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Abstract
Models and Methods for Network Function Virtualization (NFV)

Architectures

Due to the exponential growth of service demands, telecommunication networks
are populated with a large and increasing variety of proprietary hardware appli-
ances, and this leads to an increase in the cost and the complexity of the network
management. To overcome this issue, the NFV paradigm is proposed, which allows
dynamically allocating the Virtual Network Functions (VNFs) and therefore ob-
taining flexible network services provision, thus reducing the capital and operating
costs.

In this thesis, we focus on the VNF Placement and Routing (VNF-PR) prob-
lem, which aims to find the location of the VNFs to allocate optimally resources
to serve the demands. From an optimization point of view, the problem can be
modeled as the combination of a facility location problem (for the VNF location
and server dimensioning) and a network design problem (for the demands routing).
Both problems are widely studied in the literature, but their combination repre-
sents, to the best of our knowledge, a new challenge. We start working on a realistic
VNF-PR problem to understand the impact of different policies on the overall net-
work management cost and performance. To this end, we extend the work in [1] by
considering more realistic features and constraints of NFV infrastructures and we
propose a linear programming model and a math-heuristic to solve it. In order to
better understand the problem structure and its properties, in the second part of our
work, we focus on the theoretical study of the problem by extracting a simplified,
yet significant variant. We provide results on the computational complexity under
different graph topology and capacity cases. Then, we propose two mathematical
programming formulations and we test them on a common testbed with more than
100 different test instances under different capacity settings. Finally, we address the
scalability issue by proposing ILP-based constructive methods and heuristics to ef-
ficiently deal with large size instances (with up to 60 nodes and 1800 demands). We
show that our proposed heuristics can efficiently solve medium size instances (with
up to 30 nodes and 1000 demands) of challenging capacity cases and provide feasible
solutions for large size instances of the most difficult capacity cases, for which the
models cannot find any solution even with a significant computational time.

Keywords: Network Function Virtualization (NFV), Resource Allocation, Opera-
tions Research
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Résumé
Modèles et méthodes d’optimisation pour architecture NFV (Network

Function Virtualization)

Avec la croissance exponentielle des demandes de service, les opérateurs ont dé-
ployé de nombreux équipements, et par conséquent, la gestion du réseau est devenue
de plus en plus difficile et coûteuse. La virtualisation des fonctions réseau (NFV) a
été proposée comme un nouveau paradigme pour réduire les coûts liés à l’acquisition
et à la maintenance pour les réseaux de télécommunications.

Dans ce travail de thèse, nous nous intéressons aux problèmes du chaînage des
fonctions virtuelles (VNFs) qui combinent des décisions de localisation des VNFs et
de routage des demandes. D’un point de vue d’optimisation, ce problème est une
combinaison des problèmes de localisation (pour la partie d’installation des VNFs)
et de conception de réseaux (pour la partie de routage). Ces deux problèmes ont été
largement étudié dans la littérature. Cependant, leur combinaison représente des
divers challenges en termes de modélisation et de résolution. Dans la première partie
de cette thèse, nous considérons une version réaliste du problème du chaînage des
VNFs (VNF-PR) afin de comprendre l’impact des différents aspects sur les coûts
et les performances de gestion du réseau. Dans ce but, nous étendons le travail
dans [1] en considérant des caractéristiques et des contraintes plus réalistes des
infrastructures NFV et nous proposons un modèle de programmation linéaire et une
heuristique mathématique pour le résoudre. Dans le but de mieux comprendre la
structure du problème et ses propriétés, la deuxième partie de la thèse est orientée
vers l’étude théorique du problème, où nous avons étudié une version compacte du
problème du chaînage des VNFs. Nous fournissons des résultats sur la complexité
de calcul sous divers cas de topologie et de capacité. Ensuite, nous proposons deux
modèles et nous les testons sur un testbed avec plus de 100 instances différentes
avec différents cas de capacité. Au final, nous abordons la scalabilité du problème
en proposant des méthodes constructives et des méthodes heuristiques basées sur
la programmation linéaire entière pour traiter efficacement des instances de taille
grande (jusqu’à 60 nœuds et 1800 demandes). Nous montrons que les heuristiques
proposées sont capables de résoudre efficacement des instances de taille moyenne
(avec jusqu’à 30 noeuds et 1 000 demandes) de cas de capacité difficiles et de trouver
de bonnes solutions pour les instances dures, où le modèle ne peut fournir aucune
solution avec un temps de calcul limité.

Mots-clés: Virtualisation des Fonctions Réseaux (NFV), Allocation des Ressources,
Recherche Opérationelle
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Chapter 1

General Introduction

Contents
1.1 General Technical Background . . . . . . . . . . . . . . . 6
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Thesis Goals and Contributions . . . . . . . . . . . . . . . 10
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . 11

Current telecommunication network services rely on proprietary appliances and
different network devices that are diverse and dedicated-built. This situation, cou-
pled with the increasing diffusion (innovation) of network applications, induces the so
called network ossification problem. As a result, the operation of service additions
and network upgrades becomes extremely expensive. To give an example, in the
current networks, a service includes a set of hardware dedicated network appliances
which offer block functions such as firewall, load balancing, Deep Packet Inspection
(DPI), Intrusion Detection System, etc., to support the required networking pro-
cessing and applications. When a new networking service requirement emerges, new
hardware devices must be installed and chained, which is extremely time consuming
and costly in terms of capital expenditures. This kind of networking service deploy-
ment requires dedicated plan of networking updates, which additionally incurs in
high operating expenditures.

Virtualization technologies are expected to address these challenges by proposing
solutions to flexibly and efficiently design, deploy, and manage network services [2].
After about ten years of fundamental research, the virtualization of network func-
tions is becoming a reality thanks to huge investments being made by telecommuni-
cation providers, cloud providers and vendors. The breaking point sits in 2012, when
calls for experimentation and deployment of what was coined as “Network Functions
Virtualization (NFV)” [3] lead to the creation of an NFV industry research group at
the European Telecommunications Standards Institute (ETSI) [4]. Since then, ap-
plied researches and developments have accelerated investments, hence preliminary
prototypes were demonstrated and deployed (leading to commercialization in some
cases) since late 2014 [5].

With NFV, the attention of network virtualization research is now focusing on
key aspects of NFV systems that were either not considered relevant or not conceived

5



Chapter 1. General Introduction

before industry effort at Standards Developing Organizations (SDOs). A central role
is played by the NFV service chaining [6] provisioning, i.e., the problem of allow-
ing a traffic flow passing through a pre-computed or dynamically computed list of
Virtual Network Function (VNF) nodes, possibly accounting for the fact that VNF
nodes can be placed at, and migrated across, virtualization clusters as a function of
demand assignment to existing VNF chains or sub-chains.

In this context, this thesis addresses the NFV service chaining as an optimization
problem. In the reminder, we first introduce the technical background, then we
provide an overview on the optimization problems tackled and we summarize the
study goals and thesis contributions.

1.1 General Technical Background

Network Function Virtualization

The main idea of NFV consists in decoupling network functions from the physical
network equipment that they have been run on. Consequently, NFV allows software
based network functions to run over high volume industry standard physical servers,
switches and storage, which could be located in data centers, Points of Presence
(PoPs), network nodes and in the end user premises. Therefore, NFV allows avoiding
the purchase and installation of specialized hardware when new network service
requests come.

ETSI is de-facto the reference SDO for the NFV high-level functional architec-
ture specification. High-level means that its identified role is the specification of the
main functional blocks, their architecture and inter-relationship, whose implemen-
tation elements could then be precisely addressed by other SDOs. ETSI specifies
three components [7] for the NFV architecture: Virtual Network Functions (VNFs);
NFV Infrastructure (NFVI), including the elements needed to run VNFs such as the
hypervisor node and the virtualization clusters; MANO (Management and Orches-
tration), handling the operations needed to run, migrate, optimize VNF nodes and
chains, possibly in coordination with transport network orchestrators. Figure 1.1
illustrates the components and their relationships.

The NFVI is the combination of both software (e.g. virtualization hypervisor)
and hardware (e.g., servers, storage and network) resources that build an NFV
environment for the deployment of VNFs. Such infrastructure can be seen as a
distributed set of VNF nodes, which is also known as NFVI-PoPs. Each NFVI-
PoP is an abstracted physical location (e.g., data center, network node, or end user
premise) of the network infrastructure which has a limited computational capacity
to host the VNFs.

VNFs are software implementation of network functions (e.g., firewall and DPI)
running over the NFVI. A single VNF may be composed of multiple internal com-
ponents that run individually over different virtual resources such as VMs (Virtual
Machines). In telecommunication networks, a network service is composed of one or

6



1.1. General Technical Background

Figure 1.1 – General NFV architecture proposed by the ETSI

more network functions. In the case of NFV, the network functions that make up
the network service are implemented by VNFs on virtual resources. Therefore, the
behavior of the network service in NFV environment is dependent on that of the
constituent VNFs.

Finally, the NFV MANO provides the functionality required for the provisioning
of VNFs and all the related operations, such as the placement and instantiation of
VNFs to better meet user’s demands, the configuration of the VNFs to share them
among active demands while meeting common Traffic Engineering (TE) objectives
in IP (Internet Protocol) transport networks as well as novel NFV efficiency goals
such as the minimization of the number of VNF instances to install.

Service Function Chaining

In most networks, the provisioning of end-to-end network services often requires
various service functions including traditional network service functions (e.g., fire-
walls), as well as application-specific features such as HTTP (Hypertext Transfer
Protocol) header manipulation. The delivery of network services is realized when
the demands pass through several service functions. Typically, a network service is
constructed as an ordered or partially ordered sequence of service functions [8], and
this construction is known as Service Function Chaining (SFC) [9].

On the current network service deployments, service function chains tightly de-
pend on the physical underlying infrastructure. Such dependency imposes many
constraints on network function delivery, such as:

• configuration complexity. Due to high dependency on physical network infras-
tructure, modifications on deployed service function chains need reconfigura-
tion on those chains, which leads to additional operational expenditures and
slows down the delivery of new services;

• limited ability to utilize infrastructure resources. Due to the increasing changes
of traffic pattern, the hardware based SFC deployment may become less effi-
cient to manage network resources by using the dedicated networking plans.

7



Chapter 1. General Introduction

NFV service chaining problem

The deployment of network services in NFV environments is known as the NFV
service chaining [6] provisioning. Thanks to its virtualization nature, NFV service
chaining present great potential for overcoming the ossification problem of current
network by virtualizing network functions to provide flexibility and agility to the
management (e.g., create, remove, scale) of VNFs and the chaining of these VNFs via
NFV MANO. For example, the virtual Customer Premises Equipment (vCPE) [10]
can simplify the network service delivery by means of virtualized individual network
functions placed at network provider locations, which allows replacing large number
of dedicated hardware devices deployed at each customer side (e.g., CPE1 and CPE2
in Figure 1.2a) by software-based functions running on common servers at aggrega-
tion locations (Figure 1.2b). With traditional CPE, deployment of new services can
be time-consuming and expensive. While by virtualizing CPE, network providers
can reduce Capital Expenditure (CapEx) and Operational Expenditure (OpEx) and
speed service delivery by configuring and managing the shared software-based func-
tions and providing new services on demand. There are also other promising use-
cases like the virtualization of the Evolved Packet Core (EPC) cluster in cellular
core networks [11,12], and the virtualization of cellular base stations [13].

(a) Traditional CPE (b) vCPE

Figure 1.2 – Traditional Customer Premises Equipment (CPE) compared to virtu-
alized CPE (vCPE) with VNF chaining.

A key feature for the effective success of NFV service chaining is the cost-efficient
placement of VNFs and routing of service demands to pass through the required VNF
nodes. Therefore, the optimization of NFV service chaining has received much at-
tention from both industry and academia. There is a significant number of works
on the problem with respect to, for instance, resource efficiency [14], or competitive
goals [1]. Besides the common NFVI-PoP context, the NFV service chaining prob-
lem has also been addressed in specific contexts, such as wireless networks [15] [16],
mobile core networks [17] and optical networks [18]. For tackling these problems,

8



1.2. Problem Statement

most of the approaches rely on heuristic algorithms. Besides, game theoretic ap-
proaches are also considered in the literature: in [19] authors propose a heuristic
method based on routing games; in [20] authors propose a distributed dynamic
pricing approach to allocate demands to already placed VNF instances, with con-
vex congestion functions for both links and VNFs to control congestion; authors
in [21] use the non-cooperative game theory to propose a distributed and privacy-
preserving algorithm to solve the service chain composition problem. Despite recent
research activity in the field, the problem of NFV service chaining is relatively new
and various research questions remain open. A recent study [22] evaluates some of
them highlighting that they may come at a “Revenue/Cost” ratio of 50%, i.e., twice
as many resources were consumed than demands realized by heuristic approaches,
which suggests that there is significant optimization potential to achieve in the area.

1.2 Problem Statement

The NFV service chaining optimization problem can be schematically described as
follows: an NFVI network is given and represented by a graph G(N,A), where N
is the set of NFVI nodes and A the set of links between nodes. Each node i ∈ N
can host a limited number of VNF instances, and each link (i, j) ∈ A can allow a
limited quantity of flow to pass by. We consider a set of traffic demands D, each
demand k ∈ D is characterized by a source ok ∈ N , a destination tk ∈ N , a nominal
bandwidth dk, and a set of VNF types that provide the network services required
by the demand. The problem is to decide on which nodes to install the VNF in-
stances and to route the demands from the source node to the destination node
traversing the nodes that host their required VNF instances, so that the utilization
of the overall network resources is optimized. Many constraints can be taken into
account, such as the VNF order constraint (e.g, the VNFs to be traversed firstly,
secondly, ..., lastly by the demand may be specified), the VNF sharing constraint
(e.g., some VNF instances can be shared by multiple demands while some others
cannot), the node/VNF capacity constraint, the link capacity constraint, the VNF
forwarding latency (i.e., the processing time that a VNF instance uses) constraints,
thus leading to different versions of the problem.

Given the context above, the work presented in this thesis is articulated as fol-
lows. In the first part, we consider a very detailed problem. The core part, the
Virtual Network Function Placement and Routing (VNF-PR) problem, is
to find the optimal placement of VNF instances over NFVI nodes and the optimal
routing for demands and their assignment to VNF nodes, so that both network-level
(i.e., traffic flow) and NFVI-level (i.e., network infrastructure) resources utilization
are minimized. Specific features and constraints of NFV infrastructures are con-
sidered, such as link capacity constraints, NFVI node capacity constraints, VNF
flow compression/decompression constraints (i.e., VNF instances may change the
bit-rate), VNF forwarding latency constraints, and VNF chain (total or partial) or-
der constraints for each demand (e.g., to deploy the network services, the demands

9



Chapter 1. General Introduction

may have to pass by some VNF instances before passing by other VNF instance,
thus leading to different requirements of VNF sequences, which is known as the
VNF chain order constraints). For such problem, an MILP (Mixed Integer Linear
Programming) and a math-heuristic are proposed and various scenarios analysed.

In the second part of the work, we focus on the problem complexity, properties
and formulations’ comparison. In order to study the problem structure, we reduce
the VNF-PR problem to a simplified, yet significant variant: a single type of VNF
is considered and any node can be equipped with a single VNF instance (i.e., node
capacity and VNF capacity are confounded); each demand requires a single service
and must be routed on a simple path (i.e., demands are allowed to pass by a node
at most once); VNF instances and links are capacitated and the objective is to
minimize the number of installed VNF instances. This version of problem is denoted
as theVirtual Network Function Placement and Routing with Simple Path
(VNF-PRSP) problem.

1.3 Thesis Goals and Contributions
NFV service chaining related problems are very actual and relevant, many papers
have been published on such topics especially in the telecommunication literature.
However, there is still significant optimization potential to achieve. Despite the large
number of papers, it is difficult to find a comparison among the proposed approaches
as many different versions of the problem have been considered and the proposed
approaches are tailored on them.

In this context, the goal of this thesis is to study the problem structure, investi-
gate problem complexity and properties, analyze and compare the most promising
formulation strategies on a common test bed, and finally to devise efficient meth-
ods able to scale with large size problems. To summarize, the study of this thesis
involves mainly four goals:

1. formalize the VNF-PR and VNF-PRSP optimization problems;

2. investigate the problem structure, complexity and properties;

3. compare the most promising formulation strategies proposed in the literature
on a common test bed and propose proper mathematical formulation for the
considered problem;

4. design efficient and scalable methods in order to compute timely solutions of
good quality to the VNF-PRSP problem.

Achievements of the aforementioned goals finally bring about the following main
contributions of this thesis:

1. on the Virtual Network Function Placement and Routing (VNF-PR) problem.

• we formalize a realistic VNF-PR problem and we propose a linear pro-
gramming formulation that is able to accommodate specific features and
constraints of NFV infrastructures, such as bit-rate changes;
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• we design a math-heuristic able to scale with multiple objectives step by
step and large instances;

• we conduct extensive tests and we draw conclusions on the trade-off
achievable between classical TE and NFV infrastructure efficiency goals,
evaluating both Internet access and Virutal Private Network (VPN) de-
mands;

• we provide possible refinements of the model to meet specific require-
ments, such as VNF affinity and anti-affinity rules, VNF isolation, etc.

2. on the Virtual Network Function Placement and Routing with Simple Path
(VNF-PRSP problem) problem.

• we study the problem complexity and prove the NP-completeness nature
of the VNF-PRSP problem;

• we investigate the problem properties and prove that: the single VNF
type case is equivalent to the multiple VNF types one under certain con-
ditions; an instance of the service must be installed on particular nodes
under certain conditions;

• we develop problem property and complexity based algorithms that are
able to help in speeding up the computational time;

• we generate a large common test bed and we compare two most promising
formulations proposed in the literature both theoretically and computa-
tionally. We further develop and evaluate several valid inequalities to
improve the problem formulations;

• we extend the formulations to address more general versions of the prob-
lem with multiple VNF types and multiple orders;

• we provide several strategies for obtaining quickly an initial feasible so-
lution for instances such that the model cannot find any feasible solution
with large computational time;

• we address the scalability of the problem by proposing ILP-based heuris-
tics. We demonstrate that our proposed methods can solve efficiently
medium size instances of challenging capacity cases and provide feasible
solutions for large size instances of the most difficult capacity cases. We
also provide insights for further improving the methods.

1.4 Thesis Organization
The remainder of this thesis is organized as follows.

• Chapter 2 presents the main concepts for fully understanding the optimization
problems tackled and approaches proposed in this thesis. We review possible
variants of the NFV service chaining problem tackled in the literature. A
classification guideline for the state of the art is also proposed. Further, the
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relation of the NFV service chaining problem with the optimization literature
is discussed;

• Chapter 3 defines formally a realistic version of the Virtual Network Func-
tion Placement and Routing (VNF-PR) problem and proposes a mathematical
formulation and a math-heuristic to solve the considered problem. Detailed
analysis on realistic scenarios are reported in terms of VNF placement, total
delay, etc;

• Chapter 4 defines formally the Virtual Network Function Placement and Rout-
ing with Simple Path (VNF-PRSP) problem and provides a thorough complex-
ity and properties analysis. A comparison of two most promising formulations
proposed in the literature is studied both theoretically and computationally;

• Chapter 5 and 6 propose ILP-based constructive methods and heuristics for
the VNF-PRSP problem to allow solving large size instances;

• Chapter 7 presents the final considerations and ideas for future work.

• Appendices A and B describe two additional methods that we have imple-
mented during the thesis. As they performed not as well as the methods
presented in Chapters 3 to 6, we decided to present them only shortly and in
an appendix.

12
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As mentioned previously, the NFV service chaining problem is one of the most
challenging aspects in NFV systems. This problem represents big challenges for
many reasons. First, NFV is designed to spread VNFs over the deployment network
infrastructure. Therefore, depending on the type of the deployment network, the way
the placement and chaining VNFs is done changes. Second, different types of network
services ask for different network performance metrics, and the performance (e.g.,
latency and throughput) is affected by the way the service is deployed. Therefore,
new network services may further impose additional constraints on how VNFs are
chained and deployed onto physical servers. Third, NFV is expected to reduce
CapEx and OpEx, thus, how to utilize efficiently various network resources should
also be considered in the deployment of SFC in NFV.

Many different versions of the problem have been studied in the literature con-
sidering different optimization goals and constraints. Nevertheless, basic features
representing essential components of the problem can be found in all the versions.

In this chapter, we present the basic features of the NFV service chaining problem
distinguishing it from other resources allocation problems and we review some most
prominent approaches in the literature. In section 2.1 we provide an overview on
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basic features of the NFV service chaining problem and we discuss the relation
with the optimization literature. In section 2.2, we discuss the similarity and the
difference between NFV service chaining and another two well-studied resources
allocation problems. In section 2.3, we provide a classification guideline for the
state of the art of the NFV service chaining problem, considering possible variants
tackled in the literature. In section 2.4 we review some of the most prominent
approaches regarding service deployment in the context of NFV environment.

2.1 Basic Features of NFV Service Chaining
The basic objective of the NFV service chaining problems is to optimize the design
of NFV service chaining system, where final decision includes 1) the location of
VNF instances; 2) the assignments of demands to the selected VNF instances; and
3) the end-to-end routing of traffic demands. From an optimization point of view,
the NFV service chaining problem shares features with network design problems (for
the service demand routing part) and with facility location problems (for the VNF
location and the network resources dimensioning):

• demand routing of NFV service chaining and network design.
Typically, network design involves dimensioning nodes and links and routing
demands. In VNF-PR, service demands must be routed on the network from
their source node to their destination node, and be served by a set of VNF
instances. In this sense, the routing part of VNF-PR is similar to the demand
routing part of network design;

• network resource allocation of NFV service chaining and facility location.
Facility location includes locating facilities (and in case dimensioning them)
and serving users (namely connecting users to facility). Similarly in VNF-
PR, VNFs correspond to facilities and demands to users. If we consider the
VNF-PR problem at a higher level of detail (i.e., with virtual machines), the
two-level facility location takes part. In this sense, the network resource allo-
cation aspect of VNF-PR and facility location are similar, since allocation or
hierarchical allocation decisions must be made in a client-server manner.

Both network design and facility location problems are widely studied in the
literature, but the combination described by the NFV service chaining problem
represents a new challenge. Although the combined facility location and network
design problem has been studied in optimization literature [23], the NFV service
chaining problem specificities are still not explored in the optimization literature.

2.2 Similar Problems
In this section, we present two well-studied resources allocation problems in network
virtualization, discussing the similarities and difference with respect to the NFV
service chaining problem.
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2.2.1 Virtual Machine Placement (VMP)

VMs are the key component of cloud computing and they provide virtual resources
such as CPU, memory, storage, and network interfaces in the same way as physical
resources do. Different from physical appliances, a VM instance can be dynamically
created, scaled up, and migrated to other locations on demand. This improves
the availability and scalability for dynamic cloud infrastructures. The process of
selecting which VMs should be placed on which physical devices (e.g., servers and
data centers) is known as the Virtual Machine Placement (VMP) problem [24].

In general, the problem of VMP can be divided into two tasks (as shown in
Figure 2.1): the first is the admission of new requests for the VM provisioning and
the placement of the accepted VMs on hosts, and the second is the optimization
of the VMP by VM migration (move the VMs to other hosts from their initial VM
placement) process. The underlying optimization problem is in the majority of cases
a Bin-Packing Problem, which is NP-hard [25].

Figure 2.1 – VMP (source from [24])

NFV service chaining and VMP have the similarity that they both try to place
virtual entities on potential locations, which can be considered as a facility location
problem. However, existing works in the VMP are not suitable for the placement
of VNFs for the reasons described by [26], e.g., the problem of VMP is node-centric
(VMs being many and small endpoints), while the problem of VNFs placement is
network-centric (VNFs being few and large middlepoint). Furthermore, VMP is gen-
erally the process of selecting the potential positions for the virtual entities, whereas
NFV service chaining has to further take into consideration the traffic path genera-
tion passing through virtual entities by order.

More precisely,

• NFV service chaining places the VNFs on potential locations and generates
routing path for each demand (i.e., demands must be steered to traverse
through ordered VNFs), while VMP places VMs on potential locations;

• the topology abstraction may be different in the two problems, since VMP
infrastructure is in general homogeneous as VMs are hosted in data centers,
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whereas the infrastructure of NFV is heterogeneous and can involve optical
network [27], wireless [15], and multi-providers [28], [29], etc.

2.2.2 Virtual Network Embedding (VNE)

Virtual networks are the primary entity in network virtualization. A virtual network
is a combination of virtual nodes and virtual links on top of a substrate/physical net-
work. Virtual nodes are interconnected through virtual links. By virtualizing both
node and link resources of a substrate network, multiple virtual network topologies
with can be created and co-hosted on the same physical hardware. The problem of
embedding virtual networks in a substrate network is one of the main resource al-
location challenge in network virtualization and is usually referred to as the Virtual
Network Embedding (VNE) problem [30].

In general, the VNE problem can be divided in two sub-problems (as shown
in Figure 2.2): Virtual Node Mapping where virtual nodes have to be allocated in
physical nodes and Virtual Links Mapping where virtual links connecting the vir-
tual nodes have to be mapped to paths connecting the corresponding nodes in the
substrate network. Solving the VNE problem is NP-hard [30], as it is related to the
multi-way separator problem.

Figure 2.2 – VME (source from [30])

Special version of the NFV service chaining problem that considers fixed order
of VNFs, can be seen as a special case of VNE in the sense that the virtual networks
to be embedded in VNE reduce to linear graphs (e.g., a straight line) whose both
extreme nodes have a fixed location. However, NFV service chaining problem is
different from VNE, for instance, in case of partial orders and affinity/anti-affinity
rules [31] (which tell the operator to keep virtual entities together or separated),
NFV service chaining problem cannot be treated as a special case of VNE as VNE
needs to know the fixed order of VNFs for embedding the virtual nodes and virtual
links into the substrate network.

More precisely,
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• VNE only works with the fixed order of virtual nodes, while NFV service
chaining also can deal with partial order and no order cases;

• in NFV service chaining, a VNF can be shared by multiple demands, while
in VNE, different virtual networks are typically independent, i.e., a flow of a
virtual network does not traverse through the virtual nodes of another virtual
network.

2.3 Possible Variants Tackled in Literature and A Clas-
sification Guideline

In this section, we propose a classification of the works on the NFV service chaining
problem based on their deployment environments, system performance metrics, and
modeling strategies.

Service de-
ployment

environments

System
performance

metrics

Optimization
goals and
constraints

Business
roles and
modeling
strategies

determine

generate

generate

Figure 2.3 – Variants of NFV service chaining problems

Although NFV is a novel concept, the problem of NFV service chaining have been
tackled by many works in the literature considering various optimization objectives
and constraints due to various use cases of the NFV technology. In order to review
different approaches, we propose a classification mainly focusing on their underlying
optimization problems, and on the proposed solution methods. For the sake of
clarity, we illustrate in Figure 2.3 the principal connections among optimization,
service deployment contexts, and specific system performance requirements. The
optimization goals and constraints are mainly generated by the service deployment
environments and system performance metrics, that depend on the NFV business
model.

In fact, the deployment of the a service chain depends on the network functions
that are included in chain. And the deployment of the network functions depends on
the type of network. For example, in wireless networks it is necessary to deal with
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radio resources [16], thus in this context, the dimensioning of radio resources is likely
to be considered in the NFV service chaining problem. Therefore, the deployment
environments may generate optimization goals and constraints. Furthermore, the
network environment may determine certain system performance metrics, and the
system performance metrics may further introduce additional optimization goals
and constraints. For instance, there are strict delay budgets among communicating
data and control plane elements (e.g., Service Gateway and Packet Data Network
Gateway) in mobile core network [17], which may introduce latency constraints to
the VNF-PR problem.

Therefore, we classify the works on the NFV service chaining problem into dif-
ferent categories taking into considerations together the service deployment envi-
ronment (Section 2.3.1), performance metrics (Section 2.3.2) and optimization goals
and constraints (Section 2.3.3).

2.3.1 Deployment Environment

We mainly identify six deployment environments (see Table 2.1).

Environments Main focus and/or quality indicator

General NFVI network OpEx and CapEx costs,
Computational resource utilization

Data Center (DC) network Energy efficiency
Cloud network Multi-domains (e.g., multi-DCs) infrastructure

Wireless and mobile edge network Mobility, Radio resource utilization,
Analog/digital modulation/demodulation

Mobile core network Strict delay budget

Optical network Spectrum resource utilization,
Electronic and optical conversions

Table 2.1 – Summary of NFV service chaining deployment environments with main
focus

Apart from general goals (e.g., costs minimization), specific ones may be intro-
duced in different deployment environments, such as decreasing access latency (by
placing network functions and certain services close to end-users) in mobile core
network [17], and green networking (energy efficiency) in DCs [32]. We present in
the following some of the main focuses in the state of the art of the NFV service
chaining problem in each environment.

• general NFVI network. A general NFVI network can be represented by NFVI
Points of Presence (NFVI-PoP), which means that a node can be any device
in the network, such as a computational node, a router, an SDN (Software
Defined Networking) controller, an access point, a network switch or any other
type of device even a DC network. The main focus of the works considering
a general NFVI network is to reduce the CapEx and OpEx costs of network
service deployment;
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• data center network. The goal of data center structure is to interconnect racks
of servers with high-speed. Therefore, the basic data center network architec-
ture is the 3-tier tree architecture, which can provide high speed forwarding. A
key problem of the data center provider is the energy efficiency. Furthermore,
when QoS (Quality of Service) requirements (e.g., service availability require-
ment) and the SLA (Service Level Agreement) violation (e.g., traffic delay
requirement) are considered, the problem become more challenging since these
goals are in competition with energy efficiency;

• cloud network. A cloud network is usually a multi-providers network where
each provider is an independent domain consisting of a set of interconnected
DCs. Cloud providers usually provide an abstraction of network topology as
they do not possess full knowledge of the physical network topology in each
domain. A key problem for cloud providers is how to conduct an effective
service provision according to various domains, satisfying the bandwidth re-
quirement of each service while saving as much cloud resource as possible as
the cloud provider has to pay for the rented physical resources;

• wireless network. One of the main features of wireless network (and mobile
edge network) environments is the mobility of their nodes. As a consequence,
dynamic approaches that consider nodes mobility as a trigger for VNF-PR
reconfiguration may be required in wireless networks. In this context the term
capacity of NFVI is not related only to pure computational resources, such as
number of CPU cores and memory, but, it refers also to packet forwarding, ra-
dio processing capabilities and analog/digital modulation/demodulation. Due
to their stochastic nature, available bandwidth is a time–varying quantity in
wireless networks. Channel fading, and also the distribution of end–users, can
greatly influence the network performance. For example, users at the center of
the cell will be, in general, able to use more efficient modulations and coding
schemes thus achieving higher throughput for a fixed amount of radio resources
than users at the edges of the cell. As a result, when the bandwidth–based
provisioning model is employed, also the actual channel conditions experienced
by the end–users must be taken into account [15];

• mobile core network. A mobile network comprises the Radio Access Network
(RAN, also know as mobile edge network or wireless network) and the cel-
lular core, known as the EPC (Evolved Packet Core). The RAN and EPC
are typically connected via an optical transport network. The RAN mainly
contains the base stations which provide radio access to the users. While the
EPC consists of a range of data and control plane elements, responsible for
routing, session establishment, mobility management, etc. The VNF-PR in
mobile network should consider jointly the load balancing and latency, since
there are strict delay budgets among communicating data and control plane
elements [17];

• optical network. With the bandwidth in fibers, optical network provides a
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reliable infrastructure to support efficient high-throughput traffic provision-
ing [33]. However, in order to provide a network service via optical network, the
VNF-PR needs to consider optimizing the utilization of spectrum resources in
addition, thus special cost of electronic and optical conversions may occur [32].

2.3.2 System Performance Metrics

We mainly identify three categories of system performance metrics for the NFV
service chaining problem (see Table 2.2). As discussed previously, system perfor-
mance metrics can reflect the service deployment environments and they may affect
the optimization focus of the resulting NFV service chaining problem. Moreover,
these metrics are necessary to evaluate the efficiency of an optimization approach.
Therefore, besides the service deployment environments, we also take into account
the most used system performance metrics to provide the classification of the works
on the NFV service chaining problem. We propose three categories of performance
metrics. In what follows, we link these performance metrics with the optimization
objectives and constraints considered in the works on the NFV service chaining
problem.

Metric Description

Resource consumption metrics
Energy consumption describes the number of active servers/physical machines
Resource utilization describes the used quantity of computational resources

Economical metrics
Acceptance ratio describes the ratio between number of accepted traffic requests

and total number of all the traffic requests
Cost describes the cost of certain spent substrate resources
Revenue describes the benefit of all accepted traffic requests

QoS and SLA metrics
Delay describes the time a packet/flow needs to travel across its path
Packet loss describes network congestion conditions
Path length describes the number of substrate links that are used by

a traffic path
Reliability describes the ability to provide and maintain an acceptable

level of service in case of failures
Throughput describes the data rate achievable between the nodes

Table 2.2 – Summary of system performance metrics with short descriptions

2.3.3 Main Optimization Objectives and Constraints

In this section, we associate the requirements of the system performance metrics
mentioned above with the main optimization objectives and constraints studied in
the literature. Moreover, for the sake of simplicity, we propose unique labels to
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represent the objectives and constraints (see the second column of Tables 2.3 and 2.4)
for the classification of works on the NFV service chaining problem.

2.3.3.1 Main Optimization Objectives of NFV Service Chaining

In this part, we present two optimization objective groups according to the deploy-
ment environment and system performance metrics discussed in Section 2.3.1 and
Section 2.3.2. Then for each objective group, we describe the objectives that are of-
ten pursued by existing approaches. A summary of the main optimization objectives
of NFV service chaining is presented in Table 2.3.

Optimization objective Label

Economical goals
Number of admitted demands maximization CST1
Node (or site opening) cost minimization CST2
Link bandwidth (or path) cost minimization CST3
Server (or energy) cost minimization CST4
VNF cost minimization CST5

SLA and QoS goals
Availability maximization SQG1
Delay minimization SQG2
Link congestion minimization SQG3
Maximum network traffic minimization SQG4
SLA violation minimization SQG5

Table 2.3 – Main optimization objectives and the corresponding labels

We mainly classify two groups of optimization objectives for the NFV service
chaining problem:

• economical goals: Many works in the literature consider economical goals as
optimization objective. In general, the economical goal can be expressed di-
rectly into two ways: the minimization of resources costs (e.g., cost metric
and energy consumption metric) and the maximization of revenue profit (e.g.,
revenue metric). The latter is always measured by the number of admitted
(served) demands (e.g, acceptance ratio metric). And for the former, according
to the number of resources considered in the objective function, can be further
divided into two groups: single resource cost minimization (e.g., the minimiza-
tion of node cost or VNF instances cost) and multiple resource cost minimiza-
tion (e.g., the minimization of both VNF cost and bandwidth cost). As mul-
tiple resources costs can be considered as the combinations of single resource
cost, we classify five single objective functions: number of admitted demands
maximization (acceptance ratio); node (site opening) cost minimization; link
bandwidth (path) cost minimization; server (energy) cost minimization; VNFs
cost minimization. Objective functions considering multiple resources are de-
noted by the combination of defined goals in one joint objective function. For
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example, in the classification Table 2.5, 2,3 in the CST column represents the
joint nodes and links cost objective function;

• SLA and QoS goals: Meeting SLA/QoS requirements is one of the essential
factors considered by many approaches in the literature. In this group, we
mainly classify the following five objectives: availability maximization (e.g., re-
liability metric); delay minimization; link congestion minimization (i.e., used
bandwidth minimization or remaining bandwidth maximization which may
indicate the packet loss metric); maximum network traffic minimization (i.e.,
load balancing that may indicate the throughput metric); SLA violation mini-
mization.

2.3.3.2 Main Optimization Constraints of NFV Service Chaining

Besides different objective functions discussed above, the NFV service chaining prob-
lem version varies also due to different constraints that are considered. In this part,
we present three groups of optimization constraints that are usually considered in
the existing work. A summary of the main optimization constraints is shown in
Table 2.4:

Optimization constraint Label
Network model constraints
Bit-rate changes NMC1
Limited link capacity NMC2
Limited node capacity NMC3
Limited server/VM capacity NMC4
Limited VNF instance capacity NMC5
Link latency NMC6
VNF node sharing requirements NMC7
VNF processing and forwarding latency NMC8

Service demand model constraints
Off-line DMC1
On-line DMC2
Schedule DMC3
Partial ordered VNFs chain requirement DMC4
Total ordered VNFs chain requirement DMC5
Unordered VNFs chain requirement DMC6
Unsplittable flow DMC7

SLA and QoS constraints
Load balancing SQC1
Link availability SQC2
Service availability SQC3
Simple path routing SQC4
Maximum allowed end-to-end latency SQC5

Table 2.4 – Main optimization constraints and the corresponding labels

• network model constraints: Since there are multiple network environment as
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discussed in Section 2.3.1, papers that focus on different network environment
may have a different level of network abstraction and consider different kind
of network resources. For instance, in a general NFVI network, a single NFVI-
PoP may represent a data center. In this case, node capacity limit may be
considered, whereas the server capacity limit may be neglected. We mainly
list eight optimization constraints referring to the network model:

1. bit-rate changes. Network functions may modify the traversing network
flows in different way, for instance, firewalls may drop certain packets,
leading to out-coming flows with a lower data rate than in-coming flows,
while a video optimizer may change the encoding of the video, resulting
in a higher data rate;

2. limited link capacity. Since high utilization of link bandwidth may cause
network congestion, it is important to limit the occupation of link band-
width;

3. limited node capacity (resource utilization);
4. limited server/VM capacity (energy efficiency);
5. limited VNF instance capacity (resource utilization);
6. link latency;
7. VNF node sharing requirements (e.g., VNF-server affinity or VNF-VNF

anti-affinity requirements);
8. VNF processing and forwarding latency.

• service demand model constraints: A service demand in NFV service chaining
is usually represented by a source node, a destination node and a sequence of
VNFs (i.e., a VNF chain). Different types of service may introduce additional
constraints on the NFV service chaining problem. For example, a demand
asking for VoIP service needs to count on low delays, therefore a maximum
allowed end-to-end latency may be imposed on the problem. In this group, we
present seven optimization constraints that appear frequently in the existing
work on NFV service chaining problem:

1. off-line (i.e., all the demands are given at the beginning);
2. on-line (i.e., batch of demands arrives dynamically);
3. schedule (i.e., demands are assigned to network resources according to

the time-varying status of the resources).

