

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

École doctorale IAEM Lorraine

Fouille de données complexes et
biclustering avec l’analyse formelle de

concepts

THÈSE

présentée et soutenue publiquement le 18 décembre 2019

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

Nyoman Juniarta

Composition du jury

Président : Florence Le Ber Université de Strasbourg/ENGEES, ICube

Rapporteurs : Marc Plantevit Université Claude Bernard Lyon 1, LIRIS
Henry Soldano Université Paris 13, LIPN

Examinateurs : Peggy Cellier INSA Rennes, IRISA
Sara C. Madeira Université de Lisbonne
Mohamed Nadif Université Paris 5, LIPADE

Directeur : Amedeo Napoli CNRS, LORIA

Co-directeur : Miguel Couceiro Université de Lorraine, LORIA

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thesul.

Remerciements

In the beginning, I would like to thank my supervisor Amedeo Napoli for considering me capable
enough of doing a thesis, and my �rst co-supervisor Chedy Raïssi, who was substituted by my
second co-supervisor Miguel Couceiro halfway through the thesis. All three of them were very
helpful and patient to me during those �formative� years.

I also thank my monitoring committee Bart Lamiroy and Denis Jouvet for providing me
useful guides and advices during the thesis. Toward the end of thesis, I would like to thank Marc
Plantevit and Henry Soldano for reviewing my manuscript and giving detailed comments and
suggestions. Moreover, I thank my thesis' examiners Florence Le Ber, Peggy Cellier, Sara C.
Madeira, and Mohamed Nadif for having constructive discussions with me during the defense,
in spite of the nontrivial problems about train strikes combined with internet connection issue.

Concerning the funding of this thesis, I thank Région Grand Est and the CrossCult project,
particularly Ioanna Lykourentzou for showing great interests in my thesis.

I started, prepared, and �nished this thesis in the Orpailleur team. Therefore, I would like
to thank some members (and ex-members) of this great team. First, I thank Bernard Maigret,
Abdelkader Ouali, Vincent Leroux, Victor Codocedo, Mehdi Kaytoue, and Jane Hung for their
valuable scienti�c collaborations. Then, I also thank Patrice Ringot for helping me through the
di�cult technical part of many experiments. Last but not least, I would like to mention those who
helped me in any other unpredictable ways: Justine Reynaud, Kevin Dalleau, Lauréline Nevin,
Quentin Brabant, Tatiana Makhalova, Alexandre Bazin, Guilherme Alves, Laurine Huber, Nacira
Abbas, Claire Theobald, Giorgios Zervakis, and Laura Zanella.

i

ii

Je dédie cette thèse

à ma famille java-balinaise

iii

iv

Contents

General introduction

Chapter 1 Formal concept analysis and pattern structures 7

1.1 Order theory . 7

1.2 Formal concept analysis . 8

1.3 Formal concept miners . 9

1.3.1 Close by One . 10

1.3.2 AddIntent . 10

1.3.3 In-Close and In-Close2 . 12

1.4 Pattern structures . 15

Partie I Biclustering in FCA

Chapter 2 Introduction to biclustering 21

2.1 Clustering and biclustering . 21

2.2 Basic de�nitions . 22

2.3 Previous works . 23

2.3.1 Probabilistic and numerical methods 23

2.3.2 Pattern-based methods . 28

2.4 Conclusion . 32

v

Contents

Chapter 3 Biclustering with partition pattern structures 35

3.1 The pattern structures of partitions . 35

3.1.1 Partition . 35

3.1.2 Partition of objects . 37

3.1.3 Partition pattern structures . 38

3.2 Constant-column biclustering . 38

3.3 Additive and multiplicative biclustering . 39

3.4 Order-preserving biclustering . 41

3.4.1 Pattern structures for OP biclustering 41

3.4.2 Experiments . 43

3.5 Biclustering with coherent sign changes . 46

3.5.1 Using constant-column biclustering 46

3.5.2 Using pattern structures of signed partition 48

3.6 Conclusion . 56

Chapter 4 Biclustering with interval pattern structures 59

4.1 Scaling of many-valued contexts . 59

4.2 Interval pattern structures . 60

4.3 Similar-column biclustering with IPS . 62

4.4 Additive and multiplicative biclustering . 64

4.5 Concept mining . 65

4.6 Experiments . 65

4.6.1 E�ects of parameters . 65

4.6.2 Comparison with pattern-based method 66

4.6.3 Comparison with numerical method 68

4.7 Conclusion . 69

Partie II Experiments in mining complex data

Chapter 5 Sequence mining within FCA for analyzing visitor trajectories 73

5.1 CrossCult project . 73

5.2 The mining of sequences . 75

vi

5.3 Sequence mining in FCA . 75

5.4 The dataset of museum visitors . 77

5.4.1 The museum . 77

5.4.2 The four visiting styles . 78

5.5 Work�ow for analyzing the trajectories . 79

5.6 Clustering of trajectories . 79

5.7 The mining of trajectories considered as sequences 79

5.7.1 Mining subsequences with MFCS and MRGS 79

5.7.2 Jumping emerging patterns . 81

5.8 Discussion . 81

5.8.1 Cluster characterization . 81

5.8.2 Conclusion . 83

Chapter 6 Guiding antibacterial discovery based on log-linear analysis 85

6.1 Antibacterial drug discovery . 85

6.2 Feature selection . 87

6.3 Log-linear analysis . 88

6.3.1 Goodness-of-�t . 89

6.3.2 Log-linear model . 89

6.3.3 Graphical model . 90

6.3.4 Decomposable models . 91

6.4 Chordalysis . 93

6.5 Classi�cation of antibacterials and non-antibacterials 94

6.6 Evaluation of classi�er performance . 95

6.7 Experiments . 96

6.7.1 Previous work . 96

6.7.2 Dataset . 96

6.7.3 Result of Chordalysis . 97

6.8 Conclusions . 101

Summary and perspectives 103

Bibliography 105

vii

Contents

viii

General introduction

Knowledge discovery in database

In recent years, data are collected much faster. Beside the quantities, the variability and com-
plexity of data also grows at a dramatic pace. Consequently, there is a need to construct tools
that can help us to better understand the data. This is the subject of Knowledge Discovery in
Database (KDD), which takes data as input and returns patterns or models to be interpreted.

As shown in Fig. 1, KDD is composed by some basic steps [32]. The �rst step in KDD is
understanding the domain of the problem and identifying which kind of information is expected
from this problem. Second, in the selection process, a set of data is selected, which will be
used in KDD. The result is a target dataset. In the third step, this target dataset undergoes a
preprocessing step. It can be noise removal or missing values management. Fourth, we prepare
the data set by creating a representation of it, by transformation. This can be done by eliminating
or transforming some variables.

The next step is data mining tasks applied to the transformed data. First, the expected in-
formation matched with a speci�c data mining method (e.g. classi�cation, clustering, regression,
summarization, etc.). Having selected a method, an algorithm is determined and data mining
process is executed. From this step, we can retain some signi�cant patterns discovered in the
data. The last step is interpretation. Having the patterns extracted, we have to interpret them,
by visualisation for example. The retained patterns are then reported to concerning parties, or
used directly. We can also return to some previous steps to enhance the results.

In this thesis, we are interested in knowledge discovery method applied to complex data.
More precisely, this thesis focuses on the data mining and data transformation steps in KDD.

Figure 1: Diagram of some basic steps in KDD.

1

General introduction

We had the opportunity to work on several types of complex data, namely numerical, sequential,
and molecular datasets. In the data mining step, our objectives are to discover some biclusters
in numerical data and to mine interesting patterns in sequential data. Formal concept analysis
�which itself can be considered as a KDD method [23]� is used for completing these objectives
since it is naturally related to biclustering in the sense that both of them discover submatrices
indicating some regularities. Furthermore, it was shown that FCA and its extension, pattern
structures, are suitable for mining complex sequential datasets [15, 19]. Concerning the data
transformation step, our objective is to reduce the dimensionality of a molecular dataset by
eliminating some features. This is performed by identifying some associations among features,
which in turn can be used to decide which features are redundant and can be eliminated.

Contributions

As explained before, we worked on three kinds of complex data, which are gene expression data
(numerical), visitor trajectory data (sequential), and antibacterial data (molecular). Several data
mining methods based on FCA are used for discovering biclustering in gene expression data and
for mining patterns in visitor trajectory data. In addition to data mining step, we worked on an
important step in KDD which is feature selection using log-linear analysis to identify association
among features/attributes. Therefore, this thesis can be summarized in three main contributions.
We begin by presenting biclustering and showing how FCA is well-adapted to support several
important types of biclustering. Then we discuss how FCA and pattern structures can be applied
to mine sequences, which are then used to characterize visitor in a trajectory dataset. Finally,
we discuss the feature selection step when working on a complex data such as antibacterial data.
Each contribution is detailed as follows.

Biclustering

Biclustering with FCA is the �rst contribution of this thesis, working with the gene expression
data as numerical dataset. Biclustering is connected to clustering. The objective of clustering
is to discover some groupings of objects in a dataset by looking at their similarity across all of
their features/attributes. This may be problematic, since some objects may share similarity with
other objects across a subset of features only, which is particularly observed in gene expression
datasets. This problem leads to the emergence of biclustering in gene expression datasets [18].

Given a matrix, formal concept analysis (FCA) is related to biclustering, in the sense that
both methods try to �nd submatrices having regularities within their cells. FCA is focused on a
binary matrix, hence it only �nds constant-value biclusters. To discover other types of biclusters
(as de�ned in [72]), some extensions of FCA are proposed. Partition pattern structures (PPS)
were applied to �nd constant-column biclusters [20]. In this thesis, the possibility of �nding
other bicluster types is studied by de�ning the corresponding similarity operator between any
two sets of objects used in PPS. Furthermore, interval pattern structures (IPS) were applied to
discover similar-column biclusters [60]. The potential of IPS is studied to discover other types of
biclusters. Contrasting with PPS, IPS allows to �nd less strict biclusters (e.g. similar column,
similar row, non-exact additive biclustering, etc.) without scaling the numerical matrix. We
applied our methods to the domain of bioinformatics, where the task of �nding biclusters in a
gene expression data matrix is still actively studied [43, 78, 81].

2

Sequence mining

The second contribution is related to the CrossCult project (http://www.crosscult.eu/), a Euro-
pean Project about cultural heritage. The general idea of CrossCult is to support the emergence
of a European cultural heritage by allowing visitors in di�erent locations (e.g. museum, city,
archaeological site) to attentively contemplate their visit at a European level by using adapted
computer-based devices. One objective of this project is to develop a mobile application to stim-
ulate the re�ection of history while users are visiting some cities or venues. This application
registers the trajectory of each visitor while they interact with it, providing a kind of sequential
dataset. A particular dataset is concerned with the trajectories of around 200 visitors in Hecht
Museum in Haifa, Israel. Each trajectory is composed by sequence of visits, where each visit is
represented by three components: start time, end time, and visited item. A novel method is then
developed to understand these trajectories such that the visitor behaviors can be extracted ac-
cording to four theoretical visiting patterns [62]. This approach is composed of two independent
steps: the clustering and the mining of trajectories. Given that the trajectory dataset can be
regarded as a sequential dataset, a proper sequence clustering method is used where the distance
between any two sequences is obtained from the number of their common subsequences [29].
On the other hand, the mining of trajectory patterns is performed by two methods based on
FCA [15, 19]. These patterns are then used to �nd the characteristic behavior of each cluster.
This contribution may help the developer in providing recommendations to users/visitors for
improving their visit and re�ections.

Feature selection

The third contribution of this thesis is related to numerical pattern mining, especially the prob-
lem of feature selection as a data transformation step in KDD. This work is part on a larger
research of discovering new antibacterial drugs, by classifying chemical molecules into two classes:
antibacterial and non-antibacterial. In this thesis, we work on feature selection over chemoinfor-
matics datasets where it is important in several aspects of drug design [98, 103]. Such datasets
are usually represented as a matrix, where each row and column represents molecule and ele-
ments of the molecular structure respectively. Since a molecular structure has many properties,
the matrix often has a high number of columns. This could increase the complexity and reduce
the performance of any classi�cation algorithm, causing the need of dimensionality reduction.

In feature selection, we start by the idea that a feature being highly correlated to another
can be discarded, for obtaining a set of features that are not correlated. One way to detect
correlation among attributes is given by log-linear analysis (LLA) [88]. The basic LLA examines
every pair of attributes, and this is not suitable for a dataset with large number of attributes.
This restriction can be solved by considering a particular sub-class of LLA: decomposable models
[77]. This avoids the calculation of correlation of every attribute pair, and therefore reducing the
complexity of LLA. The result of this feature selection approach is then tested in antibacterial
datasets. An evaluation is based on how well the selected features perform in the antibacterial�
nonantibacterial classi�cation.

Thesis organization

This thesis is structured as follows.

• Chapter 1 presents the introduction of formal concept analysis and pattern structures,
which will be used in the problem of sequence mining and biclustering.

3

General introduction

The rest of this thesis is separated into two parts. The �rst part constitutes the �rst contribution
about biclustering with three chapters as follows.

• Chapter 2 presents the problem of biclustering, the de�nition of current types of biclusters,
and existing approaches to discover biclusters.

• Chapter 3 focuses on biclustering with partition pattern structures. First, a speci�c
partition pattern structure �which was applied to constant-column and similar-column
biclustering� is presented. Then, this approach is extended to other types of biclustering
by adapting the description of each object and the similarity operation. This chapter is
based on:

� N. Juniarta, V. Codocedo, M. Couceiro, A. Napoli, Biclustering Based on FCA and

Partition Pattern Structures for Recommendation Systems at the Proceedings of the
2018 International Workshop �What can FCA do for Arti�cial Intelligence?� @ 27th
International Joint Conference on Arti�cial Intelligence and the 23rd European Con-
ference on Arti�cial Intelligence, pp. 105�116.

� N. Juniarta, M. Couceiro, A. Napoli, Application des Pattern Structures à la décou-

verte de biclusters à changements de signes cohérents at Conference Francophone sur
l'Extraction et la Gestion des Connaissances (EGC) 2019, pp. 285�290.

� N. Juniarta, V. Codocedo, M. Couceiro, M. Kaytoue, A. Napoli Pattern Structures for

Identifying Biclusters with Coherent Sign Changes at the Supplementary Proceedings
of the 2019 International Conference on Formal Concept Analysis, pp. 3�15.

� N. Juniarta, M. Couceiro, A. Napoli, Order-preserving Biclustering Based on FCA and

Pattern Structures. In A. Appice, M. Ceci, C. Loglisci, G. Manco, E. Masciari, Z.W.
Ras (Eds), Complex Pattern Mining: New Challenges, Methods and Applications.
Basel: Springer. (to be published)

� N. Juniarta, M. Couceiro, A. Napoli, A Uni�ed Approach to Biclustering Based on

Formal Concept Analysis at Conférence sur la Gestion de Données � Principes, Tech-
nologies et Applications (BDA) 2019.

• Chapter 4 focuses on biclustering with interval pattern structures. Following the previ-
ous chapter, here we �rst explain the speci�c interval pattern structure which was built
for discovering similar-column biclustering. Then, using alignment, we show that this ap-
proach can be extended to discover other types of biclusters, especially the additive and
multiplicative biclusters. This chapter is based on:

� N. Juniarta, M. Couceiro, A. Napoli, A Uni�ed Approach to Biclustering Based on

Formal Concept Analysis and Interval Pattern Structures at the 2019 International
Conference on Discovery Science, pp. 51�60.

The second part represents the second contribution (about mining sequential dataset) and the
third contribution (about feature selection) of this thesis. This part has two chapters as follows.

• Chapter 5 focuses on the task of describing visitor behaviors, using sequence clustering
and FCA-based sequence mining. First, the formalization of sequence mining in FCA is
presented. Then, combined with clustering of sequence using the count of �all common
subsequences�, the characterization of visitor trajectories is described. This chapter is
based on:

4

� N. Juniarta, M. Couceiro, A. Napoli, C. Raïssi, Sequential Pattern Mining using

FCA and Pattern Structures for Analyzing Visitor Trajectories in a Museum at the
Proceedings of the 2018 International Conference on Concept Lattices and Their Ap-
plications, pp. 231�242.

� N. Juniarta, M. Couceiro, A. Napoli, C. Raïssi, Sequence Mining within Formal Con-

cept Analysis for Analyzing Visitor Trajectories at the 2018 International Workshop
on Semantic and Social Media Adaptation and Personalization, pp. 19�24.

• Chapter 6 focuses on the numerical pattern mining domain, where we study the application
of attribute relation discovery to solve the problem of feature selection. The attribute
relation discovery is performed using LLA, which is explained �rst. Then, we study the
improvement of LLA based on chordal graph. Finally, we apply it to the antibacterial
datasets and some publicly available datasets to understand the performance of the method.
This chapter is based on:

� A. Ouali, N. Juniarta, B. Maigret, A. Napoli, A Feature Selection Method Based

on Tree Decomposition of Correlation Graph at the 2019 Workshop on Advances in
Managing and Mining Large Evolving Graphs @ European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases.

5

General introduction

6

Chapter 1

Formal concept analysis and pattern

structures

Contents

1.1 Order theory . 7

1.2 Formal concept analysis . 8

1.3 Formal concept miners . 9

1.3.1 Close by One . 10

1.3.2 AddIntent . 10

1.3.3 In-Close and In-Close2 . 12

1.4 Pattern structures . 15

In this chapter, we introduce the formal concept analysis which will be used in the following
chapters. First, we explain in Sect. 1.1 the basic de�nitions of order theory based on [36]. This
theory is necessary to introduce the formal concept analysis in Sect. 1.2, and some algorithms for
mining formal concepts in Sect. 1.3. In the end, pattern structures �a generalization of formal
concept analysis� is presented in Sect. 1.4.

1.1 Order theory

A binary relation R between two sets M and N is a set of pairs (m,n) with m ∈M and n ∈ N .
It can be written as mRn. Instead of two di�erent sets, a binary relation can also be de�ned
on a single set (M = N), and it is called a binary relation on M . An order on M is a binary
relation on that set that satis�es the following conditions for all x, y, z ∈M :

1. xRx (re�exivity),

2. xRy and x 6= y ⇒ not yRx (antisymmetry),

3. xRy and yRz ⇒ xRz (transitivity).

An order is often written as ≤. An ordered set is a pair (M,≤), with ≤ is an order on M . This
type of set is sometimes denoted as partially ordered set, since it is possible that not every pair
of elements is comparable. This means that there may exist two di�erent elements x and y that
are incomparable, where x 6≤ y and y 6≤ x.

7

Chapter 1. Formal concept analysis and pattern structures

Table 1.1: A formal context with four objects and �ve attributes.

m1 m2 m3 m4 m5

g1 × ×
g2 × ×
g3 × × × ×
g4 × × ×

Consider a set C, a subset of an ordered set (M,≤). An element m ∈ M is a lower bound
of C if ∀c ∈ C,m ≤ c. Dually, an element n ∈ M is an upper bound of C if ∀c ∈ C, c ≤ n. If
there exists a single largest element among the set of all lower bounds of C, then this element is
denoted the in�mum of C. The supremum is de�ned dually.

If for any two elements x, y ∈ M , there exist the supremum (x ∨ y) and in�mum (x ∧ y),
then this ordered set is a lattice. Furthermore, if the supremum and in�mum also exist for any
X ⊆M , then this ordered set is a complete lattice.

1.2 Formal concept analysis

Formal concept analysis (FCA) is a mathematical framework based on lattice theory and used for
classi�cation, data analysis, and knowledge discovery [36]. From a formal context, FCA detects
all formal concepts and the order among them in a concept lattice.

A formal context K is a triple (G,M, I), where G is a set of objects, M is a set of attributes,
and I is a binary relation between G and M , i.e. I ⊆ G ×M . If an object g has an attribute
m, then (g,m) ∈ I. A formal context can be represented as a matrix, an example is shown in
Table 1.1.

In a formal context, FCA �nds maximal rectangles. A rectangle is a submatrix whose cells are
entirely ×. An example of such rectangle in Table 1.1 is the submatrix r1 constructed by rows
{g3, g4} and columns {m2,m3}. Furthermore, a rectangle is maximal if there is no other larger
rectangle that can be created by adding rows or columns to the current rectangle. Therefore, the
rectangle r1 is not maximal, since another larger rectangle r2 can be formed by adding m4 to the
rows of r1. On the other hand, the rectangle r2, having rows {g3, g4} and columns {m2,m3,m4},
is maximal.

A maximal rectangle corresponds to a formal concept in FCA. Its set of rows and set of
columns are called its extent and its intent respectively. Formal concepts can be found by
introducing derivation operators for any subset of objects and any subset of attributes:

′ :℘(G)→ ℘(M),
′ :℘(M)→ ℘(G), (1.1)

where ℘(G) and ℘(M) represent the power set of G and M respectively. Given A ⊆ G and
B ⊆M , these operators are de�ned by:

A′ = {m ∈M |∀g ∈ A, (g,m) ∈ I},
B′ = {g ∈ G|∀m ∈ B, (g,m) ∈ I}. (1.2)

In other words, A′ is the set of attributes that are shared by all objects in A, while B′ is the set
of objects having all attributes in B. Therefore, these two operators form a Galois connection
between ℘(G) and ℘(M) [36].

8

1.3. Formal concept miners

Figure 1.1: Concept lattice of the formal context in Table 1.1. The number inside each node is
the concept number. The set written above and below each node represents the concept's intent
and extent respectively. The diagram is generated using Latviz [4].

A formal concept is a pair (A,B) where A′ = B and B′ = A. In the previous example, the
rectangle r2 is a formal concept since {g3, g4}′ = {m2,m3,m4} and {m2,m3,m4}′ = {g3, g4}.
This formal concept is written as ({g3, g4}, {m2,m3,m4}). The set of all formal concepts
B(G,M, I) is partially ordered, given by relation ≤K:

(A1, B1) ≤K (A2, B2)⇐⇒ A1 ⊆ A2 (dually B2 ⊆ B1). (1.3)

B(G,M, I) is a lattice, since for any two concepts, the supremum and the in�mum always
exist. Furthermore, it is also a complete lattice since there exist the supremum and in�mum of
any B ⊆ B(G,M, I).

The concept lattice of the formal context in Table 1.1 is depicted in a Hasse diagram in
Fig. 1.1. This diagram re�ects the partial ordering of B(G,M, I). Concept number 5 (c5 =
({g3}, {m1,m2,m3,m4})) is less than concept number 6 (c6 = ({g2, g3, g4}, {m3})), written as
c5 ≤K c6. Therefore, there is a path going down from c6 to c5. Meanwhile, c3 and c7 is not
comparable, since neither c3 ≤K c7 nor c7 ≤K c3. Therefore, there is no path going entirely up
or entirely down between these two concepts.

1.3 Formal concept miners

Various algorithms have been proposed to enumerate all formal concepts from a formal context
and/or building the corresponding concept lattice. In this thesis, we used the Close by One and
AddIntent algorithms since they can be easily adapted to pattern structures (will be explained
later). We also explain here In-Close2 algorithm, which was used in the literature for FCA-based
biclustering.

9

Chapter 1. Formal concept analysis and pattern structures

1.3.1 Close by One

Close by One (CbO) was proposed in [63], and detailed here in Algo. 1. The time complexity of
CbO is O(|G|2|M ||L|) [65], where L is the number of concepts. It starts from a single object,
then adding objects one by one according to the lexicographical order of objects. When an object
is added to a current set, the algorithm checks the set's closure (the (.)′′ operation).

The process of concepts generation of the formal context in Table 1.1 is illustrated as a tree
in Fig. 1.2. Each node which is not crossed corresponds to a formal concept. First, the set {g1}
and its closure {g1} is checked, and kept as a concept ({g1}, {m4,m5}). Then, the next object is
added to the previous closure, forming the set {g1, g2} with closure {g1, g2, g3, g4}. Since, there
is no more object can be added to the preceding closure (line 12 of the algorithm), this branch
is terminated.

The node with {g1, g4} is not kept as a concept, since it is not canonical. It tries to generate
a concept ({g1, g3, g4}, {m3}), but this concept is already generated previously, from the node
{g1, g3}. This checking is done in the line 10 of the algorithm. The closure of the set {g1, g4} is
{g1, g3, g4}, containing g3 that is lexicographically less than another object in the set (g4).

1 CloseByOne:
2 L := ∅
3 foreach g ∈ G do
4 Process({g}, g, (g′′, g′))
5 end
6 L is the set of concepts
7

8

9 Process(A, g, (C,D)):

10 if {h|h ∈ C\A and h < g} = ∅ then
11 L := L ∪ {(C,D)}
12 foreach f ∈ {h|h ∈ G\C and g < h} do
13 Z := C ∪ {f}
14 Y := D ∩ {f}′
15 X := Y ′

16 Process(Z, f, (X,Y))

17 end

18 end
Algorithm 1: Close by One algorithm. The input is a formal context (G,M, I), while the
output is the set of formal concepts B(G,M, I), denoted as L in the algorithm.

1.3.2 AddIntent

The result of CbO is the set of concepts B(G,M, I). If the lattice of the concepts is also
expected, then we need another approach. AddIntent [73] is an algorithm that enumerates the
set of concepts and generates its lattice. This algorithm, shown in Algo. 2�3, is a bottom-
up approach. In general, each time an object is added, the algorithm calculates the possible
intersections between the object's intent and the intents of all other concepts in the current
lattice. Then, the algorithm generates new concepts based on these intersection and connects
them accordingly to the existing concepts.

10

1.3. Formal concept miners

∅

{g
1
}′

=
{m

4
,m

5
}

{g
1
}′
′
=
{g

1
}

{g
1
,g

2
}′

=
∅

{g
1
,g

2
}′
′
=
{g

1
,g

2
,g

3
,g

4
}

{g
1
,g

3
}′

=
{m

4
}

{g
1
,g

3
}′
′
=
{g

1
,g

3
,g

4
}

{g
2
}′

=
{m

1
,m

3
}

{g
2
}′
′
=
{g

2
,g

3
}

{g
2
,g

3
,g

4
}′

=
{m

3
}

{g
2
,g

3
,g

4
}′
′
=
{g

2
,g

3
,g

4
}

{g
3
}′

=
{m

1
,m

2
,m

3
,m

4
}

{g
3
}′
′
=
{g

3
}

{g
3
,g

4
}′

=
{m

2
,m

3
,m

4
}

{g
3
,g

4
}′
′
=
{g

3
,g

4
}

{g
1
,g

4
}′

=
{m

4
}

{g
1
,g

4
}′
′
=
{g

1
,g

3
,g

4
}

{g
4
}′

=
{m

2
,m

3
,m

4
}

{g
4
}′
′
=
{g

3
,g

4
}

Figure 1.2: Generations of concepts of the formal context in Table 1.1 by Close by One algorithm.
The nodes are generated depth-�rst.

11

Chapter 1. Formal concept analysis and pattern structures

1 CreateLatticeIncrementally(G,M, I):
2 BottomConcept := (∅,M)
3 L := BottomConcept

4 foreach g ∈ G do
5 ObjectConcept = AddIntent(g′, BottomConcept, L)
6 Add g to the extent of ObjectConcept and all concepts above

7 end
Algorithm 2: The procedure to generate concept lattice, using AddIntent algorithm.

As shown in Algo. 2, AddIntent starts with a lattice with the bottom concept (∅,M). Then,
the algorithm calls AddIntent function (Algo. 3) for each object g ∈ G, with g′ as intent. The
function �rst looks for the GeneratorConcept (line 2) from which NewConcept may be generated.
The function GetMaximalConcept �nds the most general concept whose intent ⊇ intent. The
parents of NewConcept can be found among the parents of GeneratorConcept. For every parent
of GeneratorConcept (line 8), the algorithm goes up until it �nds a concept whose intent is a
subset of intent (done recursively in line 9�10). This concept is added to NewParents after
checking whether it is comparable to the existing NewParents (line 13�24). After that, the
NewConcept is added between any concept in NewParents and its GeneratorConcept.

An example of AddIntent concept generations is illustrated in Fig. 1.3, working with the
formal context in Table 1.1. Consider Fig. 1.3c, which is the lattice after the addition of g2. The
next object to be added is g3, with {g3}′ = {m1,m2,m3,m4} as intent. The GeneratorConcept
for this object is c0, having two parents c1 and c3. From c1, the algorithm �nds c2 as the new
parents, and inserts a new concept c4 between c1 and c2. Then from c3, the algorithm �nds c3
and c4 as the new parents, thus inserts a new concept c5 between c0 and both of c3 and c4.

1.3.3 In-Close and In-Close2

In-Close2 algorithm [8] and its predecessor In-Close [7] are based on CbO. Both of them start
from the pair (G, ∅) and adding attributes one by one to discover other concepts. To see the
di�erence between In-Close and CbO, here we will consider that In-Close start from the pair
(∅,M) and it adds objects one by one.

The running of In-Close algorithm is illustrated in Fig. 1.4. The algorithm starts from the top
concept (∅,M), and adds objects by their lexicographical order. Each time an object is added
to the current extent A, the algorithm calculates the new intent A′ by doing the intersection.
There are three outcomes of the new intent:

1. O1: Emptyset,

2. O2: A proper subset of the previous intent,

3. O3: Same as the previous intent.

Consider the node where c2 is generated in Fig. 1.4, after the addition of g1. The algorithm
then separately adds g2, g3, and g4; hence three branches in the �gure. The new intent from the
addition of g2 is ∅, corresponding to O1. In this case, the algorithm stops exploring this branch.
The new intent from the addition of g3 is a proper subset of the previous intent {m4,m5},
corresponding to O2. Therefore, the new pair ({g1, g3}, {m4}) is accepted as a new concept c3.
Then, the algorithm continues this branch, adding g4. The new intent is the same with the

12

1.3. Formal concept miners

c0

m1,m2,m3,m4,m5

∅

c1

m4,m5

g1

(a)

c0

m1,m2,m3,m4,m5

∅

c1

m4,m5

g1

c2

∅

g1

(b)

c0

m1,m2,m3,m4,m5

∅

c1

m4,m5

g1

c3

m1,m3

g2

c2

∅

g1, g2

(c)

c0

m1,m2,m3,m4,m5

∅

c1

m4,m5

g1

c3

m1,m3

g2

c4

m4

g1

c2

∅

g1, g2

(d)

c0

m1,m2,m3,m4,m5

∅

c1

m4,m5

g1

c5

m1,m2,m3,m4

g3

c3

m1,m3

g2, g3

c4

m4

g1, g3

c2

∅

g1, g2, g3

(e)

c0

m1,m2,m3,m4,m5

∅

c1

m4,m5

g1

c5

m1,m2,m3,m4

g3

c3

m1,m3

g2, g3

c4

m4

g1, g3

c6

m3

g2, g3

c2

∅

g1, g2, g3

(f)

c0

m1,m2,m3,m4,m5

∅

c1

m4,m5

g1

c5

m1,m2,m3,m4

g3

c3

m1,m3

g2, g3

c7

m2,m3,m4

g3, g4

c4

m4

g1, g3, g4

c6

m3

g2, g3, g4

c2

∅

g1, g2, g3, g4

(g)

Figure 1.3: The generation of formal concepts using AddIntent for the formal context in Table 1.1,
showing the steps after addition of g1 (a) until the �nal lattice (g). The �gures (b�c), (d�e), and
(f�g) correspond to the additions of g2, g3, and g4 respectively.

13

Chapter 1. Formal concept analysis and pattern structures

∅′
=
{M
}

c 1
=

(∅
,M

)

{g
1
}′

=
{m

4
,m

5
}

c 2
=

({
g 1
},
{m

4
,m

5
})

{g
1
,g

2
}′

=
∅

{g
1
,g

3
}′

=
{m

4
}

c 3
=

({
g 1
,g

3
,g

4
},
{m

4
})

{g
1
,g

3
,g

4
}′

=
{m

4
}

{g
1
,g

4
}′

=
{m

4
}

{g
2
,g

3
}′

=
{m

1
,m

3
}

{g
2
,g

3
,g

4
}′

=
{m

3
}

c 5
=

({
g 2
,g

3
,g

4
},
{m

3
})

{g
3
,g

4
}′

=
{m

2
,m

3
,m

4
}

c 7
=

({
g 3
,g

4
},
{m

2
,m

3
,m

4
})

{g
2
}′

=
{m

1
,m

3
}

c 4
=

({
g 2
,g

3
},
{m

1
,m

3
})

{g
3
}′

=
{m

1
,m

2
,m

3
,m

4
}

c 6
=

({
g 3
},
{m

1
,m

2
,m

3
,m

4
})

{g
4
}′

=
{m

2
,m

3
,m

4
}

Figure 1.4: Generations of concepts of the formal context in Table 1.1 using In-Close algorithm
by object additions. The nodes are generated depth-�rst. Each time a concept is generated, it is
symbolized by cn = (A,B). The underlined object in an extent means that the object is added
after the calculation from the nodes below.

