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Abstract

Transparent conducting oxides (TCOs) are an important class of mater-
ials with many applications such as low emissivity coatings, or trans-
parent electrodes for photovoltaics and flat panel displays. Among the
possible TCO materials, Al-doped ZnO (AZO) is studied due to its relat-
ively low cost and abundance of the raw materials. Thin films of AZO are
commonly produced using physical vapour deposition techniques such
as magnetron sputtering. However, there is a problem with the homo-
geneity of the films using reactive direct current magnetron sputtering
(DCMS). This homogeneity problem can be related to the bombardment
of the growing film with negative oxygen ions, that can cause additional
acceptor defects and the formation of insulating secondary phases. In
this work AZO films are deposited by high power impulse magnetron
sputtering (HiPIMS), a technique in which high instantaneous current
densities are achieved by short pulses of low duty cycle.

In the first part of this thesis, the possibility to improve the homo-
geneity of the deposited AZO films by using HiPIMS is demonstrated.
This improvement can be related to the high instantaneous sputtering
rate during the HiPIMS pulses, so the process can take place in the metal
mode. This allows for a lower oxygen ion bombardment of the growing
film, which can help to avoid the formation of secondary phases. Another
problem of AZO is the stability of the properties in humid environments.
To assess this problem, the degradation of the electrical properties after
an aging procedure was investigated for films deposited by both DCMS
and by HiPIMS. A method was proposed, to restore the properties of the
films, using a low temperature annealing under N2 atmosphere. The
improvement of the electrical properties of the films could be related to
a diffusion process, where water is diffusing out of the films. Then, the
influence of the substrate temperature on the properties of AZO films
deposited by HiPIMS was studied. The electrical, optical and structural
properties were found to improve with increasing substrate temperature
up to 600 ◦C. This improvement can be mostly explained by the increase

I



in crystalline quality and the annealing of defects. Finally, the deposition
of AZO films on flexible PET substrates was investigated. The films are
growing as a thick porous layer of preferentially c-axis oriented columns
on top of a thin dense seed layer. The evolution of the sheet resistance of
the films after bending the films with different radii was studied. There is
an increase in the sheet resistance of the films with decreasing bending
radius, that is less pronounced for thicker films.
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Populärvetenskaplig

sammanfattning

För många viktiga tillämpningar i vårt moderna liv, såsom skärmar till
mobiltelefoner eller solceller, är det nödvändigt att ha ett transparent
material som har en elektrisk ledningsförmåga. Att både vara transpa-
rent och vara elektriskt ledande är en ovanlig materialegenskap. Material
som är elektriskt ledande, såsom metaller, är vanligtvis inte transparenta,
medan transparenta material, såsom glas, vanligen inte är ledande. Att
producera transparenta ledande material är därför en utmaning. Flera
metoder för att lösa detta problem är kända och den viktigaste materi-
elgruppen är keramiska material som benämns transparenta ledande
oxider. Det vanligaste materialet, som idag används i de flesta bildskär-
mar, är indiumtennoxid. Indium är emellertid ett dyrt material, så det
finns ett intresse att ersätta detta med andra material.

Ett alternativt material är aluminiumdopad zinkoxid (AZO), det vill
säga zinkoxid med en liten mängd aluminium inuti. Den transparanta
ledaren används oftast i form av en tunn film med en tjocklek mellan
0,1 och 1µm som beläggs på ett substrat. Substratet kan vara av glas,
en solcell eller en bildskärm. Flera metoder används för att belägga
AZO-tunnfilmer. En vanlig teknik kallas reaktiv magnetron-sputtering. I
denna teknik skapas ett plasma i en vakuumkammare, som tillåter att
förånga zink och aluminium som kondenserar på substratet. Dessutom
tillsätts syre. Detta leder till en kemisk reaktion mellan syre-, zink- och
aluminiumatomerna, så att AZO bildas på substratet.

Det har dock visat sig att det är svårt att erhålla filmer med en jämn
kvalitet på stora substrat. Det är därför ofta nödvändigt att värma sub-
straten till högre temperaturer. Högre temperaturer gör processen dyrare
men framförallt så begränsas valet av möjliga substratmaterial. Vissa
material som används i solceller tål inte höga temperaturer. Det finns
också intresse för att deponera AZO-filmer på plastsubstrat, vilket också
kräver låga temperaturer. För att lösa detta problem används en special-
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teknik som kallas High Power Impulse Magnetron Sputtering (HiPIMS) i
arbetet i denna avhandling. I HiPIMS skapas inte plasma kontinuerligt
utan koncentreras i korta pulser.

Resultaten presenterade i denna avhandling visar att med använd-
ning av HiPIMS-processen gör det möjligt att deponera AZO-tunnfilmer
av god kvalitet utan att behöva värma substratet. Detta kan förklaras, i
avhandlingen, och beror på hur syre växelverkar med metallerna och
hur detta i sin tur påverkar beläggningsprocessen.

Det finns ett annat problem med materialet AZO. Om det utsätts
för fukt under lång tid, kommer dess elektriska ledningsförmåga dege-
nereras. Detta beteende har också studerats i denna avhandling och
det visas att elektrisk ledningsförmåga kan återställas genom att värma
AZO-filmerna i en kväveatmosfär till 180 ◦C. Dessutom har effekterna av
upphettning av substratet vid HiPIMS-deponering undersökts. Resulta-
ten visar att det är möjligt att ytterligare öka filmens kvalitet vid högre
beläggningstemperaturer.

Slutligen har AZO-filmer belagts på plastsubstrat. Plasten är böjlig
vilket är intressant för utvecklingen av, till exempel, flexibla bildskärmar.
Böjning av substratet kan dock bryta AZO-filmerna, så de blir mindre
ledande. I denna avhandling böjs plastsubstrat med AZO-filmer för att
se hur mycket filmens kvalitet minskar på grund av böjningen.
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Résumé étendu

Les oxydes conducteurs transparents ou TCO sont une classe de maté-
riaux, à la fois transparents dans le visible et conducteurs électriques. Ces
matériaux peuvent être utilisés dans de nombreuses applications, par
exemple comme électrodes transparentes dans des cellules solaires, des
écrans plats, des écrans tactiles ou des dispositifs électrochromes, ainsi
que des dispositifs de chauffage transparents, des films antistatiques ou
des fenêtres à faible émissivité. Le TCO le plus courant est In2O3 dopé Sn
(ITO). Cependant, l’indium est un élément coûteux, dont l’approvision-
nement fluctue et qui peut s’avérer nocif pour l’être humain. Ainsi, des
matériaux alternatifs sont en cours de recherche. Un de ces matériaux
est l’oxyde de zinc (ZnO) dopé à l’Al (AZO), qui est le matériau étudié
dans ce travail.

Pour la plupart des applications, les TCO sont nécessaires sous la
forme de films minces qui doivent présenter des propriétés homogènes
sur de grandes surfaces. Une méthode de dépôt communément utilisée
pour déposer des films d’AZO est la pulvérisation cathodique magné-
tron réactive, qui utilise un plasma pour pulvériser des atomes à partir
d’une cible et pour réaliser la croissance d’un film mince sur un substrat
par condensation de ces atomes. Cependant, pour le dépôt de films de
haute qualité, des températures élevées du substrat sont habituellement
nécessaires. Les températures élevées sont un problème pour certains
dispositifs tels que les cellules solaires, dont les composants sont sen-
sibles aux températures élevées. C’est également le cas pour certains
supports organiques utilisés pour la réalisation de dispositifs flexibles.
De plus, lors de la synthèse de films à partir de la pulvérisation réactive
conventionnelle, les propriétés des films peuvent se dégrader à cause
du bombardement en ions négatifs d’oxygène pendant la croissance du
film.

Dans cette thèse, une forme spéciale de la pulvérisation cathodique
magnétron, appelée pulvérisation magnétron en régime d’impulsions de
haute puissance (HiPIMS), est utilisée pour déposer des films d’AZO. Avec
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la pulvérisation HiPIMS, des densités de courant instantanées élevées
peuvent être atteintes en utilisant des impulsions courtes mais intenses
pour créer le plasma. Le but de cette thèse est d’étudier la possibilité
de déposer des films d’AZO en utilisant la méthode HiPIMS à basse
température. La stabilité des films dans des environnements humides
est également évaluée. Ensuite, l’effet de la température du substrat
sur les propriétés des films d’AZO déposés par HiPIMS est étudié en
détail. Enfin, des films d’AZO auto-nanostructurés sont déposés sur des
substrats flexibles, sensibles à la température, afin de leur conférer une
fonctionnalité électrique.

Cette thèse est organisée comme suit : Après une introduction corres-
pondant au chapitre 1, les concepts théoriques des TCO sont décrits avec
un accent particulier sur les propriétés de ZnO dans le chapitre 2. Dans
le chapitre 3 est décrite la procédure de synthèse des films d’AZO après
une introduction des concepts de base de la pulvérisation cathodique
magnétron. Les techniques de caractérisation utilisées dans ce travail
sont présentées au chapitre 4. Un résumé des résultats, ainsi que des
suggestions pour les travaux futurs figurent aux chapitres 5 et 6. Enfin,
les résultats détaillés sont présentés sous la forme des articles jointes.

Dans l’article 1, des films d’AZO ont été déposés en utilisant la mé-
thode HiPIMS en mode réactif sans assistance thermique. Les propriétés
de ces films ont été étudiées et comparées à celles de films d’AZO dépo-
sés en utilisant la pulvérisation cathodique à courant continu dans le
même réacteur et dans des conditions proches. Les films d’AZO ont été
déposés en utilisant trois tensions de décharge différentes entre 540 et
570 V. Les meilleurs films ont été déposés en utilisant l’HiPIMS à la plus
haute tension de décharge de 570 V. Dans ce cas, une résistivité optimale
de 4×10−4 Ωcm a été trouvée. La concentration de porteurs de charge
atteint des valeurs allant jusqu’à 11×1020 cm−3. Ceci suggère que la dif-
fusion d’impuretés ionisées est le mécanisme de diffusion dominant
dans les films colonnaires.

L’amélioration des propriétés électrique par l’utilisation de la mé-
thode HiPIMS peut être résumé comme suit. En passant du mode continu
au mode HiPIMS, et avec une tension de décharge croissante dans le
cas de HiPIMS, la résistivité des films et la transmittance dans le proche
infrarouge diminuent, le gap augmente et la qualité cristalline dimi-
nue. Ces résultats suggèrent que les films deviennent de plus en plus
sous-stœchiométriques. De plus, les propriétés électriques et optiques

VI



mettent en évidence une plus faible hétérogénéité spatiale des propriétés
de conduction électrique dans le cas du film déposé par HiPIMS à 570 V.
Nous proposons que ce résultat est lié à un moindre bombardement des
films par des ions oxygène rapides.

Un bombardement moins prononcé des films par les ions oxygène et
le dépôt de films sous-stœchiométriques indiquent que le processus de
pulvérisation cathodique se déroule dans le mode métallique. Des films
d’AZO ont également été déposés en utilisant des longueurs d’impulsion
comprises entre 80 et 120µs. Les propriétés optiques et structurales de
ces films montrent que les films deviennent plus sous-stœchiométriques
avec une largeur d’impulsion croissante et donc une augmentation de
la dose d’ions reçue par les cibles au cours d’une impulsion.

Ces résultats suggèrent qu’avec la pulvérisation HiPIMS le processus
est décalé vers le mode métallique, en raison de l’augmentation de la
vitesse de pulvérisation instantanée, qui empêchent la formation d’une
couche d’oxyde à la surface de la cible. À partir de la dose d’ions par
impulsion et du profil de la zone d’érosion, la distribution locale du
taux de pulvérisation cathodique sur la zone d’érosion a été estimée
comme indiqué dans le supplément de l’article 1. Au centre de la zone
d’érosion, le nombre d’atomes pulvérisés est estimé être du même ordre
de grandeur que la densité atomique de surface de ZnO. Ceci conforte
notre modèle de l’élimination partielle de l’oxygène au centre de la zone
d’érosion dans le cas de l’HiPIMS. De plus, la vitesse de dépôt normalisé
est plus élevé dans le cas de HiPIMS que dans la pulvérisation cathodique
continue.

Dans le deuxième article, des films d’AZO déposés en utilisant la
pulvérisation HiPIMS et la pulvérisation DC avec différentes conditions
d’élaboration ont été recuits à basse température entre 160 et 180 ◦C
après un vieillissement dans l’air ambiant. Comme les propriétés élec-
triques de l’AZO sont connues pour se dégrader lors de l’exposition
à l’humidité, le procédé de recuit proposé a permis d’améliorer et de
restaurer partiellement les propriétés électriques. La dégradation des
propriétés électriques a été reliée à l’absorption d’eau et à la formation
de groupes hydroxyles dans la littérature. Ces groupes hydroxyle agissent
comme des pièges pour les porteurs de charge et peuvent donc diminuer
la concentration des porteurs de charge et la mobilité.

Dans ce travail, l’évolution de la résistance et les spectres de transmit-
tance ont été suivis in situ pendant le recuit. Les résultats sont interprétés
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en faisant intervenir un processus de diffusion, lié à la décomposition
des groupes hydroxyles et à la diffusion de l’eau vers l’extérieur. Un mo-
dèle de diffusion simplifié a été adapté à l’évolution de la résistance des
films avec le temps de recuit. Ceci a permis d’obtenir un coefficient de
diffusion effectif, qui s’est avéré avoir une valeur la plus élevée pour le
film déposé à la pression la plus élevée. Comme une pression de dépôt
plus élevée est généralement liée à une microstructure moins dense des
films, les résultats suggèrent que les joints de grains servent comme la
voie préférentielle de diffusion pour les molécules d’eau. Des preuves
supplémentaires pour l’élimination de l’hydrogène des films ont été ob-
tenues par spectrométrie de masse à ionisation secondaire (SIMS), ainsi
que par spectrométrie de photoélectrons induits par rayons X (XPS). Les
résultats d’XPS pour le pic de niveau de base de O 1s montrent que la
quantité de groupes hydroxyles diminue après le recuit.

Dans le troisième article, des films d’AZO ont été déposés à des tem-
pératures de substrat entre la température ambiante et 600 ◦C, en uti-
lisant l’HiPIMS réactif. Dans cette étude, les propriétés électriques se
sont avérées s’améliorer jusqu’à la température la plus élevée testée de
600 ◦C avec une résistivité minimale de 3×10−4 Ωcm. L’amélioration de
la résistivité des films est principalement liée à une amélioration de la
mobilité, due à une qualité cristalline améliorée à température élevée
du substrat.

Dans la littérature, les températures de substrat optimales pour le
dépôt d’AZO par pulvérisation cathodique réactive sont habituellement
comprises entre 200 et 350 ◦C. Le bombardement du film par les ions
d’oxygène provoque la désactivation des porteurs de charge en raison de
la formation de phases secondaires et en jouant le rôle d’impureté ioni-
sées qui diffusent les électrons. La formation de phases secondaires est
censé être augmenté à des températures élevées du substrat en raison de
la désorption préférentielle du Zn. Les résultats de l’article 1 ont montré
que les effets inconvénients du bombardement en oxygène peuvent être
réduits dans le cas de HiPIMS, ce qui peut expliquer pourquoi il n’y a
pas de dégradation des propriétés électriques à température élevée du
substrat dans cette étude.

De plus, l’étude de l’effet du vieillissement des films dans l’humi-
dité ambiante, similaire à la procédure décrite dans le papier 2, a été
réalisé. Seuls les films déposés à température ambiante ont montré une
dégradation significative des propriétés après 9 mois de vieillissement.
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Les films déposés à des températures de substrat de 200 ◦C et au delà
sont plus stables dans le temps. Ceci peut être relié à la qualité cristalline
améliorée des films, qui rend plus difficile la diffusion de l’eau dans les
films.