The order of traversing the VNFs in a chain also requires special atten-
tion. As each VNF in the chain can modify the data rate of the flows,
different chaining options can have different impact on the network traf-
fic (e.g., latency), on the utilization of network resources, or on system
performance. Therefore, we distinguish three chain order requirements:

4. partially ordered VNFs chain requirement;
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5. totally ordered VNFs chain requirement;
6. unordered VNFs chain requirement;
7. unsplittable flow (i.e., a demand is not allowed being served by multiple

VNF chains).

• SLA and QoS constraints: As discussed in the previous part 2.3.3.1, meeting
SLA/QoS requirements in the network is considered as an essential factor to
provision network services for many approaches in the literature. In this group,
we mainly classify five optimization constraints:

1. load balancing (e.g., delay metric);
2. link availability (e.g., link reliability metric);
3. service availability (e.g., service reliability metric);
4. simple path routing (e.g., path length metric, resource utilization metric);
5. maximum allowed end-to-end latency (e.g., delay metric).

2.3.4 Existing Modeling Strategies

In this section we provide an overview of the existing modeling strategies. Based
on a business model for NFV [2] and impact of SDN/NFV on business models [34],
we identify five main business roles/actors (the same actor may play several roles at
the same time): Infrastructure Provider (InP), VNF/VM/Server Provider (VNFP),
Telecommunication Service Provider (TSP), Network Operator and End User. An
example of the NFV business roles/actors and their relationships is provided in
Figure 2.4.

Figure 2.4 – An example of NFV business model

• InPs offer the other actors access to the computational physical resources in
form of DCs and physical networks. It is on top of these resources that virtual
resources may be provisioned and leased through programming interfaces to
the other actors.
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• VNFPs lease resources and run their VNFs, VMs or servers on top of the
NFVI. They can provide these functions to potential users such as TSPs or
Network Operators.

• TSPs may lease resources from one or more InPs for running VNFs. They
can determine the chaining of these functions to create services for end users.
In some cases, TSPs may sub-lease their virtual resources to other TSPs, and
they take the role of an InP. And in some other cases, TSPs may lease VNFs
from VNFPs to create services.

• Network Operators can also deploy and manage the end-to-end services run-
ning on resources from multiple InPs for the end users. Compared to TSPs,
Network Operators is more likely to provide customized services asked by the
end users. While TSP is more likely to create their own services and then
allocate the services to the clients.

• Finally, End Users consume the services offered by the TSPs or Network Op-
erators. And they may connect to multiple TSPs for different services.

As both TSPs and network operators may receive the service demands from the
end users, they are the business roles concerned by the NFV service chaining prob-
lem. But they may have different perspectives: a network operator may offer and
operate its NFVI with a resource-oriented model strategy, while a service provider
may adopt a service-oriented model strategy. Therefore, they may adopt different
modeling strategies to formulate the NFV service chaining problem:

• from a TSP point of view, NFV service chaining may be a two-level embed-
ding problem: on the one hand, TSPs have to define network services, which
are abstracted as VNF chains (i.e., described by VNF Forwarding Graphs)
composed of virtual functions and virtual links that need to be implemented
(i.e., embedded on top of the physical networks); on the other hand, TSPs
have to allocate network service requests to the corresponding services (the
implemented VNF chains). As a result, a two-level embedding strategy may
be proposed to model the NFV service chaining problem.

• from a network provider perspective, a network service request can be modeled
as follows: traffic (stream of packets) originating from a source is routed to
a VNF instance, where the packets are processed and forwarded to a target.
Thus the deployment of the network services is realized by flows that are routed
from the source node to the destination node passing through the required
VNF nodes. Therefore, there is no network service abstraction, the service
deployment schema is the end-to-end traffic routing path for the demand/flow.
We denote this modeling view with the VNF placement and demand routing
strategy.

To the best of our knowledge, early works on the optimization of VNF chains
deployment model the NFV service chaining problem as a VNE problem (i.e., using

25



Chapter 2. State of the Art

the embedding strategy). A virtual network is built for each demand representing
the demand together with the chain of VNFs to serve it. The VNF instances location
and demand routing are then defined according to the VNE mapping solution. For
instance, in [35], authors introduce a VNE based Mixed Integer Programming (MIP)
formulation; in [36] a VNE based Integer Linear Programming (ILP) formulation is
proposed along with a dynamic programming based heuristic to deal with large size
instances; [37] proposes a VNE based representation of the problem and focuses on
the online version of the VNF chaining problem. The problem of embedding VNF
chains is addressed also in [38], where demands may be rejected and the subset of
accepted demands must be maximized while limiting the number of service chains
considered. In [14], the authors propose an ILP model based on the mapping of VNF
chains on a physical network, although without naming it explicitly. Precomputed
paths for mapping are used. The ILP model is used as a step in a heuristic procedure
based on a dichotomic search on the number of located VNFs.

However, as already discussed, the NFV service chaining problem differs from the
general VNE problem and, as a consequence, the VNE representation paradigm is
not always suitable for representing VNF problems (e.g., when the VNF chain is no
ordered, or just partially ordered), nor it captures all the features of VNF problems
(e.g., the possibility of sharing VNF resources among different demands. See [1] and
[31] for more details). Therefore, the VNE based representation is possible only if
the order of VNFs in the chain is fixed and fully determined. As a consequence,
the virtual entity embedding strategy cannot always be applied to model the NFV
service chaining problem, and the VNE complexity results cannot be just extended
to the NFV service chaining problem as they are. Indeed, our work in [39] shows
that the NFV service chaining problem is easier than the VNE in some particular
case and for some network topologies.

Recently, the VNF placement and demand routing modeling perspective, which
is not related to the VNE representation paradigm, has been adopted by a handful of
papers in the networking literature and exploits the fact that the NFV service chain-
ing problem shares features with both facility location and network design problems.
In [1], authors provide an Mixed Integer Linear Programming (MILP) formulation
accounting for facility location and demand routing with a generic number of ser-
vices and no fixed order in the chain, taking into account different latency regimes
and traffic compression properties. Their work investigates the trade-off between
a legacy traffic engineering related goal (namely maximum link utilization) and a
goal combining traffic engineering and Network Function Virtualization (namely, the
sequential optimization of the traffic engineering goal and of the VNF installation
cost). A model similar to [1] is proposed in [31], where additional constraints are
added to take into account the incompatibility of certain VNFs and thus imposing
that they are located in different nodes.

2.3.5 A Classification of the Approaches

Table 2.5 presents a problem features based classification of the main approaches on
the NFV service chaining problem reviewed in this manuscript. Column 1 is the cited
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approach, and Column 2 shows the deployment context (Section 2.3.1). Columns
3-4 present the two objective categories and columns 5-7 present the three constraint
categories previously introduced. Note that the numbers in Columns 3-7 point to
the objectives/constraints labeled in Table 2.3 and Table 2.4. For example, number
5 in Column 3 (i.e., Column CST ) refers to the VNF cost minimization objective
labeled by CST5 in Table 2.3. Column 8 is the formulation strategy: E represents
embedding, and P&R represents VNF placement and demand routing. Columns 9-10
summarize the solution method. We further emphasize the importance of number of
test scenarios in the last column, the reason of showing the number of test scenarios
is discussed in the following with the scalability issue.

Ref. Context Objectives Constraints Strategies and methods # Test
CST S&Q NMC DMC SQC Strategy Exact Heuristic Scenarios

[1] NFVI-PoP 5 4 1-8 1,6-7 4-5 P&R MILP Dichotomy 4
[31] NFVI-PoP 3,5 2-3,5-7 1,4-5,7 4-5 P&R ILP LP relaxation 1
[36] NFVI-PoP 3-5 2,4-7 1-2,5,7 5 E ILP DP 2
[40] NFVI-PoP 3-5 5 2,4-7 1-2,5,7 E ILP DP 3
[26] NFVI-PoP 2-3,5 2-3,5,7 1,7 P&R ILP Greedy 17
[17] Mobile core 3-4 2-4,6 1,5,7 5 E MILP LP relaxation 1
[41] DC 3,5 2-3,5 1-3,7 P&R MILP Greedy 1
[42] DC 3,5 2-3,5,7 1-2,5 P&R MIP Local search 1
[43] DC 1 2-5 1-2,5,7 E MILP DP 36
[14] NFVI-PoP 5 2-3,5-8 1,5,7 5 E ILP Dichotomy 90
[44] NFVI-PoP 5 2-3,5-8 1,5,7 5 E ILP VNS 1
[45] NFVI-PoP 2 2-3 1-3,5-7 1,4-7 5 E MIQCP Greedy 1
[46] NFVI-PoP 4 2-7 1,5,7 4-5 E ILP - 1
[15] Wireless 2-3,5 2-3 1,7 E ILP Greedy 3
[16] Wireless 3,5 2-3 1,7 E ILP Greedy 3
[47] NFVI-PoP 5 4 1-8 1,4-5,7 4-5 P&R MILP Dichotomy 8
[48] NFVI-PoP 5 2,5,7 1,7 4 P&R ILP - 144
[49] NFVI-PoP 5 2,5,7 1,7 4 P&R ILP Local search 132

Table 2.5 – A classification of the approaches on the NFV service chaining prob-
lem proposed in the literature (DP refers to dynamic programming, VNS refers to
variable neighborhood search.

Most of the approaches in the literature tend to design scalable optimization
methods to solve the NFV service chaining problem. This is because, on the one
hand, the NFV service chaining optimization problem is hard to solve; on the other
hand, a scalable networking solution is necessary to achieve the full benefits of
NFV [50], since NFV is expected to overcome the ossification issue of the current
telecommunication network by automatically and dynamically deploying and remov-
ing VNFs to match changing traffic.

However, few of the work evaluates the proposed scalable solutions by using
different test scenarios to justify the efficiency of the methods. According to the
results of our investigation into the problem complexity and property, as well as
the results of extensive experimental tests under different scenarios, we find that the
efficiency to deal with the scalability is connected not only with the network size, the
number of traffic demands and the number of VNFs, but it is influenced also greatly
by the structure of tested network topology, the feature of considered resources (e.g.,
capacity) and the feature of demands distribution. Authors in [26] also observe the
phenomenon that the size and the complexity of the problem instance are tightly
linked with structure of the graph (e.g., a big number of links may offer more possible
routes), according to the experimental results of both ILP and heuristic methods.
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Besides the graph structure, we find by extensive experimental tests that, under
certain capacity limits, even an ILP model can solve efficiently the problem (e.g.,
within 10 seconds to find an optimal solution for the VNF-PR problem with 27
nodes and 702 demands). Therefore, we believe that it is necessary to evaluate the
approaches on multiple different scenarios (i.e., different graph structures, different
demands distributions and different resource capacity limits) to avoid such easy
cases. To this end, we report the number of test scenarios in the last column of
Table 2.5, which is calculated as follows: the number of test scenarios = the number
of different graph structures ∗ the number of different resource capacity settings ∗
the number of different demand distribution case-studies.

2.4 Overview of Related Work

The research works contributing to the NFV service chaining problem can be gen-
erally divided into two classes based on the considered objective function:

• the objective function of the first class is to maximize the number of admitted
demands. Approaches of this class, such as works in [38] [43] [51], focus on
maximizing the served demands by optimally allocating network resources.
Generally speaking, it is easy to find a feasible solution with this objective
function, e.g., an intuitive solution is to admit one single demand;

• the objective of the second class is to minimize a certain cost/utilization while
meeting the requests of all the demands. In fact, solving the problem of this
class is more challenging as finding a feasible solution (where all the demands
need to be served) can be difficult (if the problem is not impossible to solve).
There is already a certain number of studies in this scope and our works in
this thesis also fall into this class. According to the criteria considered in the
objective function, the approaches can be further divided into two types:

– approaches that consider one single objective function (e.g., NFVI node
cost minimization, path cost minimization or VNF cost minimization),
such as works in [14,44–46,48,49];

– approaches that consider one combination of multiple goals (e.g., the
minimization of both server utilization and link utilization), such as works
in [1, 15–17,26,31,36,40–42,47,52].

Works in [45, 46] are among the first ones to address the NFV service chaining
problem by formalizing it as an optimization problem. Authors in [46] decouple the
legacy VNE problem into two embedding problems: VMs embedding and service re-
quests embedding, where service requests are embedded on service chains, and VMs
on physical networks. Each service request has specific requirements as notably an
end-to-end latency requirement. However, the proposed model can only deal with
totally ordered VNF chain requests. Authors in [45] deal with a NFV service chain-
ing problem with totally and partially ordered VNF chain requests. They consider
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3 different optimization goals separately and perform a Pareto set analysis to inves-
tigate the possible trade-offs between different optimization objectives. However, in
the proposed two-step solution process, the partially ordered VNF chain requests are
firstly formalized and built by using a context-free language, i.e., for each request,
a VNF graph is defined by explicit orders of VNF nodes and in-between the virtual
links with explicit bandwidth requirement are computed before solving the problem,
then the predefined VNF graphs are mapped onto the substrate network by using
a Mixed Integer Quadratically Constrained Program (MIQCP). Therefore, the final
solutions found by this approach are not guaranteed to be optimal as the partially
ordered VNF chains are pre-computed.

In both approaches [46] and [45], the proposed methods are evaluated on a sin-
gle small scenario (e.g., one case-study of resource capacities on one graph with 12
nodes), whereas according to our study in this thesis, it is necessary to consider
multiple test scenarios (i.e., with different resource capacity limits, different graph
structures, and different demand distributions) to evaluate the proposals’ perfor-
mance. In fact, we proved in [39] that finding a feasible solution on a general graph
with resource capacity limits is NP-hard, e.g., a feasible solution may be hard to
provide if the capacity constraint is very strict. However, an optimal solution may
be easy to provide if the capacity constraint is very loose or the graph is a particular
one, e.g., a fully connected graph. Most of the approaches in the literature consider
single test scenario, and some consider scenarios with variation of nodes for the scal-
ability test, only few consider various scenarios with different resource settings, such
as in [14,26,47–49].

Authors in [14] introduce a general ILP model based on the mapping of VNF
chains on the physical network, taking into consideration the end-to-end delay and
resource constraints. The objective function of their model aims at minimizing the
number of VNF instances mapped on the infrastructure, which has the most signif-
icant and direct impact on the network provider’s costs. Then the authors go one
step further in [44] and address the scalability of the problem to solve large instances.
They propose a novel fix-and-optimize approach which combines the model defined
in [14] and Variable neighborhood Search (VNS). However, the evaluation of the
proposed heuristic methods in [44] considers only scenarios with single resource ca-
pacity, where an initial feasible solution can be found fast by solving the ILP model
dropping the objective function. In this thesis, we consider various test scenarios
and the computational results show that for some case-studies, it is even difficult to
provide a feasible solution within reasonable computational time (e.g., 3600s).

In [26] the specific DPI VNF node placement and traffic routing problem is tar-
geted and modeled as an adaptation of the multi-commodity flow problem model.
The authors focus on the case of single VNF type, where an operator has to run
DPI functions monitoring each flow on its own NFV infrastructure, for accounting
or cyber-security purpose. They provide a general ILP formulation of the vDPI
deployment minimizing the overall cost (nodes and links) as viewed by the network
operator. A graph centrality-based greedy algorithm is also proposed to minimize
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the number of nodes upon which DPI VNFs are activated: at each step a new DPI
VNF is located in the node that has the highest centrality until all the traffic flows
are served or all nodes have a vDPI. They apply both the ILP and the heuristic to
larger random networks of up to 100 nodes and based on the flat and Barabasi mod-
els. Their results show that the network structure and the costs strongly influence
time performance.

Authors in [41] also consider single VNF type. They formulate the static VNF
chains embedding problem considering the trade-off between host and bandwidth
resources consumption and elasticity. However, they assume that each demand con-
sists of one unit of traffic transmitted from its source to a VNF instance and delivered
to its target, and requires a unit of VNF resource to be served, which simplifies a
lot the problem. In order to cope with on-demand version of the problem, the au-
thors propose a consolidation algorithm called Simple Lazy Facility Location (SLFL)
that optimizes the placement of the VNF instances in response to on-demand work-
load. In another study [42], the authors consider distributed service deployment
(i.e., they assume that a service request flow can be served by multiple VNF chains,
thus by multiple instance of a same VNF type), proposing an MIP model and a
local search heuristic called Kariz for multiple VNF instances placement to provide
decomposition-based approach for the placement of VNF chains. However, they
adopt demand rejection model in the heuristic method to maximize the provider’s
revenue based on the number of accepted CPU and bandwidth resources.

In [1], the authors evaluate the mutual impact of multiple goals for a realistic
NFV service chaining problem. They investigate the trade-off between legacy TE
goal (namely maximum link utilization ) and a combined TE-NFV goal (namely,
the sequential optimization of the TE goal and of the VNF installing cost). They
provide an MILP formulation to deal with the case of NFV service chaining problem
with multiple VNF types and unordered chains, where different latency regimes and
traffic compression properties are taken into account to capture and investigate the
practical feature of traffic flow compression and decompression (bit-rate changes)
that could be imposed by the VNFs along the traffic route. A model similar to [1]
is proposed in [31], where additional constraints are added to take into account the
incompatibility of certain VNFs and thus imposing that they are located in differ-
ent nodes. An ILP model is proposed to solve small instance of the NFV service
chaining problem, minimizing the total financial cost of demands routing and VNFs
installation to serve all the demands. The authors also adapt their ILP model to
allow demand rejection decisions, and they propose a linear relaxation based heuris-
tic approach to cope with large instances. Our proposal in [47] extend the work
in [1]. We focus on providing a more generic formulation to the NFV service chain-
ing problem. In addition to different latency regimes, different optimization goals,
and traffic compression properties, we further take into account different demand
distribution scenarios. We perform a sensitivity analysis to put in evidence the effect
of relaxing the TE objective with respect to the NFV optimal cost objective, with
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the purpose to further evaluate the trade-off between the two objectives. Further-
more, a dichotomy based math-heuristic is presented to speed up the solution phase
and a numerical comparison with a VNE based model approach is proposed.

Online and schedule versions of the NFV service chaining problem also have been
studied in the literature. The authors in [36] tend to solve a NFV service chaining
problem aiming at optimizing network operational cost and resource utilization. In
addition, they consider a penalty cost to be paid to the customer for the service
level objective (SLO) violations. They propose an ILP and a dynamic programming
heuristic to solve the online VNF placement by running the Viterbi algorithm for a
multi-state directed graph with associated costs built by the authors. An extension
of the work [36] is presented in [40]. In [53], the authors present a formulation of
the NFV service chaining scheduling problem and they provide a novel primal-dual
decomposition using column generation that solves exactly a relaxed version of the
problem and can serve as a benchmark approach.

The NFV service chaining problem has also been addressed in specific contexts,
such as wireless local area networks and mobile core networks. In [15], the au-
thors formalize the NFV service chaining problem for wireless networks as an ILP
problem for small networks and they propose a scalable VNFs placement heuristic
called WiNE (Wireless Network Embedding) to deal with large instances. Besides
the common computational resources (i.e., CPU, memory and storage), the authors
also introduce the radio resources at each NFVI nodes (radio-enabled nodes) to con-
sider the specific wireless network features (e.g., virtualization resource of 802.11
devices). The work intends to minimize the links and nodes utilization to increase
the accepted service chain requests in wireless networks. Afterwards, the authors
extend their work in [16], investigating the VNF placement and scheduling problems
in the context of wireless networks under the hypothesis that the service requests
have already been specified in terms of VNF-FGs by the mobile virtual network
operators (MVNOs). However, in their work, a service demand is considered as a
chain composed of VNF nodes, therefore, the VNF instances are not shared among
service demands, each demand has its own VNF instance to be mapped to the sub-
strate network. In [17], the authors tackle the problem of VNF chains placement
onto the mobile core network. An MILP model is introduced for the optimal place-
ment of VNF chains to serve all the requests, considering network resource capacity
constraints and special 3GPP standards-related constraints, such as delay budgets
between EPC components (i.e., each virtual link) and strict order requirements of
VNFs. The objective is to efficiently map the VNF chains onto the substrate network
while jointly minimizing the maximum server utilization and the maximum link uti-
lization with respect to the delay budgets between each EPC elements. However,
as the relation between link and server usage varies with the system status, the
selection of weights should be adapted to the status, which has a big impact on the
problem resolution.
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To conclude, most of the approaches in the literature tackle application related
problems and focus on developing heuristic methods to solve the problem within
a reasonable computational time, and, to the best of our knowledge, the problem
theoretical properties have not been studied so far. However, the problem is inter-
esting also from an optimization point of view. The NFV service chaining problem
shares features with network design problems (for the demand routing part) and
with facility location problems (for the VNF location and the server dimensioning
part). Both problems are widely studied in the literature, but although the com-
bined facility location and network design problem has been studied in optimization
literature [54], the NFV service chaining problem peculiarities are still not explored
in the optimization literature and provide a challenging topic. Further, the prob-
lems addressed in the literature differ in the constraints, in the technical features
and in the assumption considered. Thus, the approaches proposed in different pa-
pers are tailored on specific versions of the problem and heuristics or formulations
have not been compared on a common data set. In this thesis, besides the practical
work in [47], we also work on the problem resolution from the theoretical point of
view. We provide a thorough complexity and properties analysis in [39] of a par-
ticular version of the NFV service chaining problem with respect to some design
considerations. Then in [48], we propose and compare two different formulations
that are representative of each modeling perspectives presented in the literature.
Furthermore, we propose ILP based exact and heuristic methods in [49] to improve
the problem resolution in comparison with the mathematical model, and we carry
out extensive experimental tests to evaluate our proposals with different scenarios
(i.e., more than 20 graph structures with 6 capacity case-study and 2 types of VNFs
chain model). Moreover, we explore other optimization methods to deal with our
problem: we propose a Farther Node (FN) formulation (see Appendix A) and we
implement a column generation based method (see Appendix B).
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In this chapter, we focus on a realistic NFV service chaining problem1, proposing
a mathematical formulation to solve the considered problem making to optimality
under reasonable execution time targets. Section 3.1 gives an overview of the tack-
led NFV service chaining problem. Section 3.2 formally defines the problem and
presents the proposed MILP formulation. Section 3.3 gives analysis and discussion
of optimization results. Section 3.4 presents the possible customization alternatives
for the proposed formulation.

3.1 Problem Features Overview
In the NFV service chaining [6] provisioning, key aspects that are worth being men-
tioned (and often neglected in the proposed solution strategies) are the:

• ingress/egress bit-rate variations at VNFs, due to specific VNF operations
(such as compression as with a firewall function or an egress tunneling function,
or such as decompression as in an ingress tunneling function);

1This chapter is based on the publication [47].
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• VNF processing and forwarding latency as an orchestration parameter. It can
indeed be exponential with the traffic load on the VNF, or constant up to
a maximum board if computation offloading solutions, such as direct mem-
ory access bypassing the hypervisor (as done with Intel/6WIND Data-Plane
Development Kit [55]), or similar other ‘fastpath’ solutions are present.

We could not identify a work in the state of the art jointly taking the above
aspects all together into account. In this context, our contribution is as follows:

• we define and formulate via mathematical programming the VNF-PR opti-
mization problem, including compression/decompression constraints and two
forwarding latency regimes (with and without fastpath), under both TE and
NFV objectives; our mathematical programming model is the first one in the
literature taking into account explicitly all these key aspects together;

• we compare our Placement and Routing (PR) approach to the legacy VNE
based approach, qualitatively and quantitatively; to the best of our knowledge,
we are the first to propose such formulation comparison;

• we design a model tailored math-heuristic approach allowing us to run exper-
iments also for large instances of the problem within an acceptable execution
time;

• we evaluate our solution by extensive simulations. We draw considerations on
NFV deployment strategies.

3.2 Problem Statement and Mathematical Formulation
The network is represented by a graph G(N,A), where N is the set of switching
nodes, and A represents the possible directional connections between nodes. The
router i ∈ N and its associated NFVI cluster are represented by the same node; this
choice allows to keep the size of the graph limited and reduces the computational
effort. We represent with Nv ⊂ N the set of nodes N disposing of NFVI server
clusters. We consider a set of demands D, each demand k ∈ D is characterized by
a source ok, a destination tk, a nominal bandwidth dk (statistically representative
for demand k), and a sequence of VNFs of different types, that must serve the
demand (and therefore must be traversed by the demand). For each VNF a single
VM is reserved, therefore we can equivalently speak of allocating a VM or a VNF on
an NFVI node, meaning that we are reserving the necessary resources (e.g., CPU,
RAM) to host a VM running a VNF.

The VNF-PR optimization problem is to find:

• the optimal placement of VNF instances over NFVI nodes;

• the optimal routing for demands and their assignment to VNF node chains.

• subject to:
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– link capacity constraints;
– NFVI node capacity constraints;
– VNF flow compression/decompression constraints;
– VNF forwarding latency constraints;
– VNF node sharing constraints;
– VNF chain (total or partial) order for each demand.

The optimization objective should contain both network-level and NFVI-level
performance metrics. In our network model, we propose as network-level metric a
classical TE metric, i.e., the maximum link utilization and as NFVI-level metric a
measure of the overall allocated computing resources. Both objectives are - in a
sequential way - minimized in the optimization model.

Furthermore, we assume that:
• multiple VNF instances of the same type (i.e., same functionality) can be

allocated on the same node. Each VNF instance can serve multiple demands
(this level of granularity allows to model the forwarding latency introduced
by VNF instances), but each demand cannot split its flow on multiple VNF
instances of the same type;

• the VNF computing resource consumption can be expressed in terms of live
memory (e.g., RAM) and Computing Processing Units (CPUs), yet the model
shall be versatile enough to integrate other computing resources;

• latency introduced by a VNF instance can follow one among the two following
regimes (as represented in Fig. 3.1):

– Standard: VNFs buffer traffic at input and output virtual and physical
network interfaces such that the forwarding latency can be considered as
a convex piece-wise linear function of the aggregate bit-rate at the VNF,
due to increased buffer utilization and packet loss as the bit-rate grows
as shown in [55, 56]. This is the case of default VNFs functioning with
standard kernel and hypervisor buffers and sockets;

– Fastpath: VNFs use optimally dimensioned and relatively small buffers,
and decrease the number of times packets are copied in memory, so that
the forwarding latency is constant up to a maximum aggregate bit-rate
after which packets are dropped (e.g., this happens for Intel/6WIND
DPDK fastpath solutions [55]).

Fig. 3.1 gives examples of forwarding latency profiles for the two cases;

• for each demand and NFVI node, only one compression/decompression VNF
can be installed. This allows us to keep the execution time of the optimization
algorithm at acceptable levels, without reducing excessively the VNF place-
ment alternatives. This assumption can be relaxed at the cost of working on
an extended graph, and therefore increasing the computational time of the
algorithm.
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Figure 3.1 – Example of VNF forwarding latency profiles.

In the following, we first introduce a basic model that does not take into account
latency limitations and compression/decompression features. The reason of this
choice is twofold. First, it allows a clearer explanation of the model and a step
by step introduction of the technicalities that allow us to keep the model linear;
we recall that already without these two features, the model is a combination of a
network design and a facility location. Second, as the model proved to be difficult to
solve at optimality using a state of the art solver, we design a sequential procedure to
reduce the solution computational time. In particular, instead of solving the overall
model from the beginning, we solve a sequence of problems where the model details
(latency, compression/decompression) are added step by step (see Section 3.2.4 for
a detailed description of the procedure). Therefore, this presentation allows to put
in evidence the peculiarities of each model component.

3.2.1 Basic Placement and Routing (PR) Model

Table 3.12 and 3.2 report the mathematical notation used in the following Mixed
Integer Linear Programming (MILP) that represents the basic formulation of the
VNF-PR problem.

We use four families of binary variables. The first family is used to represent the
path used by each demand:

• xkij represents the link utilization for demand k;

The other three families of binary variables are used to represent the VNF instan-
tiation and the assignment of demands to VNF instances. Each VNF instance is

2The notation used is slightly different from the publication [47] to have an uniform notation
along the manuscript.

3the maximum number of instances of VNF type f on a node i is limited by node capacity,
therefore without loss of generality, we can set cf

i = bminr∈R
Γir
rrr
c
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Sets
N all nodes

Nv ⊆ N nodes equipped with an NFVI cluster
A ⊆ N ×N all arcs (links)

D demands
R resource types (CPU, RAM, ...)
F VNF types

Parameters
network parameters

uij link capacity
Γir capacity of node i ∈ Nv in terms of resource r ∈ R

demand parameters
ok origin of demand k ∈ D
tk destination of demand k ∈ D
dk nominal bandwidth of demand k ∈ D
mf

k 1 if demand k ∈ D requests VNF of type f ∈ F
sf

k order coefficient for VNF f requested by demand k
VNF/VM parameters

rrr demand of resource r ∈ R for a VM
cf

i maximum number3of instances of VNF f on node i

Table 3.1 – Parameter notations for base model.

Binary variables
xk

ij 1 if arc (i, j) is used by demand k ∈ D
zfn

ik 1 if demand k ∈ D uses the n-th instance of VNF
of type f ∈ F placed on node i ∈ Nv

yfn
i 1 if the n-th instance of VNF of type f is assigned

to node i ∈ Nv

Continuous variables
U ≥ 0 maximum allowed link utilization
πik ≥ 0 label of position of node i in the path used by demand k

Table 3.2 – Variable notations for base model.
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represented by a triple (i, f, n), indicating the n-th instance of a VNF of type f on
node i;

• yfni represents the allocation of the instance n of a VNF of type f on a node
i;

• zfnik represents the assignment of a demand k to instance n of a VNF of type
f (multiple demands can be assigned to the same VNF instance);

The continuous variable U is used to represent the maximum link utilization
in the network, that is the maximum fraction of link capacity that is used by the
current solution. Continuous variable πik is used to represent the position of node i
in the path used to route demand k. This family of variables is necessary to impose
(total or partial) order in the VNF chain. As mentioned before, we consider two
objective functions:

• TE goal: minimize the maximum network link utilization:

minU (3.1)

• NFV goal: minimize number of cores (CPU) used by the instantiated VNFs:

min
∑
i∈Nv

∑
f∈F

∑
n∈1..cf

i

rrCPU yfni (3.2)

The former objective allows taking into consideration the inherent fluctuations
related to Internet traffic and therefore minimizing the risk of sudden bottleneck
on network links in the case bandwidth demands deviate from the expected values.
Therefore, minimizing the fraction of link capacity that can be used, indirectly allows
controlling the network congestion. The latter assumes the fact that today the first
modular cost in virtualization servers, especially in terms of energy consumption and
monetary cost, is the CPU. The reason is that, in common VM templates, the RAM
resource is positively correlated to the CPU resource, considering CPU as reference
cost indicator can indirectly imply also the consideration of the RAM consumption.
We now present the constraints.

Single path flow balance constraints:

∑
j:(i,j)∈A

xkij −
∑

j:(j,i)∈A
xkji =


1 if i = ok
−1 if i = tk
0 otherwise

∀k ∈ D,∀i ∈ N (3.3)

Utilization rate constraints:∑
k∈D

dkx
k
ij ≤ Uuij ∀(i, j) ∈ A (3.4)

Node resource capacity (VNF utilization) constraints:∑
f∈F

∑
n∈1..cf

i

rrryfni ≤ Γir ∀i ∈ Nv, r ∈ R (3.5)
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Each demand uses exactly one VNF of each required type:∑
i∈Nv

∑
n∈1..cf

i

zfnik = 1 ∀k ∈ D, f ∈ F : mf
k = 1 (3.6)

Constraints (3.7)-(3.8) are consistency constraints among binary variables. A
VNF can be used only if present, for a given node:

zfnik ≤ y
fn
i ∀k ∈ D, i ∈ Nv, f ∈ F, n ∈ 1..cfi (3.7)

If a demand does not pass by a VNF, it cannot use it:

zfnik ≤
∑

j:(j,i)∈A
xkji ∀k ∈ D, i ∈ Nv, f ∈ F : mf

k = 1 (3.8)

Finally, we introduce constraints to avoid unfeasible routing and to impose the
VNF chain order:

• Preventing the formation of isolated cycles:

πjk ≥ πik + xkij − |Nv|(1− xkij) ∀k ∈ D, (i, j) ∈ A (3.9)

• Imposing an order for virtual functions:

πjk ≥ πik − (|Nv|+ 1)(2−
∑
n∈1..cf1

i

zf1n
ik −

∑
n∈1..cf2

i

zf2n
ik ) ∀k ∈ D,

∀i, j ∈ Nv, f1, f2 ∈ F : sf2
k ≥ s

f1
k (3.10)

If we consider flow balance constraints (3.3) and link capacity constraints (3.4),
for each demand, a selection of arcs forming a path plus an isolated cycle can be
a feasible solution. In pure routing problems, these solutions are equivalent to
the solution where routing variables along the cycle are removed and only the one
along the path are kept. In fact, both constraints (3.3) and constraints (3.4) will
be valid for this new solution. Our problem integrates routing features within a
facility location problem, therefore such solutions cannot always be transformed
in a simple path simply removing the cycle. In fact, if a facility (VNF) used by
the demand is located on the cycle, removing the cycle will produce an unfeasible
solution. Therefore, it is necessary to remove such solutions directly in the model,
to this aim we introduced constraints (3.9), inspired by traveling salesman problems
tour elimination constraints [57]. Variable πik represents the order of node i along
the path serving demand k, therefore if arc (i, j) exists, then πjk will be at least πik
plus 1. On the other side, if arc (i, j) does not exist (xkij = 0) then the constraint
is not active: πik is always smaller than |Nv|, as a path can contain at most all the
nodes in the graph. In this way, only solutions containing simple paths are allowed.
These variables are also used in Equation (3.10) to allow imposing an order on VNFs
along the route of a demand k. They impose that if demand k uses VNF f1 located
on node i and its VNF successor f2 (sf2

k ≥ sf1
k ) that is located on node j, then in

the routing path of demand k node i must be precede node j.
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3.2.2 Virtual Network Function (VNF) Forwarding Latency

Parameters
L maximum allowed latency for a demand
λij latency introduced by link (i, j) ∈ A

standard latency model

gf
j (b) j-th component of the linearized latency function

for VNF f and aggregated bandwidth b
ng number of piece-wise components of lin. latency function

fastpath latency model

l̄f latency introduced by VNF f

Bf
max maximum allowed bandwidth to traverse VNF f

Variables

lfik ≥ 0 latency that demand k ∈ D incurs using VNF f
on node i of type f ∈ F hosted by node i ∈ Nv

Table 3.3 – Notations to model forwarding latency.

Table 3.3 reports the mathematical notation used to model the VNF forwarding
latency. We impose that for each demand k ∈ D a maximum latency L is allowed,
to guarantee some level of QoS. Latency depends on two components: link latency,
represented by a parameter λij for each arc (i, j), and VNF latency. VNF latency
depends on the used model of latency (standard or fastpath). To keep the notation as
uniform as possible, we introduce an additional variable lfik to represent the latency
experienced by demand k traversing VNF f located on node i. Therefore we get a
set of constraints common to both models limiting the overall latency:∑

(i,j)∈A
λijx

k
ij +

∑
i∈Nv

∑
f∈F

lfik ≤ L ∀k ∈ D (3.11)

A set of constraints depending on the chosen latency model allows to calculate
the value of variable lfik.

• Standard: the latency introduced on demand k for using VNF f depends on the
overall traffic traversing the VNF (its own and the one of other demands). Let
us call gfj (·) the j-th component of the piece-wise linearization of the latency
function for VNF of type f , then we get:

lfik ≥ g
f
j (
∑
b∈D

dkz
fn
ib )− L(1− zfnik )

∀k ∈ D, i ∈ Nv, f ∈ F, n ∈ 1..cfi , j ∈ 1..ng (3.12)

We can observe that constraint (3.12) is active only when the demand uses
instance n of VNF f on node i (zfnik = 1). Otherwise, as overall latency is
limited by L (constraint (3.11)), any term gfj (·) must be smaller than L, and
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therefore, the constraint is redundant (lik ≥ 0). We can observe that, even
if in the standard latency model there is no theoretical limit on the allowed
bandwidth, constraint (3.11) – limiting the overall latency for a single demand
(VNFs forwarding latency plus propagation delay) – imposes an implicit limit
on the maximum attainable bandwidth for a single VNF.

• Fastpath: the latency is fixed, but a limit in the total traffic that a VNF can
support is imposed. Therefore we get the following two sets of constraints:

lfik = l̄f ∀k ∈ D, i ∈ Nv, f ∈ F (3.13)

∑
k∈D

dkz
fn
ik ≤ B

f
max ∀i ∈ Nv, f ∈ F, n ∈ 1..cfi (3.14)

We can observe that constraints (3.13) can be substituted directly in con-
straints (3.11). Constraints (3.14) impose that the total bandwidth traversing
the n-th VNF instance of type f on node i is limited by the maximum amount
of bandwidth that the VNF instance can support before rejecting a demand.
Therefore, in our solutions no demand is discarded due to the fastpath mech-
anism.

3.2.3 Bit-rate Compression/Decompression

To introduce the possibility of compressing/decompressing flows for some VNFs, we
need some modifications to our model description. Table 3.4 reports the notations
used to model the flow variations. We introduce a compression/decompression pa-
rameter µf for each type of VNFs, µf > 1 means that a decompression is performed
by VNF f . When a demand pass through a VNF with µf 6= 1, its bandwidth
changes, therefore knowing just the routing (x variables) is not enough to determine
the overall flow along an arc. For this reason we introduce variable φkij that rep-
resents explicitly the flow on arc (i, j) for demand k. Another consequence is that
the classical flow balance equations are not valid anymore. To extend the model
without introducing an excess of complexity, we work under the assumption that
given a node i, and a demand k, such demand uses at most a VNF f with a factor
of compression/decompression (µf 6= 1).
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Sets
Na access nodes
N ′

a duplication of access nodes, where demands are located

Parameters
µf compression/decompression factor for VNF f ∈ F
dmin

k minimal bandwidth of demand k ∈ D
dmax

k maximal bandwidth of demand k ∈ D
Mi maximum traffic volume that can be switched by node i

Variables
φk

ij ≥ 0 flow for demand k ∈ D on arc (i, j)
ψfn

ik ≥ 0 flow for demand k ∈ D entering node i
and using instance n of VNF f ∈ F

Table 3.4 – Notations to model bit-rate variations.

We work on an extended graph to distinguish between access nodes (origin/des-
tination nodes) and NFVI nodes (remind that with the basic model we collapsed
NFVI nodes on router nodes). Each access node i is duplicated in a node i′ as shown
in Fig. 3.2.

original graph extended graph

i

j

i’ i

j

Figure 3.2 – Duplication of an access node i.

