (vt,wt, qt, st) is solution of the
following problem

Find (vt, qt) in (H1
0 (Ωc

0))2 × L2
0(Ωc

0) and (wt, st) in (H1
0,∂ω(Ω0))2 × L2

0(Ω0) such that:
atF (wt; vt, v) + btF (wt; v, qt) = f tF (wt; v), ∀v ∈ (H1

0 (Ωc
0))2,

btF (wt; vt, q) = 0, ∀q ∈ L2
0(Ωc

0),
atS(wt,w) + btS(w, st) = f tS(wt; vt; qt;w), ∀w ∈ (H1

0,∂ω(Ω0))2,

btS(wt, s) = 0, ∀s ∈ L2
0(Ωc

0).
(3.299)

where atF , btF , and f tF are defined in (3.221), (3.222), and (3.223), and atS, btS, and f tS are
defined in (3.251), (3.252), and (3.253).

We consider the abstract shape functional (see (3.274))

J (Ω0,t) = JS,t(wt) + JF,t(wt, vt)

=
∫

Ω0,t
jS(Yt,wt(Yt),∇wt(Yt)) dYt +

∫
Ω0,t

jF (xt, vt(xt),∇vt(xt)∇(Tt)−1) dxt.

(3.300)

Once again a change of variable with (3.295)-(3.298) gives (see also (3.276) and (3.278))

J (Ω0,t) = J t
S(wt) + J t

F (wt, vt)

=
∫

Ω0
jS
(
Φt(Y ),wt, (∇wt)∇(Φt)−1(Y )

)
det(∇Φt) dY

+
∫

Ωc0
jF (Tt ◦ Φt(X), vt ◦ Φt(X), (∇vt)∇Φ−1

t ∇(Tt)−1 ◦ Φt(X)) det(∇Φt(X)) dX.

(3.301)
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From there, we define the Lagrangian (3.286)

L(t, v, q, v, q,w, s,w, s) = J t
F (w, v) + J t

S(w)
+ atF (w; v, v) + btF (w; v, q)− f tF (w; v)
+ btF (w; v, q)
+ atS(w,w) + btS(w, s)− f tS(w; v; q;w)
+ btS(w, s). (3.302)

Partial derivatives are involved in the definition of the adjoint states. We have that

〈∂L
∂q (t, v, q, v, q,w, s,w, s), d〉 = Dqb

t
F (w; v, q) · d−Dqf

t
S(w; v; q;w) · d (3.303)

〈∂L
∂s (t, v, q, v, q,w, s,w, s), e〉 = Dsb

t
S(w, s) · e (3.304)

〈∂L
∂v (t, v, q, v, q,w, s,w, s), v〉 = DvJ t

F (w, v) · v +Dva
t
F (w; v, v) · v +Dvb

t
F (w; v, q) · v

−Dvf
t
S(w; v; q;w) · v (3.305)

〈∂L
∂w(t, v, q, v, q,w, s,w, s), w〉 = DwJ t

F (w, v) · w +DwJ t
S(w) · w

+Dwa
t
F (w; v, v) · w +Dwb

t
F (w; v, q) · w −Dwf

t
F (w; v) · w

+Dwb
t
F (w; v, q) · w

+Dwa
t
S(w,w) · w −Dwf

t
S(w; v; q;w) · w

+Dwb
t
S(w, s) · w. (3.306)

According to (3.289), we would like to find (v, q,w, s) such that for all (v, d, w, e):

〈∂L
∂v , v〉+ 〈∂L

∂q , d〉+ 〈∂L
∂w , w〉+ 〈∂L

∂s , e〉 = 0 (3.307)

For visualizing the coupled terms in (v, q,w, s), the problem can be gathered and presented
in the following matrix



v Dva
t
F Dqb

t
F Dwa

t
F +Dwb

t
F −Dwf

t
F 0

q Dvb
t
F 0 Dwb

t
F 0

w −Dvf
t
S −Dqf

t
S Dwa

t
S −Dwf

t
S Dsb

t
S

s 0 0 Dwb
t
S 0

v d w e

(3.308)

In the following section, we give the explicit calculus of the differentiation of the
Lagrangian. In our case presented in the current section, the shape functional J depends
on the domain through the parameter t, that we have introduced in order to simplify
calculations. Thus, by using the method described in Section 3.5.1, we compute derivatives
with respect to the variable t instead of Ω. Finally, expression (3.290) is rewritten, and
we will simplify the shape derivative of the shape functional J (Ω0) by using the following
expression

J ′(Ω0) = j′(0, v, q,w, s) = ∂L
∂t

(
0, v, q,w, s, v, q,w, s

)
. (3.309)
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3.5.3 Definition of a Lagrangian, calculus of its derivatives
We consider the shape functional defined by (3.274) that we can rewrite as

J (Ω0) =
∫

Ωc0
jF (T, v,∇v(∇T )−1) det(∇T ) dX +

∫
Ω0
jS(Y,w,∇w) dY. (3.310)

We want to explicitly construct the related Lagrangian of J (Ω0) as in (3.286). Then we
will turn to the calculation of its derivatives with respect to (v, q,w, s) as well as with
respect to the parameter t which are required for computing the shape derivative of J
(see (3.288)).

3.5.3.1 Shape functional and its related Lagrangian

Writing J on a perturbed domain Ω0,t leads to (see Section 3.4.5.2)

J (Ω0,t) =
∫

Ωc0,t
jF (Tt, vt,∇vt(∇Tt)−1) det(∇Tt) dXt +

∫
Ω0,t

jS(Yt,wt,∇wt) dYt. (3.311)

where Tt is defined in (3.196), with wt ∈ (H1
0,∂ω(Ω0,t))2 displacement solution of the

problem (3.240), and where vt ∈ (H1
0 (Ωc

0,t))2 is the velocity solution on the reference
domain of the problem (3.210). We want to apply Cea’s method presented in Section
3.5.1 to find the adjoint states needed for the calculation of the shape derivative of J .
For this we need to define a Lagrangian having independent variables. The map Tt depends
both on the parameter t, through the map Φt, and on the field wt. To make a distinction
between these two dependencies, we introduce the map Tt,w defined by

T : R+ × (H1
0,∂ω)2(Ω0) −→ H1(Dω)

(t,w) 7−→ Tt,w := id +R(γ(w)) ◦ Φ−1
t .