14

1.4. Pattern structures

previous intent ({m4}), corresponding to O3. Therefore, the object g4 is added to the previous
extent, modifying the concept c3 such that its extent is {g1, g3, g4}.

Moreover, before the acceptation of the new concept from O2, the algorithm checks whether
the new intent is already generated. This is the case with the addition of g4 to the concept c1.
Although the new intent is a proper subset of the intent of c1, the pair ({g1, g4}, {m4}) is not
accepted as a concept since the intent {m4} is already generated in c3.

If we compare the exploration of In-Close in Fig. 1.4 with the exploration of CbO in Fig. 1.2,
we see some di�erences. Although both algorithms add objects (or attributes) one by one using
lexicographical order, they di�er on how the concepts are generated. In CbO, a concept is
generated by calculating the closure (.)′′ of a set of objects. In In-Close, the intent of a concept
is generated �rst, then its extent is calculated recursively. On the other hand, in In-Close2
�an improvement of In-Close� combines depth-�rst and breadth-�rst approach when adding
objects/attributes.

1.4 Pattern structures

As explained in the previous section, a formal context K is a triple (G,M, I) where I is a binary
relation between G and M . This means that we can not have multi-valued relation as I. This
limitation is relaxed in pattern structures [35], generalizations of FCA. In FCA, we can say that
each object is described by a set of attributes. On the other hand, in pattern structures, each
object can be described by a more complex structure, e.g. a list of interval [60], a sequence
[15, 19], a partition [20], an RDF triple [3], etc.

Instead of (G,M, I), a pattern structure is determined by the triple (G, (D,u), δ), where
(D,u) is a meet-semilattice of descriptions D having u as similarity operator, and δ : G → D
maps an object to its description. Following Eq. 1.1, the derivation operators are de�ned for any
subset of objects and any description:

� : ℘(G)→ D,
� : D → ℘(G).

Given A ⊆ G and d ∈ D, these operators �comparable with Eq. 1.2� are de�ned by:

A� = ⊔

g∈A
δ(g),

d� = {g ∈ G|d v δ(g)}.

In other words, A� is the similarity of descriptions of each object in A, while d� is the set of
objects whose description subsumes d. The subsumption order over these descriptions follows
that:

d1 u d2 = d1 ⇔ d1 v d2. (1.4)

A pattern concept is a pair (A, d) where A� = d and d� = A.
Consider a standard FCA and the formal context in Table 1.1. In pattern structures, each

object in this context has a set of attributes as description. For example, δ(g1) = {m4,m5}. The
u in this case corresponds to the set intersection (∩). Therefore:

δ(g2) u δ(g3) = δ(g2) ∩ δ(g3)
= {m1,m3} ∩ {m1,m2,m3,m4}
= {m1,m3}.

15

Chapter 1. Formal concept analysis and pattern structures

∅

{g1}� = 〈[5, 5][7, 7][4, 6]〉

{g1}�� = {g1}

{g1, g2}� = 〈[5, 6][7, 8][4, 6]〉

{g1, g2}�� = {g1, g2, g3}

{g1, g3}� = 〈[5, 6][7, 7][5, 6]〉

{g1, g3}�� = {g1, g3}

{g2}� = 〈[6, 6][8, 8][4, 4]〉

{g2}�� = {g2}

{g2, g3}� = 〈[6, 6][7, 8][4, 5]〉

{g2, g3}�� = {g2, g3}

{g3}� = 〈[6, 6][7, 7][5, 5]〉

{g3}�� = {g3}

Figure 1.5: Generations of interval pattern concepts of the context in Table 1.2 using CbO
algorithm. It is similar to Fig. 1.2, with di�erences on derivation operators.

If A = {g2, g3, g4}, then A� = δ(g2)u δ(g3)u δ(g4) = {m3}, which is consistent with A′ in FCA.
The relation �is subsumed by� (v) corresponds to subset relation (⊆) in FCA. In this case d�

is the set of objects whose description is a superset of d. Still in Table 1.1, with d = {m3}, d� =
{m3}� = {g2, g3, g4}, consistent with {m3}′ in FCA. Furthermore, since {g2, g3, g4}� = {m3}
and {m3}� = {g2, g3, g4}, the pair ({g2, g3, g4}, {m3}) is a pattern concept, which corresponds
to a formal concept in FCA.

Using pattern structures, not only a set of attributes, we can have a more complex description
by de�ning the operator u, as long as the set of description is a meet-semilattice. In other words,
the set of descriptions must be a partially ordered set having an in�mum for any two descriptions.
To enumerate all pattern concepts, CbO algorithm can be used by rede�ning the operator and
relation (.)′,∩,⊆ to (.)�,u,v respectively.

Other examples of pattern structures are interval pattern structures (IPS) [60]. In IPS, a
description of an object is a list of attribute intervals. Consider a numerical context in Table 1.2.
The description of g1 is δ(g1) = 〈[5, 5][7, 7][6, 6]〉. The similarity operator between two descrip-
tions in IPS is de�ned as the list of smallest interval covering all the corresponding interval in the
descriptions. For example, δ(g1) u δ(g2) is 〈[5, 6][7, 8][4, 6]〉. Following Eq. 1.4, larger interval is
subsumed by smaller interval, e.g. 〈[5, 6][7, 8][4, 6]〉 v 〈[5, 5][7, 8][5, 6]〉. Using CbO, the process
of interval pattern concepts is illustrated in Fig. 1.5.

More detail on IPS is provided in Chapter 4 of this thesis. Other complex structures, like
partition and sequence, are explained in Chapter 3 and Chapter 5 respectively.

16

1.4. Pattern structures

1 AddIntent(intent, GeneratorConcept, L):
2 GeneratorConcept = GetMaximalConcept(intent, GeneratorConcept, L)
3 if GeneratorConcept.Intent = intent then
4 return GeneratorConcept

5 end
6 GeneratorParents := GetParents(GeneratorConcept, L)
7 NewParents = ∅
8 foreach Candidate ∈ GeneratorParents do
9 if Candidate.Intent 6⊂ intent then

10 Candidate := AddIntent(Candidate.Intent ∩ intent, Candidate, L)
11 end
12 addParent := true
13 foreach Parent ∈ NewParents do
14 if Candidate.Intent ⊆ Parent.Intent then
15 addParent := false
16 break

17 end
18 else if Parent.Intent ⊆ Candidate.Intent then
19 Remove Parent from NewParents

20 end

21 end
22 if addParent then
23 Add Candidate to NewParents

24 end

25 end
26 NewConcept := (GeneratorConcept.Extent, intent)
27 L := L ∪ {NewConcept}
28 foreach Parent ∈ NewParents do
29 RemoveLink(Parent, GeneratorConcept, L)
30 SetLink(Parent, NewConcept, L)

31 end
32 SetLink(NewConcept, GeneratorConcept, L)
33 return NewConcept

Algorithm 3: AddIntent algorithm.

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 6 7 5

Table 1.2: A numerical context.

17

Chapter 1. Formal concept analysis and pattern structures

18

Part I

Biclustering in FCA

19

Chapter 2

Introduction to biclustering

Contents

2.1 Clustering and biclustering . 21

2.2 Basic de�nitions . 22

2.3 Previous works . 23

2.3.1 Probabilistic and numerical methods 23

2.3.2 Pattern-based methods . 28

2.4 Conclusion . 32

Biclustering is a simultaneous grouping of rows and columns in a matrix. It is related to
FCA, in the sense that both methods discover submatrices having some regularities among their
elements. In this chapter, we introduce the de�nitions of biclustering and some previous works.
These de�nitions will be used in the next chapters, i.e. biclustering with partition and interval
pattern structures.

2.1 Clustering and biclustering

Before describing the de�nitions of biclustering, we �rst revisit the clustering task. Clustering
is a part of the data mining step in KDD, where we discover some patterns that tell us the
possible existence of similarity among the objects. In general, this task groups a set of objects
based on the attributes of each object. However, the precise de�nition of �cluster� depends on
the algorithms [31]. For example, in k-means clustering, a cluster can be represented as a single
vector that is called a centroid, where an object belongs to the nearest centroid. In hierarchical
clustering [56], a cluster is a recursive partition of a larger set of objects into some smaller subsets.
In DBSCAN [30], a cluster is a group of objects that are closely packed together.

In spite of various de�nitions of cluster, the majority of clustering algorithms group the
objects based on all of the attributes together. On the other hand, biclustering is a unique
type of clustering where an object can be grouped with another object even if they share a
similarity across a subset of attributes only. In other words, biclustering is clustering of objects
and attributes simultaneously [40]. From this point of view, biclustering is naturally related to
FCA and pattern structures, since a bicluster can be regarded as a concept.

21

Chapter 2. Introduction to biclustering

Table 2.1: Examples of some bicluster types: (a) constant-value, (b) constant-column, (c) similar-
column, (d) additive, (e) multiplicative, (f) order-preserving, (g) coherent-sign-changes.

2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

(a)

4 2 5 3
4 2 5 3
4 2 5 3
4 2 5 3

(b)

4.0 2.5 5.7 3.1
3.9 2.4 5.6 3.0
4.1 2.4 5.9 2.9
4.1 2.6 5.8 2.9

(c)

2 3 5 1
5 6 8 4
1 2 4 0
4 5 7 3

(d)

2 6 12 4
1 3 6 2
4 12 24 8
3 9 18 6

(e)

2 1 3 4
5 1 8 9
6 5 7 11
1 -9 2 9

(f)

+ + − +
+ + − +
− − + −
+ + − +

(g)

2.2 Basic de�nitions

We consider that a dataset is a matrix (G,M) where G is a set of rows/objects and M is a set
of columns/attributes. The value of m ∈ M for object g ∈ G is written as m(g). A submatrix
constructed from a subset of rows A ⊆ G and a subset of columns B ⊆M is denoted as (A,B).

The �rst type of biclusters is constant-value, which is a submatrix having the same value
for all of its elements. In a binary matrix, a formal concept corresponds to a constant-value
bicluster. This bicluster is described in Def. 1.

De�nition 1 (Constant-value bicluster). Given a dataset (G,M), a pair (A,B) (where A ⊆ G,
B ⊆M) is a constant-value bicluster i� ∀g ∈ A, ∀m ∈ B,m(g) = c where c is a constant.

Other types of bicluster are formalized in the following de�nitions.

De�nition 2 (Constant-column bicluster). Given a dataset (G,M), a pair (A,B) (where A ⊆ G,
B ⊆M) is a constant-column (CC) bicluster i� ∀m ∈ B, ∀g, h ∈ A,m(g) = m(h).

An example of CC bicluster is illustrated in Table 2.1b. CC biclustering has more relaxed
variation, namely similar-column (SC) biclustering. With these relaxations, instead of �nding
biclusters with exactly constant columns, we can obtain biclusters whose columns have similar
values as shown in Table 2.1c.

An additive bicluster is illustrated in Table 2.1d. Here we see that there is a constant
di�erence between any two columns. For example, each value in the second column is two
more than the corresponding value in the fourth row. This type and the related multiplicative
biclusters (example in Table 2.1e) are formalized as follows.

De�nition 3 (Coherent-values bicluster). Given a dataset (G,M), a pair (A,B) (where A ⊆ G,
B ⊆ M) is an additive bicluster i� ∀g, h ∈ A,∀m,n ∈ B,m(g) − n(g) = m(h) − n(h); or a
multiplicative bicluster i� ∀g, h ∈ A,∀m,n ∈ B,m(g)/n(g) = m(h)/n(h).

Order-preserving biclustering is another type of biclustering where the expected submatrix
has a common permutation of columns for all rows. In the example (Table 2.1f), there is a
sequence of column: second < �rst < third < fourth column, that is true for all rows. This type
of bicluster is formalized as follows.

De�nition 4 (Order-preserving bicluster). Given a dataset (G,M), a pair (A,B) (where A ⊆ G,
B ⊆ M) is an order-preserving bicluster i� there exists a sequence of columns (m1 · · ·m|B|) for
all mi ∈ B, such that mi(g) < mi+1(g) for all g ∈ A.

22

2.3. Previous works

Lastly, another type of biclustering that is studied in this thesis is coherent-sign-changes
biclustering, illustrated in Table 2.1g. In this bicluster, each column is �equal� (') to each other:
the �rst, second, and fourth columns are identical, while the third column is opposite of the
others. This bicluster is formalized in the following de�nitions.

De�nition 5 (Column submatrix). In a binary dataset (G,M) where G is a set of objects and
M is a set of attributes, (A,mj) is the column submatrix with A ⊆ G and mj ∈M .

De�nition 6 (Column submatrix equality). Given a set of objects A ⊆ G and two attributes
mj ,mk ∈ M . The submatrix (A,mj) is equal to (A,mk), denoted as (A,mj) ' (A,mk), i� all
rows in (A,mj) are either entirely identical or entirely opposite to the corresponding rows in
(A,mk). This can be formally written as:

(A,mj) ' (A,mk)⇐⇒∀gi ∈ A : mj(gi) = mk(gi) or

∀gi ∈ A : mj(gi) = ¬mk(gi).

De�nition 7 (Coherent-sign-changes bicluster). Given a binary dataset (G,M), a pair (A,B)
(where A ⊆ G, B ⊆M) is a coherent-sign-changes bicluster i� ∀mj ,mk ∈ B : (A,mj) ' (A,mk).

2.3 Previous works

Various authors have proposed comparative studies of biclustering in gene expression data [53,
72, 74]. In this section, we brie�y present certain existing methods in the literature that work
with some/all the types of biclusters described in the previous section.

2.3.1 Probabilistic and numerical methods

In the numerical biclustering, a bicluster is a submatrix having minimal deviation of their ele-
ments. On the other hand, in the probabilistic approaches, biclustering is regarded as a task of
�nding a submatrix having low possibility to be observed, hence signi�cant. Some biclustering
methods in this category are described below.

Cheng and Church

Cheng and Church [18] was among the �rst algorithms about biclustering. They work on gene-
condition expression matrix, where the value of each cell represents the expression level of the
corresponding gene in the corresponding condition. Here a bicluster (A,B) is de�ned as a
submatrix having mean squared residue less than a certain threshold δ. A mean squared residue
is:

H(A,B) =
1

|A||B|
∑

g∈A,m∈B
(m(g)− µ(g,B)− µ(A,m) + µ(A,B))2, (2.1)

where µ(A,B) is the mean of a submatrix (A,B). The lowest mean square residue, where
H(A,B) = 0 is obtained from a submatrix that corresponds to a constant-value, constant-
column, constant-row, or additive bicluster. Consequently, if the mean square residue is not zero
but is low enough, the submatrix can be regarded as a similar-value, similar-column, similar-
row, or �relaxed� additive bicluster. This bicluster represents a group of genes having similar
regulation under a set of conditions.

23

Chapter 2. Introduction to biclustering

The authors describe several algorithms that discover a bicluster (A,B) having H(A,B) ≤ δ.
Generally, these algorithms �nd biclusters by performing deletions and additions of rows and
columns from the whole matrix (G,M), until the condition H(A,B) ≤ δ is met. The basic
method is by performing brute-force approach for each possible row/column addition/deletion,
which is not e�cient for a large data matrix. The �rst algorithm proposed by the author is
single node deletion, shown in Algo. 4. It starts from the original matrix (G,M), and iteratively
removes a row or a column that reduces the mean square residue the most. It stops when a
submatrix with mean square residue ≤ δ is obtained.

1 Single Node Deletion((G,M), δ):
2 A = G, B = M
3 while True do
4 Compute µ(g,B) for all g ∈ A
5 Compute µ(A,m) for all m ∈ B
6 Compute µ(A,B)
7 Compute H(A,B)
8 if H(A,B) ≤ δ then
9 return (A,B)
10 end
11 Find the row g ∈ A with the largest

d(g) = 1
|B|
∑

m∈B(m(g)− µ(g,B)− µ(A,m) + µ(A,B))2

12 and the column m ∈ B with the largest
d(m) = 1

|A|
∑

g∈A(m(g)− µ(g,B)− µ(A,m) + µ(A,B))2

13 if the largest d(g) > the largest d(m) then
14 remove g from A
15 end
16 else
17 remove m from B
18 end

19 end
Algorithm 4: Single node deletion algorithm. From the input (G,M) as the matrix and δ as
a threshold, this algorithm outputs a bicluster (A,B) having H(A,B) ≤ δ.

As the single node deletion removes a row/column one-by-one, it becomes expensive for
a larger matrix. The authors also propose the multiple node deletion, where the matrix is
signi�cantly reduced, before applying single node deletion.

Furthermore, given a bicluster with H(A,B) ≤ δ, the node addition algorithm was also
presented to add rows/columns to obtain a larger bicluster. This algorithm is shown in Algo. 5.
It starts from a bicluster (A,B), then adds a column and a row such that the new mean square
residue is not increasing. It also provides a way to add inverted rows (line 10�12), which can be
regarded as co-regulated genes receiving opposite regulations.

Double k-means

K-means is a method for clustering a set of objects based on their attributes into k cluster. It
works by �nding a centroid for each cluster, such that the sum of distances between every object
and its nearest centroid is minimized. In a given data matrix, k-means can be considered as
partitioning the set of rows.

24

2.3. Previous works

1 Node Addition((G,M), (A,B)):
2 while True do
3 Compute µ(g,B) for all g ∈ A
4 Compute µ(A,m) for all m ∈ B
5 Compute µ(A,B)
6 Compute H(A,B)
7 Add the column m /∈ B to B with

1
|A|
∑

g∈A(m(g)− µ(g,B)− µ(A,m) + µ(A,B))2 ≤ H(A,B)

8 Recompute µ(g,B), µ(A,B), and H(A,B)
9 Add the row g /∈ A to A with

1
|B|
∑

m∈B(m(g)− µ(g,B)− µ(A,m) + µ(A,B))2 ≤ H(A,B)

10 foreach g /∈ A do
11 add the inverse of g to A if

1
|B|
∑

m∈B(−m(g) + µ(g,B)− µ(A,m) + µ(A,B))2 ≤ H(A,B)

12 end
13 If nothing is added to A or B, then return (A,B)

14 end
Algorithm 5: Node addition algorithm. From the original matrix (G,M) and a bicluster
(A,B), it generates a larger bicluster with non-increasing mean square residue, which is (A,B)
with some rows/columns added.

The adaptation of k-means modeling into the task of biclustering is studied in double k-
means [95], where the partitioning is performed on both rows and columns, creating disjoint
blocks in the matrix. It implies that for any two rows, their column partitions is the same,
although these rows may not be in the same row partition. This limitation is then relaxed
in generalized double k-means [85], such that two row partitions may have di�erent column
partitions. Furthermore, the double k-means principle is also studied in creating diagonal co-
clustering (illustrated in Fig. 2.2) in a sparse matrix [66].

SAMBA

SAMBA [90] is a numerical method to discover statistically signi�cant biclusters. It is also
applied to gene expression data, by �rst constructing a bipartite graph where the vertices on one
side correspond to the conditions and the vertices on the other side correspond to the genes. An
edge connects a gene g to a condition m if the expression level of g signi�cantly changes in m.
The task of biclustering is then performed as the task of �nding heavy bicliques in the bipartite
graph.

The weight of a subgraph H of a bipartite graph B is statistically de�ned by the probability
of the occurrence of a subgraph as dense as H in B. Higher probability means low weight, since
a heavy subgraph has a low probability to occur. This weighting scheme is used to discover
maximum bounded biclique, where the algorithm supposes that the degree of every gene vertex
is bounded.

OPSM

A method for order-preserving biclustering is studied using probabilistic model [11] where the
authors use the term OPSM (order-preserving submatrix). In a numerical dataset (G,M), an

25

Chapter 2. Introduction to biclustering

1 1 2 3 4
2 2 4 6 8
3 × 1 2 3 4 = 3 6 9 12
4 4 8 12 16
5 5 10 15 20

Figure 2.1: A multiplicative bicluster as matrix multiplication.

OPSM is modeled as a pair (T, π), where T ⊆ M , |T | = s, and π = (t1, t2, · · · , ts) is a linear
ordering of T . A pair (T, π) is supported by an object g if the permutation of T in g follows π,
i.e. t1(g) < t2(g) < · · · < ts(g). The algorithm tries to �nd some (T, π) that are statistically
signi�cant. Similar to SAMBA, here statistically signi�cant means that a pair (T, π) has a low
probability to be supported by high number of objects. This probability of observing a (T, π)
with |T | = s supported by k objects is:

U(s, k) = |M | · · · (|M | − s+ 1)

|G|∑
i=k

(
n

i

)(
1

s!

)i(
1− 1

s!

)(n−i)
.

Non-negative matrix factorization

Non-negative matrix factorization (NMF) of a matrix X is the task of �nding two factors of X,
called F and G, where X, F , and G contain no negative element. It is formulated as X ≈ FGT ,
where X ∈ Rp×n

+ , F ∈ Rp×k
+ , and G ∈ Rn×k

+ . Ding et al. [26] showed that if the factor G is
orthogonal, the NMF:

min
F≥0,G≥0

||X − FGT ||2, s.t. GTG = I

is equivalent to K-means clustering. Furthermore, when both factors are orthogonal, the NMF:

min
F≥0,G≥0

||X − FGT ||2, s.t. F TF = I,GTG = I

corresponds to simultaneous K-means clustering of rows and columns of X, also known as co-
clustering in analyzing a dataset of textual documents.

The constraint that the factors should be orthogonal is also studied in non-negative matrix
tri-factorization (NMTF) [27]. This bi-orthogonal NMTF is able to simultaneuosly cluster doc-
uments and terms in various document-term binary matrices. The applications on text datasets
are further studied by incorporating the semantic relationship among words [87], or the geometric
structures of rows and columns [6].

FABIA

FABIA, stands for Factor Analysis for Bicluster Acquisition [48], is a numerical method focused
in �nding multiplicative biclusters in a gene expression dataset. Here a bicluster is de�ned
as a submatrix where the rows are similar to each other on the columns and vice versa. A
multiplicative bicluster can be regarded as the result of matrix multiplication between a column
matrix λ and a row matrix zT , as illustrated in Fig. 2.1. Therefore, biclustering is formulated as
sparse matrix factorization.

26

2.3. Previous works

× × ×
× × ×
× × ×
× × ×

× × × ×
× × × ×
× × × ×

× ×
× ×
× ×
× ×
× ×

Figure 2.2: A binary block diagonal matrix.

HOCCLUS

HOCCLUS [79] is an algorithm that discover hierarchical and overlapping biclusters/co-clusters
on mRNA:miRNA interaction datasets. Similar to SAMBA, HOCCLUS represents the interac-
tion as a bipartite graph, with the vertices for mRNAs on one side and vertices for miRNAs on
the other side. An edge connects an mRNA to an miRNA, with the interaction value as the
edge's weight. HOCCLUS uses METIS [57] to mine initial non-hierarchical and non-overlapping
biclusters from the bipartite graph. From these initial biclusters, HOCCLUS generates hierar-
chical organization among them. Then the algorithm detects possible overlapping between two
biclusters in a same hierarchical level by identifying objects in one bicluster that can be added
to another bicluster. These overlaps are used to decide whether two biclusters should be merged.

The METIS approach used in HOCCLUS can mine bicluster from a subgraph that is not
biclique, giving the possibility that some biclusters from bicliques are not extracted. It also
needs a number of biclusters as a user-de�ned parameter. HOCCLUS2 [78] is an improvement
of HOCCLUS, where instead of METIS, a new approach is proposed to mine biclusters from
overlapping bicliques without the needs of supplying the number of biclusters. In addition, a
ranking of extracted biclusters is generated, based on their signi�cance. The biclusters from
HOCCLUS2 (and some data from several other classi�cation algorithms) are stored in a web-
based database called ComiRNet [80].

CoClus

CoClus [2] is an algorithm that performs block diagonal clustering in text data. Block diagonal
clustering simultaneously groups rows and columns by applying permutations on them, and
as a result a block diagonal matrix (illustrated in Fig. 2.2) is produced. CoClus perform this
block diagonal clustering by adapting and maximizing modularity criterion, which is originally
a measure in graph clustering.

SBB

An algorithm called Similarity Based Biclustering (SBB) [50] was proposed to discover similar-
value biclusters in human cancer microarray data. This method is based on the concept of
co-similarity among genes and conditions. In a matrix A, where axy is the element of A in row

27

Chapter 2. Introduction to biclustering

x and column y, SBB uses χ-Sim that de�nes the similarity between two genes i and j as:

srij =
∑
k

∑
l

aik · ajl · sckl,

where sckl is the similarity between two conditions k and l. This condition similarity, in turn, is
formulated as:

sckl =
∑
i

∑
j

aik · ajl · srij .

The matrices SR and SC are iteratively computed by updating SC (or SR respectively).
These computations is related to biclustering since two genes i and j are similar if srij is high,
meaning that they exhibits same kind of behavior under similar conditions (given by SC).

After the computation of SR and SC, these matrices are used as similarity measures to cluster
rows and columns separately using hierarchical clustering. Then, a bicluster can be extracted
from each pair of row cluster and column cluster. The utilization of hierarchical clustering in
SBB means that the generated biclusters are not overlapping.

2.3.2 Pattern-based methods

In pattern-based biclusterings, a bicluster is regarded as samples sharing a common pattern.
These approaches generally compute neither similarity measure to group rows or columns nor
signi�cance score of a bicluster. Some methods included in this approach are described below.

Object-attribute biclustering

Standard FCA �where the context is a binary matrix� discovers formal concepts which can be re-
garded as a constant-value bicluster. The problem that the number of concepts is large is studied
in dense object-attribute (oa) biclustering [51], applied to a dataset of internet advertisement.
From this dataset, a formal context (G,M, I) is created, with G is the set of �rms, M is the set
of advertising terms, and (g,m) ∈ I means that the �rm g bought the term m. An oa-biclusters
is de�ned as a submatrix (m′, g′) where (g,m) ∈ I. This methods works on the notion of dense
oa-bicluster, which is a submatrix (m′, g′) whose density ρ = |I ∩ (m′ × g′)|/(|m′| · |g′|) satis�es
a user-de�ned threshold. Therefore, oa-bicluster can be considered as a relaxation of formal
concept, based on the fact that an oa-bicluster is a rectangle densely composed of 1s, while a
formal concept is a rectangle fully composed of 1s.

BicPAM

BicPAM is a family of pattern-based biclustering, was �rst proposed in [43]. Working in a
gene-condition expression matrix, it is able to discover constant, additive, multiplicative, or
symmetrical biclusters. This approach can detect overlapping biclusters, and also handle missing
values and noises.

The whole process of BicPAM can be summarized in three steps: mapping, mining, and clos-
ing. In mapping step, normalization and discretization were carried out. Normalization, which
means having zero-mean value, allows for symmetries in biclusters. Discretization, although may
cause loss of information, could address the noise problem, and to reduce the complexity since an
exhaustive biclustering is expected. Three discretization options are studied: �xed range, equal
bin, or by statistically calculating cuto� points.

28

2.3. Previous works

Table 2.2: An example of the transformation from (a) matrix after mapping step to (b) transac-
tion dataset.

G m1 m2 m3 m4 m5

g1 −1 −3 −6 5 7
g2 −2 −4 10 4 6
g3 4 1 −6 −3 1
g4 8 2 −6 −6 1
g5 8 3 −6 1 1

(a)

G itemset

g1 {m−11 ,m−32 ,m−63 ,m5
4,m

7
5}

g2 {m−21 ,m−42 ,m10
3 ,m

4
4,m

6
5}

g3 {m4
1,m

1
2,m

−6
3 ,m−34 ,m1

5}
g4 {m8

1,m
2
2,m

−6
3 ,m−64 ,m1

5}
g5 {m8

1,m
3
2,m

−6
3 ,m1

4,m
1
5}

(b)

Table 2.3: Examples of additive alignment of Table 2.2a: the alignment of (a) m1 and (b) m2.

G m1 m2 m3 m4 m5

g1 8 6 3 14 16
g2 8 6 20 14 16
g3 8 5 −2 1 5
g4 8 2 −6 −6 1
g5 8 3 −6 1 1

(a)

G m1 m2 m3 m4 m5

g1 5 3 0 11 13
g2 5 3 17 11 13
g3 6 3 −4 −1 3
g4 9 3 −5 −5 2
g5 8 3 −6 1 1

(b)

The mining step is the main part, where biclusters are discovered. Among other pattern-
based mining, BicPAM uses frequent itemsets as default. First, the algorithm decides whether
alignments are needed, based on the type of bicluster. For constant-column biclustering, the
alignment is not executed. Then, the mapped matrix is transformed into a kind of transaction
database, where each object is represented by an itemset. This transformation is illustrated in
Table 2.2. A constant-column bicluster can be found in a frequent itemset. From Table 2.2b, we
can �nd a frequent itemset {m−63 ,m1

5} for example, supported by g3, g4, and g5. This itemset
corresponds to bicluster ({g3, g4, g5}, {m3,m5}) in Table 2.2a. The itemset mining is executed
using existing algorithms: F2G [47], Charm [104], or AprioriTID [1] among others.

On the other hand, for additive, multiplicative, and symmetrical biclustering, BicPAM ap-
plies column alignments to the mapped matrix before transforming it into a transaction dataset
(the alignment is the default option, BicPAM also proposes local normalization). The column
alignments for additive biclustering are illustrated in Table 2.3. For a given column mj , the
maximum value x is calculated. Then, for each row gi, the value x−mj(gi) is added to all of its
values.

Consider Table 2.3a, the result of alignment of m1 from Table 2.2a. The maximum value
of m1 is 8. Therefore, for the whole row of g1, the value 8 −m1(g1) = 8 − (−1) = 9 is added.
This additive alignment of m1 results in m1 having a single value. Then, similar to constant-
column biclustering, this aligned matrix is transformed into a transaction dataset, and frequent
itemsets are mined. From Table 2.3a, an itemset {m8

1,m
6
2,m

14
4 ,m

16
5 } is found, supported by rows

g1 and g2. This itemset corresponds to the additive bicluster ({g1, g2}, {m1,m2,m4,m5}). The
alignment, transformation to transaction dataset, and itemset mining are done for every column.

The column alignments for multiplicative biclustering, illustrated in Table 2.4, are similar to
the additive alignments. Here the objective is having a column with constancy by multiplying
each row. Consider the multiplicative alignment of m1 in Table 2.2a. The least common multiple
of all values in m1 is 8, so each row is multiplied such that the values of m1 are constant. This

29

Chapter 2. Introduction to biclustering

Table 2.4: Examples of multiplicative alignment of Table 2.2a: the alignment of (a) m1 and (b)
m2.

G m1 m2 m3 m4 m5

g1 8 24 48 −40 −56
g2 8 16 −40 −16 −24
g3 8 2 −12 −6 2
g4 8 2 −6 −6 1
g5 8 3 −6 1 1

(a)

G m1 m2 m3 m4 m5

g1 4 12 24 −20 −28
g2 6 12 −30 −12 −18
g3 48 12 −72 −36 12
g4 48 12 −36 −36 6
g5 32 12 −24 4 4

(b)

Table 2.5: The sequence dataset, result of transformation of the matrix in Table 2.2a.

G Sequence

g1 〈{m3}, {m2}, {m1}, {m4}, {m5}〉
g2 〈{m2}, {m1}, {m4}, {m5}, {m3}〉
g3 〈{m3}, {m4}, {m2,m5}, {m1}〉
g4 〈{m3,m4}, {m5}, {m2}, {m1}〉
g5 〈{m3}, {m4,m5}, {m2}, {m1}〉

results in Table 2.4a.

The closing step is a post-processing step in BicPAM. The �rst part of this step is extension
of biclusters. It allows the enlargement of discovered biclusters under some homogeneity criteria.
The second part is bicluster merging, which combines some biclusters having many shared rows
and columns. The last part is the �ltering, where some biclusters that are contained in another
larger biclusters are discarded. In this part, it is also possible to remove some rows or columns
of a bicluster such that the resulting smaller bicluster is more homogeneous.

The authors of BicPAM also propose a pattern-based method for order-preserving biclus-
tering, namely BicSPAM [44], based on the fact that order-preserving biclustering is related
to sequential pattern mining. Similar to BicPAM, in BicSPAM a numerical matrix is trans-
formed into transaction dataset. Here an object corresponds to a transaction which is a se-
quence of itemsets, illustrated in Table 2.5. A mining step in this table results in a sequence
〈{m2}, {m1}, {m4}, {m5}〉 for example, supported by rows g1 and g2. This is then regarded as
an order-preserving bicluster ({g1, g2}, {m1,m2,m4,m5}).

Furthermore, several other methods related to BicPAM were also proposed. BicNET [46]
is a biclustering approach for a biological networks, where the dataset can be represented as a
bipartite graph. Bic2PAM [45] is a constrained biclustering, where background knowledge can
be incorporated. In addition, these biclustering approaches are implemented in BicPAMS [42].