Arc (i, i′) will be added and all arcs (i, j) originating from access node i will
be transformed in arcs (i′, j). Therefore, the routing functionality is on node i and
the NFVI functionality can be allocated on node i′. Furthermore, we add variable
φfnik , that represents the flow of demand k entering node i and using the instance
n of the VNF of type f . If a demand passes through a VNF with a factor of
compression/decompression µf , then the out-flow of the node is proportional to the
in-flow: ∑

j∈N :(i,j)∈A
φkij = µf

∑
j∈N :(j,i)∈A

φkji

or equivalently: ∑
j∈N :(i,j)∈A

φkij −
∑

j∈N :(j,i)∈A
φkji =

∑
j∈N :(j,i)∈A

(µf − 1)φkji

This equation is valid only if demand k uses an instance n of VNF f on given node i
(remind that latency depends on the bandwidth passing through a single instance).
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Therefore, to obtain a valid equation, we have to write:

∑
j∈N :(i,j)∈A

φkij −
∑

j∈N :(j,i)∈A
φkji =

∑
j∈N :(j,i)∈A

φkji
∑

n∈1..cf
i

(µf − 1)zfnik

when
∑
n∈1..cf

i
(µf −1)zfnik = 0 the constraint states that the in-flow and out-flow are

the same, that is, if no VNF is traversed, the flow remains unchanged. The same
result is obtained for all VNF f such that µf = 1 (no compression/decompression).
To the aim of linearizing this constraint, we introduced variable ψfnik (still non-linear
representation):

ψfnik = (
∑

j∈N :(j,i)∈A
φkji)z

fn
ik

The constraints can be linearized using Equations (3.19)-(3.21), with the parameter
Mi equal to

∑
(j,i)∈A γji, which represents the maximum quantity of flow that can

enter node i. If (µf−1)zfnik = 1 then ψfnik representing the flow of demand k entering
node i and passing through the instance n of the VNF f (constraint (3.19)-(3.20)),
otherwise it is zero (constraint (3.21)). It is now possible to present the new flow
balance constraints for access nodes that must be added to the basic VNF-PR model:

∑
j∈N :(i,j)∈A

φkij −
∑

j∈N :(j,i)∈A
φkji =

=


dk if i = ok
0 otherwise

−dk
∏

f∈F :mf
k

=1
µf if i = tk

∀k ∈ D, i ∈ Na

(3.15)

Flow and compression/decompression balance for NFVI nodes and for each demand:

∑
j∈N :(i,j)∈A

φkij −
∑

j∈N :(j,i)∈A
φkji =

∑
f∈F,n∈1..cf

i

(µf − 1)ψfnik ∀k ∈ D, i ∈ Nv (3.16)

Coherence between path and flow variables:

φkij ≤ dmaxk xkij ∀k ∈ D, (i, j) ∈ A (3.17)
φkij ≥ dmink xkij ∀k ∈ D, (i, j) ∈ A (3.18)
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VNF compression/decompression linearization constraints:

ψfnik ≤
∑

j∈N :(j,i)∈A
φkji +Mi(1− zfnik )

∀k ∈ D, i ∈ Nv, f ∈ F, n ∈ 1..cfi (3.19)
ψfnik ≥

∑
j∈N :(j,i)∈A

φkji +Mi(1− zfnik )

∀k ∈ D, i ∈ Nv, f ∈ F, n ∈ 1..cfi (3.20)
ψfnik ≤Miz

fn
ik

∀k ∈ D, i ∈ Nv, f ∈ F, n ∈ 1..cfi (3.21)

One compression/decompression VNF per node and demand:∑
f∈F

∑
n∈1..cf

i :µf 6=1

zfnik ≤ 1 ∀k ∈ D,∀i ∈ Nv (3.22)

Eq. (3.15) represents the flow balance for the access nodes. At destination node
the quantity of flows is set equal to the demand multiplied for all factors of com-
pression of all the demanded VNFs. Eq. (3.16) represents the flow balance for a
given node that has the possibility of hosting VNFs (NFVI). Eq. (3.17)-(3.18) allow
to connect variables x and φ, in such a way that only and only if arc (i, j) is used
by demand k, that is xkij = 1, then variable φ can be different from zero. As the
demand passes through VNF that can compress or decompress the flow, then we can
determine upper and lower bound for the demand that are: dmaxk = dk

∏
f∈F :µf≥1

and dmink = dk
∏
f∈F :µf≤1 (to avoid these parameters being zero when it does not

exist any VNF with µf ≥ 1 (only decompression), and µf ≤ 1, respectively, the
calculation of the parameter can be modified in dmaxk = dk max{1,

∏
f∈F :µf≥1} and

dmink = dk min{1,max{0,
∏
f∈F :µf≥1}}, respectively). Variables x are still necessary

to impose the isolated cycles elimination and the order in the VNF chain. The
utilization rate constraints must be modified as follows:∑

k∈D
φkij ≤ Uuij ∀(i, j) ∈ A (3.23)

To take into account the combined effect of compression/decompression and VNF
latency some modification are needed.

For the standard model, constraints (3.12) are modified as follows:

lfik ≥ g
f
j (
∑
b∈D

ψfnib )− L(1− zfnik )

∀k ∈ D, i ∈ Nv, f ∈ F, n ∈ 1..cfi , j ∈ 1..ng (3.24)

For the fastpath model, constraints (3.14) are modified as follows:∑
k∈D

ψfnik ≤ B
f
max ∀i ∈ Nv, f ∈ F, n ∈ 1..cfi (3.25)
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Constraints
Features routing/location latency profile bit-rate
basic (3.3), (3.4), (3.5)-(3.10)

basic-lat (3.3), (3.4), (3.5)-(3.10) (3.11), [(3.12) vs (3.13)-(3.14)]
basic-lat-cd (3.3), (3.23), (3.5)-(3.10) (3.11), [(3.12) vs (3.13)-(3.14)] (3.15)-(3.22)

Table 3.5 – Applicable constraints to VNF-PR problem variations.

In Table 3.5 we summarize the different models. In the first column a short name
is used to refer to each model, in the second column constraints necessary to model
routing, location and resource capacity are reported. In the third and forth columns
we report latency and compression/decompression constraints.

3.2.4 Multi-objective Math-heuristic Resolution

We face a multi-objective problem: minimizing the maximum link utilization, which
reflects the service provider oriented vision to improve the user quality of experience
(strictly related to link congestion, especially for real-time services) and minimizing
the virtualization infrastructure cost evaluated as the number of required CPUs at
the NFVI level, which reflects the aims of the NFVI provider. Such a multi-objective
approach makes especially sense when the NFVI provider is a different entity than
the ISP. These two objectives are in competition; in fact, to obtain a low utilization,
a large number of VNFs must be allocated.

We decided to prioritize the objectives: first we minimize the maximal link
utilization (U), and then the NFV cost (total number of used CPU). We refer to this
as the TE-NFV objective. In practice, we perform a first optimization step to find
the best solution accordingly to maximal link utilization (U?), and then, keeping the
best value found in the first step as a parameter (i.e. adding the constraint U ≤ U?),
we minimize the second objective (NFV cost). In fact, for a given optimal value of
the first step, different possible configurations are available to the second step, and
a large primary cost reduction can be achieved by this second step without losing
with respect to the primary objective (maximum link utilization).

In order to understand the impact of imposing a maximal link utilization con-
straint on the NFV cost, we decided to study the sensitivity of the second step of
optimization on the optimal value U?. Therefore, we re-optimize the second objec-
tive relaxing the constraint on the maximum link utilization by a parameter α, i.e.
we used constraint U ≤ α+U? instead of U ≤ U?. We increase α step by step, until
the value of the NFV cost does not reduce anymore. This value corresponds to first
minimize the NFV cost and then the maximum link utilization cost (NFV-TE).

From preliminary tests, we observed that optimizing the complete model is very
expensive, and that computational time can be significantly reduced performing a
sequence of optimization starting from a basic model to the complete one. The result
of each step is used as a starting point for the following one, a so-called warm-start,
that allows to reduce computational time and/or produce better solutions or gaps
(when optimization is stopped before reaching the optimal solution). To be more
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precise, the sequence of models we optimize is first the basic one (only demand
routing, VNF location and capacities are considered), then basic-lat (latency is
added) and finally basic-lat-cd (latency and compression/decompression are added),
see Table 3.5 for the complete description of the models and equations involved.

The most challenging model from an optimization point of view is the last one,
basic-lat-cd. For this reason, we need to provide a feasible starting solution (warm
start) for this step. To this aim, the previous step, optimizing basic-lat model,
must be done with some slight modification: the compression/decompression feature
changes the quantity of flow that traverses the graph, therefore to guarantee that
the solution of the second step is feasible for the last one, it is necessary to route a
worst case quantity of flow, given by the case that all the VNFs with decompression
are already applied to the demand flow (of course, this worst case can be improved
considering the order of VNFs, when it is known in advance).

The NFV objective function results to be computationally more challenging than
the TE one. Therefore, for obtaining the optimal solution of the NFV goal, a
bisection procedure is used on the number of allocated CPUs to guarantee solution
optimality, even when in a single step the solver is not able to guarantee it: that is, at
each bisection step, if a feasible solution is found, the interval of the possible number
of CPUs is updated by replacing the greater end-point with the found solution, and if
no feasible solution exists then it is updated by replacing the smaller end-point with
the current number of CPUs. From numerical experiments, we observed that, for
our problem, determining that an instance is unfeasible (fixing a maximum number
of CPUs) using the TE objective is computationally less challenging than solving to
optimality the model using the NFV objective function. For this reason, the speed
up obtained using the bisection procedure allows us to solve to optimality, or obtain
a solution with a small gap on a larger number of CPUs than solving directly the
NFV objective problem.

3.3 Computational Results
Computational results are divided in two main parts: first, in Section 3.3.1, we show
results using our PR algorithm under different choices of demand distribution and
different VNF forwarding latency models and values. Then, in Section 3.3.2, we
present comparison results between our PR algorithm and a VNE based algorithm.

3.3.1 Results of PR Algorithm under Different Cases of Demand
Distribution and Different VNF Forwarding Latency Profiles

In this section, we report experiments on our PR model and algorithm under different
scenarios. We first present the parameter setting and then the analysis of the results.

3.3.1.1 Test Settings

We adopt the three-tier topology represented in Fig. 3.3 for computational evalua-
tion. Each edge node is connected to two aggregation nodes, each aggregation node
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is connected to two core nodes, and core nodes are fully meshed. We believe that this
topology gives a good abstraction to represent the current vision on NFV deployment
strategies: mobile edge facilities are represented by edge nodes, point-of-presence by
aggregation nodes and data-centers by core nodes. Furthermore, the highly sym-
metric graph topology produces two main effects: it allows to better analyze the
VNF distribution and the effects of latency limits and, on the other hand, produce
a very challenging instance for the optimization phase, allowing to test the model in
a stressful condition. As for the VNFs, we consider three VNF template types per
traffic demand: one with a compression behavior, one with a decompression behav-
ior and a third with no compression/decompression. For the sake of illustration, we
name each of these templates with a realistic VNF type name: a ‘Firewall’ VNF for
the compression (as it blocks part of the incoming traffic/packets), a ‘Deep Packet
Inspection (DPI)’ VNF for the case with no compression and no decompression, and
a ‘Tunneling ingress VNF’ for the decompression (as headers are added to packet in
the entry end-point). For the latter VNF, the assumption we do is that the egress
tunneling is done elsewhere in the Internet or in the access border side. We con-
sidered a strict order for the VNFs chain: Firewall VNF first, then DPI VNF, and
finally Tunneling ingress VNF. Each VNF instance has to reserve its own VM, and
we consider one single VM template requiring 1 CPU and 16 GB of RAM.

Figure 3.3 – Adopted network topology and PR solution example.

Table 3.6 presents the evaluation settings of the network resources. NFVI nodes
are dimensioned with an increasing capacity from edge to core: 3 CPUs and 40 GB
RAM at each edge node, 5 CPUs and 80 GB RAM at each aggregation node and
10 CPUs and 160 GB RAM at core nodes. The physical links are also dimensioned
with different capacity to represent realistic settings: the aggregation links are di-
mensioned so that there is a risk of link saturation if the traffic distribution is not
optimized (i.e. link utilization may higher than 100% when there are 3 or more
demands passing by. The limit of number of demands also depend on the case of
demand distribution, see Table 3.7 for detailed traffic settings), while the core links
are dimensioned such that there is a very low bottleneck risk. Link latencies are set
as follows to cope for the different geographical scopes: 1ms for edge links, 3ms for
aggregation links, and 5ms for core links.
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NFVI node settings
NFVI node CPU unit RAM (GB)
Edge nodes 3 40

Aggregation nodes 5 80
core nodes nodes 10 160

Physical link settings
Physical link Bandwidth Latency (ms)
Edge links 1 1

Aggregation links 0.5 3
core nodes links 1 5

Table 3.6 – Test settings of network resources.

We run our tests using two different case-studies for the demand distribution:
Internet and Virtual Private Network (VPN). In the Internet case-study (e.g., the
flow in red on Fig. 3.3), the traffic demands are sent by each edge node (e.g., end user)
to each core node (e.g., data center), and from each core node to reach each edge
node, which means that in this case both edge nodes and core nodes are access nodes
(i.e., where demands are generated); while under VPN case-study (e.g., the flow in
blue on Fig. 3.3), the edge nodes send traffic requests to each other, which means
that the set of edge nodes corresponds to the set of access nodes. The total number
of traffic demands is different for the two case-studies (36 for Internet and 30 for
VPN), but we kept constant the average total traffic volume (sum of demands) in the
network for the sake of comparison. As shown in Table 3.7, the demand quantity is
randomly generated with uniform distribution of the required bandwidth volume in
a given interval [a, b], in such a way that edge demands cannot create any bottleneck
at the edge links, i.e., a = 0.11 and b = 0.14 in the Internet case-study, a = 0.13
and b = 0.17 in the VPN case-study. These values allow us to keep the total traffic
volume at the same level for the two case-studies. In order to have more significant
results than one single demand instance, we generate 10 random demand instances
(the practical averaged total traffic volume for both case-studies is around 4.3) for
each case-study.

Study-case |D| a b Averaged total amount of traffic volume
Internet 36 0.11 0.14 |D| ∗ a+b

2 = 4.5
VPN 30 0.13 0.17 |D| ∗ a+b

2 = 4.5

Table 3.7 – Test settings of traffic demands.

We run tests for both Internet and VPN case-studies under standard as well as
fastpath latency profiles, VNF processing latencies being set as in Fig. 3.1. The two
profiles differ for their behaviors with respect to the bandwidth: fastpath has a fixed
latency and it rejects demands beyond a given threshold, while the standard profile
can accept a larger amount of demands at the cost of a larger latency. For both
profiles, the same end-to-end latency is assigned to the bandwidth corresponding

48



3.3. Computational Results

to the fastpath threshold. This allows to better compare the behavior of the two
profiles. With fastpath we expect to aggregate demands up to the threshold (in
the limits of the granularity of the demands and the routing possibilities), whereas
with the standard profile we expect that a larger latency can be accepted (as long
as we stay in the overall latency demand threshold) to reduce the number of VNF
instances. In addition, we consider two levels of end-to-end latency bound (L): the
strict and loose values (15ms and 20ms, resp). To be precise, we run tests with
both strict and loose latency bounds for the following combinations of scenarios:

• TE goal and TE-NFV goal both with:

– Internet demand profile:
∗ standard forwarding regime
∗ fastpath forwarding regime

– VPN demand profile
∗ standard forwarding regime
∗ fastpath forwarding regime

For a total of 16 different cases (each of them repeated for 10 random generated
demand instances).

The model is implemented and solved using AMPL [58] and CPLEX [59] 12.6.3.0.
The execution time is limited to 600s for each basic TE optimization phase (i.e.,
model basic and basic-lat) and 800s for the complete TE phase (namely model basic-
lat-cd), as well as for each step of the dichotomic search of the NFV optimization
phase.

3.3.1.2 General Observations

In this part, we introduce general considerations from a computational point of
view, discussing the quality of the results in terms of optimality and gap of the
solutions. In Section 3.3.1.3 to 3.3.1.6, we provide detailed analysis of the structure
and properties of the solution in terms of network and system indicators.

Table 3.8 presents the average, minimum and maximum results of the complete
TE objective stage (using a time limit of 800s) for Internet and VPN case-studies
considering the 10 random instances. We observe that for both Internet and VPN
cases, the results of the complete TE objective stage of all the 10 test instances are
stable: around 0.45 in Internet case and 0.60 in VPN case. The obtained results
have an average optimality gap of 15%. In some instances the optimality of the
solution is certified (i.e., optimality gap is 0%) and in the worst case the optimality
gap is 25%. These optimality gaps may appear large, but we need to observe that
the optimality gap is only an upper bound to the distance from the optimal value,
and in some cases, even if the current solution shows large gap, it can be the optimal
one (this can be due to a poor continuous relaxation, problem quite common when
binary variables are present). Therefore, to further investigate this aspect, we have
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Standard Internet VPN
L = 15ms L = 20ms L = 15ms L = 20ms

Average 0.45 0.45 0.61 0.59
Maximum 0.49 0.49 0.63 0.61
Minimum 0.41 0.41 0.59 0.58

Fastpath Internet VPN
L = 15ms L = 20ms L = 15ms L = 20ms

Average 0.44 0.45 0.60 0.59
Maximum 0.49 0.49 0.62 0.62
Minimum 0.41 0.41 0.58 0.57

Table 3.8 – Averaged, minimum and maximum values of the TE objective for Internet
and VPN case-studies.

performed some additional tests with a longer time limit (2 hours), and we could
certify that the solutions found with a smaller (800s) time limit were optimal.

As for the NFV objective stage, it is hard to reach the optimum within the time
limit of 800s. Moreover, we observe that the results depend on the case-study: with
the VPN case, under both standard and fastpath latency profiles, we obtain a lower
optimality gap and a smaller variation of it than with the Internet case. A possible
explanation is the increased number of traffic demands with the Internet case-study,
which seems to significantly impact on the computational effort.

Fig. 3.4 illustrates the problem size with regard to the number of VNF types
of both VPN and Internet case-studies. As shown in Table 3.5, different model
stages require different sets of variables and constraints, and the most expensive
model stage in terms of number of constraints is the basic-lat-cd. In order to show
how the proposed models scale with the number of VNFs, we report in Fig. 3.4 the
dependency between the number of VNF types and the problem size (in terms of
number of variables and number of constraints) of the most expensive model (basic-
lat-cd model). Fig. 3.4 (a) shows that the number of variables increases linearly with
the number of VNF types, and Fig. 3.4 (b) shows that the number of constraints
increases nonlinearly but smoothly with the number of VNF types.

In the following, we present the analysis of the solutions behavior. We compare
the two different demand case-studies (i.e. Internet and VPN) with two points of
view: i) what happens when we consider the NFV cost in the objective function
instead of TE (Section 3.3.1.3 and Section 3.3.1.4), and ii) what happens when we
make stronger the bound on the end-to-end latency (Section 3.3.1.5). Then we also
compare the behavior with respect to the latency profiles (Section 3.3.1.6).

3.3.1.3 TE vs. TE-NFV Objective

We analyze the difference between the results with the TE objective and the results
with the composite TE-NFV objective.

• NFVI cost (Fig. 3.5 and Table 3.9): Table 3.9 shows the averaged total NFVI
cost (i.e., the number of used CPU) obtained using the TE objective and the
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(a) Number of variables

(b) Number of constraints

Figure 3.4 – Dependency between the number of VNF types and the problem size.

Standard Internet VPN
TE TE-NFV Reduction (%) TE TE-NFV Reduction (%)

L = 15ms 66.4 48.2 26.86 46.1 31 31.08
L = 20ms 59.9 52 13.05 43.2 20.9 58.66

Table 3.9 – Averaged results of NFVI cost of the TE objective and the TE-NFV
objective under Internet and VPN case-studies, with the reduction ratio of cost
from TE to TE-NFV (standard case).
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Figure 3.5 – VNF node distribution across NFVI levels (standard case).
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Figure 3.6 – Link utilization empirical CDFs (standard case).

TE-NFV objective for both Internet and VPN cases following the standard
forwarding latency profile. In the fourth (respectively seventh) column the
percentage reduction in the total NFVI cost is reported. As expected, the value
is reduced, but it is worth to notice that the reduction is quite significant for
both Internet and VPN traffic models. Moreover, the cost reduction with VPN
is more significant than with Internet, especially with a loose bound on the end-
to-end latency (L = 20ms), the total cost was reduced by 58.66% in average.
As we discussed in Section 3.3.1.2, a possible explanation is the increased
number of traffic demands in the Internet case, which leads to possibly lower
quality solutions. The variation of solutions for Internet case can also be
observed in Fig. 3.5, where the VNF node distribution (i.e., the number of
used CPU by each VNF type across NFVI edge, aggregation and core levels)
is illustrated for both Internet and VPN cases with a confidence interval of 95%.
In plot (b) of Fig. 3.5 (with TE-NFV objective), the number of VNF instances
varies greatly, whereas in plot (a) (with TE objective), the number of VNF
instances varies gently. Although there is big variation in the solutions with the
TE-NFV objective, and even if the solutions are not optimal, the averaged total
NFVI cost is reduced greatly with a better deployment of VNF distribution.
This result shows that considering the NFV cost in the TE objective can reduce
significantly the resource consumption even without reaching the optimality.

• Link utilization (Fig. 3.6): the link utilization is not significantly affected by
including the NFV cost minimization in the optimization goal. As illustrated
in Fig. 3.6, in both cases with the TE goal, the aggregation links get most
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used. Furthermore, Internet case uses less the edge links, while VPN case uses
less the core links. When taking into account the NFV cost in the objective,
this behavior remains the same in both cases. This result shows that the
TE-NFV goal can reduce the resource consumption without affecting the link
utilization.

• VNF forwarding latency (Fig. 3.7): with both Internet and VPN demands,
it increases passing from the TE goal to the TE-NFV one. This suggests
that adopting the TE-NFV goal allows a higher level of VNF sharing for both
latency bound situations.
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Figure 3.7 – Empirical CDFs of latency components (standard case).

3.3.1.4 Relaxing the TE Constraint - Sensitivity to Maximum Link Uti-
lization

We perform a sensitivity analysis to put in evidence the effect of relaxing the TE
objective with respect to the NFV optimal cost, with the goal to further put in
evidence the trade-off between the two objectives.

With the TE-NFV objective, even if the VNF allocation cost is minimized, a
minimum maximum link utilization is guaranteed. What we want to analyze is the
impact of the TE bound on the NFV cost objective optimization. To this aim,
starting from the TE optimal value, we perform a series of optimization steps of the
NFV cost objective function, allowing this bound to be relaxed, increasingly.

Table 3.10 shows the NFV cost (average of 10 random instances) under different
limit of maximal link utilization (U). We calculate the NFV cost under U = U?+α,

54



3.3. Computational Results

Instance α = 0 α = 0.2 α = 0.4
L=15ms

Standard Internet 48.2 25.8 24.9
Fastpath Internet 37.125 31 31
Standard VPN 31 28.8 28.6
Fastpath VPN 39.1 37.7 37.7

L=20ms
Standard Internet 52 23.7 23.1
Fastpath Internet 38.7 34.8 31.2
Standard VPN 20.9 20.4 20
Fastpath VPN 34.9 34.8 33.8

Table 3.10 – NFV cost for different TE goal relaxation levels, with TE-NFV opti-
mization.

with α varying from 0 to 0.4. For both Internet and VPN cases, when α = 0,
the TE bound (U) used for the TE-NFV phase is the U? found in TE phase; when
α = 0.4, the U used for the TE-NFV phase is around 1 (i.e., link saturation reached).
The results show that a loose TE bound (link utilization) allows a better TE-NFV
solution. For most cases, there is almost no reduction (or no reduction at all)
from α = 0.2 to α = 0.4, which suggests that there exists a ceiling between the TE
objective and TE-NFV objective: we can get better utilization of NFV resources (i.e.,
TE-NFV objective) by allowing relaxed link utilization limit (i.e., TE objective),
however this is not always true when we reach the ceiling (e.g., other limits like VM
capacity also impact NFV cost). As for case FastPath Internet L = 20ms, there is
a reduction of NFVI cost with α increasing from 0.2 to 0.4. We can observe that for
the same case-study with L = 15 the best objective found is 31 (both for α = 0.2
and 0.4), therefore we can attribute this change in behaviour to the non-optimality
of the solution in the case L = 20, rather than to a different behaviour of the system
(we remind the reader that the problem is computationally very challenging, and we
imposed a short time limit).

3.3.1.5 Sensitivity to the Latency Bound

We analyze the impact of the VNF chain latency bound (L) on the results.

• NFVI cost (Fig. 3.5 and Table 3.9): as shown in Table 3.9, the averaged total
cost is reduced with VPN demands under both optimization goals with a loose
latency bound, especially with the TE-NFV goal. This happens because, with
a loose latency bound, the traffic can pass by the links with high latency (e.g.,
core links) to share more VNFs. On the contrary, there is a small cost increase
with Internet demands under TE-NFV goal. Analyzing in a more detailed way
the results, we observe that for the Internet case-study, the solver (CPLEX)
has more difficulties to reduce the gap. We can deduce that making the latency
bound weaker makes the location problem component (locating VNF and the
NFV goal) predominant with respect to the routing one, in fact, if the latency
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Fastpath Internet VPN
TE TE-NFV Reduction (%) TE TE-NFV Reduction (%)

L = 15ms 60.0 39.8 33.56 50.5 40 18.97
L = 20ms 59.9 38.7 37.83 47.5 35.9 21.50

Table 3.11 – Averaged results of NFVI cost of the TE objective and the TE-NFV
objective under Internet and VPN case-studies, with the reduction ratio of cost from
TE to TE-NFV (fastpath case).

bound is large enough the routing problem is not constrained anymore, and
more routing solutions are available; this allows more freedom in the location
part, and probably increases its combinatorial structure, and therefore it makes
the solution of the problem computationally more challenging. This is also
confirmed by a noticeable variability in the results, with a smaller averaged
cost reduction as shown in Table 3.9 passing from strict latency (with a cost
reduction of 26.86%) to loose latency bounds (with a cost reduction of 13.05%).
Moreover, we can see that with VPN demands, there is a higher dependency
to the latency bound than with Internet demands; this happens because in
general it is farther to send traffic demands from edge node to edge node than
from edge/core node to core/edge node, i.e., the end-to-end forwarding path
of VPN demands is in general longer than that of Internet demands, which
leads to a higher dependency to the latency bound.

• Link utilization (Fig. 3.6): in support of the above-mentioned analysis, we can
remark that under the loose latency bound, the core links get more utilized
with VPN demand,; while with Internet demands, the link utilization remains
almost the same. This indicates that VPN case is more sensible to the latency
bound.

• VNF forwarding latency (Fig. 3.7 and Table 3.12): the same observation can
be obtained by looking at end-to-end latency components. As shown in Ta-
ble 3.12, the averaged total latency of VPN is always greater than Internet.
Moreover, as shown in Fig. 3.7, the latency of each VNF and the total latency
become longer with VPN demands with loose latency bound.

These observations confirm the importance of the bound for VNF chaining and
placement decisions.

3.3.1.6 Standard vs. Fastpath VNF Switching

We now compare the results with the standard VNF forwarding latency profile to
those with the fastpath profile.

• NFVI cost (Fig. 3.5 vs. Fig. 3.8, and Table 3.9 vs. Table 3.11): under the TE-
NFV goal, the fastpath VNF forwarding is more expensive than the standard
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forwarding with VPN demands, especially with a loose bound on the end-
to-end latency (L = 20ms), the averaged total NFVI cost is 35.9 under the
fastpath profile and 20.9 under the standard profile; while it is the opposite
with Internet demands, for example, with the loose latency bound of 20ms, the
averaged total NFVI cost of the TE-NFV goal is 52 under the standard profile,
while it reduces to 38.7 under the fastpath profile. This happens because of
the maximum traffic bound that is set under the fastpath case and that is not
set for the standard case (which however brings to a higher end-to-end latency
as confirmed in the last item hereafter), therefore, more VNF instances need
to be deployed, which in turn increase the total cost.
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Figure 3.8 – VNF node distribution across NFVI levels (fastpath case).

• Link utilization (Fig. 3.6 vs. Fig. 3.9) : the only difference between the link
utilization under the standard and the fastpath profiles is remarkable for the
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case of VPN: the core links get less used with the strict latency bound of 15ms
under the standard profile, while they are not used at all under the fastpath
profile with the strict latency bound. However, there is no clear difference
for both forwarding profiles when taking into account the NFV cost in the
objective. Moreover, the behavior of the models is similar under the two
forwarding profiles, when passing from strict latency limit to the loose one:
under both the standard and the fastpath profiles, the core links get more
utilized with VPN demands, while with Internet demands, the link utilization
remains stable.
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Figure 3.9 – Link utilization empirical CDFs (fastpath case).

• VNF forwarding latency (Fig. 3.7 vs. Fig. 3.10): as discussed previously,
the VNF forwarding latency and the total latency under the standard profile
increase passing from the TE goal to the TE-NFV goal, but this is not the
case under the fastpath profile: the total end-to-end latency under the fastpath
profile remains almost the same passing from the TE goal to the TE-NFV goal.
For example, as shown in Table 3.12, the averaged total latency is the same
for the TE and the TE-NFV goal in the case of VPN demands with both strict
and loose latency bounds and also in the case of Internet demands with loose
latency bound. This is because of the maximum traffic bound set under the
fastpath case but not under the standard case. Therefore the standard model
can allow a higher demand aggregation on a single VNF. More precisely, it
can support a larger bandwidth than the fastpath model while introducing a
higher VNF forwarding latency. As a result, VNFs are better shared under
the standard case, and especially with the loose latency bound. This also can
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be observed by detailed results on latency components as shown in Table 3.12.
For instance, under the standard profile with the TE-NFV goal, the averaged
forwarding latency on each VNF instance of VPN is more than 1ms under
both strict and loose latency bound. Furthermore, under the loose latency
bound (L = 20ms), the averaged forwarding latency on each VNF instance is
more than 1.5ms. This result also confirms the results reported in Table 3.9:
the total cost of TE-NFV goal has been reduced by 58.66% in average, which
shows that VNFs are better shared with the TE-NFV goal and under the
standard case.
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Figure 3.10 – Empirical CDFs of latency components (fastpath case).

To conclude, we discussed in this section the experimental results of our VNF-PR
algorithm based on a large number of tests of different scenarios. The results show
that the TE-NFV goal allows a significant higher level of VNF sharing with both
the strict and the loose latency bounds. As a result, considering the NFV cost in
the objective function reduces greatly the resource consumption (in terms of number
of CPUs) without affecting the link utilization. Furthermore, by extensive tests of
relaxing the TE objective with respect to the NFV cost, we find that there exists
a ceiling between the TE objective and the TE-NFV objective: we can get better
utilization of NFV resources by allowing relaxed link utilization limit, however this
is not always true when we reach the ceiling. As for the TE-NFV goal with both the
standard and the fastpath forwarding profiles, the total cost depends on the traffic
model: the standard forwarding is more expensive than the fastpath with Internet
demands, while it is the opposite with VPN demands. However, VNFs are better
shared under the standard case for both Internet and VPN demands with the loose
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Internet study-case under TE objective with L=15ms
Standard FastPath

VNF F VNF D VNF T ALL VNFs Path Total VNF F VNF D VNF T All VNFs Path Total
avg 0.82 0.38 0.57 1.76 6.27 8.03 1.00 1.00 1.00 3.00 6.25 9.25
min 0.65 0.24 0.36 1.27 4.00 5.27 1.00 1.00 1.00 3.00 4.00 7.00
max 1.15 0.50 0.70 2.15 9.60 11.40 1.00 1.00 1.00 3.00 9.67 12.67

Internet study-case under TE objective with L=20ms
Standard FastPath

VNF F VNF D VNF T ALL VNFs Path Total VNF F VNF D VNF T All VNFs Path Total
avg 1.21 0.44 0.92 2.56 6.68 9.24 1.00 1.00 1.00 3.00 6.37 9.37
min 0.66 0.29 0.59 2.17 4.00 6.34 1.00 1.00 1.00 3.00 4.00 7.00
max 1.79 0.59 1.29 2.98 10.80 13.16 1.00 1.00 1.00 3.00 10.50 13.50

Internet study-case under TE-NFV objective with L=15ms
Standard FastPath

VNF F VNF D VNF T ALL VNFs Path Total VNF F VNF D VNF T All VNFs Path Total
avg 1.07 1.09 0.84 3.01 6.27 9.28 1.00 1.00 1.00 3.00 6.34 9.34
min 0.70 0.79 0.64 2.53 4.00 6.62 1.00 1.00 1.00 3.00 4.00 7.00
max 1.55 1.38 1.11 3.46 9.60 12.62 1.00 1.00 1.00 3.00 9.67 12.67

Internet study-case under TE-NFV objective with L=20ms
Standard FastPath

VNF F VNF D VNF T ALL VNFs Path Total VNF F VNF D VNF T All VNFs Path Total
avg 1.26 1.11 1.01 3.38 6.68 10.06 1.00 1.00 1.00 3.00 6.37 9.37
min 0.60 0.86 0.57 2.99 4.00 7.04 1.00 1.00 1.00 3.00 4.00 7.00
max 1.87 1.39 1.50 3.75 10.80 14.05 1.00 1.00 1.00 3.00 10.50 13.50

VPN study-case under TE objective with L=15ms
Standard FastPath

VNF F VNF D VNF T ALL VNFs Path Total VNF F VNF D VNF T All VNFs Path Total
avg 0.86 0.64 0.61 2.12 8.07 10.18 1.00 1.00 1.00 3.00 7.48 10.48
min 0.56 0.32 0.22 1.45 2.00 4.12 1.00 1.00 1.00 3.00 2.00 5.00
max 1.18 0.93 1.00 2.71 11.67 13.39 1.00 1.00 1.00 3.00 9.40 12.40

VPN study-case under TE objective with L=20ms
Standard FastPath

VNF F VNF D VNF T ALL VNFs Path Total VNF F VNF D VNF T All VNFs Path Total
avg 0.90 0.68 0.61 2.19 9.58 11.77 1.00 1.00 1.00 3.00 9.95 12.95
min 0.57 0.43 0.33 1.67 2.00 4.10 1.00 1.00 1.00 3.00 2.00 5.00
max 1.15 0.99 0.85 2.86 14.17 16.53 1.00 1.00 1.00 3.00 13.50 16.50

VPN study-case under TE-NFV objective with L=15ms
Standard FastPath

VNF F VNF D VNF T ALL VNFs Path Total VNF F VNF D VNF T All VNFs Path Total
avg 1.16 1.21 1.11 3.48 8.07 11.55 1.00 1.00 1.00 3.00 7.48 10.48
min 0.74 0.80 0.80 2.55 2.00 5.09 1.00 1.00 1.00 3.00 2.00 5.00
max 1.58 1.74 1.63 4.59 11.67 14.26 1.00 1.00 1.00 3.00 9.40 12.40

VPN study-case under TE-NFV objective with L=20ms
Standard FastPath

VNF F VNF D VNF T ALL VNFs Path Total VNF F VNF D VNF T All VNFs Path Total
avg 1.59 1.84 1.62 5.06 9.58 14.63 1.00 1.00 1.00 3.00 9.95 12.95
min 1.30 1.01 1.06 4.29 2.00 6.76 1.00 1.00 1.00 3.00 2.00 5.00
max 2.24 2.41 2.17 5.68 14.17 18.76 1.00 1.00 1.00 3.00 13.50 16.50

Table 3.12 – Averaged, maximum and minimum latency components of both the
standard and the fastpath cases (F represents ‘Firewall’, D is ‘DPI’ and T is ‘Tun-
neling ingress’).
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latency bound.

3.3.2 PR vs. VNE Based Approaches

In this section, we compare our PR approach with the VNE Based (‘VNE-B’) ap-
proach, already discussed in Chapter 2, using the algorithm from [36], which is open
sourced by the authors4.

In [36], a VNE-B modeling approach is proposed for a generic VNF orchestra-
tion problem: each traffic demand is considered as a virtual graph (i.e., G(N,L)
in [36], where N is the set of traffic nodes, i.e., switches or VNFs, and L denotes the
links between them) to be embedded in the substrate graph represented by switch-
es/routers and NFVI nodes. The mapping of virtualized traffic demands’ path onto
a physical network is realized by embedding VNFs on physical servers and estab-
lishing path for virtual links. The objective considered is the minimization of the
overall OpEx (operational expenditure) cost: VNF deployment cost, energy cost,
traffic forwarding cost and an additional penalty to take into account Service Level
Objective (SLO) violations. A weighted sum of the four aforementioned costs is
considered as optimization objective. Authors proposed an ILP model, and they
present two different problems, a static one - where demands are known in advance -
and a dynamic one - where demands arrive in an online fashion. In our comparison,
we focus on the static version of the problem and its proposed solution approach; it
is based on a procedure that solves a sequence of ILPs, where, for each iteration, the
number of VNFs is limited and the execution time is limited as well. ILP executions
are solved with CPLEX (using the callable library).

For the sake of comparison, we adapt our original VNF-PR model to the hy-
pothesis used in [36]; we list in the following the simplifications and adaptations to
our model in order to use the same parameters used in the VNE-B approach:

• We reduced our objective to a single objective: minimizing the overall network
operational cost, using the same parameters of the VNE-B approach.

• We considered only the fastpath latency regime, i.e., we fixed the VNF for-
warding latency.

• We discarded compression/decompression aspects, i.e., we adopt our ‘basic-lat’
model.

• As the VNE-B approach uses VNF templates, we associated a VNE template to
each VNF type according to VNF requested number of vCPUs; for example,
a template with capacity of 4 CPUs is associated to the VNF requesting 4
CPUs.

• We added the penalty parameter for each traffic request to take into account
SLO violations.

4The source code is at https://github.com/srcvirus/middlebox-placement.
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Figure 3.11 – Comparison between PR and VNE based algorithms in terms of ob-
jective function.

Furthermore, similarly to the NFV cost optimization phase of our PR approach
described in Section 3.2.4, authors in [36] use a dichotomy method on the number
of VNFs. In order to understand the impact of adding the dichotomy method and
to have a fair comparison, we tested two solving strategies for our model:

• PR algorithm: the adapted PR model solved directly without the dichotomy
procedure.