Les résultats du premier article ont montré que l’HiPIMS est une
technique appropriée pour déposer des films d’AZO conducteurs trans-
parents à température ambiante. Par conséquent, il est intéressant de
déposer des films d’AZO sur des substrats polymères flexibles en utili-
sant cette technique, car ces substrats sont sensibles aux températures
élevées. De plus, les films d’AZO déposés avec des conditions de crois-
sance favorisant une forte vitesse de dépôt consistaient en un réseau
poreux de nano-bâtonnets au-dessus d’une couche de départ dense
d’une épaisseur d’environ 100 nm. Cette microstructure particulière a
permis d’améliorer la fiabilité électrique des films.

La résistance des films a été mesurée après des flexions successives
avec un rayon de courbure décroissant. Il a été observé que la résistance
augmente avec la diminution du rayon de courbure, cependant, le début
de la diminution était décalé vers un rayon de courbure inférieur avec
une épaisseur de film croissante. De plus, l’amplitude de la variation
de la résistance diminue avec l’épaisseur du film. Cela peut s’expliquer
par la nanostructure des films. Lorsque l’échantillon est plat, les nano-
bâtonnets sont en contact latéral, assurant la conduction dans le film.
Lorsque l’échantillon est courbé, les nano-bâtonnets peuvent se séparer
sans se rompre et revenir à leur orientation initiale après la flexion. Cette
interprétation est soutenue par l’absence de longues fissures dans les
films perpendiculaires à la direction de flexion.

D’après les résultats d’analyses par diffraction des rayons X, la couche
continue de germination présente une contrainte de compression éle-
vée de près de 3 GPa pour les films déposés sur PET, tandis que pour les
films déposés sur Si, la contrainte de compression n’est que de l’ordre
de 1 GPa. La contrainte de compression élevée dans la couche de ger-
mination dans le cas d’un dépôt sur du PET peut être expliquée par la
différence élevée des coefficients de dilatation thermique du PET et de
l’AZO (respectivement 0.15 W m−1 K−1 et >30 W m−1 K−1). La couche de
nano-bâtonnets au dessus de la couche de départ croît avec la même
faible contrainte de compression d’environ 1 GPa sur les deux types de
substrats. Cette contrainte de compression est proche de la contrainte
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de compression constatée dans les films AZO déposés à température
ambiante et à 200 ◦C dans l’article 3.

La formation de la nanostructure des films AZO dans cette étude peut
être expliquée par une combinaison d’un effet d’ombrage atomique et
d’une diffusion limitée des adatomes due à une vitesse de croissance
relativement élevé. L’effet d’ombrage atomique est connu pour conduire
à de telles structures poreuses dans le cas d’un dépôt par pulvérisation
cathodique sous des angles obliques. La vitesse de croissance dans ce
travail était d’environ 40 nm/min, ce qui est encore plus élevé que la
vitesse de croissance le plus élevé dans le cas de de l’article 3 (35 nm/min
à 500 ◦C). Compte tenu de la faible température du substrat dans cette
étude, la vitesse de croissance élevé pourrait empêcher la diffusion d’ada-
tomes entre les grains. La ségrégation des phases secondaires aux joints
de grains est également susceptible d’empêcher la croissance latérale
des grains.
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Chapter 1

Introduction

Transparent conducting oxides or TCOs are a class of materials, that
are both transparent in the visible range as well as electrically conduct-
ing. Such materials can be used in many applications for example as
transparent electrodes in solar cells, flat panel displays, touchscreens or
electrochromic devices, as well as transparent heaters, anti-static films,
or low-emissivity windows [1]. The most common TCO is Sn-doped
In2O3 (ITO) [2]. However, as In is an expensive and potentially toxic
material with a fluctuating supply, alternative materials are being re-
searched [3]. One such material is Al-doped ZnO (AZO), which is the
material studied in this work.

For most applications, TCOs are needed in the form of thin films
that need to show homogeneous properties over large areas. A common
deposition method that is used to deposit AZO films is reactive mag-
netron sputtering, which uses a plasma to sputter atoms from a target
and deposit them on a substrate [4]. For the deposition of high quality
films, however, elevated substrate temperatures are usually needed [5].
Elevated temperatures are a problem for certain devices such as solar
cells, whose components are sensitive towards high temperatures [6,
p. 423]. This is also the case for organic polymer substrates that are used
for flexible devices [7, p. 5]. Additionally, the properties of the films can
degrade due to the bombardment with negative oxygen ions during the
film growth [8, 9].

In this thesis, a special form of magnetron sputtering, called high
power impulse magnetron sputtering (HiPIMS) is used to deposit AZO
films. In HiPIMS, high instantaneous current densities can be reached
by using short pulses to create the plasma [10]. The goal of this thesis is
to investigate the possibility to deposit AZO films at low substrate tem-
peratures using HiPIMS. Additionally, the stability of the films in humid
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environments is assessed. Furthermore, the effect of the substrate tem-
perature on the properties of HiPIMS deposited AZO films is studied in
detail. Finally, nanostructured AZO films are deposited on temperature
sensitive flexible substrates.

The outline of this thesis is organized as follows: In chapter 2, the
theoretical concepts of TCOs are described with a special focus on the
properties of ZnO. Then, in chapter 3 the deposition of AZO films is de-
scribed after an introduction of the basics of magnetron sputtering. The
characterization techniques that were used in this work are introduced
in chapter 4. A summary of the results and the contributions to the
field, as well as suggestions for future work are given in chapters 5 and 6.
Finally, the detailed results are presented in the form of the appended
papers.

2



Chapter 2

Transparent conducting

oxides

As already mentioned in chapter 1, TCOs are an interesting type of ma-
terials because of their interesting properties, of being simultaneously
transparent and conductive. In this chapter more details on this class of
materials will be given. The physical properties of TCOs are explained in
section 2.1 in order to understand how a material can be both transparent
and conductive. The different applications of TCOs are then described
in more detail in section 2.2. TCOs can be both n-type as well as p-type
conductors. Important n-type TCOs are the already mentioned ITO and
AZO, as well as SnO2:F (FTO). For p-type TCOs, delafossite materials
based on Cu2O are commonly used [11]. This chapter will, however,
focus mainly on n-type TCOs. Special attention is paid to the TCO ma-
terial zinc oxide in section 2.3. Finally, a short review of the different
deposition methods for Al-doped ZnO films will be given in section 2.4.

2.1 Physical properties of TCOs

In order to be transparent in the visible range, TCOs need to have a band
gap that is larger than the energy of photons in the visible range (~3 eV).
On the other hand, to be simultaneously conducting, the material needs
to have a sufficient charge carrier concentration. The conductivityσ of
a material is given by

σ= neµ , (2.1)

with n the charge carrier concentration, e the elementary charge and
µ the mobility of the charge carriers. To achieve a large charge carrier
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concentration in a wide band gap semiconductor, shallow donor states
need to be introduced below the conduction band [12].

When doping semiconductors, additional energy levels are intro-
duced within the band gap close to the valence or conduction band in
case of p-type or n-type semiconductors, respectively. These additional
states can introduce charge carriers in the valence or conduction band.
This causes a shift of the Fermi level EF that in the case of an n-type
semiconductor is given by

EC −EF = kBT ln
nC

nD
, (2.2)

with EC the energy level of the conduction band, nC the effective density
of states in the conduction band and nD the density of donor defects [13,
p. 37]. Equation 2.2 shows that the Fermi level increases with increasing n-
type doping. This is the case for non-degenerate semiconductors. If the
doping is increased so far, that the dopant concentration is higher than
the effective density of states in the conduction band, the Fermi level
will lie inside the conduction band. In this case the semiconductor is
called degenerate [13, p. 151]. In the case of a degenerate semiconductor,
the position of the Fermi level is given by

EF −EC =
ħh 2

2m∗e
(3π2ne)

2
3 , (2.3)

with m∗e the effective mass of an electron, and ne the concentration of
electrons [14].

The fact that the Fermi level lies within the conduction band means
that the bottom states of the conduction band are filled. The optical
band gap measured by absorption techniques will therefore be shifted
towards higher energies. This effect is called the Burstein-Moss effect
and is shown in Figure 2.1 [14, 15]. To calculate the shift in the optical
band gap, Equation 2.3 needs to be multiplied by (1+m∗e/m

∗
h), with m∗h

the hole effective mass, in order to take the curvature of the bands into
account [15]. The Burstein-Moss shift is then given by

∆EBM =
ħh 2

2
(3π2ne)

2
3

�

1

m∗e
+

1

m∗h

�

. (2.4)

The resulting increase in the band gap due to a large charge carrier
concentration is beneficial for the properties of TCOs as it shifts the
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Figure 2.1: Schematic representation of the Burstein-Moss effect in de-
generate semiconductors

absorption edge further into the ultraviolet (UV) range and therefore
widens the spectral region where the material is transparent.

On the other hand, the transparency in TCOs could be limited by
possible transitions of the electrons in the conduction band close to the
Fermi level to unoccupied states in higher conduction bands [2]. In order
for the material to be transparent, this second band gap also needs to be
sufficiently large.

While a high concentration of free charge carriers can increase the
band gap of a material due to the Burstein-Moss effect, it also causes
absorption of photons in the near-infrared range. This absorption ap-
pears at the plasma wavelength of the material and can be explained
by the Drude model for free electrons. In the Drude model, the plasma
frequencyωp is given by

ωp =

�

ne 2

ε∞ε0m∗e

�1/2

, (2.5)

with ε∞ the high frequency relative permittivity, ε0 the vacuum per-
mittivity and m∗e the electron effective mass [12]. Below the plasma
frequency (at long wavelengths) the material will be reflective. Above
the plasma frequency, the absorption coefficient of the material is given
by

α=
ne 2

m∗eε0N cτ

1

ω2
, (2.6)

with N the refractive index, c the speed of light and τ the relaxation time
that describes the mean time between scattering events [16, p. 194]. This
free charge carrier absorption is represented in the band structure as an
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intraband transition from an occupied state in the conduction band to
an unoccupied state in the conduction band above the Fermi level. As
the momentum of the electron changes in such a transition, a scattering
event needs to happen in order to conserve the momentum [16, p. 194].
The scattering rate is given as the inverse of the relaxation time τ and is
related to the mobility µ [17, p. 235] by

µ=
eτ

m∗e
. (2.7)

As can be seen from Equation 2.6, the absorption close to the plasma fre-
quency is decreasing with the frequency, but depends on both the charge
carrier concentration and the relaxation time. In order to keep this free
charge carrier absorption low, there are therefore limits in increasing the
charge carrier concentration if the material needs to be transparent [18].

The different mechanisms that limit the transparency of TCOs are
summarized in Figure 2.2. At short wavelengths, the transparency is
limited by the transitions T1 and T2. The transition T1 corresponds to
the transition between the valence band and the conduction band. It is
shifted towards higher energy with increasing charge carrier concentra-
tion due to the Burstein-Moss effect. The transition T2 corresponds to
the transition between the conduction band and the second conduction
band and is shifted towards lower energies with increasing charge carrier
concentration. Finally, the transition T3 corresponds to the free charge
carrier absorption, which limits the transparency for long wavelengths
and is shifted towards shorter wavelengths with increasing charge carrier
concentration [2].

From these results one can conclude that a compromise needs to
be found for the charge carrier concentration as it cannot be increased
arbitrarily without detriments to the transparency of the material, which
limits the conductivity on the other hand. Instead it is necessary to in-
crease the mobility (i.e. increase the relaxation time τ), which would
both improve the conductivity and decrease the free charge carrier ab-
sorption [7, p. 63]. The mobility is limited by different scattering mech-
anisms. In polycrystalline TCOs the principal scattering mechanisms
are ionized impurity scattering, grain boundary scattering and phonon
scattering, which are described in the following.

Ionized impurity scattering is scattering of the free carriers due to the
Coulomb interaction with the dopants or other defects [18]. This leads to
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a decrease of the mobility at high charge carrier concentrations. Masetti
et al. [19] developed a semi-empirical expression for the mobility at high
charge carrier concentration in doped Si, which can also be applied to
TCOs. This expression is given by

µ=µmin+
µmax−µmin

1+
�

n
nref1

�α1
− µ1

1+
�

nref2
n

�α2
, (2.8)

with µmax being related to the mobility due to scattering with the lattice
at low charge carrier concentrations and µmin the mobility limited due
to the ionized impurities. At very high charge carrier concentrations, the
ionized impurities can form clusters that cause stronger scattering. The
mobility due to this clustering process is described by µmax−µ1 in Equa-
tion 2.8 [6, p. 51]. The fit parameter nref1 describes the reference charge
carrier concentration for the transition between the lattice scattering
regime and the ionized impurity scattering regime, while the parameter
nref2 describes the transition between the ionized impurity scattering
regime to the cluster scattering regime. The parameters α1 and α2 de-
scribe the steepness of these transitions [20]. Typical values for these fit
parameters for common TCO materials are shown in Table 2.1.

Grain boundary scattering has been described by Seto [22] for poly-
crystalline silicon. He attributes it to the formation of trap states at
grain boundaries. When these trap states are filled, a potential barrier
with height ΦB is created which hinders the movement of charge carri-
ers across the grain boundary, as the charge carriers have to overcome
the barrier by thermionic emission. The effective mobility due to grain
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Table 2.1: Values for the fit parameters in Equation 2.8 for common TCO
materials [21]

Fit parameter ZnO ITO SnO2

µmax (cm2/Vs) 210 210 250
µmin (cm2/Vs) 55 55 50
µmax−µ1 (cm2/Vs) 5 5 10
nref1 (1017 cm−3) 4 15 20
α1 1 1 1
nref2 (1020 cm−3) 6 20 6
α2 2 2 2

boundaries µeff is therefore given by

µeff =µ0 exp
�

− ΦB

kBT

�

, (2.9)

with µ0 the mobility inside the grain [6, pp. 59-60]. The height of the
potential barrier depends on the charge carrier concentration. At low
carrier concentration the potential barrier is given by

ΦB =
e 2L 2n

8εrε0
for Ln < nt , (2.10)

with nt the trap density at the grain boundary, L the grain size and εr

the static relative permittivity [6, p. 60]. In this case of low charge carrier
concentration, the grains are depleted and the trap states are partially
filled, leading to an increase in the potential barrier up to a maximum
when Ln = nt and all the traps states are filled [22]. At higher charge
carrier concentration the potential barrier is given by

ΦB =
e 2n 2

t

8εrε0n
for Ln > nt . (2.11)

In this case, the trap states are filled, but the grains are only partially
depleted, so the barrier height decreases with increasing charge carrier
concentration [22]. Additionally, at very high charge carrier concentra-
tion, tunneling through the barriers is possible, as the depletion region
around the grain boundaries becomes narrower. This tunneling pro-
cess leads to a further increase in the mobility at high charge carrier
concentrations [6, pp. 60-61].
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Phonon scattering can be divided in optical and acoustical phonon
scattering. The displacement of atoms causes both a dipole electric mo-
ment and local changes in the band structure, which are responsible for
optical and acoustical phonon scattering, respectively [18]. Additional
scattering mechanisms include neutral impurity scattering and disloca-
tion scattering [21]. Under the assumption that the different scattering
mechanisms are independent of each other, the combined mobility µ
can be calculated from the mobilities due to the different scattering
mechanisms µi according to Matthiessen’s rule [23, p. 323]:

1

µ
=
∑

i

1

µi

. (2.12)

Bikowski and Ellmer [18] have developed an analytical model using this
rule to investigate the contribution of the different scattering mechan-
isms in degenerately doped ZnO films. Their results show that grain
boundary scattering is dominant for charge carrier concentrations up to
2×1020 cm−3. At higher charge carrier concentrations, ionized impurity
scattering becomes increasingly important and the contribution of grain
boundary scattering decreases.