Contiguous OPSM

Xue et al. [100, 101] presented an algorithm to discover order-preserving biclusters (or OPSM:
order-preserving submatrix) from a gene expression data. This algorithm de�nes an OPSM as
slightly di�erent to Def. 4. Instead of any subset of columns, contiguous OPSM means that the
expected bicluster should have columns that are contiguous in the original matrix. Then, similar
to BicSPAM [44], the problem of �nding contiguous OPSM is translated as sequential pattern
mining.

30

2.3. Previous works

m1 m2 m3 m4

g1 × × ×

+

×

=

m1 m2 m3 m4

g3 × × × g1 × × × ×
g4 × × × × g4 × × × ×
g6 × × ×

Figure 2.3: Generation of one successor by In-Close2.

m1 m2 m3 m4 m1 m2 m3 m4

g1 3 5 1

+

4

=

g1 3 5 1 4
g3 3 5 1 6 g4 3 5 1 4
g4 3 5 1 4 g3 3 5 1 6
g6 3 5 1 6 g6 3 5 1 6

Figure 2.4: Generation of two successors by RIn-Close_CVC_P.

RIn-Close

RIn-Close [94] is a family of algorithms that enumerates all maximal biclusters based on FCA.
A formal concept in FCA corresponds to a constant-value bicluster of ones in a binary matrix.
Therefore, In-Close2 algorithm [8], that enumerates all concepts in a formal context, can be
regarded as an algorithm to discover constant-value biclusters. RIn-Close is an adaptation of this
algorithm such that it can also discover constant-column, additive, and multiplicative biclusters.

RIn-Close_CVC_P and RIn-Close_CVC are the algorithms to mine constant-column and
similar-column biclusters respectively. In the exploration tree of In-Close2, a child node is gen-
erated by intersecting the set of objects of the added attribute with the current extent. Consider
Fig. 2.3, where the current node is a concept ({g1, g3, g4, g6}, {m1,m2,m3}). InClose2 generates
at most one successor for every added attribute. By adding m4, InClose2 obtains the concept
({g1, g4}, {m1,m2,m3,m4}) as the successor.

InClose2 works for binary matrix, and a successor is generated by intersecting the extent of
the current concept with the extent of the new attribute. On the other hand, RIn-Close_CVC_P
works for numerical matrices, and it can generate many successors from the addition of a sin-
gle attribute. It is designed to obtain constant-column biclusters. Consider Fig. 2.4 where
the current node is a constant-column bicluster ({g1, g3, g4, g6}, {m1,m2,m3}). Then, the at-
tribute m4 is added, creating two new constant-column biclusters ({g1, g4}, {m1,m2,m3,m4})
and ({g3, g6}, {m1,m2,m3,m4}). Furthermore, the RIn-Close_CVC_P can be relaxed such that
the similar-column biclusters can be obtained. This relaxation is called RIn-Close_CVC. Similar
to RIn-Close_CVC_P, this algorithm generates multiple successors from the addition of a single
attribute. The di�erence is that the successors generated by RIn-Close_CVC can have object
overlaps among them, due to the nature of similar-column biclusters.

To discover additive and multiplicative biclusters, the algorithms RIn-Close_CHV_P and
RIn-Close_CHV were proposed to mine perfect and non-perfect bicluster respectively. RIn-
Close_CHV_P is similar to RIn-Close_CVC_P in the sense that they both generate multiple
successors from the addition of a single attribute. The di�erence lies in how an extent is con-
structed. Consider again Fig. 2.4. In RIn-Close_CVC_P, g1 and g4 are grouped together since
they have the same value in m4. On the other hand, in RIn-Close_CHV_P, the algorithms
looks at the di�erence (additive or multiplicative) between the new attribute and the exist-
ing attributes. For example, in Fig. 2.5 where m4 is added, g1 and g2 are grouped together

31

Chapter 2. Introduction to biclustering

m1 m2 m3 m4 m1 m2 m3 m4

g1 1 2 0

+

4

=

g1 1 2 0 4
g2 3 4 2 6 g2 3 4 2 6
g3 2 3 1 4 g3 2 3 1 4
g4 4 5 3 6 g4 4 5 3 6

Figure 2.5: Generation of two successors by RIn-Close_CHV_P for additive biclustering.

Table 2.6: A numerical matrix having additive biclusters.

m1 m2 m3 m4

g1 2 3 4 5
g2 5 6 2 8
g3 1 2 5 4
g4 4 5 4 7

since their values in m4 have the same di�erence with their corresponding values in m1, i.e.
m4(g1)−m1(g1) = m4(g2)−m1(g2).

RIn-Close_CHV was proposed to discover non-perfect additive or multiplicative biclusters.
From a numerical matrix, this algorithm creates an �augmentation� matrix and applies similar-
column biclustering in the augmented matrix. The augmentation process was designed from the
observation that in an additive bicluster, every pair of columns has a constant di�erence. There-
fore, by calculating the di�erence of every column pair, we can �nd some constant di�erences
that can be regarded as an additive bicluster.

Consider Table 2.6 as the numerical matrix where we want to discover additive biclusters.
RIn-Close_CHV �rst generates the augmentation of this matrix, shown in Table 2.7, where the
di�erence for every pair of attributes in Table 2.6 is calculated. In this augmented matrix, a
similar-column bicluster ({g1, g2, g3, g4}, {m1 −m2,m1 −m4,m2 −m4}) can be obtained using
RIn-Close_CVC. This corresponds to the additive bicluster ({g1, g2, g3, g4}, {m1,m2,m4}) in the
original numerical matrix.

2.4 Conclusion

Currently, the literature about biclustering is signi�cantly rich. Biclustering is mainly used in
biological domain, while there are also signi�cant number of applications in text mining and
recommendation systems. However, in biological domain, many authors are interested to �nd
overlapping biclusters which re�ect, for example, that a condition can participate in regulat-
ing multiple sets of genes. Meanwhile in text mining domain �where the term co-clustering is
more frequent� the biclustering is considered as simultaneous partitioning of rows and columns,

Table 2.7: The augmentation of the matrix in Table 2.6.

m1 −m2 m1 −m3 m1 −m4 m2 −m3 m2 −m4 m3 −m4

g1 −1 −2 −3 −1 −2 −1
g2 −1 3 −3 4 −2 −6
g3 −1 −4 −3 −3 −2 1
g4 −1 0 −3 1 −2 −3

32

2.4. Conclusion

indicating the absence of overlaps.
In the biclustering with overlaps, the number of biclusters that exist in a matrix can be

enormous. Many approaches then study the problem of �nding signi�cant biclusters, which are
submatrices ful�lling certain thresholds about their size, probability, density, cohesiveness, etc.

In Chapter 3 and 4 of this thesis, we examine the problem of bicluster enumeration, i.e.
retrieving all biclusters in a data matrix, using FCA. FCA is related to biclustering, in the sense
that both of them discover a submatrix showing a regularity among its cells. Moreover, there
exist several algorithms that deal with the task of concept enumeration in FCA, which can be
adapted to enumerate biclusters. We consider this approach as pattern based, since it translates
the biclustering task into pattern mining.

FCA is previously used in enumerating biclusters [94] by modifying a concept enumeration
algorithm. In this thesis, we extend FCA into pattern structures that deals with numerical
matrix. In this way, we also study the potential of building a uni�ed framework of discovering
various types of biclusters in a binary and/or numerical matrix.

33

Chapter 2. Introduction to biclustering

34

Chapter 3

Biclustering with partition pattern

structures

Contents

3.1 The pattern structures of partitions 35

3.1.1 Partition . 35

3.1.2 Partition of objects . 37

3.1.3 Partition pattern structures . 38

3.2 Constant-column biclustering . 38

3.3 Additive and multiplicative biclustering 39

3.4 Order-preserving biclustering . 41

3.4.1 Pattern structures for OP biclustering 41

3.4.2 Experiments . 43

3.5 Biclustering with coherent sign changes 46

3.5.1 Using constant-column biclustering 46

3.5.2 Using pattern structures of signed partition 48

3.6 Conclusion . 56

The task of constant-column biclustering was studied using partition pattern structures [20],
an extension of FCA. In this chapter, we explore the possibility of extending this approach for
other types of biclusters. First we revisit the basic de�nitions of partition pattern structures in
Sect. 3.1 and its application to constant-column biclustering in Sect. 3.2. Then, we explain the
usability of partition pattern structures to additive and multiplicative biclustering in Sect. 3.3,
order-preserving biclustering in Sect. 3.4, and coherent-sign-changes biclustering in Sect. 3.5.
Lastly, we give the conclusion and some insights for future research in Sect. 3.6.

3.1 The pattern structures of partitions

3.1.1 Partition

In a given set S, a partition d is a splitting of S into components {c1, · · · , cn}, such that all
components cover all elements in S and there is no overlap between any two components, or:⋃

ci∈d
ci = S and ci ∩ cj = ∅ whenever i 6= j.

35

Chapter 3. Biclustering with partition pattern structures

{{1, 2, 3}}

{{1, 2}, {3}} {{1, 3}, {2}} {{1}, {2.3}}

{{1}, {2}, {3}}

Figure 3.1: The lattice of all possible partition of a set {1, 2, 3}.

ci ∈ d1 cj ∈ d2 ci ∩ cj
{1, 2} {1, 3} {1}
{1, 2} {2} {2}
{3} {1, 3} {3}
{3} {2} ∅⋃

ci ∩ cj {{1}, {2}, {3}}

Figure 3.2: The calculation of d1 u d2 where d1 = {{1, 2}, {3}} and d2 = {{1, 3}, {2}}.

Given a set S1 = {1, 2, 3, 4} for example. A partition d1 over S1 is written as d1 = {{1, 2, 3}, {4}}.
This partition is composed by two components c1 = {1, 2, 3} and c2 = {4}. There is no overlap
among the components of d1 and the union of all components results in S1.

A partition d1 is a coarsening of d2 if one (or more) component in d2 is a union of some
components in d1. In other words, for every component cj in d2 there exists a component ci in
d1 where cj ⊆ ci, or: ∀cj ∈ d2∃ci ∈ d1, cj ⊆ ci. For example, d1 = {{1, 2, 3}, {4}} is a coarsening
of d2 = {{1, 2}, {3}, {4}} since the component {1, 2, 3} in d1 is the union of {1, 2} and {3} in d2.
Consequently, the partition d2 is called a re�nement of d1.

The coarsening and re�nement among partitions give an order among them. A �ner partition
is subsumed by (v) its coarser partition(s). In the previous example, d2 v d1. This makes D,
the set of all possible partitions of a set S, is partially ordered, where its lattice can be depicted
in a line diagram. For example, the lattice of all possible partitions of a set {1, 2, 3} is illustrated
as the Hasse diagram in Fig. 3.1.

Furthermore, the set D is a complete lattice, where the meet and join exist for all subsets of
D. The meet (u) of two partitions is their coarsest common re�nement. It is de�ned as the set
of intersections of every pair ci ∈ d1 and cj ∈ d2, formulated as:

d1 u d2 =
⋃
ci ∩ cj . (3.1)

Consider the partitions d1 = {{1, 2}, {3}} and d2 = {{1, 3}, {2}}. The meet of these two parti-
tions is {{1}, {2}, {3}}, illustrated in Fig. 3.2.

The join (t) of two partitions is their �nest common coarsening, de�ned as:

d1 t d2 =

 ⋃
pi∩pj 6=∅

pi ∪ pj

+

,

where (.)+ is an operator that conserves only the maximal components in d, i.e. the components

36

3.1. The pattern structures of partitions

ci ∈ d1 cj ∈ d2 ci ∪ cj
{1, 2} {1, 3} {1, 2, 3}
{1, 2} {2} {1, 2}
{3} {1, 3} {1, 3}
{3} {2} −⋃

ci ∪ cj {{1, 2, 3}, {1, 2}, {1, 3}}
(
⋃
ci ∪ cj)+ {{1, 2, 3}}

Figure 3.3: The calculation of d1 t d2 where d1 = {{1, 2}, {3}} and d2 = {{1, 3}, {2}}. The ∪
between ci and cj is calculated only if ci ∩ cj 6= ∅.

Table 3.1: A numerical table [20].

m1 m2 m3 m4 m5

g1 1 1 1 1 6
g2 1 1 1 1 6
g3 1 1 1 6 6
g4 8 8 1 6 6

that are not proper subsets of another component. It is de�ned as:

d+ = {ci ∈ d|@c ∈ d, ci ⊆ c}.

Using the previous example with d1 and d2, the join of these two partitions is d1td2 = {{1, 2, 3}},
whose computation is illustrated in Fig. 3.3.

The subsumption relation �where coarser partition subsumes �ner partition� can also be
de�ned using the meet operator as:

d2 v d1 ⇐⇒ d2 u d1 = d2, (3.2)

meaning that if d2 is the meet between d1 and d2, then d2 is a re�nement of d1.

3.1.2 Partition of objects

In a numerical matrix (G,M), we can �nd a partition of objects/rows based on their values
across all attributes/columns or vice versa. For example, in Table 3.1, the set of objects are
partitioned as {{g1, g2}, {g3, g4}} according to m4.

The partition of objects according to an attribute can be obtained using equivalence relation.
An equivalence relation for every g ∈ G w.r.t. an attribute is de�ned as follows:

[gi]mj = {gk ∈ G|mj(gi) = mj(gk)}. (3.3)

The [gi]mj relation returns all objects in G whose value in mj is the same as gi's value in mj .
For example, in Table 3.1 [g1]m4 = {g1, g2}.

A partition of objects according to an attribute can be obtained from the equivalence relation.
A function δ : M → D maps an attribute to an object partition as follows:

δ(mj) = {[gi]mj |∀gi ∈ G}.

Therefore, in Table 3.1, δ(m4) = {[g1]m4 , [g2]m4 , [g3]m4 , [g4]m4}, which is equal to {{g1, g2},
{g3, g4}}.

37

Chapter 3. Biclustering with partition pattern structures

{m1,m2,m3,m4,m5}

{{g1, g2}, {g3}, {g4}}

{m1,m2,m3,m5}

{{g1, g2, g3}, {g4}}

{m3,m4,m5}

{{g1, g2}, {g3, g4}}

{m3,m5}

{{g1, g2, g3, g4}}

Figure 3.4: The lattice of all partition pattern concepts of Table 3.1.

3.1.3 Partition pattern structures

As explained in Sect. 1.4, pattern structures are generalizations of FCA, where each object is
described by a complex structure. A pattern structure is de�ned by the triple (G, (D,u), δ),
where (D,u) is a lattice of descriptions D with u as the similarity operator or the meet between
two partitions, and δ : G→ D maps an object to its description.

Previously in Sect. 3.1.2, the function δ : M → D means that a partition of objects is
the description of an attribute. Therefore, in (object) partition pattern structures, the triple is
(M, (D,u), δ). Following Eq. 1.1, the derivation operators are de�ned for any subset of attributes
and any description:

� : ℘(M)→ D,
� : D → ℘(M).

Given B ⊆M and d ∈ D, these operators are de�ned by:

B� = ⊔

m∈B
δ(m),

d� = {m ∈M |d v δ(m)}. (3.4)

In other words, given subset of attributes B, B� is the coarsest common re�nement of all object
partitions of m ∈ B. Given an object partition d, d� is the set of all attributes whose partition
is a coarsening of d.

Similar to FCA and other pattern structures, a partition pattern concept (or pp-concept)
is a pair (B, d) where B� = d and d� = B. An example of pp-concept from Table 3.1 is
({m3,m4,m5}, {{g1, g2}, {g3, g4}}). The set of all pp-concepts in a given matrix is a complete
lattice. Following the ordering of formal concepts in Eq. 1.3, the order among pp-concepts is
given by relation:

(B1, d1) ≤ (B2, d2)⇐⇒ B1 ⊆ B2 (dually d2 v d1).
The lattice of pp-concepts from Table 3.1 is illustrated as the Hasse diagram in Fig. 3.4.

3.2 Constant-column biclustering

In a matrix, a constant-column bicluster is a submatrix (A ⊆ G,B ⊆ M) where each column
has a constant value across all rows. An example of a constant-column bicluster in Table 3.1 is
the submatrix ({g3, g4}, {m3,m4,m5}).

38

3.3. Additive and multiplicative biclustering

Table 3.2: Partition pattern concepts from Table 3.1 and their corresponding constant-column
biclusters.

Concept
Bicluster Maximal

Extent Intent

{m3,m5} {{g1, g2, g3, g4}} ({g1, g2, g3, g4}, {m3,m5}) yes

{m1,m2,m3,m5} {{g1, g2, g3}, {g4}} ({g1, g2, g3}, {m1,m2,m3,m5}) yes
({g4}, {m1,m2,m3,m5}) no

{m3,m4,m5} {{g1, g2}, {g3, g4}} ({g1, g2}, {m3,m4,m5}) no
({g3, g4}, {m3,m4,m5}) yes

{m1,m2,m3,m4,m5} {{g1, g2}, {g3}, {g4}} ({g1, g2}, {m1,m2,m3,m4,m5}) yes
({g3}, {m1,m2,m3,m4,m5}) yes
({g4}, {m1,m2,m3,m4,m5}) yes

Partition pattern structures was proposed in [20] to discover constant-column biclusters in a
numerical matrix. This is possible since the equivalence relation in Eq. 3.3 groups objects based
on an attribute. Consider the pp-concept ({m3,m4,m5}, {{g1, g2}, {g3, g4}}) in Table 3.1. Any
pair of a partition component and the extent in this concept corresponds to a constant-column
bicluster:

• ({g1, g2}, {m3,m4,m5}), and

• ({g3, g4}, {m3,m4,m5}).

Therefore, in any pp-concept (B, d), any pair (c ∈ d,B) is a constant-column bicluster.

It should be noted that these biclusters are not necessarily maximal, means that they can be
found inside another larger bicluster. The constant-column bicluster b1 = ({g1, g2}, {m3,m4,m5})
for example, is not maximal since it is part of the bicluster b2 = ({g1, g2}, {m1,m2,m3,m4,m5}).
However, this maximality can be veri�ed by inspecting the concept lattice. Consider the concept
lattice in Fig. 3.4. We can see that b1 is found in the concept ({m3,m4,m5}, {{g1, g2}, {g3, g4}}),
which is a descendant of the concept ({m1,m2,m3,m4,m5}, {{g1, g2}, {g3, g4}}). Since this
higher concept also contains a bicluster with {g1, g2}, we can conclude that b1 is not maxi-
mal. More formally, given two pp-concepts (B1, d1) and (B2, d2) such that (B1, d1) ≤ (B2, d2),
the bicluster (c ∈ d1, B1) is maximal if c 6∈ d2. All pp-concepts and their corresponding biclusters
are listed in Table 3.2.

In the subsequent sections in this chapter, we show that partition pattern structures can be
adapted to discover other bicluster types.

3.3 Additive and multiplicative biclustering

For additive and multiplicative biclusters, we introduce the notion of marked objects. A marked
object g∗ is an object g associated to a mark ∗, where ∗ ∈ R.

Slightly di�erent from partition pattern structures in Sect. 3.1.3, here the function δ : M → D
maps an attribute to an object partition, which is composed by only one component with a mark
for each object. For example, from Table 3.3:

δ(m1) = {{g−11 , g−22 , g43, g
8
4, g

8
5}}.

39

Chapter 3. Biclustering with partition pattern structures

Table 3.3: Running example for additive and multiplicative biclustering.

m1 m2 m3 m4 m5

g1 −1 −3 −6 5 7
g2 −2 −4 10 4 6
g3 4 1 −6 −3 1
g4 8 2 −6 −6 1
g5 8 3 −6 1 1

Any two components are regarded as equal i� the marks of their objects are coherent. For
additive and multiplicative biclustering, two components are equal i� the marks of one component
can be obtained by adding (or multiplying, resp.) a unique value to all marks of the other
components. For example:

{g31, g72} = {g61, g102 } for additive type

because the marks of the second component can be obtained by adding value 3 to the marks of
the �rst component, and

{g31, g72} = {g61, g142 } for multiplicative type

because the marks of the second component can be obtained by multiplying the marks of the
�rst component by 2.

The similarity operator of any two components also depends on the bicluster that we want to
discover. In general, this operator groups objects according to the coherency explained before.
For additive biclustering, the similarity operator is written as ∩A. From two components c1
and c2, ∩A groups together all objects according to the di�erence from both components. For
example, if c1 = {g21, g32, g43, g54} and c2 = {g51, g72, g73, g94}, then c1 ∩A c2 = {{g21, g43}, {g32, g54}}.
This is because the marks of g1 and g3 in c2 are their mark in c1 plus 3, while the marks of g2
and g4 in c2 are their mark in c1 plus 4. The similarity operator u for this bicluster is similar to
Eq. 3.1, with the adjustment in the similarity between components:

d1 u d2 =
⋃

ci∈d1,cj∈d2

ci ∩A cj . (3.5)

The component similarity operator for multiplicative biclustering (written as ∩M) is related
to ∩A. Here the objects are grouped according to the multiplicative di�erence between two
components. For example, if c1 = {g21, g32, g43, g54} and c2 = {g41, g92, g83, g154 }, then c1 ∩A c2 =
{{g21, g43}, {g32, g54}}. This is because the mark of g1 and g3 in c2 is twice of their mark in c1, while
the mark of g2 and g4 in c2 is three times of their mark in c1. The u for this biclustering is:

d1 u d2 =
⋃

ci∈d1,cj∈d2

ci ∩M cj . (3.6)

We can see in Eq. 3.5 and 3.6 that the operator u for these three biclustering are similar,
the di�erence lies in the similarity between two components (∩A and ∩M). For those types of
biclustering, the order between any two partitions is also the same as Eq. 3.2 for constant-column
biclustering:

d1 v d2 ⇐⇒ d1 u d2 = d1. (3.7)

40

3.4. Order-preserving biclustering

Table 3.4: Running example for order-
preserving biclustering.

m1 m2 m3 m4 m5

g1 1 2 3 4 5
g2 4 2 1 5 3
g3 2 3 4 1 5
g4 5 4 2 3 1
g5 2 1 5 4 3

Table 3.5: Some examples of pairs and
their partitions over Table 3.4.

Pair Partition

r12 {{g1, g3}, {g2, g4, g5}}
r13 {{g1, g3, g5}, {g2, g4}}
r14 {{g1, g2, g5}, {g3, g4}}
r23 {{g1, g3, g5}, {g2, g4}}
r25 {{g1, g2, g3, g5}, {g4}}

Using the corresponding de�nition of u for each type, we can follow Eq. 3.4 to obtain object
partition concepts. In a concept (B, d) any pair (c ∈ d,B) is a bicluster, where we can omit the
mark of each object.

For example, in Table 3.3, ({m1,m2,m4,m5}, {{g−11 , g−22 }, {g43}, {g84}, {g85}}) is a concept for
additive biclustering, and the pair ({g1, g2}, {m1,m2,m4,m5}) is an additive bicluster. Further-
more, ({m1,m2,m4}, {{g−11 }, {g

−2
2 }, {g43, g84}, {g85}}) is a concept for multiplicative biclustering,

and the pair ({g3, g4}, {m1,m2,m4}) is a multiplicative bicluster.

3.4 Order-preserving biclustering

Order-preserving (OP) biclustering was studied in gene expression data [11, 44, 100, 101]. This
type of bicluster may represent a set of conditions which are di�erent stages in the progress of a
disease, and the expression levels of the genes show the same tendency (raising or falling) across
these stages.

OP biclusters are also useful in the domain of recommendation systems. Given a user-item
rating matrix, with U as the set of previous users and I as the set of items, one approach
for producing a suggestion for a new user is by retrieving a set of similar users in U . From
a dataset of item ratings, we can interpret u1 ∈ U as similar to u2 ∈ U if they have similar
order of preference. For example, suppose that rating(ux, iy) is the rating given by user ux ∈ U
to item iy ∈ I. We can consider that u1 is similar to u2 if rating(u1, i1) > rating(u1, i2) and
rating(u2, i1) > rating(u2, i2) (i.e. both of them prefer i1 over i2). Furthermore, their similarity
is stronger if they give similar rating order over a larger set of items, e.g. if rating(u1, i1) >
rating(u1, i2) > · · · > rating(u1, i10) and rating(u2, i1) > rating(u2, i2) > · · · > rating(u2, i10).

3.4.1 Pattern structures for OP biclustering

Consider the dataset given by Table 3.4, with the set of attributes G = {g1, g2, g3, g4, g5}. For
the task of �nding OP biclusters, we introduce the notation rxy as a pair of attributes mx and
my, x < y, and R is the set of all possible rxy . That is, from n attributes, there will be

(
n
2

)
pairs.

First, we introduce [gi]ryx , an equivalence relation of an object w.r.t. a pair of attribute
(instead of w.r.t a single attribute as in Eq. 3.3). It groups objects whose behavior in mx and
my is similar (either mx(g) > my(g) or mx(g) < my(g)), de�ned as:

[gi]rxy = {gk ∈ G| arg max
j

(mj(gi)) = arg max
j

(mj(gk)), j ∈ {x, y}}. (3.8)

41

Chapter 3. Biclustering with partition pattern structures

m1

m2

m3

m5

m4

Figure 3.5: A graphical representation of the extent of ({r12, r13, r15, r23, r45},
{{g1, g3}, {g2, g4}, {g5}}).

Example from Table 3.4:

[g1]r12 = [g3]r12 = {g1, g3},

[g2]r12 = [g4]r12 = [g5]r12 = {g2, g4, g5}.

Using this equivalence relation, we de�ne the function δ : R→ D as:

δ(rxy) = {[gi]rxy |gi ∈ G}. (3.9)

In other words, δ maps a pair of attributes to a partition according to the pair's comparison.
For example, δ(r12) = {{g1, g3}, {g2, g4, g5}} because m2 > m1 for g1 and g3; and m1 > m2 for
g2, g4, and g5. Some pairs and their partitions are listed in Table 3.5.

Given a set of attribute pairs R, a set of partitions D, and the mapping function δ, a partition
pattern structure for �nding OP biclusters is determined by the triple (R, (D,u), δ). A concept
is a pair (B, d) such that B� = d and d� = B, where:

B� = ⊔

r∈B
δ(r) B ⊆ R,

d� = {r ∈ R|d v δ(r)} d ∈ D.

The meet and subsumption relation between two partitions follow Eq. 3.1 and Eq. 3.2 respectively.
Here, the extent of a concept is a set of attribute pairs. Consider the concept pc1 with extent

{r12, r13, r15, r23, r45} and intent {{g1, g3}, {g5}, {g2, g4}}. Its extent can be depicted as a graph,
illustrated in Fig. 3.5, where a vertex represents an attribute in a pair r, and an edge connects
two attributes mj and mk if there is rjk in the extent. For example, r12 makes the connection
between m1 and m2.

An OP bicluster can be obtained from a clique of this extent graph. The clique is important
to ensure the order preservation among attributes. This is because rxy and rxz only may mean
that x < y and x < z, but we can not say the relation among y and z unless we have ryz . The
set {m1,m2,m3}, {m1,m5}, or {m4,m5} is an example of clique in the extent graph in Fig. 3.5.

In a concept (B, d), any pair (c, q) is an OP bicluster where c ∈ d is a set of objects and q
is a set of attributes that forms a clique in the graph of B. For example, from pc1 which has 3
partition components and 3 cliques, we can obtain 9 OP biclusters. The biclusters having more
than two columns are:

• ({g1, g3}, {m1,m2,m3}), which follows m1 < m2 < m3;

• ({g2, g4}, {m1,m2,m3}), which follows m3 < m2 < m1; and

• ({g5}, {m1,m2,m3}), which follows m2 < m1 < m3.

42

3.4. Order-preserving biclustering

10 11 12 13 14 15 16
0

50

100

150

200

250

300

350

Number of attributes

E
x
ec
u
ti
on

ti
m
e
(s
ec
on
d
s)

pps
sps

Figure 3.6: Comparison of partition pattern structure (pps) and sequence pattern structure (sps)
in the task of �nding OP biclusters in matrices with 10 rows and varying number of columns.

3.4.2 Experiments

OP biclustering is related to sequential pattern mining, and some approaches have studied se-
quential pattern mining algorithms for this biclustering [44, 100, 101]. FCA has been generalized
to have a sequence of itemset as description of objects [15, 19] (will be explained in this thesis
later in Chapter 5).

In this thesis, we �rst compare the runtime of the two methods for �nding OP bicluster:
partition pattern structure (pps) and sequence pattern structure (sps), both using AddIntent
algorithm to generate all concepts and the corresponding lattice. Randomly generated matrices
are used, where the value of each cell is between 1 and 100 following uniform distribution. We
inspect the e�ect of the number of attributes on both methods, and we choose a small number
of objects (10).

The comparison of runtime are shown in Figure 3.6. It is shown that the execution time
of partition-based mining of OP biclusters grows faster than sequence-based. Using partition
pattern structure, from an m × n numerical matrix, a new m ×

(
n
2

)
matrix is generated to

compare every pair of columns. The partition is then performed in the new matrix. In this
second approach, an m × n matrix is converted to a set of m sequences, each of them has n
items. The �rst approach is more complex than the second, since the �rst creates a larger matrix
before applying partition pattern structure.

We tested the pps-based approach to breast cancer dataset [41]. This dataset has 3226 rows
(genes) and 21 columns (tissues). As shown in Table 3.6, these 21 tissues are composed by 7
brca1 mutations, 8 brca2 mutations, and 6 sporadic breast cancers. Since it has 21 columns, the
pps-based approach will convert the dataset into a 3226×

(
21
2

)
= 3226× 210 matrix. In order to

reduce the computational complexity, we introduce a parameter θ. In calculation of the intent
of any partition pattern concept, any partition component having the number of elements less
than θ is discarded. For example, with θ = 3, the partition {{a, b, c}, {d, e}} becomes {{a, b, c}}.
The number of concepts can be very large, so we provides the runtime until 10K concepts are
obtained.

43

Chapter 3. Biclustering with partition pattern structures

Table 3.6: The columns in the breast cancer dataset in [41].

Column Type Column Type Column Type

c1 brca1 c8 brca2 c15 sporadic
c2 brca1 c9 brca2 c16 sporadic
c3 brca1 c10 brca2 c17 brca1
c4 brca1 c11 sporadic c18 brca2
c5 brca1 c12 sporadic c19 brca2
c6 brca1 c13 sporadic c20 brca2
c7 brca2 c14 sporadic c21 brca2

0 20 40 60 80 100 120
0

5

10

15

20

25

θ

E
x
ec
u
ti
on

ti
m
e
(s
ec
on
d
s)

Figure 3.7: Runtime of pps-based approach with AddIntent and varying θ in obtaining 10K
concepts, applied to the breast cancer dataset. Any partition component having elements less
than θ is discarded.

44

3.4. Order-preserving biclustering

15 16 17 18 19 20 21
0

20

40

60

θ

E
x
ec
u
ti
on

ti
m
e
(m

in
u
te
s)

Figure 3.8: Runtime of sps-based approach with AddIntent and varying `, applied to the breast
cancer dataset. Any sequence having length less than ` is discarded.

The result of experiment with varying θ is shown in Fig. 3.7. Here we see that in general,
larger θ means more time to obtain 10K concepts. However, it does not necessarily mean that
larger θ needs more time to �nish the computation of the whole lattice. This is because lesser θ
implies more concepts, hence faster to obtain 10K concepts. It can also be noted that for θ > 120
(not shown in the �gure), there are less than 10K concepts in the whole lattice.

We also tested the sps-based approach to the same dataset. Contrary to the previous exper-
iment where we take only 10K concepts, here we calculate the runtime for the computation of
the whole lattice. To reduce the computational time, we introduced the parameter `, which is
the minimal length of any sequence. Therefore, in calculating the intent of any sequence pattern
concept, any sequence having length less than ` is discarded. For example, with ` = 3, an intent
{a|b|c, a|d} becomes {a|b|c}.

The result of this experiment is shown in Fig. 3.8. With larger `, the computational time is
reduced, since we will have less concepts. This is useful compared to the majority of existing
sequential pattern miners. To obtain sequential pattern with larger length, they usually need to
lower the minimum support parameter. This results in more patterns, and consequently larger
computational time.

Concerning the biclusters, we found that the bicluster of size 15 × 2 is the widest (having
most columns) bicluster with more than 1 row. It follows the sequence of columns c19 < c20 <
c1 < c17 < c12 < c21 < c11 < c9 < c16 < c14 < c10 < c7 < c13 < c5 < c3, which is present in gene
#24638 and #291057. Regarding biclusters covering more than 2 rows, the widest biclusters
are of size 10 × 3. They are statistically signi�cant because at a random 3226 × 21 matrix, we
can only expect a bicluster covering 1 row (as 3226/10! < 1) exhibiting a certain ordering of 10
columns.