(3.312)

In this manner, the map T depends on functions w belonging to the fixed space
(H1

0,∂ω(Ω0))2. Furthermore, we recover the definition of Tt given in (3.196) with the
use of map T as follows

Tt = Tt,wt◦Φt . (3.313)
We introduce the following notation for a given function u:

u?t = u ◦ Φ−1
t and u?t = u ◦ Φt, (3.314)

in order to simplify the notation. First we introduce the following natural Lagrangian,
defined from the shape functional and the variational equations (3.210) and (3.240), for
0 ≤ t, for all (v, q) and (v, q) in (H1

0 (Ωc
0,t))2 × L2

0(Ωc
0,t), and for all (w, s) and (w, s)

in (H1
0,∂ω(Ω0,t))2 × L2

0(Ω0,t). According to (3.286), and in view of (3.210), (3.240), and
(3.311), we have:

L̃(t, (v, q), (v, q), (w, s), (w, s)) =
∫

Ωc0,t
jF (Tt,w?t , v,∇v∇(Tt,w?t)−1)J(Tt,w?t)

+
∫

Ω0,t
jS(Yt,w,∇w)

+
∫

Ωc0,t
[ν(∇v)F (Tt,w?t) · ∇v− q(G(Tt,w?t) · ∇v)

+ε(v ·G(Tt,w?t)∇)v · v− (f◦Tt,w?t · v)J(Tt,w?t)]

135



3.5. Adjoint method, or Céa’s method Shape optimization of a FSI problem

+
∫

Ωc0,t
q(G(Tt,w?t) · ∇v)

+
∫

Ω0,t
[σ(w) · ∇sw− s div(w)− g · (w)]−

∫
Γ0,t

w · (ν(∇v)F (Tt,w?t)− qG(Tt,w?t))n0,t

+
∫

Ω0,t
s div(w), (3.315)

where F , G, and J are given in (3.204), (3.205), and (3.206). Defined this way, the
variables of L̃ are not independent because the function spaces depends on t. Let’s
rewrite this Lagrangian by transporting the integral on the fixed domains Ω0 and Ωc

0 with
the changes of variable Xt = Φt(X) and Yt = Φt(Y ). We recall

gt = det(∇Φt), (3.316)

and that
Jt := ∇Φt. (3.317)

For 0 ≤ t, for all (v, q) and (v, q) in (H1
0 (Ωc

0))2 × L2
0(Ωc

0), and for all (w, s) and (w, s) in
(H1

0,∂ω(Ω0))2 × L2
0(Ω0), we define the new Lagrangian L:

L(t, (v, q),(v, q), (w, s), (w, s)) :=
L̃
(
t, (v?t, (g−1

t q)?t), (v?t, (g−1
t q)?t), (w?t, (g−1

t s)?t), (w?t, (g−1
t s)?t)

)
. (3.318)

By setting:
T tw := Tt,w ◦ Φt (3.319)

with the transported expression of L̃, in view of (3.315), and because we have

∇(v ◦ Φ−1
t ) = ∇v∇Φ−1

t = ∇vJ−1
t , (3.320)

and
(vt ·G(Tt)∇)vt · z = ∇vtG(Tt)>vt · z, (3.321)

we can write:

L(t, (v, q),(v, q), (w, s), (w, s)) =
∫

Ωc0
jF (T tw, v,∇v∇(T tw)−1)J(Tt,w)?tgt

+
∫

Ω0
jS(Φt,w,∇wJ−1

t )gt

+
∫

Ωc0

[
ν(∇v)J−1

t F (Tt,w)?t · (∇v)J−1
t gt + ε(∇vJ−1

t gt(G(Tt,w)?t)>)v · v

−q(G(Tt,w)?t · (∇v)J−1
t )

]
−
∫

Ωc0
(f◦T tw · v)J(Tt,w)?tgt +

∫
Ωc0

qG(Tt,w)?t · (∇v)J−1
t

+
∫

Ω0

[
C((∇w)J−1

t )s · ((∇w)J−1
t )sgt − s(I · (∇w)J−1

t )− (g?t ·w)gt
]

−
∫

Γ0
w ·

(
ν(∇v)J−1

t F (Tt,w)?tgt − qG(Tt,w)?t
)
J−>t n0 +

∫
Ω0

s(I · (∇w)J−1
t ).

(3.322)

We simplify this expression with notation and calculi led in Appendix 3.7, giving that

J−1
t F (Tt,w)?tJ−>t gt = F (T tw), (3.323)
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G(Tt,w)?tJ−>t = g−1
t G(T tw), (3.324)

J(Tt,w)?tgt = J(T tw) (3.325)

We obtain also in view of (3.321) that:

L(t, (v, q), (v, q), (w, s), (w, s)) =
∫

Ωc0
jF (T tw, v,∇v∇(T tw)−1)J(T tw)

+
∫

Ω0
jS(Φt,w,∇wJ−1

t )gt

+
∫

Ωc0

[
ν(∇v)F (T tw) · ∇v− q(g−1

t G(T tw) · ∇v) + ε(v ·G(T tw)∇)v · v

+
∫

Ωc0
q(g−1

t G(T tw) · ∇v)− (f◦T tw · v)J(T tw)
]

+
∫

Ω0

[
C((∇w)J−1

t )s · ((∇w)J−1
t )sgt − s(I · (∇w)J−1

t )− (g?t ·w)gt
]

−
∫

Γ0
w · (ν(∇v)F (T tw)− qg−1

t G(T tw))n0 +
∫

Ω0
s(I · (∇w)J−1

t ). (3.326)

We define the transported solutions of Stokes problem

vt = vt ◦ Φt, (3.327)
qt = gtqt ◦ Φt, (3.328)

and the transported solutions of the incompressible elasticity problem

wt = wt ◦ Φt, (3.329)
st = gtst ◦ Φt. (3.330)

According to (3.287), we find (vt, qt,wt, st) such that, for all (v, q) in (H1
0 (Ωc

0))2×L2
0(Ωc

0),
and for all (w, s) in (H1

0,∂ω(Ω0))2 × L2
0(Ω0):

L(t, (vt, qt),(v, q), (wt, st), (w, s)) = J(Ω0,t), (3.331)

where L is given by (3.326).