• PR-D algorithm: the adapted PR model solved with the dichotomy procedure.
For the sake of comparison, we integrate our adapted PR model into the same
procedure used in [36] (i.e., replacing their model by ours in the dichotomy
procedure)

As for the comparison test, the network settings are taken directly from the sim-
ulation setup of [36]: adopting the Internet2 topology (12 switches and 15 links),
setting the same physical link and NFVI server capacities, using the same VNF
specification, VNF requests sequence, etc., and adopting the same cost data. As for
the traffic data, we created 5 groups of tests with different sets of traffic requests (6,
12, 18, 24 and 30); for each group, we randomly selected, from the traffic matrix set
of [36], 10 matrices. Then we tested these groups of data with the three methods
(i.e., VNE-B, PR and PR-D). Our algorithms are implemented in AMPL, and the
VNE-B algorithm is implemented in C++ using CPLEX for ILP resolution. CPLEX
12.5.1 was used for these tests. Fig. 3.11 reports a comparison between our PR so-
lution and the VNE-B solution in terms of global cost, each group of bars represents
results for different number of traffic requests. Note that PR is an exact method
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that finds always the optimal solution, while PR-D and VNE-B use the dichotomy
process, so that they may provide sub-optimal solutions. Moreover, the dichotomy
process provides a set of feasible solutions and not a single one. Therefore, Fig. 3.11
illustrates 5 bars representing the solutions of different algorithms. More precisely,
we report the optimal solution for PR, and we report the best solution as well as the
average value of the feasible solutions for the VNE-B algorithm and the PR-D algo-
rithm. As a result, the absolute optimality gap for sub-optimal solutions is shown
by the difference between the red bar (optimal solution) and each other bar. We ob-
serve that PR-D is able to find better solutions compared to the VNE-B algorithm,
especially when the amount of traffic demands is small, where PR-D can always find
optimal solutions; whereas the VNE-B algorithm is always able to find a feasible
solution very fast (i.e., within 10 seconds vs. up to one hour for our method), the
result can be of very low quality, in fact it does not provide optimal solution even
for the test with 6 demands.

3.4 Further Model Refinements

The model we provided above can be possibly refined and customized to meet spe-
cific requirements. We list in the following the possible variants as well as the
corresponding modeling variations.

• VNF affinity and anti-affinity rules: due to the privacy, reliability or other
reasons, a provider may want impose rules on the placement of certain types
of VNF: be placed or not placed on certain servers, be grouped or not grouped
together, etc. Such specific VNF placement rules are called affinity and/or
anti-affinity rules [60]. To extend our model to take them into account, the
simplest way is to introduce a new variable representing the presence of a
certain type of VNF f on a given node i (we remind the reader that our model
allows to have multiple copies of the same type of VNF on the same node).
Let us call this variable vfi , it will be equal to one if a VNF of type f is located
on node i. To make these variables consistent with already defined variables
yfni , we need to add: ∑

n∈1..cf
i

ynfi ≤ c
f
i v

f
i ∀i ∈ Nv, f ∈ F

More precisely, common affinity/anti-affinity rules are:

– VNF-VNF affinity rules: if two VNFs communicate frequently and should
share a host node, we may want to keep the VNFs together in order to
reduce traffic across the networks and improve the traffic efficiency. Let
AffVVf1f2 be a parameter equal to one if f1 and f2 should share the same
node. Then:

vf1
i = vf2

i ∀(f1, f2) : AffVVf1f2 = 1
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– VNF-Server affinity rules: certain intrusion prevention VNFs should re-
side in the network edges to guard against worms, viruses, denial-of-
service (DoS) traffic and directed attacks. Let AffVSfi be a parameter
equal to one if f should be installed on i. Then:

vfi = 1 ∀(i, f) : AffVSfi = 1

or restricted to a subset of nodes S ∈ Nv:∑
i∈S

vfi = 1 ∀(i, f) : AffVSfi = 1

– VNF-VNF anti-affinity rules: it may be required to install multiple in-
stances of the same VNF onto multiple servers in order to improve VNF
reliability against failures. Let AAfff be the anti-affinity parameter; we
then impose that at least nbMin nodes host the VNF:∑

n∈Ns

vfi ≥ nbMin ∀f : AAfff = 1

if different VNFs cannot be co-located, let AAffVVf1f2 be the anti-affinity
parameter and impose:

vf1
i + vf2

i ≤ 1 ∀(f1, f2) : AAffVVf1f2 = 1

– VNF-Server anti-affinity rules: it may be required to avoid resource-
hungry VNFs residing in certain cost-critical servers. Let AAffVSfi be
the anti-affinity parameter and impose:

vfi = 0 ∀(i, f) : AAffVSfi = 1

We can observe that all the constraints that set some variables to one or
zero, just reduce the number of variables; therefore we can expect that such
constraints do not increase the computing time. A slightly different condition
can be imposed for sharing a VNF among different demands; we refer to that
as VNF isolation.

• VNF isolation: if the same VNF cannot be shared between two specific de-
mands, we can add constraints to impose this condition. It is sufficient to
introduce an incompatibility parameter inck1k2 , equal to one if demand k1
must be isolated from demand k2; then we need to add:

zfnik1
+ zfnik2

≤ 1 ∀i ∈ Nv, f ∈ F,

n ∈ 1..cfi , k1, k2 ∈ D

• Multiple comp./dec. VNFs per NFVI node: to make the presentation sim-
pler, we assumed that in each NFVI node there is at most one VNF that can
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compress/decompress a flow, i.e. with a factor of compression µf 6= 1. This
assumption can be relaxed using an extended graph in which each node that
can host a VNF (Nv) is expanded in multiple copies, one for each type of
VNF that can be allocated in the node. Otherwise, we can represent all pos-
sible combinations of different VNFs allocated to the same node, and adding
additional binary variables to represent which combination is chosen.

• VNF partial chain ordering: we can observe that partial order can be im-
posed with the same form of constraints used for total ordering (3.10), just
limiting their number to existing precedence conditions. It is sufficient to in-
troduce a constraint for each couple of VNFs that has a precedence relation.
More formally, for each demand k, we can introduce a directed acyclic graph
Ok(Vk, Pk), where nodes V represent the set of VNFs that must serve the
demand (V = {i ∈ F : mf

k = 1}), and arcs P represent the order relation
between such VNFs, that is an arc (i, j) ∈ P if VNF j must be used after VNF
i. Then, constraints (3.10) can be rewritten as:

πjk ≥ πik − (|Nv|+ 1)(2−
∑

n∈1..cf1
i

zf1n
ik −

∑
n∈1..cf2

i

zf2n
ik )

∀k ∈ D,∀i, j ∈ Nv, f1, f2 ∈ Vk : (f1, f2) ∈ Pk

• Additional computing constraints: it can be easily included by tuning existing
parameters, as far as computing resource requests can be expressed in an
additive way (e.g., for storage).

• Load balancing: in the current model, each demand can use a single VNF
for each type. The model can be extended to allow per-VNF load balancing.
If the load balancing is local to an NFVI node , the change in the model is
small, in fact it is simply necessary to have some continuous variables taking
into account the quantity of demand associated to each VNF. If the load
balancing can be between different clusters, then it is necessary to extend the
model allowing multiple paths for each demand. However such an extension is
expected to largely increase the execution time.

• Different VM templates: for the sake of simplicity, differently from [1], we
presented the model considering a one-to-one correspondence between VNF
and VM templates (single template). Nevertheless, multiple VM templates can
be considered in the model at the price of increasing of one dimension/index
all variables indexed on the VNF identifiers.

• Core router as a VNF : if the core routing function is also virtualized, i.e., if
the NFVI node and the network router can be considered as a single physical
node that runs the core routing function, processing the aggregate traffic inde-
pendently of the demand, as a VNF, then we need to add a term proportional
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to InFlow plus OutFlow to (3.5):∑
k∈D

∑
f∈F

∑
n∈1..cf

i

rrry
fn
i

+
∑
k∈D

∑
j:(i,j)∈A

dkx
k
ij

+
∑
k∈D

∑
j:(j,i)∈A

dkx
k
ji ≤ Γir ∀i ∈ Nv, r ∈ R

If bit-rate compression/decompression is considered, constraint (3.5) must be
modified as follows:

∑
k∈D

∑
f∈F

∑
n∈1..cf

i

rrry
fn
i

+
∑
k∈D

∑
j:(i,j)∈A

φkij

+
∑
k∈D

∑
j:(j,i)∈A

φkji ≤ Γir ∀i ∈ Nv, r ∈ R

3.5 Conclusion
In this chapter, we proposed a PR model and a math-heuristic for the VNF-PR
problem. Our model takes into consideration realistic NFV features, such as spe-
cific VNF forwarding modes (standard and fastpath modes), VNF chain ordering
constraints and flow bit-rate variations constraints, etc. We also studied how addi-
tional properties being discussed for NFV systems can be integrated in our proposed
formulation. We ran extensive tests to evaluate our model on a three-tier topology
representing an ISP topology. The computational results show that the combined
TE-NFV objective can significantly reduce the number of VNFs in the network com-
pared to the TE objective with almost no impact on the link utilization and on the
latency. Moreover, we observed that, besides different optimization objectives (TE
and TE-NFV), different distributions of traffic demand (Internet and VPN case-
studies) and different VNF types (in terms of function on the bit-rate) could lead
to different placements of VNF nodes and different VNF chaining paths. Then we
further compared our PR approach to the classical VNE based approach often pro-
posed in the literature for the VNF-PR problem. The experimental results show
that PR is more stable and close-to-optimum than the VNE based solution, but the
VNE based model is in general faster than PR. However, VNE based formulation
is not as general as PR, e.g., VNE based formulation cannot solve the VNF-PR
problem with partial or un-ordered chains. Therefore, further investigation on the
problem properties and formulations are needed.
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In the previous chapter, we studied a realistic VNF-PR problem, such study
suggests that further investigation on the problem formulations and properties are
needed. The properties of a basic version of VNF-PR problem are investigated in
this chapter with the goal of deriving insights that help in the problem solution.
To so do, we focus on a simplified, yet significant variant: a single type of VNF is
considered and any node can be equipped with a single capacitated VNF instance.
Links are capacitated and the objective is to minimize the number of installed VNF
instances. Each demand must be served by an instance of the VNF and routed on
one simple path. The problem is denoted as Virtual Network Function Placement
and Routing with Simple Path routing (VNF-PRSP).

The remaining of this chapter is organized as follows. In Section 4.1 we report the
full problem statement of VNF-PRSP. In Section 4.2 and Section 4.3 we investigate

69



Chapter 4. The Theoretical Problem

the problem complexity and properties. In Section 4.4 we introduce two formulations
and describe their properties and relation. In Section 4.5 we present and analyze a
computational comparison of the two formulations for the VNF-PRSP problem.

4.1 Problem Description

For the sake of clarity and to allow reading this chapter quite independent from the
previous one, we report here the full problem statement.

In the VNF-PRSP problem, the network is represented by a graph G(N,A),
where N represents the set of nodes and A represents the set of capacitated arcs
(or links). Let u denote the arc capacity. An instance of the VNF can be installed
on each node in N and can serve a limited amount of demand q. The network
demands are represented by the set D: each demand k ∈ D is characterized by a
source (origin) node ok a destination (terminal) node tk, and a demand amount dk.
Each demand must be served (pass through) an instance of the VNF (service), but
a demand can pass through a node without using a VNF installed on it. Demands
cannot be split and must be routed on simple paths, i.e. the demand is not allowed
to deviate from its path to “search” the VNF. The optimization goal is to minimize
the number of installed VNF instances.

4.2 Problem Complexity

In this section, we study the problem complexity. We consider a version of the prob-
lem where only a subset of nodes, NF , can host a service instance. The problem
is NP-complete even with only one type of capacity (either link or service capac-
ity): in [61] the problem is proved to be difficult if nodes are capacitated (the same
approach can be used for the service capacity case); in our work of this thesis, we
extend the result5 for the case where only link capacity is considered, for the unca-
pacitated case and for some particular graph structures.

First we prove that even the uncapacitated version of VNF-PRSP (UVNF-PRSP),
namely without link and service capacity, is NP-complete. Then, since its feasibility
version is polynomial, we investigate whether adding one capacity at a time (either
link capacity or service capacity) makes the feasibility problem difficult. Finally, we
investigate the complexity on particular graph topologies: namely, full mesh, ring
and tree-like.

Theorem 4.2.1. The UVNF-PRSP is NP-complete.
5The main results can be found in publication [39]. In this article, the complexity is studied for

the case where NF is a proper subset of N . But for some study-cases, results can extend to the
case of NF = N . Therefore, we further extend our proofs in this manuscript with remarks for case
of NF = N .
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Proof. We prove it by reduction from the Set Covering (SC) problem: given a set
of elements U = {1, 2, ..., n}, a collection of subsets of U , S = S1, . . . , Sm, and a
threshold κ, SC asks for finding a subset of S that covers all the elements in U
whose cardinality is smaller or equal to κ. Every instance of the SC can be reduced
to an instance of the UVNF-PRSP as follows:

• the graph G(N,A) is built as a tripartite graph:

– N = {U1, S, U2}. The set U1 (U2, respectively) contains a node j1 (j2,
respectively) for each element j ∈ U . The set S contains a node for each
subset Si of S;

– two arcs (j1, Si) and (Si, j2) exist if j ∈ U can be covered by the subset
Si;

• only the nodes of the set S can host a service, i.e. NF = S;

• for each element j ∈ U a demand is generated with source node j1 ∈ U1 and
destination node j2 ∈ U2.

If there exists a solution of the UVNF-PRSP problem that uses at most κ ser-
vice instances, then there exists a solution of the SC that uses at most κ subsets:
if a demand is served by a service, the corresponding element is covered by the
corresponding set, which is selected.

Remark 4.2.1. The result of Theorem 4.2.1 holds also for the case where all the nodes
can host a service (NF = N). Let us keep the same graph structure and consider
a demand d. Either the demand d is served by a node representing a covering set
(a node in S) or it is served by its origin (or destination). In the former case, the
corresponding set is selected. In the latter, the service can serve only the demand d
itself. If the instance is feasible, there must be at least one set that covers d. How-
ever, none of the sets that cover the demand d have been selected in the solution
(otherwise, the origin or destination service would not have been needed). We can
obtain a solution of value κ by replacing the origin (or destination) service with one
of the sets covering the demand d.

Instead, the feasibility version of the UVNF-PRSP is polynomially solvable.
Theorem 4.2.2. The feasibility version of the UVNF-PRSP is polynomial.

Proof. As service instances are uncapacitated, each node in NF can serve all the
demands simultaneously. As arcs are uncapacitated, each demand can be routed
independently of the others. Thus, we consider each demand and each node in NF

and we check if there exists a simple path for the demand which passes through
the considered node (it can be done solving a suitable max flow problem with lower
bound on arcs to represent the need of passing through a given node service). If it
is so, then the demand is served, otherwise the instance is unfeasible.

Remark 4.2.2. The proof of Theorem 4.2.2 works even if NF = N .
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We now analyze the impact of adding one type of capacity on the complexity
of the feasibility version. It turns out that both the problem with only Service
capacity (Sc-VNF-PRSP) and the problem with only Link capacity (Lc-VNF-PRSP)
are NP-complete, even in their feasibility version.
Theorem 4.2.3. The feasibility version of Sc-VNF-PRSP is NP-complete.

Proof. We prove it by reduction from the Bin Packing Problem (BPP):
Consider a set of items I, each with an integer weight, and a set of bins of

capacity C. Given a threshold κ, there exists an assignment of all the items to the
bins, such that at most κ bins are used?

Every instance of the BPP can be reduced to an instance of the Sc-VNF-PRSP
as follows:

• the graph G(N,A) is built as a tripartite graph:

– N = {I1, NF , I2}. The set I1 (I2 respectively) contains a node i1 (i2,
respectively) for each item i ∈ I. NF has cardinality κ;

– an arc connects each node in I1 to each node in NF and each node in NF

to each node in I2;

• for each item i ∈ I a demand is generated with origin i1, destination i2 and
amount of demand equal to the item weight;

• the service capacity is equal to the bin capacity C.

If there exists a feasible solution of the instance of Sc-VNF-PRSP then there
exists a solution of the BPP that uses at most κ bins and vice versa. Indeed,
routing the demand i1 − i2 on path i1-b-i2 and therefore assigning the demand to
the VNF b ∈ NF corresponds to assigning the item i to the bin b.

Theorem 4.2.4. The feasibility version of Lc-VNF-PRSP is NP-complete.

Proof. We prove it by reduction from the feasibility version of the Unsplittable
Multicommodity Flow Problem (UMFP): given a graph G = (N,A) with a capacity
for each arc and a set of unsplittable commodities, each with a source, a destination
and an amount of flow, the problem asks for finding one path for each commodity
such that the overall flow on each arc does not exceed the arc capacity. Every
instance of the UMFP can be reduced to an instance of the Lc-VNF-PRSP as follows:

• the graph G(N,A) and the set of demands are the same as in the UMFP;

• the set NF is the set of nodes that are origin of at least one demand.

A service is installed on each node in NF and all the demands originating from a
node are assigned to it. If there exists a feasible routing for the Lc-VNF-PRSP there
exists a feasible solution for the UMFP and vice versa.

Remark 4.2.3. The proof of Theorem 4.2.4 works even if NF = N .
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We now consider some graph topologies, namely full-mesh, ring and tree-like.
Theorem 4.2.5. The UVNF-PRSP is polynomially solvable on completely connected
graphs.

Proof. As services are uncapacitated, one is sufficient to serve all the demands and
it can be arbitrarily located on node i. As links are uncapacitated and the graph is
fully connected, each demand can be routed on the path source-i-destination.

Remark 4.2.4. The proof of Theorem 4.2.5 works if NF = N (in fact, the hypothesis
of subset NF is not used).
Remark 4.2.5. If service capacity is considered, however, even the feasibility version
of the problem (Sc-VNF-PRSP) is NP-complete. This can be proved by slightly
modifying the reduction from BPP we presented for general graphs.

Definition 4.2.1. A ring topology is a graph in which each node is connected with
exactly two other nodes, in such a way that a closed symmetric loop is formed.
Theorem 4.2.6. The UVNF-PRSP is polynomially solvable on ring topologies.

Proof. Any node can be chosen to install a service instance and labeled as node
1. Then, all other nodes are labeled with an increasing integer index in clockwise
direction starting from node 1. For each demand there exist two paths (clockwise
and anticlockwise). Given a demand, if the label of the origin node is smaller than
the label of the destination node, then the demand is routed on the anticlockwise
path, otherwise it is routed on the clockwise one. Thus each demand passes through
node 1.

Remark 4.2.6. The proof of Theorem 4.2.6 works if NF = N (the hypothesis of NF

is not used).
Theorem 4.2.7. The feasibility version of Sc-VNF-PRSP is NP-complete on ring
topologies.

Proof. We prove it by reduction from the BPP. Every instance of BPP can be
reduced to Sc-VNF-PRSP on a ring as follows:

• the set of nodes is divided into three subsets: I1, NF , I2. |I1| = |I2| = |I|, for
each item i there exists a pair of nodes is, it such that is ∈ I1, i

t ∈ I2, |NF | = κ.
Nodes are connected in a ring, as shown in Figure 4.1;

• service capacity is equal to bin capacity;

• for each item i ∈ I there exists a demand from is to it, with demand amount
equal to the item weight.
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it1

it2

it3

is1

is2

is3

b1 b2 b3

Figure 4.1 – Ring graph for reduction from BPP for the Sc-VNF-PRSP problem

Remark 4.2.7. The proof of Theorem 4.2.7 does not work if NF = N . However,
the reduction from BPP can still be used for the optimality case (where each node
represents a bin).

Let us now consider a rooted tree where each edge is replaced by the correspond-
ing pair of arcs. In the following we refer to such graph as a tree-like topology.
Theorem 4.2.8. The UVNF-PRSP is polynomially solvable on tree-like topologies if
NF = N .

Proof. We observe that a demand originating (or ending) in a leaf node i has to
pass through its adjacent node j to reach (or to be reached by) other nodes. Thus
a solution where a service is installed on the node j is always not worse than a
solution where the service is installed on the leaf node i. As a consequence, a
demand originating from a leaf node i (respectively, ending in i) can be represented
by a demand originating (respectively, ending) from the only node adjacent to i.

The solution procedure starts with an empty set of service instances and itera-
tively collapses leaves on their adjacent nodes installing a service as close to the root
as possible. The following three steps are repeated until all demands are served:

1. an unserved demand is considered whose origin (respectively, destination) is a
leaf and its origin (respectively, destination) is moved to its adjacent node;

2. leaves that are not origin nor destination of demands anymore are removed
shrinking the graph;

3. when an unserved demand has both origin and destination on the same node,
the demand is assigned to the node itself, which is equipped with a service
instance, if it does not already host it.
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As each demand is checked at most twice in performing step (1) (origin and/or
destination) and the worst case scenario is the linear graph, the overall complexity
is O(|N | × |D|).

Remark 4.2.8. Lc-VNF-PRSP is polynomial on tree-like topologies if NF = N . In-
deed, in a tree-like topology, there is only one simple path for each demand and
thus, either there exists a feasible solution, and above procedure generates it, or the
obtained routing is unfeasible, proving that the instance is not feasible.

In Tables 4.1-4.4 we summarize our current complexity case-studies on different
topology structures (cases with normal texts are the complexity cases proved in this
thesis, cases with texts in bold report the extensions of complexity proof as future
works, and cases with ? means further investigations are needed)

Cap NF ⊂ N NF = N
Splittable D Unsplittable D Splittable D Unsplittable D

Uncap feas from unsplit P from NF ⊂ N from NF ⊂ N
Link cap feas ? from UMFP ? from UMFP
Service cap feas ? from BPP ? ?
Uncap opt from SC from SC ? ?
Link cap opt from uncap from feas ? from feas
Service cap opt from uncap from feas ? from BPP

Table 4.1 – Summary of complexity on a general graph

Cap NF ⊂ N NF = N
Splittable D Unsplittable D Splittable D Unsplittable D

Uncap feas from Uncap opt from Uncap opt from Uncap opt from Uncap opt
Link cap feas ? ? ? ?
Service cap feas ? from BPP ? ?
Uncap opt P P P P
Link cap opt ? ? ? ?
Service cap opt ? from feas ? from BPP

Table 4.2 – Summary of complexity on a full mesh graph
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Cap NF ⊂ N NF = N
Splittable D Unsplittable D Splittable D Unsplittable D

Uncap feas from Uncap opt from Uncap opt from Uncap opt from Uncap opt
Link cap feas ? ? ? ?
Service cap feas ? from BPP ? ?
Uncap opt P P P P
Link cap opt ? ? ? ?
Service cap opt ? from feas ? from BPP

Table 4.3 – Summary of complexity on a ring graph

Cap NF ⊂ N NF = N
Splittable D Unsplittable D Splittable D Unsplittable D

Uncap feas ? ? from unsplit from Uncap opt
Link cap feas ? ? from unsplit P
Service cap feas from unsplit from uncap opt ? ?
Uncap opt ? ? from unsplit P
Link cap opt ? ? ? ?
Service cap opt from unsplit from BPP ? ?

Table 4.4 – Summary of complexity on a tree-like graph (where each node has one
single adjacent/parent node)
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4.3 Problem Properties

In this section, we investigate some properties of the VNF-PRSP problem. In order
to guide the reading, this section is organized as follows. We first give a description
and provide the full proof of each property, then we briefly summarize them at the
end of this section.

We now present the first property studied. We assume that one VNF type is
available, however this assumption is not so restrictive. Indeed, the problem where
all the demands ask for the same sequence (same types of VNF and same order) is
equivalent to the case with a single VNF type, if VNFs capacity is uniform and a
node can host an instance of each VNF type.
Proposition 4.3.1. Let us consider two problems P1 and P2 that share the same
features of VNF-PRSP but for the cardinality of the required chain of services: in P1
each demand requires the same unique service a, while in P2 a set of VNF types T
is given, each VNF type in T has the same capacity of service a and all the demands
require the same sequence of services, both in terms of service types and order.

If there exists an optimal solution for problem P1, then an optimal solution for
P2 can be derived by installing all the required services in the optimal sites selected
by the solution of P1 and routing the demands according to the optimal solution of
P1.

Proof. An optimal solution for P1 is given, that is to say a set of locations for the
instances of service a such that all the demands can be routed from their source
node to their destination node passing through (at least) an instance of the service
a, and respecting link capacity, service capacity and simple path constraints.

Now, let us consider the problem P2. By installing an instance of each service
type in T on the same nodes where the instances of service a are located, and by
keeping the same demand-service instance assignment as in the P1 solution, we
obtain a feasible solution for P2. In fact installing several VNF type instances
on one node does not affect neither the link capacity constraints nor the routing
constraints. Furthermore, as the VNF types have the same capacity, if a service a
instance installed in a given node i can serve all the demands assigned to it, then
any service instance installed on node i can serve the same set of demands.

As any feasible solution of P1 can be extended to a feasible solution of P2 with
the same number of service instances per service type, if the P1 solution location is
optimal then it is optimal also for P2.

We can observe that under the hypothesis that the set of required service types is
exactly the same, the two problems are equivalent even if they account for different
service orders (we recall that it is always possible to schedule the services allocated
on the same sever in any order, and that in the application problem this order is
determined by a suitable scheduling algorithm performed at the server/cloud level).
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We now present the second problem property: a lower bound on the number of
VNF instances (and thus on the objective function) can be obtained if the graph
contains at least one articulation point. Let us recall some definitions.
Definition 4.3.1. A graph is biconnected if removing any node the graph remains
connected, i.e., there is a path between every pair of vertices.
Definition 4.3.2. Given a graph G(N,A), a biconnected component is a maximal
induced biconnected subgraph of G.

Biconnected components are connected to each other at shared vertices called
cut vertices or articulation points.
Definition 4.3.3. An articulation point of a graph G is a vertex v such that G \ v
has more connected components than G.

The following property can be stated.

Proposition 4.3.2. Let us consider a VNF-PRSP problem defined on a graph G con-
taining biconnected components and suppose that there exists at least one demand
whose origin and destination nodes are both in the same biconnected component.
Further, suppose that such biconnected component has only one articulation point.
Let us refer to such biconnected components as biconnected components with internal
demand and single articulation point.

Then, it is necessary to install a service inside each biconnected component
with internal demand and single articulation point. Furthermore, if the instance is
feasible, there exists an optimal solution where an instance of the service is located on
each articulation point belonging to a biconnected component with internal demand
and single articulation point.

Proof. Let us consider a biconnected component, a demand with both endpoints
within it and a node i outside it. If the demand is served by a service installed on
node i then its routing must pass first through the articulation point to reach the
service and then it must pass again through the same articulation point to complete
its routing, thus violating the simple path routing constraint. Thus, in a feasible
solution, a service must be installed within the biconnected component to serve the
demands whose source and destination belong to the biconnected component itself.
Similarly, a demand with both endpoints outside the biconnected component cannot
be served by a node in the biconnected component, if it is not the articulation point.
Thus a solution where a service is installed in the articulation point is always at least
as good as one in which the service is in the biconnected component but not in the
articulation point. Therefore, the number of biconnected components with internal
demand and single articulation point is a lower bound for the minimum number of
installed service instances to the VNF-PRSP problem.

Thanks to Property 4.3.2, it is possible to determine a lower bound combining the
number and structure of the biconnected components with the source and destination
of the demands. Furthermore, a partial solution can be built, installing services on
articulation points. A pre-processing can be devised, which aims at
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1. detecting the number of biconnected components with internal demand and
single articulation point, thereby installing one service on each of their artic-
ulation points;

2. forbidding the assignment of a demand to the VNFs which are out of the
biconnected component the demand belongs to.

To conclude, in this section we proved that:

• the single service case is equivalent to the multiple services one, when the
services have all the same capacity and the required type and order of services
is the same for all the demands;

• an instance of the service must be installed on the articulation points that be-
long to biconnected components with internal demands and single articulation
point.

4.4 Problem Formulations

In this section we present two formulations: the Split Path (SP) formulation and
the Placement and Routing (PR) one.

The first one, SP, is based on the decomposition of the path of each demand into
several sub-paths, each associated with a service instance serving the demand. A
similar model is presented in [26] (also here a single VNF type is considered, but
no simple path assumption is considered). The second one, PR, is directly inspired
by network routing problem and facility location problem: a set of variables and
constraints represent the demand routing and a set of variables and constraints
represent the facility location-allocation part, connecting constraints are used to
couple the two sub-problems. It can be considered as the adapted version of the
formulation presented in [1] to our VNF-PRSP problem.

In Table 4.5 the notation is summarized and the variables used by the two models
are reported. As some variables are common to both models and some are model
dependent, in the last column we report the model in which the parameter/variable
is used.
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Notation Model
Sets

N set of nodes both
A set of arcs both
D set of demands both

Capacities (Links and Services)
u arc capacity both
q VNF instance capacity both

Demand parameters
ok origin of demand k ∈ D both
tk destination of demand k ∈ D both
dk amount of demand k ∈ D both

Variables common to both models (binary)
yi 1 if a VNF instance is located on node i ∈ N both
zk

i 1 if demand k ∈ D uses the VNF instance on node i ∈ N both
Routing variables (binary)

xk
ij 1 if arc (i, j) ∈ A is used by demand k ∈ D PR
xk1

ij 1 if arc (i, j) ∈ A is used by demand k on sub-path 1 SP
xk2

ij 1 if arc (i, j) ∈ A is used by demand k on sub-path 2 SP
TSP-like labeling variables (continuous non-negative)

πk
i position of node i ∈ N in the path used by demand k ∈ D PR

Table 4.5 – Mathematical notation

In both models, binary variable yi represents the location of an instance of the
VNF on node i ∈ N and binary variable zki represents the assignment of demand
k to the instance of the VNF located on node i. The two models differ in the way
the routing is modeled. In both, binary variables are used, that are equal to one if
an arc (i, j) ∈ A is used by a demand k ∈ D. In PR, these variables are xkij . In SP,
the path is explicitly divided into two sub-paths: the first from the origin ok to the
service node (described by variables xk1

ij ) and the second from the service node to
the destination tk (described by variables xk2

ij ).
As we want to highlight the common points and differences between the two

models, we present them in parallel, starting from the common part.

min
∑
i∈N yi (4.1)∑

i∈N z
k
i = 1 ∀k ∈ D (4.2)

zki ≤ yi ∀k ∈ D, i ∈ N (4.3)∑
k∈D dkz

k
i ≤ q ∀i ∈ N (4.4)

The objective function (4.1) minimizes the sum of the opened services (i.e., in-
stances of the VNF). Constraints (4.2) impose that each demand is assigned to
exactly one instance of the service. Inequalities (4.3) guarantee that if no VNF in-
stance is installed on a node, then no demand can be assigned to it. Constraints (4.4)
impose that each instance of the VNF can serve a maximum quantity q.

The link capacity constraints are similar for the two models:
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SP: ∑
k∈D

dk(xk1
ij + xk2

ij ) ≤ u ∀(i, j) ∈ A (4.5)

PR: ∑
k∈D

dkx
k
ij ≤ u ∀(i, j) ∈ A (4.6)

We now present the constraints characterizing each formulation. The main dif-
ference is in the way the routing is managed, and, as a consequence, in how the
models deal with the coherence between service assignment and routing. In short,
in the SP formulation routing and assignment are implied by modified flow balance
constraints, while in the PR formulation the routing is implied by the classical flow
balance constraints and the consistency between assignment and routing is implied
by coherence constraints and isolated loop elimination constraints.

Routing and assignment are modeled as follows:

SP:

∑
j:(i,j)∈A

xk1
ij −

∑
j:(j,i)∈A

xk1
ji =

{
1− zki if i = ok

−zki otherwise
∀k ∈ D, i ∈ N (4.7)

∑
j:(i,j)∈A

xk2
ij −

∑
j:(j,i)∈A

xk2
ji =

{
zki − 1 if i = tk

zki otherwise
∀k ∈ D, i ∈ N (4.8)

∑
j:(j,i)∈A

(xk1
ji + xk2

ji ) ≤ 1 ∀k ∈ D, i ∈ N (4.9)

∑
j:(i,j)∈A

(xk1
ij + xk2

ij ) ≤ 1 ∀k ∈ D, i ∈ N (4.10)

Each demand is routed on two sub-paths: from the source node to the VNF
node (i.e., the node where the selected service instance is installed) (equa-
tions (4.7)), then from the VNF node to the destination node (equations (4.8)).
These two constraints impose that the routing of the demand passes through
the VNF instance assigned to the demand itself, therefore ensure that the
assignment is consistent.
Simple path routing6 is imposed by constraints (4.9) and (4.10): for each
demand, at most one of the sub-paths can pass through a node.

6Isolated cycles with no service can be part of a feasible solution. Such cycles can be removed
obtaining a cycle-free equivalent feasible solution.
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PR: ∑
j:(i,j)∈A

xkij −
∑

j:(j,i)∈A
xkji =


1 if i = ok

−1 if i = tk

0 otherwise
∀k ∈ D, i ∈ N (4.11)

zki ≤
∑

(j,i)∈A
xkji ∀k ∈ D, i ∈ N \ {ok} (4.12)

πkj ≥ πki + xkij − |N | (1− xkij) ∀k ∈ D, (i, j) ∈ A (4.13)

Each demand is routed from its source to its destination with the classical flow
balance constraints (4.11) and it is forced to pass through the VNF instance
to which it is assigned by constraints (4.12), that impose that a demand k
can be assigned to a service located on node i only if the routing path of the
demand passes through the given node. The simple path and the elimination
of isolated cycles are enforced using the TSP-like labeling variables π and
constraints (4.13): continuous variables πki represents the position of node i in
the routing path of demand k.

Both models can be straightforwardly generalized to take into account multiple
service types, even hosted on different nodes. However, when a partial (or no) order
is asked, the SP formulation needs a new set of variables to partially decouple the
path-splitting and service order allocation. Further, the number of sub-paths, and of
the related variables, increases with the increasing number of services in the chain.
Instead, PR model can be simply generalized to deal with any imposed order (full,
partial, none). In fact, variables π can be used, together with additional constraints,
to impose a given full or partial order of the services along the demand path (see
Section 3.4 in Chapter 3).

4.4.1 Relation between the Two Formulations

In this section we first show that the SP formulation produces a continuous relaxation
bound that is always not worse than the one produced by PR, then we provide some
examples where the SP formulation provides better continuous relaxation bound
than PR.

The feasible region of SP can be partitioned into two subsets: in the first subset
no isolated cycles exist while in the second one isolated cycles are present, but they
cannot host a service (see Remark 4.4.1). Any solution of the second subset has an
equivalent in the first one (see Proposition 4.4.2) and we prove that any solution of
the first subset can be mapped into a solution of PR (see Theorem 4.4.1). Thus a
solution of SP either is feasible also for PR or is equivalent to one that is. Instead,
there exist solutions of PR that are not feasible for SP and for which the bound pro-
vided by SP is strictly better than the one provided by PR (see Proposition 4.4.3).
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For any demand k, the flow in a feasible continuous solution can be divided into
flow on simple paths and flow on cycles. Let us denote with Pk the set of simple
paths and with Ck the set of cycles. We can distinguish between two types of cycles
(see Figure 4.2): cycles sharing some nodes with a simple path (Figure 4.2a) and
isolated cycles (Figure 4.2b).

(a) Cycle sharing nodes with a simple path (b) Isolated cycle

Figure 4.2 – Examples of cycle sharing nodes and of isolated cycle

Remark 4.4.1. SP forbids demands to be served, even partially, by a VNF instance
installed on an isolated cycle (notice that, PR accepts solutions with an isolated cycle
and a partial service installed on it, but routing variable values (on the cycle) cannot
be greater than |N |

m+|N | (where m is the length of the cycle) due to the isolated loop
elimination constraints (4.13)). For example, let us consider an isolated cycle of two
nodes A and B such that the demand is partially served by a node A (zkA = α, α < 1).
Summing up flow balancing constraints (4.7) leads to an inconsistency 0 = −α
(analogously for subpath 2).
As a consequence, only three cases occur:
Remark 4.4.2. Consider a feasible solution of the continuous relaxation of SP (x1, x2, y, z),
a demand k and a cycle induced by such solution. Let us denote with Nc the set of
nodes of the cycle c that are not shared with any simple path: Nc = {i ∈ c \ Pk}.
Due to flow balance constraints (4.7)-(4.8), we have only three possible cases for all
nodes belonging to Nc:

1. if a (partial) service instance is located on any node belonging to Nc, the cycle
is induced by variables of both semi-paths, and xk1

i = xk2
i

2. if no service is located on any node belonging to Nc, then

2.1) the cycle is induced by only one type of semi-path variables
2.2) the cycle can be decomposed in two super-imposed cycles, each of them

generated by only one type of semi-path variables.

Thus we can observe that:
Proposition 4.4.1. Let us consider a feasible solution (x1, x2, y, z), a demand k and
the path-cycle decomposition {Pk, Ck} of its routing. Let us suppose that a cycle
c ∈ Ck exists that shares at least one node with a simple path p ∈ Pk.
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If a (partial) service is located on a node belonging to a cycle c ∈ Ck, but not to
the path ({i ∈ c \ Pk}), the routing variables inducing the path and the cycle are
fractional and their value is less than or equal to 1

2 , due to constraints (4.7)-(4.8)
and (4.9)-(4.10).
Proposition 4.4.2. Any solution such that no service instance is installed on a node
belonging to a cycle, but not to a simple path, can be transformed in an equivalent
solution (in term of cost, location and assignment) removing the cycles without
service instances installed and the corresponding flow from the routing.
Theorem 4.4.1. Any solution of the continuous relaxation of SP such that no service
instance is installed on a node belonging to a cycle, but not to a simple path, can
be mapped into an equivalent solution of PR in terms of routing, location and
assignment and therefore cost.

Proof. Location variables yi and assignment variables zki , the objective function and
constraints (4.2), (4.3) and (4.4) are common to both formulations. SP routing
variables can be easily mapped into PR ones as follows:

xkij = xk1
ij + xk2

ij (4.14)

Thanks to constraints (4.9) and (4.10) the mapping guarantees also that xkij ∈ [0, 1].
Further, link capacity constraints of SP (4.5) imply the link capacity constraint of
PR (4.6). Routing constraints of the SP formulation imply the routing constraints
for the PR formulation. In fact, by summing equations (4.7)-(4.8) and using the
mapping (4.14), we obtain constraints (4.11).