45

Chapter 3. Biclustering with partition pattern structures

3.5 Biclustering with coherent sign changes

Gene expression data can be represented as a matrix, where rows and columns represent genes
and experiments respectively. Each cell contains the numeric expression level of a given gene
under a given experiment. In such data, we can say that an experiment a�ect a gene by either
lowering or raising its expression, according to the gene's normal level. One may be interested
in �nding a subset of genes and a subset of experiments, such that the experiments a�ect the
genes in a consistent way. In other words, any two experiments in the subset have always either
the same e�ect or the opposite e�ect on every gene in the subset. In this thesis, this task
corresponds to the mining of coherent-sign-changes (CSC) biclusters as de�ned in Def. 7. First,
in Sect. 3.5.1 below we present some approaches for CSC biclustering using standard partition
pattern structures. Then in Sect. 3.5.2 we discuss CSC biclustering using a new adaptation of
partition pattern structures.

3.5.1 Using constant-column biclustering

In this subsection, we present two approaches of CSC biclustering using standard partition
pattern structures (PPS) in Sect. 3.2. First, we describe how the problem can be solved via
PPS-based constant-column biclustering. Second, we show that CSC biclusters can also be
retrieved directly from PPS.

In the �rst procedure, we scale a binary matrix into a new matrix where each column cor-
responds to a pair of attributes. Then, we perform PPS in this new matrix to obtain constant-
column biclusters. We call this approach scaling-based, and we present it in Algorithm 6.

Input: A binary sign matrix S, with a set of columns C and a set of rows R
Output: A set of CSC biclusters from S

1 csc := ∅
2 Scaling = new matrix /* a scaled matrix of S */

3 foreach ca ∈ C do
4 foreach cb ∈ C, b > a do
5 new_column.elements ← XOR(ca, cb)
6 new_column.title ← {ca, cb}
7 Scaling.add(new_column)

8 end
9 set_of_cc← constant-column biclusters from Scaling
10 foreach cc_cluster ∈ set_of_cc do
11 /* cc_col is the columns of cc_cluster*/

12 /* cc_row is the rows of cc_cluster */

13 csc_col ←
⋃

cc_col.title
14 csc_row ← cc_row
15 csc.add((csc_row, csc_col))

16 end
17 Scaling.clear()

18 end
19 return csc

Algorithm 6: scaling-based

Consider the binary sign matrix given in Table 3.7a. This matrix can be scaled into three

46

3.5. Biclustering with coherent sign changes

binary matrices in Table 3.7b, where each pair of columns (ca, cb) constitutes a new column. The
new columns have value 1 if the pair's sign is di�erent, and 0 if it is the same (a XOR operation).
For example, the value in row r2 column c1c3 is 0 because in r2, both c1 and c3 are `−'. Then, we
perform constant-column biclustering in each new binary matrix. A constant-column bicluster
found in this new table corresponds with a CSC bicluster on the original table, as shown in
Table 3.8. The set of columns in a CSC bicluster is a union of attribute pairs in constant-column
bicluster's columns.

c1 c2 c3 c4
r1 − − + +
r2 + − + +
r3 + + − +
r4 − + − −

(a)

c1c2 c1c3 c1c4 c2c3 c2c4 c3c4
0 1 1 1 1 0
1 0 0 1 1 0
0 1 0 1 0 1
1 0 0 1 1 0

(b)

Table 3.7: (a) A binary sign matrix and (b) its three scaling matrices.

constant-column biclusters CSC biclusters

({r2, r4}{c1c2, c1c3, c1c4}) ({r2, r4}{c1, c2, c3, c4})
({r1, r3}{c1c2, c1c3}) ({r1, r3}{c1, c2, c3})
({r1, r2, r3, r4}{c2c3}) ({r1, r2, r3, r4}{c2, c3})
({r1, r2, r4}{c2c3, c2c4}) ({r1, r2, r4}{c2, c3, c4})

Table 3.8: Some constant-column biclusters from Table 3.7b and their corresponding CSC bi-
clusters in Table 3.7a.

To avoid the combination of columns from a binary sign matrix, we may apply PPS directly
into it. This is our second procedure (called PPS-based), where we retrieve CSC biclusters by
examining the generated pp-concepts.

As explained in Section 3.1.3, a pp-concept is symbolized as (A, d) where A is a set of attributes
and d is a set of partition component p. Moreover, any pair (p, A) is a constant-column bicluster.
Then, a CSC bicluster is either a single constant-column bicluster or any pair of constant-column
biclusters that are contrasting to each other.

For example, consider again the matrix given in Table 3.7a and the pp-concept ({c2, c3, c4},
{{r1, r2}, {r3}, {r4}}). From this pp-concept, we have three constant-column biclusters:

• bx = ({r1, r2}, {c2, c3, c4})

• by = ({r3}, {c2, c3, c4})

• bz = ({r4}, {c2, c3, c4})

Here bx is contrasting to bz, because the sign in each column of bx (‘− + +′) is the opposite
of those in bz (‘ + − −′). Therefore, ({r1, r2, r4}, {c2, c3, c4}) is a CSC bicluster. Meanwhile,
by is not contrasting to any other constant-column bicluster, thus by itself is a CSC bicluster.

Experiment

We described two approaches of CSC biclustering: by constructing scaling matrices and per-
forming constant-column biclustering and PPS on them (scaling-based), or by applying PPS

47

Chapter 3. Biclustering with partition pattern structures

Input: A binary sign matrix S, with a set of columns C and a set of rows R
Output: A set of CSC biclusters from S

1 csc := ∅
2 pp_concepts ← PPS in S
3 foreach pp ∈ pp_concepts do
4 /* a pp is a pp-concept (A,d)

5 where A is the set of attributes

6 and d is partition of objects */

7 foreach pa ∈ d do
8 foreach pb ∈ d, pa 6= pb do
9 if (pa, A) is contrasting with (pb, A) then
10 csc.add((pa ∪ pb, A))
11 remove {pa, pb} from d

12 end

13 end

14 end
15 foreach remaining_p ∈ d do
16 csc.add((remaining_p,A))
17 end

18 end
19 return csc

Algorithm 7: PPS-based

directly to the original matrix and searching CSC biclusters in each pp-concept (PPS-based). In
our experiment, we compare the execution time between the two approaches in some randomly
generated numerical datasets. Therefore, given an m × n dataset, both methods preprocess it
into a

(
m
2

)
× n binary sign matrix.

First, we inspect the e�ect of number of attributes in both approaches. The result is shown in
Figure 3.9. With more attributes (>6), the execution time of PPS-based is higher than scaling-

based although both approaches follow similar growth. As illustrated in Table 3.7b, scaling-based
produce some matrices and executing PPS in each of them. Therefore, given 10 attributes,
scaling-based applies PPS in matrices of 9, 8, 7,... and 1 attributes separately, while PPS-based
applies PPS in a single matrix of 10 attributes. Even without the computation of contrasting
constant-column biclusters, the runtime of PPS-based is still longer than scaling-based (not shown
here). This result implies the exponential nature of PPS regarding the number of attributes.

Also, Figure 3.10 shows that the execution time of scaling-based is better than PPS-based with
larger number of objects. Similar with the �rst experiment, this also suggests that executing PPS
in one m×n matrix needs more execution time than executing PPS in m× (n− 1), m× (n− 2),
. . .m× 1 matrices separately. Therefore, scaling-based should be preferred over PPS-based.

3.5.2 Using pattern structures of signed partition

In the task of CSC bicluster discovery in a formal context (G,M, I), here we explore an approach
based on an extension of partition pattern structures. Instead of partition of objects in G as
described in Sect. 3.1.2, here we use partition of attributes in M . It is still similar to an object
partition since an attribute partition covers every attribute in M and there is no overlapping
between any two partition components.

48

3.5. Biclustering with coherent sign changes

3 5 7 9 11 13 15

10−2

10−1

100

101

102

103

Number of attributes

E
x
ec
u
ti
on

ti
m
e
(s
)

scaling-based

PPS-based

Figure 3.9: Comparison of scaling-based and PPS-based with number of objects = 20 and varying
number of attributes.

3 5 7 9 11 13 15

10−3

10−2

10−1

100

101

102

103

Number of objects

E
x
ec
u
ti
on

ti
m
e
(s
)

scaling-based

PPS-based

Figure 3.10: Comparison of scaling-based and PPS-based with number of attributes = 15 and
varying number of objects.

Table 3.9: Running example for coherent-sign-changes biclustering.

M m1 m2 m3 m4

g1 + + − −
g2 + + − −
g3 − − + −
g4 + + + +
g5 − − − −

49

Chapter 3. Biclustering with partition pattern structures

To formally de�ne our signed partition, �rst we de�ne the notion of signed attribute (com-
parable to marked objects in Sect. 3.3) and signed partition component as follows.

De�nition 8 (Signed attribute). Let M be a set of attributes, m ∈ M be an attribute, and
∗ ∈ {−,+} be a sign. A signed attribute m∗ is an attribute m having a sign ∗.

De�nition 9 (Signed partition component). A signed partition component (or sp-component) c
is a subset ofM , where each attribute in c is associated to their corresponding sign ∗. Therefore,
c = {m∗1, · · · ,m∗n}.

For example, m+
1 is a signed attribute where the sign + is given to m1, and {m+

1 ,m
−
2 ,m

+
4 } is

a signed partition component. Since an sp-component contains not only attributes but also their
associated sign, we de�ne the equality of two sp-components according to these two aspects as
follows.

De�nition 10 (SP-component equality). Any two sp-components are equal i� both contain the
same set of attributes, and they have either entirely same sign or entirely opposite sign.

Therefore, if we have c1 = {m+
1 ,m

−
2 ,m

+
4 }, c2 = {m+

1 ,m
−
2 ,m

+
4 }, and c3 = {m−1 ,m

+
2 ,m

−
4 },

then c1 = c2 = c3.

De�nition 11 (Signed partition). A signed partition (or s-partition) d is a collection of sp-
components, written as d = {c1, · · · , cn}, such that every attribute in M is present in exactly
one sp-component.

For example, given M = {m1, · · · ,m4}, then {{m+
1 ,m

−
2 ,m

+
4 }, {m

+
3 }} is a valid signed par-

tition of M . The set of all possible s-partitions is denoted as D. This allows us to create an
s-partition mapping δ : G→ D which assigns an object to an s-partition over M . For an object
m, δ(m) is an s-partition containing only one sp-component. This sp-component contains all
attributes in M with the corresponding sign according to the object g. Example from Table 3.9:

δ(g1) = δ(g2) = {{m+
1 ,m

+
2 ,m

−
3 ,m

−
4 }}

δ(g3) = {{m−1 ,m
−
2 ,m

+
3 ,m

−
4 }}

δ(g4) = {{m+
1 ,m

+
2 ,m

+
3 ,m

+
4 }}

δ(g5) = {{m−1 ,m
−
2 ,m

−
3 ,m

−
4 }}.

Notice that since the sp-components in δ(g4) and δ(g5) contain the same attributes with entirely
opposite sign, according to Def. 10 we have δ(g4) = δ(g5). This mapping is formulated as follows:

δ(g) = {{m∗jj |mj ∈M}}
where ∗j = mj(g). (3.10)

For the task of CSC bicluster discovery, here we de�ne relations between any two s-partitions.
The set of all possible s-partitions D is a meet-semilattice where we can de�ne the meet of any
two s-partitions.

First, we de�ne the notation m(c) as the sign of an attribute m in an sp-component c. For
example, if c = {m+

1 ,m
−
2 ,m

−
3 }, then m1(c) = +. With this notation, we de�ne the similarity

(∩±) between any two sp-components as:

c1 ∩± c2 = {{m∗j ∈ c1|mj(c1) = mj(c2)},
{m∗j ∈ c1|mj(c1) = ¬mj(c2)}}, (3.11)

50

3.5. Biclustering with coherent sign changes

where ∗ corresponds to the sign of mj in c1, i.e. mj(c1).

In other words, the operator ∩± between c1 and c2 gives {c12, c1|2}. The c12 represents all
attributes who are present in c1 and c2 with the same sign, while c1|2 represents all attributes
who are present in c1 and c2, but with opposite sign. The signs in the resulting sp-component
are the same as those in the �rst sp-component. Example:

if cx = {m+
1 ,m

−
2 ,m

−
3 ,m

−
4 }

and cy = {m+
1 ,m

−
2 ,m

+
3 ,m

+
4 ,m

−
5 },

then cx ∩± cy = {{m+
1 ,m

−
2 }, {m

−
3 ,m

−
4 }}.

Since the signs in c1|2 follow the �rst sp-component, the result of c1 ∩± c2 could be di�erent to
c2 ∩± c1. This can be resolved by Def. 10 that ensures the commutativity of ∩±. For example:

cx ∩± cy = {{m+
1 ,m

−
2 }, {m

−
3 ,m

−
4 }},

cy ∩± cx = {{m+
1 ,m

−
2 }, {m

+
3 ,m

+
4 }},

cx ∩± cy = cy ∩± cx.

Having de�ned the similarity of any two sp-components, we can now de�ne the similarity
of any two s-partitions. The similarity (or the meet) of two s-partitions d1 = {c1 · · · ck} and
d2 = {c1 · · · cn}, with k = |d1| and n = |d2|, is de�ned as:

d1 u d2 = {ci ∩± cj |∀ci ∈ d1, cj ∈ d2}, (3.12)

and the order between two s-partitions is given by:

d1 v d2 ⇐⇒ d1 u d2 = d1. (3.13)

Let C the set of all sp-components in M , and D is the set of all s-partitions in M . We have
∩± : C2 → D and u : D2 → D. Example from Table 3.9:

δ(g1) u δ(g3) = {{m+
1 ,m

+
2 ,m

−
3 ,m

−
4 }} u {{m

−
1 ,m

−
2 ,m

+
3 ,m

−
4 }}

= {{m−4 }, {m
+
1 ,m

+
2 ,m

−
3 }}.

Suppose that d1 = {{m−4 }, {m
+
1 ,m

+
2 ,m

−
3 }}. Then d1 v δ(g1), d1 v δ(g2), and d1 v δ(g3).

In order to de�ne a partial order among d ∈ D, the u operator has to be commutative,
idempotent, and associative. These properties are shown in the following propositions.

Proposition 1. The operator u is commutative, i.e. d1 u d2 = d2 u d1.

Proof. Consider d1 = {c1 · · · cn} with n = |d1| and d2 = {c1 · · · ck} with k = |d2|.

d1 u d2 = d2 u d1
{ci ∩± cj |∀ci ∈ d1, cj ∈ d2} = {cj ∩± ci|∀ci ∈ d1, cj ∈ d2}

It is previously stated that ∩± is also commutative. Therefore, both sides of the equation above
are equal.

Proposition 2. The operator u is idempotent, i.e. d1 u d1 = d1.

51

Chapter 3. Biclustering with partition pattern structures

Proof. Consider d1 = {c1 · · · cn} with n = |d1|.

d1 u d1 = {ci ∩± cj |∀ci ∈ d1, cj ∈ d1}

Since there is no overlap among ci ∈ d1, then ci ∩± cj is an empty set for i 6= j. Therefore :

d1 u d1 = {ci ∩± cj |∀ci, cj ∈ d1 and i = j}
= {ci ∩± ci|∀ci ∈ d1}
= {ci|ci ∈ d1}
= d1

Proposition 3. The operator u is associative, i.e. (d1 u d2) u d3 = d1 u (d2 u d3).

Proof. Consider d1 = {c1 · · · cn} with n = |d1|, d2 = {c1 · · · cp} with p = |d2|, and d3 = {c1 · · · cq}
with q = |d3|.

(d1 u d2) u d3
={ci ∩± cj |∀ci ∈ d1, cj ∈ d2} u d3
={ci ∩± cj ∩± ck|∀ci ∈ d1, cj ∈ d2, ck ∈ d3}
=d1 u {cj ∩± ck|∀cj ∈ d2, ck ∈ d3}
=d1 u (d2 u d3)

With the de�nition of similarity (u) and the associated partial ordering (v) between two
s-partitions, we then de�ne the notion of signed partition pattern concept in the following sub-
section.

Let G a set of objects, M a set of attributes. The lattice of s-partitions ofM is (D,u), where
δ : G → D maps an object to an s-partition as de�ned in Eq. 3.10. A signed partition pattern

structure is determined by the triple (G, (D,u), δ), where the derivation operators for A ⊆ G
and d ∈ D are de�ned as:

A� = ⊔

g∈A
δ(g), (3.14)

d� = {g ∈ G|d v δ(g)}. (3.15)

(A, d) is a signed partition pattern concept (or spp-concept) when A� = d and d� = A.
From an spp-concept (A, d), a CSC bicluster is any pair (A, c) where c ∈ d (we can ignore the
attribute signs in c). All spp-concepts from Table 3.9 are listed in Table 3.10. In the concept
({g1, g2, g3}, {{m+

1 ,m
+
2 ,m

−
3 }, {m

−
4 }}) for example, we can �nd the CSC bicluster ({g1, g2, g3},

{m1,m2,m3}). Looking back to the original table, this CSC bicluster means that in A =
{g1, g2, g3}, we have m1(A) ' m2(A) ' m3(A) (recall the de�nition of ' in Def. 6).

The order between any two spp-concepts is given by (A1, d1) ≤ (A2, d2) ⇐⇒ A1 ⊆ A2 or
d2 v d1. Using this order, the lattice of all spp-concepts from Table 3.9 can be constructed and
is shown in Figure 3.11. It should be noticed that the lattice is readable and interpretable only
if its size is small. This lattice is useful not only for understanding the hierarchical structure
among all biclusters, but also for detecting maximal biclusters.

52

3.5. Biclustering with coherent sign changes

Table 3.10: All sign partition pattern concepts from Table 3.9 and their corresponding CSC
biclusters.

Concept CSC bicluster
Extent Intent Objects Attributes

{g1, g2} {{m+
1 ,m

+
2 ,m

−
3 ,m

−
4 }} {g1, g2} {m1,m2,m3,m4}

{g3} {{m−1 ,m
−
2 ,m

+
3 ,m

−
4 }} {g3} {m1,m2,m3,m4}

{g4, g5} {{m+
1 ,m

+
2 ,m

+
3 ,m

+
4 }} {g4, g5} {m1,m2,m3,m4}

{g1, g2, g3} {{m+
1 ,m

+
2 ,m

−
3 }, {m

−
4 }} {g1, g2, g3} {m1,m2,m3}

{g1, g2, g3} {m4}
{g1, g2, g4, g5} {{m+

1 ,m
+
2 }, {m

+
3 ,m

+
4 }} {g1, g2, g4, g5} {m1,m2}

{g1, g2, g4, g5} {m3,m4}
{g3, g4, g5} {{m+

1 ,m
+
2 ,m

+
4 }, {m

+
3 }} {g3, g4, g5} {m1,m2,m4}

{g3, g4, g5} {m3}
{g1, g2, g3, g4, g5} {{m+

1 ,m
+
2 }, {m

+
3 }, {m

+
4 }} {g1, g2, g3, g4, g5} {m1,m2}

{g1, g2, g3, g4, g5} {m3}
{g1, g2, g3, g4, g5} {m4}

The bicluster ({g1, g2, g4, g5}, {m1,m2}) from Table 3.9 is not maximal, since we can add
g3 that constructs another bicluster ({g1, g2, g3, g4, g5}, {m1,m2}). The non-maximal biclusters
can be detected from the concept lattice [59]. Consider two concepts (A1, d1) and (A2, d2) such
that (A1, d1) ≤ (A2, d2), and an sp-component c. The bicluster (A1, c) is maximal i� c ∈ d1 and
c 6∈ d2.

For example, consider the concept p1 = ({g1, g2, g4, g5}, {{m+
1 ,m

+
2 }, {m

+
3 ,m

+
4 }}) and p2 =

({g1, g2, g3, g4, g5}, {{m+
1 ,m

+
2 }, {m

+
3 }, {m

+
4 }}), where p1 ≤ p2. We see that the sp-component

{m+
1 ,m

+
2 } is in the intent of both p1 and p2. Therefore, the bicluster ({g1, g2, g4, g5}, {m1,m2})

from p1 is not maximal.

CSC bicluster is a submatrix in a binary matrix. Therefore, given a numerical matrix, it
is required to transform it into binary matrix. This can be done by scaling, for example by
introducing a threshold, and each numerical value can be transformed to + or − based on
whether it is above or below the threshold. In a gene expression data for example, a threshold
can be the normal expression level for each gene. An expression that is above (or below) this
normal level should be transformed to + (or − respectively).

In the task of mining formal concepts, the AddIntent can be used for any pattern structures
by de�ning the meet (u) and the order (v) between any two descriptions. Having de�ned the
meet in Eq. 3.12 and the order in Eq. 3.13, we then use AddIntent to mine spp-concepts in a
binary matrix. Furthermore, this algorithm is also e�ective for building a concept lattice, which
is needed in our case to detect the maximality of any CSC bicluster.

Experiments

As previously explained in Section 3.5.2, CSC biclusters can be found in any spp-concept. There-
fore, from a binary matrix, we should retrieve all spp-concepts. To do that, we reuse the AddIn-
tent source code in [19] by modifying the de�nition u and v operators. This algorithm also allows
us to build the lattice of all concepts. We can reduce the lattice by choosing a threshold θ that
applies to the intent of a concept. This threshold de�nes the minimal size of an sp-component
that an intent should have. Since the lattice construction is performed by a bottom-up ap-

53

Chapter 3. Biclustering with partition pattern structures

∅

{g1, g2}

{{m+
1 ,m

+
2 ,m

−
3 ,m

−
4 }}

{g3}

{{m−1 ,m
−
2 ,m

+
3 ,m

−
4 }}

{g4, g5}

{{m+
1 ,m

+
2 ,m

+
3 ,m

+
4 }}

{g1, g2, g3}

{{m+
1 ,m

+
2 ,m

−
3 }, {m

−
4 }}

{g1, g2, g4, g5}

{{m+
1 ,m

+
2 }, {m

+
3 ,m

+
4 }}

{g3, g4, g5}

{{m+
1 ,m

+
2 ,m

+
4 }, {m

+
3 }}

{g1, g2, g3, g4, g5}

{{m+
1 ,m

+
2 }, {m

+
3 }, {m

+
4 }}

Figure 3.11: Sign partition pattern lattice for pattern structure in Table 3.9.

proach, this threshold allows to �prune� the lattice. For example, with θ = 3, the lattice for
Table 3.9 does not contain the concept ({g1, g2, g4, g5}, {{m+

1 ,m
+
2 }, {m

+
3 ,m

+
4 }})�since none of

its sp-components has ≥ 3 attributes�as shown in Figure 3.12.

We tested our method to lymphoma dataset provided in [5] and BicAT yeast dataset1. The
lymphoma dataset contains the numerical expression levels of 4026 genes over 96 tissues, while
the yeast contains 419 probesets and 70 conditions. The objective of CSC bicluster discovery
in these datasets is to �nd a subset of genes that behave in a consistent way over a subset of
tissues. For this task, we convert them to binary by assigning − and + for the values < 0 and
≥ 0 respectively.

For lymphoma dataset, the number of concepts and runtime for di�erent thresholds are listed
in Table 3.11. We tested three thresholds: 70, 80, and 90. As shown here, higher θ can reduce
the number of concepts, and consequently reduce the runtime.

For θ = 70, around 157K concepts are obtained. Among them, only 153K have extent size
larger than 1. This means that there are 153K CSC biclusters having at least 70 columns and
at least 2 rows. Furthermore, still with θ = 70, the largest extent size is 8, meaning that among
the biclusters with ≥ 70 columns, there are no bicluster with > 8 rows.

Higher θ corresponds to higher number of columns in the biclusters and thus lower number
of rows. With θ = 90, we see that among the biclusters with ≥ 90 rows, there are no bicluster
with > 3 rows.

Furthermore, the e�ect of θ can also be seen for both datasets in Fig. 3.13 and 3.14. For each
iteration of AddIntent algorithm, we calculate the number of concepts generated so far. With

1http://www.tik.ee.ethz.ch/sop/bicat/

54

3.5. Biclustering with coherent sign changes

∅

{g1, g2}

{{m+
1 ,m

+
2 ,m

−
3 ,m

−
4 }}

{g3}

{{m−1 ,m
−
2 ,m

+
3 ,m

−
4 }}

{g4, g5}

{{m+
1 ,m

+
2 ,m

+
3 ,m

+
4 }}

{g1, g2, g3}

{{m+
1 ,m

+
2 ,m

−
3 }, {m

−
4 }}

{g3, g4, g5}

{{m+
1 ,m

+
2 ,m

+
4 }, {m

+
3 }}

{g1, g2, g3, g4, g5}

∅

Figure 3.12: Sign partition pattern lattice for pattern structure in Table 3.9 with θ = 3.

Table 3.11: Experiments on lymphoma dataset.

θ Runtime Number of concepts Largest extent size
(minutes) All Extent size > 1

70 229.4 157K 153K 8
80 62.9 7K 2K 7
90 62.1 4K 83 3

55

Chapter 3. Biclustering with partition pattern structures

1 2 3 4 5 6 7 8 9 10
0

1,000

2,000

3,000

4,000

Iteration number

N
u
m
b
er

of
co
n
ce
p
ts

θ = 10
θ = 30
θ = 50
θ = 70
θ = 90

Figure 3.13: Number of concepts generated until each iteration of AddIntent over lymphoma
dataset.

smaller θ, we discard smaller number of concepts, thus higher number of remaining concepts.
This high number of concepts in turn contributes to the higher runtime as previously seen in
Table 3.11.

3.6 Conclusion

In this chapter we presented a uni�ed approach based on partition pattern structure for discov-
ering di�erent types of biclusters in a given numerical matrix. Partition pattern structures are
an extension of FCA, based on complex object descriptions and adapted similarity operators.
We showed that by designing a suitable object descriptions and associated similarity operators,
we can extract the main types of biclusters from pattern concepts.

However, for OP biclustering in this thesis, we do not consider yet the equality (the case with
mi(g) = mj(g)). Another aspect that should be studied is the possibility of a matrix that has
another sign in addition to + and − for CSC biclustering. This new sign can represent a missing
value, or in the case of threshold-based transformation, a value that is equal to the threshold.
It can be resolved using tolerance relation introduced in [58], such that a value equal to the
threshold should be regarded as similar to both + and −. In the case of missing value, it can be
resolved by modifying the de�nition of attribute partition which permits an attribute to be not
present in any sp-component. This modi�cation may consequently require modi�cations on the
de�nition of meet and order between s-partitions.

Eventually, the CSC bicluster discovery can be applied in a domain besides gene expression
data. Frequent gradual itemset mining was studied in [25] to extract gradual rules from a
numerical table, e.g. a hotel price table with 3 attributes: mp for city population, md for
distance from city center, and mr for room price. We may �nd an sp-component {m+

p ,m
−
d ,m

+
r }.

It is related to the rule saying �the more/less mp, the less/more md, then the more/less mr�.

Moreover, some studies ([21, 52]) show the bene�ts of biclustering in the recommendation
systems. In a user�movie rating matrix for example, a constant-column bicluster represents a
set of users having the same interest across a set of movies. On the other hand, a CSC bicluster

56

3.6. Conclusion

1 2 3 4 5 6 7 8 9 10
0

200

400

600

Iteration number

N
u
m
b
er

of
co
n
ce
p
ts

θ = 10
θ = 20
θ = 30
θ = 40
θ = 50
θ = 60

Figure 3.14: Number of concepts generated until each iteration of AddIntent over BicAT yeast
dataset.

in this matrix represents a set of users having either the same or the opposite interest. This is
useful for a new user u: we can recommend movies liked by users similar to u and movies disliked
by users opposite to u.

57

Chapter 3. Biclustering with partition pattern structures

58

Chapter 4

Biclustering with interval pattern

structures

Contents

4.1 Scaling of many-valued contexts 59

4.2 Interval pattern structures . 60

4.3 Similar-column biclustering with IPS 62

4.4 Additive and multiplicative biclustering 64

4.5 Concept mining . 65

4.6 Experiments . 65

4.6.1 E�ects of parameters . 65

4.6.2 Comparison with pattern-based method 66

4.6.3 Comparison with numerical method 68

4.7 Conclusion . 69

Previously in Chapter 3, we explored the adaptation of partition pattern structures to discover
various types of biclusters. One limitation of this approach is that we need some discretization
to obtain non-perfect biclusters. In this chapter, we show how to mitigate this limitation using
interval pattern structures, which was proposed to discover similar-column biclusters in a nu-
merical matrix. Here we extend this method such that it is also able to discover additive and
multiplicative biclusters.

Interval pattern structures are a solution in the problem of scaling many-valued contexts,
presented in Sect. 4.1. We revisit some de�nitions of interval pattern structures in Sect. 4.2 and
their application in similar-column biclustering in Sect. 4.3. Then, we describe how they can be
extended to additive and multiplicative biclustering in Sect. 4.4. We explain some modi�cations
of Close by One in order to enumerate interval pattern concepts in Sect. 4.5 and some experiments
in Sect. 4.6. Lastly we conclude this chapter in Sect. 4.7.

4.1 Scaling of many-valued contexts

In standard FCA, the attributes M are binary, giving us the binary context (G,M, I). It can be
considered that if m(g) = 1, then the object g has the attribute m. These attributes are called
one-valued attributes, and the context is called one-valued context.

59

Chapter 4. Biclustering with interval pattern structures

m1 m2 m1 = a m1 = b m2 = a m2 = b
g1 a b g1 × ×
g2 b b =⇒ g2 × ×
g3 a a g3 × ×
g4 a a g4 × ×

Figure 4.1: An example of nominal scaling.

m1 m2

m1 m2 good very good good very good
g1 good very good g1 × × ×
g2 good good =⇒ g2 × ×
g3 very good very good g3 × × × ×
g4 very good good g4 × × ×

Figure 4.2: An example of ordinal scaling.

A many-valued context (G,M,W, I) is composed by a set of objects G, a set of attributes
M , a set of values W , and a ternary relation I ⊆ G ×M ×W . (g,m,w) ∈ I means that an
attribute m has a value w for object g. This can also be written as m(g) = w. To �nd concepts
in a many-valued context, it has to be transformed into a one-valued context, by the process
called scaling.

In nominal scaling, the values of an attribute mutually exclude each other. An exam-
ple of this scaling is illustrated in Fig. 4.1. An example of a concept on this scaled con-
text is ({g3, g4}, {m1 = a,m2 = a}), which can be regarded as a constant-column bicluster
({g3, g4}, {m1,m2}) on Fig. 4.1 left.

In ordinal scaling, illustrated in Fig. 4.2, the values are ordered, and there is implication
among values. For example in Fig. 4.2 left, a value �very good� is stronger than �good�, therefore
�very good� implies �good�. A concept ({g1, g2, g3, g4}, {m1 = good,m2 = good}) in Fig. 4.2
right means that all objects have the value �good� in m1 and m2, although this is not explicit in
the multi-valued context in Fig. 4.2 left.

Furthermore, if we have bipolar ordering where there are two extremities, an interordinal
scaling should be applied to obtain a one-valued context. An example of this scaling is depicted
in Fig. 4.3. An interordinal scaling can be considered as interval of values. In the one-valued
context in Fig. 4.3 right, there is a concept:

({g1, g2}, {m1 ≤ 1,m1 ≤ 2,m1 ≥ 1,m2 ≤ 2,m2 ≥ 1}), (4.1)

which re�ects an interval for each attribute. For g1 and g2, the values of m1 and m2 are in the
interval [1, 1] and [1, 2] respectively.

4.2 Interval pattern structures

Interval pattern structures (IPS) was introduced by Kaytoue et al. [60] to overcome some limi-
tations of enumerating concepts in many-valued context using interordinal scaling. As depicted
in Fig. 4.3, the interordinal attribute m1 is scaled to four binary attributes. With larger range
of values, the number of attributes in the scaled context can be signi�cantly increased. Further-
more, the representation of a concept from interordinal scaling is not e�cient, since there are

60

4.2. Interval pattern structures

m1 m2

m1 m2 ≤ 1 ≤ 2 ≥ 1 ≥ 2 ≤ 1 ≤ 2 ≥ 1 ≥ 2
g1 1 1 g1 × × × × × ×
g2 1 2 =⇒ g2 × × × × × ×
g3 2 1 g3 × × × × × ×
g4 2 2 g4 × × × × × ×

Figure 4.3: An example of interordinal scaling.

[1, 2] [2, 3] [5, 6]

[1, 3] [2, 6]

[1, 6]

Figure 4.4: The meet-semilattice of a set of intervals.

redundancies. The concept in Eq. 4.1 for example, has the intent with m1 ≤ 1 and m1 ≤ 2. The
presence of m1 ≤ 2 is redundant since it is implied from m1 ≤ 1.