2.2 Applications of TCOs

The most important applications of TCOs are architectural window ap-
plications, and as transparent electrodes in flat panel displays, touch-
screens and photovoltaics [7, p. 3, 24, p. 768]. Other applications include
transparent electronics and films for electrochromic devices [7, p. 5],
as well as antistatic films [24, pp. 758-759] and electromagnetic shield-
ing [24, p. 754]. In the following, a short description of the different
applications will be given.

For architectural windows, the principal interest in TCOs lies in their
low emissivity in the infrared. The emissivity ε is related to the reflect-
ance R and the transmittance T by ε= 1−T −R [25]. As TCOs are reflect-
ive above the plasma wavelength, their emissivity is low in the infrared.
This allows to lower the transfer of heat from the inside to the outside of
a building via infrared radiation, while the solar radiation in the near-
infrared can still pass through the window [26]. An ideal material for this
application would therefore be fully transparent at wavelengths between
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400 and 3000 nm, and fully reflective at wavelengths above 3000 nm [25].
Especially important is a low emissivity in the wavelength range between
8000 and 13000 nm in order to avoid the radiative cooling effect due to
the transparency window of the atmosphere in that range [27]. Low
emissivity coatings are therefore also useful to prevent frost on car wind-
screens [27]. The most common material used for these applications is
FTO due to its good chemical and mechanical stability [25]. Addition-
ally, it is also possible to use the TCO film as a transparent heater by
applying a voltage across the film, in order to defrost car or airplane
windscreens [24, p. 753].

In order to be used as a transparent electrode, a material needs to
be transparent in a certain wavelength range that depends on the ap-
plication of the device [28]. For use in flat panel displays, the material
needs to be transparent in the range that is visible to the human eye
(400-800 nm) [29]. For use in photovoltaics, the necessary transparency
range is given by the solar spectrum (300-2500 nm) [30] and the band
gap of the absorbing material.

In flat panel displays, two transparent electrodes are needed with a
layer of liquid crystals in between. Applying a voltage to the device allows
to change the orientation of the liquid crystals [31]. For flat panel displays,
the most commonly used TCO material is ITO due to its low resistivity [6,
p. 24]. However, because of the high cost of In, materials with less or no In
are also interesting for use as transparent electrodes. Recently, amorph-
ous TCOs such as indium zinc oxide (IZO) have emerged [32], which
offer a better uniformity over large areas [33, p. 157]. These materials are
therefore also used in flat panel displays [7, p. 4].

On mobile devices, such as phones and tablets, flat panel displays are
usually equipped with a touchscreen. There are generally two types of
touchscreens [24, pp. 768-772]. The first type is the resistive type, where
one transparent electrode is deposited on a flexible substrate. When
this flexible layer is deformed by touching it, a contact with the second
transparent electrode is formed. By applying a voltage gradient on each
electrode, the position of the contact can be detected. The other type
of touchscreen is the capacitive type. In this type, two grids of transpar-
ent electrodes, that are perpendicular to each other and separated by
a dielectric spacer, form capacitors. When the device is touched at a
certain location, the local electric fields change, and the resulting change
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in capacitance can be detected. For such touchscreens, ITO films are
usually used.

In solar cells, TCO films can be used as back and front contacts. ITO
alternatives such as AZO or FTO are often used [6, p. 24]. For example,
sputtered Al-doped ZnO layers are used as both back and front contacts
in solar cells based on amorphous Si. The surface of these layers can be
modified by chemical etching to improve the light trapping [34]. Trans-
parent electrodes based on doped zinc oxide are also used in thin film
solar cells based on CuInGaSe2 (CIGS) [35] or CdS/CdTe [36].

Another application where transparent electrodes are needed, are
electrochromic devices [25]. Electrochromic devices experience a change
of their optical properties when a voltage is applied. Such electrochromic
devices can therefore be used in applications such as “smart windows”
which allow to control the onset of reflectivity [37]. This allows to switch
the window from a mode, where near-infrared radiation from the sun is
reflected, to keep the inside of the building cool, to a mode, where the
onset of reflectivity is shifted to longer wavelengths, in order to keep heat
from escaping through the window. Electrochromic devices are based
on the transport of ions, such as H+ or Li+ through an ionic conductor
from an ion storage film towards the electrochromic film. A typical elec-
trochromic material is WO3. As ionic conductors, both organic and
inorganic materials can be used. Finally, transparent electrodes are used
on both sides of the device in order to apply a voltage. When a voltage
is applied through these electrodes, the ions are transferred into the
electrochromic film, thereby increasing the absorption of the material.

In order to evaluate the suitability of a material for use as a transpar-
ent electrode, a figure of merit can be defined. Such a figure of merit
needs to take into account both the transparency and the conductiv-
ity. Different definitions for such a figure of merit have been proposed.
Fraser and Cook [38] proposed to simply divide the average transmit-
tance T by the sheet resistance RS. However, Haacke [39] observed that
this definition favours a low sheet resistance too much and proposed a
different definition of the figure of merit Φ.

Φ= T 10/RS . (2.13)

This figure of merit depends on the thickness. Gordon [40] proposed
to use the conductivity σ and the absorption coefficient α to define a
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figure of merit that does not depend on the thickness and is given by

Φ=σ/α . (2.14)

For the value of the transmittance or absorption in these equations, the
average value in the spectral range that is important for the application
should be used. Gordon [1] reported optimum values for the figure of
merit for the most common TCOs (FTO, ITO and AZO) in the range of
3-5Ω−1.

TCOs can also be used in transparent and possibly flexible electron-
ics. Typically used materials in thin film transistors are amorphous Si,
which has low field-effect mobility [7, p. 481]. Transparent oxides, on the
other hand, can offer advantages such as a higher mobility. In such ap-
plications, the TCO is not only used as a passive contact, but as an active
part of the device. For example, in organic light emitting devices (OLED)
ITO or ZnO are used for hole injection into the organic conductor [6,
p. 25]. However, also for these applications amorphous TCOs present
advantages due to the absence of grain boundaries [7, p. 481]. Nomura
et al. [41] fabricated a fully transparent TFT on a flexible substrate based
on amorphous indium gallium zinc oxide. These devices are all based
on n-type transparent oxides. Devices based on p-type TCOs are more
difficult to realize as p-type transparent oxides generally have a lower
mobility. Nevertheless, advances in p-type TCOs have been made using
for example Cu2O [42].

2.3 Properties of zinc oxide

Zinc oxide (ZnO) is a wide band gap semiconductor. It is used in the
chemical industry for rubber production, paints and agricultural us-
age [6, p. 3]. ZnO is also used in the form of micro- or nanoparticles in
sunscreen, as its absorption edge is in the UV [43]. Research on ZnO as
a semiconductor material has started in the 1950s, however since the
1990s there has been a significant increase in the number of publications
on ZnO [6, p. 1]. This increase can be related to the many interesting
properties of ZnO, such as its direct band gap, the large exciton bind-
ing energy, as well as its piezoelectric and luminescence properties [44].
Other important factors are the possibility to easily fabricate ZnO nano-
structures [45] and the potential of ZnO to be used as a dilute magnetic
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semiconductor [46]. This section will give an overview on the proper-
ties of ZnO with a focus on the possibility of doping ZnO with extrinsic
impurities in order to use it as an n-type TCO.

ZnO can occur in several crystal structures, such as the hexagonal
wurtzite structure, the cubic zincblende structure and the cubic rock-
salt structure [47]. The most stable one of these crystal structures is
the wurtzite structure. In the wurtzite structure of ZnO (Spacegroup
P63mc) the hexagonal unit cell has the lattice parameters a = 3.2501 Å
and c = 5.2071 Å. The structure can be seen as the superposition of two
hexagonal closed packed sublattices of Zn and O [48, p. 2]. Each Zn and
O atom is surrounded by the respective other type of atom in a tetra-
hedral coordination. The crystal structure is shown in Figure 2.3. In
ZnO the (0001) planes are terminated by Zn atoms, whereas the (0001̄)
surfaces are terminated by O atoms. These planes are therefore polar,
which means that ZnO does not show an inversion symmetry and has
piezoelectric properties [47]. It is interesting to note, that thin films of
ZnO often show a preferential orientation along the c-axis [49]. This
preferential orientation depends on the deposition method, but is very
common especially in sputter deposited films. However, the exact reas-
ons for this preferential orientation are not yet fully understood, but are
possibly related to the surface energies of the different planes [49].

ZnO has a direct band gap of 3.37 eV at room temperature making
it transparent in the visible range [44]. Towards longer wavelengths,
the transmittance is limited by the free charge carrier absorption as
has been described in section 2.1. The valence band maxima and the
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conduction band minima are located at the Γ point in the Brillouin
zone at k = 0 [50, p. 4]. The valence band states are given by the O 2p
states [6, p. 12]. The chemical bonds in ZnO have a strong ionic character,
so the conduction band is mainly given by the 4s states of Zn2+ [51].
When a photon excites an electron from the valence to the conduction
band, the resulting electron-hole pair can be bound due to the Coulomb
interaction between the electrons. The so formed electron-hole pair is
called an exciton [52, p. 276]. Upon recombination of the electron-hole
pair, a photon is emitted. The exciton binding energy in ZnO is 60 meV,
which is large enough that excitonic emission can be observed at room
temperature [44].

A variety of intrinsic point defects are common in ZnO [53, 54]. Among
these are Zn and O vacancies (VZn and VO in Kröger-Vink notation) and
interstitials (Zni and Oi). These defects can be ionized and can therefore
serve as acceptors (VZn and Oi) or donors (VO and Zni). Zinc vacancies
introduce states close to the valence band maximum and can take up
two electrons [44]. Oxygen interstitials are also considered to be shallow
acceptors [55]. Both VZn and Oi have been reported to be the dominant
compensating defect in n-type ZnO [44, 54]. Oxygen vacancies have the
lowest formation energy among the donor defects, however calculations
show that it is a deep donor [44]. Zinc interstitials occupy the octahed-
ral site in the wurtzite structure and act as a shallow donors. However,
their formation energy is quite high in n-type ZnO, so they can only be
introduced in n-type ZnO in out-of-equilibrium conditions [44]. The
energy levels of these defects are shown in a schematic band structure
in Figure 2.4. The donor defects could be a possible explanation for the
natural n-type conductivity in ZnO [44]. Some authors argue, however,
that the native defects are not a sufficient explanation for the n-type
behaviour of ZnO and propose extrinsic doping by H impurities [56].

In order to increase the conductivity of ZnO extrinsic doping is ne-
cessary. The most common dopants are group III elements, such as B,
Al, Ga or In [55]. But also doping with group IV elements, such as Si, Ge,
Ti, Zr, Hf, Sn or Pb has been reported [57]. In these cases, the dopant
atom acts as a donor and substitutes a Zn atom in the crystal lattice [44].
For group III elements, the dopant has an additional valence electron
as compared to Zn, so it can become easily ionized and introduce an
electron into the conduction band of the material. While group IV ele-
ments could theoretically supply two electrons in a substitutional site, it
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Figure 2.4: Schematic representation of the energy levels of intrinsic
point defects in ZnO [53, 55]

was found that group IV dopants are present as a trivalent ion and also
supply one electron to the conduction band [57]. On the other hand, it
is also possible to substitute the oxygen by an group VII element, such
as F [58]. Because F has one more valence electron than O, it can also
supply an electron to the conduction band [55].

Sato et al. [57] deposited ZnO films doped with different group IV
elements by RF magnetron sputtering and found the best properties
for Si-doped ZnO with a resistivity of 4.7× 10−4 Ωcm. But also other
dopant elements, such as Ge, Ti, Zr, and Hf, improved the conductivity
of the films. Sn and Pb, however, are not efficient dopants and caused an
increase in the resistivity due to a decrease in the mobility. Since then,
several groups have reported the deposition of ZnO films doped with
group IV elements, such as ZnO:Si [59] and ZnO:Zr [60].

Doping ZnO with group III elements is more common and has been
studied more intensively than doping with group IV elements. Among
these dopants, the lowest resistivities have been achieved using Al and
Ga [55]. The following discussion will be focused on Al, because it is
the most commonly used dopant. Al has only a limited solubility in
ZnO [61], as the thermodynamic solubility limit of Al in ZnO has been
determined to be only 0.3 at% [62]. In contrast, typical Al concentrations
in transparent conducting ZnO thin films are between 1 and 4 at% [5].
This means that out-of-equilibrium growth techniques are needed for
the deposition of AZO films, as secondary phases such as ZnAl2O4 or
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Al2O3 can be formed [20]. Additionally, the formation of a homologous
Al2O3(ZnO)m phase has been deduced from X-ray absorption near edge
structure (XANES) measurements [8, 63]. These secondary phases cause
a deactivation of the dopant atoms and therefore a degradation of the
electrical properties. Additional reasons for dopant deactivation are the
compensation of donors by acceptor defects such as Oi or VZn, or the
formation of neutral defect complexes [55]. Due to these effects, the
doping efficiency in AZO films is usually below 100 % and depends on
the deposition method and the process conditions [55].

2.4 Deposition methods for AZO thin films

There are several methods in order to deposit thin films of ZnO or AZO.
These deposition methods can belong to several categories, such as
chemical solution based methods, chemical vapour deposition (CVD)
and physical vapour deposition (PVD) [7, pp. 201-202].

Chemical solution based methods

Among the chemical solution based methods are techniques, such as
spray pyrolysis [64, 65] and sol-gel methods [66, 67]. In spray pyrolysis,
fine droplets of a solution of precursors such as zinc acetate and alu-
minium chloride are sprayed onto a heated substrate. Typical deposition
temperatures are around 450 ◦C, at which the precursors decompose
and ZnO is formed. In the sol-gel method, a colloidal solution of polymer
particles (the “sol”) is prepared from precursors [68, pp. 2-8]. This sol
can be transferred to the substrate by techniques such as dip coating
or spin coating. The colloidal particles can then aggregate and form a
polymer network (the “gel”). The substrate then needs to be annealed at
temperatures between 400 and 850 ◦C in order to remove the solvents
and condensate a ceramic compound, that can be crystallized by sinter-
ing. Films obtained by these methods are generally polycrystalline and
their resistivity is limited to around 1×10−3 Ωcm, however there are also
reports of resistivities down to 7×10−4 Ωcm in case of spray pyrolysis [64].
The advantage of these methods is their simplicity, as no vacuum system
is needed. They also provide a good control over the composition of the
films. However, they require quite high process temperatures compared
to other techniques.
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Another chemical solution based method is electrochemical depos-
ition [69]. The deposition temperature in this technique is less than
100 ◦C, as the process takes place in an aqueous solution. The substrate
is put into an electrolytic bath and used as a working electrode. The pre-
cursors are then electrochemically reduced to form the film. This means,
that this technique requires a conductive substrate, so it is not useful
for the fabrication of transparent electrodes. However, electrochemical
deposition of ZnO allows to deposit nanostructures, such as nanorods,
by decreasing the concentration of the zinc precursor [70, 71].

Chemical vapour deposition

AZO films can also be deposited using CVD methods. With the excep-
tion of atmospheric pressure CVD, CVD methods are usually vacuum
techniques, which means, that they are more expensive than chemical
solution based methods. On the other hand, working in vacuum re-
duces the amount of unwanted contamination. Generally, CVD works
via a chemical reaction of vapours of the precursors, in which the pre-
cursors are decomposed and form a film on the substrate [72, p. 147].
The chemical reaction on the substrate depends strongly on the sub-
strate temperature. There are several types of CVD, that can be used
to deposit transparent conducting ZnO films, such as metal organic
CVD (MOCVD) [73], plasma enhanced CVD (PECVD) [74], atmospheric
pressure CVD [75] and atomic layer deposition (ALD) [76].