Now we show that SP routing constraints for the semi-path (4.7) imply routing-
location connecting constraints of PR (4.12).
Let us consider the case i ∈ N, i 6= ok:∑

j:(i,j)∈A
xk1
ij −

∑
j:(j,i)∈A

xk1
ji = −zki

reordering terms, we obtain:∑
j:(i,j)∈A

xk1
ij + zki =

∑
j:(j,i)∈A

xk1
ji

As
∑
j:(i,j)∈A x

k1
ij ≥ 0, we can derive:

zki ≤
∑

j:(j,i)∈A
xk1
ji

Adding
∑
j:(i,j)∈A x

k2
ij at the right side, as this term is always not negative, the

inequality still holds:
zki ≤

∑
j:(j,i)∈A

(xk1
ji + xk2

ij )
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l

i

m

Figure 4.3 – An example of a cycle sharing some nodes with a simple path

Then, using the routing variables mapping (4.14), we verify constraint (4.12):

zki ≤
∑

j:(j,i)∈A
xkji.

Finally, suitable values for π variables must be derived. Let us consider a demand
k and its routing. We can build an induced graph as follows:

Gk(Nk, Ak)

where (i, j) ∈ Ak if xk1
ij + xk2

ij > 0 and ∃p ∈ Pk : (i, j) ∈ p, i.e. the arc belongs to at
least a simple path. A node ı̂ belongs to Nk if there exists an arc ((̂ı, j) or (j, ı̂)) in
Ak. For any arc (i, j) ∈ Gk we define the following cost cij = xk1

ij + xk2
ij = xkij .

As Gk does not contain arcs that belong only to cycles in Ck, the obtained graph is
acyclic, thus we can define πkj as the longest path from node ok to node j:

• πkok
= 0

• πkj = maxi:(i,̂)∈Ak{πki + xkij}

Such values obviously satisfy constraints (4.13) for the nodes belonging to the path.
The nodes that belong to a cycle and to a simple path (nodes from l to m in

Figure 4.3) have already been assigned a suitable value π. We now need to determine
a value of π for the nodes on the cycle NC that have been removed.

Let us consider the two nodes l and m, corresponding to the smallest (πkl ) and
largest (πkm) value of variables π on the cycle NC , respectively. For all the nodes
i ∈ Nc, we impose:

πki = πkm + πkl
2

Now, we prove that such value of π always satisfy constraints (4.13).
We can observe that xij ≤ 1 in any feasible solution, therefore the values of π are
bounded by |N | − 1. As for the arcs in A \Ak, we have two cases.

85



Chapter 4. The Theoretical Problem

1. Arcs belonging to the cycle but not a path.
Due to Property 4.4.1, we can infer that for any arc belonging to the cycle but
not the path, we have xkij ≤ 1

2 . Therefore, the term:

xkij − |N | (1− xkij)

is always non positive as |N | ≥ 2. Therefore for any two nodes in the cycle, as
they have the same value of π, the constraint is valid.

2. Arcs belonging to the cycle and incident both in the path and the cycle, i.e.
with one extreme in l or m.
Let consider the arc of the cycle entering node l: (i, l) (see Figure 4.3), we
need to prove that:

πkl ≥ πki + xkil − |N |(1− xkil), (4.15)

Let us denote with n the number of arcs in the path between node l and node
m (n ≤ |N | − 1), and with β ≤ 1 the value of the associated routing variable
on the path, then we have that:

πkm = πkl + βn

and we obtain:

πki = πkm + πkl
2 = πkl + βn

2 ≤ π
k
l + (|N | − 1)

2
Thus, denoting with γ the right-hand side of equation (4.15), we get:

γ ≤ πkl + (|N | − 1)
2 + xkil − |N |(1− xkil)

and, rearranging the terms,:

γ ≤ πkl +
(
xkil −

1
2

)
(|N |+ 1)

and using xkil ≤ 1
2 (see Proposition 4.4.1):

πkl ≥ γ

A similar argument can be used to prove that the constraint is valid for the
link belonging to the cycle and exiting the other extreme node m.

We now prove that PR bound is strictly worse than the one of SP, by showing
an instance in which the bound provided by SP is stricter than the one provided by
PR. Further, we present some features that make a solution unfeasible for the SP
continuous relaxation but are acceptable for the PR continuous relaxation.
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1

2

3 4

5

6

k1

k2

k3 k4

(a) Topology and demands distribution.

k ok → tk dk
1 4 → 3 5
2 5 → 2 5
3 3 → 1 ∀d3 ∈ (0, 5]
4 4 → 6 ∀d4 ∈ (0, 5]

(b) Demands.

Figure 4.4 – The SP relaxation bound is strictly better than the one of PR: a
numerical example

Proposition 4.4.3. The bound provided by PR is strictly worse than the one provided
by SP.

Proof. Let us consider the symmetric graph in Figure 4.4a (in the following figures,
each pair of the symmetric arcs is represented by the corresponding edge). The
services are uncapacitated, and the link capacity is 5. There are 4 demands, whose
characteristics are listed in Table 4.4b. The continuous relaxation provided by SP
is equal to 2, while the continuous relaxation provided by PR is 1, for any value of
the demands k3 and k4 in (0, 5].

demand paths fp node (i) zki
k1 p1 : 4→ 5→ 2→ 3 1 4 1
k2 p2 : 5→ 4→ 3→ 2 1 4 1
k3 p3 : 3→ 1 1 3 1
k4 p4 : 4→ 6 1 4 1

Installed services
y3 = 1 y4 = 1

Table 4.6 – Routing and assignment/location in the continuous relaxation of SP.

We report the details of the solution of SP formulation in Table 4.6 and Fig. 4.5,
while the details of the solution of PR in Fig. 4.6 and Table 4.7: the assignment
of services instances to nodes is reported in bold in the tables and in gray in the
figures. As for the SP formulation, one service is located on node 4 and one on node
3. Demands k1, k2 and k4 are served by the service located on node 4, while demand
k3 is served by the service located on node 3. As for the solution of PR, half service
is installed on node 4 and the other half on node 5; each demand uses both services.
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6p1
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(a) Routing of demand k1.
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6p2

p2

p2

(b) Routing of demand k2.

1
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3 4
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6

p3

(c) Routing of demand k3.
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3 4
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p4

(d) Routing of demand k4.

Figure 4.5 – The routing provided by the continuous relaxation of SP
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(a) Routing of demand k1
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(b) Routing of demand k2
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(c) Routing of demand k3

1
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3 4

5

6

p1

p2

p2

(d) Routing of demand k4

Figure 4.6 – The routing solution of continuous relaxation of the PR

The difference between the two bounds is due to the fact that in the continuous
relaxation of the PR formulation some routing solutions are feasible, while they are
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demand paths fp node (i) zki

k1
p1 : 4→ 3 0.5 4 0.5
p2 : 4→ 5→ 2→ 3 0.5 5 0.5

k2
p1 : 5→ 2 0.5 5 0.5
p2 : 5→ 4→ 3→ 2 0.5 4 0.5

k3
p1 : 3→ 1 1 -

p2 : 5→ 4→ 5 0.5 4 0.5
5 0.5

k4
p1 : 4→ 6 1 4 0.5
p2 : 5→ 6→ 5 0.5 5 0.5

Installed services
y4 = 0.5 y5 = 0.5

Table 4.7 – Routing and assignment/location solution in the continuous relaxation
of PR.

not for the SP formulation, because of the direct coupling of assignment and routing
determined by constraints (4.7)-(4.8) present in SP. Indeed, the example above is a
representative of a family of solutions that are feasible for PR but not for SP.

Remark 4.4.3. A solution where a source-destination path does not pass through
any service node (see path p1 for demand k3 in 4.4.3) and an isolated loop hosts a
(partial) service (see path p2 for demand k3 in 4.4.3) is feasible for PR but not for
SP.

Such solutions may be profitable when the capacity of a cut is small and some
demands cannot reach the services installed on the other side of the cut itself: using
a service on an isolated cycle is then the best option for PR. In the example described
in Table 4.4b demands k1 and k2 saturate the cut {4, 5, 6} , {1, 2, 3} forcing SP to
install a service in each side of the cut to serve also demands k3 and k4. Instead, PR
does not open two services, thus providing a weaker bound. The bound provided
by SP is stricter even if the amount of flow of demands k1 and/or k2 decreases
and thus the cut is not fully saturated, as long as the residual capacity on the cut
{4, 5, 6} , {1, 2, 3} is not enough to allow the demand k3 to pass fully through it and
back (or symmetrically demand k4 for the reversed cut). A feasible solution is then
selected by PR as described in Fig. 4.7, where the demand is half routed on the path
and is completely served by partially using the two services located in node i and
j. Such solution is instead unfeasible for SP (the larger the fraction of demand k3
that can pass the cut, the smaller the gap between the two continuous relaxation
bounds), as proved by the following proposition.

Proposition 4.4.4. Let us consider a feasible solution for the continuous relaxation
of SP formulation where a fraction of a demand k is routed on a path pk. Let
us consider the services located along this path and the corresponding assignment
variables zki , and suppose that such services are not used by demand k along other
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i j

zi = 0.5

x = 0.5
x = 0.5

zj = 0.5

Figure 4.7 – Example of unfeasible flow acceptable for PR

paths. Then:

xk1
lm ≥

∑
i∈pk:i=succ(lm)

zki (4.16)

where with succ(lm) we represent all the nodes that appear in the path pk not before
arc (l,m) (node m is considered belonging to succ(lm)).

Proof. This property is a direct consequence of the modified flow balancing con-
straints (4.7)-(4.8). See Figure 4.8 for a schematic illustration of this property.

i j

zi = α

x1 = ζ + α
x1 = ζ

(a) flow balance on node i

i j

zj = β

x1 = δ + β
x1 = δ

(b) flow balance on node j

i j
x1 = δ + α+ β

x1 = δ + β
x1 = δ

(c) resulting feasible values for x1

Figure 4.8 – Relation between routing and assignment variables in the SP formula-
tion.

4.4.1.1 Impact of the Biconnected Components

The network topology has an impact on the quality of the bounds produced by
the two formulations. In fact, the SP formulation can produce a tighter bound in
presence of biconnected components, even in the uncapacitated case, due to the
simple path assumption.
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1

2

3

4 5

6

7

8

k1

k2

k3

(a) Topology and demands distribution.

k ok → tk dk
1 1 → 2 1
2 4 → 5 1
3 7 → 8 1

(b) Demands.

Figure 4.9 – The SP relaxation bound is strictly better than the one of PR: a
numerical example with biconnected components

Let us consider the graph in Fig. 4.9a, and a set of three demands described
in Table 4.9b. Service and link capacities are unbounded. The graph contains two
articulation points (nodes 3 and 6) and 3 biconnected components:

BC1 = {1, 2, 3}, BC2 = {3, 4, 5, 6}, BC3 = {6, 7, 8}.

The continuous relaxation bound obtained by the SP formulation for this in-
stance is 4

3 , the one obtained by the PR formulation is the trivial bound 1.

demand paths fraction fp node (i) zki

k1
p1

1 : 1→ 2 0.5 2 0.5
p1

2 : 1→ 3→ 6→ 8→ 6→ 3→ 2 0.5 8 0.5

k2

p2
1 : 4→ 5 1/3 5 1/3
p2

2 : 4→ 3→ 2→ 3→ 6→ 5 1/3 2 1/3
p2

3 : 4→ 3→ 6→ 8→ 6→ 5 1/3 8 1/3

k3
p3

1 : 7→ 8 0.5 8 0.5
p3

2 : 7→ 6→ 3→ 2→ 3→ 6→ 8 0.5 2 0.5
Installed services

y2 = 0.5 y5 = 1/3 y8 = 0.5

Table 4.8 – Routing and assignment/location in the continuous relaxation of SP for
the biconnected components case example.

In Table 4.8, a solution (for both formulations several equivalent solutions exist,
both for location and routing. For the sake of clarity, we chose to show a “compact”
solution for both formulations privileging symmetric, less fractional solutions, with
short routings and a reduced number of isolated cycles) for the SP formulation is
reported. For each path, the node where the (partially) used service is located is
reported in bold. Partial services are installed on nodes 2, 5 and 8. Half for nodes 2
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and 8 and one third for node 5. Demand k1 (k3, respectively) is served by the half
service installed on node 2 belonging to its connected component BC1 (node 8 in
BC3 respectively) and by half service installed on node 8 in connected component
BC3( node 2 in BC1, respectively). Demand k2 is split on three paths, and each of
them is served by a (partial) service in a different connected component.

In Table 4.9 a solution for the PR formulation is reported. Each demand is
routed on the direct arc connecting its origin to its destination, thus satisfying the
flow balance constraints (4.11). To reach the service, both demand k2 and k3 use
two isolated cycles each in the connected component BC1. It is worth to notice that
a single cycle would not be enough to satisfy both the coherence constraints (4.12)
and the TSP-like cycle elimination constraints (4.13) (only fractional solutions can
have cycles).

demand paths fraction fp node (i) zki
k1 p1 : 1→ 2 1 1 1

k2

p2
1 : 1→ 3→ 1 0.5 1 0.5
p2

2 : 1→ 2→ 1 0.5 1 0.5
p2

3 : 4→ 5 1 -

k3

p3
1 : 1→ 3→ 1 0.5 1 0.5
p3

2 : 1→ 2→ 1 0.5 1 0.5
p3

3 : 7→ 8 1 -
Installed services

y1 = 1

Table 4.9 – Routing and assignment/location in the continuous relaxation of PR for
the biconnected components case example.
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4.4.2 Additional Inequalities

Some additional inequalities can be introduced to enrich both formulations. We can
rewrite the service capacity constraint (4.4): the total demand that can be served
by the service located on the node i is limited not only by the service capacity but
also by the overall capacity of the links incident in the node (excepted the demands
served in the origin node i). Symmetrically, the overall capacity of the outgoing
links imposes a limit on the amount of demand served in a node. We can calculate
the maximal demand that can be served by a node as follow:

q̄i = min

q,max

 ∑
(i,j)∈A

u+
∑

k∈D:tk=i
dk,

∑
(j,i)∈A

u+
∑

k∈D:ok=i
dk


 (4.17)

Therefore, constraint (4.4) can be replaced by:∑
k∈D

dk z
k
i ≤ q̄i ∀i ∈ N (4.18)

Both constraint (4.4) and constraint(4.18) can be strengthened using the service
location variable y, obtaining:∑

k∈D
dk z

k
i ≤ q yi ∀i ∈ N (4.19)

and ∑
k∈D

dk z
k
i ≤ q̄i yi ∀i ∈ N (4.20)

respectively.
When the capacity of a single VNF instance is not large enough to serve all the

demands, a bound on the number of needed VNF instances can be calculated and
introduced in a valid inequality (VI):

∑
i∈N

yi ≥
⌈∑

k∈D dk
q

⌉
∀i ∈ N (4.21)

Additionally, VIs inspired by cover inequalities can be added. As preliminary
tests showed that adding all cover inequalities was not effective, we decide to select
only the max-minimal cover. We define the max-minimal cover C1 with respect to
the service capacity as the minimal cover, i.e.

•
∑
k∈C1 dk > q

• C1 \ k is not a cover for any k ∈ C1

such that |C1| is maximal among all possible covers, namely the maximum number
of demands that can be served by one service. We can find C1 as follows: we order
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the set of demands in increasing order of demand amount, and then select them
until the total capacity is reached. Then we introduce the following constraints:

∑
k∈D

zki ≤ |C1| − 1 ∀i ∈ N (4.22)

We can define in the same way a max-minimal cover C2 for link utilization,
changing the total demand condition as follows

∑
k∈C2 dk > u. Thus, we get the

following VIs:

For PR: ∑
k∈D

xkij ≤ |C2| − 1 ∀(i, j) ∈ A (4.23)

For SP: ∑
k∈D

(xk1
ij + xk2

ij ) ≤ |C2| − 1 ∀(i, j) ∈ A (4.24)

4.4.3 Extended Split Path (SP) Model for Multiple Services

We now consider to have multiple services and that each demand can ask for a
different number of services among the available ones. We need to introduce the
following notation:

• F : set of VNFs types

• nk: number of services asked by demand k

• V NF kf : indicator parameters, equal to 1 if demand k asks for service of type
f

Furthermore, if the chain order is given, we need to define:

• fk(s) : 1..nk → F : integer indicator map, type of service at position s for
demand k, 0 if the service is not requested

Decision variables must be extended accordingly:

• yif ∈ {0, 1} if service f ∈ F is located on node i ∈ N

• zkif ∈ {0, 1} if demand k ∈ D uses service f ∈ F on node i ∈ N

• xksij ∈ {0, 1} if arc (i, j) ∈ A is used by demand k ∈ D, sub-path s ∈ 1..nk + 1

The resulting extended model is:

min
∑
i∈N

∑
f∈F

yif (4.25)
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∑
i∈N

zkif = 1 ∀k ∈ D, f ∈ F : V NF kf = 1 (4.26)

zkif ≤ yif ∀k ∈ D, i ∈ N, f ∈ F (4.27)

∑
k∈D

∑
s∈1..nk+1

dk x
ks
ij ≤ u ∀(i, j) ∈ A (4.28)

∑
k∈D:V NFk

f =1

dk z
k
if ≤ qf ∀i ∈ N, f ∈ F (4.29)

∑
j:(i,j)∈A x

k,s
ij −

∑
j:(j,i)∈A x

k,s
ji = zk

i,fk(s−1) − zk
i,fk(s)

∀k ∈ D, i ∈ N, s ∈ 2..nk (4.30)

∑
j:(i,j)∈A x

k,1
ij −

∑
j:(j,i)∈A x

k,1
ji =

1− zk
i,fk(1) if i = ok

−zk
i,fk(1) otherwise

∀k ∈ D, i ∈ N (4.31)

∑
j:(i,j)∈A x

k,nk+1
ij −

∑
j:(j,i)∈A x

k,nk+1
ji =

z
k
i,fk(nk) − 1 if i = tk

zk
i,fk(nk) otherwise

∀k ∈ D, i ∈ N (4.32)

∑
s∈1..nk+1

∑
j:(j,i)∈A

xksji ≤ 1 ∀k ∈ D, i ∈ N (4.33)

∑
s∈1..nk+1

∑
j:(i,j)∈A

xksij ≤ 1 ∀k ∈ D, i ∈ N (4.34)

To extend the model for the case with unordered services, it is necessary to
decouple the sub-paths description and the services assignment to nodes (originally
both represented by variable z). We keep variables z to represent the location of
services, while the new variables w will be used to describe the flow balance for
sub-paths:

- wksi ∈ {0, 1} if demand k ∈ D uses the s− th service on node i ∈ N

Only the flow balancing constraints (Eq. 4.35-Eq.4.37) are affected by this change:∑
j:(i,j)∈A x

k,s
ij −

∑
j:(j,i)∈A x

k,s
ji = wk,s−1

i − wk,si
∀k ∈ D, i ∈ N, s ∈ 2..nk (4.35)
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∑
j:(i,j)∈A x

k,1
ij −

∑
j:(j,i)∈A x

k,1
ji =

{
1− wk1

i if i = ok

−wk1
i otherwise

∀k ∈ D, i ∈ N (4.36)

∑
j:(i,j)∈A x

k,nk+1
ij −

∑
j:(j,i)∈A x

k,nk+1
ji =

{
wk,nk
i − 1 if i = tk

wk,nk
i otherwise

∀k ∈ D, i ∈ N (4.37)

and additional consistency constraints 4.38 must be added to link z and w variables:∑
f∈F :V NFk

f =1

zkif =
∑

s∈1..nk+1
wk,si ∀k ∈ D, i ∈ N (4.38)
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4.5 Computational Results
We performed computational tests on the SP and PR formulations so as to

- compare the performance of the two formulations (Section 4.5.2 and Sec-
tion 4.5.3)

- evaluate the scalability of the two formulations (Section 4.5.4 )

- evaluate the impact of Property 4.3.1 (Section 4.5.5)

- evaluate the impact of the articulation point based preprocessing (Section 4.5.6)

4.5.1 Test Instances

We have generated a test bed based on 24 instances from the SNDLib [62]. For
each instance (topology and set of demands), we have generated different capacity
profiles to analyze the impact of the VNF and link capacity:

- as for the links, two levels of capacity have been generated: low and high. The
high capacity is such that all the demands can be routed on a single link, thus
leading to uncapacitated link instances. The low capacity is computed as the
minimum capacity such that a feasible routing exists, neglecting the services;

- as for the services, three levels of capacity are considered: low, medium and
high. The high capacity is computed so as to guarantee that all the demands
can be served by a single VNF (service uncapacitated instances). Low VNF
capacity is twice the total amount of the demands divided by the number of
nodes, that is, we need to install a VNF in at least half of the nodes (for
lower values many instances were not feasible due to the network topologies).
Medium capacity is the average between high and low.

In the following, we denote with h, m and l the high, medium and low capacity level
respectively. For example instances marked with l_h are the ones where service
capacity assumes the lowest value and the link the highest (therefore uncapacitated
with respect of links). The obtained 144 instances features are summarized in Ta-
ble 4.10, where each row refers to a network topology. Columns two to four report
the network features from SNDLib (number of nodes, number of links and number of
demands). Column five gives the sum of the demand amount based on the SNDLib
values. Such value corresponds to the high capacity value both for links and services.
The last three columns give the remaining values of capacity of VNFs and links: the
first two report the medium and low capacity values for the VNFs and the last one
reports the low capacity value for the links. The first 16 network topologies, from
“di-yuan” to “norway” have less than 30 nodes and are used in the formulations
comparison; 6 topologies, from “india35” to “germany50” have between 30 and 50
nodes are used to assess formulation scalability; the last two topologies “ta2” and
“zib54” are added with france to assess the impact of adding the articulation point
based pre-processing.
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Data from SNDLib Capacity

Network |N | |A| |D|
∑

k∈D
dk Service Link

(high cap) medium low low
Small-medium size instances

di-yuan 11 42 22 53 31 9 5
pdh 11 34 24 4621 2730 840 384

polska 12 18 66 9943 5800 1657 995
sun 27 51 67 476 255 35 53

dfn-bwin 10 45 90 548388 329032 109677 55916
nobel-us 14 21 91 5420 3097 774 486

nobel-germany 17 26 121 660 368 77 74
abilene 12 15 132 3000002 1750001 500000 829282
atlanta 15 22 210 136726 77478 18230 19404
newyork 16 49 240 1774 997 221 66
france 25 45 300 99830 53908 7986 9413

nobel-eu 28 41 378 1898 1016 135 214
ta1 24 51 396 10127249 5485593 843937 819678
geant 22 36 462 2999992 1636359 272726 359868

janos-us 26 42 650 80000 43076 6153 7624
norway 27 51 702 5348 2872 396 358

Large size instances
india35 35 80 595 3292 1740 188 121
cost266 37 57 1332 679598 358166 36735 53562
giul39 39 86 1471 7366 3871 377 363

janos-us-ca 39 61 1482 2032274 1068246 104219 180471
pioro40 40 89 780 115953 60875 5797 7609

germany50 50 88 662 2365 1229 94 123
Biconnected components instances

zib54 54 80 1501 12230 6341 484 528
ta2 65 108 1869 31419014 16192876 966738 1311190

Table 4.10 – Test-instance details

Models are implemented in AMPL and instances are solved with IBM ILOG
CPLEX (version 12.7.1.0 is used for tests in Section 4.5.2, Section 4.5.3 and Sec-
tion 4.5.6, and version 12.8.0.0 for tests in Section 4.5.4 and Section 4.5.5) on an
Intel Xeon, CPU E5-1620 v2 (4 cores), 3.7 GHz with 32 GB of RAM. A time limit
of 3600s and a tree memory limit of 3000 MB are set, but for solving the large
instances, the time limit has been extended to 7200s.

4.5.2 Continuous Relaxation Results on Small-medium Size In-
stances

We first compare the results of the two formulations on the continuous relaxation,
then we evaluate the impact of the additional inequalities described in Section 4.4.

Summarized results on the continuous relaxations of the two formulations are
reported in Table 4.11. The instances are grouped based on the capacity levels and
aggregated values over the 16 topologies (from “di-yuan” to “norway”) are reported.
As we proved in Section 4.3, the SP formulation produces a bound that is never
worse than the PR formulation, therefore, (in the first group of columns) we report
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the improvement obtained by the SP continuous relaxation upon the PR one. In the
second column the number of instances where SP obtains a better bound than PR is
given. The third and fourth columns report the average and maximum percentage
of the improvement, calculated as 100% ∗ CRSP−CRP R

CRP R
, where CRSP and CRPR

denote the continuous relaxation of SP and PR, respectively. The average value
is computed based on the instances where SP improves upon PR. The last four
columns report the average and the maximum computational times (in seconds) for
the two formulations. The best average computational time is reported in bold.

As expected, SP formulation always provides a continuous relaxation bound
that is better than or equal to the one provided by PR. When the link capacity
is high SP improves upon PR just in one or two instances, but for such instances
the improvement in the bound can be quite significant (up to around 150% for
the l_h case) and the average and maximum computational times are smaller (at
least one third less). When link capacity is low, the number of instances where
the SP formulation produces a better bound increases greatly (11-12 cases over 16)
and the average and maximum improvement is more significant (up to 350%). The
improvement is obtained at the price of a longer computational time, and SP cannot
find a feasible solution within the time limit (3600s) for one instance (marked with
? in Table 4.11), “norway” l_l, while PR does.

cap
Improvement Computational times (s)
SP vs. PR SP PR

# avg max avg max avg max
h_h 1 100.00 100.00 0.77 4.13 5.23 46.79
h_l 12 143.00 349.38 136.67 1502.60 83.13 698.42
m_h 2 62.00 100.00 1.35 7.89 7.24 61.48
m_l 12 143.00 349.38 116.32 1240.33 96.27 513.98
l_h 2 109.7 152.66 10.41 52.35 29.42 134.35
l_l? 11 131.92 270.54 138.41 1153.76 111.91 875.50

Table 4.11 – Comparison between the continuous relaxations.

We run tests on the additional inequalities introduced in Section 4.4. In Ta-
ble 4.12, we report summarized qualitative results. In the first column we report
the equation corresponding to the VI. Constraints (4.20) are enhanced versions of
the VNF capacity constraint, so they replace the VNF capacity constraint (4.4). In
the second and the third columns the change obtained by adding each VI, in terms
of bound and computational time, is qualitatively described.

VI Bound Runtime
Eq.(4.20) almost always better almost always increased
Eq.(4.21) almost always better almost always decreased
Eq.(4.22) always unchanged unchanged/increased

Eq.(4.23) (PR) always unchanged unchanged/increased
Eq.(4.24) (SP) always unchanged almost always unch./decr.

Table 4.12 – Adding valid inequalities to continuous relaxation: qualitative behavior.
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In the following, we discuss in detail the most effective additional inequalities
in terms of bound improvement and/or computational time reduction, i.e. the en-
hanced capacity equation (4.20) (in the following VI1) and the lower bound on the
minimum number of VNFs: equation (4.21) (in the following VI2). We consider
them singularly and together (VI1+2).

We compare the continuous relaxation bound obtained by the two formulations
with the best upper bound known to evaluate its overall quality. The comparison is
reported in Table 4.13. Results are reported in aggregated form, grouping instances
based on the capacity level, for the case with noVI, and with VI1, VI2 and VI1+2.
For each case, three columns are reported: the number of instances where the con-
tinuous relaxation bound is equal to the best UB and the average and maximum gap
for the cases where they are not equal (calculated as best_UB−CR_LB

best_UB ). No integer
solution can be found for the instance norway l_l, therefore in this case we cannot
calculate any gap with the best UB case. By the way, SP cannot even find a CR
value for such instance: indeed the instance has the greatest number of demands,
thus suggesting that SP may experience some issues with the increasing number of
demands.

SP continuous relaxation is equal to the best upper bound in all the uncapaci-
tated instances (h_h). PR continuous relaxation is equal to the best upper bound
in all the h_h instances but one, france, where an articulation point is present. In
this case, as we proved in Section 4.4.1, PR is weaker than SP. We can infer that for
the uncapacitated case, we cannot expect an improvement in terms of bound from
the VIs, and the only possible improvement can be in terms of computational time,
if any.

Adding VI1 does not increase the number of cases where the CR bound is equal
to the best UB, but reduces in general the gap for the cases where they are not equal.
Adding VI2 has a larger impact both for the SP and PR formulation: increasing
significantly the number of instances where the bound is equal to the optimal value.
This is not surprising, since VI2 imposes a lower bound on the number of installed
VNFs, that is also a lower bound on the objective function and in the high capacity
link case such bound is often tight. Combining VI1 and VI2 reduces further the gap
for the cases where the CR bound and the best UB do not coincide.

Table 4.14 shows the average computational times for the continuous relaxation
of SP and the PR formulations with and without the addition of VIs. The smallest
computational time for each capacity case is reported in bold. The VI2 in gen-
eral provides very good computational times, with few exceptions. Instead, VI1
always increases the computational times of both formulations, without improving
the bound (which already coincides with the integer optimal solution).

Finally, we compare the CR of SP and PR when VIs are added. Figure 4.10
reports the percentage difference between the two continuous relaxation bounds for
each VI (calculated as 100% ∗

CRSPV Ii
−CRP RV Ii

CRSPV Ii

). As expected VI2 reduces the
difference between the two continuous relaxations only when the service capacity
is medium or low, while it provides the naive bound (at least one service) when
the service capacity is high. If the service capacity is medium and low, adding VIs
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Continuous relaxation bound for the SP formulation

cap
noVI VI1 VI2 VI1+2

# gap # gap # gap # gap
opt avg max opt avg max opt avg max avg max

h_h 16 - - 16 - - 16 - - 16 - -
h_l 2 35.35 50.00 2 33.21 48.93 2 35.35 50.00 2 33.21 48.93

m_h 1 49.2 50.00 1 10.94 16.67 16 - - 16 - -
m_l 0 37.79 50.00 0 20.01 42.79 7 28.9 45.03 7 28.53 42.79
l_h 0 87.57 93.33 0 8.08 16.67 16 - - 16 - -
l_l 0 78.96 91.67 0 8.37 16.67 15 - - 15 - -

Continuous relaxation bound for the PR formulation

cap
noVI VI1 VI2 VI1+2

# gap # gap # gap # gap
opt avg max opt avg max opt avg max avg max

h_h 15 50.00 50.00 15 50.00 50.00 15 50.00 50.00 15 50.00 50.00
h_l 2 61.82 80.00 2 49.19 60.60 2 61.82 80.00 2 49.19 60.60

m_h 0 50.00 50.00 0 10.72 16.67 16 - - 16 - -
m_l 0 60.00 80.00 0 27.71 59.54 7 43.33 60.00 7 42.81 59.54
l_h 0 88.90 93.33 0 8.08 16.67 16 - - 16 - -
l_l 0 88.67 93.33 0 8.37 16.67 15 - - 15 - -

Table 4.13 – Comparison of the CR bound with respect of the best UB.

Computational times (s) for the SP formulation continuous relaxation

cap noVI VI1 VI2 VI1+2
avg max avg max avg max avg max

h_h 0.77 4.13 0.85 4.64 4.35 26.02 7.4 78.91
h_l 136.67 1502.6 137.83 1603.9 73.04 792.81 106.95 1268.05

m_h 1.35 7.89 20.62 130.63 5.03 36.63 7.16 56.01
m_l 116.32 1240.33 140.31 1555.4 64.9 759.71 76.57 805.44
l_h 10.41 52.35 39.13 278.51 3.37 31.44 2.86 19.66
l_l 354.69 3598.88 71.92 597.26 6.55 75.62 7.82 78.92

Computational times (s) for the PR formulation continuous relaxation

cap noVI VI1 VI2 VI1+2
avg max avg max avg max avg max

h_h 5.23 46.79 9.96 82.29 8.87 85.5 12.14 131.3
h_l 83.13 698.42 163.46 2002.48 66.01 515.51 30.68 293.53

m_h 7.24 61.48 43 285.57 7.00 51.12 18.11 148.33
m_l 96.27 513.98 143.75 2008.5 33.88 273.42 108.31 1125.63
l_h 29.42 134.35 39.46 297.89 0.79 4.08 1.19 10.46
l_l 111.91 875.5 61.92 483.14 6.54 72.25 5.6 60.22

Table 4.14 – Computational time with and without VIs for SP and PR formulations.
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reduces the difference between the continuous relaxations. We can observe that
adding VIs reduces the computational time (see Table 4.14) of PR while improving
its bound (see Table 4.13), the performance of PR is then similar to the SP one
(see Figure 4.10). Nevertheless, SP performs better than PR as SP provides better
bounds in m_l case.

Figure 4.10 – Average percentage difference between SP model and PR model

4.5.3 Full model (ILP/MILP) Results on Small-medium Size In-
stances

Let us now compare the behavior of the two formulations when solving the integer
problem. In Figures 4.11a - 4.11c (and respectively Figures 4.11b - 4.11d), the
number of optimal and integer feasible solutions found by the SP (respectively PR)
formulation are reported.

Results show that SP outperforms PR in all the capacity cases, whatever addi-
tional inequalities are applied. Indeed, in the high link capacity cases, SP can solve
to optimality all the instances with any additional inequalites choice, while PR can
solve at most 25 out of 48 instances (the best performance is obtained when no
additional inequality is used or both of them are added). In the low link capacity
cases, SP can solve more than 30 instances while PR can solve 12 instances with
no additional inequalities, 16 instances using only inequality VI2 and 14 instances
in the other two cases. SP seems to find the optimal solution almost every time it
can find a feasible one: indeed, it is not able to prove the optimality of the feasi-
ble solution found only in very few instances with h_l and m_l capacity settings.
When SP cannot prove optimality, the gap is still reasonable (at most around 27%
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(a) Number of optimal solutions SP. (b) Number of optimal solutions PR .

(c) Number of feasible solutions SP. (d) Number of feasible solutions PR .

Figure 4.11 – Number of optimal and integer feasible solutions found

for “janos_us” instance with h_l and m_l capacities). The number of instances
where a feasible but not optimal solution is found is very small also for PR. It seems
therefore that finding a feasible solution is in a sense as challenging as proving its
optimality.

The addition of inequalities improves the number of optimal or feasible solutions
found by SP (or leaves them unchanged). Further, it almost always reduces the
computational time needed to find the optimal solutions. In general, the impact of
VI1 is more evident when the link capacity is low and the service capacity is high.
This is reasonable, because with such capacity setting the multicommodity nature
of the problem emerges and the capacity of incident links is the one that limits the
access to services. Symmetrically, when the service capacity is low, the VI2 shows its
effectiveness more clearly. Adding both additional inequalities seems to produce the
best results, reducing in almost all cases the total computational time. The impact
of adding inequalities on PR is not as clear: it may slightly worsen the performance
of PR (for example in the h_l case the number of optimal solutions is reduced).

In Table 4.15 we report about the UB and the LB of each combination of for-
mulation and VIs w.r.t. the best known. Each group of columns refers to a VI case.
The following data are reported: in the first column, the number of cases where the
bound is equal to the best known, in the second column, the number of cases where
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the bound cannot be found and in the third column, the average gap with respect
to the best known bound (when the gap is not null). The SP formulation with the
VI1+2 shows the best performance among all possible variants, producing the best
bounds (UB and LB) in the largest number of instances.

SP formulations comparison vs best known UB

cap noVI VI1 VI2 VI1+2
best none gap best none gap best none gap best none gap

h_h 16 0 - 16 0 - 16 0 - 16 0 -
h_l 11 5 - 13 3 - 13 3 - 13 3 -
m_h 16 0 - 16 0 - 16 0 - 16 0 -
m_l 11 5 - 13 3 - 12 4 - 13 3 -
l_h 16 0 - 16 0 - 16 0 - 16 0 -
l_l 11 5 - 11 5 - 14 2 - 15 1 -

PR formulations comparison vs best known UB

cap noVI VI1 VI2 VI1+2
best none gap best none gap best none gap best none gap

h_h 9 0 7.00 9 1 4.5 8 2 5.50 8 2 5.00
h_l 4 10 4.50 3 11 3.00 3 12 3.00 2 11 2.00
m_h 7 7 2.50 6 7 2.33 7 7 5.00 8 7 9.00
m_l 2 11 1.33 5 10 1.00 4 11 4.00 4 11 1.00
l_h 9 6 2.00 9 7 - 9 6 1.00 9 6 4.00
l_l 7 9 - 6 10 - 9 7 - 8 8 -

SP formulations comparison vs best known LB

cap noVI VI1 VI2 VI1+2
best none gap best none gap best none gap best none gap

h_h 16 0 - 16 0 - 16 0 - 16 0 -
h_l 14 0 0.98 14 0 0.54 14 0 0.47 15 0 1.07
m_h 16 0 - 16 0 - 16 0 - 16 0 -
m_l 13 0 0.62 13 0 0.11 15 0 0.33 15 0 0.01
l_h 16 0 - 16 0 - 16 0 - 16 0 -
l_l 12 1 0.80 12 0 0.70 16 1 - 16 0 -

PR formulations comparison vs best known LB

cap noVI VI1 VI2 VI1+2
best none gap best none gap best none gap best none gap

h_h 15 0 1.00 15 0 1.00 15 0 1.00 15 0 1.00
h_l 6 0 2.22 6 0 1.40 5 0 2.11 4 0 1.26
m_h 8 0 0.37 9 0 0.15 16 0 - 16 0 -
m_l 2 0 1.31 6 0 1.12 7 0 1.57 7 0 1.29
l_h 11 0 0.77 12 0 0.71 16 0 - 16 0 -
l_l 9 0 0.70 8 0 0.60 16 0 - 16 0 -

Table 4.15 – Comparison of UB and LB found for the different formulations (with
and without VIs) with respect to the best known UB and LB.

SP outperforms PR also as far as the computational times are concerned. In or-
der to analyze in detail the computational times, we further divide the small-medium
size instances into two groups: from “di-yuan” to “france” (up to 300 demands) and
from “nobel-eu” to “norway” (more than 300 demands). In fact, instances of the first
group can be solved both by SP and PR, while, for instances of the second group,
the PR formulation cannot find a feasible solution for all the capacity settings, but
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h_h.

cap SP PR
noVI VI1 VI2 VI1+2 noVI VI1 VI2 VI1+2

h_h 0.60 0.66 1.16 1.16 860.54 859.12 1156.42 1170.26
h_l 1222.72 1235.26 845.12 870.11 2635.54 3016.69 2854.70 2777.77
m_h 5.50 2.78 1.31 1.07 1712.37 1582.70 1210.71 794.53
m_l 850.41 1289.08 1082.63 800.37 3292.24 2436.50 2371.35 2643.45
l_h 35.80 10.59 3.70 1.52 722.36 431.68 665.01 675.03
l_l 1049.62 1201.86 609.36 487.96 1344.28 1015.80 787.24 841.75

Table 4.16 – Average computational times (in seconds) of SP and PR on the first
group of small-medium instances.