An interval of values between a and b is written as [a, b]. Moreover, vector of intervals d is a
list of intervals, written as d = 〈[a1, b1], [a2, b2] · · · 〉. In IPS, an interval [a1, b1] is subsumed by
another interval [a2, b2] if [a2, b2] is found within [a1, b1]. Accordingly, a vector d1 is subsumed
by another vector d2 if every interval in d1 is subsumed by the corresponding interval in d2.

The ordering among intervals makes the set of intervals I a meet-semilattice, i.e. there exists
one greatest lower bound for any subset of I. The meet-semilattice of an example set of intervals
is illustrated in Fig. 4.4. The greatest lower bound �or the meet (u)� of two intervals [a1, b1]
and [a2, b2] is the smallest interval containing both [a1, b1] and [a2, b2]. This corresponds to the
convex hull of the intervals, and de�ned as:

[a1, b1] u [a2, b2] = [min(a1, a2),max(b1, b2)]. (4.2)

For example, [1, 2] u [5, 6] is [1, 6]. The subsumption order among intervals can be de�ned with
the meet operator. If an interval [a2, b2] is found within [a1, b1], then following Eq. 4.2 the meet
between both of them is [a1, b1]. Therefore:

[a1, b1] u [a2, b2] = [a1, b1]⇐⇒ [a1, b1] v [a2, b2]. (4.3)

Consequently, the set of vectors of intervals is also a meet-semilattice. The meet of two vectors
is the convex hull of each corresponding interval. Therefore, given d1 = 〈[a1, b1], · · · , [an, bn]〉
and d2 = 〈[c1, d1], · · · , [cn, dn]〉:

d1 u d2 = 〈[ai, bi] u [ci, di]〉i∈[1,n]. (4.4)

For example, 〈[1, 2][4, 6]〉u〈[3, 4][8, 9]〉 is 〈[1, 4][4, 9]〉. Furthermore, the subsumption order among
vectors follows the subsumption order among intervals in Eq. 4.3, i.e.:

d1 u d2 = d1 ⇐⇒ d1 v d2, (4.5)

61

Chapter 4. Biclustering with interval pattern structures

Table 4.1: A numerical matrix, and a similar-column bicluster in gray.

G m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

re�ecting that d1 is subsumed by d2 if each interval in d1 is subsumed by the corresponding
interval in d2.

Interval pattern structures was originally proposed to obtain similar-column (SC) bicluster in
gene expression dataset (GED). A GED is typically represented as a 2-D numerical matrix with
genes as rows and conditions as columns, as shown in Table 4.1. In this matrix, the submatrix
({g1, g2, g3}, {m1,m2,m3,m5}) is an SC bicluster, de�ned by the parameter θ = 1. It means
that the range of values of each column in the submatrix has the length of at most 1.

An interval pattern structure is determined by the triple (G, (D,u), δ), where G is the set
of objects, (D,u) is the lattice of all interval vectors, and δ : G → D maps an object to an
interval vector. In a numerical matrix, an interval vector describes the values of every column.
For example, the description of g1 �denoted by δ(g1)� in Table 4.1 is 〈[1, 1][2, 2][2, 2][1, 1][6, 6]〉.

Given A ⊆ G and d ∈ D, A� is the meet of all objects' interval vectors (de�ned in Eq. 4.4),
while d� is the set of objects whose interval vector subsumes d (de�ned in Eq. 4.5) or:

A� = ⊔
g∈A

δ(g),

d� = {g ∈ G|d v δ(g)}.

Following the de�nition of a concept of any pattern structure, an interval pattern concept is
a pair (A, d), for A ⊆ G and d ∈ D, where A� = d and d� = A. Furthermore, the set of interval
pattern concepts is partially ordered, and is a complete lattice. An interval pattern concept
(A1, d1) is a subconcept of (A2, d2) if A1 ⊆ A2 (dually d2 v d1). All interval pattern concepts
from Table 4.1 are listed in Table 4.2.

4.3 Similar-column biclustering with IPS

A similar-column (SC) bicluster can be found in an interval pattern concept by introducing a
parameter θ. This parameter acts as the maximum di�erence between any two values to be
considered as similar. For example, with θ = 1, the value 1 is similar to 2, but not similar to 3.

In calculating the similarity between any two descriptions, if the length of an interval is larger
than θ, then the star sign (∗) is put as the interval. From Table 4.1, δ(g2) u δ(g4) without θ is
〈[2, 8][1, 9][1, 2][0, 6][6, 7]〉, and with θ = 1 is 〈∗ ∗ [1, 2] ∗ [6, 7]〉.

The similarity u between ∗ and any other interval is ∗. For example, suppose that we have
two descriptions dx = 〈[1, 1][2, 3]〉 and dy = 〈[2, 2]∗〉. Then, dx u dy = 〈[1, 2]∗〉. This also means
that ∗ is subsumed by any other interval. Therefore, the description of each object in Table 4.1
subsumes 〈∗ ∗ [1, 2] ∗ [6, 7]〉. With θ = 1, ({g1, g2, g3, g4}, 〈∗ ∗ [1, 2] ∗ [6, 7]〉) is an interval pattern
concept. All interval pattern concepts with θ = 1 from Table 4.1 are listed in Table 4.3.

From an interval pattern concept, an SC bicluster can be formed by the concept's extent and
the set of columns where the interval is not ∗ in the concept's intent. For example, from the

62

4.3. Similar-column biclustering with IPS

Table 4.2: All interval pattern concepts from Table 4.1.

A d

{g1} 〈[1, 1][2, 2][2, 2][1, 1][6, 6]〉
{g2} 〈[2, 2][1, 1][1, 1][0, 0][6, 6]〉
{g3} 〈[2, 2][2, 2][1, 1][7, 7][6, 6]〉
{g4} 〈[8, 8][9, 9][2, 2][6, 6][7, 7]〉
{g1, g2} 〈[1, 2][1, 2][1, 2][0, 1][6, 6]〉
{g1, g3} 〈[1, 2][2, 2][1, 2][1, 7][6, 6]〉
{g1, g4} 〈[1, 8][2, 9][2, 2][1, 6][6, 7]〉
{g2, g3} 〈[2, 2][1, 2][1, 1][7, 7][6, 6]〉
{g2, g4} 〈[2, 8][1, 9][1, 2][0, 6][6, 7]〉
{g3, g4} 〈[2, 8][2, 9][1, 2][6, 7][6, 7]〉
{g1, g2, g3} 〈[1, 2][1, 2][1, 2][0, 7][6, 6]〉
{g1, g2, g4} 〈[1, 8][1, 9][1, 2][0, 6][6, 7]〉
{g1, g3, g4} 〈[1, 8][2, 9][1, 2][1, 7][6, 7]〉
{g2, g3, g4} 〈[2, 8][1, 9][1, 2][0, 7][6, 7]〉
{g1, g2, g3, g4} 〈[1, 8][1, 9][1, 2][0, 7][6, 7]〉

Table 4.3: All interval pattern concepts with θ = 1 from Table 4.1.

Extent Intent

{g1} 〈[1, 1][2, 2][2, 2][1, 1][6, 6]〉
{g2} 〈[2, 2][1, 1][1, 1][0, 0][6, 6]〉
{g3} 〈[2, 2][2, 2][1, 1][7, 7][6, 6]〉
{g4} 〈[8, 8][9, 9][2, 2][6, 6][7, 7]〉
{g1, g2} 〈[1, 2][1, 2][1, 2][0, 1][6, 6]〉
{g1, g3} 〈[1, 2][2, 2][1, 2] ∗ [6, 6]〉
{g1, g4} 〈∗ ∗ [2, 2] ∗ [6, 7]〉
{g2, g3} 〈[2, 2][1, 2][1, 1] ∗ [6, 6]〉
{g3, g4} 〈∗ ∗ [1, 2][6, 7][6, 7]〉
{g1, g2, g3} 〈[1, 2][1, 2][1, 2] ∗ [6, 6]〉
{g1, g2, g3, g4} 〈∗ ∗ [1, 2] ∗ [6, 7]〉

63

Chapter 4. Biclustering with interval pattern structures

Table 4.4: Example of additive column alignments. (a) Original table and the additive bicluster
in gray, (b) alignment on m1, (c) alignment on m2.

m1 m2 m3 m4

g1 4 1 3 0
g2 6 4 6 3
g3 2 3 5 2
g4 1 6 1 7

(a)

m1 m2 m3 m4

g1 4 1 3 0
g2 4 2 4 1
g3 4 5 7 4
g4 4 9 4 10

(b)

m1 m2 m3 m4

g1 4 1 3 0
g2 3 1 3 0
g3 0 1 3 0
g4 −4 1 −4 2

(c)

Table 4.5: Example of multiplicative column alignments. (a) Original table and the multiplicative
bicluster in gray, (b) alignment on m2.

m1 m2 m3 m4

g1 3 1 2 3
g2 1 3 6 9
g3 2 2 4 6
g4 1 2 6 8

(a)

m1 m2 m3 m4

g1 3 1 2 3
g2 0.3 1 2 3
g3 1 1 2 3
g4 0.5 1 3 4

(b)

concept ({g1, g2, g3}, 〈[1, 2][1, 2][1, 2] ∗ [6, 6]〉), ({g1, g2, g3}, {m2,m2,m3,m5}) is an SC bicluster
with θ = 1.

By using IPS with parameter θ, constant-column biclustering is a speci�c case of SC biclus-
tering. It can be noticed that with θ = 0, we obtain intervals with length 0, and that corresponds
to constant-column biclusters.

4.4 Additive and multiplicative biclustering

An additive bicluster is a submatrix where there is a constant (or similar) di�erence between any
two columns across all of its rows. Constant (or similar) column biclustering is a speci�c case of
additive biclustering. Using this fact, we can obtain additive biclusters by aligning (similar to
[43]) each column, and then �nd interval pattern concepts on the alignments.

Table 4.4 provides an example of column alignment for additive biclustering. The original ma-
trix is shown in Table 4.4a, having 4 rows and 4 columns. The submatrix ({g1, g2, g3}, {m2,m3,m4})
is an additive bicluster in the original matrix. This bicluster can be found by applying constant-
column or similar-column biclustering to the column alignments. Table 4.4b shows the �rst
column alignment, can be seen by the consistency of the �rst column (m1). In this example,
each object value is converted such that its m1 value is equal to the value of m1 in g1. This
means that the values 0, −2, 2, and 3 are added to g1, g2, g3, and g4 respectively. This alignment
is repeated for every column. Table 4.4c is the alignment of m2, by adding 0, −3, −2, and −5
to g1, g2, g3, and g4 respectively.

Constant-column (or similar-column) biclustering is applied to every column alignment to
�nd additive biclusters. In the second column alignment (Table 4.4c), we obtain ({g1, g2, g3},
{m2,m3,m4}) as a constant-column bicluster. This corresponds to the additive bicluster ({g1,
g2, g3}, {m2,m3,m4}) in the original matrix (Table 4.4a).

Multiplicative biclusters can also be obtained using similar column alignment. In multiplica-
tive column alignment, instead of adding values to each row, we multiply each row such that

64

4.5. Concept mining

a column has a constant value. Table 4.5b shows the second column alignment of the original
matrix in Table 4.5a. Here, a constant value is achieved for m2 by multiplying g1, g2, g3, and g4
by 1, 1

3 ,
1
2 , and

1
2 respectively. Then, by applying IPS to each alignment, we can obtain the mul-

tiplicative biclusters. For example, constant-column biclustering using IPS in Table 4.5b returns
({g1, g2, g3}, {m2,m3,m4}), which is the corresponding multiplicative bicluster in Table 4.5a.

4.5 Concept mining

Being a generalization of FCA, the mining of interval pattern concepts can be performed using
some existing algorithms that generate a complete list of formal concepts. In this chapter, we
use CloseByOne (CbO) [65] since it requires us to only de�ne the similarity (u) and subsumption
relation (v) of any two descriptions.

In a given numerical matrix, we may obtain an exponential number of interval pattern con-
cepts. To reduce the number of concepts, we should introduce some parameters that can �lter
out some uninteresting concepts.

The �rst parameter, θ, is previously mentioned in Sect. 4.3. It limits the length of intervals,
and later in Sect. 4.6 we demonstrate the e�ect of θ on the runtime and number of concepts.

The second parametermin_col is the minimum number of columns in the retrieved biclusters.
The number of columns in a bicluster corresponds to the number of non-star intervals in the
concept's intent. For example, the concept with intent 〈∗ ∗ [2, 2] ∗ [6, 7]〉 gives us a bicluster
with two columns (the third and the �fth). To take into account the min_col parameter, it is
necessary to modify the de�nition of similarity between any two descriptions. In addition to the
de�nition of u in Eq. 4.4, we verify if the number of non-star intervals in the description is less
than min_col. If yes, then every interval is converted to ∗. In Table 4.1 with θ = 1, g1 u g4 is
〈∗ ∗ [2, 2] ∗ [6, 7]〉. Using min_col = 3 for example, g1 u g4 becomes 〈∗ ∗ ∗ ∗ ∗〉.

Related to min_col is min_row, a parameter that put a constraint on the number of rows
in a bicluster. It corresponds to the number of objects in a concept's extent. The inclusion of
min_row to CbO is given in Algorithm 8. Here we see that the calculation of Y � (all objects
whose description subsumes Y) in line 21 is performed only if the number of objects in Z is at
least min_col.

4.6 Experiments

In this section, we report some experimental results to show the scalability of IPS in the task
of biclustering. First, in Sect. 4.6.1 we study the e�ects of our parameters (θ, min_row, and
min_col) to the runtime. Then, we compare our IPS-based biclustering method to other pattern-
based method (Sect. 4.6.2) and numerical method (Sec. 4.6.3).

4.6.1 E�ects of parameters

We use the synthetic datasets provided by Henriques and Madeira [43]. First, we investigate the
e�ect of θ on the runtime and the number of concepts. The results are illustrated in Fig. 4.5.
The left �gure con�rms that the larger θ generates more interval pattern concepts, and generally
longer runtime as it can be seen in the right �gure. The θ = 0.4 requires longer runtime than
θ = 0.5 to 0.9. This is normal since for similar number of concepts, the probability of smaller
θ obtaining a concept is smaller than the larger θ. Using CbO with smaller θ, a candidate
concept will have shorter intervals in its intent, hence smaller number of objects whose description

65

Chapter 4. Biclustering with interval pattern structures

1 CloseByOne:

2 L := ∅
3 foreach g ∈ G do
4 Process({g}, g, (g��, g�))
5 end
6 L is the concept set
7

8

9 Process(A, g, (C,D)):

10 if {h|h ∈ C\A and h < g} = ∅ then
11 if size(C) ≥ min_row then
12 L := h ∪ {(C,D)}
13 end
14 foreach f ∈ {h|h ∈ G\C and g < h} do
15 Z := C ∪ {f}
16 Y := D ∩ {f}�
17 if size(Z) < min_row then
18 X := Z
19 end
20 else
21 X := Y �

22 end
23 Process(Z, f, (X,Y))

24 end

25 end
Algorithm 8: The introduction of min_row to CbO algorithm (line 11�13 and 17�22).

subsumes this interval. For example, with smaller θ, algorithm may perform:

· · · → {g1, g2}�� = {g1, g2} → {g1, g2, g3}�� = {g1, g2, g3} → · · · ,

while larger θ may �jump� from {g1, g2}�� to larger set of objects:

· · · → {g1, g2}�� = {g1, · · · , g4} → {g1, · · · , g5}�� = {g1, · · · g8} → · · · .

The e�ect of min_col is shown in Fig. 4.6. Lesser min_col produces more concepts, and
therefore longer runtime. Similarly, Fig. 4.7 shows that largermin_row generates more concepts,
but not necessarily longer runtime. This is due to our approach of including min_row to CbO
(see Algorithm 8) that prevents the calculation of Y � until Z has at least min_row objects. For
example, a concept with extent {g1, g2, · · · g10} may be generated when Z has 10 objects. Using
smaller min_row, this concept may also be generated when Z has only 2 objects (if for example
{g1, g2}�� = {g1, g2, · · · g10}).

4.6.2 Comparison with pattern-based method

In the previous experiments, the CbO algorithm was terminated until all interval pattern con-
cepts were retrieved. In the following experiment, CbO is terminated until 500 concepts are
found. We compare them to BicPAM [43] that uses a discretization parameter (as a number

66

4.6. Experiments

0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

θ

N
u
m
b
er

of
co
n
ce
p
ts

0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

θ

R
u
n
ti
m
e
(m

in
u
te
s)

Figure 4.5: E�ect of θ on a 500× 60 dataset with min_col = 20 and min_row = 1.

5 6 7 8 9 10
0

2

4

6
·104

min_col

N
u
m
b
er

of
co
n
ce
p
ts

5 6 7 8 9 10
0

20

40

60

80

min_col

R
u
n
ti
m
e
(m

in
u
te
s)

Figure 4.6: E�ect of min_col on a 500× 60 dataset with θ = 1 and min_row = 5.

6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
·104

min_row

N
u
m
b
er

of
co
n
ce
p
ts

6 8 10 12 14 16 18 20
0

10

20

30

40

min_row

R
u
n
ti
m
e
(m

in
u
te
s)

Figure 4.7: E�ect of min_row on a 500× 60 dataset with θ = 1 and min_col = 6.

67

Chapter 4. Biclustering with interval pattern structures

Table 4.6: Comparison with BicPAM on 1000 × 100 dataset. For the IPS, the parameters
min_row = 10 and min_col = 5 are used, with varying θ.

Method Parameter Runtime (s) Number of biclusters

BicPAM alphabet = 20 <15 ∼100
alphabet = 10 <15 <200
alphabet = 7 <15 <200
alphabet = 5 <30 ∼200

IPS θ = 1 37 500
θ = 2 >500 500
θ = 4 47 500
θ = 8 39 500

of alphabet/items), while IPS uses the length of intervals as θ. After the mapping step (nor-
malization, discretization, and missing values and noise handling), BicPAM applies a pattern
mining method (F2G [47] as default), and the closing step (extension, merging, and �ltering) is
performed. Results in Table 4.6 show a similar performance of both methods. It should be noted
that the number of biclusters from BicPAM is lower due to the closing step.

Furthermore, still from Table 4.6, the runtime of IPS is not exactly correlated with θ (espe-
cially with θ = 2), similar to our previous experiment shown in Fig. 4.5. Overall, with similar
runtime, biclustering with IPS can return similar number of biclusters without discretization.

4.6.3 Comparison with numerical method

In this subsection we are interested to compare IPS as a pattern-based method with a Cheng
and Church (CC) algorithm [18] as a numerical method in additive biclustering. CC algorithm
�nds a set of biclusters having MSR (mean squared residue) less than a user-de�ned threshold.
These biclusters correspond to constant, similar-row, similar-column, and additive biclusters.

We use BicAT Yeast dataset2, a data matrix containing the expression levels of 419 probesets
over 70 conditions (hence a 419×70 numerical matrix). The BicAT Yeast dataset is also available
in the biclust3 package of R, along with an implementation of CC algorithm which we use in
our experiments.

The comparison is given in Table 4.7. The �rst column of this table provides the largest MSR
among all retrieved biclusters. Smaller MSR means that the additive bicluster has less noise. In
CC, the largest MSR is given by user-de�ned parameter, while in IPS, it is the consequence of
the parameter θ. Larger θ means that the intervals are wider, which are more prone to noise.
Consequently, larger θ results in biclusters with larger MSR.

In the fourth column, the number of biclusters is given for each entry. For CC, this is the �nal
number of all biclusters that can be found, while for IPS, this is the number of biclusters found
within the corresponding runtime. For example, in the �rst entry, after �nding 97 biclusters, CC
can not �nd any other possible biclusters, so it stops at 13.37 seconds. On the other hand, in
the second entry, in 13.02 seconds IPS can �nd 500 bicluster, but it could �nd other biclusters
with more runtime.

In general, with similar MSR, IPS can retrieve more biclusters in similar runtime. Further-
more, with similar MSR and runtime, CC can �nd larger biclusters. This is because CC generally

2http://www.tik.ee.ethz.ch/sop/bicat/
3https://CRAN.R-project.org/package=biclust

68

4.7. Conclusion

Table 4.7: Comparison of additive biclustering using Cheng and Church's algorithm (CC) and
IPS-based algorithm. The size of a bicluster is de�ned as the number of its cells.

MSR max. Method & parameters Runtime (s)
Number of Size of biclusters
biclusters max min

0.001 CC 13.37 97 56 6
0.001 IPS (θ = 0.1, r = 2, c = 10) 13.02 500 58 20

0.01 CC 3.80 35 630 18
0.009 IPS (θ = 0.3, r = 2, c = 10) 3.02 100 52 20

0.02 CC 2.21 20 1275 30
0.02 IPS (θ = 0.5, r = 4, c = 10) 2.52 75 110 40

0.03 CC 1.43 16 2070 33
0.03 IPS (θ = 1, r = 7, c = 10) 1.56 50 240 70

0.04 CC 1.24 13 2821 39
0.043 IPS (θ = 1.4, r = 10, c = 10) 2.14 50 430 310

MSR = mean squared residue; θ = maximum width of an interval;

r = minimum number of rows in a bicluster = minimum extent size of a concept;

c = minimum number of columns in a bicluster = minimum number of non-* intervals in a concept's intent.

�nds the largest bicluster at the �rst iteration. Then it �masks� the submatrix corresponding to
this bicluster, so in the next iteration, another smaller bicluster is found. The iteration stops
when the algorithm can not �nd any more bicluster. Consequently, this also means that CC re-
trieves many small biclusters. These small biclusters can be discarded in IPS via the parameters
min_row and min_col (in Table 4.7, r and c respectively). Therefore, in the table, we can see
that with similar MSR and runtime, the smallest bicluster found by IPS is still larger than the
smallest bicluster found by CC.

4.7 Conclusion

In this chapter, we propose an alternative method of biclustering in numerical datasets. Dis-
cretization is a general preprocessing step while working with numerical values. Here we explore
the possibility of working directly on numerical datasets without discretization. This can be
achieved using interval pattern structures, where a bicluster can be found from any interval
pattern concept. To �lter the number of concepts (which can be very large) it is necessary to
provide some parameters, like the length of intervals, minimum number of rows and columns, or
even minimum number of biclusters. Our experiments show that these parameters can reduce
the computation to a reasonable runtime.

We use the CbO algorithm, a formal concept generator that can be generalized to interval
pattern structures. In-Close 2 [8] in particular is faster than CbO in formal concept mining,
but its e�ciency in interval pattern concept mining should be studied. Another future re-
search is to extend our FCA-based approach to other types of biclusters, e.g. coherent-evolution,
coherent-sign-changes, etc. Furthermore, the existence of missing values and/or outliers should
be considered in improving the proposed biclustering method.

69

Chapter 4. Biclustering with interval pattern structures

70

Part II

Experiments in mining complex data

71

Chapter 5

Sequence mining within FCA for

analyzing visitor trajectories

Contents

5.1 CrossCult project . 73

5.2 The mining of sequences . 75

5.3 Sequence mining in FCA . 75

5.4 The dataset of museum visitors 77

5.4.1 The museum . 77

5.4.2 The four visiting styles . 78

5.5 Work�ow for analyzing the trajectories 79

5.6 Clustering of trajectories . 79

5.7 The mining of trajectories considered as sequences 79

5.7.1 Mining subsequences with MFCS and MRGS 79

5.7.2 Jumping emerging patterns . 81

5.8 Discussion . 81

5.8.1 Cluster characterization . 81

5.8.2 Conclusion . 83

In this chapter we explore the application of FCA and pattern structures in analyzing visitor
trajectories for CrossCult project. First, we describe the project in Sect. 5.1. Then, we explain
some de�nitions of general sequence mining in Sect. 5.2 and sequence mining in FCA in Sect. 5.3.
The approach for analyzing visitor trajectories using FCA is explained in Sect. 5.5�5.7. Lastly,
we end this chapter with some discussions and conclusions in Sect. 5.8.

5.1 CrossCult project

This chapter is focused on KDD in the framework of CrossCult (http://www.crosscult.eu/), a
European Project about cultural heritage. The general idea of CrossCult is to support the emer-
gence of a European cultural heritage by allowing visitors in di�erent locations (e.g. museum,
city, archaeological site) to attentively think of their visit at a European level by using adapted
computer-based devices.

73

Chapter 5. Sequence mining within FCA for analyzing visitor trajectories

The objectives of this project can be summarized as two groups: humanities and innovation.
In the �rst group, the researchers investigate how historical facts are retained by an individual,
such that an insight of how the same facts may be di�erently interpreted by di�erent person can
be gained.

This thesis is a part of the second objective, which is the innovation. In this objective, a se-
mantic knowledge base is created, which contains multi-level, cross-repository interconnection of
venues and digital cultural heritage resources. Furthermore, some new technologies are developed
for smart venues and cities. Particularly, we assess the impact of state-of-the-art technologies of
geolocalization, content adaptation, and personalization in mobile applications.

In concretizing the history re�ection framework, the CrossCult technology platform is demon-
strated to stimulate re�ection and reinterpretation of history. This is performed by using mobile
tools and applications on real sites across Europe. These demonstrations are classi�ed into four
�agship pilots:

• Pilot 1: Large multi-thematic venue. This pilot works in a speci�c venue having broad
theme of collections, particularly the National Gallery in London, where the application
provides new visitor experiences associated with exploring and searching gallery collections.
Some features on this pilot include a personalized guide through paintings and search for
similar paintings.

• Pilot 2: Multiple small venues, which works on various related venues distributed in multi-
ple cities. This pilot was applied in Chaves (Portugal), Ludo (Spain), Montegrotto Terme
(Italy), and Epidaurus (Greece), where each of them has various Roman historic sites.
The visitors were expected to collectively engage in the discovery of unknown connections
between these related sites.

• Pilot 3: One venue, non-typical transversal connections. Presented in Archaeological Mu-
seum of Tripolis (Greece), this �agship pilot focuses on the life of women in ancient Greece
by providing the hidden narratives between physical and digital objects in the museum.

• Pilot 4: Multiple cities, �past & present� interplay. As the name suggests, this pilot
connects physical cultural heritages that shape the everyday spheres of life. It was presented
in Tandil (Argentina), Luxembourg City, and Valletta by means of outdoor exhibition,
treasure hunt, etc.

For each of these �agship pilots, a mobile application was developed as the interaction tool
between visitors as users and CrossCult team as knowledge provider. This application registers
the trajectory of each visitor while interacting with them by various means. A map is provided
in the application and visitors can explore the venue and read in their mobile phone the descrip-
tion of any point of interest. In certain venues, a maze is given in the application such that
visitors solve and unlock paths by providing information about certain items. In addition to the
simplicity for visitors to discover point of interests, the application also allows them to view ob-
jects on map and 360 degrees view of the �eld location, share contents among their friends, rate
contents, contribute personal stories and react on other's stories, etc. This leads the visitors to
understand the multi-faceted perspective on the study of history and to reckon various possible
interpretations of any historical items.

74

5.2. The mining of sequences

5.2 The mining of sequences

Pattern mining is the task of �nding repeated occurrences in a dataset. For example, in a data
about customer transactions, an objective can be to �nd a set of items that are frequently ordered
after another set. This speci�c task in pattern mining is related to sequential pattern mining.
We recall below the basic de�nitions that we will need.

De�nition 12. A sequence is an ordered list 〈s1s2 . . . sm〉, where si is an itemset {i1, . . . , in},
and m is the size of a sequence. The length of a sequence is the total number of items, i.e.

∑
|si|.

De�nition 13. A sequence s = 〈s1s2 . . . sm〉 is a subsequence of sequence s′ = 〈s′1s′2 . . . s′n〉,
denoted by s � s′, if there exist indices 1 ≤ i1 < i2 < . . . < im ≤ n such that sj ⊆ s′ij for all
j = 1 . . .m and m ≤ n.

Therefore, the sequence 〈{a}{d}〉 is a subsequence of 〈{a, b}{a, c, d}〉, while sequence 〈{c}{d}〉
is not.

One way of evaluating the quality of a subsequence is to compute its support. Given a user-
de�ned threshold, the subsequence can be �frequent�, i.e. the support is above the threshold.

De�nition 14. Let S be a database of sequences. The support of a sequence s in S is:
support(s,S) = |{si ∈ S; s � si}|

There exist algorithms that can retrieve all frequent sequences [39, 10]. Beside mining fre-
quent sequences, another complex task is �nding homogeneous sequence groups (clustering). To
achieve such a task, a similarity measure between two sequences has to be de�ned. The similarity
measure simACS was proposed in [29], which counts the number of all common subsequences
(ACS), formulated as:

simACS(Si, Sj) =
φC(Si, Sj)

max{φD(Si), φD(Sj)}
where φC(Si, Sj) is the number of all common distinct subsequences between Si and Sj , while
φD(Si) is the number of all distinct subsequences of Si.

5.3 Sequence mining in FCA

In this section we brie�y present the two algorithms that are adapted for mining the trajectories
of visitors in a museum, namely MFCS [15] and MRGS [19]. The names of the algorithms are not
used as such in the papers but here we use them by commodity. Both algorithms are original
and very e�cient, and among the few algorithms performing sequence mining in the framework
of FCA.

Using the de�nition of subsequence in Def. 13 as an order between two sequences, the set of
sequences is partially ordered where a sequence subsumes their subsequences. Meanwhile the set
of sequences is not a meet-semilattice, since there is no in�mum (single largest element) for a
certain subset. This is because two sequences can have two common subsequences which are not
comparable to each other. Consider the set of sequences formed by 〈{a}{b}{c}〉, 〈{a}{c}{b}〉,
and their subsequences. This set is partially ordered, whose Hasse diagram is depicted in Fig. 5.1.
The highest lower bounds for 〈{a}{b}{c}〉 and 〈{a}{c}{b}〉 are 〈{a}{b}〉 and 〈{a}{c}〉, but there
is no single largest element among them.

Therefore, the notion of a set of closed sequences is used in sequence pattern structures.
Given a set of sequence S, its set of closed sequences is S+, and de�ned as:

S+ = {si ∈ S| 6 ∃sj ∈ S : si ≺ sj},

75

Chapter 5. Sequence mining within FCA for analyzing visitor trajectories

〈{a}{b}{c}〉 〈{a}{c}{b}〉

〈{a}{b}〉 〈{a}{c}〉 〈{b}{c}〉 〈{c}{b}〉

〈{a}〉 〈{b}〉 〈{c}〉

〈〉

Figure 5.1: Hasse diagram of 〈{a}{b}{c}〉, 〈{a}{c}{b}〉, and their subsequences.

meaning that in S+ there is no two sequences where one is a proper subsequence of another.
The set S+ is the description d of an object in pattern structures. The d1 is subsumed by d2 if
for every sequence in d1 there exists its supersequence in d2, or:

d1 v d2 ⇐⇒ ∀si ∈ d1∃sj ∈ d2 : si � sj .

For example, {〈{a}〉, 〈{b}〉} is subsumed by {〈{a}{b}〉, 〈{a}{c}〉}
The set of d, called D, is a meet-semilattice since there exists an in�mum for every subset of

D. The meet of d1 ∈ D and d2 ∈ D, written d1 u d2, is their set of common closed subsequences
(SCCS), de�ned as:

d1 u d2 = {si ∩ sj |∀si ∈ d1, ∀sj ∈ d2}+,

where si ∩ sj is the set of all common subsequences between si and sj . For example, given
d1 = {〈{a}{b}{c}〉} and d2 = {〈{a}{c}{b}〉}, then d1 u d2 = {〈{a}{b}〉, 〈{a}{c}〉}.

As explained previously, there are two approaches of sequence mining using pattern struc-
tures: MFCS and MRGS. One di�erence between them is their de�nition of ∩, the set of common
subsequences. MFCS only considers �contiguous� subsequences, while MRGS considers all subse-
quences, contiguous or not.

MFCS was originally introduced for mining trajectories of patients in hospitals. The algorithm
is based on pattern structures and projections, and stability as well. One important characteris-
tic of MFCS is that it mines contiguous subsequences, or stated di�erently, subsequences without
any gap between items. This is due to the fact that physicians are mainly interested in consec-
utive events when analyzing healthcare trajectories. In addition, but this is not needed in our
framework, MFCS is able to take into account a partial ordering � given by domain knowledge for
example � de�ned on the items composing the sequences.

MRGS is also a sequence miner based on pattern structures but with a di�erent purpose.
The objective of MRGS is to mine rare rather than frequent subsequences, and in particular long
subsequences with special characteristics. The algorithm is based on a speci�c pattern structure
of subsequences, where the similarity operation is based on the discovery of SCCS. The SCCS
operation is based on a directed graph of alignments (DAG of alignments) which guides the
mining of common subsequences. The algorithm shows very good performances and is most
probably one of the few algorithms whose objective is the mining of rare subsequences. In our

76

5.4. The dataset of museum visitors

Table 5.1: An example of one visitor trajectory.