MOCVD uses metal organic precursors, that means metal atoms with
organic ligands. The oxygen precursor can be O2, H2O or an alcohol [6,
pp. 235-236]. The precursors are evaporated and carried into the vacuum
chamber by a carrier gas such as Ar. O2 might be introduced separately
into the chamber. The substrate needs to be heated to temperatures
of several hundred ◦C. Using MOCVD, AZO films with a resistivity of
6× 10−4 Ωcm have been deposited at 275 ◦C [73]. The deposition tem-
perature can be reduced by using PECVD. In this technique, a plasma is
used to assist in breaking the chemical bonds of the precursors, so lower
substrate temperatures can be used [72, p. 181]. This way, AZO films
with a resistivity of 7×10−4 Ωcm could be deposited [77]. Another CVD
method is atmospheric pressure CVD, which does not require a vacuum
system. AZO films with a resistivity in the order of 10−4 Ωcm could be
deposited with this technique at a substrate temperature of 400 ◦C [75].
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ALD is another technique that is related to CVD. The main difference
is that the metal and oxygen precursors are inserted into the reactor sep-
arated in time. This allows to grow films layer by layer, which allows an
accurate control over the film thickness. While this technique generally
gives lower deposition rates, films deposited by ALD have a great con-
formity to any substrate shape. However, ALD is sensitive to the chemical
nature of the substrate, as the initial growth can be severely hindered if
the precursor does not react with the surface of the substrate [78]. AZO
films with a resistivity in the order of 9×10−4 Ωcm have been grown at a
substrate temperature of 200 ◦C using ALD [76].

Physical vapour deposition

Physical vapour deposition methods are also vacuum processes, leading
to a lower contamination of the substrates and the growing films [79, p. 7].
PVD methods for the deposition of AZO films include evaporation [80,
81], pulsed laser deposition (PLD) [6, p. 303], cathodic arc deposition [82]
and magnetron sputtering [4].

In thermal evaporation methods, a source of material is heated in va-
cuum, so it evaporates and the atoms are deposited onto a substrate [79,
p. 11]. There are several possible ways to evaporate the material, such as
passing an electric current through the material [79, p. 368] or directing
an electron beam of several keV onto the surface of the material [79,
p. 400]. Both of these techniques have been used to deposit AZO films
with lowest resistivities in the order 10−4 Ωcm using ZnO powder as a
source at temperatures between room temperature and 200 ◦C [80, 81].

Another PVD technique that allows the growth of high quality AZO
films is pulsed laser deposition. In PLD a target is ablated by laser pulses
with high energy [6, pp. 305-309]. As the laser pulse interacts with the
vaporized target material a plasma plume is formed, that expands to-
wards the substrate. The atoms and ions then condense on the substrate,
leading to growth of a thin film. One of the advantages of PLD is the
stoichiometric transfer of the compound from the target to the sub-
strate. Additionally, the process is free of contamination and the growth
of metastable materials is possible. The main disadvantage of PLD is
the limitation to substrate sizes of about 1 cm2 [6, p. 304]. However, in
laboratory scale, PLD allows the deposition of AZO films with the lowest
resistivity known [83]. Using a ceramic ZnO/Al2O3 target, Agura et al.
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[84] deposited columnar AZO films with a resistivity of 8.5×10−5 Ωcm at
a substrate temperature of 230 ◦C on glass substrates.

Cathodic arc deposition is another method for the synthesis of AZO
films. It is based on an arc discharge that is used to evaporate a target at
so called cathode spots and transform the material into a plasma [85]. In
these cathode spots, the current density is very high in the order of 1010

to 1012 A/m2, while the voltage is low at around 20 V. The high current
density leads to large ionized fraction of the target atoms. However,
macroparticles are often produced at the cathode spots, that can be
incorporated into the growing film. In order to avoid this, a filtering
system can be used, such as a magnetic field to steer only the ions towards
the substrate. Using pulsed filtered cathode arc deposition, AZO films
with a resistivity in the order of 10−4 Ωcm were deposited at a substrate
temperature of 200 ◦C [82]. In these depositions, Zn rods with a few
percent of Al were used as targets and oxygen was injected into the
vacuum chamber as a reactive gas.

Finally, magnetron sputtering is a PVD method, that is commonly
used for the deposition of AZO films [4]. This is due to the advantages
of magnetron sputtering, such as the scalability to large areas of up to
20 m2 and the possibility to achieve good film properties at relatively
low substrate temperatures due to the plasma assistance [7, p. 202]. This
technique is used in this thesis. Therefore, a detailed description of
magnetron sputtering will be given in chapter 3 with a focus on the
sputtering of AZO films in section 3.7.
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Chapter 3

The sputter deposition

process

Sputter deposition is a method to deposit thin films on a substrate. It
uses ions from a plasma to bombard a target in order to sputter atoms
from that target via momentum transfer. These sputtered atoms are
then deposited onto the substrate. A schematic representation of a
typical sputter deposition setup is shown in Figure 3.1. The plasma is
generated by supplying a working gas into a vacuum chamber with the
most commonly used working gas being argon. A negative potential of
several 100 V is applied to the target. The Ar atoms in the gas are then
ionized by electrons, and accelerated towards the target. The processes
in the plasma are explained in more detail in section 3.1. When the Ar
ions hit the target, several processes such as sputtering and secondary
electron emission occur. The interactions between the ions and the
target are explained in section 3.2. In sections 3.3, 3.4 and 3.5 more details
about the different techniques of sputter deposition are given. Then, the
growth of thin films on the substrate will be detailed in section 3.6. A
review of the deposition of AZO thin films using magnetron sputtering
is given in section 3.7. Finally, the different experimental setups used in
this work will be presented in section 3.8.
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Figure 3.1: Typical sputter deposition experimental setup

3.1 Basics of plasma physics

A plasma is an ionized gas, where gas ions, electrons and neutral particles
exist in a quasineutral equilibrium, meaning the overall amount of negat-
ive and positive charges cancel each other out. Plasmas are often called
the forth state of matter after the solid, liquid and gas state, because of
the increasing order of energies in these states [86, p. 1]. The energy E of
a plasma is given by the average energies of the particles in the plasma.
It is often expressed as a temperature T = E /kb, with kb the Boltzmann
constant [72, p. 106]. In a so called non-thermal plasma, the electrons
and ions do not have the same temperature. The electron temperat-
ure Te is generally much higher than the temperature of the ions or the
neutrals [86, p. 4].

A typical way to ignite a plasma discharge is a simple diode setup,
where a potential difference is applied between two electrodes in a gas at
low pressure. As there are always a few electrons in a gas due to natural
radioactivity, these electrons are accelerated in the potential difference
and can ionize gas atoms [79, p. 282]. This creates a direct current (DC)
discharge. There are several regimes of plasma that are differentiated
by their current-voltage characteristics that are shown in Figure 3.2. At
low current, there is the so called Townsend region. When the voltage
is increased, electrons are able to ionize more gas molecules and more
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Figure 3.2: Current-voltage of characteristics of a DC discharge [79,
p. 282]

electrons are created. If the voltage is high enough, these newly created
electrons can gain enough energy to also ionize gas atoms. This electron
multiplication leads to an exponential increase in current [79, p. 286].

If the voltage gets increased further to the breakdown voltage VB, the
discharge will arrive to the breakdown stage, where the current increases
by several orders of magnitude. This breakdown is due to the onset of
secondary electron emission at the cathode [79, p. 288]. The mechanisms
of secondary electron emission are explained in more detail in section 3.2.
After breakdown the voltage drops while the current remains constant.
The discharge is now called a glow discharge because it emits visible light
due to excited species. In the normal glow regime, the voltage remains
constant at Vg. Not all of the cathode surface is used in the normal
glow regime. Increasing the current increases the part of the surface of
the cathode that carries the current. When all of the cathode surface
is used, the abnormal glow regime is reached. In the abnormal glow
regime the voltage increases with the current. Increasing the discharge
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power further will heat up the cathode. When the temperature is high
enough, thermionic emission is possible and the arc regime is reached.
The transition to the arc regime is related to a decrease in voltage to
the arc voltage Varc [79, p. 289]. For sputter deposition the discharge is
operated in the abnormal glow regime.

Any surface that is introduced in a plasma gives rise to a potential
gradient called the plasma sheath [87, p. 70]. This plasma sheath is due
to a space charge region close to the surface. The space charge region
forms because electrons can move faster than ions towards surfaces. If
the surface is electrically insulated, its potential, the so called floating
potentialVf, is given by

Vf =
kBTe

2e
ln
�π

2

me

m

�

, (3.1)

with Te the electron temperature, e the elementary charge, me the elec-
tron mass and m the molecular mass of the gas species. In sputter de-
position the anode surface is generally quite large, as the whole chamber
is grounded. This large surface leads to a small current density, so the
voltage drop at the anode is smaller than the floating potential Vf [87,
p. 71]. The potential drop at the cathode is approximately equal to the
applied discharge voltage. The thickness of the cathode sheath s is given
by the Child law [86, p. 144]:

s =

p
2

3
rD

�

2V0

Te

� 3
4

, (3.2)

with V0 the sheath voltage. The Debye radius rD describes the screening
of electric charges and is given by

rD =

�

ε0kBTe

ne 2

�
1
2

, (3.3)

with ε0 the vacuum permittivity and n the density of electrons [88, p. 10].
Typical values for the sheath thickness in the case of sputter deposition
are in the range of a few centimeters [87, p. 302].

The largest potential gradient in a DC discharge is found in the cath-
ode sheath. Electrons are accelerated within this potential gradient and
can collide with gas atoms. These collisions can be both elastic and
inelastic. In elastic collisions there is only an exchange of the kinetic
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energy of the colliding particles. However, as electrons have a much
lower mass than ions, only a small portion of the energy is transferred
to the ion, and the electron is just scattered [72, p. 108]. In the case of
inelastic collisions gas atoms can get excited or ionized. In case of gas
molecules dissociation can also occur. In an excitation reaction, a gas
atom such as an Ar atom gets into an excited state and the electron loses
the corresponding energy. When the excited state of the molecule decays
a photon of a specific wavelength is emitted [79, p. 170]. Atoms can get
ionized for example in the case of Ar by the following reaction:

e−+Ar→Ar++2e− . (3.4)

Gas molecules such as O2 can get dissociated into oxygen radicals upon
collisions with electrons. Other reactions such as dissociative ionization
are also possible.

3.2 Sputtering interactions

When ions are accelerated across the cathode sheath towards the target,
they gain an energy E = e VT , with VT the target potential drop, that is
approximately equal to the applied voltage. When the ions reach the
target several interactions such as implantation, sputtering or secondary
electron emission can occur. The sputter yield Y that describes the
number of sputtered atoms per incident ion is given by

Y =
3

4π2
αMR

ηE

US
. (3.5)

In this equation αMR describes the mass ratio of the incident particle
and the target atom, E the energy of the ions and US the surface binding
energy [89]. The energy transfer factor for an elastic collision η depends
on the masses of the involved particles m1 and m2 and is given by

η=
4m1m2

(m1+m2)2
. (3.6)

Sputtering is only possible above a certain threshold energy, as the sur-
face binding energy of the material has to be overcome [79, p. 569]. The
threshold energy is given by

Eth =
US

η(1−η) . (3.7)
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The threshold energy is typically in the range of 20-40 eV. Equation 3.5
shows that the sputter yield increases linearly with the energy of the
incident ions. This is valid for the energy ranges that are typically used in
sputtering (100-1000 V) [79, p. 568]. At higher energies, the sputter yield
starts to decrease because the ions can reach deeper into the material,
and surface atoms are less affected [79, p. 567].

The energy distribution of the atoms sputtered from the target f (E )

can be described by the Thompson distribution:

f (E )∝ E

(E +US)3
, (3.8)

with E the energy of the sputtered atoms [90]. This energy is usually in
the range of a few eV to a few tens of eV [91]. The angular distribution of
the sputtered atoms is generally approximated by a cosine law [89, p. 23].

The impacting ions also induce emission of secondary electrons that
can keep the plasma alive [92]. The emission of secondary electrons is
characterized by the secondary electron yield γSE that is defined as the ra-
tio of the emitted electrons per incoming ion. There are two mechanisms
for the emission of secondary electrons, which are potential emission
and kinetic emission [93]. Potential emission is the main mechanism in
the case of metal targets and is similar to an Auger process, when the
incoming ion is neutralized by an electron from the target. The excess
energy of this process leads to the emission of a secondary electron.
The yield of this mechanism depends on the work function of the target
material W and the ionization energy of the incoming ion Ei. Several
empirical expressions have been proposed to describe the secondary
electron yield γSE in the case of potential emission [93, 94]:

γSE = 0.032(0.78Ei−2W ) (3.9)

γSE = 0.016(Ei−2W ) (3.10)

γSE = 0.2(0.8Ei−2W )/EF (3.11)

In the case of kinetic emission, electrons are emitted due to the kinetic
energy of the impinging ions [93]. This emission process becomes dom-
inant for higher energies than the ones typically found in sputtering
processes [95]. Kinetic emission can, however, play a role in the sputter-
ing of insulating materials, such as wide band gap oxides or nitrides [89,
p. 208].
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The plasma is sustained due to the ionization of Ar atoms by the
secondary electrons. The minimum voltage required for maintaining
the discharge Vd is therefore closely related to the secondary electron
yield γSE and is given by

Vd =
Ui

eγSEεiεe fm feff
, (3.12)

with Ui the average energy loss per ionization which is around 30 eV for
an Ar discharge [89, p. 8]. The other coefficients in Equation 3.12 corres-
pond to different loss or multiplication mechanisms. The coefficient εi

describes the loss due to ions that are created far from the target and the
coefficient εe is due to electrons being lost at the anode. The coefficient
fm is a multiplication parameter due to electrons that are created in the
cathode sheath and gain enough energy to produce more ions. The coef-
ficient feff describes the effective ionization probability that takes the
recapture of electrons by the target into account. The effective ionization
probability depends on the pressure. At low pressure, fewer ionization
events are expected, which leads to a higher discharge voltage [89, p. 9].

3.3 Magnetron sputtering

In order to keep a plasma alive, electrons need to encounter and ionize
the working gas atoms with a sufficient probability. This probability
is given by the electron mean free path and depends on the pressure.
Therefore, it is necessary to have a sufficiently high pressure in the order
of tens of Pa in the case of diode sputtering that has been described so
far. Such high pressures lead to a decrease in the deposition rate, as the
motion of the sputtered atoms is impeded by collisions with the working
gas [87, p. 303]. To increase the sputtering rate and enable sputtering at
lower pressures, additional magnetic fields can be used. In a magnetron,
permanent magnets are placed behind the target as shown in Figure 3.3.
The resulting magnetic field B causes electrons to experience a Lorentz-
force and a force due the electric field E , which is given by

F =−e (E +v ×B ) , (3.13)

with v the velocity of the electron and e the elementary charge [72,
p. 123]. The magnetic field will cause electrons to gyrate with the electron
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Figure 3.3: Schematic representation of the magnetron sputter process

cyclotron angular frequency,

ωe =
e B

me
, (3.14)

with me the electron mass [96]. The presence of both the electric and
the magnetic field causes a drift of the electrons perpendicular to both
fields, that is given by

vd =
E ×B

B 2
. (3.15)

This drift causes an azimuthal current, that is called Hall current. These
effects trap the electrons in the vicinity of the target, which leads to more
ionization of Ar atoms. This means that a stable plasma can be achieved
at lower pressure. The distribution of the magnetic field lines leads to
the concentration of the ionization in the region of the Hall current. In
this region more ions are created, which leads to an enhanced erosion
of the target. This erosion zone is called the racetrack.