3.5.3.2 Derivatives of the Lagrangian

In the following, we calculate formally the partial derivative of the Lagrangian L. This
Lagrangian depends on nine variables, which we do not write for a sake of readability. To
have no ambiguity, we say that we write the derivatives evaluated at t ∈ R+, (v, q), (v, q) ∈
(H1

0 (Ωc
0))2 × L2

0(Ωc
0), and (w, s), (w, s) ∈ (H1

0,∂ω(Ω0))2 × L2
0(Ω0). For d ∈ L2

0(Ωc
0) and

e ∈ L2
0(Ω0), we have

〈∂L
∂q
, d〉 =

∫
Ωc0
d(g−1

t G(T tw) · ∇v), (3.332)

〈∂L
∂s
, e〉 =

∫
Ω0
e(I · (∇w)J−1

t ). (3.333)

Let h be in (H1
0 (Ωc

0))2, we have

〈∂L
∂v
, h〉 = ν

∫
Ωc0

(∇v)F (T tw) · ∇h− q(g−1
t G(T tw) · ∇h)
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+ ε(v ·G(T tw)∇)v · h− (f◦T tw · h)J(T tw). (3.334)

Let k be in H1
0,∂ω(Ω0), we have

〈∂L
∂w

, k〉 =
∫

Ω0
C((∇w)J−1

t )s · ((∇k)J−1
t )sgt − (g?t · k)gt −

∫
Ω0

s(I · (∇k)J−1
t )

−
∫

Γ0
k · (ν(∇v)F (T tw)− qg−1

t G(T tw))n0. (3.335)

If w = wt, then 〈∂sL, e〉 = 0 for all e in L2
0(Ω0). If additionally we have v = vt, then

〈∂qL, d〉 = 0 for all d in L2
0(Ωc

0). If v = vt, q = qt, and w = wt, then 〈∂vL, h〉 = 0 for
all h in H1

0 (Ωc
0). If v = vt, q = qt, w = wt, and s = st, then 〈∂wL, k〉 = 0 for all k in

H1
∂ω=0(Ω0). We see that the expressions (3.332), (3.333), (3.334) and (3.335) allow to get

back the initial fluid-structure problem written on the initial domains Ω0 and Ωc
0, and

give us the primal solutions.

Now we write the dual problems. Let d ∈ L2
0(Ωc

0) and e ∈ L2
0(Ω0), we derivate the

Lagrangian with respect to the variables q and s:

〈∂L
∂q , d〉 = −

∫
Ωc0
d(g−1

t G(T tw) · ∇v) +
∫

Γ0
w · d(g−1

t G(T tw))n0, (3.336)

〈∂L
∂s , e〉 = −

∫
Ω0
e(I · (∇w)J−1

t ). (3.337)

Let h be in H1
0 (Ωc

0), we compute the derivative of the Lagrangian with respect to the
variable v. In order to simplify the expression of this derivative, we simply write DαjF
and DαjS instead of DαjF (T tw, v,∇v∇(T tw)−1) and DαjS(Φt,w,∇wJ−1) respectively, for
α = 1, 2, 3.

〈∂L
∂v , h〉 =

∫
Ωc0

[
(D2jF )h+ (D3jF )∇h∇(T tw)−1

]
J(T tw)

+
∫

Ωc0
ν(∇h)F (T tw) · ∇v + ε[(∇hG(T tw)>v +∇vG(T tw)>h) · v]

−
∫

Γ0
w · ν(∇h)F (T tw)n0 +

∫
Ωc0

q(g−1
t G(T tw) · ∇h). (3.338)

Let k be in H1
0,∂ω(Ω0):

〈∂L
∂w , k〉 =

∫
Ωc0

(jF )DwJ(T tw)k +
[
(D1jF )Dw(T tw)k + (D3jF )∇vDw(∇(T tw)−1)k

]
J(T tw)

+
∫

Ω0
(D2jS)kgt + (D3jS)∇kJ−1

t gt

+
∫

Ωc0
(ν∇vDwF (T tw)k − qg−1

t DwG(T tw)k) · ∇v + ε(v ·DwG(T tw)∇)v · v

−
∫

Ωc0
(Dw(f ◦ Tt,w?t)k · v)J(T tw) + (f◦T tw · v)DwJ(T tw)k

+
∫

Ωc0
(g−1
t DwG(T tw)k · ∇v)q

+
∫

Ω0
C((∇k)J−1

t )s · ((∇w)J−1
t )sgt +

∫
Ω0

s(I · (∇k)J−1
t )
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−
∫

Γ0
w ·

(
ν∇vDwF (T tw)k − qg−1

t DwG(T tw)k
)
n0, (3.339)

where the derivatives Dw(·) with respect to the variable w are given in Appendix 3.7.
Finally we calculate partial derivative of the Lagrangian with respect to the variable t,
referring once again to 3.7 for the expressions of the t variable derivatives Dt(·). We recall
that we have

d

dt
det(∇Φt) = div Vt (3.340)

where Vt is defined by

Vt(X) = d

dt
(Φt(X)) , ∀X ∈ D, (3.341)

and that
d

dt
J−1
t = −J−1

t ∇VtJ−1
t , (3.342)

d

dt
gt = tr(cof(Jt)>∇Vt). (3.343)

Thus we obtain
∂L
∂t

=
∫

Ωc0
(jF )∂tJ(T tw) + (D1jF )∂t(T tw)J(T tw) + (D3jF )∇v∂t(∇(T tw)−1)J(T tw)

+
∫

Ω0
(jS) div Vt + (D1jS)Vtgt + (D3jS)∇wDtJ

−1
t gt

+
∫

Ωc0
(ν∇v∂tF (T tw)− q∂t(g−1

t G(T tw))) · ∇v + ε(v · ∂tG(T tw)∇)v · v

−
∫

Ωc0
[(f◦T tw · v)∂tJ(T tw) + (∂t(f◦T tw) · v)J(T tw)]

+
∫

Ωc0
(∂t(g−1

t G(T tw)) · ∇v)q

−
∫

Ω0
C((∇w)J−1

t ∇VtJ−1
t )s · ((∇w)J−1

t )sgt −
∫

Ω0
C((∇w)J−1

t )s · ((∇w)J−1
t ∇VtJ−1

t )sgt

+
∫

Ω0
C((∇w)J−1

t )s · ((∇w)J−1
t )s tr(cof(Jt)>∇Vt)−

∫
Ω0

s(I · (∇w)J−1
t ∇VtJ−1

t )

−
∫

Γ0
w · (ν∇v∂tF (T tw)− q∂t(g−1

t G(T tw)))n0, (3.344)

where we recall that T tw = Tt,w ◦Φt = Φt +R(γ(w)) (see formula (3.312)), and ∂t denotes
the partial derivative with respect to the variable t, where Tt,w is considered as a function
of the variable t and the variable w. Then this formula can be simplified by noticing that
finally, ∂tTt,w = Vt where Vt is defined in (3.341), and taking into account the derivative
formulas (3.363), (3.364), and (3.365) given in Appendix Section 3.7.1. The simplified
formula will appear in Theorem 3.14.