In Table 4.16, average computational times (in seconds) on the first group of
small-medium size instances are reported for each capacity setting. For this first
group of instances, when the link capacity is high, SP can be up to 3 orders of
magnitude faster than PR. Low link capacity instances seem to be more challenging
both for SP and PR: indeed the increase of SP computational times passing from
high link capacity to low link capacity is larger than the one of PR. However, SP
remains always significantly faster than PR.

In Table 4.17 the average computational times only of the SP formulation on
the second group of small-medium instances are reported (as PR always reaches the
time limit for these instances without providing any feasible solution).

cap SP
noVI VI1 VI2 VI1+2

h_h 6.54 6.69 18.12 19.19
h_l 2199.63 1849.57 1425.26 2226.85
m_h 1111.19 197.95 167.03 31.36
m_l 3265.52 1631.53 1597.95 2171.11
l_h 305.35 148.77 14.74 13.17
l_l 2235.18 2378.76 83.77 109.91

Table 4.17 – Average computational times (in seconds) for of SP on the second group
of small-medium size instances.

The increasing number of demands causes an increase of the SP computational
times: as for the first group, its computational time depends both on the capac-
ity settings (the high link capacity cases being faster) and on the choice of added
inequalities.

4.5.4 Scalability on Large Size Instances

We have considered 6 network topologies, from “cost266” to “pioro40”, that have
from 35 to 50 nodes and from about 600 to about 1500 demands, to assess the
scalability of the formulations. In these tests the time limit is increased to 7200s.
Both the additional inequalities (i.e., VI1+2) have been added.
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PR is not able to provide even an integer feasible solution for any of the consid-
ered instances, no matter the capacity settings. For some capacity settings, namely
h_l and m_l, SP is not able to provide any feasible solution within the time limit,
either. Therefore, in Table 4.18 the computational times of SP for the six considered
instances are reported, for the capacity settings h_h, m_h, l_h, l_l. SP can solve
all of them but one instance with m_l setting, for which a feasible solution is found,
and two with l_l, for which not even a feasible solution can be found.

Increasing the network size and the number of demands increases of course the
computational times, but SP proves to suffer significantly less than PR. As observed
for the small-medium size instances, high link capacity instances are easier than low
link capacity ones. The average computational times of SP for the high link capacity
cases are acceptable, spreading from about 230 seconds up to about 20 minutes.
When both services and links have low capacity the average computational time is
about 40 minutes.

In general, when SP can find a feasible integer solution it can also prove its opti-
mality (a similar behavior has been observed for the small-medium size instances).
In the m_h giul39 instance, the only one where a feasible, but not optimal, solution
is provided, the gap from the best bound is significant (the best bound is 2 whereas
the provided solution is 15).

SP h_h m_h l_h l_l
cost266 501.82 333.79 182.8 TL

germany50 151.97 694.57 70.39 265.93
giul39 975.67 TL* 415.86 2989.96
india35 119.65 65.14 39.62 3286.9

janos-us-ca 885.48 3718.73 610.05 TL
pioro40 302.33 1434.99 83.22 2950.12

Table 4.18 – Computational times of SP formulation for large size instances (TL*
means that the time limit has been reached and a feasible solution is found, while
TL means that not even a feasible solution has been found within the time limit).

4.5.5 Impact of Proposition 4.3.1

In order to assess the impact of Proposition 4.3.1 we have generated, for three
topologies (where, according to the previous test results, both SP and PR can find
the optimal solution in h_h case): “abilene”, “atlanta” and “dfn-bwin”, instances
with three types of VNF service instead of one. Table 4.19 reports about the com-
putational time needed to solve the single VNF type instances and the three VNF
types ones: for each instance, the percentage increase of the computational time
when the number of services increases is given, computed as CPUtime3−CPUtime1

CPUtime1
,

where CPUtimeκ is the computational time with κ services (a negative increase
represents a reduction of the computational time when tackling a higher number of
service types). PR is not able to solve to optimality any instance. When an instance
cannot be solved four cases may occur: PR is not able to solve neither the one ser-
vice type instance nor the three service types one ("A"); PR can solve to optimality
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the single service type case, but provide only a feasible solution for the three service
types case ("B"); PR can solve to optimality the single service type case, but cannot
find a feasible solution for the three service types case ("C"); PR can find a feasible
solution for the single service type case, but cannot for the three service types case
("D").

h_h h_l m_h m_l l_h l_l
SP formulation

abilene 82 138 80 415 38 -52
atlanta 136 147 337 -17 56 -89
dfn-bwin 226 -1 174 91 68 94

PR formulation
abilene 7027 C 6800 C 12159 145558
atlanta C A D A C C
dfn-bwin 39 D B D 4455 C

Table 4.19 – Time increase (in percentage) due to the increase of the number of
VNF types (from 1 to 3) (in bold the cases where the overall computational time
decreases). "A" denotes the instances for which a feasible solution within the given
time limit cannot be found for both one and three service types; "B" denotes the
instances where the optimum is found for the single service type but only a feasible
solution can be found for the three types case; "C" denotes the instances for which
the single service type case can be solved to optimality but no feasible solution is
found for the three service type case; "D" denotes the instances for which a feasible
solution can be found for the single service type case but no feasible solution is found
for the three service types case.

Results show that the property is far from irrelevant, as it allows, in general,
to dramatically reduce the computational time. Although for a few instances the
computational times of SP formulation may reduce, in general, if the property is
neglected the computational times increase up to two orders of magnitude as far
as SP is concerned, and up to 5 orders of magnitude as far as PR is concerned.
Further, if the property is not applied, the number of instances that PR can solve
reduces significantly: 7 out of 15 instances (almost half of them) that PR can solve to
optimality with one service type cannot be solved with three service types ("B" and
"C") and for all but one no feasible solution can be found with three service types.
For further three instances, PR cannot find a feasible solution when the number of
service types increases.

It is worth noting that, even if the property is neglected, SP suffers significantly
less for the increase of the number of services, although with SP formulation the
number of variables depends on the number of service types in each chain.
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4.5.6 Articulation Point Based Preprocessing

We tested the articulation point preprocessing on three network topologies of SNDLib
which contain at least one articulation point: “france”, “ta2” and “zib54”. In Ta-
ble 4.20 the computational time variation obtained adding the preprocessing is re-
ported for the capacity cases where an optimal solution can be found for all the
three instances by the SP formulation (results are not reported for the PR, as it
fails in solving almost all the instances even with preprocessing).

The preprocessing is quite fast (few seconds) and its addition reduces almost
always the computational time: thanks to the preprocessing SP solves to optimality,
despite their big size, instances for which no feasible solution can be found without
preprocessing (“zib54”for the l_l capacity case). Nevertheless, in some capacity
cases (all the h_l and m_l cases) no feasible solution can be found even using the
preprocessing. Furthermore, the preprocessing is not enough to allow PR to find a
solution in most of the cases (the only exception being the france network, where
the solution can be certified for the uncapacitated case). To conclude, as it needs
negligible computational time and is beneficial for some instances, although not for
all, we believe that the articulation point based preprocessing is worth performing.

cap h_h m_h l_h
france -32.0 -26.0 153.0
ta2 -73.0 -93.0 -6.0
zib54 -37.0 -84.0 -36.0

Table 4.20 – Time reduction (in percentage) obtained by using articulation point
preprocessing (in bold the only case where the overall computational time increases)
for the SP formulation.

4.6 Conclusion

In this chapter, we formally defined the VNF-PRSP problem and studied some prob-
lem complexity and properties. Furthermore, we compared the most promising for-
mulation strategies (i.e., SP and PR) and analyzed their performance on a common
test bed. The first modeling strategy (SP) is based on splitting each demand path
into two sub-paths, one connecting the source with the service, the second one con-
necting the service with the destination; the second one (PR) uses arc flow variables
and forbids cycles exploiting node labels. Enriched formulations were also proposed
and their impact evaluated. We proved that the continuous relaxation of SP always
provides a bound not worse than the one of PR. As expected from the theoretical
results, computational tests show that stand alone SP improves upon PR, therefore,
SP benefits more from the VIs and seems to suffer less from the increasing number
of demands. In addition, we observed that, for some hard and large size instances,
either SP is able to find an optimal solution or it is not even able to provide a feasible
solution. Thus, efficient methods are needed and the problem of finding a feasible

108



4.6. Conclusion

solution is worth investigating.
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In previous chapters, we formally defined the VNF-PRSP problem and provided
a thorough complexity and properties analysis. Furthermore, we proposed two for-
mulations that proved capable of coping with small and medium size instances.
Computational results of the proposed models showed that small and medium size in-
stances of the VNF-PRSP problem can be solved efficiently using the CPLEX solver.
To further improve the resolution, we develop several constructive approaches that
combine mathematical programming with fast search engines (i.e., by fixing partial
solutions).

The remaining of this chapter is organized as follows. In Section 5.1 we propose
two ILP-based constructive methods for VNF-PRSP. In Section 5.2 we present and
analyze the results of computational experiments of the proposed methods.

5.1 ILP-based Constructive Methods

In this section we propose two ILP-based constructive methods. In brief, the main
idea of both methods is to partially fix the solution and complete it by solving an
ILP model, which is an improved SP formulation.

5.1.1 SP Formulation with Bin-Packing-like Improved Bound

The SP formulation with Bin-Packing-like improved bound is based on SP formu-
lation with VI1+2, as it shows the best performance among all possible variants
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(see Section 4.5). The improvement takes inspiration from the problem features of
VNF-PR. As discussed in section 2.1, our problem shares features with network de-
sign problems (for the demand routing) and with facility location problems (for the
VNF location). If we discard the routing part, computing the minimum number of
VNF instances turns out to be a bin packing problem whose optimal solution always
provides a lower bound of the VNF-PRSP.

Compared with the calculated lower bound used in VI2 (equation 4.21), the lower
bound provided by the BPP (integer) solution is always not worse than the former,
as BPP solution considers the demand assignment in addition to service capacity.
Moreover, the lower bound provided by the BPP solution can be further improved
if we consider in the BPP the overall capacity of links incident in the node as in
VI1, i.e., using the computed service capacity q̄i (the calculated maximal demand
amount that can be served by a node) instead of q. Therefore, in order to compute
such lower bound, we solve the following BPP-like sub-problem of the VNF-PRSP
problem:

BPP-like.

min
∑
i∈N

yi (5.1)

s.t.
∑
i∈N

zki = 1 ∀k ∈ D (5.2)

∑
k∈D

dk z
k
i ≤ q̄i yi ∀i ∈ N (5.3)

The BPP-like objective (5.1) is to minimize the total number of used bins (VNF
instances). Constraints (5.2) ensure that each item (demand) is packed into exactly
one bin (VNF instance), while constraints (5.3) impose that the capacity of any used
bin is not exceeded. Different from the typical BPP formulation, in our BPP-like
formulation, we consider different capacity q̄i for each bin i.

Solving the BPP-like sub-problem is in general fast (less than 1 second for small-
medium size instances) on the considered instances. The optimal solution of the
BPP-like is then used as a cut-off lower bound (denoted with LBbpp) in the formu-
lation:

SP with improved bound (SPI):

obj. (4.1)
s.t. (4.2), (4.3), (4.5), (4.7)− (4.10), (4.20)∑
i∈N

yi ≥ LBbpp ∀i ∈ N (5.4)

Similar to the original SP formulation, the objective (4.1) of SPI is to minimize the
total number of used VNF instances. Constraints (4.2), (4.3), (4.5), and (4.7)-(4.10)
are taken from the original SP formulation to formulate the VNF-PRSP problem.
Constraints (4.20) is the VI1 introduced previously to strengthen the service capac-
ity formulation. SPI differs from SP with VI1+2 for that it uses the lower bound
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provided by the BPP-like solution to force the number of selected VNF instances to
b at least equal to the optimal number of bins.

5.1.2 Three-Step Bin Packing Based Fix-and-Solve Method

In this section, we introduce the Three-Step Bin Packing based Fix-and-Solve (TS-
BP-FS) method for the VNF-PRSP problem.

We first compute the optimal solution of the BPP-like to obtain the input pa-
rameters. Besides the problem solution that is used as the lower bound in SPI, the
BPP-like provides also clusters (namely, groups of demands that use the same VNF
instance) that are used in TS-BP-FS. Then, we perform three steps, in each a model
is solved where additional constraints are added so as to partially fix the solution.
In brief, in Step1, we solve the VNF-PRSP problem fixing placement and assignment
variables as in the optimal solution of BPP. If a feasible routing solution is found, the
procedure stops. The solution found is an optimal solution for VNF-PRSP, as it uses
the number of VNF instances provided by the optimal solution of the BPP-like which
provides a lower bound for the VNF-PRSP problem. Otherwise, in Step2 we solve
VNF-PRSP keeping the assignment part of the BPP-like solution (clusters) while
allowing chaining VNF instance locations. If a feasible routing solution is found, we
stop the procedure. The solution found is still an optimal solution for VNF-PRSP, as
the number of installed VNF instances is still equal to the BPP-like. Otherwise, in
Step3 we allow assigning the demands of one cluster to two VNF instances. As the
number of installed instances maybe twice the lower bound, the solution provided
in Step3 is not optimal (however it has a guaranteed error of 100%).

Notation Step
Sets

C set of Clusters 1,2,3
Dc set of demands that belongs to cluster c ∈ C 1,2,3

Parameters
LBbpp the optimal solution of the BPP-like 1,2,3
vnfc the VNF node that is used by cluster c ∈ C 1

Variables (binary)
wc

i 1 if cluster c ∈ C uses the VNF instance on node i ∈ N 3

Table 5.1 – Additional mathematical notation used in method TS-BP-FS.

In Table 5.1 the additional notation used in TS-BP-FS is summarized and in
which step the additional parameters/variables are used are reported. (basic math-
ematical notation of SP formulation is reported in Table 4.5)

We now describe the procedure more into detail.

1. Step 1.
The pure routing problem is solved while keeping location of VNF instances
and assignment of the BPP-like solution:
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SPIrout:

obj. (4.1)
s.t. (4.2), (4.3), (4.5), (4.7)− (4.10), (4.20)
s.t. (5.4)
zki = 1 ∀c ∈ C, k ∈ Dc, i ∈ N : vnfc = i (5.5)

SPIrout7 is based on SPI formulation. Additional constraints (5.5) are intro-
duced to guarantee that each demand is assigned to a VNF instance according
to the BPP-like solution.

If SPIrout finds a feasible routing, it is then an optimal one. While SProut being
not feasible can be due to different reasons:

• the total number of VNF instances is not enough to serve all the demands
• the total number of VNF instances is enough, but the selected location

and/or assignments are not feasible

Thus in Step2 and Step3, we allow changing more the BPP-like solution to
"correct" these two problems.

2. Step 2.
In this step, we allow changing the location of the VNF instances, but we keep
the same number of VNF instances and the same clusters as in the BPP-like
solution. We allow the demands of a cluster to use a VNF instance different
from the one selected by the BPP-like solution. However, the demands of a
cluster must select the same VNF instance.

SPIass:

obj. (4.1)
s.t. (4.2), (4.3), (4.5), (4.7)− (4.10), (4.20)
s.t. (5.4)
zk1
i = zk2

i ∀c ∈ C, k1 ∈ Dc, k2 ∈ Dc, i ∈ N (5.6)

Additional constraints (5.6) impose that the demands of one cluster are as-
signed to the same VNF instance.

If SPIass finds a feasible solution, it is an optimal solution of the VNF-PRSP
problem. Otherwise, either the total number of VNF instances is not enough,

7When we fix the location and assignment in the solution, objective function (4.1) and con-
straints (4.2), (4.3) and (5.4) are in fact redundant. However, preliminary tests on small-medium
size instances show that the SPIrout formulation with these redundant constraints performs a little
faster than the variants without, therefore, we decide to keep these constraints in SPIrout.
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Objective function and basic constraints Additional constraints
Models obj routing/location fix location change location split assignment

SP-VI1+2 (4.1) (4.2),(4.3),(4.5),
[(4.7)-(4.10)],(4.20),(4.21)

SPI (4.1) (4.2),(4.3),(4.5),
[(4.7)-(4.10)],(4.20),(5.4)

SPIrout (4.1) (4.2),(4.3),(4.5), (5.5)[(4.7)-(4.10)],(4.20),(5.4)

SPIass (4.1) (4.2),(4.3),(4.5), (5.6)[(4.7)-(4.10)],(4.20),(5.4)

SPIsplit (4.1) (4.2),(4.3),(4.5), (5.7),(5.8)[(4.7)-(4.10)],(4.20),(5.4)

Table 5.2 – Applicable constraints to the models used in TS-BP-FS.

or the number of VNF instances is correct but the selected clusters are not
feasible.

3. Step 3.
In this step, we give more flexibility to the model by allowing the demands
in one cluster to use two VNF instances. More precisely, we allow chang-
ing the location of the VNF instances and using up to twice the number of
VNF instances with respect to the optimal solution provided by BPP-like (i.e.,
2 ∗ LBbpp).

SPIsplit:

obj. (4.1)
s.t. (4.2), (4.3), (4.5), (4.7)− (4.10), (4.20)
s.t. (5.4)∑
i∈N

wci ≤ 2 ∀c ∈ C (5.7)

zki ≤ wci ∀c ∈ C, k ∈ Dc, i ∈ N (5.8)

Additional constraints (5.7) allow each cluster to use two VNF instances,
and (5.8) ensure that if a cluster does not use the VNF instance on a node,
then no demand of this cluster can be assigned to this node.

If SPIsplit finds a feasible solution with the used number of VNFs instances
equal to LBbpp, then it is an optimal solution for the VNF-PRSP problem.
Otherwise, any feasible solution found by SPIsplit with the used number of
VNFs instances that is greater than LBbpp, provides an upper bound, and
the optimality gap is guaranteed to be not worse than twice of the optimal
solution.

The models used in each step of TS-BP-FS are reported in Table 5.2. If a feasible
solution is found, the procedure stops. The first two steps lead to an optimal solution,
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whereas the last one always leads to a solution with a gap guarantee of twice the
optimal solution.

5.1.3 Fix-and-Check Method

In this section, we introduce the second constructive method. In short, the main
idea of this method is to fix the number of installed VNF instances and check if
a feasible solution could be found. If a proposed number of VNF instances is not
enough to serve all the demands, we increase this number by one and continue the
fix and check procedure.

In this fix-and-check (FC) method, in order to be able to check if a number of
VNF instances is enough to serve all the demands, we propose to solve the problem
of maximizing the number of served demands, the VNF-PRSP

MD problem.

1
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(a) Example graph.
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dmy

(b) Extended graph of the example.

Figure 5.1 – The graph extension operated by model SPMD.

VNF-PRSP
MD differs from VNF-PRSP for the objective function that is to max-

imize the number of served demands. To allow finding always a feasible solution,
the network graph is extended with a dummy node dmy allowing installing a VNF
instance that can serve all the demands not served elsewhere. Figure 5.1 shows an
example of this extended graph, the uncapacitated dummy node is added to the
original graph, and an uncapacitated arc is added from every demand source node
to the node dmy and from the node dmy to every demand destination node, so
that any demand can be assigned to the node dmy and routed on these uncapaci-
tated arcs. The problem goal is to maximize the demands that are served by any
VNF node but dmy. The resulting graph is denoted as GMD(NMD, AMD), where
NMD = N ∪ dmy and AMD is the union of the original arcs A and the arcs incident
in the node dmy. Then the location, assignment and routing variables are defined
on the resulting graph. To solve the VNF-PRSP

MD problem, we solve the following
model which adopts the split-path formulation strategy and uses similar constraints
as in the SP formulation with VI1 (equation (4.20)):
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SPMD-VI1.

max
∑

k∈D,i∈N
zki (5.9)

s.t.
∑

i∈N :(i,dmy)∈AMD
(xk1
i,dmy + xk2

i,dmy) ≤ zkdmy ∀k ∈ D (5.10)

Eq. (4.3), (4.5), (4.9), (4.10), (4.20) are defined on the original graph G(N,A)
Eq. (4.2), (4.7), (4.8) are defined on the extended graph GMD(NMD, AMD)

The objective function (5.9) maximizes the number of demands that use the
real VNF instance. Constraints (5.10) are introduced to forbid the served demands
passing by the dummy links if they are not using the VNF instance located on the
dummy node.

In brief, the FC procedure is a loop algorithm including three main steps. In
each iteration of FC, the number of installed VNF instances is fixed and three steps
are executed one after another. Each step fixes partially the solution and solves
the ILP model to complete the solution. The flexibility of the model is increased
from one step to another: at the beginning of each iteration, the BPP-like is first
solved with a minimum number of bins (i.e., the fixed number of VNF instances)
to provide the clusters (i.e., VNF location and demand assignment solution). In
Step1, we solve the problem fixing placement and assignment variables as in the
optimal solution of BPP-like. If all the demands can be served, the procedure stops.
The fixed number of installed VNF instances is a feasible solution of the VNF-PRSP
problem. Otherwise, in Step2 we only keep the location part of the BPP-like solution
while allowing changing the assignment of the demands. If all the demands can be
served, a feasible solution of the VNF-PRSP problem is found, and the procedure
stops. Otherwise, in Step3 we allow free location and assignment, but we fix the
number of installed VNF instances. If all the demands can be served, we stop the
procedure. Otherwise, we increase the number of VNF instances by one and go to
the next iteration.

Notation Method
Sets

B set of installed VNF instances FC
C set of clusters both
Dc set of demands that belong to cluster c ∈ C both

Parameters
LBfix the number of VNF instances to open, 1 by default FC
LBbpp the optimal solution found by BP both
vnfc the VNF node that is used by cluster c ∈ C both

Table 5.3 – Additional mathematical notation used in method FC.

In Table 5.3 the additional notation used in FC is presented. Since FC shares
some same mathematical notation as in the method TS-BP-FS, in the last column
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we report the method where the set/parameter is used.

We now describe the loop algorithm of FC more into detail. A comprehensive
view of the method is shown in Algorithm 1.

Since in each iteration of FC the number of VNF is fixed, to provide locations
and assignments to start from, a BPP-like problem with a lower bound on the num-
ber of bins is solved:

The bounded BPP-like (BPPbd-like):

obj. (5.1)
s.t. (5.2), (5.3)∑
i∈N

yi ≥ LBfix (5.11)

Additional constraints (5.11) are introduced to impose the number of VNF in-
stances to install to be at least LBfix.

Let LBbpp be the number of VNF instances provided by BPPbd-like (LBbpp
equals to LBfix, except for the first iteration). The clusters are built according to
the assignment provided by the BPPbd-like solution. The selected VNF locations
are kept in the set B, and described by parameters vnfc for each cluster c ∈ C.

1. Step 1.
The goal of Step1 is to verify if a feasible routing can be found for all the
demands while fixing the location solution as in the BPPbd-like solution. Each
demand can only use either the dummy VNF instance or the one that is al-
located to it in the BPPbd-like solution. To this end, the following model is
solved:

SProut
MD-VI1:

obj. (5.9)
s.t. (5.10)
s.t. (4.3), (4.5), (4.9), (4.10), (4.20) are defined on the original graph G(N,A)
s.t. (4.2), (4.7), (4.8) are defined on the extended graph GMD(NMD, AMD)

yi =
{

1 if i ∈ B
0 otherwise

∀i ∈ N (5.12)

zki = 0 ∀c ∈ C, k ∈ Dc, i ∈ N : vnfc 6= i (5.13)

SProut
MD-VI1 is based on SPMD-VI1. Additional constraints (5.12) and (5.13)

are introduced to fix partially the solution: constraints (5.12) fix the location
of VNF instances as in the BPPbd-like solution, while constraints (5.13) fix
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the assignment solution by forbidding the demand to use any other VNF in-
stance (except for the dummy one) that is not assigned to the demand’s cluster.

If the optimal solution found by SProut
MD-VI1 equals to the total number of

demands, then the fixed number of VNF instances is a feasible solution to the
VNF-PRSP problem.

2. Step 2.
In this step, we check if the fixed number of VNF instances is sufficient to
serve all the demands by allowing the demands to be assigned to any open
VNF instances regardless the clusters. To do so, we remove the additional
constraints (5.13) from SProut

MD-VI1, and we solve the following model:

SPfixloc
MD-VI1:

obj. (5.9)
s.t. (5.10)
s.t. (4.3), (4.5), (4.9), (4.10), (4.20) are defined on the original graph G(N,A)
s.t. (4.2), (4.7), (4.8) are defined on the extended graph GMD(NMD, AMD)
s.t. (5.12)

If SPfixloc
MD-VI1 finds a feasible routing such that all the demands are served

by real VNF instances, a feasible solution of VNF-PRSP is then provided and
we stop the procedure. Otherwise, either the number of VNF instances is not
enough to serve all the demands, or the number is sufficient but the location
is not feasible.

3. Step 3.
In this step, we fix the number of VNF but allow changing the location of
VNF instances by solving the following model:

SPfixnum
MD-VI1:

obj. (5.9)
s.t. (5.10)
s.t. (4.3), (4.5), (4.9), (4.10), (4.20) are defined on the original graph G(N,A)
s.t. (4.2), (4.7), (4.8) are defined on the extended graph GMD(NMD, AMD)∑
i∈N

yi = LBfix (5.14)

If the number of served demands in the optimal solution found by SPfixnum
MD-

VI1 equals to the total number of demands, a feasible solution of VNF-PRSP
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is built. Otherwise, if the number of served demands in the optimal solution
is smaller than the number of demands, the given number of VNF instances
is a lower bound for the VNF-PRSP problem. In this case, we increase the
number of VNF instances and we repeat the main steps, until we find a feasible
solution for the VNF-PRSP problem or the number of VNF instances reaches
the number of physical nodes.

Basic features Additional constraints
Models obj constraints fix location change assignment fix number

SPMD-VI1 (5.9) (4.2), (4.3), (4.5),
(4.7)-(4.10), (4.20), (5.10)

SProut
MD-VI1 (5.9) (4.2), (4.3), (4.5), (5.12), (5.13)(4.7)-(4.10), (4.20), (5.10)

SPfixloc
MD-VI1 (5.9) (4.2), (4.3), (4.5), (5.12)(4.7)-(4.10), (4.20), (5.10)

SPfixnum
MD-VI1 (5.9) (4.2), (4.3), (4.5), (5.14)(4.7)-(4.10), (4.20), (5.10)

Table 5.4 – Applicable constraints to models used in FC.

In Table 5.4 the models used in each step are reported. The purpose of the
method FC is to check if a proposed number of VNF instances can serve all the
demands and increase the number if not. The check is performed iteratively in
three steps after finding the BP solution with at least the given number of VNF
instances: first a feasible routing is searched with fixed location and assignment
solution. Then if a feasible routing cannot be found, the VNF locations are kept
but a new assignment and routing is searched. Finally, only the number of VNFs is
fixed.

In order to improve the performance of the method and iterate quickly, in its
implementation (see Algorithm 1), we solve the relaxation problem of the corre-
sponding model before solving the integer one. As the relaxation provides an upper
bound to the optimal integer solution, if the relaxation solution is smaller than the
total number of demands, we can move to the next step. Furthermore, we first
solve the relaxation problem of SPfixnum

MD-VI1, since if the relaxation solution of
SPfixnum

MD-VI1 is smaller than the total number of demands, we can increase the
number of installed VNF instances by one and move to the next iteration.

5.2 Computational Results

For the sake of comparison and completeness, the computational tests for the pro-
posed constructive methods are run on the small-medium size instances of the test
bed generated previously (Table 4.10 in Chapter 4) with a time limit of 3600s.

120



5.2. Computational Results

Algorithm 1 Overview of the method FC
1: let LBfix ← 1
2: while time limit is not exceeded & LBfix ≤ |N | do
3: procedure the bounded BPP-like
4: solve BPPbd-like
5: initialize sets B, C, Dc and parameters vnfc

6: procedure Fix-and-check
7: solve the relaxation of SPfixnum

MD-VI1
8: let res← the optimal solution
9: if res+ 0.01 ≥ |D| then
10: solve the relaxation of SProut

MD-VI1
11: let res← the optimal solution
12: if res+ 0.01 ≥ |D| then
13: solve SProut

MD-VI1
14: let res← the optimal solution
15: if problem solved & res = |D| then
16: stop: a feasible solution to VNF-PRSP is found
17: solve the relaxation of SPfixloc

MD-VI1
18: let res← the optimal solution
19: if res+ 0.01 ≥ |D| then
20: solve SPfixloc

MD-VI1
21: let res← the optimal solution
22: if problem solved & res = |D| then
23: stop: a feasible solution to VNF-PRSP is found
24: solve SPfixnum

MD-VI1
25: let res← the optimal solution
26: if problem solved & res = |D| then
27: stop: a feasible solution to VNF-PRSP is found
28: let LBfix = LBfix + 1

5.2.1 Results on Small-medium Size Instances

We first present the results of TS-BP-FS in comparison with the SP-VI1+2 for-
mulation as a reference. In Table 5.5, the number of optimal solutions found by
TS-BP-FS and SP-VI1+2 on the small-medium size instances as well as the average
computational times are reported for each capacity setting. The first column indi-
cates the capacity case. Column 2 report the number of optimal solutions found by
SP formulation with VI1+2 while column 6 reports it for the TS-BP-FS. Columns
3-5 summarize the number of optimal solution found in each step of method TS-BP-
FS. Columns 7-8 report the average computational times when the optimallity is
proved by both SP-VI1+2 and TS-BP-FS (the cases where the time limit is reached
are not considered). In column 9 we report the number of instances that TS-BP-FS
uses less computational time than SP-VI1+2 to find the optimal solution and in
column 10 we report the average reduction of time of these instances.

We observe that, for each capacity setting, when TS-BP-FS is able to find the
optimal solution, SP-VI1+2 also finds the optimal solution, while the opposite is
not true. For example, low link capacity instances are challenging for SP-VI1+2,
but TS-BP-FS suffers more than SP-VI1+2: SP-VI1+2 solves 38 instances out of
48 instances to optimality while TS-BP-FS can only solve 24 instances. As for
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# opt Avg computational Time reduction

cap SP-VI1+2 TS-BP-FS times (s) w.r.t. SP-VI1+2
Step1 Step2 Step3 Total SP-VI1+2 TS-BP-FS # % avg

h_h 16 16 0 0 16 6.5 1.4 16 62.34
h_l* 11 1 1 5 7 150.70 97.36 5 58.14
m_h 16 16 0 0 16 8.74 1.64 16 60.79
m_l* 12 3 2 2 7 246.42 15.42 5 68.91
l_h 16 16 0 0 16 6.24 1.56 16 69.36
l_l 15 3 3 4 10 33.74 422.70 4 53.97

Table 5.5 – Number of optimal solutions found by TS-BP-FS and SP-VI1+2 and the
average computational times used by each for test on small-medium size instances
with time limit of 3600s (* the instance janos-us is not counted in the number of
optimal solutions found by SP-VI1+2 in both h_l and m_l cases, the solution found
is in fact an optimal solution, but the optimality is not proved within time limit).

the computational times in low link capacity cases, TS-BP-FS only reduces the
computational time of SP-VI1+2 for 14 instances among 24 instances. But TS-BP-
FS performs well when the link capacity is high: compared with SP-VI1+2, TS-BP-
FS finds optimal solution with less computational times for all the 48 instances in
high link capacity cases, and the average time reduction is at least 60%.

Both SP-VI1+2 and TS-BP-FS can find the optimal solution with very short
computational time (several seconds) for all the small-medium size instances of high
link capacity cases. Therefore, we decide to eliminate the tests on small-medium
size instances of high link capacity cases for the rest of tests on constructive and
heuristic methods.

We now report the results of the FC method. As observed previously, the low
link capacity instances are challenging for the model: either SP-VI1+2 is able to
find an optimal solution with large computational time or it is not even able to
provide a feasible solution. Thus, we decide to compare FC with SP-VI1+2 from
two aspects: for the instances that SP-VI1+2 can provide an optimal solution with
large computational time, we check if FC can reduce the computational time; for
those that SP-VI1+2 fails to provide a feasible solution, we check if FC can find a
feasible solution.

In Table 5.6, the number of optimal solutions found by FC and SP-VI1+2 on
small-medium size instances as well as the average times are reported for each low
link capacity setting. The first column is the capacity case. Columns 2-4 summarize
the number of optimal solutions found by SP-VI1+2 and FC and both of them.
Columns 5-6 report the average computational times when the optimality is proved
by both SP-VI1+2 and FC. Column 7 reports the number of instances that FC can
solve to optimality while SP-VI1+2 cannot provide any feasible solutions. Columns
8 summarizes the number of instances where FC uses less computational time than
SP-VI1+2 to find the optimal solution (counting instances where both methods
can find the optimal solution) and column 9 reports the average reduction of time
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for these instances. On the contrary, Columns 10 and 11 summarizes the number
of instances and the average augmentation of time in cases where FC uses more
computational time than SP-VI1+2 to find the optimal solution.

# opt Avg computational Performance w.r.t SP-VI1+2
cap SP-VI1+2 FC Both times (s) Impr Time reduction Time augmentation

SP-VI1+2 FC # opt # % avg # % avg
h_l* 11 11 10 497.10 350.02 1 6 46.90 4 28.53
m_l* 12 11 11 491.33 492.04 0 3 79.58 8 414.29
l_l 15 13 13 63.61 242.38 0 5 40.73 8 283.60

Table 5.6 – Number of optimal solutions found by FC and SP-VI1+2 and the average
computational times used by each for test on small-medium size and low link capacity
instances with time limit of 3600s (* the instance janos-us is not counted in the
number of optimal solutions found by SP-VI1+2 in both h_l and m_l cases, the
solution found is in fact an optimal solution, but the optimality is not proved within
time limit).

In h_l case, for the 10 instances8 that both SP-VI1+2 and FC can solve to
optimality, the average computational time used by FC is smaller than SP-VI1+2.
Moreover, FC uses less computational time than SP-VI1+2 for 6 instances with
the averaged time reduction of 46%. Then for the instances that SP-VI1+2 cannot
provide any feasible solution, FC can find an optimal solution for only one instance
(polska). But there is one instance (nobel-us) that SP-VI1+2 can find an optimal
solution whereas FC cannot provide any feasible solution within time limit of 3600s.
Therefore, the behaviour of method FC is similar to that of SP-VI1+2 in case h_l.
Then the performance of FC becomes worse than SP-VI1+2 in m_l and l_l cases:
FC finds optimal solution for 3 less instances than SP-VI1+2 does. Moreover, for all
the instances that FC can solve to optimality, SP-VI1+2 is able to find an optimal
solution also. As for the average computational time for solving these instances, FC
uses more computational time than SP-VI1+2 in the majority of cases.

5.3 Conclusion

In this chapter, we presented two ILP-based constructive methods to deal with the
VNF-PRSP problem. Both of them are based on ILP model. The TS-BP-FS method
allows us to search quickly a feasible routing with a set of models by fixing location
and/or assignment solutions provided by the BPP-like solution. This method works
well when the BPP-like sub-problem dominates the VNF-PRSP problem, e.g., the
optimal solution of VNF-PRSP is exact the number of VNF instances provided by the
BP solution. However, this method cannot find efficiently feasible solutions in cases
where the routing part dominates the VNF-PRSP problem (e.g., low link capacity
cases). To handle this, we came up with the FC method. FC allows us to check if a

8in this case, both SP-VI1+2 and FC finds optimal solution for 11 instances, but 10 instances
in common.
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proposed number of installed VNF instances is a feasible solution to VNF-PRSP by
searching the maximum number of demands it can serve. The check is performed
iteratively by solving a set of models with partially fixed solution. FC is able to find
a feasible solution for the network instances under low link capacity cases. However,
the computational time is expensive with hard and large size instances. Therefore,
the problem of finding a feasible solution is worth investigating.
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In this chapter, we present several heuristic approaches to deal with large size
instances of the problem. As discussed previously, it is too time-consuming both for
the models and the proposed constructive methods to solve to optimality large size
instances, and sometimes they have difficulty even in providing a feasible solution.
Therefore, we propose heuristic methods to tackle the large size instances within
reasonable computational time.

The remaining of this chapter is organized as follows. In Section 6.1 we pro-
vide an overview of the k-opt neighborhood search technique and we describe three
resulting models that consider different neighborhoods for our problems. Then in
Section 6.2 and 6.3 we present several heuristic approaches that are based on the re-
sulting models. In Section 6.4 we propose two fix-and-solve heuristic approaches. In
Section 6.5 we present and analyze the results of computational tests of the proposed
approaches.
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6.1 Overview of k-opt Technique and k-opt Models
In this section, we introduce the k-opt neighborhood search technique (Section 6.1.1)
and we propose three k-opt neighborhoods for our problems (Section 6.1.2).

6.1.1 k-opt neighborhood search Technique

In brief, k-opt neighborhood search presented in [63] is in the spirit of local search
meta-heuristics, but the neighborhoods are defined as the sets of solutions that
differ in at most k variable values from the current solution: in the MIP model a
linear inequality called local branching constraint is added that imposes a distance
of changes with respect to a reference solution. The framework uses a generic MIP
solver to explore effectively the defined neighborhoods.

Let the generic MIP problem with binary variables be a minimization problem
of the following form

min cTx

s.t. Ax ≥ b
xj ∈ {0, 1} ∀j ∈ B 6= ∅
xj ≥ 0, integer ∀j ∈ G
xj ≥ 0 ∀j ∈ C

where B 6= ∅ is the index set of the binary variables, while the possible empty
sets G and C are the integer and the continuous variables, respectively. Given a
feasible reference solution x̄, let S̄ := {j ∈ B : x̄j = 1} denote the binary support of
x̄. For a given positive integer parameter k, the k-opt neighbourhood of x̄ is defined
as the set of the feasible solutions satisfying the additional local branching constraint:

∑
j∈S̄

(1− xj) +
∑

j∈B\S̄

xj ≤ k (6.1)

Constraint (6.1) imposes a maximum Hamming distance of k among feasible
neighbors of x̄, i.e., in a neighbor solution, only k binary variables are allowed to
flip their value with respect to x̄.
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6.1.2 k-opt Models

In the previous sections, we proposed the SPI formulation (an improved SP formula-
tion in Section 5.1.1) to solve directly the VNF-PRSP problem. We also proposed the
SPfixnum

MD-VI1 formulation to solve the VNF-PRSP
MD problem (in Section 5.1.3)

with a fixed number of installed VNF instances to check if all the demands can be
served. If the fixed number of installed VNF instances can serve all the demands in
the VNF-PRSP

MD problem, a feasible solution for the VNF-PRSP problem is found.
We now use the SPI formulation and the SPfixnum

MD-VI1 formulation within the
k-opt neighborhood search framework.