Start time End time Item name

12:55:39 12:58:05 Crafts and Arts

12:58:06 12:58:22 Religion and Cult

12:58:22 12:58:27 Building Methods and Facilities

12:58:29 13:05:09 Wooden Tools

Table 5.2: Grouping of museum items.

Category Items and their ID

1 Entrance Reuben Hecht (101),

Symbols Jewish Menorah (102),

Persian Cult (103), Jerusalem Photo (104)

2 Religion and Cult (201), Everyday Pottery (202),

Phoenician Writing (203), Burial Tradition (204),

Building Methods and Facilities (205),

Maritime Commerce (206), Imported Pottery (207),

Crafts and Arts (208)

framework, we adapted MRGS and the support threshold for comparison purposes with frequent
subsequences. However, in our context we will use MRGS as a standard sequence miner and we
will be interested in frequent subsequences.

5.4 The dataset of museum visitors

5.4.1 The museum

In the framework of the CrossCult project, we are working on a speci�c dataset about the
trajectories of 254 visitors in Hecht Museum in Haifa, Israel [67]. In the raw dataset, a visitor
trajectory contains a list of visited items, where each visit is composed of three elements: �start
time�, �end time�, and �item name�. An example is presented in Table 5.1. When modeling
trajectories into sequences, in this chapter we consider only the �item name�, such that every
itemset contains only one item. For simplicity, we omit the curly brackets to describe an itemset.
Therefore for the remaining part of this chapter we will write 〈{a}{d}{e}〉 as 〈a, d, e〉.

A visitor can have visits with various time lengths. In order to obtain more meaningful
results and to reduce the complexity, we only consider visits lasting at least 90 seconds, but
this is a parameter than can be relaxed or more constrained. Thirty-eight trajectories have no
visit more than this threshold, so they are ignored, leaving us with 216 trajectories. Moreover,
we model each trajectory as a sequence of visited items. Therefore, for trajectory in Table 5.1,
the corresponding sequence is 〈Crafts and Arts, Wooden Tools〉. This preprocessing results in
sequences of various size. Forty-�ve sequences have only one itemset, while three sequences have
more than 15 itemsets.

We group the museum items according to their location, so that we obtain 8 categories of
items. To illustrate the numbering of items, the �rst two categories and their items are listed in
Table 5.2. We convert the raw dataset into sequences of items, where each item is represented

77

Chapter 5. Sequence mining within FCA for analyzing visitor trajectories

Table 5.3: Examples of visitor trajectories.

Visitor Trajectory

V1 〈101, 101, 401, 704〉
V2 〈102, 402, 808, 206, 808〉
V3 〈302, 102, 201, 302, 705, 402, 802〉
V4 〈104, 704, 602, 302, 402, 103〉

Figure 5.2: An illustration of four hypothetical visiting styles [62, 105], from left to right: ant,
grasshopper, butter�y, and �sh. Each image represents a room, with gray circles as the items,
and connected black dots as a visitor path.

by its ID. We de�ne the IDs such that we can infer the category of an item by its �rst digit.
Therefore, we obtain a dataset of 216 sequences of visitor trajectories (named V1�V216) where
each sequence is composed by a list of IDs, as illustrated in Table 5.3.

MFCS and MRGS algorithms are suitable for our dataset, since we want to include the hier-
archical information in the mining process. For example, given two sequences 〈102, 203〉 and
〈103, 204〉, it is interesting to mine subsequence 〈1, 2〉.

5.4.2 The four visiting styles

In a seminal work about the typing of visitor styles in a museum [96], four main behaviors have
been detected and described, leading to di�erent recommendations all along a visit [62, 105].
These four styles are illustrated in Fig. 5.2 and summarized below:

• The ant is a visitor who will surely see all the works following their location order in the
museum. Then the recommendation can be the following item, but depending also on some
environmental factors such as the crowd in the museum, the accessibility of the item and
the fatigue of the visitor.

• The grasshopper is a visitor who will see only certain artworks, jumping from one to another.
Then, to encourage such a person to visit more items, the recommendation can be to visit
items having a content similar to items already visited.

• The butter�y is a visitor wanting to discover some and not all artworks, without having
any exact preferences. Then, the recommendation is open and can be based on surprise
(items which are very di�erent one from the other).

• The �sh is a visitor who does not feel that much interested in the artworks and stays
most of the time in the center of the rooms without any precise objective. Then the

78

5.5. Work�ow for analyzing the trajectories

recommendation can be to visit the most famous items in the museum which are the closer
to the current visitor location, for encouraging the visitor to continue the visit and gain
more interest.

Indeed, a visitor can change his/her style during a visit and other elements may be of impor-
tance, e.g. crowd or fatigue of the visitor.

5.5 Work�ow for analyzing the trajectories

In the following, one objective is to map speci�c subsequences included in the visitor trajecto-
ries to each visiting style for characterizing more precisely the style and then making smarter
recommendations. To identify the behavior of each visitor, we propose the following work�ow:

1. Cluster the visitor trajectories and assign a label for each visitor (Sect. 5.6).

2. Create two concept lattices using MFCS and MRGS over the whole dataset (Sect. 5.7.1).

3. From the two lattices, �nd jumping emerging patterns (JEPs) for each label (Sect. 5.8.1).

4. Based on their JEPs, these labels are then mapped into four visiting styles as explained in
Sect. 5.4.2.

5.6 Clustering of trajectories

In this �rst experiment, we reuse the simACS similarity measure for clustering the visitor trajec-
tories. The idea is to check whether it is possible to distinguish the four visiting styles introduced
above. We apply hierarchical clustering4 based on simACS to build a distance matrix between
individuals. From the resulting dendrogram, we retained 5 clusters denoted by �A�, �B�, �C�, �D�,
and �E�. Four of them are expected to match the four visiting patterns, namely ant, butter�y,
�sh, and grasshopper. The last cluster will gather all non-classi�ed trajectories. These �ve clus-
ters have various sizes. Cluster �A�, �B�, �C�, �D�, and �E� have 11, 11, 59, 102, and 33 visitors
respectively.

Actually, it is not easy to directly match the �ve clusters to corresponding visiting styles. For
doing so, we will analyze the subsequences that can be attached to each cluster of trajectories.
The bene�t of the clustering is actually to provide a label among �A�, �B�, �C�, �D�, and �E� to
the visitors. Thanks to these labels, we can search the so-called �jumping emerging patterns�
and attach a characterization to the clusters based on the mined subsequences.

5.7 The mining of trajectories considered as sequences

5.7.1 Mining subsequences with MFCS and MRGS

Below, we explain the application of the MFCS and MRGS algorithms to the museum dataset and
the building of an associated concept lattice. Moreover, in Sect. 5.7.2, the mining of jumping
sequential patterns will help us to characterize the visitor trajectories.

In MFCS and MRGS, pattern structures are used for mining sequences. The similarity operator
(u) between any two sets of sequences is de�ned as the set of closed common subsequences

4We use the hclust method from the R software [83].

79

Chapter 5. Sequence mining within FCA for analyzing visitor trajectories

Table 5.4: The concepts that are computed by of MFCS and MRGS from four visitors in Table 5.3.

Extent Intent (MFCS) Intent (MRGS)

V1 〈101,101,401,704〉
V2 〈102,402,808,206,808〉
V3 〈302,102,201,302,705,402,802〉
V4 〈104,704,602,302,402,103〉
V1,2 〈1,4〉 not present

V1,4 〈1〉, 〈4〉, 〈704〉 〈1,1〉, 〈1,4〉, 〈1,704〉
V2,3 〈2〉, 〈102〉, 〈402,8〉 〈102,402,8〉, 〈102,2,8〉
V3,4 〈1〉, 〈302〉, 〈402〉, 〈7〉 〈1,302,402〉, 〈302,1〉, 〈1,7,402〉
V1,3,4 〈1〉, 〈4〉, 〈7〉 〈1,4〉, 〈1,7〉
V2,3,4 〈1〉, 〈402〉 〈1,402〉
V1,2,3,4 〈1〉, 〈4〉 〈1,4〉

(SCCS) in the two input sequences. Then, given two sequences, say S1 = 〈401,502,503〉 and
S2 = 〈401,503,502〉, the similarity between these descriptions is:

δ(S1) u δ(S2) = {〈401,502,503〉} u {〈401,503,502〉}
= {〈401,502〉, 〈401,503〉}

In the dataset, the items are grouped into categories (indicated by their �rst digit) and the
SCCS calculation is performed, checking whether two items belong to the same category. Using
the MFCS algorithm it becomes:

δ(S1) u δ(S2) = {〈401,502,503〉} u {〈401,503,502〉}
= {〈502〉, 〈503〉, 〈401,5,5〉}

It should be noticed that MFCS mines contiguous subsequences, i.e. in De�nition 13, ik = ik−1 +
1 for all k ∈ {2, 3, . . . ,m}. Furthermore, the subsequence 〈401,5,5〉 can be regarded as a
generalization, meaning that after item 401, the next two visited items are something in category
5.

In parallel, the default similarity operator of MRGS algorithm can be modi�ed to accommodate
our needs, such that non-contiguous common subsequences can be mined:

δ(S1) u δ(S2) = {〈401,502,503〉} u {〈401,503,502〉}
= {〈401,502〉, 〈401,503〉, 〈401,5,5〉}

Then, based on either MFCS or MRGS, a concept has a set of trajectory/visitor IDs as extent
and a set of common subsequences as intent. Again, it should be noticed that, based on whether
a subsequence is contiguous or not, the obtained concepts are di�erent.

For example, the concepts corresponding to Table 5.3 are shown in Table 5.4. Notice that
both algorithms obtain a concept whose extent is V2, V3, V4, albeit with di�erent intent. Based
on MRGS, the common subsequence of V2, V3, V4 is 〈1, 402〉, while according to MFCS, their common
subsequences are 〈1〉 and 〈402〉. This is because items 1 and 402 are not contiguous in V3 and
V4.

80

5.8. Discussion

Table 5.5: Interesting concepts discovered by the MFCS algorithm.

Concept ID Extent Intent Support Cluster

FA1 {V70, V107, V121, V133, V201, V202} {〈1,1,402〉, 〈103〉, 〈2〉} 6 A
FA2 {V70, V93, V107, V121} {〈402〉, 〈103,104〉} 4 A
FB1 {V103, V165, V188} {〈4〉, 〈1〉, 〈306〉, 〈701,707〉} 3 B
FC1 {V4, V8, V28, V32, V84, V152} {〈102〉, 〈101,1,101〉} 6 C
FC2 {V53, V152, V169, V189, V190, V203} {〈7〉, 〈102,4〉} 6 C
FC3 {V4, V8, V32} {〈101,102,101〉} 3 C
FD1 {V54, V105, V139, V168} {〈202,4〉} 4 D
FD2 {V139, V168} {〈202,405,701〉} 2 D
FD3 {V46, V47} {〈101,602〉} 2 D
FD4 {V89, V163} {〈602,203〉} 2 D

5.7.2 Jumping emerging patterns

FCA is a non supervised classi�cation process that can be turned into a supervised process
thanks to the addition of a target attribute in the context, generally corresponding to a target
class. Then the idea is to search for the so-called �Jumping Emerging Patterns� (JEPs) [28]. This
approach is already applied in [9] for analyzing and characterizing clusters of biological inhibitors.
Here we adapt the same idea for characterizing this time the clusters of visitors discovered with
the similarity measure simACS .

More precisely, �ve clusters are discovered by classifying visitor trajectories with simACS .
These same trajectories are then considered as sequences composed of subsequences. Then a set
of characteristic subsequences are extracted and they are used as �attributes� in a formal context
where objects are visitor trajectories. The resulting formal context is completed with an extra
attribute corresponding to the �cluster information�, i.e. the cluster in which the trajectory is
classi�ed according to simACS . A concept lattice can then be built from this completed context.

More interestingly, the cluster information is used for characterizing the concepts whose
extent contains trajectories of a single cluster. The intent � made of subsequences � of these
particular concepts is JEPs, and as such they can be used to characterize the corresponding
clusters. For example, if the extent of the concept ({V103, V165, V188}, {〈4〉, 〈1〉, 〈306〉, 〈701,707〉})
includes visitors from cluster B only, then its intent is a JEP for that cluster.

5.8 Discussion

5.8.1 Cluster characterization

Now we are interested in characterizing the �ve clusters that were introduced in the previous
section. For doing so, JEPs are searched in the two concept lattices obtained with MFCS and
MRGS algorithms. Some of these concepts are listed in Table 5.5 and Table 5.6.

First, from both MFCS and MRGS, we cannot �nd any interesting concept for JEP of cluster
�E�. This is because among all the concepts whose extent is exclusively from cluster �E�, none of
them has more than one visitor. If we consider the dataset, among 33 members of cluster �E�,
32 of them visit less than 2 items during their whole visit. We can assume that these visitors are
not really interested in visiting the museum. Therefore, we can �safely� label this cluster as �sh.

Cluster �D� is more easily distinguishable. Based on subsequences of concept FD2�FD4, many

81

Chapter 5. Sequence mining within FCA for analyzing visitor trajectories

Table 5.6: Interesting concepts discovered by the MRGS algorithm.

C
on
ce
p
t
ID

E
x
te
n
t

In
te
n
t

S
u
p
p
or
t

C
lu
st
er

R
A
1

{V
7
0
,V

1
0
7
,V

1
2
1
,V

1
3
3
,V

2
0
1
,V

2
0
2
}
{〈
1
,
1
,
4
0
2
,
2
〉,
〈1
,
1
,
4
〉,
〈1
0
3
,
4
0
2
,
2
〉,
〈1
0
3
,
4
〉}

6
A

R
B
1

{V
1
4
2
,V

1
8
3
,V

1
9
2
}

{〈
1
0
2
,
1
,
1
,
1
,
1
〉,
〈1
0
2
,
1
0
3
,
1
,
1
〉,
〈1
,
1
,
1
,
1
,
1
〉,
〈1
,
1
0
3
,
1
,
1
〉}

3
B

R
C
1

{V
4
,V

8
,V

2
8
,V

8
4
,V

1
5
2
}

{〈
1
,
1
,
1
,
1
0
1
〉,
〈1
,
1
0
1
,
1
,
1
0
1
〉,
〈1
,
1
,
1
,
1
〉,
〈1
,
1
0
1
,
1
,
1
〉,

5
C

〈1
0
1
,
1
,
1
,
1
〉,
〈1
0
1
,
1
0
1
,
1
,
1
〉,
〈1
0
1
,
1
0
1
,
1
0
1
〉,
〈1
0
2
,
1
0
1
〉,
〈1
0
2
,
1
〉}

R
D
1

{V
7
1
,V

7
9
}

{〈
7
0
1
,
5
0
4
〉}

2
D

R
D
2

{V
9
7
,V

9
8
}

{〈
7
0
1
,
4
0
6
〉}

2
D

82

5.8. Discussion

visitors in this class skip some items. Also, in concept RD1 and RD2, some of them visit other
items after item 701. This is not a natural direction, because items in category 7 are located
farther from the entrance than items in category 4 or 5. We can interpret the visitors of this
cluster as grasshopper, since they �jump� from one item to another.

Clusters �A�, �B�, and �C� are relatively similar to each other. The visitors associated to these
clusters follow an ant behavior: a natural �ow (based on RA1�RC1) and no �jump� (based on FA1�
FC2). However, in FC3, three visitors visit 101, then 102, then back again to 101, indicating rather
a butter�y behavior.

5.8.2 Conclusion

In this chapter, we have presented our experiments in mining visitor trajectories that are mod-
eled as sequences of items. First, we clustered the trajectories according to their common subse-
quences. Then, we tried to validate the clusters as behaviors (ant, butter�y, �sh, and grasshop-
per). This is done by applying two sequence miners based on FCA to the visitor trajectories,
namely MFCS and MRGS, to discover characterizing contiguous and general subsequences in each
cluster.

Our result highlights some interesting patterns that may de�ne visitor behaviors. This can
help museum researchers to analyze and evaluate the placement of items and the visiting styles.
Moreover, this analysis is useful to build a recommendation system for future visitors, but we
did not yet study this aspect.

In this thesis, we only included partial information about the museum in the sequences.
More interesting results are expected if other elements are taken into account, such as more
general knowledge about history and geography, as well as the duration and time of the visit.
Furthermore, the selection of interesting concepts can be also guided by the �stability� of concepts
[64]. Finally, from a more dynamic point of view, ongoing information such as comments and state
of the visitors during the visit could be also considered for analysis and on-line recommendation.

83

Chapter 5. Sequence mining within FCA for analyzing visitor trajectories

84

Chapter 6

Guiding antibacterial discovery based

on log-linear analysis

Contents

6.1 Antibacterial drug discovery . 85

6.2 Feature selection . 87

6.3 Log-linear analysis . 88

6.3.1 Goodness-of-�t . 89

6.3.2 Log-linear model . 89

6.3.3 Graphical model . 90

6.3.4 Decomposable models . 91

6.4 Chordalysis . 93

6.5 Classi�cation of antibacterials and non-antibacterials 94

6.6 Evaluation of classi�er performance 95

6.7 Experiments . 96

6.7.1 Previous work . 96

6.7.2 Dataset . 96

6.7.3 Result of Chordalysis . 97

6.8 Conclusions . 101

Feature selection is an important step in KDD, since it reduces the complexity of a dataset.
This complexity reduction is an ongoing research in antibacterial drug discovery, where the data
is a set of molecules with thousand attributes. In this chapter we discuss the interest of log-linear
analysis, especially Chordalysis, applied to the task of feature selection. We begin this chapter
by presenting the domain of antibacterial drug discovery in Sect. 6.1 and feature selection in
Sect. 6.2. The log-linear analysis and Chordalysis as feature selection are explained in Sect. 6.3�
6.4. Lastly, we present the detail and result of experiment in Sect. 6.5�6.7.

6.1 Antibacterial drug discovery

Bacterial and parasitic diseases are the second leading cause of death worldwide5. Being safe and
e�ective in treating infectious diseases, antibiotics have been used without diagnostic culture and

5According to a recent report on antibiotic research released Sept. 17 by the London School of Economics and
Political Science (LSE), 175,000 deaths are attributed to hospital-acquired infections each year in Europe alone.

85

Chapter 6. Guiding antibacterial discovery based on log-linear analysis

susceptibility testing. With its overuse, many bacteria undergo evolution, mutation and selection,
so they become resistant to those drugs [33]. And because of the emergence of drug-resistant
�superbugs�, like methicillin-resistant Staphylococcus aureus (MRSA), traditional antibiotics such
as penicillin and its derivatives are becoming obsolete.

New antibiotics are desperately needed, but the amount of money being spent on the research
and development of these drugs is woefully inadequate as major pharmaceutical companies have
abandoned or cut back antibiotic research and development. Their decision is also supported
by the fact that the investments required for developping new drugs keep increasing while the
expected returns drop as the usability span of the newly developed drugs become shorter.

The unwillingness of many pharmaceutical companies leads the e�ective drug-discovery to
be developed by the academic community, including the computer scientists. The convergence
of computer science and computational chemistry has given rise to the new �eld of chemoinfor-
matics. Chemoinformatics combines various research areas and techniques, including machine
learning, pattern recognition, molecular dynamics, quantum mechanics, and statistics. It is at-
tracting growing attention and recognition as available computing power and data volumes keep
increasing. By harnessing knowledge discovery techniques it aims to o�er more e�cient drug
development methods so as to tackle the pressing challenge posed by drug resistant bacterial
diseases.

Considering the millions of available chemicals spread among chemical providers, companies'
collections and academic laboratories, the huge number of indexed chemical compounds is both
a blessing and a curse. Indeed, the volume of these databases means that they certainly contain
molecules that would provide e�cient weapons against bacterial diseases but this is also what
makes is so di�cult to identify the promising candidates among scores of unsuitable chemical
compounds. For that purpose, a learning procedure using a limited subset of well identi�ed
antibiotics and a large collection of chemical attributes can be used.

Structure and properties of molecules are a gold mine of information to characterize antibi-
otics. Not only physicochemical and chemical graph properties can be calculated from their
structures, but also a large amount of information is obtained from dynamic structure changes
and from the interaction between compounds and their targets. For e�ective use of a �ood of
information obtained from a large number of compounds, chemical information needs to be con-
verted into meaningful and useful data. Any molecule can be represented by a set of numerical
or categorical values, called �descriptors�, that characterize its physicochemical and topological
properties. Such data can be calculated by a large variety of methods and vary in complexity of
the encoded information and in the computer time for calculated them. Among such descriptors,
some are related to the chemical graph while others are linked to a 3D representation. Conse-
quently, for a given set of chemicals, we have to handle matrices with rows as the molecules IDs,
and columns as the descriptors values.

In computer-aided drug design, considering the huge variety (several thousands) of molecular
descriptors that are presently available for describing physico-chemical properties, the problem is
how to achieve an optimal selection of appropriate sets in order to analyze, with highest accuracy,
chemical diversity/similarity among large chemical libraries (several million of objects). Such
�optimally selected descriptors� should provide the most e�cient rules which can be used next
to describe molecules with a common behavior. Such knowledge extraction phase would help
to extract compounds presenting all the same required action. The di�culty is therefore to
achieve properly the reduction in size of the descriptor matrix (from several thousands to several
hundreds) without losing important information.

The usual way for that is to look for possible correlations between the descriptors to avoid
redundancies. But it has been proved that such basic statistical analysis is not really e�cient �

86

6.2. Feature selection

new approaches are desired. Consequently, there is a need to design a method that can help us
to understand the data better. This is the subject of Knowledge Discovery in Database (KDD),
where computational theories and tools can help us in discovering knowledge from large datasets
[32], in this case the molecular descriptors.

The present chapter is concerned with the task of dimensionality reduction, or feature selec-
tion, on a di�cult problem for medicinal chemistry. Dimensionality reduction of the data space
refers to the process of converting a set of data having large dimensions into data with lesser
dimensions ensuring that it conveys similar information concisely. These techniques are typically
used while solving machine learning problems to obtain better features for a classi�cation or re-
gression task and concern many research �elds of life sciences (see for example very recent papers
assessing the strong interest for this �eld) [24, 68, 82, 102, 107]. Such reduction techniques, also
related to feature selection methods, are of crucial importance in several aspects of drug design
[54, 71, 84, 91, 98, 103], especially in drug/non-drug classi�cation [61] adverse drug e�ects [70]
and QSAR.

6.2 Feature selection

For discovering new antibiotics, we inspect a number of chemical molecules, to know which
ones can characterize an antibiotic. To do that, it is necessary to look at the properties of each
molecules, for example the number of atoms, the presence of certain atoms, the presence of rings,
polarity, eccentricity, etc. All those properties sum up to thousands of attribute which means
that we need a signi�cant amount of time and space.

In order to minimize the required time and space, before we mine the data, we should reduce
the dimension of the data set, as a transformation step in Fig. 1. It is performed by combining
some attributes into one, or by completely eliminating some of them.

Within the thousands attributes for each molecule, we can identify some redundancies. Per-
centage of H atoms correlates with number of H atoms and number of atoms, number of C
atoms correlates with number of CR3X structure, and many more hidden correlations. There-
fore, we can ignore an attribute if they can be represented with another attributes. The selected
attributes should be able to de�ne the molecules without signi�cant loss of information.

Beside the redundancies, we should also ignore the attributes which is not descriptive. For
example, if we have an attribute describing the number of phospanes of a molecule, but all
molecules have no phospanes, this attribute clearly can't distinguish between antibacterial and
non-antibacterial molecules.

Many algorithms have been proposed to do this feature selection task. As illustrated in Fig.
6.1, they can be classi�ed into two categories [55]:

1. Filter model, where feature selection is executed independently before the data mining
process. This model doesn't take into account the classi�cation algorithm that will be used.
One common method is χ2, who assigns a score to each feature based on the dependencies
between them and the class. The higher scores belong the more important features. We
then do a feature selection by removing the features whose score is less than a threshold.

2. Wrapper model, means that feature selection process exists as a wrapper around the clas-
si�cation algorithm. This algorithm will become a part of an evaluation function. An
example of this model is studied by Li and Yang [69]. They examined two wrapper models,
recursive and non-recursive. At each iteration in recursive approach, a classi�er is trained,
and feature weights are obtained. The feature with the smallest weight is then removed.

87

Chapter 6. Guiding antibacterial discovery based on log-linear analysis

(a) (b)

Figure 6.1: Two approaches of feature selection: �lter model (a) and wrapper model (b). [55]

The iteration stops when the desired number of features t is attained. On the other hand,
in non-recursive approach, after all feature weights are calculated, t features are selected,
and the rests are immediately discarded. They examined both approaches using three clas-
si�ers: SVM, ridge regression, and Rocchio. Eventually, it is shown that ridge regression
was the best choice, since it penalizes many redundant features e�ectively.

6.3 Log-linear analysis

This section describes log-linear analysis (LLA) and its graphical representation. LLA can �nd
any associations among attributes, allowing feature selection according to those associations.

Suppose that we have a data set WAR of certain molecules with three variables: molecular
weight (W), number of atoms (A) and ring perimeter (R). Relationship between two variables
can be studied with two-way χ2 test of association. However, if we have more than two variables,
we need to do a multiway frequency analysis to study the two- and three-way associations. LLA
is an extension of multiway frequency analysis, and tries to discover any statistical relationships
between three or more non-continuous variables. It will create a model (like the one in Eq. 6.4)
to �nd the log of expected frequencies.

For the WAR data set with contingency table in Table 6.1, LLA tries to answer some rela-
tionship questions. Is a molecule's weight related to its number of atoms? Is a molecule's number
of atoms related to its ring perimeter? Is there a three-way relationship among molecular weight,
number of atoms, and ring perimeter? By knowing ring perimeter of a molecule, can we predict
its weight?

To do a multiway frequency analysis with LLA, we develop a linear model of the logarithm
of expected cell frequencies. An example of such model is shown in Eq. 6.4, with each term
representing an association. As the number of variables increases, the number of associations
also increases. With three variables in data set WAR, we have seven possible associations: one
three-way associations, three two-way associations, and three one-way associations. The model
in Eq. 6.4 contains all possible associations. To keep the simplicity of a model, LLA tries to �nd
which association will be kept or removed. To do that, we should determine the signi�cance of
an association by examining the goodness-of-�t of the model containing it.

88

6.3. Log-linear analysis

Table 6.1: An example of contingency table of a dataset about molecular weight (W), number
of atoms (A) and ring perimeter (R) [88].

Molecular weight Number of atoms
Ring perimeter

Total
Narrow Wide

Light Small 15 15 30
Large 10 15 25

Total 25 30 55
Medium Small 10 30 40

Large 5 10 15
Total 15 40 55

Heavy Small 5 5 10
Large 10 25 35

Total 15 30 45

Eventually, with thousands of variables, the number of possible associations will be so large
that it would be impractical to test each association. This limitation can be solved by Chordal-
ysis.

6.3.1 Goodness-of-�t

The goodness-of-�t of LLA measures the conformity between the expected and observed frequen-
cies. With only two variables, there is one two-way association. To test the goodness-of-�t of a
two-way association, we can use χ2 test:∑

i

(Oi − Ei)
2

Ei
, (6.1)

where for each cell i of contingency table, Oi is its observed frequency and Ei is its expected
frequency. The summation is done over all cells.

However, since there are multiway associations in LLA, we use G2 test. This test can re-
place χ2 test in measuring the conformity of observed and expected frequencies. G2 statistic
is distributed as χ2, so we can use χ2 table to evaluate its signi�cance. This statistic has the
equation:

2
∑
i

Oi ln

(
Oi

Ei

)
. (6.2)

Moreover, G2 statistic is used because of its additivity property, which is not present in χ2

statistic. Therefore, in a two-way analysis of variable A and B, test of overall association G2
T is

the sum of �rst-order tests, G2
A and G2

B, and association test G2
AB:

G2
T = G2

A +G2
B +G2

AB. (6.3)

This property is useful to test the residual frequency of a model, which will be shown in Section
6.3.2. For the computation detail of G2 please refer to [88].

6.3.2 Log-linear model

Log-linear model is represented as an equation to �nd a logarithm of E (expected frequency of a
combination of variables' values), e.g. the expected value of the cell light-small-wide in Table 6.1.

89

Chapter 6. Guiding antibacterial discovery based on log-linear analysis

From data set WAR, we can generate a model that contains all possible associations. This is
the saturated model, which can be written as:

lnEwar = θ + λW (w) + λA(a) + λR(r) + λWA(wa) + λWR(wr) + λAR(ar) + λWAR(war) (6.4)

where θ is a constant, and λ term represents an e�ect. Each λ has values as many as the number
of levels, and these values sum to zero. For example, since we de�ne three levels of molecular
weight: light, medium, and heavy, λW (w) has three possible non-zero values: for light (λW (lig)),
medium (λW (med)), and heavy (λW (hvy)), with λW (lig) + λW (med) + λW (hvy) = 0.

A log-linear model can be hierarchical or non-hierarchical. A hierarchical model can be
represented by its highest-order association in square brackets. For example, a model [WA][R]
contains λWA(wa) and λR(r), as well as λW (w) and λA(a).

The score of a model is obtained by calculating its G2 and examining its signi�cance. Based
on Eq. 6.3, G2 of a model is obtained by subtracting the G2 of each association from total G2,
therefore revealing its residual frequency.

For example, let's examine the model [WA][R]. This model has the equation:

lnEwar = θ + λWw + λAa + λRr + λWAwa .

This model has G2:

G2
[WA][R] = G2

T −G2
WA −G2

A −G2
W −G2

R

= 48.09− 27.12− 0.16− 1.32− 13.25

= 6.24 (6.5)

and df = 11− 2− 1− 2− 1 = 5. This residual is not statistically signi�cant (>0.05 in χ2 table),
so the model is good.

We then evaluate a more complex hierarchical model, [WA][WR] for example. Similar with
the example in Eq. 6.5, we have G2

[WA][WR] = 2.48 and its df = 3. This model is also good.

Therefore, we must choose between [WA][R] and [WA][WR].
Notice that both models are hierarchical, and [PS][R] is a submodel of [WA][WR], i.e. we

can �nd all λ terms of [WA][R] in [WA][WR]. In this condition, the di�erence between their
G2s is itself a G2:

G2
di� = G2

[PS][R] −G
2
[PS][PR]

= 6.24− 2.48

= 3.76

with df = 5−3 = 2. This di�erence is not statistically signi�cant, so we can select a less complex
model, [WA][R].

6.3.3 Graphical model

Consider the graph shown in Fig. 6.2, a graphical representation of a log-linear model. Its
vertices are connected by an edge to each other because there are λW (w), λA(a), λR(r), λWA(wa),
λWR(wr), and λAR(ar) in the model. Furthermore, because the graph between the three variables
is complete, we can conclude that there is a three-way association between them, λWAR(war).
Therefore, the model is a saturated one, as shown in Eq. 6.4.

90

6.3. Log-linear analysis

W

A R

Figure 6.2: Graphical representation of log-linear model in Eq. 6.4.

5

21

3 4

6

Figure 6.3: A graph with 6 vertices. Its maximal cliques are {1, 2, 3, 4}, {2, 4, 5}, and {5, 6},
with {1, 2, 3, 4} as the maximum clique. Its minimal separators are {2, 4} and {5}, with {5} as
the minimum separator. The minimal (2, 6)-separator is {5}.

Meanwhile, if we exclude λWAR(war):

lnEwar = θ + λW (w) + λA(a) + λR(r) + λWA(wa) + λWR(wr) + λAR(ar) (6.6)

we can't use the graph in Fig. 6.2 as its representation. The graph is complete, so it should have
λWAR(war). But the model in Eq. 6.6 doesn't have it. Actually, we can't draw a graph with
λWA(wa), λWR(wr), and λAR(ar) without including λWAR(war). Consequently, the model in
Eq. 6.6 is not graphical.

Therefore, a log-linear model is graphical if, whenever a model contains all two-way asso-
ciations generated from a higher-order association, the model also contains the higher-order
association. The model shown in Fig. 6.2 contains all two-way associations from λWAR(war).
Thus, it should also contains λWAR(war).

Associated with each graph, we have maximal cliques and minimal separators, as illustrated
in Fig. 6.3. A clique of graph G is a subset of vertices of G whose induced subgraph is complete,
i.e. every two distinct vertices are connected by an edge. A maximal clique is a clique that is not
a subset of another clique. A maximum clique is a clique with the largest number of vertices.

A separator of graph G is a subset of vertices of G whose removal will make G disconnected. A
minimal separator is a separator which doesn't have another separator in its subsets. A separator
with the smallest number of vertices is a minimum separator.

A minimal separator is also a property of a pair of vertices. A minimal (a, b)-separator is
a subset of vertices whose removal make a disconnected from b, and such subset does not have
another separator in its subsets.