3.5.4 Definition of the adjoint states
Formally , we have (see (3.288))

J ′(Ω0) =


∂t
∂v
∂q
∂w
∂s

L(0, (v0, q0), (v, q), (w0, s0), (w, s)) ·


1
v̇
q̇
ẇ
ṡ

 (3.345)
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Let us write the adjoint equations. For this, the partial derivatives of the Lagrangian
calculated in the previous section are evaluated at t = 0, at (v, q) = (v0, q0) the solution
of problem (3.210) written for t = 0, at (w, s) = (w0, s0) the solution of problem (3.240)
written for t = 0. This being done, we obtain from equations (3.336), (3.337), (3.338),
and (3.339) that for all (v, q), (h, d) ∈ (H1

0 (Ωc
0))2 × L2

0(Ωc
0), and for all (w, s), (k, e) ∈

(H1
0,∂ω(Ω0))2 × L2

0(Ω0):

〈∂L
∂q ((v, q), (w, s)), d〉 = −

∫
Ωc0
d(G(T ) · ∇v) +

∫
Γ0
w · dG(T )n0, (3.346)

〈∂L
∂s ((v, q), (w, s)), e〉 = −

∫
Ω0
e divw, (3.347)

〈∂L
∂v ((v, q), (w, s)), h〉 =

∫
Ωc0

(D2jF )hJ(T ) + (D3jF )∇h∇(T )−1J(T ) +
∫

Ωc0
q(G(T ) · ∇h)

+
∫

Ωc0
ν(∇h)F (T ) · ∇v + ε[(∇hG(T )>v +∇vG(T )>h) · v] (3.348)

−
∫

Γ0
w · (ν(∇h)F (T ))n0, (3.349)

〈∂L
∂w((v, q), (w, s)), k〉 =

∫
Ω0

(D2js)k + (D3js)∇k

+
∫

Ωc0
(jF )DwJ(T )k + (D1jF )(Dw(T )k)J + (D3jF )∇vDw(∇(T )−1)kJ

+
∫

Ωc0
ν(∇v)(DwF (T )k) · ∇v− q((DwG(T )k) · ∇v) + ε(v ·DwG(T )k∇)v · v

−
∫

Ωc0
((∇f)◦TDw(T )k · v)J + (f◦T · v)DwJ(T )k +

∫
Ωc0

(DwG(T )k · ∇v)q

+
∫

Ω0
C(∇k)s · (∇w)s −

∫
Γ0
w · (ν(∇v)DwF (T )k − qDwG(T )k)n0 (3.350)

+
∫

Ω0
s div k, (3.351)

where T = T 0, J = J(T 0), G = G(T 0), and F = F (T 0), and once again we have written
DαjF and DαjS instead of DαjF (T, v,∇v∇(T )−1) and DαjS(Y,w,∇w) respectively, for
α = 1, 2, 3.

With these expressions, we can write in the following proposition the problem satisfied
by the adjoint states defined by the adjoint method presented in Section 3.5.1, associated
to the shape functional J defined in (3.310) and to the Fluid-Structure Interaction prob-
lem (3.44).

Proposition 3.13. Let L be the Lagrangian defined in (3.326), associated to the shape
functional J defined in (3.310) and to the Fluid-Structure Interaction problem (3.44).
Let (v, q,w, s) be the adjoint state solution defined by the adjoint method, allowing to
simplify the expression of the shape derivative of J . Then (v, q,w, s) is the solution of
the variational problem defined by

Find (v, q,w, s) in (H1
0 (Ωc

0))2 × L2
0(Ωc

0)× (H1
0,∂ω(Ω0))2 × L2

0(Ω0) such that:

〈∂L
∂q ((v, q), (w, s)), d〉+ 〈∂L

∂s ((v, q), (w, s)), e〉

+ 〈∂L
∂v ((v, q), (w, s)), h〉+ 〈∂L

∂w((v, q), (w, s)), k〉 = 0,

for all (h, d, k, e) in (H1
0 (Ωc

0))2 × L2
0(Ωc

0)× (H1
0,∂ω(Ω0))2 × L2

0(Ω0),

(3.352)
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given by expressions (3.346), (3.347), (3.349), and (3.351).

From there, we can simply the formula (3.282) of the shape derivative J ′(Ω0), using the
adjoint states defined in Proposition 3.13. The final formula will be written in Theorem
3.14.

3.5.5 Simplified formula for the shape derivative J ′(Ω0)
The method we have just presented in Section 3.5 is a formal method. Indeed, we have
defined a Lagrangian and carried out several derivative calculations without any justifica-
tion. To be rigorous, we should show the differentiability with respect to the variable t of
the solutions of the fluid-structure interaction problem, that is to say their shape differ-
entiability, and justify that the adjoint problems defined in Section 3.5.4 are well defined
(which should be shown in the same way as in Section 3.3 for the Fluid-Structure Inter-
action problem). These justifications are part of the ongoing work and the perspectives
for the continuation of this thesis.

In the meantime, assuming that the adjoint problems do have a unique solution, and
that we have the shape differentiability of the considered fields, we can simplify the formula
of the shape derivative J ′(Ω0) given by (3.282) obtained in Section 3.4.5.2. For this, we
follow what is done in Section 3.5.1, using formulas (3.309) and (3.344). This leads to the
following theorem.

Theorem 3.14. Let J (Ω0) be the shape functional defined by (3.310). Let (v, q,w, s) ∈
(H1

0 (Ωc
0))2 × L2

0(Ωc
0)× (H1

0,∂ω(Ω0))2 × L2
0(Ω0) be the solution of the Fluid-Structure Inter-

action problem (3.44), and (v, q,w, s) ∈ (H1
0 (Ωc

0))2 × L2
0(Ωc

0) × (H1
0,∂ω(Ω0))2 × L2

0(Ω0) be
the adjoint states solution of the adjoint problem (3.352). Then the shape derivative of
J (Ω0) can be written as follows:

J ′(Ω0) =
∫

Ωc0
jF (T, v,∇v(∇T )−1)DJ(V ) +D1jF (T, v,∇v(∇T )−1)V J(T )

+
∫

Ωc0
D3jF (T, v,∇v(∇T )−1)∇v(−∇T−1∇V∇T−1)J(T tw)

+
∫

Ω0
jS(Y,w,∇w) div V +D1jS(Y,w,∇w)V +D3jS(Y,w,∇w)∇w(−∇V )