A sputtering magnetron can use a balanced or an unbalanced config-
uration [89, pp. 4-5]. In a balanced configuration, the total magnetic flux
through the inner magnet is equal to the magnetic flux through the outer
magnet, meaning that the magnetic field lines are closed between the
outer and inner poles of the magnetron. In an unbalanced magnetron
this is not the case and the flux through the outer magnet is larger. This
allows the plasma to extend towards the substrate, as stray field lines
flow towards the substrate leading to an increased ion flux towards the
substrate [97].
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3.4 Reactive magnetron sputtering

With the description of magnetron sputtering so far, it can be readily
understood how to deposit a metallic thin film on a substrate by sput-
tering atoms from a metallic target, which are then deposited onto the
substrate. In order to sputter a compound film, such as a metal oxide or
nitride, there are two possibilities. The first one is to sputter a ceramic
oxide or nitride target and the second possibility is to use reactive sput-
tering. Sputtering ceramic targets using a DC discharge is not possible if
the target is not conductive, as it would cause charge accumulation on
the target [87, p. 318]. Instead, it is necessary to use radio-frequency (RF)
sputtering. In RF sputtering, an RF signal with a typical frequency of
13.56 MHz is coupled capacitively to the target to generate a discharge,
which allows to sputter insulating targets [72, p. 121]. However, ceramic
targets are costly and mechanically fragile, which makes it difficult to
produce large targets. Additionally, RF power supplies are generally more
expensive than DC power supplies [7, p. 204]. Finally, the deposition rate
in RF sputtering can often be quite low [98, p. 379].

As an alternative, reactive magnetron sputtering can be used to de-
posit a compound film by sputtering a metal target and introducing a
reactive gas such as oxygen or nitrogen to the gas phase. This reactive
gas can then react with the sputtered atoms to form a compound. The
target also reacts with the reactive gas and a compound is formed on
the target [99]. The formation of the compound leads to a change in
the sputtering conditions, because the sputter yield and the secondary
electron emission coefficient change. The change in the sputter yield is
due to the change in the surface binding energy of the target material.
The ionic or covalent bonds in the compound are generally stronger than
metallic bonds. Therefore, the sputter yield generally decreases when
the compound is formed on the target as can be seen from Equation 3.5.
This effect is often referred to as target poisoning.

There is typically a hysteresis behaviour observed when changing
the flow rate of the reactive gas as shown in Figure 3.4. When increasing
the gas flow rate above a critical point the sputter parameters such as the
reactive gas partial pressure, the discharge voltage and the deposition
rate change suddenly. Decreasing the gas flow rate below a second, lower
critical point will bring the sputter parameters back to their initial values.
At low reactive gas flow, the process is in the metallic mode, which means
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Figure 3.4: Typical hysteresis curves of the sputtering rate and the partial
pressure of reactive gas according to Berg’s model [100]

that the target surface is metallic leading to a high deposition rate. After
the critical point the deposition rate decreases drastically and the process
is in the compound mode, where a compound is formed on the target
surface.

This hysteresis behaviour can be described by Berg’s model of react-
ive sputtering [100, 101]. This model takes into account the gettering
of the reactive gas by the sputtered atoms, the target and the substrate
area (including the chamber walls) as well as the pump using several
steady state equations. From these equations, the sputtering rate, and
the formed compound fractions on the target and the substrate can be
calculated as a function of the partial pressure of the reactive gas or the
reactive gas flow. In order to obtain the curves in Figure 3.4, a certain
partial pressure of the reactive gas is assumed and the gas flow that is
necessary to achieve that partial pressure is calculated. In an experi-
ment, such a curve is only possible to obtain using an active feedback
control of the gas flow. Without the feedback control, the process will
follow the dotted lines as described in the previous paragraph. In the
metallic mode, all the reactive gas is consumed by the target and the
substrate, so the partial pressure of the reactive gas is zero. In the com-
pound, the target area is fully covered by the compound and the partial
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pressure of reactive gas increases linearly with the gas flow as the gas is
not consumed by the process anymore.

This hysteresis in reactive sputtering is influenced by the different
parameters, such as the sputter yields of the metal and the compound.
Also the applied current has an influence. By increasing the current the
critical flow rates get shifted to higher values. On the other hand, increas-
ing the pumping speed leads to a decrease in the width of the hysteresis.
For very high pumping speeds the hysteresis can even disappear.

In reactive sputtering, it is often desirable to work in the transition
mode between the metal and compound mode. This mode allows to
deposit stoichiometric compound films, while still having a higher depos-
ition rate than the compound mode. Because of the hysteresis behaviour
it is difficult to stabilize the transition mode, unless an active feedback
control is used. Such a feedback control monitors for example the partial
pressure of the reactive gas or some other process parameter and adjusts
the flow of reactive gas or the electrical parameters of the discharge to
stay at a fixed point in the hysteresis loop [102].

Berg’s model of reactive sputtering was extended by Depla et al. to
include also the effect of implantation of reactive gas ions on the tar-
get [99]. By including ion implantation of reactive gas ions into the target
and also knock-on implantation of chemisorbed reactive gas atoms into
the target, the extended model allows for compound layers thicker than
just a monolayer as in Berg’s model.

Another effect of the introduction of a reactive gas is the change in
the discharge voltage in case of sputtering with a constant current. For
some materials, such as Al or Zn, the discharge voltage decreases in
the oxide mode, whereas for other materials, such as Ti, the discharge
voltage increases in the oxide mode [103]. This can be explained by the
change in the secondary electron emission yield upon formation of the
compound layer. As described in Equation 3.12 the discharge voltage is
inversely proportional to the secondary electron yield. For most oxides,
the secondary electron yield is larger than for the corresponding metal
as kinetic emission becomes dominant, leading to a decrease in the
discharge voltage. Other oxides can become substoichiometric as oxygen
is preferentially sputtered. The secondary electron yield of the suboxides
is smaller or in the same order as the secondary electron yield of the
metal leading to an increase in the discharge voltage [103].
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3.5 High power impulse magnetron sputtering

High power impulse magnetron sputtering (HiPIMS) is a special form of
pulsed DC magnetron sputtering, that allows to reach large instantan-
eous current and power densities. While in DC magnetron sputtering
a constant current is applied, pulsed DC magnetron sputtering uses
pulses with short off times in the order of µs, that are repeated with a
frequency of several 100 kHz. This technique is often used when sputter-
ing materials with a relatively high resistivity in order to allow charges
to dissipate during the off times and prevent arcing. HiPIMS on the
other hand uses relatively long off times of several 100µs between pulses
and lower repetition frequencies in the order of 100 to a few 1000 Hz.
The difference in the pulsing modes between DC magnetron sputtering,
pulsed DC magnetron sputtering and HiPIMS is shown schematically
in Figure 3.5. The pulsing in case of HiPIMS allows to keep the average
power density at a low enough value to not overheat the target, while
the high power density during the pulse leads to a high plasma density,
which in turn leads to a large degree of ionization of the sputtered atoms.
The technique was first developed in the 1990s [10, 104]. The ratio of the
pulse length and the pulse period is called the duty cycle. In HiPIMS the
duty cycle is typically in the order of 0.5 % to 5 % [96]. As an alternative
name of HiPIMS also high power pulsed magnetron sputtering (HPPMS)
is used [105]. HPPMS is also often used as a general term to include
HiPIMS and modulated pulse power (MPP), which is a technique that
groups several short micropulses into a longer macropulse [106]. An-
ders proposed two different definitions of the term HiPIMS [107]. His
technical definition is that peak power should exceed the time averaged
power by typically two orders of magnitude in HiPIMS. The more phys-
ical definition is that in HiPIMS a significant fraction of the sputtered
atoms becomes ionized.

If a large fraction of the sputtered atoms are ionized, these ions can
get back-attracted to the target and participate in the sputtering process.
This is called self-sputtering [107]. Models that explain the processes in
a HiPIMS discharge were published by several authors [108–110]. These
models are based on the relative fractions of sputtered atoms that are
ionized and back-attracted to the target, respectively. Increasing the
discharge voltage above a critical value will lead to a large increase in the
discharge current. This runaway has been primarily attributed to self

32



HiPIMS

DC Pulsed DC

Time

C
u

rr
en

t

Figure 3.5: Schematic comparison of DC magnetron sputtering, pulsed
DC magnetron sputtering and HiPIMS

sputtering and the runaway threshold is characterized by the following
condition.

βiβrγSS > 1 , (3.16)

with βi the ionization probability of a sputtered atom, βr the probability
that an ion returns to the target and γSS the self-sputter yield [95]. This
concept has been more generalized in the so-called recycling trap model,
where both target atoms as well as gas atoms are ionized and return to
the target to cause further sputtering [110].

The back-attraction of metal ions to the target causes an issue for
HiPIMS processes, namely a reduction in the deposition rate as com-
pared to DC sputtering with the same average power. Deposition rates
in HiPIMS are typically found to be only 30-85 % of the corresponding
deposition rates in DC sputtering [111].

Another effect in HiPIMS is the rarefaction of gas in front of the
target [112]. This rarefaction is due to the heating of the gas, which leads
to a decrease in gas density according to the ideal gas law. The rarefaction
is also due to an effect known as “sputter wind”, meaning the transfer
of momentum from the sputtered atoms to the gas atoms. This effect
is very pronounced in the case of HiPIMS discharges due to the high
instantaneous density of sputtered atoms. The rarefaction effect can be
observed in the current waveforms as a decrease in the discharge current
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Figure 3.6: Typical current waveform for a 200µs HiPIMS pulse

after a peak. Such a typical current waveform is shown for a 200µs pulse
in Figure 3.6.

HiPIMS discharges were found not to be homogeneous above the
racetrack of the target, but rather show regions of increased ioniza-
tion [113]. These ionization regions are called spokes and drift along the
racetrack in a E ×B direction. The ionization zones have been described
in the so called ionization region model, that takes into account the reac-
tion rates of the different species in the plasma and also the rarefaction
effect [114].

When sputtering in reactive mode, the shape of the current wave-
form typically changes between the metal and the compound mode. In
Figure 3.7, discharge current waveforms are shown for a Zn/Al target
sputtered in an Ar/O2 mixture using 50µs HiPIMS pulses at different
frequencies. At the higher frequency, the process is in the metallic mode,
whereas at the lower frequency the process is in the compound mode.
In the metallic mode, the current waveform is flat, whereas in the com-
pound mode, the current waveform has a triangular shape and rises to a
maximum at the end of the pulse. This evolution of the discharge current
waveform is commonly observed in literature [115], and can even be
used to control the reactive sputter process [116]. The different shapes in
the two modes can be explained by an extension of the ionization region
model for reactive sputtering by Gudmundsson et al. [117]. They show
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Figure 3.7: Discharge current waveforms of a Zn/Al target sputtered in
an Ar/O2 mixture using 50µs pulses

that in the compound mode the discharge is dominated by recycling of
Ar ions, whereas in the metallic mode, there is a mixture of metal ions
and Ar ions.

In reactive sputtering using HiPIMS, it was observed that the hys-
teresis effect can be avoided in certain cases [118, 119]. This has been
related to the high instantaneous sputtering rate, that might remove
the oxide layer during a pulse, and the rarefaction effect, that would
decrease the compound formation between the pulses. To account for
these effects, Wallin and Helmersson [118]modified Berg’s model to use
an higher effective current density in the steady state equations for the
target. This modification of Berg’s model allows to qualitatively describe
the behaviour of the hysteresis in the case of HiPIMS as the target cover-
age of the compound is shifted towards higher reactive gas flow, and the
typical S-shape of the sputtering rate that is shown in Figure 3.4 can be
avoided. Recently, more advanced models of reactive HiPIMS have been
published, that also take into account the implantation of reactive gas
ions and back-attracted metal ions [120].
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3.6 Thin film growth

Up to now, the processes on the target and in the plasma have been
described. This section will describe what happens on the substrate
surface, when the sputtered atoms arrive and condense to form a film.
There are three basic growth modes in film formation that depend on
the relative strength of the bonds formed between the substrate and the
film and between the atoms of the growing film [72, pp. 197-198]. When
the atoms from the vapour impinge on the substrate they form nuclei. If
the bonds between the atoms of the nuclei are stronger than the bonds
towards the substrate, the nuclei will grow into small islands on the
substrates. This island growth mode is also called Volmer-Weber growth.
On the other hand, if the bonds between the substrate and the film are
stronger, the film will form a monolayer on top of the substrate. On top
of this first layer, a second layer with slightly weaker bonding can form.
This means, that the film can grow layer by layer. This growth mode is
called layer growth or Frank-van der Merwe growth. In the third growth
mode, a few layers are grown initially, and then island growth occurs on
top of these initial layers. This growth mode is called Stranski-Krastanov
growth.

The properties of the growing film are also influenced by the depos-
ition parameters such as the pressure and the substrate temperature.
The influence of these parameters on the morphology of the films can
be described by structure zone models or structure zone diagrams. A
first structure zone model was developed by Movchan and Demchishin
as a function of the homologous temperature T /Tm [121]. The homo-
logous temperature is the ratio of the substrate temperature divided
by the melting temperature of the deposited material. Movchan and
Demchishin identified three different zones. For low homologous tem-
peratures (T /Tm < 0.3) the film growth is described by zone 1. In this
zone fibrous grains ending with domed tops are found. This can be
explained by the low mobility of the adsorbed atoms (adatoms) at low
temperature [122]. At higher temperatures (0.3< T /Tm < 0.5) in zone 2,
uniform, columnar grains are formed due to the surface diffusion. Fi-
nally, in zone 3 (T /Tm > 0.5) dense films with equiaxed grains are formed
due to bulk diffusion.

In magnetron sputtering, another important parameter next to the
substrate temperature is the pressure in the chamber. As typical pres-
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sures in magnetron sputtering are in the range between 0.1 and 10 Pa,
there are collisions between the sputtered atoms and the background
gas, which decrease the kinetic energy of the sputtered atoms. With
increasing pressure, the mean free path between collisions decreases
and the kinetic energy of the sputtered atoms and the deposition rate
decrease. It is possible to evaluate this decrease in the kinetic energy
and the deposition rate either by analytical calculations or by modelling
using Monte-Carlo simulations [123].

In order to include the influence of the pressure on the film growth,
Thornton extended the structure zone model by Movchan and Demchi-
shin [121, 124]. Thornton found a transition zone T between zones 1
and 2 for low pressures. This transition zone consists of dense, fibrous
grains without voids. Barna and Adamik [125] extended the structure
zone model further to include the effect of impurities. The segregation
of impurities at the grain boundaries can hinder grain growth and lead
to smaller grains [126, pp. 23-24].

Another extension of the structure zone model was made by Mahieu
et al. [127]. In this structure zone model, adatom diffusion on the surface
and between grains is considered separately. A new zone Ic is intro-
duced, where adatoms can only diffuse on the surface of one grain, but
not diffuse to another grain. This leads to the growth of faceted columns
without a preferential crystallographic orientation. Only at higher tem-
perature the diffusion from one grain to another is possible, which leads
to a preferential orientation along the fastest growing crystallographic
orientation after initial competition between randomly oriented grains.
Mahieu et al. call this zone the zone T.