Indeed, two families of binary variables can be involved in the local branching
constraints, the location variables y and the assignment variables z:

• if the location variables are considered, the local branching constraint is as
follows: ∑

i∈S̄f

(1− yi) +
∑

i∈N\S̄f

yi ≤ kf (6.2)

where S̄f is the set of selected locations and it limits the number of location
variables that can change their values;

• if the demand-VNF assignment variables are considered, the local branching
constraint is as follows:∑

(k,i)∈S̄d

(1− zki ) +
∑

(k,i)∈(D,N)\S̄d

zki ≤ kd (6.3)

where S̄d represents the selected demand-VNF pair.

Resulting model Formulation used Additional constraints
SPI-NSloc SPI Eq. (6.2)
SPI-NSlocass SPI Eq. (6.2), (6.3)
SPfixnum

MD-VI1-NSass SPfixnum
MD-VI1 Eq. (6.3)

Table 6.1 – Resulting models of the SPI and SPfixnum
MD-VI1 formulations combined

with the additional local branching constraint.

By combining the formulations and the additional local branching constraints we
obtain three models, which will be solved within different k-opt neighborhood search
based heuristics both for computing a feasible solution and for improving it. The
obtained models are reported in Table 6.1. We want to point out that the choice
of the values kf and kd is crucial for the algorithm performances. We conducted
some preliminary tests to choose them, but a full analysis on their impact will be
addressed in future work.
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6.2 Computing An Initial Solution

In this section, we present four approaches for obtaining an initial feasible solution
for the VNF-PRSP problem. In Table 6.2 we summarize the models implemented in
each approach.

Approach Models solved
RFR SPI-NSloc
SC-RFR SPfixnum

MD-VI1, SPI-NSloc
SC-ANS SPfixnum

MD-VI1, SPfixnum
MD-VI1-NSass

SC-ANSI SPfixnum
MD-VI1, SPfixnum

MD-VI1-NSass

Table 6.2 – Models used in each approach for obtaining an initial feasible solution
for VNF-PRSP.

The first approach starts opening a VNF at each node. Then SPI-NSloc is solved
to verify if a feasible assignment can be found. Although the model is solved only
once, the local branching constraint is added to reduce the feasible region so as to
speed up the solution process. This Reduced Feasible Region (RFR) however leads
to solutions where the number of opened VNF is at least |N | − kf . The approach is
summarized in Algorithm 2.

Algorithm 2 Overview of RFR procedure
1: procedure RFR
2: let S̄f ← N
3: solve SPI-NSloc
4: if problem solved then
5: stop with initial feasible solution found
6: else
7: stop without any feasible solution found

In RFR, if SPI-NSloc is solved within the given time limit, an initial feasible
solution of our problem is provided. Otherwise, no feasible solution is provided.

Algorithm 3 Overview of SC-RFR approach
1: let LBfix ← min(2 ∗ LBbpp, |N |)
2: execute procedure SC
3: if initial feasible solution provided by SC then
4: stop with initial feasible solution found
5: else
6: execute procedure RFR

An alternative approach SC-RFR has been developed with the aim of providing
a smaller number of used VNF. The approach selects a number of VNF and checks
if a solution can be found with the selected number by solving the SPfixnum

MD-
VI1 formulation (Procedure SC). The number of VNFs to be checked is selected
as follows: initially we consider LBfix = min(|N, 2 ∗ LBbpp) VNFs; then we solve
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the continuous relaxation of SPfixnum
MD-VI1: if a feasible solution is found, namely

all the demands are served, the number of VNFs is then selected to be checked;
otherwise, LBfix is increased and the continuous relaxation is solved again until
either a feasible continuous solution is found or all the VNFs are opened. The
approach is sketched in Algorithm 3 and the select-and-check (SC) procedure is in
Algorithm 4.

Algorithm 4 Overview of SC procedure
1: procedure SC
2: while time limit is not exceeded & LBfix ≤ |N | do
3: solve relaxation of SPfixnum

MD-VI1
4: let res← the solution
5: if problem solved & res = |D| then
6: get out of the loop
7: else
8: let LBfix = LBfix + 1
9: solve SPfixnum

MD-VI1
10: let res← the solution
11: if problem solved & res = |D| then
12: stop with initial feasible solution found
13: else
14: stop without any feasible solution found

Both the above described approaches may end without providing a feasible so-
lution. Indeed, in both, the SPI-NSloc model (that searches a feasible solution) is
solved only once. To overcome such drawback, we propose to apply a Local Search
(LS) to look for a feasible solution when SC does not provide any. The approach
starts as SC-RFR, but instead of executing the RFR procedure which may stop
without returning a feasible solution (if SPI-NSloc cannot be solved), it tries to find
a feasible solution through a k-opt neighborhood based local search procedure that
solves the SPfixnum

MD-VI1-NSass model to maximize the number of served demands.
We denote this procedure with the Assignment Neighborhood Search (ANS) proce-
dure, where a VNF instance is located at each node and the SPfixnum

MD-VI1-NSass
model is solved iteratively until a feasible solution is found (namely all the demands
are served). An overview of the SC-ANS approach is described in Algorithm 5 (the
ANS procedure is shown in Algorithm 6).

Algorithm 5 Overview of SC-ANS approach
1: let LBfix ← min(2 ∗ LBbpp, |N |)
2: execute procedure SC
3: if initial feasible solution provided by SC then
4: stop with initial feasible solution found
5: else
6: let LBfix ← |N |
7: let S̄d ← ∅
8: let bestSolution ← 0
9: execute procedure ANS
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Algorithm 6 Overview of ANS procedure
1: procedure ANS
2: while total time limit is not exceeded do
3: solve SPfixnum

MD-VI1-NSass
4: let res← the solution
5: if problem solved & res = |D| then
6: stop with initial feasible solution found
7: if problem solved & bestSolution < res < |D| then
8: let S̄d ← current assignment solution
9: let bestSolution ← res
10: else
11: stop without any feasible solution found

In a feasible solution for the VNF-PRSP problem provided by SC-ANS, the num-
ber of installed VNF instances is always equal to |N |. In order to provide an initial
feasible solution that uses less VNF instances, we propose an improved ANS pro-
cedure, where SPfixnum

MD-VI1-NSass is solved repeatedly starting with LBfix equal
to the value found by SC, and the value is increased one by one until all the de-
mands are served by the real VNF instances. An overview of the SC-ANSI (SC-ANS
improved) approach is shown in Algorithm 7 (the ANSI procedure is described in
Algorithm 8).

Algorithm 7 Overview of SC-ANSI
1: let LBfix ← min(2 ∗ LBbpp, |N |)
2: execute procedure SC
3: if initial feasible solution provided by SC then
4: stop with initial feasible solution found
5: else
6: let S̄d ← ∅
7: let bestSolution ← 0
8: execute procedure ANSI

Algorithm 8 Overview of ANSI procedure
1: procedure ANSI
2: while total time limit is not exceeded & LBfix ≤ |N | do
3: solve SPfixnum

MD-VI1-NSass
4: let res← the solution
5: if problem solved & res = |D| then
6: stop with initial feasible solution found
7: if problem solved & bestSolution < res < |D| then
8: let S̄d ← current assignment solution
9: let bestSolution ← res
10: else
11: let LBfix = LBfix + 1
12: if LBfix > |N | then
13: stop without any feasible solution found
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6.3 Improving Local Search (LS) Based Heuristics
To improve the solution, we propose two k-opt neighborhood search based steps that
operates either on location variables (we denote it with NSloc, where the SPI-NSloc
model is solved) or on both location and assignment variables (we denote it with
NSlocass, where the SPI-NSlocass model is solved). Combining the two improving
local search steps with the initial solution approaches, we developed eight heuristics
methods, which are listed in Table 6.3. In the second and third columns we report
the initial solution approach and the improving step considered in each combination.

Methods Initial solution approach Improving step
m1 RFR NSloc
m1Bis RFR NSlocass
m2 SC-RFR NSloc
m2Bis SC-RFR NSlocass
m3 SC-ANS NSloc
m3Bis SC-ANS NSlocass
m4 SC-ANSI NSloc
m4Bis SC-ANSI NSlocass

Table 6.3 – Summary of improving heuristic approaches.

6.4 Fix-and-Optimize Heuristics
In this section, we present two fix-and-optimize (FO) heuristic methods.
Our first FO method uses a bisection algorithm on the number of installed VNF
instances. As discussed previously in Section 3.2.4, solving the TE objective with
a bisection procedure on the number of VNF instances allows us to obtain better
results (e.g., solve to optimality, or obtain a solution with smaller gap) than solving
directly the NFV objective problem. Inspired by this result, we decide to implement
a bisection based FO method, where the SPfixnum

MD-VI1 model is solved iteratively
within a bisection framework to check if all the demands can be served by the selected
number of VNF instances. An overview of this method is shown in Algorithm 9.

In Algorithm 9, the interval of the possible number of installed VNF instances is
denoted by interval [Inta, Intb]. Endpoint Inta is initialized as the optimal solution
of the BPP-like (namely a lower bound of VNF-PRSP) and endpoint Intb is initial-
ized as the number of physical nodes. At each iteration, the number of installed
VNF instances is set to be the midpoint (if the number is not integer, we round
down it to an integer value) of the interval, and SPfixnum

MD-VI1 is solved with the
obtained number. If all the demands can be served by the given number of VNF in-
stances, the interval is updated by replacing the value of Intb by the value of LBfix.
Otherwise, the interval is updated by replacing the value of Inta by the value of
LBfix. In addition, in order to check quickly if a given number of VNF instances
can serve all the demands, we solve the relaxation of SPfixnum

MD-VI1 before solving
the integer one. Since it takes less time to solve the relaxation problem, if the given
number of VNF instances cannot serve all the demands, the interval is then updated
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Algorithm 9 Overview of bisection based FO method
1: solve BPP-like
2: let Inta ← LBbpp

3: let Intb ← |N |
4: while time limit is not exceeded & Intb 6= Inta do
5: let LBfix ← b Inta+Intb

2 c
6: solve relaxation of SPfixnum

MD-VI1
7: let res← the solution
8: if problem solved & res = |D| then
9: solve SPfixnum

MD-VI1
10: let res← the solution
11: if problem solved & res = |D| then
12: let Intb ← LBfix

13: else
14: let Inta ← LBfix

15: else
16: let Inta ← LBfix

and the algorithm may converge rapidly.

The second FO method fixes the number as well as the location of VNF instances
and solves the SPfixnum

MD-VI1 model to check the problem feasibility. We start with
locating VNF instances on all the nodes. At each iteration, we close randomly one
instance on a node and we solve SPfixnum

MD-VI1 to check if all the demands can be
served by real VNF instances. If all the demands are served, the instance is closed
ans the procedure is repeated. Otherwise, we switch the VNF instance to close and
solve SPfixnum

MD-VI1 to check the feasibility, until all the possible locations have
been traversed.
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6.5 Computational Results

For the sake of comparison and completeness, we performed computational tests
on the proposed heuristic methods with the same test bed generated previously
(Chapter 4). The 132 instances features are summarized before in Table 4.10. For
the convenience of reading, we report the generated instances in Table 6.4, and
we re-group the instances according to the solution quality provided by the model
SP-VI1+2 to present the computational tests of heuristic methods. Similar to the
tests on constructive methods, the results of the full model SP-VI1+2 are used as a
reference for the comparison of heuristic methods.

Data from SNDLib Capacity

Network |N | |A| |D|
∑

k∈D
dk Service Link

(high cap) medium low low
Small-medium size instances

di-yuan 11 42 22 53 31 9 5
pdh 11 34 24 4621 2730 840 384
sun 27 51 67 476 255 35 53

dfn-bwin 10 45 90 548388 329032 109677 55916
nobel-germany 17 26 121 660 368 77 74

abilene 12 15 132 3000002 1750001 500000 829282
ta1 24 51 396 10127249 5485593 843937 819678

atlanta 15 22 210 136726 77478 18230 19404
nobel-us 14 21 91 5420 3097 774 486
nobel-eu 28 41 378 1898 1016 135 214
geant 22 36 462 2999992 1636359 272726 359868

janos-us 26 42 650 80000 43076 6153 7624
polska 12 18 66 9943 5800 1657 995
newyork 16 49 240 1774 997 221 66
france 25 45 300 99830 53908 7986 9413
norway 27 51 702 5348 2872 396 358

Large size instances
india35 35 80 595 3292 1740 188 121
cost266 37 57 1332 679598 358166 36735 53562
giul39 39 86 1471 7366 3871 377 363

janos-us-ca 39 61 1482 2032274 1068246 104219 180471
pioro40 40 89 780 115953 60875 5797 7609

germany50 50 88 662 2365 1229 94 123

Table 6.4 – Test-instance details

6.5.1 Results of Approaches for Obtaining An Initial Solution

Since SP-VI1+2 can be fast solved for all the small-medium size instances in l_l
case (on average 150s), we decide to test the performance of the four approaches
only on instances in h_l and m_l cases. Moreover, even in h_l and m_l cases,
SP-VI1+2 can always solve to optimality quickly the network topologies of the first
group (the average computational time of the 14 instances is less than 100s). There-
fore, we further eliminate these instances, and we run test only on the second and
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third group of small-medium size network topologies (from “atlanta” to “norway”)
for the approaches. Hamming distances kf (on location variables) of d|N |/10e, kd
(on assignment variables) of d|D|/2e and a time limit of 600s are set for the test of
the four approaches.

Since SP-VI1+2 is always able to find a solution but with large computational
time for the instances in the second group, for these instances, we evaluate and
compare the initial feasible solutions obtained by each approach with respect to
model solution (see Table 6.5). Computational times are reported in Table 6.6.
Results are reported for each instance of each capacity case. For both tables, Column
2 refers to SP-VI1+2 (with the time limit of 3600s). In Table 6.5, two columns are
reported for each approach: the initial feasible solution obtained with a time limit of
600s and the absolute gap with respect to the SP-VI1+2 solution, i.e., the optimal
solution9.

Solution and the gap w.r.t SP-VI1+2
Instance SP-VI1+2 RFR SC-RFR SC-ANS SC-ANSI

sol sol gap sol gap sol gap sol gap
h_l case

atlanta 3 14 11 4 1 4 1 4 1
nobel-us 4 13 9 4 0 4 0 4 0
nobel-eu 3 26 23 4 1 4 1 4 1
geant 1 20 19 2 1 2 1 2 1

janos-us 5* 24 19 24 19 26 21 - -
m_l case

atlanta 3 14 11 4 1 4 1 4 1
nobel-us 4 13 9 4 0 4 0 4 0
nobel-eu 3 26 23 4 1 4 1 4 1
geant 2 20 18 4 2 4 2 4 2

janos-us 5* 24 19 24 19 26 21 - -

Table 6.5 – Initial feasible solution obtained by each approach with a time limit
of 600s and the gap with respect to SP-VI1+2 solution with a time limit of 3600s
for test on the second group of small-medium size network instances (- means no
feasible solution found within time limit. * means optimality not proved within time
limit).

We observe that RFR is the fastest approach: for all the 10 instances, it uses
less than 30s (up to 3 orders of magnitude faster than SP-VI1+2) to provide an
initial solution. However, the gap with the optimal solution is huge. In fact, as
mentioned before, the initial solution provided by RFR depends on the value of k:
the number of installed VNF instances is at best |N |−k. Approaches SC-RFR, SC-
ANS and SC-ANSI perform similarly in solving typologies “atlanta”, “nobel-us”,
“nobel-eu” and “geant” in both h_l and m_l cases. They provide a same initial
feasible solution with a similar computational time. Compared with SP-VI1+2, the

9as mentioned before, the solution of instance janos-us of both h_l and m_l cases is in fact an
optimal solution, but the optimality is not proved within time limit
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Computational times
Instance SP-VI1+2 RFR SC-RFR SC-ANS SC-ANSI

h_l case
atlanta 1215.05 3.04 14.61 15.21 14.64
nobel-us 580.25 5.48 32.98 33.61 32.83
nobel-eu 2688.76 4.33 90.28 91.45 90.64
geant 473.64 9.59 28.07 27.04 26.10

janos-us 3600.00 16.98 522.26 534.09 600.00
m_l case

atlanta 3004.51 20.16 8.88 10.06 9.11
nobel-us 283.58 5.60 47.70 47.97 44.27
nobel-eu 380.32 4.74 58.36 44.82 44.60
geant 1648.92 25.31 17.46 20.11 17.70

janos-us 3600.00 17.87 524.47 543.29 600.00

Table 6.6 – Computational times used by each approach and the SP-VI1+2 model
for test on the second group of small-medium size network instances.

three approaches provide a close-to-optimal initial feasible solution (the worst gap is
2) with a decrease of 2 orders of magnitude in the computational time. As described
previously, the three approaches are integrated with the SC procedure, which allows
solving SPfixnum

MD with a fixed number of VNF instances (i.e., LBfix). If all the
demands can be served by the given number, an initial feasible solution for VNF-
SPSP is found. This is the case of the four topologies (from atlanta to geant),
for which the initial feasible solution is found by the SC procedure in the three
approaches. Thus, the three approaches have a similar behaviour.

Things change when SC cannot provide any feasible solution, and this is the case
of janos-us. In this case, SC-RFR usually spends more time than RFR for provid-
ing a same initial feasible solution (if found), as after running the SC procedure,
SC-RFR behaves in the same way as RFR. Different from SC-RFR, SC-ANS tries
to find a feasible solution by using all the services after the SC procedure. There-
fore, if SC-ANS finds a feasible solution, the number of opened services is exactly
the number of nodes (i.e., 26 nodes in janos-us topology). While in SC-ANSI, the
given number of opened services is checked and increased step by step. Therefore,
SC-ANSI may not provide any feasible solution with short computational time. But
if more time is given (or the rest of time is enough after the procedure finishes),
this strategy may provide the best solution among all the four strategies, which is
confirmed by the results reported in Table 6.7 for the third group of small-medium
size instances.

Here both h_l and m_l cases are challenging for the model: SP-VI1+2 finds
optimal solution only for instance “polska” in the m_l case, and it cannot find any
feasible solution for the other instances within a time limit of 3600s. Therefore, we
compare the initial feasible solution obtained by each approach with the best one
among them (see Table 6.7). For each approach, both the initial feasible solution
obtained with a time limit of 600s and the computational times are reported, the
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best values are in bold. Columns 10-13 summarize the metrics for the compari-
son: column 10 reports the rounded lower bound found by SP-VI1+2, column 11
reports the best solution obtained, and column 12 reports the smallest time used for
obtaining an initial feasible solution.

Solution and the computational times Metric
Instance RFR SC-RFR SC-ANS SC-ANSI SP-VI1+2 Best all

sol time sol time sol time sol time dLBe sol time
h_l case

polska 11 153.73 11 335.80 - TL - TL 4 11 153.73
newyork - TL - TL 16 266.05 - TL 3 16 266.05
france - TL - TL - TL - TL 4 - TL
norway 25 346.22 - TL - TL - TL 5 25 346.22

m_l case
polska 11 378.32 11 530.92 - TL 5 TL 4 5 378.32
newyork 15 107.79 - TL 16 215.58 4 544.48 3 4 107.79
france - TL - TL - TL - TL 4 - TL
norway 25 360.67 - TL - TL - TL 5 25 360.67

Table 6.7 – Initial feasible solution obtained and the computational time used by each
approach for test on the third group of small-medium size instances. TL represents
the time limit of 600s (- means no feasible solution found within time limit).

In terms of number of initial feasible solutions found, RFR is the best among
the four approaches: it provides initial feasible solution for 5 out of 8 instances.
Furthermore, it is the only strategy that can provide an initial feasible solution
for topology “norway” in both h_l and m_l cases within 600s, while the last three
approaches provide initial feasible solution only for 2 instances by each. Moreover, it
is not the SC procedure who provides the initial feasible solution for the 2 instances
that are succeeded by the last three approaches. For “polska” of both h_l and m_l
case, SC-RFR finds the same solution as RFR since SC-RFR behaves in the same
way as RFR after the SC procedure. As for “newyork” topology, it is worth noting
that in h_l case, SC-ANS is the only one that obtains an initial feasible solution
(with services all opened). This suggests that the strategy of finding a feasible
solution by using all the services is worth to investigate when dealing with instances
that are difficult to solve in short computational times. As mentioned previously, if
given more time, SC-ANSI may provide the best initial solution. This is confirmed
by the results of case m_l: it finds 5 for “polska” and 4 for “newyork” as initial
feasible solution, for which the gap with the optimal solution is at most 1.

6.5.2 Results of Heuristic Methods

In brief, tests for heuristic methods are run on three groups of instances:

• with the second group of small-medium size instances and a time limit of 600s
(including the time for the initial solution), we compare the proposed methods
with the SP-VI1+2 model.
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• with the third group of small-medium size instances and a time limit of 600s, we
evaluate the solution improvement with respect to the initial feasible solution
obtained.

• with the large size instances and a time limit of 7200s, we further study the
scalability of the proposed methods.

For all the instances, only h_l and m_l capacity cases are considered as they are the
most challenging cases for the model. Similar to tests of approaches for obtaining an
initial feasible solution, Hamming distances kf (on location variables) of d|N |/10e
and kd (on assignment variables) of d|D|/2e are set.

We now compare the solution provided by each heuristic method with the solu-
tion provided by SP-VI1+2 (see Table 6.8). Column 2 reports the solution provided
by the SP-VI1+2 model with a time limit of 3600s. Columns 3-12 report the so-
lution provided by the ten heuristic methods with a time limit of 600s: columns
3-10 report the solution provided by the eight local search heuristic methods, and
columns 11-12 report the solution provided by the two FO methods. Aggregated
results are reported for each method in the last three rows, i.e., the number of op-
timal solutions found, the average absolute gap with the optimal solution and the
maximal gap with the optimal solution.

Solution obtained by each method
Approach RFR SC-RFR SC-ANS SC-ANSI

Step NSloc NSlocass NSloc NSlocass NSloc NSlocass NSloc NSlocass
Instance SP-VI1+2 m1 m1Bis m2 m2Bis m3 m3Bis m4 m4Bis m5 m6

h_l case
atlanta 3 4 4 3 4 3 4 3 4 3 5
nobel-us 4 4 4 4 4 4 4 4 4 4 4
nobel-eu 3 3 3 3 3 3 3 3 3 4 3
geant 1 1 1 1 2 1 2 1 2 3 3

janos-us 5 6 7 14 14 16 16 - - 8 12
m_l case

atlanta 3 4 4 3 4 3 4 3 4 3 6
nobel-us 4 4 5 4 4 4 4 4 4 4 4
nobel-eu 3 3 3 3 4 3 4 3 4 3 3
geant 2 2 3 2 2 2 2 2 2 2 3

janos-us 5 6 7 12 12 16 10 - - 8 12
aggregated results of 10 instances

# opt 10 6 4 8 4 8 4 8 4 6 4
avg gap 0 1 1.3 8 3.3 11 3.3 0 1 2.5 3.7
max gap 0 1 2 9 9 11 11 0 1 3 7

Table 6.8 – Solution obtained by the SP-VI1+2 model with a time limit of 3600s
and each heuristic method with a time limit of 600s for test on the second group
of small-medium size network instances. The gap is computed only for feasible not
optimal solutions. We denote the bisection based FO method (Algorithm 9) with
m5, and the other FO method with m6 (- means no feasible solution found within
time limit).
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Here we present a classification among the proposed heuristic methods according
to the number of optimal solution found.

1. methods m2, m3 and m4 are the best as they provide optimal solution for 8 out
of 10 instances. Moreover, they perform similarly in solving instances atlanta,
nobel-us, nobel-eu and geant in both h_l and m_l cases. This is because they
all use the NSloc strategy to improve a same initial feasible solution found by
the same procedure in their stages for obtaining an initial feasible solution
(analysis in Section 6.5.1). However, for the two instances of janos-us in h_l
and m_l cases, m2 and m3 provide a feasible solution with a large gap, and
m4 cannot provide any feasible solution;

2. after we have m1 and m5 that can find optimal solution for 6 out of 10 in-
stances. For the rest 4 instances, they provide a feasible solution with an
average gap of 1 for m1 and 2.5 for m5. It seems that m1 can provide better
solutions than m5;

3. then m1Bis, m2Bis, m3Bis, m4Bis and m6 all find optimal solution for 4 out of
10 instances. For the remaining 6 instances, all of them can provide a feasible
solution, except for m4Bis. However, the average gap of m4Bis solution is the
smallest (i.e., 1), while for the others at least 3.

When we consider the computational times (in Table 6.9) used by each method,
m1Bis, m2Bis, m3Bis, m4Bis and m5 are the fast ones, their average computational
time is around 150s for the 10 instances. m1, m2, m3 and m4 requires about 50s
more. While m6 needs at least twice the computational times of the others.

Solution obtained by each method
Approach RFR SC-RFR SC-ANS SC-ANSI

Step NSloc NSlocass NSloc NSlocass NSloc NSlocass NSloc NSlocass
Instance SP-VI1+2 m1 m1Bis m2 m2Bis m3 m3Bis m4 m4Bis m5 m6

h_l case
atlanta 1215.05 43.14 42.33 18.26 14.61 18.75 14.65 18.11 14.70 41.84 275.79
nobel-us 580.25 112.44 25.81 32.25 32.98 33.61 31.96 32.83 32.88 34.62 508.22
nobel-eu 2688.76 197.59 73.58 178.56 104.78 462.00 98.74 456.46 103.42 139.96 413.50
geant 473.64 109.37 92.32 50.15 28.07 52.92 25.71 50.80 26.34 125.92 200.22

janos-us 3600.00 362.85 418.05 600.00 586.90 583.56 590.04 600.00 600.00 200.76 508.396
m_l case

atlanta 3004.51 50.87 39.95 44.75 8.88 83.30 8.78 75.77 8.96 51.24 507.484
nobel-us 283.58 112.75 16.84 43.78 47.70 47.97 43.55 44.27 44.33 97.00 525.77
nobel-eu 380.32 211.87 75.23 164.28 58.36 220.43 44.44 223.25 45.94 247.17 407.15
geant 1648.92 271.86 141.21 94.62 25.12 58.02 37.08 51.07 37.38 344.41 414.32

janos-us 3600.00 319.67 427.26 600.00 600.00 583.56 593.66 600.00 600.00 189.20 474.92
average computational time considering time limit

avg time 1,747.50 179.24 135.26 182.94 151.27 214.41 148.86 215.26 151.39 147.21 423.58

Table 6.9 – Computational times used by the model SP-VI1+2 with time limit of
3600s and each heuristic methods with a time limit of 600s for test on the second
group of small-medium size network instances.

When we take into consideration both solution quality and computational time
for tests on the second group of small-medium size instances, the performance of m6
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is the worst one since it finds less optimal solution with large computational time.
Although m5 solution is not the best, it is in general very fast. As for the local
search methods, it seems that the NSloc step (used in method m1, m2, m3 and m4)
is able to find better solution than NSlocass (used in method m1Bis, m2Bis, m3Bis
and m4Bis) with a bit more computational time. NSlocass based methods take less
computational time since the neighbourhood of the reference solution is restricted
by both kf and kd. For these instances, even the time limit is big enough, NSlocass
is not able to find as good solutions as NSloc. This may be due to the fact that
the value of kd is chosen too small to contain better solutions than the current one.
However, janos-us in m_l is an exception: m3 (i.e., with NSloc) provides a solution
of 16 while m3Bis (with NSlocass) finds 10. This shows that the solution of NSloc is
not necessary better than NSlocass, since with smaller neighbourhood we can iterate
faster (if better solution found) to improve current solution. But it is difficult to
determine which search strategy is better, the reason is that, the choice of value k
can influence strongly the results.

Solution obtained by each method with a time limit of 600s
Approach RFR SC-RFR SC-ANS SC-ANSI

Step NSloc NSlocass NSloc NSlocass NSloc NSlocass NSloc NSlocass
Instance m1 m1Bis m2 m2Bis m3 m3Bis m4 m4Bis m5 m6

h_l case
polska 5 5 5 5 - - - - - -
newyork - - - - 10 8 - - - -
france - - - - - - - - 13 24
norway 19 19 - - - - - - 15 24

m_l case
polska 7 6 7 6 - - 5 5 - -
newyork 14 7 - - 7 7 4 4 - -
france - - - - - - - - - -
norway 19 19 - - - - - - 15 24

# reduced services with respect to their initial feasible solution obtained
h_l case

polska 6 6 6 6 - - - - - -
newyork - - - - 6 8 - - - -
france - - - - - - - - 0 0
norway 6 6 - - - - - - 0 2

m_l case
polska 4 5 4 5 - - 0 0 - -
newyork 1 8 - - 9 9 0 0 - -
france - - - - - - - - - -
norway 6 6 - - - - - - 0 2

average # reduced services when there is an improvement
avg 4.6 6.2 5 5.5 7.5 8.5 2

Table 6.10 – Solution and the improvement w.r.t initial feasible solution obtained by
each heuristic method for tests on the third group of small-medium size instances.
- means no feasible solution found within the time limit of 600s.

We further evaluate the proposed heuristic methods with tests on the third group
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of small-medium size instances of both h_l and m_l cases. Table 6.10 reports the
results of each heuristic methods. As before, we use a time limit of 600s. Rows 16-25
report the difference between the final solution obtained within 600s and the initial
feasible solution provided, and the last row reports the average reduction in the
number of services. In Table 6.11 the computational times are given. As presented
previously (Table 6.7), it is challenging to provide an initial feasible solution for these
instances within the time limit of 600s. Thus, the number of instances in which a
method can find a solution is exactly the number of instances where the approach
can provide an initial solution. Therefore, we only compare the improvement with
respect to the initial feasible solution.

We observe that methods m4, m4Bis and m5 are not improving the initial fea-
sible solution once obtained. Moreover, m5 use less than 300s to provide an initial
feasible solution, but it needs longer time to improve the current solution. While
m4 and m4Bis use more than 540s to find an initial feasible solution, the remaining
available time for improving the current solution is less than 60s. Method m6 can
find solution for the difficult instances “france”, “norway” of h_l and “norway” of
m_l, but it is less efficient for providing good solution with short time. As m6
tries to close the opened VNF instances one by one, it provides an initial feasible
whose number of services is always N − 1 and it takes a lot of time to improve the
solution. As for methods m2, m2Bis, m3 and m3Bis, we observe a half reduction
(i.e., 5 VNF instances) with respect to the initial feasible solution within less than
200s (Table 6.7 vs. Table 6.11). Moreover, NSlocass (used in methods m2Bis and
m3Bis) seems work more efficiently than NSloc (used in methods m2 and m3), as
it finds better solutions than NSloc. This also can be confirmed by the results of
m1 and m1Bis, where the average improvement of m1Bis is 6.2 services while m1 is
4.6 services. Moreover, m1Bis is able to provide a much better solution (which is 7
services) for “newyork” of m_l case than m1 (14 services), for which the difference
of their improvement is 7 services.

Computational times used by each method
Approach RFR SC-RFR SC-ANS SC-ANSI

Step NSloc NSlocass NSloc NSlocass NSloc NSlocass NSloc NSlocass
m1 m1Bis m2 m2Bis m3 m3Bis m4 m4Bis m5 m6

h_l case
polska 203.90 395.12 381.37 579.29 TL TL TL TL TL TL
newyork TL TL TL TL 443.98 328.60 TL TL TL TL
france TL TL TL TL TL TL TL TL 80.99 189.16
norway 520.42 573.74 TL TL TL TL TL TL 283.46 552.79

m_l case
polska 423.62 452.72 597.96 TL TL TL TL TL TL TL
newyork 140.93 410.63 TL TL 448.00 318.54 544.48 545.92 TL TL
france TL TL TL TL TL TL TL TL TL TL
norway 521.39 596.07 TL TL TL TL TL TL 279.66 537.42

Table 6.11 – Computational times used by each heuristic method for tests on the
third group of small-medium size instances. TL represents the time limit of 600s.
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6.5. Computational Results

dLBe Solution provided by each method
Approach RFR SC-RFR SC-ANS SC-ANSI

Step NSloc NSlocass NSloc NSlocass NSloc NSlocass NSloc NSlocass
SP-VI1+2 m1 m1Bis m2 m2Bis m3 m3Bis m4 m4Bis

h_l case
india35 4 - - - - 17 14 10 9
cost266 3 - - - - 19 13 19 13
giul39 3 18 36 36 36 - - - -

janos-us-ca 3 - - - - 30 30 36 30
pioro40 3 - - - - 40 40 40 40

germany50 4 6 6 - - - - - -
m_l case

india35 4 - - - - 11 7 14 9
cost266 3 - - - - 19 13 19 13
giul39 - 18 36 36 36 - - - -

janos-us-ca 3 - - 33 27 30 36 30 36
pioro40 3 - - - - 40 40 40 40

germany50 4 6 6 - - - - - -

Table 6.12 – Solution provided by each NS heuristic method for tests on large size
instances with a time limit of 7200s. (- means no feasible solution found within the
time limit.)

Table 6.12 reports the results of tests on large instances (from india35 to ger-
many50). In column 2 we present the rounded lower bound found by SP-VI1+2
with the time limit of 7200s. As before, columns 3-10 report the solution obtained
by each local search heuristic method.

In terms of number of instances for which a method can provide a feasible so-
lution, methods m3, m3Bis, m4 and m4Bis are able to find solution for 8 out of 12
instances. m1 and m1Bis can only find solution for 4 instances, while m2 and m2Bis
for 3 instances. When we look at the results provided by m1, m1Bis, m2 and m2Bis,
we find that for the instances where m1 and m1Bis provide a feasible solution while
m2 and m2Bis do not (“germany50”), the reason is that when the time limit of 7200
is reached, m2 and m2Bis are still executing the SC procedure for finding an initial
feasible solution. In fact, the SC procedure solves the relaxation of SPfixnum

MD-VI1
with a time limit of 180s in a loop to find a number of VNF instances to fix in the
integer problem. When the instance is challenging, the solver cannot even solve the
relaxation in 180s. Therefore, when the number of node is bigger than 40, the SC
procedure (i.e., used in m2, m2Bis, m3, m3Bis, m4 and m4Bis) may spend all the
time (40*180=7200s).

When we compare the results provided by steps NSloc (unsed in methods mX)
and NSlocass (used in methods mXBis), we can get the same conclusion as with
results on the third group of small-medium size instances: NSlocass seems to work
more efficiently than NSloc. To be exact, NSlocass can provide a no worse solution
than NSloc for almost all the solved instances. The only exception is topology giul39,
where NSloc finds 18 while NSlocass finds 36. However, result details show that this is
due to the fact that the value of kd is too small to contain a better solution, m1Bis
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stops as it cannot improve the current solution. Therefore, NSlocass is in general
more efficient than NSloc, but when it get stuck, we would need to increase kd (e.g.,
to |D|) to allow it to get out of the local optimal solution.

6.6 Conclusion
In this chapter we proposed four approaches for computing an initial feasible solution
for the VNF-PRSP problem and we developed ten heuristic methods for efficiently
solving the problem. Computational results show that our proposed methods can
find good solutions for most of the test instances for which the model cannot provide
any feasible solution. Moreover, we observe that the instances with strict capacity
limits (i.e, the m_l case) are not necessarily harder to solve than the instances with
looser capacity limits (i.e., h_l). In fact, it is sometimes easier to find solutions for
instances of m_l case than for instances of h_l case (e.g., “newyork” of m_l and h_l
in Table 6.10), since the solver may take more time to explore the larger solution
region of h_l case, as a results, no feasible solution is provided within the timelimit.

As for the performance of the approaches for computing an initial feasible so-
lution, in general, the RFR approach is able to provide quickly an initial feasible
solution but the gap with the optimal solution is big, whereas SC-ANSI may pro-
vide a close-to-optimal initial feasible solution but it needs more computational time.
Compared with RFR, SC-RFR integrates the SC procedure at the beginning of al-
gorithm to check the problem feasibility by solving SPfixnum

MD-VI1 model with a
given number of services. Therefore, it may provide a better solution at the cost of
larger computational time. Then in SC-ANS, if the SC procedure fails to find an
initial feasible solution, it tries to find a feasible assignment and routing solution
with services all opened.

The results of the proposed heuristic methods show that the NSlocass improving
step is to be preferred to NSloc, but it is necessary to enlarge its neighborhood
(namely the parameter kd) to allow moving out of local optimal solutions.

After analyzing the results, we come up with several ideas to further improve
the performance of our proposed heuristic methods: (1) increase kd to |D| when the
local search gets stuck in the NSlocass step; (2) impose a time limit (e.g. one third of
the total time limit) for the SC procedure in the approaches for obtaining an initial
feasible solution; (3) use a bisection algorithm on the number of VNF instances (as
in method m5) to accelerate the SC procedure for searching for the number of VNF
instances to install (instead of increasing one by on or opening a service on all the
nodes). Preliminary results along these lines are encouraging.
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Chapter 7

General Conclusion
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7.1 Summary of Contributions
In this thesis, we focused on a key problem in NFV, i.e., the NFV service chaining:
we are given a network where some nodes are connected with computational servers
and a set of demands asking for network services composed of a sequence of VNF
instances, VNF instances need to be installed on servers and the demands must
be routed in such a way that each demand accesses the requested VNFs. More
formally, we considered the VNF-PR (VNF placement and routing) problem that
can be schematically described as follows: the NFVI network is represented by a
graph G(N,A), where N is the set of NFVI nodes and A the set of links between
nodes, each node i ∈ N can host a limited number of VNF instances, and each
link (i, j) ∈ A can allow a limited quantity of flow to pass by. We are given a set
of traffic demands D, each demand k ∈ D is characterized by a source ok ∈ N , a
destination tk ∈ N , a nominal bandwidth dk, and a set of VNF types that provide
the network services required by the demand. The problem is to decide on which
nodes to install the VNF instances and to route the demands from the source node
to the destination node traversing the nodes that host their required VNF instances,
so that the utilization of the overall network resources are optimized.

We first tackled the VNF-PR problem considering realistic features, such as flow
compression/decompression due to VNFs, routing and VNF forwarding delay, etc.
We proposed a linear programming formulation and a math-heuristic for efficiently
solving the problem with multiple objectives and large instances. Extensive exper-
iments allowed us to draw conclusions on the trade-off achievable between classical
TE (i.e., the minimization of maximum link utilization) and NFVI efficiency (mea-
sured as the minimization of CPU usage on servers/nodes) goals.

In the second part of our work, we tackled the VNF-PRSP problem that repre-
sents the core features of a general VNF-PR problem and where a same single VNF
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instance is asked by each demand. First, we studied the problem complexity and
proved that the problem is in its general form NP-complete. We further investigate
the problem properties and proved that:

• the single service case is equivalent to the multiple services one, when the
services have the same capacity and the sequence of services is the same for
all the demands (and node capacity is not limited);

• an VNF instance must be installed on the articulation points that belong to
biconnected components with internal demands.