+
∫

Ωc0
(ν∇vDF (V )− q(− div(V )G(T ) +DG(V ))) · ∇v + ε(v ·DG(V )∇)v · v

−
∫

Ωc0
[(f◦T · v)DJ(V ) + (Dt(f◦T ) · v)J(T )]

+
∫

Ωc0
(− div(V )G(T ) +DG(V )) · ∇v)q

−
∫

Ω0
C((∇w)∇V )s · ((∇w))s −

∫
Ω0

C((∇w))s · ((∇w)∇V )s

+
∫

Ω0
C((∇w))s · ((∇w))s div(V )−

∫
Ω0

s(I · (∇w)∇V )

−
∫

Γ0
w · (ν∇vDF (V )− q(− div(V )G(T ) +DG(V )))n0, (3.353)

where T := T0 is given by (3.196), V is the velocity of the transformation Φt given by
(3.228), and DJ(V ), DG(V ), and DFJ(V ) are given in expressions (3.375), (3.376), and
(3.377) in Section 3.7.1.1.
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3.6 Conclusion

In this chapter, we have presented a Fluid Structure Interaction model, for which we define
a shape optimization problem. The purpose is to optimize an abstract shape functional
J (Ω0), defined by

J (Ω0) =
∫

Ω0
jS(Y,w(Y ),∇w(Y )) dY +

∫
ΩF
jF (x, u(x),∇u(x)) dx, (3.354)

depending on the initial elastic domain Ω0 of the FSI problem, and where u is the velocity
field of the fluid whereas w is the displacement field of the elastic structure. We have
calculated the shape derivative of J (Ω0) by using the velocity method, together with an
adjoint method. We still have to answer two fundamental questions.

The first question deals with the shape differentiability of the solutions of the FSI
problem. Indeed the expressions of the shape derivatives we have calculated provided
that this shape differentiability is established. For this, we are currently working on a
proof of the shape differentiability relying on an application of the Implicit Function
theorem. This method is described in [HP06] Chapter 5 for a Laplacian problem with
Dirichlet or Neumann boundary conditions.

The second question deals with the proof of the existence of minimizers for J (Ω0),
for Ω0 ∈ Uad, where Uad is a class of admissible domain. For this, we plan to apply direct
methods of the calculus of variations. Namely consider a minimizing sequence of domains
Ω0,n, and show that its limit is a minimizer for J .

We need to find a class Uad being compact with respect to some convergence, and
show that the functional J is lower semi continuous with respect to this convergence. We
also need to show that the FSI problem is continuous, which is done by addressing the
question of the shape differentiability. Finally we need to show that the functional J is
coercive, namely there exist two positive constants C1 and C2 such that

J (Ω0) ≥ C1‖uΩ0‖2 + C2‖wΩ0‖2,

for some suitable norms, where uΩ0 and wΩ0 are respectively the velocity and the
displacement solutions of the FSI problem posed on Ω0.

We are working on the proof of this second question. We have chosen to lead the study
described above for Uad being a class of admissible Lipschitz domain, with a bounded Lip-
schitz character. The advantage to deal with such a class of domain, is that it offers a
compactness property for several kinds of convergences, such as the Hausdorff conver-
gence, the characteristic functions convergence, and the compact convergence (see e.g.,
[HP06]).

Furthermore, in order to prove that J is coercive, we need to prove that the constants
involved in the estimations of the solutions of FSI problems posed on a domain Ω0, are
uniform with respect Ω0 ∈ Uad. We are currently working on the H3-norm estimates of
problems (3.50), (3.54), and the fixed point procedure (see Section 3.3.4) for controlling
with respect to Ω0 all the constants and estimates.
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3.7 Appendix

3.7.1 Derivatives of J, G, and F maps
Let Aα be a differentiable squared matrix field in Rn×n depending on the variable α ∈ V,
where V is a normed vector space endowed with the norm ‖·‖V. We define the following
maps depending on Aα:

J̄(Aα) := det(Aα), (3.355)
Ḡ(Aα) := cof(Aα), (3.356)

F̄ (Aα) := A−1
α cof(Aα), (3.357)

where cof(Aα) is the cofactor matrix of Aα defined by

cof(Aα) = det(Aα)A−Tα . (3.358)

We denote by Dα(Aα) the Fréchet derivative of A at α, namely Dα(Aα) is the continuous
linear map from V to Rn×n such that for all dα ∈ V:

Aα+dα = Aα +Dα(Aα)(dα) + o(‖dα‖V). (3.359)

We recall that the determinant det(·), the inverse (·)−1, and the cofactor cof(·) matrix
maps are differentiable, and their derivatives are written as follows. Let A,B ∈ Rn×n, A
being invertible, and |B| is supposed to be sufficiently small so that A + B is invertible.
We have

det(A+B) = det(A) + tr(cof(A)>B) + o(|B|), (3.360)
(A+B)−1 = A−1 − A−1BA−1 + +o(|B|), (3.361)

cof(A+B) = cof(A) +
(
tr(cof(A)>B)I− cof(A)B>

)
A−> + o(|B|). (3.362)

Thus, from the definitions (3.355), (3.356), and (3.357), and in view of the chain rule, we
have the following derivatives:

DαJ̄(Aα)(dα) = tr(cof(Aα)>Dα(Aα)(dα)) (3.363)
DαḠ(Aα)(dα) =

[
tr(A−1

α Dα(Aα)(dα))I− A−>α Dα(Aα)(dα)>
]

cof(Aα) (3.364)

DαF̄ (Aα)(dα) = cof(Aα)>
[
tr(A−1

α Dα(Aα)(dα))I− 2(Dα(Aα)(dα)A−1
α )s

]
A−>α . (3.365)

3.7.1.1 Derivatives with respect to t

Let Φt and Tt be the maps defined respectively in (3.187) and (3.196) in Section 3.4.2, by

Φt := idRn + tV, (3.366)
for a fixed V ∈ Θk(Dω), and

Tt = id +R(γ(wt ◦ Φt)) ◦ Φ−1
t . (3.367)

Let F , G, and J the maps defined in (3.204), (3.205), and (3.206) by

F (Tt) = (∇Tt)−1 cof(∇Tt), (3.368)
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G(Tt) = cof(∇Tt), (3.369)
J(Tt) = det(∇Tt). (3.370)

From the above calculations, we find the expressions (3.236), (3.235), and (3.234):

DJ(Ṫ ) = tr(cof(∇T )>∇Ṫ ), (3.371)
DG(Ṫ ) = cof(∇T )

[
tr
(
(∇T )−1∇Ṫ

)
I− [(∇T )−1∇Ṫ ]>

]
, (3.372)