This structure zone model has to be further extended, if one con-
siders that a significant number of the sputtered atoms are ionized, such
as in HiPIMS. Anders [122]proposed an extended structure zone diagram
to include the effects of the ion flux on the film growth. He replaced the
homologous temperature with a generalized temperature T ∗. This gen-
eralized temperature also includes the effect of the potential energy of
particles arriving on the substrate. He proposed to replace the pressure
axis in the diagram by a normalized energy E ∗, that is related to kinetic
energy of the incoming particles. Additionally, Anders introduced the
film thickness as a third axis, to show the effects of densification and
sputter etching of the growing film.
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3.7 Sputter deposition of AZO thin films

As already described in section 3.4, oxide films can be deposited either
using RF sputtering of a ceramic target or by reactively sputtering a metal
target. Because of the conductivity of AZO, however, it is also possible to
sputter an AZO target using a DC discharge [128]. AZO films have been
grown using both non-reactive and reactive magnetron sputtering. The
best properties of the films are usually achieved by RF sputtering from
a ceramic target [129]. For example, Agashe et al. [130] deposited AZO
films with a resistivity of 3.5× 10−4 Ωcm at a substrate temperature of
100 ◦C. However, due to the higher cost of ceramic targets there is an
interest in using reactive sputtering of metal targets. Even though the
hysteresis effect can be relatively small in reactive sputtering of AZO
depending on the process parameters [131], a small change in the oxy-
gen partial pressure can cause a large change in the properties of the
films [4]. Despite this difficulty of controlling the reactive sputtering
process, reactive magnetron sputtering has been used to deposit AZO
films with various deposition parameters.

One problem that was reported by several groups studying both non-
reactive and reactive sputtering of AZO, is the lateral inhomogeneity of
the properties [132, 133]. The problem was initially found in the depos-
ition of undoped ZnO by Minami et al. [134]. An increase in the resistivity
by several orders of magnitude was found for substrates placed in front
of the target. Tominaga et al. [132] confirmed this effect for AZO films pre-
pared by RF magnetron sputtering and related it to the bombardment of
the film with negative oxygen ions coming from the target. This negative
oxygen ion bombardment can introduce acceptor defects, such as oxy-
gen interstitials into the growing film, and therefore decrease the charge
carrier concentration as reported by Bikowski et al. [9]. They observed
a minimum in the resistivity for a certain substrate temperature that
depends on the sputter method. They postulate that at low substrate
temperature the compensation of the carriers by the created oxygen
interstitials is dominant. At intermediate temperatures, the acceptor
defects get annealed and the resistivity decreases. At high substrate tem-
peratures, phase segregation occurs which increases the resistivity. The
formation of secondary phases, such as the homologous Al2O3(ZnO)m

phase, can also be induced by the oxygen ion bombardment. Using
XANES, Horwat et al. [8] deduced a stronger presence of that phase at
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substrate positions in front of the target axis in AZO films, that were
reactively sputtered at room temperature. Vinnichenko et al. [63] found
that the formation of the homologous phase occurs independently of the
substrate temperature, but the volume fraction of the homologous phase
increases above an optimum deposition temperature. This increase in
the volume fraction can be related to an increase in the Al concentration
in the film due to preferential Zn desorption, as Zn has a higher vapour
pressure than Al.

There are many studies on the influence of the different process
parameters, such as the oxygen partial pressure (or more general the
ratio between metal and oxygen flux), the substrate temperature, the
Al concentration in the target or the total pressure, on the properties
of sputtered AZO films. Reviews on magnetron sputtering of AZO films
have been published by Ellmer [4] and by Szyszka [6, pp. 187-233].

In the case of reactive sputtering, one of the most important process
parameters is the oxygen partial pressure. Usually, the resistivity shows
an optimum at an intermediate oxygen partial pressure. For example,
Brehme et al. [135] studied the deposition of AZO films in reactive DC
sputtering at room temperature as a function of the oxygen flow rate
and found an optimum resistivity of 6×10−4 Ωcm. This behaviour can
be related to the influence of stoichiometry on the electrical and optical
properties of the films [7, pp. 205-206]. At low oxygen partial pressure, the
films have a high charge carrier concentration, which limits the mobility
and the transmittance of the films. At high oxygen partial pressure, the
dopants become oxidized and therefore inactive, leading to transparent
but insulating films.

The substrate temperature also plays an important role as has been
already discussed above in terms of the deactivation of dopants by the
formation of secondary phases. In many cases, an optimum in resistivity
is therefore found for an intermediate substrate temperature. The exact
value of that optimum substrate temperature depends on the other de-
position parameters, such as the Al concentration in the target and the
oxygen partial pressure [63].

The influence of the Al concentration in the target on the film prop-
erties has been studied by Cornelius and Vinnichenko [5] for concentra-
tions between 0.7 at% and 8.7 at%. They found the highest dopant activ-
ation and the lowest resistivity for a target Al concentration of 1.7 at%.
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Finally, the microstructure of the films is strongly affected by the
total pressure as the energy of the arriving atoms is pressure dependent.
As described in section 3.6, a higher pressure generally causes a less
dense film structure, thereby increasing the grain boundary scattering
and therefore the resistivity [7, pp. 206-207].

As reactive and non-reactive magnetron sputtering remains a chal-
lenge, new approaches are still being tested. One such new approach is
HiPIMS. In the literature, HiPIMS has been used to deposit both doped
and undoped ZnO films from both metal and ceramic targets. The
HiPIMS deposition of undoped ZnO was first reported in 2007 by Kon-
stantinidis et al. [136] and the HiPIMS deposition of AZO was reported
in 2008 by Ruske et al. [137].

Ruske et al. [137] deposited AZO films using reactive HiPIMS from
alloyed Zn/Al targets. They used a prototype HiPIMS power supply
providing pulses of 100-150µs [138]. Additionally, they used a feedback
control for the reactive sputter process using the oxygen partial pressure
as an input signal to regulate the pulse frequency [139]. This allowed
them to deposit transparent AZO films with a resistivity of around 2×
10−3 Ωcm at room temperature and 3.5×10−4 Ωcm at 200 ◦C. Later, the
same group also deposited AZO films using a ceramic AZO target, but
these films showed large lateral variations of the resistivity due to the
oxygen ion bombardment [140].

Tiron et al. [141] also deposited AZO using HiPIMS with short pulses
of 6µs. They used a Zn target and an additional Al electrode that was
placed between the target and the substrate. With this setup, they could
control the Al content in the films by varying the bias voltage on the Al
electrode. They found an optimum resistivity of 3.6× 10−3 Ωcm with
an Al concentration of 1.5 at% for room temperature deposition. There
is another report of the deposition of AZO films by Anders and Brown
[142], who used a HiPIMS discharge steered towards the substrate by a
solenoid in order to filter out the negative oxygen ions. This way, they
deposited AZO films with a resistivity of 3.5× 10−4 Ωcm at a substrate
temperature of 160 ◦C.

3.8 Experimental setup

Different vacuum chamber with different sputter setups were used in this
work. In all of the chambers, a rotary vane pump and a turbomolecular
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Figure 3.8: Experimental sputter setup for Papers 1 and 2

pump were used to reach a base pressure in the order of 10−3 Pa. The
depositions in Paper 1 and the depositions using HiPIMS in Paper 2

were done in a chamber that is equipped with three 5 cm magnetrons
and a rotating substrate holder. A schematic drawing of this chamber
is shown in Figure 3.8. The three magnetrons are placed symmetrically
around the centre of the chamber in a distance of 8 cm. For clarity,
only one of the magnetrons is shown in the figure. Substrates are usually
fixed on the sample holder using a polyimide tape. The substrates can be
placed at different lateral positions as indicated in Figure 3.8. The vertical
distance between the target and the substrate dTS can be adjusted by
moving the magnetron. The substrate holder can be connected to a radio
frequency (RF) power supply, in order to plasma etch the substrates. This
plasma etching can be used to clean the surface of the substrates from
contamination. The volume of the chamber is 45 l.

For Paper 3 a different deposition chamber was used, that is equipped
with a rotating substrate heater with a diameter of 15 cm. The chamber
has a volum of 30 l and is equipped with 2 magnetrons. These magnet-
rons were placed at a distance of 6 cm from the centre of the chamber.

For Papers 1, 2 and 3, the plasma was generated by an Advanced
Energy Pinnacle Plus pulsed DC power supply, connected to a Melec Spik
2000A HiPIMS pulsing unit. For the HiPIMS experiments, the discharge
current waveforms could be measured using a Tektronix TDS 2024B
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oscilloscope with a Pearson Current Monitor model 110. For the DC
experiments, the Advanced Energy Pinnacle Plus was used in constant
current mode.

For Paper 4, a 70 l chamber was used with a single magnetron placed
in the centre of the chamber. The substrates were placed at a distance
of 11 cm from the target on a static substrate holder. The plasma was
generated by using an Ionautics HiPSTER 1 pulsing unit, that is charged
by a Technix SR1KV DC power supply.
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Chapter 4

Characterization methods

The various characterization methods that were used in this work in
order to evaluate the optical, electrical and structural properties of the
AZO thin films will be presented in this chapter.

4.1 Spectrophotometry

The optical transmittance and reflectance spectra in the infrared, visible
and the UV range can be obtained by spectrophotometry. In a spec-
trophotometer, light is directed through a sample and the change in
intensity between the incident and transmitted light or the incident and
reflected light can be measured. The light is created by a lamp and then
a certain wavelength is selected using a monochromator. A common
setup is a double beam setup. The light beam is split into two compon-
ents. One beam is directed towards the sample, while the other one is
used as a reference. The fraction of the intensity of the sample beam
over the intensity of the reference beam gives the measured signal.

The transmittance T is defined as the ratio of intensities of the trans-
mitted light It and the incident light I0. The specular reflectance R is the
ratio of intensities of the reflected light Ir and the incident light I0. Light
can also be reflected or transmitted diffusely, leading to the optical scat-
ter S , that is given by S = Is/I0 with Is the intensity of the scattered light.
Additionally, light can be absorbed in the material and the absorptance
A can be defined accordingly. Due to energy conservation the different
intensities add up to the incident intensity [143, pp. 71-73]:

It+ Ir+ Is+ Ia = I0 . (4.1)
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Therefore, the sum of transmittance, specular reflectance, scatter and
absorptance must be equal to one.

T +R +S +A = 1 . (4.2)

The transmittance and specular reflectance of a sample can be easily
measured with a spectrophotometer. In order to measure the optical
scatter, an integration sphere is necessary, that collects all the light that
is reflected or transmitted onto a detector. Most of the thin films invest-
igated in this work are homogeneous and have relatively flat surfaces, so
the scatter can be neglected [143, p. 110]. Only for the films in Paper 4

an integration sphere was used.
In order to measure the transmittance of the film several methods

are available. It is possible to use the substrate as a reference. In this case,
the measured transmittance would directly correspond to the transmit-
tance of the film. However, possible effects of the interface between the
substrate and the film are neglected. It is also possible to only use air as
a reference and to leave the reference sample holder empty. In this case,
the transmittance of the substrate can be measured in a separate meas-
urement as TS. The transmittance of the film TF is then approximated
from the measured transmittance T as

TF =
T
p

TS

. (4.3)

To understand this equation, the interactions of light with interfaces
have to be taken into account [144]. These interactions can be described
by Fresnel’s formulae [143, pp. 76-83]. These formulae describe a system
where light is arriving on an interface between a medium with complex
refractive index N1 and a medium with complex refractive index N2. For
normal incidence, Fresnel’s coefficients r and t are given by

r =
N1−N2

N1+N2
(4.4)

and

t =
2N1

N1+N2
. (4.5)

The reflectance R is related to the Fresnel coefficient r by

R = |r |2 (4.6)
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Figure 4.1: Light traversing different media

and the transmittance T is then given by

T = 1−R =
N2

N1
|t |2 . (4.7)

When light traverses a substrate, it passes two interfaces. The first inter-
face is between air and the substrate and the second interface is between
the substrate and air. Such a system is shown in Figure 4.1a. The trans-
mittance of the substrate is therefore given by

TS = TASTSA=
16N 2

A N 2
S

(NA+NS)4
. (4.8)

Similarly, if light traverses only a thin film, its transmittance TF is given
by

TF = TAFTFA=
16N 2

A N 2
F

(NA+NF)4
. (4.9)

The total transmittance of the system with a film on a substrate as shown
in Figure 4.1b is given by

Ttotal = TAFTFSTSA=
64N 2

A N 2
F N 2

S

(NA+NF)2× (NF +NS)2× (NS+NA)2
. (4.10)

By combining Equations 4.8, 4.9 and 4.10 a more exact expression than
Equation 4.3 can be found:

TF =
T
p

TS

NA(NF +NS)
2

NS(NA+NF)2
. (4.11)
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Inserting typical values (NA = 1, NS = 1.5 and NF = 2) in the correction
factor in Equation 4.11 results in a factor of 0.91, which is close to 1. If
one would use Ttotal/TS to calculate the transmittance of the film TF , a
different correction factor would have to be used:

TF =
T

TS

4N 2
A (NF +NS)

2

(NA+NS)2(NA+NF)2
. (4.12)

Inserting the same values as above for the refractive indices results in
a factor of 0.87, which is farther away from 1. Accordingly, the approx-
imation in Equation 4.3 is slightly better adapted for the materials used
in this work. However, this approximation does not take into account
multiple reflections at the interfaces and the resulting interference phe-
nomena. Also, the absorption within the media is neglected. To take all
these effects into account, a more complex model needs to be used [143,
p. 118].

From the transmittance T the absorption coefficient α can be calcu-
lated according to the Beer-Lambert law [145, p. 776]:

T =
I

I0
= e−αt , (4.13)

with I the intensity of the transmitted light, I0 the intensity of the in-
cident light and t the thickness of the film. Accordingly, the absorption
coefficient α is given by

α=
1

t
ln

1

T
. (4.14)

If some of the incident light is reflected at the interface, the reflectance
R has to be taken into account in the calculation of the absorption coef-
ficient. The initial intensity in the Beer-Lambert law is now I ′ = I0(1−R )

and Equation 4.14 becomes

α=
1

d
ln

1−R

T
. (4.15)

To determine the band gap from the absorption spectrum at ener-
gies above the band gap, the Tauc method can be used [146]. The Tauc
method assumes that the absorption coefficient α and the band gap
energy Eg are related by

(αhν)1/n = A(hν−Eg) , (4.16)
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Figure 4.2: Example of a Tauc plot

with h Planck’s constant, ν the frequency and A a proportionality con-
stant [147]. The exponent 1/n is equal to 2 for direct transitions and
equal to 1/2 for indirect transitions [17, p. 180]. To determine the band
gap of a direct band gap material such as ZnO it is possible to plot (αhν)2

as a function of hν and extrapolate the linear part of the curve to the
point where (αhν)2 is zero. This method is shown in Figure 4.2.

The spectrophotometer used in Papers 1, 2 and 3 is a Cary 5000
UV–Vis–NIR spectrophotometer. This spectrophotometer is equipped
with two different light sources and allows measurements in the range
between 200 and 3300 nm. For Paper 4, a Perkin Elmer Lambda 950
UV/Vis spectrophotometer was used. It is equipped with an integra-
tion sphere, in order to be able to measure the specular and the diffuse
transmittance. The measurement range is between 250 and 2200 nm.

4.2 Photoluminescence spectroscopy

In photoluminescence spectroscopy (PL) a sample is irradiated with
light of a certain wavelength to excite electrons in the material, which
leads to emission of light of other wavelengths. The spectrum of this
emitted light is measured. The excitation source can be a laser or a lamp
where a certain wavelength is selected using a monochromator. A typical
experimental setup is shown in Figure 4.3. The light that is emitted from
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Figure 4.3: Photoluminescence spectroscopy setup

the sample enters the detector and is diffracted using a grating. The
intensity of the light is then measured as a function of the wavelength
using a line CCD (charge coupled device) detector.

Photoluminescence spectroscopy is useful to obtain information
about the band structure and defect states of a material. An example
of a typical PL spectrum of ZnO thin films is shown in Figure 4.4 for
an excitation at 325 nm. In ZnO there are generally two contributions
observed if the material is excited with an energy above the band gap.
The first contribution corresponds roughly to the energy of the band
gap corrected by the exciton binding energy. The second contribution
can be found in the visible range and corresponds to different defect
states within the band gap of ZnO. Using a deconvolution of the defect
emission, information about the different types of defects in the material
can be obtained [148].