6.3.4 Decomposable models

A graphical log-linear model is decomposable if its graph is decomposable. A decomposition of
a graph D is a partition of its vertices V into three disjoint subsets (A,B, S), where:

91

Chapter 6. Guiding antibacterial discovery based on log-linear analysis

5

2

1

3

4

6

7

(a)

5

2

1

3

(b)

5

2 4

6

7

(c)

Figure 6.4: Decomposition of a graph D (a), into its two components (b) and (c).

5

2

5

2

1

3

4

6

5

7

7

Figure 6.5: Maximal prime subgraphs of graph D in Fig. 6.4a.

• A 6= ∅ and B 6= ∅,

• S forms a complete subgraph,

• A and B are not connected in D − S.

The results of this decomposition are called components of D. They are induced subgraphs
from A∪S and B∪S. An example of a decomposition6 is illustrated in Fig. 6.4. Vertices in graph
D in Fig. 6.4a can be partitioned into three subsets: A = {1, 3}, B = {4, 6, 7}, and S = {2, 5}.
This produces the components A ∪ S in Fig. 6.4b and B ∪ S in Figure Fig. 6.4c.

Any graph can be recursively decomposed into its maximal prime subgraphs, i.e. a subgraph
with no decomposition. The graph D in Fig. 6.4a, for example, can be decomposed into three
subgraphs shown in Fig. 6.5.

A graph is decomposable if it is complete or if it can be decomposed into another decompos-
able subgraphs. From this recursive de�nition, this means that all maximal prime subgraphs are
cliques. Consequently, the graph in Fig. 6.4a is not decomposable, since two of its components
(in Fig. 6.5) aren't decomposable.

Moreover, a graph is decomposable if and only if it is chordal. In a chordal graph, every cycle
with length more than three has a chord, i.e. an edge that is not part of the cycle but connects
two vertices of the cycle. The graph in Fig. 6.6a is chordal, but the graph in Fig. 6.6b is not,
because its (A,B,D,E) cycle does not have any chord.

Decomposable models are the only log-linear models which have a closed-form maximum
likelihood estimates [38]. Furthermore, a decomposable model has an advantage concerning its
minimal separators and maximal cliques. They can be generated in linear time in a single pass,
using Lexicographic Breadth First Search or using Maximum Cardinality Search [12].

6taken from http://www.stats.ox.ac.uk/∼ste�en/teaching/cimpa/decomp.pdf

92

6.4. Chordalysis

A

B

CD

E

(a)

A

B

CD

E

(b)

Figure 6.6: Examples of chordal (a) and non-chordal graph (b).

6.4 Chordalysis

There are two ways to select which associations to include in a log-linear model: backward

elimination and forward selection. Backward elimination starts from a saturated model and
eliminates non-signi�cant associations one by one. On the other hand, forward selection starts
from an empty model and iteratively adds an association until the di�erence is not signi�cant.
The existing LLA considers all possible associations to determine which one to be added or
removed. This becomes infeasible when the number of attributes increases, since the number of
associations is exponential w.r.t. it.

Chordalysis tries to guide the existing LLA in selecting which associations are signi�cant
enough to be included in the model [75, 77]. This method is focusing on decomposable log-linear
models, whose G2 can be calculated by inspecting the maximal cliques and minimal separators
of the corresponding graph.

As a forward approach, Chordalysis starts with an empty graph as initial model. It has
neither vertex nor edges. Then at the �rst step of each iteration, the candidate models are
generated. Each candidate M c di�ers from the current best model M∗ by a single edge only.
This edge addition must keep the graph chordal. To �nd such edges, we look at the connectivity
between its two vertices. An edge (a, b) is eligible if:

• a and b are not connected (they belong to di�erent connected components), or

• a and b are connected with all of its chordless paths are of length two.

Since an edge depicts an association between two variables, an addition of a single edge
corresponds to an inclusion of a two-way (and possibly a higher order) association in the log-
linear model. An example is illustrated in Fig. 6.7. Suppose that at a given iteration we have a
best model [02][12][23][34] (Fig. 6.7a) with equation:

lnE = θ + λ0 + λ1 + λ2 + λ3 + λ4 + λ0,2 + λ1,2 + λ2,3 + λ3,4 (6.7)

An eligible candidate must be decomposable. Therefore, instead of generating all models which
have a new edge, it only produces a fewer number of them which are chordal, e.g. [023][12][34]
in Fig. 6.7b with equation:

lnE = θ + λ0 + λ1 + λ2 + λ3 + λ4 + λ0,2 + λ0,3 + λ1,2 + λ2,3 + λ3,4 + λ0,2,3 (6.8)

The models which aren't hierarchical are not selected, because their corresponding graph is not
chordal (Fig. 6.7c). This greatly reduces the search space of selecting a new model. Based on the

93

Chapter 6. Guiding antibacterial discovery based on log-linear analysis

(a) (b) (c)

Figure 6.7: An example of current best model (a). At each iteration, Chordalysis generates all
possible candidates which di�er only in one edge and are chordal. (b) is an available one, while
(c) is not, because the addition of edge (1,4) won't keep the graph chordal.

a

b

(a)

c d

f

e

(b)

Figure 6.8: Examples of connected components with 2 vertices (a) and more than 2 vertices (b).

fact that the graph is chordal and di�ers by only one edge between iterations, the G2 computation
is scalable to thousand variables [76]. After the score calculations, Chordalysis selects the best
M c. Its score is then compared to the signi�cance threshold. If it is lower, then we replace
M∗ with M c and continue to the next iteration. If not, then the current M∗ is the �nal model
because the G2 di�erence by adding an association is not signi�cant.

The signi�cance threshold α is updated at each iteration so it doesn't accept a candidate too
often. This update rule follows the layered critical values [97]. At iteration i, where the current
best model M∗ has L edges, the signi�cance threshold αi is α/(2

L.Si), where Si is the search
space, i.e. the number of chordal graphs that can be formed by adding a single edge to M∗, and
α is a p-value threshold (usually set to 0.05).

Having a graph representing associations among attributes, we then perform feature selection
based on this graph. The attributes which are independent (have no association) are kept,
because they can't be represented by another attribute. Then, basically we remove the attributes
that have only one association. For example, if we encounter a connected component shown in
Fig. 6.8b we keep only attribute d. This means that d can represent c, e, and f . But there is
an exception for some of those one-association attributes. If a connected component has only 2
vertices, like the one in Fig. 6.8a, we randomly choose one attribute and discard the other.

6.5 Classi�cation of antibacterials and non-antibacterials

The attributes that are selected using Chordalysis will be used in three machine learning method
to classify dataset of antibacterials and non-antibacterials.

The �rst method is Support Vector Machine (SVM) [22]. Given a dataset of labelled points,

94

6.6. Evaluation of classi�er performance

SVM builds a hyperplane that best separates the two labels. To deal with non-linearly separable
dataset, SVM use a kernel to map points to higher dimension. The second method is random
forest [13]. It constructs a family of decision trees which have di�erent training set between
each other. To classify data, each tree gives a classi�cation (or �vote�), and random forest takes
the majority vote. The third method is naive Bayes that is based on Bayes' theorem. When
classifying a data D, naive Bayes calculates the posterior probability of each class given D. The
classi�er then chooses the class that has higher posterior probability.

6.6 Evaluation of classi�er performance

To measure the goodness of each classi�er, we calculate the following classical measures:

• TP (true positive), the amount of antibacterial data that are classi�ed as antibacterial,

• TN (true negative), the amount of non-antibacterial data that are classi�ed as non-
antibacterial,

• FP (false positive), the amount of non-antibacterial data that are classi�ed as antibacterial,

• FN (false negative), the amount of antibacterial data that are classi�ed as non-antibacterial,

and we use �ve metrics:

1. Accuracy (percentage of data that are correctly classi�ed):

TP + FN

TP + TN + FP + FN
.

2. Precision (percentage of antibacterial-classi�ed data that are truly antibacterial):

TP

TP + FP
.

3. Recall (percentage of truly antibacterial data that are classi�ed as antibacterial):

TP

TP + FN
.

4. AUC (Area Under the ROC Curve) [14]. The ROC (Receiving Operating Characteristic)
curve is a graphical plot of recall and 1-CNF. CNF (Correct Negative Fraction) is de�ned
by:

TN

TN + FP
.

This curve can be obtained by varying discrimination threshold.

5. f1score (harmonic mean of precision and recall), with formula:

2
1

precision + 1
recall

.

95

Chapter 6. Guiding antibacterial discovery based on log-linear analysis

Table 6.2: Attribute �lters from previous work.

Filter Standard deviation Pair correlation # of selected attributes

1 > 0.010 < 0.4 87
2 > 0.010 < 0.8 576
3 > 0.001 < 0.8 588
4 > 0.100 < 0.8 524

6.7 Experiments

We focus on the task of reducing dimensionality, by selecting features among thousands of fea-
tures. Chordalysis will �nd some associations among variables, and from that we will remove all
variables that can be represented by another.

6.7.1 Previous work

The aim of the previous work [49] was to evaluate the performance of six machine learning
techniques for distinguishing between antibacterial and non-antibacterial molecules. Those six
classi�cation techniques are: Support Vector Machine (SVM) with linear kernel, random forest,
logistic regression, gradient boosted trees, naive Bayes, and decision trees.

The dataset of antibacterial and non-antibacterial molecules were collected from antibac-
terials already in the market (152 molecules), as well as molecules from the MDDR database
(2873 molecules with reported antibacterial properties and 52604 other drugs with no known
antibacterial activity) and the Life Chemicals Inc. catalog (38907 molecules labeled as potential
antibacterials, 52604 from other categories). The Dragon software [93] was then used to de�ne
4885 attributes for each molecule. The values of those attributes were calculated using Corina
[86].

Selection procedures were initially performed to reduce the initial set of attributes. Those
with missing values were removed. Furthermore, if there were a group of attributes which were
perfectly correlated, only one of them was kept. These two removal procedures resulted in 4532
attributes.

From this reduced data set, four �lters were used independently to obtain a fewer number
of attributes, considering their standard deviations and pair correlations. The parameters and
results of these �lters (called Filter 1, Filter 2, Filter 3, and Filter 4) are shown in Table 6.2.
Finally, we ended with 5 data sets: one non-�ltered data set with 4532 attributes and four �ltered
data sets.

This previous work shows us that SVM has the highest precision, but its recall is low. The
recall of random forest is much better than SVM, so it can be used in sacri�cing the high
precision of SVM. In the next sections, we detail our work of applying Chordalysis to perform
feature selection among hundreds of molecular descriptors. This includes which data set is used,
which preprocessing is needed, and the results from our experiment.

6.7.2 Dataset

Our work is focused on 3025 antibacterial molecules, which is composed by 152 molecules from
market and 2873 molecules from MDDR antibacterials. From those molecules, we de�ned 4885
attributes. Besides removing missing-valued attributes and perfectly correlated attributes, we

96

6.7. Experiments

Figure 6.9: The distribution of families in 4885 original attributes, 595 attributes of SC, and
around 500 attributes of S2�4.

also removed attributes that have the same value for all molecules. This resulted in 3769 at-
tributes.

Some of the attributes are continuous. Because LLA and Chordalysis work on discrete vari-
ables, these numerical attributes are preprocessed so that all of them become discrete. This
preprocessing step is applied to attributes which have more than 10 distinct values. Equal-width
discretization method is used, with 10 bins as desired output.

6.7.3 Result of Chordalysis

Attribute selection

Chordalysis (available open-source at http://sourceforge.net/p/chordalysis/) was tested on 3769
attributes, using α = 0.05 as p-value threshold, and it found 1024 associations. The selection
procedure explained in Sect. 6.4 results in 3171 selected attributes. From each �lter of the
previous work, we have four sets of selected attributes. As seen in Table 6.2, Filters 2, 3, and 4
gave us around 500 attributes each; those will be next referred to as S2, S3, and S4 respectively.
In order to compare Chordalysis-based feature selection, we let Chordalysis �nd more associations
without being limited by p-value threshold. After some experiments, we found that after 3613
associations were found, the selection procedure applied on the graph resulted in a set of 595
selected attributes. We call this set SC. Since S2, S3 and S4 are very similar, all three sets are
referred to as S2�4.

All attributes are uniquely categorized within the Dragon software into 29 attribute families.

97

Chapter 6. Guiding antibacterial discovery based on log-linear analysis

Table 6.3: Intersections of the sets of attributes from three �lters and from Chordalysis.

Set S2 S3 S4

SC (595 attr.) 153 154 146
S2 (576 attr.) 569 497
S3 (588 attr.) 496
S4 (524 attr.)

Table 6.4: Population of most relevant attribute families. Last column is the number of attributes
present in all sets (SC, S2, S3 and S4). Percentages correspond to the number of retained
attributes from the original set.

Attribute family Original set SC Overlap

2D atom pairs 1596 373 (23%) 80
2D matrix-based 550 2 1
Edge adjacency ind. 324 2 1
GATEWAY 273 7 1
Functional group cnt. 154 66 (43%) 24
CATS 2D 150 31 (21%) 19
Atom-centered frag. 115 38 (33%) 10
Drug-like indices 27 15 (56%) 1

TOTAL 4885 595 (12%) 144 (3%)

Fig. 6.9 and 6.10 show how those families are distributed within the di�erent sets, with weights
in percentages for S2�4 being de�ned as the average value between S2, S3 and S4. Table 6.4
summarizes the results of Chordalysis-based selection, and also highlights the overlap between
SC and S2�4.

2D atom pairs are by far the most prevalent family in all cases, accounting to 33, 63 and 20%
of the total attributes population in the original, SC and S2�4 sets respectively. It is very clear
that Chordalysis privileged this family, now twice as present in SC compared to the original set,
while on the contrary, it is signi�cantly less important in S2�4.

The atom-centred fragments, CATS 2D and functional group counts families were not preva-
lent in the original set (2, 3, and 3% respectively), and become over-selected in all reduced sets,
with CATS 2D being more prevalent in S2�4 compared to SC. These 3 sets account for 23% of
SC, so with the addition of 2D atom pairs only 15% is remaining.

The relative diversity of the di�erent sets can be compared by focusing on the number of
families accounting for more than 5% of the total number of attributes and on their total weight
(see Figure 8). Only the 4 aforementioned families obey these criteria in SC, totaling 85% of the
set. There are 7 families with more in S2�4 (73%); 4 in the original set (56%). Therefore, three
attribute families are seen signi�cantly more prevalent in S2�4 compared to the original set (26%
/ 15%), but are almost completely �ltered out by Chordalysis: 2D autocorrelations, 3D-MoRSE
and GETAWAY descriptors.

Apart from these families, there is a consensus between S2�4 and SC regarding the removal
of some attribute families from the original set, with SC appearing more stringent than S2�4.
Indeed, the 2D matrix-based descriptors, edge adjacency indices and RDF descriptors account
together for 22, <1 and 5% in the original, SC and S2�4 sets respectively. This suggests that those
descriptors are not of much value for modeling the probability that a given chemical compound

98

6.7. Experiments

2D atom pairs

32.67

2D matrix-based descriptors

11.26

Edge adjecency indices

6.63

GATEWAY descriptors
5.59

1-5%: 12 families

34.62
<1%: 13 families

9.23

(a) Original set: 29 families, 4885 attributes

2D atom pairs

62.69

Functional group counts

11.09

Atom-centered fragments

6.39

CATS 2D

5.21
1-5%: 6 families

12.10

<1%: 10 families
2.52

(b) SC set: 20 families, 595 attributes

2D atom pairs

19.71

CATS 2D

12.69
3D-MoRSE descriptors

11.10

Functional group counts
8.62

2D autocorrelations

8.43

GATEWAY descriptors

6.50

Atom-centred fragments

5.64

1-5%: 12 families

22.16

<1%: 13 families
5.25

(c) S2-4 set: 26 families, 563 attributes on average

Figure 6.10: Distribution of major attribute families in (a) the original set, (b) set SC, and (c)
average of S2, S3, and S4. All values in percentages. Only sets weighting >5% are represented.
Categories in green are the 4 most-represented in SC. Those in orange with description in italic
are mostly �ltered out of both SC and S2�4. Grey ones summarize remaining families (1�5%
and <1%.

99

Chapter 6. Guiding antibacterial discovery based on log-linear analysis

Table 6.5: Means and standard deviations of classi�ers' metrics on the test set. All data in
percentages.

Metric SVM (C = 0.01) Random Forest Naive Bayes

Accuracy 97.0± 2.5 96.6± 1.5 55.7± 1.4
Recall 98.9± 2.0 95.6± 1.5 21.2± 0.6
Precision 95.9± 3.5 98.3± 2.2 93.7± 9.1
AUC 99.3± 1.1 99.5± 0.4 65.3± 4.5
f1score 97.3± 2.2 96.9± 1.3 34.5± 1.0

Table 6.6: Precision and recall of random forest classi�er on the test set. All values in percentages.

α 4532 attributes SC
Precision Recall Precision Recall

10 10.0 71.2 11.6 65.4
20 10.7 68.4 11.8 64.5
30 11.8 65.4 12.2 63.5
40 11.8 65.4 12.2 63.5
50 12.3 64.3 12.3 63.0
60 13.3 61.5 12.6 62.4
70 14.1 60.1 12.8 61.8
80 14.1 60.1 12.8 61.8
90 15.1 59.1 13.0 61.2
100 16.6 56.3 13.3 60.1

would possess antibacterial properties.

Eventually, it should be noticed that while SC size compared to the original set is 12%, only
a single attribute family has been �ltered less than 50%: drug-like indices. This is speci�c to
SC (5 attributes are retained by S2, S3 and S4). There were only 27 residues of this kind in the
original set, which is not signi�cant enough to determine that there could be a correlation between
drug-likeness and antibacterial potency that would be most e�ciently selected by Chordalysis.

Table 6.3 lists the number of overlapping selected attributes from S2, S3 and S4 with SC.
Table 6.4 summarizes SC-related data for most-relevant attribute families identi�ed above, and
highlights the number of consensus attributes i.e. attributes found in all sets.

Training/testing strategy

Using attributes in SC, we trained SVM, random forest, and naive Bayes on data from mar-
ket antibacterials, MDDR antibacterials, Life Chemicals non-antibacterials, and MDDR non-
antibacterials. After the training process, the three classi�ers are tested on Life Chemicals list
of predicted antibacterials. The results are summarized in Table 6.5. By tuning the parameter
C for SVM, we get the best result for C = 0.01.

Based on the values of all metrics used to evaluate classi�er performance, it appears that SVM
and RF perform signi�cantly better than naive Bayes. The two best performing model �SVM and
random forest� were then trained on the market antibacterials and Life Chemical antibacterials
to test the MDDR data. We regarded a molecule as an antibacterial if it is classi�ed as such in
at least α percent of runs. The precision and recall of the two models are shown in Table 6.6�6.7.
SVM has better recall on the majority of alphas, and it has higher precision for α ≥ 20.

100

6.8. Conclusions

Table 6.7: Precision and recall of SVM classi�er on the test set. All values in percentages.

α 4532 attributes SC
Precision Recall Precision Recall

10 21.3 16.4 11.1 82.7
20 24.0 15.2 13.3 78.1
30 25.9 12.8 17.0 71.9
40 25.9 12.8 17.0 71.9
50 26.6 12.5 19.0 69.9
60 27.4 11.8 23.8 65.1
70 27.9 11.4 27.2 62.4
80 27.9 11.4 27.2 62.4
90 27.7 10.0 31.8 58.7
100 32.4 9.2 39.9 53.4

6.8 Conclusions

In this chapter, we describe the application of the Chordalysis technique for molecular attribute
set reduction. We show that it leads to improved performance when a machine learning technique
is used next to discriminate between antibacterials and compounds with no antibacterial activity.
It is suggested that a two-step strategy, with a Chordalysis-re�ned attribute set being fed to a
SVM classi�er could be highly e�cient for antibacterials identi�cation. An alternate techniques
for selecting an optimal attribute set [92], such as recursive feature elimination [37, 99], RF
variable importance [16], SVM variable selection [17], tabu search [89, 106], and evolutionary
algorithms [34] should be further studied. In the process, precise clues on implementing new
attributes that could be more e�cient for our purpose (antibacterials selection) than the broad
generic reference set of molecular attributes that is available in the Dragon software could be
obtained. When we reach a state where no clear methodological improvement could be reached,
we will apply the optimized methodology to mine chemical space for possible new antibacteri-
als. A limited number of hits from this virtual screening process will be tested experimentally.
Only interesting results backed up by the resulting experimental data will validate the ongoing
chemoinformatics approach.

101

Chapter 6. Guiding antibacterial discovery based on log-linear analysis

102

Summary and perspectives

Summary

Knowledge discovery in database (KDD) is still actively studied given that available datasets are
more and more complex. In this thesis, we had the opportunity to work on several types of com-
plex data, namely numerical, sequential, and molecular datasets. We separate our contributions
into two parts: (1) FCA-based biclustering and (2) mining complex data.

In the task of biclustering, we explore the potential of enumerating biclusters in numerical
datasets using FCA. One task of FCA is enumerating formal concepts, which is a set of objects
and attributes having regularity among them. FCA is generalized into pattern structures, from
which biclustering in numerical matrix is possible. Two previous works of FCA-based biclustering
are the starting point for this part of the thesis. Partition pattern structures (PPS) and interval
pattern structures (IPS) were proposed to mine constant and similar column biclusters. In this
thesis we generalize these approaches to mine other bicluster types. First, we adapt the original
PPS by modifying the similarity operator between two partitions, such that other bicluster
types: additive, multiplicative, order-preserving, and coherent-sign-changes can also be found
in a partition pattern concept. Second, we generalize IPS to perform non-perfect additive and
multiplicative biclusterings, using column alignments. We show that PPS and IPS can be adapted
to enumerate various types of biclusters, and by providing a parameter of expected bicluster size,
we can perform this task in a reasonable runtime.

The second part of this thesis has two major axis. The �rst is related to CrossCult project,
a European Project whose general idea is to support the emergence of a European cultural
heritage. One aspect of this project is to build a mobile application that registers, among others,
the trajectory of each visitor while they interact with it, providing a kind of sequential dataset.
A particular dataset is concerned with the trajectories of around 200 visitors in Hecht Museum
in Haifa, Israel. Each trajectory is composed by sequence of visited items. We develop a method
to understand these trajectories such that the visitor behaviors can be extracted according to
the four theoretical visiting patterns. This approach is composed of two independent steps: the
clustering and the mining of trajectories. Given that the trajectory dataset can be regarded as
a sequential dataset, a proper sequence clustering method is used where the distance between
any two sequences is obtained from the number of their common subsequences. On the other
hand, the mining of trajectory patterns is performed by two methods based on FCA. These
patterns are then used to �nd the characteristic behavior of each cluster. Our result highlights
some interesting patterns that may de�ne visitor behaviors. This can help museum researchers
to analyze and evaluate the placement of items and the visiting styles. Moreover, this analysis
is useful to build a recommendation system for future visitors.

The second is related to mining associations among attributes in a numerical molecular
dataset. These associations are used to perform attribute selection, which can reduce the com-
plexity of the dataset. Such attribute associations can be found using log-linear analysis, and fur-

103

Summary and perspectives

ther by Chordalysis to deal with thousand attributes. We examined the application of Chordaly-
sis in attribute selection by analyzing the resulting association graph. Since the graph informs us
the correlation among attributes, we are able to determine which attributes can be represented
by another, so they can be discarded, leaving only attributes which are roughly not correlated.

Perspectives

In Chapter 3 and 4, we present an approach of biclustering using partition pattern structures and
interval pattern structures respectively. Given that pattern structures is a generalization of FCA,
there exist various algorithms capable of enumerating formal concepts that can be adapted to
enumerate pattern concepts, from which a set of biclusters can be discovered. Here we adapt CbO
and AddIntent to perform pattern concept mining, given their �exibility of generalizing similarity
operator and subsumption relation needed in pattern structures. Another previous work about
FCA-based biclustering [94] uses the adaptation of In-Close to mine formal concepts, and it is
interesting to adapt this algorithm to mine pattern concepts, and further to mine biclusters.

In Chapter 5, we analyze a dataset of visitor trajectories, such that we can extract some
patterns and detect visitor behaviors. In doing that, we included only partial information about
the museum in the sequences, which are the visited items. More interesting results are expected
if other elements are taken into account, such as more general knowledge about history and
geography, as well as the duration and time of the visit. Finally, this analysis can be incorporated
to build recommendation systems, by including ongoing information such as comments and state
of the visitors during their visit.

Lastly, in Chapter 6 we provide a thorough examination of feature selection using log-linear
analysis. We explored the association graph generated from Chordalysis, which can be regarded
as attribute correlation graph. Such graph can be mined with other methods, for example graph
triangulation and tree decomposition. From a triangulated graph, we can obtain maximal cliques
which groups a set of highly correlated attributes. Furthermore, with a tree decomposition on
these cliques, we can decide the representatives of each clique, hence discarding other non-
representative attributes.

104

Bibliography

[1] Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proc.
20th int. conf. very large data bases, VLDB. vol. 1215, pp. 487�499 (1994)

[2] Ailem, M., Role, F., Nadif, M.: Graph modularity maximization as an e�ective method
for co-clustering text data. Knowledge-Based Systems 109, 160�173 (2016)

[3] Alam, M., Buzmakov, A., Napoli, A.: Exploratory knowledge discovery over web of data.
Discrete Applied Mathematics 249, 2�17 (2018)

[4] Alam, M., Le, T.N.N., Napoli, A.: Latviz: A new practical tool for performing interactive
exploration over concept lattices (2016)

[5] Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick,
J.C., Sabet, H., Tran, T., Yu, X., et al.: Distinct types of di�use large b-cell lymphoma
identi�ed by gene expression pro�ling. Nature 403(6769), 503 (2000)

[6] Allab, K., Labiod, L., Nadif, M.: Multi-manifold matrix decomposition for data co-
clustering. Pattern Recognition 64, 386�398 (2017)

[7] Andrews, S.: In-Close, a fast algorithm for computing formal concepts. In: International
Conference on Conceptual Structures (ICCS) (January 2009), http://shura.shu.ac.uk/
38/

[8] Andrews, S.: In-Close2, a high performance formal concept miner. In: International Con-
ference on Conceptual Structures. pp. 50�62. Springer (2011)

[9] Asses, Y., Buzmakov, A., Bourquard, T., Kuznetsov, S.O., Napoli, A.: A Hybrid Classi�ca-
tion Approach based on FCA and Emerging Patterns - An application for the classi�cation
of biological inhibitors. In: Proceedings of CLA. CEUR Workshop Proceedings, vol. 972,
pp. 211�222 (2012)

[10] Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap
representation. In: Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. pp. 429�435. ACM (2002)

[11] Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression
data: the order-preserving submatrix problem. Journal of computational biology 10(3-4),
373�384 (2003)

[12] Berry, A., Pogorelcnik, R.: A simple algorithm to generate the minimal separators and
the maximal cliques of a chordal graph. Information Processing Letters 111(11), 508�511
(2011)

105

http://shura.shu.ac.uk/38/
http://shura.shu.ac.uk/38/

Bibliography

[13] Breiman, L.: Random forests. Machine Learning 45(1), 5�32 (2001)

[14] Brown, C.D., Davis, H.T.: Receiver operating characteristics curves and related decision
measures: A tutorial. Chemometrics and Intelligent Laboratory Systems 80(1), 24�38
(2006)

[15] Buzmakov, A., Egho, E., Jay, N., Kuznetsov, S.O., Napoli, A., Raïssi, C.: On mining
complex sequential data by means of FCA and pattern structures. International Journal
of General Systems 45(2), 135�159 (2016)

[16] Cano, G., Garcia-Rodriguez, J., Garcia-Garcia, A., Perez-Sanchez, H., Benediktsson, J.A.,
Thapa, A., Barr, A.: Automatic selection of molecular descriptors using random forest:
Application to drug discovery. Expert Systems with Applications 72, 151�159 (2017)

[17] Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)

[18] Cheng, Y., Church, G.M.: Biclustering of expression data. In: ISMB. vol. 8, pp. 93�103
(2000)

[19] Codocedo, V., Bosc, G., Kaytoue, M., Boulicaut, J.F., Napoli, A.: A proposition for
sequence mining using pattern structures. In: Bertet, K., Borchmann, D., Cellier, P.,
Ferré, S. (eds.) Proceedings of ICFCA. pp. 106�121. Springer (2017)

[20] Codocedo, V., Napoli, A.: Lattice-based biclustering using partition pattern structures.
In: Proceedings of the Twenty-�rst European Conference on Arti�cial Intelligence. pp.
213�218. IOS Press (2014)

[21] Codocedo-Henríquez, V.: Contributions à l'indexation et à la récupération d'information
utilisant l'analyse formelle de concepts. Ph.D. thesis, Université de Lorraine (2015)

[22] Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273�297 (1995)

[23] Couceiro, M., Napoli, A.: Elements about exploratory, knowledge-based, hybrid, and ex-
plainable knowledge discovery. In: International Conference on Formal Concept Analysis.
pp. 3�16. Springer (2019)

[24] Davoudi, A., Ghidary, S.S., Sadatnejad, K.: Dimensionality reduction based on distance
preservation to local mean for symmetric positive de�nite matrices and its application in
brain�computer interfaces. Journal of Neural Engineering 14(3), 036019 (2017)

[25] Di-Jorio, L., Laurent, A., Teisseire, M.: Mining frequent gradual itemsets from large
databases. In: International Symposium on Intelligent Data Analysis. pp. 297�308. Springer
(2009)

[26] Ding, C., He, X., Simon, H.D.: On the equivalence of nonnegative matrix factorization and
spectral clustering. In: Proceedings of the 2005 SIAM International Conference on Data
Mining. pp. 606�610. SIAM (2005)

[27] Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-factorizations
for clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. pp. 126�135. ACM (2006)

106

[28] Dong, G., Li, J.: E�cient mining of emerging patterns: Discovering trends and di�er-
ences. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp. 43�52. ACM (1999)

[29] Egho, E., Raïssi, C., Calders, T., Jay, N., Napoli, A.: On measuring similarity for se-
quences of itemsets. Data Mining and Knowledge Discovery 29(3), 732�764 (May 2015).
https://doi.org/10.1007/s10618-014-0362-1

[30] Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD. vol. 96, pp. 226�231 (1996)

[31] Estivill-Castro, V.: Why so many clustering algorithms: A position paper. SIGKDD Ex-
plorations 4(1), 65�75 (2002)

[32] Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery
in databases. AI Magazine 17(3), 37�37 (1996)

[33] Fernandes, P.: The global challenge of new classes of antibacterial agents: an industry
perspective. Current Opinion in Pharmacology 24, 7�11 (2015)

[34] Freitas, A.A.: Advances in evolutionary computing (2003)

[35] Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: International
Conference on Conceptual Structures. pp. 129�142. Springer (2001)

[36] Ganter, B., Wille, R.: Formal concept analysis: mathematical foundations. Springer Sci-
ence & Business Media (2012)

[37] Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classi�cation
using support vector machines. Machine Learning 46(1-3), 389�422 (2002)

[38] Haberman, S.J.: The analysis of frequency data: Statistical research monographs (1977)

[39] Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Pre�xSpan:
Mining sequential patterns e�ciently by pre�x-projected pattern growth. In: Proceedings
of the 17th International Conference on Data Engineering. pp. 215�224 (2001)

[40] Hartigan, J.A.: Direct clustering of a data matrix. Journal of the American Statistical
Association 67(337), 123�129 (1972)

[41] Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R., Meltzer,
P., Gusterson, B., Esteller, M., Ra�eld, M., et al.: Gene-expression pro�les in hereditary
breast cancer. New England Journal of Medicine 344(8), 539�548 (2001)

[42] Henriques, R., Ferreira, F.L., Madeira, S.C.: BicPAMS: software for biological data analysis
with pattern-based biclustering. BMC Bioinformatics 18(1), 82 (2017)

[43] Henriques, R., Madeira, S.C.: BicPAM: Pattern-based biclustering for biomedical data
analysis. Algorithms for Molecular Biology 9(1), 27 (2014)

[44] Henriques, R., Madeira, S.C.: BicSPAM: �exible biclustering using sequential patterns.
BMC Bioinformatics 15(1), 130 (2014)

107

Bibliography

[45] Henriques, R., Madeira, S.C.: BiC2PAM: constraint-guided biclustering for biological data
analysis with domain knowledge. Algorithms for Molecular Biology 11(1), 23 (2016)

[46] Henriques, R., Madeira, S.C.: BicNET: Flexible module discovery in large-scale biological
networks using biclustering. Algorithms for Molecular Biology 11(1), 14 (2016)

[47] Henriques, R., Madeira, S.C., Antunes, C.: F2G: E�cient discovery of full-patterns.
ECML/PKDD nfMCP pp. 1�9 (2013)

[48] Hochreiter, S., Bodenhofer, U., Heusel, M., Mayr, A., Mitterecker, A., Kasim, A., Khami-
akova, T., Van Sanden, S., Lin, D., Talloen, W., et al.: FABIA: Factor analysis for bicluster
acquisition. Bioinformatics 26(12), 1520�1527 (2010)