DF (Ṫ ) = cof(∇T )>
[
tr
(
(∇T )−1∇Ṫ

)
I− 2[∇Ṫ (∇T )−1]s

]
(∇T )−>, (3.373)

where, with ẇ defined in (3.260) we have

Ṫ = d

dt

∣∣∣∣
t=0

(Tt ◦ Φt) = V +Rγ(ẇ). (3.374)

Finally, we define the following expression needed in the writing of Theorem 3.14:

DJ(V ) = tr(cof(∇T )>∇V ), (3.375)
DG(V ) = cof(∇T )

[
tr
(
(∇T )−1∇V

)
I− [(∇T )−1∇V ]>

]
, (3.376)

DF (V ) = cof(∇T )>
[
tr
(
(∇T )−1∇V

)
I− 2[∇V (∇T )−1]s

]
(∇T )−>. (3.377)

3.7.1.2 Derivatives with respect to w

We introduce the following notation for a given function u:

u?t = u ◦ Φ−1
t and u?t = u ◦ Φt. (3.378)

For w in H1
0,∂ω(Dω), we had defined in (3.312)

Tt,w = id +Rγ(w) ◦ Φ−1
t , (3.379)

in such a way that Tt,w?tt = Tt. We also set

T tw := Tt,w ◦ Φt (3.380)

Then we have the rather simple expressions:

Dt(T tw?tt ) = Vt +Rγ(Dt(wt ◦ Φt)), (3.381)
Dt(T tw?tt )|t=0 = V +Rγ(ẇ), (3.382)

and for k ∈ H1
0,∂ω, we have

Dw(T tw)k = Rγ(k). (3.383)

From (3.363), (3.364), and (3.365) we can also deduce the values of DwJ(T tw)k,
DwG(T tw)k, and DwF (T tw)k, and the values of DtJ(T tw), Dt(G(T tw)g−1

t ), and DtF (T tw)
in Section 3.5.3.2.
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3.7.2 Various identities
We recall that

gt := det(∇Φt), (3.384)
Jt := ∇Φt. (3.385)

We have the following identities

J−1
t (F (Tt) ◦ Φt)J−>t gt = F (Tt ◦ Φt) (3.386)

G(Tt) ◦ ΦtJ
−>
t gt = G(Tt ◦ Φt) (3.387)

J(Tt) ◦ Φtgt = J(Tt ◦ Φt). (3.388)
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Appendix A

Elements of tensor calculus

Let u and v be two vectors of Rn, A and B be two second order tensors of Rn, and T be
a fourth order tensor of Rn. Let {ei}i=1,··· ,n a base of Rn), we write:

TA = TijklAkl ei ⊗ ej, (A.1)
AB = AikBkj ei ⊗ ej, (A.2)

A ·B = AijBij, (A.3)
Au = Aijuj ei, (A.4)
u · v = uivi, (A.5)

where ei ⊗ ej is a matrix such that (ei ⊗ ej)kl = δikδjl. We define

u⊗s v := u⊗ v + v ⊗ u
2 . (A.6)

For all tensor fields A, we define the volume averaging of A over Ω by

〈A〉Ω := 1
V

∫
Ω

A(y)dy, (A.7)

where V = |Ω| denotes the area of the unit cell. If there is no ambiguity on the domain
Ω, we simply write

〈A〉 := 1
V

∫
Ω

A(y)dy. (A.8)

Cofactor matrix:
cof(A) = det(A)A−>

Identity tensors:
I = ei ⊗ ei, (A.9)

I⊗ I = ei ⊗ ei ⊗ ej ⊗ ej, (A.10)

I = 1
2 (δikδjl + δilδjk) ei ⊗ ej ⊗ ek ⊗ el. (A.11)

Divergence operator:

div(A) := ∂Aij
∂xj

ei,= ∇ · A.

Let C be a fourth order tensor standing for the elasticity tensor. Let u be a vector field
of Rn. We define the strain and the stress respectively as follows

e(u) = 1
2
(
∇u+∇u>

)
, (A.12)

σ(u) = Ce(u). (A.13)
Green’s identity (divergence theorem):∫

Ω
(div(σ(u)) · v + σ(u) · e(v)) =

∫
Ω

div(σ(u)v) =
∫
∂Ω
σ(u)n · v. (A.14)
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Appendix B

Detailed calculus of topological
derivatives

The topological derivatives of the tensors Eh and Fh, given in Section 1.2.4, can be used
in a procedure of topological optimization the same as we did for the tensors Ch and
Dh in Chapter 2. The methods for the calculation of these topological derivatives in the
mixture case or in the case where the contrast vanishes are exactly the same as those
developed in Sections 1.3.5, 1.3.3, and 1.3.4. However, in order to enable the reader easily
to check the validity of the formulas – for example for an numerical use – we detail these
calculations in this Appendix.

B.1 Topological derivative of the tensor Eh

We recall the definition of Eh
ε

(Eh
ε )ijpqr := 2

V

∫
Y
γεσ(uεij) · (e(˜̃uεpqr) + ũεpq ⊗s er). (B.1)

We start simplifying the expression (1.71) with the help of equation (1.108) written
for ˜̃uεpqr with η = ũεij, noting that uεij = ũεij + (ei ⊗s ej)y, and noting that 〈ũεij〉 = 0. We
get

(Eh
ε )ijpqr = 2

V

∫
Y
γεC(ei ⊗s ej) · (e(˜̃uεpqr) + ũεpq ⊗s er) + γεσ(uεpq) · (ũεij ⊗s er). (B.2)

We calculate directly

V

2 (Eh
ε − Eh)ijpqr =

∫
Y

0 + σ(δuεpq) · (ũij ⊗s er)

+
∫
Y

C(ei ⊗s ej) · (e(δ ˜̃uεpqr) + δũεpq ⊗s er) + σ(upq) · (δũεij ⊗s er)

+ (γ − 1)
∫
Bε

C(ei ⊗s ej) · (e(˜̃uεpqr) + ũεpq ⊗s er) + σ(uεpq) · (ũεij ⊗s er)

+R(ε). (B.3)

where

R(ε) =
∫
Y
σ(δuεpq) · (δũεij ⊗s er) = o(ε2) (B.4)

From (1.107) for ε = 0 and η = δ ˜̃uεpqr we have

∫
Y

C(ei ⊗s ej) · e(δ ˜̃uεpqr) = −
∫
Y
σ(ũij) · e(δ ˜̃uεpqr) = −

∫
Y
σ(δ ˜̃uεpqr) · e(ũij) (B.5)