The PL setup used in this work uses a Horiba iHR320 spectrometer.
This spectrometer is equipped with a Horiba Syncerity multichannel
CCD detector. A 266 nm CryLas FQCW266-50 laser was used as the
excitation light source. In order to avoid parasitic light from the laser
being measured, several filters were used. For measuring the part of the
spectrum at low wavelengths, a 325 nm edge filter was used. In order to
avoid the second order of the excitation wavelength appearing in the PL
spectra, a 400 nm edge filter was used to record the part of the spectrum
at larger wavelengths.
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Figure 4.4: Typical PL spectrum of a ZnO thin film excited at 325 nm

4.3 Electrical characterization

The sheet resistance RS of thin films is defined by RS =ρ/t , with ρ the
resistivity and t the thickness. The sheet resistance is generally given
in the unit Ω per square (Ω/sq or Ω/�). RS can be measured using the
4-point probe method [72, pp. 453-455]. The film is contacted by four
probes in a linear configuration as shown in Figure 4.5a. Through the
outer contacts a current is applied, and the resulting voltage is measured
at the inner contacts. The measured value has to be multiplied with
a correction factor due to the contact geometry and the geometry of
the sample. For a linear contact configuration the correction factor is
equal to π/ ln(2) = 4.53 if the sample is much larger than the spacing
between the contacts. Otherwise, a smaller correction factor has to be
applied [149].

An alternative configuration is the Van der Pauw configuration [150].
The film needs to be contacted in four points A,B ,C , and D . Ideally, the
sample should have a square shape and the contacts should be placed
in the corners. This configuration is shown in Figure 4.5b. The current I

and the voltage V need to be measured for different configurations. The
resistivity ρ is then calculated from

exp(−πt

ρ

VC D

IAB

) +exp(−πt

ρ

VD A

IB C

) = 1 . (4.17)
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Figure 4.5: Contact configurations for 4-point probe measurements [72,
p. 454]

It is also possible to perform Hall effect measurements using the
Van der Pauw configuration [150]. In this case a magnetic field B is
applied perpendicular to the film surface. If a current I is passed through
opposing corners of the sample (e.g. A and C ), the Hall voltage VH can
be measured through the other two corners (e.g. B and D ). The Hall
mobility µH is then calculated using

µH =
t

B

VH

Iρ
. (4.18)

With the known resistivity and mobility the charge carrier concentration
n can be calculated according to n = 1/(ρeµ)with e being the electron
charge. The Hall effect setup used in this work is an Ecopia HMS 5000
setup, that uses a magnetic field of 0.57 T.

4.4 X-ray diffraction

In X-ray diffraction (XRD) the sample is irradiated with X-rays of a certain
wavelengthλ in a certain angleθ . The diffracted X-rays are measured as a
function of the diffraction angle. This gives crystallographic information
about the sample. The diffraction angle 2θ is related to the distances
between planes of the crystal lattice dhk l by Bragg’s law [151, p. 192]:

2dhk l sinθ = nλ , (4.19)

with n the order of diffraction. With a known wavelength of the X-rays
(typically Cu Kα, λ= 1.5406 Å) the distance dhk l can be calculated from
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Figure 4.6: Schematic representation of the Bragg-Brentano geometry
used in XRD [152, p. 15]

each peak in the diffraction pattern. The indices hk l are the Miller
indices, that indicate the crystallographic plane.

There are several different geometries that are used in XRD. The
Bragg-Brentano geometry is commonly used for θ/2θ scans [152, p. 15].
This geometry is schematically shown in Figure 4.6. In this case, the
angle between the incident X-rays and the sample surface θ is varied
and the angle between the detector and the incident X-rays is accordingly
varied to keep it as 2θ . Using a θ/2θ scan only the planes in the film
that are parallel to the surface are probed. For the case of a textured thin
film only few peaks will be visible because the planes that are parallel
to the surface belong to the same family of planes. An alternative to
the Bragg-Brentano geometry is the parallel beam configuration, which
makes the diffractometer less sensitive to a misalignment of the sample
height [153].

The width of a diffraction peak is broadened due to several effects.
The first effect is the broadening due to instrumental settings, such as the
emission characteristics of the X-ray source or the characteristics of the
used X-ray optics [152, p. 97]. The second effect is the broadening due
to microstrains. Microstrains are local distortions of the crystal lattice,
such as dislocations. These distortions cause variations in the lattice
parameter and therefore a broadening of the diffraction peak [152, p. 85].
The third contribution to peak broadening is due to the finite crystallite
size. Smaller crystallite sizes lead to broader peaks. Analyzing the peak
broadening is especially useful in the case of nanoparticles, where the
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particle size D can be estimated by the Scherrer equation

D =
K λ

β cosθ
, (4.20)

with β the full width at half maximum (FWHM) and K a constant, that
can be related to the shape of the crystallite [154]. A typical value for K

is around 0.9. In the case of thin films the Scherrer equation can only
be used to estimate the size of coherently scattering domains, which
does not correspond to the grain size. In any case, the Scherrer equation
gives only a lower bound for the crystallite size or coherence length, as
the contributions of the instrumental broadening and especially the
microstrains are difficult to take into account.

One way to solve this problem is the method by de Keijser et al. [155].
In this method the peak is fitted by a Voigt function, which is a convolu-
tion of a Gaussian and a Lorentzian function. The broadening due to the
size can be assumed to follow a Lorentzian function and the microstrain
and instrumental broadening follow a Gaussian function. This allows to
insert the width of the Lorentzian component into Equation 4.20 to cal-
culate an estimate for the crystallite size. The instrumental broadening
should be determined by measuring a standard sample of a material of
high crystalline quality using the same diffractometer settings. Assum-
ing that the instrumental broadening follows a Gaussian function, the
broadening due to microstrains βstrain can be calculated as

βstrain =
q

β 2
Gaussian−β 2

instr , (4.21)

with βGaussian the width of the Gaussian component and βinstr the width
due to instrumental broadening [152, p. 101].

Several diffractometers were used in this work. For most of the
samples an AXS Bruker D8 Advance with a Cu anode was used. This
diffractometer uses the Bragg-Brentano geometry and is equipped with
an automatic sample loading system. Such as system allows to measure
several samples in a batch measurement. Another diffractometer was a
PANalytical X’pert with a Cu anode using a parallel beam geometry.

4.5 Scanning electron microscopy

A scanning electron microscope (SEM) can be used to investigate the
surface morphology and the chemical composition of a sample. In SEM,
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Figure 4.7: Schematic of the interaction of the primary electron beam
with the sample surface in SEM [72, p. 267]

an electron beam is accelerated by a voltage of a few kV to several tens
of kV. The beam is then focussed on a small spot on the sample and
scanned across the surface of the sample [72, p. 266]. The interaction of
the electrons with the sample leads to several detectable signals such as
secondary electrons, backscattered electrons and X-rays. These interac-
tions are schematically shown in Figure 4.7.

Secondary electrons are generated when the incoming primary elec-
trons ionize atoms in the sample. Secondary electrons have low energy,
so only those originating from close to the surface can escape the sample.
Therefore, secondary electrons show the surface morphology [72, p. 267].

Backscattered electrons are primary electrons that undergo elastic
collisions with the atoms of the sample. As the backscattering probability
increases with the mass of the scattering atoms, heavier atoms will lead to
a higher intensity of backscattered electrons. These electrons therefore
include information about the chemical contrast [72, p. 268].

The emitted X-rays can be analyzed by energy dispersive spectro-
scopy (EDS) or wavelength dispersive spectroscopy (WDS) [72, p. 269].
The energy of the X-rays is element specific, so it is possible to study the
chemical composition of the sample using EDS or WDS. The X-rays are
emitted from a certain interaction volume, that depends on the energy
of the incident electrons and the chemical composition of the sample.
The quantification of a EDS or WDS spectrum assumes a homogeneous
composition of the sample within the interaction volume. In the case of
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thin films, a problem can arise if the interaction volume is larger then
the thickness of the films.

The SEMs used in this work are a Philips XL30 and a LEO 1550 Gem-
ini. Both of these microscopes use a field-emission gun (FEG) as their
electron source. A FEG uses the high electric field that can form at sharp
tips of a material to emit electrons [156, p. 74]. Both microscopes are
equipped with detectors for secondary electrons as well as EDS systems.
Additionally, they are equipped with in-lens detectors. Such a detector
is placed inside the final lens of the microscope and allows for a higher
resolution than a conventional secondary electron detector [157]. The
Philips XL30 is also equipped with a backscattered electron detector.
This detector can be used to measure the thickness of the films in cross-
sectional cuts of the sample as the chemical contrast between the film
and the sample is visible.

4.6 Transmission electron microscopy

With transmission electron microscopy (TEM) thin foils of a sample can
be investigated at high resolution. In TEM, electrons are accelerated
with an acceleration voltage of 200-300 kV. The electron beam is then
condensed using electromagnetic lenses and traverses the sample [156,
p. 142]. The electrons have different interactions with the sample and
the transmitted electrons are used to create a magnified image of the
specimen on a screen with the help of several electromagnetic lenses. In
the sample, a part of the electrons are transmitted without interaction,
while another part is scattered. The elastically scattered electrons are
diffracted by the lattice planes in the case of crystalline samples. On the
other hand, there are also inelastic collisions, where the electrons lose
some of their energy. These inelastic collisions can cause the emission
of X-rays from the sample, which can be analyzed by EDX.

A TEM has two basic modes, which are the image mode and the dif-
fraction mode. It is possible to choose between those modes by changing
the focal point of one of the lenses. A simplified scheme of the two modes
is shown in Figure 4.8 [156, p. 153]. In diffraction mode (Figure 4.8a), an
image of the back-focal plane of the objective lens is projected on the
screen [156, p. 152]. This way, the diffracted beams are separated from
the direct beam. In case of a crystalline sample, the diffracted beams
form spots that correspond to the lattice planes of the sample in recip-
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Figure 4.8: Simplified schematic representation of the two basic operat-
ing modes of a TEM [156, p. 153]

rocal space. This allows to obtain information about the crystal structure
of the sample. It is also possible to obtain crystallographic information
about a sample by using a fast Fourier transform (FFT) of a high resol-
ution TEM (HRTEM) image. In image mode (Figure 4.8b), the image
plane of the objective lens is projected onto the screen. In this mode it
is possible to create bright field and dark field images [156, p. 155]. To
choose between bright field and dark field images, an aperture has to be
inserted in the back-focal plane of the objective lens. By selecting only
the direct beam, a bright field image is created. For a dark field image,
one of the diffracted beam spots has to be selected with the objective
aperture.

There are several possible ways to prepare a sample for TEM invest-
igation. The simplest way is to chip off material from the thin film using
a diamond tip onto a carbon grid. However, this method does not al-
ways work well, in which case a more sophisticated method is needed.
Cross-sectional samples can be prepared by cutting the sample, and
then polishing it mechanically to reduce the thickness. After the mech-
anical polishing, ion-milling is used to sputter away more material, until
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a hole appears. At the edge of this hole, the sample is thin enough to be
investigated by TEM. Another way is to use a focused ion beam (FIB) to
cut out a thin foil from the sample. A FIB is an addition to a conventional
SEM, that allows to precisely sputter away atoms from certain places on
the sample. Another possibility for the preparation of TEM samples is
to deposit a thin film directly onto a TEM grid.

4.7 Secondary ion mass spectrometry

Secondary ion mass spectrometry (SIMS) can be used to analyze the
chemical composition profile of a thin film. It uses a primary ion beam
to bombard the sample and sputter atoms and ions from the sample
surface. The sputtered secondary ions can then be analyzed in a mass
spectrometer. A schematic presentation of the SIMS method is shown
in Figure 4.9.

As primary ions Ar+, Cs+ or O−2 with energies between 2-15 keV are
typically used [72, p. 298]. The secondary ion yield for a given element is
influenced by a multitude of parameters, such as the type of projectile
and the target material. Different projectiles influence the work function
of the material in different ways, which can introduce large changes in
the secondary ion yield. For a quantitative analysis of the composition
using SIMS it is therefore necessary to use standards of the same ele-

Sample

Primary
ion beam

Secondary
ions

Mass spectrometer

Detector

Figure 4.9: Schematic representation of a SIMS experiment [72, p. 298]
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ments and matrices as the sample [72, p. 297]. As the sample surface is
being sputtered during the analysis, the sputtering time is proportional
to the analysis depth. This allows to obtain depth profiles of the chemical
composition [72, p. 299]. In this work a CAMECA IMS 7f spectrometer is
used with Cs+ as primary ions.

4.8 Rutherford backscattering spectrometry

In Rutherford backscattering spectrometry (RBS), a sample is irradiated
by fast ions of low mass and the energy of the backscattered ions is
measured [72, pp. 289-296]. This technique allows to obtain information
about the chemical composition of the sample. When the fast ions
bombard the sample, a small portion of them can collide elastically with
the nuclei of the target atoms and can be backscattered. Due to the
elastic collision the projectile ions lose some of their kinetic energy. The
energy E1 of the projectile with mass mP and initial energy E0 after the
collision with the target nucleus of mass mT is given by

E1 = E0 ·





r

1−
�

mP
mT
· sinθ
�2
+

mP
mT
· cosθ

1+ mP
mT





2

, (4.22)

withθ the scattering angle. As this energy loss depends on the mass of the
target atoms, it contains information about the chemical composition
of the sample.

RBS also provides information about the composition profile along
the sample depth. When the bombarding ions penetrate into the sample,
they lose energy due to excitation of electrons and ionization of atoms
within the sample. This energy loss can be considered to be continuous
with the sample depth, meaning that ions backscattered deeper within
the sample have a lower energy [72, p. 289].

As projectile ions typically He+ ions are used. The ions are accel-
erated to an energy of several MeV using linear accelerators. The ion
beam can be focussed on the substrate. A detector is placed close to the
incoming ion beam, to measure the energy of the backscattered ions
at a scattering angle close to 180 ◦. The setup is schematically shown
in Figure 4.10. In this work, the RBS setup of the ACACIA platform at
the ICube laboratory in Strasbourg was used. In this setup, He+ ions are
accelerated to 1.5 MeV using a Van de Graaff accelerator.
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Figure 4.10: Schematic representation of the RBS measurement setup [72,
p. 290]

4.9 X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS) is a technique that is used for
the analysis of the chemical composition of a sample. In XPS, the sample
is irradiated by X-rays and the energy of the emitted photoelectrons
is analyzed. Only photoelectrons created close to the surface (~15 Å)
can escape the material, which means that XPS is a surface sensitive
technique [72, p. 275]. As an X-ray source usually Mg or Al anodes are
used [72, p. 286]. In this work, Al Kα (1486.6 eV) radiation was used.
The kinetic energy of the photoelectron Ekin is related to the energy of
the incident photon hν and the binding energy of the electron in the
material EB via

EB = hν−Ekin . (4.23)

As the binding energy is element specific XPS allows the determination of
the chemical composition of the sample [72, p. 282]. The binding energy
of a certain element can be shifted by a few eV due to the chemical
bonding [72, p. 287]. By analyzing these shifts, the bonding state of
atoms can be determined. A schematic representation of a typical XPS
setup is shown in Figure 4.11. The energy of the electrons is analyzed by
a hemispherical analyzer [158, pp. 37-39]. The analyzer consists of two
concentric hemispheres with a potential difference between them. For a
given potential difference only electrons with a specific energy can reach
the other end of the analyzer. Between the sample and the analyzer there
is a series of lenses to decrease the energy of the electrons and therefore
improve the energy resolution of the analyzer. The analyzer used in this
work was a Omicrometer EA 125.