Based on the study of the problem complexity and properties, we developed prepro-
cessing algorithms that are able to help in speeding up the computational time to
solve the formulations. Furthermore, we generated a large common test bed based
on instances from SNDLib and we used it to compare the most promising formu-
lation strategies, namely PR (Placement and Routing) and SP (Split Path) both
theoretically and computationally. We proved the the continuous relaxation of SP
always provides a bound not worse than the one of PR, which is confirmed by the
computational results. Afterwards, we extended the formulations to address more
general versions of the problem: the multi-services and multi-sequences cases and
the capacitated node one.

Finally, we developed ILP based exact and heuristic methods for the VNF-PRSP
problem. We also proposed several strategies for quickly obtaining an initial feasible
solution for hard instances. Computational results show that the proposed heuristic
methods can solve efficiently medium size instance of challenging capacity cases to
optimum and provide feasible solutions for most of the large size instances of the
most difficult cases.

7.2 Future Research Directions
In this thesis, we mainly focus on the VNF-PRSP problem, thoroughly studying the
problem complexity and properties, analysing different formulations, and proposing
efficient heuristic methods. As NFV is a recent network paradigm still in its ma-
turing phase, there are many problem variants that we could not consider. Natural
extensions of our work can be:

1. complete the study of the problem complexity;

2. evaluate and compare the extended versions of the formulations considering
the multi-services and the multi-sequences cases (and the capacitated node
case);

3. improve the proposed heuristic methods following the guidelines presented at
the end of Chapter 6;

4. extend our proposed heuristic methods to deal with more realistic VNF-PR
versions, such as the detailed version studied in Chapter 3 and/or the on-line
case.
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Contexte

Les réseaux des opérateurs se composent d’équipements dédiés ayant des fonctions
diverses (pare-feu, routage, etc.) pour fournir aux clients des services réseaux. Avec
l’évolution des services de télécommunications et des trafics de données multimédia,
les opérateurs ont déployé de nombreux équipements dans le but d’augmenter la
capacité et les fonctionnalités des réseaux. La mise en place et le déploiement des
nouveaux services réseaux sont devenus de plus en plus difficiles et coûteux, et par
conséquent, l’allocation efficace des ressources d’un réseau est devenue un enjeu
majeur lors de la panification du réseau.

La virtualisation des fonctions réseau (Network Function Virtualization, NFV) a
été proposée comme un nouveau paradigme pour réduire les coûts liés à l’acquisition
et à la maintenance pour les réseaux de télécommunications. Le principe de NFV
se traduit par l’extrait des fonctions réseaux des équipements dédiés pour les faire
exécuter dans un environnement virtualisé. Ceci permet d’éteindre des serveurs
virtuels pour économiser de l’énergie, en migrant les fonctions réseau virtuelles à la
demande ou automatiquement en fonction de l’état du réseau afin d’améliorer les
performances. Ceci permet également de créer des services réseau logiques appelés
chaînes de service NFV en fonction de la demande des clients. Plus précisément,
ces chaînes de service NFV sont des fonctions réseau virtualisées (Virtual Network
Functions, VNFs) interconnectant dans un ordre spécifique par des liens virtualisés,
et c’est grâce à cela que le déploiement des services réseaux peut se faire par le
chaînage des VNFs. L’objectif de ce dernier est de déterminer de façon optimale
l’ensemble de localisation (dans le réseau physique) et d’affectation des VNFs et
d’acheminement des demandes de service réseau considérant plusieurs contraintes
(par exemple, respecter le délai de service). Par conséquent, le paradigme NFV offre
une gestion et un contrôle optimisé de l’infrastructure physique de façon flexible en
termes d’automatisation et d’évolutivité.

Figure 1 présente un exemple d’un cas d’usage de NFV, dans lequel des chaînes
des VNFs sont créées et déployées en utilisant des VNFs installés et gérés dans le
côté de l’opérateur (Figure 1b) pour fournir les services demandés par des clients
(c’est-à-dire, affecter les demandes aux VNFs installés et les router de bout en bout).

Dans ce travail de thèse, nous nous intéressons aux problèmes du chaînage des
VNFs qui combinent des décisions de localisation, de dimensionnement et de routage,
qui sont particulièrement difficiles à résoudre en pratique. L’objectif de cette thèse
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(a) CPE traditionel (b) CPE virtualisé

Figure 1 – CPE (Customer Premises Equipment) traditionel et CPE virtualisé.

est de proposer des modèles d’optimisation et des méthodes de résolution pour ré-
soudre efficacement ces problèmes, c’est-à-dire déterminer la bonne localisation des
VNFs et l’affectation des VNFs ainsi que le routage des demandes de client afin
d’allouer des ressources de façon efficace et finalement réduire le coût des infrastruc-
tures. Nous allons présenter par la suite les problématiques traitées dans cette thèse
ainsi que nos contributions principales, et nous fournissons également un résumé
dans le Tableau 1.

Problématiques et contributions principales

Dans la première partie de cette thèse, nous considérons une version réaliste du prob-
lème du chaînage des VNFs tenant en compte de plusieurs caractéristiques complexes
du système NFV: les capacités limitées au niveau des nœuds et des serveurs ainsi
que des liens, l’ordre spécifique des VNFs des types différents et la variation du flux
de demande causé par des traitements de fonction réseau, la latence d’acheminement
de demande de bout en bout. Aucun modèle proposé dans la littérature ne consid-
ère toutes ces caractéristiques réunies. Notre travail vise à proposer un modèle de
programmation linéaire à nombre entier et une méthode de solution associée per-
mettant d’analyser plusieurs cas d’étude. Plus précisément, la modélisation doit (1)
localiser et allouer les VNFs qui coexistent sur une même infrastructure physique et
(2) acheminer et servir les demandes de client de bout en bout considérant plusieurs
contraintes réelles. Les objectifs sont d’une part le partage équilibré de la bande
passante mesuré par l’utilisation maximale des liens et d’autre part la réduction du
coût des infrastructures NFV en termes de nombre de CPUs utilisés. Pour ce faire,
nous proposons un modèle générique appelé PR (Placement and Routing) prenant en
compte les aspects réels mentionnés précédemment, ainsi qu’une heuristique math-
ématique pour aider à la résolution. L’idée principale du modèle PR est de localiser
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Problème VNF-PR VNF-PRSP

Orientation télécommunications optimizations
Chapitres Chapitre 3 Chapitres 4-6

Hypothèses

-multiple types de VNF, -1 seul type de VNF,
-capacité limitée (node, VNF et lien), -capacité limitée (VNF et lien),
-flot de demande indivisible, -flot de demande indivisible,
-chemin de routage sans boucle, -chemin de routage sans boucle
-ordre des VNFs fixe,
-latence,
-variation de flot

Focus -avatages de chaînage des VNFs, -problème complexité et propriétés,
-impacts de chaînage des VNFs -méthode de résolution

Modèles

-PR, -PR et SP,
-variantes de PR par rajout de -variantes de PR avec inégalités valides,
contraintes -variantes de SP avec inégalités valides,

-variantes de SP avec borne améliorée,
-variantes de SP pour version MD

Méthodes

-math-heuristique -méthodes constructives:
-dichotomie TS-BP-FS et FC,

-méthodes heuristiques basées
sur recherche local: RFR, SC-RFR,
SC-ANS et SC-ANSI,
-méthodes heuristiques en
fixant partiellement la solution: FO

Table 1 – Résumé des problématiques et contributions principales.

des VNFs et router des demandes de bout en bout passant les VNFs demandées
(pour être servies) d’après l’ordre spécifique des VNFs. À travers cette modéli-
sation, nous pouvons partager efficacement les ressources réseaux entre plusieurs
demandes. Cette formulation peut être étendue pour gérer une grande variété de
paramètres clés.

La question critique de ce problème VNF-PR (VNF Placement and Routing) est
comment réduire le coût des infrastructures sans affecter la performance du réseau,
car il est nécessaire de consolider des VNFs pour réduire le coût des ressources,
cependant la consolidation de flux peut augmenter le risque de saturation en bande
passante. Pour mesurer l’impact du chaînage des VNFs sur utilisation de bande
passante et déterminer comment profiter des avantages du système NFV, nous ré-
soudrons tout d’abord le problème de la minimisation de l’utilisation maximale des
liens, ensuite, nous résoudrons le problème qui minimise le coût des infrastructures
NFV gardant l’utilisation maximale des liens comme une borne de bande passante
à respecter par rajout d’une contrainte dans le modèle.

Nous évaluons les performances de notre solution sous divers scénarios avec un
large ensemble de paramètres réels. Le résultat principal montre que le déploiement
de service avec le chaînage des VNFs permet de réduire le coût des infrastructures
NFV sans causer des problèmes de performances de réseau en termes de la latence
des demandes et de l’utilisation des liens. Par ailleurs, l’ensemble de nos tests a
mis en évidence que la recherche de la solution optimale du modèle PR est très cou-
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teuse en termes de temps de calcul. En plus de ces constats, l’intérêt grandissant de
la communauté des télécommunications pour disposer des solutions efficaces pour
ce problème nous ont conduits au développement de la suite du travail de cette thèse.

En effet, la deuxième partie de la thèse s’intéresse à étudier des propriétés du
problème d’optimisation et proposer des méthodes de résolution efficaces. Dans ce
but, nous avons étudié une version compacte du problème du chaînage des VNFs,
dans lequel nous gardons un unique type de VNF et nous considérons seulement des
contraintes sur la capacité des nœuds et des liens. L’objectif est de trouver la bonne
localisation des VNFs et l’acheminement sans boucle des demandes minimisant le
nombre de VNFs installées. D’un point de vue d’optimisation, ce problème est une
combinaison des problèmes de localisation (pour la partie d’installation des VNFs)
et de conception de réseaux (pour la partie de routage). Bien que ces deux prob-
lèmes aient été largement étudié dans la littérature, leur combinaison représente des
divers défis en termes de modélisation et de résolution. Cette partie de notre travail
est donc orientée vers la communauté d’optimisation pour apporter une meilleure
compréhension du problème afin de proposer de bonnes méthodes de solution.

Dans cette phase, nous commençons par des études sur la complexité et les
propriétés du problème que nous avons appéllé VNF-PRSP (VNF Placement and
Routing on Simple Path). Nous démontrons que le problème étudié est NP-difficile.
Ensuite, nous démontrons que (1) en matière de localisation et affectation des VNFs,
le cas de type unique de VNF est équivalent au cas de types multiples de VNF lorsque
les VNFs ont toutes la même capacité et type, ainsi que l’ordre de VNFs requis
sont le même pour toutes les demandes (Proposition 4.3.1); (2) sous hypothèse
de routage en chemin sans boucle, une instance de VNF doit être installée sur
les points d’articulation appartenant à des composants bi-connectés qui ont des
demandes internes et un unique point d’articulation (Proposition 4.3.2). Grâce à
la propriété 4.3.2, il est possible de déterminer une borne inférieure sur le nombre
de VNFs à installer en considérant le nombre et la structure des composants bi-
connectés avec des informations des demandes. De plus, une partie de solution de
VNF-PRSP peut être construite en installant des VNFs sur des points d’articulation.
Par conséquent, nous développons un algorithme de pré-processing basé sur cette
propriété pour faciliter la résolution. Plus précisément, cet algorithme vise à (1)
trouver le nombre de composants bi-connectés avec demande interne et un unique
point d’articulation, puis installer une instance de VNF sur chacun de leurs points
d’articulation; (2) éviter l’affectation d’une demande aux VNFs qui sont en dehors
du composant bi-connecté auquel la demande appartient.

Pour fournir des solutions exactes du problème VNF-PRSP, nous proposons et
comparons deux modèles (PR et SP) basés sur les stratégies de formulation les plus
prometteuses dans la littérature. Comme présentée précédemment, la stratégie du
modèle PR est d’utiliser des variables de flux d’arc pour router les demandes et
les chemins avec boucles sont enlevées en exploitant les étiquettes de nœud. L’idée
principale du modèle SP est de diviser chaque chemin de demande en deux sous-
chemins: l’un connecte la source et le VNF nœud, l’autre connecte le VNF nœud et
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la destination. Nous comparons théoriquement et numériquement ces deux modèles.
Nous démontrons que la relaxation continue de SP fournit toujours une meilleure
borne que celle de PR. Les résultats des tests numériques confirment que SP a une
meilleure performance que PR.

Quand un réseau a un nombre croissant de nœuds et demandes, la résolution
du modèle de la programmation linéaire à nombre entier devient problématique
(les temps de calcul et/ou l’utilisation de la mémoire sont très élevés). C’est pour
cela que la troisième partie de la thèse se focalise sur des méthodes d’optimisation
performantes pour atteindre rapidement de bonnes solutions pour des instances de
taille grande afin de pouvoire concrétiser les avantages de NFV lié à l’échelle et
l’efficacité.

Dans cet objectif, nous avons implémenté dans un premier temps deux ap-
proches constructives basées sur la programmation linéaire. L’idée principale de
la première approche (appelée TS-BP-FS, Three-Step Bin Packing based Fix-and-
Solve) est de rechercher rapidement l’acheminement faisable pour toutes les deman-
des en résolvant l’ensemble de variantes du modèle SP fixant la localisation et / ou
l’affectation des VNFs fournies par la solution optimale d’un problème Bin Packing
(BPP) associé. Cette méthode fonctionne bien lorsque la partie de localisation et
affectation (du type BPP) domine le problème VNF-PRSP. Toutefois, elle ne permet
pas de trouver des solutions de manière efficace dans les cas où la partie de routage
domine le problème. Pour gérer cela, nous implémentons la deuxième approche (ap-
pelée FC, Fix-and-Check) qui nous permet de vérifier si un nombre de VNFs proposé
est une solution faisable pour VNF-PRSP en cherchant le nombre maximal de de-
mandes qu’il peut servir. Plus précisément, la vérification est effectuée de manière
itérative en résolvant un ensemble de variantes du modèle SP fixant partiellement
la solution. Les résultats numériques montrent que toutes les deux méthodes sont
capables de trouver une solution pour les instances de taille moyenne du problème.
Cependant, le temps de calcul est parfois trop long pour des instances dures, par
exemple, lorsque la capacité des liens est très faible.

Dans le but de fournir une solution dans un temps de calcul acceptable pour
des instances dures, nous avons proposé et développé, dans un deuxième temps,
des heuristiques basées sur la recherche locale. Tout d’abord, nous apportons qua-
tre approches pour trouver une solution initiale pour le problème VNF-PRSP. La
première approche appelée RFR (Reduced Feasible Region) consiste à chercher la
solution dans une région faisable réduite par rajout de la contrainte de branchement
local afin d’accélérer la résolution. La deuxième approche appelée SC-RFR qui a
pour le but d’améliorer l’approche RFR en résolvant tout d’abord la procédure SC
(Select-and-Check). Toutes les deux approches ci-dessus peuvent se terminer sans
aucune solution trouvée. En effet, dans les deux méthodes, le modèle associé est
résolu qu’une seule fois. Pour pallier cet inconvénient, nous proposons d’appliquer
une recherche locale dans la troisième (appelée SC-ANS, Assignment Neighborhood
Search) et la quatrième (appelée SC-ANSI, c’est-à-dire SC-ANS improved) approche
pour trouver une solution initiale. C’est-à-dire, au lieu d’exécuter la procédure RFR,
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nous résoudrons la procédure ANS ou ANSI qui maximise de manière itérative le
nombre de demandes servies jusqu’à ce qu’une solution faisable soit trouvée. Une fois
une solution initiale trouvée, nous proposons deux méthodes basées sur la recherche
du voisinage pour améliorer la solution de façon itérative.

Afin d’évaluer la performance des méthodes proposées, nous utilisons de divers
cas de capacité dans un testbed très étendu. Les tests effectués nous ont permis de
montrer que les méthodes proposées sont capables de trouver de bonnes solutions
(parfois optimales) dans un temps de calcul raisonnable pour les instances dures où
le modèle ne peut fournir aucune solution avec un temps de calcul limité.

Structure de la thèse

Le manuscrit est structuré en sept chapitres. Le Chapitre 1 présente l’introduction
générale avec la motivation de cette thèse.

Le Chapitre 2 présente une introduction de NFV en général et le chaînage des
fonctions de service dans l’infrastructure NFV en particulier. Il fournit également au
lecteur les éléments nécessaires pour comprendre le reste du manuscrit. Nous pro-
posons une classification de l’état de l’art et nous révisons des différentes versions du
problème d’optimisation du chaînage des VNFs qui ont été traitées dans la littéra-
ture. En plus, nous discutons la relation entre le problème du chaînage des VNFs et
des problèmes d’optimisation classiques qui représentent certaines caractéristiques
communes.

Le Chapitre 3 présente l’étude sur des aspects pratiques du problème du chaî-
nage des VNFs. Nous étudions et évaluons des impacts de chaînage des VNFs sur le
réseau de télécommunications en considérant des paramètres de réseau importants,
par exemple, le délai de traitement de VNF, la latence de propagation de demande
et le changement de flux de demande. Dans cet objectif, nous définissons une ver-
sion réelle du problème appelé VNF-PR (localisation et routage des VNFs) et nous
proposons une formulation mathématique et une math-heuristique pour la résoudre.
Les résultats détaillés sont rapportés avec analyses en matière de localisation des
VNFs et de la latence des demandes ainsi que l’utilisation des liens physiques.

Le Chapitre 4 présente l’étude théorique sur le problème du chaînage des VNFs.
Nous procédons à étudier la structure et des caractéristiques du problème. Dans
cet objectif, nous définissons une version fondamentale (VNF-PRSP) du problème
et nous fournissons une analyse approfondie de la complexité et des propriétés.
Ensuite, une comparaison entre deux stratégies de formulation prometteuses dans
la littérature a été faite à la fois théoriquement et pratiquement. Les résultats
numériques sont présentés et analysés à la fin du chapitre.

Les Chapitres 5 et 6 présentent et décrivent des approches proposées pour ré-
soudre efficacement le problème VNF-PRSP, y compris des méthodes basées sur la
programmation mathématique et des méthodes constructives (pour résoudre effi-
cacement des instances de taille moyenne) ainsi que des heuristiques basées sur la
recherche locale (pour résoudre efficacement des instances de taille grande). Ensuite,
nous évaluons la performance des méthodes proposées sous un testbed étendu.
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Le Chapitre 7 conclut la thèse par une synthèse de nos contributions et discute
des perspectives et extensions possibles de ce travail.
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Appendix A

Father Node Formulation

We present another possible formulation for the VNF-PRSP problem. Since the
demands are assumed to be routed on simple path, each node on the routing path
of a demand has an antecedent (except for the source node) and a successor (except
for the destination node). For this, we introduce binary variables pkij , equals to 1 if
node i ∈ N is an antecedent node of node j ∈ N on the routing path of demand
k ∈ D. We denote this formulation with Father Node (FN) model.

We have in the FN model the same objective function (A.1) as in PR and SP,
and similar constraints (A.2) (flow balance), (A.3) (link capacity), (A.4) (VNF ca-
paciry), (A.5) (single demand-VNF assignment), (A.6) (coherence use-installation
of VNF).
Specific FN constraints: (A.7) and (A.8) are to force demand flow pass by the
used VNF. Constraint (A.9) and (A.10) are to fix positions of source node and
destination node for each demand. Constraint (A.11) is to link the node position
(variable p) and the path decision (variable x). Constraint (A.12) prevents up-down
paths. Constraint (A.13) tells if a node i is the antecedent node of node j in de-
mand k’s path. Constraints (A.14) and (A.15) are to enforce the antecedent nodes’
constraint.

Prevent isolated cycles : with constraint (A.11), (A.12) and (A.13), we can
prevent isolated cycles. If we have a cycle in the path (variable x), we then know
with constraint (A.11) (variable p): node 1 is antecedent to VNF, VNF is antecedent
to node 2, and node 2 is antecedent to node 1. And according to constraint (A.13),
if node 1 is antecedent to VNF and VNF is antecedent to node 2, then node 1 is
antecedent to node 2 (i.e., pk12 ≥ pk1vnf + pkvnf2 − 1), and this is not allowed by
constraint (A.12): pk12 + pk21 ≤ 1, which says that both pk12 and pk21 equal to 1 is not
allowed.
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Appendix A. Father Node Formulation

min
∑
i∈N

∑
f∈F

yif (A.1)

s.t.
∑

j:(i,j)∈A

xk
ij −

∑
j:(j,i)∈A

xk
ji =


1 if i = ok

−1 if i = tk

0 otherwise
∀k ∈ D, i ∈ N

(A.2)∑
k∈D

dk x
k
ij ≤ uij ∀(i, j) ∈ A

(A.3)∑
k∈D

dk z
k
if ≤ quf ∀i ∈ N, f ∈ F

(A.4)∑
i∈N

zk
if = 1 ∀k ∈ D, f ∈ F : vfrk

f = 1

(A.5)

zk
if ≤ yif ∀k ∈ D, i ∈ N, f ∈ F

(A.6)

pk
oki ≥ zk

i ∀k ∈ D, f ∈ F, i ∈ N : i 6= ok, vfr
k
f = 1

(A.7)

pk
itk
≥ zk

i ∀k ∈ D, f ∈ F, i ∈ N : i 6= tk, vfr
k
f = 1

(A.8)

pk
iok

= 0 ∀k ∈ D, i ∈ N : i 6= ok

(A.9)

pk
tki = 0 ∀k ∈ D, i ∈ N : i 6= tk

(A.10)

pk
ij ≥ xk

ij ∀k ∈ D, (i, j) ∈ A
(A.11)

pk
ij + pk

ji ≤ 1 ∀k ∈ D, i ∈ N, j ∈ N : i 6= j
(A.12)

pk
ij ≥

{
1 if i = ok, j = tk

pk
mj + pk

im − 1 otherwise
∀k ∈ D, (m, j) ∈ E, i ∈ S :

i 6= j, i 6= tk, j 6= ok

(A.13)

pk
ij ≤

∑
(i,m)∈E

xk
im ∀j ∈ N, i ∈ N : i 6= j

(A.14)

pk
ij ≤

∑
(m,j)∈E

xk
mj ∀j ∈ N, i ∈ N, i 6= j

(A.15)

pk
ij ≥ zk

if1 + zk
jf2 − 1

∀j ∈ N, i ∈ N, f1 ∈ F, f2 ∈ F : i 6= j,

vfrk
f1 = 1, vfrk

f2 = 1, orderfk
2
≥ orderk

f1

(A.16)
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Appendix B

Column Generation Approach

B.0.0.1 Introduction of column generation method

As in some large scale linear programs it is not possible to enumerate all the variables,
the main idea of Column Generation is to consider only a subset of variables (i.e.,
columns) and then iteratively add the ones which improves the objective value. The
variables to be added are chosen exploiting duality properties.

In the procedure of Column Generation, the problem is split into two sub-
problems: a Master problem and a Pricing problem. The master problem is
the original linear program, but restricted to a subset of variables. Its dual is used
to identify columns with negative reduced costs, hence the ones which improve the
objective function when entering the basis. When solved, the Master problem passes
a revised set of cost coefficients (prices) associated with its dual optimal solution
to the Pricing problem. The Pricing problem uses these prices to generate and
determine the column that improves the solution of the Master problem. Both sub-
problems keep on exchanging information until an optimal solution or a stopping
condition is met.

Let the optimization ILP problem be a minimization problem of the following
form

min
∑
i∈N

cixi

s.t.
∑
i∈N

aixi ≥ b

xi ∈ {0, 1}, ∀i ∈ N

Then the restricted master problem is

min
∑

i∈N ′⊂N
cixi

s.t.
∑

i∈N ′⊂N
aixi ≥ b

xi ≥ 0, ∀i ∈ N ′ ⊂ N
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Appendix B. Column Generation Approach

which is initialized with a subset N ′ of feasible solutions that we refer to by columns
and which satisfy all of its constraints. Its dual problem is

max bT y

s.t. yai ≤ ci, ∀i ∈ N ′ (B.1)

y ≥ 0

The primal variable with the highest negative reduced costs is the one which violates
constraint(B.1) the most. Thus in the pricing problem, the evolving problem is

min (ci − yai), ∀i ∈ N

Indexes of N correspond to entities which can be described through the feasible
domain Ω of an optimization problem. The resulting pricing problem becomes the
optimization problem

min (c (zk)− ya (zk))

zk ∈ {0, 1}, ∀k ∈ Ω

When a negative solution is found, the variable xi and its coefficient column (ci, ai)
are added to the restricted mater problem. The master problem is solved again and
possibly produces an improved objective function.
This procedure is repeated until no more variables with negative reduced costs can
be found (or a stopping condition is met) in the pricing problem. Then the solution
is optimal for the LP master problem.

B.0.0.2 An alternative path formulation of SP model for VNF-PRSP
problem

Before presenting the alternative formulation, the modeling of the path construction
is explained and the choice for the decision variables justified.

The feasible routes of demands used in formulation SP are called arc routes.
There exists an alternative formulation that uses a binary variable rp for each (s−t)−
routing path p. An (s− t)− routing path is a sequence of arcs a1, ... an that starts
at s and ends at t, such that no node is visited twice by the path (i.e., simple path).
Let Psk,fk

be the set of all (s − f)− routing paths (i.e., the simple paths from
source node to the service node) of demand k ∈ D, and let Pfk,tk be the set of all
(f − t)− routing paths (i.e., the simple paths from the service node to the source
node) of demand k ∈ D. Because of the strategic nature of the SP formulation (i.e.,
the decomposition of end-to-end routing path into two sub-paths, associated with a
VNF instance serving the demand), variables

rp1 , ∀p1 ∈ Psk,fk
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and ∑
(i,j)∈A

xk1
ij

express the same first half of the total end-to-end routing decision of demand k ∈ D.
Similarly, variables

rp2 , ∀p2 ∈ Pfk,tk

and ∑
(i,j)∈A

xk2
ij

express the same remaining half of the total end-to-end routing decision of k ∈ D.

In Table B.1 the notation used for the problem is summarized. Furthermore, the
variables used by the arc routing formulation and the path routing formulation of
SP model are reported. As some sets, parameters and variables are common to both
formulations and some are formulation dependent, in the last column we report in
which formulation the set/parameter/variable is used.
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Notation Models
Sets

N set of nodes both
A set of arcs both
D set of demands both
Psk,fk

set of simple paths from source node to service
node of demand k ∈ D

alternative

Pfk,tk set of simple paths from service node to terminal
node of demand k ∈ D

alternative

P set of simple paths: P =
⋃
k∈D (Psk,fk

∪ Pfk,tk) alternative
Network parameters

u arc capacity both
q service capacity both

Demand parameters
sk origin of demand k ∈ D both
tk destination of demand k ∈ D both
dk bandwidth of demand k ∈ D both
fk node position of service that serves demand k ∈

D, with fk ∈ N
alternative

Path parameters
srcp origin of path p ∈ P alternative
dstp destination of path p ∈ P alternative
srvp demand that path p ∈ P serves alternative

Binary variables
yi 1 if a service is located on node i ∈ N both
zki 1 if demand k ∈ D uses the service on node

i ∈ N
both

Model-depending variables
xk1
ij 1 if arc (i, j) ∈ A is used by demand k on sub-

path 1
initial

xk2
ij 1 if arc (i, j) ∈ A is used by demand k on sub-

path 2
initial

rp 1 if path p ∈ P is used alternative

Table B.1 – Mathematical notation used in the CG approach
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The alternative path routing formulation of SP Model is

min
∑
i∈N

yi

s.t.
∑
i∈N

zki = 1 ∀k ∈ D (B.2)

zki ≤ yi ∀k ∈ D, i ∈ N (B.3)∑
k∈D

dkz
k
i ≤ q ∀i ∈ N (B.4)

∑
p∈Psk,fk

:
dstp=i

rp = zki ∀k ∈ D, i ∈ N : i 6= sk (B.5)

∑
p∈Pfk,tk

:
srcp=i

rp = zki ∀k ∈ D, i ∈ N : i 6= tk (B.6)

∑
k∈D

∑
p1∈Psk,fk

:
(i,j)∈p1

dkrp1 +
∑
k∈D

∑
p2∈Pfk,tk

:
(i;j)∈p2

dkrp2 ≤ u ∀(i, j) ∈ A (B.7)

∑
j:(i,j)∈A

∑
p1∈Psk,fk

:
(i,j)∈p1

rp1 +
∑

j:(i,j)∈A

∑
p2∈Pfk,tk

:
(i,j)∈p2

rp2 ≤ 1 ∀k ∈ D, i ∈ N (B.8)

∑
j:(j,i)∈A

∑
p1∈Psk,fk

:
(j,i)∈p1

rp1 +
∑

j:(j,i)∈A

∑
p2∈Pfk,tk

:
(j,i)∈p2

rp2 ≤ 1 ∀k ∈ D, i ∈ N (B.9)

yi ∈ {0, 1} ∀i ∈ N
zki ∈ {0, 1} ∀k ∈ D, i ∈ N
rp ∈ {0, 1} ∀p ∈ P

Eq. (B.2), (B.3) and (B.4) are taken from the initial SP formulation. Eq. (B.2)
imposes that each demand is assigned to exactly one instance of the service. Eq. (B.3)
guarantees that if there is no VNF instance is installed, then it cannot be assigned to
any demand. Eq. (B.4) imposes that each instance of the VNF can serve a maximum
quantity of demand given by its capacity q.

Eq. (B.5) to (B.9) impose a routing path for each demand, which passes through
the requested VNF node. The idea of the path routing is still ’SP’, i.e., each de-
mand is routed in two sub-paths: one sub-path from the source node to the VNF
node (Eq. (B.5)) then the other sub-path from the VNF node to the destination
node (Eq. (B.6)). The link capacity constraints is introduced by Eq. (B.7), and the
simple path solution (i.e., each demand can pass through a node at most one) is
guaranteed by Eq. (B.8) and (B.9).

Note that it is possible to have a path formulation that considers the VIs.

The related dual variables of the path formulation are presented in Table B.2.
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Primal constraint Corresponding dual variable
(B.2) βk free, ∀k ∈ D
(B.3) αki ≥ 0, ∀k ∈ D, i ∈ N
(B.4) θi ≤ 0, ∀i ∈ N
(B.5) λk1,i free, ∀k ∈ D, i ∈ N
(B.6) λk2,i free, ∀k ∈ D, i ∈ N
(B.7) πij ≤ 0, ∀(i, j) ∈ A
(B.8) σk1,i ≤ 0, ∀k ∈ D, i ∈ N
(B.9) σk2,i ≤ 0, ∀k ∈ D, i ∈ N

Table B.2 – Primal-dual (constraint-variable) table

Given the master problem, and its dual variables, we can find the dual constraints
corresponding to the primal variables rp :
For the first half paths p ∈ Ps,f , with Ps,f =

⋃
k∈D Psk,fk

:∑
i∈N

∑
k∈D:

p∈Psk,fk

∑
j:(j,i)∈A:

(j,i)=last(p)

λk1,i +
∑

(i,j)∈A:
(i,j)∈p

dkπij

+
∑
i∈N

∑
k∈D:

p∈Psk,fk

∑
j:(i,j)∈A:

(i,j)∈p

σk1,i +
∑
i∈N

∑
k∈D:

p∈Psk,fk

∑
j:(j,i)∈A:

(j,i)∈p

σk2,i ≤ 0

For the remaining half paths p ∈ Pf,t, with Pf,t =
⋃
k∈D Pfk,tk :∑

i∈n

∑
k∈D:

p∈Pfk,tk

∑
j:(i,j)∈A:

(i,j)=first(p)

λk2,i +
∑
k∈D:

p∈Pfk,tk

∑
(i,j)∈A:
(i,j)∈p

dkπij

+
∑
i∈n

∑
k∈D:

p∈Pfk,tk

∑
j:(i,j)∈A:

(i,j)∈p

σk1,i +
∑
i∈n

∑
k∈D:

p∈Pfk,tk

∑
j:(j,i)∈A:

(j,i)∈p

σk2,i ≤ 0

As each path serves exactly one demand, we can polish the above dual constraints
by removing the void columns in the constraints. Now we use the parameter srvp
to represent the demand k ∈ D : k = srvp that the path p ∈ P serves. Then the
dual constraints become:

For each first half path p ∈ Ps,f , with Ps,f =
⋃
k∈D Psk,fk

:

λ
srvp

1,dstp +
∑

(i,j)∈A:
(i,j)∈p

dsrvpπij +
∑
i∈N

∑
j:(i,j)∈A:

(i,j)∈p

σ
srvp

1,i +
∑
i∈N

∑
j:(j,i)∈A:

(j,i)∈p

σ
srvp

2,i ≤ 0 (B.10)

For the remaining half paths p ∈ Pf,t, with Pf,t =
⋃
k∈D Pfk,tk :

λ
srvp

2,srcp
+

∑
(i,j)∈A:
(i,j)∈p

dsrvpπij +
∑
i∈N

∑
j:(i,j)∈A:

(i,j)∈p

σ
srvp

1,i +
∑
i∈n

∑
j:(j,i)∈A:

(j,i)∈p

σ
srvp

2,i ≤ 0 (B.11)
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For each first half path p ∈ Ps,f , with Ps,f =
⋃
k∈D Psk,fk

:

λ
srvp

1,dstp +
∑

(i,j)∈A:
(i,j)∈p

(dsrvpπij + σ
srvp

1,i + σ
srvp

2,j ) ≤ 0 (B.12)

For the rest half paths p ∈ Pf,t, with Pf,t =
⋃
k∈D Pfk,tk :

λ
srvp

2,srcp
+

∑
(i,j)∈A:
(i,j)∈p

(dsrvpπij + σ
srvp

1,i + σ
srvp

2,j ) ≤ 0 (B.13)

B.0.0.3 Decomposition strategy

As mentioned in Section B.0.0.1, the Column Generation solves very large linear
programs by considering a small subset of the variables at once, based on a primal-
dual decomposition procedure. For the Master problem, we have to relax the path
routing formulation and consider a startset of paths. For the Pricing sub-problem,
we have to evaluate the sub-paths for each demand according to the dual constraints
Eq. (B.10) and (B.11). Furthermore, an efficient method to generate a feasible start-
set of paths has to be designed.

Master problem.
The restricted master problem should be a LP and should consider only a subset of
paths. Hence the decision variables of path routing formulation of the VNF-SPSP
problem should be relaxed:

yi ∈ [0, 1] ∀i ∈ N
zki ∈ [0, 1] ∀k ∈ D, i ∈ N
rp ∈ [0, 1] ∀p ∈ P
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Then the restricted mater problem and its dual variables:

min
∑
i∈N

yi

s.t. zki ≤ yi ∀k ∈ D, i ∈ N αki ≥ 0∑
i∈N

zki = 1 ∀k ∈ D βk free∑
k∈D

dkz
k
i ≤ q ∀i ∈ N θi ≤ 0

∑
p∈Psk,fk

:
dstp=i

rp = zki ∀k ∈ D, i ∈ N : i 6= sk λk1,i free

∑
p∈Pfk,tk

:
srcp=i

rp = zki ∀k ∈ D, i ∈ N : i 6= tk λk2,ji free

∑
k∈D

∑
p1∈Psk,fk

:
(i,j)∈p1

dkrp1 +
∑
k∈D

∑
p2∈Pfk,tk

:
(i;j)∈p2

dkrp2 ≤ u ∀(i, j) ∈ A πij ≤ 0

∑
j:(i,j)∈A

∑
p1∈Psk,fk

:
(i,j)∈p1

rp1 +
∑

j:(i,j)∈A

∑
p2∈Pfk,tk

:
(i,j)∈p2

rp2 ≤ 1 ∀k ∈ D, i ∈ N σk1,i ≤ 0

∑
j:(j,i)∈A

∑
p1∈Psk,fk

:
(j,i)∈p1

rp1 +
∑

j:(j,i)∈A

∑
p2∈Pfk,tk

:
(j,i)∈p2

rp2 ≤ 1 ∀k ∈ D, i ∈ N σk2,i ≤ 0

Pricing problem.
The aim of the pricing problem is to find a (s− t)− routing path for each demand,
which violates both constraints (B.12) and (B.13). As we divide the end-to-end
routing path into two independent sub-paths for each demand, we can build sepa-
rately the two sub-paths. For each demand k ∈ D and each service node fk ∈ N ,
the goal is thus to find two sub-paths of k using the service on node fk that violates
(B.12) and (B.13).
The objective of the pricing sub-problems are:

Pricing sub-problem 1: find a path p ∈ Psk,fk
for demand k ∈ D such that

−
∑

(i,j)∈A
(dsrvpπij + σk1,i + σk2,j) < λ1,fk (B.14)

Pricing sub-problem 2: find a path p ∈ Pfk,tk for demand k ∈ D such that

−
∑

(i,j)∈A
(dsrvpπij + σk1,i + σk2,j) < λ2,fk (B.15)

Therefore, for each demand k ∈ D, we look for the shortest sub-path from the
source sk to the service node fk and the shortest sub-path from the service node fk
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to the destination tk on a graph on which the cost of arc (i, j) is

−(dsrvpπij + σk1,i + σk2,j)

• If in the Pricing sub-problem 1 we find a shortest sub-path of demand d which
is less than λ1,fk

, i.e., the dual constraint is violated, we add this shortest path
to the restricted master problem.

• Similarly, if in the Pricing sub-problem 2 we find a shortest sub-path which is
less than λ2,fk

, we also add this path to the restricted master problem.

• Otherwise, i.e., if for all the demands, the shortest path found by Pricing
sub-problem 1 is greater than λ1,fk

, and the shortest path found by Pricing
sub-problem 2 is greater than λ2,fk

, then the solution of the RMP (restricted
master problem) is optimal for the original problem.

In order to generate such path, we use the following decision variables in the pricing
problems:

• In Pricing sub-problem 1, x1
i,j ∈ {0, 1} if arc (i, j) ∈ A is used by the first half

path p ∈ Psk,fk

• In Pricing sub-problem 2, x2
i,j ∈ {0, 1} if arc (i, j) ∈ A is used by the rest half

path p ∈ Pfk,tk

And the constraints which impose the routing paths in each pricing sub-problem
are:
Pricing sub-problem 1

∑
j:(i,j)∈A

x1
ij −

∑
j:(j,i)∈A

x1
ji =


1 if i = sk, and i 6= fk

−1 if i = fk

0 otherwise
∀i ∈ N (B.16)

Pricing sub-problem 2

∑
j:(i,j)∈A

x2
ij −

∑
j:(j,i)∈A

x2
j,i =


−1 if i = tk, and i 6= fk

1 if i = fk

0 otherwise
∀i ∈ N (B.17)
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