165



B.2. Topological derivative of the tensor Fh Detailed calculus of topological derivatives

From (1.175) written for δ ˜̃uεpqr, with η = ũij, noting that 〈ũij〉 = 0, we have

−
∫
Y
σ(δ ˜̃uεpqr) · e(ũij) = −

∫
Y

(σ(δũεpq)) · (ũij ⊗s er) +
∫
Y

C(δũεpq ⊗s er) · e(ũij)

− (1− γ)
∫
Bε

(σ(˜̃uεpqr) + C(ũεpq ⊗s er)) · e(ũij)

+ (1− γ)
∫
Bε
σ(uεpq) · (ũij ⊗s er) (B.6)

Then we insert (B.6) into (B.3) (reminder: uij = ũij + (ei ⊗s ej)y)

V

2 (Eh
ε − Eh)ijpqr =

∫
Y

C(δũεpq ⊗s er) · e(uij) +
∫
Y

C(δũεij ⊗s er) · e(upq)

+ (γ − 1)
∫
Bε

(σ(˜̃uεpqr) + Cũεpq ⊗s er) · e(uij)

+ (γ − 1)
∫
Bε
σ(uεpq) · (δũεij ⊗s er)

+R(ε). (B.7)

We remark that the third term of the right hand side of equation (B.7) is o(ε2). We
introduce the following adjoint states υrij ∈ V and υrpq ∈ V satisfying

∫
Y
σ(υrij) · e(η) =

∫
Y

(σ(uij)−Ch(ei ⊗s ej)) · (η ⊗s er), (B.8)∫
Y
σ(υrpq) · e(η) =

∫
Y

(σ(upq)−Ch(ep ⊗s eq)) · (η ⊗s er), (B.9)

for any η ∈ W .
We set η = δũεpq in (B.8), and η = δũεij in (B.9), we set η = υrij in (1.148) and η = υrpq

in (1.148) written for δũεij. Taking into account that 〈δũεpq〉 = 0 and 〈δũεij〉 = 0, we find

V

2 (Eh
ε − Eh)ijpqr = (1− γ)

∫
Bε
σ(uεpq) · e(υrij) + (1− γ)

∫
Bε
σ(uεij) · e(υrpq)

− (1− γ)
∫
Bε

(σ(˜̃uεpqr) + Cũεpq ⊗s er) · e(uij)

+ o(ε2). (B.10)

Finally, following the calculations led in Section 1.3.5, we obtain:

DT (Eh
ijpqr) = 2Pσ(upq) · e(υrij) + 2Pσ(uij) · e(υrpq)

− 2P(σ(˜̃upqr) + Cũpq ⊗s er) · e(uij). (B.11)

B.2 Topological derivative of the tensor Fh

Let 0 ≤ ε < ε0, we recall the definition of Fh
ε :

(Fh
ε )ijkpqr = 1

V

∫
Y
γεC(ũεij ⊗s ek + e(˜̃uεijk)) · (ũεpq ⊗s er + e(˜̃uεpqr)). (B.12)
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We first simplify Fh
ε thanks to the identity (1.108), in view of 〈˜̃uεpqr〉 = 0, and because

Ch(ei ⊗s ej) is a constant tensor. This gives

(Fh
ε )ijkpqr = 1

V

∫
Y
γε
(
C(ũεij ⊗s ek + e(˜̃uεijk)) · (ũεpq ⊗s er) + σ(uεij) · (˜̃uεpqr ⊗s ek)

)
. (B.13)

Using (1.169) we directly compute the difference V (Fh
ε − Fh), in view of the estimates

used in Section 1.3.5:

V (Fh
ε − Fh)ijkpqr =

∫
Y

C(δũεij ⊗s ek + e(δ ˜̃uεijk)) · (ũpq ⊗s er) + σ(δuεij) · (˜̃upqr ⊗s ek)

+
∫
Y

C(ũij ⊗s ek + e(˜̃uijk)) · (δũεpq ⊗s er) + σ(uij) · (δ ˜̃uεpqr ⊗s ek)

+ (γ − 1)
∫
Bε

C(ũεij ⊗s ek + e(˜̃uεijk)) · (ũεpq ⊗s er) + σ(uεij) · (˜̃uεpqr ⊗s ek)

+ o(ε2). (B.14)

From there, we recall from (1.175) that we have
∫
Y
σ(δ ˜̃uεijk) · e(η) =

∫
Y

(σ(δũεij)− (Ch
ε −Ch)(ei ⊗s ej)) · (η ⊗ ek)−

∫
Y

C(δũεij ⊗s ek) · e(η)

+ (1− γ)
∫
Bε

(σ(˜̃uεijk) + C(ũεij ⊗s ek)) · e(η)− (1− γ)
∫
Bε
σ(uεij) · (η ⊗ ek). (B.15)

We introduce the following adjoint states vF ijk ∈ V and wF ijk ∈ V , which satisfy for any
η ∈ W : ∫

Y
σ(vF ijk) · e(η) =

∫
Y

(σ(uij)−Ch(ei ⊗s ej)) · (η ⊗s ek) (B.16)∫
Y
σ(wF ijk) · e(η) =

∫
Y

C(ũij ⊗s ek) · e(η). (B.17)

We simplify the term Ce(δ ˜̃uεijk) · (ũpq ⊗s er) by setting η = δ ˜̃uεijk in (B.17) written with
indices ijk replaced by pqr, and setting η = wF pqr in (B.15), and we simplify the term
σ(uεij) · (˜̃uεpqr ⊗s ek) by setting η = δ ˜̃uεpqr in (B.16) and η = vF ijk in (B.15) written for pqr
instead of ijk. We can develop the expression (B.14)

V (Fh
ε − Fh)ijkpqr =

∫
Y

C(δũεij ⊗s ek) · (ũpq ⊗s er) + σ(δuεij) · (˜̃upqr ⊗s ek)

+
∫
Y

C(ũij ⊗s ek + e(˜̃uijk)) · (δũεpq ⊗s er)

(iii) + (γ − 1)
∫
Bε

C(ũεij ⊗s ek + e(˜̃uεijk)) · (ũεpq ⊗s er) + σ(uεij) · (˜̃uεpqr ⊗s ek)

(iv) +
∫
Y
σ(δũεij) · (wF pqr ⊗s ek)−

∫
Y

C(δũεij ⊗s ek) · e(wF pqr)

(v) + (1− γ)
∫
Bε

(σ(˜̃uεijk) + C(ũεij ⊗s ek)) · e(wF pqr)− (1− γ)
∫
Bε
σ(uεij) · (wF pqr ⊗s ek)