As explained above, XPS is a surface sensitive technique. To obtain
information about the bulk of the sample, it is possible to sputter away
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Figure 4.11: Schematic representation of a typical XPS setup [158, p. 51]

atoms from the surface of the sample using an ion gun [158, pp. 93-103].
Ar+ ions with an energy of a few hundreds or thousands of eV are typically
used in this case. After a first analysis, the sample is bombarded for a
certain time and then analyzed again. This cycle is then repeated, until
the final sample depth is reached. The ion bombardment can induce
problems, such as preferential sputtering, which will alter the chemical
composition of the surface.
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Chapter 5

Summary of the results

In this chapter, the results of the work in this thesis are summarized.
In Paper 1, the deposition of AZO films using reactive HiPIMS is in-
vestigated at room temperature. The electrical, optical and structural
properties of the films are compared to those of a film deposited us-
ing reactive DC magnetron sputtering. In Paper 2, the stability of AZO
films towards ambient moisture has been investigated and a low tem-
perature annealing of the films to improve their electrical properties is
proposed. In Paper 3, the effect of the deposition temperature on the
properties of the AZO films in case of reactive HiPIMS is studied. Finally,
nanostructured AZO films have been deposited on flexible substrates in
Paper 4.

Paper 1: Room temperature deposition of

homogeneous, highly transparent and conductive

Al-doped ZnO films by reactive high power impulse

magnetron sputtering

In this study, AZO films have been deposited using reactive HiPIMS
at room temperature. The properties of these films have been invest-
igated and compared to the properties of AZO films deposited using
DC sputtering in the same chamber under similar conditions. The
AZO films have been deposited using three different discharge voltages
between 540 and 570 V. The best films were deposited using HiPIMS
at the highest discharge voltage of 570 V. In this case, an optimum res-
istivity of 4× 10−4 Ωcm was found. The charge carrier concentration
reached values of up to 11×1020 cm−3. This suggests, that ionized im-
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purity scattering is the dominant scattering mechanism in the columnar
films.

The evolution of the properties between the different samples can
be summarized as follows. When going from DC to HiPIMS, and with
increasing discharge voltage in the case of HiPIMS, the resistivity of the
films and the transmittance in the near infrared decrease, the band gap
increases and the crystalline quality decreases. These results suggest,
that the films become increasingly substoichiometric. Additionally, the
electrical and optical properties show the lowest lateral variation in
the case of the HiPIMS deposited film at 570 V. The lateral variation
of the electrical properties is believed to be related to the oxygen ion
bombardment as outlined in section 3.7.

Additional AZO films were deposited using reactive HiPIMS with
pulse lengths between 80 and 120µs. The optical and structural proper-
ties of these films show, that the films become more substoichiometric
with increasing pulse width and therefore increasing ion dose per pulse.
These results, together with the low oxygen ion bombardment, suggest
that the process is shifted towards the metallic mode, because of the
increased instantaneous sputter rate, that could hinder the formation of
an oxide layer at the target surface.

From the ion dose per pulse and the racetrack profile, the local distri-
bution of the sputter rate across the racetrack was estimated as outlined
in the supplementary material of Paper 1. At the centre of the racetrack,
the number of sputtered atoms is estimated to be in the same order of
magnitude as the surface atom density in ZnO. This supports the model
of the partial removal of oxygen at the centre of the racetrack in HiPIMS.
Additionally, the normalized deposition rate was found to be higher in
the case of HiPIMS than in DC sputtering.

Paper 2: Restoring the properties of transparent

Al-doped ZnO thin film electrodes exposed to

ambient air

In the second paper, AZO films deposited using both HiPIMS and DC
sputtering with different process conditions have been annealed at low
temperatures between 160 and 180 ◦C in N2 after an aging process in
ambient air. As the electrical properties of AZO are known to degrade
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upon exposure to humidity, the proposed annealing process allowed
to improve and partially restore the electrical properties. The degrad-
ation of the electrical properties has been related to the absorption of
water and the formation of hydroxyl groups by various authors [159–161].
These hydroxyl groups act as traps for charge carriers and can therefore
decrease the charge carrier concentration and the mobility.

In this work, the evolution of the sheet resistance and the transmit-
tance spectra was followed in situ during the annealing. The results
are interpreted as a diffusion process, related to the decomposition of
hydroxyl groups and the out-diffusion of water. A simplified diffusion
model was fitted to the evolution of the sheet resistance with the an-
nealing time. The starting point of this model was adapted from the
diffusion equation for the desorption from a membrane (Equation 4.17
in [162, p. 47]). This allowed to obtain an effective diffusion coefficient,
that was found to have the highest value for the film deposited at the
highest pressure. As a higher deposition pressure is generally related to
a less dense microstructure of the films, the results suggest that grain
boundaries serve as diffusion paths for the water molecules. Additional
evidence for the removal of hydrogen from the films was obtained by
SIMS, as well as XPS. The XPS results for the O 1s core level peak show
that the amount of hydroxyl groups decreases after annealing.

Paper 3: Effect of substrate temperature on the

deposition of Al-Doped ZnO thin films using high

power impulse magnetron sputtering

In the third paper, AZO films have been deposited at substrate temperat-
ures between room temperature and 600 ◦C using reactive HiPIMS. As
described in section 3.7, the substrate temperature plays an important
role for the properties of AZO films. In this study, the electrical properties
were found to improve up to the highest tested temperature of 600◦C
with a minimum resistivity of 3× 10−4 Ωcm. The improvement in the
resistivity of the films can be mostly related to an increase in the charge
carrier mobility, due to an improved crystalline quality at high substrate
temperature.

In the literature, optimum substrate temperatures for AZO depos-
ition by reactive DC sputtering are usually reported to lie between 200
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and 350 ◦C [5]. The bombardment of the growing film with negative
oxygen ions is believed to cause the deactivation of charge carriers due
to the formation of insulating secondary phases [8, 9, 63]. The formation
of secondary phases has been reported to increase at high substrate
temperatures due to the preferential desorption of Zn [63]. The results
of Paper 1 have shown that the detrimental effects of negative oxygen
bombardment can be reduced in the case of HiPIMS, which can explain
why there is no degradation of the electrical properties at high substrate
temperature in this study.

Additionally, the effect of aging the films in ambient moisture similar
to the procedure described in Paper 2 has been studied. Only the films
deposited at room temperature showed a significant degradation of the
properties after 9 months. Films deposited at substrate temperatures of
200 ◦C and above are more stable with time. This can be related to the
improved crystalline quality of the films, that makes it more difficult for
water to diffuse into the films.

Paper 4: Improved electrical reliability of flexible

transparent electrodes based on bottom-up

nanostructured Al-doped ZnO thin films

The results of Paper 1 have shown that HiPIMS is a suitable technique to
deposit transparent conductive AZO films at room temperature. There-
fore, it is interesting to deposit AZO films on flexible polymer substrates
such as polyethylene terephthalate (PET) using this technique, as poly-
mer substrates are sensitive towards high temperatures. Additionally, the
deposited AZO films consisted of a porous array of nanorods on top of a
dense seed layer of around 100 nm thickness. This special nanostructure
allowed to improve the electrical reliability of the films upon bending.

The sheet resistance of the films was measured after successive bend-
ing with a decreasing bending radius. The resistance was found to in-
crease with decreasing bending radius, however, the onset of the de-
crease was shifted towards lower bending radius with increasing film
thickness. Additionally, the magnitude of the change in sheet resistance
decreased with the film thickness. This can be explained by the nano-
structure of the films. When the sample is flat, the nanorods are in lateral
contact with each other, ensuring the conductivity in the film. When
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the sample is bent, the nanorods can separate without breaking and can
go back to their initial orientation after bending. This interpretation is
supported by the absence of long cracks in the films perpendicular to
the bending direction.

The seed layer showed a high compressive stress of nearly -3 GPa
for the films deposited on PET, while for the films deposited on Si, the
compressive stress is only about -1 GPa. The high compressive stress
in the seed layer in the case of deposition on PET can be related to the
difference in the thermal expansion coefficient of PET and AZO. The
nanorod layer on top of the seed layer is growing with the same low
compressive stress of about -1 GPa on both types of substrates. This
compressive stress is close to the compressive stress found in the AZO
films deposited at room temperature and at 200 ◦C in Paper 3.

The formation of the nanostructure of the AZO films in this study
can be explained by a combination of an atomic shadowing effect and
a limited diffusion of the adatoms due to a relatively high growth rate.
The atomic shadowing effect is known to lead to such porous structures
in the case of sputter deposition at oblique angles [163]. The growth rate
in this work was about 40 nm/min, which is still higher than the highest
growth rate in the case of Paper 3 (35 nm/min at 500 ◦C). Considering
the low substrate temperature in this study, the high growth rate could
prevent the diffusion of adatoms between the grains. The segregation of
secondary phases at the grain boundaries could also hinder lateral grain
growth.
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Chapter 6

Contributions and future

work

The main contributions of this thesis to the field, in the author’s opinion,
are the following:

• The possibility to deposit highly conductive AZO films with a good
homogeneity of the properties using reactive HiPIMS at room tem-
perature is demonstrated. The improvement in the homogeneity
can be related to a shift of the process conditions towards the
metallic mode as compared to DC sputtering.

• A low temperature annealing method is proposed to restore the
electrical properties of AZO films after exposure to ambient mois-
ture. The improvement of the electrical properties can be related
to the out-diffusion of water.

• The effect of high substrate temperature on the properties of AZO
films provides further evidence for the decreased oxygen bombard-
ment in the case of reactive HiPIMS.

• The deposition of nanostructured, transparent and conducting
films on flexible substrates using reactive HiPIMS was shown. Us-
ing such nanostructured films can improve the electrical reliability
of the films in flexible devices.
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Based on the results of this thesis, potential future work is presented in
the following:

• There is still a large unexplored parameter space in reactive HiPIMS
of AZO. More specifically, the influence of short (~20µs) or long
pulses (~200µs), as well as the influence of larger peak currents
could be interesting to study.

• The reason for the increase in deposition rate with the substrate
temperature as seen in Paper 3 needs clarification. More exper-
iments are needed. For example, the experiments could be re-
peated while keeping the gas density constant.

• The porous nanostructure of the AZO films in Paper 4 should be
further studied, as this structure might be interesting for other ap-
plications, such as gas sensors or solar cells, due to their increased
surface to volume ratio.
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Dépôt de couches minces de ZnO dopé Al par pulvérisation cathodique magné-

tron en régime d’impulsions de haute puissance

Résumé : Les oxydes conducteurs transparents (TCO) sont une classe importante de matériaux possédant de nombreux
domaines d’application, telles que les revêtements à faible émissivité ou comme électrodes transparentes pour les
panneaux photovoltaïques et écrans plats. Parmi les matériaux TCO possibles, le ZnO dopé à l’Al (AZO) est couramment
étudié notamment à cause de son coût relativement faible et de l’abondance en matières premières des éléments qui le
compose. Les films minces d’AZO sont généralement produits par l’intermédiaire de procédés de dépôts physiques en
phase vapeur, tels que la pulvérisation cathodique magnétron. Cependant, l’une des limitations de ces techniques repose
sur l’homogénéité des films en utilisant la pulvérisation magnétron réactive (DCMS). Ce problème d’homogénéité peut
être lié au bombardement du film en croissance par des ions négatifs d’oxygène, lesquels peuvent induire la présence de
défauts accepteurs supplémentaires et la formation de phases secondaires isolantes. Dans ce travail, les films d’AZO
sont déposés par pulvérisation cathodique magnétron en régime d’impulsions haute puissance (HiPIMS), un procédé
dans laquelle des densités de courant instantanées élevées sont obtenues par l’intermédiaire de courtes impulsions
de faible rapport cyclique. Dans la première partie de cette thèse, la possibilité d’améliorer l’homogénéité des films
AZO par HiPIMS est démontrée. Cette amélioration peut être liée à un important taux de pulvérisation instantanée
pendant chaque impulsion HiPIMS, de sorte que le processus puisse avoir lieu en régime métallique. Ceci permet de
réduire l’impact du bombardement en ions d’oxygène pendant la croissance du film, évitant ainsi la formation de phases
secondaires. Un autre problème de l’AZO est la stabilité des propriétés intrinsèques dans des environnements humides.
Pour évaluer ce problème, la dégradation des propriétés électriques après une procédure de vieillissement a été étudiée
pour des films déposés à la fois par DCMS et HiPIMS. Une méthode a été proposée pour restaurer les propriétés des
films qui consiste en un recuit à basse température sous atmosphère de N2. L’amélioration des propriétés électriques des
films peut être liée à un processus de diffusion dans lequel l’eau est évacuée hors des films. Ensuite, l’influence de la
température du substrat sur les propriétés des films d’AZO déposés par HiPIMS a été étudiée. Les propriétés électriques,
optiques et structurelles ont été améliorées avec l’augmentation de la température du substrat jusqu’à 600C. Cette
amélioration peut s’expliquer par l’augmentation de la qualité cristalline et le recuit des défauts. Dans une dernière
partie, le dépôt de films d’AZO sur des substrats flexibles de PET a été étudié. Les films se développent sous la forme
d’une couche épaisse, poreuse et composés de colonnes orientées de manière préférentielle selon l’axe c au-dessus d’une
fine couche de départ. L’analyse de la résistance électrique après déformation mécanique a permis de déterminer une
relation de proportionnalité inverse ou la résistance électrique augmente avec la diminution du rayon de courbure, cette
dernière étant moins prononcée pour des films plus épais.

Mots-clés : ZnO, Pulvérisation cathodique, HiPIMS, électronique, AZO

Deposition of Al-doped ZnO films by high power impulse magnetron sputtering

Abstract: Transparent conducting oxides (TCOs) are an important class of materials with many applications such as
low emissivity coatings, or transparent electrodes for photovoltaics and flat panel displays. Among the possible TCO
materials, Al-doped ZnO (AZO) is studied due to its relatively low cost and abundance of the raw materials. Thin films of
AZO are commonly produced using physical vapour deposition techniques such as magnetron sputtering. However,
there is a problem with the homogeneity of the films using reactive direct current magnetron sputtering (DCMS). This
homogeneity problem can be related to the bombardment of the growing film with negative oxygen ions, that can cause
additional acceptor defects and the formation of insulating secondary phases. In this work AZO films are deposited by
high power impulse magnetron sputtering (HiPIMS), a technique in which high instantaneous current densities are
achieved by short pulses of low duty cycle. In the first part of this thesis, the possibility to improve the homogeneity of
the deposited AZO films by using HiPIMS is demonstrated. This improvement can be related to the high instantaneous
sputtering rate during the HiPIMS pulses, so the process can take place in the metal mode. This allows for a lower
oxygen ion bombardment of the growing film, which can help to avoid the formation of secondary phases. Another
problem of AZO is the stability of the properties in humid environments. To assess this problem, the degradation of
the electrical properties after an aging procedure was investigated for films deposited by both DCMS and by HiPIMS. A
method was proposed, to restore the properties of the films, using a low temperature annealing under N2 atmosphere.
The improvement of the electrical properties of the films could be related to a diffusion process, where water is diffusing
out of the films. Then, the influence of the substrate temperature on the properties of AZO films deposited by HiPIMS was
studied. The electrical, optical and structural properties were found to improve with increasing substrate temperature
up to 600C. This improvement can be mostly explained by the increase in crystalline quality and the annealing of defects.
Finally, the deposition of AZO films on flexible PET substrates was investigated. The films are growing as a thick porous
layer of preferentially c-axis oriented columns on top of a thin dense seed layer. The evolution of the sheet resistance of
the films after bending the films with different radii was studied. There is an increase in the sheet resistance of the films
with decreasing bending radius, that is less pronounced for thicker films.

Keywords: ZnO, Magnetron sputtering, HiPIMS, Electronics, AZO
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