[49] Hung, J.: An experiment about the classi�cation of antibacterial molecules. Tech. rep.,
Orpailleur team, LORIA/Inria Nancy-Grand Est (2015)

[50] Hussain, S.F., Ramazan, M.: Biclustering of human cancer microarray data using co-
similarity based co-clustering. Expert Systems with Applications 55, 520�531 (2016)

[51] Ignatov, D.I., Kuznetsov, S.O., Poelmans, J.: Concept-based biclustering for internet ad-
vertisement. In: Data Mining Workshops (ICDMW), 2012 IEEE 12th International Con-
ference on. pp. 123�130. IEEE (2012)

[52] Ignatov, D.I., Poelmans, J., Zaharchuk, V.: Recommender system based on algorithm of
bicluster analysis RecBi. arXiv preprint arXiv:1202.2892 (2012)

[53] Ignatov, D.I., Watson, B.W.: Towards a uni�ed taxonomy of biclustering methods. arXiv
preprint arXiv:1702.05376 (2017)

[54] Ivanenkov, Y.A., Savchuk, N.P., Ekins, S., Balakin, K.V.: Computational mapping tools
for drug discovery. Drug Discovery Today 14(15-16), 767�775 (2009)

[55] John, G.H., Kohavi, R., P�eger, K.: Irrelevant features and the subset selection problem.
In: Machine Learning Proceedings 1994, pp. 121�129. Elsevier (1994)

[56] Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241�254 (1967)

[57] Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scienti�c Computing 20(1), 359�392 (1998)

[58] Kaytoue, M., Assaghir, Z., Napoli, A., Kuznetsov, S.O.: Embedding tolerance relations in
formal concept analysis: an application in information fusion. In: Proceedings of the 19th
ACM international conference on Information and knowledge management. pp. 1689�1692.
ACM (2010)

[59] Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Biclustering numerical data in formal concept
analysis. In: International Conference on Formal Concept Analysis. pp. 135�150. Springer
(2011)

[60] Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data
with pattern structures in formal concept analysis. Information Sciences 181(10), 1989�
2001 (2011)

108

[61] Korkmaz, S., Zararsiz, G., Goksuluk, D.: Drug/nondrug classi�cation using support vector
machines with various feature selection strategies. Computer Methods and Programs in
Biomedicine 117(2), 51�60 (2014)

[62] Ku�ik, T., Boger, Z., Zancanaro, M.: Analysis and prediction of museum visitors' behav-
ioral pattern types. In: Ubiquitous Display Environments, pp. 161�176. Springer (2012)

[63] Kuznetsov, S.O.: A fast algorithm for computing all intersections of objects from an ar-
bitrary semilattice. Nauchno-Tekhnicheskaya Informatsiya Seriya 2-Informatsionnye Prot-
sessy i Sistemy (1), 17�20 (1993)

[64] Kuznetsov, S.O., Ignatov, D.I.: Concept stability for constructing taxonomies of web-site
users. arXiv preprint arXiv:0905.1424 (2009)

[65] Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating
concept lattices. Journal of Experimental & Theoretical Arti�cial Intelligence 14(2-3),
189�216 (2002)

[66] Laclau, C., Nadif, M.: Hard and fuzzy diagonal co-clustering for document-term partition-
ing. Neurocomputing 193, 133�147 (2016)

[67] Lanir, J., Ku�ik, T., Dim, E., Wecker, A.J., Stock, O.: The in�uence of a location-aware
mobile guide on museum visitors' behavior. Interacting with Computers 25(6), 443�460
(2013)

[68] Lee, S., Son, D., Yu, W., Park, T.: Gene-gene interaction analysis for the accelerated fail-
ure time model using a uni�ed model-based multifactor dimensionality reduction method.
Genomics & Informatics 14(4), 166 (2016)

[69] Li, F., Yang, Y.: Using recursive classi�cation to discover predictive features. In: Proceed-
ings of the 2005 ACM Symposium on Applied Computing. pp. 1054�1058. ACM (2005)

[70] Liu, L., Chen, L., Zhang, Y.H., Wei, L., Cheng, S., Kong, X., Zheng, M., Huang, T.,
Cai, Y.D.: Analysis and prediction of drug�drug interaction by minimum redundancy
maximum relevance and incremental feature selection. Journal of Biomolecular Structure
and Dynamics 35(2), 312�329 (2017)

[71] Liu, Y.: A comparative study on feature selection methods for drug discovery. Journal of
Chemical Information and Computer Sciences 44(5), 1823�1828 (2004)

[72] Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey.
IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 1(1), 24�
45 (2004)

[73] van der Merwe, D., Obiedkov, S., Kourie, D.: AddIntent: A new incremental algorithm for
constructing concept lattices. In: International Conference on Formal Concept Analysis.
pp. 372�385. Springer (2004)

[74] Padilha, V.A., Campello, R.J.: A systematic comparative evaluation of biclustering tech-
niques. BMC bioinformatics 18(1), 55 (2017)

[75] Petitjean, F., Allison, L., Webb, G.I.: A statistically e�cient and scalable method for log-
linear analysis of high-dimensional data. In: 2014 IEEE International Conference on Data
Mining. pp. 480�489. IEEE (2014)

109

Bibliography

[76] Petitjean, F., Webb, G.I.: Scaling log-linear analysis to datasets with thousands of vari-
ables. In: Proceedings of the 2015 SIAM International Conference on Data Mining. pp.
469�477. SIAM (2015)

[77] Petitjean, F., Webb, G.I., Nicholson, A.E.: Scaling log-linear analysis to high-dimensional
data. In: 2013 IEEE International Conference on Data Mining. pp. 597�606. IEEE (2013)

[78] Pio, G., Ceci, M., D'Elia, D., Loglisci, C., Malerba, D.: A novel biclustering algorithm for
the discovery of meaningful biological correlations between microRNAs and their target
genes. BMC bioinformatics 14(7), S8 (2013)

[79] Pio, G., Ceci, M., Loglisci, C., D'Elia, D., Malerba, D.: Hierarchical and overlapping
co-clustering of mrna: mirna interactions. In: ECAI. pp. 654�659. Citeseer (2012)

[80] Pio, G., Ceci, M., Malerba, D., D'Elia, D.: ComiRNet: a web-based system for the analysis
of miRNA-gene regulatory networks. BMC Bioinformatics 16(9), S7 (2015)

[81] Pontes, B., Giráldez, R., Aguilar-Ruiz, J.S.: Biclustering on expression data: A review.
Journal of biomedical informatics 57, 163�180 (2015)

[82] Prescott, A.M., Abel, S.M.: Combining in silico evolution and nonlinear dimensionality re-
duction to redesign responses of signaling networks. Physical Biology 13(6), 066015 (2017)

[83] R Core Team: R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing (2014)

[84] Reutlinger, M., Schneider, G.: Nonlinear dimensionality reduction and mapping of com-
pound libraries for drug discovery. Journal of Molecular Graphics and Modelling 34, 108�
117 (2012)

[85] Rocci, R., Vichi, M.: Two-mode multi-partitioning. Computational Statistics & Data Anal-
ysis 52(4), 1984�2003 (2008)

[86] Sadowski, J., Gasteiger, J., Klebe, G.: Comparison of automatic three-dimensional model
builders using 639 x-ray structures. Journal of Chemical Information and Computer Sci-
ences 34(4), 1000�1008 (1994)

[87] Salah, A., Ailem, M., Nadif, M.: Word co-occurrence regularized non-negative matrix tri-
factorization for text data co-clustering. In: Thirty-Second AAAI Conference on Arti�cial
Intelligence (2018)

[88] Tabachnick, B.G., Fidell, L.S., Ullman, J.B.: Using Multivariate Statistics, vol. 5. Pearson
Boston, MA (2007)

[89] Tahir, M.A., Bouridane, A., Kurugollu, F.: Simultaneous feature selection and feature
weighting using hybrid tabu search/k-nearest neighbor classi�er. Pattern Recognition Let-
ters 28(4), 438�446 (2007)

[90] Tanay, A., Sharan, R., Shamir, R.: Discovering statistically signi�cant biclusters in gene
expression data. Bioinformatics 18(suppl_1), S136�S144 (2002)

[91] Tang, H., Su, Z.D., Wei, H.H., Chen, W., Lin, H.: Prediction of cell-penetrating peptides
with feature selection techniques. Biochemical and Biophysical Research Communications
477(1), 150�154 (2016)

110

[92] Tang, J., Alelyani, S., Liu, H.: Feature selection for classi�cation: A review. Data Classi-
�cation: Algorithms and Applications p. 37 (2014)

[93] Todeschini, R., Consonni, V.: Molecular Descriptors for Chemoinformatics, vol. 41. John
Wiley & Sons (2009)

[94] Veroneze, R., Banerjee, A., Von Zuben, F.J.: Enumerating all maximal biclusters in nu-
merical datasets. Information Sciences 379, 288�309 (2017)

[95] Vichi, M.: Double k-means clustering for simultaneous classi�cation of objects and vari-
ables. In: Advances in Classi�cation and Data Analysis, pp. 43�52. Springer (2001)

[96] Véron, E., Levasseur, M.: Ethnographie de l'exposition. Bibliothèque Publique
d'Information, Centre Georges Pompidou, Paris (1983)

[97] Webb, G.I.: Layered critical values: a powerful direct-adjustment approach to discovering
signi�cant patterns. Machine Learning 71(2-3), 307�323 (2008)

[98] Xu, X., Li, A., Wang, M.: Prediction of human disease-associated phosphorylation sites
with combined feature selection approach and support vector machine. IET Systems Biol-
ogy 9(4), 155�163 (2015)

[99] Xue, Y., Li, Z.R., Yap, C.W., Sun, L.Z., Chen, X., Chen, Y.Z.: E�ect of molecular de-
scriptor feature selection in support vector machine classi�cation of pharmacokinetic and
toxicological properties of chemical agents. Journal of Chemical Information and Computer
Sciences 44(5), 1630�1638 (2004)

[100] Xue, Y., Li, M., Liao, Z., Luo, J., Li, T., Xiao, H., Hu, X.: A biclustering algorithm
with coherent evolution on the contiguous columns facing time-series gene data. In: 2014
11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). pp.
328�333. IEEE (2014)

[101] Xue, Y., Li, T., Liu, Z., Pang, C., Li, M., Liao, Z., Hu, X.: A new approach for the
deep order preserving submatrix problem based on sequential pattern mining. International
Journal of Machine Learning and Cybernetics 9(2), 263�279 (2018)

[102] Yang, J., Wang, H., Ding, H., An, N., Alterovitz, G.: Nonlinear dimensionality reduction
methods for synthetic biology biobricks' visualization. BMC Bioinformatics 18(1), 47
(2017)

[103] Yang, M., Chen, J., Shi, X., Xu, L., Xi, Z., You, L., An, R., Wang, X.: Development
of in silico models for predicting p-glycoprotein inhibitors based on a two-step approach
for feature selection and its application to chinese herbal medicine screening. Molecular
Pharmaceutics 12(10), 3691�3713 (2015)

[104] Zaki, M.J., Hsiao, C.J.: E�cient algorithms for mining closed itemsets and their lattice
structure. IEEE transactions on knowledge and data engineering 17(4), 462�478 (2005)

[105] Zancanaro, M., Ku�ik, T., Boger, Z., Goren-Bar, D., Goldwasser, D.: Analyzing museum
visitors' behavior patterns. In: International Conference on User Modeling. pp. 238�246.
Springer (2007)

111

Bibliography

[106] Zhang, H., Sun, G.: Feature selection using tabu search method. Pattern Recognition
35(3), 701�711 (2002)

[107] Zhao, X., Nie, F., Wang, S., Guo, J., Xu, P., Chen, X.: Unsupervised 2d dimensionality
reduction with adaptive structure learning. Neural Computation 29(5), 1352�1374 (2017)

112

Résumé

L'extraction de connaissances dans les bases de données (ECBD) est un processus qui s'applique
à de (potentiellement larges) volumes de données pour découvrir des motifs qui peuvent être
signi�ants et utiles. Dans cette thèse, on s'intéresse à deux étapes du processus d'ECBD, la
transformation et la fouille, que nous appliquons à des données complexes. Nous présentons de
nombreuses expérimentations s'appuyant sur des approches et des types de données variés.

La première partie de cette thèse s'intéresse à la tâche de biclustering en s'appuyant sur
l'analyse formelle de concepts (FCA) et aux pattern structures. FCA est naturellement liée au
biclustering, dont l'objectif consiste à grouper simultanément un ensemble de lignes et de colonnes
qui véri�ent certaines régularités. Les pattern structures sont une généralisation de la FCA qui
permet de travailler avec des données plus complexes. Les �partition pattern structures� ont été
proposées pour du biclustering à colonnes constantes tandis que les �interval pattern structures�
ont été étudiées pour du biclustering à colonnes similaires. Nous proposons ici d'étendre ces
approches a�n d'énumérer d'autres types de biclusters : additif, multiplicatif, préservant l'ordre,
et changement de signes cohérents.

Dans la seconde partie, nous nous intéressons à deux expériences de fouille de données com-
plexes. Premièrement, nous présentons une contribution dans la quelle nous analysons les trajec-
toires des visiteurs d'un musée dans le cadre du projet CrossCult. Nous utilisons du clustering
de séquences et de la fouille de motifs séquentiels basée sur l'analyse formelle de concepts pour
découvrir des motifs dans les données et classi�er les trajectoires. Cette analyse peut ensuite
être exploitée par un système de recommandation pour les futurs visiteurs. Deuxièmement, nous
présentons un travail sur la découverte de médicaments antibactériens. Les jeux de données
pour cette tâche, généralement des matrices numériques, décrivent des molécules par un certain
nombre de variables/attributs. Le grand nombre de variables complexi�e la classi�cation des
molécules par les classi�eurs. Ici, nous étudions une approche de sélection de variables basée sur
l'analyse log-linéaire qui découvre des associations entre variables.

En somme, cette thèse présente di�érentes expériences de fouille de données réelles et com-
plexes.

Mots-clés: analyse de concepts formels, biclustering, extraction de motifs séquentiels, sélection
d'attributs.

Abstract

Knowledge discovery in database (KDD) is a process which is applied to possibly large vol-
umes of data for discovering patterns which can be signi�cant and useful. In this thesis, we are
interested in data transformation and data mining in knowledge discovery applied to complex
data, and we present several experiments related to di�erent approaches and di�erent data types.

The �rst part of this thesis focuses on the task of biclustering using formal concept analysis
(FCA) and pattern structures. FCA is naturally related to biclustering, where the objective is to
simultaneously group rows and columns which verify some regularities. Related to FCA, pattern
structures are its generalizations which work on more complex data. Partition pattern structures
were proposed to discover constant-column biclustering, while interval pattern structures were

studied in similar-column biclustering. Here we extend these approaches to enumerate other
types of biclusters: additive, multiplicative, order-preserving, and coherent-sign-changes.

The second part of this thesis focuses on two experiments in mining complex data. First, we
present a contribution related to the CrossCult project, where we analyze a dataset of visitor
trajectories in a museum. We apply sequence clustering and FCA-based sequential pattern
mining to discover patterns in the dataset and to classify these trajectories. This analysis can
be used within CrossCult project to build recommendation systems for future visitors. Second,
we present our work related to the task of antibacterial drug discovery. The dataset for this
task is generally a numerical matrix with molecules as rows and features/attributes as columns.
The huge number of features makes it more complex for any classi�er to perform molecule
classi�cation. Here we study a feature selection approach based on log-linear analysis which
discovers associations among features.

As a synthesis, this thesis presents a series of di�erent experiments in the mining of complex
real-world data.

Keywords: biclustering, feature selection, formal concept analysis, sequential pattern mining.

Résumé détaillé

Extraction de connaissances dans les bases de données

L'extraction de connaissances dans les bases de données (ECBD) est un processus qui s'applique
à de (potentiellement larges) volumes de données pour découvrir des motifs qui peuvent être
signi�ants et utiles.

L'ECBD est composée de plusieurs étapes fondamentales :

• La première étape est la compréhension du domaine du problème et l'identi�cation d'information
attendue.

• La deuxième étape est la sélection, qui consiste à retenir un ensemble de données qui sera
utilisé dans les étapes suivantes.

• Dans la troisième étape, ces données retenues sont prétraitées. Le prétraitement peut être
un enlèvement de bruit ou un traitement de valeurs manquantes.

• La quatrième étape est la transformation, où on prépare les données en créant sa représen-
tation. Cela peut être réalisé en éliminant ou transformant des variables.

• L'étape suivante est la fouille de données appliquée aux données transformées. Une méth-
ode spéci�que de fouille de données (par exemple classi�cation, regroupement, régression,
agrégation, etc.) est choisie en fonction de l'information attendue.

• Après la sélection de méthode, un algorithme est �xé et le processus de la fouille de données
est executé. Cette étape nous donne des motifs intéressants dans les données.

• La septième étape est l'interprétation des motifs, par une représentation graphique par
exemple.

• Dans la dernière étape, les motifs retenus sont communiqués aux parties concernées, ou
directement utilisés.

On peut également revenir aux étapes précedentes pour améliorer les résultats.
Dans cette thèse, on s'intéresse à l'ECBD appliquée aux données complexes. Plus précisé-

ment, cette thèse se concentre sur les étapes de fouille de données et transformation de données
dans ECBD. Nous avons eu l'occasion de travailler sur des types de données variés : numériques,
séquentielles, et moléculaires. Dans l'étape de fouille de données, nos objectifs sont d'énumérer
des biclusters dans des données numériques et d'extraire des motifs intéressants dans des données
séquentielles. L'analyse formelle de concepts (FCA pour �Formal Concept Analysis�) est utilisée
pour accomplir ces objectifs étant donné qu'elle est naturellement liée au biclustering dans le
sens où les deux méthodes découvrent des sous-matrices ayant des régularités. Il a été prouvé en
outre que FCA et sa généralisation, pattern structures, sont compatibles pour la fouille de don-
nées complexes et séquentielles. Concernant la transformation de données, notre objectif est de
réduire la dimension quantitative d'un ensemble de données moléculaires en éliminant quelques
attributs. Elle est réalisée en identi�ant des corrélations parmi les attributs, qui sont ensuite
utilisés pour déterminer lesquels sont redondants et peuvent être éliminés.

Contributions

Nous avons travaillé sur trois types de données :

• les expressions des gènes (numériques),

• les trajectoires des visiteurs d'un musée (séquentielles), et

• les antibactériens (moléculaires).

Plusieurs méthodes de fouille de données basées sur FCA sont utilisées pour découvrir des bi-
clusters dans les données d'expressions de gènes et pour extraire des motifs dans les données de
trajectoires des visiteurs. De plus, nous avons travaillé sur l'étape de sélection d'attributs en
utilisant l'analyse log-linéaire pour identi�er des corrélations parmi ces derniers.

Cette thèse est donc synthetisée en trois contributions principales. Nous commencerons
par présenter le biclustering et exposer comment FCA est bien adaptée à l'énumération de
plusieurs types importants de biclustering. Ensuite nous étudierons l'application de FCA et
pattern structures pour la fouille de données séquentielles, qui est utilisée pour caracteriser des
visiteurs dans les données des trajectoires. En�n, nous exposerons la sélection d'attributs en
travaillant sur les données antibactériennes. Chaque contribution est détaillé comme suit.

Biclustering

Biclustering avec FCA est la première contribution de cette thèse, en travaillant sur les données
d'expressions de gènes. Biclustering est lié au clustering/regroupement. L'objectif de clustering
est de trouver des groupes d'objets dans un ensemble de données en examinant leur similarité
par rapport à tous leurs attributs. Cela peut être problématique, puisque certains objets sont
similaires aux autres par rapport à certains attributs seulement, ce qui est souvent le cas dans
les données d'expressions de gènes. Ce problème entraîne l'émergence du biclustering.

Dans une matrice, FCA est liée au biclustering, dans le sens où les deux méthodes découvrent
des sous-matrices ayant des régularités. FCA se concentre sur des matrices binaires, dé�ni par
le triplet (G,M, I) où G est un ensemble d'objets, M est un ensemble d'attributs, et (g,m) ∈ I
si l'objet g possède l'attribut m. Un concept formel correspond donc à un bicluster à valeurs
constantes. Pour découvrir d'autres types de biclusters, nous utilisons des pattern structures.
Un pattern structure est dé�ni par le triplet (G, (D,u), δ), où G est un ensemble d'objets, (D,u)
est un demi-treillis de descriptions, et δ est une fonction entre les objets et leurs descriptions.

Dans les pattern structures, on peut avoir des structures plus complexes comme une descrip-
tion d ∈ D, au lieu d'un simple ensemble d'indices. Un exemple d'une description complexe est
une partition. Un �partition pattern structure� (PPS) est dé�ni par le triplet (M, (D,u), δ), où
l'on travaille sur un ensemble d'attributs M . La description de chaque attribut est une partition
d'objets. Une partition d'objets par rapport à un attribut est obtenue en utilisant la relation
d'équivalence. Une relation d'équivalence pour chaque gi ∈ G par rapport à un attribut mj ∈M
est dé�nie par:

[gi]mj = {gk ∈ G|mj(gi) = mj(gk)}.

La relation [gi]mj nous donne tous les objets dans G dont la valeur dans mj et la même que la
valeur de gi. Par exemple, en Table 1, [g2]m1 = {g2, g3}. En utilisant cette relation d'équivalence,
la fonction δ : M → D �qui est dé�nie sur un ensemble d'attributs à valeurs un ensemble de
partitions d'objets� est dé�nie par :

δ(mj) = {[gi]mj |∀gi ∈ G}.

Table 1: Une matrice numérique.

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

En conséquence, en Table 1, δ(m1) = {{g1}, {g2, g3}, {g4}}.
L'in�mum ou meet (u) entre deux partitions est leur �ra�nement commun le plus grossier�.

Il est dé�ni comme l'ensemble d'intersections de chaque paire ci ∈ d1 et cj ∈ d2 :

d1 u d2 =
⋃
ci ∩ cj .

En conséquence, en Table 1, δ(m1) u δ(m3) = {{g1}, {g2, g3}, {g4}}.
Partition pattern structures ont été précédemment utilisés pour énumérer des biclusters à

colonnes constantes. Dans cette thèse, la possibilité de trouver d'autres types de biclusters est
étudiée par la redé�nition de l'opérateur de similarité (u) entre deux partitions.

En plus d'une partition, on peut également avoir un vecteur d'intervalles (écrit 〈[a1, b1],
[a2, b2] · · · 〉), c'est le cas dans les �interval pattern structures� (IPS). Un interval pattern structure
est dé�ni par le triplet (G, (D,u), δ). Ici, une description d ∈ D pour chaque g ∈ G est un
vecteur d'intervalles, où un intervalle correspond à la valeur d'un attribut. Considérons Table 1.
La description de g1 est 〈[1, 1][2, 2][2, 2][1, 1][6, 6]〉.

En interval pattern structures, le meet (u) entre deux intervalles [a1, b1] et [a2, b2] est l'intervalle
le plus petit contenant [a1, b1] et [a2, b2]. Il correspond à l'enveloppe convexe d'intervalles, dé�nie
comme :

[a1, b1] u [a2, b2] = [min(a1, a2),max(b1, b2)].

Par conséquent, le meet entre deux vecteurs est l'enveloppe convexe de chaque intervalle corre-
spondant. Vu d1 = 〈[a1, b1], · · · , [an, bn]〉 et d2 = 〈[c1, d1], · · · , [cn, dn]〉 :

d1 u d2 = 〈[ai, bi] u [ci, di]〉i∈[1,n].

Par exemple, en Table 1, δ(g1) u δ(g2) = 〈[1, 2][1, 2][1, 2][0, 1][6, 6]〉.
IPS ont été précédemment proposés pour découvrir des biclusters à colonnes similaires dans

des données d'expressions de gènes. Dans cette thèse, le potentiel de IPS est étudié pour découvrir
des biclusters di�érents en appliquant l'alignement de colonnes. Contrastant avec PPS, IPS nous
permet de trouver des biclusters moins stricts (par exemple colonnes similaires, lignes similaires,
additifs non-exacts, etc.) sans échelonner la matrice numérique.

Fouille de données séquentielles

La deuxième contribution est liée au projet CrossCult (http://www.crosscult.eu/), un projet
européen concernant des patrimoines culturels. L'idée générale de CrossCult est de soutenir
l'émergence des patrimoines culturels européens en permettant aux visiteurs dans des lieux dif-
férents (par exemple musée, ville, site archéologique) de contempler leur visite en utilisant des
appareils informatiques. Un objectif de ce projet est de développer une application mobile pour
stimuler la ré�exion histoirique chez les utilisateurs. Cette application mobile sauvegarde la
trajectoire de chaque visiteur pendant qu'ils visitent le lieu.

Nous avons des données concernant les trajectoires sur environ 200 visiteurs du Musée Hecht
à Haifa, Israël. Chaque trajectoire est constituée par une séquence de visites, où chaque visite est
représentée par trois éléments : l'heure d'arrivée, l'heure de départ, et l'objet visité. Dans cette
thèse, une nouvelle méthode est développée a�n que nous puissions extraire les comportements
de visites.

La première étape de cette méthode est la fouille de données de trajectoires en utilisant
�sequence pattern structures�. Le résultat est un ensemble de concepts, d'où on peut obtenir
un ensemble de visiteurs comme extension et leur sous-séquences/sous-trajectoires communes
comme intension.

Ensuite, indépendamment du résultat de la première étape, nous appliquons le regroupement
de visiteurs par rapport à leurs trajectoires. Etant donné qu'une trajectoire peut être considérée
comme une séquence de visites, une méthode spéci�que pour regroupement de séquences est
utilisée. La mesure de similitude entre deux séquences est dé�nie par le nombre de leurs sous-
séquences communes. Le résultat permet de dé�nir des groupes des visiteurs.

L'étape suivante est d'attribuer un comportement à chaque groupe. Pour cela, il faut dé�nir
les caractéristiques de chacun entre eux. Cela peut être fait par l'exploration de résultats des
deux étapes précedentes : la fouille de données et le regroupement. Ici nous utilisons la notion
de �jumping emerging pattern� (JEP), qui est un motif présent dans un seul groupe. Dans notre
cas, un JEP peut être obtenu à partir d'un concept dont l'extension est un ensemble de visiteurs
d'un groupe unique. L'étude de JEPs permet de dé�nir un comportement pour chaque groupe.

Cette contribution peut aider les développeurs pour fournir des recommandations aux visi-
teurs, a�n d'améliorer leur visite.

Sélection d'attributs

La troisième contribution de cette thèse est liée au problème de sélection d'attributs dans l'étape
de transformation de données de l'ECBD. Ce travail fait partie d'une recherche pour découvrir
des nouveaux médicaments antibactériens. Un objectif de cette recherche est de classer des
molécules dans l'une ou l'autre des deux catégories : antibactériens et non-antibactériens.

Dans cette thèse, nous travaillons sur la sélection d'attributs dans les données chimioinfor-
matiques, qui est importante pour plusieurs aspects de conception de médicaments. Ces données
sont fréquemment représentées par une matrice, où chaque ligne et chaque colonne représente
respectivement une molécule et un attribut moléculaire. Vu qu'une structure moléculaire est
dé�nie par plusieurs propriétés, la matrice a souvent un grand nombre de colonnes. Cela peut
augmenter la complexite et réduire la performance d'un algorithme, d'où la nécessité de la ré-
duction de dimensionnalité.

La sélection d'attributs part du principe qu'un attribut étant corrélé avec un autre peut être
éliminé. Une façon de détecter des corrélations parmi des attributs est l'analyse log-linéaire
(LLA pour �Log Linear Analysis�), qui permet d'obtenir un modèle log-linéaire, pouvant être
représenté comme un graphe de corrélation d'attributs.

LLA standard examine chaque combinaison d'attributs, ce qui la rend inadéquat pour des
données ayant un grand nombre d'attributs. Cette limitation est résolue par la méthode Chordal-
ysis, qui considère un type particulier de modèle log-linéaire : modèle décomposable. Cette
méthode nous permet de réduire la complexité de LLA à produire un graphe de corrélation.

A partir d'un graphe qui représente des corrélations parmi des attributs, nous e�ectuons la
sélection d'attributs. Les attributs qui sont indépendants (qui n'ont pas de corrélation) sont
conservés, parce qu'ils ne peuvent pas être représenté par un autre. Ensuite, nous éliminons
simplement les attributs ayant une seule corrélation. Par exemple, si on trouve une composante

a

b

(a)

c d

f

e

(b)

Figure 1: Exemples des composantes connexes ayant 2 sommets (a) et plus de 2 sommets (b).

connexe comme Fig. 1b, on conserve seulement l'attribut d. Cela signi�e que d peut représenter
c, e, et f . Il y a une exception pour ces attributs ayant une seule corrélation. Si la composante
connexe à seulement deux sommets, comme Fig. 1a, on choisi de manière aléatoire un seul
attribut à conserver.

La comparaison entre le résultat de notre sélection d'attributs basée sur LLA avec un travail
précedent calculant les propriétés statistiques de chaque attribut permet de déterminer l'ensemble
d'attributs conservés. Notre expérimentation montre des résultats di�érents entre les deux méth-
odes. Dans la tâche de classi�cation, ces résultats sont tous utiles et peuvent être complémen-
taires, vu que la méthode basée sur LLA élimine les attributs pouvant être représentés par un
autre, alors que la deuxième méthode conserve les attributs ayant une grande variation de valeurs.

Perspectives

Dans cette thèse, nous travaillons sur une série d'expérimentations di�érentes dans les données
complexes. Premièrement, nous présentons une approche de biclustering en utilisant les partition
pattern structures et les interval pattern structures.

Deuxièmement, nous analysons les données de trajectoires, a�n d'extraire des motifs et iden-
ti�er des comportements. Nous obtiendrons des résultats plus intéressants si nous intégrons des
éléments supplémentaires, comme par exemple les coordonnées de visiteurs, ou les notes données
par des visiteurs aux objets. En outre, le biclustering et l'analyse de trajectoires peuvent être
combinés pour développer un système de recommandation. Pour chaque nouveau visiteur, une
recommandation peut être calculée par le résultat de biclustering, qui groupe les visiteurs ayant
le même intérêt que lui.

Finalement, nous faisons une étude de sélection d'attributs en utilisant l'analyse log-linéaire.
Nous explorons le graphe généré par Chordalysis qui représente des corrélations parmi des at-
tributs. Tel graphe peut être généré par d'autres méthodes, comme par exemple une triangulation
de graphe et une décomposition arborescente. A partir d'un graphe triangulé, on peut avoir des
cliques maximales regroupant un ensemble des attributs bien corrélés. En outre, en appliquant
une décomposition arborescente à ce graphe, on peut déterminer les représentants de chaque
clique, et éliminer les attributs non-représentants.

	General introduction
	Formal concept analysis and pattern structures
	Order theory
	Formal concept analysis
	Formal concept miners
	Close by One
	AddIntent
	In-Close and In-Close2

	Pattern structures

	Partie I Biclustering in FCA
	Introduction to biclustering
	Clustering and biclustering
	Basic definitions
	Previous works
	Probabilistic and numerical methods
	Pattern-based methods

	Conclusion

	Biclustering with partition pattern structures
	The pattern structures of partitions
	Partition
	Partition of objects
	Partition pattern structures

	Constant-column biclustering
	Additive and multiplicative biclustering
	Order-preserving biclustering
	Pattern structures for OP biclustering
	Experiments

	Biclustering with coherent sign changes
	Using constant-column biclustering
	Using pattern structures of signed partition

	Conclusion

	Biclustering with interval pattern structures
	Scaling of many-valued contexts
	Interval pattern structures
	Similar-column biclustering with IPS
	Additive and multiplicative biclustering
	Concept mining
	Experiments
	Effects of parameters
	Comparison with pattern-based method
	Comparison with numerical method

	Conclusion

	Partie II Experiments in mining complex data
	Sequence mining within FCA for analyzing visitor trajectories
	CrossCult project
	The mining of sequences
	Sequence mining in FCA
	The dataset of museum visitors
	The museum
	The four visiting styles

	Workflow for analyzing the trajectories
	Clustering of trajectories
	The mining of trajectories considered as sequences
	Mining subsequences with MFCS and MRGS
	Jumping emerging patterns

	Discussion
	Cluster characterization
	Conclusion

	Guiding antibacterial discovery based on log-linear analysis
	Antibacterial drug discovery
	Feature selection
	Log-linear analysis
	Goodness-of-fit
	Log-linear model
	Graphical model
	Decomposable models

	Chordalysis
	Classification of antibacterials and non-antibacterials
	Evaluation of classifier performance
	Experiments
	Previous work
	Dataset
	Result of Chordalysis

	Conclusions

	Summary and perspectives
	Bibliography