(vi) +
∫
Y
σ(δũεpq) · (vF ijk ⊗s er)−

∫
Y

C(δũεpq ⊗s er) · e(vF ijk)

(vii) + (1− γ)
∫
Bε

(σ(˜̃uεpqr) + C(ũεpq ⊗s er)) · e(vF ijk)− (1− γ)
∫
Bε
σ(uεpq) · (vF ijk ⊗s er)

+ o(f(ε)). (B.18)
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First we develop the sum of lines (iii), (v), and (vii) of the right hand side of (B.18),
taking into account that vF ijk − wF ijk = ˜̃uijk:

(iii) + (v) + (vii) = πε2P(σ(˜̃uijk)(ŷ) + C(ũij(ŷ)⊗s ek)) · (ũpq(ŷ)⊗s er)
+ πε2Pσ(uij)(ŷ) · (vF pqr(ŷ)⊗s ek)
+ πε2Pσ(upq)(ŷ) · (vF ijk(ŷ)⊗s er)
− πε2P(σ(˜̃uijk)(ŷ) + C(ũij(ŷ)⊗s ek)) · e(wF pqr)
− πε2P(σ(˜̃upqr)(ŷ) + C(ũpq(ŷ)⊗s er)) · e(vF ijk) (B.19)

We gather corresponding terms, and add and remove in the last line e(vF ijk)±ũij(ŷ)⊗sek),
this gives

(iii) + (v) + (vii) = πε2Pσ(uij)(ŷ) · (vF pqr(ŷ)⊗s ek)
+ πε2Pσ(upq)(ŷ) · (vF ijk(ŷ)⊗s er)
− πε2P(σ(˜̃uijk)(ŷ) + C(ũij(ŷ)⊗s ek)) · (e(wF pqr)(ŷ)− (ũpq(ŷ)⊗s er))
− πε2P(σ(˜̃upqr)(ŷ) + C(ũpq(ŷ)⊗s er)) · (e(wF ijk)(ŷ)− (ũij(ŷ)⊗s ek))
− πε2P(σ(˜̃upqr)(ŷ) + C(ũpq(ŷ)⊗s er)) · (e(˜̃uijk)(ŷ) + (ũij(ŷ)⊗s ek)).

(B.20)

We gather corresponding terms taking into account that vF ijk − wF ijk = ˜̃uijk, and using
the symmetry of all the involved tensors

V (Fh
ε − Fh)ijkpqr = (iii) + (v) + (vii) + o(ε2)

+
∫
Y

C(δũεij ⊗s ek) · (ũpq ⊗s er − e(wF pqr)) + σ(δuεij) · (vF pqr ⊗s ek)

+
∫
Y

C(δũεpq ⊗s er) · (ũij ⊗s ek − e(wF ijk)) + σ(δũεpq) · (vF ijk ⊗s er).
(B.21)

We recall that ∫
Y
σ(δũεij) · e(η) = (1− γ)

∫
Bε
σ(uεij) · e(η), (B.22)

and we introduce the following adjoint state qF rijk ∈ V , which satisfies for any η ∈ W :∫
Y
σ(qF rijk) · e(η) =

∫
Y

[C(ũij ⊗s ek − e(wF ijk))− 〈C(ũij ⊗s ek − e(wF ijk))〉] · (η ⊗s er)

+
∫
Y

(C(vF ijk ⊗s er)) · e(η). (B.23)

Setting η = δũεpq into equation (B.23), and η = qF
r
ijk into the equation (B.22) written

with pq indices, and proceeding the same interchanging indices ijk and pqr, we have

V (Fh
ε − Fh)ijkpqr = (iii) + (v) + (vii) + o(ε2)

+ (1− γ)
∫
Bε
σ(uεij) · e(qF kpqr) + (1− γ)

∫
Bε
σ(uεpq) · e(qF rijk). (B.24)

We can write, starting gathering corresponding terms, regarding the equality vF ijk =
˜̃uijk + wF ijk, and in view of the previous calculations:

V (Fh
ε − Fh)ijkpqr = πε2Pσ(uij(ŷ)) · (vF pqr(ŷ)⊗s ek)
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+ πε2Pσ(upq(ŷ)) · (vF ijk(ŷ)⊗s er)
− πε2P(σ(˜̃uijk)(ŷ) + C(ũij(ŷ)⊗s ek)) · (e(wF pqr)− (ũpq(ŷ)⊗s er))
− πε2P(σ(˜̃upqr)(ŷ) + C(ũpq(ŷ)⊗s er)) · e(wF ijk − (ũij(ŷ)⊗s ek))
− πε2P(σ(˜̃upqr)(ŷ) + C(ũpq(ŷ)⊗s er)) · (e(˜̃uijk)(ŷ) + (ũij(ŷ)⊗s ek))
− πε2Pσ(uij)(ŷ) · e(qF pqrk)(ŷ)− πε2Pσ(upq)(ŷ) · e(qF ijkr)(ŷ) + o(ε2).

(B.25)

Finally we have

(Fh
ε − Fh)ijkpqr = 2πε

2

V

[
Pσ(uij(ŷ)) · (vF pqr(ŷ)⊗s ek − e(qF pqrk))

]sym

− 2πε
2

V

[
P(σ(˜̃uijk)(ŷ) + C(ũij(ŷ)⊗s ek)) · (e(wF pqr)− (ũpq(ŷ)⊗s er))

]sym

− πε2

V
P(σ(˜̃upqr)(ŷ) + C(ũpq(ŷ)⊗s er)) · (e(˜̃uijk)(ŷ) + (ũij(ŷ)⊗s ek)) + o(ε2),

(B.26)

where for a sixth order tensor F, we define

Fsym
ijkpqr := 1

2(Fijkpqr + Fpqrijk). (B.27)

This expression can also be written as follows by simplifying lines 2 and 3 of (B.26)

(Fh
ε − Fh)ijkpqr = 2πε

2

V

[
Pσ(uij(ŷ)) · (vF pqr(ŷ)⊗s ek − e(qF pqrk))

]sym

− 2πε
2

V

[
P(σ(˜̃uijk)(ŷ) + C(ũij(ŷ)⊗s ek)) · e(vF pqr)

]sym

+ πε2

V
P(σ(˜̃upqr)(ŷ) + C(ũpq(ŷ)⊗s er)) · (e(˜̃uijk)(ŷ) + (ũij(ŷ)⊗s ek)) + o(ε2).

(B.28)
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